summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib')
-rw-r--r--contrib/llvm/lib/Analysis/AliasAnalysis.cpp85
-rw-r--r--contrib/llvm/lib/Analysis/AliasAnalysisEvaluator.cpp8
-rw-r--r--contrib/llvm/lib/Analysis/AliasSetTracker.cpp105
-rw-r--r--contrib/llvm/lib/Analysis/Analysis.cpp2
-rw-r--r--contrib/llvm/lib/Analysis/AssumptionCache.cpp125
-rw-r--r--contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp269
-rw-r--r--contrib/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp3
-rw-r--r--contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp3
-rw-r--r--contrib/llvm/lib/Analysis/CFG.cpp6
-rw-r--r--contrib/llvm/lib/Analysis/CFGPrinter.cpp16
-rw-r--r--contrib/llvm/lib/Analysis/CFLAliasAnalysis.cpp1013
-rw-r--r--contrib/llvm/lib/Analysis/CGSCCPassManager.cpp103
-rw-r--r--contrib/llvm/lib/Analysis/CaptureTracking.cpp4
-rw-r--r--contrib/llvm/lib/Analysis/CodeMetrics.cpp92
-rw-r--r--contrib/llvm/lib/Analysis/ConstantFolding.cpp121
-rw-r--r--contrib/llvm/lib/Analysis/DependenceAnalysis.cpp73
-rw-r--r--contrib/llvm/lib/Analysis/FunctionTargetTransformInfo.cpp50
-rw-r--r--contrib/llvm/lib/Analysis/IPA/CallGraph.cpp3
-rw-r--r--contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp11
-rw-r--r--contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp100
-rw-r--r--contrib/llvm/lib/Analysis/IPA/IPA.cpp1
-rw-r--r--contrib/llvm/lib/Analysis/IPA/InlineCost.cpp36
-rw-r--r--contrib/llvm/lib/Analysis/IVUsers.cpp8
-rw-r--r--contrib/llvm/lib/Analysis/InstructionSimplify.cpp877
-rw-r--r--contrib/llvm/lib/Analysis/JumpInstrTableInfo.cpp17
-rw-r--r--contrib/llvm/lib/Analysis/LazyCallGraph.cpp15
-rw-r--r--contrib/llvm/lib/Analysis/LazyValueInfo.cpp553
-rw-r--r--contrib/llvm/lib/Analysis/LibCallSemantics.cpp4
-rw-r--r--contrib/llvm/lib/Analysis/Lint.cpp30
-rw-r--r--contrib/llvm/lib/Analysis/Loads.cpp192
-rw-r--r--contrib/llvm/lib/Analysis/LoopInfo.cpp4
-rw-r--r--contrib/llvm/lib/Analysis/LoopPass.cpp11
-rw-r--r--contrib/llvm/lib/Analysis/MemDepPrinter.cpp28
-rw-r--r--contrib/llvm/lib/Analysis/MemoryBuiltins.cpp10
-rw-r--r--contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp251
-rw-r--r--contrib/llvm/lib/Analysis/NoAliasAnalysis.cpp5
-rw-r--r--contrib/llvm/lib/Analysis/PHITransAddr.cpp6
-rw-r--r--contrib/llvm/lib/Analysis/PtrUseVisitor.cpp2
-rw-r--r--contrib/llvm/lib/Analysis/RegionInfo.cpp2
-rw-r--r--contrib/llvm/lib/Analysis/RegionPass.cpp3
-rw-r--r--contrib/llvm/lib/Analysis/ScalarEvolution.cpp1227
-rw-r--r--contrib/llvm/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp4
-rw-r--r--contrib/llvm/lib/Analysis/ScalarEvolutionExpander.cpp4
-rw-r--r--contrib/llvm/lib/Analysis/ScalarEvolutionNormalization.cpp2
-rw-r--r--contrib/llvm/lib/Analysis/ScopedNoAliasAA.cpp245
-rw-r--r--contrib/llvm/lib/Analysis/StratifiedSets.h692
-rw-r--r--contrib/llvm/lib/Analysis/TargetTransformInfo.cpp67
-rw-r--r--contrib/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp58
-rw-r--r--contrib/llvm/lib/Analysis/ValueTracking.cpp1159
-rw-r--r--contrib/llvm/lib/AsmParser/LLLexer.cpp134
-rw-r--r--contrib/llvm/lib/AsmParser/LLLexer.h11
-rw-r--r--contrib/llvm/lib/AsmParser/LLParser.cpp864
-rw-r--r--contrib/llvm/lib/AsmParser/LLParser.h104
-rw-r--r--contrib/llvm/lib/AsmParser/LLToken.h16
-rw-r--r--contrib/llvm/lib/AsmParser/Parser.cpp44
-rw-r--r--contrib/llvm/lib/Bitcode/Reader/BitReader.cpp7
-rw-r--r--contrib/llvm/lib/Bitcode/Reader/BitcodeReader.cpp1139
-rw-r--r--contrib/llvm/lib/Bitcode/Reader/BitcodeReader.h104
-rw-r--r--contrib/llvm/lib/Bitcode/Reader/BitstreamReader.cpp89
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp14
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp379
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp4
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp524
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h39
-rw-r--r--contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp45
-rw-r--r--contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.h65
-rw-r--r--contrib/llvm/lib/CodeGen/AllocationOrder.h4
-rw-r--r--contrib/llvm/lib/CodeGen/Analysis.cpp68
-rw-r--r--contrib/llvm/lib/CodeGen/AntiDepBreaker.h24
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp6
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.h4
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp437
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp185
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterHandler.h4
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp20
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/ByteStreamer.h6
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp33
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DIE.h587
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.h6
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp97
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.h6
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h146
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocList.h10
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp18
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h14
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp836
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h250
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp1181
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h215
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h37
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp260
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h133
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp65
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h54
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.cpp8
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.h14
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp737
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h243
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp67
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.h22
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/ErlangGCPrinter.cpp21
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp38
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.cpp151
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.h56
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.cpp167
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.h4
-rw-r--r--contrib/llvm/lib/CodeGen/AtomicExpandLoadLinkedPass.cpp380
-rw-r--r--contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp563
-rw-r--r--contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp41
-rw-r--r--contrib/llvm/lib/CodeGen/BranchFolding.cpp92
-rw-r--r--contrib/llvm/lib/CodeGen/BranchFolding.h28
-rw-r--r--contrib/llvm/lib/CodeGen/CalcSpillWeights.cpp12
-rw-r--r--contrib/llvm/lib/CodeGen/CallingConvLower.cpp83
-rw-r--r--contrib/llvm/lib/CodeGen/CodeGen.cpp3
-rw-r--r--contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp1822
-rw-r--r--contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp70
-rw-r--r--contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.h27
-rw-r--r--contrib/llvm/lib/CodeGen/DFAPacketizer.cpp21
-rw-r--r--contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp26
-rw-r--r--contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp8
-rw-r--r--contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp14
-rw-r--r--contrib/llvm/lib/CodeGen/ErlangGC.cpp3
-rw-r--r--contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp166
-rw-r--r--contrib/llvm/lib/CodeGen/ExpandISelPseudos.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/ExpandPostRAPseudos.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/ForwardControlFlowIntegrity.cpp374
-rw-r--r--contrib/llvm/lib/CodeGen/GCMetadata.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp8
-rw-r--r--contrib/llvm/lib/CodeGen/GCStrategy.cpp25
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalMerge.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/IfConversion.cpp30
-rw-r--r--contrib/llvm/lib/CodeGen/InlineSpiller.cpp80
-rw-r--r--contrib/llvm/lib/CodeGen/InterferenceCache.h4
-rw-r--r--contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp33
-rw-r--r--contrib/llvm/lib/CodeGen/JITCodeEmitter.cpp14
-rw-r--r--contrib/llvm/lib/CodeGen/JumpInstrTables.cpp19
-rw-r--r--contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp66
-rw-r--r--contrib/llvm/lib/CodeGen/LexicalScopes.cpp11
-rw-r--r--contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp88
-rw-r--r--contrib/llvm/lib/CodeGen/LiveDebugVariables.h9
-rw-r--r--contrib/llvm/lib/CodeGen/LiveInterval.cpp322
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp603
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp18
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp225
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeCalc.h57
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp23
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp65
-rw-r--r--contrib/llvm/lib/CodeGen/LiveStackAnalysis.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/LiveVariables.cpp262
-rw-r--r--contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp57
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp16
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCSE.cpp68
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCodeEmitter.cpp14
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCombiner.cpp435
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/MachineDominanceFrontier.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/MachineDominators.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunction.cpp109
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp3
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp28
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/MachineInstr.cpp142
-rw-r--r--contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp19
-rw-r--r--contrib/llvm/lib/CodeGen/MachineLICM.cpp44
-rw-r--r--contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp18
-rw-r--r--contrib/llvm/lib/CodeGen/MachineRegionInfo.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp37
-rw-r--r--contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/MachineScheduler.cpp51
-rw-r--r--contrib/llvm/lib/CodeGen/MachineSink.cpp211
-rw-r--r--contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp76
-rw-r--r--contrib/llvm/lib/CodeGen/MachineVerifier.cpp181
-rw-r--r--contrib/llvm/lib/CodeGen/OptimizePHIs.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/PHIElimination.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/PHIEliminationUtils.h4
-rw-r--r--contrib/llvm/lib/CodeGen/Passes.cpp161
-rw-r--r--contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp812
-rw-r--r--contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp43
-rw-r--r--contrib/llvm/lib/CodeGen/ProcessImplicitDefs.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp100
-rw-r--r--contrib/llvm/lib/CodeGen/PrologEpilogInserter.h4
-rw-r--r--contrib/llvm/lib/CodeGen/PseudoSourceValue.cpp8
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBase.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBase.h9
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBasic.cpp1
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocFast.cpp57
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp237
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp777
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterClassInfo.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp965
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterCoalescer.h50
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterPressure.cpp3
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterScavenging.cpp131
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAG.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp58
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGPrinter.cpp1
-rw-r--r--contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp2821
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp1011
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp118
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp48
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.h5
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp491
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp61
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp146
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp11
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h18
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp12
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp67
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp257
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp50
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h58
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp32
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp78
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp46
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h4
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp512
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp1286
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h72
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp12
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp246
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp684
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.h138
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp105
-rw-r--r--contrib/llvm/lib/CodeGen/ShadowStackGC.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp15
-rw-r--r--contrib/llvm/lib/CodeGen/SpillPlacement.cpp54
-rw-r--r--contrib/llvm/lib/CodeGen/SpillPlacement.h13
-rw-r--r--contrib/llvm/lib/CodeGen/Spiller.cpp184
-rw-r--r--contrib/llvm/lib/CodeGen/Spiller.h9
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.cpp76
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.h4
-rw-r--r--contrib/llvm/lib/CodeGen/StackColoring.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp6
-rw-r--r--contrib/llvm/lib/CodeGen/StackMaps.cpp46
-rw-r--r--contrib/llvm/lib/CodeGen/StackProtector.cpp57
-rw-r--r--contrib/llvm/lib/CodeGen/StackSlotColoring.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/StatepointExampleGC.cpp54
-rw-r--r--contrib/llvm/lib/CodeGen/TailDuplication.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp6
-rw-r--r--contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp125
-rw-r--r--contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp97
-rw-r--r--contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp179
-rw-r--r--contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp11
-rw-r--r--contrib/llvm/lib/CodeGen/TargetSchedule.cpp33
-rw-r--r--contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp28
-rw-r--r--contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp11
-rw-r--r--contrib/llvm/lib/CodeGen/VirtRegMap.cpp65
-rw-r--r--contrib/llvm/lib/DebugInfo/DIContext.cpp4
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.cpp2
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.h60
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFAcceleratorTable.cpp132
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFCompileUnit.cpp2
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFCompileUnit.h30
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFContext.cpp249
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFContext.h285
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.cpp6
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.h63
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.cpp2
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.h70
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugAranges.cpp8
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugAranges.h87
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugFrame.cpp5
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugFrame.h43
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.cpp147
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.h157
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugLine.cpp40
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugLine.h232
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugLoc.cpp4
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugLoc.h81
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.cpp2
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.h77
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFFormValue.cpp74
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFRelocMap.h22
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFTypeUnit.cpp2
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFTypeUnit.h37
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFUnit.cpp49
-rw-r--r--contrib/llvm/lib/DebugInfo/DWARFUnit.h163
-rw-r--r--contrib/llvm/lib/DebugInfo/SyntaxHighlighting.cpp37
-rw-r--r--contrib/llvm/lib/DebugInfo/SyntaxHighlighting.h39
-rw-r--r--contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h135
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp184
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp33
-rw-r--r--contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp (renamed from contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp)98
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp155
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp35
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp13
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h84
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp695
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JIT.h229
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp1249
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp904
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp232
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h63
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h48
-rw-r--r--contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp191
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp37
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h44
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h89
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp380
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp1365
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h76
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp409
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h35
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h71
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp235
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h127
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h351
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h179
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h172
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h35
-rw-r--r--contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp5
-rw-r--r--contrib/llvm/lib/IR/AsmWriter.cpp543
-rw-r--r--contrib/llvm/lib/IR/AsmWriter.h11
-rw-r--r--contrib/llvm/lib/IR/AttributeImpl.h4
-rw-r--r--contrib/llvm/lib/IR/AutoUpgrade.cpp229
-rw-r--r--contrib/llvm/lib/IR/BasicBlock.cpp60
-rw-r--r--contrib/llvm/lib/IR/ConstantFold.cpp125
-rw-r--r--contrib/llvm/lib/IR/ConstantFold.h4
-rw-r--r--contrib/llvm/lib/IR/Constants.cpp529
-rw-r--r--contrib/llvm/lib/IR/ConstantsContext.h628
-rw-r--r--contrib/llvm/lib/IR/Core.cpp256
-rw-r--r--contrib/llvm/lib/IR/DIBuilder.cpp1428
-rw-r--r--contrib/llvm/lib/IR/DataLayout.cpp77
-rw-r--r--contrib/llvm/lib/IR/DebugInfo.cpp678
-rw-r--r--contrib/llvm/lib/IR/DebugLoc.cpp303
-rw-r--r--contrib/llvm/lib/IR/DiagnosticInfo.cpp3
-rw-r--r--contrib/llvm/lib/IR/DiagnosticPrinter.cpp2
-rw-r--r--contrib/llvm/lib/IR/Dominators.cpp38
-rw-r--r--contrib/llvm/lib/IR/Function.cpp196
-rw-r--r--contrib/llvm/lib/IR/GCOV.cpp13
-rw-r--r--contrib/llvm/lib/IR/Globals.cpp41
-rw-r--r--contrib/llvm/lib/IR/IRBuilder.cpp161
-rw-r--r--contrib/llvm/lib/IR/IRPrintingPasses.cpp12
-rw-r--r--contrib/llvm/lib/IR/InlineAsm.cpp4
-rw-r--r--contrib/llvm/lib/IR/Instruction.cpp37
-rw-r--r--contrib/llvm/lib/IR/Instructions.cpp76
-rw-r--r--contrib/llvm/lib/IR/IntrinsicInst.cpp22
-rw-r--r--contrib/llvm/lib/IR/LLVMContext.cpp87
-rw-r--r--contrib/llvm/lib/IR/LLVMContextImpl.cpp57
-rw-r--r--contrib/llvm/lib/IR/LLVMContextImpl.h271
-rw-r--r--contrib/llvm/lib/IR/LeakDetector.cpp69
-rw-r--r--contrib/llvm/lib/IR/LeaksContext.h11
-rw-r--r--contrib/llvm/lib/IR/LegacyPassManager.cpp69
-rw-r--r--contrib/llvm/lib/IR/MDBuilder.cpp55
-rw-r--r--contrib/llvm/lib/IR/Mangler.cpp96
-rw-r--r--contrib/llvm/lib/IR/Metadata.cpp1134
-rw-r--r--contrib/llvm/lib/IR/MetadataTracking.cpp58
-rw-r--r--contrib/llvm/lib/IR/Module.cpp119
-rw-r--r--contrib/llvm/lib/IR/PassManager.cpp165
-rw-r--r--contrib/llvm/lib/IR/PassRegistry.cpp56
-rw-r--r--contrib/llvm/lib/IR/Statepoint.cpp61
-rw-r--r--contrib/llvm/lib/IR/SymbolTableListTraitsImpl.h4
-rw-r--r--contrib/llvm/lib/IR/Type.cpp59
-rw-r--r--contrib/llvm/lib/IR/TypeFinder.cpp32
-rw-r--r--contrib/llvm/lib/IR/Use.cpp2
-rw-r--r--contrib/llvm/lib/IR/UseListOrder.cpp43
-rw-r--r--contrib/llvm/lib/IR/User.cpp3
-rw-r--r--contrib/llvm/lib/IR/Value.cpp180
-rw-r--r--contrib/llvm/lib/IR/ValueSymbolTable.cpp33
-rw-r--r--contrib/llvm/lib/IR/Verifier.cpp589
-rw-r--r--contrib/llvm/lib/IRReader/IRReader.cpp56
-rw-r--r--contrib/llvm/lib/LTO/LTOCodeGenerator.cpp112
-rw-r--r--contrib/llvm/lib/LTO/LTOModule.cpp275
-rw-r--r--contrib/llvm/lib/Linker/LinkModules.cpp1800
-rw-r--r--contrib/llvm/lib/MC/ConstantPools.cpp2
-rw-r--r--contrib/llvm/lib/MC/ELFObjectWriter.cpp98
-rw-r--r--contrib/llvm/lib/MC/MCAnalysis/MCAtom.cpp114
-rw-r--r--contrib/llvm/lib/MC/MCAnalysis/MCFunction.cpp76
-rw-r--r--contrib/llvm/lib/MC/MCAnalysis/MCModule.cpp142
-rw-r--r--contrib/llvm/lib/MC/MCAnalysis/MCModuleYAML.cpp464
-rw-r--r--contrib/llvm/lib/MC/MCAnalysis/MCObjectDisassembler.cpp574
-rw-r--r--contrib/llvm/lib/MC/MCAnalysis/MCObjectSymbolizer.cpp268
-rw-r--r--contrib/llvm/lib/MC/MCAsmInfo.cpp12
-rw-r--r--contrib/llvm/lib/MC/MCAsmInfoCOFF.cpp1
-rw-r--r--contrib/llvm/lib/MC/MCAsmInfoDarwin.cpp53
-rw-r--r--contrib/llvm/lib/MC/MCAsmInfoELF.cpp10
-rw-r--r--contrib/llvm/lib/MC/MCAsmStreamer.cpp45
-rw-r--r--contrib/llvm/lib/MC/MCAssembler.cpp83
-rw-r--r--contrib/llvm/lib/MC/MCContext.cpp65
-rw-r--r--contrib/llvm/lib/MC/MCDisassembler/Disassembler.cpp73
-rw-r--r--contrib/llvm/lib/MC/MCDisassembler/Disassembler.h4
-rw-r--r--contrib/llvm/lib/MC/MCDisassembler/MCDisassembler.cpp (renamed from contrib/llvm/lib/MC/MCDisassembler.cpp)2
-rw-r--r--contrib/llvm/lib/MC/MCDisassembler/MCExternalSymbolizer.cpp (renamed from contrib/llvm/lib/MC/MCExternalSymbolizer.cpp)2
-rw-r--r--contrib/llvm/lib/MC/MCDisassembler/MCRelocationInfo.cpp (renamed from contrib/llvm/lib/MC/MCRelocationInfo.cpp)2
-rw-r--r--contrib/llvm/lib/MC/MCDwarf.cpp221
-rw-r--r--contrib/llvm/lib/MC/MCELFStreamer.cpp57
-rw-r--r--contrib/llvm/lib/MC/MCExpr.cpp174
-rw-r--r--contrib/llvm/lib/MC/MCLinkerOptimizationHint.cpp2
-rw-r--r--contrib/llvm/lib/MC/MCMachOStreamer.cpp10
-rw-r--r--contrib/llvm/lib/MC/MCNullStreamer.cpp1
-rw-r--r--contrib/llvm/lib/MC/MCObjectFileInfo.cpp64
-rw-r--r--contrib/llvm/lib/MC/MCObjectStreamer.cpp75
-rw-r--r--contrib/llvm/lib/MC/MCParser/AsmLexer.cpp18
-rw-r--r--contrib/llvm/lib/MC/MCParser/AsmParser.cpp221
-rw-r--r--contrib/llvm/lib/MC/MCParser/COFFAsmParser.cpp12
-rw-r--r--contrib/llvm/lib/MC/MCParser/DarwinAsmParser.cpp8
-rw-r--r--contrib/llvm/lib/MC/MCParser/MCAsmLexer.cpp4
-rw-r--r--contrib/llvm/lib/MC/MCParser/MCAsmParser.cpp2
-rw-r--r--contrib/llvm/lib/MC/MCSectionCOFF.cpp18
-rw-r--r--contrib/llvm/lib/MC/MCSectionELF.cpp4
-rw-r--r--contrib/llvm/lib/MC/MCStreamer.cpp114
-rw-r--r--contrib/llvm/lib/MC/MCSubtargetInfo.cpp12
-rw-r--r--contrib/llvm/lib/MC/MCTargetOptions.cpp11
-rw-r--r--contrib/llvm/lib/MC/MCWin64EH.cpp88
-rw-r--r--contrib/llvm/lib/MC/MCWinEH.cpp77
-rw-r--r--contrib/llvm/lib/MC/MachObjectWriter.cpp88
-rw-r--r--contrib/llvm/lib/MC/StringTableBuilder.cpp45
-rw-r--r--contrib/llvm/lib/MC/SubtargetFeature.cpp18
-rw-r--r--contrib/llvm/lib/MC/WinCOFFObjectWriter.cpp335
-rw-r--r--contrib/llvm/lib/MC/WinCOFFStreamer.cpp35
-rw-r--r--contrib/llvm/lib/Object/Archive.cpp54
-rw-r--r--contrib/llvm/lib/Object/Binary.cpp37
-rw-r--r--contrib/llvm/lib/Object/COFFObjectFile.cpp994
-rw-r--r--contrib/llvm/lib/Object/COFFYAML.cpp106
-rw-r--r--contrib/llvm/lib/Object/ELF.cpp759
-rw-r--r--contrib/llvm/lib/Object/ELFObjectFile.cpp37
-rw-r--r--contrib/llvm/lib/Object/ELFYAML.cpp297
-rw-r--r--contrib/llvm/lib/Object/Error.cpp10
-rw-r--r--contrib/llvm/lib/Object/IRObjectFile.cpp91
-rw-r--r--contrib/llvm/lib/Object/MachOObjectFile.cpp1218
-rw-r--r--contrib/llvm/lib/Object/MachOUniversal.cpp51
-rw-r--r--contrib/llvm/lib/Object/Object.cpp60
-rw-r--r--contrib/llvm/lib/Object/ObjectFile.cpp30
-rw-r--r--contrib/llvm/lib/Object/RecordStreamer.h4
-rw-r--r--contrib/llvm/lib/Object/SymbolicFile.cpp37
-rw-r--r--contrib/llvm/lib/Option/ArgList.cpp11
-rw-r--r--contrib/llvm/lib/Option/OptTable.cpp18
-rw-r--r--contrib/llvm/lib/Option/Option.cpp12
-rw-r--r--contrib/llvm/lib/ProfileData/CoverageMapping.cpp474
-rw-r--r--contrib/llvm/lib/ProfileData/CoverageMappingReader.cpp553
-rw-r--r--contrib/llvm/lib/ProfileData/CoverageMappingWriter.cpp187
-rw-r--r--contrib/llvm/lib/ProfileData/InstrProf.cpp6
-rw-r--r--contrib/llvm/lib/ProfileData/InstrProfIndexed.h9
-rw-r--r--contrib/llvm/lib/ProfileData/InstrProfReader.cpp104
-rw-r--r--contrib/llvm/lib/ProfileData/InstrProfWriter.cpp59
-rw-r--r--contrib/llvm/lib/ProfileData/SampleProf.cpp51
-rw-r--r--contrib/llvm/lib/ProfileData/SampleProfReader.cpp399
-rw-r--r--contrib/llvm/lib/ProfileData/SampleProfWriter.cpp126
-rw-r--r--contrib/llvm/lib/Support/APFloat.cpp74
-rw-r--r--contrib/llvm/lib/Support/APInt.cpp75
-rw-r--r--contrib/llvm/lib/Support/CommandLine.cpp608
-rw-r--r--contrib/llvm/lib/Support/Compression.cpp6
-rw-r--r--contrib/llvm/lib/Support/DataStream.cpp4
-rw-r--r--contrib/llvm/lib/Support/Debug.cpp24
-rw-r--r--contrib/llvm/lib/Support/Dwarf.cpp105
-rw-r--r--contrib/llvm/lib/Support/Errno.cpp8
-rw-r--r--contrib/llvm/lib/Support/ErrorHandling.cpp11
-rw-r--r--contrib/llvm/lib/Support/FileOutputBuffer.cpp40
-rw-r--r--contrib/llvm/lib/Support/FileUtilities.cpp16
-rw-r--r--contrib/llvm/lib/Support/GraphWriter.cpp5
-rw-r--r--contrib/llvm/lib/Support/Host.cpp84
-rw-r--r--contrib/llvm/lib/Support/IncludeFile.cpp20
-rw-r--r--contrib/llvm/lib/Support/LineIterator.cpp55
-rw-r--r--contrib/llvm/lib/Support/LockFileManager.cpp8
-rw-r--r--contrib/llvm/lib/Support/MD5.cpp48
-rw-r--r--contrib/llvm/lib/Support/MathExtras.cpp32
-rw-r--r--contrib/llvm/lib/Support/MemoryBuffer.cpp155
-rw-r--r--contrib/llvm/lib/Support/MemoryObject.cpp19
-rw-r--r--contrib/llvm/lib/Support/Options.cpp33
-rw-r--r--contrib/llvm/lib/Support/Path.cpp183
-rw-r--r--contrib/llvm/lib/Support/Process.cpp25
-rw-r--r--contrib/llvm/lib/Support/RandomNumberGenerator.cpp30
-rw-r--r--contrib/llvm/lib/Support/ScaledNumber.cpp5
-rw-r--r--contrib/llvm/lib/Support/SmallPtrSet.cpp27
-rw-r--r--contrib/llvm/lib/Support/SourceMgr.cpp11
-rw-r--r--contrib/llvm/lib/Support/SpecialCaseList.cpp32
-rw-r--r--contrib/llvm/lib/Support/StreamingMemoryObject.cpp (renamed from contrib/llvm/lib/Support/StreamableMemoryObject.cpp)79
-rw-r--r--contrib/llvm/lib/Support/StringRef.cpp22
-rw-r--r--contrib/llvm/lib/Support/StringRefMemoryObject.cpp29
-rw-r--r--contrib/llvm/lib/Support/ThreadLocal.cpp47
-rw-r--r--contrib/llvm/lib/Support/TimeValue.cpp6
-rw-r--r--contrib/llvm/lib/Support/Timer.cpp8
-rw-r--r--contrib/llvm/lib/Support/ToolOutputFile.cpp15
-rw-r--r--contrib/llvm/lib/Support/Triple.cpp199
-rw-r--r--contrib/llvm/lib/Support/Unix/Host.inc18
-rw-r--r--contrib/llvm/lib/Support/Unix/Memory.inc4
-rw-r--r--contrib/llvm/lib/Support/Unix/Path.inc251
-rw-r--r--contrib/llvm/lib/Support/Unix/Process.inc142
-rw-r--r--contrib/llvm/lib/Support/Unix/Program.inc82
-rw-r--r--contrib/llvm/lib/Support/Unix/RWMutex.inc12
-rw-r--r--contrib/llvm/lib/Support/Unix/Signals.inc266
-rw-r--r--contrib/llvm/lib/Support/Unix/ThreadLocal.inc45
-rw-r--r--contrib/llvm/lib/Support/Unix/TimeValue.inc2
-rw-r--r--contrib/llvm/lib/Support/Unix/Unix.h4
-rw-r--r--contrib/llvm/lib/Support/Windows/DynamicLibrary.inc72
-rw-r--r--contrib/llvm/lib/Support/Windows/Host.inc2
-rw-r--r--contrib/llvm/lib/Support/Windows/Path.inc378
-rw-r--r--contrib/llvm/lib/Support/Windows/Process.inc41
-rw-r--r--contrib/llvm/lib/Support/Windows/Program.inc200
-rw-r--r--contrib/llvm/lib/Support/Windows/RWMutex.inc8
-rw-r--r--contrib/llvm/lib/Support/Windows/ThreadLocal.inc2
-rw-r--r--contrib/llvm/lib/Support/Windows/WindowsSupport.h9
-rw-r--r--contrib/llvm/lib/Support/Windows/explicit_symbols.inc30
-rw-r--r--contrib/llvm/lib/Support/YAMLParser.cpp60
-rw-r--r--contrib/llvm/lib/Support/YAMLTraits.cpp61
-rw-r--r--contrib/llvm/lib/Support/raw_ostream.cpp89
-rw-r--r--contrib/llvm/lib/TableGen/Main.cpp30
-rw-r--r--contrib/llvm/lib/TableGen/Record.cpp48
-rw-r--r--contrib/llvm/lib/TableGen/TGLexer.cpp3
-rw-r--r--contrib/llvm/lib/TableGen/TGLexer.h17
-rw-r--r--contrib/llvm/lib/TableGen/TGParser.cpp223
-rw-r--r--contrib/llvm/lib/TableGen/TGParser.h6
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64.h11
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64A53Fix835769.cpp240
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp706
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp6
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp12
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp33
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp11
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.h141
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td74
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp4
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp52
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ConditionOptimizer.cpp422
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp12
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp9
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp3
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp4512
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp67
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp272
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp1318
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h42
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td9
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td44
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp997
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h42
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td416
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp16
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp3
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h6
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MachineCombinerPattern.h42
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h6
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.cpp383
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.h38
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h5
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp8
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp22
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td5
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td371
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td52
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp3
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp14
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp34
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h40
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp133
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h34
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp78
-rw-r--r--contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp149
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp67
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h11
-rw-r--r--contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h4
-rw-r--r--contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp18
-rw-r--r--contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h9
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h104
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp17
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp2
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp74
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h8
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h4
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp7
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h4
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp5
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp5
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h7
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp47
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h15
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp7
-rw-r--r--contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp2
-rw-r--r--contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp13
-rw-r--r--contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp36
-rw-r--r--contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h13
-rw-r--r--contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp6
-rw-r--r--contrib/llvm/lib/Target/ARM/ARM.h9
-rw-r--r--contrib/llvm/lib/Target/ARM/ARM.td34
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp161
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h10
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp264
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h76
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp59
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMCallingConv.h29
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp1909
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp47
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp14
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFPUName.def1
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFPUName.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFastISel.cpp185
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFeatures.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp415
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp88
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp1087
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.h36
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrFormats.td10
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp50
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrInfo.h8
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrInfo.td359
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrNEON.td48
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrThumb.td28
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td179
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMInstrVFP.td80
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp344
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMJITInfo.h177
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp290
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp36
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h22
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp2
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h5
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMRelocations.h62
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp157
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMSubtarget.h79
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp137
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetMachine.h43
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp31
-rw-r--r--contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp854
-rw-r--r--contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp442
-rw-r--r--contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp221
-rw-r--r--contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h7
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h51
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp432
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.h69
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendDarwin.h33
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendELF.h27
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendWinCOFF.h26
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp23
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp39
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp6
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h7
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp22
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp6
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h11
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp106
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp2
-rw-r--r--contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp4
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp131
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp34
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h9
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp390
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp7
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp9
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h10
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp6
-rw-r--r--contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h16
-rw-r--r--contrib/llvm/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp181
-rw-r--r--contrib/llvm/lib/Target/Hexagon/Hexagon.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/Hexagon.td14
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp26
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp28
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp6
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp40
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp46
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp14
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp31
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp53
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp152
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp61
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h15
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td22
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td5
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp672
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h9
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td5302
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td141
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td3628
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td495
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td9
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td7
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td9
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp1
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp10
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h20
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp51
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonOperands.td23
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp27
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp37
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td164
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp3
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp15
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp26
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h28
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp43
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h31
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp5
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp142
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h20
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp74
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h14
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonELFObjectWriter.cpp62
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp (renamed from contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp)62
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.h (renamed from contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h)4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp1
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp88
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.h60
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp128
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h124
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp63
-rw-r--r--contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h26
-rw-r--r--contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp2
-rw-r--r--contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp3
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td2
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp69
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp6
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp58
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h6
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td236
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp5
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp48
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td38
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp2
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h24
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp11
-rw-r--r--contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h30
-rw-r--r--contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp1436
-rw-r--r--contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp537
-rw-r--r--contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp33
-rw-r--r--contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h6
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIInfo.cpp (renamed from contrib/llvm/lib/Target/Mips/MipsABIInfo.cpp)0
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIInfo.h (renamed from contrib/llvm/lib/Target/Mips/MipsABIInfo.h)2
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp17
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h6
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp11
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp40
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h24
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h9
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp250
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h66
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp5
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h7
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h7
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp9
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp4
-rw-r--r--contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp253
-rw-r--r--contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td8
-rw-r--r--contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td277
-rw-r--r--contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td520
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips.h6
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp8
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp28
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloat.h23
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp17
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp57
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h15
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td2
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp6
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td20
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp8
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td2
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td4
-rw-r--r--contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td26
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp3
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp59
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h12
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCCState.h7
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCallingConv.td58
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp481
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsCondMov.td37
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp11
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp139
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsFastISel.cpp1131
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp2
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp320
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelLowering.h67
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrFPU.td68
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrFormats.td16
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsInstrInfo.td232
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp286
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsJITInfo.h71
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp28
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMCInstLower.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td2
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp18
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsMachineFunction.h10
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp2
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOptionRecord.h12
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsOs16.h8
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp6
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td44
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsRelocations.h41
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp62
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp7
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp91
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h15
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp24
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h5
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp58
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsSubtarget.h38
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp100
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetMachine.h47
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp73
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h23
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h73
-rw-r--r--contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp5
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h8
-rw-r--r--contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTX.h10
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h9
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp229
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h30
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp10
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp74
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp9
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h5
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp105
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h16
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp2
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td10
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h7
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXLowerStructArgs.cpp134
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h7
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h5
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp9
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp6
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXSection.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp3
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h24
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp23
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h41
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h7
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXTargetTransformInfo.cpp115
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp19
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXVector.td4
-rw-r--r--contrib/llvm/lib/Target/NVPTX/NVPTXutil.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp224
-rw-r--r--contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp28
-rw-r--r--contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp7
-rw-r--r--contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h5
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp2
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp20
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp11
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h11
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp57
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp73
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h11
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp26
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPC.h7
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPC.td52
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp116
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp28
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp7
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCallingConv.h35
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td48
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp293
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp246
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp89
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h12
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp2260
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp1610
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h126
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td73
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td114
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td115
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp71
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h15
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td443
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrSPE.td447
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td156
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp482
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h46
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp6
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp3
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h11
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h5
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp82
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td9
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCRelocations.h56
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSchedule.td2
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td3
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCScheduleP8.td397
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp119
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h86
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp136
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h42
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h4
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp80
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPU.h23
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPU.td30
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUAlwaysInlinePass.cpp66
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp287
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h38
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td32
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h6
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp520
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp1041
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h91
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp91
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h24
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td63
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUInstructions.td115
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h8
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp44
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h19
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp4
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h12
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp48
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp3
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h8
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp106
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h74
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp145
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h52
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp20
-rw-r--r--contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp5
-rw-r--r--contrib/llvm/lib/Target/R600/AMDKernelCodeT.h704
-rw-r--r--contrib/llvm/lib/Target/R600/AsmParser/AMDGPUAsmParser.cpp320
-rw-r--r--contrib/llvm/lib/Target/R600/CIInstructions.td42
-rw-r--r--contrib/llvm/lib/Target/R600/CaymanInstructions.td2
-rw-r--r--contrib/llvm/lib/Target/R600/EvergreenInstructions.td73
-rw-r--r--contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp275
-rw-r--r--contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h23
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp11
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h6
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp23
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h18
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h6
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp19
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h7
-rw-r--r--contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp13
-rw-r--r--contrib/llvm/lib/Target/R600/Processors.td32
-rw-r--r--contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp3
-rw-r--r--contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp21
-rw-r--r--contrib/llvm/lib/Target/R600/R600Defines.h6
-rw-r--r--contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp3
-rw-r--r--contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp3
-rw-r--r--contrib/llvm/lib/Target/R600/R600ISelLowering.cpp176
-rw-r--r--contrib/llvm/lib/Target/R600/R600ISelLowering.h6
-rw-r--r--contrib/llvm/lib/Target/R600/R600InstrFormats.td3
-rw-r--r--contrib/llvm/lib/Target/R600/R600InstrInfo.cpp15
-rw-r--r--contrib/llvm/lib/Target/R600/R600InstrInfo.h12
-rw-r--r--contrib/llvm/lib/Target/R600/R600Instructions.td44
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h6
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp33
-rw-r--r--contrib/llvm/lib/Target/R600/R600MachineScheduler.h4
-rw-r--r--contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp8
-rw-r--r--contrib/llvm/lib/Target/R600/R600Packetizer.cpp15
-rw-r--r--contrib/llvm/lib/Target/R600/R600RegisterInfo.h6
-rw-r--r--contrib/llvm/lib/Target/R600/SIDefines.h100
-rw-r--r--contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp106
-rw-r--r--contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp147
-rw-r--r--contrib/llvm/lib/Target/R600/SIFoldOperands.cpp275
-rw-r--r--contrib/llvm/lib/Target/R600/SIISelLowering.cpp1649
-rw-r--r--contrib/llvm/lib/Target/R600/SIISelLowering.h57
-rw-r--r--contrib/llvm/lib/Target/R600/SIInsertWaits.cpp90
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrFormats.td250
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrInfo.cpp1710
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrInfo.h196
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstrInfo.td1841
-rw-r--r--contrib/llvm/lib/Target/R600/SIInstructions.td3018
-rw-r--r--contrib/llvm/lib/Target/R600/SILoadStoreOptimizer.cpp434
-rw-r--r--contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp86
-rw-r--r--contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp105
-rw-r--r--contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp96
-rw-r--r--contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h42
-rw-r--r--contrib/llvm/lib/Target/R600/SIPrepareScratchRegs.cpp208
-rw-r--r--contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp386
-rw-r--r--contrib/llvm/lib/Target/R600/SIRegisterInfo.h62
-rw-r--r--contrib/llvm/lib/Target/R600/SIRegisterInfo.td78
-rw-r--r--contrib/llvm/lib/Target/R600/SISchedule.td80
-rw-r--r--contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp145
-rw-r--r--contrib/llvm/lib/Target/R600/SITypeRewriter.cpp2
-rw-r--r--contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp6
-rw-r--r--contrib/llvm/lib/Target/R600/VIInstrFormats.td145
-rw-r--r--contrib/llvm/lib/Target/R600/VIInstructions.td64
-rw-r--r--contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp13
-rw-r--r--contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp9
-rw-r--r--contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp61
-rw-r--r--contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp4
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp5
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h7
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp6
-rw-r--r--contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/Sparc.h6
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp5
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp280
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp6
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp15
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp72
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcISelLowering.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td2
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td34
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp326
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcJITInfo.h67
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp6
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcRelocations.h56
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcSubtarget.h25
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp26
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h29
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp9
-rw-r--r--contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp21
-rw-r--r--contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp7
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h7
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp15
-rw-r--r--contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZ.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp5
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp16
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp12
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp65
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h11
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td26
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp2
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp8
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp2
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h22
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp19
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h28
-rw-r--r--contrib/llvm/lib/Target/Target.cpp2
-rw-r--r--contrib/llvm/lib/Target/TargetJITInfo.cpp14
-rw-r--r--contrib/llvm/lib/Target/TargetLibraryInfo.cpp19
-rw-r--r--contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp31
-rw-r--r--contrib/llvm/lib/Target/TargetMachine.cpp41
-rw-r--r--contrib/llvm/lib/Target/TargetMachineC.cpp15
-rw-r--r--contrib/llvm/lib/Target/TargetSubtargetInfo.cpp4
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp1033
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h28
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp559
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h10
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h95
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp211
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h16
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp171
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h23
-rw-r--r--contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h35
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp75
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h23
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp340
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h6
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp52
-rw-r--r--contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h12
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp52
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h168
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp5
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h4
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp25
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h9
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp116
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp11
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h8
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp19
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp11
-rw-r--r--contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp170
-rw-r--r--contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h31
-rw-r--r--contrib/llvm/lib/Target/X86/X86.h14
-rw-r--r--contrib/llvm/lib/Target/X86/X86.td262
-rw-r--r--contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp28
-rw-r--r--contrib/llvm/lib/Target/X86/X86AsmPrinter.h75
-rw-r--r--contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp283
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallingConv.h17
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallingConv.td77
-rw-r--r--contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp1498
-rw-r--r--contrib/llvm/lib/Target/X86/X86FastISel.cpp611
-rw-r--r--contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp9
-rw-r--r--contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp392
-rw-r--r--contrib/llvm/lib/Target/X86/X86FrameLowering.cpp507
-rw-r--r--contrib/llvm/lib/Target/X86/X86FrameLowering.h23
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp222
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.cpp8123
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.h266
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrAVX512.td3774
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrArithmetic.td359
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrBuilder.h4
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrCompiler.td186
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrControl.td92
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrExtension.td26
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFMA.td6
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFPStack.td85
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFormats.td168
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td61
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.cpp1082
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.h10
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.td775
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrMMX.td45
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrSGX.td24
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrSSE.td1760
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td58
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrSystem.td40
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrTSX.td9
-rw-r--r--contrib/llvm/lib/Target/X86/X86IntrinsicsInfo.h547
-rw-r--r--contrib/llvm/lib/Target/X86/X86JITInfo.cpp588
-rw-r--r--contrib/llvm/lib/Target/X86/X86JITInfo.h79
-rw-r--r--contrib/llvm/lib/Target/X86/X86MCInstLower.cpp527
-rw-r--r--contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp19
-rw-r--r--contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h27
-rw-r--r--contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp5
-rw-r--r--contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp43
-rw-r--r--contrib/llvm/lib/Target/X86/X86RegisterInfo.h5
-rw-r--r--contrib/llvm/lib/Target/X86/X86RegisterInfo.td45
-rw-r--r--contrib/llvm/lib/Target/X86/X86Relocations.h52
-rw-r--r--contrib/llvm/lib/Target/X86/X86SchedHaswell.td1885
-rw-r--r--contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td1
-rw-r--r--contrib/llvm/lib/Target/X86/X86Schedule.td20
-rw-r--r--contrib/llvm/lib/Target/X86/X86ScheduleAtom.td5
-rw-r--r--contrib/llvm/lib/Target/X86/X86ScheduleBtVer2.td341
-rw-r--r--contrib/llvm/lib/Target/X86/X86ScheduleSLM.td1
-rw-r--r--contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp37
-rw-r--r--contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h9
-rw-r--r--contrib/llvm/lib/Target/X86/X86Subtarget.cpp85
-rw-r--r--contrib/llvm/lib/Target/X86/X86Subtarget.h98
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetMachine.cpp117
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetMachine.h37
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp162
-rw-r--r--contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp22
-rw-r--r--contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp57
-rw-r--r--contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp1
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp8
-rw-r--r--contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCore.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp26
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h6
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp3
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp72
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreISelLowering.h6
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp9
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td38
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h6
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp17
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp2
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreSubtarget.h22
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp18
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h27
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp6
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h4
-rw-r--r--contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp132
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp28
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp30
-rw-r--r--contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp54
-rw-r--r--contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp109
-rw-r--r--contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/IPO/Inliner.cpp22
-rw-r--r--contrib/llvm/lib/Transforms/IPO/Internalize.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp77
-rw-r--r--contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp217
-rw-r--r--contrib/llvm/lib/Transforms/IPO/PruneEH.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp31
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombine.h97
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp242
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp535
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp420
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp125
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp505
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp387
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp471
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp111
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp56
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp77
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h4
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp241
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp858
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp204
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/DebugIR.cpp617
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/DebugIR.h98
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp57
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp309
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp419
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/SanitizerCoverage.cpp314
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp44
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ARCRuntimeEntryPoints.h6
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp10
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h10
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp1
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h20
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp6
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h6
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp13
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp91
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h6
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp92
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ADCE.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp428
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp18
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp9
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp29
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/GVN.cpp447
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp154
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp130
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LICM.cpp99
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoadCombine.cpp25
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp5
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp14
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp58
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp49
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp72
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp158
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp24
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp62
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/MergedLoadStoreMotion.cpp151
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/PartiallyInlineLibCalls.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp473
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SCCP.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SROA.cpp1824
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SampleProfile.cpp570
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Scalar.cpp14
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp52
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp33
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp333
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp27
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Sink.cpp11
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp7
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp36
-rw-r--r--contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp24
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp188
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp20
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneModule.cpp13
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp71
-rw-r--r--contrib/llvm/lib/Transforms/Utils/FlattenCFG.cpp9
-rw-r--r--contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp7
-rw-r--r--contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp507
-rw-r--r--contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp16
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LCSSA.cpp49
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Local.cpp155
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp53
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp62
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp258
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp46
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp7
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp42
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp979
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp138
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp7
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp3762
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp550
-rw-r--r--contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp1
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp292
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp40
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp714
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp1369
1357 files changed, 122862 insertions, 70149 deletions
diff --git a/contrib/llvm/lib/Analysis/AliasAnalysis.cpp b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp
index 8b8106b..6eea817 100644
--- a/contrib/llvm/lib/Analysis/AliasAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp
@@ -196,12 +196,11 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
if (!Arg->getType()->isPointerTy())
continue;
ModRefResult ArgMask;
- Location CS1Loc =
- getArgLocation(CS1, (unsigned) std::distance(CS1.arg_begin(), I),
- ArgMask);
- // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
- // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
- // might Ref, then we care only about a Mod by CS2.
+ Location CS1Loc = getArgLocation(
+ CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
+ // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
+ // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
+ // might Ref, then we care only about a Mod by CS2.
ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef))
@@ -252,61 +251,73 @@ AliasAnalysis::getModRefBehavior(const Function *F) {
//===----------------------------------------------------------------------===//
AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
+ AAMDNodes AATags;
+ LI->getAAMetadata(AATags);
+
return Location(LI->getPointerOperand(),
- getTypeStoreSize(LI->getType()),
- LI->getMetadata(LLVMContext::MD_tbaa));
+ getTypeStoreSize(LI->getType()), AATags);
}
AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
+ AAMDNodes AATags;
+ SI->getAAMetadata(AATags);
+
return Location(SI->getPointerOperand(),
- getTypeStoreSize(SI->getValueOperand()->getType()),
- SI->getMetadata(LLVMContext::MD_tbaa));
+ getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
}
AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
- return Location(VI->getPointerOperand(),
- UnknownSize,
- VI->getMetadata(LLVMContext::MD_tbaa));
+ AAMDNodes AATags;
+ VI->getAAMetadata(AATags);
+
+ return Location(VI->getPointerOperand(), UnknownSize, AATags);
}
AliasAnalysis::Location
AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
+ AAMDNodes AATags;
+ CXI->getAAMetadata(AATags);
+
return Location(CXI->getPointerOperand(),
getTypeStoreSize(CXI->getCompareOperand()->getType()),
- CXI->getMetadata(LLVMContext::MD_tbaa));
+ AATags);
}
AliasAnalysis::Location
AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
+ AAMDNodes AATags;
+ RMWI->getAAMetadata(AATags);
+
return Location(RMWI->getPointerOperand(),
- getTypeStoreSize(RMWI->getValOperand()->getType()),
- RMWI->getMetadata(LLVMContext::MD_tbaa));
+ getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
}
-AliasAnalysis::Location
+AliasAnalysis::Location
AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
uint64_t Size = UnknownSize;
if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
Size = C->getValue().getZExtValue();
- // memcpy/memmove can have TBAA tags. For memcpy, they apply
+ // memcpy/memmove can have AA tags. For memcpy, they apply
// to both the source and the destination.
- MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
+ AAMDNodes AATags;
+ MTI->getAAMetadata(AATags);
- return Location(MTI->getRawSource(), Size, TBAATag);
+ return Location(MTI->getRawSource(), Size, AATags);
}
-AliasAnalysis::Location
+AliasAnalysis::Location
AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
uint64_t Size = UnknownSize;
if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
Size = C->getValue().getZExtValue();
- // memcpy/memmove can have TBAA tags. For memcpy, they apply
+ // memcpy/memmove can have AA tags. For memcpy, they apply
// to both the source and the destination.
- MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
-
- return Location(MTI->getRawDest(), Size, TBAATag);
+ AAMDNodes AATags;
+ MTI->getAAMetadata(AATags);
+
+ return Location(MTI->getRawDest(), Size, AATags);
}
@@ -428,7 +439,7 @@ AliasAnalysis::callCapturesBefore(const Instruction *I,
// assume that the call could touch the pointer, even though it doesn't
// escape.
if (isNoAlias(AliasAnalysis::Location(*CI),
- AliasAnalysis::Location(Object)))
+ AliasAnalysis::Location(Object)))
continue;
if (CS.doesNotAccessMemory(ArgNo))
continue;
@@ -472,21 +483,22 @@ uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
}
/// canBasicBlockModify - Return true if it is possible for execution of the
-/// specified basic block to modify the value pointed to by Ptr.
+/// specified basic block to modify the location Loc.
///
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
const Location &Loc) {
- return canInstructionRangeModify(BB.front(), BB.back(), Loc);
+ return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
}
-/// canInstructionRangeModify - Return true if it is possible for the execution
-/// of the specified instructions to modify the value pointed to by Ptr. The
-/// instructions to consider are all of the instructions in the range of [I1,I2]
-/// INCLUSIVE. I1 and I2 must be in the same basic block.
-///
-bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
+/// canInstructionRangeModRef - Return true if it is possible for the
+/// execution of the specified instructions to mod\ref (according to the
+/// mode) the location Loc. The instructions to consider are all
+/// of the instructions in the range of [I1,I2] INCLUSIVE.
+/// I1 and I2 must be in the same basic block.
+bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
const Instruction &I2,
- const Location &Loc) {
+ const Location &Loc,
+ const ModRefResult Mode) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
BasicBlock::const_iterator I = &I1;
@@ -494,7 +506,7 @@ bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I) // Check every instruction in range
- if (getModRefInfo(I, Loc) & Mod)
+ if (getModRefInfo(I, Loc) & Mode)
return true;
return false;
}
@@ -545,4 +557,3 @@ bool llvm::isIdentifiedFunctionLocal(const Value *V)
{
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}
-
diff --git a/contrib/llvm/lib/Analysis/AliasAnalysisEvaluator.cpp b/contrib/llvm/lib/Analysis/AliasAnalysisEvaluator.cpp
index d9fa5a5..fe4bd4c 100644
--- a/contrib/llvm/lib/Analysis/AliasAnalysisEvaluator.cpp
+++ b/contrib/llvm/lib/Analysis/AliasAnalysisEvaluator.cpp
@@ -43,7 +43,7 @@ static cl::opt<bool> PrintMod("print-mod", cl::ReallyHidden);
static cl::opt<bool> PrintRef("print-ref", cl::ReallyHidden);
static cl::opt<bool> PrintModRef("print-modref", cl::ReallyHidden);
-static cl::opt<bool> EvalTBAA("evaluate-tbaa", cl::ReallyHidden);
+static cl::opt<bool> EvalAAMD("evaluate-aa-metadata", cl::ReallyHidden);
namespace {
class AAEval : public FunctionPass {
@@ -153,9 +153,9 @@ bool AAEval::runOnFunction(Function &F) {
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
if (I->getType()->isPointerTy()) // Add all pointer instructions.
Pointers.insert(&*I);
- if (EvalTBAA && isa<LoadInst>(&*I))
+ if (EvalAAMD && isa<LoadInst>(&*I))
Loads.insert(&*I);
- if (EvalTBAA && isa<StoreInst>(&*I))
+ if (EvalAAMD && isa<StoreInst>(&*I))
Stores.insert(&*I);
Instruction &Inst = *I;
if (CallSite CS = cast<Value>(&Inst)) {
@@ -213,7 +213,7 @@ bool AAEval::runOnFunction(Function &F) {
}
}
- if (EvalTBAA) {
+ if (EvalAAMD) {
// iterate over all pairs of load, store
for (SetVector<Value *>::iterator I1 = Loads.begin(), E = Loads.end();
I1 != E; ++I1) {
diff --git a/contrib/llvm/lib/Analysis/AliasSetTracker.cpp b/contrib/llvm/lib/Analysis/AliasSetTracker.cpp
index 75b6be0..45442b0 100644
--- a/contrib/llvm/lib/Analysis/AliasSetTracker.cpp
+++ b/contrib/llvm/lib/Analysis/AliasSetTracker.cpp
@@ -47,10 +47,10 @@ void AliasSet::mergeSetIn(AliasSet &AS, AliasSetTracker &AST) {
// If the pointers are not a must-alias pair, this set becomes a may alias.
if (AA.alias(AliasAnalysis::Location(L->getValue(),
L->getSize(),
- L->getTBAAInfo()),
+ L->getAAInfo()),
AliasAnalysis::Location(R->getValue(),
R->getSize(),
- R->getTBAAInfo()))
+ R->getAAInfo()))
!= AliasAnalysis::MustAlias)
AliasTy = MayAlias;
}
@@ -97,7 +97,7 @@ void AliasSet::removeFromTracker(AliasSetTracker &AST) {
}
void AliasSet::addPointer(AliasSetTracker &AST, PointerRec &Entry,
- uint64_t Size, const MDNode *TBAAInfo,
+ uint64_t Size, const AAMDNodes &AAInfo,
bool KnownMustAlias) {
assert(!Entry.hasAliasSet() && "Entry already in set!");
@@ -107,17 +107,17 @@ void AliasSet::addPointer(AliasSetTracker &AST, PointerRec &Entry,
AliasAnalysis &AA = AST.getAliasAnalysis();
AliasAnalysis::AliasResult Result =
AA.alias(AliasAnalysis::Location(P->getValue(), P->getSize(),
- P->getTBAAInfo()),
- AliasAnalysis::Location(Entry.getValue(), Size, TBAAInfo));
+ P->getAAInfo()),
+ AliasAnalysis::Location(Entry.getValue(), Size, AAInfo));
if (Result != AliasAnalysis::MustAlias)
AliasTy = MayAlias;
else // First entry of must alias must have maximum size!
- P->updateSizeAndTBAAInfo(Size, TBAAInfo);
+ P->updateSizeAndAAInfo(Size, AAInfo);
assert(Result != AliasAnalysis::NoAlias && "Cannot be part of must set!");
}
Entry.setAliasSet(this);
- Entry.updateSizeAndTBAAInfo(Size, TBAAInfo);
+ Entry.updateSizeAndAAInfo(Size, AAInfo);
// Add it to the end of the list...
assert(*PtrListEnd == nullptr && "End of list is not null?");
@@ -147,7 +147,7 @@ void AliasSet::addUnknownInst(Instruction *I, AliasAnalysis &AA) {
/// alias one of the members in the set.
///
bool AliasSet::aliasesPointer(const Value *Ptr, uint64_t Size,
- const MDNode *TBAAInfo,
+ const AAMDNodes &AAInfo,
AliasAnalysis &AA) const {
if (AliasTy == MustAlias) {
assert(UnknownInsts.empty() && "Illegal must alias set!");
@@ -158,23 +158,23 @@ bool AliasSet::aliasesPointer(const Value *Ptr, uint64_t Size,
assert(SomePtr && "Empty must-alias set??");
return AA.alias(AliasAnalysis::Location(SomePtr->getValue(),
SomePtr->getSize(),
- SomePtr->getTBAAInfo()),
- AliasAnalysis::Location(Ptr, Size, TBAAInfo));
+ SomePtr->getAAInfo()),
+ AliasAnalysis::Location(Ptr, Size, AAInfo));
}
// If this is a may-alias set, we have to check all of the pointers in the set
// to be sure it doesn't alias the set...
for (iterator I = begin(), E = end(); I != E; ++I)
- if (AA.alias(AliasAnalysis::Location(Ptr, Size, TBAAInfo),
+ if (AA.alias(AliasAnalysis::Location(Ptr, Size, AAInfo),
AliasAnalysis::Location(I.getPointer(), I.getSize(),
- I.getTBAAInfo())))
+ I.getAAInfo())))
return true;
// Check the unknown instructions...
if (!UnknownInsts.empty()) {
for (unsigned i = 0, e = UnknownInsts.size(); i != e; ++i)
if (AA.getModRefInfo(UnknownInsts[i],
- AliasAnalysis::Location(Ptr, Size, TBAAInfo)) !=
+ AliasAnalysis::Location(Ptr, Size, AAInfo)) !=
AliasAnalysis::NoModRef)
return true;
}
@@ -197,7 +197,7 @@ bool AliasSet::aliasesUnknownInst(Instruction *Inst, AliasAnalysis &AA) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (AA.getModRefInfo(Inst, AliasAnalysis::Location(I.getPointer(),
I.getSize(),
- I.getTBAAInfo())) !=
+ I.getAAInfo())) !=
AliasAnalysis::NoModRef)
return true;
@@ -223,11 +223,11 @@ void AliasSetTracker::clear() {
///
AliasSet *AliasSetTracker::findAliasSetForPointer(const Value *Ptr,
uint64_t Size,
- const MDNode *TBAAInfo) {
+ const AAMDNodes &AAInfo) {
AliasSet *FoundSet = nullptr;
for (iterator I = begin(), E = end(); I != E;) {
iterator Cur = I++;
- if (Cur->Forward || !Cur->aliasesPointer(Ptr, Size, TBAAInfo, AA)) continue;
+ if (Cur->Forward || !Cur->aliasesPointer(Ptr, Size, AAInfo, AA)) continue;
if (!FoundSet) { // If this is the first alias set ptr can go into.
FoundSet = Cur; // Remember it.
@@ -243,14 +243,19 @@ AliasSet *AliasSetTracker::findAliasSetForPointer(const Value *Ptr,
/// this alias set, false otherwise. This does not modify the AST object or
/// alias sets.
bool AliasSetTracker::containsPointer(Value *Ptr, uint64_t Size,
- const MDNode *TBAAInfo) const {
+ const AAMDNodes &AAInfo) const {
for (const_iterator I = begin(), E = end(); I != E; ++I)
- if (!I->Forward && I->aliasesPointer(Ptr, Size, TBAAInfo, AA))
+ if (!I->Forward && I->aliasesPointer(Ptr, Size, AAInfo, AA))
return true;
return false;
}
-
+bool AliasSetTracker::containsUnknown(Instruction *Inst) const {
+ for (const_iterator I = begin(), E = end(); I != E; ++I)
+ if (!I->Forward && I->aliasesUnknownInst(Inst, AA))
+ return true;
+ return false;
+}
AliasSet *AliasSetTracker::findAliasSetForUnknownInst(Instruction *Inst) {
AliasSet *FoundSet = nullptr;
@@ -272,67 +277,75 @@ AliasSet *AliasSetTracker::findAliasSetForUnknownInst(Instruction *Inst) {
/// getAliasSetForPointer - Return the alias set that the specified pointer
/// lives in.
AliasSet &AliasSetTracker::getAliasSetForPointer(Value *Pointer, uint64_t Size,
- const MDNode *TBAAInfo,
+ const AAMDNodes &AAInfo,
bool *New) {
AliasSet::PointerRec &Entry = getEntryFor(Pointer);
// Check to see if the pointer is already known.
if (Entry.hasAliasSet()) {
- Entry.updateSizeAndTBAAInfo(Size, TBAAInfo);
+ Entry.updateSizeAndAAInfo(Size, AAInfo);
// Return the set!
return *Entry.getAliasSet(*this)->getForwardedTarget(*this);
}
- if (AliasSet *AS = findAliasSetForPointer(Pointer, Size, TBAAInfo)) {
+ if (AliasSet *AS = findAliasSetForPointer(Pointer, Size, AAInfo)) {
// Add it to the alias set it aliases.
- AS->addPointer(*this, Entry, Size, TBAAInfo);
+ AS->addPointer(*this, Entry, Size, AAInfo);
return *AS;
}
if (New) *New = true;
// Otherwise create a new alias set to hold the loaded pointer.
AliasSets.push_back(new AliasSet());
- AliasSets.back().addPointer(*this, Entry, Size, TBAAInfo);
+ AliasSets.back().addPointer(*this, Entry, Size, AAInfo);
return AliasSets.back();
}
-bool AliasSetTracker::add(Value *Ptr, uint64_t Size, const MDNode *TBAAInfo) {
+bool AliasSetTracker::add(Value *Ptr, uint64_t Size, const AAMDNodes &AAInfo) {
bool NewPtr;
- addPointer(Ptr, Size, TBAAInfo, AliasSet::NoModRef, NewPtr);
+ addPointer(Ptr, Size, AAInfo, AliasSet::NoModRef, NewPtr);
return NewPtr;
}
bool AliasSetTracker::add(LoadInst *LI) {
if (LI->getOrdering() > Monotonic) return addUnknown(LI);
+
+ AAMDNodes AAInfo;
+ LI->getAAMetadata(AAInfo);
+
AliasSet::AccessType ATy = AliasSet::Refs;
bool NewPtr;
AliasSet &AS = addPointer(LI->getOperand(0),
AA.getTypeStoreSize(LI->getType()),
- LI->getMetadata(LLVMContext::MD_tbaa),
- ATy, NewPtr);
+ AAInfo, ATy, NewPtr);
if (LI->isVolatile()) AS.setVolatile();
return NewPtr;
}
bool AliasSetTracker::add(StoreInst *SI) {
if (SI->getOrdering() > Monotonic) return addUnknown(SI);
+
+ AAMDNodes AAInfo;
+ SI->getAAMetadata(AAInfo);
+
AliasSet::AccessType ATy = AliasSet::Mods;
bool NewPtr;
Value *Val = SI->getOperand(0);
AliasSet &AS = addPointer(SI->getOperand(1),
AA.getTypeStoreSize(Val->getType()),
- SI->getMetadata(LLVMContext::MD_tbaa),
- ATy, NewPtr);
+ AAInfo, ATy, NewPtr);
if (SI->isVolatile()) AS.setVolatile();
return NewPtr;
}
bool AliasSetTracker::add(VAArgInst *VAAI) {
+ AAMDNodes AAInfo;
+ VAAI->getAAMetadata(AAInfo);
+
bool NewPtr;
addPointer(VAAI->getOperand(0), AliasAnalysis::UnknownSize,
- VAAI->getMetadata(LLVMContext::MD_tbaa),
- AliasSet::ModRef, NewPtr);
+ AAInfo, AliasSet::ModRef, NewPtr);
return NewPtr;
}
@@ -390,7 +403,7 @@ void AliasSetTracker::add(const AliasSetTracker &AST) {
bool X;
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
AliasSet &NewAS = addPointer(ASI.getPointer(), ASI.getSize(),
- ASI.getTBAAInfo(),
+ ASI.getAAInfo(),
(AliasSet::AccessType)AS.AccessTy, X);
if (AS.isVolatile()) NewAS.setVolatile();
}
@@ -429,8 +442,8 @@ void AliasSetTracker::remove(AliasSet &AS) {
}
bool
-AliasSetTracker::remove(Value *Ptr, uint64_t Size, const MDNode *TBAAInfo) {
- AliasSet *AS = findAliasSetForPointer(Ptr, Size, TBAAInfo);
+AliasSetTracker::remove(Value *Ptr, uint64_t Size, const AAMDNodes &AAInfo) {
+ AliasSet *AS = findAliasSetForPointer(Ptr, Size, AAInfo);
if (!AS) return false;
remove(*AS);
return true;
@@ -438,8 +451,11 @@ AliasSetTracker::remove(Value *Ptr, uint64_t Size, const MDNode *TBAAInfo) {
bool AliasSetTracker::remove(LoadInst *LI) {
uint64_t Size = AA.getTypeStoreSize(LI->getType());
- const MDNode *TBAAInfo = LI->getMetadata(LLVMContext::MD_tbaa);
- AliasSet *AS = findAliasSetForPointer(LI->getOperand(0), Size, TBAAInfo);
+
+ AAMDNodes AAInfo;
+ LI->getAAMetadata(AAInfo);
+
+ AliasSet *AS = findAliasSetForPointer(LI->getOperand(0), Size, AAInfo);
if (!AS) return false;
remove(*AS);
return true;
@@ -447,17 +463,22 @@ bool AliasSetTracker::remove(LoadInst *LI) {
bool AliasSetTracker::remove(StoreInst *SI) {
uint64_t Size = AA.getTypeStoreSize(SI->getOperand(0)->getType());
- const MDNode *TBAAInfo = SI->getMetadata(LLVMContext::MD_tbaa);
- AliasSet *AS = findAliasSetForPointer(SI->getOperand(1), Size, TBAAInfo);
+
+ AAMDNodes AAInfo;
+ SI->getAAMetadata(AAInfo);
+
+ AliasSet *AS = findAliasSetForPointer(SI->getOperand(1), Size, AAInfo);
if (!AS) return false;
remove(*AS);
return true;
}
bool AliasSetTracker::remove(VAArgInst *VAAI) {
+ AAMDNodes AAInfo;
+ VAAI->getAAMetadata(AAInfo);
+
AliasSet *AS = findAliasSetForPointer(VAAI->getOperand(0),
- AliasAnalysis::UnknownSize,
- VAAI->getMetadata(LLVMContext::MD_tbaa));
+ AliasAnalysis::UnknownSize, AAInfo);
if (!AS) return false;
remove(*AS);
return true;
@@ -546,7 +567,7 @@ void AliasSetTracker::copyValue(Value *From, Value *To) {
I = PointerMap.find_as(From);
AliasSet *AS = I->second->getAliasSet(*this);
AS->addPointer(*this, Entry, I->second->getSize(),
- I->second->getTBAAInfo(),
+ I->second->getAAInfo(),
true);
}
diff --git a/contrib/llvm/lib/Analysis/Analysis.cpp b/contrib/llvm/lib/Analysis/Analysis.cpp
index c58012f..f64bf0e 100644
--- a/contrib/llvm/lib/Analysis/Analysis.cpp
+++ b/contrib/llvm/lib/Analysis/Analysis.cpp
@@ -34,6 +34,7 @@ void llvm::initializeAnalysis(PassRegistry &Registry) {
initializeCFGPrinterPass(Registry);
initializeCFGOnlyViewerPass(Registry);
initializeCFGOnlyPrinterPass(Registry);
+ initializeCFLAliasAnalysisPass(Registry);
initializeDependenceAnalysisPass(Registry);
initializeDelinearizationPass(Registry);
initializeDominanceFrontierPass(Registry);
@@ -66,6 +67,7 @@ void llvm::initializeAnalysis(PassRegistry &Registry) {
initializeScalarEvolutionAliasAnalysisPass(Registry);
initializeTargetTransformInfoAnalysisGroup(Registry);
initializeTypeBasedAliasAnalysisPass(Registry);
+ initializeScopedNoAliasAAPass(Registry);
}
void LLVMInitializeAnalysis(LLVMPassRegistryRef R) {
diff --git a/contrib/llvm/lib/Analysis/AssumptionCache.cpp b/contrib/llvm/lib/Analysis/AssumptionCache.cpp
new file mode 100644
index 0000000..da5ba18
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/AssumptionCache.cpp
@@ -0,0 +1,125 @@
+//===- AssumptionCache.cpp - Cache finding @llvm.assume calls -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that keeps track of @llvm.assume intrinsics in
+// the functions of a module.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+void AssumptionCache::scanFunction() {
+ assert(!Scanned && "Tried to scan the function twice!");
+ assert(AssumeHandles.empty() && "Already have assumes when scanning!");
+
+ // Go through all instructions in all blocks, add all calls to @llvm.assume
+ // to this cache.
+ for (BasicBlock &B : F)
+ for (Instruction &II : B)
+ if (match(&II, m_Intrinsic<Intrinsic::assume>()))
+ AssumeHandles.push_back(&II);
+
+ // Mark the scan as complete.
+ Scanned = true;
+}
+
+void AssumptionCache::registerAssumption(CallInst *CI) {
+ assert(match(CI, m_Intrinsic<Intrinsic::assume>()) &&
+ "Registered call does not call @llvm.assume");
+
+ // If we haven't scanned the function yet, just drop this assumption. It will
+ // be found when we scan later.
+ if (!Scanned)
+ return;
+
+ AssumeHandles.push_back(CI);
+
+#ifndef NDEBUG
+ assert(CI->getParent() &&
+ "Cannot register @llvm.assume call not in a basic block");
+ assert(&F == CI->getParent()->getParent() &&
+ "Cannot register @llvm.assume call not in this function");
+
+ // We expect the number of assumptions to be small, so in an asserts build
+ // check that we don't accumulate duplicates and that all assumptions point
+ // to the same function.
+ SmallPtrSet<Value *, 16> AssumptionSet;
+ for (auto &VH : AssumeHandles) {
+ if (!VH)
+ continue;
+
+ assert(&F == cast<Instruction>(VH)->getParent()->getParent() &&
+ "Cached assumption not inside this function!");
+ assert(match(cast<CallInst>(VH), m_Intrinsic<Intrinsic::assume>()) &&
+ "Cached something other than a call to @llvm.assume!");
+ assert(AssumptionSet.insert(VH).second &&
+ "Cache contains multiple copies of a call!");
+ }
+#endif
+}
+
+void AssumptionCacheTracker::FunctionCallbackVH::deleted() {
+ auto I = ACT->AssumptionCaches.find_as(cast<Function>(getValPtr()));
+ if (I != ACT->AssumptionCaches.end())
+ ACT->AssumptionCaches.erase(I);
+ // 'this' now dangles!
+}
+
+AssumptionCache &AssumptionCacheTracker::getAssumptionCache(Function &F) {
+ // We probe the function map twice to try and avoid creating a value handle
+ // around the function in common cases. This makes insertion a bit slower,
+ // but if we have to insert we're going to scan the whole function so that
+ // shouldn't matter.
+ auto I = AssumptionCaches.find_as(&F);
+ if (I != AssumptionCaches.end())
+ return *I->second;
+
+ // Ok, build a new cache by scanning the function, insert it and the value
+ // handle into our map, and return the newly populated cache.
+ auto IP = AssumptionCaches.insert(std::make_pair(
+ FunctionCallbackVH(&F, this), llvm::make_unique<AssumptionCache>(F)));
+ assert(IP.second && "Scanning function already in the map?");
+ return *IP.first->second;
+}
+
+void AssumptionCacheTracker::verifyAnalysis() const {
+#ifndef NDEBUG
+ SmallPtrSet<const CallInst *, 4> AssumptionSet;
+ for (const auto &I : AssumptionCaches) {
+ for (auto &VH : I.second->assumptions())
+ if (VH)
+ AssumptionSet.insert(cast<CallInst>(VH));
+
+ for (const BasicBlock &B : cast<Function>(*I.first))
+ for (const Instruction &II : B)
+ if (match(&II, m_Intrinsic<Intrinsic::assume>()))
+ assert(AssumptionSet.count(cast<CallInst>(&II)) &&
+ "Assumption in scanned function not in cache");
+ }
+#endif
+}
+
+AssumptionCacheTracker::AssumptionCacheTracker() : ImmutablePass(ID) {
+ initializeAssumptionCacheTrackerPass(*PassRegistry::getPassRegistry());
+}
+
+AssumptionCacheTracker::~AssumptionCacheTracker() {}
+
+INITIALIZE_PASS(AssumptionCacheTracker, "assumption-cache-tracker",
+ "Assumption Cache Tracker", false, true)
+char AssumptionCacheTracker::ID = 0;
diff --git a/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp
index 38ec52d..a9efc5a 100644
--- a/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp
@@ -17,6 +17,7 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
@@ -194,7 +195,8 @@ namespace {
/// represented in the result.
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
ExtensionKind &Extension,
- const DataLayout &DL, unsigned Depth) {
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, DominatorTree *DT) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
@@ -204,6 +206,14 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
return V;
}
+ if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
+ // if it's a constant, just convert it to an offset
+ // and remove the variable.
+ Offset += Const->getValue();
+ assert(Scale == 0 && "Constant values don't have a scale");
+ return V;
+ }
+
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
switch (BOp->getOpcode()) {
@@ -211,23 +221,24 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL))
+ if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL, 0, AC,
+ BOp, DT))
break;
// FALL THROUGH.
case Instruction::Add:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- DL, Depth+1);
+ DL, Depth + 1, AC, DT);
Offset += RHSC->getValue();
return V;
case Instruction::Mul:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- DL, Depth+1);
+ DL, Depth + 1, AC, DT);
Offset *= RHSC->getValue();
Scale *= RHSC->getValue();
return V;
case Instruction::Shl:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- DL, Depth+1);
+ DL, Depth + 1, AC, DT);
Offset <<= RHSC->getValue().getLimitedValue();
Scale <<= RHSC->getValue().getLimitedValue();
return V;
@@ -247,10 +258,13 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
Offset = Offset.trunc(SmallWidth);
Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
- Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
- DL, Depth+1);
+ Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL,
+ Depth + 1, AC, DT);
Scale = Scale.zext(OldWidth);
- Offset = Offset.zext(OldWidth);
+
+ // We have to sign-extend even if Extension == EK_ZeroExt as we can't
+ // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)).
+ Offset = Offset.sext(OldWidth);
return Result;
}
@@ -278,7 +292,8 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
static const Value *
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<VariableGEPIndex> &VarIndices,
- bool &MaxLookupReached, const DataLayout *DL) {
+ bool &MaxLookupReached, const DataLayout *DL,
+ AssumptionCache *AC, DominatorTree *DT) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = MaxLookupSearchDepth;
MaxLookupReached = false;
@@ -309,7 +324,10 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
// If it's not a GEP, hand it off to SimplifyInstruction to see if it
// can come up with something. This matches what GetUnderlyingObject does.
if (const Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Get a DominatorTree and use it here.
+ // TODO: Get a DominatorTree and AssumptionCache and use them here
+ // (these are both now available in this function, but this should be
+ // updated when GetUnderlyingObject is updated). TLI should be
+ // provided also.
if (const Value *Simplified =
SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
V = Simplified;
@@ -368,7 +386,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
- *DL, 0);
+ *DL, 0, AC, DT);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
@@ -449,6 +467,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AliasAnalysis>();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfo>();
}
@@ -456,8 +475,8 @@ namespace {
assert(AliasCache.empty() && "AliasCache must be cleared after use!");
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
- AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
- LocB.Ptr, LocB.Size, LocB.TBAATag);
+ AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
+ LocB.Ptr, LocB.Size, LocB.AATags);
// AliasCache rarely has more than 1 or 2 elements, always use
// shrink_and_clear so it quickly returns to the inline capacity of the
// SmallDenseMap if it ever grows larger.
@@ -471,10 +490,7 @@ namespace {
const Location &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) override {
- // The AliasAnalysis base class has some smarts, lets use them.
- return AliasAnalysis::getModRefInfo(CS1, CS2);
- }
+ ImmutableCallSite CS2) override;
/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
@@ -544,28 +560,28 @@ namespace {
// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
// instruction against another.
AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
- const MDNode *V1TBAAInfo,
+ const AAMDNodes &V1AAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo,
+ const AAMDNodes &V2AAInfo,
const Value *UnderlyingV1, const Value *UnderlyingV2);
// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
// instruction against another.
AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
- const MDNode *PNTBAAInfo,
+ const AAMDNodes &PNAAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo);
+ const AAMDNodes &V2AAInfo);
/// aliasSelect - Disambiguate a Select instruction against another value.
AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
- const MDNode *SITBAAInfo,
+ const AAMDNodes &SIAAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo);
+ const AAMDNodes &V2AAInfo);
AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
- const MDNode *V1TBAATag,
+ AAMDNodes V1AATag,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAATag);
+ AAMDNodes V2AATag);
};
} // End of anonymous namespace
@@ -574,6 +590,7 @@ char BasicAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
"Basic Alias Analysis (stateless AA impl)",
false, true, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
"Basic Alias Analysis (stateless AA impl)",
@@ -596,7 +613,7 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
Worklist.push_back(Loc.Ptr);
do {
const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
- if (!Visited.insert(V)) {
+ if (!Visited.insert(V).second) {
Visited.clear();
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
@@ -788,6 +805,14 @@ BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
return Loc;
}
+static bool isAssumeIntrinsic(ImmutableCallSite CS) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
+ if (II && II->getIntrinsicID() == Intrinsic::assume)
+ return true;
+
+ return false;
+}
+
/// getModRefInfo - Check to see if the specified callsite can clobber the
/// specified memory object. Since we only look at local properties of this
/// function, we really can't say much about this query. We do, however, use
@@ -840,10 +865,29 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
return NoModRef;
}
+ // While the assume intrinsic is marked as arbitrarily writing so that
+ // proper control dependencies will be maintained, it never aliases any
+ // particular memory location.
+ if (isAssumeIntrinsic(CS))
+ return NoModRef;
+
// The AliasAnalysis base class has some smarts, lets use them.
return AliasAnalysis::getModRefInfo(CS, Loc);
}
+AliasAnalysis::ModRefResult
+BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) {
+ // While the assume intrinsic is marked as arbitrarily writing so that
+ // proper control dependencies will be maintained, it never aliases any
+ // particular memory location.
+ if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
+ return NoModRef;
+
+ // The AliasAnalysis base class has some smarts, lets use them.
+ return AliasAnalysis::getModRefInfo(CS1, CS2);
+}
+
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer. We know that V1 is a GEP, but we don't know
/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
@@ -851,30 +895,50 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
///
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
- const MDNode *V1TBAAInfo,
+ const AAMDNodes &V1AAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo,
+ const AAMDNodes &V2AAInfo,
const Value *UnderlyingV1,
const Value *UnderlyingV2) {
int64_t GEP1BaseOffset;
bool GEP1MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
+ // We have to get two AssumptionCaches here because GEP1 and V2 may be from
+ // different functions.
+ // FIXME: This really doesn't make any sense. We get a dominator tree below
+ // that can only refer to a single function. But this function (aliasGEP) is
+ // a method on an immutable pass that can be called when there *isn't*
+ // a single function. The old pass management layer makes this "work", but
+ // this isn't really a clean solution.
+ AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
+ AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
+ if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
+ AC1 = &ACT.getAssumptionCache(
+ const_cast<Function &>(*GEP1I->getParent()->getParent()));
+ if (auto *I2 = dyn_cast<Instruction>(V2))
+ AC2 = &ACT.getAssumptionCache(
+ const_cast<Function &>(*I2->getParent()->getParent()));
+
+ DominatorTreeWrapperPass *DTWP =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+
// If we have two gep instructions with must-alias or not-alias'ing base
// pointers, figure out if the indexes to the GEP tell us anything about the
// derived pointer.
if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
// Do the base pointers alias?
- AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
- UnderlyingV2, UnknownSize, nullptr);
+ AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
+ UnderlyingV2, UnknownSize, AAMDNodes());
// Check for geps of non-aliasing underlying pointers where the offsets are
// identical.
if ((BaseAlias == MayAlias) && V1Size == V2Size) {
// Do the base pointers alias assuming type and size.
AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
- V1TBAAInfo, UnderlyingV2,
- V2Size, V2TBAAInfo);
+ V1AAInfo, UnderlyingV2,
+ V2Size, V2AAInfo);
if (PreciseBaseAlias == NoAlias) {
// See if the computed offset from the common pointer tells us about the
// relation of the resulting pointer.
@@ -882,11 +946,11 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
bool GEP2MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
- GEP2MaxLookupReached, DL);
+ DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+ GEP2MaxLookupReached, DL, AC2, DT);
const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, DL);
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+ GEP1MaxLookupReached, DL, AC1, DT);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
@@ -914,15 +978,15 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// exactly, see if the computed offset from the common pointer tells us
// about the relation of the resulting pointer.
const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, DL);
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+ GEP1MaxLookupReached, DL, AC1, DT);
int64_t GEP2BaseOffset;
bool GEP2MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
- GEP2MaxLookupReached, DL);
+ DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+ GEP2MaxLookupReached, DL, AC2, DT);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
@@ -949,8 +1013,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
if (V1Size == UnknownSize && V2Size == UnknownSize)
return MayAlias;
- AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
- V2, V2Size, V2TBAAInfo);
+ AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
+ V2, V2Size, V2AAInfo);
if (R != MustAlias)
// If V2 may alias GEP base pointer, conservatively returns MayAlias.
// If V2 is known not to alias GEP base pointer, then the two values
@@ -960,8 +1024,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
return R;
const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, DL);
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+ GEP1MaxLookupReached, DL, AC1, DT);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
@@ -1012,12 +1076,43 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
}
}
- // Try to distinguish something like &A[i][1] against &A[42][0].
- // Grab the least significant bit set in any of the scales.
if (!GEP1VariableIndices.empty()) {
uint64_t Modulo = 0;
- for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
- Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
+ bool AllPositive = true;
+ for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
+
+ // Try to distinguish something like &A[i][1] against &A[42][0].
+ // Grab the least significant bit set in any of the scales. We
+ // don't need std::abs here (even if the scale's negative) as we'll
+ // be ^'ing Modulo with itself later.
+ Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;
+
+ if (AllPositive) {
+ // If the Value could change between cycles, then any reasoning about
+ // the Value this cycle may not hold in the next cycle. We'll just
+ // give up if we can't determine conditions that hold for every cycle:
+ const Value *V = GEP1VariableIndices[i].V;
+
+ bool SignKnownZero, SignKnownOne;
+ ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
+ 0, AC1, nullptr, DT);
+
+ // Zero-extension widens the variable, and so forces the sign
+ // bit to zero.
+ bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt;
+ SignKnownZero |= IsZExt;
+ SignKnownOne &= !IsZExt;
+
+ // If the variable begins with a zero then we know it's
+ // positive, regardless of whether the value is signed or
+ // unsigned.
+ int64_t Scale = GEP1VariableIndices[i].Scale;
+ AllPositive =
+ (SignKnownZero && Scale >= 0) ||
+ (SignKnownOne && Scale < 0);
+ }
+ }
+
Modulo = Modulo ^ (Modulo & (Modulo - 1));
// We can compute the difference between the two addresses
@@ -1027,6 +1122,12 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
if (V1Size != UnknownSize && V2Size != UnknownSize &&
ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
return NoAlias;
+
+ // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
+ // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
+ // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
+ if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset)
+ return NoAlias;
}
// Statically, we can see that the base objects are the same, but the
@@ -1056,33 +1157,33 @@ MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
/// instruction against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
- const MDNode *SITBAAInfo,
+ const AAMDNodes &SIAAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo) {
+ const AAMDNodes &V2AAInfo) {
// If the values are Selects with the same condition, we can do a more precise
// check: just check for aliases between the values on corresponding arms.
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
if (SI->getCondition() == SI2->getCondition()) {
AliasResult Alias =
- aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
- SI2->getTrueValue(), V2Size, V2TBAAInfo);
+ aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
+ SI2->getTrueValue(), V2Size, V2AAInfo);
if (Alias == MayAlias)
return MayAlias;
AliasResult ThisAlias =
- aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
- SI2->getFalseValue(), V2Size, V2TBAAInfo);
+ aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
+ SI2->getFalseValue(), V2Size, V2AAInfo);
return MergeAliasResults(ThisAlias, Alias);
}
// If both arms of the Select node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
AliasResult Alias =
- aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
+ aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
if (Alias == MayAlias)
return MayAlias;
AliasResult ThisAlias =
- aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
+ aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
return MergeAliasResults(ThisAlias, Alias);
}
@@ -1090,9 +1191,9 @@ BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
// against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
- const MDNode *PNTBAAInfo,
+ const AAMDNodes &PNAAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo) {
+ const AAMDNodes &V2AAInfo) {
// Track phi nodes we have visited. We use this information when we determine
// value equivalence.
VisitedPhiBBs.insert(PN->getParent());
@@ -1102,8 +1203,8 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
// on corresponding edges.
if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
if (PN2->getParent() == PN->getParent()) {
- LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
- Location(V2, V2Size, V2TBAAInfo));
+ LocPair Locs(Location(PN, PNSize, PNAAInfo),
+ Location(V2, V2Size, V2AAInfo));
if (PN > V2)
std::swap(Locs.first, Locs.second);
// Analyse the PHIs' inputs under the assumption that the PHIs are
@@ -1121,9 +1222,9 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
AliasResult ThisAlias =
- aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
+ aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
- V2Size, V2TBAAInfo);
+ V2Size, V2AAInfo);
Alias = MergeAliasResults(ThisAlias, Alias);
if (Alias == MayAlias)
break;
@@ -1146,12 +1247,12 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
// sides are PHI nodes. In which case, this is O(m x n) time where 'm'
// and 'n' are the number of PHI sources.
return MayAlias;
- if (UniqueSrc.insert(PV1))
+ if (UniqueSrc.insert(PV1).second)
V1Srcs.push_back(PV1);
}
- AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
- V1Srcs[0], PNSize, PNTBAAInfo);
+ AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
+ V1Srcs[0], PNSize, PNAAInfo);
// Early exit if the check of the first PHI source against V2 is MayAlias.
// Other results are not possible.
if (Alias == MayAlias)
@@ -1162,8 +1263,8 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
Value *V = V1Srcs[i];
- AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
- V, PNSize, PNTBAAInfo);
+ AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
+ V, PNSize, PNAAInfo);
Alias = MergeAliasResults(ThisAlias, Alias);
if (Alias == MayAlias)
break;
@@ -1177,9 +1278,9 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
- const MDNode *V1TBAAInfo,
+ AAMDNodes V1AAInfo,
const Value *V2, uint64_t V2Size,
- const MDNode *V2TBAAInfo) {
+ AAMDNodes V2AAInfo) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are.
if (V1Size == 0 || V2Size == 0)
@@ -1259,8 +1360,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
// Check the cache before climbing up use-def chains. This also terminates
// otherwise infinitely recursive queries.
- LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
- Location(V2, V2Size, V2TBAAInfo));
+ LocPair Locs(Location(V1, V1Size, V1AAInfo),
+ Location(V2, V2Size, V2AAInfo));
if (V1 > V2)
std::swap(Locs.first, Locs.second);
std::pair<AliasCacheTy::iterator, bool> Pair =
@@ -1274,32 +1375,32 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
std::swap(V1, V2);
std::swap(V1Size, V2Size);
std::swap(O1, O2);
- std::swap(V1TBAAInfo, V2TBAAInfo);
+ std::swap(V1AAInfo, V2AAInfo);
}
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
- AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
+ AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
if (Result != MayAlias) return AliasCache[Locs] = Result;
}
if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
std::swap(V1, V2);
std::swap(V1Size, V2Size);
- std::swap(V1TBAAInfo, V2TBAAInfo);
+ std::swap(V1AAInfo, V2AAInfo);
}
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
- AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
- V2, V2Size, V2TBAAInfo);
+ AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
+ V2, V2Size, V2AAInfo);
if (Result != MayAlias) return AliasCache[Locs] = Result;
}
if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
std::swap(V1, V2);
std::swap(V1Size, V2Size);
- std::swap(V1TBAAInfo, V2TBAAInfo);
+ std::swap(V1AAInfo, V2AAInfo);
}
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
- AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
- V2, V2Size, V2TBAAInfo);
+ AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
+ V2, V2Size, V2AAInfo);
if (Result != MayAlias) return AliasCache[Locs] = Result;
}
@@ -1312,8 +1413,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
return AliasCache[Locs] = PartialAlias;
AliasResult Result =
- AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
- Location(V2, V2Size, V2TBAAInfo));
+ AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
+ Location(V2, V2Size, V2AAInfo));
return AliasCache[Locs] = Result;
}
@@ -1338,10 +1439,8 @@ bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
// Make sure that the visited phis cannot reach the Value. This ensures that
// the Values cannot come from different iterations of a potential cycle the
// phi nodes could be involved in.
- for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(),
- PE = VisitedPhiBBs.end();
- PI != PE; ++PI)
- if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI))
+ for (auto *P : VisitedPhiBBs)
+ if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
return false;
return true;
diff --git a/contrib/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp b/contrib/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp
index 723332d..278073c 100644
--- a/contrib/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp
+++ b/contrib/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -614,7 +614,8 @@ static void findIrreducibleHeaders(
break;
}
}
- assert(Headers.size() >= 2 && "Should be irreducible");
+ assert(Headers.size() >= 2 &&
+ "Expected irreducible CFG; -loop-info is likely invalid");
if (Headers.size() == InSCC.size()) {
// Every block is a header.
std::sort(Headers.begin(), Headers.end());
diff --git a/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp b/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp
index bbd8750..2b39d47 100644
--- a/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp
+++ b/contrib/llvm/lib/Analysis/BranchProbabilityInfo.cpp
@@ -196,7 +196,8 @@ bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
SmallVector<uint32_t, 2> Weights;
Weights.reserve(TI->getNumSuccessors());
for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
- ConstantInt *Weight = dyn_cast<ConstantInt>(WeightsNode->getOperand(i));
+ ConstantInt *Weight =
+ mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
if (!Weight)
return false;
Weights.push_back(
diff --git a/contrib/llvm/lib/Analysis/CFG.cpp b/contrib/llvm/lib/Analysis/CFG.cpp
index 8ef5302..8ecd70b 100644
--- a/contrib/llvm/lib/Analysis/CFG.cpp
+++ b/contrib/llvm/lib/Analysis/CFG.cpp
@@ -27,7 +27,7 @@ using namespace llvm;
void llvm::FindFunctionBackedges(const Function &F,
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
const BasicBlock *BB = &F.getEntryBlock();
- if (succ_begin(BB) == succ_end(BB))
+ if (succ_empty(BB))
return;
SmallPtrSet<const BasicBlock*, 8> Visited;
@@ -45,7 +45,7 @@ void llvm::FindFunctionBackedges(const Function &F,
bool FoundNew = false;
while (I != succ_end(ParentBB)) {
BB = *I++;
- if (Visited.insert(BB)) {
+ if (Visited.insert(BB).second) {
FoundNew = true;
break;
}
@@ -141,7 +141,7 @@ static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
SmallSet<const BasicBlock*, 64> Visited;
do {
BasicBlock *BB = Worklist.pop_back_val();
- if (!Visited.insert(BB))
+ if (!Visited.insert(BB).second)
continue;
if (BB == StopBB)
return true;
diff --git a/contrib/llvm/lib/Analysis/CFGPrinter.cpp b/contrib/llvm/lib/Analysis/CFGPrinter.cpp
index c2c19d6..89787f8 100644
--- a/contrib/llvm/lib/Analysis/CFGPrinter.cpp
+++ b/contrib/llvm/lib/Analysis/CFGPrinter.cpp
@@ -79,11 +79,11 @@ namespace {
bool runOnFunction(Function &F) override {
std::string Filename = "cfg." + F.getName().str() + ".dot";
errs() << "Writing '" << Filename << "'...";
-
- std::string ErrorInfo;
- raw_fd_ostream File(Filename.c_str(), ErrorInfo, sys::fs::F_Text);
- if (ErrorInfo.empty())
+ std::error_code EC;
+ raw_fd_ostream File(Filename, EC, sys::fs::F_Text);
+
+ if (!EC)
WriteGraph(File, (const Function*)&F);
else
errs() << " error opening file for writing!";
@@ -114,10 +114,10 @@ namespace {
std::string Filename = "cfg." + F.getName().str() + ".dot";
errs() << "Writing '" << Filename << "'...";
- std::string ErrorInfo;
- raw_fd_ostream File(Filename.c_str(), ErrorInfo, sys::fs::F_Text);
-
- if (ErrorInfo.empty())
+ std::error_code EC;
+ raw_fd_ostream File(Filename, EC, sys::fs::F_Text);
+
+ if (!EC)
WriteGraph(File, (const Function*)&F, true);
else
errs() << " error opening file for writing!";
diff --git a/contrib/llvm/lib/Analysis/CFLAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/CFLAliasAnalysis.cpp
new file mode 100644
index 0000000..88bb84a
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/CFLAliasAnalysis.cpp
@@ -0,0 +1,1013 @@
+//===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a CFL-based context-insensitive alias analysis
+// algorithm. It does not depend on types. The algorithm is a mixture of the one
+// described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
+// Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
+// Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
+// papers, we build a graph of the uses of a variable, where each node is a
+// memory location, and each edge is an action that happened on that memory
+// location. The "actions" can be one of Dereference, Reference, Assign, or
+// Assign.
+//
+// Two variables are considered as aliasing iff you can reach one value's node
+// from the other value's node and the language formed by concatenating all of
+// the edge labels (actions) conforms to a context-free grammar.
+//
+// Because this algorithm requires a graph search on each query, we execute the
+// algorithm outlined in "Fast algorithms..." (mentioned above)
+// in order to transform the graph into sets of variables that may alias in
+// ~nlogn time (n = number of variables.), which makes queries take constant
+// time.
+//===----------------------------------------------------------------------===//
+
+#include "StratifiedSets.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <forward_list>
+#include <tuple>
+
+using namespace llvm;
+
+// Try to go from a Value* to a Function*. Never returns nullptr.
+static Optional<Function *> parentFunctionOfValue(Value *);
+
+// Returns possible functions called by the Inst* into the given
+// SmallVectorImpl. Returns true if targets found, false otherwise.
+// This is templated because InvokeInst/CallInst give us the same
+// set of functions that we care about, and I don't like repeating
+// myself.
+template <typename Inst>
+static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
+
+// Some instructions need to have their users tracked. Instructions like
+// `add` require you to get the users of the Instruction* itself, other
+// instructions like `store` require you to get the users of the first
+// operand. This function gets the "proper" value to track for each
+// type of instruction we support.
+static Optional<Value *> getTargetValue(Instruction *);
+
+// There are certain instructions (i.e. FenceInst, etc.) that we ignore.
+// This notes that we should ignore those.
+static bool hasUsefulEdges(Instruction *);
+
+const StratifiedIndex StratifiedLink::SetSentinel =
+ std::numeric_limits<StratifiedIndex>::max();
+
+namespace {
+// StratifiedInfo Attribute things.
+typedef unsigned StratifiedAttr;
+LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
+LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
+LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
+LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 2;
+LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
+LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
+
+LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
+LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
+
+// \brief StratifiedSets call for knowledge of "direction", so this is how we
+// represent that locally.
+enum class Level { Same, Above, Below };
+
+// \brief Edges can be one of four "weights" -- each weight must have an inverse
+// weight (Assign has Assign; Reference has Dereference).
+enum class EdgeType {
+ // The weight assigned when assigning from or to a value. For example, in:
+ // %b = getelementptr %a, 0
+ // ...The relationships are %b assign %a, and %a assign %b. This used to be
+ // two edges, but having a distinction bought us nothing.
+ Assign,
+
+ // The edge used when we have an edge going from some handle to a Value.
+ // Examples of this include:
+ // %b = load %a (%b Dereference %a)
+ // %b = extractelement %a, 0 (%a Dereference %b)
+ Dereference,
+
+ // The edge used when our edge goes from a value to a handle that may have
+ // contained it at some point. Examples:
+ // %b = load %a (%a Reference %b)
+ // %b = extractelement %a, 0 (%b Reference %a)
+ Reference
+};
+
+// \brief Encodes the notion of a "use"
+struct Edge {
+ // \brief Which value the edge is coming from
+ Value *From;
+
+ // \brief Which value the edge is pointing to
+ Value *To;
+
+ // \brief Edge weight
+ EdgeType Weight;
+
+ // \brief Whether we aliased any external values along the way that may be
+ // invisible to the analysis (i.e. landingpad for exceptions, calls for
+ // interprocedural analysis, etc.)
+ StratifiedAttrs AdditionalAttrs;
+
+ Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
+ : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
+};
+
+// \brief Information we have about a function and would like to keep around
+struct FunctionInfo {
+ StratifiedSets<Value *> Sets;
+ // Lots of functions have < 4 returns. Adjust as necessary.
+ SmallVector<Value *, 4> ReturnedValues;
+
+ FunctionInfo(StratifiedSets<Value *> &&S,
+ SmallVector<Value *, 4> &&RV)
+ : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
+};
+
+struct CFLAliasAnalysis;
+
+struct FunctionHandle : public CallbackVH {
+ FunctionHandle(Function *Fn, CFLAliasAnalysis *CFLAA)
+ : CallbackVH(Fn), CFLAA(CFLAA) {
+ assert(Fn != nullptr);
+ assert(CFLAA != nullptr);
+ }
+
+ virtual ~FunctionHandle() {}
+
+ void deleted() override { removeSelfFromCache(); }
+ void allUsesReplacedWith(Value *) override { removeSelfFromCache(); }
+
+private:
+ CFLAliasAnalysis *CFLAA;
+
+ void removeSelfFromCache();
+};
+
+struct CFLAliasAnalysis : public ImmutablePass, public AliasAnalysis {
+private:
+ /// \brief Cached mapping of Functions to their StratifiedSets.
+ /// If a function's sets are currently being built, it is marked
+ /// in the cache as an Optional without a value. This way, if we
+ /// have any kind of recursion, it is discernable from a function
+ /// that simply has empty sets.
+ DenseMap<Function *, Optional<FunctionInfo>> Cache;
+ std::forward_list<FunctionHandle> Handles;
+
+public:
+ static char ID;
+
+ CFLAliasAnalysis() : ImmutablePass(ID) {
+ initializeCFLAliasAnalysisPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual ~CFLAliasAnalysis() {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AliasAnalysis::getAnalysisUsage(AU);
+ }
+
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &AliasAnalysis::ID)
+ return (AliasAnalysis *)this;
+ return this;
+ }
+
+ /// \brief Inserts the given Function into the cache.
+ void scan(Function *Fn);
+
+ void evict(Function *Fn) { Cache.erase(Fn); }
+
+ /// \brief Ensures that the given function is available in the cache.
+ /// Returns the appropriate entry from the cache.
+ const Optional<FunctionInfo> &ensureCached(Function *Fn) {
+ auto Iter = Cache.find(Fn);
+ if (Iter == Cache.end()) {
+ scan(Fn);
+ Iter = Cache.find(Fn);
+ assert(Iter != Cache.end());
+ assert(Iter->second.hasValue());
+ }
+ return Iter->second;
+ }
+
+ AliasResult query(const Location &LocA, const Location &LocB);
+
+ AliasResult alias(const Location &LocA, const Location &LocB) override {
+ if (LocA.Ptr == LocB.Ptr) {
+ if (LocA.Size == LocB.Size) {
+ return MustAlias;
+ } else {
+ return PartialAlias;
+ }
+ }
+
+ // Comparisons between global variables and other constants should be
+ // handled by BasicAA.
+ if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) {
+ return MayAlias;
+ }
+
+ return query(LocA, LocB);
+ }
+
+ void initializePass() override { InitializeAliasAnalysis(this); }
+};
+
+void FunctionHandle::removeSelfFromCache() {
+ assert(CFLAA != nullptr);
+ auto *Val = getValPtr();
+ CFLAA->evict(cast<Function>(Val));
+ setValPtr(nullptr);
+}
+
+// \brief Gets the edges our graph should have, based on an Instruction*
+class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
+ CFLAliasAnalysis &AA;
+ SmallVectorImpl<Edge> &Output;
+
+public:
+ GetEdgesVisitor(CFLAliasAnalysis &AA, SmallVectorImpl<Edge> &Output)
+ : AA(AA), Output(Output) {}
+
+ void visitInstruction(Instruction &) {
+ llvm_unreachable("Unsupported instruction encountered");
+ }
+
+ void visitCastInst(CastInst &Inst) {
+ Output.push_back(Edge(&Inst, Inst.getOperand(0), EdgeType::Assign,
+ AttrNone));
+ }
+
+ void visitBinaryOperator(BinaryOperator &Inst) {
+ auto *Op1 = Inst.getOperand(0);
+ auto *Op2 = Inst.getOperand(1);
+ Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
+ Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
+ }
+
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
+ auto *Ptr = Inst.getPointerOperand();
+ auto *Val = Inst.getNewValOperand();
+ Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
+ }
+
+ void visitAtomicRMWInst(AtomicRMWInst &Inst) {
+ auto *Ptr = Inst.getPointerOperand();
+ auto *Val = Inst.getValOperand();
+ Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
+ }
+
+ void visitPHINode(PHINode &Inst) {
+ for (unsigned I = 0, E = Inst.getNumIncomingValues(); I != E; ++I) {
+ Value *Val = Inst.getIncomingValue(I);
+ Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
+ }
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &Inst) {
+ auto *Op = Inst.getPointerOperand();
+ Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
+ for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
+ Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
+ }
+
+ void visitSelectInst(SelectInst &Inst) {
+ auto *Condition = Inst.getCondition();
+ Output.push_back(Edge(&Inst, Condition, EdgeType::Assign, AttrNone));
+ auto *TrueVal = Inst.getTrueValue();
+ Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
+ auto *FalseVal = Inst.getFalseValue();
+ Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
+ }
+
+ void visitAllocaInst(AllocaInst &) {}
+
+ void visitLoadInst(LoadInst &Inst) {
+ auto *Ptr = Inst.getPointerOperand();
+ auto *Val = &Inst;
+ Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
+ }
+
+ void visitStoreInst(StoreInst &Inst) {
+ auto *Ptr = Inst.getPointerOperand();
+ auto *Val = Inst.getValueOperand();
+ Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
+ }
+
+ void visitVAArgInst(VAArgInst &Inst) {
+ // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
+ // two things:
+ // 1. Loads a value from *((T*)*Ptr).
+ // 2. Increments (stores to) *Ptr by some target-specific amount.
+ // For now, we'll handle this like a landingpad instruction (by placing the
+ // result in its own group, and having that group alias externals).
+ auto *Val = &Inst;
+ Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
+ }
+
+ static bool isFunctionExternal(Function *Fn) {
+ return Fn->isDeclaration() || !Fn->hasLocalLinkage();
+ }
+
+ // Gets whether the sets at Index1 above, below, or equal to the sets at
+ // Index2. Returns None if they are not in the same set chain.
+ static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
+ StratifiedIndex Index1,
+ StratifiedIndex Index2) {
+ if (Index1 == Index2)
+ return Level::Same;
+
+ const auto *Current = &Sets.getLink(Index1);
+ while (Current->hasBelow()) {
+ if (Current->Below == Index2)
+ return Level::Below;
+ Current = &Sets.getLink(Current->Below);
+ }
+
+ Current = &Sets.getLink(Index1);
+ while (Current->hasAbove()) {
+ if (Current->Above == Index2)
+ return Level::Above;
+ Current = &Sets.getLink(Current->Above);
+ }
+
+ return NoneType();
+ }
+
+ bool
+ tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
+ Value *FuncValue,
+ const iterator_range<User::op_iterator> &Args) {
+ const unsigned ExpectedMaxArgs = 8;
+ const unsigned MaxSupportedArgs = 50;
+ assert(Fns.size() > 0);
+
+ // I put this here to give us an upper bound on time taken by IPA. Is it
+ // really (realistically) needed? Keep in mind that we do have an n^2 algo.
+ if (std::distance(Args.begin(), Args.end()) > (int) MaxSupportedArgs)
+ return false;
+
+ // Exit early if we'll fail anyway
+ for (auto *Fn : Fns) {
+ if (isFunctionExternal(Fn) || Fn->isVarArg())
+ return false;
+ auto &MaybeInfo = AA.ensureCached(Fn);
+ if (!MaybeInfo.hasValue())
+ return false;
+ }
+
+ SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
+ SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
+ for (auto *Fn : Fns) {
+ auto &Info = *AA.ensureCached(Fn);
+ auto &Sets = Info.Sets;
+ auto &RetVals = Info.ReturnedValues;
+
+ Parameters.clear();
+ for (auto &Param : Fn->args()) {
+ auto MaybeInfo = Sets.find(&Param);
+ // Did a new parameter somehow get added to the function/slip by?
+ if (!MaybeInfo.hasValue())
+ return false;
+ Parameters.push_back(*MaybeInfo);
+ }
+
+ // Adding an edge from argument -> return value for each parameter that
+ // may alias the return value
+ for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
+ auto &ParamInfo = Parameters[I];
+ auto &ArgVal = Arguments[I];
+ bool AddEdge = false;
+ StratifiedAttrs Externals;
+ for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
+ auto MaybeInfo = Sets.find(RetVals[X]);
+ if (!MaybeInfo.hasValue())
+ return false;
+
+ auto &RetInfo = *MaybeInfo;
+ auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
+ auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
+ auto MaybeRelation =
+ getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
+ if (MaybeRelation.hasValue()) {
+ AddEdge = true;
+ Externals |= RetAttrs | ParamAttrs;
+ }
+ }
+ if (AddEdge)
+ Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
+ StratifiedAttrs().flip()));
+ }
+
+ if (Parameters.size() != Arguments.size())
+ return false;
+
+ // Adding edges between arguments for arguments that may end up aliasing
+ // each other. This is necessary for functions such as
+ // void foo(int** a, int** b) { *a = *b; }
+ // (Technically, the proper sets for this would be those below
+ // Arguments[I] and Arguments[X], but our algorithm will produce
+ // extremely similar, and equally correct, results either way)
+ for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
+ auto &MainVal = Arguments[I];
+ auto &MainInfo = Parameters[I];
+ auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
+ for (unsigned X = I + 1; X != E; ++X) {
+ auto &SubInfo = Parameters[X];
+ auto &SubVal = Arguments[X];
+ auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
+ auto MaybeRelation =
+ getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
+
+ if (!MaybeRelation.hasValue())
+ continue;
+
+ auto NewAttrs = SubAttrs | MainAttrs;
+ Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
+ }
+ }
+ }
+ return true;
+ }
+
+ template <typename InstT> void visitCallLikeInst(InstT &Inst) {
+ SmallVector<Function *, 4> Targets;
+ if (getPossibleTargets(&Inst, Targets)) {
+ if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
+ return;
+ // Cleanup from interprocedural analysis
+ Output.clear();
+ }
+
+ for (Value *V : Inst.arg_operands())
+ Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
+ }
+
+ void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
+
+ void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
+
+ // Because vectors/aggregates are immutable and unaddressable,
+ // there's nothing we can do to coax a value out of them, other
+ // than calling Extract{Element,Value}. We can effectively treat
+ // them as pointers to arbitrary memory locations we can store in
+ // and load from.
+ void visitExtractElementInst(ExtractElementInst &Inst) {
+ auto *Ptr = Inst.getVectorOperand();
+ auto *Val = &Inst;
+ Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
+ }
+
+ void visitInsertElementInst(InsertElementInst &Inst) {
+ auto *Vec = Inst.getOperand(0);
+ auto *Val = Inst.getOperand(1);
+ Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
+ Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
+ }
+
+ void visitLandingPadInst(LandingPadInst &Inst) {
+ // Exceptions come from "nowhere", from our analysis' perspective.
+ // So we place the instruction its own group, noting that said group may
+ // alias externals
+ Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
+ }
+
+ void visitInsertValueInst(InsertValueInst &Inst) {
+ auto *Agg = Inst.getOperand(0);
+ auto *Val = Inst.getOperand(1);
+ Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
+ Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
+ }
+
+ void visitExtractValueInst(ExtractValueInst &Inst) {
+ auto *Ptr = Inst.getAggregateOperand();
+ Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
+ }
+
+ void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
+ auto *From1 = Inst.getOperand(0);
+ auto *From2 = Inst.getOperand(1);
+ Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
+ Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
+ }
+};
+
+// For a given instruction, we need to know which Value* to get the
+// users of in order to build our graph. In some cases (i.e. add),
+// we simply need the Instruction*. In other cases (i.e. store),
+// finding the users of the Instruction* is useless; we need to find
+// the users of the first operand. This handles determining which
+// value to follow for us.
+//
+// Note: we *need* to keep this in sync with GetEdgesVisitor. Add
+// something to GetEdgesVisitor, add it here -- remove something from
+// GetEdgesVisitor, remove it here.
+class GetTargetValueVisitor
+ : public InstVisitor<GetTargetValueVisitor, Value *> {
+public:
+ Value *visitInstruction(Instruction &Inst) { return &Inst; }
+
+ Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
+
+ Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
+ return Inst.getPointerOperand();
+ }
+
+ Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
+ return Inst.getPointerOperand();
+ }
+
+ Value *visitInsertElementInst(InsertElementInst &Inst) {
+ return Inst.getOperand(0);
+ }
+
+ Value *visitInsertValueInst(InsertValueInst &Inst) {
+ return Inst.getAggregateOperand();
+ }
+};
+
+// Set building requires a weighted bidirectional graph.
+template <typename EdgeTypeT> class WeightedBidirectionalGraph {
+public:
+ typedef std::size_t Node;
+
+private:
+ const static Node StartNode = Node(0);
+
+ struct Edge {
+ EdgeTypeT Weight;
+ Node Other;
+
+ Edge(const EdgeTypeT &W, const Node &N)
+ : Weight(W), Other(N) {}
+
+ bool operator==(const Edge &E) const {
+ return Weight == E.Weight && Other == E.Other;
+ }
+
+ bool operator!=(const Edge &E) const { return !operator==(E); }
+ };
+
+ struct NodeImpl {
+ std::vector<Edge> Edges;
+ };
+
+ std::vector<NodeImpl> NodeImpls;
+
+ bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
+
+ const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
+ NodeImpl &getNode(Node N) { return NodeImpls[N]; }
+
+public:
+ // ----- Various Edge iterators for the graph ----- //
+
+ // \brief Iterator for edges. Because this graph is bidirected, we don't
+ // allow modificaiton of the edges using this iterator. Additionally, the
+ // iterator becomes invalid if you add edges to or from the node you're
+ // getting the edges of.
+ struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
+ std::tuple<EdgeTypeT, Node *>> {
+ EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
+ : Current(Iter) {}
+
+ EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
+
+ EdgeIterator &operator++() {
+ ++Current;
+ return *this;
+ }
+
+ EdgeIterator operator++(int) {
+ EdgeIterator Copy(Current);
+ operator++();
+ return Copy;
+ }
+
+ std::tuple<EdgeTypeT, Node> &operator*() {
+ Store = std::make_tuple(Current->Weight, Current->Other);
+ return Store;
+ }
+
+ bool operator==(const EdgeIterator &Other) const {
+ return Current == Other.Current;
+ }
+
+ bool operator!=(const EdgeIterator &Other) const {
+ return !operator==(Other);
+ }
+
+ private:
+ typename std::vector<Edge>::const_iterator Current;
+ std::tuple<EdgeTypeT, Node> Store;
+ };
+
+ // Wrapper for EdgeIterator with begin()/end() calls.
+ struct EdgeIterable {
+ EdgeIterable(const std::vector<Edge> &Edges)
+ : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
+
+ EdgeIterator begin() { return EdgeIterator(BeginIter); }
+
+ EdgeIterator end() { return EdgeIterator(EndIter); }
+
+ private:
+ typename std::vector<Edge>::const_iterator BeginIter;
+ typename std::vector<Edge>::const_iterator EndIter;
+ };
+
+ // ----- Actual graph-related things ----- //
+
+ WeightedBidirectionalGraph() {}
+
+ WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
+ : NodeImpls(std::move(Other.NodeImpls)) {}
+
+ WeightedBidirectionalGraph<EdgeTypeT> &
+ operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
+ NodeImpls = std::move(Other.NodeImpls);
+ return *this;
+ }
+
+ Node addNode() {
+ auto Index = NodeImpls.size();
+ auto NewNode = Node(Index);
+ NodeImpls.push_back(NodeImpl());
+ return NewNode;
+ }
+
+ void addEdge(Node From, Node To, const EdgeTypeT &Weight,
+ const EdgeTypeT &ReverseWeight) {
+ assert(inbounds(From));
+ assert(inbounds(To));
+ auto &FromNode = getNode(From);
+ auto &ToNode = getNode(To);
+ FromNode.Edges.push_back(Edge(Weight, To));
+ ToNode.Edges.push_back(Edge(ReverseWeight, From));
+ }
+
+ EdgeIterable edgesFor(const Node &N) const {
+ const auto &Node = getNode(N);
+ return EdgeIterable(Node.Edges);
+ }
+
+ bool empty() const { return NodeImpls.empty(); }
+ std::size_t size() const { return NodeImpls.size(); }
+
+ // \brief Gets an arbitrary node in the graph as a starting point for
+ // traversal.
+ Node getEntryNode() {
+ assert(inbounds(StartNode));
+ return StartNode;
+ }
+};
+
+typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
+typedef DenseMap<Value *, GraphT::Node> NodeMapT;
+}
+
+// -- Setting up/registering CFLAA pass -- //
+char CFLAliasAnalysis::ID = 0;
+
+INITIALIZE_AG_PASS(CFLAliasAnalysis, AliasAnalysis, "cfl-aa",
+ "CFL-Based AA implementation", false, true, false)
+
+ImmutablePass *llvm::createCFLAliasAnalysisPass() {
+ return new CFLAliasAnalysis();
+}
+
+//===----------------------------------------------------------------------===//
+// Function declarations that require types defined in the namespace above
+//===----------------------------------------------------------------------===//
+
+// Given an argument number, returns the appropriate Attr index to set.
+static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
+
+// Given a Value, potentially return which AttrIndex it maps to.
+static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
+
+// Gets the inverse of a given EdgeType.
+static EdgeType flipWeight(EdgeType);
+
+// Gets edges of the given Instruction*, writing them to the SmallVector*.
+static void argsToEdges(CFLAliasAnalysis &, Instruction *,
+ SmallVectorImpl<Edge> &);
+
+// Gets the "Level" that one should travel in StratifiedSets
+// given an EdgeType.
+static Level directionOfEdgeType(EdgeType);
+
+// Builds the graph needed for constructing the StratifiedSets for the
+// given function
+static void buildGraphFrom(CFLAliasAnalysis &, Function *,
+ SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
+
+// Builds the graph + StratifiedSets for a function.
+static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *);
+
+static Optional<Function *> parentFunctionOfValue(Value *Val) {
+ if (auto *Inst = dyn_cast<Instruction>(Val)) {
+ auto *Bb = Inst->getParent();
+ return Bb->getParent();
+ }
+
+ if (auto *Arg = dyn_cast<Argument>(Val))
+ return Arg->getParent();
+ return NoneType();
+}
+
+template <typename Inst>
+static bool getPossibleTargets(Inst *Call,
+ SmallVectorImpl<Function *> &Output) {
+ if (auto *Fn = Call->getCalledFunction()) {
+ Output.push_back(Fn);
+ return true;
+ }
+
+ // TODO: If the call is indirect, we might be able to enumerate all potential
+ // targets of the call and return them, rather than just failing.
+ return false;
+}
+
+static Optional<Value *> getTargetValue(Instruction *Inst) {
+ GetTargetValueVisitor V;
+ return V.visit(Inst);
+}
+
+static bool hasUsefulEdges(Instruction *Inst) {
+ bool IsNonInvokeTerminator =
+ isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
+ return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
+}
+
+static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
+ if (isa<GlobalValue>(Val))
+ return AttrGlobalIndex;
+
+ if (auto *Arg = dyn_cast<Argument>(Val))
+ if (!Arg->hasNoAliasAttr())
+ return argNumberToAttrIndex(Arg->getArgNo());
+ return NoneType();
+}
+
+static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
+ if (ArgNum > AttrMaxNumArgs)
+ return AttrAllIndex;
+ return ArgNum + AttrFirstArgIndex;
+}
+
+static EdgeType flipWeight(EdgeType Initial) {
+ switch (Initial) {
+ case EdgeType::Assign:
+ return EdgeType::Assign;
+ case EdgeType::Dereference:
+ return EdgeType::Reference;
+ case EdgeType::Reference:
+ return EdgeType::Dereference;
+ }
+ llvm_unreachable("Incomplete coverage of EdgeType enum");
+}
+
+static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst,
+ SmallVectorImpl<Edge> &Output) {
+ GetEdgesVisitor v(Analysis, Output);
+ v.visit(Inst);
+}
+
+static Level directionOfEdgeType(EdgeType Weight) {
+ switch (Weight) {
+ case EdgeType::Reference:
+ return Level::Above;
+ case EdgeType::Dereference:
+ return Level::Below;
+ case EdgeType::Assign:
+ return Level::Same;
+ }
+ llvm_unreachable("Incomplete switch coverage");
+}
+
+// Aside: We may remove graph construction entirely, because it doesn't really
+// buy us much that we don't already have. I'd like to add interprocedural
+// analysis prior to this however, in case that somehow requires the graph
+// produced by this for efficient execution
+static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
+ SmallVectorImpl<Value *> &ReturnedValues,
+ NodeMapT &Map, GraphT &Graph) {
+ const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
+ auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
+ auto &Iter = Pair.first;
+ if (Pair.second) {
+ auto NewNode = Graph.addNode();
+ Iter->second = NewNode;
+ }
+ return Iter->second;
+ };
+
+ SmallVector<Edge, 8> Edges;
+ for (auto &Bb : Fn->getBasicBlockList()) {
+ for (auto &Inst : Bb.getInstList()) {
+ // We don't want the edges of most "return" instructions, but we *do* want
+ // to know what can be returned.
+ if (auto *Ret = dyn_cast<ReturnInst>(&Inst))
+ ReturnedValues.push_back(Ret);
+
+ if (!hasUsefulEdges(&Inst))
+ continue;
+
+ Edges.clear();
+ argsToEdges(Analysis, &Inst, Edges);
+
+ // In the case of an unused alloca (or similar), edges may be empty. Note
+ // that it exists so we can potentially answer NoAlias.
+ if (Edges.empty()) {
+ auto MaybeVal = getTargetValue(&Inst);
+ assert(MaybeVal.hasValue());
+ auto *Target = *MaybeVal;
+ findOrInsertNode(Target);
+ continue;
+ }
+
+ for (const Edge &E : Edges) {
+ auto To = findOrInsertNode(E.To);
+ auto From = findOrInsertNode(E.From);
+ auto FlippedWeight = flipWeight(E.Weight);
+ auto Attrs = E.AdditionalAttrs;
+ Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
+ std::make_pair(FlippedWeight, Attrs));
+ }
+ }
+ }
+}
+
+static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
+ NodeMapT Map;
+ GraphT Graph;
+ SmallVector<Value *, 4> ReturnedValues;
+
+ buildGraphFrom(Analysis, Fn, ReturnedValues, Map, Graph);
+
+ DenseMap<GraphT::Node, Value *> NodeValueMap;
+ NodeValueMap.resize(Map.size());
+ for (const auto &Pair : Map)
+ NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
+
+ const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
+ auto ValIter = NodeValueMap.find(Node);
+ assert(ValIter != NodeValueMap.end());
+ return ValIter->second;
+ };
+
+ StratifiedSetsBuilder<Value *> Builder;
+
+ SmallVector<GraphT::Node, 16> Worklist;
+ for (auto &Pair : Map) {
+ Worklist.clear();
+
+ auto *Value = Pair.first;
+ Builder.add(Value);
+ auto InitialNode = Pair.second;
+ Worklist.push_back(InitialNode);
+ while (!Worklist.empty()) {
+ auto Node = Worklist.pop_back_val();
+ auto *CurValue = findValueOrDie(Node);
+ if (isa<Constant>(CurValue) && !isa<GlobalValue>(CurValue))
+ continue;
+
+ for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
+ auto Weight = std::get<0>(EdgeTuple);
+ auto Label = Weight.first;
+ auto &OtherNode = std::get<1>(EdgeTuple);
+ auto *OtherValue = findValueOrDie(OtherNode);
+
+ if (isa<Constant>(OtherValue) && !isa<GlobalValue>(OtherValue))
+ continue;
+
+ bool Added;
+ switch (directionOfEdgeType(Label)) {
+ case Level::Above:
+ Added = Builder.addAbove(CurValue, OtherValue);
+ break;
+ case Level::Below:
+ Added = Builder.addBelow(CurValue, OtherValue);
+ break;
+ case Level::Same:
+ Added = Builder.addWith(CurValue, OtherValue);
+ break;
+ }
+
+ if (Added) {
+ auto Aliasing = Weight.second;
+ if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
+ Aliasing.set(*MaybeCurIndex);
+ if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
+ Aliasing.set(*MaybeOtherIndex);
+ Builder.noteAttributes(CurValue, Aliasing);
+ Builder.noteAttributes(OtherValue, Aliasing);
+ Worklist.push_back(OtherNode);
+ }
+ }
+ }
+ }
+
+ // There are times when we end up with parameters not in our graph (i.e. if
+ // it's only used as the condition of a branch). Other bits of code depend on
+ // things that were present during construction being present in the graph.
+ // So, we add all present arguments here.
+ for (auto &Arg : Fn->args()) {
+ Builder.add(&Arg);
+ }
+
+ return FunctionInfo(Builder.build(), std::move(ReturnedValues));
+}
+
+void CFLAliasAnalysis::scan(Function *Fn) {
+ auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
+ (void)InsertPair;
+ assert(InsertPair.second &&
+ "Trying to scan a function that has already been cached");
+
+ FunctionInfo Info(buildSetsFrom(*this, Fn));
+ Cache[Fn] = std::move(Info);
+ Handles.push_front(FunctionHandle(Fn, this));
+}
+
+AliasAnalysis::AliasResult
+CFLAliasAnalysis::query(const AliasAnalysis::Location &LocA,
+ const AliasAnalysis::Location &LocB) {
+ auto *ValA = const_cast<Value *>(LocA.Ptr);
+ auto *ValB = const_cast<Value *>(LocB.Ptr);
+
+ Function *Fn = nullptr;
+ auto MaybeFnA = parentFunctionOfValue(ValA);
+ auto MaybeFnB = parentFunctionOfValue(ValB);
+ if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
+ llvm_unreachable("Don't know how to extract the parent function "
+ "from values A or B");
+ }
+
+ if (MaybeFnA.hasValue()) {
+ Fn = *MaybeFnA;
+ assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
+ "Interprocedural queries not supported");
+ } else {
+ Fn = *MaybeFnB;
+ }
+
+ assert(Fn != nullptr);
+ auto &MaybeInfo = ensureCached(Fn);
+ assert(MaybeInfo.hasValue());
+
+ auto &Sets = MaybeInfo->Sets;
+ auto MaybeA = Sets.find(ValA);
+ if (!MaybeA.hasValue())
+ return AliasAnalysis::MayAlias;
+
+ auto MaybeB = Sets.find(ValB);
+ if (!MaybeB.hasValue())
+ return AliasAnalysis::MayAlias;
+
+ auto SetA = *MaybeA;
+ auto SetB = *MaybeB;
+
+ if (SetA.Index == SetB.Index)
+ return AliasAnalysis::PartialAlias;
+
+ auto AttrsA = Sets.getLink(SetA.Index).Attrs;
+ auto AttrsB = Sets.getLink(SetB.Index).Attrs;
+ // Stratified set attributes are used as markets to signify whether a member
+ // of a StratifiedSet (or a member of a set above the current set) has
+ // interacted with either arguments or globals. "Interacted with" meaning
+ // its value may be different depending on the value of an argument or
+ // global. The thought behind this is that, because arguments and globals
+ // may alias each other, if AttrsA and AttrsB have touched args/globals,
+ // we must conservatively say that they alias. However, if at least one of
+ // the sets has no values that could legally be altered by changing the value
+ // of an argument or global, then we don't have to be as conservative.
+ if (AttrsA.any() && AttrsB.any())
+ return AliasAnalysis::MayAlias;
+
+ return AliasAnalysis::NoAlias;
+}
diff --git a/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp b/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
index 5d1d8a9..4a03002 100644
--- a/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
+++ b/contrib/llvm/lib/Analysis/CGSCCPassManager.cpp
@@ -13,105 +13,10 @@
using namespace llvm;
-static cl::opt<bool>
-DebugPM("debug-cgscc-pass-manager", cl::Hidden,
- cl::desc("Print CGSCC pass management debugging information"));
-
-PreservedAnalyses CGSCCPassManager::run(LazyCallGraph::SCC *C,
- CGSCCAnalysisManager *AM) {
- PreservedAnalyses PA = PreservedAnalyses::all();
-
- if (DebugPM)
- dbgs() << "Starting CGSCC pass manager run.\n";
-
- for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
- if (DebugPM)
- dbgs() << "Running CGSCC pass: " << Passes[Idx]->name() << "\n";
-
- PreservedAnalyses PassPA = Passes[Idx]->run(C, AM);
- if (AM)
- AM->invalidate(C, PassPA);
- PA.intersect(std::move(PassPA));
- }
-
- if (DebugPM)
- dbgs() << "Finished CGSCC pass manager run.\n";
-
- return PA;
-}
-
-bool CGSCCAnalysisManager::empty() const {
- assert(CGSCCAnalysisResults.empty() == CGSCCAnalysisResultLists.empty() &&
- "The storage and index of analysis results disagree on how many there "
- "are!");
- return CGSCCAnalysisResults.empty();
-}
-
-void CGSCCAnalysisManager::clear() {
- CGSCCAnalysisResults.clear();
- CGSCCAnalysisResultLists.clear();
-}
-
-CGSCCAnalysisManager::ResultConceptT &
-CGSCCAnalysisManager::getResultImpl(void *PassID, LazyCallGraph::SCC *C) {
- CGSCCAnalysisResultMapT::iterator RI;
- bool Inserted;
- std::tie(RI, Inserted) = CGSCCAnalysisResults.insert(std::make_pair(
- std::make_pair(PassID, C), CGSCCAnalysisResultListT::iterator()));
-
- // If we don't have a cached result for this function, look up the pass and
- // run it to produce a result, which we then add to the cache.
- if (Inserted) {
- CGSCCAnalysisResultListT &ResultList = CGSCCAnalysisResultLists[C];
- ResultList.emplace_back(PassID, lookupPass(PassID).run(C, this));
- RI->second = std::prev(ResultList.end());
- }
-
- return *RI->second->second;
-}
-
-CGSCCAnalysisManager::ResultConceptT *
-CGSCCAnalysisManager::getCachedResultImpl(void *PassID,
- LazyCallGraph::SCC *C) const {
- CGSCCAnalysisResultMapT::const_iterator RI =
- CGSCCAnalysisResults.find(std::make_pair(PassID, C));
- return RI == CGSCCAnalysisResults.end() ? nullptr : &*RI->second->second;
-}
-
-void CGSCCAnalysisManager::invalidateImpl(void *PassID, LazyCallGraph::SCC *C) {
- CGSCCAnalysisResultMapT::iterator RI =
- CGSCCAnalysisResults.find(std::make_pair(PassID, C));
- if (RI == CGSCCAnalysisResults.end())
- return;
-
- CGSCCAnalysisResultLists[C].erase(RI->second);
-}
-
-void CGSCCAnalysisManager::invalidateImpl(LazyCallGraph::SCC *C,
- const PreservedAnalyses &PA) {
- // Clear all the invalidated results associated specifically with this
- // function.
- SmallVector<void *, 8> InvalidatedPassIDs;
- CGSCCAnalysisResultListT &ResultsList = CGSCCAnalysisResultLists[C];
- for (CGSCCAnalysisResultListT::iterator I = ResultsList.begin(),
- E = ResultsList.end();
- I != E;)
- if (I->second->invalidate(C, PA)) {
- InvalidatedPassIDs.push_back(I->first);
- I = ResultsList.erase(I);
- } else {
- ++I;
- }
- while (!InvalidatedPassIDs.empty())
- CGSCCAnalysisResults.erase(
- std::make_pair(InvalidatedPassIDs.pop_back_val(), C));
- CGSCCAnalysisResultLists.erase(C);
-}
-
char CGSCCAnalysisManagerModuleProxy::PassID;
CGSCCAnalysisManagerModuleProxy::Result
-CGSCCAnalysisManagerModuleProxy::run(Module *M) {
+CGSCCAnalysisManagerModuleProxy::run(Module &M) {
assert(CGAM->empty() && "CGSCC analyses ran prior to the module proxy!");
return Result(*CGAM);
}
@@ -123,7 +28,7 @@ CGSCCAnalysisManagerModuleProxy::Result::~Result() {
}
bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
- Module *M, const PreservedAnalyses &PA) {
+ Module &M, const PreservedAnalyses &PA) {
// If this proxy isn't marked as preserved, then we can't even invalidate
// individual CGSCC analyses, there may be an invalid set of SCC objects in
// the cache making it impossible to incrementally preserve them.
@@ -140,7 +45,7 @@ char ModuleAnalysisManagerCGSCCProxy::PassID;
char FunctionAnalysisManagerCGSCCProxy::PassID;
FunctionAnalysisManagerCGSCCProxy::Result
-FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC *C) {
+FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C) {
assert(FAM->empty() && "Function analyses ran prior to the CGSCC proxy!");
return Result(*FAM);
}
@@ -152,7 +57,7 @@ FunctionAnalysisManagerCGSCCProxy::Result::~Result() {
}
bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
- LazyCallGraph::SCC *C, const PreservedAnalyses &PA) {
+ LazyCallGraph::SCC &C, const PreservedAnalyses &PA) {
// If this proxy isn't marked as preserved, then we can't even invalidate
// individual function analyses, there may be an invalid set of Function
// objects in the cache making it impossible to incrementally preserve them.
diff --git a/contrib/llvm/lib/Analysis/CaptureTracking.cpp b/contrib/llvm/lib/Analysis/CaptureTracking.cpp
index f2f8877..5a54754 100644
--- a/contrib/llvm/lib/Analysis/CaptureTracking.cpp
+++ b/contrib/llvm/lib/Analysis/CaptureTracking.cpp
@@ -19,8 +19,8 @@
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
@@ -239,7 +239,7 @@ void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker) {
if (Count++ >= Threshold)
return Tracker->tooManyUses();
- if (Visited.insert(&UU))
+ if (Visited.insert(&UU).second)
if (Tracker->shouldExplore(&UU))
Worklist.push_back(&UU);
}
diff --git a/contrib/llvm/lib/Analysis/CodeMetrics.cpp b/contrib/llvm/lib/Analysis/CodeMetrics.cpp
index 4c8a093..fa5683c 100644
--- a/contrib/llvm/lib/Analysis/CodeMetrics.cpp
+++ b/contrib/llvm/lib/Analysis/CodeMetrics.cpp
@@ -11,23 +11,113 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "code-metrics"
using namespace llvm;
+static void completeEphemeralValues(SmallVector<const Value *, 16> &WorkSet,
+ SmallPtrSetImpl<const Value*> &EphValues) {
+ SmallPtrSet<const Value *, 32> Visited;
+
+ // Make sure that all of the items in WorkSet are in our EphValues set.
+ EphValues.insert(WorkSet.begin(), WorkSet.end());
+
+ // Note: We don't speculate PHIs here, so we'll miss instruction chains kept
+ // alive only by ephemeral values.
+
+ while (!WorkSet.empty()) {
+ const Value *V = WorkSet.front();
+ WorkSet.erase(WorkSet.begin());
+
+ if (!Visited.insert(V).second)
+ continue;
+
+ // If all uses of this value are ephemeral, then so is this value.
+ bool FoundNEUse = false;
+ for (const User *I : V->users())
+ if (!EphValues.count(I)) {
+ FoundNEUse = true;
+ break;
+ }
+
+ if (FoundNEUse)
+ continue;
+
+ EphValues.insert(V);
+ DEBUG(dbgs() << "Ephemeral Value: " << *V << "\n");
+
+ if (const User *U = dyn_cast<User>(V))
+ for (const Value *J : U->operands()) {
+ if (isSafeToSpeculativelyExecute(J))
+ WorkSet.push_back(J);
+ }
+ }
+}
+
+// Find all ephemeral values.
+void CodeMetrics::collectEphemeralValues(
+ const Loop *L, AssumptionCache *AC,
+ SmallPtrSetImpl<const Value *> &EphValues) {
+ SmallVector<const Value *, 16> WorkSet;
+
+ for (auto &AssumeVH : AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ Instruction *I = cast<Instruction>(AssumeVH);
+
+ // Filter out call sites outside of the loop so we don't to a function's
+ // worth of work for each of its loops (and, in the common case, ephemeral
+ // values in the loop are likely due to @llvm.assume calls in the loop).
+ if (!L->contains(I->getParent()))
+ continue;
+
+ WorkSet.push_back(I);
+ }
+
+ completeEphemeralValues(WorkSet, EphValues);
+}
+
+void CodeMetrics::collectEphemeralValues(
+ const Function *F, AssumptionCache *AC,
+ SmallPtrSetImpl<const Value *> &EphValues) {
+ SmallVector<const Value *, 16> WorkSet;
+
+ for (auto &AssumeVH : AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ Instruction *I = cast<Instruction>(AssumeVH);
+ assert(I->getParent()->getParent() == F &&
+ "Found assumption for the wrong function!");
+ WorkSet.push_back(I);
+ }
+
+ completeEphemeralValues(WorkSet, EphValues);
+}
+
/// analyzeBasicBlock - Fill in the current structure with information gleaned
/// from the specified block.
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
- const TargetTransformInfo &TTI) {
+ const TargetTransformInfo &TTI,
+ SmallPtrSetImpl<const Value*> &EphValues) {
++NumBlocks;
unsigned NumInstsBeforeThisBB = NumInsts;
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
II != E; ++II) {
+ // Skip ephemeral values.
+ if (EphValues.count(II))
+ continue;
+
// Special handling for calls.
if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
ImmutableCallSite CS(cast<Instruction>(II));
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
index 8dc9421..fd8f2ae 100644
--- a/contrib/llvm/lib/Analysis/ConstantFolding.cpp
+++ b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
@@ -47,15 +47,16 @@ using namespace llvm;
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
-/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
-/// DataLayout. This always returns a non-null constant, but it may be a
+/// Constant fold bitcast, symbolically evaluating it with DataLayout.
+/// This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy,
const DataLayout &TD) {
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy())
return Constant::getNullValue(DestTy);
- if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
+ if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
+ !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
return Constant::getAllOnesValue(DestTy);
// Handle a vector->integer cast.
@@ -197,7 +198,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
+ unsigned DstBitSize = TD.getTypeSizeInBits(DstEltTy);
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
@@ -213,6 +214,15 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+ // Truncate the element to an integer with the same pointer size and
+ // convert the element back to a pointer using a inttoptr.
+ if (DstEltTy->isPointerTy()) {
+ IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
+ Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
+ Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
+ continue;
+ }
+
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
@@ -222,9 +232,8 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
}
-/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
-/// from a global, return the global and the constant. Because of
-/// constantexprs, this function is recursive.
+/// If this constant is a constant offset from a global, return the global and
+/// the constant. Because of constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &TD) {
// Trivial case, constant is the global.
@@ -264,10 +273,10 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
return true;
}
-/// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
-/// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
-/// pointer to copy results into and BytesLeft is the number of bytes left in
-/// the CurPtr buffer. TD is the target data.
+/// Recursive helper to read bits out of global. C is the constant being copied
+/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
+/// results into and BytesLeft is the number of bytes left in
+/// the CurPtr buffer. TD is the target data.
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
unsigned char *CurPtr, unsigned BytesLeft,
const DataLayout &TD) {
@@ -518,9 +527,8 @@ static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
return nullptr;
}
-/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
-/// produce if it is constant and determinable. If this is not determinable,
-/// return null.
+/// Return the value that a load from C would produce if it is constant and
+/// determinable. If this is not determinable, return null.
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
const DataLayout *TD) {
// First, try the easy cases:
@@ -610,7 +618,7 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
return nullptr;
}
-/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
+/// One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as DL,
/// otherwise DL is null.
@@ -667,9 +675,8 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
return nullptr;
}
-/// CastGEPIndices - If array indices are not pointer-sized integers,
-/// explicitly cast them so that they aren't implicitly casted by the
-/// getelementptr.
+/// If array indices are not pointer-sized integers, explicitly cast them so
+/// that they aren't implicitly casted by the getelementptr.
static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
@@ -724,8 +731,7 @@ static Constant* StripPtrCastKeepAS(Constant* Ptr) {
return Ptr;
}
-/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
-/// constant expression, do so.
+/// If we can symbolically evaluate the GEP constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
@@ -887,7 +893,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
-/// ConstantFoldInstruction - Try to constant fold the specified instruction.
+/// Try to constant fold the specified instruction.
/// If successful, the constant result is returned, if not, null is returned.
/// Note that this fails if not all of the operands are constant. Otherwise,
/// this function can only fail when attempting to fold instructions like loads
@@ -967,7 +973,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
static Constant *
ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
const TargetLibraryInfo *TLI,
- SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
+ SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
SmallVector<Constant *, 8> Ops;
for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
++i) {
@@ -975,7 +981,7 @@ ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
// Recursively fold the ConstantExpr's operands. If we have already folded
// a ConstantExpr, we don't have to process it again.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
- if (FoldedOps.insert(NewCE))
+ if (FoldedOps.insert(NewCE).second)
NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
}
Ops.push_back(NewC);
@@ -987,7 +993,7 @@ ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
}
-/// ConstantFoldConstantExpression - Attempt to fold the constant expression
+/// Attempt to fold the constant expression
/// using the specified DataLayout. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
@@ -997,7 +1003,7 @@ Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
}
-/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
+/// Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
@@ -1102,10 +1108,9 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
}
}
-/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
+/// Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
/// returns a constant expression of the specified operands.
-///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
const DataLayout *TD,
@@ -1192,9 +1197,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
}
-/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
-/// getelementptr constantexpr, return the constant value being addressed by the
-/// constant expression, or null if something is funny and we can't decide.
+/// Given a constant and a getelementptr constantexpr, return the constant value
+/// being addressed by the constant expression, or null if something is funny
+/// and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (!CE->getOperand(1)->isNullValue())
@@ -1210,10 +1215,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
return C;
}
-/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
-/// indices (with an *implied* zero pointer index that is not in the list),
-/// return the constant value being addressed by a virtual load, or null if
-/// something is funny and we can't decide.
+/// Given a constant and getelementptr indices (with an *implied* zero pointer
+/// index that is not in the list), return the constant value being addressed by
+/// a virtual load, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
ArrayRef<Constant*> Indices) {
// Loop over all of the operands, tracking down which value we are
@@ -1231,11 +1235,12 @@ Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
// Constant Folding for Calls
//
-/// canConstantFoldCallTo - Return true if its even possible to fold a call to
-/// the specified function.
+/// Return true if it's even possible to fold a call to the specified function.
bool llvm::canConstantFoldCallTo(const Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::fabs:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
@@ -1321,7 +1326,7 @@ static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
}
namespace {
-/// llvm_fenv_clearexcept - Clear the floating-point exception state.
+/// Clear the floating-point exception state.
static inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
feclearexcept(FE_ALL_EXCEPT);
@@ -1329,7 +1334,7 @@ static inline void llvm_fenv_clearexcept() {
errno = 0;
}
-/// llvm_fenv_testexcept - Test if a floating-point exception was raised.
+/// Test if a floating-point exception was raised.
static inline bool llvm_fenv_testexcept() {
int errno_val = errno;
if (errno_val == ERANGE || errno_val == EDOM)
@@ -1366,14 +1371,13 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
return GetConstantFoldFPValue(V, Ty);
}
-/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
-/// conversion of a constant floating point. If roundTowardZero is false, the
-/// default IEEE rounding is used (toward nearest, ties to even). This matches
-/// the behavior of the non-truncating SSE instructions in the default rounding
-/// mode. The desired integer type Ty is used to select how many bits are
-/// available for the result. Returns null if the conversion cannot be
-/// performed, otherwise returns the Constant value resulting from the
-/// conversion.
+/// Attempt to fold an SSE floating point to integer conversion of a constant
+/// floating point. If roundTowardZero is false, the default IEEE rounding is
+/// used (toward nearest, ties to even). This matches the behavior of the
+/// non-truncating SSE instructions in the default rounding mode. The desired
+/// integer type Ty is used to select how many bits are available for the
+/// result. Returns null if the conversion cannot be performed, otherwise
+/// returns the Constant value resulting from the conversion.
static Constant *ConstantFoldConvertToInt(const APFloat &Val,
bool roundTowardZero, Type *Ty) {
// All of these conversion intrinsics form an integer of at most 64bits.
@@ -1520,8 +1524,14 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
(Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
- else // Undefined
- return Constant::getNullValue(Ty);
+ else {
+ // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
+ // all guarantee or favor returning NaN - the square root of a
+ // negative number is not defined for the LLVM sqrt intrinsic.
+ // This is because the intrinsic should only be emitted in place of
+ // libm's sqrt function when using "no-nans-fp-math".
+ return UndefValue::get(Ty);
+ }
}
break;
case 's':
@@ -1627,6 +1637,19 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
V1.copySign(V2);
return ConstantFP::get(Ty->getContext(), V1);
}
+
+ if (IntrinsicID == Intrinsic::minnum) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
+ }
+
+ if (IntrinsicID == Intrinsic::maxnum) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
+ }
+
if (!TLI)
return nullptr;
if (Name == "pow" && TLI->has(LibFunc::pow))
@@ -1762,7 +1785,7 @@ static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
return ConstantVector::get(Result);
}
-/// ConstantFoldCall - Attempt to constant fold a call to the specified function
+/// Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
diff --git a/contrib/llvm/lib/Analysis/DependenceAnalysis.cpp b/contrib/llvm/lib/Analysis/DependenceAnalysis.cpp
index d0784f1..092df5c 100644
--- a/contrib/llvm/lib/Analysis/DependenceAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/DependenceAnalysis.cpp
@@ -163,16 +163,15 @@ void dumpExampleDependence(raw_ostream &OS, Function *F,
DstI != DstE; ++DstI) {
if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
OS << "da analyze - ";
- if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
+ if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
D->dump(OS);
for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
if (D->isSplitable(Level)) {
OS << "da analyze - split level = " << Level;
- OS << ", iteration = " << *DA->getSplitIteration(D, Level);
+ OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
OS << "!\n";
}
}
- delete D;
}
else
OS << "none!\n";
@@ -782,6 +781,25 @@ void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
}
}
+void DependenceAnalysis::unifySubscriptType(Subscript *Pair) {
+ const SCEV *Src = Pair->Src;
+ const SCEV *Dst = Pair->Dst;
+ IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
+ IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
+ if (SrcTy == nullptr || DstTy == nullptr) {
+ assert(SrcTy == DstTy && "This function only unify integer types and "
+ "expect Src and Dst share the same type "
+ "otherwise.");
+ return;
+ }
+ if (SrcTy->getBitWidth() > DstTy->getBitWidth()) {
+ // Sign-extend Dst to typeof(Src) if typeof(Src) is wider than typeof(Dst).
+ Pair->Dst = SE->getSignExtendExpr(Dst, SrcTy);
+ } else if (SrcTy->getBitWidth() < DstTy->getBitWidth()) {
+ // Sign-extend Src to typeof(Dst) if typeof(Dst) is wider than typeof(Src).
+ Pair->Src = SE->getSignExtendExpr(Src, DstTy);
+ }
+}
// removeMatchingExtensions - Examines a subscript pair.
// If the source and destination are identically sign (or zero)
@@ -794,9 +812,11 @@ void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
(isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
- if (SrcCast->getType() == DstCast->getType()) {
- Pair->Src = SrcCast->getOperand();
- Pair->Dst = DstCast->getOperand();
+ const SCEV *SrcCastOp = SrcCast->getOperand();
+ const SCEV *DstCastOp = DstCast->getOperand();
+ if (SrcCastOp->getType() == DstCastOp->getType()) {
+ Pair->Src = SrcCastOp;
+ Pair->Dst = DstCastOp;
}
}
}
@@ -2957,15 +2977,11 @@ const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
AddRec->getNoWrapFlags());
}
if (SE->isLoopInvariant(AddRec, TargetLoop))
- return SE->getAddRecExpr(AddRec,
- Value,
- TargetLoop,
- SCEV::FlagAnyWrap);
- return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
- TargetLoop, Value),
- AddRec->getStepRecurrence(*SE),
- AddRec->getLoop(),
- AddRec->getNoWrapFlags());
+ return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
+ return SE->getAddRecExpr(
+ addToCoefficient(AddRec->getStart(), TargetLoop, Value),
+ AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
+ AddRec->getNoWrapFlags());
}
@@ -3183,7 +3199,7 @@ void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
const SCEV *DstSCEV,
SmallVectorImpl<Subscript> &Pair,
- const SCEV *ElementSize) const {
+ const SCEV *ElementSize) {
const SCEVUnknown *SrcBase =
dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
const SCEVUnknown *DstBase =
@@ -3238,6 +3254,7 @@ bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
for (int i = 0; i < size; ++i) {
Pair[i].Src = SrcSubscripts[i];
Pair[i].Dst = DstSubscripts[i];
+ unifySubscriptType(&Pair[i]);
// FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
// delinearization has found, and add these constraints to the dependence
@@ -3277,9 +3294,9 @@ static void dumpSmallBitVector(SmallBitVector &BV) {
//
// Care is required to keep the routine below, getSplitIteration(),
// up to date with respect to this routine.
-Dependence *DependenceAnalysis::depends(Instruction *Src,
- Instruction *Dst,
- bool PossiblyLoopIndependent) {
+std::unique_ptr<Dependence>
+DependenceAnalysis::depends(Instruction *Src, Instruction *Dst,
+ bool PossiblyLoopIndependent) {
if (Src == Dst)
PossiblyLoopIndependent = false;
@@ -3291,7 +3308,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
// can only analyze simple loads and stores, i.e., no calls, invokes, etc.
DEBUG(dbgs() << "can only handle simple loads and stores\n");
- return new Dependence(Src, Dst);
+ return make_unique<Dependence>(Src, Dst);
}
Value *SrcPtr = getPointerOperand(Src);
@@ -3302,7 +3319,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
case AliasAnalysis::PartialAlias:
// cannot analyse objects if we don't understand their aliasing.
DEBUG(dbgs() << "can't analyze may or partial alias\n");
- return new Dependence(Src, Dst);
+ return make_unique<Dependence>(Src, Dst);
case AliasAnalysis::NoAlias:
// If the objects noalias, they are distinct, accesses are independent.
DEBUG(dbgs() << "no alias\n");
@@ -3346,6 +3363,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
++SrcIdx, ++DstIdx, ++P) {
Pair[P].Src = SE->getSCEV(*SrcIdx);
Pair[P].Dst = SE->getSCEV(*DstIdx);
+ unifySubscriptType(&Pair[P]);
}
}
else {
@@ -3675,9 +3693,9 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
return nullptr;
}
- FullDependence *Final = new FullDependence(Result);
+ auto Final = make_unique<FullDependence>(Result);
Result.DV = nullptr;
- return Final;
+ return std::move(Final);
}
@@ -3729,13 +3747,12 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
//
// breaks the dependence and allows us to vectorize/parallelize
// both loops.
-const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
+const SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep,
unsigned SplitLevel) {
- assert(Dep && "expected a pointer to a Dependence");
- assert(Dep->isSplitable(SplitLevel) &&
+ assert(Dep.isSplitable(SplitLevel) &&
"Dep should be splitable at SplitLevel");
- Instruction *Src = Dep->getSrc();
- Instruction *Dst = Dep->getDst();
+ Instruction *Src = Dep.getSrc();
+ Instruction *Dst = Dep.getDst();
assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
assert(isLoadOrStore(Src));
diff --git a/contrib/llvm/lib/Analysis/FunctionTargetTransformInfo.cpp b/contrib/llvm/lib/Analysis/FunctionTargetTransformInfo.cpp
new file mode 100644
index 0000000..a686bec
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/FunctionTargetTransformInfo.cpp
@@ -0,0 +1,50 @@
+//===- llvm/Analysis/FunctionTargetTransformInfo.h --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass wraps a TargetTransformInfo in a FunctionPass so that it can
+// forward along the current Function so that we can make target specific
+// decisions based on the particular subtarget specified for each Function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/InitializePasses.h"
+#include "llvm/Analysis/FunctionTargetTransformInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "function-tti"
+static const char ftti_name[] = "Function TargetTransformInfo";
+INITIALIZE_PASS_BEGIN(FunctionTargetTransformInfo, "function_tti", ftti_name, false, true)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(FunctionTargetTransformInfo, "function_tti", ftti_name, false, true)
+char FunctionTargetTransformInfo::ID = 0;
+
+namespace llvm {
+FunctionPass *createFunctionTargetTransformInfoPass() {
+ return new FunctionTargetTransformInfo();
+}
+}
+
+FunctionTargetTransformInfo::FunctionTargetTransformInfo()
+ : FunctionPass(ID), Fn(nullptr), TTI(nullptr) {
+ initializeFunctionTargetTransformInfoPass(*PassRegistry::getPassRegistry());
+}
+
+void FunctionTargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<TargetTransformInfo>();
+}
+
+void FunctionTargetTransformInfo::releaseMemory() {}
+
+bool FunctionTargetTransformInfo::runOnFunction(Function &F) {
+ Fn = &F;
+ TTI = &getAnalysis<TargetTransformInfo>();
+ return false;
+}
diff --git a/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp b/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp
index dfabb0a..67cf7f8 100644
--- a/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp
+++ b/contrib/llvm/lib/Analysis/IPA/CallGraph.cpp
@@ -282,6 +282,3 @@ void CallGraphWrapperPass::print(raw_ostream &OS, const Module *) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void CallGraphWrapperPass::dump() const { print(dbgs(), nullptr); }
#endif
-
-// Enuse that users of CallGraph.h also link with this file
-DEFINING_FILE_FOR(CallGraph)
diff --git a/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp b/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp
index c27edbf..ded1de7 100644
--- a/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp
+++ b/contrib/llvm/lib/Analysis/IPA/CallGraphSCCPass.cpp
@@ -21,8 +21,8 @@
#include "llvm/Analysis/CallGraph.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LegacyPassManagers.h"
#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/LegacyPassManagers.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
@@ -243,7 +243,14 @@ bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
assert(!CallSites.count(I->first) &&
"Call site occurs in node multiple times");
- CallSites.insert(std::make_pair(I->first, I->second));
+
+ CallSite CS(I->first);
+ if (CS) {
+ Function *Callee = CS.getCalledFunction();
+ // Ignore intrinsics because they're not really function calls.
+ if (!Callee || !(Callee->isIntrinsic()))
+ CallSites.insert(std::make_pair(I->first, I->second));
+ }
++I;
}
diff --git a/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp b/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp
deleted file mode 100644
index b37344b..0000000
--- a/contrib/llvm/lib/Analysis/IPA/FindUsedTypes.cpp
+++ /dev/null
@@ -1,100 +0,0 @@
-//===- FindUsedTypes.cpp - Find all Types used by a module ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass is used to seek out all of the types in use by the program. Note
-// that this analysis explicitly does not include types only used by the symbol
-// table.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/FindUsedTypes.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace llvm;
-
-char FindUsedTypes::ID = 0;
-INITIALIZE_PASS(FindUsedTypes, "print-used-types",
- "Find Used Types", false, true)
-
-// IncorporateType - Incorporate one type and all of its subtypes into the
-// collection of used types.
-//
-void FindUsedTypes::IncorporateType(Type *Ty) {
- // If ty doesn't already exist in the used types map, add it now, otherwise
- // return.
- if (!UsedTypes.insert(Ty)) return; // Already contain Ty.
-
- // Make sure to add any types this type references now.
- //
- for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
- I != E; ++I)
- IncorporateType(*I);
-}
-
-void FindUsedTypes::IncorporateValue(const Value *V) {
- IncorporateType(V->getType());
-
- // If this is a constant, it could be using other types...
- if (const Constant *C = dyn_cast<Constant>(V)) {
- if (!isa<GlobalValue>(C))
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI)
- IncorporateValue(*OI);
- }
-}
-
-
-// run - This incorporates all types used by the specified module
-//
-bool FindUsedTypes::runOnModule(Module &m) {
- UsedTypes.clear(); // reset if run multiple times...
-
- // Loop over global variables, incorporating their types
- for (Module::const_global_iterator I = m.global_begin(), E = m.global_end();
- I != E; ++I) {
- IncorporateType(I->getType());
- if (I->hasInitializer())
- IncorporateValue(I->getInitializer());
- }
-
- for (Module::iterator MI = m.begin(), ME = m.end(); MI != ME; ++MI) {
- IncorporateType(MI->getType());
- const Function &F = *MI;
-
- // Loop over all of the instructions in the function, adding their return
- // type as well as the types of their operands.
- //
- for (const_inst_iterator II = inst_begin(F), IE = inst_end(F);
- II != IE; ++II) {
- const Instruction &I = *II;
-
- IncorporateType(I.getType()); // Incorporate the type of the instruction
- for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
- OI != OE; ++OI)
- IncorporateValue(*OI); // Insert inst operand types as well
- }
- }
-
- return false;
-}
-
-// Print the types found in the module. If the optional Module parameter is
-// passed in, then the types are printed symbolically if possible, using the
-// symbol table from the module.
-//
-void FindUsedTypes::print(raw_ostream &OS, const Module *M) const {
- OS << "Types in use by this module:\n";
- for (SetVector<Type *>::const_iterator I = UsedTypes.begin(),
- E = UsedTypes.end(); I != E; ++I) {
- OS << " " << **I << '\n';
- }
-}
diff --git a/contrib/llvm/lib/Analysis/IPA/IPA.cpp b/contrib/llvm/lib/Analysis/IPA/IPA.cpp
index b26c052..806bfb8 100644
--- a/contrib/llvm/lib/Analysis/IPA/IPA.cpp
+++ b/contrib/llvm/lib/Analysis/IPA/IPA.cpp
@@ -22,7 +22,6 @@ void llvm::initializeIPA(PassRegistry &Registry) {
initializeCallGraphWrapperPassPass(Registry);
initializeCallGraphPrinterPass(Registry);
initializeCallGraphViewerPass(Registry);
- initializeFindUsedTypesPass(Registry);
initializeGlobalsModRefPass(Registry);
}
diff --git a/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp b/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp
index 8807529..58ac5d3 100644
--- a/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp
+++ b/contrib/llvm/lib/Analysis/IPA/InlineCost.cpp
@@ -17,6 +17,8 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetTransformInfo.h"
@@ -49,6 +51,9 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
/// The TargetTransformInfo available for this compilation.
const TargetTransformInfo &TTI;
+ /// The cache of @llvm.assume intrinsics.
+ AssumptionCache &AC;
+
// The called function.
Function &F;
@@ -104,7 +109,7 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
// Custom analysis routines.
- bool analyzeBlock(BasicBlock *BB);
+ bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues);
// Disable several entry points to the visitor so we don't accidentally use
// them by declaring but not defining them here.
@@ -141,8 +146,8 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
public:
CallAnalyzer(const DataLayout *DL, const TargetTransformInfo &TTI,
- Function &Callee, int Threshold)
- : DL(DL), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
+ AssumptionCache &AC, Function &Callee, int Threshold)
+ : DL(DL), TTI(TTI), AC(AC), F(Callee), Threshold(Threshold), Cost(0),
IsCallerRecursive(false), IsRecursiveCall(false),
ExposesReturnsTwice(false), HasDynamicAlloca(false),
ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
@@ -778,7 +783,7 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
// during devirtualization and so we want to give it a hefty bonus for
// inlining, but cap that bonus in the event that inlining wouldn't pan
// out. Pretend to inline the function, with a custom threshold.
- CallAnalyzer CA(DL, TTI, *F, InlineConstants::IndirectCallThreshold);
+ CallAnalyzer CA(DL, TTI, AC, *F, InlineConstants::IndirectCallThreshold);
if (CA.analyzeCall(CS)) {
// We were able to inline the indirect call! Subtract the cost from the
// bonus we want to apply, but don't go below zero.
@@ -881,7 +886,8 @@ bool CallAnalyzer::visitInstruction(Instruction &I) {
/// aborts early if the threshold has been exceeded or an impossible to inline
/// construct has been detected. It returns false if inlining is no longer
/// viable, and true if inlining remains viable.
-bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
+bool CallAnalyzer::analyzeBlock(BasicBlock *BB,
+ SmallPtrSetImpl<const Value *> &EphValues) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
// FIXME: Currently, the number of instructions in a function regardless of
// our ability to simplify them during inline to constants or dead code,
@@ -893,6 +899,10 @@ bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
if (isa<DbgInfoIntrinsic>(I))
continue;
+ // Skip ephemeral values.
+ if (EphValues.count(I))
+ continue;
+
++NumInstructions;
if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
++NumVectorInstructions;
@@ -967,7 +977,7 @@ ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
break;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(V));
+ } while (Visited.insert(V).second);
Type *IntPtrTy = DL->getIntPtrType(V->getContext());
return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
@@ -1096,6 +1106,12 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
NumAllocaArgs = SROAArgValues.size();
+ // FIXME: If a caller has multiple calls to a callee, we end up recomputing
+ // the ephemeral values multiple times (and they're completely determined by
+ // the callee, so this is purely duplicate work).
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(&F, &AC, EphValues);
+
// The worklist of live basic blocks in the callee *after* inlining. We avoid
// adding basic blocks of the callee which can be proven to be dead for this
// particular call site in order to get more accurate cost estimates. This
@@ -1129,7 +1145,7 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
// Analyze the cost of this block. If we blow through the threshold, this
// returns false, and we can bail on out.
- if (!analyzeBlock(BB)) {
+ if (!analyzeBlock(BB, EphValues)) {
if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
HasIndirectBr)
return false;
@@ -1217,6 +1233,7 @@ void CallAnalyzer::dump() {
INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
true, true)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
true, true)
@@ -1228,12 +1245,14 @@ InlineCostAnalysis::~InlineCostAnalysis() {}
void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfo>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
TTI = &getAnalysis<TargetTransformInfo>();
+ ACT = &getAnalysis<AssumptionCacheTracker>();
return false;
}
@@ -1290,7 +1309,8 @@ InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
<< "...\n");
- CallAnalyzer CA(Callee->getDataLayout(), *TTI, *Callee, Threshold);
+ CallAnalyzer CA(Callee->getDataLayout(), *TTI,
+ ACT->getAssumptionCache(*Callee), *Callee, Threshold);
bool ShouldInline = CA.analyzeCall(CS);
DEBUG(CA.dump());
diff --git a/contrib/llvm/lib/Analysis/IVUsers.cpp b/contrib/llvm/lib/Analysis/IVUsers.cpp
index 24655aa..6b5f370 100644
--- a/contrib/llvm/lib/Analysis/IVUsers.cpp
+++ b/contrib/llvm/lib/Analysis/IVUsers.cpp
@@ -84,7 +84,7 @@ static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
/// form.
static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
const LoopInfo *LI,
- SmallPtrSet<Loop*,16> &SimpleLoopNests) {
+ SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
Loop *NearestLoop = nullptr;
for (DomTreeNode *Rung = DT->getNode(BB);
Rung; Rung = Rung->getIDom()) {
@@ -112,10 +112,10 @@ static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool IVUsers::AddUsersImpl(Instruction *I,
- SmallPtrSet<Loop*,16> &SimpleLoopNests) {
+ SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
// Add this IV user to the Processed set before returning false to ensure that
// all IV users are members of the set. See IVUsers::isIVUserOrOperand.
- if (!Processed.insert(I))
+ if (!Processed.insert(I).second)
return true; // Instruction already handled.
if (!SE->isSCEVable(I->getType()))
@@ -145,7 +145,7 @@ bool IVUsers::AddUsersImpl(Instruction *I,
SmallPtrSet<Instruction *, 4> UniqueUsers;
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
- if (!UniqueUsers.insert(User))
+ if (!UniqueUsers.insert(User).second)
continue;
// Do not infinitely recurse on PHI nodes.
diff --git a/contrib/llvm/lib/Analysis/InstructionSimplify.cpp b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
index 7a820a5..3fbbd7c 100644
--- a/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
+++ b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
@@ -20,6 +20,7 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
@@ -31,6 +32,7 @@
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
+#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -41,14 +43,20 @@ enum { RecursionLimit = 3 };
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumReassoc, "Number of reassociations");
+namespace {
struct Query {
const DataLayout *DL;
const TargetLibraryInfo *TLI;
const DominatorTree *DT;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
Query(const DataLayout *DL, const TargetLibraryInfo *tli,
- const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {}
+ const DominatorTree *dt, AssumptionCache *ac = nullptr,
+ const Instruction *cxti = nullptr)
+ : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
};
+} // end anonymous namespace
static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
@@ -575,8 +583,9 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -624,7 +633,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
}
assert(V->getType()->getScalarType()->isPointerTy() &&
"Unexpected operand type!");
- } while (Visited.insert(V));
+ } while (Visited.insert(V).second);
Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
if (V->getType()->isVectorTy())
@@ -676,6 +685,10 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
+ // 0 - X -> 0 if the sub is NUW.
+ if (isNUW && match(Op0, m_Zero()))
+ return Op0;
+
// (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
// For example, (X + Y) - Y -> X; (Y + X) - Y -> X
Value *X = nullptr, *Y = nullptr, *Z = Op1;
@@ -769,8 +782,9 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -946,29 +960,38 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
}
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+ const DataLayout *DL,
+ const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+ const DataLayout *DL,
+ const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
-Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
- FastMathFlags FMF,
+Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
@@ -988,6 +1011,10 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (match(Op1, m_Undef()))
return Op1;
+ // X / 0 -> undef, we don't need to preserve faults!
+ if (match(Op1, m_Zero()))
+ return UndefValue::get(Op1->getType());
+
// undef / X -> 0
if (match(Op0, m_Undef()))
return Constant::getNullValue(Op0->getType());
@@ -1028,6 +1055,16 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
(!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
return Constant::getNullValue(Op0->getType());
+ // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
+ ConstantInt *C1, *C2;
+ if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
+ match(Op1, m_ConstantInt(C2))) {
+ bool Overflow;
+ C1->getValue().umul_ov(C2->getValue(), Overflow);
+ if (Overflow)
+ return Constant::getNullValue(Op0->getType());
+ }
+
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1055,8 +1092,10 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
@@ -1071,8 +1110,10 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1090,8 +1131,10 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyRem - Given operands for an SRem or URem, see if we can
@@ -1133,6 +1176,13 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
+ // (X % Y) % Y -> X % Y
+ if ((Opcode == Instruction::SRem &&
+ match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
+ (Opcode == Instruction::URem &&
+ match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
+ return Op0;
+
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1160,8 +1210,10 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyURemInst - Given operands for a URem, see if we can
@@ -1176,8 +1228,10 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
@@ -1195,8 +1249,10 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// isUndefShift - Returns true if a shift by \c Amount always yields undef.
@@ -1264,6 +1320,37 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
return nullptr;
}
+/// \brief Given operands for an Shl, LShr or AShr, see if we can
+/// fold the result. If not, this returns null.
+static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
+ bool isExact, const Query &Q,
+ unsigned MaxRecurse) {
+ if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // X >> X -> 0
+ if (Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ // undef >> X -> 0
+ // undef >> X -> undef (if it's exact)
+ if (match(Op0, m_Undef()))
+ return isExact ? Op0 : Constant::getNullValue(Op0->getType());
+
+ // The low bit cannot be shifted out of an exact shift if it is set.
+ if (isExact) {
+ unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
+ APInt Op0KnownZero(BitWidth, 0);
+ APInt Op0KnownOne(BitWidth, 0);
+ computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
+ Q.CxtI, Q.DT);
+ if (Op0KnownOne[0])
+ return Op0;
+ }
+
+ return nullptr;
+}
+
/// SimplifyShlInst - Given operands for an Shl, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
@@ -1272,8 +1359,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
return V;
// undef << X -> 0
+ // undef << X -> undef if (if it's NSW/NUW)
if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
+ return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
// (X >> A) << A -> X
Value *X;
@@ -1284,8 +1372,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -1293,21 +1382,13 @@ Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
/// fold the result. If not, this returns null.
static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
- // undef >>l X -> 0
- if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
+ if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
+ MaxRecurse))
+ return V;
// (X << A) >> A -> X
Value *X;
- if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
- cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
+ if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
return X;
return nullptr;
@@ -1316,8 +1397,9 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -1325,29 +1407,21 @@ Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
/// fold the result. If not, this returns null.
static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
+ if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
+ MaxRecurse))
return V;
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
// all ones >>a X -> all ones
if (match(Op0, m_AllOnes()))
return Op0;
- // undef >>a X -> all ones
- if (match(Op0, m_Undef()))
- return Constant::getAllOnesValue(Op0->getType());
-
// (X << A) >> A -> X
Value *X;
- if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
- cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
+ if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
return X;
// Arithmetic shifting an all-sign-bit value is a no-op.
- unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL);
+ unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
return Op0;
@@ -1357,11 +1431,105 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
+static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
+ ICmpInst *UnsignedICmp, bool IsAnd) {
+ Value *X, *Y;
+
+ ICmpInst::Predicate EqPred;
+ if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
+ !ICmpInst::isEquality(EqPred))
+ return nullptr;
+
+ ICmpInst::Predicate UnsignedPred;
+ if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
+ ICmpInst::isUnsigned(UnsignedPred))
+ ;
+ else if (match(UnsignedICmp,
+ m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
+ ICmpInst::isUnsigned(UnsignedPred))
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+ else
+ return nullptr;
+
+ // X < Y && Y != 0 --> X < Y
+ // X < Y || Y != 0 --> Y != 0
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
+ return IsAnd ? UnsignedICmp : ZeroICmp;
+
+ // X >= Y || Y != 0 --> true
+ // X >= Y || Y == 0 --> X >= Y
+ if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
+ if (EqPred == ICmpInst::ICMP_NE)
+ return getTrue(UnsignedICmp->getType());
+ return UnsignedICmp;
+ }
+
+ // X < Y && Y == 0 --> false
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
+ IsAnd)
+ return getFalse(UnsignedICmp->getType());
+
+ return nullptr;
+}
+
+// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
+// of possible values cannot be satisfied.
+static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ ConstantInt *CI1, *CI2;
+ Value *V;
+
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
+ return X;
+
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
+ m_ConstantInt(CI2))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+
+ auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+ bool isNSW = AddInst->hasNoSignedWrap();
+ bool isNUW = AddInst->hasNoUnsignedWrap();
+
+ const APInt &CI1V = CI1->getValue();
+ const APInt &CI2V = CI2->getValue();
+ const APInt Delta = CI2V - CI1V;
+ if (CI1V.isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
+ return getFalse(ITy);
+ if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+ return getFalse(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
+ return getFalse(ITy);
+ if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+ return getFalse(ITy);
+ }
+ }
+ if (CI1V.getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ }
+
+ return nullptr;
+}
+
/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1412,12 +1580,21 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
// A & (-A) = A if A is a power of two or zero.
if (match(Op0, m_Neg(m_Specific(Op1))) ||
match(Op1, m_Neg(m_Specific(Op0)))) {
- if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
+ if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
return Op0;
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
return Op1;
}
+ if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
+ if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
+ if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
+ return V;
+ if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
+ return V;
+ }
+ }
+
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
MaxRecurse))
@@ -1452,8 +1629,62 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
+}
+
+// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
+// contains all possible values.
+static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ ConstantInt *CI1, *CI2;
+ Value *V;
+
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
+ return X;
+
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
+ m_ConstantInt(CI2))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+
+ auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+ bool isNSW = AddInst->hasNoSignedWrap();
+ bool isNUW = AddInst->hasNoUnsignedWrap();
+
+ const APInt &CI1V = CI1->getValue();
+ const APInt &CI2V = CI2->getValue();
+ const APInt Delta = CI2V - CI1V;
+ if (CI1V.isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ }
+ if (CI1V.getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+
+ return nullptr;
}
/// SimplifyOrInst - Given operands for an Or, see if we can
@@ -1513,6 +1744,15 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
(A == Op0 || B == Op0))
return Constant::getAllOnesValue(Op0->getType());
+ if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
+ if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
+ if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
+ return V;
+ if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
+ return V;
+ }
+ }
+
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
MaxRecurse))
@@ -1545,18 +1785,22 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
match(A, m_Add(m_Value(V1), m_Value(V2)))) {
// Add commutes, try both ways.
- if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
+ if (V1 == B &&
+ MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return A;
- if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
+ if (V2 == B &&
+ MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return A;
}
// Or commutes, try both ways.
if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
match(B, m_Add(m_Value(V1), m_Value(V2)))) {
// Add commutes, try both ways.
- if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
+ if (V1 == A &&
+ MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return B;
- if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
+ if (V2 == A &&
+ MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return B;
}
}
@@ -1573,8 +1817,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyXorInst - Given operands for a Xor, see if we can
@@ -1628,8 +1874,10 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
static Type *GetCompareTy(Value *Op) {
@@ -1804,6 +2052,50 @@ static Constant *computePointerICmp(const DataLayout *DL,
return ConstantExpr::getICmp(Pred,
ConstantExpr::getAdd(LHSOffset, LHSNoBound),
ConstantExpr::getAdd(RHSOffset, RHSNoBound));
+
+ // If one side of the equality comparison must come from a noalias call
+ // (meaning a system memory allocation function), and the other side must
+ // come from a pointer that cannot overlap with dynamically-allocated
+ // memory within the lifetime of the current function (allocas, byval
+ // arguments, globals), then determine the comparison result here.
+ SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
+ GetUnderlyingObjects(LHS, LHSUObjs, DL);
+ GetUnderlyingObjects(RHS, RHSUObjs, DL);
+
+ // Is the set of underlying objects all noalias calls?
+ auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
+ return std::all_of(Objects.begin(), Objects.end(),
+ [](Value *V){ return isNoAliasCall(V); });
+ };
+
+ // Is the set of underlying objects all things which must be disjoint from
+ // noalias calls. For allocas, we consider only static ones (dynamic
+ // allocas might be transformed into calls to malloc not simultaneously
+ // live with the compared-to allocation). For globals, we exclude symbols
+ // that might be resolve lazily to symbols in another dynamically-loaded
+ // library (and, thus, could be malloc'ed by the implementation).
+ auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
+ return std::all_of(Objects.begin(), Objects.end(),
+ [](Value *V){
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ return AI->getParent() && AI->getParent()->getParent() &&
+ AI->isStaticAlloca();
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return (GV->hasLocalLinkage() ||
+ GV->hasHiddenVisibility() ||
+ GV->hasProtectedVisibility() ||
+ GV->hasUnnamedAddr()) &&
+ !GV->isThreadLocal();
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValAttr();
+ return false;
+ });
+ };
+
+ if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
+ (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
}
// Otherwise, fail.
@@ -1883,40 +2175,46 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_ULE:
- if (isKnownNonZero(LHS, Q.DL))
+ if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGT:
- if (isKnownNonZero(LHS, Q.DL))
+ if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
case ICmpInst::ICMP_SLT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getTrue(ITy);
if (LHSKnownNonNegative)
return getFalse(ITy);
break;
case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getTrue(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
+ if (LHSKnownNonNegative &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getFalse(ITy);
if (LHSKnownNonNegative)
return getTrue(ITy);
break;
case ICmpInst::ICMP_SGT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getFalse(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
+ if (LHSKnownNonNegative &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
}
@@ -1981,6 +2279,22 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Upper = Upper + 1;
assert(Upper != Lower && "Upper part of range has wrapped!");
}
+ } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
+ // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
+ Lower = CI2->getValue();
+ Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
+ } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
+ if (CI2->isNegative()) {
+ // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
+ unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
+ Lower = CI2->getValue().shl(ShiftAmount);
+ Upper = CI2->getValue() + 1;
+ } else {
+ // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
+ unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
+ Lower = CI2->getValue();
+ Upper = CI2->getValue().shl(ShiftAmount) + 1;
+ }
} else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
// 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
APInt NegOne = APInt::getAllOnesValue(Width);
@@ -2189,25 +2503,6 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
- // If a bit is known to be zero for A and known to be one for B,
- // then A and B cannot be equal.
- if (ICmpInst::isEquality(Pred)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- uint32_t BitWidth = CI->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
- if (((LHSKnownOne & RHSKnownZero) != 0) ||
- ((LHSKnownZero & RHSKnownOne) != 0))
- return (Pred == ICmpInst::ICMP_EQ)
- ? ConstantInt::getFalse(CI->getContext())
- : ConstantInt::getTrue(CI->getContext());
- }
- }
-
// Special logic for binary operators.
BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
@@ -2271,6 +2566,40 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
+ // icmp pred (or X, Y), X
+ if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
+ m_Or(m_Specific(RHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+ }
+ // icmp pred X, (or X, Y)
+ if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
+ m_Or(m_Specific(LHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ }
+
+ // icmp pred (and X, Y), X
+ if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
+ m_And(m_Specific(RHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+ // icmp pred X, (and X, Y)
+ if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
+ m_And(m_Specific(LHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ }
+
// 0 - (zext X) pred C
if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
@@ -2301,7 +2630,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2311,7 +2641,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getFalse(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2330,7 +2661,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2340,7 +2672,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2360,6 +2693,41 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
}
+ // handle:
+ // CI2 << X == CI
+ // CI2 << X != CI
+ //
+ // where CI2 is a power of 2 and CI isn't
+ if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
+ const APInt *CI2Val, *CIVal = &CI->getValue();
+ if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
+ CI2Val->isPowerOf2()) {
+ if (!CIVal->isPowerOf2()) {
+ // CI2 << X can equal zero in some circumstances,
+ // this simplification is unsafe if CI is zero.
+ //
+ // We know it is safe if:
+ // - The shift is nsw, we can't shift out the one bit.
+ // - The shift is nuw, we can't shift out the one bit.
+ // - CI2 is one
+ // - CI isn't zero
+ if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
+ *CI2Val == 1 || !CI->isZero()) {
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(RHS->getContext());
+ if (Pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(RHS->getContext());
+ }
+ }
+ if (CIVal->isSignBit() && *CI2Val == 1) {
+ if (Pred == ICmpInst::ICMP_UGT)
+ return ConstantInt::getFalse(RHS->getContext());
+ if (Pred == ICmpInst::ICMP_ULE)
+ return ConstantInt::getTrue(RHS->getContext());
+ }
+ }
+ }
+
if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
LBO->getOperand(1) == RBO->getOperand(1)) {
switch (LBO->getOpcode()) {
@@ -2607,6 +2975,23 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
+ // If a bit is known to be zero for A and known to be one for B,
+ // then A and B cannot be equal.
+ if (ICmpInst::isEquality(Pred)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ uint32_t BitWidth = CI->getBitWidth();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
+ Q.CxtI, Q.DT);
+ const APInt &RHSVal = CI->getValue();
+ if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
+ return Pred == ICmpInst::ICMP_EQ
+ ? ConstantInt::getFalse(CI->getContext())
+ : ConstantInt::getTrue(CI->getContext());
+ }
+ }
+
// If the comparison is with the result of a select instruction, check whether
// comparing with either branch of the select always yields the same value.
if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
@@ -2625,8 +3010,9 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ Instruction *CxtI) {
+ return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -2722,8 +3108,9 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -2755,15 +3142,71 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
return TrueVal;
+ const auto *ICI = dyn_cast<ICmpInst>(CondVal);
+ unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
+ if (ICI && BitWidth) {
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ APInt MinSignedValue = APInt::getSignBit(BitWidth);
+ Value *X;
+ const APInt *Y;
+ bool TrueWhenUnset;
+ bool IsBitTest = false;
+ if (ICmpInst::isEquality(Pred) &&
+ match(ICI->getOperand(0), m_And(m_Value(X), m_APInt(Y))) &&
+ match(ICI->getOperand(1), m_Zero())) {
+ IsBitTest = true;
+ TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
+ } else if (Pred == ICmpInst::ICMP_SLT &&
+ match(ICI->getOperand(1), m_Zero())) {
+ X = ICI->getOperand(0);
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = false;
+ } else if (Pred == ICmpInst::ICMP_SGT &&
+ match(ICI->getOperand(1), m_AllOnes())) {
+ X = ICI->getOperand(0);
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = true;
+ }
+ if (IsBitTest) {
+ const APInt *C;
+ // (X & Y) == 0 ? X & ~Y : X --> X
+ // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
+ if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
+ *Y == ~*C)
+ return TrueWhenUnset ? FalseVal : TrueVal;
+ // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
+ // (X & Y) != 0 ? X : X & ~Y --> X
+ if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
+ *Y == ~*C)
+ return TrueWhenUnset ? FalseVal : TrueVal;
+
+ if (Y->isPowerOf2()) {
+ // (X & Y) == 0 ? X | Y : X --> X | Y
+ // (X & Y) != 0 ? X | Y : X --> X
+ if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
+ *Y == *C)
+ return TrueWhenUnset ? TrueVal : FalseVal;
+ // (X & Y) == 0 ? X : X | Y --> X
+ // (X & Y) != 0 ? X : X | Y --> X | Y
+ if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
+ *Y == *C)
+ return TrueWhenUnset ? TrueVal : FalseVal;
+ }
+ }
+ }
+
return nullptr;
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT),
- RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
+ Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
}
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
@@ -2771,29 +3214,72 @@ Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
// The type of the GEP pointer operand.
PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
+ unsigned AS = PtrTy->getAddressSpace();
// getelementptr P -> P.
if (Ops.size() == 1)
return Ops[0];
- if (isa<UndefValue>(Ops[0])) {
- // Compute the (pointer) type returned by the GEP instruction.
- Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
- Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
- GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+ // Compute the (pointer) type returned by the GEP instruction.
+ Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
+ Type *GEPTy = PointerType::get(LastType, AS);
+ if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
+ GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+
+ if (isa<UndefValue>(Ops[0]))
return UndefValue::get(GEPTy);
- }
if (Ops.size() == 2) {
// getelementptr P, 0 -> P.
if (match(Ops[1], m_Zero()))
return Ops[0];
- // getelementptr P, N -> P if P points to a type of zero size.
- if (Q.DL) {
- Type *Ty = PtrTy->getElementType();
- if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0)
+
+ Type *Ty = PtrTy->getElementType();
+ if (Q.DL && Ty->isSized()) {
+ Value *P;
+ uint64_t C;
+ uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty);
+ // getelementptr P, N -> P if P points to a type of zero size.
+ if (TyAllocSize == 0)
return Ops[0];
+
+ // The following transforms are only safe if the ptrtoint cast
+ // doesn't truncate the pointers.
+ if (Ops[1]->getType()->getScalarSizeInBits() ==
+ Q.DL->getPointerSizeInBits(AS)) {
+ auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
+ if (match(P, m_Zero()))
+ return Constant::getNullValue(GEPTy);
+ Value *Temp;
+ if (match(P, m_PtrToInt(m_Value(Temp))))
+ if (Temp->getType() == GEPTy)
+ return Temp;
+ return nullptr;
+ };
+
+ // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
+ if (TyAllocSize == 1 &&
+ match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+
+ // getelementptr V, (ashr (sub P, V), C) -> Q
+ // if P points to a type of size 1 << C.
+ if (match(Ops[1],
+ m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+ m_ConstantInt(C))) &&
+ TyAllocSize == 1ULL << C)
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+
+ // getelementptr V, (sdiv (sub P, V), C) -> Q
+ // if P points to a type of size C.
+ if (match(Ops[1],
+ m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+ m_SpecificInt(TyAllocSize))))
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+ }
}
}
@@ -2807,8 +3293,9 @@ static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyGEPInst(Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
}
/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
@@ -2840,12 +3327,11 @@ static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
return nullptr;
}
-Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs,
- const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT),
+Value *llvm::SimplifyInsertValueInst(
+ Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout *DL,
+ const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -2892,8 +3378,10 @@ static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
//=== Helper functions for higher up the class hierarchy.
@@ -2965,8 +3453,10 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
@@ -2980,8 +3470,9 @@ static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -3055,24 +3546,25 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
User::op_iterator ArgEnd, const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT),
+ const TargetLibraryInfo *TLI, const DominatorTree *DT,
+ AssumptionCache *AC, const Instruction *CxtI) {
+ return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT),
- RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyCall(V, Args.begin(), Args.end(),
+ Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
}
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
+ const DominatorTree *DT, AssumptionCache *AC) {
Value *Result;
switch (I->getOpcode()) {
@@ -3081,109 +3573,122 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
break;
case Instruction::FAdd:
Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Add:
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
+ TLI, DT, AC, I);
break;
case Instruction::FSub:
Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Sub:
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
+ TLI, DT, AC, I);
break;
case Instruction::FMul:
Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Mul:
- Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::SDiv:
- Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::UDiv:
- Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::FDiv:
- Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::SRem:
- Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::URem:
- Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::FRem:
- Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
+ TLI, DT, AC, I);
break;
case Instruction::LShr:
Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
+ AC, I);
break;
case Instruction::AShr:
Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
+ AC, I);
break;
case Instruction::And:
- Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::Or:
- Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::Xor:
- Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::ICmp:
- Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
+ I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::FCmp:
- Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
+ I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::Select:
Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
- I->getOperand(2), DL, TLI, DT);
+ I->getOperand(2), DL, TLI, DT, AC, I);
break;
case Instruction::GetElementPtr: {
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
- Result = SimplifyGEPInst(Ops, DL, TLI, DT);
+ Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
break;
}
case Instruction::InsertValue: {
InsertValueInst *IV = cast<InsertValueInst>(I);
Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
IV->getInsertedValueOperand(),
- IV->getIndices(), DL, TLI, DT);
+ IV->getIndices(), DL, TLI, DT, AC, I);
break;
}
case Instruction::PHI:
- Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT));
+ Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
break;
case Instruction::Call: {
CallSite CS(cast<CallInst>(I));
- Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
- DL, TLI, DT);
+ Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
+ TLI, DT, AC, I);
break;
}
case Instruction::Trunc:
- Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT);
+ Result =
+ SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
break;
}
@@ -3207,7 +3712,8 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
bool Simplified = false;
SmallSetVector<Instruction *, 8> Worklist;
@@ -3234,7 +3740,7 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
I = Worklist[Idx];
// See if this instruction simplifies.
- SimpleV = SimplifyInstruction(I, DL, TLI, DT);
+ SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
if (!SimpleV)
continue;
@@ -3257,18 +3763,19 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
return Simplified;
}
-bool llvm::recursivelySimplifyInstruction(Instruction *I,
- const DataLayout *DL,
+bool llvm::recursivelySimplifyInstruction(Instruction *I, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT);
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
+ return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AC);
}
bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
assert(SimpleV && "Must provide a simplified value.");
- return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT);
+ return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AC);
}
diff --git a/contrib/llvm/lib/Analysis/JumpInstrTableInfo.cpp b/contrib/llvm/lib/Analysis/JumpInstrTableInfo.cpp
index b5b4265..7aae2a5 100644
--- a/contrib/llvm/lib/Analysis/JumpInstrTableInfo.cpp
+++ b/contrib/llvm/lib/Analysis/JumpInstrTableInfo.cpp
@@ -17,6 +17,7 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
+#include "llvm/Support/MathExtras.h"
using namespace llvm;
@@ -28,7 +29,21 @@ ImmutablePass *llvm::createJumpInstrTableInfoPass() {
return new JumpInstrTableInfo();
}
-JumpInstrTableInfo::JumpInstrTableInfo() : ImmutablePass(ID), Tables() {
+ModulePass *llvm::createJumpInstrTableInfoPass(unsigned Bound) {
+ // This cast is always safe, since Bound is always in a subset of uint64_t.
+ uint64_t B = static_cast<uint64_t>(Bound);
+ return new JumpInstrTableInfo(B);
+}
+
+JumpInstrTableInfo::JumpInstrTableInfo(uint64_t ByteAlign)
+ : ImmutablePass(ID), Tables(), ByteAlignment(ByteAlign) {
+ if (!llvm::isPowerOf2_64(ByteAlign)) {
+ // Note that we don't explicitly handle overflow here, since we handle the 0
+ // case explicitly when a caller actually tries to create jumptable entries,
+ // and this is the return value on overflow.
+ ByteAlignment = llvm::NextPowerOf2(ByteAlign);
+ }
+
initializeJumpInstrTableInfoPass(*PassRegistry::getPassRegistry());
}
diff --git a/contrib/llvm/lib/Analysis/LazyCallGraph.cpp b/contrib/llvm/lib/Analysis/LazyCallGraph.cpp
index e073616..c8d0410 100644
--- a/contrib/llvm/lib/Analysis/LazyCallGraph.cpp
+++ b/contrib/llvm/lib/Analysis/LazyCallGraph.cpp
@@ -48,7 +48,7 @@ static void findCallees(
}
for (Value *Op : C->operand_values())
- if (Visited.insert(cast<Constant>(Op)))
+ if (Visited.insert(cast<Constant>(Op)).second)
Worklist.push_back(cast<Constant>(Op));
}
}
@@ -66,7 +66,7 @@ LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
for (Instruction &I : BB)
for (Value *Op : I.operand_values())
if (Constant *C = dyn_cast<Constant>(Op))
- if (Visited.insert(C))
+ if (Visited.insert(C).second)
Worklist.push_back(C);
// We've collected all the constant (and thus potentially function or
@@ -113,7 +113,7 @@ LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
SmallPtrSet<Constant *, 16> Visited;
for (GlobalVariable &GV : M.globals())
if (GV.hasInitializer())
- if (Visited.insert(GV.getInitializer()))
+ if (Visited.insert(GV.getInitializer()).second)
Worklist.push_back(GV.getInitializer());
DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
@@ -688,7 +688,7 @@ static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
// Recurse depth first through the nodes.
for (LazyCallGraph::Node &ChildN : N)
- if (Printed.insert(&ChildN))
+ if (Printed.insert(&ChildN).second)
printNodes(OS, ChildN, Printed);
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
@@ -708,21 +708,20 @@ static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
OS << "\n";
}
-PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
+PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
ModuleAnalysisManager *AM) {
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
- OS << "Printing the call graph for module: " << M->getModuleIdentifier()
+ OS << "Printing the call graph for module: " << M.getModuleIdentifier()
<< "\n\n";
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
for (LazyCallGraph::Node &N : G)
- if (Printed.insert(&N))
+ if (Printed.insert(&N).second)
printNodes(OS, N, Printed);
for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
printSCC(OS, SCC);
return PreservedAnalyses::all();
-
}
diff --git a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
index 9f919f7..4de56f1 100644
--- a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
+++ b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
@@ -1,4 +1,4 @@
-//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
+//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -15,12 +15,14 @@
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
@@ -38,6 +40,7 @@ using namespace PatternMatch;
char LazyValueInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
@@ -51,8 +54,7 @@ namespace llvm {
// LVILatticeVal
//===----------------------------------------------------------------------===//
-/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
-/// value.
+/// This is the information tracked by LazyValueInfo for each value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
@@ -60,19 +62,19 @@ namespace llvm {
namespace {
class LVILatticeVal {
enum LatticeValueTy {
- /// undefined - This Value has no known value yet.
+ /// This Value has no known value yet.
undefined,
- /// constant - This Value has a specific constant value.
+ /// This Value has a specific constant value.
constant,
- /// notconstant - This Value is known to not have the specified value.
+
+ /// This Value is known to not have the specified value.
notconstant,
- /// constantrange - The Value falls within this range.
+ /// The Value falls within this range.
constantrange,
- /// overdefined - This value is not known to be constant, and we know that
- /// it has a value.
+ /// This value is not known to be constant, and we know that it has a value.
overdefined
};
@@ -125,7 +127,7 @@ public:
return Range;
}
- /// markOverdefined - Return true if this is a change in status.
+ /// Return true if this is a change in status.
bool markOverdefined() {
if (isOverdefined())
return false;
@@ -133,7 +135,7 @@ public:
return true;
}
- /// markConstant - Return true if this is a change in status.
+ /// Return true if this is a change in status.
bool markConstant(Constant *V) {
assert(V && "Marking constant with NULL");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
@@ -149,7 +151,7 @@ public:
return true;
}
- /// markNotConstant - Return true if this is a change in status.
+ /// Return true if this is a change in status.
bool markNotConstant(Constant *V) {
assert(V && "Marking constant with NULL");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
@@ -167,7 +169,7 @@ public:
return true;
}
- /// markConstantRange - Return true if this is a change in status.
+ /// Return true if this is a change in status.
bool markConstantRange(const ConstantRange NewR) {
if (isConstantRange()) {
if (NewR.isEmptySet())
@@ -187,7 +189,7 @@ public:
return true;
}
- /// mergeIn - Merge the specified lattice value into this one, updating this
+ /// Merge the specified lattice value into this one, updating this
/// one and returning true if anything changed.
bool mergeIn(const LVILatticeVal &RHS) {
if (RHS.isUndefined() || isOverdefined()) return false;
@@ -295,8 +297,7 @@ raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
//===----------------------------------------------------------------------===//
namespace {
- /// LVIValueHandle - A callback value handle updates the cache when
- /// values are erased.
+ /// A callback value handle updates the cache when values are erased.
class LazyValueInfoCache;
struct LVIValueHandle : public CallbackVH {
LazyValueInfoCache *Parent;
@@ -312,59 +313,67 @@ namespace {
}
namespace {
- /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
+ /// This is the cache kept by LazyValueInfo which
/// maintains information about queries across the clients' queries.
class LazyValueInfoCache {
- /// ValueCacheEntryTy - This is all of the cached block information for
- /// exactly one Value*. The entries are sorted by the BasicBlock* of the
+ /// This is all of the cached block information for exactly one Value*.
+ /// The entries are sorted by the BasicBlock* of the
/// entries, allowing us to do a lookup with a binary search.
typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
- /// ValueCache - This is all of the cached information for all values,
+ /// This is all of the cached information for all values,
/// mapped from Value* to key information.
std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
- /// OverDefinedCache - This tracks, on a per-block basis, the set of
- /// values that are over-defined at the end of that block. This is required
+ /// This tracks, on a per-block basis, the set of values that are
+ /// over-defined at the end of that block. This is required
/// for cache updating.
typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
DenseSet<OverDefinedPairTy> OverDefinedCache;
- /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
+ /// Keep track of all blocks that we have ever seen, so we
/// don't spend time removing unused blocks from our caches.
DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
- /// BlockValueStack - This stack holds the state of the value solver
- /// during a query. It basically emulates the callstack of the naive
+ /// This stack holds the state of the value solver during a query.
+ /// It basically emulates the callstack of the naive
/// recursive value lookup process.
std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
+
+ /// Keeps track of which block-value pairs are in BlockValueStack.
+ DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
+
+ /// Push BV onto BlockValueStack unless it's already in there.
+ /// Returns true on success.
+ bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
+ if (BlockValueSet.count(BV))
+ return false; // It's already in the stack.
+
+ BlockValueStack.push(BV);
+ BlockValueSet.insert(BV);
+ return true;
+ }
+
+ /// A pointer to the cache of @llvm.assume calls.
+ AssumptionCache *AC;
+ /// An optional DL pointer.
+ const DataLayout *DL;
+ /// An optional DT pointer.
+ DominatorTree *DT;
friend struct LVIValueHandle;
-
- /// OverDefinedCacheUpdater - A helper object that ensures that the
- /// OverDefinedCache is updated whenever solveBlockValue returns.
- struct OverDefinedCacheUpdater {
- LazyValueInfoCache *Parent;
- Value *Val;
- BasicBlock *BB;
- LVILatticeVal &BBLV;
-
- OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
- LazyValueInfoCache *P)
- : Parent(P), Val(V), BB(B), BBLV(LV) { }
-
- bool markResult(bool changed) {
- if (changed && BBLV.isOverdefined())
- Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
- return changed;
- }
- };
-
+ void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
+ SeenBlocks.insert(BB);
+ lookup(Val)[BB] = Result;
+ if (Result.isOverdefined())
+ OverDefinedCache.insert(std::make_pair(BB, Val));
+ }
LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
- LVILatticeVal &Result);
+ LVILatticeVal &Result,
+ Instruction *CxtI = nullptr);
bool hasBlockValue(Value *Val, BasicBlock *BB);
// These methods process one work item and may add more. A false value
@@ -377,6 +386,8 @@ namespace {
PHINode *PN, BasicBlock *BB);
bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
Instruction *BBI, BasicBlock *BB);
+ void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
+ Instruction *BBI);
void solve();
@@ -385,20 +396,26 @@ namespace {
}
public:
- /// getValueInBlock - This is the query interface to determine the lattice
+ /// This is the query interface to determine the lattice
/// value for the specified Value* at the end of the specified block.
- LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
+ LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
+ Instruction *CxtI = nullptr);
+
+ /// This is the query interface to determine the lattice
+ /// value for the specified Value* at the specified instruction (generally
+ /// from an assume intrinsic).
+ LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
- /// getValueOnEdge - This is the query interface to determine the lattice
+ /// This is the query interface to determine the lattice
/// value for the specified Value* that is true on the specified edge.
- LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
+ LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
+ Instruction *CxtI = nullptr);
- /// threadEdge - This is the update interface to inform the cache that an
- /// edge from PredBB to OldSucc has been threaded to be from PredBB to
- /// NewSucc.
+ /// This is the update interface to inform the cache that an edge from
+ /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
- /// eraseBlock - This is part of the update interface to inform the cache
+ /// This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB);
@@ -408,6 +425,10 @@ namespace {
ValueCache.clear();
OverDefinedCache.clear();
}
+
+ LazyValueInfoCache(AssumptionCache *AC, const DataLayout *DL = nullptr,
+ DominatorTree *DT = nullptr)
+ : AC(AC), DL(DL), DT(DT) {}
};
} // end anonymous namespace
@@ -415,17 +436,11 @@ void LVIValueHandle::deleted() {
typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
SmallVector<OverDefinedPairTy, 4> ToErase;
- for (DenseSet<OverDefinedPairTy>::iterator
- I = Parent->OverDefinedCache.begin(),
- E = Parent->OverDefinedCache.end();
- I != E; ++I) {
- if (I->second == getValPtr())
- ToErase.push_back(*I);
- }
-
- for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
- E = ToErase.end(); I != E; ++I)
- Parent->OverDefinedCache.erase(*I);
+ for (const OverDefinedPairTy &P : Parent->OverDefinedCache)
+ if (P.second == getValPtr())
+ ToErase.push_back(P);
+ for (const OverDefinedPairTy &P : ToErase)
+ Parent->OverDefinedCache.erase(P);
// This erasure deallocates *this, so it MUST happen after we're done
// using any and all members of *this.
@@ -440,15 +455,11 @@ void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
SeenBlocks.erase(I);
SmallVector<OverDefinedPairTy, 4> ToErase;
- for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
- E = OverDefinedCache.end(); I != E; ++I) {
- if (I->first == BB)
- ToErase.push_back(*I);
- }
-
- for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
- E = ToErase.end(); I != E; ++I)
- OverDefinedCache.erase(*I);
+ for (const OverDefinedPairTy& P : OverDefinedCache)
+ if (P.first == BB)
+ ToErase.push_back(P);
+ for (const OverDefinedPairTy &P : ToErase)
+ OverDefinedCache.erase(P);
for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
@@ -458,9 +469,18 @@ void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
void LazyValueInfoCache::solve() {
while (!BlockValueStack.empty()) {
std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
+ assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
+
if (solveBlockValue(e.second, e.first)) {
- assert(BlockValueStack.top() == e);
+ // The work item was completely processed.
+ assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
+ assert(lookup(e.second).count(e.first) && "Result should be in cache!");
+
BlockValueStack.pop();
+ BlockValueSet.erase(e);
+ } else {
+ // More work needs to be done before revisiting.
+ assert(BlockValueStack.top() != e && "Stack should have been pushed!");
}
}
}
@@ -490,44 +510,40 @@ bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
if (isa<Constant>(Val))
return true;
- ValueCacheEntryTy &Cache = lookup(Val);
- SeenBlocks.insert(BB);
- LVILatticeVal &BBLV = Cache[BB];
-
- // OverDefinedCacheUpdater is a helper object that will update
- // the OverDefinedCache for us when this method exits. Make sure to
- // call markResult on it as we exist, passing a bool to indicate if the
- // cache needs updating, i.e. if we have solve a new value or not.
- OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
-
- // If we've already computed this block's value, return it.
- if (!BBLV.isUndefined()) {
- DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
-
- // Since we're reusing a cached value here, we don't need to update the
- // OverDefinedCahce. The cache will have been properly updated
- // whenever the cached value was inserted.
- ODCacheUpdater.markResult(false);
+ if (lookup(Val).count(BB)) {
+ // If we have a cached value, use that.
+ DEBUG(dbgs() << " reuse BB '" << BB->getName()
+ << "' val=" << lookup(Val)[BB] << '\n');
+
+ // Since we're reusing a cached value, we don't need to update the
+ // OverDefinedCache. The cache will have been properly updated whenever the
+ // cached value was inserted.
return true;
}
- // Otherwise, this is the first time we're seeing this block. Reset the
- // lattice value to overdefined, so that cycles will terminate and be
- // conservatively correct.
- BBLV.markOverdefined();
+ // Hold off inserting this value into the Cache in case we have to return
+ // false and come back later.
+ LVILatticeVal Res;
Instruction *BBI = dyn_cast<Instruction>(Val);
if (!BBI || BBI->getParent() != BB) {
- return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
+ if (!solveBlockValueNonLocal(Res, Val, BB))
+ return false;
+ insertResult(Val, BB, Res);
+ return true;
}
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
- return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
+ if (!solveBlockValuePHINode(Res, PN, BB))
+ return false;
+ insertResult(Val, BB, Res);
+ return true;
}
if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
- BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
- return ODCacheUpdater.markResult(true);
+ Res = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
+ insertResult(Val, BB, Res);
+ return true;
}
// We can only analyze the definitions of certain classes of instructions
@@ -537,8 +553,9 @@ bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
!BBI->getType()->isIntegerTy()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
- BBLV.markOverdefined();
- return ODCacheUpdater.markResult(true);
+ Res.markOverdefined();
+ insertResult(Val, BB, Res);
+ return true;
}
// FIXME: We're currently limited to binops with a constant RHS. This should
@@ -548,11 +565,15 @@ bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
- BBLV.markOverdefined();
- return ODCacheUpdater.markResult(true);
+ Res.markOverdefined();
+ insertResult(Val, BB, Res);
+ return true;
}
- return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
+ if (!solveBlockValueConstantRange(Res, BBI, BB))
+ return false;
+ insertResult(Val, BB, Res);
+ return true;
}
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
@@ -597,9 +618,8 @@ bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
// If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
// inside InstructionDereferencesPointer either.
if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, nullptr, 1)) {
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
- BI != BE; ++BI) {
- if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
+ for (Instruction &I : *BB) {
+ if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
NotNull = true;
break;
}
@@ -669,7 +689,10 @@ bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
BasicBlock *PhiBB = PN->getIncomingBlock(i);
Value *PhiVal = PN->getIncomingValue(i);
LVILatticeVal EdgeResult;
- EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
+ // Note that we can provide PN as the context value to getEdgeValue, even
+ // though the results will be cached, because PN is the value being used as
+ // the cache key in the caller.
+ EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
if (EdgesMissing)
continue;
@@ -694,16 +717,53 @@ bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
return true;
}
+static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
+ LVILatticeVal &Result,
+ bool isTrueDest = true);
+
+// If we can determine a constant range for the value Val in the context
+// provided by the instruction BBI, then merge it into BBLV. If we did find a
+// constant range, return true.
+void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
+ LVILatticeVal &BBLV,
+ Instruction *BBI) {
+ BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
+ if (!BBI)
+ return;
+
+ for (auto &AssumeVH : AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ auto *I = cast<CallInst>(AssumeVH);
+ if (!isValidAssumeForContext(I, BBI, DL, DT))
+ continue;
+
+ Value *C = I->getArgOperand(0);
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
+ LVILatticeVal Result;
+ if (getValueFromFromCondition(Val, ICI, Result)) {
+ if (BBLV.isOverdefined())
+ BBLV = Result;
+ else
+ BBLV.mergeIn(Result);
+ }
+ }
+ }
+}
+
bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
Instruction *BBI,
BasicBlock *BB) {
// Figure out the range of the LHS. If that fails, bail.
if (!hasBlockValue(BBI->getOperand(0), BB)) {
- BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
- return false;
+ if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
+ return false;
+ BBLV.markOverdefined();
+ return true;
}
LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
+ mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
if (!LHSVal.isConstantRange()) {
BBLV.markOverdefined();
return true;
@@ -775,6 +835,47 @@ bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
return true;
}
+bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
+ LVILatticeVal &Result, bool isTrueDest) {
+ if (ICI && isa<Constant>(ICI->getOperand(1))) {
+ if (ICI->isEquality() && ICI->getOperand(0) == Val) {
+ // We know that V has the RHS constant if this is a true SETEQ or
+ // false SETNE.
+ if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
+ Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
+ else
+ Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
+ return true;
+ }
+
+ // Recognize the range checking idiom that InstCombine produces.
+ // (X-C1) u< C2 --> [C1, C1+C2)
+ ConstantInt *NegOffset = nullptr;
+ if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
+ match(ICI->getOperand(0), m_Add(m_Specific(Val),
+ m_ConstantInt(NegOffset)));
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
+ if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
+ // Calculate the range of values that would satisfy the comparison.
+ ConstantRange CmpRange(CI->getValue());
+ ConstantRange TrueValues =
+ ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
+
+ if (NegOffset) // Apply the offset from above.
+ TrueValues = TrueValues.subtract(NegOffset->getValue());
+
+ // If we're interested in the false dest, invert the condition.
+ if (!isTrueDest) TrueValues = TrueValues.inverse();
+
+ Result = LVILatticeVal::getRange(TrueValues);
+ return true;
+ }
+ }
+
+ return false;
+}
+
/// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
/// Val is not constrained on the edge.
static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
@@ -783,7 +884,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
// know that v != 0.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
// If this is a conditional branch and only one successor goes to BBTo, then
- // we maybe able to infer something from the condition.
+ // we may be able to infer something from the condition.
if (BI->isConditional() &&
BI->getSuccessor(0) != BI->getSuccessor(1)) {
bool isTrueDest = BI->getSuccessor(0) == BBTo;
@@ -800,42 +901,9 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
- ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
- if (ICI && isa<Constant>(ICI->getOperand(1))) {
- if (ICI->isEquality() && ICI->getOperand(0) == Val) {
- // We know that V has the RHS constant if this is a true SETEQ or
- // false SETNE.
- if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
- Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
- else
- Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
- return true;
- }
-
- // Recognize the range checking idiom that InstCombine produces.
- // (X-C1) u< C2 --> [C1, C1+C2)
- ConstantInt *NegOffset = nullptr;
- if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
- match(ICI->getOperand(0), m_Add(m_Specific(Val),
- m_ConstantInt(NegOffset)));
-
- ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
- if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
- // Calculate the range of values that would satisfy the comparison.
- ConstantRange CmpRange(CI->getValue());
- ConstantRange TrueValues =
- ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
-
- if (NegOffset) // Apply the offset from above.
- TrueValues = TrueValues.subtract(NegOffset->getValue());
-
- // If we're interested in the false dest, invert the condition.
- if (!isTrueDest) TrueValues = TrueValues.inverse();
-
- Result = LVILatticeVal::getRange(TrueValues);
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
+ if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
return true;
- }
- }
}
}
@@ -849,8 +917,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
unsigned BitWidth = Val->getType()->getIntegerBitWidth();
ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
+ for (SwitchInst::CaseIt i : SI->cases()) {
ConstantRange EdgeVal(i.getCaseValue()->getValue());
if (DefaultCase) {
// It is possible that the default destination is the destination of
@@ -866,10 +933,11 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
return false;
}
-/// \brief Compute the value of Val on the edge BBFrom -> BBTo, or the value at
-/// the basic block if the edge does not constraint Val.
+/// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
+/// the basic block if the edge does not constrain Val.
bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
- BasicBlock *BBTo, LVILatticeVal &Result) {
+ BasicBlock *BBTo, LVILatticeVal &Result,
+ Instruction *CxtI) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val)) {
Result = LVILatticeVal::get(VC);
@@ -878,19 +946,25 @@ bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
if (!Result.isConstantRange() ||
- Result.getConstantRange().getSingleElement())
+ Result.getConstantRange().getSingleElement())
return true;
// FIXME: this check should be moved to the beginning of the function when
// LVI better supports recursive values. Even for the single value case, we
// can intersect to detect dead code (an empty range).
if (!hasBlockValue(Val, BBFrom)) {
- BlockValueStack.push(std::make_pair(BBFrom, Val));
- return false;
+ if (pushBlockValue(std::make_pair(BBFrom, Val)))
+ return false;
+ Result.markOverdefined();
+ return true;
}
// Try to intersect ranges of the BB and the constraint on the edge.
LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
+ mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
+ // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
+ // and caching, below.
+ mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
if (!InBlock.isConstantRange())
return true;
@@ -901,36 +975,64 @@ bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
}
if (!hasBlockValue(Val, BBFrom)) {
- BlockValueStack.push(std::make_pair(BBFrom, Val));
- return false;
+ if (pushBlockValue(std::make_pair(BBFrom, Val)))
+ return false;
+ Result.markOverdefined();
+ return true;
}
- // if we couldn't compute the value on the edge, use the value from the BB
+ // If we couldn't compute the value on the edge, use the value from the BB.
Result = getBlockValue(Val, BBFrom);
+ mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
+ // We can use the context instruction (generically the ultimate instruction
+ // the calling pass is trying to simplify) here, even though the result of
+ // this function is generally cached when called from the solve* functions
+ // (and that cached result might be used with queries using a different
+ // context instruction), because when this function is called from the solve*
+ // functions, the context instruction is not provided. When called from
+ // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
+ // but then the result is not cached.
+ mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
return true;
}
-LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
+LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
+ Instruction *CxtI) {
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
<< BB->getName() << "'\n");
- BlockValueStack.push(std::make_pair(BB, V));
+ assert(BlockValueStack.empty() && BlockValueSet.empty());
+ pushBlockValue(std::make_pair(BB, V));
+
solve();
LVILatticeVal Result = getBlockValue(V, BB);
+ mergeAssumeBlockValueConstantRange(V, Result, CxtI);
+
+ DEBUG(dbgs() << " Result = " << Result << "\n");
+ return Result;
+}
+
+LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
+ DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
+ << CxtI->getName() << "'\n");
+
+ LVILatticeVal Result;
+ mergeAssumeBlockValueConstantRange(V, Result, CxtI);
DEBUG(dbgs() << " Result = " << Result << "\n");
return Result;
}
LVILatticeVal LazyValueInfoCache::
-getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
+getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
+ Instruction *CxtI) {
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
LVILatticeVal Result;
- if (!getEdgeValue(V, FromBB, ToBB, Result)) {
+ if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
solve();
- bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
+ bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
(void)WasFastQuery;
assert(WasFastQuery && "More work to do after problem solved?");
}
@@ -947,7 +1049,7 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
// we clear their entries from the cache, and allow lazy updating to recompute
// them when needed.
- // The updating process is fairly simple: we need to dropped cached info
+ // The updating process is fairly simple: we need to drop cached info
// for all values that were marked overdefined in OldSucc, and for those same
// values in any successor of OldSucc (except NewSucc) in which they were
// also marked overdefined.
@@ -955,11 +1057,9 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
worklist.push_back(OldSucc);
DenseSet<Value*> ClearSet;
- for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
- E = OverDefinedCache.end(); I != E; ++I) {
- if (I->first == OldSucc)
- ClearSet.insert(I->second);
- }
+ for (OverDefinedPairTy &P : OverDefinedCache)
+ if (P.first == OldSucc)
+ ClearSet.insert(P.second);
// Use a worklist to perform a depth-first search of OldSucc's successors.
// NOTE: We do not need a visited list since any blocks we have already
@@ -973,15 +1073,14 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
if (ToUpdate == NewSucc) continue;
bool changed = false;
- for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
- I != E; ++I) {
+ for (Value *V : ClearSet) {
// If a value was marked overdefined in OldSucc, and is here too...
DenseSet<OverDefinedPairTy>::iterator OI =
- OverDefinedCache.find(std::make_pair(ToUpdate, *I));
+ OverDefinedCache.find(std::make_pair(ToUpdate, V));
if (OI == OverDefinedCache.end()) continue;
// Remove it from the caches.
- ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
+ ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(V, this)];
ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
assert(CI != Entry.end() && "Couldn't find entry to update?");
@@ -1003,41 +1102,53 @@ void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
// LazyValueInfo Impl
//===----------------------------------------------------------------------===//
-/// getCache - This lazily constructs the LazyValueInfoCache.
-static LazyValueInfoCache &getCache(void *&PImpl) {
+/// This lazily constructs the LazyValueInfoCache.
+static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
+ const DataLayout *DL = nullptr,
+ DominatorTree *DT = nullptr) {
if (!PImpl)
- PImpl = new LazyValueInfoCache();
+ PImpl = new LazyValueInfoCache(AC, DL, DT);
return *static_cast<LazyValueInfoCache*>(PImpl);
}
bool LazyValueInfo::runOnFunction(Function &F) {
- if (PImpl)
- getCache(PImpl).clear();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+
+ DominatorTreeWrapperPass *DTWP =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DT = DTWP ? &DTWP->getDomTree() : nullptr;
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
+
TLI = &getAnalysis<TargetLibraryInfo>();
+ if (PImpl)
+ getCache(PImpl, AC, DL, DT).clear();
+
// Fully lazy.
return false;
}
void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfo>();
}
void LazyValueInfo::releaseMemory() {
// If the cache was allocated, free it.
if (PImpl) {
- delete &getCache(PImpl);
+ delete &getCache(PImpl, AC);
PImpl = nullptr;
}
}
-Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
- LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
-
+Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
+ Instruction *CxtI) {
+ LVILatticeVal Result =
+ getCache(PImpl, AC, DL, DT).getValueInBlock(V, BB, CxtI);
+
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
@@ -1048,12 +1159,14 @@ Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
return nullptr;
}
-/// getConstantOnEdge - Determine whether the specified value is known to be a
+/// Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
- BasicBlock *ToBB) {
- LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
-
+ BasicBlock *ToBB,
+ Instruction *CxtI) {
+ LVILatticeVal Result =
+ getCache(PImpl, AC, DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
+
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
@@ -1064,51 +1177,47 @@ Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
return nullptr;
}
-/// getPredicateOnEdge - Determine whether the specified value comparison
-/// with a constant is known to be true or false on the specified CFG edge.
-/// Pred is a CmpInst predicate.
-LazyValueInfo::Tristate
-LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
- BasicBlock *FromBB, BasicBlock *ToBB) {
- LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
-
+static LazyValueInfo::Tristate
+getPredicateResult(unsigned Pred, Constant *C, LVILatticeVal &Result,
+ const DataLayout *DL, TargetLibraryInfo *TLI) {
+
// If we know the value is a constant, evaluate the conditional.
Constant *Res = nullptr;
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
TLI);
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
- return ResCI->isZero() ? False : True;
- return Unknown;
+ return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
+ return LazyValueInfo::Unknown;
}
if (Result.isConstantRange()) {
ConstantInt *CI = dyn_cast<ConstantInt>(C);
- if (!CI) return Unknown;
+ if (!CI) return LazyValueInfo::Unknown;
ConstantRange CR = Result.getConstantRange();
if (Pred == ICmpInst::ICMP_EQ) {
if (!CR.contains(CI->getValue()))
- return False;
+ return LazyValueInfo::False;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
- return True;
+ return LazyValueInfo::True;
} else if (Pred == ICmpInst::ICMP_NE) {
if (!CR.contains(CI->getValue()))
- return True;
+ return LazyValueInfo::True;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
- return False;
+ return LazyValueInfo::False;
}
// Handle more complex predicates.
ConstantRange TrueValues =
ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
if (TrueValues.contains(CR))
- return True;
+ return LazyValueInfo::True;
if (TrueValues.inverse().contains(CR))
- return False;
- return Unknown;
+ return LazyValueInfo::False;
+ return LazyValueInfo::Unknown;
}
if (Result.isNotConstant()) {
@@ -1120,26 +1229,48 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
Result.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
- return False;
+ return LazyValueInfo::False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
- return True;
+ return LazyValueInfo::True;
}
- return Unknown;
+ return LazyValueInfo::Unknown;
}
- return Unknown;
+ return LazyValueInfo::Unknown;
+}
+
+/// Determine whether the specified value comparison with a constant is known to
+/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
+LazyValueInfo::Tristate
+LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
+ BasicBlock *FromBB, BasicBlock *ToBB,
+ Instruction *CxtI) {
+ LVILatticeVal Result =
+ getCache(PImpl, AC, DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
+
+ return getPredicateResult(Pred, C, Result, DL, TLI);
+}
+
+LazyValueInfo::Tristate
+LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
+ Instruction *CxtI) {
+ LVILatticeVal Result = getCache(PImpl, AC, DL, DT).getValueAt(V, CxtI);
+
+ return getPredicateResult(Pred, C, Result, DL, TLI);
}
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
- if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
+ if (PImpl)
+ getCache(PImpl, AC, DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
}
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
- if (PImpl) getCache(PImpl).eraseBlock(BB);
+ if (PImpl)
+ getCache(PImpl, AC, DL, DT).eraseBlock(BB);
}
diff --git a/contrib/llvm/lib/Analysis/LibCallSemantics.cpp b/contrib/llvm/lib/Analysis/LibCallSemantics.cpp
index 7d4e254..23639e7 100644
--- a/contrib/llvm/lib/Analysis/LibCallSemantics.cpp
+++ b/contrib/llvm/lib/Analysis/LibCallSemantics.cpp
@@ -18,7 +18,7 @@
#include "llvm/IR/Function.h"
using namespace llvm;
-/// getMap - This impl pointer in ~LibCallInfo is actually a StringMap. This
+/// This impl pointer in ~LibCallInfo is actually a StringMap. This
/// helper does the cast.
static StringMap<const LibCallFunctionInfo*> *getMap(void *Ptr) {
return static_cast<StringMap<const LibCallFunctionInfo*> *>(Ptr);
@@ -38,7 +38,7 @@ const LibCallLocationInfo &LibCallInfo::getLocationInfo(unsigned LocID) const {
}
-/// getFunctionInfo - Return the LibCallFunctionInfo object corresponding to
+/// Return the LibCallFunctionInfo object corresponding to
/// the specified function if we have it. If not, return null.
const LibCallFunctionInfo *
LibCallInfo::getFunctionInfo(const Function *F) const {
diff --git a/contrib/llvm/lib/Analysis/Lint.cpp b/contrib/llvm/lib/Analysis/Lint.cpp
index b14f329..b5c7245 100644
--- a/contrib/llvm/lib/Analysis/Lint.cpp
+++ b/contrib/llvm/lib/Analysis/Lint.cpp
@@ -37,6 +37,7 @@
#include "llvm/Analysis/Lint.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
@@ -96,11 +97,12 @@ namespace {
Value *findValue(Value *V, bool OffsetOk) const;
Value *findValueImpl(Value *V, bool OffsetOk,
- SmallPtrSet<Value *, 4> &Visited) const;
+ SmallPtrSetImpl<Value *> &Visited) const;
public:
Module *Mod;
AliasAnalysis *AA;
+ AssumptionCache *AC;
DominatorTree *DT;
const DataLayout *DL;
TargetLibraryInfo *TLI;
@@ -118,6 +120,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AliasAnalysis>();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfo>();
AU.addRequired<DominatorTreeWrapperPass>();
}
@@ -151,6 +154,7 @@ namespace {
char Lint::ID = 0;
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
@@ -175,6 +179,7 @@ INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
bool Lint::runOnFunction(Function &F) {
Mod = F.getParent();
AA = &getAnalysis<AliasAnalysis>();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
@@ -504,7 +509,8 @@ void Lint::visitShl(BinaryOperator &I) {
"Undefined result: Shift count out of range", &I);
}
-static bool isZero(Value *V, const DataLayout *DL) {
+static bool isZero(Value *V, const DataLayout *DL, DominatorTree *DT,
+ AssumptionCache *AC) {
// Assume undef could be zero.
if (isa<UndefValue>(V))
return true;
@@ -513,7 +519,8 @@ static bool isZero(Value *V, const DataLayout *DL) {
if (!VecTy) {
unsigned BitWidth = V->getType()->getIntegerBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL);
+ computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
+ dyn_cast<Instruction>(V), DT);
return KnownZero.isAllOnesValue();
}
@@ -543,22 +550,22 @@ static bool isZero(Value *V, const DataLayout *DL) {
}
void Lint::visitSDiv(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), DL),
+ Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitUDiv(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), DL),
+ Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitSRem(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), DL),
+ Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitURem(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), DL),
+ Assert1(!isZero(I.getOperand(1), DL, DT, AC),
"Undefined behavior: Division by zero", &I);
}
@@ -622,9 +629,9 @@ Value *Lint::findValue(Value *V, bool OffsetOk) const {
/// findValueImpl - Implementation helper for findValue.
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
- SmallPtrSet<Value *, 4> &Visited) const {
+ SmallPtrSetImpl<Value *> &Visited) const {
// Detect self-referential values.
- if (!Visited.insert(V))
+ if (!Visited.insert(V).second)
return UndefValue::get(V->getType());
// TODO: Look through sext or zext cast, when the result is known to
@@ -638,7 +645,8 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
BasicBlock *BB = L->getParent();
SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
for (;;) {
- if (!VisitedBlocks.insert(BB)) break;
+ if (!VisitedBlocks.insert(BB).second)
+ break;
if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
BB, BBI, 6, AA))
return findValueImpl(U, OffsetOk, Visited);
@@ -678,7 +686,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
// As a last resort, try SimplifyInstruction or constant folding.
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
- if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT))
+ if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AC))
return findValueImpl(W, OffsetOk, Visited);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
diff --git a/contrib/llvm/lib/Analysis/Loads.cpp b/contrib/llvm/lib/Analysis/Loads.cpp
index 005d309..5042eb9 100644
--- a/contrib/llvm/lib/Analysis/Loads.cpp
+++ b/contrib/llvm/lib/Analysis/Loads.cpp
@@ -22,25 +22,29 @@
#include "llvm/IR/Operator.h"
using namespace llvm;
-/// AreEquivalentAddressValues - Test if A and B will obviously have the same
-/// value. This includes recognizing that %t0 and %t1 will have the same
+/// \brief Test if A and B will obviously have the same value.
+///
+/// This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
+/// \code
/// %t0 = getelementptr \@a, 0, 3
/// store i32 0, i32* %t0
/// %t1 = getelementptr \@a, 0, 3
/// %t2 = load i32* %t1
+/// \endcode
///
static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
// Test if the values are trivially equivalent.
- if (A == B) return true;
+ if (A == B)
+ return true;
// Test if the values come from identical arithmetic instructions.
// Use isIdenticalToWhenDefined instead of isIdenticalTo because
// this function is only used when one address use dominates the
// other, which means that they'll always either have the same
// value or one of them will have an undefined value.
- if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
- isa<PHINode>(A) || isa<GetElementPtrInst>(A))
+ if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
+ isa<GetElementPtrInst>(A))
if (const Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
@@ -49,15 +53,19 @@ static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
return false;
}
-/// isSafeToLoadUnconditionally - Return true if we know that executing a load
-/// from this value cannot trap. If it is not obviously safe to load from the
-/// specified pointer, we do a quick local scan of the basic block containing
-/// ScanFrom, to determine if the address is already accessed.
+/// \brief Check if executing a load of this pointer value cannot trap.
+///
+/// If it is not obviously safe to load from the specified pointer, we do
+/// a quick local scan of the basic block containing \c ScanFrom, to determine
+/// if the address is already accessed.
+///
+/// This uses the pointee type to determine how many bytes need to be safe to
+/// load from the pointer.
bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
- unsigned Align, const DataLayout *TD) {
+ unsigned Align, const DataLayout *DL) {
int64_t ByteOffset = 0;
Value *Base = V;
- Base = GetPointerBaseWithConstantOffset(V, ByteOffset, TD);
+ Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
if (ByteOffset < 0) // out of bounds
return false;
@@ -69,26 +77,29 @@ bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
BaseType = AI->getAllocatedType();
BaseAlign = AI->getAlignment();
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
- // Global variables are safe to load from but their size cannot be
- // guaranteed if they are overridden.
+ // Global variables are not necessarily safe to load from if they are
+ // overridden. Their size may change or they may be weak and require a test
+ // to determine if they were in fact provided.
if (!GV->mayBeOverridden()) {
BaseType = GV->getType()->getElementType();
BaseAlign = GV->getAlignment();
}
}
- if (BaseType && BaseType->isSized()) {
- if (TD && BaseAlign == 0)
- BaseAlign = TD->getPrefTypeAlignment(BaseType);
+ PointerType *AddrTy = cast<PointerType>(V->getType());
+ uint64_t LoadSize = DL ? DL->getTypeStoreSize(AddrTy->getElementType()) : 0;
- if (Align <= BaseAlign) {
- if (!TD)
- return true; // Loading directly from an alloca or global is OK.
+ // If we found a base allocated type from either an alloca or global variable,
+ // try to see if we are definitively within the allocated region. We need to
+ // know the size of the base type and the loaded type to do anything in this
+ // case, so only try this when we have the DataLayout available.
+ if (BaseType && BaseType->isSized() && DL) {
+ if (BaseAlign == 0)
+ BaseAlign = DL->getPrefTypeAlignment(BaseType);
+ if (Align <= BaseAlign) {
// Check if the load is within the bounds of the underlying object.
- PointerType *AddrTy = cast<PointerType>(V->getType());
- uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
- if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
+ if (ByteOffset + LoadSize <= DL->getTypeAllocSize(BaseType) &&
(Align == 0 || (ByteOffset % Align) == 0))
return true;
}
@@ -101,6 +112,10 @@ bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
// the load entirely).
BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
+ // We can at least always strip pointer casts even though we can't use the
+ // base here.
+ V = V->stripPointerCasts();
+
while (BBI != E) {
--BBI;
@@ -110,46 +125,67 @@ bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
!isa<DbgInfoIntrinsic>(BBI))
return false;
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
- if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true;
- }
+ Value *AccessedPtr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
+ AccessedPtr = LI->getPointerOperand();
+ else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
+ AccessedPtr = SI->getPointerOperand();
+ else
+ continue;
+
+ // Handle trivial cases even w/o DataLayout or other work.
+ if (AccessedPtr == V)
+ return true;
+
+ if (!DL)
+ continue;
+
+ auto *AccessedTy = cast<PointerType>(AccessedPtr->getType());
+ if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
+ LoadSize <= DL->getTypeStoreSize(AccessedTy->getElementType()))
+ return true;
}
return false;
}
-/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
-/// instruction before ScanFrom) checking to see if we have the value at the
+/// \brief Scan the ScanBB block backwards to see if we have the value at the
/// memory address *Ptr locally available within a small number of instructions.
-/// If the value is available, return it.
///
-/// If not, return the iterator for the last validated instruction that the
-/// value would be live through. If we scanned the entire block and didn't find
-/// something that invalidates *Ptr or provides it, ScanFrom would be left at
-/// begin() and this returns null. ScanFrom could also be left
+/// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
+/// instructions to scan in the block. If it is set to \c 0, it will scan the whole
+/// block.
///
-/// MaxInstsToScan specifies the maximum instructions to scan in the block. If
-/// it is set to 0, it will scan the whole block. You can also optionally
-/// specify an alias analysis implementation, which makes this more precise.
+/// If the value is available, this function returns it. If not, it returns the
+/// iterator for the last validated instruction that the value would be live
+/// through. If we scanned the entire block and didn't find something that
+/// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
+/// instruction processed and this returns null.
///
-/// If TBAATag is non-null and a load or store is found, the TBAA tag from the
-/// load or store is recorded there. If there is no TBAA tag or if no access
-/// is found, it is left unmodified.
+/// You can also optionally specify an alias analysis implementation, which
+/// makes this more precise.
+///
+/// If \c AATags is non-null and a load or store is found, the AA tags from the
+/// load or store are recorded there. If there are no AA tags or if no access is
+/// found, it is left unmodified.
Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
BasicBlock::iterator &ScanFrom,
unsigned MaxInstsToScan,
- AliasAnalysis *AA,
- MDNode **TBAATag) {
- if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
-
- // If we're using alias analysis to disambiguate get the size of *Ptr.
- uint64_t AccessSize = 0;
- if (AA) {
- Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
- AccessSize = AA->getTypeStoreSize(AccessTy);
- }
-
+ AliasAnalysis *AA, AAMDNodes *AATags) {
+ if (MaxInstsToScan == 0)
+ MaxInstsToScan = ~0U;
+
+ Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
+
+ // Try to get the DataLayout for this module. This may be null, in which case
+ // the optimizations will be limited.
+ const DataLayout *DL = ScanBB->getDataLayout();
+
+ // Try to get the store size for the type.
+ uint64_t AccessSize = DL ? DL->getTypeStoreSize(AccessTy)
+ : AA ? AA->getTypeStoreSize(AccessTy) : 0;
+
+ Value *StrippedPtr = Ptr->stripPointerCasts();
+
while (ScanFrom != ScanBB->begin()) {
// We must ignore debug info directives when counting (otherwise they
// would affect codegen).
@@ -159,62 +195,72 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
// Restore ScanFrom to expected value in case next test succeeds
ScanFrom++;
-
+
// Don't scan huge blocks.
- if (MaxInstsToScan-- == 0) return nullptr;
-
+ if (MaxInstsToScan-- == 0)
+ return nullptr;
+
--ScanFrom;
// If this is a load of Ptr, the loaded value is available.
// (This is true even if the load is volatile or atomic, although
// those cases are unlikely.)
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) {
- if (TBAATag) *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
+ if (AreEquivalentAddressValues(
+ LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
+ CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
+ if (AATags)
+ LI->getAAMetadata(*AATags);
return LI;
}
-
+
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
// If this is a store through Ptr, the value is available!
// (This is true even if the store is volatile or atomic, although
// those cases are unlikely.)
- if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) {
- if (TBAATag) *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa);
+ if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
+ CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
+ AccessTy, DL)) {
+ if (AATags)
+ SI->getAAMetadata(*AATags);
return SI->getOperand(0);
}
-
- // If Ptr is an alloca and this is a store to a different alloca, ignore
- // the store. This is a trivial form of alias analysis that is important
- // for reg2mem'd code.
- if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
- (isa<AllocaInst>(SI->getOperand(1)) ||
- isa<GlobalVariable>(SI->getOperand(1))))
+
+ // If both StrippedPtr and StorePtr reach all the way to an alloca or
+ // global and they are different, ignore the store. This is a trivial form
+ // of alias analysis that is important for reg2mem'd code.
+ if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
+ (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
+ StrippedPtr != StorePtr)
continue;
-
+
// If we have alias analysis and it says the store won't modify the loaded
// value, ignore the store.
if (AA &&
- (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
+ (AA->getModRefInfo(SI, StrippedPtr, AccessSize) &
+ AliasAnalysis::Mod) == 0)
continue;
-
+
// Otherwise the store that may or may not alias the pointer, bail out.
++ScanFrom;
return nullptr;
}
-
+
// If this is some other instruction that may clobber Ptr, bail out.
if (Inst->mayWriteToMemory()) {
// If alias analysis claims that it really won't modify the load,
// ignore it.
if (AA &&
- (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
+ (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) &
+ AliasAnalysis::Mod) == 0)
continue;
-
+
// May modify the pointer, bail out.
++ScanFrom;
return nullptr;
}
}
-
+
// Got to the start of the block, we didn't find it, but are done for this
// block.
return nullptr;
diff --git a/contrib/llvm/lib/Analysis/LoopInfo.cpp b/contrib/llvm/lib/Analysis/LoopInfo.cpp
index 46c0eaabe..b1f62c4 100644
--- a/contrib/llvm/lib/Analysis/LoopInfo.cpp
+++ b/contrib/llvm/lib/Analysis/LoopInfo.cpp
@@ -24,6 +24,7 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -307,7 +308,8 @@ bool Loop::isAnnotatedParallel() const {
// directly or indirectly through another list metadata (in case of
// nested parallel loops). The loop identifier metadata refers to
// itself so we can check both cases with the same routine.
- MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access");
+ MDNode *loopIdMD =
+ II->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
if (!loopIdMD)
return false;
diff --git a/contrib/llvm/lib/Analysis/LoopPass.cpp b/contrib/llvm/lib/Analysis/LoopPass.cpp
index 7bd866e..190abc7 100644
--- a/contrib/llvm/lib/Analysis/LoopPass.cpp
+++ b/contrib/llvm/lib/Analysis/LoopPass.cpp
@@ -76,6 +76,9 @@ void LPPassManager::deleteLoopFromQueue(Loop *L) {
LI->updateUnloop(L);
+ // Notify passes that the loop is being deleted.
+ deleteSimpleAnalysisLoop(L);
+
// If L is current loop then skip rest of the passes and let
// runOnFunction remove L from LQ. Otherwise, remove L from LQ now
// and continue applying other passes on CurrentLoop.
@@ -164,6 +167,14 @@ void LPPassManager::deleteSimpleAnalysisValue(Value *V, Loop *L) {
}
}
+/// Invoke deleteAnalysisLoop hook for all passes.
+void LPPassManager::deleteSimpleAnalysisLoop(Loop *L) {
+ for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
+ LoopPass *LP = getContainedPass(Index);
+ LP->deleteAnalysisLoop(L);
+ }
+}
+
// Recurse through all subloops and all loops into LQ.
static void addLoopIntoQueue(Loop *L, std::deque<Loop *> &LQ) {
diff --git a/contrib/llvm/lib/Analysis/MemDepPrinter.cpp b/contrib/llvm/lib/Analysis/MemDepPrinter.cpp
index 10da3d5..ffc9fe6 100644
--- a/contrib/llvm/lib/Analysis/MemDepPrinter.cpp
+++ b/contrib/llvm/lib/Analysis/MemDepPrinter.cpp
@@ -92,7 +92,6 @@ const char *const MemDepPrinter::DepTypeStr[]
bool MemDepPrinter::runOnFunction(Function &F) {
this->F = &F;
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
MemoryDependenceAnalysis &MDA = getAnalysis<MemoryDependenceAnalysis>();
// All this code uses non-const interfaces because MemDep is not
@@ -119,30 +118,9 @@ bool MemDepPrinter::runOnFunction(Function &F) {
}
} else {
SmallVector<NonLocalDepResult, 4> NLDI;
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- if (!LI->isUnordered()) {
- // FIXME: Handle atomic/volatile loads.
- Deps[Inst].insert(std::make_pair(getInstTypePair(nullptr, Unknown),
- static_cast<BasicBlock *>(nullptr)));
- continue;
- }
- AliasAnalysis::Location Loc = AA.getLocation(LI);
- MDA.getNonLocalPointerDependency(Loc, true, LI->getParent(), NLDI);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (!SI->isUnordered()) {
- // FIXME: Handle atomic/volatile stores.
- Deps[Inst].insert(std::make_pair(getInstTypePair(nullptr, Unknown),
- static_cast<BasicBlock *>(nullptr)));
- continue;
- }
- AliasAnalysis::Location Loc = AA.getLocation(SI);
- MDA.getNonLocalPointerDependency(Loc, false, SI->getParent(), NLDI);
- } else if (VAArgInst *VI = dyn_cast<VAArgInst>(Inst)) {
- AliasAnalysis::Location Loc = AA.getLocation(VI);
- MDA.getNonLocalPointerDependency(Loc, false, VI->getParent(), NLDI);
- } else {
- llvm_unreachable("Unknown memory instruction!");
- }
+ assert( (isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
+ isa<VAArgInst>(Inst)) && "Unknown memory instruction!");
+ MDA.getNonLocalPointerDependency(Inst, NLDI);
DepSet &InstDeps = Deps[Inst];
for (SmallVectorImpl<NonLocalDepResult>::const_iterator
diff --git a/contrib/llvm/lib/Analysis/MemoryBuiltins.cpp b/contrib/llvm/lib/Analysis/MemoryBuiltins.cpp
index 64d339f..08b41fe 100644
--- a/contrib/llvm/lib/Analysis/MemoryBuiltins.cpp
+++ b/contrib/llvm/lib/Analysis/MemoryBuiltins.cpp
@@ -332,7 +332,11 @@ const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
TLIFn == LibFunc::ZdlPv || // operator delete(void*)
TLIFn == LibFunc::ZdaPv) // operator delete[](void*)
ExpectedNumParams = 1;
- else if (TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
+ else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint)
+ TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong)
+ TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
+ TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint)
+ TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong)
TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow)
ExpectedNumParams = 2;
else
@@ -412,7 +416,7 @@ SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If we have already seen this instruction, bail out. Cycles can happen in
// unreachable code after constant propagation.
- if (!SeenInsts.insert(I))
+ if (!SeenInsts.insert(I).second)
return unknown();
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
@@ -648,7 +652,7 @@ SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
// Record the pointers that were handled in this run, so that they can be
// cleaned later if something fails. We also use this set to break cycles that
// can occur in dead code.
- if (!SeenVals.insert(V)) {
+ if (!SeenVals.insert(V).second) {
Result = unknown();
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Result = visitGEPOperator(*GEP);
diff --git a/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp b/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
index 9eaf109..c505aa4 100644
--- a/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -18,6 +18,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/PHITransAddr.h"
@@ -48,13 +49,17 @@ STATISTIC(NumCacheCompleteNonLocalPtr,
"Number of block queries that were completely cached");
// Limit for the number of instructions to scan in a block.
-static const int BlockScanLimit = 100;
+static const unsigned int BlockScanLimit = 100;
+
+// Limit on the number of memdep results to process.
+static const unsigned int NumResultsLimit = 100;
char MemoryDependenceAnalysis::ID = 0;
// Register this pass...
INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
"Memory Dependence Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
"Memory Dependence Analysis", false, true)
@@ -83,11 +88,13 @@ void MemoryDependenceAnalysis::releaseMemory() {
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequiredTransitive<AliasAnalysis>();
}
-bool MemoryDependenceAnalysis::runOnFunction(Function &) {
+bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
AA = &getAnalysis<AliasAnalysis>();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
DominatorTreeWrapperPass *DTWP =
@@ -158,29 +165,32 @@ AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
return AliasAnalysis::Mod;
}
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ AAMDNodes AAInfo;
+
switch (II->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
+ II->getAAMetadata(AAInfo);
Loc = AliasAnalysis::Location(II->getArgOperand(1),
cast<ConstantInt>(II->getArgOperand(0))
- ->getZExtValue(),
- II->getMetadata(LLVMContext::MD_tbaa));
+ ->getZExtValue(), AAInfo);
// These intrinsics don't really modify the memory, but returning Mod
// will allow them to be handled conservatively.
return AliasAnalysis::Mod;
case Intrinsic::invariant_end:
+ II->getAAMetadata(AAInfo);
Loc = AliasAnalysis::Location(II->getArgOperand(2),
cast<ConstantInt>(II->getArgOperand(1))
- ->getZExtValue(),
- II->getMetadata(LLVMContext::MD_tbaa));
+ ->getZExtValue(), AAInfo);
// These intrinsics don't really modify the memory, but returning Mod
// will allow them to be handled conservatively.
return AliasAnalysis::Mod;
default:
break;
}
+ }
// Otherwise, just do the coarse-grained thing that always works.
if (Inst->mayWriteToMemory())
@@ -367,6 +377,36 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
int64_t MemLocOffset = 0;
unsigned Limit = BlockScanLimit;
bool isInvariantLoad = false;
+
+ // We must be careful with atomic accesses, as they may allow another thread
+ // to touch this location, cloberring it. We are conservative: if the
+ // QueryInst is not a simple (non-atomic) memory access, we automatically
+ // return getClobber.
+ // If it is simple, we know based on the results of
+ // "Compiler testing via a theory of sound optimisations in the C11/C++11
+ // memory model" in PLDI 2013, that a non-atomic location can only be
+ // clobbered between a pair of a release and an acquire action, with no
+ // access to the location in between.
+ // Here is an example for giving the general intuition behind this rule.
+ // In the following code:
+ // store x 0;
+ // release action; [1]
+ // acquire action; [4]
+ // %val = load x;
+ // It is unsafe to replace %val by 0 because another thread may be running:
+ // acquire action; [2]
+ // store x 42;
+ // release action; [3]
+ // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
+ // being 42. A key property of this program however is that if either
+ // 1 or 4 were missing, there would be a race between the store of 42
+ // either the store of 0 or the load (making the whole progam racy).
+ // The paper mentionned above shows that the same property is respected
+ // by every program that can detect any optimisation of that kind: either
+ // it is racy (undefined) or there is a release followed by an acquire
+ // between the pair of accesses under consideration.
+ bool HasSeenAcquire = false;
+
if (isLoad && QueryInst) {
LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
@@ -404,10 +444,37 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
// Values depend on loads if the pointers are must aliased. This means that
// a load depends on another must aliased load from the same value.
+ // One exception is atomic loads: a value can depend on an atomic load that it
+ // does not alias with when this atomic load indicates that another thread may
+ // be accessing the location.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Atomic loads have complications involved.
+ // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
+ // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any
+ // release store will know to return getClobber.
// FIXME: This is overly conservative.
- if (!LI->isUnordered())
+ if (!LI->isUnordered()) {
+ if (!QueryInst)
+ return MemDepResult::getClobber(LI);
+ if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
+ if (!QueryLI->isSimple())
+ return MemDepResult::getClobber(LI);
+ } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
+ if (!QuerySI->isSimple())
+ return MemDepResult::getClobber(LI);
+ } else if (QueryInst->mayReadOrWriteMemory()) {
+ return MemDepResult::getClobber(LI);
+ }
+
+ if (isAtLeastAcquire(LI->getOrdering()))
+ HasSeenAcquire = true;
+ }
+
+ // FIXME: this is overly conservative.
+ // While volatile access cannot be eliminated, they do not have to clobber
+ // non-aliasing locations, as normal accesses can for example be reordered
+ // with volatile accesses.
+ if (LI->isVolatile())
return MemDepResult::getClobber(LI);
AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
@@ -466,8 +533,32 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// Atomic stores have complications involved.
+ // A Monotonic store is OK if the query inst is itself not atomic.
+ // A Release (or higher) store further requires that no acquire load
+ // has been seen.
// FIXME: This is overly conservative.
- if (!SI->isUnordered())
+ if (!SI->isUnordered()) {
+ if (!QueryInst)
+ return MemDepResult::getClobber(SI);
+ if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
+ if (!QueryLI->isSimple())
+ return MemDepResult::getClobber(SI);
+ } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
+ if (!QuerySI->isSimple())
+ return MemDepResult::getClobber(SI);
+ } else if (QueryInst->mayReadOrWriteMemory()) {
+ return MemDepResult::getClobber(SI);
+ }
+
+ if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering()))
+ return MemDepResult::getClobber(SI);
+ }
+
+ // FIXME: this is overly conservative.
+ // While volatile access cannot be eliminated, they do not have to clobber
+ // non-aliasing locations, as normal accesses can for example be reordered
+ // with volatile accesses.
+ if (SI->isVolatile())
return MemDepResult::getClobber(SI);
// If alias analysis can tell that this store is guaranteed to not modify
@@ -685,7 +776,7 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
DirtyBlocks.pop_back();
// Already processed this block?
- if (!Visited.insert(DirtyBB))
+ if (!Visited.insert(DirtyBB).second)
continue;
// Do a binary search to see if we already have an entry for this block in
@@ -768,14 +859,65 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
/// own block.
///
void MemoryDependenceAnalysis::
-getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
- BasicBlock *FromBB,
+getNonLocalPointerDependency(Instruction *QueryInst,
SmallVectorImpl<NonLocalDepResult> &Result) {
+
+ auto getLocation = [](AliasAnalysis *AA, Instruction *Inst) {
+ if (auto *I = dyn_cast<LoadInst>(Inst))
+ return AA->getLocation(I);
+ else if (auto *I = dyn_cast<StoreInst>(Inst))
+ return AA->getLocation(I);
+ else if (auto *I = dyn_cast<VAArgInst>(Inst))
+ return AA->getLocation(I);
+ else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst))
+ return AA->getLocation(I);
+ else if (auto *I = dyn_cast<AtomicRMWInst>(Inst))
+ return AA->getLocation(I);
+ else
+ llvm_unreachable("unsupported memory instruction");
+ };
+
+ const AliasAnalysis::Location Loc = getLocation(AA, QueryInst);
+ bool isLoad = isa<LoadInst>(QueryInst);
+ BasicBlock *FromBB = QueryInst->getParent();
+ assert(FromBB);
+
assert(Loc.Ptr->getType()->isPointerTy() &&
"Can't get pointer deps of a non-pointer!");
Result.clear();
+
+ // This routine does not expect to deal with volatile instructions.
+ // Doing so would require piping through the QueryInst all the way through.
+ // TODO: volatiles can't be elided, but they can be reordered with other
+ // non-volatile accesses.
+ auto isVolatile = [](Instruction *Inst) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ return LI->isVolatile();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ return SI->isVolatile();
+ }
+ return false;
+ };
+ // We currently give up on any instruction which is ordered, but we do handle
+ // atomic instructions which are unordered.
+ // TODO: Handle ordered instructions
+ auto isOrdered = [](Instruction *Inst) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ return !LI->isUnordered();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ return !SI->isUnordered();
+ }
+ return false;
+ };
+ if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
+ Result.push_back(NonLocalDepResult(FromBB,
+ MemDepResult::getUnknown(),
+ const_cast<Value *>(Loc.Ptr)));
+ return;
+ }
- PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL);
+
+ PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
@@ -861,7 +1003,7 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
return Dep;
}
-/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
+/// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
/// number of elements in the array that are already properly ordered. This is
/// optimized for the case when only a few entries are added.
static void
@@ -922,10 +1064,10 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
// Set up a temporary NLPI value. If the map doesn't yet have an entry for
// CacheKey, this value will be inserted as the associated value. Otherwise,
// it'll be ignored, and we'll have to check to see if the cached size and
- // tbaa tag are consistent with the current query.
+ // aa tags are consistent with the current query.
NonLocalPointerInfo InitialNLPI;
InitialNLPI.Size = Loc.Size;
- InitialNLPI.TBAATag = Loc.TBAATag;
+ InitialNLPI.AATags = Loc.AATags;
// Get the NLPI for CacheKey, inserting one into the map if it doesn't
// already have one.
@@ -955,21 +1097,21 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
SkipFirstBlock);
}
- // If the query's TBAATag is inconsistent with the cached one,
+ // If the query's AATags are inconsistent with the cached one,
// conservatively throw out the cached data and restart the query with
// no tag if needed.
- if (CacheInfo->TBAATag != Loc.TBAATag) {
- if (CacheInfo->TBAATag) {
+ if (CacheInfo->AATags != Loc.AATags) {
+ if (CacheInfo->AATags) {
CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->TBAATag = nullptr;
+ CacheInfo->AATags = AAMDNodes();
for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
if (Instruction *Inst = DI->getResult().getInst())
RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
CacheInfo->NonLocalDeps.clear();
}
- if (Loc.TBAATag)
- return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
+ if (Loc.AATags)
+ return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(),
isLoad, StartBB, Result, Visited,
SkipFirstBlock);
}
@@ -1045,6 +1187,24 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.pop_back_val();
+ // If we do process a large number of blocks it becomes very expensive and
+ // likely it isn't worth worrying about
+ if (Result.size() > NumResultsLimit) {
+ Worklist.clear();
+ // Sort it now (if needed) so that recursive invocations of
+ // getNonLocalPointerDepFromBB and other routines that could reuse the
+ // cache value will only see properly sorted cache arrays.
+ if (Cache && NumSortedEntries != Cache->size()) {
+ SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+ }
+ // Since we bail out, the "Cache" set won't contain all of the
+ // results for the query. This is ok (we can still use it to accelerate
+ // specific block queries) but we can't do the fastpath "return all
+ // results from the set". Clear out the indicator for this.
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+ return true;
+ }
+
// Skip the first block if we have it.
if (!SkipFirstBlock) {
// Analyze the dependency of *Pointer in FromBB. See if we already have
@@ -1251,7 +1411,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
if (I->getBB() != BB)
continue;
- assert(I->getResult().isNonLocal() &&
+ assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
"Should only be here with transparent block");
I->setResult(MemDepResult::getUnknown());
Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
@@ -1369,14 +1529,11 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseLocalDeps.end()) {
- SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
// RemInst can't be the terminator if it has local stuff depending on it.
- assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
+ assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
"Nothing can locally depend on a terminator");
- for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
- E = ReverseDeps.end(); I != E; ++I) {
- Instruction *InstDependingOnRemInst = *I;
+ for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
assert(InstDependingOnRemInst != RemInst &&
"Already removed our local dep info");
@@ -1402,12 +1559,10 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
- SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
- for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
- I != E; ++I) {
- assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
+ for (Instruction *I : ReverseDepIt->second) {
+ assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
- PerInstNLInfo &INLD = NonLocalDeps[*I];
+ PerInstNLInfo &INLD = NonLocalDeps[I];
// The information is now dirty!
INLD.second = true;
@@ -1419,7 +1574,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
DI->setResult(NewDirtyVal);
if (Instruction *NextI = NewDirtyVal.getInst())
- ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
+ ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
}
}
@@ -1438,12 +1593,9 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
ReverseNonLocalPtrDeps.find(RemInst);
if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
- SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
- for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
- E = Set.end(); I != E; ++I) {
- ValueIsLoadPair P = *I;
+ for (ValueIsLoadPair P : ReversePtrDepIt->second) {
assert(P.getPointer() != RemInst &&
"Already removed NonLocalPointerDeps info for RemInst");
@@ -1484,8 +1636,10 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
DEBUG(verifyRemoved(RemInst));
}
/// verifyRemoved - Verify that the specified instruction does not occur
-/// in our internal data structures.
+/// in our internal data structures. This function verifies by asserting in
+/// debug builds.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
+#ifndef NDEBUG
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
@@ -1514,18 +1668,16 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
E = ReverseLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
- for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
- EE = I->second.end(); II != EE; ++II)
- assert(*II != D && "Inst occurs in data structures");
+ for (Instruction *Inst : I->second)
+ assert(Inst != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
E = ReverseNonLocalDeps.end();
I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
- for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
- EE = I->second.end(); II != EE; ++II)
- assert(*II != D && "Inst occurs in data structures");
+ for (Instruction *Inst : I->second)
+ assert(Inst != D && "Inst occurs in data structures");
}
for (ReverseNonLocalPtrDepTy::const_iterator
@@ -1533,11 +1685,10 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in rev NLPD map");
- for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
- E = I->second.end(); II != E; ++II)
- assert(*II != ValueIsLoadPair(D, false) &&
- *II != ValueIsLoadPair(D, true) &&
+ for (ValueIsLoadPair P : I->second)
+ assert(P != ValueIsLoadPair(D, false) &&
+ P != ValueIsLoadPair(D, true) &&
"Inst occurs in ReverseNonLocalPtrDeps map");
}
-
+#endif
}
diff --git a/contrib/llvm/lib/Analysis/NoAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/NoAliasAnalysis.cpp
index 139fa38..c214d3c 100644
--- a/contrib/llvm/lib/Analysis/NoAliasAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/NoAliasAnalysis.cpp
@@ -57,8 +57,9 @@ namespace {
Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
ModRefResult &Mask) override {
Mask = ModRef;
- return Location(CS.getArgument(ArgIdx), UnknownSize,
- CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa));
+ AAMDNodes AATags;
+ CS->getAAMetadata(AATags);
+ return Location(CS.getArgument(ArgIdx), UnknownSize, AATags);
}
ModRefResult getModRefInfo(ImmutableCallSite CS,
diff --git a/contrib/llvm/lib/Analysis/PHITransAddr.cpp b/contrib/llvm/lib/Analysis/PHITransAddr.cpp
index bfe8642..a534418 100644
--- a/contrib/llvm/lib/Analysis/PHITransAddr.cpp
+++ b/contrib/llvm/lib/Analysis/PHITransAddr.cpp
@@ -228,7 +228,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
return GEP;
// Simplify the GEP to handle 'gep x, 0' -> x etc.
- if (Value *V = SimplifyGEPInst(GEPOps, DL, TLI, DT)) {
+ if (Value *V = SimplifyGEPInst(GEPOps, DL, TLI, DT, AC)) {
for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
RemoveInstInputs(GEPOps[i], InstInputs);
@@ -283,7 +283,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
}
// See if the add simplifies away.
- if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT)) {
+ if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT, AC)) {
// If we simplified the operands, the LHS is no longer an input, but Res
// is.
RemoveInstInputs(LHS, InstInputs);
@@ -369,7 +369,7 @@ InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
SmallVectorImpl<Instruction*> &NewInsts) {
// See if we have a version of this value already available and dominating
// PredBB. If so, there is no need to insert a new instance of it.
- PHITransAddr Tmp(InVal, DL);
+ PHITransAddr Tmp(InVal, DL, AC);
if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
return Tmp.getAddr();
diff --git a/contrib/llvm/lib/Analysis/PtrUseVisitor.cpp b/contrib/llvm/lib/Analysis/PtrUseVisitor.cpp
index 1b0f359..68c7535 100644
--- a/contrib/llvm/lib/Analysis/PtrUseVisitor.cpp
+++ b/contrib/llvm/lib/Analysis/PtrUseVisitor.cpp
@@ -17,7 +17,7 @@ using namespace llvm;
void detail::PtrUseVisitorBase::enqueueUsers(Instruction &I) {
for (Use &U : I.uses()) {
- if (VisitedUses.insert(&U)) {
+ if (VisitedUses.insert(&U).second) {
UseToVisit NewU = {
UseToVisit::UseAndIsOffsetKnownPair(&U, IsOffsetKnown),
Offset
diff --git a/contrib/llvm/lib/Analysis/RegionInfo.cpp b/contrib/llvm/lib/Analysis/RegionInfo.cpp
index 08ebf0d..8cd8534 100644
--- a/contrib/llvm/lib/Analysis/RegionInfo.cpp
+++ b/contrib/llvm/lib/Analysis/RegionInfo.cpp
@@ -10,10 +10,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/RegionInfo.h"
-#include "llvm/Analysis/RegionInfoImpl.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/RegionInfoImpl.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
diff --git a/contrib/llvm/lib/Analysis/RegionPass.cpp b/contrib/llvm/lib/Analysis/RegionPass.cpp
index de34b72..6fa7b2e 100644
--- a/contrib/llvm/lib/Analysis/RegionPass.cpp
+++ b/contrib/llvm/lib/Analysis/RegionPass.cpp
@@ -15,9 +15,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/RegionIterator.h"
-#include "llvm/Support/Timer.h"
-
#include "llvm/Support/Debug.h"
+#include "llvm/Support/Timer.h"
using namespace llvm;
#define DEBUG_TYPE "regionpassmgr"
diff --git a/contrib/llvm/lib/Analysis/ScalarEvolution.cpp b/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
index 06dbde5..ee42737 100644
--- a/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/contrib/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -1,4 +1,4 @@
-//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
+//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -59,9 +59,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
@@ -78,6 +80,7 @@
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -113,6 +116,7 @@ VerifySCEV("verify-scev",
INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
@@ -671,7 +675,254 @@ static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
}
}
+namespace {
+struct FindSCEVSize {
+ int Size;
+ FindSCEVSize() : Size(0) {}
+
+ bool follow(const SCEV *S) {
+ ++Size;
+ // Keep looking at all operands of S.
+ return true;
+ }
+ bool isDone() const {
+ return false;
+ }
+};
+}
+
+// Returns the size of the SCEV S.
+static inline int sizeOfSCEV(const SCEV *S) {
+ FindSCEVSize F;
+ SCEVTraversal<FindSCEVSize> ST(F);
+ ST.visitAll(S);
+ return F.Size;
+}
+
+namespace {
+
+struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
+public:
+ // Computes the Quotient and Remainder of the division of Numerator by
+ // Denominator.
+ static void divide(ScalarEvolution &SE, const SCEV *Numerator,
+ const SCEV *Denominator, const SCEV **Quotient,
+ const SCEV **Remainder) {
+ assert(Numerator && Denominator && "Uninitialized SCEV");
+
+ SCEVDivision D(SE, Numerator, Denominator);
+
+ // Check for the trivial case here to avoid having to check for it in the
+ // rest of the code.
+ if (Numerator == Denominator) {
+ *Quotient = D.One;
+ *Remainder = D.Zero;
+ return;
+ }
+
+ if (Numerator->isZero()) {
+ *Quotient = D.Zero;
+ *Remainder = D.Zero;
+ return;
+ }
+
+ // Split the Denominator when it is a product.
+ if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
+ const SCEV *Q, *R;
+ *Quotient = Numerator;
+ for (const SCEV *Op : T->operands()) {
+ divide(SE, *Quotient, Op, &Q, &R);
+ *Quotient = Q;
+
+ // Bail out when the Numerator is not divisible by one of the terms of
+ // the Denominator.
+ if (!R->isZero()) {
+ *Quotient = D.Zero;
+ *Remainder = Numerator;
+ return;
+ }
+ }
+ *Remainder = D.Zero;
+ return;
+ }
+
+ D.visit(Numerator);
+ *Quotient = D.Quotient;
+ *Remainder = D.Remainder;
+ }
+
+ // Except in the trivial case described above, we do not know how to divide
+ // Expr by Denominator for the following functions with empty implementation.
+ void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
+ void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
+ void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
+ void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
+ void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
+ void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
+ void visitUnknown(const SCEVUnknown *Numerator) {}
+ void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
+
+ void visitConstant(const SCEVConstant *Numerator) {
+ if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
+ APInt NumeratorVal = Numerator->getValue()->getValue();
+ APInt DenominatorVal = D->getValue()->getValue();
+ uint32_t NumeratorBW = NumeratorVal.getBitWidth();
+ uint32_t DenominatorBW = DenominatorVal.getBitWidth();
+
+ if (NumeratorBW > DenominatorBW)
+ DenominatorVal = DenominatorVal.sext(NumeratorBW);
+ else if (NumeratorBW < DenominatorBW)
+ NumeratorVal = NumeratorVal.sext(DenominatorBW);
+
+ APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
+ APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
+ APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
+ Quotient = SE.getConstant(QuotientVal);
+ Remainder = SE.getConstant(RemainderVal);
+ return;
+ }
+ }
+
+ void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
+ const SCEV *StartQ, *StartR, *StepQ, *StepR;
+ assert(Numerator->isAffine() && "Numerator should be affine");
+ divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
+ divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
+ Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
+ Numerator->getNoWrapFlags());
+ Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
+ Numerator->getNoWrapFlags());
+ }
+
+ void visitAddExpr(const SCEVAddExpr *Numerator) {
+ SmallVector<const SCEV *, 2> Qs, Rs;
+ Type *Ty = Denominator->getType();
+
+ for (const SCEV *Op : Numerator->operands()) {
+ const SCEV *Q, *R;
+ divide(SE, Op, Denominator, &Q, &R);
+
+ // Bail out if types do not match.
+ if (Ty != Q->getType() || Ty != R->getType()) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+
+ Qs.push_back(Q);
+ Rs.push_back(R);
+ }
+
+ if (Qs.size() == 1) {
+ Quotient = Qs[0];
+ Remainder = Rs[0];
+ return;
+ }
+
+ Quotient = SE.getAddExpr(Qs);
+ Remainder = SE.getAddExpr(Rs);
+ }
+
+ void visitMulExpr(const SCEVMulExpr *Numerator) {
+ SmallVector<const SCEV *, 2> Qs;
+ Type *Ty = Denominator->getType();
+
+ bool FoundDenominatorTerm = false;
+ for (const SCEV *Op : Numerator->operands()) {
+ // Bail out if types do not match.
+ if (Ty != Op->getType()) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+
+ if (FoundDenominatorTerm) {
+ Qs.push_back(Op);
+ continue;
+ }
+
+ // Check whether Denominator divides one of the product operands.
+ const SCEV *Q, *R;
+ divide(SE, Op, Denominator, &Q, &R);
+ if (!R->isZero()) {
+ Qs.push_back(Op);
+ continue;
+ }
+ // Bail out if types do not match.
+ if (Ty != Q->getType()) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+
+ FoundDenominatorTerm = true;
+ Qs.push_back(Q);
+ }
+
+ if (FoundDenominatorTerm) {
+ Remainder = Zero;
+ if (Qs.size() == 1)
+ Quotient = Qs[0];
+ else
+ Quotient = SE.getMulExpr(Qs);
+ return;
+ }
+
+ if (!isa<SCEVUnknown>(Denominator)) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+
+ // The Remainder is obtained by replacing Denominator by 0 in Numerator.
+ ValueToValueMap RewriteMap;
+ RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
+ cast<SCEVConstant>(Zero)->getValue();
+ Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+
+ if (Remainder->isZero()) {
+ // The Quotient is obtained by replacing Denominator by 1 in Numerator.
+ RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
+ cast<SCEVConstant>(One)->getValue();
+ Quotient =
+ SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+ return;
+ }
+
+ // Quotient is (Numerator - Remainder) divided by Denominator.
+ const SCEV *Q, *R;
+ const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
+ if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
+ // This SCEV does not seem to simplify: fail the division here.
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+ divide(SE, Diff, Denominator, &Q, &R);
+ assert(R == Zero &&
+ "(Numerator - Remainder) should evenly divide Denominator");
+ Quotient = Q;
+ }
+
+private:
+ SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
+ const SCEV *Denominator)
+ : SE(S), Denominator(Denominator) {
+ Zero = SE.getConstant(Denominator->getType(), 0);
+ One = SE.getConstant(Denominator->getType(), 1);
+
+ // By default, we don't know how to divide Expr by Denominator.
+ // Providing the default here simplifies the rest of the code.
+ Quotient = Zero;
+ Remainder = Numerator;
+ }
+
+ ScalarEvolution &SE;
+ const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
+};
+
+}
//===----------------------------------------------------------------------===//
// Simple SCEV method implementations
@@ -1486,6 +1737,36 @@ namespace {
};
}
+// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
+// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
+// can't-overflow flags for the operation if possible.
+static SCEV::NoWrapFlags
+StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
+ const SmallVectorImpl<const SCEV *> &Ops,
+ SCEV::NoWrapFlags OldFlags) {
+ using namespace std::placeholders;
+
+ bool CanAnalyze =
+ Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
+ (void)CanAnalyze;
+ assert(CanAnalyze && "don't call from other places!");
+
+ int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
+ SCEV::NoWrapFlags SignOrUnsignWrap =
+ ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
+
+ // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
+ auto IsKnownNonNegative =
+ std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
+
+ if (SignOrUnsignWrap == SCEV::FlagNSW &&
+ std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
+ return ScalarEvolution::setFlags(OldFlags,
+ (SCEV::NoWrapFlags)SignOrUnsignMask);
+
+ return OldFlags;
+}
+
/// getAddExpr - Get a canonical add expression, or something simpler if
/// possible.
const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
@@ -1501,20 +1782,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
"SCEVAddExpr operand types don't match!");
#endif
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- // And vice-versa.
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
- if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
- bool All = true;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
- E = Ops.end(); I != E; ++I)
- if (!isKnownNonNegative(*I)) {
- All = false;
- break;
- }
- if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
- }
+ Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, LI);
@@ -1889,6 +2157,25 @@ static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
return r;
}
+/// Determine if any of the operands in this SCEV are a constant or if
+/// any of the add or multiply expressions in this SCEV contain a constant.
+static bool containsConstantSomewhere(const SCEV *StartExpr) {
+ SmallVector<const SCEV *, 4> Ops;
+ Ops.push_back(StartExpr);
+ while (!Ops.empty()) {
+ const SCEV *CurrentExpr = Ops.pop_back_val();
+ if (isa<SCEVConstant>(*CurrentExpr))
+ return true;
+
+ if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
+ const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
+ for (const SCEV *Operand : CurrentNAry->operands())
+ Ops.push_back(Operand);
+ }
+ }
+ return false;
+}
+
/// getMulExpr - Get a canonical multiply expression, or something simpler if
/// possible.
const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
@@ -1904,20 +2191,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
"SCEVMulExpr operand types don't match!");
#endif
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- // And vice-versa.
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
- if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
- bool All = true;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
- E = Ops.end(); I != E; ++I)
- if (!isKnownNonNegative(*I)) {
- All = false;
- break;
- }
- if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
- }
+ Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, LI);
@@ -1928,11 +2202,13 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
// C1*(C2+V) -> C1*C2 + C1*V
if (Ops.size() == 2)
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
- if (Add->getNumOperands() == 2 &&
- isa<SCEVConstant>(Add->getOperand(0)))
- return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
- getMulExpr(LHSC, Add->getOperand(1)));
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
+ // If any of Add's ops are Adds or Muls with a constant,
+ // apply this transformation as well.
+ if (Add->getNumOperands() == 2)
+ if (containsConstantSomewhere(Add))
+ return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
+ getMulExpr(LHSC, Add->getOperand(1)));
++Idx;
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
@@ -2061,71 +2337,66 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
// Okay, if there weren't any loop invariants to be folded, check to see if
// there are multiple AddRec's with the same loop induction variable being
// multiplied together. If so, we can fold them.
+
+ // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
+ // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
+ // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
+ // ]]],+,...up to x=2n}.
+ // Note that the arguments to choose() are always integers with values
+ // known at compile time, never SCEV objects.
+ //
+ // The implementation avoids pointless extra computations when the two
+ // addrec's are of different length (mathematically, it's equivalent to
+ // an infinite stream of zeros on the right).
+ bool OpsModified = false;
for (unsigned OtherIdx = Idx+1;
- OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
+ OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx) {
- if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
+ const SCEVAddRecExpr *OtherAddRec =
+ dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+ if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
continue;
- // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
- // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
- // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
- // ]]],+,...up to x=2n}.
- // Note that the arguments to choose() are always integers with values
- // known at compile time, never SCEV objects.
- //
- // The implementation avoids pointless extra computations when the two
- // addrec's are of different length (mathematically, it's equivalent to
- // an infinite stream of zeros on the right).
- bool OpsModified = false;
- for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
- if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
- continue;
-
- bool Overflow = false;
- Type *Ty = AddRec->getType();
- bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
- SmallVector<const SCEV*, 7> AddRecOps;
- for (int x = 0, xe = AddRec->getNumOperands() +
- OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
- const SCEV *Term = getConstant(Ty, 0);
- for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
- uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
- for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
- ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
- z < ze && !Overflow; ++z) {
- uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
- uint64_t Coeff;
- if (LargerThan64Bits)
- Coeff = umul_ov(Coeff1, Coeff2, Overflow);
- else
- Coeff = Coeff1*Coeff2;
- const SCEV *CoeffTerm = getConstant(Ty, Coeff);
- const SCEV *Term1 = AddRec->getOperand(y-z);
- const SCEV *Term2 = OtherAddRec->getOperand(z);
- Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
- }
+ bool Overflow = false;
+ Type *Ty = AddRec->getType();
+ bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
+ SmallVector<const SCEV*, 7> AddRecOps;
+ for (int x = 0, xe = AddRec->getNumOperands() +
+ OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
+ const SCEV *Term = getConstant(Ty, 0);
+ for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
+ uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
+ for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
+ ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
+ z < ze && !Overflow; ++z) {
+ uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
+ uint64_t Coeff;
+ if (LargerThan64Bits)
+ Coeff = umul_ov(Coeff1, Coeff2, Overflow);
+ else
+ Coeff = Coeff1*Coeff2;
+ const SCEV *CoeffTerm = getConstant(Ty, Coeff);
+ const SCEV *Term1 = AddRec->getOperand(y-z);
+ const SCEV *Term2 = OtherAddRec->getOperand(z);
+ Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
}
- AddRecOps.push_back(Term);
- }
- if (!Overflow) {
- const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
- SCEV::FlagAnyWrap);
- if (Ops.size() == 2) return NewAddRec;
- Ops[Idx] = NewAddRec;
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- OpsModified = true;
- AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
- if (!AddRec)
- break;
}
+ AddRecOps.push_back(Term);
+ }
+ if (!Overflow) {
+ const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
+ SCEV::FlagAnyWrap);
+ if (Ops.size() == 2) return NewAddRec;
+ Ops[Idx] = NewAddRec;
+ Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
+ OpsModified = true;
+ AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
+ if (!AddRec)
+ break;
}
- if (OpsModified)
- return getMulExpr(Ops);
}
+ if (OpsModified)
+ return getMulExpr(Ops);
// Otherwise couldn't fold anything into this recurrence. Move onto the
// next one.
@@ -2386,20 +2657,7 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
// meaningful BE count at this point (and if we don't, we'd be stuck
// with a SCEVCouldNotCompute as the cached BE count).
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- // And vice-versa.
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
- if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
- bool All = true;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
- E = Operands.end(); I != E; ++I)
- if (!isKnownNonNegative(*I)) {
- All = false;
- break;
- }
- if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
- }
+ Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
// Canonicalize nested AddRecs in by nesting them in order of loop depth.
if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
@@ -2896,8 +3154,9 @@ const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
if (LHS == RHS)
return getConstant(LHS->getType(), 0);
- // X - Y --> X + -Y
- return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
+ // X - Y --> X + -Y.
+ // X -(nsw || nuw) Y --> X + -Y.
+ return getAddExpr(LHS, getNegativeSCEV(RHS));
}
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
@@ -3082,7 +3341,8 @@ ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Visited.insert(PN);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
+ if (!Visited.insert(I).second)
+ continue;
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
@@ -3202,12 +3462,10 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
Flags = setFlags(Flags, SCEV::FlagNUW);
}
- } else if (const SubOperator *OBO =
- dyn_cast<SubOperator>(BEValueV)) {
- if (OBO->hasNoUnsignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNUW);
- if (OBO->hasNoSignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNSW);
+
+ // We cannot transfer nuw and nsw flags from subtraction
+ // operations -- sub nuw X, Y is not the same as add nuw X, -Y
+ // for instance.
}
const SCEV *StartVal = getSCEV(StartValueV);
@@ -3263,7 +3521,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
// PHI's incoming blocks are in a different loop, in which case doing so
// risks breaking LCSSA form. Instcombine would normally zap these, but
// it doesn't have DominatorTree information, so it may miss cases.
- if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
+ if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
if (LI->replacementPreservesLCSSAForm(PN, V))
return getSCEV(V);
@@ -3395,7 +3653,7 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
// For a SCEVUnknown, ask ValueTracking.
unsigned BitWidth = getTypeSizeInBits(U->getType());
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- computeKnownBits(U->getValue(), Zeros, Ones);
+ computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
return Zeros.countTrailingOnes();
}
@@ -3403,6 +3661,33 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
return 0;
}
+/// GetRangeFromMetadata - Helper method to assign a range to V from
+/// metadata present in the IR.
+static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
+ ConstantRange TotalRange(
+ cast<IntegerType>(I->getType())->getBitWidth(), false);
+
+ unsigned NumRanges = MD->getNumOperands() / 2;
+ assert(NumRanges >= 1);
+
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ TotalRange = TotalRange.unionWith(Range);
+ }
+
+ return TotalRange;
+ }
+ }
+
+ return None;
+}
+
/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
///
ConstantRange
@@ -3532,9 +3817,14 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ // Check if the IR explicitly contains !range metadata.
+ Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
+ if (MDRange.hasValue())
+ ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
+
// For a SCEVUnknown, ask ValueTracking.
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- computeKnownBits(U->getValue(), Zeros, Ones, DL);
+ computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
if (Ones == ~Zeros + 1)
return setUnsignedRange(U, ConservativeResult);
return setUnsignedRange(U,
@@ -3683,10 +3973,15 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ // Check if the IR explicitly contains !range metadata.
+ Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
+ if (MDRange.hasValue())
+ ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
+
// For a SCEVUnknown, ask ValueTracking.
if (!U->getValue()->getType()->isIntegerTy() && !DL)
return setSignedRange(U, ConservativeResult);
- unsigned NS = ComputeNumSignBits(U->getValue(), DL);
+ unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
if (NS <= 1)
return setSignedRange(U, ConservativeResult);
return setSignedRange(U, ConservativeResult.intersectWith(
@@ -3793,7 +4088,8 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
unsigned TZ = A.countTrailingZeros();
unsigned BitWidth = A.getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
+ nullptr, DT);
APInt EffectiveMask =
APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
@@ -4070,6 +4366,14 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// Iteration Count Computation Code
//
+unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
+ if (BasicBlock *ExitingBB = L->getExitingBlock())
+ return getSmallConstantTripCount(L, ExitingBB);
+
+ // No trip count information for multiple exits.
+ return 0;
+}
+
/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
/// normal unsigned value. Returns 0 if the trip count is unknown or not
/// constant. Will also return 0 if the maximum trip count is very large (>=
@@ -4080,19 +4384,13 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
/// before taking the branch. For loops with multiple exits, it may not be the
/// number times that the loop header executes because the loop may exit
/// prematurely via another branch.
-///
-/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
-/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
-/// loop exits. getExitCount() may return an exact count for this branch
-/// assuming no-signed-wrap. The number of well-defined iterations may actually
-/// be higher than this trip count if this exit test is skipped and the loop
-/// exits via a different branch. Ideally, getExitCount() would know whether it
-/// depends on a NSW assumption, and we would only fall back to a conservative
-/// trip count in that case.
-unsigned ScalarEvolution::
-getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
+unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
+ BasicBlock *ExitingBlock) {
+ assert(ExitingBlock && "Must pass a non-null exiting block!");
+ assert(L->isLoopExiting(ExitingBlock) &&
+ "Exiting block must actually branch out of the loop!");
const SCEVConstant *ExitCount =
- dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
+ dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
if (!ExitCount)
return 0;
@@ -4106,6 +4404,14 @@ getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
return ((unsigned)ExitConst->getZExtValue()) + 1;
}
+unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
+ if (BasicBlock *ExitingBB = L->getExitingBlock())
+ return getSmallConstantTripMultiple(L, ExitingBB);
+
+ // No trip multiple information for multiple exits.
+ return 0;
+}
+
/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
/// trip count of this loop as a normal unsigned value, if possible. This
/// means that the actual trip count is always a multiple of the returned
@@ -4118,9 +4424,13 @@ getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
///
/// As explained in the comments for getSmallConstantTripCount, this assumes
/// that control exits the loop via ExitingBlock.
-unsigned ScalarEvolution::
-getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
- const SCEV *ExitCount = getBackedgeTakenCount(L);
+unsigned
+ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
+ BasicBlock *ExitingBlock) {
+ assert(ExitingBlock && "Must pass a non-null exiting block!");
+ assert(L->isLoopExiting(ExitingBlock) &&
+ "Exiting block must actually branch out of the loop!");
+ const SCEV *ExitCount = getExitCount(L, ExitingBlock);
if (ExitCount == getCouldNotCompute())
return 1;
@@ -4230,7 +4540,8 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
SmallPtrSet<Instruction *, 8> Visited;
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
+ if (!Visited.insert(I).second)
+ continue;
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
@@ -4282,7 +4593,8 @@ void ScalarEvolution::forgetLoop(const Loop *L) {
SmallPtrSet<Instruction *, 8> Visited;
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
+ if (!Visited.insert(I).second)
+ continue;
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
@@ -4316,7 +4628,8 @@ void ScalarEvolution::forgetValue(Value *V) {
SmallPtrSet<Instruction *, 8> Visited;
while (!Worklist.empty()) {
I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
+ if (!Visited.insert(I).second)
+ continue;
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
@@ -4467,20 +4780,12 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
// non-exiting iterations. Partition the loop exits into two kinds:
// LoopMustExits and LoopMayExits.
//
- // A LoopMustExit meets two requirements:
- //
- // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
- // test condition cannot be skipped (the tested variable has unit stride or
- // the test is less-than or greater-than, rather than a strict inequality).
- //
- // (b) It must dominate the loop latch, hence must be tested on every loop
- // iteration.
- //
- // If any computable LoopMustExit is found, then MaxBECount is the minimum
- // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
- // conservatively the maximum EL.Max, where CouldNotCompute is considered
- // greater than any computable EL.Max.
- if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
+ // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
+ // is a LoopMayExit. If any computable LoopMustExit is found, then
+ // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
+ // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
+ // considered greater than any computable EL.Max.
+ if (EL.Max != getCouldNotCompute() && Latch &&
DT->dominates(ExitBB, Latch)) {
if (!MustExitMaxBECount)
MustExitMaxBECount = EL.Max;
@@ -4567,18 +4872,19 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
return getCouldNotCompute();
}
+ bool IsOnlyExit = (L->getExitingBlock() != nullptr);
TerminatorInst *Term = ExitingBlock->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
assert(BI->isConditional() && "If unconditional, it can't be in loop!");
// Proceed to the next level to examine the exit condition expression.
return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
BI->getSuccessor(1),
- /*IsSubExpr=*/false);
+ /*ControlsExit=*/IsOnlyExit);
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
- /*IsSubExpr=*/false);
+ /*ControlsExit=*/IsOnlyExit);
return getCouldNotCompute();
}
@@ -4587,28 +4893,27 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
/// backedge of the specified loop will execute if its exit condition
/// were a conditional branch of ExitCond, TBB, and FBB.
///
-/// @param IsSubExpr is true if ExitCond does not directly control the exit
-/// branch. In this case, we cannot assume that the loop only exits when the
-/// condition is true and cannot infer that failing to meet the condition prior
-/// to integer wraparound results in undefined behavior.
+/// @param ControlsExit is true if ExitCond directly controls the exit
+/// branch. In this case, we can assume that the loop exits only if the
+/// condition is true and can infer that failing to meet the condition prior to
+/// integer wraparound results in undefined behavior.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
- bool IsSubExpr) {
+ bool ControlsExit) {
// Check if the controlling expression for this loop is an And or Or.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
if (BO->getOpcode() == Instruction::And) {
// Recurse on the operands of the and.
bool EitherMayExit = L->contains(TBB);
ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
- IsSubExpr || EitherMayExit);
+ ControlsExit && !EitherMayExit);
ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
- IsSubExpr || EitherMayExit);
+ ControlsExit && !EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
- bool MustExit = false;
if (EitherMayExit) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
@@ -4623,7 +4928,6 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
- MustExit = EL0.MustExit || EL1.MustExit;
} else {
// Both conditions must be true at the same time for the loop to exit.
// For now, be conservative.
@@ -4632,21 +4936,19 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
if (EL0.Exact == EL1.Exact)
BECount = EL0.Exact;
- MustExit = EL0.MustExit && EL1.MustExit;
}
- return ExitLimit(BECount, MaxBECount, MustExit);
+ return ExitLimit(BECount, MaxBECount);
}
if (BO->getOpcode() == Instruction::Or) {
// Recurse on the operands of the or.
bool EitherMayExit = L->contains(FBB);
ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
- IsSubExpr || EitherMayExit);
+ ControlsExit && !EitherMayExit);
ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
- IsSubExpr || EitherMayExit);
+ ControlsExit && !EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
- bool MustExit = false;
if (EitherMayExit) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
@@ -4661,7 +4963,6 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
- MustExit = EL0.MustExit || EL1.MustExit;
} else {
// Both conditions must be false at the same time for the loop to exit.
// For now, be conservative.
@@ -4670,17 +4971,16 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
if (EL0.Exact == EL1.Exact)
BECount = EL0.Exact;
- MustExit = EL0.MustExit && EL1.MustExit;
}
- return ExitLimit(BECount, MaxBECount, MustExit);
+ return ExitLimit(BECount, MaxBECount);
}
}
// With an icmp, it may be feasible to compute an exact backedge-taken count.
// Proceed to the next level to examine the icmp.
if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
- return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
+ return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
// Check for a constant condition. These are normally stripped out by
// SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
@@ -4707,7 +5007,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
- bool IsSubExpr) {
+ bool ControlsExit) {
// If the condition was exit on true, convert the condition to exit on false
ICmpInst::Predicate Cond;
@@ -4759,7 +5059,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
switch (Cond) {
case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
- ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
+ ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
if (EL.hasAnyInfo()) return EL;
break;
}
@@ -4772,14 +5072,14 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: { // while (X < Y)
bool IsSigned = Cond == ICmpInst::ICMP_SLT;
- ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
+ ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: { // while (X > Y)
bool IsSigned = Cond == ICmpInst::ICMP_SGT;
- ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
+ ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
if (EL.hasAnyInfo()) return EL;
break;
}
@@ -4801,7 +5101,7 @@ ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
SwitchInst *Switch,
BasicBlock *ExitingBlock,
- bool IsSubExpr) {
+ bool ControlsExit) {
assert(!L->contains(ExitingBlock) && "Not an exiting block!");
// Give up if the exit is the default dest of a switch.
@@ -4814,7 +5114,7 @@ ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
// while (X != Y) --> while (X-Y != 0)
- ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
+ ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
if (EL.hasAnyInfo())
return EL;
@@ -5687,7 +5987,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
/// effectively V != 0. We know and take advantage of the fact that this
/// expression only being used in a comparison by zero context.
ScalarEvolution::ExitLimit
-ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
+ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
// If the value is a constant
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
@@ -5781,38 +6081,34 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
else
MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
: -CR.getUnsignedMin());
- return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
- }
-
- // If the recurrence is known not to wraparound, unsigned divide computes the
- // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
- // that the value will either become zero (and thus the loop terminates), that
- // the loop will terminate through some other exit condition first, or that
- // the loop has undefined behavior. This means we can't "miss" the exit
- // value, even with nonunit stride, and exit later via the same branch. Note
- // that we can skip this exit if loop later exits via a different
- // branch. Hence MustExit=false.
- //
- // This is only valid for expressions that directly compute the loop exit. It
- // is invalid for subexpressions in which the loop may exit through this
- // branch even if this subexpression is false. In that case, the trip count
- // computed by this udiv could be smaller than the number of well-defined
- // iterations.
- if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
+ return ExitLimit(Distance, MaxBECount);
+ }
+
+ // As a special case, handle the instance where Step is a positive power of
+ // two. In this case, determining whether Step divides Distance evenly can be
+ // done by counting and comparing the number of trailing zeros of Step and
+ // Distance.
+ if (!CountDown) {
+ const APInt &StepV = StepC->getValue()->getValue();
+ // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
+ // also returns true if StepV is maximally negative (eg, INT_MIN), but that
+ // case is not handled as this code is guarded by !CountDown.
+ if (StepV.isPowerOf2() &&
+ GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
+ return getUDivExactExpr(Distance, Step);
+ }
+
+ // If the condition controls loop exit (the loop exits only if the expression
+ // is true) and the addition is no-wrap we can use unsigned divide to
+ // compute the backedge count. In this case, the step may not divide the
+ // distance, but we don't care because if the condition is "missed" the loop
+ // will have undefined behavior due to wrapping.
+ if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
const SCEV *Exact =
- getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
- return ExitLimit(Exact, Exact, /*MustExit=*/false);
+ getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
+ return ExitLimit(Exact, Exact);
}
- // If Step is a power of two that evenly divides Start we know that the loop
- // will always terminate. Start may not be a constant so we just have the
- // number of trailing zeros available. This is safe even in presence of
- // overflow as the recurrence will overflow to exactly 0.
- const APInt &StepV = StepC->getValue()->getValue();
- if (StepV.isPowerOf2() &&
- GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
- return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
-
// Then, try to solve the above equation provided that Start is constant.
if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
@@ -6309,19 +6605,33 @@ ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
// (interprocedural conditions notwithstanding).
if (!L) return true;
+ if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
+
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return false;
BranchInst *LoopContinuePredicate =
dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LoopContinuePredicate ||
- LoopContinuePredicate->isUnconditional())
- return false;
+ if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
+ isImpliedCond(Pred, LHS, RHS,
+ LoopContinuePredicate->getCondition(),
+ LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
+ return true;
+
+ // Check conditions due to any @llvm.assume intrinsics.
+ for (auto &AssumeVH : AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ auto *CI = cast<CallInst>(AssumeVH);
+ if (!DT->dominates(CI, Latch->getTerminator()))
+ continue;
+
+ if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
+ return true;
+ }
- return isImpliedCond(Pred, LHS, RHS,
- LoopContinuePredicate->getCondition(),
- LoopContinuePredicate->getSuccessor(0) != L->getHeader());
+ return false;
}
/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
@@ -6335,6 +6645,8 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
// (interprocedural conditions notwithstanding).
if (!L) return false;
+ if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
+
// Starting at the loop predecessor, climb up the predecessor chain, as long
// as there are predecessors that can be found that have unique successors
// leading to the original header.
@@ -6355,6 +6667,18 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
return true;
}
+ // Check conditions due to any @llvm.assume intrinsics.
+ for (auto &AssumeVH : AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ auto *CI = cast<CallInst>(AssumeVH);
+ if (!DT->dominates(CI, L->getHeader()))
+ continue;
+
+ if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
+ return true;
+ }
+
return false;
}
@@ -6469,6 +6793,66 @@ bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
RHS, LHS, FoundLHS, FoundRHS);
}
+ // Check if we can make progress by sharpening ranges.
+ if (FoundPred == ICmpInst::ICMP_NE &&
+ (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
+
+ const SCEVConstant *C = nullptr;
+ const SCEV *V = nullptr;
+
+ if (isa<SCEVConstant>(FoundLHS)) {
+ C = cast<SCEVConstant>(FoundLHS);
+ V = FoundRHS;
+ } else {
+ C = cast<SCEVConstant>(FoundRHS);
+ V = FoundLHS;
+ }
+
+ // The guarding predicate tells us that C != V. If the known range
+ // of V is [C, t), we can sharpen the range to [C + 1, t). The
+ // range we consider has to correspond to same signedness as the
+ // predicate we're interested in folding.
+
+ APInt Min = ICmpInst::isSigned(Pred) ?
+ getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
+
+ if (Min == C->getValue()->getValue()) {
+ // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
+ // This is true even if (Min + 1) wraps around -- in case of
+ // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
+
+ APInt SharperMin = Min + 1;
+
+ switch (Pred) {
+ case ICmpInst::ICMP_SGE:
+ case ICmpInst::ICMP_UGE:
+ // We know V `Pred` SharperMin. If this implies LHS `Pred`
+ // RHS, we're done.
+ if (isImpliedCondOperands(Pred, LHS, RHS, V,
+ getConstant(SharperMin)))
+ return true;
+
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_UGT:
+ // We know from the range information that (V `Pred` Min ||
+ // V == Min). We know from the guarding condition that !(V
+ // == Min). This gives us
+ //
+ // V `Pred` Min || V == Min && !(V == Min)
+ // => V `Pred` Min
+ //
+ // If V `Pred` Min implies LHS `Pred` RHS, we're done.
+
+ if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
+ return true;
+
+ default:
+ // No change
+ break;
+ }
+ }
+ }
+
// Check whether the actual condition is beyond sufficient.
if (FoundPred == ICmpInst::ICMP_EQ)
if (ICmpInst::isTrueWhenEqual(Pred))
@@ -6498,6 +6882,85 @@ bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
getNotSCEV(FoundLHS));
}
+
+/// If Expr computes ~A, return A else return nullptr
+static const SCEV *MatchNotExpr(const SCEV *Expr) {
+ const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
+ if (!Add || Add->getNumOperands() != 2) return nullptr;
+
+ const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
+ if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
+ return nullptr;
+
+ const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
+ if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
+
+ const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
+ if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
+ return nullptr;
+
+ return AddRHS->getOperand(1);
+}
+
+
+/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
+template<typename MaxExprType>
+static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
+ const SCEV *Candidate) {
+ const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
+ if (!MaxExpr) return false;
+
+ auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
+ return It != MaxExpr->op_end();
+}
+
+
+/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
+template<typename MaxExprType>
+static bool IsMinConsistingOf(ScalarEvolution &SE,
+ const SCEV *MaybeMinExpr,
+ const SCEV *Candidate) {
+ const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
+ if (!MaybeMaxExpr)
+ return false;
+
+ return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
+}
+
+
+/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
+/// expression?
+static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ switch (Pred) {
+ default:
+ return false;
+
+ case ICmpInst::ICMP_SGE:
+ std::swap(LHS, RHS);
+ // fall through
+ case ICmpInst::ICMP_SLE:
+ return
+ // min(A, ...) <= A
+ IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
+ // A <= max(A, ...)
+ IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
+
+ case ICmpInst::ICMP_UGE:
+ std::swap(LHS, RHS);
+ // fall through
+ case ICmpInst::ICMP_ULE:
+ return
+ // min(A, ...) <= A
+ IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
+ // A <= max(A, ...)
+ IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
+ }
+
+ llvm_unreachable("covered switch fell through?!");
+}
+
/// isImpliedCondOperandsHelper - Test whether the condition described by
/// Pred, LHS, and RHS is true whenever the condition described by Pred,
/// FoundLHS, and FoundRHS is true.
@@ -6506,6 +6969,12 @@ ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS) {
+ auto IsKnownPredicateFull =
+ [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
+ return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
+ IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
+ };
+
switch (Pred) {
default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
case ICmpInst::ICMP_EQ:
@@ -6515,26 +6984,26 @@ ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
+ if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
+ IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
+ if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
+ IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
+ if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
+ IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
+ if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
+ IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
return true;
break;
}
@@ -6614,13 +7083,13 @@ const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
/// specified less-than comparison will execute. If not computable, return
/// CouldNotCompute.
///
-/// @param IsSubExpr is true when the LHS < RHS condition does not directly
-/// control the branch. In this case, we can only compute an iteration count for
-/// a subexpression that cannot overflow before evaluating true.
+/// @param ControlsExit is true when the LHS < RHS condition directly controls
+/// the branch (loops exits only if condition is true). In this case, we can use
+/// NoWrapFlags to skip overflow checks.
ScalarEvolution::ExitLimit
ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool IsSigned,
- bool IsSubExpr) {
+ bool ControlsExit) {
// We handle only IV < Invariant
if (!isLoopInvariant(RHS, L))
return getCouldNotCompute();
@@ -6631,7 +7100,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (!IV || IV->getLoop() != L || !IV->isAffine())
return getCouldNotCompute();
- bool NoWrap = !IsSubExpr &&
+ bool NoWrap = ControlsExit &&
IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
const SCEV *Stride = IV->getStepRecurrence(*this);
@@ -6651,9 +7120,19 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
: ICmpInst::ICMP_ULT;
const SCEV *Start = IV->getStart();
const SCEV *End = RHS;
- if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
- End = IsSigned ? getSMaxExpr(RHS, Start)
- : getUMaxExpr(RHS, Start);
+ if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
+ const SCEV *Diff = getMinusSCEV(RHS, Start);
+ // If we have NoWrap set, then we can assume that the increment won't
+ // overflow, in which case if RHS - Start is a constant, we don't need to
+ // do a max operation since we can just figure it out statically
+ if (NoWrap && isa<SCEVConstant>(Diff)) {
+ APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
+ if (D.isNegative())
+ End = Start;
+ } else
+ End = IsSigned ? getSMaxExpr(RHS, Start)
+ : getUMaxExpr(RHS, Start);
+ }
const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
@@ -6684,13 +7163,13 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
+ return ExitLimit(BECount, MaxBECount);
}
ScalarEvolution::ExitLimit
ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool IsSigned,
- bool IsSubExpr) {
+ bool ControlsExit) {
// We handle only IV > Invariant
if (!isLoopInvariant(RHS, L))
return getCouldNotCompute();
@@ -6701,7 +7180,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
if (!IV || IV->getLoop() != L || !IV->isAffine())
return getCouldNotCompute();
- bool NoWrap = !IsSubExpr &&
+ bool NoWrap = ControlsExit &&
IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
@@ -6722,9 +7201,19 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
const SCEV *Start = IV->getStart();
const SCEV *End = RHS;
- if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
- End = IsSigned ? getSMinExpr(RHS, Start)
- : getUMinExpr(RHS, Start);
+ if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
+ const SCEV *Diff = getMinusSCEV(RHS, Start);
+ // If we have NoWrap set, then we can assume that the increment won't
+ // overflow, in which case if RHS - Start is a constant, we don't need to
+ // do a max operation since we can just figure it out statically
+ if (NoWrap && isa<SCEVConstant>(Diff)) {
+ APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
+ if (!D.isNegative())
+ End = Start;
+ } else
+ End = IsSigned ? getSMinExpr(RHS, Start)
+ : getUMinExpr(RHS, Start);
+ }
const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
@@ -6756,7 +7245,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
+ return ExitLimit(BECount, MaxBECount);
}
/// getNumIterationsInRange - Return the number of iterations of this loop that
@@ -6984,268 +7473,6 @@ void SCEVAddRecExpr::collectParametricTerms(
});
}
-static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
- APInt A = C1->getValue()->getValue();
- APInt B = C2->getValue()->getValue();
- uint32_t ABW = A.getBitWidth();
- uint32_t BBW = B.getBitWidth();
-
- if (ABW > BBW)
- B = B.sext(ABW);
- else if (ABW < BBW)
- A = A.sext(BBW);
-
- return APIntOps::srem(A, B);
-}
-
-static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
- APInt A = C1->getValue()->getValue();
- APInt B = C2->getValue()->getValue();
- uint32_t ABW = A.getBitWidth();
- uint32_t BBW = B.getBitWidth();
-
- if (ABW > BBW)
- B = B.sext(ABW);
- else if (ABW < BBW)
- A = A.sext(BBW);
-
- return APIntOps::sdiv(A, B);
-}
-
-namespace {
-struct FindSCEVSize {
- int Size;
- FindSCEVSize() : Size(0) {}
-
- bool follow(const SCEV *S) {
- ++Size;
- // Keep looking at all operands of S.
- return true;
- }
- bool isDone() const {
- return false;
- }
-};
-}
-
-// Returns the size of the SCEV S.
-static inline int sizeOfSCEV(const SCEV *S) {
- FindSCEVSize F;
- SCEVTraversal<FindSCEVSize> ST(F);
- ST.visitAll(S);
- return F.Size;
-}
-
-namespace {
-
-struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
-public:
- // Computes the Quotient and Remainder of the division of Numerator by
- // Denominator.
- static void divide(ScalarEvolution &SE, const SCEV *Numerator,
- const SCEV *Denominator, const SCEV **Quotient,
- const SCEV **Remainder) {
- assert(Numerator && Denominator && "Uninitialized SCEV");
-
- SCEVDivision D(SE, Numerator, Denominator);
-
- // Check for the trivial case here to avoid having to check for it in the
- // rest of the code.
- if (Numerator == Denominator) {
- *Quotient = D.One;
- *Remainder = D.Zero;
- return;
- }
-
- if (Numerator->isZero()) {
- *Quotient = D.Zero;
- *Remainder = D.Zero;
- return;
- }
-
- // Split the Denominator when it is a product.
- if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
- const SCEV *Q, *R;
- *Quotient = Numerator;
- for (const SCEV *Op : T->operands()) {
- divide(SE, *Quotient, Op, &Q, &R);
- *Quotient = Q;
-
- // Bail out when the Numerator is not divisible by one of the terms of
- // the Denominator.
- if (!R->isZero()) {
- *Quotient = D.Zero;
- *Remainder = Numerator;
- return;
- }
- }
- *Remainder = D.Zero;
- return;
- }
-
- D.visit(Numerator);
- *Quotient = D.Quotient;
- *Remainder = D.Remainder;
- }
-
- SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
- : SE(S), Denominator(Denominator) {
- Zero = SE.getConstant(Denominator->getType(), 0);
- One = SE.getConstant(Denominator->getType(), 1);
-
- // By default, we don't know how to divide Expr by Denominator.
- // Providing the default here simplifies the rest of the code.
- Quotient = Zero;
- Remainder = Numerator;
- }
-
- // Except in the trivial case described above, we do not know how to divide
- // Expr by Denominator for the following functions with empty implementation.
- void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
- void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
- void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
- void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
- void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
- void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
- void visitUnknown(const SCEVUnknown *Numerator) {}
- void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
-
- void visitConstant(const SCEVConstant *Numerator) {
- if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
- Quotient = SE.getConstant(sdiv(Numerator, D));
- Remainder = SE.getConstant(srem(Numerator, D));
- return;
- }
- }
-
- void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
- const SCEV *StartQ, *StartR, *StepQ, *StepR;
- assert(Numerator->isAffine() && "Numerator should be affine");
- divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
- divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
- Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
- Numerator->getNoWrapFlags());
- Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
- Numerator->getNoWrapFlags());
- }
-
- void visitAddExpr(const SCEVAddExpr *Numerator) {
- SmallVector<const SCEV *, 2> Qs, Rs;
- Type *Ty = Denominator->getType();
-
- for (const SCEV *Op : Numerator->operands()) {
- const SCEV *Q, *R;
- divide(SE, Op, Denominator, &Q, &R);
-
- // Bail out if types do not match.
- if (Ty != Q->getType() || Ty != R->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
-
- Qs.push_back(Q);
- Rs.push_back(R);
- }
-
- if (Qs.size() == 1) {
- Quotient = Qs[0];
- Remainder = Rs[0];
- return;
- }
-
- Quotient = SE.getAddExpr(Qs);
- Remainder = SE.getAddExpr(Rs);
- }
-
- void visitMulExpr(const SCEVMulExpr *Numerator) {
- SmallVector<const SCEV *, 2> Qs;
- Type *Ty = Denominator->getType();
-
- bool FoundDenominatorTerm = false;
- for (const SCEV *Op : Numerator->operands()) {
- // Bail out if types do not match.
- if (Ty != Op->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
-
- if (FoundDenominatorTerm) {
- Qs.push_back(Op);
- continue;
- }
-
- // Check whether Denominator divides one of the product operands.
- const SCEV *Q, *R;
- divide(SE, Op, Denominator, &Q, &R);
- if (!R->isZero()) {
- Qs.push_back(Op);
- continue;
- }
-
- // Bail out if types do not match.
- if (Ty != Q->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
-
- FoundDenominatorTerm = true;
- Qs.push_back(Q);
- }
-
- if (FoundDenominatorTerm) {
- Remainder = Zero;
- if (Qs.size() == 1)
- Quotient = Qs[0];
- else
- Quotient = SE.getMulExpr(Qs);
- return;
- }
-
- if (!isa<SCEVUnknown>(Denominator)) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
-
- // The Remainder is obtained by replacing Denominator by 0 in Numerator.
- ValueToValueMap RewriteMap;
- RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
- cast<SCEVConstant>(Zero)->getValue();
- Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
-
- if (Remainder->isZero()) {
- // The Quotient is obtained by replacing Denominator by 1 in Numerator.
- RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
- cast<SCEVConstant>(One)->getValue();
- Quotient =
- SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
- return;
- }
-
- // Quotient is (Numerator - Remainder) divided by Denominator.
- const SCEV *Q, *R;
- const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
- if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
- // This SCEV does not seem to simplify: fail the division here.
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- divide(SE, Diff, Denominator, &Q, &R);
- assert(R == Zero &&
- "(Numerator - Remainder) should evenly divide Denominator");
- Quotient = Q;
- }
-
-private:
- ScalarEvolution &SE;
- const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
-};
-}
-
static bool findArrayDimensionsRec(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes) {
@@ -7609,7 +7836,7 @@ void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
// that until everything else is done.
if (U == Old)
continue;
- if (!Visited.insert(U))
+ if (!Visited.insert(U).second)
continue;
if (PHINode *PN = dyn_cast<PHINode>(U))
SE->ConstantEvolutionLoopExitValue.erase(PN);
@@ -7638,6 +7865,7 @@ ScalarEvolution::ScalarEvolution()
bool ScalarEvolution::runOnFunction(Function &F) {
this->F = &F;
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
LI = &getAnalysis<LoopInfo>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
@@ -7678,6 +7906,7 @@ void ScalarEvolution::releaseMemory() {
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequiredTransitive<LoopInfo>();
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfo>();
diff --git a/contrib/llvm/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
index 6933f74..5c339ee 100644
--- a/contrib/llvm/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
@@ -162,10 +162,10 @@ ScalarEvolutionAliasAnalysis::alias(const Location &LocA,
if ((AO && AO != LocA.Ptr) || (BO && BO != LocB.Ptr))
if (alias(Location(AO ? AO : LocA.Ptr,
AO ? +UnknownSize : LocA.Size,
- AO ? nullptr : LocA.TBAATag),
+ AO ? AAMDNodes() : LocA.AATags),
Location(BO ? BO : LocB.Ptr,
BO ? +UnknownSize : LocB.Size,
- BO ? nullptr : LocB.TBAATag)) == NoAlias)
+ BO ? AAMDNodes() : LocB.AATags)) == NoAlias)
return NoAlias;
// Forward the query to the next analysis.
diff --git a/contrib/llvm/lib/Analysis/ScalarEvolutionExpander.cpp b/contrib/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
index 968c619..59f19a0 100644
--- a/contrib/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/contrib/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -1443,7 +1443,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
Constant *One = ConstantInt::get(Ty, 1);
for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
BasicBlock *HP = *HPI;
- if (!PredSeen.insert(HP)) {
+ if (!PredSeen.insert(HP).second) {
// There must be an incoming value for each predecessor, even the
// duplicates!
CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
@@ -1711,7 +1711,7 @@ unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
// Fold constant phis. They may be congruent to other constant phis and
// would confuse the logic below that expects proper IVs.
- if (Value *V = SimplifyInstruction(Phi, SE.DL, SE.TLI, SE.DT)) {
+ if (Value *V = SimplifyInstruction(Phi, SE.DL, SE.TLI, SE.DT, SE.AC)) {
Phi->replaceAllUsesWith(V);
DeadInsts.push_back(Phi);
++NumElim;
diff --git a/contrib/llvm/lib/Analysis/ScalarEvolutionNormalization.cpp b/contrib/llvm/lib/Analysis/ScalarEvolutionNormalization.cpp
index 3ccefb0..b238fe4 100644
--- a/contrib/llvm/lib/Analysis/ScalarEvolutionNormalization.cpp
+++ b/contrib/llvm/lib/Analysis/ScalarEvolutionNormalization.cpp
@@ -126,7 +126,7 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
// Normalized form: {-2,+,1,+,2}
// Denormalized form: {1,+,3,+,2}
//
- // However, denormalization would use the a different step expression than
+ // However, denormalization would use a different step expression than
// normalization (see getPostIncExpr), generating the wrong final
// expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
if (AR->isAffine() &&
diff --git a/contrib/llvm/lib/Analysis/ScopedNoAliasAA.cpp b/contrib/llvm/lib/Analysis/ScopedNoAliasAA.cpp
new file mode 100644
index 0000000..c6ea3af
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/ScopedNoAliasAA.cpp
@@ -0,0 +1,245 @@
+//===- ScopedNoAliasAA.cpp - Scoped No-Alias Alias Analysis ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ScopedNoAlias alias-analysis pass, which implements
+// metadata-based scoped no-alias support.
+//
+// Alias-analysis scopes are defined by an id (which can be a string or some
+// other metadata node), a domain node, and an optional descriptive string.
+// A domain is defined by an id (which can be a string or some other metadata
+// node), and an optional descriptive string.
+//
+// !dom0 = metadata !{ metadata !"domain of foo()" }
+// !scope1 = metadata !{ metadata !scope1, metadata !dom0, metadata !"scope 1" }
+// !scope2 = metadata !{ metadata !scope2, metadata !dom0, metadata !"scope 2" }
+//
+// Loads and stores can be tagged with an alias-analysis scope, and also, with
+// a noalias tag for a specific scope:
+//
+// ... = load %ptr1, !alias.scope !{ !scope1 }
+// ... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
+//
+// When evaluating an aliasing query, if one of the instructions is associated
+// has a set of noalias scopes in some domain that is superset of the alias
+// scopes in that domain of some other instruction, then the two memory
+// accesses are assumed not to alias.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+// A handy option for disabling scoped no-alias functionality. The same effect
+// can also be achieved by stripping the associated metadata tags from IR, but
+// this option is sometimes more convenient.
+static cl::opt<bool>
+EnableScopedNoAlias("enable-scoped-noalias", cl::init(true));
+
+namespace {
+/// AliasScopeNode - This is a simple wrapper around an MDNode which provides
+/// a higher-level interface by hiding the details of how alias analysis
+/// information is encoded in its operands.
+class AliasScopeNode {
+ const MDNode *Node;
+
+public:
+ AliasScopeNode() : Node(0) {}
+ explicit AliasScopeNode(const MDNode *N) : Node(N) {}
+
+ /// getNode - Get the MDNode for this AliasScopeNode.
+ const MDNode *getNode() const { return Node; }
+
+ /// getDomain - Get the MDNode for this AliasScopeNode's domain.
+ const MDNode *getDomain() const {
+ if (Node->getNumOperands() < 2)
+ return nullptr;
+ return dyn_cast_or_null<MDNode>(Node->getOperand(1));
+ }
+};
+
+/// ScopedNoAliasAA - This is a simple alias analysis
+/// implementation that uses scoped-noalias metadata to answer queries.
+class ScopedNoAliasAA : public ImmutablePass, public AliasAnalysis {
+public:
+ static char ID; // Class identification, replacement for typeinfo
+ ScopedNoAliasAA() : ImmutablePass(ID) {
+ initializeScopedNoAliasAAPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override { InitializeAliasAnalysis(this); }
+
+ /// getAdjustedAnalysisPointer - This method is used when a pass implements
+ /// an analysis interface through multiple inheritance. If needed, it
+ /// should override this to adjust the this pointer as needed for the
+ /// specified pass info.
+ void *getAdjustedAnalysisPointer(const void *PI) override {
+ if (PI == &AliasAnalysis::ID)
+ return (AliasAnalysis*)this;
+ return this;
+ }
+
+protected:
+ bool mayAliasInScopes(const MDNode *Scopes, const MDNode *NoAlias) const;
+ void collectMDInDomain(const MDNode *List, const MDNode *Domain,
+ SmallPtrSetImpl<const MDNode *> &Nodes) const;
+
+private:
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ AliasResult alias(const Location &LocA, const Location &LocB) override;
+ bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
+ ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
+ ModRefBehavior getModRefBehavior(const Function *F) override;
+ ModRefResult getModRefInfo(ImmutableCallSite CS,
+ const Location &Loc) override;
+ ModRefResult getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) override;
+};
+} // End of anonymous namespace
+
+// Register this pass...
+char ScopedNoAliasAA::ID = 0;
+INITIALIZE_AG_PASS(ScopedNoAliasAA, AliasAnalysis, "scoped-noalias",
+ "Scoped NoAlias Alias Analysis", false, true, false)
+
+ImmutablePass *llvm::createScopedNoAliasAAPass() {
+ return new ScopedNoAliasAA();
+}
+
+void
+ScopedNoAliasAA::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AliasAnalysis::getAnalysisUsage(AU);
+}
+
+void
+ScopedNoAliasAA::collectMDInDomain(const MDNode *List, const MDNode *Domain,
+ SmallPtrSetImpl<const MDNode *> &Nodes) const {
+ for (unsigned i = 0, ie = List->getNumOperands(); i != ie; ++i)
+ if (const MDNode *MD = dyn_cast<MDNode>(List->getOperand(i)))
+ if (AliasScopeNode(MD).getDomain() == Domain)
+ Nodes.insert(MD);
+}
+
+bool
+ScopedNoAliasAA::mayAliasInScopes(const MDNode *Scopes,
+ const MDNode *NoAlias) const {
+ if (!Scopes || !NoAlias)
+ return true;
+
+ // Collect the set of scope domains relevant to the noalias scopes.
+ SmallPtrSet<const MDNode *, 16> Domains;
+ for (unsigned i = 0, ie = NoAlias->getNumOperands(); i != ie; ++i)
+ if (const MDNode *NAMD = dyn_cast<MDNode>(NoAlias->getOperand(i)))
+ if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
+ Domains.insert(Domain);
+
+ // We alias unless, for some domain, the set of noalias scopes in that domain
+ // is a superset of the set of alias scopes in that domain.
+ for (const MDNode *Domain : Domains) {
+ SmallPtrSet<const MDNode *, 16> NANodes, ScopeNodes;
+ collectMDInDomain(NoAlias, Domain, NANodes);
+ collectMDInDomain(Scopes, Domain, ScopeNodes);
+ if (!ScopeNodes.size())
+ continue;
+
+ // To not alias, all of the nodes in ScopeNodes must be in NANodes.
+ bool FoundAll = true;
+ for (const MDNode *SMD : ScopeNodes)
+ if (!NANodes.count(SMD)) {
+ FoundAll = false;
+ break;
+ }
+
+ if (FoundAll)
+ return false;
+ }
+
+ return true;
+}
+
+AliasAnalysis::AliasResult
+ScopedNoAliasAA::alias(const Location &LocA, const Location &LocB) {
+ if (!EnableScopedNoAlias)
+ return AliasAnalysis::alias(LocA, LocB);
+
+ // Get the attached MDNodes.
+ const MDNode *AScopes = LocA.AATags.Scope,
+ *BScopes = LocB.AATags.Scope;
+
+ const MDNode *ANoAlias = LocA.AATags.NoAlias,
+ *BNoAlias = LocB.AATags.NoAlias;
+
+ if (!mayAliasInScopes(AScopes, BNoAlias))
+ return NoAlias;
+
+ if (!mayAliasInScopes(BScopes, ANoAlias))
+ return NoAlias;
+
+ // If they may alias, chain to the next AliasAnalysis.
+ return AliasAnalysis::alias(LocA, LocB);
+}
+
+bool ScopedNoAliasAA::pointsToConstantMemory(const Location &Loc,
+ bool OrLocal) {
+ return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
+}
+
+AliasAnalysis::ModRefBehavior
+ScopedNoAliasAA::getModRefBehavior(ImmutableCallSite CS) {
+ return AliasAnalysis::getModRefBehavior(CS);
+}
+
+AliasAnalysis::ModRefBehavior
+ScopedNoAliasAA::getModRefBehavior(const Function *F) {
+ return AliasAnalysis::getModRefBehavior(F);
+}
+
+AliasAnalysis::ModRefResult
+ScopedNoAliasAA::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
+ if (!EnableScopedNoAlias)
+ return AliasAnalysis::getModRefInfo(CS, Loc);
+
+ if (!mayAliasInScopes(Loc.AATags.Scope, CS.getInstruction()->getMetadata(
+ LLVMContext::MD_noalias)))
+ return NoModRef;
+
+ if (!mayAliasInScopes(
+ CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope),
+ Loc.AATags.NoAlias))
+ return NoModRef;
+
+ return AliasAnalysis::getModRefInfo(CS, Loc);
+}
+
+AliasAnalysis::ModRefResult
+ScopedNoAliasAA::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
+ if (!EnableScopedNoAlias)
+ return AliasAnalysis::getModRefInfo(CS1, CS2);
+
+ if (!mayAliasInScopes(
+ CS1.getInstruction()->getMetadata(LLVMContext::MD_alias_scope),
+ CS2.getInstruction()->getMetadata(LLVMContext::MD_noalias)))
+ return NoModRef;
+
+ if (!mayAliasInScopes(
+ CS2.getInstruction()->getMetadata(LLVMContext::MD_alias_scope),
+ CS1.getInstruction()->getMetadata(LLVMContext::MD_noalias)))
+ return NoModRef;
+
+ return AliasAnalysis::getModRefInfo(CS1, CS2);
+}
+
diff --git a/contrib/llvm/lib/Analysis/StratifiedSets.h b/contrib/llvm/lib/Analysis/StratifiedSets.h
new file mode 100644
index 0000000..fd3fbc0
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/StratifiedSets.h
@@ -0,0 +1,692 @@
+//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STRATIFIEDSETS_H
+#define LLVM_ADT_STRATIFIEDSETS_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Compiler.h"
+#include <bitset>
+#include <cassert>
+#include <cmath>
+#include <limits>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+// \brief An index into Stratified Sets.
+typedef unsigned StratifiedIndex;
+// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
+// ~1M sets exist.
+
+// \brief Container of information related to a value in a StratifiedSet.
+struct StratifiedInfo {
+ StratifiedIndex Index;
+ // For field sensitivity, etc. we can tack attributes on to this struct.
+};
+
+// The number of attributes that StratifiedAttrs should contain. Attributes are
+// described below, and 32 was an arbitrary choice because it fits nicely in 32
+// bits (because we use a bitset for StratifiedAttrs).
+static const unsigned NumStratifiedAttrs = 32;
+
+// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
+// may use for various purposes. These also have the special property of that
+// they are merged down. So, if set A is above set B, and one decides to set an
+// attribute in set A, then the attribute will automatically be set in set B.
+typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
+
+// \brief A "link" between two StratifiedSets.
+struct StratifiedLink {
+ // \brief This is a value used to signify "does not exist" where
+ // the StratifiedIndex type is used. This is used instead of
+ // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
+ // eat up a considerable amount of extra memory, after struct
+ // padding/alignment is taken into account.
+ static const StratifiedIndex SetSentinel;
+
+ // \brief The index for the set "above" current
+ StratifiedIndex Above;
+
+ // \brief The link for the set "below" current
+ StratifiedIndex Below;
+
+ // \brief Attributes for these StratifiedSets.
+ StratifiedAttrs Attrs;
+
+ StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
+
+ bool hasBelow() const { return Below != SetSentinel; }
+ bool hasAbove() const { return Above != SetSentinel; }
+
+ void clearBelow() { Below = SetSentinel; }
+ void clearAbove() { Above = SetSentinel; }
+};
+
+// \brief These are stratified sets, as described in "Fast algorithms for
+// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
+// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
+// of Value*s. If two Value*s are in the same set, or if both sets have
+// overlapping attributes, then the Value*s are said to alias.
+//
+// Sets may be related by position, meaning that one set may be considered as
+// above or below another. In CFL Alias Analysis, this gives us an indication
+// of how two variables are related; if the set of variable A is below a set
+// containing variable B, then at some point, a variable that has interacted
+// with B (or B itself) was either used in order to extract the variable A, or
+// was used as storage of variable A.
+//
+// Sets may also have attributes (as noted above). These attributes are
+// generally used for noting whether a variable in the set has interacted with
+// a variable whose origins we don't quite know (i.e. globals/arguments), or if
+// the variable may have had operations performed on it (modified in a function
+// call). All attributes that exist in a set A must exist in all sets marked as
+// below set A.
+template <typename T> class StratifiedSets {
+public:
+ StratifiedSets() {}
+
+ StratifiedSets(DenseMap<T, StratifiedInfo> Map,
+ std::vector<StratifiedLink> Links)
+ : Values(std::move(Map)), Links(std::move(Links)) {}
+
+ StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
+
+ StratifiedSets &operator=(StratifiedSets<T> &&Other) {
+ Values = std::move(Other.Values);
+ Links = std::move(Other.Links);
+ return *this;
+ }
+
+ Optional<StratifiedInfo> find(const T &Elem) const {
+ auto Iter = Values.find(Elem);
+ if (Iter == Values.end()) {
+ return NoneType();
+ }
+ return Iter->second;
+ }
+
+ const StratifiedLink &getLink(StratifiedIndex Index) const {
+ assert(inbounds(Index));
+ return Links[Index];
+ }
+
+private:
+ DenseMap<T, StratifiedInfo> Values;
+ std::vector<StratifiedLink> Links;
+
+ bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
+};
+
+// \brief Generic Builder class that produces StratifiedSets instances.
+//
+// The goal of this builder is to efficiently produce correct StratifiedSets
+// instances. To this end, we use a few tricks:
+// > Set chains (A method for linking sets together)
+// > Set remaps (A method for marking a set as an alias [irony?] of another)
+//
+// ==== Set chains ====
+// This builder has a notion of some value A being above, below, or with some
+// other value B:
+// > The `A above B` relationship implies that there is a reference edge going
+// from A to B. Namely, it notes that A can store anything in B's set.
+// > The `A below B` relationship is the opposite of `A above B`. It implies
+// that there's a dereference edge going from A to B.
+// > The `A with B` relationship states that there's an assignment edge going
+// from A to B, and that A and B should be treated as equals.
+//
+// As an example, take the following code snippet:
+//
+// %a = alloca i32, align 4
+// %ap = alloca i32*, align 8
+// %app = alloca i32**, align 8
+// store %a, %ap
+// store %ap, %app
+// %aw = getelementptr %ap, 0
+//
+// Given this, the follow relations exist:
+// - %a below %ap & %ap above %a
+// - %ap below %app & %app above %ap
+// - %aw with %ap & %ap with %aw
+//
+// These relations produce the following sets:
+// [{%a}, {%ap, %aw}, {%app}]
+//
+// ...Which states that the only MayAlias relationship in the above program is
+// between %ap and %aw.
+//
+// Life gets more complicated when we actually have logic in our programs. So,
+// we either must remove this logic from our programs, or make consessions for
+// it in our AA algorithms. In this case, we have decided to select the latter
+// option.
+//
+// First complication: Conditionals
+// Motivation:
+// %ad = alloca int, align 4
+// %a = alloca int*, align 8
+// %b = alloca int*, align 8
+// %bp = alloca int**, align 8
+// %c = call i1 @SomeFunc()
+// %k = select %c, %ad, %bp
+// store %ad, %a
+// store %b, %bp
+//
+// %k has 'with' edges to both %a and %b, which ordinarily would not be linked
+// together. So, we merge the set that contains %a with the set that contains
+// %b. We then recursively merge the set above %a with the set above %b, and
+// the set below %a with the set below %b, etc. Ultimately, the sets for this
+// program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
+// {%a, %b, %c} is below {%ad}.
+//
+// Second complication: Arbitrary casts
+// Motivation:
+// %ip = alloca int*, align 8
+// %ipp = alloca int**, align 8
+// %i = bitcast ipp to int
+// store %ip, %ipp
+// store %i, %ip
+//
+// This is impossible to construct with any of the rules above, because a set
+// containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
+// to be below the set with %ip, and the set with %ip is supposed to be below
+// the set with %ipp. Because we don't allow circular relationships like this,
+// we merge all concerned sets into one. So, the above code would generate a
+// single StratifiedSet: {%ip, %ipp, %i}.
+//
+// ==== Set remaps ====
+// More of an implementation detail than anything -- when merging sets, we need
+// to update the numbers of all of the elements mapped to those sets. Rather
+// than doing this at each merge, we note in the BuilderLink structure that a
+// remap has occurred, and use this information so we can defer renumbering set
+// elements until build time.
+template <typename T> class StratifiedSetsBuilder {
+ // \brief Represents a Stratified Set, with information about the Stratified
+ // Set above it, the set below it, and whether the current set has been
+ // remapped to another.
+ struct BuilderLink {
+ const StratifiedIndex Number;
+
+ BuilderLink(StratifiedIndex N) : Number(N) {
+ Remap = StratifiedLink::SetSentinel;
+ }
+
+ bool hasAbove() const {
+ assert(!isRemapped());
+ return Link.hasAbove();
+ }
+
+ bool hasBelow() const {
+ assert(!isRemapped());
+ return Link.hasBelow();
+ }
+
+ void setBelow(StratifiedIndex I) {
+ assert(!isRemapped());
+ Link.Below = I;
+ }
+
+ void setAbove(StratifiedIndex I) {
+ assert(!isRemapped());
+ Link.Above = I;
+ }
+
+ void clearBelow() {
+ assert(!isRemapped());
+ Link.clearBelow();
+ }
+
+ void clearAbove() {
+ assert(!isRemapped());
+ Link.clearAbove();
+ }
+
+ StratifiedIndex getBelow() const {
+ assert(!isRemapped());
+ assert(hasBelow());
+ return Link.Below;
+ }
+
+ StratifiedIndex getAbove() const {
+ assert(!isRemapped());
+ assert(hasAbove());
+ return Link.Above;
+ }
+
+ StratifiedAttrs &getAttrs() {
+ assert(!isRemapped());
+ return Link.Attrs;
+ }
+
+ void setAttr(unsigned index) {
+ assert(!isRemapped());
+ assert(index < NumStratifiedAttrs);
+ Link.Attrs.set(index);
+ }
+
+ void setAttrs(const StratifiedAttrs &other) {
+ assert(!isRemapped());
+ Link.Attrs |= other;
+ }
+
+ bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
+
+ // \brief For initial remapping to another set
+ void remapTo(StratifiedIndex Other) {
+ assert(!isRemapped());
+ Remap = Other;
+ }
+
+ StratifiedIndex getRemapIndex() const {
+ assert(isRemapped());
+ return Remap;
+ }
+
+ // \brief Should only be called when we're already remapped.
+ void updateRemap(StratifiedIndex Other) {
+ assert(isRemapped());
+ Remap = Other;
+ }
+
+ // \brief Prefer the above functions to calling things directly on what's
+ // returned from this -- they guard against unexpected calls when the
+ // current BuilderLink is remapped.
+ const StratifiedLink &getLink() const { return Link; }
+
+ private:
+ StratifiedLink Link;
+ StratifiedIndex Remap;
+ };
+
+ // \brief This function performs all of the set unioning/value renumbering
+ // that we've been putting off, and generates a vector<StratifiedLink> that
+ // may be placed in a StratifiedSets instance.
+ void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
+ DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
+ for (auto &Link : Links) {
+ if (Link.isRemapped()) {
+ continue;
+ }
+
+ StratifiedIndex Number = StratLinks.size();
+ Remaps.insert(std::make_pair(Link.Number, Number));
+ StratLinks.push_back(Link.getLink());
+ }
+
+ for (auto &Link : StratLinks) {
+ if (Link.hasAbove()) {
+ auto &Above = linksAt(Link.Above);
+ auto Iter = Remaps.find(Above.Number);
+ assert(Iter != Remaps.end());
+ Link.Above = Iter->second;
+ }
+
+ if (Link.hasBelow()) {
+ auto &Below = linksAt(Link.Below);
+ auto Iter = Remaps.find(Below.Number);
+ assert(Iter != Remaps.end());
+ Link.Below = Iter->second;
+ }
+ }
+
+ for (auto &Pair : Values) {
+ auto &Info = Pair.second;
+ auto &Link = linksAt(Info.Index);
+ auto Iter = Remaps.find(Link.Number);
+ assert(Iter != Remaps.end());
+ Info.Index = Iter->second;
+ }
+ }
+
+ // \brief There's a guarantee in StratifiedLink where all bits set in a
+ // Link.externals will be set in all Link.externals "below" it.
+ static void propagateAttrs(std::vector<StratifiedLink> &Links) {
+ const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
+ const auto *Link = &Links[Idx];
+ while (Link->hasAbove()) {
+ Idx = Link->Above;
+ Link = &Links[Idx];
+ }
+ return Idx;
+ };
+
+ SmallSet<StratifiedIndex, 16> Visited;
+ for (unsigned I = 0, E = Links.size(); I < E; ++I) {
+ auto CurrentIndex = getHighestParentAbove(I);
+ if (!Visited.insert(CurrentIndex).second) {
+ continue;
+ }
+
+ while (Links[CurrentIndex].hasBelow()) {
+ auto &CurrentBits = Links[CurrentIndex].Attrs;
+ auto NextIndex = Links[CurrentIndex].Below;
+ auto &NextBits = Links[NextIndex].Attrs;
+ NextBits |= CurrentBits;
+ CurrentIndex = NextIndex;
+ }
+ }
+ }
+
+public:
+ // \brief Builds a StratifiedSet from the information we've been given since
+ // either construction or the prior build() call.
+ StratifiedSets<T> build() {
+ std::vector<StratifiedLink> StratLinks;
+ finalizeSets(StratLinks);
+ propagateAttrs(StratLinks);
+ Links.clear();
+ return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
+ }
+
+ std::size_t size() const { return Values.size(); }
+ std::size_t numSets() const { return Links.size(); }
+
+ bool has(const T &Elem) const { return get(Elem).hasValue(); }
+
+ bool add(const T &Main) {
+ if (get(Main).hasValue())
+ return false;
+
+ auto NewIndex = getNewUnlinkedIndex();
+ return addAtMerging(Main, NewIndex);
+ }
+
+ // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
+ // set above "Main". There are some cases where this is not possible (see
+ // above), so we merge them such that ToAdd and Main are in the same set.
+ bool addAbove(const T &Main, const T &ToAdd) {
+ assert(has(Main));
+ auto Index = *indexOf(Main);
+ if (!linksAt(Index).hasAbove())
+ addLinkAbove(Index);
+
+ auto Above = linksAt(Index).getAbove();
+ return addAtMerging(ToAdd, Above);
+ }
+
+ // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
+ // set below "Main". There are some cases where this is not possible (see
+ // above), so we merge them such that ToAdd and Main are in the same set.
+ bool addBelow(const T &Main, const T &ToAdd) {
+ assert(has(Main));
+ auto Index = *indexOf(Main);
+ if (!linksAt(Index).hasBelow())
+ addLinkBelow(Index);
+
+ auto Below = linksAt(Index).getBelow();
+ return addAtMerging(ToAdd, Below);
+ }
+
+ bool addWith(const T &Main, const T &ToAdd) {
+ assert(has(Main));
+ auto MainIndex = *indexOf(Main);
+ return addAtMerging(ToAdd, MainIndex);
+ }
+
+ void noteAttribute(const T &Main, unsigned AttrNum) {
+ assert(has(Main));
+ assert(AttrNum < StratifiedLink::SetSentinel);
+ auto *Info = *get(Main);
+ auto &Link = linksAt(Info->Index);
+ Link.setAttr(AttrNum);
+ }
+
+ void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
+ assert(has(Main));
+ auto *Info = *get(Main);
+ auto &Link = linksAt(Info->Index);
+ Link.setAttrs(NewAttrs);
+ }
+
+ StratifiedAttrs getAttributes(const T &Main) {
+ assert(has(Main));
+ auto *Info = *get(Main);
+ auto *Link = &linksAt(Info->Index);
+ auto Attrs = Link->getAttrs();
+ while (Link->hasAbove()) {
+ Link = &linksAt(Link->getAbove());
+ Attrs |= Link->getAttrs();
+ }
+
+ return Attrs;
+ }
+
+ bool getAttribute(const T &Main, unsigned AttrNum) {
+ assert(AttrNum < StratifiedLink::SetSentinel);
+ auto Attrs = getAttributes(Main);
+ return Attrs[AttrNum];
+ }
+
+ // \brief Gets the attributes that have been applied to the set that Main
+ // belongs to. It ignores attributes in any sets above the one that Main
+ // resides in.
+ StratifiedAttrs getRawAttributes(const T &Main) {
+ assert(has(Main));
+ auto *Info = *get(Main);
+ auto &Link = linksAt(Info->Index);
+ return Link.getAttrs();
+ }
+
+ // \brief Gets an attribute from the attributes that have been applied to the
+ // set that Main belongs to. It ignores attributes in any sets above the one
+ // that Main resides in.
+ bool getRawAttribute(const T &Main, unsigned AttrNum) {
+ assert(AttrNum < StratifiedLink::SetSentinel);
+ auto Attrs = getRawAttributes(Main);
+ return Attrs[AttrNum];
+ }
+
+private:
+ DenseMap<T, StratifiedInfo> Values;
+ std::vector<BuilderLink> Links;
+
+ // \brief Adds the given element at the given index, merging sets if
+ // necessary.
+ bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
+ StratifiedInfo Info = {Index};
+ auto Pair = Values.insert(std::make_pair(ToAdd, Info));
+ if (Pair.second)
+ return true;
+
+ auto &Iter = Pair.first;
+ auto &IterSet = linksAt(Iter->second.Index);
+ auto &ReqSet = linksAt(Index);
+
+ // Failed to add where we wanted to. Merge the sets.
+ if (&IterSet != &ReqSet)
+ merge(IterSet.Number, ReqSet.Number);
+
+ return false;
+ }
+
+ // \brief Gets the BuilderLink at the given index, taking set remapping into
+ // account.
+ BuilderLink &linksAt(StratifiedIndex Index) {
+ auto *Start = &Links[Index];
+ if (!Start->isRemapped())
+ return *Start;
+
+ auto *Current = Start;
+ while (Current->isRemapped())
+ Current = &Links[Current->getRemapIndex()];
+
+ auto NewRemap = Current->Number;
+
+ // Run through everything that has yet to be updated, and update them to
+ // remap to NewRemap
+ Current = Start;
+ while (Current->isRemapped()) {
+ auto *Next = &Links[Current->getRemapIndex()];
+ Current->updateRemap(NewRemap);
+ Current = Next;
+ }
+
+ return *Current;
+ }
+
+ // \brief Merges two sets into one another. Assumes that these sets are not
+ // already one in the same
+ void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
+ assert(inbounds(Idx1) && inbounds(Idx2));
+ assert(&linksAt(Idx1) != &linksAt(Idx2) &&
+ "Merging a set into itself is not allowed");
+
+ // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
+ // both the
+ // given sets, and all sets between them, into one.
+ if (tryMergeUpwards(Idx1, Idx2))
+ return;
+
+ if (tryMergeUpwards(Idx2, Idx1))
+ return;
+
+ // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
+ // We therefore need to merge the two chains together.
+ mergeDirect(Idx1, Idx2);
+ }
+
+ // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
+ // traversing above or below the set at `Idx2`.
+ void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
+ assert(inbounds(Idx1) && inbounds(Idx2));
+
+ auto *LinksInto = &linksAt(Idx1);
+ auto *LinksFrom = &linksAt(Idx2);
+ // Merging everything above LinksInto then proceeding to merge everything
+ // below LinksInto becomes problematic, so we go as far "up" as possible!
+ while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
+ LinksInto = &linksAt(LinksInto->getAbove());
+ LinksFrom = &linksAt(LinksFrom->getAbove());
+ }
+
+ if (LinksFrom->hasAbove()) {
+ LinksInto->setAbove(LinksFrom->getAbove());
+ auto &NewAbove = linksAt(LinksInto->getAbove());
+ NewAbove.setBelow(LinksInto->Number);
+ }
+
+ // Merging strategy:
+ // > If neither has links below, stop.
+ // > If only `LinksInto` has links below, stop.
+ // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
+ // match `LinksFrom.Below`
+ // > If both have links above, deal with those next.
+ while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
+ auto &FromAttrs = LinksFrom->getAttrs();
+ LinksInto->setAttrs(FromAttrs);
+
+ // Remap needs to happen after getBelow(), but before
+ // assignment of LinksFrom
+ auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
+ LinksFrom->remapTo(LinksInto->Number);
+ LinksFrom = NewLinksFrom;
+ LinksInto = &linksAt(LinksInto->getBelow());
+ }
+
+ if (LinksFrom->hasBelow()) {
+ LinksInto->setBelow(LinksFrom->getBelow());
+ auto &NewBelow = linksAt(LinksInto->getBelow());
+ NewBelow.setAbove(LinksInto->Number);
+ }
+
+ LinksFrom->remapTo(LinksInto->Number);
+ }
+
+ // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
+ // If so, it will merge lowerIndex with upperIndex (and all of the sets
+ // between) and return true. Otherwise, it will return false.
+ bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
+ assert(inbounds(LowerIndex) && inbounds(UpperIndex));
+ auto *Lower = &linksAt(LowerIndex);
+ auto *Upper = &linksAt(UpperIndex);
+ if (Lower == Upper)
+ return true;
+
+ SmallVector<BuilderLink *, 8> Found;
+ auto *Current = Lower;
+ auto Attrs = Current->getAttrs();
+ while (Current->hasAbove() && Current != Upper) {
+ Found.push_back(Current);
+ Attrs |= Current->getAttrs();
+ Current = &linksAt(Current->getAbove());
+ }
+
+ if (Current != Upper)
+ return false;
+
+ Upper->setAttrs(Attrs);
+
+ if (Lower->hasBelow()) {
+ auto NewBelowIndex = Lower->getBelow();
+ Upper->setBelow(NewBelowIndex);
+ auto &NewBelow = linksAt(NewBelowIndex);
+ NewBelow.setAbove(UpperIndex);
+ } else {
+ Upper->clearBelow();
+ }
+
+ for (const auto &Ptr : Found)
+ Ptr->remapTo(Upper->Number);
+
+ return true;
+ }
+
+ Optional<const StratifiedInfo *> get(const T &Val) const {
+ auto Result = Values.find(Val);
+ if (Result == Values.end())
+ return NoneType();
+ return &Result->second;
+ }
+
+ Optional<StratifiedInfo *> get(const T &Val) {
+ auto Result = Values.find(Val);
+ if (Result == Values.end())
+ return NoneType();
+ return &Result->second;
+ }
+
+ Optional<StratifiedIndex> indexOf(const T &Val) {
+ auto MaybeVal = get(Val);
+ if (!MaybeVal.hasValue())
+ return NoneType();
+ auto *Info = *MaybeVal;
+ auto &Link = linksAt(Info->Index);
+ return Link.Number;
+ }
+
+ StratifiedIndex addLinkBelow(StratifiedIndex Set) {
+ auto At = addLinks();
+ Links[Set].setBelow(At);
+ Links[At].setAbove(Set);
+ return At;
+ }
+
+ StratifiedIndex addLinkAbove(StratifiedIndex Set) {
+ auto At = addLinks();
+ Links[At].setBelow(Set);
+ Links[Set].setAbove(At);
+ return At;
+ }
+
+ StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
+
+ StratifiedIndex addLinks() {
+ auto Link = Links.size();
+ Links.push_back(BuilderLink(Link));
+ return Link;
+ }
+
+ bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
+};
+}
+#endif // LLVM_ADT_STRATIFIEDSETS_H
diff --git a/contrib/llvm/lib/Analysis/TargetTransformInfo.cpp b/contrib/llvm/lib/Analysis/TargetTransformInfo.cpp
index cdb0b79..ef3909b 100644
--- a/contrib/llvm/lib/Analysis/TargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Analysis/TargetTransformInfo.cpp
@@ -87,9 +87,10 @@ bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return PrevTTI->isLoweredToCall(F);
}
-void TargetTransformInfo::getUnrollingPreferences(Loop *L,
- UnrollingPreferences &UP) const {
- PrevTTI->getUnrollingPreferences(L, UP);
+void
+TargetTransformInfo::getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const {
+ PrevTTI->getUnrollingPreferences(F, L, UP);
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
@@ -100,6 +101,17 @@ bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return PrevTTI->isLegalICmpImmediate(Imm);
}
+bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
+ int Consecutive) const {
+ return false;
+}
+
+bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
+ int Consecutive) const {
+ return false;
+}
+
+
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
@@ -167,15 +179,16 @@ unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return PrevTTI->getRegisterBitWidth(Vector);
}
-unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
- return PrevTTI->getMaximumUnrollFactor();
+unsigned TargetTransformInfo::getMaxInterleaveFactor() const {
+ return PrevTTI->getMaxInterleaveFactor();
}
-unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
- Type *Ty,
- OperandValueKind Op1Info,
- OperandValueKind Op2Info) const {
- return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
+unsigned TargetTransformInfo::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
+ OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) const {
+ return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
+ Opd1PropInfo, Opd2PropInfo);
}
unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
@@ -206,7 +219,6 @@ unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
- ;
}
unsigned
@@ -230,6 +242,11 @@ unsigned TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty,
return PrevTTI->getReductionCost(Opcode, Ty, IsPairwise);
}
+unsigned TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys)
+ const {
+ return PrevTTI->getCostOfKeepingLiveOverCall(Tys);
+}
+
namespace {
struct NoTTI final : ImmutablePass, TargetTransformInfo {
@@ -239,7 +256,7 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
initializeNoTTIPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() override {
+ void initializePass() override {
// Note that this subclass is special, and must *not* call initializeTTI as
// it does not chain.
TopTTI = this;
@@ -248,7 +265,7 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
DL = DLP ? &DLP->getDataLayout() : nullptr;
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
// Note that this subclass is special, and must *not* call
// TTI::getAnalysisUsage as it breaks the recursion.
}
@@ -257,7 +274,7 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
- virtual void *getAdjustedAnalysisPointer(const void *ID) override {
+ void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
@@ -385,6 +402,8 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
// FIXME: This is wrong for libc intrinsics.
return TCC_Basic;
+ case Intrinsic::annotation:
+ case Intrinsic::assume:
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::invariant_start:
@@ -394,6 +413,10 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
case Intrinsic::objectsize:
case Intrinsic::ptr_annotation:
case Intrinsic::var_annotation:
+ case Intrinsic::experimental_gc_result_int:
+ case Intrinsic::experimental_gc_result_float:
+ case Intrinsic::experimental_gc_result_ptr:
+ case Intrinsic::experimental_gc_relocate:
// These intrinsics don't actually represent code after lowering.
return TCC_Free;
}
@@ -466,6 +489,8 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
// These will all likely lower to a single selection DAG node.
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
+ Name == "fmin" || Name == "fminf" || Name == "fminl" ||
+ Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
return false;
@@ -480,8 +505,8 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
return true;
}
- void getUnrollingPreferences(Loop *, UnrollingPreferences &) const override {
- }
+ void getUnrollingPreferences(const Function *, Loop *,
+ UnrollingPreferences &) const override {}
bool isLegalAddImmediate(int64_t Imm) const override {
return false;
@@ -558,12 +583,13 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
return 32;
}
- unsigned getMaximumUnrollFactor() const override {
+ unsigned getMaxInterleaveFactor() const override {
return 1;
}
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
- OperandValueKind) const override {
+ OperandValueKind, OperandValueProperties,
+ OperandValueProperties) const override {
return 1;
}
@@ -612,6 +638,11 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
unsigned getReductionCost(unsigned, Type *, bool) const override {
return 1;
}
+
+ unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override {
+ return 0;
+ }
+
};
} // end anonymous namespace
diff --git a/contrib/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp
index f36f6f8..085ce92 100644
--- a/contrib/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp
+++ b/contrib/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp
@@ -167,7 +167,7 @@ namespace {
bool TypeIsImmutable() const {
if (Node->getNumOperands() < 3)
return false;
- ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
+ ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
if (!CI)
return false;
return CI->getValue()[0];
@@ -194,7 +194,7 @@ namespace {
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
}
uint64_t getOffset() const {
- return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
+ return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
}
/// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
/// objects which are not modified (by any means) in the context where this
@@ -202,7 +202,7 @@ namespace {
bool TypeIsImmutable() const {
if (Node->getNumOperands() < 4)
return false;
- ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
+ ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
if (!CI)
return false;
return CI->getValue()[0];
@@ -233,8 +233,10 @@ namespace {
// Fast path for a scalar type node and a struct type node with a single
// field.
if (Node->getNumOperands() <= 3) {
- uint64_t Cur = Node->getNumOperands() == 2 ? 0 :
- cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
+ uint64_t Cur = Node->getNumOperands() == 2
+ ? 0
+ : mdconst::extract<ConstantInt>(Node->getOperand(2))
+ ->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
if (!P)
@@ -246,8 +248,8 @@ namespace {
// the current offset is bigger than the given offset.
unsigned TheIdx = 0;
for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
- uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
- getZExtValue();
+ uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
+ ->getZExtValue();
if (Cur > Offset) {
assert(Idx >= 3 &&
"TBAAStructTypeNode::getParent should have an offset match!");
@@ -258,8 +260,8 @@ namespace {
// Move along the last field.
if (TheIdx == 0)
TheIdx = Node->getNumOperands() - 2;
- uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
- getZExtValue();
+ uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
+ ->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
if (!P)
@@ -454,9 +456,9 @@ TypeBasedAliasAnalysis::alias(const Location &LocA,
// Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
// be conservative.
- const MDNode *AM = LocA.TBAATag;
+ const MDNode *AM = LocA.AATags.TBAA;
if (!AM) return AliasAnalysis::alias(LocA, LocB);
- const MDNode *BM = LocB.TBAATag;
+ const MDNode *BM = LocB.AATags.TBAA;
if (!BM) return AliasAnalysis::alias(LocA, LocB);
// If they may alias, chain to the next AliasAnalysis.
@@ -472,7 +474,7 @@ bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
if (!EnableTBAA)
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
- const MDNode *M = Loc.TBAATag;
+ const MDNode *M = Loc.AATags.TBAA;
if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
// If this is an "immutable" type, we can assume the pointer is pointing
@@ -513,9 +515,9 @@ TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
if (!EnableTBAA)
return AliasAnalysis::getModRefInfo(CS, Loc);
- if (const MDNode *L = Loc.TBAATag)
+ if (const MDNode *L = Loc.AATags.TBAA)
if (const MDNode *M =
- CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
+ CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(L, M))
return NoModRef;
@@ -529,9 +531,9 @@ TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
return AliasAnalysis::getModRefInfo(CS1, CS2);
if (const MDNode *M1 =
- CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
+ CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (const MDNode *M2 =
- CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
+ CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(M1, M2))
return NoModRef;
@@ -608,6 +610,28 @@ MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
return nullptr;
// We need to convert from a type node to a tag node.
Type *Int64 = IntegerType::get(A->getContext(), 64);
- Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
+ Metadata *Ops[3] = {Ret, Ret,
+ ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
return MDNode::get(A->getContext(), Ops);
}
+
+void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
+ if (Merge)
+ N.TBAA =
+ MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
+ else
+ N.TBAA = getMetadata(LLVMContext::MD_tbaa);
+
+ if (Merge)
+ N.Scope =
+ MDNode::intersect(N.Scope, getMetadata(LLVMContext::MD_alias_scope));
+ else
+ N.Scope = getMetadata(LLVMContext::MD_alias_scope);
+
+ if (Merge)
+ N.NoAlias =
+ MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
+ else
+ N.NoAlias = getMetadata(LLVMContext::MD_noalias);
+}
+
diff --git a/contrib/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm/lib/Analysis/ValueTracking.cpp
index b6a3c36..5d90917 100644
--- a/contrib/llvm/lib/Analysis/ValueTracking.cpp
+++ b/contrib/llvm/lib/Analysis/ValueTracking.cpp
@@ -14,12 +14,14 @@
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
@@ -37,8 +39,8 @@ using namespace llvm::PatternMatch;
const unsigned MaxDepth = 6;
-/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
-/// unknown returns 0). For vector types, returns the element type's bitwidth.
+/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
+/// 0). For vector types, returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
@@ -46,10 +48,123 @@ static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
}
+// Many of these functions have internal versions that take an assumption
+// exclusion set. This is because of the potential for mutual recursion to
+// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
+// classic case of this is assume(x = y), which will attempt to determine
+// bits in x from bits in y, which will attempt to determine bits in y from
+// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
+// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
+// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
+typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
+
+namespace {
+// Simplifying using an assume can only be done in a particular control-flow
+// context (the context instruction provides that context). If an assume and
+// the context instruction are not in the same block then the DT helps in
+// figuring out if we can use it.
+struct Query {
+ ExclInvsSet ExclInvs;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
+ const DominatorTree *DT;
+
+ Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
+ const DominatorTree *DT = nullptr)
+ : AC(AC), CxtI(CxtI), DT(DT) {}
+
+ Query(const Query &Q, const Value *NewExcl)
+ : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
+ ExclInvs.insert(NewExcl);
+ }
+};
+} // end anonymous namespace
+
+// Given the provided Value and, potentially, a context instruction, return
+// the preferred context instruction (if any).
+static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
+ // If we've been provided with a context instruction, then use that (provided
+ // it has been inserted).
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ // If the value is really an already-inserted instruction, then use that.
+ CxtI = dyn_cast<Instruction>(V);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ return nullptr;
+}
+
+static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static bool MaskedValueIsZero(Value *V, const APInt &Mask,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q);
+
+bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT) {
+ return ::MaskedValueIsZero(V, Mask, TD, Depth,
+ Query(AC, safeCxtI(V, CxtI), DT));
+}
+
+static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
+ unsigned Depth, const Query &Q);
+
+unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT));
+}
+
static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
// We know that the top bits of C-X are clear if X contains less bits
@@ -60,7 +175,7 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -76,55 +191,51 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned BitWidth = KnownZero.getBitWidth();
- // If one of the operands has trailing zeros, then the bits that the
- // other operand has in those bit positions will be preserved in the
- // result. For an add, this works with either operand. For a subtract,
- // this only works if the known zeros are in the right operand.
+ // If an initial sequence of bits in the result is not needed, the
+ // corresponding bits in the operands are not needed.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
- unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
-
- llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
- unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
-
- // Determine which operand has more trailing zeros, and use that
- // many bits from the other operand.
- if (LHSKnownZeroOut > RHSKnownZeroOut) {
- if (Add) {
- APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
- KnownZero |= KnownZero2 & Mask;
- KnownOne |= KnownOne2 & Mask;
- } else {
- // If the known zeros are in the left operand for a subtract,
- // fall back to the minimum known zeros in both operands.
- KnownZero |= APInt::getLowBitsSet(BitWidth,
- std::min(LHSKnownZeroOut,
- RHSKnownZeroOut));
- }
- } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
- APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
- KnownZero |= LHSKnownZero & Mask;
- KnownOne |= LHSKnownOne & Mask;
+ computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
+ computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
+
+ // Carry in a 1 for a subtract, rather than a 0.
+ APInt CarryIn(BitWidth, 0);
+ if (!Add) {
+ // Sum = LHS + ~RHS + 1
+ std::swap(KnownZero2, KnownOne2);
+ CarryIn.setBit(0);
}
+ APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
+ APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
+
+ // Compute known bits of the carry.
+ APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
+ APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
+
+ // Compute set of known bits (where all three relevant bits are known).
+ APInt LHSKnown = LHSKnownZero | LHSKnownOne;
+ APInt RHSKnown = KnownZero2 | KnownOne2;
+ APInt CarryKnown = CarryKnownZero | CarryKnownOne;
+ APInt Known = LHSKnown & RHSKnown & CarryKnown;
+
+ assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
+ "known bits of sum differ");
+
+ // Compute known bits of the result.
+ KnownZero = ~PossibleSumOne & Known;
+ KnownOne = PossibleSumOne & Known;
+
// Are we still trying to solve for the sign bit?
- if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
+ if (!Known.isNegative()) {
if (NSW) {
- if (Add) {
- // Adding two positive numbers can't wrap into negative
- if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
- KnownZero |= APInt::getSignBit(BitWidth);
- // and adding two negative numbers can't wrap into positive.
- else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
- KnownOne |= APInt::getSignBit(BitWidth);
- } else {
- // Subtracting a negative number from a positive one can't wrap
- if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
- KnownZero |= APInt::getSignBit(BitWidth);
- // neither can subtracting a positive number from a negative one.
- else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
- KnownOne |= APInt::getSignBit(BitWidth);
- }
+ // Adding two non-negative numbers, or subtracting a negative number from
+ // a non-negative one, can't wrap into negative.
+ if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
+ KnownZero |= APInt::getSignBit(BitWidth);
+ // Adding two negative numbers, or subtracting a non-negative number from
+ // a negative one, can't wrap into non-negative.
+ else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
+ KnownOne |= APInt::getSignBit(BitWidth);
}
}
}
@@ -132,10 +243,11 @@ static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
APInt &KnownZero, APInt &KnownOne,
APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth) {
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
unsigned BitWidth = KnownZero.getBitWidth();
- computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
- computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
@@ -156,9 +268,9 @@ static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, TD, Depth)) ||
+ isKnownNonZero(Op0, TD, Depth, Q)) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, TD, Depth));
+ isKnownNonZero(Op1, TD, Depth, Q));
}
}
@@ -198,8 +310,10 @@ void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
// Use the high end of the ranges to find leading zeros.
unsigned MinLeadingZeros = BitWidth;
for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
- ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
if (Range.isWrappedSet())
MinLeadingZeros = 0; // -1 has no zeros
@@ -210,6 +324,414 @@ void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
}
+static bool isEphemeralValueOf(Instruction *I, const Value *E) {
+ SmallVector<const Value *, 16> WorkSet(1, I);
+ SmallPtrSet<const Value *, 32> Visited;
+ SmallPtrSet<const Value *, 16> EphValues;
+
+ while (!WorkSet.empty()) {
+ const Value *V = WorkSet.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ // If all uses of this value are ephemeral, then so is this value.
+ bool FoundNEUse = false;
+ for (const User *I : V->users())
+ if (!EphValues.count(I)) {
+ FoundNEUse = true;
+ break;
+ }
+
+ if (!FoundNEUse) {
+ if (V == E)
+ return true;
+
+ EphValues.insert(V);
+ if (const User *U = dyn_cast<User>(V))
+ for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
+ J != JE; ++J) {
+ if (isSafeToSpeculativelyExecute(*J))
+ WorkSet.push_back(*J);
+ }
+ }
+ }
+
+ return false;
+}
+
+// Is this an intrinsic that cannot be speculated but also cannot trap?
+static bool isAssumeLikeIntrinsic(const Instruction *I) {
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ default: break;
+ // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
+ case Intrinsic::assume:
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ return true;
+ }
+
+ return false;
+}
+
+static bool isValidAssumeForContext(Value *V, const Query &Q,
+ const DataLayout *DL) {
+ Instruction *Inv = cast<Instruction>(V);
+
+ // There are two restrictions on the use of an assume:
+ // 1. The assume must dominate the context (or the control flow must
+ // reach the assume whenever it reaches the context).
+ // 2. The context must not be in the assume's set of ephemeral values
+ // (otherwise we will use the assume to prove that the condition
+ // feeding the assume is trivially true, thus causing the removal of
+ // the assume).
+
+ if (Q.DT) {
+ if (Q.DT->dominates(Inv, Q.CxtI)) {
+ return true;
+ } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ // The context comes first, but they're both in the same block. Make sure
+ // there is nothing in between that might interrupt the control flow.
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(Q.CxtI)),
+ IE(Inv); I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(I, DL) &&
+ !isAssumeLikeIntrinsic(I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, Q.CxtI);
+ }
+
+ return false;
+ }
+
+ // When we don't have a DT, we do a limited search...
+ if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
+ return true;
+ } else if (Inv->getParent() == Q.CxtI->getParent()) {
+ // Search forward from the assume until we reach the context (or the end
+ // of the block); the common case is that the assume will come first.
+ for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
+ IE = Inv->getParent()->end(); I != IE; ++I)
+ if (I == Q.CxtI)
+ return true;
+
+ // The context must come first...
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(Q.CxtI)),
+ IE(Inv); I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(I, DL) &&
+ !isAssumeLikeIntrinsic(I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, Q.CxtI);
+ }
+
+ return false;
+}
+
+bool llvm::isValidAssumeForContext(const Instruction *I,
+ const Instruction *CxtI,
+ const DataLayout *DL,
+ const DominatorTree *DT) {
+ return ::isValidAssumeForContext(const_cast<Instruction*>(I),
+ Query(nullptr, CxtI, DT), DL);
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
+ CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
+m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
+ BinaryOp_match<RHS, LHS, Instruction::And>>
+m_c_And(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_And(L, R), m_And(R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
+ BinaryOp_match<RHS, LHS, Instruction::Or>>
+m_c_Or(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_Or(L, R), m_Or(R, L));
+}
+
+template<typename LHS, typename RHS>
+inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
+ BinaryOp_match<RHS, LHS, Instruction::Xor>>
+m_c_Xor(const LHS &L, const RHS &R) {
+ return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
+}
+
+static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
+ APInt &KnownOne,
+ const DataLayout *DL,
+ unsigned Depth, const Query &Q) {
+ // Use of assumptions is context-sensitive. If we don't have a context, we
+ // cannot use them!
+ if (!Q.AC || !Q.CxtI)
+ return;
+
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ for (auto &AssumeVH : Q.AC->assumptions()) {
+ if (!AssumeVH)
+ continue;
+ CallInst *I = cast<CallInst>(AssumeVH);
+ assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
+ "Got assumption for the wrong function!");
+ if (Q.ExclInvs.count(I))
+ continue;
+
+ // Warning: This loop can end up being somewhat performance sensetive.
+ // We're running this loop for once for each value queried resulting in a
+ // runtime of ~O(#assumes * #values).
+
+ assert(isa<IntrinsicInst>(I) &&
+ dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
+ "must be an assume intrinsic");
+
+ Value *Arg = I->getArgOperand(0);
+
+ if (Arg == V &&
+ isValidAssumeForContext(I, Q, DL)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ KnownZero.clearAllBits();
+ KnownOne.setAllBits();
+ return;
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth == MaxDepth)
+ continue;
+
+ Value *A, *B;
+ auto m_V = m_CombineOr(m_Specific(V),
+ m_CombineOr(m_PtrToInt(m_Specific(V)),
+ m_BitCast(m_Specific(V))));
+
+ CmpInst::Predicate Pred;
+ ConstantInt *C;
+ // assume(v = a)
+ if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ KnownZero |= RHSKnownZero;
+ KnownOne |= RHSKnownOne;
+ // assume(v & b = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // known bits from the RHS to V.
+ KnownZero |= RHSKnownZero & MaskKnownOne;
+ KnownOne |= RHSKnownOne & MaskKnownOne;
+ // assume(~(v & b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
+ computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & MaskKnownOne;
+ KnownOne |= RHSKnownZero & MaskKnownOne;
+ // assume(v | b = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V.
+ KnownZero |= RHSKnownZero & BKnownZero;
+ KnownOne |= RHSKnownOne & BKnownZero;
+ // assume(~(v | b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & BKnownZero;
+ KnownOne |= RHSKnownZero & BKnownZero;
+ // assume(v ^ b = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V. For those bits in B that are known to be one,
+ // we can propagate inverted known bits from the RHS to V.
+ KnownZero |= RHSKnownZero & BKnownZero;
+ KnownOne |= RHSKnownOne & BKnownZero;
+ KnownZero |= RHSKnownOne & BKnownOne;
+ KnownOne |= RHSKnownZero & BKnownOne;
+ // assume(~(v ^ b) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
+ computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V. For those bits in B that are
+ // known to be one, we can propagate known bits from the RHS to V.
+ KnownZero |= RHSKnownOne & BKnownZero;
+ KnownOne |= RHSKnownZero & BKnownZero;
+ KnownZero |= RHSKnownZero & BKnownOne;
+ KnownOne |= RHSKnownOne & BKnownOne;
+ // assume(v << c = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
+ KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
+ // assume(~(v << c) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
+ KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
+ // assume(v >> c = a)
+ } else if (match(Arg,
+ m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V,
+ m_ConstantInt(C))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ KnownZero |= RHSKnownZero << C->getZExtValue();
+ KnownOne |= RHSKnownOne << C->getZExtValue();
+ // assume(~(v >> c) = a)
+ } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
+ m_LShr(m_V, m_ConstantInt(C)),
+ m_AShr(m_V, m_ConstantInt(C)))),
+ m_Value(A))) &&
+ Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ KnownZero |= RHSKnownOne << C->getZExtValue();
+ KnownOne |= RHSKnownZero << C->getZExtValue();
+ // assume(v >=_s c) where c is non-negative
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SGE &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownZero.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v >_s c) where c is at least -1.
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SGT &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
+ // We know that the sign bit is zero.
+ KnownZero |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <=_s c) where c is negative
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SLE &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownOne.isNegative()) {
+ // We know that the sign bit is one.
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <_s c) where c is non-positive
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_SLT &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
+ // We know that the sign bit is one.
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ // assume(v <=_u c)
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_ULE &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero.
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
+ // assume(v <_u c)
+ } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
+ Pred == ICmpInst::ICMP_ULT &&
+ isValidAssumeForContext(I, Q, DL)) {
+ APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
+ computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero (if c is a power
+ // of 2, then one more).
+ if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
+ else
+ KnownZero |=
+ APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
+ }
+ }
+}
+
/// Determine which bits of V are known to be either zero or one and return
/// them in the KnownZero/KnownOne bit sets.
///
@@ -225,8 +747,9 @@ void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth) {
+void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
@@ -272,10 +795,10 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
}
// The address of an aligned GlobalValue has trailing zeros.
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- unsigned Align = GV->getAlignment();
+ if (auto *GO = dyn_cast<GlobalObject>(V)) {
+ unsigned Align = GO->getAlignment();
if (Align == 0 && TD) {
- if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+ if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Type *ObjectType = GVar->getType()->getElementType();
if (ObjectType->isSized()) {
// If the object is defined in the current Module, we'll be giving
@@ -296,25 +819,11 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownOne.clearAllBits();
return;
}
- // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
- // the bits of its aliasee.
- if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden()) {
- KnownZero.clearAllBits(); KnownOne.clearAllBits();
- } else {
- computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
- }
- return;
- }
if (Argument *A = dyn_cast<Argument>(V)) {
- unsigned Align = 0;
+ unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
- if (A->hasByValOrInAllocaAttr()) {
- // Get alignment information off byval/inalloca arguments if specified in
- // the IR.
- Align = A->getParamAlignment();
- } else if (TD && A->hasStructRetAttr()) {
+ if (!Align && TD && A->hasStructRetAttr()) {
// An sret parameter has at least the ABI alignment of the return type.
Type *EltTy = cast<PointerType>(A->getType())->getElementType();
if (EltTy->isSized())
@@ -323,14 +832,34 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (Align)
KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
+ else
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
+
+ // Don't give up yet... there might be an assumption that provides more
+ // information...
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
return;
}
// Start out not knowing anything.
KnownZero.clearAllBits(); KnownOne.clearAllBits();
+ // Limit search depth.
+ // All recursive calls that increase depth must come after this.
if (Depth == MaxDepth)
- return; // Limit search depth.
+ return;
+
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->mayBeOverridden())
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q);
+ return;
+ }
+
+ // Check whether a nearby assume intrinsic can determine some known bits.
+ computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Operator *I = dyn_cast<Operator>(V);
if (!I) return;
@@ -344,8 +873,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
@@ -354,8 +883,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Or: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
@@ -364,8 +893,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
@@ -377,19 +906,20 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth, Q);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
@@ -399,9 +929,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Select:
- computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
- Depth+1);
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
@@ -437,7 +966,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
assert(SrcBitWidth && "SrcBitWidth can't be zero");
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
@@ -451,7 +980,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
break;
}
break;
@@ -462,7 +991,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -478,11 +1007,10 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
- break;
}
break;
case Instruction::LShr:
@@ -492,12 +1020,11 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- break;
}
break;
case Instruction::AShr:
@@ -507,7 +1034,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -516,21 +1043,20 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero |= HighBits;
else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
KnownOne |= HighBits;
- break;
}
break;
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth);
+ Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
- Depth);
+ Depth, Q);
break;
}
case Instruction::SRem:
@@ -538,7 +1064,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
+ Depth+1, Q);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -563,7 +1090,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
- Depth+1);
+ Depth+1, Q);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
@@ -576,7 +1103,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
- Depth+1);
+ Depth+1, Q);
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
@@ -585,8 +1112,8 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -610,7 +1137,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
- Depth+1);
+ Depth+1, Q);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -646,7 +1173,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnownZero.countTrailingOnes()));
@@ -688,11 +1215,11 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
+ computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
@@ -724,7 +1251,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
- MaxDepth-1);
+ MaxDepth-1, Q);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -776,19 +1303,19 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
false, KnownZero, KnownOne,
- KnownZero2, KnownOne2, TD, Depth);
+ KnownZero2, KnownOne2, TD, Depth, Q);
break;
}
}
@@ -798,10 +1325,11 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
-/// ComputeSignBit - Determine whether the sign bit is known to be zero or
-/// one. Convenience wrapper around computeKnownBits.
-void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout *TD, unsigned Depth) {
+/// Determine whether the sign bit is known to be zero or one.
+/// Convenience wrapper around computeKnownBits.
+void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
unsigned BitWidth = getBitWidth(V->getType(), TD);
if (!BitWidth) {
KnownZero = false;
@@ -810,16 +1338,17 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
+ computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
-/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
+/// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
-/// be a power of two when defined. Supports values with integer or pointer
+/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
-bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
+bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
+ const Query &Q) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return OrZero;
@@ -846,19 +1375,20 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
// A shift of a power of two is a power of two or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_Shr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
+ return
+ isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
@@ -873,19 +1403,19 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
@@ -902,7 +1432,8 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
// copying a sign bit (sdiv int_min, 2).
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
- return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
+ return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
+ Depth, Q);
}
return false;
@@ -915,7 +1446,7 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
///
/// Currently this routine does not support vector GEPs.
static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
- unsigned Depth) {
+ unsigned Depth, const Query &Q) {
if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
return false;
@@ -924,7 +1455,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
// If the base pointer is non-null, we cannot walk to a null address with an
// inbounds GEP in address space zero.
- if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
+ if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
return true;
// Past this, if we don't have DataLayout, we can't do much.
@@ -967,18 +1498,38 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
if (Depth++ >= MaxDepth)
continue;
- if (isKnownNonZero(GTI.getOperand(), DL, Depth))
+ if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
return true;
}
return false;
}
-/// isKnownNonZero - Return true if the given value is known to be non-zero
-/// when defined. For vectors return true if every element is known to be
-/// non-zero when defined. Supports values with integer or pointer type and
-/// vectors of integers.
-bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
+/// Does the 'Range' metadata (which must be a valid MD_range operand list)
+/// ensure that the value it's attached to is never Value? 'RangeType' is
+/// is the type of the value described by the range.
+static bool rangeMetadataExcludesValue(MDNode* Ranges,
+ const APInt& Value) {
+ const unsigned NumRanges = Ranges->getNumOperands() / 2;
+ assert(NumRanges >= 1);
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.contains(Value))
+ return false;
+ }
+ return true;
+}
+
+/// Return true if the given value is known to be non-zero when defined.
+/// For vectors return true if every element is known to be non-zero when
+/// defined. Supports values with integer or pointer type and vectors of
+/// integers.
+bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
@@ -989,6 +1540,18 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
return false;
}
+ if (Instruction* I = dyn_cast<Instruction>(V)) {
+ if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
+ // If the possible ranges don't contain zero, then the value is
+ // definitely non-zero.
+ if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
+ const APInt ZeroValue(Ty->getBitWidth(), 0);
+ if (rangeMetadataExcludesValue(Ranges, ZeroValue))
+ return true;
+ }
+ }
+ }
+
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ >= MaxDepth)
return false;
@@ -998,7 +1561,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
if (isKnownNonNull(V))
return true;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, TD, Depth))
+ if (isGEPKnownNonNull(GEP, TD, Depth, Q))
return true;
}
@@ -1007,11 +1570,12 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
+ return isKnownNonZero(X, TD, Depth, Q) ||
+ isKnownNonZero(Y, TD, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
@@ -1019,11 +1583,11 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
// shl nuw can't remove any non-zero bits.
OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
- return isKnownNonZero(X, TD, Depth);
+ return isKnownNonZero(X, TD, Depth, Q);
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
if (KnownOne[0])
return true;
}
@@ -1033,28 +1597,29 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
// shr exact can only shift out zero bits.
PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
- return isKnownNonZero(X, TD, Depth);
+ return isKnownNonZero(X, TD, Depth, Q);
bool XKnownNonNegative, XKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
if (XKnownNegative)
return true;
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, TD, Depth);
+ return isKnownNonZero(X, TD, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
bool XKnownNonNegative, XKnownNegative;
bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
+ ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
+ ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnownNonNegative && YKnownNonNegative)
- if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
+ if (isKnownNonZero(X, TD, Depth, Q) ||
+ isKnownNonZero(Y, TD, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
@@ -1065,20 +1630,22 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
if ((KnownOne & Mask) != 0)
return true;
}
// The sum of a non-negative number and a power of two is not zero.
- if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
+ if (XKnownNonNegative &&
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
return true;
- if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
+ if (YKnownNonNegative &&
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
return true;
}
// X * Y.
@@ -1087,51 +1654,53 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
- isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
+ isKnownNonZero(X, TD, Depth, Q) &&
+ isKnownNonZero(Y, TD, Depth, Q))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
- isKnownNonZero(SI->getFalseValue(), TD, Depth))
+ if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
return true;
}
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
return KnownOne != 0;
}
-/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
-/// this predicate to simplify operations downstream. Mask is known to be zero
-/// for bits that V cannot have.
+/// Return true if 'V & Mask' is known to be zero. We use this predicate to
+/// simplify operations downstream. Mask is known to be zero for bits that V
+/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type (but only if TD is non-null), and vectors of integers. In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
- const DataLayout *TD, unsigned Depth) {
+bool MaskedValueIsZero(Value *V, const APInt &Mask,
+ const DataLayout *TD, unsigned Depth,
+ const Query &Q) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
return (KnownZero & Mask) == Mask;
}
-/// ComputeNumSignBits - Return the number of times the sign bit of the
-/// register is replicated into the other bits. We know that at least 1 bit
-/// is always equal to the sign bit (itself), but other cases can give us
-/// information. For example, immediately after an "ashr X, 2", we know that
-/// the top 3 bits are all equal to each other, so we return 3.
+/// Return the number of times the sign bit of the register is replicated into
+/// the other bits. We know that at least 1 bit is always equal to the sign bit
+/// (itself), but other cases can give us information. For example, immediately
+/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
+/// other, so we return 3.
///
/// 'Op' must have a scalar integer type.
///
-unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
- unsigned Depth) {
+unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
+ unsigned Depth, const Query &Q) {
assert((TD || V->getType()->isIntOrIntVectorTy()) &&
"ComputeNumSignBits requires a DataLayout object to operate "
"on non-integer values!");
@@ -1152,10 +1721,10 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
+ return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
@@ -1168,7 +1737,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Tmp2 = ShAmt->getZExtValue();
if (Tmp2 >= TyBits || // Bad shift.
Tmp2 >= Tmp) break; // Shifted all sign bits out.
@@ -1180,9 +1749,9 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
@@ -1191,22 +1760,22 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
break;
case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
- if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
+ if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
@@ -1219,19 +1788,19 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
return Tmp;
}
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
if (Tmp2 == 1) return 1;
// Handle NEG.
- if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
+ if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
@@ -1247,22 +1816,26 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(U);
+ unsigned NumIncomingValues = PN->getNumIncomingValues();
// Don't analyze large in-degree PHIs.
- if (PN->getNumIncomingValues() > 4) break;
+ if (NumIncomingValues > 4) break;
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (NumIncomingValues == 0) break;
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
+ for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
Tmp = std::min(Tmp,
- ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
+ ComputeNumSignBits(PN->getIncomingValue(i), TD,
+ Depth+1, Q));
}
return Tmp;
}
@@ -1277,7 +1850,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
- computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -1297,9 +1870,9 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
}
-/// ComputeMultiple - This function computes the integer multiple of Base that
-/// equals V. If successful, it returns true and returns the multiple in
-/// Multiple. If unsuccessful, it returns false. It looks
+/// This function computes the integer multiple of Base that equals V.
+/// If successful, it returns true and returns the multiple in
+/// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
bool LookThroughSExt, unsigned Depth) {
@@ -1417,8 +1990,8 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
return false;
}
-/// CannotBeNegativeZero - Return true if we can prove that the specified FP
-/// value is never equal to -0.0.
+/// Return true if we can prove that the specified FP value is never equal to
+/// -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
@@ -1471,8 +2044,8 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return false;
}
-/// isBytewiseValue - If the specified value can be set by repeating the same
-/// byte in memory, return the i8 value that it is represented with. This is
+/// If the specified value can be set by repeating the same byte in memory,
+/// return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
@@ -1620,7 +2193,7 @@ static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}
-/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
+/// Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if it
/// were inserted directly into the aggregrate.
///
@@ -1710,9 +2283,8 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
return nullptr;
}
-/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
-/// it can be expressed as a base pointer plus a constant offset. Return the
-/// base and offset to the caller.
+/// Analyze the specified pointer to see if it can be expressed as a base
+/// pointer plus a constant offset. Return the base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const DataLayout *DL) {
// Without DataLayout, conservatively assume 64-bit offsets, which is
@@ -1749,9 +2321,9 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
}
-/// getConstantStringInfo - This function computes the length of a
-/// null-terminated C string pointed to by V. If successful, it returns true
-/// and returns the string in Str. If unsuccessful, it returns false.
+/// This function computes the length of a null-terminated C string pointed to
+/// by V. If successful, it returns true and returns the string in Str.
+/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
assert(V);
@@ -1835,16 +2407,16 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// nodes.
// TODO: See if we can integrate these two together.
-/// GetStringLengthH - If we can compute the length of the string pointed to by
+/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
-static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
+static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
// Look through noop bitcast instructions.
V = V->stripPointerCasts();
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
if (PHINode *PN = dyn_cast<PHINode>(V)) {
- if (!PHIs.insert(PN))
+ if (!PHIs.insert(PN).second)
return ~0ULL; // already in the set.
// If it was new, see if all the input strings are the same length.
@@ -1884,7 +2456,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
return StrData.size()+1;
}
-/// GetStringLength - If we can compute the length of the string pointed to by
+/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t llvm::GetStringLength(Value *V) {
if (!V->getType()->isPointerTy()) return 0;
@@ -1913,7 +2485,7 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
} else {
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Acquire a DominatorTree and use it.
+ // TODO: Acquire a DominatorTree and AssumptionCache and use them.
if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
V = Simplified;
continue;
@@ -1938,7 +2510,7 @@ llvm::GetUnderlyingObjects(Value *V,
Value *P = Worklist.pop_back_val();
P = GetUnderlyingObject(P, TD, MaxLookup);
- if (!Visited.insert(P))
+ if (!Visited.insert(P).second)
continue;
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
@@ -1957,9 +2529,7 @@ llvm::GetUnderlyingObjects(Value *V,
} while (!Worklist.empty());
}
-/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
-/// are lifetime markers.
-///
+/// Return true if the only users of this pointer are lifetime markers.
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
for (const User *U : V->users()) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
@@ -2022,41 +2592,44 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
return LI->getPointerOperand()->isDereferenceablePointer(TD);
}
case Instruction::Call: {
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- // These synthetic intrinsics have no side-effects and just mark
- // information about their operands.
- // FIXME: There are other no-op synthetic instructions that potentially
- // should be considered at least *safe* to speculate...
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- return true;
-
- case Intrinsic::bswap:
- case Intrinsic::ctlz:
- case Intrinsic::ctpop:
- case Intrinsic::cttz:
- case Intrinsic::objectsize:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::usub_with_overflow:
- return true;
- // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
- // errno like libm sqrt would.
- case Intrinsic::sqrt:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- return true;
- // TODO: some fp intrinsics are marked as having the same error handling
- // as libm. They're safe to speculate when they won't error.
- // TODO: are convert_{from,to}_fp16 safe?
- // TODO: can we list target-specific intrinsics here?
- default: break;
- }
- }
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ // These synthetic intrinsics have no side-effects and just mark
+ // information about their operands.
+ // FIXME: There are other no-op synthetic instructions that potentially
+ // should be considered at least *safe* to speculate...
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ return true;
+
+ case Intrinsic::bswap:
+ case Intrinsic::ctlz:
+ case Intrinsic::ctpop:
+ case Intrinsic::cttz:
+ case Intrinsic::objectsize:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ return true;
+ // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
+ // errno like libm sqrt would.
+ case Intrinsic::sqrt:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::fabs:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ return true;
+ // TODO: some fp intrinsics are marked as having the same error handling
+ // as libm. They're safe to speculate when they won't error.
+ // TODO: are convert_{from,to}_fp16 safe?
+ // TODO: can we list target-specific intrinsics here?
+ default: break;
+ }
+ }
return false; // The called function could have undefined behavior or
// side-effects, even if marked readnone nounwind.
}
@@ -2079,8 +2652,7 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
}
}
-/// isKnownNonNull - Return true if we know that the specified value is never
-/// null.
+/// Return true if we know that the specified value is never null.
bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V)) return true;
@@ -2093,6 +2665,10 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return !GV->hasExternalWeakLinkage();
+ // A Load tagged w/nonnull metadata is never null.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(V))
+ return LI->getMetadata(LLVMContext::MD_nonnull);
+
if (ImmutableCallSite CS = V)
if (CS.isReturnNonNull())
return true;
@@ -2103,3 +2679,82 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
return false;
}
+
+OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
+ const DataLayout *DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // Multiplying n * m significant bits yields a result of n + m significant
+ // bits. If the total number of significant bits does not exceed the
+ // result bit width (minus 1), there is no overflow.
+ // This means if we have enough leading zero bits in the operands
+ // we can guarantee that the result does not overflow.
+ // Ref: "Hacker's Delight" by Henry Warren
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
+ DT);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
+ DT);
+ // Note that underestimating the number of zero bits gives a more
+ // conservative answer.
+ unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
+ RHSKnownZero.countLeadingOnes();
+ // First handle the easy case: if we have enough zero bits there's
+ // definitely no overflow.
+ if (ZeroBits >= BitWidth)
+ return OverflowResult::NeverOverflows;
+
+ // Get the largest possible values for each operand.
+ APInt LHSMax = ~LHSKnownZero;
+ APInt RHSMax = ~RHSKnownZero;
+
+ // We know the multiply operation doesn't overflow if the maximum values for
+ // each operand will not overflow after we multiply them together.
+ bool MaxOverflow;
+ LHSMax.umul_ov(RHSMax, MaxOverflow);
+ if (!MaxOverflow)
+ return OverflowResult::NeverOverflows;
+
+ // We know it always overflows if multiplying the smallest possible values for
+ // the operands also results in overflow.
+ bool MinOverflow;
+ LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
+ if (MinOverflow)
+ return OverflowResult::AlwaysOverflows;
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
+ const DataLayout *DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ bool LHSKnownNonNegative, LHSKnownNegative;
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+ if (LHSKnownNonNegative || LHSKnownNegative) {
+ bool RHSKnownNonNegative, RHSKnownNegative;
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ return OverflowResult::AlwaysOverflows;
+ }
+
+ if (LHSKnownNonNegative && RHSKnownNonNegative) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ return OverflowResult::NeverOverflows;
+ }
+ }
+
+ return OverflowResult::MayOverflow;
+}
diff --git a/contrib/llvm/lib/AsmParser/LLLexer.cpp b/contrib/llvm/lib/AsmParser/LLLexer.cpp
index 962298f..de5db1a 100644
--- a/contrib/llvm/lib/AsmParser/LLLexer.cpp
+++ b/contrib/llvm/lib/AsmParser/LLLexer.cpp
@@ -78,13 +78,15 @@ uint64_t LLLexer::HexIntToVal(const char *Buffer, const char *End) {
void LLLexer::HexToIntPair(const char *Buffer, const char *End,
uint64_t Pair[2]) {
Pair[0] = 0;
- for (int i=0; i<16; i++, Buffer++) {
- assert(Buffer != End);
- Pair[0] *= 16;
- Pair[0] += hexDigitValue(*Buffer);
+ if (End - Buffer >= 16) {
+ for (int i = 0; i < 16; i++, Buffer++) {
+ assert(Buffer != End);
+ Pair[0] *= 16;
+ Pair[0] += hexDigitValue(*Buffer);
+ }
}
Pair[1] = 0;
- for (int i=0; i<16 && Buffer != End; i++, Buffer++) {
+ for (int i = 0; i < 16 && Buffer != End; i++, Buffer++) {
Pair[1] *= 16;
Pair[1] += hexDigitValue(*Buffer);
}
@@ -161,14 +163,10 @@ static const char *isLabelTail(const char *CurPtr) {
// Lexer definition.
//===----------------------------------------------------------------------===//
-LLLexer::LLLexer(MemoryBuffer *StartBuf, SourceMgr &sm, SMDiagnostic &Err,
+LLLexer::LLLexer(StringRef StartBuf, SourceMgr &sm, SMDiagnostic &Err,
LLVMContext &C)
: CurBuf(StartBuf), ErrorInfo(Err), SM(sm), Context(C), APFloatVal(0.0) {
- CurPtr = CurBuf->getBufferStart();
-}
-
-std::string LLLexer::getFilename() const {
- return CurBuf->getBufferIdentifier();
+ CurPtr = CurBuf.begin();
}
int LLLexer::getNextChar() {
@@ -178,7 +176,7 @@ int LLLexer::getNextChar() {
case 0:
// A nul character in the stream is either the end of the current buffer or
// a random nul in the file. Disambiguate that here.
- if (CurPtr-1 != CurBuf->getBufferEnd())
+ if (CurPtr-1 != CurBuf.end())
return 0; // Just whitespace.
// Otherwise, return end of file.
@@ -259,46 +257,7 @@ void LLLexer::SkipLineComment() {
/// GlobalVar @[-a-zA-Z$._][-a-zA-Z$._0-9]*
/// GlobalVarID @[0-9]+
lltok::Kind LLLexer::LexAt() {
- // Handle AtStringConstant: @\"[^\"]*\"
- if (CurPtr[0] == '"') {
- ++CurPtr;
-
- while (1) {
- int CurChar = getNextChar();
-
- if (CurChar == EOF) {
- Error("end of file in global variable name");
- return lltok::Error;
- }
- if (CurChar == '"') {
- StrVal.assign(TokStart+2, CurPtr-1);
- UnEscapeLexed(StrVal);
- if (StringRef(StrVal).find_first_of(0) != StringRef::npos) {
- Error("Null bytes are not allowed in names");
- return lltok::Error;
- }
- return lltok::GlobalVar;
- }
- }
- }
-
- // Handle GlobalVarName: @[-a-zA-Z$._][-a-zA-Z$._0-9]*
- if (ReadVarName())
- return lltok::GlobalVar;
-
- // Handle GlobalVarID: @[0-9]+
- if (isdigit(static_cast<unsigned char>(CurPtr[0]))) {
- for (++CurPtr; isdigit(static_cast<unsigned char>(CurPtr[0])); ++CurPtr)
- /*empty*/;
-
- uint64_t Val = atoull(TokStart+1, CurPtr);
- if ((unsigned)Val != Val)
- Error("invalid value number (too large)!");
- UIntVal = unsigned(Val);
- return lltok::GlobalID;
- }
-
- return lltok::Error;
+ return LexVar(lltok::GlobalVar, lltok::GlobalID);
}
lltok::Kind LLLexer::LexDollar() {
@@ -374,22 +333,35 @@ bool LLLexer::ReadVarName() {
return false;
}
-/// LexPercent - Lex all tokens that start with a % character:
-/// LocalVar ::= %\"[^\"]*\"
-/// LocalVar ::= %[-a-zA-Z$._][-a-zA-Z$._0-9]*
-/// LocalVarID ::= %[0-9]+
-lltok::Kind LLLexer::LexPercent() {
- // Handle LocalVarName: %\"[^\"]*\"
+lltok::Kind LLLexer::LexVar(lltok::Kind Var, lltok::Kind VarID) {
+ // Handle StringConstant: \"[^\"]*\"
if (CurPtr[0] == '"') {
++CurPtr;
- return ReadString(lltok::LocalVar);
+
+ while (1) {
+ int CurChar = getNextChar();
+
+ if (CurChar == EOF) {
+ Error("end of file in global variable name");
+ return lltok::Error;
+ }
+ if (CurChar == '"') {
+ StrVal.assign(TokStart+2, CurPtr-1);
+ UnEscapeLexed(StrVal);
+ if (StringRef(StrVal).find_first_of(0) != StringRef::npos) {
+ Error("Null bytes are not allowed in names");
+ return lltok::Error;
+ }
+ return Var;
+ }
+ }
}
- // Handle LocalVarName: %[-a-zA-Z$._][-a-zA-Z$._0-9]*
+ // Handle VarName: [-a-zA-Z$._][-a-zA-Z$._0-9]*
if (ReadVarName())
- return lltok::LocalVar;
+ return Var;
- // Handle LocalVarID: %[0-9]+
+ // Handle VarID: [0-9]+
if (isdigit(static_cast<unsigned char>(CurPtr[0]))) {
for (++CurPtr; isdigit(static_cast<unsigned char>(CurPtr[0])); ++CurPtr)
/*empty*/;
@@ -398,12 +370,19 @@ lltok::Kind LLLexer::LexPercent() {
if ((unsigned)Val != Val)
Error("invalid value number (too large)!");
UIntVal = unsigned(Val);
- return lltok::LocalVarID;
+ return VarID;
}
-
return lltok::Error;
}
+/// LexPercent - Lex all tokens that start with a % character:
+/// LocalVar ::= %\"[^\"]*\"
+/// LocalVar ::= %[-a-zA-Z$._][-a-zA-Z$._0-9]*
+/// LocalVarID ::= %[0-9]+
+lltok::Kind LLLexer::LexPercent() {
+ return LexVar(lltok::LocalVar, lltok::LocalVarID);
+}
+
/// LexQuote - Lex all tokens that start with a " character:
/// QuoteLabel "[^"]+":
/// StringConstant "[^"]*"
@@ -414,7 +393,12 @@ lltok::Kind LLLexer::LexQuote() {
if (CurPtr[0] == ':') {
++CurPtr;
- kind = lltok::LabelStr;
+ if (StringRef(StrVal).find_first_of(0) != StringRef::npos) {
+ Error("Null bytes are not allowed in names");
+ kind = lltok::Error;
+ } else {
+ kind = lltok::LabelStr;
+ }
}
return kind;
@@ -516,8 +500,6 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(private);
KEYWORD(internal);
- KEYWORD(linker_private); // NOTE: deprecated, for parser compatibility
- KEYWORD(linker_private_weak); // NOTE: deprecated, for parser compatibility
KEYWORD(available_externally);
KEYWORD(linkonce);
KEYWORD(linkonce_odr);
@@ -579,6 +561,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(inteldialect);
KEYWORD(gc);
KEYWORD(prefix);
+ KEYWORD(prologue);
KEYWORD(ccc);
KEYWORD(fastcc);
@@ -586,6 +569,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(x86_stdcallcc);
KEYWORD(x86_fastcallcc);
KEYWORD(x86_thiscallcc);
+ KEYWORD(x86_vectorcallcc);
KEYWORD(arm_apcscc);
KEYWORD(arm_aapcscc);
KEYWORD(arm_aapcs_vfpcc);
@@ -601,6 +585,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(anyregcc);
KEYWORD(preserve_mostcc);
KEYWORD(preserve_allcc);
+ KEYWORD(ghccc);
KEYWORD(cc);
KEYWORD(c);
@@ -670,6 +655,13 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(x);
KEYWORD(blockaddress);
+ // Metadata types.
+ KEYWORD(distinct);
+
+ // Use-list order directives.
+ KEYWORD(uselistorder);
+ KEYWORD(uselistorder_bb);
+
KEYWORD(personality);
KEYWORD(cleanup);
KEYWORD(catch);
@@ -754,7 +746,13 @@ lltok::Kind LLLexer::LexIdentifier() {
isxdigit(static_cast<unsigned char>(TokStart[3]))) {
int len = CurPtr-TokStart-3;
uint32_t bits = len * 4;
- APInt Tmp(bits, StringRef(TokStart+3, len), 16);
+ StringRef HexStr(TokStart + 3, len);
+ if (!std::all_of(HexStr.begin(), HexStr.end(), isxdigit)) {
+ // Bad token, return it as an error.
+ CurPtr = TokStart+3;
+ return lltok::Error;
+ }
+ APInt Tmp(bits, HexStr, 16);
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < bits)
Tmp = Tmp.trunc(activeBits);
diff --git a/contrib/llvm/lib/AsmParser/LLLexer.h b/contrib/llvm/lib/AsmParser/LLLexer.h
index d42de57..3343168 100644
--- a/contrib/llvm/lib/AsmParser/LLLexer.h
+++ b/contrib/llvm/lib/AsmParser/LLLexer.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LIB_ASMPARSER_LLLEXER_H
-#define LIB_ASMPARSER_LLLEXER_H
+#ifndef LLVM_LIB_ASMPARSER_LLLEXER_H
+#define LLVM_LIB_ASMPARSER_LLLEXER_H
#include "LLToken.h"
#include "llvm/ADT/APFloat.h"
@@ -28,7 +28,7 @@ namespace llvm {
class LLLexer {
const char *CurPtr;
- MemoryBuffer *CurBuf;
+ StringRef CurBuf;
SMDiagnostic &ErrorInfo;
SourceMgr &SM;
LLVMContext &Context;
@@ -43,7 +43,7 @@ namespace llvm {
APSInt APSIntVal;
public:
- explicit LLLexer(MemoryBuffer *StartBuf, SourceMgr &SM, SMDiagnostic &,
+ explicit LLLexer(StringRef StartBuf, SourceMgr &SM, SMDiagnostic &,
LLVMContext &C);
~LLLexer() {}
@@ -67,8 +67,6 @@ namespace llvm {
void Warning(LocTy WarningLoc, const Twine &Msg) const;
void Warning(const Twine &Msg) const { return Warning(getLoc(), Msg); }
- std::string getFilename() const;
-
private:
lltok::Kind LexToken();
@@ -84,6 +82,7 @@ namespace llvm {
lltok::Kind LexDollar();
lltok::Kind LexExclaim();
lltok::Kind LexPercent();
+ lltok::Kind LexVar(lltok::Kind Var, lltok::Kind VarID);
lltok::Kind LexQuote();
lltok::Kind Lex0x();
lltok::Kind LexHash();
diff --git a/contrib/llvm/lib/AsmParser/LLParser.cpp b/contrib/llvm/lib/AsmParser/LLParser.cpp
index ac6e0e5..d209a20 100644
--- a/contrib/llvm/lib/AsmParser/LLParser.cpp
+++ b/contrib/llvm/lib/AsmParser/LLParser.cpp
@@ -24,6 +24,7 @@
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -46,27 +47,6 @@ bool LLParser::Run() {
/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
/// module.
bool LLParser::ValidateEndOfModule() {
- // Handle any instruction metadata forward references.
- if (!ForwardRefInstMetadata.empty()) {
- for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
- I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
- I != E; ++I) {
- Instruction *Inst = I->first;
- const std::vector<MDRef> &MDList = I->second;
-
- for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
- unsigned SlotNo = MDList[i].MDSlot;
-
- if (SlotNo >= NumberedMetadata.size() ||
- NumberedMetadata[SlotNo] == nullptr)
- return Error(MDList[i].Loc, "use of undefined metadata '!" +
- Twine(SlotNo) + "'");
- Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
- }
- }
- ForwardRefInstMetadata.clear();
- }
-
for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
@@ -129,28 +109,11 @@ bool LLParser::ValidateEndOfModule() {
}
}
- // If there are entries in ForwardRefBlockAddresses at this point, they are
- // references after the function was defined. Resolve those now.
- while (!ForwardRefBlockAddresses.empty()) {
- // Okay, we are referencing an already-parsed function, resolve them now.
- Function *TheFn = nullptr;
- const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
- if (Fn.Kind == ValID::t_GlobalName)
- TheFn = M->getFunction(Fn.StrVal);
- else if (Fn.UIntVal < NumberedVals.size())
- TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
-
- if (!TheFn)
- return Error(Fn.Loc, "unknown function referenced by blockaddress");
-
- // Resolve all these references.
- if (ResolveForwardRefBlockAddresses(TheFn,
- ForwardRefBlockAddresses.begin()->second,
- nullptr))
- return true;
-
- ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
- }
+ // If there are entries in ForwardRefBlockAddresses at this point, the
+ // function was never defined.
+ if (!ForwardRefBlockAddresses.empty())
+ return Error(ForwardRefBlockAddresses.begin()->first.Loc,
+ "expected function name in blockaddress");
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
if (NumberedTypes[i].second.isValid())
@@ -183,6 +146,10 @@ bool LLParser::ValidateEndOfModule() {
"use of undefined metadata '!" +
Twine(ForwardRefMDNodes.begin()->first) + "'");
+ // Resolve metadata cycles.
+ for (auto &N : NumberedMetadata)
+ if (auto *U = cast_or_null<UniquableMDNode>(N))
+ U->resolveCycles();
// Look for intrinsic functions and CallInst that need to be upgraded
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
@@ -193,38 +160,6 @@ bool LLParser::ValidateEndOfModule() {
return false;
}
-bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
- std::vector<std::pair<ValID, GlobalValue*> > &Refs,
- PerFunctionState *PFS) {
- // Loop over all the references, resolving them.
- for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
- BasicBlock *Res;
- if (PFS) {
- if (Refs[i].first.Kind == ValID::t_LocalName)
- Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
- else
- Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
- } else if (Refs[i].first.Kind == ValID::t_LocalID) {
- return Error(Refs[i].first.Loc,
- "cannot take address of numeric label after the function is defined");
- } else {
- Res = dyn_cast_or_null<BasicBlock>(
- TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
- }
-
- if (!Res)
- return Error(Refs[i].first.Loc,
- "referenced value is not a basic block");
-
- // Get the BlockAddress for this and update references to use it.
- BlockAddress *BA = BlockAddress::get(TheFn, Res);
- Refs[i].second->replaceAllUsesWith(BA);
- Refs[i].second->eraseFromParent();
- }
- return false;
-}
-
-
//===----------------------------------------------------------------------===//
// Top-Level Entities
//===----------------------------------------------------------------------===//
@@ -254,8 +189,6 @@ bool LLParser::ParseTopLevelEntities() {
// ('constant'|'global') ...
case lltok::kw_private: // OptionalLinkage
case lltok::kw_internal: // OptionalLinkage
- case lltok::kw_linker_private: // Obsolete OptionalLinkage
- case lltok::kw_linker_private_weak: // Obsolete OptionalLinkage
case lltok::kw_weak: // OptionalLinkage
case lltok::kw_weak_odr: // OptionalLinkage
case lltok::kw_linkonce: // OptionalLinkage
@@ -289,6 +222,9 @@ bool LLParser::ParseTopLevelEntities() {
}
case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
+ case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
+ case lltok::kw_uselistorder_bb:
+ if (ParseUseListOrderBB()) return true; break;
}
}
}
@@ -483,10 +419,10 @@ bool LLParser::ParseUnnamedGlobal() {
parseOptionalUnnamedAddr(UnnamedAddr))
return true;
- if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+ if (Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
DLLStorageClass, TLM, UnnamedAddr);
- return ParseAlias(Name, NameLoc, Visibility, DLLStorageClass, TLM,
+ return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
UnnamedAddr);
}
@@ -512,10 +448,11 @@ bool LLParser::ParseNamedGlobal() {
parseOptionalUnnamedAddr(UnnamedAddr))
return true;
- if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+ if (Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
DLLStorageClass, TLM, UnnamedAddr);
- return ParseAlias(Name, NameLoc, Visibility, DLLStorageClass, TLM,
+
+ return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
UnnamedAddr);
}
@@ -581,36 +518,25 @@ bool LLParser::ParseMDString(MDString *&Result) {
// MDNode:
// ::= '!' MDNodeNumber
-//
-/// This version of ParseMDNodeID returns the slot number and null in the case
-/// of a forward reference.
-bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
- // !{ ..., !42, ... }
- if (ParseUInt32(SlotNo)) return true;
-
- // Check existing MDNode.
- if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != nullptr)
- Result = NumberedMetadata[SlotNo];
- else
- Result = nullptr;
- return false;
-}
-
bool LLParser::ParseMDNodeID(MDNode *&Result) {
// !{ ..., !42, ... }
unsigned MID = 0;
- if (ParseMDNodeID(Result, MID)) return true;
+ if (ParseUInt32(MID))
+ return true;
// If not a forward reference, just return it now.
- if (Result) return false;
+ if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != nullptr) {
+ Result = NumberedMetadata[MID];
+ return false;
+ }
// Otherwise, create MDNode forward reference.
- MDNode *FwdNode = MDNode::getTemporary(Context, None);
+ MDNodeFwdDecl *FwdNode = MDNodeFwdDecl::get(Context, None);
ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
if (NumberedMetadata.size() <= MID)
NumberedMetadata.resize(MID+1);
- NumberedMetadata[MID] = FwdNode;
+ NumberedMetadata[MID].reset(FwdNode);
Result = FwdNode;
return false;
}
@@ -651,27 +577,29 @@ bool LLParser::ParseStandaloneMetadata() {
Lex.Lex();
unsigned MetadataID = 0;
- LocTy TyLoc;
- Type *Ty = nullptr;
- SmallVector<Value *, 16> Elts;
+ MDNode *Init;
if (ParseUInt32(MetadataID) ||
- ParseToken(lltok::equal, "expected '=' here") ||
- ParseType(Ty, TyLoc) ||
- ParseToken(lltok::exclaim, "Expected '!' here") ||
- ParseToken(lltok::lbrace, "Expected '{' here") ||
- ParseMDNodeVector(Elts, nullptr) ||
- ParseToken(lltok::rbrace, "expected end of metadata node"))
+ ParseToken(lltok::equal, "expected '=' here"))
return true;
- MDNode *Init = MDNode::get(Context, Elts);
+ // Detect common error, from old metadata syntax.
+ if (Lex.getKind() == lltok::Type)
+ return TokError("unexpected type in metadata definition");
+
+ bool IsDistinct = EatIfPresent(lltok::kw_distinct);
+ if (Lex.getKind() == lltok::MetadataVar) {
+ if (ParseSpecializedMDNode(Init, IsDistinct))
+ return true;
+ } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
+ ParseMDTuple(Init, IsDistinct))
+ return true;
// See if this was forward referenced, if so, handle it.
- std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
- FI = ForwardRefMDNodes.find(MetadataID);
+ auto FI = ForwardRefMDNodes.find(MetadataID);
if (FI != ForwardRefMDNodes.end()) {
- MDNode *Temp = FI->second.first;
+ MDNodeFwdDecl *Temp = FI->second.first;
Temp->replaceAllUsesWith(Init);
- MDNode::deleteTemporary(Temp);
+ delete Temp;
ForwardRefMDNodes.erase(FI);
assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
@@ -681,7 +609,7 @@ bool LLParser::ParseStandaloneMetadata() {
if (NumberedMetadata[MetadataID] != nullptr)
return TokError("Metadata id is already used");
- NumberedMetadata[MetadataID] = Init;
+ NumberedMetadata[MetadataID].reset(Init);
}
return false;
@@ -693,33 +621,29 @@ static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
}
/// ParseAlias:
-/// ::= GlobalVar '=' OptionalVisibility OptionalDLLStorageClass
-/// OptionalThreadLocal OptionalUnNammedAddr 'alias'
-/// OptionalLinkage Aliasee
+/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility
+/// OptionalDLLStorageClass OptionalThreadLocal
+/// OptionalUnNammedAddr 'alias' Aliasee
///
/// Aliasee
/// ::= TypeAndValue
///
/// Everything through OptionalUnNammedAddr has already been parsed.
///
-bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
+bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
unsigned Visibility, unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM,
bool UnnamedAddr) {
assert(Lex.getKind() == lltok::kw_alias);
Lex.Lex();
- LocTy LinkageLoc = Lex.getLoc();
- unsigned L;
- if (ParseOptionalLinkage(L))
- return true;
GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
if(!GlobalAlias::isValidLinkage(Linkage))
- return Error(LinkageLoc, "invalid linkage type for alias");
+ return Error(NameLoc, "invalid linkage type for alias");
if (!isValidVisibilityForLinkage(Visibility, L))
- return Error(LinkageLoc,
+ return Error(NameLoc,
"symbol with local linkage must have default visibility");
Constant *Aliasee;
@@ -835,33 +759,36 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
if (Ty->isFunctionTy() || Ty->isLabelTy())
return Error(TyLoc, "invalid type for global variable");
- GlobalVariable *GV = nullptr;
+ GlobalValue *GVal = nullptr;
// See if the global was forward referenced, if so, use the global.
if (!Name.empty()) {
- if (GlobalValue *GVal = M->getNamedValue(Name)) {
+ GVal = M->getNamedValue(Name);
+ if (GVal) {
if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
return Error(NameLoc, "redefinition of global '@" + Name + "'");
- GV = cast<GlobalVariable>(GVal);
}
} else {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
- GV = cast<GlobalVariable>(I->second.first);
+ GVal = I->second.first;
ForwardRefValIDs.erase(I);
}
}
- if (!GV) {
+ GlobalVariable *GV;
+ if (!GVal) {
GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
Name, nullptr, GlobalVariable::NotThreadLocal,
AddrSpace);
} else {
- if (GV->getType()->getElementType() != Ty)
+ if (GVal->getType()->getElementType() != Ty)
return Error(TyLoc,
"forward reference and definition of global have different types");
+ GV = cast<GlobalVariable>(GVal);
+
// Move the forward-reference to the correct spot in the module.
M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
}
@@ -895,7 +822,7 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
GV->setAlignment(Alignment);
} else {
Comdat *C;
- if (parseOptionalComdat(C))
+ if (parseOptionalComdat(Name, C))
return true;
if (C)
GV->setComdat(C);
@@ -914,7 +841,9 @@ bool LLParser::ParseUnnamedAttrGrp() {
LocTy AttrGrpLoc = Lex.getLoc();
Lex.Lex();
- assert(Lex.getKind() == lltok::AttrGrpID);
+ if (Lex.getKind() != lltok::AttrGrpID)
+ return TokError("expected attribute group id");
+
unsigned VarID = Lex.getUIntVal();
std::vector<unsigned> unused;
LocTy BuiltinLoc;
@@ -1434,10 +1363,6 @@ bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
/// ::= 'common'
/// ::= 'extern_weak'
/// ::= 'external'
-///
-/// Deprecated Values:
-/// ::= 'linker_private'
-/// ::= 'linker_private_weak'
bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
HasLinkage = false;
switch (Lex.getKind()) {
@@ -1455,15 +1380,6 @@ bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
-
- case lltok::kw_linker_private:
- case lltok::kw_linker_private_weak:
- Lex.Warning("'" + Lex.getStrVal() + "' is deprecated, treating as"
- " PrivateLinkage");
- Lex.Lex();
- // treat linker_private and linker_private_weak as PrivateLinkage
- Res = GlobalValue::PrivateLinkage;
- return false;
}
Lex.Lex();
HasLinkage = true;
@@ -1506,11 +1422,12 @@ bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
/// ::= /*empty*/
/// ::= 'ccc'
/// ::= 'fastcc'
-/// ::= 'kw_intel_ocl_bicc'
+/// ::= 'intel_ocl_bicc'
/// ::= 'coldcc'
/// ::= 'x86_stdcallcc'
/// ::= 'x86_fastcallcc'
/// ::= 'x86_thiscallcc'
+/// ::= 'x86_vectorcallcc'
/// ::= 'arm_apcscc'
/// ::= 'arm_aapcscc'
/// ::= 'arm_aapcs_vfpcc'
@@ -1525,9 +1442,10 @@ bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
/// ::= 'anyregcc'
/// ::= 'preserve_mostcc'
/// ::= 'preserve_allcc'
+/// ::= 'ghccc'
/// ::= 'cc' UINT
///
-bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
+bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
switch (Lex.getKind()) {
default: CC = CallingConv::C; return false;
case lltok::kw_ccc: CC = CallingConv::C; break;
@@ -1536,6 +1454,7 @@ bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
+ case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
@@ -1551,13 +1470,10 @@ bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
+ case lltok::kw_ghccc: CC = CallingConv::GHC; break;
case lltok::kw_cc: {
- unsigned ArbitraryCC;
Lex.Lex();
- if (ParseUInt32(ArbitraryCC))
- return true;
- CC = static_cast<CallingConv::ID>(ArbitraryCC);
- return false;
+ return ParseUInt32(CC);
}
}
@@ -1577,36 +1493,11 @@ bool LLParser::ParseInstructionMetadata(Instruction *Inst,
unsigned MDK = M->getMDKindID(Name);
Lex.Lex();
- MDNode *Node;
- SMLoc Loc = Lex.getLoc();
-
- if (ParseToken(lltok::exclaim, "expected '!' here"))
+ MDNode *N;
+ if (ParseMDNode(N))
return true;
- // This code is similar to that of ParseMetadataValue, however it needs to
- // have special-case code for a forward reference; see the comments on
- // ForwardRefInstMetadata for details. Also, MDStrings are not supported
- // at the top level here.
- if (Lex.getKind() == lltok::lbrace) {
- ValID ID;
- if (ParseMetadataListValue(ID, PFS))
- return true;
- assert(ID.Kind == ValID::t_MDNode);
- Inst->setMetadata(MDK, ID.MDNodeVal);
- } else {
- unsigned NodeID = 0;
- if (ParseMDNodeID(Node, NodeID))
- return true;
- if (Node) {
- // If we got the node, add it to the instruction.
- Inst->setMetadata(MDK, Node);
- } else {
- MDRef R = { Loc, MDK, NodeID };
- // Otherwise, remember that this should be resolved later.
- ForwardRefInstMetadata[Inst].push_back(R);
- }
- }
-
+ Inst->setMetadata(MDK, N);
if (MDK == LLVMContext::MD_tbaa)
InstsWithTBAATag.push_back(Inst);
@@ -1765,11 +1656,11 @@ bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
//===----------------------------------------------------------------------===//
/// ParseType - Parse a type.
-bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
+bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
SMLoc TypeLoc = Lex.getLoc();
switch (Lex.getKind()) {
default:
- return TokError("expected type");
+ return TokError(Msg);
case lltok::Type:
// Type ::= 'float' | 'void' (etc)
Result = Lex.getTyVal();
@@ -1882,7 +1773,8 @@ bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
/// Arg
/// ::= Type OptionalAttributes Value OptionalAttributes
bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
- PerFunctionState &PFS) {
+ PerFunctionState &PFS, bool IsMustTailCall,
+ bool InVarArgsFunc) {
if (ParseToken(lltok::lparen, "expected '(' in call"))
return true;
@@ -1893,6 +1785,17 @@ bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
ParseToken(lltok::comma, "expected ',' in argument list"))
return true;
+ // Parse an ellipsis if this is a musttail call in a variadic function.
+ if (Lex.getKind() == lltok::dotdotdot) {
+ const char *Msg = "unexpected ellipsis in argument list for ";
+ if (!IsMustTailCall)
+ return TokError(Twine(Msg) + "non-musttail call");
+ if (!InVarArgsFunc)
+ return TokError(Twine(Msg) + "musttail call in non-varargs function");
+ Lex.Lex(); // Lex the '...', it is purely for readability.
+ return ParseToken(lltok::rparen, "expected ')' at end of argument list");
+ }
+
// Parse the argument.
LocTy ArgLoc;
Type *ArgTy = nullptr;
@@ -1901,14 +1804,23 @@ bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
if (ParseType(ArgTy, ArgLoc))
return true;
- // Otherwise, handle normal operands.
- if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
- return true;
+ if (ArgTy->isMetadataTy()) {
+ if (ParseMetadataAsValue(V, PFS))
+ return true;
+ } else {
+ // Otherwise, handle normal operands.
+ if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
+ return true;
+ }
ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
AttrIndex++,
ArgAttrs)));
}
+ if (IsMustTailCall && InVarArgsFunc)
+ return TokError("expected '...' at end of argument list for musttail call "
+ "in varargs function");
+
Lex.Lex(); // Lex the ')'.
return false;
}
@@ -2204,28 +2116,6 @@ LLParser::PerFunctionState::~PerFunctionState() {
}
bool LLParser::PerFunctionState::FinishFunction() {
- // Check to see if someone took the address of labels in this block.
- if (!P.ForwardRefBlockAddresses.empty()) {
- ValID FunctionID;
- if (!F.getName().empty()) {
- FunctionID.Kind = ValID::t_GlobalName;
- FunctionID.StrVal = F.getName();
- } else {
- FunctionID.Kind = ValID::t_GlobalID;
- FunctionID.UIntVal = FunctionNumber;
- }
-
- std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
- FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
- if (FRBAI != P.ForwardRefBlockAddresses.end()) {
- // Resolve all these references.
- if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
- return true;
-
- P.ForwardRefBlockAddresses.erase(FRBAI);
- }
- }
-
if (!ForwardRefVals.empty())
return P.Error(ForwardRefVals.begin()->second.second,
"use of undefined value '%" + ForwardRefVals.begin()->first +
@@ -2267,7 +2157,7 @@ Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
}
// Don't make placeholders with invalid type.
- if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
+ if (!Ty->isFirstClassType()) {
P.Error(Loc, "invalid use of a non-first-class type");
return nullptr;
}
@@ -2308,7 +2198,7 @@ Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
return nullptr;
}
- if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
+ if (!Ty->isFirstClassType()) {
P.Error(Loc, "invalid use of a non-first-class type");
return nullptr;
}
@@ -2454,8 +2344,6 @@ bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_LocalName;
break;
- case lltok::exclaim: // !42, !{...}, or !"foo"
- return ParseMetadataValue(ID, PFS);
case lltok::APSInt:
ID.APSIntVal = Lex.getAPSIntVal();
ID.Kind = ValID::t_APSInt;
@@ -2611,12 +2499,56 @@ bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
return Error(Label.Loc, "expected basic block name in blockaddress");
- // Make a global variable as a placeholder for this reference.
- GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
- false, GlobalValue::InternalLinkage,
- nullptr, "");
- ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
- ID.ConstantVal = FwdRef;
+ // Try to find the function (but skip it if it's forward-referenced).
+ GlobalValue *GV = nullptr;
+ if (Fn.Kind == ValID::t_GlobalID) {
+ if (Fn.UIntVal < NumberedVals.size())
+ GV = NumberedVals[Fn.UIntVal];
+ } else if (!ForwardRefVals.count(Fn.StrVal)) {
+ GV = M->getNamedValue(Fn.StrVal);
+ }
+ Function *F = nullptr;
+ if (GV) {
+ // Confirm that it's actually a function with a definition.
+ if (!isa<Function>(GV))
+ return Error(Fn.Loc, "expected function name in blockaddress");
+ F = cast<Function>(GV);
+ if (F->isDeclaration())
+ return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
+ }
+
+ if (!F) {
+ // Make a global variable as a placeholder for this reference.
+ GlobalValue *&FwdRef = ForwardRefBlockAddresses[Fn][Label];
+ if (!FwdRef)
+ FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
+ GlobalValue::InternalLinkage, nullptr, "");
+ ID.ConstantVal = FwdRef;
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ // We found the function; now find the basic block. Don't use PFS, since we
+ // might be inside a constant expression.
+ BasicBlock *BB;
+ if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
+ if (Label.Kind == ValID::t_LocalID)
+ BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
+ else
+ BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
+ if (!BB)
+ return Error(Label.Loc, "referenced value is not a basic block");
+ } else {
+ if (Label.Kind == ValID::t_LocalID)
+ return Error(Label.Loc, "cannot take address of numeric label after "
+ "the function is defined");
+ BB = dyn_cast_or_null<BasicBlock>(
+ F->getValueSymbolTable().lookup(Label.StrVal));
+ if (!BB)
+ return Error(Label.Loc, "referenced value is not a basic block");
+ }
+
+ ID.ConstantVal = BlockAddress::get(F, BB);
ID.Kind = ValID::t_Constant;
return false;
}
@@ -2915,23 +2847,33 @@ bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
ParseGlobalValue(Ty, V);
}
-bool LLParser::parseOptionalComdat(Comdat *&C) {
+bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
C = nullptr;
+
+ LocTy KwLoc = Lex.getLoc();
if (!EatIfPresent(lltok::kw_comdat))
return false;
- if (Lex.getKind() != lltok::ComdatVar)
- return TokError("expected comdat variable");
- LocTy Loc = Lex.getLoc();
- StringRef Name = Lex.getStrVal();
- C = getComdat(Name, Loc);
- Lex.Lex();
+
+ if (EatIfPresent(lltok::lparen)) {
+ if (Lex.getKind() != lltok::ComdatVar)
+ return TokError("expected comdat variable");
+ C = getComdat(Lex.getStrVal(), Lex.getLoc());
+ Lex.Lex();
+ if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
+ return true;
+ } else {
+ if (GlobalName.empty())
+ return TokError("comdat cannot be unnamed");
+ C = getComdat(GlobalName, KwLoc);
+ }
+
return false;
}
/// ParseGlobalValueVector
/// ::= /*empty*/
/// ::= TypeAndValue (',' TypeAndValue)*
-bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
+bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
// Empty list.
if (Lex.getKind() == lltok::rbrace ||
Lex.getKind() == lltok::rsquare ||
@@ -2951,45 +2893,216 @@ bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
return false;
}
-bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
- assert(Lex.getKind() == lltok::lbrace);
- Lex.Lex();
-
- SmallVector<Value*, 16> Elts;
- if (ParseMDNodeVector(Elts, PFS) ||
- ParseToken(lltok::rbrace, "expected end of metadata node"))
+bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
+ SmallVector<Metadata *, 16> Elts;
+ if (ParseMDNodeVector(Elts))
return true;
- ID.MDNodeVal = MDNode::get(Context, Elts);
- ID.Kind = ValID::t_MDNode;
+ MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
return false;
}
-/// ParseMetadataValue
-/// ::= !42
-/// ::= !{...}
-/// ::= !"string"
-bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
- assert(Lex.getKind() == lltok::exclaim);
- Lex.Lex();
+/// MDNode:
+/// ::= !{ ... }
+/// ::= !7
+/// ::= !MDLocation(...)
+bool LLParser::ParseMDNode(MDNode *&N) {
+ if (Lex.getKind() == lltok::MetadataVar)
+ return ParseSpecializedMDNode(N);
- // MDNode:
+ return ParseToken(lltok::exclaim, "expected '!' here") ||
+ ParseMDNodeTail(N);
+}
+
+bool LLParser::ParseMDNodeTail(MDNode *&N) {
// !{ ... }
if (Lex.getKind() == lltok::lbrace)
- return ParseMetadataListValue(ID, PFS);
+ return ParseMDTuple(N);
- // Standalone metadata reference
// !42
- if (Lex.getKind() == lltok::APSInt) {
- if (ParseMDNodeID(ID.MDNodeVal)) return true;
- ID.Kind = ValID::t_MDNode;
+ return ParseMDNodeID(N);
+}
+
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ MDUnsignedField<uint32_t> &Result) {
+ if (Result.Seen)
+ return Error(Loc,
+ "field '" + Name + "' cannot be specified more than once");
+
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected unsigned integer");
+ uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(Result.Max + 1ull);
+
+ if (Val64 > Result.Max)
+ return TokError("value for '" + Name + "' too large, limit is " +
+ Twine(Result.Max));
+ Result.assign(Val64);
+ Lex.Lex();
+ return false;
+}
+
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
+ if (Result.Seen)
+ return Error(Loc,
+ "field '" + Name + "' cannot be specified more than once");
+
+ Metadata *MD;
+ if (ParseMetadata(MD, nullptr))
+ return true;
+
+ Result.assign(MD);
+ return false;
+}
+
+template <class ParserTy>
+bool LLParser::ParseMDFieldsImpl(ParserTy parseField) {
+ assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
+ Lex.Lex();
+
+ if (ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+ if (EatIfPresent(lltok::rparen))
+ return false;
+
+ do {
+ if (Lex.getKind() != lltok::LabelStr)
+ return TokError("expected field label here");
+
+ if (parseField())
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ return ParseToken(lltok::rparen, "expected ')' here");
+}
+
+bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
+ assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
+#define DISPATCH_TO_PARSER(CLASS) \
+ if (Lex.getStrVal() == #CLASS) \
+ return Parse##CLASS(N, IsDistinct);
+
+ DISPATCH_TO_PARSER(MDLocation);
+#undef DISPATCH_TO_PARSER
+
+ return TokError("expected metadata type");
+}
+
+#define PARSE_MD_FIELD(NAME) \
+ do { \
+ if (Lex.getStrVal() == #NAME) { \
+ LocTy Loc = Lex.getLoc(); \
+ Lex.Lex(); \
+ if (ParseMDField(Loc, #NAME, NAME)) \
+ return true; \
+ return false; \
+ } \
+ } while (0)
+
+/// ParseMDLocationFields:
+/// ::= !MDLocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
+bool LLParser::ParseMDLocation(MDNode *&Result, bool IsDistinct) {
+ MDUnsignedField<uint32_t> line(0, ~0u >> 8);
+ MDUnsignedField<uint32_t> column(0, ~0u >> 24);
+ MDField scope;
+ MDField inlinedAt;
+ if (ParseMDFieldsImpl([&]() -> bool {
+ PARSE_MD_FIELD(line);
+ PARSE_MD_FIELD(column);
+ PARSE_MD_FIELD(scope);
+ PARSE_MD_FIELD(inlinedAt);
+ return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");
+ }))
+ return true;
+
+ if (!scope.Seen)
+ return TokError("missing required field 'scope'");
+
+ auto get = (IsDistinct ? MDLocation::getDistinct : MDLocation::get);
+ Result = get(Context, line.Val, column.Val, scope.Val, inlinedAt.Val);
+ return false;
+}
+#undef PARSE_MD_FIELD
+
+/// ParseMetadataAsValue
+/// ::= metadata i32 %local
+/// ::= metadata i32 @global
+/// ::= metadata i32 7
+/// ::= metadata !0
+/// ::= metadata !{...}
+/// ::= metadata !"string"
+bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
+ // Note: the type 'metadata' has already been parsed.
+ Metadata *MD;
+ if (ParseMetadata(MD, &PFS))
+ return true;
+
+ V = MetadataAsValue::get(Context, MD);
+ return false;
+}
+
+/// ParseValueAsMetadata
+/// ::= i32 %local
+/// ::= i32 @global
+/// ::= i32 7
+bool LLParser::ParseValueAsMetadata(Metadata *&MD, PerFunctionState *PFS) {
+ Type *Ty;
+ LocTy Loc;
+ if (ParseType(Ty, "expected metadata operand", Loc))
+ return true;
+ if (Ty->isMetadataTy())
+ return Error(Loc, "invalid metadata-value-metadata roundtrip");
+
+ Value *V;
+ if (ParseValue(Ty, V, PFS))
+ return true;
+
+ MD = ValueAsMetadata::get(V);
+ return false;
+}
+
+/// ParseMetadata
+/// ::= i32 %local
+/// ::= i32 @global
+/// ::= i32 7
+/// ::= !42
+/// ::= !{...}
+/// ::= !"string"
+/// ::= !MDLocation(...)
+bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
+ if (Lex.getKind() == lltok::MetadataVar) {
+ MDNode *N;
+ if (ParseSpecializedMDNode(N))
+ return true;
+ MD = N;
return false;
}
+ // ValueAsMetadata:
+ // <type> <value>
+ if (Lex.getKind() != lltok::exclaim)
+ return ParseValueAsMetadata(MD, PFS);
+
+ // '!'.
+ assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
+ Lex.Lex();
+
// MDString:
// ::= '!' STRINGCONSTANT
- if (ParseMDString(ID.MDStringVal)) return true;
- ID.Kind = ValID::t_MDString;
+ if (Lex.getKind() == lltok::StringConstant) {
+ MDString *S;
+ if (ParseMDString(S))
+ return true;
+ MD = S;
+ return false;
+ }
+
+ // MDNode:
+ // !{ ... }
+ // !7
+ MDNode *N;
+ if (ParseMDNodeTail(N))
+ return true;
+ MD = N;
return false;
}
@@ -3022,16 +3135,6 @@ bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
(ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
return false;
}
- case ValID::t_MDNode:
- if (!Ty->isMetadataTy())
- return Error(ID.Loc, "metadata value must have metadata type");
- V = ID.MDNodeVal;
- return false;
- case ValID::t_MDString:
- if (!Ty->isMetadataTy())
- return Error(ID.Loc, "metadata value must have metadata type");
- V = ID.MDStringVal;
- return false;
case ValID::t_GlobalName:
V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
return V == nullptr;
@@ -3147,7 +3250,7 @@ bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
/// FunctionHeader
/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
/// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
-/// OptionalAlign OptGC OptionalPrefix
+/// OptionalAlign OptGC OptionalPrefix OptionalPrologue
bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
// Parse the linkage.
LocTy LinkageLoc = Lex.getLoc();
@@ -3156,7 +3259,7 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
unsigned Visibility;
unsigned DLLStorageClass;
AttrBuilder RetAttrs;
- CallingConv::ID CC;
+ unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage) ||
@@ -3228,6 +3331,7 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
bool UnnamedAddr;
LocTy UnnamedAddrLoc;
Constant *Prefix = nullptr;
+ Constant *Prologue = nullptr;
Comdat *C;
if (ParseArgumentList(ArgList, isVarArg) ||
@@ -3237,12 +3341,14 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
BuiltinLoc) ||
(EatIfPresent(lltok::kw_section) &&
ParseStringConstant(Section)) ||
- parseOptionalComdat(C) ||
+ parseOptionalComdat(FunctionName, C) ||
ParseOptionalAlignment(Alignment) ||
(EatIfPresent(lltok::kw_gc) &&
ParseStringConstant(GC)) ||
(EatIfPresent(lltok::kw_prefix) &&
- ParseGlobalTypeAndValue(Prefix)))
+ ParseGlobalTypeAndValue(Prefix)) ||
+ (EatIfPresent(lltok::kw_prologue) &&
+ ParseGlobalTypeAndValue(Prologue)))
return true;
if (FuncAttrs.contains(Attribute::Builtin))
@@ -3343,6 +3449,7 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
Fn->setComdat(C);
if (!GC.empty()) Fn->setGC(GC.c_str());
Fn->setPrefixData(Prefix);
+ Fn->setPrologueData(Prologue);
ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
// Add all of the arguments we parsed to the function.
@@ -3359,13 +3466,63 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
ArgList[i].Name + "'");
}
+ if (isDefine)
+ return false;
+
+ // Check the declaration has no block address forward references.
+ ValID ID;
+ if (FunctionName.empty()) {
+ ID.Kind = ValID::t_GlobalID;
+ ID.UIntVal = NumberedVals.size() - 1;
+ } else {
+ ID.Kind = ValID::t_GlobalName;
+ ID.StrVal = FunctionName;
+ }
+ auto Blocks = ForwardRefBlockAddresses.find(ID);
+ if (Blocks != ForwardRefBlockAddresses.end())
+ return Error(Blocks->first.Loc,
+ "cannot take blockaddress inside a declaration");
return false;
}
+bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
+ ValID ID;
+ if (FunctionNumber == -1) {
+ ID.Kind = ValID::t_GlobalName;
+ ID.StrVal = F.getName();
+ } else {
+ ID.Kind = ValID::t_GlobalID;
+ ID.UIntVal = FunctionNumber;
+ }
+
+ auto Blocks = P.ForwardRefBlockAddresses.find(ID);
+ if (Blocks == P.ForwardRefBlockAddresses.end())
+ return false;
+
+ for (const auto &I : Blocks->second) {
+ const ValID &BBID = I.first;
+ GlobalValue *GV = I.second;
+
+ assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
+ "Expected local id or name");
+ BasicBlock *BB;
+ if (BBID.Kind == ValID::t_LocalName)
+ BB = GetBB(BBID.StrVal, BBID.Loc);
+ else
+ BB = GetBB(BBID.UIntVal, BBID.Loc);
+ if (!BB)
+ return P.Error(BBID.Loc, "referenced value is not a basic block");
+
+ GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
+ GV->eraseFromParent();
+ }
+
+ P.ForwardRefBlockAddresses.erase(Blocks);
+ return false;
+}
/// ParseFunctionBody
-/// ::= '{' BasicBlock+ '}'
-///
+/// ::= '{' BasicBlock+ UseListOrderDirective* '}'
bool LLParser::ParseFunctionBody(Function &Fn) {
if (Lex.getKind() != lltok::lbrace)
return TokError("expected '{' in function body");
@@ -3376,13 +3533,24 @@ bool LLParser::ParseFunctionBody(Function &Fn) {
PerFunctionState PFS(*this, Fn, FunctionNumber);
+ // Resolve block addresses and allow basic blocks to be forward-declared
+ // within this function.
+ if (PFS.resolveForwardRefBlockAddresses())
+ return true;
+ SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
+
// We need at least one basic block.
- if (Lex.getKind() == lltok::rbrace)
+ if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
return TokError("function body requires at least one basic block");
- while (Lex.getKind() != lltok::rbrace)
+ while (Lex.getKind() != lltok::rbrace &&
+ Lex.getKind() != lltok::kw_uselistorder)
if (ParseBasicBlock(PFS)) return true;
+ while (Lex.getKind() != lltok::rbrace)
+ if (ParseUseListOrder(&PFS))
+ return true;
+
// Eat the }.
Lex.Lex();
@@ -3701,7 +3869,7 @@ bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
ParseTypeAndBasicBlock(DestBB, PFS))
return true;
- if (!SeenCases.insert(Constant))
+ if (!SeenCases.insert(Constant).second)
return Error(CondLoc, "duplicate case value in switch");
if (!isa<ConstantInt>(Constant))
return Error(CondLoc, "case value is not a constant integer");
@@ -3767,7 +3935,7 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy NoBuiltinLoc;
- CallingConv::ID CC;
+ unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
@@ -4181,7 +4349,7 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy BuiltinLoc;
- CallingConv::ID CC;
+ unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
@@ -4194,7 +4362,8 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
ParseOptionalReturnAttrs(RetAttrs) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
- ParseParameterList(ArgList, PFS) ||
+ ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
+ PFS.getFunction().isVarArg()) ||
ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
BuiltinLoc))
return true;
@@ -4618,13 +4787,15 @@ int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
//===----------------------------------------------------------------------===//
/// ParseMDNodeVector
-/// ::= Element (',' Element)*
+/// ::= { Element (',' Element)* }
/// Element
/// ::= 'null' | TypeAndValue
-bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
- PerFunctionState *PFS) {
+bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
+ if (ParseToken(lltok::lbrace, "expected '{' here"))
+ return true;
+
// Check for an empty list.
- if (Lex.getKind() == lltok::rbrace)
+ if (EatIfPresent(lltok::rbrace))
return false;
do {
@@ -4634,10 +4805,143 @@ bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
continue;
}
- Value *V = nullptr;
- if (ParseTypeAndValue(V, PFS)) return true;
- Elts.push_back(V);
+ Metadata *MD;
+ if (ParseMetadata(MD, nullptr))
+ return true;
+ Elts.push_back(MD);
+ } while (EatIfPresent(lltok::comma));
+
+ return ParseToken(lltok::rbrace, "expected end of metadata node");
+}
+
+//===----------------------------------------------------------------------===//
+// Use-list order directives.
+//===----------------------------------------------------------------------===//
+bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
+ SMLoc Loc) {
+ if (V->use_empty())
+ return Error(Loc, "value has no uses");
+
+ unsigned NumUses = 0;
+ SmallDenseMap<const Use *, unsigned, 16> Order;
+ for (const Use &U : V->uses()) {
+ if (++NumUses > Indexes.size())
+ break;
+ Order[&U] = Indexes[NumUses - 1];
+ }
+ if (NumUses < 2)
+ return Error(Loc, "value only has one use");
+ if (Order.size() != Indexes.size() || NumUses > Indexes.size())
+ return Error(Loc, "wrong number of indexes, expected " +
+ Twine(std::distance(V->use_begin(), V->use_end())));
+
+ V->sortUseList([&](const Use &L, const Use &R) {
+ return Order.lookup(&L) < Order.lookup(&R);
+ });
+ return false;
+}
+
+/// ParseUseListOrderIndexes
+/// ::= '{' uint32 (',' uint32)+ '}'
+bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
+ SMLoc Loc = Lex.getLoc();
+ if (ParseToken(lltok::lbrace, "expected '{' here"))
+ return true;
+ if (Lex.getKind() == lltok::rbrace)
+ return Lex.Error("expected non-empty list of uselistorder indexes");
+
+ // Use Offset, Max, and IsOrdered to check consistency of indexes. The
+ // indexes should be distinct numbers in the range [0, size-1], and should
+ // not be in order.
+ unsigned Offset = 0;
+ unsigned Max = 0;
+ bool IsOrdered = true;
+ assert(Indexes.empty() && "Expected empty order vector");
+ do {
+ unsigned Index;
+ if (ParseUInt32(Index))
+ return true;
+
+ // Update consistency checks.
+ Offset += Index - Indexes.size();
+ Max = std::max(Max, Index);
+ IsOrdered &= Index == Indexes.size();
+
+ Indexes.push_back(Index);
} while (EatIfPresent(lltok::comma));
+ if (ParseToken(lltok::rbrace, "expected '}' here"))
+ return true;
+
+ if (Indexes.size() < 2)
+ return Error(Loc, "expected >= 2 uselistorder indexes");
+ if (Offset != 0 || Max >= Indexes.size())
+ return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
+ if (IsOrdered)
+ return Error(Loc, "expected uselistorder indexes to change the order");
+
return false;
}
+
+/// ParseUseListOrder
+/// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
+bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
+ SMLoc Loc = Lex.getLoc();
+ if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
+ return true;
+
+ Value *V;
+ SmallVector<unsigned, 16> Indexes;
+ if (ParseTypeAndValue(V, PFS) ||
+ ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
+ ParseUseListOrderIndexes(Indexes))
+ return true;
+
+ return sortUseListOrder(V, Indexes, Loc);
+}
+
+/// ParseUseListOrderBB
+/// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
+bool LLParser::ParseUseListOrderBB() {
+ assert(Lex.getKind() == lltok::kw_uselistorder_bb);
+ SMLoc Loc = Lex.getLoc();
+ Lex.Lex();
+
+ ValID Fn, Label;
+ SmallVector<unsigned, 16> Indexes;
+ if (ParseValID(Fn) ||
+ ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
+ ParseValID(Label) ||
+ ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
+ ParseUseListOrderIndexes(Indexes))
+ return true;
+
+ // Check the function.
+ GlobalValue *GV;
+ if (Fn.Kind == ValID::t_GlobalName)
+ GV = M->getNamedValue(Fn.StrVal);
+ else if (Fn.Kind == ValID::t_GlobalID)
+ GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
+ else
+ return Error(Fn.Loc, "expected function name in uselistorder_bb");
+ if (!GV)
+ return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
+ auto *F = dyn_cast<Function>(GV);
+ if (!F)
+ return Error(Fn.Loc, "expected function name in uselistorder_bb");
+ if (F->isDeclaration())
+ return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
+
+ // Check the basic block.
+ if (Label.Kind == ValID::t_LocalID)
+ return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
+ if (Label.Kind != ValID::t_LocalName)
+ return Error(Label.Loc, "expected basic block name in uselistorder_bb");
+ Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
+ if (!V)
+ return Error(Label.Loc, "invalid basic block in uselistorder_bb");
+ if (!isa<BasicBlock>(V))
+ return Error(Label.Loc, "expected basic block in uselistorder_bb");
+
+ return sortUseListOrder(V, Indexes, Loc);
+}
diff --git a/contrib/llvm/lib/AsmParser/LLParser.h b/contrib/llvm/lib/AsmParser/LLParser.h
index 7203bb2..220562d 100644
--- a/contrib/llvm/lib/AsmParser/LLParser.h
+++ b/contrib/llvm/lib/AsmParser/LLParser.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_ASMPARSER_LLPARSER_H
-#define LLVM_ASMPARSER_LLPARSER_H
+#ifndef LLVM_LIB_ASMPARSER_LLPARSER_H
+#define LLVM_LIB_ASMPARSER_LLPARSER_H
#include "LLLexer.h"
#include "llvm/ADT/DenseMap.h"
@@ -52,8 +52,6 @@ namespace llvm {
t_EmptyArray, // No value: []
t_Constant, // Value in ConstantVal.
t_InlineAsm, // Value in StrVal/StrVal2/UIntVal.
- t_MDNode, // Value in MDNodeVal.
- t_MDString, // Value in MDStringVal.
t_ConstantStruct, // Value in ConstantStructElts.
t_PackedConstantStruct // Value in ConstantStructElts.
} Kind;
@@ -64,8 +62,6 @@ namespace llvm {
APSInt APSIntVal;
APFloat APFloatVal;
Constant *ConstantVal;
- MDNode *MDNodeVal;
- MDString *MDStringVal;
Constant **ConstantStructElts;
ValID() : Kind(t_LocalID), APFloatVal(0.0) {}
@@ -84,6 +80,31 @@ namespace llvm {
}
};
+ /// Structure to represent an optional metadata field.
+ template <class FieldTy> struct MDFieldImpl {
+ typedef MDFieldImpl ImplTy;
+ FieldTy Val;
+ bool Seen;
+
+ void assign(FieldTy Val) {
+ Seen = true;
+ this->Val = Val;
+ }
+
+ explicit MDFieldImpl(FieldTy Default) : Val(Default), Seen(false) {}
+ };
+ template <class NumTy> struct MDUnsignedField : public MDFieldImpl<NumTy> {
+ typedef typename MDUnsignedField::ImplTy ImplTy;
+ NumTy Max;
+
+ MDUnsignedField(NumTy Default = 0,
+ NumTy Max = std::numeric_limits<NumTy>::max())
+ : ImplTy(Default), Max(Max) {}
+ };
+ struct MDField : public MDFieldImpl<Metadata *> {
+ MDField() : ImplTy(nullptr) {}
+ };
+
class LLParser {
public:
typedef LLLexer::LocTy LocTy;
@@ -106,7 +127,6 @@ namespace llvm {
SMLoc Loc;
unsigned MDKind, MDSlot;
};
- DenseMap<Instruction*, std::vector<MDRef> > ForwardRefInstMetadata;
SmallVector<Instruction*, 64> InstsWithTBAATag;
@@ -115,8 +135,8 @@ namespace llvm {
StringMap<std::pair<Type*, LocTy> > NamedTypes;
std::vector<std::pair<Type*, LocTy> > NumberedTypes;
- std::vector<TrackingVH<MDNode> > NumberedMetadata;
- std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> > ForwardRefMDNodes;
+ std::vector<TrackingMDNodeRef> NumberedMetadata;
+ std::map<unsigned, std::pair<MDNodeFwdDecl *, LocTy>> ForwardRefMDNodes;
// Global Value reference information.
std::map<std::string, std::pair<GlobalValue*, LocTy> > ForwardRefVals;
@@ -128,17 +148,21 @@ namespace llvm {
// References to blockaddress. The key is the function ValID, the value is
// a list of references to blocks in that function.
- std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >
- ForwardRefBlockAddresses;
+ std::map<ValID, std::map<ValID, GlobalValue *>> ForwardRefBlockAddresses;
+ class PerFunctionState;
+ /// Reference to per-function state to allow basic blocks to be
+ /// forward-referenced by blockaddress instructions within the same
+ /// function.
+ PerFunctionState *BlockAddressPFS;
// Attribute builder reference information.
std::map<Value*, std::vector<unsigned> > ForwardRefAttrGroups;
std::map<unsigned, AttrBuilder> NumberedAttrBuilders;
public:
- LLParser(MemoryBuffer *F, SourceMgr &SM, SMDiagnostic &Err, Module *m) :
- Context(m->getContext()), Lex(F, SM, Err, m->getContext()),
- M(m) {}
+ LLParser(StringRef F, SourceMgr &SM, SMDiagnostic &Err, Module *m)
+ : Context(m->getContext()), Lex(F, SM, Err, m->getContext()), M(m),
+ BlockAddressPFS(nullptr) {}
bool Run();
LLVMContext &getContext() { return Context; }
@@ -222,7 +246,7 @@ namespace llvm {
}
bool ParseOptionalVisibility(unsigned &Visibility);
bool ParseOptionalDLLStorageClass(unsigned &DLLStorageClass);
- bool ParseOptionalCallingConv(CallingConv::ID &CC);
+ bool ParseOptionalCallingConv(unsigned &CC);
bool ParseOptionalAlignment(unsigned &Alignment);
bool ParseOptionalDereferenceableBytes(uint64_t &Bytes);
bool ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
@@ -258,22 +282,29 @@ namespace llvm {
bool HasLinkage, unsigned Visibility,
unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM, bool UnnamedAddr);
- bool ParseAlias(const std::string &Name, LocTy Loc, unsigned Visibility,
- unsigned DLLStorageClass,
+ bool ParseAlias(const std::string &Name, LocTy Loc, unsigned Linkage,
+ unsigned Visibility, unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM, bool UnnamedAddr);
bool parseComdat();
bool ParseStandaloneMetadata();
bool ParseNamedMetadata();
bool ParseMDString(MDString *&Result);
bool ParseMDNodeID(MDNode *&Result);
- bool ParseMDNodeID(MDNode *&Result, unsigned &SlotNo);
bool ParseUnnamedAttrGrp();
bool ParseFnAttributeValuePairs(AttrBuilder &B,
std::vector<unsigned> &FwdRefAttrGrps,
bool inAttrGrp, LocTy &BuiltinLoc);
// Type Parsing.
- bool ParseType(Type *&Result, bool AllowVoid = false);
+ bool ParseType(Type *&Result, const Twine &Msg, bool AllowVoid = false);
+ bool ParseType(Type *&Result, bool AllowVoid = false) {
+ return ParseType(Result, "expected type", AllowVoid);
+ }
+ bool ParseType(Type *&Result, const Twine &Msg, LocTy &Loc,
+ bool AllowVoid = false) {
+ Loc = Lex.getLoc();
+ return ParseType(Result, Msg, AllowVoid);
+ }
bool ParseType(Type *&Result, LocTy &Loc, bool AllowVoid = false) {
Loc = Lex.getLoc();
return ParseType(Result, AllowVoid);
@@ -327,6 +358,8 @@ namespace llvm {
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *DefineBB(const std::string &Name, LocTy Loc);
+
+ bool resolveForwardRefBlockAddresses();
};
bool ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
@@ -366,19 +399,32 @@ namespace llvm {
: Loc(loc), V(v), Attrs(attrs) {}
};
bool ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
- PerFunctionState &PFS);
+ PerFunctionState &PFS,
+ bool IsMustTailCall = false,
+ bool InVarArgsFunc = false);
// Constant Parsing.
bool ParseValID(ValID &ID, PerFunctionState *PFS = nullptr);
bool ParseGlobalValue(Type *Ty, Constant *&V);
bool ParseGlobalTypeAndValue(Constant *&V);
- bool ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts);
- bool parseOptionalComdat(Comdat *&C);
- bool ParseMetadataListValue(ValID &ID, PerFunctionState *PFS);
- bool ParseMetadataValue(ValID &ID, PerFunctionState *PFS);
- bool ParseMDNodeVector(SmallVectorImpl<Value*> &, PerFunctionState *PFS);
+ bool ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts);
+ bool parseOptionalComdat(StringRef GlobalName, Comdat *&C);
+ bool ParseMetadataAsValue(Value *&V, PerFunctionState &PFS);
+ bool ParseValueAsMetadata(Metadata *&MD, PerFunctionState *PFS);
+ bool ParseMetadata(Metadata *&MD, PerFunctionState *PFS);
+ bool ParseMDTuple(MDNode *&MD, bool IsDistinct = false);
+ bool ParseMDNode(MDNode *&MD);
+ bool ParseMDNodeTail(MDNode *&MD);
+ bool ParseMDNodeVector(SmallVectorImpl<Metadata *> &MDs);
bool ParseInstructionMetadata(Instruction *Inst, PerFunctionState *PFS);
+ bool ParseMDField(LocTy Loc, StringRef Name,
+ MDUnsignedField<uint32_t> &Result);
+ bool ParseMDField(LocTy Loc, StringRef Name, MDField &Result);
+ template <class ParserTy> bool ParseMDFieldsImpl(ParserTy parseField);
+ bool ParseSpecializedMDNode(MDNode *&N, bool IsDistinct = false);
+ bool ParseMDLocation(MDNode *&Result, bool IsDistinct);
+
// Function Parsing.
struct ArgInfo {
LocTy Loc;
@@ -433,9 +479,11 @@ namespace llvm {
int ParseExtractValue(Instruction *&I, PerFunctionState &PFS);
int ParseInsertValue(Instruction *&I, PerFunctionState &PFS);
- bool ResolveForwardRefBlockAddresses(Function *TheFn,
- std::vector<std::pair<ValID, GlobalValue*> > &Refs,
- PerFunctionState *PFS);
+ // Use-list order directives.
+ bool ParseUseListOrder(PerFunctionState *PFS = nullptr);
+ bool ParseUseListOrderBB();
+ bool ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes);
+ bool sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, SMLoc Loc);
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/AsmParser/LLToken.h b/contrib/llvm/lib/AsmParser/LLToken.h
index 2f02606f..4fb0182 100644
--- a/contrib/llvm/lib/AsmParser/LLToken.h
+++ b/contrib/llvm/lib/AsmParser/LLToken.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LIBS_ASMPARSER_LLTOKEN_H
-#define LIBS_ASMPARSER_LLTOKEN_H
+#ifndef LLVM_LIB_ASMPARSER_LLTOKEN_H
+#define LLVM_LIB_ASMPARSER_LLTOKEN_H
namespace llvm {
namespace lltok {
@@ -39,8 +39,6 @@ namespace lltok {
kw_private,
kw_internal,
- kw_linker_private, // NOTE: deprecated, for parser compatibility
- kw_linker_private_weak, // NOTE: deprecated, for parser compatibility
kw_linkonce, kw_linkonce_odr,
kw_weak, // Used as a linkage, and a modifier for "cmpxchg".
kw_weak_odr, kw_appending,
@@ -85,11 +83,12 @@ namespace lltok {
kw_inteldialect,
kw_gc,
kw_prefix,
+ kw_prologue,
kw_c,
kw_cc, kw_ccc, kw_fastcc, kw_coldcc,
kw_intel_ocl_bicc,
- kw_x86_stdcallcc, kw_x86_fastcallcc, kw_x86_thiscallcc,
+ kw_x86_stdcallcc, kw_x86_fastcallcc, kw_x86_thiscallcc, kw_x86_vectorcallcc,
kw_arm_apcscc, kw_arm_aapcscc, kw_arm_aapcs_vfpcc,
kw_msp430_intrcc,
kw_ptx_kernel, kw_ptx_device,
@@ -97,6 +96,7 @@ namespace lltok {
kw_x86_64_sysvcc, kw_x86_64_win64cc,
kw_webkit_jscc, kw_anyregcc,
kw_preserve_mostcc, kw_preserve_allcc,
+ kw_ghccc,
// Attributes:
kw_attributes,
@@ -182,6 +182,12 @@ namespace lltok {
kw_extractelement, kw_insertelement, kw_shufflevector,
kw_extractvalue, kw_insertvalue, kw_blockaddress,
+ // Metadata types.
+ kw_distinct,
+
+ // Use-list order directives.
+ kw_uselistorder, kw_uselistorder_bb,
+
// Unsigned Valued tokens (UIntVal).
GlobalID, // @42
LocalVarID, // %42
diff --git a/contrib/llvm/lib/AsmParser/Parser.cpp b/contrib/llvm/lib/AsmParser/Parser.cpp
index 91bb51c..0815907 100644
--- a/contrib/llvm/lib/AsmParser/Parser.cpp
+++ b/contrib/llvm/lib/AsmParser/Parser.cpp
@@ -21,26 +21,29 @@
#include <system_error>
using namespace llvm;
-Module *llvm::ParseAssembly(MemoryBuffer *F,
- Module *M,
- SMDiagnostic &Err,
- LLVMContext &Context) {
+bool llvm::parseAssemblyInto(MemoryBufferRef F, Module &M, SMDiagnostic &Err) {
SourceMgr SM;
- SM.AddNewSourceBuffer(F, SMLoc());
+ std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(F, false);
+ SM.AddNewSourceBuffer(std::move(Buf), SMLoc());
- // If we are parsing into an existing module, do it.
- if (M)
- return LLParser(F, SM, Err, M).Run() ? nullptr : M;
+ return LLParser(F.getBuffer(), SM, Err, &M).Run();
+}
+
+std::unique_ptr<Module> llvm::parseAssembly(MemoryBufferRef F,
+ SMDiagnostic &Err,
+ LLVMContext &Context) {
+ std::unique_ptr<Module> M =
+ make_unique<Module>(F.getBufferIdentifier(), Context);
- // Otherwise create a new module.
- std::unique_ptr<Module> M2(new Module(F->getBufferIdentifier(), Context));
- if (LLParser(F, SM, Err, M2.get()).Run())
+ if (parseAssemblyInto(F, *M, Err))
return nullptr;
- return M2.release();
+
+ return std::move(M);
}
-Module *llvm::ParseAssemblyFile(const std::string &Filename, SMDiagnostic &Err,
- LLVMContext &Context) {
+std::unique_ptr<Module> llvm::parseAssemblyFile(StringRef Filename,
+ SMDiagnostic &Err,
+ LLVMContext &Context) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = FileOrErr.getError()) {
@@ -49,13 +52,12 @@ Module *llvm::ParseAssemblyFile(const std::string &Filename, SMDiagnostic &Err,
return nullptr;
}
- return ParseAssembly(FileOrErr.get().release(), nullptr, Err, Context);
+ return parseAssembly(FileOrErr.get()->getMemBufferRef(), Err, Context);
}
-Module *llvm::ParseAssemblyString(const char *AsmString, Module *M,
- SMDiagnostic &Err, LLVMContext &Context) {
- MemoryBuffer *F =
- MemoryBuffer::getMemBuffer(StringRef(AsmString), "<string>");
-
- return ParseAssembly(F, M, Err, Context);
+std::unique_ptr<Module> llvm::parseAssemblyString(StringRef AsmString,
+ SMDiagnostic &Err,
+ LLVMContext &Context) {
+ MemoryBufferRef F(AsmString, "<string>");
+ return parseAssembly(F, Err, Context);
}
diff --git a/contrib/llvm/lib/Bitcode/Reader/BitReader.cpp b/contrib/llvm/lib/Bitcode/Reader/BitReader.cpp
index b5886c1..9b3acb5 100644
--- a/contrib/llvm/lib/Bitcode/Reader/BitReader.cpp
+++ b/contrib/llvm/lib/Bitcode/Reader/BitReader.cpp
@@ -31,7 +31,7 @@ LLVMBool LLVMParseBitcodeInContext(LLVMContextRef ContextRef,
LLVMModuleRef *OutModule,
char **OutMessage) {
ErrorOr<Module *> ModuleOrErr =
- parseBitcodeFile(unwrap(MemBuf), *unwrap(ContextRef));
+ parseBitcodeFile(unwrap(MemBuf)->getMemBufferRef(), *unwrap(ContextRef));
if (std::error_code EC = ModuleOrErr.getError()) {
if (OutMessage)
*OutMessage = strdup(EC.message().c_str());
@@ -51,8 +51,11 @@ LLVMBool LLVMGetBitcodeModuleInContext(LLVMContextRef ContextRef,
LLVMModuleRef *OutM,
char **OutMessage) {
std::string Message;
+ std::unique_ptr<MemoryBuffer> Owner(unwrap(MemBuf));
+
ErrorOr<Module *> ModuleOrErr =
- getLazyBitcodeModule(unwrap(MemBuf), *unwrap(ContextRef));
+ getLazyBitcodeModule(std::move(Owner), *unwrap(ContextRef));
+ Owner.release();
if (std::error_code EC = ModuleOrErr.getError()) {
*OutM = wrap((Module *)nullptr);
diff --git a/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.cpp b/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
index 47a3953..409adaf 100644
--- a/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -15,6 +15,7 @@
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
@@ -22,20 +23,103 @@
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/DataStream.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
+
using namespace llvm;
enum {
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
};
-void BitcodeReader::materializeForwardReferencedFunctions() {
- while (!BlockAddrFwdRefs.empty()) {
- Function *F = BlockAddrFwdRefs.begin()->first;
- F->Materialize();
+BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
+ DiagnosticSeverity Severity,
+ const Twine &Msg)
+ : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
+
+void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
+
+static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
+ std::error_code EC, const Twine &Message) {
+ BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
+ DiagnosticHandler(DI);
+ return EC;
+}
+
+static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
+ std::error_code EC) {
+ return Error(DiagnosticHandler, EC, EC.message());
+}
+
+std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
+ return ::Error(DiagnosticHandler, make_error_code(E), Message);
+}
+
+std::error_code BitcodeReader::Error(const Twine &Message) {
+ return ::Error(DiagnosticHandler,
+ make_error_code(BitcodeError::CorruptedBitcode), Message);
+}
+
+std::error_code BitcodeReader::Error(BitcodeError E) {
+ return ::Error(DiagnosticHandler, make_error_code(E));
+}
+
+static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
+ LLVMContext &C) {
+ if (F)
+ return F;
+ return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
+}
+
+BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
+ DiagnosticHandlerFunction DiagnosticHandler)
+ : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
+ TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
+ NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
+ MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
+ WillMaterializeAllForwardRefs(false) {}
+
+BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C,
+ DiagnosticHandlerFunction DiagnosticHandler)
+ : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
+ TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer),
+ NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
+ MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
+ WillMaterializeAllForwardRefs(false) {}
+
+std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
+ if (WillMaterializeAllForwardRefs)
+ return std::error_code();
+
+ // Prevent recursion.
+ WillMaterializeAllForwardRefs = true;
+
+ while (!BasicBlockFwdRefQueue.empty()) {
+ Function *F = BasicBlockFwdRefQueue.front();
+ BasicBlockFwdRefQueue.pop_front();
+ assert(F && "Expected valid function");
+ if (!BasicBlockFwdRefs.count(F))
+ // Already materialized.
+ continue;
+
+ // Check for a function that isn't materializable to prevent an infinite
+ // loop. When parsing a blockaddress stored in a global variable, there
+ // isn't a trivial way to check if a function will have a body without a
+ // linear search through FunctionsWithBodies, so just check it here.
+ if (!F->isMaterializable())
+ return Error("Never resolved function from blockaddress");
+
+ // Try to materialize F.
+ if (std::error_code EC = materialize(F))
+ return EC;
}
+ assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
+
+ // Reset state.
+ WillMaterializeAllForwardRefs = false;
+ return std::error_code();
}
void BitcodeReader::FreeState() {
@@ -51,7 +135,8 @@ void BitcodeReader::FreeState() {
DeferredFunctionInfo.clear();
MDKindMap.clear();
- assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
+ assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
+ BasicBlockFwdRefQueue.clear();
}
//===----------------------------------------------------------------------===//
@@ -71,26 +156,41 @@ static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
return false;
}
-static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
+static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
- case 0: return GlobalValue::ExternalLinkage;
- case 1: return GlobalValue::WeakAnyLinkage;
- case 2: return GlobalValue::AppendingLinkage;
- case 3: return GlobalValue::InternalLinkage;
- case 4: return GlobalValue::LinkOnceAnyLinkage;
- case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
- case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
- case 7: return GlobalValue::ExternalWeakLinkage;
- case 8: return GlobalValue::CommonLinkage;
- case 9: return GlobalValue::PrivateLinkage;
- case 10: return GlobalValue::WeakODRLinkage;
- case 11: return GlobalValue::LinkOnceODRLinkage;
- case 12: return GlobalValue::AvailableExternallyLinkage;
+ case 0:
+ return GlobalValue::ExternalLinkage;
+ case 1:
+ return GlobalValue::WeakAnyLinkage;
+ case 2:
+ return GlobalValue::AppendingLinkage;
+ case 3:
+ return GlobalValue::InternalLinkage;
+ case 4:
+ return GlobalValue::LinkOnceAnyLinkage;
+ case 5:
+ return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
+ case 6:
+ return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
+ case 7:
+ return GlobalValue::ExternalWeakLinkage;
+ case 8:
+ return GlobalValue::CommonLinkage;
+ case 9:
+ return GlobalValue::PrivateLinkage;
+ case 10:
+ return GlobalValue::WeakODRLinkage;
+ case 11:
+ return GlobalValue::LinkOnceODRLinkage;
+ case 12:
+ return GlobalValue::AvailableExternallyLinkage;
case 13:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
case 14:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
+ case 15:
+ return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
}
}
@@ -251,7 +351,7 @@ namespace {
/// Provide fast operand accessors
- //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
}
@@ -260,6 +360,7 @@ template <>
struct OperandTraits<ConstantPlaceHolder> :
public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
}
@@ -408,43 +509,58 @@ void BitcodeReaderValueList::ResolveConstantForwardRefs() {
}
}
-void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
+void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
if (Idx == size()) {
- push_back(V);
+ push_back(MD);
return;
}
if (Idx >= size())
resize(Idx+1);
- WeakVH &OldV = MDValuePtrs[Idx];
- if (!OldV) {
- OldV = V;
+ TrackingMDRef &OldMD = MDValuePtrs[Idx];
+ if (!OldMD) {
+ OldMD.reset(MD);
return;
}
// If there was a forward reference to this value, replace it.
- MDNode *PrevVal = cast<MDNode>(OldV);
- OldV->replaceAllUsesWith(V);
- MDNode::deleteTemporary(PrevVal);
- // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
- // value for Idx.
- MDValuePtrs[Idx] = V;
+ MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get());
+ PrevMD->replaceAllUsesWith(MD);
+ MDNode::deleteTemporary(PrevMD);
+ --NumFwdRefs;
}
-Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
+Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
if (Idx >= size())
resize(Idx + 1);
- if (Value *V = MDValuePtrs[Idx]) {
- assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
- return V;
- }
+ if (Metadata *MD = MDValuePtrs[Idx])
+ return MD;
// Create and return a placeholder, which will later be RAUW'd.
- Value *V = MDNode::getTemporary(Context, None);
- MDValuePtrs[Idx] = V;
- return V;
+ AnyFwdRefs = true;
+ ++NumFwdRefs;
+ Metadata *MD = MDNode::getTemporary(Context, None);
+ MDValuePtrs[Idx].reset(MD);
+ return MD;
+}
+
+void BitcodeReaderMDValueList::tryToResolveCycles() {
+ if (!AnyFwdRefs)
+ // Nothing to do.
+ return;
+
+ if (NumFwdRefs)
+ // Still forward references... can't resolve cycles.
+ return;
+
+ // Resolve any cycles.
+ for (auto &MD : MDValuePtrs) {
+ assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference");
+ if (auto *N = dyn_cast_or_null<UniquableMDNode>(MD))
+ N->resolveCycles();
+ }
}
Type *BitcodeReader::getTypeByID(unsigned ID) {
@@ -457,7 +573,20 @@ Type *BitcodeReader::getTypeByID(unsigned ID) {
// If we have a forward reference, the only possible case is when it is to a
// named struct. Just create a placeholder for now.
- return TypeList[ID] = StructType::create(Context);
+ return TypeList[ID] = createIdentifiedStructType(Context);
+}
+
+StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
+ StringRef Name) {
+ auto *Ret = StructType::create(Context, Name);
+ IdentifiedStructTypes.push_back(Ret);
+ return Ret;
+}
+
+StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
+ auto *Ret = StructType::create(Context);
+ IdentifiedStructTypes.push_back(Ret);
+ return Ret;
}
@@ -487,10 +616,10 @@ static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
std::error_code BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (!MAttributes.empty())
- return Error(InvalidMultipleBlocks);
+ return Error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
@@ -503,7 +632,7 @@ std::error_code BitcodeReader::ParseAttributeBlock() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
@@ -519,7 +648,7 @@ std::error_code BitcodeReader::ParseAttributeBlock() {
case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
// FIXME: Remove in 4.0.
if (Record.size() & 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
AttrBuilder B;
@@ -637,16 +766,17 @@ std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
Attribute::AttrKind *Kind) {
*Kind = GetAttrFromCode(Code);
if (*Kind == Attribute::None)
- return Error(InvalidValue);
+ return Error(BitcodeError::CorruptedBitcode,
+ "Unknown attribute kind (" + Twine(Code) + ")");
return std::error_code();
}
std::error_code BitcodeReader::ParseAttributeGroupBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (!MAttributeGroups.empty())
- return Error(InvalidMultipleBlocks);
+ return Error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
@@ -657,7 +787,7 @@ std::error_code BitcodeReader::ParseAttributeGroupBlock() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
@@ -672,7 +802,7 @@ std::error_code BitcodeReader::ParseAttributeGroupBlock() {
break;
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
uint64_t GrpID = Record[0];
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
@@ -727,14 +857,14 @@ std::error_code BitcodeReader::ParseAttributeGroupBlock() {
std::error_code BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
- return Error(InvalidRecord);
+ return Error("Invalid record");
return ParseTypeTableBody();
}
std::error_code BitcodeReader::ParseTypeTableBody() {
if (!TypeList.empty())
- return Error(InvalidMultipleBlocks);
+ return Error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
@@ -748,10 +878,10 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
if (NumRecords != TypeList.size())
- return Error(MalformedBlock);
+ return Error("Malformed block");
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
@@ -763,12 +893,12 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
Type *ResultTy = nullptr;
switch (Stream.readRecord(Entry.ID, Record)) {
default:
- return Error(InvalidValue);
+ return Error("Invalid value");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
@@ -803,20 +933,20 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
ResultTy = IntegerType::get(Context, Record[0]);
break;
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = getTypeByID(Record[0]);
if (!ResultTy)
- return Error(InvalidType);
+ return Error("Invalid type");
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
@@ -824,7 +954,7 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
// FIXME: attrid is dead, remove it in LLVM 4.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
@@ -835,7 +965,7 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
ResultTy = getTypeByID(Record[2]);
if (!ResultTy || ArgTys.size() < Record.size()-3)
- return Error(InvalidType);
+ return Error("Invalid type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
@@ -843,7 +973,7 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
case bitc::TYPE_CODE_FUNCTION: {
// FUNCTION: [vararg, retty, paramty x N]
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
@@ -854,14 +984,14 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || ArgTys.size() < Record.size()-2)
- return Error(InvalidType);
+ return Error("Invalid type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
@@ -870,21 +1000,21 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
break;
}
if (EltTys.size() != Record.size()-1)
- return Error(InvalidType);
+ return Error("Invalid type");
ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
if (ConvertToString(Record, 0, TypeName))
- return Error(InvalidRecord);
+ return Error("Invalid record");
continue;
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (NumRecords >= TypeList.size())
- return Error(InvalidTYPETable);
+ return Error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
@@ -892,7 +1022,7 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct.
- Res = StructType::create(Context, TypeName);
+ Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
SmallVector<Type*, 8> EltTys;
@@ -903,17 +1033,17 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
break;
}
if (EltTys.size() != Record.size()-1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Res->setBody(EltTys, Record[0]);
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
if (Record.size() != 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (NumRecords >= TypeList.size())
- return Error(InvalidTYPETable);
+ return Error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
@@ -921,31 +1051,31 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct with no body.
- Res = StructType::create(Context, TypeName);
+ Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = ArrayType::get(ResultTy, Record[0]);
else
- return Error(InvalidType);
+ return Error("Invalid type");
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = VectorType::get(ResultTy, Record[0]);
else
- return Error(InvalidType);
+ return Error("Invalid type");
break;
}
if (NumRecords >= TypeList.size())
- return Error(InvalidTYPETable);
+ return Error("Invalid TYPE table");
assert(ResultTy && "Didn't read a type?");
assert(!TypeList[NumRecords] && "Already read type?");
TypeList[NumRecords++] = ResultTy;
@@ -954,7 +1084,7 @@ std::error_code BitcodeReader::ParseTypeTableBody() {
std::error_code BitcodeReader::ParseValueSymbolTable() {
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
@@ -966,7 +1096,7 @@ std::error_code BitcodeReader::ParseValueSymbolTable() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
@@ -981,10 +1111,10 @@ std::error_code BitcodeReader::ParseValueSymbolTable() {
break;
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
if (ConvertToString(Record, 1, ValueName))
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size() || !ValueList[ValueID])
- return Error(InvalidRecord);
+ return Error("Invalid record");
Value *V = ValueList[ValueID];
V->setName(StringRef(ValueName.data(), ValueName.size()));
@@ -993,10 +1123,10 @@ std::error_code BitcodeReader::ParseValueSymbolTable() {
}
case bitc::VST_CODE_BBENTRY: {
if (ConvertToString(Record, 1, ValueName))
- return Error(InvalidRecord);
+ return Error("Invalid record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (!BB)
- return Error(InvalidRecord);
+ return Error("Invalid record");
BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
@@ -1010,7 +1140,7 @@ std::error_code BitcodeReader::ParseMetadata() {
unsigned NextMDValueNo = MDValueList.size();
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
@@ -1021,18 +1151,19 @@ std::error_code BitcodeReader::ParseMetadata() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
+ MDValueList.tryToResolveCycles();
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
- bool IsFunctionLocal = false;
// Read a record.
Record.clear();
unsigned Code = Stream.readRecord(Entry.ID, Record);
+ bool IsDistinct = false;
switch (Code) {
default: // Default behavior: ignore.
break;
@@ -1052,53 +1183,121 @@ std::error_code BitcodeReader::ParseMetadata() {
for (unsigned i = 0; i != Size; ++i) {
MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
if (!MD)
- return Error(InvalidRecord);
+ return Error("Invalid record");
NMD->addOperand(MD);
}
break;
}
- case bitc::METADATA_FN_NODE:
- IsFunctionLocal = true;
- // fall-through
- case bitc::METADATA_NODE: {
+ case bitc::METADATA_OLD_FN_NODE: {
+ // FIXME: Remove in 4.0.
+ // This is a LocalAsMetadata record, the only type of function-local
+ // metadata.
if (Record.size() % 2 == 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
+
+ // If this isn't a LocalAsMetadata record, we're dropping it. This used
+ // to be legal, but there's no upgrade path.
+ auto dropRecord = [&] {
+ MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++);
+ };
+ if (Record.size() != 2) {
+ dropRecord();
+ break;
+ }
+
+ Type *Ty = getTypeByID(Record[0]);
+ if (Ty->isMetadataTy() || Ty->isVoidTy()) {
+ dropRecord();
+ break;
+ }
+
+ MDValueList.AssignValue(
+ LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
+ NextMDValueNo++);
+ break;
+ }
+ case bitc::METADATA_OLD_NODE: {
+ // FIXME: Remove in 4.0.
+ if (Record.size() % 2 == 1)
+ return Error("Invalid record");
unsigned Size = Record.size();
- SmallVector<Value*, 8> Elts;
+ SmallVector<Metadata *, 8> Elts;
for (unsigned i = 0; i != Size; i += 2) {
Type *Ty = getTypeByID(Record[i]);
if (!Ty)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (Ty->isMetadataTy())
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
- else if (!Ty->isVoidTy())
- Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
- else
+ else if (!Ty->isVoidTy()) {
+ auto *MD =
+ ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
+ assert(isa<ConstantAsMetadata>(MD) &&
+ "Expected non-function-local metadata");
+ Elts.push_back(MD);
+ } else
Elts.push_back(nullptr);
}
- Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
- IsFunctionLocal = false;
- MDValueList.AssignValue(V, NextMDValueNo++);
+ MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
+ break;
+ }
+ case bitc::METADATA_VALUE: {
+ if (Record.size() != 2)
+ return Error("Invalid record");
+
+ Type *Ty = getTypeByID(Record[0]);
+ if (Ty->isMetadataTy() || Ty->isVoidTy())
+ return Error("Invalid record");
+
+ MDValueList.AssignValue(
+ ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
+ NextMDValueNo++);
+ break;
+ }
+ case bitc::METADATA_DISTINCT_NODE:
+ IsDistinct = true;
+ // fallthrough...
+ case bitc::METADATA_NODE: {
+ SmallVector<Metadata *, 8> Elts;
+ Elts.reserve(Record.size());
+ for (unsigned ID : Record)
+ Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
+ MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
+ : MDNode::get(Context, Elts),
+ NextMDValueNo++);
+ break;
+ }
+ case bitc::METADATA_LOCATION: {
+ if (Record.size() != 5)
+ return Error("Invalid record");
+
+ auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get;
+ unsigned Line = Record[1];
+ unsigned Column = Record[2];
+ MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
+ Metadata *InlinedAt =
+ Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
+ MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt),
+ NextMDValueNo++);
break;
}
case bitc::METADATA_STRING: {
std::string String(Record.begin(), Record.end());
llvm::UpgradeMDStringConstant(String);
- Value *V = MDString::get(Context, String);
- MDValueList.AssignValue(V, NextMDValueNo++);
+ Metadata *MD = MDString::get(Context, String);
+ MDValueList.AssignValue(MD, NextMDValueNo++);
break;
}
case bitc::METADATA_KIND: {
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned Kind = Record[0];
SmallString<8> Name(Record.begin()+1, Record.end());
unsigned NewKind = TheModule->getMDKindID(Name.str());
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
- return Error(ConflictingMETADATA_KINDRecords);
+ return Error("Conflicting METADATA_KIND records");
break;
}
}
@@ -1122,10 +1321,12 @@ std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
+ std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
FunctionPrefixWorklist.swap(FunctionPrefixes);
+ FunctionPrologueWorklist.swap(FunctionPrologues);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
@@ -1136,7 +1337,7 @@ std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
GlobalInitWorklist.back().first->setInitializer(C);
else
- return Error(ExpectedConstant);
+ return Error("Expected a constant");
}
GlobalInitWorklist.pop_back();
}
@@ -1149,7 +1350,7 @@ std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
AliasInitWorklist.back().first->setAliasee(C);
else
- return Error(ExpectedConstant);
+ return Error("Expected a constant");
}
AliasInitWorklist.pop_back();
}
@@ -1162,11 +1363,24 @@ std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
FunctionPrefixWorklist.back().first->setPrefixData(C);
else
- return Error(ExpectedConstant);
+ return Error("Expected a constant");
}
FunctionPrefixWorklist.pop_back();
}
+ while (!FunctionPrologueWorklist.empty()) {
+ unsigned ValID = FunctionPrologueWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ FunctionPrologues.push_back(FunctionPrologueWorklist.back());
+ } else {
+ if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
+ FunctionPrologueWorklist.back().first->setPrologueData(C);
+ else
+ return Error("Expected a constant");
+ }
+ FunctionPrologueWorklist.pop_back();
+ }
+
return std::error_code();
}
@@ -1180,7 +1394,7 @@ static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
std::error_code BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
@@ -1193,10 +1407,10 @@ std::error_code BitcodeReader::ParseConstants() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
if (NextCstNo != ValueList.size())
- return Error(InvalidConstantReference);
+ return Error("Invalid ronstant reference");
// Once all the constants have been read, go through and resolve forward
// references.
@@ -1218,9 +1432,9 @@ std::error_code BitcodeReader::ParseConstants() {
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
- return Error(InvalidRecord);
+ return Error("Invalid record");
CurTy = TypeList[Record[0]];
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
@@ -1228,12 +1442,12 @@ std::error_code BitcodeReader::ParseConstants() {
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!CurTy->isIntegerTy() || Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!CurTy->isIntegerTy() || Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
APInt VInt = ReadWideAPInt(Record,
cast<IntegerType>(CurTy)->getBitWidth());
@@ -1243,7 +1457,7 @@ std::error_code BitcodeReader::ParseConstants() {
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (CurTy->isHalfTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
APInt(16, (uint16_t)Record[0])));
@@ -1273,7 +1487,7 @@ std::error_code BitcodeReader::ParseConstants() {
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned Size = Record.size();
SmallVector<Constant*, 16> Elts;
@@ -1301,7 +1515,7 @@ std::error_code BitcodeReader::ParseConstants() {
case bitc::CST_CODE_STRING: // STRING: [values]
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallString<16> Elts(Record.begin(), Record.end());
V = ConstantDataArray::getString(Context, Elts,
@@ -1310,7 +1524,7 @@ std::error_code BitcodeReader::ParseConstants() {
}
case bitc::CST_CODE_DATA: {// DATA: [n x value]
if (Record.empty())
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
unsigned Size = Record.size();
@@ -1355,14 +1569,14 @@ std::error_code BitcodeReader::ParseConstants() {
else
V = ConstantDataArray::get(Context, Elts);
} else {
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
}
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown binop.
@@ -1393,14 +1607,14 @@ std::error_code BitcodeReader::ParseConstants() {
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
int Opc = GetDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown cast.
} else {
Type *OpTy = getTypeByID(Record[1]);
if (!OpTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
V = UpgradeBitCastExpr(Opc, Op, CurTy);
if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
@@ -1410,12 +1624,12 @@ std::error_code BitcodeReader::ParseConstants() {
case bitc::CST_CODE_CE_INBOUNDS_GEP:
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
Type *ElTy = getTypeByID(Record[i]);
if (!ElTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
@@ -1426,7 +1640,7 @@ std::error_code BitcodeReader::ParseConstants() {
}
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *SelectorTy = Type::getInt1Ty(Context);
@@ -1445,22 +1659,22 @@ std::error_code BitcodeReader::ParseConstants() {
case bitc::CST_CODE_CE_EXTRACTELT
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (!OpTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = nullptr;
if (Record.size() == 4) {
Type *IdxTy = getTypeByID(Record[2]);
if (!IdxTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
} else // TODO: Remove with llvm 4.0
Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
if (!Op1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
@@ -1468,7 +1682,7 @@ std::error_code BitcodeReader::ParseConstants() {
: { // CE_INSERTELT: [opval, opval, opty, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
@@ -1476,19 +1690,19 @@ std::error_code BitcodeReader::ParseConstants() {
if (Record.size() == 4) {
Type *IdxTy = getTypeByID(Record[2]);
if (!IdxTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
} else // TODO: Remove with llvm 4.0
Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
if (!Op2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
@@ -1502,7 +1716,7 @@ std::error_code BitcodeReader::ParseConstants() {
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (Record.size() < 4 || !RTy || !OpTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
@@ -1513,10 +1727,10 @@ std::error_code BitcodeReader::ParseConstants() {
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
if (!OpTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
@@ -1530,16 +1744,16 @@ std::error_code BitcodeReader::ParseConstants() {
// FIXME: Remove with the 4.0 release.
case bitc::CST_CODE_INLINEASM_OLD: {
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
@@ -1554,17 +1768,17 @@ std::error_code BitcodeReader::ParseConstants() {
// inteldialect).
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = (Record[0] >> 1) & 1;
unsigned AsmDialect = Record[0] >> 2;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
@@ -1578,35 +1792,46 @@ std::error_code BitcodeReader::ParseConstants() {
}
case bitc::CST_CODE_BLOCKADDRESS:{
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *FnTy = getTypeByID(Record[0]);
if (!FnTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Function *Fn =
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
if (!Fn)
- return Error(InvalidRecord);
+ return Error("Invalid record");
+
+ // Don't let Fn get dematerialized.
+ BlockAddressesTaken.insert(Fn);
// If the function is already parsed we can insert the block address right
// away.
+ BasicBlock *BB;
+ unsigned BBID = Record[2];
+ if (!BBID)
+ // Invalid reference to entry block.
+ return Error("Invalid ID");
if (!Fn->empty()) {
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
- for (size_t I = 0, E = Record[2]; I != E; ++I) {
+ for (size_t I = 0, E = BBID; I != E; ++I) {
if (BBI == BBE)
- return Error(InvalidID);
+ return Error("Invalid ID");
++BBI;
}
- V = BlockAddress::get(Fn, BBI);
+ BB = BBI;
} else {
// Otherwise insert a placeholder and remember it so it can be inserted
// when the function is parsed.
- GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
- Type::getInt8Ty(Context),
- false, GlobalValue::InternalLinkage,
- nullptr, "");
- BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
- V = FwdRef;
+ auto &FwdBBs = BasicBlockFwdRefs[Fn];
+ if (FwdBBs.empty())
+ BasicBlockFwdRefQueue.push_back(Fn);
+ if (FwdBBs.size() < BBID + 1)
+ FwdBBs.resize(BBID + 1);
+ if (!FwdBBs[BBID])
+ FwdBBs[BBID] = BasicBlock::Create(Context);
+ BB = FwdBBs[BBID];
}
+ V = BlockAddress::get(Fn, BB);
break;
}
}
@@ -1618,18 +1843,17 @@ std::error_code BitcodeReader::ParseConstants() {
std::error_code BitcodeReader::ParseUseLists() {
if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
- return Error(InvalidRecord);
-
- SmallVector<uint64_t, 64> Record;
+ return Error("Invalid record");
// Read all the records.
+ SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
@@ -1639,14 +1863,42 @@ std::error_code BitcodeReader::ParseUseLists() {
// Read a use list record.
Record.clear();
+ bool IsBB = false;
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: unknown type.
break;
- case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
+ case bitc::USELIST_CODE_BB:
+ IsBB = true;
+ // fallthrough
+ case bitc::USELIST_CODE_DEFAULT: {
unsigned RecordLength = Record.size();
- if (RecordLength < 1)
- return Error(InvalidRecord);
- UseListRecords.push_back(Record);
+ if (RecordLength < 3)
+ // Records should have at least an ID and two indexes.
+ return Error("Invalid record");
+ unsigned ID = Record.back();
+ Record.pop_back();
+
+ Value *V;
+ if (IsBB) {
+ assert(ID < FunctionBBs.size() && "Basic block not found");
+ V = FunctionBBs[ID];
+ } else
+ V = ValueList[ID];
+ unsigned NumUses = 0;
+ SmallDenseMap<const Use *, unsigned, 16> Order;
+ for (const Use &U : V->uses()) {
+ if (++NumUses > Record.size())
+ break;
+ Order[&U] = Record[NumUses - 1];
+ }
+ if (Order.size() != Record.size() || NumUses > Record.size())
+ // Mismatches can happen if the functions are being materialized lazily
+ // (out-of-order), or a value has been upgraded.
+ break;
+
+ V->sortUseList([&](const Use &L, const Use &R) {
+ return Order.lookup(&L) < Order.lookup(&R);
+ });
break;
}
}
@@ -1659,7 +1911,7 @@ std::error_code BitcodeReader::ParseUseLists() {
std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
- return Error(InsufficientFunctionProtos);
+ return Error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
@@ -1670,7 +1922,7 @@ std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
// Skip over the function block for now.
if (Stream.SkipBlock())
- return Error(InvalidRecord);
+ return Error("Invalid record");
return std::error_code();
}
@@ -1678,7 +1930,7 @@ std::error_code BitcodeReader::GlobalCleanup() {
// Patch the initializers for globals and aliases up.
ResolveGlobalAndAliasInits();
if (!GlobalInits.empty() || !AliasInits.empty())
- return Error(MalformedGlobalInitializerSet);
+ return Error("Malformed global initializer set");
// Look for intrinsic functions which need to be upgraded at some point
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
@@ -1707,7 +1959,7 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
if (Resume)
Stream.JumpToBit(NextUnreadBit);
else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
@@ -1719,7 +1971,7 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
switch (Entry.Kind) {
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return GlobalCleanup();
@@ -1727,11 +1979,11 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock())
- return Error(InvalidRecord);
+ return Error("Invalid record");
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
- return Error(MalformedBlock);
+ return Error("Malformed block");
break;
case bitc::PARAMATTR_BLOCK_ID:
if (std::error_code EC = ParseAttributeBlock())
@@ -1801,12 +2053,12 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
if (Record.size() < 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
// Only version #0 and #1 are supported so far.
unsigned module_version = Record[0];
switch (module_version) {
default:
- return Error(InvalidValue);
+ return Error("Invalid value");
case 0:
UseRelativeIDs = false;
break;
@@ -1819,21 +2071,21 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
TheModule->setDataLayout(S);
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
TheModule->setModuleInlineAsm(S);
break;
}
@@ -1841,27 +2093,27 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
// FIXME: Remove in 4.0.
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
// Ignore value.
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
GCTable.push_back(S);
break;
}
case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
unsigned ComdatNameSize = Record[1];
std::string ComdatName;
@@ -1878,22 +2130,22 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
// unnamed_addr, dllstorageclass]
case bitc::MODULE_CODE_GLOBALVAR: {
if (Record.size() < 6)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (!Ty->isPointerTy())
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
bool isConstant = Record[1];
- GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
+ GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
std::string Section;
if (Record[5]) {
if (Record[5]-1 >= SectionTable.size())
- return Error(InvalidID);
+ return Error("Invalid ID");
Section = SectionTable[Record[5]-1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
@@ -1943,32 +2195,32 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
}
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
// alignment, section, visibility, gc, unnamed_addr,
- // dllstorageclass]
+ // prologuedata, dllstorageclass, comdat, prefixdata]
case bitc::MODULE_CODE_FUNCTION: {
if (Record.size() < 8)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (!Ty->isPointerTy())
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
FunctionType *FTy =
dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
if (!FTy)
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
bool isProto = Record[2];
- Func->setLinkage(GetDecodedLinkage(Record[3]));
+ Func->setLinkage(getDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
- return Error(InvalidID);
+ return Error("Invalid ID");
Func->setSection(SectionTable[Record[6]-1]);
}
// Local linkage must have default visibility.
@@ -1977,7 +2229,7 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
Func->setVisibility(GetDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8]-1 > GCTable.size())
- return Error(InvalidID);
+ return Error("Invalid ID");
Func->setGC(GCTable[Record[8]-1].c_str());
}
bool UnnamedAddr = false;
@@ -1985,7 +2237,7 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
UnnamedAddr = Record[9];
Func->setUnnamedAddr(UnnamedAddr);
if (Record.size() > 10 && Record[10] != 0)
- FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
+ FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
if (Record.size() > 11)
Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
@@ -1998,13 +2250,18 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
Func->setComdat(ComdatList[ComdatID - 1]);
}
+ if (Record.size() > 13 && Record[13] != 0)
+ FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
+
ValueList.push_back(Func);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto) {
+ Func->setIsMaterializable(true);
FunctionsWithBodies.push_back(Func);
- if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
+ if (LazyStreamer)
+ DeferredFunctionInfo[Func] = 0;
}
break;
}
@@ -2012,17 +2269,17 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
// ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
case bitc::MODULE_CODE_ALIAS: {
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
- return Error(InvalidRecord);
+ return Error("Invalid record");
auto *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
auto *NewGA =
GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
- GetDecodedLinkage(Record[2]), "", TheModule);
+ getDecodedLinkage(Record[2]), "", TheModule);
// Old bitcode files didn't have visibility field.
// Local linkage must have default visibility.
if (Record.size() > 3 && !NewGA->hasLocalLinkage())
@@ -2033,9 +2290,9 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
else
UpgradeDLLImportExportLinkage(NewGA, Record[2]);
if (Record.size() > 5)
- NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
+ NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
if (Record.size() > 6)
- NewGA->setUnnamedAddr(Record[6]);
+ NewGA->setUnnamedAddr(Record[6]);
ValueList.push_back(NewGA);
AliasInits.push_back(std::make_pair(NewGA, Record[1]));
break;
@@ -2044,7 +2301,7 @@ std::error_code BitcodeReader::ParseModule(bool Resume) {
case bitc::MODULE_CODE_PURGEVALS:
// Trim down the value list to the specified size.
if (Record.size() < 1 || Record[0] > ValueList.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
ValueList.shrinkTo(Record[0]);
break;
}
@@ -2065,7 +2322,7 @@ std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
- return Error(InvalidBitcodeSignature);
+ return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
@@ -2078,7 +2335,7 @@ std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
switch (Entry.Kind) {
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
@@ -2086,12 +2343,12 @@ std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
switch (Entry.ID) {
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
- return Error(MalformedBlock);
+ return Error("Malformed block");
break;
case bitc::MODULE_BLOCK_ID:
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
- return Error(InvalidMultipleBlocks);
+ return Error("Invalid multiple blocks");
TheModule = M;
if (std::error_code EC = ParseModule(false))
return EC;
@@ -2100,7 +2357,7 @@ std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
break;
default:
if (Stream.SkipBlock())
- return Error(InvalidRecord);
+ return Error("Invalid record");
break;
}
continue;
@@ -2115,14 +2372,14 @@ std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
Stream.AtEndOfStream())
return std::error_code();
- return Error(InvalidRecord);
+ return Error("Invalid record");
}
}
}
ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
@@ -2134,7 +2391,7 @@ ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return Triple;
case BitstreamEntry::Record:
@@ -2148,7 +2405,7 @@ ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
- return Error(InvalidRecord);
+ return Error("Invalid record");
Triple = S;
break;
}
@@ -2169,7 +2426,7 @@ ErrorOr<std::string> BitcodeReader::parseTriple() {
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
- return Error(InvalidBitcodeSignature);
+ return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
@@ -2178,7 +2435,7 @@ ErrorOr<std::string> BitcodeReader::parseTriple() {
switch (Entry.Kind) {
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
@@ -2188,7 +2445,7 @@ ErrorOr<std::string> BitcodeReader::parseTriple() {
// Ignore other sub-blocks.
if (Stream.SkipBlock())
- return Error(MalformedBlock);
+ return Error("Malformed block");
continue;
case BitstreamEntry::Record:
@@ -2201,7 +2458,7 @@ ErrorOr<std::string> BitcodeReader::parseTriple() {
/// ParseMetadataAttachment - Parse metadata attachments.
std::error_code BitcodeReader::ParseMetadataAttachment() {
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
while (1) {
@@ -2210,7 +2467,7 @@ std::error_code BitcodeReader::ParseMetadataAttachment() {
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
@@ -2226,15 +2483,19 @@ std::error_code BitcodeReader::ParseMetadataAttachment() {
case bitc::METADATA_ATTACHMENT: {
unsigned RecordLength = Record.size();
if (Record.empty() || (RecordLength - 1) % 2 == 1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Instruction *Inst = InstructionList[Record[0]];
for (unsigned i = 1; i != RecordLength; i = i+2) {
unsigned Kind = Record[i];
DenseMap<unsigned, unsigned>::iterator I =
MDKindMap.find(Kind);
if (I == MDKindMap.end())
- return Error(InvalidID);
- Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
+ return Error("Invalid ID");
+ Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
+ if (isa<LocalAsMetadata>(Node))
+ // Drop the attachment. This used to be legal, but there's no
+ // upgrade path.
+ break;
Inst->setMetadata(I->second, cast<MDNode>(Node));
if (I->second == LLVMContext::MD_tbaa)
InstsWithTBAATag.push_back(Inst);
@@ -2248,7 +2509,7 @@ std::error_code BitcodeReader::ParseMetadataAttachment() {
/// ParseFunctionBody - Lazily parse the specified function body block.
std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
- return Error(InvalidRecord);
+ return Error("Invalid record");
InstructionList.clear();
unsigned ModuleValueListSize = ValueList.size();
@@ -2263,6 +2524,14 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned CurBBNo = 0;
DebugLoc LastLoc;
+ auto getLastInstruction = [&]() -> Instruction * {
+ if (CurBB && !CurBB->empty())
+ return &CurBB->back();
+ else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
+ !FunctionBBs[CurBBNo - 1]->empty())
+ return &FunctionBBs[CurBBNo - 1]->back();
+ return nullptr;
+ };
// Read all the records.
SmallVector<uint64_t, 64> Record;
@@ -2271,7 +2540,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
switch (Entry.Kind) {
case BitstreamEntry::Error:
- return Error(MalformedBlock);
+ return Error("Malformed block");
case BitstreamEntry::EndBlock:
goto OutOfRecordLoop;
@@ -2279,7 +2548,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock())
- return Error(InvalidRecord);
+ return Error("Invalid record");
break;
case bitc::CONSTANTS_BLOCK_ID:
if (std::error_code EC = ParseConstants())
@@ -2298,6 +2567,10 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (std::error_code EC = ParseMetadata())
return EC;
break;
+ case bitc::USELIST_BLOCK_ID:
+ if (std::error_code EC = ParseUseLists())
+ return EC;
+ break;
}
continue;
@@ -2312,44 +2585,57 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
switch (BitCode) {
default: // Default behavior: reject
- return Error(InvalidValue);
- case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
+ return Error("Invalid value");
+ case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
if (Record.size() < 1 || Record[0] == 0)
- return Error(InvalidRecord);
+ return Error("Invalid record");
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
- for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
- FunctionBBs[i] = BasicBlock::Create(Context, "", F);
+
+ // See if anything took the address of blocks in this function.
+ auto BBFRI = BasicBlockFwdRefs.find(F);
+ if (BBFRI == BasicBlockFwdRefs.end()) {
+ for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
+ FunctionBBs[i] = BasicBlock::Create(Context, "", F);
+ } else {
+ auto &BBRefs = BBFRI->second;
+ // Check for invalid basic block references.
+ if (BBRefs.size() > FunctionBBs.size())
+ return Error("Invalid ID");
+ assert(!BBRefs.empty() && "Unexpected empty array");
+ assert(!BBRefs.front() && "Invalid reference to entry block");
+ for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
+ ++I)
+ if (I < RE && BBRefs[I]) {
+ BBRefs[I]->insertInto(F);
+ FunctionBBs[I] = BBRefs[I];
+ } else {
+ FunctionBBs[I] = BasicBlock::Create(Context, "", F);
+ }
+
+ // Erase from the table.
+ BasicBlockFwdRefs.erase(BBFRI);
+ }
+
CurBB = FunctionBBs[0];
continue;
+ }
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
// This record indicates that the last instruction is at the same
// location as the previous instruction with a location.
- I = nullptr;
-
- // Get the last instruction emitted.
- if (CurBB && !CurBB->empty())
- I = &CurBB->back();
- else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
- !FunctionBBs[CurBBNo-1]->empty())
- I = &FunctionBBs[CurBBNo-1]->back();
+ I = getLastInstruction();
if (!I)
- return Error(InvalidRecord);
+ return Error("Invalid record");
I->setDebugLoc(LastLoc);
I = nullptr;
continue;
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
- I = nullptr; // Get the last instruction emitted.
- if (CurBB && !CurBB->empty())
- I = &CurBB->back();
- else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
- !FunctionBBs[CurBBNo-1]->empty())
- I = &FunctionBBs[CurBBNo-1]->back();
+ I = getLastInstruction();
if (!I || Record.size() < 4)
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned Line = Record[0], Col = Record[1];
unsigned ScopeID = Record[2], IAID = Record[3];
@@ -2369,11 +2655,11 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
OpNum+1 > Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1)
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
InstructionList.push_back(I);
if (OpNum < Record.size()) {
@@ -2415,12 +2701,12 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *ResTy = getTypeByID(Record[OpNum]);
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
if (Opc == -1 || !ResTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Instruction *Temp = nullptr;
if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
if (Temp) {
@@ -2438,13 +2724,13 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 0;
Value *BasePtr;
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Value*, 16> GEPIdx;
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
- return Error(InvalidRecord);
+ return Error("Invalid record");
GEPIdx.push_back(Op);
}
@@ -2460,14 +2746,14 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<unsigned, 4> EXTRACTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
- return Error(InvalidValue);
+ return Error("Invalid value");
EXTRACTVALIdx.push_back((unsigned)Index);
}
@@ -2481,17 +2767,17 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
- return Error(InvalidRecord);
+ return Error("Invalid record");
Value *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<unsigned, 4> INSERTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
- return Error(InvalidValue);
+ return Error("Invalid value");
INSERTVALIdx.push_back((unsigned)Index);
}
@@ -2508,7 +2794,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
@@ -2523,18 +2809,18 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
getValueTypePair(Record, OpNum, NextValueNo, Cond))
- return Error(InvalidRecord);
+ return Error("Invalid record");
// select condition can be either i1 or [N x i1]
if (VectorType* vector_type =
dyn_cast<VectorType>(Cond->getType())) {
// expect <n x i1>
if (vector_type->getElementType() != Type::getInt1Ty(Context))
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
} else {
// expect i1
if (Cond->getType() != Type::getInt1Ty(Context))
- return Error(InvalidTypeForValue);
+ return Error("Invalid type for value");
}
I = SelectInst::Create(Cond, TrueVal, FalseVal);
@@ -2547,7 +2833,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Vec, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
getValueTypePair(Record, OpNum, NextValueNo, Idx))
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = ExtractElementInst::Create(Vec, Idx);
InstructionList.push_back(I);
break;
@@ -2560,7 +2846,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
popValue(Record, OpNum, NextValueNo,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
getValueTypePair(Record, OpNum, NextValueNo, Idx))
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = InsertElementInst::Create(Vec, Elt, Idx);
InstructionList.push_back(I);
break;
@@ -2571,10 +2857,10 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Vec1, *Vec2, *Mask;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
InstructionList.push_back(I);
break;
@@ -2592,7 +2878,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (LHS->getType()->isFPOrFPVectorTy())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
@@ -2614,9 +2900,9 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 0;
Value *Op = nullptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (OpNum != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = ReturnInst::Create(Context, Op);
InstructionList.push_back(I);
@@ -2624,10 +2910,10 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
if (Record.size() != 1 && Record.size() != 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
BasicBlock *TrueDest = getBasicBlock(Record[0]);
if (!TrueDest)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
@@ -2638,7 +2924,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Cond = getValue(Record, 2, NextValueNo,
Type::getInt1Ty(Context));
if (!FalseDest || !Cond)
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
InstructionList.push_back(I);
}
@@ -2658,7 +2944,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
BasicBlock *Default = getBasicBlock(Record[3]);
if (!OpTy || !Cond || !Default)
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned NumCases = Record[4];
@@ -2710,12 +2996,12 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
// Old SwitchInst format without case ranges.
if (Record.size() < 3 || (Record.size() & 1) == 0)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
BasicBlock *Default = getBasicBlock(Record[2]);
if (!OpTy || !Cond || !Default)
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
@@ -2725,7 +3011,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (!CaseVal || !DestBB) {
delete SI;
- return Error(InvalidRecord);
+ return Error("Invalid record");
}
SI->addCase(CaseVal, DestBB);
}
@@ -2734,11 +3020,11 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
}
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
if (Record.size() < 2)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
Value *Address = getValue(Record, 1, NextValueNo, OpTy);
if (!OpTy || !Address)
- return Error(InvalidRecord);
+ return Error("Invalid record");
unsigned NumDests = Record.size()-2;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
InstructionList.push_back(IBI);
@@ -2747,7 +3033,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
IBI->addDestination(DestBB);
} else {
delete IBI;
- return Error(InvalidRecord);
+ return Error("Invalid record");
}
}
I = IBI;
@@ -2757,7 +3043,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4)
- return Error(InvalidRecord);
+ return Error("Invalid record");
AttributeSet PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
BasicBlock *NormalBB = getBasicBlock(Record[2]);
@@ -2766,7 +3052,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 4;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
- return Error(InvalidRecord);
+ return Error("Invalid record");
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
FunctionType *FTy = !CalleeTy ? nullptr :
@@ -2775,25 +3061,25 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
// Check that the right number of fixed parameters are here.
if (!FTy || !NormalBB || !UnwindBB ||
Record.size() < OpNum+FTy->getNumParams())
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Value*, 16> Ops;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
if (!Ops.back())
- return Error(InvalidRecord);
+ return Error("Invalid record");
}
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
- return Error(InvalidRecord);
+ return Error("Invalid record");
} else {
// Read type/value pairs for varargs params.
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
- return Error(InvalidRecord);
+ return Error("Invalid record");
Ops.push_back(Op);
}
}
@@ -2809,7 +3095,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned Idx = 0;
Value *Val = nullptr;
if (getValueTypePair(Record, Idx, NextValueNo, Val))
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = ResumeInst::Create(Val);
InstructionList.push_back(I);
break;
@@ -2820,10 +3106,10 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.size() < 1 || ((Record.size()-1)&1))
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
- return Error(InvalidRecord);
+ return Error("Invalid record");
PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
InstructionList.push_back(PN);
@@ -2839,7 +3125,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
V = getValue(Record, 1+i, NextValueNo, Ty);
BasicBlock *BB = getBasicBlock(Record[2+i]);
if (!V || !BB)
- return Error(InvalidRecord);
+ return Error("Invalid record");
PN->addIncoming(V, BB);
}
I = PN;
@@ -2850,13 +3136,13 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
unsigned Idx = 0;
if (Record.size() < 4)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *Ty = getTypeByID(Record[Idx++]);
if (!Ty)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Value *PersFn = nullptr;
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
- return Error(InvalidRecord);
+ return Error("Invalid record");
bool IsCleanup = !!Record[Idx++];
unsigned NumClauses = Record[Idx++];
@@ -2869,7 +3155,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
delete LP;
- return Error(InvalidRecord);
+ return Error("Invalid record");
}
assert((CT != LandingPadInst::Catch ||
@@ -2888,7 +3174,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
if (Record.size() != 4)
- return Error(InvalidRecord);
+ return Error("Invalid record");
PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
Type *OpTy = getTypeByID(Record[1]);
@@ -2897,7 +3183,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
bool InAlloca = AlignRecord & (1 << 5);
unsigned Align = AlignRecord & ((1 << 5) - 1);
if (!Ty || !Size)
- return Error(InvalidRecord);
+ return Error("Invalid record");
AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
AI->setUsedWithInAlloca(InAlloca);
I = AI;
@@ -2909,7 +3195,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
@@ -2921,15 +3207,14 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+4 != Record.size())
- return Error(InvalidRecord);
-
+ return Error("Invalid record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Release ||
Ordering == AcquireRelease)
- return Error(InvalidRecord);
+ return Error("Invalid record");
if (Ordering != NotAtomic && Record[OpNum] == 0)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
@@ -2944,7 +3229,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+2 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
@@ -2958,15 +3243,15 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+4 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Acquire ||
Ordering == AcquireRelease)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
if (Ordering != NotAtomic && Record[OpNum] == 0)
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
Ordering, SynchScope);
@@ -2984,10 +3269,10 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), New) ||
(Record.size() < OpNum + 3 || Record.size() > OpNum + 5))
- return Error(InvalidRecord);
+ return Error("Invalid record");
AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
AtomicOrdering FailureOrdering;
@@ -3022,14 +3307,14 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+4 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
if (Operation < AtomicRMWInst::FIRST_BINOP ||
Operation > AtomicRMWInst::LAST_BINOP)
- return Error(InvalidRecord);
+ return Error("Invalid record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Unordered)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
@@ -3038,11 +3323,11 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
}
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
if (2 != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
if (Ordering == NotAtomic || Ordering == Unordered ||
Ordering == Monotonic)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
I = new FenceInst(Context, Ordering, SynchScope);
InstructionList.push_back(I);
@@ -3051,7 +3336,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
AttributeSet PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
@@ -3059,13 +3344,13 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 2;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
- return Error(InvalidRecord);
+ return Error("Invalid record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
FunctionType *FTy = nullptr;
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
- return Error(InvalidRecord);
+ return Error("Invalid record");
SmallVector<Value*, 16> Args;
// Read the fixed params.
@@ -3076,18 +3361,18 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
Args.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
if (!Args.back())
- return Error(InvalidRecord);
+ return Error("Invalid record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
- return Error(InvalidRecord);
+ return Error("Invalid record");
} else {
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
- return Error(InvalidRecord);
+ return Error("Invalid record");
Args.push_back(Op);
}
}
@@ -3107,12 +3392,12 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
}
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
if (Record.size() < 3)
- return Error(InvalidRecord);
+ return Error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
Value *Op = getValue(Record, 1, NextValueNo, OpTy);
Type *ResTy = getTypeByID(Record[2]);
if (!OpTy || !Op || !ResTy)
- return Error(InvalidRecord);
+ return Error("Invalid record");
I = new VAArgInst(Op, ResTy);
InstructionList.push_back(I);
break;
@@ -3123,7 +3408,7 @@ std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
// this file.
if (!CurBB) {
delete I;
- return Error(InvalidInstructionWithNoBB);
+ return Error("Invalid instruction with no BB");
}
CurBB->getInstList().push_back(I);
@@ -3150,32 +3435,13 @@ OutOfRecordLoop:
delete A;
}
}
- return Error(NeverResolvedValueFoundInFunction);
+ return Error("Never resolved value found in function");
}
}
// FIXME: Check for unresolved forward-declared metadata references
// and clean up leaks.
- // See if anything took the address of blocks in this function. If so,
- // resolve them now.
- DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
- BlockAddrFwdRefs.find(F);
- if (BAFRI != BlockAddrFwdRefs.end()) {
- std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
- for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
- unsigned BlockIdx = RefList[i].first;
- if (BlockIdx >= FunctionBBs.size())
- return Error(InvalidID);
-
- GlobalVariable *FwdRef = RefList[i].second;
- FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
- FwdRef->eraseFromParent();
- }
-
- BlockAddrFwdRefs.erase(BAFRI);
- }
-
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
MDValueList.shrinkTo(ModuleMDValueListSize);
@@ -3189,7 +3455,7 @@ std::error_code BitcodeReader::FindFunctionInStream(
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
while (DeferredFunctionInfoIterator->second == 0) {
if (Stream.AtEndOfStream())
- return Error(CouldNotFindFunctionInStream);
+ return Error("Could not find function in stream");
// ParseModule will parse the next body in the stream and set its
// position in the DeferredFunctionInfo map.
if (std::error_code EC = ParseModule(true))
@@ -3204,15 +3470,7 @@ std::error_code BitcodeReader::FindFunctionInStream(
void BitcodeReader::releaseBuffer() { Buffer.release(); }
-bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
- if (const Function *F = dyn_cast<Function>(GV)) {
- return F->isDeclaration() &&
- DeferredFunctionInfo.count(const_cast<Function*>(F));
- }
- return false;
-}
-
-std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
+std::error_code BitcodeReader::materialize(GlobalValue *GV) {
Function *F = dyn_cast<Function>(GV);
// If it's not a function or is already material, ignore the request.
if (!F || !F->isMaterializable())
@@ -3231,6 +3489,7 @@ std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
if (std::error_code EC = ParseFunctionBody(F))
return EC;
+ F->setIsMaterializable(false);
// Upgrade any old intrinsic calls in the function.
for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
@@ -3244,13 +3503,21 @@ std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
}
}
- return std::error_code();
+ // Bring in any functions that this function forward-referenced via
+ // blockaddresses.
+ return materializeForwardReferencedFunctions();
}
bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
const Function *F = dyn_cast<Function>(GV);
if (!F || F->isDeclaration())
return false;
+
+ // Dematerializing F would leave dangling references that wouldn't be
+ // reconnected on re-materialization.
+ if (BlockAddressesTaken.count(F))
+ return false;
+
return DeferredFunctionInfo.count(const_cast<Function*>(F));
}
@@ -3263,20 +3530,23 @@ void BitcodeReader::Dematerialize(GlobalValue *GV) {
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
// Just forget the function body, we can remat it later.
- F->deleteBody();
+ F->dropAllReferences();
+ F->setIsMaterializable(true);
}
std::error_code BitcodeReader::MaterializeModule(Module *M) {
assert(M == TheModule &&
"Can only Materialize the Module this BitcodeReader is attached to.");
+
+ // Promise to materialize all forward references.
+ WillMaterializeAllForwardRefs = true;
+
// Iterate over the module, deserializing any functions that are still on
// disk.
for (Module::iterator F = TheModule->begin(), E = TheModule->end();
F != E; ++F) {
- if (F->isMaterializable()) {
- if (std::error_code EC = Materialize(F))
- return EC;
- }
+ if (std::error_code EC = materialize(F))
+ return EC;
}
// At this point, if there are any function bodies, the current bit is
// pointing to the END_BLOCK record after them. Now make sure the rest
@@ -3284,6 +3554,11 @@ std::error_code BitcodeReader::MaterializeModule(Module *M) {
if (NextUnreadBit)
ParseModule(true);
+ // Check that all block address forward references got resolved (as we
+ // promised above).
+ if (!BasicBlockFwdRefs.empty())
+ return Error("Never resolved function from blockaddress");
+
// Upgrade any intrinsic calls that slipped through (should not happen!) and
// delete the old functions to clean up. We can't do this unless the entire
// module is materialized because there could always be another function body
@@ -3310,6 +3585,10 @@ std::error_code BitcodeReader::MaterializeModule(Module *M) {
return std::error_code();
}
+std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
+ return IdentifiedStructTypes;
+}
+
std::error_code BitcodeReader::InitStream() {
if (LazyStreamer)
return InitLazyStream();
@@ -3320,21 +3599,17 @@ std::error_code BitcodeReader::InitStreamFromBuffer() {
const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
- if (Buffer->getBufferSize() & 3) {
- if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
- return Error(InvalidBitcodeSignature);
- else
- return Error(BitcodeStreamInvalidSize);
- }
+ if (Buffer->getBufferSize() & 3)
+ return Error("Invalid bitcode signature");
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
- return Error(InvalidBitcodeWrapperHeader);
+ return Error("Invalid bitcode wrapper header");
StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
- Stream.init(*StreamFile);
+ Stream.init(&*StreamFile);
return std::error_code();
}
@@ -3342,23 +3617,24 @@ std::error_code BitcodeReader::InitStreamFromBuffer() {
std::error_code BitcodeReader::InitLazyStream() {
// Check and strip off the bitcode wrapper; BitstreamReader expects never to
// see it.
- StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
- StreamFile.reset(new BitstreamReader(Bytes));
- Stream.init(*StreamFile);
+ auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
+ StreamingMemoryObject &Bytes = *OwnedBytes;
+ StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
+ Stream.init(&*StreamFile);
unsigned char buf[16];
- if (Bytes->readBytes(0, 16, buf) == -1)
- return Error(BitcodeStreamInvalidSize);
+ if (Bytes.readBytes(buf, 16, 0) != 16)
+ return Error("Invalid bitcode signature");
if (!isBitcode(buf, buf + 16))
- return Error(InvalidBitcodeSignature);
+ return Error("Invalid bitcode signature");
if (isBitcodeWrapper(buf, buf + 4)) {
const unsigned char *bitcodeStart = buf;
const unsigned char *bitcodeEnd = buf + 16;
SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
- Bytes->dropLeadingBytes(bitcodeStart - buf);
- Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
+ Bytes.dropLeadingBytes(bitcodeStart - buf);
+ Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
}
return std::error_code();
}
@@ -3369,104 +3645,94 @@ class BitcodeErrorCategoryType : public std::error_category {
return "llvm.bitcode";
}
std::string message(int IE) const override {
- BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
+ BitcodeError E = static_cast<BitcodeError>(IE);
switch (E) {
- case BitcodeReader::BitcodeStreamInvalidSize:
- return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
- case BitcodeReader::ConflictingMETADATA_KINDRecords:
- return "Conflicting METADATA_KIND records";
- case BitcodeReader::CouldNotFindFunctionInStream:
- return "Could not find function in stream";
- case BitcodeReader::ExpectedConstant:
- return "Expected a constant";
- case BitcodeReader::InsufficientFunctionProtos:
- return "Insufficient function protos";
- case BitcodeReader::InvalidBitcodeSignature:
+ case BitcodeError::InvalidBitcodeSignature:
return "Invalid bitcode signature";
- case BitcodeReader::InvalidBitcodeWrapperHeader:
- return "Invalid bitcode wrapper header";
- case BitcodeReader::InvalidConstantReference:
- return "Invalid ronstant reference";
- case BitcodeReader::InvalidID:
- return "Invalid ID";
- case BitcodeReader::InvalidInstructionWithNoBB:
- return "Invalid instruction with no BB";
- case BitcodeReader::InvalidRecord:
- return "Invalid record";
- case BitcodeReader::InvalidTypeForValue:
- return "Invalid type for value";
- case BitcodeReader::InvalidTYPETable:
- return "Invalid TYPE table";
- case BitcodeReader::InvalidType:
- return "Invalid type";
- case BitcodeReader::MalformedBlock:
- return "Malformed block";
- case BitcodeReader::MalformedGlobalInitializerSet:
- return "Malformed global initializer set";
- case BitcodeReader::InvalidMultipleBlocks:
- return "Invalid multiple blocks";
- case BitcodeReader::NeverResolvedValueFoundInFunction:
- return "Never resolved value found in function";
- case BitcodeReader::InvalidValue:
- return "Invalid value";
+ case BitcodeError::CorruptedBitcode:
+ return "Corrupted bitcode";
}
llvm_unreachable("Unknown error type!");
}
};
}
-const std::error_category &BitcodeReader::BitcodeErrorCategory() {
- static BitcodeErrorCategoryType O;
- return O;
+static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
+
+const std::error_category &llvm::BitcodeErrorCategory() {
+ return *ErrorCategory;
}
//===----------------------------------------------------------------------===//
// External interface
//===----------------------------------------------------------------------===//
-/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
+/// \brief Get a lazy one-at-time loading module from bitcode.
+///
+/// This isn't always used in a lazy context. In particular, it's also used by
+/// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull
+/// in forward-referenced functions from block address references.
///
-ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
- LLVMContext &Context) {
+/// \param[in] WillMaterializeAll Set to \c true if the caller promises to
+/// materialize everything -- in particular, if this isn't truly lazy.
+static ErrorOr<Module *>
+getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
+ LLVMContext &Context, bool WillMaterializeAll,
+ DiagnosticHandlerFunction DiagnosticHandler) {
Module *M = new Module(Buffer->getBufferIdentifier(), Context);
- BitcodeReader *R = new BitcodeReader(Buffer, Context);
+ BitcodeReader *R =
+ new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
M->setMaterializer(R);
- if (std::error_code EC = R->ParseBitcodeInto(M)) {
+
+ auto cleanupOnError = [&](std::error_code EC) {
R->releaseBuffer(); // Never take ownership on error.
delete M; // Also deletes R.
return EC;
- }
+ };
+
+ if (std::error_code EC = R->ParseBitcodeInto(M))
+ return cleanupOnError(EC);
- R->materializeForwardReferencedFunctions();
+ if (!WillMaterializeAll)
+ // Resolve forward references from blockaddresses.
+ if (std::error_code EC = R->materializeForwardReferencedFunctions())
+ return cleanupOnError(EC);
+ Buffer.release(); // The BitcodeReader owns it now.
return M;
}
+ErrorOr<Module *>
+llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
+ LLVMContext &Context,
+ DiagnosticHandlerFunction DiagnosticHandler) {
+ return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
+ DiagnosticHandler);
+}
-Module *llvm::getStreamedBitcodeModule(const std::string &name,
- DataStreamer *streamer,
- LLVMContext &Context,
- std::string *ErrMsg) {
- Module *M = new Module(name, Context);
- BitcodeReader *R = new BitcodeReader(streamer, Context);
+ErrorOr<std::unique_ptr<Module>>
+llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer,
+ LLVMContext &Context,
+ DiagnosticHandlerFunction DiagnosticHandler) {
+ std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
+ BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler);
M->setMaterializer(R);
- if (std::error_code EC = R->ParseBitcodeInto(M)) {
- if (ErrMsg)
- *ErrMsg = EC.message();
- delete M; // Also deletes R.
- return nullptr;
- }
- return M;
+ if (std::error_code EC = R->ParseBitcodeInto(M.get()))
+ return EC;
+ return std::move(M);
}
-ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer,
- LLVMContext &Context) {
- ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context);
+ErrorOr<Module *>
+llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
+ DiagnosticHandlerFunction DiagnosticHandler) {
+ std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
+ ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
+ std::move(Buf), Context, true, DiagnosticHandler);
if (!ModuleOrErr)
return ModuleOrErr;
Module *M = ModuleOrErr.get();
// Read in the entire module, and destroy the BitcodeReader.
- if (std::error_code EC = M->materializeAllPermanently(true)) {
+ if (std::error_code EC = M->materializeAllPermanently()) {
delete M;
return EC;
}
@@ -3477,12 +3743,13 @@ ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer,
return M;
}
-std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
- LLVMContext &Context) {
- BitcodeReader *R = new BitcodeReader(Buffer, Context);
+std::string
+llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
+ DiagnosticHandlerFunction DiagnosticHandler) {
+ std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
+ auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
+ DiagnosticHandler);
ErrorOr<std::string> Triple = R->parseTriple();
- R->releaseBuffer();
- delete R;
if (Triple.getError())
return "";
return Triple.get();
diff --git a/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.h b/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.h
index 1d4869a..7f7eb70 100644
--- a/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.h
+++ b/contrib/llvm/lib/Bitcode/Reader/BitcodeReader.h
@@ -11,17 +11,20 @@
//
//===----------------------------------------------------------------------===//
-#ifndef BITCODE_READER_H
-#define BITCODE_READER_H
+#ifndef LLVM_LIB_BITCODE_READER_BITCODEREADER_H
+#define LLVM_LIB_BITCODE_READER_BITCODEREADER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/GVMaterializer.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/IR/OperandTraits.h"
+#include "llvm/IR/TrackingMDRef.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/ValueHandle.h"
+#include <deque>
#include <system_error>
#include <vector>
@@ -94,22 +97,25 @@ public:
//===----------------------------------------------------------------------===//
class BitcodeReaderMDValueList {
- std::vector<WeakVH> MDValuePtrs;
+ unsigned NumFwdRefs;
+ bool AnyFwdRefs;
+ std::vector<TrackingMDRef> MDValuePtrs;
LLVMContext &Context;
public:
- BitcodeReaderMDValueList(LLVMContext& C) : Context(C) {}
+ BitcodeReaderMDValueList(LLVMContext &C)
+ : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
// vector compatibility methods
unsigned size() const { return MDValuePtrs.size(); }
void resize(unsigned N) { MDValuePtrs.resize(N); }
- void push_back(Value *V) { MDValuePtrs.push_back(V); }
+ void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
void clear() { MDValuePtrs.clear(); }
- Value *back() const { return MDValuePtrs.back(); }
+ Metadata *back() const { return MDValuePtrs.back(); }
void pop_back() { MDValuePtrs.pop_back(); }
bool empty() const { return MDValuePtrs.empty(); }
- Value *operator[](unsigned i) const {
+ Metadata *operator[](unsigned i) const {
assert(i < MDValuePtrs.size());
return MDValuePtrs[i];
}
@@ -119,12 +125,14 @@ public:
MDValuePtrs.resize(N);
}
- Value *getValueFwdRef(unsigned Idx);
- void AssignValue(Value *V, unsigned Idx);
+ Metadata *getValueFwdRef(unsigned Idx);
+ void AssignValue(Metadata *MD, unsigned Idx);
+ void tryToResolveCycles();
};
class BitcodeReader : public GVMaterializer {
LLVMContext &Context;
+ DiagnosticHandlerFunction DiagnosticHandler;
Module *TheModule;
std::unique_ptr<MemoryBuffer> Buffer;
std::unique_ptr<BitstreamReader> StreamFile;
@@ -138,11 +146,11 @@ class BitcodeReader : public GVMaterializer {
BitcodeReaderMDValueList MDValueList;
std::vector<Comdat *> ComdatList;
SmallVector<Instruction *, 64> InstructionList;
- SmallVector<SmallVector<uint64_t, 64>, 64> UseListRecords;
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
+ std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
SmallVector<Instruction*, 64> InstsWithTBAATag;
@@ -180,10 +188,11 @@ class BitcodeReader : public GVMaterializer {
/// stream.
DenseMap<Function*, uint64_t> DeferredFunctionInfo;
- /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These
- /// are resolved lazily when functions are loaded.
- typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
- DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
+ /// These are basic blocks forward-referenced by block addresses. They are
+ /// inserted lazily into functions when they're loaded. The basic block ID is
+ /// its index into the vector.
+ DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
+ std::deque<Function *> BasicBlockFwdRefQueue;
/// UseRelativeIDs - Indicates that we are using a new encoding for
/// instruction operands where most operands in the current
@@ -194,56 +203,34 @@ class BitcodeReader : public GVMaterializer {
/// not need this flag.
bool UseRelativeIDs;
- static const std::error_category &BitcodeErrorCategory();
+ /// True if all functions will be materialized, negating the need to process
+ /// (e.g.) blockaddress forward references.
+ bool WillMaterializeAllForwardRefs;
-public:
- enum ErrorType {
- BitcodeStreamInvalidSize,
- ConflictingMETADATA_KINDRecords,
- CouldNotFindFunctionInStream,
- ExpectedConstant,
- InsufficientFunctionProtos,
- InvalidBitcodeSignature,
- InvalidBitcodeWrapperHeader,
- InvalidConstantReference,
- InvalidID, // A read identifier is not found in the table it should be in.
- InvalidInstructionWithNoBB,
- InvalidRecord, // A read record doesn't have the expected size or structure
- InvalidTypeForValue, // Type read OK, but is invalid for its use
- InvalidTYPETable,
- InvalidType, // We were unable to read a type
- MalformedBlock, // We are unable to advance in the stream.
- MalformedGlobalInitializerSet,
- InvalidMultipleBlocks, // We found multiple blocks of a kind that should
- // have only one
- NeverResolvedValueFoundInFunction,
- InvalidValue // Invalid version, inst number, attr number, etc
- };
-
- std::error_code Error(ErrorType E) {
- return std::error_code(E, BitcodeErrorCategory());
- }
+ /// Functions that have block addresses taken. This is usually empty.
+ SmallPtrSet<const Function *, 4> BlockAddressesTaken;
- explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C)
- : Context(C), TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
- NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
- MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false) {}
- explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C)
- : Context(C), TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer),
- NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
- MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false) {}
+public:
+ std::error_code Error(BitcodeError E, const Twine &Message);
+ std::error_code Error(BitcodeError E);
+ std::error_code Error(const Twine &Message);
+
+ explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
+ DiagnosticHandlerFunction DiagnosticHandler);
+ explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C,
+ DiagnosticHandlerFunction DiagnosticHandler);
~BitcodeReader() { FreeState(); }
- void materializeForwardReferencedFunctions();
+ std::error_code materializeForwardReferencedFunctions();
void FreeState();
- void releaseBuffer() override;
+ void releaseBuffer();
- bool isMaterializable(const GlobalValue *GV) const override;
bool isDematerializable(const GlobalValue *GV) const override;
- std::error_code Materialize(GlobalValue *GV) override;
+ std::error_code materialize(GlobalValue *GV) override;
std::error_code MaterializeModule(Module *M) override;
+ std::vector<StructType *> getIdentifiedStructTypes() const override;
void Dematerialize(GlobalValue *GV) override;
/// @brief Main interface to parsing a bitcode buffer.
@@ -257,12 +244,19 @@ public:
static uint64_t decodeSignRotatedValue(uint64_t V);
private:
+ std::vector<StructType *> IdentifiedStructTypes;
+ StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
+ StructType *createIdentifiedStructType(LLVMContext &Context);
+
Type *getTypeByID(unsigned ID);
Value *getFnValueByID(unsigned ID, Type *Ty) {
if (Ty && Ty->isMetadataTy())
- return MDValueList.getValueFwdRef(ID);
+ return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
return ValueList.getValueFwdRef(ID, Ty);
}
+ Metadata *getFnMetadataByID(unsigned ID) {
+ return MDValueList.getValueFwdRef(ID);
+ }
BasicBlock *getBasicBlock(unsigned ID) const {
if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
return FunctionBBs[ID];
diff --git a/contrib/llvm/lib/Bitcode/Reader/BitstreamReader.cpp b/contrib/llvm/lib/Bitcode/Reader/BitstreamReader.cpp
index 72451ec..5e3232e 100644
--- a/contrib/llvm/lib/Bitcode/Reader/BitstreamReader.cpp
+++ b/contrib/llvm/lib/Bitcode/Reader/BitstreamReader.cpp
@@ -15,41 +15,11 @@ using namespace llvm;
// BitstreamCursor implementation
//===----------------------------------------------------------------------===//
-void BitstreamCursor::operator=(const BitstreamCursor &RHS) {
- freeState();
-
- BitStream = RHS.BitStream;
- NextChar = RHS.NextChar;
- CurWord = RHS.CurWord;
- BitsInCurWord = RHS.BitsInCurWord;
- CurCodeSize = RHS.CurCodeSize;
-
- // Copy abbreviations, and bump ref counts.
- CurAbbrevs = RHS.CurAbbrevs;
- for (size_t i = 0, e = CurAbbrevs.size(); i != e; ++i)
- CurAbbrevs[i]->addRef();
-
- // Copy block scope and bump ref counts.
- BlockScope = RHS.BlockScope;
- for (size_t S = 0, e = BlockScope.size(); S != e; ++S) {
- std::vector<BitCodeAbbrev*> &Abbrevs = BlockScope[S].PrevAbbrevs;
- for (size_t i = 0, e = Abbrevs.size(); i != e; ++i)
- Abbrevs[i]->addRef();
- }
-}
-
void BitstreamCursor::freeState() {
// Free all the Abbrevs.
- for (size_t i = 0, e = CurAbbrevs.size(); i != e; ++i)
- CurAbbrevs[i]->dropRef();
CurAbbrevs.clear();
// Free all the Abbrevs in the block scope.
- for (size_t S = 0, e = BlockScope.size(); S != e; ++S) {
- std::vector<BitCodeAbbrev*> &Abbrevs = BlockScope[S].PrevAbbrevs;
- for (size_t i = 0, e = Abbrevs.size(); i != e; ++i)
- Abbrevs[i]->dropRef();
- }
BlockScope.clear();
}
@@ -63,10 +33,8 @@ bool BitstreamCursor::EnterSubBlock(unsigned BlockID, unsigned *NumWordsP) {
// Add the abbrevs specific to this block to the CurAbbrevs list.
if (const BitstreamReader::BlockInfo *Info =
BitStream->getBlockInfo(BlockID)) {
- for (size_t i = 0, e = Info->Abbrevs.size(); i != e; ++i) {
- CurAbbrevs.push_back(Info->Abbrevs[i]);
- CurAbbrevs.back()->addRef();
- }
+ CurAbbrevs.insert(CurAbbrevs.end(), Info->Abbrevs.begin(),
+ Info->Abbrevs.end());
}
// Get the codesize of this block.
@@ -82,16 +50,9 @@ bool BitstreamCursor::EnterSubBlock(unsigned BlockID, unsigned *NumWordsP) {
return false;
}
-void BitstreamCursor::readAbbreviatedLiteral(const BitCodeAbbrevOp &Op,
- SmallVectorImpl<uint64_t> &Vals) {
- assert(Op.isLiteral() && "Not a literal");
- // If the abbrev specifies the literal value to use, use it.
- Vals.push_back(Op.getLiteralValue());
-}
-
-void BitstreamCursor::readAbbreviatedField(const BitCodeAbbrevOp &Op,
- SmallVectorImpl<uint64_t> &Vals) {
- assert(!Op.isLiteral() && "Use ReadAbbreviatedLiteral for literals!");
+static uint64_t readAbbreviatedField(BitstreamCursor &Cursor,
+ const BitCodeAbbrevOp &Op) {
+ assert(!Op.isLiteral() && "Not to be used with literals!");
// Decode the value as we are commanded.
switch (Op.getEncoding()) {
@@ -99,19 +60,18 @@ void BitstreamCursor::readAbbreviatedField(const BitCodeAbbrevOp &Op,
case BitCodeAbbrevOp::Blob:
llvm_unreachable("Should not reach here");
case BitCodeAbbrevOp::Fixed:
- Vals.push_back(Read((unsigned)Op.getEncodingData()));
- break;
+ return Cursor.Read((unsigned)Op.getEncodingData());
case BitCodeAbbrevOp::VBR:
- Vals.push_back(ReadVBR64((unsigned)Op.getEncodingData()));
- break;
+ return Cursor.ReadVBR64((unsigned)Op.getEncodingData());
case BitCodeAbbrevOp::Char6:
- Vals.push_back(BitCodeAbbrevOp::DecodeChar6(Read(6)));
- break;
+ return BitCodeAbbrevOp::DecodeChar6(Cursor.Read(6));
}
+ llvm_unreachable("invalid abbreviation encoding");
}
-void BitstreamCursor::skipAbbreviatedField(const BitCodeAbbrevOp &Op) {
- assert(!Op.isLiteral() && "Use ReadAbbreviatedLiteral for literals!");
+static void skipAbbreviatedField(BitstreamCursor &Cursor,
+ const BitCodeAbbrevOp &Op) {
+ assert(!Op.isLiteral() && "Not to be used with literals!");
// Decode the value as we are commanded.
switch (Op.getEncoding()) {
@@ -119,13 +79,13 @@ void BitstreamCursor::skipAbbreviatedField(const BitCodeAbbrevOp &Op) {
case BitCodeAbbrevOp::Blob:
llvm_unreachable("Should not reach here");
case BitCodeAbbrevOp::Fixed:
- (void)Read((unsigned)Op.getEncodingData());
+ Cursor.Read((unsigned)Op.getEncodingData());
break;
case BitCodeAbbrevOp::VBR:
- (void)ReadVBR64((unsigned)Op.getEncodingData());
+ Cursor.ReadVBR64((unsigned)Op.getEncodingData());
break;
case BitCodeAbbrevOp::Char6:
- (void)Read(6);
+ Cursor.Read(6);
break;
}
}
@@ -153,7 +113,7 @@ void BitstreamCursor::skipRecord(unsigned AbbrevID) {
if (Op.getEncoding() != BitCodeAbbrevOp::Array &&
Op.getEncoding() != BitCodeAbbrevOp::Blob) {
- skipAbbreviatedField(Op);
+ skipAbbreviatedField(*this, Op);
continue;
}
@@ -167,7 +127,7 @@ void BitstreamCursor::skipRecord(unsigned AbbrevID) {
// Read all the elements.
for (; NumElts; --NumElts)
- skipAbbreviatedField(EltEnc);
+ skipAbbreviatedField(*this, EltEnc);
continue;
}
@@ -207,22 +167,22 @@ unsigned BitstreamCursor::readRecord(unsigned AbbrevID,
// Read the record code first.
assert(Abbv->getNumOperandInfos() != 0 && "no record code in abbreviation?");
const BitCodeAbbrevOp &CodeOp = Abbv->getOperandInfo(0);
+ unsigned Code;
if (CodeOp.isLiteral())
- readAbbreviatedLiteral(CodeOp, Vals);
+ Code = CodeOp.getLiteralValue();
else
- readAbbreviatedField(CodeOp, Vals);
- unsigned Code = (unsigned)Vals.pop_back_val();
+ Code = readAbbreviatedField(*this, CodeOp);
for (unsigned i = 1, e = Abbv->getNumOperandInfos(); i != e; ++i) {
const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i);
if (Op.isLiteral()) {
- readAbbreviatedLiteral(Op, Vals);
+ Vals.push_back(Op.getLiteralValue());
continue;
}
if (Op.getEncoding() != BitCodeAbbrevOp::Array &&
Op.getEncoding() != BitCodeAbbrevOp::Blob) {
- readAbbreviatedField(Op, Vals);
+ Vals.push_back(readAbbreviatedField(*this, Op));
continue;
}
@@ -236,7 +196,7 @@ unsigned BitstreamCursor::readRecord(unsigned AbbrevID,
// Read all the elements.
for (; NumElts; --NumElts)
- readAbbreviatedField(EltEnc, Vals);
+ Vals.push_back(readAbbreviatedField(*this, EltEnc));
continue;
}
@@ -339,9 +299,8 @@ bool BitstreamCursor::ReadBlockInfoBlock() {
// ReadAbbrevRecord installs the abbrev in CurAbbrevs. Move it to the
// appropriate BlockInfo.
- BitCodeAbbrev *Abbv = CurAbbrevs.back();
+ CurBlockInfo->Abbrevs.push_back(std::move(CurAbbrevs.back()));
CurAbbrevs.pop_back();
- CurBlockInfo->Abbrevs.push_back(Abbv);
continue;
}
diff --git a/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp b/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp
index 3747122..7218ea0 100644
--- a/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp
+++ b/contrib/llvm/lib/Bitcode/Writer/BitWriter.cpp
@@ -18,10 +18,10 @@ using namespace llvm;
/*===-- Operations on modules ---------------------------------------------===*/
int LLVMWriteBitcodeToFile(LLVMModuleRef M, const char *Path) {
- std::string ErrorInfo;
- raw_fd_ostream OS(Path, ErrorInfo, sys::fs::F_None);
+ std::error_code EC;
+ raw_fd_ostream OS(Path, EC, sys::fs::F_None);
- if (!ErrorInfo.empty())
+ if (EC)
return -1;
WriteBitcodeToFile(unwrap(M), OS);
@@ -39,3 +39,11 @@ int LLVMWriteBitcodeToFD(LLVMModuleRef M, int FD, int ShouldClose,
int LLVMWriteBitcodeToFileHandle(LLVMModuleRef M, int FileHandle) {
return LLVMWriteBitcodeToFD(M, FileHandle, true, false);
}
+
+LLVMMemoryBufferRef LLVMWriteBitcodeToMemoryBuffer(LLVMModuleRef M) {
+ std::string Data;
+ raw_string_ostream OS(Data);
+
+ WriteBitcodeToFile(unwrap(M), OS);
+ return wrap(MemoryBuffer::getMemBufferCopy(OS.str()).release());
+}
diff --git a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
index b2e4948..a96e866 100644
--- a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
+++ b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -22,6 +22,7 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
+#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
@@ -32,12 +33,6 @@
#include <map>
using namespace llvm;
-static cl::opt<bool>
-EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
- cl::desc("Turn on experimental support for "
- "use-list order preservation."),
- cl::init(false), cl::Hidden);
-
/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
@@ -482,17 +477,28 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
static unsigned getEncodedLinkage(const GlobalValue &GV) {
switch (GV.getLinkage()) {
- case GlobalValue::ExternalLinkage: return 0;
- case GlobalValue::WeakAnyLinkage: return 1;
- case GlobalValue::AppendingLinkage: return 2;
- case GlobalValue::InternalLinkage: return 3;
- case GlobalValue::LinkOnceAnyLinkage: return 4;
- case GlobalValue::ExternalWeakLinkage: return 7;
- case GlobalValue::CommonLinkage: return 8;
- case GlobalValue::PrivateLinkage: return 9;
- case GlobalValue::WeakODRLinkage: return 10;
- case GlobalValue::LinkOnceODRLinkage: return 11;
- case GlobalValue::AvailableExternallyLinkage: return 12;
+ case GlobalValue::ExternalLinkage:
+ return 0;
+ case GlobalValue::WeakAnyLinkage:
+ return 1;
+ case GlobalValue::AppendingLinkage:
+ return 2;
+ case GlobalValue::InternalLinkage:
+ return 3;
+ case GlobalValue::LinkOnceAnyLinkage:
+ return 4;
+ case GlobalValue::ExternalWeakLinkage:
+ return 7;
+ case GlobalValue::CommonLinkage:
+ return 8;
+ case GlobalValue::PrivateLinkage:
+ return 9;
+ case GlobalValue::WeakODRLinkage:
+ return 10;
+ case GlobalValue::LinkOnceODRLinkage:
+ return 11;
+ case GlobalValue::AvailableExternallyLinkage:
+ return 12;
}
llvm_unreachable("Invalid linkage");
}
@@ -675,7 +681,8 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
// Emit the function proto information.
for (const Function &F : *M) {
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
- // section, visibility, gc, unnamed_addr, prefix]
+ // section, visibility, gc, unnamed_addr, prologuedata,
+ // dllstorageclass, comdat, prefixdata]
Vals.push_back(VE.getTypeID(F.getType()));
Vals.push_back(F.getCallingConv());
Vals.push_back(F.isDeclaration());
@@ -686,10 +693,12 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
Vals.push_back(F.hasUnnamedAddr());
- Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
- : 0);
+ Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
+ : 0);
Vals.push_back(getEncodedDLLStorageClass(F));
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
+ Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
+ : 0);
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
@@ -715,18 +724,15 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
static uint64_t GetOptimizationFlags(const Value *V) {
uint64_t Flags = 0;
- if (const OverflowingBinaryOperator *OBO =
- dyn_cast<OverflowingBinaryOperator>(V)) {
+ if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
if (OBO->hasNoSignedWrap())
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
if (OBO->hasNoUnsignedWrap())
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
- } else if (const PossiblyExactOperator *PEO =
- dyn_cast<PossiblyExactOperator>(V)) {
+ } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
if (PEO->isExact())
Flags |= 1 << bitc::PEO_EXACT;
- } else if (const FPMathOperator *FPMO =
- dyn_cast<const FPMathOperator>(V)) {
+ } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
if (FPMO->hasUnsafeAlgebra())
Flags |= FastMathFlags::UnsafeAlgebra;
if (FPMO->hasNoNaNs())
@@ -742,89 +748,140 @@ static uint64_t GetOptimizationFlags(const Value *V) {
return Flags;
}
+static void WriteValueAsMetadata(const ValueAsMetadata *MD,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream,
+ SmallVectorImpl<uint64_t> &Record) {
+ // Mimic an MDNode with a value as one operand.
+ Value *V = MD->getValue();
+ Record.push_back(VE.getTypeID(V->getType()));
+ Record.push_back(VE.getValueID(V));
+ Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
+ Record.clear();
+}
+
static void WriteMDNode(const MDNode *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- if (N->getOperand(i)) {
- Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
- Record.push_back(VE.getValueID(N->getOperand(i)));
- } else {
- Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
+ Metadata *MD = N->getOperand(i);
+ if (!MD) {
Record.push_back(0);
+ continue;
}
+ assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata");
+ Record.push_back(VE.getMetadataID(MD) + 1);
}
- unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
- bitc::METADATA_NODE;
- Stream.EmitRecord(MDCode, Record, 0);
+ Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
+ : bitc::METADATA_NODE,
+ Record);
+ Record.clear();
+}
+
+static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
+ BitstreamWriter &Stream,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getLine());
+ Record.push_back(N->getColumn());
+ Record.push_back(VE.getMetadataID(N->getScope()));
+
+ // Always emit the inlined-at location, even though it's optional.
+ if (Metadata *InlinedAt = N->getInlinedAt())
+ Record.push_back(VE.getMetadataID(InlinedAt) + 1);
+ else
+ Record.push_back(0);
+
+ Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
Record.clear();
}
static void WriteModuleMetadata(const Module *M,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
- const ValueEnumerator::ValueList &Vals = VE.getMDValues();
- bool StartedMetadataBlock = false;
+ const auto &MDs = VE.getMDs();
+ if (MDs.empty() && M->named_metadata_empty())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
unsigned MDSAbbrev = 0;
- SmallVector<uint64_t, 64> Record;
- for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ if (VE.hasMDString()) {
+ // Abbrev for METADATA_STRING.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ MDSAbbrev = Stream.EmitAbbrev(Abbv);
+ }
- if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
- if (!N->isFunctionLocal() || !N->getFunction()) {
- if (!StartedMetadataBlock) {
- Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
- StartedMetadataBlock = true;
- }
- WriteMDNode(N, VE, Stream, Record);
- }
- } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
- if (!StartedMetadataBlock) {
- Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
-
- // Abbrev for METADATA_STRING.
- BitCodeAbbrev *Abbv = new BitCodeAbbrev();
- Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
- MDSAbbrev = Stream.EmitAbbrev(Abbv);
- StartedMetadataBlock = true;
- }
+ unsigned LocAbbrev = 0;
+ if (VE.hasMDLocation()) {
+ // Abbrev for METADATA_LOCATION.
+ //
+ // Assume the column is usually under 128, and always output the inlined-at
+ // location (it's never more expensive than building an array size 1).
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ LocAbbrev = Stream.EmitAbbrev(Abbv);
+ }
- // Code: [strchar x N]
- Record.append(MDS->begin(), MDS->end());
+ unsigned NameAbbrev = 0;
+ if (!M->named_metadata_empty()) {
+ // Abbrev for METADATA_NAME.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ NameAbbrev = Stream.EmitAbbrev(Abbv);
+ }
- // Emit the finished record.
- Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
- Record.clear();
+ SmallVector<uint64_t, 64> Record;
+ for (const Metadata *MD : MDs) {
+ if (const MDLocation *Loc = dyn_cast<MDLocation>(MD)) {
+ WriteMDLocation(Loc, VE, Stream, Record, LocAbbrev);
+ continue;
+ }
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ WriteMDNode(N, VE, Stream, Record);
+ continue;
}
+ if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
+ WriteValueAsMetadata(MDC, VE, Stream, Record);
+ continue;
+ }
+ const MDString *MDS = cast<MDString>(MD);
+ // Code: [strchar x N]
+ Record.append(MDS->bytes_begin(), MDS->bytes_end());
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
+ Record.clear();
}
// Write named metadata.
- for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
- E = M->named_metadata_end(); I != E; ++I) {
- const NamedMDNode *NMD = I;
- if (!StartedMetadataBlock) {
- Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
- StartedMetadataBlock = true;
- }
-
+ for (const NamedMDNode &NMD : M->named_metadata()) {
// Write name.
- StringRef Str = NMD->getName();
- for (unsigned i = 0, e = Str.size(); i != e; ++i)
- Record.push_back(Str[i]);
- Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
+ StringRef Str = NMD.getName();
+ Record.append(Str.bytes_begin(), Str.bytes_end());
+ Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
Record.clear();
// Write named metadata operands.
- for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
- Record.push_back(VE.getValueID(NMD->getOperand(i)));
+ for (const MDNode *N : NMD.operands())
+ Record.push_back(VE.getMetadataID(N));
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
}
- if (StartedMetadataBlock)
- Stream.ExitBlock();
+ Stream.ExitBlock();
}
static void WriteFunctionLocalMetadata(const Function &F,
@@ -832,16 +889,16 @@ static void WriteFunctionLocalMetadata(const Function &F,
BitstreamWriter &Stream) {
bool StartedMetadataBlock = false;
SmallVector<uint64_t, 64> Record;
- const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
- for (unsigned i = 0, e = Vals.size(); i != e; ++i)
- if (const MDNode *N = Vals[i])
- if (N->isFunctionLocal() && N->getFunction() == &F) {
- if (!StartedMetadataBlock) {
- Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
- StartedMetadataBlock = true;
- }
- WriteMDNode(N, VE, Stream, Record);
- }
+ const SmallVectorImpl<const LocalAsMetadata *> &MDs =
+ VE.getFunctionLocalMDs();
+ for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
+ assert(MDs[i] && "Expected valid function-local metadata");
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+ StartedMetadataBlock = true;
+ }
+ WriteValueAsMetadata(MDs[i], VE, Stream, Record);
+ }
if (StartedMetadataBlock)
Stream.ExitBlock();
@@ -856,7 +913,7 @@ static void WriteMetadataAttachment(const Function &F,
// Write metadata attachments
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
- SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
@@ -871,7 +928,7 @@ static void WriteMetadataAttachment(const Function &F,
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
Record.push_back(MDs[i].first);
- Record.push_back(VE.getValueID(MDs[i].second));
+ Record.push_back(VE.getMetadataID(MDs[i].second));
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
@@ -1607,6 +1664,39 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
Stream.ExitBlock();
}
+static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
+ BitstreamWriter &Stream) {
+ assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
+ unsigned Code;
+ if (isa<BasicBlock>(Order.V))
+ Code = bitc::USELIST_CODE_BB;
+ else
+ Code = bitc::USELIST_CODE_DEFAULT;
+
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned I : Order.Shuffle)
+ Record.push_back(I);
+ Record.push_back(VE.getValueID(Order.V));
+ Stream.EmitRecord(Code, Record);
+}
+
+static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ auto hasMore = [&]() {
+ return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
+ };
+ if (!hasMore())
+ // Nothing to do.
+ return;
+
+ Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
+ while (hasMore()) {
+ WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
+ VE.UseListOrders.pop_back();
+ }
+ Stream.ExitBlock();
+}
+
/// WriteFunction - Emit a function body to the module stream.
static void WriteFunction(const Function &F, ValueEnumerator &VE,
BitstreamWriter &Stream) {
@@ -1658,11 +1748,12 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
} else {
MDNode *Scope, *IA;
DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
+ assert(Scope && "Expected valid scope");
Vals.push_back(DL.getLine());
Vals.push_back(DL.getCol());
- Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
- Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
+ Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0);
+ Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0);
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
Vals.clear();
@@ -1675,6 +1766,8 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
if (NeedsMetadataAttachment)
WriteMetadataAttachment(F, VE, Stream);
+ if (shouldPreserveBitcodeUseListOrder())
+ WriteUseListBlock(&F, VE, Stream);
VE.purgeFunction();
Stream.ExitBlock();
}
@@ -1840,98 +1933,6 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Stream.ExitBlock();
}
-// Sort the Users based on the order in which the reader parses the bitcode
-// file.
-static bool bitcodereader_order(const User *lhs, const User *rhs) {
- // TODO: Implement.
- return true;
-}
-
-static void WriteUseList(const Value *V, const ValueEnumerator &VE,
- BitstreamWriter &Stream) {
-
- // One or zero uses can't get out of order.
- if (V->use_empty() || V->hasNUses(1))
- return;
-
- // Make a copy of the in-memory use-list for sorting.
- SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end());
-
- // Sort the copy based on the order read by the BitcodeReader.
- std::sort(UserList.begin(), UserList.end(), bitcodereader_order);
-
- // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
- // sorted list (i.e., the expected BitcodeReader in-memory use-list).
-
- // TODO: Emit the USELIST_CODE_ENTRYs.
-}
-
-static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
- BitstreamWriter &Stream) {
- VE.incorporateFunction(*F);
-
- for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
- AI != AE; ++AI)
- WriteUseList(AI, VE, Stream);
- for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
- ++BB) {
- WriteUseList(BB, VE, Stream);
- for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
- ++II) {
- WriteUseList(II, VE, Stream);
- for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
- OI != E; ++OI) {
- if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
- isa<InlineAsm>(*OI))
- WriteUseList(*OI, VE, Stream);
- }
- }
- }
- VE.purgeFunction();
-}
-
-// Emit use-lists.
-static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
- BitstreamWriter &Stream) {
- Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
-
- // XXX: this modifies the module, but in a way that should never change the
- // behavior of any pass or codegen in LLVM. The problem is that GVs may
- // contain entries in the use_list that do not exist in the Module and are
- // not stored in the .bc file.
- for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
- I != E; ++I)
- I->removeDeadConstantUsers();
-
- // Write the global variables.
- for (Module::const_global_iterator GI = M->global_begin(),
- GE = M->global_end(); GI != GE; ++GI) {
- WriteUseList(GI, VE, Stream);
-
- // Write the global variable initializers.
- if (GI->hasInitializer())
- WriteUseList(GI->getInitializer(), VE, Stream);
- }
-
- // Write the functions.
- for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
- WriteUseList(FI, VE, Stream);
- if (!FI->isDeclaration())
- WriteFunctionUseList(FI, VE, Stream);
- if (FI->hasPrefixData())
- WriteUseList(FI->getPrefixData(), VE, Stream);
- }
-
- // Write the aliases.
- for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
- AI != AE; ++AI) {
- WriteUseList(AI, VE, Stream);
- WriteUseList(AI->getAliasee(), VE, Stream);
- }
-
- Stream.ExitBlock();
-}
-
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
@@ -1942,7 +1943,7 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
// Analyze the module, enumerating globals, functions, etc.
- ValueEnumerator VE(M);
+ ValueEnumerator VE(*M);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
@@ -1974,9 +1975,9 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream) {
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
- // Emit use-lists.
- if (EnablePreserveUseListOrdering)
- WriteModuleUseLists(M, VE, Stream);
+ // Emit module-level use-lists.
+ if (shouldPreserveBitcodeUseListOrder())
+ WriteUseListBlock(nullptr, VE, Stream);
// Emit function bodies.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
diff --git a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp
index 4167f6d..25456a4 100644
--- a/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp
+++ b/contrib/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp
@@ -18,8 +18,8 @@
#include "llvm/Pass.h"
using namespace llvm;
-PreservedAnalyses BitcodeWriterPass::run(Module *M) {
- WriteBitcodeToFile(M, OS);
+PreservedAnalyses BitcodeWriterPass::run(Module &M) {
+ WriteBitcodeToFile(&M, OS);
return PreservedAnalyses::all();
}
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
index 15f8034..27a63d8 100644
--- a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
+++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -18,31 +18,288 @@
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
+#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
+namespace {
+struct OrderMap {
+ DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
+ unsigned LastGlobalConstantID;
+ unsigned LastGlobalValueID;
+
+ OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
+
+ bool isGlobalConstant(unsigned ID) const {
+ return ID <= LastGlobalConstantID;
+ }
+ bool isGlobalValue(unsigned ID) const {
+ return ID <= LastGlobalValueID && !isGlobalConstant(ID);
+ }
+
+ unsigned size() const { return IDs.size(); }
+ std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
+ std::pair<unsigned, bool> lookup(const Value *V) const {
+ return IDs.lookup(V);
+ }
+ void index(const Value *V) {
+ // Explicitly sequence get-size and insert-value operations to avoid UB.
+ unsigned ID = IDs.size() + 1;
+ IDs[V].first = ID;
+ }
+};
+}
+
+static void orderValue(const Value *V, OrderMap &OM) {
+ if (OM.lookup(V).first)
+ return;
+
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands() && !isa<GlobalValue>(C))
+ for (const Value *Op : C->operands())
+ if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
+ orderValue(Op, OM);
+
+ // Note: we cannot cache this lookup above, since inserting into the map
+ // changes the map's size, and thus affects the other IDs.
+ OM.index(V);
+}
+
+static OrderMap orderModule(const Module &M) {
+ // This needs to match the order used by ValueEnumerator::ValueEnumerator()
+ // and ValueEnumerator::incorporateFunction().
+ OrderMap OM;
+
+ // In the reader, initializers of GlobalValues are set *after* all the
+ // globals have been read. Rather than awkwardly modeling this behaviour
+ // directly in predictValueUseListOrderImpl(), just assign IDs to
+ // initializers of GlobalValues before GlobalValues themselves to model this
+ // implicitly.
+ for (const GlobalVariable &G : M.globals())
+ if (G.hasInitializer())
+ if (!isa<GlobalValue>(G.getInitializer()))
+ orderValue(G.getInitializer(), OM);
+ for (const GlobalAlias &A : M.aliases())
+ if (!isa<GlobalValue>(A.getAliasee()))
+ orderValue(A.getAliasee(), OM);
+ for (const Function &F : M) {
+ if (F.hasPrefixData())
+ if (!isa<GlobalValue>(F.getPrefixData()))
+ orderValue(F.getPrefixData(), OM);
+ if (F.hasPrologueData())
+ if (!isa<GlobalValue>(F.getPrologueData()))
+ orderValue(F.getPrologueData(), OM);
+ }
+ OM.LastGlobalConstantID = OM.size();
+
+ // Initializers of GlobalValues are processed in
+ // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
+ // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
+ // by giving IDs in reverse order.
+ //
+ // Since GlobalValues never reference each other directly (just through
+ // initializers), their relative IDs only matter for determining order of
+ // uses in their initializers.
+ for (const Function &F : M)
+ orderValue(&F, OM);
+ for (const GlobalAlias &A : M.aliases())
+ orderValue(&A, OM);
+ for (const GlobalVariable &G : M.globals())
+ orderValue(&G, OM);
+ OM.LastGlobalValueID = OM.size();
+
+ for (const Function &F : M) {
+ if (F.isDeclaration())
+ continue;
+ // Here we need to match the union of ValueEnumerator::incorporateFunction()
+ // and WriteFunction(). Basic blocks are implicitly declared before
+ // anything else (by declaring their size).
+ for (const BasicBlock &BB : F)
+ orderValue(&BB, OM);
+ for (const Argument &A : F.args())
+ orderValue(&A, OM);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ for (const Value *Op : I.operands())
+ if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
+ isa<InlineAsm>(*Op))
+ orderValue(Op, OM);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ orderValue(&I, OM);
+ }
+ return OM;
+}
+
+static void predictValueUseListOrderImpl(const Value *V, const Function *F,
+ unsigned ID, const OrderMap &OM,
+ UseListOrderStack &Stack) {
+ // Predict use-list order for this one.
+ typedef std::pair<const Use *, unsigned> Entry;
+ SmallVector<Entry, 64> List;
+ for (const Use &U : V->uses())
+ // Check if this user will be serialized.
+ if (OM.lookup(U.getUser()).first)
+ List.push_back(std::make_pair(&U, List.size()));
+
+ if (List.size() < 2)
+ // We may have lost some users.
+ return;
+
+ bool IsGlobalValue = OM.isGlobalValue(ID);
+ std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
+ const Use *LU = L.first;
+ const Use *RU = R.first;
+ if (LU == RU)
+ return false;
+
+ auto LID = OM.lookup(LU->getUser()).first;
+ auto RID = OM.lookup(RU->getUser()).first;
+
+ // Global values are processed in reverse order.
+ //
+ // Moreover, initializers of GlobalValues are set *after* all the globals
+ // have been read (despite having earlier IDs). Rather than awkwardly
+ // modeling this behaviour here, orderModule() has assigned IDs to
+ // initializers of GlobalValues before GlobalValues themselves.
+ if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
+ return LID < RID;
+
+ // If ID is 4, then expect: 7 6 5 1 2 3.
+ if (LID < RID) {
+ if (RID <= ID)
+ if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+ return true;
+ return false;
+ }
+ if (RID < LID) {
+ if (LID <= ID)
+ if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+ return false;
+ return true;
+ }
+
+ // LID and RID are equal, so we have different operands of the same user.
+ // Assume operands are added in order for all instructions.
+ if (LID <= ID)
+ if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+ return LU->getOperandNo() < RU->getOperandNo();
+ return LU->getOperandNo() > RU->getOperandNo();
+ });
+
+ if (std::is_sorted(
+ List.begin(), List.end(),
+ [](const Entry &L, const Entry &R) { return L.second < R.second; }))
+ // Order is already correct.
+ return;
+
+ // Store the shuffle.
+ Stack.emplace_back(V, F, List.size());
+ assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
+ for (size_t I = 0, E = List.size(); I != E; ++I)
+ Stack.back().Shuffle[I] = List[I].second;
+}
+
+static void predictValueUseListOrder(const Value *V, const Function *F,
+ OrderMap &OM, UseListOrderStack &Stack) {
+ auto &IDPair = OM[V];
+ assert(IDPair.first && "Unmapped value");
+ if (IDPair.second)
+ // Already predicted.
+ return;
+
+ // Do the actual prediction.
+ IDPair.second = true;
+ if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
+ predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
+
+ // Recursive descent into constants.
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands()) // Visit GlobalValues.
+ for (const Value *Op : C->operands())
+ if (isa<Constant>(Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, F, OM, Stack);
+}
+
+static UseListOrderStack predictUseListOrder(const Module &M) {
+ OrderMap OM = orderModule(M);
+
+ // Use-list orders need to be serialized after all the users have been added
+ // to a value, or else the shuffles will be incomplete. Store them per
+ // function in a stack.
+ //
+ // Aside from function order, the order of values doesn't matter much here.
+ UseListOrderStack Stack;
+
+ // We want to visit the functions backward now so we can list function-local
+ // constants in the last Function they're used in. Module-level constants
+ // have already been visited above.
+ for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
+ const Function &F = *I;
+ if (F.isDeclaration())
+ continue;
+ for (const BasicBlock &BB : F)
+ predictValueUseListOrder(&BB, &F, OM, Stack);
+ for (const Argument &A : F.args())
+ predictValueUseListOrder(&A, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ for (const Value *Op : I.operands())
+ if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ predictValueUseListOrder(&I, &F, OM, Stack);
+ }
+
+ // Visit globals last, since the module-level use-list block will be seen
+ // before the function bodies are processed.
+ for (const GlobalVariable &G : M.globals())
+ predictValueUseListOrder(&G, nullptr, OM, Stack);
+ for (const Function &F : M)
+ predictValueUseListOrder(&F, nullptr, OM, Stack);
+ for (const GlobalAlias &A : M.aliases())
+ predictValueUseListOrder(&A, nullptr, OM, Stack);
+ for (const GlobalVariable &G : M.globals())
+ if (G.hasInitializer())
+ predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
+ for (const GlobalAlias &A : M.aliases())
+ predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
+ for (const Function &F : M) {
+ if (F.hasPrefixData())
+ predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
+ if (F.hasPrologueData())
+ predictValueUseListOrder(F.getPrologueData(), nullptr, OM, Stack);
+ }
+
+ return Stack;
+}
+
static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
return V.first->getType()->isIntOrIntVectorTy();
}
-/// ValueEnumerator - Enumerate module-level information.
-ValueEnumerator::ValueEnumerator(const Module *M) {
+ValueEnumerator::ValueEnumerator(const Module &M)
+ : HasMDString(false), HasMDLocation(false) {
+ if (shouldPreserveBitcodeUseListOrder())
+ UseListOrders = predictUseListOrder(M);
+
// Enumerate the global variables.
- for (Module::const_global_iterator I = M->global_begin(),
- E = M->global_end(); I != E; ++I)
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
EnumerateValue(I);
// Enumerate the functions.
- for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
EnumerateValue(I);
EnumerateAttributes(cast<Function>(I)->getAttributes());
}
// Enumerate the aliases.
- for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I)
EnumerateValue(I);
@@ -50,41 +307,58 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
unsigned FirstConstant = Values.size();
// Enumerate the global variable initializers.
- for (Module::const_global_iterator I = M->global_begin(),
- E = M->global_end(); I != E; ++I)
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
if (I->hasInitializer())
EnumerateValue(I->getInitializer());
// Enumerate the aliasees.
- for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I)
EnumerateValue(I->getAliasee());
// Enumerate the prefix data constants.
- for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->hasPrefixData())
EnumerateValue(I->getPrefixData());
+ // Enumerate the prologue data constants.
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (I->hasPrologueData())
+ EnumerateValue(I->getPrologueData());
+
+ // Enumerate the metadata type.
+ //
+ // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
+ // only encodes the metadata type when it's used as a value.
+ EnumerateType(Type::getMetadataTy(M.getContext()));
+
// Insert constants and metadata that are named at module level into the slot
// pool so that the module symbol table can refer to them...
- EnumerateValueSymbolTable(M->getValueSymbolTable());
+ EnumerateValueSymbolTable(M.getValueSymbolTable());
EnumerateNamedMetadata(M);
- SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
// Enumerate types used by function bodies and argument lists.
- for (const Function &F : *M) {
+ for (const Function &F : M) {
for (const Argument &A : F.args())
EnumerateType(A.getType());
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
for (const Use &Op : I.operands()) {
- if (MDNode *MD = dyn_cast<MDNode>(&Op))
- if (MD->isFunctionLocal() && MD->getFunction())
- // These will get enumerated during function-incorporation.
- continue;
- EnumerateOperandType(Op);
+ auto *MD = dyn_cast<MetadataAsValue>(&Op);
+ if (!MD) {
+ EnumerateOperandType(Op);
+ continue;
+ }
+
+ // Local metadata is enumerated during function-incorporation.
+ if (isa<LocalAsMetadata>(MD->getMetadata()))
+ continue;
+
+ EnumerateMetadata(MD->getMetadata());
}
EnumerateType(I.getType());
if (const CallInst *CI = dyn_cast<CallInst>(&I))
@@ -128,17 +402,20 @@ void ValueEnumerator::setInstructionID(const Instruction *I) {
}
unsigned ValueEnumerator::getValueID(const Value *V) const {
- if (isa<MDNode>(V) || isa<MDString>(V)) {
- ValueMapType::const_iterator I = MDValueMap.find(V);
- assert(I != MDValueMap.end() && "Value not in slotcalculator!");
- return I->second-1;
- }
+ if (auto *MD = dyn_cast<MetadataAsValue>(V))
+ return getMetadataID(MD->getMetadata());
ValueMapType::const_iterator I = ValueMap.find(V);
assert(I != ValueMap.end() && "Value not in slotcalculator!");
return I->second-1;
}
+unsigned ValueEnumerator::getMetadataID(const Metadata *MD) const {
+ auto I = MDValueMap.find(MD);
+ assert(I != MDValueMap.end() && "Metadata not in slotcalculator!");
+ return I->second - 1;
+}
+
void ValueEnumerator::dump() const {
print(dbgs(), ValueMap, "Default");
dbgs() << '\n';
@@ -175,10 +452,27 @@ void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
}
}
+void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
+ const char *Name) const {
+
+ OS << "Map Name: " << Name << "\n";
+ OS << "Size: " << Map.size() << "\n";
+ for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
+ const Metadata *MD = I->first;
+ OS << "Metadata: slot = " << I->second << "\n";
+ MD->print(OS);
+ }
+}
+
/// OptimizeConstants - Reorder constant pool for denser encoding.
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
+ if (shouldPreserveBitcodeUseListOrder())
+ // Optimizing constants makes the use-list order difficult to predict.
+ // Disable it for now when trying to preserve the order.
+ return;
+
std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
[this](const std::pair<const Value *, unsigned> &LHS,
const std::pair<const Value *, unsigned> &RHS) {
@@ -209,11 +503,12 @@ void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
EnumerateValue(VI->getValue());
}
-/// EnumerateNamedMetadata - Insert all of the values referenced by
-/// named metadata in the specified module.
-void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
- for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
- E = M->named_metadata_end(); I != E; ++I)
+/// Insert all of the values referenced by named metadata in the specified
+/// module.
+void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
+ for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
+ E = M.named_metadata_end();
+ I != E; ++I)
EnumerateNamedMDNode(I);
}
@@ -226,84 +521,62 @@ void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
/// and types referenced by the given MDNode.
void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- if (Value *V = N->getOperand(i)) {
- if (isa<MDNode>(V) || isa<MDString>(V))
- EnumerateMetadata(V);
- else if (!isa<Instruction>(V) && !isa<Argument>(V))
- EnumerateValue(V);
- } else
- EnumerateType(Type::getVoidTy(N->getContext()));
+ Metadata *MD = N->getOperand(i);
+ if (!MD)
+ continue;
+ assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local");
+ EnumerateMetadata(MD);
}
}
-void ValueEnumerator::EnumerateMetadata(const Value *MD) {
- assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
+void ValueEnumerator::EnumerateMetadata(const Metadata *MD) {
+ assert(
+ (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
+ "Invalid metadata kind");
- // Enumerate the type of this value.
- EnumerateType(MD->getType());
-
- const MDNode *N = dyn_cast<MDNode>(MD);
+ // Insert a dummy ID to block the co-recursive call to
+ // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph.
+ //
+ // Return early if there's already an ID.
+ if (!MDValueMap.insert(std::make_pair(MD, 0)).second)
+ return;
- // In the module-level pass, skip function-local nodes themselves, but
- // do walk their operands.
- if (N && N->isFunctionLocal() && N->getFunction()) {
+ // Visit operands first to minimize RAUW.
+ if (auto *N = dyn_cast<MDNode>(MD))
EnumerateMDNodeOperands(N);
- return;
- }
+ else if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
+ EnumerateValue(C->getValue());
- // Check to see if it's already in!
- unsigned &MDValueID = MDValueMap[MD];
- if (MDValueID) {
- // Increment use count.
- MDValues[MDValueID-1].second++;
- return;
- }
- MDValues.push_back(std::make_pair(MD, 1U));
- MDValueID = MDValues.size();
+ HasMDString |= isa<MDString>(MD);
+ HasMDLocation |= isa<MDLocation>(MD);
- // Enumerate all non-function-local operands.
- if (N)
- EnumerateMDNodeOperands(N);
+ // Replace the dummy ID inserted above with the correct one. MDValueMap may
+ // have changed by inserting operands, so we need a fresh lookup here.
+ MDs.push_back(MD);
+ MDValueMap[MD] = MDs.size();
}
/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
-/// information reachable from the given MDNode.
-void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
- assert(N->isFunctionLocal() && N->getFunction() &&
- "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
-
- // Enumerate the type of this value.
- EnumerateType(N->getType());
-
+/// information reachable from the metadata.
+void ValueEnumerator::EnumerateFunctionLocalMetadata(
+ const LocalAsMetadata *Local) {
// Check to see if it's already in!
- unsigned &MDValueID = MDValueMap[N];
- if (MDValueID) {
- // Increment use count.
- MDValues[MDValueID-1].second++;
+ unsigned &MDValueID = MDValueMap[Local];
+ if (MDValueID)
return;
- }
- MDValues.push_back(std::make_pair(N, 1U));
- MDValueID = MDValues.size();
-
- // To incoroporate function-local information visit all function-local
- // MDNodes and all function-local values they reference.
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- if (Value *V = N->getOperand(i)) {
- if (MDNode *O = dyn_cast<MDNode>(V)) {
- if (O->isFunctionLocal() && O->getFunction())
- EnumerateFunctionLocalMetadata(O);
- } else if (isa<Instruction>(V) || isa<Argument>(V))
- EnumerateValue(V);
- }
- // Also, collect all function-local MDNodes for easy access.
- FunctionLocalMDs.push_back(N);
+ MDs.push_back(Local);
+ MDValueID = MDs.size();
+
+ EnumerateValue(Local->getValue());
+
+ // Also, collect all function-local metadata for easy access.
+ FunctionLocalMDs.push_back(Local);
}
void ValueEnumerator::EnumerateValue(const Value *V) {
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
- assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
- "EnumerateValue doesn't handle Metadata!");
+ assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
// Check to see if it's already in!
unsigned &ValueID = ValueMap[V];
@@ -367,9 +640,8 @@ void ValueEnumerator::EnumerateType(Type *Ty) {
// Enumerate all of the subtypes before we enumerate this type. This ensures
// that the type will be enumerated in an order that can be directly built.
- for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
- I != E; ++I)
- EnumerateType(*I);
+ for (Type *SubTy : Ty->subtypes())
+ EnumerateType(SubTy);
// Refresh the TypeID pointer in case the table rehashed.
TypeID = &TypeMap[Ty];
@@ -393,30 +665,35 @@ void ValueEnumerator::EnumerateType(Type *Ty) {
void ValueEnumerator::EnumerateOperandType(const Value *V) {
EnumerateType(V->getType());
- if (const Constant *C = dyn_cast<Constant>(V)) {
- // If this constant is already enumerated, ignore it, we know its type must
- // be enumerated.
- if (ValueMap.count(V)) return;
+ if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
+ assert(!isa<LocalAsMetadata>(MD->getMetadata()) &&
+ "Function-local metadata should be left for later");
- // This constant may have operands, make sure to enumerate the types in
- // them.
- for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
- const Value *Op = C->getOperand(i);
+ EnumerateMetadata(MD->getMetadata());
+ return;
+ }
- // Don't enumerate basic blocks here, this happens as operands to
- // blockaddress.
- if (isa<BasicBlock>(Op)) continue;
+ const Constant *C = dyn_cast<Constant>(V);
+ if (!C)
+ return;
- EnumerateOperandType(Op);
- }
+ // If this constant is already enumerated, ignore it, we know its type must
+ // be enumerated.
+ if (ValueMap.count(C))
+ return;
- if (const MDNode *N = dyn_cast<MDNode>(V)) {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- if (Value *Elem = N->getOperand(i))
- EnumerateOperandType(Elem);
- }
- } else if (isa<MDString>(V) || isa<MDNode>(V))
- EnumerateMetadata(V);
+ // This constant may have operands, make sure to enumerate the types in
+ // them.
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
+ const Value *Op = C->getOperand(i);
+
+ // Don't enumerate basic blocks here, this happens as operands to
+ // blockaddress.
+ if (isa<BasicBlock>(Op))
+ continue;
+
+ EnumerateOperandType(Op);
+ }
}
void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
@@ -444,7 +721,7 @@ void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
void ValueEnumerator::incorporateFunction(const Function &F) {
InstructionCount = 0;
NumModuleValues = Values.size();
- NumModuleMDValues = MDValues.size();
+ NumModuleMDs = MDs.size();
// Adding function arguments to the value table.
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
@@ -475,24 +752,16 @@ void ValueEnumerator::incorporateFunction(const Function &F) {
FirstInstID = Values.size();
- SmallVector<MDNode *, 8> FnLocalMDVector;
+ SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
// Add all of the instructions.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
- if (MDNode *MD = dyn_cast<MDNode>(*OI))
- if (MD->isFunctionLocal() && MD->getFunction())
+ if (auto *MD = dyn_cast<MetadataAsValue>(&*OI))
+ if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
// Enumerate metadata after the instructions they might refer to.
- FnLocalMDVector.push_back(MD);
- }
-
- SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
- I->getAllMetadataOtherThanDebugLoc(MDs);
- for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
- MDNode *N = MDs[i].second;
- if (N->isFunctionLocal() && N->getFunction())
- FnLocalMDVector.push_back(N);
+ FnLocalMDVector.push_back(Local);
}
if (!I->getType()->isVoidTy())
@@ -509,13 +778,13 @@ void ValueEnumerator::purgeFunction() {
/// Remove purged values from the ValueMap.
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
ValueMap.erase(Values[i].first);
- for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
- MDValueMap.erase(MDValues[i].first);
+ for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
+ MDValueMap.erase(MDs[i]);
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
ValueMap.erase(BasicBlocks[i]);
Values.resize(NumModuleValues);
- MDValues.resize(NumModuleMDValues);
+ MDs.resize(NumModuleMDs);
BasicBlocks.clear();
FunctionLocalMDs.clear();
}
@@ -538,4 +807,3 @@ unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
return getGlobalBasicBlockID(BB);
}
-
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h
index 1c9f38e..d363c1b 100644
--- a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h
+++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h
@@ -11,13 +11,14 @@
//
//===----------------------------------------------------------------------===//
-#ifndef VALUE_ENUMERATOR_H
-#define VALUE_ENUMERATOR_H
+#ifndef LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
+#define LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/IR/Attributes.h"
+#include "llvm/IR/UseListOrder.h"
#include <vector>
namespace llvm {
@@ -29,6 +30,8 @@ class BasicBlock;
class Comdat;
class Function;
class Module;
+class Metadata;
+class LocalAsMetadata;
class MDNode;
class NamedMDNode;
class AttributeSet;
@@ -42,6 +45,9 @@ public:
// For each value, we remember its Value* and occurrence frequency.
typedef std::vector<std::pair<const Value*, unsigned> > ValueList;
+
+ UseListOrderStack UseListOrders;
+
private:
typedef DenseMap<Type*, unsigned> TypeMapType;
TypeMapType TypeMap;
@@ -54,9 +60,12 @@ private:
typedef UniqueVector<const Comdat *> ComdatSetType;
ComdatSetType Comdats;
- ValueList MDValues;
- SmallVector<const MDNode *, 8> FunctionLocalMDs;
- ValueMapType MDValueMap;
+ std::vector<const Metadata *> MDs;
+ SmallVector<const LocalAsMetadata *, 8> FunctionLocalMDs;
+ typedef DenseMap<const Metadata *, unsigned> MetadataMapType;
+ MetadataMapType MDValueMap;
+ bool HasMDString;
+ bool HasMDLocation;
typedef DenseMap<AttributeSet, unsigned> AttributeGroupMapType;
AttributeGroupMapType AttributeGroupMap;
@@ -84,7 +93,7 @@ private:
/// When a function is incorporated, this is the size of the MDValues list
/// before incorporation.
- unsigned NumModuleMDValues;
+ unsigned NumModuleMDs;
unsigned FirstFuncConstantID;
unsigned FirstInstID;
@@ -92,12 +101,18 @@ private:
ValueEnumerator(const ValueEnumerator &) LLVM_DELETED_FUNCTION;
void operator=(const ValueEnumerator &) LLVM_DELETED_FUNCTION;
public:
- ValueEnumerator(const Module *M);
+ ValueEnumerator(const Module &M);
void dump() const;
void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const;
+ void print(raw_ostream &OS, const MetadataMapType &Map,
+ const char *Name) const;
unsigned getValueID(const Value *V) const;
+ unsigned getMetadataID(const Metadata *V) const;
+
+ bool hasMDString() const { return HasMDString; }
+ bool hasMDLocation() const { return HasMDLocation; }
unsigned getTypeID(Type *T) const {
TypeMapType::const_iterator I = TypeMap.find(T);
@@ -130,8 +145,8 @@ public:
}
const ValueList &getValues() const { return Values; }
- const ValueList &getMDValues() const { return MDValues; }
- const SmallVectorImpl<const MDNode *> &getFunctionLocalMDValues() const {
+ const std::vector<const Metadata *> &getMDs() const { return MDs; }
+ const SmallVectorImpl<const LocalAsMetadata *> &getFunctionLocalMDs() const {
return FunctionLocalMDs;
}
const TypeList &getTypes() const { return Types; }
@@ -163,8 +178,8 @@ private:
void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
void EnumerateMDNodeOperands(const MDNode *N);
- void EnumerateMetadata(const Value *MD);
- void EnumerateFunctionLocalMetadata(const MDNode *N);
+ void EnumerateMetadata(const Metadata *MD);
+ void EnumerateFunctionLocalMetadata(const LocalAsMetadata *Local);
void EnumerateNamedMDNode(const NamedMDNode *NMD);
void EnumerateValue(const Value *V);
void EnumerateType(Type *T);
@@ -172,7 +187,7 @@ private:
void EnumerateAttributes(AttributeSet PAL);
void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
- void EnumerateNamedMetadata(const Module *M);
+ void EnumerateNamedMetadata(const Module &M);
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp b/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
index 44345ad..69c3685 100644
--- a/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
+++ b/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
@@ -24,7 +24,6 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
@@ -111,18 +110,13 @@ bool AggressiveAntiDepState::IsLive(unsigned Reg)
return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
}
-
-
-AggressiveAntiDepBreaker::
-AggressiveAntiDepBreaker(MachineFunction& MFi,
- const RegisterClassInfo &RCI,
- TargetSubtargetInfo::RegClassVector& CriticalPathRCs) :
- AntiDepBreaker(), MF(MFi),
- MRI(MF.getRegInfo()),
- TII(MF.getTarget().getInstrInfo()),
- TRI(MF.getTarget().getRegisterInfo()),
- RegClassInfo(RCI),
- State(nullptr) {
+AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
+ MachineFunction &MFi, const RegisterClassInfo &RCI,
+ TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
+ : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
+ TII(MF.getSubtarget().getInstrInfo()),
+ TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
+ State(nullptr) {
/* Collect a bitset of all registers that are only broken if they
are on the critical path. */
for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
@@ -262,11 +256,8 @@ static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
P != PE; ++P) {
if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
- unsigned Reg = P->getReg();
- if (RegSet.count(Reg) == 0) {
+ if (RegSet.insert(P->getReg()).second)
Edges.push_back(&*P);
- RegSet.insert(Reg);
- }
}
}
}
@@ -527,7 +518,7 @@ BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
BV &= RCBV;
}
- DEBUG(dbgs() << " " << RC->getName());
+ DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
}
return BV;
@@ -620,8 +611,7 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
DEBUG(dbgs() << "\tFind Registers:");
- if (RenameOrder.count(SuperRC) == 0)
- RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
+ RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
unsigned OrigR = RenameOrder[SuperRC];
unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
@@ -683,6 +673,21 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
goto next_super_reg;
}
+ // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
+ // defines 'NewReg' via an early-clobber operand.
+ auto Range = RegRefs.equal_range(Reg);
+ for (auto Q = Range.first, QE = Range.second; Q != QE; ++Q) {
+ auto UseMI = Q->second.Operand->getParent();
+ int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
+ if (Idx == -1)
+ continue;
+
+ if (UseMI->getOperand(Idx).isEarlyClobber()) {
+ DEBUG(dbgs() << "(ec)");
+ goto next_super_reg;
+ }
+ }
+
// Record that 'Reg' can be renamed to 'NewReg'.
RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
}
diff --git a/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.h b/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.h
index 2ab9d89..12cf95b 100644
--- a/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.h
+++ b/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_AGGRESSIVEANTIDEPBREAKER_H
-#define LLVM_CODEGEN_AGGRESSIVEANTIDEPBREAKER_H
+#ifndef LLVM_LIB_CODEGEN_AGGRESSIVEANTIDEPBREAKER_H
+#define LLVM_LIB_CODEGEN_AGGRESSIVEANTIDEPBREAKER_H
#include "AntiDepBreaker.h"
#include "llvm/ADT/BitVector.h"
@@ -32,88 +32,83 @@
namespace llvm {
class RegisterClassInfo;
- /// Class AggressiveAntiDepState
/// Contains all the state necessary for anti-dep breaking.
class AggressiveAntiDepState {
public:
- /// RegisterReference - Information about a register reference
- /// within a liverange
+ /// Information about a register reference within a liverange
typedef struct {
- /// Operand - The registers operand
+ /// The registers operand
MachineOperand *Operand;
- /// RC - The register class
+ /// The register class
const TargetRegisterClass *RC;
} RegisterReference;
private:
- /// NumTargetRegs - Number of non-virtual target registers
- /// (i.e. TRI->getNumRegs()).
+ /// Number of non-virtual target registers (i.e. TRI->getNumRegs()).
const unsigned NumTargetRegs;
- /// GroupNodes - Implements a disjoint-union data structure to
+ /// Implements a disjoint-union data structure to
/// form register groups. A node is represented by an index into
/// the vector. A node can "point to" itself to indicate that it
/// is the parent of a group, or point to another node to indicate
/// that it is a member of the same group as that node.
std::vector<unsigned> GroupNodes;
- /// GroupNodeIndices - For each register, the index of the GroupNode
+ /// For each register, the index of the GroupNode
/// currently representing the group that the register belongs to.
/// Register 0 is always represented by the 0 group, a group
/// composed of registers that are not eligible for anti-aliasing.
std::vector<unsigned> GroupNodeIndices;
- /// RegRefs - Map registers to all their references within a live range.
+ /// Map registers to all their references within a live range.
std::multimap<unsigned, RegisterReference> RegRefs;
- /// KillIndices - The index of the most recent kill (proceding bottom-up),
+ /// The index of the most recent kill (proceding bottom-up),
/// or ~0u if the register is not live.
std::vector<unsigned> KillIndices;
- /// DefIndices - The index of the most recent complete def (proceding bottom
+ /// The index of the most recent complete def (proceding bottom
/// up), or ~0u if the register is live.
std::vector<unsigned> DefIndices;
public:
AggressiveAntiDepState(const unsigned TargetRegs, MachineBasicBlock *BB);
- /// GetKillIndices - Return the kill indices.
+ /// Return the kill indices.
std::vector<unsigned> &GetKillIndices() { return KillIndices; }
- /// GetDefIndices - Return the define indices.
+ /// Return the define indices.
std::vector<unsigned> &GetDefIndices() { return DefIndices; }
- /// GetRegRefs - Return the RegRefs map.
+ /// Return the RegRefs map.
std::multimap<unsigned, RegisterReference>& GetRegRefs() { return RegRefs; }
- // GetGroup - Get the group for a register. The returned value is
+ // Get the group for a register. The returned value is
// the index of the GroupNode representing the group.
unsigned GetGroup(unsigned Reg);
- // GetGroupRegs - Return a vector of the registers belonging to a
- // group. If RegRefs is non-NULL then only included referenced registers.
+ // Return a vector of the registers belonging to a group.
+ // If RegRefs is non-NULL then only included referenced registers.
void GetGroupRegs(
unsigned Group,
std::vector<unsigned> &Regs,
std::multimap<unsigned,
AggressiveAntiDepState::RegisterReference> *RegRefs);
- // UnionGroups - Union Reg1's and Reg2's groups to form a new
- // group. Return the index of the GroupNode representing the
- // group.
+ // Union Reg1's and Reg2's groups to form a new group.
+ // Return the index of the GroupNode representing the group.
unsigned UnionGroups(unsigned Reg1, unsigned Reg2);
- // LeaveGroup - Remove a register from its current group and place
+ // Remove a register from its current group and place
// it alone in its own group. Return the index of the GroupNode
// representing the registers new group.
unsigned LeaveGroup(unsigned Reg);
- /// IsLive - Return true if Reg is live
+ /// Return true if Reg is live.
bool IsLive(unsigned Reg);
};
- /// Class AggressiveAntiDepBreaker
class AggressiveAntiDepBreaker : public AntiDepBreaker {
MachineFunction& MF;
MachineRegisterInfo &MRI;
@@ -121,12 +116,11 @@ class RegisterClassInfo;
const TargetRegisterInfo *TRI;
const RegisterClassInfo &RegClassInfo;
- /// CriticalPathSet - The set of registers that should only be
+ /// The set of registers that should only be
/// renamed if they are on the critical path.
BitVector CriticalPathSet;
- /// State - The state used to identify and rename anti-dependence
- /// registers.
+ /// The state used to identify and rename anti-dependence registers.
AggressiveAntiDepState *State;
public:
@@ -135,11 +129,10 @@ class RegisterClassInfo;
TargetSubtargetInfo::RegClassVector& CriticalPathRCs);
~AggressiveAntiDepBreaker();
- /// Start - Initialize anti-dep breaking for a new basic block.
+ /// Initialize anti-dep breaking for a new basic block.
void StartBlock(MachineBasicBlock *BB) override;
- /// BreakAntiDependencies - Identifiy anti-dependencies along the critical
- /// path
+ /// Identifiy anti-dependencies along the critical path
/// of the ScheduleDAG and break them by renaming registers.
///
unsigned BreakAntiDependencies(const std::vector<SUnit>& SUnits,
@@ -148,24 +141,24 @@ class RegisterClassInfo;
unsigned InsertPosIndex,
DbgValueVector &DbgValues) override;
- /// Observe - Update liveness information to account for the current
+ /// Update liveness information to account for the current
/// instruction, which will not be scheduled.
///
void Observe(MachineInstr *MI, unsigned Count,
unsigned InsertPosIndex) override;
- /// Finish - Finish anti-dep breaking for a basic block.
+ /// Finish anti-dep breaking for a basic block.
void FinishBlock() override;
private:
/// Keep track of a position in the allocation order for each regclass.
typedef std::map<const TargetRegisterClass *, unsigned> RenameOrderType;
- /// IsImplicitDefUse - Return true if MO represents a register
+ /// Return true if MO represents a register
/// that is both implicitly used and defined in MI
bool IsImplicitDefUse(MachineInstr *MI, MachineOperand& MO);
- /// GetPassthruRegs - If MI implicitly def/uses a register, then
+ /// If MI implicitly def/uses a register, then
/// return that register and all subregisters.
void GetPassthruRegs(MachineInstr *MI, std::set<unsigned>& PassthruRegs);
diff --git a/contrib/llvm/lib/CodeGen/AllocationOrder.h b/contrib/llvm/lib/CodeGen/AllocationOrder.h
index 64ff2a7..1e4eaa7 100644
--- a/contrib/llvm/lib/CodeGen/AllocationOrder.h
+++ b/contrib/llvm/lib/CodeGen/AllocationOrder.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_ALLOCATIONORDER_H
-#define LLVM_CODEGEN_ALLOCATIONORDER_H
+#ifndef LLVM_LIB_CODEGEN_ALLOCATIONORDER_H
+#define LLVM_LIB_CODEGEN_ALLOCATIONORDER_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/MC/MCRegisterInfo.h"
diff --git a/contrib/llvm/lib/CodeGen/Analysis.cpp b/contrib/llvm/lib/CodeGen/Analysis.cpp
index 0eabee3..2e8af9e 100644
--- a/contrib/llvm/lib/CodeGen/Analysis.cpp
+++ b/contrib/llvm/lib/CodeGen/Analysis.cpp
@@ -25,12 +25,14 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Transforms/Utils/GlobalStatus.h"
+
using namespace llvm;
-/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
-/// of insertvalue or extractvalue indices that identify a member, return
-/// the linearized index of the start of the member.
-///
+/// Compute the linearized index of a member in a nested aggregate/struct/array
+/// by recursing and accumulating CurIndex as long as there are indices in the
+/// index list.
unsigned llvm::ComputeLinearIndex(Type *Ty,
const unsigned *Indices,
const unsigned *IndicesEnd,
@@ -49,16 +51,23 @@ unsigned llvm::ComputeLinearIndex(Type *Ty,
return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
}
+ assert(!Indices && "Unexpected out of bound");
return CurIndex;
}
// Given an array type, recursively traverse the elements.
else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Type *EltTy = ATy->getElementType();
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
- if (Indices && *Indices == i)
- return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(EltTy, nullptr, nullptr, CurIndex);
+ unsigned NumElts = ATy->getNumElements();
+ // Compute the Linear offset when jumping one element of the array
+ unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
+ if (Indices) {
+ assert(*Indices < NumElts && "Unexpected out of bound");
+ // If the indice is inside the array, compute the index to the requested
+ // elt and recurse inside the element with the end of the indices list
+ CurIndex += EltLinearOffset* *Indices;
+ return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
}
+ CurIndex += EltLinearOffset*NumElts;
return CurIndex;
}
// We haven't found the type we're looking for, so keep searching.
@@ -106,15 +115,16 @@ void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
}
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
-GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
+GlobalValue *llvm::ExtractTypeInfo(Value *V) {
V = V->stripPointerCasts();
- GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
+ GlobalValue *GV = dyn_cast<GlobalValue>(V);
+ GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
- if (GV && GV->getName() == "llvm.eh.catch.all.value") {
- assert(GV->hasInitializer() &&
+ if (Var && Var->getName() == "llvm.eh.catch.all.value") {
+ assert(Var->hasInitializer() &&
"The EH catch-all value must have an initializer");
- Value *Init = GV->getInitializer();
- GV = dyn_cast<GlobalVariable>(Init);
+ Value *Init = Var->getInitializer();
+ GV = dyn_cast<GlobalValue>(Init);
if (!GV) V = cast<ConstantPointerNull>(Init);
}
@@ -508,8 +518,8 @@ bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
return false;
}
- return returnTypeIsEligibleForTailCall(ExitBB->getParent(), I, Ret,
- *TM.getTargetLowering());
+ return returnTypeIsEligibleForTailCall(
+ ExitBB->getParent(), I, Ret, *TM.getSubtargetImpl()->getTargetLowering());
}
bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
@@ -606,3 +616,29 @@ bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
return true;
}
+
+bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
+ if (!GV->hasLinkOnceODRLinkage())
+ return false;
+
+ if (GV->hasUnnamedAddr())
+ return true;
+
+ // If it is a non constant variable, it needs to be uniqued across shared
+ // objects.
+ if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
+ if (!Var->isConstant())
+ return false;
+ }
+
+ // An alias can point to a variable. We could try to resolve the alias to
+ // decide, but for now just don't hide them.
+ if (isa<GlobalAlias>(GV))
+ return false;
+
+ GlobalStatus GS;
+ if (GlobalStatus::analyzeGlobal(GV, GS))
+ return false;
+
+ return !GS.IsCompared;
+}
diff --git a/contrib/llvm/lib/CodeGen/AntiDepBreaker.h b/contrib/llvm/lib/CodeGen/AntiDepBreaker.h
index df47f98..a61a8ef 100644
--- a/contrib/llvm/lib/CodeGen/AntiDepBreaker.h
+++ b/contrib/llvm/lib/CodeGen/AntiDepBreaker.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_ANTIDEPBREAKER_H
-#define LLVM_CODEGEN_ANTIDEPBREAKER_H
+#ifndef LLVM_LIB_CODEGEN_ANTIDEPBREAKER_H
+#define LLVM_LIB_CODEGEN_ANTIDEPBREAKER_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -25,9 +25,8 @@
namespace llvm {
-/// AntiDepBreaker - This class works into conjunction with the
-/// post-RA scheduler to rename registers to break register
-/// anti-dependencies.
+/// This class works in conjunction with the post-RA scheduler to rename
+/// registers to break register anti-dependencies (WAR hazards).
class AntiDepBreaker {
public:
typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
@@ -35,29 +34,26 @@ public:
virtual ~AntiDepBreaker();
- /// Start - Initialize anti-dep breaking for a new basic block.
+ /// Initialize anti-dep breaking for a new basic block.
virtual void StartBlock(MachineBasicBlock *BB) =0;
- /// BreakAntiDependencies - Identifiy anti-dependencies within a
- /// basic-block region and break them by renaming registers. Return
- /// the number of anti-dependencies broken.
- ///
+ /// Identifiy anti-dependencies within a basic-block region and break them by
+ /// renaming registers. Return the number of anti-dependencies broken.
virtual unsigned BreakAntiDependencies(const std::vector<SUnit>& SUnits,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
unsigned InsertPosIndex,
DbgValueVector &DbgValues) = 0;
- /// Observe - Update liveness information to account for the current
+ /// Update liveness information to account for the current
/// instruction, which will not be scheduled.
- ///
virtual void Observe(MachineInstr *MI, unsigned Count,
unsigned InsertPosIndex) =0;
- /// Finish - Finish anti-dep breaking for a basic block.
+ /// Finish anti-dep breaking for a basic block.
virtual void FinishBlock() =0;
- /// UpdateDbgValue - Update DBG_VALUE if dependency breaker is updating
+ /// Update DBG_VALUE if dependency breaker is updating
/// other machine instruction to use NewReg.
void UpdateDbgValue(MachineInstr *MI, unsigned OldReg, unsigned NewReg) {
assert (MI->isDebugValue() && "MI is not DBG_VALUE!");
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp
index 251f5ef..66c6c63 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp
@@ -108,7 +108,7 @@ void ARMException::endFunction(const MachineFunction *) {
}
void ARMException::emitTypeInfos(unsigned TTypeEncoding) {
- const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
@@ -121,9 +121,9 @@ void ARMException::emitTypeInfos(unsigned TTypeEncoding) {
Entry = TypeInfos.size();
}
- for (std::vector<const GlobalVariable *>::const_reverse_iterator
+ for (std::vector<const GlobalValue *>::const_reverse_iterator
I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
- const GlobalVariable *GV = *I;
+ const GlobalValue *GV = *I;
if (VerboseAsm)
Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
Asm->EmitTTypeReference(GV, TTypeEncoding);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.h b/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.h
index 42757d7..802e050 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_ADDRESSPOOL_H__
-#define CODEGEN_ASMPRINTER_ADDRESSPOOL_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_ADDRESSPOOL_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_ADDRESSPOOL_H
#include "llvm/ADT/DenseMap.h"
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 424e759..bbed808 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -14,11 +14,13 @@
#include "llvm/CodeGen/AsmPrinter.h"
#include "DwarfDebug.h"
#include "DwarfException.h"
+#include "Win64Exception.h"
#include "WinCodeViewLineTables.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/JumpInstrTableInfo.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -49,7 +51,6 @@
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
-#include "llvm/Transforms/Utils/GlobalStatus.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
@@ -98,11 +99,10 @@ static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
}
AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
- : MachineFunctionPass(ID),
- TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
- OutContext(Streamer.getContext()),
- OutStreamer(Streamer),
- LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) {
+ : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
+ MII(tm.getSubtargetImpl()->getInstrInfo()),
+ OutContext(Streamer.getContext()), OutStreamer(Streamer), LastMI(nullptr),
+ LastFn(0), Counter(~0U), SetCounter(0) {
DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr;
CurrentFnSym = CurrentFnSymForSize = nullptr;
GCMetadataPrinters = nullptr;
@@ -129,12 +129,12 @@ unsigned AsmPrinter::getFunctionNumber() const {
}
const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
- return TM.getTargetLowering()->getObjFileLowering();
+ return TM.getSubtargetImpl()->getTargetLowering()->getObjFileLowering();
}
/// getDataLayout - Return information about data layout.
const DataLayout &AsmPrinter::getDataLayout() const {
- return *TM.getDataLayout();
+ return *TM.getSubtargetImpl()->getDataLayout();
}
const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
@@ -173,9 +173,9 @@ bool AsmPrinter::doInitialization(Module &M) {
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
- OutStreamer.InitSections();
+ OutStreamer.InitSections(false);
- Mang = new Mangler(TM.getDataLayout());
+ Mang = new Mangler(TM.getSubtargetImpl()->getDataLayout());
// Emit the version-min deplyment target directive if needed.
//
@@ -210,7 +210,7 @@ bool AsmPrinter::doInitialization(Module &M) {
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (auto &I : *MI)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
- MP->beginAssembly(*this);
+ MP->beginAssembly(M, *MI, *this);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
@@ -222,11 +222,22 @@ bool AsmPrinter::doInitialization(Module &M) {
}
if (MAI->doesSupportDebugInformation()) {
+ bool skip_dwarf = false;
if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
DbgTimerName,
CodeViewLineTablesGroupName));
- } else {
+ // FIXME: Don't emit DWARF debug info if there's at least one function
+ // with AddressSanitizer instrumentation.
+ // This is a band-aid fix for PR22032.
+ for (auto &F : M.functions()) {
+ if (F.hasFnAttribute(Attribute::SanitizeAddress)) {
+ skip_dwarf = true;
+ break;
+ }
+ }
+ }
+ if (!skip_dwarf) {
DD = new DwarfDebug(this, &M);
Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
}
@@ -243,8 +254,14 @@ bool AsmPrinter::doInitialization(Module &M) {
case ExceptionHandling::ARM:
ES = new ARMException(this);
break;
- case ExceptionHandling::WinEH:
- ES = new Win64Exception(this);
+ case ExceptionHandling::ItaniumWinEH:
+ case ExceptionHandling::MSVC:
+ switch (MAI->getWinEHEncodingType()) {
+ default: llvm_unreachable("unsupported unwinding information encoding");
+ case WinEH::EncodingType::Itanium:
+ ES = new Win64Exception(this);
+ break;
+ }
break;
}
if (ES)
@@ -253,33 +270,10 @@ bool AsmPrinter::doInitialization(Module &M) {
}
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
- GlobalValue::LinkageTypes Linkage = GV->getLinkage();
- if (Linkage != GlobalValue::LinkOnceODRLinkage)
- return false;
-
if (!MAI.hasWeakDefCanBeHiddenDirective())
return false;
- if (GV->hasUnnamedAddr())
- return true;
-
- // This is only used for MachO, so right now it doesn't really matter how
- // we handle alias. Revisit this once the MachO linker implements aliases.
- if (isa<GlobalAlias>(GV))
- return false;
-
- // If it is a non constant variable, it needs to be uniqued across shared
- // objects.
- if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
- if (!Var->isConstant())
- return false;
- }
-
- GlobalStatus GS;
- if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
- return true;
-
- return false;
+ return canBeOmittedFromSymbolTable(GV);
}
void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
@@ -356,12 +350,17 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (!GV->hasInitializer()) // External globals require no extra code.
return;
+ GVSym->redefineIfPossible();
+ if (GVSym->isDefined() || GVSym->isVariable())
+ report_fatal_error("symbol '" + Twine(GVSym->getName()) +
+ "' is already defined");
+
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
// If the alignment is specified, we *must* obey it. Overaligning a global
@@ -528,6 +527,10 @@ void AsmPrinter::EmitFunctionHeader() {
OutStreamer.GetCommentOS() << '\n';
}
+ // Emit the prefix data.
+ if (F->hasPrefixData())
+ EmitGlobalConstant(F->getPrefixData());
+
// Emit the CurrentFnSym. This is a virtual function to allow targets to
// do their wild and crazy things as required.
EmitFunctionEntryLabel();
@@ -548,21 +551,26 @@ void AsmPrinter::EmitFunctionHeader() {
HI.Handler->beginFunction(MF);
}
- // Emit the prefix data.
- if (F->hasPrefixData())
- EmitGlobalConstant(F->getPrefixData());
+ // Emit the prologue data.
+ if (F->hasPrologueData())
+ EmitGlobalConstant(F->getPrologueData());
}
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
/// function. This can be overridden by targets as required to do custom stuff.
void AsmPrinter::EmitFunctionEntryLabel() {
+ CurrentFnSym->redefineIfPossible();
+
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
- if (CurrentFnSym->isUndefined())
- return OutStreamer.EmitLabel(CurrentFnSym);
+ if (CurrentFnSym->isVariable())
+ report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
+ "' is a protected alias");
+ if (CurrentFnSym->isDefined())
+ report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
+ "' label emitted multiple times to assembly file");
- report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
- "' label emitted multiple times to assembly file");
+ return OutStreamer.EmitLabel(CurrentFnSym);
}
/// emitComments - Pretty-print comments for instructions.
@@ -578,20 +586,24 @@ static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
// We assume a single instruction only has a spill or reload, not
// both.
const MachineMemOperand *MMO;
- if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
+ if (TM.getSubtargetImpl()->getInstrInfo()->isLoadFromStackSlotPostFE(&MI,
+ FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Reload\n";
}
- } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
+ } else if (TM.getSubtargetImpl()->getInstrInfo()->hasLoadFromStackSlot(
+ &MI, MMO, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Reload\n";
- } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
+ } else if (TM.getSubtargetImpl()->getInstrInfo()->isStoreToStackSlotPostFE(
+ &MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Spill\n";
}
- } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
+ } else if (TM.getSubtargetImpl()->getInstrInfo()->hasStoreToStackSlot(
+ &MI, MMO, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Spill\n";
}
@@ -605,8 +617,9 @@ static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
/// that is an implicit def.
void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
- OutStreamer.AddComment(Twine("implicit-def: ") +
- TM.getRegisterInfo()->getName(RegNo));
+ OutStreamer.AddComment(
+ Twine("implicit-def: ") +
+ TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo));
OutStreamer.AddBlankLine();
}
@@ -616,7 +629,7 @@ static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
const MachineOperand &Op = MI->getOperand(i);
assert(Op.isReg() && "KILL instruction must have only register operands");
Str += ' ';
- Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
+ Str += AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Op.getReg());
Str += (Op.isDef() ? "<def>" : "<kill>");
}
AP.OutStreamer.AddComment(Str);
@@ -627,21 +640,27 @@ static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
/// of DBG_VALUE, returning true if it was able to do so. A false return
/// means the target will need to handle MI in EmitInstruction.
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
- // This code handles only the 3-operand target-independent form.
- if (MI->getNumOperands() != 3)
+ // This code handles only the 4-operand target-independent form.
+ if (MI->getNumOperands() != 4)
return false;
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "DEBUG_VALUE: ";
- DIVariable V(MI->getOperand(2).getMetadata());
+ DIVariable V = MI->getDebugVariable();
if (V.getContext().isSubprogram()) {
StringRef Name = DISubprogram(V.getContext()).getDisplayName();
if (!Name.empty())
OS << Name << ":";
}
- OS << V.getName() << " <- ";
+ OS << V.getName();
+
+ DIExpression Expr = MI->getDebugExpression();
+ if (Expr.isVariablePiece())
+ OS << " [piece offset=" << Expr.getPieceOffset()
+ << " size=" << Expr.getPieceSize() << "]";
+ OS << " <- ";
// The second operand is only an offset if it's an immediate.
bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
@@ -672,7 +691,8 @@ static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
Reg = MI->getOperand(0).getReg();
} else {
assert(MI->getOperand(0).isFI() && "Unknown operand type");
- const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
+ const TargetFrameLowering *TFI =
+ AP.TM.getSubtargetImpl()->getFrameLowering();
Offset += TFI->getFrameIndexReference(*AP.MF,
MI->getOperand(0).getIndex(), Reg);
Deref = true;
@@ -686,7 +706,7 @@ static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
}
if (Deref)
OS << '[';
- OS << AP.TM.getRegisterInfo()->getName(Reg);
+ OS << AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Reg);
}
if (Deref)
@@ -709,8 +729,7 @@ AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
}
bool AsmPrinter::needsSEHMoves() {
- return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH &&
- MF->getFunction()->needsUnwindTableEntry();
+ return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
}
void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
@@ -722,9 +741,6 @@ void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
if (needsCFIMoves() == CFI_M_None)
return;
- if (MMI->getCompactUnwindEncoding() != 0)
- OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
-
const MachineModuleInfo &MMI = MF->getMMI();
const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
@@ -732,6 +748,16 @@ void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
emitCFIInstruction(CFI);
}
+void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
+ // The operands are the MCSymbol and the frame offset of the allocation.
+ MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
+ int FrameOffset = MI.getOperand(1).getImm();
+
+ // Emit a symbol assignment.
+ OutStreamer.EmitAssignment(FrameAllocSym,
+ MCConstantExpr::Create(FrameOffset, OutContext));
+}
+
/// EmitFunctionBody - This method emits the body and trailer for a
/// function.
void AsmPrinter::EmitFunctionBody() {
@@ -742,12 +768,10 @@ void AsmPrinter::EmitFunctionBody() {
// Print out code for the function.
bool HasAnyRealCode = false;
- const MachineInstr *LastMI = nullptr;
for (auto &MBB : *MF) {
// Print a label for the basic block.
EmitBasicBlockStart(MBB);
for (auto &MI : MBB) {
- LastMI = &MI;
// Print the assembly for the instruction.
if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
@@ -772,6 +796,10 @@ void AsmPrinter::EmitFunctionBody() {
emitCFIInstruction(MI);
break;
+ case TargetOpcode::FRAME_ALLOC:
+ emitFrameAlloc(MI);
+ break;
+
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
@@ -804,26 +832,22 @@ void AsmPrinter::EmitFunctionBody() {
}
}
}
- }
- // If the last instruction was a prolog label, then we have a situation where
- // we emitted a prolog but no function body. This results in the ending prolog
- // label equaling the end of function label and an invalid "row" in the
- // FDE. We need to emit a noop in this situation so that the FDE's rows are
- // valid.
- bool RequiresNoop = LastMI && LastMI->isCFIInstruction();
+ EmitBasicBlockEnd(MBB);
+ }
// If the function is empty and the object file uses .subsections_via_symbols,
// then we need to emit *something* to the function body to prevent the
// labels from collapsing together. Just emit a noop.
- if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
+ if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
MCInst Noop;
- TM.getInstrInfo()->getNoopForMachoTarget(Noop);
- if (Noop.getOpcode()) {
- OutStreamer.AddComment("avoids zero-length function");
+ TM.getSubtargetImpl()->getInstrInfo()->getNoopForMachoTarget(Noop);
+ OutStreamer.AddComment("avoids zero-length function");
+
+ // Targets can opt-out of emitting the noop here by leaving the opcode
+ // unspecified.
+ if (Noop.getOpcode())
OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
- } else // Target not mc-ized yet.
- OutStreamer.EmitRawText(StringRef("\tnop\n"));
}
const Function *F = MF->getFunction();
@@ -869,8 +893,6 @@ void AsmPrinter::EmitFunctionBody() {
OutStreamer.AddBlankLine();
}
-static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP);
-
bool AsmPrinter::doFinalization(Module &M) {
// Emit global variables.
for (const auto &G : M.globals())
@@ -895,17 +917,18 @@ bool AsmPrinter::doFinalization(Module &M) {
unsigned Arch = Triple(getTargetTriple()).getArch();
bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb);
MCInst TrapInst;
- TM.getInstrInfo()->getTrap(TrapInst);
+ TM.getSubtargetImpl()->getInstrInfo()->getTrap(TrapInst);
+ unsigned LogAlignment = llvm::Log2_64(JITI->entryByteAlignment());
+
+ // Emit the right section for these functions.
+ OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
for (const auto &KV : JITI->getTables()) {
uint64_t Count = 0;
for (const auto &FunPair : KV.second) {
// Emit the function labels to make this be a function entry point.
MCSymbol *FunSym =
OutContext.GetOrCreateSymbol(FunPair.second->getName());
- OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global);
- // FIXME: JumpTableInstrInfo should store information about the required
- // alignment of table entries and the size of the padding instruction.
- EmitAlignment(3);
+ EmitAlignment(LogAlignment);
if (IsThumb)
OutStreamer.EmitThumbFunc(FunSym);
if (MAI->hasDotTypeDotSizeDirective())
@@ -920,16 +943,16 @@ bool AsmPrinter::doFinalization(Module &M) {
const MCSymbolRefExpr *TargetSymRef =
MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT,
OutContext);
- TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef);
+ TM.getSubtargetImpl()->getInstrInfo()->getUnconditionalBranch(
+ JumpToFun, TargetSymRef);
OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo());
++Count;
}
// Emit enough padding instructions to fill up to the next power of two.
- // This assumes that the trap instruction takes 8 bytes or fewer.
uint64_t Remaining = NextPowerOf2(Count) - Count;
for (uint64_t C = 0; C < Remaining; ++C) {
- EmitAlignment(3);
+ EmitAlignment(LogAlignment);
OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo());
}
@@ -976,35 +999,49 @@ bool AsmPrinter::doFinalization(Module &M) {
}
}
- if (MAI->hasSetDirective()) {
- OutStreamer.AddBlankLine();
- for (const auto &Alias : M.aliases()) {
- MCSymbol *Name = getSymbol(&Alias);
+ OutStreamer.AddBlankLine();
+ for (const auto &Alias : M.aliases()) {
+ MCSymbol *Name = getSymbol(&Alias);
- if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
- OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
- else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
- OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
- else
- assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
+ if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
+ OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
+ else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
+ OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
+ else
+ assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
- EmitVisibility(Name, Alias.getVisibility());
+ EmitVisibility(Name, Alias.getVisibility());
- // Emit the directives as assignments aka .set:
- OutStreamer.EmitAssignment(Name,
- lowerConstant(Alias.getAliasee(), *this));
- }
+ // Emit the directives as assignments aka .set:
+ OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee()));
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
- MP->finishAssembly(*this);
+ MP->finishAssembly(M, *MI, *this);
// Emit llvm.ident metadata in an '.ident' directive.
EmitModuleIdents(M);
+ // Emit __morestack address if needed for indirect calls.
+ if (MMI->usesMorestackAddr()) {
+ const MCSection *ReadOnlySection =
+ getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(),
+ /*C=*/nullptr);
+ OutStreamer.SwitchSection(ReadOnlySection);
+
+ MCSymbol *AddrSymbol =
+ OutContext.GetOrCreateSymbol(StringRef("__morestack_addr"));
+ OutStreamer.EmitLabel(AddrSymbol);
+
+ const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
+ unsigned PtrSize = DL.getPointerSize(0);
+ OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
+ PtrSize);
+ }
+
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
@@ -1062,7 +1099,8 @@ void AsmPrinter::EmitConstantPool() {
const MachineConstantPoolEntry &CPE = CP[i];
unsigned Align = CPE.getAlignment();
- SectionKind Kind = CPE.getSectionKind(TM.getDataLayout());
+ SectionKind Kind =
+ CPE.getSectionKind(TM.getSubtargetImpl()->getDataLayout());
const Constant *C = nullptr;
if (!CPE.isMachineConstantPoolEntry())
@@ -1115,7 +1153,8 @@ void AsmPrinter::EmitConstantPool() {
OutStreamer.EmitZeros(NewOffset - Offset);
Type *Ty = CPE.getType();
- Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
+ Offset = NewOffset +
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Ty);
OutStreamer.EmitLabel(Sym);
if (CPE.isMachineConstantPoolEntry())
@@ -1130,7 +1169,7 @@ void AsmPrinter::EmitConstantPool() {
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo() {
- const DataLayout *DL = MF->getTarget().getDataLayout();
+ const DataLayout *DL = MF->getSubtarget().getDataLayout();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
if (!MJTI) return;
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
@@ -1161,7 +1200,8 @@ void AsmPrinter::EmitJumpTableInfo() {
JTInDiffSection = true;
}
- EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
+ EmitAlignment(Log2_32(
+ MJTI->getEntryAlignment(*TM.getSubtargetImpl()->getDataLayout())));
// Jump tables in code sections are marked with a data_region directive
// where that's supported.
@@ -1174,17 +1214,17 @@ void AsmPrinter::EmitJumpTableInfo() {
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
- // For the EK_LabelDifference32 entry, if the target supports .set, emit a
- // .set directive for each unique entry. This reduces the number of
- // relocations the assembler will generate for the jump table.
+ // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
+ /// emit a .set directive for each unique entry.
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
- MAI->hasSetDirective()) {
+ MAI->doesSetDirectiveSuppressesReloc()) {
SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
const MachineBasicBlock *MBB = JTBBs[ii];
- if (!EmittedSets.insert(MBB)) continue;
+ if (!EmittedSets.insert(MBB).second)
+ continue;
// .set LJTSet, LBB32-base
const MCExpr *LHS =
@@ -1223,8 +1263,9 @@ void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
case MachineJumpTableInfo::EK_Inline:
llvm_unreachable("Cannot emit EK_Inline jump table entry");
case MachineJumpTableInfo::EK_Custom32:
- Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
- OutContext);
+ Value =
+ TM.getSubtargetImpl()->getTargetLowering()->LowerCustomJumpTableEntry(
+ MJTI, MBB, UID, OutContext);
break;
case MachineJumpTableInfo::EK_BlockAddress:
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
@@ -1250,34 +1291,30 @@ void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
}
case MachineJumpTableInfo::EK_LabelDifference32: {
- // EK_LabelDifference32 - Each entry is the address of the block minus
- // the address of the jump table. This is used for PIC jump tables where
- // gprel32 is not supported. e.g.:
+ // Each entry is the address of the block minus the address of the jump
+ // table. This is used for PIC jump tables where gprel32 is not supported.
+ // e.g.:
// .word LBB123 - LJTI1_2
- // If the .set directive is supported, this is emitted as:
+ // If the .set directive avoids relocations, this is emitted as:
// .set L4_5_set_123, LBB123 - LJTI1_2
// .word L4_5_set_123
-
- // If we have emitted set directives for the jump table entries, print
- // them rather than the entries themselves. If we're emitting PIC, then
- // emit the table entries as differences between two text section labels.
- if (MAI->hasSetDirective()) {
- // If we used .set, reference the .set's symbol.
+ if (MAI->doesSetDirectiveSuppressesReloc()) {
Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
OutContext);
break;
}
- // Otherwise, use the difference as the jump table entry.
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
- const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
- Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
+ const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
+ const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
+ Value = MCBinaryExpr::CreateSub(Value, Base, OutContext);
break;
}
}
assert(Value && "Unknown entry kind!");
- unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
+ unsigned EntrySize =
+ MJTI->getEntrySize(*TM.getSubtargetImpl()->getDataLayout());
OutStreamer.EmitValue(Value, EntrySize);
}
@@ -1387,7 +1424,7 @@ void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
}
// Emit the function pointers in the target-specific order
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
unsigned Align = Log2_32(DL->getPointerPrefAlignment());
std::stable_sort(Structors.begin(), Structors.end(),
[](const Structor &L,
@@ -1450,9 +1487,9 @@ void AsmPrinter::EmitInt32(int Value) const {
OutStreamer.EmitIntValue(Value, 4);
}
-/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
-/// in bytes of the directive is specified by Size and Hi/Lo specify the
-/// labels. This implicitly uses .set if it is available.
+/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
+/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
+/// .set if it avoids relocations.
void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
unsigned Size) const {
// Get the Hi-Lo expression.
@@ -1461,7 +1498,7 @@ void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
MCSymbolRefExpr::Create(Lo, OutContext),
OutContext);
- if (!MAI->hasSetDirective()) {
+ if (!MAI->doesSetDirectiveSuppressesReloc()) {
OutStreamer.EmitValue(Diff, Size);
return;
}
@@ -1472,36 +1509,6 @@ void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
OutStreamer.EmitSymbolValue(SetLabel, Size);
}
-/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
-/// where the size in bytes of the directive is specified by Size and Hi/Lo
-/// specify the labels. This implicitly uses .set if it is available.
-void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
- const MCSymbol *Lo,
- unsigned Size) const {
-
- // Emit Hi+Offset - Lo
- // Get the Hi+Offset expression.
- const MCExpr *Plus =
- MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
- MCConstantExpr::Create(Offset, OutContext),
- OutContext);
-
- // Get the Hi+Offset-Lo expression.
- const MCExpr *Diff =
- MCBinaryExpr::CreateSub(Plus,
- MCSymbolRefExpr::Create(Lo, OutContext),
- OutContext);
-
- if (!MAI->hasSetDirective())
- OutStreamer.EmitValue(Diff, Size);
- else {
- // Otherwise, emit with .set (aka assignment).
- MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
- OutStreamer.EmitAssignment(SetLabel, Diff);
- OutStreamer.EmitSymbolValue(SetLabel, Size);
- }
-}
-
/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
/// where the size in bytes of the directive is specified by Size and Label
/// specifies the label. This implicitly uses .set if it is available.
@@ -1531,24 +1538,27 @@ void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
// if required for correctness.
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
- if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
+ if (GV)
+ NumBits = getGVAlignmentLog2(GV, *TM.getSubtargetImpl()->getDataLayout(),
+ NumBits);
if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
+ assert(NumBits <
+ static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
+ "undefined behavior");
if (getCurrentSection()->getKind().isText())
- OutStreamer.EmitCodeAlignment(1 << NumBits);
+ OutStreamer.EmitCodeAlignment(1u << NumBits);
else
- OutStreamer.EmitValueToAlignment(1 << NumBits);
+ OutStreamer.EmitValueToAlignment(1u << NumBits);
}
//===----------------------------------------------------------------------===//
// Constant emission.
//===----------------------------------------------------------------------===//
-/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
-///
-static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
- MCContext &Ctx = AP.OutContext;
+const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
+ MCContext &Ctx = OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::Create(0, Ctx);
@@ -1557,19 +1567,18 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
- return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
+ return MCSymbolRefExpr::Create(getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
- return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
+ return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (!CE) {
llvm_unreachable("Unknown constant value to lower!");
}
- if (const MCExpr *RelocExpr =
- AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang,
- AP.TM))
+ if (const MCExpr *RelocExpr
+ = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM))
return RelocExpr;
switch (CE->getOpcode()) {
@@ -1577,10 +1586,10 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
- if (Constant *C =
- ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
+ if (Constant *C = ConstantFoldConstantExpression(
+ CE, TM.getSubtargetImpl()->getDataLayout()))
if (C != CE)
- return lowerConstant(C, AP);
+ return lowerConstant(C);
// Otherwise report the problem to the user.
{
@@ -1588,16 +1597,16 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/false,
- !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
+ !MF ? nullptr : MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
- const DataLayout &DL = *AP.TM.getDataLayout();
+ const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
- const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
+ const MCExpr *Base = lowerConstant(CE->getOperand(0));
if (!OffsetAI)
return Base;
@@ -1613,26 +1622,26 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
// is reasonable to treat their delta as a 32-bit value.
// FALL THROUGH.
case Instruction::BitCast:
- return lowerConstant(CE->getOperand(0), AP);
+ return lowerConstant(CE->getOperand(0));
case Instruction::IntToPtr: {
- const DataLayout &DL = *AP.TM.getDataLayout();
+ const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
false/*ZExt*/);
- return lowerConstant(Op, AP);
+ return lowerConstant(Op);
}
case Instruction::PtrToInt: {
- const DataLayout &DL = *AP.TM.getDataLayout();
+ const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
- const MCExpr *OpExpr = lowerConstant(Op, AP);
+ const MCExpr *OpExpr = lowerConstant(Op);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
@@ -1658,8 +1667,8 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
- const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
- const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
+ const MCExpr *LHS = lowerConstant(CE->getOperand(0));
+ const MCExpr *RHS = lowerConstant(CE->getOperand(1));
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
@@ -1699,7 +1708,8 @@ static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64) return -1;
- uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
+ uint64_t Size =
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(V->getType());
uint64_t Value = CI->getZExtValue();
// Make sure the constant is at least 8 bits long and has a power
@@ -1743,7 +1753,9 @@ static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
// See if we can aggregate this into a .fill, if so, emit it as such.
int Value = isRepeatedByteSequence(CDS, AP.TM);
if (Value != -1) {
- uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
+ uint64_t Bytes =
+ AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
+ CDS->getType());
// Don't emit a 1-byte object as a .fill.
if (Bytes > 1)
return AP.OutStreamer.EmitFill(Bytes, Value);
@@ -1793,7 +1805,7 @@ static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
}
}
- const DataLayout &DL = *AP.TM.getDataLayout();
+ const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout();
unsigned Size = DL.getTypeAllocSize(CDS->getType());
unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
CDS->getNumElements();
@@ -1808,7 +1820,9 @@ static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
int Value = isRepeatedByteSequence(CA, AP.TM);
if (Value != -1) {
- uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
+ uint64_t Bytes =
+ AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
+ CA->getType());
AP.OutStreamer.EmitFill(Bytes, Value);
}
else {
@@ -1821,7 +1835,7 @@ static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
emitGlobalConstantImpl(CV->getOperand(i), AP);
- const DataLayout &DL = *AP.TM.getDataLayout();
+ const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout();
unsigned Size = DL.getTypeAllocSize(CV->getType());
unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
CV->getType()->getNumElements();
@@ -1831,7 +1845,7 @@ static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
// Print the fields in successive locations. Pad to align if needed!
- const DataLayout *DL = AP.TM.getDataLayout();
+ const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout();
unsigned Size = DL->getTypeAllocSize(CS->getType());
const StructLayout *Layout = DL->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
@@ -1881,7 +1895,7 @@ static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
// PPC's long double has odd notions of endianness compared to how LLVM
// handles it: p[0] goes first for *big* endian on PPC.
- if (AP.TM.getDataLayout()->isBigEndian() &&
+ if (AP.TM.getSubtargetImpl()->getDataLayout()->isBigEndian() &&
!CFP->getType()->isPPC_FP128Ty()) {
int Chunk = API.getNumWords() - 1;
@@ -1900,13 +1914,13 @@ static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
}
// Emit the tail padding for the long double.
- const DataLayout &DL = *AP.TM.getDataLayout();
+ const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout();
AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
DL.getTypeStoreSize(CFP->getType()));
}
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
- const DataLayout *DL = AP.TM.getDataLayout();
+ const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout();
unsigned BitWidth = CI->getBitWidth();
// Copy the value as we may massage the layout for constants whose bit width
@@ -1952,7 +1966,8 @@ static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
// Emit the extra bits after the 64-bits chunks.
// Emit a directive that fills the expected size.
- uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
+ uint64_t Size = AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
+ CI->getType());
Size -= (BitWidth / 64) * 8;
assert(Size && Size * 8 >= ExtraBitsSize &&
(ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
@@ -1962,7 +1977,7 @@ static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
}
static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
- const DataLayout *DL = AP.TM.getDataLayout();
+ const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout();
uint64_t Size = DL->getTypeAllocSize(CV->getType());
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
return AP.OutStreamer.EmitZeros(Size);
@@ -2022,12 +2037,13 @@ static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
// Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
// thread the streamer with EmitValue.
- AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
+ AP.OutStreamer.EmitValue(AP.lowerConstant(CV), Size);
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
- uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
+ uint64_t Size =
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(CV->getType());
if (Size)
emitGlobalConstantImpl(CV, *this);
else if (MAI->hasSubsectionsViaSymbols()) {
@@ -2056,7 +2072,7 @@ void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
/// temporary label with the specified stem and unique ID.
MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
Name + Twine(ID));
}
@@ -2064,7 +2080,7 @@ MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
/// GetTempSymbol - Return an assembler temporary label with the specified
/// stem.
MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
Name);
}
@@ -2080,7 +2096,7 @@ MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
return OutContext.GetOrCreateSymbol
(Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
+ "_" + Twine(CPID));
@@ -2094,7 +2110,7 @@ MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
/// GetJTSetSymbol - Return the symbol for the specified jump table .set
/// FIXME: privatize to AsmPrinter.
MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
return OutContext.GetOrCreateSymbol
(Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
Twine(UID) + "_set_" + Twine(MBBID));
@@ -2292,6 +2308,11 @@ GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
if (!S.usesMetadata())
return nullptr;
+ assert(!S.useStatepoints() && "statepoints do not currently support custom"
+ " stackmap formats, please see the documentation for a description of"
+ " the default format. If you really need a custom serialized format,"
+ " please file a bug");
+
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
gcp_map_type::iterator GCPI = GCMap.find(&S);
if (GCPI != GCMap.end())
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
index 02cd12b..00681f6 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
@@ -12,9 +12,9 @@
//===----------------------------------------------------------------------===//
#include "ByteStreamer.h"
-#include "llvm/CodeGen/AsmPrinter.h"
-#include "llvm/ADT/SmallBitVector.h"
+#include "DwarfExpression.h"
#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSection.h"
@@ -27,10 +27,30 @@
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
+void DebugLocDwarfExpression::EmitOp(uint8_t Op, const char *Comment) {
+ BS.EmitInt8(
+ Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
+ : dwarf::OperationEncodingString(Op));
+}
+
+void DebugLocDwarfExpression::EmitSigned(int Value) {
+ BS.EmitSLEB128(Value, Twine(Value));
+}
+
+void DebugLocDwarfExpression::EmitUnsigned(unsigned Value) {
+ BS.EmitULEB128(Value, Twine(Value));
+}
+
+bool DebugLocDwarfExpression::isFrameRegister(unsigned MachineReg) {
+ // This information is not available while emitting .debug_loc entries.
+ return false;
+}
+
//===----------------------------------------------------------------------===//
// Dwarf Emission Helper Routines
//===----------------------------------------------------------------------===//
@@ -130,7 +150,7 @@ unsigned AsmPrinter::GetSizeOfEncodedValue(unsigned Encoding) const {
default:
llvm_unreachable("Invalid encoded value.");
case dwarf::DW_EH_PE_absptr:
- return TM.getDataLayout()->getPointerSize();
+ return TM.getSubtargetImpl()->getDataLayout()->getPointerSize();
case dwarf::DW_EH_PE_udata2:
return 2;
case dwarf::DW_EH_PE_udata4:
@@ -186,60 +206,6 @@ void AsmPrinter::EmitSectionOffset(const MCSymbol *Label,
EmitLabelDifference(Label, SectionLabel, 4);
}
-/// Emit a dwarf register operation.
-static void emitDwarfRegOp(ByteStreamer &Streamer, int Reg) {
- assert(Reg >= 0);
- if (Reg < 32) {
- Streamer.EmitInt8(dwarf::DW_OP_reg0 + Reg,
- dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
- } else {
- Streamer.EmitInt8(dwarf::DW_OP_regx, "DW_OP_regx");
- Streamer.EmitULEB128(Reg, Twine(Reg));
- }
-}
-
-/// Emit an (double-)indirect dwarf register operation.
-static void emitDwarfRegOpIndirect(ByteStreamer &Streamer, int Reg, int Offset,
- bool Deref) {
- assert(Reg >= 0);
- if (Reg < 32) {
- Streamer.EmitInt8(dwarf::DW_OP_breg0 + Reg,
- dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
- } else {
- Streamer.EmitInt8(dwarf::DW_OP_bregx, "DW_OP_bregx");
- Streamer.EmitULEB128(Reg, Twine(Reg));
- }
- Streamer.EmitSLEB128(Offset);
- if (Deref)
- Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
-}
-
-/// Emit a dwarf register operation for describing
-/// - a small value occupying only part of a register or
-/// - a small register representing only part of a value.
-static void emitDwarfOpPiece(ByteStreamer &Streamer, unsigned SizeInBits,
- unsigned OffsetInBits) {
- assert(SizeInBits > 0 && "zero-sized piece");
- unsigned SizeOfByte = 8;
- if (OffsetInBits > 0 || SizeInBits % SizeOfByte) {
- Streamer.EmitInt8(dwarf::DW_OP_bit_piece, "DW_OP_bit_piece");
- Streamer.EmitULEB128(SizeInBits, Twine(SizeInBits));
- Streamer.EmitULEB128(OffsetInBits, Twine(OffsetInBits));
- } else {
- Streamer.EmitInt8(dwarf::DW_OP_piece, "DW_OP_piece");
- unsigned ByteSize = SizeInBits / SizeOfByte;
- Streamer.EmitULEB128(ByteSize, Twine(ByteSize));
- }
-}
-
-/// Emit a shift-right dwarf expression.
-static void emitDwarfOpShr(ByteStreamer &Streamer,
- unsigned ShiftBy) {
- Streamer.EmitInt8(dwarf::DW_OP_constu, "DW_OP_constu");
- Streamer.EmitULEB128(ShiftBy);
- Streamer.EmitInt8(dwarf::DW_OP_shr, "DW_OP_shr");
-}
-
// Some targets do not provide a DWARF register number for every
// register. This function attempts to emit a DWARF register by
// emitting a piece of a super-register or by piecing together
@@ -249,112 +215,47 @@ void AsmPrinter::EmitDwarfRegOpPiece(ByteStreamer &Streamer,
unsigned PieceSizeInBits,
unsigned PieceOffsetInBits) const {
assert(MLoc.isReg() && "MLoc must be a register");
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
- int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
-
- // If this is a valid register number, emit it.
- if (Reg >= 0) {
- emitDwarfRegOp(Streamer, Reg);
- emitDwarfOpPiece(Streamer, PieceSizeInBits, PieceOffsetInBits);
- return;
- }
-
- // Walk up the super-register chain until we find a valid number.
- // For example, EAX on x86_64 is a 32-bit piece of RAX with offset 0.
- for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid(); ++SR) {
- Reg = TRI->getDwarfRegNum(*SR, false);
- if (Reg >= 0) {
- unsigned Idx = TRI->getSubRegIndex(*SR, MLoc.getReg());
- unsigned Size = TRI->getSubRegIdxSize(Idx);
- unsigned Offset = TRI->getSubRegIdxOffset(Idx);
- OutStreamer.AddComment("super-register");
- emitDwarfRegOp(Streamer, Reg);
- if (PieceOffsetInBits == Offset) {
- emitDwarfOpPiece(Streamer, Size, Offset);
- } else {
- // If this is part of a variable in a sub-register at a
- // non-zero offset, we need to manually shift the value into
- // place, since the DW_OP_piece describes the part of the
- // variable, not the position of the subregister.
- emitDwarfOpPiece(Streamer, Size, PieceOffsetInBits);
- if (Offset)
- emitDwarfOpShr(Streamer, Offset);
- }
- return;
- }
- }
-
- // Otherwise, attempt to find a covering set of sub-register numbers.
- // For example, Q0 on ARM is a composition of D0+D1.
- //
- // Keep track of the current position so we can emit the more
- // efficient DW_OP_piece.
- unsigned CurPos = PieceOffsetInBits;
- // The size of the register in bits, assuming 8 bits per byte.
- unsigned RegSize = TRI->getMinimalPhysRegClass(MLoc.getReg())->getSize() * 8;
- // Keep track of the bits in the register we already emitted, so we
- // can avoid emitting redundant aliasing subregs.
- SmallBitVector Coverage(RegSize, false);
- for (MCSubRegIterator SR(MLoc.getReg(), TRI); SR.isValid(); ++SR) {
- unsigned Idx = TRI->getSubRegIndex(MLoc.getReg(), *SR);
- unsigned Size = TRI->getSubRegIdxSize(Idx);
- unsigned Offset = TRI->getSubRegIdxOffset(Idx);
- Reg = TRI->getDwarfRegNum(*SR, false);
-
- // Intersection between the bits we already emitted and the bits
- // covered by this subregister.
- SmallBitVector Intersection(RegSize, false);
- Intersection.set(Offset, Offset + Size);
- Intersection ^= Coverage;
-
- // If this sub-register has a DWARF number and we haven't covered
- // its range, emit a DWARF piece for it.
- if (Reg >= 0 && Intersection.any()) {
- OutStreamer.AddComment("sub-register");
- emitDwarfRegOp(Streamer, Reg);
- emitDwarfOpPiece(Streamer, Size, Offset == CurPos ? 0 : Offset);
- CurPos = Offset + Size;
-
- // Mark it as emitted.
- Coverage.set(Offset, Offset + Size);
- }
- }
+ DebugLocDwarfExpression Expr(*this, Streamer);
+ Expr.AddMachineRegPiece(MLoc.getReg(), PieceSizeInBits, PieceOffsetInBits);
+}
- if (CurPos == PieceOffsetInBits) {
- // FIXME: We have no reasonable way of handling errors in here.
- Streamer.EmitInt8(dwarf::DW_OP_nop,
- "nop (could not find a dwarf register number)");
- }
+void AsmPrinter::EmitDwarfOpPiece(ByteStreamer &Streamer,
+ unsigned PieceSizeInBits,
+ unsigned PieceOffsetInBits) const {
+ DebugLocDwarfExpression Expr(*this, Streamer);
+ Expr.AddOpPiece(PieceSizeInBits, PieceOffsetInBits);
}
/// EmitDwarfRegOp - Emit dwarf register operation.
void AsmPrinter::EmitDwarfRegOp(ByteStreamer &Streamer,
const MachineLocation &MLoc,
bool Indirect) const {
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ DebugLocDwarfExpression Expr(*this, Streamer);
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
if (Reg < 0) {
// We assume that pointers are always in an addressable register.
- if (Indirect || MLoc.isIndirect()) {
+ if (Indirect || MLoc.isIndirect())
// FIXME: We have no reasonable way of handling errors in here. The
// caller might be in the middle of a dwarf expression. We should
// probably assert that Reg >= 0 once debug info generation is more
// mature.
- Streamer.EmitInt8(dwarf::DW_OP_nop,
- "nop (invalid dwarf register number for indirect loc)");
- return;
- }
+ return Expr.EmitOp(dwarf::DW_OP_nop,
+ "nop (could not find a dwarf register number)");
// Attempt to find a valid super- or sub-register.
- return EmitDwarfRegOpPiece(Streamer, MLoc);
+ if (!Expr.AddMachineRegPiece(MLoc.getReg()))
+ Expr.EmitOp(dwarf::DW_OP_nop,
+ "nop (could not find a dwarf register number)");
+ return;
}
if (MLoc.isIndirect())
- emitDwarfRegOpIndirect(Streamer, Reg, MLoc.getOffset(), Indirect);
+ Expr.AddRegIndirect(Reg, MLoc.getOffset(), Indirect);
else if (Indirect)
- emitDwarfRegOpIndirect(Streamer, Reg, 0, false);
+ Expr.AddRegIndirect(Reg, 0, false);
else
- emitDwarfRegOp(Streamer, Reg);
+ Expr.AddReg(Reg);
}
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterHandler.h b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterHandler.h
index 2825367..31867dd 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterHandler.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterHandler.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_ASMPRINTERHANDLER_H__
-#define CODEGEN_ASMPRINTER_ASMPRINTERHANDLER_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_ASMPRINTERHANDLER_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_ASMPRINTERHANDLER_H
#include "llvm/Support/DataTypes.h"
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
index 46ee0c8..f6ce4a0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
@@ -33,6 +33,7 @@
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -63,7 +64,7 @@ static void srcMgrDiagHandler(const SMDiagnostic &Diag, void *diagInfo) {
if (LocInfo->getNumOperands() != 0)
if (const ConstantInt *CI =
- dyn_cast<ConstantInt>(LocInfo->getOperand(ErrorLine)))
+ mdconst::dyn_extract<ConstantInt>(LocInfo->getOperand(ErrorLine)))
LocCookie = CI->getZExtValue();
}
@@ -89,6 +90,7 @@ void AsmPrinter::EmitInlineAsm(StringRef Str, const MDNode *LocMDNode,
assert(MCAI && "No MCAsmInfo");
if (!MCAI->useIntegratedAssembler() &&
!OutStreamer.isIntegratedAssemblerRequired()) {
+ emitInlineAsmStart(TM.getSubtarget<MCSubtargetInfo>());
OutStreamer.EmitRawText(Str);
emitInlineAsmEnd(TM.getSubtarget<MCSubtargetInfo>(), nullptr);
return;
@@ -110,14 +112,14 @@ void AsmPrinter::EmitInlineAsm(StringRef Str, const MDNode *LocMDNode,
HasDiagHandler = true;
}
- MemoryBuffer *Buffer;
+ std::unique_ptr<MemoryBuffer> Buffer;
if (isNullTerminated)
Buffer = MemoryBuffer::getMemBuffer(Str, "<inline asm>");
else
Buffer = MemoryBuffer::getMemBufferCopy(Str, "<inline asm>");
// Tell SrcMgr about this buffer, it takes ownership of the buffer.
- SrcMgr.AddNewSourceBuffer(Buffer, SMLoc());
+ SrcMgr.AddNewSourceBuffer(std::move(Buffer), SMLoc());
std::unique_ptr<MCAsmParser> Parser(
createMCAsmParser(SrcMgr, OutContext, OutStreamer, *MAI));
@@ -146,7 +148,12 @@ void AsmPrinter::EmitInlineAsm(StringRef Str, const MDNode *LocMDNode,
" we don't have an asm parser for this target\n");
Parser->setAssemblerDialect(Dialect);
Parser->setTargetParser(*TAP.get());
+ if (MF) {
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ TAP->SetFrameRegister(TRI->getFrameRegister(*MF));
+ }
+ emitInlineAsmStart(STIOrig);
// Don't implicitly switch to the text section before the asm.
int Res = Parser->Run(/*NoInitialTextSection*/ true,
/*NoFinalize*/ true);
@@ -462,7 +469,8 @@ void AsmPrinter::EmitInlineAsm(const MachineInstr *MI) const {
if (MI->getOperand(i-1).isMetadata() &&
(LocMD = MI->getOperand(i-1).getMetadata()) &&
LocMD->getNumOperands() != 0) {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
+ if (const ConstantInt *CI =
+ mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
LocCookie = CI->getZExtValue();
break;
}
@@ -500,7 +508,7 @@ void AsmPrinter::EmitInlineAsm(const MachineInstr *MI) const {
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, raw_ostream &OS,
const char *Code) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
if (!strcmp(Code, "private")) {
OS << DL->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
@@ -561,5 +569,7 @@ bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
return true;
}
+void AsmPrinter::emitInlineAsmStart(const MCSubtargetInfo &StartInfo) const {}
+
void AsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
const MCSubtargetInfo *EndInfo) const {}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/ByteStreamer.h b/contrib/llvm/lib/CodeGen/AsmPrinter/ByteStreamer.h
index 6c01d65..42be114 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/ByteStreamer.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/ByteStreamer.h
@@ -12,13 +12,13 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_BYTESTREAMER_H
-#define LLVM_CODEGEN_BYTESTREAMER_H
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_BYTESTREAMER_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_BYTESTREAMER_H
+#include "DIEHash.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/MC/MCStreamer.h"
-#include "DIEHash.h"
namespace llvm {
class ByteStreamer {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp
index c3dcd9c..64ba56b 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp
@@ -11,13 +11,15 @@
//
//===----------------------------------------------------------------------===//
-#include "DIE.h"
+#include "llvm/CodeGen/DIE.h"
+#include "DwarfCompileUnit.h"
#include "DwarfDebug.h"
#include "DwarfUnit.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
@@ -370,6 +372,29 @@ void DIEString::print(raw_ostream &O) const {
// DIEEntry Implementation
//===----------------------------------------------------------------------===//
+/// Emit something like ".long Hi+Offset-Lo" where the size in bytes of the
+/// directive is specified by Size and Hi/Lo specify the labels.
+static void emitLabelOffsetDifference(MCStreamer &Streamer, const MCSymbol *Hi,
+ uint64_t Offset, const MCSymbol *Lo,
+ unsigned Size) {
+ MCContext &Context = Streamer.getContext();
+
+ // Emit Hi+Offset - Lo
+ // Get the Hi+Offset expression.
+ const MCExpr *Plus =
+ MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, Context),
+ MCConstantExpr::Create(Offset, Context), Context);
+
+ // Get the Hi+Offset-Lo expression.
+ const MCExpr *Diff = MCBinaryExpr::CreateSub(
+ Plus, MCSymbolRefExpr::Create(Lo, Context), Context);
+
+ // Otherwise, emit with .set (aka assignment).
+ MCSymbol *SetLabel = Context.CreateTempSymbol();
+ Streamer.EmitAssignment(SetLabel, Diff);
+ Streamer.EmitSymbolValue(SetLabel, Size);
+}
+
/// EmitValue - Emit debug information entry offset.
///
void DIEEntry::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
@@ -388,9 +413,9 @@ void DIEEntry::EmitValue(AsmPrinter *AP, dwarf::Form Form) const {
AP->EmitLabelPlusOffset(CU->getSectionSym(), Addr,
DIEEntry::getRefAddrSize(AP));
else
- AP->EmitLabelOffsetDifference(CU->getSectionSym(), Addr,
- CU->getSectionSym(),
- DIEEntry::getRefAddrSize(AP));
+ emitLabelOffsetDifference(AP->OutStreamer, CU->getSectionSym(), Addr,
+ CU->getSectionSym(),
+ DIEEntry::getRefAddrSize(AP));
} else
AP->EmitInt32(Entry.getOffset());
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.h
deleted file mode 100644
index ef05f17..0000000
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.h
+++ /dev/null
@@ -1,587 +0,0 @@
-//===--- lib/CodeGen/DIE.h - DWARF Info Entries -----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Data structures for DWARF info entries.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef CODEGEN_ASMPRINTER_DIE_H__
-#define CODEGEN_ASMPRINTER_DIE_H__
-
-#include "llvm/ADT/FoldingSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/Dwarf.h"
-#include <vector>
-
-namespace llvm {
-class AsmPrinter;
-class MCExpr;
-class MCSymbol;
-class raw_ostream;
-class DwarfTypeUnit;
-
-//===--------------------------------------------------------------------===//
-/// DIEAbbrevData - Dwarf abbreviation data, describes one attribute of a
-/// Dwarf abbreviation.
-class DIEAbbrevData {
- /// Attribute - Dwarf attribute code.
- ///
- dwarf::Attribute Attribute;
-
- /// Form - Dwarf form code.
- ///
- dwarf::Form Form;
-
-public:
- DIEAbbrevData(dwarf::Attribute A, dwarf::Form F) : Attribute(A), Form(F) {}
-
- // Accessors.
- dwarf::Attribute getAttribute() const { return Attribute; }
- dwarf::Form getForm() const { return Form; }
-
- /// Profile - Used to gather unique data for the abbreviation folding set.
- ///
- void Profile(FoldingSetNodeID &ID) const;
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEAbbrev - Dwarf abbreviation, describes the organization of a debug
-/// information object.
-class DIEAbbrev : public FoldingSetNode {
- /// Unique number for node.
- ///
- unsigned Number;
-
- /// Tag - Dwarf tag code.
- ///
- dwarf::Tag Tag;
-
- /// Children - Whether or not this node has children.
- ///
- // This cheats a bit in all of the uses since the values in the standard
- // are 0 and 1 for no children and children respectively.
- bool Children;
-
- /// Data - Raw data bytes for abbreviation.
- ///
- SmallVector<DIEAbbrevData, 12> Data;
-
-public:
- DIEAbbrev(dwarf::Tag T, bool C) : Tag(T), Children(C), Data() {}
-
- // Accessors.
- dwarf::Tag getTag() const { return Tag; }
- unsigned getNumber() const { return Number; }
- bool hasChildren() const { return Children; }
- const SmallVectorImpl<DIEAbbrevData> &getData() const { return Data; }
- void setChildrenFlag(bool hasChild) { Children = hasChild; }
- void setNumber(unsigned N) { Number = N; }
-
- /// AddAttribute - Adds another set of attribute information to the
- /// abbreviation.
- void AddAttribute(dwarf::Attribute Attribute, dwarf::Form Form) {
- Data.push_back(DIEAbbrevData(Attribute, Form));
- }
-
- /// Profile - Used to gather unique data for the abbreviation folding set.
- ///
- void Profile(FoldingSetNodeID &ID) const;
-
- /// Emit - Print the abbreviation using the specified asm printer.
- ///
- void Emit(AsmPrinter *AP) const;
-
-#ifndef NDEBUG
- void print(raw_ostream &O);
- void dump();
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIE - A structured debug information entry. Has an abbreviation which
-/// describes its organization.
-class DIEValue;
-
-class DIE {
-protected:
- /// Offset - Offset in debug info section.
- ///
- unsigned Offset;
-
- /// Size - Size of instance + children.
- ///
- unsigned Size;
-
- /// Abbrev - Buffer for constructing abbreviation.
- ///
- DIEAbbrev Abbrev;
-
- /// Children DIEs.
- ///
- // This can't be a vector<DIE> because pointer validity is requirent for the
- // Parent pointer and DIEEntry.
- // It can't be a list<DIE> because some clients need pointer validity before
- // the object has been added to any child list
- // (eg: DwarfUnit::constructVariableDIE). These aren't insurmountable, but may
- // be more convoluted than beneficial.
- std::vector<std::unique_ptr<DIE>> Children;
-
- DIE *Parent;
-
- /// Attribute values.
- ///
- SmallVector<DIEValue *, 12> Values;
-
-protected:
- DIE()
- : Offset(0), Size(0), Abbrev((dwarf::Tag)0, dwarf::DW_CHILDREN_no),
- Parent(nullptr) {}
-
-public:
- explicit DIE(dwarf::Tag Tag)
- : Offset(0), Size(0), Abbrev((dwarf::Tag)Tag, dwarf::DW_CHILDREN_no),
- Parent(nullptr) {}
-
- // Accessors.
- DIEAbbrev &getAbbrev() { return Abbrev; }
- const DIEAbbrev &getAbbrev() const { return Abbrev; }
- unsigned getAbbrevNumber() const { return Abbrev.getNumber(); }
- dwarf::Tag getTag() const { return Abbrev.getTag(); }
- unsigned getOffset() const { return Offset; }
- unsigned getSize() const { return Size; }
- const std::vector<std::unique_ptr<DIE>> &getChildren() const {
- return Children;
- }
- const SmallVectorImpl<DIEValue *> &getValues() const { return Values; }
- DIE *getParent() const { return Parent; }
- /// Climb up the parent chain to get the compile or type unit DIE this DIE
- /// belongs to.
- const DIE *getUnit() const;
- /// Similar to getUnit, returns null when DIE is not added to an
- /// owner yet.
- const DIE *getUnitOrNull() const;
- void setOffset(unsigned O) { Offset = O; }
- void setSize(unsigned S) { Size = S; }
-
- /// addValue - Add a value and attributes to a DIE.
- ///
- void addValue(dwarf::Attribute Attribute, dwarf::Form Form, DIEValue *Value) {
- Abbrev.AddAttribute(Attribute, Form);
- Values.push_back(Value);
- }
-
- /// addChild - Add a child to the DIE.
- ///
- void addChild(std::unique_ptr<DIE> Child) {
- assert(!Child->getParent());
- Abbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
- Child->Parent = this;
- Children.push_back(std::move(Child));
- }
-
- /// findAttribute - Find a value in the DIE with the attribute given,
- /// returns NULL if no such attribute exists.
- DIEValue *findAttribute(dwarf::Attribute Attribute) const;
-
-#ifndef NDEBUG
- void print(raw_ostream &O, unsigned IndentCount = 0) const;
- void dump();
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEValue - A debug information entry value. Some of these roughly correlate
-/// to DWARF attribute classes.
-///
-class DIEValue {
- virtual void anchor();
-
-public:
- enum Type {
- isInteger,
- isString,
- isExpr,
- isLabel,
- isDelta,
- isEntry,
- isTypeSignature,
- isBlock,
- isLoc,
- isLocList,
- };
-
-protected:
- /// Ty - Type of data stored in the value.
- ///
- Type Ty;
-
- explicit DIEValue(Type T) : Ty(T) {}
- virtual ~DIEValue() {}
-
-public:
- // Accessors
- Type getType() const { return Ty; }
-
- /// EmitValue - Emit value via the Dwarf writer.
- ///
- virtual void EmitValue(AsmPrinter *AP, dwarf::Form Form) const = 0;
-
- /// SizeOf - Return the size of a value in bytes.
- ///
- virtual unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const = 0;
-
-#ifndef NDEBUG
- virtual void print(raw_ostream &O) const = 0;
- void dump() const;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEInteger - An integer value DIE.
-///
-class DIEInteger : public DIEValue {
- uint64_t Integer;
-
-public:
- explicit DIEInteger(uint64_t I) : DIEValue(isInteger), Integer(I) {}
-
- /// BestForm - Choose the best form for integer.
- ///
- static dwarf::Form BestForm(bool IsSigned, uint64_t Int) {
- if (IsSigned) {
- const int64_t SignedInt = Int;
- if ((char)Int == SignedInt)
- return dwarf::DW_FORM_data1;
- if ((short)Int == SignedInt)
- return dwarf::DW_FORM_data2;
- if ((int)Int == SignedInt)
- return dwarf::DW_FORM_data4;
- } else {
- if ((unsigned char)Int == Int)
- return dwarf::DW_FORM_data1;
- if ((unsigned short)Int == Int)
- return dwarf::DW_FORM_data2;
- if ((unsigned int)Int == Int)
- return dwarf::DW_FORM_data4;
- }
- return dwarf::DW_FORM_data8;
- }
-
- /// EmitValue - Emit integer of appropriate size.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- uint64_t getValue() const { return Integer; }
-
- /// SizeOf - Determine size of integer value in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *I) { return I->getType() == isInteger; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEExpr - An expression DIE.
-//
-class DIEExpr : public DIEValue {
- const MCExpr *Expr;
-
-public:
- explicit DIEExpr(const MCExpr *E) : DIEValue(isExpr), Expr(E) {}
-
- /// EmitValue - Emit expression value.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// getValue - Get MCExpr.
- ///
- const MCExpr *getValue() const { return Expr; }
-
- /// SizeOf - Determine size of expression value in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *E) { return E->getType() == isExpr; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIELabel - A label DIE.
-//
-class DIELabel : public DIEValue {
- const MCSymbol *Label;
-
-public:
- explicit DIELabel(const MCSymbol *L) : DIEValue(isLabel), Label(L) {}
-
- /// EmitValue - Emit label value.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// getValue - Get MCSymbol.
- ///
- const MCSymbol *getValue() const { return Label; }
-
- /// SizeOf - Determine size of label value in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *L) { return L->getType() == isLabel; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEDelta - A simple label difference DIE.
-///
-class DIEDelta : public DIEValue {
- const MCSymbol *LabelHi;
- const MCSymbol *LabelLo;
-
-public:
- DIEDelta(const MCSymbol *Hi, const MCSymbol *Lo)
- : DIEValue(isDelta), LabelHi(Hi), LabelLo(Lo) {}
-
- /// EmitValue - Emit delta value.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// SizeOf - Determine size of delta value in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *D) { return D->getType() == isDelta; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEString - A container for string values.
-///
-class DIEString : public DIEValue {
- const DIEValue *Access;
- const StringRef Str;
-
-public:
- DIEString(const DIEValue *Acc, const StringRef S)
- : DIEValue(isString), Access(Acc), Str(S) {}
-
- /// getString - Grab the string out of the object.
- StringRef getString() const { return Str; }
-
- /// EmitValue - Emit delta value.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// SizeOf - Determine size of delta value in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *D) { return D->getType() == isString; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEEntry - A pointer to another debug information entry. An instance of
-/// this class can also be used as a proxy for a debug information entry not
-/// yet defined (ie. types.)
-class DIEEntry : public DIEValue {
- DIE &Entry;
-
-public:
- explicit DIEEntry(DIE &E) : DIEValue(isEntry), Entry(E) {
- }
-
- DIE &getEntry() const { return Entry; }
-
- /// EmitValue - Emit debug information entry offset.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// SizeOf - Determine size of debug information entry in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override {
- return Form == dwarf::DW_FORM_ref_addr ? getRefAddrSize(AP)
- : sizeof(int32_t);
- }
-
- /// Returns size of a ref_addr entry.
- static unsigned getRefAddrSize(AsmPrinter *AP);
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *E) { return E->getType() == isEntry; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// \brief A signature reference to a type unit.
-class DIETypeSignature : public DIEValue {
- const DwarfTypeUnit &Unit;
-
-public:
- explicit DIETypeSignature(const DwarfTypeUnit &Unit)
- : DIEValue(isTypeSignature), Unit(Unit) {}
-
- /// \brief Emit type unit signature.
- void EmitValue(AsmPrinter *Asm, dwarf::Form Form) const override;
-
- /// Returns size of a ref_sig8 entry.
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override {
- assert(Form == dwarf::DW_FORM_ref_sig8);
- return 8;
- }
-
- // \brief Implement isa/cast/dyncast.
- static bool classof(const DIEValue *E) {
- return E->getType() == isTypeSignature;
- }
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
- void dump() const;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIELoc - Represents an expression location.
-//
-class DIELoc : public DIEValue, public DIE {
- mutable unsigned Size; // Size in bytes excluding size header.
-public:
- DIELoc() : DIEValue(isLoc), Size(0) {}
-
- /// ComputeSize - Calculate the size of the location expression.
- ///
- unsigned ComputeSize(AsmPrinter *AP) const;
-
- /// BestForm - Choose the best form for data.
- ///
- dwarf::Form BestForm(unsigned DwarfVersion) const {
- if (DwarfVersion > 3)
- return dwarf::DW_FORM_exprloc;
- // Pre-DWARF4 location expressions were blocks and not exprloc.
- if ((unsigned char)Size == Size)
- return dwarf::DW_FORM_block1;
- if ((unsigned short)Size == Size)
- return dwarf::DW_FORM_block2;
- if ((unsigned int)Size == Size)
- return dwarf::DW_FORM_block4;
- return dwarf::DW_FORM_block;
- }
-
- /// EmitValue - Emit location data.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// SizeOf - Determine size of location data in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *E) { return E->getType() == isLoc; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIEBlock - Represents a block of values.
-//
-class DIEBlock : public DIEValue, public DIE {
- mutable unsigned Size; // Size in bytes excluding size header.
-public:
- DIEBlock() : DIEValue(isBlock), Size(0) {}
-
- /// ComputeSize - Calculate the size of the location expression.
- ///
- unsigned ComputeSize(AsmPrinter *AP) const;
-
- /// BestForm - Choose the best form for data.
- ///
- dwarf::Form BestForm() const {
- if ((unsigned char)Size == Size)
- return dwarf::DW_FORM_block1;
- if ((unsigned short)Size == Size)
- return dwarf::DW_FORM_block2;
- if ((unsigned int)Size == Size)
- return dwarf::DW_FORM_block4;
- return dwarf::DW_FORM_block;
- }
-
- /// EmitValue - Emit location data.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// SizeOf - Determine size of location data in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *E) { return E->getType() == isBlock; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-//===--------------------------------------------------------------------===//
-/// DIELocList - Represents a pointer to a location list in the debug_loc
-/// section.
-//
-class DIELocList : public DIEValue {
- // Index into the .debug_loc vector.
- size_t Index;
-
-public:
- DIELocList(size_t I) : DIEValue(isLocList), Index(I) {}
-
- /// getValue - Grab the current index out.
- size_t getValue() const { return Index; }
-
- /// EmitValue - Emit location data.
- ///
- void EmitValue(AsmPrinter *AP, dwarf::Form Form) const override;
-
- /// SizeOf - Determine size of location data in bytes.
- ///
- unsigned SizeOf(AsmPrinter *AP, dwarf::Form Form) const override;
-
- // Implement isa/cast/dyncast.
- static bool classof(const DIEValue *E) { return E->getType() == isLocList; }
-
-#ifndef NDEBUG
- void print(raw_ostream &O) const override;
-#endif
-};
-
-} // end llvm namespace
-
-#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
index c2fad59..1e2ba2c 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
@@ -13,11 +13,11 @@
#include "ByteStreamer.h"
#include "DIEHash.h"
-#include "DIE.h"
#include "DwarfDebug.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Endian.h"
@@ -261,7 +261,7 @@ void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
return;
}
- // otherwise, b) use the letter 'T' as a the marker, ...
+ // otherwise, b) use the letter 'T' as the marker, ...
addULEB128('T');
addULEB128(Attribute);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.h
index 175d660..ac014b7 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.h
@@ -11,11 +11,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DIEHASH_H__
-#define CODEGEN_ASMPRINTER_DIEHASH_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DIEHASH_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DIEHASH_H
-#include "DIE.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/Support/MD5.h"
namespace llvm {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
index a66d08e..0c2a5e5 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
@@ -8,25 +8,25 @@
//===----------------------------------------------------------------------===//
#include "DbgValueHistoryCalculator.h"
+#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/IR/DebugInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
#include <map>
-#include <set>
+using namespace llvm;
#define DEBUG_TYPE "dwarfdebug"
-namespace llvm {
-
// \brief If @MI is a DBG_VALUE with debug value described by a
// defined register, returns the number of this register.
// In the other case, returns 0.
static unsigned isDescribedByReg(const MachineInstr &MI) {
assert(MI.isDebugValue());
- assert(MI.getNumOperands() == 3);
+ assert(MI.getNumOperands() == 4);
// If location of variable is described using a register (directly or
// indirecltly), this register is always a first operand.
return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
@@ -36,7 +36,7 @@ void DbgValueHistoryMap::startInstrRange(const MDNode *Var,
const MachineInstr &MI) {
// Instruction range should start with a DBG_VALUE instruction for the
// variable.
- assert(MI.isDebugValue() && MI.getDebugVariable() == Var);
+ assert(MI.isDebugValue() && "not a DBG_VALUE");
auto &Ranges = VarInstrRanges[Var];
if (!Ranges.empty() && Ranges.back().second == nullptr &&
Ranges.back().first->isIdenticalTo(&MI)) {
@@ -96,6 +96,19 @@ static void addRegDescribedVar(RegDescribedVarsMap &RegVars,
VarSet.push_back(Var);
}
+// \brief Terminate the location range for variables described by register at
+// @I by inserting @ClobberingInstr to their history.
+static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
+ RegDescribedVarsMap::iterator I,
+ DbgValueHistoryMap &HistMap,
+ const MachineInstr &ClobberingInstr) {
+ // Iterate over all variables described by this register and add this
+ // instruction to their history, clobbering it.
+ for (const auto &Var : I->second)
+ HistMap.endInstrRange(Var, ClobberingInstr);
+ RegVars.erase(I);
+}
+
// \brief Terminate the location range for variables described by register
// @RegNo by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
@@ -104,22 +117,26 @@ static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
const auto &I = RegVars.find(RegNo);
if (I == RegVars.end())
return;
- // Iterate over all variables described by this register and add this
- // instruction to their history, clobbering it.
- for (const auto &Var : I->second)
- HistMap.endInstrRange(Var, ClobberingInstr);
- RegVars.erase(I);
+ clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr);
}
-// \brief Collect all registers clobbered by @MI and insert them to @Regs.
-static void collectClobberedRegisters(const MachineInstr &MI,
+// \brief Collect all registers clobbered by @MI and apply the functor
+// @Func to their RegNo.
+// @Func should be a functor with a void(unsigned) signature. We're
+// not using std::function here for performance reasons. It has a
+// small but measurable impact. By using a functor instead of a
+// std::set& here, we can avoid the overhead of constructing
+// temporaries in calculateDbgValueHistory, which has a significant
+// performance impact.
+template<typename Callable>
+static void applyToClobberedRegisters(const MachineInstr &MI,
const TargetRegisterInfo *TRI,
- std::set<unsigned> &Regs) {
+ Callable Func) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef() || !MO.getReg())
continue;
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
- Regs.insert(*AI);
+ Func(*AI);
}
}
@@ -133,11 +150,12 @@ static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
// as the return instruction.
DebugLoc LastLoc = LastMI->getDebugLoc();
auto Res = LastMI;
- for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)); I != MBB.rend();
- ++I) {
+ for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)),
+ E = MBB.rend();
+ I != E; ++I) {
if (I->getDebugLoc() != LastLoc)
return Res;
- Res = std::prev(I.base());
+ Res = &*I;
}
// If all instructions have the same debug location, assume whole MBB is
// an epilogue.
@@ -145,25 +163,26 @@ static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
}
// \brief Collect registers that are modified in the function body (their
-// contents is changed only in the prologue and epilogue).
+// contents is changed outside of the prologue and epilogue).
static void collectChangingRegs(const MachineFunction *MF,
const TargetRegisterInfo *TRI,
- std::set<unsigned> &Regs) {
+ BitVector &Regs) {
for (const auto &MBB : *MF) {
auto FirstEpilogueInst = getFirstEpilogueInst(MBB);
- bool IsInEpilogue = false;
+
for (const auto &MI : MBB) {
- IsInEpilogue |= &MI == FirstEpilogueInst;
- if (!MI.getFlag(MachineInstr::FrameSetup) && !IsInEpilogue)
- collectClobberedRegisters(MI, TRI, Regs);
+ if (&MI == FirstEpilogueInst)
+ break;
+ if (!MI.getFlag(MachineInstr::FrameSetup))
+ applyToClobberedRegisters(MI, TRI, [&](unsigned r) { Regs.set(r); });
}
}
}
-void calculateDbgValueHistory(const MachineFunction *MF,
- const TargetRegisterInfo *TRI,
- DbgValueHistoryMap &Result) {
- std::set<unsigned> ChangingRegs;
+void llvm::calculateDbgValueHistory(const MachineFunction *MF,
+ const TargetRegisterInfo *TRI,
+ DbgValueHistoryMap &Result) {
+ BitVector ChangingRegs(TRI->getNumRegs());
collectChangingRegs(MF, TRI, ChangingRegs);
RegDescribedVarsMap RegVars;
@@ -172,17 +191,18 @@ void calculateDbgValueHistory(const MachineFunction *MF,
if (!MI.isDebugValue()) {
// Not a DBG_VALUE instruction. It may clobber registers which describe
// some variables.
- std::set<unsigned> MIClobberedRegs;
- collectClobberedRegisters(MI, TRI, MIClobberedRegs);
- for (unsigned RegNo : MIClobberedRegs) {
- if (ChangingRegs.count(RegNo))
+ applyToClobberedRegisters(MI, TRI, [&](unsigned RegNo) {
+ if (ChangingRegs.test(RegNo))
clobberRegisterUses(RegVars, RegNo, Result, MI);
- }
+ });
continue;
}
assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
- const MDNode *Var = MI.getDebugVariable();
+ // Use the base variable (without any DW_OP_piece expressions)
+ // as index into History. The full variables including the
+ // piece expressions are attached to the MI.
+ DIVariable Var = MI.getDebugVariable();
if (unsigned PrevReg = Result.getRegisterForVar(Var))
dropRegDescribedVar(RegVars, PrevReg, Var);
@@ -196,11 +216,12 @@ void calculateDbgValueHistory(const MachineFunction *MF,
// Make sure locations for register-described variables are valid only
// until the end of the basic block (unless it's the last basic block, in
// which case let their liveness run off to the end of the function).
- if (!MBB.empty() && &MBB != &MF->back()) {
- for (unsigned RegNo : ChangingRegs)
- clobberRegisterUses(RegVars, RegNo, Result, MBB.back());
+ if (!MBB.empty() && &MBB != &MF->back()) {
+ for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
+ auto CurElem = I++; // CurElem can be erased below.
+ if (ChangingRegs.test(CurElem->first))
+ clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
+ }
}
}
}
-
-}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.h
index b9177f0..4b62007 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DBGVALUEHISTORYCALCULATOR_H_
-#define CODEGEN_ASMPRINTER_DBGVALUEHISTORYCALCULATOR_H_
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DBGVALUEHISTORYCALCULATOR_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DBGVALUEHISTORYCALCULATOR_H
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
@@ -28,9 +28,11 @@ class DbgValueHistoryMap {
// range. If end is not specified, location is valid until the start
// instruction of the next instruction range, or until the end of the
// function.
+public:
typedef std::pair<const MachineInstr *, const MachineInstr *> InstrRange;
typedef SmallVector<InstrRange, 4> InstrRanges;
typedef MapVector<const MDNode *, InstrRanges> InstrRangesMap;
+private:
InstrRangesMap VarInstrRanges;
public:
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h
index 3beb799..b4fcada 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h
@@ -7,14 +7,14 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DEBUGLOCENTRY_H__
-#define CODEGEN_ASMPRINTER_DEBUGLOCENTRY_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DEBUGLOCENTRY_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DEBUGLOCENTRY_H
#include "llvm/IR/Constants.h"
-#include "llvm/MC/MachineLocation.h"
+#include "llvm/IR/DebugInfo.h"
#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MachineLocation.h"
namespace llvm {
-class DwarfCompileUnit;
class MDNode;
/// \brief This struct describes location entries emitted in the .debug_loc
/// section.
@@ -26,25 +26,30 @@ class DebugLocEntry {
public:
/// A single location or constant.
struct Value {
- Value(const MDNode *Var, int64_t i)
- : Variable(Var), EntryKind(E_Integer) {
+ Value(const MDNode *Var, const MDNode *Expr, int64_t i)
+ : Variable(Var), Expression(Expr), EntryKind(E_Integer) {
Constant.Int = i;
}
- Value(const MDNode *Var, const ConstantFP *CFP)
- : Variable(Var), EntryKind(E_ConstantFP) {
+ Value(const MDNode *Var, const MDNode *Expr, const ConstantFP *CFP)
+ : Variable(Var), Expression(Expr), EntryKind(E_ConstantFP) {
Constant.CFP = CFP;
}
- Value(const MDNode *Var, const ConstantInt *CIP)
- : Variable(Var), EntryKind(E_ConstantInt) {
+ Value(const MDNode *Var, const MDNode *Expr, const ConstantInt *CIP)
+ : Variable(Var), Expression(Expr), EntryKind(E_ConstantInt) {
Constant.CIP = CIP;
}
- Value(const MDNode *Var, MachineLocation Loc)
- : Variable(Var), EntryKind(E_Location), Loc(Loc) {
+ Value(const MDNode *Var, const MDNode *Expr, MachineLocation Loc)
+ : Variable(Var), Expression(Expr), EntryKind(E_Location), Loc(Loc) {
+ assert(DIVariable(Var).Verify());
+ assert(DIExpression(Expr).Verify());
}
// The variable to which this location entry corresponds.
const MDNode *Variable;
+ // Any complex address location expression for this Value.
+ const MDNode *Expression;
+
// Type of entry that this represents.
enum EntryType { E_Location, E_Integer, E_ConstantFP, E_ConstantInt };
enum EntryType EntryKind;
@@ -59,23 +64,6 @@ public:
// Or a location in the machine frame.
MachineLocation Loc;
- bool operator==(const Value &other) const {
- if (EntryKind != other.EntryKind)
- return false;
-
- switch (EntryKind) {
- case E_Location:
- return Loc == other.Loc;
- case E_Integer:
- return Constant.Int == other.Constant.Int;
- case E_ConstantFP:
- return Constant.CFP == other.Constant.CFP;
- case E_ConstantInt:
- return Constant.CIP == other.Constant.CIP;
- }
- llvm_unreachable("unhandled EntryKind");
- }
-
bool isLocation() const { return EntryKind == E_Location; }
bool isInt() const { return EntryKind == E_Integer; }
bool isConstantFP() const { return EntryKind == E_ConstantFP; }
@@ -84,40 +72,114 @@ public:
const ConstantFP *getConstantFP() const { return Constant.CFP; }
const ConstantInt *getConstantInt() const { return Constant.CIP; }
MachineLocation getLoc() const { return Loc; }
- const MDNode *getVariable() const { return Variable; }
+ const MDNode *getVariableNode() const { return Variable; }
+ DIVariable getVariable() const { return DIVariable(Variable); }
+ bool isVariablePiece() const { return getExpression().isVariablePiece(); }
+ DIExpression getExpression() const { return DIExpression(Expression); }
+ friend bool operator==(const Value &, const Value &);
+ friend bool operator<(const Value &, const Value &);
};
+
private:
- /// A list of locations/constants belonging to this entry.
+ /// A nonempty list of locations/constants belonging to this entry,
+ /// sorted by offset.
SmallVector<Value, 1> Values;
- /// The compile unit that this location entry is referenced by.
- const DwarfCompileUnit *Unit;
-
public:
- DebugLocEntry() : Begin(nullptr), End(nullptr), Unit(nullptr) {}
- DebugLocEntry(const MCSymbol *B, const MCSymbol *E,
- Value Val, const DwarfCompileUnit *U)
- : Begin(B), End(E), Unit(U) {
+ DebugLocEntry(const MCSymbol *B, const MCSymbol *E, Value Val)
+ : Begin(B), End(E) {
Values.push_back(std::move(Val));
}
+ /// \brief If this and Next are describing different pieces of the same
+ // variable, merge them by appending Next's values to the current
+ // list of values.
+ // Return true if the merge was successful.
+ bool MergeValues(const DebugLocEntry &Next) {
+ if (Begin == Next.Begin) {
+ DIExpression Expr(Values[0].Expression);
+ DIVariable Var(Values[0].Variable);
+ DIExpression NextExpr(Next.Values[0].Expression);
+ DIVariable NextVar(Next.Values[0].Variable);
+ if (Var == NextVar && Expr.isVariablePiece() &&
+ NextExpr.isVariablePiece()) {
+ addValues(Next.Values);
+ End = Next.End;
+ return true;
+ }
+ }
+ return false;
+ }
+
/// \brief Attempt to merge this DebugLocEntry with Next and return
/// true if the merge was successful. Entries can be merged if they
/// share the same Loc/Constant and if Next immediately follows this
/// Entry.
- bool Merge(const DebugLocEntry &Next) {
+ bool MergeRanges(const DebugLocEntry &Next) {
+ // If this and Next are describing the same variable, merge them.
if ((End == Next.Begin && Values == Next.Values)) {
End = Next.End;
return true;
}
return false;
}
+
const MCSymbol *getBeginSym() const { return Begin; }
const MCSymbol *getEndSym() const { return End; }
- const DwarfCompileUnit *getCU() const { return Unit; }
- const ArrayRef<Value> getValues() const { return Values; }
- void addValue(Value Val) { Values.push_back(Val); }
+ ArrayRef<Value> getValues() const { return Values; }
+ void addValues(ArrayRef<DebugLocEntry::Value> Vals) {
+ Values.append(Vals.begin(), Vals.end());
+ sortUniqueValues();
+ assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value V){
+ return V.isVariablePiece();
+ }) && "value must be a piece");
+ }
+
+ // Sort the pieces by offset.
+ // Remove any duplicate entries by dropping all but the first.
+ void sortUniqueValues() {
+ std::sort(Values.begin(), Values.end());
+ Values.erase(std::unique(Values.begin(), Values.end(),
+ [](const Value &A, const Value &B) {
+ return A.getVariable() == B.getVariable() &&
+ A.getExpression() == B.getExpression();
+ }),
+ Values.end());
+ }
};
+/// Compare two Values for equality.
+inline bool operator==(const DebugLocEntry::Value &A,
+ const DebugLocEntry::Value &B) {
+ if (A.EntryKind != B.EntryKind)
+ return false;
+
+ if (A.Expression != B.Expression)
+ return false;
+
+ if (A.Variable != B.Variable)
+ return false;
+
+ switch (A.EntryKind) {
+ case DebugLocEntry::Value::E_Location:
+ return A.Loc == B.Loc;
+ case DebugLocEntry::Value::E_Integer:
+ return A.Constant.Int == B.Constant.Int;
+ case DebugLocEntry::Value::E_ConstantFP:
+ return A.Constant.CFP == B.Constant.CFP;
+ case DebugLocEntry::Value::E_ConstantInt:
+ return A.Constant.CIP == B.Constant.CIP;
+ }
+ llvm_unreachable("unhandled EntryKind");
+}
+
+/// Compare two pieces based on their offset.
+inline bool operator<(const DebugLocEntry::Value &A,
+ const DebugLocEntry::Value &B) {
+ return A.getExpression().getPieceOffset() <
+ B.getExpression().getPieceOffset();
}
+
+}
+
#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocList.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocList.h
index 7a51c7b..0f1d2ed 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocList.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocList.h
@@ -7,16 +7,18 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DEBUGLOCLIST_H__
-#define CODEGEN_ASMPRINTER_DEBUGLOCLIST_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DEBUGLOCLIST_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DEBUGLOCLIST_H
-#include "llvm/MC/MCSymbol.h"
-#include "llvm/ADT/SmallVector.h"
#include "DebugLocEntry.h"
+#include "llvm/ADT/SmallVector.h"
namespace llvm {
+class DwarfCompileUnit;
+class MCSymbol;
struct DebugLocList {
MCSymbol *Label;
+ DwarfCompileUnit *CU;
SmallVector<DebugLocEntry, 4> List;
};
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
index e9527c4..a71f35e 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
@@ -12,11 +12,12 @@
//===----------------------------------------------------------------------===//
#include "DwarfAccelTable.h"
-#include "DIE.h"
+#include "DwarfCompileUnit.h"
#include "DwarfDebug.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
@@ -174,7 +175,8 @@ void DwarfAccelTable::EmitOffsets(AsmPrinter *Asm, MCSymbol *SecBegin) {
// Walk through the buckets and emit the full data for each element in
// the bucket. For the string case emit the dies and the various offsets.
// Terminate each HashData bucket with 0.
-void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfFile *D) {
+void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfDebug *D,
+ MCSymbol *StrSym) {
uint64_t PrevHash = UINT64_MAX;
for (size_t i = 0, e = Buckets.size(); i < e; ++i) {
for (HashList::const_iterator HI = Buckets[i].begin(),
@@ -183,13 +185,14 @@ void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfFile *D) {
// Remember to emit the label for our offset.
Asm->OutStreamer.EmitLabel((*HI)->Sym);
Asm->OutStreamer.AddComment((*HI)->Str);
- Asm->EmitSectionOffset((*HI)->Data.StrSym,
- D->getStringPool().getSectionSymbol());
+ Asm->EmitSectionOffset((*HI)->Data.StrSym, StrSym);
Asm->OutStreamer.AddComment("Num DIEs");
Asm->EmitInt32((*HI)->Data.Values.size());
for (HashDataContents *HD : (*HI)->Data.Values) {
// Emit the DIE offset
- Asm->EmitInt32(HD->Die->getOffset());
+ DwarfCompileUnit *CU = D->lookupUnit(HD->Die->getUnit());
+ assert(CU && "Accelerated DIE should belong to a CU.");
+ Asm->EmitInt32(HD->Die->getOffset() + CU->getDebugInfoOffset());
// If we have multiple Atoms emit that info too.
// FIXME: A bit of a hack, we either emit only one atom or all info.
if (HeaderData.Atoms.size() > 1) {
@@ -206,7 +209,8 @@ void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfFile *D) {
}
// Emit the entire data structure to the output file.
-void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, DwarfFile *D) {
+void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, DwarfDebug *D,
+ MCSymbol *StrSym) {
// Emit the header.
EmitHeader(Asm);
@@ -220,7 +224,7 @@ void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, DwarfFile *D) {
EmitOffsets(Asm, SecBegin);
// Emit the hash data.
- EmitData(Asm, D);
+ EmitData(Asm, D, StrSym);
}
#ifndef NDEBUG
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
index a3cc95f..4a6085b 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
@@ -11,12 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__
-#define CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFACCELTABLE_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFACCELTABLE_H
-#include "DIE.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
@@ -62,7 +62,7 @@
namespace llvm {
class AsmPrinter;
-class DwarfFile;
+class DwarfDebug;
class DwarfAccelTable {
@@ -140,7 +140,7 @@ public:
private:
struct TableHeaderData {
uint32_t die_offset_base;
- SmallVector<Atom, 1> Atoms;
+ SmallVector<Atom, 3> Atoms;
TableHeaderData(ArrayRef<Atom> AtomList, uint32_t offset = 0)
: die_offset_base(offset), Atoms(AtomList.begin(), AtomList.end()) {}
@@ -223,7 +223,7 @@ private:
void EmitBuckets(AsmPrinter *);
void EmitHashes(AsmPrinter *);
void EmitOffsets(AsmPrinter *, MCSymbol *);
- void EmitData(AsmPrinter *, DwarfFile *D);
+ void EmitData(AsmPrinter *, DwarfDebug *D, MCSymbol *StrSym);
// Allocator for HashData and HashDataContents.
BumpPtrAllocator Allocator;
@@ -248,7 +248,7 @@ public:
void AddName(StringRef Name, MCSymbol *StrSym, const DIE *Die,
char Flags = 0);
void FinalizeTable(AsmPrinter *, StringRef);
- void Emit(AsmPrinter *, MCSymbol *, DwarfFile *);
+ void Emit(AsmPrinter *, MCSymbol *, DwarfDebug *, MCSymbol *StrSym);
#ifndef NDEBUG
void print(raw_ostream &O);
void dump() { print(dbgs()); }
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
index 74215aa..0dc52da 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
@@ -51,7 +51,7 @@ void DwarfCFIException::endModule() {
if (moveTypeModule == AsmPrinter::CFI_M_Debug)
Asm->OutStreamer.EmitCFISections(false, true);
- if (!Asm->MAI->isExceptionHandlingDwarf())
+ if (!Asm->MAI->usesItaniumLSDAForExceptions())
return;
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
new file mode 100644
index 0000000..b4dba9c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
@@ -0,0 +1,836 @@
+#include "DwarfCompileUnit.h"
+#include "DwarfExpression.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+namespace llvm {
+
+DwarfCompileUnit::DwarfCompileUnit(unsigned UID, DICompileUnit Node,
+ AsmPrinter *A, DwarfDebug *DW,
+ DwarfFile *DWU)
+ : DwarfUnit(UID, dwarf::DW_TAG_compile_unit, Node, A, DW, DWU),
+ Skeleton(nullptr), LabelBegin(nullptr), BaseAddress(nullptr) {
+ insertDIE(Node, &getUnitDie());
+}
+
+/// addLabelAddress - Add a dwarf label attribute data and value using
+/// DW_FORM_addr or DW_FORM_GNU_addr_index.
+///
+void DwarfCompileUnit::addLabelAddress(DIE &Die, dwarf::Attribute Attribute,
+ const MCSymbol *Label) {
+
+ // Don't use the address pool in non-fission or in the skeleton unit itself.
+ // FIXME: Once GDB supports this, it's probably worthwhile using the address
+ // pool from the skeleton - maybe even in non-fission (possibly fewer
+ // relocations by sharing them in the pool, but we have other ideas about how
+ // to reduce the number of relocations as well/instead).
+ if (!DD->useSplitDwarf() || !Skeleton)
+ return addLocalLabelAddress(Die, Attribute, Label);
+
+ if (Label)
+ DD->addArangeLabel(SymbolCU(this, Label));
+
+ unsigned idx = DD->getAddressPool().getIndex(Label);
+ DIEValue *Value = new (DIEValueAllocator) DIEInteger(idx);
+ Die.addValue(Attribute, dwarf::DW_FORM_GNU_addr_index, Value);
+}
+
+void DwarfCompileUnit::addLocalLabelAddress(DIE &Die,
+ dwarf::Attribute Attribute,
+ const MCSymbol *Label) {
+ if (Label)
+ DD->addArangeLabel(SymbolCU(this, Label));
+
+ Die.addValue(Attribute, dwarf::DW_FORM_addr,
+ Label ? (DIEValue *)new (DIEValueAllocator) DIELabel(Label)
+ : new (DIEValueAllocator) DIEInteger(0));
+}
+
+unsigned DwarfCompileUnit::getOrCreateSourceID(StringRef FileName,
+ StringRef DirName) {
+ // If we print assembly, we can't separate .file entries according to
+ // compile units. Thus all files will belong to the default compile unit.
+
+ // FIXME: add a better feature test than hasRawTextSupport. Even better,
+ // extend .file to support this.
+ return Asm->OutStreamer.EmitDwarfFileDirective(
+ 0, DirName, FileName,
+ Asm->OutStreamer.hasRawTextSupport() ? 0 : getUniqueID());
+}
+
+// Return const expression if value is a GEP to access merged global
+// constant. e.g.
+// i8* getelementptr ({ i8, i8, i8, i8 }* @_MergedGlobals, i32 0, i32 0)
+static const ConstantExpr *getMergedGlobalExpr(const Value *V) {
+ const ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(V);
+ if (!CE || CE->getNumOperands() != 3 ||
+ CE->getOpcode() != Instruction::GetElementPtr)
+ return nullptr;
+
+ // First operand points to a global struct.
+ Value *Ptr = CE->getOperand(0);
+ if (!isa<GlobalValue>(Ptr) ||
+ !isa<StructType>(cast<PointerType>(Ptr->getType())->getElementType()))
+ return nullptr;
+
+ // Second operand is zero.
+ const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CE->getOperand(1));
+ if (!CI || !CI->isZero())
+ return nullptr;
+
+ // Third operand is offset.
+ if (!isa<ConstantInt>(CE->getOperand(2)))
+ return nullptr;
+
+ return CE;
+}
+
+/// getOrCreateGlobalVariableDIE - get or create global variable DIE.
+DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE(DIGlobalVariable GV) {
+ // Check for pre-existence.
+ if (DIE *Die = getDIE(GV))
+ return Die;
+
+ assert(GV.isGlobalVariable());
+
+ DIScope GVContext = GV.getContext();
+ DIType GTy = DD->resolve(GV.getType());
+
+ // Construct the context before querying for the existence of the DIE in
+ // case such construction creates the DIE.
+ DIE *ContextDIE = getOrCreateContextDIE(GVContext);
+
+ // Add to map.
+ DIE *VariableDIE = &createAndAddDIE(GV.getTag(), *ContextDIE, GV);
+ DIScope DeclContext;
+
+ if (DIDerivedType SDMDecl = GV.getStaticDataMemberDeclaration()) {
+ DeclContext = resolve(SDMDecl.getContext());
+ assert(SDMDecl.isStaticMember() && "Expected static member decl");
+ assert(GV.isDefinition());
+ // We need the declaration DIE that is in the static member's class.
+ DIE *VariableSpecDIE = getOrCreateStaticMemberDIE(SDMDecl);
+ addDIEEntry(*VariableDIE, dwarf::DW_AT_specification, *VariableSpecDIE);
+ } else {
+ DeclContext = GV.getContext();
+ // Add name and type.
+ addString(*VariableDIE, dwarf::DW_AT_name, GV.getDisplayName());
+ addType(*VariableDIE, GTy);
+
+ // Add scoping info.
+ if (!GV.isLocalToUnit())
+ addFlag(*VariableDIE, dwarf::DW_AT_external);
+
+ // Add line number info.
+ addSourceLine(*VariableDIE, GV);
+ }
+
+ if (!GV.isDefinition())
+ addFlag(*VariableDIE, dwarf::DW_AT_declaration);
+
+ // Add location.
+ bool addToAccelTable = false;
+ bool isGlobalVariable = GV.getGlobal() != nullptr;
+ if (isGlobalVariable) {
+ addToAccelTable = true;
+ DIELoc *Loc = new (DIEValueAllocator) DIELoc();
+ const MCSymbol *Sym = Asm->getSymbol(GV.getGlobal());
+ if (GV.getGlobal()->isThreadLocal()) {
+ // FIXME: Make this work with -gsplit-dwarf.
+ unsigned PointerSize = Asm->getDataLayout().getPointerSize();
+ assert((PointerSize == 4 || PointerSize == 8) &&
+ "Add support for other sizes if necessary");
+ // Based on GCC's support for TLS:
+ if (!DD->useSplitDwarf()) {
+ // 1) Start with a constNu of the appropriate pointer size
+ addUInt(*Loc, dwarf::DW_FORM_data1,
+ PointerSize == 4 ? dwarf::DW_OP_const4u : dwarf::DW_OP_const8u);
+ // 2) containing the (relocated) offset of the TLS variable
+ // within the module's TLS block.
+ addExpr(*Loc, dwarf::DW_FORM_udata,
+ Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym));
+ } else {
+ addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
+ addUInt(*Loc, dwarf::DW_FORM_udata,
+ DD->getAddressPool().getIndex(Sym, /* TLS */ true));
+ }
+ // 3) followed by a custom OP to make the debugger do a TLS lookup.
+ addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_push_tls_address);
+ } else {
+ DD->addArangeLabel(SymbolCU(this, Sym));
+ addOpAddress(*Loc, Sym);
+ }
+
+ addBlock(*VariableDIE, dwarf::DW_AT_location, Loc);
+ // Add the linkage name.
+ StringRef LinkageName = GV.getLinkageName();
+ if (!LinkageName.empty())
+ // From DWARF4: DIEs to which DW_AT_linkage_name may apply include:
+ // TAG_common_block, TAG_constant, TAG_entry_point, TAG_subprogram and
+ // TAG_variable.
+ addString(*VariableDIE,
+ DD->getDwarfVersion() >= 4 ? dwarf::DW_AT_linkage_name
+ : dwarf::DW_AT_MIPS_linkage_name,
+ GlobalValue::getRealLinkageName(LinkageName));
+ } else if (const ConstantInt *CI =
+ dyn_cast_or_null<ConstantInt>(GV.getConstant())) {
+ addConstantValue(*VariableDIE, CI, GTy);
+ } else if (const ConstantExpr *CE = getMergedGlobalExpr(GV.getConstant())) {
+ addToAccelTable = true;
+ // GV is a merged global.
+ DIELoc *Loc = new (DIEValueAllocator) DIELoc();
+ Value *Ptr = CE->getOperand(0);
+ MCSymbol *Sym = Asm->getSymbol(cast<GlobalValue>(Ptr));
+ DD->addArangeLabel(SymbolCU(this, Sym));
+ addOpAddress(*Loc, Sym);
+ addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
+ SmallVector<Value *, 3> Idx(CE->op_begin() + 1, CE->op_end());
+ addUInt(*Loc, dwarf::DW_FORM_udata,
+ Asm->getDataLayout().getIndexedOffset(Ptr->getType(), Idx));
+ addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
+ addBlock(*VariableDIE, dwarf::DW_AT_location, Loc);
+ }
+
+ if (addToAccelTable) {
+ DD->addAccelName(GV.getName(), *VariableDIE);
+
+ // If the linkage name is different than the name, go ahead and output
+ // that as well into the name table.
+ if (GV.getLinkageName() != "" && GV.getName() != GV.getLinkageName())
+ DD->addAccelName(GV.getLinkageName(), *VariableDIE);
+ }
+
+ addGlobalName(GV.getName(), *VariableDIE, DeclContext);
+ return VariableDIE;
+}
+
+void DwarfCompileUnit::addRange(RangeSpan Range) {
+ bool SameAsPrevCU = this == DD->getPrevCU();
+ DD->setPrevCU(this);
+ // If we have no current ranges just add the range and return, otherwise,
+ // check the current section and CU against the previous section and CU we
+ // emitted into and the subprogram was contained within. If these are the
+ // same then extend our current range, otherwise add this as a new range.
+ if (CURanges.empty() || !SameAsPrevCU ||
+ (&CURanges.back().getEnd()->getSection() !=
+ &Range.getEnd()->getSection())) {
+ CURanges.push_back(Range);
+ return;
+ }
+
+ CURanges.back().setEnd(Range.getEnd());
+}
+
+void DwarfCompileUnit::addSectionLabel(DIE &Die, dwarf::Attribute Attribute,
+ const MCSymbol *Label,
+ const MCSymbol *Sec) {
+ if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
+ addLabel(Die, Attribute,
+ DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
+ : dwarf::DW_FORM_data4,
+ Label);
+ else
+ addSectionDelta(Die, Attribute, Label, Sec);
+}
+
+void DwarfCompileUnit::initStmtList(MCSymbol *DwarfLineSectionSym) {
+ // Define start line table label for each Compile Unit.
+ MCSymbol *LineTableStartSym =
+ Asm->OutStreamer.getDwarfLineTableSymbol(getUniqueID());
+
+ stmtListIndex = UnitDie.getValues().size();
+
+ // DW_AT_stmt_list is a offset of line number information for this
+ // compile unit in debug_line section. For split dwarf this is
+ // left in the skeleton CU and so not included.
+ // The line table entries are not always emitted in assembly, so it
+ // is not okay to use line_table_start here.
+ addSectionLabel(UnitDie, dwarf::DW_AT_stmt_list, LineTableStartSym,
+ DwarfLineSectionSym);
+}
+
+void DwarfCompileUnit::applyStmtList(DIE &D) {
+ D.addValue(dwarf::DW_AT_stmt_list,
+ UnitDie.getAbbrev().getData()[stmtListIndex].getForm(),
+ UnitDie.getValues()[stmtListIndex]);
+}
+
+void DwarfCompileUnit::attachLowHighPC(DIE &D, const MCSymbol *Begin,
+ const MCSymbol *End) {
+ assert(Begin && "Begin label should not be null!");
+ assert(End && "End label should not be null!");
+ assert(Begin->isDefined() && "Invalid starting label");
+ assert(End->isDefined() && "Invalid end label");
+
+ addLabelAddress(D, dwarf::DW_AT_low_pc, Begin);
+ if (DD->getDwarfVersion() < 4)
+ addLabelAddress(D, dwarf::DW_AT_high_pc, End);
+ else
+ addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin);
+}
+
+// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc
+// and DW_AT_high_pc attributes. If there are global variables in this
+// scope then create and insert DIEs for these variables.
+DIE &DwarfCompileUnit::updateSubprogramScopeDIE(DISubprogram SP) {
+ DIE *SPDie = getOrCreateSubprogramDIE(SP, includeMinimalInlineScopes());
+
+ attachLowHighPC(*SPDie, DD->getFunctionBeginSym(), DD->getFunctionEndSym());
+ if (!DD->getCurrentFunction()->getTarget().Options.DisableFramePointerElim(
+ *DD->getCurrentFunction()))
+ addFlag(*SPDie, dwarf::DW_AT_APPLE_omit_frame_ptr);
+
+ // Only include DW_AT_frame_base in full debug info
+ if (!includeMinimalInlineScopes()) {
+ const TargetRegisterInfo *RI =
+ Asm->TM.getSubtargetImpl()->getRegisterInfo();
+ MachineLocation Location(RI->getFrameRegister(*Asm->MF));
+ if (RI->isPhysicalRegister(Location.getReg()))
+ addAddress(*SPDie, dwarf::DW_AT_frame_base, Location);
+ }
+
+ // Add name to the name table, we do this here because we're guaranteed
+ // to have concrete versions of our DW_TAG_subprogram nodes.
+ DD->addSubprogramNames(SP, *SPDie);
+
+ return *SPDie;
+}
+
+// Construct a DIE for this scope.
+void DwarfCompileUnit::constructScopeDIE(
+ LexicalScope *Scope, SmallVectorImpl<std::unique_ptr<DIE>> &FinalChildren) {
+ if (!Scope || !Scope->getScopeNode())
+ return;
+
+ DIScope DS(Scope->getScopeNode());
+
+ assert((Scope->getInlinedAt() || !DS.isSubprogram()) &&
+ "Only handle inlined subprograms here, use "
+ "constructSubprogramScopeDIE for non-inlined "
+ "subprograms");
+
+ SmallVector<std::unique_ptr<DIE>, 8> Children;
+
+ // We try to create the scope DIE first, then the children DIEs. This will
+ // avoid creating un-used children then removing them later when we find out
+ // the scope DIE is null.
+ std::unique_ptr<DIE> ScopeDIE;
+ if (Scope->getParent() && DS.isSubprogram()) {
+ ScopeDIE = constructInlinedScopeDIE(Scope);
+ if (!ScopeDIE)
+ return;
+ // We create children when the scope DIE is not null.
+ createScopeChildrenDIE(Scope, Children);
+ } else {
+ // Early exit when we know the scope DIE is going to be null.
+ if (DD->isLexicalScopeDIENull(Scope))
+ return;
+
+ unsigned ChildScopeCount;
+
+ // We create children here when we know the scope DIE is not going to be
+ // null and the children will be added to the scope DIE.
+ createScopeChildrenDIE(Scope, Children, &ChildScopeCount);
+
+ // Skip imported directives in gmlt-like data.
+ if (!includeMinimalInlineScopes()) {
+ // There is no need to emit empty lexical block DIE.
+ for (const auto &E : DD->findImportedEntitiesForScope(DS))
+ Children.push_back(
+ constructImportedEntityDIE(DIImportedEntity(E.second)));
+ }
+
+ // If there are only other scopes as children, put them directly in the
+ // parent instead, as this scope would serve no purpose.
+ if (Children.size() == ChildScopeCount) {
+ FinalChildren.insert(FinalChildren.end(),
+ std::make_move_iterator(Children.begin()),
+ std::make_move_iterator(Children.end()));
+ return;
+ }
+ ScopeDIE = constructLexicalScopeDIE(Scope);
+ assert(ScopeDIE && "Scope DIE should not be null.");
+ }
+
+ // Add children
+ for (auto &I : Children)
+ ScopeDIE->addChild(std::move(I));
+
+ FinalChildren.push_back(std::move(ScopeDIE));
+}
+
+void DwarfCompileUnit::addSectionDelta(DIE &Die, dwarf::Attribute Attribute,
+ const MCSymbol *Hi, const MCSymbol *Lo) {
+ DIEValue *Value = new (DIEValueAllocator) DIEDelta(Hi, Lo);
+ Die.addValue(Attribute, DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
+ : dwarf::DW_FORM_data4,
+ Value);
+}
+
+void DwarfCompileUnit::addScopeRangeList(DIE &ScopeDIE,
+ SmallVector<RangeSpan, 2> Range) {
+ // Emit offset in .debug_range as a relocatable label. emitDIE will handle
+ // emitting it appropriately.
+ auto *RangeSectionSym = DD->getRangeSectionSym();
+
+ RangeSpanList List(
+ Asm->GetTempSymbol("debug_ranges", DD->getNextRangeNumber()),
+ std::move(Range));
+
+ // Under fission, ranges are specified by constant offsets relative to the
+ // CU's DW_AT_GNU_ranges_base.
+ if (isDwoUnit())
+ addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, List.getSym(),
+ RangeSectionSym);
+ else
+ addSectionLabel(ScopeDIE, dwarf::DW_AT_ranges, List.getSym(),
+ RangeSectionSym);
+
+ // Add the range list to the set of ranges to be emitted.
+ (Skeleton ? Skeleton : this)->CURangeLists.push_back(std::move(List));
+}
+
+void DwarfCompileUnit::attachRangesOrLowHighPC(
+ DIE &Die, SmallVector<RangeSpan, 2> Ranges) {
+ if (Ranges.size() == 1) {
+ const auto &single = Ranges.front();
+ attachLowHighPC(Die, single.getStart(), single.getEnd());
+ } else
+ addScopeRangeList(Die, std::move(Ranges));
+}
+
+void DwarfCompileUnit::attachRangesOrLowHighPC(
+ DIE &Die, const SmallVectorImpl<InsnRange> &Ranges) {
+ SmallVector<RangeSpan, 2> List;
+ List.reserve(Ranges.size());
+ for (const InsnRange &R : Ranges)
+ List.push_back(RangeSpan(DD->getLabelBeforeInsn(R.first),
+ DD->getLabelAfterInsn(R.second)));
+ attachRangesOrLowHighPC(Die, std::move(List));
+}
+
+// This scope represents inlined body of a function. Construct DIE to
+// represent this concrete inlined copy of the function.
+std::unique_ptr<DIE>
+DwarfCompileUnit::constructInlinedScopeDIE(LexicalScope *Scope) {
+ assert(Scope->getScopeNode());
+ DIScope DS(Scope->getScopeNode());
+ DISubprogram InlinedSP = getDISubprogram(DS);
+ // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
+ // was inlined from another compile unit.
+ DIE *OriginDIE = DU->getAbstractSPDies()[InlinedSP];
+ assert(OriginDIE && "Unable to find original DIE for an inlined subprogram.");
+
+ auto ScopeDIE = make_unique<DIE>(dwarf::DW_TAG_inlined_subroutine);
+ addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE);
+
+ attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges());
+
+ // Add the call site information to the DIE.
+ DILocation DL(Scope->getInlinedAt());
+ addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None,
+ getOrCreateSourceID(DL.getFilename(), DL.getDirectory()));
+ addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, DL.getLineNumber());
+
+ // Add name to the name table, we do this here because we're guaranteed
+ // to have concrete versions of our DW_TAG_inlined_subprogram nodes.
+ DD->addSubprogramNames(InlinedSP, *ScopeDIE);
+
+ return ScopeDIE;
+}
+
+// Construct new DW_TAG_lexical_block for this scope and attach
+// DW_AT_low_pc/DW_AT_high_pc labels.
+std::unique_ptr<DIE>
+DwarfCompileUnit::constructLexicalScopeDIE(LexicalScope *Scope) {
+ if (DD->isLexicalScopeDIENull(Scope))
+ return nullptr;
+
+ auto ScopeDIE = make_unique<DIE>(dwarf::DW_TAG_lexical_block);
+ if (Scope->isAbstractScope())
+ return ScopeDIE;
+
+ attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges());
+
+ return ScopeDIE;
+}
+
+/// constructVariableDIE - Construct a DIE for the given DbgVariable.
+std::unique_ptr<DIE> DwarfCompileUnit::constructVariableDIE(DbgVariable &DV,
+ bool Abstract) {
+ auto D = constructVariableDIEImpl(DV, Abstract);
+ DV.setDIE(*D);
+ return D;
+}
+
+std::unique_ptr<DIE>
+DwarfCompileUnit::constructVariableDIEImpl(const DbgVariable &DV,
+ bool Abstract) {
+ // Define variable debug information entry.
+ auto VariableDie = make_unique<DIE>(DV.getTag());
+
+ if (Abstract) {
+ applyVariableAttributes(DV, *VariableDie);
+ return VariableDie;
+ }
+
+ // Add variable address.
+
+ unsigned Offset = DV.getDotDebugLocOffset();
+ if (Offset != ~0U) {
+ addLocationList(*VariableDie, dwarf::DW_AT_location, Offset);
+ return VariableDie;
+ }
+
+ // Check if variable is described by a DBG_VALUE instruction.
+ if (const MachineInstr *DVInsn = DV.getMInsn()) {
+ assert(DVInsn->getNumOperands() == 4);
+ if (DVInsn->getOperand(0).isReg()) {
+ const MachineOperand RegOp = DVInsn->getOperand(0);
+ // If the second operand is an immediate, this is an indirect value.
+ if (DVInsn->getOperand(1).isImm()) {
+ MachineLocation Location(RegOp.getReg(),
+ DVInsn->getOperand(1).getImm());
+ addVariableAddress(DV, *VariableDie, Location);
+ } else if (RegOp.getReg())
+ addVariableAddress(DV, *VariableDie, MachineLocation(RegOp.getReg()));
+ } else if (DVInsn->getOperand(0).isImm())
+ addConstantValue(*VariableDie, DVInsn->getOperand(0), DV.getType());
+ else if (DVInsn->getOperand(0).isFPImm())
+ addConstantFPValue(*VariableDie, DVInsn->getOperand(0));
+ else if (DVInsn->getOperand(0).isCImm())
+ addConstantValue(*VariableDie, DVInsn->getOperand(0).getCImm(),
+ DV.getType());
+
+ return VariableDie;
+ }
+
+ // .. else use frame index.
+ int FI = DV.getFrameIndex();
+ if (FI != ~0) {
+ unsigned FrameReg = 0;
+ const TargetFrameLowering *TFI =
+ Asm->TM.getSubtargetImpl()->getFrameLowering();
+ int Offset = TFI->getFrameIndexReference(*Asm->MF, FI, FrameReg);
+ MachineLocation Location(FrameReg, Offset);
+ addVariableAddress(DV, *VariableDie, Location);
+ }
+
+ return VariableDie;
+}
+
+std::unique_ptr<DIE> DwarfCompileUnit::constructVariableDIE(
+ DbgVariable &DV, const LexicalScope &Scope, DIE *&ObjectPointer) {
+ auto Var = constructVariableDIE(DV, Scope.isAbstractScope());
+ if (DV.isObjectPointer())
+ ObjectPointer = Var.get();
+ return Var;
+}
+
+DIE *DwarfCompileUnit::createScopeChildrenDIE(
+ LexicalScope *Scope, SmallVectorImpl<std::unique_ptr<DIE>> &Children,
+ unsigned *ChildScopeCount) {
+ DIE *ObjectPointer = nullptr;
+
+ for (DbgVariable *DV : DU->getScopeVariables().lookup(Scope))
+ Children.push_back(constructVariableDIE(*DV, *Scope, ObjectPointer));
+
+ unsigned ChildCountWithoutScopes = Children.size();
+
+ for (LexicalScope *LS : Scope->getChildren())
+ constructScopeDIE(LS, Children);
+
+ if (ChildScopeCount)
+ *ChildScopeCount = Children.size() - ChildCountWithoutScopes;
+
+ return ObjectPointer;
+}
+
+void DwarfCompileUnit::constructSubprogramScopeDIE(LexicalScope *Scope) {
+ assert(Scope && Scope->getScopeNode());
+ assert(!Scope->getInlinedAt());
+ assert(!Scope->isAbstractScope());
+ DISubprogram Sub(Scope->getScopeNode());
+
+ assert(Sub.isSubprogram());
+
+ DD->getProcessedSPNodes().insert(Sub);
+
+ DIE &ScopeDIE = updateSubprogramScopeDIE(Sub);
+
+ // If this is a variadic function, add an unspecified parameter.
+ DITypeArray FnArgs = Sub.getType().getTypeArray();
+
+ // Collect lexical scope children first.
+ // ObjectPointer might be a local (non-argument) local variable if it's a
+ // block's synthetic this pointer.
+ if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE))
+ addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
+
+ // If we have a single element of null, it is a function that returns void.
+ // If we have more than one elements and the last one is null, it is a
+ // variadic function.
+ if (FnArgs.getNumElements() > 1 &&
+ !FnArgs.getElement(FnArgs.getNumElements() - 1) &&
+ !includeMinimalInlineScopes())
+ ScopeDIE.addChild(make_unique<DIE>(dwarf::DW_TAG_unspecified_parameters));
+}
+
+DIE *DwarfCompileUnit::createAndAddScopeChildren(LexicalScope *Scope,
+ DIE &ScopeDIE) {
+ // We create children when the scope DIE is not null.
+ SmallVector<std::unique_ptr<DIE>, 8> Children;
+ DIE *ObjectPointer = createScopeChildrenDIE(Scope, Children);
+
+ // Add children
+ for (auto &I : Children)
+ ScopeDIE.addChild(std::move(I));
+
+ return ObjectPointer;
+}
+
+void
+DwarfCompileUnit::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
+ DIE *&AbsDef = DU->getAbstractSPDies()[Scope->getScopeNode()];
+ if (AbsDef)
+ return;
+
+ DISubprogram SP(Scope->getScopeNode());
+
+ DIE *ContextDIE;
+
+ if (includeMinimalInlineScopes())
+ ContextDIE = &getUnitDie();
+ // Some of this is duplicated from DwarfUnit::getOrCreateSubprogramDIE, with
+ // the important distinction that the DIDescriptor is not associated with the
+ // DIE (since the DIDescriptor will be associated with the concrete DIE, if
+ // any). It could be refactored to some common utility function.
+ else if (DISubprogram SPDecl = SP.getFunctionDeclaration()) {
+ ContextDIE = &getUnitDie();
+ getOrCreateSubprogramDIE(SPDecl);
+ } else
+ ContextDIE = getOrCreateContextDIE(resolve(SP.getContext()));
+
+ // Passing null as the associated DIDescriptor because the abstract definition
+ // shouldn't be found by lookup.
+ AbsDef =
+ &createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE, DIDescriptor());
+ applySubprogramAttributesToDefinition(SP, *AbsDef);
+
+ if (!includeMinimalInlineScopes())
+ addUInt(*AbsDef, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
+ if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, *AbsDef))
+ addDIEEntry(*AbsDef, dwarf::DW_AT_object_pointer, *ObjectPointer);
+}
+
+std::unique_ptr<DIE>
+DwarfCompileUnit::constructImportedEntityDIE(const DIImportedEntity &Module) {
+ assert(Module.Verify() &&
+ "Use one of the MDNode * overloads to handle invalid metadata");
+ std::unique_ptr<DIE> IMDie = make_unique<DIE>((dwarf::Tag)Module.getTag());
+ insertDIE(Module, IMDie.get());
+ DIE *EntityDie;
+ DIDescriptor Entity = resolve(Module.getEntity());
+ if (Entity.isNameSpace())
+ EntityDie = getOrCreateNameSpace(DINameSpace(Entity));
+ else if (Entity.isSubprogram())
+ EntityDie = getOrCreateSubprogramDIE(DISubprogram(Entity));
+ else if (Entity.isType())
+ EntityDie = getOrCreateTypeDIE(DIType(Entity));
+ else if (Entity.isGlobalVariable())
+ EntityDie = getOrCreateGlobalVariableDIE(DIGlobalVariable(Entity));
+ else
+ EntityDie = getDIE(Entity);
+ assert(EntityDie);
+ addSourceLine(*IMDie, Module.getLineNumber(),
+ Module.getContext().getFilename(),
+ Module.getContext().getDirectory());
+ addDIEEntry(*IMDie, dwarf::DW_AT_import, *EntityDie);
+ StringRef Name = Module.getName();
+ if (!Name.empty())
+ addString(*IMDie, dwarf::DW_AT_name, Name);
+
+ return IMDie;
+}
+
+void DwarfCompileUnit::finishSubprogramDefinition(DISubprogram SP) {
+ DIE *D = getDIE(SP);
+ if (DIE *AbsSPDIE = DU->getAbstractSPDies().lookup(SP)) {
+ if (D)
+ // If this subprogram has an abstract definition, reference that
+ addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE);
+ } else {
+ if (!D && !includeMinimalInlineScopes())
+ // Lazily construct the subprogram if we didn't see either concrete or
+ // inlined versions during codegen. (except in -gmlt ^ where we want
+ // to omit these entirely)
+ D = getOrCreateSubprogramDIE(SP);
+ if (D)
+ // And attach the attributes
+ applySubprogramAttributesToDefinition(SP, *D);
+ }
+}
+void DwarfCompileUnit::collectDeadVariables(DISubprogram SP) {
+ assert(SP.isSubprogram() && "CU's subprogram list contains a non-subprogram");
+ assert(SP.isDefinition() &&
+ "CU's subprogram list contains a subprogram declaration");
+ DIArray Variables = SP.getVariables();
+ if (Variables.getNumElements() == 0)
+ return;
+
+ DIE *SPDIE = DU->getAbstractSPDies().lookup(SP);
+ if (!SPDIE)
+ SPDIE = getDIE(SP);
+ assert(SPDIE);
+ for (unsigned vi = 0, ve = Variables.getNumElements(); vi != ve; ++vi) {
+ DIVariable DV(Variables.getElement(vi));
+ assert(DV.isVariable());
+ DbgVariable NewVar(DV, DIExpression(nullptr), DD);
+ auto VariableDie = constructVariableDIE(NewVar);
+ applyVariableAttributes(NewVar, *VariableDie);
+ SPDIE->addChild(std::move(VariableDie));
+ }
+}
+
+void DwarfCompileUnit::emitHeader(const MCSymbol *ASectionSym) const {
+ // Don't bother labeling the .dwo unit, as its offset isn't used.
+ if (!Skeleton)
+ Asm->OutStreamer.EmitLabel(LabelBegin);
+
+ DwarfUnit::emitHeader(ASectionSym);
+}
+
+/// addGlobalName - Add a new global name to the compile unit.
+void DwarfCompileUnit::addGlobalName(StringRef Name, DIE &Die,
+ DIScope Context) {
+ if (includeMinimalInlineScopes())
+ return;
+ std::string FullName = getParentContextString(Context) + Name.str();
+ GlobalNames[FullName] = &Die;
+}
+
+/// Add a new global type to the unit.
+void DwarfCompileUnit::addGlobalType(DIType Ty, const DIE &Die,
+ DIScope Context) {
+ if (includeMinimalInlineScopes())
+ return;
+ std::string FullName = getParentContextString(Context) + Ty.getName().str();
+ GlobalTypes[FullName] = &Die;
+}
+
+/// addVariableAddress - Add DW_AT_location attribute for a
+/// DbgVariable based on provided MachineLocation.
+void DwarfCompileUnit::addVariableAddress(const DbgVariable &DV, DIE &Die,
+ MachineLocation Location) {
+ if (DV.variableHasComplexAddress())
+ addComplexAddress(DV, Die, dwarf::DW_AT_location, Location);
+ else if (DV.isBlockByrefVariable())
+ addBlockByrefAddress(DV, Die, dwarf::DW_AT_location, Location);
+ else
+ addAddress(Die, dwarf::DW_AT_location, Location,
+ DV.getVariable().isIndirect());
+}
+
+/// Add an address attribute to a die based on the location provided.
+void DwarfCompileUnit::addAddress(DIE &Die, dwarf::Attribute Attribute,
+ const MachineLocation &Location,
+ bool Indirect) {
+ DIELoc *Loc = new (DIEValueAllocator) DIELoc();
+
+ bool validReg;
+ if (Location.isReg() && !Indirect)
+ validReg = addRegisterOpPiece(*Loc, Location.getReg());
+ else
+ validReg = addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
+
+ if (!validReg)
+ return;
+
+ if (!Location.isReg() && Indirect)
+ addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+
+ // Now attach the location information to the DIE.
+ addBlock(Die, Attribute, Loc);
+}
+
+/// Start with the address based on the location provided, and generate the
+/// DWARF information necessary to find the actual variable given the extra
+/// address information encoded in the DbgVariable, starting from the starting
+/// location. Add the DWARF information to the die.
+void DwarfCompileUnit::addComplexAddress(const DbgVariable &DV, DIE &Die,
+ dwarf::Attribute Attribute,
+ const MachineLocation &Location) {
+ DIELoc *Loc = new (DIEValueAllocator) DIELoc();
+ DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
+ DIExpression Expr = DV.getExpression();
+ if (Location.getOffset()) {
+ if (DwarfExpr.AddMachineRegIndirect(Location.getReg(),
+ Location.getOffset())) {
+ DwarfExpr.AddExpression(Expr);
+ assert(!DV.getVariable().isIndirect()
+ && "double indirection not handled");
+ }
+ } else {
+ if (DwarfExpr.AddMachineRegExpression(Expr, Location.getReg()))
+ if (DV.getVariable().isIndirect())
+ DwarfExpr.EmitOp(dwarf::DW_OP_deref);
+ }
+
+ // Now attach the location information to the DIE.
+ addBlock(Die, Attribute, Loc);
+}
+
+/// Add a Dwarf loclistptr attribute data and value.
+void DwarfCompileUnit::addLocationList(DIE &Die, dwarf::Attribute Attribute,
+ unsigned Index) {
+ DIEValue *Value = new (DIEValueAllocator) DIELocList(Index);
+ dwarf::Form Form = DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
+ : dwarf::DW_FORM_data4;
+ Die.addValue(Attribute, Form, Value);
+}
+
+void DwarfCompileUnit::applyVariableAttributes(const DbgVariable &Var,
+ DIE &VariableDie) {
+ StringRef Name = Var.getName();
+ if (!Name.empty())
+ addString(VariableDie, dwarf::DW_AT_name, Name);
+ addSourceLine(VariableDie, Var.getVariable());
+ addType(VariableDie, Var.getType());
+ if (Var.isArtificial())
+ addFlag(VariableDie, dwarf::DW_AT_artificial);
+}
+
+/// Add a Dwarf expression attribute data and value.
+void DwarfCompileUnit::addExpr(DIELoc &Die, dwarf::Form Form,
+ const MCExpr *Expr) {
+ DIEValue *Value = new (DIEValueAllocator) DIEExpr(Expr);
+ Die.addValue((dwarf::Attribute)0, Form, Value);
+}
+
+void DwarfCompileUnit::applySubprogramAttributesToDefinition(DISubprogram SP,
+ DIE &SPDie) {
+ DISubprogram SPDecl = SP.getFunctionDeclaration();
+ DIScope Context = resolve(SPDecl ? SPDecl.getContext() : SP.getContext());
+ applySubprogramAttributes(SP, SPDie, includeMinimalInlineScopes());
+ addGlobalName(SP.getName(), SPDie, Context);
+}
+
+bool DwarfCompileUnit::isDwoUnit() const {
+ return DD->useSplitDwarf() && Skeleton;
+}
+
+bool DwarfCompileUnit::includeMinimalInlineScopes() const {
+ return getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly ||
+ (DD->useSplitDwarf() && !Skeleton);
+}
+} // end llvm namespace
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
new file mode 100644
index 0000000..91164bc
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
@@ -0,0 +1,250 @@
+//===-- llvm/CodeGen/DwarfCompileUnit.h - Dwarf Compile Unit ---*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing dwarf compile unit.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFCOMPILEUNIT_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFCOMPILEUNIT_H
+
+#include "DwarfUnit.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/Support/Dwarf.h"
+
+namespace llvm {
+
+class AsmPrinter;
+class DIE;
+class DwarfDebug;
+class DwarfFile;
+class MCSymbol;
+class LexicalScope;
+
+class DwarfCompileUnit : public DwarfUnit {
+ /// The attribute index of DW_AT_stmt_list in the compile unit DIE, avoiding
+ /// the need to search for it in applyStmtList.
+ unsigned stmtListIndex;
+
+ /// Skeleton unit associated with this unit.
+ DwarfCompileUnit *Skeleton;
+
+ /// A label at the start of the non-dwo section related to this unit.
+ MCSymbol *SectionSym;
+
+ /// The start of the unit within its section.
+ MCSymbol *LabelBegin;
+
+ /// GlobalNames - A map of globally visible named entities for this unit.
+ StringMap<const DIE *> GlobalNames;
+
+ /// GlobalTypes - A map of globally visible types for this unit.
+ StringMap<const DIE *> GlobalTypes;
+
+ // List of range lists for a given compile unit, separate from the ranges for
+ // the CU itself.
+ SmallVector<RangeSpanList, 1> CURangeLists;
+
+ // List of ranges for a given compile unit.
+ SmallVector<RangeSpan, 2> CURanges;
+
+ // The base address of this unit, if any. Used for relative references in
+ // ranges/locs.
+ const MCSymbol *BaseAddress;
+
+ /// \brief Construct a DIE for the given DbgVariable without initializing the
+ /// DbgVariable's DIE reference.
+ std::unique_ptr<DIE> constructVariableDIEImpl(const DbgVariable &DV,
+ bool Abstract);
+
+ bool isDwoUnit() const override;
+
+ bool includeMinimalInlineScopes() const;
+
+public:
+ DwarfCompileUnit(unsigned UID, DICompileUnit Node, AsmPrinter *A,
+ DwarfDebug *DW, DwarfFile *DWU);
+
+ DwarfCompileUnit *getSkeleton() const {
+ return Skeleton;
+ }
+
+ void initStmtList(MCSymbol *DwarfLineSectionSym);
+
+ /// Apply the DW_AT_stmt_list from this compile unit to the specified DIE.
+ void applyStmtList(DIE &D);
+
+ /// getOrCreateGlobalVariableDIE - get or create global variable DIE.
+ DIE *getOrCreateGlobalVariableDIE(DIGlobalVariable GV);
+
+ /// addLabelAddress - Add a dwarf label attribute data and value using
+ /// either DW_FORM_addr or DW_FORM_GNU_addr_index.
+ void addLabelAddress(DIE &Die, dwarf::Attribute Attribute,
+ const MCSymbol *Label);
+
+ /// addLocalLabelAddress - Add a dwarf label attribute data and value using
+ /// DW_FORM_addr only.
+ void addLocalLabelAddress(DIE &Die, dwarf::Attribute Attribute,
+ const MCSymbol *Label);
+
+ /// addSectionDelta - Add a label delta attribute data and value.
+ void addSectionDelta(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Hi,
+ const MCSymbol *Lo);
+
+ DwarfCompileUnit &getCU() override { return *this; }
+
+ unsigned getOrCreateSourceID(StringRef FileName, StringRef DirName) override;
+
+ /// addRange - Add an address range to the list of ranges for this unit.
+ void addRange(RangeSpan Range);
+
+ void attachLowHighPC(DIE &D, const MCSymbol *Begin, const MCSymbol *End);
+
+ /// addSectionLabel - Add a Dwarf section label attribute data and value.
+ ///
+ void addSectionLabel(DIE &Die, dwarf::Attribute Attribute,
+ const MCSymbol *Label, const MCSymbol *Sec);
+
+ /// \brief Find DIE for the given subprogram and attach appropriate
+ /// DW_AT_low_pc and DW_AT_high_pc attributes. If there are global
+ /// variables in this scope then create and insert DIEs for these
+ /// variables.
+ DIE &updateSubprogramScopeDIE(DISubprogram SP);
+
+ void constructScopeDIE(LexicalScope *Scope,
+ SmallVectorImpl<std::unique_ptr<DIE>> &FinalChildren);
+
+ /// \brief A helper function to construct a RangeSpanList for a given
+ /// lexical scope.
+ void addScopeRangeList(DIE &ScopeDIE, SmallVector<RangeSpan, 2> Range);
+
+ void attachRangesOrLowHighPC(DIE &D, SmallVector<RangeSpan, 2> Ranges);
+
+ void attachRangesOrLowHighPC(DIE &D,
+ const SmallVectorImpl<InsnRange> &Ranges);
+ /// \brief This scope represents inlined body of a function. Construct
+ /// DIE to represent this concrete inlined copy of the function.
+ std::unique_ptr<DIE> constructInlinedScopeDIE(LexicalScope *Scope);
+
+ /// \brief Construct new DW_TAG_lexical_block for this scope and
+ /// attach DW_AT_low_pc/DW_AT_high_pc labels.
+ std::unique_ptr<DIE> constructLexicalScopeDIE(LexicalScope *Scope);
+
+ /// constructVariableDIE - Construct a DIE for the given DbgVariable.
+ std::unique_ptr<DIE> constructVariableDIE(DbgVariable &DV,
+ bool Abstract = false);
+
+ std::unique_ptr<DIE> constructVariableDIE(DbgVariable &DV,
+ const LexicalScope &Scope,
+ DIE *&ObjectPointer);
+
+ /// A helper function to create children of a Scope DIE.
+ DIE *createScopeChildrenDIE(LexicalScope *Scope,
+ SmallVectorImpl<std::unique_ptr<DIE>> &Children,
+ unsigned *ChildScopeCount = nullptr);
+
+ /// \brief Construct a DIE for this subprogram scope.
+ void constructSubprogramScopeDIE(LexicalScope *Scope);
+
+ DIE *createAndAddScopeChildren(LexicalScope *Scope, DIE &ScopeDIE);
+
+ void constructAbstractSubprogramScopeDIE(LexicalScope *Scope);
+
+ /// \brief Construct import_module DIE.
+ std::unique_ptr<DIE>
+ constructImportedEntityDIE(const DIImportedEntity &Module);
+
+ void finishSubprogramDefinition(DISubprogram SP);
+
+ void collectDeadVariables(DISubprogram SP);
+
+ /// Set the skeleton unit associated with this unit.
+ void setSkeleton(DwarfCompileUnit &Skel) { Skeleton = &Skel; }
+
+ MCSymbol *getSectionSym() const {
+ assert(Section);
+ return SectionSym;
+ }
+
+ /// Pass in the SectionSym even though we could recreate it in every compile
+ /// unit (type units will have actually distinct symbols once they're in
+ /// comdat sections).
+ void initSection(const MCSection *Section, MCSymbol *SectionSym) {
+ DwarfUnit::initSection(Section);
+ this->SectionSym = SectionSym;
+
+ // Don't bother labeling the .dwo unit, as its offset isn't used.
+ if (!Skeleton)
+ LabelBegin =
+ Asm->GetTempSymbol(Section->getLabelBeginName(), getUniqueID());
+ }
+
+ unsigned getLength() {
+ return sizeof(uint32_t) + // Length field
+ getHeaderSize() + UnitDie.getSize();
+ }
+
+ void emitHeader(const MCSymbol *ASectionSym) const override;
+
+ MCSymbol *getLabelBegin() const {
+ assert(Section);
+ return LabelBegin;
+ }
+
+ /// Add a new global name to the compile unit.
+ void addGlobalName(StringRef Name, DIE &Die, DIScope Context) override;
+
+ /// Add a new global type to the compile unit.
+ void addGlobalType(DIType Ty, const DIE &Die, DIScope Context) override;
+
+ const StringMap<const DIE *> &getGlobalNames() const { return GlobalNames; }
+ const StringMap<const DIE *> &getGlobalTypes() const { return GlobalTypes; }
+
+ /// Add DW_AT_location attribute for a DbgVariable based on provided
+ /// MachineLocation.
+ void addVariableAddress(const DbgVariable &DV, DIE &Die,
+ MachineLocation Location);
+ /// Add an address attribute to a die based on the location provided.
+ void addAddress(DIE &Die, dwarf::Attribute Attribute,
+ const MachineLocation &Location, bool Indirect = false);
+
+ /// Start with the address based on the location provided, and generate the
+ /// DWARF information necessary to find the actual variable (navigating the
+ /// extra location information encoded in the type) based on the starting
+ /// location. Add the DWARF information to the die.
+ void addComplexAddress(const DbgVariable &DV, DIE &Die,
+ dwarf::Attribute Attribute,
+ const MachineLocation &Location);
+
+ /// Add a Dwarf loclistptr attribute data and value.
+ void addLocationList(DIE &Die, dwarf::Attribute Attribute, unsigned Index);
+ void applyVariableAttributes(const DbgVariable &Var, DIE &VariableDie);
+
+ /// Add a Dwarf expression attribute data and value.
+ void addExpr(DIELoc &Die, dwarf::Form Form, const MCExpr *Expr);
+
+ void applySubprogramAttributesToDefinition(DISubprogram SP, DIE &SPDie);
+
+ /// getRangeLists - Get the vector of range lists.
+ const SmallVectorImpl<RangeSpanList> &getRangeLists() const {
+ return (Skeleton ? Skeleton : this)->CURangeLists;
+ }
+
+ /// getRanges - Get the list of ranges for this unit.
+ const SmallVectorImpl<RangeSpan> &getRanges() const { return CURanges; }
+ SmallVector<RangeSpan, 2> takeRanges() { return std::move(CURanges); }
+
+ void setBaseAddress(const MCSymbol *Base) { BaseAddress = Base; }
+ const MCSymbol *getBaseAddress() const { return BaseAddress; }
+};
+
+} // end llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index ac1c0ff..a587b46 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -11,15 +11,17 @@
//
//===----------------------------------------------------------------------===//
-#include "ByteStreamer.h"
#include "DwarfDebug.h"
-#include "DIE.h"
+#include "ByteStreamer.h"
#include "DIEHash.h"
+#include "DwarfCompileUnit.h"
+#include "DwarfExpression.h"
#include "DwarfUnit.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/Constants.h"
@@ -48,6 +50,7 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "dwarfdebug"
@@ -150,7 +153,7 @@ DIType DbgVariable::getType() const {
if (tag == dwarf::DW_TAG_pointer_type)
subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
- DIArray Elements = DICompositeType(subType).getTypeArray();
+ DIArray Elements = DICompositeType(subType).getElements();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDerivedType DT(Elements.getElement(i));
if (getName() == DT.getName())
@@ -166,10 +169,11 @@ static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
- : Asm(A), MMI(Asm->MMI), FirstCU(nullptr), PrevLabel(nullptr),
- GlobalRangeCount(0), InfoHolder(A, "info_string", DIEValueAllocator),
+ : Asm(A), MMI(Asm->MMI), PrevLabel(nullptr), GlobalRangeCount(0),
+ InfoHolder(A, *this, "info_string", DIEValueAllocator),
UsedNonDefaultText(false),
- SkeletonHolder(A, "skel_string", DIEValueAllocator),
+ SkeletonHolder(A, *this, "skel_string", DIEValueAllocator),
+ IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
dwarf::DW_FORM_data4)),
AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
@@ -189,8 +193,6 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
// Turn on accelerator tables for Darwin by default, pubnames by
// default for non-Darwin, and handle split dwarf.
- bool IsDarwin = Triple(A->getTargetTriple()).isOSDarwin();
-
if (DwarfAccelTables == Default)
HasDwarfAccelTables = IsDarwin;
else
@@ -309,26 +311,6 @@ bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
return false;
}
-// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc
-// and DW_AT_high_pc attributes. If there are global variables in this
-// scope then create and insert DIEs for these variables.
-DIE &DwarfDebug::updateSubprogramScopeDIE(DwarfCompileUnit &SPCU,
- DISubprogram SP) {
- DIE *SPDie = SPCU.getOrCreateSubprogramDIE(SP);
-
- attachLowHighPC(SPCU, *SPDie, FunctionBeginSym, FunctionEndSym);
-
- const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo();
- MachineLocation Location(RI->getFrameRegister(*Asm->MF));
- SPCU.addAddress(*SPDie, dwarf::DW_AT_frame_base, Location);
-
- // Add name to the name table, we do this here because we're guaranteed
- // to have concrete versions of our DW_TAG_subprogram nodes.
- addSubprogramNames(SP, *SPDie);
-
- return *SPDie;
-}
-
/// Check whether we should create a DIE for the given Scope, return true
/// if we don't create a DIE (the corresponding DIE is null).
bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
@@ -345,271 +327,30 @@ bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
// We don't create a DIE if we have a single Range and the end label
// is null.
- SmallVectorImpl<InsnRange>::const_iterator RI = Ranges.begin();
- MCSymbol *End = getLabelAfterInsn(RI->second);
- return !End;
-}
-
-static void addSectionLabel(AsmPrinter &Asm, DwarfUnit &U, DIE &D,
- dwarf::Attribute A, const MCSymbol *L,
- const MCSymbol *Sec) {
- if (Asm.MAI->doesDwarfUseRelocationsAcrossSections())
- U.addSectionLabel(D, A, L);
- else
- U.addSectionDelta(D, A, L, Sec);
-}
-
-void DwarfDebug::addScopeRangeList(DwarfCompileUnit &TheCU, DIE &ScopeDIE,
- const SmallVectorImpl<InsnRange> &Range) {
- // Emit offset in .debug_range as a relocatable label. emitDIE will handle
- // emitting it appropriately.
- MCSymbol *RangeSym = Asm->GetTempSymbol("debug_ranges", GlobalRangeCount++);
-
- // Under fission, ranges are specified by constant offsets relative to the
- // CU's DW_AT_GNU_ranges_base.
- if (useSplitDwarf())
- TheCU.addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, RangeSym,
- DwarfDebugRangeSectionSym);
- else
- addSectionLabel(*Asm, TheCU, ScopeDIE, dwarf::DW_AT_ranges, RangeSym,
- DwarfDebugRangeSectionSym);
-
- RangeSpanList List(RangeSym);
- for (const InsnRange &R : Range) {
- RangeSpan Span(getLabelBeforeInsn(R.first), getLabelAfterInsn(R.second));
- List.addRange(std::move(Span));
- }
-
- // Add the range list to the set of ranges to be emitted.
- TheCU.addRangeList(std::move(List));
-}
-
-void DwarfDebug::attachRangesOrLowHighPC(DwarfCompileUnit &TheCU, DIE &Die,
- const SmallVectorImpl<InsnRange> &Ranges) {
- assert(!Ranges.empty());
- if (Ranges.size() == 1)
- attachLowHighPC(TheCU, Die, getLabelBeforeInsn(Ranges.front().first),
- getLabelAfterInsn(Ranges.front().second));
- else
- addScopeRangeList(TheCU, Die, Ranges);
-}
-
-// Construct new DW_TAG_lexical_block for this scope and attach
-// DW_AT_low_pc/DW_AT_high_pc labels.
-std::unique_ptr<DIE>
-DwarfDebug::constructLexicalScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope) {
- if (isLexicalScopeDIENull(Scope))
- return nullptr;
-
- auto ScopeDIE = make_unique<DIE>(dwarf::DW_TAG_lexical_block);
- if (Scope->isAbstractScope())
- return ScopeDIE;
-
- attachRangesOrLowHighPC(TheCU, *ScopeDIE, Scope->getRanges());
-
- return ScopeDIE;
+ return !getLabelAfterInsn(Ranges.front().second);
}
-// This scope represents inlined body of a function. Construct DIE to
-// represent this concrete inlined copy of the function.
-std::unique_ptr<DIE>
-DwarfDebug::constructInlinedScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope) {
- assert(Scope->getScopeNode());
- DIScope DS(Scope->getScopeNode());
- DISubprogram InlinedSP = getDISubprogram(DS);
- // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
- // was inlined from another compile unit.
- DIE *OriginDIE = AbstractSPDies[InlinedSP];
- assert(OriginDIE && "Unable to find original DIE for an inlined subprogram.");
-
- auto ScopeDIE = make_unique<DIE>(dwarf::DW_TAG_inlined_subroutine);
- TheCU.addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE);
-
- attachRangesOrLowHighPC(TheCU, *ScopeDIE, Scope->getRanges());
-
- InlinedSubprogramDIEs.insert(OriginDIE);
-
- // Add the call site information to the DIE.
- DILocation DL(Scope->getInlinedAt());
- TheCU.addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None,
- TheCU.getOrCreateSourceID(DL.getFilename(), DL.getDirectory()));
- TheCU.addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, DL.getLineNumber());
-
- // Add name to the name table, we do this here because we're guaranteed
- // to have concrete versions of our DW_TAG_inlined_subprogram nodes.
- addSubprogramNames(InlinedSP, *ScopeDIE);
-
- return ScopeDIE;
-}
-
-static std::unique_ptr<DIE> constructVariableDIE(DwarfCompileUnit &TheCU,
- DbgVariable &DV,
- const LexicalScope &Scope,
- DIE *&ObjectPointer) {
- auto Var = TheCU.constructVariableDIE(DV, Scope.isAbstractScope());
- if (DV.isObjectPointer())
- ObjectPointer = Var.get();
- return Var;
-}
-
-DIE *DwarfDebug::createScopeChildrenDIE(
- DwarfCompileUnit &TheCU, LexicalScope *Scope,
- SmallVectorImpl<std::unique_ptr<DIE>> &Children) {
- DIE *ObjectPointer = nullptr;
-
- // Collect arguments for current function.
- if (LScopes.isCurrentFunctionScope(Scope)) {
- for (DbgVariable *ArgDV : CurrentFnArguments)
- if (ArgDV)
- Children.push_back(
- constructVariableDIE(TheCU, *ArgDV, *Scope, ObjectPointer));
-
- // If this is a variadic function, add an unspecified parameter.
- DISubprogram SP(Scope->getScopeNode());
- DIArray FnArgs = SP.getType().getTypeArray();
- if (FnArgs.getElement(FnArgs.getNumElements() - 1)
- .isUnspecifiedParameter()) {
- Children.push_back(
- make_unique<DIE>(dwarf::DW_TAG_unspecified_parameters));
- }
- }
-
- // Collect lexical scope children first.
- for (DbgVariable *DV : ScopeVariables.lookup(Scope))
- Children.push_back(constructVariableDIE(TheCU, *DV, *Scope, ObjectPointer));
-
- for (LexicalScope *LS : Scope->getChildren())
- if (std::unique_ptr<DIE> Nested = constructScopeDIE(TheCU, LS))
- Children.push_back(std::move(Nested));
- return ObjectPointer;
+template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) {
+ F(CU);
+ if (auto *SkelCU = CU.getSkeleton())
+ F(*SkelCU);
}
-void DwarfDebug::createAndAddScopeChildren(DwarfCompileUnit &TheCU,
- LexicalScope *Scope, DIE &ScopeDIE) {
- // We create children when the scope DIE is not null.
- SmallVector<std::unique_ptr<DIE>, 8> Children;
- if (DIE *ObjectPointer = createScopeChildrenDIE(TheCU, Scope, Children))
- TheCU.addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
-
- // Add children
- for (auto &I : Children)
- ScopeDIE.addChild(std::move(I));
-}
-
-void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope) {
+void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
assert(Scope && Scope->getScopeNode());
assert(Scope->isAbstractScope());
assert(!Scope->getInlinedAt());
- DISubprogram SP(Scope->getScopeNode());
+ const MDNode *SP = Scope->getScopeNode();
ProcessedSPNodes.insert(SP);
- DIE *&AbsDef = AbstractSPDies[SP];
- if (AbsDef)
- return;
-
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
// was inlined from another compile unit.
- DwarfCompileUnit &SPCU = *SPMap[SP];
- DIE *ContextDIE;
-
- // Some of this is duplicated from DwarfUnit::getOrCreateSubprogramDIE, with
- // the important distinction that the DIDescriptor is not associated with the
- // DIE (since the DIDescriptor will be associated with the concrete DIE, if
- // any). It could be refactored to some common utility function.
- if (DISubprogram SPDecl = SP.getFunctionDeclaration()) {
- ContextDIE = &SPCU.getUnitDie();
- SPCU.getOrCreateSubprogramDIE(SPDecl);
- } else
- ContextDIE = SPCU.getOrCreateContextDIE(resolve(SP.getContext()));
-
- // Passing null as the associated DIDescriptor because the abstract definition
- // shouldn't be found by lookup.
- AbsDef = &SPCU.createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE,
- DIDescriptor());
- SPCU.applySubprogramAttributesToDefinition(SP, *AbsDef);
-
- SPCU.addUInt(*AbsDef, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
- createAndAddScopeChildren(SPCU, Scope, *AbsDef);
-}
-
-DIE &DwarfDebug::constructSubprogramScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope) {
- assert(Scope && Scope->getScopeNode());
- assert(!Scope->getInlinedAt());
- assert(!Scope->isAbstractScope());
- DISubprogram Sub(Scope->getScopeNode());
-
- assert(Sub.isSubprogram());
-
- ProcessedSPNodes.insert(Sub);
-
- DIE &ScopeDIE = updateSubprogramScopeDIE(TheCU, Sub);
-
- createAndAddScopeChildren(TheCU, Scope, ScopeDIE);
-
- return ScopeDIE;
-}
-
-// Construct a DIE for this scope.
-std::unique_ptr<DIE> DwarfDebug::constructScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope) {
- if (!Scope || !Scope->getScopeNode())
- return nullptr;
-
- DIScope DS(Scope->getScopeNode());
-
- assert((Scope->getInlinedAt() || !DS.isSubprogram()) &&
- "Only handle inlined subprograms here, use "
- "constructSubprogramScopeDIE for non-inlined "
- "subprograms");
-
- SmallVector<std::unique_ptr<DIE>, 8> Children;
-
- // We try to create the scope DIE first, then the children DIEs. This will
- // avoid creating un-used children then removing them later when we find out
- // the scope DIE is null.
- std::unique_ptr<DIE> ScopeDIE;
- if (Scope->getParent() && DS.isSubprogram()) {
- ScopeDIE = constructInlinedScopeDIE(TheCU, Scope);
- if (!ScopeDIE)
- return nullptr;
- // We create children when the scope DIE is not null.
- createScopeChildrenDIE(TheCU, Scope, Children);
- } else {
- // Early exit when we know the scope DIE is going to be null.
- if (isLexicalScopeDIENull(Scope))
- return nullptr;
-
- // We create children here when we know the scope DIE is not going to be
- // null and the children will be added to the scope DIE.
- createScopeChildrenDIE(TheCU, Scope, Children);
-
- // There is no need to emit empty lexical block DIE.
- std::pair<ImportedEntityMap::const_iterator,
- ImportedEntityMap::const_iterator> Range =
- std::equal_range(ScopesWithImportedEntities.begin(),
- ScopesWithImportedEntities.end(),
- std::pair<const MDNode *, const MDNode *>(DS, nullptr),
- less_first());
- if (Children.empty() && Range.first == Range.second)
- return nullptr;
- ScopeDIE = constructLexicalScopeDIE(TheCU, Scope);
- assert(ScopeDIE && "Scope DIE should not be null.");
- for (ImportedEntityMap::const_iterator i = Range.first; i != Range.second;
- ++i)
- constructImportedEntityDIE(TheCU, i->second, *ScopeDIE);
- }
-
- // Add children
- for (auto &I : Children)
- ScopeDIE->addChild(std::move(I));
-
- return ScopeDIE;
+ auto &CU = SPMap[SP];
+ forBothCUs(*CU, [&](DwarfCompileUnit &CU) {
+ CU.constructAbstractSubprogramScopeDIE(Scope);
+ });
}
void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
@@ -630,6 +371,8 @@ DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
DwarfCompileUnit &NewCU = *OwnedUnit;
DIE &Die = NewCU.getUnitDie();
InfoHolder.addUnit(std::move(OwnedUnit));
+ if (useSplitDwarf())
+ NewCU.setSkeleton(constructSkeletonCU(NewCU));
// LTO with assembly output shares a single line table amongst multiple CUs.
// To avoid the compilation directory being ambiguous, let the line table
@@ -666,14 +409,10 @@ DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
dwarf::DW_FORM_data1, RVer);
- if (!FirstCU)
- FirstCU = &NewCU;
-
- if (useSplitDwarf()) {
+ if (useSplitDwarf())
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(),
DwarfInfoDWOSectionSym);
- NewCU.setSkeleton(constructSkeletonCU(NewCU));
- } else
+ else
NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
DwarfInfoSectionSym);
@@ -682,44 +421,12 @@ DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
return NewCU;
}
-void DwarfDebug::constructImportedEntityDIE(DwarfCompileUnit &TheCU,
- const MDNode *N) {
+void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
+ const MDNode *N) {
DIImportedEntity Module(N);
assert(Module.Verify());
if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext()))
- constructImportedEntityDIE(TheCU, Module, *D);
-}
-
-void DwarfDebug::constructImportedEntityDIE(DwarfCompileUnit &TheCU,
- const MDNode *N, DIE &Context) {
- DIImportedEntity Module(N);
- assert(Module.Verify());
- return constructImportedEntityDIE(TheCU, Module, Context);
-}
-
-void DwarfDebug::constructImportedEntityDIE(DwarfCompileUnit &TheCU,
- const DIImportedEntity &Module,
- DIE &Context) {
- assert(Module.Verify() &&
- "Use one of the MDNode * overloads to handle invalid metadata");
- DIE &IMDie = TheCU.createAndAddDIE(Module.getTag(), Context, Module);
- DIE *EntityDie;
- DIDescriptor Entity = resolve(Module.getEntity());
- if (Entity.isNameSpace())
- EntityDie = TheCU.getOrCreateNameSpace(DINameSpace(Entity));
- else if (Entity.isSubprogram())
- EntityDie = TheCU.getOrCreateSubprogramDIE(DISubprogram(Entity));
- else if (Entity.isType())
- EntityDie = TheCU.getOrCreateTypeDIE(DIType(Entity));
- else
- EntityDie = TheCU.getDIE(Entity);
- TheCU.addSourceLine(IMDie, Module.getLineNumber(),
- Module.getContext().getFilename(),
- Module.getContext().getDirectory());
- TheCU.addDIEEntry(IMDie, dwarf::DW_AT_import, *EntityDie);
- StringRef Name = Module.getName();
- if (!Name.empty())
- TheCU.addString(IMDie, dwarf::DW_AT_name, Name);
+ D->addChild(TheCU.constructImportedEntityDIE(Module));
}
// Emit all Dwarf sections that should come prior to the content. Create
@@ -731,8 +438,8 @@ void DwarfDebug::beginModule() {
const Module *M = MMI->getModule();
- // If module has named metadata anchors then use them, otherwise scan the
- // module using debug info finder to collect debug info.
+ FunctionDIs = makeSubprogramMap(*M);
+
NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
if (!CU_Nodes)
return;
@@ -755,13 +462,18 @@ void DwarfDebug::beginModule() {
ScopesWithImportedEntities.end(), less_first());
DIArray GVs = CUNode.getGlobalVariables();
for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
- CU.createGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
+ CU.getOrCreateGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
DIArray SPs = CUNode.getSubprograms();
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
SPMap.insert(std::make_pair(SPs.getElement(i), &CU));
DIArray EnumTypes = CUNode.getEnumTypes();
- for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i)
- CU.getOrCreateTypeDIE(EnumTypes.getElement(i));
+ for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) {
+ DIType Ty(EnumTypes.getElement(i));
+ // The enum types array by design contains pointers to
+ // MDNodes rather than DIRefs. Unique them here.
+ DIType UniqueTy(resolve(Ty.getRef()));
+ CU.getOrCreateTypeDIE(UniqueTy);
+ }
DIArray RetainedTypes = CUNode.getRetainedTypes();
for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) {
DIType Ty(RetainedTypes.getElement(i));
@@ -773,7 +485,7 @@ void DwarfDebug::beginModule() {
// Emit imported_modules last so that the relevant context is already
// available.
for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
- constructImportedEntityDIE(CU, ImportedEntities.getElement(i));
+ constructAndAddImportedEntityDIE(CU, ImportedEntities.getElement(i));
}
// Tell MMI that we have debug info.
@@ -786,9 +498,7 @@ void DwarfDebug::beginModule() {
void DwarfDebug::finishVariableDefinitions() {
for (const auto &Var : ConcreteVariables) {
DIE *VariableDie = Var->getDIE();
- // FIXME: There shouldn't be any variables without DIEs.
- if (!VariableDie)
- continue;
+ assert(VariableDie);
// FIXME: Consider the time-space tradeoff of just storing the unit pointer
// in the ConcreteVariables list, rather than looking it up again here.
// DIE::getUnit isn't simple - it walks parent pointers, etc.
@@ -804,36 +514,10 @@ void DwarfDebug::finishVariableDefinitions() {
}
void DwarfDebug::finishSubprogramDefinitions() {
- const Module *M = MMI->getModule();
-
- NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
- for (MDNode *N : CU_Nodes->operands()) {
- DICompileUnit TheCU(N);
- // Construct subprogram DIE and add variables DIEs.
- DwarfCompileUnit *SPCU =
- static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU));
- DIArray Subprograms = TheCU.getSubprograms();
- for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
- DISubprogram SP(Subprograms.getElement(i));
- // Perhaps the subprogram is in another CU (such as due to comdat
- // folding, etc), in which case ignore it here.
- if (SPMap[SP] != SPCU)
- continue;
- DIE *D = SPCU->getDIE(SP);
- if (DIE *AbsSPDIE = AbstractSPDies.lookup(SP)) {
- if (D)
- // If this subprogram has an abstract definition, reference that
- SPCU->addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE);
- } else {
- if (!D)
- // Lazily construct the subprogram if we didn't see either concrete or
- // inlined versions during codegen.
- D = SPCU->getOrCreateSubprogramDIE(SP);
- // And attach the attributes
- SPCU->applySubprogramAttributesToDefinition(SP, *D);
- }
- }
- }
+ for (const auto &P : SPMap)
+ forBothCUs(*P.second, [&](DwarfCompileUnit &CU) {
+ CU.finishSubprogramDefinition(DISubprogram(P.first));
+ });
}
@@ -853,26 +537,7 @@ void DwarfDebug::collectDeadVariables() {
DISubprogram SP(Subprograms.getElement(i));
if (ProcessedSPNodes.count(SP) != 0)
continue;
- assert(SP.isSubprogram() &&
- "CU's subprogram list contains a non-subprogram");
- assert(SP.isDefinition() &&
- "CU's subprogram list contains a subprogram declaration");
- DIArray Variables = SP.getVariables();
- if (Variables.getNumElements() == 0)
- continue;
-
- DIE *SPDIE = AbstractSPDies.lookup(SP);
- if (!SPDIE)
- SPDIE = SPCU->getDIE(SP);
- assert(SPDIE);
- for (unsigned vi = 0, ve = Variables.getNumElements(); vi != ve; ++vi) {
- DIVariable DV(Variables.getElement(vi));
- assert(DV.isVariable());
- DbgVariable NewVar(DV, this);
- auto VariableDie = SPCU->constructVariableDIE(NewVar);
- SPCU->applyVariableAttributes(NewVar, *VariableDie);
- SPDIE->addChild(std::move(VariableDie));
- }
+ SPCU->collectDeadVariables(SP);
}
}
}
@@ -888,66 +553,52 @@ void DwarfDebug::finalizeModuleInfo() {
// Handle anything that needs to be done on a per-unit basis after
// all other generation.
- for (const auto &TheU : getUnits()) {
+ for (const auto &P : CUMap) {
+ auto &TheCU = *P.second;
// Emit DW_AT_containing_type attribute to connect types with their
// vtable holding type.
- TheU->constructContainingTypeDIEs();
+ TheCU.constructContainingTypeDIEs();
// Add CU specific attributes if we need to add any.
- if (TheU->getUnitDie().getTag() == dwarf::DW_TAG_compile_unit) {
- // If we're splitting the dwarf out now that we've got the entire
- // CU then add the dwo id to it.
- DwarfCompileUnit *SkCU =
- static_cast<DwarfCompileUnit *>(TheU->getSkeleton());
- if (useSplitDwarf()) {
- // Emit a unique identifier for this CU.
- uint64_t ID = DIEHash(Asm).computeCUSignature(TheU->getUnitDie());
- TheU->addUInt(TheU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
- dwarf::DW_FORM_data8, ID);
- SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
- dwarf::DW_FORM_data8, ID);
-
- // We don't keep track of which addresses are used in which CU so this
- // is a bit pessimistic under LTO.
- if (!AddrPool.isEmpty())
- addSectionLabel(*Asm, *SkCU, SkCU->getUnitDie(),
- dwarf::DW_AT_GNU_addr_base, DwarfAddrSectionSym,
- DwarfAddrSectionSym);
- if (!TheU->getRangeLists().empty())
- addSectionLabel(*Asm, *SkCU, SkCU->getUnitDie(),
- dwarf::DW_AT_GNU_ranges_base,
- DwarfDebugRangeSectionSym, DwarfDebugRangeSectionSym);
- }
+ // If we're splitting the dwarf out now that we've got the entire
+ // CU then add the dwo id to it.
+ auto *SkCU = TheCU.getSkeleton();
+ if (useSplitDwarf()) {
+ // Emit a unique identifier for this CU.
+ uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie());
+ TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
+ dwarf::DW_FORM_data8, ID);
+ SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
+ dwarf::DW_FORM_data8, ID);
+
+ // We don't keep track of which addresses are used in which CU so this
+ // is a bit pessimistic under LTO.
+ if (!AddrPool.isEmpty())
+ SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
+ DwarfAddrSectionSym, DwarfAddrSectionSym);
+ if (!SkCU->getRangeLists().empty())
+ SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
+ DwarfDebugRangeSectionSym,
+ DwarfDebugRangeSectionSym);
+ }
- // If we have code split among multiple sections or non-contiguous
- // ranges of code then emit a DW_AT_ranges attribute on the unit that will
- // remain in the .o file, otherwise add a DW_AT_low_pc.
- // FIXME: We should use ranges allow reordering of code ala
- // .subsections_via_symbols in mach-o. This would mean turning on
- // ranges for all subprogram DIEs for mach-o.
- DwarfCompileUnit &U =
- SkCU ? *SkCU : static_cast<DwarfCompileUnit &>(*TheU);
- unsigned NumRanges = TheU->getRanges().size();
- if (NumRanges) {
- if (NumRanges > 1) {
- addSectionLabel(*Asm, U, U.getUnitDie(), dwarf::DW_AT_ranges,
- Asm->GetTempSymbol("cu_ranges", U.getUniqueID()),
- DwarfDebugRangeSectionSym);
-
- // A DW_AT_low_pc attribute may also be specified in combination with
- // DW_AT_ranges to specify the default base address for use in
- // location lists (see Section 2.6.2) and range lists (see Section
- // 2.17.3).
- U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr,
- 0);
- } else {
- RangeSpan &Range = TheU->getRanges().back();
- U.addLocalLabelAddress(U.getUnitDie(), dwarf::DW_AT_low_pc,
- Range.getStart());
- U.addLabelDelta(U.getUnitDie(), dwarf::DW_AT_high_pc, Range.getEnd(),
- Range.getStart());
- }
- }
+ // If we have code split among multiple sections or non-contiguous
+ // ranges of code then emit a DW_AT_ranges attribute on the unit that will
+ // remain in the .o file, otherwise add a DW_AT_low_pc.
+ // FIXME: We should use ranges allow reordering of code ala
+ // .subsections_via_symbols in mach-o. This would mean turning on
+ // ranges for all subprogram DIEs for mach-o.
+ DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
+ if (unsigned NumRanges = TheCU.getRanges().size()) {
+ if (NumRanges > 1)
+ // A DW_AT_low_pc attribute may also be specified in combination with
+ // DW_AT_ranges to specify the default base address for use in
+ // location lists (see Section 2.6.2) and range lists (see Section
+ // 2.17.3).
+ U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
+ else
+ TheCU.setBaseAddress(TheCU.getRanges().front().getStart());
+ U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
}
}
@@ -1009,7 +660,10 @@ void DwarfDebug::endModule() {
assert(CurFn == nullptr);
assert(CurMI == nullptr);
- if (!FirstCU)
+ // If we aren't actually generating debug info (check beginModule -
+ // conditionalized on !DisableDebugInfoPrinting and the presence of the
+ // llvm.dbg.cu metadata node)
+ if (!DwarfInfoSectionSym)
return;
// End any existing sections.
@@ -1063,9 +717,6 @@ void DwarfDebug::endModule() {
// clean up.
SPMap.clear();
AbstractVariables.clear();
-
- // Reset these for the next Module if we have one.
- FirstCU = nullptr;
}
// Find abstract variable, if any, associated with Var.
@@ -1091,8 +742,8 @@ DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV) {
void DwarfDebug::createAbstractVariable(const DIVariable &Var,
LexicalScope *Scope) {
- auto AbsDbgVariable = make_unique<DbgVariable>(Var, this);
- addScopeVariable(Scope, AbsDbgVariable.get());
+ auto AbsDbgVariable = make_unique<DbgVariable>(Var, DIExpression(), this);
+ InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get());
AbstractVariables[Var] = std::move(AbsDbgVariable);
}
@@ -1116,55 +767,35 @@ DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(const DIVariable &DV,
createAbstractVariable(Cleansed, Scope);
}
-// If Var is a current function argument then add it to CurrentFnArguments list.
-bool DwarfDebug::addCurrentFnArgument(DbgVariable *Var, LexicalScope *Scope) {
- if (!LScopes.isCurrentFunctionScope(Scope))
- return false;
- DIVariable DV = Var->getVariable();
- if (DV.getTag() != dwarf::DW_TAG_arg_variable)
- return false;
- unsigned ArgNo = DV.getArgNumber();
- if (ArgNo == 0)
- return false;
-
- size_t Size = CurrentFnArguments.size();
- if (Size == 0)
- CurrentFnArguments.resize(CurFn->getFunction()->arg_size());
- // llvm::Function argument size is not good indicator of how many
- // arguments does the function have at source level.
- if (ArgNo > Size)
- CurrentFnArguments.resize(ArgNo * 2);
- CurrentFnArguments[ArgNo - 1] = Var;
- return true;
-}
-
// Collect variable information from side table maintained by MMI.
void DwarfDebug::collectVariableInfoFromMMITable(
- SmallPtrSet<const MDNode *, 16> &Processed) {
+ SmallPtrSetImpl<const MDNode *> &Processed) {
for (const auto &VI : MMI->getVariableDbgInfo()) {
if (!VI.Var)
continue;
Processed.insert(VI.Var);
- DIVariable DV(VI.Var);
LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
// If variable scope is not found then skip this variable.
if (!Scope)
continue;
+ DIVariable DV(VI.Var);
+ DIExpression Expr(VI.Expr);
ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
- ConcreteVariables.push_back(make_unique<DbgVariable>(DV, this));
+ ConcreteVariables.push_back(make_unique<DbgVariable>(DV, Expr, this));
DbgVariable *RegVar = ConcreteVariables.back().get();
RegVar->setFrameIndex(VI.Slot);
- addScopeVariable(Scope, RegVar);
+ InfoHolder.addScopeVariable(Scope, RegVar);
}
}
// Get .debug_loc entry for the instruction range starting at MI.
static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
+ const MDNode *Expr = MI->getDebugExpression();
const MDNode *Var = MI->getDebugVariable();
- assert(MI->getNumOperands() == 3);
+ assert(MI->getNumOperands() == 4);
if (MI->getOperand(0).isReg()) {
MachineLocation MLoc;
// If the second operand is an immediate, this is a
@@ -1173,24 +804,138 @@ static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
MLoc.set(MI->getOperand(0).getReg());
else
MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
- return DebugLocEntry::Value(Var, MLoc);
+ return DebugLocEntry::Value(Var, Expr, MLoc);
}
if (MI->getOperand(0).isImm())
- return DebugLocEntry::Value(Var, MI->getOperand(0).getImm());
+ return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getImm());
if (MI->getOperand(0).isFPImm())
- return DebugLocEntry::Value(Var, MI->getOperand(0).getFPImm());
+ return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getFPImm());
if (MI->getOperand(0).isCImm())
- return DebugLocEntry::Value(Var, MI->getOperand(0).getCImm());
+ return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getCImm());
- llvm_unreachable("Unexpected 3 operand DBG_VALUE instruction!");
+ llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
}
-// Find variables for each lexical scope.
+/// Determine whether two variable pieces overlap.
+static bool piecesOverlap(DIExpression P1, DIExpression P2) {
+ if (!P1.isVariablePiece() || !P2.isVariablePiece())
+ return true;
+ unsigned l1 = P1.getPieceOffset();
+ unsigned l2 = P2.getPieceOffset();
+ unsigned r1 = l1 + P1.getPieceSize();
+ unsigned r2 = l2 + P2.getPieceSize();
+ // True where [l1,r1[ and [r1,r2[ overlap.
+ return (l1 < r2) && (l2 < r1);
+}
+
+/// Build the location list for all DBG_VALUEs in the function that
+/// describe the same variable. If the ranges of several independent
+/// pieces of the same variable overlap partially, split them up and
+/// combine the ranges. The resulting DebugLocEntries are will have
+/// strict monotonically increasing begin addresses and will never
+/// overlap.
+//
+// Input:
+//
+// Ranges History [var, loc, piece ofs size]
+// 0 | [x, (reg0, piece 0, 32)]
+// 1 | | [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
+// 2 | | ...
+// 3 | [clobber reg0]
+// 4 [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of x.
+//
+// Output:
+//
+// [0-1] [x, (reg0, piece 0, 32)]
+// [1-3] [x, (reg0, piece 0, 32), (reg1, piece 32, 32)]
+// [3-4] [x, (reg1, piece 32, 32)]
+// [4- ] [x, (mem, piece 0, 64)]
void
-DwarfDebug::collectVariableInfo(SmallPtrSet<const MDNode *, 16> &Processed) {
- LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
- DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
+DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
+ const DbgValueHistoryMap::InstrRanges &Ranges) {
+ SmallVector<DebugLocEntry::Value, 4> OpenRanges;
+
+ for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
+ const MachineInstr *Begin = I->first;
+ const MachineInstr *End = I->second;
+ assert(Begin->isDebugValue() && "Invalid History entry");
+
+ // Check if a variable is inaccessible in this range.
+ if (Begin->getNumOperands() > 1 &&
+ Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
+ OpenRanges.clear();
+ continue;
+ }
+
+ // If this piece overlaps with any open ranges, truncate them.
+ DIExpression DIExpr = Begin->getDebugExpression();
+ auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(),
+ [&](DebugLocEntry::Value R) {
+ return piecesOverlap(DIExpr, R.getExpression());
+ });
+ OpenRanges.erase(Last, OpenRanges.end());
+ const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
+ assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
+
+ const MCSymbol *EndLabel;
+ if (End != nullptr)
+ EndLabel = getLabelAfterInsn(End);
+ else if (std::next(I) == Ranges.end())
+ EndLabel = FunctionEndSym;
+ else
+ EndLabel = getLabelBeforeInsn(std::next(I)->first);
+ assert(EndLabel && "Forgot label after instruction ending a range!");
+
+ DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
+
+ auto Value = getDebugLocValue(Begin);
+ DebugLocEntry Loc(StartLabel, EndLabel, Value);
+ bool couldMerge = false;
+
+ // If this is a piece, it may belong to the current DebugLocEntry.
+ if (DIExpr.isVariablePiece()) {
+ // Add this value to the list of open ranges.
+ OpenRanges.push_back(Value);
+
+ // Attempt to add the piece to the last entry.
+ if (!DebugLoc.empty())
+ if (DebugLoc.back().MergeValues(Loc))
+ couldMerge = true;
+ }
+
+ if (!couldMerge) {
+ // Need to add a new DebugLocEntry. Add all values from still
+ // valid non-overlapping pieces.
+ if (OpenRanges.size())
+ Loc.addValues(OpenRanges);
+
+ DebugLoc.push_back(std::move(Loc));
+ }
+
+ // Attempt to coalesce the ranges of two otherwise identical
+ // DebugLocEntries.
+ auto CurEntry = DebugLoc.rbegin();
+ auto PrevEntry = std::next(CurEntry);
+ if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
+ DebugLoc.pop_back();
+
+ DEBUG({
+ dbgs() << CurEntry->getValues().size() << " Values:\n";
+ for (auto Value : CurEntry->getValues()) {
+ Value.getVariable()->dump();
+ Value.getExpression()->dump();
+ }
+ dbgs() << "-----\n";
+ });
+ }
+}
+
+
+// Find variables for each lexical scope.
+void
+DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP,
+ SmallPtrSetImpl<const MDNode *> &Processed) {
// Grab the variable info that was squirreled away in the MMI side-table.
collectVariableInfoFromMMITable(Processed);
@@ -1205,10 +950,7 @@ DwarfDebug::collectVariableInfo(SmallPtrSet<const MDNode *, 16> &Processed) {
continue;
LexicalScope *Scope = nullptr;
- if (DV.getTag() == dwarf::DW_TAG_arg_variable &&
- DISubprogram(DV.getContext()).describes(CurFn->getFunction()))
- Scope = LScopes.getCurrentFunctionScope();
- else if (MDNode *IA = DV.getInlinedAt()) {
+ if (MDNode *IA = DV.getInlinedAt()) {
DebugLoc DL = DebugLoc::getFromDILocation(IA);
Scope = LScopes.findInlinedScope(DebugLoc::get(
DL.getLine(), DL.getCol(), DV.getContext(), IA));
@@ -1224,7 +966,7 @@ DwarfDebug::collectVariableInfo(SmallPtrSet<const MDNode *, 16> &Processed) {
ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
ConcreteVariables.push_back(make_unique<DbgVariable>(MInsn, this));
DbgVariable *RegVar = ConcreteVariables.back().get();
- addScopeVariable(Scope, RegVar);
+ InfoHolder.addScopeVariable(Scope, RegVar);
// Check if the first DBG_VALUE is valid for the rest of the function.
if (Ranges.size() == 1 && Ranges.front().second == nullptr)
@@ -1235,53 +977,26 @@ DwarfDebug::collectVariableInfo(SmallPtrSet<const MDNode *, 16> &Processed) {
DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1);
DebugLocList &LocList = DotDebugLocEntries.back();
+ LocList.CU = &TheCU;
LocList.Label =
Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1);
- SmallVector<DebugLocEntry, 4> &DebugLoc = LocList.List;
- for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
- const MachineInstr *Begin = I->first;
- const MachineInstr *End = I->second;
- assert(Begin->isDebugValue() && "Invalid History entry");
-
- // Check if a variable is unaccessible in this range.
- if (Begin->getNumOperands() > 1 && Begin->getOperand(0).isReg() &&
- !Begin->getOperand(0).getReg())
- continue;
- DEBUG(dbgs() << "DotDebugLoc Pair:\n" << "\t" << *Begin);
- if (End != nullptr)
- DEBUG(dbgs() << "\t" << *End);
- else
- DEBUG(dbgs() << "\tNULL\n");
- const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
- assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
-
- const MCSymbol *EndLabel;
- if (End != nullptr)
- EndLabel = getLabelAfterInsn(End);
- else if (std::next(I) == Ranges.end())
- EndLabel = FunctionEndSym;
- else
- EndLabel = getLabelBeforeInsn(std::next(I)->first);
- assert(EndLabel && "Forgot label after instruction ending a range!");
-
- DebugLocEntry Loc(StartLabel, EndLabel, getDebugLocValue(Begin), TheCU);
- if (DebugLoc.empty() || !DebugLoc.back().Merge(Loc))
- DebugLoc.push_back(std::move(Loc));
- }
+ // Build the location list for this variable.
+ buildLocationList(LocList.List, Ranges);
}
// Collect info for variables that were optimized out.
- DIArray Variables = DISubprogram(FnScope->getScopeNode()).getVariables();
+ DIArray Variables = SP.getVariables();
for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
DIVariable DV(Variables.getElement(i));
assert(DV.isVariable());
- if (!Processed.insert(DV))
+ if (!Processed.insert(DV).second)
continue;
if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) {
ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
- ConcreteVariables.push_back(make_unique<DbgVariable>(DV, this));
- addScopeVariable(Scope, ConcreteVariables.back().get());
+ DIExpression NoExpr;
+ ConcreteVariables.push_back(make_unique<DbgVariable>(DV, NoExpr, this));
+ InfoHolder.addScopeVariable(Scope, ConcreteVariables.back().get());
}
}
}
@@ -1311,8 +1026,10 @@ void DwarfDebug::beginInstruction(const MachineInstr *MI) {
if (DL == PrologEndLoc) {
Flags |= DWARF2_FLAG_PROLOGUE_END;
PrologEndLoc = DebugLoc();
+ Flags |= DWARF2_FLAG_IS_STMT;
}
- if (PrologEndLoc.isUnknown())
+ if (DL.getLine() !=
+ Asm->OutStreamer.getContext().getCurrentDwarfLoc().getLine())
Flags |= DWARF2_FLAG_IS_STMT;
if (!DL.isUnknown()) {
@@ -1402,8 +1119,12 @@ static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
for (const auto &MBB : *MF)
for (const auto &MI : MBB)
if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
- !MI.getDebugLoc().isUnknown())
+ !MI.getDebugLoc().isUnknown()) {
+ // Did the target forget to set the FrameSetup flag for CFI insns?
+ assert(!MI.isCFIInstruction() &&
+ "First non-frame-setup instruction is a CFI instruction.");
return MI.getDebugLoc();
+ }
return DebugLoc();
}
@@ -1416,6 +1137,10 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
if (!MMI->hasDebugInfo())
return;
+ auto DI = FunctionDIs.find(MF->getFunction());
+ if (DI == FunctionDIs.end())
+ return;
+
// Grab the lexical scopes for the function, if we don't have any of those
// then we're not going to be able to do anything.
LScopes.initialize(*MF);
@@ -1431,6 +1156,14 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
// belongs to so that we add to the correct per-cu line table in the
// non-asm case.
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
+ // FnScope->getScopeNode() and DI->second should represent the same function,
+ // though they may not be the same MDNode due to inline functions merged in
+ // LTO where the debug info metadata still differs (either due to distinct
+ // written differences - two versions of a linkonce_odr function
+ // written/copied into two separate files, or some sub-optimal metadata that
+ // isn't structurally identical (see: file path/name info from clang, which
+ // includes the directory of the cpp file being built, even when the file name
+ // is absolute (such as an <> lookup header)))
DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
assert(TheCU && "Unable to find compile unit!");
if (Asm->OutStreamer.hasRawTextSupport())
@@ -1445,7 +1178,8 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
Asm->OutStreamer.EmitLabel(FunctionBeginSym);
// Calculate history for local variables.
- calculateDbgValueHistory(MF, Asm->TM.getRegisterInfo(), DbgValues);
+ calculateDbgValueHistory(MF, Asm->TM.getSubtargetImpl()->getRegisterInfo(),
+ DbgValues);
// Request labels for the full history.
for (const auto &I : DbgValues) {
@@ -1455,10 +1189,24 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
// The first mention of a function argument gets the FunctionBeginSym
// label, so arguments are visible when breaking at function entry.
- DIVariable DV(I.first);
- if (DV.isVariable() && DV.getTag() == dwarf::DW_TAG_arg_variable &&
- getDISubprogram(DV.getContext()).describes(MF->getFunction()))
+ DIVariable DIVar(Ranges.front().first->getDebugVariable());
+ if (DIVar.isVariable() && DIVar.getTag() == dwarf::DW_TAG_arg_variable &&
+ getDISubprogram(DIVar.getContext()).describes(MF->getFunction())) {
LabelsBeforeInsn[Ranges.front().first] = FunctionBeginSym;
+ if (Ranges.front().first->getDebugExpression().isVariablePiece()) {
+ // Mark all non-overlapping initial pieces.
+ for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
+ DIExpression Piece = I->first->getDebugExpression();
+ if (std::all_of(Ranges.begin(), I,
+ [&](DbgValueHistoryMap::InstrRange Pred) {
+ return !piecesOverlap(Piece, Pred.first->getDebugExpression());
+ }))
+ LabelsBeforeInsn[I->first] = FunctionBeginSym;
+ else
+ break;
+ }
+ }
+ }
for (const auto &Range : Ranges) {
requestLabelBeforeInsn(Range.first);
@@ -1484,55 +1232,16 @@ void DwarfDebug::beginFunction(const MachineFunction *MF) {
}
}
-void DwarfDebug::addScopeVariable(LexicalScope *LS, DbgVariable *Var) {
- if (addCurrentFnArgument(Var, LS))
- return;
- SmallVectorImpl<DbgVariable *> &Vars = ScopeVariables[LS];
- DIVariable DV = Var->getVariable();
- // Variables with positive arg numbers are parameters.
- if (unsigned ArgNum = DV.getArgNumber()) {
- // Keep all parameters in order at the start of the variable list to ensure
- // function types are correct (no out-of-order parameters)
- //
- // This could be improved by only doing it for optimized builds (unoptimized
- // builds have the right order to begin with), searching from the back (this
- // would catch the unoptimized case quickly), or doing a binary search
- // rather than linear search.
- SmallVectorImpl<DbgVariable *>::iterator I = Vars.begin();
- while (I != Vars.end()) {
- unsigned CurNum = (*I)->getVariable().getArgNumber();
- // A local (non-parameter) variable has been found, insert immediately
- // before it.
- if (CurNum == 0)
- break;
- // A later indexed parameter has been found, insert immediately before it.
- if (CurNum > ArgNum)
- break;
- ++I;
- }
- Vars.insert(I, Var);
- return;
- }
-
- Vars.push_back(Var);
-}
-
// Gather and emit post-function debug information.
void DwarfDebug::endFunction(const MachineFunction *MF) {
- // Every beginFunction(MF) call should be followed by an endFunction(MF) call,
- // though the beginFunction may not be called at all.
- // We should handle both cases.
- if (!CurFn)
- CurFn = MF;
- else
- assert(CurFn == MF);
- assert(CurFn != nullptr);
+ assert(CurFn == MF &&
+ "endFunction should be called with the same function as beginFunction");
- if (!MMI->hasDebugInfo() || LScopes.empty()) {
+ if (!MMI->hasDebugInfo() || LScopes.empty() ||
+ !FunctionDIs.count(MF->getFunction())) {
// If we don't have a lexical scope for this function then there will
// be a hole in the range information. Keep note of this by setting the
// previously used section to nullptr.
- PrevSection = nullptr;
PrevCU = nullptr;
CurFn = nullptr;
return;
@@ -1546,12 +1255,35 @@ void DwarfDebug::endFunction(const MachineFunction *MF) {
// Set DwarfDwarfCompileUnitID in MCContext to default value.
Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
+ LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
+ DISubprogram SP(FnScope->getScopeNode());
+ DwarfCompileUnit &TheCU = *SPMap.lookup(SP);
+
SmallPtrSet<const MDNode *, 16> ProcessedVars;
- collectVariableInfo(ProcessedVars);
+ collectVariableInfo(TheCU, SP, ProcessedVars);
- LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
- DwarfCompileUnit &TheCU = *SPMap.lookup(FnScope->getScopeNode());
+ // Add the range of this function to the list of ranges for the CU.
+ TheCU.addRange(RangeSpan(FunctionBeginSym, FunctionEndSym));
+
+ // Under -gmlt, skip building the subprogram if there are no inlined
+ // subroutines inside it.
+ if (TheCU.getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly &&
+ LScopes.getAbstractScopesList().empty() && !IsDarwin) {
+ assert(InfoHolder.getScopeVariables().empty());
+ assert(DbgValues.empty());
+ // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed
+ // by a -gmlt CU. Add a test and remove this assertion.
+ assert(AbstractVariables.empty());
+ LabelsBeforeInsn.clear();
+ LabelsAfterInsn.clear();
+ PrevLabel = nullptr;
+ CurFn = nullptr;
+ return;
+ }
+#ifndef NDEBUG
+ size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
+#endif
// Construct abstract scopes.
for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
DISubprogram SP(AScope->getScopeNode());
@@ -1561,29 +1293,25 @@ void DwarfDebug::endFunction(const MachineFunction *MF) {
for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
DIVariable DV(Variables.getElement(i));
assert(DV && DV.isVariable());
- if (!ProcessedVars.insert(DV))
+ if (!ProcessedVars.insert(DV).second)
continue;
ensureAbstractVariableIsCreated(DV, DV.getContext());
+ assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
+ && "ensureAbstractVariableIsCreated inserted abstract scopes");
}
- constructAbstractSubprogramScopeDIE(TheCU, AScope);
+ constructAbstractSubprogramScopeDIE(AScope);
}
- DIE &CurFnDIE = constructSubprogramScopeDIE(TheCU, FnScope);
- if (!CurFn->getTarget().Options.DisableFramePointerElim(*CurFn))
- TheCU.addFlag(CurFnDIE, dwarf::DW_AT_APPLE_omit_frame_ptr);
-
- // Add the range of this function to the list of ranges for the CU.
- RangeSpan Span(FunctionBeginSym, FunctionEndSym);
- TheCU.addRange(std::move(Span));
- PrevSection = Asm->getCurrentSection();
- PrevCU = &TheCU;
+ TheCU.constructSubprogramScopeDIE(FnScope);
+ if (auto *SkelCU = TheCU.getSkeleton())
+ if (!LScopes.getAbstractScopesList().empty())
+ SkelCU->constructSubprogramScopeDIE(FnScope);
// Clear debug info
// Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
// DbgVariables except those that are also in AbstractVariables (since they
// can be used cross-function)
- ScopeVariables.clear();
- CurrentFnArguments.clear();
+ InfoHolder.getScopeVariables().clear();
DbgValues.clear();
LabelsBeforeInsn.clear();
LabelsAfterInsn.clear();
@@ -1603,8 +1331,8 @@ void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
assert(Scope.isScope());
Fn = Scope.getFilename();
Dir = Scope.getDirectory();
- if (Scope.isLexicalBlock())
- Discriminator = DILexicalBlock(S).getDiscriminator();
+ if (Scope.isLexicalBlockFile())
+ Discriminator = DILexicalBlockFile(S).getDiscriminator();
unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID();
Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
@@ -1625,9 +1353,12 @@ void DwarfDebug::emitSectionLabels() {
// Dwarf sections base addresses.
DwarfInfoSectionSym =
emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
- if (useSplitDwarf())
+ if (useSplitDwarf()) {
DwarfInfoDWOSectionSym =
emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo");
+ DwarfTypesDWOSectionSym =
+ emitSectionSym(Asm, TLOF.getDwarfTypesDWOSection(), "section_types_dwo");
+ }
DwarfAbbrevSectionSym =
emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
if (useSplitDwarf())
@@ -1711,7 +1442,7 @@ void DwarfDebug::emitDIE(DIE &Die) {
void DwarfDebug::emitDebugInfo() {
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
- Holder.emitUnits(this, DwarfAbbrevSectionSym);
+ Holder.emitUnits(DwarfAbbrevSectionSym);
}
// Emit the abbreviation section.
@@ -1745,54 +1476,41 @@ void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
Asm->EmitInt8(1);
}
-// Emit visible names into a hashed accelerator table section.
-void DwarfDebug::emitAccelNames() {
- AccelNames.FinalizeTable(Asm, "Names");
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfAccelNamesSection());
- MCSymbol *SectionBegin = Asm->GetTempSymbol("names_begin");
+void DwarfDebug::emitAccel(DwarfAccelTable &Accel, const MCSection *Section,
+ StringRef TableName, StringRef SymName) {
+ Accel.FinalizeTable(Asm, TableName);
+ Asm->OutStreamer.SwitchSection(Section);
+ auto *SectionBegin = Asm->GetTempSymbol(SymName);
Asm->OutStreamer.EmitLabel(SectionBegin);
// Emit the full data.
- AccelNames.Emit(Asm, SectionBegin, &InfoHolder);
+ Accel.Emit(Asm, SectionBegin, this, DwarfStrSectionSym);
+}
+
+// Emit visible names into a hashed accelerator table section.
+void DwarfDebug::emitAccelNames() {
+ emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
+ "Names", "names_begin");
}
// Emit objective C classes and categories into a hashed accelerator table
// section.
void DwarfDebug::emitAccelObjC() {
- AccelObjC.FinalizeTable(Asm, "ObjC");
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfAccelObjCSection());
- MCSymbol *SectionBegin = Asm->GetTempSymbol("objc_begin");
- Asm->OutStreamer.EmitLabel(SectionBegin);
-
- // Emit the full data.
- AccelObjC.Emit(Asm, SectionBegin, &InfoHolder);
+ emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
+ "ObjC", "objc_begin");
}
// Emit namespace dies into a hashed accelerator table.
void DwarfDebug::emitAccelNamespaces() {
- AccelNamespace.FinalizeTable(Asm, "namespac");
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfAccelNamespaceSection());
- MCSymbol *SectionBegin = Asm->GetTempSymbol("namespac_begin");
- Asm->OutStreamer.EmitLabel(SectionBegin);
-
- // Emit the full data.
- AccelNamespace.Emit(Asm, SectionBegin, &InfoHolder);
+ emitAccel(AccelNamespace,
+ Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
+ "namespac", "namespac_begin");
}
// Emit type dies into a hashed accelerator table.
void DwarfDebug::emitAccelTypes() {
-
- AccelTypes.FinalizeTable(Asm, "types");
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getDwarfAccelTypesSection());
- MCSymbol *SectionBegin = Asm->GetTempSymbol("types_begin");
- Asm->OutStreamer.EmitLabel(SectionBegin);
-
- // Emit the full data.
- AccelTypes.Emit(Asm, SectionBegin, &InfoHolder);
+ emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
+ "types", "types_begin");
}
// Public name handling.
@@ -1859,12 +1577,13 @@ void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
: Asm->getObjFileLowering().getDwarfPubNamesSection();
- emitDebugPubSection(GnuStyle, PSec, "Names", &DwarfUnit::getGlobalNames);
+ emitDebugPubSection(GnuStyle, PSec, "Names",
+ &DwarfCompileUnit::getGlobalNames);
}
void DwarfDebug::emitDebugPubSection(
bool GnuStyle, const MCSection *PSec, StringRef Name,
- const StringMap<const DIE *> &(DwarfUnit::*Accessor)() const) {
+ const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) {
for (const auto &NU : CUMap) {
DwarfCompileUnit *TheU = NU.second;
@@ -1873,7 +1592,7 @@ void DwarfDebug::emitDebugPubSection(
if (Globals.empty())
continue;
- if (auto Skeleton = static_cast<DwarfCompileUnit *>(TheU->getSkeleton()))
+ if (auto *Skeleton = TheU->getSkeleton())
TheU = Skeleton;
unsigned ID = TheU->getUniqueID();
@@ -1895,7 +1614,7 @@ void DwarfDebug::emitDebugPubSection(
Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym());
Asm->OutStreamer.AddComment("Compilation Unit Length");
- Asm->EmitLabelDifference(TheU->getLabelEnd(), TheU->getLabelBegin(), 4);
+ Asm->EmitInt32(TheU->getLength());
// Emit the pubnames for this compilation unit.
for (const auto &GI : Globals) {
@@ -1928,7 +1647,8 @@ void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
: Asm->getObjFileLowering().getDwarfPubTypesSection();
- emitDebugPubSection(GnuStyle, PSec, "Types", &DwarfUnit::getGlobalTypes);
+ emitDebugPubSection(GnuStyle, PSec, "Types",
+ &DwarfCompileUnit::getGlobalTypes);
}
// Emit visible names into a debug str section.
@@ -1937,61 +1657,86 @@ void DwarfDebug::emitDebugStr() {
Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
}
+/// Emits an optimal (=sorted) sequence of DW_OP_pieces.
+void DwarfDebug::emitLocPieces(ByteStreamer &Streamer,
+ const DITypeIdentifierMap &Map,
+ ArrayRef<DebugLocEntry::Value> Values) {
+ assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) {
+ return P.isVariablePiece();
+ }) && "all values are expected to be pieces");
+ assert(std::is_sorted(Values.begin(), Values.end()) &&
+ "pieces are expected to be sorted");
+
+ unsigned Offset = 0;
+ for (auto Piece : Values) {
+ const unsigned SizeOfByte = 8;
+ DIExpression Expr = Piece.getExpression();
+ unsigned PieceOffset = Expr.getPieceOffset();
+ unsigned PieceSize = Expr.getPieceSize();
+ assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
+ if (Offset < PieceOffset) {
+ // The DWARF spec seriously mandates pieces with no locations for gaps.
+ Asm->EmitDwarfOpPiece(Streamer, (PieceOffset-Offset)*SizeOfByte);
+ Offset += PieceOffset-Offset;
+ }
+ Offset += PieceSize;
+
+#ifndef NDEBUG
+ DIVariable Var = Piece.getVariable();
+ assert(!Var.isIndirect() && "indirect address for piece");
+ unsigned VarSize = Var.getSizeInBits(Map);
+ assert(PieceSize+PieceOffset <= VarSize/SizeOfByte
+ && "piece is larger than or outside of variable");
+ assert(PieceSize*SizeOfByte != VarSize
+ && "piece covers entire variable");
+#endif
+
+ emitDebugLocValue(Streamer, Piece, PieceOffset*SizeOfByte);
+ }
+}
+
+
void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
const DebugLocEntry &Entry) {
- assert(Entry.getValues().size() == 1 &&
- "multi-value entries are not supported yet.");
const DebugLocEntry::Value Value = Entry.getValues()[0];
- DIVariable DV(Value.getVariable());
+ if (Value.isVariablePiece())
+ // Emit all pieces that belong to the same variable and range.
+ return emitLocPieces(Streamer, TypeIdentifierMap, Entry.getValues());
+
+ assert(Entry.getValues().size() == 1 && "only pieces may have >1 value");
+ emitDebugLocValue(Streamer, Value);
+}
+
+void DwarfDebug::emitDebugLocValue(ByteStreamer &Streamer,
+ const DebugLocEntry::Value &Value,
+ unsigned PieceOffsetInBits) {
+ DIVariable DV = Value.getVariable();
+ DebugLocDwarfExpression DwarfExpr(*Asm, Streamer);
+
+ // Regular entry.
if (Value.isInt()) {
DIBasicType BTy(resolve(DV.getType()));
if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed ||
- BTy.getEncoding() == dwarf::DW_ATE_signed_char)) {
- Streamer.EmitInt8(dwarf::DW_OP_consts, "DW_OP_consts");
- Streamer.EmitSLEB128(Value.getInt());
- } else {
- Streamer.EmitInt8(dwarf::DW_OP_constu, "DW_OP_constu");
- Streamer.EmitULEB128(Value.getInt());
- }
+ BTy.getEncoding() == dwarf::DW_ATE_signed_char))
+ DwarfExpr.AddSignedConstant(Value.getInt());
+ else
+ DwarfExpr.AddUnsignedConstant(Value.getInt());
} else if (Value.isLocation()) {
MachineLocation Loc = Value.getLoc();
- if (!DV.hasComplexAddress())
+ DIExpression Expr = Value.getExpression();
+ if (!Expr || (Expr.getNumElements() == 0))
// Regular entry.
Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
else {
// Complex address entry.
- unsigned N = DV.getNumAddrElements();
- unsigned i = 0;
- if (N >= 2 && DV.getAddrElement(0) == DIBuilder::OpPlus) {
- if (Loc.getOffset()) {
- i = 2;
- Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
- Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
- Streamer.EmitInt8(dwarf::DW_OP_plus_uconst, "DW_OP_plus_uconst");
- Streamer.EmitSLEB128(DV.getAddrElement(1));
- } else {
- // If first address element is OpPlus then emit
- // DW_OP_breg + Offset instead of DW_OP_reg + Offset.
- MachineLocation TLoc(Loc.getReg(), DV.getAddrElement(1));
- Asm->EmitDwarfRegOp(Streamer, TLoc, DV.isIndirect());
- i = 2;
- }
- } else {
- Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
- }
-
- // Emit remaining complex address elements.
- for (; i < N; ++i) {
- uint64_t Element = DV.getAddrElement(i);
- if (Element == DIBuilder::OpPlus) {
- Streamer.EmitInt8(dwarf::DW_OP_plus_uconst, "DW_OP_plus_uconst");
- Streamer.EmitULEB128(DV.getAddrElement(++i));
- } else if (Element == DIBuilder::OpDeref) {
- if (!Loc.isReg())
- Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
- } else
- llvm_unreachable("unknown Opcode found in complex address");
- }
+ if (Loc.getOffset()) {
+ DwarfExpr.AddMachineRegIndirect(Loc.getReg(), Loc.getOffset());
+ DwarfExpr.AddExpression(Expr, PieceOffsetInBits);
+ } else
+ DwarfExpr.AddMachineRegExpression(Expr, Loc.getReg(),
+ PieceOffsetInBits);
+ if (DV.isIndirect())
+ DwarfExpr.EmitOp(dwarf::DW_OP_deref);
}
}
// else ... ignore constant fp. There is not any good way to
@@ -2020,14 +1765,12 @@ void DwarfDebug::emitDebugLoc() {
unsigned char Size = Asm->getDataLayout().getPointerSize();
for (const auto &DebugLoc : DotDebugLocEntries) {
Asm->OutStreamer.EmitLabel(DebugLoc.Label);
+ const DwarfCompileUnit *CU = DebugLoc.CU;
for (const auto &Entry : DebugLoc.List) {
// Set up the range. This range is relative to the entry point of the
// compile unit. This is a hard coded 0 for low_pc when we're emitting
// ranges, or the DW_AT_low_pc on the compile unit otherwise.
- const DwarfCompileUnit *CU = Entry.getCU();
- if (CU->getRanges().size() == 1) {
- // Grab the begin symbol from the first range as our base.
- const MCSymbol *Base = CU->getRanges()[0].getStart();
+ if (auto *Base = CU->getBaseAddress()) {
Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size);
Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size);
} else {
@@ -2157,6 +1900,10 @@ void DwarfDebug::emitDebugARanges() {
for (DwarfCompileUnit *CU : CUs) {
std::vector<ArangeSpan> &List = Spans[CU];
+ // Describe the skeleton CU's offset and length, not the dwo file's.
+ if (auto *Skel = CU->getSkeleton())
+ CU = Skel;
+
// Emit size of content not including length itself.
unsigned ContentSize =
sizeof(int16_t) + // DWARF ARange version number
@@ -2179,7 +1926,7 @@ void DwarfDebug::emitDebugARanges() {
Asm->OutStreamer.AddComment("DWARF Arange version number");
Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
- Asm->EmitSectionOffset(CU->getLocalLabelBegin(), CU->getLocalSectionSym());
+ Asm->EmitSectionOffset(CU->getLabelBegin(), CU->getSectionSym());
Asm->OutStreamer.AddComment("Address Size (in bytes)");
Asm->EmitInt8(PtrSize);
Asm->OutStreamer.AddComment("Segment Size (in bytes)");
@@ -2223,6 +1970,9 @@ void DwarfDebug::emitDebugRanges() {
for (const auto &I : CUMap) {
DwarfCompileUnit *TheCU = I.second;
+ if (auto *Skel = TheCU->getSkeleton())
+ TheCU = Skel;
+
// Iterate over the misc ranges for the compile units in the module.
for (const RangeSpanList &List : TheCU->getRangeLists()) {
// Emit our symbol so we can find the beginning of the range.
@@ -2233,9 +1983,7 @@ void DwarfDebug::emitDebugRanges() {
const MCSymbol *End = Range.getEnd();
assert(Begin && "Range without a begin symbol?");
assert(End && "Range without an end symbol?");
- if (TheCU->getRanges().size() == 1) {
- // Grab the begin symbol from the first range as our base.
- const MCSymbol *Base = TheCU->getRanges()[0].getStart();
+ if (auto *Base = TheCU->getBaseAddress()) {
Asm->EmitLabelDifference(Begin, Base, Size);
Asm->EmitLabelDifference(End, Base, Size);
} else {
@@ -2248,23 +1996,6 @@ void DwarfDebug::emitDebugRanges() {
Asm->OutStreamer.EmitIntValue(0, Size);
Asm->OutStreamer.EmitIntValue(0, Size);
}
-
- // Now emit a range for the CU itself.
- if (TheCU->getRanges().size() > 1) {
- Asm->OutStreamer.EmitLabel(
- Asm->GetTempSymbol("cu_ranges", TheCU->getUniqueID()));
- for (const RangeSpan &Range : TheCU->getRanges()) {
- const MCSymbol *Begin = Range.getStart();
- const MCSymbol *End = Range.getEnd();
- assert(Begin && "Range without a begin symbol?");
- assert(End && "Range without an end symbol?");
- Asm->OutStreamer.EmitSymbolValue(Begin, Size);
- Asm->OutStreamer.EmitSymbolValue(End, Size);
- }
- // And terminate the list with two 0 values.
- Asm->OutStreamer.EmitIntValue(0, Size);
- Asm->OutStreamer.EmitIntValue(0, Size);
- }
}
}
@@ -2272,11 +2003,11 @@ void DwarfDebug::emitDebugRanges() {
void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
std::unique_ptr<DwarfUnit> NewU) {
- NewU->addLocalString(Die, dwarf::DW_AT_GNU_dwo_name,
- U.getCUNode().getSplitDebugFilename());
+ NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
+ U.getCUNode().getSplitDebugFilename());
if (!CompilationDir.empty())
- NewU->addLocalString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
+ NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
addGnuPubAttributes(*NewU, Die);
@@ -2301,31 +2032,13 @@ DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
return NewCU;
}
-// This DIE has the following attributes: DW_AT_comp_dir, DW_AT_dwo_name,
-// DW_AT_addr_base.
-DwarfTypeUnit &DwarfDebug::constructSkeletonTU(DwarfTypeUnit &TU) {
- DwarfCompileUnit &CU = static_cast<DwarfCompileUnit &>(
- *SkeletonHolder.getUnits()[TU.getCU().getUniqueID()]);
-
- auto OwnedUnit = make_unique<DwarfTypeUnit>(TU.getUniqueID(), CU, Asm, this,
- &SkeletonHolder);
- DwarfTypeUnit &NewTU = *OwnedUnit;
- NewTU.setTypeSignature(TU.getTypeSignature());
- NewTU.setType(nullptr);
- NewTU.initSection(
- Asm->getObjFileLowering().getDwarfTypesSection(TU.getTypeSignature()));
-
- initSkeletonUnit(TU, NewTU.getUnitDie(), std::move(OwnedUnit));
- return NewTU;
-}
-
// Emit the .debug_info.dwo section for separated dwarf. This contains the
// compile units that would normally be in debug_info.
void DwarfDebug::emitDebugInfoDWO() {
assert(useSplitDwarf() && "No split dwarf debug info?");
// Don't pass an abbrev symbol, using a constant zero instead so as not to
// emit relocations into the dwo file.
- InfoHolder.emitUnits(this, /* AbbrevSymbol */ nullptr);
+ InfoHolder.emitUnits(/* AbbrevSymbol */ nullptr);
}
// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
@@ -2349,9 +2062,8 @@ void DwarfDebug::emitDebugStrDWO() {
assert(useSplitDwarf() && "No split dwarf?");
const MCSection *OffSec =
Asm->getObjFileLowering().getDwarfStrOffDWOSection();
- const MCSymbol *StrSym = DwarfStrSectionSym;
InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
- OffSec, StrSym);
+ OffSec);
}
MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
@@ -2391,9 +2103,9 @@ void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
bool TopLevelType = TypeUnitsUnderConstruction.empty();
AddrPool.resetUsedFlag();
- auto OwnedUnit =
- make_unique<DwarfTypeUnit>(InfoHolder.getUnits().size(), CU, Asm, this,
- &InfoHolder, getDwoLineTable(CU));
+ auto OwnedUnit = make_unique<DwarfTypeUnit>(
+ InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm,
+ this, &InfoHolder, getDwoLineTable(CU));
DwarfTypeUnit &NewTU = *OwnedUnit;
DIE &UnitDie = NewTU.getUnitDie();
TU = &NewTU;
@@ -2406,15 +2118,13 @@ void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
uint64_t Signature = makeTypeSignature(Identifier);
NewTU.setTypeSignature(Signature);
- if (!useSplitDwarf())
+ if (useSplitDwarf())
+ NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
+ else {
CU.applyStmtList(UnitDie);
-
- // FIXME: Skip using COMDAT groups for type units in the .dwo file once tools
- // such as DWP ( http://gcc.gnu.org/wiki/DebugFissionDWP ) can cope with it.
- NewTU.initSection(
- useSplitDwarf()
- ? Asm->getObjFileLowering().getDwarfTypesDWOSection(Signature)
- : Asm->getObjFileLowering().getDwarfTypesSection(Signature));
+ NewTU.initSection(
+ Asm->getObjFileLowering().getDwarfTypesSection(Signature));
+ }
NewTU.setType(NewTU.createTypeDIE(CTy));
@@ -2442,29 +2152,12 @@ void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
// If the type wasn't dependent on fission addresses, finish adding the type
// and all its dependent types.
- for (auto &TU : TypeUnitsToAdd) {
- if (useSplitDwarf())
- TU.first->setSkeleton(constructSkeletonTU(*TU.first));
+ for (auto &TU : TypeUnitsToAdd)
InfoHolder.addUnit(std::move(TU.first));
- }
}
CU.addDIETypeSignature(RefDie, NewTU);
}
-void DwarfDebug::attachLowHighPC(DwarfCompileUnit &Unit, DIE &D,
- MCSymbol *Begin, MCSymbol *End) {
- assert(Begin && "Begin label should not be null!");
- assert(End && "End label should not be null!");
- assert(Begin->isDefined() && "Invalid starting label");
- assert(End->isDefined() && "Invalid end label");
-
- Unit.addLabelAddress(D, dwarf::DW_AT_low_pc, Begin);
- if (DwarfVersion < 4)
- Unit.addLabelAddress(D, dwarf::DW_AT_high_pc, End);
- else
- Unit.addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin);
-}
-
// Accelerator table mutators - add each name along with its companion
// DIE to the proper table while ensuring that the name that we're going
// to reference is in the string table. We do this since the names we
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h
index f2aa808..a1a9426 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h
@@ -11,29 +11,28 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DWARFDEBUG_H__
-#define CODEGEN_ASMPRINTER_DWARFDEBUG_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFDEBUG_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFDEBUG_H
-#include "DwarfFile.h"
#include "AsmPrinterHandler.h"
-#include "DIE.h"
#include "DbgValueHistoryCalculator.h"
#include "DebugLocEntry.h"
#include "DebugLocList.h"
#include "DwarfAccelTable.h"
+#include "DwarfFile.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
-#include "llvm/ADT/FoldingSet.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
-#include "llvm/MC/MachineLocation.h"
#include "llvm/MC/MCDwarf.h"
+#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/Allocator.h"
-
#include <memory>
namespace llvm {
@@ -70,6 +69,7 @@ public:
/// \brief This class is used to track local variable information.
class DbgVariable {
DIVariable Var; // Variable Descriptor.
+ DIExpression Expr; // Complex address location expression.
DIE *TheDIE; // Variable DIE.
unsigned DotDebugLocOffset; // Offset in DotDebugLocEntries.
const MachineInstr *MInsn; // DBG_VALUE instruction of the variable.
@@ -78,18 +78,22 @@ class DbgVariable {
public:
/// Construct a DbgVariable from a DIVariable.
- DbgVariable(DIVariable V, DwarfDebug *DD)
- : Var(V), TheDIE(nullptr), DotDebugLocOffset(~0U), MInsn(nullptr),
- FrameIndex(~0), DD(DD) {}
+ DbgVariable(DIVariable V, DIExpression E, DwarfDebug *DD)
+ : Var(V), Expr(E), TheDIE(nullptr), DotDebugLocOffset(~0U),
+ MInsn(nullptr), FrameIndex(~0), DD(DD) {
+ assert(Var.Verify() && Expr.Verify());
+ }
/// Construct a DbgVariable from a DEBUG_VALUE.
/// AbstractVar may be NULL.
DbgVariable(const MachineInstr *DbgValue, DwarfDebug *DD)
- : Var(DbgValue->getDebugVariable()), TheDIE(nullptr),
- DotDebugLocOffset(~0U), MInsn(DbgValue), FrameIndex(~0), DD(DD) {}
+ : Var(DbgValue->getDebugVariable()), Expr(DbgValue->getDebugExpression()),
+ TheDIE(nullptr), DotDebugLocOffset(~0U), MInsn(DbgValue),
+ FrameIndex(~0), DD(DD) {}
// Accessors.
DIVariable getVariable() const { return Var; }
+ DIExpression getExpression() const { return Expr; }
void setDIE(DIE &D) { TheDIE = &D; }
DIE *getDIE() const { return TheDIE; }
void setDotDebugLocOffset(unsigned O) { DotDebugLocOffset = O; }
@@ -124,14 +128,14 @@ public:
bool variableHasComplexAddress() const {
assert(Var.isVariable() && "Invalid complex DbgVariable!");
- return Var.hasComplexAddress();
+ return Expr.getNumElements() > 0;
}
bool isBlockByrefVariable() const;
unsigned getNumAddrElements() const {
assert(Var.isVariable() && "Invalid complex DbgVariable!");
- return Var.getNumAddrElements();
+ return Expr.getNumElements();
}
- uint64_t getAddrElement(unsigned i) const { return Var.getAddrElement(i); }
+ uint64_t getAddrElement(unsigned i) const { return Expr.getElement(i); }
DIType getType() const;
private:
@@ -159,26 +163,15 @@ class DwarfDebug : public AsmPrinterHandler {
// All DIEValues are allocated through this allocator.
BumpPtrAllocator DIEValueAllocator;
- // Handle to the compile unit used for the inline extension handling,
- // this is just so that the DIEValue allocator has a place to store
- // the particular elements.
- // FIXME: Store these off of DwarfDebug instead?
- DwarfCompileUnit *FirstCU;
-
// Maps MDNode with its corresponding DwarfCompileUnit.
MapVector<const MDNode *, DwarfCompileUnit *> CUMap;
// Maps subprogram MDNode with its corresponding DwarfCompileUnit.
- DenseMap<const MDNode *, DwarfCompileUnit *> SPMap;
+ MapVector<const MDNode *, DwarfCompileUnit *> SPMap;
// Maps a CU DIE with its corresponding DwarfCompileUnit.
DenseMap<const DIE *, DwarfCompileUnit *> CUDieMap;
- /// Maps MDNodes for type system with the corresponding DIEs. These DIEs can
- /// be shared across CUs, that is why we keep the map here instead
- /// of in DwarfCompileUnit.
- DenseMap<const MDNode *, DIE *> MDTypeNodeToDieMap;
-
// List of all labels used in aranges generation.
std::vector<SymbolCU> ArangeLabels;
@@ -189,19 +182,8 @@ class DwarfDebug : public AsmPrinterHandler {
typedef DenseMap<const MCSection *, SmallVector<SymbolCU, 8> > SectionMapType;
SectionMapType SectionMap;
- // List of arguments for current function.
- SmallVector<DbgVariable *, 8> CurrentFnArguments;
-
LexicalScopes LScopes;
- // Collection of abstract subprogram DIEs.
- DenseMap<const MDNode *, DIE *> AbstractSPDies;
-
- // Collection of dbg variables of a scope.
- typedef DenseMap<LexicalScope *, SmallVector<DbgVariable *, 8> >
- ScopeVariablesMap;
- ScopeVariablesMap ScopeVariables;
-
// Collection of abstract variables.
DenseMap<const MDNode *, std::unique_ptr<DbgVariable>> AbstractVariables;
SmallVector<std::unique_ptr<DbgVariable>, 64> ConcreteVariables;
@@ -210,10 +192,6 @@ class DwarfDebug : public AsmPrinterHandler {
// can refer to them in spite of insertions into this list.
SmallVector<DebugLocList, 4> DotDebugLocEntries;
- // Collection of subprogram DIEs that are marked (at the end of the module)
- // as DW_AT_inline.
- SmallPtrSet<DIE *, 4> InlinedSubprogramDIEs;
-
// This is a collection of subprogram MDNodes that are processed to
// create DIEs.
SmallPtrSet<const MDNode *, 16> ProcessedSPNodes;
@@ -243,10 +221,6 @@ class DwarfDebug : public AsmPrinterHandler {
// If nonnull, stores the current machine instruction we're processing.
const MachineInstr *CurMI;
- // If nonnull, stores the section that the previous function was allocated to
- // emitting.
- const MCSection *PrevSection;
-
// If nonnull, stores the CU in which the previous subprogram was contained.
const DwarfCompileUnit *PrevCU;
@@ -258,6 +232,7 @@ class DwarfDebug : public AsmPrinterHandler {
MCSymbol *DwarfDebugLocSectionSym, *DwarfLineSectionSym, *DwarfAddrSectionSym;
MCSymbol *FunctionBeginSym, *FunctionEndSym;
MCSymbol *DwarfInfoDWOSectionSym, *DwarfAbbrevDWOSectionSym;
+ MCSymbol *DwarfTypesDWOSectionSym;
MCSymbol *DwarfStrDWOSectionSym;
MCSymbol *DwarfGnuPubNamesSectionSym, *DwarfGnuPubTypesSectionSym;
@@ -322,6 +297,7 @@ class DwarfDebug : public AsmPrinterHandler {
// True iff there are multiple CUs in this module.
bool SingleCU;
+ bool IsDarwin;
AddressPool AddrPool;
@@ -330,9 +306,9 @@ class DwarfDebug : public AsmPrinterHandler {
DwarfAccelTable AccelNamespace;
DwarfAccelTable AccelTypes;
- MCDwarfDwoLineTable *getDwoLineTable(const DwarfCompileUnit &);
+ DenseMap<const Function *, DISubprogram> FunctionDIs;
- void addScopeVariable(LexicalScope *LS, DbgVariable *Var);
+ MCDwarfDwoLineTable *getDwoLineTable(const DwarfCompileUnit &);
const SmallVectorImpl<std::unique_ptr<DwarfUnit>> &getUnits() {
return InfoHolder.getUnits();
@@ -348,45 +324,8 @@ class DwarfDebug : public AsmPrinterHandler {
void ensureAbstractVariableIsCreatedIfScoped(const DIVariable &Var,
const MDNode *Scope);
- /// \brief Find DIE for the given subprogram and attach appropriate
- /// DW_AT_low_pc and DW_AT_high_pc attributes. If there are global
- /// variables in this scope then create and insert DIEs for these
- /// variables.
- DIE &updateSubprogramScopeDIE(DwarfCompileUnit &SPCU, DISubprogram SP);
-
- /// \brief A helper function to check whether the DIE for a given Scope is
- /// going to be null.
- bool isLexicalScopeDIENull(LexicalScope *Scope);
-
- /// \brief A helper function to construct a RangeSpanList for a given
- /// lexical scope.
- void addScopeRangeList(DwarfCompileUnit &TheCU, DIE &ScopeDIE,
- const SmallVectorImpl<InsnRange> &Range);
-
- /// \brief Construct new DW_TAG_lexical_block for this scope and
- /// attach DW_AT_low_pc/DW_AT_high_pc labels.
- std::unique_ptr<DIE> constructLexicalScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope);
-
- /// \brief This scope represents inlined body of a function. Construct
- /// DIE to represent this concrete inlined copy of the function.
- std::unique_ptr<DIE> constructInlinedScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope);
-
- /// \brief Construct a DIE for this scope.
- std::unique_ptr<DIE> constructScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope);
- void createAndAddScopeChildren(DwarfCompileUnit &TheCU, LexicalScope *Scope,
- DIE &ScopeDIE);
/// \brief Construct a DIE for this abstract scope.
- void constructAbstractSubprogramScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope);
- /// \brief Construct a DIE for this subprogram scope.
- DIE &constructSubprogramScopeDIE(DwarfCompileUnit &TheCU,
- LexicalScope *Scope);
- /// A helper function to create children of a Scope DIE.
- DIE *createScopeChildrenDIE(DwarfCompileUnit &TheCU, LexicalScope *Scope,
- SmallVectorImpl<std::unique_ptr<DIE>> &Children);
+ void constructAbstractSubprogramScopeDIE(LexicalScope *Scope);
/// \brief Emit initial Dwarf sections with a label at the start of each one.
void emitSectionLabels();
@@ -422,6 +361,10 @@ class DwarfDebug : public AsmPrinterHandler {
/// the line matrix.
void emitEndOfLineMatrix(unsigned SectionEnd);
+ /// \brief Emit a specified accelerator table.
+ void emitAccel(DwarfAccelTable &Accel, const MCSection *Section,
+ StringRef TableName, StringRef SymName);
+
/// \brief Emit visible names into a hashed accelerator table section.
void emitAccelNames();
@@ -447,10 +390,9 @@ class DwarfDebug : public AsmPrinterHandler {
/// index.
void emitDebugPubTypes(bool GnuStyle = false);
- void
- emitDebugPubSection(bool GnuStyle, const MCSection *PSec, StringRef Name,
- const StringMap<const DIE *> &(DwarfUnit::*Accessor)()
- const);
+ void emitDebugPubSection(
+ bool GnuStyle, const MCSection *PSec, StringRef Name,
+ const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const);
/// \brief Emit visible names into a debug str section.
void emitDebugStr();
@@ -505,15 +447,8 @@ class DwarfDebug : public AsmPrinterHandler {
DwarfCompileUnit &constructDwarfCompileUnit(DICompileUnit DIUnit);
/// \brief Construct imported_module or imported_declaration DIE.
- void constructImportedEntityDIE(DwarfCompileUnit &TheCU, const MDNode *N);
-
- /// \brief Construct import_module DIE.
- void constructImportedEntityDIE(DwarfCompileUnit &TheCU, const MDNode *N,
- DIE &Context);
-
- /// \brief Construct import_module DIE.
- void constructImportedEntityDIE(DwarfCompileUnit &TheCU,
- const DIImportedEntity &Module, DIE &Context);
+ void constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
+ const MDNode *N);
/// \brief Register a source line with debug info. Returns the unique
/// label that was emitted and which provides correspondence to the
@@ -525,38 +460,29 @@ class DwarfDebug : public AsmPrinterHandler {
/// ending of a scope.
void identifyScopeMarkers();
- /// \brief If Var is an current function argument that add it in
- /// CurrentFnArguments list.
- bool addCurrentFnArgument(DbgVariable *Var, LexicalScope *Scope);
-
/// \brief Populate LexicalScope entries with variables' info.
- void collectVariableInfo(SmallPtrSet<const MDNode *, 16> &ProcessedVars);
+ void collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP,
+ SmallPtrSetImpl<const MDNode *> &ProcessedVars);
+
+ /// \brief Build the location list for all DBG_VALUEs in the
+ /// function that describe the same variable.
+ void buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
+ const DbgValueHistoryMap::InstrRanges &Ranges);
/// \brief Collect variable information from the side table maintained
/// by MMI.
- void collectVariableInfoFromMMITable(SmallPtrSet<const MDNode *, 16> &P);
+ void collectVariableInfoFromMMITable(SmallPtrSetImpl<const MDNode *> &P);
/// \brief Ensure that a label will be emitted before MI.
void requestLabelBeforeInsn(const MachineInstr *MI) {
LabelsBeforeInsn.insert(std::make_pair(MI, nullptr));
}
- /// \brief Return Label preceding the instruction.
- MCSymbol *getLabelBeforeInsn(const MachineInstr *MI);
-
/// \brief Ensure that a label will be emitted after MI.
void requestLabelAfterInsn(const MachineInstr *MI) {
LabelsAfterInsn.insert(std::make_pair(MI, nullptr));
}
- /// \brief Return Label immediately following the instruction.
- MCSymbol *getLabelAfterInsn(const MachineInstr *MI);
-
- void attachRangesOrLowHighPC(DwarfCompileUnit &Unit, DIE &D,
- const SmallVectorImpl<InsnRange> &Ranges);
- void attachLowHighPC(DwarfCompileUnit &Unit, DIE &D, MCSymbol *Begin,
- MCSymbol *End);
-
public:
//===--------------------------------------------------------------------===//
// Main entry points.
@@ -565,13 +491,6 @@ public:
~DwarfDebug() override;
- void insertDIE(const MDNode *TypeMD, DIE *Die) {
- MDTypeNodeToDieMap.insert(std::make_pair(TypeMD, Die));
- }
- DIE *getDIE(const MDNode *TypeMD) {
- return MDTypeNodeToDieMap.lookup(TypeMD);
- }
-
/// \brief Emit all Dwarf sections that should come prior to the
/// content.
void beginModule();
@@ -624,11 +543,15 @@ public:
/// Returns the section symbol for the .debug_loc section.
MCSymbol *getDebugLocSym() const { return DwarfDebugLocSectionSym; }
- /// Returns the previous section that was emitted into.
- const MCSection *getPrevSection() const { return PrevSection; }
+ /// Returns the section symbol for the .debug_str section.
+ MCSymbol *getDebugStrSym() const { return DwarfStrSectionSym; }
+
+ /// Returns the section symbol for the .debug_ranges section.
+ MCSymbol *getRangeSectionSym() const { return DwarfDebugRangeSectionSym; }
/// Returns the previous CU that was being updated
const DwarfCompileUnit *getPrevCU() const { return PrevCU; }
+ void setPrevCU(const DwarfCompileUnit *PrevCU) { this->PrevCU = PrevCU; }
/// Returns the entries for the .debug_loc section.
const SmallVectorImpl<DebugLocList> &
@@ -639,6 +562,14 @@ public:
/// \brief Emit an entry for the debug loc section. This can be used to
/// handle an entry that's going to be emitted into the debug loc section.
void emitDebugLocEntry(ByteStreamer &Streamer, const DebugLocEntry &Entry);
+ /// \brief emit a single value for the debug loc section.
+ void emitDebugLocValue(ByteStreamer &Streamer,
+ const DebugLocEntry::Value &Value,
+ unsigned PieceOffsetInBits = 0);
+ /// Emits an optimal (=sorted) sequence of DW_OP_pieces.
+ void emitLocPieces(ByteStreamer &Streamer,
+ const DITypeIdentifierMap &Map,
+ ArrayRef<DebugLocEntry::Value> Values);
/// Emit the location for a debug loc entry, including the size header.
void emitDebugLocEntryLocation(const DebugLocEntry &Entry);
@@ -672,6 +603,40 @@ public:
void addAccelNamespace(StringRef Name, const DIE &Die);
void addAccelType(StringRef Name, const DIE &Die, char Flags);
+
+ const MachineFunction *getCurrentFunction() const { return CurFn; }
+ const MCSymbol *getFunctionBeginSym() const { return FunctionBeginSym; }
+ const MCSymbol *getFunctionEndSym() const { return FunctionEndSym; }
+
+ iterator_range<ImportedEntityMap::const_iterator>
+ findImportedEntitiesForScope(const MDNode *Scope) const {
+ return make_range(std::equal_range(
+ ScopesWithImportedEntities.begin(), ScopesWithImportedEntities.end(),
+ std::pair<const MDNode *, const MDNode *>(Scope, nullptr),
+ less_first()));
+ }
+
+ /// \brief A helper function to check whether the DIE for a given Scope is
+ /// going to be null.
+ bool isLexicalScopeDIENull(LexicalScope *Scope);
+
+ /// \brief Return Label preceding the instruction.
+ MCSymbol *getLabelBeforeInsn(const MachineInstr *MI);
+
+ /// \brief Return Label immediately following the instruction.
+ MCSymbol *getLabelAfterInsn(const MachineInstr *MI);
+
+ // FIXME: Consider rolling ranges up into DwarfDebug since we use a single
+ // range_base anyway, so there's no need to keep them as separate per-CU range
+ // lists. (though one day we might end up with a range.dwo section, in which
+ // case it'd go to DwarfFile)
+ unsigned getNextRangeNumber() { return GlobalRangeCount++; }
+
+ // FIXME: Sink these functions down into DwarfFile/Dwarf*Unit.
+
+ SmallPtrSet<const MDNode *, 16> &getProcessedSPNodes() {
+ return ProcessedSPNodes;
+ }
};
} // End of namespace llvm
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h
index 0440fce..e8867c0a 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_ASMPRINTER_DWARFEXCEPTION_H
-#define LLVM_CODEGEN_ASMPRINTER_DWARFEXCEPTION_H
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXCEPTION_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXCEPTION_H
#include "EHStreamer.h"
#include "llvm/CodeGen/AsmPrinter.h"
@@ -81,39 +81,6 @@ public:
/// endFunction - Gather and emit post-function exception information.
void endFunction(const MachineFunction *) override;
};
-
-class Win64Exception : public EHStreamer {
- /// shouldEmitPersonality - Per-function flag to indicate if personality
- /// info should be emitted.
- bool shouldEmitPersonality;
-
- /// shouldEmitLSDA - Per-function flag to indicate if the LSDA
- /// should be emitted.
- bool shouldEmitLSDA;
-
- /// shouldEmitMoves - Per-function flag to indicate if frame moves info
- /// should be emitted.
- bool shouldEmitMoves;
-
-public:
- //===--------------------------------------------------------------------===//
- // Main entry points.
- //
- Win64Exception(AsmPrinter *A);
- virtual ~Win64Exception();
-
- /// endModule - Emit all exception information that should come after the
- /// content.
- void endModule() override;
-
- /// beginFunction - Gather pre-function exception information. Assumes being
- /// emitted immediately after the function entry point.
- void beginFunction(const MachineFunction *MF) override;
-
- /// endFunction - Gather and emit post-function exception information.
- void endFunction(const MachineFunction *) override;
-};
-
} // End of namespace llvm
#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp
new file mode 100644
index 0000000..8e85eff
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp
@@ -0,0 +1,260 @@
+//===-- llvm/CodeGen/DwarfExpression.cpp - Dwarf Debug Framework ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing dwarf debug info into asm files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DwarfExpression.h"
+#include "DwarfDebug.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+using namespace llvm;
+
+const TargetRegisterInfo *DwarfExpression::getTRI() const {
+ return AP.TM.getSubtargetImpl()->getRegisterInfo();
+}
+
+unsigned DwarfExpression::getDwarfVersion() const {
+ return AP.getDwarfDebug()->getDwarfVersion();
+}
+
+void DwarfExpression::AddReg(int DwarfReg, const char *Comment) {
+ assert(DwarfReg >= 0 && "invalid negative dwarf register number");
+ if (DwarfReg < 32) {
+ EmitOp(dwarf::DW_OP_reg0 + DwarfReg, Comment);
+ } else {
+ EmitOp(dwarf::DW_OP_regx, Comment);
+ EmitUnsigned(DwarfReg);
+ }
+}
+
+void DwarfExpression::AddRegIndirect(int DwarfReg, int Offset, bool Deref) {
+ assert(DwarfReg >= 0 && "invalid negative dwarf register number");
+ if (DwarfReg < 32) {
+ EmitOp(dwarf::DW_OP_breg0 + DwarfReg);
+ } else {
+ EmitOp(dwarf::DW_OP_bregx);
+ EmitUnsigned(DwarfReg);
+ }
+ EmitSigned(Offset);
+ if (Deref)
+ EmitOp(dwarf::DW_OP_deref);
+}
+
+void DwarfExpression::AddOpPiece(unsigned SizeInBits, unsigned OffsetInBits) {
+ assert(SizeInBits > 0 && "piece has size zero");
+ const unsigned SizeOfByte = 8;
+ if (OffsetInBits > 0 || SizeInBits % SizeOfByte) {
+ EmitOp(dwarf::DW_OP_bit_piece);
+ EmitUnsigned(SizeInBits);
+ EmitUnsigned(OffsetInBits);
+ } else {
+ EmitOp(dwarf::DW_OP_piece);
+ unsigned ByteSize = SizeInBits / SizeOfByte;
+ EmitUnsigned(ByteSize);
+ }
+}
+
+void DwarfExpression::AddShr(unsigned ShiftBy) {
+ EmitOp(dwarf::DW_OP_constu);
+ EmitUnsigned(ShiftBy);
+ EmitOp(dwarf::DW_OP_shr);
+}
+
+bool DwarfExpression::AddMachineRegIndirect(unsigned MachineReg, int Offset) {
+ int DwarfReg = getTRI()->getDwarfRegNum(MachineReg, false);
+ if (DwarfReg < 0)
+ return false;
+
+ if (isFrameRegister(MachineReg)) {
+ // If variable offset is based in frame register then use fbreg.
+ EmitOp(dwarf::DW_OP_fbreg);
+ EmitSigned(Offset);
+ } else {
+ AddRegIndirect(DwarfReg, Offset);
+ }
+ return true;
+}
+
+bool DwarfExpression::AddMachineRegPiece(unsigned MachineReg,
+ unsigned PieceSizeInBits,
+ unsigned PieceOffsetInBits) {
+ const TargetRegisterInfo *TRI = getTRI();
+ int Reg = TRI->getDwarfRegNum(MachineReg, false);
+
+ // If this is a valid register number, emit it.
+ if (Reg >= 0) {
+ AddReg(Reg);
+ if (PieceSizeInBits)
+ AddOpPiece(PieceSizeInBits, PieceOffsetInBits);
+ return true;
+ }
+
+ // Walk up the super-register chain until we find a valid number.
+ // For example, EAX on x86_64 is a 32-bit piece of RAX with offset 0.
+ for (MCSuperRegIterator SR(MachineReg, TRI); SR.isValid(); ++SR) {
+ Reg = TRI->getDwarfRegNum(*SR, false);
+ if (Reg >= 0) {
+ unsigned Idx = TRI->getSubRegIndex(*SR, MachineReg);
+ unsigned Size = TRI->getSubRegIdxSize(Idx);
+ unsigned RegOffset = TRI->getSubRegIdxOffset(Idx);
+ AddReg(Reg, "super-register");
+ if (PieceOffsetInBits == RegOffset) {
+ AddOpPiece(Size, RegOffset);
+ } else {
+ // If this is part of a variable in a sub-register at a
+ // non-zero offset, we need to manually shift the value into
+ // place, since the DW_OP_piece describes the part of the
+ // variable, not the position of the subregister.
+ if (RegOffset)
+ AddShr(RegOffset);
+ AddOpPiece(Size, PieceOffsetInBits);
+ }
+ return true;
+ }
+ }
+
+ // Otherwise, attempt to find a covering set of sub-register numbers.
+ // For example, Q0 on ARM is a composition of D0+D1.
+ //
+ // Keep track of the current position so we can emit the more
+ // efficient DW_OP_piece.
+ unsigned CurPos = PieceOffsetInBits;
+ // The size of the register in bits, assuming 8 bits per byte.
+ unsigned RegSize = TRI->getMinimalPhysRegClass(MachineReg)->getSize() * 8;
+ // Keep track of the bits in the register we already emitted, so we
+ // can avoid emitting redundant aliasing subregs.
+ SmallBitVector Coverage(RegSize, false);
+ for (MCSubRegIterator SR(MachineReg, TRI); SR.isValid(); ++SR) {
+ unsigned Idx = TRI->getSubRegIndex(MachineReg, *SR);
+ unsigned Size = TRI->getSubRegIdxSize(Idx);
+ unsigned Offset = TRI->getSubRegIdxOffset(Idx);
+ Reg = TRI->getDwarfRegNum(*SR, false);
+
+ // Intersection between the bits we already emitted and the bits
+ // covered by this subregister.
+ SmallBitVector Intersection(RegSize, false);
+ Intersection.set(Offset, Offset + Size);
+ Intersection ^= Coverage;
+
+ // If this sub-register has a DWARF number and we haven't covered
+ // its range, emit a DWARF piece for it.
+ if (Reg >= 0 && Intersection.any()) {
+ AddReg(Reg, "sub-register");
+ AddOpPiece(Size, Offset == CurPos ? 0 : Offset);
+ CurPos = Offset + Size;
+
+ // Mark it as emitted.
+ Coverage.set(Offset, Offset + Size);
+ }
+ }
+
+ return CurPos > PieceOffsetInBits;
+}
+
+void DwarfExpression::AddSignedConstant(int Value) {
+ EmitOp(dwarf::DW_OP_consts);
+ EmitSigned(Value);
+ // The proper way to describe a constant value is
+ // DW_OP_constu <const>, DW_OP_stack_value.
+ // Unfortunately, DW_OP_stack_value was not available until DWARF-4,
+ // so we will continue to generate DW_OP_constu <const> for DWARF-2
+ // and DWARF-3. Technically, this is incorrect since DW_OP_const <const>
+ // actually describes a value at a constant addess, not a constant value.
+ // However, in the past there was no better way to describe a constant
+ // value, so the producers and consumers started to rely on heuristics
+ // to disambiguate the value vs. location status of the expression.
+ // See PR21176 for more details.
+ if (getDwarfVersion() >= 4)
+ EmitOp(dwarf::DW_OP_stack_value);
+}
+
+void DwarfExpression::AddUnsignedConstant(unsigned Value) {
+ EmitOp(dwarf::DW_OP_constu);
+ EmitUnsigned(Value);
+ // cf. comment in DwarfExpression::AddSignedConstant().
+ if (getDwarfVersion() >= 4)
+ EmitOp(dwarf::DW_OP_stack_value);
+}
+
+static unsigned getOffsetOrZero(unsigned OffsetInBits,
+ unsigned PieceOffsetInBits) {
+ if (OffsetInBits == PieceOffsetInBits)
+ return 0;
+ assert(OffsetInBits >= PieceOffsetInBits && "overlapping pieces");
+ return OffsetInBits;
+}
+
+bool DwarfExpression::AddMachineRegExpression(DIExpression Expr,
+ unsigned MachineReg,
+ unsigned PieceOffsetInBits) {
+ unsigned N = Expr.getNumElements();
+ unsigned I = 0;
+ bool ValidReg = false;
+ // Pattern-match combinations for which more efficient representations exist
+ // first.
+ if (N >= 3 && Expr.getElement(0) == dwarf::DW_OP_piece) {
+ unsigned SizeOfByte = 8;
+ unsigned OffsetInBits = Expr.getElement(1) * SizeOfByte;
+ unsigned SizeInBits = Expr.getElement(2) * SizeOfByte;
+ ValidReg =
+ AddMachineRegPiece(MachineReg, SizeInBits,
+ getOffsetOrZero(OffsetInBits, PieceOffsetInBits));
+ I = 3;
+ } else if (N >= 3 && Expr.getElement(0) == dwarf::DW_OP_plus &&
+ Expr.getElement(2) == dwarf::DW_OP_deref) {
+ // [DW_OP_reg,Offset,DW_OP_plus,DW_OP_deref] --> [DW_OP_breg,Offset].
+ unsigned Offset = Expr.getElement(1);
+ ValidReg = AddMachineRegIndirect(MachineReg, Offset);
+ I = 3;
+ } else if (N >= 1 && Expr.getElement(0) == dwarf::DW_OP_deref) {
+ // [DW_OP_reg,DW_OP_deref] --> [DW_OP_breg].
+ ValidReg = AddMachineRegIndirect(MachineReg);
+ I = 1;
+ } else
+ ValidReg = AddMachineRegPiece(MachineReg);
+
+ if (!ValidReg)
+ return false;
+
+ // Emit remaining elements of the expression.
+ AddExpression(Expr, I);
+ return true;
+}
+
+void DwarfExpression::AddExpression(DIExpression Expr, unsigned I,
+ unsigned PieceOffsetInBits) {
+ unsigned N = Expr.getNumElements();
+ for (; I < N; ++I) {
+ switch (Expr.getElement(I)) {
+ case dwarf::DW_OP_piece: {
+ unsigned SizeOfByte = 8;
+ unsigned OffsetInBits = Expr.getElement(++I) * SizeOfByte;
+ unsigned SizeInBits = Expr.getElement(++I) * SizeOfByte;
+ AddOpPiece(SizeInBits, getOffsetOrZero(OffsetInBits, PieceOffsetInBits));
+ break;
+ }
+ case dwarf::DW_OP_plus:
+ EmitOp(dwarf::DW_OP_plus_uconst);
+ EmitUnsigned(Expr.getElement(++I));
+ break;
+ case dwarf::DW_OP_deref:
+ EmitOp(dwarf::DW_OP_deref);
+ break;
+ default:
+ llvm_unreachable("unhandled opcode found in DIExpression");
+ }
+ }
+}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h
new file mode 100644
index 0000000..92e4d5d
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h
@@ -0,0 +1,133 @@
+//===-- llvm/CodeGen/DwarfExpression.h - Dwarf Compile Unit ---*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing dwarf compile unit.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXPRESSION_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXPRESSION_H
+
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class AsmPrinter;
+class ByteStreamer;
+class TargetRegisterInfo;
+class DwarfUnit;
+class DIELoc;
+
+/// Base class containing the logic for constructing DWARF expressions
+/// independently of whether they are emitted into a DIE or into a .debug_loc
+/// entry.
+class DwarfExpression {
+protected:
+ const AsmPrinter &AP;
+ // Various convenience accessors that extract things out of AsmPrinter.
+ const TargetRegisterInfo *getTRI() const;
+ unsigned getDwarfVersion() const;
+
+public:
+ DwarfExpression(const AsmPrinter &AP) : AP(AP) {}
+ virtual ~DwarfExpression() {}
+
+ /// Output a dwarf operand and an optional assembler comment.
+ virtual void EmitOp(uint8_t Op, const char *Comment = nullptr) = 0;
+ /// Emit a raw signed value.
+ virtual void EmitSigned(int Value) = 0;
+ /// Emit a raw unsigned value.
+ virtual void EmitUnsigned(unsigned Value) = 0;
+ /// Return whether the given machine register is the frame register in the
+ /// current function.
+ virtual bool isFrameRegister(unsigned MachineReg) = 0;
+
+ /// Emit a dwarf register operation.
+ void AddReg(int DwarfReg, const char *Comment = nullptr);
+ /// Emit an (double-)indirect dwarf register operation.
+ void AddRegIndirect(int DwarfReg, int Offset, bool Deref = false);
+
+ /// Emit a dwarf register operation for describing
+ /// - a small value occupying only part of a register or
+ /// - a register representing only part of a value.
+ void AddOpPiece(unsigned SizeInBits, unsigned OffsetInBits = 0);
+ /// Emit a shift-right dwarf expression.
+ void AddShr(unsigned ShiftBy);
+
+ /// Emit an indirect dwarf register operation for the given machine register.
+ /// \return false if no DWARF register exists for MachineReg.
+ bool AddMachineRegIndirect(unsigned MachineReg, int Offset = 0);
+
+ /// \brief Emit a partial DWARF register operation.
+ /// \param MachineReg the register
+ /// \param PieceSizeInBits size and
+ /// \param PieceOffsetInBits offset of the piece in bits, if this is one
+ /// piece of an aggregate value.
+ ///
+ /// If size and offset is zero an operation for the entire
+ /// register is emitted: Some targets do not provide a DWARF
+ /// register number for every register. If this is the case, this
+ /// function will attempt to emit a DWARF register by emitting a
+ /// piece of a super-register or by piecing together multiple
+ /// subregisters that alias the register.
+ ///
+ /// \return false if no DWARF register exists for MachineReg.
+ bool AddMachineRegPiece(unsigned MachineReg, unsigned PieceSizeInBits = 0,
+ unsigned PieceOffsetInBits = 0);
+
+ /// Emit a signed constant.
+ void AddSignedConstant(int Value);
+ /// Emit an unsigned constant.
+ void AddUnsignedConstant(unsigned Value);
+
+ /// Emit an entire DIExpression on top of a machine register location.
+ /// \param PieceOffsetInBits If this is one piece out of a fragmented
+ /// location, this is the offset of the piece inside the entire variable.
+ /// \return false if no DWARF register exists for MachineReg.
+ bool AddMachineRegExpression(DIExpression Expr, unsigned MachineReg,
+ unsigned PieceOffsetInBits = 0);
+ /// Emit a the operations in a DIExpression, starting from element I.
+ /// \param PieceOffsetInBits If this is one piece out of a fragmented
+ /// location, this is the offset of the piece inside the entire variable.
+ void AddExpression(DIExpression Expr, unsigned PieceOffsetInBits = 0,
+ unsigned I = 0);
+};
+
+/// DwarfExpression implementation for .debug_loc entries.
+class DebugLocDwarfExpression : public DwarfExpression {
+ ByteStreamer &BS;
+
+public:
+ DebugLocDwarfExpression(const AsmPrinter &AP, ByteStreamer &BS)
+ : DwarfExpression(AP), BS(BS) {}
+
+ void EmitOp(uint8_t Op, const char *Comment = nullptr) override;
+ void EmitSigned(int Value) override;
+ void EmitUnsigned(unsigned Value) override;
+ bool isFrameRegister(unsigned MachineReg) override;
+};
+
+/// DwarfExpression implementation for singular DW_AT_location.
+class DIEDwarfExpression : public DwarfExpression {
+ DwarfUnit &DU;
+ DIELoc &DIE;
+
+public:
+ DIEDwarfExpression(const AsmPrinter &AP, DwarfUnit &DU, DIELoc &DIE)
+ : DwarfExpression(AP), DU(DU), DIE(DIE) {}
+
+ void EmitOp(uint8_t Op, const char *Comment = nullptr) override;
+ void EmitSigned(int Value) override;
+ void EmitUnsigned(unsigned Value) override;
+ bool isFrameRegister(unsigned MachineReg) override;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp
index 737ee54..549abf8 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp
@@ -8,18 +8,18 @@
//===----------------------------------------------------------------------===//
#include "DwarfFile.h"
-
#include "DwarfDebug.h"
#include "DwarfUnit.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/LEB128.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
namespace llvm {
-DwarfFile::DwarfFile(AsmPrinter *AP, StringRef Pref, BumpPtrAllocator &DA)
- : Asm(AP), StrPool(DA, *Asm, Pref) {}
+DwarfFile::DwarfFile(AsmPrinter *AP, DwarfDebug &DD, StringRef Pref,
+ BumpPtrAllocator &DA)
+ : Asm(AP), DD(DD), StrPool(DA, *Asm, Pref) {}
DwarfFile::~DwarfFile() {}
@@ -48,25 +48,18 @@ void DwarfFile::addUnit(std::unique_ptr<DwarfUnit> U) {
// Emit the various dwarf units to the unit section USection with
// the abbreviations going into ASection.
-void DwarfFile::emitUnits(DwarfDebug *DD, const MCSymbol *ASectionSym) {
+void DwarfFile::emitUnits(const MCSymbol *ASectionSym) {
for (const auto &TheU : CUs) {
DIE &Die = TheU->getUnitDie();
const MCSection *USection = TheU->getSection();
Asm->OutStreamer.SwitchSection(USection);
- // Emit the compile units header.
- Asm->OutStreamer.EmitLabel(TheU->getLabelBegin());
-
- // Emit size of content not including length itself
- Asm->OutStreamer.AddComment("Length of Unit");
- Asm->EmitInt32(TheU->getHeaderSize() + Die.getSize());
-
TheU->emitHeader(ASectionSym);
- DD->emitDIE(Die);
- Asm->OutStreamer.EmitLabel(TheU->getLabelEnd());
+ DD.emitDIE(Die);
}
}
+
// Compute the size and offset for each DIE.
void DwarfFile::computeSizeAndOffsets() {
// Offset from the first CU in the debug info section is 0 initially.
@@ -149,8 +142,44 @@ void DwarfFile::emitAbbrevs(const MCSection *Section) {
// Emit strings into a string section.
void DwarfFile::emitStrings(const MCSection *StrSection,
- const MCSection *OffsetSection,
- const MCSymbol *StrSecSym) {
- StrPool.emit(*Asm, StrSection, OffsetSection, StrSecSym);
+ const MCSection *OffsetSection) {
+ StrPool.emit(*Asm, StrSection, OffsetSection);
+}
+
+void DwarfFile::addScopeVariable(LexicalScope *LS, DbgVariable *Var) {
+ SmallVectorImpl<DbgVariable *> &Vars = ScopeVariables[LS];
+ DIVariable DV = Var->getVariable();
+ // Variables with positive arg numbers are parameters.
+ if (unsigned ArgNum = DV.getArgNumber()) {
+ // Keep all parameters in order at the start of the variable list to ensure
+ // function types are correct (no out-of-order parameters)
+ //
+ // This could be improved by only doing it for optimized builds (unoptimized
+ // builds have the right order to begin with), searching from the back (this
+ // would catch the unoptimized case quickly), or doing a binary search
+ // rather than linear search.
+ auto I = Vars.begin();
+ while (I != Vars.end()) {
+ unsigned CurNum = (*I)->getVariable().getArgNumber();
+ // A local (non-parameter) variable has been found, insert immediately
+ // before it.
+ if (CurNum == 0)
+ break;
+ // A later indexed parameter has been found, insert immediately before it.
+ if (CurNum > ArgNum)
+ break;
+ // FIXME: There are still some cases where two inlined functions are
+ // conflated together (two calls to the same function at the same
+ // location (eg: via a macro, or without column info, etc)) and then
+ // their arguments are conflated as well.
+ assert((LS->getParent() || CurNum != ArgNum) &&
+ "Duplicate argument for top level (non-inlined) function");
+ ++I;
+ }
+ Vars.insert(I, Var);
+ return;
+ }
+
+ Vars.push_back(Var);
}
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h
index 3985eb2..f14d673 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h
@@ -7,27 +7,29 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DWARFFILE_H__
-#define CODEGEN_ASMPRINTER_DWARFFILE_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFFILE_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFFILE_H
+#include "AddressPool.h"
+#include "DwarfStringPool.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Allocator.h"
-#include "AddressPool.h"
-#include "DwarfStringPool.h"
-
-#include <vector>
-#include <string>
#include <memory>
+#include <string>
+#include <vector>
namespace llvm {
class AsmPrinter;
+class DbgVariable;
class DwarfUnit;
class DIEAbbrev;
class MCSymbol;
class DIE;
+class DISubprogram;
+class LexicalScope;
class StringRef;
class DwarfDebug;
class MCSection;
@@ -35,6 +37,8 @@ class DwarfFile {
// Target of Dwarf emission, used for sizing of abbreviations.
AsmPrinter *Asm;
+ DwarfDebug &DD;
+
// Used to uniquely define abbreviations.
FoldingSet<DIEAbbrev> AbbreviationsSet;
@@ -46,8 +50,20 @@ class DwarfFile {
DwarfStringPool StrPool;
+ // Collection of dbg variables of a scope.
+ DenseMap<LexicalScope *, SmallVector<DbgVariable *, 8>> ScopeVariables;
+
+ // Collection of abstract subprogram DIEs.
+ DenseMap<const MDNode *, DIE *> AbstractSPDies;
+
+ /// Maps MDNodes for type system with the corresponding DIEs. These DIEs can
+ /// be shared across CUs, that is why we keep the map here instead
+ /// of in DwarfCompileUnit.
+ DenseMap<const MDNode *, DIE *> MDTypeNodeToDieMap;
+
public:
- DwarfFile(AsmPrinter *AP, StringRef Pref, BumpPtrAllocator &DA);
+ DwarfFile(AsmPrinter *AP, DwarfDebug &DD, StringRef Pref,
+ BumpPtrAllocator &DA);
~DwarfFile();
@@ -67,18 +83,34 @@ public:
/// \brief Emit all of the units to the section listed with the given
/// abbreviation section.
- void emitUnits(DwarfDebug *DD, const MCSymbol *ASectionSym);
+ void emitUnits(const MCSymbol *ASectionSym);
/// \brief Emit a set of abbreviations to the specific section.
void emitAbbrevs(const MCSection *);
/// \brief Emit all of the strings to the section given.
void emitStrings(const MCSection *StrSection,
- const MCSection *OffsetSection = nullptr,
- const MCSymbol *StrSecSym = nullptr);
+ const MCSection *OffsetSection = nullptr);
/// \brief Returns the string pool.
DwarfStringPool &getStringPool() { return StrPool; }
+
+ void addScopeVariable(LexicalScope *LS, DbgVariable *Var);
+
+ DenseMap<LexicalScope *, SmallVector<DbgVariable *, 8>> &getScopeVariables() {
+ return ScopeVariables;
+ }
+
+ DenseMap<const MDNode *, DIE *> &getAbstractSPDies() {
+ return AbstractSPDies;
+ }
+
+ void insertDIE(const MDNode *TypeMD, DIE *Die) {
+ MDTypeNodeToDieMap.insert(std::make_pair(TypeMD, Die));
+ }
+ DIE *getDIE(const MDNode *TypeMD) {
+ return MDTypeNodeToDieMap.lookup(TypeMD);
+ }
};
}
#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.cpp
index 72cab60..d76b66c 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.cpp
@@ -12,14 +12,11 @@
using namespace llvm;
-MCSymbol *DwarfStringPool::getSectionSymbol() { return SectionSymbol; }
-
static std::pair<MCSymbol *, unsigned> &
getEntry(AsmPrinter &Asm,
StringMap<std::pair<MCSymbol *, unsigned>, BumpPtrAllocator &> &Pool,
StringRef Prefix, StringRef Str) {
- std::pair<MCSymbol *, unsigned> &Entry =
- Pool.GetOrCreateValue(Str).getValue();
+ std::pair<MCSymbol *, unsigned> &Entry = Pool[Str];
if (!Entry.first) {
Entry.second = Pool.size() - 1;
Entry.first = Asm.GetTempSymbol(Prefix, Entry.second);
@@ -36,8 +33,7 @@ unsigned DwarfStringPool::getIndex(AsmPrinter &Asm, StringRef Str) {
}
void DwarfStringPool::emit(AsmPrinter &Asm, const MCSection *StrSection,
- const MCSection *OffsetSection,
- const MCSymbol *StrSecSym) {
+ const MCSection *OffsetSection) {
if (Pool.empty())
return;
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.h
index c1615fb..63e3412 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfStringPool.h
@@ -7,13 +7,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_STRINGPOOL_H__
-#define CODEGEN_ASMPRINTER_STRINGPOOL_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFSTRINGPOOL_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFSTRINGPOOL_H
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Support/Allocator.h"
-
#include <utility>
namespace llvm {
@@ -28,18 +27,13 @@ class StringRef;
class DwarfStringPool {
StringMap<std::pair<MCSymbol *, unsigned>, BumpPtrAllocator &> Pool;
StringRef Prefix;
- MCSymbol *SectionSymbol;
public:
DwarfStringPool(BumpPtrAllocator &A, AsmPrinter &Asm, StringRef Prefix)
- : Pool(A), Prefix(Prefix), SectionSymbol(Asm.GetTempSymbol(Prefix)) {}
+ : Pool(A), Prefix(Prefix) {}
void emit(AsmPrinter &Asm, const MCSection *StrSection,
- const MCSection *OffsetSection = nullptr,
- const MCSymbol *StrSecSym = nullptr);
-
- /// \brief Returns the entry into the start of the pool.
- MCSymbol *getSectionSymbol();
+ const MCSection *OffsetSection = nullptr);
/// \brief Returns an entry into the string pool with the given
/// string text.
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp
index 9538bee..455258e 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp
@@ -13,7 +13,9 @@
#include "DwarfUnit.h"
#include "DwarfAccelTable.h"
+#include "DwarfCompileUnit.h"
#include "DwarfDebug.h"
+#include "DwarfExpression.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
@@ -30,6 +32,7 @@
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -40,24 +43,30 @@ GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
cl::desc("Generate DWARF4 type units."),
cl::init(false));
+void DIEDwarfExpression::EmitOp(uint8_t Op, const char* Comment) {
+ DU.addUInt(DIE, dwarf::DW_FORM_data1, Op);
+}
+void DIEDwarfExpression::EmitSigned(int Value) {
+ DU.addSInt(DIE, dwarf::DW_FORM_sdata, Value);
+}
+void DIEDwarfExpression::EmitUnsigned(unsigned Value) {
+ DU.addUInt(DIE, dwarf::DW_FORM_udata, Value);
+}
+bool DIEDwarfExpression::isFrameRegister(unsigned MachineReg) {
+ return MachineReg == getTRI()->getFrameRegister(*AP.MF);
+}
+
+
/// Unit - Unit constructor.
DwarfUnit::DwarfUnit(unsigned UID, dwarf::Tag UnitTag, DICompileUnit Node,
AsmPrinter *A, DwarfDebug *DW, DwarfFile *DWU)
: UniqueID(UID), CUNode(Node), UnitDie(UnitTag), DebugInfoOffset(0), Asm(A),
- DD(DW), DU(DWU), IndexTyDie(nullptr), Section(nullptr),
- Skeleton(nullptr) {
+ DD(DW), DU(DWU), IndexTyDie(nullptr), Section(nullptr) {
assert(UnitTag == dwarf::DW_TAG_compile_unit ||
UnitTag == dwarf::DW_TAG_type_unit);
DIEIntegerOne = new (DIEValueAllocator) DIEInteger(1);
}
-DwarfCompileUnit::DwarfCompileUnit(unsigned UID, DICompileUnit Node,
- AsmPrinter *A, DwarfDebug *DW,
- DwarfFile *DWU)
- : DwarfUnit(UID, dwarf::DW_TAG_compile_unit, Node, A, DW, DWU) {
- insertDIE(Node, &getUnitDie());
-}
-
DwarfTypeUnit::DwarfTypeUnit(unsigned UID, DwarfCompileUnit &CU, AsmPrinter *A,
DwarfDebug *DW, DwarfFile *DWU,
MCDwarfDwoLineTable *SplitLineTable)
@@ -146,7 +155,7 @@ static bool isShareableAcrossCUs(DIDescriptor D) {
/// will be kept in DwarfDebug for shareable DIEs.
DIE *DwarfUnit::getDIE(DIDescriptor D) const {
if (isShareableAcrossCUs(D))
- return DD->getDIE(D);
+ return DU->getDIE(D);
return MDNodeToDieMap.lookup(D);
}
@@ -155,7 +164,7 @@ DIE *DwarfUnit::getDIE(DIDescriptor D) const {
/// will be kept in DwarfDebug for shareable DIEs.
void DwarfUnit::insertDIE(DIDescriptor Desc, DIE *D) {
if (isShareableAcrossCUs(Desc)) {
- DD->insertDIE(Desc, D);
+ DU->insertDIE(Desc, D);
return;
}
MDNodeToDieMap.insert(std::make_pair(Desc, D));
@@ -206,10 +215,14 @@ void DwarfUnit::addSInt(DIELoc &Die, Optional<dwarf::Form> Form,
/// table.
void DwarfUnit::addString(DIE &Die, dwarf::Attribute Attribute,
StringRef String) {
-
- if (!DD->useSplitDwarf())
+ if (!isDwoUnit())
return addLocalString(Die, Attribute, String);
+ addIndexedString(Die, Attribute, String);
+}
+
+void DwarfUnit::addIndexedString(DIE &Die, dwarf::Attribute Attribute,
+ StringRef String) {
unsigned idx = DU->getStringPool().getIndex(*Asm, String);
DIEValue *Value = new (DIEValueAllocator) DIEInteger(idx);
DIEValue *Str = new (DIEValueAllocator) DIEString(Value, String);
@@ -224,31 +237,12 @@ void DwarfUnit::addLocalString(DIE &Die, dwarf::Attribute Attribute,
DIEValue *Value;
if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
Value = new (DIEValueAllocator) DIELabel(Symb);
- else {
- MCSymbol *StringPool = DU->getStringPool().getSectionSymbol();
- Value = new (DIEValueAllocator) DIEDelta(Symb, StringPool);
- }
+ else
+ Value = new (DIEValueAllocator) DIEDelta(Symb, DD->getDebugStrSym());
DIEValue *Str = new (DIEValueAllocator) DIEString(Value, String);
Die.addValue(Attribute, dwarf::DW_FORM_strp, Str);
}
-/// addExpr - Add a Dwarf expression attribute data and value.
-///
-void DwarfUnit::addExpr(DIELoc &Die, dwarf::Form Form, const MCExpr *Expr) {
- DIEValue *Value = new (DIEValueAllocator) DIEExpr(Expr);
- Die.addValue((dwarf::Attribute)0, Form, Value);
-}
-
-/// addLocationList - Add a Dwarf loclistptr attribute data and value.
-///
-void DwarfUnit::addLocationList(DIE &Die, dwarf::Attribute Attribute,
- unsigned Index) {
- DIEValue *Value = new (DIEValueAllocator) DIELocList(Index);
- dwarf::Form Form = DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
- : dwarf::DW_FORM_data4;
- Die.addValue(Attribute, Form, Value);
-}
-
/// addLabel - Add a Dwarf label attribute data and value.
///
void DwarfUnit::addLabel(DIE &Die, dwarf::Attribute Attribute, dwarf::Form Form,
@@ -261,16 +255,6 @@ void DwarfUnit::addLabel(DIELoc &Die, dwarf::Form Form, const MCSymbol *Label) {
addLabel(Die, (dwarf::Attribute)0, Form, Label);
}
-/// addSectionLabel - Add a Dwarf section label attribute data and value.
-///
-void DwarfUnit::addSectionLabel(DIE &Die, dwarf::Attribute Attribute,
- const MCSymbol *Label) {
- if (DD->getDwarfVersion() >= 4)
- addLabel(Die, Attribute, dwarf::DW_FORM_sec_offset, Label);
- else
- addLabel(Die, Attribute, dwarf::DW_FORM_data4, Label);
-}
-
/// addSectionOffset - Add an offset into a section attribute data and value.
///
void DwarfUnit::addSectionOffset(DIE &Die, dwarf::Attribute Attribute,
@@ -281,45 +265,6 @@ void DwarfUnit::addSectionOffset(DIE &Die, dwarf::Attribute Attribute,
addUInt(Die, Attribute, dwarf::DW_FORM_data4, Integer);
}
-/// addLabelAddress - Add a dwarf label attribute data and value using
-/// DW_FORM_addr or DW_FORM_GNU_addr_index.
-///
-void DwarfCompileUnit::addLabelAddress(DIE &Die, dwarf::Attribute Attribute,
- const MCSymbol *Label) {
-
- if (!DD->useSplitDwarf())
- return addLocalLabelAddress(Die, Attribute, Label);
-
- if (Label)
- DD->addArangeLabel(SymbolCU(this, Label));
-
- unsigned idx = DD->getAddressPool().getIndex(Label);
- DIEValue *Value = new (DIEValueAllocator) DIEInteger(idx);
- Die.addValue(Attribute, dwarf::DW_FORM_GNU_addr_index, Value);
-}
-
-void DwarfCompileUnit::addLocalLabelAddress(DIE &Die,
- dwarf::Attribute Attribute,
- const MCSymbol *Label) {
- if (Label)
- DD->addArangeLabel(SymbolCU(this, Label));
-
- Die.addValue(Attribute, dwarf::DW_FORM_addr,
- Label ? (DIEValue *)new (DIEValueAllocator) DIELabel(Label)
- : new (DIEValueAllocator) DIEInteger(0));
-}
-
-unsigned DwarfCompileUnit::getOrCreateSourceID(StringRef FileName, StringRef DirName) {
- // If we print assembly, we can't separate .file entries according to
- // compile units. Thus all files will belong to the default compile unit.
-
- // FIXME: add a better feature test than hasRawTextSupport. Even better,
- // extend .file to support this.
- return Asm->OutStreamer.EmitDwarfFileDirective(
- 0, DirName, FileName,
- Asm->OutStreamer.hasRawTextSupport() ? 0 : getUniqueID());
-}
-
unsigned DwarfTypeUnit::getOrCreateSourceID(StringRef FileName, StringRef DirName) {
return SplitLineTable ? SplitLineTable->getFile(DirName, FileName)
: getCU().getOrCreateSourceID(FileName, DirName);
@@ -339,16 +284,6 @@ void DwarfUnit::addOpAddress(DIELoc &Die, const MCSymbol *Sym) {
}
}
-/// addSectionDelta - Add a section label delta attribute data and value.
-///
-void DwarfUnit::addSectionDelta(DIE &Die, dwarf::Attribute Attribute,
- const MCSymbol *Hi, const MCSymbol *Lo) {
- DIEValue *Value = new (DIEValueAllocator) DIEDelta(Hi, Lo);
- Die.addValue(Attribute, DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
- : dwarf::DW_FORM_data4,
- Value);
-}
-
void DwarfUnit::addLabelDelta(DIE &Die, dwarf::Attribute Attribute,
const MCSymbol *Hi, const MCSymbol *Lo) {
DIEValue *Value = new (DIEValueAllocator) DIEDelta(Hi, Lo);
@@ -477,137 +412,19 @@ void DwarfUnit::addSourceLine(DIE &Die, DINameSpace NS) {
addSourceLine(Die, NS.getLineNumber(), NS.getFilename(), NS.getDirectory());
}
-/// addVariableAddress - Add DW_AT_location attribute for a
-/// DbgVariable based on provided MachineLocation.
-void DwarfUnit::addVariableAddress(const DbgVariable &DV, DIE &Die,
- MachineLocation Location) {
- if (DV.variableHasComplexAddress())
- addComplexAddress(DV, Die, dwarf::DW_AT_location, Location);
- else if (DV.isBlockByrefVariable())
- addBlockByrefAddress(DV, Die, dwarf::DW_AT_location, Location);
- else
- addAddress(Die, dwarf::DW_AT_location, Location,
- DV.getVariable().isIndirect());
-}
-
/// addRegisterOp - Add register operand.
-void DwarfUnit::addRegisterOp(DIELoc &TheDie, unsigned Reg) {
- const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo();
- int DWReg = RI->getDwarfRegNum(Reg, false);
- bool isSubRegister = DWReg < 0;
-
- unsigned Idx = 0;
-
- // Go up the super-register chain until we hit a valid dwarf register number.
- for (MCSuperRegIterator SR(Reg, RI); SR.isValid() && DWReg < 0; ++SR) {
- DWReg = RI->getDwarfRegNum(*SR, false);
- if (DWReg >= 0)
- Idx = RI->getSubRegIndex(*SR, Reg);
- }
-
- if (DWReg < 0) {
- DEBUG(dbgs() << "Invalid Dwarf register number.\n");
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_nop);
- return;
- }
-
- // Emit register
- if (DWReg < 32)
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_reg0 + DWReg);
- else {
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_regx);
- addUInt(TheDie, dwarf::DW_FORM_udata, DWReg);
- }
-
- // Emit Mask
- if (isSubRegister) {
- unsigned Size = RI->getSubRegIdxSize(Idx);
- unsigned Offset = RI->getSubRegIdxOffset(Idx);
- if (Offset > 0) {
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_bit_piece);
- addUInt(TheDie, dwarf::DW_FORM_data1, Size);
- addUInt(TheDie, dwarf::DW_FORM_data1, Offset);
- } else {
- unsigned ByteSize = Size / 8; // Assuming 8 bits per byte.
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_piece);
- addUInt(TheDie, dwarf::DW_FORM_data1, ByteSize);
- }
- }
+bool DwarfUnit::addRegisterOpPiece(DIELoc &TheDie, unsigned Reg,
+ unsigned SizeInBits, unsigned OffsetInBits) {
+ DIEDwarfExpression Expr(*Asm, *this, TheDie);
+ Expr.AddMachineRegPiece(Reg, SizeInBits, OffsetInBits);
+ return true;
}
/// addRegisterOffset - Add register offset.
-void DwarfUnit::addRegisterOffset(DIELoc &TheDie, unsigned Reg,
+bool DwarfUnit::addRegisterOffset(DIELoc &TheDie, unsigned Reg,
int64_t Offset) {
- const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo();
- unsigned DWReg = RI->getDwarfRegNum(Reg, false);
- const TargetRegisterInfo *TRI = Asm->TM.getRegisterInfo();
- if (Reg == TRI->getFrameRegister(*Asm->MF))
- // If variable offset is based in frame register then use fbreg.
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_fbreg);
- else if (DWReg < 32)
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + DWReg);
- else {
- addUInt(TheDie, dwarf::DW_FORM_data1, dwarf::DW_OP_bregx);
- addUInt(TheDie, dwarf::DW_FORM_udata, DWReg);
- }
- addSInt(TheDie, dwarf::DW_FORM_sdata, Offset);
-}
-
-/// addAddress - Add an address attribute to a die based on the location
-/// provided.
-void DwarfUnit::addAddress(DIE &Die, dwarf::Attribute Attribute,
- const MachineLocation &Location, bool Indirect) {
- DIELoc *Loc = new (DIEValueAllocator) DIELoc();
-
- if (Location.isReg() && !Indirect)
- addRegisterOp(*Loc, Location.getReg());
- else {
- addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
- if (Indirect && !Location.isReg()) {
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
- }
- }
-
- // Now attach the location information to the DIE.
- addBlock(Die, Attribute, Loc);
-}
-
-/// addComplexAddress - Start with the address based on the location provided,
-/// and generate the DWARF information necessary to find the actual variable
-/// given the extra address information encoded in the DbgVariable, starting
-/// from the starting location. Add the DWARF information to the die.
-///
-void DwarfUnit::addComplexAddress(const DbgVariable &DV, DIE &Die,
- dwarf::Attribute Attribute,
- const MachineLocation &Location) {
- DIELoc *Loc = new (DIEValueAllocator) DIELoc();
- unsigned N = DV.getNumAddrElements();
- unsigned i = 0;
- if (Location.isReg()) {
- if (N >= 2 && DV.getAddrElement(0) == DIBuilder::OpPlus) {
- // If first address element is OpPlus then emit
- // DW_OP_breg + Offset instead of DW_OP_reg + Offset.
- addRegisterOffset(*Loc, Location.getReg(), DV.getAddrElement(1));
- i = 2;
- } else
- addRegisterOp(*Loc, Location.getReg());
- } else
- addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
-
- for (; i < N; ++i) {
- uint64_t Element = DV.getAddrElement(i);
- if (Element == DIBuilder::OpPlus) {
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- addUInt(*Loc, dwarf::DW_FORM_udata, DV.getAddrElement(++i));
- } else if (Element == DIBuilder::OpDeref) {
- if (!Location.isReg())
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
- } else
- llvm_unreachable("unknown DIBuilder Opcode");
- }
-
- // Now attach the location information to the DIE.
- addBlock(Die, Attribute, Loc);
+ DIEDwarfExpression Expr(*Asm, *this, TheDie);
+ return Expr.AddMachineRegIndirect(Reg, Offset);
}
/* Byref variables, in Blocks, are declared by the programmer as "SomeType
@@ -690,7 +507,7 @@ void DwarfUnit::addBlockByrefAddress(const DbgVariable &DV, DIE &Die,
// Find the __forwarding field and the variable field in the __Block_byref
// struct.
- DIArray Fields = blockStruct.getTypeArray();
+ DIArray Fields = blockStruct.getElements();
DIDerivedType varField;
DIDerivedType forwardingField;
@@ -711,10 +528,14 @@ void DwarfUnit::addBlockByrefAddress(const DbgVariable &DV, DIE &Die,
// variable's location.
DIELoc *Loc = new (DIEValueAllocator) DIELoc();
+ bool validReg;
if (Location.isReg())
- addRegisterOp(*Loc, Location.getReg());
+ validReg = addRegisterOpPiece(*Loc, Location.getReg());
else
- addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
+ validReg = addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
+
+ if (!validReg)
+ return;
// If we started with a pointer to the __Block_byref... struct, then
// the first thing we need to do is dereference the pointer (DW_OP_deref).
@@ -752,13 +573,18 @@ static bool isUnsignedDIType(DwarfDebug *DD, DIType Ty) {
dwarf::Tag T = (dwarf::Tag)Ty.getTag();
// Encode pointer constants as unsigned bytes. This is used at least for
// null pointer constant emission.
+ // (Pieces of) aggregate types that get hacked apart by SROA may also be
+ // represented by a constant. Encode them as unsigned bytes.
// FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
// here, but accept them for now due to a bug in SROA producing bogus
// dbg.values.
- if (T == dwarf::DW_TAG_pointer_type ||
+ if (T == dwarf::DW_TAG_array_type ||
+ T == dwarf::DW_TAG_class_type ||
+ T == dwarf::DW_TAG_pointer_type ||
T == dwarf::DW_TAG_ptr_to_member_type ||
T == dwarf::DW_TAG_reference_type ||
- T == dwarf::DW_TAG_rvalue_reference_type)
+ T == dwarf::DW_TAG_rvalue_reference_type ||
+ T == dwarf::DW_TAG_structure_type)
return true;
assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
T == dwarf::DW_TAG_volatile_type ||
@@ -779,11 +605,14 @@ static bool isUnsignedDIType(DwarfDebug *DD, DIType Ty) {
Encoding == dwarf::DW_ATE_unsigned_char ||
Encoding == dwarf::DW_ATE_signed ||
Encoding == dwarf::DW_ATE_signed_char ||
- Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean) &&
+ Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
+ (Ty.getTag() == dwarf::DW_TAG_unspecified_type &&
+ Ty.getName() == "decltype(nullptr)")) &&
"Unsupported encoding");
return (Encoding == dwarf::DW_ATE_unsigned ||
Encoding == dwarf::DW_ATE_unsigned_char ||
- Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean);
+ Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
+ Ty.getTag() == dwarf::DW_TAG_unspecified_type);
}
/// If this type is derived from a base type then return base type size.
@@ -797,10 +626,7 @@ static uint64_t getBaseTypeSize(DwarfDebug *DD, DIDerivedType Ty) {
DIType BaseType = DD->resolve(Ty.getTypeDerivedFrom());
- // If this type is not derived from any type or the type is a declaration then
- // take conservative approach.
- if (!BaseType.isValid() || BaseType.isForwardDecl())
- return Ty.getSizeInBits();
+ assert(BaseType.isValid());
// If this is a derived type, go ahead and get the base type, unless it's a
// reference then it's just the size of the field. Pointer types have no need
@@ -1002,11 +828,9 @@ void DwarfUnit::updateAcceleratorTables(DIScope Context, DIType Ty,
unsigned Flags = IsImplementation ? dwarf::DW_FLAG_type_implementation : 0;
DD->addAccelType(Ty.getName(), TyDIE, Flags);
- if ((!Context || Context.isCompileUnit() || Context.isFile() ||
- Context.isNameSpace()) &&
- getCUNode().getEmissionKind() != DIBuilder::LineTablesOnly)
- GlobalTypes[getParentContextString(Context) + Ty.getName().str()] =
- &TyDIE;
+ if (!Context || Context.isCompileUnit() || Context.isFile() ||
+ Context.isNameSpace())
+ addGlobalType(Ty, TyDIE, Context);
}
}
@@ -1031,14 +855,6 @@ void DwarfUnit::addType(DIE &Entity, DIType Ty, dwarf::Attribute Attribute) {
addDIEEntry(Entity, Attribute, Entry);
}
-/// addGlobalName - Add a new global name to the compile unit.
-void DwarfUnit::addGlobalName(StringRef Name, DIE &Die, DIScope Context) {
- if (getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly)
- return;
- std::string FullName = getParentContextString(Context) + Name.str();
- GlobalNames[FullName] = &Die;
-}
-
/// getParentContextString - Walks the metadata parent chain in a language
/// specific manner (using the compile unit language) and returns
/// it as a string. This is done at the metadata level because DIEs may
@@ -1117,7 +933,8 @@ void DwarfUnit::constructTypeDIE(DIE &Buffer, DIDerivedType DTy) {
addString(Buffer, dwarf::DW_AT_name, Name);
// Add size if non-zero (derived types might be zero-sized.)
- if (Size && Tag != dwarf::DW_TAG_pointer_type)
+ if (Size && Tag != dwarf::DW_TAG_pointer_type
+ && Tag != dwarf::DW_TAG_ptr_to_member_type)
addUInt(Buffer, dwarf::DW_AT_byte_size, None, Size);
if (Tag == dwarf::DW_TAG_ptr_to_member_type)
@@ -1129,16 +946,16 @@ void DwarfUnit::constructTypeDIE(DIE &Buffer, DIDerivedType DTy) {
}
/// constructSubprogramArguments - Construct function argument DIEs.
-void DwarfUnit::constructSubprogramArguments(DIE &Buffer, DIArray Args) {
+void DwarfUnit::constructSubprogramArguments(DIE &Buffer, DITypeArray Args) {
for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
- DIDescriptor Ty = Args.getElement(i);
- if (Ty.isUnspecifiedParameter()) {
+ DIType Ty = resolve(Args.getElement(i));
+ if (!Ty) {
assert(i == N-1 && "Unspecified parameter must be the last argument");
createAndAddDIE(dwarf::DW_TAG_unspecified_parameters, Buffer);
} else {
DIE &Arg = createAndAddDIE(dwarf::DW_TAG_formal_parameter, Buffer);
- addType(Arg, DIType(Ty));
- if (DIType(Ty).isArtificial())
+ addType(Arg, Ty);
+ if (Ty.isArtificial())
addFlag(Arg, dwarf::DW_AT_artificial);
}
}
@@ -1161,14 +978,14 @@ void DwarfUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
break;
case dwarf::DW_TAG_subroutine_type: {
// Add return type. A void return won't have a type.
- DIArray Elements = CTy.getTypeArray();
- DIType RTy(Elements.getElement(0));
+ DITypeArray Elements = DISubroutineType(CTy).getTypeArray();
+ DIType RTy(resolve(Elements.getElement(0)));
if (RTy)
addType(Buffer, RTy);
bool isPrototyped = true;
if (Elements.getNumElements() == 2 &&
- Elements.getElement(1).isUnspecifiedParameter())
+ !Elements.getElement(1))
isPrototyped = false;
constructSubprogramArguments(Buffer, Elements);
@@ -1191,7 +1008,7 @@ void DwarfUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_class_type: {
// Add elements to structure type.
- DIArray Elements = CTy.getTypeArray();
+ DIArray Elements = CTy.getElements();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.isSubprogram())
@@ -1250,6 +1067,8 @@ void DwarfUnit::constructTypeDIE(DIE &Buffer, DICompositeType CTy) {
if (CTy.isAppleBlockExtension())
addFlag(Buffer, dwarf::DW_AT_APPLE_block);
+ // This is outside the DWARF spec, but GDB expects a DW_AT_containing_type
+ // inside C++ composite types to point to the base class with the vtable.
DICompositeType ContainingType(resolve(CTy.getContainingType()));
if (ContainingType)
addDIEEntry(Buffer, dwarf::DW_AT_containing_type,
@@ -1327,10 +1146,10 @@ DwarfUnit::constructTemplateValueParameterDIE(DIE &Buffer,
addType(ParamDIE, resolve(VP.getType()));
if (!VP.getName().empty())
addString(ParamDIE, dwarf::DW_AT_name, VP.getName());
- if (Value *Val = VP.getValue()) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val))
+ if (Metadata *Val = VP.getValue()) {
+ if (ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Val))
addConstantValue(ParamDIE, CI, resolve(VP.getType()));
- else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val)) {
+ else if (GlobalValue *GV = mdconst::dyn_extract<GlobalValue>(Val)) {
// For declaration non-type template parameters (such as global values and
// functions)
DIELoc *Loc = new (DIEValueAllocator) DIELoc();
@@ -1373,20 +1192,23 @@ DIE *DwarfUnit::getOrCreateNameSpace(DINameSpace NS) {
}
/// getOrCreateSubprogramDIE - Create new DIE using SP.
-DIE *DwarfUnit::getOrCreateSubprogramDIE(DISubprogram SP) {
+DIE *DwarfUnit::getOrCreateSubprogramDIE(DISubprogram SP, bool Minimal) {
// Construct the context before querying for the existence of the DIE in case
// such construction creates the DIE (as is the case for member function
// declarations).
- DIE *ContextDIE = getOrCreateContextDIE(resolve(SP.getContext()));
+ DIE *ContextDIE =
+ Minimal ? &getUnitDie() : getOrCreateContextDIE(resolve(SP.getContext()));
if (DIE *SPDie = getDIE(SP))
return SPDie;
if (DISubprogram SPDecl = SP.getFunctionDeclaration()) {
- // Add subprogram definitions to the CU die directly.
- ContextDIE = &getUnitDie();
- // Build the decl now to ensure it precedes the definition.
- getOrCreateSubprogramDIE(SPDecl);
+ if (!Minimal) {
+ // Add subprogram definitions to the CU die directly.
+ ContextDIE = &getUnitDie();
+ // Build the decl now to ensure it precedes the definition.
+ getOrCreateSubprogramDIE(SPDecl);
+ }
}
// DW_TAG_inlined_subroutine may refer to this DIE.
@@ -1401,14 +1223,8 @@ DIE *DwarfUnit::getOrCreateSubprogramDIE(DISubprogram SP) {
return &SPDie;
}
-void DwarfUnit::applySubprogramAttributesToDefinition(DISubprogram SP, DIE &SPDie) {
- DISubprogram SPDecl = SP.getFunctionDeclaration();
- DIScope Context = resolve(SPDecl ? SPDecl.getContext() : SP.getContext());
- applySubprogramAttributes(SP, SPDie);
- addGlobalName(SP.getName(), SPDie, Context);
-}
-
-void DwarfUnit::applySubprogramAttributes(DISubprogram SP, DIE &SPDie) {
+bool DwarfUnit::applySubprogramDefinitionAttributes(DISubprogram SP,
+ DIE &SPDie) {
DIE *DeclDie = nullptr;
StringRef DeclLinkageName;
if (DISubprogram SPDecl = SP.getFunctionDeclaration()) {
@@ -1431,17 +1247,29 @@ void DwarfUnit::applySubprogramAttributes(DISubprogram SP, DIE &SPDie) {
addString(SPDie, dwarf::DW_AT_MIPS_linkage_name,
GlobalValue::getRealLinkageName(LinkageName));
- if (DeclDie) {
- // Refer to the function declaration where all the other attributes will be
- // found.
- addDIEEntry(SPDie, dwarf::DW_AT_specification, *DeclDie);
- return;
- }
+ if (!DeclDie)
+ return false;
+
+ // Refer to the function declaration where all the other attributes will be
+ // found.
+ addDIEEntry(SPDie, dwarf::DW_AT_specification, *DeclDie);
+ return true;
+}
+
+void DwarfUnit::applySubprogramAttributes(DISubprogram SP, DIE &SPDie,
+ bool Minimal) {
+ if (!Minimal)
+ if (applySubprogramDefinitionAttributes(SP, SPDie))
+ return;
// Constructors and operators for anonymous aggregates do not have names.
if (!SP.getName().empty())
addString(SPDie, dwarf::DW_AT_name, SP.getName());
+ // Skip the rest of the attributes under -gmlt to save space.
+ if (Minimal)
+ return;
+
addSourceLine(SPDie, SP);
// Add the prototype if we have a prototype and we have a C like
@@ -1452,15 +1280,15 @@ void DwarfUnit::applySubprogramAttributes(DISubprogram SP, DIE &SPDie) {
Language == dwarf::DW_LANG_ObjC))
addFlag(SPDie, dwarf::DW_AT_prototyped);
- DICompositeType SPTy = SP.getType();
+ DISubroutineType SPTy = SP.getType();
assert(SPTy.getTag() == dwarf::DW_TAG_subroutine_type &&
"the type of a subprogram should be a subroutine");
- DIArray Args = SPTy.getTypeArray();
+ DITypeArray Args = SPTy.getTypeArray();
// Add a return type. If this is a type like a C/C++ void type we don't add a
// return type.
- if (Args.getElement(0))
- addType(SPDie, DIType(Args.getElement(0)));
+ if (resolve(Args.getElement(0)))
+ addType(SPDie, DIType(resolve(Args.getElement(0))));
unsigned VK = SP.getVirtuality();
if (VK) {
@@ -1506,7 +1334,7 @@ void DwarfUnit::applySubprogramAttributes(DISubprogram SP, DIE &SPDie) {
else if (SP.isPrivate())
addUInt(SPDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_private);
- else
+ else if (SP.isPublic())
addUInt(SPDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_public);
@@ -1514,184 +1342,6 @@ void DwarfUnit::applySubprogramAttributes(DISubprogram SP, DIE &SPDie) {
addFlag(SPDie, dwarf::DW_AT_explicit);
}
-void DwarfUnit::applyVariableAttributes(const DbgVariable &Var,
- DIE &VariableDie) {
- StringRef Name = Var.getName();
- if (!Name.empty())
- addString(VariableDie, dwarf::DW_AT_name, Name);
- addSourceLine(VariableDie, Var.getVariable());
- addType(VariableDie, Var.getType());
- if (Var.isArtificial())
- addFlag(VariableDie, dwarf::DW_AT_artificial);
-}
-
-// Return const expression if value is a GEP to access merged global
-// constant. e.g.
-// i8* getelementptr ({ i8, i8, i8, i8 }* @_MergedGlobals, i32 0, i32 0)
-static const ConstantExpr *getMergedGlobalExpr(const Value *V) {
- const ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(V);
- if (!CE || CE->getNumOperands() != 3 ||
- CE->getOpcode() != Instruction::GetElementPtr)
- return nullptr;
-
- // First operand points to a global struct.
- Value *Ptr = CE->getOperand(0);
- if (!isa<GlobalValue>(Ptr) ||
- !isa<StructType>(cast<PointerType>(Ptr->getType())->getElementType()))
- return nullptr;
-
- // Second operand is zero.
- const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CE->getOperand(1));
- if (!CI || !CI->isZero())
- return nullptr;
-
- // Third operand is offset.
- if (!isa<ConstantInt>(CE->getOperand(2)))
- return nullptr;
-
- return CE;
-}
-
-/// createGlobalVariableDIE - create global variable DIE.
-void DwarfCompileUnit::createGlobalVariableDIE(DIGlobalVariable GV) {
- // Check for pre-existence.
- if (getDIE(GV))
- return;
-
- assert(GV.isGlobalVariable());
-
- DIScope GVContext = GV.getContext();
- DIType GTy = DD->resolve(GV.getType());
-
- // If this is a static data member definition, some attributes belong
- // to the declaration DIE.
- DIE *VariableDIE = nullptr;
- bool IsStaticMember = false;
- DIDerivedType SDMDecl = GV.getStaticDataMemberDeclaration();
- if (SDMDecl.Verify()) {
- assert(SDMDecl.isStaticMember() && "Expected static member decl");
- // We need the declaration DIE that is in the static member's class.
- VariableDIE = getOrCreateStaticMemberDIE(SDMDecl);
- IsStaticMember = true;
- }
-
- // If this is not a static data member definition, create the variable
- // DIE and add the initial set of attributes to it.
- if (!VariableDIE) {
- // Construct the context before querying for the existence of the DIE in
- // case such construction creates the DIE.
- DIE *ContextDIE = getOrCreateContextDIE(GVContext);
-
- // Add to map.
- VariableDIE = &createAndAddDIE(GV.getTag(), *ContextDIE, GV);
-
- // Add name and type.
- addString(*VariableDIE, dwarf::DW_AT_name, GV.getDisplayName());
- addType(*VariableDIE, GTy);
-
- // Add scoping info.
- if (!GV.isLocalToUnit())
- addFlag(*VariableDIE, dwarf::DW_AT_external);
-
- // Add line number info.
- addSourceLine(*VariableDIE, GV);
- }
-
- // Add location.
- bool addToAccelTable = false;
- DIE *VariableSpecDIE = nullptr;
- bool isGlobalVariable = GV.getGlobal() != nullptr;
- if (isGlobalVariable) {
- addToAccelTable = true;
- DIELoc *Loc = new (DIEValueAllocator) DIELoc();
- const MCSymbol *Sym = Asm->getSymbol(GV.getGlobal());
- if (GV.getGlobal()->isThreadLocal()) {
- // FIXME: Make this work with -gsplit-dwarf.
- unsigned PointerSize = Asm->getDataLayout().getPointerSize();
- assert((PointerSize == 4 || PointerSize == 8) &&
- "Add support for other sizes if necessary");
- // Based on GCC's support for TLS:
- if (!DD->useSplitDwarf()) {
- // 1) Start with a constNu of the appropriate pointer size
- addUInt(*Loc, dwarf::DW_FORM_data1,
- PointerSize == 4 ? dwarf::DW_OP_const4u : dwarf::DW_OP_const8u);
- // 2) containing the (relocated) offset of the TLS variable
- // within the module's TLS block.
- addExpr(*Loc, dwarf::DW_FORM_udata,
- Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym));
- } else {
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
- addUInt(*Loc, dwarf::DW_FORM_udata,
- DD->getAddressPool().getIndex(Sym, /* TLS */ true));
- }
- // 3) followed by a custom OP to make the debugger do a TLS lookup.
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_push_tls_address);
- } else {
- DD->addArangeLabel(SymbolCU(this, Sym));
- addOpAddress(*Loc, Sym);
- }
- // Do not create specification DIE if context is either compile unit
- // or a subprogram.
- if (GVContext && GV.isDefinition() && !GVContext.isCompileUnit() &&
- !GVContext.isFile() && !DD->isSubprogramContext(GVContext)) {
- // Create specification DIE.
- VariableSpecDIE = &createAndAddDIE(dwarf::DW_TAG_variable, UnitDie);
- addDIEEntry(*VariableSpecDIE, dwarf::DW_AT_specification, *VariableDIE);
- addBlock(*VariableSpecDIE, dwarf::DW_AT_location, Loc);
- // A static member's declaration is already flagged as such.
- if (!SDMDecl.Verify())
- addFlag(*VariableDIE, dwarf::DW_AT_declaration);
- } else {
- addBlock(*VariableDIE, dwarf::DW_AT_location, Loc);
- }
- // Add the linkage name.
- StringRef LinkageName = GV.getLinkageName();
- if (!LinkageName.empty())
- // From DWARF4: DIEs to which DW_AT_linkage_name may apply include:
- // TAG_common_block, TAG_constant, TAG_entry_point, TAG_subprogram and
- // TAG_variable.
- addString(IsStaticMember && VariableSpecDIE ? *VariableSpecDIE
- : *VariableDIE,
- DD->getDwarfVersion() >= 4 ? dwarf::DW_AT_linkage_name
- : dwarf::DW_AT_MIPS_linkage_name,
- GlobalValue::getRealLinkageName(LinkageName));
- } else if (const ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(GV.getConstant())) {
- // AT_const_value was added when the static member was created. To avoid
- // emitting AT_const_value multiple times, we only add AT_const_value when
- // it is not a static member.
- if (!IsStaticMember)
- addConstantValue(*VariableDIE, CI, GTy);
- } else if (const ConstantExpr *CE = getMergedGlobalExpr(GV->getOperand(11))) {
- addToAccelTable = true;
- // GV is a merged global.
- DIELoc *Loc = new (DIEValueAllocator) DIELoc();
- Value *Ptr = CE->getOperand(0);
- MCSymbol *Sym = Asm->getSymbol(cast<GlobalValue>(Ptr));
- DD->addArangeLabel(SymbolCU(this, Sym));
- addOpAddress(*Loc, Sym);
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
- SmallVector<Value *, 3> Idx(CE->op_begin() + 1, CE->op_end());
- addUInt(*Loc, dwarf::DW_FORM_udata,
- Asm->getDataLayout().getIndexedOffset(Ptr->getType(), Idx));
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
- addBlock(*VariableDIE, dwarf::DW_AT_location, Loc);
- }
-
- if (addToAccelTable) {
- DIE &AddrDIE = VariableSpecDIE ? *VariableSpecDIE : *VariableDIE;
- DD->addAccelName(GV.getName(), AddrDIE);
-
- // If the linkage name is different than the name, go ahead and output
- // that as well into the name table.
- if (GV.getLinkageName() != "" && GV.getName() != GV.getLinkageName())
- DD->addAccelName(GV.getLinkageName(), AddrDIE);
- }
-
- addGlobalName(GV.getName(), VariableSpecDIE ? *VariableSpecDIE : *VariableDIE,
- GV.getContext());
-}
-
/// constructSubrangeDIE - Construct subrange DIE from DISubrange.
void DwarfUnit::constructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy) {
DIE &DW_Subrange = createAndAddDIE(dwarf::DW_TAG_subrange_type, Buffer);
@@ -1700,9 +1350,7 @@ void DwarfUnit::constructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy) {
// The LowerBound value defines the lower bounds which is typically zero for
// C/C++. The Count value is the number of elements. Values are 64 bit. If
// Count == -1 then the array is unbounded and we do not emit
- // DW_AT_lower_bound and DW_AT_upper_bound attributes. If LowerBound == 0 and
- // Count == 0, then the array has zero elements in which case we do not emit
- // an upper bound.
+ // DW_AT_lower_bound and DW_AT_count attributes.
int64_t LowerBound = SR.getLo();
int64_t DefaultLowerBound = getDefaultLowerBound();
int64_t Count = SR.getCount();
@@ -1710,11 +1358,22 @@ void DwarfUnit::constructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy) {
if (DefaultLowerBound == -1 || LowerBound != DefaultLowerBound)
addUInt(DW_Subrange, dwarf::DW_AT_lower_bound, None, LowerBound);
- if (Count != -1 && Count != 0)
+ if (Count != -1)
// FIXME: An unbounded array should reference the expression that defines
// the array.
- addUInt(DW_Subrange, dwarf::DW_AT_upper_bound, None,
- LowerBound + Count - 1);
+ addUInt(DW_Subrange, dwarf::DW_AT_count, None, Count);
+}
+
+DIE *DwarfUnit::getIndexTyDie() {
+ if (IndexTyDie)
+ return IndexTyDie;
+ // Construct an integer type to use for indexes.
+ IndexTyDie = &createAndAddDIE(dwarf::DW_TAG_base_type, UnitDie);
+ addString(*IndexTyDie, dwarf::DW_AT_name, "sizetype");
+ addUInt(*IndexTyDie, dwarf::DW_AT_byte_size, None, sizeof(int64_t));
+ addUInt(*IndexTyDie, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1,
+ dwarf::DW_ATE_unsigned);
+ return IndexTyDie;
}
/// constructArrayTypeDIE - Construct array type DIE from DICompositeType.
@@ -1729,18 +1388,9 @@ void DwarfUnit::constructArrayTypeDIE(DIE &Buffer, DICompositeType CTy) {
// FIXME: This type should be passed down from the front end
// as different languages may have different sizes for indexes.
DIE *IdxTy = getIndexTyDie();
- if (!IdxTy) {
- // Construct an integer type to use for indexes.
- IdxTy = &createAndAddDIE(dwarf::DW_TAG_base_type, UnitDie);
- addString(*IdxTy, dwarf::DW_AT_name, "sizetype");
- addUInt(*IdxTy, dwarf::DW_AT_byte_size, None, sizeof(int64_t));
- addUInt(*IdxTy, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1,
- dwarf::DW_ATE_unsigned);
- setIndexTyDie(IdxTy);
- }
// Add subranges to array type.
- DIArray Elements = CTy.getTypeArray();
+ DIArray Elements = CTy.getElements();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.getTag() == dwarf::DW_TAG_subrange_type)
@@ -1750,7 +1400,7 @@ void DwarfUnit::constructArrayTypeDIE(DIE &Buffer, DICompositeType CTy) {
/// constructEnumTypeDIE - Construct an enum type DIE from DICompositeType.
void DwarfUnit::constructEnumTypeDIE(DIE &Buffer, DICompositeType CTy) {
- DIArray Elements = CTy.getTypeArray();
+ DIArray Elements = CTy.getElements();
// Add enumerators to enumeration type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
@@ -1788,68 +1438,6 @@ void DwarfUnit::constructContainingTypeDIEs() {
}
}
-/// constructVariableDIE - Construct a DIE for the given DbgVariable.
-std::unique_ptr<DIE> DwarfUnit::constructVariableDIE(DbgVariable &DV,
- bool Abstract) {
- auto D = constructVariableDIEImpl(DV, Abstract);
- DV.setDIE(*D);
- return D;
-}
-
-std::unique_ptr<DIE> DwarfUnit::constructVariableDIEImpl(const DbgVariable &DV,
- bool Abstract) {
- // Define variable debug information entry.
- auto VariableDie = make_unique<DIE>(DV.getTag());
-
- if (Abstract) {
- applyVariableAttributes(DV, *VariableDie);
- return VariableDie;
- }
-
- // Add variable address.
-
- unsigned Offset = DV.getDotDebugLocOffset();
- if (Offset != ~0U) {
- addLocationList(*VariableDie, dwarf::DW_AT_location, Offset);
- return VariableDie;
- }
-
- // Check if variable is described by a DBG_VALUE instruction.
- if (const MachineInstr *DVInsn = DV.getMInsn()) {
- assert(DVInsn->getNumOperands() == 3);
- if (DVInsn->getOperand(0).isReg()) {
- const MachineOperand RegOp = DVInsn->getOperand(0);
- // If the second operand is an immediate, this is an indirect value.
- if (DVInsn->getOperand(1).isImm()) {
- MachineLocation Location(RegOp.getReg(),
- DVInsn->getOperand(1).getImm());
- addVariableAddress(DV, *VariableDie, Location);
- } else if (RegOp.getReg())
- addVariableAddress(DV, *VariableDie, MachineLocation(RegOp.getReg()));
- } else if (DVInsn->getOperand(0).isImm())
- addConstantValue(*VariableDie, DVInsn->getOperand(0), DV.getType());
- else if (DVInsn->getOperand(0).isFPImm())
- addConstantFPValue(*VariableDie, DVInsn->getOperand(0));
- else if (DVInsn->getOperand(0).isCImm())
- addConstantValue(*VariableDie, DVInsn->getOperand(0).getCImm(),
- DV.getType());
-
- return VariableDie;
- }
-
- // .. else use frame index.
- int FI = DV.getFrameIndex();
- if (FI != ~0) {
- unsigned FrameReg = 0;
- const TargetFrameLowering *TFI = Asm->TM.getFrameLowering();
- int Offset = TFI->getFrameIndexReference(*Asm->MF, FI, FrameReg);
- MachineLocation Location(FrameReg, Offset);
- addVariableAddress(DV, *VariableDie, Location);
- }
-
- return VariableDie;
-}
-
/// constructMemberDIE - Construct member DIE from DIDerivedType.
void DwarfUnit::constructMemberDIE(DIE &Buffer, DIDerivedType DT) {
DIE &MemberDie = createAndAddDIE(DT.getTag(), Buffer);
@@ -1882,7 +1470,7 @@ void DwarfUnit::constructMemberDIE(DIE &Buffer, DIDerivedType DT) {
uint64_t FieldSize = getBaseTypeSize(DD, DT);
uint64_t OffsetInBytes;
- if (Size != FieldSize) {
+ if (FieldSize && Size != FieldSize) {
// Handle bitfield, assume bytes are 8 bits.
addUInt(MemberDie, dwarf::DW_AT_byte_size, None, FieldSize/8);
addUInt(MemberDie, dwarf::DW_AT_bit_size, None, Size);
@@ -1922,7 +1510,7 @@ void DwarfUnit::constructMemberDIE(DIE &Buffer, DIDerivedType DT) {
addUInt(MemberDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_private);
// Otherwise C++ member and base classes are considered public.
- else
+ else if (DT.isPublic())
addUInt(MemberDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_public);
if (DT.isVirtual())
@@ -1971,7 +1559,7 @@ DIE *DwarfUnit::getOrCreateStaticMemberDIE(DIDerivedType DT) {
else if (DT.isPrivate())
addUInt(StaticMemberDIE, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_private);
- else
+ else if (DT.isPublic())
addUInt(StaticMemberDIE, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_public);
@@ -1984,6 +1572,10 @@ DIE *DwarfUnit::getOrCreateStaticMemberDIE(DIDerivedType DT) {
}
void DwarfUnit::emitHeader(const MCSymbol *ASectionSym) const {
+ // Emit size of content not including length itself
+ Asm->OutStreamer.AddComment("Length of Unit");
+ Asm->EmitInt32(getHeaderSize() + UnitDie.getSize());
+
Asm->OutStreamer.AddComment("DWARF version number");
Asm->EmitInt16(DD->getDwarfVersion());
Asm->OutStreamer.AddComment("Offset Into Abbrev. Section");
@@ -1999,50 +1591,9 @@ void DwarfUnit::emitHeader(const MCSymbol *ASectionSym) const {
Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
}
-void DwarfUnit::addRange(RangeSpan Range) {
- // Only add a range for this unit if we're emitting full debug.
- if (getCUNode().getEmissionKind() == DIBuilder::FullDebug) {
- // If we have no current ranges just add the range and return, otherwise,
- // check the current section and CU against the previous section and CU we
- // emitted into and the subprogram was contained within. If these are the
- // same then extend our current range, otherwise add this as a new range.
- if (CURanges.size() == 0 ||
- this != DD->getPrevCU() ||
- Asm->getCurrentSection() != DD->getPrevSection()) {
- CURanges.push_back(Range);
- return;
- }
-
- assert(&(CURanges.back().getEnd()->getSection()) ==
- &(Range.getEnd()->getSection()) &&
- "We can only append to a range in the same section!");
- CURanges.back().setEnd(Range.getEnd());
- }
-}
-
-void DwarfCompileUnit::initStmtList(MCSymbol *DwarfLineSectionSym) {
- // Define start line table label for each Compile Unit.
- MCSymbol *LineTableStartSym =
- Asm->OutStreamer.getDwarfLineTableSymbol(getUniqueID());
-
- stmtListIndex = UnitDie.getValues().size();
-
- // DW_AT_stmt_list is a offset of line number information for this
- // compile unit in debug_line section. For split dwarf this is
- // left in the skeleton CU and so not included.
- // The line table entries are not always emitted in assembly, so it
- // is not okay to use line_table_start here.
- if (Asm->MAI->doesDwarfUseRelocationsAcrossSections())
- addSectionLabel(UnitDie, dwarf::DW_AT_stmt_list, LineTableStartSym);
- else
- addSectionDelta(UnitDie, dwarf::DW_AT_stmt_list, LineTableStartSym,
- DwarfLineSectionSym);
-}
-
-void DwarfCompileUnit::applyStmtList(DIE &D) {
- D.addValue(dwarf::DW_AT_stmt_list,
- UnitDie.getAbbrev().getData()[stmtListIndex].getForm(),
- UnitDie.getValues()[stmtListIndex]);
+void DwarfUnit::initSection(const MCSection *Section) {
+ assert(!this->Section);
+ this->Section = Section;
}
void DwarfTypeUnit::emitHeader(const MCSymbol *ASectionSym) const {
@@ -2055,16 +1606,8 @@ void DwarfTypeUnit::emitHeader(const MCSymbol *ASectionSym) const {
sizeof(Ty->getOffset()));
}
-void DwarfTypeUnit::initSection(const MCSection *Section) {
- assert(!this->Section);
- this->Section = Section;
- // Since each type unit is contained in its own COMDAT section, the begin
- // label and the section label are the same. Using the begin label emission in
- // DwarfDebug to emit the section label as well is slightly subtle/sneaky, but
- // the only other alternative of lazily constructing start-of-section labels
- // and storing a mapping in DwarfDebug (or AsmPrinter).
- this->SectionSym = this->LabelBegin =
- Asm->GetTempSymbol(Section->getLabelBeginName(), getUniqueID());
- this->LabelEnd =
- Asm->GetTempSymbol(Section->getLabelEndName(), getUniqueID());
+bool DwarfTypeUnit::isDwoUnit() const {
+ // Since there are no skeleton type units, all type units are dwo type units
+ // when split DWARF is being used.
+ return DD->useSplitDwarf();
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h
index b7b83b2..7a5e47d 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h
@@ -11,20 +11,20 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DWARFCOMPILEUNIT_H
-#define CODEGEN_ASMPRINTER_DWARFCOMPILEUNIT_H
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFUNIT_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFUNIT_H
-#include "DIE.h"
#include "DwarfDebug.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
+#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSection.h"
-#include "llvm/MC/MCDwarf.h"
namespace llvm {
@@ -55,7 +55,8 @@ private:
SmallVector<RangeSpan, 2> Ranges;
public:
- RangeSpanList(MCSymbol *Sym) : RangeSym(Sym) {}
+ RangeSpanList(MCSymbol *Sym, SmallVector<RangeSpan, 2> Ranges)
+ : RangeSym(Sym), Ranges(std::move(Ranges)) {}
MCSymbol *getSym() const { return RangeSym; }
const SmallVectorImpl<RangeSpan> &getRanges() const { return Ranges; }
void addRange(RangeSpan Range) { Ranges.push_back(Range); }
@@ -96,12 +97,6 @@ protected:
/// descriptors to debug information entries using a DIEEntry proxy.
DenseMap<const MDNode *, DIEEntry *> MDNodeToDIEEntryMap;
- /// GlobalNames - A map of globally visible named entities for this unit.
- StringMap<const DIE *> GlobalNames;
-
- /// GlobalTypes - A map of globally visible types for this unit.
- StringMap<const DIE *> GlobalTypes;
-
/// DIEBlocks - A list of all the DIEBlocks in use.
std::vector<DIEBlock *> DIEBlocks;
@@ -113,13 +108,6 @@ protected:
/// corresponds to the MDNode mapped with the subprogram DIE.
DenseMap<DIE *, const MDNode *> ContainingTypeMap;
- // List of ranges for a given compile unit.
- SmallVector<RangeSpan, 1> CURanges;
-
- // List of range lists for a given compile unit, separate from the ranges for
- // the CU itself.
- SmallVector<RangeSpanList, 1> CURangeLists;
-
// DIEValueAllocator - All DIEValues are allocated through this allocator.
BumpPtrAllocator DIEValueAllocator;
@@ -129,86 +117,32 @@ protected:
/// The section this unit will be emitted in.
const MCSection *Section;
- /// A label at the start of the non-dwo section related to this unit.
- MCSymbol *SectionSym;
+ DwarfUnit(unsigned UID, dwarf::Tag, DICompileUnit CU, AsmPrinter *A,
+ DwarfDebug *DW, DwarfFile *DWU);
- /// The start of the unit within its section.
- MCSymbol *LabelBegin;
+ void initSection(const MCSection *Section);
- /// The end of the unit within its section.
- MCSymbol *LabelEnd;
+ /// Add a string attribute data and value.
+ void addLocalString(DIE &Die, dwarf::Attribute Attribute, StringRef Str);
- /// Skeleton unit associated with this unit.
- DwarfUnit *Skeleton;
+ void addIndexedString(DIE &Die, dwarf::Attribute Attribute, StringRef Str);
- DwarfUnit(unsigned UID, dwarf::Tag, DICompileUnit CU, AsmPrinter *A,
- DwarfDebug *DW, DwarfFile *DWU);
+ bool applySubprogramDefinitionAttributes(DISubprogram SP, DIE &SPDie);
public:
virtual ~DwarfUnit();
- /// Set the skeleton unit associated with this unit.
- void setSkeleton(DwarfUnit &Skel) { Skeleton = &Skel; }
-
- /// Get the skeleton unit associated with this unit.
- DwarfUnit *getSkeleton() const { return Skeleton; }
-
- /// Pass in the SectionSym even though we could recreate it in every compile
- /// unit (type units will have actually distinct symbols once they're in
- /// comdat sections).
- void initSection(const MCSection *Section, MCSymbol *SectionSym) {
- assert(!this->Section);
- this->Section = Section;
- this->SectionSym = SectionSym;
- this->LabelBegin =
- Asm->GetTempSymbol(Section->getLabelBeginName(), getUniqueID());
- this->LabelEnd =
- Asm->GetTempSymbol(Section->getLabelEndName(), getUniqueID());
- }
-
const MCSection *getSection() const {
assert(Section);
return Section;
}
- /// If there's a skeleton then return the section symbol for the skeleton
- /// unit, otherwise return the section symbol for this unit.
- MCSymbol *getLocalSectionSym() const {
- if (Skeleton)
- return Skeleton->getSectionSym();
- return getSectionSym();
- }
-
- MCSymbol *getSectionSym() const {
- assert(Section);
- return SectionSym;
- }
-
- /// If there's a skeleton then return the begin label for the skeleton unit,
- /// otherwise return the local label for this unit.
- MCSymbol *getLocalLabelBegin() const {
- if (Skeleton)
- return Skeleton->getLabelBegin();
- return getLabelBegin();
- }
-
- MCSymbol *getLabelBegin() const {
- assert(Section);
- return LabelBegin;
- }
-
- MCSymbol *getLabelEnd() const {
- assert(Section);
- return LabelEnd;
- }
-
// Accessors.
+ AsmPrinter* getAsmPrinter() const { return Asm; }
unsigned getUniqueID() const { return UniqueID; }
uint16_t getLanguage() const { return CUNode.getLanguage(); }
DICompileUnit getCUNode() const { return CUNode; }
DIE &getUnitDie() { return UnitDie; }
- const StringMap<const DIE *> &getGlobalNames() const { return GlobalNames; }
- const StringMap<const DIE *> &getGlobalTypes() const { return GlobalTypes; }
unsigned getDebugInfoOffset() const { return DebugInfoOffset; }
void setDebugInfoOffset(unsigned DbgInfoOff) { DebugInfoOffset = DbgInfoOff; }
@@ -216,29 +150,15 @@ public:
/// hasContent - Return true if this compile unit has something to write out.
bool hasContent() const { return !UnitDie.getChildren().empty(); }
- /// addRange - Add an address range to the list of ranges for this unit.
- void addRange(RangeSpan Range);
-
- /// getRanges - Get the list of ranges for this unit.
- const SmallVectorImpl<RangeSpan> &getRanges() const { return CURanges; }
- SmallVectorImpl<RangeSpan> &getRanges() { return CURanges; }
-
- /// addRangeList - Add an address range list to the list of range lists.
- void addRangeList(RangeSpanList Ranges) { CURangeLists.push_back(Ranges); }
-
- /// getRangeLists - Get the vector of range lists.
- const SmallVectorImpl<RangeSpanList> &getRangeLists() const {
- return CURangeLists;
- }
- SmallVectorImpl<RangeSpanList> &getRangeLists() { return CURangeLists; }
-
/// getParentContextString - Get a string containing the language specific
/// context for a global name.
std::string getParentContextString(DIScope Context) const;
- /// addGlobalName - Add a new global entity to the compile unit.
- ///
- void addGlobalName(StringRef Name, DIE &Die, DIScope Context);
+ /// Add a new global name to the compile unit.
+ virtual void addGlobalName(StringRef Name, DIE &Die, DIScope Context) {}
+
+ /// Add a new global type to the compile unit.
+ virtual void addGlobalType(DIType Ty, const DIE &Die, DIScope Context) {}
/// addAccelNamespace - Add a new name to the namespace accelerator table.
void addAccelNamespace(StringRef Name, const DIE &Die);
@@ -275,14 +195,7 @@ public:
void addSInt(DIELoc &Die, Optional<dwarf::Form> Form, int64_t Integer);
/// addString - Add a string attribute data and value.
- void addString(DIE &Die, dwarf::Attribute Attribute, const StringRef Str);
-
- /// addLocalString - Add a string attribute data and value.
- void addLocalString(DIE &Die, dwarf::Attribute Attribute,
- const StringRef Str);
-
- /// addExpr - Add a Dwarf expression attribute data and value.
- void addExpr(DIELoc &Die, dwarf::Form Form, const MCExpr *Expr);
+ void addString(DIE &Die, dwarf::Attribute Attribute, StringRef Str);
/// addLabel - Add a Dwarf label attribute data and value.
void addLabel(DIE &Die, dwarf::Attribute Attribute, dwarf::Form Form,
@@ -290,14 +203,6 @@ public:
void addLabel(DIELoc &Die, dwarf::Form Form, const MCSymbol *Label);
- /// addLocationList - Add a Dwarf loclistptr attribute data and value.
- void addLocationList(DIE &Die, dwarf::Attribute Attribute, unsigned Index);
-
- /// addSectionLabel - Add a Dwarf section label attribute data and value.
- ///
- void addSectionLabel(DIE &Die, dwarf::Attribute Attribute,
- const MCSymbol *Label);
-
/// addSectionOffset - Add an offset into a section attribute data and value.
///
void addSectionOffset(DIE &Die, dwarf::Attribute Attribute, uint64_t Integer);
@@ -306,10 +211,6 @@ public:
/// form given and an op of either DW_FORM_addr or DW_FORM_GNU_addr_index.
void addOpAddress(DIELoc &Die, const MCSymbol *Label);
- /// addSectionDelta - Add a label delta attribute data and value.
- void addSectionDelta(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Hi,
- const MCSymbol *Lo);
-
/// addLabelDelta - Add a label delta attribute data and value.
void addLabelDelta(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Hi,
const MCSymbol *Lo);
@@ -339,11 +240,6 @@ public:
void addSourceLine(DIE &Die, DINameSpace NS);
void addSourceLine(DIE &Die, DIObjCProperty Ty);
- /// addAddress - Add an address attribute to a die based on the location
- /// provided.
- void addAddress(DIE &Die, dwarf::Attribute Attribute,
- const MachineLocation &Location, bool Indirect = false);
-
/// addConstantValue - Add constant value entry in variable DIE.
void addConstantValue(DIE &Die, const MachineOperand &MO, DIType Ty);
void addConstantValue(DIE &Die, const ConstantInt *CI, DIType Ty);
@@ -358,19 +254,16 @@ public:
/// addTemplateParams - Add template parameters in buffer.
void addTemplateParams(DIE &Buffer, DIArray TParams);
- /// addRegisterOp - Add register operand.
- void addRegisterOp(DIELoc &TheDie, unsigned Reg);
+ /// \brief Add register operand.
+ /// \returns false if the register does not exist, e.g., because it was never
+ /// materialized.
+ bool addRegisterOpPiece(DIELoc &TheDie, unsigned Reg,
+ unsigned SizeInBits = 0, unsigned OffsetInBits = 0);
- /// addRegisterOffset - Add register offset.
- void addRegisterOffset(DIELoc &TheDie, unsigned Reg, int64_t Offset);
-
- /// addComplexAddress - Start with the address based on the location provided,
- /// and generate the DWARF information necessary to find the actual variable
- /// (navigating the extra location information encoded in the type) based on
- /// the starting location. Add the DWARF information to the die.
- void addComplexAddress(const DbgVariable &DV, DIE &Die,
- dwarf::Attribute Attribute,
- const MachineLocation &Location);
+ /// \brief Add register offset.
+ /// \returns false if the register does not exist, e.g., because it was never
+ /// materialized.
+ bool addRegisterOffset(DIELoc &TheDie, unsigned Reg, int64_t Offset);
// FIXME: Should be reformulated in terms of addComplexAddress.
/// addBlockByrefAddress - Start with the address based on the location
@@ -382,11 +275,6 @@ public:
dwarf::Attribute Attribute,
const MachineLocation &Location);
- /// addVariableAddress - Add DW_AT_location attribute for a
- /// DbgVariable based on provided MachineLocation.
- void addVariableAddress(const DbgVariable &DV, DIE &Die,
- MachineLocation Location);
-
/// addType - Add a new type attribute to the specified entity. This takes
/// and attribute parameter because DW_AT_friend attributes are also
/// type references.
@@ -397,11 +285,10 @@ public:
DIE *getOrCreateNameSpace(DINameSpace NS);
/// getOrCreateSubprogramDIE - Create new DIE using SP.
- DIE *getOrCreateSubprogramDIE(DISubprogram SP);
+ DIE *getOrCreateSubprogramDIE(DISubprogram SP, bool Minimal = false);
- void applySubprogramAttributes(DISubprogram SP, DIE &SPDie);
- void applySubprogramAttributesToDefinition(DISubprogram SP, DIE &SPDie);
- void applyVariableAttributes(const DbgVariable &Var, DIE &VariableDie);
+ void applySubprogramAttributes(DISubprogram SP, DIE &SPDie,
+ bool Minimal = false);
/// getOrCreateTypeDIE - Find existing DIE or create new DIE for the
/// given DIType.
@@ -417,12 +304,8 @@ public:
/// vtables.
void constructContainingTypeDIEs();
- /// constructVariableDIE - Construct a DIE for the given DbgVariable.
- std::unique_ptr<DIE> constructVariableDIE(DbgVariable &DV,
- bool Abstract = false);
-
/// constructSubprogramArguments - Construct function argument DIEs.
- void constructSubprogramArguments(DIE &Buffer, DIArray Args);
+ void constructSubprogramArguments(DIE &Buffer, DITypeArray Args);
/// Create a DIE with the given Tag, add the DIE to its parent, and
/// call insertDIE if MD is not null.
@@ -453,12 +336,13 @@ protected:
/// none currently exists, create a new ID and insert it in the line table.
virtual unsigned getOrCreateSourceID(StringRef File, StringRef Directory) = 0;
-private:
- /// \brief Construct a DIE for the given DbgVariable without initializing the
- /// DbgVariable's DIE reference.
- std::unique_ptr<DIE> constructVariableDIEImpl(const DbgVariable &DV,
- bool Abstract);
+ /// resolve - Look in the DwarfDebug map for the MDNode that
+ /// corresponds to the reference.
+ template <typename T> T resolve(DIRef<T> Ref) const {
+ return DD->resolve(Ref);
+ }
+private:
/// constructTypeDIE - Construct basic type die from DIBasicType.
void constructTypeDIE(DIE &Buffer, DIBasicType BTy);
@@ -503,7 +387,7 @@ private:
}
// getIndexTyDie - Get an anonymous type for index type.
- DIE *getIndexTyDie() { return IndexTyDie; }
+ DIE *getIndexTyDie();
// setIndexTyDie - Set D as anonymous type for index which can be reused
// later.
@@ -513,56 +397,22 @@ private:
/// information entry.
DIEEntry *createDIEEntry(DIE &Entry);
- /// resolve - Look in the DwarfDebug map for the MDNode that
- /// corresponds to the reference.
- template <typename T> T resolve(DIRef<T> Ref) const {
- return DD->resolve(Ref);
- }
-
/// If this is a named finished type then include it in the list of types for
/// the accelerator tables.
void updateAcceleratorTables(DIScope Context, DIType Ty, const DIE &TyDIE);
-};
-
-class DwarfCompileUnit : public DwarfUnit {
- /// The attribute index of DW_AT_stmt_list in the compile unit DIE, avoiding
- /// the need to search for it in applyStmtList.
- unsigned stmtListIndex;
-
-public:
- DwarfCompileUnit(unsigned UID, DICompileUnit Node, AsmPrinter *A,
- DwarfDebug *DW, DwarfFile *DWU);
-
- void initStmtList(MCSymbol *DwarfLineSectionSym);
-
- /// Apply the DW_AT_stmt_list from this compile unit to the specified DIE.
- void applyStmtList(DIE &D);
-
- /// createGlobalVariableDIE - create global variable DIE.
- void createGlobalVariableDIE(DIGlobalVariable GV);
-
- /// addLabelAddress - Add a dwarf label attribute data and value using
- /// either DW_FORM_addr or DW_FORM_GNU_addr_index.
- void addLabelAddress(DIE &Die, dwarf::Attribute Attribute,
- const MCSymbol *Label);
- /// addLocalLabelAddress - Add a dwarf label attribute data and value using
- /// DW_FORM_addr only.
- void addLocalLabelAddress(DIE &Die, dwarf::Attribute Attribute,
- const MCSymbol *Label);
-
- DwarfCompileUnit &getCU() override { return *this; }
-
- unsigned getOrCreateSourceID(StringRef FileName, StringRef DirName) override;
+ virtual bool isDwoUnit() const = 0;
};
class DwarfTypeUnit : public DwarfUnit {
-private:
uint64_t TypeSignature;
const DIE *Ty;
DwarfCompileUnit &CU;
MCDwarfDwoLineTable *SplitLineTable;
+ unsigned getOrCreateSourceID(StringRef File, StringRef Directory) override;
+ bool isDwoUnit() const override;
+
public:
DwarfTypeUnit(unsigned UID, DwarfCompileUnit &CU, AsmPrinter *A,
DwarfDebug *DW, DwarfFile *DWU,
@@ -578,11 +428,8 @@ public:
return DwarfUnit::getHeaderSize() + sizeof(uint64_t) + // Type Signature
sizeof(uint32_t); // Type DIE Offset
}
- void initSection(const MCSection *Section);
+ using DwarfUnit::initSection;
DwarfCompileUnit &getCU() override { return CU; }
-
-protected:
- unsigned getOrCreateSourceID(StringRef File, StringRef Directory) override;
};
} // end llvm namespace
#endif
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
index 73f62bf..1bc86f6 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
@@ -121,7 +121,8 @@ computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
int TypeID = TypeIds[J];
assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
- int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
+ int ValueForTypeID =
+ isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
@@ -195,9 +196,22 @@ bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
/// table. Entries must be ordered by try-range address.
void EHStreamer::
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
- const RangeMapType &PadMap,
const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
const SmallVectorImpl<unsigned> &FirstActions) {
+ // Invokes and nounwind calls have entries in PadMap (due to being bracketed
+ // by try-range labels when lowered). Ordinary calls do not, so appropriate
+ // try-ranges for them need be deduced so we can put them in the LSDA.
+ RangeMapType PadMap;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LandingPad = LandingPads[i];
+ for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
+ MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
+ assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
+ PadRange P = { i, j };
+ PadMap[BeginLabel] = P;
+ }
+ }
+
// The end label of the previous invoke or nounwind try-range.
MCSymbol *LastLabel = nullptr;
@@ -208,6 +222,8 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
// Whether the last CallSite entry was for an invoke.
bool PreviousIsInvoke = false;
+ bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
+
// Visit all instructions in order of address.
for (const auto &MBB : *Asm->MF) {
for (const auto &MI : MBB) {
@@ -237,7 +253,7 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
// instruction between the previous try-range and this one may throw,
// create a call-site entry with no landing pad for the region between the
// try-ranges.
- if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
+ if (SawPotentiallyThrowing && !IsSJLJ) {
CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
CallSites.push_back(Site);
PreviousIsInvoke = false;
@@ -254,14 +270,14 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
CallSiteEntry Site = {
BeginLabel,
LastLabel,
- LandingPad->LandingPadLabel,
+ LandingPad,
FirstActions[P.PadIndex]
};
// Try to merge with the previous call-site. SJLJ doesn't do this
- if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
+ if (PreviousIsInvoke && !IsSJLJ) {
CallSiteEntry &Prev = CallSites.back();
- if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
+ if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
// Extend the range of the previous entry.
Prev.EndLabel = Site.EndLabel;
continue;
@@ -269,7 +285,7 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
}
// Otherwise, create a new call-site.
- if (Asm->MAI->isExceptionHandlingDwarf())
+ if (!IsSJLJ)
CallSites.push_back(Site);
else {
// SjLj EH must maintain the call sites in the order assigned
@@ -287,7 +303,7 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
// If some instruction between the previous try-range and the end of the
// function may throw, create a call-site entry with no landing pad for the
// region following the try-range.
- if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
+ if (SawPotentiallyThrowing && !IsSJLJ) {
CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
CallSites.push_back(Site);
}
@@ -314,7 +330,7 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
/// 3. Type ID table contains references to all the C++ typeinfo for all
/// catches in the function. This tables is reverse indexed base 1.
void EHStreamer::emitExceptionTable() {
- const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
@@ -338,23 +354,9 @@ void EHStreamer::emitExceptionTable() {
unsigned SizeActions =
computeActionsTable(LandingPads, Actions, FirstActions);
- // Invokes and nounwind calls have entries in PadMap (due to being bracketed
- // by try-range labels when lowered). Ordinary calls do not, so appropriate
- // try-ranges for them need be deduced when using DWARF exception handling.
- RangeMapType PadMap;
- for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
- const LandingPadInfo *LandingPad = LandingPads[i];
- for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
- MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
- assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
- PadRange P = { i, j };
- PadMap[BeginLabel] = P;
- }
- }
-
// Compute the call-site table.
SmallVector<CallSiteEntry, 64> CallSites;
- computeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
+ computeCallSiteTable(CallSites, LandingPads, FirstActions);
// Final tallies.
@@ -519,8 +521,7 @@ void EHStreamer::emitExceptionTable() {
Asm->EmitULEB128(S.Action);
}
} else {
- // DWARF Exception handling
- assert(Asm->MAI->isExceptionHandlingDwarf());
+ // Itanium LSDA exception handling
// The call-site table is a list of all call sites that may throw an
// exception (including C++ 'throw' statements) in the procedure
@@ -576,15 +577,15 @@ void EHStreamer::emitExceptionTable() {
// Offset of the landing pad, counted in 16-byte bundles relative to the
// @LPStart address.
- if (!S.PadLabel) {
+ if (!S.LPad) {
if (VerboseAsm)
Asm->OutStreamer.AddComment(" has no landing pad");
Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
} else {
if (VerboseAsm)
Asm->OutStreamer.AddComment(Twine(" jumps to ") +
- S.PadLabel->getName());
- Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
+ S.LPad->LandingPadLabel->getName());
+ Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4);
}
// Offset of the first associated action record, relative to the start of
@@ -649,7 +650,7 @@ void EHStreamer::emitExceptionTable() {
}
void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
- const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
@@ -662,9 +663,9 @@ void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
Entry = TypeInfos.size();
}
- for (std::vector<const GlobalVariable *>::const_reverse_iterator
+ for (std::vector<const GlobalValue *>::const_reverse_iterator
I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
- const GlobalVariable *GV = *I;
+ const GlobalValue *GV = *I;
if (VerboseAsm)
Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
Asm->EmitTTypeReference(GV, TTypeEncoding);
@@ -681,7 +682,7 @@ void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
unsigned TypeID = *I;
if (VerboseAsm) {
--Entry;
- if (TypeID != 0)
+ if (isFilterEHSelector(TypeID))
Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.h b/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.h
index 2b6ba78..9b316ff 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_ASMPRINTER_EHSTREAMER_H
-#define LLVM_CODEGEN_ASMPRINTER_EHSTREAMER_H
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_EHSTREAMER_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_EHSTREAMER_H
#include "AsmPrinterHandler.h"
#include "llvm/ADT/DenseMap.h"
@@ -23,6 +23,8 @@ class MachineModuleInfo;
class MachineInstr;
class MachineFunction;
class AsmPrinter;
+class MCSymbol;
+class MCSymbolRefExpr;
template <typename T>
class SmallVectorImpl;
@@ -60,11 +62,11 @@ protected:
/// Structure describing an entry in the call-site table.
struct CallSiteEntry {
// The 'try-range' is BeginLabel .. EndLabel.
- MCSymbol *BeginLabel; // zero indicates the start of the function.
- MCSymbol *EndLabel; // zero indicates the end of the function.
+ MCSymbol *BeginLabel; // Null indicates the start of the function.
+ MCSymbol *EndLabel; // Null indicates the end of the function.
- // The landing pad starts at PadLabel.
- MCSymbol *PadLabel; // zero indicates that there is no landing pad.
+ // LPad contains the landing pad start labels.
+ const LandingPadInfo *LPad; // Null indicates that there is no landing pad.
unsigned Action;
};
@@ -86,7 +88,6 @@ protected:
/// form gaps in the table. Entries must be ordered by try-range address.
void computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
- const RangeMapType &PadMap,
const SmallVectorImpl<const LandingPadInfo *> &LPs,
const SmallVectorImpl<unsigned> &FirstActions);
@@ -113,6 +114,13 @@ protected:
virtual void emitTypeInfos(unsigned TTypeEncoding);
+ // Helpers for for identifying what kind of clause an EH typeid or selector
+ // corresponds to. Negative selectors are for filter clauses, the zero
+ // selector is for cleanups, and positive selectors are for catch clauses.
+ static bool isFilterEHSelector(int Selector) { return Selector < 0; }
+ static bool isCleanupEHSelector(int Selector) { return Selector == 0; }
+ static bool isCatchEHSelector(int Selector) { return Selector > 0; }
+
public:
EHStreamer(AsmPrinter *A);
virtual ~EHStreamer();
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/ErlangGCPrinter.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/ErlangGCPrinter.cpp
index bfcbe6b..e293acd 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/ErlangGCPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/ErlangGCPrinter.cpp
@@ -28,6 +28,7 @@
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -35,8 +36,8 @@ namespace {
class ErlangGCPrinter : public GCMetadataPrinter {
public:
- void beginAssembly(AsmPrinter &AP) override;
- void finishAssembly(AsmPrinter &AP) override;
+ void finishAssembly(Module &M, GCModuleInfo &Info,
+ AsmPrinter &AP) override;
};
}
@@ -46,11 +47,11 @@ X("erlang", "erlang-compatible garbage collector");
void llvm::linkErlangGCPrinter() { }
-void ErlangGCPrinter::beginAssembly(AsmPrinter &AP) { }
-
-void ErlangGCPrinter::finishAssembly(AsmPrinter &AP) {
+void ErlangGCPrinter::finishAssembly(Module &M, GCModuleInfo &Info,
+ AsmPrinter &AP) {
MCStreamer &OS = AP.OutStreamer;
- unsigned IntPtrSize = AP.TM.getDataLayout()->getPointerSize();
+ unsigned IntPtrSize =
+ AP.TM.getSubtargetImpl()->getDataLayout()->getPointerSize();
// Put this in a custom .note section.
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getContext()
@@ -58,9 +59,13 @@ void ErlangGCPrinter::finishAssembly(AsmPrinter &AP) {
SectionKind::getDataRel()));
// For each function...
- for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
+ for (GCModuleInfo::FuncInfoVec::iterator FI = Info.funcinfo_begin(),
+ IE = Info.funcinfo_end();
+ FI != IE; ++FI) {
GCFunctionInfo &MD = **FI;
-
+ if (MD.getStrategy().getName() != getStrategy().getName())
+ // this function is managed by some other GC
+ continue;
/** A compact GC layout. Emit this data structure:
*
* struct {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
index 5a9ecd7..ddb14a0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
@@ -26,6 +26,7 @@
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <cctype>
using namespace llvm;
@@ -33,8 +34,10 @@ namespace {
class OcamlGCMetadataPrinter : public GCMetadataPrinter {
public:
- void beginAssembly(AsmPrinter &AP) override;
- void finishAssembly(AsmPrinter &AP) override;
+ void beginAssembly(Module &M, GCModuleInfo &Info,
+ AsmPrinter &AP) override;
+ void finishAssembly(Module &M, GCModuleInfo &Info,
+ AsmPrinter &AP) override;
};
}
@@ -66,12 +69,13 @@ static void EmitCamlGlobal(const Module &M, AsmPrinter &AP, const char *Id) {
AP.OutStreamer.EmitLabel(Sym);
}
-void OcamlGCMetadataPrinter::beginAssembly(AsmPrinter &AP) {
+void OcamlGCMetadataPrinter::beginAssembly(Module &M, GCModuleInfo &Info,
+ AsmPrinter &AP) {
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
- EmitCamlGlobal(getModule(), AP, "code_begin");
+ EmitCamlGlobal(M, AP, "code_begin");
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
- EmitCamlGlobal(getModule(), AP, "data_begin");
+ EmitCamlGlobal(M, AP, "data_begin");
}
/// emitAssembly - Print the frametable. The ocaml frametable format is thus:
@@ -90,24 +94,30 @@ void OcamlGCMetadataPrinter::beginAssembly(AsmPrinter &AP) {
/// (FrameSize and LiveOffsets would overflow). FrameTablePrinter will abort if
/// either condition is detected in a function which uses the GC.
///
-void OcamlGCMetadataPrinter::finishAssembly(AsmPrinter &AP) {
- unsigned IntPtrSize = AP.TM.getDataLayout()->getPointerSize();
+void OcamlGCMetadataPrinter::finishAssembly(Module &M, GCModuleInfo &Info,
+ AsmPrinter &AP) {
+ unsigned IntPtrSize =
+ AP.TM.getSubtargetImpl()->getDataLayout()->getPointerSize();
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
- EmitCamlGlobal(getModule(), AP, "code_end");
+ EmitCamlGlobal(M, AP, "code_end");
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
- EmitCamlGlobal(getModule(), AP, "data_end");
+ EmitCamlGlobal(M, AP, "data_end");
// FIXME: Why does ocaml emit this??
AP.OutStreamer.EmitIntValue(0, IntPtrSize);
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
- EmitCamlGlobal(getModule(), AP, "frametable");
+ EmitCamlGlobal(M, AP, "frametable");
int NumDescriptors = 0;
- for (iterator I = begin(), IE = end(); I != IE; ++I) {
+ for (GCModuleInfo::FuncInfoVec::iterator I = Info.funcinfo_begin(),
+ IE = Info.funcinfo_end(); I != IE; ++I) {
GCFunctionInfo &FI = **I;
+ if (FI.getStrategy().getName() != getStrategy().getName())
+ // this function is managed by some other GC
+ continue;
for (GCFunctionInfo::iterator J = FI.begin(), JE = FI.end(); J != JE; ++J) {
NumDescriptors++;
}
@@ -120,8 +130,12 @@ void OcamlGCMetadataPrinter::finishAssembly(AsmPrinter &AP) {
AP.EmitInt16(NumDescriptors);
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
- for (iterator I = begin(), IE = end(); I != IE; ++I) {
+ for (GCModuleInfo::FuncInfoVec::iterator I = Info.funcinfo_begin(),
+ IE = Info.funcinfo_end(); I != IE; ++I) {
GCFunctionInfo &FI = **I;
+ if (FI.getStrategy().getName() != getStrategy().getName())
+ // this function is managed by some other GC
+ continue;
uint64_t FrameSize = FI.getFrameSize();
if (FrameSize >= 1<<16) {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.cpp
index 81285d5..2138cb9 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.cpp
@@ -11,7 +11,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DwarfException.h"
+#include "Win64Exception.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
@@ -99,9 +99,156 @@ void Win64Exception::endFunction(const MachineFunction *) {
if (shouldEmitPersonality) {
Asm->OutStreamer.PushSection();
+
+ // Emit an UNWIND_INFO struct describing the prologue.
Asm->OutStreamer.EmitWinEHHandlerData();
- emitExceptionTable();
+
+ // Emit either MSVC-compatible tables or the usual Itanium-style LSDA after
+ // the UNWIND_INFO struct.
+ if (Asm->MAI->getExceptionHandlingType() == ExceptionHandling::MSVC) {
+ const Function *Per = MMI->getPersonalities()[MMI->getPersonalityIndex()];
+ if (Per->getName() == "__C_specific_handler")
+ emitCSpecificHandlerTable();
+ else
+ report_fatal_error(Twine("unexpected personality function: ") +
+ Per->getName());
+ } else {
+ emitExceptionTable();
+ }
+
Asm->OutStreamer.PopSection();
}
Asm->OutStreamer.EmitWinCFIEndProc();
}
+
+const MCSymbolRefExpr *Win64Exception::createImageRel32(const MCSymbol *Value) {
+ return MCSymbolRefExpr::Create(Value, MCSymbolRefExpr::VK_COFF_IMGREL32,
+ Asm->OutContext);
+}
+
+/// Emit the language-specific data that __C_specific_handler expects. This
+/// handler lives in the x64 Microsoft C runtime and allows catching or cleaning
+/// up after faults with __try, __except, and __finally. The typeinfo values
+/// are not really RTTI data, but pointers to filter functions that return an
+/// integer (1, 0, or -1) indicating how to handle the exception. For __finally
+/// blocks and other cleanups, the landing pad label is zero, and the filter
+/// function is actually a cleanup handler with the same prototype. A catch-all
+/// entry is modeled with a null filter function field and a non-zero landing
+/// pad label.
+///
+/// Possible filter function return values:
+/// EXCEPTION_EXECUTE_HANDLER (1):
+/// Jump to the landing pad label after cleanups.
+/// EXCEPTION_CONTINUE_SEARCH (0):
+/// Continue searching this table or continue unwinding.
+/// EXCEPTION_CONTINUE_EXECUTION (-1):
+/// Resume execution at the trapping PC.
+///
+/// Inferred table structure:
+/// struct Table {
+/// int NumEntries;
+/// struct Entry {
+/// imagerel32 LabelStart;
+/// imagerel32 LabelEnd;
+/// imagerel32 FilterOrFinally; // Zero means catch-all.
+/// imagerel32 LabelLPad; // Zero means __finally.
+/// } Entries[NumEntries];
+/// };
+void Win64Exception::emitCSpecificHandlerTable() {
+ const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
+
+ // Simplifying assumptions for first implementation:
+ // - Cleanups are not implemented.
+ // - Filters are not implemented.
+
+ // The Itanium LSDA table sorts similar landing pads together to simplify the
+ // actions table, but we don't need that.
+ SmallVector<const LandingPadInfo *, 64> LandingPads;
+ LandingPads.reserve(PadInfos.size());
+ for (const auto &LP : PadInfos)
+ LandingPads.push_back(&LP);
+
+ // Compute label ranges for call sites as we would for the Itanium LSDA, but
+ // use an all zero action table because we aren't using these actions.
+ SmallVector<unsigned, 64> FirstActions;
+ FirstActions.resize(LandingPads.size());
+ SmallVector<CallSiteEntry, 64> CallSites;
+ computeCallSiteTable(CallSites, LandingPads, FirstActions);
+
+ MCSymbol *EHFuncBeginSym =
+ Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
+ MCSymbol *EHFuncEndSym =
+ Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
+
+ // Emit the number of table entries.
+ unsigned NumEntries = 0;
+ for (const CallSiteEntry &CSE : CallSites) {
+ if (!CSE.LPad)
+ continue; // Ignore gaps.
+ for (int Selector : CSE.LPad->TypeIds) {
+ // Ignore C++ filter clauses in SEH.
+ // FIXME: Implement cleanup clauses.
+ if (isCatchEHSelector(Selector))
+ ++NumEntries;
+ }
+ }
+ Asm->OutStreamer.EmitIntValue(NumEntries, 4);
+
+ // Emit the four-label records for each call site entry. The table has to be
+ // sorted in layout order, and the call sites should already be sorted.
+ for (const CallSiteEntry &CSE : CallSites) {
+ // Ignore gaps. Unlike the Itanium model, unwinding through a frame without
+ // an EH table entry will propagate the exception rather than terminating
+ // the program.
+ if (!CSE.LPad)
+ continue;
+ const LandingPadInfo *LPad = CSE.LPad;
+
+ // Compute the label range. We may reuse the function begin and end labels
+ // rather than forming new ones.
+ const MCExpr *Begin =
+ createImageRel32(CSE.BeginLabel ? CSE.BeginLabel : EHFuncBeginSym);
+ const MCExpr *End;
+ if (CSE.EndLabel) {
+ // The interval is half-open, so we have to add one to include the return
+ // address of the last invoke in the range.
+ End = MCBinaryExpr::CreateAdd(createImageRel32(CSE.EndLabel),
+ MCConstantExpr::Create(1, Asm->OutContext),
+ Asm->OutContext);
+ } else {
+ End = createImageRel32(EHFuncEndSym);
+ }
+
+ // These aren't really type info globals, they are actually pointers to
+ // filter functions ordered by selector. The zero selector is used for
+ // cleanups, so slot zero corresponds to selector 1.
+ const std::vector<const GlobalValue *> &SelectorToFilter = MMI->getTypeInfos();
+
+ // Do a parallel iteration across typeids and clause labels, skipping filter
+ // clauses.
+ assert(LPad->TypeIds.size() == LPad->ClauseLabels.size());
+ for (size_t I = 0, E = LPad->TypeIds.size(); I < E; ++I) {
+ // AddLandingPadInfo stores the clauses in reverse, but there is a FIXME
+ // to change that.
+ int Selector = LPad->TypeIds[E - I - 1];
+ MCSymbol *ClauseLabel = LPad->ClauseLabels[I];
+
+ // Ignore C++ filter clauses in SEH.
+ // FIXME: Implement cleanup clauses.
+ if (!isCatchEHSelector(Selector))
+ continue;
+
+ Asm->OutStreamer.EmitValue(Begin, 4);
+ Asm->OutStreamer.EmitValue(End, 4);
+ if (isCatchEHSelector(Selector)) {
+ assert(unsigned(Selector - 1) < SelectorToFilter.size());
+ const GlobalValue *TI = SelectorToFilter[Selector - 1];
+ if (TI) // Emit the filter function pointer.
+ Asm->OutStreamer.EmitValue(createImageRel32(Asm->getSymbol(TI)), 4);
+ else // Otherwise, this is a "catch i8* null", or catch all.
+ Asm->OutStreamer.EmitIntValue(0, 4);
+ }
+ Asm->OutStreamer.EmitValue(createImageRel32(ClauseLabel), 4);
+ }
+ }
+}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.h b/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.h
new file mode 100644
index 0000000..b2d5d1b
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/Win64Exception.h
@@ -0,0 +1,56 @@
+//===-- Win64Exception.h - Windows Exception Handling ----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing windows exception info into asm files.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_WIN64EXCEPTION_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_WIN64EXCEPTION_H
+
+#include "EHStreamer.h"
+
+namespace llvm {
+class MachineFunction;
+
+class Win64Exception : public EHStreamer {
+ /// Per-function flag to indicate if personality info should be emitted.
+ bool shouldEmitPersonality;
+
+ /// Per-function flag to indicate if the LSDA should be emitted.
+ bool shouldEmitLSDA;
+
+ /// Per-function flag to indicate if frame moves info should be emitted.
+ bool shouldEmitMoves;
+
+ void emitCSpecificHandlerTable();
+
+ const MCSymbolRefExpr *createImageRel32(const MCSymbol *Value);
+
+public:
+ //===--------------------------------------------------------------------===//
+ // Main entry points.
+ //
+ Win64Exception(AsmPrinter *A);
+ virtual ~Win64Exception();
+
+ /// Emit all exception information that should come after the content.
+ void endModule() override;
+
+ /// Gather pre-function exception information. Assumes being emitted
+ /// immediately after the function entry point.
+ void beginFunction(const MachineFunction *MF) override;
+
+ /// Gather and emit post-function exception information.
+ void endFunction(const MachineFunction *) override;
+};
+}
+
+#endif
+
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.cpp
index 6a5c431..b5e0929 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.cpp
@@ -116,15 +116,67 @@ WinCodeViewLineTables::WinCodeViewLineTables(AsmPrinter *AP)
Asm = AP;
}
+void WinCodeViewLineTables::endModule() {
+ if (FnDebugInfo.empty())
+ return;
+
+ assert(Asm != nullptr);
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
+ Asm->EmitInt32(COFF::DEBUG_SECTION_MAGIC);
+
+ // The COFF .debug$S section consists of several subsections, each starting
+ // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
+ // of the payload followed by the payload itself. The subsections are 4-byte
+ // aligned.
+
+ // Emit per-function debug information. This code is extracted into a
+ // separate function for readability.
+ for (size_t I = 0, E = VisitedFunctions.size(); I != E; ++I)
+ emitDebugInfoForFunction(VisitedFunctions[I]);
+
+ // This subsection holds a file index to offset in string table table.
+ Asm->OutStreamer.AddComment("File index to string table offset subsection");
+ Asm->EmitInt32(COFF::DEBUG_INDEX_SUBSECTION);
+ size_t NumFilenames = FileNameRegistry.Infos.size();
+ Asm->EmitInt32(8 * NumFilenames);
+ for (size_t I = 0, E = FileNameRegistry.Filenames.size(); I != E; ++I) {
+ StringRef Filename = FileNameRegistry.Filenames[I];
+ // For each unique filename, just write its offset in the string table.
+ Asm->EmitInt32(FileNameRegistry.Infos[Filename].StartOffset);
+ // The function name offset is not followed by any additional data.
+ Asm->EmitInt32(0);
+ }
+
+ // This subsection holds the string table.
+ Asm->OutStreamer.AddComment("String table");
+ Asm->EmitInt32(COFF::DEBUG_STRING_TABLE_SUBSECTION);
+ Asm->EmitInt32(FileNameRegistry.LastOffset);
+ // The payload starts with a null character.
+ Asm->EmitInt8(0);
+
+ for (size_t I = 0, E = FileNameRegistry.Filenames.size(); I != E; ++I) {
+ // Just emit unique filenames one by one, separated by a null character.
+ Asm->OutStreamer.EmitBytes(FileNameRegistry.Filenames[I]);
+ Asm->EmitInt8(0);
+ }
+
+ // No more subsections. Fill with zeros to align the end of the section by 4.
+ Asm->OutStreamer.EmitFill((-FileNameRegistry.LastOffset) % 4, 0);
+
+ clear();
+}
+
static void EmitLabelDiff(MCStreamer &Streamer,
- const MCSymbol *From, const MCSymbol *To) {
+ const MCSymbol *From, const MCSymbol *To,
+ unsigned int Size = 4) {
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
MCContext &Context = Streamer.getContext();
const MCExpr *FromRef = MCSymbolRefExpr::Create(From, Variant, Context),
*ToRef = MCSymbolRefExpr::Create(To, Variant, Context);
const MCExpr *AddrDelta =
MCBinaryExpr::Create(MCBinaryExpr::Sub, ToRef, FromRef, Context);
- Streamer.EmitValue(AddrDelta, 4);
+ Streamer.EmitValue(AddrDelta, Size);
}
void WinCodeViewLineTables::emitDebugInfoForFunction(const Function *GV) {
@@ -138,6 +190,51 @@ void WinCodeViewLineTables::emitDebugInfoForFunction(const Function *GV) {
return;
assert(FI.End && "Don't know where the function ends?");
+ StringRef FuncName = getDISubprogram(GV).getDisplayName(),
+ GVName = GV->getName();
+ // FIXME Clang currently sets DisplayName to "bar" for a C++
+ // "namespace_foo::bar" function, see PR21528. Luckily, dbghelp.dll is trying
+ // to demangle display names anyways, so let's just put a mangled name into
+ // the symbols subsection until Clang gives us what we need.
+ if (GVName.startswith("\01?"))
+ FuncName = GVName.substr(1);
+ // Emit a symbol subsection, required by VS2012+ to find function boundaries.
+ MCSymbol *SymbolsBegin = Asm->MMI->getContext().CreateTempSymbol(),
+ *SymbolsEnd = Asm->MMI->getContext().CreateTempSymbol();
+ Asm->OutStreamer.AddComment("Symbol subsection for " + Twine(FuncName));
+ Asm->EmitInt32(COFF::DEBUG_SYMBOL_SUBSECTION);
+ EmitLabelDiff(Asm->OutStreamer, SymbolsBegin, SymbolsEnd);
+ Asm->OutStreamer.EmitLabel(SymbolsBegin);
+ {
+ MCSymbol *ProcSegmentBegin = Asm->MMI->getContext().CreateTempSymbol(),
+ *ProcSegmentEnd = Asm->MMI->getContext().CreateTempSymbol();
+ EmitLabelDiff(Asm->OutStreamer, ProcSegmentBegin, ProcSegmentEnd, 2);
+ Asm->OutStreamer.EmitLabel(ProcSegmentBegin);
+
+ Asm->EmitInt16(COFF::DEBUG_SYMBOL_TYPE_PROC_START);
+ // Some bytes of this segment don't seem to be required for basic debugging,
+ // so just fill them with zeroes.
+ Asm->OutStreamer.EmitFill(12, 0);
+ // This is the important bit that tells the debugger where the function
+ // code is located and what's its size:
+ EmitLabelDiff(Asm->OutStreamer, Fn, FI.End);
+ Asm->OutStreamer.EmitFill(12, 0);
+ Asm->OutStreamer.EmitCOFFSecRel32(Fn);
+ Asm->OutStreamer.EmitCOFFSectionIndex(Fn);
+ Asm->EmitInt8(0);
+ // Emit the function display name as a null-terminated string.
+ Asm->OutStreamer.EmitBytes(FuncName);
+ Asm->EmitInt8(0);
+ Asm->OutStreamer.EmitLabel(ProcSegmentEnd);
+
+ // We're done with this function.
+ Asm->EmitInt16(0x0002);
+ Asm->EmitInt16(COFF::DEBUG_SYMBOL_TYPE_PROC_END);
+ }
+ Asm->OutStreamer.EmitLabel(SymbolsEnd);
+ // Every subsection must be aligned to a 4-byte boundary.
+ Asm->OutStreamer.EmitFill((-FuncName.size()) % 4, 0);
+
// PCs/Instructions are grouped into segments sharing the same filename.
// Pre-calculate the lengths (in instructions) of these segments and store
// them in a map for convenience. Each index in the map is the sequential
@@ -154,18 +251,19 @@ void WinCodeViewLineTables::emitDebugInfoForFunction(const Function *GV) {
}
FilenameSegmentLengths[LastSegmentEnd] = FI.Instrs.size() - LastSegmentEnd;
- // Emit the control code of the subsection followed by the payload size.
- Asm->OutStreamer.AddComment(
- "Linetable subsection for " + Twine(Fn->getName()));
+ // Emit a line table subsection, requred to do PC-to-file:line lookup.
+ Asm->OutStreamer.AddComment("Line table subsection for " + Twine(FuncName));
Asm->EmitInt32(COFF::DEBUG_LINE_TABLE_SUBSECTION);
- MCSymbol *SubsectionBegin = Asm->MMI->getContext().CreateTempSymbol(),
- *SubsectionEnd = Asm->MMI->getContext().CreateTempSymbol();
- EmitLabelDiff(Asm->OutStreamer, SubsectionBegin, SubsectionEnd);
- Asm->OutStreamer.EmitLabel(SubsectionBegin);
+ MCSymbol *LineTableBegin = Asm->MMI->getContext().CreateTempSymbol(),
+ *LineTableEnd = Asm->MMI->getContext().CreateTempSymbol();
+ EmitLabelDiff(Asm->OutStreamer, LineTableBegin, LineTableEnd);
+ Asm->OutStreamer.EmitLabel(LineTableBegin);
// Identify the function this subsection is for.
Asm->OutStreamer.EmitCOFFSecRel32(Fn);
Asm->OutStreamer.EmitCOFFSectionIndex(Fn);
+ // Insert padding after a 16-bit section index.
+ Asm->EmitInt16(0);
// Length of the function's code, in bytes.
EmitLabelDiff(Asm->OutStreamer, Fn, FI.End);
@@ -209,56 +307,7 @@ void WinCodeViewLineTables::emitDebugInfoForFunction(const Function *GV) {
if (FileSegmentEnd)
Asm->OutStreamer.EmitLabel(FileSegmentEnd);
- Asm->OutStreamer.EmitLabel(SubsectionEnd);
-}
-
-void WinCodeViewLineTables::endModule() {
- if (FnDebugInfo.empty())
- return;
-
- assert(Asm != nullptr);
- Asm->OutStreamer.SwitchSection(
- Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
- Asm->EmitInt32(COFF::DEBUG_SECTION_MAGIC);
-
- // The COFF .debug$S section consists of several subsections, each starting
- // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
- // of the payload followed by the payload itself. The subsections are 4-byte
- // aligned.
-
- for (size_t I = 0, E = VisitedFunctions.size(); I != E; ++I)
- emitDebugInfoForFunction(VisitedFunctions[I]);
-
- // This subsection holds a file index to offset in string table table.
- Asm->OutStreamer.AddComment("File index to string table offset subsection");
- Asm->EmitInt32(COFF::DEBUG_INDEX_SUBSECTION);
- size_t NumFilenames = FileNameRegistry.Infos.size();
- Asm->EmitInt32(8 * NumFilenames);
- for (size_t I = 0, E = FileNameRegistry.Filenames.size(); I != E; ++I) {
- StringRef Filename = FileNameRegistry.Filenames[I];
- // For each unique filename, just write it's offset in the string table.
- Asm->EmitInt32(FileNameRegistry.Infos[Filename].StartOffset);
- // The function name offset is not followed by any additional data.
- Asm->EmitInt32(0);
- }
-
- // This subsection holds the string table.
- Asm->OutStreamer.AddComment("String table");
- Asm->EmitInt32(COFF::DEBUG_STRING_TABLE_SUBSECTION);
- Asm->EmitInt32(FileNameRegistry.LastOffset);
- // The payload starts with a null character.
- Asm->EmitInt8(0);
-
- for (size_t I = 0, E = FileNameRegistry.Filenames.size(); I != E; ++I) {
- // Just emit unique filenames one by one, separated by a null character.
- Asm->OutStreamer.EmitBytes(FileNameRegistry.Filenames[I]);
- Asm->EmitInt8(0);
- }
-
- // No more subsections. Fill with zeros to align the end of the section by 4.
- Asm->OutStreamer.EmitFill((-FileNameRegistry.LastOffset) % 4, 0);
-
- clear();
+ Asm->OutStreamer.EmitLabel(LineTableEnd);
}
void WinCodeViewLineTables::beginFunction(const MachineFunction *MF) {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.h b/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.h
index 0734d97..8492eac 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/WinCodeViewLineTables.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_WINCODEVIEWLINETABLES_H__
-#define CODEGEN_ASMPRINTER_WINCODEVIEWLINETABLES_H__
+#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_WINCODEVIEWLINETABLES_H
+#define LLVM_LIB_CODEGEN_ASMPRINTER_WINCODEVIEWLINETABLES_H
#include "AsmPrinterHandler.h"
#include "llvm/ADT/DenseMap.h"
diff --git a/contrib/llvm/lib/CodeGen/AtomicExpandLoadLinkedPass.cpp b/contrib/llvm/lib/CodeGen/AtomicExpandLoadLinkedPass.cpp
deleted file mode 100644
index 421946d..0000000
--- a/contrib/llvm/lib/CodeGen/AtomicExpandLoadLinkedPass.cpp
+++ /dev/null
@@ -1,380 +0,0 @@
-//===-- AtomicExpandLoadLinkedPass.cpp - Expand atomic instructions -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains a pass (at IR level) to replace atomic instructions with
-// appropriate (intrinsic-based) ldrex/strex loops.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetSubtargetInfo.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "arm-atomic-expand"
-
-namespace {
- class AtomicExpandLoadLinked : public FunctionPass {
- const TargetMachine *TM;
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit AtomicExpandLoadLinked(const TargetMachine *TM = nullptr)
- : FunctionPass(ID), TM(TM) {
- initializeAtomicExpandLoadLinkedPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override;
- bool expandAtomicInsts(Function &F);
-
- bool expandAtomicLoad(LoadInst *LI);
- bool expandAtomicStore(StoreInst *LI);
- bool expandAtomicRMW(AtomicRMWInst *AI);
- bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
-
- AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
- void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
- };
-}
-
-char AtomicExpandLoadLinked::ID = 0;
-char &llvm::AtomicExpandLoadLinkedID = AtomicExpandLoadLinked::ID;
-INITIALIZE_TM_PASS(AtomicExpandLoadLinked, "atomic-ll-sc",
- "Expand Atomic calls in terms of load-linked & store-conditional",
- false, false)
-
-FunctionPass *llvm::createAtomicExpandLoadLinkedPass(const TargetMachine *TM) {
- return new AtomicExpandLoadLinked(TM);
-}
-
-bool AtomicExpandLoadLinked::runOnFunction(Function &F) {
- if (!TM || !TM->getSubtargetImpl()->enableAtomicExpandLoadLinked())
- return false;
-
- SmallVector<Instruction *, 1> AtomicInsts;
-
- // Changing control-flow while iterating through it is a bad idea, so gather a
- // list of all atomic instructions before we start.
- for (BasicBlock &BB : F)
- for (Instruction &Inst : BB) {
- if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) ||
- (isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) ||
- (isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
- AtomicInsts.push_back(&Inst);
- }
-
- bool MadeChange = false;
- for (Instruction *Inst : AtomicInsts) {
- if (!TM->getTargetLowering()->shouldExpandAtomicInIR(Inst))
- continue;
-
- if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
- MadeChange |= expandAtomicRMW(AI);
- else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst))
- MadeChange |= expandAtomicCmpXchg(CI);
- else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- MadeChange |= expandAtomicLoad(LI);
- else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- MadeChange |= expandAtomicStore(SI);
- else
- llvm_unreachable("Unknown atomic instruction");
- }
-
- return MadeChange;
-}
-
-bool AtomicExpandLoadLinked::expandAtomicLoad(LoadInst *LI) {
- // Load instructions don't actually need a leading fence, even in the
- // SequentiallyConsistent case.
- AtomicOrdering MemOpOrder =
- TM->getTargetLowering()->getInsertFencesForAtomic() ? Monotonic
- : LI->getOrdering();
-
- // The only 64-bit load guaranteed to be single-copy atomic by the ARM ARM is
- // an ldrexd (A3.5.3).
- IRBuilder<> Builder(LI);
- Value *Val = TM->getTargetLowering()->emitLoadLinked(
- Builder, LI->getPointerOperand(), MemOpOrder);
-
- insertTrailingFence(Builder, LI->getOrdering());
-
- LI->replaceAllUsesWith(Val);
- LI->eraseFromParent();
-
- return true;
-}
-
-bool AtomicExpandLoadLinked::expandAtomicStore(StoreInst *SI) {
- // The only atomic 64-bit store on ARM is an strexd that succeeds, which means
- // we need a loop and the entire instruction is essentially an "atomicrmw
- // xchg" that ignores the value loaded.
- IRBuilder<> Builder(SI);
- AtomicRMWInst *AI =
- Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
- SI->getValueOperand(), SI->getOrdering());
- SI->eraseFromParent();
-
- // Now we have an appropriate swap instruction, lower it as usual.
- return expandAtomicRMW(AI);
-}
-
-bool AtomicExpandLoadLinked::expandAtomicRMW(AtomicRMWInst *AI) {
- AtomicOrdering Order = AI->getOrdering();
- Value *Addr = AI->getPointerOperand();
- BasicBlock *BB = AI->getParent();
- Function *F = BB->getParent();
- LLVMContext &Ctx = F->getContext();
-
- // Given: atomicrmw some_op iN* %addr, iN %incr ordering
- //
- // The standard expansion we produce is:
- // [...]
- // fence?
- // atomicrmw.start:
- // %loaded = @load.linked(%addr)
- // %new = some_op iN %loaded, %incr
- // %stored = @store_conditional(%new, %addr)
- // %try_again = icmp i32 ne %stored, 0
- // br i1 %try_again, label %loop, label %atomicrmw.end
- // atomicrmw.end:
- // fence?
- // [...]
- BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
- BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
-
- // This grabs the DebugLoc from AI.
- IRBuilder<> Builder(AI);
-
- // The split call above "helpfully" added a branch at the end of BB (to the
- // wrong place), but we might want a fence too. It's easiest to just remove
- // the branch entirely.
- std::prev(BB->end())->eraseFromParent();
- Builder.SetInsertPoint(BB);
- AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order);
- Builder.CreateBr(LoopBB);
-
- // Start the main loop block now that we've taken care of the preliminaries.
- Builder.SetInsertPoint(LoopBB);
- Value *Loaded =
- TM->getTargetLowering()->emitLoadLinked(Builder, Addr, MemOpOrder);
-
- Value *NewVal;
- switch (AI->getOperation()) {
- case AtomicRMWInst::Xchg:
- NewVal = AI->getValOperand();
- break;
- case AtomicRMWInst::Add:
- NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::Sub:
- NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::And:
- NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::Nand:
- NewVal = Builder.CreateNot(Builder.CreateAnd(Loaded, AI->getValOperand()),
- "new");
- break;
- case AtomicRMWInst::Or:
- NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::Xor:
- NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::Max:
- NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand());
- NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::Min:
- NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand());
- NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::UMax:
- NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand());
- NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
- break;
- case AtomicRMWInst::UMin:
- NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand());
- NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
- break;
- default:
- llvm_unreachable("Unknown atomic op");
- }
-
- Value *StoreSuccess = TM->getTargetLowering()->emitStoreConditional(
- Builder, NewVal, Addr, MemOpOrder);
- Value *TryAgain = Builder.CreateICmpNE(
- StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
- Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
-
- Builder.SetInsertPoint(ExitBB, ExitBB->begin());
- insertTrailingFence(Builder, Order);
-
- AI->replaceAllUsesWith(Loaded);
- AI->eraseFromParent();
-
- return true;
-}
-
-bool AtomicExpandLoadLinked::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
- AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
- AtomicOrdering FailureOrder = CI->getFailureOrdering();
- Value *Addr = CI->getPointerOperand();
- BasicBlock *BB = CI->getParent();
- Function *F = BB->getParent();
- LLVMContext &Ctx = F->getContext();
-
- // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
- //
- // The full expansion we produce is:
- // [...]
- // fence?
- // cmpxchg.start:
- // %loaded = @load.linked(%addr)
- // %should_store = icmp eq %loaded, %desired
- // br i1 %should_store, label %cmpxchg.trystore,
- // label %cmpxchg.failure
- // cmpxchg.trystore:
- // %stored = @store_conditional(%new, %addr)
- // %success = icmp eq i32 %stored, 0
- // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
- // cmpxchg.success:
- // fence?
- // br label %cmpxchg.end
- // cmpxchg.failure:
- // fence?
- // br label %cmpxchg.end
- // cmpxchg.end:
- // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
- // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
- // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
- // [...]
- BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
- auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
- auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
- auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
- auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
-
- // This grabs the DebugLoc from CI
- IRBuilder<> Builder(CI);
-
- // The split call above "helpfully" added a branch at the end of BB (to the
- // wrong place), but we might want a fence too. It's easiest to just remove
- // the branch entirely.
- std::prev(BB->end())->eraseFromParent();
- Builder.SetInsertPoint(BB);
- AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder);
- Builder.CreateBr(LoopBB);
-
- // Start the main loop block now that we've taken care of the preliminaries.
- Builder.SetInsertPoint(LoopBB);
- Value *Loaded =
- TM->getTargetLowering()->emitLoadLinked(Builder, Addr, MemOpOrder);
- Value *ShouldStore =
- Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
-
- // If the the cmpxchg doesn't actually need any ordering when it fails, we can
- // jump straight past that fence instruction (if it exists).
- Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
-
- Builder.SetInsertPoint(TryStoreBB);
- Value *StoreSuccess = TM->getTargetLowering()->emitStoreConditional(
- Builder, CI->getNewValOperand(), Addr, MemOpOrder);
- StoreSuccess = Builder.CreateICmpEQ(
- StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
- Builder.CreateCondBr(StoreSuccess, SuccessBB,
- CI->isWeak() ? FailureBB : LoopBB);
-
- // Make sure later instructions don't get reordered with a fence if necessary.
- Builder.SetInsertPoint(SuccessBB);
- insertTrailingFence(Builder, SuccessOrder);
- Builder.CreateBr(ExitBB);
-
- Builder.SetInsertPoint(FailureBB);
- insertTrailingFence(Builder, FailureOrder);
- Builder.CreateBr(ExitBB);
-
- // Finally, we have control-flow based knowledge of whether the cmpxchg
- // succeeded or not. We expose this to later passes by converting any
- // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
-
- // Setup the builder so we can create any PHIs we need.
- Builder.SetInsertPoint(ExitBB, ExitBB->begin());
- PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
- Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
- Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
-
- // Look for any users of the cmpxchg that are just comparing the loaded value
- // against the desired one, and replace them with the CFG-derived version.
- SmallVector<ExtractValueInst *, 2> PrunedInsts;
- for (auto User : CI->users()) {
- ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
- if (!EV)
- continue;
-
- assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
- "weird extraction from { iN, i1 }");
-
- if (EV->getIndices()[0] == 0)
- EV->replaceAllUsesWith(Loaded);
- else
- EV->replaceAllUsesWith(Success);
-
- PrunedInsts.push_back(EV);
- }
-
- // We can remove the instructions now we're no longer iterating through them.
- for (auto EV : PrunedInsts)
- EV->eraseFromParent();
-
- if (!CI->use_empty()) {
- // Some use of the full struct return that we don't understand has happened,
- // so we've got to reconstruct it properly.
- Value *Res;
- Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
- Res = Builder.CreateInsertValue(Res, Success, 1);
-
- CI->replaceAllUsesWith(Res);
- }
-
- CI->eraseFromParent();
- return true;
-}
-
-AtomicOrdering AtomicExpandLoadLinked::insertLeadingFence(IRBuilder<> &Builder,
- AtomicOrdering Ord) {
- if (!TM->getTargetLowering()->getInsertFencesForAtomic())
- return Ord;
-
- if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
- Builder.CreateFence(Release);
-
- // The exclusive operations don't need any barrier if we're adding separate
- // fences.
- return Monotonic;
-}
-
-void AtomicExpandLoadLinked::insertTrailingFence(IRBuilder<> &Builder,
- AtomicOrdering Ord) {
- if (!TM->getTargetLowering()->getInsertFencesForAtomic())
- return;
-
- if (Ord == Acquire || Ord == AcquireRelease)
- Builder.CreateFence(Acquire);
- else if (Ord == SequentiallyConsistent)
- Builder.CreateFence(SequentiallyConsistent);
-}
diff --git a/contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp b/contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp
new file mode 100644
index 0000000..12f6bd7
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/AtomicExpandPass.cpp
@@ -0,0 +1,563 @@
+//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass (at IR level) to replace atomic instructions with
+// either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "atomic-expand"
+
+namespace {
+ class AtomicExpand: public FunctionPass {
+ const TargetMachine *TM;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit AtomicExpand(const TargetMachine *TM = nullptr)
+ : FunctionPass(ID), TM(TM) {
+ initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ private:
+ bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
+ bool IsStore, bool IsLoad);
+ bool expandAtomicLoad(LoadInst *LI);
+ bool expandAtomicLoadToLL(LoadInst *LI);
+ bool expandAtomicLoadToCmpXchg(LoadInst *LI);
+ bool expandAtomicStore(StoreInst *SI);
+ bool expandAtomicRMW(AtomicRMWInst *AI);
+ bool expandAtomicRMWToLLSC(AtomicRMWInst *AI);
+ bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI);
+ bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
+ bool isIdempotentRMW(AtomicRMWInst *AI);
+ bool simplifyIdempotentRMW(AtomicRMWInst *AI);
+ };
+}
+
+char AtomicExpand::ID = 0;
+char &llvm::AtomicExpandID = AtomicExpand::ID;
+INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
+ "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
+ false, false)
+
+FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
+ return new AtomicExpand(TM);
+}
+
+bool AtomicExpand::runOnFunction(Function &F) {
+ if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand())
+ return false;
+ auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering();
+
+ SmallVector<Instruction *, 1> AtomicInsts;
+
+ // Changing control-flow while iterating through it is a bad idea, so gather a
+ // list of all atomic instructions before we start.
+ for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
+ if (I->isAtomic())
+ AtomicInsts.push_back(&*I);
+ }
+
+ bool MadeChange = false;
+ for (auto I : AtomicInsts) {
+ auto LI = dyn_cast<LoadInst>(I);
+ auto SI = dyn_cast<StoreInst>(I);
+ auto RMWI = dyn_cast<AtomicRMWInst>(I);
+ auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
+ assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
+ "Unknown atomic instruction");
+
+ auto FenceOrdering = Monotonic;
+ bool IsStore, IsLoad;
+ if (TargetLowering->getInsertFencesForAtomic()) {
+ if (LI && isAtLeastAcquire(LI->getOrdering())) {
+ FenceOrdering = LI->getOrdering();
+ LI->setOrdering(Monotonic);
+ IsStore = false;
+ IsLoad = true;
+ } else if (SI && isAtLeastRelease(SI->getOrdering())) {
+ FenceOrdering = SI->getOrdering();
+ SI->setOrdering(Monotonic);
+ IsStore = true;
+ IsLoad = false;
+ } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
+ isAtLeastAcquire(RMWI->getOrdering()))) {
+ FenceOrdering = RMWI->getOrdering();
+ RMWI->setOrdering(Monotonic);
+ IsStore = IsLoad = true;
+ } else if (CASI && !TargetLowering->hasLoadLinkedStoreConditional() &&
+ (isAtLeastRelease(CASI->getSuccessOrdering()) ||
+ isAtLeastAcquire(CASI->getSuccessOrdering()))) {
+ // If a compare and swap is lowered to LL/SC, we can do smarter fence
+ // insertion, with a stronger one on the success path than on the
+ // failure path. As a result, fence insertion is directly done by
+ // expandAtomicCmpXchg in that case.
+ FenceOrdering = CASI->getSuccessOrdering();
+ CASI->setSuccessOrdering(Monotonic);
+ CASI->setFailureOrdering(Monotonic);
+ IsStore = IsLoad = true;
+ }
+
+ if (FenceOrdering != Monotonic) {
+ MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
+ }
+ }
+
+ if (LI && TargetLowering->shouldExpandAtomicLoadInIR(LI)) {
+ MadeChange |= expandAtomicLoad(LI);
+ } else if (SI && TargetLowering->shouldExpandAtomicStoreInIR(SI)) {
+ MadeChange |= expandAtomicStore(SI);
+ } else if (RMWI) {
+ // There are two different ways of expanding RMW instructions:
+ // - into a load if it is idempotent
+ // - into a Cmpxchg/LL-SC loop otherwise
+ // we try them in that order.
+ MadeChange |= (isIdempotentRMW(RMWI) &&
+ simplifyIdempotentRMW(RMWI)) ||
+ (TargetLowering->shouldExpandAtomicRMWInIR(RMWI) &&
+ expandAtomicRMW(RMWI));
+ } else if (CASI && TargetLowering->hasLoadLinkedStoreConditional()) {
+ MadeChange |= expandAtomicCmpXchg(CASI);
+ }
+ }
+ return MadeChange;
+}
+
+bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
+ bool IsStore, bool IsLoad) {
+ IRBuilder<> Builder(I);
+
+ auto LeadingFence =
+ TM->getSubtargetImpl()->getTargetLowering()->emitLeadingFence(
+ Builder, Order, IsStore, IsLoad);
+
+ auto TrailingFence =
+ TM->getSubtargetImpl()->getTargetLowering()->emitTrailingFence(
+ Builder, Order, IsStore, IsLoad);
+ // The trailing fence is emitted before the instruction instead of after
+ // because there is no easy way of setting Builder insertion point after
+ // an instruction. So we must erase it from the BB, and insert it back
+ // in the right place.
+ // We have a guard here because not every atomic operation generates a
+ // trailing fence.
+ if (TrailingFence) {
+ TrailingFence->removeFromParent();
+ TrailingFence->insertAfter(I);
+ }
+
+ return (LeadingFence || TrailingFence);
+}
+
+bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
+ if (TM->getSubtargetImpl()
+ ->getTargetLowering()
+ ->hasLoadLinkedStoreConditional())
+ return expandAtomicLoadToLL(LI);
+ else
+ return expandAtomicLoadToCmpXchg(LI);
+}
+
+bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
+ auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+ IRBuilder<> Builder(LI);
+
+ // On some architectures, load-linked instructions are atomic for larger
+ // sizes than normal loads. For example, the only 64-bit load guaranteed
+ // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
+ Value *Val =
+ TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
+
+ LI->replaceAllUsesWith(Val);
+ LI->eraseFromParent();
+
+ return true;
+}
+
+bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
+ IRBuilder<> Builder(LI);
+ AtomicOrdering Order = LI->getOrdering();
+ Value *Addr = LI->getPointerOperand();
+ Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
+ Constant *DummyVal = Constant::getNullValue(Ty);
+
+ Value *Pair = Builder.CreateAtomicCmpXchg(
+ Addr, DummyVal, DummyVal, Order,
+ AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
+ Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
+
+ LI->replaceAllUsesWith(Loaded);
+ LI->eraseFromParent();
+
+ return true;
+}
+
+bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
+ // This function is only called on atomic stores that are too large to be
+ // atomic if implemented as a native store. So we replace them by an
+ // atomic swap, that can be implemented for example as a ldrex/strex on ARM
+ // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
+ // It is the responsibility of the target to only return true in
+ // shouldExpandAtomicRMW in cases where this is required and possible.
+ IRBuilder<> Builder(SI);
+ AtomicRMWInst *AI =
+ Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
+ SI->getValueOperand(), SI->getOrdering());
+ SI->eraseFromParent();
+
+ // Now we have an appropriate swap instruction, lower it as usual.
+ return expandAtomicRMW(AI);
+}
+
+bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) {
+ if (TM->getSubtargetImpl()
+ ->getTargetLowering()
+ ->hasLoadLinkedStoreConditional())
+ return expandAtomicRMWToLLSC(AI);
+ else
+ return expandAtomicRMWToCmpXchg(AI);
+}
+
+/// Emit IR to implement the given atomicrmw operation on values in registers,
+/// returning the new value.
+static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
+ Value *Loaded, Value *Inc) {
+ Value *NewVal;
+ switch (Op) {
+ case AtomicRMWInst::Xchg:
+ return Inc;
+ case AtomicRMWInst::Add:
+ return Builder.CreateAdd(Loaded, Inc, "new");
+ case AtomicRMWInst::Sub:
+ return Builder.CreateSub(Loaded, Inc, "new");
+ case AtomicRMWInst::And:
+ return Builder.CreateAnd(Loaded, Inc, "new");
+ case AtomicRMWInst::Nand:
+ return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
+ case AtomicRMWInst::Or:
+ return Builder.CreateOr(Loaded, Inc, "new");
+ case AtomicRMWInst::Xor:
+ return Builder.CreateXor(Loaded, Inc, "new");
+ case AtomicRMWInst::Max:
+ NewVal = Builder.CreateICmpSGT(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::Min:
+ NewVal = Builder.CreateICmpSLE(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::UMax:
+ NewVal = Builder.CreateICmpUGT(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::UMin:
+ NewVal = Builder.CreateICmpULE(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ default:
+ llvm_unreachable("Unknown atomic op");
+ }
+}
+
+bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) {
+ auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+ AtomicOrdering MemOpOrder = AI->getOrdering();
+ Value *Addr = AI->getPointerOperand();
+ BasicBlock *BB = AI->getParent();
+ Function *F = BB->getParent();
+ LLVMContext &Ctx = F->getContext();
+
+ // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+ //
+ // The standard expansion we produce is:
+ // [...]
+ // fence?
+ // atomicrmw.start:
+ // %loaded = @load.linked(%addr)
+ // %new = some_op iN %loaded, %incr
+ // %stored = @store_conditional(%new, %addr)
+ // %try_again = icmp i32 ne %stored, 0
+ // br i1 %try_again, label %loop, label %atomicrmw.end
+ // atomicrmw.end:
+ // fence?
+ // [...]
+ BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
+ BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+ // This grabs the DebugLoc from AI.
+ IRBuilder<> Builder(AI);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place), but we might want a fence too. It's easiest to just remove
+ // the branch entirely.
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ Builder.CreateBr(LoopBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(LoopBB);
+ Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+
+ Value *NewVal =
+ performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
+
+ Value *StoreSuccess =
+ TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
+ Value *TryAgain = Builder.CreateICmpNE(
+ StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
+ Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
+
+ Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+
+ AI->replaceAllUsesWith(Loaded);
+ AI->eraseFromParent();
+
+ return true;
+}
+
+bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) {
+ AtomicOrdering MemOpOrder =
+ AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
+ Value *Addr = AI->getPointerOperand();
+ BasicBlock *BB = AI->getParent();
+ Function *F = BB->getParent();
+ LLVMContext &Ctx = F->getContext();
+
+ // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+ //
+ // The standard expansion we produce is:
+ // [...]
+ // %init_loaded = load atomic iN* %addr
+ // br label %loop
+ // loop:
+ // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
+ // %new = some_op iN %loaded, %incr
+ // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
+ // %new_loaded = extractvalue { iN, i1 } %pair, 0
+ // %success = extractvalue { iN, i1 } %pair, 1
+ // br i1 %success, label %atomicrmw.end, label %loop
+ // atomicrmw.end:
+ // [...]
+ BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
+ BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+ // This grabs the DebugLoc from AI.
+ IRBuilder<> Builder(AI);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place), but we want a load. It's easiest to just remove
+ // the branch entirely.
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ LoadInst *InitLoaded = Builder.CreateLoad(Addr);
+ // Atomics require at least natural alignment.
+ InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
+ Builder.CreateBr(LoopBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(LoopBB);
+ PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
+ Loaded->addIncoming(InitLoaded, BB);
+
+ Value *NewVal =
+ performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
+
+ Value *Pair = Builder.CreateAtomicCmpXchg(
+ Addr, Loaded, NewVal, MemOpOrder,
+ AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
+ Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
+ Loaded->addIncoming(NewLoaded, LoopBB);
+
+ Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
+ Builder.CreateCondBr(Success, ExitBB, LoopBB);
+
+ Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+
+ AI->replaceAllUsesWith(NewLoaded);
+ AI->eraseFromParent();
+
+ return true;
+}
+
+bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
+ auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+ AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
+ AtomicOrdering FailureOrder = CI->getFailureOrdering();
+ Value *Addr = CI->getPointerOperand();
+ BasicBlock *BB = CI->getParent();
+ Function *F = BB->getParent();
+ LLVMContext &Ctx = F->getContext();
+ // If getInsertFencesForAtomic() returns true, then the target does not want
+ // to deal with memory orders, and emitLeading/TrailingFence should take care
+ // of everything. Otherwise, emitLeading/TrailingFence are no-op and we
+ // should preserve the ordering.
+ AtomicOrdering MemOpOrder =
+ TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
+
+ // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
+ //
+ // The full expansion we produce is:
+ // [...]
+ // fence?
+ // cmpxchg.start:
+ // %loaded = @load.linked(%addr)
+ // %should_store = icmp eq %loaded, %desired
+ // br i1 %should_store, label %cmpxchg.trystore,
+ // label %cmpxchg.failure
+ // cmpxchg.trystore:
+ // %stored = @store_conditional(%new, %addr)
+ // %success = icmp eq i32 %stored, 0
+ // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
+ // cmpxchg.success:
+ // fence?
+ // br label %cmpxchg.end
+ // cmpxchg.failure:
+ // fence?
+ // br label %cmpxchg.end
+ // cmpxchg.end:
+ // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
+ // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
+ // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
+ // [...]
+ BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
+ auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
+ auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
+ auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
+ auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
+
+ // This grabs the DebugLoc from CI
+ IRBuilder<> Builder(CI);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place), but we might want a fence too. It's easiest to just remove
+ // the branch entirely.
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
+ /*IsLoad=*/true);
+ Builder.CreateBr(LoopBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(LoopBB);
+ Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+ Value *ShouldStore =
+ Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
+
+ // If the the cmpxchg doesn't actually need any ordering when it fails, we can
+ // jump straight past that fence instruction (if it exists).
+ Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
+
+ Builder.SetInsertPoint(TryStoreBB);
+ Value *StoreSuccess = TLI->emitStoreConditional(
+ Builder, CI->getNewValOperand(), Addr, MemOpOrder);
+ StoreSuccess = Builder.CreateICmpEQ(
+ StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
+ Builder.CreateCondBr(StoreSuccess, SuccessBB,
+ CI->isWeak() ? FailureBB : LoopBB);
+
+ // Make sure later instructions don't get reordered with a fence if necessary.
+ Builder.SetInsertPoint(SuccessBB);
+ TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
+ /*IsLoad=*/true);
+ Builder.CreateBr(ExitBB);
+
+ Builder.SetInsertPoint(FailureBB);
+ TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
+ /*IsLoad=*/true);
+ Builder.CreateBr(ExitBB);
+
+ // Finally, we have control-flow based knowledge of whether the cmpxchg
+ // succeeded or not. We expose this to later passes by converting any
+ // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
+
+ // Setup the builder so we can create any PHIs we need.
+ Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+ PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
+ Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
+ Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
+
+ // Look for any users of the cmpxchg that are just comparing the loaded value
+ // against the desired one, and replace them with the CFG-derived version.
+ SmallVector<ExtractValueInst *, 2> PrunedInsts;
+ for (auto User : CI->users()) {
+ ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
+ if (!EV)
+ continue;
+
+ assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
+ "weird extraction from { iN, i1 }");
+
+ if (EV->getIndices()[0] == 0)
+ EV->replaceAllUsesWith(Loaded);
+ else
+ EV->replaceAllUsesWith(Success);
+
+ PrunedInsts.push_back(EV);
+ }
+
+ // We can remove the instructions now we're no longer iterating through them.
+ for (auto EV : PrunedInsts)
+ EV->eraseFromParent();
+
+ if (!CI->use_empty()) {
+ // Some use of the full struct return that we don't understand has happened,
+ // so we've got to reconstruct it properly.
+ Value *Res;
+ Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
+ Res = Builder.CreateInsertValue(Res, Success, 1);
+
+ CI->replaceAllUsesWith(Res);
+ }
+
+ CI->eraseFromParent();
+ return true;
+}
+
+bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
+ auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
+ if(!C)
+ return false;
+
+ AtomicRMWInst::BinOp Op = RMWI->getOperation();
+ switch(Op) {
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ return C->isZero();
+ case AtomicRMWInst::And:
+ return C->isMinusOne();
+ // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
+ default:
+ return false;
+ }
+}
+
+bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
+ auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+
+ if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
+ if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad))
+ expandAtomicLoad(ResultingLoad);
+ return true;
+ }
+
+ return false;
+}
diff --git a/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp b/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp
index b2737bf..72da806 100644
--- a/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp
@@ -42,7 +42,9 @@ class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
/// Estimate the cost overhead of SK_Alternate shuffle.
unsigned getAltShuffleOverhead(Type *Ty) const;
- const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); }
+ const TargetLoweringBase *getTLI() const {
+ return TM->getSubtargetImpl()->getTargetLowering();
+ }
public:
BasicTTI() : ImmutablePass(ID), TM(nullptr) {
@@ -90,7 +92,7 @@ public:
unsigned getJumpBufSize() const override;
bool shouldBuildLookupTables() const override;
bool haveFastSqrt(Type *Ty) const override;
- void getUnrollingPreferences(Loop *L,
+ void getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const override;
/// @}
@@ -99,10 +101,11 @@ public:
/// @{
unsigned getNumberOfRegisters(bool Vector) const override;
- unsigned getMaximumUnrollFactor() const override;
+ unsigned getMaxInterleaveFactor() const override;
unsigned getRegisterBitWidth(bool Vector) const override;
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
- OperandValueKind) const override;
+ OperandValueKind, OperandValueProperties,
+ OperandValueProperties) const override;
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const override;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
@@ -186,9 +189,8 @@ unsigned BasicTTI::getJumpBufSize() const {
bool BasicTTI::shouldBuildLookupTables() const {
const TargetLoweringBase *TLI = getTLI();
- return TLI->supportJumpTables() &&
- (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
+ return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
bool BasicTTI::haveFastSqrt(Type *Ty) const {
@@ -197,7 +199,7 @@ bool BasicTTI::haveFastSqrt(Type *Ty) const {
return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
}
-void BasicTTI::getUnrollingPreferences(Loop *L,
+void BasicTTI::getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const {
// This unrolling functionality is target independent, but to provide some
// motivation for its intended use, for x86:
@@ -223,11 +225,11 @@ void BasicTTI::getUnrollingPreferences(Loop *L,
// until someone finds a case where it matters in practice.
unsigned MaxOps;
- const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>();
+ const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>(F);
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
MaxOps = PartialUnrollingThreshold;
- else if (ST->getSchedModel()->LoopMicroOpBufferSize > 0)
- MaxOps = ST->getSchedModel()->LoopMicroOpBufferSize;
+ else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
+ MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
else
return;
@@ -282,13 +284,14 @@ unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
return 32;
}
-unsigned BasicTTI::getMaximumUnrollFactor() const {
+unsigned BasicTTI::getMaxInterleaveFactor() const {
return 1;
}
unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind,
- OperandValueKind) const {
+ OperandValueKind, OperandValueKind,
+ OperandValueProperties,
+ OperandValueProperties) const {
// Check if any of the operands are vector operands.
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
@@ -465,7 +468,8 @@ unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
- if (!TLI->isOperationExpand(ISD, LT.second)) {
+ if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
+ !TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
@@ -515,7 +519,7 @@ unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
if (Opcode == Instruction::Store)
LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
else
- LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
+ LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
}
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
@@ -561,6 +565,8 @@ unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
case Intrinsic::log10: ISD = ISD::FLOG10; break;
case Intrinsic::log2: ISD = ISD::FLOG2; break;
case Intrinsic::fabs: ISD = ISD::FABS; break;
+ case Intrinsic::minnum: ISD = ISD::FMINNUM; break;
+ case Intrinsic::maxnum: ISD = ISD::FMAXNUM; break;
case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
case Intrinsic::floor: ISD = ISD::FFLOOR; break;
case Intrinsic::ceil: ISD = ISD::FCEIL; break;
@@ -572,6 +578,7 @@ unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
case Intrinsic::pow: ISD = ISD::FPOW; break;
case Intrinsic::fma: ISD = ISD::FMA; break;
case Intrinsic::fmuladd: ISD = ISD::FMA; break;
+ // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
return 0;
@@ -582,7 +589,7 @@ unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that thre is some
+ // If the type is split to multiple registers, assume that there is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
diff --git a/contrib/llvm/lib/CodeGen/BranchFolding.cpp b/contrib/llvm/lib/CodeGen/BranchFolding.cpp
index 7503e57..2128da1 100644
--- a/contrib/llvm/lib/CodeGen/BranchFolding.cpp
+++ b/contrib/llvm/lib/CodeGen/BranchFolding.cpp
@@ -20,6 +20,8 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
@@ -32,8 +34,8 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -70,6 +72,8 @@ namespace {
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -91,22 +95,24 @@ bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
// HW that requires structurized CFG.
bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
PassConfig->getEnableTailMerge();
- BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true);
- return Folder.OptimizeFunction(MF,
- MF.getTarget().getInstrInfo(),
- MF.getTarget().getRegisterInfo(),
+ BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true,
+ getAnalysis<MachineBlockFrequencyInfo>(),
+ getAnalysis<MachineBranchProbabilityInfo>());
+ return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
+ MF.getSubtarget().getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
-
-BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist) {
+BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
+ const MachineBlockFrequencyInfo &FreqInfo,
+ const MachineBranchProbabilityInfo &ProbInfo)
+ : EnableHoistCommonCode(CommonHoist), MBBFreqInfo(FreqInfo),
+ MBPI(ProbInfo) {
switch (FlagEnableTailMerge) {
case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
case cl::BOU_TRUE: EnableTailMerge = true; break;
case cl::BOU_FALSE: EnableTailMerge = false; break;
}
-
- EnableHoistCommonCode = CommonHoist;
}
/// RemoveDeadBlock - Remove the specified dead machine basic block from the
@@ -388,10 +394,8 @@ void BranchFolder::MaintainLiveIns(MachineBasicBlock *CurMBB,
RS->enterBasicBlock(CurMBB);
if (!CurMBB->empty())
RS->forward(std::prev(CurMBB->end()));
- BitVector RegsLiveAtExit(TRI->getNumRegs());
- RS->getRegsUsed(RegsLiveAtExit, false);
- for (unsigned int i = 0, e = TRI->getNumRegs(); i != e; i++)
- if (RegsLiveAtExit[i])
+ for (unsigned int i = 1, e = TRI->getNumRegs(); i != e; i++)
+ if (RS->isRegUsed(i, false))
NewMBB->addLiveIn(i);
}
}
@@ -435,6 +439,9 @@ MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
// Splice the code over.
NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
+ // NewMBB inherits CurMBB's block frequency.
+ MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
+
// For targets that use the register scavenger, we must maintain LiveIns.
MaintainLiveIns(&CurMBB, NewMBB);
@@ -504,6 +511,21 @@ BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
#endif
}
+BlockFrequency
+BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
+ auto I = MergedBBFreq.find(MBB);
+
+ if (I != MergedBBFreq.end())
+ return I->second;
+
+ return MBFI.getBlockFreq(MBB);
+}
+
+void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
+ BlockFrequency F) {
+ MergedBBFreq[MBB] = F;
+}
+
/// CountTerminators - Count the number of terminators in the given
/// block and set I to the position of the first non-terminator, if there
/// is one, or MBB->end() otherwise.
@@ -806,6 +828,10 @@ bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
}
MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
+
+ // Recompute commont tail MBB's edge weights and block frequency.
+ setCommonTailEdgeWeights(*MBB);
+
// MBB is common tail. Adjust all other BB's to jump to this one.
// Traversal must be forwards so erases work.
DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber()
@@ -890,7 +916,7 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
continue;
// Visit each predecessor only once.
- if (!UniquePreds.insert(PBB))
+ if (!UniquePreds.insert(PBB).second)
continue;
// Skip blocks which may jump to a landing pad. Can't tail merge these.
@@ -968,6 +994,44 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
return MadeChange;
}
+void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
+ SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
+ BlockFrequency AccumulatedMBBFreq;
+
+ // Aggregate edge frequency of successor edge j:
+ // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
+ // where bb is a basic block that is in SameTails.
+ for (const auto &Src : SameTails) {
+ const MachineBasicBlock *SrcMBB = Src.getBlock();
+ BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
+ AccumulatedMBBFreq += BlockFreq;
+
+ // It is not necessary to recompute edge weights if TailBB has less than two
+ // successors.
+ if (TailMBB.succ_size() <= 1)
+ continue;
+
+ auto EdgeFreq = EdgeFreqLs.begin();
+
+ for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
+ SuccI != SuccE; ++SuccI, ++EdgeFreq)
+ *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
+ }
+
+ MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
+
+ if (TailMBB.succ_size() <= 1)
+ return;
+
+ auto MaxEdgeFreq = *std::max_element(EdgeFreqLs.begin(), EdgeFreqLs.end());
+ uint64_t Scale = MaxEdgeFreq.getFrequency() / UINT32_MAX + 1;
+ auto EdgeFreq = EdgeFreqLs.begin();
+
+ for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
+ SuccI != SuccE; ++SuccI, ++EdgeFreq)
+ TailMBB.setSuccWeight(SuccI, EdgeFreq->getFrequency() / Scale);
+}
+
//===----------------------------------------------------------------------===//
// Branch Optimization
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/CodeGen/BranchFolding.h b/contrib/llvm/lib/CodeGen/BranchFolding.h
index 0d15ed7..3653a2c 100644
--- a/contrib/llvm/lib/CodeGen/BranchFolding.h
+++ b/contrib/llvm/lib/CodeGen/BranchFolding.h
@@ -7,14 +7,17 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_BRANCHFOLDING_HPP
-#define LLVM_CODEGEN_BRANCHFOLDING_HPP
+#ifndef LLVM_LIB_CODEGEN_BRANCHFOLDING_H
+#define LLVM_LIB_CODEGEN_BRANCHFOLDING_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/Support/BlockFrequency.h"
#include <vector>
namespace llvm {
+ class MachineBlockFrequencyInfo;
+ class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineModuleInfo;
class RegScavenger;
@@ -23,7 +26,9 @@ namespace llvm {
class BranchFolder {
public:
- explicit BranchFolder(bool defaultEnableTailMerge, bool CommonHoist);
+ explicit BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
+ const MachineBlockFrequencyInfo &MBFI,
+ const MachineBranchProbabilityInfo &MBPI);
bool OptimizeFunction(MachineFunction &MF,
const TargetInstrInfo *tii,
@@ -92,9 +97,26 @@ namespace llvm {
MachineModuleInfo *MMI;
RegScavenger *RS;
+ /// \brief This class keeps track of branch frequencies of newly created
+ /// blocks and tail-merged blocks.
+ class MBFIWrapper {
+ public:
+ MBFIWrapper(const MachineBlockFrequencyInfo &I) : MBFI(I) {}
+ BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const;
+ void setBlockFreq(const MachineBasicBlock *MBB, BlockFrequency F);
+
+ private:
+ const MachineBlockFrequencyInfo &MBFI;
+ DenseMap<const MachineBasicBlock *, BlockFrequency> MergedBBFreq;
+ };
+
+ MBFIWrapper MBBFreqInfo;
+ const MachineBranchProbabilityInfo &MBPI;
+
bool TailMergeBlocks(MachineFunction &MF);
bool TryTailMergeBlocks(MachineBasicBlock* SuccBB,
MachineBasicBlock* PredBB);
+ void setCommonTailEdgeWeights(MachineBasicBlock &TailMBB);
void MaintainLiveIns(MachineBasicBlock *CurMBB,
MachineBasicBlock *NewMBB);
void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
diff --git a/contrib/llvm/lib/CodeGen/CalcSpillWeights.cpp b/contrib/llvm/lib/CodeGen/CalcSpillWeights.cpp
index bc033f9..d08fae0 100644
--- a/contrib/llvm/lib/CodeGen/CalcSpillWeights.cpp
+++ b/contrib/llvm/lib/CodeGen/CalcSpillWeights.cpp
@@ -16,8 +16,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "calcspillweights"
@@ -95,11 +95,12 @@ static bool isRematerializable(const LiveInterval &LI,
void
VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) {
MachineRegisterInfo &mri = MF.getRegInfo();
- const TargetRegisterInfo &tri = *MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo &tri = *MF.getSubtarget().getRegisterInfo();
MachineBasicBlock *mbb = nullptr;
MachineLoop *loop = nullptr;
bool isExiting = false;
float totalWeight = 0;
+ unsigned numInstr = 0; // Number of instructions using li
SmallPtrSet<MachineInstr*, 8> visited;
// Find the best physreg hint and the best virtreg hint.
@@ -116,9 +117,10 @@ VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) {
I = mri.reg_instr_begin(li.reg), E = mri.reg_instr_end();
I != E; ) {
MachineInstr *mi = &*(I++);
+ numInstr++;
if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue())
continue;
- if (!visited.insert(mi))
+ if (!visited.insert(mi).second)
continue;
float weight = 1.0f;
@@ -186,8 +188,8 @@ VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) {
// it is a preferred candidate for spilling.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
- if (isRematerializable(li, LIS, *MF.getTarget().getInstrInfo()))
+ if (isRematerializable(li, LIS, *MF.getSubtarget().getInstrInfo()))
totalWeight *= 0.5F;
- li.weight = normalize(totalWeight, li.getSize());
+ li.weight = normalize(totalWeight, li.getSize(), numInstr);
}
diff --git a/contrib/llvm/lib/CodeGen/CallingConvLower.cpp b/contrib/llvm/lib/CodeGen/CallingConvLower.cpp
index add861a..034ffb3 100644
--- a/contrib/llvm/lib/CodeGen/CallingConvLower.cpp
+++ b/contrib/llvm/lib/CodeGen/CallingConvLower.cpp
@@ -14,21 +14,22 @@
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
- const TargetMachine &tm, SmallVectorImpl<CCValAssign> &locs,
- LLVMContext &C)
- : CallingConv(CC), IsVarArg(isVarArg), MF(mf), TM(tm),
- TRI(*TM.getRegisterInfo()), Locs(locs), Context(C),
- CallOrPrologue(Unknown) {
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
+ : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
+ TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C),
+ CallOrPrologue(Unknown) {
// No stack is used.
StackOffset = 0;
@@ -50,7 +51,8 @@ void CCState::HandleByVal(unsigned ValNo, MVT ValVT,
if (MinAlign > (int)Align)
Align = MinAlign;
MF.getFrameInfo()->ensureMaxAlignment(Align);
- TM.getTargetLowering()->HandleByVal(this, Size, Align);
+ MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align);
+ Size = unsigned(RoundUpToAlignment(Size, MinAlign));
unsigned Offset = AllocateStack(Size, Align);
addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
}
@@ -178,3 +180,70 @@ void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
llvm_unreachable(nullptr);
}
}
+
+static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
+ if (VT.isVector())
+ return true; // Assume -msse-regparm might be in effect.
+ if (!VT.isInteger())
+ return false;
+ if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall)
+ return true;
+ return false;
+}
+
+void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
+ MVT VT, CCAssignFn Fn) {
+ unsigned SavedStackOffset = StackOffset;
+ unsigned NumLocs = Locs.size();
+
+ // Set the 'inreg' flag if it is used for this calling convention.
+ ISD::ArgFlagsTy Flags;
+ if (isValueTypeInRegForCC(CallingConv, VT))
+ Flags.setInReg();
+
+ // Allocate something of this value type repeatedly until we get assigned a
+ // location in memory.
+ bool HaveRegParm = true;
+ while (HaveRegParm) {
+ if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
+#ifndef NDEBUG
+ dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
+ << " while computing remaining regparms\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ HaveRegParm = Locs.back().isRegLoc();
+ }
+
+ // Copy all the registers from the value locations we added.
+ assert(NumLocs < Locs.size() && "CC assignment failed to add location");
+ for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
+ if (Locs[I].isRegLoc())
+ Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
+
+ // Clear the assigned values and stack memory. We leave the registers marked
+ // as allocated so that future queries don't return the same registers, i.e.
+ // when i64 and f64 are both passed in GPRs.
+ StackOffset = SavedStackOffset;
+ Locs.resize(NumLocs);
+}
+
+void CCState::analyzeMustTailForwardedRegisters(
+ SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
+ CCAssignFn Fn) {
+ // Oftentimes calling conventions will not user register parameters for
+ // variadic functions, so we need to assume we're not variadic so that we get
+ // all the registers that might be used in a non-variadic call.
+ SaveAndRestore<bool> SavedVarArg(IsVarArg, false);
+
+ for (MVT RegVT : RegParmTypes) {
+ SmallVector<MCPhysReg, 8> RemainingRegs;
+ getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
+ const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
+ const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
+ for (MCPhysReg PReg : RemainingRegs) {
+ unsigned VReg = MF.addLiveIn(PReg, RC);
+ Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
+ }
+ }
+}
diff --git a/contrib/llvm/lib/CodeGen/CodeGen.cpp b/contrib/llvm/lib/CodeGen/CodeGen.cpp
index b3beac3..307dec5 100644
--- a/contrib/llvm/lib/CodeGen/CodeGen.cpp
+++ b/contrib/llvm/lib/CodeGen/CodeGen.cpp
@@ -20,7 +20,7 @@ using namespace llvm;
/// initializeCodeGen - Initialize all passes linked into the CodeGen library.
void llvm::initializeCodeGen(PassRegistry &Registry) {
- initializeAtomicExpandLoadLinkedPass(Registry);
+ initializeAtomicExpandPass(Registry);
initializeBasicTTIPass(Registry);
initializeBranchFolderPassPass(Registry);
initializeCodeGenPreparePass(Registry);
@@ -41,6 +41,7 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
initializeMachineBlockPlacementPass(Registry);
initializeMachineBlockPlacementStatsPass(Registry);
initializeMachineCopyPropagationPass(Registry);
+ initializeMachineCombinerPass(Registry);
initializeMachineCSEPass(Registry);
initializeMachineDominatorTreePass(Registry);
initializeMachinePostDominatorTreePass(Registry);
diff --git a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp
index d5039b2..82cd380 100644
--- a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp
@@ -18,6 +18,7 @@
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -29,6 +30,7 @@
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
@@ -43,6 +45,7 @@
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -63,6 +66,7 @@ STATISTIC(NumRetsDup, "Number of return instructions duplicated");
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
+STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
static cl::opt<bool> DisableBranchOpts(
"disable-cgp-branch-opts", cl::Hidden, cl::init(false),
@@ -80,15 +84,40 @@ static cl::opt<bool> EnableAndCmpSinking(
"enable-andcmp-sinking", cl::Hidden, cl::init(true),
cl::desc("Enable sinkinig and/cmp into branches."));
+static cl::opt<bool> DisableStoreExtract(
+ "disable-cgp-store-extract", cl::Hidden, cl::init(false),
+ cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
+
+static cl::opt<bool> StressStoreExtract(
+ "stress-cgp-store-extract", cl::Hidden, cl::init(false),
+ cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
+
+static cl::opt<bool> DisableExtLdPromotion(
+ "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
+ cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
+ "CodeGenPrepare"));
+
+static cl::opt<bool> StressExtLdPromotion(
+ "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
+ cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
+ "optimization in CodeGenPrepare"));
+
namespace {
typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
-typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
+struct TypeIsSExt {
+ Type *Ty;
+ bool IsSExt;
+ TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {}
+};
+typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
+class TypePromotionTransaction;
class CodeGenPrepare : public FunctionPass {
/// TLI - Keep a pointer of a TargetLowering to consult for determining
/// transformation profitability.
const TargetMachine *TM;
const TargetLowering *TLI;
+ const TargetTransformInfo *TTI;
const TargetLibraryInfo *TLInfo;
DominatorTree *DT;
@@ -118,7 +147,7 @@ typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
public:
static char ID; // Pass identification, replacement for typeid
explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
- : FunctionPass(ID), TM(TM), TLI(nullptr) {
+ : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) {
initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
@@ -128,6 +157,7 @@ typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<TargetTransformInfo>();
}
private:
@@ -135,18 +165,24 @@ typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
bool EliminateMostlyEmptyBlocks(Function &F);
bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
void EliminateMostlyEmptyBlock(BasicBlock *BB);
- bool OptimizeBlock(BasicBlock &BB);
- bool OptimizeInst(Instruction *I);
+ bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT);
+ bool OptimizeInst(Instruction *I, bool& ModifiedDT);
bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
bool OptimizeInlineAsmInst(CallInst *CS);
- bool OptimizeCallInst(CallInst *CI);
- bool MoveExtToFormExtLoad(Instruction *I);
+ bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT);
+ bool MoveExtToFormExtLoad(Instruction *&I);
bool OptimizeExtUses(Instruction *I);
bool OptimizeSelectInst(SelectInst *SI);
bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
+ bool OptimizeExtractElementInst(Instruction *Inst);
bool DupRetToEnableTailCallOpts(BasicBlock *BB);
bool PlaceDbgValues(Function &F);
bool sinkAndCmp(Function &F);
+ bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
+ Instruction *&Inst,
+ const SmallVectorImpl<Instruction *> &Exts,
+ unsigned CreatedInst);
+ bool splitBranchCondition(Function &F);
};
}
@@ -168,8 +204,10 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
PromotedInsts.clear();
ModifiedDT = false;
- if (TM) TLI = TM->getTargetLowering();
+ if (TM)
+ TLI = TM->getSubtargetImpl()->getTargetLowering();
TLInfo = &getAnalysis<TargetLibraryInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
@@ -198,15 +236,23 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
// into a single target instruction, push the mask and compare into branch
// users. Do this before OptimizeBlock -> OptimizeInst ->
// OptimizeCmpExpression, which perturbs the pattern being searched for.
- if (!DisableBranchOpts)
+ if (!DisableBranchOpts) {
EverMadeChange |= sinkAndCmp(F);
+ EverMadeChange |= splitBranchCondition(F);
+ }
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (Function::iterator I = F.begin(); I != F.end(); ) {
BasicBlock *BB = I++;
- MadeChange |= OptimizeBlock(*BB);
+ bool ModifiedDTOnIteration = false;
+ MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration);
+
+ // Restart BB iteration if the dominator tree of the Function was changed
+ ModifiedDT |= ModifiedDTOnIteration;
+ if (ModifiedDTOnIteration)
+ break;
}
EverMadeChange |= MadeChange;
}
@@ -216,9 +262,9 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
if (!DisableBranchOpts) {
MadeChange = false;
SmallPtrSet<BasicBlock*, 8> WorkList;
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
- MadeChange |= ConstantFoldTerminator(BB, true);
+ for (BasicBlock &BB : F) {
+ SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
+ MadeChange |= ConstantFoldTerminator(&BB, true);
if (!MadeChange) continue;
for (SmallVectorImpl<BasicBlock*>::iterator
@@ -662,10 +708,13 @@ SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
if (!ISDOpcode)
continue;
- // If the use is actually a legal node, there will not be an implicit
- // truncate.
- if (TLI.isOperationLegalOrCustom(ISDOpcode,
- EVT::getEVT(TruncUser->getType())))
+ // If the use is actually a legal node, there will not be an
+ // implicit truncate.
+ // FIXME: always querying the result type is just an
+ // approximation; some nodes' legality is determined by the
+ // operand or other means. There's no good way to find out though.
+ if (TLI.isOperationLegalOrCustom(
+ ISDOpcode, TLI.getValueType(TruncUser->getType(), true)))
continue;
// Don't bother for PHI nodes.
@@ -799,23 +848,211 @@ static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
return MadeChange;
}
-namespace {
-class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
-protected:
- void replaceCall(Value *With) override {
- CI->replaceAllUsesWith(With);
- CI->eraseFromParent();
+// ScalarizeMaskedLoad() translates masked load intrinsic, like
+// <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
+// <16 x i1> %mask, <16 x i32> %passthru)
+// to a chain of basic blocks, whith loading element one-by-one if
+// the appropriate mask bit is set
+//
+// %1 = bitcast i8* %addr to i32*
+// %2 = extractelement <16 x i1> %mask, i32 0
+// %3 = icmp eq i1 %2, true
+// br i1 %3, label %cond.load, label %else
+//
+//cond.load: ; preds = %0
+// %4 = getelementptr i32* %1, i32 0
+// %5 = load i32* %4
+// %6 = insertelement <16 x i32> undef, i32 %5, i32 0
+// br label %else
+//
+//else: ; preds = %0, %cond.load
+// %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
+// %7 = extractelement <16 x i1> %mask, i32 1
+// %8 = icmp eq i1 %7, true
+// br i1 %8, label %cond.load1, label %else2
+//
+//cond.load1: ; preds = %else
+// %9 = getelementptr i32* %1, i32 1
+// %10 = load i32* %9
+// %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
+// br label %else2
+//
+//else2: ; preds = %else, %cond.load1
+// %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
+// %12 = extractelement <16 x i1> %mask, i32 2
+// %13 = icmp eq i1 %12, true
+// br i1 %13, label %cond.load4, label %else5
+//
+static void ScalarizeMaskedLoad(CallInst *CI) {
+ Value *Ptr = CI->getArgOperand(0);
+ Value *Src0 = CI->getArgOperand(3);
+ Value *Mask = CI->getArgOperand(2);
+ VectorType *VecType = dyn_cast<VectorType>(CI->getType());
+ Type *EltTy = VecType->getElementType();
+
+ assert(VecType && "Unexpected return type of masked load intrinsic");
+
+ IRBuilder<> Builder(CI->getContext());
+ Instruction *InsertPt = CI;
+ BasicBlock *IfBlock = CI->getParent();
+ BasicBlock *CondBlock = nullptr;
+ BasicBlock *PrevIfBlock = CI->getParent();
+ Builder.SetInsertPoint(InsertPt);
+
+ Builder.SetCurrentDebugLocation(CI->getDebugLoc());
+
+ // Bitcast %addr fron i8* to EltTy*
+ Type *NewPtrType =
+ EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
+ Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
+ Value *UndefVal = UndefValue::get(VecType);
+
+ // The result vector
+ Value *VResult = UndefVal;
+
+ PHINode *Phi = nullptr;
+ Value *PrevPhi = UndefVal;
+
+ unsigned VectorWidth = VecType->getNumElements();
+ for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
+
+ // Fill the "else" block, created in the previous iteration
+ //
+ // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
+ // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
+ // %to_load = icmp eq i1 %mask_1, true
+ // br i1 %to_load, label %cond.load, label %else
+ //
+ if (Idx > 0) {
+ Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
+ Phi->addIncoming(VResult, CondBlock);
+ Phi->addIncoming(PrevPhi, PrevIfBlock);
+ PrevPhi = Phi;
+ VResult = Phi;
+ }
+
+ Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
+ Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
+ ConstantInt::get(Predicate->getType(), 1));
+
+ // Create "cond" block
+ //
+ // %EltAddr = getelementptr i32* %1, i32 0
+ // %Elt = load i32* %EltAddr
+ // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
+ //
+ CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
+ Builder.SetInsertPoint(InsertPt);
+
+ Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx));
+ LoadInst* Load = Builder.CreateLoad(Gep, false);
+ VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
+
+ // Create "else" block, fill it in the next iteration
+ BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
+ Builder.SetInsertPoint(InsertPt);
+ Instruction *OldBr = IfBlock->getTerminator();
+ BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
+ OldBr->eraseFromParent();
+ PrevIfBlock = IfBlock;
+ IfBlock = NewIfBlock;
}
- bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
- if (ConstantInt *SizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
- return SizeCI->isAllOnesValue();
- return false;
+
+ Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
+ Phi->addIncoming(VResult, CondBlock);
+ Phi->addIncoming(PrevPhi, PrevIfBlock);
+ Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
+ CI->replaceAllUsesWith(NewI);
+ CI->eraseFromParent();
+}
+
+// ScalarizeMaskedStore() translates masked store intrinsic, like
+// void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
+// <16 x i1> %mask)
+// to a chain of basic blocks, that stores element one-by-one if
+// the appropriate mask bit is set
+//
+// %1 = bitcast i8* %addr to i32*
+// %2 = extractelement <16 x i1> %mask, i32 0
+// %3 = icmp eq i1 %2, true
+// br i1 %3, label %cond.store, label %else
+//
+// cond.store: ; preds = %0
+// %4 = extractelement <16 x i32> %val, i32 0
+// %5 = getelementptr i32* %1, i32 0
+// store i32 %4, i32* %5
+// br label %else
+//
+// else: ; preds = %0, %cond.store
+// %6 = extractelement <16 x i1> %mask, i32 1
+// %7 = icmp eq i1 %6, true
+// br i1 %7, label %cond.store1, label %else2
+//
+// cond.store1: ; preds = %else
+// %8 = extractelement <16 x i32> %val, i32 1
+// %9 = getelementptr i32* %1, i32 1
+// store i32 %8, i32* %9
+// br label %else2
+// . . .
+static void ScalarizeMaskedStore(CallInst *CI) {
+ Value *Ptr = CI->getArgOperand(1);
+ Value *Src = CI->getArgOperand(0);
+ Value *Mask = CI->getArgOperand(3);
+
+ VectorType *VecType = dyn_cast<VectorType>(Src->getType());
+ Type *EltTy = VecType->getElementType();
+
+ assert(VecType && "Unexpected data type in masked store intrinsic");
+
+ IRBuilder<> Builder(CI->getContext());
+ Instruction *InsertPt = CI;
+ BasicBlock *IfBlock = CI->getParent();
+ Builder.SetInsertPoint(InsertPt);
+ Builder.SetCurrentDebugLocation(CI->getDebugLoc());
+
+ // Bitcast %addr fron i8* to EltTy*
+ Type *NewPtrType =
+ EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
+ Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
+
+ unsigned VectorWidth = VecType->getNumElements();
+ for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
+
+ // Fill the "else" block, created in the previous iteration
+ //
+ // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
+ // %to_store = icmp eq i1 %mask_1, true
+ // br i1 %to_load, label %cond.store, label %else
+ //
+ Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
+ Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
+ ConstantInt::get(Predicate->getType(), 1));
+
+ // Create "cond" block
+ //
+ // %OneElt = extractelement <16 x i32> %Src, i32 Idx
+ // %EltAddr = getelementptr i32* %1, i32 0
+ // %store i32 %OneElt, i32* %EltAddr
+ //
+ BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
+ Builder.SetInsertPoint(InsertPt);
+
+ Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
+ Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx));
+ Builder.CreateStore(OneElt, Gep);
+
+ // Create "else" block, fill it in the next iteration
+ BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
+ Builder.SetInsertPoint(InsertPt);
+ Instruction *OldBr = IfBlock->getTerminator();
+ BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
+ OldBr->eraseFromParent();
+ IfBlock = NewIfBlock;
}
-};
-} // end anonymous namespace
+ CI->eraseFromParent();
+}
-bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
+bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) {
BasicBlock *BB = CI->getParent();
// Lower inline assembly if we can.
@@ -835,38 +1072,60 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
return true;
}
- // Lower all uses of llvm.objectsize.*
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
- if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
- bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
- Type *ReturnTy = CI->getType();
- Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
-
- // Substituting this can cause recursive simplifications, which can
- // invalidate our iterator. Use a WeakVH to hold onto it in case this
- // happens.
- WeakVH IterHandle(CurInstIterator);
-
- replaceAndRecursivelySimplify(CI, RetVal,
- TLI ? TLI->getDataLayout() : nullptr,
- TLInfo, ModifiedDT ? nullptr : DT);
+ if (II) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::objectsize: {
+ // Lower all uses of llvm.objectsize.*
+ bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
+ Type *ReturnTy = CI->getType();
+ Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
+
+ // Substituting this can cause recursive simplifications, which can
+ // invalidate our iterator. Use a WeakVH to hold onto it in case this
+ // happens.
+ WeakVH IterHandle(CurInstIterator);
+
+ replaceAndRecursivelySimplify(CI, RetVal,
+ TLI ? TLI->getDataLayout() : nullptr,
+ TLInfo, ModifiedDT ? nullptr : DT);
- // If the iterator instruction was recursively deleted, start over at the
- // start of the block.
- if (IterHandle != CurInstIterator) {
- CurInstIterator = BB->begin();
- SunkAddrs.clear();
+ // If the iterator instruction was recursively deleted, start over at the
+ // start of the block.
+ if (IterHandle != CurInstIterator) {
+ CurInstIterator = BB->begin();
+ SunkAddrs.clear();
+ }
+ return true;
+ }
+ case Intrinsic::masked_load: {
+ // Scalarize unsupported vector masked load
+ if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) {
+ ScalarizeMaskedLoad(CI);
+ ModifiedDT = true;
+ return true;
+ }
+ return false;
+ }
+ case Intrinsic::masked_store: {
+ if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) {
+ ScalarizeMaskedStore(CI);
+ ModifiedDT = true;
+ return true;
+ }
+ return false;
+ }
}
- return true;
- }
- if (II && TLI) {
- SmallVector<Value*, 2> PtrOps;
- Type *AccessTy;
- if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
- while (!PtrOps.empty())
- if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
- return true;
+ if (TLI) {
+ SmallVector<Value*, 2> PtrOps;
+ Type *AccessTy;
+ if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
+ while (!PtrOps.empty())
+ if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
+ return true;
+ }
}
// From here on out we're working with named functions.
@@ -878,10 +1137,15 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
// Lower all default uses of _chk calls. This is very similar
// to what InstCombineCalls does, but here we are only lowering calls
- // that have the default "don't know" as the objectsize. Anything else
- // should be left alone.
- CodeGenPrepareFortifiedLibCalls Simplifier;
- return Simplifier.fold(CI, TD, TLInfo);
+ // to fortified library functions (e.g. __memcpy_chk) that have the default
+ // "don't know" as the objectsize. Anything else should be left alone.
+ FortifiedLibCallSimplifier Simplifier(TD, TLInfo, true);
+ if (Value *V = Simplifier.optimizeCall(CI)) {
+ CI->replaceAllUsesWith(V);
+ CI->eraseFromParent();
+ return true;
+ }
+ return false;
}
/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
@@ -978,7 +1242,7 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
} else {
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
- if (!VisitedBBs.insert(*PI))
+ if (!VisitedBBs.insert(*PI).second)
continue;
BasicBlock::InstListType &InstList = (*PI)->getInstList();
@@ -1250,46 +1514,75 @@ class TypePromotionTransaction {
/// \brief Build a truncate instruction.
class TruncBuilder : public TypePromotionAction {
+ Value *Val;
public:
/// \brief Build a truncate instruction of \p Opnd producing a \p Ty
/// result.
/// trunc Opnd to Ty.
TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
IRBuilder<> Builder(Opnd);
- Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
- DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
+ Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
+ DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
}
- /// \brief Get the built instruction.
- Instruction *getBuiltInstruction() { return Inst; }
+ /// \brief Get the built value.
+ Value *getBuiltValue() { return Val; }
/// \brief Remove the built instruction.
void undo() override {
- DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
- Inst->eraseFromParent();
+ DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
+ if (Instruction *IVal = dyn_cast<Instruction>(Val))
+ IVal->eraseFromParent();
}
};
/// \brief Build a sign extension instruction.
class SExtBuilder : public TypePromotionAction {
+ Value *Val;
public:
/// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
/// result.
/// sext Opnd to Ty.
SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
- : TypePromotionAction(Inst) {
+ : TypePromotionAction(InsertPt) {
+ IRBuilder<> Builder(InsertPt);
+ Val = Builder.CreateSExt(Opnd, Ty, "promoted");
+ DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
+ }
+
+ /// \brief Get the built value.
+ Value *getBuiltValue() { return Val; }
+
+ /// \brief Remove the built instruction.
+ void undo() override {
+ DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
+ if (Instruction *IVal = dyn_cast<Instruction>(Val))
+ IVal->eraseFromParent();
+ }
+ };
+
+ /// \brief Build a zero extension instruction.
+ class ZExtBuilder : public TypePromotionAction {
+ Value *Val;
+ public:
+ /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
+ /// result.
+ /// zext Opnd to Ty.
+ ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
+ : TypePromotionAction(InsertPt) {
IRBuilder<> Builder(InsertPt);
- Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
- DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
+ Val = Builder.CreateZExt(Opnd, Ty, "promoted");
+ DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
}
- /// \brief Get the built instruction.
- Instruction *getBuiltInstruction() { return Inst; }
+ /// \brief Get the built value.
+ Value *getBuiltValue() { return Val; }
/// \brief Remove the built instruction.
void undo() override {
- DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
- Inst->eraseFromParent();
+ DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
+ if (Instruction *IVal = dyn_cast<Instruction>(Val))
+ IVal->eraseFromParent();
}
};
@@ -1418,9 +1711,11 @@ public:
/// Same as Value::mutateType.
void mutateType(Instruction *Inst, Type *NewTy);
/// Same as IRBuilder::createTrunc.
- Instruction *createTrunc(Instruction *Opnd, Type *Ty);
+ Value *createTrunc(Instruction *Opnd, Type *Ty);
/// Same as IRBuilder::createSExt.
- Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
+ Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
+ /// Same as IRBuilder::createZExt.
+ Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
/// Same as Instruction::moveBefore.
void moveBefore(Instruction *Inst, Instruction *Before);
/// @}
@@ -1452,20 +1747,28 @@ void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
}
-Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
- Type *Ty) {
+Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
+ Type *Ty) {
std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
- Instruction *I = Ptr->getBuiltInstruction();
+ Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
- return I;
+ return Val;
}
-Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
- Value *Opnd, Type *Ty) {
+Value *TypePromotionTransaction::createSExt(Instruction *Inst,
+ Value *Opnd, Type *Ty) {
std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
- Instruction *I = Ptr->getBuiltInstruction();
+ Value *Val = Ptr->getBuiltValue();
+ Actions.push_back(std::move(Ptr));
+ return Val;
+}
+
+Value *TypePromotionTransaction::createZExt(Instruction *Inst,
+ Value *Opnd, Type *Ty) {
+ std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
+ Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
- return I;
+ return Val;
}
void TypePromotionTransaction::moveBefore(Instruction *Inst,
@@ -1656,60 +1959,107 @@ static bool MightBeFoldableInst(Instruction *I) {
}
}
+/// \brief Check whether or not \p Val is a legal instruction for \p TLI.
+/// \note \p Val is assumed to be the product of some type promotion.
+/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
+/// to be legal, as the non-promoted value would have had the same state.
+static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) {
+ Instruction *PromotedInst = dyn_cast<Instruction>(Val);
+ if (!PromotedInst)
+ return false;
+ int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
+ // If the ISDOpcode is undefined, it was undefined before the promotion.
+ if (!ISDOpcode)
+ return true;
+ // Otherwise, check if the promoted instruction is legal or not.
+ return TLI.isOperationLegalOrCustom(
+ ISDOpcode, TLI.getValueType(PromotedInst->getType()));
+}
+
/// \brief Hepler class to perform type promotion.
class TypePromotionHelper {
- /// \brief Utility function to check whether or not a sign extension of
- /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
- /// using the operands of \p Inst or promoting \p Inst.
+ /// \brief Utility function to check whether or not a sign or zero extension
+ /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
+ /// either using the operands of \p Inst or promoting \p Inst.
+ /// The type of the extension is defined by \p IsSExt.
/// In other words, check if:
- /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
+ /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
/// #1 Promotion applies:
- /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
+ /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
/// #2 Operand reuses:
- /// sext opnd1 to ConsideredSExtType.
+ /// ext opnd1 to ConsideredExtType.
/// \p PromotedInsts maps the instructions to their type before promotion.
- static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
- const InstrToOrigTy &PromotedInsts);
+ static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
+ const InstrToOrigTy &PromotedInsts, bool IsSExt);
/// \brief Utility function to determine if \p OpIdx should be promoted when
/// promoting \p Inst.
- static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
+ static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
if (isa<SelectInst>(Inst) && OpIdx == 0)
return false;
return true;
}
- /// \brief Utility function to promote the operand of \p SExt when this
- /// operand is a promotable trunc or sext.
+ /// \brief Utility function to promote the operand of \p Ext when this
+ /// operand is a promotable trunc or sext or zext.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p CreatedInsts[out] contains how many non-free instructions have been
- /// created to promote the operand of SExt.
+ /// created to promote the operand of Ext.
+ /// Newly added extensions are inserted in \p Exts.
+ /// Newly added truncates are inserted in \p Truncs.
/// Should never be called directly.
- /// \return The promoted value which is used instead of SExt.
- static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts);
-
- /// \brief Utility function to promote the operand of \p SExt when this
+ /// \return The promoted value which is used instead of Ext.
+ static Value *promoteOperandForTruncAndAnyExt(
+ Instruction *Ext, TypePromotionTransaction &TPT,
+ InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs);
+
+ /// \brief Utility function to promote the operand of \p Ext when this
/// operand is promotable and is not a supported trunc or sext.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p CreatedInsts[out] contains how many non-free instructions have been
- /// created to promote the operand of SExt.
+ /// created to promote the operand of Ext.
+ /// Newly added extensions are inserted in \p Exts.
+ /// Newly added truncates are inserted in \p Truncs.
/// Should never be called directly.
- /// \return The promoted value which is used instead of SExt.
- static Value *promoteOperandForOther(Instruction *SExt,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts);
+ /// \return The promoted value which is used instead of Ext.
+ static Value *
+ promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT,
+ InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs, bool IsSExt);
+
+ /// \see promoteOperandForOther.
+ static Value *
+ signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT,
+ InstrToOrigTy &PromotedInsts,
+ unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs) {
+ return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts,
+ Truncs, true);
+ }
+
+ /// \see promoteOperandForOther.
+ static Value *
+ zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT,
+ InstrToOrigTy &PromotedInsts,
+ unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs) {
+ return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts,
+ Truncs, false);
+ }
public:
- /// Type for the utility function that promotes the operand of SExt.
- typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts);
- /// \brief Given a sign extend instruction \p SExt, return the approriate
- /// action to promote the operand of \p SExt instead of using SExt.
+ /// Type for the utility function that promotes the operand of Ext.
+ typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
+ InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs);
+ /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
+ /// action to promote the operand of \p Ext instead of using Ext.
/// \return NULL if no promotable action is possible with the current
/// sign extension.
/// \p InsertedTruncs keeps track of all the truncate instructions inserted by
@@ -1717,36 +2067,49 @@ public:
/// because we do not want to promote these instructions as CodeGenPrepare
/// will reinsert them later. Thus creating an infinite loop: create/remove.
/// \p PromotedInsts maps the instructions to their type before promotion.
- static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
+ static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs,
const TargetLowering &TLI,
const InstrToOrigTy &PromotedInsts);
};
bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
- Type *ConsideredSExtType,
- const InstrToOrigTy &PromotedInsts) {
- // We can always get through sext.
- if (isa<SExtInst>(Inst))
+ Type *ConsideredExtType,
+ const InstrToOrigTy &PromotedInsts,
+ bool IsSExt) {
+ // The promotion helper does not know how to deal with vector types yet.
+ // To be able to fix that, we would need to fix the places where we
+ // statically extend, e.g., constants and such.
+ if (Inst->getType()->isVectorTy())
+ return false;
+
+ // We can always get through zext.
+ if (isa<ZExtInst>(Inst))
+ return true;
+
+ // sext(sext) is ok too.
+ if (IsSExt && isa<SExtInst>(Inst))
return true;
// We can get through binary operator, if it is legal. In other words, the
// binary operator must have a nuw or nsw flag.
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
- (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
+ ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
+ (IsSExt && BinOp->hasNoSignedWrap())))
return true;
// Check if we can do the following simplification.
- // sext(trunc(sext)) --> sext
+ // ext(trunc(opnd)) --> ext(opnd)
if (!isa<TruncInst>(Inst))
return false;
Value *OpndVal = Inst->getOperand(0);
- // Check if we can use this operand in the sext.
- // If the type is larger than the result type of the sign extension,
+ // Check if we can use this operand in the extension.
+ // If the type is larger than the result type of the extension,
// we cannot.
- if (OpndVal->getType()->getIntegerBitWidth() >
- ConsideredSExtType->getIntegerBitWidth())
+ if (!OpndVal->getType()->isIntegerTy() ||
+ OpndVal->getType()->getIntegerBitWidth() >
+ ConsideredExtType->getIntegerBitWidth())
return false;
// If the operand of the truncate is not an instruction, we will not have
@@ -1757,18 +2120,19 @@ bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
return false;
// Check if the source of the type is narrow enough.
- // I.e., check that trunc just drops sign extended bits.
- // #1 get the type of the operand.
+ // I.e., check that trunc just drops extended bits of the same kind of
+ // the extension.
+ // #1 get the type of the operand and check the kind of the extended bits.
const Type *OpndType;
InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
- if (It != PromotedInsts.end())
- OpndType = It->second;
- else if (isa<SExtInst>(Opnd))
- OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
+ if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt)
+ OpndType = It->second.Ty;
+ else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
+ OpndType = Opnd->getOperand(0)->getType();
else
return false;
- // #2 check that the truncate just drop sign extended bits.
+ // #2 check that the truncate just drop extended bits.
if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
return true;
@@ -1776,149 +2140,181 @@ bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
}
TypePromotionHelper::Action TypePromotionHelper::getAction(
- Instruction *SExt, const SetOfInstrs &InsertedTruncs,
+ Instruction *Ext, const SetOfInstrs &InsertedTruncs,
const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
- Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
- Type *SExtTy = SExt->getType();
- // If the operand of the sign extension is not an instruction, we cannot
+ assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
+ "Unexpected instruction type");
+ Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
+ Type *ExtTy = Ext->getType();
+ bool IsSExt = isa<SExtInst>(Ext);
+ // If the operand of the extension is not an instruction, we cannot
// get through.
// If it, check we can get through.
- if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
+ if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
return nullptr;
// Do not promote if the operand has been added by codegenprepare.
// Otherwise, it means we are undoing an optimization that is likely to be
// redone, thus causing potential infinite loop.
- if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
+ if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd))
return nullptr;
// SExt or Trunc instructions.
// Return the related handler.
- if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
- return promoteOperandForTruncAndSExt;
+ if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
+ isa<ZExtInst>(ExtOpnd))
+ return promoteOperandForTruncAndAnyExt;
// Regular instruction.
// Abort early if we will have to insert non-free instructions.
- if (!SExtOpnd->hasOneUse() &&
- !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
+ if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
return nullptr;
- return promoteOperandForOther;
+ return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
}
-Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
+Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
llvm::Instruction *SExt, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
+ InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs) {
// By construction, the operand of SExt is an instruction. Otherwise we cannot
// get through it and this method should not be called.
Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
- // Replace sext(trunc(opnd)) or sext(sext(opnd))
- // => sext(opnd).
- TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
+ Value *ExtVal = SExt;
+ if (isa<ZExtInst>(SExtOpnd)) {
+ // Replace s|zext(zext(opnd))
+ // => zext(opnd).
+ Value *ZExt =
+ TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
+ TPT.replaceAllUsesWith(SExt, ZExt);
+ TPT.eraseInstruction(SExt);
+ ExtVal = ZExt;
+ } else {
+ // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
+ // => z|sext(opnd).
+ TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
+ }
CreatedInsts = 0;
// Remove dead code.
if (SExtOpnd->use_empty())
TPT.eraseInstruction(SExtOpnd);
- // Check if the sext is still needed.
- if (SExt->getType() != SExt->getOperand(0)->getType())
- return SExt;
+ // Check if the extension is still needed.
+ Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
+ if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
+ if (ExtInst && Exts)
+ Exts->push_back(ExtInst);
+ return ExtVal;
+ }
- // At this point we have: sext ty opnd to ty.
- // Reassign the uses of SExt to the opnd and remove SExt.
- Value *NextVal = SExt->getOperand(0);
- TPT.eraseInstruction(SExt, NextVal);
+ // At this point we have: ext ty opnd to ty.
+ // Reassign the uses of ExtInst to the opnd and remove ExtInst.
+ Value *NextVal = ExtInst->getOperand(0);
+ TPT.eraseInstruction(ExtInst, NextVal);
return NextVal;
}
-Value *
-TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts) {
- // By construction, the operand of SExt is an instruction. Otherwise we cannot
+Value *TypePromotionHelper::promoteOperandForOther(
+ Instruction *Ext, TypePromotionTransaction &TPT,
+ InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts,
+ SmallVectorImpl<Instruction *> *Exts,
+ SmallVectorImpl<Instruction *> *Truncs, bool IsSExt) {
+ // By construction, the operand of Ext is an instruction. Otherwise we cannot
// get through it and this method should not be called.
- Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
+ Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
CreatedInsts = 0;
- if (!SExtOpnd->hasOneUse()) {
- // SExtOpnd will be promoted.
- // All its uses, but SExt, will need to use a truncated value of the
+ if (!ExtOpnd->hasOneUse()) {
+ // ExtOpnd will be promoted.
+ // All its uses, but Ext, will need to use a truncated value of the
// promoted version.
// Create the truncate now.
- Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
- Trunc->removeFromParent();
- // Insert it just after the definition.
- Trunc->insertAfter(SExtOpnd);
+ Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
+ if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
+ ITrunc->removeFromParent();
+ // Insert it just after the definition.
+ ITrunc->insertAfter(ExtOpnd);
+ if (Truncs)
+ Truncs->push_back(ITrunc);
+ }
- TPT.replaceAllUsesWith(SExtOpnd, Trunc);
- // Restore the operand of SExt (which has been replace by the previous call
+ TPT.replaceAllUsesWith(ExtOpnd, Trunc);
+ // Restore the operand of Ext (which has been replace by the previous call
// to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
- TPT.setOperand(SExt, 0, SExtOpnd);
+ TPT.setOperand(Ext, 0, ExtOpnd);
}
// Get through the Instruction:
// 1. Update its type.
- // 2. Replace the uses of SExt by Inst.
- // 3. Sign extend each operand that needs to be sign extended.
+ // 2. Replace the uses of Ext by Inst.
+ // 3. Extend each operand that needs to be extended.
// Remember the original type of the instruction before promotion.
// This is useful to know that the high bits are sign extended bits.
- PromotedInsts.insert(
- std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
+ PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
+ ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
// Step #1.
- TPT.mutateType(SExtOpnd, SExt->getType());
+ TPT.mutateType(ExtOpnd, Ext->getType());
// Step #2.
- TPT.replaceAllUsesWith(SExt, SExtOpnd);
+ TPT.replaceAllUsesWith(Ext, ExtOpnd);
// Step #3.
- Instruction *SExtForOpnd = SExt;
+ Instruction *ExtForOpnd = Ext;
- DEBUG(dbgs() << "Propagate SExt to operands\n");
- for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
+ DEBUG(dbgs() << "Propagate Ext to operands\n");
+ for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
++OpIdx) {
- DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
- if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
- !shouldSExtOperand(SExtOpnd, OpIdx)) {
+ DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
+ if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
+ !shouldExtOperand(ExtOpnd, OpIdx)) {
DEBUG(dbgs() << "No need to propagate\n");
continue;
}
- // Check if we can statically sign extend the operand.
- Value *Opnd = SExtOpnd->getOperand(OpIdx);
+ // Check if we can statically extend the operand.
+ Value *Opnd = ExtOpnd->getOperand(OpIdx);
if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
- DEBUG(dbgs() << "Statically sign extend\n");
- TPT.setOperand(
- SExtOpnd, OpIdx,
- ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
+ DEBUG(dbgs() << "Statically extend\n");
+ unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
+ APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
+ : Cst->getValue().zext(BitWidth);
+ TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
continue;
}
// UndefValue are typed, so we have to statically sign extend them.
if (isa<UndefValue>(Opnd)) {
- DEBUG(dbgs() << "Statically sign extend\n");
- TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
+ DEBUG(dbgs() << "Statically extend\n");
+ TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
continue;
}
// Otherwise we have to explicity sign extend the operand.
- // Check if SExt was reused to sign extend an operand.
- if (!SExtForOpnd) {
+ // Check if Ext was reused to extend an operand.
+ if (!ExtForOpnd) {
// If yes, create a new one.
- DEBUG(dbgs() << "More operands to sext\n");
- SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
+ DEBUG(dbgs() << "More operands to ext\n");
+ Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
+ : TPT.createZExt(Ext, Opnd, Ext->getType());
+ if (!isa<Instruction>(ValForExtOpnd)) {
+ TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
+ continue;
+ }
+ ExtForOpnd = cast<Instruction>(ValForExtOpnd);
++CreatedInsts;
}
-
- TPT.setOperand(SExtForOpnd, 0, Opnd);
+ if (Exts)
+ Exts->push_back(ExtForOpnd);
+ TPT.setOperand(ExtForOpnd, 0, Opnd);
// Move the sign extension before the insertion point.
- TPT.moveBefore(SExtForOpnd, SExtOpnd);
- TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
+ TPT.moveBefore(ExtForOpnd, ExtOpnd);
+ TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
// If more sext are required, new instructions will have to be created.
- SExtForOpnd = nullptr;
+ ExtForOpnd = nullptr;
}
- if (SExtForOpnd == SExt) {
- DEBUG(dbgs() << "Sign extension is useless now\n");
- TPT.eraseInstruction(SExt);
+ if (ExtForOpnd == Ext) {
+ DEBUG(dbgs() << "Extension is useless now\n");
+ TPT.eraseInstruction(Ext);
}
- return SExtOpnd;
+ return ExtOpnd;
}
/// IsPromotionProfitable - Check whether or not promoting an instruction
@@ -1943,16 +2339,7 @@ AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
// The promotion is neutral but it may help folding the sign extension in
// loads for instance.
// Check that we did not create an illegal instruction.
- Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
- if (!PromotedInst)
- return false;
- int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
- // If the ISDOpcode is undefined, it was undefined before the promotion.
- if (!ISDOpcode)
- return true;
- // Otherwise, check if the promoted instruction is legal or not.
- return TLI.isOperationLegalOrCustom(ISDOpcode,
- EVT::getEVT(PromotedInst->getType()));
+ return isPromotedInstructionLegal(TLI, PromotedOperand);
}
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
@@ -2130,31 +2517,33 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
return true;
}
- case Instruction::SExt: {
- Instruction *SExt = dyn_cast<Instruction>(AddrInst);
- if (!SExt)
+ case Instruction::SExt:
+ case Instruction::ZExt: {
+ Instruction *Ext = dyn_cast<Instruction>(AddrInst);
+ if (!Ext)
return false;
- // Try to move this sext out of the way of the addressing mode.
+ // Try to move this ext out of the way of the addressing mode.
// Ask for a method for doing so.
- TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
- SExt, InsertedTruncs, TLI, PromotedInsts);
+ TypePromotionHelper::Action TPH =
+ TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts);
if (!TPH)
return false;
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
unsigned CreatedInsts = 0;
- Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
+ Value *PromotedOperand =
+ TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr);
// SExt has been moved away.
// Thus either it will be rematched later in the recursive calls or it is
// gone. Anyway, we must not fold it into the addressing mode at this point.
// E.g.,
// op = add opnd, 1
- // idx = sext op
+ // idx = ext op
// addr = gep base, idx
// is now:
- // promotedOpnd = sext opnd <- no match here
+ // promotedOpnd = ext opnd <- no match here
// op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
// addr = gep base, op <- match
if (MovedAway)
@@ -2293,10 +2682,10 @@ static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
/// Add the ultimately found memory instructions to MemoryUses.
static bool FindAllMemoryUses(Instruction *I,
SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
- SmallPtrSet<Instruction*, 16> &ConsideredInsts,
+ SmallPtrSetImpl<Instruction*> &ConsideredInsts,
const TargetLowering &TLI) {
// If we already considered this instruction, we're done.
- if (!ConsideredInsts.insert(I))
+ if (!ConsideredInsts.insert(I).second)
return false;
// If this is an obviously unfoldable instruction, bail out.
@@ -2510,7 +2899,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
worklist.pop_back();
// Break use-def graph loops.
- if (!Visited.insert(V)) {
+ if (!Visited.insert(V).second) {
Consensus = nullptr;
break;
}
@@ -2700,8 +3089,8 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
if (AddrMode.BaseOffs) {
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (ResultIndex) {
- // We need to add this separately from the scale above to help with
- // SDAG consecutive load/store merging.
+ // We need to add this separately from the scale above to help with
+ // SDAG consecutive load/store merging.
if (ResultPtr->getType() != I8PtrTy)
ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
@@ -2844,26 +3233,186 @@ bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
return MadeChange;
}
+/// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
+/// sign extensions.
+static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
+ assert(!Inst->use_empty() && "Input must have at least one use");
+ const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
+ bool IsSExt = isa<SExtInst>(FirstUser);
+ Type *ExtTy = FirstUser->getType();
+ for (const User *U : Inst->users()) {
+ const Instruction *UI = cast<Instruction>(U);
+ if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
+ return false;
+ Type *CurTy = UI->getType();
+ // Same input and output types: Same instruction after CSE.
+ if (CurTy == ExtTy)
+ continue;
+
+ // If IsSExt is true, we are in this situation:
+ // a = Inst
+ // b = sext ty1 a to ty2
+ // c = sext ty1 a to ty3
+ // Assuming ty2 is shorter than ty3, this could be turned into:
+ // a = Inst
+ // b = sext ty1 a to ty2
+ // c = sext ty2 b to ty3
+ // However, the last sext is not free.
+ if (IsSExt)
+ return false;
+
+ // This is a ZExt, maybe this is free to extend from one type to another.
+ // In that case, we would not account for a different use.
+ Type *NarrowTy;
+ Type *LargeTy;
+ if (ExtTy->getScalarType()->getIntegerBitWidth() >
+ CurTy->getScalarType()->getIntegerBitWidth()) {
+ NarrowTy = CurTy;
+ LargeTy = ExtTy;
+ } else {
+ NarrowTy = ExtTy;
+ LargeTy = CurTy;
+ }
+
+ if (!TLI.isZExtFree(NarrowTy, LargeTy))
+ return false;
+ }
+ // All uses are the same or can be derived from one another for free.
+ return true;
+}
+
+/// \brief Try to form ExtLd by promoting \p Exts until they reach a
+/// load instruction.
+/// If an ext(load) can be formed, it is returned via \p LI for the load
+/// and \p Inst for the extension.
+/// Otherwise LI == nullptr and Inst == nullptr.
+/// When some promotion happened, \p TPT contains the proper state to
+/// revert them.
+///
+/// \return true when promoting was necessary to expose the ext(load)
+/// opportunity, false otherwise.
+///
+/// Example:
+/// \code
+/// %ld = load i32* %addr
+/// %add = add nuw i32 %ld, 4
+/// %zext = zext i32 %add to i64
+/// \endcode
+/// =>
+/// \code
+/// %ld = load i32* %addr
+/// %zext = zext i32 %ld to i64
+/// %add = add nuw i64 %zext, 4
+/// \encode
+/// Thanks to the promotion, we can match zext(load i32*) to i64.
+bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT,
+ LoadInst *&LI, Instruction *&Inst,
+ const SmallVectorImpl<Instruction *> &Exts,
+ unsigned CreatedInsts = 0) {
+ // Iterate over all the extensions to see if one form an ext(load).
+ for (auto I : Exts) {
+ // Check if we directly have ext(load).
+ if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
+ Inst = I;
+ // No promotion happened here.
+ return false;
+ }
+ // Check whether or not we want to do any promotion.
+ if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
+ continue;
+ // Get the action to perform the promotion.
+ TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
+ I, InsertedTruncsSet, *TLI, PromotedInsts);
+ // Check if we can promote.
+ if (!TPH)
+ continue;
+ // Save the current state.
+ TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+ TPT.getRestorationPoint();
+ SmallVector<Instruction *, 4> NewExts;
+ unsigned NewCreatedInsts = 0;
+ // Promote.
+ Value *PromotedVal =
+ TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr);
+ assert(PromotedVal &&
+ "TypePromotionHelper should have filtered out those cases");
+
+ // We would be able to merge only one extension in a load.
+ // Therefore, if we have more than 1 new extension we heuristically
+ // cut this search path, because it means we degrade the code quality.
+ // With exactly 2, the transformation is neutral, because we will merge
+ // one extension but leave one. However, we optimistically keep going,
+ // because the new extension may be removed too.
+ unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts;
+ if (!StressExtLdPromotion &&
+ (TotalCreatedInsts > 1 ||
+ !isPromotedInstructionLegal(*TLI, PromotedVal))) {
+ // The promotion is not profitable, rollback to the previous state.
+ TPT.rollback(LastKnownGood);
+ continue;
+ }
+ // The promotion is profitable.
+ // Check if it exposes an ext(load).
+ (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts);
+ if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 ||
+ // If we have created a new extension, i.e., now we have two
+ // extensions. We must make sure one of them is merged with
+ // the load, otherwise we may degrade the code quality.
+ (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
+ // Promotion happened.
+ return true;
+ // If this does not help to expose an ext(load) then, rollback.
+ TPT.rollback(LastKnownGood);
+ }
+ // None of the extension can form an ext(load).
+ LI = nullptr;
+ Inst = nullptr;
+ return false;
+}
+
/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
/// basic block as the load, unless conditions are unfavorable. This allows
/// SelectionDAG to fold the extend into the load.
+/// \p I[in/out] the extension may be modified during the process if some
+/// promotions apply.
///
-bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
+bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) {
+ // Try to promote a chain of computation if it allows to form
+ // an extended load.
+ TypePromotionTransaction TPT;
+ TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+ TPT.getRestorationPoint();
+ SmallVector<Instruction *, 1> Exts;
+ Exts.push_back(I);
// Look for a load being extended.
- LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
- if (!LI) return false;
+ LoadInst *LI = nullptr;
+ Instruction *OldExt = I;
+ bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts);
+ if (!LI || !I) {
+ assert(!HasPromoted && !LI && "If we did not match any load instruction "
+ "the code must remain the same");
+ I = OldExt;
+ return false;
+ }
// If they're already in the same block, there's nothing to do.
- if (LI->getParent() == I->getParent())
+ // Make the cheap checks first if we did not promote.
+ // If we promoted, we need to check if it is indeed profitable.
+ if (!HasPromoted && LI->getParent() == I->getParent())
return false;
+ EVT VT = TLI->getValueType(I->getType());
+ EVT LoadVT = TLI->getValueType(LI->getType());
+
// If the load has other users and the truncate is not free, this probably
// isn't worthwhile.
- if (!LI->hasOneUse() &&
- TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
- !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
- !TLI->isTruncateFree(I->getType(), LI->getType()))
+ if (!LI->hasOneUse() && TLI &&
+ (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
+ !TLI->isTruncateFree(I->getType(), LI->getType())) {
+ I = OldExt;
+ TPT.rollback(LastKnownGood);
return false;
+ }
// Check whether the target supports casts folded into loads.
unsigned LType;
@@ -2873,11 +3422,15 @@ bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
assert(isa<SExtInst>(I) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
- if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
+ if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
+ I = OldExt;
+ TPT.rollback(LastKnownGood);
return false;
+ }
// Move the extend into the same block as the load, so that SelectionDAG
// can fold it.
+ TPT.commit();
I->removeFromParent();
I->insertAfter(LI);
++NumExtsMoved;
@@ -3109,7 +3662,511 @@ bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
return MadeChange;
}
-bool CodeGenPrepare::OptimizeInst(Instruction *I) {
+namespace {
+/// \brief Helper class to promote a scalar operation to a vector one.
+/// This class is used to move downward extractelement transition.
+/// E.g.,
+/// a = vector_op <2 x i32>
+/// b = extractelement <2 x i32> a, i32 0
+/// c = scalar_op b
+/// store c
+///
+/// =>
+/// a = vector_op <2 x i32>
+/// c = vector_op a (equivalent to scalar_op on the related lane)
+/// * d = extractelement <2 x i32> c, i32 0
+/// * store d
+/// Assuming both extractelement and store can be combine, we get rid of the
+/// transition.
+class VectorPromoteHelper {
+ /// Used to perform some checks on the legality of vector operations.
+ const TargetLowering &TLI;
+
+ /// Used to estimated the cost of the promoted chain.
+ const TargetTransformInfo &TTI;
+
+ /// The transition being moved downwards.
+ Instruction *Transition;
+ /// The sequence of instructions to be promoted.
+ SmallVector<Instruction *, 4> InstsToBePromoted;
+ /// Cost of combining a store and an extract.
+ unsigned StoreExtractCombineCost;
+ /// Instruction that will be combined with the transition.
+ Instruction *CombineInst;
+
+ /// \brief The instruction that represents the current end of the transition.
+ /// Since we are faking the promotion until we reach the end of the chain
+ /// of computation, we need a way to get the current end of the transition.
+ Instruction *getEndOfTransition() const {
+ if (InstsToBePromoted.empty())
+ return Transition;
+ return InstsToBePromoted.back();
+ }
+
+ /// \brief Return the index of the original value in the transition.
+ /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
+ /// c, is at index 0.
+ unsigned getTransitionOriginalValueIdx() const {
+ assert(isa<ExtractElementInst>(Transition) &&
+ "Other kind of transitions are not supported yet");
+ return 0;
+ }
+
+ /// \brief Return the index of the index in the transition.
+ /// E.g., for "extractelement <2 x i32> c, i32 0" the index
+ /// is at index 1.
+ unsigned getTransitionIdx() const {
+ assert(isa<ExtractElementInst>(Transition) &&
+ "Other kind of transitions are not supported yet");
+ return 1;
+ }
+
+ /// \brief Get the type of the transition.
+ /// This is the type of the original value.
+ /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
+ /// transition is <2 x i32>.
+ Type *getTransitionType() const {
+ return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
+ }
+
+ /// \brief Promote \p ToBePromoted by moving \p Def downward through.
+ /// I.e., we have the following sequence:
+ /// Def = Transition <ty1> a to <ty2>
+ /// b = ToBePromoted <ty2> Def, ...
+ /// =>
+ /// b = ToBePromoted <ty1> a, ...
+ /// Def = Transition <ty1> ToBePromoted to <ty2>
+ void promoteImpl(Instruction *ToBePromoted);
+
+ /// \brief Check whether or not it is profitable to promote all the
+ /// instructions enqueued to be promoted.
+ bool isProfitableToPromote() {
+ Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
+ unsigned Index = isa<ConstantInt>(ValIdx)
+ ? cast<ConstantInt>(ValIdx)->getZExtValue()
+ : -1;
+ Type *PromotedType = getTransitionType();
+
+ StoreInst *ST = cast<StoreInst>(CombineInst);
+ unsigned AS = ST->getPointerAddressSpace();
+ unsigned Align = ST->getAlignment();
+ // Check if this store is supported.
+ if (!TLI.allowsMisalignedMemoryAccesses(
+ TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) {
+ // If this is not supported, there is no way we can combine
+ // the extract with the store.
+ return false;
+ }
+
+ // The scalar chain of computation has to pay for the transition
+ // scalar to vector.
+ // The vector chain has to account for the combining cost.
+ uint64_t ScalarCost =
+ TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
+ uint64_t VectorCost = StoreExtractCombineCost;
+ for (const auto &Inst : InstsToBePromoted) {
+ // Compute the cost.
+ // By construction, all instructions being promoted are arithmetic ones.
+ // Moreover, one argument is a constant that can be viewed as a splat
+ // constant.
+ Value *Arg0 = Inst->getOperand(0);
+ bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
+ isa<ConstantFP>(Arg0);
+ TargetTransformInfo::OperandValueKind Arg0OVK =
+ IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
+ : TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueKind Arg1OVK =
+ !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
+ : TargetTransformInfo::OK_AnyValue;
+ ScalarCost += TTI.getArithmeticInstrCost(
+ Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
+ VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
+ Arg0OVK, Arg1OVK);
+ }
+ DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
+ << ScalarCost << "\nVector: " << VectorCost << '\n');
+ return ScalarCost > VectorCost;
+ }
+
+ /// \brief Generate a constant vector with \p Val with the same
+ /// number of elements as the transition.
+ /// \p UseSplat defines whether or not \p Val should be replicated
+ /// accross the whole vector.
+ /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
+ /// otherwise we generate a vector with as many undef as possible:
+ /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
+ /// used at the index of the extract.
+ Value *getConstantVector(Constant *Val, bool UseSplat) const {
+ unsigned ExtractIdx = UINT_MAX;
+ if (!UseSplat) {
+ // If we cannot determine where the constant must be, we have to
+ // use a splat constant.
+ Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
+ if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
+ ExtractIdx = CstVal->getSExtValue();
+ else
+ UseSplat = true;
+ }
+
+ unsigned End = getTransitionType()->getVectorNumElements();
+ if (UseSplat)
+ return ConstantVector::getSplat(End, Val);
+
+ SmallVector<Constant *, 4> ConstVec;
+ UndefValue *UndefVal = UndefValue::get(Val->getType());
+ for (unsigned Idx = 0; Idx != End; ++Idx) {
+ if (Idx == ExtractIdx)
+ ConstVec.push_back(Val);
+ else
+ ConstVec.push_back(UndefVal);
+ }
+ return ConstantVector::get(ConstVec);
+ }
+
+ /// \brief Check if promoting to a vector type an operand at \p OperandIdx
+ /// in \p Use can trigger undefined behavior.
+ static bool canCauseUndefinedBehavior(const Instruction *Use,
+ unsigned OperandIdx) {
+ // This is not safe to introduce undef when the operand is on
+ // the right hand side of a division-like instruction.
+ if (OperandIdx != 1)
+ return false;
+ switch (Use->getOpcode()) {
+ default:
+ return false;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ return true;
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ return !Use->hasNoNaNs();
+ }
+ llvm_unreachable(nullptr);
+ }
+
+public:
+ VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI,
+ Instruction *Transition, unsigned CombineCost)
+ : TLI(TLI), TTI(TTI), Transition(Transition),
+ StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
+ assert(Transition && "Do not know how to promote null");
+ }
+
+ /// \brief Check if we can promote \p ToBePromoted to \p Type.
+ bool canPromote(const Instruction *ToBePromoted) const {
+ // We could support CastInst too.
+ return isa<BinaryOperator>(ToBePromoted);
+ }
+
+ /// \brief Check if it is profitable to promote \p ToBePromoted
+ /// by moving downward the transition through.
+ bool shouldPromote(const Instruction *ToBePromoted) const {
+ // Promote only if all the operands can be statically expanded.
+ // Indeed, we do not want to introduce any new kind of transitions.
+ for (const Use &U : ToBePromoted->operands()) {
+ const Value *Val = U.get();
+ if (Val == getEndOfTransition()) {
+ // If the use is a division and the transition is on the rhs,
+ // we cannot promote the operation, otherwise we may create a
+ // division by zero.
+ if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
+ return false;
+ continue;
+ }
+ if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
+ !isa<ConstantFP>(Val))
+ return false;
+ }
+ // Check that the resulting operation is legal.
+ int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
+ if (!ISDOpcode)
+ return false;
+ return StressStoreExtract ||
+ TLI.isOperationLegalOrCustom(
+ ISDOpcode, TLI.getValueType(getTransitionType(), true));
+ }
+
+ /// \brief Check whether or not \p Use can be combined
+ /// with the transition.
+ /// I.e., is it possible to do Use(Transition) => AnotherUse?
+ bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
+
+ /// \brief Record \p ToBePromoted as part of the chain to be promoted.
+ void enqueueForPromotion(Instruction *ToBePromoted) {
+ InstsToBePromoted.push_back(ToBePromoted);
+ }
+
+ /// \brief Set the instruction that will be combined with the transition.
+ void recordCombineInstruction(Instruction *ToBeCombined) {
+ assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
+ CombineInst = ToBeCombined;
+ }
+
+ /// \brief Promote all the instructions enqueued for promotion if it is
+ /// is profitable.
+ /// \return True if the promotion happened, false otherwise.
+ bool promote() {
+ // Check if there is something to promote.
+ // Right now, if we do not have anything to combine with,
+ // we assume the promotion is not profitable.
+ if (InstsToBePromoted.empty() || !CombineInst)
+ return false;
+
+ // Check cost.
+ if (!StressStoreExtract && !isProfitableToPromote())
+ return false;
+
+ // Promote.
+ for (auto &ToBePromoted : InstsToBePromoted)
+ promoteImpl(ToBePromoted);
+ InstsToBePromoted.clear();
+ return true;
+ }
+};
+} // End of anonymous namespace.
+
+void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
+ // At this point, we know that all the operands of ToBePromoted but Def
+ // can be statically promoted.
+ // For Def, we need to use its parameter in ToBePromoted:
+ // b = ToBePromoted ty1 a
+ // Def = Transition ty1 b to ty2
+ // Move the transition down.
+ // 1. Replace all uses of the promoted operation by the transition.
+ // = ... b => = ... Def.
+ assert(ToBePromoted->getType() == Transition->getType() &&
+ "The type of the result of the transition does not match "
+ "the final type");
+ ToBePromoted->replaceAllUsesWith(Transition);
+ // 2. Update the type of the uses.
+ // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
+ Type *TransitionTy = getTransitionType();
+ ToBePromoted->mutateType(TransitionTy);
+ // 3. Update all the operands of the promoted operation with promoted
+ // operands.
+ // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
+ for (Use &U : ToBePromoted->operands()) {
+ Value *Val = U.get();
+ Value *NewVal = nullptr;
+ if (Val == Transition)
+ NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
+ else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
+ isa<ConstantFP>(Val)) {
+ // Use a splat constant if it is not safe to use undef.
+ NewVal = getConstantVector(
+ cast<Constant>(Val),
+ isa<UndefValue>(Val) ||
+ canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
+ } else
+ llvm_unreachable("Did you modified shouldPromote and forgot to update "
+ "this?");
+ ToBePromoted->setOperand(U.getOperandNo(), NewVal);
+ }
+ Transition->removeFromParent();
+ Transition->insertAfter(ToBePromoted);
+ Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
+}
+
+// See if we can speculate calls to intrinsic cttz/ctlz.
+//
+// Example:
+// entry:
+// ...
+// %cmp = icmp eq i64 %val, 0
+// br i1 %cmp, label %end.bb, label %then.bb
+//
+// then.bb:
+// %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true)
+// br label %EndBB
+//
+// end.bb:
+// %cond = phi i64 [ %c, %then.bb ], [ 64, %entry ]
+//
+// ==>
+//
+// entry:
+// ...
+// %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 false)
+//
+static bool OptimizeBranchInst(BranchInst *BrInst, const TargetLowering &TLI) {
+ assert(BrInst->isConditional() && "Expected a conditional branch!");
+ BasicBlock *ThenBB = BrInst->getSuccessor(1);
+ BasicBlock *EndBB = BrInst->getSuccessor(0);
+
+ // See if ThenBB contains only one instruction (excluding the
+ // terminator and DbgInfoIntrinsic calls).
+ IntrinsicInst *II = nullptr;
+ CastInst *CI = nullptr;
+ for (BasicBlock::iterator I = ThenBB->begin(),
+ E = std::prev(ThenBB->end()); I != E; ++I) {
+ // Skip debug info.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ // Check if this is a zero extension or a truncate of a previously
+ // matched call to intrinsic cttz/ctlz.
+ if (II) {
+ // Early exit if we already found a "free" zero extend/truncate.
+ if (CI)
+ return false;
+
+ Type *SrcTy = II->getType();
+ Type *DestTy = I->getType();
+ Value *V;
+
+ if (match(cast<Instruction>(I), m_ZExt(m_Value(V))) && V == II) {
+ // Speculate this zero extend only if it is "free" for the target.
+ if (TLI.isZExtFree(SrcTy, DestTy)) {
+ CI = cast<CastInst>(I);
+ continue;
+ }
+ } else if (match(cast<Instruction>(I), m_Trunc(m_Value(V))) && V == II) {
+ // Speculate this truncate only if it is "free" for the target.
+ if (TLI.isTruncateFree(SrcTy, DestTy)) {
+ CI = cast<CastInst>(I);
+ continue;
+ }
+ } else {
+ // Avoid speculating more than one instruction.
+ return false;
+ }
+ }
+
+ // See if this is a call to intrinsic cttz/ctlz.
+ if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::cttz>())) {
+ // Avoid speculating expensive intrinsic calls.
+ if (!TLI.isCheapToSpeculateCttz())
+ return false;
+ }
+ else if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::ctlz>())) {
+ // Avoid speculating expensive intrinsic calls.
+ if (!TLI.isCheapToSpeculateCtlz())
+ return false;
+ } else
+ return false;
+
+ II = cast<IntrinsicInst>(I);
+ }
+
+ // Look for PHI nodes with 'II' as the incoming value from 'ThenBB'.
+ BasicBlock *EntryBB = BrInst->getParent();
+ for (BasicBlock::iterator I = EndBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
+ Value *OrigV = PN->getIncomingValueForBlock(EntryBB);
+
+ if (!OrigV)
+ return false;
+
+ if (ThenV != II && (!CI || ThenV != CI))
+ return false;
+
+ if (ConstantInt *CInt = dyn_cast<ConstantInt>(OrigV)) {
+ unsigned BitWidth = II->getType()->getIntegerBitWidth();
+
+ // Don't try to simplify this phi node if 'ThenV' is a cttz/ctlz
+ // intrinsic call, but 'OrigV' is not equal to the 'size-of' in bits
+ // of the value in input to the cttz/ctlz.
+ if (CInt->getValue() != BitWidth)
+ return false;
+
+ // Hoist the call to cttz/ctlz from ThenBB into EntryBB.
+ EntryBB->getInstList().splice(BrInst, ThenBB->getInstList(),
+ ThenBB->begin(), std::prev(ThenBB->end()));
+
+ // Update PN setting ThenV as the incoming value from both 'EntryBB'
+ // and 'ThenBB'. Eventually, method 'OptimizeInst' will fold this
+ // phi node if all the incoming values are the same.
+ PN->setIncomingValue(PN->getBasicBlockIndex(EntryBB), ThenV);
+ PN->setIncomingValue(PN->getBasicBlockIndex(ThenBB), ThenV);
+
+ // Clear the 'undef on zero' flag of the cttz/ctlz intrinsic call.
+ if (cast<ConstantInt>(II->getArgOperand(1))->isOne()) {
+ Type *Ty = II->getArgOperand(0)->getType();
+ Value *Args[] = { II->getArgOperand(0),
+ ConstantInt::getFalse(II->getContext()) };
+ Module *M = EntryBB->getParent()->getParent();
+ Value *IF = Intrinsic::getDeclaration(M, II->getIntrinsicID(), Ty);
+ IRBuilder<> Builder(II);
+ Instruction *NewI = Builder.CreateCall(IF, Args);
+
+ // Replace the old call to cttz/ctlz.
+ II->replaceAllUsesWith(NewI);
+ II->eraseFromParent();
+ }
+
+ // Update BrInst condition so that the branch to EndBB is always taken.
+ // Later on, method 'ConstantFoldTerminator' will simplify this branch
+ // replacing it with a direct branch to 'EndBB'.
+ // As a side effect, CodeGenPrepare will attempt to simplify the control
+ // flow graph by deleting basic block 'ThenBB' and merging 'EntryBB' into
+ // 'EndBB' (calling method 'EliminateFallThrough').
+ BrInst->setCondition(ConstantInt::getTrue(BrInst->getContext()));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Some targets can do store(extractelement) with one instruction.
+/// Try to push the extractelement towards the stores when the target
+/// has this feature and this is profitable.
+bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) {
+ unsigned CombineCost = UINT_MAX;
+ if (DisableStoreExtract || !TLI ||
+ (!StressStoreExtract &&
+ !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
+ Inst->getOperand(1), CombineCost)))
+ return false;
+
+ // At this point we know that Inst is a vector to scalar transition.
+ // Try to move it down the def-use chain, until:
+ // - We can combine the transition with its single use
+ // => we got rid of the transition.
+ // - We escape the current basic block
+ // => we would need to check that we are moving it at a cheaper place and
+ // we do not do that for now.
+ BasicBlock *Parent = Inst->getParent();
+ DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
+ VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost);
+ // If the transition has more than one use, assume this is not going to be
+ // beneficial.
+ while (Inst->hasOneUse()) {
+ Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
+ DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
+
+ if (ToBePromoted->getParent() != Parent) {
+ DEBUG(dbgs() << "Instruction to promote is in a different block ("
+ << ToBePromoted->getParent()->getName()
+ << ") than the transition (" << Parent->getName() << ").\n");
+ return false;
+ }
+
+ if (VPH.canCombine(ToBePromoted)) {
+ DEBUG(dbgs() << "Assume " << *Inst << '\n'
+ << "will be combined with: " << *ToBePromoted << '\n');
+ VPH.recordCombineInstruction(ToBePromoted);
+ bool Changed = VPH.promote();
+ NumStoreExtractExposed += Changed;
+ return Changed;
+ }
+
+ DEBUG(dbgs() << "Try promoting.\n");
+ if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
+ return false;
+
+ DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
+
+ VPH.enqueueForPromotion(ToBePromoted);
+ Inst = ToBePromoted;
+ }
+ return false;
+}
+
+bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) {
if (PHINode *P = dyn_cast<PHINode>(I)) {
// It is possible for very late stage optimizations (such as SimplifyCFG)
// to introduce PHI nodes too late to be cleaned up. If we detect such a
@@ -3188,14 +4245,14 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I) {
GEPI->replaceAllUsesWith(NC);
GEPI->eraseFromParent();
++NumGEPsElim;
- OptimizeInst(NC);
+ OptimizeInst(NC, ModifiedDT);
return true;
}
return false;
}
if (CallInst *CI = dyn_cast<CallInst>(I))
- return OptimizeCallInst(CI);
+ return OptimizeCallInst(CI, ModifiedDT);
if (SelectInst *SI = dyn_cast<SelectInst>(I))
return OptimizeSelectInst(SI);
@@ -3203,20 +4260,53 @@ bool CodeGenPrepare::OptimizeInst(Instruction *I) {
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
return OptimizeShuffleVectorInst(SVI);
+ if (isa<ExtractElementInst>(I))
+ return OptimizeExtractElementInst(I);
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ if (TLI && BI->isConditional() && BI->getCondition()->hasOneUse()) {
+ // Check if the branch condition compares a value agaist zero.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ &&
+ match(ICI->getOperand(1), m_Zero())) {
+ BasicBlock *ThenBB = BI->getSuccessor(1);
+ BasicBlock *EndBB = BI->getSuccessor(0);
+
+ // Check if ThenBB is only reachable from this basic block; also,
+ // check if EndBB has more than one predecessor.
+ if (ThenBB->getSinglePredecessor() &&
+ !EndBB->getSinglePredecessor()) {
+ TerminatorInst *TI = ThenBB->getTerminator();
+
+ if (TI->getNumSuccessors() == 1 && TI->getSuccessor(0) == EndBB &&
+ // Try to speculate calls to intrinsic cttz/ctlz from 'ThenBB'.
+ OptimizeBranchInst(BI, *TLI)) {
+ ModifiedDT = true;
+ return true;
+ }
+ }
+ }
+ }
+ }
+ return false;
+ }
+
return false;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
-bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
+bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
SunkAddrs.clear();
bool MadeChange = false;
CurInstIterator = BB.begin();
- while (CurInstIterator != BB.end())
- MadeChange |= OptimizeInst(CurInstIterator++);
-
+ while (CurInstIterator != BB.end()) {
+ MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT);
+ if (ModifiedDT)
+ return true;
+ }
MadeChange |= DupRetToEnableTailCallOpts(&BB);
return MadeChange;
@@ -3227,10 +4317,10 @@ bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
// find a node corresponding to the value.
bool CodeGenPrepare::PlaceDbgValues(Function &F) {
bool MadeChange = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ for (BasicBlock &BB : F) {
Instruction *PrevNonDbgInst = nullptr;
- for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
- Instruction *Insn = BI; ++BI;
+ for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
+ Instruction *Insn = BI++;
DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
// Leave dbg.values that refer to an alloca alone. These
// instrinsics describe the address of a variable (= the alloca)
@@ -3324,3 +4414,233 @@ bool CodeGenPrepare::sinkAndCmp(Function &F) {
}
return MadeChange;
}
+
+/// \brief Retrieve the probabilities of a conditional branch. Returns true on
+/// success, or returns false if no or invalid metadata was found.
+static bool extractBranchMetadata(BranchInst *BI,
+ uint64_t &ProbTrue, uint64_t &ProbFalse) {
+ assert(BI->isConditional() &&
+ "Looking for probabilities on unconditional branch?");
+ auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
+ if (!ProfileData || ProfileData->getNumOperands() != 3)
+ return false;
+
+ const auto *CITrue =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
+ const auto *CIFalse =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
+ if (!CITrue || !CIFalse)
+ return false;
+
+ ProbTrue = CITrue->getValue().getZExtValue();
+ ProbFalse = CIFalse->getValue().getZExtValue();
+
+ return true;
+}
+
+/// \brief Scale down both weights to fit into uint32_t.
+static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
+ uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
+ uint32_t Scale = (NewMax / UINT32_MAX) + 1;
+ NewTrue = NewTrue / Scale;
+ NewFalse = NewFalse / Scale;
+}
+
+/// \brief Some targets prefer to split a conditional branch like:
+/// \code
+/// %0 = icmp ne i32 %a, 0
+/// %1 = icmp ne i32 %b, 0
+/// %or.cond = or i1 %0, %1
+/// br i1 %or.cond, label %TrueBB, label %FalseBB
+/// \endcode
+/// into multiple branch instructions like:
+/// \code
+/// bb1:
+/// %0 = icmp ne i32 %a, 0
+/// br i1 %0, label %TrueBB, label %bb2
+/// bb2:
+/// %1 = icmp ne i32 %b, 0
+/// br i1 %1, label %TrueBB, label %FalseBB
+/// \endcode
+/// This usually allows instruction selection to do even further optimizations
+/// and combine the compare with the branch instruction. Currently this is
+/// applied for targets which have "cheap" jump instructions.
+///
+/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
+///
+bool CodeGenPrepare::splitBranchCondition(Function &F) {
+ if (!TM || TM->Options.EnableFastISel != true ||
+ !TLI || TLI->isJumpExpensive())
+ return false;
+
+ bool MadeChange = false;
+ for (auto &BB : F) {
+ // Does this BB end with the following?
+ // %cond1 = icmp|fcmp|binary instruction ...
+ // %cond2 = icmp|fcmp|binary instruction ...
+ // %cond.or = or|and i1 %cond1, cond2
+ // br i1 %cond.or label %dest1, label %dest2"
+ BinaryOperator *LogicOp;
+ BasicBlock *TBB, *FBB;
+ if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
+ continue;
+
+ unsigned Opc;
+ Value *Cond1, *Cond2;
+ if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
+ m_OneUse(m_Value(Cond2)))))
+ Opc = Instruction::And;
+ else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
+ m_OneUse(m_Value(Cond2)))))
+ Opc = Instruction::Or;
+ else
+ continue;
+
+ if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
+ !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
+ continue;
+
+ DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
+
+ // Create a new BB.
+ auto *InsertBefore = std::next(Function::iterator(BB))
+ .getNodePtrUnchecked();
+ auto TmpBB = BasicBlock::Create(BB.getContext(),
+ BB.getName() + ".cond.split",
+ BB.getParent(), InsertBefore);
+
+ // Update original basic block by using the first condition directly by the
+ // branch instruction and removing the no longer needed and/or instruction.
+ auto *Br1 = cast<BranchInst>(BB.getTerminator());
+ Br1->setCondition(Cond1);
+ LogicOp->eraseFromParent();
+
+ // Depending on the conditon we have to either replace the true or the false
+ // successor of the original branch instruction.
+ if (Opc == Instruction::And)
+ Br1->setSuccessor(0, TmpBB);
+ else
+ Br1->setSuccessor(1, TmpBB);
+
+ // Fill in the new basic block.
+ auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
+ if (auto *I = dyn_cast<Instruction>(Cond2)) {
+ I->removeFromParent();
+ I->insertBefore(Br2);
+ }
+
+ // Update PHI nodes in both successors. The original BB needs to be
+ // replaced in one succesor's PHI nodes, because the branch comes now from
+ // the newly generated BB (NewBB). In the other successor we need to add one
+ // incoming edge to the PHI nodes, because both branch instructions target
+ // now the same successor. Depending on the original branch condition
+ // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
+ // we perfrom the correct update for the PHI nodes.
+ // This doesn't change the successor order of the just created branch
+ // instruction (or any other instruction).
+ if (Opc == Instruction::Or)
+ std::swap(TBB, FBB);
+
+ // Replace the old BB with the new BB.
+ for (auto &I : *TBB) {
+ PHINode *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ break;
+ int i;
+ while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
+ PN->setIncomingBlock(i, TmpBB);
+ }
+
+ // Add another incoming edge form the new BB.
+ for (auto &I : *FBB) {
+ PHINode *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ break;
+ auto *Val = PN->getIncomingValueForBlock(&BB);
+ PN->addIncoming(Val, TmpBB);
+ }
+
+ // Update the branch weights (from SelectionDAGBuilder::
+ // FindMergedConditions).
+ if (Opc == Instruction::Or) {
+ // Codegen X | Y as:
+ // BB1:
+ // jmp_if_X TBB
+ // jmp TmpBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+
+ // We have flexibility in setting Prob for BB1 and Prob for NewBB.
+ // The requirement is that
+ // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
+ // = TrueProb for orignal BB.
+ // Assuming the orignal weights are A and B, one choice is to set BB1's
+ // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
+ // assumes that
+ // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
+ // Another choice is to assume TrueProb for BB1 equals to TrueProb for
+ // TmpBB, but the math is more complicated.
+ uint64_t TrueWeight, FalseWeight;
+ if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
+ uint64_t NewTrueWeight = TrueWeight;
+ uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
+ scaleWeights(NewTrueWeight, NewFalseWeight);
+ Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
+ .createBranchWeights(TrueWeight, FalseWeight));
+
+ NewTrueWeight = TrueWeight;
+ NewFalseWeight = 2 * FalseWeight;
+ scaleWeights(NewTrueWeight, NewFalseWeight);
+ Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
+ .createBranchWeights(TrueWeight, FalseWeight));
+ }
+ } else {
+ // Codegen X & Y as:
+ // BB1:
+ // jmp_if_X TmpBB
+ // jmp FBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+ // This requires creation of TmpBB after CurBB.
+
+ // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
+ // The requirement is that
+ // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
+ // = FalseProb for orignal BB.
+ // Assuming the orignal weights are A and B, one choice is to set BB1's
+ // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
+ // assumes that
+ // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
+ uint64_t TrueWeight, FalseWeight;
+ if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
+ uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
+ uint64_t NewFalseWeight = FalseWeight;
+ scaleWeights(NewTrueWeight, NewFalseWeight);
+ Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
+ .createBranchWeights(TrueWeight, FalseWeight));
+
+ NewTrueWeight = 2 * TrueWeight;
+ NewFalseWeight = FalseWeight;
+ scaleWeights(NewTrueWeight, NewFalseWeight);
+ Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
+ .createBranchWeights(TrueWeight, FalseWeight));
+ }
+ }
+
+ // Request DOM Tree update.
+ // Note: No point in getting fancy here, since the DT info is never
+ // available to CodeGenPrepare and the existing update code is broken
+ // anyways.
+ ModifiedDT = true;
+
+ MadeChange = true;
+
+ DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
+ TmpBB->dump());
+ }
+ return MadeChange;
+}
diff --git a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
index d3ffcc7..3d62d48 100644
--- a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
+++ b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
@@ -20,24 +20,20 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "post-RA-sched"
-CriticalAntiDepBreaker::
-CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
- AntiDepBreaker(), MF(MFi),
- MRI(MF.getRegInfo()),
- TII(MF.getTarget().getInstrInfo()),
- TRI(MF.getTarget().getRegisterInfo()),
- RegClassInfo(RCI),
- Classes(TRI->getNumRegs(), nullptr),
- KillIndices(TRI->getNumRegs(), 0),
- DefIndices(TRI->getNumRegs(), 0),
- KeepRegs(TRI->getNumRegs(), false) {}
+CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
+ const RegisterClassInfo &RCI)
+ : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
+ TII(MF.getSubtarget().getInstrInfo()),
+ TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
+ Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
+ DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
}
@@ -94,7 +90,14 @@ void CriticalAntiDepBreaker::FinishBlock() {
void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
unsigned InsertPosIndex) {
- if (MI->isDebugValue())
+ // Kill instructions can define registers but are really nops, and there might
+ // be a real definition earlier that needs to be paired with uses dominated by
+ // this kill.
+
+ // FIXME: It may be possible to remove the isKill() restriction once PR18663
+ // has been properly fixed. There can be value in processing kills as seen in
+ // the AggressiveAntiDepBreaker class.
+ if (MI->isDebugValue() || MI->isKill())
return;
assert(Count < InsertPosIndex && "Instruction index out of expected range!");
@@ -237,6 +240,7 @@ void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
// Update liveness.
// Proceeding upwards, registers that are defed but not used in this
// instruction are now dead.
+ assert(!MI->isKill() && "Attempting to scan a kill instruction");
if (!TII->isPredicated(MI)) {
// Predicated defs are modeled as read + write, i.e. similar to two
@@ -265,19 +269,10 @@ void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
// Ignore two-addr defs.
if (MI->isRegTiedToUseOperand(i)) continue;
- // FIXME: we should use a SubRegIterator that includes self (as above), so
- // we don't have to repeat all this code for the reg itself.
- DefIndices[Reg] = Count;
- KillIndices[Reg] = ~0u;
- assert(((KillIndices[Reg] == ~0u) !=
- (DefIndices[Reg] == ~0u)) &&
- "Kill and Def maps aren't consistent for Reg!");
- KeepRegs.reset(Reg);
- Classes[Reg] = nullptr;
- RegRefs.erase(Reg);
- // Repeat, for all subregs.
- for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
- unsigned SubregReg = *SubRegs;
+ // For the reg itself and all subregs: update the def to current;
+ // reset the kill state, any restrictions, and references.
+ for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
+ unsigned SubregReg = *SRI;
DefIndices[SubregReg] = Count;
KillIndices[SubregReg] = ~0u;
KeepRegs.reset(SubregReg);
@@ -309,19 +304,9 @@ void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
RegRefs.insert(std::make_pair(Reg, &MO));
- // FIXME: we should use an MCRegAliasIterator that includes self so we don't
- // have to repeat all this code for the reg itself.
-
// It wasn't previously live but now it is, this is a kill.
- if (KillIndices[Reg] == ~0u) {
- KillIndices[Reg] = Count;
- DefIndices[Reg] = ~0u;
- assert(((KillIndices[Reg] == ~0u) !=
- (DefIndices[Reg] == ~0u)) &&
- "Kill and Def maps aren't consistent for Reg!");
- }
- // Repeat, for all aliases.
- for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
+ // Repeat for all aliases.
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
unsigned AliasReg = *AI;
if (KillIndices[AliasReg] == ~0u) {
KillIndices[AliasReg] = Count;
@@ -527,7 +512,14 @@ BreakAntiDependencies(const std::vector<SUnit>& SUnits,
unsigned Count = InsertPosIndex - 1;
for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
MachineInstr *MI = --I;
- if (MI->isDebugValue())
+ // Kill instructions can define registers but are really nops, and there
+ // might be a real definition earlier that needs to be paired with uses
+ // dominated by this kill.
+
+ // FIXME: It may be possible to remove the isKill() restriction once PR18663
+ // has been properly fixed. There can be value in processing kills as seen
+ // in the AggressiveAntiDepBreaker class.
+ if (MI->isDebugValue() || MI->isKill())
continue;
// Check if this instruction has a dependence on the critical path that
diff --git a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.h b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.h
index 45e4ff5..ceef74d 100644
--- a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.h
+++ b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_CRITICALANTIDEPBREAKER_H
-#define LLVM_CODEGEN_CRITICALANTIDEPBREAKER_H
+#ifndef LLVM_LIB_CODEGEN_CRITICALANTIDEPBREAKER_H
+#define LLVM_LIB_CODEGEN_CRITICALANTIDEPBREAKER_H
#include "AntiDepBreaker.h"
#include "llvm/ADT/BitVector.h"
@@ -38,32 +38,32 @@ class TargetRegisterInfo;
const TargetRegisterInfo *TRI;
const RegisterClassInfo &RegClassInfo;
- /// AllocatableSet - The set of allocatable registers.
+ /// The set of allocatable registers.
/// We'll be ignoring anti-dependencies on non-allocatable registers,
/// because they may not be safe to break.
const BitVector AllocatableSet;
- /// Classes - For live regs that are only used in one register class in a
+ /// For live regs that are only used in one register class in a
/// live range, the register class. If the register is not live, the
/// corresponding value is null. If the register is live but used in
/// multiple register classes, the corresponding value is -1 casted to a
/// pointer.
std::vector<const TargetRegisterClass*> Classes;
- /// RegRefs - Map registers to all their references within a live range.
+ /// Map registers to all their references within a live range.
std::multimap<unsigned, MachineOperand *> RegRefs;
typedef std::multimap<unsigned, MachineOperand *>::const_iterator
RegRefIter;
- /// KillIndices - The index of the most recent kill (proceeding bottom-up),
+ /// The index of the most recent kill (proceeding bottom-up),
/// or ~0u if the register is not live.
std::vector<unsigned> KillIndices;
- /// DefIndices - The index of the most recent complete def (proceeding
+ /// The index of the most recent complete def (proceeding
/// bottom up), or ~0u if the register is live.
std::vector<unsigned> DefIndices;
- /// KeepRegs - A set of registers which are live and cannot be changed to
+ /// A set of registers which are live and cannot be changed to
/// break anti-dependencies.
BitVector KeepRegs;
@@ -71,26 +71,23 @@ class TargetRegisterInfo;
CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo&);
~CriticalAntiDepBreaker();
- /// Start - Initialize anti-dep breaking for a new basic block.
+ /// Initialize anti-dep breaking for a new basic block.
void StartBlock(MachineBasicBlock *BB) override;
- /// BreakAntiDependencies - Identifiy anti-dependencies along the critical
- /// path
+ /// Identifiy anti-dependencies along the critical path
/// of the ScheduleDAG and break them by renaming registers.
- ///
unsigned BreakAntiDependencies(const std::vector<SUnit>& SUnits,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
unsigned InsertPosIndex,
DbgValueVector &DbgValues) override;
- /// Observe - Update liveness information to account for the current
+ /// Update liveness information to account for the current
/// instruction, which will not be scheduled.
- ///
void Observe(MachineInstr *MI, unsigned Count,
unsigned InsertPosIndex) override;
- /// Finish - Finish anti-dep breaking for a basic block.
+ /// Finish anti-dep breaking for a basic block.
void FinishBlock() override;
private:
diff --git a/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp b/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp
index bc6e9dc..0a188c0 100644
--- a/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp
+++ b/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp
@@ -106,16 +106,15 @@ namespace llvm {
class DefaultVLIWScheduler : public ScheduleDAGInstrs {
public:
DefaultVLIWScheduler(MachineFunction &MF, MachineLoopInfo &MLI,
- MachineDominatorTree &MDT, bool IsPostRA);
+ bool IsPostRA);
// Schedule - Actual scheduling work.
void schedule() override;
};
}
-DefaultVLIWScheduler::DefaultVLIWScheduler(
- MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
- bool IsPostRA) :
- ScheduleDAGInstrs(MF, MLI, MDT, IsPostRA) {
+DefaultVLIWScheduler::DefaultVLIWScheduler(MachineFunction &MF,
+ MachineLoopInfo &MLI, bool IsPostRA)
+ : ScheduleDAGInstrs(MF, &MLI, IsPostRA) {
CanHandleTerminators = true;
}
@@ -125,12 +124,12 @@ void DefaultVLIWScheduler::schedule() {
}
// VLIWPacketizerList Ctor
-VLIWPacketizerList::VLIWPacketizerList(
- MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
- bool IsPostRA) : TM(MF.getTarget()), MF(MF) {
- TII = TM.getInstrInfo();
- ResourceTracker = TII->CreateTargetScheduleState(&TM, nullptr);
- VLIWScheduler = new DefaultVLIWScheduler(MF, MLI, MDT, IsPostRA);
+VLIWPacketizerList::VLIWPacketizerList(MachineFunction &MF,
+ MachineLoopInfo &MLI, bool IsPostRA)
+ : MF(MF) {
+ TII = MF.getSubtarget().getInstrInfo();
+ ResourceTracker = TII->CreateTargetScheduleState(MF.getSubtarget());
+ VLIWScheduler = new DefaultVLIWScheduler(MF, MLI, IsPostRA);
}
// VLIWPacketizerList Dtor
diff --git a/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp b/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp
index 2b144d8..c17a35d 100644
--- a/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp
+++ b/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp
@@ -19,7 +19,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
using namespace llvm;
#define DEBUG_TYPE "codegen-dce"
@@ -58,6 +59,10 @@ bool DeadMachineInstructionElim::isDead(const MachineInstr *MI) const {
if (MI->isInlineAsm())
return false;
+ // Don't delete frame allocation labels.
+ if (MI->getOpcode() == TargetOpcode::FRAME_ALLOC)
+ return false;
+
// Don't delete instructions with side effects.
bool SawStore = false;
if (!MI->isSafeToMove(TII, nullptr, SawStore) && !MI->isPHI())
@@ -90,8 +95,8 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
bool AnyChanges = false;
MRI = &MF.getRegInfo();
- TRI = MF.getTarget().getRegisterInfo();
- TII = MF.getTarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
// Loop over all instructions in all blocks, from bottom to top, so that it's
// more likely that chains of dependent but ultimately dead instructions will
@@ -122,19 +127,10 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
if (isDead(MI)) {
DEBUG(dbgs() << "DeadMachineInstructionElim: DELETING: " << *MI);
// It is possible that some DBG_VALUE instructions refer to this
- // instruction. Examine each def operand for such references;
- // if found, mark the DBG_VALUE as undef (but don't delete it).
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isDef())
- continue;
- unsigned Reg = MO.getReg();
- if (!TargetRegisterInfo::isVirtualRegister(Reg))
- continue;
- MRI->markUsesInDebugValueAsUndef(Reg);
- }
+ // instruction. They get marked as undef and will be deleted
+ // in the live debug variable analysis.
+ MI->eraseFromParentAndMarkDBGValuesForRemoval();
AnyChanges = true;
- MI->eraseFromParent();
++NumDeletes;
MIE = MBB->rend();
// MII is now pointing to the next instruction to process,
diff --git a/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp b/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp
index a195586..75b74d9 100644
--- a/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp
@@ -23,6 +23,7 @@
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
@@ -50,6 +51,11 @@ namespace {
bool runOnFunction(Function &Fn) override;
+ bool doFinalization(Module &M) override {
+ RewindFunction = nullptr;
+ return false;
+ }
+
void getAnalysisUsage(AnalysisUsage &AU) const override { }
const char *getPassName() const override {
@@ -118,7 +124,7 @@ bool DwarfEHPrepare::InsertUnwindResumeCalls(Function &Fn) {
return false;
// Find the rewind function if we didn't already.
- const TargetLowering *TLI = TM->getTargetLowering();
+ const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
if (!RewindFunction) {
LLVMContext &Ctx = Resumes[0]->getContext();
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
diff --git a/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp b/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp
index c470632..995606f 100644
--- a/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp
+++ b/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp
@@ -153,8 +153,8 @@ private:
public:
/// runOnMachineFunction - Initialize per-function data structures.
void runOnMachineFunction(MachineFunction &MF) {
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
LiveRegUnits.clear();
LiveRegUnits.setUniverse(TRI->getNumRegUnits());
@@ -245,7 +245,7 @@ bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
MachineInstr *DefMI = MRI->getVRegDef(Reg);
if (!DefMI || DefMI->getParent() != Head)
continue;
- if (InsertAfter.insert(DefMI))
+ if (InsertAfter.insert(DefMI).second)
DEBUG(dbgs() << "BB#" << MBB->getNumber() << " depends on " << *DefMI);
if (DefMI->isTerminator()) {
DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
@@ -580,7 +580,7 @@ namespace {
class EarlyIfConverter : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
- const MCSchedModel *SchedModel;
+ MCSchedModel SchedModel;
MachineRegisterInfo *MRI;
MachineDominatorTree *DomTree;
MachineLoopInfo *Loops;
@@ -688,7 +688,7 @@ bool EarlyIfConverter::shouldConvertIf() {
FBBTrace.getCriticalPath());
// Set a somewhat arbitrary limit on the critical path extension we accept.
- unsigned CritLimit = SchedModel->MispredictPenalty/2;
+ unsigned CritLimit = SchedModel.MispredictPenalty/2;
// If-conversion only makes sense when there is unexploited ILP. Compute the
// maximum-ILP resource length of the trace after if-conversion. Compare it
@@ -782,8 +782,8 @@ bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) {
.enableEarlyIfConversion())
return false;
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
SchedModel =
MF.getTarget().getSubtarget<TargetSubtargetInfo>().getSchedModel();
MRI = &MF.getRegInfo();
diff --git a/contrib/llvm/lib/CodeGen/ErlangGC.cpp b/contrib/llvm/lib/CodeGen/ErlangGC.cpp
index e976d7f..85b0893 100644
--- a/contrib/llvm/lib/CodeGen/ErlangGC.cpp
+++ b/contrib/llvm/lib/CodeGen/ErlangGC.cpp
@@ -21,6 +21,7 @@
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -53,7 +54,7 @@ ErlangGC::ErlangGC() {
MCSymbol *ErlangGC::InsertLabel(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
DebugLoc DL) const {
- const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
MCSymbol *Label = MBB.getParent()->getContext().CreateTempSymbol();
BuildMI(MBB, MI, DL, TII->get(TargetOpcode::GC_LABEL)).addSym(Label);
return Label;
diff --git a/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
index cf55b68..b3a22c8 100644
--- a/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
+++ b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
@@ -22,6 +22,7 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -29,7 +30,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
using namespace llvm;
#define DEBUG_TYPE "execution-fix"
@@ -73,6 +75,9 @@ struct DomainValue {
// Is domain available?
bool hasDomain(unsigned domain) const {
+ assert(domain <
+ static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
+ "undefined behavior");
return AvailableDomains & (1u << domain);
}
@@ -132,7 +137,7 @@ class ExeDepsFix : public MachineFunctionPass {
MachineFunction *MF;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
- std::vector<int> AliasMap;
+ std::vector<SmallVector<int, 1>> AliasMap;
const unsigned NumRegs;
LiveReg *LiveRegs;
typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
@@ -168,8 +173,8 @@ public:
}
private:
- // Register mapping.
- int regIndex(unsigned Reg);
+ iterator_range<SmallVectorImpl<int>::const_iterator>
+ regIndizes(unsigned Reg) const;
// DomainValue allocation.
DomainValue *alloc(int domain = -1);
@@ -200,11 +205,13 @@ private:
char ExeDepsFix::ID = 0;
-/// Translate TRI register number to an index into our smaller tables of
-/// interesting registers. Return -1 for boring registers.
-int ExeDepsFix::regIndex(unsigned Reg) {
+/// Translate TRI register number to a list of indizes into our stmaller tables
+/// of interesting registers.
+iterator_range<SmallVectorImpl<int>::const_iterator>
+ExeDepsFix::regIndizes(unsigned Reg) const {
assert(Reg < AliasMap.size() && "Invalid register");
- return AliasMap[Reg];
+ const auto &Entry = AliasMap[Reg];
+ return make_range(Entry.begin(), Entry.end());
}
DomainValue *ExeDepsFix::alloc(int domain) {
@@ -337,9 +344,11 @@ bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
// All uses of B are referred to A.
B->Next = retain(A);
- for (unsigned rx = 0; rx != NumRegs; ++rx)
+ for (unsigned rx = 0; rx != NumRegs; ++rx) {
+ assert(LiveRegs && "no space allocated for live registers");
if (LiveRegs[rx].Value == B)
setLiveReg(rx, A);
+ }
return true;
}
@@ -369,13 +378,12 @@ void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
if (MBB->pred_empty()) {
for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
e = MBB->livein_end(); i != e; ++i) {
- int rx = regIndex(*i);
- if (rx < 0)
- continue;
- // Treat function live-ins as if they were defined just before the first
- // instruction. Usually, function arguments are set up immediately
- // before the call.
- LiveRegs[rx].Def = -1;
+ for (int rx : regIndizes(*i)) {
+ // Treat function live-ins as if they were defined just before the first
+ // instruction. Usually, function arguments are set up immediately
+ // before the call.
+ LiveRegs[rx].Def = -1;
+ }
}
DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
return;
@@ -466,26 +474,26 @@ void ExeDepsFix::visitInstr(MachineInstr *MI) {
/// or undef use.
bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
unsigned Pref) {
- int rx = regIndex(MI->getOperand(OpIdx).getReg());
- if (rx < 0)
- return false;
-
- unsigned Clearance = CurInstr - LiveRegs[rx].Def;
- DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
+ unsigned reg = MI->getOperand(OpIdx).getReg();
+ for (int rx : regIndizes(reg)) {
+ unsigned Clearance = CurInstr - LiveRegs[rx].Def;
+ DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
- if (Pref > Clearance) {
- DEBUG(dbgs() << ": Break dependency.\n");
- return true;
- }
- // The current clearance seems OK, but we may be ignoring a def from a
- // back-edge.
- if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
- DEBUG(dbgs() << ": OK .\n");
+ if (Pref > Clearance) {
+ DEBUG(dbgs() << ": Break dependency.\n");
+ continue;
+ }
+ // The current clearance seems OK, but we may be ignoring a def from a
+ // back-edge.
+ if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
+ DEBUG(dbgs() << ": OK .\n");
+ return false;
+ }
+ // A def from an unprocessed back-edge may make us break this dependency.
+ DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
return false;
}
- // A def from an unprocessed back-edge may make us break this dependency.
- DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
- return false;
+ return true;
}
// Update def-ages for registers defined by MI.
@@ -513,26 +521,24 @@ void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
break;
if (MO.isUse())
continue;
- int rx = regIndex(MO.getReg());
- if (rx < 0)
- continue;
-
- // This instruction explicitly defines rx.
- DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
- << '\t' << *MI);
-
- // Check clearance before partial register updates.
- // Call breakDependence before setting LiveRegs[rx].Def.
- unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
- if (Pref && shouldBreakDependence(MI, i, Pref))
- TII->breakPartialRegDependency(MI, i, TRI);
-
- // How many instructions since rx was last written?
- LiveRegs[rx].Def = CurInstr;
-
- // Kill off domains redefined by generic instructions.
- if (Kill)
- kill(rx);
+ for (int rx : regIndizes(MO.getReg())) {
+ // This instruction explicitly defines rx.
+ DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
+ << '\t' << *MI);
+
+ // Check clearance before partial register updates.
+ // Call breakDependence before setting LiveRegs[rx].Def.
+ unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
+ if (Pref && shouldBreakDependence(MI, i, Pref))
+ TII->breakPartialRegDependency(MI, i, TRI);
+
+ // How many instructions since rx was last written?
+ LiveRegs[rx].Def = CurInstr;
+
+ // Kill off domains redefined by generic instructions.
+ if (Kill)
+ kill(rx);
+ }
}
++CurInstr;
}
@@ -581,19 +587,19 @@ void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
- int rx = regIndex(mo.getReg());
- if (rx < 0) continue;
- force(rx, domain);
+ for (int rx : regIndizes(mo.getReg())) {
+ force(rx, domain);
+ }
}
// Kill all defs and force them.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
- int rx = regIndex(mo.getReg());
- if (rx < 0) continue;
- kill(rx);
- force(rx, domain);
+ for (int rx : regIndizes(mo.getReg())) {
+ kill(rx);
+ force(rx, domain);
+ }
}
}
@@ -610,9 +616,10 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
- int rx = regIndex(mo.getReg());
- if (rx < 0) continue;
- if (DomainValue *dv = LiveRegs[rx].Value) {
+ for (int rx : regIndizes(mo.getReg())) {
+ DomainValue *dv = LiveRegs[rx].Value;
+ if (dv == nullptr)
+ continue;
// Bitmask of domains that dv and available have in common.
unsigned common = dv->getCommonDomains(available);
// Is it possible to use this collapsed register for free?
@@ -644,6 +651,7 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
SmallVector<LiveReg, 4> Regs;
for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
int rx = *i;
+ assert(LiveRegs && "no space allocated for live registers");
const LiveReg &LR = LiveRegs[rx];
// This useless DomainValue could have been missed above.
if (!LR.Value->getCommonDomains(available)) {
@@ -683,9 +691,11 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
continue;
// If latest didn't merge, it is useless now. Kill all registers using it.
- for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i)
- if (LiveRegs[*i].Value == Latest)
- kill(*i);
+ for (int i : used) {
+ assert(LiveRegs && "no space allocated for live registers");
+ if (LiveRegs[i].Value == Latest)
+ kill(i);
+ }
}
// dv is the DomainValue we are going to use for this instruction.
@@ -702,24 +712,24 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
ii != ee; ++ii) {
MachineOperand &mo = *ii;
if (!mo.isReg()) continue;
- int rx = regIndex(mo.getReg());
- if (rx < 0) continue;
- if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
- kill(rx);
- setLiveReg(rx, dv);
+ for (int rx : regIndizes(mo.getReg())) {
+ if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
+ kill(rx);
+ setLiveReg(rx, dv);
+ }
}
}
}
bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
- TII = MF->getTarget().getInstrInfo();
- TRI = MF->getTarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
LiveRegs = nullptr;
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
- << RC->getName() << " **********\n");
+ << TRI->getRegClassName(RC) << " **********\n");
// If no relevant registers are used in the function, we can skip it
// completely.
@@ -734,13 +744,13 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
// Initialize the AliasMap on the first use.
if (AliasMap.empty()) {
- // Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC,
- // or -1.
- AliasMap.resize(TRI->getNumRegs(), -1);
+ // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
+ // therefore the LiveRegs array.
+ AliasMap.resize(TRI->getNumRegs());
for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
AI.isValid(); ++AI)
- AliasMap[*AI] = i;
+ AliasMap[*AI].push_back(i);
}
MachineBasicBlock *Entry = MF->begin();
diff --git a/contrib/llvm/lib/CodeGen/ExpandISelPseudos.cpp b/contrib/llvm/lib/CodeGen/ExpandISelPseudos.cpp
index 90b62b5..55e809e 100644
--- a/contrib/llvm/lib/CodeGen/ExpandISelPseudos.cpp
+++ b/contrib/llvm/lib/CodeGen/ExpandISelPseudos.cpp
@@ -19,7 +19,7 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "expand-isel-pseudos"
@@ -46,7 +46,7 @@ INITIALIZE_PASS(ExpandISelPseudos, "expand-isel-pseudos",
bool ExpandISelPseudos::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
- const TargetLowering *TLI = MF.getTarget().getTargetLowering();
+ const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
// Iterate through each instruction in the function, looking for pseudos.
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
diff --git a/contrib/llvm/lib/CodeGen/ExpandPostRAPseudos.cpp b/contrib/llvm/lib/CodeGen/ExpandPostRAPseudos.cpp
index 8969bcc..e7bf143 100644
--- a/contrib/llvm/lib/CodeGen/ExpandPostRAPseudos.cpp
+++ b/contrib/llvm/lib/CodeGen/ExpandPostRAPseudos.cpp
@@ -20,8 +20,9 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
using namespace llvm;
#define DEBUG_TYPE "postrapseudos"
@@ -182,8 +183,8 @@ bool ExpandPostRA::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Machine Function\n"
<< "********** EXPANDING POST-RA PSEUDO INSTRS **********\n"
<< "********** Function: " << MF.getName() << '\n');
- TRI = MF.getTarget().getRegisterInfo();
- TII = MF.getTarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
bool MadeChange = false;
diff --git a/contrib/llvm/lib/CodeGen/ForwardControlFlowIntegrity.cpp b/contrib/llvm/lib/CodeGen/ForwardControlFlowIntegrity.cpp
new file mode 100644
index 0000000..63c3699
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/ForwardControlFlowIntegrity.cpp
@@ -0,0 +1,374 @@
+//===-- ForwardControlFlowIntegrity.cpp: Forward-Edge CFI -----------------===//
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief A pass that instruments code with fast checks for indirect calls and
+/// hooks for a function to check violations.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "cfi"
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/JumpInstrTableInfo.h"
+#include "llvm/CodeGen/ForwardControlFlowIntegrity.h"
+#include "llvm/CodeGen/JumpInstrTables.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+STATISTIC(NumCFIIndirectCalls,
+ "Number of indirect call sites rewritten by the CFI pass");
+
+char ForwardControlFlowIntegrity::ID = 0;
+INITIALIZE_PASS_BEGIN(ForwardControlFlowIntegrity, "forward-cfi",
+ "Control-Flow Integrity", true, true)
+INITIALIZE_PASS_DEPENDENCY(JumpInstrTableInfo);
+INITIALIZE_PASS_DEPENDENCY(JumpInstrTables);
+INITIALIZE_PASS_END(ForwardControlFlowIntegrity, "forward-cfi",
+ "Control-Flow Integrity", true, true)
+
+ModulePass *llvm::createForwardControlFlowIntegrityPass() {
+ return new ForwardControlFlowIntegrity();
+}
+
+ModulePass *llvm::createForwardControlFlowIntegrityPass(
+ JumpTable::JumpTableType JTT, CFIntegrity CFIType, bool CFIEnforcing,
+ StringRef CFIFuncName) {
+ return new ForwardControlFlowIntegrity(JTT, CFIType, CFIEnforcing,
+ CFIFuncName);
+}
+
+// Checks to see if a given CallSite is making an indirect call, including
+// cases where the indirect call is made through a bitcast.
+static bool isIndirectCall(CallSite &CS) {
+ if (CS.getCalledFunction())
+ return false;
+
+ // Check the value to see if it is merely a bitcast of a function. In
+ // this case, it will translate to a direct function call in the resulting
+ // assembly, so we won't treat it as an indirect call here.
+ const Value *V = CS.getCalledValue();
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ return !(CE->isCast() && isa<Function>(CE->getOperand(0)));
+ }
+
+ // Otherwise, since we know it's a call, it must be an indirect call
+ return true;
+}
+
+static const char cfi_failure_func_name[] = "__llvm_cfi_pointer_warning";
+
+ForwardControlFlowIntegrity::ForwardControlFlowIntegrity()
+ : ModulePass(ID), IndirectCalls(), JTType(JumpTable::Single),
+ CFIType(CFIntegrity::Sub), CFIEnforcing(false), CFIFuncName("") {
+ initializeForwardControlFlowIntegrityPass(*PassRegistry::getPassRegistry());
+}
+
+ForwardControlFlowIntegrity::ForwardControlFlowIntegrity(
+ JumpTable::JumpTableType JTT, CFIntegrity CFIType, bool CFIEnforcing,
+ std::string CFIFuncName)
+ : ModulePass(ID), IndirectCalls(), JTType(JTT), CFIType(CFIType),
+ CFIEnforcing(CFIEnforcing), CFIFuncName(CFIFuncName) {
+ initializeForwardControlFlowIntegrityPass(*PassRegistry::getPassRegistry());
+}
+
+ForwardControlFlowIntegrity::~ForwardControlFlowIntegrity() {}
+
+void ForwardControlFlowIntegrity::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<JumpInstrTableInfo>();
+ AU.addRequired<JumpInstrTables>();
+}
+
+void ForwardControlFlowIntegrity::getIndirectCalls(Module &M) {
+ // To get the indirect calls, we iterate over all functions and iterate over
+ // the list of basic blocks in each. We extract a total list of indirect calls
+ // before modifying any of them, since our modifications will modify the list
+ // of basic blocks.
+ for (Function &F : M) {
+ for (BasicBlock &BB : F) {
+ for (Instruction &I : BB) {
+ CallSite CS(&I);
+ if (!(CS && isIndirectCall(CS)))
+ continue;
+
+ Value *CalledValue = CS.getCalledValue();
+
+ // Don't rewrite this instruction if the indirect call is actually just
+ // inline assembly, since our transformation will generate an invalid
+ // module in that case.
+ if (isa<InlineAsm>(CalledValue))
+ continue;
+
+ IndirectCalls.push_back(&I);
+ }
+ }
+ }
+}
+
+void ForwardControlFlowIntegrity::updateIndirectCalls(Module &M,
+ CFITables &CFIT) {
+ Type *Int64Ty = Type::getInt64Ty(M.getContext());
+ for (Instruction *I : IndirectCalls) {
+ CallSite CS(I);
+ Value *CalledValue = CS.getCalledValue();
+
+ // Get the function type for this call and look it up in the tables.
+ Type *VTy = CalledValue->getType();
+ PointerType *PTy = dyn_cast<PointerType>(VTy);
+ Type *EltTy = PTy->getElementType();
+ FunctionType *FunTy = dyn_cast<FunctionType>(EltTy);
+ FunctionType *TransformedTy = JumpInstrTables::transformType(JTType, FunTy);
+ ++NumCFIIndirectCalls;
+ Constant *JumpTableStart = nullptr;
+ Constant *JumpTableMask = nullptr;
+ Constant *JumpTableSize = nullptr;
+
+ // Some call sites have function types that don't correspond to any
+ // address-taken function in the module. This happens when function pointers
+ // are passed in from external code.
+ auto it = CFIT.find(TransformedTy);
+ if (it == CFIT.end()) {
+ // In this case, make sure that the function pointer will change by
+ // setting the mask and the start to be 0 so that the transformed
+ // function is 0.
+ JumpTableStart = ConstantInt::get(Int64Ty, 0);
+ JumpTableMask = ConstantInt::get(Int64Ty, 0);
+ JumpTableSize = ConstantInt::get(Int64Ty, 0);
+ } else {
+ JumpTableStart = it->second.StartValue;
+ JumpTableMask = it->second.MaskValue;
+ JumpTableSize = it->second.Size;
+ }
+
+ rewriteFunctionPointer(M, I, CalledValue, JumpTableStart, JumpTableMask,
+ JumpTableSize);
+ }
+
+ return;
+}
+
+bool ForwardControlFlowIntegrity::runOnModule(Module &M) {
+ JumpInstrTableInfo *JITI = &getAnalysis<JumpInstrTableInfo>();
+ Type *Int64Ty = Type::getInt64Ty(M.getContext());
+ Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
+
+ // JumpInstrTableInfo stores information about the alignment of each entry.
+ // The alignment returned by JumpInstrTableInfo is alignment in bytes, not
+ // in the exponent.
+ ByteAlignment = JITI->entryByteAlignment();
+ LogByteAlignment = llvm::Log2_64(ByteAlignment);
+
+ // Set up tables for control-flow integrity based on information about the
+ // jump-instruction tables.
+ CFITables CFIT;
+ for (const auto &KV : JITI->getTables()) {
+ uint64_t Size = static_cast<uint64_t>(KV.second.size());
+ uint64_t TableSize = NextPowerOf2(Size);
+
+ int64_t MaskValue = ((TableSize << LogByteAlignment) - 1) & -ByteAlignment;
+ Constant *JumpTableMaskValue = ConstantInt::get(Int64Ty, MaskValue);
+ Constant *JumpTableSize = ConstantInt::get(Int64Ty, Size);
+
+ // The base of the table is defined to be the first jumptable function in
+ // the table.
+ Function *First = KV.second.begin()->second;
+ Constant *JumpTableStartValue = ConstantExpr::getBitCast(First, VoidPtrTy);
+ CFIT[KV.first].StartValue = JumpTableStartValue;
+ CFIT[KV.first].MaskValue = JumpTableMaskValue;
+ CFIT[KV.first].Size = JumpTableSize;
+ }
+
+ if (CFIT.empty())
+ return false;
+
+ getIndirectCalls(M);
+
+ if (!CFIEnforcing) {
+ addWarningFunction(M);
+ }
+
+ // Update the instructions with the check and the indirect jump through our
+ // table.
+ updateIndirectCalls(M, CFIT);
+
+ return true;
+}
+
+void ForwardControlFlowIntegrity::addWarningFunction(Module &M) {
+ PointerType *CharPtrTy = Type::getInt8PtrTy(M.getContext());
+
+ // Get the type of the Warning Function: void (i8*, i8*),
+ // where the first argument is the name of the function in which the violation
+ // occurs, and the second is the function pointer that violates CFI.
+ SmallVector<Type *, 2> WarningFunArgs;
+ WarningFunArgs.push_back(CharPtrTy);
+ WarningFunArgs.push_back(CharPtrTy);
+ FunctionType *WarningFunTy =
+ FunctionType::get(Type::getVoidTy(M.getContext()), WarningFunArgs, false);
+
+ if (!CFIFuncName.empty()) {
+ Constant *FailureFun = M.getOrInsertFunction(CFIFuncName, WarningFunTy);
+ if (!FailureFun)
+ report_fatal_error("Could not get or insert the function specified by"
+ " -cfi-func-name");
+ } else {
+ // The default warning function swallows the warning and lets the call
+ // continue, since there's no generic way for it to print out this
+ // information.
+ Function *WarningFun = M.getFunction(cfi_failure_func_name);
+ if (!WarningFun) {
+ WarningFun =
+ Function::Create(WarningFunTy, GlobalValue::LinkOnceAnyLinkage,
+ cfi_failure_func_name, &M);
+ }
+
+ BasicBlock *Entry =
+ BasicBlock::Create(M.getContext(), "entry", WarningFun, 0);
+ ReturnInst::Create(M.getContext(), Entry);
+ }
+}
+
+void ForwardControlFlowIntegrity::rewriteFunctionPointer(
+ Module &M, Instruction *I, Value *FunPtr, Constant *JumpTableStart,
+ Constant *JumpTableMask, Constant *JumpTableSize) {
+ IRBuilder<> TempBuilder(I);
+
+ Type *OrigFunType = FunPtr->getType();
+
+ BasicBlock *CurBB = cast<BasicBlock>(I->getParent());
+ Function *CurF = cast<Function>(CurBB->getParent());
+ Type *Int64Ty = Type::getInt64Ty(M.getContext());
+
+ Value *TI = TempBuilder.CreatePtrToInt(FunPtr, Int64Ty);
+ Value *TStartInt = TempBuilder.CreatePtrToInt(JumpTableStart, Int64Ty);
+
+ Value *NewFunPtr = nullptr;
+ Value *Check = nullptr;
+ switch (CFIType) {
+ case CFIntegrity::Sub: {
+ // This is the subtract, mask, and add version.
+ // Subtract from the base.
+ Value *Sub = TempBuilder.CreateSub(TI, TStartInt);
+
+ // Mask the difference to force this to be a table offset.
+ Value *And = TempBuilder.CreateAnd(Sub, JumpTableMask);
+
+ // Add it back to the base.
+ Value *Result = TempBuilder.CreateAdd(And, TStartInt);
+
+ // Convert it back into a function pointer that we can call.
+ NewFunPtr = TempBuilder.CreateIntToPtr(Result, OrigFunType);
+ break;
+ }
+ case CFIntegrity::Ror: {
+ // This is the subtract and rotate version.
+ // Rotate right by the alignment value. The optimizer should recognize
+ // this sequence as a rotation.
+
+ // This cast is safe, since unsigned is always a subset of uint64_t.
+ uint64_t LogByteAlignment64 = static_cast<uint64_t>(LogByteAlignment);
+ Constant *RightShift = ConstantInt::get(Int64Ty, LogByteAlignment64);
+ Constant *LeftShift = ConstantInt::get(Int64Ty, 64 - LogByteAlignment64);
+
+ // Subtract from the base.
+ Value *Sub = TempBuilder.CreateSub(TI, TStartInt);
+
+ // Create the equivalent of a rotate-right instruction.
+ Value *Shr = TempBuilder.CreateLShr(Sub, RightShift);
+ Value *Shl = TempBuilder.CreateShl(Sub, LeftShift);
+ Value *Or = TempBuilder.CreateOr(Shr, Shl);
+
+ // Perform unsigned comparison to check for inclusion in the table.
+ Check = TempBuilder.CreateICmpULT(Or, JumpTableSize);
+ NewFunPtr = FunPtr;
+ break;
+ }
+ case CFIntegrity::Add: {
+ // This is the mask and add version.
+ // Mask the function pointer to turn it into an offset into the table.
+ Value *And = TempBuilder.CreateAnd(TI, JumpTableMask);
+
+ // Then or this offset to the base and get the pointer value.
+ Value *Result = TempBuilder.CreateAdd(And, TStartInt);
+
+ // Convert it back into a function pointer that we can call.
+ NewFunPtr = TempBuilder.CreateIntToPtr(Result, OrigFunType);
+ break;
+ }
+ }
+
+ if (!CFIEnforcing) {
+ // If a check hasn't been added (in the rotation version), then check to see
+ // if it's the same as the original function. This check determines whether
+ // or not we call the CFI failure function.
+ if (!Check)
+ Check = TempBuilder.CreateICmpEQ(NewFunPtr, FunPtr);
+ BasicBlock *InvalidPtrBlock =
+ BasicBlock::Create(M.getContext(), "invalid.ptr", CurF, 0);
+ BasicBlock *ContinuationBB = CurBB->splitBasicBlock(I);
+
+ // Remove the unconditional branch that connects the two blocks.
+ TerminatorInst *TermInst = CurBB->getTerminator();
+ TermInst->eraseFromParent();
+
+ // Add a conditional branch that depends on the Check above.
+ BranchInst::Create(ContinuationBB, InvalidPtrBlock, Check, CurBB);
+
+ // Call the warning function for this pointer, then continue.
+ Instruction *BI = BranchInst::Create(ContinuationBB, InvalidPtrBlock);
+ insertWarning(M, InvalidPtrBlock, BI, FunPtr);
+ } else {
+ // Modify the instruction to call this value.
+ CallSite CS(I);
+ CS.setCalledFunction(NewFunPtr);
+ }
+}
+
+void ForwardControlFlowIntegrity::insertWarning(Module &M, BasicBlock *Block,
+ Instruction *I, Value *FunPtr) {
+ Function *ParentFun = cast<Function>(Block->getParent());
+
+ // Get the function to call right before the instruction.
+ Function *WarningFun = nullptr;
+ if (CFIFuncName.empty()) {
+ WarningFun = M.getFunction(cfi_failure_func_name);
+ } else {
+ WarningFun = M.getFunction(CFIFuncName);
+ }
+
+ assert(WarningFun && "Could not find the CFI failure function");
+
+ Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
+
+ IRBuilder<> WarningInserter(I);
+ // Create a mergeable GlobalVariable containing the name of the function.
+ Value *ParentNameGV =
+ WarningInserter.CreateGlobalString(ParentFun->getName());
+ Value *ParentNamePtr = WarningInserter.CreateBitCast(ParentNameGV, VoidPtrTy);
+ Value *FunVoidPtr = WarningInserter.CreateBitCast(FunPtr, VoidPtrTy);
+ WarningInserter.CreateCall2(WarningFun, ParentNamePtr, FunVoidPtr);
+}
diff --git a/contrib/llvm/lib/CodeGen/GCMetadata.cpp b/contrib/llvm/lib/CodeGen/GCMetadata.cpp
index c3e4f3e..6101c67 100644
--- a/contrib/llvm/lib/CodeGen/GCMetadata.cpp
+++ b/contrib/llvm/lib/CodeGen/GCMetadata.cpp
@@ -71,9 +71,8 @@ GCStrategy *GCModuleInfo::getOrCreateStrategy(const Module *M,
E = GCRegistry::end(); I != E; ++I) {
if (Name == I->getName()) {
std::unique_ptr<GCStrategy> S = I->instantiate();
- S->M = M;
S->Name = Name;
- StrategyMap.GetOrCreateValue(Name).setValue(S.get());
+ StrategyMap[Name] = S.get();
StrategyList.push_back(std::move(S));
return StrategyList.back().get();
}
@@ -92,12 +91,14 @@ GCFunctionInfo &GCModuleInfo::getFunctionInfo(const Function &F) {
return *I->second;
GCStrategy *S = getOrCreateStrategy(F.getParent(), F.getGC());
- GCFunctionInfo *GFI = S->insertFunctionInfo(F);
+ Functions.push_back(make_unique<GCFunctionInfo>(F, *S));
+ GCFunctionInfo *GFI = Functions.back().get();
FInfoMap[&F] = GFI;
return *GFI;
}
void GCModuleInfo::clear() {
+ Functions.clear();
FInfoMap.clear();
StrategyMap.clear();
StrategyList.clear();
diff --git a/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp b/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp
index f80e9ce..fdff4a7 100644
--- a/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp
@@ -17,11 +17,3 @@ using namespace llvm;
GCMetadataPrinter::GCMetadataPrinter() { }
GCMetadataPrinter::~GCMetadataPrinter() { }
-
-void GCMetadataPrinter::beginAssembly(AsmPrinter &AP) {
- // Default is no action.
-}
-
-void GCMetadataPrinter::finishAssembly(AsmPrinter &AP) {
- // Default is no action.
-}
diff --git a/contrib/llvm/lib/CodeGen/GCStrategy.cpp b/contrib/llvm/lib/CodeGen/GCStrategy.cpp
index 1fdff6b..05c36fc 100644
--- a/contrib/llvm/lib/CodeGen/GCStrategy.cpp
+++ b/contrib/llvm/lib/CodeGen/GCStrategy.cpp
@@ -31,6 +31,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -92,6 +93,7 @@ namespace {
// -----------------------------------------------------------------------------
GCStrategy::GCStrategy() :
+ UseStatepoints(false),
NeededSafePoints(0),
CustomReadBarriers(false),
CustomWriteBarriers(false),
@@ -101,25 +103,6 @@ GCStrategy::GCStrategy() :
UsesMetadata(false)
{}
-bool GCStrategy::initializeCustomLowering(Module &M) { return false; }
-
-bool GCStrategy::performCustomLowering(Function &F) {
- dbgs() << "gc " << getName() << " must override performCustomLowering.\n";
- llvm_unreachable("must override performCustomLowering");
-}
-
-
-bool GCStrategy::findCustomSafePoints(GCFunctionInfo& FI, MachineFunction &F) {
- dbgs() << "gc " << getName() << " must override findCustomSafePoints.\n";
- llvm_unreachable(nullptr);
-}
-
-
-GCFunctionInfo *GCStrategy::insertFunctionInfo(const Function &F) {
- Functions.push_back(make_unique<GCFunctionInfo>(F, *this));
- return Functions.back().get();
-}
-
// -----------------------------------------------------------------------------
INITIALIZE_PASS_BEGIN(LowerIntrinsics, "gc-lowering", "GC Lowering",
@@ -377,7 +360,7 @@ void GCMachineCodeAnalysis::FindSafePoints(MachineFunction &MF) {
}
void GCMachineCodeAnalysis::FindStackOffsets(MachineFunction &MF) {
- const TargetFrameLowering *TFI = TM->getFrameLowering();
+ const TargetFrameLowering *TFI = TM->getSubtargetImpl()->getFrameLowering();
assert(TFI && "TargetRegisterInfo not available!");
for (GCFunctionInfo::roots_iterator RI = FI->roots_begin();
@@ -403,7 +386,7 @@ bool GCMachineCodeAnalysis::runOnMachineFunction(MachineFunction &MF) {
TM = &MF.getTarget();
MMI = &getAnalysis<MachineModuleInfo>();
- TII = TM->getInstrInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
// Find the size of the stack frame.
FI->setFrameSize(MF.getFrameInfo()->getStackSize());
diff --git a/contrib/llvm/lib/CodeGen/GlobalMerge.cpp b/contrib/llvm/lib/CodeGen/GlobalMerge.cpp
index 5572a06..8257567 100644
--- a/contrib/llvm/lib/CodeGen/GlobalMerge.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalMerge.cpp
@@ -54,6 +54,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -64,10 +65,10 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
-#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "global-merge"
@@ -142,7 +143,7 @@ INITIALIZE_TM_PASS(GlobalMerge, "global-merge", "Merge global variables",
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Module &M, bool isConst, unsigned AddrSpace) const {
- const TargetLowering *TLI = TM->getTargetLowering();
+ const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
const DataLayout *DL = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
@@ -281,7 +282,7 @@ bool GlobalMerge::doInitialization(Module &M) {
DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
BSSGlobals;
- const TargetLowering *TLI = TM->getTargetLowering();
+ const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
const DataLayout *DL = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
diff --git a/contrib/llvm/lib/CodeGen/IfConversion.cpp b/contrib/llvm/lib/CodeGen/IfConversion.cpp
index 1502d5f..e84d25d9 100644
--- a/contrib/llvm/lib/CodeGen/IfConversion.cpp
+++ b/contrib/llvm/lib/CodeGen/IfConversion.cpp
@@ -17,6 +17,7 @@
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -30,7 +31,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
@@ -161,6 +161,7 @@ namespace {
const TargetLoweringBase *TLI;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
+ const MachineBlockFrequencyInfo *MBFI;
const MachineBranchProbabilityInfo *MBPI;
MachineRegisterInfo *MRI;
@@ -177,6 +178,7 @@ namespace {
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineBranchProbabilityInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -269,15 +271,16 @@ INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
- TLI = MF.getTarget().getTargetLowering();
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TLI = MF.getSubtarget().getTargetLowering();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MRI = &MF.getRegInfo();
const TargetSubtargetInfo &ST =
MF.getTarget().getSubtarget<TargetSubtargetInfo>();
- SchedModel.init(*ST.getSchedModel(), &ST, TII);
+ SchedModel.init(ST.getSchedModel(), &ST, TII);
if (!TII) return false;
@@ -286,9 +289,8 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
bool BFChange = false;
if (!PreRegAlloc) {
// Tail merge tend to expose more if-conversion opportunities.
- BranchFolder BF(true, false);
- BFChange = BF.OptimizeFunction(MF, TII,
- MF.getTarget().getRegisterInfo(),
+ BranchFolder BF(true, false, *MBFI, *MBPI);
+ BFChange = BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
@@ -420,9 +422,8 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
BBAnalysis.clear();
if (MadeChange && IfCvtBranchFold) {
- BranchFolder BF(false, false);
- BF.OptimizeFunction(MF, TII,
- MF.getTarget().getRegisterInfo(),
+ BranchFolder BF(false, false, *MBFI, *MBPI);
+ BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
@@ -940,9 +941,8 @@ static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
/// to determine if it can be if-converted. If predecessor is already enqueued,
/// dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
- for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
- E = BB->pred_end(); PI != E; ++PI) {
- BBInfo &PBBI = BBAnalysis[(*PI)->getNumber()];
+ for (const auto &Predecessor : BB->predecessors()) {
+ BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
if (PBBI.IsDone || PBBI.BB == BB)
continue;
PBBI.IsAnalyzed = false;
@@ -1184,6 +1184,7 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
uint64_t CvtNext = 0, CvtFalse = 0, BBNext = 0, BBCvt = 0, SumWeight = 0;
uint32_t WeightScale = 0;
+
if (HasEarlyExit) {
// Get weights before modifying CvtBBI->BB and BBI.BB.
CvtNext = MBPI->getEdgeWeight(CvtBBI->BB, NextBBI->BB);
@@ -1192,6 +1193,7 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
BBCvt = MBPI->getEdgeWeight(BBI.BB, CvtBBI->BB);
SumWeight = MBPI->getSumForBlock(CvtBBI->BB, WeightScale);
}
+
if (CvtBBI->BB->pred_size() > 1) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
diff --git a/contrib/llvm/lib/CodeGen/InlineSpiller.cpp b/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
index f3c8d3d..df889f7 100644
--- a/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
+++ b/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
@@ -34,7 +34,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
using namespace llvm;
@@ -139,21 +138,16 @@ private:
~InlineSpiller() {}
public:
- InlineSpiller(MachineFunctionPass &pass,
- MachineFunction &mf,
- VirtRegMap &vrm)
- : MF(mf),
- LIS(pass.getAnalysis<LiveIntervals>()),
- LSS(pass.getAnalysis<LiveStacks>()),
- AA(&pass.getAnalysis<AliasAnalysis>()),
- MDT(pass.getAnalysis<MachineDominatorTree>()),
- Loops(pass.getAnalysis<MachineLoopInfo>()),
- VRM(vrm),
- MFI(*mf.getFrameInfo()),
- MRI(mf.getRegInfo()),
- TII(*mf.getTarget().getInstrInfo()),
- TRI(*mf.getTarget().getRegisterInfo()),
- MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
+ InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
+ : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
+ LSS(pass.getAnalysis<LiveStacks>()),
+ AA(&pass.getAnalysis<AliasAnalysis>()),
+ MDT(pass.getAnalysis<MachineDominatorTree>()),
+ Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
+ MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
+ TII(*mf.getSubtarget().getInstrInfo()),
+ TRI(*mf.getSubtarget().getRegisterInfo()),
+ MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
void spill(LiveRangeEdit &) override;
@@ -190,11 +184,16 @@ private:
}
namespace llvm {
+
+Spiller::~Spiller() { }
+void Spiller::anchor() { }
+
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm) {
return new InlineSpiller(pass, mf, vrm);
}
+
}
//===----------------------------------------------------------------------===//
@@ -509,6 +508,7 @@ MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
WorkList.push_back(std::make_pair(UseReg, UseVNI));
+ LiveInterval &OrigLI = LIS.getInterval(Original);
do {
unsigned Reg;
VNInfo *VNI;
@@ -522,8 +522,11 @@ MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
// Trace through PHI-defs created by live range splitting.
if (VNI->isPHIDef()) {
- // Stop at original PHIs. We don't know the value at the predecessors.
- if (VNI->def == OrigVNI->def) {
+ // Stop at original PHIs. We don't know the value at the
+ // predecessors. Look up the VNInfo for the current definition
+ // in OrigLI, to properly determine whether or not this phi was
+ // added by splitting.
+ if (VNI->def == OrigLI.getVNInfoAt(VNI->def)->def) {
DEBUG(dbgs() << "orig phi value\n");
SVI->second.DefByOrigPHI = true;
SVI->second.AllDefsAreReloads = false;
@@ -543,7 +546,6 @@ MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
// Separate all values dominated by OrigVNI into PHIs and non-PHIs.
SmallVector<VNInfo*, 8> PHIs, NonPHIs;
LiveInterval &LI = LIS.getInterval(Reg);
- LiveInterval &OrigLI = LIS.getInterval(Original);
for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
VI != VE; ++VI) {
@@ -824,7 +826,7 @@ void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
WorkList.push_back(std::make_pair(LI, VNI));
do {
std::tie(LI, VNI) = WorkList.pop_back_val();
- if (!UsedValues.insert(VNI))
+ if (!UsedValues.insert(VNI).second)
continue;
if (VNI->isPHIDef()) {
@@ -853,6 +855,15 @@ void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
MachineBasicBlock::iterator MI) {
+
+ // Analyze instruction
+ SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
+ MIBundleOperands::VirtRegInfo RI =
+ MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
+
+ if (!RI.Reads)
+ return false;
+
SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
@@ -883,9 +894,6 @@ bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
// If the instruction also writes VirtReg.reg, it had better not require the
// same register for uses and defs.
- SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
- MIBundleOperands::VirtRegInfo RI =
- MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
if (RI.Tied) {
markValueUsed(&VirtReg, ParentVNI);
DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
@@ -939,10 +947,15 @@ void InlineSpiller::reMaterializeAll() {
for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
unsigned Reg = RegsToSpill[i];
LiveInterval &LI = LIS.getInterval(Reg);
- for (MachineRegisterInfo::use_bundle_nodbg_iterator
- RI = MRI.use_bundle_nodbg_begin(Reg), E = MRI.use_bundle_nodbg_end();
- RI != E; ) {
- MachineInstr *MI = &*(RI++);
+ for (MachineRegisterInfo::reg_bundle_iterator
+ RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
+ RegI != E; ) {
+ MachineInstr *MI = &*(RegI++);
+
+ // Debug values are not allowed to affect codegen.
+ if (MI->isDebugValue())
+ continue;
+
anyRemat |= reMaterializeFor(LI, MI);
}
}
@@ -1078,7 +1091,8 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
bool WasCopy = MI->isCopy();
unsigned ImpReg = 0;
- bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT ||
+ bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
+ MI->getOpcode() == TargetOpcode::PATCHPOINT ||
MI->getOpcode() == TargetOpcode::STACKMAP);
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
@@ -1218,12 +1232,16 @@ void InlineSpiller::spillAroundUses(unsigned Reg) {
// Modify DBG_VALUE now that the value is in a spill slot.
bool IsIndirect = MI->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
- const MDNode *MDPtr = MI->getOperand(2).getMetadata();
+ const MDNode *Var = MI->getDebugVariable();
+ const MDNode *Expr = MI->getDebugExpression();
DebugLoc DL = MI->getDebugLoc();
DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
MachineBasicBlock *MBB = MI->getParent();
BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
- .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
+ .addFrameIndex(StackSlot)
+ .addImm(Offset)
+ .addMetadata(Var)
+ .addMetadata(Expr);
continue;
}
@@ -1363,7 +1381,7 @@ void InlineSpiller::spill(LiveRangeEdit &edit) {
StackInt = nullptr;
DEBUG(dbgs() << "Inline spilling "
- << MRI.getRegClass(edit.getReg())->getName()
+ << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
<< ':' << edit.getParent()
<< "\nFrom original " << PrintReg(Original) << '\n');
assert(edit.getParent().isSpillable() &&
diff --git a/contrib/llvm/lib/CodeGen/InterferenceCache.h b/contrib/llvm/lib/CodeGen/InterferenceCache.h
index 91a1da9..1791afb 100644
--- a/contrib/llvm/lib/CodeGen/InterferenceCache.h
+++ b/contrib/llvm/lib/CodeGen/InterferenceCache.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_INTERFERENCECACHE
-#define LLVM_CODEGEN_INTERFERENCECACHE
+#ifndef LLVM_LIB_CODEGEN_INTERFERENCECACHE_H
+#define LLVM_LIB_CODEGEN_INTERFERENCECACHE_H
#include "llvm/CodeGen/LiveIntervalUnion.h"
diff --git a/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp b/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp
index a8b8600..2c95e9e 100644
--- a/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp
@@ -459,9 +459,10 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
CI->replaceAllUsesWith(CI->getOperand(0));
break;
+ case Intrinsic::assume:
case Intrinsic::var_annotation:
- break; // Strip out annotate intrinsic
-
+ break; // Strip out these intrinsics
+
case Intrinsic::memcpy: {
Type *IntPtr = DL.getIntPtrType(Context);
Value *Size = Builder.CreateIntCast(CI->getArgOperand(2), IntPtr,
@@ -527,6 +528,34 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
ReplaceFPIntrinsicWithCall(CI, "powf", "pow", "powl");
break;
}
+ case Intrinsic::sin: {
+ ReplaceFPIntrinsicWithCall(CI, "sinf", "sin", "sinl");
+ break;
+ }
+ case Intrinsic::cos: {
+ ReplaceFPIntrinsicWithCall(CI, "cosf", "cos", "cosl");
+ break;
+ }
+ case Intrinsic::floor: {
+ ReplaceFPIntrinsicWithCall(CI, "floorf", "floor", "floorl");
+ break;
+ }
+ case Intrinsic::ceil: {
+ ReplaceFPIntrinsicWithCall(CI, "ceilf", "ceil", "ceill");
+ break;
+ }
+ case Intrinsic::trunc: {
+ ReplaceFPIntrinsicWithCall(CI, "truncf", "trunc", "truncl");
+ break;
+ }
+ case Intrinsic::round: {
+ ReplaceFPIntrinsicWithCall(CI, "roundf", "round", "roundl");
+ break;
+ }
+ case Intrinsic::copysign: {
+ ReplaceFPIntrinsicWithCall(CI, "copysignf", "copysign", "copysignl");
+ break;
+ }
case Intrinsic::flt_rounds:
// Lower to "round to the nearest"
if (!CI->getType()->isVoidTy())
diff --git a/contrib/llvm/lib/CodeGen/JITCodeEmitter.cpp b/contrib/llvm/lib/CodeGen/JITCodeEmitter.cpp
deleted file mode 100644
index 96a5389..0000000
--- a/contrib/llvm/lib/CodeGen/JITCodeEmitter.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-//===-- llvm/CodeGen/JITCodeEmitter.cpp - Code emission --------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/JITCodeEmitter.h"
-
-using namespace llvm;
-
-void JITCodeEmitter::anchor() { }
diff --git a/contrib/llvm/lib/CodeGen/JumpInstrTables.cpp b/contrib/llvm/lib/CodeGen/JumpInstrTables.cpp
index 750f71f..75fa261 100644
--- a/contrib/llvm/lib/CodeGen/JumpInstrTables.cpp
+++ b/contrib/llvm/lib/CodeGen/JumpInstrTables.cpp
@@ -13,7 +13,6 @@
#define DEBUG_TYPE "jt"
#include "llvm/CodeGen/JumpInstrTables.h"
-
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/JumpInstrTableInfo.h"
#include "llvm/CodeGen/Passes.h"
@@ -30,7 +29,6 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-
#include <vector>
using namespace llvm;
@@ -117,8 +115,8 @@ bool replaceGlobalValueIndirectUse(GlobalValue *GV, Value *V, Use *U) {
if (!isa<GlobalAlias>(C))
C->replaceUsesOfWithOnConstant(GV, V, U);
} else {
- assert(false && "The Use of a Function symbol is neither an instruction nor"
- " a constant");
+ llvm_unreachable("The Use of a Function symbol is neither an instruction "
+ "nor a constant");
}
return true;
@@ -163,7 +161,7 @@ void JumpInstrTables::getAnalysisUsage(AnalysisUsage &AU) const {
Function *JumpInstrTables::insertEntry(Module &M, Function *Target) {
FunctionType *OrigFunTy = Target->getFunctionType();
- FunctionType *FunTy = transformType(OrigFunTy);
+ FunctionType *FunTy = transformType(JTType, OrigFunTy);
JumpMap::iterator it = Metadata.find(FunTy);
if (Metadata.end() == it) {
@@ -191,11 +189,12 @@ Function *JumpInstrTables::insertEntry(Module &M, Function *Target) {
}
bool JumpInstrTables::hasTable(FunctionType *FunTy) {
- FunctionType *TransTy = transformType(FunTy);
+ FunctionType *TransTy = transformType(JTType, FunTy);
return Metadata.end() != Metadata.find(TransTy);
}
-FunctionType *JumpInstrTables::transformType(FunctionType *FunTy) {
+FunctionType *JumpInstrTables::transformType(JumpTable::JumpTableType JTT,
+ FunctionType *FunTy) {
// Returning nullptr forces all types into the same table, since all types map
// to the same type
Type *VoidPtrTy = Type::getInt8PtrTy(FunTy->getContext());
@@ -211,7 +210,7 @@ FunctionType *JumpInstrTables::transformType(FunctionType *FunTy) {
Type *Int32Ty = Type::getInt32Ty(FunTy->getContext());
FunctionType *VoidFnTy = FunctionType::get(
Type::getVoidTy(FunTy->getContext()), EmptyParams, false);
- switch (JTType) {
+ switch (JTT) {
case JumpTable::Single:
return FunctionType::get(RetTy, EmptyParams, false);
@@ -253,10 +252,10 @@ FunctionType *JumpInstrTables::transformType(FunctionType *FunTy) {
bool JumpInstrTables::runOnModule(Module &M) {
JITI = &getAnalysis<JumpInstrTableInfo>();
- // Get the set of jumptable-annotated functions.
+ // Get the set of jumptable-annotated functions that have their address taken.
DenseMap<Function *, Function *> Functions;
for (Function &F : M) {
- if (F.hasFnAttribute(Attribute::JumpTable)) {
+ if (F.hasFnAttribute(Attribute::JumpTable) && F.hasAddressTaken()) {
assert(F.hasUnnamedAddr() &&
"Attribute 'jumptable' requires 'unnamed_addr'");
Functions[&F] = nullptr;
diff --git a/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp b/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp
index df96b94..9018314 100644
--- a/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp
+++ b/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp
@@ -12,9 +12,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetMachine.h"
-
+#include "llvm/Analysis/JumpInstrTableInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/ForwardControlFlowIntegrity.h"
#include "llvm/CodeGen/JumpInstrTables.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
@@ -48,8 +49,8 @@ EnableFastISelOption("fast-isel", cl::Hidden,
cl::desc("Enable the \"fast\" instruction selector"));
void LLVMTargetMachine::initAsmInfo() {
- MCAsmInfo *TmpAsmInfo = TheTarget.createMCAsmInfo(*getRegisterInfo(),
- TargetTriple);
+ MCAsmInfo *TmpAsmInfo = TheTarget.createMCAsmInfo(
+ *getSubtargetImpl()->getRegisterInfo(), getTargetTriple());
// TargetSelect.h moved to a different directory between LLVM 2.9 and 3.0,
// and if the old one gets included then MCAsmInfo will be NULL and
// we'll crash later.
@@ -110,9 +111,9 @@ static MCContext *addPassesToGenerateCode(LLVMTargetMachine *TM,
// Install a MachineModuleInfo class, which is an immutable pass that holds
// all the per-module stuff we're generating, including MCContext.
- MachineModuleInfo *MMI =
- new MachineModuleInfo(*TM->getMCAsmInfo(), *TM->getRegisterInfo(),
- &TM->getTargetLowering()->getObjFileLowering());
+ MachineModuleInfo *MMI = new MachineModuleInfo(
+ *TM->getMCAsmInfo(), *TM->getSubtargetImpl()->getRegisterInfo(),
+ &TM->getSubtargetImpl()->getTargetLowering()->getObjFileLowering());
PM.add(MMI);
// Set up a MachineFunction for the rest of CodeGen to work on.
@@ -143,8 +144,13 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
AnalysisID StopAfter) {
// Passes to handle jumptable function annotations. These can't be handled at
// JIT time, so we don't add them directly to addPassesToGenerateCode.
- PM.add(createJumpInstrTableInfoPass());
+ PM.add(createJumpInstrTableInfoPass(
+ getSubtargetImpl()->getInstrInfo()->getJumpInstrTableEntryBound()));
PM.add(createJumpInstrTablesPass(Options.JTType));
+ if (Options.FCFI)
+ PM.add(createForwardControlFlowIntegrityPass(
+ Options.JTType, Options.CFIType, Options.CFIEnforcing,
+ Options.getCFIFuncName()));
// Add common CodeGen passes.
MCContext *Context = addPassesToGenerateCode(this, PM, DisableVerify,
@@ -165,10 +171,10 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
if (Options.MCOptions.MCSaveTempLabels)
Context->setAllowTemporaryLabels(false);
- const MCAsmInfo &MAI = *getMCAsmInfo();
- const MCRegisterInfo &MRI = *getRegisterInfo();
- const MCInstrInfo &MII = *getInstrInfo();
const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
+ const MCAsmInfo &MAI = *getMCAsmInfo();
+ const MCRegisterInfo &MRI = *getSubtargetImpl()->getRegisterInfo();
+ const MCInstrInfo &MII = *getSubtargetImpl()->getInstrInfo();
std::unique_ptr<MCStreamer> AsmStreamer;
switch (FileType) {
@@ -201,9 +207,10 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
if (!MCE || !MAB)
return true;
- AsmStreamer.reset(getTarget().createMCObjectStreamer(
- getTargetTriple(), *Context, *MAB, Out, MCE, STI,
- Options.MCOptions.MCRelaxAll, Options.MCOptions.MCNoExecStack));
+ AsmStreamer.reset(
+ getTarget()
+ .createMCObjectStreamer(getTargetTriple(), *Context, *MAB, Out, MCE,
+ STI, Options.MCOptions.MCRelaxAll));
break;
}
case CGFT_Null:
@@ -226,26 +233,6 @@ bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
return false;
}
-/// addPassesToEmitMachineCode - Add passes to the specified pass manager to
-/// get machine code emitted. This uses a JITCodeEmitter object to handle
-/// actually outputting the machine code and resolving things like the address
-/// of functions. This method should return true if machine code emission is
-/// not supported.
-///
-bool LLVMTargetMachine::addPassesToEmitMachineCode(PassManagerBase &PM,
- JITCodeEmitter &JCE,
- bool DisableVerify) {
- // Add common CodeGen passes.
- MCContext *Context = addPassesToGenerateCode(this, PM, DisableVerify, nullptr,
- nullptr);
- if (!Context)
- return true;
-
- addCodeEmitter(PM, JCE);
-
- return false; // success!
-}
-
/// addPassesToEmitMC - Add passes to the specified pass manager to get
/// machine code emitted with the MCJIT. This method returns true if machine
/// code is not supported. It fills the MCContext Ctx pointer which can be
@@ -265,19 +252,20 @@ bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM,
// Create the code emitter for the target if it exists. If not, .o file
// emission fails.
- const MCRegisterInfo &MRI = *getRegisterInfo();
+ const MCRegisterInfo &MRI = *getSubtargetImpl()->getRegisterInfo();
const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
- MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(*getInstrInfo(), MRI,
- STI, *Ctx);
+ MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(
+ *getSubtargetImpl()->getInstrInfo(), MRI, STI, *Ctx);
MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(),
TargetCPU);
if (!MCE || !MAB)
return true;
std::unique_ptr<MCStreamer> AsmStreamer;
- AsmStreamer.reset(getTarget().createMCObjectStreamer(
- getTargetTriple(), *Ctx, *MAB, Out, MCE, STI,
- Options.MCOptions.MCRelaxAll, Options.MCOptions.MCNoExecStack));
+ AsmStreamer.reset(getTarget()
+ .createMCObjectStreamer(getTargetTriple(), *Ctx, *MAB,
+ Out, MCE, STI,
+ Options.MCOptions.MCRelaxAll));
// Create the AsmPrinter, which takes ownership of AsmStreamer if successful.
FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer);
diff --git a/contrib/llvm/lib/CodeGen/LexicalScopes.cpp b/contrib/llvm/lib/CodeGen/LexicalScopes.cpp
index d12c234..b621e3b 100644
--- a/contrib/llvm/lib/CodeGen/LexicalScopes.cpp
+++ b/contrib/llvm/lib/CodeGen/LexicalScopes.cpp
@@ -137,6 +137,8 @@ LexicalScope *LexicalScopes::findLexicalScope(DebugLoc DL) {
/// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If
/// not available then create new lexical scope.
LexicalScope *LexicalScopes::getOrCreateLexicalScope(DebugLoc DL) {
+ if (DL.isUnknown())
+ return nullptr;
MDNode *Scope = nullptr;
MDNode *InlinedAt = nullptr;
DL.getScopeAndInlinedAt(Scope, InlinedAt, MF->getFunction()->getContext());
@@ -172,9 +174,12 @@ LexicalScope *LexicalScopes::getOrCreateRegularScope(MDNode *Scope) {
std::make_tuple(Parent, DIDescriptor(Scope),
nullptr, false)).first;
- if (!Parent && DIDescriptor(Scope).isSubprogram() &&
- DISubprogram(Scope).describes(MF->getFunction()))
+ if (!Parent) {
+ assert(DIDescriptor(Scope).isSubprogram());
+ assert(DISubprogram(Scope).describes(MF->getFunction()));
+ assert(!CurrentFnLexicalScope);
CurrentFnLexicalScope = &I->second;
+ }
return &I->second;
}
@@ -285,7 +290,7 @@ void LexicalScopes::assignInstructionRanges(
/// have machine instructions that belong to lexical scope identified by
/// DebugLoc.
void LexicalScopes::getMachineBasicBlocks(
- DebugLoc DL, SmallPtrSet<const MachineBasicBlock *, 4> &MBBs) {
+ DebugLoc DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) {
MBBs.clear();
LexicalScope *Scope = getOrCreateLexicalScope(DL);
if (!Scope)
diff --git a/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp b/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp
index 388f58f..dc936a3 100644
--- a/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp
@@ -39,7 +39,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
-
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <memory>
using namespace llvm;
@@ -109,7 +109,8 @@ public:
namespace {
class LDVImpl;
class UserValue {
- const MDNode *variable; ///< The debug info variable we are part of.
+ const MDNode *Variable; ///< The debug info variable we are part of.
+ const MDNode *Expression; ///< Any complex address expression.
unsigned offset; ///< Byte offset into variable.
bool IsIndirect; ///< true if this is a register-indirect+offset value.
DebugLoc dl; ///< The debug location for the variable. This is
@@ -139,11 +140,10 @@ class UserValue {
public:
/// UserValue - Create a new UserValue.
- UserValue(const MDNode *var, unsigned o, bool i, DebugLoc L,
- LocMap::Allocator &alloc)
- : variable(var), offset(o), IsIndirect(i), dl(L), leader(this),
- next(nullptr), locInts(alloc)
- {}
+ UserValue(const MDNode *var, const MDNode *expr, unsigned o, bool i,
+ DebugLoc L, LocMap::Allocator &alloc)
+ : Variable(var), Expression(expr), offset(o), IsIndirect(i), dl(L),
+ leader(this), next(nullptr), locInts(alloc) {}
/// getLeader - Get the leader of this value's equivalence class.
UserValue *getLeader() {
@@ -157,8 +157,10 @@ public:
UserValue *getNext() const { return next; }
/// match - Does this UserValue match the parameters?
- bool match(const MDNode *Var, unsigned Offset, bool indirect) const {
- return Var == variable && Offset == offset && indirect == IsIndirect;
+ bool match(const MDNode *Var, const MDNode *Expr, unsigned Offset,
+ bool indirect) const {
+ return Var == Variable && Expr == Expression && Offset == offset &&
+ indirect == IsIndirect;
}
/// merge - Merge equivalence classes.
@@ -267,7 +269,7 @@ public:
LiveIntervals &LIS, const TargetInstrInfo &TRI);
/// findDebugLoc - Return DebugLoc used for this DBG_VALUE instruction. A
- /// variable may have more than one corresponding DBG_VALUE instructions.
+ /// variable may have more than one corresponding DBG_VALUE instructions.
/// Only first one needs DebugLoc to identify variable's lexical scope
/// in source file.
DebugLoc findDebugLoc();
@@ -306,8 +308,8 @@ class LDVImpl {
UVMap userVarMap;
/// getUserValue - Find or create a UserValue.
- UserValue *getUserValue(const MDNode *Var, unsigned Offset,
- bool IsIndirect, DebugLoc DL);
+ UserValue *getUserValue(const MDNode *Var, const MDNode *Expr,
+ unsigned Offset, bool IsIndirect, DebugLoc DL);
/// lookupVirtReg - Find the EC leader for VirtReg or null.
UserValue *lookupVirtReg(unsigned VirtReg);
@@ -329,12 +331,13 @@ class LDVImpl {
void computeIntervals();
public:
- LDVImpl(LiveDebugVariables *ps) : pass(*ps), EmitDone(false),
- ModifiedMF(false) {}
+ LDVImpl(LiveDebugVariables *ps)
+ : pass(*ps), MF(nullptr), EmitDone(false), ModifiedMF(false) {}
bool runOnMachineFunction(MachineFunction &mf);
/// clear - Release all memory.
void clear() {
+ MF = nullptr;
userValues.clear();
virtRegToEqClass.clear();
userVarMap.clear();
@@ -343,6 +346,7 @@ public:
"Dbg values are not emitted in LDV");
EmitDone = false;
ModifiedMF = false;
+ LS.reset();
}
/// mapVirtReg - Map virtual register to an equivalence class.
@@ -359,8 +363,8 @@ public:
} // namespace
void UserValue::print(raw_ostream &OS, const TargetMachine *TM) {
- DIVariable DV(variable);
- OS << "!\"";
+ DIVariable DV(Variable);
+ OS << "!\"";
DV.printExtendedName(OS);
OS << "\"\t";
if (offset)
@@ -420,19 +424,20 @@ void UserValue::mapVirtRegs(LDVImpl *LDV) {
LDV->mapVirtReg(locations[i].getReg(), this);
}
-UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset,
- bool IsIndirect, DebugLoc DL) {
+UserValue *LDVImpl::getUserValue(const MDNode *Var, const MDNode *Expr,
+ unsigned Offset, bool IsIndirect,
+ DebugLoc DL) {
UserValue *&Leader = userVarMap[Var];
if (Leader) {
UserValue *UV = Leader->getLeader();
Leader = UV;
for (; UV; UV = UV->getNext())
- if (UV->match(Var, Offset, IsIndirect))
+ if (UV->match(Var, Expr, Offset, IsIndirect))
return UV;
}
userValues.push_back(
- make_unique<UserValue>(Var, Offset, IsIndirect, DL, allocator));
+ make_unique<UserValue>(Var, Expr, Offset, IsIndirect, DL, allocator));
UserValue *UV = userValues.back().get();
Leader = UserValue::merge(Leader, UV);
return UV;
@@ -452,7 +457,7 @@ UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) {
// DBG_VALUE loc, offset, variable
- if (MI->getNumOperands() != 3 ||
+ if (MI->getNumOperands() != 4 ||
!(MI->getOperand(1).isReg() || MI->getOperand(1).isImm()) ||
!MI->getOperand(2).isMetadata()) {
DEBUG(dbgs() << "Can't handle " << *MI);
@@ -462,9 +467,11 @@ bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) {
// Get or create the UserValue for (variable,offset).
bool IsIndirect = MI->isIndirectDebugValue();
unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
- const MDNode *Var = MI->getOperand(2).getMetadata();
+ const MDNode *Var = MI->getDebugVariable();
+ const MDNode *Expr = MI->getDebugExpression();
//here.
- UserValue *UV = getUserValue(Var, Offset, IsIndirect, MI->getDebugLoc());
+ UserValue *UV =
+ getUserValue(Var, Expr, Offset, IsIndirect, MI->getDebugLoc());
UV->addDef(Idx, MI->getOperand(0));
return true;
}
@@ -693,11 +700,11 @@ void LDVImpl::computeIntervals() {
}
bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
+ clear();
MF = &mf;
LIS = &pass.getAnalysis<LiveIntervals>();
MDT = &pass.getAnalysis<MachineDominatorTree>();
- TRI = mf.getTarget().getRegisterInfo();
- clear();
+ TRI = mf.getSubtarget().getRegisterInfo();
LS.initialize(mf);
DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
<< mf.getName() << " **********\n");
@@ -709,9 +716,25 @@ bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
return Changed;
}
+static void removeDebugValues(MachineFunction &mf) {
+ for (MachineBasicBlock &MBB : mf) {
+ for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
+ if (!MBBI->isDebugValue()) {
+ ++MBBI;
+ continue;
+ }
+ MBBI = MBB.erase(MBBI);
+ }
+ }
+}
+
bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
if (!EnableLDV)
return false;
+ if (!FunctionDIs.count(mf.getFunction())) {
+ removeDebugValues(mf);
+ return false;
+ }
if (!pImpl)
pImpl = new LDVImpl(this);
return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
@@ -933,10 +956,13 @@ void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
if (Loc.isReg())
BuildMI(*MBB, I, findDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
- IsIndirect, Loc.getReg(), offset, variable);
+ IsIndirect, Loc.getReg(), offset, Variable, Expression);
else
BuildMI(*MBB, I, findDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
- .addOperand(Loc).addImm(offset).addMetadata(variable);
+ .addOperand(Loc)
+ .addImm(offset)
+ .addMetadata(Variable)
+ .addMetadata(Expression);
}
void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
@@ -974,7 +1000,9 @@ void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ if (!MF)
+ return;
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
DEBUG(userValues[i]->print(dbgs(), &MF->getTarget()));
userValues[i]->rewriteLocations(*VRM, *TRI);
@@ -988,6 +1016,10 @@ void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}
+bool LiveDebugVariables::doInitialization(Module &M) {
+ FunctionDIs = makeSubprogramMap(M);
+ return Pass::doInitialization(M);
+}
#ifndef NDEBUG
void LiveDebugVariables::dump() {
diff --git a/contrib/llvm/lib/CodeGen/LiveDebugVariables.h b/contrib/llvm/lib/CodeGen/LiveDebugVariables.h
index bb67435..9748329 100644
--- a/contrib/llvm/lib/CodeGen/LiveDebugVariables.h
+++ b/contrib/llvm/lib/CodeGen/LiveDebugVariables.h
@@ -18,11 +18,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_LIVEDEBUGVARIABLES_H
-#define LLVM_CODEGEN_LIVEDEBUGVARIABLES_H
+#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVARIABLES_H
+#define LLVM_LIB_CODEGEN_LIVEDEBUGVARIABLES_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/IR/DebugInfo.h"
namespace llvm {
@@ -32,6 +33,7 @@ class VirtRegMap;
class LiveDebugVariables : public MachineFunctionPass {
void *pImpl;
+ DenseMap<const Function*, DISubprogram> FunctionDIs;
public:
static char ID; // Pass identification, replacement for typeid
@@ -64,9 +66,10 @@ private:
bool runOnMachineFunction(MachineFunction &) override;
void releaseMemory() override;
void getAnalysisUsage(AnalysisUsage &) const override;
+ bool doInitialization(Module &) override;
};
} // namespace llvm
-#endif // LLVM_CODEGEN_LIVEDEBUGVARIABLES_H
+#endif
diff --git a/contrib/llvm/lib/CodeGen/LiveInterval.cpp b/contrib/llvm/lib/CodeGen/LiveInterval.cpp
index ce8ce96..9423edc 100644
--- a/contrib/llvm/lib/CodeGen/LiveInterval.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveInterval.cpp
@@ -26,6 +26,7 @@
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
@@ -185,6 +186,27 @@ bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
return I != begin() && (--I)->end > Start;
}
+bool LiveRange::covers(const LiveRange &Other) const {
+ if (empty())
+ return Other.empty();
+
+ const_iterator I = begin();
+ for (const Segment &O : Other.segments) {
+ I = advanceTo(I, O.start);
+ if (I == end() || I->start > O.start)
+ return false;
+
+ // Check adjacent live segments and see if we can get behind O.end.
+ while (I->end < O.end) {
+ const_iterator Last = I;
+ // Get next segment and abort if it was not adjacent.
+ ++I;
+ if (I == end() || Last->end != I->start)
+ return false;
+ }
+ }
+ return true;
+}
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
@@ -204,9 +226,9 @@ void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
void LiveRange::RenumberValues() {
SmallPtrSet<VNInfo*, 8> Seen;
valnos.clear();
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- VNInfo *VNI = I->valno;
- if (!Seen.insert(VNI))
+ for (const Segment &S : segments) {
+ VNInfo *VNI = S.valno;
+ if (!Seen.insert(VNI).second)
continue;
assert(!VNI->isUnused() && "Unused valno used by live segment");
VNI->id = (unsigned)valnos.size();
@@ -278,6 +300,12 @@ LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
return MergeTo;
}
+void LiveRange::append(const Segment S) {
+ // Check that the segment belongs to the back of the list.
+ assert(segments.empty() || segments.back().end <= S.start);
+ segments.push_back(S);
+}
+
LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
SlotIndex Start = S.start, End = S.end;
iterator it = std::upper_bound(From, end(), Start);
@@ -461,8 +489,8 @@ void LiveRange::join(LiveRange &Other,
// This can leave Other in an invalid state because we're not coalescing
// touching segments that now have identical values. That's OK since Other is
// not supposed to be valid after calling join();
- for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
- I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
+ for (Segment &S : Other.segments)
+ S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
// Update val# info. Renumber them and make sure they all belong to this
// LiveRange now. Also remove dead val#'s.
@@ -482,8 +510,8 @@ void LiveRange::join(LiveRange &Other,
// Okay, now insert the RHS live segments into the LHS.
LiveRangeUpdater Updater(this);
- for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
- Updater.add(*I);
+ for (Segment &S : Other.segments)
+ Updater.add(S);
}
/// Merge all of the segments in RHS into this live range as the specified
@@ -493,8 +521,8 @@ void LiveRange::join(LiveRange &Other,
void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
VNInfo *LHSValNo) {
LiveRangeUpdater Updater(this);
- for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
- Updater.add(I->start, I->end, LHSValNo);
+ for (const Segment &S : RHS.segments)
+ Updater.add(S.start, S.end, LHSValNo);
}
/// MergeValueInAsValue - Merge all of the live segments of a specific val#
@@ -506,9 +534,9 @@ void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
const VNInfo *RHSValNo,
VNInfo *LHSValNo) {
LiveRangeUpdater Updater(this);
- for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
- if (I->valno == RHSValNo)
- Updater.add(I->start, I->end, LHSValNo);
+ for (const Segment &S : RHS.segments)
+ if (S.valno == RHSValNo)
+ Updater.add(S.start, S.end, LHSValNo);
}
/// MergeValueNumberInto - This method is called when two value nubmers
@@ -570,10 +598,232 @@ VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
return V2;
}
+void LiveInterval::removeEmptySubRanges() {
+ SubRange **NextPtr = &SubRanges;
+ SubRange *I = *NextPtr;
+ while (I != nullptr) {
+ if (!I->empty()) {
+ NextPtr = &I->Next;
+ I = *NextPtr;
+ continue;
+ }
+ // Skip empty subranges until we find the first nonempty one.
+ do {
+ I = I->Next;
+ } while (I != nullptr && I->empty());
+ *NextPtr = I;
+ }
+}
+
+/// Helper function for constructMainRangeFromSubranges(): Search the CFG
+/// backwards until we find a place covered by a LiveRange segment that actually
+/// has a valno set.
+static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
+ const MachineBasicBlock *MBB,
+ SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
+ // We start the search at the end of MBB.
+ SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
+ // In our use case we can't live the area covered by the live segments without
+ // finding an actual VNI def.
+ LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
+ assert(I != LR.end());
+ LiveRange::Segment &S = *I;
+ if (S.valno != nullptr)
+ return S.valno;
+
+ VNInfo *VNI = nullptr;
+ // Continue at predecessors (we could even go to idom with domtree available).
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ // Avoid going in circles.
+ if (!Visited.insert(Pred).second)
+ continue;
+
+ VNI = searchForVNI(Indexes, LR, Pred, Visited);
+ if (VNI != nullptr) {
+ S.valno = VNI;
+ break;
+ }
+ }
+
+ return VNI;
+}
+
+static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
+ SmallPtrSet<const MachineBasicBlock*, 5> Visited;
+ for (LiveRange::Segment &S : LI.segments) {
+ if (S.valno != nullptr)
+ continue;
+ // This can only happen at the begin of a basic block.
+ assert(S.start.isBlock() && "valno should only be missing at block begin");
+
+ Visited.clear();
+ const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
+ if (VNI != nullptr) {
+ S.valno = VNI;
+ break;
+ }
+ }
+ assert(S.valno != nullptr && "could not determine valno");
+ }
+}
+
+void LiveInterval::constructMainRangeFromSubranges(
+ const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
+ // The basic observations on which this algorithm is based:
+ // - Each Def/ValNo in a subrange must have a corresponding def on the main
+ // range, but not further defs/valnos are necessary.
+ // - If any of the subranges is live at a point the main liverange has to be
+ // live too, conversily if no subrange is live the main range mustn't be
+ // live either.
+ // We do this by scannig through all the subranges simultaneously creating new
+ // segments in the main range as segments start/ends come up in the subranges.
+ assert(hasSubRanges() && "expected subranges to be present");
+ assert(segments.empty() && valnos.empty() && "expected empty main range");
+
+ // Collect subrange, iterator pairs for the walk and determine first and last
+ // SlotIndex involved.
+ SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
+ SlotIndex First;
+ SlotIndex Last;
+ for (const SubRange &SR : subranges()) {
+ if (SR.empty())
+ continue;
+ SRs.push_back(std::make_pair(&SR, SR.begin()));
+ if (!First.isValid() || SR.segments.front().start < First)
+ First = SR.segments.front().start;
+ if (!Last.isValid() || SR.segments.back().end > Last)
+ Last = SR.segments.back().end;
+ }
+
+ // Walk over all subranges simultaneously.
+ Segment CurrentSegment;
+ bool ConstructingSegment = false;
+ bool NeedVNIFixup = false;
+ unsigned ActiveMask = 0;
+ SlotIndex Pos = First;
+ while (true) {
+ SlotIndex NextPos = Last;
+ enum {
+ NOTHING,
+ BEGIN_SEGMENT,
+ END_SEGMENT,
+ } Event = NOTHING;
+ // Which subregister lanes are affected by the current event.
+ unsigned EventMask = 0;
+ // Whether a BEGIN_SEGMENT is also a valno definition point.
+ bool IsDef = false;
+ // Find the next begin or end of a subrange segment. Combine masks if we
+ // have multiple begins/ends at the same position. Ends take precedence over
+ // Begins.
+ for (auto &SRP : SRs) {
+ const SubRange &SR = *SRP.first;
+ const_iterator &I = SRP.second;
+ // Advance iterator of subrange to a segment involving Pos; the earlier
+ // segments are already merged at this point.
+ while (I != SR.end() &&
+ (I->end < Pos ||
+ (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
+ ++I;
+ if (I == SR.end())
+ continue;
+ if ((ActiveMask & SR.LaneMask) == 0 &&
+ Pos <= I->start && I->start <= NextPos) {
+ // Merge multiple begins at the same position.
+ if (I->start == NextPos && Event == BEGIN_SEGMENT) {
+ EventMask |= SR.LaneMask;
+ IsDef |= I->valno->def == I->start;
+ } else if (I->start < NextPos || Event != END_SEGMENT) {
+ Event = BEGIN_SEGMENT;
+ NextPos = I->start;
+ EventMask = SR.LaneMask;
+ IsDef = I->valno->def == I->start;
+ }
+ }
+ if ((ActiveMask & SR.LaneMask) != 0 &&
+ Pos <= I->end && I->end <= NextPos) {
+ // Merge multiple ends at the same position.
+ if (I->end == NextPos && Event == END_SEGMENT)
+ EventMask |= SR.LaneMask;
+ else {
+ Event = END_SEGMENT;
+ NextPos = I->end;
+ EventMask = SR.LaneMask;
+ }
+ }
+ }
+
+ // Advance scan position.
+ Pos = NextPos;
+ if (Event == BEGIN_SEGMENT) {
+ if (ConstructingSegment && IsDef) {
+ // Finish previous segment because we have to start a new one.
+ CurrentSegment.end = Pos;
+ append(CurrentSegment);
+ ConstructingSegment = false;
+ }
+
+ // Start a new segment if necessary.
+ if (!ConstructingSegment) {
+ // Determine value number for the segment.
+ VNInfo *VNI;
+ if (IsDef) {
+ VNI = getNextValue(Pos, VNIAllocator);
+ } else {
+ // We have to reuse an existing value number, if we are lucky
+ // then we already passed one of the predecessor blocks and determined
+ // its value number (with blocks in reverse postorder this would be
+ // always true but we have no such guarantee).
+ assert(Pos.isBlock());
+ const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
+ // See if any of the predecessor blocks has a lower number and a VNI
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
+ VNI = getVNInfoBefore(PredEnd);
+ if (VNI != nullptr)
+ break;
+ }
+ // Def will come later: We have to do an extra fixup pass.
+ if (VNI == nullptr)
+ NeedVNIFixup = true;
+ }
+
+ CurrentSegment.start = Pos;
+ CurrentSegment.valno = VNI;
+ ConstructingSegment = true;
+ }
+ ActiveMask |= EventMask;
+ } else if (Event == END_SEGMENT) {
+ assert(ConstructingSegment);
+ // Finish segment if no lane is active anymore.
+ ActiveMask &= ~EventMask;
+ if (ActiveMask == 0) {
+ CurrentSegment.end = Pos;
+ append(CurrentSegment);
+ ConstructingSegment = false;
+ }
+ } else {
+ // We reached the end of the last subranges and can stop.
+ assert(Event == NOTHING);
+ break;
+ }
+ }
+
+ // We might not be able to assign new valnos for all segments if the basic
+ // block containing the definition comes after a segment using the valno.
+ // Do a fixup pass for this uncommon case.
+ if (NeedVNIFixup)
+ determineMissingVNIs(Indexes, *this);
+
+ assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
+ verify();
+}
+
unsigned LiveInterval::getSize() const {
unsigned Sum = 0;
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- Sum += I->start.distance(I->end);
+ for (const Segment &S : segments)
+ Sum += S.start.distance(S.end);
return Sum;
}
@@ -591,9 +841,9 @@ void LiveRange::print(raw_ostream &OS) const {
if (empty())
OS << "EMPTY";
else {
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- OS << *I;
- assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
+ for (const Segment &S : segments) {
+ OS << S;
+ assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
}
}
@@ -620,6 +870,10 @@ void LiveRange::print(raw_ostream &OS) const {
void LiveInterval::print(raw_ostream &OS) const {
OS << PrintReg(reg) << ' ';
super::print(OS);
+ // Print subranges
+ for (const SubRange &SR : subranges()) {
+ OS << format(" L%04X ", SR.LaneMask) << SR;
+ }
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
@@ -648,6 +902,26 @@ void LiveRange::verify() const {
}
}
}
+
+void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
+ super::verify();
+
+ // Make sure SubRanges are fine and LaneMasks are disjunct.
+ unsigned Mask = 0;
+ unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
+ for (const SubRange &SR : subranges()) {
+ // Subrange lanemask should be disjunct to any previous subrange masks.
+ assert((Mask & SR.LaneMask) == 0);
+ Mask |= SR.LaneMask;
+
+ // subrange mask should not contained in maximum lane mask for the vreg.
+ assert((Mask & ~MaxMask) == 0);
+
+ SR.verify();
+ // Main liverange should cover subrange.
+ assert(covers(SR));
+ }
+}
#endif
@@ -692,14 +966,14 @@ void LiveRangeUpdater::print(raw_ostream &OS) const {
OS << " updater with gap = " << (ReadI - WriteI)
<< ", last start = " << LastStart
<< ":\n Area 1:";
- for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
- OS << ' ' << *I;
+ for (const auto &S : make_range(LR->begin(), WriteI))
+ OS << ' ' << S;
OS << "\n Spills:";
for (unsigned I = 0, E = Spills.size(); I != E; ++I)
OS << ' ' << Spills[I];
OS << "\n Area 2:";
- for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
- OS << ' ' << *I;
+ for (const auto &S : make_range(ReadI, LR->end()))
+ OS << ' ' << S;
OS << '\n';
}
@@ -860,9 +1134,7 @@ unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
const VNInfo *used = nullptr, *unused = nullptr;
// Determine connections.
- for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
- I != E; ++I) {
- const VNInfo *VNI = *I;
+ for (const VNInfo *VNI : LI->valnos) {
// Group all unused values into one class.
if (VNI->isUnused()) {
if (unused)
@@ -938,6 +1210,8 @@ void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
} else
*J++ = *I;
}
+ // TODO: do not cheat anymore by simply cleaning all subranges
+ LI.clearSubRanges();
LI.segments.erase(J, E);
// Transfer VNInfos to their new owners and renumber them.
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
index 1559560..56f38b6 100644
--- a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -32,10 +32,11 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cmath>
#include <limits>
@@ -62,6 +63,10 @@ static cl::opt<bool> EnablePrecomputePhysRegs(
static bool EnablePrecomputePhysRegs = false;
#endif // NDEBUG
+static cl::opt<bool> EnableSubRegLiveness(
+ "enable-subreg-liveness", cl::Hidden, cl::init(true),
+ cl::desc("Enable subregister liveness tracking."));
+
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
@@ -110,12 +115,15 @@ void LiveIntervals::releaseMemory() {
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
MRI = &MF->getRegInfo();
- TM = &fn.getTarget();
- TRI = TM->getRegisterInfo();
- TII = TM->getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
AA = &getAnalysis<AliasAnalysis>();
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
+
+ if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
+ MRI->enableSubRegLiveness(true);
+
if (!LRCalc)
LRCalc = new LiveRangeCalc();
@@ -184,9 +192,8 @@ void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
assert(LRCalc && "LRCalc not initialized.");
assert(LI.empty() && "Should only compute empty intervals.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
- LRCalc->createDeadDefs(LI);
- LRCalc->extendToUses(LI);
- computeDeadValues(&LI, LI, nullptr, nullptr);
+ LRCalc->calculate(LI);
+ computeDeadValues(LI, nullptr);
}
void LiveIntervals::computeVirtRegs() {
@@ -313,6 +320,70 @@ void LiveIntervals::computeLiveInRegUnits() {
}
+static void createSegmentsForValues(LiveRange &LR,
+ iterator_range<LiveInterval::vni_iterator> VNIs) {
+ for (auto VNI : VNIs) {
+ if (VNI->isUnused())
+ continue;
+ SlotIndex Def = VNI->def;
+ LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
+ }
+}
+
+typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
+
+static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
+ ShrinkToUsesWorkList &WorkList,
+ const LiveRange &OldRange) {
+ // Keep track of the PHIs that are in use.
+ SmallPtrSet<VNInfo*, 8> UsedPHIs;
+ // Blocks that have already been added to WorkList as live-out.
+ SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+
+ // Extend intervals to reach all uses in WorkList.
+ while (!WorkList.empty()) {
+ SlotIndex Idx = WorkList.back().first;
+ VNInfo *VNI = WorkList.back().second;
+ WorkList.pop_back();
+ const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
+ SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
+
+ // Extend the live range for VNI to be live at Idx.
+ if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
+ assert(ExtVNI == VNI && "Unexpected existing value number");
+ (void)ExtVNI;
+ // Is this a PHIDef we haven't seen before?
+ if (!VNI->isPHIDef() || VNI->def != BlockStart ||
+ !UsedPHIs.insert(VNI).second)
+ continue;
+ // The PHI is live, make sure the predecessors are live-out.
+ for (auto &Pred : MBB->predecessors()) {
+ if (!LiveOut.insert(Pred).second)
+ continue;
+ SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+ // A predecessor is not required to have a live-out value for a PHI.
+ if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
+ WorkList.push_back(std::make_pair(Stop, PVNI));
+ }
+ continue;
+ }
+
+ // VNI is live-in to MBB.
+ DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+ LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
+
+ // Make sure VNI is live-out from the predecessors.
+ for (auto &Pred : MBB->predecessors()) {
+ if (!LiveOut.insert(Pred).second)
+ continue;
+ SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+ assert(OldRange.getVNInfoBefore(Stop) == VNI &&
+ "Wrong value out of predecessor");
+ WorkList.push_back(std::make_pair(Stop, VNI));
+ }
+ }
+}
+
/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
@@ -321,11 +392,14 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
DEBUG(dbgs() << "Shrink: " << *li << '\n');
assert(TargetRegisterInfo::isVirtualRegister(li->reg)
&& "Can only shrink virtual registers");
- // Find all the values used, including PHI kills.
- SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
- // Blocks that have already been added to WorkList as live-out.
- SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+ // Shrink subregister live ranges.
+ for (LiveInterval::SubRange &S : li->subranges()) {
+ shrinkToUses(S, li->reg);
+ }
+
+ // Find all the values used, including PHI kills.
+ ShrinkToUsesWorkList WorkList;
// Visit all instructions reading li->reg.
for (MachineRegisterInfo::reg_instr_iterator
@@ -356,102 +430,115 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
// Create new live ranges with only minimal live segments per def.
LiveRange NewLR;
- for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
- I != E; ++I) {
- VNInfo *VNI = *I;
- if (VNI->isUnused())
- continue;
- NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
- }
-
- // Keep track of the PHIs that are in use.
- SmallPtrSet<VNInfo*, 8> UsedPHIs;
-
- // Extend intervals to reach all uses in WorkList.
- while (!WorkList.empty()) {
- SlotIndex Idx = WorkList.back().first;
- VNInfo *VNI = WorkList.back().second;
- WorkList.pop_back();
- const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
- SlotIndex BlockStart = getMBBStartIdx(MBB);
-
- // Extend the live range for VNI to be live at Idx.
- if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
- (void)ExtVNI;
- assert(ExtVNI == VNI && "Unexpected existing value number");
- // Is this a PHIDef we haven't seen before?
- if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
- continue;
- // The PHI is live, make sure the predecessors are live-out.
- for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- if (!LiveOut.insert(*PI))
- continue;
- SlotIndex Stop = getMBBEndIdx(*PI);
- // A predecessor is not required to have a live-out value for a PHI.
- if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
- WorkList.push_back(std::make_pair(Stop, PVNI));
- }
- continue;
- }
-
- // VNI is live-in to MBB.
- DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
- NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
-
- // Make sure VNI is live-out from the predecessors.
- for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- if (!LiveOut.insert(*PI))
- continue;
- SlotIndex Stop = getMBBEndIdx(*PI);
- assert(li->getVNInfoBefore(Stop) == VNI &&
- "Wrong value out of predecessor");
- WorkList.push_back(std::make_pair(Stop, VNI));
- }
- }
-
- // Handle dead values.
- bool CanSeparate = false;
- computeDeadValues(li, NewLR, &CanSeparate, dead);
+ createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
+ extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
// Move the trimmed segments back.
li->segments.swap(NewLR.segments);
+
+ // Handle dead values.
+ bool CanSeparate = computeDeadValues(*li, dead);
DEBUG(dbgs() << "Shrunk: " << *li << '\n');
return CanSeparate;
}
-void LiveIntervals::computeDeadValues(LiveInterval *li,
- LiveRange &LR,
- bool *CanSeparate,
+bool LiveIntervals::computeDeadValues(LiveInterval &LI,
SmallVectorImpl<MachineInstr*> *dead) {
- for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
- I != E; ++I) {
- VNInfo *VNI = *I;
+ bool PHIRemoved = false;
+ for (auto VNI : LI.valnos) {
if (VNI->isUnused())
continue;
- LiveRange::iterator LRI = LR.FindSegmentContaining(VNI->def);
- assert(LRI != LR.end() && "Missing segment for PHI");
- if (LRI->end != VNI->def.getDeadSlot())
+ LiveRange::iterator I = LI.FindSegmentContaining(VNI->def);
+ assert(I != LI.end() && "Missing segment for VNI");
+ if (I->end != VNI->def.getDeadSlot())
continue;
if (VNI->isPHIDef()) {
// This is a dead PHI. Remove it.
VNI->markUnused();
- LR.removeSegment(LRI->start, LRI->end);
+ LI.removeSegment(I);
DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
- if (CanSeparate)
- *CanSeparate = true;
+ PHIRemoved = true;
} else {
// This is a dead def. Make sure the instruction knows.
MachineInstr *MI = getInstructionFromIndex(VNI->def);
assert(MI && "No instruction defining live value");
- MI->addRegisterDead(li->reg, TRI);
+ MI->addRegisterDead(LI.reg, TRI);
if (dead && MI->allDefsAreDead()) {
DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
dead->push_back(MI);
}
}
}
+ return PHIRemoved;
+}
+
+void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
+{
+ DEBUG(dbgs() << "Shrink: " << SR << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(Reg)
+ && "Can only shrink virtual registers");
+ // Find all the values used, including PHI kills.
+ ShrinkToUsesWorkList WorkList;
+
+ // Visit all instructions reading Reg.
+ SlotIndex LastIdx;
+ for (MachineOperand &MO : MRI->reg_operands(Reg)) {
+ MachineInstr *UseMI = MO.getParent();
+ if (UseMI->isDebugValue())
+ continue;
+ // Maybe the operand is for a subregister we don't care about.
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ unsigned SubRegMask = TRI->getSubRegIndexLaneMask(SubReg);
+ if ((SubRegMask & SR.LaneMask) == 0)
+ continue;
+ }
+ // We only need to visit each instruction once.
+ SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+ if (Idx == LastIdx)
+ continue;
+ LastIdx = Idx;
+
+ LiveQueryResult LRQ = SR.Query(Idx);
+ VNInfo *VNI = LRQ.valueIn();
+ // For Subranges it is possible that only undef values are left in that
+ // part of the subregister, so there is no real liverange at the use
+ if (!VNI)
+ continue;
+
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create a new live ranges with only minimal live segments per def.
+ LiveRange NewLR;
+ createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
+ extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
+
+ // Move the trimmed ranges back.
+ SR.segments.swap(NewLR.segments);
+
+ // Remove dead PHI value numbers
+ for (auto VNI : SR.valnos) {
+ if (VNI->isUnused())
+ continue;
+ const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
+ assert(Segment != nullptr && "Missing segment for VNI");
+ if (Segment->end != VNI->def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->markUnused();
+ SR.removeSegment(*Segment);
+ DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+ }
+ }
+
+ DEBUG(dbgs() << "Shrunk: " << SR << '\n');
}
void LiveIntervals::extendToIndices(LiveRange &LR,
@@ -462,26 +549,25 @@ void LiveIntervals::extendToIndices(LiveRange &LR,
LRCalc->extend(LR, Indices[i]);
}
-void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
+void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
SmallVectorImpl<SlotIndex> *EndPoints) {
- LiveQueryResult LRQ = LI->Query(Kill);
- VNInfo *VNI = LRQ.valueOut();
+ LiveQueryResult LRQ = LR.Query(Kill);
+ VNInfo *VNI = LRQ.valueOutOrDead();
if (!VNI)
return;
MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
- SlotIndex MBBStart, MBBEnd;
- std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
+ SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
// If VNI isn't live out from KillMBB, the value is trivially pruned.
if (LRQ.endPoint() < MBBEnd) {
- LI->removeSegment(Kill, LRQ.endPoint());
+ LR.removeSegment(Kill, LRQ.endPoint());
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
return;
}
// VNI is live out of KillMBB.
- LI->removeSegment(Kill, MBBEnd);
+ LR.removeSegment(Kill, MBBEnd);
if (EndPoints) EndPoints->push_back(MBBEnd);
// Find all blocks that are reachable from KillMBB without leaving VNI's live
@@ -498,8 +584,9 @@ void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
MachineBasicBlock *MBB = *I;
// Check if VNI is live in to MBB.
+ SlotIndex MBBStart, MBBEnd;
std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
- LiveQueryResult LRQ = LI->Query(MBBStart);
+ LiveQueryResult LRQ = LR.Query(MBBStart);
if (LRQ.valueIn() != VNI) {
// This block isn't part of the VNI segment. Prune the search.
I.skipChildren();
@@ -508,34 +595,46 @@ void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
// Prune the search if VNI is killed in MBB.
if (LRQ.endPoint() < MBBEnd) {
- LI->removeSegment(MBBStart, LRQ.endPoint());
+ LR.removeSegment(MBBStart, LRQ.endPoint());
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
I.skipChildren();
continue;
}
// VNI is live through MBB.
- LI->removeSegment(MBBStart, MBBEnd);
+ LR.removeSegment(MBBStart, MBBEnd);
if (EndPoints) EndPoints->push_back(MBBEnd);
++I;
}
}
}
+void LiveIntervals::pruneValue(LiveInterval &LI, SlotIndex Kill,
+ SmallVectorImpl<SlotIndex> *EndPoints) {
+ pruneValue((LiveRange&)LI, Kill, EndPoints);
+
+ for (LiveInterval::SubRange &SR : LI.subranges()) {
+ pruneValue(SR, Kill, nullptr);
+ }
+}
+
//===----------------------------------------------------------------------===//
// Register allocator hooks.
//
void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
// Keep track of regunit ranges.
- SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
+ SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
+ // Keep track of subregister ranges.
+ SmallVector<std::pair<const LiveInterval::SubRange*,
+ LiveRange::const_iterator>, 4> SRs;
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
continue;
- LiveInterval *LI = &getInterval(Reg);
- if (LI->empty())
+ const LiveInterval &LI = getInterval(Reg);
+ if (LI.empty())
continue;
// Find the regunit intervals for the assigned register. They may overlap
@@ -543,15 +642,22 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
RU.clear();
for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
++Units) {
- LiveRange &RURanges = getRegUnit(*Units);
- if (RURanges.empty())
+ const LiveRange &RURange = getRegUnit(*Units);
+ if (RURange.empty())
continue;
- RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
+ RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
+ }
+
+ if (MRI->tracksSubRegLiveness()) {
+ SRs.clear();
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
+ }
}
// Every instruction that kills Reg corresponds to a segment range end
// point.
- for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
+ for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
++RI) {
// A block index indicates an MBB edge.
if (RI->end.isBlock())
@@ -568,23 +674,80 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
// BAR %EAX<kill>
//
// There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
- bool CancelKill = false;
- for (unsigned u = 0, e = RU.size(); u != e; ++u) {
- LiveRange &RRanges = *RU[u].first;
- LiveRange::iterator &I = RU[u].second;
- if (I == RRanges.end())
+ for (auto &RUP : RU) {
+ const LiveRange &RURange = *RUP.first;
+ LiveRange::const_iterator &I = RUP.second;
+ if (I == RURange.end())
continue;
- I = RRanges.advanceTo(I, RI->end);
- if (I == RRanges.end() || I->start >= RI->end)
+ I = RURange.advanceTo(I, RI->end);
+ if (I == RURange.end() || I->start >= RI->end)
continue;
// I is overlapping RI.
- CancelKill = true;
- break;
+ goto CancelKill;
+ }
+
+ if (MRI->tracksSubRegLiveness()) {
+ // When reading a partial undefined value we must not add a kill flag.
+ // The regalloc might have used the undef lane for something else.
+ // Example:
+ // %vreg1 = ... ; R32: %vreg1
+ // %vreg2:high16 = ... ; R64: %vreg2
+ // = read %vreg2<kill> ; R64: %vreg2
+ // = read %vreg1 ; R32: %vreg1
+ // The <kill> flag is correct for %vreg2, but the register allocator may
+ // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
+ // are actually never written by %vreg2. After assignment the <kill>
+ // flag at the read instruction is invalid.
+ unsigned DefinedLanesMask;
+ if (!SRs.empty()) {
+ // Compute a mask of lanes that are defined.
+ DefinedLanesMask = 0;
+ for (auto &SRP : SRs) {
+ const LiveInterval::SubRange &SR = *SRP.first;
+ LiveRange::const_iterator &I = SRP.second;
+ if (I == SR.end())
+ continue;
+ I = SR.advanceTo(I, RI->end);
+ if (I == SR.end() || I->start >= RI->end)
+ continue;
+ // I is overlapping RI
+ DefinedLanesMask |= SR.LaneMask;
+ }
+ } else
+ DefinedLanesMask = ~0u;
+
+ bool IsFullWrite = false;
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (MO.isUse()) {
+ // Reading any undefined lanes?
+ unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
+ if ((UseMask & ~DefinedLanesMask) != 0)
+ goto CancelKill;
+ } else if (MO.getSubReg() == 0) {
+ // Writing to the full register?
+ assert(MO.isDef());
+ IsFullWrite = true;
+ }
+ }
+
+ // If an instruction writes to a subregister, a new segment starts in
+ // the LiveInterval. But as this is only overriding part of the register
+ // adding kill-flags is not correct here after registers have been
+ // assigned.
+ if (!IsFullWrite) {
+ // Next segment has to be adjacent in the subregister write case.
+ LiveRange::const_iterator N = std::next(RI);
+ if (N != LI.end() && N->start == RI->end)
+ goto CancelKill;
+ }
}
- if (CancelKill)
- MI->clearRegisterKills(Reg, nullptr);
- else
- MI->addRegisterKilled(Reg, nullptr);
+
+ MI->addRegisterKilled(Reg, nullptr);
+ continue;
+CancelKill:
+ MI->clearRegisterKills(Reg, nullptr);
}
}
}
@@ -615,9 +778,7 @@ LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
bool
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
- for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
- I != E; ++I) {
- const VNInfo *PHI = *I;
+ for (const VNInfo *PHI : LI.valnos) {
if (PHI->isUnused() || !PHI->isPHIDef())
continue;
const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
@@ -767,7 +928,16 @@ public:
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
LiveInterval &LI = LIS.getInterval(Reg);
- updateRange(LI, Reg);
+ if (LI.hasSubRanges()) {
+ unsigned SubReg = MO->getSubReg();
+ unsigned LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & LaneMask) == 0)
+ continue;
+ updateRange(S, Reg, S.LaneMask);
+ }
+ }
+ updateRange(LI, Reg, 0);
continue;
}
@@ -775,7 +945,7 @@ public:
// precomputed live range.
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
if (LiveRange *LR = getRegUnitLI(*Units))
- updateRange(*LR, *Units);
+ updateRange(*LR, *Units, 0);
}
if (hasRegMask)
updateRegMaskSlots();
@@ -784,21 +954,24 @@ public:
private:
/// Update a single live range, assuming an instruction has been moved from
/// OldIdx to NewIdx.
- void updateRange(LiveRange &LR, unsigned Reg) {
- if (!Updated.insert(&LR))
+ void updateRange(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
+ if (!Updated.insert(&LR).second)
return;
DEBUG({
dbgs() << " ";
- if (TargetRegisterInfo::isVirtualRegister(Reg))
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
dbgs() << PrintReg(Reg);
- else
+ if (LaneMask != 0)
+ dbgs() << format(" L%04X", LaneMask);
+ } else {
dbgs() << PrintRegUnit(Reg, &TRI);
+ }
dbgs() << ":\t" << LR << '\n';
});
if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
handleMoveDown(LR);
else
- handleMoveUp(LR, Reg);
+ handleMoveUp(LR, Reg, LaneMask);
DEBUG(dbgs() << " -->\t" << LR << '\n');
LR.verify();
}
@@ -911,7 +1084,7 @@ private:
/// Hoist kill to NewIdx, then scan for last kill between NewIdx and
/// OldIdx.
///
- void handleMoveUp(LiveRange &LR, unsigned Reg) {
+ void handleMoveUp(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
// First look for a kill at OldIdx.
LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
LiveRange::iterator E = LR.end();
@@ -932,7 +1105,7 @@ private:
if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
// No def, search for the new kill.
// This can never be an early clobber kill since there is no def.
- std::prev(I)->end = findLastUseBefore(Reg).getRegSlot();
+ std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
return;
}
}
@@ -988,15 +1161,17 @@ private:
}
// Return the last use of reg between NewIdx and OldIdx.
- SlotIndex findLastUseBefore(unsigned Reg) {
+ SlotIndex findLastUseBefore(unsigned Reg, unsigned LaneMask) {
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
SlotIndex LastUse = NewIdx;
- for (MachineRegisterInfo::use_instr_nodbg_iterator
- UI = MRI.use_instr_nodbg_begin(Reg),
- UE = MRI.use_instr_nodbg_end();
- UI != UE; ++UI) {
- const MachineInstr* MI = &*UI;
+ for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0 && LaneMask != 0
+ && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
+ continue;
+
+ const MachineInstr *MI = MO.getParent();
SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
if (InstSlot > LastUse && InstSlot < OldIdx)
LastUse = InstSlot;
@@ -1062,6 +1237,94 @@ void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
HME.updateAllRanges(MI);
}
+void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
+ const MachineBasicBlock::iterator End,
+ const SlotIndex endIdx,
+ LiveRange &LR, const unsigned Reg,
+ const unsigned LaneMask) {
+ LiveInterval::iterator LII = LR.find(endIdx);
+ SlotIndex lastUseIdx;
+ if (LII != LR.end() && LII->start < endIdx)
+ lastUseIdx = LII->end;
+ else
+ --LII;
+
+ for (MachineBasicBlock::iterator I = End; I != Begin;) {
+ --I;
+ MachineInstr *MI = I;
+ if (MI->isDebugValue())
+ continue;
+
+ SlotIndex instrIdx = getInstructionIndex(MI);
+ bool isStartValid = getInstructionFromIndex(LII->start);
+ bool isEndValid = getInstructionFromIndex(LII->end);
+
+ // FIXME: This doesn't currently handle early-clobber or multiple removed
+ // defs inside of the region to repair.
+ for (MachineInstr::mop_iterator OI = MI->operands_begin(),
+ OE = MI->operands_end(); OI != OE; ++OI) {
+ const MachineOperand &MO = *OI;
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ unsigned Mask = TRI->getSubRegIndexLaneMask(SubReg);
+ if ((Mask & LaneMask) == 0)
+ continue;
+
+ if (MO.isDef()) {
+ if (!isStartValid) {
+ if (LII->end.isDead()) {
+ SlotIndex prevStart;
+ if (LII != LR.begin())
+ prevStart = std::prev(LII)->start;
+
+ // FIXME: This could be more efficient if there was a
+ // removeSegment method that returned an iterator.
+ LR.removeSegment(*LII, true);
+ if (prevStart.isValid())
+ LII = LR.find(prevStart);
+ else
+ LII = LR.begin();
+ } else {
+ LII->start = instrIdx.getRegSlot();
+ LII->valno->def = instrIdx.getRegSlot();
+ if (MO.getSubReg() && !MO.isUndef())
+ lastUseIdx = instrIdx.getRegSlot();
+ else
+ lastUseIdx = SlotIndex();
+ continue;
+ }
+ }
+
+ if (!lastUseIdx.isValid()) {
+ VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+ LiveRange::Segment S(instrIdx.getRegSlot(),
+ instrIdx.getDeadSlot(), VNI);
+ LII = LR.addSegment(S);
+ } else if (LII->start != instrIdx.getRegSlot()) {
+ VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+ LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
+ LII = LR.addSegment(S);
+ }
+
+ if (MO.getSubReg() && !MO.isUndef())
+ lastUseIdx = instrIdx.getRegSlot();
+ else
+ lastUseIdx = SlotIndex();
+ } else if (MO.isUse()) {
+ // FIXME: This should probably be handled outside of this branch,
+ // either as part of the def case (for defs inside of the region) or
+ // after the loop over the region.
+ if (!isEndValid && !LII->end.isBlock())
+ LII->end = instrIdx.getRegSlot();
+ if (!lastUseIdx.isValid())
+ lastUseIdx = instrIdx.getRegSlot();
+ }
+ }
+ }
+}
+
void
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
@@ -1107,83 +1370,9 @@ LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
if (!LI.hasAtLeastOneValue())
continue;
- LiveInterval::iterator LII = LI.find(endIdx);
- SlotIndex lastUseIdx;
- if (LII != LI.end() && LII->start < endIdx)
- lastUseIdx = LII->end;
- else
- --LII;
-
- for (MachineBasicBlock::iterator I = End; I != Begin;) {
- --I;
- MachineInstr *MI = I;
- if (MI->isDebugValue())
- continue;
-
- SlotIndex instrIdx = getInstructionIndex(MI);
- bool isStartValid = getInstructionFromIndex(LII->start);
- bool isEndValid = getInstructionFromIndex(LII->end);
-
- // FIXME: This doesn't currently handle early-clobber or multiple removed
- // defs inside of the region to repair.
- for (MachineInstr::mop_iterator OI = MI->operands_begin(),
- OE = MI->operands_end(); OI != OE; ++OI) {
- const MachineOperand &MO = *OI;
- if (!MO.isReg() || MO.getReg() != Reg)
- continue;
-
- if (MO.isDef()) {
- if (!isStartValid) {
- if (LII->end.isDead()) {
- SlotIndex prevStart;
- if (LII != LI.begin())
- prevStart = std::prev(LII)->start;
-
- // FIXME: This could be more efficient if there was a
- // removeSegment method that returned an iterator.
- LI.removeSegment(*LII, true);
- if (prevStart.isValid())
- LII = LI.find(prevStart);
- else
- LII = LI.begin();
- } else {
- LII->start = instrIdx.getRegSlot();
- LII->valno->def = instrIdx.getRegSlot();
- if (MO.getSubReg() && !MO.isUndef())
- lastUseIdx = instrIdx.getRegSlot();
- else
- lastUseIdx = SlotIndex();
- continue;
- }
- }
-
- if (!lastUseIdx.isValid()) {
- VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
- VNInfoAllocator);
- LiveRange::Segment S(instrIdx.getRegSlot(),
- instrIdx.getDeadSlot(), VNI);
- LII = LI.addSegment(S);
- } else if (LII->start != instrIdx.getRegSlot()) {
- VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
- VNInfoAllocator);
- LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
- LII = LI.addSegment(S);
- }
-
- if (MO.getSubReg() && !MO.isUndef())
- lastUseIdx = instrIdx.getRegSlot();
- else
- lastUseIdx = SlotIndex();
- } else if (MO.isUse()) {
- // FIXME: This should probably be handled outside of this branch,
- // either as part of the def case (for defs inside of the region) or
- // after the loop over the region.
- if (!isEndValid && !LII->end.isBlock())
- LII->end = instrIdx.getRegSlot();
- if (!lastUseIdx.isValid())
- lastUseIdx = instrIdx.getRegSlot();
- }
- }
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
}
+ repairOldRegInRange(Begin, End, endIdx, LI, Reg);
}
}
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp
index d81221b..025d99c 100644
--- a/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp
@@ -26,14 +26,14 @@ using namespace llvm;
// Merge a LiveInterval's segments. Guarantee no overlaps.
-void LiveIntervalUnion::unify(LiveInterval &VirtReg) {
- if (VirtReg.empty())
+void LiveIntervalUnion::unify(LiveInterval &VirtReg, const LiveRange &Range) {
+ if (Range.empty())
return;
++Tag;
// Insert each of the virtual register's live segments into the map.
- LiveInterval::iterator RegPos = VirtReg.begin();
- LiveInterval::iterator RegEnd = VirtReg.end();
+ LiveRange::const_iterator RegPos = Range.begin();
+ LiveRange::const_iterator RegEnd = Range.end();
SegmentIter SegPos = Segments.find(RegPos->start);
while (SegPos.valid()) {
@@ -53,14 +53,14 @@ void LiveIntervalUnion::unify(LiveInterval &VirtReg) {
}
// Remove a live virtual register's segments from this union.
-void LiveIntervalUnion::extract(LiveInterval &VirtReg) {
- if (VirtReg.empty())
+void LiveIntervalUnion::extract(LiveInterval &VirtReg, const LiveRange &Range) {
+ if (Range.empty())
return;
++Tag;
// Remove each of the virtual register's live segments from the map.
- LiveInterval::iterator RegPos = VirtReg.begin();
- LiveInterval::iterator RegEnd = VirtReg.end();
+ LiveRange::const_iterator RegPos = Range.begin();
+ LiveRange::const_iterator RegEnd = Range.end();
SegmentIter SegPos = Segments.find(RegPos->start);
for (;;) {
@@ -70,7 +70,7 @@ void LiveIntervalUnion::extract(LiveInterval &VirtReg) {
return;
// Skip all segments that may have been coalesced.
- RegPos = VirtReg.advanceTo(RegPos, SegPos.start());
+ RegPos = Range.advanceTo(RegPos, SegPos.start());
if (RegPos == RegEnd)
return;
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp b/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
index a558e14..1d46161 100644
--- a/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
@@ -19,6 +19,13 @@ using namespace llvm;
#define DEBUG_TYPE "regalloc"
+void LiveRangeCalc::resetLiveOutMap() {
+ unsigned NumBlocks = MF->getNumBlockIDs();
+ Seen.clear();
+ Seen.resize(NumBlocks);
+ Map.resize(NumBlocks);
+}
+
void LiveRangeCalc::reset(const MachineFunction *mf,
SlotIndexes *SI,
MachineDominatorTree *MDT,
@@ -28,104 +35,188 @@ void LiveRangeCalc::reset(const MachineFunction *mf,
Indexes = SI;
DomTree = MDT;
Alloc = VNIA;
-
- unsigned N = MF->getNumBlockIDs();
- Seen.clear();
- Seen.resize(N);
- LiveOut.resize(N);
+ resetLiveOutMap();
LiveIn.clear();
}
-void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
- assert(MRI && Indexes && "call reset() first");
-
- // Visit all def operands. If the same instruction has multiple defs of Reg,
- // LR.createDeadDef() will deduplicate.
- for (MachineOperand &MO : MRI->def_operands(Reg)) {
+static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
+ LiveRange &LR, const MachineOperand &MO) {
const MachineInstr *MI = MO.getParent();
- // Find the corresponding slot index.
- SlotIndex Idx;
+ SlotIndex DefIdx;
if (MI->isPHI())
- // PHI defs begin at the basic block start index.
- Idx = Indexes->getMBBStartIdx(MI->getParent());
+ DefIdx = Indexes.getMBBStartIdx(MI->getParent());
else
- // Instructions are either normal 'r', or early clobber 'e'.
- Idx = Indexes->getInstructionIndex(MI)
- .getRegSlot(MO.isEarlyClobber());
+ DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
// Create the def in LR. This may find an existing def.
- LR.createDeadDef(Idx, *Alloc);
+ LR.createDeadDef(DefIdx, Alloc);
+}
+
+void LiveRangeCalc::calculate(LiveInterval &LI) {
+ assert(MRI && Indexes && "call reset() first");
+
+ // Step 1: Create minimal live segments for every definition of Reg.
+ // Visit all def operands. If the same instruction has multiple defs of Reg,
+ // createDeadDef() will deduplicate.
+ const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
+ unsigned Reg = LI.reg;
+ for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
+ if (!MO.isDef() && !MO.readsReg())
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) {
+ unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
+ : MRI->getMaxLaneMaskForVReg(Reg);
+
+ // If this is the first time we see a subregister def, initialize
+ // subranges by creating a copy of the main range.
+ if (!LI.hasSubRanges() && !LI.empty()) {
+ unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
+ LI.createSubRangeFrom(*Alloc, ClassMask, LI);
+ }
+
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ // A Mask for subregs common to the existing subrange and current def.
+ unsigned Common = S.LaneMask & Mask;
+ if (Common == 0)
+ continue;
+ // A Mask for subregs covered by the subrange but not the current def.
+ unsigned LRest = S.LaneMask & ~Mask;
+ LiveInterval::SubRange *CommonRange;
+ if (LRest != 0) {
+ // Split current subrange into Common and LRest ranges.
+ S.LaneMask = LRest;
+ CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
+ } else {
+ assert(Common == S.LaneMask);
+ CommonRange = &S;
+ }
+ if (MO.isDef())
+ createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
+ Mask &= ~Common;
+ }
+ // Create a new SubRange for subregs we did not cover yet.
+ if (Mask != 0) {
+ LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
+ if (MO.isDef())
+ createDeadDef(*Indexes, *Alloc, *NewRange, MO);
+ }
+ }
+
+ // Create the def in the main liverange. We do not have to do this if
+ // subranges are tracked as we recreate the main range later in this case.
+ if (MO.isDef() && !LI.hasSubRanges())
+ createDeadDef(*Indexes, *Alloc, LI, MO);
+ }
+
+ // We may have created empty live ranges for partially undefined uses, we
+ // can't keep them because we won't find defs in them later.
+ LI.removeEmptySubRanges();
+
+ // Step 2: Extend live segments to all uses, constructing SSA form as
+ // necessary.
+ if (LI.hasSubRanges()) {
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ resetLiveOutMap();
+ extendToUses(S, Reg, S.LaneMask);
+ }
+ LI.clear();
+ LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
+ } else {
+ resetLiveOutMap();
+ extendToUses(LI, Reg, ~0u);
}
}
-void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
+void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
+ // Visit all def operands. If the same instruction has multiple defs of Reg,
+ // LR.createDeadDef() will deduplicate.
+ for (MachineOperand &MO : MRI->def_operands(Reg))
+ createDeadDef(*Indexes, *Alloc, LR, MO);
+}
+
+
+void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
// Visit all operands that read Reg. This may include partial defs.
+ const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
+ else {
+ // We only care about uses, but on the main range (mask ~0u) this includes
+ // the "virtual" reads happening for subregister defs.
+ if (Mask != ~0u)
+ continue;
+ }
+
if (!MO.readsReg())
continue;
- // MI is reading Reg. We may have visited MI before if it happens to be
- // reading Reg multiple times. That is OK, extend() is idempotent.
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
+ // Ignore uses not covering the current subrange.
+ if ((SubRegMask & Mask) == 0)
+ continue;
+ }
+
+ // Determine the actual place of the use.
const MachineInstr *MI = MO.getParent();
unsigned OpNo = (&MO - &MI->getOperand(0));
-
- // Find the SlotIndex being read.
- SlotIndex Idx;
+ SlotIndex UseIdx;
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
- // PHI operands are paired: (Reg, PredMBB).
- // Extend the live range to be live-out from PredMBB.
- Idx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
+ // The actual place where a phi operand is used is the end of the pred
+ // MBB. PHI operands are paired: (Reg, PredMBB).
+ UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
} else {
- // This is a normal instruction.
- Idx = Indexes->getInstructionIndex(MI).getRegSlot();
// Check for early-clobber redefs.
+ bool isEarlyClobber = false;
unsigned DefIdx;
- if (MO.isDef()) {
- if (MO.isEarlyClobber())
- Idx = Idx.getRegSlot(true);
- } else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
+ if (MO.isDef())
+ isEarlyClobber = MO.isEarlyClobber();
+ else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
- if (MI->getOperand(DefIdx).isEarlyClobber())
- Idx = Idx.getRegSlot(true);
+ isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
}
+ UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
}
- extend(LR, Idx, Reg);
+
+ // MI is reading Reg. We may have visited MI before if it happens to be
+ // reading Reg multiple times. That is OK, extend() is idempotent.
+ extend(LR, UseIdx, Reg);
}
}
-// Transfer information from the LiveIn vector to the live ranges.
-void LiveRangeCalc::updateLiveIns() {
+void LiveRangeCalc::updateFromLiveIns() {
LiveRangeUpdater Updater;
- for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
- E = LiveIn.end(); I != E; ++I) {
- if (!I->DomNode)
+ for (const LiveInBlock &I : LiveIn) {
+ if (!I.DomNode)
continue;
- MachineBasicBlock *MBB = I->DomNode->getBlock();
- assert(I->Value && "No live-in value found");
+ MachineBasicBlock *MBB = I.DomNode->getBlock();
+ assert(I.Value && "No live-in value found");
SlotIndex Start, End;
std::tie(Start, End) = Indexes->getMBBRange(MBB);
- if (I->Kill.isValid())
+ if (I.Kill.isValid())
// Value is killed inside this block.
- End = I->Kill;
+ End = I.Kill;
else {
// The value is live-through, update LiveOut as well.
// Defer the Domtree lookup until it is needed.
assert(Seen.test(MBB->getNumber()));
- LiveOut[MBB] = LiveOutPair(I->Value, (MachineDomTreeNode *)nullptr);
+ Map[MBB] = LiveOutPair(I.Value, nullptr);
}
- Updater.setDest(&I->LR);
- Updater.add(Start, End, I->Value);
+ Updater.setDest(&I.LR);
+ Updater.add(Start, End, I.Value);
}
LiveIn.clear();
}
@@ -162,7 +253,7 @@ void LiveRangeCalc::calculateValues() {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
updateSSA();
- updateLiveIns();
+ updateFromLiveIns();
}
@@ -202,7 +293,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
// Is this a known live-out block?
if (Seen.test(Pred->getNumber())) {
- if (VNInfo *VNI = LiveOut[Pred].first) {
+ if (VNInfo *VNI = Map[Pred].first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
@@ -251,8 +342,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
if (*I == KillMBBNum && Kill.isValid())
End = Kill;
else
- LiveOut[MF->getBlockNumbered(*I)] =
- LiveOutPair(TheVNI, nullptr);
+ Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
Updater.add(Start, End, TheVNI);
}
return true;
@@ -285,9 +375,8 @@ void LiveRangeCalc::updateSSA() {
Changes = 0;
// Propagate live-out values down the dominator tree, inserting phi-defs
// when necessary.
- for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
- E = LiveIn.end(); I != E; ++I) {
- MachineDomTreeNode *Node = I->DomNode;
+ for (LiveInBlock &I : LiveIn) {
+ MachineDomTreeNode *Node = I.DomNode;
// Skip block if the live-in value has already been determined.
if (!Node)
continue;
@@ -303,16 +392,16 @@ void LiveRangeCalc::updateSSA() {
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
- IDomValue = LiveOut[IDom->getBlock()];
+ IDomValue = Map[IDom->getBlock()];
// Cache the DomTree node that defined the value.
if (IDomValue.first && !IDomValue.second)
- LiveOut[IDom->getBlock()].second = IDomValue.second =
+ Map[IDom->getBlock()].second = IDomValue.second =
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
- LiveOutPair &Value = LiveOut[*PI];
+ LiveOutPair &Value = Map[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
@@ -334,7 +423,7 @@ void LiveRangeCalc::updateSSA() {
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOut indicates a foreign or missing value.
- LiveOutPair &LOP = LiveOut[MBB];
+ LiveOutPair &LOP = Map[MBB];
// Create a phi-def if required.
if (needPHI) {
@@ -342,25 +431,25 @@ void LiveRangeCalc::updateSSA() {
assert(Alloc && "Need VNInfo allocator to create PHI-defs");
SlotIndex Start, End;
std::tie(Start, End) = Indexes->getMBBRange(MBB);
- LiveRange &LR = I->LR;
+ LiveRange &LR = I.LR;
VNInfo *VNI = LR.getNextValue(Start, *Alloc);
- I->Value = VNI;
+ I.Value = VNI;
// This block is done, we know the final value.
- I->DomNode = nullptr;
+ I.DomNode = nullptr;
- // Add liveness since updateLiveIns now skips this node.
- if (I->Kill.isValid())
- LR.addSegment(LiveInterval::Segment(Start, I->Kill, VNI));
+ // Add liveness since updateFromLiveIns now skips this node.
+ if (I.Kill.isValid())
+ LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
else {
LR.addSegment(LiveInterval::Segment(Start, End, VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value.
- I->Value = IDomValue.first;
+ I.Value = IDomValue.first;
// If the IDomValue is killed in the block, don't propagate through.
- if (I->Kill.isValid())
+ if (I.Kill.isValid())
continue;
// Propagate IDomValue if it isn't killed:
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeCalc.h b/contrib/llvm/lib/CodeGen/LiveRangeCalc.h
index 67ab559..1b9099b 100644
--- a/contrib/llvm/lib/CodeGen/LiveRangeCalc.h
+++ b/contrib/llvm/lib/CodeGen/LiveRangeCalc.h
@@ -19,8 +19,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_LIVERANGECALC_H
-#define LLVM_CODEGEN_LIVERANGECALC_H
+#ifndef LLVM_LIB_CODEGEN_LIVERANGECALC_H
+#define LLVM_LIB_CODEGEN_LIVERANGECALC_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
@@ -40,12 +40,6 @@ class LiveRangeCalc {
MachineDominatorTree *DomTree;
VNInfo::Allocator *Alloc;
- /// Seen - Bit vector of active entries in LiveOut, also used as a visited
- /// set by findReachingDefs. One entry per basic block, indexed by block
- /// number. This is kept as a separate bit vector because it can be cleared
- /// quickly when switching live ranges.
- BitVector Seen;
-
/// LiveOutPair - A value and the block that defined it. The domtree node is
/// redundant, it can be computed as: MDT[Indexes.getMBBFromIndex(VNI->def)].
typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
@@ -53,8 +47,14 @@ class LiveRangeCalc {
/// LiveOutMap - Map basic blocks to the value leaving the block.
typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
- /// LiveOut - Map each basic block where a live range is live out to the
- /// live-out value and its defining block.
+ /// Bit vector of active entries in LiveOut, also used as a visited set by
+ /// findReachingDefs. One entry per basic block, indexed by block number.
+ /// This is kept as a separate bit vector because it can be cleared quickly
+ /// when switching live ranges.
+ BitVector Seen;
+
+ /// Map each basic block where a live range is live out to the live-out value
+ /// and its defining block.
///
/// For every basic block, MBB, one of these conditions shall be true:
///
@@ -70,7 +70,7 @@ class LiveRangeCalc {
///
/// The map can be shared by multiple live ranges as long as no two are
/// live-out of the same block.
- LiveOutMap LiveOut;
+ LiveOutMap Map;
/// LiveInBlock - Information about a basic block where a live range is known
/// to be live-in, but the value has not yet been determined.
@@ -121,8 +121,18 @@ class LiveRangeCalc {
/// blocks. No values are read from the live ranges.
void updateSSA();
- /// Add liveness as specified in the LiveIn vector.
- void updateLiveIns();
+ /// Transfer information from the LiveIn vector to the live ranges and update
+ /// the given @p LiveOuts.
+ void updateFromLiveIns();
+
+ /// Extend the live range of @p LR to reach all uses of Reg.
+ ///
+ /// All uses must be jointly dominated by existing liveness. PHI-defs are
+ /// inserted as needed to preserve SSA form.
+ void extendToUses(LiveRange &LR, unsigned Reg, unsigned LaneMask);
+
+ /// Reset Map and Seen fields.
+ void resetLiveOutMap();
public:
LiveRangeCalc() : MF(nullptr), MRI(nullptr), Indexes(nullptr),
@@ -167,22 +177,19 @@ public:
/// minimal live range.
void createDeadDefs(LiveRange &LR, unsigned Reg);
- /// createDeadDefs - Create a dead def in LI for every def of LI->reg.
- void createDeadDefs(LiveInterval &LI) {
- createDeadDefs(LI, LI.reg);
- }
-
- /// extendToUses - Extend the live range of LI to reach all uses of Reg.
+ /// Extend the live range of @p LR to reach all uses of Reg.
///
/// All uses must be jointly dominated by existing liveness. PHI-defs are
/// inserted as needed to preserve SSA form.
- void extendToUses(LiveRange &LR, unsigned Reg);
-
- /// extendToUses - Extend the live range of LI to reach all uses of LI->reg.
- void extendToUses(LiveInterval &LI) {
- extendToUses(LI, LI.reg);
+ void extendToUses(LiveRange &LR, unsigned PhysReg) {
+ extendToUses(LR, PhysReg, ~0u);
}
+ /// Calculates liveness for the register specified in live interval @p LI.
+ /// Creates subregister live ranges as needed if subreg liveness tracking is
+ /// enabled.
+ void calculate(LiveInterval &LI);
+
//===--------------------------------------------------------------------===//
// Low-level interface.
//===--------------------------------------------------------------------===//
@@ -204,7 +211,7 @@ public:
/// addLiveInBlock().
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) {
Seen.set(MBB->getNumber());
- LiveOut[MBB] = LiveOutPair(VNI, nullptr);
+ Map[MBB] = LiveOutPair(VNI, nullptr);
}
/// addLiveInBlock - Add a block with an unknown live-in value. This
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
index 431241f..47da205 100644
--- a/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
@@ -60,9 +60,7 @@ bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
}
void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
- for (LiveInterval::vni_iterator I = getParent().vni_begin(),
- E = getParent().vni_end(); I != E; ++I) {
- VNInfo *VNI = *I;
+ for (VNInfo *VNI : getParent().valnos) {
if (VNI->isUnused())
continue;
MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
@@ -135,7 +133,7 @@ bool LiveRangeEdit::canRematerializeAt(Remat &RM,
}
// If only cheap remats were requested, bail out early.
- if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
+ if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI))
return false;
// Verify that all used registers are available with the same values.
@@ -286,8 +284,16 @@ void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
if (TheDelegate)
TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
LI.removeValNo(VNI);
- if (LI.empty())
+ if (LI.empty()) {
RegsToErase.push_back(Reg);
+ } else {
+ // Also remove the value in subranges.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if (VNInfo *SVNI = S.getVNInfoAt(Idx))
+ S.removeValNo(SVNI);
+ }
+ LI.removeEmptySubRanges();
+ }
}
}
}
@@ -411,8 +417,11 @@ LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
for (unsigned I = 0, Size = size(); I < Size; ++I) {
LiveInterval &LI = LIS.getInterval(get(I));
if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
- DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
- << MRI.getRegClass(LI.reg)->getName() << '\n');
+ DEBUG({
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
+ << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
+ });
VRAI.calculateSpillWeightAndHint(LI);
}
}
diff --git a/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp b/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp
index de2ce22..154ce6f 100644
--- a/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp
@@ -18,8 +18,8 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
@@ -48,7 +48,7 @@ void LiveRegMatrix::getAnalysisUsage(AnalysisUsage &AU) const {
}
bool LiveRegMatrix::runOnMachineFunction(MachineFunction &MF) {
- TRI = MF.getTarget().getRegisterInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
LIS = &getAnalysis<LiveIntervals>();
VRM = &getAnalysis<VirtRegMap>();
@@ -72,16 +72,44 @@ void LiveRegMatrix::releaseMemory() {
}
}
+template<typename Callable>
+bool foreachUnit(const TargetRegisterInfo *TRI, LiveInterval &VRegInterval,
+ unsigned PhysReg, Callable Func) {
+ if (VRegInterval.hasSubRanges()) {
+ for (MCRegUnitMaskIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
+ unsigned Unit = (*Units).first;
+ unsigned Mask = (*Units).second;
+ for (LiveInterval::SubRange &S : VRegInterval.subranges()) {
+ if (S.LaneMask & Mask) {
+ if (Func(Unit, S))
+ return true;
+ break;
+ }
+ }
+ }
+ } else {
+ for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
+ if (Func(*Units, VRegInterval))
+ return true;
+ }
+ }
+ return false;
+}
+
void LiveRegMatrix::assign(LiveInterval &VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
<< " to " << PrintReg(PhysReg, TRI) << ':');
assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
MRI->setPhysRegUsed(PhysReg);
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- DEBUG(dbgs() << ' ' << PrintRegUnit(*Units, TRI));
- Matrix[*Units].unify(VirtReg);
- }
+
+ foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
+ const LiveRange &Range) {
+ DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << ' ' << Range);
+ Matrix[Unit].unify(VirtReg, Range);
+ return false;
+ });
+
++NumAssigned;
DEBUG(dbgs() << '\n');
}
@@ -91,10 +119,14 @@ void LiveRegMatrix::unassign(LiveInterval &VirtReg) {
DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
<< " from " << PrintReg(PhysReg, TRI) << ':');
VRM->clearVirt(VirtReg.reg);
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- DEBUG(dbgs() << ' ' << PrintRegUnit(*Units, TRI));
- Matrix[*Units].extract(VirtReg);
- }
+
+ foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
+ const LiveRange &Range) {
+ DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI));
+ Matrix[Unit].extract(VirtReg, Range);
+ return false;
+ });
+
++NumUnassigned;
DEBUG(dbgs() << '\n');
}
@@ -122,12 +154,13 @@ bool LiveRegMatrix::checkRegUnitInterference(LiveInterval &VirtReg,
if (VirtReg.empty())
return false;
CoalescerPair CP(VirtReg.reg, PhysReg, *TRI);
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- const LiveRange &UnitRange = LIS->getRegUnit(*Units);
- if (VirtReg.overlaps(UnitRange, CP, *LIS->getSlotIndexes()))
- return true;
- }
- return false;
+
+ bool Result = foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
+ const LiveRange &Range) {
+ const LiveRange &UnitRange = LIS->getRegUnit(Unit);
+ return Range.overlaps(UnitRange, CP, *LIS->getSlotIndexes());
+ });
+ return Result;
}
LiveIntervalUnion::Query &LiveRegMatrix::query(LiveInterval &VirtReg,
diff --git a/contrib/llvm/lib/CodeGen/LiveStackAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveStackAnalysis.cpp
index b3161a4..8a6ac25 100644
--- a/contrib/llvm/lib/CodeGen/LiveStackAnalysis.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveStackAnalysis.cpp
@@ -20,6 +20,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <limits>
using namespace llvm;
@@ -49,7 +50,7 @@ void LiveStacks::releaseMemory() {
}
bool LiveStacks::runOnMachineFunction(MachineFunction &MF) {
- TRI = MF.getTarget().getRegisterInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
// FIXME: No analysis is being done right now. We are relying on the
// register allocators to provide the information.
return false;
@@ -80,7 +81,7 @@ void LiveStacks::print(raw_ostream &OS, const Module*) const {
int Slot = I->first;
const TargetRegisterClass *RC = getIntervalRegClass(Slot);
if (RC)
- OS << " [" << RC->getName() << "]\n";
+ OS << " [" << TRI->getRegClassName(RC) << "]\n";
else
OS << " [Unknown]\n";
}
diff --git a/contrib/llvm/lib/CodeGen/LiveVariables.cpp b/contrib/llvm/lib/CodeGen/LiveVariables.cpp
index 758b216..c4bca5f 100644
--- a/contrib/llvm/lib/CodeGen/LiveVariables.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveVariables.cpp
@@ -37,7 +37,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;
@@ -497,17 +496,135 @@ void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
}
}
+void LiveVariables::runOnInstr(MachineInstr *MI,
+ SmallVectorImpl<unsigned> &Defs) {
+ assert(!MI->isDebugValue());
+ // Process all of the operands of the instruction...
+ unsigned NumOperandsToProcess = MI->getNumOperands();
+
+ // Unless it is a PHI node. In this case, ONLY process the DEF, not any
+ // of the uses. They will be handled in other basic blocks.
+ if (MI->isPHI())
+ NumOperandsToProcess = 1;
+
+ // Clear kill and dead markers. LV will recompute them.
+ SmallVector<unsigned, 4> UseRegs;
+ SmallVector<unsigned, 4> DefRegs;
+ SmallVector<unsigned, 1> RegMasks;
+ for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isRegMask()) {
+ RegMasks.push_back(i);
+ continue;
+ }
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MO.isUse()) {
+ MO.setIsKill(false);
+ if (MO.readsReg())
+ UseRegs.push_back(MOReg);
+ } else /*MO.isDef()*/ {
+ MO.setIsDead(false);
+ DefRegs.push_back(MOReg);
+ }
+ }
+
+ MachineBasicBlock *MBB = MI->getParent();
+ // Process all uses.
+ for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
+ unsigned MOReg = UseRegs[i];
+ if (TargetRegisterInfo::isVirtualRegister(MOReg))
+ HandleVirtRegUse(MOReg, MBB, MI);
+ else if (!MRI->isReserved(MOReg))
+ HandlePhysRegUse(MOReg, MI);
+ }
+
+ // Process all masked registers. (Call clobbers).
+ for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
+ HandleRegMask(MI->getOperand(RegMasks[i]));
+
+ // Process all defs.
+ for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
+ unsigned MOReg = DefRegs[i];
+ if (TargetRegisterInfo::isVirtualRegister(MOReg))
+ HandleVirtRegDef(MOReg, MI);
+ else if (!MRI->isReserved(MOReg))
+ HandlePhysRegDef(MOReg, MI, Defs);
+ }
+ UpdatePhysRegDefs(MI, Defs);
+}
+
+void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) {
+ // Mark live-in registers as live-in.
+ SmallVector<unsigned, 4> Defs;
+ for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
+ EE = MBB->livein_end(); II != EE; ++II) {
+ assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
+ "Cannot have a live-in virtual register!");
+ HandlePhysRegDef(*II, nullptr, Defs);
+ }
+
+ // Loop over all of the instructions, processing them.
+ DistanceMap.clear();
+ unsigned Dist = 0;
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ MachineInstr *MI = I;
+ if (MI->isDebugValue())
+ continue;
+ DistanceMap.insert(std::make_pair(MI, Dist++));
+
+ runOnInstr(MI, Defs);
+ }
+
+ // Handle any virtual assignments from PHI nodes which might be at the
+ // bottom of this basic block. We check all of our successor blocks to see
+ // if they have PHI nodes, and if so, we simulate an assignment at the end
+ // of the current block.
+ if (!PHIVarInfo[MBB->getNumber()].empty()) {
+ SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()];
+
+ for (SmallVectorImpl<unsigned>::iterator I = VarInfoVec.begin(),
+ E = VarInfoVec.end(); I != E; ++I)
+ // Mark it alive only in the block we are representing.
+ MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
+ MBB);
+ }
+
+ // MachineCSE may CSE instructions which write to non-allocatable physical
+ // registers across MBBs. Remember if any reserved register is liveout.
+ SmallSet<unsigned, 4> LiveOuts;
+ for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ MachineBasicBlock *SuccMBB = *SI;
+ if (SuccMBB->isLandingPad())
+ continue;
+ for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
+ LE = SuccMBB->livein_end(); LI != LE; ++LI) {
+ unsigned LReg = *LI;
+ if (!TRI->isInAllocatableClass(LReg))
+ // Ignore other live-ins, e.g. those that are live into landing pads.
+ LiveOuts.insert(LReg);
+ }
+ }
+
+ // Loop over PhysRegDef / PhysRegUse, killing any registers that are
+ // available at the end of the basic block.
+ for (unsigned i = 0; i != NumRegs; ++i)
+ if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
+ HandlePhysRegDef(i, nullptr, Defs);
+}
+
bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
MRI = &mf.getRegInfo();
- TRI = MF->getTarget().getRegisterInfo();
-
- unsigned NumRegs = TRI->getNumRegs();
- PhysRegDef = new MachineInstr*[NumRegs];
- PhysRegUse = new MachineInstr*[NumRegs];
- PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
- std::fill(PhysRegDef, PhysRegDef + NumRegs, nullptr);
- std::fill(PhysRegUse, PhysRegUse + NumRegs, nullptr);
+ TRI = MF->getSubtarget().getRegisterInfo();
+
+ const unsigned NumRegs = TRI->getNumRegs();
+ PhysRegDef.assign(NumRegs, nullptr);
+ PhysRegUse.assign(NumRegs, nullptr);
+ PHIVarInfo.resize(MF->getNumBlockIDs());
PHIJoins.clear();
// FIXME: LiveIntervals will be updated to remove its dependence on
@@ -525,124 +642,11 @@ bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
MachineBasicBlock *Entry = MF->begin();
SmallPtrSet<MachineBasicBlock*,16> Visited;
- for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
- DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
- DFI != E; ++DFI) {
- MachineBasicBlock *MBB = *DFI;
-
- // Mark live-in registers as live-in.
- SmallVector<unsigned, 4> Defs;
- for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
- EE = MBB->livein_end(); II != EE; ++II) {
- assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
- "Cannot have a live-in virtual register!");
- HandlePhysRegDef(*II, nullptr, Defs);
- }
-
- // Loop over all of the instructions, processing them.
- DistanceMap.clear();
- unsigned Dist = 0;
- for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
- I != E; ++I) {
- MachineInstr *MI = I;
- if (MI->isDebugValue())
- continue;
- DistanceMap.insert(std::make_pair(MI, Dist++));
-
- // Process all of the operands of the instruction...
- unsigned NumOperandsToProcess = MI->getNumOperands();
-
- // Unless it is a PHI node. In this case, ONLY process the DEF, not any
- // of the uses. They will be handled in other basic blocks.
- if (MI->isPHI())
- NumOperandsToProcess = 1;
-
- // Clear kill and dead markers. LV will recompute them.
- SmallVector<unsigned, 4> UseRegs;
- SmallVector<unsigned, 4> DefRegs;
- SmallVector<unsigned, 1> RegMasks;
- for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isRegMask()) {
- RegMasks.push_back(i);
- continue;
- }
- if (!MO.isReg() || MO.getReg() == 0)
- continue;
- unsigned MOReg = MO.getReg();
- if (MO.isUse()) {
- MO.setIsKill(false);
- if (MO.readsReg())
- UseRegs.push_back(MOReg);
- } else /*MO.isDef()*/ {
- MO.setIsDead(false);
- DefRegs.push_back(MOReg);
- }
- }
-
- // Process all uses.
- for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
- unsigned MOReg = UseRegs[i];
- if (TargetRegisterInfo::isVirtualRegister(MOReg))
- HandleVirtRegUse(MOReg, MBB, MI);
- else if (!MRI->isReserved(MOReg))
- HandlePhysRegUse(MOReg, MI);
- }
-
- // Process all masked registers. (Call clobbers).
- for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
- HandleRegMask(MI->getOperand(RegMasks[i]));
-
- // Process all defs.
- for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
- unsigned MOReg = DefRegs[i];
- if (TargetRegisterInfo::isVirtualRegister(MOReg))
- HandleVirtRegDef(MOReg, MI);
- else if (!MRI->isReserved(MOReg))
- HandlePhysRegDef(MOReg, MI, Defs);
- }
- UpdatePhysRegDefs(MI, Defs);
- }
-
- // Handle any virtual assignments from PHI nodes which might be at the
- // bottom of this basic block. We check all of our successor blocks to see
- // if they have PHI nodes, and if so, we simulate an assignment at the end
- // of the current block.
- if (!PHIVarInfo[MBB->getNumber()].empty()) {
- SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()];
-
- for (SmallVectorImpl<unsigned>::iterator I = VarInfoVec.begin(),
- E = VarInfoVec.end(); I != E; ++I)
- // Mark it alive only in the block we are representing.
- MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
- MBB);
- }
-
- // MachineCSE may CSE instructions which write to non-allocatable physical
- // registers across MBBs. Remember if any reserved register is liveout.
- SmallSet<unsigned, 4> LiveOuts;
- for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock *SuccMBB = *SI;
- if (SuccMBB->isLandingPad())
- continue;
- for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
- LE = SuccMBB->livein_end(); LI != LE; ++LI) {
- unsigned LReg = *LI;
- if (!TRI->isInAllocatableClass(LReg))
- // Ignore other live-ins, e.g. those that are live into landing pads.
- LiveOuts.insert(LReg);
- }
- }
-
- // Loop over PhysRegDef / PhysRegUse, killing any registers that are
- // available at the end of the basic block.
- for (unsigned i = 0; i != NumRegs; ++i)
- if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
- HandlePhysRegDef(i, nullptr, Defs);
+ for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
+ runOnBlock(MBB, NumRegs);
- std::fill(PhysRegDef, PhysRegDef + NumRegs, nullptr);
- std::fill(PhysRegUse, PhysRegUse + NumRegs, nullptr);
+ PhysRegDef.assign(NumRegs, nullptr);
+ PhysRegUse.assign(NumRegs, nullptr);
}
// Convert and transfer the dead / killed information we have gathered into
@@ -664,9 +668,9 @@ bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif
- delete[] PhysRegDef;
- delete[] PhysRegUse;
- delete[] PHIVarInfo;
+ PhysRegDef.clear();
+ PhysRegUse.clear();
+ PHIVarInfo.clear();
return false;
}
diff --git a/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp b/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp
index 36885e8..e8bf687 100644
--- a/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp
+++ b/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp
@@ -36,6 +36,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -102,7 +103,7 @@ INITIALIZE_PASS_END(LocalStackSlotPass, "localstackalloc",
bool LocalStackSlotPass::runOnMachineFunction(MachineFunction &MF) {
MachineFrameInfo *MFI = MF.getFrameInfo();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
unsigned LocalObjectCount = MFI->getObjectIndexEnd();
// If the target doesn't want/need this pass, or if there are no locals
@@ -183,7 +184,7 @@ void LocalStackSlotPass::AssignProtectedObjSet(const StackObjSet &UnassignedObjs
void LocalStackSlotPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo *MFI = Fn.getFrameInfo();
- const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
+ const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
int64_t Offset = 0;
@@ -272,8 +273,8 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
bool UsedBaseReg = false;
MachineFrameInfo *MFI = Fn.getFrameInfo();
- const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
- const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
+ const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
+ const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
@@ -290,6 +291,7 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
// Debug value, stackmap and patchpoint instructions can't be out of
// range, so they don't need any updates.
if (MI->isDebugValue() ||
+ MI->getOpcode() == TargetOpcode::STATEPOINT ||
MI->getOpcode() == TargetOpcode::STACKMAP ||
MI->getOpcode() == TargetOpcode::PATCHPOINT)
continue;
diff --git a/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp b/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
index 08fef5f..3c73905 100644
--- a/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
@@ -24,7 +24,6 @@
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
@@ -32,6 +31,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -44,7 +44,6 @@ MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
}
MachineBasicBlock::~MachineBasicBlock() {
- LeakDetector::removeGarbageObject(this);
}
/// getSymbol - Return the MCSymbol for this basic block.
@@ -53,8 +52,7 @@ MCSymbol *MachineBasicBlock::getSymbol() const {
if (!CachedMCSymbol) {
const MachineFunction *MF = getParent();
MCContext &Ctx = MF->getContext();
- const TargetMachine &TM = MF->getTarget();
- const char *Prefix = TM.getDataLayout()->getPrivateGlobalPrefix();
+ const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
Twine(MF->getFunctionNumber()) +
"_" + Twine(getNumber()));
@@ -85,14 +83,11 @@ void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
for (MachineBasicBlock::instr_iterator
I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
I->AddRegOperandsToUseLists(RegInfo);
-
- LeakDetector::removeGarbageObject(N);
}
void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
N->getParent()->removeFromMBBNumbering(N->Number);
N->Number = -1;
- LeakDetector::addGarbageObject(N);
}
@@ -107,8 +102,6 @@ void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
// use/def lists.
MachineFunction *MF = Parent->getParent();
N->AddRegOperandsToUseLists(MF->getRegInfo());
-
- LeakDetector::removeGarbageObject(N);
}
/// removeNodeFromList (MI) - When we remove an instruction from a basic block
@@ -122,8 +115,6 @@ void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
N->setParent(nullptr);
-
- LeakDetector::addGarbageObject(N);
}
/// transferNodesFromList (MI) - When moving a range of instructions from one
@@ -290,7 +281,7 @@ void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
OS << '\n';
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
if (!livein_empty()) {
if (Indexes) OS << '\t';
OS << " Live Ins:";
@@ -359,7 +350,7 @@ MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
bool LiveIn = isLiveIn(PhysReg);
iterator I = SkipPHIsAndLabels(begin()), E = end();
MachineRegisterInfo &MRI = getParent()->getRegInfo();
- const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
// Look for an existing copy.
if (LiveIn)
@@ -390,7 +381,7 @@ void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
}
void MachineBasicBlock::updateTerminator() {
- const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
// A block with no successors has no concerns with fall-through edges.
if (this->succ_empty()) return;
@@ -645,7 +636,7 @@ bool MachineBasicBlock::canFallThrough() {
// Analyze the branches, if any, at the end of the block.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
- const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
// If we couldn't analyze the branch, examine the last instruction.
// If the block doesn't end in a known control barrier, assume fallthrough
@@ -690,7 +681,7 @@ MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
// We may need to update this's terminator, but we can't do that if
// AnalyzeBranch fails. If this uses a jump table, we won't touch it.
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
@@ -795,7 +786,8 @@ MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
NMBB->addSuccessor(Succ);
if (!NMBB->isLayoutSuccessor(Succ)) {
Cond.clear();
- MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, dl);
+ MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond,
+ dl);
if (Indexes) {
for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
@@ -823,7 +815,7 @@ MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
NMBB->addLiveIn(*I);
// Update LiveVariables.
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
if (LV) {
// Restore kills of virtual registers that were killed by the terminators.
while (!KilledRegs.empty()) {
@@ -903,31 +895,8 @@ MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
}
if (MachineDominatorTree *MDT =
- P->getAnalysisIfAvailable<MachineDominatorTree>()) {
- // Update dominator information.
- MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
-
- bool IsNewIDom = true;
- for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
- PI != E; ++PI) {
- MachineBasicBlock *PredBB = *PI;
- if (PredBB == NMBB)
- continue;
- if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
- IsNewIDom = false;
- break;
- }
- }
-
- // We know "this" dominates the newly created basic block.
- MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
-
- // If all the other predecessors of "Succ" are dominated by "Succ" itself
- // then the new block is the new immediate dominator of "Succ". Otherwise,
- // the new block doesn't dominate anything.
- if (IsNewIDom)
- MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
- }
+ P->getAnalysisIfAvailable<MachineDominatorTree>())
+ MDT->recordSplitCriticalEdge(this, Succ, NMBB);
if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
if (MachineLoop *TIL = MLI->getLoopFor(this)) {
@@ -1086,7 +1055,7 @@ bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
MachineBasicBlock::succ_iterator SI = succ_begin();
while (SI != succ_end()) {
const MachineBasicBlock *MBB = *SI;
- if (!SeenMBBs.insert(MBB) ||
+ if (!SeenMBBs.insert(MBB).second ||
(MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
// This is a superfluous edge, remove it.
SI = removeSuccessor(SI);
diff --git a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
index 74af1e2..aaa7d91 100644
--- a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
@@ -42,6 +42,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -812,7 +813,7 @@ void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
BE = L.block_end();
BI != BE; ++BI) {
BlockChain &Chain = *BlockToChain[*BI];
- if (!UpdatedPreds.insert(&Chain))
+ if (!UpdatedPreds.insert(&Chain).second)
continue;
assert(Chain.LoopPredecessors == 0);
@@ -913,7 +914,7 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
MachineBasicBlock *BB = &*FI;
BlockChain &Chain = *BlockToChain[BB];
- if (!UpdatedPreds.insert(&Chain))
+ if (!UpdatedPreds.insert(&Chain).second)
continue;
assert(Chain.LoopPredecessors == 0);
@@ -1045,9 +1046,6 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
if (F.getFunction()->getAttributes().
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
return;
- unsigned Align = TLI->getPrefLoopAlignment();
- if (!Align)
- return; // Don't care about loop alignment.
if (FunctionChain.begin() == FunctionChain.end())
return; // Empty chain.
@@ -1065,6 +1063,10 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
if (!L)
continue;
+ unsigned Align = TLI->getPrefLoopAlignment(L);
+ if (!Align)
+ continue; // Don't care about loop alignment.
+
// If the block is cold relative to the function entry don't waste space
// aligning it.
BlockFrequency Freq = MBFI->getBlockFreq(*BI);
@@ -1111,8 +1113,8 @@ bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
MLI = &getAnalysis<MachineLoopInfo>();
- TII = F.getTarget().getInstrInfo();
- TLI = F.getTarget().getTargetLowering();
+ TII = F.getSubtarget().getInstrInfo();
+ TLI = F.getSubtarget().getTargetLowering();
assert(BlockToChain.empty());
buildCFGChains(F);
diff --git a/contrib/llvm/lib/CodeGen/MachineCSE.cpp b/contrib/llvm/lib/CodeGen/MachineCSE.cpp
index 7da439c..2960408 100644
--- a/contrib/llvm/lib/CodeGen/MachineCSE.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineCSE.cpp
@@ -25,6 +25,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "machine-cse"
@@ -78,7 +79,8 @@ namespace {
SmallVector<MachineInstr*, 64> Exps;
unsigned CurrVN;
- bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
+ bool PerformTrivialCopyPropagation(MachineInstr *MI,
+ MachineBasicBlock *MBB);
bool isPhysDefTriviallyDead(unsigned Reg,
MachineBasicBlock::const_iterator I,
MachineBasicBlock::const_iterator E) const;
@@ -112,8 +114,12 @@ INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MachineCSE, "machine-cse",
"Machine Common Subexpression Elimination", false, false)
-bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
- MachineBasicBlock *MBB) {
+/// The source register of a COPY machine instruction can be propagated to all
+/// its users, and this propagation could increase the probability of finding
+/// common subexpressions. If the COPY has only one user, the COPY itself can
+/// be removed.
+bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
bool Changed = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
@@ -122,10 +128,7 @@ bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
- if (!MRI->hasOneNonDBGUse(Reg))
- // Only coalesce single use copies. This ensure the copy will be
- // deleted.
- continue;
+ bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
MachineInstr *DefMI = MRI->getVRegDef(Reg);
if (!DefMI->isCopy())
continue;
@@ -153,10 +156,14 @@ bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
continue;
DEBUG(dbgs() << "Coalescing: " << *DefMI);
DEBUG(dbgs() << "*** to: " << *MI);
+ // Propagate SrcReg of copies to MI.
MO.setReg(SrcReg);
MRI->clearKillFlags(SrcReg);
- DefMI->eraseFromParent();
- ++NumCoalesces;
+ // Coalesce single use copies.
+ if (OnlyOneUse) {
+ DefMI->eraseFromParent();
+ ++NumCoalesces;
+ }
Changed = true;
}
@@ -380,7 +387,7 @@ bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
// Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
// an immediate predecessor. We don't want to increase register pressure and
// end up causing other computation to be spilled.
- if (MI->isAsCheapAsAMove()) {
+ if (TII->isAsCheapAsAMove(MI)) {
MachineBasicBlock *CSBB = CSMI->getParent();
MachineBasicBlock *BB = MI->getParent();
if (CSBB != BB && !CSBB->isSuccessor(BB))
@@ -444,6 +451,7 @@ bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
SmallVector<unsigned, 2> ImplicitDefsToUpdate;
+ SmallVector<unsigned, 2> ImplicitDefs;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
MachineInstr *MI = &*I;
++I;
@@ -453,13 +461,15 @@ bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
bool FoundCSE = VNT.count(MI);
if (!FoundCSE) {
- // Look for trivial copy coalescing opportunities.
- if (PerformTrivialCoalescing(MI, MBB)) {
+ // Using trivial copy propagation to find more CSE opportunities.
+ if (PerformTrivialCopyPropagation(MI, MBB)) {
Changed = true;
// After coalescing MI itself may become a copy.
if (MI->isCopyLike())
continue;
+
+ // Try again to see if CSE is possible.
FoundCSE = VNT.count(MI);
}
}
@@ -533,6 +543,12 @@ bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
// we should make sure it is not dead at CSMI.
if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
ImplicitDefsToUpdate.push_back(i);
+
+ // Keep track of implicit defs of CSMI and MI, to clear possibly
+ // made-redundant kill flags.
+ if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
+ ImplicitDefs.push_back(OldReg);
+
if (OldReg == NewReg) {
--NumDefs;
continue;
@@ -573,6 +589,29 @@ bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
+ // Go through implicit defs of CSMI and MI, and clear the kill flags on
+ // their uses in all the instructions between CSMI and MI.
+ // We might have made some of the kill flags redundant, consider:
+ // subs ... %NZCV<imp-def> <- CSMI
+ // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
+ // subs ... %NZCV<imp-def> <- MI, to be eliminated
+ // csinc ... %NZCV<imp-use,kill>
+ // Since we eliminated MI, and reused a register imp-def'd by CSMI
+ // (here %NZCV), that register, if it was killed before MI, should have
+ // that kill flag removed, because it's lifetime was extended.
+ if (CSMI->getParent() == MI->getParent()) {
+ for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
+ for (auto ImplicitDef : ImplicitDefs)
+ if (MachineOperand *MO = II->findRegisterUseOperand(
+ ImplicitDef, /*isKill=*/true, TRI))
+ MO->setIsKill(false);
+ } else {
+ // If the instructions aren't in the same BB, bail out and clear the
+ // kill flag on all uses of the imp-def'd register.
+ for (auto ImplicitDef : ImplicitDefs)
+ MRI->clearKillFlags(ImplicitDef);
+ }
+
if (CrossMBBPhysDef) {
// Add physical register defs now coming in from a predecessor to MBB
// livein list.
@@ -597,6 +636,7 @@ bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
}
CSEPairs.clear();
ImplicitDefsToUpdate.clear();
+ ImplicitDefs.clear();
}
return Changed;
@@ -663,8 +703,8 @@ bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
if (skipOptnoneFunction(*MF.getFunction()))
return false;
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<MachineDominatorTree>();
diff --git a/contrib/llvm/lib/CodeGen/MachineCodeEmitter.cpp b/contrib/llvm/lib/CodeGen/MachineCodeEmitter.cpp
deleted file mode 100644
index 81b4978..0000000
--- a/contrib/llvm/lib/CodeGen/MachineCodeEmitter.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-//===-- llvm/CodeGen/MachineCodeEmitter.cpp - Code emission -----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/MachineCodeEmitter.h"
-
-using namespace llvm;
-
-void MachineCodeEmitter::anchor() { }
diff --git a/contrib/llvm/lib/CodeGen/MachineCombiner.cpp b/contrib/llvm/lib/CodeGen/MachineCombiner.cpp
new file mode 100644
index 0000000..2931258
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineCombiner.cpp
@@ -0,0 +1,435 @@
+//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The machine combiner pass uses machine trace metrics to ensure the combined
+// instructions does not lengthen the critical path or the resource depth.
+//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "machine-combiner"
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineTraceMetrics.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+using namespace llvm;
+
+STATISTIC(NumInstCombined, "Number of machineinst combined");
+
+namespace {
+class MachineCombiner : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MCSchedModel SchedModel;
+ MachineRegisterInfo *MRI;
+ MachineTraceMetrics *Traces;
+ MachineTraceMetrics::Ensemble *MinInstr;
+
+ TargetSchedModel TSchedModel;
+
+ /// OptSize - True if optimizing for code size.
+ bool OptSize;
+
+public:
+ static char ID;
+ MachineCombiner() : MachineFunctionPass(ID) {
+ initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ const char *getPassName() const override { return "Machine InstCombiner"; }
+
+private:
+ bool doSubstitute(unsigned NewSize, unsigned OldSize);
+ bool combineInstructions(MachineBasicBlock *);
+ MachineInstr *getOperandDef(const MachineOperand &MO);
+ unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
+ MachineTraceMetrics::Trace BlockTrace);
+ unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
+ MachineTraceMetrics::Trace BlockTrace);
+ bool
+ preservesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
+ MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg);
+ bool preservesResourceLen(MachineBasicBlock *MBB,
+ MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs);
+ void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
+ SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
+};
+}
+
+char MachineCombiner::ID = 0;
+char &llvm::MachineCombinerID = MachineCombiner::ID;
+
+INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
+ "Machine InstCombiner", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
+INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
+ false, false)
+
+void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addRequired<MachineTraceMetrics>();
+ AU.addPreserved<MachineTraceMetrics>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
+ MachineInstr *DefInstr = nullptr;
+ // We need a virtual register definition.
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ DefInstr = MRI->getUniqueVRegDef(MO.getReg());
+ // PHI's have no depth etc.
+ if (DefInstr && DefInstr->isPHI())
+ DefInstr = nullptr;
+ return DefInstr;
+}
+
+/// getDepth - Computes depth of instructions in vector \InsInstr.
+///
+/// \param InsInstrs is a vector of machine instructions
+/// \param InstrIdxForVirtReg is a dense map of virtual register to index
+/// of defining machine instruction in \p InsInstrs
+/// \param BlockTrace is a trace of machine instructions
+///
+/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
+unsigned
+MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
+ MachineTraceMetrics::Trace BlockTrace) {
+
+ SmallVector<unsigned, 16> InstrDepth;
+ assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
+
+ // Foreach instruction in in the new sequence compute the depth based on the
+ // operands. Use the trace information when possible. For new operands which
+ // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
+ for (auto *InstrPtr : InsInstrs) { // for each Use
+ unsigned IDepth = 0;
+ DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";);
+ for (unsigned i = 0, e = InstrPtr->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = InstrPtr->getOperand(i);
+ // Check for virtual register operand.
+ if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
+ continue;
+ if (!MO.isUse())
+ continue;
+ unsigned DepthOp = 0;
+ unsigned LatencyOp = 0;
+ DenseMap<unsigned, unsigned>::iterator II =
+ InstrIdxForVirtReg.find(MO.getReg());
+ if (II != InstrIdxForVirtReg.end()) {
+ // Operand is new virtual register not in trace
+ assert(II->second < InstrDepth.size() && "Bad Index");
+ MachineInstr *DefInstr = InsInstrs[II->second];
+ assert(DefInstr &&
+ "There must be a definition for a new virtual register");
+ DepthOp = InstrDepth[II->second];
+ LatencyOp = TSchedModel.computeOperandLatency(
+ DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
+ InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
+ } else {
+ MachineInstr *DefInstr = getOperandDef(MO);
+ if (DefInstr) {
+ DepthOp = BlockTrace.getInstrCycles(DefInstr).Depth;
+ LatencyOp = TSchedModel.computeOperandLatency(
+ DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
+ InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
+ }
+ }
+ IDepth = std::max(IDepth, DepthOp + LatencyOp);
+ }
+ InstrDepth.push_back(IDepth);
+ }
+ unsigned NewRootIdx = InsInstrs.size() - 1;
+ return InstrDepth[NewRootIdx];
+}
+
+/// getLatency - Computes instruction latency as max of latency of defined
+/// operands
+///
+/// \param Root is a machine instruction that could be replaced by NewRoot.
+/// It is used to compute a more accurate latency information for NewRoot in
+/// case there is a dependent instruction in the same trace (\p BlockTrace)
+/// \param NewRoot is the instruction for which the latency is computed
+/// \param BlockTrace is a trace of machine instructions
+///
+/// \returns Latency of \p NewRoot
+unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
+ MachineTraceMetrics::Trace BlockTrace) {
+
+ assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
+
+ // Check each definition in NewRoot and compute the latency
+ unsigned NewRootLatency = 0;
+
+ for (unsigned i = 0, e = NewRoot->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = NewRoot->getOperand(i);
+ // Check for virtual register operand.
+ if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
+ continue;
+ if (!MO.isDef())
+ continue;
+ // Get the first instruction that uses MO
+ MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
+ RI++;
+ MachineInstr *UseMO = RI->getParent();
+ unsigned LatencyOp = 0;
+ if (UseMO && BlockTrace.isDepInTrace(Root, UseMO)) {
+ LatencyOp = TSchedModel.computeOperandLatency(
+ NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
+ UseMO->findRegisterUseOperandIdx(MO.getReg()));
+ } else {
+ LatencyOp = TSchedModel.computeInstrLatency(NewRoot->getOpcode());
+ }
+ NewRootLatency = std::max(NewRootLatency, LatencyOp);
+ }
+ return NewRootLatency;
+}
+
+/// preservesCriticalPathlen - True when the new instruction sequence does not
+/// lengthen the critical path. The DAGCombine code sequence ends in MI
+/// (Machine Instruction) Root. The new code sequence ends in MI NewRoot. A
+/// necessary condition for the new sequence to replace the old sequence is that
+/// is cannot lengthen the critical path. This is decided by the formula
+/// (NewRootDepth + NewRootLatency) <= (RootDepth + RootLatency + RootSlack)).
+/// The slack is the number of cycles Root can be delayed before the critical
+/// patch becomes longer.
+bool MachineCombiner::preservesCriticalPathLen(
+ MachineBasicBlock *MBB, MachineInstr *Root,
+ MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
+
+ assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
+ // NewRoot is the last instruction in the \p InsInstrs vector
+ // Get depth and latency of NewRoot
+ unsigned NewRootIdx = InsInstrs.size() - 1;
+ MachineInstr *NewRoot = InsInstrs[NewRootIdx];
+ unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
+ unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
+
+ // Get depth, latency and slack of Root
+ unsigned RootDepth = BlockTrace.getInstrCycles(Root).Depth;
+ unsigned RootLatency = TSchedModel.computeInstrLatency(Root);
+ unsigned RootSlack = BlockTrace.getInstrSlack(Root);
+
+ DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
+ dbgs() << " NewRootDepth: " << NewRootDepth
+ << " NewRootLatency: " << NewRootLatency << "\n";
+ dbgs() << " RootDepth: " << RootDepth << " RootLatency: " << RootLatency
+ << " RootSlack: " << RootSlack << "\n";
+ dbgs() << " NewRootDepth + NewRootLatency "
+ << NewRootDepth + NewRootLatency << "\n";
+ dbgs() << " RootDepth + RootLatency + RootSlack "
+ << RootDepth + RootLatency + RootSlack << "\n";);
+
+ /// True when the new sequence does not lenghten the critical path.
+ return ((NewRootDepth + NewRootLatency) <=
+ (RootDepth + RootLatency + RootSlack));
+}
+
+/// helper routine to convert instructions into SC
+void MachineCombiner::instr2instrSC(
+ SmallVectorImpl<MachineInstr *> &Instrs,
+ SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
+ for (auto *InstrPtr : Instrs) {
+ unsigned Opc = InstrPtr->getOpcode();
+ unsigned Idx = TII->get(Opc).getSchedClass();
+ const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
+ InstrsSC.push_back(SC);
+ }
+}
+/// preservesResourceLen - True when the new instructions do not increase
+/// resource length
+bool MachineCombiner::preservesResourceLen(
+ MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs) {
+
+ // Compute current resource length
+
+ //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
+ SmallVector <const MachineBasicBlock *, 1> MBBarr;
+ MBBarr.push_back(MBB);
+ unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
+
+ // Deal with SC rather than Instructions.
+ SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
+ SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
+
+ instr2instrSC(InsInstrs, InsInstrsSC);
+ instr2instrSC(DelInstrs, DelInstrsSC);
+
+ ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
+ ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
+
+ // Compute new resource length
+ unsigned ResLenAfterCombine =
+ BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
+
+ DEBUG(dbgs() << "RESOURCE DATA: \n";
+ dbgs() << " resource len before: " << ResLenBeforeCombine
+ << " after: " << ResLenAfterCombine << "\n";);
+
+ return ResLenAfterCombine <= ResLenBeforeCombine;
+}
+
+/// \returns true when new instruction sequence should be generated
+/// independent if it lenghtens critical path or not
+bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
+ if (OptSize && (NewSize < OldSize))
+ return true;
+ if (!TSchedModel.hasInstrSchedModel())
+ return true;
+ return false;
+}
+
+/// combineInstructions - substitute a slow code sequence with a faster one by
+/// evaluating instruction combining pattern.
+/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
+/// combining based on machine trace metrics. Only combine a sequence of
+/// instructions when this neither lengthens the critical path nor increases
+/// resource pressure. When optimizing for codesize always combine when the new
+/// sequence is shorter.
+bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
+ bool Changed = false;
+ DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
+
+ auto BlockIter = MBB->begin();
+
+ while (BlockIter != MBB->end()) {
+ auto &MI = *BlockIter++;
+
+ DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
+ SmallVector<MachineCombinerPattern::MC_PATTERN, 16> Pattern;
+ // The motivating example is:
+ //
+ // MUL Other MUL_op1 MUL_op2 Other
+ // \ / \ | /
+ // ADD/SUB => MADD/MSUB
+ // (=Root) (=NewRoot)
+
+ // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
+ // usually beneficial for code size it unfortunately can hurt performance
+ // when the ADD is on the critical path, but the MUL is not. With the
+ // substitution the MUL becomes part of the critical path (in form of the
+ // MADD) and can lengthen it on architectures where the MADD latency is
+ // longer than the ADD latency.
+ //
+ // For each instruction we check if it can be the root of a combiner
+ // pattern. Then for each pattern the new code sequence in form of MI is
+ // generated and evaluated. When the efficiency criteria (don't lengthen
+ // critical path, don't use more resources) is met the new sequence gets
+ // hooked up into the basic block before the old sequence is removed.
+ //
+ // The algorithm does not try to evaluate all patterns and pick the best.
+ // This is only an artificial restriction though. In practice there is
+ // mostly one pattern and hasPattern() can order patterns based on an
+ // internal cost heuristic.
+
+ if (TII->hasPattern(MI, Pattern)) {
+ for (auto P : Pattern) {
+ SmallVector<MachineInstr *, 16> InsInstrs;
+ SmallVector<MachineInstr *, 16> DelInstrs;
+ DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
+ if (!MinInstr)
+ MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
+ MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
+ Traces->verifyAnalysis();
+ TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
+ InstrIdxForVirtReg);
+ // Found pattern, but did not generate alternative sequence.
+ // This can happen e.g. when an immediate could not be materialized
+ // in a single instruction.
+ if (!InsInstrs.size())
+ continue;
+ // Substitute when we optimize for codesize and the new sequence has
+ // fewer instructions OR
+ // the new sequence neither lenghten the critical path nor increases
+ // resource pressure.
+ if (doSubstitute(InsInstrs.size(), DelInstrs.size()) ||
+ (preservesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs,
+ InstrIdxForVirtReg) &&
+ preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) {
+ for (auto *InstrPtr : InsInstrs)
+ MBB->insert((MachineBasicBlock::iterator) & MI,
+ (MachineInstr *)InstrPtr);
+ for (auto *InstrPtr : DelInstrs)
+ InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
+
+ Changed = true;
+ ++NumInstCombined;
+
+ Traces->invalidate(MBB);
+ Traces->verifyAnalysis();
+ // Eagerly stop after the first pattern fired
+ break;
+ } else {
+ // Cleanup instructions of the alternative code sequence. There is no
+ // use for them.
+ for (auto *InstrPtr : InsInstrs) {
+ MachineFunction *MF = MBB->getParent();
+ MF->DeleteMachineInstr((MachineInstr *)InstrPtr);
+ }
+ }
+ InstrIdxForVirtReg.clear();
+ }
+ }
+ }
+
+ return Changed;
+}
+
+bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
+ const TargetSubtargetInfo &STI =
+ MF.getTarget().getSubtarget<TargetSubtargetInfo>();
+ TII = STI.getInstrInfo();
+ TRI = STI.getRegisterInfo();
+ SchedModel = STI.getSchedModel();
+ TSchedModel.init(SchedModel, &STI, TII);
+ MRI = &MF.getRegInfo();
+ Traces = &getAnalysis<MachineTraceMetrics>();
+ MinInstr = 0;
+
+ OptSize = MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
+
+ DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
+ if (!TII->useMachineCombiner()) {
+ DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n");
+ return false;
+ }
+
+ bool Changed = false;
+
+ // Try to combine instructions.
+ for (auto &MBB : MF)
+ Changed |= combineInstructions(&MBB);
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp b/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp
index 3119a35..cbd6272 100644
--- a/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp
@@ -25,6 +25,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "codegen-cp"
@@ -335,8 +336,8 @@ bool MachineCopyPropagation::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
- TRI = MF.getTarget().getRegisterInfo();
- TII = MF.getTarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
MRI = &MF.getRegInfo();
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
diff --git a/contrib/llvm/lib/CodeGen/MachineDominanceFrontier.cpp b/contrib/llvm/lib/CodeGen/MachineDominanceFrontier.cpp
index 0bee846..acb7c48 100644
--- a/contrib/llvm/lib/CodeGen/MachineDominanceFrontier.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineDominanceFrontier.cpp
@@ -8,8 +8,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineDominanceFrontier.h"
-#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/Analysis/DominanceFrontierImpl.h"
+#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/Passes.h"
diff --git a/contrib/llvm/lib/CodeGen/MachineDominators.cpp b/contrib/llvm/lib/CodeGen/MachineDominators.cpp
index 04c8ecb..df60cf3 100644
--- a/contrib/llvm/lib/CodeGen/MachineDominators.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineDominators.cpp
@@ -35,6 +35,8 @@ void MachineDominatorTree::getAnalysisUsage(AnalysisUsage &AU) const {
}
bool MachineDominatorTree::runOnMachineFunction(MachineFunction &F) {
+ CriticalEdgesToSplit.clear();
+ NewBBs.clear();
DT->recalculate(F);
return false;
diff --git a/contrib/llvm/lib/CodeGen/MachineFunction.cpp b/contrib/llvm/lib/CodeGen/MachineFunction.cpp
index 7e9b755..6b4cba6 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunction.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunction.cpp
@@ -36,6 +36,7 @@
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "codegen"
@@ -52,17 +53,19 @@ void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
}
MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
- unsigned FunctionNum, MachineModuleInfo &mmi,
- GCModuleInfo* gmi)
- : Fn(F), Target(TM), Ctx(mmi.getContext()), MMI(mmi), GMI(gmi) {
- if (TM.getRegisterInfo())
- RegInfo = new (Allocator) MachineRegisterInfo(TM);
+ unsigned FunctionNum, MachineModuleInfo &mmi)
+ : Fn(F), Target(TM), STI(TM.getSubtargetImpl()), Ctx(mmi.getContext()),
+ MMI(mmi) {
+ if (STI->getRegisterInfo())
+ RegInfo = new (Allocator) MachineRegisterInfo(this);
else
RegInfo = nullptr;
MFInfo = nullptr;
- FrameInfo =
- new (Allocator) MachineFrameInfo(TM,!F->hasFnAttribute("no-realign-stack"));
+ FrameInfo = new (Allocator)
+ MachineFrameInfo(STI->getFrameLowering()->getStackAlignment(),
+ STI->getFrameLowering()->isStackRealignable(),
+ !F->hasFnAttribute("no-realign-stack"));
if (Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackAlignment))
@@ -70,13 +73,13 @@ MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
getStackAlignment(AttributeSet::FunctionIndex));
ConstantPool = new (Allocator) MachineConstantPool(TM);
- Alignment = TM.getTargetLowering()->getMinFunctionAlignment();
+ Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
// FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn.
if (!Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize))
Alignment = std::max(Alignment,
- TM.getTargetLowering()->getPrefFunctionAlignment());
+ STI->getTargetLowering()->getPrefFunctionAlignment());
FunctionNumber = FunctionNum;
JumpTableInfo = nullptr;
@@ -229,10 +232,10 @@ MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
MachineMemOperand *
MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f,
uint64_t s, unsigned base_alignment,
- const MDNode *TBAAInfo,
+ const AAMDNodes &AAInfo,
const MDNode *Ranges) {
return new (Allocator) MachineMemOperand(PtrInfo, f, s, base_alignment,
- TBAAInfo, Ranges);
+ AAInfo, Ranges);
}
MachineMemOperand *
@@ -243,12 +246,12 @@ MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
MachineMemOperand(MachinePointerInfo(MMO->getValue(),
MMO->getOffset()+Offset),
MMO->getFlags(), Size,
- MMO->getBaseAlignment(), nullptr);
+ MMO->getBaseAlignment());
return new (Allocator)
MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
MMO->getOffset()+Offset),
MMO->getFlags(), Size,
- MMO->getBaseAlignment(), nullptr);
+ MMO->getBaseAlignment());
}
MachineInstr::mmo_iterator
@@ -279,7 +282,7 @@ MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOStore,
(*I)->getSize(), (*I)->getBaseAlignment(),
- (*I)->getTBAAInfo());
+ (*I)->getAAInfo());
Result[Index] = JustLoad;
}
++Index;
@@ -311,7 +314,7 @@ MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOLoad,
(*I)->getSize(), (*I)->getBaseAlignment(),
- (*I)->getTBAAInfo());
+ (*I)->getAAInfo());
Result[Index] = JustStore;
}
++Index;
@@ -350,7 +353,7 @@ void MachineFunction::print(raw_ostream &OS, SlotIndexes *Indexes) const {
// Print Constant Pool
ConstantPool->print(OS);
- const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
if (RegInfo && !RegInfo->livein_empty()) {
OS << "Function Live Ins: ";
@@ -459,7 +462,7 @@ unsigned MachineFunction::addLiveIn(unsigned PReg,
/// normal 'L' label is returned.
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
bool isLinkerPrivate) const {
- const DataLayout *DL = getTarget().getDataLayout();
+ const DataLayout *DL = getSubtarget().getDataLayout();
assert(JumpTableInfo && "No jump tables");
assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
@@ -474,7 +477,7 @@ MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
/// getPICBaseSymbol - Return a function-local symbol to represent the PIC
/// base.
MCSymbol *MachineFunction::getPICBaseSymbol() const {
- const DataLayout *DL = getTarget().getDataLayout();
+ const DataLayout *DL = getSubtarget().getDataLayout();
return Ctx.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
Twine(getFunctionNumber())+"$pb");
}
@@ -483,15 +486,11 @@ MCSymbol *MachineFunction::getPICBaseSymbol() const {
// MachineFrameInfo implementation
//===----------------------------------------------------------------------===//
-const TargetFrameLowering *MachineFrameInfo::getFrameLowering() const {
- return TM.getFrameLowering();
-}
-
/// ensureMaxAlignment - Make sure the function is at least Align bytes
/// aligned.
void MachineFrameInfo::ensureMaxAlignment(unsigned Align) {
- if (!getFrameLowering()->isStackRealignable() || !RealignOption)
- assert(Align <= getFrameLowering()->getStackAlignment() &&
+ if (!StackRealignable || !RealignOption)
+ assert(Align <= StackAlignment &&
"For targets without stack realignment, Align is out of limit!");
if (MaxAlignment < Align) MaxAlignment = Align;
}
@@ -513,11 +512,10 @@ static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align,
int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
bool isSS, const AllocaInst *Alloca) {
assert(Size != 0 && "Cannot allocate zero size stack objects!");
- Alignment =
- clampStackAlignment(!getFrameLowering()->isStackRealignable() ||
- !RealignOption,
- Alignment, getFrameLowering()->getStackAlignment());
- Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca));
+ Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
+ Alignment, StackAlignment);
+ Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca,
+ !isSS));
int Index = (int)Objects.size() - NumFixedObjects - 1;
assert(Index >= 0 && "Bad frame index!");
ensureMaxAlignment(Alignment);
@@ -530,9 +528,8 @@ int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment,
///
int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
unsigned Alignment) {
- Alignment = clampStackAlignment(
- !getFrameLowering()->isStackRealignable() || !RealignOption, Alignment,
- getFrameLowering()->getStackAlignment());
+ Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
+ Alignment, StackAlignment);
CreateStackObject(Size, Alignment, true);
int Index = (int)Objects.size() - NumFixedObjects - 1;
ensureMaxAlignment(Alignment);
@@ -547,10 +544,9 @@ int MachineFrameInfo::CreateSpillStackObject(uint64_t Size,
int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
const AllocaInst *Alloca) {
HasVarSizedObjects = true;
- Alignment = clampStackAlignment(
- !getFrameLowering()->isStackRealignable() || !RealignOption, Alignment,
- getFrameLowering()->getStackAlignment());
- Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca));
+ Alignment = clampStackAlignment(!StackRealignable || !RealignOption,
+ Alignment, StackAlignment);
+ Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true));
ensureMaxAlignment(Alignment);
return (int)Objects.size()-NumFixedObjects-1;
}
@@ -561,20 +557,18 @@ int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment,
/// index with a negative value.
///
int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
- bool Immutable) {
+ bool Immutable, bool isAliased) {
assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
// The alignment of the frame index can be determined from its offset from
// the incoming frame position. If the frame object is at offset 32 and
// the stack is guaranteed to be 16-byte aligned, then we know that the
// object is 16-byte aligned.
- unsigned StackAlign = getFrameLowering()->getStackAlignment();
- unsigned Align = MinAlign(SPOffset, StackAlign);
- Align = clampStackAlignment(!getFrameLowering()->isStackRealignable() ||
- !RealignOption,
- Align, getFrameLowering()->getStackAlignment());
+ unsigned Align = MinAlign(SPOffset, StackAlignment);
+ Align = clampStackAlignment(!StackRealignable || !RealignOption, Align,
+ StackAlignment);
Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
/*isSS*/ false,
- /*Alloca*/ nullptr));
+ /*Alloca*/ nullptr, isAliased));
return -++NumFixedObjects;
}
@@ -582,25 +576,32 @@ int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
/// on the stack. Returns an index with a negative value.
int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
int64_t SPOffset) {
- unsigned StackAlign = getFrameLowering()->getStackAlignment();
- unsigned Align = MinAlign(SPOffset, StackAlign);
- Align = clampStackAlignment(!getFrameLowering()->isStackRealignable() ||
- !RealignOption,
- Align, getFrameLowering()->getStackAlignment());
+ unsigned Align = MinAlign(SPOffset, StackAlignment);
+ Align = clampStackAlignment(!StackRealignable || !RealignOption, Align,
+ StackAlignment);
Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
/*Immutable*/ true,
/*isSS*/ true,
- /*Alloca*/ nullptr));
+ /*Alloca*/ nullptr,
+ /*isAliased*/ false));
return -++NumFixedObjects;
}
+int MachineFrameInfo::CreateFrameAllocation(uint64_t Size) {
+ // Force the use of a frame pointer. The intention is that this intrinsic be
+ // used in conjunction with unwind mechanisms that leak the frame pointer.
+ setFrameAddressIsTaken(true);
+ Size = RoundUpToAlignment(Size, StackAlignment);
+ return CreateStackObject(Size, StackAlignment, false);
+}
+
BitVector
MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
assert(MBB && "MBB must be valid");
const MachineFunction *MF = MBB->getParent();
assert(MF && "MBB must be part of a MachineFunction");
const TargetMachine &TM = MF->getTarget();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
BitVector BV(TRI->getNumRegs());
// Before CSI is calculated, no registers are considered pristine. They can be
@@ -625,8 +626,8 @@ MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
}
unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
- const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
unsigned MaxAlign = getMaxAlignment();
int Offset = 0;
@@ -676,7 +677,7 @@ unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const {
void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
if (Objects.empty()) return;
- const TargetFrameLowering *FI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
OS << "Frame Objects:\n";
@@ -820,7 +821,7 @@ void MachineJumpTableInfo::dump() const { print(dbgs()); }
void MachineConstantPoolValue::anchor() { }
const DataLayout *MachineConstantPool::getDataLayout() const {
- return TM.getDataLayout();
+ return TM.getSubtargetImpl()->getDataLayout();
}
Type *MachineConstantPoolEntry::getType() const {
diff --git a/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp b/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp
index 46cd60a..f6f34ba 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp
@@ -46,8 +46,7 @@ bool MachineFunctionAnalysis::doInitialization(Module &M) {
bool MachineFunctionAnalysis::runOnFunction(Function &F) {
assert(!MF && "MachineFunctionAnalysis already initialized!");
MF = new MachineFunction(&F, TM, NextFnNum++,
- getAnalysis<MachineModuleInfo>(),
- getAnalysisIfAvailable<GCModuleInfo>());
+ getAnalysis<MachineModuleInfo>());
return false;
}
diff --git a/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp b/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp
index 789f204..2f076b6 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp
@@ -11,11 +11,19 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/IR/Function.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/DominanceFrontier.h"
+#include "llvm/Analysis/IVUsers.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
using namespace llvm;
Pass *MachineFunctionPass::createPrinterPass(raw_ostream &O,
@@ -43,15 +51,13 @@ void MachineFunctionPass::getAnalysisUsage(AnalysisUsage &AU) const {
// because CodeGen overloads that to mean preserving the MachineBasicBlock
// CFG in addition to the LLVM IR CFG.
AU.addPreserved<AliasAnalysis>();
- AU.addPreserved("scalar-evolution");
- AU.addPreserved("iv-users");
- AU.addPreserved("memdep");
- AU.addPreserved("live-values");
- AU.addPreserved("domtree");
- AU.addPreserved("domfrontier");
- AU.addPreserved("loops");
- AU.addPreserved("lda");
- AU.addPreserved("stack-protector");
+ AU.addPreserved<DominanceFrontier>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<IVUsers>();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<MemoryDependenceAnalysis>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addPreserved<StackProtector>();
FunctionPass::getAnalysisUsage(AU);
}
diff --git a/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp b/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp
index dee3977..790f5ac 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp
@@ -52,7 +52,7 @@ char MachineFunctionPrinterPass::ID = 0;
}
char &llvm::MachineFunctionPrinterPassID = MachineFunctionPrinterPass::ID;
-INITIALIZE_PASS(MachineFunctionPrinterPass, "print-machineinstrs",
+INITIALIZE_PASS(MachineFunctionPrinterPass, "machineinstr-printer",
"Machine Function Printer", false, false)
namespace llvm {
diff --git a/contrib/llvm/lib/CodeGen/MachineInstr.cpp b/contrib/llvm/lib/CodeGen/MachineInstr.cpp
index 5122165..968ec2c 100644
--- a/contrib/llvm/lib/CodeGen/MachineInstr.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineInstr.cpp
@@ -39,6 +39,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -105,23 +106,41 @@ void MachineOperand::setIsDef(bool Val) {
IsDef = Val;
}
+// If this operand is currently a register operand, and if this is in a
+// function, deregister the operand from the register's use/def list.
+void MachineOperand::removeRegFromUses() {
+ if (!isReg() || !isOnRegUseList())
+ return;
+
+ if (MachineInstr *MI = getParent()) {
+ if (MachineBasicBlock *MBB = MI->getParent()) {
+ if (MachineFunction *MF = MBB->getParent())
+ MF->getRegInfo().removeRegOperandFromUseList(this);
+ }
+ }
+}
+
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
- // If this operand is currently a register operand, and if this is in a
- // function, deregister the operand from the register's use/def list.
- if (isReg() && isOnRegUseList())
- if (MachineInstr *MI = getParent())
- if (MachineBasicBlock *MBB = MI->getParent())
- if (MachineFunction *MF = MBB->getParent())
- MF->getRegInfo().removeRegOperandFromUseList(this);
+
+ removeRegFromUses();
OpKind = MO_Immediate;
Contents.ImmVal = ImmVal;
}
+void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
+ assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
+
+ removeRegFromUses();
+
+ OpKind = MO_FPImmediate;
+ Contents.CFP = FPImm;
+}
+
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
@@ -265,7 +284,8 @@ void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
if (const MachineBasicBlock *MBB = MI->getParent())
if (const MachineFunction *MF = MBB->getParent())
TM = &MF->getTarget();
- const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : nullptr;
+ const TargetRegisterInfo *TRI =
+ TM ? TM->getSubtargetImpl()->getRegisterInfo() : nullptr;
switch (getType()) {
case MachineOperand::MO_Register:
@@ -377,7 +397,7 @@ void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
break;
case MachineOperand::MO_Metadata:
OS << '<';
- getMetadata()->printAsOperand(OS, /*PrintType=*/false);
+ getMetadata()->printAsOperand(OS);
OS << '>';
break;
case MachineOperand::MO_MCSymbol:
@@ -429,11 +449,11 @@ MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
uint64_t s, unsigned int a,
- const MDNode *TBAAInfo,
+ const AAMDNodes &AAInfo,
const MDNode *Ranges)
: PtrInfo(ptrinfo), Size(s),
Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
- TBAAInfo(TBAAInfo), Ranges(Ranges) {
+ AAInfo(AAInfo), Ranges(Ranges) {
assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
"invalid pointer value");
@@ -514,10 +534,38 @@ raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
OS << "(align=" << MMO.getAlignment() << ")";
// Print TBAA info.
- if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
+ if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) {
OS << "(tbaa=";
if (TBAAInfo->getNumOperands() > 0)
- TBAAInfo->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
+ TBAAInfo->getOperand(0)->printAsOperand(OS);
+ else
+ OS << "<unknown>";
+ OS << ")";
+ }
+
+ // Print AA scope info.
+ if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) {
+ OS << "(alias.scope=";
+ if (ScopeInfo->getNumOperands() > 0)
+ for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
+ ScopeInfo->getOperand(i)->printAsOperand(OS);
+ if (i != ie-1)
+ OS << ",";
+ }
+ else
+ OS << "<unknown>";
+ OS << ")";
+ }
+
+ // Print AA noalias scope info.
+ if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) {
+ OS << "(noalias=";
+ if (NoAliasInfo->getNumOperands() > 0)
+ for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
+ NoAliasInfo->getOperand(i)->printAsOperand(OS);
+ if (i != ie-1)
+ OS << ",";
+ }
else
OS << "<unknown>";
OS << ")";
@@ -551,6 +599,8 @@ MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
: MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0),
Flags(0), AsmPrinterFlags(0),
NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) {
+ assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
+
// Reserve space for the expected number of operands.
if (unsigned NumOps = MCID->getNumOperands() +
MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
@@ -569,6 +619,8 @@ MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
Flags(0), AsmPrinterFlags(0),
NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
debugLoc(MI.getDebugLoc()) {
+ assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
+
CapOperands = OperandCapacity::get(MI.getNumOperands());
Operands = MF.allocateOperandArray(CapOperands);
@@ -865,6 +917,27 @@ void MachineInstr::eraseFromParent() {
getParent()->erase(this);
}
+void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
+ assert(getParent() && "Not embedded in a basic block!");
+ MachineBasicBlock *MBB = getParent();
+ MachineFunction *MF = MBB->getParent();
+ assert(MF && "Not embedded in a function!");
+
+ MachineInstr *MI = (MachineInstr *)this;
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ MRI.markUsesInDebugValueAsUndef(Reg);
+ }
+ MI->eraseFromParent();
+}
+
void MachineInstr::eraseFromBundle() {
assert(getParent() && "Not embedded in a basic block!");
getParent()->erase_instr(this);
@@ -1379,7 +1452,7 @@ bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
// If we have an AliasAnalysis, ask it whether the memory is constant.
if (AA && AA->pointsToConstantMemory(
AliasAnalysis::Location(V, (*I)->getSize(),
- (*I)->getTBAAInfo())))
+ (*I)->getAAInfo())))
continue;
}
@@ -1489,8 +1562,8 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
OS << " = ";
// Print the opcode name.
- if (TM && TM->getInstrInfo())
- OS << TM->getInstrInfo()->getName(getOpcode());
+ if (TM && TM->getSubtargetImpl()->getInstrInfo())
+ OS << TM->getSubtargetImpl()->getInstrInfo()->getName(getOpcode());
else
OS << "UNKNOWN";
@@ -1538,17 +1611,17 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
// call instructions much less noisy on targets where calls clobber lots
// of registers. Don't rely on MO.isDead() because we may be called before
// LiveVariables is run, or we may be looking at a non-allocatable reg.
- if (MF && isCall() &&
+ if (MRI && isCall() &&
MO.isReg() && MO.isImplicit() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- const MachineRegisterInfo &MRI = MF->getRegInfo();
- if (MRI.use_empty(Reg)) {
+ if (MRI->use_empty(Reg)) {
bool HasAliasLive = false;
- for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
+ for (MCRegAliasIterator AI(
+ Reg, TM->getSubtargetImpl()->getRegisterInfo(), true);
AI.isValid(); ++AI) {
unsigned AliasReg = *AI;
- if (!MRI.use_empty(AliasReg)) {
+ if (!MRI->use_empty(AliasReg)) {
HasAliasLive = true;
break;
}
@@ -1573,12 +1646,16 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
if (isDebugValue() && MO.isMetadata()) {
// Pretty print DBG_VALUE instructions.
const MDNode *MD = MO.getMetadata();
- if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
- OS << "!\"" << MDS->getString() << '\"';
+ DIDescriptor DI(MD);
+ DIVariable DIV(MD);
+
+ if (DI.isVariable() && !DIV.getName().empty())
+ OS << "!\"" << DIV.getName() << '\"';
else
MO.print(OS, TM);
} else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
- OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
+ OS << TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIndexName(
+ MO.getImm());
} else if (i == AsmDescOp && MO.isImm()) {
// Pretty print the inline asm operand descriptor.
OS << '$' << AsmOpCount++;
@@ -1595,9 +1672,12 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
unsigned RCID = 0;
if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
- if (TM)
- OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
- else
+ if (TM) {
+ const TargetRegisterInfo *TRI =
+ TM->getSubtargetImpl()->getRegisterInfo();
+ OS << ':'
+ << TRI->getRegClassName(TRI->getRegClass(RCID));
+ } else
OS << ":RC" << RCID;
}
@@ -1646,7 +1726,8 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
if (!HaveSemi) OS << ";"; HaveSemi = true;
for (unsigned i = 0; i != VirtRegs.size(); ++i) {
const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
- OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
+ OS << " " << MRI->getTargetRegisterInfo()->getRegClassName(RC)
+ << ':' << PrintReg(VirtRegs[i]);
for (unsigned j = i+1; j != VirtRegs.size();) {
if (MRI->getRegClass(VirtRegs[j]) != RC) {
++j;
@@ -1672,6 +1753,8 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
OS << " ]";
}
}
+ if (isIndirectDebugValue())
+ OS << " indirect";
} else if (!debugLoc.isUnknown() && MF) {
if (!HaveSemi) OS << ";";
OS << " dbg:";
@@ -1881,7 +1964,8 @@ void MachineInstr::emitError(StringRef Msg) const {
if (getOperand(i-1).isMetadata() &&
(LocMD = getOperand(i-1).getMetadata()) &&
LocMD->getNumOperands() != 0) {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
+ if (const ConstantInt *CI =
+ mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
LocCookie = CI->getZExtValue();
break;
}
diff --git a/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp b/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp
index 962169e..0690f08 100644
--- a/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp
@@ -16,6 +16,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
namespace {
@@ -103,12 +104,12 @@ void llvm::finalizeBundle(MachineBasicBlock &MBB,
assert(FirstMI != LastMI && "Empty bundle?");
MIBundleBuilder Bundle(MBB, FirstMI, LastMI);
- const TargetMachine &TM = MBB.getParent()->getTarget();
- const TargetInstrInfo *TII = TM.getInstrInfo();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- MachineInstrBuilder MIB = BuildMI(*MBB.getParent(), FirstMI->getDebugLoc(),
- TII->get(TargetOpcode::BUNDLE));
+ MachineInstrBuilder MIB =
+ BuildMI(MF, FirstMI->getDebugLoc(), TII->get(TargetOpcode::BUNDLE));
Bundle.prepend(MIB);
SmallVector<unsigned, 32> LocalDefs;
@@ -140,7 +141,7 @@ void llvm::finalizeBundle(MachineBasicBlock &MBB,
// Internal def is now killed.
KilledDefSet.insert(Reg);
} else {
- if (ExternUseSet.insert(Reg)) {
+ if (ExternUseSet.insert(Reg).second) {
ExternUses.push_back(Reg);
if (MO.isUndef())
UndefUseSet.insert(Reg);
@@ -157,7 +158,7 @@ void llvm::finalizeBundle(MachineBasicBlock &MBB,
if (!Reg)
continue;
- if (LocalDefSet.insert(Reg)) {
+ if (LocalDefSet.insert(Reg).second) {
LocalDefs.push_back(Reg);
if (MO.isDead()) {
DeadDefSet.insert(Reg);
@@ -173,7 +174,7 @@ void llvm::finalizeBundle(MachineBasicBlock &MBB,
if (!MO.isDead()) {
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
- if (LocalDefSet.insert(SubReg))
+ if (LocalDefSet.insert(SubReg).second)
LocalDefs.push_back(SubReg);
}
}
@@ -185,7 +186,7 @@ void llvm::finalizeBundle(MachineBasicBlock &MBB,
SmallSet<unsigned, 32> Added;
for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
unsigned Reg = LocalDefs[i];
- if (Added.insert(Reg)) {
+ if (Added.insert(Reg).second) {
// If it's not live beyond end of the bundle, mark it dead.
bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg);
MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) |
diff --git a/contrib/llvm/lib/CodeGen/MachineLICM.cpp b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
index 68d2efd..cb14a5c 100644
--- a/contrib/llvm/lib/CodeGen/MachineLICM.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
@@ -39,6 +39,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "machine-licm"
@@ -48,6 +49,11 @@ AvoidSpeculation("avoid-speculation",
cl::desc("MachineLICM should avoid speculation"),
cl::init(true), cl::Hidden);
+static cl::opt<bool>
+HoistCheapInsts("hoist-cheap-insts",
+ cl::desc("MachineLICM should hoist even cheap instructions"),
+ cl::init(false), cl::Hidden);
+
STATISTIC(NumHoisted,
"Number of machine instructions hoisted out of loops");
STATISTIC(NumLowRP,
@@ -61,7 +67,6 @@ STATISTIC(NumPostRAHoisted,
namespace {
class MachineLICM : public MachineFunctionPass {
- const TargetMachine *TM;
const TargetInstrInfo *TII;
const TargetLoweringBase *TLI;
const TargetRegisterInfo *TRI;
@@ -142,9 +147,6 @@ namespace {
RegPressure.clear();
RegLimit.clear();
BackTrace.clear();
- for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
- CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
- CI->second.clear();
CSEMap.clear();
}
@@ -324,13 +326,12 @@ bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
return false;
Changed = FirstInLoop = false;
- TM = &MF.getTarget();
- TII = TM->getInstrInfo();
- TLI = TM->getTargetLowering();
- TRI = TM->getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TLI = MF.getSubtarget().getTargetLowering();
+ TRI = MF.getSubtarget().getRegisterInfo();
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
- InstrItins = TM->getInstrItineraryData();
+ InstrItins = MF.getSubtarget().getInstrItineraryData();
PreRegAlloc = MRI->isSSA();
@@ -822,7 +823,7 @@ void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
- bool isNew = RegSeen.insert(Reg);
+ bool isNew = RegSeen.insert(Reg).second;
unsigned RCId, RCCost;
getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
if (MO.isDef())
@@ -854,7 +855,7 @@ void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
- bool isNew = RegSeen.insert(Reg);
+ bool isNew = RegSeen.insert(Reg).second;
if (MO.isDef())
Defs.push_back(Reg);
else if (!isNew && isOperandKill(MO, MRI)) {
@@ -1039,7 +1040,7 @@ bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
/// the operand latency between its def and a use is one or less.
bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
- if (MI.isAsCheapAsAMove() || MI.isCopyLike())
+ if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike())
return true;
if (!InstrItins || InstrItins->isEmpty())
return false;
@@ -1079,7 +1080,7 @@ bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost,
// Don't hoist cheap instructions if they would increase register pressure,
// even if we're under the limit.
- if (CheapInstr)
+ if (CheapInstr && !HoistCheapInsts)
return true;
for (unsigned i = BackTrace.size(); i != 0; --i) {
@@ -1299,15 +1300,7 @@ void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
const MachineInstr *MI = &*I;
unsigned Opcode = MI->getOpcode();
- DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
- CI = CSEMap.find(Opcode);
- if (CI != CSEMap.end())
- CI->second.push_back(MI);
- else {
- std::vector<const MachineInstr*> CSEMIs;
- CSEMIs.push_back(MI);
- CSEMap.insert(std::make_pair(Opcode, CSEMIs));
- }
+ CSEMap[Opcode].push_back(MI);
}
}
@@ -1447,11 +1440,8 @@ bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
// Add to the CSE map.
if (CI != CSEMap.end())
CI->second.push_back(MI);
- else {
- std::vector<const MachineInstr*> CSEMIs;
- CSEMIs.push_back(MI);
- CSEMap.insert(std::make_pair(Opcode, CSEMIs));
- }
+ else
+ CSEMap[Opcode].push_back(MI);
}
++NumHoisted;
diff --git a/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp b/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp
index 4976e35..32d5112 100644
--- a/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp
@@ -270,11 +270,10 @@ MachineModuleInfo::~MachineModuleInfo() {
bool MachineModuleInfo::doInitialization(Module &M) {
ObjFileMMI = nullptr;
- CompactUnwindEncoding = 0;
CurCallSite = 0;
CallsEHReturn = 0;
CallsUnwindInit = 0;
- DbgInfoAvailable = UsesVAFloatArgument = false;
+ DbgInfoAvailable = UsesVAFloatArgument = UsesMorestackAddr = false;
// Always emit some info, by default "no personality" info.
Personalities.push_back(nullptr);
AddrLabelSymbols = nullptr;
@@ -312,7 +311,6 @@ void MachineModuleInfo::EndFunction() {
FilterEnds.clear();
CallsEHReturn = 0;
CallsUnwindInit = 0;
- CompactUnwindEncoding = 0;
VariableDbgInfos.clear();
}
@@ -429,7 +427,7 @@ void MachineModuleInfo::addPersonality(MachineBasicBlock *LandingPad,
///
void MachineModuleInfo::
addCatchTypeInfo(MachineBasicBlock *LandingPad,
- ArrayRef<const GlobalVariable *> TyInfo) {
+ ArrayRef<const GlobalValue *> TyInfo) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
for (unsigned N = TyInfo.size(); N; --N)
LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
@@ -439,7 +437,7 @@ addCatchTypeInfo(MachineBasicBlock *LandingPad,
///
void MachineModuleInfo::
addFilterTypeInfo(MachineBasicBlock *LandingPad,
- ArrayRef<const GlobalVariable *> TyInfo) {
+ ArrayRef<const GlobalValue *> TyInfo) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
std::vector<unsigned> IdsInFilter(TyInfo.size());
for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
@@ -454,6 +452,14 @@ void MachineModuleInfo::addCleanup(MachineBasicBlock *LandingPad) {
LP.TypeIds.push_back(0);
}
+MCSymbol *
+MachineModuleInfo::addClauseForLandingPad(MachineBasicBlock *LandingPad) {
+ MCSymbol *ClauseLabel = Context.CreateTempSymbol();
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.ClauseLabels.push_back(ClauseLabel);
+ return ClauseLabel;
+}
+
/// TidyLandingPads - Remap landing pad labels and remove any deleted landing
/// pads.
void MachineModuleInfo::TidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
@@ -508,7 +514,7 @@ void MachineModuleInfo::setCallSiteLandingPad(MCSymbol *Sym,
/// getTypeIDFor - Return the type id for the specified typeinfo. This is
/// function wide.
-unsigned MachineModuleInfo::getTypeIDFor(const GlobalVariable *TI) {
+unsigned MachineModuleInfo::getTypeIDFor(const GlobalValue *TI) {
for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
if (TypeInfos[i] == TI) return i + 1;
diff --git a/contrib/llvm/lib/CodeGen/MachineRegionInfo.cpp b/contrib/llvm/lib/CodeGen/MachineRegionInfo.cpp
index c6b6802..01d2c2e 100644
--- a/contrib/llvm/lib/CodeGen/MachineRegionInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineRegionInfo.cpp
@@ -1,8 +1,10 @@
#include "llvm/CodeGen/MachineRegionInfo.h"
-#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/RegionInfoImpl.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+
+#define DEBUG_TYPE "region"
using namespace llvm;
diff --git a/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp b/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp
index f560259..86bb34b 100644
--- a/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp
@@ -16,28 +16,23 @@
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
// Pin the vtable to this file.
void MachineRegisterInfo::Delegate::anchor() {}
-MachineRegisterInfo::MachineRegisterInfo(const TargetMachine &TM)
- : TM(TM), TheDelegate(nullptr), IsSSA(true), TracksLiveness(true) {
+MachineRegisterInfo::MachineRegisterInfo(const MachineFunction *MF)
+ : MF(MF), TheDelegate(nullptr), IsSSA(true), TracksLiveness(true),
+ TracksSubRegLiveness(false) {
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
UsedRegUnits.resize(getTargetRegisterInfo()->getNumRegUnits());
UsedPhysRegMask.resize(getTargetRegisterInfo()->getNumRegs());
// Create the physreg use/def lists.
- PhysRegUseDefLists =
- new MachineOperand*[getTargetRegisterInfo()->getNumRegs()];
- memset(PhysRegUseDefLists, 0,
- sizeof(MachineOperand*)*getTargetRegisterInfo()->getNumRegs());
-}
-
-MachineRegisterInfo::~MachineRegisterInfo() {
- delete [] PhysRegUseDefLists;
+ PhysRegUseDefLists.resize(getTargetRegisterInfo()->getNumRegs(), nullptr);
}
/// setRegClass - Set the register class of the specified virtual register.
@@ -67,7 +62,7 @@ MachineRegisterInfo::constrainRegClass(unsigned Reg,
bool
MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
- const TargetInstrInfo *TII = TM.getInstrInfo();
+ const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
const TargetRegisterClass *OldRC = getRegClass(Reg);
const TargetRegisterClass *NewRC =
getTargetRegisterInfo()->getLargestLegalSuperClass(OldRC);
@@ -134,6 +129,7 @@ void MachineRegisterInfo::verifyUseList(unsigned Reg) const {
<< " use list MachineOperand " << MO
<< " has no parent instruction.\n";
Valid = false;
+ continue;
}
MachineOperand *MO0 = &MI->getOperand(0);
unsigned NumOps = MI->getNumOperands();
@@ -283,18 +279,25 @@ void MachineRegisterInfo::moveOperands(MachineOperand *Dst,
/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
+/// If ToReg is a physical register we apply the sub register to obtain the
+/// final/proper physical register.
void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
assert(FromReg != ToReg && "Cannot replace a reg with itself");
+ const TargetRegisterInfo *TRI = getTargetRegisterInfo();
+
// TODO: This could be more efficient by bulk changing the operands.
for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
MachineOperand &O = *I;
++I;
- O.setReg(ToReg);
+ if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
+ O.substPhysReg(ToReg, *TRI);
+ } else {
+ O.setReg(ToReg);
+ }
}
}
-
/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found. This assumes that the code is in SSA
/// form, so there should only be one definition.
@@ -390,6 +393,14 @@ MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
}
}
+unsigned MachineRegisterInfo::getMaxLaneMaskForVReg(unsigned Reg) const
+{
+ // Lane masks are only defined for vregs.
+ assert(TargetRegisterInfo::isVirtualRegister(Reg));
+ const TargetRegisterClass &TRC = *getRegClass(Reg);
+ return TRC.getLaneMask();
+}
+
#ifndef NDEBUG
void MachineRegisterInfo::dumpUses(unsigned Reg) const {
for (MachineInstr &I : use_instructions(Reg))
diff --git a/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp b/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp
index d9173a2..71a6eba 100644
--- a/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp
@@ -24,8 +24,8 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
using namespace llvm;
@@ -39,7 +39,7 @@ static AvailableValsTy &getAvailableVals(void *AV) {
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
SmallVectorImpl<MachineInstr*> *NewPHI)
: AV(nullptr), InsertedPHIs(NewPHI) {
- TII = MF.getTarget().getInstrInfo();
+ TII = MF.getSubtarget().getInstrInfo();
MRI = &MF.getRegInfo();
}
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
index 44191f7..9fe23c5 100644
--- a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
@@ -40,6 +40,9 @@ cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
cl::desc("Force top-down list scheduling"));
cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
cl::desc("Force bottom-up list scheduling"));
+cl::opt<bool>
+DumpCriticalPathLength("misched-dcpl", cl::Hidden,
+ cl::desc("Print critical path length to stdout"));
}
#ifndef NDEBUG
@@ -141,12 +144,12 @@ char MachineScheduler::ID = 0;
char &llvm::MachineSchedulerID = MachineScheduler::ID;
-INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
+INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
"Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_END(MachineScheduler, "misched",
+INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
"Machine Instruction Scheduler", false, false)
MachineScheduler::MachineScheduler()
@@ -378,7 +381,7 @@ static bool isSchedBoundary(MachineBasicBlock::iterator MI,
/// Main driver for both MachineScheduler and PostMachineScheduler.
void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
bool IsPostRA = Scheduler.isPostRA();
// Visit all machine basic blocks.
@@ -427,9 +430,11 @@ void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
// instruction stream until we find the nearest boundary.
unsigned NumRegionInstrs = 0;
MachineBasicBlock::iterator I = RegionEnd;
- for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
+ for(;I != MBB->begin(); --I, --RemainingInstrs) {
if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
break;
+ if (!I->isDebugValue())
+ ++NumRegionInstrs;
}
// Notify the scheduler of the region, even if we may skip scheduling
// it. Perhaps it still needs to be bundled.
@@ -451,6 +456,11 @@ void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
else dbgs() << "End";
dbgs() << " RegionInstrs: " << NumRegionInstrs
<< " Remaining: " << RemainingInstrs << "\n");
+ if (DumpCriticalPathLength) {
+ errs() << MF->getName();
+ errs() << ":BB# " << MBB->getNumber();
+ errs() << " " << MBB->getName() << " \n";
+ }
// Schedule a region: possibly reorder instructions.
// This invalidates 'RegionEnd' and 'I'.
@@ -2355,14 +2365,15 @@ void GenericScheduler::initialize(ScheduleDAGMI *dag) {
// Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
// are disabled, then these HazardRecs will be disabled.
const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
- const TargetMachine &TM = DAG->MF.getTarget();
if (!Top.HazardRec) {
Top.HazardRec =
- TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
+ Itin, DAG);
}
if (!Bot.HazardRec) {
Bot.HazardRec =
- TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
+ Itin, DAG);
}
}
@@ -2370,8 +2381,8 @@ void GenericScheduler::initialize(ScheduleDAGMI *dag) {
void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
unsigned NumRegionInstrs) {
- const TargetMachine &TM = Context->MF->getTarget();
- const TargetLowering *TLI = TM.getTargetLowering();
+ const MachineFunction &MF = *Begin->getParent()->getParent();
+ const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
// Avoid setting up the register pressure tracker for small regions to save
// compile time. As a rough heuristic, only track pressure when the number of
@@ -2391,8 +2402,8 @@ void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
RegionPolicy.OnlyBottomUp = true;
// Allow the subtarget to override default policy.
- const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
- ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
+ MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
+ NumRegionInstrs);
// After subtarget overrides, apply command line options.
if (!EnableRegPressure)
@@ -2460,7 +2471,10 @@ void GenericScheduler::registerRoots() {
if ((*I)->getDepth() > Rem.CriticalPath)
Rem.CriticalPath = (*I)->getDepth();
}
- DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+ DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
+ if (DumpCriticalPathLength) {
+ errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
+ }
if (EnableCyclicPath) {
Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
@@ -2482,8 +2496,8 @@ static bool tryPressure(const PressureChange &TryP,
}
// If one candidate decreases and the other increases, go with it.
// Invalid candidates have UnitInc==0.
- if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
- Reason)) {
+ if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
+ Reason)) {
return true;
}
// If the candidates are decreasing pressure, reverse priority.
@@ -2885,10 +2899,10 @@ void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
// Initialize the HazardRecognizers. If itineraries don't exist, are empty,
// or are disabled, then these HazardRecs will be disabled.
const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
- const TargetMachine &TM = DAG->MF.getTarget();
if (!Top.HazardRec) {
Top.HazardRec =
- TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
+ Itin, DAG);
}
}
@@ -2902,7 +2916,10 @@ void PostGenericScheduler::registerRoots() {
if ((*I)->getDepth() > Rem.CriticalPath)
Rem.CriticalPath = (*I)->getDepth();
}
- DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+ DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
+ if (DumpCriticalPathLength) {
+ errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
+ }
}
/// Apply a set of heursitics to a new candidate for PostRA scheduling.
diff --git a/contrib/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm/lib/CodeGen/MachineSink.cpp
index f44e4d1..8337793 100644
--- a/contrib/llvm/lib/CodeGen/MachineSink.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineSink.cpp
@@ -17,18 +17,21 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "machine-sink"
@@ -38,6 +41,12 @@ SplitEdges("machine-sink-split",
cl::desc("Split critical edges during machine sinking"),
cl::init(true), cl::Hidden);
+static cl::opt<bool>
+UseBlockFreqInfo("machine-sink-bfi",
+ cl::desc("Use block frequency info to find successors to sink"),
+ cl::init(true), cl::Hidden);
+
+
STATISTIC(NumSunk, "Number of machine instructions sunk");
STATISTIC(NumSplit, "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");
@@ -46,14 +55,20 @@ namespace {
class MachineSinking : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
- MachineRegisterInfo *MRI; // Machine register information
- MachineDominatorTree *DT; // Machine dominator tree
+ MachineRegisterInfo *MRI; // Machine register information
+ MachineDominatorTree *DT; // Machine dominator tree
+ MachinePostDominatorTree *PDT; // Machine post dominator tree
MachineLoopInfo *LI;
+ const MachineBlockFrequencyInfo *MBFI;
AliasAnalysis *AA;
// Remember which edges have been considered for breaking.
SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
CEBCandidates;
+ // Remember which edges we are about to split.
+ // This is different from CEBCandidates since those edges
+ // will be split.
+ SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
public:
static char ID; // Pass identification
@@ -68,9 +83,13 @@ namespace {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachinePostDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
+ if (UseBlockFreqInfo)
+ AU.addRequired<MachineBlockFrequencyInfo>();
}
void releaseMemory() override {
@@ -82,10 +101,22 @@ namespace {
bool isWorthBreakingCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To);
- MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To,
- bool BreakPHIEdge);
+ /// \brief Postpone the splitting of the given critical
+ /// edge (\p From, \p To).
+ ///
+ /// We do not split the edges on the fly. Indeed, this invalidates
+ /// the dominance information and thus triggers a lot of updates
+ /// of that information underneath.
+ /// Instead, we postpone all the splits after each iteration of
+ /// the main loop. That way, the information is at least valid
+ /// for the lifetime of an iteration.
+ ///
+ /// \return True if the edge is marked as toSplit, false otherwise.
+ /// False can be returned if, for instance, this is not profitable.
+ bool PostponeSplitCriticalEdge(MachineInstr *MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To,
+ bool BreakPHIEdge);
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
@@ -135,6 +166,11 @@ bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
DEBUG(dbgs() << "*** to: " << *MI);
MRI->replaceRegWith(DstReg, SrcReg);
MI->eraseFromParent();
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ MRI->clearKillFlags(SrcReg);
+
++NumCoalesces;
return true;
}
@@ -213,12 +249,13 @@ bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "******** Machine Sinking ********\n");
- const TargetMachine &TM = MF.getTarget();
- TII = TM.getInstrInfo();
- TRI = TM.getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
+ PDT = &getAnalysis<MachinePostDominatorTree>();
LI = &getAnalysis<MachineLoopInfo>();
+ MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
AA = &getAnalysis<AliasAnalysis>();
bool EverMadeChange = false;
@@ -228,10 +265,24 @@ bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
// Process all basic blocks.
CEBCandidates.clear();
+ ToSplit.clear();
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
I != E; ++I)
MadeChange |= ProcessBlock(*I);
+ // If we have anything we marked as toSplit, split it now.
+ for (auto &Pair : ToSplit) {
+ auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
+ if (NewSucc != nullptr) {
+ DEBUG(dbgs() << " *** Splitting critical edge:"
+ " BB#" << Pair.first->getNumber()
+ << " -- BB#" << NewSucc->getNumber()
+ << " -- BB#" << Pair.second->getNumber() << '\n');
+ MadeChange = true;
+ ++NumSplit;
+ } else
+ DEBUG(dbgs() << " *** Not legal to break critical edge\n");
+ }
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
@@ -289,10 +340,10 @@ bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
// If the pass has already considered breaking this edge (during this pass
// through the function), then let's go ahead and break it. This means
// sinking multiple "cheap" instructions into the same block.
- if (!CEBCandidates.insert(std::make_pair(From, To)))
+ if (!CEBCandidates.insert(std::make_pair(From, To)).second)
return true;
- if (!MI->isCopy() && !MI->isAsCheapAsAMove())
+ if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
return true;
// MI is cheap, we probably don't want to break the critical edge for it.
@@ -328,21 +379,21 @@ bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
return false;
}
-MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *FromBB,
- MachineBasicBlock *ToBB,
- bool BreakPHIEdge) {
+bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
+ MachineBasicBlock *FromBB,
+ MachineBasicBlock *ToBB,
+ bool BreakPHIEdge) {
if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
- return nullptr;
+ return false;
// Avoid breaking back edge. From == To means backedge for single BB loop.
if (!SplitEdges || FromBB == ToBB)
- return nullptr;
+ return false;
// Check for backedges of more "complex" loops.
if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
LI->isLoopHeader(ToBB))
- return nullptr;
+ return false;
// It's not always legal to break critical edges and sink the computation
// to the edge.
@@ -389,11 +440,13 @@ MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
if (*PI == FromBB)
continue;
if (!DT->dominates(ToBB, *PI))
- return nullptr;
+ return false;
}
}
- return FromBB->SplitCriticalEdge(ToBB, this);
+ ToSplit.insert(std::make_pair(FromBB, ToBB));
+
+ return true;
}
static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
@@ -419,23 +472,6 @@ static void collectDebugValues(MachineInstr *MI,
}
}
-/// isPostDominatedBy - Return true if A is post dominated by B.
-static bool isPostDominatedBy(MachineBasicBlock *A, MachineBasicBlock *B) {
-
- // FIXME - Use real post dominator.
- if (A->succ_size() != 2)
- return false;
- MachineBasicBlock::succ_iterator I = A->succ_begin();
- if (B == *I)
- ++I;
- MachineBasicBlock *OtherSuccBlock = *I;
- if (OtherSuccBlock->succ_size() != 1 ||
- *(OtherSuccBlock->succ_begin()) != B)
- return false;
-
- return true;
-}
-
/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
MachineBasicBlock *MBB,
@@ -447,8 +483,13 @@ bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
return false;
// It is profitable if SuccToSinkTo does not post dominate current block.
- if (!isPostDominatedBy(MBB, SuccToSinkTo))
- return true;
+ if (!PDT->dominates(SuccToSinkTo, MBB))
+ return true;
+
+ // It is profitable to sink an instruction from a deeper loop to a shallower
+ // loop, even if the latter post-dominates the former (PR21115).
+ if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
+ return true;
// Check if only use in post dominated block is PHI instruction.
bool NonPHIUse = false;
@@ -463,7 +504,7 @@ bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
// If SuccToSinkTo post dominates then also it may be profitable if MI
// can further profitably sinked into another block in next round.
bool BreakPHIEdge = false;
- // FIXME - If finding successor is compile time expensive then catch results.
+ // FIXME - If finding successor is compile time expensive then cache results.
if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
@@ -512,19 +553,6 @@ MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
return nullptr;
- // FIXME: This picks a successor to sink into based on having one
- // successor that dominates all the uses. However, there are cases where
- // sinking can happen but where the sink point isn't a successor. For
- // example:
- //
- // x = computation
- // if () {} else {}
- // use x
- //
- // the instruction could be sunk over the whole diamond for the
- // if/then/else (or loop, etc), allowing it to be sunk into other blocks
- // after that.
-
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
@@ -539,14 +567,37 @@ MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
}
// Otherwise, we should look at all the successors and decide which one
- // we should sink to.
- // We give successors with smaller loop depth higher priority.
- SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(), MBB->succ_end());
- // Sort Successors according to their loop depth.
+ // we should sink to. If we have reliable block frequency information
+ // (frequency != 0) available, give successors with smaller frequencies
+ // higher priority, otherwise prioritize smaller loop depths.
+ SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(),
+ MBB->succ_end());
+
+ // Handle cases where sinking can happen but where the sink point isn't a
+ // successor. For example:
+ //
+ // x = computation
+ // if () {} else {}
+ // use x
+ //
+ const std::vector<MachineDomTreeNode *> &Children =
+ DT->getNode(MBB)->getChildren();
+ for (const auto &DTChild : Children)
+ // DomTree children of MBB that have MBB as immediate dominator are added.
+ if (DTChild->getIDom()->getBlock() == MI->getParent() &&
+ // Skip MBBs already added to the Succs vector above.
+ !MBB->isSuccessor(DTChild->getBlock()))
+ Succs.push_back(DTChild->getBlock());
+
+ // Sort Successors according to their loop depth or block frequency info.
std::stable_sort(
Succs.begin(), Succs.end(),
- [this](const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) {
- return LI->getLoopDepth(LHS) < LI->getLoopDepth(RHS);
+ [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
+ uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
+ uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
+ bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
+ return HasBlockFreq ? LHSFreq < RHSFreq
+ : LI->getLoopDepth(L) < LI->getLoopDepth(R);
});
for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(),
E = Succs.end(); SI != E; ++SI) {
@@ -655,21 +706,16 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
if (!TryBreak)
DEBUG(dbgs() << "Sinking along critical edge.\n");
else {
- MachineBasicBlock *NewSucc =
- SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
- if (!NewSucc) {
+ // Mark this edge as to be split.
+ // If the edge can actually be split, the next iteration of the main loop
+ // will sink MI in the newly created block.
+ bool Status =
+ PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
- "break critical edge\n");
- return false;
- } else {
- DEBUG(dbgs() << " *** Splitting critical edge:"
- " BB#" << ParentBlock->getNumber()
- << " -- BB#" << NewSucc->getNumber()
- << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
- SuccToSinkTo = NewSucc;
- ++NumSplit;
- BreakPHIEdge = false;
- }
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
}
}
@@ -677,20 +723,13 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// BreakPHIEdge is true if all the uses are in the successor MBB being
// sunken into and they are all PHI nodes. In this case, machine-sink must
// break the critical edge first.
- MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
- SuccToSinkTo, BreakPHIEdge);
- if (!NewSucc) {
+ bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
+ SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
- return false;
- }
-
- DEBUG(dbgs() << " *** Splitting critical edge:"
- " BB#" << ParentBlock->getNumber()
- << " -- BB#" << NewSucc->getNumber()
- << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
- SuccToSinkTo = NewSucc;
- ++NumSplit;
+ // The instruction will not be sunk this time.
+ return false;
}
// Determine where to insert into. Skip phi nodes.
diff --git a/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp b/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp
index 1bbf0ad..2cf87eb 100644
--- a/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp
@@ -52,13 +52,13 @@ void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
MF = &Func;
- TII = MF->getTarget().getInstrInfo();
- TRI = MF->getTarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
MRI = &MF->getRegInfo();
Loops = &getAnalysis<MachineLoopInfo>();
const TargetSubtargetInfo &ST =
MF->getTarget().getSubtarget<TargetSubtargetInfo>();
- SchedModel.init(*ST.getSchedModel(), &ST, TII);
+ SchedModel.init(ST.getSchedModel(), &ST, TII);
BlockInfo.resize(MF->getNumBlockIDs());
ProcResourceCycles.resize(MF->getNumBlockIDs() *
SchedModel.getNumProcResourceKinds());
@@ -135,8 +135,7 @@ MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
"getResources() must be called before getProcResourceCycles()");
unsigned PRKinds = SchedModel.getNumProcResourceKinds();
assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
- return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds,
- PRKinds);
+ return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
}
@@ -256,8 +255,7 @@ MachineTraceMetrics::Ensemble::
getProcResourceDepths(unsigned MBBNum) const {
unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
- return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds,
- PRKinds);
+ return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
}
/// Get an array of processor resource heights for MBB. Indexed by processor
@@ -270,8 +268,7 @@ MachineTraceMetrics::Ensemble::
getProcResourceHeights(unsigned MBBNum) const {
unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
- return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds,
- PRKinds);
+ return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
}
//===----------------------------------------------------------------------===//
@@ -452,7 +449,7 @@ public:
}
// To is a new block. Mark the block as visited in case the CFG has cycles
// that MachineLoopInfo didn't recognize as a natural loop.
- return LB.Visited.insert(To);
+ return LB.Visited.insert(To).second;
}
};
}
@@ -1169,6 +1166,7 @@ MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
return DepCycle;
}
+/// When bottom is set include instructions in current block in estimate.
unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
// Find the limiting processor resource.
// Numbers have been pre-scaled to be comparable.
@@ -1185,7 +1183,9 @@ unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
// Convert to cycle count.
PRMax = TE.MTM.getCycles(PRMax);
+ /// All instructions before current block
unsigned Instrs = TBI.InstrDepth;
+ // plus instructions in current block
if (Bottom)
Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
@@ -1194,44 +1194,72 @@ unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
return std::max(Instrs, PRMax);
}
-
-unsigned MachineTraceMetrics::Trace::
-getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks,
- ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const {
+unsigned MachineTraceMetrics::Trace::getResourceLength(
+ ArrayRef<const MachineBasicBlock *> Extrablocks,
+ ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
+ ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
// Add up resources above and below the center block.
ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
unsigned PRMax = 0;
- for (unsigned K = 0; K != PRDepths.size(); ++K) {
- unsigned PRCycles = PRDepths[K] + PRHeights[K];
- for (unsigned I = 0; I != Extrablocks.size(); ++I)
- PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
- for (unsigned I = 0; I != ExtraInstrs.size(); ++I) {
- const MCSchedClassDesc* SC = ExtraInstrs[I];
+
+ // Capture computing cycles from extra instructions
+ auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
+ unsigned ResourceIdx)
+ ->unsigned {
+ unsigned Cycles = 0;
+ for (unsigned I = 0; I != Instrs.size(); ++I) {
+ const MCSchedClassDesc *SC = Instrs[I];
if (!SC->isValid())
continue;
for (TargetSchedModel::ProcResIter
- PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
- PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
- if (PI->ProcResourceIdx != K)
+ PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
+ PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
+ PI != PE; ++PI) {
+ if (PI->ProcResourceIdx != ResourceIdx)
continue;
- PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K));
+ Cycles +=
+ (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
}
}
+ return Cycles;
+ };
+
+ for (unsigned K = 0; K != PRDepths.size(); ++K) {
+ unsigned PRCycles = PRDepths[K] + PRHeights[K];
+ for (unsigned I = 0; I != Extrablocks.size(); ++I)
+ PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
+ PRCycles += extraCycles(ExtraInstrs, K);
+ PRCycles -= extraCycles(RemoveInstrs, K);
PRMax = std::max(PRMax, PRCycles);
}
// Convert to cycle count.
PRMax = TE.MTM.getCycles(PRMax);
+ // Instrs: #instructions in current trace outside current block.
unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
+ // Add instruction count from the extra blocks.
for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
+ Instrs += ExtraInstrs.size();
+ Instrs -= RemoveInstrs.size();
if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
Instrs /= IW;
// Assume issue width 1 without a schedule model.
return std::max(Instrs, PRMax);
}
+bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI,
+ const MachineInstr *UseMI) const {
+ if (DefMI->getParent() == UseMI->getParent())
+ return true;
+
+ const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()];
+ const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()];
+
+ return DepTBI.isUsefulDominator(TBI);
+}
+
void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
OS << getName() << " ensemble:\n";
for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
diff --git a/contrib/llvm/lib/CodeGen/MachineVerifier.cpp b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
index 8515b0f..364e8e2 100644
--- a/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
@@ -42,10 +42,12 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
namespace {
@@ -214,9 +216,9 @@ namespace {
void report(const char *msg, const MachineBasicBlock *MBB,
const LiveInterval &LI);
void report(const char *msg, const MachineFunction *MF,
- const LiveRange &LR);
+ const LiveRange &LR, unsigned Reg, unsigned LaneMask);
void report(const char *msg, const MachineBasicBlock *MBB,
- const LiveRange &LR);
+ const LiveRange &LR, unsigned Reg, unsigned LaneMask);
void verifyInlineAsm(const MachineInstr *MI);
@@ -229,20 +231,22 @@ namespace {
void verifyLiveVariables();
void verifyLiveIntervals();
void verifyLiveInterval(const LiveInterval&);
- void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
+ void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
+ unsigned);
void verifyLiveRangeSegment(const LiveRange&,
- const LiveRange::const_iterator I, unsigned);
- void verifyLiveRange(const LiveRange&, unsigned);
+ const LiveRange::const_iterator I, unsigned,
+ unsigned);
+ void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0);
void verifyStackFrame();
};
struct MachineVerifierPass : public MachineFunctionPass {
static char ID; // Pass ID, replacement for typeid
- const char *const Banner;
+ const std::string Banner;
- MachineVerifierPass(const char *b = nullptr)
- : MachineFunctionPass(ID), Banner(b) {
+ MachineVerifierPass(const std::string &banner = nullptr)
+ : MachineFunctionPass(ID), Banner(banner) {
initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
}
@@ -252,7 +256,7 @@ namespace {
}
bool runOnMachineFunction(MachineFunction &MF) override {
- MF.verify(this, Banner);
+ MF.verify(this, Banner.c_str());
return false;
}
};
@@ -263,7 +267,7 @@ char MachineVerifierPass::ID = 0;
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
"Verify generated machine code", false, false)
-FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
+FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
return new MachineVerifierPass(Banner);
}
@@ -275,11 +279,12 @@ void MachineFunction::verify(Pass *p, const char *Banner) const {
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
raw_ostream *OutFile = nullptr;
if (OutFileName) {
- std::string ErrorInfo;
- OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
+ std::error_code EC;
+ OutFile = new raw_fd_ostream(OutFileName, EC,
sys::fs::F_Append | sys::fs::F_Text);
- if (!ErrorInfo.empty()) {
- errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
+ if (EC) {
+ errs() << "Error opening '" << OutFileName << "': " << EC.message()
+ << '\n';
exit(1);
}
@@ -292,8 +297,8 @@ bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
TM = &MF.getTarget();
- TII = TM->getInstrInfo();
- TRI = TM->getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
LiveVars = nullptr;
@@ -430,15 +435,23 @@ void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
}
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
- const LiveRange &LR) {
+ const LiveRange &LR, unsigned Reg,
+ unsigned LaneMask) {
report(msg, MBB);
- *OS << "- liverange: " << LR << "\n";
+ *OS << "- liverange: " << LR << '\n';
+ *OS << "- register: " << PrintReg(Reg, TRI) << '\n';
+ if (LaneMask != 0)
+ *OS << "- lanemask: " << format("%04X\n", LaneMask);
}
void MachineVerifier::report(const char *msg, const MachineFunction *MF,
- const LiveRange &LR) {
+ const LiveRange &LR, unsigned Reg,
+ unsigned LaneMask) {
report(msg, MF);
- *OS << "- liverange: " << LR << "\n";
+ *OS << "- liverange: " << LR << '\n';
+ *OS << "- register: " << PrintReg(Reg, TRI) << '\n';
+ if (LaneMask != 0)
+ *OS << "- lanemask: " << format("%04X\n", LaneMask);
}
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
@@ -588,7 +601,11 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
}
} else if (TBB && !FBB && Cond.empty()) {
// Block unconditionally branches somewhere.
- if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
+ // If the block has exactly one successor, that happens to be a
+ // landingpad, accept it as valid control flow.
+ if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
+ (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
+ *MBB->succ_begin() != *LandingPadSuccs.begin())) {
report("MBB exits via unconditional branch but doesn't have "
"exactly one CFG successor!", MBB);
} else if (!MBB->isSuccessor(TBB)) {
@@ -905,7 +922,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
if (!DRC->contains(Reg)) {
report("Illegal physical register for instruction", MO, MONum);
*OS << TRI->getName(Reg) << " is not a "
- << DRC->getName() << " register.\n";
+ << TRI->getRegClassName(DRC) << " register.\n";
}
}
} else {
@@ -916,13 +933,13 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
TRI->getSubClassWithSubReg(RC, SubIdx);
if (!SRC) {
report("Invalid subregister index for virtual register", MO, MONum);
- *OS << "Register class " << RC->getName()
+ *OS << "Register class " << TRI->getRegClassName(RC)
<< " does not support subreg index " << SubIdx << "\n";
return;
}
if (RC != SRC) {
report("Invalid register class for subregister index", MO, MONum);
- *OS << "Register class " << RC->getName()
+ *OS << "Register class " << TRI->getRegClassName(RC)
<< " does not fully support subreg index " << SubIdx << "\n";
return;
}
@@ -944,8 +961,9 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
}
if (!RC->hasSuperClassEq(DRC)) {
report("Illegal virtual register for instruction", MO, MONum);
- *OS << "Expected a " << DRC->getName() << " register, but got a "
- << RC->getName() << " register\n";
+ *OS << "Expected a " << TRI->getRegClassName(DRC)
+ << " register, but got a " << TRI->getRegClassName(RC)
+ << " register\n";
}
}
}
@@ -1048,7 +1066,18 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
if (!regsLive.count(Reg)) {
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// Reserved registers may be used even when 'dead'.
- if (!isReserved(Reg))
+ bool Bad = !isReserved(Reg);
+ // We are fine if just any subregister has a defined value.
+ if (Bad) {
+ for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
+ ++SubRegs) {
+ if (regsLive.count(*SubRegs)) {
+ Bad = false;
+ break;
+ }
+ }
+ }
+ if (Bad)
report("Using an undefined physical register", MO, MONum);
} else if (MRI->def_empty(Reg)) {
report("Reading virtual register without a def", MO, MONum);
@@ -1349,21 +1378,22 @@ void MachineVerifier::verifyLiveIntervals() {
}
void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
- const VNInfo *VNI,
- unsigned Reg) {
+ const VNInfo *VNI, unsigned Reg,
+ unsigned LaneMask) {
if (VNI->isUnused())
return;
const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
if (!DefVNI) {
- report("Valno not live at def and not marked unused", MF, LR);
+ report("Valno not live at def and not marked unused", MF, LR, Reg,
+ LaneMask);
*OS << "Valno #" << VNI->id << '\n';
return;
}
if (DefVNI != VNI) {
- report("Live segment at def has different valno", MF, LR);
+ report("Live segment at def has different valno", MF, LR, Reg, LaneMask);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
<< " where valno #" << DefVNI->id << " is live\n";
return;
@@ -1371,7 +1401,7 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
if (!MBB) {
- report("Invalid definition index", MF, LR);
+ report("Invalid definition index", MF, LR, Reg, LaneMask);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
<< " in " << LR << '\n';
return;
@@ -1379,7 +1409,8 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
if (VNI->isPHIDef()) {
if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
- report("PHIDef value is not defined at MBB start", MBB, LR);
+ report("PHIDef value is not defined at MBB start", MBB, LR, Reg,
+ LaneMask);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
<< ", not at the beginning of BB#" << MBB->getNumber() << '\n';
}
@@ -1389,7 +1420,7 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
// Non-PHI def.
const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
if (!MI) {
- report("No instruction at def index", MBB, LR);
+ report("No instruction at def index", MBB, LR, Reg, LaneMask);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
return;
}
@@ -1408,6 +1439,9 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
!TRI->hasRegUnit(MOI->getReg(), Reg))
continue;
}
+ if (LaneMask != 0 &&
+ (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
+ continue;
hasDef = true;
if (MOI->isEarlyClobber())
isEarlyClobber = true;
@@ -1422,12 +1456,13 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
// DEF slots.
if (isEarlyClobber) {
if (!VNI->def.isEarlyClobber()) {
- report("Early clobber def must be at an early-clobber slot", MBB, LR);
+ report("Early clobber def must be at an early-clobber slot", MBB, LR,
+ Reg, LaneMask);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
}
} else if (!VNI->def.isRegister()) {
report("Non-PHI, non-early clobber def must be at a register slot",
- MBB, LR);
+ MBB, LR, Reg, LaneMask);
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
}
}
@@ -1435,37 +1470,38 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
const LiveRange::const_iterator I,
- unsigned Reg) {
+ unsigned Reg, unsigned LaneMask) {
const LiveRange::Segment &S = *I;
const VNInfo *VNI = S.valno;
assert(VNI && "Live segment has no valno");
if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
- report("Foreign valno in live segment", MF, LR);
+ report("Foreign valno in live segment", MF, LR, Reg, LaneMask);
*OS << S << " has a bad valno\n";
}
if (VNI->isUnused()) {
- report("Live segment valno is marked unused", MF, LR);
+ report("Live segment valno is marked unused", MF, LR, Reg, LaneMask);
*OS << S << '\n';
}
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
if (!MBB) {
- report("Bad start of live segment, no basic block", MF, LR);
+ report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask);
*OS << S << '\n';
return;
}
SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
if (S.start != MBBStartIdx && S.start != VNI->def) {
- report("Live segment must begin at MBB entry or valno def", MBB, LR);
+ report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg,
+ LaneMask);
*OS << S << '\n';
}
const MachineBasicBlock *EndMBB =
LiveInts->getMBBFromIndex(S.end.getPrevSlot());
if (!EndMBB) {
- report("Bad end of live segment, no basic block", MF, LR);
+ report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask);
*OS << S << '\n';
return;
}
@@ -1483,14 +1519,16 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
const MachineInstr *MI =
LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
if (!MI) {
- report("Live segment doesn't end at a valid instruction", EndMBB, LR);
+ report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg,
+ LaneMask);
*OS << S << '\n';
return;
}
// The block slot must refer to a basic block boundary.
if (S.end.isBlock()) {
- report("Live segment ends at B slot of an instruction", EndMBB, LR);
+ report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg,
+ LaneMask);
*OS << S << '\n';
}
@@ -1498,7 +1536,8 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// Segment ends on the dead slot.
// That means there must be a dead def.
if (!SlotIndex::isSameInstr(S.start, S.end)) {
- report("Live segment ending at dead slot spans instructions", EndMBB, LR);
+ report("Live segment ending at dead slot spans instructions", EndMBB, LR,
+ Reg, LaneMask);
*OS << S << '\n';
}
}
@@ -1508,7 +1547,8 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
if (S.end.isEarlyClobber()) {
if (I+1 == LR.end() || (I+1)->start != S.end) {
report("Live segment ending at early clobber slot must be "
- "redefined by an EC def in the same instruction", EndMBB, LR);
+ "redefined by an EC def in the same instruction", EndMBB, LR, Reg,
+ LaneMask);
*OS << S << '\n';
}
}
@@ -1519,16 +1559,27 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// A live segment can end with either a redefinition, a kill flag on a
// use, or a dead flag on a def.
bool hasRead = false;
+ bool hasSubRegDef = false;
for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
if (!MOI->isReg() || MOI->getReg() != Reg)
continue;
+ if (LaneMask != 0 &&
+ (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
+ continue;
+ if (MOI->isDef() && MOI->getSubReg() != 0)
+ hasSubRegDef = true;
if (MOI->readsReg())
hasRead = true;
}
if (!S.end.isDead()) {
if (!hasRead) {
- report("Instruction ending live segment doesn't read the register", MI);
- *OS << S << " in " << LR << '\n';
+ // When tracking subregister liveness, the main range must start new
+ // values on partial register writes, even if there is no read.
+ if (!MRI->tracksSubRegLiveness() || LaneMask != 0 || !hasSubRegDef) {
+ report("Instruction ending live segment doesn't read the register",
+ MI);
+ *OS << S << " in " << LR << '\n';
+ }
}
}
}
@@ -1566,7 +1617,8 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// All predecessors must have a live-out value.
if (!PVNI) {
- report("Register not marked live out of predecessor", *PI, LR);
+ report("Register not marked live out of predecessor", *PI, LR, Reg,
+ LaneMask);
*OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
<< '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
<< PEnd << '\n';
@@ -1575,7 +1627,8 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// Only PHI-defs can take different predecessor values.
if (!IsPHI && PVNI != VNI) {
- report("Different value live out of predecessor", *PI, LR);
+ report("Different value live out of predecessor", *PI, LR, Reg,
+ LaneMask);
*OS << "Valno #" << PVNI->id << " live out of BB#"
<< (*PI)->getNumber() << '@' << PEnd
<< "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
@@ -1588,18 +1641,36 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
}
}
-void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
- for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
- I != E; ++I)
- verifyLiveRangeValue(LR, *I, Reg);
+void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
+ unsigned LaneMask) {
+ for (const VNInfo *VNI : LR.valnos)
+ verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
- verifyLiveRangeSegment(LR, I, Reg);
+ verifyLiveRangeSegment(LR, I, Reg, LaneMask);
}
void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
verifyLiveRange(LI, LI.reg);
+ unsigned Reg = LI.reg;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ unsigned Mask = 0;
+ unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ if ((Mask & SR.LaneMask) != 0)
+ report("Lane masks of sub ranges overlap in live interval", MF, LI);
+ if ((SR.LaneMask & ~MaxMask) != 0)
+ report("Subrange lanemask is invalid", MF, LI);
+ Mask |= SR.LaneMask;
+ verifyLiveRange(SR, LI.reg, SR.LaneMask);
+ if (!LI.covers(SR))
+ report("A Subrange is not covered by the main range", MF, LI);
+ }
+ } else if (LI.hasSubRanges()) {
+ report("subregister liveness only allowed for virtual registers", MF, LI);
+ }
+
// Check the LI only has one connected component.
if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
ConnectedVNInfoEqClasses ConEQ(*LiveInts);
diff --git a/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp b/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp
index 95a2934..a1042e7 100644
--- a/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp
+++ b/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp
@@ -20,6 +20,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "phi-opt"
@@ -66,7 +67,7 @@ bool OptimizePHIs::runOnMachineFunction(MachineFunction &Fn) {
return false;
MRI = &Fn.getRegInfo();
- TII = Fn.getTarget().getInstrInfo();
+ TII = Fn.getSubtarget().getInstrInfo();
// Find dead PHI cycles and PHI cycles that can be replaced by a single
// value. InstCombine does these optimizations, but DAG legalization may
@@ -91,7 +92,7 @@ bool OptimizePHIs::IsSingleValuePHICycle(MachineInstr *MI,
unsigned DstReg = MI->getOperand(0).getReg();
// See if we already saw this register.
- if (!PHIsInCycle.insert(MI))
+ if (!PHIsInCycle.insert(MI).second)
return true;
// Don't scan crazily complex things.
@@ -136,7 +137,7 @@ bool OptimizePHIs::IsDeadPHICycle(MachineInstr *MI, InstrSet &PHIsInCycle) {
"PHI destination is not a virtual register");
// See if we already saw this register.
- if (!PHIsInCycle.insert(MI))
+ if (!PHIsInCycle.insert(MI).second)
return true;
// Don't scan crazily complex things.
diff --git a/contrib/llvm/lib/CodeGen/PHIElimination.cpp b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
index c8d0819..def2e3d 100644
--- a/contrib/llvm/lib/CodeGen/PHIElimination.cpp
+++ b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
@@ -30,7 +30,7 @@
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -150,9 +150,7 @@ bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
Changed |= EliminatePHINodes(MF, *I);
// Remove dead IMPLICIT_DEF instructions.
- for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
- E = ImpDefs.end(); I != E; ++I) {
- MachineInstr *DefMI = *I;
+ for (MachineInstr *DefMI : ImpDefs) {
unsigned DefReg = DefMI->getOperand(0).getReg();
if (MRI->use_nodbg_empty(DefReg)) {
if (LIS)
@@ -240,7 +238,7 @@ void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
@@ -369,7 +367,7 @@ void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
- if (!MBBsInsertedInto.insert(&opBlock))
+ if (!MBBsInsertedInto.insert(&opBlock).second)
continue; // If the copy has already been emitted, we're done.
// Find a safe location to insert the copy, this may be the first terminator
diff --git a/contrib/llvm/lib/CodeGen/PHIEliminationUtils.h b/contrib/llvm/lib/CodeGen/PHIEliminationUtils.h
index 48234ae..b997d7a 100644
--- a/contrib/llvm/lib/CodeGen/PHIEliminationUtils.h
+++ b/contrib/llvm/lib/CodeGen/PHIEliminationUtils.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_PHIELIMINATIONUTILS_H
-#define LLVM_CODEGEN_PHIELIMINATIONUTILS_H
+#ifndef LLVM_LIB_CODEGEN_PHIELIMINATIONUTILS_H
+#define LLVM_LIB_CODEGEN_PHIELIMINATIONUTILS_H
#include "llvm/CodeGen/MachineBasicBlock.h"
diff --git a/contrib/llvm/lib/CodeGen/Passes.cpp b/contrib/llvm/lib/CodeGen/Passes.cpp
index 249b2d0..28e9f84 100644
--- a/contrib/llvm/lib/CodeGen/Passes.cpp
+++ b/contrib/llvm/lib/CodeGen/Passes.cpp
@@ -27,6 +27,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/SymbolRewriter.h"
using namespace llvm;
@@ -71,6 +72,8 @@ static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden,
cl::desc("Disable Codegen Prepare"));
static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden,
cl::desc("Disable Copy Propagation pass"));
+static cl::opt<bool> DisablePartialLibcallInlining("disable-partial-libcall-inlining",
+ cl::Hidden, cl::desc("Disable Partial Libcall Inlining"));
static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden,
cl::desc("Print LLVM IR produced by the loop-reduce pass"));
static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden,
@@ -97,6 +100,10 @@ static cl::opt<bool> MISchedPostRA("misched-postra", cl::Hidden,
static cl::opt<bool> EarlyLiveIntervals("early-live-intervals", cl::Hidden,
cl::desc("Run live interval analysis earlier in the pipeline"));
+static cl::opt<bool> UseCFLAA("use-cfl-aa-in-codegen",
+ cl::init(false), cl::Hidden,
+ cl::desc("Enable the new, experimental CFL alias analysis in CodeGen"));
+
/// Allow standard passes to be disabled by command line options. This supports
/// simple binary flags that either suppress the pass or do nothing.
/// i.e. -disable-mypass=false has no effect.
@@ -228,8 +235,8 @@ TargetPassConfig::~TargetPassConfig() {
// registers all common codegen passes.
TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
: ImmutablePass(ID), PM(&pm), StartAfter(nullptr), StopAfter(nullptr),
- Started(true), Stopped(false), TM(tm), Impl(nullptr), Initialized(false),
- DisableVerify(false),
+ Started(true), Stopped(false), AddingMachinePasses(false), TM(tm),
+ Impl(nullptr), Initialized(false), DisableVerify(false),
EnableTailMerge(true) {
Impl = new PassConfigImpl();
@@ -297,7 +304,7 @@ IdentifyingPassPtr TargetPassConfig::getPassSubstitution(AnalysisID ID) const {
/// a later pass or that it should stop after an earlier pass, then do not add
/// the pass. Finally, compare the current pass against the StartAfter
/// and StopAfter options and change the Started/Stopped flags accordingly.
-void TargetPassConfig::addPass(Pass *P) {
+void TargetPassConfig::addPass(Pass *P, bool verifyAfter, bool printAfter) {
assert(!Initialized && "PassConfig is immutable");
// Cache the Pass ID here in case the pass manager finds this pass is
@@ -306,10 +313,21 @@ void TargetPassConfig::addPass(Pass *P) {
// and shouldn't reference it.
AnalysisID PassID = P->getPassID();
- if (Started && !Stopped)
+ if (Started && !Stopped) {
+ std::string Banner;
+ // Construct banner message before PM->add() as that may delete the pass.
+ if (AddingMachinePasses && (printAfter || verifyAfter))
+ Banner = std::string("After ") + std::string(P->getPassName());
PM->add(P);
- else
+ if (AddingMachinePasses) {
+ if (printAfter)
+ addPrintPass(Banner);
+ if (verifyAfter)
+ addVerifyPass(Banner);
+ }
+ } else {
delete P;
+ }
if (StopAfter == PassID)
Stopped = true;
if (StartAfter == PassID)
@@ -323,7 +341,8 @@ void TargetPassConfig::addPass(Pass *P) {
///
/// addPass cannot return a pointer to the pass instance because is internal the
/// PassManager and the instance we create here may already be freed.
-AnalysisID TargetPassConfig::addPass(AnalysisID PassID) {
+AnalysisID TargetPassConfig::addPass(AnalysisID PassID, bool verifyAfter,
+ bool printAfter) {
IdentifyingPassPtr TargetID = getPassSubstitution(PassID);
IdentifyingPassPtr FinalPtr = overridePass(PassID, TargetID);
if (!FinalPtr.isValid())
@@ -338,7 +357,7 @@ AnalysisID TargetPassConfig::addPass(AnalysisID PassID) {
llvm_unreachable("Pass ID not registered");
}
AnalysisID FinalID = P->getPassID();
- addPass(P); // Ends the lifetime of P.
+ addPass(P, verifyAfter, printAfter); // Ends the lifetime of P.
// Add the passes after the pass P if there is any.
for (SmallVectorImpl<std::pair<AnalysisID, IdentifyingPassPtr> >::iterator
@@ -353,18 +372,25 @@ AnalysisID TargetPassConfig::addPass(AnalysisID PassID) {
NP = Pass::createPass((*I).second.getID());
assert(NP && "Pass ID not registered");
}
- addPass(NP);
+ addPass(NP, false, false);
}
}
return FinalID;
}
-void TargetPassConfig::printAndVerify(const char *Banner) {
+void TargetPassConfig::printAndVerify(const std::string &Banner) {
+ addPrintPass(Banner);
+ addVerifyPass(Banner);
+}
+
+void TargetPassConfig::addPrintPass(const std::string &Banner) {
if (TM->shouldPrintMachineCode())
- addPass(createMachineFunctionPrinterPass(dbgs(), Banner));
+ PM->add(createMachineFunctionPrinterPass(dbgs(), Banner));
+}
+void TargetPassConfig::addVerifyPass(const std::string &Banner) {
if (VerifyMachineCode)
- addPass(createMachineVerifierPass(Banner));
+ PM->add(createMachineVerifierPass(Banner));
}
/// Add common target configurable passes that perform LLVM IR to IR transforms
@@ -374,7 +400,10 @@ void TargetPassConfig::addIRPasses() {
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
+ if (UseCFLAA)
+ addPass(createCFLAliasAnalysisPass());
addPass(createTypeBasedAliasAnalysisPass());
+ addPass(createScopedNoAliasAAPass());
addPass(createBasicAliasAnalysisPass());
// Before running any passes, run the verifier to determine if the input
@@ -399,6 +428,9 @@ void TargetPassConfig::addIRPasses() {
// Prepare expensive constants for SelectionDAG.
if (getOptLevel() != CodeGenOpt::None && !DisableConstantHoisting)
addPass(createConstantHoistingPass());
+
+ if (getOptLevel() != CodeGenOpt::None && !DisablePartialLibcallInlining)
+ addPass(createPartiallyInlineLibCallsPass());
}
/// Turn exception handling constructs into something the code generators can
@@ -416,7 +448,8 @@ void TargetPassConfig::addPassesToHandleExceptions() {
// FALLTHROUGH
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
- case ExceptionHandling::WinEH:
+ case ExceptionHandling::ItaniumWinEH:
+ case ExceptionHandling::MSVC: // FIXME: Needs preparation.
addPass(createDwarfEHPass(TM));
break;
case ExceptionHandling::None:
@@ -433,6 +466,7 @@ void TargetPassConfig::addPassesToHandleExceptions() {
void TargetPassConfig::addCodeGenPrepare() {
if (getOptLevel() != CodeGenOpt::None && !DisableCGP)
addPass(createCodeGenPreparePass(TM));
+ addPass(createRewriteSymbolsPass());
}
/// Add common passes that perform LLVM IR to IR transforms in preparation for
@@ -477,6 +511,8 @@ void TargetPassConfig::addISelPrepare() {
/// TODO: We could use a single addPre/Post(ID) hook to allow pass injection
/// before/after any target-independent pass. But it's currently overkill.
void TargetPassConfig::addMachinePasses() {
+ AddingMachinePasses = true;
+
// Insert a machine instr printer pass after the specified pass.
// If -print-machineinstrs specified, print machineinstrs after all passes.
if (StringRef(PrintMachineInstrs.getValue()).equals(""))
@@ -485,7 +521,7 @@ void TargetPassConfig::addMachinePasses() {
.equals("option-unspecified")) {
const PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *TPI = PR->getPassInfo(PrintMachineInstrs.getValue());
- const PassInfo *IPI = PR->getPassInfo(StringRef("print-machineinstrs"));
+ const PassInfo *IPI = PR->getPassInfo(StringRef("machineinstr-printer"));
assert (TPI && IPI && "Pass ID not registered!");
const char *TID = (const char *)(TPI->getTypeInfo());
const char *IID = (const char *)(IPI->getTypeInfo());
@@ -496,8 +532,7 @@ void TargetPassConfig::addMachinePasses() {
printAndVerify("After Instruction Selection");
// Expand pseudo-instructions emitted by ISel.
- if (addPass(&ExpandISelPseudosID))
- printAndVerify("After ExpandISelPseudos");
+ addPass(&ExpandISelPseudosID);
// Add passes that optimize machine instructions in SSA form.
if (getOptLevel() != CodeGenOpt::None) {
@@ -505,12 +540,11 @@ void TargetPassConfig::addMachinePasses() {
} else {
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
- addPass(&LocalStackSlotAllocationID);
+ addPass(&LocalStackSlotAllocationID, false);
}
// Run pre-ra passes.
- if (addPreRegAlloc())
- printAndVerify("After PreRegAlloc passes");
+ addPreRegAlloc();
// Run register allocation and passes that are tightly coupled with it,
// including phi elimination and scheduling.
@@ -520,12 +554,10 @@ void TargetPassConfig::addMachinePasses() {
addFastRegAlloc(createRegAllocPass(false));
// Run post-ra passes.
- if (addPostRegAlloc())
- printAndVerify("After PostRegAlloc passes");
+ addPostRegAlloc();
// Insert prolog/epilog code. Eliminate abstract frame index references...
addPass(&PrologEpilogCodeInserterID);
- printAndVerify("After PrologEpilogCodeInserter");
/// Add passes that optimize machine instructions after register allocation.
if (getOptLevel() != CodeGenOpt::None)
@@ -533,11 +565,9 @@ void TargetPassConfig::addMachinePasses() {
// Expand pseudo instructions before second scheduling pass.
addPass(&ExpandPostRAPseudosID);
- printAndVerify("After ExpandPostRAPseudos");
// Run pre-sched2 passes.
- if (addPreSched2())
- printAndVerify("After PreSched2 passes");
+ addPreSched2();
// Second pass scheduler.
if (getOptLevel() != CodeGenOpt::None) {
@@ -545,63 +575,61 @@ void TargetPassConfig::addMachinePasses() {
addPass(&PostMachineSchedulerID);
else
addPass(&PostRASchedulerID);
- printAndVerify("After PostRAScheduler");
}
// GC
if (addGCPasses()) {
if (PrintGCInfo)
- addPass(createGCInfoPrinter(dbgs()));
+ addPass(createGCInfoPrinter(dbgs()), false, false);
}
// Basic block placement.
if (getOptLevel() != CodeGenOpt::None)
addBlockPlacement();
- if (addPreEmitPass())
- printAndVerify("After PreEmit passes");
+ addPreEmitPass();
- addPass(&StackMapLivenessID);
+ addPass(&StackMapLivenessID, false);
+
+ AddingMachinePasses = false;
}
/// Add passes that optimize machine instructions in SSA form.
void TargetPassConfig::addMachineSSAOptimization() {
// Pre-ra tail duplication.
- if (addPass(&EarlyTailDuplicateID))
- printAndVerify("After Pre-RegAlloc TailDuplicate");
+ addPass(&EarlyTailDuplicateID);
// Optimize PHIs before DCE: removing dead PHI cycles may make more
// instructions dead.
- addPass(&OptimizePHIsID);
+ addPass(&OptimizePHIsID, false);
// This pass merges large allocas. StackSlotColoring is a different pass
// which merges spill slots.
- addPass(&StackColoringID);
+ addPass(&StackColoringID, false);
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
- addPass(&LocalStackSlotAllocationID);
+ addPass(&LocalStackSlotAllocationID, false);
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
addPass(&DeadMachineInstructionElimID);
- printAndVerify("After codegen DCE pass");
// Allow targets to insert passes that improve instruction level parallelism,
// like if-conversion. Such passes will typically need dominator trees and
// loop info, just like LICM and CSE below.
- if (addILPOpts())
- printAndVerify("After ILP optimizations");
+ addILPOpts();
- addPass(&MachineLICMID);
- addPass(&MachineCSEID);
+ addPass(&MachineLICMID, false);
+ addPass(&MachineCSEID, false);
addPass(&MachineSinkingID);
- printAndVerify("After Machine LICM, CSE and Sinking passes");
- addPass(&PeepholeOptimizerID);
- printAndVerify("After codegen peephole optimization pass");
+ addPass(&PeepholeOptimizerID, false);
+ // Clean-up the dead code that may have been generated by peephole
+ // rewriting.
+ addPass(&DeadMachineInstructionElimID);
}
//===---------------------------------------------------------------------===//
@@ -675,21 +703,26 @@ FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) {
return createTargetRegisterAllocator(Optimized);
}
+/// Return true if the default global register allocator is in use and
+/// has not be overriden on the command line with '-regalloc=...'
+bool TargetPassConfig::usingDefaultRegAlloc() const {
+ return RegAlloc.getNumOccurrences() == 0;
+}
+
/// Add the minimum set of target-independent passes that are required for
/// register allocation. No coalescing or scheduling.
void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
- addPass(&PHIEliminationID);
- addPass(&TwoAddressInstructionPassID);
+ addPass(&PHIEliminationID, false);
+ addPass(&TwoAddressInstructionPassID, false);
addPass(RegAllocPass);
- printAndVerify("After Register Allocation");
}
/// Add standard target-independent passes that are tightly coupled with
/// optimized register allocation, including coalescing, machine instruction
/// scheduling, and register allocation itself.
void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
- addPass(&ProcessImplicitDefsID);
+ addPass(&ProcessImplicitDefsID, false);
// LiveVariables currently requires pure SSA form.
//
@@ -697,34 +730,30 @@ void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
// LiveVariables can be removed completely, and LiveIntervals can be directly
// computed. (We still either need to regenerate kill flags after regalloc, or
// preferably fix the scavenger to not depend on them).
- addPass(&LiveVariablesID);
+ addPass(&LiveVariablesID, false);
// Edge splitting is smarter with machine loop info.
- addPass(&MachineLoopInfoID);
- addPass(&PHIEliminationID);
+ addPass(&MachineLoopInfoID, false);
+ addPass(&PHIEliminationID, false);
// Eventually, we want to run LiveIntervals before PHI elimination.
if (EarlyLiveIntervals)
- addPass(&LiveIntervalsID);
+ addPass(&LiveIntervalsID, false);
- addPass(&TwoAddressInstructionPassID);
+ addPass(&TwoAddressInstructionPassID, false);
addPass(&RegisterCoalescerID);
// PreRA instruction scheduling.
- if (addPass(&MachineSchedulerID))
- printAndVerify("After Machine Scheduling");
+ addPass(&MachineSchedulerID);
// Add the selected register allocation pass.
addPass(RegAllocPass);
- printAndVerify("After Register Allocation, before rewriter");
// Allow targets to change the register assignments before rewriting.
- if (addPreRewrite())
- printAndVerify("After pre-rewrite passes");
+ addPreRewrite();
// Finally rewrite virtual registers.
addPass(&VirtRegRewriterID);
- printAndVerify("After Virtual Register Rewriter");
// Perform stack slot coloring and post-ra machine LICM.
//
@@ -736,8 +765,6 @@ void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
//
// FIXME: can this move into MachineLateOptimization?
addPass(&PostRAMachineLICMID);
-
- printAndVerify("After StackSlotColoring and postra Machine LICM");
}
//===---------------------------------------------------------------------===//
@@ -747,34 +774,30 @@ void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
/// Add passes that optimize machine instructions after register allocation.
void TargetPassConfig::addMachineLateOptimization() {
// Branch folding must be run after regalloc and prolog/epilog insertion.
- if (addPass(&BranchFolderPassID))
- printAndVerify("After BranchFolding");
+ addPass(&BranchFolderPassID);
// Tail duplication.
// Note that duplicating tail just increases code size and degrades
// performance for targets that require Structured Control Flow.
// In addition it can also make CFG irreducible. Thus we disable it.
- if (!TM->requiresStructuredCFG() && addPass(&TailDuplicateID))
- printAndVerify("After TailDuplicate");
+ if (!TM->requiresStructuredCFG())
+ addPass(&TailDuplicateID);
// Copy propagation.
- if (addPass(&MachineCopyPropagationID))
- printAndVerify("After copy propagation pass");
+ addPass(&MachineCopyPropagationID);
}
/// Add standard GC passes.
bool TargetPassConfig::addGCPasses() {
- addPass(&GCMachineCodeAnalysisID);
+ addPass(&GCMachineCodeAnalysisID, false);
return true;
}
/// Add standard basic block placement passes.
void TargetPassConfig::addBlockPlacement() {
- if (addPass(&MachineBlockPlacementID)) {
+ if (addPass(&MachineBlockPlacementID, false)) {
// Run a separate pass to collect block placement statistics.
if (EnableBlockPlacementStats)
addPass(&MachineBlockPlacementStatsID);
-
- printAndVerify("After machine block placement.");
}
}
diff --git a/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp b/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
index 716cb1f..283d1f2 100644
--- a/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
+++ b/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
@@ -46,7 +46,7 @@
// if it loads to virtual registers and the virtual register defined has
// a single use.
//
-// - Optimize Copies and Bitcast:
+// - Optimize Copies and Bitcast (more generally, target specific copies):
//
// Rewrite copies and bitcasts to avoid cross register bank copies
// when possible.
@@ -78,6 +78,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <utility>
using namespace llvm;
#define DEBUG_TYPE "peephole-opt"
@@ -92,7 +94,7 @@ DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
cl::desc("Disable the peephole optimizer"));
static cl::opt<bool>
-DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(true),
+DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
cl::desc("Disable advanced copy optimization"));
STATISTIC(NumReuse, "Number of extension results reused");
@@ -100,12 +102,13 @@ STATISTIC(NumCmps, "Number of compares eliminated");
STATISTIC(NumImmFold, "Number of move immediate folded");
STATISTIC(NumLoadFold, "Number of loads folded");
STATISTIC(NumSelects, "Number of selects optimized");
-STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized");
+STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
+STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
namespace {
class PeepholeOptimizer : public MachineFunctionPass {
- const TargetMachine *TM;
const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
MachineDominatorTree *DT; // Machine dominator tree
@@ -129,9 +132,15 @@ namespace {
private:
bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
- SmallPtrSet<MachineInstr*, 8> &LocalMIs);
- bool optimizeSelect(MachineInstr *MI);
+ SmallPtrSetImpl<MachineInstr*> &LocalMIs);
+ bool optimizeSelect(MachineInstr *MI,
+ SmallPtrSetImpl<MachineInstr *> &LocalMIs);
+ bool optimizeCondBranch(MachineInstr *MI);
bool optimizeCopyOrBitcast(MachineInstr *MI);
+ bool optimizeCoalescableCopy(MachineInstr *MI);
+ bool optimizeUncoalescableCopy(MachineInstr *MI,
+ SmallPtrSetImpl<MachineInstr *> &LocalMIs);
+ bool findNextSource(unsigned &Reg, unsigned &SubReg);
bool isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
@@ -140,6 +149,25 @@ namespace {
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
bool isLoadFoldable(MachineInstr *MI,
SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
+
+ /// \brief Check whether \p MI is understood by the register coalescer
+ /// but may require some rewriting.
+ bool isCoalescableCopy(const MachineInstr &MI) {
+ // SubregToRegs are not interesting, because they are already register
+ // coalescer friendly.
+ return MI.isCopy() || (!DisableAdvCopyOpt &&
+ (MI.isRegSequence() || MI.isInsertSubreg() ||
+ MI.isExtractSubreg()));
+ }
+
+ /// \brief Check whether \p MI is a copy like instruction that is
+ /// not recognized by the register coalescer.
+ bool isUncoalescableCopy(const MachineInstr &MI) {
+ return MI.isBitcast() ||
+ (!DisableAdvCopyOpt &&
+ (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
+ MI.isExtractSubregLike()));
+ }
};
/// \brief Helper class to track the possible sources of a value defined by
@@ -176,63 +204,87 @@ namespace {
/// the ValueTracker class but that would have complicated the code of
/// the users of this class.
bool UseAdvancedTracking;
- /// Optional MachineRegisterInfo used to perform some complex
+ /// MachineRegisterInfo used to perform tracking.
+ const MachineRegisterInfo &MRI;
+ /// Optional TargetInstrInfo used to perform some complex
/// tracking.
- const MachineRegisterInfo *MRI;
+ const TargetInstrInfo *TII;
/// \brief Dispatcher to the right underlying implementation of
/// getNextSource.
- bool getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for Copy instructions.
- bool getNextSourceFromCopy(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceFromCopy(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for Bitcast instructions.
- bool getNextSourceFromBitcast(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceFromBitcast(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for RegSequence
/// instructions.
- bool getNextSourceFromRegSequence(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceFromRegSequence(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for InsertSubreg
/// instructions.
- bool getNextSourceFromInsertSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceFromInsertSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for ExtractSubreg
/// instructions.
- bool getNextSourceFromExtractSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceFromExtractSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for SubregToReg
/// instructions.
- bool getNextSourceFromSubregToReg(unsigned &SrcIdx, unsigned &SrcSubReg);
+ bool getNextSourceFromSubregToReg(unsigned &SrcReg, unsigned &SrcSubReg);
public:
- /// \brief Create a ValueTracker instance for the value defines by \p MI
- /// at the operand index \p DefIdx.
+ /// \brief Create a ValueTracker instance for the value defined by \p Reg.
/// \p DefSubReg represents the sub register index the value tracker will
- /// track. It does not need to match the sub register index used in \p MI.
+ /// track. It does not need to match the sub register index used in the
+ /// definition of \p Reg.
/// \p UseAdvancedTracking specifies whether or not the value tracker looks
/// through complex instructions. By default (false), it handles only copy
/// and bitcast instructions.
- /// \p MRI useful to perform some complex checks.
+ /// If \p Reg is a physical register, a value tracker constructed with
+ /// this constructor will not find any alternative source.
+ /// Indeed, when \p Reg is a physical register that constructor does not
+ /// know which definition of \p Reg it should track.
+ /// Use the next constructor to track a physical register.
+ ValueTracker(unsigned Reg, unsigned DefSubReg,
+ const MachineRegisterInfo &MRI,
+ bool UseAdvancedTracking = false,
+ const TargetInstrInfo *TII = nullptr)
+ : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
+ UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
+ if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ Def = MRI.getVRegDef(Reg);
+ DefIdx = MRI.def_begin(Reg).getOperandNo();
+ }
+ }
+
+ /// \brief Create a ValueTracker instance for the value defined by
+ /// the pair \p MI, \p DefIdx.
+ /// Unlike the other constructor, the value tracker produced by this one
+ /// may be able to find a new source when the definition is a physical
+ /// register.
+ /// This could be useful to rewrite target specific instructions into
+ /// generic copy instructions.
ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
+ const MachineRegisterInfo &MRI,
bool UseAdvancedTracking = false,
- const MachineRegisterInfo *MRI = nullptr)
+ const TargetInstrInfo *TII = nullptr)
: Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
- UseAdvancedTracking(UseAdvancedTracking), MRI(MRI) {
- assert(Def->getOperand(DefIdx).isDef() &&
- Def->getOperand(DefIdx).isReg() &&
- "Definition does not match machine instruction");
- // Initially the value is in the defined register.
+ UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
+ assert(DefIdx < Def->getDesc().getNumDefs() &&
+ Def->getOperand(DefIdx).isReg() && "Invalid definition");
Reg = Def->getOperand(DefIdx).getReg();
}
/// \brief Following the use-def chain, get the next available source
/// for the tracked value.
- /// When the returned value is not nullptr, getReg() gives the register
+ /// When the returned value is not nullptr, \p SrcReg gives the register
/// that contain the tracked value.
/// \note The sub register index returned in \p SrcSubReg must be used
- /// on that getReg() to access the actual value.
+ /// on \p SrcReg to access the actual value.
/// \return Unless the returned value is nullptr (i.e., no source found),
- /// \p SrcIdx gives the index of the next source in the returned
- /// instruction and \p SrcSubReg the index to be used on that source to
- /// get the tracked value. When nullptr is returned, no alternative source
- /// has been found.
- const MachineInstr *getNextSource(unsigned &SrcIdx, unsigned &SrcSubReg);
+ /// \p SrcReg gives the register of the next source used in the returned
+ /// instruction and \p SrcSubReg the sub-register index to be used on that
+ /// source to get the tracked value. When nullptr is returned, no
+ /// alternative source has been found.
+ const MachineInstr *getNextSource(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Get the last register where the initial value can be found.
/// Initially this is the register of the definition.
@@ -261,7 +313,7 @@ INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
/// debug uses.
bool PeepholeOptimizer::
optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
- SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
+ SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
unsigned SrcReg, DstReg, SubIdx;
if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
return false;
@@ -277,7 +329,7 @@ optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
// Ensure DstReg can get a register class that actually supports
// sub-registers. Don't change the class until we commit.
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
- DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
+ DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
if (!DstRC)
return false;
@@ -286,8 +338,8 @@ optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
// register.
// If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
// SrcReg:SubIdx should be replaced.
- bool UseSrcSubIdx = TM->getRegisterInfo()->
- getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
+ bool UseSrcSubIdx =
+ TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
// The source has other uses. See if we can replace the other uses with use of
// the result of the extension.
@@ -431,7 +483,8 @@ bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
}
/// Optimize a select instruction.
-bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
+bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
+ SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
unsigned TrueOp = 0;
unsigned FalseOp = 0;
bool Optimizable = false;
@@ -440,13 +493,19 @@ bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
return false;
if (!Optimizable)
return false;
- if (!TII->optimizeSelect(MI))
+ if (!TII->optimizeSelect(MI, LocalMIs))
return false;
MI->eraseFromParent();
++NumSelects;
return true;
}
+/// \brief Check if a simpler conditional branch can be
+// generated
+bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
+ return TII->optimizeCondBranch(MI);
+}
+
/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
/// share the same register file.
static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
@@ -477,85 +536,34 @@ static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
}
-/// \brief Get the index of the definition and source for \p Copy
-/// instruction.
-/// \pre Copy.isCopy() or Copy.isBitcast().
-/// \return True if the Copy instruction has only one register source
-/// and one register definition. Otherwise, \p DefIdx and \p SrcIdx
-/// are invalid.
-static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy,
- unsigned &DefIdx, unsigned &SrcIdx) {
- assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type.");
- if (Copy.isCopy()) {
- // Copy instruction are supposed to be: Def = Src.
- if (Copy.getDesc().getNumOperands() != 2)
- return false;
- DefIdx = 0;
- SrcIdx = 1;
- assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!");
- return true;
- }
- // Bitcast case.
- // Bitcasts with more than one def are not supported.
- if (Copy.getDesc().getNumDefs() != 1)
- return false;
- // Initialize SrcIdx to an undefined operand.
- SrcIdx = Copy.getDesc().getNumOperands();
- for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) {
- const MachineOperand &MO = Copy.getOperand(OpIdx);
- if (!MO.isReg() || !MO.getReg())
- continue;
- if (MO.isDef())
- DefIdx = OpIdx;
- else if (SrcIdx != EndOpIdx)
- // Multiple sources?
- return false;
- SrcIdx = OpIdx;
- }
- return true;
-}
-
-/// \brief Optimize a copy or bitcast instruction to avoid cross
-/// register bank copy. The optimization looks through a chain of
-/// copies and try to find a source that has a compatible register
-/// class.
-/// Two register classes are considered to be compatible if they share
-/// the same register bank.
-/// New copies issued by this optimization are register allocator
-/// friendly. This optimization does not remove any copy as it may
-/// overconstraint the register allocator, but replaces some when
-/// possible.
-/// \pre \p MI is a Copy (MI->isCopy() is true)
-/// \return True, when \p MI has been optimized. In that case, \p MI has
-/// been removed from its parent.
-bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
- unsigned DefIdx, SrcIdx;
- if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx))
+/// \brief Try to find the next source that share the same register file
+/// for the value defined by \p Reg and \p SubReg.
+/// When true is returned, \p Reg and \p SubReg are updated with the
+/// register number and sub-register index of the new source.
+/// \return False if no alternative sources are available. True otherwise.
+bool PeepholeOptimizer::findNextSource(unsigned &Reg, unsigned &SubReg) {
+ // Do not try to find a new source for a physical register.
+ // So far we do not have any motivating example for doing that.
+ // Thus, instead of maintaining untested code, we will revisit that if
+ // that changes at some point.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
return false;
- const MachineOperand &MODef = MI->getOperand(DefIdx);
- assert(MODef.isReg() && "Copies must be between registers.");
- unsigned Def = MODef.getReg();
-
- if (TargetRegisterInfo::isPhysicalRegister(Def))
- return false;
-
- const TargetRegisterClass *DefRC = MRI->getRegClass(Def);
- unsigned DefSubReg = MODef.getSubReg();
+ const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
+ unsigned DefSubReg = SubReg;
unsigned Src;
unsigned SrcSubReg;
bool ShouldRewrite = false;
- const TargetRegisterInfo &TRI = *TM->getRegisterInfo();
// Follow the chain of copies until we reach the top of the use-def chain
// or find a more suitable source.
- ValueTracker ValTracker(*MI, DefIdx, DefSubReg, !DisableAdvCopyOpt, MRI);
+ ValueTracker ValTracker(Reg, DefSubReg, *MRI, !DisableAdvCopyOpt, TII);
do {
- unsigned CopySrcIdx, CopySrcSubReg;
- if (!ValTracker.getNextSource(CopySrcIdx, CopySrcSubReg))
+ unsigned CopySrcReg, CopySrcSubReg;
+ if (!ValTracker.getNextSource(CopySrcReg, CopySrcSubReg))
break;
- Src = ValTracker.getReg();
+ Src = CopySrcReg;
SrcSubReg = CopySrcSubReg;
// Do not extend the live-ranges of physical registers as they add
@@ -569,29 +577,411 @@ bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
// If this source does not incur a cross register bank copy, use it.
- ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC,
+ ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, DefSubReg, SrcRC,
SrcSubReg);
} while (!ShouldRewrite);
// If we did not find a more suitable source, there is nothing to optimize.
- if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg())
+ if (!ShouldRewrite || Src == Reg)
+ return false;
+
+ Reg = Src;
+ SubReg = SrcSubReg;
+ return true;
+}
+
+namespace {
+/// \brief Helper class to rewrite the arguments of a copy-like instruction.
+class CopyRewriter {
+protected:
+ /// The copy-like instruction.
+ MachineInstr &CopyLike;
+ /// The index of the source being rewritten.
+ unsigned CurrentSrcIdx;
+
+public:
+ CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
+
+ virtual ~CopyRewriter() {}
+
+ /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
+ /// the related value that it affects (TrackReg, TrackSubReg).
+ /// A source is considered rewritable if its register class and the
+ /// register class of the related TrackReg may not be register
+ /// coalescer friendly. In other words, given a copy-like instruction
+ /// not all the arguments may be returned at rewritable source, since
+ /// some arguments are none to be register coalescer friendly.
+ ///
+ /// Each call of this method moves the current source to the next
+ /// rewritable source.
+ /// For instance, let CopyLike be the instruction to rewrite.
+ /// CopyLike has one definition and one source:
+ /// dst.dstSubIdx = CopyLike src.srcSubIdx.
+ ///
+ /// The first call will give the first rewritable source, i.e.,
+ /// the only source this instruction has:
+ /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
+ /// This source defines the whole definition, i.e.,
+ /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
+ ///
+ /// The second and subsequent calls will return false, has there is only one
+ /// rewritable source.
+ ///
+ /// \return True if a rewritable source has been found, false otherwise.
+ /// The output arguments are valid if and only if true is returned.
+ virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
+ unsigned &TrackReg,
+ unsigned &TrackSubReg) {
+ // If CurrentSrcIdx == 1, this means this function has already been
+ // called once. CopyLike has one defintiion and one argument, thus,
+ // there is nothing else to rewrite.
+ if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
+ return false;
+ // This is the first call to getNextRewritableSource.
+ // Move the CurrentSrcIdx to remember that we made that call.
+ CurrentSrcIdx = 1;
+ // The rewritable source is the argument.
+ const MachineOperand &MOSrc = CopyLike.getOperand(1);
+ SrcReg = MOSrc.getReg();
+ SrcSubReg = MOSrc.getSubReg();
+ // What we track are the alternative sources of the definition.
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+ TrackReg = MODef.getReg();
+ TrackSubReg = MODef.getSubReg();
+ return true;
+ }
+
+ /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
+ /// if possible.
+ /// \return True if the rewritting was possible, false otherwise.
+ virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
+ if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
+ return false;
+ MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
+ MOSrc.setReg(NewReg);
+ MOSrc.setSubReg(NewSubReg);
+ return true;
+ }
+};
+
+/// \brief Specialized rewriter for INSERT_SUBREG instruction.
+class InsertSubregRewriter : public CopyRewriter {
+public:
+ InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
+ assert(MI.isInsertSubreg() && "Invalid instruction");
+ }
+
+ /// \brief See CopyRewriter::getNextRewritableSource.
+ /// Here CopyLike has the following form:
+ /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
+ /// Src1 has the same register class has dst, hence, there is
+ /// nothing to rewrite.
+ /// Src2.src2SubIdx, may not be register coalescer friendly.
+ /// Therefore, the first call to this method returns:
+ /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
+ /// (TrackReg, TrackSubReg) = (dst, subIdx).
+ ///
+ /// Subsequence calls will return false.
+ bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
+ unsigned &TrackReg,
+ unsigned &TrackSubReg) override {
+ // If we already get the only source we can rewrite, return false.
+ if (CurrentSrcIdx == 2)
+ return false;
+ // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
+ CurrentSrcIdx = 2;
+ const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
+ SrcReg = MOInsertedReg.getReg();
+ SrcSubReg = MOInsertedReg.getSubReg();
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+
+ // We want to track something that is compatible with the
+ // partial definition.
+ TrackReg = MODef.getReg();
+ if (MODef.getSubReg())
+ // Bails if we have to compose sub-register indices.
+ return false;
+ TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
+ return true;
+ }
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ if (CurrentSrcIdx != 2)
+ return false;
+ // We are rewriting the inserted reg.
+ MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
+ MO.setReg(NewReg);
+ MO.setSubReg(NewSubReg);
+ return true;
+ }
+};
+
+/// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
+class ExtractSubregRewriter : public CopyRewriter {
+ const TargetInstrInfo &TII;
+
+public:
+ ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
+ : CopyRewriter(MI), TII(TII) {
+ assert(MI.isExtractSubreg() && "Invalid instruction");
+ }
+
+ /// \brief See CopyRewriter::getNextRewritableSource.
+ /// Here CopyLike has the following form:
+ /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
+ /// There is only one rewritable source: Src.subIdx,
+ /// which defines dst.dstSubIdx.
+ bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
+ unsigned &TrackReg,
+ unsigned &TrackSubReg) override {
+ // If we already get the only source we can rewrite, return false.
+ if (CurrentSrcIdx == 1)
+ return false;
+ // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
+ CurrentSrcIdx = 1;
+ const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
+ SrcReg = MOExtractedReg.getReg();
+ // If we have to compose sub-register indices, bails out.
+ if (MOExtractedReg.getSubReg())
+ return false;
+
+ SrcSubReg = CopyLike.getOperand(2).getImm();
+
+ // We want to track something that is compatible with the definition.
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+ TrackReg = MODef.getReg();
+ TrackSubReg = MODef.getSubReg();
+ return true;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ // The only source we can rewrite is the input register.
+ if (CurrentSrcIdx != 1)
+ return false;
+
+ CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
+
+ // If we find a source that does not require to extract something,
+ // rewrite the operation with a copy.
+ if (!NewSubReg) {
+ // Move the current index to an invalid position.
+ // We do not want another call to this method to be able
+ // to do any change.
+ CurrentSrcIdx = -1;
+ // Rewrite the operation as a COPY.
+ // Get rid of the sub-register index.
+ CopyLike.RemoveOperand(2);
+ // Morph the operation into a COPY.
+ CopyLike.setDesc(TII.get(TargetOpcode::COPY));
+ return true;
+ }
+ CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
+ return true;
+ }
+};
+
+/// \brief Specialized rewriter for REG_SEQUENCE instruction.
+class RegSequenceRewriter : public CopyRewriter {
+public:
+ RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
+ assert(MI.isRegSequence() && "Invalid instruction");
+ }
+
+ /// \brief See CopyRewriter::getNextRewritableSource.
+ /// Here CopyLike has the following form:
+ /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
+ /// Each call will return a different source, walking all the available
+ /// source.
+ ///
+ /// The first call returns:
+ /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
+ /// (TrackReg, TrackSubReg) = (dst, subIdx1).
+ ///
+ /// The second call returns:
+ /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
+ /// (TrackReg, TrackSubReg) = (dst, subIdx2).
+ ///
+ /// And so on, until all the sources have been traversed, then
+ /// it returns false.
+ bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
+ unsigned &TrackReg,
+ unsigned &TrackSubReg) override {
+ // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
+
+ // If this is the first call, move to the first argument.
+ if (CurrentSrcIdx == 0) {
+ CurrentSrcIdx = 1;
+ } else {
+ // Otherwise, move to the next argument and check that it is valid.
+ CurrentSrcIdx += 2;
+ if (CurrentSrcIdx >= CopyLike.getNumOperands())
+ return false;
+ }
+ const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
+ SrcReg = MOInsertedReg.getReg();
+ // If we have to compose sub-register indices, bails out.
+ if ((SrcSubReg = MOInsertedReg.getSubReg()))
+ return false;
+
+ // We want to track something that is compatible with the related
+ // partial definition.
+ TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
+
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+ TrackReg = MODef.getReg();
+ // If we have to compose sub-registers, bails.
+ return MODef.getSubReg() == 0;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ // We cannot rewrite out of bound operands.
+ // Moreover, rewritable sources are at odd positions.
+ if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
+ return false;
+
+ MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
+ MO.setReg(NewReg);
+ MO.setSubReg(NewSubReg);
+ return true;
+ }
+};
+} // End namespace.
+
+/// \brief Get the appropriated CopyRewriter for \p MI.
+/// \return A pointer to a dynamically allocated CopyRewriter or nullptr
+/// if no rewriter works for \p MI.
+static CopyRewriter *getCopyRewriter(MachineInstr &MI,
+ const TargetInstrInfo &TII) {
+ switch (MI.getOpcode()) {
+ default:
+ return nullptr;
+ case TargetOpcode::COPY:
+ return new CopyRewriter(MI);
+ case TargetOpcode::INSERT_SUBREG:
+ return new InsertSubregRewriter(MI);
+ case TargetOpcode::EXTRACT_SUBREG:
+ return new ExtractSubregRewriter(MI, TII);
+ case TargetOpcode::REG_SEQUENCE:
+ return new RegSequenceRewriter(MI);
+ }
+ llvm_unreachable(nullptr);
+}
+
+/// \brief Optimize generic copy instructions to avoid cross
+/// register bank copy. The optimization looks through a chain of
+/// copies and tries to find a source that has a compatible register
+/// class.
+/// Two register classes are considered to be compatible if they share
+/// the same register bank.
+/// New copies issued by this optimization are register allocator
+/// friendly. This optimization does not remove any copy as it may
+/// overconstraint the register allocator, but replaces some operands
+/// when possible.
+/// \pre isCoalescableCopy(*MI) is true.
+/// \return True, when \p MI has been rewritten. False otherwise.
+bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
+ assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
+ assert(MI->getDesc().getNumDefs() == 1 &&
+ "Coalescer can understand multiple defs?!");
+ const MachineOperand &MODef = MI->getOperand(0);
+ // Do not rewrite physical definitions.
+ if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
return false;
- // Rewrite the copy to avoid a cross register bank penalty.
- unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def :
- MRI->createVirtualRegister(DefRC);
- MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
- TII->get(TargetOpcode::COPY), NewVR)
- .addReg(Src, 0, SrcSubReg);
- NewCopy->getOperand(0).setSubReg(DefSubReg);
-
- MRI->replaceRegWith(Def, NewVR);
- MRI->clearKillFlags(NewVR);
- // We extended the lifetime of Src.
- // Clear the kill flags to account for that.
- MRI->clearKillFlags(Src);
+ bool Changed = false;
+ // Get the right rewriter for the current copy.
+ std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII));
+ // If none exists, bails out.
+ if (!CpyRewriter)
+ return false;
+ // Rewrite each rewritable source.
+ unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
+ while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
+ TrackSubReg)) {
+ unsigned NewSrc = TrackReg;
+ unsigned NewSubReg = TrackSubReg;
+ // Try to find a more suitable source.
+ // If we failed to do so, or get the actual source,
+ // move to the next source.
+ if (!findNextSource(NewSrc, NewSubReg) || SrcReg == NewSrc)
+ continue;
+ // Rewrite source.
+ if (CpyRewriter->RewriteCurrentSource(NewSrc, NewSubReg)) {
+ // We may have extended the live-range of NewSrc, account for that.
+ MRI->clearKillFlags(NewSrc);
+ Changed = true;
+ }
+ }
+ // TODO: We could have a clean-up method to tidy the instruction.
+ // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
+ // => v0 = COPY v1
+ // Currently we haven't seen motivating example for that and we
+ // want to avoid untested code.
+ NumRewrittenCopies += Changed == true;
+ return Changed;
+}
+
+/// \brief Optimize copy-like instructions to create
+/// register coalescer friendly instruction.
+/// The optimization tries to kill-off the \p MI by looking
+/// through a chain of copies to find a source that has a compatible
+/// register class.
+/// If such a source is found, it replace \p MI by a generic COPY
+/// operation.
+/// \pre isUncoalescableCopy(*MI) is true.
+/// \return True, when \p MI has been optimized. In that case, \p MI has
+/// been removed from its parent.
+/// All COPY instructions created, are inserted in \p LocalMIs.
+bool PeepholeOptimizer::optimizeUncoalescableCopy(
+ MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
+ assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
+
+ // Check if we can rewrite all the values defined by this instruction.
+ SmallVector<
+ std::pair<TargetInstrInfo::RegSubRegPair, TargetInstrInfo::RegSubRegPair>,
+ 4> RewritePairs;
+ for (const MachineOperand &MODef : MI->defs()) {
+ if (MODef.isDead())
+ // We can ignore those.
+ continue;
+
+ // If a physical register is here, this is probably for a good reason.
+ // Do not rewrite that.
+ if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
+ return false;
+
+ // If we do not know how to rewrite this definition, there is no point
+ // in trying to kill this instruction.
+ TargetInstrInfo::RegSubRegPair Def(MODef.getReg(), MODef.getSubReg());
+ TargetInstrInfo::RegSubRegPair Src = Def;
+ if (!findNextSource(Src.Reg, Src.SubReg))
+ return false;
+ RewritePairs.push_back(std::make_pair(Def, Src));
+ }
+ // The change is possible for all defs, do it.
+ for (const auto &PairDefSrc : RewritePairs) {
+ const auto &Def = PairDefSrc.first;
+ const auto &Src = PairDefSrc.second;
+ // Rewrite the "copy" in a way the register coalescer understands.
+ assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
+ "We do not rewrite physical registers");
+ const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
+ unsigned NewVR = MRI->createVirtualRegister(DefRC);
+ MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ NewVR).addReg(Src.Reg, 0, Src.SubReg);
+ NewCopy->getOperand(0).setSubReg(Def.SubReg);
+ if (Def.SubReg)
+ NewCopy->getOperand(0).setIsUndef();
+ LocalMIs.insert(NewCopy);
+ MRI->replaceRegWith(Def.Reg, NewVR);
+ MRI->clearKillFlags(NewVR);
+ // We extended the lifetime of Src.
+ // Clear the kill flags to account for that.
+ MRI->clearKillFlags(Src.Reg);
+ }
+ // MI is now dead.
MI->eraseFromParent();
- ++NumCopiesBitcasts;
+ ++NumUncoalescableCopies;
return true;
}
@@ -673,8 +1063,8 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
if (DisablePeephole)
return false;
- TM = &MF.getTarget();
- TII = TM->getInstrInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
@@ -684,7 +1074,14 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
MachineBasicBlock *MBB = &*I;
bool SeenMoveImm = false;
- SmallPtrSet<MachineInstr*, 8> LocalMIs;
+
+ // During this forward scan, at some point it needs to answer the question
+ // "given a pointer to an MI in the current BB, is it located before or
+ // after the current instruction".
+ // To perform this, the following set keeps track of the MIs already seen
+ // during the scan, if a MI is not in the set, it is assumed to be located
+ // after. Newly created MIs have to be inserted in the set as well.
+ SmallPtrSet<MachineInstr*, 16> LocalMIs;
SmallSet<unsigned, 4> ImmDefRegs;
DenseMap<unsigned, MachineInstr*> ImmDefMIs;
SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
@@ -711,15 +1108,27 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
if (MI->mayStore() || MI->isCall())
FoldAsLoadDefCandidates.clear();
- if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) ||
+ if ((isUncoalescableCopy(*MI) &&
+ optimizeUncoalescableCopy(MI, LocalMIs)) ||
(MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
- (MI->isSelect() && optimizeSelect(MI))) {
+ (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
// MI is deleted.
LocalMIs.erase(MI);
Changed = true;
continue;
}
+ if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
+ Changed = true;
+ continue;
+ }
+
+ if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
+ // MI is just rewritten.
+ Changed = true;
+ continue;
+ }
+
if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
SeenMoveImm = true;
} else {
@@ -781,24 +1190,25 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
return Changed;
}
-bool ValueTracker::getNextSourceFromCopy(unsigned &SrcIdx,
+bool ValueTracker::getNextSourceFromCopy(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert(Def->isCopy() && "Invalid definition");
// Copy instruction are supposed to be: Def = Src.
// If someone breaks this assumption, bad things will happen everywhere.
- assert(Def->getDesc().getNumOperands() == 2 && "Invalid number of operands");
+ assert(Def->getNumOperands() == 2 && "Invalid number of operands");
if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
// If we look for a different subreg, it means we want a subreg of src.
// Bails as we do not support composing subreg yet.
return false;
// Otherwise, we want the whole source.
- SrcIdx = 1;
- SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
+ const MachineOperand &Src = Def->getOperand(1);
+ SrcReg = Src.getReg();
+ SrcSubReg = Src.getSubReg();
return true;
}
-bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx,
+bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert(Def->isBitcast() && "Invalid definition");
@@ -814,7 +1224,7 @@ bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx,
// Bails as we do not support composing subreg yet.
return false;
- SrcIdx = Def->getDesc().getNumOperands();
+ unsigned SrcIdx = Def->getNumOperands();
for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
++OpIdx) {
const MachineOperand &MO = Def->getOperand(OpIdx);
@@ -826,13 +1236,16 @@ bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx,
return false;
SrcIdx = OpIdx;
}
- SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
+ const MachineOperand &Src = Def->getOperand(SrcIdx);
+ SrcReg = Src.getReg();
+ SrcSubReg = Src.getSubReg();
return true;
}
-bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx,
+bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcReg,
unsigned &SrcSubReg) {
- assert(Def->isRegSequence() && "Invalid definition");
+ assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
+ "Invalid definition");
if (Def->getOperand(DefIdx).getSubReg())
// If we are composing subreg, bails out.
@@ -851,19 +1264,26 @@ bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx,
// turn that into an assertion.
return false;
+ if (!TII)
+ // We could handle the REG_SEQUENCE here, but we do not want to
+ // duplicate the code from the generic TII.
+ return false;
+
+ SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
+ if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
+ return false;
+
// We are looking at:
// Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
// Check if one of the operand defines the subreg we are interested in.
- for (unsigned OpIdx = DefIdx + 1, EndOpIdx = Def->getNumOperands();
- OpIdx != EndOpIdx; OpIdx += 2) {
- const MachineOperand &MOSubIdx = Def->getOperand(OpIdx + 1);
- assert(MOSubIdx.isImm() &&
- "One of the subindex of the reg_sequence is not an immediate");
- if (MOSubIdx.getImm() == DefSubReg) {
- assert(Def->getOperand(OpIdx).isReg() &&
- "One of the source of the reg_sequence is not a register");
- SrcIdx = OpIdx;
- SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
+ for (auto &RegSeqInput : RegSeqInputRegs) {
+ if (RegSeqInput.SubIdx == DefSubReg) {
+ if (RegSeqInput.SubReg)
+ // Bails if we have to compose sub registers.
+ return false;
+
+ SrcReg = RegSeqInput.Reg;
+ SrcSubReg = RegSeqInput.SubReg;
return true;
}
}
@@ -874,61 +1294,68 @@ bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx,
return false;
}
-bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcIdx,
+bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcReg,
unsigned &SrcSubReg) {
- assert(Def->isInsertSubreg() && "Invalid definition");
+ assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
+ "Invalid definition");
+
if (Def->getOperand(DefIdx).getSubReg())
// If we are composing subreg, bails out.
// Same remark as getNextSourceFromRegSequence.
// I.e., this may be turned into an assert.
return false;
+ if (!TII)
+ // We could handle the REG_SEQUENCE here, but we do not want to
+ // duplicate the code from the generic TII.
+ return false;
+
+ TargetInstrInfo::RegSubRegPair BaseReg;
+ TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
+ if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
+ return false;
+
// We are looking at:
// Def = INSERT_SUBREG v0, v1, sub1
// There are two cases:
// 1. DefSubReg == sub1, get v1.
// 2. DefSubReg != sub1, the value may be available through v0.
- // #1 Check if the inserted register matches the require sub index.
- unsigned InsertedSubReg = Def->getOperand(3).getImm();
- if (InsertedSubReg == DefSubReg) {
- SrcIdx = 2;
- SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
+ // #1 Check if the inserted register matches the required sub index.
+ if (InsertedReg.SubIdx == DefSubReg) {
+ SrcReg = InsertedReg.Reg;
+ SrcSubReg = InsertedReg.SubReg;
return true;
}
// #2 Otherwise, if the sub register we are looking for is not partial
// defined by the inserted element, we can look through the main
// register (v0).
- // To check the overlapping we need a MRI and a TRI.
- if (!MRI)
- return false;
-
const MachineOperand &MODef = Def->getOperand(DefIdx);
- const MachineOperand &MOBase = Def->getOperand(1);
// If the result register (Def) and the base register (v0) do not
// have the same register class or if we have to compose
// subregisters, bails out.
- if (MRI->getRegClass(MODef.getReg()) != MRI->getRegClass(MOBase.getReg()) ||
- MOBase.getSubReg())
+ if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
+ BaseReg.SubReg)
return false;
- // Get the TRI and check if inserted sub register overlaps with the
- // sub register we are tracking.
- const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
+ // Get the TRI and check if the inserted sub-register overlaps with the
+ // sub-register we are tracking.
+ const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
if (!TRI ||
(TRI->getSubRegIndexLaneMask(DefSubReg) &
- TRI->getSubRegIndexLaneMask(InsertedSubReg)) != 0)
+ TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
return false;
// At this point, the value is available in v0 via the same subreg
// we used for Def.
- SrcIdx = 1;
+ SrcReg = BaseReg.Reg;
SrcSubReg = DefSubReg;
return true;
}
-bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcIdx,
+bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcReg,
unsigned &SrcSubReg) {
- assert(Def->isExtractSubreg() && "Invalid definition");
+ assert((Def->isExtractSubreg() ||
+ Def->isExtractSubregLike()) && "Invalid definition");
// We are looking at:
// Def = EXTRACT_SUBREG v0, sub0
@@ -937,17 +1364,26 @@ bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcIdx,
if (DefSubReg)
return false;
+ if (!TII)
+ // We could handle the EXTRACT_SUBREG here, but we do not want to
+ // duplicate the code from the generic TII.
+ return false;
+
+ TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
+ if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
+ return false;
+
// Bails if we have to compose sub registers.
// Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
- if (Def->getOperand(1).getSubReg())
+ if (ExtractSubregInputReg.SubReg)
return false;
// Otherwise, the value is available in the v0.sub0.
- SrcIdx = 1;
- SrcSubReg = Def->getOperand(2).getImm();
+ SrcReg = ExtractSubregInputReg.Reg;
+ SrcSubReg = ExtractSubregInputReg.SubIdx;
return true;
}
-bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcIdx,
+bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert(Def->isSubregToReg() && "Invalid definition");
// We are looking at:
@@ -964,37 +1400,37 @@ bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcIdx,
if (Def->getOperand(2).getSubReg())
return false;
- SrcIdx = 2;
+ SrcReg = Def->getOperand(2).getReg();
SrcSubReg = Def->getOperand(3).getImm();
return true;
}
-bool ValueTracker::getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg) {
+bool ValueTracker::getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg) {
assert(Def && "This method needs a valid definition");
assert(
(DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
if (Def->isCopy())
- return getNextSourceFromCopy(SrcIdx, SrcSubReg);
+ return getNextSourceFromCopy(SrcReg, SrcSubReg);
if (Def->isBitcast())
- return getNextSourceFromBitcast(SrcIdx, SrcSubReg);
+ return getNextSourceFromBitcast(SrcReg, SrcSubReg);
// All the remaining cases involve "complex" instructions.
// Bails if we did not ask for the advanced tracking.
if (!UseAdvancedTracking)
return false;
- if (Def->isRegSequence())
- return getNextSourceFromRegSequence(SrcIdx, SrcSubReg);
- if (Def->isInsertSubreg())
- return getNextSourceFromInsertSubreg(SrcIdx, SrcSubReg);
- if (Def->isExtractSubreg())
- return getNextSourceFromExtractSubreg(SrcIdx, SrcSubReg);
+ if (Def->isRegSequence() || Def->isRegSequenceLike())
+ return getNextSourceFromRegSequence(SrcReg, SrcSubReg);
+ if (Def->isInsertSubreg() || Def->isInsertSubregLike())
+ return getNextSourceFromInsertSubreg(SrcReg, SrcSubReg);
+ if (Def->isExtractSubreg() || Def->isExtractSubregLike())
+ return getNextSourceFromExtractSubreg(SrcReg, SrcSubReg);
if (Def->isSubregToReg())
- return getNextSourceFromSubregToReg(SrcIdx, SrcSubReg);
+ return getNextSourceFromSubregToReg(SrcReg, SrcSubReg);
return false;
}
-const MachineInstr *ValueTracker::getNextSource(unsigned &SrcIdx,
+const MachineInstr *ValueTracker::getNextSource(unsigned &SrcReg,
unsigned &SrcSubReg) {
// If we reach a point where we cannot move up in the use-def chain,
// there is nothing we can get.
@@ -1003,20 +1439,18 @@ const MachineInstr *ValueTracker::getNextSource(unsigned &SrcIdx,
const MachineInstr *PrevDef = nullptr;
// Try to find the next source.
- if (getNextSourceImpl(SrcIdx, SrcSubReg)) {
+ if (getNextSourceImpl(SrcReg, SrcSubReg)) {
// Update definition, definition index, and subregister for the
// next call of getNextSource.
- const MachineOperand &MO = Def->getOperand(SrcIdx);
- assert(MO.isReg() && !MO.isDef() && "Source is invalid");
// Update the current register.
- Reg = MO.getReg();
+ Reg = SrcReg;
// Update the return value before moving up in the use-def chain.
PrevDef = Def;
// If we can still move up in the use-def chain, move to the next
// defintion.
if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
- Def = MRI->getVRegDef(Reg);
- DefIdx = MRI->def_begin(Reg).getOperandNo();
+ Def = MRI.getVRegDef(Reg);
+ DefIdx = MRI.def_begin(Reg).getOperandNo();
DefSubReg = SrcSubReg;
return PrevDef;
}
diff --git a/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp b/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
index a1ab344..89e1d11 100644
--- a/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
+++ b/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
@@ -41,7 +41,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -98,7 +97,7 @@ namespace {
}
bool runOnMachineFunction(MachineFunction &Fn) override;
-
+
bool enablePostRAScheduler(
const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode &Mode,
@@ -137,10 +136,10 @@ namespace {
public:
SchedulePostRATDList(
- MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
- AliasAnalysis *AA, const RegisterClassInfo&,
- TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
- SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
+ MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
+ const RegisterClassInfo &,
+ TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
+ SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
~SchedulePostRATDList();
@@ -193,16 +192,17 @@ INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
"Post RA top-down list latency scheduler", false, false)
SchedulePostRATDList::SchedulePostRATDList(
- MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
- AliasAnalysis *AA, const RegisterClassInfo &RCI,
- TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
- SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
- : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA), EndIndex(0) {
-
- const TargetMachine &TM = MF.getTarget();
- const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
+ MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
+ const RegisterClassInfo &RCI,
+ TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
+ SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
+ : ScheduleDAGInstrs(MF, &MLI, /*IsPostRA=*/true), AA(AA), EndIndex(0) {
+
+ const InstrItineraryData *InstrItins =
+ MF.getSubtarget().getInstrItineraryData();
HazardRec =
- TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
+ MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
+ InstrItins, this);
assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
MRI.tracksLiveness()) &&
@@ -265,9 +265,8 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
if (skipOptnoneFunction(*Fn.getFunction()))
return false;
- TII = Fn.getTarget().getInstrInfo();
+ TII = Fn.getSubtarget().getInstrInfo();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
- MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
@@ -301,7 +300,7 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(dbgs() << "PostRAScheduler\n");
- SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
+ SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
CriticalPathRCs);
// Loop over all of the basic blocks
@@ -560,10 +559,10 @@ void SchedulePostRATDList::ListScheduleTopDown() {
if (HT == ScheduleHazardRecognizer::NoHazard) {
if (HazardRec->ShouldPreferAnother(CurSUnit)) {
if (!NotPreferredSUnit) {
- // If this is the first non-preferred node for this cycle, then
- // record it and continue searching for a preferred node. If this
- // is not the first non-preferred node, then treat it as though
- // there had been a hazard.
+ // If this is the first non-preferred node for this cycle, then
+ // record it and continue searching for a preferred node. If this
+ // is not the first non-preferred node, then treat it as though
+ // there had been a hazard.
NotPreferredSUnit = CurSUnit;
continue;
}
diff --git a/contrib/llvm/lib/CodeGen/ProcessImplicitDefs.cpp b/contrib/llvm/lib/CodeGen/ProcessImplicitDefs.cpp
index 3129927..b153800 100644
--- a/contrib/llvm/lib/CodeGen/ProcessImplicitDefs.cpp
+++ b/contrib/llvm/lib/CodeGen/ProcessImplicitDefs.cpp
@@ -16,6 +16,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -138,8 +139,8 @@ bool ProcessImplicitDefs::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
assert(MRI->isSSA() && "ProcessImplicitDefs only works on SSA form.");
assert(WorkList.empty() && "Inconsistent worklist state");
diff --git a/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp b/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp
index b98d210..385e5a3 100644
--- a/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp
+++ b/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp
@@ -41,6 +41,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <climits>
using namespace llvm;
@@ -110,8 +111,8 @@ typedef SmallSetVector<int, 8> StackObjSet;
///
bool PEI::runOnMachineFunction(MachineFunction &Fn) {
const Function* F = Fn.getFunction();
- const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
- const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
+ const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
+ const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
assert(!Fn.getRegInfo().getNumVirtRegs() && "Regalloc must assign all vregs");
@@ -185,8 +186,8 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallsInformation(MachineFunction &Fn) {
- const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
- const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
+ const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
+ const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
MachineFrameInfo *MFI = Fn.getFrameInfo();
unsigned MaxCallFrameSize = 0;
@@ -239,8 +240,8 @@ void PEI::calculateCallsInformation(MachineFunction &Fn) {
/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
/// registers.
void PEI::calculateCalleeSavedRegisters(MachineFunction &F) {
- const TargetRegisterInfo *RegInfo = F.getTarget().getRegisterInfo();
- const TargetFrameLowering *TFI = F.getTarget().getFrameLowering();
+ const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo();
+ const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
MachineFrameInfo *MFI = F.getFrameInfo();
// Get the callee saved register list...
@@ -337,9 +338,9 @@ void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
if (CSI.empty())
return;
- const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
- const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
- const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
+ const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
+ const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
+ const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
MachineBasicBlock::iterator I;
// Spill using target interface.
@@ -445,7 +446,7 @@ AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
/// abstract stack objects.
///
void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
- const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
+ const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
StackProtector *SP = &getAnalysis<StackProtector>();
bool StackGrowsDown =
@@ -515,7 +516,7 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
// to the incoming rather than the final stack pointer.
- const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo = Fn.getSubtarget().getRegisterInfo();
bool EarlyScavengingSlots = (TFI.hasFP(Fn) &&
TFI.isFPCloseToIncomingSP() &&
RegInfo->useFPForScavengingIndex(Fn) &&
@@ -670,7 +671,7 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
/// prolog and epilog code to the function.
///
void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
- const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
+ const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
// Add prologue to the function...
TFI.emitPrologue(Fn);
@@ -710,8 +711,7 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
SmallPtrSet<MachineBasicBlock*, 8> Reachable;
// Iterate over the reachable blocks in DFS order.
- for (df_ext_iterator<MachineFunction*, SmallPtrSet<MachineBasicBlock*, 8> >
- DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable);
+ for (auto DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable);
DFI != DFE; ++DFI) {
int SPAdj = 0;
// Check the exit state of the DFS stack predecessor.
@@ -738,31 +738,24 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
int &SPAdj) {
- const TargetMachine &TM = Fn.getTarget();
- assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!");
- const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
- const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
- const TargetFrameLowering *TFI = TM.getFrameLowering();
- bool StackGrowsDown =
- TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
+ assert(Fn.getSubtarget().getRegisterInfo() &&
+ "getRegisterInfo() must be implemented!");
+ const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
+ const TargetRegisterInfo &TRI = *Fn.getSubtarget().getRegisterInfo();
+ const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
int FrameSetupOpcode = TII.getCallFrameSetupOpcode();
int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB);
+ bool InsideCallSequence = false;
+
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
- // Remember how much SP has been adjusted to create the call
- // frame.
- int Size = I->getOperand(0).getImm();
-
- if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) ||
- (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode))
- Size = -Size;
-
- SPAdj += Size;
+ InsideCallSequence = (I->getOpcode() == FrameSetupOpcode);
+ SPAdj += TII.getSPAdjust(I);
MachineBasicBlock::iterator PrevI = BB->end();
if (I != BB->begin()) PrevI = std::prev(I);
@@ -776,6 +769,13 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
continue;
}
+ // If we are looking at a call sequence, we need to keep track of
+ // the SP adjustment made by each instruction in the sequence.
+ // This includes both the frame setup/destroy pseudos (handled above),
+ // as well as other instructions that have side effects w.r.t the SP.
+ if (InsideCallSequence)
+ SPAdj += TII.getSPAdjust(I);
+
MachineInstr *MI = I;
bool DoIncr = true;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
@@ -797,6 +797,37 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
continue;
}
+ // TODO: This code should be commoned with the code for
+ // PATCHPOINT. There's no good reason for the difference in
+ // implementation other than historical accident. The only
+ // remaining difference is the unconditional use of the stack
+ // pointer as the base register.
+ if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
+ assert((!MI->isDebugValue() || i == 0) &&
+ "Frame indicies can only appear as the first operand of a "
+ "DBG_VALUE machine instruction");
+ unsigned Reg;
+ MachineOperand &Offset = MI->getOperand(i + 1);
+ const unsigned refOffset =
+ TFI->getFrameIndexReferenceFromSP(Fn, MI->getOperand(i).getIndex(),
+ Reg);
+
+ Offset.setImm(Offset.getImm() + refOffset);
+ MI->getOperand(i).ChangeToRegister(Reg, false /*isDef*/);
+ continue;
+ }
+
+ // Frame allocations are target independent. Simply swap the index with
+ // the offset.
+ if (MI->getOpcode() == TargetOpcode::FRAME_ALLOC) {
+ assert(TFI->hasFP(Fn) && "frame alloc requires FP");
+ MachineOperand &FI = MI->getOperand(i);
+ unsigned Reg;
+ int FrameOffset = TFI->getFrameIndexReference(Fn, FI.getIndex(), Reg);
+ FI.ChangeToImmediate(FrameOffset);
+ continue;
+ }
+
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
@@ -837,7 +868,8 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
/// FIXME: Iterating over the instruction stream is unnecessary. We can simply
/// iterate over the vreg use list, which at this point only contains machine
/// operands for which eliminateFrameIndex need a new scratch reg.
-void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
+void
+PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
// Run through the instructions and find any virtual registers.
for (MachineFunction::iterator BB = Fn.begin(),
E = Fn.end(); BB != E; ++BB) {
@@ -888,12 +920,16 @@ void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
// Replace this reference to the virtual register with the
// scratch register.
assert (ScratchReg && "Missing scratch register!");
+ MachineRegisterInfo &MRI = Fn.getRegInfo();
Fn.getRegInfo().replaceRegWith(Reg, ScratchReg);
+
+ // Make sure MRI now accounts this register as used.
+ MRI.setPhysRegUsed(ScratchReg);
// Because this instruction was processed by the RS before this
// register was allocated, make sure that the RS now records the
// register as being used.
- RS->setUsed(ScratchReg);
+ RS->setRegUsed(ScratchReg);
}
}
diff --git a/contrib/llvm/lib/CodeGen/PrologEpilogInserter.h b/contrib/llvm/lib/CodeGen/PrologEpilogInserter.h
index 5a6d39a..f88b8ef 100644
--- a/contrib/llvm/lib/CodeGen/PrologEpilogInserter.h
+++ b/contrib/llvm/lib/CodeGen/PrologEpilogInserter.h
@@ -16,8 +16,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_PEI_H
-#define LLVM_CODEGEN_PEI_H
+#ifndef LLVM_LIB_CODEGEN_PROLOGEPILOGINSERTER_H
+#define LLVM_LIB_CODEGEN_PROLOGEPILOGINSERTER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SparseBitVector.h"
diff --git a/contrib/llvm/lib/CodeGen/PseudoSourceValue.cpp b/contrib/llvm/lib/CodeGen/PseudoSourceValue.cpp
index 12b2c90..b1c341d 100644
--- a/contrib/llvm/lib/CodeGen/PseudoSourceValue.cpp
+++ b/contrib/llvm/lib/CodeGen/PseudoSourceValue.cpp
@@ -107,13 +107,9 @@ bool FixedStackPseudoSourceValue::isConstant(const MachineFrameInfo *MFI) const{
}
bool FixedStackPseudoSourceValue::isAliased(const MachineFrameInfo *MFI) const {
- // Negative frame indices are used for special things that don't
- // appear in LLVM IR. Non-negative indices may be used for things
- // like static allocas.
if (!MFI)
- return FI >= 0;
- // Spill slots should not alias others.
- return !MFI->isFixedObjectIndex(FI) && !MFI->isSpillSlotObjectIndex(FI);
+ return true;
+ return MFI->isAliasedObjectIndex(FI);
}
bool FixedStackPseudoSourceValue::mayAlias(const MachineFrameInfo *MFI) const {
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBase.cpp b/contrib/llvm/lib/CodeGen/RegAllocBase.cpp
index 894aee7..6b346f4 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocBase.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocBase.cpp
@@ -21,7 +21,6 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
@@ -91,6 +90,7 @@ void RegAllocBase::allocatePhysRegs() {
// Unused registers can appear when the spiller coalesces snippets.
if (MRI->reg_nodbg_empty(VirtReg->reg)) {
DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
+ aboutToRemoveInterval(*VirtReg);
LIS->removeInterval(VirtReg->reg);
continue;
}
@@ -102,7 +102,7 @@ void RegAllocBase::allocatePhysRegs() {
// register if possible and populate a list of new live intervals that
// result from splitting.
DEBUG(dbgs() << "\nselectOrSplit "
- << MRI->getRegClass(VirtReg->reg)->getName()
+ << TRI->getRegClassName(MRI->getRegClass(VirtReg->reg))
<< ':' << *VirtReg << " w=" << VirtReg->weight << '\n');
typedef SmallVector<unsigned, 4> VirtRegVec;
VirtRegVec SplitVRegs;
@@ -140,6 +140,7 @@ void RegAllocBase::allocatePhysRegs() {
assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
+ aboutToRemoveInterval(*SplitVirtReg);
LIS->removeInterval(SplitVirtReg->reg);
continue;
}
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBase.h b/contrib/llvm/lib/CodeGen/RegAllocBase.h
index b333c36..659b8f5 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocBase.h
+++ b/contrib/llvm/lib/CodeGen/RegAllocBase.h
@@ -34,8 +34,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_REGALLOCBASE
-#define LLVM_CODEGEN_REGALLOCBASE
+#ifndef LLVM_LIB_CODEGEN_REGALLOCBASE_H
+#define LLVM_LIB_CODEGEN_REGALLOCBASE_H
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
@@ -96,6 +96,9 @@ protected:
// Use this group name for NamedRegionTimer.
static const char TimerGroupName[];
+ /// Method called when the allocator is about to remove a LiveInterval.
+ virtual void aboutToRemoveInterval(LiveInterval &LI) {}
+
public:
/// VerifyEnabled - True when -verify-regalloc is given.
static bool VerifyEnabled;
@@ -106,4 +109,4 @@ private:
} // end namespace llvm
-#endif // !defined(LLVM_CODEGEN_REGALLOCBASE)
+#endif
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp b/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
index 6bc678e8..0090332 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
@@ -33,7 +33,6 @@
#include "llvm/PassAnalysisSupport.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cstdlib>
#include <queue>
diff --git a/contrib/llvm/lib/CodeGen/RegAllocFast.cpp b/contrib/llvm/lib/CodeGen/RegAllocFast.cpp
index 97b9f76..c621414 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocFast.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocFast.cpp
@@ -33,7 +33,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -53,7 +53,6 @@ namespace {
RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
isBulkSpilling(false) {}
private:
- const TargetMachine *TM;
MachineFunction *MF;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
@@ -298,7 +297,8 @@ void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
LiveDbgValueMap[LRI->VirtReg];
for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
MachineInstr *DBG = LRIDbgValues[li];
- const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
+ const MDNode *Var = DBG->getDebugVariable();
+ const MDNode *Expr = DBG->getDebugExpression();
bool IsIndirect = DBG->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
DebugLoc DL;
@@ -308,10 +308,13 @@ void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
DL = (--EI)->getDebugLoc();
} else
DL = MI->getDebugLoc();
- MachineBasicBlock *MBB = DBG->getParent();
MachineInstr *NewDV =
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
- .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
+ .addFrameIndex(FI)
+ .addImm(Offset)
+ .addMetadata(Var)
+ .addMetadata(Expr);
+ assert(NewDV->getParent() == MBB && "dangling parent pointer");
(void)NewDV;
DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
}
@@ -369,15 +372,23 @@ void RAFast::usePhysReg(MachineOperand &MO) {
case regDisabled:
break;
case regReserved:
- assert(TRI->isSuperRegister(PhysReg, Alias) &&
+ // Either PhysReg is a subregister of Alias and we mark the
+ // whole register as free, or PhysReg is the superregister of
+ // Alias and we mark all the aliases as disabled before freeing
+ // PhysReg.
+ // In the latter case, since PhysReg was disabled, this means that
+ // its value is defined only by physical sub-registers. This check
+ // is performed by the assert of the default case in this loop.
+ // Note: The value of the superregister may only be partial
+ // defined, that is why regDisabled is a valid state for aliases.
+ assert((TRI->isSuperRegister(PhysReg, Alias) ||
+ TRI->isSuperRegister(Alias, PhysReg)) &&
"Instruction is not using a subregister of a reserved register");
- // Leave the superregister in the working set.
- PhysRegState[Alias] = regFree;
- MO.getParent()->addRegisterKilled(Alias, TRI, true);
- return;
+ // Fall through.
case regFree:
if (TRI->isSuperRegister(PhysReg, Alias)) {
// Leave the superregister in the working set.
+ PhysRegState[Alias] = regFree;
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
}
@@ -545,7 +556,7 @@ RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
}
DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
- << RC->getName() << "\n");
+ << TRI->getRegClassName(RC) << "\n");
unsigned BestReg = 0, BestCost = spillImpossible;
for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
@@ -705,7 +716,7 @@ void RAFast::handleThroughOperands(MachineInstr *MI,
continue;
if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
(MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
- if (ThroughRegs.insert(Reg))
+ if (ThroughRegs.insert(Reg).second)
DEBUG(dbgs() << ' ' << PrintReg(Reg));
}
}
@@ -862,13 +873,16 @@ void RAFast::AllocateBasicBlock() {
// Modify DBG_VALUE now that the value is in a spill slot.
bool IsIndirect = MI->isIndirectDebugValue();
uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
- const MDNode *MDPtr =
- MI->getOperand(MI->getNumOperands()-1).getMetadata();
+ const MDNode *Var = MI->getDebugVariable();
+ const MDNode *Expr = MI->getDebugExpression();
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
TII->get(TargetOpcode::DBG_VALUE))
- .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
+ .addFrameIndex(SS)
+ .addImm(Offset)
+ .addMetadata(Var)
+ .addMetadata(Expr);
DEBUG(dbgs() << "Modifying debug info due to spill:"
<< "\t" << *NewDV);
// Scan NewDV operands from the beginning.
@@ -1017,8 +1031,7 @@ void RAFast::AllocateBasicBlock() {
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (!MRI->isAllocatable(Reg)) continue;
- definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
- regFree : regReserved);
+ definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
continue;
}
LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
@@ -1070,9 +1083,8 @@ bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
<< "********** Function: " << Fn.getName() << '\n');
MF = &Fn;
MRI = &MF->getRegInfo();
- TM = &Fn.getTarget();
- TRI = TM->getRegisterInfo();
- TII = TM->getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
MRI->freezeReservedRegs(Fn);
RegClassInfo.runOnMachineFunction(Fn);
UsedInInstr.clear();
@@ -1093,9 +1105,8 @@ bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
}
// Add the clobber lists for all the instructions we skipped earlier.
- for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
- I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
- if (const uint16_t *Defs = (*I)->getImplicitDefs())
+ for (const MCInstrDesc *Desc : SkippedInstrs)
+ if (const uint16_t *Defs = Desc->getImplicitDefs())
while (*Defs)
MRI->setPhysRegUsed(*Defs++);
diff --git a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
index dee990c..edc3294 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
@@ -296,6 +296,9 @@ class RAGreedy : public MachineFunctionPass,
/// obtained from the TargetSubtargetInfo.
bool EnableLocalReassign;
+ /// Set of broken hints that may be reconciled later because of eviction.
+ SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
+
public:
RAGreedy();
@@ -311,6 +314,7 @@ public:
void enqueue(LiveInterval *LI) override;
LiveInterval *dequeue() override;
unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
+ void aboutToRemoveInterval(LiveInterval &) override;
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
@@ -378,6 +382,24 @@ private:
SmallVirtRegSet &, unsigned);
bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned);
+ void tryHintRecoloring(LiveInterval &);
+ void tryHintsRecoloring();
+
+ /// Model the information carried by one end of a copy.
+ struct HintInfo {
+ /// The frequency of the copy.
+ BlockFrequency Freq;
+ /// The virtual register or physical register.
+ unsigned Reg;
+ /// Its currently assigned register.
+ /// In case of a physical register Reg == PhysReg.
+ unsigned PhysReg;
+ HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
+ : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
+ };
+ typedef SmallVector<HintInfo, 4> HintsInfo;
+ BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
+ void collectHintInfo(unsigned, HintsInfo &);
};
} // end anonymous namespace
@@ -453,7 +475,9 @@ void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
if (VRM->hasPhys(VirtReg)) {
- Matrix->unassign(LIS->getInterval(VirtReg));
+ LiveInterval &LI = LIS->getInterval(VirtReg);
+ Matrix->unassign(LI);
+ aboutToRemoveInterval(LI);
return true;
}
// Unassigned virtreg is probably in the priority queue.
@@ -514,7 +538,7 @@ void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
// Giant live ranges fall back to the global assignment heuristic, which
// prevents excessive spilling in pathological cases.
bool ReverseLocal = TRI->reverseLocalAssignment();
- bool ForceGlobal = !ReverseLocal && TRI->mayOverrideLocalAssignment() &&
+ bool ForceGlobal = !ReverseLocal &&
(Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
@@ -817,7 +841,7 @@ unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
unsigned MinCost = RegClassInfo.getMinCost(RC);
if (MinCost >= CostPerUseLimit) {
- DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
+ DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
<< ", no cheaper registers to be found.\n");
return 0;
}
@@ -967,14 +991,12 @@ void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
BCS[B].Exit = SpillPlacement::PrefSpill;
if (++B == GroupSize) {
- ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
- SpillPlacer->addConstraints(Array);
+ SpillPlacer->addConstraints(makeArrayRef(BCS, B));
B = 0;
}
}
- ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
- SpillPlacer->addConstraints(Array);
+ SpillPlacer->addConstraints(makeArrayRef(BCS, B));
SpillPlacer->addLinks(makeArrayRef(TBS, T));
}
@@ -1013,7 +1035,7 @@ void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
// Compute through constraints from the interference, or assume that all
// through blocks prefer spilling when forming compact regions.
- ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
+ auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
if (Cand.PhysReg)
addThroughConstraints(Cand.Intf, NewBlocks);
else
@@ -1791,9 +1813,11 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
// instructions.
//
// Try to guess the size of the new interval.
- const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
- Uses[SplitBefore].distance(Uses[SplitAfter]) +
- (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
+ const float EstWeight = normalizeSpillWeight(
+ blockFreq * (NewGaps + 1),
+ Uses[SplitBefore].distance(Uses[SplitAfter]) +
+ (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
+ 1);
// Would this split be possible to allocate?
// Never allocate all gaps, we wouldn't be making progress.
DEBUG(dbgs() << " w=" << EstWeight);
@@ -2213,6 +2237,11 @@ unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
return PhysReg;
}
+void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
+ // Do not keep invalid information around.
+ SetOfBrokenHints.remove(&LI);
+}
+
void RAGreedy::initializeCSRCost() {
// We use the larger one out of the command-line option and the value report
// by TRI.
@@ -2238,6 +2267,170 @@ void RAGreedy::initializeCSRCost() {
CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
}
+/// \brief Collect the hint info for \p Reg.
+/// The results are stored into \p Out.
+/// \p Out is not cleared before being populated.
+void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
+ for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
+ if (!Instr.isFullCopy())
+ continue;
+ // Look for the other end of the copy.
+ unsigned OtherReg = Instr.getOperand(0).getReg();
+ if (OtherReg == Reg) {
+ OtherReg = Instr.getOperand(1).getReg();
+ if (OtherReg == Reg)
+ continue;
+ }
+ // Get the current assignment.
+ unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
+ ? OtherReg
+ : VRM->getPhys(OtherReg);
+ // Push the collected information.
+ Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
+ OtherPhysReg));
+ }
+}
+
+/// \brief Using the given \p List, compute the cost of the broken hints if
+/// \p PhysReg was used.
+/// \return The cost of \p List for \p PhysReg.
+BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
+ unsigned PhysReg) {
+ BlockFrequency Cost = 0;
+ for (const HintInfo &Info : List) {
+ if (Info.PhysReg != PhysReg)
+ Cost += Info.Freq;
+ }
+ return Cost;
+}
+
+/// \brief Using the register assigned to \p VirtReg, try to recolor
+/// all the live ranges that are copy-related with \p VirtReg.
+/// The recoloring is then propagated to all the live-ranges that have
+/// been recolored and so on, until no more copies can be coalesced or
+/// it is not profitable.
+/// For a given live range, profitability is determined by the sum of the
+/// frequencies of the non-identity copies it would introduce with the old
+/// and new register.
+void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
+ // We have a broken hint, check if it is possible to fix it by
+ // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
+ // some register and PhysReg may be available for the other live-ranges.
+ SmallSet<unsigned, 4> Visited;
+ SmallVector<unsigned, 2> RecoloringCandidates;
+ HintsInfo Info;
+ unsigned Reg = VirtReg.reg;
+ unsigned PhysReg = VRM->getPhys(Reg);
+ // Start the recoloring algorithm from the input live-interval, then
+ // it will propagate to the ones that are copy-related with it.
+ Visited.insert(Reg);
+ RecoloringCandidates.push_back(Reg);
+
+ DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
+ << PrintReg(PhysReg, TRI) << ")\n");
+
+ do {
+ Reg = RecoloringCandidates.pop_back_val();
+
+ // We cannot recolor physcal register.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+
+ assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
+
+ // Get the live interval mapped with this virtual register to be able
+ // to check for the interference with the new color.
+ LiveInterval &LI = LIS->getInterval(Reg);
+ unsigned CurrPhys = VRM->getPhys(Reg);
+ // Check that the new color matches the register class constraints and
+ // that it is free for this live range.
+ if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
+ Matrix->checkInterference(LI, PhysReg)))
+ continue;
+
+ DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
+ << ") is recolorable.\n");
+
+ // Gather the hint info.
+ Info.clear();
+ collectHintInfo(Reg, Info);
+ // Check if recoloring the live-range will increase the cost of the
+ // non-identity copies.
+ if (CurrPhys != PhysReg) {
+ DEBUG(dbgs() << "Checking profitability:\n");
+ BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
+ BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
+ DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
+ << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
+ if (OldCopiesCost < NewCopiesCost) {
+ DEBUG(dbgs() << "=> Not profitable.\n");
+ continue;
+ }
+ // At this point, the cost is either cheaper or equal. If it is
+ // equal, we consider this is profitable because it may expose
+ // more recoloring opportunities.
+ DEBUG(dbgs() << "=> Profitable.\n");
+ // Recolor the live-range.
+ Matrix->unassign(LI);
+ Matrix->assign(LI, PhysReg);
+ }
+ // Push all copy-related live-ranges to keep reconciling the broken
+ // hints.
+ for (const HintInfo &HI : Info) {
+ if (Visited.insert(HI.Reg).second)
+ RecoloringCandidates.push_back(HI.Reg);
+ }
+ } while (!RecoloringCandidates.empty());
+}
+
+/// \brief Try to recolor broken hints.
+/// Broken hints may be repaired by recoloring when an evicted variable
+/// freed up a register for a larger live-range.
+/// Consider the following example:
+/// BB1:
+/// a =
+/// b =
+/// BB2:
+/// ...
+/// = b
+/// = a
+/// Let us assume b gets split:
+/// BB1:
+/// a =
+/// b =
+/// BB2:
+/// c = b
+/// ...
+/// d = c
+/// = d
+/// = a
+/// Because of how the allocation work, b, c, and d may be assigned different
+/// colors. Now, if a gets evicted later:
+/// BB1:
+/// a =
+/// st a, SpillSlot
+/// b =
+/// BB2:
+/// c = b
+/// ...
+/// d = c
+/// = d
+/// e = ld SpillSlot
+/// = e
+/// This is likely that we can assign the same register for b, c, and d,
+/// getting rid of 2 copies.
+void RAGreedy::tryHintsRecoloring() {
+ for (LiveInterval *LI : SetOfBrokenHints) {
+ assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
+ "Recoloring is possible only for virtual registers");
+ // Some dead defs may be around (e.g., because of debug uses).
+ // Ignore those.
+ if (!VRM->hasPhys(LI->reg))
+ continue;
+ tryHintRecoloring(*LI);
+ }
+}
+
unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
@@ -2274,8 +2467,18 @@ unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
// queue. The RS_Split ranges already failed to do this, and they should not
// get a second chance until they have been split.
if (Stage != RS_Split)
- if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit))
+ if (unsigned PhysReg =
+ tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
+ unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
+ // If VirtReg has a hint and that hint is broken record this
+ // virtual register as a recoloring candidate for broken hint.
+ // Indeed, since we evicted a variable in its neighborhood it is
+ // likely we can at least partially recolor some of the
+ // copy-related live-ranges.
+ if (Hint && Hint != PhysReg)
+ SetOfBrokenHints.insert(&VirtReg);
return PhysReg;
+ }
assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
@@ -2319,13 +2522,13 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
<< "********** Function: " << mf.getName() << '\n');
MF = &mf;
- const TargetMachine &TM = MF->getTarget();
- TRI = TM.getRegisterInfo();
- TII = TM.getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
RCI.runOnMachineFunction(mf);
EnableLocalReassign = EnableLocalReassignment ||
- TM.getSubtargetImpl()->enableRALocalReassignment(TM.getOptLevel());
+ MF->getSubtarget().enableRALocalReassignment(
+ MF->getTarget().getOptLevel());
if (VerifyEnabled)
MF->verify(this, "Before greedy register allocator");
@@ -2355,8 +2558,10 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
NextCascade = 1;
IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
GlobalCand.resize(32); // This will grow as needed.
+ SetOfBrokenHints.clear();
allocatePhysRegs();
+ tryHintsRecoloring();
releaseMemory();
return true;
}
diff --git a/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
index 8a3b53f..eb7e563 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
@@ -49,9 +49,10 @@
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <limits>
#include <memory>
+#include <queue>
#include <set>
#include <sstream>
#include <vector>
@@ -61,17 +62,17 @@ using namespace llvm;
#define DEBUG_TYPE "regalloc"
static RegisterRegAlloc
-registerPBQPRepAlloc("pbqp", "PBQP register allocator",
+RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
createDefaultPBQPRegisterAllocator);
static cl::opt<bool>
-pbqpCoalescing("pbqp-coalescing",
+PBQPCoalescing("pbqp-coalescing",
cl::desc("Attempt coalescing during PBQP register allocation."),
cl::init(false), cl::Hidden);
#ifndef NDEBUG
static cl::opt<bool>
-pbqpDumpGraphs("pbqp-dump-graphs",
+PBQPDumpGraphs("pbqp-dump-graphs",
cl::desc("Dump graphs for each function/round in the compilation unit."),
cl::init(false), cl::Hidden);
#endif
@@ -88,8 +89,8 @@ public:
static char ID;
/// Construct a PBQP register allocator.
- RegAllocPBQP(std::unique_ptr<PBQPBuilder> b, char *cPassID = nullptr)
- : MachineFunctionPass(ID), builder(std::move(b)), customPassID(cPassID) {
+ RegAllocPBQP(char *cPassID = nullptr)
+ : MachineFunctionPass(ID), customPassID(cPassID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
@@ -117,301 +118,320 @@ private:
typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
typedef std::set<unsigned> RegSet;
- std::unique_ptr<PBQPBuilder> builder;
-
char *customPassID;
- MachineFunction *mf;
- const TargetMachine *tm;
- const TargetRegisterInfo *tri;
- const TargetInstrInfo *tii;
- MachineRegisterInfo *mri;
- const MachineBlockFrequencyInfo *mbfi;
-
- std::unique_ptr<Spiller> spiller;
- LiveIntervals *lis;
- LiveStacks *lss;
- VirtRegMap *vrm;
-
- RegSet vregsToAlloc, emptyIntervalVRegs;
+ RegSet VRegsToAlloc, EmptyIntervalVRegs;
/// \brief Finds the initial set of vreg intervals to allocate.
- void findVRegIntervalsToAlloc();
+ void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
+
+ /// \brief Constructs an initial graph.
+ void initializeGraph(PBQPRAGraph &G);
/// \brief Given a solved PBQP problem maps this solution back to a register
/// assignment.
- bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
- const PBQP::Solution &solution);
+ bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
+ const PBQP::Solution &Solution,
+ VirtRegMap &VRM,
+ Spiller &VRegSpiller);
/// \brief Postprocessing before final spilling. Sets basic block "live in"
/// variables.
- void finalizeAlloc() const;
+ void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
+ VirtRegMap &VRM) const;
};
char RegAllocPBQP::ID = 0;
-} // End anonymous namespace.
-
-unsigned PBQPRAProblem::getVRegForNode(PBQPRAGraph::NodeId node) const {
- Node2VReg::const_iterator vregItr = node2VReg.find(node);
- assert(vregItr != node2VReg.end() && "No vreg for node.");
- return vregItr->second;
-}
-
-PBQPRAGraph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
- VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
- assert(nodeItr != vreg2Node.end() && "No node for vreg.");
- return nodeItr->second;
-
-}
+/// @brief Set spill costs for each node in the PBQP reg-alloc graph.
+class SpillCosts : public PBQPRAConstraint {
+public:
+ void apply(PBQPRAGraph &G) override {
+ LiveIntervals &LIS = G.getMetadata().LIS;
+
+ // A minimum spill costs, so that register constraints can can be set
+ // without normalization in the [0.0:MinSpillCost( interval.
+ const PBQP::PBQPNum MinSpillCost = 10.0;
+
+ for (auto NId : G.nodeIds()) {
+ PBQP::PBQPNum SpillCost =
+ LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
+ if (SpillCost == 0.0)
+ SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
+ else
+ SpillCost += MinSpillCost;
+ PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
+ NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
+ G.setNodeCosts(NId, std::move(NodeCosts));
+ }
+ }
+};
-const PBQPRAProblem::AllowedSet&
- PBQPRAProblem::getAllowedSet(unsigned vreg) const {
- AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
- assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
- const AllowedSet &allowedSet = allowedSetItr->second;
- return allowedSet;
-}
+/// @brief Add interference edges between overlapping vregs.
+class Interference : public PBQPRAConstraint {
+private:
-unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
- assert(isPRegOption(vreg, option) && "Not a preg option.");
+private:
- const AllowedSet& allowedSet = getAllowedSet(vreg);
- assert(option <= allowedSet.size() && "Option outside allowed set.");
- return allowedSet[option - 1];
-}
+ typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
+ typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IMatrixKey;
+ typedef DenseMap<IMatrixKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
-PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
- const MachineBlockFrequencyInfo *mbfi,
- const RegSet &vregs) {
+ // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
+ // for the fast interference graph construction algorithm. The last is there
+ // to save us from looking up node ids via the VRegToNode map in the graph
+ // metadata.
+ typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
+ IntervalInfo;
- LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
- MachineRegisterInfo *mri = &mf->getRegInfo();
- const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
+ static SlotIndex getStartPoint(const IntervalInfo &I) {
+ return std::get<0>(I)->segments[std::get<1>(I)].start;
+ }
- std::unique_ptr<PBQPRAProblem> p(new PBQPRAProblem());
- PBQPRAGraph &g = p->getGraph();
- RegSet pregs;
+ static SlotIndex getEndPoint(const IntervalInfo &I) {
+ return std::get<0>(I)->segments[std::get<1>(I)].end;
+ }
- // Collect the set of preg intervals, record that they're used in the MF.
- for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
- if (mri->def_empty(Reg))
- continue;
- pregs.insert(Reg);
- mri->setPhysRegUsed(Reg);
+ static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
+ return std::get<2>(I);
}
- // Iterate over vregs.
- for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
- vregItr != vregEnd; ++vregItr) {
- unsigned vreg = *vregItr;
- const TargetRegisterClass *trc = mri->getRegClass(vreg);
- LiveInterval *vregLI = &LIS->getInterval(vreg);
+ static bool lowestStartPoint(const IntervalInfo &I1,
+ const IntervalInfo &I2) {
+ // Condition reversed because priority queue has the *highest* element at
+ // the front, rather than the lowest.
+ return getStartPoint(I1) > getStartPoint(I2);
+ }
- // Record any overlaps with regmask operands.
- BitVector regMaskOverlaps;
- LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
+ static bool lowestEndPoint(const IntervalInfo &I1,
+ const IntervalInfo &I2) {
+ SlotIndex E1 = getEndPoint(I1);
+ SlotIndex E2 = getEndPoint(I2);
- // Compute an initial allowed set for the current vreg.
- typedef std::vector<unsigned> VRAllowed;
- VRAllowed vrAllowed;
- ArrayRef<MCPhysReg> rawOrder = trc->getRawAllocationOrder(*mf);
- for (unsigned i = 0; i != rawOrder.size(); ++i) {
- unsigned preg = rawOrder[i];
- if (mri->isReserved(preg))
- continue;
+ if (E1 < E2)
+ return true;
- // vregLI crosses a regmask operand that clobbers preg.
- if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
- continue;
+ if (E1 > E2)
+ return false;
- // vregLI overlaps fixed regunit interference.
- bool Interference = false;
- for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
- if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
- Interference = true;
- break;
- }
- }
- if (Interference)
- continue;
-
- // preg is usable for this virtual register.
- vrAllowed.push_back(preg);
- }
-
- PBQP::Vector nodeCosts(vrAllowed.size() + 1, 0);
+ // If two intervals end at the same point, we need a way to break the tie or
+ // the set will assume they're actually equal and refuse to insert a
+ // "duplicate". Just compare the vregs - fast and guaranteed unique.
+ return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
+ }
- PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
- vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
+ static bool isAtLastSegment(const IntervalInfo &I) {
+ return std::get<1>(I) == std::get<0>(I)->size() - 1;
+ }
- addSpillCosts(nodeCosts, spillCost);
+ static IntervalInfo nextSegment(const IntervalInfo &I) {
+ return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
+ }
- // Construct the node.
- PBQPRAGraph::NodeId nId = g.addNode(std::move(nodeCosts));
+public:
- // Record the mapping and allowed set in the problem.
- p->recordVReg(vreg, nId, vrAllowed.begin(), vrAllowed.end());
+ void apply(PBQPRAGraph &G) override {
+ // The following is loosely based on the linear scan algorithm introduced in
+ // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
+ // isn't linear, because the size of the active set isn't bound by the
+ // number of registers, but rather the size of the largest clique in the
+ // graph. Still, we expect this to be better than N^2.
+ LiveIntervals &LIS = G.getMetadata().LIS;
+
+ // Interferenc matrices are incredibly regular - they're only a function of
+ // the allowed sets, so we cache them to avoid the overhead of constructing
+ // and uniquing them.
+ IMatrixCache C;
+
+ typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
+ typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
+ decltype(&lowestStartPoint)> IntervalQueue;
+ IntervalSet Active(lowestEndPoint);
+ IntervalQueue Inactive(lowestStartPoint);
+
+ // Start by building the inactive set.
+ for (auto NId : G.nodeIds()) {
+ unsigned VReg = G.getNodeMetadata(NId).getVReg();
+ LiveInterval &LI = LIS.getInterval(VReg);
+ assert(!LI.empty() && "PBQP graph contains node for empty interval");
+ Inactive.push(std::make_tuple(&LI, 0, NId));
+ }
- }
+ while (!Inactive.empty()) {
+ // Tentatively grab the "next" interval - this choice may be overriden
+ // below.
+ IntervalInfo Cur = Inactive.top();
+
+ // Retire any active intervals that end before Cur starts.
+ IntervalSet::iterator RetireItr = Active.begin();
+ while (RetireItr != Active.end() &&
+ (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
+ // If this interval has subsequent segments, add the next one to the
+ // inactive list.
+ if (!isAtLastSegment(*RetireItr))
+ Inactive.push(nextSegment(*RetireItr));
+
+ ++RetireItr;
+ }
+ Active.erase(Active.begin(), RetireItr);
+
+ // One of the newly retired segments may actually start before the
+ // Cur segment, so re-grab the front of the inactive list.
+ Cur = Inactive.top();
+ Inactive.pop();
+
+ // At this point we know that Cur overlaps all active intervals. Add the
+ // interference edges.
+ PBQP::GraphBase::NodeId NId = getNodeId(Cur);
+ for (const auto &A : Active) {
+ PBQP::GraphBase::NodeId MId = getNodeId(A);
+
+ // Check that we haven't already added this edge
+ // FIXME: findEdge is expensive in the worst case (O(max_clique(G))).
+ // It might be better to replace this with a local bit-matrix.
+ if (G.findEdge(NId, MId) != PBQPRAGraph::invalidEdgeId())
+ continue;
- for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
- vr1Itr != vrEnd; ++vr1Itr) {
- unsigned vr1 = *vr1Itr;
- const LiveInterval &l1 = lis->getInterval(vr1);
- const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
-
- for (RegSet::const_iterator vr2Itr = std::next(vr1Itr); vr2Itr != vrEnd;
- ++vr2Itr) {
- unsigned vr2 = *vr2Itr;
- const LiveInterval &l2 = lis->getInterval(vr2);
- const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
-
- assert(!l2.empty() && "Empty interval in vreg set?");
- if (l1.overlaps(l2)) {
- PBQP::Matrix edgeCosts(vr1Allowed.size()+1, vr2Allowed.size()+1, 0);
- addInterferenceCosts(edgeCosts, vr1Allowed, vr2Allowed, tri);
-
- g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
- std::move(edgeCosts));
+ // This is a new edge - add it to the graph.
+ createInterferenceEdge(G, NId, MId, C);
}
+
+ // Finally, add Cur to the Active set.
+ Active.insert(Cur);
}
}
- return p.release();
-}
+private:
-void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
- PBQP::PBQPNum spillCost) {
- costVec[0] = spillCost;
-}
+ void createInterferenceEdge(PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
+ PBQPRAGraph::NodeId MId, IMatrixCache &C) {
-void PBQPBuilder::addInterferenceCosts(
- PBQP::Matrix &costMat,
- const PBQPRAProblem::AllowedSet &vr1Allowed,
- const PBQPRAProblem::AllowedSet &vr2Allowed,
- const TargetRegisterInfo *tri) {
- assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
- assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
+ const TargetRegisterInfo &TRI =
+ *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo();
- for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
- unsigned preg1 = vr1Allowed[i];
+ const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
+ const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
- for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
- unsigned preg2 = vr2Allowed[j];
+ // Try looking the edge costs up in the IMatrixCache first.
+ IMatrixKey K(&NRegs, &MRegs);
+ IMatrixCache::iterator I = C.find(K);
+ if (I != C.end()) {
+ G.addEdgeBypassingCostAllocator(NId, MId, I->second);
+ return;
+ }
- if (tri->regsOverlap(preg1, preg2)) {
- costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+ PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
+ for (unsigned I = 0; I != NRegs.size(); ++I) {
+ unsigned PRegN = NRegs[I];
+ for (unsigned J = 0; J != MRegs.size(); ++J) {
+ unsigned PRegM = MRegs[J];
+ if (TRI.regsOverlap(PRegN, PRegM))
+ M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
}
}
+
+ PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
+ C[K] = G.getEdgeCostsPtr(EId);
}
-}
+};
-PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
- const LiveIntervals *lis,
- const MachineBlockFrequencyInfo *mbfi,
- const RegSet &vregs) {
- std::unique_ptr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
- PBQPRAGraph &g = p->getGraph();
+class Coalescing : public PBQPRAConstraint {
+public:
+ void apply(PBQPRAGraph &G) override {
+ MachineFunction &MF = G.getMetadata().MF;
+ MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
+ CoalescerPair CP(*MF.getTarget().getSubtargetImpl()->getRegisterInfo());
+
+ // Scan the machine function and add a coalescing cost whenever CoalescerPair
+ // gives the Ok.
+ for (const auto &MBB : MF) {
+ for (const auto &MI : MBB) {
+
+ // Skip not-coalescable or already coalesced copies.
+ if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
+ continue;
- const TargetMachine &tm = mf->getTarget();
- CoalescerPair cp(*tm.getRegisterInfo());
+ unsigned DstReg = CP.getDstReg();
+ unsigned SrcReg = CP.getSrcReg();
- // Scan the machine function and add a coalescing cost whenever CoalescerPair
- // gives the Ok.
- for (const auto &mbb : *mf) {
- for (const auto &mi : mbb) {
- if (!cp.setRegisters(&mi)) {
- continue; // Not coalescable.
- }
+ const float Scale = 1.0f / MBFI.getEntryFreq();
+ PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
- if (cp.getSrcReg() == cp.getDstReg()) {
- continue; // Already coalesced.
- }
+ if (CP.isPhys()) {
+ if (!MF.getRegInfo().isAllocatable(DstReg))
+ continue;
- unsigned dst = cp.getDstReg(),
- src = cp.getSrcReg();
+ PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
- const float copyFactor = 0.5; // Cost of copy relative to load. Current
- // value plucked randomly out of the air.
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
+ G.getNodeMetadata(NId).getAllowedRegs();
- PBQP::PBQPNum cBenefit =
- copyFactor * LiveIntervals::getSpillWeight(false, true, mbfi, &mi);
+ unsigned PRegOpt = 0;
+ while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
+ ++PRegOpt;
- if (cp.isPhys()) {
- if (!mf->getRegInfo().isAllocatable(dst)) {
- continue;
- }
-
- const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
- unsigned pregOpt = 0;
- while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
- ++pregOpt;
- }
- if (pregOpt < allowed.size()) {
- ++pregOpt; // +1 to account for spill option.
- PBQPRAGraph::NodeId node = p->getNodeForVReg(src);
- llvm::dbgs() << "Reading node costs for node " << node << "\n";
- llvm::dbgs() << "Source node: " << &g.getNodeCosts(node) << "\n";
- PBQP::Vector newCosts(g.getNodeCosts(node));
- addPhysRegCoalesce(newCosts, pregOpt, cBenefit);
- g.setNodeCosts(node, newCosts);
- }
- } else {
- const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
- const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
- PBQPRAGraph::NodeId node1 = p->getNodeForVReg(dst);
- PBQPRAGraph::NodeId node2 = p->getNodeForVReg(src);
- PBQPRAGraph::EdgeId edge = g.findEdge(node1, node2);
- if (edge == g.invalidEdgeId()) {
- PBQP::Matrix costs(allowed1->size() + 1, allowed2->size() + 1, 0);
- addVirtRegCoalesce(costs, *allowed1, *allowed2, cBenefit);
- g.addEdge(node1, node2, costs);
+ if (PRegOpt < Allowed.size()) {
+ PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
+ NewCosts[PRegOpt + 1] -= CBenefit;
+ G.setNodeCosts(NId, std::move(NewCosts));
+ }
} else {
- if (g.getEdgeNode1Id(edge) == node2) {
- std::swap(node1, node2);
- std::swap(allowed1, allowed2);
+ PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
+ PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
+ &G.getNodeMetadata(N1Id).getAllowedRegs();
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
+ &G.getNodeMetadata(N2Id).getAllowedRegs();
+
+ PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
+ if (EId == G.invalidEdgeId()) {
+ PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
+ Allowed2->size() + 1, 0);
+ addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
+ G.addEdge(N1Id, N2Id, std::move(Costs));
+ } else {
+ if (G.getEdgeNode1Id(EId) == N2Id) {
+ std::swap(N1Id, N2Id);
+ std::swap(Allowed1, Allowed2);
+ }
+ PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
+ addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
+ G.setEdgeCosts(EId, std::move(Costs));
}
- PBQP::Matrix costs(g.getEdgeCosts(edge));
- addVirtRegCoalesce(costs, *allowed1, *allowed2, cBenefit);
- g.setEdgeCosts(edge, costs);
}
}
}
}
- return p.release();
-}
-
-void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
- unsigned pregOption,
- PBQP::PBQPNum benefit) {
- costVec[pregOption] += -benefit;
-}
-
-void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
- PBQP::Matrix &costMat,
- const PBQPRAProblem::AllowedSet &vr1Allowed,
- const PBQPRAProblem::AllowedSet &vr2Allowed,
- PBQP::PBQPNum benefit) {
-
- assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
- assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
-
- for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
- unsigned preg1 = vr1Allowed[i];
- for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
- unsigned preg2 = vr2Allowed[j];
+private:
- if (preg1 == preg2) {
- costMat[i + 1][j + 1] += -benefit;
+ void addVirtRegCoalesce(
+ PBQPRAGraph::RawMatrix &CostMat,
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
+ PBQP::PBQPNum Benefit) {
+ assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
+ assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
+ for (unsigned I = 0; I != Allowed1.size(); ++I) {
+ unsigned PReg1 = Allowed1[I];
+ for (unsigned J = 0; J != Allowed2.size(); ++J) {
+ unsigned PReg2 = Allowed2[J];
+ if (PReg1 == PReg2)
+ CostMat[I + 1][J + 1] -= Benefit;
}
}
}
-}
+};
+
+} // End anonymous namespace.
+
+// Out-of-line destructor/anchor for PBQPRAConstraint.
+PBQPRAConstraint::~PBQPRAConstraint() {}
+void PBQPRAConstraint::anchor() {}
+void PBQPRAConstraintList::anchor() {}
void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
au.setPreservesCFG();
@@ -437,118 +457,197 @@ void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
MachineFunctionPass::getAnalysisUsage(au);
}
-void RegAllocPBQP::findVRegIntervalsToAlloc() {
+void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
+ LiveIntervals &LIS) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
// Iterate over all live ranges.
- for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
- unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
- if (mri->reg_nodbg_empty(Reg))
+ for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
+ if (MRI.reg_nodbg_empty(Reg))
continue;
- LiveInterval *li = &lis->getInterval(Reg);
+ LiveInterval &LI = LIS.getInterval(Reg);
// If this live interval is non-empty we will use pbqp to allocate it.
// Empty intervals we allocate in a simple post-processing stage in
// finalizeAlloc.
- if (!li->empty()) {
- vregsToAlloc.insert(li->reg);
+ if (!LI.empty()) {
+ VRegsToAlloc.insert(LI.reg);
} else {
- emptyIntervalVRegs.insert(li->reg);
+ EmptyIntervalVRegs.insert(LI.reg);
+ }
+ }
+}
+
+static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
+ const MachineFunction &MF) {
+ const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
+ for (unsigned i = 0; CSR[i] != 0; ++i)
+ if (TRI.regsOverlap(reg, CSR[i]))
+ return true;
+ return false;
+}
+
+void RegAllocPBQP::initializeGraph(PBQPRAGraph &G) {
+ MachineFunction &MF = G.getMetadata().MF;
+
+ LiveIntervals &LIS = G.getMetadata().LIS;
+ const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
+ const TargetRegisterInfo &TRI =
+ *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo();
+
+ for (auto VReg : VRegsToAlloc) {
+ const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
+ LiveInterval &VRegLI = LIS.getInterval(VReg);
+
+ // Record any overlaps with regmask operands.
+ BitVector RegMaskOverlaps;
+ LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
+
+ // Compute an initial allowed set for the current vreg.
+ std::vector<unsigned> VRegAllowed;
+ ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
+ for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
+ unsigned PReg = RawPRegOrder[I];
+ if (MRI.isReserved(PReg))
+ continue;
+
+ // vregLI crosses a regmask operand that clobbers preg.
+ if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
+ continue;
+
+ // vregLI overlaps fixed regunit interference.
+ bool Interference = false;
+ for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
+ if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
+ Interference = true;
+ break;
+ }
+ }
+ if (Interference)
+ continue;
+
+ // preg is usable for this virtual register.
+ VRegAllowed.push_back(PReg);
}
+
+ PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
+
+ // Tweak cost of callee saved registers, as using then force spilling and
+ // restoring them. This would only happen in the prologue / epilogue though.
+ for (unsigned i = 0; i != VRegAllowed.size(); ++i)
+ if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
+ NodeCosts[1 + i] += 1.0;
+
+ PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
+ G.getNodeMetadata(NId).setVReg(VReg);
+ G.getNodeMetadata(NId).setAllowedRegs(
+ G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
+ G.getMetadata().setNodeIdForVReg(VReg, NId);
}
}
-bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
- const PBQP::Solution &solution) {
+bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
+ const PBQP::Solution &Solution,
+ VirtRegMap &VRM,
+ Spiller &VRegSpiller) {
+ MachineFunction &MF = G.getMetadata().MF;
+ LiveIntervals &LIS = G.getMetadata().LIS;
+ const TargetRegisterInfo &TRI =
+ *MF.getTarget().getSubtargetImpl()->getRegisterInfo();
+ (void)TRI;
+
// Set to true if we have any spills
- bool anotherRoundNeeded = false;
+ bool AnotherRoundNeeded = false;
// Clear the existing allocation.
- vrm->clearAllVirt();
+ VRM.clearAllVirt();
- const PBQPRAGraph &g = problem.getGraph();
// Iterate over the nodes mapping the PBQP solution to a register
// assignment.
- for (auto NId : g.nodeIds()) {
- unsigned vreg = problem.getVRegForNode(NId);
- unsigned alloc = solution.getSelection(NId);
-
- if (problem.isPRegOption(vreg, alloc)) {
- unsigned preg = problem.getPRegForOption(vreg, alloc);
- DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
- << tri->getName(preg) << "\n");
- assert(preg != 0 && "Invalid preg selected.");
- vrm->assignVirt2Phys(vreg, preg);
- } else if (problem.isSpillOption(vreg, alloc)) {
- vregsToAlloc.erase(vreg);
- SmallVector<unsigned, 8> newSpills;
- LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
- spiller->spill(LRE);
-
- DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
+ for (auto NId : G.nodeIds()) {
+ unsigned VReg = G.getNodeMetadata(NId).getVReg();
+ unsigned AllocOption = Solution.getSelection(NId);
+
+ if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
+ unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
+ DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
+ << TRI.getName(PReg) << "\n");
+ assert(PReg != 0 && "Invalid preg selected.");
+ VRM.assignVirt2Phys(VReg, PReg);
+ } else {
+ VRegsToAlloc.erase(VReg);
+ SmallVector<unsigned, 8> NewSpills;
+ LiveRangeEdit LRE(&LIS.getInterval(VReg), NewSpills, MF, LIS, &VRM);
+ VRegSpiller.spill(LRE);
+
+ DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
<< LRE.getParent().weight << ", New vregs: ");
// Copy any newly inserted live intervals into the list of regs to
// allocate.
- for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
- itr != end; ++itr) {
- LiveInterval &li = lis->getInterval(*itr);
- assert(!li.empty() && "Empty spill range.");
- DEBUG(dbgs() << PrintReg(li.reg, tri) << " ");
- vregsToAlloc.insert(li.reg);
+ for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
+ I != E; ++I) {
+ LiveInterval &LI = LIS.getInterval(*I);
+ assert(!LI.empty() && "Empty spill range.");
+ DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
+ VRegsToAlloc.insert(LI.reg);
}
DEBUG(dbgs() << ")\n");
// We need another round if spill intervals were added.
- anotherRoundNeeded |= !LRE.empty();
- } else {
- llvm_unreachable("Unknown allocation option.");
+ AnotherRoundNeeded |= !LRE.empty();
}
}
- return !anotherRoundNeeded;
+ return !AnotherRoundNeeded;
}
+void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
+ LiveIntervals &LIS,
+ VirtRegMap &VRM) const {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
-void RegAllocPBQP::finalizeAlloc() const {
// First allocate registers for the empty intervals.
for (RegSet::const_iterator
- itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
- itr != end; ++itr) {
- LiveInterval *li = &lis->getInterval(*itr);
+ I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
+ I != E; ++I) {
+ LiveInterval &LI = LIS.getInterval(*I);
- unsigned physReg = mri->getSimpleHint(li->reg);
+ unsigned PReg = MRI.getSimpleHint(LI.reg);
- if (physReg == 0) {
- const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
- physReg = liRC->getRawAllocationOrder(*mf).front();
+ if (PReg == 0) {
+ const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
+ PReg = RC.getRawAllocationOrder(MF).front();
}
- vrm->assignVirt2Phys(li->reg, physReg);
+ VRM.assignVirt2Phys(LI.reg, PReg);
}
}
-bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
+static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
+ unsigned NumInstr) {
+ // All intervals have a spill weight that is mostly proportional to the number
+ // of uses, with uses in loops having a bigger weight.
+ return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
+}
- mf = &MF;
- tm = &mf->getTarget();
- tri = tm->getRegisterInfo();
- tii = tm->getInstrInfo();
- mri = &mf->getRegInfo();
+bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
+ LiveIntervals &LIS = getAnalysis<LiveIntervals>();
+ MachineBlockFrequencyInfo &MBFI =
+ getAnalysis<MachineBlockFrequencyInfo>();
- lis = &getAnalysis<LiveIntervals>();
- lss = &getAnalysis<LiveStacks>();
- mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
+ calculateSpillWeightsAndHints(LIS, MF, getAnalysis<MachineLoopInfo>(), MBFI,
+ normalizePBQPSpillWeight);
- calculateSpillWeightsAndHints(*lis, MF, getAnalysis<MachineLoopInfo>(),
- *mbfi);
+ VirtRegMap &VRM = getAnalysis<VirtRegMap>();
- vrm = &getAnalysis<VirtRegMap>();
- spiller.reset(createInlineSpiller(*this, MF, *vrm));
+ std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
- mri->freezeReservedRegs(MF);
+ MF.getRegInfo().freezeReservedRegs(MF);
- DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
+ DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
// Allocator main loop:
//
@@ -560,72 +659,72 @@ bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
// This process is continued till no more spills are generated.
// Find the vreg intervals in need of allocation.
- findVRegIntervalsToAlloc();
+ findVRegIntervalsToAlloc(MF, LIS);
#ifndef NDEBUG
- const Function* func = mf->getFunction();
- std::string fqn =
- func->getParent()->getModuleIdentifier() + "." +
- func->getName().str();
+ const Function &F = *MF.getFunction();
+ std::string FullyQualifiedName =
+ F.getParent()->getModuleIdentifier() + "." + F.getName().str();
#endif
// If there are non-empty intervals allocate them using pbqp.
- if (!vregsToAlloc.empty()) {
+ if (!VRegsToAlloc.empty()) {
- bool pbqpAllocComplete = false;
- unsigned round = 0;
+ const TargetSubtargetInfo &Subtarget = *MF.getTarget().getSubtargetImpl();
+ std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
+ llvm::make_unique<PBQPRAConstraintList>();
+ ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
+ ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
+ if (PBQPCoalescing)
+ ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
+ ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
- while (!pbqpAllocComplete) {
- DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
+ bool PBQPAllocComplete = false;
+ unsigned Round = 0;
- std::unique_ptr<PBQPRAProblem> problem(
- builder->build(mf, lis, mbfi, vregsToAlloc));
+ while (!PBQPAllocComplete) {
+ DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
+
+ PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
+ initializeGraph(G);
+ ConstraintsRoot->apply(G);
#ifndef NDEBUG
- if (pbqpDumpGraphs) {
- std::ostringstream rs;
- rs << round;
- std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
- std::string tmp;
- raw_fd_ostream os(graphFileName.c_str(), tmp, sys::fs::F_Text);
- DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
- << graphFileName << "\"\n");
- problem->getGraph().dump(os);
+ if (PBQPDumpGraphs) {
+ std::ostringstream RS;
+ RS << Round;
+ std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
+ ".pbqpgraph";
+ std::error_code EC;
+ raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
+ DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
+ << GraphFileName << "\"\n");
+ G.dumpToStream(OS);
}
#endif
- PBQP::Solution solution =
- PBQP::RegAlloc::solve(problem->getGraph());
-
- pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
-
- ++round;
+ PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
+ PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
+ ++Round;
}
}
// Finalise allocation, allocate empty ranges.
- finalizeAlloc();
- vregsToAlloc.clear();
- emptyIntervalVRegs.clear();
+ finalizeAlloc(MF, LIS, VRM);
+ VRegsToAlloc.clear();
+ EmptyIntervalVRegs.clear();
- DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
+ DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
return true;
}
-FunctionPass *
-llvm::createPBQPRegisterAllocator(std::unique_ptr<PBQPBuilder> builder,
- char *customPassID) {
- return new RegAllocPBQP(std::move(builder), customPassID);
+FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
+ return new RegAllocPBQP(customPassID);
}
FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
- std::unique_ptr<PBQPBuilder> Builder;
- if (pbqpCoalescing)
- Builder = llvm::make_unique<PBQPBuilderWithCoalescing>();
- else
- Builder = llvm::make_unique<PBQPBuilder>();
- return createPBQPRegisterAllocator(std::move(Builder));
+ return createPBQPRegisterAllocator();
}
#undef DEBUG_TYPE
diff --git a/contrib/llvm/lib/CodeGen/RegisterClassInfo.cpp b/contrib/llvm/lib/CodeGen/RegisterClassInfo.cpp
index 8b5445c..ab33672 100644
--- a/contrib/llvm/lib/CodeGen/RegisterClassInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterClassInfo.cpp
@@ -20,7 +20,6 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
using namespace llvm;
@@ -38,8 +37,8 @@ void RegisterClassInfo::runOnMachineFunction(const MachineFunction &mf) {
MF = &mf;
// Allocate new array the first time we see a new target.
- if (MF->getTarget().getRegisterInfo() != TRI) {
- TRI = MF->getTarget().getRegisterInfo();
+ if (MF->getSubtarget().getRegisterInfo() != TRI) {
+ TRI = MF->getSubtarget().getRegisterInfo();
RegClass.reset(new RCInfo[TRI->getNumRegClasses()]);
unsigned NumPSets = TRI->getNumRegPressureSets();
PSetLimits.reset(new unsigned[NumPSets]);
@@ -48,6 +47,7 @@ void RegisterClassInfo::runOnMachineFunction(const MachineFunction &mf) {
}
// Does this MF have different CSRs?
+ assert(TRI && "no register info set");
const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF);
if (Update || CSR != CalleeSaved) {
// Build a CSRNum map. Every CSR alias gets an entry pointing to the last
@@ -77,6 +77,7 @@ void RegisterClassInfo::runOnMachineFunction(const MachineFunction &mf) {
/// registers filtered out. Volatile registers come first followed by CSR
/// aliases ordered according to the CSR order specified by the target.
void RegisterClassInfo::compute(const TargetRegisterClass *RC) const {
+ assert(RC && "no register class given");
RCInfo &RCI = RegClass[RC->getID()];
// Raw register count, including all reserved regs.
@@ -138,7 +139,7 @@ void RegisterClassInfo::compute(const TargetRegisterClass *RC) const {
RCI.LastCostChange = LastCostChange;
DEBUG({
- dbgs() << "AllocationOrder(" << RC->getName() << ") = [";
+ dbgs() << "AllocationOrder(" << TRI->getRegClassName(RC) << ") = [";
for (unsigned I = 0; I != RCI.NumRegs; ++I)
dbgs() << ' ' << PrintReg(RCI.Order[I], TRI);
dbgs() << (RCI.ProperSubClass ? " ] (sub-class)\n" : " ]\n");
diff --git a/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
index e04a3cf..b8cae4a 100644
--- a/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
@@ -32,6 +32,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
@@ -86,6 +87,14 @@ namespace {
AliasAnalysis *AA;
RegisterClassInfo RegClassInfo;
+ /// A LaneMask to remember on which subregister live ranges we need to call
+ /// shrinkToUses() later.
+ unsigned ShrinkMask;
+
+ /// True if the main range of the currently coalesced intervals should be
+ /// checked for smaller live intervals.
+ bool ShrinkMainRange;
+
/// \brief True if the coalescer should aggressively coalesce global copies
/// in favor of keeping local copies.
bool JoinGlobalCopies;
@@ -94,11 +103,11 @@ namespace {
/// blocks exclusively containing copies.
bool JoinSplitEdges;
- /// WorkList - Copy instructions yet to be coalesced.
+ /// Copy instructions yet to be coalesced.
SmallVector<MachineInstr*, 8> WorkList;
SmallVector<MachineInstr*, 8> LocalWorkList;
- /// ErasedInstrs - Set of instruction pointers that have been erased, and
+ /// Set of instruction pointers that have been erased, and
/// that may be present in WorkList.
SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
@@ -114,21 +123,21 @@ namespace {
/// LiveRangeEdit callback.
void LRE_WillEraseInstruction(MachineInstr *MI) override;
- /// coalesceLocals - coalesce the LocalWorkList.
+ /// Coalesce the LocalWorkList.
void coalesceLocals();
- /// joinAllIntervals - join compatible live intervals
+ /// Join compatible live intervals
void joinAllIntervals();
- /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
+ /// Coalesce copies in the specified MBB, putting
/// copies that cannot yet be coalesced into WorkList.
void copyCoalesceInMBB(MachineBasicBlock *MBB);
- /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
+ /// Try to coalesce all copies in CurrList. Return
/// true if any progress was made.
bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
- /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+ /// Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI. This returns
/// true if the copy was successfully coalesced away. If it is not
/// currently possible to coalesce this interval, but it may be possible if
@@ -136,7 +145,7 @@ namespace {
/// 'Again'.
bool joinCopy(MachineInstr *TheCopy, bool &Again);
- /// joinIntervals - Attempt to join these two intervals. On failure, this
+ /// Attempt to join these two intervals. On failure, this
/// returns false. The output "SrcInt" will not have been modified, so we
/// can use this information below to update aliases.
bool joinIntervals(CoalescerPair &CP);
@@ -147,40 +156,53 @@ namespace {
/// Attempt joining with a reserved physreg.
bool joinReservedPhysReg(CoalescerPair &CP);
- /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
+ /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
+ /// Subranges in @p LI which only partially interfere with the desired
+ /// LaneMask are split as necessary. @p LaneMask are the lanes that
+ /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
+ /// lanemasks already adjusted to the coalesced register.
+ void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
+ unsigned LaneMask, CoalescerPair &CP);
+
+ /// Join the liveranges of two subregisters. Joins @p RRange into
+ /// @p LRange, @p RRange may be invalid afterwards.
+ void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
+ unsigned LaneMask, const CoalescerPair &CP);
+
+ /// We found a non-trivially-coalescable copy. If
/// the source value number is defined by a copy from the destination reg
/// see if we can merge these two destination reg valno# into a single
/// value number, eliminating a copy.
bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
- /// hasOtherReachingDefs - Return true if there are definitions of IntB
+ /// Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
VNInfo *AValNo, VNInfo *BValNo);
- /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
+ /// We found a non-trivially-coalescable copy.
/// If the source value number is defined by a commutable instruction and
/// its other operand is coalesced to the copy dest register, see if we
/// can transform the copy into a noop by commuting the definition.
bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
- /// reMaterializeTrivialDef - If the source of a copy is defined by a
+ /// If the source of a copy is defined by a
/// trivial computation, replace the copy by rematerialize the definition.
bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
bool &IsDefCopy);
- /// canJoinPhys - Return true if a physreg copy should be joined.
+ /// Return true if a physreg copy should be joined.
bool canJoinPhys(const CoalescerPair &CP);
- /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+ /// Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
/// being updated is not zero, make sure to set it to the correct physical
/// subregister.
void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
- /// eliminateUndefCopy - Handle copies of undef values.
- bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
+ /// Handle copies of undef values.
+ bool eliminateUndefCopy(MachineInstr *CopyMI);
public:
static char ID; // Class identification, replacement for typeinfo
@@ -192,10 +214,10 @@ namespace {
void releaseMemory() override;
- /// runOnMachineFunction - pass entry point
+ /// This is the pass entry point.
bool runOnMachineFunction(MachineFunction&) override;
- /// print - Implement the dump method.
+ /// Implement the dump method.
void print(raw_ostream &O, const Module* = nullptr) const override;
};
} /// end anonymous namespace
@@ -407,7 +429,7 @@ void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
ErasedInstrs.insert(MI);
}
-/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
+/// We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
@@ -492,6 +514,16 @@ bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
// Okay, merge "B1" into the same value number as "B0".
if (BValNo != ValS->valno)
IntB.MergeValueNumberInto(BValNo, ValS->valno);
+
+ // Do the same for the subregister segments.
+ for (LiveInterval::SubRange &S : IntB.subranges()) {
+ VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
+ S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
+ VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
+ if (SubBValNo != SubValSNo)
+ S.MergeValueNumberInto(SubBValNo, SubValSNo);
+ }
+
DEBUG(dbgs() << " result = " << IntB << '\n');
// If the source instruction was killing the source register before the
@@ -512,7 +544,7 @@ bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
return true;
}
-/// hasOtherReachingDefs - Return true if there are definitions of IntB
+/// Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
LiveInterval &IntB,
@@ -523,26 +555,37 @@ bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
if (LIS->hasPHIKill(IntA, AValNo))
return true;
- for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
- AI != AE; ++AI) {
- if (AI->valno != AValNo) continue;
+ for (LiveRange::Segment &ASeg : IntA.segments) {
+ if (ASeg.valno != AValNo) continue;
LiveInterval::iterator BI =
- std::upper_bound(IntB.begin(), IntB.end(), AI->start);
+ std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
if (BI != IntB.begin())
--BI;
- for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
+ for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
if (BI->valno == BValNo)
continue;
- if (BI->start <= AI->start && BI->end > AI->start)
+ if (BI->start <= ASeg.start && BI->end > ASeg.start)
return true;
- if (BI->start > AI->start && BI->start < AI->end)
+ if (BI->start > ASeg.start && BI->start < ASeg.end)
return true;
}
}
return false;
}
-/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
+/// Copy segements with value number @p SrcValNo from liverange @p Src to live
+/// range @Dst and use value number @p DstValNo there.
+static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
+ const LiveRange &Src, const VNInfo *SrcValNo)
+{
+ for (const LiveRange::Segment &S : Src.segments) {
+ if (S.valno != SrcValNo)
+ continue;
+ Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
+ }
+}
+
+/// We found a non-trivially-coalescable copy with
/// IntA being the source and IntB being the dest, thus this defines a value
/// number in IntB. If the source value number (in IntA) is defined by a
/// commutable instruction and its other operand is coalesced to the copy dest
@@ -559,7 +602,7 @@ bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
///
/// B2 = op B0 A2<kill>
/// ...
-/// B1 = B2 <- now an identify copy
+/// B1 = B2 <- now an identity copy
/// ...
/// = op B2 <- more uses
///
@@ -567,25 +610,23 @@ bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
///
bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
MachineInstr *CopyMI) {
- assert (!CP.isPhys());
-
- SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
+ assert(!CP.isPhys());
LiveInterval &IntA =
- LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
- LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+ LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
// BValNo is a value number in B that is defined by a copy from A. 'B1' in
// the example above.
+ SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
- if (!BValNo || BValNo->def != CopyIdx)
- return false;
+ assert(BValNo != nullptr && BValNo->def == CopyIdx);
// AValNo is the value number in A that defines the copy, A3 in the example.
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
- assert(AValNo && "COPY source not live");
- if (AValNo->isPHIDef() || AValNo->isUnused())
+ assert(AValNo && !AValNo->isUnused() && "COPY source not live");
+ if (AValNo->isPHIDef())
return false;
MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
if (!DefMI)
@@ -652,8 +693,6 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
MBB->insert(Pos, NewMI);
MBB->erase(DefMI);
}
- unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
- NewMI->getOperand(OpIdx).setIsKill();
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
// A = or A, B
@@ -666,10 +705,13 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
// Update uses of IntA of the specific Val# with IntB.
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
- UE = MRI->use_end(); UI != UE;) {
+ UE = MRI->use_end();
+ UI != UE; /* ++UI is below because of possible MI removal */) {
MachineOperand &UseMO = *UI;
- MachineInstr *UseMI = UseMO.getParent();
++UI;
+ if (UseMO.isUndef())
+ continue;
+ MachineInstr *UseMI = UseMO.getParent();
if (UseMI->isDebugValue()) {
// FIXME These don't have an instruction index. Not clear we have enough
// info to decide whether to do this replacement or not. For now do it.
@@ -678,7 +720,8 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
}
SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
- if (US == IntA.end() || US->valno != AValNo)
+ assert(US != IntA.end() && "Use must be live");
+ if (US->valno != AValNo)
continue;
// Kill flags are no longer accurate. They are recomputed after RA.
UseMO.setIsKill(false);
@@ -703,6 +746,16 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
assert(DVNI->def == DefIdx);
BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
+ for (LiveInterval::SubRange &S : IntB.subranges()) {
+ VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
+ if (!SubDVNI)
+ continue;
+ VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
+ assert(SubBValNo->def == CopyIdx);
+ VNInfo *Merged = S.MergeValueNumberInto(SubBValNo, SubDVNI);
+ Merged->def = CopyIdx;
+ }
+
ErasedInstrs.insert(UseMI);
LIS->RemoveMachineInstrFromMaps(UseMI);
UseMI->eraseFromParent();
@@ -710,22 +763,77 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
// Extend BValNo by merging in IntA live segments of AValNo. Val# definition
// is updated.
- VNInfo *ValNo = BValNo;
- ValNo->def = AValNo->def;
- for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
- AI != AE; ++AI) {
- if (AI->valno != AValNo) continue;
- IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo));
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+ if (IntB.hasSubRanges()) {
+ if (!IntA.hasSubRanges()) {
+ unsigned Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
+ IntA.createSubRangeFrom(Allocator, Mask, IntA);
+ }
+ SlotIndex AIdx = CopyIdx.getRegSlot(true);
+ for (LiveInterval::SubRange &SA : IntA.subranges()) {
+ VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
+ assert(ASubValNo != nullptr);
+
+ unsigned AMask = SA.LaneMask;
+ for (LiveInterval::SubRange &SB : IntB.subranges()) {
+ unsigned BMask = SB.LaneMask;
+ unsigned Common = BMask & AMask;
+ if (Common == 0)
+ continue;
+
+ DEBUG(
+ dbgs() << format("\t\tCopy+Merge %04X into %04X\n", BMask, Common));
+ unsigned BRest = BMask & ~AMask;
+ LiveInterval::SubRange *CommonRange;
+ if (BRest != 0) {
+ SB.LaneMask = BRest;
+ DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", BRest));
+ // Duplicate SubRange for newly merged common stuff.
+ CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
+ } else {
+ // We van reuse the L SubRange.
+ SB.LaneMask = Common;
+ CommonRange = &SB;
+ }
+ LiveRange RangeCopy(SB, Allocator);
+
+ VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
+ assert(BSubValNo->def == CopyIdx);
+ BSubValNo->def = ASubValNo->def;
+ addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
+ AMask &= ~BMask;
+ }
+ if (AMask != 0) {
+ DEBUG(dbgs() << format("\t\tNew Lane %04X\n", AMask));
+ LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
+ VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
+ addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
+ }
+ SA.removeValNo(ASubValNo);
+ }
}
+
+ BValNo->def = AValNo->def;
+ addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
IntA.removeValNo(AValNo);
+ // Remove valuenos in subranges (the A+B have subranges case has already been
+ // handled above)
+ if (!IntB.hasSubRanges()) {
+ SlotIndex AIdx = CopyIdx.getRegSlot(true);
+ for (LiveInterval::SubRange &SA : IntA.subranges()) {
+ VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
+ assert(ASubValNo != nullptr);
+ SA.removeValNo(ASubValNo);
+ }
+ }
DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
++numCommutes;
return true;
}
-/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
+/// If the source of a copy is defined by a trivial
/// computation, replace the copy by rematerialize the definition.
bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
MachineInstr *CopyMI,
@@ -751,7 +859,7 @@ bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
IsDefCopy = true;
return false;
}
- if (!DefMI->isAsCheapAsAMove())
+ if (!TII->isAsCheapAsAMove(DefMI))
return false;
if (!TII->isTriviallyReMaterializable(DefMI, AA))
return false;
@@ -898,57 +1006,110 @@ bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
// The source interval can become smaller because we removed a use.
LIS->shrinkToUses(&SrcInt, &DeadDefs);
- if (!DeadDefs.empty())
+ if (!DeadDefs.empty()) {
+ // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
+ // to describe DstReg instead.
+ for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
+ MachineInstr *UseMI = UseMO.getParent();
+ if (UseMI->isDebugValue()) {
+ UseMO.setReg(DstReg);
+ DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
+ }
+ }
eliminateDeadDefs();
+ }
return true;
}
-/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
+static void removeUndefValue(LiveRange &LR, SlotIndex At)
+{
+ VNInfo *VNInfo = LR.getVNInfoAt(At);
+ assert(VNInfo != nullptr && SlotIndex::isSameInstr(VNInfo->def, At));
+ LR.removeValNo(VNInfo);
+}
+
+/// ProcessImpicitDefs may leave some copies of <undef>
/// values, it only removes local variables. When we have a copy like:
///
/// %vreg1 = COPY %vreg2<undef>
///
/// We delete the copy and remove the corresponding value number from %vreg1.
/// Any uses of that value number are marked as <undef>.
-bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
- const CoalescerPair &CP) {
+bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
+ // Note that we do not query CoalescerPair here but redo isMoveInstr as the
+ // CoalescerPair may have a new register class with adjusted subreg indices
+ // at this point.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
+
SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
- LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
- if (SrcInt->liveAt(Idx))
- return false;
- LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
- if (DstInt->liveAt(Idx))
+ const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
+ // CopyMI is undef iff SrcReg is not live before the instruction.
+ if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
+ unsigned SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
+ for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
+ if ((SR.LaneMask & SrcMask) == 0)
+ continue;
+ if (SR.liveAt(Idx))
+ return false;
+ }
+ } else if (SrcLI.liveAt(Idx))
return false;
- // No intervals are live-in to CopyMI - it is undef.
- if (CP.isFlipped())
- DstInt = SrcInt;
- SrcInt = nullptr;
+ DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
- VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
- assert(DeadVNI && "No value defined in DstInt");
- DstInt->removeValNo(DeadVNI);
+ // Remove any DstReg segments starting at the instruction.
+ LiveInterval &DstLI = LIS->getInterval(DstReg);
+ unsigned DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
+ SlotIndex RegIndex = Idx.getRegSlot();
+ for (LiveInterval::SubRange &SR : DstLI.subranges()) {
+ if ((SR.LaneMask & DstMask) == 0)
+ continue;
+ removeUndefValue(SR, RegIndex);
+
+ DstLI.removeEmptySubRanges();
+ }
+ // Remove value or merge with previous one in case of a subregister def.
+ if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
+ VNInfo *VNInfo = DstLI.getVNInfoAt(RegIndex);
+ DstLI.MergeValueNumberInto(VNInfo, PrevVNI);
+ } else {
+ removeUndefValue(DstLI, RegIndex);
+ }
- // Find new undef uses.
- for (MachineOperand &MO : MRI->reg_nodbg_operands(DstInt->reg)) {
- if (MO.isDef() || MO.isUndef())
+ // Mark uses as undef.
+ for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
+ if (MO.isDef() /*|| MO.isUndef()*/)
continue;
- MachineInstr *MI = MO.getParent();
- SlotIndex Idx = LIS->getInstructionIndex(MI);
- if (DstInt->liveAt(Idx))
+ const MachineInstr &MI = *MO.getParent();
+ SlotIndex UseIdx = LIS->getInstructionIndex(&MI);
+ unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
+ bool isLive;
+ if (UseMask != ~0u && DstLI.hasSubRanges()) {
+ isLive = false;
+ for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
+ if ((SR.LaneMask & UseMask) == 0)
+ continue;
+ if (SR.liveAt(UseIdx)) {
+ isLive = true;
+ break;
+ }
+ }
+ } else
+ isLive = DstLI.liveAt(UseIdx);
+ if (isLive)
continue;
MO.setIsUndef(true);
- DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
+ DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
}
return true;
}
-/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
-/// update the subregister number if it is not zero. If DstReg is a
-/// physical register and the existing subregister number of the def / use
-/// being updated is not zero, make sure to set it to the correct physical
-/// subregister.
+/// Replace all defs and uses of SrcReg to DstReg and update the subregister
+/// number if it is not zero. If DstReg is a physical register and the existing
+/// subregister number of the def / use being updated is not zero, make sure to
+/// set it to the correct physical subregister.
void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
unsigned DstReg,
unsigned SubIdx) {
@@ -966,7 +1127,7 @@ void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
// the UseMI operands removes them from the SrcReg use-def chain, but when
// SrcReg is DstReg we could encounter UseMI twice if it has multiple
// operands mentioning the virtual register.
- if (SrcReg == DstReg && !Visited.insert(UseMI))
+ if (SrcReg == DstReg && !Visited.insert(UseMI).second)
continue;
SmallVector<unsigned,8> Ops;
@@ -988,6 +1149,40 @@ void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
if (SubIdx && MO.isDef())
MO.setIsUndef(!Reads);
+ // A subreg use of a partially undef (super) register may be a complete
+ // undef use now and then has to be marked that way.
+ if (SubIdx != 0 && MO.isUse() && MRI->tracksSubRegLiveness()) {
+ if (!DstInt->hasSubRanges()) {
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+ unsigned Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
+ DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
+ }
+ unsigned Mask = TRI->getSubRegIndexLaneMask(SubIdx);
+ bool IsUndef = true;
+ SlotIndex MIIdx = UseMI->isDebugValue()
+ ? LIS->getSlotIndexes()->getIndexBefore(UseMI)
+ : LIS->getInstructionIndex(UseMI);
+ SlotIndex UseIdx = MIIdx.getRegSlot(true);
+ for (LiveInterval::SubRange &S : DstInt->subranges()) {
+ if ((S.LaneMask & Mask) == 0)
+ continue;
+ if (S.liveAt(UseIdx)) {
+ IsUndef = false;
+ break;
+ }
+ }
+ if (IsUndef) {
+ MO.setIsUndef(true);
+ // We found out some subregister use is actually reading an undefined
+ // value. In some cases the whole vreg has become undefined at this
+ // point so we have to potentially shrink the main range if the
+ // use was ending a live segment there.
+ LiveQueryResult Q = DstInt->Query(MIIdx);
+ if (Q.valueOut() == nullptr)
+ ShrinkMainRange = true;
+ }
+ }
+
if (DstIsPhys)
MO.substPhysReg(DstReg, *TRI);
else
@@ -1003,7 +1198,7 @@ void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
}
}
-/// canJoinPhys - Return true if a copy involving a physreg should be joined.
+/// Return true if a copy involving a physreg should be joined.
bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
/// Always join simple intervals that are defined by a single copy from a
/// reserved register. This doesn't increase register pressure, so it is
@@ -1021,7 +1216,7 @@ bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
return false;
}
-/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+/// Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI. This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
@@ -1064,8 +1259,7 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
}
// Eliminate undefs.
- if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
- DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
+ if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
LIS->RemoveMachineInstrFromMaps(CopyMI);
CopyMI->eraseFromParent();
return false; // Not coalescable.
@@ -1077,12 +1271,22 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
if (CP.getSrcReg() == CP.getDstReg()) {
LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
- LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI));
+ const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
+ LiveQueryResult LRQ = LI.Query(CopyIdx);
if (VNInfo *DefVNI = LRQ.valueDefined()) {
VNInfo *ReadVNI = LRQ.valueIn();
assert(ReadVNI && "No value before copy and no <undef> flag.");
assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
LI.MergeValueNumberInto(DefVNI, ReadVNI);
+
+ // Process subregister liveranges.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ LiveQueryResult SLRQ = S.Query(CopyIdx);
+ if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
+ VNInfo *SReadVNI = SLRQ.valueIn();
+ S.MergeValueNumberInto(SDefVNI, SReadVNI);
+ }
+ }
DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
}
LIS->RemoveMachineInstrFromMaps(CopyMI);
@@ -1106,9 +1310,14 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
return false;
}
} else {
+ // When possible, let DstReg be the larger interval.
+ if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
+ LIS->getInterval(CP.getDstReg()).size())
+ CP.flip();
+
DEBUG({
- dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
- << " with ";
+ dbgs() << "\tConsidering merging to "
+ << TRI->getRegClassName(CP.getNewRC()) << " with ";
if (CP.getDstIdx() && CP.getSrcIdx())
dbgs() << PrintReg(CP.getDstReg()) << " in "
<< TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
@@ -1118,13 +1327,11 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
<< PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
});
-
- // When possible, let DstReg be the larger interval.
- if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
- LIS->getInterval(CP.getDstReg()).size())
- CP.flip();
}
+ ShrinkMask = 0;
+ ShrinkMainRange = false;
+
// Okay, attempt to join these two intervals. On failure, this returns false.
// Otherwise, if one of the intervals being joined is a physreg, this method
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
@@ -1179,6 +1386,22 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
+ // Shrink subregister ranges if necessary.
+ if (ShrinkMask != 0) {
+ LiveInterval &LI = LIS->getInterval(CP.getDstReg());
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & ShrinkMask) == 0)
+ continue;
+ DEBUG(dbgs() << "Shrink LaneUses (Lane "
+ << format("%04X", S.LaneMask) << ")\n");
+ LIS->shrinkToUses(S, LI.reg);
+ }
+ }
+ if (ShrinkMainRange) {
+ LiveInterval &LI = LIS->getInterval(CP.getDstReg());
+ LIS->shrinkToUses(&LI);
+ }
+
// SrcReg is guaranteed to be the register whose live interval that is
// being merged.
LIS->removeInterval(CP.getSrcReg());
@@ -1187,7 +1410,9 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
DEBUG({
- dbgs() << "\tJoined. Result = ";
+ dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
+ << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
+ dbgs() << "\tResult = ";
if (CP.isPhys())
dbgs() << PrintReg(CP.getDstReg(), TRI);
else
@@ -1305,13 +1530,26 @@ bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
namespace {
/// Track information about values in a single virtual register about to be
/// joined. Objects of this class are always created in pairs - one for each
-/// side of the CoalescerPair.
+/// side of the CoalescerPair (or one for each lane of a side of the coalescer
+/// pair)
class JoinVals {
- LiveInterval &LI;
-
- // Location of this register in the final joined register.
- // Either CP.DstIdx or CP.SrcIdx.
- unsigned SubIdx;
+ /// Live range we work on.
+ LiveRange &LR;
+ /// (Main) register we work on.
+ const unsigned Reg;
+
+ // Reg (and therefore the values in this liverange) will end up as subregister
+ // SubIdx in the coalesced register. Either CP.DstIdx or CP.SrcIdx.
+ const unsigned SubIdx;
+ // The LaneMask that this liverange will occupy the coalesced register. May be
+ // smaller than the lanemask produced by SubIdx when merging subranges.
+ const unsigned LaneMask;
+
+ /// This is true when joining sub register ranges, false when joining main
+ /// ranges.
+ const bool SubRangeJoin;
+ /// Whether the current LiveInterval tracks subregister liveness.
+ const bool TrackSubRegLiveness;
// Values that will be present in the final live range.
SmallVectorImpl<VNInfo*> &NewVNInfo;
@@ -1402,27 +1640,28 @@ class JoinVals {
// One entry per value number in LI.
SmallVector<Val, 8> Vals;
- unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
- VNInfo *stripCopies(VNInfo *VNI);
+ unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
+ std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
+ bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
void computeAssignment(unsigned ValNo, JoinVals &Other);
bool taintExtent(unsigned, unsigned, JoinVals&,
SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
- bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
+ bool usesLanes(const MachineInstr *MI, unsigned, unsigned, unsigned) const;
bool isPrunedValue(unsigned ValNo, JoinVals &Other);
public:
- JoinVals(LiveInterval &li, unsigned subIdx,
- SmallVectorImpl<VNInfo*> &newVNInfo,
- const CoalescerPair &cp,
- LiveIntervals *lis,
- const TargetRegisterInfo *tri)
- : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
- Indexes(LIS->getSlotIndexes()), TRI(tri),
- Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
+ JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, unsigned LaneMask,
+ SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
+ LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
+ bool TrackSubRegLiveness)
+ : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
+ SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
+ NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
+ TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
{}
- /// Analyze defs in LI and compute a value mapping in NewVNInfo.
+ /// Analyze defs in LR and compute a value mapping in NewVNInfo.
/// Returns false if any conflicts were impossible to resolve.
bool mapValues(JoinVals &Other);
@@ -1430,16 +1669,22 @@ public:
/// Returns false if any conflicts were impossible to resolve.
bool resolveConflicts(JoinVals &Other);
- /// Prune the live range of values in Other.LI where they would conflict with
- /// CR_Replace values in LI. Collect end points for restoring the live range
+ /// Prune the live range of values in Other.LR where they would conflict with
+ /// CR_Replace values in LR. Collect end points for restoring the live range
/// after joining.
- void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
+ void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
+ bool changeInstrs);
+
+ // Removes subranges starting at copies that get removed. This sometimes
+ // happens when undefined subranges are copied around. These ranges contain
+ // no usefull information and can be removed.
+ void pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask);
/// Erase any machine instructions that have been coalesced away.
/// Add erased instructions to ErasedInstrs.
/// Add foreign virtual registers to ShrinkRegs if their live range ended at
/// the erased instrs.
- void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
+ void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
SmallVectorImpl<unsigned> &ShrinkRegs);
/// Get the value assignments suitable for passing to LiveInterval::join.
@@ -1450,10 +1695,11 @@ public:
/// Compute the bitmask of lanes actually written by DefMI.
/// Set Redef if there are any partial register definitions that depend on the
/// previous value of the register.
-unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
+unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
+ const {
unsigned L = 0;
for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
- if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
+ if (!MO->isReg() || MO->getReg() != Reg || !MO->isDef())
continue;
L |= TRI->getSubRegIndexLaneMask(
TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
@@ -1464,21 +1710,64 @@ unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
}
/// Find the ultimate value that VNI was copied from.
-VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
+std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
+ const VNInfo *VNI) const {
+ unsigned Reg = this->Reg;
+
while (!VNI->isPHIDef()) {
- MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
+ SlotIndex Def = VNI->def;
+ MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
assert(MI && "No defining instruction");
if (!MI->isFullCopy())
+ return std::make_pair(VNI, Reg);
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return std::make_pair(VNI, Reg);
+
+ const LiveInterval &LI = LIS->getInterval(SrcReg);
+ const VNInfo *ValueIn;
+ // No subrange involved.
+ if (!SubRangeJoin || !LI.hasSubRanges()) {
+ LiveQueryResult LRQ = LI.Query(Def);
+ ValueIn = LRQ.valueIn();
+ } else {
+ // Query subranges. Pick the first matching one.
+ ValueIn = nullptr;
+ for (const LiveInterval::SubRange &S : LI.subranges()) {
+ // Transform lanemask to a mask in the joined live interval.
+ unsigned SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
+ if ((SMask & LaneMask) == 0)
+ continue;
+ LiveQueryResult LRQ = S.Query(Def);
+ ValueIn = LRQ.valueIn();
+ break;
+ }
+ }
+ if (ValueIn == nullptr)
break;
- unsigned Reg = MI->getOperand(1).getReg();
- if (!TargetRegisterInfo::isVirtualRegister(Reg))
- break;
- LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def);
- if (!LRQ.valueIn())
- break;
- VNI = LRQ.valueIn();
+ VNI = ValueIn;
+ Reg = SrcReg;
}
- return VNI;
+ return std::make_pair(VNI, Reg);
+}
+
+bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
+ const JoinVals &Other) const {
+ const VNInfo *Orig0;
+ unsigned Reg0;
+ std::tie(Orig0, Reg0) = followCopyChain(Value0);
+ if (Orig0 == Value1)
+ return true;
+
+ const VNInfo *Orig1;
+ unsigned Reg1;
+ std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
+
+ // The values are equal if they are defined at the same place and use the
+ // same register. Note that we cannot compare VNInfos directly as some of
+ // them might be from a copy created in mergeSubRangeInto() while the other
+ // is from the original LiveInterval.
+ return Orig0->def == Orig1->def && Reg0 == Reg1;
}
/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
@@ -1492,7 +1781,7 @@ JoinVals::ConflictResolution
JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
assert(!V.isAnalyzed() && "Value has already been analyzed!");
- VNInfo *VNI = LI.getValNumInfo(ValNo);
+ VNInfo *VNI = LR.getValNumInfo(ValNo);
if (VNI->isUnused()) {
V.WriteLanes = ~0u;
return CR_Keep;
@@ -1502,46 +1791,56 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
const MachineInstr *DefMI = nullptr;
if (VNI->isPHIDef()) {
// Conservatively assume that all lanes in a PHI are valid.
- V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
+ unsigned Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
+ V.ValidLanes = V.WriteLanes = Lanes;
} else {
DefMI = Indexes->getInstructionFromIndex(VNI->def);
- bool Redef = false;
- V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
-
- // If this is a read-modify-write instruction, there may be more valid
- // lanes than the ones written by this instruction.
- // This only covers partial redef operands. DefMI may have normal use
- // operands reading the register. They don't contribute valid lanes.
- //
- // This adds ssub1 to the set of valid lanes in %src:
- //
- // %src:ssub1<def> = FOO
- //
- // This leaves only ssub1 valid, making any other lanes undef:
- //
- // %src:ssub1<def,read-undef> = FOO %src:ssub2
- //
- // The <read-undef> flag on the def operand means that old lane values are
- // not important.
- if (Redef) {
- V.RedefVNI = LI.Query(VNI->def).valueIn();
- assert(V.RedefVNI && "Instruction is reading nonexistent value");
- computeAssignment(V.RedefVNI->id, Other);
- V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
- }
+ assert(DefMI != nullptr);
+ if (SubRangeJoin) {
+ // We don't care about the lanes when joining subregister ranges.
+ V.ValidLanes = V.WriteLanes = 1;
+ } else {
+ bool Redef = false;
+ V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
+
+ // If this is a read-modify-write instruction, there may be more valid
+ // lanes than the ones written by this instruction.
+ // This only covers partial redef operands. DefMI may have normal use
+ // operands reading the register. They don't contribute valid lanes.
+ //
+ // This adds ssub1 to the set of valid lanes in %src:
+ //
+ // %src:ssub1<def> = FOO
+ //
+ // This leaves only ssub1 valid, making any other lanes undef:
+ //
+ // %src:ssub1<def,read-undef> = FOO %src:ssub2
+ //
+ // The <read-undef> flag on the def operand means that old lane values are
+ // not important.
+ if (Redef) {
+ V.RedefVNI = LR.Query(VNI->def).valueIn();
+ assert((TrackSubRegLiveness || V.RedefVNI) &&
+ "Instruction is reading nonexistent value");
+ if (V.RedefVNI != nullptr) {
+ computeAssignment(V.RedefVNI->id, Other);
+ V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
+ }
+ }
- // An IMPLICIT_DEF writes undef values.
- if (DefMI->isImplicitDef()) {
- // We normally expect IMPLICIT_DEF values to be live only until the end
- // of their block. If the value is really live longer and gets pruned in
- // another block, this flag is cleared again.
- V.ErasableImplicitDef = true;
- V.ValidLanes &= ~V.WriteLanes;
+ // An IMPLICIT_DEF writes undef values.
+ if (DefMI->isImplicitDef()) {
+ // We normally expect IMPLICIT_DEF values to be live only until the end
+ // of their block. If the value is really live longer and gets pruned in
+ // another block, this flag is cleared again.
+ V.ErasableImplicitDef = true;
+ V.ValidLanes &= ~V.WriteLanes;
+ }
}
}
// Find the value in Other that overlaps VNI->def, if any.
- LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def);
+ LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
// It is possible that both values are defined by the same instruction, or
// the values are PHIs defined in the same block. When that happens, the two
@@ -1611,8 +1910,14 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
return CR_Replace;
// Check for simple erasable conflicts.
- if (DefMI->isImplicitDef())
+ if (DefMI->isImplicitDef()) {
+ // We need the def for the subregister if there is nothing else live at the
+ // subrange at this point.
+ if (TrackSubRegLiveness
+ && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
+ return CR_Replace;
return CR_Erase;
+ }
// Include the non-conflict where DefMI is a coalescable copy that kills
// OtherVNI. We still want the copy erased and value numbers merged.
@@ -1633,8 +1938,8 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
// %other = COPY %ext
// %this = COPY %ext <-- Erase this copy
//
- if (DefMI->isFullCopy() && !CP.isPartial() &&
- stripCopies(VNI) == stripCopies(V.OtherVNI))
+ if (DefMI->isFullCopy() && !CP.isPartial()
+ && valuesIdentical(VNI, V.OtherVNI, Other))
return CR_Erase;
// If the lanes written by this instruction were all undef in OtherVNI, it is
@@ -1669,7 +1974,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
// VNI is clobbering live lanes in OtherVNI, but there is still the
// possibility that no instructions actually read the clobbered lanes.
// If we're clobbering all the lanes in OtherVNI, at least one must be read.
- // Otherwise Other.LI wouldn't be live here.
+ // Otherwise Other.RI wouldn't be live here.
if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
return CR_Impossible;
@@ -1690,7 +1995,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
return CR_Unresolved;
}
-/// Compute the value assignment for ValNo in LI.
+/// Compute the value assignment for ValNo in RI.
/// This may be called recursively by analyzeValue(), but never for a ValNo on
/// the stack.
void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
@@ -1708,42 +2013,48 @@ void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
- DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
- << LI.getValNumInfo(ValNo)->def << " into "
- << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
+ DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
+ << LR.getValNumInfo(ValNo)->def << " into "
+ << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
<< V.OtherVNI->def << " --> @"
<< NewVNInfo[Assignments[ValNo]]->def << '\n');
break;
case CR_Replace:
- case CR_Unresolved:
+ case CR_Unresolved: {
// The other value is going to be pruned if this join is successful.
assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
- Other.Vals[V.OtherVNI->id].Pruned = true;
+ Val &OtherV = Other.Vals[V.OtherVNI->id];
+ // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
+ // its lanes.
+ if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
+ OtherV.ErasableImplicitDef = false;
+ OtherV.Pruned = true;
+ }
// Fall through.
default:
// This value number needs to go in the final joined live range.
Assignments[ValNo] = NewVNInfo.size();
- NewVNInfo.push_back(LI.getValNumInfo(ValNo));
+ NewVNInfo.push_back(LR.getValNumInfo(ValNo));
break;
}
}
bool JoinVals::mapValues(JoinVals &Other) {
- for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
computeAssignment(i, Other);
if (Vals[i].Resolution == CR_Impossible) {
- DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
- << '@' << LI.getValNumInfo(i)->def << '\n');
+ DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
+ << '@' << LR.getValNumInfo(i)->def << '\n');
return false;
}
}
return true;
}
-/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
+/// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
/// the extent of the tainted lanes in the block.
///
-/// Multiple values in Other.LI can be affected since partial redefinitions can
+/// Multiple values in Other.LR can be affected since partial redefinitions can
/// preserve previously tainted lanes.
///
/// 1 %dst = VLOAD <-- Define all lanes in %dst
@@ -1758,23 +2069,23 @@ bool JoinVals::mapValues(JoinVals &Other) {
bool JoinVals::
taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
- VNInfo *VNI = LI.getValNumInfo(ValNo);
+ VNInfo *VNI = LR.getValNumInfo(ValNo);
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
- // Scan Other.LI from VNI.def to MBBEnd.
- LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
- assert(OtherI != Other.LI.end() && "No conflict?");
+ // Scan Other.LR from VNI.def to MBBEnd.
+ LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
+ assert(OtherI != Other.LR.end() && "No conflict?");
do {
// OtherI is pointing to a tainted value. Abort the join if the tainted
// lanes escape the block.
SlotIndex End = OtherI->end;
if (End >= MBBEnd) {
- DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
+ DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
<< OtherI->valno->id << '@' << OtherI->start << '\n');
return false;
}
- DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
+ DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
<< OtherI->valno->id << '@' << OtherI->start
<< " to " << End << '\n');
// A dead def is not a problem.
@@ -1783,7 +2094,7 @@ taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
TaintExtent.push_back(std::make_pair(End, TaintedLanes));
// Check for another def in the MBB.
- if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
+ if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
break;
// Lanes written by the new def are no longer tainted.
@@ -1797,8 +2108,8 @@ taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
/// Return true if MI uses any of the given Lanes from Reg.
/// This does not include partial redefinitions of Reg.
-bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
- unsigned Lanes) {
+bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx,
+ unsigned Lanes) const {
if (MI->isDebugValue())
return false;
for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
@@ -1814,16 +2125,19 @@ bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
}
bool JoinVals::resolveConflicts(JoinVals &Other) {
- for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
if (V.Resolution != CR_Unresolved)
continue;
- DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
- << '@' << LI.getValNumInfo(i)->def << '\n');
+ DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
+ << '@' << LR.getValNumInfo(i)->def << '\n');
+ if (SubRangeJoin)
+ return false;
+
++NumLaneConflicts;
assert(V.OtherVNI && "Inconsistent conflict resolution.");
- VNInfo *VNI = LI.getValNumInfo(i);
+ VNInfo *VNI = LR.getValNumInfo(i);
const Val &OtherV = Other.Vals[V.OtherVNI->id];
// VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
@@ -1853,7 +2167,7 @@ bool JoinVals::resolveConflicts(JoinVals &Other) {
unsigned TaintNum = 0;
for(;;) {
assert(MI != MBB->end() && "Bad LastMI");
- if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
+ if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
return false;
}
@@ -1875,7 +2189,7 @@ bool JoinVals::resolveConflicts(JoinVals &Other) {
return true;
}
-// Determine if ValNo is a copy of a value number in LI or Other.LI that will
+// Determine if ValNo is a copy of a value number in LR or Other.LR that will
// be pruned:
//
// %dst = COPY %src
@@ -1898,15 +2212,16 @@ bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
}
void JoinVals::pruneValues(JoinVals &Other,
- SmallVectorImpl<SlotIndex> &EndPoints) {
- for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
- SlotIndex Def = LI.getValNumInfo(i)->def;
+ SmallVectorImpl<SlotIndex> &EndPoints,
+ bool changeInstrs) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ SlotIndex Def = LR.getValNumInfo(i)->def;
switch (Vals[i].Resolution) {
case CR_Keep:
break;
case CR_Replace: {
- // This value takes precedence over the value in Other.LI.
- LIS->pruneValue(&Other.LI, Def, &EndPoints);
+ // This value takes precedence over the value in Other.LR.
+ LIS->pruneValue(Other.LR, Def, &EndPoints);
// Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
// instructions are only inserted to provide a live-out value for PHI
// predecessors, so the instruction should simply go away once its value
@@ -1915,34 +2230,37 @@ void JoinVals::pruneValues(JoinVals &Other,
bool EraseImpDef = OtherV.ErasableImplicitDef &&
OtherV.Resolution == CR_Keep;
if (!Def.isBlock()) {
- // Remove <def,read-undef> flags. This def is now a partial redef.
- // Also remove <def,dead> flags since the joined live range will
- // continue past this instruction.
- for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
- MO.isValid(); ++MO)
- if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
- MO->setIsUndef(EraseImpDef);
- MO->setIsDead(false);
+ if (changeInstrs) {
+ // Remove <def,read-undef> flags. This def is now a partial redef.
+ // Also remove <def,dead> flags since the joined live range will
+ // continue past this instruction.
+ for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
+ MO.isValid(); ++MO) {
+ if (MO->isReg() && MO->isDef() && MO->getReg() == Reg) {
+ MO->setIsUndef(EraseImpDef);
+ MO->setIsDead(false);
+ }
}
+ }
// This value will reach instructions below, but we need to make sure
// the live range also reaches the instruction at Def.
if (!EraseImpDef)
EndPoints.push_back(Def);
}
- DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
- << ": " << Other.LI << '\n');
+ DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
+ << ": " << Other.LR << '\n');
break;
}
case CR_Erase:
case CR_Merge:
if (isPrunedValue(i, Other)) {
- // This value is ultimately a copy of a pruned value in LI or Other.LI.
+ // This value is ultimately a copy of a pruned value in LR or Other.LR.
// We can no longer trust the value mapping computed by
// computeAssignment(), the value that was originally copied could have
// been replaced.
- LIS->pruneValue(&LI, Def, &EndPoints);
- DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
- << Def << ": " << LI << '\n');
+ LIS->pruneValue(LR, Def, &EndPoints);
+ DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
+ << Def << ": " << LR << '\n');
}
break;
case CR_Unresolved:
@@ -1952,11 +2270,49 @@ void JoinVals::pruneValues(JoinVals &Other,
}
}
-void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
+void JoinVals::pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask)
+{
+ // Look for values being erased.
+ bool DidPrune = false;
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ if (Vals[i].Resolution != CR_Erase)
+ continue;
+
+ // Check subranges at the point where the copy will be removed.
+ SlotIndex Def = LR.getValNumInfo(i)->def;
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ LiveQueryResult Q = S.Query(Def);
+
+ // If a subrange starts at the copy then an undefined value has been
+ // copied and we must remove that subrange value as well.
+ VNInfo *ValueOut = Q.valueOutOrDead();
+ if (ValueOut != nullptr && Q.valueIn() == nullptr) {
+ DEBUG(dbgs() << "\t\tPrune sublane " << format("%04X", S.LaneMask)
+ << " at " << Def << "\n");
+ LIS->pruneValue(S, Def, nullptr);
+ DidPrune = true;
+ // Mark value number as unused.
+ ValueOut->markUnused();
+ continue;
+ }
+ // If a subrange ends at the copy, then a value was copied but only
+ // partially used later. Shrink the subregister range apropriately.
+ if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
+ DEBUG(dbgs() << "\t\tDead uses at sublane "
+ << format("%04X", S.LaneMask) << " at " << Def << "\n");
+ ShrinkMask |= S.LaneMask;
+ }
+ }
+ }
+ if (DidPrune)
+ LI.removeEmptySubRanges();
+}
+
+void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
SmallVectorImpl<unsigned> &ShrinkRegs) {
- for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
// Get the def location before markUnused() below invalidates it.
- SlotIndex Def = LI.getValNumInfo(i)->def;
+ SlotIndex Def = LR.getValNumInfo(i)->def;
switch (Vals[i].Resolution) {
case CR_Keep:
// If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
@@ -1964,12 +2320,12 @@ void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
// PHIElimination to guarantee that all PHI predecessors have a value.
if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
break;
- // Remove value number i from LI. Note that this VNInfo is still present
+ // Remove value number i from LR. Note that this VNInfo is still present
// in NewVNInfo, so it will appear as an unused value number in the final
// joined interval.
- LI.getValNumInfo(i)->markUnused();
- LI.removeValNo(LI.getValNumInfo(i));
- DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
+ LR.getValNumInfo(i)->markUnused();
+ LR.removeValNo(LR.getValNumInfo(i));
+ DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
// FALL THROUGH.
case CR_Erase: {
@@ -1993,12 +2349,96 @@ void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
}
}
+void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
+ unsigned LaneMask,
+ const CoalescerPair &CP) {
+ SmallVector<VNInfo*, 16> NewVNInfo;
+ JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
+ NewVNInfo, CP, LIS, TRI, true, true);
+ JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
+ NewVNInfo, CP, LIS, TRI, true, true);
+
+ /// Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
+ /// Conflicts should already be resolved so the mapping/resolution should
+ /// always succeed.
+ if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
+ llvm_unreachable("Can't join subrange although main ranges are compatible");
+ if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
+ llvm_unreachable("Can't join subrange although main ranges are compatible");
+
+ // The merging algorithm in LiveInterval::join() can't handle conflicting
+ // value mappings, so we need to remove any live ranges that overlap a
+ // CR_Replace resolution. Collect a set of end points that can be used to
+ // restore the live range after joining.
+ SmallVector<SlotIndex, 8> EndPoints;
+ LHSVals.pruneValues(RHSVals, EndPoints, false);
+ RHSVals.pruneValues(LHSVals, EndPoints, false);
+
+ LRange.verify();
+ RRange.verify();
+
+ // Join RRange into LHS.
+ LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
+ NewVNInfo);
+
+ DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
+ if (EndPoints.empty())
+ return;
+
+ // Recompute the parts of the live range we had to remove because of
+ // CR_Replace conflicts.
+ DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
+ << " points: " << LRange << '\n');
+ LIS->extendToIndices(LRange, EndPoints);
+}
+
+void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
+ const LiveRange &ToMerge,
+ unsigned LaneMask, CoalescerPair &CP) {
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+ for (LiveInterval::SubRange &R : LI.subranges()) {
+ unsigned RMask = R.LaneMask;
+ // LaneMask of subregisters common to subrange R and ToMerge.
+ unsigned Common = RMask & LaneMask;
+ // There is nothing to do without common subregs.
+ if (Common == 0)
+ continue;
+
+ DEBUG(dbgs() << format("\t\tCopy+Merge %04X into %04X\n", RMask, Common));
+ // LaneMask of subregisters contained in the R range but not in ToMerge,
+ // they have to split into their own subrange.
+ unsigned LRest = RMask & ~LaneMask;
+ LiveInterval::SubRange *CommonRange;
+ if (LRest != 0) {
+ R.LaneMask = LRest;
+ DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", LRest));
+ // Duplicate SubRange for newly merged common stuff.
+ CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
+ } else {
+ // Reuse the existing range.
+ R.LaneMask = Common;
+ CommonRange = &R;
+ }
+ LiveRange RangeCopy(ToMerge, Allocator);
+ joinSubRegRanges(*CommonRange, RangeCopy, Common, CP);
+ LaneMask &= ~RMask;
+ }
+
+ if (LaneMask != 0) {
+ DEBUG(dbgs() << format("\t\tNew Lane %04X\n", LaneMask));
+ LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
+ }
+}
+
bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
SmallVector<VNInfo*, 16> NewVNInfo;
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
- JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
- JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
+ bool TrackSubRegLiveness = MRI->tracksSubRegLiveness();
+ JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
+ TRI, false, TrackSubRegLiveness);
+ JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
+ TRI, false, TrackSubRegLiveness);
DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
@@ -2014,14 +2454,55 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
return false;
// All clear, the live ranges can be merged.
+ if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
+ BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
+
+ // Transform lanemasks from the LHS to masks in the coalesced register and
+ // create initial subranges if necessary.
+ unsigned DstIdx = CP.getDstIdx();
+ if (!LHS.hasSubRanges()) {
+ unsigned Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
+ : TRI->getSubRegIndexLaneMask(DstIdx);
+ // LHS must support subregs or we wouldn't be in this codepath.
+ assert(Mask != 0);
+ LHS.createSubRangeFrom(Allocator, Mask, LHS);
+ } else if (DstIdx != 0) {
+ // Transform LHS lanemasks to new register class if necessary.
+ for (LiveInterval::SubRange &R : LHS.subranges()) {
+ unsigned Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
+ R.LaneMask = Mask;
+ }
+ }
+ DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
+ << ' ' << LHS << '\n');
+
+ // Determine lanemasks of RHS in the coalesced register and merge subranges.
+ unsigned SrcIdx = CP.getSrcIdx();
+ if (!RHS.hasSubRanges()) {
+ unsigned Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
+ : TRI->getSubRegIndexLaneMask(SrcIdx);
+ mergeSubRangeInto(LHS, RHS, Mask, CP);
+ } else {
+ // Pair up subranges and merge.
+ for (LiveInterval::SubRange &R : RHS.subranges()) {
+ unsigned Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
+ mergeSubRangeInto(LHS, R, Mask, CP);
+ }
+ }
+
+ DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
+
+ LHSVals.pruneSubRegValues(LHS, ShrinkMask);
+ RHSVals.pruneSubRegValues(LHS, ShrinkMask);
+ }
// The merging algorithm in LiveInterval::join() can't handle conflicting
// value mappings, so we need to remove any live ranges that overlap a
// CR_Replace resolution. Collect a set of end points that can be used to
// restore the live range after joining.
SmallVector<SlotIndex, 8> EndPoints;
- LHSVals.pruneValues(RHSVals, EndPoints);
- RHSVals.pruneValues(LHSVals, EndPoints);
+ LHSVals.pruneValues(RHSVals, EndPoints, true);
+ RHSVals.pruneValues(LHSVals, EndPoints, true);
// Erase COPY and IMPLICIT_DEF instructions. This may cause some external
// registers to require trimming.
@@ -2040,19 +2521,18 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
MRI->clearKillFlags(LHS.reg);
MRI->clearKillFlags(RHS.reg);
- if (EndPoints.empty())
- return true;
+ if (!EndPoints.empty()) {
+ // Recompute the parts of the live range we had to remove because of
+ // CR_Replace conflicts.
+ DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
+ << " points: " << LHS << '\n');
+ LIS->extendToIndices((LiveRange&)LHS, EndPoints);
+ }
- // Recompute the parts of the live range we had to remove because of
- // CR_Replace conflicts.
- DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
- << " points: " << LHS << '\n');
- LIS->extendToIndices(LHS, EndPoints);
return true;
}
-/// joinIntervals - Attempt to join these two intervals. On failure, this
-/// returns false.
+/// Attempt to join these two intervals. On failure, this returns false.
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
}
@@ -2224,8 +2704,8 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
MRI = &fn.getRegInfo();
TM = &fn.getTarget();
- TRI = TM->getRegisterInfo();
- TII = TM->getInstrInfo();
+ TRI = TM->getSubtargetImpl()->getRegisterInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
LIS = &getAnalysis<LiveIntervals>();
AA = &getAnalysis<AliasAnalysis>();
Loops = &getAnalysis<MachineLoopInfo>();
@@ -2266,7 +2746,22 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
continue;
if (MRI->recomputeRegClass(Reg, *TM)) {
DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
- << MRI->getRegClass(Reg)->getName() << '\n');
+ << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
+ LiveInterval &LI = LIS->getInterval(Reg);
+ unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
+ if (MaxMask == 0) {
+ // If the inflated register class does not support subregisters anymore
+ // remove the subranges.
+ LI.clearSubRanges();
+ } else {
+ // If subranges are still supported, then the same subregs should still
+ // be supported.
+#ifndef NDEBUG
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ assert ((S.LaneMask & ~MaxMask) == 0);
+ }
+#endif
+ }
++NumInflated;
}
}
@@ -2277,7 +2772,7 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
return true;
}
-/// print - Implement the dump method.
+/// Implement the dump method.
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
LIS->print(O, m);
}
diff --git a/contrib/llvm/lib/CodeGen/RegisterCoalescer.h b/contrib/llvm/lib/CodeGen/RegisterCoalescer.h
index e57ceab..04067a1 100644
--- a/contrib/llvm/lib/CodeGen/RegisterCoalescer.h
+++ b/contrib/llvm/lib/CodeGen/RegisterCoalescer.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_REGISTER_COALESCER_H
-#define LLVM_CODEGEN_REGISTER_COALESCER_H
+#ifndef LLVM_LIB_CODEGEN_REGISTERCOALESCER_H
+#define LLVM_LIB_CODEGEN_REGISTERCOALESCER_H
namespace llvm {
@@ -22,38 +22,36 @@ namespace llvm {
class TargetRegisterClass;
class TargetInstrInfo;
- /// CoalescerPair - A helper class for register coalescers. When deciding if
+ /// A helper class for register coalescers. When deciding if
/// two registers can be coalesced, CoalescerPair can determine if a copy
/// instruction would become an identity copy after coalescing.
class CoalescerPair {
const TargetRegisterInfo &TRI;
- /// DstReg - The register that will be left after coalescing. It can be a
+ /// The register that will be left after coalescing. It can be a
/// virtual or physical register.
unsigned DstReg;
- /// SrcReg - the virtual register that will be coalesced into dstReg.
+ /// The virtual register that will be coalesced into dstReg.
unsigned SrcReg;
- /// DstIdx - The sub-register index of the old DstReg in the new coalesced
- /// register.
+ /// The sub-register index of the old DstReg in the new coalesced register.
unsigned DstIdx;
- /// SrcIdx - The sub-register index of the old SrcReg in the new coalesced
- /// register.
+ /// The sub-register index of the old SrcReg in the new coalesced register.
unsigned SrcIdx;
- /// Partial - True when the original copy was a partial subregister copy.
+ /// True when the original copy was a partial subregister copy.
bool Partial;
- /// CrossClass - True when both regs are virtual, and newRC is constrained.
+ /// True when both regs are virtual and newRC is constrained.
bool CrossClass;
- /// Flipped - True when DstReg and SrcReg are reversed from the original
+ /// True when DstReg and SrcReg are reversed from the original
/// copy instruction.
bool Flipped;
- /// NewRC - The register class of the coalesced register, or NULL if DstReg
+ /// The register class of the coalesced register, or NULL if DstReg
/// is a physreg. This register class may be a super-register of both
/// SrcReg and DstReg.
const TargetRegisterClass *NewRC;
@@ -70,49 +68,47 @@ namespace llvm {
: TRI(tri), DstReg(PhysReg), SrcReg(VirtReg), DstIdx(0), SrcIdx(0),
Partial(false), CrossClass(false), Flipped(false), NewRC(nullptr) {}
- /// setRegisters - set registers to match the copy instruction MI. Return
+ /// Set registers to match the copy instruction MI. Return
/// false if MI is not a coalescable copy instruction.
bool setRegisters(const MachineInstr*);
- /// flip - Swap SrcReg and DstReg. Return false if swapping is impossible
+ /// Swap SrcReg and DstReg. Return false if swapping is impossible
/// because DstReg is a physical register, or SubIdx is set.
bool flip();
- /// isCoalescable - Return true if MI is a copy instruction that will become
+ /// Return true if MI is a copy instruction that will become
/// an identity copy after coalescing.
bool isCoalescable(const MachineInstr*) const;
- /// isPhys - Return true if DstReg is a physical register.
+ /// Return true if DstReg is a physical register.
bool isPhys() const { return !NewRC; }
- /// isPartial - Return true if the original copy instruction did not copy
+ /// Return true if the original copy instruction did not copy
/// the full register, but was a subreg operation.
bool isPartial() const { return Partial; }
- /// isCrossClass - Return true if DstReg is virtual and NewRC is a smaller
+ /// Return true if DstReg is virtual and NewRC is a smaller
/// register class than DstReg's.
bool isCrossClass() const { return CrossClass; }
- /// isFlipped - Return true when getSrcReg is the register being defined by
+ /// Return true when getSrcReg is the register being defined by
/// the original copy instruction.
bool isFlipped() const { return Flipped; }
- /// getDstReg - Return the register (virtual or physical) that will remain
+ /// Return the register (virtual or physical) that will remain
/// after coalescing.
unsigned getDstReg() const { return DstReg; }
- /// getSrcReg - Return the virtual register that will be coalesced away.
+ /// Return the virtual register that will be coalesced away.
unsigned getSrcReg() const { return SrcReg; }
- /// getDstIdx - Return the subregister index that DstReg will be coalesced
- /// into, or 0.
+ /// Return the subregister index that DstReg will be coalesced into, or 0.
unsigned getDstIdx() const { return DstIdx; }
- /// getSrcIdx - Return the subregister index that SrcReg will be coalesced
- /// into, or 0.
+ /// Return the subregister index that SrcReg will be coalesced into, or 0.
unsigned getSrcIdx() const { return SrcIdx; }
- /// getNewRC - Return the register class of the coalesced register.
+ /// Return the register class of the coalesced register.
const TargetRegisterClass *getNewRC() const { return NewRC; }
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/CodeGen/RegisterPressure.cpp b/contrib/llvm/lib/CodeGen/RegisterPressure.cpp
index 617e459..9925efb 100644
--- a/contrib/llvm/lib/CodeGen/RegisterPressure.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterPressure.cpp
@@ -19,7 +19,6 @@
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
using namespace llvm;
@@ -185,7 +184,7 @@ void RegPressureTracker::init(const MachineFunction *mf,
reset();
MF = mf;
- TRI = MF->getTarget().getRegisterInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
RCI = rci;
MRI = &MF->getRegInfo();
MBB = mbb;
diff --git a/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp b/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp
index 72b6285..7626dd2 100644
--- a/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp
@@ -24,24 +24,16 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "reg-scavenging"
-/// setUsed - Set the register and its sub-registers as being used.
-void RegScavenger::setUsed(unsigned Reg) {
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- RegsAvailable.reset(*SubRegs);
-}
-
-bool RegScavenger::isAliasUsed(unsigned Reg) const {
- for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
- if (isUsed(*AI, *AI == Reg))
- return true;
- return false;
+/// setUsed - Set the register units of this register as used.
+void RegScavenger::setRegUsed(unsigned Reg) {
+ for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
+ RegUnitsAvailable.reset(*RUI);
}
void RegScavenger::initRegState() {
@@ -51,8 +43,8 @@ void RegScavenger::initRegState() {
I->Restore = nullptr;
}
- // All registers started out unused.
- RegsAvailable.set();
+ // All register units start out unused.
+ RegUnitsAvailable.set();
if (!MBB)
return;
@@ -60,22 +52,21 @@ void RegScavenger::initRegState() {
// Live-in registers are in use.
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
E = MBB->livein_end(); I != E; ++I)
- setUsed(*I);
+ setRegUsed(*I);
// Pristine CSRs are also unavailable.
BitVector PR = MBB->getParent()->getFrameInfo()->getPristineRegs(MBB);
for (int I = PR.find_first(); I>0; I = PR.find_next(I))
- setUsed(I);
+ setRegUsed(I);
}
void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
MachineFunction &MF = *mbb->getParent();
- const TargetMachine &TM = MF.getTarget();
- TII = TM.getInstrInfo();
- TRI = TM.getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
- assert((NumPhysRegs == 0 || NumPhysRegs == TRI->getNumRegs()) &&
+ assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
"Target changed?");
// It is not possible to use the register scavenger after late optimization
@@ -85,17 +76,11 @@ void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
// Self-initialize.
if (!MBB) {
- NumPhysRegs = TRI->getNumRegs();
- RegsAvailable.resize(NumPhysRegs);
- KillRegs.resize(NumPhysRegs);
- DefRegs.resize(NumPhysRegs);
-
- // Create callee-saved registers bitvector.
- CalleeSavedRegs.resize(NumPhysRegs);
- const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
- if (CSRegs != nullptr)
- for (unsigned i = 0; CSRegs[i]; ++i)
- CalleeSavedRegs.set(CSRegs[i]);
+ NumRegUnits = TRI->getNumRegUnits();
+ RegUnitsAvailable.resize(NumRegUnits);
+ KillRegUnits.resize(NumRegUnits);
+ DefRegUnits.resize(NumRegUnits);
+ TmpRegUnits.resize(NumRegUnits);
}
MBB = mbb;
@@ -104,10 +89,9 @@ void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
Tracking = false;
}
-void RegScavenger::addRegWithSubRegs(BitVector &BV, unsigned Reg) {
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- BV.set(*SubRegs);
+void RegScavenger::addRegUnits(BitVector &BV, unsigned Reg) {
+ for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
+ BV.set(*RUI);
}
void RegScavenger::determineKillsAndDefs() {
@@ -122,12 +106,25 @@ void RegScavenger::determineKillsAndDefs() {
// predicated, conservatively assume "kill" markers do not actually kill the
// register. Similarly ignores "dead" markers.
bool isPred = TII->isPredicated(MI);
- KillRegs.reset();
- DefRegs.reset();
+ KillRegUnits.reset();
+ DefRegUnits.reset();
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
- if (MO.isRegMask())
- (isPred ? DefRegs : KillRegs).setBitsNotInMask(MO.getRegMask());
+ if (MO.isRegMask()) {
+
+ TmpRegUnits.clear();
+ for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) {
+ for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
+ if (MO.clobbersPhysReg(*RURI)) {
+ TmpRegUnits.set(RU);
+ break;
+ }
+ }
+ }
+
+ // Apply the mask.
+ (isPred ? DefRegUnits : KillRegUnits) |= TmpRegUnits;
+ }
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
@@ -139,13 +136,13 @@ void RegScavenger::determineKillsAndDefs() {
if (MO.isUndef())
continue;
if (!isPred && MO.isKill())
- addRegWithSubRegs(KillRegs, Reg);
+ addRegUnits(KillRegUnits, Reg);
} else {
assert(MO.isDef());
if (!isPred && MO.isDead())
- addRegWithSubRegs(KillRegs, Reg);
+ addRegUnits(KillRegUnits, Reg);
else
- addRegWithSubRegs(DefRegs, Reg);
+ addRegUnits(DefRegUnits, Reg);
}
}
}
@@ -158,8 +155,8 @@ void RegScavenger::unprocess() {
determineKillsAndDefs();
// Commit the changes.
- setUsed(KillRegs);
- setUnused(DefRegs);
+ setUsed(KillRegUnits);
+ setUnused(DefRegUnits);
}
if (MBBI == MBB->begin()) {
@@ -208,7 +205,7 @@ void RegScavenger::forward() {
if (MO.isUse()) {
if (MO.isUndef())
continue;
- if (!isUsed(Reg)) {
+ if (!isRegUsed(Reg)) {
// Check if it's partial live: e.g.
// D0 = insert_subreg D0<undef>, S0
// ... D0
@@ -219,15 +216,23 @@ void RegScavenger::forward() {
// insert_subreg around causes both correctness and performance issues.
bool SubUsed = false;
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
- if (isUsed(*SubRegs)) {
+ if (isRegUsed(*SubRegs)) {
SubUsed = true;
break;
}
- if (!SubUsed) {
+ bool SuperUsed = false;
+ for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
+ if (isRegUsed(*SR)) {
+ SuperUsed = true;
+ break;
+ }
+ }
+ if (!SubUsed && !SuperUsed) {
MBB->getParent()->verify(nullptr, "In Register Scavenger");
llvm_unreachable("Using an undefined register!");
}
(void)SubUsed;
+ (void)SuperUsed;
}
} else {
assert(MO.isDef());
@@ -243,23 +248,23 @@ void RegScavenger::forward() {
#endif // NDEBUG
// Commit the changes.
- setUnused(KillRegs);
- setUsed(DefRegs);
+ setUnused(KillRegUnits);
+ setUsed(DefRegUnits);
}
-void RegScavenger::getRegsUsed(BitVector &used, bool includeReserved) {
- used = RegsAvailable;
- used.flip();
- if (includeReserved)
- used |= MRI->getReservedRegs();
- else
- used.reset(MRI->getReservedRegs());
+bool RegScavenger::isRegUsed(unsigned Reg, bool includeReserved) const {
+ if (includeReserved && isReserved(Reg))
+ return true;
+ for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
+ if (!RegUnitsAvailable.test(*RUI))
+ return true;
+ return false;
}
unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I)
- if (!isAliasUsed(*I)) {
+ if (!isRegUsed(*I)) {
DEBUG(dbgs() << "Scavenger found unused reg: " << TRI->getName(*I) <<
"\n");
return *I;
@@ -273,13 +278,13 @@ BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
BitVector Mask(TRI->getNumRegs());
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I)
- if (!isAliasUsed(*I))
+ if (!isRegUsed(*I))
Mask.set(*I);
return Mask;
}
/// findSurvivorReg - Return the candidate register that is unused for the
-/// longest after StargMII. UseMI is set to the instruction where the search
+/// longest after StartMII. UseMI is set to the instruction where the search
/// stopped.
///
/// No more than InstrLimit instructions are inspected.
@@ -375,9 +380,7 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
}
// Try to find a register that's unused if there is one, as then we won't
- // have to spill. Search explicitly rather than masking out based on
- // RegsAvailable, as RegsAvailable does not take aliases into account.
- // That's what getRegsAvailable() is for.
+ // have to spill.
BitVector Available = getRegsAvailable(RC);
Available &= Candidates;
if (Available.any())
@@ -388,7 +391,7 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
// If we found an unused register there is no reason to spill it.
- if (!isAliasUsed(SReg)) {
+ if (!isRegUsed(SReg)) {
DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n");
return SReg;
}
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
index 6a2a080..6f8b337 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
@@ -21,6 +21,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <climits>
using namespace llvm;
@@ -35,11 +36,9 @@ static cl::opt<bool> StressSchedOpt(
void SchedulingPriorityQueue::anchor() { }
ScheduleDAG::ScheduleDAG(MachineFunction &mf)
- : TM(mf.getTarget()),
- TII(TM.getInstrInfo()),
- TRI(TM.getRegisterInfo()),
- MF(mf), MRI(mf.getRegInfo()),
- EntrySU(), ExitSU() {
+ : TM(mf.getTarget()), TII(TM.getSubtargetImpl()->getInstrInfo()),
+ TRI(TM.getSubtargetImpl()->getRegisterInfo()), MF(mf),
+ MRI(mf.getRegInfo()), EntrySU(), ExitSU() {
#ifndef NDEBUG
StressSched = StressSchedOpt;
#endif
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
index 0f8b21c..409e704 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -44,18 +44,17 @@ using namespace llvm;
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
cl::ZeroOrMore, cl::init(false),
- cl::desc("Enable use of AA during MI GAD construction"));
+ cl::desc("Enable use of AA during MI DAG construction"));
static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
- cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction"));
+ cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
- const MachineLoopInfo &mli,
- const MachineDominatorTree &mdt,
+ const MachineLoopInfo *mli,
bool IsPostRAFlag,
bool RemoveKillFlags,
LiveIntervals *lis)
- : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
+ : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis),
IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
CanHandleTerminators(false), FirstDbgValue(nullptr) {
assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
@@ -64,7 +63,7 @@ ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
"Virtual registers must be removed prior to PostRA scheduling");
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
- SchedModel.init(*ST.getSchedModel(), &ST, TII);
+ SchedModel.init(ST.getSchedModel(), &ST, TII);
}
/// getUnderlyingObjectFromInt - This is the function that does the work of
@@ -110,7 +109,7 @@ static void getUnderlyingObjects(const Value *V,
for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
I != IE; ++I) {
V = *I;
- if (!Visited.insert(V))
+ if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
const Value *O =
@@ -512,9 +511,18 @@ static inline bool isUnsafeMemoryObject(MachineInstr *MI,
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
MachineInstr *MIa,
MachineInstr *MIb) {
+ const MachineFunction *MF = MIa->getParent()->getParent();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+
// Cover a trivial case - no edge is need to itself.
if (MIa == MIb)
return false;
+
+ // Let the target decide if memory accesses cannot possibly overlap.
+ if ((MIa->mayLoad() || MIa->mayStore()) &&
+ (MIb->mayLoad() || MIb->mayStore()))
+ if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
+ return false;
// FIXME: Need to handle multiple memory operands to support all targets.
if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
@@ -563,9 +571,9 @@ static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
AliasAnalysis::AliasResult AAResult = AA->alias(
AliasAnalysis::Location(MMOa->getValue(), Overlapa,
- UseTBAA ? MMOa->getTBAAInfo() : nullptr),
+ UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
AliasAnalysis::Location(MMOb->getValue(), Overlapb,
- UseTBAA ? MMOb->getTBAAInfo() : nullptr));
+ UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
return (AAResult != AliasAnalysis::NoAlias);
}
@@ -575,12 +583,12 @@ static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
static unsigned
iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
- SmallPtrSet<const SUnit*, 16> &Visited) {
+ SmallPtrSetImpl<const SUnit*> &Visited) {
if (!SUa || !SUb || SUb == ExitSU)
return *Depth;
// Remember visited nodes.
- if (!Visited.insert(SUb))
+ if (!Visited.insert(SUb).second)
return *Depth;
// If there is _some_ dependency already in place, do not
// descend any further.
@@ -606,10 +614,10 @@ iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
}
// Track current depth.
(*Depth)++;
- // Iterate over chain dependencies only.
+ // Iterate over memory dependencies only.
for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
I != E; ++I)
- if (I->isCtrl())
+ if (I->isNormalMemoryOrBarrier())
iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
return *Depth;
}
@@ -636,11 +644,12 @@ static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
(*I)->addPred(Dep);
}
- // Now go through all the chain successors and iterate from them.
- // Keep track of visited nodes.
+
+ // Iterate recursively over all previously added memory chain
+ // successors. Keep track of visited nodes.
for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
JE = (*I)->Succs.end(); J != JE; ++J)
- if (J->isCtrl())
+ if (J->isNormalMemoryOrBarrier())
iterateChainSucc (AA, MFI, SU, J->getSUnit(),
ExitSU, &Depth, Visited);
}
@@ -656,7 +665,7 @@ void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
bool isNormalMemory = false) {
// If this is a false dependency,
// do not add the edge, but rememeber the rejected node.
- if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
+ if (MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
Dep.setLatency(TrueMemOrderLatency);
SUb->addPred(Dep);
@@ -883,7 +892,7 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
// fall-through
new_alias_chain:
- // Chain all possibly aliasing memory references though SU.
+ // Chain all possibly aliasing memory references through SU.
if (AliasChain) {
unsigned ChainLatency = 0;
if (AliasChain->getInstr()->mayLoad())
@@ -912,6 +921,13 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
AliasMemDefs.clear();
AliasMemUses.clear();
} else if (MI->mayStore()) {
+ // Add dependence on barrier chain, if needed.
+ // There is no point to check aliasing on barrier event. Even if
+ // SU and barrier _could_ be reordered, they should not. In addition,
+ // we have lost all RejectMemNodes below barrier.
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Barrier));
+
UnderlyingObjectsVector Objs;
getUnderlyingObjectsForInstr(MI, MFI, Objs);
@@ -981,12 +997,6 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
TrueMemOrderLatency);
}
- // Add dependence on barrier chain, if needed.
- // There is no point to check aliasing on barrier event. Even if
- // SU and barrier _could_ be reordered, they should not. In addition,
- // we have lost all RejectMemNodes below barrier.
- if (BarrierChain)
- BarrierChain->addPred(SDep(SU, SDep::Barrier));
} else if (MI->mayLoad()) {
bool MayAlias = true;
if (MI->isInvariantLoad(AA)) {
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGPrinter.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGPrinter.cpp
index f59c6cf..b2e4617 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAGPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGPrinter.cpp
@@ -21,7 +21,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <fstream>
using namespace llvm;
diff --git a/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp b/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp
index 004c685..38833a4 100644
--- a/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp
+++ b/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp
@@ -78,7 +78,7 @@ ScoreboardHazardRecognizer(const InstrItineraryData *II,
DEBUG(dbgs() << "Disabled scoreboard hazard recognizer\n");
else {
// A nonempty itinerary must have a SchedModel.
- IssueWidth = ItinData->SchedModel->IssueWidth;
+ IssueWidth = ItinData->SchedModel.IssueWidth;
DEBUG(dbgs() << "Using scoreboard hazard recognizer: Depth = "
<< ScoreboardDepth << '\n');
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index 2abcdd5..5145731 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -17,6 +17,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
@@ -32,7 +34,6 @@
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
@@ -76,6 +77,10 @@ namespace {
"slicing"),
cl::init(false));
+ static cl::opt<bool>
+ MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
+ cl::desc("DAG combiner may split indexing from loads"));
+
//------------------------------ DAGCombiner ---------------------------------//
class DAGCombiner {
@@ -87,61 +92,70 @@ namespace {
bool LegalTypes;
bool ForCodeSize;
- // Worklist of all of the nodes that need to be simplified.
- //
- // This has the semantics that when adding to the worklist,
- // the item added must be next to be processed. It should
- // also only appear once. The naive approach to this takes
- // linear time.
- //
- // To reduce the insert/remove time to logarithmic, we use
- // a set and a vector to maintain our worklist.
- //
- // The set contains the items on the worklist, but does not
- // maintain the order they should be visited.
- //
- // The vector maintains the order nodes should be visited, but may
- // contain duplicate or removed nodes. When choosing a node to
- // visit, we pop off the order stack until we find an item that is
- // also in the contents set. All operations are O(log N).
- SmallPtrSet<SDNode*, 64> WorklistContents;
- SmallVector<SDNode*, 64> WorklistOrder;
+ /// \brief Worklist of all of the nodes that need to be simplified.
+ ///
+ /// This must behave as a stack -- new nodes to process are pushed onto the
+ /// back and when processing we pop off of the back.
+ ///
+ /// The worklist will not contain duplicates but may contain null entries
+ /// due to nodes being deleted from the underlying DAG.
+ SmallVector<SDNode *, 64> Worklist;
+
+ /// \brief Mapping from an SDNode to its position on the worklist.
+ ///
+ /// This is used to find and remove nodes from the worklist (by nulling
+ /// them) when they are deleted from the underlying DAG. It relies on
+ /// stable indices of nodes within the worklist.
+ DenseMap<SDNode *, unsigned> WorklistMap;
+
+ /// \brief Set of nodes which have been combined (at least once).
+ ///
+ /// This is used to allow us to reliably add any operands of a DAG node
+ /// which have not yet been combined to the worklist.
+ SmallPtrSet<SDNode *, 64> CombinedNodes;
// AA - Used for DAG load/store alias analysis.
AliasAnalysis &AA;
- /// AddUsersToWorklist - When an instruction is simplified, add all users of
- /// the instruction to the work lists because they might get more simplified
- /// now.
- ///
+ /// When an instruction is simplified, add all users of the instruction to
+ /// the work lists because they might get more simplified now.
void AddUsersToWorklist(SDNode *N) {
for (SDNode *Node : N->uses())
AddToWorklist(Node);
}
- /// visit - call the node-specific routine that knows how to fold each
- /// particular type of node.
+ /// Call the node-specific routine that folds each particular type of node.
SDValue visit(SDNode *N);
public:
- /// AddToWorklist - Add to the work list making sure its instance is at the
- /// back (next to be processed.)
+ /// Add to the worklist making sure its instance is at the back (next to be
+ /// processed.)
void AddToWorklist(SDNode *N) {
// Skip handle nodes as they can't usefully be combined and confuse the
// zero-use deletion strategy.
if (N->getOpcode() == ISD::HANDLENODE)
return;
- WorklistContents.insert(N);
- WorklistOrder.push_back(N);
+ if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
+ Worklist.push_back(N);
}
- /// removeFromWorklist - remove all instances of N from the worklist.
- ///
+ /// Remove all instances of N from the worklist.
void removeFromWorklist(SDNode *N) {
- WorklistContents.erase(N);
+ CombinedNodes.erase(N);
+
+ auto It = WorklistMap.find(N);
+ if (It == WorklistMap.end())
+ return; // Not in the worklist.
+
+ // Null out the entry rather than erasing it to avoid a linear operation.
+ Worklist[It->second] = nullptr;
+ WorklistMap.erase(It);
}
+ void deleteAndRecombine(SDNode *N);
+ bool recursivelyDeleteUnusedNodes(SDNode *N);
+
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);
@@ -159,9 +173,9 @@ namespace {
private:
- /// SimplifyDemandedBits - Check the specified integer node value to see if
- /// it can be simplified or if things it uses can be simplified by bit
- /// propagation. If so, return true.
+ /// Check the specified integer node value to see if it can be simplified or
+ /// if things it uses can be simplified by bit propagation.
+ /// If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
APInt Demanded = APInt::getAllOnesValue(BitWidth);
@@ -172,8 +186,19 @@ namespace {
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
+ SDValue SplitIndexingFromLoad(LoadSDNode *LD);
bool SliceUpLoad(SDNode *N);
+ /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
+ /// load.
+ ///
+ /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
+ /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
+ /// \param EltNo index of the vector element to load.
+ /// \param OriginalLoad load that EVE came from to be replaced.
+ /// \returns EVE on success SDValue() on failure.
+ SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
+ SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
@@ -187,7 +212,7 @@ namespace {
SDValue Trunc, SDValue ExtLoad, SDLoc DL,
ISD::NodeType ExtType);
- /// combine - call the node-specific routine that knows how to fold each
+ /// Call the node-specific routine that knows how to fold each
/// particular type of node. If that doesn't do anything, try the
/// target-specific DAG combines.
SDValue combine(SDNode *N);
@@ -251,6 +276,7 @@ namespace {
SDValue visitFMA(SDNode *N);
SDValue visitFDIV(SDNode *N);
SDValue visitFREM(SDNode *N);
+ SDValue visitFSQRT(SDNode *N);
SDValue visitFCOPYSIGN(SDNode *N);
SDValue visitSINT_TO_FP(SDNode *N);
SDValue visitUINT_TO_FP(SDNode *N);
@@ -264,6 +290,8 @@ namespace {
SDValue visitFCEIL(SDNode *N);
SDValue visitFTRUNC(SDNode *N);
SDValue visitFFLOOR(SDNode *N);
+ SDValue visitFMINNUM(SDNode *N);
+ SDValue visitFMAXNUM(SDNode *N);
SDValue visitBRCOND(SDNode *N);
SDValue visitBR_CC(SDNode *N);
SDValue visitLOAD(SDNode *N);
@@ -275,6 +303,8 @@ namespace {
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue visitINSERT_SUBVECTOR(SDNode *N);
+ SDValue visitMLOAD(SDNode *N);
+ SDValue visitMSTORE(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
@@ -299,7 +329,12 @@ namespace {
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
SDValue BuildSDIV(SDNode *N);
+ SDValue BuildSDIVPow2(SDNode *N);
SDValue BuildUDIV(SDNode *N);
+ SDValue BuildReciprocalEstimate(SDValue Op);
+ SDValue BuildRsqrtEstimate(SDValue Op);
+ SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations);
+ SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations);
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits = true);
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
@@ -316,17 +351,16 @@ namespace {
SDValue GetDemandedBits(SDValue V, const APInt &Mask);
- /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
+ /// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases);
- /// isAlias - Return true if there is any possibility that the two addresses
- /// overlap.
+ /// Return true if there is any possibility that the two addresses overlap.
bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
- /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
- /// looking for a better chain (aliasing node.)
+ /// Walk up chain skipping non-aliasing memory nodes, looking for a better
+ /// chain (aliasing node.)
SDValue FindBetterChain(SDNode *N, SDValue Chain);
/// Merge consecutive store operations into a wide store.
@@ -354,13 +388,13 @@ namespace {
FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
}
- /// Run - runs the dag combiner on all nodes in the work list
+ /// Runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
SelectionDAG &getDAG() const { return DAG; }
- /// getShiftAmountTy - Returns a type large enough to hold any valid
- /// shift amount - before type legalization these can be huge.
+ /// Returns a type large enough to hold any valid shift amount - before type
+ /// legalization these can be huge.
EVT getShiftAmountTy(EVT LHSTy) {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
if (LHSTy.isVector())
@@ -369,15 +403,14 @@ namespace {
: TLI.getPointerTy();
}
- /// isTypeLegal - This method returns true if we are running before type
- /// legalization or if the specified VT is legal.
+ /// This method returns true if we are running before type legalization or
+ /// if the specified VT is legal.
bool isTypeLegal(const EVT &VT) {
if (!LegalTypes) return true;
return TLI.isTypeLegal(VT);
}
- /// getSetCCResultType - Convenience wrapper around
- /// TargetLowering::getSetCCResultType
+ /// Convenience wrapper around TargetLowering::getSetCCResultType
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(*DAG.getContext(), VT);
}
@@ -386,7 +419,7 @@ namespace {
namespace {
-/// WorklistRemover - This class is a DAGUpdateListener that removes any deleted
+/// This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
@@ -437,9 +470,24 @@ CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
// Helper Functions
//===----------------------------------------------------------------------===//
-/// isNegatibleForFree - Return 1 if we can compute the negated form of the
-/// specified expression for the same cost as the expression itself, or 2 if we
-/// can compute the negated form more cheaply than the expression itself.
+void DAGCombiner::deleteAndRecombine(SDNode *N) {
+ removeFromWorklist(N);
+
+ // If the operands of this node are only used by the node, they will now be
+ // dead. Make sure to re-visit them and recursively delete dead nodes.
+ for (const SDValue &Op : N->ops())
+ // For an operand generating multiple values, one of the values may
+ // become dead allowing further simplification (e.g. split index
+ // arithmetic from an indexed load).
+ if (Op->hasOneUse() || Op->getNumValues() > 1)
+ AddToWorklist(Op.getNode());
+
+ DAG.DeleteNode(N);
+}
+
+/// Return 1 if we can compute the negated form of the specified expression for
+/// the same cost as the expression itself, or 2 if we can compute the negated
+/// form more cheaply than the expression itself.
static char isNegatibleForFree(SDValue Op, bool LegalOperations,
const TargetLowering &TLI,
const TargetOptions *Options,
@@ -502,10 +550,10 @@ static char isNegatibleForFree(SDValue Op, bool LegalOperations,
}
}
-/// GetNegatedExpression - If isNegatibleForFree returns true, this function
-/// returns the newly negated expression.
+/// If isNegatibleForFree returns true, return the newly negated expression.
static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOperations, unsigned Depth = 0) {
+ const TargetOptions &Options = DAG.getTarget().Options;
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
@@ -522,12 +570,11 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
}
case ISD::FADD:
// FIXME: determine better conditions for this xform.
- assert(DAG.getTarget().Options.UnsafeFPMath);
+ assert(Options.UnsafeFPMath);
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
- DAG.getTargetLoweringInfo(),
- &DAG.getTarget().Options, Depth+1))
+ DAG.getTargetLoweringInfo(), &Options, Depth+1))
return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
@@ -539,7 +586,7 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
Op.getOperand(0));
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
- assert(DAG.getTarget().Options.UnsafeFPMath);
+ assert(Options.UnsafeFPMath);
// fold (fneg (fsub 0, B)) -> B
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
@@ -552,12 +599,11 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
case ISD::FMUL:
case ISD::FDIV:
- assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
+ assert(!Options.HonorSignDependentRoundingFPMath());
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
- DAG.getTargetLoweringInfo(),
- &DAG.getTarget().Options, Depth+1))
+ DAG.getTargetLoweringInfo(), &Options, Depth+1))
return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
@@ -582,7 +628,7 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
}
}
-// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
+// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
// the appropriate nodes based on the type of node we are checking. This
@@ -601,15 +647,19 @@ bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
!TLI.isConstFalseVal(N.getOperand(3).getNode()))
return false;
+ if (TLI.getBooleanContents(N.getValueType()) ==
+ TargetLowering::UndefinedBooleanContent)
+ return false;
+
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
-// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
-// one use. If this is true, it allows the users to invert the operation for
-// free when it is profitable to do so.
+/// Return true if this is a SetCC-equivalent operation with only one use.
+/// If this is true, it allows the users to invert the operation for free when
+/// it is profitable to do so.
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
SDValue N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
@@ -617,7 +667,7 @@ bool DAGCombiner::isOneUseSetCC(SDValue N) const {
return false;
}
-/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
+/// Returns true if N is a BUILD_VECTOR node whose
/// elements are all the same constant or undefined.
static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
@@ -638,7 +688,7 @@ static SDNode *isConstantBuildVectorOrConstantInt(SDValue N) {
if (isa<ConstantSDNode>(N))
return N.getNode();
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
- if(BV && BV->isConstant())
+ if (BV && BV->isConstant())
return BV;
return nullptr;
}
@@ -664,6 +714,23 @@ static ConstantSDNode *isConstOrConstSplat(SDValue N) {
return nullptr;
}
+// \brief Returns the SDNode if it is a constant splat BuildVector or constant
+// float.
+static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) {
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
+
+ if (CN && UndefElements.none())
+ return CN;
+ }
+
+ return nullptr;
+}
+
SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
SDValue N0, SDValue N1) {
EVT VT = N0.getValueType();
@@ -671,10 +738,9 @@ SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
if (SDNode *L = isConstantBuildVectorOrConstantInt(N0.getOperand(1))) {
if (SDNode *R = isConstantBuildVectorOrConstantInt(N1)) {
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
- SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, L, R);
- if (!OpNode.getNode())
- return SDValue();
- return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
+ if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, L, R))
+ return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
+ return SDValue();
}
if (N0.hasOneUse()) {
// reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
@@ -692,10 +758,9 @@ SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
if (SDNode *R = isConstantBuildVectorOrConstantInt(N1.getOperand(1))) {
if (SDNode *L = isConstantBuildVectorOrConstantInt(N0)) {
// reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
- SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, R, L);
- if (!OpNode.getNode())
- return SDValue();
- return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
+ if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, VT, R, L))
+ return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
+ return SDValue();
}
if (N1.hasOneUse()) {
// reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one
@@ -720,11 +785,12 @@ SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
N->dump(&DAG);
dbgs() << "\nWith: ";
To[0].getNode()->dump(&DAG);
- dbgs() << " and " << NumTo-1 << " other values\n";
- for (unsigned i = 0, e = NumTo; i != e; ++i)
- assert((!To[i].getNode() ||
- N->getValueType(i) == To[i].getValueType()) &&
- "Cannot combine value to value of different type!"));
+ dbgs() << " and " << NumTo-1 << " other values\n");
+ for (unsigned i = 0, e = NumTo; i != e; ++i)
+ assert((!To[i].getNode() ||
+ N->getValueType(i) == To[i].getValueType()) &&
+ "Cannot combine value to value of different type!");
+
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesWith(N, To);
if (AddTo) {
@@ -740,14 +806,8 @@ SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
- if (N->use_empty()) {
- // Nodes can be reintroduced into the worklist. Make sure we do not
- // process a node that has been replaced.
- removeFromWorklist(N);
-
- // Finally, since the node is now dead, remove it from the graph.
- DAG.DeleteNode(N);
- }
+ if (N->use_empty())
+ deleteAndRecombine(N);
return SDValue(N, 0);
}
@@ -765,22 +825,12 @@ CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
- if (TLO.Old.getNode()->use_empty()) {
- removeFromWorklist(TLO.Old.getNode());
-
- // If the operands of this node are only used by the node, they will now
- // be dead. Make sure to visit them first to delete dead nodes early.
- for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
- if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
- AddToWorklist(TLO.Old.getNode()->getOperand(i).getNode());
-
- DAG.DeleteNode(TLO.Old.getNode());
- }
+ if (TLO.Old.getNode()->use_empty())
+ deleteAndRecombine(TLO.Old.getNode());
}
-/// SimplifyDemandedBits - Check the specified integer node value to see if
-/// it can be simplified or if things it uses can be simplified by bit
-/// propagation. If so, return true.
+/// Check the specified integer node value to see if it can be simplified or if
+/// things it uses can be simplified by bit propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
APInt KnownZero, KnownOne;
@@ -815,8 +865,7 @@ void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
- removeFromWorklist(Load);
- DAG.DeleteNode(Load);
+ deleteAndRecombine(Load);
AddToWorklist(Trunc.getNode());
}
@@ -826,8 +875,8 @@ SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
- ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
- : ISD::EXTLOAD)
+ ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
+ : ISD::EXTLOAD)
: LD->getExtensionType();
Replace = true;
return DAG.getExtLoad(ExtType, dl, PVT,
@@ -889,9 +938,9 @@ SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
}
-/// PromoteIntBinOp - Promote the specified integer binary operation if the
-/// target indicates it is beneficial. e.g. On x86, it's usually better to
-/// promote i16 operations to i32 since i16 instructions are longer.
+/// Promote the specified integer binary operation if the target indicates it is
+/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
+/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
@@ -947,9 +996,9 @@ SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
return SDValue();
}
-/// PromoteIntShiftOp - Promote the specified integer shift operation if the
-/// target indicates it is beneficial. e.g. On x86, it's usually better to
-/// promote i16 operations to i32 since i16 instructions are longer.
+/// Promote the specified integer shift operation if the target indicates it is
+/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
+/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
@@ -1048,8 +1097,8 @@ bool DAGCombiner::PromoteLoad(SDValue Op) {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
- ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
- : ISD::EXTLOAD)
+ ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
+ : ISD::EXTLOAD)
: LD->getExtensionType();
SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
LD->getChain(), LD->getBasePtr(),
@@ -1064,14 +1113,42 @@ bool DAGCombiner::PromoteLoad(SDValue Op) {
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
- removeFromWorklist(N);
- DAG.DeleteNode(N);
+ deleteAndRecombine(N);
AddToWorklist(Result.getNode());
return true;
}
return false;
}
+/// \brief Recursively delete a node which has no uses and any operands for
+/// which it is the only use.
+///
+/// Note that this both deletes the nodes and removes them from the worklist.
+/// It also adds any nodes who have had a user deleted to the worklist as they
+/// may now have only one use and subject to other combines.
+bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
+ if (!N->use_empty())
+ return false;
+
+ SmallSetVector<SDNode *, 16> Nodes;
+ Nodes.insert(N);
+ do {
+ N = Nodes.pop_back_val();
+ if (!N)
+ continue;
+
+ if (N->use_empty()) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ Nodes.insert(N->getOperand(i).getNode());
+
+ removeFromWorklist(N);
+ DAG.DeleteNode(N);
+ } else {
+ AddToWorklist(N);
+ }
+ } while (!Nodes.empty());
+ return true;
+}
//===----------------------------------------------------------------------===//
// Main DAG Combiner implementation
@@ -1083,6 +1160,13 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
LegalOperations = Level >= AfterLegalizeVectorOps;
LegalTypes = Level >= AfterLegalizeTypes;
+ // Early exit if this basic block is in an optnone function.
+ AttributeSet FnAttrs =
+ DAG.getMachineFunction().getFunction()->getAttributes();
+ if (FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeNone))
+ return;
+
// Add all the dag nodes to the worklist.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I)
@@ -1093,34 +1177,52 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
- // The root of the dag may dangle to deleted nodes until the dag combiner is
- // done. Set it to null to avoid confusion.
- DAG.setRoot(SDValue());
-
// while the worklist isn't empty, find a node and
// try and combine it.
- while (!WorklistContents.empty()) {
+ while (!WorklistMap.empty()) {
SDNode *N;
- // The WorklistOrder holds the SDNodes in order, but it may contain
- // duplicates.
- // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
- // worklist *should* contain, and check the node we want to visit is should
- // actually be visited.
+ // The Worklist holds the SDNodes in order, but it may contain null entries.
do {
- N = WorklistOrder.pop_back_val();
- } while (!WorklistContents.erase(N));
+ N = Worklist.pop_back_val();
+ } while (!N);
+
+ bool GoodWorklistEntry = WorklistMap.erase(N);
+ (void)GoodWorklistEntry;
+ assert(GoodWorklistEntry &&
+ "Found a worklist entry without a corresponding map entry!");
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
- if (N->use_empty()) {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- AddToWorklist(N->getOperand(i).getNode());
-
- DAG.DeleteNode(N);
+ if (recursivelyDeleteUnusedNodes(N))
continue;
+
+ WorklistRemover DeadNodes(*this);
+
+ // If this combine is running after legalizing the DAG, re-legalize any
+ // nodes pulled off the worklist.
+ if (Level == AfterLegalizeDAG) {
+ SmallSetVector<SDNode *, 16> UpdatedNodes;
+ bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
+
+ for (SDNode *LN : UpdatedNodes) {
+ AddToWorklist(LN);
+ AddUsersToWorklist(LN);
+ }
+ if (!NIsValid)
+ continue;
}
+ DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
+
+ // Add any operands of the new node which have not yet been combined to the
+ // worklist as well. Because the worklist uniques things already, this
+ // won't repeatedly process the same operand.
+ CombinedNodes.insert(N);
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (!CombinedNodes.count(N->getOperand(i).getNode()))
+ AddToWorklist(N->getOperand(i).getNode());
+
SDValue RV = combine(N);
if (!RV.getNode())
@@ -1139,15 +1241,11 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
- DEBUG(dbgs() << "\nReplacing.3 ";
- N->dump(&DAG);
- dbgs() << "\nWith: ";
- RV.getNode()->dump(&DAG);
- dbgs() << '\n');
+ DEBUG(dbgs() << " ... into: ";
+ RV.getNode()->dump(&DAG));
// Transfer debug value.
DAG.TransferDbgValues(SDValue(N, 0), RV);
- WorklistRemover DeadNodes(*this);
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode());
else {
@@ -1161,23 +1259,11 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
AddToWorklist(RV.getNode());
AddUsersToWorklist(RV.getNode());
- // Add any uses of the old node to the worklist in case this node is the
- // last one that uses them. They may become dead after this node is
- // deleted.
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- AddToWorklist(N->getOperand(i).getNode());
-
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
- // something else needing this node.
- if (N->use_empty()) {
- // Nodes can be reintroduced into the worklist. Make sure we do not
- // process a node that has been replaced.
- removeFromWorklist(N);
-
- // Finally, since the node is now dead, remove it from the graph.
- DAG.DeleteNode(N);
- }
+ // something else needing this node. This will also take care of adding any
+ // operands which have lost a user to the worklist.
+ recursivelyDeleteUnusedNodes(N);
}
// If the root changed (e.g. it was a dead load, update the root).
@@ -1239,6 +1325,7 @@ SDValue DAGCombiner::visit(SDNode *N) {
case ISD::FMA: return visitFMA(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
+ case ISD::FSQRT: return visitFSQRT(N);
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
@@ -1250,6 +1337,8 @@ SDValue DAGCombiner::visit(SDNode *N) {
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::FFLOOR: return visitFFLOOR(N);
+ case ISD::FMINNUM: return visitFMINNUM(N);
+ case ISD::FMAXNUM: return visitFMAXNUM(N);
case ISD::FCEIL: return visitFCEIL(N);
case ISD::FTRUNC: return visitFTRUNC(N);
case ISD::BRCOND: return visitBRCOND(N);
@@ -1263,6 +1352,8 @@ SDValue DAGCombiner::visit(SDNode *N) {
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
+ case ISD::MLOAD: return visitMLOAD(N);
+ case ISD::MSTORE: return visitMSTORE(N);
}
return SDValue();
}
@@ -1342,8 +1433,8 @@ SDValue DAGCombiner::combine(SDNode *N) {
return RV;
}
-/// getInputChainForNode - Given a node, return its input chain if it has one,
-/// otherwise return a null sd operand.
+/// Given a node, return its input chain if it has one, otherwise return a null
+/// sd operand.
static SDValue getInputChainForNode(SDNode *N) {
if (unsigned NumOps = N->getNumOperands()) {
if (N->getOperand(0).getValueType() == MVT::Other)
@@ -1405,7 +1496,7 @@ SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
default:
// Only add if it isn't already in the list.
- if (SeenOps.insert(Op.getNode()))
+ if (SeenOps.insert(Op.getNode()).second)
Ops.push_back(Op);
else
Changed = true;
@@ -1446,33 +1537,10 @@ SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
} while (!N->use_empty());
- removeFromWorklist(N);
- DAG.DeleteNode(N);
+ deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
-static
-SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
- SelectionDAG &DAG) {
- EVT VT = N0.getValueType();
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
-
- if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N00.getOperand(1))) {
- // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
- N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
- DAG.getNode(ISD::SHL, SDLoc(N00), VT,
- N00.getOperand(0), N01),
- DAG.getNode(ISD::SHL, SDLoc(N01), VT,
- N00.getOperand(1), N01));
- return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
- }
-
- return SDValue();
-}
-
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -1589,16 +1657,6 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
}
}
- // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
- if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
- SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
- if (Result.getNode()) return Result;
- }
- if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
- SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
- if (Result.getNode()) return Result;
- }
-
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
if (N1.getOpcode() == ISD::SHL &&
N1.getOperand(0).getOpcode() == ISD::SUB)
@@ -1642,6 +1700,17 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
+ // add X, (sextinreg Y i1) -> sub X, (and Y 1)
+ if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
+ if (TN->getVT() == MVT::i1) {
+ SDLoc DL(N);
+ SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
+ DAG.getConstant(1, VT));
+ return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
+ }
+ }
+
return SDValue();
}
@@ -1807,6 +1876,17 @@ SDValue DAGCombiner::visitSUB(SDNode *N) {
VT);
}
+ // sub X, (sextinreg Y i1) -> add X, (and Y 1)
+ if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
+ if (TN->getVT() == MVT::i1) {
+ SDLoc DL(N);
+ SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
+ DAG.getConstant(1, VT));
+ return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
+ }
+ }
+
return SDValue();
}
@@ -2011,9 +2091,14 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
(-N1C->getAPIntValue()).isPowerOf2())) {
// If dividing by powers of two is cheap, then don't perform the following
// fold.
- if (TLI.isPow2DivCheap())
+ if (TLI.isPow2SDivCheap())
return SDValue();
+ // Target-specific implementation of sdiv x, pow2.
+ SDValue Res = BuildSDIVPow2(N);
+ if (Res.getNode())
+ return Res;
+
unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
// Splat the sign bit into the register
@@ -2281,10 +2366,9 @@ SDValue DAGCombiner::visitMULHU(SDNode *N) {
return SDValue();
}
-/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
-/// compute two values. LoOp and HiOp give the opcodes for the two computations
-/// that are being performed. Return true if a simplification was made.
-///
+/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
+/// give the opcodes for the two computations that are being performed. Return
+/// true if a simplification was made.
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp) {
// If the high half is not needed, just compute the low half.
@@ -2292,8 +2376,7 @@ SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
if (!HiExists &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
- SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
- ArrayRef<SDUse>(N->op_begin(), N->op_end()));
+ SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
return CombineTo(N, Res, Res);
}
@@ -2302,8 +2385,7 @@ SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
if (!LoExists &&
(!LegalOperations ||
TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
- SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
- ArrayRef<SDUse>(N->op_begin(), N->op_end()));
+ SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
return CombineTo(N, Res, Res);
}
@@ -2313,8 +2395,7 @@ SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
// If the two computed results can be simplified separately, separate them.
if (LoExists) {
- SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
- ArrayRef<SDUse>(N->op_begin(), N->op_end()));
+ SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
AddToWorklist(Lo.getNode());
SDValue LoOpt = combine(Lo.getNode());
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
@@ -2324,8 +2405,7 @@ SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
}
if (HiExists) {
- SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
- ArrayRef<SDUse>(N->op_begin(), N->op_end()));
+ SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
AddToWorklist(Hi.getNode());
SDValue HiOpt = combine(Hi.getNode());
if (HiOpt.getNode() && HiOpt != Hi &&
@@ -2431,8 +2511,8 @@ SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
return SDValue();
}
-/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
-/// two operands of the same opcode, try to simplify it.
+/// If this is a binary operator with two operands of the same opcode, try to
+/// simplify it.
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
EVT VT = N0.getValueType();
@@ -2445,6 +2525,7 @@ SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
// fold (OP (sext x), (sext y)) -> (sext (OP x, y))
// fold (OP (aext x), (aext y)) -> (aext (OP x, y))
+ // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
// fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
//
// do not sink logical op inside of a vector extend, since it may combine
@@ -2452,6 +2533,7 @@ SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
EVT Op0VT = N0.getOperand(0).getValueType();
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
+ N0.getOpcode() == ISD::BSWAP ||
// Avoid infinite looping with PromoteIntBinOp.
(N0.getOpcode() == ISD::ANY_EXTEND &&
(!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
@@ -2598,9 +2680,17 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// fold (and x, 0) -> 0, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N0;
+ // do not return N0, because undef node may exist in N0
+ return DAG.getConstant(
+ APInt::getNullValue(
+ N0.getValueType().getScalarType().getSizeInBits()),
+ N0.getValueType());
if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N1;
+ // do not return N1, because undef node may exist in N1
+ return DAG.getConstant(
+ APInt::getNullValue(
+ N1.getValueType().getScalarType().getSizeInBits()),
+ N1.getValueType());
// fold (and x, -1) -> x, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
@@ -2708,6 +2798,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// actually legal and isn't going to get expanded, else this is a false
// optimisation.
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
+ Load->getValueType(0),
Load->getMemoryVT());
// Resize the constant to the same size as the original memory access before
@@ -2834,7 +2925,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - MemVT.getScalarType().getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
@@ -2854,7 +2945,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - MemVT.getScalarType().getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
@@ -2880,10 +2971,11 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT LoadedVT = LN0->getMemoryVT();
+ EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
if (ExtVT == LoadedVT &&
- (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
- EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy,
+ ExtVT))) {
SDValue NewLoad =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
@@ -2898,7 +2990,8 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
- (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy,
+ ExtVT))) {
EVT PtrType = LN0->getOperand(1).getValueType();
unsigned Alignment = LN0->getAlignment();
@@ -2918,13 +3011,12 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
AddToWorklist(NewPtr.getNode());
- EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
SDValue Load =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
LN0->getChain(), NewPtr,
LN0->getPointerInfo(),
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
- Alignment, LN0->getTBAAInfo());
+ LN0->isInvariant(), Alignment, LN0->getAAInfo());
AddToWorklist(N);
CombineTo(LN0, Load, Load.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -2971,8 +3063,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
return SDValue();
}
-/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
-///
+/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits) {
if (!LegalOperations)
@@ -3077,10 +3168,13 @@ SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
return Res;
}
-/// isBSwapHWordElement - Return true if the specified node is an element
-/// that makes up a 32-bit packed halfword byteswap. i.e.
-/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
-static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
+/// Return true if the specified node is an element that makes up a 32-bit
+/// packed halfword byteswap.
+/// ((x & 0x000000ff) << 8) |
+/// ((x & 0x0000ff00) >> 8) |
+/// ((x & 0x00ff0000) << 8) |
+/// ((x & 0xff000000) >> 8)
+static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (!N.getNode()->hasOneUse())
return false;
@@ -3147,8 +3241,11 @@ static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
return true;
}
-/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
-/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
+/// Match a 32-bit packed halfword bswap. That is
+/// ((x & 0x000000ff) << 8) |
+/// ((x & 0x0000ff00) >> 8) |
+/// ((x & 0x00ff0000) << 8) |
+/// ((x & 0xff000000) >> 8)
/// => (rotl (bswap x), 16)
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
if (!LegalOperations)
@@ -3160,7 +3257,6 @@ SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
if (!TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
- SmallVector<SDNode*,4> Parts(4, (SDNode*)nullptr);
// Look for either
// (or (or (and), (and)), (or (and), (and)))
// (or (or (or (and), (and)), (and)), (and))
@@ -3168,6 +3264,7 @@ SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
+ SDNode *Parts[4] = {};
if (N1.getOpcode() == ISD::OR &&
N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
@@ -3241,9 +3338,17 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
// fold (or x, -1) -> -1, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
- return N0;
+ // do not return N0, because undef node may exist in N0
+ return DAG.getConstant(
+ APInt::getAllOnesValue(
+ N0.getValueType().getScalarType().getSizeInBits()),
+ N0.getValueType());
if (ISD::isBuildVectorAllOnes(N1.getNode()))
- return N1;
+ // do not return N1, because undef node may exist in N1
+ return DAG.getConstant(
+ APInt::getAllOnesValue(
+ N1.getValueType().getScalarType().getSizeInBits()),
+ N1.getValueType());
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
@@ -3342,12 +3447,11 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
isa<ConstantSDNode>(N0.getOperand(1))) {
ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
- SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1);
- if (!COR.getNode())
- return SDValue();
- return DAG.getNode(ISD::AND, SDLoc(N), VT,
- DAG.getNode(ISD::OR, SDLoc(N0), VT,
- N0.getOperand(0), N1), COR);
+ if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1))
+ return DAG.getNode(
+ ISD::AND, SDLoc(N), VT,
+ DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR);
+ return SDValue();
}
}
// fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
@@ -3435,7 +3539,7 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
return SDValue();
}
-/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
+/// Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
if (Op.getOpcode() == ISD::AND) {
if (isa<ConstantSDNode>(Op.getOperand(1))) {
@@ -3732,7 +3836,7 @@ SDValue DAGCombiner::visitXOR(SDNode *N) {
return RXOR;
// fold !(x cc y) -> (x !cc y)
- if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
+ if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
bool isInt = LHS.getValueType().isInteger();
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
isInt);
@@ -3825,8 +3929,8 @@ SDValue DAGCombiner::visitXOR(SDNode *N) {
return SDValue();
}
-/// visitShiftByConstant - Handle transforms common to the three shifts, when
-/// the shift amount is a constant.
+/// Handle transforms common to the three shifts, when the shift amount is a
+/// constant.
SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
// We can't and shouldn't fold opaque constants.
if (Amt->isOpaque())
@@ -3963,8 +4067,7 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
- SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, VT, N01CV, N1CV);
- if (C.getNode())
+ if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, VT, N01CV, N1CV))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
}
} else {
@@ -4098,6 +4201,18 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
HiBitsMask);
}
+ // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
+ // Variant of version done on multiply, except mul by a power of 2 is turned
+ // into a shift.
+ APInt Val;
+ if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
+ (isa<ConstantSDNode>(N0.getOperand(1)) ||
+ isConstantSplatVector(N0.getOperand(1).getNode(), Val))) {
+ SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
+ SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
+ }
+
if (N1C) {
SDValue NewSHL = visitShiftByConstant(N, N1C);
if (NewSHL.getNode())
@@ -4498,6 +4613,43 @@ SDValue DAGCombiner::visitCTPOP(SDNode *N) {
return SDValue();
}
+
+/// \brief Generate Min/Max node
+static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS,
+ SDValue True, SDValue False,
+ ISD::CondCode CC, const TargetLowering &TLI,
+ SelectionDAG &DAG) {
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
+ return SDValue();
+
+ switch (CC) {
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
+ if (TLI.isOperationLegal(Opcode, VT))
+ return DAG.getNode(Opcode, DL, VT, LHS, RHS);
+ return SDValue();
+ }
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE: {
+ unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
+ if (TLI.isOperationLegal(Opcode, VT))
+ return DAG.getNode(Opcode, DL, VT, LHS, RHS);
+ return SDValue();
+ }
+ default:
+ return SDValue();
+ }
+}
+
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -4577,9 +4729,31 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
// fold selects based on a setcc into other things, such as min/max/abs
if (N0.getOpcode() == ISD::SETCC) {
+ // select x, y (fcmp lt x, y) -> fminnum x, y
+ // select x, y (fcmp gt x, y) -> fmaxnum x, y
+ //
+ // This is OK if we don't care about what happens if either operand is a
+ // NaN.
+ //
+
+ // FIXME: Instead of testing for UnsafeFPMath, this should be checking for
+ // no signed zeros as well as no nans.
+ const TargetOptions &Options = DAG.getTarget().Options;
+ if (Options.UnsafeFPMath &&
+ VT.isFloatingPoint() && N0.hasOneUse() &&
+ DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+
+ SDValue FMinMax =
+ combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1),
+ N1, N2, CC, TLI, DAG);
+ if (FMinMax)
+ return FMinMax;
+ }
+
if ((!LegalOperations &&
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
- TLI.isOperationLegal(ISD::SELECT_CC, VT))
+ TLI.isOperationLegal(ISD::SELECT_CC, VT))
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1),
N1, N2, N0.getOperand(2));
@@ -4613,12 +4787,17 @@ static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
- MVT VT = N->getSimpleValueType(0);
+ EVT VT = N->getValueType(0);
int NumElems = VT.getVectorNumElements();
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
RHS.getOpcode() == ISD::CONCAT_VECTORS &&
Cond.getOpcode() == ISD::BUILD_VECTOR);
+ // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
+ // binary ones here.
+ if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
+ return SDValue();
+
// We're sure we have an even number of elements due to the
// concat_vectors we have as arguments to vselect.
// Skip BV elements until we find one that's not an UNDEF
@@ -4656,6 +4835,162 @@ static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}
+SDValue DAGCombiner::visitMSTORE(SDNode *N) {
+
+ if (Level >= AfterLegalizeTypes)
+ return SDValue();
+
+ MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
+ SDValue Mask = MST->getMask();
+ SDValue Data = MST->getData();
+ SDLoc DL(N);
+
+ // If the MSTORE data type requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+ if (Mask.getOpcode() == ISD::SETCC) {
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue MaskLo, MaskHi, Lo, Hi;
+ std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
+
+ SDValue Chain = MST->getChain();
+ SDValue Ptr = MST->getBasePtr();
+
+ EVT MemoryVT = MST->getMemoryVT();
+ unsigned Alignment = MST->getOriginalAlignment();
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue DataLo, DataHi;
+ std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MST->getPointerInfo(),
+ MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
+ Alignment, MST->getAAInfo(), MST->getRanges());
+
+ Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, MMO);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MST->getPointerInfo(),
+ MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, MST->getAAInfo(),
+ MST->getRanges());
+
+ Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, MMO);
+
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitMLOAD(SDNode *N) {
+
+ if (Level >= AfterLegalizeTypes)
+ return SDValue();
+
+ MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
+ SDValue Mask = MLD->getMask();
+ SDLoc DL(N);
+
+ // If the MLOAD result requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+
+ if (Mask.getOpcode() == ISD::SETCC) {
+ EVT VT = N->getValueType(0);
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), VT) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue MaskLo, MaskHi, Lo, Hi;
+ std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
+
+ SDValue Src0 = MLD->getSrc0();
+ SDValue Src0Lo, Src0Hi;
+ std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
+
+ SDValue Chain = MLD->getChain();
+ SDValue Ptr = MLD->getBasePtr();
+ EVT MemoryVT = MLD->getMemoryVT();
+ unsigned Alignment = MLD->getOriginalAlignment();
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
+ Alignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, MMO);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, MMO);
+
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
+
+ SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+
+ SDValue RetOps[] = { LoadRes, Chain };
+ return DAG.getMergeValues(RetOps, DL);
+ }
+ return SDValue();
+}
+
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -4765,13 +5100,16 @@ SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
return N2; // cond always true -> true val
else
return N3; // cond always false -> false val
- }
-
- // Fold to a simpler select_cc
- if (SCC.getOpcode() == ISD::SETCC)
+ } else if (SCC->getOpcode() == ISD::UNDEF) {
+ // When the condition is UNDEF, just return the first operand. This is
+ // coherent the DAG creation, no setcc node is created in this case
+ return N2;
+ } else if (SCC.getOpcode() == ISD::SETCC) {
+ // Fold to a simpler select_cc
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
SCC.getOperand(0), SCC.getOperand(1), N2, N3,
SCC.getOperand(2));
+ }
}
// If we can fold this based on the true/false value, do so.
@@ -5004,7 +5342,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
@@ -5032,7 +5370,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), MemVT,
@@ -5052,7 +5390,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
- TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
@@ -5131,14 +5469,10 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
if (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, SetCCVT)) {
SDLoc DL(N);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- SDValue SetCC = DAG.getSetCC(DL,
- SetCCVT,
+ SDValue SetCC = DAG.getSetCC(DL, SetCCVT,
N0.getOperand(0), N0.getOperand(1), CC);
- EVT SelectVT = getSetCCResultType(VT);
- return DAG.getSelect(DL, VT,
- DAG.getSExtOrTrunc(SetCC, DL, SelectVT),
+ return DAG.getSelect(DL, VT, SetCC,
NegOne, DAG.getConstant(0, VT));
-
}
}
}
@@ -5298,7 +5632,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
@@ -5326,7 +5660,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
N0.getOpcode() == ISD::XOR) &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) &&
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
@@ -5363,7 +5697,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
LN0->getBasePtr(), MemVT,
@@ -5525,7 +5859,7 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
// scalars.
if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType())) {
+ TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
@@ -5555,7 +5889,7 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
ISD::LoadExtType ExtType = LN0->getExtensionType();
EVT MemVT = LN0->getMemoryVT();
- if (!LegalOperations || TLI.isLoadExtLegal(ExtType, MemVT)) {
+ if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
VT, LN0->getChain(), LN0->getBasePtr(),
MemVT, LN0->getMemOperand());
@@ -5610,9 +5944,9 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
return SDValue();
}
-/// GetDemandedBits - See if the specified operand can be simplified with the
-/// knowledge that only the bits specified by Mask are used. If so, return the
-/// simpler operand, otherwise return a null SDValue.
+/// See if the specified operand can be simplified with the knowledge that only
+/// the bits specified by Mask are used. If so, return the simpler operand,
+/// otherwise return a null SDValue.
SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
switch (V.getOpcode()) {
default: break;
@@ -5653,11 +5987,11 @@ SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
return SDValue();
}
-/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
-/// bits and then truncated to a narrower type and where N is a multiple
-/// of number of bits of the narrower type, transform it to a narrower load
-/// from address + N / num of bits of new type. If the result is to be
-/// extended, also fold the extension to form a extending load.
+/// If the result of a wider load is shifted to right of N bits and then
+/// truncated to a narrower type and where N is a multiple of number of bits of
+/// the narrower type, transform it to a narrower load from address + N / num of
+/// bits of new type. If the result is to be extended, also fold the extension
+/// to form a extending load.
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
unsigned Opc = N->getOpcode();
@@ -5684,7 +6018,7 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
ExtVT = EVT::getIntegerVT(*DAG.getContext(),
VT.getSizeInBits() - N01->getZExtValue());
}
- if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
+ if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT))
return SDValue();
unsigned EVTBits = ExtVT.getSizeInBits();
@@ -5763,6 +6097,9 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
return SDValue();
+ if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT))
+ return SDValue();
+
EVT PtrType = N0.getOperand(1).getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
@@ -5789,12 +6126,12 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
+ LN0->isInvariant(), NewAlign, LN0->getAAInfo());
else
Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
LN0->getPointerInfo().getWithOffset(PtrOff),
ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
- NewAlign, LN0->getTBAAInfo());
+ LN0->isInvariant(), NewAlign, LN0->getAAInfo());
// Replace the old load's chain with the new load's chain.
WorklistRemover DeadNodes(*this);
@@ -5888,7 +6225,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
ISD::isUNINDEXEDLoad(N0.getNode()) &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
@@ -5904,7 +6241,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
N0.hasOneUse() &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
LN0->getChain(),
@@ -6152,7 +6489,7 @@ static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
return Elt.getOperand(Elt.getResNo()).getNode();
}
-/// CombineConsecutiveLoads - build_pair (load, load) -> load
+/// build_pair (load, load) -> load
/// if load locations are consecutive.
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
assert(N->getOpcode() == ISD::BUILD_PAIR);
@@ -6218,7 +6555,7 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
// Ideally this won't happen very often, because instcombine
// and the earlier dagcombine runs (where illegal nodes are
// permitted) should have folded most of them already.
- DAG.DeleteNode(Res.getNode());
+ deleteAndRecombine(Res.getNode());
}
}
@@ -6247,12 +6584,8 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
LN0->getBasePtr(), LN0->getPointerInfo(),
LN0->isVolatile(), LN0->isNonTemporal(),
LN0->isInvariant(), OrigAlign,
- LN0->getTBAAInfo());
- AddToWorklist(N);
- CombineTo(N0.getNode(),
- DAG.getNode(ISD::BITCAST, SDLoc(N0),
- N0.getValueType(), Load),
- Load.getValue(1));
+ LN0->getAAInfo());
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
return Load;
}
}
@@ -6337,9 +6670,8 @@ SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
return CombineConsecutiveLoads(N, VT);
}
-/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
-/// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
-/// destination element value type.
+/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
+/// operands. DstEltVT indicates the destination element value type.
SDValue DAGCombiner::
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
@@ -6383,7 +6715,6 @@ ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
if (SrcEltVT.isFloatingPoint()) {
// Convert the input float vector to a int vector where the elements are the
// same sizes.
- assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
SrcEltVT = IntVT;
@@ -6392,7 +6723,6 @@ ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
// Now we know the input is an integer vector. If the output is a FP type,
// convert to integer first, then to FP of the right size.
if (DstEltVT.isFloatingPoint()) {
- assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
@@ -6475,6 +6805,7 @@ SDValue DAGCombiner::visitFADD(SDNode *N) {
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
+ const TargetOptions &Options = DAG.getTarget().Options;
// fold vector ops
if (VT.isVector()) {
@@ -6485,195 +6816,197 @@ SDValue DAGCombiner::visitFADD(SDNode *N) {
// fold (fadd c1, c2) -> c1 + c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
+
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
- // fold (fadd A, 0) -> A
- if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
- N1CFP->getValueAPF().isZero())
- return N0;
+
// fold (fadd A, (fneg B)) -> (fsub A, B)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
- isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
+ isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations));
+
// fold (fadd (fneg A), B) -> (fsub B, A)
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
- isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
+ isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
GetNegatedExpression(N0, DAG, LegalOperations));
- // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
- if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
- N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
- isa<ConstantFPSDNode>(N0.getOperand(1)))
- return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
- DAG.getNode(ISD::FADD, SDLoc(N), VT,
- N0.getOperand(1), N1));
-
- // No FP constant should be created after legalization as Instruction
- // Selection pass has hard time in dealing with FP constant.
- //
- // We don't need test this condition for transformation like following, as
- // the DAG being transformed implies it is legal to take FP constant as
- // operand.
- //
- // (fadd (fmul c, x), x) -> (fmul c+1, x)
- //
- bool AllowNewFpConst = (Level < AfterLegalizeDAG);
-
- // If allow, fold (fadd (fneg x), x) -> 0.0
- if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
- N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
- return DAG.getConstantFP(0.0, VT);
+ // If 'unsafe math' is enabled, fold lots of things.
+ if (Options.UnsafeFPMath) {
+ // No FP constant should be created after legalization as Instruction
+ // Selection pass has a hard time dealing with FP constants.
+ bool AllowNewConst = (Level < AfterLegalizeDAG);
- // If allow, fold (fadd x, (fneg x)) -> 0.0
- if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
- N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
- return DAG.getConstantFP(0.0, VT);
-
- // In unsafe math mode, we can fold chains of FADD's of the same value
- // into multiplications. This transform is not safe in general because
- // we are reducing the number of rounding steps.
- if (DAG.getTarget().Options.UnsafeFPMath &&
- TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
- !N0CFP && !N1CFP) {
- if (N0.getOpcode() == ISD::FMUL) {
- ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
- ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
-
- // (fadd (fmul c, x), x) -> (fmul x, c+1)
- if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP00, 0),
- DAG.getConstantFP(1.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N1, NewCFP);
- }
+ // fold (fadd A, 0) -> A
+ if (N1CFP && N1CFP->getValueAPF().isZero())
+ return N0;
- // (fadd (fmul x, c), x) -> (fmul x, c+1)
- if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP01, 0),
- DAG.getConstantFP(1.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N1, NewCFP);
- }
+ // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
+ if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
+ isa<ConstantFPSDNode>(N0.getOperand(1)))
+ return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
+ DAG.getNode(ISD::FADD, SDLoc(N), VT,
+ N0.getOperand(1), N1));
+
+ // If allowed, fold (fadd (fneg x), x) -> 0.0
+ if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
+ return DAG.getConstantFP(0.0, VT);
+
+ // If allowed, fold (fadd x, (fneg x)) -> 0.0
+ if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
+ return DAG.getConstantFP(0.0, VT);
+
+ // We can fold chains of FADD's of the same value into multiplications.
+ // This transform is not safe in general because we are reducing the number
+ // of rounding steps.
+ if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
+ if (N0.getOpcode() == ISD::FMUL) {
+ ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
+ ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
+
+ // (fadd (fmul x, c), x) -> (fmul x, c+1)
+ if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
+ SDValue(CFP01, 0),
+ DAG.getConstantFP(1.0, VT));
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, NewCFP);
+ }
- // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
- if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(1) == N1.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP00, 0),
- DAG.getConstantFP(2.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0.getOperand(1), NewCFP);
+ // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
+ if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
+ N1.getOperand(0) == N1.getOperand(1) &&
+ N0.getOperand(0) == N1.getOperand(0)) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
+ SDValue(CFP01, 0),
+ DAG.getConstantFP(2.0, VT));
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
+ N0.getOperand(0), NewCFP);
+ }
}
- // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
- if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(0) == N1.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP01, 0),
- DAG.getConstantFP(2.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0.getOperand(0), NewCFP);
- }
- }
+ if (N1.getOpcode() == ISD::FMUL) {
+ ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
+ ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
- if (N1.getOpcode() == ISD::FMUL) {
- ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
- ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
+ // (fadd x, (fmul x, c)) -> (fmul x, c+1)
+ if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
+ SDValue(CFP11, 0),
+ DAG.getConstantFP(1.0, VT));
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, NewCFP);
+ }
- // (fadd x, (fmul c, x)) -> (fmul x, c+1)
- if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP10, 0),
- DAG.getConstantFP(1.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0, NewCFP);
+ // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
+ if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
+ N0.getOperand(0) == N0.getOperand(1) &&
+ N1.getOperand(0) == N0.getOperand(0)) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
+ SDValue(CFP11, 0),
+ DAG.getConstantFP(2.0, VT));
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1.getOperand(0), NewCFP);
+ }
}
- // (fadd x, (fmul x, c)) -> (fmul x, c+1)
- if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP11, 0),
- DAG.getConstantFP(1.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0, NewCFP);
+ if (N0.getOpcode() == ISD::FADD && AllowNewConst) {
+ ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
+ // (fadd (fadd x, x), x) -> (fmul x, 3.0)
+ if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
+ (N0.getOperand(0) == N1))
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
+ N1, DAG.getConstantFP(3.0, VT));
}
-
- // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
- if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
- N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(1) == N0.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP10, 0),
- DAG.getConstantFP(2.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N1.getOperand(1), NewCFP);
+ if (N1.getOpcode() == ISD::FADD && AllowNewConst) {
+ ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
+ // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
+ if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
+ N1.getOperand(0) == N0)
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
+ N0, DAG.getConstantFP(3.0, VT));
}
- // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
- if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
+ // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
+ if (AllowNewConst &&
+ N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(0) == N0.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
- SDValue(CFP11, 0),
- DAG.getConstantFP(2.0, VT));
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N1.getOperand(0), NewCFP);
- }
- }
-
- if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
- ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
- // (fadd (fadd x, x), x) -> (fmul x, 3.0)
- if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
- (N0.getOperand(0) == N1))
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N1, DAG.getConstantFP(3.0, VT));
- }
-
- if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
- ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
- // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
- if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
- N1.getOperand(0) == N0)
+ N1.getOperand(0) == N1.getOperand(1) &&
+ N0.getOperand(0) == N1.getOperand(0))
return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0, DAG.getConstantFP(3.0, VT));
+ N0.getOperand(0), DAG.getConstantFP(4.0, VT));
}
-
- // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
- if (AllowNewFpConst &&
- N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
- N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(0) == N1.getOperand(0))
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0.getOperand(0),
- DAG.getConstantFP(4.0, VT));
- }
+ } // enable-unsafe-fp-math
// FADD -> FMA combines:
- if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
- DAG.getTarget().Options.UnsafeFPMath) &&
- DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
+ if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
+ TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
- if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
+ if (N0.getOpcode() == ISD::FMUL &&
+ (N0->hasOneUse() || TLI.enableAggressiveFMAFusion(VT)))
return DAG.getNode(ISD::FMA, SDLoc(N), VT,
N0.getOperand(0), N0.getOperand(1), N1);
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
// Note: Commutes FADD operands.
- if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
+ if (N1.getOpcode() == ISD::FMUL &&
+ (N1->hasOneUse() || TLI.enableAggressiveFMAFusion(VT)))
return DAG.getNode(ISD::FMA, SDLoc(N), VT,
N1.getOperand(0), N1.getOperand(1), N0);
+
+ // When FP_EXTEND nodes are free on the target, and there is an opportunity
+ // to combine into FMA, arrange such nodes accordingly.
+ if (TLI.isFPExtFree(VT)) {
+
+ // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N00.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N00.getOperand(1)), N1);
+ }
+
+ // fold (fadd x, (fpext (fmul y, z)), z) -> (fma (fpext y), (fpext z), x)
+ // Note: Commutes FADD operands.
+ if (N1.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N10 = N1.getOperand(0);
+ if (N10.getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N10.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N10.getOperand(1)), N0);
+ }
+ }
+
+ // More folding opportunities when target permits.
+ if (TLI.enableAggressiveFMAFusion(VT)) {
+
+ // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
+ if (N0.getOpcode() == ISD::FMA &&
+ N0.getOperand(2).getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1),
+ DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N0.getOperand(2).getOperand(0),
+ N0.getOperand(2).getOperand(1),
+ N1));
+
+ // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
+ if (N1->getOpcode() == ISD::FMA &&
+ N1.getOperand(2).getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N1.getOperand(0), N1.getOperand(1),
+ DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N1.getOperand(2).getOperand(0),
+ N1.getOperand(2).getOperand(1),
+ N0));
+ }
}
return SDValue();
@@ -6682,10 +7015,11 @@ SDValue DAGCombiner::visitFADD(SDNode *N) {
SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
+ ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
EVT VT = N->getValueType(0);
SDLoc dl(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
// fold vector ops
if (VT.isVector()) {
@@ -6696,60 +7030,60 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) {
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
- // fold (fsub A, 0) -> A
- if (DAG.getTarget().Options.UnsafeFPMath &&
- N1CFP && N1CFP->getValueAPF().isZero())
- return N0;
- // fold (fsub 0, B) -> -B
- if (DAG.getTarget().Options.UnsafeFPMath &&
- N0CFP && N0CFP->getValueAPF().isZero()) {
- if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
- return GetNegatedExpression(N1, DAG, LegalOperations);
- if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, dl, VT, N1);
- }
+
// fold (fsub A, (fneg B)) -> (fadd A, B)
- if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
+ if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
return DAG.getNode(ISD::FADD, dl, VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations));
- // If 'unsafe math' is enabled, fold
- // (fsub x, x) -> 0.0 &
- // (fsub x, (fadd x, y)) -> (fneg y) &
- // (fsub x, (fadd y, x)) -> (fneg y)
- if (DAG.getTarget().Options.UnsafeFPMath) {
+ // If 'unsafe math' is enabled, fold lots of things.
+ if (Options.UnsafeFPMath) {
+ // (fsub A, 0) -> A
+ if (N1CFP && N1CFP->getValueAPF().isZero())
+ return N0;
+
+ // (fsub 0, B) -> -B
+ if (N0CFP && N0CFP->getValueAPF().isZero()) {
+ if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
+ return GetNegatedExpression(N1, DAG, LegalOperations);
+ if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+ return DAG.getNode(ISD::FNEG, dl, VT, N1);
+ }
+
+ // (fsub x, x) -> 0.0
if (N0 == N1)
return DAG.getConstantFP(0.0f, VT);
+ // (fsub x, (fadd x, y)) -> (fneg y)
+ // (fsub x, (fadd y, x)) -> (fneg y)
if (N1.getOpcode() == ISD::FADD) {
SDValue N10 = N1->getOperand(0);
SDValue N11 = N1->getOperand(1);
- if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
- &DAG.getTarget().Options))
+ if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options))
return GetNegatedExpression(N11, DAG, LegalOperations);
- if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
- &DAG.getTarget().Options))
+ if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options))
return GetNegatedExpression(N10, DAG, LegalOperations);
}
}
// FSUB -> FMA combines:
- if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
- DAG.getTarget().Options.UnsafeFPMath) &&
- DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
+ if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
+ TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
- if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
+ if (N0.getOpcode() == ISD::FMUL &&
+ (N0->hasOneUse() || TLI.enableAggressiveFMAFusion(VT)))
return DAG.getNode(ISD::FMA, dl, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(ISD::FNEG, dl, VT, N1));
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
// Note: Commutes FSUB operands.
- if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
+ if (N1.getOpcode() == ISD::FMUL &&
+ (N1->hasOneUse() || TLI.enableAggressiveFMAFusion(VT)))
return DAG.getNode(ISD::FMA, dl, VT,
DAG.getNode(ISD::FNEG, dl, VT,
N1.getOperand(0)),
@@ -6758,13 +7092,115 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) {
// fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
if (N0.getOpcode() == ISD::FNEG &&
N0.getOperand(0).getOpcode() == ISD::FMUL &&
- N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
+ ((N0->hasOneUse() && N0.getOperand(0).hasOneUse()) ||
+ TLI.enableAggressiveFMAFusion(VT))) {
SDValue N00 = N0.getOperand(0).getOperand(0);
SDValue N01 = N0.getOperand(0).getOperand(1);
return DAG.getNode(ISD::FMA, dl, VT,
DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
DAG.getNode(ISD::FNEG, dl, VT, N1));
}
+
+ // When FP_EXTEND nodes are free on the target, and there is an opportunity
+ // to combine into FMA, arrange such nodes accordingly.
+ if (TLI.isFPExtFree(VT)) {
+
+ // fold (fsub (fpext (fmul x, y)), z)
+ // -> (fma (fpext x), (fpext y), (fneg z))
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N00.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N00.getOperand(1)),
+ DAG.getNode(ISD::FNEG, SDLoc(N), VT, N1));
+ }
+
+ // fold (fsub x, (fpext (fmul y, z)))
+ // -> (fma (fneg (fpext y)), (fpext z), x)
+ // Note: Commutes FSUB operands.
+ if (N1.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N10 = N1.getOperand(0);
+ if (N10.getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ DAG.getNode(ISD::FNEG, SDLoc(N), VT,
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N),
+ VT, N10.getOperand(0))),
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N10.getOperand(1)),
+ N0);
+ }
+
+ // fold (fsub (fpext (fneg (fmul, x, y))), z)
+ // -> (fma (fneg (fpext x)), (fpext y), (fneg z))
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FNEG) {
+ SDValue N000 = N00.getOperand(0);
+ if (N000.getOpcode() == ISD::FMUL) {
+ return DAG.getNode(ISD::FMA, dl, VT,
+ DAG.getNode(ISD::FNEG, dl, VT,
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N),
+ VT, N000.getOperand(0))),
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N000.getOperand(1)),
+ DAG.getNode(ISD::FNEG, dl, VT, N1));
+ }
+ }
+ }
+
+ // fold (fsub (fneg (fpext (fmul, x, y))), z)
+ // -> (fma (fneg (fpext x)), (fpext y), (fneg z))
+ if (N0.getOpcode() == ISD::FNEG) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N000 = N00.getOperand(0);
+ if (N000.getOpcode() == ISD::FMUL) {
+ return DAG.getNode(ISD::FMA, dl, VT,
+ DAG.getNode(ISD::FNEG, dl, VT,
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N),
+ VT, N000.getOperand(0))),
+ DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT,
+ N000.getOperand(1)),
+ DAG.getNode(ISD::FNEG, dl, VT, N1));
+ }
+ }
+ }
+ }
+
+ // More folding opportunities when target permits.
+ if (TLI.enableAggressiveFMAFusion(VT)) {
+
+ // fold (fsub (fma x, y, (fmul u, v)), z)
+ // -> (fma x, y (fma u, v, (fneg z)))
+ if (N0.getOpcode() == ISD::FMA &&
+ N0.getOperand(2).getOpcode() == ISD::FMUL)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1),
+ DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ N0.getOperand(2).getOperand(0),
+ N0.getOperand(2).getOperand(1),
+ DAG.getNode(ISD::FNEG, SDLoc(N), VT,
+ N1)));
+
+ // fold (fsub x, (fma y, z, (fmul u, v)))
+ // -> (fma (fneg y), z, (fma (fneg u), v, x))
+ if (N1.getOpcode() == ISD::FMA &&
+ N1.getOperand(2).getOpcode() == ISD::FMUL) {
+ SDValue N20 = N1.getOperand(2).getOperand(0);
+ SDValue N21 = N1.getOperand(2).getOperand(1);
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ DAG.getNode(ISD::FNEG, SDLoc(N), VT,
+ N1.getOperand(0)),
+ N1.getOperand(1),
+ DAG.getNode(ISD::FMA, SDLoc(N), VT,
+ DAG.getNode(ISD::FNEG, SDLoc(N), VT,
+ N20),
+ N21, N0));
+ }
+ }
}
return SDValue();
@@ -6773,47 +7209,82 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue DAGCombiner::visitFMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
+ ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
EVT VT = N->getValueType(0);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const TargetOptions &Options = DAG.getTarget().Options;
// fold vector ops
if (VT.isVector()) {
+ // This just handles C1 * C2 for vectors. Other vector folds are below.
SDValue FoldedVOp = SimplifyVBinOp(N);
- if (FoldedVOp.getNode()) return FoldedVOp;
+ if (FoldedVOp.getNode())
+ return FoldedVOp;
+ // Canonicalize vector constant to RHS.
+ if (N0.getOpcode() == ISD::BUILD_VECTOR &&
+ N1.getOpcode() != ISD::BUILD_VECTOR)
+ if (auto *BV0 = dyn_cast<BuildVectorSDNode>(N0))
+ if (BV0->isConstant())
+ return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
}
// fold (fmul c1, c2) -> c1*c2
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
+
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
- // fold (fmul A, 0) -> 0
- if (DAG.getTarget().Options.UnsafeFPMath &&
- N1CFP && N1CFP->getValueAPF().isZero())
- return N1;
- // fold (fmul A, 0) -> 0, vector edition.
- if (DAG.getTarget().Options.UnsafeFPMath &&
- ISD::isBuildVectorAllZeros(N1.getNode()))
- return N1;
+
// fold (fmul A, 1.0) -> A
if (N1CFP && N1CFP->isExactlyValue(1.0))
return N0;
+
+ if (Options.UnsafeFPMath) {
+ // fold (fmul A, 0) -> 0
+ if (N1CFP && N1CFP->getValueAPF().isZero())
+ return N1;
+
+ // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
+ if (N0.getOpcode() == ISD::FMUL) {
+ // Fold scalars or any vector constants (not just splats).
+ // This fold is done in general by InstCombine, but extra fmul insts
+ // may have been generated during lowering.
+ SDValue N01 = N0.getOperand(1);
+ auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
+ auto *BV01 = dyn_cast<BuildVectorSDNode>(N01);
+ if ((N1CFP && isConstOrConstSplatFP(N01)) ||
+ (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) {
+ SDLoc SL(N);
+ SDValue MulConsts = DAG.getNode(ISD::FMUL, SL, VT, N01, N1);
+ return DAG.getNode(ISD::FMUL, SL, VT, N0.getOperand(0), MulConsts);
+ }
+ }
+
+ // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c))
+ // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs
+ // during an early run of DAGCombiner can prevent folding with fmuls
+ // inserted during lowering.
+ if (N0.getOpcode() == ISD::FADD && N0.getOperand(0) == N0.getOperand(1)) {
+ SDLoc SL(N);
+ const SDValue Two = DAG.getConstantFP(2.0, VT);
+ SDValue MulConsts = DAG.getNode(ISD::FMUL, SL, VT, Two, N1);
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), MulConsts);
+ }
+ }
+
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
+
// fold (fmul X, -1.0) -> (fneg X)
if (N1CFP && N1CFP->isExactlyValue(-1.0))
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
// fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
- if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
- &DAG.getTarget().Options)) {
- if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
- &DAG.getTarget().Options)) {
+ if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
+ if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
@@ -6823,14 +7294,6 @@ SDValue DAGCombiner::visitFMUL(SDNode *N) {
}
}
- // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
- if (DAG.getTarget().Options.UnsafeFPMath &&
- N1CFP && N0.getOpcode() == ISD::FMUL &&
- N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
- DAG.getNode(ISD::FMUL, SDLoc(N), VT,
- N0.getOperand(1), N1));
-
return SDValue();
}
@@ -6842,8 +7305,16 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
SDLoc dl(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
- if (DAG.getTarget().Options.UnsafeFPMath) {
+ // Constant fold FMA.
+ if (isa<ConstantFPSDNode>(N0) &&
+ isa<ConstantFPSDNode>(N1) &&
+ isa<ConstantFPSDNode>(N2)) {
+ return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2);
+ }
+
+ if (Options.UnsafeFPMath) {
if (N0CFP && N0CFP->isZero())
return N2;
if (N1CFP && N1CFP->isZero())
@@ -6859,7 +7330,7 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
// (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
- if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
+ if (Options.UnsafeFPMath && N1CFP &&
N2.getOpcode() == ISD::FMUL &&
N0 == N2.getOperand(0) &&
N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
@@ -6869,7 +7340,7 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
// (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
- if (DAG.getTarget().Options.UnsafeFPMath &&
+ if (Options.UnsafeFPMath &&
N0.getOpcode() == ISD::FMUL && N1CFP &&
N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
return DAG.getNode(ISD::FMA, dl, VT,
@@ -6893,13 +7364,13 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
}
// (fma x, c, x) -> (fmul x, (c+1))
- if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
+ if (Options.UnsafeFPMath && N1CFP && N0 == N2)
return DAG.getNode(ISD::FMUL, dl, VT, N0,
DAG.getNode(ISD::FADD, dl, VT,
N1, DAG.getConstantFP(1.0, VT)));
// (fma x, c, (fneg x)) -> (fmul x, (c-1))
- if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
+ if (Options.UnsafeFPMath && N1CFP &&
N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
return DAG.getNode(ISD::FMUL, dl, VT, N0,
DAG.getNode(ISD::FADD, dl, VT,
@@ -6915,7 +7386,8 @@ SDValue DAGCombiner::visitFDIV(SDNode *N) {
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDLoc DL(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
// fold vector ops
if (VT.isVector()) {
@@ -6927,30 +7399,79 @@ SDValue DAGCombiner::visitFDIV(SDNode *N) {
if (N0CFP && N1CFP)
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
- // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
- if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
- // Compute the reciprocal 1.0 / c2.
- APFloat N1APF = N1CFP->getValueAPF();
- APFloat Recip(N1APF.getSemantics(), 1); // 1.0
- APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
- // Only do the transform if the reciprocal is a legal fp immediate that
- // isn't too nasty (eg NaN, denormal, ...).
- if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
- (!LegalOperations ||
- // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
- // backend)... we should handle this gracefully after Legalize.
- // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
- TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
- TLI.isFPImmLegal(Recip, VT)))
- return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
- DAG.getConstantFP(Recip, VT));
+ if (Options.UnsafeFPMath) {
+ // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
+ if (N1CFP) {
+ // Compute the reciprocal 1.0 / c2.
+ APFloat N1APF = N1CFP->getValueAPF();
+ APFloat Recip(N1APF.getSemantics(), 1); // 1.0
+ APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
+ // Only do the transform if the reciprocal is a legal fp immediate that
+ // isn't too nasty (eg NaN, denormal, ...).
+ if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
+ (!LegalOperations ||
+ // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
+ // backend)... we should handle this gracefully after Legalize.
+ // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
+ TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
+ TLI.isFPImmLegal(Recip, VT)))
+ return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
+ DAG.getConstantFP(Recip, VT));
+ }
+
+ // If this FDIV is part of a reciprocal square root, it may be folded
+ // into a target-specific square root estimate instruction.
+ if (N1.getOpcode() == ISD::FSQRT) {
+ if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0))) {
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ } else if (N1.getOpcode() == ISD::FP_EXTEND &&
+ N1.getOperand(0).getOpcode() == ISD::FSQRT) {
+ if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0))) {
+ RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ } else if (N1.getOpcode() == ISD::FP_ROUND &&
+ N1.getOperand(0).getOpcode() == ISD::FSQRT) {
+ if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0))) {
+ RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ } else if (N1.getOpcode() == ISD::FMUL) {
+ // Look through an FMUL. Even though this won't remove the FDIV directly,
+ // it's still worthwhile to get rid of the FSQRT if possible.
+ SDValue SqrtOp;
+ SDValue OtherOp;
+ if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
+ SqrtOp = N1.getOperand(0);
+ OtherOp = N1.getOperand(1);
+ } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
+ SqrtOp = N1.getOperand(1);
+ OtherOp = N1.getOperand(0);
+ }
+ if (SqrtOp.getNode()) {
+ // We found a FSQRT, so try to make this fold:
+ // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
+ if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0))) {
+ RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp);
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ }
+ }
+
+ // Fold into a reciprocal estimate and multiply instead of a real divide.
+ if (SDValue RV = BuildReciprocalEstimate(N1)) {
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
}
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
- if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
- &DAG.getTarget().Options)) {
- if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
- &DAG.getTarget().Options)) {
+ if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
+ if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
@@ -6960,6 +7481,44 @@ SDValue DAGCombiner::visitFDIV(SDNode *N) {
}
}
+ // Combine multiple FDIVs with the same divisor into multiple FMULs by the
+ // reciprocal.
+ // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
+ // Notice that this is not always beneficial. One reason is different target
+ // may have different costs for FDIV and FMUL, so sometimes the cost of two
+ // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
+ // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
+ if (Options.UnsafeFPMath) {
+ // Skip if current node is a reciprocal.
+ if (N0CFP && N0CFP->isExactlyValue(1.0))
+ return SDValue();
+
+ SmallVector<SDNode *, 4> Users;
+ // Find all FDIV users of the same divisor.
+ for (SDNode::use_iterator UI = N1.getNode()->use_begin(),
+ UE = N1.getNode()->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = UI.getUse().getUser();
+ if (User->getOpcode() == ISD::FDIV && User->getOperand(1) == N1)
+ Users.push_back(User);
+ }
+
+ if (TLI.combineRepeatedFPDivisors(Users.size())) {
+ SDValue FPOne = DAG.getConstantFP(1.0, VT); // floating point 1.0
+ SDValue Reciprocal = DAG.getNode(ISD::FDIV, SDLoc(N), VT, FPOne, N1);
+
+ // Dividend / Divisor -> Dividend * Reciprocal
+ for (auto I = Users.begin(), E = Users.end(); I != E; ++I) {
+ if ((*I)->getOperand(0) != FPOne) {
+ SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(*I), VT,
+ (*I)->getOperand(0), Reciprocal);
+ DAG.ReplaceAllUsesWith(*I, NewNode.getNode());
+ }
+ }
+ return SDValue();
+ }
+ }
+
return SDValue();
}
@@ -6977,6 +7536,32 @@ SDValue DAGCombiner::visitFREM(SDNode *N) {
return SDValue();
}
+SDValue DAGCombiner::visitFSQRT(SDNode *N) {
+ if (DAG.getTarget().Options.UnsafeFPMath &&
+ !TLI.isFsqrtCheap()) {
+ // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5)
+ if (SDValue RV = BuildRsqrtEstimate(N->getOperand(0))) {
+ EVT VT = RV.getValueType();
+ RV = DAG.getNode(ISD::FMUL, SDLoc(N), VT, N->getOperand(0), RV);
+ AddToWorklist(RV.getNode());
+
+ // Unfortunately, RV is now NaN if the input was exactly 0.
+ // Select out this case and force the answer to 0.
+ SDValue Zero = DAG.getConstantFP(0.0, VT);
+ SDValue ZeroCmp =
+ DAG.getSetCC(SDLoc(N), TLI.getSetCCResultType(*DAG.getContext(), VT),
+ N->getOperand(0), Zero, ISD::SETEQ);
+ AddToWorklist(ZeroCmp.getNode());
+ AddToWorklist(RV.getNode());
+
+ RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT,
+ SDLoc(N), VT, ZeroCmp, Zero, RV);
+ return RV;
+ }
+ }
+ return SDValue();
+}
+
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -7222,7 +7807,7 @@ SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType())) {
+ TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(),
@@ -7239,6 +7824,43 @@ SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
return SDValue();
}
+SDValue DAGCombiner::visitFCEIL(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ EVT VT = N->getValueType(0);
+
+ // fold (fceil c1) -> fceil(c1)
+ if (N0CFP)
+ return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ftrunc c1) -> ftrunc(c1)
+ if (N0CFP)
+ return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ffloor c1) -> ffloor(c1)
+ if (N0CFP)
+ return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+// FIXME: FNEG and FABS have a lot in common; refactor.
SDValue DAGCombiner::visitFNEG(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
@@ -7248,26 +7870,36 @@ SDValue DAGCombiner::visitFNEG(SDNode *N) {
if (FoldedVOp.getNode()) return FoldedVOp;
}
+ // Constant fold FNEG.
+ if (isa<ConstantFPSDNode>(N0))
+ return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N->getOperand(0));
+
if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
&DAG.getTarget().Options))
return GetNegatedExpression(N0, DAG, LegalOperations);
- // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
+ // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
// constant pool values.
- // TODO: We can also optimize for vectors here, but we need to make sure
- // that the sign mask is created properly for each vector element.
- if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
- !VT.isVector() &&
- N0.getNode()->hasOneUse() &&
- N0.getOperand(0).getValueType().isInteger()) {
+ if (!TLI.isFNegFree(VT) &&
+ N0.getOpcode() == ISD::BITCAST &&
+ N0.getNode()->hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
+ APInt SignMask;
+ if (N0.getValueType().isVector()) {
+ // For a vector, get a mask such as 0x80... per scalar element
+ // and splat it.
+ SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
+ SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
+ } else {
+ // For a scalar, just generate 0x80...
+ SignMask = APInt::getSignBit(IntVT.getSizeInBits());
+ }
Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
- DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
+ DAG.getConstant(SignMask, IntVT));
AddToWorklist(Int.getNode());
- return DAG.getNode(ISD::BITCAST, SDLoc(N),
- VT, Int);
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int);
}
}
@@ -7289,45 +7921,50 @@ SDValue DAGCombiner::visitFNEG(SDNode *N) {
return SDValue();
}
-SDValue DAGCombiner::visitFCEIL(SDNode *N) {
+SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
SDValue N0 = N->getOperand(0);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- EVT VT = N->getValueType(0);
-
- // fold (fceil c1) -> fceil(c1)
- if (N0CFP)
- return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
-
- return SDValue();
-}
+ SDValue N1 = N->getOperand(1);
+ const ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ const ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
-SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- EVT VT = N->getValueType(0);
+ if (N0CFP && N1CFP) {
+ const APFloat &C0 = N0CFP->getValueAPF();
+ const APFloat &C1 = N1CFP->getValueAPF();
+ return DAG.getConstantFP(minnum(C0, C1), N->getValueType(0));
+ }
- // fold (ftrunc c1) -> ftrunc(c1)
- if (N0CFP)
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
+ if (N0CFP) {
+ EVT VT = N->getValueType(0);
+ // Canonicalize to constant on RHS.
+ return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
+ }
return SDValue();
}
-SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
+SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
SDValue N0 = N->getOperand(0);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- EVT VT = N->getValueType(0);
+ SDValue N1 = N->getOperand(1);
+ const ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ const ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- // fold (ffloor c1) -> ffloor(c1)
- if (N0CFP)
- return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
+ if (N0CFP && N1CFP) {
+ const APFloat &C0 = N0CFP->getValueAPF();
+ const APFloat &C1 = N1CFP->getValueAPF();
+ return DAG.getConstantFP(maxnum(C0, C1), N->getValueType(0));
+ }
+
+ if (N0CFP) {
+ EVT VT = N->getValueType(0);
+ // Canonicalize to constant on RHS.
+ return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
+ }
return SDValue();
}
SDValue DAGCombiner::visitFABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
EVT VT = N->getValueType(0);
if (VT.isVector()) {
@@ -7336,32 +7973,40 @@ SDValue DAGCombiner::visitFABS(SDNode *N) {
}
// fold (fabs c1) -> fabs(c1)
- if (N0CFP)
+ if (isa<ConstantFPSDNode>(N0))
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
+
// fold (fabs (fabs x)) -> (fabs x)
if (N0.getOpcode() == ISD::FABS)
return N->getOperand(0);
+
// fold (fabs (fneg x)) -> (fabs x)
// fold (fabs (fcopysign x, y)) -> (fabs x)
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
- // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
+ // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
// constant pool values.
- // TODO: We can also optimize for vectors here, but we need to make sure
- // that the sign mask is created properly for each vector element.
if (!TLI.isFAbsFree(VT) &&
- N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
- N0.getOperand(0).getValueType().isInteger() &&
- !VT.isVector()) {
+ N0.getOpcode() == ISD::BITCAST &&
+ N0.getNode()->hasOneUse()) {
SDValue Int = N0.getOperand(0);
EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
+ APInt SignMask;
+ if (N0.getValueType().isVector()) {
+ // For a vector, get a mask such as 0x7f... per scalar element
+ // and splat it.
+ SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
+ SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
+ } else {
+ // For a scalar, just generate 0x7f...
+ SignMask = ~APInt::getSignBit(IntVT.getSizeInBits());
+ }
Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
- DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
+ DAG.getConstant(SignMask, IntVT));
AddToWorklist(Int.getNode());
- return DAG.getNode(ISD::BITCAST, SDLoc(N),
- N->getValueType(0), Int);
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int);
}
}
@@ -7441,15 +8086,12 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
// will convert it back to (X & C1) >> C2.
CombineTo(N, NewBRCond, false);
// Truncate is dead.
- if (Trunc) {
- removeFromWorklist(Trunc);
- DAG.DeleteNode(Trunc);
- }
+ if (Trunc)
+ deleteAndRecombine(Trunc);
// Replace the uses of SRL with SETCC
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
- removeFromWorklist(N1.getNode());
- DAG.DeleteNode(N1.getNode());
+ deleteAndRecombine(N1.getNode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
@@ -7478,8 +8120,7 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
dbgs() << '\n');
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
- removeFromWorklist(TheXor);
- DAG.DeleteNode(TheXor);
+ deleteAndRecombine(TheXor);
return DAG.getNode(ISD::BRCOND, SDLoc(N),
MVT::Other, Chain, Tmp, N2);
}
@@ -7509,8 +8150,7 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
// Replace the uses of XOR with SETCC
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
- removeFromWorklist(N1.getNode());
- DAG.DeleteNode(N1.getNode());
+ deleteAndRecombine(N1.getNode());
return DAG.getNode(ISD::BRCOND, SDLoc(N),
MVT::Other, Chain, SetCC, N2);
}
@@ -7547,9 +8187,8 @@ SDValue DAGCombiner::visitBR_CC(SDNode *N) {
return SDValue();
}
-/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
-/// uses N as its base pointer and that N may be folded in the load / store
-/// addressing mode.
+/// Return true if 'Use' is a load or a store that uses N as its base pointer
+/// and that N may be folded in the load / store addressing mode.
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
SelectionDAG &DAG,
const TargetLowering &TLI) {
@@ -7588,12 +8227,11 @@ static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
}
-/// CombineToPreIndexedLoadStore - Try turning a load / store into a
-/// pre-indexed load / store when the base pointer is an add or subtract
-/// and it has other uses besides the load / store. After the
-/// transformation, the new indexed load / store has effectively folded
-/// the add / subtract in and all of its other uses are redirected to the
-/// new load / store.
+/// Try turning a load/store into a pre-indexed load/store when the base
+/// pointer is an add or subtract and it has other uses besides the load/store.
+/// After the transformation, the new indexed load/store has effectively folded
+/// the add/subtract in and all of its other uses are redirected to the
+/// new load/store.
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
@@ -7754,7 +8392,7 @@ bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
}
// Finally, since the node is now dead, remove it from the graph.
- DAG.DeleteNode(N);
+ deleteAndRecombine(N);
if (Swapped)
std::swap(BasePtr, Offset);
@@ -7804,23 +8442,20 @@ bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
SDLoc(OtherUses[i]),
OtherUses[i]->getValueType(0), NewOp1, NewOp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
- removeFromWorklist(OtherUses[i]);
- DAG.DeleteNode(OtherUses[i]);
+ deleteAndRecombine(OtherUses[i]);
}
// Replace the uses of Ptr with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
- removeFromWorklist(Ptr.getNode());
- DAG.DeleteNode(Ptr.getNode());
+ deleteAndRecombine(Ptr.getNode());
return true;
}
-/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
-/// add / sub of the base pointer node into a post-indexed load / store.
-/// The transformation folded the add / subtract into the new indexed
-/// load / store effectively and all of its uses are redirected to the
-/// new load / store.
+/// Try to combine a load/store with a add/sub of the base pointer node into a
+/// post-indexed load/store. The transformation folded the add/subtract into the
+/// new indexed load/store effectively and all of its uses are redirected to the
+/// new load/store.
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
if (Level < AfterLegalizeDAG)
return false;
@@ -7924,13 +8559,12 @@ bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
}
// Finally, since the node is now dead, remove it from the graph.
- DAG.DeleteNode(N);
+ deleteAndRecombine(N);
// Replace the uses of Use with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
Result.getValue(isLoad ? 1 : 0));
- removeFromWorklist(Op);
- DAG.DeleteNode(Op);
+ deleteAndRecombine(Op);
return true;
}
}
@@ -7939,6 +8573,30 @@ bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
return false;
}
+/// \brief Return the base-pointer arithmetic from an indexed \p LD.
+SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ assert(AM != ISD::UNINDEXED);
+ SDValue BP = LD->getOperand(1);
+ SDValue Inc = LD->getOperand(2);
+
+ // Some backends use TargetConstants for load offsets, but don't expect
+ // TargetConstants in general ADD nodes. We can convert these constants into
+ // regular Constants (if the constant is not opaque).
+ assert((Inc.getOpcode() != ISD::TargetConstant ||
+ !cast<ConstantSDNode>(Inc)->isOpaque()) &&
+ "Cannot split out indexing using opaque target constants");
+ if (Inc.getOpcode() == ISD::TargetConstant) {
+ ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
+ Inc = DAG.getConstant(*ConstInc->getConstantIntValue(),
+ ConstInc->getValueType(0));
+ }
+
+ unsigned Opc =
+ (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
+ return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
+}
+
SDValue DAGCombiner::visitLOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
@@ -7965,18 +8623,33 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
- if (N->use_empty()) {
- removeFromWorklist(N);
- DAG.DeleteNode(N);
- }
+ if (N->use_empty())
+ deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
} else {
// Indexed loads.
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
- if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
+
+ // If this load has an opaque TargetConstant offset, then we cannot split
+ // the indexing into an add/sub directly (that TargetConstant may not be
+ // valid for a different type of node, and we cannot convert an opaque
+ // target constant into a regular constant).
+ bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
+ cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
+
+ if (!N->hasAnyUseOfValue(0) &&
+ ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
+ SDValue Index;
+ if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
+ Index = SplitIndexingFromLoad(LD);
+ // Try to fold the base pointer arithmetic into subsequent loads and
+ // stores.
+ AddUsersToWorklist(N);
+ } else
+ Index = DAG.getUNDEF(N->getValueType(1));
DEBUG(dbgs() << "\nReplacing.7 ";
N->dump(&DAG);
dbgs() << "\nWith: ";
@@ -7984,11 +8657,9 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
dbgs() << " and 2 other values\n");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
- DAG.getUNDEF(N->getValueType(1)));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
- removeFromWorklist(N);
- DAG.DeleteNode(N);
+ deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
@@ -8016,15 +8687,15 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
LD->getValueType(0),
Chain, Ptr, LD->getPointerInfo(),
LD->getMemoryVT(),
- LD->isVolatile(), LD->isNonTemporal(), Align,
- LD->getTBAAInfo());
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), Align, LD->getAAInfo());
return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
}
}
}
- bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
- TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
+ : DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
@@ -8354,7 +9025,7 @@ struct LoadedSlice {
// At this point, we know that we perform a cross-register-bank copy.
// Check if it is expensive.
- const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
// Assume bitcasts are cheap, unless both register classes do not
// explicitly share a common sub class.
if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
@@ -8618,9 +9289,9 @@ bool DAGCombiner::SliceUpLoad(SDNode *N) {
return true;
}
-/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
-/// load is having specific bytes cleared out. If so, return the byte size
-/// being masked out and the shift amount.
+/// Check to see if V is (and load (ptr), imm), where the load is having
+/// specific bytes cleared out. If so, return the byte size being masked out
+/// and the shift amount.
static std::pair<unsigned, unsigned>
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
std::pair<unsigned, unsigned> Result(0, 0);
@@ -8693,9 +9364,9 @@ CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
}
-/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
-/// provides a value as specified by MaskInfo. If so, replace the specified
-/// store with a narrower store of truncated IVal.
+/// Check to see if IVal is something that provides a value as specified by
+/// MaskInfo. If so, replace the specified store with a narrower store of
+/// truncated IVal.
static SDNode *
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
SDValue IVal, StoreSDNode *St,
@@ -8750,10 +9421,10 @@ ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
}
-/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
-/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
-/// of the loaded bits, try narrowing the load and store if it would end up
-/// being a win for performance or code size.
+/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
+/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
+/// narrowing the load and store if it would end up being a win for performance
+/// or code size.
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
if (ST->isVolatile())
@@ -8853,7 +9524,7 @@ SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
LD->getPointerInfo().getWithOffset(PtrOff),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), NewAlign,
- LD->getTBAAInfo());
+ LD->getAAInfo());
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
DAG.getConstant(NewImm, NewVT));
SDValue NewST = DAG.getStore(Chain, SDLoc(N),
@@ -8874,10 +9545,9 @@ SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
return SDValue();
}
-/// TransformFPLoadStorePair - For a given floating point load / store pair,
-/// if the load value isn't used by any other operations, then consider
-/// transforming the pair to integer load / store operations if the target
-/// deems the transformation profitable.
+/// For a given floating point load / store pair, if the load value isn't used
+/// by any other operations, then consider transforming the pair to integer
+/// load / store operations if the target deems the transformation profitable.
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
@@ -9051,7 +9721,7 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
return false;
// Only look at ends of store sequences.
- SDValue Chain = SDValue(St, 1);
+ SDValue Chain = SDValue(St, 0);
if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
return false;
@@ -9082,7 +9752,7 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
StoreSDNode *Index = St;
while (Index) {
// If the chain has more than one use, then we can't reorder the mem ops.
- if (Index != St && !SDValue(Index, 1)->hasOneUse())
+ if (Index != St && !SDValue(Index, 0)->hasOneUse())
break;
// Find the base pointer and offset for this memory node.
@@ -9279,7 +9949,7 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
} else {
- assert(false && "Invalid constant element type");
+ llvm_unreachable("Invalid constant element type");
}
}
@@ -9313,8 +9983,7 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
// Since we know that St is redundant, just iterate.
while (!St->use_empty())
DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
- removeFromWorklist(St);
- DAG.DeleteNode(St);
+ deleteAndRecombine(St);
}
return true;
@@ -9373,6 +10042,13 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
if (LoadNodes.size() < 2)
return false;
+ // If we have load/store pair instructions and we only have two values,
+ // don't bother.
+ unsigned RequiredAlignment;
+ if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
+ St->getAlignment() >= RequiredAlignment)
+ return false;
+
// Scan the memory operations on the chain and find the first non-consecutive
// load memory address. These variables hold the index in the store node
// array.
@@ -9408,9 +10084,9 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
EVT LegalizedStoredValueTy =
TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
- TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
+ TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy))
LastLegalIntegerType = i+1;
}
}
@@ -9488,8 +10164,7 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
continue;
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
- removeFromWorklist(St);
- DAG.DeleteNode(St);
+ deleteAndRecombine(St);
}
return true;
@@ -9515,7 +10190,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
Ptr, ST->getPointerInfo(), ST->isVolatile(),
ST->isNonTemporal(), OrigAlign,
- ST->getTBAAInfo());
+ ST->getAAInfo());
}
// Turn 'store undef, Ptr' -> nothing.
@@ -9569,19 +10244,19 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
- const MDNode *TBAAInfo = ST->getTBAAInfo();
+ AAMDNodes AAInfo = ST->getAAInfo();
SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
Ptr, ST->getPointerInfo(),
isVolatile, isNonTemporal,
- ST->getAlignment(), TBAAInfo);
+ ST->getAlignment(), AAInfo);
Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
DAG.getConstant(4, Ptr.getValueType()));
Alignment = MinAlign(Alignment, 4U);
SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
Ptr, ST->getPointerInfo().getWithOffset(4),
isVolatile, isNonTemporal,
- Alignment, TBAAInfo);
+ Alignment, AAInfo);
return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
St0, St1);
}
@@ -9598,7 +10273,7 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
return DAG.getTruncStore(Chain, SDLoc(N), Value,
Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
ST->isVolatile(), ST->isNonTemporal(), Align,
- ST->getTBAAInfo());
+ ST->getAAInfo());
}
}
@@ -9608,8 +10283,8 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
if (NewST.getNode())
return NewST;
- bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
- TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
+ : DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
@@ -9686,6 +10361,17 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
}
}
+ // If this is a store followed by a store with the same value to the same
+ // location, then the store is dead/noop.
+ if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
+ if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() &&
+ ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() &&
+ ST1->isUnindexed() && !ST1->isVolatile()) {
+ // The store is dead, remove it.
+ return Chain;
+ }
+ }
+
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
// truncating store. We can do this even if this is already a truncstore.
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
@@ -9791,6 +10477,87 @@ SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
}
+SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
+ SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
+ EVT ResultVT = EVE->getValueType(0);
+ EVT VecEltVT = InVecVT.getVectorElementType();
+ unsigned Align = OriginalLoad->getAlignment();
+ unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
+ VecEltVT.getTypeForEVT(*DAG.getContext()));
+
+ if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
+ return SDValue();
+
+ Align = NewAlign;
+
+ SDValue NewPtr = OriginalLoad->getBasePtr();
+ SDValue Offset;
+ EVT PtrType = NewPtr.getValueType();
+ MachinePointerInfo MPI;
+ if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
+ int Elt = ConstEltNo->getZExtValue();
+ unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
+ if (TLI.isBigEndian())
+ PtrOff = InVecVT.getSizeInBits() / 8 - PtrOff;
+ Offset = DAG.getConstant(PtrOff, PtrType);
+ MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
+ } else {
+ Offset = DAG.getNode(
+ ISD::MUL, SDLoc(EVE), EltNo.getValueType(), EltNo,
+ DAG.getConstant(VecEltVT.getStoreSize(), EltNo.getValueType()));
+ if (TLI.isBigEndian())
+ Offset = DAG.getNode(
+ ISD::SUB, SDLoc(EVE), EltNo.getValueType(),
+ DAG.getConstant(InVecVT.getStoreSize(), EltNo.getValueType()), Offset);
+ MPI = OriginalLoad->getPointerInfo();
+ }
+ NewPtr = DAG.getNode(ISD::ADD, SDLoc(EVE), PtrType, NewPtr, Offset);
+
+ // The replacement we need to do here is a little tricky: we need to
+ // replace an extractelement of a load with a load.
+ // Use ReplaceAllUsesOfValuesWith to do the replacement.
+ // Note that this replacement assumes that the extractvalue is the only
+ // use of the load; that's okay because we don't want to perform this
+ // transformation in other cases anyway.
+ SDValue Load;
+ SDValue Chain;
+ if (ResultVT.bitsGT(VecEltVT)) {
+ // If the result type of vextract is wider than the load, then issue an
+ // extending load instead.
+ ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
+ VecEltVT)
+ ? ISD::ZEXTLOAD
+ : ISD::EXTLOAD;
+ Load = DAG.getExtLoad(
+ ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI,
+ VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
+ OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
+ Chain = Load.getValue(1);
+ } else {
+ Load = DAG.getLoad(
+ VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI,
+ OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
+ OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
+ Chain = Load.getValue(1);
+ if (ResultVT.bitsLT(VecEltVT))
+ Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
+ else
+ Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load);
+ }
+ WorklistRemover DeadNodes(*this);
+ SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
+ SDValue To[] = { Load, Chain };
+ DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
+ // Since we're explicitly calling ReplaceAllUses, add the new node to the
+ // worklist explicitly as well.
+ AddToWorklist(Load.getNode());
+ AddUsersToWorklist(Load.getNode()); // Add users too
+ // Make sure to revisit this node to clean it up; it will usually be dead.
+ AddToWorklist(EVE);
+ ++OpsNarrowed;
+ return SDValue(EVE, 0);
+}
+
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
// (vextract (scalar_to_vector val, 0) -> val
SDValue InVec = N->getOperand(0);
@@ -9859,6 +10626,39 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
}
}
+ bool BCNumEltsChanged = false;
+ EVT ExtVT = VT.getVectorElementType();
+ EVT LVT = ExtVT;
+
+ // If the result of load has to be truncated, then it's not necessarily
+ // profitable.
+ if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
+ return SDValue();
+
+ if (InVec.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ EVT BCVT = InVec.getOperand(0).getValueType();
+ if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
+ return SDValue();
+ if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
+ BCNumEltsChanged = true;
+ InVec = InVec.getOperand(0);
+ ExtVT = BCVT.getVectorElementType();
+ }
+
+ // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
+ if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
+ ISD::isNormalLoad(InVec.getNode()) &&
+ !N->getOperand(1)->hasPredecessor(InVec.getNode())) {
+ SDValue Index = N->getOperand(1);
+ if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec))
+ return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
+ OrigLoad);
+ }
+
// Perform only after legalization to ensure build_vector / vector_shuffle
// optimizations have already been done.
if (!LegalOperations) return SDValue();
@@ -9869,30 +10669,6 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
if (ConstEltNo) {
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
- bool NewLoad = false;
- bool BCNumEltsChanged = false;
- EVT ExtVT = VT.getVectorElementType();
- EVT LVT = ExtVT;
-
- // If the result of load has to be truncated, then it's not necessarily
- // profitable.
- if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
- return SDValue();
-
- if (InVec.getOpcode() == ISD::BITCAST) {
- // Don't duplicate a load with other uses.
- if (!InVec.hasOneUse())
- return SDValue();
-
- EVT BCVT = InVec.getOperand(0).getValueType();
- if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
- return SDValue();
- if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
- BCNumEltsChanged = true;
- InVec = InVec.getOperand(0);
- ExtVT = BCVT.getVectorElementType();
- NewLoad = true;
- }
LoadSDNode *LN0 = nullptr;
const ShuffleVectorSDNode *SVN = nullptr;
@@ -9935,6 +10711,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
+ EltNo = DAG.getConstant(Elt, EltNo.getValueType());
}
}
@@ -9947,72 +10724,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
if (Elt == -1)
return DAG.getUNDEF(LVT);
- unsigned Align = LN0->getAlignment();
- if (NewLoad) {
- // Check the resultant load doesn't need a higher alignment than the
- // original load.
- unsigned NewAlign =
- TLI.getDataLayout()
- ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
-
- if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
- return SDValue();
-
- Align = NewAlign;
- }
-
- SDValue NewPtr = LN0->getBasePtr();
- unsigned PtrOff = 0;
-
- if (Elt) {
- PtrOff = LVT.getSizeInBits() * Elt / 8;
- EVT PtrType = NewPtr.getValueType();
- if (TLI.isBigEndian())
- PtrOff = VT.getSizeInBits() / 8 - PtrOff;
- NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
- DAG.getConstant(PtrOff, PtrType));
- }
-
- // The replacement we need to do here is a little tricky: we need to
- // replace an extractelement of a load with a load.
- // Use ReplaceAllUsesOfValuesWith to do the replacement.
- // Note that this replacement assumes that the extractvalue is the only
- // use of the load; that's okay because we don't want to perform this
- // transformation in other cases anyway.
- SDValue Load;
- SDValue Chain;
- if (NVT.bitsGT(LVT)) {
- // If the result type of vextract is wider than the load, then issue an
- // extending load instead.
- ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
- ? ISD::ZEXTLOAD : ISD::EXTLOAD;
- Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
- NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
- LVT, LN0->isVolatile(), LN0->isNonTemporal(),
- Align, LN0->getTBAAInfo());
- Chain = Load.getValue(1);
- } else {
- Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
- LN0->getPointerInfo().getWithOffset(PtrOff),
- LN0->isVolatile(), LN0->isNonTemporal(),
- LN0->isInvariant(), Align, LN0->getTBAAInfo());
- Chain = Load.getValue(1);
- if (NVT.bitsLT(LVT))
- Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
- else
- Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
- }
- WorklistRemover DeadNodes(*this);
- SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
- SDValue To[] = { Load, Chain };
- DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
- // Since we're explcitly calling ReplaceAllUses, add the new node to the
- // worklist explicitly as well.
- AddToWorklist(Load.getNode());
- AddUsersToWorklist(Load.getNode()); // Add users too
- // Make sure to revisit this node to clean it up; it will usually be dead.
- AddToWorklist(N);
- return SDValue(N, 0);
+ return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
}
return SDValue();
@@ -10215,32 +10927,46 @@ SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
// operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
// at most two distinct vectors, turn this into a shuffle node.
+ // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
// May only combine to shuffle after legalize if shuffle is legal.
- if (LegalOperations &&
- !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
+ if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
return SDValue();
SDValue VecIn1, VecIn2;
+ bool UsesZeroVector = false;
for (unsigned i = 0; i != NumInScalars; ++i) {
+ SDValue Op = N->getOperand(i);
// Ignore undef inputs.
- if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ if (Op.getOpcode() == ISD::UNDEF) continue;
+
+ // See if we can combine this build_vector into a blend with a zero vector.
+ if (!VecIn2.getNode() && ((Op.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Op.getNode())->isNullValue()) ||
+ (Op.getOpcode() == ISD::ConstantFP &&
+ cast<ConstantFPSDNode>(Op.getNode())->getValueAPF().isZero()))) {
+ UsesZeroVector = true;
+ continue;
+ }
// If this input is something other than a EXTRACT_VECTOR_ELT with a
// constant index, bail out.
- if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
+ if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Op.getOperand(1))) {
VecIn1 = VecIn2 = SDValue(nullptr, 0);
break;
}
// We allow up to two distinct input vectors.
- SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
+ SDValue ExtractedFromVec = Op.getOperand(0);
if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
continue;
if (!VecIn1.getNode()) {
VecIn1 = ExtractedFromVec;
- } else if (!VecIn2.getNode()) {
+ } else if (!VecIn2.getNode() && !UsesZeroVector) {
VecIn2 = ExtractedFromVec;
} else {
// Too many inputs.
@@ -10251,55 +10977,93 @@ SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
// If everything is good, we can make a shuffle operation.
if (VecIn1.getNode()) {
+ unsigned InNumElements = VecIn1.getValueType().getVectorNumElements();
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != NumInScalars; ++i) {
- if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
+ unsigned Opcode = N->getOperand(i).getOpcode();
+ if (Opcode == ISD::UNDEF) {
Mask.push_back(-1);
continue;
}
+ // Operands can also be zero.
+ if (Opcode != ISD::EXTRACT_VECTOR_ELT) {
+ assert(UsesZeroVector &&
+ (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) &&
+ "Unexpected node found!");
+ Mask.push_back(NumInScalars+i);
+ continue;
+ }
+
// If extracting from the first vector, just use the index directly.
SDValue Extract = N->getOperand(i);
SDValue ExtVal = Extract.getOperand(1);
+ unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
if (Extract.getOperand(0) == VecIn1) {
- unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
- if (ExtIndex > VT.getVectorNumElements())
- return SDValue();
-
Mask.push_back(ExtIndex);
continue;
}
- // Otherwise, use InIdx + VecSize
- unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
- Mask.push_back(Idx+NumInScalars);
+ // Otherwise, use InIdx + InputVecSize
+ Mask.push_back(InNumElements + ExtIndex);
}
+ // Avoid introducing illegal shuffles with zero.
+ if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT))
+ return SDValue();
+
// We can't generate a shuffle node with mismatched input and output types.
// Attempt to transform a single input vector to the correct type.
if ((VT != VecIn1.getValueType())) {
- // We don't support shuffeling between TWO values of different types.
- if (VecIn2.getNode())
+ // If the input vector type has a different base type to the output
+ // vector type, bail out.
+ EVT VTElemType = VT.getVectorElementType();
+ if ((VecIn1.getValueType().getVectorElementType() != VTElemType) ||
+ (VecIn2.getNode() &&
+ (VecIn2.getValueType().getVectorElementType() != VTElemType)))
return SDValue();
+ // If the input vector is too small, widen it.
// We only support widening of vectors which are half the size of the
// output registers. For example XMM->YMM widening on X86 with AVX.
- if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
- return SDValue();
+ EVT VecInT = VecIn1.getValueType();
+ if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) {
+ // If we only have one small input, widen it by adding undef values.
+ if (!VecIn2.getNode())
+ VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1,
+ DAG.getUNDEF(VecIn1.getValueType()));
+ else if (VecIn1.getValueType() == VecIn2.getValueType()) {
+ // If we have two small inputs of the same type, try to concat them.
+ VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2);
+ VecIn2 = SDValue(nullptr, 0);
+ } else
+ return SDValue();
+ } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) {
+ // If the input vector is too large, try to split it.
+ // We don't support having two input vectors that are too large.
+ if (VecIn2.getNode())
+ return SDValue();
- // If the input vector type has a different base type to the output
- // vector type, bail out.
- if (VecIn1.getValueType().getVectorElementType() !=
- VT.getVectorElementType())
+ if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements()))
+ return SDValue();
+
+ // Try to replace VecIn1 with two extract_subvectors
+ // No need to update the masks, they should still be correct.
+ VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
+ DAG.getConstant(VT.getVectorNumElements(), TLI.getVectorIdxTy()));
+ VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ UsesZeroVector = false;
+ } else
return SDValue();
-
- // Widen the input vector by adding undef values.
- VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
- VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
}
- // If VecIn2 is unused then change it to undef.
- VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+ if (UsesZeroVector)
+ VecIn2 = VT.isInteger() ? DAG.getConstant(0, VT) :
+ DAG.getConstantFP(0.0, VT);
+ else
+ // If VecIn2 is unused then change it to undef.
+ VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
// Check that we were able to transform all incoming values to the same
// type.
@@ -10307,10 +11071,6 @@ SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
VecIn1.getValueType() != VT)
return SDValue();
- // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
- if (!isTypeLegal(VT))
- return SDValue();
-
// Return the new VECTOR_SHUFFLE node.
SDValue Ops[2];
Ops[0] = VecIn1;
@@ -10501,6 +11261,92 @@ SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
return SDValue();
}
+static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements,
+ SDValue V, SelectionDAG &DAG) {
+ SDLoc DL(V);
+ EVT VT = V.getValueType();
+
+ switch (V.getOpcode()) {
+ default:
+ return V;
+
+ case ISD::CONCAT_VECTORS: {
+ EVT OpVT = V->getOperand(0).getValueType();
+ int OpSize = OpVT.getVectorNumElements();
+ SmallBitVector OpUsedElements(OpSize, false);
+ bool FoundSimplification = false;
+ SmallVector<SDValue, 4> NewOps;
+ NewOps.reserve(V->getNumOperands());
+ for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) {
+ SDValue Op = V->getOperand(i);
+ bool OpUsed = false;
+ for (int j = 0; j < OpSize; ++j)
+ if (UsedElements[i * OpSize + j]) {
+ OpUsedElements[j] = true;
+ OpUsed = true;
+ }
+ NewOps.push_back(
+ OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG)
+ : DAG.getUNDEF(OpVT));
+ FoundSimplification |= Op == NewOps.back();
+ OpUsedElements.reset();
+ }
+ if (FoundSimplification)
+ V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps);
+ return V;
+ }
+
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue BaseV = V->getOperand(0);
+ SDValue SubV = V->getOperand(1);
+ auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2));
+ if (!IdxN)
+ return V;
+
+ int SubSize = SubV.getValueType().getVectorNumElements();
+ int Idx = IdxN->getZExtValue();
+ bool SubVectorUsed = false;
+ SmallBitVector SubUsedElements(SubSize, false);
+ for (int i = 0; i < SubSize; ++i)
+ if (UsedElements[i + Idx]) {
+ SubVectorUsed = true;
+ SubUsedElements[i] = true;
+ UsedElements[i + Idx] = false;
+ }
+
+ // Now recurse on both the base and sub vectors.
+ SDValue SimplifiedSubV =
+ SubVectorUsed
+ ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG)
+ : DAG.getUNDEF(SubV.getValueType());
+ SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG);
+ if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV)
+ V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
+ SimplifiedBaseV, SimplifiedSubV, V->getOperand(2));
+ return V;
+ }
+ }
+}
+
+static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0,
+ SDValue N1, SelectionDAG &DAG) {
+ EVT VT = SVN->getValueType(0);
+ int NumElts = VT.getVectorNumElements();
+ SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false);
+ for (int M : SVN->getMask())
+ if (M >= 0 && M < NumElts)
+ N0UsedElements[M] = true;
+ else if (M >= NumElts)
+ N1UsedElements[M - NumElts] = true;
+
+ SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG);
+ SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG);
+ if (S0 == N0 && S1 == N1)
+ return SDValue();
+
+ return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask());
+}
+
// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
@@ -10653,6 +11499,12 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
}
}
+ // There are various patterns used to build up a vector from smaller vectors,
+ // subvectors, or elements. Scan chains of these and replace unused insertions
+ // or components with undef.
+ if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG))
+ return S;
+
if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
Level < AfterLegalizeVectorOps &&
(N1.getOpcode() == ISD::UNDEF ||
@@ -10664,99 +11516,11 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
return V;
}
- // If this shuffle node is simply a swizzle of another shuffle node,
- // then try to simplify it.
- if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
- N1.getOpcode() == ISD::UNDEF) {
-
- ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
-
- // The incoming shuffle must be of the same type as the result of the
- // current shuffle.
- assert(OtherSV->getOperand(0).getValueType() == VT &&
- "Shuffle types don't match");
-
- SmallVector<int, 4> Mask;
- // Compute the combined shuffle mask.
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- assert(Idx < (int)NumElts && "Index references undef operand");
- // Next, this index comes from the first value, which is the incoming
- // shuffle. Adopt the incoming index.
- if (Idx >= 0)
- Idx = OtherSV->getMaskElt(Idx);
- Mask.push_back(Idx);
- }
-
- bool CommuteOperands = false;
- if (N0.getOperand(1).getOpcode() != ISD::UNDEF) {
- // To be valid, the combine shuffle mask should only reference elements
- // from one of the two vectors in input to the inner shufflevector.
- bool IsValidMask = true;
- for (unsigned i = 0; i != NumElts && IsValidMask; ++i)
- // See if the combined mask only reference undefs or elements coming
- // from the first shufflevector operand.
- IsValidMask = Mask[i] < 0 || (unsigned)Mask[i] < NumElts;
-
- if (!IsValidMask) {
- IsValidMask = true;
- for (unsigned i = 0; i != NumElts && IsValidMask; ++i)
- // Check that all the elements come from the second shuffle operand.
- IsValidMask = Mask[i] < 0 || (unsigned)Mask[i] >= NumElts;
- CommuteOperands = IsValidMask;
- }
-
- // Early exit if the combined shuffle mask is not valid.
- if (!IsValidMask)
- return SDValue();
- }
-
- // See if this pair of shuffles can be safely folded according to either
- // of the following rules:
- // shuffle(shuffle(x, y), undef) -> x
- // shuffle(shuffle(x, undef), undef) -> x
- // shuffle(shuffle(x, y), undef) -> y
- bool IsIdentityMask = true;
- unsigned BaseMaskIndex = CommuteOperands ? NumElts : 0;
- for (unsigned i = 0; i != NumElts && IsIdentityMask; ++i) {
- // Skip Undefs.
- if (Mask[i] < 0)
- continue;
-
- // The combined shuffle must map each index to itself.
- IsIdentityMask = (unsigned)Mask[i] == i + BaseMaskIndex;
- }
-
- if (IsIdentityMask) {
- if (CommuteOperands)
- // optimize shuffle(shuffle(x, y), undef) -> y.
- return OtherSV->getOperand(1);
-
- // optimize shuffle(shuffle(x, undef), undef) -> x
- // optimize shuffle(shuffle(x, y), undef) -> x
- return OtherSV->getOperand(0);
- }
-
- // It may still be beneficial to combine the two shuffles if the
- // resulting shuffle is legal.
- if (TLI.isTypeLegal(VT) && TLI.isShuffleMaskLegal(Mask, VT)) {
- if (!CommuteOperands)
- // shuffle(shuffle(x, undef, M1), undef, M2) -> shuffle(x, undef, M3).
- // shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(x, undef, M3)
- return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0), N1,
- &Mask[0]);
-
- // shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(undef, y, M3)
- return DAG.getVectorShuffle(VT, SDLoc(N), N1, N0->getOperand(1),
- &Mask[0]);
- }
- }
-
// Canonicalize shuffles according to rules:
// shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
// shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
// shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
- if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && N0.getOpcode() != ISD::UNDEF &&
+ if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
TLI.isTypeLegal(VT)) {
// The incoming shuffle must be of the same type as the result of the
@@ -10775,13 +11539,12 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
}
// Try to fold according to rules:
- // shuffle(shuffle(A, B, M0), B, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, B, M0), A, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, Undef, M0), A, M1) -> shuffle(A, Undef, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
// Don't try to fold shuffles with illegal type.
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
- N1.getOpcode() != ISD::UNDEF && TLI.isTypeLegal(VT)) {
+ TLI.isTypeLegal(VT)) {
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
// The incoming shuffle must be of the same type as the result of the
@@ -10789,14 +11552,7 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
assert(OtherSV->getOperand(0).getValueType() == VT &&
"Shuffle types don't match");
- SDValue SV0 = OtherSV->getOperand(0);
- SDValue SV1 = OtherSV->getOperand(1);
- bool HasSameOp0 = N1 == SV0;
- bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF;
- if (!HasSameOp0 && !IsSV1Undef && N1 != SV1)
- // Early exit.
- return SDValue();
-
+ SDValue SV0, SV1;
SmallVector<int, 4> Mask;
// Compute the combined shuffle mask for a shuffle with SV0 as the first
// operand, and SV1 as the second operand.
@@ -10808,24 +11564,90 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
continue;
}
+ SDValue CurrentVec;
if (Idx < (int)NumElts) {
+ // This shuffle index refers to the inner shuffle N0. Lookup the inner
+ // shuffle mask to identify which vector is actually referenced.
Idx = OtherSV->getMaskElt(Idx);
- if (IsSV1Undef && Idx >= (int) NumElts)
- Idx = -1; // Propagate Undef.
- } else
- Idx = HasSameOp0 ? Idx - NumElts : Idx;
+ if (Idx < 0) {
+ // Propagate Undef.
+ Mask.push_back(Idx);
+ continue;
+ }
+
+ CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
+ : OtherSV->getOperand(1);
+ } else {
+ // This shuffle index references an element within N1.
+ CurrentVec = N1;
+ }
+
+ // Simple case where 'CurrentVec' is UNDEF.
+ if (CurrentVec.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ // Canonicalize the shuffle index. We don't know yet if CurrentVec
+ // will be the first or second operand of the combined shuffle.
+ Idx = Idx % NumElts;
+ if (!SV0.getNode() || SV0 == CurrentVec) {
+ // Ok. CurrentVec is the left hand side.
+ // Update the mask accordingly.
+ SV0 = CurrentVec;
+ Mask.push_back(Idx);
+ continue;
+ }
+
+ // Bail out if we cannot convert the shuffle pair into a single shuffle.
+ if (SV1.getNode() && SV1 != CurrentVec)
+ return SDValue();
- Mask.push_back(Idx);
+ // Ok. CurrentVec is the right hand side.
+ // Update the mask accordingly.
+ SV1 = CurrentVec;
+ Mask.push_back(Idx + NumElts);
}
+ // Check if all indices in Mask are Undef. In case, propagate Undef.
+ bool isUndefMask = true;
+ for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
+ isUndefMask &= Mask[i] < 0;
+
+ if (isUndefMask)
+ return DAG.getUNDEF(VT);
+
+ if (!SV0.getNode())
+ SV0 = DAG.getUNDEF(VT);
+ if (!SV1.getNode())
+ SV1 = DAG.getUNDEF(VT);
+
// Avoid introducing shuffles with illegal mask.
- if (TLI.isShuffleMaskLegal(Mask, VT)) {
- if (IsSV1Undef)
- // shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, Undef, M0), A, M1) -> shuffle(A, Undef, M2)
- return DAG.getVectorShuffle(VT, SDLoc(N), SV0, N1, &Mask[0]);
- return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
+ if (!TLI.isShuffleMaskLegal(Mask, VT)) {
+ // Compute the commuted shuffle mask and test again.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int idx = Mask[i];
+ if (idx < 0)
+ continue;
+ else if (idx < (int)NumElts)
+ Mask[i] = idx + NumElts;
+ else
+ Mask[i] = idx - NumElts;
+ }
+
+ if (!TLI.isShuffleMaskLegal(Mask, VT))
+ return SDValue();
+
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
+ std::swap(SV0, SV1);
}
+
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
+ return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
}
return SDValue();
@@ -10858,8 +11680,8 @@ SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
return SDValue();
}
-/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
-/// an AND to a vector_shuffle with the destination vector and a zero vector.
+/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
+/// with the destination vector and a zero vector.
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
/// vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
@@ -10881,7 +11703,7 @@ SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
Indices.push_back(i);
else if (cast<ConstantSDNode>(Elt)->isNullValue())
- Indices.push_back(NumElts);
+ Indices.push_back(NumElts+i);
else
return SDValue();
}
@@ -10905,7 +11727,7 @@ SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
return SDValue();
}
-/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
+/// Visit a binary vector operation, like ADD.
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
assert(N->getValueType(0).isVector() &&
"SimplifyVBinOp only works on vectors!");
@@ -10991,7 +11813,7 @@ SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
return SDValue();
}
-/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
+/// Visit a binary vector operation, like FABS/FNEG.
SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
assert(N->getValueType(0).isVector() &&
"SimplifyVUnaryOp only works on vectors!");
@@ -11042,8 +11864,8 @@ SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
SCC.getOperand(0), SCC.getOperand(1),
SCC.getOperand(4));
AddToWorklist(SETCC.getNode());
- return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
- SCC.getOperand(2), SCC.getOperand(3), SETCC);
+ return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
+ SCC.getOperand(2), SCC.getOperand(3));
}
return SCC;
@@ -11051,12 +11873,11 @@ SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
return SDValue();
}
-/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
-/// are the two values being selected between, see if we can simplify the
-/// select. Callers of this should assume that TheSelect is deleted if this
-/// returns true. As such, they should return the appropriate thing (e.g. the
-/// node) back to the top-level of the DAG combiner loop to avoid it being
-/// looked at.
+/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
+/// being selected between, see if we can simplify the select. Callers of this
+/// should assume that TheSelect is deleted if this returns true. As such, they
+/// should return the appropriate thing (e.g. the node) back to the top-level of
+/// the DAG combiner loop to avoid it being looked at.
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
SDValue RHS) {
@@ -11135,22 +11956,27 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
}
SDValue Load;
+ // It is safe to replace the two loads if they have different alignments,
+ // but the new load must be the minimum (most restrictive) alignment of the
+ // inputs.
+ bool isInvariant = LLD->isInvariant() & RLD->isInvariant();
+ unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
Load = DAG.getLoad(TheSelect->getValueType(0),
SDLoc(TheSelect),
- // FIXME: Discards pointer and TBAA info.
+ // FIXME: Discards pointer and AA info.
LLD->getChain(), Addr, MachinePointerInfo(),
LLD->isVolatile(), LLD->isNonTemporal(),
- LLD->isInvariant(), LLD->getAlignment());
+ isInvariant, Alignment);
} else {
Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
RLD->getExtensionType() : LLD->getExtensionType(),
SDLoc(TheSelect),
TheSelect->getValueType(0),
- // FIXME: Discards pointer and TBAA info.
+ // FIXME: Discards pointer and AA info.
LLD->getChain(), Addr, MachinePointerInfo(),
LLD->getMemoryVT(), LLD->isVolatile(),
- LLD->isNonTemporal(), LLD->getAlignment());
+ LLD->isNonTemporal(), isInvariant, Alignment);
}
// Users of the select now use the result of the load.
@@ -11166,7 +11992,7 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
return false;
}
-/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
+/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3,
@@ -11458,7 +12284,7 @@ SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
return SDValue();
}
-/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
+/// This is a stub for TargetLowering::SimplifySetCC.
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
SDValue N1, ISD::CondCode Cond,
SDLoc DL, bool foldBooleans) {
@@ -11467,10 +12293,10 @@ SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}
-/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+/// Given an ISD::SDIV node expressing a divide by constant, return
+/// a DAG expression to select that will generate the same value by multiplying
+/// by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
@@ -11489,10 +12315,29 @@ SDValue DAGCombiner::BuildSDIV(SDNode *N) {
return S;
}
-/// BuildUDIV - Given an ISD::UDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
+/// DAG expression that will generate the same value by right shifting.
+SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
+ ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ // Avoid division by zero.
+ if (!C->getAPIntValue())
+ return SDValue();
+
+ std::vector<SDNode *> Built;
+ SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built);
+
+ for (SDNode *N : Built)
+ AddToWorklist(N);
+ return S;
+}
+
+/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
+/// expression that will generate the same value by multiplying by a magic
+/// number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
if (!C)
@@ -11511,9 +12356,141 @@ SDValue DAGCombiner::BuildUDIV(SDNode *N) {
return S;
}
-/// FindBaseOffset - Return true if base is a frame index, which is known not
-// to alias with anything but itself. Provides base object and offset as
-// results.
+SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op) {
+ if (Level >= AfterLegalizeDAG)
+ return SDValue();
+
+ // Expose the DAG combiner to the target combiner implementations.
+ TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
+
+ unsigned Iterations = 0;
+ if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
+ if (Iterations) {
+ // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+ // For the reciprocal, we need to find the zero of the function:
+ // F(X) = A X - 1 [which has a zero at X = 1/A]
+ // =>
+ // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
+ // does not require additional intermediate precision]
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue FPOne = DAG.getConstantFP(1.0, VT);
+
+ AddToWorklist(Est.getNode());
+
+ // Newton iterations: Est = Est + Est (1 - Arg * Est)
+ for (unsigned i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst);
+ AddToWorklist(Est.getNode());
+ }
+ }
+ return Est;
+ }
+
+ return SDValue();
+}
+
+/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+/// For the reciprocal sqrt, we need to find the zero of the function:
+/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
+/// =>
+/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
+/// As a result, we precompute A/2 prior to the iteration loop.
+SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est,
+ unsigned Iterations) {
+ EVT VT = Arg.getValueType();
+ SDLoc DL(Arg);
+ SDValue ThreeHalves = DAG.getConstantFP(1.5, VT);
+
+ // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
+ // this entire sequence requires only one FP constant.
+ SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg);
+ AddToWorklist(HalfArg.getNode());
+
+ HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg);
+ AddToWorklist(HalfArg.getNode());
+
+ // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
+ for (unsigned i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst);
+ AddToWorklist(Est.getNode());
+ }
+ return Est;
+}
+
+/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+/// For the reciprocal sqrt, we need to find the zero of the function:
+/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
+/// =>
+/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
+SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est,
+ unsigned Iterations) {
+ EVT VT = Arg.getValueType();
+ SDLoc DL(Arg);
+ SDValue MinusThree = DAG.getConstantFP(-3.0, VT);
+ SDValue MinusHalf = DAG.getConstantFP(-0.5, VT);
+
+ // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est)
+ for (unsigned i = 0; i < Iterations; ++i) {
+ SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf);
+ AddToWorklist(HalfEst.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est);
+ AddToWorklist(Est.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg);
+ AddToWorklist(Est.getNode());
+
+ Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree);
+ AddToWorklist(Est.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst);
+ AddToWorklist(Est.getNode());
+ }
+ return Est;
+}
+
+SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op) {
+ if (Level >= AfterLegalizeDAG)
+ return SDValue();
+
+ // Expose the DAG combiner to the target combiner implementations.
+ TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
+ unsigned Iterations = 0;
+ bool UseOneConstNR = false;
+ if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) {
+ AddToWorklist(Est.getNode());
+ if (Iterations) {
+ Est = UseOneConstNR ?
+ BuildRsqrtNROneConst(Op, Est, Iterations) :
+ BuildRsqrtNRTwoConst(Op, Est, Iterations);
+ }
+ return Est;
+ }
+
+ return SDValue();
+}
+
+/// Return true if base is a frame index, which is known not to alias with
+/// anything but itself. Provides base object and offset as results.
static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
const GlobalValue *&GV, const void *&CV) {
// Assume it is a primitive operation.
@@ -11549,8 +12526,7 @@ static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
return isa<FrameIndexSDNode>(Base);
}
-/// isAlias - Return true if there is any possibility that the two addresses
-/// overlap.
+/// Return true if there is any possibility that the two addresses overlap.
bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
// If they are the same then they must be aliases.
if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
@@ -11609,8 +12585,9 @@ bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
return false;
}
- bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
- TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
+ bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
+ ? CombinerGlobalAA
+ : DAG.getSubtarget().useAA();
#ifndef NDEBUG
if (CombinerAAOnlyFunc.getNumOccurrences() &&
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
@@ -11628,10 +12605,10 @@ bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
AliasAnalysis::AliasResult AAResult =
AA.alias(AliasAnalysis::Location(Op0->getMemOperand()->getValue(),
Overlap1,
- UseTBAA ? Op0->getTBAAInfo() : nullptr),
+ UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
AliasAnalysis::Location(Op1->getMemOperand()->getValue(),
Overlap2,
- UseTBAA ? Op1->getTBAAInfo() : nullptr));
+ UseTBAA ? Op1->getAAInfo() : AAMDNodes()));
if (AAResult == AliasAnalysis::NoAlias)
return false;
}
@@ -11640,7 +12617,7 @@ bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
return true;
}
-/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
+/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases) {
@@ -11676,7 +12653,7 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
}
// Don't bother if we've been before.
- if (!Visited.insert(Chain.getNode()))
+ if (!Visited.insert(Chain.getNode()).second)
continue;
switch (Chain.getOpcode()) {
@@ -11751,10 +12728,9 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
// like register copies will interfere with trivial cases).
SmallVector<const SDNode *, 16> Worklist;
- for (SmallPtrSet<SDNode *, 16>::iterator I = Visited.begin(),
- IE = Visited.end(); I != IE; ++I)
- if (*I != OriginalChain.getNode())
- Worklist.push_back(*I);
+ for (const SDNode *N : Visited)
+ if (N != OriginalChain.getNode())
+ Worklist.push_back(N);
while (!Worklist.empty()) {
const SDNode *M = Worklist.pop_back_val();
@@ -11765,7 +12741,8 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
for (SDNode::use_iterator UI = M->use_begin(),
UIE = M->use_end(); UI != UIE; ++UI)
- if (UI.getUse().getValueType() == MVT::Other && Visited.insert(*UI)) {
+ if (UI.getUse().getValueType() == MVT::Other &&
+ Visited.insert(*UI).second) {
if (isa<MemIntrinsicSDNode>(*UI) || isa<MemSDNode>(*UI)) {
// We've not visited this use, and we care about it (it could have an
// ordering dependency with the original node).
@@ -11781,8 +12758,8 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
}
}
-/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
-/// for a better chain (aliasing node.)
+/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
+/// (aliasing node.)
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
@@ -11801,11 +12778,9 @@ SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
}
-// SelectionDAG::Combine - This is the entry point for the file.
-//
+/// This is the entry point for the file.
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
CodeGenOpt::Level OptLevel) {
- /// run - This is the main entry point to this class.
- ///
+ /// This is the main entry point to this class.
DAGCombiner(*this, AA, OptLevel).Run(Level);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
index ad75e91..97fed23 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -40,12 +40,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Analysis.h"
-#include "llvm/CodeGen/FastISel.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -65,34 +65,32 @@
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "isel"
STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
- "target-independent selector");
+ "target-independent selector");
STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
- "target-specific selector");
+ "target-specific selector");
STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
-/// \brief Set CallLoweringInfo attribute flags based on a call instruction
-/// and called function attributes.
void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
unsigned AttrIdx) {
- isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
- isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
- isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
- isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
- isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
- isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
- isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
- isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
- Alignment = CS->getParamAlignment(AttrIdx);
-}
-
-/// startNewBlock - Set the current block to which generated machine
-/// instructions will be appended, and clear the local CSE map.
-///
+ IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
+ IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
+ IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
+ IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
+ IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
+ IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
+ IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
+ IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
+ Alignment = CS->getParamAlignment(AttrIdx);
+}
+
+/// Set the current block to which generated machine instructions will be
+/// appended, and clear the local CSE map.
void FastISel::startNewBlock() {
LocalValueMap.clear();
@@ -105,18 +103,19 @@ void FastISel::startNewBlock() {
LastLocalValue = EmitStartPt;
}
-bool FastISel::LowerArguments() {
+bool FastISel::lowerArguments() {
if (!FuncInfo.CanLowerReturn)
// Fallback to SDISel argument lowering code to deal with sret pointer
// parameter.
return false;
- if (!FastLowerArguments())
+ if (!fastLowerArguments())
return false;
// Enter arguments into ValueMap for uses in non-entry BBs.
for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
- E = FuncInfo.Fn->arg_end(); I != E; ++I) {
+ E = FuncInfo.Fn->arg_end();
+ I != E; ++I) {
DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
assert(VI != LocalValueMap.end() && "Missed an argument?");
FuncInfo.ValueMap[I] = VI->second;
@@ -128,22 +127,30 @@ void FastISel::flushLocalValueMap() {
LocalValueMap.clear();
LastLocalValue = EmitStartPt;
recomputeInsertPt();
+ SavedInsertPt = FuncInfo.InsertPt;
}
-bool FastISel::hasTrivialKill(const Value *V) const {
+bool FastISel::hasTrivialKill(const Value *V) {
// Don't consider constants or arguments to have trivial kills.
const Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return false;
// No-op casts are trivially coalesced by fast-isel.
- if (const CastInst *Cast = dyn_cast<CastInst>(I))
+ if (const auto *Cast = dyn_cast<CastInst>(I))
if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
!hasTrivialKill(Cast->getOperand(0)))
return false;
+ // Even the value might have only one use in the LLVM IR, it is possible that
+ // FastISel might fold the use into another instruction and now there is more
+ // than one use at the Machine Instruction level.
+ unsigned Reg = lookUpRegForValue(V);
+ if (Reg && !MRI.use_empty(Reg))
+ return false;
+
// GEPs with all zero indices are trivially coalesced by fast-isel.
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
+ if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
return false;
@@ -176,7 +183,7 @@ unsigned FastISel::getRegForValue(const Value *V) {
// Look up the value to see if we already have a register for it.
unsigned Reg = lookUpRegForValue(V);
- if (Reg != 0)
+ if (Reg)
return Reg;
// In bottom-up mode, just create the virtual register which will be used
@@ -197,29 +204,24 @@ unsigned FastISel::getRegForValue(const Value *V) {
return Reg;
}
-/// materializeRegForValue - Helper for getRegForValue. This function is
-/// called when the value isn't already available in a register and must
-/// be materialized with new instructions.
-unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
+unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
unsigned Reg = 0;
-
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (const auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getValue().getActiveBits() <= 64)
- Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
- } else if (isa<AllocaInst>(V)) {
- Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
- } else if (isa<ConstantPointerNull>(V)) {
+ Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+ } else if (isa<AllocaInst>(V))
+ Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
+ else if (isa<ConstantPointerNull>(V))
// Translate this as an integer zero so that it can be
// local-CSE'd with actual integer zeros.
- Reg =
- getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext())));
- } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
- if (CF->isNullValue()) {
- Reg = TargetMaterializeFloatZero(CF);
- } else {
+ Reg = getRegForValue(
+ Constant::getNullValue(DL.getIntPtrType(V->getContext())));
+ else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
+ if (CF->isNullValue())
+ Reg = fastMaterializeFloatZero(CF);
+ else
// Try to emit the constant directly.
- Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
- }
+ Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
if (!Reg) {
// Try to emit the constant by using an integer constant with a cast.
@@ -229,22 +231,22 @@ unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
uint64_t x[2];
uint32_t IntBitWidth = IntVT.getSizeInBits();
bool isExact;
- (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
- APFloat::rmTowardZero, &isExact);
+ (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
+ APFloat::rmTowardZero, &isExact);
if (isExact) {
APInt IntVal(IntBitWidth, x);
unsigned IntegerReg =
- getRegForValue(ConstantInt::get(V->getContext(), IntVal));
+ getRegForValue(ConstantInt::get(V->getContext(), IntVal));
if (IntegerReg != 0)
- Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
- IntegerReg, /*Kill=*/false);
+ Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
+ /*Kill=*/false);
}
}
- } else if (const Operator *Op = dyn_cast<Operator>(V)) {
- if (!SelectOperator(Op, Op->getOpcode()))
+ } else if (const auto *Op = dyn_cast<Operator>(V)) {
+ if (!selectOperator(Op, Op->getOpcode()))
if (!isa<Instruction>(Op) ||
- !TargetSelectInstruction(cast<Instruction>(Op)))
+ !fastSelectInstruction(cast<Instruction>(Op)))
return 0;
Reg = lookUpRegForValue(Op);
} else if (isa<UndefValue>(V)) {
@@ -252,15 +254,26 @@ unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
}
+ return Reg;
+}
+
+/// Helper for getRegForValue. This function is called when the value isn't
+/// already available in a register and must be materialized with new
+/// instructions.
+unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
+ unsigned Reg = 0;
+ // Give the target-specific code a try first.
+ if (isa<Constant>(V))
+ Reg = fastMaterializeConstant(cast<Constant>(V));
- // If target-independent code couldn't handle the value, give target-specific
- // code a try.
- if (!Reg && isa<Constant>(V))
- Reg = TargetMaterializeConstant(cast<Constant>(V));
+ // If target-specific code couldn't or didn't want to handle the value, then
+ // give target-independent code a try.
+ if (!Reg)
+ Reg = materializeConstant(V, VT);
// Don't cache constant materializations in the general ValueMap.
// To do so would require tracking what uses they dominate.
- if (Reg != 0) {
+ if (Reg) {
LocalValueMap[V] = Reg;
LastLocalValue = MRI.getVRegDef(Reg);
}
@@ -278,13 +291,7 @@ unsigned FastISel::lookUpRegForValue(const Value *V) {
return LocalValueMap[V];
}
-/// UpdateValueMap - Update the value map to include the new mapping for this
-/// instruction, or insert an extra copy to get the result in a previous
-/// determined register.
-/// NOTE: This is only necessary because we might select a block that uses
-/// a value before we select the block that defines the value. It might be
-/// possible to fix this by selecting blocks in reverse postorder.
-void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
+void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
if (!isa<Instruction>(I)) {
LocalValueMap[I] = Reg;
return;
@@ -297,7 +304,7 @@ void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
else if (Reg != AssignedReg) {
// Arrange for uses of AssignedReg to be replaced by uses of Reg.
for (unsigned i = 0; i < NumRegs; i++)
- FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
+ FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
AssignedReg = Reg;
}
@@ -315,13 +322,12 @@ std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
MVT PtrVT = TLI.getPointerTy();
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(PtrVT)) {
- IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
- IdxN, IdxNIsKill);
+ IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
+ IdxNIsKill);
IdxNIsKill = true;
- }
- else if (IdxVT.bitsGT(PtrVT)) {
- IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
- IdxN, IdxNIsKill);
+ } else if (IdxVT.bitsGT(PtrVT)) {
+ IdxN =
+ fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
IdxNIsKill = true;
}
return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
@@ -343,7 +349,7 @@ void FastISel::recomputeInsertPt() {
void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E) {
- assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
+ assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
while (I != E) {
MachineInstr *Dead = &*I;
++I;
@@ -358,7 +364,7 @@ FastISel::SavePoint FastISel::enterLocalValueArea() {
DebugLoc OldDL = DbgLoc;
recomputeInsertPt();
DbgLoc = DebugLoc();
- SavePoint SP = { OldInsertPt, OldDL };
+ SavePoint SP = {OldInsertPt, OldDL};
return SP;
}
@@ -371,10 +377,7 @@ void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
DbgLoc = OldInsertPt.DL;
}
-/// SelectBinaryOp - Select and emit code for a binary operator instruction,
-/// which has an opcode which directly corresponds to the given ISD opcode.
-///
-bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
+bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
@@ -387,9 +390,8 @@ bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
if (!TLI.isTypeLegal(VT)) {
// MVT::i1 is special. Allow AND, OR, or XOR because they
// don't require additional zeroing, which makes them easy.
- if (VT == MVT::i1 &&
- (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
- ISDOpcode == ISD::XOR))
+ if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
+ ISDOpcode == ISD::XOR))
VT = TLI.getTypeToTransformTo(I->getContext(), VT);
else
return false;
@@ -397,38 +399,36 @@ bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
// Check if the first operand is a constant, and handle it as "ri". At -O0,
// we don't have anything that canonicalizes operand order.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
+ if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
unsigned Op1 = getRegForValue(I->getOperand(1));
- if (Op1 == 0) return false;
-
+ if (!Op1)
+ return false;
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
- unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
- Op1IsKill, CI->getZExtValue(),
- VT.getSimpleVT());
- if (ResultReg == 0) return false;
+ unsigned ResultReg =
+ fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
+ CI->getZExtValue(), VT.getSimpleVT());
+ if (!ResultReg)
+ return false;
// We successfully emitted code for the given LLVM Instruction.
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-
unsigned Op0 = getRegForValue(I->getOperand(0));
- if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
+ if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
return false;
-
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
// Check if the second operand is a constant and handle it appropriately.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t Imm = CI->getZExtValue();
// Transform "sdiv exact X, 8" -> "sra X, 3".
if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
- cast<BinaryOperator>(I)->isExact() &&
- isPowerOf2_64(Imm)) {
+ cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
Imm = Log2_64(Imm);
ISDOpcode = ISD::SRA;
}
@@ -440,54 +440,49 @@ bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
ISDOpcode = ISD::AND;
}
- unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
+ unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
Op0IsKill, Imm, VT.getSimpleVT());
- if (ResultReg == 0) return false;
+ if (!ResultReg)
+ return false;
// We successfully emitted code for the given LLVM Instruction.
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
// Check if the second operand is a constant float.
- if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
- unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
+ if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
+ unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
ISDOpcode, Op0, Op0IsKill, CF);
- if (ResultReg != 0) {
+ if (ResultReg) {
// We successfully emitted code for the given LLVM Instruction.
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
}
unsigned Op1 = getRegForValue(I->getOperand(1));
- if (Op1 == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
return false;
-
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
// Now we have both operands in registers. Emit the instruction.
- unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
- ISDOpcode,
- Op0, Op0IsKill,
- Op1, Op1IsKill);
- if (ResultReg == 0)
+ unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
+ if (!ResultReg)
// Target-specific code wasn't able to find a machine opcode for
// the given ISD opcode and type. Halt "fast" selection and bail.
return false;
// We successfully emitted code for the given LLVM Instruction.
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool FastISel::SelectGetElementPtr(const User *I) {
+bool FastISel::selectGetElementPtr(const User *I) {
unsigned N = getRegForValue(I->getOperand(0));
- if (N == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
-
bool NIsKill = hasTrivialKill(I->getOperand(0));
// Keep a running tab of the total offset to coalesce multiple N = N + Offset
@@ -497,18 +492,18 @@ bool FastISel::SelectGetElementPtr(const User *I) {
uint64_t MaxOffs = 2048;
Type *Ty = I->getOperand(0)->getType();
MVT VT = TLI.getPointerTy();
- for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
- E = I->op_end(); OI != E; ++OI) {
+ for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
+ E = I->op_end();
+ OI != E; ++OI) {
const Value *Idx = *OI;
- if (StructType *StTy = dyn_cast<StructType>(Ty)) {
+ if (auto *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
if (TotalOffs >= MaxOffs) {
- N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
- if (N == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
NIsKill = true;
TotalOffs = 0;
@@ -519,15 +514,15 @@ bool FastISel::SelectGetElementPtr(const User *I) {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
- if (CI->isZero()) continue;
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->isZero())
+ continue;
// N = N + Offset
TotalOffs +=
- DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
if (TotalOffs >= MaxOffs) {
- N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
- if (N == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
NIsKill = true;
TotalOffs = 0;
@@ -535,9 +530,8 @@ bool FastISel::SelectGetElementPtr(const User *I) {
continue;
}
if (TotalOffs) {
- N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
- if (N == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
NIsKill = true;
TotalOffs = 0;
@@ -548,43 +542,37 @@ bool FastISel::SelectGetElementPtr(const User *I) {
std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
unsigned IdxN = Pair.first;
bool IdxNIsKill = Pair.second;
- if (IdxN == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
return false;
if (ElementSize != 1) {
- IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
- if (IdxN == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
+ if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
return false;
IdxNIsKill = true;
}
- N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
- if (N == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
}
}
if (TotalOffs) {
- N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
- if (N == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
+ if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
}
// We successfully emitted code for the given LLVM Instruction.
- UpdateValueMap(I, N);
+ updateValueMap(I, N);
return true;
}
-/// \brief Add a stackmap or patchpoint intrinsic call's live variable operands
-/// to a stackmap or patchpoint machine instruction.
bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
const CallInst *CI, unsigned StartIdx) {
for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
Value *Val = CI->getArgOperand(i);
// Check for constants and encode them with a StackMaps::ConstantOp prefix.
- if (auto *C = dyn_cast<ConstantInt>(Val)) {
+ if (const auto *C = dyn_cast<ConstantInt>(Val)) {
Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
} else if (isa<ConstantPointerNull>(Val)) {
@@ -601,16 +589,15 @@ bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
return false;
} else {
unsigned Reg = getRegForValue(Val);
- if (Reg == 0)
+ if (!Reg)
return false;
Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
}
}
-
return true;
}
-bool FastISel::SelectStackmap(const CallInst *I) {
+bool FastISel::selectStackmap(const CallInst *I) {
// void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
// [live variables...])
assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
@@ -637,7 +624,7 @@ bool FastISel::SelectStackmap(const CallInst *I) {
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
"Expected a constant integer.");
const auto *NumBytes =
- cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
+ cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
// Push live variables for the stack map (skipping the first two arguments
@@ -653,13 +640,13 @@ bool FastISel::SelectStackmap(const CallInst *I) {
const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
for (unsigned i = 0; ScratchRegs[i]; ++i)
Ops.push_back(MachineOperand::CreateReg(
- ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
- /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
+ ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
+ /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
- .addImm(0);
+ .addImm(0);
// Issue STACKMAP.
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
@@ -670,7 +657,8 @@ bool FastISel::SelectStackmap(const CallInst *I) {
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
- .addImm(0).addImm(0);
+ .addImm(0)
+ .addImm(0);
// Inform the Frame Information that we have a stackmap in this function.
FuncInfo.MF->getFrameInfo()->setHasStackMap();
@@ -709,10 +697,10 @@ bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
: CI->getType();
CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
- return LowerCallTo(CLI);
+ return lowerCallTo(CLI);
}
-bool FastISel::SelectPatchpoint(const CallInst *I) {
+bool FastISel::selectPatchpoint(const CallInst *I) {
// void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
// i32 <numBytes>,
// i8* <target>,
@@ -728,7 +716,7 @@ bool FastISel::SelectPatchpoint(const CallInst *I) {
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
"Expected a constant integer.");
const auto *NumArgsVal =
- cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
+ cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
unsigned NumArgs = NumArgsVal->getZExtValue();
// Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
@@ -740,6 +728,7 @@ bool FastISel::SelectPatchpoint(const CallInst *I) {
// For AnyRegCC the arguments are lowered later on manually.
unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
CallLoweringInfo CLI;
+ CLI.setIsPatchPoint();
if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
return false;
@@ -764,12 +753,12 @@ bool FastISel::SelectPatchpoint(const CallInst *I) {
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
"Expected a constant integer.");
const auto *NumBytes =
- cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
+ cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
// Assume that the callee is a constant address or null pointer.
// FIXME: handle function symbols in the future.
- unsigned CalleeAddr;
+ uint64_t CalleeAddr;
if (const auto *C = dyn_cast<IntToPtrInst>(Callee))
CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
@@ -818,8 +807,8 @@ bool FastISel::SelectPatchpoint(const CallInst *I) {
const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
for (unsigned i = 0; ScratchRegs[i]; ++i)
Ops.push_back(MachineOperand::CreateReg(
- ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
- /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
+ ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
+ /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
// Add implicit defs (return values).
for (auto Reg : CLI.InRegs)
@@ -842,7 +831,7 @@ bool FastISel::SelectPatchpoint(const CallInst *I) {
FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
if (CLI.NumResultRegs)
- UpdateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
+ updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
return true;
}
@@ -861,7 +850,7 @@ static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
Attrs);
}
-bool FastISel::LowerCallTo(const CallInst *CI, const char *SymName,
+bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
unsigned NumArgs) {
ImmutableCallSite CS(CI);
@@ -889,10 +878,10 @@ bool FastISel::LowerCallTo(const CallInst *CI, const char *SymName,
CallLoweringInfo CLI;
CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs);
- return LowerCallTo(CLI);
+ return lowerCallTo(CLI);
}
-bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
+bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
// Handle the incoming return values from the call.
CLI.clearIns();
SmallVector<EVT, 4> RetTys;
@@ -901,9 +890,8 @@ bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI);
- bool CanLowerReturn = TLI.CanLowerReturn(CLI.CallConv, *FuncInfo.MF,
- CLI.IsVarArg, Outs,
- CLI.RetTy->getContext());
+ bool CanLowerReturn = TLI.CanLowerReturn(
+ CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
// FIXME: sret demotion isn't supported yet - bail out.
if (!CanLowerReturn)
@@ -932,23 +920,23 @@ bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
CLI.clearOuts();
for (auto &Arg : CLI.getArgs()) {
Type *FinalType = Arg.Ty;
- if (Arg.isByVal)
+ if (Arg.IsByVal)
FinalType = cast<PointerType>(Arg.Ty)->getElementType();
bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
- FinalType, CLI.CallConv, CLI.IsVarArg);
+ FinalType, CLI.CallConv, CLI.IsVarArg);
ISD::ArgFlagsTy Flags;
- if (Arg.isZExt)
+ if (Arg.IsZExt)
Flags.setZExt();
- if (Arg.isSExt)
+ if (Arg.IsSExt)
Flags.setSExt();
- if (Arg.isInReg)
+ if (Arg.IsInReg)
Flags.setInReg();
- if (Arg.isSRet)
+ if (Arg.IsSRet)
Flags.setSRet();
- if (Arg.isByVal)
+ if (Arg.IsByVal)
Flags.setByVal();
- if (Arg.isInAlloca) {
+ if (Arg.IsInAlloca) {
Flags.setInAlloca();
// Set the byval flag for CCAssignFn callbacks that don't know about
// inalloca. This way we can know how many bytes we should've allocated
@@ -957,7 +945,7 @@ bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
// the various CC lowering callbacks.
Flags.setByVal();
}
- if (Arg.isByVal || Arg.isInAlloca) {
+ if (Arg.IsByVal || Arg.IsInAlloca) {
PointerType *Ty = cast<PointerType>(Arg.Ty);
Type *ElementTy = Ty->getElementType();
unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
@@ -969,7 +957,7 @@ bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
Flags.setByValSize(FrameSize);
Flags.setByValAlign(FrameAlign);
}
- if (Arg.isNest)
+ if (Arg.IsNest)
Flags.setNest();
if (NeedsRegBlock)
Flags.setInConsecutiveRegs();
@@ -980,7 +968,7 @@ bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
CLI.OutFlags.push_back(Flags);
}
- if (!FastLowerCall(CLI))
+ if (!fastLowerCall(CLI))
return false;
// Set all unused physreg defs as dead.
@@ -988,12 +976,12 @@ bool FastISel::LowerCallTo(CallLoweringInfo &CLI) {
CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
if (CLI.NumResultRegs && CLI.CS)
- UpdateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
+ updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
return true;
}
-bool FastISel::LowerCall(const CallInst *CI) {
+bool FastISel::lowerCall(const CallInst *CI) {
ImmutableCallSite CS(CI);
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
@@ -1021,19 +1009,19 @@ bool FastISel::LowerCall(const CallInst *CI) {
}
// Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within FastLowerCall.
+ // Target-dependent constraints are checked within fastLowerCall.
bool IsTailCall = CI->isTailCall();
if (IsTailCall && !isInTailCallPosition(CS, TM))
IsTailCall = false;
CallLoweringInfo CLI;
CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
- .setTailCall(IsTailCall);
+ .setTailCall(IsTailCall);
- return LowerCallTo(CLI);
+ return lowerCallTo(CLI);
}
-bool FastISel::SelectCall(const User *I) {
+bool FastISel::selectCall(const User *I) {
const CallInst *Call = cast<CallInst>(I);
// Handle simple inline asms.
@@ -1055,8 +1043,8 @@ bool FastISel::SelectCall(const User *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::INLINEASM))
- .addExternalSymbol(IA->getAsmString().c_str())
- .addImm(ExtraInfo);
+ .addExternalSymbol(IA->getAsmString().c_str())
+ .addImm(ExtraInfo);
return true;
}
@@ -1065,7 +1053,7 @@ bool FastISel::SelectCall(const User *I) {
// Handle intrinsic function calls.
if (const auto *II = dyn_cast<IntrinsicInst>(Call))
- return SelectIntrinsicCall(II);
+ return selectIntrinsicCall(II);
// Usually, it does not make sense to initialize a value,
// make an unrelated function call and use the value, because
@@ -1076,12 +1064,13 @@ bool FastISel::SelectCall(const User *I) {
// since they tend to be inlined.
flushLocalValueMap();
- return LowerCall(Call);
+ return lowerCall(Call);
}
-bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) {
+bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
- default: break;
+ default:
+ break;
// At -O0 we don't care about the lifetime intrinsics.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
@@ -1106,7 +1095,7 @@ bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) {
unsigned Offset = 0;
Optional<MachineOperand> Op;
- if (const Argument *Arg = dyn_cast<Argument>(Address))
+ if (const auto *Arg = dyn_cast<Argument>(Address))
// Some arguments' frame index is recorded during argument lowering.
Offset = FuncInfo.getArgumentFrameIndex(Arg);
if (Offset)
@@ -1137,13 +1126,14 @@ bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) {
Op->setIsDebug(true);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
- DI->getVariable());
+ DI->getVariable(), DI->getExpression());
} else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::DBG_VALUE))
- .addOperand(*Op)
- .addImm(0)
- .addMetadata(DI->getVariable());
+ .addOperand(*Op)
+ .addImm(0)
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
} else {
// We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info.
@@ -1160,26 +1150,34 @@ bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) {
// Currently the optimizer can produce this; insert an undef to
// help debugging. Probably the optimizer should not do this.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(0U).addImm(DI->getOffset())
- .addMetadata(DI->getVariable());
- } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ .addReg(0U)
+ .addImm(DI->getOffset())
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
+ } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addCImm(CI).addImm(DI->getOffset())
- .addMetadata(DI->getVariable());
+ .addCImm(CI)
+ .addImm(DI->getOffset())
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addImm(CI->getZExtValue()).addImm(DI->getOffset())
- .addMetadata(DI->getVariable());
- } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
+ .addImm(CI->getZExtValue())
+ .addImm(DI->getOffset())
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
+ } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addFPImm(CF).addImm(DI->getOffset())
- .addMetadata(DI->getVariable());
+ .addFPImm(CF)
+ .addImm(DI->getOffset())
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
} else if (unsigned Reg = lookUpRegForValue(V)) {
// FIXME: This does not handle register-indirect values at offset 0.
bool IsIndirect = DI->getOffset() != 0;
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect,
- Reg, DI->getOffset(), DI->getVariable());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
+ DI->getOffset(), DI->getVariable(), DI->getExpression());
} else {
// We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info.
@@ -1192,34 +1190,34 @@ bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) {
unsigned long long Res = CI->isZero() ? -1ULL : 0;
Constant *ResCI = ConstantInt::get(II->getType(), Res);
unsigned ResultReg = getRegForValue(ResCI);
- if (ResultReg == 0)
+ if (!ResultReg)
return false;
- UpdateValueMap(II, ResultReg);
+ updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::expect: {
unsigned ResultReg = getRegForValue(II->getArgOperand(0));
- if (ResultReg == 0)
+ if (!ResultReg)
return false;
- UpdateValueMap(II, ResultReg);
+ updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::experimental_stackmap:
- return SelectStackmap(II);
+ return selectStackmap(II);
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
- return SelectPatchpoint(II);
+ return selectPatchpoint(II);
}
- return FastLowerIntrinsicCall(II);
+ return fastLowerIntrinsicCall(II);
}
-bool FastISel::SelectCast(const User *I, unsigned Opcode) {
+bool FastISel::selectCast(const User *I, unsigned Opcode) {
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
- if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
- DstVT == MVT::Other || !DstVT.isSimple())
+ if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
+ !DstVT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
@@ -1238,24 +1236,22 @@ bool FastISel::SelectCast(const User *I, unsigned Opcode) {
bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
- unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
- DstVT.getSimpleVT(),
- Opcode,
- InputReg, InputRegIsKill);
+ unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
+ Opcode, InputReg, InputRegIsKill);
if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool FastISel::SelectBitCast(const User *I) {
+bool FastISel::selectBitCast(const User *I) {
// If the bitcast doesn't change the type, just use the operand value.
if (I->getType() == I->getOperand(0)->getType()) {
unsigned Reg = getRegForValue(I->getOperand(0));
- if (Reg == 0)
+ if (!Reg)
return false;
- UpdateValueMap(I, Reg);
+ updateValueMap(I, Reg);
return true;
}
@@ -1270,17 +1266,15 @@ bool FastISel::SelectBitCast(const User *I) {
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DstVT = DstEVT.getSimpleVT();
unsigned Op0 = getRegForValue(I->getOperand(0));
- if (Op0 == 0)
- // Unhandled operand. Halt "fast" selection and bail.
+ if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
return false;
-
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
// First, try to perform the bitcast by inserting a reg-reg copy.
unsigned ResultReg = 0;
if (SrcVT == DstVT) {
- const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
- const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
+ const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
+ const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
// Don't attempt a cross-class copy. It will likely fail.
if (SrcClass == DstClass) {
ResultReg = createResultReg(DstClass);
@@ -1291,28 +1285,27 @@ bool FastISel::SelectBitCast(const User *I) {
// If the reg-reg copy failed, select a BITCAST opcode.
if (!ResultReg)
- ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
+ ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool
-FastISel::SelectInstruction(const Instruction *I) {
+bool FastISel::selectInstruction(const Instruction *I) {
// Just before the terminator instruction, insert instructions to
// feed PHI nodes in successor blocks.
if (isa<TerminatorInst>(I))
- if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
+ if (!handlePHINodesInSuccessorBlocks(I->getParent()))
return false;
DbgLoc = I->getDebugLoc();
- MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
+ SavedInsertPt = FuncInfo.InsertPt;
- if (const CallInst *Call = dyn_cast<CallInst>(I)) {
+ if (const auto *Call = dyn_cast<CallInst>(I)) {
const Function *F = Call->getCalledFunction();
LibFunc::Func Func;
@@ -1330,40 +1323,39 @@ FastISel::SelectInstruction(const Instruction *I) {
}
// First, try doing target-independent selection.
- if (SelectOperator(I, I->getOpcode())) {
- ++NumFastIselSuccessIndependent;
- DbgLoc = DebugLoc();
- return true;
- }
- // Remove dead code. However, ignore call instructions since we've flushed
- // the local value map and recomputed the insert point.
- if (!isa<CallInst>(I)) {
+ if (!SkipTargetIndependentISel) {
+ if (selectOperator(I, I->getOpcode())) {
+ ++NumFastIselSuccessIndependent;
+ DbgLoc = DebugLoc();
+ return true;
+ }
+ // Remove dead code.
recomputeInsertPt();
if (SavedInsertPt != FuncInfo.InsertPt)
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
+ SavedInsertPt = FuncInfo.InsertPt;
}
-
// Next, try calling the target to attempt to handle the instruction.
- SavedInsertPt = FuncInfo.InsertPt;
- if (TargetSelectInstruction(I)) {
+ if (fastSelectInstruction(I)) {
++NumFastIselSuccessTarget;
DbgLoc = DebugLoc();
return true;
}
- // Check for dead code and remove as necessary.
+ // Remove dead code.
recomputeInsertPt();
if (SavedInsertPt != FuncInfo.InsertPt)
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
DbgLoc = DebugLoc();
+ // Undo phi node updates, because they will be added again by SelectionDAG.
+ if (isa<TerminatorInst>(I))
+ FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
return false;
}
-/// FastEmitBranch - Emit an unconditional branch to the given block,
-/// unless it is the immediate (fall-through) successor, and update
-/// the CFG.
-void
-FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
+/// Emit an unconditional branch to the given block, unless it is the immediate
+/// (fall-through) successor, and update the CFG.
+void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
// For more accurate line information if this is the only instruction
@@ -1381,54 +1373,51 @@ FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
FuncInfo.MBB->addSuccessor(MSucc, BranchWeight);
}
-/// SelectFNeg - Emit an FNeg operation.
-///
-bool
-FastISel::SelectFNeg(const User *I) {
+/// Emit an FNeg operation.
+bool FastISel::selectFNeg(const User *I) {
unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
- if (OpReg == 0) return false;
-
+ if (!OpReg)
+ return false;
bool OpRegIsKill = hasTrivialKill(I);
// If the target has ISD::FNEG, use it.
EVT VT = TLI.getValueType(I->getType());
- unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
- ISD::FNEG, OpReg, OpRegIsKill);
- if (ResultReg != 0) {
- UpdateValueMap(I, ResultReg);
+ unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
+ OpReg, OpRegIsKill);
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
return true;
}
// Bitcast the value to integer, twiddle the sign bit with xor,
// and then bitcast it back to floating-point.
- if (VT.getSizeInBits() > 64) return false;
+ if (VT.getSizeInBits() > 64)
+ return false;
EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
if (!TLI.isTypeLegal(IntVT))
return false;
- unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
+ unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
ISD::BITCAST, OpReg, OpRegIsKill);
- if (IntReg == 0)
+ if (!IntReg)
return false;
- unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
- IntReg, /*Kill=*/true,
- UINT64_C(1) << (VT.getSizeInBits()-1),
- IntVT.getSimpleVT());
- if (IntResultReg == 0)
+ unsigned IntResultReg = fastEmit_ri_(
+ IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
+ UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
+ if (!IntResultReg)
return false;
- ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
- ISD::BITCAST, IntResultReg, /*Kill=*/true);
- if (ResultReg == 0)
+ ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
+ IntResultReg, /*IsKill=*/true);
+ if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool
-FastISel::SelectExtractValue(const User *U) {
+bool FastISel::selectExtractValue(const User *U) {
const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
if (!EVI)
return false;
@@ -1464,55 +1453,54 @@ FastISel::SelectExtractValue(const User *U) {
for (unsigned i = 0; i < VTIndex; i++)
ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
- UpdateValueMap(EVI, ResultReg);
+ updateValueMap(EVI, ResultReg);
return true;
}
-bool
-FastISel::SelectOperator(const User *I, unsigned Opcode) {
+bool FastISel::selectOperator(const User *I, unsigned Opcode) {
switch (Opcode) {
case Instruction::Add:
- return SelectBinaryOp(I, ISD::ADD);
+ return selectBinaryOp(I, ISD::ADD);
case Instruction::FAdd:
- return SelectBinaryOp(I, ISD::FADD);
+ return selectBinaryOp(I, ISD::FADD);
case Instruction::Sub:
- return SelectBinaryOp(I, ISD::SUB);
+ return selectBinaryOp(I, ISD::SUB);
case Instruction::FSub:
// FNeg is currently represented in LLVM IR as a special case of FSub.
if (BinaryOperator::isFNeg(I))
- return SelectFNeg(I);
- return SelectBinaryOp(I, ISD::FSUB);
+ return selectFNeg(I);
+ return selectBinaryOp(I, ISD::FSUB);
case Instruction::Mul:
- return SelectBinaryOp(I, ISD::MUL);
+ return selectBinaryOp(I, ISD::MUL);
case Instruction::FMul:
- return SelectBinaryOp(I, ISD::FMUL);
+ return selectBinaryOp(I, ISD::FMUL);
case Instruction::SDiv:
- return SelectBinaryOp(I, ISD::SDIV);
+ return selectBinaryOp(I, ISD::SDIV);
case Instruction::UDiv:
- return SelectBinaryOp(I, ISD::UDIV);
+ return selectBinaryOp(I, ISD::UDIV);
case Instruction::FDiv:
- return SelectBinaryOp(I, ISD::FDIV);
+ return selectBinaryOp(I, ISD::FDIV);
case Instruction::SRem:
- return SelectBinaryOp(I, ISD::SREM);
+ return selectBinaryOp(I, ISD::SREM);
case Instruction::URem:
- return SelectBinaryOp(I, ISD::UREM);
+ return selectBinaryOp(I, ISD::UREM);
case Instruction::FRem:
- return SelectBinaryOp(I, ISD::FREM);
+ return selectBinaryOp(I, ISD::FREM);
case Instruction::Shl:
- return SelectBinaryOp(I, ISD::SHL);
+ return selectBinaryOp(I, ISD::SHL);
case Instruction::LShr:
- return SelectBinaryOp(I, ISD::SRL);
+ return selectBinaryOp(I, ISD::SRL);
case Instruction::AShr:
- return SelectBinaryOp(I, ISD::SRA);
+ return selectBinaryOp(I, ISD::SRA);
case Instruction::And:
- return SelectBinaryOp(I, ISD::AND);
+ return selectBinaryOp(I, ISD::AND);
case Instruction::Or:
- return SelectBinaryOp(I, ISD::OR);
+ return selectBinaryOp(I, ISD::OR);
case Instruction::Xor:
- return SelectBinaryOp(I, ISD::XOR);
+ return selectBinaryOp(I, ISD::XOR);
case Instruction::GetElementPtr:
- return SelectGetElementPtr(I);
+ return selectGetElementPtr(I);
case Instruction::Br: {
const BranchInst *BI = cast<BranchInst>(I);
@@ -1520,7 +1508,7 @@ FastISel::SelectOperator(const User *I, unsigned Opcode) {
if (BI->isUnconditional()) {
const BasicBlock *LLVMSucc = BI->getSuccessor(0);
MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
- FastEmitBranch(MSucc, BI->getDebugLoc());
+ fastEmitBranch(MSucc, BI->getDebugLoc());
return true;
}
@@ -1531,7 +1519,7 @@ FastISel::SelectOperator(const User *I, unsigned Opcode) {
case Instruction::Unreachable:
if (TM.Options.TrapUnreachable)
- return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
+ return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
else
return true;
@@ -1544,38 +1532,39 @@ FastISel::SelectOperator(const User *I, unsigned Opcode) {
return false;
case Instruction::Call:
- return SelectCall(I);
+ return selectCall(I);
case Instruction::BitCast:
- return SelectBitCast(I);
+ return selectBitCast(I);
case Instruction::FPToSI:
- return SelectCast(I, ISD::FP_TO_SINT);
+ return selectCast(I, ISD::FP_TO_SINT);
case Instruction::ZExt:
- return SelectCast(I, ISD::ZERO_EXTEND);
+ return selectCast(I, ISD::ZERO_EXTEND);
case Instruction::SExt:
- return SelectCast(I, ISD::SIGN_EXTEND);
+ return selectCast(I, ISD::SIGN_EXTEND);
case Instruction::Trunc:
- return SelectCast(I, ISD::TRUNCATE);
+ return selectCast(I, ISD::TRUNCATE);
case Instruction::SIToFP:
- return SelectCast(I, ISD::SINT_TO_FP);
+ return selectCast(I, ISD::SINT_TO_FP);
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
if (DstVT.bitsGT(SrcVT))
- return SelectCast(I, ISD::ZERO_EXTEND);
+ return selectCast(I, ISD::ZERO_EXTEND);
if (DstVT.bitsLT(SrcVT))
- return SelectCast(I, ISD::TRUNCATE);
+ return selectCast(I, ISD::TRUNCATE);
unsigned Reg = getRegForValue(I->getOperand(0));
- if (Reg == 0) return false;
- UpdateValueMap(I, Reg);
+ if (!Reg)
+ return false;
+ updateValueMap(I, Reg);
return true;
}
case Instruction::ExtractValue:
- return SelectExtractValue(I);
+ return selectExtractValue(I);
case Instruction::PHI:
llvm_unreachable("FastISel shouldn't visit PHI nodes!");
@@ -1586,91 +1575,72 @@ FastISel::SelectOperator(const User *I, unsigned Opcode) {
}
}
-FastISel::FastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo)
- : FuncInfo(funcInfo),
- MF(funcInfo.MF),
- MRI(FuncInfo.MF->getRegInfo()),
- MFI(*FuncInfo.MF->getFrameInfo()),
- MCP(*FuncInfo.MF->getConstantPool()),
- TM(FuncInfo.MF->getTarget()),
- DL(*TM.getDataLayout()),
- TII(*TM.getInstrInfo()),
- TLI(*TM.getTargetLowering()),
- TRI(*TM.getRegisterInfo()),
- LibInfo(libInfo) {
-}
+FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo,
+ bool SkipTargetIndependentISel)
+ : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
+ MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
+ TM(FuncInfo.MF->getTarget()), DL(*MF->getSubtarget().getDataLayout()),
+ TII(*MF->getSubtarget().getInstrInfo()),
+ TLI(*MF->getSubtarget().getTargetLowering()),
+ TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
+ SkipTargetIndependentISel(SkipTargetIndependentISel) {}
FastISel::~FastISel() {}
-bool FastISel::FastLowerArguments() {
- return false;
-}
+bool FastISel::fastLowerArguments() { return false; }
-bool FastISel::FastLowerCall(CallLoweringInfo &/*CLI*/) {
- return false;
-}
+bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
-bool FastISel::FastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
+bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
return false;
}
-unsigned FastISel::FastEmit_(MVT, MVT,
- unsigned) {
- return 0;
-}
+unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
-unsigned FastISel::FastEmit_r(MVT, MVT,
- unsigned,
- unsigned /*Op0*/, bool /*Op0IsKill*/) {
+unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
+ bool /*Op0IsKill*/) {
return 0;
}
-unsigned FastISel::FastEmit_rr(MVT, MVT,
- unsigned,
- unsigned /*Op0*/, bool /*Op0IsKill*/,
- unsigned /*Op1*/, bool /*Op1IsKill*/) {
+unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
+ bool /*Op0IsKill*/, unsigned /*Op1*/,
+ bool /*Op1IsKill*/) {
return 0;
}
-unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
+unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
return 0;
}
-unsigned FastISel::FastEmit_f(MVT, MVT,
- unsigned, const ConstantFP * /*FPImm*/) {
+unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
+ const ConstantFP * /*FPImm*/) {
return 0;
}
-unsigned FastISel::FastEmit_ri(MVT, MVT,
- unsigned,
- unsigned /*Op0*/, bool /*Op0IsKill*/,
- uint64_t /*Imm*/) {
+unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
+ bool /*Op0IsKill*/, uint64_t /*Imm*/) {
return 0;
}
-unsigned FastISel::FastEmit_rf(MVT, MVT,
- unsigned,
- unsigned /*Op0*/, bool /*Op0IsKill*/,
+unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
+ bool /*Op0IsKill*/,
const ConstantFP * /*FPImm*/) {
return 0;
}
-unsigned FastISel::FastEmit_rri(MVT, MVT,
- unsigned,
- unsigned /*Op0*/, bool /*Op0IsKill*/,
- unsigned /*Op1*/, bool /*Op1IsKill*/,
- uint64_t /*Imm*/) {
+unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
+ bool /*Op0IsKill*/, unsigned /*Op1*/,
+ bool /*Op1IsKill*/, uint64_t /*Imm*/) {
return 0;
}
-/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
-/// to emit an instruction with an immediate operand using FastEmit_ri.
+/// This method is a wrapper of fastEmit_ri. It first tries to emit an
+/// instruction with an immediate operand using fastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
-/// FastEmit_rr instead.
-unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
- unsigned Op0, bool Op0IsKill,
- uint64_t Imm, MVT ImmType) {
+/// fastEmit_rr instead.
+unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
+ bool Op0IsKill, uint64_t Imm, MVT ImmType) {
// If this is a multiply by a power of two, emit this as a shift left.
if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
Opcode = ISD::SHL;
@@ -1688,30 +1658,29 @@ unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
return 0;
// First check if immediate type is legal. If not, we can't use the ri form.
- unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
- if (ResultReg != 0)
+ unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
+ if (ResultReg)
return ResultReg;
- unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
- if (MaterialReg == 0) {
+ unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
+ if (!MaterialReg) {
// This is a bit ugly/slow, but failing here means falling out of
// fast-isel, which would be very slow.
- IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
- VT.getSizeInBits());
+ IntegerType *ITy =
+ IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
- assert (MaterialReg != 0 && "Unable to materialize imm.");
- if (MaterialReg == 0) return 0;
+ if (!MaterialReg)
+ return 0;
}
- return FastEmit_rr(VT, VT, Opcode,
- Op0, Op0IsKill,
- MaterialReg, /*Kill=*/true);
+ return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg,
+ /*IsKill=*/true);
}
-unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
+unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
return MRI.createVirtualRegister(RC);
}
-unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II,
- unsigned Op, unsigned OpNum) {
+unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
+ unsigned OpNum) {
if (TargetRegisterInfo::isVirtualRegister(Op)) {
const TargetRegisterClass *RegClass =
TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
@@ -1727,8 +1696,8 @@ unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II,
return Op;
}
-unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
- const TargetRegisterClass* RC) {
+unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
@@ -1736,9 +1705,9 @@ unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill) {
+unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1746,10 +1715,10 @@ unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill);
+ .addReg(Op0, getKillRegState(Op0IsKill));
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill);
+ .addReg(Op0, getKillRegState(Op0IsKill));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
@@ -1757,10 +1726,10 @@ unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- unsigned Op1, bool Op1IsKill) {
+unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill, unsigned Op1,
+ bool Op1IsKill) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1769,23 +1738,23 @@ unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill));
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- unsigned Op1, bool Op1IsKill,
- unsigned Op2, bool Op2IsKill) {
+unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill, unsigned Op1,
+ bool Op1IsKill, unsigned Op2,
+ bool Op2IsKill) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1795,48 +1764,46 @@ unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill)
- .addReg(Op2, Op2IsKill * RegState::Kill);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill))
+ .addReg(Op2, getKillRegState(Op2IsKill));
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill)
- .addReg(Op2, Op2IsKill * RegState::Kill);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill))
+ .addReg(Op2, getKillRegState(Op2IsKill));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- uint64_t Imm) {
+unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill, uint64_t Imm) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
- RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF);
- MRI.constrainRegClass(Op0, RC);
+ Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addImm(Imm);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addImm(Imm);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- uint64_t Imm1, uint64_t Imm2) {
+unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill, uint64_t Imm1,
+ uint64_t Imm2) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1844,24 +1811,23 @@ unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addImm(Imm1)
- .addImm(Imm2);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(Imm1)
+ .addImm(Imm2);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addImm(Imm1)
- .addImm(Imm2);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(Imm1)
+ .addImm(Imm2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- const ConstantFP *FPImm) {
+unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill, const ConstantFP *FPImm) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1869,23 +1835,22 @@ unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addFPImm(FPImm);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addFPImm(FPImm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addFPImm(FPImm);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addFPImm(FPImm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- unsigned Op1, bool Op1IsKill,
- uint64_t Imm) {
+unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, unsigned Op0,
+ bool Op0IsKill, unsigned Op1,
+ bool Op1IsKill, uint64_t Imm) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1894,25 +1859,25 @@ unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill)
- .addImm(Imm);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill))
+ .addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill)
- .addImm(Imm);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill))
+ .addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
+unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
- unsigned Op0, bool Op0IsKill,
- unsigned Op1, bool Op1IsKill,
- uint64_t Imm1, uint64_t Imm2) {
+ unsigned Op0, bool Op0IsKill, unsigned Op1,
+ bool Op1IsKill, uint64_t Imm1,
+ uint64_t Imm2) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
unsigned ResultReg = createResultReg(RC);
@@ -1921,28 +1886,30 @@ unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill)
- .addImm(Imm1).addImm(Imm2);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill))
+ .addImm(Imm1)
+ .addImm(Imm2);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
- .addReg(Op0, Op0IsKill * RegState::Kill)
- .addReg(Op1, Op1IsKill * RegState::Kill)
- .addImm(Imm1).addImm(Imm2);
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addReg(Op1, getKillRegState(Op1IsKill))
+ .addImm(Imm1)
+ .addImm(Imm2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- uint64_t Imm) {
+unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
@@ -1951,41 +1918,41 @@ unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
- const TargetRegisterClass *RC,
- uint64_t Imm1, uint64_t Imm2) {
+unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC, uint64_t Imm1,
+ uint64_t Imm2) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
- .addImm(Imm1).addImm(Imm2);
+ .addImm(Imm1)
+ .addImm(Imm2);
else {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1)
+ .addImm(Imm2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
-unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
- unsigned Op0, bool Op0IsKill,
- uint32_t Idx) {
+unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
+ bool Op0IsKill, uint32_t Idx) {
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
"Cannot yet extract from physregs");
const TargetRegisterClass *RC = MRI.getRegClass(Op0);
MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
- DbgLoc, TII.get(TargetOpcode::COPY), ResultReg)
- .addReg(Op0, getKillRegState(Op0IsKill), Idx);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
return ResultReg;
}
-/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
-/// with all but the least significant bit set to zero.
-unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
- return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
+/// Emit MachineInstrs to compute the value of Op with all but the least
+/// significant bit set to zero.
+unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
+ return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
}
/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
@@ -1994,22 +1961,24 @@ unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
/// nodes as input. We cannot just directly add them, because expansion
/// might result in multiple MBB's for one BB. As such, the start of the
/// BB might correspond to a different MBB than the end.
-bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
+bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
const TerminatorInst *TI = LLVMBB->getTerminator();
SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
+ FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
// Check successor nodes' PHI nodes that expect a constant to be available
// from this block.
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
const BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
+ if (!isa<PHINode>(SuccBB->begin()))
+ continue;
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
// If this terminator has multiple identical successors (common for
// switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
+ if (!SuccsHandled.insert(SuccMBB).second)
+ continue;
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
@@ -2017,10 +1986,11 @@ bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
// nodes and Machine PHI nodes, but the incoming operands have not been
// emitted yet.
for (BasicBlock::const_iterator I = SuccBB->begin();
- const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ const auto *PN = dyn_cast<PHINode>(I); ++I) {
// Ignore dead phi's.
- if (PN->use_empty()) continue;
+ if (PN->use_empty())
+ continue;
// Only handle legal types. Two interesting things to note here. First,
// by bailing out early, we may leave behind some dead instructions,
@@ -2031,10 +2001,8 @@ bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
// Handle integer promotions, though, because they're common and easy.
- if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
- VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
- else {
- FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
+ if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
+ FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
return false;
}
}
@@ -2044,12 +2012,12 @@ bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
// Set the DebugLoc for the copy. Prefer the location of the operand
// if there is one; use the location of the PHI otherwise.
DbgLoc = PN->getDebugLoc();
- if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
+ if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
DbgLoc = Inst->getDebugLoc();
unsigned Reg = getRegForValue(PHIOp);
- if (Reg == 0) {
- FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
+ if (!Reg) {
+ FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
return false;
}
FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
@@ -2062,17 +2030,17 @@ bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
assert(LI->hasOneUse() &&
- "tryToFoldLoad expected a LoadInst with a single use");
+ "tryToFoldLoad expected a LoadInst with a single use");
// We know that the load has a single use, but don't know what it is. If it
// isn't one of the folded instructions, then we can't succeed here. Handle
// this by scanning the single-use users of the load until we get to FoldInst.
- unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
+ unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
const Instruction *TheUser = LI->user_back();
- while (TheUser != FoldInst && // Scan up until we find FoldInst.
+ while (TheUser != FoldInst && // Scan up until we find FoldInst.
// Stay in the right block.
TheUser->getParent() == FoldInst->getParent() &&
- --MaxUsers) { // Don't scan too far.
+ --MaxUsers) { // Don't scan too far.
// If there are multiple or no uses of this instruction, then bail out.
if (!TheUser->hasOneUse())
return false;
@@ -2094,7 +2062,7 @@ bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
// then there actually was no reference to it. Perhaps the load is referenced
// by a dead instruction.
unsigned LoadReg = getRegForValue(LI);
- if (LoadReg == 0)
+ if (!LoadReg)
return false;
// We can't fold if this vreg has no uses or more than one use. Multiple uses
@@ -2152,19 +2120,20 @@ FastISel::createMachineMemOperandFor(const Instruction *I) const {
Flags = MachineMemOperand::MOStore;
Ptr = SI->getPointerOperand();
ValTy = SI->getValueOperand()->getType();
- } else {
+ } else
return nullptr;
- }
- bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr;
- bool IsInvariant = I->getMetadata("invariant.load") != nullptr;
- const MDNode *TBAAInfo = I->getMetadata(LLVMContext::MD_tbaa);
+ bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
+ bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
- if (Alignment == 0) // Ensure that codegen never sees alignment 0.
+ AAMDNodes AAInfo;
+ I->getAAMetadata(AAInfo);
+
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0.
Alignment = DL.getABITypeAlignment(ValTy);
- unsigned Size = TM.getDataLayout()->getTypeStoreSize(ValTy);
+ unsigned Size = DL.getTypeStoreSize(ValTy);
if (IsVolatile)
Flags |= MachineMemOperand::MOVolatile;
@@ -2174,5 +2143,45 @@ FastISel::createMachineMemOperandFor(const Instruction *I) const {
Flags |= MachineMemOperand::MOInvariant;
return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
- Alignment, TBAAInfo, Ranges);
+ Alignment, AAInfo, Ranges);
+}
+
+CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
+ // If both operands are the same, then try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (CI->getOperand(0) != CI->getOperand(1))
+ return Predicate;
+
+ switch (Predicate) {
+ default: llvm_unreachable("Invalid predicate!");
+ case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
+ case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
+ case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
+
+ case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
+ case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
+ case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
+ }
+
+ return Predicate;
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
index ae124e8..19aca6e 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
@@ -36,6 +36,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -55,58 +56,71 @@ static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
return false;
}
+static ISD::NodeType getPreferredExtendForValue(const Value *V) {
+ // For the users of the source value being used for compare instruction, if
+ // the number of signed predicate is greater than unsigned predicate, we
+ // prefer to use SIGN_EXTEND.
+ //
+ // With this optimization, we would be able to reduce some redundant sign or
+ // zero extension instruction, and eventually more machine CSE opportunities
+ // can be exposed.
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+ unsigned NumOfSigned = 0, NumOfUnsigned = 0;
+ for (const User *U : V->users()) {
+ if (const auto *CI = dyn_cast<CmpInst>(U)) {
+ NumOfSigned += CI->isSigned();
+ NumOfUnsigned += CI->isUnsigned();
+ }
+ }
+ if (NumOfSigned > NumOfUnsigned)
+ ExtendKind = ISD::SIGN_EXTEND;
+
+ return ExtendKind;
+}
+
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
SelectionDAG *DAG) {
- const TargetLowering *TLI = TM.getTargetLowering();
-
Fn = &fn;
MF = &mf;
+ TLI = MF->getSubtarget().getTargetLowering();
RegInfo = &MF->getRegInfo();
// Check whether the function can return without sret-demotion.
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
- Fn->isVarArg(),
- Outs, Fn->getContext());
+ Fn->isVarArg(), Outs, Fn->getContext());
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
Function::const_iterator BB = Fn->begin(), EB = Fn->end();
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
- // Don't fold inalloca allocas or other dynamic allocas into the initial
- // stack frame allocation, even if they are in the entry block.
- if (!AI->isStaticAlloca())
- continue;
-
- if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
- Type *Ty = AI->getAllocatedType();
- uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
- AI->getAlignment());
-
- TySize *= CUI->getZExtValue(); // Get total allocated size.
- if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
-
- StaticAllocaMap[AI] =
- MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
- }
- }
-
for (; BB != EB; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
- // Look for dynamic allocas.
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
- if (!AI->isStaticAlloca()) {
+ // Static allocas can be folded into the initial stack frame adjustment.
+ if (AI->isStaticAlloca()) {
+ const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
+ Type *Ty = AI->getAllocatedType();
+ uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
+ unsigned Align =
+ std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
+ AI->getAlignment());
+
+ TySize *= CUI->getZExtValue(); // Get total allocated size.
+ if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
+
+ StaticAllocaMap[AI] =
+ MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
+
+ } else {
unsigned Align = std::max(
(unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
AI->getAllocatedType()),
AI->getAlignment());
- unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
+ unsigned StackAlign =
+ MF->getSubtarget().getFrameLowering()->getStackAlignment();
if (Align <= StackAlign)
Align = 0;
// Inform the Frame Information that we have variable-sized objects.
@@ -126,9 +140,9 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
if (Op.Type == InlineAsm::isClobber) {
// Clobbers don't have SDValue operands, hence SDValue().
TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
- std::pair<unsigned, const TargetRegisterClass*> PhysReg =
- TLI->getRegForInlineAsmConstraint(Op.ConstraintCode,
- Op.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass *> PhysReg =
+ TLI->getRegForInlineAsmConstraint(Op.ConstraintCode,
+ Op.ConstraintVT);
if (PhysReg.first == SP)
MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
}
@@ -136,6 +150,21 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
}
}
+ // Look for calls to the @llvm.va_start intrinsic. We can omit some
+ // prologue boilerplate for variadic functions that don't examine their
+ // arguments.
+ if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
+ if (II->getIntrinsicID() == Intrinsic::vastart)
+ MF->getFrameInfo()->setHasVAStart(true);
+ }
+
+ // If we have a musttail call in a variadic funciton, we need to ensure we
+ // forward implicit register parameters.
+ if (const auto *CI = dyn_cast<CallInst>(I)) {
+ if (CI->isMustTailCall() && Fn->isVarArg())
+ MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
+ }
+
// Mark values used outside their block as exported, by allocating
// a virtual register for them.
if (isUsedOutsideOfDefiningBlock(I))
@@ -166,13 +195,16 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
StaticAllocaMap.find(AI);
if (SI != StaticAllocaMap.end()) { // Check for VLAs.
int FI = SI->second;
- MMI.setVariableDbgInfo(DI->getVariable(),
+ MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
FI, DI->getDebugLoc());
}
}
}
}
}
+
+ // Decide the preferred extend type for a value.
+ PreferredExtendType[I] = getPreferredExtendForValue(I);
}
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
@@ -208,7 +240,7 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
EVT VT = ValueVTs[vti];
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
PHIReg += NumRegisters;
@@ -241,12 +273,14 @@ void FunctionLoweringInfo::clear() {
ArgDbgValues.clear();
ByValArgFrameIndexMap.clear();
RegFixups.clear();
+ StatepointStackSlots.clear();
+ PreferredExtendType.clear();
}
/// CreateReg - Allocate a single virtual register for the given type.
unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
- return RegInfo->
- createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT));
+ return RegInfo->createVirtualRegister(
+ MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
}
/// CreateRegs - Allocate the appropriate number of virtual registers of
@@ -257,7 +291,7 @@ unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
/// will assign registers for each member or element.
///
unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, Ty, ValueVTs);
@@ -306,8 +340,6 @@ void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
if (!Ty->isIntegerTy() || Ty->isVectorTy())
return;
- const TargetLowering *TLI = TM.getTargetLowering();
-
SmallVector<EVT, 1> ValueVTs;
ComputeValueVTs(*TLI, Ty, ValueVTs);
assert(ValueVTs.size() == 1 &&
@@ -452,7 +484,7 @@ void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
// Gather all the type infos for this landing pad and pass them along to
// MachineModuleInfo.
- std::vector<const GlobalVariable *> TyInfo;
+ std::vector<const GlobalValue *> TyInfo;
unsigned N = I.getNumArgOperands();
for (unsigned i = N - 1; i > 1; --i) {
@@ -510,14 +542,14 @@ void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
Value *Val = I.getClause(i - 1);
if (I.isCatch(i - 1)) {
MMI.addCatchTypeInfo(MBB,
- dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
+ dyn_cast<GlobalValue>(Val->stripPointerCasts()));
} else {
// Add filters in a list.
Constant *CVal = cast<Constant>(Val);
- SmallVector<const GlobalVariable*, 4> FilterList;
+ SmallVector<const GlobalValue*, 4> FilterList;
for (User::op_iterator
II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
- FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
+ FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
MMI.addFilterTypeInfo(MBB, FilterList);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
index 7c124b8..a65f33e 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
@@ -27,7 +27,7 @@
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "instr-emitter"
@@ -265,12 +265,16 @@ void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
MIB.addReg(VRBase, RegState::Define);
}
- SDValue Op(Node, i);
- if (IsClone)
- VRBaseMap.erase(Op);
- bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
- (void)isNew; // Silence compiler warning.
- assert(isNew && "Node emitted out of order - early");
+ // If this def corresponds to a result of the SDNode insert the VRBase into
+ // the lookup map.
+ if (i < NumResults) {
+ SDValue Op(Node, i);
+ if (IsClone)
+ VRBaseMap.erase(Op);
+ bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
+ (void)isNew; // Silence compiler warning.
+ assert(isNew && "Node emitted out of order - early");
+ }
}
}
@@ -402,10 +406,10 @@ void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
Type *Type = CP->getType();
// MachineConstantPool wants an explicit alignment.
if (Align == 0) {
- Align = TM->getDataLayout()->getPrefTypeAlignment(Type);
+ Align = MF->getSubtarget().getDataLayout()->getPrefTypeAlignment(Type);
if (Align == 0) {
// Alignment of vector types. FIXME!
- Align = TM->getDataLayout()->getTypeAllocSize(Type);
+ Align = MF->getSubtarget().getDataLayout()->getTypeAllocSize(Type);
}
}
@@ -643,14 +647,18 @@ MachineInstr *
InstrEmitter::EmitDbgValue(SDDbgValue *SD,
DenseMap<SDValue, unsigned> &VRBaseMap) {
uint64_t Offset = SD->getOffset();
- MDNode* MDPtr = SD->getMDPtr();
+ MDNode *Var = SD->getVariable();
+ MDNode *Expr = SD->getExpression();
DebugLoc DL = SD->getDebugLoc();
if (SD->getKind() == SDDbgValue::FRAMEIX) {
// Stack address; this needs to be lowered in target-dependent fashion.
// EmitTargetCodeForFrameDebugValue is responsible for allocation.
return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
- .addFrameIndex(SD->getFrameIx()).addImm(Offset).addMetadata(MDPtr);
+ .addFrameIndex(SD->getFrameIx())
+ .addImm(Offset)
+ .addMetadata(Var)
+ .addMetadata(Expr);
}
// Otherwise, we're going to create an instruction here.
const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
@@ -696,7 +704,8 @@ InstrEmitter::EmitDbgValue(SDDbgValue *SD,
MIB.addReg(0U, RegState::Debug);
}
- MIB.addMetadata(MDPtr);
+ MIB.addMetadata(Var);
+ MIB.addMetadata(Expr);
return &*MIB;
}
@@ -859,9 +868,7 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
// Run post-isel target hook to adjust this instruction if needed.
-#ifdef NDEBUG
if (II.hasPostISelHook())
-#endif
TLI->AdjustInstrPostInstrSelection(MIB, Node);
}
@@ -1013,11 +1020,8 @@ EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
/// at the given position in the given block.
InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
MachineBasicBlock::iterator insertpos)
- : MF(mbb->getParent()),
- MRI(&MF->getRegInfo()),
- TM(&MF->getTarget()),
- TII(TM->getInstrInfo()),
- TRI(TM->getRegisterInfo()),
- TLI(TM->getTargetLowering()),
- MBB(mbb), InsertPos(insertpos) {
-}
+ : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
+ TII(MF->getSubtarget().getInstrInfo()),
+ TRI(MF->getSubtarget().getRegisterInfo()),
+ TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
+ InsertPos(insertpos) {}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.h b/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.h
index 920dda8..7b86f7d 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef INSTREMITTER_H
-#define INSTREMITTER_H
+#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_INSTREMITTER_H
+#define LLVM_LIB_CODEGEN_SELECTIONDAG_INSTREMITTER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
@@ -29,7 +29,6 @@ class SDDbgValue;
class InstrEmitter {
MachineFunction *MF;
MachineRegisterInfo *MRI;
- const TargetMachine *TM;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const TargetLowering *TLI;
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
index 16c5b4b..e5473e3 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
@@ -33,10 +34,13 @@
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
+#define DEBUG_TYPE "legalizedag"
+
//===----------------------------------------------------------------------===//
-/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
+/// This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
@@ -48,16 +52,17 @@ using namespace llvm;
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
-class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
+class SelectionDAGLegalize {
const TargetMachine &TM;
const TargetLowering &TLI;
SelectionDAG &DAG;
- /// LegalizePosition - The iterator for walking through the node list.
- SelectionDAG::allnodes_iterator LegalizePosition;
+ /// \brief The set of nodes which have already been legalized. We hold a
+ /// reference to it in order to update as necessary on node deletion.
+ SmallPtrSetImpl<SDNode *> &LegalizedNodes;
- /// LegalizedNodes - The set of nodes which have already been legalized.
- SmallPtrSet<SDNode *, 16> LegalizedNodes;
+ /// \brief A set of all the nodes updated during legalization.
+ SmallSetVector<SDNode *, 16> *UpdatedNodes;
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(*DAG.getContext(), VT);
@@ -66,20 +71,22 @@ class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
// Libcall insertion helpers.
public:
- explicit SelectionDAGLegalize(SelectionDAG &DAG);
-
- void LegalizeDAG();
+ SelectionDAGLegalize(SelectionDAG &DAG,
+ SmallPtrSetImpl<SDNode *> &LegalizedNodes,
+ SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
+ : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
+ LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
-private:
- /// LegalizeOp - Legalizes the given operation.
+ /// \brief Legalizes the given operation.
void LegalizeOp(SDNode *Node);
+private:
SDValue OptimizeFloatStore(StoreSDNode *ST);
void LegalizeLoadOps(SDNode *Node);
void LegalizeStoreOps(SDNode *Node);
- /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
+ /// Some targets cannot handle a variable
/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
@@ -88,7 +95,7 @@ private:
SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
SDValue Idx, SDLoc dl);
- /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
+ /// Return a vector shuffle operation which
/// performs the same shuffe in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
@@ -145,43 +152,55 @@ private:
void ExpandNode(SDNode *Node);
void PromoteNode(SDNode *Node);
- void ForgetNode(SDNode *N) {
- LegalizedNodes.erase(N);
- if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
- ++LegalizePosition;
- }
-
public:
- // DAGUpdateListener implementation.
- void NodeDeleted(SDNode *N, SDNode *E) override {
- ForgetNode(N);
- }
- void NodeUpdated(SDNode *N) override {}
-
// Node replacement helpers
void ReplacedNode(SDNode *N) {
- if (N->use_empty()) {
- DAG.RemoveDeadNode(N);
- } else {
- ForgetNode(N);
- }
+ LegalizedNodes.erase(N);
+ if (UpdatedNodes)
+ UpdatedNodes->insert(N);
}
void ReplaceNode(SDNode *Old, SDNode *New) {
+ DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
+ dbgs() << " with: "; New->dump(&DAG));
+
+ assert(Old->getNumValues() == New->getNumValues() &&
+ "Replacing one node with another that produces a different number "
+ "of values!");
DAG.ReplaceAllUsesWith(Old, New);
+ for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
+ DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i));
+ if (UpdatedNodes)
+ UpdatedNodes->insert(New);
ReplacedNode(Old);
}
void ReplaceNode(SDValue Old, SDValue New) {
+ DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
+ dbgs() << " with: "; New->dump(&DAG));
+
DAG.ReplaceAllUsesWith(Old, New);
+ DAG.TransferDbgValues(Old, New);
+ if (UpdatedNodes)
+ UpdatedNodes->insert(New.getNode());
ReplacedNode(Old.getNode());
}
void ReplaceNode(SDNode *Old, const SDValue *New) {
+ DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
+
DAG.ReplaceAllUsesWith(Old, New);
+ for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
+ DEBUG(dbgs() << (i == 0 ? " with: "
+ : " and: ");
+ New[i]->dump(&DAG));
+ DAG.TransferDbgValues(SDValue(Old, i), New[i]);
+ if (UpdatedNodes)
+ UpdatedNodes->insert(New[i].getNode());
+ }
ReplacedNode(Old);
}
};
}
-/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
+/// Return a vector shuffle operation which
/// performs the same shuffe in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
@@ -213,41 +232,7 @@ SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
}
-SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
- : SelectionDAG::DAGUpdateListener(dag),
- TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
- DAG(dag) {
-}
-
-void SelectionDAGLegalize::LegalizeDAG() {
- DAG.AssignTopologicalOrder();
-
- // Visit all the nodes. We start in topological order, so that we see
- // nodes with their original operands intact. Legalization can produce
- // new nodes which may themselves need to be legalized. Iterate until all
- // nodes have been legalized.
- for (;;) {
- bool AnyLegalized = false;
- for (LegalizePosition = DAG.allnodes_end();
- LegalizePosition != DAG.allnodes_begin(); ) {
- --LegalizePosition;
-
- SDNode *N = LegalizePosition;
- if (LegalizedNodes.insert(N)) {
- AnyLegalized = true;
- LegalizeOp(N);
- }
- }
- if (!AnyLegalized)
- break;
-
- }
-
- // Remove dead nodes now.
- DAG.RemoveDeadNodes();
-}
-
-/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
+/// Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
SDValue
SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
@@ -275,7 +260,7 @@ SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
// Only do this if the target has a native EXTLOAD instruction from
// smaller type.
- TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
+ TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
TLI.ShouldShrinkFPConstant(OrigVT)) {
Type *SType = SVT.getTypeForEVT(*DAG.getContext());
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
@@ -291,7 +276,7 @@ SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
DAG.getEntryNode(),
CPIdx, MachinePointerInfo::getConstantPool(),
- VT, false, false, Alignment);
+ VT, false, false, false, Alignment);
return Result;
}
SDValue Result =
@@ -301,7 +286,7 @@ SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
return Result;
}
-/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
+/// Expands an unaligned store to 2 half-size stores.
static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
const TargetLowering &TLI,
SelectionDAGLegalize *DAGLegalize) {
@@ -377,7 +362,7 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
// Load from the stack slot.
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
MachinePointerInfo(),
- MemVT, false, false, 0);
+ MemVT, false, false, false, 0);
Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
ST->getPointerInfo()
@@ -385,7 +370,7 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
MemVT, ST->isVolatile(),
ST->isNonTemporal(),
MinAlign(ST->getAlignment(), Offset),
- ST->getTBAAInfo()));
+ ST->getAAInfo()));
// The order of the stores doesn't matter - say it with a TokenFactor.
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
@@ -417,14 +402,14 @@ static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
- Alignment, ST->getTBAAInfo());
+ Alignment, ST->getAAInfo());
SDValue Result =
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
}
-/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
+/// Expands an unaligned load to 2 half-size loads.
static void
ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
const TargetLowering &TLI,
@@ -476,7 +461,7 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(),
MinAlign(LD->getAlignment(), Offset),
- LD->getTBAAInfo());
+ LD->getAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
MachinePointerInfo(), false, false, 0));
@@ -494,8 +479,9 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
LD->getPointerInfo().getWithOffset(Offset),
MemVT, LD->isVolatile(),
LD->isNonTemporal(),
+ LD->isInvariant(),
MinAlign(LD->getAlignment(), Offset),
- LD->getTBAAInfo());
+ LD->getAAInfo());
// Follow the load with a store to the stack slot. Remember the store.
// On big-endian machines this requires a truncating store to ensure
// that the bits end up in the right place.
@@ -508,7 +494,8 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
// Finally, perform the original load only redirected to the stack slot.
Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
- MachinePointerInfo(), LoadedVT, false, false, 0);
+ MachinePointerInfo(), LoadedVT, false,false, false,
+ 0);
// Callers expect a MERGE_VALUES node.
ValResult = Load;
@@ -538,25 +525,27 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
if (TLI.isLittleEndian()) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
+ LD->isNonTemporal(), LD->isInvariant(), Alignment,
+ LD->getAAInfo());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
- LD->getTBAAInfo());
+ LD->isNonTemporal(),LD->isInvariant(),
+ MinAlign(Alignment, IncrementSize), LD->getAAInfo());
} else {
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
+ LD->isNonTemporal(), LD->isInvariant(), Alignment,
+ LD->getAAInfo());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
NewLoadedVT, LD->isVolatile(),
- LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
- LD->getTBAAInfo());
+ LD->isNonTemporal(), LD->isInvariant(),
+ MinAlign(Alignment, IncrementSize), LD->getAAInfo());
}
// aggregate the two parts
@@ -572,8 +561,8 @@ ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
ChainResult = TF;
}
-/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
-/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
+/// Some target cannot handle a variable insertion index for the
+/// INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue SelectionDAGLegalize::
@@ -659,7 +648,7 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
- const MDNode *TBAAInfo = ST->getTBAAInfo();
+ AAMDNodes AAInfo = ST->getAAInfo();
SDLoc dl(ST);
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
if (CFP->getValueType(0) == MVT::f32 &&
@@ -668,7 +657,7 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
bitcastToAPInt().zextOrTrunc(32),
MVT::i32);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
}
if (CFP->getValueType(0) == MVT::f64) {
@@ -677,7 +666,7 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
zextOrTrunc(64), MVT::i64);
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
}
if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
@@ -690,13 +679,13 @@ SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
if (TLI.isBigEndian()) std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
- isNonTemporal, Alignment, TBAAInfo);
+ isNonTemporal, Alignment, AAInfo);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(4, Ptr.getValueType()));
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(4),
isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
- TBAAInfo);
+ AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -714,7 +703,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
- const MDNode *TBAAInfo = ST->getTBAAInfo();
+ AAMDNodes AAInfo = ST->getAAInfo();
if (!ST->isTruncatingStore()) {
if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
@@ -731,12 +720,12 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
// If this is an unaligned store and the target doesn't support it,
// expand it.
unsigned AS = ST->getAddressSpace();
- if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT(), AS)) {
+ unsigned Align = ST->getAlignment();
+ if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) {
Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (ST->getAlignment() < ABIAlignment)
- ExpandUnalignedStore(cast<StoreSDNode>(Node),
- DAG, TLI, this);
+ if (Align < ABIAlignment)
+ ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
}
break;
}
@@ -754,7 +743,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
SDValue Result =
DAG.getStore(Chain, dl, Value, Ptr,
ST->getPointerInfo(), isVolatile,
- isNonTemporal, Alignment, TBAAInfo);
+ isNonTemporal, Alignment, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
@@ -776,8 +765,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Value = DAG.getZeroExtendInReg(Value, dl, StVT);
SDValue Result =
DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
- NVT, isVolatile, isNonTemporal, Alignment,
- TBAAInfo);
+ NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
} else if (StWidth & (StWidth - 1)) {
// If not storing a power-of-2 number of bits, expand as two stores.
@@ -799,7 +787,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
RoundVT,
isVolatile, isNonTemporal, Alignment,
- TBAAInfo);
+ AAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
@@ -811,7 +799,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ MinAlign(Alignment, IncrementSize), AAInfo);
} else {
// Big endian - avoid unaligned stores.
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
@@ -821,7 +809,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
TLI.getShiftAmountTy(Value.getValueType())));
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
RoundVT, isVolatile, isNonTemporal, Alignment,
- TBAAInfo);
+ AAInfo);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
@@ -830,7 +818,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
ST->getPointerInfo().getWithOffset(IncrementSize),
ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ MinAlign(Alignment, IncrementSize), AAInfo);
}
// The order of the stores doesn't matter.
@@ -842,12 +830,13 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
unsigned AS = ST->getAddressSpace();
+ unsigned Align = ST->getAlignment();
// If this is an unaligned store and the target doesn't support it,
// expand it.
- if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT(), AS)) {
+ if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) {
Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (ST->getAlignment() < ABIAlignment)
+ if (Align < ABIAlignment)
ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
}
break;
@@ -868,7 +857,7 @@ void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
SDValue Result =
DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
ReplaceNode(SDValue(Node, 0), Result);
break;
}
@@ -893,13 +882,14 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal: {
unsigned AS = LD->getAddressSpace();
+ unsigned Align = LD->getAlignment();
// If this is an unaligned load and the target doesn't support it,
// expand it.
- if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT(), AS)) {
+ if (!TLI.allowsMisalignedMemoryAccesses(LD->getMemoryVT(), AS, Align)) {
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment =
TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (LD->getAlignment() < ABIAlignment){
+ if (Align < ABIAlignment){
ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
}
}
@@ -928,6 +918,10 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
assert(RVal.getNode() != Node && "Load must be completely replaced");
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
+ if (UpdatedNodes) {
+ UpdatedNodes->insert(RVal.getNode());
+ UpdatedNodes->insert(RChain.getNode());
+ }
ReplacedNode(Node);
}
return;
@@ -938,7 +932,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
- const MDNode *TBAAInfo = LD->getTBAAInfo();
+ bool isInvariant = LD->isInvariant();
+ AAMDNodes AAInfo = LD->getAAInfo();
if (SrcWidth != SrcVT.getStoreSizeInBits() &&
// Some targets pretend to have an i1 loading operation, and actually
@@ -949,7 +944,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
// nice to have an effective generic way of getting these benefits...
// Until such a way is found, don't insist on promoting i1 here.
(SrcVT != MVT::i1 ||
- TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
+ TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
+ TargetLowering::Promote)) {
// Promote to a byte-sized load if not loading an integral number of
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
unsigned NewWidth = SrcVT.getStoreSizeInBits();
@@ -965,7 +961,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
SDValue Result =
DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
Chain, Ptr, LD->getPointerInfo(),
- NVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
+ AAInfo);
Ch = Result.getValue(1); // The chain.
@@ -1002,7 +999,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
Chain, Ptr,
LD->getPointerInfo(), RoundVT, isVolatile,
- isNonTemporal, Alignment, TBAAInfo);
+ isNonTemporal, isInvariant, Alignment, AAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
@@ -1010,8 +1007,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
- ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ ExtraVT, isVolatile, isNonTemporal, isInvariant,
+ MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
@@ -1031,7 +1028,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
// Load the top RoundWidth bits.
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo(), RoundVT, isVolatile,
- isNonTemporal, Alignment, TBAAInfo);
+ isNonTemporal, isInvariant, Alignment, AAInfo);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
@@ -1040,8 +1037,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
dl, Node->getValueType(0), Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
- ExtraVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ ExtraVT, isVolatile, isNonTemporal, isInvariant,
+ MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of
// the other one.
@@ -1060,7 +1057,8 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
Chain = Ch;
} else {
bool isCustom = false;
- switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
+ switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
+ SrcVT.getSimpleVT())) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
@@ -1080,37 +1078,37 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
// it, expand it.
EVT MemVT = LD->getMemoryVT();
unsigned AS = LD->getAddressSpace();
- if (!TLI.allowsUnalignedMemoryAccesses(MemVT, AS)) {
- Type *Ty =
- LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
- unsigned ABIAlignment =
- TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (LD->getAlignment() < ABIAlignment){
- ExpandUnalignedLoad(cast<LoadSDNode>(Node),
- DAG, TLI, Value, Chain);
+ unsigned Align = LD->getAlignment();
+ if (!TLI.allowsMisalignedMemoryAccesses(MemVT, AS, Align)) {
+ Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = TLI.getDataLayout()->getABITypeAlignment(Ty);
+ if (Align < ABIAlignment){
+ ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain);
}
}
}
break;
}
case TargetLowering::Expand:
- if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) &&
- TLI.isTypeLegal(SrcVT)) {
- SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
- LD->getMemOperand());
- unsigned ExtendOp;
- switch (ExtType) {
- case ISD::EXTLOAD:
- ExtendOp = (SrcVT.isFloatingPoint() ?
- ISD::FP_EXTEND : ISD::ANY_EXTEND);
+ if (!TLI.isLoadExtLegal(ISD::EXTLOAD, Node->getValueType(0), SrcVT)) {
+ // If the source type is not legal, see if there is a legal extload to
+ // an intermediate type that we can then extend further.
+ EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
+ if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
+ TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
+ // If we are loading a legal type, this is a non-extload followed by a
+ // full extend.
+ ISD::LoadExtType MidExtType =
+ (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
+
+ SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
+ SrcVT, LD->getMemOperand());
+ unsigned ExtendOp =
+ ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
+ Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
+ Chain = Load.getValue(1);
break;
- case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
- case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
- default: llvm_unreachable("Unexpected extend load type!");
}
- Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
- Chain = Load.getValue(1);
- break;
}
assert(!SrcVT.isVector() &&
@@ -1134,8 +1132,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else
- ValRes = DAG.getZeroExtendInReg(Result, dl,
- SrcVT.getScalarType());
+ ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
Value = ValRes;
Chain = Result.getValue(1);
break;
@@ -1148,13 +1145,18 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
assert(Value.getNode() != Node && "Load must be completely replaced");
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
+ if (UpdatedNodes) {
+ UpdatedNodes->insert(Value.getNode());
+ UpdatedNodes->insert(Chain.getNode());
+ }
ReplacedNode(Node);
}
}
-/// LegalizeOp - Return a legal replacement for the given operation, with
-/// all legal operands.
+/// Return a legal replacement for the given operation, with all legal operands.
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
+ DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
+
if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
return;
@@ -1335,10 +1337,7 @@ void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
}
if (NewNode != Node) {
- DAG.ReplaceAllUsesWith(Node, NewNode);
- for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
- DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
- ReplacedNode(Node);
+ ReplaceNode(Node, NewNode);
Node = NewNode;
}
switch (Action) {
@@ -1349,19 +1348,19 @@ void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
// a complete mess.
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
if (Res.getNode()) {
- SmallVector<SDValue, 8> ResultVals;
- for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
- if (e == 1)
- ResultVals.push_back(Res);
- else
- ResultVals.push_back(Res.getValue(i));
- }
- if (Res.getNode() != Node || Res.getResNo() != 0) {
- DAG.ReplaceAllUsesWith(Node, ResultVals.data());
- for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
- DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
- ReplacedNode(Node);
+ if (!(Res.getNode() != Node || Res.getResNo() != 0))
+ return;
+
+ if (Node->getNumValues() == 1) {
+ // We can just directly replace this node with the lowered value.
+ ReplaceNode(SDValue(Node, 0), Res);
+ return;
}
+
+ SmallVector<SDValue, 8> ResultVals;
+ for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
+ ResultVals.push_back(Res.getValue(i));
+ ReplaceNode(Node, ResultVals.data());
return;
}
}
@@ -1449,7 +1448,7 @@ SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
MachinePointerInfo(),
Vec.getValueType().getVectorElementType(),
- false, false, 0);
+ false, false, false, 0);
}
SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
@@ -1484,7 +1483,7 @@ SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
StackPtr);
// Store the subvector.
- Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
+ Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
MachinePointerInfo(), false, false, 0);
// Finally, load the updated vector.
@@ -1624,7 +1623,8 @@ void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
- unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
+ unsigned StackAlign =
+ DAG.getSubtarget().getFrameLowering()->getStackAlignment();
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
if (Align > StackAlign)
Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
@@ -1639,8 +1639,8 @@ void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
Results.push_back(Tmp2);
}
-/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
-/// condition code CC on the current target.
+/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
+/// target.
///
/// If the SETCC has been legalized using AND / OR, then the legalized node
/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
@@ -1754,7 +1754,7 @@ bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
return false;
}
-/// EmitStackConvert - Emit a store/load combination to the stack. This stores
+/// Emit a store/load combination to the stack. This stores
/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
@@ -1798,7 +1798,7 @@ SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
assert(SlotSize < DestSize && "Unknown extension!");
return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
- PtrInfo, SlotVT, false, false, DestAlign);
+ PtrInfo, SlotVT, false, false, false, DestAlign);
}
SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
@@ -1878,7 +1878,8 @@ ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
ShuffleVec.data());
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
return false;
- NewIntermedVals.push_back(std::make_pair(Shuffle, FinalIndices));
+ NewIntermedVals.push_back(
+ std::make_pair(Shuffle, std::move(FinalIndices)));
}
// If we had an odd number of defined values, then append the last
@@ -1913,7 +1914,7 @@ ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
return true;
}
-/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
+/// Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant vector type.
SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
unsigned NumElems = Node->getNumOperands();
@@ -2025,7 +2026,7 @@ SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
return ExpandVectorBuildThroughStack(Node);
}
-// ExpandLibCall - Expand a node into a call to a libcall. If the result value
+// Expand a node into a call to a libcall. If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument. If it does fit into a single register, return the result
// and leave the Hi part unset.
@@ -2073,7 +2074,7 @@ SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
return CallInfo.first;
}
-/// ExpandLibCall - Generate a libcall taking the given operands as arguments
+/// Generate a libcall taking the given operands as arguments
/// and returning a result of type RetVT.
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
const SDValue *Ops, unsigned NumOps,
@@ -2104,7 +2105,7 @@ SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
return CallInfo.first;
}
-// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
+// Expand a node into a call to a libcall. Similar to
// ExpandLibCall except that the first operand is the in-chain.
std::pair<SDValue, SDValue>
SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
@@ -2174,7 +2175,7 @@ SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
return ExpandLibCall(LC, Node, isSigned);
}
-/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
+/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
@@ -2190,8 +2191,7 @@ static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
return TLI.getLibcallName(LC) != nullptr;
}
-/// useDivRem - Only issue divrem libcall if both quotient and remainder are
-/// needed.
+/// Only issue divrem libcall if both quotient and remainder are needed.
static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
// The other use might have been replaced with a divrem already.
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
@@ -2216,8 +2216,7 @@ static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
return false;
}
-/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
-/// pairs.
+/// Issue libcalls to __{u}divmod to compute div / rem pairs.
void
SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
@@ -2279,7 +2278,7 @@ SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
Results.push_back(Rem);
}
-/// isSinCosLibcallAvailable - Return true if sincos libcall is available.
+/// Return true if sincos libcall is available.
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
RTLIB::Libcall LC;
switch (Node->getSimpleValueType(0).SimpleTy) {
@@ -2293,8 +2292,8 @@ static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
return TLI.getLibcallName(LC) != nullptr;
}
-/// canCombineSinCosLibcall - Return true if sincos libcall is available and
-/// can be used to combine sin and cos.
+/// Return true if sincos libcall is available and can be used to combine sin
+/// and cos.
static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
const TargetMachine &TM) {
if (!isSinCosLibcallAvailable(Node, TLI))
@@ -2307,8 +2306,7 @@ static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
return true;
}
-/// useSinCos - Only issue sincos libcall if both sin and cos are
-/// needed.
+/// Only issue sincos libcall if both sin and cos are needed.
static bool useSinCos(SDNode *Node) {
unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
? ISD::FCOS : ISD::FSIN;
@@ -2326,8 +2324,7 @@ static bool useSinCos(SDNode *Node) {
return false;
}
-/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
-/// pairs.
+/// Issue libcalls to sincos to compute sin / cos pairs.
void
SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
@@ -2392,7 +2389,7 @@ SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
MachinePointerInfo(), false, false, false, 0));
}
-/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
+/// This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it. At this point, we know that the result and operand types are
/// legal for the target.
@@ -2581,7 +2578,7 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
- MVT::f32, false, false, Alignment);
+ MVT::f32, false, false, false, Alignment);
HandleSDNode Handle(Load);
LegalizeOp(Load.getNode());
FudgeInReg = Handle.getValue();
@@ -2590,7 +2587,7 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
}
-/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
+/// This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
@@ -2632,7 +2629,7 @@ SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
dl, NewInTy, LegalOp));
}
-/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
+/// This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
@@ -2676,8 +2673,7 @@ SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
}
-/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
-///
+/// Open code the operations for BSWAP of the specified operation.
SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
EVT VT = Op.getValueType();
EVT SHVT = TLI.getShiftAmountTy(VT);
@@ -2723,8 +2719,7 @@ SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
}
}
-/// ExpandBitCount - Expand the specified bitcount instruction into operations.
-///
+/// Expand the specified bitcount instruction into operations.
SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
SDLoc dl) {
switch (Opc) {
@@ -2783,7 +2778,7 @@ SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
// x = x | (x >>32); // for 64-bit input
// return popcount(~x);
//
- // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
+ // Ref: "Hacker's Delight" by Henry Warren
EVT VT = Op.getValueType();
EVT ShVT = TLI.getShiftAmountTy(VT);
unsigned len = VT.getSizeInBits();
@@ -2802,7 +2797,7 @@ SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
// for now, we use: { return popcount(~x & (x - 1)); }
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
- // see also http://www.hackersdelight.org/HDcode/ntz.cc
+ // Ref: "Hacker's Delight" by Henry Warren
EVT VT = Op.getValueType();
SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNOT(dl, Op, VT),
@@ -3396,6 +3391,16 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
Results.push_back(Tmp1);
break;
}
+ case ISD::FMINNUM:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
+ RTLIB::FMIN_F80, RTLIB::FMIN_F128,
+ RTLIB::FMIN_PPCF128));
+ break;
+ case ISD::FMAXNUM:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
+ RTLIB::FMAX_F80, RTLIB::FMAX_F128,
+ RTLIB::FMAX_PPCF128));
+ break;
case ISD::FSQRT:
Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_F128,
@@ -3514,6 +3519,16 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
RTLIB::FMA_F80, RTLIB::FMA_F128,
RTLIB::FMA_PPCF128));
break;
+ case ISD::FADD:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
+ RTLIB::ADD_F80, RTLIB::ADD_F128,
+ RTLIB::ADD_PPCF128));
+ break;
+ case ISD::FMUL:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
+ RTLIB::MUL_F80, RTLIB::MUL_F128,
+ RTLIB::MUL_PPCF128));
+ break;
case ISD::FP16_TO_FP: {
if (Node->getValueType(0) == MVT::f32) {
Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
@@ -3546,12 +3561,16 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
}
case ISD::FSUB: {
EVT VT = Node->getValueType(0);
- assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
- TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
- "Don't know how to expand this FP subtraction!");
- Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
- Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
- Results.push_back(Tmp1);
+ if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
+ TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
+ Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
+ Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
+ Results.push_back(Tmp1);
+ } else {
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
+ RTLIB::SUB_F80, RTLIB::SUB_F128,
+ RTLIB::SUB_PPCF128));
+ }
break;
}
case ISD::SUB: {
@@ -3806,9 +3825,11 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
DAG.getIntPtrConstant(1));
// Ret is a node with an illegal type. Because such things are not
- // generally permitted during this phase of legalization, delete the
- // node. The above EXTRACT_ELEMENT nodes should have been folded.
- DAG.DeleteNode(Ret.getNode());
+ // generally permitted during this phase of legalization, make sure the
+ // node has no more uses. The above EXTRACT_ELEMENT nodes should have been
+ // folded.
+ assert(Ret->use_empty() &&
+ "Unexpected uses of illegally type from expanded lib call.");
}
if (isSigned) {
@@ -3869,7 +3890,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
MachinePointerInfo::getJumpTable(), MemVT,
- false, false, 0);
+ false, false, false, 0);
Addr = LD;
if (TM.getRelocationModel() == Reloc::PIC_) {
// For PIC, the sequence is:
@@ -4179,6 +4200,10 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
+ if (UpdatedNodes) {
+ UpdatedNodes->insert(Tmp2.getNode());
+ UpdatedNodes->insert(Chain.getNode());
+ }
ReplacedNode(Node);
break;
}
@@ -4255,6 +4280,9 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
Tmp1, Tmp2, Node->getOperand(2)));
break;
}
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FPOW: {
@@ -4282,10 +4310,57 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
ReplaceNode(Node, Results.data());
}
-// SelectionDAG::Legalize - This is the entry point for the file.
-//
+/// This is the entry point for the file.
void SelectionDAG::Legalize() {
- /// run - This is the main entry point to this class.
- ///
- SelectionDAGLegalize(*this).LegalizeDAG();
+ AssignTopologicalOrder();
+
+ SmallPtrSet<SDNode *, 16> LegalizedNodes;
+ SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
+
+ // Visit all the nodes. We start in topological order, so that we see
+ // nodes with their original operands intact. Legalization can produce
+ // new nodes which may themselves need to be legalized. Iterate until all
+ // nodes have been legalized.
+ for (;;) {
+ bool AnyLegalized = false;
+ for (auto NI = allnodes_end(); NI != allnodes_begin();) {
+ --NI;
+
+ SDNode *N = NI;
+ if (N->use_empty() && N != getRoot().getNode()) {
+ ++NI;
+ DeleteNode(N);
+ continue;
+ }
+
+ if (LegalizedNodes.insert(N).second) {
+ AnyLegalized = true;
+ Legalizer.LegalizeOp(N);
+
+ if (N->use_empty() && N != getRoot().getNode()) {
+ ++NI;
+ DeleteNode(N);
+ }
+ }
+ }
+ if (!AnyLegalized)
+ break;
+
+ }
+
+ // Remove dead nodes now.
+ RemoveDeadNodes();
+}
+
+bool SelectionDAG::LegalizeOp(SDNode *N,
+ SmallSetVector<SDNode *, 16> &UpdatedNodes) {
+ SmallPtrSet<SDNode *, 16> LegalizedNodes;
+ SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
+
+ // Directly insert the node in question, and legalize it. This will recurse
+ // as needed through operands.
+ LegalizedNodes.insert(N);
+ Legalizer.LegalizeOp(N);
+
+ return LegalizedNodes.count(N);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index 649dd7a..4591e79 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -68,6 +68,8 @@ void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
case ISD::EXTRACT_VECTOR_ELT:
R = SoftenFloatRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::FABS: R = SoftenFloatRes_FABS(N); break;
+ case ISD::FMINNUM: R = SoftenFloatRes_FMINNUM(N); break;
+ case ISD::FMAXNUM: R = SoftenFloatRes_FMAXNUM(N); break;
case ISD::FADD: R = SoftenFloatRes_FADD(N); break;
case ISD::FCEIL: R = SoftenFloatRes_FCEIL(N); break;
case ISD::FCOPYSIGN: R = SoftenFloatRes_FCOPYSIGN(N); break;
@@ -153,6 +155,32 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) {
return DAG.getNode(ISD::AND, SDLoc(N), NVT, Op, Mask);
}
+SDValue DAGTypeLegalizer::SoftenFloatRes_FMINNUM(SDNode *N) {
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
+ GetSoftenedFloat(N->getOperand(1)) };
+ return TLI.makeLibCall(DAG, GetFPLibCall(N->getValueType(0),
+ RTLIB::FMIN_F32,
+ RTLIB::FMIN_F64,
+ RTLIB::FMIN_F80,
+ RTLIB::FMIN_F128,
+ RTLIB::FMIN_PPCF128),
+ NVT, Ops, 2, false, SDLoc(N)).first;
+}
+
+SDValue DAGTypeLegalizer::SoftenFloatRes_FMAXNUM(SDNode *N) {
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
+ GetSoftenedFloat(N->getOperand(1)) };
+ return TLI.makeLibCall(DAG, GetFPLibCall(N->getValueType(0),
+ RTLIB::FMAX_F32,
+ RTLIB::FMAX_F64,
+ RTLIB::FMAX_F80,
+ RTLIB::FMAX_F128,
+ RTLIB::FMAX_PPCF128),
+ NVT, Ops, 2, false, SDLoc(N)).first;
+}
+
SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
@@ -377,10 +405,15 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
// There's only a libcall for f16 -> f32, so proceed in two stages. Also, it's
// entirely possible for both f16 and f32 to be legal, so use the fully
// hard-float FP_EXTEND rather than FP16_TO_FP.
- if (Op.getValueType() == MVT::f16 && N->getValueType(0) != MVT::f32)
+ if (Op.getValueType() == MVT::f16 && N->getValueType(0) != MVT::f32) {
Op = DAG.getNode(ISD::FP_EXTEND, SDLoc(N), MVT::f32, Op);
+ if (getTypeAction(MVT::f32) == TargetLowering::TypeSoftenFloat)
+ SoftenFloatResult(Op.getNode(), 0);
+ }
RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0));
+ if (getTypeAction(Op.getValueType()) == TargetLowering::TypeSoftenFloat)
+ Op = GetSoftenedFloat(Op);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
return TLI.makeLibCall(DAG, LC, NVT, &Op, 1, false, SDLoc(N)).first;
}
@@ -543,7 +576,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
NVT, dl, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getPointerInfo(), NVT, L->isVolatile(),
L->isNonTemporal(), false, L->getAlignment(),
- L->getTBAAInfo());
+ L->getAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
@@ -556,7 +589,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
L->getBasePtr(), L->getOffset(), L->getPointerInfo(),
L->getMemoryVT(), L->isVolatile(),
L->isNonTemporal(), false, L->getAlignment(),
- L->getTBAAInfo());
+ L->getAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewL.getValue(1));
@@ -851,6 +884,8 @@ void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
case ISD::ConstantFP: ExpandFloatRes_ConstantFP(N, Lo, Hi); break;
case ISD::FABS: ExpandFloatRes_FABS(N, Lo, Hi); break;
+ case ISD::FMINNUM: ExpandFloatRes_FMINNUM(N, Lo, Hi); break;
+ case ISD::FMAXNUM: ExpandFloatRes_FMAXNUM(N, Lo, Hi); break;
case ISD::FADD: ExpandFloatRes_FADD(N, Lo, Hi); break;
case ISD::FCEIL: ExpandFloatRes_FCEIL(N, Lo, Hi); break;
case ISD::FCOPYSIGN: ExpandFloatRes_FCOPYSIGN(N, Lo, Hi); break;
@@ -914,6 +949,26 @@ void DAGTypeLegalizer::ExpandFloatRes_FABS(SDNode *N, SDValue &Lo,
ISD::SETEQ);
}
+void DAGTypeLegalizer::ExpandFloatRes_FMINNUM(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
+ RTLIB::FMIN_F32, RTLIB::FMIN_F64,
+ RTLIB::FMIN_F80, RTLIB::FMIN_F128,
+ RTLIB::FMIN_PPCF128),
+ N, false);
+ GetPairElements(Call, Lo, Hi);
+}
+
+void DAGTypeLegalizer::ExpandFloatRes_FMAXNUM(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
+ RTLIB::FMAX_F32, RTLIB::FMAX_F64,
+ RTLIB::FMAX_F80, RTLIB::FMAX_F128,
+ RTLIB::FMAX_PPCF128),
+ N, false);
+ GetPairElements(Call, Lo, Hi);
+}
+
void DAGTypeLegalizer::ExpandFloatRes_FADD(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0),
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
index 44d9e38..82b114b 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
@@ -66,6 +66,7 @@ void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
case ISD::EXTRACT_VECTOR_ELT:
Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
+ case ISD::MLOAD: Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N));break;
case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
@@ -342,9 +343,10 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
EVT NVT = Op.getValueType();
Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
// Subtract off the extra leading bits in the bigger type.
- return DAG.getNode(ISD::SUB, dl, NVT, Op,
- DAG.getConstant(NVT.getSizeInBits() -
- OVT.getSizeInBits(), NVT));
+ return DAG.getNode(
+ ISD::SUB, dl, NVT, Op,
+ DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(),
+ NVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
@@ -362,8 +364,8 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
- APInt TopBit(NVT.getSizeInBits(), 0);
- TopBit.setBit(OVT.getSizeInBits());
+ auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
+ OVT.getScalarSizeInBits());
Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
}
return DAG.getNode(N->getOpcode(), dl, NVT, Op);
@@ -453,6 +455,24 @@ SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
return Res;
}
+SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) {
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue ExtSrc0 = GetPromotedInteger(N->getSrc0());
+ SDValue ExtMask = PromoteTargetBoolean(N->getMask(), NVT);
+ SDLoc dl(N);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(N->getPointerInfo(),
+ MachineMemOperand::MOLoad, NVT.getStoreSize(),
+ N->getAlignment(), N->getAAInfo(), N->getRanges());
+
+ SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(),
+ ExtMask, ExtSrc0, MMO);
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
+ return Res;
+}
/// Promote the overflow flag of an overflowing arithmetic node.
SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
// Simply change the return type of the boolean result.
@@ -824,6 +844,10 @@ bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
+ case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
+ OpNo); break;
+ case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
+ OpNo); break;
case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
case ISD::FP16_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
@@ -861,7 +885,26 @@ void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
switch (CCCode) {
default: llvm_unreachable("Unknown integer comparison!");
case ISD::SETEQ:
- case ISD::SETNE:
+ case ISD::SETNE: {
+ SDValue OpL = GetPromotedInteger(NewLHS);
+ SDValue OpR = GetPromotedInteger(NewRHS);
+
+ // We would prefer to promote the comparison operand with sign extension,
+ // if we find the operand is actually to truncate an AssertSext. With this
+ // optimization, we can avoid inserting real truncate instruction, which
+ // is redudant eventually.
+ if (OpL->getOpcode() == ISD::AssertSext &&
+ cast<VTSDNode>(OpL->getOperand(1))->getVT() == NewLHS.getValueType() &&
+ OpR->getOpcode() == ISD::AssertSext &&
+ cast<VTSDNode>(OpR->getOperand(1))->getVT() == NewRHS.getValueType()) {
+ NewLHS = OpL;
+ NewRHS = OpR;
+ } else {
+ NewLHS = ZExtPromotedInteger(NewLHS);
+ NewRHS = ZExtPromotedInteger(NewRHS);
+ }
+ break;
+ }
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
@@ -945,7 +988,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
- "Legal vector of one illegal element?");
+ "Legal vector of one illegal element?");
// Promote the inserted value. The type does not need to match the
// vector element type. Check that any extra bits introduced will be
@@ -1071,6 +1114,63 @@ SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
N->getMemoryVT(), N->getMemOperand());
}
+SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo){
+
+ assert(OpNo == 2 && "Only know how to promote the mask!");
+ SDValue DataOp = N->getData();
+ EVT DataVT = DataOp.getValueType();
+ SDValue Mask = N->getMask();
+ EVT MaskVT = Mask.getValueType();
+ SDLoc dl(N);
+
+ if (!TLI.isTypeLegal(DataVT)) {
+ if (getTypeAction(DataVT) == TargetLowering::TypePromoteInteger) {
+ DataOp = GetPromotedInteger(DataOp);
+ Mask = PromoteTargetBoolean(Mask, DataOp.getValueType());
+ }
+ else {
+ assert(getTypeAction(DataVT) == TargetLowering::TypeWidenVector &&
+ "Unexpected data legalization in MSTORE");
+ DataOp = GetWidenedVector(DataOp);
+
+ if (getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
+ Mask = GetWidenedVector(Mask);
+ else {
+ EVT BoolVT = getSetCCResultType(DataOp.getValueType());
+
+ // We can't use ModifyToType() because we should fill the mask with
+ // zeroes
+ unsigned WidenNumElts = BoolVT.getVectorNumElements();
+ unsigned MaskNumElts = MaskVT.getVectorNumElements();
+
+ unsigned NumConcat = WidenNumElts / MaskNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ SDValue ZeroVal = DAG.getConstant(0, MaskVT);
+ Ops[0] = Mask;
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = ZeroVal;
+
+ Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
+ }
+ }
+ }
+ else
+ Mask = PromoteTargetBoolean(N->getMask(), DataOp.getValueType());
+ SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
+ NewOps[2] = Mask;
+ NewOps[3] = DataOp;
+ return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
+}
+
+SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo){
+ assert(OpNo == 2 && "Only know how to promote the mask!");
+ EVT DataVT = N->getValueType(0);
+ SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
+ SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
+ NewOps[OpNo] = Mask;
+ return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
+}
+
SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
@@ -1859,7 +1959,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
bool isVolatile = N->isVolatile();
bool isNonTemporal = N->isNonTemporal();
bool isInvariant = N->isInvariant();
- const MDNode *TBAAInfo = N->getTBAAInfo();
+ AAMDNodes AAInfo = N->getAAInfo();
SDLoc dl(N);
assert(NVT.isByteSized() && "Expanded type not byte sized!");
@@ -1868,7 +1968,8 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
EVT MemVT = N->getMemoryVT();
Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
- MemVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ MemVT, isVolatile, isNonTemporal, isInvariant,
+ Alignment, AAInfo);
// Remember the chain.
Ch = Lo.getValue(1);
@@ -1891,7 +1992,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
// Little-endian - low bits are at low addresses.
Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
isVolatile, isNonTemporal, isInvariant, Alignment,
- TBAAInfo);
+ AAInfo);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
@@ -1903,8 +2004,8 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
- isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ isVolatile, isNonTemporal, isInvariant,
+ MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -1922,7 +2023,8 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
EVT::getIntegerVT(*DAG.getContext(),
MemVT.getSizeInBits() - ExcessBits),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, isInvariant, Alignment,
+ AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
@@ -1931,8 +2033,8 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
- isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ isVolatile, isNonTemporal, isInvariant,
+ MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -2709,7 +2811,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
bool isNonTemporal = N->isNonTemporal();
- const MDNode *TBAAInfo = N->getTBAAInfo();
+ AAMDNodes AAInfo = N->getAAInfo();
SDLoc dl(N);
SDValue Lo, Hi;
@@ -2719,7 +2821,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
GetExpandedInteger(N->getValue(), Lo, Hi);
return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
N->getMemoryVT(), isVolatile, isNonTemporal,
- Alignment, TBAAInfo);
+ Alignment, AAInfo);
}
if (TLI.isLittleEndian()) {
@@ -2727,7 +2829,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
GetExpandedInteger(N->getValue(), Lo, Hi);
Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
@@ -2740,7 +2842,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
NEVT, isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ MinAlign(Alignment, IncrementSize), AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -2768,7 +2870,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
// Store both the high bits and maybe some of the low bits.
Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
- HiVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ HiVT, isVolatile, isNonTemporal, Alignment, AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
@@ -2778,7 +2880,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
N->getPointerInfo().getWithOffset(IncrementSize),
EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ MinAlign(Alignment, IncrementSize), AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -2853,7 +2955,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
FudgePtr,
MachinePointerInfo::getConstantPool(),
MVT::f32,
- false, false, Alignment);
+ false, false, false, Alignment);
return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
index bd7dacf..ebf6b28 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
@@ -921,6 +921,17 @@ bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
// The target didn't want to custom lower it after all.
return false;
+ // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
+ // provide the same kind of custom splitting behavior.
+ if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
+ // We've legalized a return type by splitting it. If there is a chain,
+ // replace that too.
+ SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
+ if (N->getNumValues() > 1)
+ ReplaceValueWith(SDValue(N, 1), Results[2]);
+ return true;
+ }
+
// Make everything that once used N's values now use those in Results instead.
assert(Results.size() == N->getNumValues() &&
"Custom lowering returned the wrong number of results!");
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h
index 117ff31..1cd9f40 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SELECTIONDAG_LEGALIZETYPES_H
-#define SELECTIONDAG_LEGALIZETYPES_H
+#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
+#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
@@ -122,8 +122,8 @@ public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
- assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
- "Too many value types for ValueTypeActions to hold!");
+ static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
+ "Too many value types for ValueTypeActions to hold!");
}
/// run - This is the main entry point for the type legalizer. This does a
@@ -240,6 +240,7 @@ private:
SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
SDValue PromoteIntRes_LOAD(LoadSDNode *N);
+ SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
SDValue PromoteIntRes_Overflow(SDNode *N);
SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_SDIV(SDNode *N);
@@ -285,6 +286,8 @@ private:
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
+ SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
+ SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
@@ -387,6 +390,8 @@ private:
SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SoftenFloatRes_FABS(SDNode *N);
+ SDValue SoftenFloatRes_FMINNUM(SDNode *N);
+ SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
SDValue SoftenFloatRes_FADD(SDNode *N);
SDValue SoftenFloatRes_FCEIL(SDNode *N);
SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
@@ -450,6 +455,8 @@ private:
void ExpandFloatResult(SDNode *N, unsigned ResNo);
void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
+ void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
+ void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -574,6 +581,7 @@ private:
void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
+ void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -590,6 +598,7 @@ private:
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
+ SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
SDValue SplitVecOp_TRUNCATE(SDNode *N);
SDValue SplitVecOp_VSETCC(SDNode *N);
@@ -623,6 +632,7 @@ private:
SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
SDValue WidenVecRes_LOAD(SDNode* N);
+ SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
SDValue WidenVecRes_SELECT(SDNode* N);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
index 7e2f7b6..38829b6 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
@@ -256,13 +256,13 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
- const MDNode *TBAAInfo = LD->getTBAAInfo();
+ AAMDNodes AAInfo = LD->getAAInfo();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
Lo = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
isVolatile, isNonTemporal, isInvariant, Alignment,
- TBAAInfo);
+ AAInfo);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits() / 8;
@@ -271,7 +271,7 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
Hi = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
isVolatile, isNonTemporal, isInvariant,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ MinAlign(Alignment, IncrementSize), AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -470,7 +470,7 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
unsigned Alignment = St->getAlignment();
bool isVolatile = St->isVolatile();
bool isNonTemporal = St->isNonTemporal();
- const MDNode *TBAAInfo = St->getTBAAInfo();
+ AAMDNodes AAInfo = St->getAAInfo();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
unsigned IncrementSize = NVT.getSizeInBits() / 8;
@@ -482,14 +482,14 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, St->getPointerInfo(),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
St->getPointerInfo().getWithOffset(IncrementSize),
isVolatile, isNonTemporal,
- MinAlign(Alignment, IncrementSize), TBAAInfo);
+ MinAlign(Alignment, IncrementSize), AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
index 507e7ff..eac404c 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -199,12 +199,30 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
if (Op.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
ISD::LoadExtType ExtType = LD->getExtensionType();
- if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
- if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT()))
+ if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
+ switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
+ LD->getMemoryVT())) {
+ default: llvm_unreachable("This action is not supported yet!");
+ case TargetLowering::Legal:
return TranslateLegalizeResults(Op, Result);
- Changed = true;
- return LegalizeOp(ExpandLoad(Op));
- }
+ case TargetLowering::Custom:
+ if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
+ Changed = true;
+ if (Lowered->getNumValues() != Op->getNumValues()) {
+ // This expanded to something other than the load. Assume the
+ // lowering code took care of any chain values, and just handle the
+ // returned value.
+ assert(Result.getValue(1).use_empty() &&
+ "There are still live users of the old chain!");
+ return LegalizeOp(Lowered);
+ } else {
+ return TranslateLegalizeResults(Op, Lowered);
+ }
+ }
+ case TargetLowering::Expand:
+ Changed = true;
+ return LegalizeOp(ExpandLoad(Op));
+ }
} else if (Op.getOpcode() == ISD::STORE) {
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
EVT StVT = ST->getMemoryVT();
@@ -273,6 +291,8 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
case ISD::FP_TO_UINT:
case ISD::FNEG:
case ISD::FABS:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
case ISD::FCOPYSIGN:
case ISD::FSQRT:
case ISD::FSIN:
@@ -353,9 +373,11 @@ SDValue VectorLegalizer::Promote(SDValue Op) {
return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
}
- // The rest of the time, vector "promotion" is basically just bitcasting and
- // doing the operation in a different type. For example, x86 promotes
- // ISD::AND on v2i32 to v1i64.
+ // There are currently two cases of vector promotion:
+ // 1) Bitcasting a vector of integers to a different type to a vector of the
+ // same overall length. For example, x86 promotes ISD::AND on v2i32 to v1i64.
+ // 2) Extending a vector of floats to a vector of the same number oflarger
+ // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
MVT VT = Op.getSimpleValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
@@ -365,14 +387,23 @@ SDValue VectorLegalizer::Promote(SDValue Op) {
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
- Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
+ if (Op.getOperand(j)
+ .getValueType()
+ .getVectorElementType()
+ .isFloatingPoint())
+ Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
+ else
+ Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
-
- return DAG.getNode(ISD::BITCAST, dl, VT, Op);
+ if (VT.isFloatingPoint() ||
+ (VT.isVector() && VT.getVectorElementType().isFloatingPoint()))
+ return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0));
+ else
+ return DAG.getNode(ISD::BITCAST, dl, VT, Op);
}
SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
@@ -480,7 +511,7 @@ SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
LD->getPointerInfo().getWithOffset(Offset),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), LD->getAlignment(),
- LD->getTBAAInfo());
+ LD->getAAInfo());
} else {
EVT LoadVT = WideVT;
while (RemainingBytes < LoadBytes) {
@@ -490,8 +521,8 @@ SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LoadVT, LD->isVolatile(),
- LD->isNonTemporal(), LD->getAlignment(),
- LD->getTBAAInfo());
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment(), LD->getAAInfo());
}
RemainingBytes -= LoadBytes;
@@ -561,8 +592,8 @@ SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
Op.getNode()->getValueType(0).getScalarType(),
Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
SrcVT.getScalarType(),
- LD->isVolatile(), LD->isNonTemporal(),
- LD->getAlignment(), LD->getTBAAInfo());
+ LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment(), LD->getAAInfo());
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getConstant(Stride, BasePTR.getValueType()));
@@ -593,7 +624,7 @@ SDValue VectorLegalizer::ExpandStore(SDValue Op) {
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
- const MDNode *TBAAInfo = ST->getTBAAInfo();
+ AAMDNodes AAInfo = ST->getAAInfo();
unsigned NumElem = StVT.getVectorNumElements();
// The type of the data we want to save
@@ -621,7 +652,7 @@ SDValue VectorLegalizer::ExpandStore(SDValue Op) {
// This scalar TruncStore may be illegal, but we legalize it later.
SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getConstant(Stride, BasePTR.getValueType()));
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
index f77c592..96b69ee 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
@@ -69,8 +69,10 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::ANY_EXTEND:
case ISD::BSWAP:
case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
@@ -104,6 +106,9 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FCOPYSIGN:
case ISD::FDIV:
case ISD::FMUL:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB:
@@ -221,7 +226,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
N->isInvariant(), N->getOriginalAlignment(),
- N->getTBAAInfo());
+ N->getAAInfo());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
@@ -232,7 +237,23 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
// Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
EVT DestVT = N->getValueType(0).getVectorElementType();
- SDValue Op = GetScalarizedVector(N->getOperand(0));
+ SDValue Op = N->getOperand(0);
+ EVT OpVT = Op.getValueType();
+ SDLoc DL(N);
+ // The result needs scalarizing, but it's not a given that the source does.
+ // This is a workaround for targets where it's impossible to scalarize the
+ // result of a conversion, because the source type is legal.
+ // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
+ // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
+ // legal and was not scalarized.
+ // See the similar logic in ScalarizeVecRes_VSETCC
+ if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
+ Op = GetScalarizedVector(Op);
+ } else {
+ EVT VT = OpVT.getVectorElementType();
+ Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ }
return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
}
@@ -406,6 +427,10 @@ bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::TRUNCATE:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
Res = ScalarizeVecOp_UnaryOp(N);
break;
case ISD::CONCAT_VECTORS:
@@ -449,11 +474,11 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
N->getValueType(0), Elt);
}
-/// ScalarizeVecOp_EXTEND - If the value to extend is a vector that needs
-/// to be scalarized, it must be <1 x ty>. Extend the element instead.
+/// ScalarizeVecOp_UnaryOp - If the input is a vector that needs to be
+/// scalarized, it must be <1 x ty>. Do the operation on the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
assert(N->getValueType(0).getVectorNumElements() == 1 &&
- "Unexected vector type!");
+ "Unexpected vector type!");
SDValue Elt = GetScalarizedVector(N->getOperand(0));
SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
N->getValueType(0).getScalarType(), Elt);
@@ -507,12 +532,12 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
N->getBasePtr(), N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment(), N->getTBAAInfo());
+ N->getAlignment(), N->getAAInfo());
return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->isVolatile(), N->isNonTemporal(),
- N->getOriginalAlignment(), N->getTBAAInfo());
+ N->getOriginalAlignment(), N->getAAInfo());
}
/// ScalarizeVecOp_FP_ROUND - If the value to round is a vector that needs
@@ -572,6 +597,9 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::LOAD:
SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
break;
+ case ISD::MLOAD:
+ SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
+ break;
case ISD::SETCC:
SplitVecRes_SETCC(N, Lo, Hi);
break;
@@ -625,6 +653,8 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FCOPYSIGN:
case ISD::FSUB:
case ISD::FMUL:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
@@ -866,6 +896,10 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
return;
}
+ // See if the target wants to custom expand this node.
+ if (CustomLowerNode(N, N->getValueType(0), true))
+ return;
+
// Spill the vector to the stack.
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
@@ -921,14 +955,14 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
- const MDNode *TBAAInfo = LD->getTBAAInfo();
+ AAMDNodes AAInfo = LD->getAAInfo();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
- isInvariant, Alignment, TBAAInfo);
+ isInvariant, Alignment, AAInfo);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
@@ -936,7 +970,7 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo().getWithOffset(IncrementSize),
HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
- TBAAInfo);
+ AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
@@ -948,6 +982,64 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
ReplaceValueWith(SDValue(LD, 1), Ch);
}
+void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
+ SDValue &Lo, SDValue &Hi) {
+ EVT LoVT, HiVT;
+ SDLoc dl(MLD);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
+
+ SDValue Ch = MLD->getChain();
+ SDValue Ptr = MLD->getBasePtr();
+ SDValue Mask = MLD->getMask();
+ unsigned Alignment = MLD->getOriginalAlignment();
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ SDValue MaskLo, MaskHi;
+ std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
+
+ EVT MemoryVT = MLD->getMemoryVT();
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue Src0 = MLD->getSrc0();
+ SDValue Src0Lo, Src0Hi;
+ std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
+ Alignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, MMO);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, MMO);
+
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ ReplaceValueWith(SDValue(MLD, 1), Ch);
+
+}
+
void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
@@ -1203,6 +1295,9 @@ bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
case ISD::STORE:
Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
+ case ISD::MSTORE:
+ Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
+ break;
case ISD::VSELECT:
Res = SplitVecOp_VSELECT(N, OpNo);
break;
@@ -1347,6 +1442,10 @@ SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
Idx.getValueType())), 0);
}
+ // See if the target wants to custom expand this node.
+ if (CustomLowerNode(N, N->getValueType(0), true))
+ return SDValue();
+
// Store the vector to the stack.
EVT EltVT = VecVT.getVectorElementType();
SDLoc dl(N);
@@ -1357,7 +1456,57 @@ SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
// Load back the required element.
StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
- MachinePointerInfo(), EltVT, false, false, 0);
+ MachinePointerInfo(), EltVT, false, false, false, 0);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
+ unsigned OpNo) {
+ SDValue Ch = N->getChain();
+ SDValue Ptr = N->getBasePtr();
+ SDValue Mask = N->getMask();
+ SDValue Data = N->getData();
+ EVT MemoryVT = N->getMemoryVT();
+ unsigned Alignment = N->getOriginalAlignment();
+ SDLoc DL(N);
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue DataLo, DataHi;
+ GetSplitVector(Data, DataLo, DataHi);
+ SDValue MaskLo, MaskHi;
+ GetSplitVector(Mask, MaskLo, MaskHi);
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ SDValue Lo, Hi;
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(N->getPointerInfo(),
+ MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
+ Alignment, N->getAAInfo(), N->getRanges());
+
+ Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, MMO);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(N->getPointerInfo(),
+ MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, N->getAAInfo(), N->getRanges());
+
+ Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, MMO);
+
+
+ // Build a factor node to remember that this store is independent of the
+ // other one.
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
+
}
SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
@@ -1372,7 +1521,7 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
unsigned Alignment = N->getOriginalAlignment();
bool isVol = N->isVolatile();
bool isNT = N->isNonTemporal();
- const MDNode *TBAAInfo = N->getTBAAInfo();
+ AAMDNodes AAInfo = N->getAAInfo();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
@@ -1383,10 +1532,10 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
if (isTruncating)
Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
- LoMemVT, isVol, isNT, Alignment, TBAAInfo);
+ LoMemVT, isVol, isNT, Alignment, AAInfo);
else
Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
- isVol, isNT, Alignment, TBAAInfo);
+ isVol, isNT, Alignment, AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
@@ -1395,11 +1544,11 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
if (isTruncating)
Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
- HiMemVT, isVol, isNT, Alignment, TBAAInfo);
+ HiMemVT, isVol, isNT, Alignment, AAInfo);
else
Hi = DAG.getStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
- isVol, isNT, Alignment, TBAAInfo);
+ isVol, isNT, Alignment, AAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
@@ -1564,6 +1713,9 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::VECTOR_SHUFFLE:
Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
break;
+ case ISD::MLOAD:
+ Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
+ break;
case ISD::ADD:
case ISD::AND:
@@ -1573,6 +1725,8 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::OR:
case ISD::SUB:
case ISD::XOR:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
Res = WidenVecRes_Binary(N);
break;
@@ -2252,6 +2406,48 @@ SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
return Result;
}
+SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
+
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
+ SDValue Mask = N->getMask();
+ EVT MaskVT = Mask.getValueType();
+ SDValue Src0 = GetWidenedVector(N->getSrc0());
+ SDLoc dl(N);
+
+ if (getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
+ Mask = GetWidenedVector(Mask);
+ else {
+ EVT BoolVT = getSetCCResultType(WidenVT);
+
+ // We can't use ModifyToType() because we should fill the mask with
+ // zeroes
+ unsigned WidenNumElts = BoolVT.getVectorNumElements();
+ unsigned MaskNumElts = MaskVT.getVectorNumElements();
+
+ unsigned NumConcat = WidenNumElts / MaskNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ SDValue ZeroVal = DAG.getConstant(0, MaskVT);
+ Ops[0] = Mask;
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = ZeroVal;
+
+ Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
+ }
+
+ // Rebuild memory operand because MemoryVT was changed
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(N->getPointerInfo(),
+ MachineMemOperand::MOLoad, WidenVT.getStoreSize(),
+ N->getAlignment(), N->getAAInfo(), N->getRanges());
+
+ SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
+ Mask, Src0, MMO);
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
+ return Res;
+}
+
SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
@@ -2735,7 +2931,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
bool isInvariant = LD->isInvariant();
- const MDNode *TBAAInfo = LD->getTBAAInfo();
+ AAMDNodes AAInfo = LD->getAAInfo();
int LdWidth = LdVT.getSizeInBits();
int WidthDiff = WidenWidth - LdWidth; // Difference
@@ -2746,7 +2942,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
int NewVTWidth = NewVT.getSizeInBits();
SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
isVolatile, isNonTemporal, isInvariant, Align,
- TBAAInfo);
+ AAInfo);
LdChain.push_back(LdOp.getValue(1));
// Check if we can load the element with one instruction
@@ -2791,7 +2987,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset), isVolatile,
isNonTemporal, isInvariant, MinAlign(Align, Increment),
- TBAAInfo);
+ AAInfo);
LdChain.push_back(L.getValue(1));
if (L->getValueType(0).isVector()) {
SmallVector<SDValue, 16> Loads;
@@ -2807,7 +3003,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset), isVolatile,
isNonTemporal, isInvariant, MinAlign(Align, Increment),
- TBAAInfo);
+ AAInfo);
LdChain.push_back(L.getValue(1));
}
@@ -2887,7 +3083,8 @@ DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
unsigned Align = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
- const MDNode *TBAAInfo = LD->getTBAAInfo();
+ bool isInvariant = LD->isInvariant();
+ AAMDNodes AAInfo = LD->getAAInfo();
EVT EltVT = WidenVT.getVectorElementType();
EVT LdEltVT = LdVT.getVectorElementType();
@@ -2899,7 +3096,8 @@ DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
unsigned Increment = LdEltVT.getSizeInBits() / 8;
Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
LD->getPointerInfo(),
- LdEltVT, isVolatile, isNonTemporal, Align, TBAAInfo);
+ LdEltVT, isVolatile, isNonTemporal, isInvariant,
+ Align, AAInfo);
LdChain.push_back(Ops[0].getValue(1));
unsigned i = 0, Offset = Increment;
for (i=1; i < NumElts; ++i, Offset += Increment) {
@@ -2909,7 +3107,8 @@ DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
BasePtr.getValueType()));
Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
- isVolatile, isNonTemporal, Align, TBAAInfo);
+ isVolatile, isNonTemporal, isInvariant, Align,
+ AAInfo);
LdChain.push_back(Ops[i].getValue(1));
}
@@ -2932,7 +3131,7 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
unsigned Align = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
- const MDNode *TBAAInfo = ST->getTBAAInfo();
+ AAMDNodes AAInfo = ST->getAAInfo();
SDValue ValOp = GetWidenedVector(ST->getValue());
SDLoc dl(ST);
@@ -2959,7 +3158,7 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo().getWithOffset(Offset),
isVolatile, isNonTemporal,
- MinAlign(Align, Offset), TBAAInfo));
+ MinAlign(Align, Offset), AAInfo));
StWidth -= NewVTWidth;
Offset += Increment;
Idx += NumVTElts;
@@ -2979,7 +3178,7 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo().getWithOffset(Offset),
isVolatile, isNonTemporal,
- MinAlign(Align, Offset), TBAAInfo));
+ MinAlign(Align, Offset), AAInfo));
StWidth -= NewVTWidth;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
@@ -3001,7 +3200,7 @@ DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
unsigned Align = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
- const MDNode *TBAAInfo = ST->getTBAAInfo();
+ AAMDNodes AAInfo = ST->getAAInfo();
SDValue ValOp = GetWidenedVector(ST->getValue());
SDLoc dl(ST);
@@ -3025,7 +3224,7 @@ DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo(), StEltVT,
isVolatile, isNonTemporal, Align,
- TBAAInfo));
+ AAInfo));
unsigned Offset = Increment;
for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
@@ -3036,7 +3235,7 @@ DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
ST->getPointerInfo().getWithOffset(Offset),
StEltVT, isVolatile, isNonTemporal,
- MinAlign(Align, Offset), TBAAInfo));
+ MinAlign(Align, Offset), AAInfo));
}
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
index 624003f..db38b76 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
@@ -27,6 +27,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -40,32 +41,29 @@ static cl::opt<signed> RegPressureThreshold(
"dfa-sched-reg-pressure-threshold", cl::Hidden, cl::ZeroOrMore, cl::init(5),
cl::desc("Track reg pressure and switch priority to in-depth"));
+ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS)
+ : Picker(this), InstrItins(IS->MF->getSubtarget().getInstrItineraryData()) {
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ TRI = STI.getRegisterInfo();
+ TLI = IS->TLI;
+ TII = STI.getInstrInfo();
+ ResourcesModel = TII->CreateTargetScheduleState(STI);
+ // This hard requirement could be relaxed, but for now
+ // do not let it procede.
+ assert(ResourcesModel && "Unimplemented CreateTargetScheduleState.");
+
+ unsigned NumRC = TRI->getNumRegClasses();
+ RegLimit.resize(NumRC);
+ RegPressure.resize(NumRC);
+ std::fill(RegLimit.begin(), RegLimit.end(), 0);
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+ for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
+ E = TRI->regclass_end();
+ I != E; ++I)
+ RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, *IS->MF);
-ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) :
- Picker(this),
- InstrItins(IS->getTargetLowering()->getTargetMachine().getInstrItineraryData())
-{
- TII = IS->getTargetLowering()->getTargetMachine().getInstrInfo();
- TRI = IS->getTargetLowering()->getTargetMachine().getRegisterInfo();
- TLI = IS->getTargetLowering();
-
- const TargetMachine &tm = (*IS->MF).getTarget();
- ResourcesModel = tm.getInstrInfo()->CreateTargetScheduleState(&tm,nullptr);
- // This hard requirement could be relaxed, but for now
- // do not let it procede.
- assert (ResourcesModel && "Unimplemented CreateTargetScheduleState.");
-
- unsigned NumRC = TRI->getNumRegClasses();
- RegLimit.resize(NumRC);
- RegPressure.resize(NumRC);
- std::fill(RegLimit.begin(), RegLimit.end(), 0);
- std::fill(RegPressure.begin(), RegPressure.end(), 0);
- for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
- E = TRI->regclass_end(); I != E; ++I)
- RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, *IS->MF);
-
- ParallelLiveRanges = 0;
- HorizontalVerticalBalance = 0;
+ ParallelLiveRanges = 0;
+ HorizontalVerticalBalance = 0;
}
unsigned
@@ -319,7 +317,7 @@ void ResourcePriorityQueue::reserveResources(SUnit *SU) {
// If packet is now full, reset the state so in the next cycle
// we start fresh.
- if (Packet.size() >= InstrItins->SchedModel->IssueWidth) {
+ if (Packet.size() >= InstrItins->SchedModel.IssueWidth) {
ResourcesModel->clearResources();
Packet.clear();
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h b/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h
index ee54292..bce69d7 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SDNodeDbgValue.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_SDNODEDBGVALUE_H
-#define LLVM_CODEGEN_SDNODEDBGVALUE_H
+#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SDNODEDBGVALUE_H
+#define LLVM_LIB_CODEGEN_SELECTIONDAG_SDNODEDBGVALUE_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/DebugLoc.h"
@@ -44,7 +44,8 @@ private:
const Value *Const; // valid for constants
unsigned FrameIx; // valid for stack objects
} u;
- MDNode *mdPtr;
+ MDNode *Var;
+ MDNode *Expr;
bool IsIndirect;
uint64_t Offset;
DebugLoc DL;
@@ -52,69 +53,72 @@ private:
bool Invalid;
public:
// Constructor for non-constants.
- SDDbgValue(MDNode *mdP, SDNode *N, unsigned R,
- bool indir, uint64_t off, DebugLoc dl,
- unsigned O) : mdPtr(mdP), IsIndirect(indir),
- Offset(off), DL(dl), Order(O),
- Invalid(false) {
+ SDDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R, bool indir,
+ uint64_t off, DebugLoc dl, unsigned O)
+ : Var(Var), Expr(Expr), IsIndirect(indir), Offset(off), DL(dl), Order(O),
+ Invalid(false) {
kind = SDNODE;
u.s.Node = N;
u.s.ResNo = R;
}
// Constructor for constants.
- SDDbgValue(MDNode *mdP, const Value *C, uint64_t off, DebugLoc dl,
- unsigned O) :
- mdPtr(mdP), IsIndirect(false), Offset(off), DL(dl), Order(O),
- Invalid(false) {
+ SDDbgValue(MDNode *Var, MDNode *Expr, const Value *C, uint64_t off,
+ DebugLoc dl, unsigned O)
+ : Var(Var), Expr(Expr), IsIndirect(false), Offset(off), DL(dl), Order(O),
+ Invalid(false) {
kind = CONST;
u.Const = C;
}
// Constructor for frame indices.
- SDDbgValue(MDNode *mdP, unsigned FI, uint64_t off, DebugLoc dl, unsigned O) :
- mdPtr(mdP), IsIndirect(false), Offset(off), DL(dl), Order(O),
- Invalid(false) {
+ SDDbgValue(MDNode *Var, MDNode *Expr, unsigned FI, uint64_t off, DebugLoc dl,
+ unsigned O)
+ : Var(Var), Expr(Expr), IsIndirect(false), Offset(off), DL(dl), Order(O),
+ Invalid(false) {
kind = FRAMEIX;
u.FrameIx = FI;
}
// Returns the kind.
- DbgValueKind getKind() { return kind; }
+ DbgValueKind getKind() const { return kind; }
- // Returns the MDNode pointer.
- MDNode *getMDPtr() { return mdPtr; }
+ // Returns the MDNode pointer for the variable.
+ MDNode *getVariable() const { return Var; }
+
+ // Returns the MDNode pointer for the expression.
+ MDNode *getExpression() const { return Expr; }
// Returns the SDNode* for a register ref
- SDNode *getSDNode() { assert (kind==SDNODE); return u.s.Node; }
+ SDNode *getSDNode() const { assert (kind==SDNODE); return u.s.Node; }
// Returns the ResNo for a register ref
- unsigned getResNo() { assert (kind==SDNODE); return u.s.ResNo; }
+ unsigned getResNo() const { assert (kind==SDNODE); return u.s.ResNo; }
// Returns the Value* for a constant
- const Value *getConst() { assert (kind==CONST); return u.Const; }
+ const Value *getConst() const { assert (kind==CONST); return u.Const; }
// Returns the FrameIx for a stack object
- unsigned getFrameIx() { assert (kind==FRAMEIX); return u.FrameIx; }
+ unsigned getFrameIx() const { assert (kind==FRAMEIX); return u.FrameIx; }
// Returns whether this is an indirect value.
- bool isIndirect() { return IsIndirect; }
+ bool isIndirect() const { return IsIndirect; }
// Returns the offset.
- uint64_t getOffset() { return Offset; }
+ uint64_t getOffset() const { return Offset; }
// Returns the DebugLoc.
- DebugLoc getDebugLoc() { return DL; }
+ DebugLoc getDebugLoc() const { return DL; }
// Returns the SDNodeOrder. This is the order of the preceding node in the
// input.
- unsigned getOrder() { return Order; }
+ unsigned getOrder() const { return Order; }
// setIsInvalidated / isInvalidated - Setter / getter of the "Invalidated"
// property. A SDDbgValue is invalid if the SDNode that produces the value is
// deleted.
void setIsInvalidated() { Invalid = true; }
- bool isInvalidated() { return Invalid; }
+ bool isInvalidated() const { return Invalid; }
};
} // end llvm namespace
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
index 4d8c2c7..61a3fd7 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
@@ -221,7 +221,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
- EVT VT = N->getValueType(i);
+ MVT VT = N->getSimpleValueType(i);
if (VT == MVT::Glue)
return nullptr;
else if (VT == MVT::Other)
@@ -229,7 +229,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
- EVT VT = Op.getNode()->getValueType(Op.getResNo());
+ MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
if (VT == MVT::Glue)
return nullptr;
}
@@ -431,17 +431,23 @@ void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
-static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
+static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
- const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
- assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
- unsigned NumRes = MCID.getNumDefs();
- for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
- if (Reg == *ImpDef)
- break;
- ++NumRes;
+ unsigned NumRes;
+ if (N->getOpcode() == ISD::CopyFromReg) {
+ // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
+ NumRes = 1;
+ } else {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
+ NumRes = MCID.getNumDefs();
+ for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
+ if (Reg == *ImpDef)
+ break;
+ ++NumRes;
+ }
}
- return N->getValueType(NumRes);
+ return N->getSimpleValueType(NumRes);
}
/// CheckForLiveRegDef - Return true and update live register vector if the
@@ -454,7 +460,7 @@ static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
bool Added = false;
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
- if (RegAdded.insert(*AI)) {
+ if (RegAdded.insert(*AI).second) {
LRegs.push_back(*AI);
Added = true;
}
@@ -572,7 +578,7 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
- EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
+ MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
index dedca41..8b54e65 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -30,8 +30,8 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <climits>
using namespace llvm;
@@ -166,12 +166,11 @@ public:
NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
Topo(SUnits, nullptr) {
- const TargetMachine &tm = mf.getTarget();
+ const TargetSubtargetInfo &STI = mf.getSubtarget();
if (DisableSchedCycles || !NeedLatency)
HazardRec = new ScheduleHazardRecognizer();
else
- HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(
- tm.getSubtargetImpl(), this);
+ HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
}
~ScheduleDAGRRList() {
@@ -946,7 +945,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
- EVT VT = N->getValueType(i);
+ MVT VT = N->getSimpleValueType(i);
if (VT == MVT::Glue)
return nullptr;
else if (VT == MVT::Other)
@@ -954,7 +953,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
- EVT VT = Op.getNode()->getValueType(Op.getResNo());
+ MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
if (VT == MVT::Glue)
return nullptr;
}
@@ -1189,17 +1188,23 @@ void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
-static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
+static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
- const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
- assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
- unsigned NumRes = MCID.getNumDefs();
- for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
- if (Reg == *ImpDef)
- break;
- ++NumRes;
+ unsigned NumRes;
+ if (N->getOpcode() == ISD::CopyFromReg) {
+ // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
+ NumRes = 1;
+ } else {
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+ assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
+ NumRes = MCID.getNumDefs();
+ for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
+ if (Reg == *ImpDef)
+ break;
+ ++NumRes;
+ }
}
- return N->getValueType(NumRes);
+ return N->getSimpleValueType(NumRes);
}
/// CheckForLiveRegDef - Return true and update live register vector if the
@@ -1218,7 +1223,7 @@ static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
if (LiveRegDefs[*AliasI] == SU) continue;
// Add Reg to the set of interfering live regs.
- if (RegAdded.insert(*AliasI)) {
+ if (RegAdded.insert(*AliasI).second) {
LRegs.push_back(*AliasI);
}
}
@@ -1235,7 +1240,7 @@ static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
if (!LiveRegDefs[i]) continue;
if (LiveRegDefs[i] == SU) continue;
if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
- if (RegAdded.insert(i))
+ if (RegAdded.insert(i).second)
LRegs.push_back(i);
}
}
@@ -1310,7 +1315,8 @@ DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
SDNode *Gen = LiveRegGens[CallResource]->getNode();
while (SDNode *Glued = Gen->getGluedNode())
Gen = Glued;
- if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
+ if (!IsChainDependent(Gen, Node, 0, TII) &&
+ RegAdded.insert(CallResource).second)
LRegs.push_back(CallResource);
}
}
@@ -1439,7 +1445,7 @@ SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
- EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
+ MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
@@ -1930,8 +1936,8 @@ void RegReductionPQBase::dumpRegPressure() const {
unsigned Id = RC->getID();
unsigned RP = RegPressure[Id];
if (!RP) continue;
- DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
- << '\n');
+ DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
+ << RegLimit[Id] << '\n');
}
#endif
}
@@ -2754,7 +2760,7 @@ static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
if (!SUImpDefs && !SURegMask)
continue;
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
- EVT VT = N->getValueType(i);
+ MVT VT = N->getSimpleValueType(i);
if (VT == MVT::Glue || VT == MVT::Other)
continue;
if (!N->hasAnyUseOfValue(i))
@@ -2977,9 +2983,9 @@ void RegReductionPQBase::AddPseudoTwoAddrDeps() {
llvm::ScheduleDAGSDNodes *
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
- const TargetMachine &TM = IS->TM;
- const TargetInstrInfo *TII = TM.getInstrInfo();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
BURegReductionPriorityQueue *PQ =
new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
@@ -2991,9 +2997,9 @@ llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
llvm::ScheduleDAGSDNodes *
llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
- const TargetMachine &TM = IS->TM;
- const TargetInstrInfo *TII = TM.getInstrInfo();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
SrcRegReductionPriorityQueue *PQ =
new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
@@ -3005,10 +3011,10 @@ llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
llvm::ScheduleDAGSDNodes *
llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
- const TargetMachine &TM = IS->TM;
- const TargetInstrInfo *TII = TM.getInstrInfo();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
- const TargetLowering *TLI = IS->getTargetLowering();
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+ const TargetLowering *TLI = IS->TLI;
HybridBURRPriorityQueue *PQ =
new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
@@ -3021,10 +3027,10 @@ llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
llvm::ScheduleDAGSDNodes *
llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
- const TargetMachine &TM = IS->TM;
- const TargetInstrInfo *TII = TM.getInstrInfo();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
- const TargetLowering *TLI = IS->getTargetLowering();
+ const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+ const TargetLowering *TLI = IS->TLI;
ILPBURRPriorityQueue *PQ =
new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
index de910b7..f2b18fc 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
@@ -29,7 +29,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -38,17 +37,17 @@ using namespace llvm;
STATISTIC(LoadsClustered, "Number of loads clustered together");
-// This allows latency based scheduler to notice high latency instructions
-// without a target itinerary. The choise if number here has more to do with
-// balancing scheduler heursitics than with the actual machine latency.
+// This allows the latency-based scheduler to notice high latency instructions
+// without a target itinerary. The choice of number here has more to do with
+// balancing scheduler heuristics than with the actual machine latency.
static cl::opt<int> HighLatencyCycles(
"sched-high-latency-cycles", cl::Hidden, cl::init(10),
cl::desc("Roughly estimate the number of cycles that 'long latency'"
"instructions take for targets with no itinerary"));
ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
- : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
- InstrItins(mf.getTarget().getInstrItineraryData()) {}
+ : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
+ InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
/// Run - perform scheduling.
///
@@ -120,15 +119,20 @@ static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
return;
unsigned ResNo = User->getOperand(2).getResNo();
- if (Def->isMachineOpcode()) {
+ if (Def->getOpcode() == ISD::CopyFromReg &&
+ cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
+ PhysReg = Reg;
+ } else if (Def->isMachineOpcode()) {
const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
if (ResNo >= II.getNumDefs() &&
- II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
+ II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
PhysReg = Reg;
- const TargetRegisterClass *RC =
- TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
- Cost = RC->getCopyCost();
- }
+ }
+
+ if (PhysReg != 0) {
+ const TargetRegisterClass *RC =
+ TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
+ Cost = RC->getCopyCost();
}
}
@@ -136,7 +140,7 @@ static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
SmallVectorImpl<EVT> &VTs,
SDValue ExtraOper = SDValue()) {
- SmallVector<SDValue, 4> Ops;
+ SmallVector<SDValue, 8> Ops;
for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
Ops.push_back(N->getOperand(I));
@@ -226,7 +230,7 @@ void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
I != E && UseCount < 100; ++I, ++UseCount) {
SDNode *User = *I;
- if (User == Node || !Visited.insert(User))
+ if (User == Node || !Visited.insert(User).second)
continue;
int64_t Offset1, Offset2;
if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
@@ -339,7 +343,7 @@ void ScheduleDAGSDNodes::BuildSchedUnits() {
// Add all operands to the worklist unless they've already been added.
for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
- if (Visited.insert(NI->getOperand(i).getNode()))
+ if (Visited.insert(NI->getOperand(i).getNode()).second)
Worklist.push_back(NI->getOperand(i).getNode());
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
@@ -425,7 +429,7 @@ void ScheduleDAGSDNodes::BuildSchedUnits() {
}
void ScheduleDAGSDNodes::AddSchedEdges() {
- const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ const TargetSubtargetInfo &ST = MF.getSubtarget();
// Check to see if the scheduler cares about latencies.
bool UnitLatencies = forceUnitLatencies();
@@ -547,6 +551,14 @@ void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
NodeNumDefs = 0;
return;
}
+ if (POpc == TargetOpcode::PATCHPOINT &&
+ Node->getValueType(0) == MVT::Other) {
+ // PATCHPOINT is defined to have one result, but it might really have none
+ // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
+ // real definition.
+ NodeNumDefs = 0;
+ return;
+ }
unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
// Some instructions define regs that are not represented in the selection DAG
// (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
@@ -733,7 +745,7 @@ ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
SmallSet<unsigned, 8> &Seen) {
unsigned Order = N->getIROrder();
- if (!Order || !Seen.insert(Order)) {
+ if (!Order || !Seen.insert(Order).second) {
// Process any valid SDDbgValues even if node does not have any order
// assigned.
ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
index 39ebadf..2cd1f4b 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SCHEDULEDAGSDNODES_H
-#define SCHEDULEDAGSDNODES_H
+#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SCHEDULEDAGSDNODES_H
+#define LLVM_LIB_CODEGEN_SELECTIONDAG_SCHEDULEDAGSDNODES_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/ScheduleDAG.h"
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
index 4589b0c..418b58e 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
@@ -31,6 +31,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <climits>
using namespace llvm;
@@ -71,10 +72,8 @@ public:
AliasAnalysis *aa,
SchedulingPriorityQueue *availqueue)
: ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
-
- const TargetMachine &tm = mf.getTarget();
- HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(
- tm.getSubtargetImpl(), this);
+ const TargetSubtargetInfo &STI = mf.getSubtarget();
+ HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
}
~ScheduleDAGVLIW() {
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 16f7349..c819516 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -46,6 +46,7 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cmath>
@@ -95,7 +96,7 @@ bool ConstantFPSDNode::isValueValidForType(EVT VT,
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
// Look through a bit convert.
- if (N->getOpcode() == ISD::BITCAST)
+ while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
@@ -143,7 +144,7 @@ bool ISD::isBuildVectorAllOnes(const SDNode *N) {
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
// Look through a bit convert.
- if (N->getOpcode() == ISD::BITCAST)
+ while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
@@ -233,10 +234,10 @@ bool ISD::allOperandsUndef(const SDNode *N) {
return true;
}
-ISD::NodeType ISD::getExtForLoadExtType(ISD::LoadExtType ExtType) {
+ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
switch (ExtType) {
case ISD::EXTLOAD:
- return ISD::ANY_EXTEND;
+ return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
case ISD::SEXTLOAD:
return ISD::SIGN_EXTEND;
case ISD::ZEXTLOAD:
@@ -690,8 +691,8 @@ void SDDbgInfo::erase(const SDNode *Node) {
DbgValMapType::iterator I = DbgValMap.find(Node);
if (I == DbgValMap.end())
return;
- for (unsigned J = 0, N = I->second.size(); J != N; ++J)
- I->second[J]->setIsInvalidated();
+ for (auto &Val: I->second)
+ Val->setIsInvalidated();
DbgValMap.erase(I);
}
@@ -710,6 +711,57 @@ void SelectionDAG::DeallocateNode(SDNode *N) {
DbgInfo->erase(N);
}
+#ifndef NDEBUG
+/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
+static void VerifySDNode(SDNode *N) {
+ switch (N->getOpcode()) {
+ default:
+ break;
+ case ISD::BUILD_PAIR: {
+ EVT VT = N->getValueType(0);
+ assert(N->getNumValues() == 1 && "Too many results!");
+ assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
+ "Wrong return type!");
+ assert(N->getNumOperands() == 2 && "Wrong number of operands!");
+ assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
+ "Mismatched operand types!");
+ assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
+ "Wrong operand type!");
+ assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
+ "Wrong return type size");
+ break;
+ }
+ case ISD::BUILD_VECTOR: {
+ assert(N->getNumValues() == 1 && "Too many results!");
+ assert(N->getValueType(0).isVector() && "Wrong return type!");
+ assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
+ "Wrong number of operands!");
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
+ assert((I->getValueType() == EltVT ||
+ (EltVT.isInteger() && I->getValueType().isInteger() &&
+ EltVT.bitsLE(I->getValueType()))) &&
+ "Wrong operand type!");
+ assert(I->getValueType() == N->getOperand(0).getValueType() &&
+ "Operands must all have the same type");
+ }
+ break;
+ }
+ }
+}
+#endif // NDEBUG
+
+/// \brief Insert a newly allocated node into the DAG.
+///
+/// Handles insertion into the all nodes list and CSE map, as well as
+/// verification and other common operations when a new node is allocated.
+void SelectionDAG::InsertNode(SDNode *N) {
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+}
+
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
@@ -847,83 +899,6 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
return Node;
}
-#ifndef NDEBUG
-/// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
-static void VerifyNodeCommon(SDNode *N) {
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::BUILD_PAIR: {
- EVT VT = N->getValueType(0);
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
- "Wrong return type!");
- assert(N->getNumOperands() == 2 && "Wrong number of operands!");
- assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
- "Mismatched operand types!");
- assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
- "Wrong operand type!");
- assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
- "Wrong return type size");
- break;
- }
- case ISD::BUILD_VECTOR: {
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(N->getValueType(0).isVector() && "Wrong return type!");
- assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
- "Wrong number of operands!");
- EVT EltVT = N->getValueType(0).getVectorElementType();
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
- assert((I->getValueType() == EltVT ||
- (EltVT.isInteger() && I->getValueType().isInteger() &&
- EltVT.bitsLE(I->getValueType()))) &&
- "Wrong operand type!");
- assert(I->getValueType() == N->getOperand(0).getValueType() &&
- "Operands must all have the same type");
- }
- break;
- }
- }
-}
-
-/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
-static void VerifySDNode(SDNode *N) {
- // The SDNode allocators cannot be used to allocate nodes with fields that are
- // not present in an SDNode!
- assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
- assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
- assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
- assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
- assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
- assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
- assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
- assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
- assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
- assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
- assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
- assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
- assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
- assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
- assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
- assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
- assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
- assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
- assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
-
- VerifyNodeCommon(N);
-}
-
-/// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
-/// invalid.
-static void VerifyMachineNode(SDNode *N) {
- // The MachineNode allocators cannot be used to allocate nodes with fields
- // that are not present in a MachineNode!
- // Currently there are no such nodes.
-
- VerifyNodeCommon(N);
-}
-#endif // NDEBUG
-
/// getEVTAlignment - Compute the default alignment value for the
/// given type.
///
@@ -932,22 +907,23 @@ unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
VT.getTypeForEVT(*getContext());
- return TM.getTargetLowering()->getDataLayout()->getABITypeAlignment(Ty);
+ return TLI->getDataLayout()->getABITypeAlignment(Ty);
}
// EntryNode could meaningfully have debug info if we can find it...
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
- : TM(tm), TSI(*tm.getSelectionDAGInfo()), TLI(nullptr), OptLevel(OL),
- EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
- Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
- UpdateListeners(nullptr) {
+ : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
+ EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
+ Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
+ UpdateListeners(nullptr) {
AllNodes.push_back(&EntryNode);
DbgInfo = new SDDbgInfo();
}
-void SelectionDAG::init(MachineFunction &mf, const TargetLowering *tli) {
+void SelectionDAG::init(MachineFunction &mf) {
MF = &mf;
- TLI = tli;
+ TLI = getSubtarget().getTargetLowering();
+ TSI = getSubtarget().getSelectionDAGInfo();
Context = &mf.getFunction()->getContext();
}
@@ -1116,8 +1092,6 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT,
EVT EltVT = VT.getScalarType();
const ConstantInt *Elt = &Val;
- const TargetLowering *TLI = TM.getTargetLowering();
-
// In some cases the vector type is legal but the element type is illegal and
// needs to be promoted, for example v8i8 on ARM. In this case, promote the
// inserted value (the type does not need to match the vector element type).
@@ -1193,7 +1167,7 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT,
if (!N) {
N = new (NodeAllocator) ConstantSDNode(isT, isO, Elt, EltVT);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
}
SDValue Result(N, 0);
@@ -1206,7 +1180,7 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT,
}
SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
- return getConstant(Val, TM.getTargetLowering()->getPointerTy(), isTarget);
+ return getConstant(Val, TLI->getPointerTy(), isTarget);
}
@@ -1235,7 +1209,7 @@ SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
if (!N) {
N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
}
SDValue Result(N, 0);
@@ -1271,7 +1245,6 @@ SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
- const TargetLowering *TLI = TM.getTargetLowering();
// Truncate (with sign-extension) the offset value to the pointer size.
unsigned BitWidth = TLI->getPointerTypeSizeInBits(GV->getType());
@@ -1298,7 +1271,7 @@ SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
DL.getDebugLoc(), GV, VT,
Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1313,7 +1286,7 @@ SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1333,7 +1306,7 @@ SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
TargetFlags);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1344,8 +1317,7 @@ SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
- Alignment =
- TM.getTargetLowering()->getDataLayout()->getPrefTypeAlignment(C->getType());
+ Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
@@ -1360,7 +1332,7 @@ SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
Alignment, TargetFlags);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1372,8 +1344,7 @@ SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
- Alignment =
- TM.getTargetLowering()->getDataLayout()->getPrefTypeAlignment(C->getType());
+ Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
@@ -1388,7 +1359,7 @@ SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
Alignment, TargetFlags);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1406,7 +1377,7 @@ SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
TargetFlags);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1420,7 +1391,7 @@ SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1434,7 +1405,7 @@ SDValue SelectionDAG::getValueType(EVT VT) {
if (N) return SDValue(N, 0);
N = new (NodeAllocator) VTSDNode(VT);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1442,7 +1413,7 @@ SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1453,7 +1424,7 @@ SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
TargetFlags)];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1464,7 +1435,7 @@ SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
if (!CondCodeNodes[Cond]) {
CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
CondCodeNodes[Cond] = N;
- AllNodes.push_back(N);
+ InsertNode(N);
}
return SDValue(CondCodeNodes[Cond], 0);
@@ -1602,7 +1573,7 @@ SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
dl.getDebugLoc(), N1, N2,
MaskAlloc);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1648,7 +1619,7 @@ SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl,
dl.getDebugLoc(),
Ops, Code);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1662,7 +1633,7 @@ SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1676,7 +1647,7 @@ SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1692,7 +1663,7 @@ SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) {
SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(),
dl.getDebugLoc(), Root, Label);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1715,7 +1686,7 @@ SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
TargetFlags);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1733,7 +1704,7 @@ SDValue SelectionDAG::getSrcValue(const Value *V) {
SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1749,7 +1720,7 @@ SDValue SelectionDAG::getMDNode(const MDNode *MD) {
SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1770,7 +1741,7 @@ SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr,
dl.getDebugLoc(),
VT, Ptr, SrcAS, DestAS);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -1778,7 +1749,7 @@ SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr,
/// the target's desired shift amount type.
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
EVT OpTy = Op.getValueType();
- EVT ShTy = TM.getTargetLowering()->getShiftAmountTy(LHSTy);
+ EVT ShTy = TLI->getShiftAmountTy(LHSTy);
if (OpTy == ShTy || OpTy.isVector()) return Op;
ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
@@ -1791,7 +1762,6 @@ SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
unsigned ByteSize = VT.getStoreSize();
Type *Ty = VT.getTypeForEVT(*getContext());
- const TargetLowering *TLI = TM.getTargetLowering();
unsigned StackAlign =
std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
@@ -1806,7 +1776,6 @@ SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
VT2.getStoreSizeInBits())/8;
Type *Ty1 = VT1.getTypeForEVT(*getContext());
Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const TargetLowering *TLI = TM.getTargetLowering();
const DataLayout *TD = TLI->getDataLayout();
unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
TD->getPrefTypeAlignment(Ty2));
@@ -1825,7 +1794,6 @@ SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: {
- const TargetLowering *TLI = TM.getTargetLowering();
TargetLowering::BooleanContent Cnt =
TLI->getBooleanContents(N1->getValueType(0));
return getConstant(
@@ -1914,7 +1882,7 @@ SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
// Ensure that the constant occurs on the RHS.
ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
MVT CompVT = N1.getValueType().getSimpleVT();
- if (!TM.getTargetLowering()->isCondCodeLegal(SwappedCond, CompVT))
+ if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
return SDValue();
return getSetCC(dl, VT, N2, N1, SwappedCond);
@@ -1950,7 +1918,6 @@ bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
/// them in the KnownZero/KnownOne bitsets.
void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
APInt &KnownOne, unsigned Depth) const {
- const TargetLowering *TLI = TM.getTargetLowering();
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
@@ -2386,7 +2353,6 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
- const TargetLowering *TLI = TM.getTargetLowering();
EVT VT = Op.getValueType();
assert(VT.isInteger() && "Invalid VT!");
unsigned VTBits = VT.getScalarType().getSizeInBits();
@@ -2684,10 +2650,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) {
DL.getDebugLoc(), getVTList(VT));
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifySDNode(N);
-#endif
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -2720,6 +2683,8 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
return getConstantFP(apf, VT);
}
case ISD::BITCAST:
+ if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
+ return getConstantFP(APFloat(APFloat::IEEEhalf, Val), VT);
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
@@ -2782,7 +2747,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
case ISD::FP_TO_UINT: {
integerPart x[2];
bool ignored;
- assert(integerPartWidth >= 64);
+ static_assert(integerPartWidth >= 64, "APFloat parts too small!");
// FIXME need to be more flexible about rounding mode.
APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
Opcode==ISD::FP_TO_SINT,
@@ -2793,7 +2758,9 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
return getConstant(api, VT);
}
case ISD::BITCAST:
- if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
+ if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
+ return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), VT);
+ else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
@@ -2985,10 +2952,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
DL.getDebugLoc(), VTs, Operand);
}
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifySDNode(N);
-#endif
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -3419,8 +3383,9 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
}
// Perform trivial constant folding.
- SDValue SV = FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode());
- if (SV.getNode()) return SV;
+ if (SDValue SV =
+ FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode()))
+ return SV;
// Canonicalize constant to RHS if commutative.
if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
@@ -3429,6 +3394,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
}
// Constant fold FP operations.
+ bool HasFPExceptions = TLI->hasFloatingPointExceptions();
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
if (N1CFP) {
@@ -3442,28 +3408,32 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
switch (Opcode) {
case ISD::FADD:
s = V1.add(V2, APFloat::rmNearestTiesToEven);
- if (s != APFloat::opInvalidOp)
+ if (!HasFPExceptions || s != APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FSUB:
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp)
+ if (!HasFPExceptions || s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FMUL:
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp)
+ if (!HasFPExceptions || s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FDIV:
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
+ if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
+ s!=APFloat::opDivByZero)) {
return getConstantFP(V1, VT);
+ }
break;
case ISD::FREM :
s = V1.mod(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
+ if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
+ s!=APFloat::opDivByZero)) {
return getConstantFP(V1, VT);
+ }
break;
case ISD::FCOPYSIGN:
V1.copySign(V2);
@@ -3580,10 +3550,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, nuw, nsw, exact);
}
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifySDNode(N);
-#endif
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -3687,10 +3654,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
DL.getDebugLoc(), VTs, N1, N2, N3);
}
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifySDNode(N);
-#endif
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -3856,7 +3820,7 @@ static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
if (VT == MVT::Other) {
unsigned AS = 0;
if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment(AS) ||
- TLI.allowsUnalignedMemoryAccesses(VT, AS)) {
+ TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign)) {
VT = TLI.getPointerTy();
} else {
switch (DstAlign & 7) {
@@ -3916,7 +3880,7 @@ static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
unsigned AS = 0;
if (NumMemOps && AllowOverlap &&
VTSize >= 8 && NewVTSize < Size &&
- TLI.allowsUnalignedMemoryAccesses(VT, AS, &Fast) && Fast)
+ TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign, &Fast) && Fast)
VTSize = Size;
else {
VT = NewVT;
@@ -3980,7 +3944,7 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
// Don't promote to an alignment that would require dynamic stack
// realignment.
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->needsStackRealignment(MF))
while (NewAlign > Align &&
TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign))
@@ -4036,7 +4000,7 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
getMemBasePlusOffset(Src, SrcOff, dl, DAG),
SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
- MinAlign(SrcAlign, SrcOff));
+ false, MinAlign(SrcAlign, SrcOff));
Store = DAG.getTruncStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, dl, DAG),
DstPtrInfo.getWithOffset(DstOff), VT, isVol,
@@ -4256,9 +4220,8 @@ SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst,
// Then check to see if we should lower the memcpy with target-specific
// code. If the target chooses to do this, this is the next best.
SDValue Result =
- TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
- isVol, AlwaysInline,
- DstPtrInfo, SrcPtrInfo);
+ TSI->EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
+ isVol, AlwaysInline, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
@@ -4277,8 +4240,6 @@ SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst,
// beyond the given memory regions. But fixing this isn't easy, and most
// people don't care.
- const TargetLowering *TLI = TM.getTargetLowering();
-
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
@@ -4324,17 +4285,14 @@ SDValue SelectionDAG::getMemmove(SDValue Chain, SDLoc dl, SDValue Dst,
// Then check to see if we should lower the memmove with target-specific
// code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
- DstPtrInfo, SrcPtrInfo);
+ SDValue Result = TSI->EmitTargetCodeForMemmove(
+ *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
// FIXME: If the memmove is volatile, lowering it to plain libc memmove may
// not be safe. See memcpy above for more details.
- const TargetLowering *TLI = TM.getTargetLowering();
-
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
@@ -4379,31 +4337,22 @@ SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst,
// Then check to see if we should lower the memset with target-specific
// code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
- DstPtrInfo);
+ SDValue Result = TSI->EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src,
+ Size, Align, isVol, DstPtrInfo);
if (Result.getNode())
return Result;
// Emit a library call.
- const TargetLowering *TLI = TM.getTargetLowering();
Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(*getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
Args.push_back(Entry);
- // Extend or truncate the argument to be an i32 value for the call.
- if (Src.getValueType().bitsGT(MVT::i32))
- Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
- else
- Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
Entry.Node = Src;
- Entry.Ty = Type::getInt32Ty(*getContext());
- Entry.isSExt = true;
+ Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
Args.push_back(Entry);
Entry.Node = Size;
Entry.Ty = IntPtrTy;
- Entry.isSExt = false;
Args.push_back(Entry);
// FIXME: pass in SDLoc
@@ -4450,7 +4399,7 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SuccessOrdering, FailureOrdering,
SynchScope);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -4595,7 +4544,7 @@ SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
ArrayRef<SDValue> Ops,
EVT MemVT, MachinePointerInfo PtrInfo,
unsigned Align, bool Vol,
- bool ReadMem, bool WriteMem) {
+ bool ReadMem, bool WriteMem, unsigned Size) {
if (Align == 0) // Ensure that codegen never sees alignment 0
Align = getEVTAlignment(MemVT);
@@ -4607,8 +4556,10 @@ SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
Flags |= MachineMemOperand::MOLoad;
if (Vol)
Flags |= MachineMemOperand::MOVolatile;
+ if (!Size)
+ Size = MemVT.getStoreSize();
MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
+ MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
}
@@ -4647,7 +4598,7 @@ SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
dl.getDebugLoc(), VTList, Ops,
MemVT, MMO);
}
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -4691,7 +4642,7 @@ SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT,
bool isVolatile, bool isNonTemporal, bool isInvariant,
- unsigned Alignment, const MDNode *TBAAInfo,
+ unsigned Alignment, const AAMDNodes &AAInfo,
const MDNode *Ranges) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
@@ -4714,7 +4665,7 @@ SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
- TBAAInfo, Ranges);
+ AAInfo, Ranges);
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
}
@@ -4763,7 +4714,7 @@ SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
dl.getDebugLoc(), VTs, AM, ExtType,
MemVT, MMO);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -4772,12 +4723,12 @@ SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
MachinePointerInfo PtrInfo,
bool isVolatile, bool isNonTemporal,
bool isInvariant, unsigned Alignment,
- const MDNode *TBAAInfo,
+ const AAMDNodes &AAInfo,
const MDNode *Ranges) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
- TBAAInfo, Ranges);
+ AAInfo, Ranges);
}
SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
@@ -4792,11 +4743,12 @@ SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT MemVT,
bool isVolatile, bool isNonTemporal,
- unsigned Alignment, const MDNode *TBAAInfo) {
+ bool isInvariant, unsigned Alignment,
+ const AAMDNodes &AAInfo) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
- PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
- TBAAInfo);
+ PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant,
+ Alignment, AAInfo);
}
@@ -4823,7 +4775,7 @@ SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base,
SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
bool isVolatile, bool isNonTemporal,
- unsigned Alignment, const MDNode *TBAAInfo) {
+ unsigned Alignment, const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
@@ -4842,7 +4794,7 @@ SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags,
Val.getValueType().getStoreSize(), Alignment,
- TBAAInfo);
+ AAInfo);
return getStore(Chain, dl, Val, Ptr, MMO);
}
@@ -4870,7 +4822,7 @@ SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
dl.getDebugLoc(), VTs,
ISD::UNINDEXED, false, VT, MMO);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -4878,7 +4830,7 @@ SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
EVT SVT,bool isVolatile, bool isNonTemporal,
unsigned Alignment,
- const MDNode *TBAAInfo) {
+ const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
@@ -4896,7 +4848,7 @@ SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
- TBAAInfo);
+ AAInfo);
return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
}
@@ -4939,7 +4891,7 @@ SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
dl.getDebugLoc(), VTs,
ISD::UNINDEXED, true, SVT, MMO);
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -4966,7 +4918,61 @@ SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
ST->getMemoryVT(),
ST->getMemOperand());
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue
+SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain,
+ SDValue Ptr, SDValue Mask, SDValue Src0,
+ MachineMemOperand *MMO) {
+
+ SDVTList VTs = getVTList(VT, MVT::Other);
+ SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
+ ID.AddInteger(VT.getRawBits());
+ ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED,
+ MMO->isVolatile(),
+ MMO->isNonTemporal(),
+ MMO->isInvariant()));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(),
+ dl.getDebugLoc(), Ops, 4, VTs,
+ VT, MMO);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val,
+ SDValue Ptr, SDValue Mask, MachineMemOperand *MMO) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ EVT VT = Val.getValueType();
+ SDVTList VTs = getVTList(MVT::Other);
+ SDValue Ops[] = { Chain, Ptr, Mask, Val };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
+ ID.AddInteger(VT.getRawBits());
+ ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
+ MMO->isNonTemporal(), MMO->isInvariant()));
+ ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
+ void *IP = nullptr;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(),
+ dl.getDebugLoc(), Ops, 4,
+ VTs, VT, MMO);
+ CSEMap.InsertNode(N, IP);
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -5045,10 +5051,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
VTs, Ops);
}
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifySDNode(N);
-#endif
+ InsertNode(N);
return SDValue(N, 0);
}
@@ -5128,15 +5131,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
VTList, Ops);
}
}
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifySDNode(N);
-#endif
+ InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList) {
- return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
+ return getNode(Opcode, DL, VTList, None);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
@@ -5518,6 +5518,10 @@ SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc OLoc) {
/// node, and because it doesn't require CSE recalculation for any of
/// the node's users.
///
+/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
+/// As a consequence it isn't appropriate to use from within the DAG combiner or
+/// the legalizer which maintain worklists that would need to be updated when
+/// deleting things.
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
SDVTList VTs, ArrayRef<SDValue> Ops) {
unsigned NumOps = Ops.size();
@@ -5584,10 +5588,9 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
// new operands.
if (!DeadNodeSet.empty()) {
SmallVector<SDNode *, 16> DeadNodes;
- for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
- E = DeadNodeSet.end(); I != E; ++I)
- if ((*I)->use_empty())
- DeadNodes.push_back(*I);
+ for (SDNode *N : DeadNodeSet)
+ if (N->use_empty())
+ DeadNodes.push_back(N);
RemoveDeadNodes(DeadNodes);
}
@@ -5756,10 +5759,7 @@ SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs,
if (DoCSE)
CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
-#ifndef NDEBUG
- VerifyMachineNode(N);
-#endif
+ InsertNode(N);
return N;
}
@@ -5805,26 +5805,24 @@ SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
/// getDbgValue - Creates a SDDbgValue node.
///
/// SDNode
-SDDbgValue *
-SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R,
- bool IsIndirect, uint64_t Off,
- DebugLoc DL, unsigned O) {
- return new (Allocator) SDDbgValue(MDPtr, N, R, IsIndirect, Off, DL, O);
+SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
+ unsigned R, bool IsIndirect, uint64_t Off,
+ DebugLoc DL, unsigned O) {
+ return new (Allocator) SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
}
/// Constant
-SDDbgValue *
-SelectionDAG::getConstantDbgValue(MDNode *MDPtr, const Value *C,
- uint64_t Off,
- DebugLoc DL, unsigned O) {
- return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
+SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
+ const Value *C, uint64_t Off,
+ DebugLoc DL, unsigned O) {
+ return new (Allocator) SDDbgValue(Var, Expr, C, Off, DL, O);
}
/// FrameIndex
-SDDbgValue *
-SelectionDAG::getFrameIndexDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
- DebugLoc DL, unsigned O) {
- return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
+SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
+ unsigned FI, uint64_t Off,
+ DebugLoc DL, unsigned O) {
+ return new (Allocator) SDDbgValue(Var, Expr, FI, Off, DL, O);
}
namespace {
@@ -6213,9 +6211,11 @@ unsigned SelectionDAG::AssignTopologicalOrder() {
/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
- DbgInfo->add(DB, SD, isParameter);
- if (SD)
+ if (SD) {
+ assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
SD->setHasDebugValue(true);
+ }
+ DbgInfo->add(DB, SD, isParameter);
}
/// TransferDbgValues - Transfer SDDbgValues.
@@ -6230,10 +6230,10 @@ void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
I != E; ++I) {
SDDbgValue *Dbg = *I;
if (Dbg->getKind() == SDDbgValue::SDNODE) {
- SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
- Dbg->isIndirect(),
- Dbg->getOffset(), Dbg->getDebugLoc(),
- Dbg->getOrder());
+ SDDbgValue *Clone =
+ getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
+ To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
+ Dbg->getDebugLoc(), Dbg->getOrder());
ClonedDVs.push_back(Clone);
}
}
@@ -6271,7 +6271,10 @@ MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
assert(isNonTemporal() == MMO->isNonTemporal() &&
"Non-temporal encoding error!");
- assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
+ // We check here that the size of the memory operand fits within the size of
+ // the MMO. This is because the MMO might indicate only a possible address
+ // range instead of specifying the affected memory addresses precisely.
+ assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
@@ -6281,7 +6284,7 @@ MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant());
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
- assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
+ assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}
/// Profile - Gather unique data for the node.
@@ -6425,7 +6428,7 @@ bool SDNode::hasPredecessor(const SDNode *N) const {
bool
SDNode::hasPredecessorHelper(const SDNode *N,
- SmallPtrSet<const SDNode *, 32> &Visited,
+ SmallPtrSetImpl<const SDNode *> &Visited,
SmallVectorImpl<const SDNode *> &Worklist) const {
if (Visited.empty()) {
Worklist.push_back(this);
@@ -6441,7 +6444,7 @@ SDNode::hasPredecessorHelper(const SDNode *N,
const SDNode *M = Worklist.pop_back_val();
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
SDNode *Op = M->getOperand(i).getNode();
- if (Visited.insert(Op))
+ if (Visited.insert(Op).second)
Worklist.push_back(Op);
if (Op == N)
return true;
@@ -6481,7 +6484,6 @@ SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
// A vector operand; extract a single element.
- const TargetLowering *TLI = TM.getTargetLowering();
EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
OperandEltVT,
@@ -6552,16 +6554,29 @@ bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
}
- // Handle X+C
- if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
- cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
- return true;
-
+ // Handle X + C.
+ if (isBaseWithConstantOffset(Loc)) {
+ int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
+ if (Loc.getOperand(0) == BaseLoc) {
+ // If the base location is a simple address with no offset itself, then
+ // the second load's first add operand should be the base address.
+ if (LocOffset == Dist * (int)Bytes)
+ return true;
+ } else if (isBaseWithConstantOffset(BaseLoc)) {
+ // The base location itself has an offset, so subtract that value from the
+ // second load's offset before comparing to distance * size.
+ int64_t BOffset =
+ cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
+ if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
+ if ((LocOffset - BOffset) == Dist * (int)Bytes)
+ return true;
+ }
+ }
+ }
const GlobalValue *GV1 = nullptr;
const GlobalValue *GV2 = nullptr;
int64_t Offset1 = 0;
int64_t Offset2 = 0;
- const TargetLowering *TLI = TM.getTargetLowering();
bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
@@ -6576,7 +6591,6 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
// If this is a GlobalAddress + cst, return the alignment.
const GlobalValue *GV;
int64_t GVOffset = 0;
- const TargetLowering *TLI = TM.getTargetLowering();
if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
unsigned PtrWidth = TLI->getPointerTypeSizeInBits(GV->getType());
APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
@@ -6803,8 +6817,8 @@ bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
#ifndef NDEBUG
static void checkForCyclesHelper(const SDNode *N,
- SmallPtrSet<const SDNode*, 32> &Visited,
- SmallPtrSet<const SDNode*, 32> &Checked,
+ SmallPtrSetImpl<const SDNode*> &Visited,
+ SmallPtrSetImpl<const SDNode*> &Checked,
const llvm::SelectionDAG *DAG) {
// If this node has already been checked, don't check it again.
if (Checked.count(N))
@@ -6812,7 +6826,7 @@ static void checkForCyclesHelper(const SDNode *N,
// If a node has already been visited on this depth-first walk, reject it as
// a cycle.
- if (!Visited.insert(N)) {
+ if (!Visited.insert(N).second) {
errs() << "Detected cycle in SelectionDAG\n";
dbgs() << "Offending node:\n";
N->dumprFull(DAG); dbgs() << "\n";
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index c07b5e6..86a63ee 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -16,6 +16,7 @@
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
@@ -46,6 +47,8 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -58,6 +61,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -563,6 +567,7 @@ static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
} else if (NumParts > 0) {
// If the intermediate type was expanded, split each the value into
// legal parts.
+ assert(NumIntermediates != 0 && "division by zero");
assert(NumParts % NumIntermediates == 0 &&
"Must expand into a divisible number of parts!");
unsigned Factor = NumParts / NumIntermediates;
@@ -645,8 +650,10 @@ namespace {
/// specified value into the registers specified by this object. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
/// If the Flag pointer is NULL, no flag is used.
- void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
- SDValue &Chain, SDValue *Flag, const Value *V) const;
+ void
+ getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
+ SDValue *Flag, const Value *V,
+ ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
/// operand list. This adds the code marker, matching input operand index
@@ -761,9 +768,10 @@ SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
/// Chain/Flag as the input and updates them for the output Chain/Flag.
/// If the Flag pointer is NULL, no flag is used.
void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V) const {
+ SDValue &Chain, SDValue *Flag, const Value *V,
+ ISD::NodeType PreferredExtendType) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ ISD::NodeType ExtendKind = PreferredExtendType;
// Get the list of the values's legal parts.
unsigned NumRegs = Regs.size();
@@ -772,8 +780,9 @@ void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
EVT ValueVT = ValueVTs[Value];
unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
MVT RegisterVT = RegVTs[Value];
- ISD::NodeType ExtendKind =
- TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
+
+ if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
+ ExtendKind = ISD::ZERO_EXTEND;
getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
&Parts[Part], NumParts, RegisterVT, V, ExtendKind);
@@ -860,7 +869,7 @@ void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
AA = &aa;
GFI = gfi;
LibInfo = li;
- DL = DAG.getTarget().getDataLayout();
+ DL = DAG.getSubtarget().getDataLayout();
Context = DAG.getContext();
LPadToCallSiteMap.clear();
}
@@ -879,6 +888,7 @@ void SelectionDAGBuilder::clear() {
CurInst = nullptr;
HasTailCall = false;
SDNodeOrder = LowestSDNodeOrder;
+ StatepointLowering.clear();
}
/// clearDanglingDebugInfo - Clear the dangling debug information
@@ -988,15 +998,16 @@ void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
DebugLoc dl = DDI.getdl();
unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
MDNode *Variable = DI->getVariable();
+ MDNode *Expr = DI->getExpression();
uint64_t Offset = DI->getOffset();
// A dbg.value for an alloca is always indirect.
bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
SDDbgValue *SDV;
if (Val.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) {
- SDV = DAG.getDbgValue(Variable, Val.getNode(),
- Val.getResNo(), IsIndirect,
- Offset, dl, DbgSDNodeOrder);
+ if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect,
+ Val)) {
+ SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
+ IsIndirect, Offset, dl, DbgSDNodeOrder);
DAG.AddDbgValue(SDV, Val.getNode(), false);
}
} else
@@ -1018,8 +1029,8 @@ SDValue SelectionDAGBuilder::getValue(const Value *V) {
DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
if (It != FuncInfo.ValueMap.end()) {
unsigned InReg = It->second;
- RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
- InReg, V->getType());
+ RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
+ V->getType());
SDValue Chain = DAG.getEntryNode();
N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
resolveDanglingDebugInfo(V, N);
@@ -1050,10 +1061,10 @@ SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
/// getValueImpl - Helper function for getValue and getNonRegisterValue.
/// Create an SDValue for the given value.
SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (const Constant *C = dyn_cast<Constant>(V)) {
- EVT VT = TLI->getValueType(V->getType(), true);
+ EVT VT = TLI.getValueType(V->getType(), true);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
return DAG.getConstant(*CI, VT);
@@ -1063,7 +1074,7 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
if (isa<ConstantPointerNull>(C)) {
unsigned AS = V->getType()->getPointerAddressSpace();
- return DAG.getConstant(0, TLI->getPointerTy(AS));
+ return DAG.getConstant(0, TLI.getPointerTy(AS));
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
@@ -1117,7 +1128,7 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
"Unknown struct or array constant!");
SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, C->getType(), ValueVTs);
+ ComputeValueVTs(TLI, C->getType(), ValueVTs);
unsigned NumElts = ValueVTs.size();
if (NumElts == 0)
return SDValue(); // empty struct
@@ -1149,7 +1160,7 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
Ops.push_back(getValue(CV->getOperand(i)));
} else {
assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- EVT EltVT = TLI->getValueType(VecTy->getElementType());
+ EVT EltVT = TLI.getValueType(VecTy->getElementType());
SDValue Op;
if (EltVT.isFloatingPoint())
@@ -1169,13 +1180,13 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
DenseMap<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
+ return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
}
// If this is an instruction which fast-isel has deferred, select it now.
if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
- RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
+ RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
SDValue Chain = DAG.getEntryNode();
return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
}
@@ -1184,7 +1195,7 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
}
void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Chain = getControlRoot();
SmallVector<ISD::OutputArg, 8> Outs;
SmallVector<SDValue, 8> OutVals;
@@ -1197,7 +1208,7 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
// Leave Outs empty so that LowerReturn won't try to load return
// registers the usual way.
SmallVector<EVT, 1> PtrValueVTs;
- ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
+ ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
PtrValueVTs);
SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
@@ -1205,7 +1216,7 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
SmallVector<EVT, 4> ValueVTs;
SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
+ ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
unsigned NumValues = ValueVTs.size();
SmallVector<SDValue, 4> Chains(NumValues);
@@ -1224,28 +1235,33 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
MVT::Other, Chains);
} else if (I.getNumOperands() != 0) {
SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
+ ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues) {
SDValue RetOp = getValue(I.getOperand(0));
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+ const Function *F = I.getParent()->getParent();
+
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+ if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
+ Attribute::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
+ Attribute::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ LLVMContext &Context = F->getContext();
+ bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
+ Attribute::InReg);
- const Function *F = I.getParent()->getParent();
- if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
+ for (unsigned j = 0; j != NumValues; ++j) {
+ EVT VT = ValueVTs[j];
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
- VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
+ VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
- unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
- MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
+ unsigned NumParts = TLI.getNumRegisters(Context, VT);
+ MVT PartVT = TLI.getRegisterType(Context, VT);
SmallVector<SDValue, 4> Parts(NumParts);
getCopyToParts(DAG, getCurSDLoc(),
SDValue(RetOp.getNode(), RetOp.getResNo() + j),
@@ -1253,8 +1269,7 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
// 'inreg' on function refers to return value
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::InReg))
+ if (RetInReg)
Flags.setInReg();
// Propagate extension type if any
@@ -1275,9 +1290,8 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
CallingConv::ID CallConv =
DAG.getMachineFunction().getFunction()->getCallingConv();
- Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
- Outs, OutVals, getCurSDLoc(),
- DAG);
+ Chain = DAG.getTargetLoweringInfo().LowerReturn(
+ Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
// Verify that the target's LowerReturn behaved as expected.
assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
@@ -1400,7 +1414,7 @@ SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
if (TM.Options.NoNaNsFPMath)
Condition = getFCmpCodeWithoutNaN(Condition);
} else {
- Condition = ISD::SETEQ; // silence warning.
+ (void)Condition; // silence warning.
llvm_unreachable("Unknown compare instruction");
}
@@ -1601,10 +1615,9 @@ void SelectionDAGBuilder::visitBr(const BranchInst &I) {
// jle foo
//
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
- if (!TM.getTargetLowering()->isJumpExpensive() &&
- BOp->hasOneUse() &&
- (BOp->getOpcode() == Instruction::And ||
- BOp->getOpcode() == Instruction::Or)) {
+ if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
+ BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
+ BOp->getOpcode() == Instruction::Or)) {
FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
getEdgeWeight(BrMBB, Succ1MBB));
@@ -1724,7 +1737,7 @@ void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
// Emit the code for the jump table
assert(JT.Reg != -1U && "Should lower JT Header first!");
- EVT PTy = TM.getTargetLowering()->getPointerTy();
+ EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
JT.Reg, PTy);
SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
@@ -1752,10 +1765,10 @@ void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
// can be used as an index into the jump table in a subsequent basic block.
// This value may be smaller or larger than the target's pointer type, and
// therefore require extension or truncating.
- const TargetLowering *TLI = TM.getTargetLowering();
- SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
- unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
+ unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
JumpTableReg, SwitchOp);
JT.Reg = JumpTableReg;
@@ -1763,12 +1776,10 @@ void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
// Emit the range check for the jump table, and branch to the default block
// for the switch statement if the value being switched on exceeds the largest
// case in the switch.
- SDValue CMP = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub,
- DAG.getConstant(JTH.Last - JTH.First,VT),
- ISD::SETUGT);
+ SDValue CMP =
+ DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
// Set NextBlock to be the MBB immediately after the current one, if any.
// This is used to avoid emitting unnecessary branches to the next block.
@@ -1799,8 +1810,8 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
MachineBasicBlock *ParentBB) {
// First create the loads to the guard/stack slot for the comparison.
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT PtrTy = TLI->getPointerTy();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT PtrTy = TLI.getPointerTy();
MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
int FI = MFI->getStackProtectorIndex();
@@ -1810,10 +1821,22 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
unsigned Align =
- TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
- SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
- GuardPtr, MachinePointerInfo(IRGuard, 0),
- true, false, false, Align);
+ TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
+
+ SDValue Guard;
+
+ // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
+ // guard value from the virtual register holding the value. Otherwise, emit a
+ // volatile load to retrieve the stack guard value.
+ unsigned GuardReg = SPD.getGuardReg();
+
+ if (GuardReg && TLI.useLoadStackGuardNode())
+ Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
+ PtrTy);
+ else
+ Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ GuardPtr, MachinePointerInfo(IRGuard, 0),
+ true, false, false, Align);
SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
StackSlotPtr,
@@ -1824,11 +1847,10 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
EVT VT = Guard.getValueType();
SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
- SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(0, VT),
- ISD::SETNE);
+ SDValue Cmp =
+ DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(0, VT), ISD::SETNE);
// If the sub is not 0, then we know the guard/stackslot do not equal, so
// branch to failure MBB.
@@ -1853,10 +1875,10 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
/// StackProtectorDescriptor.
void
SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
- const TargetLowering *TLI = TM.getTargetLowering();
- SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
- MVT::isVoid, nullptr, 0, false,
- getCurSDLoc(), false, false).second;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Chain =
+ TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
+ nullptr, 0, false, getCurSDLoc(), false, false).second;
DAG.setRoot(Chain);
}
@@ -1871,16 +1893,15 @@ void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
DAG.getConstant(B.First, VT));
// Check range
- const TargetLowering *TLI = TM.getTargetLowering();
- SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(),
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue RangeCmp =
+ DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
Sub.getValueType()),
- Sub, DAG.getConstant(B.Range, VT),
- ISD::SETUGT);
+ Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
// Determine the type of the test operands.
bool UsePtrType = false;
- if (!TLI->isTypeLegal(VT))
+ if (!TLI.isTypeLegal(VT))
UsePtrType = true;
else {
for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
@@ -1892,7 +1913,7 @@ void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
}
}
if (UsePtrType) {
- VT = TLI->getPointerTy();
+ VT = TLI.getPointerTy();
Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
}
@@ -1936,22 +1957,18 @@ void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
Reg, VT);
SDValue Cmp;
unsigned PopCount = CountPopulation_64(B.Mask);
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (PopCount == 1) {
// Testing for a single bit; just compare the shift count with what it
// would need to be to shift a 1 bit in that position.
- Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(), VT),
- ShiftOp,
- DAG.getConstant(countTrailingZeros(B.Mask), VT),
- ISD::SETEQ);
+ Cmp = DAG.getSetCC(
+ getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
+ DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
} else if (PopCount == BB.Range) {
// There is only one zero bit in the range, test for it directly.
- Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(), VT),
- ShiftOp,
- DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
- ISD::SETNE);
+ Cmp = DAG.getSetCC(
+ getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
+ DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE);
} else {
// Make desired shift
SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
@@ -1961,9 +1978,8 @@ void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
VT, SwitchVal, DAG.getConstant(B.Mask, VT));
Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI->getSetCCResultType(*DAG.getContext(), VT),
- AndOp, DAG.getConstant(0, VT),
- ISD::SETNE);
+ TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
+ DAG.getConstant(0, VT), ISD::SETNE);
}
// The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
@@ -2001,8 +2017,17 @@ void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
if (isa<InlineAsm>(Callee))
visitInlineAsm(&I);
else if (Fn && Fn->isIntrinsic()) {
- assert(Fn->getIntrinsicID() == Intrinsic::donothing);
- // Ignore invokes to @llvm.donothing: jump directly to the next BB.
+ switch (Fn->getIntrinsicID()) {
+ default:
+ llvm_unreachable("Cannot invoke this intrinsic");
+ case Intrinsic::donothing:
+ // Ignore invokes to @llvm.donothing: jump directly to the next BB.
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ visitPatchpoint(&I, LandingPad);
+ break;
+ }
} else
LowerCallTo(&I, getValue(Callee), false, LandingPad);
@@ -2034,26 +2059,30 @@ void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
// If there aren't registers to copy the values into (e.g., during SjLj
// exceptions), then don't bother to create these DAG nodes.
- const TargetLowering *TLI = TM.getTargetLowering();
- if (TLI->getExceptionPointerRegister() == 0 &&
- TLI->getExceptionSelectorRegister() == 0)
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.getExceptionPointerRegister() == 0 &&
+ TLI.getExceptionSelectorRegister() == 0)
return;
SmallVector<EVT, 2> ValueVTs;
- ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
+ ComputeValueVTs(TLI, LP.getType(), ValueVTs);
assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
// Get the two live-in registers as SDValues. The physregs have already been
// copied into virtual registers.
SDValue Ops[2];
- Ops[0] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
- FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
- getCurSDLoc(), ValueVTs[0]);
+ if (FuncInfo.ExceptionPointerVirtReg) {
+ Ops[0] = DAG.getZExtOrTrunc(
+ DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
+ FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
+ getCurSDLoc(), ValueVTs[0]);
+ } else {
+ Ops[0] = DAG.getConstant(0, TLI.getPointerTy());
+ }
Ops[1] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
- FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
- getCurSDLoc(), ValueVTs[1]);
+ DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
+ FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
+ getCurSDLoc(), ValueVTs[1]);
// Merge into one.
SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
@@ -2061,6 +2090,27 @@ void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
setValue(&LP, Res);
}
+unsigned
+SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
+ MachineBasicBlock *LPadBB) {
+ SDValue Chain = getControlRoot();
+
+ // Get the typeid that we will dispatch on later.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
+ unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
+ unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
+ SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy());
+ Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel);
+
+ // Branch to the main landing pad block.
+ MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
+ ClauseMBB->addSuccessor(LPadBB);
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain,
+ DAG.getBasicBlock(LPadBB)));
+ return VReg;
+}
+
/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
/// small case ranges).
bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
@@ -2218,9 +2268,8 @@ bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
}
static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return TLI.supportJumpTables() &&
- (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
+ return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
static APInt ComputeRange(const APInt &First, const APInt &Last) {
@@ -2245,8 +2294,8 @@ bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
TSize += I->size();
- const TargetLowering *TLI = TM.getTargetLowering();
- if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
return false;
APInt Range = ComputeRange(First, Last);
@@ -2327,7 +2376,7 @@ bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
}
// Create a jump table index for this jump table.
- unsigned JTEncoding = TLI->getJumpTableEncoding();
+ unsigned JTEncoding = TLI.getJumpTableEncoding();
unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
->createJumpTableIndex(DestBBs);
@@ -2347,7 +2396,6 @@ bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
const Value* SV,
- MachineBasicBlock* Default,
MachineBasicBlock* SwitchBB) {
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
@@ -2413,8 +2461,8 @@ bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
RSize -= J->size();
}
- const TargetLowering *TLI = TM.getTargetLowering();
- if (areJTsAllowed(*TLI)) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (areJTsAllowed(TLI)) {
// If our case is dense we *really* should handle it earlier!
assert((FMetric > 0) && "Should handle dense range earlier!");
} else {
@@ -2484,8 +2532,8 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
const Value* SV,
MachineBasicBlock* Default,
MachineBasicBlock* SwitchBB) {
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT PTy = TLI->getPointerTy();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT PTy = TLI.getPointerTy();
unsigned IntPtrBits = PTy.getSizeInBits();
Case& FrontCase = *CR.Range.first;
@@ -2496,19 +2544,18 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
MachineFunction *CurMF = FuncInfo.MF;
// If target does not have legal shift left, do not emit bit tests at all.
- if (!TLI->isOperationLegal(ISD::SHL, PTy))
+ if (!TLI.isOperationLegal(ISD::SHL, PTy))
return false;
size_t numCmps = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I) {
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
// Single case counts one, case range - two.
numCmps += (I->Low == I->High ? 1 : 2);
}
// Count unique destinations
SmallSet<MachineBasicBlock*, 4> Dests;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
Dests.insert(I->BB);
if (Dests.size() > 3)
// Don't bother the code below, if there are too much unique destinations
@@ -2601,25 +2648,22 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
BitTestBlock BTB(lowBound, cmpRange, SV,
-1U, MVT::Other, (CR.CaseBB == SwitchBB),
- CR.CaseBB, Default, BTC);
+ CR.CaseBB, Default, std::move(BTC));
if (CR.CaseBB == SwitchBB)
visitBitTestHeader(BTB, SwitchBB);
- BitTestCases.push_back(BTB);
+ BitTestCases.push_back(std::move(BTB));
return true;
}
/// Clusterify - Transform simple list of Cases into list of CaseRange's
-size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
- const SwitchInst& SI) {
- size_t numCmps = 0;
-
+void SelectionDAGBuilder::Clusterify(CaseVector& Cases,
+ const SwitchInst& SI) {
BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // Start with "simple" cases
- for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
- i != e; ++i) {
+ // Start with "simple" cases.
+ for (SwitchInst::ConstCaseIt i : SI.cases()) {
const BasicBlock *SuccBB = i.getCaseSuccessor();
MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
@@ -2653,13 +2697,15 @@ size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
}
}
- for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
- if (I->Low != I->High)
- // A range counts double, since it requires two compares.
- ++numCmps;
- }
+ DEBUG({
+ size_t numCmps = 0;
+ for (auto &I : Cases)
+ // A range counts double, since it requires two compares.
+ numCmps += I.Low != I.High ? 2 : 1;
- return numCmps;
+ dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
+ << ". Total compares: " << numCmps << '\n';
+ });
}
void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
@@ -2680,35 +2726,58 @@ void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = nullptr;
+ if (SwitchMBB + 1 != FuncInfo.MF->end())
+ NextBlock = SwitchMBB + 1;
+
+
+ // Create a vector of Cases, sorted so that we can efficiently create a binary
+ // search tree from them.
+ CaseVector Cases;
+ Clusterify(Cases, SI);
+
+ // Get the default destination MBB.
MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
- // If there is only the default destination, branch to it if it is not the
- // next basic block. Otherwise, just fall through.
- if (!SI.getNumCases()) {
- // Update machine-CFG edges.
+ if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
+ !Cases.empty()) {
+ // Replace an unreachable default destination with the most popular case
+ // destination.
+ DenseMap<const BasicBlock *, unsigned> Popularity;
+ unsigned MaxPop = 0;
+ const BasicBlock *MaxBB = nullptr;
+ for (auto I : SI.cases()) {
+ const BasicBlock *BB = I.getCaseSuccessor();
+ if (++Popularity[BB] > MaxPop) {
+ MaxPop = Popularity[BB];
+ MaxBB = BB;
+ }
+ }
- // If this is not a fall-through branch, emit the branch.
+ // Set new default.
+ assert(MaxPop > 0);
+ assert(MaxBB);
+ Default = FuncInfo.MBBMap[MaxBB];
+
+ // Remove cases that were pointing to the destination that is now the default.
+ Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
+ [&](const Case &C) { return C.BB == Default; }),
+ Cases.end());
+ }
+
+ // If there is only the default destination, go there directly.
+ if (Cases.empty()) {
+ // Update machine-CFG edges.
SwitchMBB->addSuccessor(Default);
- if (Default != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Default)));
+ // If this is not a fall-through branch, emit the branch.
+ if (Default != NextBlock) {
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
+ getControlRoot(), DAG.getBasicBlock(Default)));
+ }
return;
}
- // If there are any non-default case statements, create a vector of Cases
- // representing each one, and sort the vector so that we can efficiently
- // create a binary search tree from them.
- CaseVector Cases;
- size_t numCmps = Clusterify(Cases, SI);
- DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << '\n');
- (void)numCmps;
-
- // Get the Value to be switched on and default basic blocks, which will be
- // inserted into CaseBlock records, representing basic blocks in the binary
- // search tree.
+ // Get the Value to be switched on.
const Value *SV = SI.getCondition();
// Push the initial CaseRec onto the worklist
@@ -2738,7 +2807,7 @@ void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
// Emit binary tree. We need to pick a pivot, and push left and right ranges
// onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
- handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
+ handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
}
}
@@ -2749,7 +2818,7 @@ void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
SmallSet<BasicBlock*, 32> Done;
for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
BasicBlock *BB = I.getSuccessor(i);
- bool Inserted = Done.insert(BB);
+ bool Inserted = Done.insert(BB).second;
if (!Inserted)
continue;
@@ -2806,7 +2875,8 @@ void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
SDValue Op1 = getValue(I.getOperand(0));
SDValue Op2 = getValue(I.getOperand(1));
- EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
+ EVT ShiftTy =
+ DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
// Coerce the shift amount to the right type if we can.
if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
@@ -2861,8 +2931,8 @@ void SelectionDAGBuilder::visitSDiv(const User &I) {
if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
!isa<ConstantSDNode>(Op1) &&
isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
- setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
- getCurSDLoc(), DAG));
+ setValue(&I, DAG.getTargetLoweringInfo()
+ .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
else
setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
Op1, Op2));
@@ -2878,7 +2948,7 @@ void SelectionDAGBuilder::visitICmp(const User &I) {
SDValue Op2 = getValue(I.getOperand(1));
ISD::CondCode Opcode = getICmpCondCode(predicate);
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
}
@@ -2893,13 +2963,13 @@ void SelectionDAGBuilder::visitFCmp(const User &I) {
ISD::CondCode Condition = getFCmpCondCode(predicate);
if (TM.Options.NoNaNsFPMath)
Condition = getFCmpCodeWithoutNaN(Condition);
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
}
void SelectionDAGBuilder::visitSelect(const User &I) {
SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
+ ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0) return;
@@ -2926,7 +2996,7 @@ void SelectionDAGBuilder::visitSelect(const User &I) {
void SelectionDAGBuilder::visitTrunc(const User &I) {
// TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
}
@@ -2934,7 +3004,7 @@ void SelectionDAGBuilder::visitZExt(const User &I) {
// ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// ZExt also can't be a cast to bool for same reason. So, nothing much to do
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
}
@@ -2942,52 +3012,51 @@ void SelectionDAGBuilder::visitSExt(const User &I) {
// SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// SExt also can't be a cast to bool for same reason. So, nothing much to do
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
}
void SelectionDAGBuilder::visitFPTrunc(const User &I) {
// FPTrunc is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT DestVT = TLI->getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
- DestVT, N,
- DAG.getTargetConstant(0, TLI->getPointerTy())));
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
+ DAG.getTargetConstant(0, TLI.getPointerTy())));
}
void SelectionDAGBuilder::visitFPExt(const User &I) {
// FPExt is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
}
void SelectionDAGBuilder::visitFPToUI(const User &I) {
// FPToUI is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
}
void SelectionDAGBuilder::visitFPToSI(const User &I) {
// FPToSI is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
}
void SelectionDAGBuilder::visitUIToFP(const User &I) {
// UIToFP is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
}
void SelectionDAGBuilder::visitSIToFP(const User &I) {
// SIToFP is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
}
@@ -2995,7 +3064,7 @@ void SelectionDAGBuilder::visitPtrToInt(const User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
}
@@ -3003,13 +3072,13 @@ void SelectionDAGBuilder::visitIntToPtr(const User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
}
void SelectionDAGBuilder::visitBitCast(const User &I) {
SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
// BitCast assures us that source and destination are the same size so this is
// either a BITCAST or a no-op.
@@ -3031,7 +3100,7 @@ void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const Value *SV = I.getOperand(0);
SDValue N = getValue(SV);
- EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
unsigned SrcAS = SV->getType()->getPointerAddressSpace();
unsigned DestAS = I.getType()->getPointerAddressSpace();
@@ -3049,8 +3118,7 @@ void SelectionDAGBuilder::visitInsertElement(const User &I) {
SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
getCurSDLoc(), TLI.getVectorIdxTy());
setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
- TM.getTargetLowering()->getValueType(I.getType()),
- InVec, InVal, InIdx));
+ TLI.getValueType(I.getType()), InVec, InVal, InIdx));
}
void SelectionDAGBuilder::visitExtractElement(const User &I) {
@@ -3059,8 +3127,7 @@ void SelectionDAGBuilder::visitExtractElement(const User &I) {
SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
getCurSDLoc(), TLI.getVectorIdxTy());
setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
- TM.getTargetLowering()->getValueType(I.getType()),
- InVec, InIdx));
+ TLI.getValueType(I.getType()), InVec, InIdx));
}
// Utility for visitShuffleVector - Return true if every element in Mask,
@@ -3082,8 +3149,8 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
unsigned MaskNumElts = Mask.size();
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT VT = TLI->getValueType(I.getType());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = TLI.getValueType(I.getType());
EVT SrcVT = Src1.getValueType();
unsigned SrcNumElts = SrcVT.getVectorNumElements();
@@ -3202,9 +3269,9 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
if (RangeUse[Input] == 0)
Src = DAG.getUNDEF(VT);
else
- Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
- Src, DAG.getConstant(StartIdx[Input],
- TLI->getVectorIdxTy()));
+ Src = DAG.getNode(
+ ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
+ DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
}
// Calculate new mask.
@@ -3230,7 +3297,7 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
// replacing the shuffle with extract and build vector.
// to insert and build vector.
EVT EltVT = VT.getVectorElementType();
- EVT IdxVT = TLI->getVectorIdxTy();
+ EVT IdxVT = TLI.getVectorIdxTy();
SmallVector<SDValue,8> Ops;
for (unsigned i = 0; i != MaskNumElts; ++i) {
int Idx = Mask[i];
@@ -3262,16 +3329,22 @@ void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SmallVector<EVT, 4> AggValueVTs;
- ComputeValueVTs(*TLI, AggTy, AggValueVTs);
+ ComputeValueVTs(TLI, AggTy, AggValueVTs);
SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(*TLI, ValTy, ValValueVTs);
+ ComputeValueVTs(TLI, ValTy, ValValueVTs);
unsigned NumAggValues = AggValueVTs.size();
unsigned NumValValues = ValValueVTs.size();
SmallVector<SDValue, 4> Values(NumAggValues);
+ // Ignore an insertvalue that produces an empty object
+ if (!NumAggValues) {
+ setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
+ return;
+ }
+
SDValue Agg = getValue(Op0);
unsigned i = 0;
// Copy the beginning value(s) from the original aggregate.
@@ -3302,9 +3375,9 @@ void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(*TLI, ValTy, ValValueVTs);
+ ComputeValueVTs(TLI, ValTy, ValValueVTs);
unsigned NumValValues = ValValueVTs.size();
@@ -3353,13 +3426,13 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->isZero()) continue;
uint64_t Offs =
DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
SDValue OffsVal;
- EVT PTy = TLI->getPointerTy(AS);
+ EVT PTy = TLI.getPointerTy(AS);
unsigned PtrBits = PTy.getSizeInBits();
if (PtrBits < 64)
OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
@@ -3373,8 +3446,8 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
}
// N = N + Idx * ElementSize;
- APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
- DL->getTypeAllocSize(Ty));
+ APInt ElementSize =
+ APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty));
SDValue IdxN = getValue(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend
@@ -3411,15 +3484,15 @@ void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
return; // getValue will auto-populate this.
Type *Ty = I.getAllocatedType();
- const TargetLowering *TLI = TM.getTargetLowering();
- uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
unsigned Align =
- std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
- I.getAlignment());
+ std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
+ I.getAlignment());
SDValue AllocSize = getValue(I.getArraySize());
- EVT IntPtr = TLI->getPointerTy();
+ EVT IntPtr = TLI.getPointerTy();
if (AllocSize.getValueType() != IntPtr)
AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
@@ -3430,7 +3503,8 @@ void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
// Handle alignment. If the requested alignment is less than or equal to
// the stack alignment, ignore it. If the size is greater than or equal to
// the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
+ unsigned StackAlign =
+ DAG.getSubtarget().getFrameLowering()->getStackAlignment();
if (Align <= StackAlign)
Align = 0;
@@ -3464,15 +3538,18 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
Type *Ty = I.getType();
bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
- bool isInvariant = I.getMetadata("invariant.load") != nullptr;
+ bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
+ bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
unsigned Alignment = I.getAlignment();
- const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
+
+ AAMDNodes AAInfo;
+ I.getAAMetadata(AAInfo);
const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SmallVector<EVT, 4> ValueVTs;
SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
+ ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0)
return;
@@ -3483,7 +3560,7 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
// Serialize volatile loads with other side effects.
Root = getRoot();
else if (AA->pointsToConstantMemory(
- AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
+ AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
// Do not serialize (non-volatile) loads of constant memory with anything.
Root = DAG.getEntryNode();
ConstantMemory = true;
@@ -3492,9 +3569,8 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
Root = DAG.getRoot();
}
- const TargetLowering *TLI = TM.getTargetLowering();
if (isVolatile)
- Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
+ Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
SmallVector<SDValue, 4> Values(NumValues);
SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
@@ -3520,7 +3596,7 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
DAG.getConstant(Offsets[i], PtrVT));
SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
- isNonTemporal, isInvariant, Alignment, TBAAInfo,
+ isNonTemporal, isInvariant, Alignment, AAInfo,
Ranges);
Values[i] = L;
@@ -3549,7 +3625,8 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
SmallVector<EVT, 4> ValueVTs;
SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
+ ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
+ ValueVTs, &Offsets);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0)
return;
@@ -3565,9 +3642,11 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
NumValues));
EVT PtrVT = Ptr.getValueType();
bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
+ bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
unsigned Alignment = I.getAlignment();
- const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
+
+ AAMDNodes AAInfo;
+ I.getAAMetadata(AAInfo);
unsigned ChainI = 0;
for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
@@ -3583,7 +3662,7 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
SDValue St = DAG.getStore(Root, getCurSDLoc(),
SDValue(Src.getNode(), Src.getResNo() + i),
Add, MachinePointerInfo(PtrV, Offsets[i]),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
+ isVolatile, isNonTemporal, Alignment, AAInfo);
Chains[ChainI] = St;
}
@@ -3592,28 +3671,70 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
DAG.setRoot(StoreNode);
}
-static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
- SynchronizationScope Scope,
- bool Before, SDLoc dl,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // Fence, if necessary
- if (Before) {
- if (Order == AcquireRelease || Order == SequentiallyConsistent)
- Order = Release;
- else if (Order == Acquire || Order == Monotonic || Order == Unordered)
- return Chain;
- } else {
- if (Order == AcquireRelease)
- Order = Acquire;
- else if (Order == Release || Order == Monotonic || Order == Unordered)
- return Chain;
+void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
+ SDLoc sdl = getCurSDLoc();
+
+ // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
+ Value *PtrOperand = I.getArgOperand(1);
+ SDValue Ptr = getValue(PtrOperand);
+ SDValue Src0 = getValue(I.getArgOperand(0));
+ SDValue Mask = getValue(I.getArgOperand(3));
+ EVT VT = Src0.getValueType();
+ unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
+ if (!Alignment)
+ Alignment = DAG.getEVTAlignment(VT);
+
+ AAMDNodes AAInfo;
+ I.getAAMetadata(AAInfo);
+
+ MachineMemOperand *MMO =
+ DAG.getMachineFunction().
+ getMachineMemOperand(MachinePointerInfo(PtrOperand),
+ MachineMemOperand::MOStore, VT.getStoreSize(),
+ Alignment, AAInfo);
+ SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO);
+ DAG.setRoot(StoreNode);
+ setValue(&I, StoreNode);
+}
+
+void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
+ SDLoc sdl = getCurSDLoc();
+
+ // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
+ Value *PtrOperand = I.getArgOperand(0);
+ SDValue Ptr = getValue(PtrOperand);
+ SDValue Src0 = getValue(I.getArgOperand(3));
+ SDValue Mask = getValue(I.getArgOperand(2));
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = TLI.getValueType(I.getType());
+ unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
+ if (!Alignment)
+ Alignment = DAG.getEVTAlignment(VT);
+
+ AAMDNodes AAInfo;
+ I.getAAMetadata(AAInfo);
+ const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
+
+ SDValue InChain = DAG.getRoot();
+ if (AA->pointsToConstantMemory(
+ AliasAnalysis::Location(PtrOperand,
+ AA->getTypeStoreSize(I.getType()),
+ AAInfo))) {
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ InChain = DAG.getEntryNode();
}
- SDValue Ops[3];
- Ops[0] = Chain;
- Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
- Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
- return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
+
+ MachineMemOperand *MMO =
+ DAG.getMachineFunction().
+ getMachineMemOperand(MachinePointerInfo(PtrOperand),
+ MachineMemOperand::MOLoad, VT.getStoreSize(),
+ Alignment, AAInfo, Ranges);
+
+ SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO);
+ SDValue OutChain = Load.getValue(1);
+ DAG.setRoot(OutChain);
+ setValue(&I, Load);
}
void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
@@ -3624,27 +3745,16 @@ void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- if (TLI->getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
- DAG, *TLI);
-
MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
SDValue L = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
- 0 /* Alignment */,
- TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
- TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope);
+ /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
SDValue OutChain = L.getValue(2);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
- DAG, *TLI);
-
setValue(&I, L);
DAG.setRoot(OutChain);
}
@@ -3671,38 +3781,28 @@ void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- if (TLI->getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, *TLI);
-
SDValue L =
DAG.getAtomic(NT, dl,
getValue(I.getValOperand()).getSimpleValueType(),
InChain,
getValue(I.getPointerOperand()),
getValue(I.getValOperand()),
- I.getPointerOperand(), 0 /* Alignment */,
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
+ I.getPointerOperand(),
+ /* Alignment=*/ 0, Order, Scope);
SDValue OutChain = L.getValue(1);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
-
setValue(&I, L);
DAG.setRoot(OutChain);
}
void SelectionDAGBuilder::visitFence(const FenceInst &I) {
SDLoc dl = getCurSDLoc();
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Ops[3];
Ops[0] = getRoot();
- Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
- Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
+ Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
+ Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
}
@@ -3713,8 +3813,8 @@ void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT VT = TLI->getValueType(I.getType());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = TLI.getValueType(I.getType());
if (I.getAlignment() < VT.getSizeInBits() / 8)
report_fatal_error("Cannot generate unaligned atomic load");
@@ -3728,19 +3828,14 @@ void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
I.getAlignment() ? I.getAlignment() :
DAG.getEVTAlignment(VT));
- InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
+ InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
SDValue L =
DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
getValue(I.getPointerOperand()), MMO,
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
+ Order, Scope);
SDValue OutChain = L.getValue(1);
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
-
setValue(&I, L);
DAG.setRoot(OutChain);
}
@@ -3753,28 +3848,19 @@ void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
SDValue InChain = getRoot();
- const TargetLowering *TLI = TM.getTargetLowering();
- EVT VT = TLI->getValueType(I.getValueOperand()->getType());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = TLI.getValueType(I.getValueOperand()->getType());
if (I.getAlignment() < VT.getSizeInBits() / 8)
report_fatal_error("Cannot generate unaligned atomic store");
- if (TLI->getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, *TLI);
-
SDValue OutChain =
DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
InChain,
getValue(I.getPointerOperand()),
getValue(I.getValueOperand()),
I.getPointerOperand(), I.getAlignment(),
- TLI->getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
-
- if (TLI->getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, *TLI);
+ Order, Scope);
DAG.setRoot(OutChain);
}
@@ -3799,13 +3885,13 @@ void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
// Info is set by getTgtMemInstrinsic
TargetLowering::IntrinsicInfo Info;
- const TargetLowering *TLI = TM.getTargetLowering();
- bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
// Add the intrinsic ID as an integer operand if it's not a target intrinsic.
if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
Info.opc == ISD::INTRINSIC_W_CHAIN)
- Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
+ Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
// Add all operands of the call to the operand list.
for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
@@ -3814,7 +3900,7 @@ void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
}
SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, I.getType(), ValueVTs);
+ ComputeValueVTs(TLI, I.getType(), ValueVTs);
if (HasChain)
ValueVTs.push_back(MVT::Other);
@@ -3829,7 +3915,7 @@ void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
VTs, Ops, Info.memVT,
MachinePointerInfo(Info.ptrVal, Info.offset),
Info.align, Info.vol,
- Info.readMem, Info.writeMem);
+ Info.readMem, Info.writeMem, Info.size);
} else if (!HasChain) {
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
} else if (!I.getType()->isVoidTy()) {
@@ -3848,7 +3934,7 @@ void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
if (!I.getType()->isVoidTy()) {
if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- EVT VT = TLI->getValueType(PTy);
+ EVT VT = TLI.getValueType(PTy);
Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
}
@@ -4555,16 +4641,17 @@ static unsigned getTruncatedArgReg(const SDValue &N) {
/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
/// argument, create the corresponding DBG_VALUE machine instruction for it now.
/// At the end of instruction selection, they will be inserted to the entry BB.
-bool
-SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
- int64_t Offset, bool IsIndirect,
- const SDValue &N) {
+bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
+ MDNode *Variable,
+ MDNode *Expr, int64_t Offset,
+ bool IsIndirect,
+ const SDValue &N) {
const Argument *Arg = dyn_cast<Argument>(V);
if (!Arg)
return false;
MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
// Ignore inlined function arguments here.
DIVariable DV(Variable);
@@ -4610,14 +4697,16 @@ SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
return false;
if (Op->isReg())
- FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
- TII->get(TargetOpcode::DBG_VALUE),
- IsIndirect,
- Op->getReg(), Offset, Variable));
+ FuncInfo.ArgDbgValues.push_back(
+ BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE),
+ IsIndirect, Op->getReg(), Offset, Variable, Expr));
else
FuncInfo.ArgDbgValues.push_back(
- BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
- .addOperand(*Op).addImm(Offset).addMetadata(Variable));
+ BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
+ .addOperand(*Op)
+ .addImm(Offset)
+ .addMetadata(Variable)
+ .addMetadata(Expr));
return true;
}
@@ -4635,7 +4724,7 @@ SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
/// otherwise lower it and return null.
const char *
SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc sdl = getCurSDLoc();
DebugLoc dl = getCurDebugLoc();
SDValue Res;
@@ -4649,17 +4738,18 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::vaend: visitVAEnd(I); return nullptr;
case Intrinsic::vacopy: visitVACopy(I); return nullptr;
case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
+ setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
getValue(I.getArgOperand(0))));
return nullptr;
case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
+ setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
getValue(I.getArgOperand(0))));
return nullptr;
case Intrinsic::read_register: {
Value *Reg = I.getArgOperand(0);
- SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
- EVT VT = TM.getTargetLowering()->getValueType(I.getType());
+ SDValue RegName =
+ DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
+ EVT VT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
return nullptr;
}
@@ -4667,15 +4757,16 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
Value *Reg = I.getArgOperand(0);
Value *RegValue = I.getArgOperand(1);
SDValue Chain = getValue(RegValue).getOperand(0);
- SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
+ SDValue RegName =
+ DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
RegName, getValue(RegValue)));
return nullptr;
}
case Intrinsic::setjmp:
- return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
+ return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
case Intrinsic::longjmp:
- return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
+ return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
case Intrinsic::memcpy: {
// Assert for address < 256 since we support only user defined address
// spaces.
@@ -4736,6 +4827,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::dbg_declare: {
const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
MDNode *Variable = DI.getVariable();
+ MDNode *Expression = DI.getExpression();
const Value *Address = DI.getAddress();
DIVariable DIVar(Variable);
assert((!DIVar || DIVar.isVariable()) &&
@@ -4771,16 +4863,16 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
if (FINode)
// Byval parameter. We have a frame index at this point.
- SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(),
- 0, dl, SDNodeOrder);
+ SDV = DAG.getFrameIndexDbgValue(
+ Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
else {
// Address is an argument, so try to emit its dbg value using
// virtual register info from the FuncInfo.ValueMap.
- EmitFuncArgumentDbgValue(Address, Variable, 0, false, N);
+ EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N);
return nullptr;
}
} else if (AI)
- SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
+ SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
true, 0, dl, SDNodeOrder);
else {
// Can't do anything with other non-AI cases yet.
@@ -4793,7 +4885,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
} else {
// If Address is an argument then try to emit its dbg value using
// virtual register info from the FuncInfo.ValueMap.
- if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) {
+ if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false,
+ N)) {
// If variable is pinned by a alloca in dominating bb then
// use StaticAllocaMap.
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
@@ -4801,7 +4894,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
DenseMap<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
- SDV = DAG.getFrameIndexDbgValue(Variable, SI->second,
+ SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
0, dl, SDNodeOrder);
DAG.AddDbgValue(SDV, nullptr, false);
return nullptr;
@@ -4822,6 +4915,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
MDNode *Variable = DI.getVariable();
+ MDNode *Expression = DI.getExpression();
uint64_t Offset = DI.getOffset();
const Value *V = DI.getValue();
if (!V)
@@ -4829,7 +4923,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
SDDbgValue *SDV;
if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
- SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder);
+ SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
+ SDNodeOrder);
DAG.AddDbgValue(SDV, nullptr, false);
} else {
// Do not use getValue() in here; we don't want to generate code at
@@ -4841,10 +4936,10 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (N.getNode()) {
// A dbg.value for an alloca is always indirect.
bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
- if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) {
- SDV = DAG.getDbgValue(Variable, N.getNode(),
- N.getResNo(), IsIndirect,
- Offset, dl, SDNodeOrder);
+ if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset,
+ IsIndirect, N)) {
+ SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
+ IsIndirect, Offset, dl, SDNodeOrder);
DAG.AddDbgValue(SDV, N.getNode(), false);
}
} else if (!V->use_empty() ) {
@@ -4878,7 +4973,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::eh_typeid_for: {
// Find the type id for the given typeinfo.
- GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
+ GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
Res = DAG.getConstant(TypeID, MVT::i32);
setValue(&I, Res);
@@ -4899,15 +4994,14 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
case Intrinsic::eh_dwarf_cfa: {
SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
- TLI->getPointerTy());
+ TLI.getPointerTy());
SDValue Offset = DAG.getNode(ISD::ADD, sdl,
CfaArg.getValueType(),
DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
CfaArg.getValueType()),
CfaArg);
- SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
- TLI->getPointerTy(),
- DAG.getConstant(0, TLI->getPointerTy()));
+ SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
+ DAG.getConstant(0, TLI.getPointerTy()));
setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
FA, Offset));
return nullptr;
@@ -4946,6 +5040,12 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
}
+ case Intrinsic::masked_load:
+ visitMaskedLoad(I);
+ return nullptr;
+ case Intrinsic::masked_store:
+ visitMaskedStore(I);
+ return nullptr;
case Intrinsic::x86_mmx_pslli_w:
case Intrinsic::x86_mmx_pslli_d:
case Intrinsic::x86_mmx_pslli_q:
@@ -4997,7 +5097,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
ShOps[0] = ShAmt;
ShOps[1] = DAG.getConstant(0, MVT::i32);
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
- EVT DestVT = TLI->getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
DAG.getConstant(NewIntrinsic, MVT::i32),
@@ -5009,14 +5109,14 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::x86_avx_vinsertf128_ps_256:
case Intrinsic::x86_avx_vinsertf128_si_256:
case Intrinsic::x86_avx2_vinserti128: {
- EVT DestVT = TLI->getValueType(I.getType());
- EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
+ EVT DestVT = TLI.getValueType(I.getType());
+ EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
ElVT.getVectorNumElements();
- Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getConstant(Idx, TLI->getVectorIdxTy()));
+ Res =
+ DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
+ getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
+ DAG.getConstant(Idx, TLI.getVectorIdxTy()));
setValue(&I, Res);
return nullptr;
}
@@ -5024,12 +5124,12 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::x86_avx_vextractf128_ps_256:
case Intrinsic::x86_avx_vextractf128_si_256:
case Intrinsic::x86_avx2_vextracti128: {
- EVT DestVT = TLI->getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
DestVT.getVectorNumElements();
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
getValue(I.getArgOperand(0)),
- DAG.getConstant(Idx, TLI->getVectorIdxTy()));
+ DAG.getConstant(Idx, TLI.getVectorIdxTy()));
setValue(&I, Res);
return nullptr;
}
@@ -5055,7 +5155,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::convertus: Code = ISD::CVT_US; break;
case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
}
- EVT DestVT = TLI->getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
const Value *Op1 = I.getArgOperand(0);
Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
DAG.getValueType(DestVT),
@@ -5071,23 +5171,23 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
getValue(I.getArgOperand(1)), DAG));
return nullptr;
case Intrinsic::log:
- setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
return nullptr;
case Intrinsic::log2:
- setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
return nullptr;
case Intrinsic::log10:
- setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
return nullptr;
case Intrinsic::exp:
- setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
return nullptr;
case Intrinsic::exp2:
- setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
+ setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
return nullptr;
case Intrinsic::pow:
setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG, *TLI));
+ getValue(I.getArgOperand(1)), DAG, TLI));
return nullptr;
case Intrinsic::sqrt:
case Intrinsic::fabs:
@@ -5119,6 +5219,18 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
getValue(I.getArgOperand(0))));
return nullptr;
}
+ case Intrinsic::minnum:
+ setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1))));
+ return nullptr;
+ case Intrinsic::maxnum:
+ setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
+ getValue(I.getArgOperand(0)).getValueType(),
+ getValue(I.getArgOperand(0)),
+ getValue(I.getArgOperand(1))));
+ return nullptr;
case Intrinsic::copysign:
setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
getValue(I.getArgOperand(0)).getValueType(),
@@ -5133,9 +5245,9 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
getValue(I.getArgOperand(2))));
return nullptr;
case Intrinsic::fmuladd: {
- EVT VT = TLI->getValueType(I.getType());
+ EVT VT = TLI.getValueType(I.getType());
if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
- TLI->isFMAFasterThanFMulAndFAdd(VT)) {
+ TLI.isFMAFasterThanFMulAndFAdd(VT)) {
setValue(&I, DAG.getNode(ISD::FMA, sdl,
getValue(I.getArgOperand(0)).getValueType(),
getValue(I.getArgOperand(0)),
@@ -5162,7 +5274,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
case Intrinsic::convert_from_fp16:
setValue(&I,
- DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()),
+ DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
getValue(I.getArgOperand(0)))));
return nullptr;
@@ -5209,7 +5321,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::stacksave: {
SDValue Op = getRoot();
Res = DAG.getNode(ISD::STACKSAVE, sdl,
- DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op);
+ DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
setValue(&I, Res);
DAG.setRoot(Res.getValue(1));
return nullptr;
@@ -5223,9 +5335,44 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
// Emit code into the DAG to store the stack guard onto the stack.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- EVT PtrTy = TLI->getPointerTy();
+ EVT PtrTy = TLI.getPointerTy();
+ SDValue Src, Chain = getRoot();
+ const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
+
+ // See if Ptr is a bitcast. If it is, look through it and see if we can get
+ // global variable __stack_chk_guard.
+ if (!GV)
+ if (const Operator *BC = dyn_cast<Operator>(Ptr))
+ if (BC->getOpcode() == Instruction::BitCast)
+ GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
+
+ if (GV && TLI.useLoadStackGuardNode()) {
+ // Emit a LOAD_STACK_GUARD node.
+ MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
+ sdl, PtrTy, Chain);
+ MachinePointerInfo MPInfo(GV);
+ MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
+ unsigned Flags = MachineMemOperand::MOLoad |
+ MachineMemOperand::MOInvariant;
+ *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
+ PtrTy.getSizeInBits() / 8,
+ DAG.getEVTAlignment(PtrTy));
+ Node->setMemRefs(MemRefs, MemRefs + 1);
+
+ // Copy the guard value to a virtual register so that it can be
+ // retrieved in the epilogue.
+ Src = SDValue(Node, 0);
+ const TargetRegisterClass *RC =
+ TLI.getRegClassFor(Src.getSimpleValueType());
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
+
+ SPDescriptor.setGuardReg(Reg);
+ Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
+ } else {
+ Src = getValue(I.getArgOperand(0)); // The guard's value.
+ }
- SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
int FI = FuncInfo.StaticAllocaMap[Slot];
@@ -5234,7 +5381,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
// Store the stack protector onto the stack.
- Res = DAG.getStore(getRoot(), sdl, Src, FIN,
+ Res = DAG.getStore(Chain, sdl, Src, FIN,
MachinePointerInfo::getFixedStack(FI),
true, false, 0);
setValue(&I, Res);
@@ -5263,8 +5410,9 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
// Drop the intrinsic, but forward the value
setValue(&I, getValue(I.getOperand(0)));
return nullptr;
+ case Intrinsic::assume:
case Intrinsic::var_annotation:
- // Discard annotate attributes
+ // Discard annotate attributes and assumptions
return nullptr;
case Intrinsic::init_trampoline: {
@@ -5285,7 +5433,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::adjust_trampoline: {
setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
- TLI->getPointerTy(),
+ TLI.getPointerTy(),
getValue(I.getArgOperand(0))));
return nullptr;
}
@@ -5325,10 +5473,10 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(sdl).setChain(getRoot())
.setCallee(CallingConv::C, I.getType(),
- DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()),
+ DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
std::move(Args), 0);
- std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
+ std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
DAG.setRoot(Result.second);
return nullptr;
}
@@ -5392,11 +5540,17 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (!LifetimeObject)
continue;
- int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
+ // First check that the Alloca is static, otherwise it won't have a
+ // valid frame index.
+ auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
+ if (SI == FuncInfo.StaticAllocaMap.end())
+ return nullptr;
+
+ int FI = SI->second;
SDValue Ops[2];
Ops[0] = getRoot();
- Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
+ Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
@@ -5406,7 +5560,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::invariant_start:
// Discard region information.
- setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
+ setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
return nullptr;
case Intrinsic::invariant_end:
// Discard region information.
@@ -5424,7 +5578,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
}
case Intrinsic::clear_cache:
- return TLI->getClearCacheBuiltinName();
+ return TLI.getClearCacheBuiltinName();
case Intrinsic::donothing:
// ignore
return nullptr;
@@ -5434,41 +5588,85 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64: {
- visitPatchpoint(I);
+ visitPatchpoint(&I);
return nullptr;
}
+ case Intrinsic::experimental_gc_statepoint: {
+ visitStatepoint(I);
+ return nullptr;
}
-}
-
-void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
- bool isTailCall,
- MachineBasicBlock *LandingPad) {
- const TargetLowering *TLI = TM.getTargetLowering();
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- Type *RetTy = FTy->getReturnType();
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- MCSymbol *BeginLabel = nullptr;
-
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Args.reserve(CS.arg_size());
+ case Intrinsic::experimental_gc_result_int:
+ case Intrinsic::experimental_gc_result_float:
+ case Intrinsic::experimental_gc_result_ptr: {
+ visitGCResult(I);
+ return nullptr;
+ }
+ case Intrinsic::experimental_gc_relocate: {
+ visitGCRelocate(I);
+ return nullptr;
+ }
+ case Intrinsic::instrprof_increment:
+ llvm_unreachable("instrprof failed to lower an increment");
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- const Value *V = *i;
+ case Intrinsic::frameallocate: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
+
+ // Do the allocation and map it as a normal value.
+ // FIXME: Maybe we should add this to the alloca map so that we don't have
+ // to register allocate it?
+ uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
+ int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size);
+ MVT PtrVT = TLI.getPointerTy(0);
+ SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT);
+ setValue(&I, FIVal);
+
+ // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is
+ // the same on all targets.
+ MCSymbol *FrameAllocSym =
+ MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
+ TII->get(TargetOpcode::FRAME_ALLOC))
+ .addSym(FrameAllocSym)
+ .addFrameIndex(Alloc);
- // Skip empty types
- if (V->getType()->isEmptyTy())
- continue;
+ return nullptr;
+ }
- SDValue ArgNode = getValue(V);
- Entry.Node = ArgNode; Entry.Ty = V->getType();
+ case Intrinsic::framerecover: {
+ // i8* @llvm.framerecover(i8* %fn, i8* %fp)
+ MachineFunction &MF = DAG.getMachineFunction();
+ MVT PtrVT = TLI.getPointerTy(0);
+
+ // Get the symbol that defines the frame offset.
+ Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
+ MCSymbol *FrameAllocSym =
+ MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName());
+
+ // Create a TargetExternalSymbol for the label to avoid any target lowering
+ // that would make this PC relative.
+ StringRef Name = FrameAllocSym->getName();
+ assert(Name.size() == strlen(Name.data()) && "not null terminated");
+ SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
+ SDValue OffsetVal =
+ DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
+
+ // Add the offset to the FP.
+ Value *FP = I.getArgOperand(1);
+ SDValue FPVal = getValue(FP);
+ SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
+ setValue(&I, Add);
- // Skip the first return-type Attribute to get to params.
- Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
- Args.push_back(Entry);
+ return nullptr;
}
+ }
+}
+
+std::pair<SDValue, SDValue>
+SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
+ MachineBasicBlock *LandingPad) {
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ MCSymbol *BeginLabel = nullptr;
if (LandingPad) {
// Insert a label before the invoke call to mark the try range. This can be
@@ -5490,24 +5688,17 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
// this call might not return.
(void)getRoot();
DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
- }
- // Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within TLI->LowerCallTo.
- if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
- isTailCall = false;
+ CLI.setChain(getRoot());
+ }
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
- .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall);
+ const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
+ std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
- std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
- assert((isTailCall || Result.second.getNode()) &&
+ assert((CLI.IsTailCall || Result.second.getNode()) &&
"Non-null chain expected with non-tail call!");
assert((Result.second.getNode() || !Result.first.getNode()) &&
"Null value expected with tail call!");
- if (Result.first.getNode())
- setValue(CS.getInstruction(), Result.first);
if (!Result.second.getNode()) {
// As a special case, a null chain means that a tail call has been emitted
@@ -5530,6 +5721,50 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
// Inform MachineModuleInfo of range.
MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
}
+
+ return Result;
+}
+
+void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
+ bool isTailCall,
+ MachineBasicBlock *LandingPad) {
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ Type *RetTy = FTy->getReturnType();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Args.reserve(CS.arg_size());
+
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ const Value *V = *i;
+
+ // Skip empty types
+ if (V->getType()->isEmptyTy())
+ continue;
+
+ SDValue ArgNode = getValue(V);
+ Entry.Node = ArgNode; Entry.Ty = V->getType();
+
+ // Skip the first return-type Attribute to get to params.
+ Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
+ Args.push_back(Entry);
+ }
+
+ // Check if target-independent constraints permit a tail call here.
+ // Target-dependent constraints are checked within TLI->LowerCallTo.
+ if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
+ isTailCall = false;
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
+ .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
+ .setTailCall(isTailCall);
+ std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
+
+ if (Result.first.getNode())
+ setValue(CS.getInstruction(), Result.first);
}
/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
@@ -5595,7 +5830,7 @@ static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
SDValue Value,
bool IsSigned) {
- EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
+ EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
if (IsSigned)
Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
else
@@ -5620,7 +5855,7 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
const Value *Size = I.getArgOperand(2);
const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
if (CSize && CSize->getZExtValue() == 0) {
- EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
+ EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
setValue(&I, DAG.getConstant(0, CallVT));
return true;
}
@@ -5677,15 +5912,16 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
// Require that we can find a legal MVT, and only do this if the target
// supports unaligned loads of that type. Expanding into byte loads would
// bloat the code.
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (ActuallyDoIt && CSize->getZExtValue() > 4) {
unsigned DstAS = LHS->getType()->getPointerAddressSpace();
unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
// TODO: Handle 5 byte compare as 4-byte + 1 byte.
// TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
- if (!TLI->isTypeLegal(LoadVT) ||
- !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
- !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
+ // TODO: Check alignment of src and dest ptrs.
+ if (!TLI.isTypeLegal(LoadVT) ||
+ !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
+ !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
ActuallyDoIt = false;
}
@@ -5863,6 +6099,26 @@ bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
return true;
}
+/// visitBinaryFloatCall - If a call instruction is a binary floating-point
+/// operation (as expected), translate it to an SDNode with the specified opcode
+/// and return true.
+bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
+ unsigned Opcode) {
+ // Sanity check that it really is a binary floating-point call.
+ if (I.getNumArgOperands() != 2 ||
+ !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+ I.getType() != I.getArgOperand(0)->getType() ||
+ I.getType() != I.getArgOperand(1)->getType() ||
+ !I.onlyReadsMemory())
+ return false;
+
+ SDValue Tmp0 = getValue(I.getArgOperand(0));
+ SDValue Tmp1 = getValue(I.getArgOperand(1));
+ EVT VT = Tmp0.getValueType();
+ setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
+ return true;
+}
+
void SelectionDAGBuilder::visitCall(const CallInst &I) {
// Handle inline assembly differently.
if (isa<InlineAsm>(I.getCalledValue())) {
@@ -5919,6 +6175,18 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
if (visitUnaryFloatCall(I, ISD::FABS))
return;
break;
+ case LibFunc::fmin:
+ case LibFunc::fminf:
+ case LibFunc::fminl:
+ if (visitBinaryFloatCall(I, ISD::FMINNUM))
+ return;
+ break;
+ case LibFunc::fmax:
+ case LibFunc::fmaxf:
+ case LibFunc::fmaxl:
+ if (visitBinaryFloatCall(I, ISD::FMAXNUM))
+ return;
+ break;
case LibFunc::sin:
case LibFunc::sinf:
case LibFunc::sinl:
@@ -6025,7 +6293,7 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
Callee = getValue(I.getCalledValue());
else
Callee = DAG.getExternalSymbol(RenameFn,
- TM.getTargetLowering()->getPointerTy());
+ DAG.getTargetLoweringInfo().getPointerTy());
// Check if we can potentially perform a tail call. More detailed checking is
// be done within LowerCallTo, after more information about the call is known.
@@ -6220,9 +6488,9 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
/// ConstraintOperands - Information about all of the constraints.
SDISelAsmOperandInfoVector ConstraintOperands;
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
TargetLowering::AsmOperandInfoVector
- TargetConstraints = TLI->ParseConstraints(CS);
+ TargetConstraints = TLI.ParseConstraints(CS);
bool hasMemory = false;
@@ -6247,10 +6515,10 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// corresponding argument.
assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
+ OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
} else {
assert(ResNo == 0 && "Asm only has one result!");
- OpVT = TLI->getSimpleValueType(CS.getType());
+ OpVT = TLI.getSimpleValueType(CS.getType());
}
++ResNo;
break;
@@ -6271,8 +6539,8 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
}
- OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
- getSimpleVT();
+ OpVT =
+ OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
}
OpInfo.ConstraintVT = OpVT;
@@ -6283,7 +6551,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
else {
for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
TargetLowering::ConstraintType
- CType = TLI->getConstraintType(OpInfo.Codes[j]);
+ CType = TLI.getConstraintType(OpInfo.Codes[j]);
if (CType == TargetLowering::C_Memory) {
hasMemory = true;
break;
@@ -6315,10 +6583,10 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
std::pair<unsigned, const TargetRegisterClass*> MatchRC =
- TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
OpInfo.ConstraintVT);
std::pair<unsigned, const TargetRegisterClass*> InputRC =
- TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
+ TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
Input.ConstraintVT);
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
@@ -6332,7 +6600,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
}
// Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
+ TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
OpInfo.Type == InlineAsm::isClobber)
@@ -6360,16 +6628,16 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
- TLI->getPointerTy());
+ TLI.getPointerTy());
} else {
// Otherwise, create a stack slot and emit a store to it before the
// asm.
Type *Ty = OpVal->getType();
- uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
- unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
+ uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
+ unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
Chain = DAG.getStore(Chain, getCurSDLoc(),
OpInfo.CallOperand, StackSlot,
MachinePointerInfo::getFixedStack(SSFI),
@@ -6387,7 +6655,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// If this constraint is for a specific register, allocate it before
// anything else.
if (OpInfo.ConstraintType == TargetLowering::C_Register)
- GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
+ GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
}
// Second pass - Loop over all of the operands, assigning virtual or physregs
@@ -6398,7 +6666,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// C_Register operands have already been allocated, Other/Memory don't need
// to be.
if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
- GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
+ GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
}
// AsmNodeOperands - The operands for the ISD::INLINEASM node.
@@ -6406,7 +6674,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
AsmNodeOperands.push_back(
DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
- TLI->getPointerTy()));
+ TLI.getPointerTy()));
// If we have a !srcloc metadata node associated with it, we want to attach
// this to the ultimately generated inline asm machineinstr. To do this, we
@@ -6429,7 +6697,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, SDValue());
+ TLI.ComputeConstraintToUse(OpInfo, SDValue());
// Ideally, we would only check against memory constraints. However, the
// meaning of an other constraint can be target-specific and we can't easily
@@ -6447,7 +6715,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
}
AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
- TLI->getPointerTy()));
+ TLI.getPointerTy()));
// Loop over all of the inputs, copying the operand values into the
// appropriate registers and processing the output regs.
@@ -6469,7 +6737,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// Add information to the INLINEASM node to know about this output.
unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
- TLI->getPointerTy()));
+ TLI.getPointerTy()));
AsmNodeOperands.push_back(OpInfo.CallOperand);
break;
}
@@ -6549,7 +6817,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
i != e; ++i) {
- if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
+ if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
else {
LLVMContext &Ctx = *DAG.getContext();
@@ -6576,7 +6844,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
OpInfo.getMatchedOperand());
AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
- TLI->getPointerTy()));
+ TLI.getPointerTy()));
AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
break;
}
@@ -6588,7 +6856,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
if (OpInfo.ConstraintType == TargetLowering::C_Other) {
std::vector<SDValue> Ops;
- TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
+ TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
Ops, DAG);
if (Ops.empty()) {
LLVMContext &Ctx = *DAG.getContext();
@@ -6602,20 +6870,20 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
unsigned ResOpType =
InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI->getPointerTy()));
+ TLI.getPointerTy()));
AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
break;
}
if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
+ assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
"Memory operands expect pointer values");
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI->getPointerTy()));
+ TLI.getPointerTy()));
AsmNodeOperands.push_back(InOperandVal);
break;
}
@@ -6678,7 +6946,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// FIXME: Why don't we do this for inline asms with MRVs?
if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- EVT ResultType = TLI->getValueType(CS.getType());
+ EVT ResultType = TLI.getValueType(CS.getType());
// If any of the results of the inline asm is a vector, it may have the
// wrong width/num elts. This can happen for register classes that can
@@ -6743,9 +7011,9 @@ void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
}
void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
- const TargetLowering *TLI = TM.getTargetLowering();
- const DataLayout &DL = *TLI->getDataLayout();
- SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const DataLayout &DL = *TLI.getDataLayout();
+ SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
getRoot(), getValue(I.getOperand(0)),
DAG.getSrcValue(I.getOperand(0)),
DL.getABITypeAlignment(I.getType()));
@@ -6777,18 +7045,19 @@ void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
/// convention or require stack pointer adjustment. Only a subset of the
/// intrinsic's operands need to participate in the calling convention.
std::pair<SDValue, SDValue>
-SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
+SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
unsigned NumArgs, SDValue Callee,
- bool useVoidTy) {
+ bool UseVoidTy,
+ MachineBasicBlock *LandingPad,
+ bool IsPatchPoint) {
TargetLowering::ArgListTy Args;
Args.reserve(NumArgs);
// Populate the argument list.
// Attributes for args start at offset 1, after the return attribute.
- ImmutableCallSite CS(&CI);
for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
ArgI != ArgE; ++ArgI) {
- const Value *V = CI.getOperand(ArgI);
+ const Value *V = CS->getOperand(ArgI);
assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
@@ -6799,14 +7068,13 @@ SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
Args.push_back(Entry);
}
- Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
+ Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
- .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
- .setDiscardResult(!CI.use_empty());
+ .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
+ .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
- const TargetLowering *TLI = TM.getTargetLowering();
- return TLI->LowerCallTo(CLI);
+ return lowerInvokable(CLI, LandingPad);
}
/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
@@ -6826,11 +7094,11 @@ SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
/// only available in a register, then the runtime would need to trap when
/// execution reaches the StackMap in order to read the alloca's location.
-static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
+static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder &Builder) {
- for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
- SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
+ for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
+ SDValue OpVal = Builder.getValue(CS.getArgument(i));
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
Ops.push_back(
Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
@@ -6881,7 +7149,7 @@ void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
// Push live variables for the stack map.
- addStackMapLiveVars(CI, 2, Ops, *this);
+ addStackMapLiveVars(&CI, 2, Ops, *this);
// We are not pushing any register mask info here on the operands list,
// because the stackmap doesn't clobber anything.
@@ -6908,7 +7176,8 @@ void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
}
/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
-void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
+void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
+ MachineBasicBlock *LandingPad) {
// void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
// i32 <numBytes>,
// i8* <target>,
@@ -6916,32 +7185,29 @@ void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
// [Args...],
// [live variables...])
- CallingConv::ID CC = CI.getCallingConv();
- bool isAnyRegCC = CC == CallingConv::AnyReg;
- bool hasDef = !CI.getType()->isVoidTy();
- SDValue Callee = getValue(CI.getOperand(2)); // <target>
+ CallingConv::ID CC = CS.getCallingConv();
+ bool IsAnyRegCC = CC == CallingConv::AnyReg;
+ bool HasDef = !CS->getType()->isVoidTy();
+ SDValue Callee = getValue(CS->getOperand(2)); // <target>
// Get the real number of arguments participating in the call <numArgs>
- SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
+ SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
// Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
// Intrinsics include all meta-operands up to but not including CC.
unsigned NumMetaOpers = PatchPointOpers::CCPos;
- assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
+ assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
"Not enough arguments provided to the patchpoint intrinsic");
// For AnyRegCC the arguments are lowered later on manually.
- unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
+ unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
std::pair<SDValue, SDValue> Result =
- LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
-
- // Set the root to the target-lowered call chain.
- SDValue Chain = Result.second;
- DAG.setRoot(Chain);
+ lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
+ LandingPad, true);
- SDNode *CallEnd = Chain.getNode();
- if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
+ SDNode *CallEnd = Result.second.getNode();
+ if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
CallEnd = CallEnd->getOperand(0).getNode();
/// Get a call instruction from the call sequence chain.
@@ -6949,16 +7215,16 @@ void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
"Expected a callseq node.");
SDNode *Call = CallEnd->getOperand(0).getNode();
- bool hasGlue = Call->getGluedNode();
+ bool HasGlue = Call->getGluedNode();
// Replace the target specific call node with the patchable intrinsic.
SmallVector<SDValue, 8> Ops;
// Add the <id> and <numBytes> constants.
- SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
+ SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
Ops.push_back(DAG.getTargetConstant(
cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
- SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
+ SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(DAG.getTargetConstant(
cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
@@ -6971,8 +7237,8 @@ void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
// Adjust <numArgs> to account for any arguments that have been passed on the
// stack instead.
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
- unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
- NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
+ unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
+ NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
// Add the calling convention
@@ -6980,20 +7246,20 @@ void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
// Add the arguments we omitted previously. The register allocator should
// place these in any free register.
- if (isAnyRegCC)
+ if (IsAnyRegCC)
for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
- Ops.push_back(getValue(CI.getArgOperand(i)));
+ Ops.push_back(getValue(CS.getArgument(i)));
// Push the arguments from the call instruction up to the register mask.
- SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
+ SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
Ops.push_back(*i);
// Push live variables for the stack map.
- addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
+ addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
// Push the register mask info.
- if (hasGlue)
+ if (HasGlue)
Ops.push_back(*(Call->op_end()-2));
else
Ops.push_back(*(Call->op_end()-1));
@@ -7003,15 +7269,15 @@ void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
Ops.push_back(*(Call->op_begin()));
// Push the glue flag (last operand).
- if (hasGlue)
+ if (HasGlue)
Ops.push_back(*(Call->op_end()-1));
SDVTList NodeTys;
- if (isAnyRegCC && hasDef) {
+ if (IsAnyRegCC && HasDef) {
// Create the return types based on the intrinsic definition
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SmallVector<EVT, 3> ValueVTs;
- ComputeValueVTs(TLI, CI.getType(), ValueVTs);
+ ComputeValueVTs(TLI, CS->getType(), ValueVTs);
assert(ValueVTs.size() == 1 && "Expected only one return value type.");
// There is always a chain and a glue type at the end
@@ -7026,18 +7292,18 @@ void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
getCurSDLoc(), NodeTys, Ops);
// Update the NodeMap.
- if (hasDef) {
- if (isAnyRegCC)
- setValue(&CI, SDValue(MN, 0));
+ if (HasDef) {
+ if (IsAnyRegCC)
+ setValue(CS.getInstruction(), SDValue(MN, 0));
else
- setValue(&CI, Result.first);
+ setValue(CS.getInstruction(), Result.first);
}
// Fixup the consumers of the intrinsic. The chain and glue may be used in the
// call sequence. Furthermore the location of the chain and glue can change
// when the AnyReg calling convention is used and the intrinsic returns a
// value.
- if (isAnyRegCC && hasDef) {
+ if (IsAnyRegCC && HasDef) {
SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
@@ -7186,8 +7452,11 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
}
if (Args[i].isNest)
Flags.setNest();
- if (NeedsRegBlock)
+ if (NeedsRegBlock) {
Flags.setInConsecutiveRegs();
+ if (Value == NumValues - 1)
+ Flags.setInConsecutiveRegsLast();
+ }
Flags.setOrigAlign(OriginalAlignment);
MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
@@ -7233,10 +7502,6 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
else if (j != 0)
MyFlags.Flags.setOrigAlign(1);
- // Only mark the end at the last register of the last value.
- if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1)
- MyFlags.Flags.setInConsecutiveRegsLast();
-
CLI.Outs.push_back(MyFlags);
CLI.OutVals.push_back(Parts[j]);
}
@@ -7349,10 +7614,15 @@ SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
"Copy from a reg to the same reg!");
assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
- const TargetLowering *TLI = TM.getTargetLowering();
- RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
SDValue Chain = DAG.getEntryNode();
- RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V);
+
+ ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
+ FuncInfo.PreferredExtendType.end())
+ ? ISD::ANY_EXTEND
+ : FuncInfo.PreferredExtendType[V];
+ RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
PendingExports.push_back(Chain);
}
@@ -7378,15 +7648,13 @@ static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
void SelectionDAGISel::LowerArguments(const Function &F) {
SelectionDAG &DAG = SDB->DAG;
SDLoc dl = SDB->getCurSDLoc();
- const TargetLowering *TLI = getTargetLowering();
const DataLayout *DL = TLI->getDataLayout();
SmallVector<ISD::InputArg, 16> Ins;
if (!FuncInfo->CanLowerReturn) {
// Put in an sret pointer parameter before all the other parameters.
SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*getTargetLowering(),
- PointerType::getUnqual(F.getReturnType()), ValueVTs);
+ ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
// NOTE: Assuming that a pointer will never break down to more than one VT
// or one register.
@@ -7451,8 +7719,11 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
}
if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
Flags.setNest();
- if (NeedsRegBlock)
+ if (NeedsRegBlock) {
Flags.setInConsecutiveRegs();
+ if (Value == NumValues - 1)
+ Flags.setInConsecutiveRegsLast();
+ }
Flags.setOrigAlign(OriginalAlignment);
MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
@@ -7465,11 +7736,6 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
// if it isn't first piece, alignment must be 1
else if (i > 0)
MyFlags.Flags.setOrigAlign(1);
-
- // Only mark the end at the last register of the last value.
- if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1)
- MyFlags.Flags.setInConsecutiveRegsLast();
-
Ins.push_back(MyFlags);
}
PartBase += VT.getStoreSize();
@@ -7478,9 +7744,8 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
// Call the target to set up the argument values.
SmallVector<SDValue, 8> InVals;
- SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
- F.isVarArg(), Ins,
- dl, DAG, InVals);
+ SDValue NewRoot = TLI->LowerFormalArguments(
+ DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
// Verify that the target's LowerFormalArguments behaved as expected.
assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
@@ -7517,8 +7782,8 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
MachineRegisterInfo& RegInfo = MF.getRegInfo();
unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
FuncInfo->DemoteRegister = SRetReg;
- NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
- SRetReg, ArgValue);
+ NewRoot =
+ SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
DAG.setRoot(NewRoot);
// i indexes lowered arguments. Bump it past the hidden sret argument.
@@ -7633,7 +7898,8 @@ SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
// If this terminator has multiple identical successors (common for
// switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
+ if (!SuccsHandled.insert(SuccMBB).second)
+ continue;
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
@@ -7676,11 +7942,11 @@ SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
// Remember that this register needs to added to the machine PHI node as
// the input for this MBB.
SmallVector<EVT, 4> ValueVTs;
- const TargetLowering *TLI = TM.getTargetLowering();
- ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ ComputeValueVTs(TLI, PN->getType(), ValueVTs);
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
+ unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
for (unsigned i = 0, e = NumRegisters; i != e; ++i)
FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
Reg += NumRegisters;
@@ -7697,6 +7963,7 @@ MachineBasicBlock *
SelectionDAGBuilder::StackProtectorDescriptor::
AddSuccessorMBB(const BasicBlock *BB,
MachineBasicBlock *ParentMBB,
+ bool IsLikely,
MachineBasicBlock *SuccMBB) {
// If SuccBB has not been created yet, create it.
if (!SuccMBB) {
@@ -7706,6 +7973,7 @@ AddSuccessorMBB(const BasicBlock *BB,
MF->insert(++BBI, SuccMBB);
}
// Add it as a successor of ParentMBB.
- ParentMBB->addSuccessor(SuccMBB);
+ ParentMBB->addSuccessor(
+ SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
return SuccMBB;
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
index 84679f9..eba98b8 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
@@ -11,9 +11,10 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SELECTIONDAGBUILDER_H
-#define SELECTIONDAGBUILDER_H
+#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
+#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
+#include "StatepointLowering.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -21,6 +22,7 @@
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetLowering.h"
#include <vector>
namespace llvm {
@@ -114,6 +116,10 @@ public:
/// get simple disambiguation between loads without worrying about alias
/// analysis.
SmallVector<SDValue, 8> PendingLoads;
+
+ /// State used while lowering a statepoint sequence (gc_statepoint,
+ /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details.
+ StatepointLoweringState StatepointLowering;
private:
/// PendingExports - CopyToReg nodes that copy values to virtual registers
@@ -200,7 +206,7 @@ private:
}
};
- size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
+ void Clusterify(CaseVector &Cases, const SwitchInst &SI);
/// CaseBlock - This structure is used to communicate between
/// SelectionDAGBuilder and SDISel for the code generation of additional basic
@@ -276,9 +282,9 @@ private:
BitTestBlock(APInt F, APInt R, const Value* SV,
unsigned Rg, MVT RgVT, bool E,
MachineBasicBlock* P, MachineBasicBlock* D,
- const BitTestInfo& C):
+ BitTestInfo C):
First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
- Parent(P), Default(D), Cases(C) { }
+ Parent(P), Default(D), Cases(std::move(C)) { }
APInt First;
APInt Range;
const Value *SValue;
@@ -397,7 +403,8 @@ private:
class StackProtectorDescriptor {
public:
StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
- FailureMBB(nullptr), Guard(nullptr) { }
+ FailureMBB(nullptr), Guard(nullptr),
+ GuardReg(0) { }
~StackProtectorDescriptor() { }
/// Returns true if all fields of the stack protector descriptor are
@@ -415,8 +422,8 @@ private:
assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
"already initialized!");
ParentMBB = MBB;
- SuccessMBB = AddSuccessorMBB(BB, MBB);
- FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
+ SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
+ FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
if (!Guard)
Guard = StackProtCheckCall.getArgOperand(0);
}
@@ -455,6 +462,9 @@ private:
MachineBasicBlock *getFailureMBB() { return FailureMBB; }
const Value *getGuard() { return Guard; }
+ unsigned getGuardReg() const { return GuardReg; }
+ void setGuardReg(unsigned R) { GuardReg = R; }
+
private:
/// The basic block for which we are generating the stack protector.
///
@@ -477,11 +487,15 @@ private:
/// stack protector stack slot.
const Value *Guard;
+ /// The virtual register holding the stack guard value.
+ unsigned GuardReg;
+
/// Add a successor machine basic block to ParentMBB. If the successor mbb
/// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
- /// block will be created.
+ /// block will be created. Assign a large weight if IsLikely is true.
MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
MachineBasicBlock *ParentMBB,
+ bool IsLikely,
MachineBasicBlock *SuccMBB = nullptr);
};
@@ -604,6 +618,13 @@ public:
N = NewN;
}
+ void removeValue(const Value *V) {
+ // This is to support hack in lowerCallFromStatepoint
+ // Should be removed when hack is resolved
+ if (NodeMap.count(V))
+ NodeMap.erase(V);
+ }
+
void setUnusedArgValue(const Value *V, SDValue NewN) {
SDValue &N = UnusedArgNodeMap[V];
assert(!N.getNode() && "Already set a value for this node!");
@@ -626,17 +647,24 @@ public:
void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
MachineBasicBlock *LandingPad = nullptr);
- std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
- unsigned ArgIdx,
- unsigned NumArgs,
- SDValue Callee,
- bool useVoidTy = false);
+ std::pair<SDValue, SDValue> lowerCallOperands(
+ ImmutableCallSite CS,
+ unsigned ArgIdx,
+ unsigned NumArgs,
+ SDValue Callee,
+ bool UseVoidTy = false,
+ MachineBasicBlock *LandingPad = nullptr,
+ bool IsPatchPoint = false);
/// UpdateSplitBlock - When an MBB was split during scheduling, update the
/// references that need to refer to the last resulting block.
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
private:
+ std::pair<SDValue, SDValue> lowerInvokable(
+ TargetLowering::CallLoweringInfo &CLI,
+ MachineBasicBlock *LandingPad);
+
// Terminator instructions.
void visitRet(const ReturnInst &I);
void visitBr(const BranchInst &I);
@@ -658,7 +686,6 @@ private:
bool handleBTSplitSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
const Value* SV,
- MachineBasicBlock* Default,
MachineBasicBlock *SwitchBB);
bool handleBitTestsSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
@@ -686,6 +713,8 @@ public:
void visitJumpTable(JumpTable &JT);
void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
MachineBasicBlock *SwitchBB);
+ unsigned visitLandingPadClauseBB(GlobalValue *ClauseGV,
+ MachineBasicBlock *LPadMBB);
private:
// These all get lowered before this pass.
@@ -743,6 +772,8 @@ private:
void visitAlloca(const AllocaInst &I);
void visitLoad(const LoadInst &I);
void visitStore(const StoreInst &I);
+ void visitMaskedLoad(const CallInst &I);
+ void visitMaskedStore(const CallInst &I);
void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
void visitAtomicRMW(const AtomicRMWInst &I);
void visitFence(const FenceInst &I);
@@ -755,6 +786,7 @@ private:
bool visitStrLenCall(const CallInst &I);
bool visitStrNLenCall(const CallInst &I);
bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
+ bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
void visitAtomicLoad(const LoadInst &I);
void visitAtomicStore(const StoreInst &I);
@@ -767,7 +799,13 @@ private:
void visitVAEnd(const CallInst &I);
void visitVACopy(const CallInst &I);
void visitStackmap(const CallInst &I);
- void visitPatchpoint(const CallInst &I);
+ void visitPatchpoint(ImmutableCallSite CS,
+ MachineBasicBlock *LandingPad = nullptr);
+
+ // These three are implemented in StatepointLowering.cpp
+ void visitStatepoint(const CallInst &I);
+ void visitGCRelocate(const CallInst &I);
+ void visitGCResult(const CallInst &I);
void visitUserOp1(const Instruction &I) {
llvm_unreachable("UserOp1 should not exist at instruction selection time!");
@@ -784,7 +822,7 @@ private:
/// EmitFuncArgumentDbgValue - If V is an function argument then create
/// corresponding DBG_VALUE machine instruction for it now. At the end of
/// instruction selection, they will be inserted to the entry BB.
- bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
+ bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, MDNode *Expr,
int64_t Offset, bool IsIndirect,
const SDValue &N);
};
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
index a71cc68..e8577d8 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
@@ -27,6 +27,7 @@
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
std::string SDNode::getOperationName(const SelectionDAG *G) const {
@@ -36,7 +37,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
return "<<Unknown DAG Node>>";
if (isMachineOpcode()) {
if (G)
- if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
+ if (const TargetInstrInfo *TII = G->getSubtarget().getInstrInfo())
if (getMachineOpcode() < TII->getNumOpcodes())
return TII->getName(getMachineOpcode());
return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
@@ -140,6 +141,8 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
// Unary operators
case ISD::FABS: return "fabs";
+ case ISD::FMINNUM: return "fminnum";
+ case ISD::FMAXNUM: return "fmaxnum";
case ISD::FNEG: return "fneg";
case ISD::FSQRT: return "fsqrt";
case ISD::FSIN: return "fsin";
@@ -266,6 +269,8 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
// Other operators
case ISD::LOAD: return "load";
case ISD::STORE: return "store";
+ case ISD::MLOAD: return "masked_load";
+ case ISD::MSTORE: return "masked_store";
case ISD::VAARG: return "vaarg";
case ISD::VACOPY: return "vacopy";
case ISD::VAEND: return "vaend";
@@ -433,7 +438,8 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
OS << LBB->getName() << " ";
OS << (const void*)BBDN->getBasicBlock() << ">";
} else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
- OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :nullptr);
+ OS << ' ' << PrintReg(R->getReg(),
+ G ? G->getSubtarget().getRegisterInfo() : nullptr);
} else if (const ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(this)) {
OS << "'" << ES->getSymbol() << "'";
@@ -565,7 +571,7 @@ void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
const SelectionDAG *G, VisitedSDNodeSet &once) {
- if (!once.insert(N)) // If we've been here before, return now.
+ if (!once.insert(N).second) // If we've been here before, return now.
return;
// Dump the current SDNode, but don't end the line yet.
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 57e22e2..4f031d3 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -19,6 +19,7 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
@@ -40,6 +41,7 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -181,6 +183,10 @@ UseMBPI("use-mbpi",
cl::init(true), cl::Hidden);
#ifndef NDEBUG
+static cl::opt<std::string>
+FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
+ cl::desc("Only display the basic block whose name "
+ "matches this for all view-*-dags options"));
static cl::opt<bool>
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the first "
@@ -284,8 +290,8 @@ namespace llvm {
/// for the target.
ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
- const TargetLowering *TLI = IS->getTargetLowering();
- const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
+ const TargetLowering *TLI = IS->TLI;
+ const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
TLI->getSchedulingPreference() == Sched::Source)
@@ -336,7 +342,7 @@ void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
CodeGenOpt::Level OL) :
MachineFunctionPass(ID), TM(tm),
- FuncInfo(new FunctionLoweringInfo(TM)),
+ FuncInfo(new FunctionLoweringInfo()),
CurDAG(new SelectionDAG(tm, OL)),
SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
GFI(),
@@ -411,32 +417,32 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
"-fast-isel-abort requires -fast-isel");
const Function &Fn = *mf.getFunction();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
- const TargetLowering *TLI = TM.getTargetLowering();
-
MF = &mf;
- RegInfo = &MF->getRegInfo();
- AA = &getAnalysis<AliasAnalysis>();
- LibInfo = &getAnalysis<TargetLibraryInfo>();
- GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
-
- TargetSubtargetInfo &ST =
- const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
- ST.resetSubtargetFeatures(MF);
- TM.resetTargetOptions(MF);
+ // Reset the target options before resetting the optimization
+ // level below.
+ // FIXME: This is a horrible hack and should be processed via
+ // codegen looking at the optimization level explicitly when
+ // it wants to look at it.
+ TM.resetTargetOptions(Fn);
// Reset OptLevel to None for optnone functions.
CodeGenOpt::Level NewOptLevel = OptLevel;
if (Fn.hasFnAttribute(Attribute::OptimizeNone))
NewOptLevel = CodeGenOpt::None;
OptLevelChanger OLC(*this, NewOptLevel);
+ TII = MF->getSubtarget().getInstrInfo();
+ TLI = MF->getSubtarget().getTargetLowering();
+ RegInfo = &MF->getRegInfo();
+ AA = &getAnalysis<AliasAnalysis>();
+ LibInfo = &getAnalysis<TargetLibraryInfo>();
+ GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
+
DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
- CurDAG->init(*MF, TLI);
+ CurDAG->init(*MF);
FuncInfo->set(Fn, *MF, CurDAG);
if (UseMBPI && OptLevel != CodeGenOpt::None)
@@ -454,7 +460,8 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
// copied into vregs, emit the copies into the top of the block before
// emitting the code for the block.
MachineBasicBlock *EntryMBB = MF->begin();
- RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
+ const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
+ RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
DenseMap<unsigned, unsigned> LiveInMap;
if (!FuncInfo->ArgDbgValues.empty())
@@ -489,15 +496,14 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
"- add if needed");
MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
MachineBasicBlock::iterator InsertPos = Def;
- const MDNode *Variable =
- MI->getOperand(MI->getNumOperands()-1).getMetadata();
+ const MDNode *Variable = MI->getDebugVariable();
+ const MDNode *Expr = MI->getDebugExpression();
bool IsIndirect = MI->isIndirectDebugValue();
unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
// Def is never a terminator here, so it is ok to increment InsertPos.
BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
- TII.get(TargetOpcode::DBG_VALUE),
- IsIndirect,
- LDI->second, Offset, Variable);
+ TII->get(TargetOpcode::DBG_VALUE), IsIndirect, LDI->second, Offset,
+ Variable, Expr);
// If this vreg is directly copied into an exported register then
// that COPY instructions also need DBG_VALUE, if it is the only
@@ -516,11 +522,9 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
}
if (CopyUseMI) {
MachineInstr *NewMI =
- BuildMI(*MF, CopyUseMI->getDebugLoc(),
- TII.get(TargetOpcode::DBG_VALUE),
- IsIndirect,
- CopyUseMI->getOperand(0).getReg(),
- Offset, Variable);
+ BuildMI(*MF, CopyUseMI->getDebugLoc(),
+ TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
+ CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
MachineBasicBlock::iterator Pos = CopyUseMI;
EntryMBB->insertAfter(Pos, NewMI);
}
@@ -534,7 +538,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
break;
for (const auto &MI : MBB) {
- const MCInstrDesc &MCID = TM.getInstrInfo()->get(MI.getOpcode());
+ const MCInstrDesc &MCID = TII->get(MI.getOpcode());
if ((MCID.isCall() && !MCID.isReturn()) ||
MI.isStackAligningInlineAsm()) {
MFI->setHasCalls(true);
@@ -617,7 +621,7 @@ void SelectionDAGISel::ComputeLiveOutVRegInfo() {
SDNode *N = Worklist.pop_back_val();
// If we've already seen this node, ignore it.
- if (!VisitedNodes.insert(N))
+ if (!VisitedNodes.insert(N).second)
continue;
// Otherwise, add all chain operands to the worklist.
@@ -652,6 +656,12 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
std::string BlockName;
int BlockNumber = -1;
(void)BlockNumber;
+ bool MatchFilterBB = false; (void)MatchFilterBB;
+#ifndef NDEBUG
+ MatchFilterBB = (!FilterDAGBasicBlockName.empty() &&
+ FilterDAGBasicBlockName ==
+ FuncInfo->MBB->getBasicBlock()->getName().str());
+#endif
#ifdef NDEBUG
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
@@ -665,7 +675,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
- if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
+ if (ViewDAGCombine1 && MatchFilterBB)
+ CurDAG->viewGraph("dag-combine1 input for " + BlockName);
// Run the DAG combiner in pre-legalize mode.
{
@@ -678,8 +689,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Second step, hack on the DAG until it only uses operations and types that
// the target supports.
- if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
- BlockName);
+ if (ViewLegalizeTypesDAGs && MatchFilterBB)
+ CurDAG->viewGraph("legalize-types input for " + BlockName);
bool Changed;
{
@@ -693,7 +704,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->NewNodesMustHaveLegalTypes = true;
if (Changed) {
- if (ViewDAGCombineLT)
+ if (ViewDAGCombineLT && MatchFilterBB)
CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
// Run the DAG combiner in post-type-legalize mode.
@@ -719,7 +730,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->LegalizeTypes();
}
- if (ViewDAGCombineLT)
+ if (ViewDAGCombineLT && MatchFilterBB)
CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
// Run the DAG combiner in post-type-legalize mode.
@@ -733,7 +744,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
<< BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
}
- if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
+ if (ViewLegalizeDAGs && MatchFilterBB)
+ CurDAG->viewGraph("legalize input for " + BlockName);
{
NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
@@ -743,7 +755,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
- if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
+ if (ViewDAGCombine2 && MatchFilterBB)
+ CurDAG->viewGraph("dag-combine2 input for " + BlockName);
// Run the DAG combiner in post-legalize mode.
{
@@ -757,7 +770,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
if (OptLevel != CodeGenOpt::None)
ComputeLiveOutVRegInfo();
- if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
+ if (ViewISelDAGs && MatchFilterBB)
+ CurDAG->viewGraph("isel input for " + BlockName);
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
@@ -769,7 +783,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
<< " '" << BlockName << "'\n"; CurDAG->dump());
- if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
+ if (ViewSchedDAGs && MatchFilterBB)
+ CurDAG->viewGraph("scheduler input for " + BlockName);
// Schedule machine code.
ScheduleDAGSDNodes *Scheduler = CreateScheduler();
@@ -779,7 +794,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
Scheduler->Run(CurDAG, FuncInfo->MBB);
}
- if (ViewSUnitDAGs) Scheduler->viewGraph();
+ if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph();
// Emit machine code to BB. This can change 'BB' to the last block being
// inserted into.
@@ -894,6 +909,8 @@ void SelectionDAGISel::DoInstructionSelection() {
void SelectionDAGISel::PrepareEHLandingPad() {
MachineBasicBlock *MBB = FuncInfo->MBB;
+ const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
+
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
@@ -901,13 +918,70 @@ void SelectionDAGISel::PrepareEHLandingPad() {
// Assign the call site to the landing pad's begin label.
MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
- const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
+ const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
.addSym(Label);
+ if (TM.getMCAsmInfo()->getExceptionHandlingType() ==
+ ExceptionHandling::MSVC) {
+ // Make virtual registers and a series of labels that fill in values for the
+ // clauses.
+ auto &RI = MF->getRegInfo();
+ FuncInfo->ExceptionSelectorVirtReg = RI.createVirtualRegister(PtrRC);
+
+ // Get all invoke BBs that will unwind into the clause BBs.
+ SmallVector<MachineBasicBlock *, 4> InvokeBBs(MBB->pred_begin(),
+ MBB->pred_end());
+
+ // Emit separate machine basic blocks with separate labels for each clause
+ // before the main landing pad block.
+ const BasicBlock *LLVMBB = MBB->getBasicBlock();
+ const LandingPadInst *LPadInst = LLVMBB->getLandingPadInst();
+ MachineInstrBuilder SelectorPHI = BuildMI(
+ *MBB, MBB->begin(), SDB->getCurDebugLoc(), TII->get(TargetOpcode::PHI),
+ FuncInfo->ExceptionSelectorVirtReg);
+ for (unsigned I = 0, E = LPadInst->getNumClauses(); I != E; ++I) {
+ MachineBasicBlock *ClauseBB = MF->CreateMachineBasicBlock(LLVMBB);
+ MF->insert(MBB, ClauseBB);
+
+ // Add the edge from the invoke to the clause.
+ for (MachineBasicBlock *InvokeBB : InvokeBBs)
+ InvokeBB->addSuccessor(ClauseBB);
+
+ // Mark the clause as a landing pad or MI passes will delete it.
+ ClauseBB->setIsLandingPad();
+
+ GlobalValue *ClauseGV = ExtractTypeInfo(LPadInst->getClause(I));
+
+ // Start the BB with a label.
+ MCSymbol *ClauseLabel = MF->getMMI().addClauseForLandingPad(MBB);
+ BuildMI(*ClauseBB, ClauseBB->begin(), SDB->getCurDebugLoc(), II)
+ .addSym(ClauseLabel);
+
+ // Construct a simple BB that defines a register with the typeid constant.
+ FuncInfo->MBB = ClauseBB;
+ FuncInfo->InsertPt = ClauseBB->end();
+ unsigned VReg = SDB->visitLandingPadClauseBB(ClauseGV, MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // Add the typeid virtual register to the phi in the main landing pad.
+ SelectorPHI.addReg(VReg).addMBB(ClauseBB);
+ }
+
+ // Remove the edge from the invoke to the lpad.
+ for (MachineBasicBlock *InvokeBB : InvokeBBs)
+ InvokeBB->removeSuccessor(MBB);
+
+ // Restore FuncInfo back to its previous state and select the main landing
+ // pad block.
+ FuncInfo->MBB = MBB;
+ FuncInfo->InsertPt = MBB->end();
+ return;
+ }
+
// Mark exception register as live in.
- const TargetLowering *TLI = getTargetLowering();
- const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
if (unsigned Reg = TLI->getExceptionPointerRegister())
FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
@@ -1042,7 +1116,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
// Initialize the Fast-ISel state, if needed.
FastISel *FastIS = nullptr;
if (TM.Options.EnableFastISel)
- FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
+ FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
// Iterate over all basic blocks in the function.
ReversePostOrderTraversal<const Function*> RPOT(&Fn);
@@ -1096,7 +1170,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
++NumEntryBlocks;
// Lower any arguments needed in this block if this is the entry block.
- if (!FastIS->LowerArguments()) {
+ if (!FastIS->lowerArguments()) {
// Fast isel failed to lower these arguments
++NumFastIselFailLowerArguments;
if (EnableFastISelAbortArgs)
@@ -1134,7 +1208,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
FastIS->recomputeInsertPt();
// Try to select the instruction with FastISel.
- if (FastIS->SelectInstruction(Inst)) {
+ if (FastIS->selectInstruction(Inst)) {
--NumFastIselRemaining;
++NumFastIselSuccess;
// If fast isel succeeded, skip over all the folded instructions, and
@@ -1729,7 +1803,7 @@ static SDNode *findGlueUse(SDNode *N) {
/// This function recursively traverses up the operand chain, ignoring
/// certain nodes.
static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
- SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
+ SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
bool IgnoreChains) {
// The NodeID's are given uniques ID's where a node ID is guaranteed to be
// greater than all of its (recursive) operands. If we scan to a point where
@@ -1744,7 +1818,7 @@ static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
// Don't revisit nodes if we already scanned it and didn't fail, we know we
// won't fail if we scan it again.
- if (!Visited.insert(Use))
+ if (!Visited.insert(Use).second)
return false;
for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
@@ -1861,8 +1935,8 @@ SDNode
SDLoc dl(Op);
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(0));
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
- unsigned Reg = getTargetLowering()->getRegisterByName(
- RegStr->getString().data(), Op->getValueType(0));
+ unsigned Reg =
+ TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0));
SDValue New = CurDAG->getCopyFromReg(
CurDAG->getEntryNode(), dl, Reg, Op->getValueType(0));
New->setNodeId(-1);
@@ -1874,8 +1948,8 @@ SDNode
SDLoc dl(Op);
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
- unsigned Reg = getTargetLowering()->getRegisterByName(
- RegStr->getString().data(), Op->getOperand(2).getValueType());
+ unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
+ Op->getOperand(2).getValueType());
SDValue New = CurDAG->getCopyToReg(
CurDAG->getEntryNode(), dl, Reg, Op->getOperand(2));
New->setNodeId(-1);
@@ -2375,7 +2449,7 @@ static unsigned IsPredicateKnownToFail(const unsigned char *Table,
Result = !::CheckOpcode(Table, Index, N.getNode());
return Index;
case SelectionDAGISel::OPC_CheckType:
- Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
+ Result = !::CheckType(Table, Index, N, SDISel.TLI);
return Index;
case SelectionDAGISel::OPC_CheckChild0Type:
case SelectionDAGISel::OPC_CheckChild1Type:
@@ -2385,14 +2459,15 @@ static unsigned IsPredicateKnownToFail(const unsigned char *Table,
case SelectionDAGISel::OPC_CheckChild5Type:
case SelectionDAGISel::OPC_CheckChild6Type:
case SelectionDAGISel::OPC_CheckChild7Type:
- Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
- Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
+ Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
+ Table[Index - 1] -
+ SelectionDAGISel::OPC_CheckChild0Type);
return Index;
case SelectionDAGISel::OPC_CheckCondCode:
Result = !::CheckCondCode(Table, Index, N);
return Index;
case SelectionDAGISel::OPC_CheckValueType:
- Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
+ Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
return Index;
case SelectionDAGISel::OPC_CheckInteger:
Result = !::CheckInteger(Table, Index, N);
@@ -2436,6 +2511,42 @@ struct MatchScope {
bool HasChainNodesMatched, HasGlueResultNodesMatched;
};
+/// \\brief A DAG update listener to keep the matching state
+/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
+/// change the DAG while matching. X86 addressing mode matcher is an example
+/// for this.
+class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
+{
+ SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
+ SmallVectorImpl<MatchScope> &MatchScopes;
+public:
+ MatchStateUpdater(SelectionDAG &DAG,
+ SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
+ SmallVectorImpl<MatchScope> &MS) :
+ SelectionDAG::DAGUpdateListener(DAG),
+ RecordedNodes(RN), MatchScopes(MS) { }
+
+ void NodeDeleted(SDNode *N, SDNode *E) {
+ // Some early-returns here to avoid the search if we deleted the node or
+ // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
+ // do, so it's unnecessary to update matching state at that point).
+ // Neither of these can occur currently because we only install this
+ // update listener during matching a complex patterns.
+ if (!E || E->isMachineOpcode())
+ return;
+ // Performing linear search here does not matter because we almost never
+ // run this code. You'd have to have a CSE during complex pattern
+ // matching.
+ for (auto &I : RecordedNodes)
+ if (I.first.getNode() == N)
+ I.first.setNode(E);
+
+ for (auto &I : MatchScopes)
+ for (auto &J : I.NodeStack)
+ if (J.getNode() == N)
+ J.setNode(E);
+ }
+};
}
SDNode *SelectionDAGISel::
@@ -2449,8 +2560,6 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
case ISD::BasicBlock:
case ISD::Register:
case ISD::RegisterMask:
- //case ISD::VALUETYPE:
- //case ISD::CONDCODE:
case ISD::HANDLENODE:
case ISD::MDNODE_SDNODE:
case ISD::TargetConstant:
@@ -2692,6 +2801,14 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
unsigned CPNum = MatcherTable[MatcherIndex++];
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
+
+ // If target can modify DAG during matching, keep the matching state
+ // consistent.
+ std::unique_ptr<MatchStateUpdater> MSU;
+ if (ComplexPatternFuncMutatesDAG())
+ MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
+ MatchScopes));
+
if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
RecordedNodes[RecNo].first, CPNum,
RecordedNodes))
@@ -2703,7 +2820,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
continue;
case OPC_CheckType:
- if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
+ if (!::CheckType(MatcherTable, MatcherIndex, N, TLI))
break;
continue;
@@ -2751,7 +2868,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (CaseVT == MVT::iPTR)
- CaseVT = getTargetLowering()->getPointerTy();
+ CaseVT = TLI->getPointerTy();
// If the VT matches, then we will execute this case.
if (CurNodeVT == CaseVT)
@@ -2773,7 +2890,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
case OPC_CheckChild2Type: case OPC_CheckChild3Type:
case OPC_CheckChild4Type: case OPC_CheckChild5Type:
case OPC_CheckChild6Type: case OPC_CheckChild7Type:
- if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
+ if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
Opcode-OPC_CheckChild0Type))
break;
continue;
@@ -2781,7 +2898,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
continue;
case OPC_CheckValueType:
- if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
+ if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI))
break;
continue;
case OPC_CheckInteger:
@@ -2980,7 +3097,8 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
for (unsigned i = 0; i != NumVTs; ++i) {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
- if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
+ if (VT == MVT::iPTR)
+ VT = TLI->getPointerTy().SimpleTy;
VTs.push_back(VT);
}
@@ -3076,7 +3194,7 @@ SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
if (EmitNodeInfo & OPFL_MemRefs) {
// Only attach load or store memory operands if the generated
// instruction may load or store.
- const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
+ const MCInstrDesc &MCID = TII->get(TargetOpc);
bool mayLoad = MCID.mayLoad();
bool mayStore = MCID.mayStore();
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
new file mode 100644
index 0000000..33c20d3
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
@@ -0,0 +1,684 @@
+//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes support code use by SelectionDAGBuilder when lowering a
+// statepoint sequence in SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#include "StatepointLowering.h"
+#include "SelectionDAGBuilder.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "statepoint-lowering"
+
+STATISTIC(NumSlotsAllocatedForStatepoints,
+ "Number of stack slots allocated for statepoints");
+STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
+STATISTIC(StatepointMaxSlotsRequired,
+ "Maximum number of stack slots required for a singe statepoint");
+
+void
+StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
+ // Consistency check
+ assert(PendingGCRelocateCalls.empty() &&
+ "Trying to visit statepoint before finished processing previous one");
+ Locations.clear();
+ RelocLocations.clear();
+ NextSlotToAllocate = 0;
+ // Need to resize this on each safepoint - we need the two to stay in
+ // sync and the clear patterns of a SelectionDAGBuilder have no relation
+ // to FunctionLoweringInfo.
+ AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
+ for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
+ AllocatedStackSlots[i] = false;
+ }
+}
+void StatepointLoweringState::clear() {
+ Locations.clear();
+ RelocLocations.clear();
+ AllocatedStackSlots.clear();
+ assert(PendingGCRelocateCalls.empty() &&
+ "cleared before statepoint sequence completed");
+}
+
+SDValue
+StatepointLoweringState::allocateStackSlot(EVT ValueType,
+ SelectionDAGBuilder &Builder) {
+
+ NumSlotsAllocatedForStatepoints++;
+
+ // The basic scheme here is to first look for a previously created stack slot
+ // which is not in use (accounting for the fact arbitrary slots may already
+ // be reserved), or to create a new stack slot and use it.
+
+ // If this doesn't succeed in 40000 iterations, something is seriously wrong
+ for (int i = 0; i < 40000; i++) {
+ assert(Builder.FuncInfo.StatepointStackSlots.size() ==
+ AllocatedStackSlots.size() &&
+ "broken invariant");
+ const size_t NumSlots = AllocatedStackSlots.size();
+ assert(NextSlotToAllocate <= NumSlots && "broken invariant");
+
+ if (NextSlotToAllocate >= NumSlots) {
+ assert(NextSlotToAllocate == NumSlots);
+ // record stats
+ if (NumSlots + 1 > StatepointMaxSlotsRequired) {
+ StatepointMaxSlotsRequired = NumSlots + 1;
+ }
+
+ SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
+ const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Builder.FuncInfo.StatepointStackSlots.push_back(FI);
+ AllocatedStackSlots.push_back(true);
+ return SpillSlot;
+ }
+ if (!AllocatedStackSlots[NextSlotToAllocate]) {
+ const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
+ AllocatedStackSlots[NextSlotToAllocate] = true;
+ return Builder.DAG.getFrameIndex(FI, ValueType);
+ }
+ // Note: We deliberately choose to advance this only on the failing path.
+ // Doing so on the suceeding path involes a bit of complexity that caused a
+ // minor bug previously. Unless performance shows this matters, please
+ // keep this code as simple as possible.
+ NextSlotToAllocate++;
+ }
+ llvm_unreachable("infinite loop?");
+}
+
+/// Try to find existing copies of the incoming values in stack slots used for
+/// statepoint spilling. If we can find a spill slot for the incoming value,
+/// mark that slot as allocated, and reuse the same slot for this safepoint.
+/// This helps to avoid series of loads and stores that only serve to resuffle
+/// values on the stack between calls.
+static void reservePreviousStackSlotForValue(SDValue Incoming,
+ SelectionDAGBuilder &Builder) {
+
+ if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
+ // We won't need to spill this, so no need to check for previously
+ // allocated stack slots
+ return;
+ }
+
+ SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
+ if (Loc.getNode()) {
+ // duplicates in input
+ return;
+ }
+
+ // Search back for the load from a stack slot pattern to find the original
+ // slot we allocated for this value. We could extend this to deal with
+ // simple modification patterns, but simple dealing with trivial load/store
+ // sequences helps a lot already.
+ if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) {
+ if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) {
+ const int Index = FI->getIndex();
+ auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
+ Builder.FuncInfo.StatepointStackSlots.end(), Index);
+ if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) {
+ // not one of the lowering stack slots, can't reuse!
+ // TODO: Actually, we probably could reuse the stack slot if the value
+ // hasn't changed at all, but we'd need to look for intervening writes
+ return;
+ } else {
+ // This is one of our dedicated lowering slots
+ const int Offset =
+ std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
+ if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
+ // stack slot already assigned to someone else, can't use it!
+ // TODO: currently we reserve space for gc arguments after doing
+ // normal allocation for deopt arguments. We should reserve for
+ // _all_ deopt and gc arguments, then start allocating. This
+ // will prevent some moves being inserted when vm state changes,
+ // but gc state doesn't between two calls.
+ return;
+ }
+ // Reserve this stack slot
+ Builder.StatepointLowering.reserveStackSlot(Offset);
+ }
+
+ // Cache this slot so we find it when going through the normal
+ // assignment loop.
+ SDValue Loc =
+ Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
+
+ Builder.StatepointLowering.setLocation(Incoming, Loc);
+ }
+ }
+
+ // TODO: handle case where a reloaded value flows through a phi to
+ // another safepoint. e.g.
+ // bb1:
+ // a' = relocated...
+ // bb2: % pred: bb1, bb3, bb4, etc.
+ // a_phi = phi(a', ...)
+ // statepoint ... a_phi
+ // NOTE: This will require reasoning about cross basic block values. This is
+ // decidedly non trivial and this might not be the right place to do it. We
+ // don't really have the information we need here...
+
+ // TODO: handle simple updates. If a value is modified and the original
+ // value is no longer live, it would be nice to put the modified value in the
+ // same slot. This allows folding of the memory accesses for some
+ // instructions types (like an increment).
+ // statepoint (i)
+ // i1 = i+1
+ // statepoint (i1)
+}
+
+/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
+/// is not required for correctness. It's purpose is to reduce the size of
+/// StackMap section. It has no effect on the number of spill slots required
+/// or the actual lowering.
+static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
+ SmallVectorImpl<const Value *> &Ptrs,
+ SmallVectorImpl<const Value *> &Relocs,
+ SelectionDAGBuilder &Builder) {
+
+ // This is horribly ineffecient, but I don't care right now
+ SmallSet<SDValue, 64> Seen;
+
+ SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
+ for (size_t i = 0; i < Ptrs.size(); i++) {
+ SDValue SD = Builder.getValue(Ptrs[i]);
+ // Only add non-duplicates
+ if (Seen.count(SD) == 0) {
+ NewBases.push_back(Bases[i]);
+ NewPtrs.push_back(Ptrs[i]);
+ NewRelocs.push_back(Relocs[i]);
+ }
+ Seen.insert(SD);
+ }
+ assert(Bases.size() >= NewBases.size());
+ assert(Ptrs.size() >= NewPtrs.size());
+ assert(Relocs.size() >= NewRelocs.size());
+ Bases = NewBases;
+ Ptrs = NewPtrs;
+ Relocs = NewRelocs;
+ assert(Ptrs.size() == Bases.size());
+ assert(Ptrs.size() == Relocs.size());
+}
+
+/// Extract call from statepoint, lower it and return pointer to the
+/// call node. Also update NodeMap so that getValue(statepoint) will
+/// reference lowered call result
+static SDNode *lowerCallFromStatepoint(const CallInst &CI,
+ SelectionDAGBuilder &Builder) {
+
+ assert(Intrinsic::experimental_gc_statepoint ==
+ dyn_cast<IntrinsicInst>(&CI)->getIntrinsicID() &&
+ "function called must be the statepoint function");
+
+ ImmutableStatepoint StatepointOperands(&CI);
+
+ // Lower the actual call itself - This is a bit of a hack, but we want to
+ // avoid modifying the actual lowering code. This is similiar in intent to
+ // the LowerCallOperands mechanism used by PATCHPOINT, but is structured
+ // differently. Hopefully, this is slightly more robust w.r.t. calling
+ // convention, return values, and other function attributes.
+ Value *ActualCallee = const_cast<Value *>(StatepointOperands.actualCallee());
+
+ std::vector<Value *> Args;
+ CallInst::const_op_iterator arg_begin = StatepointOperands.call_args_begin();
+ CallInst::const_op_iterator arg_end = StatepointOperands.call_args_end();
+ Args.insert(Args.end(), arg_begin, arg_end);
+ // TODO: remove the creation of a new instruction! We should not be
+ // modifying the IR (even temporarily) at this point.
+ CallInst *Tmp = CallInst::Create(ActualCallee, Args);
+ Tmp->setTailCall(CI.isTailCall());
+ Tmp->setCallingConv(CI.getCallingConv());
+ Tmp->setAttributes(CI.getAttributes());
+ Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false);
+
+ // Handle the return value of the call iff any.
+ const bool HasDef = !Tmp->getType()->isVoidTy();
+ if (HasDef) {
+ // The value of the statepoint itself will be the value of call itself.
+ // We'll replace the actually call node shortly. gc_result will grab
+ // this value.
+ Builder.setValue(&CI, Builder.getValue(Tmp));
+ } else {
+ // The token value is never used from here on, just generate a poison value
+ Builder.setValue(&CI, Builder.DAG.getIntPtrConstant(-1));
+ }
+ // Remove the fake entry we created so we don't have a hanging reference
+ // after we delete this node.
+ Builder.removeValue(Tmp);
+ delete Tmp;
+ Tmp = nullptr;
+
+ // Search for the call node
+ // The following code is essentially reverse engineering X86's
+ // LowerCallTo.
+ SDNode *CallNode = nullptr;
+
+ // We just emitted a call, so it should be last thing generated
+ SDValue Chain = Builder.DAG.getRoot();
+
+ // Find closest CALLSEQ_END walking back through lowered nodes if needed
+ SDNode *CallEnd = Chain.getNode();
+ int Sanity = 0;
+ while (CallEnd->getOpcode() != ISD::CALLSEQ_END) {
+ CallEnd = CallEnd->getGluedNode();
+ assert(CallEnd && "Can not find call node");
+ assert(Sanity < 20 && "should have found call end already");
+ Sanity++;
+ }
+ assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
+ "Expected a callseq node.");
+ assert(CallEnd->getGluedNode());
+
+ // Step back inside the CALLSEQ
+ CallNode = CallEnd->getGluedNode();
+ return CallNode;
+}
+
+/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
+/// and return two arrays:
+/// Bases - base pointers incoming to this statepoint
+/// Ptrs - derived pointers incoming to this statepoint
+/// Relocs - the gc_relocate corresponding to each base/ptr pair
+/// Elements of this arrays should be in one-to-one correspondence with each
+/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
+static void
+getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases,
+ SmallVectorImpl<const Value *> &Ptrs,
+ SmallVectorImpl<const Value *> &Relocs,
+ ImmutableCallSite Statepoint,
+ SelectionDAGBuilder &Builder) {
+ // Search for relocated pointers. Note that working backwards from the
+ // gc_relocates ensures that we only get pairs which are actually relocated
+ // and used after the statepoint.
+ // TODO: This logic should probably become a utility function in Statepoint.h
+ for (const User *U : cast<CallInst>(Statepoint.getInstruction())->users()) {
+ if (!isGCRelocate(U)) {
+ continue;
+ }
+ GCRelocateOperands relocateOpers(U);
+ Relocs.push_back(cast<Value>(U));
+ Bases.push_back(relocateOpers.basePtr());
+ Ptrs.push_back(relocateOpers.derivedPtr());
+ }
+
+ // Remove any redundant llvm::Values which map to the same SDValue as another
+ // input. Also has the effect of removing duplicates in the original
+ // llvm::Value input list as well. This is a useful optimization for
+ // reducing the size of the StackMap section. It has no other impact.
+ removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
+
+ assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
+}
+
+/// Spill a value incoming to the statepoint. It might be either part of
+/// vmstate
+/// or gcstate. In both cases unconditionally spill it on the stack unless it
+/// is a null constant. Return pair with first element being frame index
+/// containing saved value and second element with outgoing chain from the
+/// emitted store
+static std::pair<SDValue, SDValue>
+spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
+ SelectionDAGBuilder &Builder) {
+ SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
+
+ // Emit new store if we didn't do it for this ptr before
+ if (!Loc.getNode()) {
+ Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
+ Builder);
+ assert(isa<FrameIndexSDNode>(Loc));
+ int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
+ // We use TargetFrameIndex so that isel will not select it into LEA
+ Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
+
+ // TODO: We can create TokenFactor node instead of
+ // chaining stores one after another, this may allow
+ // a bit more optimal scheduling for them
+ Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
+ MachinePointerInfo::getFixedStack(Index),
+ false, false, 0);
+
+ Builder.StatepointLowering.setLocation(Incoming, Loc);
+ }
+
+ assert(Loc.getNode());
+ return std::make_pair(Loc, Chain);
+}
+
+/// Lower a single value incoming to a statepoint node. This value can be
+/// either a deopt value or a gc value, the handling is the same. We special
+/// case constants and allocas, then fall back to spilling if required.
+static void lowerIncomingStatepointValue(SDValue Incoming,
+ SmallVectorImpl<SDValue> &Ops,
+ SelectionDAGBuilder &Builder) {
+ SDValue Chain = Builder.getRoot();
+
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
+ // If the original value was a constant, make sure it gets recorded as
+ // such in the stackmap. This is required so that the consumer can
+ // parse any internal format to the deopt state. It also handles null
+ // pointers and other constant pointers in GC states
+ Ops.push_back(
+ Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+ Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
+ } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
+ // This handles allocas as arguments to the statepoint
+ const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
+ Ops.push_back(
+ Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
+ } else {
+ // Otherwise, locate a spill slot and explicitly spill it so it
+ // can be found by the runtime later. We currently do not support
+ // tracking values through callee saved registers to their eventual
+ // spill location. This would be a useful optimization, but would
+ // need to be optional since it requires a lot of complexity on the
+ // runtime side which not all would support.
+ std::pair<SDValue, SDValue> Res =
+ spillIncomingStatepointValue(Incoming, Chain, Builder);
+ Ops.push_back(Res.first);
+ Chain = Res.second;
+ }
+
+ Builder.DAG.setRoot(Chain);
+}
+
+/// Lower deopt state and gc pointer arguments of the statepoint. The actual
+/// lowering is described in lowerIncomingStatepointValue. This function is
+/// responsible for lowering everything in the right position and playing some
+/// tricks to avoid redundant stack manipulation where possible. On
+/// completion, 'Ops' will contain ready to use operands for machine code
+/// statepoint. The chain nodes will have already been created and the DAG root
+/// will be set to the last value spilled (if any were).
+static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
+ ImmutableStatepoint Statepoint,
+ SelectionDAGBuilder &Builder) {
+
+ // Lower the deopt and gc arguments for this statepoint. Layout will
+ // be: deopt argument length, deopt arguments.., gc arguments...
+
+ SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
+ getIncomingStatepointGCValues(Bases, Ptrs, Relocations,
+ Statepoint.getCallSite(), Builder);
+
+#ifndef NDEBUG
+ // Check that each of the gc pointer and bases we've gotten out of the
+ // safepoint is something the strategy thinks might be a pointer into the GC
+ // heap. This is basically just here to help catch errors during statepoint
+ // insertion. TODO: This should actually be in the Verifier, but we can't get
+ // to the GCStrategy from there (yet).
+ if (Builder.GFI) {
+ GCStrategy &S = Builder.GFI->getStrategy();
+ for (const Value *V : Bases) {
+ auto Opt = S.isGCManagedPointer(V);
+ if (Opt.hasValue()) {
+ assert(Opt.getValue() &&
+ "non gc managed base pointer found in statepoint");
+ }
+ }
+ for (const Value *V : Ptrs) {
+ auto Opt = S.isGCManagedPointer(V);
+ if (Opt.hasValue()) {
+ assert(Opt.getValue() &&
+ "non gc managed derived pointer found in statepoint");
+ }
+ }
+ for (const Value *V : Relocations) {
+ auto Opt = S.isGCManagedPointer(V);
+ if (Opt.hasValue()) {
+ assert(Opt.getValue() && "non gc managed pointer relocated");
+ }
+ }
+ }
+#endif
+
+
+
+ // Before we actually start lowering (and allocating spill slots for values),
+ // reserve any stack slots which we judge to be profitable to reuse for a
+ // particular value. This is purely an optimization over the code below and
+ // doesn't change semantics at all. It is important for performance that we
+ // reserve slots for both deopt and gc values before lowering either.
+ for (auto I = Statepoint.vm_state_begin() + 1, E = Statepoint.vm_state_end();
+ I != E; ++I) {
+ Value *V = *I;
+ SDValue Incoming = Builder.getValue(V);
+ reservePreviousStackSlotForValue(Incoming, Builder);
+ }
+ for (unsigned i = 0; i < Bases.size() * 2; ++i) {
+ // Even elements will contain base, odd elements - derived ptr
+ const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
+ SDValue Incoming = Builder.getValue(V);
+ reservePreviousStackSlotForValue(Incoming, Builder);
+ }
+
+ // First, prefix the list with the number of unique values to be
+ // lowered. Note that this is the number of *Values* not the
+ // number of SDValues required to lower them.
+ const int NumVMSArgs = Statepoint.numTotalVMSArgs();
+ Ops.push_back(
+ Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+ Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64));
+
+ assert(NumVMSArgs + 1 == std::distance(Statepoint.vm_state_begin(),
+ Statepoint.vm_state_end()));
+
+ // The vm state arguments are lowered in an opaque manner. We do
+ // not know what type of values are contained within. We skip the
+ // first one since that happens to be the total number we lowered
+ // explicitly just above. We could have left it in the loop and
+ // not done it explicitly, but it's far easier to understand this
+ // way.
+ for (auto I = Statepoint.vm_state_begin() + 1, E = Statepoint.vm_state_end();
+ I != E; ++I) {
+ const Value *V = *I;
+ SDValue Incoming = Builder.getValue(V);
+ lowerIncomingStatepointValue(Incoming, Ops, Builder);
+ }
+
+ // Finally, go ahead and lower all the gc arguments. There's no prefixed
+ // length for this one. After lowering, we'll have the base and pointer
+ // arrays interwoven with each (lowered) base pointer immediately followed by
+ // it's (lowered) derived pointer. i.e
+ // (base[0], ptr[0], base[1], ptr[1], ...)
+ for (unsigned i = 0; i < Bases.size() * 2; ++i) {
+ // Even elements will contain base, odd elements - derived ptr
+ const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
+ SDValue Incoming = Builder.getValue(V);
+ lowerIncomingStatepointValue(Incoming, Ops, Builder);
+ }
+}
+void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
+ // The basic scheme here is that information about both the original call and
+ // the safepoint is encoded in the CallInst. We create a temporary call and
+ // lower it, then reverse engineer the calling sequence.
+
+ // Check some preconditions for sanity
+ assert(isStatepoint(&CI) &&
+ "function called must be the statepoint function");
+ NumOfStatepoints++;
+ // Clear state
+ StatepointLowering.startNewStatepoint(*this);
+
+#ifndef NDEBUG
+ // Consistency check
+ for (const User *U : CI.users()) {
+ const CallInst *Call = cast<CallInst>(U);
+ if (isGCRelocate(Call))
+ StatepointLowering.scheduleRelocCall(*Call);
+ }
+#endif
+
+ ImmutableStatepoint ISP(&CI);
+#ifndef NDEBUG
+ // If this is a malformed statepoint, report it early to simplify debugging.
+ // This should catch any IR level mistake that's made when constructing or
+ // transforming statepoints.
+ ISP.verify();
+
+ // Check that the associated GCStrategy expects to encounter statepoints.
+ // TODO: This if should become an assert. For now, we allow the GCStrategy
+ // to be optional for backwards compatibility. This will only last a short
+ // period (i.e. a couple of weeks).
+ if (GFI) {
+ assert(GFI->getStrategy().useStatepoints() &&
+ "GCStrategy does not expect to encounter statepoints");
+ }
+#endif
+
+
+ // Lower statepoint vmstate and gcstate arguments
+ SmallVector<SDValue, 10> LoweredArgs;
+ lowerStatepointMetaArgs(LoweredArgs, ISP, *this);
+
+ // Get call node, we will replace it later with statepoint
+ SDNode *CallNode = lowerCallFromStatepoint(CI, *this);
+
+ // Construct the actual STATEPOINT node with all the appropriate arguments
+ // and return values.
+
+ // TODO: Currently, all of these operands are being marked as read/write in
+ // PrologEpilougeInserter.cpp, we should special case the VMState arguments
+ // and flags to be read-only.
+ SmallVector<SDValue, 40> Ops;
+
+ // Calculate and push starting position of vmstate arguments
+ // Call Node: Chain, Target, {Args}, RegMask, [Glue]
+ SDValue Glue;
+ if (CallNode->getGluedNode()) {
+ // Glue is always last operand
+ Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
+ }
+ // Get number of arguments incoming directly into call node
+ unsigned NumCallRegArgs =
+ CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3);
+ Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
+
+ // Add call target
+ SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
+ Ops.push_back(CallTarget);
+
+ // Add call arguments
+ // Get position of register mask in the call
+ SDNode::op_iterator RegMaskIt;
+ if (Glue.getNode())
+ RegMaskIt = CallNode->op_end() - 2;
+ else
+ RegMaskIt = CallNode->op_end() - 1;
+ Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
+
+ // Add a leading constant argument with the Flags and the calling convention
+ // masked together
+ CallingConv::ID CallConv = CI.getCallingConv();
+ int Flags = dyn_cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
+ assert(Flags == 0 && "not expected to be used");
+ Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+ Ops.push_back(
+ DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64));
+
+ // Insert all vmstate and gcstate arguments
+ Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end());
+
+ // Add register mask from call node
+ Ops.push_back(*RegMaskIt);
+
+ // Add chain
+ Ops.push_back(CallNode->getOperand(0));
+
+ // Same for the glue, but we add it only if original call had it
+ if (Glue.getNode())
+ Ops.push_back(Glue);
+
+ // Compute return values
+ SmallVector<EVT, 21> ValueVTs;
+ ValueVTs.push_back(MVT::Other);
+ ValueVTs.push_back(MVT::Glue); // provide a glue output since we consume one
+ // as input. This allows someone else to chain
+ // off us as needed.
+ SDVTList NodeTys = DAG.getVTList(ValueVTs);
+
+ SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT,
+ getCurSDLoc(), NodeTys, Ops);
+
+ // Replace original call
+ DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root
+ // Remove originall call node
+ DAG.DeleteNode(CallNode);
+
+ // DON'T set the root - under the assumption that it's already set past the
+ // inserted node we created.
+
+ // TODO: A better future implementation would be to emit a single variable
+ // argument, variable return value STATEPOINT node here and then hookup the
+ // return value of each gc.relocate to the respective output of the
+ // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
+ // to actually be possible today.
+}
+
+void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
+ // The result value of the gc_result is simply the result of the actual
+ // call. We've already emitted this, so just grab the value.
+ Instruction *I = cast<Instruction>(CI.getArgOperand(0));
+ assert(isStatepoint(I) &&
+ "first argument must be a statepoint token");
+
+ setValue(&CI, getValue(I));
+}
+
+void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
+#ifndef NDEBUG
+ // Consistency check
+ StatepointLowering.relocCallVisited(CI);
+#endif
+
+ GCRelocateOperands relocateOpers(&CI);
+ SDValue SD = getValue(relocateOpers.derivedPtr());
+
+ if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) {
+ // We didn't need to spill these special cases (constants and allocas).
+ // See the handling in spillIncomingValueForStatepoint for detail.
+ setValue(&CI, SD);
+ return;
+ }
+
+ SDValue Loc = StatepointLowering.getRelocLocation(SD);
+ // Emit new load if we did not emit it before
+ if (!Loc.getNode()) {
+ SDValue SpillSlot = StatepointLowering.getLocation(SD);
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+
+ // Be conservative: flush all pending loads
+ // TODO: Probably we can be less restrictive on this,
+ // it may allow more scheduling opprtunities
+ SDValue Chain = getRoot();
+
+ Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain,
+ SpillSlot, MachinePointerInfo::getFixedStack(FI), false,
+ false, false, 0);
+
+ StatepointLowering.setRelocLocation(SD, Loc);
+
+ // Again, be conservative, don't emit pending loads
+ DAG.setRoot(Loc.getValue(1));
+ }
+
+ assert(Loc.getNode());
+ setValue(&CI, Loc);
+}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.h b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.h
new file mode 100644
index 0000000..673112c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.h
@@ -0,0 +1,138 @@
+//===-- StatepointLowering.h - SDAGBuilder's statepoint code -*- C++ -*---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes support code use by SelectionDAGBuilder when lowering a
+// statepoint sequence in SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_STATEPOINTLOWERING_H
+#define LLVM_LIB_CODEGEN_SELECTIONDAG_STATEPOINTLOWERING_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include <vector>
+
+namespace llvm {
+class SelectionDAGBuilder;
+
+/// This class tracks both per-statepoint and per-selectiondag information.
+/// For each statepoint it tracks locations of it's gc valuess (incoming and
+/// relocated) and list of gcreloc calls scheduled for visiting (this is
+/// used for a debug mode consistency check only). The spill slot tracking
+/// works in concert with information in FunctionLoweringInfo.
+class StatepointLoweringState {
+public:
+ StatepointLoweringState() : NextSlotToAllocate(0) {
+ }
+
+ /// Reset all state tracking for a newly encountered safepoint. Also
+ /// performs some consistency checking.
+ void startNewStatepoint(SelectionDAGBuilder &Builder);
+
+ /// Clear the memory usage of this object. This is called from
+ /// SelectionDAGBuilder::clear. We require this is never called in the
+ /// midst of processing a statepoint sequence.
+ void clear();
+
+ /// Returns the spill location of a value incoming to the current
+ /// statepoint. Will return SDValue() if this value hasn't been
+ /// spilled. Otherwise, the value has already been spilled and no
+ /// further action is required by the caller.
+ SDValue getLocation(SDValue val) {
+ if (!Locations.count(val))
+ return SDValue();
+ return Locations[val];
+ }
+ void setLocation(SDValue val, SDValue Location) {
+ assert(!Locations.count(val) &&
+ "Trying to allocate already allocated location");
+ Locations[val] = Location;
+ }
+
+ /// Returns the relocated value for a given input pointer. Will
+ /// return SDValue() if this value hasn't yet been reloaded from
+ /// it's stack slot after the statepoint. Otherwise, the value
+ /// has already been reloaded and the SDValue of that reload will
+ /// be returned. Note that VMState values are spilled but not
+ /// reloaded (since they don't change at the safepoint unless
+ /// also listed in the GC pointer section) and will thus never
+ /// be in this map
+ SDValue getRelocLocation(SDValue val) {
+ if (!RelocLocations.count(val))
+ return SDValue();
+ return RelocLocations[val];
+ }
+ void setRelocLocation(SDValue val, SDValue Location) {
+ assert(!RelocLocations.count(val) &&
+ "Trying to allocate already allocated location");
+ RelocLocations[val] = Location;
+ }
+
+ /// Record the fact that we expect to encounter a given gc_relocate
+ /// before the next statepoint. If we don't see it, we'll report
+ /// an assertion.
+ void scheduleRelocCall(const CallInst &RelocCall) {
+ PendingGCRelocateCalls.push_back(&RelocCall);
+ }
+ /// Remove this gc_relocate from the list we're expecting to see
+ /// before the next statepoint. If we weren't expecting to see
+ /// it, we'll report an assertion.
+ void relocCallVisited(const CallInst &RelocCall) {
+ SmallVectorImpl<const CallInst *>::iterator itr =
+ std::find(PendingGCRelocateCalls.begin(), PendingGCRelocateCalls.end(),
+ &RelocCall);
+ assert(itr != PendingGCRelocateCalls.end() &&
+ "Visited unexpected gcrelocate call");
+ PendingGCRelocateCalls.erase(itr);
+ }
+
+ // TODO: Should add consistency tracking to ensure we encounter
+ // expected gc_result calls too.
+
+ /// Get a stack slot we can use to store an value of type ValueType. This
+ /// will hopefully be a recylced slot from another statepoint.
+ SDValue allocateStackSlot(EVT ValueType, SelectionDAGBuilder &Builder);
+
+ void reserveStackSlot(int Offset) {
+ assert(Offset >= 0 && Offset < (int)AllocatedStackSlots.size() &&
+ "out of bounds");
+ assert(!AllocatedStackSlots[Offset] && "already reserved!");
+ assert(NextSlotToAllocate <= (unsigned)Offset && "consistency!");
+ AllocatedStackSlots[Offset] = true;
+ }
+ bool isStackSlotAllocated(int Offset) {
+ assert(Offset >= 0 && Offset < (int)AllocatedStackSlots.size() &&
+ "out of bounds");
+ return AllocatedStackSlots[Offset];
+ }
+
+private:
+ /// Maps pre-relocation value (gc pointer directly incoming into statepoint)
+ /// into it's location (currently only stack slots)
+ DenseMap<SDValue, SDValue> Locations;
+ /// Map pre-relocated value into it's new relocated location
+ DenseMap<SDValue, SDValue> RelocLocations;
+
+ /// A boolean indicator for each slot listed in the FunctionInfo as to
+ /// whether it has been used in the current statepoint. Since we try to
+ /// preserve stack slots across safepoints, there can be gaps in which
+ /// slots have been allocated.
+ SmallVector<bool, 50> AllocatedStackSlots;
+
+ /// Points just beyond the last slot known to have been allocated
+ unsigned NextSlotToAllocate;
+
+ /// Keep track of pending gcrelocate calls for consistency check
+ SmallVector<const CallInst *, 10> PendingGCRelocateCalls;
+};
+} // end namespace llvm
+
+#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_STATEPOINTLOWERING_H
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 05ace41..72e0aca 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -31,13 +31,13 @@
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <cctype>
using namespace llvm;
-/// NOTE: The constructor takes ownership of TLOF.
-TargetLowering::TargetLowering(const TargetMachine &tm,
- const TargetLoweringObjectFile *tlof)
- : TargetLoweringBase(tm, tlof) {}
+/// NOTE: The TargetMachine owns TLOF.
+TargetLowering::TargetLowering(const TargetMachine &tm)
+ : TargetLoweringBase(tm) {}
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
return nullptr;
@@ -1283,36 +1283,53 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
}
// (zext x) == C --> x == (trunc C)
- if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // (sext x) == C --> x == (trunc C)
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ DCI.isBeforeLegalize() && N0->hasOneUse()) {
unsigned MinBits = N0.getValueSizeInBits();
- SDValue PreZExt;
+ SDValue PreExt;
+ bool Signed = false;
if (N0->getOpcode() == ISD::ZERO_EXTEND) {
// ZExt
MinBits = N0->getOperand(0).getValueSizeInBits();
- PreZExt = N0->getOperand(0);
+ PreExt = N0->getOperand(0);
} else if (N0->getOpcode() == ISD::AND) {
// DAGCombine turns costly ZExts into ANDs
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
if ((C->getAPIntValue()+1).isPowerOf2()) {
MinBits = C->getAPIntValue().countTrailingOnes();
- PreZExt = N0->getOperand(0);
+ PreExt = N0->getOperand(0);
}
+ } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
+ // SExt
+ MinBits = N0->getOperand(0).getValueSizeInBits();
+ PreExt = N0->getOperand(0);
+ Signed = true;
} else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
- // ZEXTLOAD
+ // ZEXTLOAD / SEXTLOAD
if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
MinBits = LN0->getMemoryVT().getSizeInBits();
- PreZExt = N0;
+ PreExt = N0;
+ } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
+ Signed = true;
+ MinBits = LN0->getMemoryVT().getSizeInBits();
+ PreExt = N0;
}
}
+ // Figure out how many bits we need to preserve this constant.
+ unsigned ReqdBits = Signed ?
+ C1.getBitWidth() - C1.getNumSignBits() + 1 :
+ C1.getActiveBits();
+
// Make sure we're not losing bits from the constant.
if (MinBits > 0 &&
- MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
+ MinBits < C1.getBitWidth() &&
+ MinBits >= ReqdBits) {
EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
// Will get folded away.
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
return DAG.getSetCC(dl, VT, Trunc, C, Cond);
}
@@ -2177,7 +2194,8 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
// Figure out which register class contains this reg.
- const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *RI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
E = RI->regclass_end(); RCI != E; ++RCI) {
const TargetRegisterClass *RC = *RCI;
@@ -2239,14 +2257,11 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
- InlineAsm::ConstraintInfoVector
- ConstraintInfos = IA->ParseConstraints();
-
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
+ for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
+ ConstraintOperands.emplace_back(std::move(CI));
AsmOperandInfo &OpInfo = ConstraintOperands.back();
// Update multiple alternative constraint count.
@@ -2325,7 +2340,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
}
// If we have multiple alternative constraints, select the best alternative.
- if (ConstraintInfos.size()) {
+ if (ConstraintOperands.size()) {
if (maCount) {
unsigned bestMAIndex = 0;
int bestWeight = -1;
@@ -2641,11 +2656,13 @@ SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
/// \brief Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+/// multiplying by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG, bool IsAfterLegalization,
std::vector<SDNode *> *Created) const {
+ assert(Created && "No vector to hold sdiv ops.");
+
EVT VT = N->getValueType(0);
SDLoc dl(N);
@@ -2673,38 +2690,36 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
// If d > 0 and m < 0, add the numerator
if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
- if (Created)
- Created->push_back(Q.getNode());
+ Created->push_back(Q.getNode());
}
// If d < 0 and m > 0, subtract the numerator.
if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
- if (Created)
- Created->push_back(Q.getNode());
+ Created->push_back(Q.getNode());
}
// Shift right algebraic if shift value is nonzero
if (magics.s > 0) {
Q = DAG.getNode(ISD::SRA, dl, VT, Q,
DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
- if (Created)
- Created->push_back(Q.getNode());
+ Created->push_back(Q.getNode());
}
// Extract the sign bit and add it to the quotient
SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
DAG.getConstant(VT.getScalarSizeInBits() - 1,
getShiftAmountTy(Q.getValueType())));
- if (Created)
- Created->push_back(T.getNode());
+ Created->push_back(T.getNode());
return DAG.getNode(ISD::ADD, dl, VT, Q, T);
}
/// \brief Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+/// multiplying by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG, bool IsAfterLegalization,
std::vector<SDNode *> *Created) const {
+ assert(Created && "No vector to hold udiv ops.");
+
EVT VT = N->getValueType(0);
SDLoc dl(N);
@@ -2725,8 +2740,7 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
unsigned Shift = Divisor.countTrailingZeros();
Q = DAG.getNode(ISD::SRL, dl, VT, Q,
DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
- if (Created)
- Created->push_back(Q.getNode());
+ Created->push_back(Q.getNode());
// Get magic number for the shifted divisor.
magics = Divisor.lshr(Shift).magicu(Shift);
@@ -2744,8 +2758,8 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
DAG.getConstant(magics.m, VT)).getNode(), 1);
else
return SDValue(); // No mulhu or equvialent
- if (Created)
- Created->push_back(Q.getNode());
+
+ Created->push_back(Q.getNode());
if (magics.a == 0) {
assert(magics.s < Divisor.getBitWidth() &&
@@ -2754,15 +2768,12 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
} else {
SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
- if (Created)
- Created->push_back(NPQ.getNode());
+ Created->push_back(NPQ.getNode());
NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
- if (Created)
- Created->push_back(NPQ.getNode());
+ Created->push_back(NPQ.getNode());
NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
- if (Created)
- Created->push_back(NPQ.getNode());
+ Created->push_back(NPQ.getNode());
return DAG.getNode(ISD::SRL, dl, VT, NPQ,
DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
}
@@ -2785,7 +2796,7 @@ verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
SelectionDAG &DAG, SDValue LL, SDValue LH,
- SDValue RL, SDValue RH) const {
+ SDValue RL, SDValue RH) const {
EVT VT = N->getValueType(0);
SDLoc dl(N);
@@ -2818,8 +2829,8 @@ bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
// The inputs are both zero-extended.
if (HasUMUL_LOHI) {
// We can emit a umul_lohi.
- Lo = DAG.getNode(ISD::UMUL_LOHI, dl,
- DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
+ Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
+ RL);
Hi = SDValue(Lo.getNode(), 1);
return true;
}
@@ -2834,8 +2845,8 @@ bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
// The input values are both sign-extended.
if (HasSMUL_LOHI) {
// We can emit a smul_lohi.
- Lo = DAG.getNode(ISD::SMUL_LOHI, dl,
- DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
+ Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
+ RL);
Hi = SDValue(Lo.getNode(), 1);
return true;
}
diff --git a/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp b/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp
index f7c64da..0be00f0 100644
--- a/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp
+++ b/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp
@@ -144,7 +144,7 @@ namespace {
LLVMContext &C = F.getContext();
BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
Type *ExnTy = StructType::get(Type::getInt8PtrTy(C),
- Type::getInt32Ty(C), NULL);
+ Type::getInt32Ty(C), nullptr);
Constant *PersFn =
F.getParent()->
getOrInsertFunction("__gcc_personality_v0",
diff --git a/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp b/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp
index b0950de..7fd8107 100644
--- a/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp
@@ -31,6 +31,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
@@ -98,7 +99,7 @@ bool SjLjEHPrepare::doInitialization(Module &M) {
VoidPtrTy, // __personality
VoidPtrTy, // __lsda
ArrayType::get(VoidPtrTy, 5), // __jbuf
- NULL);
+ nullptr);
RegisterFn = M.getOrInsertFunction(
"_Unwind_SjLj_Register", Type::getVoidTy(M.getContext()),
PointerType::getUnqual(FunctionContextTy), (Type *)nullptr);
@@ -138,8 +139,8 @@ void SjLjEHPrepare::insertCallSiteStore(Instruction *I, int Number) {
/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
/// we reach blocks we've already seen.
static void MarkBlocksLiveIn(BasicBlock *BB,
- SmallPtrSet<BasicBlock *, 64> &LiveBBs) {
- if (!LiveBBs.insert(BB))
+ SmallPtrSetImpl<BasicBlock *> &LiveBBs) {
+ if (!LiveBBs.insert(BB).second)
return; // already been here.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
@@ -190,7 +191,7 @@ Value *SjLjEHPrepare::setupFunctionContext(Function &F,
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
// that needs to be restored on all exits from the function. This is an alloca
// because the value needs to be added to the global context list.
- const TargetLowering *TLI = TM->getTargetLowering();
+ const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
unsigned Align =
TLI->getDataLayout()->getPrefTypeAlignment(FunctionContextTy);
FuncCtx = new AllocaInst(FunctionContextTy, nullptr, Align, "fn_context",
@@ -350,10 +351,8 @@ void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F,
continue;
// Demote the PHIs to the stack.
- for (SmallPtrSet<PHINode *, 8>::iterator I = PHIsToDemote.begin(),
- E = PHIsToDemote.end();
- I != E; ++I)
- DemotePHIToStack(*I);
+ for (PHINode *PN : PHIsToDemote)
+ DemotePHIToStack(PN);
// Move the landingpad instruction back to the top of the landing pad block.
LPI->moveBefore(UnwindBlock->begin());
diff --git a/contrib/llvm/lib/CodeGen/SpillPlacement.cpp b/contrib/llvm/lib/CodeGen/SpillPlacement.cpp
index 24e94d1..97a5424 100644
--- a/contrib/llvm/lib/CodeGen/SpillPlacement.cpp
+++ b/contrib/llvm/lib/CodeGen/SpillPlacement.cpp
@@ -37,6 +37,7 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
+#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
@@ -60,27 +61,6 @@ void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
}
-namespace {
-static BlockFrequency Threshold;
-}
-
-/// Decision threshold. A node gets the output value 0 if the weighted sum of
-/// its inputs falls in the open interval (-Threshold;Threshold).
-static BlockFrequency getThreshold() { return Threshold; }
-
-/// \brief Set the threshold for a given entry frequency.
-///
-/// Set the threshold relative to \c Entry. Since the threshold is used as a
-/// bound on the open interval (-Threshold;Threshold), 1 is the minimum
-/// threshold.
-static void setThreshold(const BlockFrequency &Entry) {
- // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
- // it. Divide by 2^13, rounding as appropriate.
- uint64_t Freq = Entry.getFrequency();
- uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
- Threshold = std::max(UINT64_C(1), Scaled);
-}
-
/// Node - Each edge bundle corresponds to a Hopfield node.
///
/// The node contains precomputed frequency data that only depends on the CFG,
@@ -126,9 +106,9 @@ struct SpillPlacement::Node {
/// clear - Reset per-query data, but preserve frequencies that only depend on
// the CFG.
- void clear() {
+ void clear(const BlockFrequency &Threshold) {
BiasN = BiasP = Value = 0;
- SumLinkWeights = getThreshold();
+ SumLinkWeights = Threshold;
Links.clear();
}
@@ -166,7 +146,7 @@ struct SpillPlacement::Node {
/// update - Recompute Value from Bias and Links. Return true when node
/// preference changes.
- bool update(const Node nodes[]) {
+ bool update(const Node nodes[], const BlockFrequency &Threshold) {
// Compute the weighted sum of inputs.
BlockFrequency SumN = BiasN;
BlockFrequency SumP = BiasP;
@@ -186,9 +166,9 @@ struct SpillPlacement::Node {
// 2. It helps tame rounding errors when the links nominally sum to 0.
//
bool Before = preferReg();
- if (SumN >= SumP + getThreshold())
+ if (SumN >= SumP + Threshold)
Value = -1;
- else if (SumP >= SumN + getThreshold())
+ else if (SumP >= SumN + Threshold)
Value = 1;
else
Value = 0;
@@ -227,7 +207,7 @@ void SpillPlacement::activate(unsigned n) {
if (ActiveNodes->test(n))
return;
ActiveNodes->set(n);
- nodes[n].clear();
+ nodes[n].clear(Threshold);
// Very large bundles usually come from big switches, indirect branches,
// landing pads, or loops with many 'continue' statements. It is difficult to
@@ -244,6 +224,18 @@ void SpillPlacement::activate(unsigned n) {
}
}
+/// \brief Set the threshold for a given entry frequency.
+///
+/// Set the threshold relative to \c Entry. Since the threshold is used as a
+/// bound on the open interval (-Threshold;Threshold), 1 is the minimum
+/// threshold.
+void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
+ // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
+ // it. Divide by 2^13, rounding as appropriate.
+ uint64_t Freq = Entry.getFrequency();
+ uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
+ Threshold = std::max(UINT64_C(1), Scaled);
+}
/// addConstraints - Compute node biases and weights from a set of constraints.
/// Set a bit in NodeMask for each active node.
@@ -310,7 +302,7 @@ bool SpillPlacement::scanActiveBundles() {
Linked.clear();
RecentPositive.clear();
for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
- nodes[n].update(nodes);
+ nodes[n].update(nodes, Threshold);
// A node that must spill, or a node without any links is not going to
// change its value ever again, so exclude it from iterations.
if (nodes[n].mustSpill())
@@ -330,7 +322,7 @@ void SpillPlacement::iterate() {
// First update the recently positive nodes. They have likely received new
// negative bias that will turn them off.
while (!RecentPositive.empty())
- nodes[RecentPositive.pop_back_val()].update(nodes);
+ nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
if (Linked.empty())
return;
@@ -349,7 +341,7 @@ void SpillPlacement::iterate() {
iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
E = Linked.rend(); I != E; ++I) {
unsigned n = *I;
- if (nodes[n].update(nodes)) {
+ if (nodes[n].update(nodes, Threshold)) {
Changed = true;
if (nodes[n].preferReg())
RecentPositive.push_back(n);
@@ -363,7 +355,7 @@ void SpillPlacement::iterate() {
for (SmallVectorImpl<unsigned>::const_iterator I =
std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
unsigned n = *I;
- if (nodes[n].update(nodes)) {
+ if (nodes[n].update(nodes, Threshold)) {
Changed = true;
if (nodes[n].preferReg())
RecentPositive.push_back(n);
diff --git a/contrib/llvm/lib/CodeGen/SpillPlacement.h b/contrib/llvm/lib/CodeGen/SpillPlacement.h
index 43fc7f5..622361e 100644
--- a/contrib/llvm/lib/CodeGen/SpillPlacement.h
+++ b/contrib/llvm/lib/CodeGen/SpillPlacement.h
@@ -24,8 +24,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_SPILLPLACEMENT_H
-#define LLVM_CODEGEN_SPILLPLACEMENT_H
+#ifndef LLVM_LIB_CODEGEN_SPILLPLACEMENT_H
+#define LLVM_LIB_CODEGEN_SPILLPLACEMENT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
@@ -40,7 +40,7 @@ class MachineBasicBlock;
class MachineLoopInfo;
class MachineBlockFrequencyInfo;
-class SpillPlacement : public MachineFunctionPass {
+class SpillPlacement : public MachineFunctionPass {
struct Node;
const MachineFunction *MF;
const EdgeBundles *bundles;
@@ -60,7 +60,11 @@ class SpillPlacement : public MachineFunctionPass {
SmallVector<unsigned, 8> RecentPositive;
// Block frequencies are computed once. Indexed by block number.
- SmallVector<BlockFrequency, 4> BlockFrequencies;
+ SmallVector<BlockFrequency, 8> BlockFrequencies;
+
+ /// Decision threshold. A node gets the output value 0 if the weighted sum of
+ /// its inputs falls in the open interval (-Threshold;Threshold).
+ BlockFrequency Threshold;
public:
static char ID; // Pass identification, replacement for typeid.
@@ -152,6 +156,7 @@ private:
void releaseMemory() override;
void activate(unsigned);
+ void setThreshold(const BlockFrequency &Entry);
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/CodeGen/Spiller.cpp b/contrib/llvm/lib/CodeGen/Spiller.cpp
deleted file mode 100644
index 0649448..0000000
--- a/contrib/llvm/lib/CodeGen/Spiller.cpp
+++ /dev/null
@@ -1,184 +0,0 @@
-//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Spiller.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/LiveRangeEdit.h"
-#include "llvm/CodeGen/LiveStackAnalysis.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/VirtRegMap.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "spiller"
-
-namespace {
- enum SpillerName { trivial, inline_ };
-}
-
-static cl::opt<SpillerName>
-spillerOpt("spiller",
- cl::desc("Spiller to use: (default: standard)"),
- cl::Prefix,
- cl::values(clEnumVal(trivial, "trivial spiller"),
- clEnumValN(inline_, "inline", "inline spiller"),
- clEnumValEnd),
- cl::init(trivial));
-
-// Spiller virtual destructor implementation.
-Spiller::~Spiller() {}
-
-namespace {
-
-/// Utility class for spillers.
-class SpillerBase : public Spiller {
-protected:
- MachineFunctionPass *pass;
- MachineFunction *mf;
- VirtRegMap *vrm;
- LiveIntervals *lis;
- MachineFrameInfo *mfi;
- MachineRegisterInfo *mri;
- const TargetInstrInfo *tii;
- const TargetRegisterInfo *tri;
-
- /// Construct a spiller base.
- SpillerBase(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
- : pass(&pass), mf(&mf), vrm(&vrm)
- {
- lis = &pass.getAnalysis<LiveIntervals>();
- mfi = mf.getFrameInfo();
- mri = &mf.getRegInfo();
- tii = mf.getTarget().getInstrInfo();
- tri = mf.getTarget().getRegisterInfo();
- }
-
- /// Add spill ranges for every use/def of the live interval, inserting loads
- /// immediately before each use, and stores after each def. No folding or
- /// remat is attempted.
- void trivialSpillEverywhere(LiveRangeEdit& LRE) {
- LiveInterval* li = &LRE.getParent();
-
- DEBUG(dbgs() << "Spilling everywhere " << *li << "\n");
-
- assert(li->weight != llvm::huge_valf &&
- "Attempting to spill already spilled value.");
-
- assert(!TargetRegisterInfo::isStackSlot(li->reg) &&
- "Trying to spill a stack slot.");
-
- DEBUG(dbgs() << "Trivial spill everywhere of reg" << li->reg << "\n");
-
- const TargetRegisterClass *trc = mri->getRegClass(li->reg);
- unsigned ss = vrm->assignVirt2StackSlot(li->reg);
-
- // Iterate over reg uses/defs.
- for (MachineRegisterInfo::reg_instr_iterator
- regItr = mri->reg_instr_begin(li->reg);
- regItr != mri->reg_instr_end();) {
-
- // Grab the use/def instr.
- MachineInstr *mi = &*regItr;
-
- DEBUG(dbgs() << " Processing " << *mi);
-
- // Step regItr to the next use/def instr.
- ++regItr;
-
- // Collect uses & defs for this instr.
- SmallVector<unsigned, 2> indices;
- bool hasUse = false;
- bool hasDef = false;
- for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
- MachineOperand &op = mi->getOperand(i);
- if (!op.isReg() || op.getReg() != li->reg)
- continue;
- hasUse |= mi->getOperand(i).isUse();
- hasDef |= mi->getOperand(i).isDef();
- indices.push_back(i);
- }
-
- // Create a new virtual register for the load and/or store.
- unsigned NewVReg = LRE.create();
-
- // Update the reg operands & kill flags.
- for (unsigned i = 0; i < indices.size(); ++i) {
- unsigned mopIdx = indices[i];
- MachineOperand &mop = mi->getOperand(mopIdx);
- mop.setReg(NewVReg);
- if (mop.isUse() && !mi->isRegTiedToDefOperand(mopIdx)) {
- mop.setIsKill(true);
- }
- }
- assert(hasUse || hasDef);
-
- // Insert reload if necessary.
- MachineBasicBlock::iterator miItr(mi);
- if (hasUse) {
- MachineInstrSpan MIS(miItr);
-
- tii->loadRegFromStackSlot(*mi->getParent(), miItr, NewVReg, ss, trc,
- tri);
- lis->InsertMachineInstrRangeInMaps(MIS.begin(), miItr);
- }
-
- // Insert store if necessary.
- if (hasDef) {
- MachineInstrSpan MIS(miItr);
-
- tii->storeRegToStackSlot(*mi->getParent(), std::next(miItr), NewVReg,
- true, ss, trc, tri);
- lis->InsertMachineInstrRangeInMaps(std::next(miItr), MIS.end());
- }
- }
- }
-};
-
-} // end anonymous namespace
-
-namespace {
-
-/// Spills any live range using the spill-everywhere method with no attempt at
-/// folding.
-class TrivialSpiller : public SpillerBase {
-public:
-
- TrivialSpiller(MachineFunctionPass &pass, MachineFunction &mf,
- VirtRegMap &vrm)
- : SpillerBase(pass, mf, vrm) {}
-
- void spill(LiveRangeEdit &LRE) override {
- // Ignore spillIs - we don't use it.
- trivialSpillEverywhere(LRE);
- }
-};
-
-} // end anonymous namespace
-
-void Spiller::anchor() { }
-
-llvm::Spiller* llvm::createSpiller(MachineFunctionPass &pass,
- MachineFunction &mf,
- VirtRegMap &vrm) {
- switch (spillerOpt) {
- case trivial: return new TrivialSpiller(pass, mf, vrm);
- case inline_: return createInlineSpiller(pass, mf, vrm);
- }
- llvm_unreachable("Invalid spiller optimization");
-}
diff --git a/contrib/llvm/lib/CodeGen/Spiller.h b/contrib/llvm/lib/CodeGen/Spiller.h
index b7d5bea..08f99ec 100644
--- a/contrib/llvm/lib/CodeGen/Spiller.h
+++ b/contrib/llvm/lib/CodeGen/Spiller.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_SPILLER_H
-#define LLVM_CODEGEN_SPILLER_H
+#ifndef LLVM_LIB_CODEGEN_SPILLER_H
+#define LLVM_LIB_CODEGEN_SPILLER_H
namespace llvm {
@@ -31,11 +31,6 @@ namespace llvm {
};
- /// Create and return a spiller object, as specified on the command line.
- Spiller* createSpiller(MachineFunctionPass &pass,
- MachineFunction &mf,
- VirtRegMap &vrm);
-
/// Create and return a spiller that will insert spill code directly instead
/// of deferring though VirtRegMap.
Spiller *createInlineSpiller(MachineFunctionPass &pass,
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp
index 7d4f568..4c8801a 100644
--- a/contrib/llvm/lib/CodeGen/SplitKit.cpp
+++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp
@@ -40,16 +40,11 @@ STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
// Split Analysis
//===----------------------------------------------------------------------===//
-SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
- const LiveIntervals &lis,
+SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
const MachineLoopInfo &mli)
- : MF(vrm.getMachineFunction()),
- VRM(vrm),
- LIS(lis),
- Loops(mli),
- TII(*MF.getTarget().getInstrInfo()),
- CurLI(nullptr),
- LastSplitPoint(MF.getNumBlockIDs()) {}
+ : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
+ TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
+ LastSplitPoint(MF.getNumBlockIDs()) {}
void SplitAnalysis::clear() {
UseSlots.clear();
@@ -125,10 +120,9 @@ void SplitAnalysis::analyzeUses() {
// First get all the defs from the interval values. This provides the correct
// slots for early clobbers.
- for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
- E = CurLI->vni_end(); I != E; ++I)
- if (!(*I)->isPHIDef() && !(*I)->isUnused())
- UseSlots.push_back((*I)->def);
+ for (const VNInfo *VNI : CurLI->valnos)
+ if (!VNI->isPHIDef() && !VNI->isUnused())
+ UseSlots.push_back(VNI->def);
// Get use slots form the use-def chain.
const MachineRegisterInfo &MRI = MF.getRegInfo();
@@ -321,22 +315,14 @@ void SplitAnalysis::analyze(const LiveInterval *li) {
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
-SplitEditor::SplitEditor(SplitAnalysis &sa,
- LiveIntervals &lis,
- VirtRegMap &vrm,
+SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
MachineDominatorTree &mdt,
MachineBlockFrequencyInfo &mbfi)
- : SA(sa), LIS(lis), VRM(vrm),
- MRI(vrm.getMachineFunction().getRegInfo()),
- MDT(mdt),
- TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
- TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
- MBFI(mbfi),
- Edit(nullptr),
- OpenIdx(0),
- SpillMode(SM_Partition),
- RegAssign(Allocator)
-{}
+ : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
+ MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
+ TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
+ MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
+ RegAssign(Allocator) {}
void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
Edit = &LRE;
@@ -740,9 +726,7 @@ void SplitEditor::hoistCopiesForSize() {
// Find the nearest common dominator for parent values with multiple
// back-copies. If a single back-copy dominates, put it in DomPair.second.
- for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
- VI != VE; ++VI) {
- VNInfo *VNI = *VI;
+ for (VNInfo *VNI : LI->valnos) {
if (VNI->isUnused())
continue;
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
@@ -815,9 +799,7 @@ void SplitEditor::hoistCopiesForSize() {
// Remove redundant back-copies that are now known to be dominated by another
// def with the same value.
SmallVector<VNInfo*, 8> BackCopies;
- for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
- VI != VE; ++VI) {
- VNInfo *VNI = *VI;
+ for (VNInfo *VNI : LI->valnos) {
if (VNI->isUnused())
continue;
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
@@ -836,16 +818,15 @@ void SplitEditor::hoistCopiesForSize() {
bool SplitEditor::transferValues() {
bool Skipped = false;
RegAssignMap::const_iterator AssignI = RegAssign.begin();
- for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
- ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
- DEBUG(dbgs() << " blit " << *ParentI << ':');
- VNInfo *ParentVNI = ParentI->valno;
+ for (const LiveRange::Segment &S : Edit->getParent()) {
+ DEBUG(dbgs() << " blit " << S << ':');
+ VNInfo *ParentVNI = S.valno;
// RegAssign has holes where RegIdx 0 should be used.
- SlotIndex Start = ParentI->start;
+ SlotIndex Start = S.start;
AssignI.advanceTo(Start);
do {
unsigned RegIdx;
- SlotIndex End = ParentI->end;
+ SlotIndex End = S.end;
if (!AssignI.valid()) {
RegIdx = 0;
} else if (AssignI.start() <= Start) {
@@ -930,7 +911,7 @@ bool SplitEditor::transferValues() {
++MBB;
}
Start = End;
- } while (Start != ParentI->end);
+ } while (Start != S.end);
DEBUG(dbgs() << '\n');
}
@@ -943,9 +924,7 @@ bool SplitEditor::transferValues() {
void SplitEditor::extendPHIKillRanges() {
// Extend live ranges to be live-out for successor PHI values.
- for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
- E = Edit->getParent().vni_end(); I != E; ++I) {
- const VNInfo *PHIVNI = *I;
+ for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
continue;
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
@@ -1019,12 +998,11 @@ void SplitEditor::deleteRematVictims() {
SmallVector<MachineInstr*, 8> Dead;
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
LiveInterval *LI = &LIS.getInterval(*I);
- for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
- LII != LIE; ++LII) {
+ for (const LiveRange::Segment &S : LI->segments) {
// Dead defs end at the dead slot.
- if (LII->end != LII->valno->def.getDeadSlot())
+ if (S.end != S.valno->def.getDeadSlot())
continue;
- MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
+ MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
assert(MI && "Missing instruction for dead def");
MI->addRegisterDead(LI->reg, &TRI);
@@ -1049,9 +1027,7 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
// the inserted copies.
// Add the original defs from the parent interval.
- for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
- E = Edit->getParent().vni_end(); I != E; ++I) {
- const VNInfo *ParentVNI = *I;
+ for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
if (ParentVNI->isUnused())
continue;
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.h b/contrib/llvm/lib/CodeGen/SplitKit.h
index 7048ee3..2e60c14 100644
--- a/contrib/llvm/lib/CodeGen/SplitKit.h
+++ b/contrib/llvm/lib/CodeGen/SplitKit.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CODEGEN_SPLITKIT_H
-#define LLVM_CODEGEN_SPLITKIT_H
+#ifndef LLVM_LIB_CODEGEN_SPLITKIT_H
+#define LLVM_LIB_CODEGEN_SPLITKIT_H
#include "LiveRangeCalc.h"
#include "llvm/ADT/ArrayRef.h"
diff --git a/contrib/llvm/lib/CodeGen/StackColoring.cpp b/contrib/llvm/lib/CodeGen/StackColoring.cpp
index 370430c..faf94b6 100644
--- a/contrib/llvm/lib/CodeGen/StackColoring.cpp
+++ b/contrib/llvm/lib/CodeGen/StackColoring.cpp
@@ -228,7 +228,7 @@ void StackColoring::dump() const {
unsigned StackColoring::collectMarkers(unsigned NumSlot) {
unsigned MarkersFound = 0;
// Scan the function to find all lifetime markers.
- // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
+ // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
// deterministic numbering, and because we'll need a post-order iteration
// later for solving the liveness dataflow problem.
for (MachineBasicBlock *MBB : depth_first(MF)) {
@@ -463,7 +463,8 @@ void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
if (!VI.Var)
continue;
if (SlotRemap.count(VI.Slot)) {
- DEBUG(dbgs()<<"Remapping debug info for ["<<VI.Var->getName()<<"].\n");
+ DEBUG(dbgs() << "Remapping debug info for ["
+ << DIVariable(VI.Var).getName() << "].\n");
VI.Slot = SlotRemap[VI.Slot];
FixedDbg++;
}
diff --git a/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp b/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp
index 3ba502f..767f43a 100644
--- a/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp
+++ b/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp
@@ -21,7 +21,7 @@
#include "llvm/CodeGen/StackMapLivenessAnalysis.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -67,7 +67,7 @@ bool StackMapLiveness::runOnMachineFunction(MachineFunction &_MF) {
DEBUG(dbgs() << "********** COMPUTING STACKMAP LIVENESS: "
<< _MF.getName() << " **********\n");
MF = &_MF;
- TRI = MF->getTarget().getRegisterInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
++NumStackMapFuncVisited;
// Skip this function if there are no patchpoints to process.
@@ -123,5 +123,7 @@ uint32_t *StackMapLiveness::createRegisterMask() const {
for (LivePhysRegs::const_iterator RI = LiveRegs.begin(), RE = LiveRegs.end();
RI != RE; ++RI)
Mask[*RI / 32] |= 1U << (*RI % 32);
+
+ TRI->adjustStackMapLiveOutMask(Mask);
return Mask;
}
diff --git a/contrib/llvm/lib/CodeGen/StackMaps.cpp b/contrib/llvm/lib/CodeGen/StackMaps.cpp
index 1473fc1..f1d1160 100644
--- a/contrib/llvm/lib/CodeGen/StackMaps.cpp
+++ b/contrib/llvm/lib/CodeGen/StackMaps.cpp
@@ -24,6 +24,7 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <iterator>
using namespace llvm;
@@ -83,7 +84,8 @@ StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
switch (MOI->getImm()) {
default: llvm_unreachable("Unrecognized operand type.");
case StackMaps::DirectMemRefOp: {
- unsigned Size = AP.TM.getDataLayout()->getPointerSizeInBits();
+ unsigned Size =
+ AP.TM.getSubtargetImpl()->getDataLayout()->getPointerSizeInBits();
assert((Size % 8) == 0 && "Need pointer size in bytes.");
Size /= 8;
unsigned Reg = (++MOI)->getReg();
@@ -122,7 +124,8 @@ StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) &&
"Virtreg operands should have been rewritten before now.");
const TargetRegisterClass *RC =
- AP.TM.getRegisterInfo()->getMinimalPhysRegClass(MOI->getReg());
+ AP.TM.getSubtargetImpl()->getRegisterInfo()->getMinimalPhysRegClass(
+ MOI->getReg());
assert(!MOI->getSubReg() && "Physical subreg still around.");
Locs.push_back(
Location(Location::Register, RC->getSize(), MOI->getReg(), 0));
@@ -158,7 +161,7 @@ StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const {
StackMaps::LiveOutVec
StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
assert(Mask && "No register mask specified");
- const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = AP.TM.getSubtargetImpl()->getRegisterInfo();
LiveOutVec LiveOuts;
// Create a LiveOutReg for each bit that is set in the register mask.
@@ -217,9 +220,18 @@ void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
I != E; ++I) {
// Constants are encoded as sign-extended integers.
// -1 is directly encoded as .long 0xFFFFFFFF with no constant pool.
- if (I->LocType == Location::Constant &&
- ((I->Offset + (int64_t(1)<<31)) >> 32) != 0) {
+ if (I->LocType == Location::Constant && !isInt<32>(I->Offset)) {
I->LocType = Location::ConstantIndex;
+ // ConstPool is intentionally a MapVector of 'uint64_t's (as
+ // opposed to 'int64_t's). We should never be in a situation
+ // where we have to insert either the tombstone or the empty
+ // keys into a map, and for a DenseMap<uint64_t, T> these are
+ // (uint64_t)0 and (uint64_t)-1. They can be and are
+ // represented using 32 bit integers.
+
+ assert((uint64_t)I->Offset != DenseMapInfo<uint64_t>::getEmptyKey() &&
+ (uint64_t)I->Offset != DenseMapInfo<uint64_t>::getTombstoneKey() &&
+ "empty and tombstone keys should fit in 32 bits!");
auto Result = ConstPool.insert(std::make_pair(I->Offset, I->Offset));
I->Offset = Result.first - ConstPool.begin();
}
@@ -229,15 +241,19 @@ void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
// entry.
const MCExpr *CSOffsetExpr = MCBinaryExpr::CreateSub(
MCSymbolRefExpr::Create(MILabel, OutContext),
- MCSymbolRefExpr::Create(AP.CurrentFnSym, OutContext),
+ MCSymbolRefExpr::Create(AP.CurrentFnSymForSize, OutContext),
OutContext);
- CSInfos.push_back(CallsiteInfo(CSOffsetExpr, ID, Locations, LiveOuts));
+ CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations),
+ std::move(LiveOuts));
// Record the stack size of the current function.
const MachineFrameInfo *MFI = AP.MF->getFrameInfo();
+ const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo();
+ const bool DynamicFrameSize = MFI->hasVarSizedObjects() ||
+ RegInfo->needsStackRealignment(*(AP.MF));
FnStackSize[AP.CurrentFnSym] =
- MFI->hasVarSizedObjects() ? UINT64_MAX : MFI->getStackSize();
+ DynamicFrameSize ? UINT64_MAX : MFI->getStackSize();
}
void StackMaps::recordStackMap(const MachineInstr &MI) {
@@ -270,6 +286,18 @@ void StackMaps::recordPatchPoint(const MachineInstr &MI) {
}
#endif
}
+void StackMaps::recordStatepoint(const MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::STATEPOINT &&
+ "expected statepoint");
+
+ StatepointOpers opers(&MI);
+ // Record all the deopt and gc operands (they're contiguous and run from the
+ // initial index to the end of the operand list)
+ const unsigned StartIdx = opers.getVarIdx();
+ recordStackMapOpers(MI, 0xABCDEF00,
+ MI.operands_begin() + StartIdx, MI.operands_end(),
+ false);
+}
/// Emit the stackmap header.
///
@@ -485,7 +513,7 @@ void StackMaps::serializeToStackMapSection() {
MCContext &OutContext = AP.OutStreamer.getContext();
MCStreamer &OS = AP.OutStreamer;
- const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = AP.TM.getSubtargetImpl()->getRegisterInfo();
// Create the section.
const MCSection *StackMapSection =
diff --git a/contrib/llvm/lib/CodeGen/StackProtector.cpp b/contrib/llvm/lib/CodeGen/StackProtector.cpp
index accfe7b..a132805 100644
--- a/contrib/llvm/lib/CodeGen/StackProtector.cpp
+++ b/contrib/llvm/lib/CodeGen/StackProtector.cpp
@@ -17,6 +17,7 @@
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/Passes.h"
@@ -31,8 +32,10 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <cstdlib>
using namespace llvm;
@@ -85,7 +88,7 @@ bool StackProtector::runOnFunction(Function &Fn) {
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
- TLI = TM->getTargetLowering();
+ TLI = TM->getSubtargetImpl()->getTargetLowering();
Attribute Attr = Fn.getAttributes().getAttribute(
AttributeSet::FunctionIndex, "stack-protector-buffer-size");
@@ -168,7 +171,7 @@ bool StackProtector::HasAddressTaken(const Instruction *AI) {
} else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
// Keep track of what PHI nodes we have already visited to ensure
// they are only visited once.
- if (VisitedPHIs.insert(PN))
+ if (VisitedPHIs.insert(PN).second)
if (HasAddressTaken(PN))
return true;
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
@@ -209,20 +212,16 @@ bool StackProtector::RequiresStackProtector() {
Attribute::StackProtect))
return false;
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- BasicBlock *BB = I;
-
- for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
- ++II) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
+ for (const BasicBlock &BB : *F) {
+ for (const Instruction &I : BB) {
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
if (AI->isArrayAllocation()) {
// SSP-Strong: Enable protectors for any call to alloca, regardless
// of size.
if (Strong)
return true;
- if (const ConstantInt *CI =
- dyn_cast<ConstantInt>(AI->getArraySize())) {
+ if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
// A call to alloca with size >= SSPBufferSize requires
// stack protectors.
@@ -334,7 +333,7 @@ static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
/// node.
static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
- const TargetLoweringBase *TLI, const Triple &Trip,
+ const TargetLoweringBase *TLI, const Triple &TT,
AllocaInst *&AI, Value *&StackGuardVar) {
bool SupportsSelectionDAGSP = false;
PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
@@ -343,9 +342,10 @@ static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
Constant *OffsetVal =
ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
- StackGuardVar = ConstantExpr::getIntToPtr(
- OffsetVal, PointerType::get(PtrTy, AddressSpace));
- } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
+ StackGuardVar =
+ ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy,
+ AddressSpace));
+ } else if (TT.isOSOpenBSD()) {
StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
cast<GlobalValue>(StackGuardVar)
->setVisibility(GlobalValue::HiddenVisibility);
@@ -398,14 +398,13 @@ bool StackProtector::InsertStackProtectors() {
InsertionPt = RI;
// At this point we know that BB has a return statement so it *DOES*
// have a terminator.
- assert(InsertionPt != nullptr && "BB must have a terminator instruction at "
- "this point.");
+ assert(InsertionPt != nullptr &&
+ "BB must have a terminator instruction at this point.");
}
Function *Intrinsic =
Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
-
} else {
// If we do not support SelectionDAG based tail calls, generate IR level
// tail calls.
@@ -458,11 +457,17 @@ bool StackProtector::InsertStackProtectors() {
LoadInst *LI1 = B.CreateLoad(StackGuardVar);
LoadInst *LI2 = B.CreateLoad(AI);
Value *Cmp = B.CreateICmpEQ(LI1, LI2);
- B.CreateCondBr(Cmp, NewBB, FailBB);
+ unsigned SuccessWeight =
+ BranchProbabilityInfo::getBranchWeightStackProtector(true);
+ unsigned FailureWeight =
+ BranchProbabilityInfo::getBranchWeightStackProtector(false);
+ MDNode *Weights = MDBuilder(F->getContext())
+ .createBranchWeights(SuccessWeight, FailureWeight);
+ B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
}
}
- // Return if we didn't modify any basic blocks. I.e., there are no return
+ // Return if we didn't modify any basic blocks. i.e., there are no return
// statements in the function.
if (!HasPrologue)
return false;
@@ -476,15 +481,17 @@ BasicBlock *StackProtector::CreateFailBB() {
LLVMContext &Context = F->getContext();
BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
IRBuilder<> B(FailBB);
- if (Trip.getOS() == llvm::Triple::OpenBSD) {
- Constant *StackChkFail = M->getOrInsertFunction(
- "__stack_smash_handler", Type::getVoidTy(Context),
- Type::getInt8PtrTy(Context), NULL);
+ if (Trip.isOSOpenBSD()) {
+ Constant *StackChkFail =
+ M->getOrInsertFunction("__stack_smash_handler",
+ Type::getVoidTy(Context),
+ Type::getInt8PtrTy(Context), nullptr);
B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
} else {
- Constant *StackChkFail = M->getOrInsertFunction(
- "__stack_chk_fail", Type::getVoidTy(Context), NULL);
+ Constant *StackChkFail =
+ M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
+ nullptr);
B.CreateCall(StackChkFail);
}
B.CreateUnreachable();
diff --git a/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp b/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp
index 791168f5..cc72e5e 100644
--- a/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp
+++ b/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp
@@ -28,7 +28,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <vector>
using namespace llvm;
@@ -422,7 +422,7 @@ bool StackSlotColoring::runOnMachineFunction(MachineFunction &MF) {
});
MFI = MF.getFrameInfo();
- TII = MF.getTarget().getInstrInfo();
+ TII = MF.getSubtarget().getInstrInfo();
LS = &getAnalysis<LiveStacks>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
diff --git a/contrib/llvm/lib/CodeGen/StatepointExampleGC.cpp b/contrib/llvm/lib/CodeGen/StatepointExampleGC.cpp
new file mode 100644
index 0000000..802cf13
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/StatepointExampleGC.cpp
@@ -0,0 +1,54 @@
+//===-- StatepointDefaultGC.cpp - The default statepoint GC strategy ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a GCStrategy which serves as an example for the usage
+// of a statepoint based lowering strategy. This GCStrategy is intended to
+// suitable as a default implementation usable with any collector which can
+// consume the standard stackmap format generated by statepoints, uses the
+// default addrespace to distinguish between gc managed and non-gc managed
+// pointers, and has reasonable relocation semantics.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Value.h"
+
+using namespace llvm;
+
+namespace {
+class StatepointGC : public GCStrategy {
+public:
+ StatepointGC() {
+ UseStatepoints = true;
+ // These options are all gc.root specific, we specify them so that the
+ // gc.root lowering code doesn't run.
+ InitRoots = false;
+ NeededSafePoints = 0;
+ UsesMetadata = false;
+ CustomRoots = false;
+ CustomSafePoints = false;
+ }
+ Optional<bool> isGCManagedPointer(const Value *V) const override {
+ // Method is only valid on pointer typed values.
+ PointerType *PT = cast<PointerType>(V->getType());
+ // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
+ // GC managed heap. We know that a pointer into this heap needs to be
+ // updated and that no other pointer does.
+ return (1 == PT->getAddressSpace());
+ }
+};
+}
+
+static GCRegistry::Add<StatepointGC>
+X("statepoint-example", "an example strategy for statepoint");
+
+namespace llvm {
+void linkStatepointExampleGC() {}
+}
diff --git a/contrib/llvm/lib/CodeGen/TailDuplication.cpp b/contrib/llvm/lib/CodeGen/TailDuplication.cpp
index 723a629..4377236 100644
--- a/contrib/llvm/lib/CodeGen/TailDuplication.cpp
+++ b/contrib/llvm/lib/CodeGen/TailDuplication.cpp
@@ -31,6 +31,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "tailduplication"
@@ -135,8 +136,8 @@ bool TailDuplicatePass::runOnMachineFunction(MachineFunction &MF) {
if (skipOptnoneFunction(*MF.getFunction()))
return false;
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
@@ -798,11 +799,9 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB,
RS->enterBasicBlock(PredBB);
if (!PredBB->empty())
RS->forward(std::prev(PredBB->end()));
- BitVector RegsLiveAtExit(TRI->getNumRegs());
- RS->getRegsUsed(RegsLiveAtExit, false);
for (MachineBasicBlock::livein_iterator I = TailBB->livein_begin(),
E = TailBB->livein_end(); I != E; ++I) {
- if (!RegsLiveAtExit[*I])
+ if (!RS->isRegUsed(*I, false))
// If a register is previously livein to the tail but it's not live
// at the end of predecessor BB, then it should be added to its
// livein list.
diff --git a/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp b/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp
index 883e9d1..1557d10 100644
--- a/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp
@@ -14,8 +14,8 @@
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <cstdlib>
using namespace llvm;
@@ -26,7 +26,7 @@ TargetFrameLowering::~TargetFrameLowering() {
/// the stack frame of the specified index. This is the default implementation
/// which is overridden for some targets.
int TargetFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
- int FI) const {
+ int FI) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
return MFI->getObjectOffset(FI) + MFI->getStackSize() -
getOffsetOfLocalArea() + MFI->getOffsetAdjustment();
@@ -34,7 +34,7 @@ int TargetFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int TargetFrameLowering::getFrameIndexReference(const MachineFunction &MF,
int FI, unsigned &FrameReg) const {
- const TargetRegisterInfo *RI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
// By default, assume all frame indices are referenced via whatever
// getFrameRegister() says. The target can override this if it's doing
diff --git a/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp b/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp
index 83966bd..608b806 100644
--- a/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp
@@ -25,6 +25,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -290,13 +291,15 @@ bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
Offset = 0;
return true;
}
- unsigned BitSize = TM->getRegisterInfo()->getSubRegIdxSize(SubIdx);
+ unsigned BitSize =
+ TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxSize(SubIdx);
// Convert bit size to byte size to be consistent with
// MCRegisterClass::getSize().
if (BitSize % 8)
return false;
- int BitOffset = TM->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
+ int BitOffset =
+ TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
if (BitOffset < 0 || BitOffset % 8)
return false;
@@ -305,7 +308,7 @@ bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
- if (!TM->getDataLayout()->isLittleEndian()) {
+ if (!TM->getSubtargetImpl()->getDataLayout()->isLittleEndian()) {
Offset = RC->getSize() - (Offset + Size);
}
return true;
@@ -370,6 +373,10 @@ static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
return nullptr;
}
+void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ llvm_unreachable("Not a MachO target");
+}
+
bool TargetInstrInfo::
canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const {
@@ -498,7 +505,7 @@ TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
const MachineOperand &MO = MI->getOperand(1-Ops[0]);
MachineBasicBlock::iterator Pos = MI;
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (Flags == MachineMemOperand::MOStore)
storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
@@ -562,8 +569,6 @@ isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
AliasAnalysis *AA) const {
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
- const TargetMachine &TM = MF.getTarget();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
// Remat clients assume operand 0 is the defined register.
if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
@@ -582,7 +587,7 @@ isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
// redundant with subsequent checks, but it's target-independent,
// simple, and a common case.
int FrameIdx = 0;
- if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
+ if (isLoadFromStackSlot(MI, FrameIdx) &&
MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
return true;
@@ -640,6 +645,28 @@ isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
return true;
}
+int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
+ bool StackGrowsDown =
+ TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
+
+ int FrameSetupOpcode = getCallFrameSetupOpcode();
+ int FrameDestroyOpcode = getCallFrameDestroyOpcode();
+
+ if (MI->getOpcode() != FrameSetupOpcode &&
+ MI->getOpcode() != FrameDestroyOpcode)
+ return 0;
+
+ int SPAdj = MI->getOperand(0).getImm();
+
+ if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
+ (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
+ SPAdj = -SPAdj;
+
+ return SPAdj;
+}
+
/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
@@ -655,8 +682,8 @@ bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
// saves compile time, because it doesn't require every single
// stack slot reference to depend on the instruction that does the
// modification.
- const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
return true;
@@ -746,14 +773,14 @@ TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
}
/// Return the default expected latency for a def based on it's opcode.
-unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
+unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
const MachineInstr *DefMI) const {
if (DefMI->isTransient())
return 0;
if (DefMI->mayLoad())
- return SchedModel->LoadLatency;
+ return SchedModel.LoadLatency;
if (isHighLatencyDef(DefMI->getOpcode()))
- return SchedModel->HighLatency;
+ return SchedModel.HighLatency;
return 1;
}
@@ -852,3 +879,77 @@ computeOperandLatency(const InstrItineraryData *ItinData,
defaultDefLatency(ItinData->SchedModel, DefMI));
return InstrLatency;
}
+
+bool TargetInstrInfo::getRegSequenceInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
+ assert((MI.isRegSequence() ||
+ MI.isRegSequenceLike()) && "Instruction do not have the proper type");
+
+ if (!MI.isRegSequence())
+ return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
+
+ // We are looking at:
+ // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
+ assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
+ for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
+ OpIdx += 2) {
+ const MachineOperand &MOReg = MI.getOperand(OpIdx);
+ const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
+ assert(MOSubIdx.isImm() &&
+ "One of the subindex of the reg_sequence is not an immediate");
+ // Record Reg:SubReg, SubIdx.
+ InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
+ (unsigned)MOSubIdx.getImm()));
+ }
+ return true;
+}
+
+bool TargetInstrInfo::getExtractSubregInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPairAndIdx &InputReg) const {
+ assert((MI.isExtractSubreg() ||
+ MI.isExtractSubregLike()) && "Instruction do not have the proper type");
+
+ if (!MI.isExtractSubreg())
+ return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
+
+ // We are looking at:
+ // Def = EXTRACT_SUBREG v0.sub1, sub0.
+ assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
+ const MachineOperand &MOReg = MI.getOperand(1);
+ const MachineOperand &MOSubIdx = MI.getOperand(2);
+ assert(MOSubIdx.isImm() &&
+ "The subindex of the extract_subreg is not an immediate");
+
+ InputReg.Reg = MOReg.getReg();
+ InputReg.SubReg = MOReg.getSubReg();
+ InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
+ return true;
+}
+
+bool TargetInstrInfo::getInsertSubregInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
+ assert((MI.isInsertSubreg() ||
+ MI.isInsertSubregLike()) && "Instruction do not have the proper type");
+
+ if (!MI.isInsertSubreg())
+ return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
+
+ // We are looking at:
+ // Def = INSERT_SEQUENCE v0, v1, sub0.
+ assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
+ const MachineOperand &MOBaseReg = MI.getOperand(1);
+ const MachineOperand &MOInsertedReg = MI.getOperand(2);
+ const MachineOperand &MOSubIdx = MI.getOperand(3);
+ assert(MOSubIdx.isImm() &&
+ "One of the subindex of the reg_sequence is not an immediate");
+ BaseReg.Reg = MOBaseReg.getReg();
+ BaseReg.SubReg = MOBaseReg.getSubReg();
+
+ InsertedReg.Reg = MOInsertedReg.getReg();
+ InsertedReg.SubReg = MOInsertedReg.getSubReg();
+ InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
+ return true;
+}
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
index e80ef71..9b2fdff 100644
--- a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
@@ -34,6 +34,7 @@
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <cctype>
using namespace llvm;
@@ -205,6 +206,16 @@ static void InitLibcallNames(const char **Names, const Triple &TT) {
Names[RTLIB::FLOOR_F80] = "floorl";
Names[RTLIB::FLOOR_F128] = "floorl";
Names[RTLIB::FLOOR_PPCF128] = "floorl";
+ Names[RTLIB::FMIN_F32] = "fminf";
+ Names[RTLIB::FMIN_F64] = "fmin";
+ Names[RTLIB::FMIN_F80] = "fminl";
+ Names[RTLIB::FMIN_F128] = "fminl";
+ Names[RTLIB::FMIN_PPCF128] = "fminl";
+ Names[RTLIB::FMAX_F32] = "fmaxf";
+ Names[RTLIB::FMAX_F64] = "fmax";
+ Names[RTLIB::FMAX_F80] = "fmaxl";
+ Names[RTLIB::FMAX_F128] = "fmaxl";
+ Names[RTLIB::FMAX_PPCF128] = "fmaxl";
Names[RTLIB::ROUND_F32] = "roundf";
Names[RTLIB::ROUND_F64] = "round";
Names[RTLIB::ROUND_F80] = "roundl";
@@ -403,7 +414,7 @@ static void InitLibcallNames(const char **Names, const Triple &TT) {
Names[RTLIB::SINCOS_PPCF128] = nullptr;
}
- if (TT.getOS() != Triple::OpenBSD) {
+ if (!TT.isOSOpenBSD()) {
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
} else {
// These are generally not available.
@@ -683,10 +694,9 @@ static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
CCs[RTLIB::O_F128] = ISD::SETEQ;
}
-/// NOTE: The constructor takes ownership of TLOF.
-TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
- const TargetLoweringObjectFile *tlof)
- : TM(tm), DL(TM.getDataLayout()), TLOF(*tlof) {
+/// NOTE: The TargetMachine owns TLOF.
+TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm)
+ : TM(tm), DL(TM.getSubtargetImpl()->getDataLayout()) {
initActions();
// Perform these initializations only once.
@@ -700,10 +710,13 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
HasMultipleConditionRegisters = false;
HasExtractBitsInsn = false;
IntDivIsCheap = false;
- Pow2DivIsCheap = false;
+ FsqrtIsCheap = false;
+ Pow2SDivIsCheap = false;
JumpIsExpensive = false;
PredictableSelectIsExpensive = false;
MaskAndBranchFoldingIsLegal = false;
+ EnableExtLdPromotion = false;
+ HasFloatingPointExceptions = true;
StackPointerRegisterToSaveRestore = 0;
ExceptionPointerRegister = 0;
ExceptionSelectorRegister = 0;
@@ -718,7 +731,6 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
PrefLoopAlignment = 0;
MinStackArgumentAlignment = 1;
InsertFencesForAtomic = false;
- SupportJumpTables = true;
MinimumJumpTableEntries = 4;
InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
@@ -726,10 +738,6 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
InitLibcallCallingConvs(LibcallCallingConvs);
}
-TargetLoweringBase::~TargetLoweringBase() {
- delete &TLOF;
-}
-
void TargetLoweringBase::initActions() {
// All operations default to being supported.
memset(OpActions, 0, sizeof(OpActions));
@@ -741,35 +749,32 @@ void TargetLoweringBase::initActions() {
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
// Set default actions for various operations.
- for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
+ for (MVT VT : MVT::all_valuetypes()) {
// Default all indexed load / store to expand.
for (unsigned IM = (unsigned)ISD::PRE_INC;
IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
- setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
- setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
+ setIndexedLoadAction(IM, VT, Expand);
+ setIndexedStoreAction(IM, VT, Expand);
}
// Most backends expect to see the node which just returns the value loaded.
- setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
- (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
// These operations default to expand.
- setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FGETSIGN, VT, Expand);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
+ setOperationAction(ISD::FMINNUM, VT, Expand);
+ setOperationAction(ISD::FMAXNUM, VT, Expand);
// These library functions default to expand.
- setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FROUND, VT, Expand);
// These operations default to expand for vector types.
- if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
- VT <= MVT::LAST_VECTOR_VALUETYPE) {
- setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,
- (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG,
- (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG,
- (MVT::SimpleValueType)VT, Expand);
+ if (VT.isVector()) {
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
+ setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
}
}
@@ -792,6 +797,8 @@ void TargetLoweringBase::initActions() {
setOperationAction(ISD::FEXP , MVT::f16, Expand);
setOperationAction(ISD::FEXP2, MVT::f16, Expand);
setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f16, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f16, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
setOperationAction(ISD::FCEIL, MVT::f16, Expand);
setOperationAction(ISD::FRINT, MVT::f16, Expand);
@@ -803,6 +810,8 @@ void TargetLoweringBase::initActions() {
setOperationAction(ISD::FEXP , MVT::f32, Expand);
setOperationAction(ISD::FEXP2, MVT::f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f32, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
setOperationAction(ISD::FCEIL, MVT::f32, Expand);
setOperationAction(ISD::FRINT, MVT::f32, Expand);
@@ -814,6 +823,8 @@ void TargetLoweringBase::initActions() {
setOperationAction(ISD::FEXP , MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f64, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
setOperationAction(ISD::FRINT, MVT::f64, Expand);
@@ -825,6 +836,8 @@ void TargetLoweringBase::initActions() {
setOperationAction(ISD::FEXP , MVT::f128, Expand);
setOperationAction(ISD::FEXP2, MVT::f128, Expand);
setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f128, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f128, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
setOperationAction(ISD::FCEIL, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
@@ -976,11 +989,16 @@ TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
// Add a new memory operand for this FI.
const MachineFrameInfo &MFI = *MF.getFrameInfo();
assert(MFI.getObjectOffset(FI) != -1);
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
- MachineMemOperand::MOLoad,
- TM.getDataLayout()->getPointerSize(),
- MFI.getObjectAlignment(FI));
+
+ unsigned Flags = MachineMemOperand::MOLoad;
+ if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
+ Flags |= MachineMemOperand::MOStore;
+ Flags |= MachineMemOperand::MOVolatile;
+ }
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI), Flags,
+ TM.getSubtargetImpl()->getDataLayout()->getPointerSize(),
+ MFI.getObjectAlignment(FI));
MIB->addMemOperand(MF, MMO);
// Replace the instruction and update the operand index.
@@ -996,7 +1014,8 @@ TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
/// of the register class for the specified type and its associated "cost".
std::pair<const TargetRegisterClass*, uint8_t>
TargetLoweringBase::findRepresentativeClass(MVT VT) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
if (!RC)
return std::make_pair(RC, 0);
@@ -1023,8 +1042,8 @@ TargetLoweringBase::findRepresentativeClass(MVT VT) const {
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLoweringBase::computeRegisterProperties() {
- assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
- "Too many value types for ValueTypeActions to hold!");
+ static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
+ "Too many value types for ValueTypeActions to hold!");
// Everything defaults to needing one register.
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
@@ -1179,8 +1198,12 @@ void TargetLoweringBase::computeRegisterProperties() {
TransformToType[i] = MVT::Other;
if (PreferredAction == TypeScalarizeVector)
ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
- else
+ else if (PreferredAction == TypeSplitVector)
ValueTypeActions.setTypeAction(VT, TypeSplitVector);
+ else
+ // Set type action according to the number of elements.
+ ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
+ : TypeSplitVector);
} else {
TransformToType[i] = NVT;
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
index f59efa3..9f1e06b 100644
--- a/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
@@ -37,6 +37,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
using namespace dwarf;
@@ -72,9 +73,10 @@ void TargetLoweringObjectFileELF::emitPersonalityValue(MCStreamer &Streamer,
Flags,
SectionKind::getDataRel(),
0, Label->getName());
- unsigned Size = TM.getDataLayout()->getPointerSize();
+ unsigned Size = TM.getSubtargetImpl()->getDataLayout()->getPointerSize();
Streamer.SwitchSection(Sec);
- Streamer.EmitValueToAlignment(TM.getDataLayout()->getPointerABIAlignment());
+ Streamer.EmitValueToAlignment(
+ TM.getSubtargetImpl()->getDataLayout()->getPointerABIAlignment());
Streamer.EmitSymbolAttribute(Label, MCSA_ELF_TypeObject);
const MCExpr *E = MCConstantExpr::Create(Size, getContext());
Streamer.EmitELFSize(Label, E);
@@ -287,7 +289,8 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
// FIXME: this is getting the alignment of the character, not the
// alignment of the global!
unsigned Align =
- TM.getDataLayout()->getPreferredAlignment(cast<GlobalVariable>(GV));
+ TM.getSubtargetImpl()->getDataLayout()->getPreferredAlignment(
+ cast<GlobalVariable>(GV));
const char *SizeSpec = ".rodata.str1.";
if (Kind.isMergeable2ByteCString())
@@ -355,44 +358,59 @@ TargetLoweringObjectFileELF::getSectionForConstant(SectionKind Kind,
return DataRelROSection;
}
-const MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
- unsigned Priority, const MCSymbol *KeySym) const {
- // The default scheme is .ctor / .dtor, so we have to invert the priority
- // numbering.
- if (Priority == 65535)
- return StaticCtorSection;
+static const MCSectionELF *getStaticStructorSection(MCContext &Ctx,
+ bool UseInitArray,
+ bool IsCtor,
+ unsigned Priority,
+ const MCSymbol *KeySym) {
+ std::string Name;
+ unsigned Type;
+ unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
+ SectionKind Kind = SectionKind::getDataRel();
+ StringRef COMDAT = KeySym ? KeySym->getName() : "";
+
+ if (KeySym)
+ Flags |= ELF::SHF_GROUP;
if (UseInitArray) {
- std::string Name = std::string(".init_array.") + utostr(Priority);
- return getContext().getELFSection(Name, ELF::SHT_INIT_ARRAY,
- ELF::SHF_ALLOC | ELF::SHF_WRITE,
- SectionKind::getDataRel());
+ if (IsCtor) {
+ Type = ELF::SHT_INIT_ARRAY;
+ Name = ".init_array";
+ } else {
+ Type = ELF::SHT_FINI_ARRAY;
+ Name = ".fini_array";
+ }
+ if (Priority != 65535) {
+ Name += '.';
+ Name += utostr(Priority);
+ }
} else {
- std::string Name = std::string(".ctors.") + utostr(65535 - Priority);
- return getContext().getELFSection(Name, ELF::SHT_PROGBITS,
- ELF::SHF_ALLOC |ELF::SHF_WRITE,
- SectionKind::getDataRel());
+ // The default scheme is .ctor / .dtor, so we have to invert the priority
+ // numbering.
+ if (IsCtor)
+ Name = ".ctors";
+ else
+ Name = ".dtors";
+ if (Priority != 65535) {
+ Name += '.';
+ Name += utostr(65535 - Priority);
+ }
+ Type = ELF::SHT_PROGBITS;
}
+
+ return Ctx.getELFSection(Name, Type, Flags, Kind, 0, COMDAT);
}
-const MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
+const MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
- // The default scheme is .ctor / .dtor, so we have to invert the priority
- // numbering.
- if (Priority == 65535)
- return StaticDtorSection;
+ return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
+ KeySym);
+}
- if (UseInitArray) {
- std::string Name = std::string(".fini_array.") + utostr(Priority);
- return getContext().getELFSection(Name, ELF::SHT_FINI_ARRAY,
- ELF::SHF_ALLOC | ELF::SHF_WRITE,
- SectionKind::getDataRel());
- } else {
- std::string Name = std::string(".dtors.") + utostr(65535 - Priority);
- return getContext().getELFSection(Name, ELF::SHT_PROGBITS,
- ELF::SHF_ALLOC |ELF::SHF_WRITE,
- SectionKind::getDataRel());
- }
+const MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
+ unsigned Priority, const MCSymbol *KeySym) const {
+ return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
+ KeySym);
}
void
@@ -446,14 +464,15 @@ emitModuleFlags(MCStreamer &Streamer,
continue;
StringRef Key = MFE.Key->getString();
- Value *Val = MFE.Val;
+ Metadata *Val = MFE.Val;
if (Key == "Objective-C Image Info Version") {
- VersionVal = cast<ConstantInt>(Val)->getZExtValue();
+ VersionVal = mdconst::extract<ConstantInt>(Val)->getZExtValue();
} else if (Key == "Objective-C Garbage Collection" ||
Key == "Objective-C GC Only" ||
- Key == "Objective-C Is Simulated") {
- ImageInfoFlags |= cast<ConstantInt>(Val)->getZExtValue();
+ Key == "Objective-C Is Simulated" ||
+ Key == "Objective-C Image Swift Version") {
+ ImageInfoFlags |= mdconst::extract<ConstantInt>(Val)->getZExtValue();
} else if (Key == "Objective-C Image Info Section") {
SectionVal = cast<MDString>(Val)->getString();
} else if (Key == "Linker Options") {
@@ -554,41 +573,6 @@ const MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
return S;
}
-bool TargetLoweringObjectFileMachO::isSectionAtomizableBySymbols(
- const MCSection &Section) const {
- const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
-
- // Sections holding 1 byte strings are atomized based on the data
- // they contain.
- // Sections holding 2 byte strings require symbols in order to be
- // atomized.
- // There is no dedicated section for 4 byte strings.
- if (SMO.getKind().isMergeable1ByteCString())
- return false;
-
- if (SMO.getSegmentName() == "__DATA" &&
- SMO.getSectionName() == "__cfstring")
- return false;
-
- switch (SMO.getType()) {
- default:
- return true;
-
- // These sections are atomized at the element boundaries without using
- // symbols.
- case MachO::S_4BYTE_LITERALS:
- case MachO::S_8BYTE_LITERALS:
- case MachO::S_16BYTE_LITERALS:
- case MachO::S_LITERAL_POINTERS:
- case MachO::S_NON_LAZY_SYMBOL_POINTERS:
- case MachO::S_LAZY_SYMBOL_POINTERS:
- case MachO::S_MOD_INIT_FUNC_POINTERS:
- case MachO::S_MOD_TERM_FUNC_POINTERS:
- case MachO::S_INTERPOSING:
- return false;
- }
-}
-
const MCSection *TargetLoweringObjectFileMachO::
SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
Mangler &Mang, const TargetMachine &TM) const {
@@ -611,17 +595,21 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
// FIXME: Alignment check should be handled by section classifier.
if (Kind.isMergeable1ByteCString() &&
- TM.getDataLayout()->getPreferredAlignment(cast<GlobalVariable>(GV)) < 32)
+ TM.getSubtargetImpl()->getDataLayout()->getPreferredAlignment(
+ cast<GlobalVariable>(GV)) < 32)
return CStringSection;
// Do not put 16-bit arrays in the UString section if they have an
// externally visible label, this runs into issues with certain linker
// versions.
if (Kind.isMergeable2ByteCString() && !GV->hasExternalLinkage() &&
- TM.getDataLayout()->getPreferredAlignment(cast<GlobalVariable>(GV)) < 32)
+ TM.getSubtargetImpl()->getDataLayout()->getPreferredAlignment(
+ cast<GlobalVariable>(GV)) < 32)
return UStringSection;
- if (Kind.isMergeableConst()) {
+ // With MachO only variables whose corresponding symbol starts with 'l' or
+ // 'L' can be merged, so we only try merging GVs with private linkage.
+ if (GV->hasPrivateLinkage() && Kind.isMergeableConst()) {
if (Kind.isMergeableConst4())
return FourByteConstantSection;
if (Kind.isMergeableConst8())
@@ -739,7 +727,7 @@ getCOFFSectionFlags(SectionKind K) {
COFF::IMAGE_SCN_MEM_EXECUTE |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_CNT_CODE;
- else if (K.isBSS ())
+ else if (K.isBSS())
Flags |=
COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
@@ -749,7 +737,7 @@ getCOFFSectionFlags(SectionKind K) {
COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_MEM_WRITE;
- else if (K.isReadOnly())
+ else if (K.isReadOnly() || K.isReadOnlyWithRel())
Flags |=
COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ;
@@ -774,7 +762,7 @@ static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
if (ComdatGV->getComdat() != C)
report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
- "' is not a key for it's COMDAT.");
+ "' is not a key for its COMDAT.");
return ComdatGV;
}
@@ -843,9 +831,9 @@ static const char *getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
return ".bss";
if (Kind.isThreadLocal())
return ".tls$";
- if (Kind.isWriteable())
- return ".data";
- return ".rdata";
+ if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
+ return ".rdata";
+ return ".data";
}
@@ -893,7 +881,7 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
if (Kind.isThreadLocal())
return TLSDataSection;
- if (Kind.isReadOnly())
+ if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
return ReadOnlySection;
// Note: we claim that common symbols are put in BSSSection, but they are
@@ -924,7 +912,7 @@ emitModuleFlags(MCStreamer &Streamer,
i = ModuleFlags.begin(), e = ModuleFlags.end(); i != e; ++i) {
const Module::ModuleFlagEntry &MFE = *i;
StringRef Key = MFE.Key->getString();
- Value *Val = MFE.Val;
+ Metadata *Val = MFE.Val;
if (Key == "Linker Options") {
LinkerOptions = cast<MDNode>(Val);
break;
@@ -944,7 +932,7 @@ emitModuleFlags(MCStreamer &Streamer,
StringRef Op = MDOption->getString();
// Lead with a space for consistency with our dllexport implementation.
std::string Escaped(" ");
- if (Op.find(" ") != StringRef::npos) {
+ if (!Op.startswith("\"") && (Op.find(" ") != StringRef::npos)) {
// The PE-COFF spec says args with spaces must be quoted. It doesn't say
// how to escape quotes, but it probably uses this algorithm:
// http://msdn.microsoft.com/en-us/library/17w5ykft(v=vs.85).aspx
@@ -960,29 +948,14 @@ emitModuleFlags(MCStreamer &Streamer,
}
}
-static const MCSection *getAssociativeCOFFSection(MCContext &Ctx,
- const MCSection *Sec,
- const MCSymbol *KeySym) {
- // Return the normal section if we don't have to be associative.
- if (!KeySym)
- return Sec;
-
- // Make an associative section with the same name and kind as the normal
- // section.
- const MCSectionCOFF *SecCOFF = cast<MCSectionCOFF>(Sec);
- unsigned Characteristics =
- SecCOFF->getCharacteristics() | COFF::IMAGE_SCN_LNK_COMDAT;
- return Ctx.getCOFFSection(SecCOFF->getSectionName(), Characteristics,
- SecCOFF->getKind(), KeySym->getName(),
- COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE);
-}
-
const MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
- return getAssociativeCOFFSection(getContext(), StaticCtorSection, KeySym);
+ return getContext().getAssociativeCOFFSection(
+ cast<MCSectionCOFF>(StaticCtorSection), KeySym);
}
const MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
- return getAssociativeCOFFSection(getContext(), StaticDtorSection, KeySym);
+ return getContext().getAssociativeCOFFSection(
+ cast<MCSectionCOFF>(StaticDtorSection), KeySym);
}
diff --git a/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp b/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp
index 3ca2017..618d903 100644
--- a/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp
@@ -51,3 +51,10 @@ bool TargetOptions::HonorSignDependentRoundingFPMath() const {
StringRef TargetOptions::getTrapFunctionName() const {
return TrapFuncName;
}
+
+/// getCFIFuncName - If this returns a non-empty string, then it is the name of
+/// the function that gets called on CFI violations in CFI non-enforcing mode
+/// (!TargetOptions::CFIEnforcing).
+StringRef TargetOptions::getCFIFuncName() const {
+ return CFIFuncName;
+}
diff --git a/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp b/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
index a3a4fb3..61a66b6 100644
--- a/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
@@ -16,6 +16,7 @@
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -108,7 +109,7 @@ TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
/// register of the given type, picking the most sub register class of
/// the right type that contains this physreg.
const TargetRegisterClass *
-TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
+TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
assert(isPhysicalRegister(reg) && "reg must be a physical register");
// Pick the most sub register class of the right type that contains
@@ -293,3 +294,11 @@ TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
// All clear, tell the register allocator to prefer this register.
Hints.push_back(Phys);
}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void
+TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
+ const TargetRegisterInfo *TRI) {
+ dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
+}
+#endif
diff --git a/contrib/llvm/lib/CodeGen/TargetSchedule.cpp b/contrib/llvm/lib/CodeGen/TargetSchedule.cpp
index b0f2ca6..ef2dab1 100644
--- a/contrib/llvm/lib/CodeGen/TargetSchedule.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetSchedule.cpp
@@ -16,7 +16,6 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
@@ -157,7 +156,7 @@ unsigned TargetSchedModel::computeOperandLatency(
const MachineInstr *UseMI, unsigned UseOperIdx) const {
if (!hasInstrSchedModel() && !hasInstrItineraries())
- return TII->defaultDefLatency(&SchedModel, DefMI);
+ return TII->defaultDefLatency(SchedModel, DefMI);
if (hasInstrItineraries()) {
int OperLatency = 0;
@@ -181,7 +180,7 @@ unsigned TargetSchedModel::computeOperandLatency(
// applicable to the InstrItins model. InstrSchedModel should model all
// special cases without TII hooks.
InstrLatency = std::max(InstrLatency,
- TII->defaultDefLatency(&SchedModel, DefMI));
+ TII->defaultDefLatency(SchedModel, DefMI));
return InstrLatency;
}
// hasInstrSchedModel()
@@ -222,7 +221,29 @@ unsigned TargetSchedModel::computeOperandLatency(
// FIXME: Automatically giving all implicit defs defaultDefLatency is
// undesirable. We should only do it for defs that are known to the MC
// desc like flags. Truly implicit defs should get 1 cycle latency.
- return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
+ return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, DefMI);
+}
+
+unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
+ assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
+
+ unsigned SCIdx = TII->get(Opcode).getSchedClass();
+ const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx);
+ unsigned Latency = 0;
+
+ if (SCDesc->isValid() && !SCDesc->isVariant()) {
+ for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
+ DefIdx != DefEnd; ++DefIdx) {
+ // Lookup the definition's write latency in SubtargetInfo.
+ const MCWriteLatencyEntry *WLEntry =
+ STI->getWriteLatencyEntry(SCDesc, DefIdx);
+ Latency = std::max(Latency, capLatency(WLEntry->Cycles));
+ }
+ return Latency;
+ }
+
+ assert(Latency && "No MI sched latency");
+ return 0;
}
unsigned
@@ -248,7 +269,7 @@ TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
return Latency;
}
}
- return TII->defaultDefLatency(&SchedModel, MI);
+ return TII->defaultDefLatency(SchedModel, MI);
}
unsigned TargetSchedModel::
@@ -268,7 +289,7 @@ computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
// for predicated defs.
unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
const MachineFunction &MF = *DefMI->getParent()->getParent();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
return computeInstrLatency(DefMI);
diff --git a/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
index f42d47b..e218a83 100644
--- a/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
+++ b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -48,6 +48,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "twoaddrinstr"
@@ -544,10 +545,21 @@ isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
if (ToRegA) {
unsigned FromRegB = getMappedReg(regB, SrcRegMap);
unsigned FromRegC = getMappedReg(regC, SrcRegMap);
- bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
- bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
- if (BComp != CComp)
- return !BComp && CComp;
+ bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
+ bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
+
+ // Compute if any of the following are true:
+ // -RegB is not tied to a register and RegC is compatible with RegA.
+ // -RegB is tied to the wrong physical register, but RegC is.
+ // -RegB is tied to the wrong physical register, and RegC isn't tied.
+ if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
+ return true;
+ // Don't compute if any of the following are true:
+ // -RegC is not tied to a register and RegB is compatible with RegA.
+ // -RegC is tied to the wrong physical register, but RegB is.
+ // -RegC is tied to the wrong physical register, and RegB isn't tied.
+ if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
+ return false;
}
// If there is a use of regC between its last def (could be livein) and this
@@ -666,7 +678,7 @@ TwoAddressInstructionPass::scanUses(unsigned DstReg) {
unsigned Reg = DstReg;
while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
NewReg, IsDstPhys)) {
- if (IsCopy && !Processed.insert(UseMI))
+ if (IsCopy && !Processed.insert(UseMI).second)
break;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
@@ -1503,9 +1515,9 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
MF = &Func;
const TargetMachine &TM = MF->getTarget();
MRI = &MF->getRegInfo();
- TII = TM.getInstrInfo();
- TRI = TM.getRegisterInfo();
- InstrItins = TM.getInstrItineraryData();
+ TII = TM.getSubtargetImpl()->getInstrInfo();
+ TRI = TM.getSubtargetImpl()->getRegisterInfo();
+ InstrItins = TM.getSubtargetImpl()->getInstrItineraryData();
LV = getAnalysisIfAvailable<LiveVariables>();
LIS = getAnalysisIfAvailable<LiveIntervals>();
AA = &getAnalysis<AliasAnalysis>();
diff --git a/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp b/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp
index 2e22082..7824f92 100644
--- a/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp
+++ b/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp
@@ -64,9 +64,8 @@ bool UnreachableBlockElim::runOnFunction(Function &F) {
SmallPtrSet<BasicBlock*, 8> Reachable;
// Mark all reachable blocks.
- for (df_ext_iterator<Function*, SmallPtrSet<BasicBlock*, 8> > I =
- df_ext_begin(&F, Reachable), E = df_ext_end(&F, Reachable); I != E; ++I)
- /* Mark all reachable blocks */;
+ for (BasicBlock *BB : depth_first_ext(&F, Reachable))
+ (void)BB/* Mark all reachable blocks */;
// Loop over all dead blocks, remembering them and deleting all instructions
// in them.
@@ -125,10 +124,8 @@ bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
// Mark all reachable blocks.
- for (df_ext_iterator<MachineFunction*, SmallPtrSet<MachineBasicBlock*, 8> >
- I = df_ext_begin(&F, Reachable), E = df_ext_end(&F, Reachable);
- I != E; ++I)
- /* Mark all reachable blocks */;
+ for (MachineBasicBlock *BB : depth_first_ext(&F, Reachable))
+ (void)BB/* Mark all reachable blocks */;
// Loop over all dead blocks, remembering them and deleting all instructions
// in them.
diff --git a/contrib/llvm/lib/CodeGen/VirtRegMap.cpp b/contrib/llvm/lib/CodeGen/VirtRegMap.cpp
index 704736f..7d3b0ce 100644
--- a/contrib/llvm/lib/CodeGen/VirtRegMap.cpp
+++ b/contrib/llvm/lib/CodeGen/VirtRegMap.cpp
@@ -36,6 +36,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
@@ -54,8 +55,8 @@ INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
MRI = &mf.getRegInfo();
- TII = mf.getTarget().getInstrInfo();
- TRI = mf.getTarget().getRegisterInfo();
+ TII = mf.getSubtarget().getInstrInfo();
+ TRI = mf.getSubtarget().getRegisterInfo();
MF = &mf;
Virt2PhysMap.clear();
@@ -123,7 +124,7 @@ void VirtRegMap::print(raw_ostream &OS, const Module*) const {
if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
OS << '[' << PrintReg(Reg, TRI) << " -> "
<< PrintReg(Virt2PhysMap[Reg], TRI) << "] "
- << MRI->getRegClass(Reg)->getName() << "\n";
+ << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
}
}
@@ -131,7 +132,7 @@ void VirtRegMap::print(raw_ostream &OS, const Module*) const {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
- << "] " << MRI->getRegClass(Reg)->getName() << "\n";
+ << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
}
}
OS << '\n';
@@ -205,8 +206,8 @@ void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
TM = &MF->getTarget();
- TRI = TM->getRegisterInfo();
- TII = TM->getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
MRI = &MF->getRegInfo();
Indexes = &getAnalysis<SlotIndexes>();
LIS = &getAnalysis<LiveIntervals>();
@@ -251,20 +252,41 @@ void VirtRegRewriter::addMBBLiveIns() {
unsigned PhysReg = VRM->getPhys(VirtReg);
assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
- // Scan the segments of LI.
- for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
- ++I) {
- if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
- continue;
- for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
- if (!LiveIn[i]->isLiveIn(PhysReg))
- LiveIn[i]->addLiveIn(PhysReg);
- LiveIn.clear();
+ if (LI.hasSubRanges()) {
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ for (const auto &Seg : S.segments) {
+ if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn))
+ continue;
+ for (MCSubRegIndexIterator SR(PhysReg, TRI); SR.isValid(); ++SR) {
+ unsigned SubReg = SR.getSubReg();
+ unsigned SubRegIndex = SR.getSubRegIndex();
+ unsigned SubRegLaneMask = TRI->getSubRegIndexLaneMask(SubRegIndex);
+ if ((SubRegLaneMask & S.LaneMask) == 0)
+ continue;
+ for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
+ if (!LiveIn[i]->isLiveIn(SubReg))
+ LiveIn[i]->addLiveIn(SubReg);
+ }
+ }
+ LiveIn.clear();
+ }
+ }
+ } else {
+ // Scan the segments of LI.
+ for (const auto &Seg : LI.segments) {
+ if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn))
+ continue;
+ for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
+ if (!LiveIn[i]->isLiveIn(PhysReg))
+ LiveIn[i]->addLiveIn(PhysReg);
+ LiveIn.clear();
+ }
}
}
}
void VirtRegRewriter::rewrite() {
+ bool NoSubRegLiveness = !MRI->tracksSubRegLiveness();
SmallVector<unsigned, 8> SuperDeads;
SmallVector<unsigned, 8> SuperDefs;
SmallVector<unsigned, 8> SuperKills;
@@ -346,7 +368,8 @@ void VirtRegRewriter::rewrite() {
// A virtual register kill refers to the whole register, so we may
// have to add <imp-use,kill> operands for the super-register. A
// partial redef always kills and redefines the super-register.
- if (MO.readsReg() && (MO.isDef() || MO.isKill()))
+ if (NoSubRegLiveness && MO.readsReg()
+ && (MO.isDef() || MO.isKill()))
SuperKills.push_back(PhysReg);
if (MO.isDef()) {
@@ -357,10 +380,12 @@ void VirtRegRewriter::rewrite() {
MO.setIsUndef(false);
// Also add implicit defs for the super-register.
- if (MO.isDead())
- SuperDeads.push_back(PhysReg);
- else
- SuperDefs.push_back(PhysReg);
+ if (NoSubRegLiveness) {
+ if (MO.isDead())
+ SuperDeads.push_back(PhysReg);
+ else
+ SuperDefs.push_back(PhysReg);
+ }
}
// PhysReg operands cannot have subregister indexes.
diff --git a/contrib/llvm/lib/DebugInfo/DIContext.cpp b/contrib/llvm/lib/DebugInfo/DIContext.cpp
index 49a4409..20bc01f 100644
--- a/contrib/llvm/lib/DebugInfo/DIContext.cpp
+++ b/contrib/llvm/lib/DebugInfo/DIContext.cpp
@@ -8,11 +8,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DIContext.h"
-#include "DWARFContext.h"
+#include "llvm/DebugInfo/DWARFContext.h"
using namespace llvm;
DIContext::~DIContext() {}
-DIContext *DIContext::getDWARFContext(object::ObjectFile *Obj) {
+DIContext *DIContext::getDWARFContext(const object::ObjectFile &Obj) {
return new DWARFContextInMemory(Obj);
}
diff --git a/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.cpp b/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.cpp
index c3e570e..2c9eff6 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFAbbreviationDeclaration.h"
+#include "llvm/DebugInfo/DWARFAbbreviationDeclaration.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.h b/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.h
deleted file mode 100644
index b86b9ec..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFAbbreviationDeclaration.h
+++ /dev/null
@@ -1,60 +0,0 @@
-//===-- DWARFAbbreviationDeclaration.h --------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFABBREVIATIONDECLARATION_H
-#define LLVM_DEBUGINFO_DWARFABBREVIATIONDECLARATION_H
-
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/DataExtractor.h"
-
-namespace llvm {
-
-class raw_ostream;
-
-class DWARFAbbreviationDeclaration {
- uint32_t Code;
- uint32_t Tag;
- bool HasChildren;
-
- struct AttributeSpec {
- AttributeSpec(uint16_t Attr, uint16_t Form) : Attr(Attr), Form(Form) {}
- uint16_t Attr;
- uint16_t Form;
- };
- typedef SmallVector<AttributeSpec, 8> AttributeSpecVector;
- AttributeSpecVector AttributeSpecs;
-public:
- DWARFAbbreviationDeclaration();
-
- uint32_t getCode() const { return Code; }
- uint32_t getTag() const { return Tag; }
- bool hasChildren() const { return HasChildren; }
-
- typedef iterator_range<AttributeSpecVector::const_iterator>
- attr_iterator_range;
-
- attr_iterator_range attributes() const {
- return attr_iterator_range(AttributeSpecs.begin(), AttributeSpecs.end());
- }
-
- uint16_t getFormByIndex(uint32_t idx) const {
- return idx < AttributeSpecs.size() ? AttributeSpecs[idx].Form : 0;
- }
-
- uint32_t findAttributeIndex(uint16_t attr) const;
- bool extract(DataExtractor Data, uint32_t* OffsetPtr);
- void dump(raw_ostream &OS) const;
-
-private:
- void clear();
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFAcceleratorTable.cpp b/contrib/llvm/lib/DebugInfo/DWARFAcceleratorTable.cpp
new file mode 100644
index 0000000..cbdde6a
--- /dev/null
+++ b/contrib/llvm/lib/DebugInfo/DWARFAcceleratorTable.cpp
@@ -0,0 +1,132 @@
+//===--- DWARFAcceleratorTable.cpp ----------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/DebugInfo/DWARFAcceleratorTable.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+bool DWARFAcceleratorTable::extract() {
+ uint32_t Offset = 0;
+
+ // Check that we can at least read the header.
+ if (!AccelSection.isValidOffset(offsetof(Header, HeaderDataLength)+4))
+ return false;
+
+ Hdr.Magic = AccelSection.getU32(&Offset);
+ Hdr.Version = AccelSection.getU16(&Offset);
+ Hdr.HashFunction = AccelSection.getU16(&Offset);
+ Hdr.NumBuckets = AccelSection.getU32(&Offset);
+ Hdr.NumHashes = AccelSection.getU32(&Offset);
+ Hdr.HeaderDataLength = AccelSection.getU32(&Offset);
+
+ // Check that we can read all the hashes and offsets from the
+ // section (see SourceLevelDebugging.rst for the structure of the index).
+ if (!AccelSection.isValidOffset(sizeof(Hdr) + Hdr.HeaderDataLength +
+ Hdr.NumBuckets*4 + Hdr.NumHashes*8))
+ return false;
+
+ HdrData.DIEOffsetBase = AccelSection.getU32(&Offset);
+ uint32_t NumAtoms = AccelSection.getU32(&Offset);
+
+ for (unsigned i = 0; i < NumAtoms; ++i) {
+ uint16_t AtomType = AccelSection.getU16(&Offset);
+ uint16_t AtomForm = AccelSection.getU16(&Offset);
+ HdrData.Atoms.push_back(std::make_pair(AtomType, AtomForm));
+ }
+
+ return true;
+}
+
+void DWARFAcceleratorTable::dump(raw_ostream &OS) const {
+ // Dump the header.
+ OS << "Magic = " << format("0x%08x", Hdr.Magic) << '\n'
+ << "Version = " << format("0x%04x", Hdr.Version) << '\n'
+ << "Hash function = " << format("0x%08x", Hdr.HashFunction) << '\n'
+ << "Bucket count = " << Hdr.NumBuckets << '\n'
+ << "Hashes count = " << Hdr.NumHashes << '\n'
+ << "HeaderData length = " << Hdr.HeaderDataLength << '\n'
+ << "DIE offset base = " << HdrData.DIEOffsetBase << '\n'
+ << "Number of atoms = " << HdrData.Atoms.size() << '\n';
+
+ unsigned i = 0;
+ SmallVector<DWARFFormValue, 3> AtomForms;
+ for (const auto &Atom: HdrData.Atoms) {
+ OS << format("Atom[%d] Type: ", i++);
+ if (const char *TypeString = dwarf::AtomTypeString(Atom.first))
+ OS << TypeString;
+ else
+ OS << format("DW_ATOM_Unknown_0x%x", Atom.first);
+ OS << " Form: ";
+ if (const char *FormString = dwarf::FormEncodingString(Atom.second))
+ OS << FormString;
+ else
+ OS << format("DW_FORM_Unknown_0x%x", Atom.second);
+ OS << '\n';
+ AtomForms.push_back(DWARFFormValue(Atom.second));
+ }
+
+ // Now go through the actual tables and dump them.
+ uint32_t Offset = sizeof(Hdr) + Hdr.HeaderDataLength;
+ unsigned HashesBase = Offset + Hdr.NumBuckets * 4;
+ unsigned OffsetsBase = HashesBase + Hdr.NumHashes * 4;
+
+ for (unsigned Bucket = 0; Bucket < Hdr.NumBuckets; ++Bucket) {
+ unsigned Index = AccelSection.getU32(&Offset);
+
+ OS << format("Bucket[%d]\n", Bucket);
+ if (Index == UINT32_MAX) {
+ OS << " EMPTY\n";
+ continue;
+ }
+
+ for (unsigned HashIdx = Index; HashIdx < Hdr.NumHashes; ++HashIdx) {
+ unsigned HashOffset = HashesBase + HashIdx*4;
+ unsigned OffsetsOffset = OffsetsBase + HashIdx*4;
+ uint32_t Hash = AccelSection.getU32(&HashOffset);
+
+ if (Hash % Hdr.NumBuckets != Bucket)
+ break;
+
+ unsigned DataOffset = AccelSection.getU32(&OffsetsOffset);
+ OS << format(" Hash = 0x%08x Offset = 0x%08x\n", Hash, DataOffset);
+ if (!AccelSection.isValidOffset(DataOffset)) {
+ OS << " Invalid section offset\n";
+ continue;
+ }
+ while (AccelSection.isValidOffsetForDataOfSize(DataOffset, 4)) {
+ unsigned StringOffset = AccelSection.getU32(&DataOffset);
+ RelocAddrMap::const_iterator Reloc = Relocs.find(DataOffset-4);
+ if (Reloc != Relocs.end())
+ StringOffset += Reloc->second.second;
+ if (!StringOffset)
+ break;
+ OS << format(" Name: %08x \"%s\"\n", StringOffset,
+ StringSection.getCStr(&StringOffset));
+ unsigned NumData = AccelSection.getU32(&DataOffset);
+ for (unsigned Data = 0; Data < NumData; ++Data) {
+ OS << format(" Data[%d] => ", Data);
+ unsigned i = 0;
+ for (auto &Atom : AtomForms) {
+ OS << format("{Atom[%d]: ", i++);
+ if (Atom.extractValue(AccelSection, &DataOffset, nullptr))
+ Atom.dump(OS, nullptr);
+ else
+ OS << "Error extracting the value";
+ OS << "} ";
+ }
+ OS << '\n';
+ }
+ }
+ }
+ }
+}
+}
diff --git a/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.cpp b/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.cpp
index 33869d8..3ec2cf5 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFCompileUnit.h"
+#include "llvm/DebugInfo/DWARFCompileUnit.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.h b/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.h
deleted file mode 100644
index 2ed188e..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.h
+++ /dev/null
@@ -1,30 +0,0 @@
-//===-- DWARFCompileUnit.h --------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFCOMPILEUNIT_H
-#define LLVM_DEBUGINFO_DWARFCOMPILEUNIT_H
-
-#include "DWARFUnit.h"
-
-namespace llvm {
-
-class DWARFCompileUnit : public DWARFUnit {
-public:
- DWARFCompileUnit(const DWARFDebugAbbrev *DA, StringRef IS, StringRef RS,
- StringRef SS, StringRef SOS, StringRef AOS,
- const RelocAddrMap *M, bool LE)
- : DWARFUnit(DA, IS, RS, SS, SOS, AOS, M, LE) {}
- void dump(raw_ostream &OS);
- // VTable anchor.
- ~DWARFCompileUnit() override;
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFContext.cpp b/contrib/llvm/lib/DebugInfo/DWARFContext.cpp
index 3961905..3844cde 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFContext.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFContext.cpp
@@ -7,11 +7,11 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFContext.h"
-#include "DWARFDebugArangeSet.h"
-
+#include "llvm/DebugInfo/DWARFContext.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
+#include "llvm/DebugInfo/DWARFAcceleratorTable.h"
+#include "llvm/DebugInfo/DWARFDebugArangeSet.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
@@ -59,6 +59,18 @@ static void dumpPubSection(raw_ostream &OS, StringRef Name, StringRef Data,
}
}
+static void dumpAccelSection(raw_ostream &OS, StringRef Name,
+ const DWARFSection& Section, StringRef StringSection,
+ bool LittleEndian) {
+ DataExtractor AccelSection(Section.Data, LittleEndian, 0);
+ DataExtractor StrData(StringSection, LittleEndian, 0);
+ OS << "\n." << Name << " contents:\n";
+ DWARFAcceleratorTable Accel(AccelSection, StrData, Section.Relocs);
+ if (!Accel.extract())
+ return;
+ Accel.dump(OS);
+}
+
void DWARFContext::dump(raw_ostream &OS, DIDumpType DumpType) {
if (DumpType == DIDT_All || DumpType == DIDT_Abbrev) {
OS << ".debug_abbrev contents:\n";
@@ -86,15 +98,17 @@ void DWARFContext::dump(raw_ostream &OS, DIDumpType DumpType) {
if ((DumpType == DIDT_All || DumpType == DIDT_Types) && getNumTypeUnits()) {
OS << "\n.debug_types contents:\n";
- for (const auto &TU : type_units())
- TU->dump(OS);
+ for (const auto &TUS : type_unit_sections())
+ for (const auto &TU : TUS)
+ TU->dump(OS);
}
if ((DumpType == DIDT_All || DumpType == DIDT_TypesDwo) &&
getNumDWOTypeUnits()) {
OS << "\n.debug_types.dwo contents:\n";
- for (const auto &DWOTU : dwo_type_units())
- DWOTU->dump(OS);
+ for (const auto &DWOTUS : dwo_type_unit_sections())
+ for (const auto &DWOTU : DWOTUS)
+ DWOTU->dump(OS);
}
if (DumpType == DIDT_All || DumpType == DIDT_Loc) {
@@ -216,6 +230,22 @@ void DWARFContext::dump(raw_ostream &OS, DIDumpType DumpType) {
OS << format("%8.8x\n", strOffsetExt.getU32(&offset));
}
}
+
+ if (DumpType == DIDT_All || DumpType == DIDT_AppleNames)
+ dumpAccelSection(OS, "apple_names", getAppleNamesSection(),
+ getStringSection(), isLittleEndian());
+
+ if (DumpType == DIDT_All || DumpType == DIDT_AppleTypes)
+ dumpAccelSection(OS, "apple_types", getAppleTypesSection(),
+ getStringSection(), isLittleEndian());
+
+ if (DumpType == DIDT_All || DumpType == DIDT_AppleNamespaces)
+ dumpAccelSection(OS, "apple_namespaces", getAppleNamespacesSection(),
+ getStringSection(), isLittleEndian());
+
+ if (DumpType == DIDT_All || DumpType == DIDT_AppleObjC)
+ dumpAccelSection(OS, "apple_objc", getAppleObjCSection(),
+ getStringSection(), isLittleEndian());
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
@@ -291,7 +321,7 @@ const DWARFDebugFrame *DWARFContext::getDebugFrame() {
}
const DWARFLineTable *
-DWARFContext::getLineTableForCompileUnit(DWARFCompileUnit *cu) {
+DWARFContext::getLineTableForUnit(DWARFUnit *cu) {
if (!Line)
Line.reset(new DWARFDebugLine(&getLineSection().Relocs));
@@ -312,110 +342,34 @@ DWARFContext::getLineTableForCompileUnit(DWARFCompileUnit *cu) {
}
void DWARFContext::parseCompileUnits() {
- if (!CUs.empty())
- return;
- uint32_t offset = 0;
- const DataExtractor &DIData = DataExtractor(getInfoSection().Data,
- isLittleEndian(), 0);
- while (DIData.isValidOffset(offset)) {
- std::unique_ptr<DWARFCompileUnit> CU(new DWARFCompileUnit(
- getDebugAbbrev(), getInfoSection().Data, getRangeSection(),
- getStringSection(), StringRef(), getAddrSection(),
- &getInfoSection().Relocs, isLittleEndian()));
- if (!CU->extract(DIData, &offset)) {
- break;
- }
- CUs.push_back(std::move(CU));
- offset = CUs.back()->getNextUnitOffset();
- }
+ CUs.parse(*this, getInfoSection());
}
void DWARFContext::parseTypeUnits() {
if (!TUs.empty())
return;
for (const auto &I : getTypesSections()) {
- uint32_t offset = 0;
- const DataExtractor &DIData =
- DataExtractor(I.second.Data, isLittleEndian(), 0);
- while (DIData.isValidOffset(offset)) {
- std::unique_ptr<DWARFTypeUnit> TU(
- new DWARFTypeUnit(getDebugAbbrev(), I.second.Data, getRangeSection(),
- getStringSection(), StringRef(), getAddrSection(),
- &I.second.Relocs, isLittleEndian()));
- if (!TU->extract(DIData, &offset))
- break;
- TUs.push_back(std::move(TU));
- offset = TUs.back()->getNextUnitOffset();
- }
+ TUs.push_back(DWARFUnitSection<DWARFTypeUnit>());
+ TUs.back().parse(*this, I.second);
}
}
void DWARFContext::parseDWOCompileUnits() {
- if (!DWOCUs.empty())
- return;
- uint32_t offset = 0;
- const DataExtractor &DIData =
- DataExtractor(getInfoDWOSection().Data, isLittleEndian(), 0);
- while (DIData.isValidOffset(offset)) {
- std::unique_ptr<DWARFCompileUnit> DWOCU(new DWARFCompileUnit(
- getDebugAbbrevDWO(), getInfoDWOSection().Data, getRangeDWOSection(),
- getStringDWOSection(), getStringOffsetDWOSection(), getAddrSection(),
- &getInfoDWOSection().Relocs, isLittleEndian()));
- if (!DWOCU->extract(DIData, &offset)) {
- break;
- }
- DWOCUs.push_back(std::move(DWOCU));
- offset = DWOCUs.back()->getNextUnitOffset();
- }
+ DWOCUs.parseDWO(*this, getInfoDWOSection());
}
void DWARFContext::parseDWOTypeUnits() {
if (!DWOTUs.empty())
return;
for (const auto &I : getTypesDWOSections()) {
- uint32_t offset = 0;
- const DataExtractor &DIData =
- DataExtractor(I.second.Data, isLittleEndian(), 0);
- while (DIData.isValidOffset(offset)) {
- std::unique_ptr<DWARFTypeUnit> TU(new DWARFTypeUnit(
- getDebugAbbrevDWO(), I.second.Data, getRangeDWOSection(),
- getStringDWOSection(), getStringOffsetDWOSection(), getAddrSection(),
- &I.second.Relocs, isLittleEndian()));
- if (!TU->extract(DIData, &offset))
- break;
- DWOTUs.push_back(std::move(TU));
- offset = DWOTUs.back()->getNextUnitOffset();
- }
+ DWOTUs.push_back(DWARFUnitSection<DWARFTypeUnit>());
+ DWOTUs.back().parseDWO(*this, I.second);
}
}
-namespace {
- struct OffsetComparator {
-
- bool operator()(const std::unique_ptr<DWARFCompileUnit> &LHS,
- const std::unique_ptr<DWARFCompileUnit> &RHS) const {
- return LHS->getOffset() < RHS->getOffset();
- }
- bool operator()(const std::unique_ptr<DWARFCompileUnit> &LHS,
- uint32_t RHS) const {
- return LHS->getOffset() < RHS;
- }
- bool operator()(uint32_t LHS,
- const std::unique_ptr<DWARFCompileUnit> &RHS) const {
- return LHS < RHS->getOffset();
- }
- };
-}
-
DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) {
parseCompileUnits();
-
- std::unique_ptr<DWARFCompileUnit> *CU =
- std::lower_bound(CUs.begin(), CUs.end(), Offset, OffsetComparator());
- if (CU != CUs.end()) {
- return CU->get();
- }
- return nullptr;
+ return CUs.getUnitForOffset(Offset);
}
DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
@@ -425,47 +379,6 @@ DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
return getCompileUnitForOffset(CUOffset);
}
-static bool getFileNameForCompileUnit(DWARFCompileUnit *CU,
- const DWARFLineTable *LineTable,
- uint64_t FileIndex, FileLineInfoKind Kind,
- std::string &FileName) {
- if (!CU || !LineTable || Kind == FileLineInfoKind::None ||
- !LineTable->getFileNameByIndex(FileIndex, Kind, FileName))
- return false;
- if (Kind == FileLineInfoKind::AbsoluteFilePath &&
- sys::path::is_relative(FileName)) {
- // We may still need to append compilation directory of compile unit.
- SmallString<16> AbsolutePath;
- if (const char *CompilationDir = CU->getCompilationDir()) {
- sys::path::append(AbsolutePath, CompilationDir);
- }
- sys::path::append(AbsolutePath, FileName);
- FileName = AbsolutePath.str();
- }
- return true;
-}
-
-static bool getFileLineInfoForCompileUnit(DWARFCompileUnit *CU,
- const DWARFLineTable *LineTable,
- uint64_t Address,
- FileLineInfoKind Kind,
- DILineInfo &Result) {
- if (!CU || !LineTable)
- return false;
- // Get the index of row we're looking for in the line table.
- uint32_t RowIndex = LineTable->lookupAddress(Address);
- if (RowIndex == -1U)
- return false;
- // Take file number and line/column from the row.
- const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
- if (!getFileNameForCompileUnit(CU, LineTable, Row.File, Kind,
- Result.FileName))
- return false;
- Result.Line = Row.Line;
- Result.Column = Row.Column;
- return true;
-}
-
static bool getFunctionNameForAddress(DWARFCompileUnit *CU, uint64_t Address,
FunctionNameKind Kind,
std::string &FunctionName) {
@@ -496,8 +409,9 @@ DILineInfo DWARFContext::getLineInfoForAddress(uint64_t Address,
return Result;
getFunctionNameForAddress(CU, Address, Spec.FNKind, Result.FunctionName);
if (Spec.FLIKind != FileLineInfoKind::None) {
- const DWARFLineTable *LineTable = getLineTableForCompileUnit(CU);
- getFileLineInfoForCompileUnit(CU, LineTable, Address, Spec.FLIKind, Result);
+ if (const DWARFLineTable *LineTable = getLineTableForUnit(CU))
+ LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(),
+ Spec.FLIKind, Result);
}
return Result;
}
@@ -522,7 +436,7 @@ DWARFContext::getLineInfoForAddressRange(uint64_t Address, uint64_t Size,
return Lines;
}
- const DWARFLineTable *LineTable = getLineTableForCompileUnit(CU);
+ const DWARFLineTable *LineTable = getLineTableForUnit(CU);
// Get the index of row we're looking for in the line table.
std::vector<uint32_t> RowVector;
@@ -533,8 +447,8 @@ DWARFContext::getLineInfoForAddressRange(uint64_t Address, uint64_t Size,
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
DILineInfo Result;
- getFileNameForCompileUnit(CU, LineTable, Row.File, Spec.FLIKind,
- Result.FileName);
+ LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(),
+ Spec.FLIKind, Result.FileName);
Result.FunctionName = FunctionName;
Result.Line = Row.Line;
Result.Column = Row.Column;
@@ -561,11 +475,11 @@ DWARFContext::getInliningInfoForAddress(uint64_t Address,
// try to at least get file/line info from symbol table.
if (Spec.FLIKind != FileLineInfoKind::None) {
DILineInfo Frame;
- LineTable = getLineTableForCompileUnit(CU);
- if (getFileLineInfoForCompileUnit(CU, LineTable, Address, Spec.FLIKind,
- Frame)) {
+ LineTable = getLineTableForUnit(CU);
+ if (LineTable &&
+ LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(),
+ Spec.FLIKind, Frame))
InliningInfo.addFrame(Frame);
- }
}
return InliningInfo;
}
@@ -582,15 +496,17 @@ DWARFContext::getInliningInfoForAddress(uint64_t Address,
if (i == 0) {
// For the topmost frame, initialize the line table of this
// compile unit and fetch file/line info from it.
- LineTable = getLineTableForCompileUnit(CU);
+ LineTable = getLineTableForUnit(CU);
// For the topmost routine, get file/line info from line table.
- getFileLineInfoForCompileUnit(CU, LineTable, Address, Spec.FLIKind,
- Frame);
+ if (LineTable)
+ LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(),
+ Spec.FLIKind, Frame);
} else {
// Otherwise, use call file, call line and call column from
// previous DIE in inlined chain.
- getFileNameForCompileUnit(CU, LineTable, CallFile, Spec.FLIKind,
- Frame.FileName);
+ if (LineTable)
+ LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(),
+ Spec.FLIKind, Frame.FileName);
Frame.Line = CallLine;
Frame.Column = CallColumn;
}
@@ -621,12 +537,19 @@ static bool consumeCompressedDebugSectionHeader(StringRef &data,
return true;
}
-DWARFContextInMemory::DWARFContextInMemory(object::ObjectFile *Obj)
- : IsLittleEndian(Obj->isLittleEndian()),
- AddressSize(Obj->getBytesInAddress()) {
- for (const SectionRef &Section : Obj->sections()) {
+DWARFContextInMemory::DWARFContextInMemory(const object::ObjectFile &Obj)
+ : IsLittleEndian(Obj.isLittleEndian()),
+ AddressSize(Obj.getBytesInAddress()) {
+ for (const SectionRef &Section : Obj.sections()) {
StringRef name;
Section.getName(name);
+ // Skip BSS and Virtual sections, they aren't interesting.
+ bool IsBSS = Section.isBSS();
+ if (IsBSS)
+ continue;
+ bool IsVirtual = Section.isVirtual();
+ if (IsVirtual)
+ continue;
StringRef data;
Section.getContents(data);
@@ -670,6 +593,11 @@ DWARFContextInMemory::DWARFContextInMemory(object::ObjectFile *Obj)
.Case("debug_str.dwo", &StringDWOSection)
.Case("debug_str_offsets.dwo", &StringOffsetDWOSection)
.Case("debug_addr", &AddrSection)
+ .Case("apple_names", &AppleNamesSection.Data)
+ .Case("apple_types", &AppleTypesSection.Data)
+ .Case("apple_namespaces", &AppleNamespacesSection.Data)
+ .Case("apple_namespac", &AppleNamespacesSection.Data)
+ .Case("apple_objc", &AppleObjCSection.Data)
// Any more debug info sections go here.
.Default(nullptr);
if (SectionData) {
@@ -687,7 +615,7 @@ DWARFContextInMemory::DWARFContextInMemory(object::ObjectFile *Obj)
}
section_iterator RelocatedSection = Section.getRelocatedSection();
- if (RelocatedSection == Obj->section_end())
+ if (RelocatedSection == Obj.section_end())
continue;
StringRef RelSecName;
@@ -702,6 +630,11 @@ DWARFContextInMemory::DWARFContextInMemory(object::ObjectFile *Obj)
.Case("debug_loc", &LocSection.Relocs)
.Case("debug_info.dwo", &InfoDWOSection.Relocs)
.Case("debug_line", &LineSection.Relocs)
+ .Case("apple_names", &AppleNamesSection.Relocs)
+ .Case("apple_types", &AppleTypesSection.Relocs)
+ .Case("apple_namespaces", &AppleNamespacesSection.Relocs)
+ .Case("apple_namespac", &AppleNamespacesSection.Relocs)
+ .Case("apple_objc", &AppleObjCSection.Relocs)
.Default(nullptr);
if (!Map) {
// Find debug_types relocs by section rather than name as there are
@@ -715,23 +648,19 @@ DWARFContextInMemory::DWARFContextInMemory(object::ObjectFile *Obj)
}
if (Section.relocation_begin() != Section.relocation_end()) {
- uint64_t SectionSize;
- RelocatedSection->getSize(SectionSize);
+ uint64_t SectionSize = RelocatedSection->getSize();
for (const RelocationRef &Reloc : Section.relocations()) {
uint64_t Address;
Reloc.getOffset(Address);
uint64_t Type;
Reloc.getType(Type);
uint64_t SymAddr = 0;
- // ELF relocations may need the symbol address
- if (Obj->isELF()) {
- object::symbol_iterator Sym = Reloc.getSymbol();
+ object::symbol_iterator Sym = Reloc.getSymbol();
+ if (Sym != Obj.symbol_end())
Sym->getAddress(SymAddr);
- }
- object::RelocVisitor V(Obj->getFileFormatName());
- // The section address is always 0 for debug sections.
- object::RelocToApply R(V.visit(Type, Reloc, 0, SymAddr));
+ object::RelocVisitor V(Obj);
+ object::RelocToApply R(V.visit(Type, Reloc, SymAddr));
if (V.error()) {
SmallString<32> Name;
std::error_code ec(Reloc.getTypeName(Name));
diff --git a/contrib/llvm/lib/DebugInfo/DWARFContext.h b/contrib/llvm/lib/DebugInfo/DWARFContext.h
deleted file mode 100644
index 6d1ae92..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFContext.h
+++ /dev/null
@@ -1,285 +0,0 @@
-//===-- DWARFContext.h ------------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===/
-
-#ifndef LLVM_DEBUGINFO_DWARFCONTEXT_H
-#define LLVM_DEBUGINFO_DWARFCONTEXT_H
-
-#include "DWARFCompileUnit.h"
-#include "DWARFDebugAranges.h"
-#include "DWARFDebugFrame.h"
-#include "DWARFDebugLine.h"
-#include "DWARFDebugLoc.h"
-#include "DWARFDebugRangeList.h"
-#include "DWARFTypeUnit.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/DebugInfo/DIContext.h"
-
-namespace llvm {
-
-/// DWARFContext
-/// This data structure is the top level entity that deals with dwarf debug
-/// information parsing. The actual data is supplied through pure virtual
-/// methods that a concrete implementation provides.
-class DWARFContext : public DIContext {
- typedef SmallVector<std::unique_ptr<DWARFCompileUnit>, 1> CUVector;
- typedef SmallVector<std::unique_ptr<DWARFTypeUnit>, 1> TUVector;
-
- CUVector CUs;
- TUVector TUs;
- std::unique_ptr<DWARFDebugAbbrev> Abbrev;
- std::unique_ptr<DWARFDebugLoc> Loc;
- std::unique_ptr<DWARFDebugAranges> Aranges;
- std::unique_ptr<DWARFDebugLine> Line;
- std::unique_ptr<DWARFDebugFrame> DebugFrame;
-
- CUVector DWOCUs;
- TUVector DWOTUs;
- std::unique_ptr<DWARFDebugAbbrev> AbbrevDWO;
- std::unique_ptr<DWARFDebugLocDWO> LocDWO;
-
- DWARFContext(DWARFContext &) LLVM_DELETED_FUNCTION;
- DWARFContext &operator=(DWARFContext &) LLVM_DELETED_FUNCTION;
-
- /// Read compile units from the debug_info section (if necessary)
- /// and store them in CUs.
- void parseCompileUnits();
-
- /// Read type units from the debug_types sections (if necessary)
- /// and store them in TUs.
- void parseTypeUnits();
-
- /// Read compile units from the debug_info.dwo section (if necessary)
- /// and store them in DWOCUs.
- void parseDWOCompileUnits();
-
- /// Read type units from the debug_types.dwo section (if necessary)
- /// and store them in DWOTUs.
- void parseDWOTypeUnits();
-
-public:
- struct Section {
- StringRef Data;
- RelocAddrMap Relocs;
- };
-
- DWARFContext() : DIContext(CK_DWARF) {}
-
- static bool classof(const DIContext *DICtx) {
- return DICtx->getKind() == CK_DWARF;
- }
-
- void dump(raw_ostream &OS, DIDumpType DumpType = DIDT_All) override;
-
- typedef iterator_range<CUVector::iterator> cu_iterator_range;
- typedef iterator_range<TUVector::iterator> tu_iterator_range;
-
- /// Get compile units in this context.
- cu_iterator_range compile_units() {
- parseCompileUnits();
- return cu_iterator_range(CUs.begin(), CUs.end());
- }
-
- /// Get type units in this context.
- tu_iterator_range type_units() {
- parseTypeUnits();
- return tu_iterator_range(TUs.begin(), TUs.end());
- }
-
- /// Get compile units in the DWO context.
- cu_iterator_range dwo_compile_units() {
- parseDWOCompileUnits();
- return cu_iterator_range(DWOCUs.begin(), DWOCUs.end());
- }
-
- /// Get type units in the DWO context.
- tu_iterator_range dwo_type_units() {
- parseDWOTypeUnits();
- return tu_iterator_range(DWOTUs.begin(), DWOTUs.end());
- }
-
- /// Get the number of compile units in this context.
- unsigned getNumCompileUnits() {
- parseCompileUnits();
- return CUs.size();
- }
-
- /// Get the number of compile units in this context.
- unsigned getNumTypeUnits() {
- parseTypeUnits();
- return TUs.size();
- }
-
- /// Get the number of compile units in the DWO context.
- unsigned getNumDWOCompileUnits() {
- parseDWOCompileUnits();
- return DWOCUs.size();
- }
-
- /// Get the number of compile units in the DWO context.
- unsigned getNumDWOTypeUnits() {
- parseDWOTypeUnits();
- return DWOTUs.size();
- }
-
- /// Get the compile unit at the specified index for this compile unit.
- DWARFCompileUnit *getCompileUnitAtIndex(unsigned index) {
- parseCompileUnits();
- return CUs[index].get();
- }
-
- /// Get the compile unit at the specified index for the DWO compile units.
- DWARFCompileUnit *getDWOCompileUnitAtIndex(unsigned index) {
- parseDWOCompileUnits();
- return DWOCUs[index].get();
- }
-
- /// Get a pointer to the parsed DebugAbbrev object.
- const DWARFDebugAbbrev *getDebugAbbrev();
-
- /// Get a pointer to the parsed DebugLoc object.
- const DWARFDebugLoc *getDebugLoc();
-
- /// Get a pointer to the parsed dwo abbreviations object.
- const DWARFDebugAbbrev *getDebugAbbrevDWO();
-
- /// Get a pointer to the parsed DebugLoc object.
- const DWARFDebugLocDWO *getDebugLocDWO();
-
- /// Get a pointer to the parsed DebugAranges object.
- const DWARFDebugAranges *getDebugAranges();
-
- /// Get a pointer to the parsed frame information object.
- const DWARFDebugFrame *getDebugFrame();
-
- /// Get a pointer to a parsed line table corresponding to a compile unit.
- const DWARFDebugLine::LineTable *
- getLineTableForCompileUnit(DWARFCompileUnit *cu);
-
- DILineInfo getLineInfoForAddress(uint64_t Address,
- DILineInfoSpecifier Specifier = DILineInfoSpecifier()) override;
- DILineInfoTable getLineInfoForAddressRange(uint64_t Address, uint64_t Size,
- DILineInfoSpecifier Specifier = DILineInfoSpecifier()) override;
- DIInliningInfo getInliningInfoForAddress(uint64_t Address,
- DILineInfoSpecifier Specifier = DILineInfoSpecifier()) override;
-
- virtual bool isLittleEndian() const = 0;
- virtual uint8_t getAddressSize() const = 0;
- virtual const Section &getInfoSection() = 0;
- typedef MapVector<object::SectionRef, Section,
- std::map<object::SectionRef, unsigned> > TypeSectionMap;
- virtual const TypeSectionMap &getTypesSections() = 0;
- virtual StringRef getAbbrevSection() = 0;
- virtual const Section &getLocSection() = 0;
- virtual const Section &getLocDWOSection() = 0;
- virtual StringRef getARangeSection() = 0;
- virtual StringRef getDebugFrameSection() = 0;
- virtual const Section &getLineSection() = 0;
- virtual const Section &getLineDWOSection() = 0;
- virtual StringRef getStringSection() = 0;
- virtual StringRef getRangeSection() = 0;
- virtual StringRef getPubNamesSection() = 0;
- virtual StringRef getPubTypesSection() = 0;
- virtual StringRef getGnuPubNamesSection() = 0;
- virtual StringRef getGnuPubTypesSection() = 0;
-
- // Sections for DWARF5 split dwarf proposal.
- virtual const Section &getInfoDWOSection() = 0;
- virtual const TypeSectionMap &getTypesDWOSections() = 0;
- virtual StringRef getAbbrevDWOSection() = 0;
- virtual StringRef getStringDWOSection() = 0;
- virtual StringRef getStringOffsetDWOSection() = 0;
- virtual StringRef getRangeDWOSection() = 0;
- virtual StringRef getAddrSection() = 0;
-
- static bool isSupportedVersion(unsigned version) {
- return version == 2 || version == 3 || version == 4;
- }
-private:
- /// Return the compile unit that includes an offset (relative to .debug_info).
- DWARFCompileUnit *getCompileUnitForOffset(uint32_t Offset);
-
- /// Return the compile unit which contains instruction with provided
- /// address.
- DWARFCompileUnit *getCompileUnitForAddress(uint64_t Address);
-};
-
-/// DWARFContextInMemory is the simplest possible implementation of a
-/// DWARFContext. It assumes all content is available in memory and stores
-/// pointers to it.
-class DWARFContextInMemory : public DWARFContext {
- virtual void anchor();
- bool IsLittleEndian;
- uint8_t AddressSize;
- Section InfoSection;
- TypeSectionMap TypesSections;
- StringRef AbbrevSection;
- Section LocSection;
- Section LocDWOSection;
- StringRef ARangeSection;
- StringRef DebugFrameSection;
- Section LineSection;
- Section LineDWOSection;
- StringRef StringSection;
- StringRef RangeSection;
- StringRef PubNamesSection;
- StringRef PubTypesSection;
- StringRef GnuPubNamesSection;
- StringRef GnuPubTypesSection;
-
- // Sections for DWARF5 split dwarf proposal.
- Section InfoDWOSection;
- TypeSectionMap TypesDWOSections;
- StringRef AbbrevDWOSection;
- StringRef StringDWOSection;
- StringRef StringOffsetDWOSection;
- StringRef RangeDWOSection;
- StringRef AddrSection;
-
- SmallVector<SmallString<32>, 4> UncompressedSections;
-
-public:
- DWARFContextInMemory(object::ObjectFile *);
- bool isLittleEndian() const override { return IsLittleEndian; }
- uint8_t getAddressSize() const override { return AddressSize; }
- const Section &getInfoSection() override { return InfoSection; }
- const TypeSectionMap &getTypesSections() override { return TypesSections; }
- StringRef getAbbrevSection() override { return AbbrevSection; }
- const Section &getLocSection() override { return LocSection; }
- const Section &getLocDWOSection() override { return LocDWOSection; }
- StringRef getARangeSection() override { return ARangeSection; }
- StringRef getDebugFrameSection() override { return DebugFrameSection; }
- const Section &getLineSection() override { return LineSection; }
- const Section &getLineDWOSection() override { return LineDWOSection; }
- StringRef getStringSection() override { return StringSection; }
- StringRef getRangeSection() override { return RangeSection; }
- StringRef getPubNamesSection() override { return PubNamesSection; }
- StringRef getPubTypesSection() override { return PubTypesSection; }
- StringRef getGnuPubNamesSection() override { return GnuPubNamesSection; }
- StringRef getGnuPubTypesSection() override { return GnuPubTypesSection; }
-
- // Sections for DWARF5 split dwarf proposal.
- const Section &getInfoDWOSection() override { return InfoDWOSection; }
- const TypeSectionMap &getTypesDWOSections() override {
- return TypesDWOSections;
- }
- StringRef getAbbrevDWOSection() override { return AbbrevDWOSection; }
- StringRef getStringDWOSection() override { return StringDWOSection; }
- StringRef getStringOffsetDWOSection() override {
- return StringOffsetDWOSection;
- }
- StringRef getRangeDWOSection() override { return RangeDWOSection; }
- StringRef getAddrSection() override {
- return AddrSection;
- }
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.cpp
index 8426bf9..6c9c9eb 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugAbbrev.h"
+#include "llvm/DebugInfo/DWARFDebugAbbrev.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -30,7 +30,6 @@ bool DWARFAbbreviationDeclarationSet::extract(DataExtractor Data,
DWARFAbbreviationDeclaration AbbrDecl;
uint32_t PrevAbbrCode = 0;
while (AbbrDecl.extract(Data, OffsetPtr)) {
- Decls.push_back(AbbrDecl);
if (FirstAbbrCode == 0) {
FirstAbbrCode = AbbrDecl.getCode();
} else {
@@ -40,6 +39,7 @@ bool DWARFAbbreviationDeclarationSet::extract(DataExtractor Data,
}
}
PrevAbbrCode = AbbrDecl.getCode();
+ Decls.push_back(std::move(AbbrDecl));
}
return BeginOffset != *OffsetPtr;
}
@@ -82,7 +82,7 @@ void DWARFDebugAbbrev::extract(DataExtractor Data) {
uint32_t CUAbbrOffset = Offset;
if (!AbbrDecls.extract(Data, &Offset))
break;
- AbbrDeclSets[CUAbbrOffset] = AbbrDecls;
+ AbbrDeclSets[CUAbbrOffset] = std::move(AbbrDecls);
}
}
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.h b/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.h
deleted file mode 100644
index 3a9adba..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugAbbrev.h
+++ /dev/null
@@ -1,63 +0,0 @@
-//===-- DWARFDebugAbbrev.h --------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGABBREV_H
-#define LLVM_DEBUGINFO_DWARFDEBUGABBREV_H
-
-#include "DWARFAbbreviationDeclaration.h"
-#include <list>
-#include <map>
-#include <vector>
-
-namespace llvm {
-
-class DWARFAbbreviationDeclarationSet {
- uint32_t Offset;
- /// Code of the first abbreviation, if all abbreviations in the set have
- /// consecutive codes. UINT32_MAX otherwise.
- uint32_t FirstAbbrCode;
- std::vector<DWARFAbbreviationDeclaration> Decls;
-
-public:
- DWARFAbbreviationDeclarationSet();
-
- uint32_t getOffset() const { return Offset; }
- void dump(raw_ostream &OS) const;
- bool extract(DataExtractor Data, uint32_t *OffsetPtr);
-
- const DWARFAbbreviationDeclaration *
- getAbbreviationDeclaration(uint32_t AbbrCode) const;
-
-private:
- void clear();
-};
-
-class DWARFDebugAbbrev {
- typedef std::map<uint64_t, DWARFAbbreviationDeclarationSet>
- DWARFAbbreviationDeclarationSetMap;
-
- DWARFAbbreviationDeclarationSetMap AbbrDeclSets;
- mutable DWARFAbbreviationDeclarationSetMap::const_iterator PrevAbbrOffsetPos;
-
-public:
- DWARFDebugAbbrev();
-
- const DWARFAbbreviationDeclarationSet *
- getAbbreviationDeclarationSet(uint64_t CUAbbrOffset) const;
-
- void dump(raw_ostream &OS) const;
- void extract(DataExtractor Data);
-
-private:
- void clear();
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.cpp
index c0a33ce..d4bff90 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugArangeSet.h"
+#include "llvm/DebugInfo/DWARFDebugArangeSet.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.h b/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.h
deleted file mode 100644
index d6c2d8b..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugArangeSet.h
+++ /dev/null
@@ -1,70 +0,0 @@
-//===-- DWARFDebugArangeSet.h -----------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGARANGESET_H
-#define LLVM_DEBUGINFO_DWARFDEBUGARANGESET_H
-
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Support/DataExtractor.h"
-#include <vector>
-
-namespace llvm {
-
-class raw_ostream;
-
-class DWARFDebugArangeSet {
-public:
- struct Header {
- // The total length of the entries for that set, not including the length
- // field itself.
- uint32_t Length;
- // The offset from the beginning of the .debug_info section of the
- // compilation unit entry referenced by the table.
- uint32_t CuOffset;
- // The DWARF version number.
- uint16_t Version;
- // The size in bytes of an address on the target architecture. For segmented
- // addressing, this is the size of the offset portion of the address.
- uint8_t AddrSize;
- // The size in bytes of a segment descriptor on the target architecture.
- // If the target system uses a flat address space, this value is 0.
- uint8_t SegSize;
- };
-
- struct Descriptor {
- uint64_t Address;
- uint64_t Length;
- uint64_t getEndAddress() const { return Address + Length; }
- };
-
-private:
- typedef std::vector<Descriptor> DescriptorColl;
- typedef iterator_range<DescriptorColl::const_iterator> desc_iterator_range;
-
- uint32_t Offset;
- Header HeaderData;
- DescriptorColl ArangeDescriptors;
-
-public:
- DWARFDebugArangeSet() { clear(); }
- void clear();
- bool extract(DataExtractor data, uint32_t *offset_ptr);
- void dump(raw_ostream &OS) const;
-
- uint32_t getCompileUnitDIEOffset() const { return HeaderData.CuOffset; }
-
- desc_iterator_range descriptors() const {
- return desc_iterator_range(ArangeDescriptors.begin(),
- ArangeDescriptors.end());
- }
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.cpp
index fe7e46d..b825d83 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.cpp
@@ -7,10 +7,10 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugAranges.h"
-#include "DWARFCompileUnit.h"
-#include "DWARFContext.h"
-#include "DWARFDebugArangeSet.h"
+#include "llvm/DebugInfo/DWARFDebugAranges.h"
+#include "llvm/DebugInfo/DWARFCompileUnit.h"
+#include "llvm/DebugInfo/DWARFContext.h"
+#include "llvm/DebugInfo/DWARFDebugArangeSet.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.h b/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.h
deleted file mode 100644
index a9f37fe..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugAranges.h
+++ /dev/null
@@ -1,87 +0,0 @@
-//===-- DWARFDebugAranges.h -------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGARANGES_H
-#define LLVM_DEBUGINFO_DWARFDEBUGARANGES_H
-
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/Support/DataExtractor.h"
-#include <vector>
-
-namespace llvm {
-
-class DWARFContext;
-
-class DWARFDebugAranges {
-public:
- void generate(DWARFContext *CTX);
- uint32_t findAddress(uint64_t Address) const;
-
-private:
- void clear();
- void extract(DataExtractor DebugArangesData);
-
- // Call appendRange multiple times and then call construct.
- void appendRange(uint32_t CUOffset, uint64_t LowPC, uint64_t HighPC);
- void construct();
-
- struct Range {
- explicit Range(uint64_t LowPC = -1ULL, uint64_t HighPC = -1ULL,
- uint32_t CUOffset = -1U)
- : LowPC(LowPC), Length(HighPC - LowPC), CUOffset(CUOffset) {}
-
- void setHighPC(uint64_t HighPC) {
- if (HighPC == -1ULL || HighPC <= LowPC)
- Length = 0;
- else
- Length = HighPC - LowPC;
- }
- uint64_t HighPC() const {
- if (Length)
- return LowPC + Length;
- return -1ULL;
- }
-
- bool containsAddress(uint64_t Address) const {
- return LowPC <= Address && Address < HighPC();
- }
- bool operator<(const Range &other) const {
- return LowPC < other.LowPC;
- }
-
- uint64_t LowPC; // Start of address range.
- uint32_t Length; // End of address range (not including this address).
- uint32_t CUOffset; // Offset of the compile unit or die.
- };
-
- struct RangeEndpoint {
- uint64_t Address;
- uint32_t CUOffset;
- bool IsRangeStart;
-
- RangeEndpoint(uint64_t Address, uint32_t CUOffset, bool IsRangeStart)
- : Address(Address), CUOffset(CUOffset), IsRangeStart(IsRangeStart) {}
-
- bool operator<(const RangeEndpoint &Other) const {
- return Address < Other.Address;
- }
- };
-
-
- typedef std::vector<Range> RangeColl;
- typedef RangeColl::const_iterator RangeCollIterator;
-
- std::vector<RangeEndpoint> Endpoints;
- RangeColl Aranges;
- DenseSet<uint32_t> ParsedCUOffsets;
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.cpp
index a33548e..968a0ce 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugFrame.h"
+#include "llvm/DebugInfo/DWARFDebugFrame.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Dwarf.h"
@@ -202,7 +202,8 @@ public:
SmallString<8> Augmentation, uint64_t CodeAlignmentFactor,
int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister)
: FrameEntry(FK_CIE, Offset, Length), Version(Version),
- Augmentation(Augmentation), CodeAlignmentFactor(CodeAlignmentFactor),
+ Augmentation(std::move(Augmentation)),
+ CodeAlignmentFactor(CodeAlignmentFactor),
DataAlignmentFactor(DataAlignmentFactor),
ReturnAddressRegister(ReturnAddressRegister) {}
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.h b/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.h
deleted file mode 100644
index bd4ef45..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugFrame.h
+++ /dev/null
@@ -1,43 +0,0 @@
-//===-- DWARFDebugFrame.h - Parsing of .debug_frame -------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGFRAME_H
-#define LLVM_DEBUGINFO_DWARFDEBUGFRAME_H
-
-#include "llvm/Support/DataExtractor.h"
-#include "llvm/Support/raw_ostream.h"
-#include <memory>
-#include <vector>
-
-namespace llvm {
-
-class FrameEntry;
-
-/// \brief A parsed .debug_frame section
-///
-class DWARFDebugFrame {
-public:
- DWARFDebugFrame();
- ~DWARFDebugFrame();
-
- /// \brief Dump the section data into the given stream.
- void dump(raw_ostream &OS) const;
-
- /// \brief Parse the section from raw data.
- /// data is assumed to be pointing to the beginning of the section.
- void parse(DataExtractor Data);
-
-private:
- std::vector<std::unique_ptr<FrameEntry>> Entries;
-};
-
-
-} // namespace llvm
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.cpp
index 2e7a54a..01ff52f 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.cpp
@@ -7,20 +7,33 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugInfoEntry.h"
-#include "DWARFCompileUnit.h"
-#include "DWARFContext.h"
-#include "DWARFDebugAbbrev.h"
+#include "SyntaxHighlighting.h"
+#include "llvm/DebugInfo/DWARFCompileUnit.h"
+#include "llvm/DebugInfo/DWARFContext.h"
+#include "llvm/DebugInfo/DWARFDebugAbbrev.h"
+#include "llvm/DebugInfo/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARFFormValue.h"
+#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace dwarf;
-typedef DILineInfoSpecifier::FunctionNameKind FunctionNameKind;
+using namespace syntax;
+
+// Small helper to extract a DIE pointed by a reference
+// attribute. It looks up the Unit containing the DIE and calls
+// DIE.extractFast with the right unit. Returns new unit on success,
+// nullptr otherwise.
+static const DWARFUnit *findUnitAndExtractFast(DWARFDebugInfoEntryMinimal &DIE,
+ const DWARFUnit *Unit,
+ uint32_t *Offset) {
+ Unit = Unit->getUnitSection().getUnitForOffset(*Offset);
+ return (Unit && DIE.extractFast(Unit, Offset)) ? Unit : nullptr;
+}
-void DWARFDebugInfoEntryMinimal::dump(raw_ostream &OS, const DWARFUnit *u,
+void DWARFDebugInfoEntryMinimal::dump(raw_ostream &OS, DWARFUnit *u,
unsigned recurseDepth,
unsigned indent) const {
DataExtractor debug_info_data = u->getDebugInfoExtractor();
@@ -28,15 +41,17 @@ void DWARFDebugInfoEntryMinimal::dump(raw_ostream &OS, const DWARFUnit *u,
if (debug_info_data.isValidOffset(offset)) {
uint32_t abbrCode = debug_info_data.getULEB128(&offset);
+ WithColor(OS, syntax::Address).get() << format("\n0x%8.8x: ", Offset);
- OS << format("\n0x%8.8x: ", Offset);
if (abbrCode) {
if (AbbrevDecl) {
- const char *tagString = TagString(getTag());
- if (tagString)
- OS.indent(indent) << tagString;
- else
- OS.indent(indent) << format("DW_TAG_Unknown_%x", getTag());
+ const char *tagString = TagString(getTag());
+ if (tagString)
+ WithColor(OS, syntax::Tag).get().indent(indent) << tagString;
+ else
+ WithColor(OS, syntax::Tag).get().indent(indent) <<
+ format("DW_TAG_Unknown_%x", getTag());
+
OS << format(" [%u] %c\n", abbrCode,
AbbrevDecl->hasChildren() ? '*' : ' ');
@@ -62,18 +77,51 @@ void DWARFDebugInfoEntryMinimal::dump(raw_ostream &OS, const DWARFUnit *u,
}
}
+static void dumpApplePropertyAttribute(raw_ostream &OS, uint64_t Val) {
+ OS << " (";
+ do {
+ uint64_t Shift = countTrailingZeros(Val);
+ assert(Shift < 64 && "undefined behavior");
+ uint64_t Bit = 1ULL << Shift;
+ if (const char *PropName = ApplePropertyString(Bit))
+ OS << PropName;
+ else
+ OS << format("DW_APPLE_PROPERTY_0x%" PRIx64, Bit);
+ if (!(Val ^= Bit))
+ break;
+ OS << ", ";
+ } while (true);
+ OS << ")";
+}
+
+static void dumpRanges(raw_ostream &OS, const DWARFAddressRangesVector& Ranges,
+ unsigned AddressSize, unsigned Indent) {
+ if (Ranges.empty())
+ return;
+
+ for (const auto &Range: Ranges) {
+ OS << '\n';
+ OS.indent(Indent);
+ OS << format("[0x%0*" PRIx64 " - 0x%0*" PRIx64 ")",
+ AddressSize*2, Range.first,
+ AddressSize*2, Range.second);
+ }
+}
+
void DWARFDebugInfoEntryMinimal::dumpAttribute(raw_ostream &OS,
- const DWARFUnit *u,
+ DWARFUnit *u,
uint32_t *offset_ptr,
uint16_t attr, uint16_t form,
unsigned indent) const {
- OS << " ";
+ const char BaseIndent[] = " ";
+ OS << BaseIndent;
OS.indent(indent+2);
const char *attrString = AttributeString(attr);
if (attrString)
- OS << attrString;
+ WithColor(OS, syntax::Attribute) << attrString;
else
- OS << format("DW_AT_Unknown_%x", attr);
+ WithColor(OS, syntax::Attribute).get() << format("DW_AT_Unknown_%x", attr);
+
const char *formString = FormEncodingString(form);
if (formString)
OS << " [" << formString << ']';
@@ -86,7 +134,49 @@ void DWARFDebugInfoEntryMinimal::dumpAttribute(raw_ostream &OS,
return;
OS << "\t(";
- formValue.dump(OS, u);
+
+ const char *Name = nullptr;
+ std::string File;
+ auto Color = syntax::Enumerator;
+ if (attr == DW_AT_decl_file || attr == DW_AT_call_file) {
+ Color = syntax::String;
+ if (const auto *LT = u->getContext().getLineTableForUnit(u))
+ if (LT->getFileNameByIndex(
+ formValue.getAsUnsignedConstant().getValue(),
+ u->getCompilationDir(),
+ DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File)) {
+ File = '"' + File + '"';
+ Name = File.c_str();
+ }
+ } else if (Optional<uint64_t> Val = formValue.getAsUnsignedConstant())
+ Name = AttributeValueString(attr, *Val);
+
+ if (Name)
+ WithColor(OS, Color) << Name;
+ else if (attr == DW_AT_decl_line || attr == DW_AT_call_line)
+ OS << *formValue.getAsUnsignedConstant();
+ else
+ formValue.dump(OS, u);
+
+ // We have dumped the attribute raw value. For some attributes
+ // having both the raw value and the pretty-printed value is
+ // interesting. These attributes are handled below.
+ if ((attr == DW_AT_specification || attr == DW_AT_abstract_origin) &&
+ // The signature references aren't handled.
+ formValue.getForm() != DW_FORM_ref_sig8) {
+ uint32_t Ref = formValue.getAsReference(u).getValue();
+ DWARFDebugInfoEntryMinimal DIE;
+ if (const DWARFUnit *RefU = findUnitAndExtractFast(DIE, u, &Ref))
+ if (const char *Ref = DIE.getName(RefU, DINameKind::LinkageName))
+ OS << " \"" << Ref << '\"';
+ } else if (attr == DW_AT_APPLE_property_attribute) {
+ if (Optional<uint64_t> OptVal = formValue.getAsUnsignedConstant())
+ dumpApplePropertyAttribute(OS, *OptVal);
+ } else if (attr == DW_AT_ranges) {
+ dumpRanges(OS, getAddressRanges(u), u->getAddressByteSize(),
+ sizeof(BaseIndent)+indent+4);
+ }
+
OS << ")\n";
}
@@ -284,11 +374,19 @@ bool DWARFDebugInfoEntryMinimal::addressRangeContainsAddress(
const char *
DWARFDebugInfoEntryMinimal::getSubroutineName(const DWARFUnit *U,
- FunctionNameKind Kind) const {
- if (!isSubroutineDIE() || Kind == FunctionNameKind::None)
+ DINameKind Kind) const {
+ if (!isSubroutineDIE())
+ return nullptr;
+ return getName(U, Kind);
+}
+
+const char *
+DWARFDebugInfoEntryMinimal::getName(const DWARFUnit *U,
+ DINameKind Kind) const {
+ if (Kind == DINameKind::None)
return nullptr;
// Try to get mangled name only if it was asked for.
- if (Kind == FunctionNameKind::LinkageName) {
+ if (Kind == DINameKind::LinkageName) {
if (const char *name =
getAttributeValueAsString(U, DW_AT_MIPS_linkage_name, nullptr))
return name;
@@ -303,8 +401,8 @@ DWARFDebugInfoEntryMinimal::getSubroutineName(const DWARFUnit *U,
getAttributeValueAsReference(U, DW_AT_specification, -1U);
if (spec_ref != -1U) {
DWARFDebugInfoEntryMinimal spec_die;
- if (spec_die.extractFast(U, &spec_ref)) {
- if (const char *name = spec_die.getSubroutineName(U, Kind))
+ if (const DWARFUnit *RefU = findUnitAndExtractFast(spec_die, U, &spec_ref)) {
+ if (const char *name = spec_die.getName(RefU, Kind))
return name;
}
}
@@ -313,8 +411,9 @@ DWARFDebugInfoEntryMinimal::getSubroutineName(const DWARFUnit *U,
getAttributeValueAsReference(U, DW_AT_abstract_origin, -1U);
if (abs_origin_ref != -1U) {
DWARFDebugInfoEntryMinimal abs_origin_die;
- if (abs_origin_die.extractFast(U, &abs_origin_ref)) {
- if (const char *name = abs_origin_die.getSubroutineName(U, Kind))
+ if (const DWARFUnit *RefU = findUnitAndExtractFast(abs_origin_die, U,
+ &abs_origin_ref)) {
+ if (const char *name = abs_origin_die.getName(RefU, Kind))
return name;
}
}
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.h b/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.h
deleted file mode 100644
index cc58eb6..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugInfoEntry.h
+++ /dev/null
@@ -1,157 +0,0 @@
-//===-- DWARFDebugInfoEntry.h -----------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGINFOENTRY_H
-#define LLVM_DEBUGINFO_DWARFDEBUGINFOENTRY_H
-
-#include "DWARFAbbreviationDeclaration.h"
-#include "DWARFDebugRangeList.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/DebugInfo/DIContext.h"
-#include "llvm/Support/DataTypes.h"
-
-namespace llvm {
-
-class DWARFDebugAranges;
-class DWARFCompileUnit;
-class DWARFUnit;
-class DWARFContext;
-class DWARFFormValue;
-struct DWARFDebugInfoEntryInlinedChain;
-
-/// DWARFDebugInfoEntryMinimal - A DIE with only the minimum required data.
-class DWARFDebugInfoEntryMinimal {
- /// Offset within the .debug_info of the start of this entry.
- uint32_t Offset;
-
- /// How many to add to "this" to get the sibling.
- uint32_t SiblingIdx;
-
- const DWARFAbbreviationDeclaration *AbbrevDecl;
-public:
- DWARFDebugInfoEntryMinimal()
- : Offset(0), SiblingIdx(0), AbbrevDecl(nullptr) {}
-
- void dump(raw_ostream &OS, const DWARFUnit *u, unsigned recurseDepth,
- unsigned indent = 0) const;
- void dumpAttribute(raw_ostream &OS, const DWARFUnit *u, uint32_t *offset_ptr,
- uint16_t attr, uint16_t form, unsigned indent = 0) const;
-
- /// Extracts a debug info entry, which is a child of a given unit,
- /// starting at a given offset. If DIE can't be extracted, returns false and
- /// doesn't change OffsetPtr.
- bool extractFast(const DWARFUnit *U, uint32_t *OffsetPtr);
-
- uint32_t getTag() const { return AbbrevDecl ? AbbrevDecl->getTag() : 0; }
- bool isNULL() const { return AbbrevDecl == nullptr; }
-
- /// Returns true if DIE represents a subprogram (not inlined).
- bool isSubprogramDIE() const;
- /// Returns true if DIE represents a subprogram or an inlined
- /// subroutine.
- bool isSubroutineDIE() const;
-
- uint32_t getOffset() const { return Offset; }
- bool hasChildren() const { return !isNULL() && AbbrevDecl->hasChildren(); }
-
- // We know we are kept in a vector of contiguous entries, so we know
- // our sibling will be some index after "this".
- const DWARFDebugInfoEntryMinimal *getSibling() const {
- return SiblingIdx > 0 ? this + SiblingIdx : nullptr;
- }
-
- // We know we are kept in a vector of contiguous entries, so we know
- // we don't need to store our child pointer, if we have a child it will
- // be the next entry in the list...
- const DWARFDebugInfoEntryMinimal *getFirstChild() const {
- return hasChildren() ? this + 1 : nullptr;
- }
-
- void setSibling(const DWARFDebugInfoEntryMinimal *Sibling) {
- if (Sibling) {
- // We know we are kept in a vector of contiguous entries, so we know
- // our sibling will be some index after "this".
- SiblingIdx = Sibling - this;
- } else
- SiblingIdx = 0;
- }
-
- const DWARFAbbreviationDeclaration *getAbbreviationDeclarationPtr() const {
- return AbbrevDecl;
- }
-
- bool getAttributeValue(const DWARFUnit *U, const uint16_t Attr,
- DWARFFormValue &FormValue) const;
-
- const char *getAttributeValueAsString(const DWARFUnit *U, const uint16_t Attr,
- const char *FailValue) const;
-
- uint64_t getAttributeValueAsAddress(const DWARFUnit *U, const uint16_t Attr,
- uint64_t FailValue) const;
-
- uint64_t getAttributeValueAsUnsignedConstant(const DWARFUnit *U,
- const uint16_t Attr,
- uint64_t FailValue) const;
-
- uint64_t getAttributeValueAsReference(const DWARFUnit *U, const uint16_t Attr,
- uint64_t FailValue) const;
-
- uint64_t getAttributeValueAsSectionOffset(const DWARFUnit *U,
- const uint16_t Attr,
- uint64_t FailValue) const;
-
- uint64_t getRangesBaseAttribute(const DWARFUnit *U, uint64_t FailValue) const;
-
- /// Retrieves DW_AT_low_pc and DW_AT_high_pc from CU.
- /// Returns true if both attributes are present.
- bool getLowAndHighPC(const DWARFUnit *U, uint64_t &LowPC,
- uint64_t &HighPC) const;
-
- DWARFAddressRangesVector getAddressRanges(const DWARFUnit *U) const;
-
- void collectChildrenAddressRanges(const DWARFUnit *U,
- DWARFAddressRangesVector &Ranges) const;
-
- bool addressRangeContainsAddress(const DWARFUnit *U,
- const uint64_t Address) const;
-
- /// If a DIE represents a subprogram (or inlined subroutine),
- /// returns its mangled name (or short name, if mangled is missing).
- /// This name may be fetched from specification or abstract origin
- /// for this subprogram. Returns null if no name is found.
- const char *
- getSubroutineName(const DWARFUnit *U,
- DILineInfoSpecifier::FunctionNameKind Kind) const;
-
- /// Retrieves values of DW_AT_call_file, DW_AT_call_line and
- /// DW_AT_call_column from DIE (or zeroes if they are missing).
- void getCallerFrame(const DWARFUnit *U, uint32_t &CallFile,
- uint32_t &CallLine, uint32_t &CallColumn) const;
-
- /// Get inlined chain for a given address, rooted at the current DIE.
- /// Returns empty chain if address is not contained in address range
- /// of current DIE.
- DWARFDebugInfoEntryInlinedChain
- getInlinedChainForAddress(const DWARFUnit *U, const uint64_t Address) const;
-};
-
-/// DWARFDebugInfoEntryInlinedChain - represents a chain of inlined_subroutine
-/// DIEs, (possibly ending with subprogram DIE), all of which are contained
-/// in some concrete inlined instance tree. Address range for each DIE
-/// (except the last DIE) in this chain is contained in address
-/// range for next DIE in the chain.
-struct DWARFDebugInfoEntryInlinedChain {
- DWARFDebugInfoEntryInlinedChain() : U(nullptr) {}
- SmallVector<DWARFDebugInfoEntryMinimal, 4> DIEs;
- const DWARFUnit *U;
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugLine.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugLine.cpp
index ce87635..365a522 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugLine.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugLine.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugLine.h"
+#include "llvm/DebugInfo/DWARFDebugLine.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Path.h"
@@ -644,6 +644,7 @@ bool DWARFDebugLine::LineTable::lookupAddressRange(
bool
DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
+ const char *CompDir,
FileLineInfoKind Kind,
std::string &Result) const {
if (FileIndex == 0 || FileIndex > Prologue.FileNames.size() ||
@@ -656,15 +657,42 @@ DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
Result = FileName;
return true;
}
+
SmallString<16> FilePath;
uint64_t IncludeDirIndex = Entry.DirIdx;
+ const char *IncludeDir = "";
// Be defensive about the contents of Entry.
if (IncludeDirIndex > 0 &&
- IncludeDirIndex <= Prologue.IncludeDirectories.size()) {
- const char *IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
- sys::path::append(FilePath, IncludeDir);
- }
- sys::path::append(FilePath, FileName);
+ IncludeDirIndex <= Prologue.IncludeDirectories.size())
+ IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
+
+ // We may still need to append compilation directory of compile unit.
+ // We know that FileName is not absolute, the only way to have an
+ // absolute path at this point would be if IncludeDir is absolute.
+ if (CompDir && Kind == FileLineInfoKind::AbsoluteFilePath &&
+ sys::path::is_relative(IncludeDir))
+ sys::path::append(FilePath, CompDir);
+
+ // sys::path::append skips empty strings.
+ sys::path::append(FilePath, IncludeDir, FileName);
Result = FilePath.str();
return true;
}
+
+bool
+DWARFDebugLine::LineTable::getFileLineInfoForAddress(uint64_t Address,
+ const char *CompDir,
+ FileLineInfoKind Kind,
+ DILineInfo &Result) const {
+ // Get the index of row we're looking for in the line table.
+ uint32_t RowIndex = lookupAddress(Address);
+ if (RowIndex == -1U)
+ return false;
+ // Take file number and line/column from the row.
+ const auto &Row = Rows[RowIndex];
+ if (!getFileNameByIndex(Row.File, CompDir, Kind, Result.FileName))
+ return false;
+ Result.Line = Row.Line;
+ Result.Column = Row.Column;
+ return true;
+}
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugLine.h b/contrib/llvm/lib/DebugInfo/DWARFDebugLine.h
deleted file mode 100644
index c7b7ec2..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugLine.h
+++ /dev/null
@@ -1,232 +0,0 @@
-//===-- DWARFDebugLine.h ----------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGLINE_H
-#define LLVM_DEBUGINFO_DWARFDEBUGLINE_H
-
-#include "DWARFRelocMap.h"
-#include "llvm/DebugInfo/DIContext.h"
-#include "llvm/Support/DataExtractor.h"
-#include <map>
-#include <string>
-#include <vector>
-
-namespace llvm {
-
-class raw_ostream;
-
-class DWARFDebugLine {
-public:
- DWARFDebugLine(const RelocAddrMap* LineInfoRelocMap) : RelocMap(LineInfoRelocMap) {}
- struct FileNameEntry {
- FileNameEntry() : Name(nullptr), DirIdx(0), ModTime(0), Length(0) {}
-
- const char *Name;
- uint64_t DirIdx;
- uint64_t ModTime;
- uint64_t Length;
- };
-
- struct Prologue {
- Prologue();
-
- // The size in bytes of the statement information for this compilation unit
- // (not including the total_length field itself).
- uint32_t TotalLength;
- // Version identifier for the statement information format.
- uint16_t Version;
- // The number of bytes following the prologue_length field to the beginning
- // of the first byte of the statement program itself.
- uint32_t PrologueLength;
- // The size in bytes of the smallest target machine instruction. Statement
- // program opcodes that alter the address register first multiply their
- // operands by this value.
- uint8_t MinInstLength;
- // The maximum number of individual operations that may be encoded in an
- // instruction.
- uint8_t MaxOpsPerInst;
- // The initial value of theis_stmtregister.
- uint8_t DefaultIsStmt;
- // This parameter affects the meaning of the special opcodes. See below.
- int8_t LineBase;
- // This parameter affects the meaning of the special opcodes. See below.
- uint8_t LineRange;
- // The number assigned to the first special opcode.
- uint8_t OpcodeBase;
- std::vector<uint8_t> StandardOpcodeLengths;
- std::vector<const char*> IncludeDirectories;
- std::vector<FileNameEntry> FileNames;
-
- // Length of the prologue in bytes.
- uint32_t getLength() const {
- return PrologueLength + sizeof(TotalLength) + sizeof(Version) +
- sizeof(PrologueLength);
- }
- // Length of the line table data in bytes (not including the prologue).
- uint32_t getStatementTableLength() const {
- return TotalLength + sizeof(TotalLength) - getLength();
- }
- int32_t getMaxLineIncrementForSpecialOpcode() const {
- return LineBase + (int8_t)LineRange - 1;
- }
-
- void clear();
- void dump(raw_ostream &OS) const;
- bool parse(DataExtractor debug_line_data, uint32_t *offset_ptr);
- };
-
- // Standard .debug_line state machine structure.
- struct Row {
- explicit Row(bool default_is_stmt = false);
-
- /// Called after a row is appended to the matrix.
- void postAppend();
- void reset(bool default_is_stmt);
- void dump(raw_ostream &OS) const;
-
- static bool orderByAddress(const Row& LHS, const Row& RHS) {
- return LHS.Address < RHS.Address;
- }
-
- // The program-counter value corresponding to a machine instruction
- // generated by the compiler.
- uint64_t Address;
- // An unsigned integer indicating a source line number. Lines are numbered
- // beginning at 1. The compiler may emit the value 0 in cases where an
- // instruction cannot be attributed to any source line.
- uint32_t Line;
- // An unsigned integer indicating a column number within a source line.
- // Columns are numbered beginning at 1. The value 0 is reserved to indicate
- // that a statement begins at the 'left edge' of the line.
- uint16_t Column;
- // An unsigned integer indicating the identity of the source file
- // corresponding to a machine instruction.
- uint16_t File;
- // An unsigned integer whose value encodes the applicable instruction set
- // architecture for the current instruction.
- uint8_t Isa;
- // An unsigned integer representing the DWARF path discriminator value
- // for this location.
- uint32_t Discriminator;
- // A boolean indicating that the current instruction is the beginning of a
- // statement.
- uint8_t IsStmt:1,
- // A boolean indicating that the current instruction is the
- // beginning of a basic block.
- BasicBlock:1,
- // A boolean indicating that the current address is that of the
- // first byte after the end of a sequence of target machine
- // instructions.
- EndSequence:1,
- // A boolean indicating that the current address is one (of possibly
- // many) where execution should be suspended for an entry breakpoint
- // of a function.
- PrologueEnd:1,
- // A boolean indicating that the current address is one (of possibly
- // many) where execution should be suspended for an exit breakpoint
- // of a function.
- EpilogueBegin:1;
- };
-
- // Represents a series of contiguous machine instructions. Line table for each
- // compilation unit may consist of multiple sequences, which are not
- // guaranteed to be in the order of ascending instruction address.
- struct Sequence {
- // Sequence describes instructions at address range [LowPC, HighPC)
- // and is described by line table rows [FirstRowIndex, LastRowIndex).
- uint64_t LowPC;
- uint64_t HighPC;
- unsigned FirstRowIndex;
- unsigned LastRowIndex;
- bool Empty;
-
- Sequence();
- void reset();
-
- static bool orderByLowPC(const Sequence& LHS, const Sequence& RHS) {
- return LHS.LowPC < RHS.LowPC;
- }
- bool isValid() const {
- return !Empty && (LowPC < HighPC) && (FirstRowIndex < LastRowIndex);
- }
- bool containsPC(uint64_t pc) const {
- return (LowPC <= pc && pc < HighPC);
- }
- };
-
- struct LineTable {
- LineTable();
-
- void appendRow(const DWARFDebugLine::Row &R) {
- Rows.push_back(R);
- }
- void appendSequence(const DWARFDebugLine::Sequence &S) {
- Sequences.push_back(S);
- }
-
- // Returns the index of the row with file/line info for a given address,
- // or -1 if there is no such row.
- uint32_t lookupAddress(uint64_t address) const;
-
- bool lookupAddressRange(uint64_t address, uint64_t size,
- std::vector<uint32_t> &result) const;
-
- // Extracts filename by its index in filename table in prologue.
- // Returns true on success.
- bool getFileNameByIndex(uint64_t FileIndex,
- DILineInfoSpecifier::FileLineInfoKind Kind,
- std::string &Result) const;
-
- void dump(raw_ostream &OS) const;
- void clear();
-
- /// Parse prologue and all rows.
- bool parse(DataExtractor debug_line_data, const RelocAddrMap *RMap,
- uint32_t *offset_ptr);
-
- struct Prologue Prologue;
- typedef std::vector<Row> RowVector;
- typedef RowVector::const_iterator RowIter;
- typedef std::vector<Sequence> SequenceVector;
- typedef SequenceVector::const_iterator SequenceIter;
- RowVector Rows;
- SequenceVector Sequences;
- };
-
- const LineTable *getLineTable(uint32_t offset) const;
- const LineTable *getOrParseLineTable(DataExtractor debug_line_data,
- uint32_t offset);
-
-private:
- struct ParsingState {
- ParsingState(struct LineTable *LT);
-
- void resetRowAndSequence();
- void appendRowToMatrix(uint32_t offset);
-
- // Line table we're currently parsing.
- struct LineTable *LineTable;
- // The row number that starts at zero for the prologue, and increases for
- // each row added to the matrix.
- unsigned RowNumber;
- struct Row Row;
- struct Sequence Sequence;
- };
-
- typedef std::map<uint32_t, LineTable> LineTableMapTy;
- typedef LineTableMapTy::iterator LineTableIter;
- typedef LineTableMapTy::const_iterator LineTableConstIter;
-
- const RelocAddrMap *RelocMap;
- LineTableMapTy LineTableMap;
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.cpp
index e4aa5dc..bc0133d 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.cpp
@@ -7,11 +7,11 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugLoc.h"
+#include "llvm/DebugInfo/DWARFDebugLoc.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/Dwarf.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.h b/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.h
deleted file mode 100644
index 663acbb..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugLoc.h
+++ /dev/null
@@ -1,81 +0,0 @@
-//===-- DWARFDebugLoc.h -----------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGLOC_H
-#define LLVM_DEBUGINFO_DWARFDEBUGLOC_H
-
-#include "DWARFRelocMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/DataExtractor.h"
-
-namespace llvm {
-
-class raw_ostream;
-
-class DWARFDebugLoc {
- /// A single location within a location list.
- struct Entry {
- /// The beginning address of the instruction range.
- uint64_t Begin;
- /// The ending address of the instruction range.
- uint64_t End;
- /// The location of the variable within the specified range.
- SmallVector<unsigned char, 4> Loc;
- };
-
- /// A list of locations that contain one variable.
- struct LocationList {
- /// The beginning offset where this location list is stored in the debug_loc
- /// section.
- unsigned Offset;
- /// All the locations in which the variable is stored.
- SmallVector<Entry, 2> Entries;
- };
-
- typedef SmallVector<LocationList, 4> LocationLists;
-
- /// A list of all the variables in the debug_loc section, each one describing
- /// the locations in which the variable is stored.
- LocationLists Locations;
-
- /// A map used to resolve binary relocations.
- const RelocAddrMap &RelocMap;
-
-public:
- DWARFDebugLoc(const RelocAddrMap &LocRelocMap) : RelocMap(LocRelocMap) {}
- /// Print the location lists found within the debug_loc section.
- void dump(raw_ostream &OS) const;
- /// Parse the debug_loc section accessible via the 'data' parameter using the
- /// specified address size to interpret the address ranges.
- void parse(DataExtractor data, unsigned AddressSize);
-};
-
-class DWARFDebugLocDWO {
- struct Entry {
- uint64_t Start;
- uint32_t Length;
- SmallVector<unsigned char, 4> Loc;
- };
-
- struct LocationList {
- unsigned Offset;
- SmallVector<Entry, 2> Entries;
- };
-
- typedef SmallVector<LocationList, 4> LocationLists;
-
- LocationLists Locations;
-
-public:
- void parse(DataExtractor data);
- void dump(raw_ostream &OS) const;
-};
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.cpp b/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.cpp
index 07b23b3..ce60deb 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFDebugRangeList.h"
+#include "llvm/DebugInfo/DWARFDebugRangeList.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.h b/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.h
deleted file mode 100644
index 587b550..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFDebugRangeList.h
+++ /dev/null
@@ -1,77 +0,0 @@
-//===-- DWARFDebugRangeList.h -----------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFDEBUGRANGELIST_H
-#define LLVM_DEBUGINFO_DWARFDEBUGRANGELIST_H
-
-#include "llvm/Support/DataExtractor.h"
-#include <vector>
-
-namespace llvm {
-
-class raw_ostream;
-
-/// DWARFAddressRangesVector - represents a set of absolute address ranges.
-typedef std::vector<std::pair<uint64_t, uint64_t>> DWARFAddressRangesVector;
-
-class DWARFDebugRangeList {
-public:
- struct RangeListEntry {
- // A beginning address offset. This address offset has the size of an
- // address and is relative to the applicable base address of the
- // compilation unit referencing this range list. It marks the beginning
- // of an address range.
- uint64_t StartAddress;
- // An ending address offset. This address offset again has the size of
- // an address and is relative to the applicable base address of the
- // compilation unit referencing this range list. It marks the first
- // address past the end of the address range. The ending address must
- // be greater than or equal to the beginning address.
- uint64_t EndAddress;
- // The end of any given range list is marked by an end of list entry,
- // which consists of a 0 for the beginning address offset
- // and a 0 for the ending address offset.
- bool isEndOfListEntry() const {
- return (StartAddress == 0) && (EndAddress == 0);
- }
- // A base address selection entry consists of:
- // 1. The value of the largest representable address offset
- // (for example, 0xffffffff when the size of an address is 32 bits).
- // 2. An address, which defines the appropriate base address for
- // use in interpreting the beginning and ending address offsets of
- // subsequent entries of the location list.
- bool isBaseAddressSelectionEntry(uint8_t AddressSize) const {
- assert(AddressSize == 4 || AddressSize == 8);
- if (AddressSize == 4)
- return StartAddress == -1U;
- else
- return StartAddress == -1ULL;
- }
- };
-
-private:
- // Offset in .debug_ranges section.
- uint32_t Offset;
- uint8_t AddressSize;
- std::vector<RangeListEntry> Entries;
-
-public:
- DWARFDebugRangeList() { clear(); }
- void clear();
- void dump(raw_ostream &OS) const;
- bool extract(DataExtractor data, uint32_t *offset_ptr);
- /// getAbsoluteRanges - Returns absolute address ranges defined by this range
- /// list. Has to be passed base address of the compile unit referencing this
- /// range list.
- DWARFAddressRangesVector getAbsoluteRanges(uint64_t BaseAddress) const;
-};
-
-} // namespace llvm
-
-#endif // LLVM_DEBUGINFO_DWARFDEBUGRANGELIST_H
diff --git a/contrib/llvm/lib/DebugInfo/DWARFFormValue.cpp b/contrib/llvm/lib/DebugInfo/DWARFFormValue.cpp
index 8d0f966..d784bfc 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFFormValue.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFFormValue.cpp
@@ -7,11 +7,12 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/DebugInfo/DWARFFormValue.h"
-#include "DWARFCompileUnit.h"
-#include "DWARFContext.h"
+#include "SyntaxHighlighting.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
+#include "llvm/DebugInfo/DWARFCompileUnit.h"
+#include "llvm/DebugInfo/DWARFContext.h"
+#include "llvm/DebugInfo/DWARFFormValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
@@ -19,6 +20,7 @@
#include <cassert>
using namespace llvm;
using namespace dwarf;
+using namespace syntax;
namespace {
uint8_t getRefAddrSize(uint8_t AddrSize, uint16_t Version) {
@@ -139,6 +141,8 @@ bool DWARFFormValue::extractValue(DataExtractor data, uint32_t *offset_ptr,
switch (Form) {
case DW_FORM_addr:
case DW_FORM_ref_addr: {
+ if (!cu)
+ return false;
uint16_t AddrSize =
(Form == DW_FORM_addr)
? cu->getAddressByteSize()
@@ -179,8 +183,10 @@ bool DWARFFormValue::extractValue(DataExtractor data, uint32_t *offset_ptr,
break;
case DW_FORM_data4:
case DW_FORM_ref4: {
- RelocAddrMap::const_iterator AI = cu->getRelocMap()->find(*offset_ptr);
Value.uval = data.getU32(offset_ptr);
+ if (!cu)
+ break;
+ RelocAddrMap::const_iterator AI = cu->getRelocMap()->find(*offset_ptr-4);
if (AI != cu->getRelocMap()->end())
Value.uval += AI->second.second;
break;
@@ -193,13 +199,12 @@ bool DWARFFormValue::extractValue(DataExtractor data, uint32_t *offset_ptr,
Value.sval = data.getSLEB128(offset_ptr);
break;
case DW_FORM_strp: {
- RelocAddrMap::const_iterator AI
- = cu->getRelocMap()->find(*offset_ptr);
- if (AI != cu->getRelocMap()->end()) {
- const std::pair<uint8_t, int64_t> &R = AI->second;
- Value.uval = data.getU32(offset_ptr) + R.second;
- } else
- Value.uval = data.getU32(offset_ptr);
+ Value.uval = data.getU32(offset_ptr);
+ if (!cu)
+ break;
+ RelocAddrMap::const_iterator AI = cu->getRelocMap()->find(*offset_ptr-4);
+ if (AI != cu->getRelocMap()->end())
+ Value.uval += AI->second.second;
break;
}
case DW_FORM_udata:
@@ -215,13 +220,12 @@ bool DWARFFormValue::extractValue(DataExtractor data, uint32_t *offset_ptr,
break;
case DW_FORM_sec_offset: {
// FIXME: This is 64-bit for DWARF64.
- RelocAddrMap::const_iterator AI
- = cu->getRelocMap()->find(*offset_ptr);
- if (AI != cu->getRelocMap()->end()) {
- const std::pair<uint8_t, int64_t> &R = AI->second;
- Value.uval = data.getU32(offset_ptr) + R.second;
- } else
- Value.uval = data.getU32(offset_ptr);
+ Value.uval = data.getU32(offset_ptr);
+ if (!cu)
+ break;
+ RelocAddrMap::const_iterator AI = cu->getRelocMap()->find(*offset_ptr-4);
+ if (AI != cu->getRelocMap()->end())
+ Value.uval += AI->second.second;
break;
}
case DW_FORM_flag_present:
@@ -360,8 +364,6 @@ DWARFFormValue::skipValue(uint16_t form, DataExtractor debug_info_data,
void
DWARFFormValue::dump(raw_ostream &OS, const DWARFUnit *cu) const {
- DataExtractor debug_str_data(cu->getStringSection(), true, 0);
- DataExtractor debug_str_offset_data(cu->getStringOffsetSection(), true, 0);
uint64_t uvalue = Value.uval;
bool cu_relative_offset = false;
@@ -423,9 +425,10 @@ DWARFFormValue::dump(raw_ostream &OS, const DWARFUnit *cu) const {
OS << format(" .debug_str[0x%8.8x] = ", (uint32_t)uvalue);
Optional<const char *> DbgStr = getAsCString(cu);
if (DbgStr.hasValue()) {
- OS << '"';
- OS.write_escaped(DbgStr.getValue());
- OS << '"';
+ raw_ostream &COS = WithColor(OS, syntax::String);
+ COS << '"';
+ COS.write_escaped(DbgStr.getValue());
+ COS << '"';
}
break;
}
@@ -433,9 +436,10 @@ DWARFFormValue::dump(raw_ostream &OS, const DWARFUnit *cu) const {
OS << format(" indexed (%8.8x) string = ", (uint32_t)uvalue);
Optional<const char *> DbgStr = getAsCString(cu);
if (DbgStr.hasValue()) {
- OS << '"';
- OS.write_escaped(DbgStr.getValue());
- OS << '"';
+ raw_ostream &COS = WithColor(OS, syntax::String);
+ COS << '"';
+ COS.write_escaped(DbgStr.getValue());
+ COS << '"';
}
break;
}
@@ -479,8 +483,12 @@ DWARFFormValue::dump(raw_ostream &OS, const DWARFUnit *cu) const {
break;
}
- if (cu_relative_offset)
- OS << format(" => {0x%8.8" PRIx64 "}", uvalue + (cu ? cu->getOffset() : 0));
+ if (cu_relative_offset) {
+ OS << " => {";
+ WithColor(OS, syntax::Address).get()
+ << format("0x%8.8" PRIx64, uvalue + (cu ? cu->getOffset() : 0));
+ OS << "}";
+ }
}
Optional<const char *> DWARFFormValue::getAsCString(const DWARFUnit *U) const {
@@ -543,7 +551,15 @@ Optional<uint64_t> DWARFFormValue::getAsSectionOffset() const {
}
Optional<uint64_t> DWARFFormValue::getAsUnsignedConstant() const {
- if (!isFormClass(FC_Constant) || Form == DW_FORM_sdata)
+ if ((!isFormClass(FC_Constant) && !isFormClass(FC_Flag))
+ || Form == DW_FORM_sdata)
return None;
return Value.uval;
}
+
+Optional<ArrayRef<uint8_t>> DWARFFormValue::getAsBlock() const {
+ if (!isFormClass(FC_Block) && !isFormClass(FC_Exprloc))
+ return None;
+ return ArrayRef<uint8_t>(Value.data, Value.uval);
+}
+
diff --git a/contrib/llvm/lib/DebugInfo/DWARFRelocMap.h b/contrib/llvm/lib/DebugInfo/DWARFRelocMap.h
deleted file mode 100644
index 6929e36..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFRelocMap.h
+++ /dev/null
@@ -1,22 +0,0 @@
-//===-- DWARFRelocMap.h -----------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFRELOCMAP_H
-#define LLVM_DEBUGINFO_DWARFRELOCMAP_H
-
-#include "llvm/ADT/DenseMap.h"
-
-namespace llvm {
-
-typedef DenseMap<uint64_t, std::pair<uint8_t, int64_t> > RelocAddrMap;
-
-} // namespace llvm
-
-#endif // LLVM_DEBUGINFO_DWARFRELOCMAP_H
-
diff --git a/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.cpp b/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.cpp
index 303bf70..6e93e28 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFTypeUnit.h"
+#include "llvm/DebugInfo/DWARFTypeUnit.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.h b/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.h
deleted file mode 100644
index cf773b8..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFTypeUnit.h
+++ /dev/null
@@ -1,37 +0,0 @@
-//===-- DWARFTypeUnit.h -----------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFTYPEUNIT_H
-#define LLVM_DEBUGINFO_DWARFTYPEUNIT_H
-
-#include "DWARFUnit.h"
-
-namespace llvm {
-
-class DWARFTypeUnit : public DWARFUnit {
-private:
- uint64_t TypeHash;
- uint32_t TypeOffset;
-public:
- DWARFTypeUnit(const DWARFDebugAbbrev *DA, StringRef IS, StringRef RS,
- StringRef SS, StringRef SOS, StringRef AOS,
- const RelocAddrMap *M, bool LE)
- : DWARFUnit(DA, IS, RS, SS, SOS, AOS, M, LE) {}
- uint32_t getHeaderSize() const override {
- return DWARFUnit::getHeaderSize() + 12;
- }
- void dump(raw_ostream &OS);
-protected:
- bool extractImpl(DataExtractor debug_info, uint32_t *offset_ptr) override;
-};
-
-}
-
-#endif
-
diff --git a/contrib/llvm/lib/DebugInfo/DWARFUnit.cpp b/contrib/llvm/lib/DebugInfo/DWARFUnit.cpp
index 39d0a0f..395a179 100644
--- a/contrib/llvm/lib/DebugInfo/DWARFUnit.cpp
+++ b/contrib/llvm/lib/DebugInfo/DWARFUnit.cpp
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#include "DWARFUnit.h"
-#include "DWARFContext.h"
+#include "llvm/DebugInfo/DWARFUnit.h"
+#include "llvm/DebugInfo/DWARFContext.h"
#include "llvm/DebugInfo/DWARFFormValue.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Path.h"
@@ -17,12 +17,26 @@
using namespace llvm;
using namespace dwarf;
-DWARFUnit::DWARFUnit(const DWARFDebugAbbrev *DA, StringRef IS, StringRef RS,
- StringRef SS, StringRef SOS, StringRef AOS,
- const RelocAddrMap *M, bool LE)
- : Abbrev(DA), InfoSection(IS), RangeSection(RS), StringSection(SS),
- StringOffsetSection(SOS), AddrOffsetSection(AOS), RelocMap(M),
- isLittleEndian(LE) {
+void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) {
+ parseImpl(C, Section, C.getDebugAbbrev(), C.getRangeSection(),
+ C.getStringSection(), StringRef(), C.getAddrSection(),
+ C.isLittleEndian());
+}
+
+void DWARFUnitSectionBase::parseDWO(DWARFContext &C,
+ const DWARFSection &DWOSection) {
+ parseImpl(C, DWOSection, C.getDebugAbbrevDWO(), C.getRangeDWOSection(),
+ C.getStringDWOSection(), C.getStringOffsetDWOSection(),
+ C.getAddrSection(), C.isLittleEndian());
+}
+
+DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
+ const DWARFDebugAbbrev *DA, StringRef RS, StringRef SS,
+ StringRef SOS, StringRef AOS, bool LE,
+ const DWARFUnitSectionBase &UnitSection)
+ : Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS),
+ StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS),
+ isLittleEndian(LE), UnitSection(UnitSection) {
clear();
}
@@ -235,10 +249,14 @@ size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
return DieArray.size();
}
-DWARFUnit::DWOHolder::DWOHolder(object::ObjectFile *DWOFile)
- : DWOFile(DWOFile),
- DWOContext(cast<DWARFContext>(DIContext::getDWARFContext(DWOFile))),
- DWOU(nullptr) {
+DWARFUnit::DWOHolder::DWOHolder(StringRef DWOPath)
+ : DWOFile(), DWOContext(), DWOU(nullptr) {
+ auto Obj = object::ObjectFile::createObjectFile(DWOPath);
+ if (!Obj)
+ return;
+ DWOFile = std::move(Obj.get());
+ DWOContext.reset(
+ cast<DWARFContext>(DIContext::getDWARFContext(*DWOFile.getBinary())));
if (DWOContext->getNumDWOCompileUnits() > 0)
DWOU = DWOContext->getDWOCompileUnitAtIndex(0);
}
@@ -260,12 +278,7 @@ bool DWARFUnit::parseDWO() {
sys::path::append(AbsolutePath, CompilationDir);
}
sys::path::append(AbsolutePath, DWOFileName);
- ErrorOr<object::ObjectFile *> DWOFile =
- object::ObjectFile::createObjectFile(AbsolutePath);
- if (!DWOFile)
- return false;
- // Reset DWOHolder.
- DWO.reset(new DWOHolder(DWOFile.get()));
+ DWO = llvm::make_unique<DWOHolder>(AbsolutePath);
DWARFUnit *DWOCU = DWO->getUnit();
// Verify that compile unit in .dwo file is valid.
if (!DWOCU || DWOCU->getDWOId() != getDWOId()) {
diff --git a/contrib/llvm/lib/DebugInfo/DWARFUnit.h b/contrib/llvm/lib/DebugInfo/DWARFUnit.h
deleted file mode 100644
index 471da36..0000000
--- a/contrib/llvm/lib/DebugInfo/DWARFUnit.h
+++ /dev/null
@@ -1,163 +0,0 @@
-//===-- DWARFUnit.h ---------------------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DEBUGINFO_DWARFUNIT_H
-#define LLVM_DEBUGINFO_DWARFUNIT_H
-
-#include "DWARFDebugAbbrev.h"
-#include "DWARFDebugInfoEntry.h"
-#include "DWARFDebugRangeList.h"
-#include "DWARFRelocMap.h"
-#include <vector>
-
-namespace llvm {
-
-namespace object {
-class ObjectFile;
-}
-
-class DWARFDebugAbbrev;
-class StringRef;
-class raw_ostream;
-
-class DWARFUnit {
- const DWARFDebugAbbrev *Abbrev;
- StringRef InfoSection;
- StringRef RangeSection;
- uint32_t RangeSectionBase;
- StringRef StringSection;
- StringRef StringOffsetSection;
- StringRef AddrOffsetSection;
- uint32_t AddrOffsetSectionBase;
- const RelocAddrMap *RelocMap;
- bool isLittleEndian;
-
- uint32_t Offset;
- uint32_t Length;
- uint16_t Version;
- const DWARFAbbreviationDeclarationSet *Abbrevs;
- uint8_t AddrSize;
- uint64_t BaseAddr;
- // The compile unit debug information entry items.
- std::vector<DWARFDebugInfoEntryMinimal> DieArray;
-
- class DWOHolder {
- std::unique_ptr<object::ObjectFile> DWOFile;
- std::unique_ptr<DWARFContext> DWOContext;
- DWARFUnit *DWOU;
- public:
- DWOHolder(object::ObjectFile *DWOFile);
- DWARFUnit *getUnit() const { return DWOU; }
- };
- std::unique_ptr<DWOHolder> DWO;
-
-protected:
- virtual bool extractImpl(DataExtractor debug_info, uint32_t *offset_ptr);
- /// Size in bytes of the unit header.
- virtual uint32_t getHeaderSize() const { return 11; }
-
-public:
- DWARFUnit(const DWARFDebugAbbrev *DA, StringRef IS, StringRef RS,
- StringRef SS, StringRef SOS, StringRef AOS, const RelocAddrMap *M,
- bool LE);
-
- virtual ~DWARFUnit();
-
- StringRef getStringSection() const { return StringSection; }
- StringRef getStringOffsetSection() const { return StringOffsetSection; }
- void setAddrOffsetSection(StringRef AOS, uint32_t Base) {
- AddrOffsetSection = AOS;
- AddrOffsetSectionBase = Base;
- }
- void setRangesSection(StringRef RS, uint32_t Base) {
- RangeSection = RS;
- RangeSectionBase = Base;
- }
-
- bool getAddrOffsetSectionItem(uint32_t Index, uint64_t &Result) const;
- // FIXME: Result should be uint64_t in DWARF64.
- bool getStringOffsetSectionItem(uint32_t Index, uint32_t &Result) const;
-
- DataExtractor getDebugInfoExtractor() const {
- return DataExtractor(InfoSection, isLittleEndian, AddrSize);
- }
- DataExtractor getStringExtractor() const {
- return DataExtractor(StringSection, false, 0);
- }
-
- const RelocAddrMap *getRelocMap() const { return RelocMap; }
-
- bool extract(DataExtractor debug_info, uint32_t* offset_ptr);
-
- /// extractRangeList - extracts the range list referenced by this compile
- /// unit from .debug_ranges section. Returns true on success.
- /// Requires that compile unit is already extracted.
- bool extractRangeList(uint32_t RangeListOffset,
- DWARFDebugRangeList &RangeList) const;
- void clear();
- uint32_t getOffset() const { return Offset; }
- uint32_t getNextUnitOffset() const { return Offset + Length + 4; }
- uint32_t getLength() const { return Length; }
- uint16_t getVersion() const { return Version; }
- const DWARFAbbreviationDeclarationSet *getAbbreviations() const {
- return Abbrevs;
- }
- uint8_t getAddressByteSize() const { return AddrSize; }
- uint64_t getBaseAddress() const { return BaseAddr; }
-
- void setBaseAddress(uint64_t base_addr) {
- BaseAddr = base_addr;
- }
-
- const DWARFDebugInfoEntryMinimal *
- getCompileUnitDIE(bool extract_cu_die_only = true) {
- extractDIEsIfNeeded(extract_cu_die_only);
- return DieArray.empty() ? nullptr : &DieArray[0];
- }
-
- const char *getCompilationDir();
- uint64_t getDWOId();
-
- void collectAddressRanges(DWARFAddressRangesVector &CURanges);
-
- /// getInlinedChainForAddress - fetches inlined chain for a given address.
- /// Returns empty chain if there is no subprogram containing address. The
- /// chain is valid as long as parsed compile unit DIEs are not cleared.
- DWARFDebugInfoEntryInlinedChain getInlinedChainForAddress(uint64_t Address);
-
-private:
- /// Size in bytes of the .debug_info data associated with this compile unit.
- size_t getDebugInfoSize() const { return Length + 4 - getHeaderSize(); }
-
- /// extractDIEsIfNeeded - Parses a compile unit and indexes its DIEs if it
- /// hasn't already been done. Returns the number of DIEs parsed at this call.
- size_t extractDIEsIfNeeded(bool CUDieOnly);
- /// extractDIEsToVector - Appends all parsed DIEs to a vector.
- void extractDIEsToVector(bool AppendCUDie, bool AppendNonCUDIEs,
- std::vector<DWARFDebugInfoEntryMinimal> &DIEs) const;
- /// setDIERelations - We read in all of the DIE entries into our flat list
- /// of DIE entries and now we need to go back through all of them and set the
- /// parent, sibling and child pointers for quick DIE navigation.
- void setDIERelations();
- /// clearDIEs - Clear parsed DIEs to keep memory usage low.
- void clearDIEs(bool KeepCUDie);
-
- /// parseDWO - Parses .dwo file for current compile unit. Returns true if
- /// it was actually constructed.
- bool parseDWO();
-
- /// getSubprogramForAddress - Returns subprogram DIE with address range
- /// encompassing the provided address. The pointer is alive as long as parsed
- /// compile unit DIEs are not cleared.
- const DWARFDebugInfoEntryMinimal *getSubprogramForAddress(uint64_t Address);
-};
-
-}
-
-#endif
diff --git a/contrib/llvm/lib/DebugInfo/SyntaxHighlighting.cpp b/contrib/llvm/lib/DebugInfo/SyntaxHighlighting.cpp
new file mode 100644
index 0000000..a6b4c65
--- /dev/null
+++ b/contrib/llvm/lib/DebugInfo/SyntaxHighlighting.cpp
@@ -0,0 +1,37 @@
+//===-- SyntaxHighlighting.cpp ----------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SyntaxHighlighting.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+using namespace dwarf;
+using namespace syntax;
+
+static cl::opt<cl::boolOrDefault>
+ UseColor("color",
+ cl::desc("use colored syntax highlighting (default=autodetect)"),
+ cl::init(cl::BOU_UNSET));
+
+WithColor::WithColor(llvm::raw_ostream &OS, enum HighlightColor Type) : OS(OS) {
+ // Detect color from terminal type unless the user passed the --color option.
+ if (UseColor == cl::BOU_UNSET ? OS.has_colors() : UseColor == cl::BOU_TRUE) {
+ switch (Type) {
+ case Address: OS.changeColor(llvm::raw_ostream::YELLOW); break;
+ case String: OS.changeColor(llvm::raw_ostream::GREEN); break;
+ case Tag: OS.changeColor(llvm::raw_ostream::BLUE); break;
+ case Attribute: OS.changeColor(llvm::raw_ostream::CYAN); break;
+ case Enumerator: OS.changeColor(llvm::raw_ostream::MAGENTA); break;
+ }
+ }
+}
+
+WithColor::~WithColor() {
+ if (UseColor == cl::BOU_UNSET ? OS.has_colors() : UseColor == cl::BOU_TRUE)
+ OS.resetColor();
+}
diff --git a/contrib/llvm/lib/DebugInfo/SyntaxHighlighting.h b/contrib/llvm/lib/DebugInfo/SyntaxHighlighting.h
new file mode 100644
index 0000000..946a313
--- /dev/null
+++ b/contrib/llvm/lib/DebugInfo/SyntaxHighlighting.h
@@ -0,0 +1,39 @@
+//===-- SyntaxHighlighting.h ------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_DEBUGINFO_SYNTAXHIGHLIGHTING_H
+#define LLVM_LIB_DEBUGINFO_SYNTAXHIGHLIGHTING_H
+
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+namespace dwarf {
+namespace syntax {
+
+// Symbolic names for various syntax elements.
+enum HighlightColor { Address, String, Tag, Attribute, Enumerator };
+
+/// An RAII object that temporarily switches an output stream to a
+/// specific color.
+class WithColor {
+ llvm::raw_ostream &OS;
+
+public:
+ /// To be used like this: WithColor(OS, syntax::String) << "text";
+ WithColor(llvm::raw_ostream &OS, enum HighlightColor Type);
+ ~WithColor();
+
+ llvm::raw_ostream& get() { return OS; }
+ operator llvm::raw_ostream& () { return OS; }
+};
+}
+}
+}
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h b/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h
index 66645d7..6f17427 100644
--- a/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h
+++ b/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h
@@ -1,67 +1,68 @@
-//===-- JIT.h - Abstract Execution Engine Interface -------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Common functionality for JITEventListener implementations
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef EVENT_LISTENER_COMMON_H
-#define EVENT_LISTENER_COMMON_H
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/IR/DebugInfo.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Support/Path.h"
-
-namespace llvm {
-
-namespace jitprofiling {
-
-class FilenameCache {
- // Holds the filename of each Scope, so that we can pass a null-terminated
- // string into oprofile. Use an AssertingVH rather than a ValueMap because we
- // shouldn't be modifying any MDNodes while this map is alive.
- DenseMap<AssertingVH<MDNode>, std::string> Filenames;
- DenseMap<AssertingVH<MDNode>, std::string> Paths;
-
- public:
- const char *getFilename(MDNode *Scope) {
- std::string &Filename = Filenames[Scope];
- if (Filename.empty()) {
- DIScope DIScope(Scope);
- Filename = DIScope.getFilename();
- }
- return Filename.c_str();
- }
-
- const char *getFullPath(MDNode *Scope) {
- std::string &P = Paths[Scope];
- if (P.empty()) {
- DIScope DIScope(Scope);
- StringRef DirName = DIScope.getDirectory();
- StringRef FileName = DIScope.getFilename();
- SmallString<256> FullPath;
- if (DirName != "." && DirName != "") {
- FullPath = DirName;
- }
- if (FileName != "") {
- sys::path::append(FullPath, FileName);
- }
- P = FullPath.str();
- }
- return P.c_str();
- }
-};
-
-} // namespace jitprofiling
-
-} // namespace llvm
-
-#endif //EVENT_LISTENER_COMMON_H
+//===-- JIT.h - Abstract Execution Engine Interface -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Common functionality for JITEventListener implementations
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef EVENT_LISTENER_COMMON_H
+#define EVENT_LISTENER_COMMON_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Path.h"
+
+namespace llvm {
+
+namespace jitprofiling {
+
+class FilenameCache {
+ // Holds the filename of each Scope, so that we can pass a null-terminated
+ // string into oprofile.
+ DenseMap<const MDNode *, std::string> Filenames;
+ DenseMap<const MDNode *, std::string> Paths;
+
+ public:
+ const char *getFilename(MDNode *Scope) {
+ assert(Scope->isResolved() && "Expected Scope to be resolved");
+ std::string &Filename = Filenames[Scope];
+ if (Filename.empty()) {
+ DIScope DIScope(Scope);
+ Filename = DIScope.getFilename();
+ }
+ return Filename.c_str();
+ }
+
+ const char *getFullPath(MDNode *Scope) {
+ assert(Scope->isResolved() && "Expected Scope to be resolved");
+ std::string &P = Paths[Scope];
+ if (P.empty()) {
+ DIScope DIScope(Scope);
+ StringRef DirName = DIScope.getDirectory();
+ StringRef FileName = DIScope.getFilename();
+ SmallString<256> FullPath;
+ if (DirName != "." && DirName != "") {
+ FullPath = DirName;
+ }
+ if (FileName != "") {
+ sys::path::append(FullPath, FileName);
+ }
+ P = FullPath.str();
+ }
+ return P.c_str();
+ }
+};
+
+} // namespace jitprofiling
+
+} // namespace llvm
+
+#endif //EVENT_LISTENER_COMMON_H
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
index b0e985d..32d20ea 100644
--- a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -16,14 +16,14 @@
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/ExecutionEngine/ObjectCache.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
+#include "llvm/Object/Archive.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
@@ -42,27 +42,16 @@ using namespace llvm;
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
STATISTIC(NumGlobals , "Number of global vars initialized");
-// Pin the vtable to this file.
-void ObjectCache::anchor() {}
-void ObjectBuffer::anchor() {}
-void ObjectBufferStream::anchor() {}
-
-ExecutionEngine *(*ExecutionEngine::JITCtor)(
- Module *M,
- std::string *ErrorStr,
- JITMemoryManager *JMM,
- bool GVsWithCode,
- TargetMachine *TM) = nullptr;
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
- Module *M,
- std::string *ErrorStr,
- RTDyldMemoryManager *MCJMM,
- bool GVsWithCode,
- TargetMachine *TM) = nullptr;
-ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
+ std::unique_ptr<Module> M, std::string *ErrorStr,
+ std::unique_ptr<RTDyldMemoryManager> MCJMM,
+ std::unique_ptr<TargetMachine> TM) = nullptr;
+ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
std::string *ErrorStr) =nullptr;
-ExecutionEngine::ExecutionEngine(Module *M)
+void JITEventListener::anchor() {}
+
+ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
: EEState(*this),
LazyFunctionCreator(nullptr) {
CompilingLazily = false;
@@ -77,14 +66,12 @@ ExecutionEngine::ExecutionEngine(Module *M)
VerifyModules = false;
#endif
- Modules.push_back(M);
assert(M && "Module is null?");
+ Modules.push_back(std::move(M));
}
ExecutionEngine::~ExecutionEngine() {
clearAllGlobalMappings();
- for (unsigned i = 0, e = Modules.size(); i != e; ++i)
- delete Modules[i];
}
namespace {
@@ -101,8 +88,8 @@ public:
Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
void *RawMemory = ::operator new(
- DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
- TD.getPreferredAlignment(GV))
+ RoundUpToAlignment(sizeof(GVMemoryBlock),
+ TD.getPreferredAlignment(GV))
+ GVSize);
new(RawMemory) GVMemoryBlock(GV);
return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
@@ -126,11 +113,20 @@ void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
}
+void
+ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
+ llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
+}
+
+void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
+ llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
+}
+
bool ExecutionEngine::removeModule(Module *M) {
- for(SmallVectorImpl<Module *>::iterator I = Modules.begin(),
- E = Modules.end(); I != E; ++I) {
- Module *Found = *I;
+ for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
+ Module *Found = I->get();
if (Found == M) {
+ I->release();
Modules.erase(I);
clearGlobalMappingsFromModule(M);
return true;
@@ -254,19 +250,9 @@ const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
namespace {
class ArgvArray {
- char *Array;
- std::vector<char*> Values;
+ std::unique_ptr<char[]> Array;
+ std::vector<std::unique_ptr<char[]>> Values;
public:
- ArgvArray() : Array(nullptr) {}
- ~ArgvArray() { clear(); }
- void clear() {
- delete[] Array;
- Array = nullptr;
- for (size_t I = 0, E = Values.size(); I != E; ++I) {
- delete[] Values[I];
- }
- Values.clear();
- }
/// Turn a vector of strings into a nice argv style array of pointers to null
/// terminated strings.
void *reset(LLVMContext &C, ExecutionEngine *EE,
@@ -275,38 +261,39 @@ public:
} // anonymous namespace
void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
- clear(); // Free the old contents.
+ Values.clear(); // Free the old contents.
+ Values.reserve(InputArgv.size());
unsigned PtrSize = EE->getDataLayout()->getPointerSize();
- Array = new char[(InputArgv.size()+1)*PtrSize];
+ Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize);
- DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
+ DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n");
Type *SBytePtr = Type::getInt8PtrTy(C);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
- char *Dest = new char[Size];
- Values.push_back(Dest);
- DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
+ auto Dest = make_unique<char[]>(Size);
+ DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n");
- std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
Dest[Size-1] = 0;
// Endian safe: Array[i] = (PointerTy)Dest;
- EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
- SBytePtr);
+ EE->StoreValueToMemory(PTOGV(Dest.get()),
+ (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
+ Values.push_back(std::move(Dest));
}
// Null terminate it
EE->StoreValueToMemory(PTOGV(nullptr),
- (GenericValue*)(Array+InputArgv.size()*PtrSize),
+ (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
SBytePtr);
- return Array;
+ return Array.get();
}
-void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
+void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
- GlobalVariable *GV = module->getNamedGlobal(Name);
+ GlobalVariable *GV = module.getNamedGlobal(Name);
// If this global has internal linkage, or if it has a use, then it must be
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
@@ -344,8 +331,8 @@ void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
- for (unsigned i = 0, e = Modules.size(); i != e; ++i)
- runStaticConstructorsDestructors(Modules[i], isDtors);
+ for (std::unique_ptr<Module> &M : Modules)
+ runStaticConstructorsDestructors(*M, isDtors);
}
#ifndef NDEBUG
@@ -406,55 +393,17 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
}
-ExecutionEngine *ExecutionEngine::create(Module *M,
- bool ForceInterpreter,
- std::string *ErrorStr,
- CodeGenOpt::Level OptLevel,
- bool GVsWithCode) {
-
- EngineBuilder EB =
- EngineBuilder(M)
- .setEngineKind(ForceInterpreter ? EngineKind::Interpreter
- : EngineKind::Either)
- .setErrorStr(ErrorStr)
- .setOptLevel(OptLevel)
- .setAllocateGVsWithCode(GVsWithCode);
-
- return EB.create();
+EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
+ : M(std::move(M)), MCJMM(nullptr) {
+ InitEngine();
}
-/// createJIT - This is the factory method for creating a JIT for the current
-/// machine, it does not fall back to the interpreter. This takes ownership
-/// of the module.
-ExecutionEngine *ExecutionEngine::createJIT(Module *M,
- std::string *ErrorStr,
- JITMemoryManager *JMM,
- CodeGenOpt::Level OL,
- bool GVsWithCode,
- Reloc::Model RM,
- CodeModel::Model CMM) {
- if (!ExecutionEngine::JITCtor) {
- if (ErrorStr)
- *ErrorStr = "JIT has not been linked in.";
- return nullptr;
- }
+EngineBuilder::~EngineBuilder() {}
- // Use the defaults for extra parameters. Users can use EngineBuilder to
- // set them.
- EngineBuilder EB(M);
- EB.setEngineKind(EngineKind::JIT);
- EB.setErrorStr(ErrorStr);
- EB.setRelocationModel(RM);
- EB.setCodeModel(CMM);
- EB.setAllocateGVsWithCode(GVsWithCode);
- EB.setOptLevel(OL);
- EB.setJITMemoryManager(JMM);
-
- // TODO: permit custom TargetOptions here
- TargetMachine *TM = EB.selectTarget();
- if (!TM || (ErrorStr && ErrorStr->length() > 0)) return nullptr;
-
- return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
+EngineBuilder &EngineBuilder::setMCJITMemoryManager(
+ std::unique_ptr<RTDyldMemoryManager> mcjmm) {
+ MCJMM = std::move(mcjmm);
+ return *this;
}
void EngineBuilder::InitEngine() {
@@ -462,12 +411,9 @@ void EngineBuilder::InitEngine() {
ErrorStr = nullptr;
OptLevel = CodeGenOpt::Default;
MCJMM = nullptr;
- JMM = nullptr;
Options = TargetOptions();
- AllocateGVsWithCode = false;
RelocModel = Reloc::Default;
CMModel = CodeModel::JITDefault;
- UseMCJIT = false;
// IR module verification is enabled by default in debug builds, and disabled
// by default in release builds.
@@ -485,13 +431,11 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
// to the function tells DynamicLibrary to load the program, not a library.
if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
return nullptr;
-
- assert(!(JMM && MCJMM));
// If the user specified a memory manager but didn't specify which engine to
// create, we assume they only want the JIT, and we fail if they only want
// the interpreter.
- if (JMM || MCJMM) {
+ if (MCJMM) {
if (WhichEngine & EngineKind::JIT)
WhichEngine = EngineKind::JIT;
else {
@@ -500,14 +444,6 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
return nullptr;
}
}
-
- if (MCJMM && ! UseMCJIT) {
- if (ErrorStr)
- *ErrorStr =
- "Cannot create a legacy JIT with a runtime dyld memory "
- "manager.";
- return nullptr;
- }
// Unless the interpreter was explicitly selected or the JIT is not linked,
// try making a JIT.
@@ -520,13 +456,9 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
}
ExecutionEngine *EE = nullptr;
- if (UseMCJIT && ExecutionEngine::MCJITCtor)
- EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM,
- AllocateGVsWithCode, TheTM.release());
- else if (ExecutionEngine::JITCtor)
- EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM,
- AllocateGVsWithCode, TheTM.release());
-
+ if (ExecutionEngine::MCJITCtor)
+ EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM),
+ std::move(TheTM));
if (EE) {
EE->setVerifyModules(VerifyModules);
return EE;
@@ -537,14 +469,13 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
// an interpreter instead.
if (WhichEngine & EngineKind::Interpreter) {
if (ExecutionEngine::InterpCtor)
- return ExecutionEngine::InterpCtor(M, ErrorStr);
+ return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
if (ErrorStr)
*ErrorStr = "Interpreter has not been linked in.";
return nullptr;
}
- if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor &&
- !ExecutionEngine::MCJITCtor) {
+ if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
}
@@ -890,9 +821,6 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
- else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
- Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
- BA->getBasicBlock())));
else
llvm_unreachable("Unknown constant pointer type!");
break;
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
index 6ff1e7a..aaa53f0 100644
--- a/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -27,14 +27,6 @@ using namespace llvm;
// Wrapping the C bindings types.
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef)
-inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) {
- return reinterpret_cast<TargetLibraryInfo*>(P);
-}
-
-inline LLVMTargetLibraryInfoRef wrap(const TargetLibraryInfo *P) {
- TargetLibraryInfo *X = const_cast<TargetLibraryInfo*>(P);
- return reinterpret_cast<LLVMTargetLibraryInfoRef>(X);
-}
inline LLVMTargetMachineRef wrap(const TargetMachine *P) {
return
@@ -110,7 +102,7 @@ LLVMBool LLVMCreateExecutionEngineForModule(LLVMExecutionEngineRef *OutEE,
LLVMModuleRef M,
char **OutError) {
std::string Error;
- EngineBuilder builder(unwrap(M));
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
builder.setEngineKind(EngineKind::Either)
.setErrorStr(&Error);
if (ExecutionEngine *EE = builder.create()){
@@ -125,7 +117,7 @@ LLVMBool LLVMCreateInterpreterForModule(LLVMExecutionEngineRef *OutInterp,
LLVMModuleRef M,
char **OutError) {
std::string Error;
- EngineBuilder builder(unwrap(M));
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
builder.setEngineKind(EngineKind::Interpreter)
.setErrorStr(&Error);
if (ExecutionEngine *Interp = builder.create()) {
@@ -141,7 +133,7 @@ LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT,
unsigned OptLevel,
char **OutError) {
std::string Error;
- EngineBuilder builder(unwrap(M));
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
builder.setEngineKind(EngineKind::JIT)
.setErrorStr(&Error)
.setOptLevel((CodeGenOpt::Level)OptLevel);
@@ -189,15 +181,15 @@ LLVMBool LLVMCreateMCJITCompilerForModule(
targetOptions.EnableFastISel = options.EnableFastISel;
std::string Error;
- EngineBuilder builder(unwrap(M));
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
builder.setEngineKind(EngineKind::JIT)
.setErrorStr(&Error)
- .setUseMCJIT(true)
.setOptLevel((CodeGenOpt::Level)options.OptLevel)
.setCodeModel(unwrap(options.CodeModel))
.setTargetOptions(targetOptions);
if (options.MCJMM)
- builder.setMCJITMemoryManager(unwrap(options.MCJMM));
+ builder.setMCJITMemoryManager(
+ std::unique_ptr<RTDyldMemoryManager>(unwrap(options.MCJMM)));
if (ExecutionEngine *JIT = builder.create()) {
*OutJIT = wrap(JIT);
return 0;
@@ -275,11 +267,10 @@ LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
}
void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) {
- unwrap(EE)->freeMachineCodeForFunction(unwrap<Function>(F));
}
void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){
- unwrap(EE)->addModule(unwrap(M));
+ unwrap(EE)->addModule(std::unique_ptr<Module>(unwrap(M)));
}
void LLVMAddModuleProvider(LLVMExecutionEngineRef EE, LLVMModuleProviderRef MP){
@@ -314,7 +305,7 @@ LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE,
LLVMValueRef Fn) {
- return unwrap(EE)->recompileAndRelinkFunction(unwrap<Function>(Fn));
+ return nullptr;
}
LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
@@ -337,6 +328,14 @@ void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) {
return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global));
}
+uint64_t LLVMGetGlobalValueAddress(LLVMExecutionEngineRef EE, const char *Name) {
+ return unwrap(EE)->getGlobalValueAddress(Name);
+}
+
+uint64_t LLVMGetFunctionAddress(LLVMExecutionEngineRef EE, const char *Name) {
+ return unwrap(EE)->getFunctionAddress(Name);
+}
+
/*===-- Operations on memory managers -------------------------------------===*/
namespace {
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp b/contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp
index 8546571..8ef878c 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp
@@ -1,4 +1,4 @@
-//===-- GDBRegistrar.cpp - Registers objects with GDB ---------------------===//
+//===----- GDBRegistrationListener.cpp - Registers objects with GDB -------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,15 +7,17 @@
//
//===----------------------------------------------------------------------===//
-#include "JITRegistrar.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/MutexGuard.h"
-#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
+using namespace llvm::object;
// This must be kept in sync with gdb/gdb/jit.h .
extern "C" {
@@ -60,37 +62,59 @@ extern "C" {
namespace {
+struct RegisteredObjectInfo {
+ RegisteredObjectInfo() {}
+
+ RegisteredObjectInfo(std::size_t Size, jit_code_entry *Entry,
+ OwningBinary<ObjectFile> Obj)
+ : Size(Size), Entry(Entry), Obj(std::move(Obj)) {}
+
+ RegisteredObjectInfo(RegisteredObjectInfo &&Other)
+ : Size(Other.Size), Entry(Other.Entry), Obj(std::move(Other.Obj)) {}
+
+ RegisteredObjectInfo& operator=(RegisteredObjectInfo &&Other) {
+ Size = Other.Size;
+ Entry = Other.Entry;
+ Obj = std::move(Other.Obj);
+ return *this;
+ }
+
+ std::size_t Size;
+ jit_code_entry *Entry;
+ OwningBinary<ObjectFile> Obj;
+};
+
// Buffer for an in-memory object file in executable memory
-typedef llvm::DenseMap< const char*,
- std::pair<std::size_t, jit_code_entry*> >
+typedef llvm::DenseMap< const char*, RegisteredObjectInfo>
RegisteredObjectBufferMap;
/// Global access point for the JIT debugging interface designed for use with a
/// singleton toolbox. Handles thread-safe registration and deregistration of
/// object files that are in executable memory managed by the client of this
/// class.
-class GDBJITRegistrar : public JITRegistrar {
+class GDBJITRegistrationListener : public JITEventListener {
/// A map of in-memory object files that have been registered with the
/// JIT interface.
RegisteredObjectBufferMap ObjectBufferMap;
public:
/// Instantiates the JIT service.
- GDBJITRegistrar() : ObjectBufferMap() {}
+ GDBJITRegistrationListener() : ObjectBufferMap() {}
/// Unregisters each object that was previously registered and releases all
/// internal resources.
- virtual ~GDBJITRegistrar();
+ virtual ~GDBJITRegistrationListener();
/// Creates an entry in the JIT registry for the buffer @p Object,
/// which must contain an object file in executable memory with any
/// debug information for the debugger.
- void registerObject(const ObjectBuffer &Object) override;
+ void NotifyObjectEmitted(const ObjectFile &Object,
+ const RuntimeDyld::LoadedObjectInfo &L) override;
/// Removes the internal registration of @p Object, and
/// frees associated resources.
/// Returns true if @p Object was found in ObjectBufferMap.
- bool deregisterObject(const ObjectBuffer &Object) override;
+ void NotifyFreeingObject(const ObjectFile &Object) override;
private:
/// Deregister the debug info for the given object file from the debugger
@@ -101,7 +125,7 @@ private:
/// Lock used to serialize all jit registration events, since they
/// modify global variables.
-llvm::sys::Mutex JITDebugLock;
+ManagedStatic<sys::Mutex> JITDebugLock;
/// Do the registration.
void NotifyDebugger(jit_code_entry* JITCodeEntry) {
@@ -119,10 +143,11 @@ void NotifyDebugger(jit_code_entry* JITCodeEntry) {
__jit_debug_register_code();
}
-GDBJITRegistrar::~GDBJITRegistrar() {
+GDBJITRegistrationListener::~GDBJITRegistrationListener() {
// Free all registered object files.
- llvm::MutexGuard locked(JITDebugLock);
- for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(), E = ObjectBufferMap.end();
+ llvm::MutexGuard locked(*JITDebugLock);
+ for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(),
+ E = ObjectBufferMap.end();
I != E; ++I) {
// Call the private method that doesn't update the map so our iterator
// doesn't break.
@@ -131,14 +156,24 @@ GDBJITRegistrar::~GDBJITRegistrar() {
ObjectBufferMap.clear();
}
-void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) {
+void GDBJITRegistrationListener::NotifyObjectEmitted(
+ const ObjectFile &Object,
+ const RuntimeDyld::LoadedObjectInfo &L) {
+
+ OwningBinary<ObjectFile> DebugObj = L.getObjectForDebug(Object);
+
+ // Bail out if debug objects aren't supported.
+ if (!DebugObj.getBinary())
+ return;
+
+ const char *Buffer = DebugObj.getBinary()->getMemoryBufferRef().getBufferStart();
+ size_t Size = DebugObj.getBinary()->getMemoryBufferRef().getBufferSize();
- const char *Buffer = Object.getBufferStart();
- size_t Size = Object.getBufferSize();
+ const char *Key = Object.getMemoryBufferRef().getBufferStart();
- assert(Buffer && "Attempt to register a null object with a debugger.");
- llvm::MutexGuard locked(JITDebugLock);
- assert(ObjectBufferMap.find(Buffer) == ObjectBufferMap.end() &&
+ assert(Key && "Attempt to register a null object with a debugger.");
+ llvm::MutexGuard locked(*JITDebugLock);
+ assert(ObjectBufferMap.find(Key) == ObjectBufferMap.end() &&
"Second attempt to perform debug registration.");
jit_code_entry* JITCodeEntry = new jit_code_entry();
@@ -149,28 +184,27 @@ void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) {
JITCodeEntry->symfile_addr = Buffer;
JITCodeEntry->symfile_size = Size;
- ObjectBufferMap[Buffer] = std::make_pair(Size, JITCodeEntry);
+ ObjectBufferMap[Key] = RegisteredObjectInfo(Size, JITCodeEntry,
+ std::move(DebugObj));
NotifyDebugger(JITCodeEntry);
}
}
-bool GDBJITRegistrar::deregisterObject(const ObjectBuffer& Object) {
- const char *Buffer = Object.getBufferStart();
- llvm::MutexGuard locked(JITDebugLock);
- RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Buffer);
+void GDBJITRegistrationListener::NotifyFreeingObject(const ObjectFile& Object) {
+ const char *Key = Object.getMemoryBufferRef().getBufferStart();
+ llvm::MutexGuard locked(*JITDebugLock);
+ RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Key);
if (I != ObjectBufferMap.end()) {
deregisterObjectInternal(I);
ObjectBufferMap.erase(I);
- return true;
}
- return false;
}
-void GDBJITRegistrar::deregisterObjectInternal(
+void GDBJITRegistrationListener::deregisterObjectInternal(
RegisteredObjectBufferMap::iterator I) {
- jit_code_entry*& JITCodeEntry = I->second.second;
+ jit_code_entry*& JITCodeEntry = I->second.Entry;
// Do the unregistration.
{
@@ -200,14 +234,14 @@ void GDBJITRegistrar::deregisterObjectInternal(
JITCodeEntry = nullptr;
}
-llvm::ManagedStatic<GDBJITRegistrar> TheRegistrar;
+llvm::ManagedStatic<GDBJITRegistrationListener> GDBRegListener;
} // end namespace
namespace llvm {
-JITRegistrar& JITRegistrar::getGDBRegistrar() {
- return *TheRegistrar;
+JITEventListener* JITEventListener::createGDBRegistrationListener() {
+ return &*GDBRegListener;
}
} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
index 4e22a8b..ee9096b 100644
--- a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
@@ -13,25 +13,24 @@
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
+#include "EventListenerCommon.h"
+#include "IntelJITEventsWrapper.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/DebugInfo/DIContext.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
-
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/DebugInfo/DIContext.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/IR/ValueHandle.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Errno.h"
-#include "llvm/IR/ValueHandle.h"
-#include "EventListenerCommon.h"
-#include "IntelJITEventsWrapper.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::jitprofiling;
+using namespace llvm::object;
#define DEBUG_TYPE "amplifier-jit-event-listener"
@@ -48,6 +47,7 @@ class IntelJITEventListener : public JITEventListener {
typedef DenseMap<const void *, MethodAddressVector> ObjectMap;
ObjectMap LoadedObjectMap;
+ std::map<const char*, OwningBinary<ObjectFile>> DebugObjects;
public:
IntelJITEventListener(IntelJITEventsWrapper* libraryWrapper) {
@@ -57,29 +57,12 @@ public:
~IntelJITEventListener() {
}
- virtual void NotifyFunctionEmitted(const Function &F,
- void *FnStart, size_t FnSize,
- const EmittedFunctionDetails &Details);
+ void NotifyObjectEmitted(const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) override;
- virtual void NotifyFreeingMachineCode(void *OldPtr);
-
- virtual void NotifyObjectEmitted(const ObjectImage &Obj);
-
- virtual void NotifyFreeingObject(const ObjectImage &Obj);
+ void NotifyFreeingObject(const ObjectFile &Obj) override;
};
-static LineNumberInfo LineStartToIntelJITFormat(
- uintptr_t StartAddress,
- uintptr_t Address,
- DebugLoc Loc) {
- LineNumberInfo Result;
-
- Result.Offset = Address - StartAddress;
- Result.LineNumber = Loc.getLine();
-
- return Result;
-}
-
static LineNumberInfo DILineInfoToIntelJITFormat(uintptr_t StartAddress,
uintptr_t Address,
DILineInfo Line) {
@@ -113,97 +96,29 @@ static iJIT_Method_Load FunctionDescToIntelJITFormat(
return Result;
}
-// Adds the just-emitted function to the symbol table.
-void IntelJITEventListener::NotifyFunctionEmitted(
- const Function &F, void *FnStart, size_t FnSize,
- const EmittedFunctionDetails &Details) {
- iJIT_Method_Load FunctionMessage = FunctionDescToIntelJITFormat(*Wrapper,
- F.getName().data(),
- reinterpret_cast<uint64_t>(FnStart),
- FnSize);
-
- std::vector<LineNumberInfo> LineInfo;
-
- if (!Details.LineStarts.empty()) {
- // Now convert the line number information from the address/DebugLoc
- // format in Details to the offset/lineno in Intel JIT API format.
-
- LineInfo.reserve(Details.LineStarts.size() + 1);
-
- DebugLoc FirstLoc = Details.LineStarts[0].Loc;
- assert(!FirstLoc.isUnknown()
- && "LineStarts should not contain unknown DebugLocs");
-
- MDNode *FirstLocScope = FirstLoc.getScope(F.getContext());
- DISubprogram FunctionDI = getDISubprogram(FirstLocScope);
- if (FunctionDI.Verify()) {
- FunctionMessage.source_file_name = const_cast<char*>(
- Filenames.getFullPath(FirstLocScope));
-
- LineNumberInfo FirstLine;
- FirstLine.Offset = 0;
- FirstLine.LineNumber = FunctionDI.getLineNumber();
- LineInfo.push_back(FirstLine);
- }
-
- for (std::vector<EmittedFunctionDetails::LineStart>::const_iterator I =
- Details.LineStarts.begin(), E = Details.LineStarts.end();
- I != E; ++I) {
- // This implementation ignores the DebugLoc filename because the Intel
- // JIT API does not support multiple source files associated with a single
- // JIT function
- LineInfo.push_back(LineStartToIntelJITFormat(
- reinterpret_cast<uintptr_t>(FnStart),
- I->Address,
- I->Loc));
-
- // If we have no file name yet for the function, use the filename from
- // the first instruction that has one
- if (FunctionMessage.source_file_name == 0) {
- MDNode *scope = I->Loc.getScope(
- Details.MF->getFunction()->getContext());
- FunctionMessage.source_file_name = const_cast<char*>(
- Filenames.getFullPath(scope));
- }
- }
-
- FunctionMessage.line_number_size = LineInfo.size();
- FunctionMessage.line_number_table = &*LineInfo.begin();
- } else {
- FunctionMessage.line_number_size = 0;
- FunctionMessage.line_number_table = 0;
- }
+void IntelJITEventListener::NotifyObjectEmitted(
+ const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) {
- Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
- &FunctionMessage);
- MethodIDs[FnStart] = FunctionMessage.method_id;
-}
+ OwningBinary<ObjectFile> DebugObjOwner = L.getObjectForDebug(Obj);
+ const ObjectFile &DebugObj = *DebugObjOwner.getBinary();
-void IntelJITEventListener::NotifyFreeingMachineCode(void *FnStart) {
- MethodIDMap::iterator I = MethodIDs.find(FnStart);
- if (I != MethodIDs.end()) {
- Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_UNLOAD_START, &I->second);
- MethodIDs.erase(I);
- }
-}
-
-void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
// Get the address of the object image for use as a unique identifier
- const void* ObjData = Obj.getData().data();
- DIContext* Context = DIContext::getDWARFContext(Obj.getObjectFile());
+ const void* ObjData = DebugObj.getData().data();
+ DIContext* Context = DIContext::getDWARFContext(DebugObj);
MethodAddressVector Functions;
// Use symbol info to iterate functions in the object.
- for (object::symbol_iterator I = Obj.begin_symbols(),
- E = Obj.end_symbols();
+ for (symbol_iterator I = DebugObj.symbol_begin(),
+ E = DebugObj.symbol_end();
I != E;
++I) {
std::vector<LineNumberInfo> LineInfo;
std::string SourceFileName;
- object::SymbolRef::Type SymType;
+ SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
- if (SymType == object::SymbolRef::ST_Function) {
+ if (SymType == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
uint64_t Size;
@@ -233,6 +148,18 @@ void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
FunctionMessage.line_number_size = 0;
FunctionMessage.line_number_table = 0;
} else {
+ // Source line information for the address range is provided as
+ // a code offset for the start of the corresponding sub-range and
+ // a source line. JIT API treats offsets in LineNumberInfo structures
+ // as the end of the corresponding code region. The start of the code
+ // is taken from the previous element. Need to shift the elements.
+
+ LineNumberInfo last = LineInfo.back();
+ last.Offset = FunctionMessage.method_size;
+ LineInfo.push_back(last);
+ for (size_t i = LineInfo.size() - 2; i > 0; --i)
+ LineInfo[i].LineNumber = LineInfo[i - 1].LineNumber;
+
SourceFileName = Lines.front().second.FileName;
FunctionMessage.source_file_name = const_cast<char *>(SourceFileName.c_str());
FunctionMessage.line_number_size = LineInfo.size();
@@ -254,11 +181,18 @@ void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
// registered function addresses for each loaded object. We will
// use the MethodIDs map to get the registered ID for each function.
LoadedObjectMap[ObjData] = Functions;
+ DebugObjects[Obj.getData().data()] = std::move(DebugObjOwner);
}
-void IntelJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
+void IntelJITEventListener::NotifyFreeingObject(const ObjectFile &Obj) {
+ // This object may not have been registered with the listener. If it wasn't,
+ // bail out.
+ if (DebugObjects.find(Obj.getData().data()) == DebugObjects.end())
+ return;
+
// Get the address of the object image for use as a unique identifier
- const void* ObjData = Obj.getData().data();
+ const ObjectFile &DebugObj = *DebugObjects[Obj.getData().data()].getBinary();
+ const void* ObjData = DebugObj.getData().data();
// Get the object's function list from LoadedObjectMap
ObjectMap::iterator OI = LoadedObjectMap.find(ObjData);
@@ -282,6 +216,7 @@ void IntelJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
// Erase the object from LoadedObjectMap
LoadedObjectMap.erase(OI);
+ DebugObjects.erase(Obj.getData().data());
}
} // anonymous namespace.
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
index 671bbee..b022101 100644
--- a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -28,6 +28,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
+#include "llvm/Support/UniqueLock.h"
#include <cmath>
#include <csignal>
#include <cstdio>
@@ -51,7 +52,7 @@ static ManagedStatic<sys::Mutex> FunctionsLock;
typedef GenericValue (*ExFunc)(FunctionType *,
const std::vector<GenericValue> &);
static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
-static std::map<std::string, ExFunc> FuncNames;
+static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
#ifdef USE_LIBFFI
typedef void (*RawFunc)();
@@ -97,9 +98,9 @@ static ExFunc lookupFunction(const Function *F) {
ExtName += "_" + F->getName().str();
sys::ScopedLock Writer(*FunctionsLock);
- ExFunc FnPtr = FuncNames[ExtName];
+ ExFunc FnPtr = (*FuncNames)[ExtName];
if (!FnPtr)
- FnPtr = FuncNames["lle_X_" + F->getName().str()];
+ FnPtr = (*FuncNames)["lle_X_" + F->getName().str()];
if (!FnPtr) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)(intptr_t)
sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" +
@@ -248,14 +249,14 @@ GenericValue Interpreter::callExternalFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
TheInterpreter = this;
- FunctionsLock->acquire();
+ unique_lock<sys::Mutex> Guard(*FunctionsLock);
// Do a lookup to see if the function is in our cache... this should just be a
// deferred annotation!
std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
: FI->second) {
- FunctionsLock->release();
+ Guard.unlock();
return Fn(F->getFunctionType(), ArgVals);
}
@@ -273,7 +274,7 @@ GenericValue Interpreter::callExternalFunction(Function *F,
RawFn = RF->second;
}
- FunctionsLock->release();
+ Guard.unlock();
GenericValue Result;
if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
@@ -497,15 +498,15 @@ static GenericValue lle_X_memcpy(FunctionType *FT,
void Interpreter::initializeExternalFunctions() {
sys::ScopedLock Writer(*FunctionsLock);
- FuncNames["lle_X_atexit"] = lle_X_atexit;
- FuncNames["lle_X_exit"] = lle_X_exit;
- FuncNames["lle_X_abort"] = lle_X_abort;
-
- FuncNames["lle_X_printf"] = lle_X_printf;
- FuncNames["lle_X_sprintf"] = lle_X_sprintf;
- FuncNames["lle_X_sscanf"] = lle_X_sscanf;
- FuncNames["lle_X_scanf"] = lle_X_scanf;
- FuncNames["lle_X_fprintf"] = lle_X_fprintf;
- FuncNames["lle_X_memset"] = lle_X_memset;
- FuncNames["lle_X_memcpy"] = lle_X_memcpy;
+ (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
+ (*FuncNames)["lle_X_exit"] = lle_X_exit;
+ (*FuncNames)["lle_X_abort"] = lle_X_abort;
+
+ (*FuncNames)["lle_X_printf"] = lle_X_printf;
+ (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
+ (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
+ (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
+ (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
+ (*FuncNames)["lle_X_memset"] = lle_X_memset;
+ (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
index 814efcc..8562981 100644
--- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
@@ -30,9 +30,10 @@ static struct RegisterInterp {
extern "C" void LLVMLinkInInterpreter() { }
-/// create - Create a new interpreter object. This can never fail.
+/// Create a new interpreter object.
///
-ExecutionEngine *Interpreter::create(Module *M, std::string* ErrStr) {
+ExecutionEngine *Interpreter::create(std::unique_ptr<Module> M,
+ std::string *ErrStr) {
// Tell this Module to materialize everything and release the GVMaterializer.
if (std::error_code EC = M->materializeAllPermanently()) {
if (ErrStr)
@@ -41,15 +42,15 @@ ExecutionEngine *Interpreter::create(Module *M, std::string* ErrStr) {
return nullptr;
}
- return new Interpreter(M);
+ return new Interpreter(std::move(M));
}
//===----------------------------------------------------------------------===//
// Interpreter ctor - Initialize stuff
//
-Interpreter::Interpreter(Module *M)
- : ExecutionEngine(M), TD(M) {
-
+Interpreter::Interpreter(std::unique_ptr<Module> M)
+ : ExecutionEngine(std::move(M)), TD(Modules.back().get()) {
+
memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
setDataLayout(&TD);
// Initialize the "backend"
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
index 2145cde..2be9c59 100644
--- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLI_INTERPRETER_H
-#define LLI_INTERPRETER_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H
+#define LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
@@ -37,29 +37,24 @@ typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator;
// stack, which causes the dtor to be run, which frees all the alloca'd memory.
//
class AllocaHolder {
- friend class AllocaHolderHandle;
- std::vector<void*> Allocations;
- unsigned RefCnt;
+ std::vector<void *> Allocations;
+
public:
- AllocaHolder() : RefCnt(0) {}
- void add(void *mem) { Allocations.push_back(mem); }
- ~AllocaHolder() {
- for (unsigned i = 0; i < Allocations.size(); ++i)
- free(Allocations[i]);
+ AllocaHolder() {}
+
+ // Make this type move-only. Define explicit move special members for MSVC.
+ AllocaHolder(AllocaHolder &&RHS) : Allocations(std::move(RHS.Allocations)) {}
+ AllocaHolder &operator=(AllocaHolder &&RHS) {
+ Allocations = std::move(RHS.Allocations);
+ return *this;
}
-};
-// AllocaHolderHandle gives AllocaHolder value semantics so we can stick it into
-// a vector...
-//
-class AllocaHolderHandle {
- AllocaHolder *H;
-public:
- AllocaHolderHandle() : H(new AllocaHolder()) { H->RefCnt++; }
- AllocaHolderHandle(const AllocaHolderHandle &AH) : H(AH.H) { H->RefCnt++; }
- ~AllocaHolderHandle() { if (--H->RefCnt == 0) delete H; }
+ ~AllocaHolder() {
+ for (void *Allocation : Allocations)
+ free(Allocation);
+ }
- void add(void *mem) { H->add(mem); }
+ void add(void *Mem) { Allocations.push_back(Mem); }
};
typedef std::vector<GenericValue> ValuePlaneTy;
@@ -71,11 +66,29 @@ struct ExecutionContext {
Function *CurFunction;// The currently executing function
BasicBlock *CurBB; // The currently executing BB
BasicBlock::iterator CurInst; // The next instruction to execute
- std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
- std::vector<GenericValue> VarArgs; // Values passed through an ellipsis
CallSite Caller; // Holds the call that called subframes.
// NULL if main func or debugger invoked fn
- AllocaHolderHandle Allocas; // Track memory allocated by alloca
+ std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
+ std::vector<GenericValue> VarArgs; // Values passed through an ellipsis
+ AllocaHolder Allocas; // Track memory allocated by alloca
+
+ ExecutionContext() : CurFunction(nullptr), CurBB(nullptr), CurInst(nullptr) {}
+
+ ExecutionContext(ExecutionContext &&O)
+ : CurFunction(O.CurFunction), CurBB(O.CurBB), CurInst(O.CurInst),
+ Caller(O.Caller), Values(std::move(O.Values)),
+ VarArgs(std::move(O.VarArgs)), Allocas(std::move(O.Allocas)) {}
+
+ ExecutionContext &operator=(ExecutionContext &&O) {
+ CurFunction = O.CurFunction;
+ CurBB = O.CurBB;
+ CurInst = O.CurInst;
+ Caller = O.Caller;
+ Values = std::move(O.Values);
+ VarArgs = std::move(O.VarArgs);
+ Allocas = std::move(O.Allocas);
+ return *this;
+ }
};
// Interpreter - This class represents the entirety of the interpreter.
@@ -94,7 +107,7 @@ class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
std::vector<Function*> AtExitHandlers;
public:
- explicit Interpreter(Module *M);
+ explicit Interpreter(std::unique_ptr<Module> M);
~Interpreter();
/// runAtExitHandlers - Run any functions registered by the program's calls to
@@ -105,33 +118,23 @@ public:
static void Register() {
InterpCtor = create;
}
-
- /// create - Create an interpreter ExecutionEngine. This can never fail.
+
+ /// Create an interpreter ExecutionEngine.
///
- static ExecutionEngine *create(Module *M, std::string *ErrorStr = nullptr);
+ static ExecutionEngine *create(std::unique_ptr<Module> M,
+ std::string *ErrorStr = nullptr);
/// run - Start execution with the specified function and arguments.
///
GenericValue runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) override;
- void *getPointerToNamedFunction(const std::string &Name,
+ void *getPointerToNamedFunction(StringRef Name,
bool AbortOnFailure = true) override {
// FIXME: not implemented.
return nullptr;
}
- /// recompileAndRelinkFunction - For the interpreter, functions are always
- /// up-to-date.
- ///
- void *recompileAndRelinkFunction(Function *F) override {
- return getPointerToFunction(F);
- }
-
- /// freeMachineCodeForFunction - The interpreter does not generate any code.
- ///
- void freeMachineCodeForFunction(Function *F) override { }
-
// Methods used to execute code:
// Place a call on the stack
void callFunction(Function *F, const std::vector<GenericValue> &ArgVals);
@@ -213,7 +216,6 @@ private: // Helper functions
void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
void *getPointerToFunction(Function *F) override { return (void*)F; }
- void *getPointerToBasicBlock(BasicBlock *BB) override { return (void*)BB; }
void initializeExecutionEngine() { }
void initializeExternalFunctions();
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp
deleted file mode 100644
index 83ec978..0000000
--- a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp
+++ /dev/null
@@ -1,695 +0,0 @@
-//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This tool implements a just-in-time compiler for LLVM, allowing direct
-// execution of LLVM bitcode in an efficient manner.
-//
-//===----------------------------------------------------------------------===//
-
-#include "JIT.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineCodeInfo.h"
-#include "llvm/Config/config.h"
-#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/ExecutionEngine/JITEventListener.h"
-#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/Dwarf.h"
-#include "llvm/Support/DynamicLibrary.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/MutexGuard.h"
-#include "llvm/Target/TargetJITInfo.h"
-#include "llvm/Target/TargetMachine.h"
-
-using namespace llvm;
-
-#ifdef __APPLE__
-// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
-// of atexit). It passes the address of linker generated symbol __dso_handle
-// to the function.
-// This configuration change happened at version 5330.
-# include <AvailabilityMacros.h>
-# if defined(MAC_OS_X_VERSION_10_4) && \
- ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
- (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
- __APPLE_CC__ >= 5330))
-# ifndef HAVE___DSO_HANDLE
-# define HAVE___DSO_HANDLE 1
-# endif
-# endif
-#endif
-
-#if HAVE___DSO_HANDLE
-extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
-#endif
-
-namespace {
-
-static struct RegisterJIT {
- RegisterJIT() { JIT::Register(); }
-} JITRegistrator;
-
-}
-
-extern "C" void LLVMLinkInJIT() {
-}
-
-/// createJIT - This is the factory method for creating a JIT for the current
-/// machine, it does not fall back to the interpreter. This takes ownership
-/// of the module.
-ExecutionEngine *JIT::createJIT(Module *M,
- std::string *ErrorStr,
- JITMemoryManager *JMM,
- bool GVsWithCode,
- TargetMachine *TM) {
- // Try to register the program as a source of symbols to resolve against.
- //
- // FIXME: Don't do this here.
- sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
-
- // If the target supports JIT code generation, create the JIT.
- if (TargetJITInfo *TJ = TM->getJITInfo()) {
- return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
- } else {
- if (ErrorStr)
- *ErrorStr = "target does not support JIT code generation";
- return nullptr;
- }
-}
-
-namespace {
-/// This class supports the global getPointerToNamedFunction(), which allows
-/// bugpoint or gdb users to search for a function by name without any context.
-class JitPool {
- SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT.
- mutable sys::Mutex Lock;
-public:
- void Add(JIT *jit) {
- MutexGuard guard(Lock);
- JITs.insert(jit);
- }
- void Remove(JIT *jit) {
- MutexGuard guard(Lock);
- JITs.erase(jit);
- }
- void *getPointerToNamedFunction(const char *Name) const {
- MutexGuard guard(Lock);
- assert(JITs.size() != 0 && "No Jit registered");
- //search function in every instance of JIT
- for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
- end = JITs.end();
- Jit != end; ++Jit) {
- if (Function *F = (*Jit)->FindFunctionNamed(Name))
- return (*Jit)->getPointerToFunction(F);
- }
- // The function is not available : fallback on the first created (will
- // search in symbol of the current program/library)
- return (*JITs.begin())->getPointerToNamedFunction(Name);
- }
-};
-ManagedStatic<JitPool> AllJits;
-}
-extern "C" {
- // getPointerToNamedFunction - This function is used as a global wrapper to
- // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
- // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
- // need to resolve function(s) that are being mis-codegenerated, so we need to
- // resolve their addresses at runtime, and this is the way to do it.
- void *getPointerToNamedFunction(const char *Name) {
- return AllJits->getPointerToNamedFunction(Name);
- }
-}
-
-JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
- JITMemoryManager *jmm, bool GVsWithCode)
- : ExecutionEngine(M), TM(tm), TJI(tji),
- JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
- AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
- setDataLayout(TM.getDataLayout());
-
- jitstate = new JITState(M);
-
- // Initialize JCE
- JCE = createEmitter(*this, JMM, TM);
-
- // Register in global list of all JITs.
- AllJits->Add(this);
-
- // Add target data
- MutexGuard locked(lock);
- FunctionPassManager &PM = jitstate->getPM();
- M->setDataLayout(TM.getDataLayout());
- PM.add(new DataLayoutPass(M));
-
- // Turn the machine code intermediate representation into bytes in memory that
- // may be executed.
- if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) {
- report_fatal_error("Target does not support machine code emission!");
- }
-
- // Initialize passes.
- PM.doInitialization();
-}
-
-JIT::~JIT() {
- // Cleanup.
- AllJits->Remove(this);
- delete jitstate;
- delete JCE;
- // JMM is a ownership of JCE, so we no need delete JMM here.
- delete &TM;
-}
-
-/// addModule - Add a new Module to the JIT. If we previously removed the last
-/// Module, we need re-initialize jitstate with a valid Module.
-void JIT::addModule(Module *M) {
- MutexGuard locked(lock);
-
- if (Modules.empty()) {
- assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
-
- jitstate = new JITState(M);
-
- FunctionPassManager &PM = jitstate->getPM();
- M->setDataLayout(TM.getDataLayout());
- PM.add(new DataLayoutPass(M));
-
- // Turn the machine code intermediate representation into bytes in memory
- // that may be executed.
- if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) {
- report_fatal_error("Target does not support machine code emission!");
- }
-
- // Initialize passes.
- PM.doInitialization();
- }
-
- ExecutionEngine::addModule(M);
-}
-
-/// removeModule - If we are removing the last Module, invalidate the jitstate
-/// since the PassManager it contains references a released Module.
-bool JIT::removeModule(Module *M) {
- bool result = ExecutionEngine::removeModule(M);
-
- MutexGuard locked(lock);
-
- if (jitstate && jitstate->getModule() == M) {
- delete jitstate;
- jitstate = nullptr;
- }
-
- if (!jitstate && !Modules.empty()) {
- jitstate = new JITState(Modules[0]);
-
- FunctionPassManager &PM = jitstate->getPM();
- M->setDataLayout(TM.getDataLayout());
- PM.add(new DataLayoutPass(M));
-
- // Turn the machine code intermediate representation into bytes in memory
- // that may be executed.
- if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) {
- report_fatal_error("Target does not support machine code emission!");
- }
-
- // Initialize passes.
- PM.doInitialization();
- }
- return result;
-}
-
-/// run - Start execution with the specified function and arguments.
-///
-GenericValue JIT::runFunction(Function *F,
- const std::vector<GenericValue> &ArgValues) {
- assert(F && "Function *F was null at entry to run()");
-
- void *FPtr = getPointerToFunction(F);
- assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
- FunctionType *FTy = F->getFunctionType();
- Type *RetTy = FTy->getReturnType();
-
- assert((FTy->getNumParams() == ArgValues.size() ||
- (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
- "Wrong number of arguments passed into function!");
- assert(FTy->getNumParams() == ArgValues.size() &&
- "This doesn't support passing arguments through varargs (yet)!");
-
- // Handle some common cases first. These cases correspond to common `main'
- // prototypes.
- if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
- switch (ArgValues.size()) {
- case 3:
- if (FTy->getParamType(0)->isIntegerTy(32) &&
- FTy->getParamType(1)->isPointerTy() &&
- FTy->getParamType(2)->isPointerTy()) {
- int (*PF)(int, char **, const char **) =
- (int(*)(int, char **, const char **))(intptr_t)FPtr;
-
- // Call the function.
- GenericValue rv;
- rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
- (char **)GVTOP(ArgValues[1]),
- (const char **)GVTOP(ArgValues[2])));
- return rv;
- }
- break;
- case 2:
- if (FTy->getParamType(0)->isIntegerTy(32) &&
- FTy->getParamType(1)->isPointerTy()) {
- int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
-
- // Call the function.
- GenericValue rv;
- rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
- (char **)GVTOP(ArgValues[1])));
- return rv;
- }
- break;
- case 1:
- if (FTy->getParamType(0)->isIntegerTy(32)) {
- GenericValue rv;
- int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
- rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
- return rv;
- }
- if (FTy->getParamType(0)->isPointerTy()) {
- GenericValue rv;
- int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
- rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
- return rv;
- }
- break;
- }
- }
-
- // Handle cases where no arguments are passed first.
- if (ArgValues.empty()) {
- GenericValue rv;
- switch (RetTy->getTypeID()) {
- default: llvm_unreachable("Unknown return type for function call!");
- case Type::IntegerTyID: {
- unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
- if (BitWidth == 1)
- rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
- else if (BitWidth <= 8)
- rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
- else if (BitWidth <= 16)
- rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
- else if (BitWidth <= 32)
- rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
- else if (BitWidth <= 64)
- rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
- else
- llvm_unreachable("Integer types > 64 bits not supported");
- return rv;
- }
- case Type::VoidTyID:
- rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
- return rv;
- case Type::FloatTyID:
- rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
- return rv;
- case Type::DoubleTyID:
- rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
- return rv;
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- llvm_unreachable("long double not supported yet");
- case Type::PointerTyID:
- return PTOGV(((void*(*)())(intptr_t)FPtr)());
- }
- }
-
- // Okay, this is not one of our quick and easy cases. Because we don't have a
- // full FFI, we have to codegen a nullary stub function that just calls the
- // function we are interested in, passing in constants for all of the
- // arguments. Make this function and return.
-
- // First, create the function.
- FunctionType *STy=FunctionType::get(RetTy, false);
- Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
- F->getParent());
-
- // Insert a basic block.
- BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
-
- // Convert all of the GenericValue arguments over to constants. Note that we
- // currently don't support varargs.
- SmallVector<Value*, 8> Args;
- for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
- Constant *C = nullptr;
- Type *ArgTy = FTy->getParamType(i);
- const GenericValue &AV = ArgValues[i];
- switch (ArgTy->getTypeID()) {
- default: llvm_unreachable("Unknown argument type for function call!");
- case Type::IntegerTyID:
- C = ConstantInt::get(F->getContext(), AV.IntVal);
- break;
- case Type::FloatTyID:
- C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
- break;
- case Type::DoubleTyID:
- C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
- break;
- case Type::PPC_FP128TyID:
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- C = ConstantFP::get(F->getContext(), APFloat(ArgTy->getFltSemantics(),
- AV.IntVal));
- break;
- case Type::PointerTyID:
- void *ArgPtr = GVTOP(AV);
- if (sizeof(void*) == 4)
- C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
- (int)(intptr_t)ArgPtr);
- else
- C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
- (intptr_t)ArgPtr);
- // Cast the integer to pointer
- C = ConstantExpr::getIntToPtr(C, ArgTy);
- break;
- }
- Args.push_back(C);
- }
-
- CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
- TheCall->setCallingConv(F->getCallingConv());
- TheCall->setTailCall();
- if (!TheCall->getType()->isVoidTy())
- // Return result of the call.
- ReturnInst::Create(F->getContext(), TheCall, StubBB);
- else
- ReturnInst::Create(F->getContext(), StubBB); // Just return void.
-
- // Finally, call our nullary stub function.
- GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
- // Erase it, since no other function can have a reference to it.
- Stub->eraseFromParent();
- // And return the result.
- return Result;
-}
-
-void JIT::RegisterJITEventListener(JITEventListener *L) {
- if (!L)
- return;
- MutexGuard locked(lock);
- EventListeners.push_back(L);
-}
-void JIT::UnregisterJITEventListener(JITEventListener *L) {
- if (!L)
- return;
- MutexGuard locked(lock);
- std::vector<JITEventListener*>::reverse_iterator I=
- std::find(EventListeners.rbegin(), EventListeners.rend(), L);
- if (I != EventListeners.rend()) {
- std::swap(*I, EventListeners.back());
- EventListeners.pop_back();
- }
-}
-void JIT::NotifyFunctionEmitted(
- const Function &F,
- void *Code, size_t Size,
- const JITEvent_EmittedFunctionDetails &Details) {
- MutexGuard locked(lock);
- for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
- EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
- }
-}
-
-void JIT::NotifyFreeingMachineCode(void *OldPtr) {
- MutexGuard locked(lock);
- for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
- EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
- }
-}
-
-/// runJITOnFunction - Run the FunctionPassManager full of
-/// just-in-time compilation passes on F, hopefully filling in
-/// GlobalAddress[F] with the address of F's machine code.
-///
-void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
- MutexGuard locked(lock);
-
- class MCIListener : public JITEventListener {
- MachineCodeInfo *const MCI;
- public:
- MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
- void NotifyFunctionEmitted(const Function &, void *Code, size_t Size,
- const EmittedFunctionDetails &) override {
- MCI->setAddress(Code);
- MCI->setSize(Size);
- }
- };
- MCIListener MCIL(MCI);
- if (MCI)
- RegisterJITEventListener(&MCIL);
-
- runJITOnFunctionUnlocked(F);
-
- if (MCI)
- UnregisterJITEventListener(&MCIL);
-}
-
-void JIT::runJITOnFunctionUnlocked(Function *F) {
- assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
-
- jitTheFunctionUnlocked(F);
-
- // If the function referred to another function that had not yet been
- // read from bitcode, and we are jitting non-lazily, emit it now.
- while (!jitstate->getPendingFunctions().empty()) {
- Function *PF = jitstate->getPendingFunctions().back();
- jitstate->getPendingFunctions().pop_back();
-
- assert(!PF->hasAvailableExternallyLinkage() &&
- "Externally-defined function should not be in pending list.");
-
- jitTheFunctionUnlocked(PF);
-
- // Now that the function has been jitted, ask the JITEmitter to rewrite
- // the stub with real address of the function.
- updateFunctionStubUnlocked(PF);
- }
-}
-
-void JIT::jitTheFunctionUnlocked(Function *F) {
- isAlreadyCodeGenerating = true;
- jitstate->getPM().run(*F);
- isAlreadyCodeGenerating = false;
-
- // clear basic block addresses after this function is done
- getBasicBlockAddressMap().clear();
-}
-
-/// getPointerToFunction - This method is used to get the address of the
-/// specified function, compiling it if necessary.
-///
-void *JIT::getPointerToFunction(Function *F) {
-
- if (void *Addr = getPointerToGlobalIfAvailable(F))
- return Addr; // Check if function already code gen'd
-
- MutexGuard locked(lock);
-
- // Now that this thread owns the lock, make sure we read in the function if it
- // exists in this Module.
- std::string ErrorMsg;
- if (F->Materialize(&ErrorMsg)) {
- report_fatal_error("Error reading function '" + F->getName()+
- "' from bitcode file: " + ErrorMsg);
- }
-
- // ... and check if another thread has already code gen'd the function.
- if (void *Addr = getPointerToGlobalIfAvailable(F))
- return Addr;
-
- if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
- bool AbortOnFailure = !F->hasExternalWeakLinkage();
- void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
- addGlobalMapping(F, Addr);
- return Addr;
- }
-
- runJITOnFunctionUnlocked(F);
-
- void *Addr = getPointerToGlobalIfAvailable(F);
- assert(Addr && "Code generation didn't add function to GlobalAddress table!");
- return Addr;
-}
-
-void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
- MutexGuard locked(lock);
-
- BasicBlockAddressMapTy::iterator I =
- getBasicBlockAddressMap().find(BB);
- if (I == getBasicBlockAddressMap().end()) {
- getBasicBlockAddressMap()[BB] = Addr;
- } else {
- // ignore repeats: some BBs can be split into few MBBs?
- }
-}
-
-void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
- MutexGuard locked(lock);
- getBasicBlockAddressMap().erase(BB);
-}
-
-void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
- // make sure it's function is compiled by JIT
- (void)getPointerToFunction(BB->getParent());
-
- // resolve basic block address
- MutexGuard locked(lock);
-
- BasicBlockAddressMapTy::iterator I =
- getBasicBlockAddressMap().find(BB);
- if (I != getBasicBlockAddressMap().end()) {
- return I->second;
- } else {
- llvm_unreachable("JIT does not have BB address for address-of-label, was"
- " it eliminated by optimizer?");
- }
-}
-
-void *JIT::getPointerToNamedFunction(const std::string &Name,
- bool AbortOnFailure){
- if (!isSymbolSearchingDisabled()) {
- void *ptr = JMM->getPointerToNamedFunction(Name, false);
- if (ptr)
- return ptr;
- }
-
- /// If a LazyFunctionCreator is installed, use it to get/create the function.
- if (LazyFunctionCreator)
- if (void *RP = LazyFunctionCreator(Name))
- return RP;
-
- if (AbortOnFailure) {
- report_fatal_error("Program used external function '"+Name+
- "' which could not be resolved!");
- }
- return nullptr;
-}
-
-
-/// getOrEmitGlobalVariable - Return the address of the specified global
-/// variable, possibly emitting it to memory if needed. This is used by the
-/// Emitter.
-void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
- MutexGuard locked(lock);
-
- void *Ptr = getPointerToGlobalIfAvailable(GV);
- if (Ptr) return Ptr;
-
- // If the global is external, just remember the address.
- if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
-#if HAVE___DSO_HANDLE
- if (GV->getName() == "__dso_handle")
- return (void*)&__dso_handle;
-#endif
- Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
- if (!Ptr) {
- report_fatal_error("Could not resolve external global address: "
- +GV->getName());
- }
- addGlobalMapping(GV, Ptr);
- } else {
- // If the global hasn't been emitted to memory yet, allocate space and
- // emit it into memory.
- Ptr = getMemoryForGV(GV);
- addGlobalMapping(GV, Ptr);
- EmitGlobalVariable(GV); // Initialize the variable.
- }
- return Ptr;
-}
-
-/// recompileAndRelinkFunction - This method is used to force a function
-/// which has already been compiled, to be compiled again, possibly
-/// after it has been modified. Then the entry to the old copy is overwritten
-/// with a branch to the new copy. If there was no old copy, this acts
-/// just like JIT::getPointerToFunction().
-///
-void *JIT::recompileAndRelinkFunction(Function *F) {
- void *OldAddr = getPointerToGlobalIfAvailable(F);
-
- // If it's not already compiled there is no reason to patch it up.
- if (!OldAddr) return getPointerToFunction(F);
-
- // Delete the old function mapping.
- addGlobalMapping(F, nullptr);
-
- // Recodegen the function
- runJITOnFunction(F);
-
- // Update state, forward the old function to the new function.
- void *Addr = getPointerToGlobalIfAvailable(F);
- assert(Addr && "Code generation didn't add function to GlobalAddress table!");
- TJI.replaceMachineCodeForFunction(OldAddr, Addr);
- return Addr;
-}
-
-/// getMemoryForGV - This method abstracts memory allocation of global
-/// variable so that the JIT can allocate thread local variables depending
-/// on the target.
-///
-char* JIT::getMemoryForGV(const GlobalVariable* GV) {
- char *Ptr;
-
- // GlobalVariable's which are not "constant" will cause trouble in a server
- // situation. It's returned in the same block of memory as code which may
- // not be writable.
- if (isGVCompilationDisabled() && !GV->isConstant()) {
- report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
- }
-
- // Some applications require globals and code to live together, so they may
- // be allocated into the same buffer, but in general globals are allocated
- // through the memory manager which puts them near the code but not in the
- // same buffer.
- Type *GlobalType = GV->getType()->getElementType();
- size_t S = getDataLayout()->getTypeAllocSize(GlobalType);
- size_t A = getDataLayout()->getPreferredAlignment(GV);
- if (GV->isThreadLocal()) {
- MutexGuard locked(lock);
- Ptr = TJI.allocateThreadLocalMemory(S);
- } else if (TJI.allocateSeparateGVMemory()) {
- if (A <= 8) {
- Ptr = (char*)malloc(S);
- } else {
- // Allocate S+A bytes of memory, then use an aligned pointer within that
- // space.
- Ptr = (char*)malloc(S+A);
- unsigned MisAligned = ((intptr_t)Ptr & (A-1));
- Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
- }
- } else if (AllocateGVsWithCode) {
- Ptr = (char*)JCE->allocateSpace(S, A);
- } else {
- Ptr = (char*)JCE->allocateGlobal(S, A);
- }
- return Ptr;
-}
-
-void JIT::addPendingFunction(Function *F) {
- MutexGuard locked(lock);
- jitstate->getPendingFunctions().push_back(F);
-}
-
-
-JITEventListener::~JITEventListener() {}
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h
deleted file mode 100644
index 69a7c36..0000000
--- a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h
+++ /dev/null
@@ -1,229 +0,0 @@
-//===-- JIT.h - Class definition for the JIT --------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the top-level JIT data structure.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef JIT_H
-#define JIT_H
-
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/PassManager.h"
-
-namespace llvm {
-
-class Function;
-struct JITEvent_EmittedFunctionDetails;
-class MachineCodeEmitter;
-class MachineCodeInfo;
-class TargetJITInfo;
-class TargetMachine;
-
-class JITState {
-private:
- FunctionPassManager PM; // Passes to compile a function
- Module *M; // Module used to create the PM
-
- /// PendingFunctions - Functions which have not been code generated yet, but
- /// were called from a function being code generated.
- std::vector<AssertingVH<Function> > PendingFunctions;
-
-public:
- explicit JITState(Module *M) : PM(M), M(M) {}
-
- FunctionPassManager &getPM() {
- return PM;
- }
-
- Module *getModule() const { return M; }
- std::vector<AssertingVH<Function> > &getPendingFunctions() {
- return PendingFunctions;
- }
-};
-
-
-class JIT : public ExecutionEngine {
- /// types
- typedef ValueMap<const BasicBlock *, void *>
- BasicBlockAddressMapTy;
- /// data
- TargetMachine &TM; // The current target we are compiling to
- TargetJITInfo &TJI; // The JITInfo for the target we are compiling to
- JITCodeEmitter *JCE; // JCE object
- JITMemoryManager *JMM;
- std::vector<JITEventListener*> EventListeners;
-
- /// AllocateGVsWithCode - Some applications require that global variables and
- /// code be allocated into the same region of memory, in which case this flag
- /// should be set to true. Doing so breaks freeMachineCodeForFunction.
- bool AllocateGVsWithCode;
-
- /// True while the JIT is generating code. Used to assert against recursive
- /// entry.
- bool isAlreadyCodeGenerating;
-
- JITState *jitstate;
-
- /// BasicBlockAddressMap - A mapping between LLVM basic blocks and their
- /// actualized version, only filled for basic blocks that have their address
- /// taken.
- BasicBlockAddressMapTy BasicBlockAddressMap;
-
-
- JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
- JITMemoryManager *JMM, bool AllocateGVsWithCode);
-public:
- ~JIT();
-
- static void Register() {
- JITCtor = createJIT;
- }
-
- /// getJITInfo - Return the target JIT information structure.
- ///
- TargetJITInfo &getJITInfo() const { return TJI; }
-
- /// create - Create an return a new JIT compiler if there is one available
- /// for the current target. Otherwise, return null.
- ///
- static ExecutionEngine *create(Module *M,
- std::string *Err,
- JITMemoryManager *JMM,
- CodeGenOpt::Level OptLevel =
- CodeGenOpt::Default,
- bool GVsWithCode = true,
- Reloc::Model RM = Reloc::Default,
- CodeModel::Model CMM = CodeModel::JITDefault) {
- return ExecutionEngine::createJIT(M, Err, JMM, OptLevel, GVsWithCode,
- RM, CMM);
- }
-
- void addModule(Module *M) override;
-
- /// removeModule - Remove a Module from the list of modules. Returns true if
- /// M is found.
- bool removeModule(Module *M) override;
-
- /// runFunction - Start execution with the specified function and arguments.
- ///
- GenericValue runFunction(Function *F,
- const std::vector<GenericValue> &ArgValues) override;
-
- /// getPointerToNamedFunction - This method returns the address of the
- /// specified function by using the MemoryManager. As such it is only
- /// useful for resolving library symbols, not code generated symbols.
- ///
- /// If AbortOnFailure is false and no function with the given name is
- /// found, this function silently returns a null pointer. Otherwise,
- /// it prints a message to stderr and aborts.
- ///
- void *getPointerToNamedFunction(const std::string &Name,
- bool AbortOnFailure = true) override;
-
- // CompilationCallback - Invoked the first time that a call site is found,
- // which causes lazy compilation of the target function.
- //
- static void CompilationCallback();
-
- /// getPointerToFunction - This returns the address of the specified function,
- /// compiling it if necessary.
- ///
- void *getPointerToFunction(Function *F) override;
-
- /// addPointerToBasicBlock - Adds address of the specific basic block.
- void addPointerToBasicBlock(const BasicBlock *BB, void *Addr);
-
- /// clearPointerToBasicBlock - Removes address of specific basic block.
- void clearPointerToBasicBlock(const BasicBlock *BB);
-
- /// getPointerToBasicBlock - This returns the address of the specified basic
- /// block, assuming function is compiled.
- void *getPointerToBasicBlock(BasicBlock *BB) override;
-
- /// getOrEmitGlobalVariable - Return the address of the specified global
- /// variable, possibly emitting it to memory if needed. This is used by the
- /// Emitter.
- void *getOrEmitGlobalVariable(const GlobalVariable *GV) override;
-
- /// getPointerToFunctionOrStub - If the specified function has been
- /// code-gen'd, return a pointer to the function. If not, compile it, or use
- /// a stub to implement lazy compilation if available.
- ///
- void *getPointerToFunctionOrStub(Function *F) override;
-
- /// recompileAndRelinkFunction - This method is used to force a function
- /// which has already been compiled, to be compiled again, possibly
- /// after it has been modified. Then the entry to the old copy is overwritten
- /// with a branch to the new copy. If there was no old copy, this acts
- /// just like JIT::getPointerToFunction().
- ///
- void *recompileAndRelinkFunction(Function *F) override;
-
- /// freeMachineCodeForFunction - deallocate memory used to code-generate this
- /// Function.
- ///
- void freeMachineCodeForFunction(Function *F) override;
-
- /// addPendingFunction - while jitting non-lazily, a called but non-codegen'd
- /// function was encountered. Add it to a pending list to be processed after
- /// the current function.
- ///
- void addPendingFunction(Function *F);
-
- /// getCodeEmitter - Return the code emitter this JIT is emitting into.
- ///
- JITCodeEmitter *getCodeEmitter() const { return JCE; }
-
- static ExecutionEngine *createJIT(Module *M,
- std::string *ErrorStr,
- JITMemoryManager *JMM,
- bool GVsWithCode,
- TargetMachine *TM);
-
- // Run the JIT on F and return information about the generated code
- void runJITOnFunction(Function *F, MachineCodeInfo *MCI = nullptr) override;
-
- void RegisterJITEventListener(JITEventListener *L) override;
- void UnregisterJITEventListener(JITEventListener *L) override;
-
- TargetMachine *getTargetMachine() override { return &TM; }
-
- /// These functions correspond to the methods on JITEventListener. They
- /// iterate over the registered listeners and call the corresponding method on
- /// each.
- void NotifyFunctionEmitted(
- const Function &F, void *Code, size_t Size,
- const JITEvent_EmittedFunctionDetails &Details);
- void NotifyFreeingMachineCode(void *OldPtr);
-
- BasicBlockAddressMapTy &
- getBasicBlockAddressMap() {
- return BasicBlockAddressMap;
- }
-
-
-private:
- static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM,
- TargetMachine &tm);
- void runJITOnFunctionUnlocked(Function *F);
- void updateFunctionStubUnlocked(Function *F);
- void jitTheFunctionUnlocked(Function *F);
-
-protected:
-
- /// getMemoryforGV - Allocate memory for a global variable.
- char* getMemoryForGV(const GlobalVariable* GV) override;
-
-};
-
-} // End llvm namespace
-
-#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp
deleted file mode 100644
index 2ba1f86..0000000
--- a/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp
+++ /dev/null
@@ -1,1249 +0,0 @@
-//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a MachineCodeEmitter object that is used by the JIT to
-// write machine code to memory and remember where relocatable values are.
-//
-//===----------------------------------------------------------------------===//
-
-#include "JIT.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineCodeInfo.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/MachineRelocation.h"
-#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/ExecutionEngine/JITEventListener.h"
-#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfo.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/IR/ValueMap.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Memory.h"
-#include "llvm/Support/MutexGuard.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetJITInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
-#include <algorithm>
-#ifndef NDEBUG
-#include <iomanip>
-#endif
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-STATISTIC(NumBytes, "Number of bytes of machine code compiled");
-STATISTIC(NumRelos, "Number of relocations applied");
-STATISTIC(NumRetries, "Number of retries with more memory");
-
-
-// A declaration may stop being a declaration once it's fully read from bitcode.
-// This function returns true if F is fully read and is still a declaration.
-static bool isNonGhostDeclaration(const Function *F) {
- return F->isDeclaration() && !F->isMaterializable();
-}
-
-//===----------------------------------------------------------------------===//
-// JIT lazy compilation code.
-//
-namespace {
- class JITEmitter;
- class JITResolverState;
-
- template<typename ValueTy>
- struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
- typedef JITResolverState *ExtraData;
- static void onRAUW(JITResolverState *, Value *Old, Value *New) {
- llvm_unreachable("The JIT doesn't know how to handle a"
- " RAUW on a value it has emitted.");
- }
- };
-
- struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
- typedef JITResolverState *ExtraData;
- static void onDelete(JITResolverState *JRS, Function *F);
- };
-
- class JITResolverState {
- public:
- typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
- FunctionToLazyStubMapTy;
- typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
- typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
- CallSiteValueMapConfig> FunctionToCallSitesMapTy;
- typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
- private:
- /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
- /// particular function so that we can reuse them if necessary.
- FunctionToLazyStubMapTy FunctionToLazyStubMap;
-
- /// CallSiteToFunctionMap - Keep track of the function that each lazy call
- /// site corresponds to, and vice versa.
- CallSiteToFunctionMapTy CallSiteToFunctionMap;
- FunctionToCallSitesMapTy FunctionToCallSitesMap;
-
- /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
- /// particular GlobalVariable so that we can reuse them if necessary.
- GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
-
-#ifndef NDEBUG
- /// Instance of the JIT this ResolverState serves.
- JIT *TheJIT;
-#endif
-
- public:
- JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
- FunctionToCallSitesMap(this) {
-#ifndef NDEBUG
- TheJIT = jit;
-#endif
- }
-
- FunctionToLazyStubMapTy& getFunctionToLazyStubMap() {
- return FunctionToLazyStubMap;
- }
-
- GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap() {
- return GlobalToIndirectSymMap;
- }
-
- std::pair<void *, Function *> LookupFunctionFromCallSite(
- void *CallSite) const {
- // The address given to us for the stub may not be exactly right, it
- // might be a little bit after the stub. As such, use upper_bound to
- // find it.
- CallSiteToFunctionMapTy::const_iterator I =
- CallSiteToFunctionMap.upper_bound(CallSite);
- assert(I != CallSiteToFunctionMap.begin() &&
- "This is not a known call site!");
- --I;
- return *I;
- }
-
- void AddCallSite(void *CallSite, Function *F) {
- bool Inserted = CallSiteToFunctionMap.insert(
- std::make_pair(CallSite, F)).second;
- (void)Inserted;
- assert(Inserted && "Pair was already in CallSiteToFunctionMap");
- FunctionToCallSitesMap[F].insert(CallSite);
- }
-
- void EraseAllCallSitesForPrelocked(Function *F);
-
- // Erases _all_ call sites regardless of their function. This is used to
- // unregister the stub addresses from the StubToResolverMap in
- // ~JITResolver().
- void EraseAllCallSitesPrelocked();
- };
-
- /// JITResolver - Keep track of, and resolve, call sites for functions that
- /// have not yet been compiled.
- class JITResolver {
- typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
- typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
- typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
-
- /// LazyResolverFn - The target lazy resolver function that we actually
- /// rewrite instructions to use.
- TargetJITInfo::LazyResolverFn LazyResolverFn;
-
- JITResolverState state;
-
- /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
- /// for external functions. TODO: Of course, external functions don't need
- /// a lazy stub. It's actually here to make it more likely that far calls
- /// succeed, but no single stub can guarantee that. I'll remove this in a
- /// subsequent checkin when I actually fix far calls.
- std::map<void*, void*> ExternalFnToStubMap;
-
- /// revGOTMap - map addresses to indexes in the GOT
- std::map<void*, unsigned> revGOTMap;
- unsigned nextGOTIndex;
-
- JITEmitter &JE;
-
- /// Instance of JIT corresponding to this Resolver.
- JIT *TheJIT;
-
- public:
- explicit JITResolver(JIT &jit, JITEmitter &je)
- : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
- LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
- }
-
- ~JITResolver();
-
- /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
- /// lazy-compilation stub if it has already been created.
- void *getLazyFunctionStubIfAvailable(Function *F);
-
- /// getLazyFunctionStub - This returns a pointer to a function's
- /// lazy-compilation stub, creating one on demand as needed.
- void *getLazyFunctionStub(Function *F);
-
- /// getExternalFunctionStub - Return a stub for the function at the
- /// specified address, created lazily on demand.
- void *getExternalFunctionStub(void *FnAddr);
-
- /// getGlobalValueIndirectSym - Return an indirect symbol containing the
- /// specified GV address.
- void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
-
- /// getGOTIndexForAddress - Return a new or existing index in the GOT for
- /// an address. This function only manages slots, it does not manage the
- /// contents of the slots or the memory associated with the GOT.
- unsigned getGOTIndexForAddr(void *addr);
-
- /// JITCompilerFn - This function is called to resolve a stub to a compiled
- /// address. If the LLVM Function corresponding to the stub has not yet
- /// been compiled, this function compiles it first.
- static void *JITCompilerFn(void *Stub);
- };
-
- class StubToResolverMapTy {
- /// Map a stub address to a specific instance of a JITResolver so that
- /// lazily-compiled functions can find the right resolver to use.
- ///
- /// Guarded by Lock.
- std::map<void*, JITResolver*> Map;
-
- /// Guards Map from concurrent accesses.
- mutable sys::Mutex Lock;
-
- public:
- /// Registers a Stub to be resolved by Resolver.
- void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
- MutexGuard guard(Lock);
- Map.insert(std::make_pair(Stub, Resolver));
- }
- /// Unregisters the Stub when it's invalidated.
- void UnregisterStubResolver(void *Stub) {
- MutexGuard guard(Lock);
- Map.erase(Stub);
- }
- /// Returns the JITResolver instance that owns the Stub.
- JITResolver *getResolverFromStub(void *Stub) const {
- MutexGuard guard(Lock);
- // The address given to us for the stub may not be exactly right, it might
- // be a little bit after the stub. As such, use upper_bound to find it.
- // This is the same trick as in LookupFunctionFromCallSite from
- // JITResolverState.
- std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
- assert(I != Map.begin() && "This is not a known stub!");
- --I;
- return I->second;
- }
- /// True if any stubs refer to the given resolver. Only used in an assert().
- /// O(N)
- bool ResolverHasStubs(JITResolver* Resolver) const {
- MutexGuard guard(Lock);
- for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
- E = Map.end(); I != E; ++I) {
- if (I->second == Resolver)
- return true;
- }
- return false;
- }
- };
- /// This needs to be static so that a lazy call stub can access it with no
- /// context except the address of the stub.
- ManagedStatic<StubToResolverMapTy> StubToResolverMap;
-
- /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
- /// used to output functions to memory for execution.
- class JITEmitter : public JITCodeEmitter {
- JITMemoryManager *MemMgr;
-
- // When outputting a function stub in the context of some other function, we
- // save BufferBegin/BufferEnd/CurBufferPtr here.
- uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
-
- // When reattempting to JIT a function after running out of space, we store
- // the estimated size of the function we're trying to JIT here, so we can
- // ask the memory manager for at least this much space. When we
- // successfully emit the function, we reset this back to zero.
- uintptr_t SizeEstimate;
-
- /// Relocations - These are the relocations that the function needs, as
- /// emitted.
- std::vector<MachineRelocation> Relocations;
-
- /// MBBLocations - This vector is a mapping from MBB ID's to their address.
- /// It is filled in by the StartMachineBasicBlock callback and queried by
- /// the getMachineBasicBlockAddress callback.
- std::vector<uintptr_t> MBBLocations;
-
- /// ConstantPool - The constant pool for the current function.
- ///
- MachineConstantPool *ConstantPool;
-
- /// ConstantPoolBase - A pointer to the first entry in the constant pool.
- ///
- void *ConstantPoolBase;
-
- /// ConstPoolAddresses - Addresses of individual constant pool entries.
- ///
- SmallVector<uintptr_t, 8> ConstPoolAddresses;
-
- /// JumpTable - The jump tables for the current function.
- ///
- MachineJumpTableInfo *JumpTable;
-
- /// JumpTableBase - A pointer to the first entry in the jump table.
- ///
- void *JumpTableBase;
-
- /// Resolver - This contains info about the currently resolved functions.
- JITResolver Resolver;
-
- /// LabelLocations - This vector is a mapping from Label ID's to their
- /// address.
- DenseMap<MCSymbol*, uintptr_t> LabelLocations;
-
- /// MMI - Machine module info for exception informations
- MachineModuleInfo* MMI;
-
- // CurFn - The llvm function being emitted. Only valid during
- // finishFunction().
- const Function *CurFn;
-
- /// Information about emitted code, which is passed to the
- /// JITEventListeners. This is reset in startFunction and used in
- /// finishFunction.
- JITEvent_EmittedFunctionDetails EmissionDetails;
-
- struct EmittedCode {
- void *FunctionBody; // Beginning of the function's allocation.
- void *Code; // The address the function's code actually starts at.
- void *ExceptionTable;
- EmittedCode() : FunctionBody(nullptr), Code(nullptr),
- ExceptionTable(nullptr) {}
- };
- struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
- typedef JITEmitter *ExtraData;
- static void onDelete(JITEmitter *, const Function*);
- static void onRAUW(JITEmitter *, const Function*, const Function*);
- };
- ValueMap<const Function *, EmittedCode,
- EmittedFunctionConfig> EmittedFunctions;
-
- DebugLoc PrevDL;
-
- /// Instance of the JIT
- JIT *TheJIT;
-
- public:
- JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
- : SizeEstimate(0), Resolver(jit, *this), MMI(nullptr), CurFn(nullptr),
- EmittedFunctions(this), TheJIT(&jit) {
- MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
- if (jit.getJITInfo().needsGOT()) {
- MemMgr->AllocateGOT();
- DEBUG(dbgs() << "JIT is managing a GOT\n");
- }
-
- }
- ~JITEmitter() {
- delete MemMgr;
- }
-
- JITResolver &getJITResolver() { return Resolver; }
-
- void startFunction(MachineFunction &F) override;
- bool finishFunction(MachineFunction &F) override;
-
- void emitConstantPool(MachineConstantPool *MCP);
- void initJumpTableInfo(MachineJumpTableInfo *MJTI);
- void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
-
- void startGVStub(const GlobalValue* GV,
- unsigned StubSize, unsigned Alignment = 1);
- void startGVStub(void *Buffer, unsigned StubSize);
- void finishGVStub();
- void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer,
- size_t Size, unsigned Alignment) override;
-
- /// allocateSpace - Reserves space in the current block if any, or
- /// allocate a new one of the given size.
- void *allocateSpace(uintptr_t Size, unsigned Alignment) override;
-
- /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
- /// this method does not allocate memory in the current output buffer,
- /// because a global may live longer than the current function.
- void *allocateGlobal(uintptr_t Size, unsigned Alignment) override;
-
- void addRelocation(const MachineRelocation &MR) override {
- Relocations.push_back(MR);
- }
-
- void StartMachineBasicBlock(MachineBasicBlock *MBB) override {
- if (MBBLocations.size() <= (unsigned)MBB->getNumber())
- MBBLocations.resize((MBB->getNumber()+1)*2);
- MBBLocations[MBB->getNumber()] = getCurrentPCValue();
- if (MBB->hasAddressTaken())
- TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
- (void*)getCurrentPCValue());
- DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
- << (void*) getCurrentPCValue() << "]\n");
- }
-
- uintptr_t getConstantPoolEntryAddress(unsigned Entry) const override;
- uintptr_t getJumpTableEntryAddress(unsigned Entry) const override;
-
- uintptr_t
- getMachineBasicBlockAddress(MachineBasicBlock *MBB) const override {
- assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
- MBBLocations[MBB->getNumber()] && "MBB not emitted!");
- return MBBLocations[MBB->getNumber()];
- }
-
- /// retryWithMoreMemory - Log a retry and deallocate all memory for the
- /// given function. Increase the minimum allocation size so that we get
- /// more memory next time.
- void retryWithMoreMemory(MachineFunction &F);
-
- /// deallocateMemForFunction - Deallocate all memory for the specified
- /// function body.
- void deallocateMemForFunction(const Function *F);
-
- void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) override;
-
- void emitLabel(MCSymbol *Label) override {
- LabelLocations[Label] = getCurrentPCValue();
- }
-
- DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() override {
- return &LabelLocations;
- }
-
- uintptr_t getLabelAddress(MCSymbol *Label) const override {
- assert(LabelLocations.count(Label) && "Label not emitted!");
- return LabelLocations.find(Label)->second;
- }
-
- void setModuleInfo(MachineModuleInfo* Info) override {
- MMI = Info;
- }
-
- private:
- void *getPointerToGlobal(GlobalValue *GV, void *Reference,
- bool MayNeedFarStub);
- void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
- };
-}
-
-void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
- JRS->EraseAllCallSitesForPrelocked(F);
-}
-
-void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
- FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
- if (F2C == FunctionToCallSitesMap.end())
- return;
- StubToResolverMapTy &S2RMap = *StubToResolverMap;
- for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
- E = F2C->second.end(); I != E; ++I) {
- S2RMap.UnregisterStubResolver(*I);
- bool Erased = CallSiteToFunctionMap.erase(*I);
- (void)Erased;
- assert(Erased && "Missing call site->function mapping");
- }
- FunctionToCallSitesMap.erase(F2C);
-}
-
-void JITResolverState::EraseAllCallSitesPrelocked() {
- StubToResolverMapTy &S2RMap = *StubToResolverMap;
- for (CallSiteToFunctionMapTy::const_iterator
- I = CallSiteToFunctionMap.begin(),
- E = CallSiteToFunctionMap.end(); I != E; ++I) {
- S2RMap.UnregisterStubResolver(I->first);
- }
- CallSiteToFunctionMap.clear();
- FunctionToCallSitesMap.clear();
-}
-
-JITResolver::~JITResolver() {
- // No need to lock because we're in the destructor, and state isn't shared.
- state.EraseAllCallSitesPrelocked();
- assert(!StubToResolverMap->ResolverHasStubs(this) &&
- "Resolver destroyed with stubs still alive.");
-}
-
-/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
-/// if it has already been created.
-void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
- MutexGuard locked(TheJIT->lock);
-
- // If we already have a stub for this function, recycle it.
- return state.getFunctionToLazyStubMap().lookup(F);
-}
-
-/// getFunctionStub - This returns a pointer to a function stub, creating
-/// one on demand as needed.
-void *JITResolver::getLazyFunctionStub(Function *F) {
- MutexGuard locked(TheJIT->lock);
-
- // If we already have a lazy stub for this function, recycle it.
- void *&Stub = state.getFunctionToLazyStubMap()[F];
- if (Stub) return Stub;
-
- // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
- // must resolve the symbol now.
- void *Actual = TheJIT->isCompilingLazily()
- ? (void *)(intptr_t)LazyResolverFn : (void *)nullptr;
-
- // If this is an external declaration, attempt to resolve the address now
- // to place in the stub.
- if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
- Actual = TheJIT->getPointerToFunction(F);
-
- // If we resolved the symbol to a null address (eg. a weak external)
- // don't emit a stub. Return a null pointer to the application.
- if (!Actual) return nullptr;
- }
-
- TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
- JE.startGVStub(F, SL.Size, SL.Alignment);
- // Codegen a new stub, calling the lazy resolver or the actual address of the
- // external function, if it was resolved.
- Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
- JE.finishGVStub();
-
- if (Actual != (void*)(intptr_t)LazyResolverFn) {
- // If we are getting the stub for an external function, we really want the
- // address of the stub in the GlobalAddressMap for the JIT, not the address
- // of the external function.
- TheJIT->updateGlobalMapping(F, Stub);
- }
-
- DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
- << F->getName() << "'\n");
-
- if (TheJIT->isCompilingLazily()) {
- // Register this JITResolver as the one corresponding to this call site so
- // JITCompilerFn will be able to find it.
- StubToResolverMap->RegisterStubResolver(Stub, this);
-
- // Finally, keep track of the stub-to-Function mapping so that the
- // JITCompilerFn knows which function to compile!
- state.AddCallSite(Stub, F);
- } else if (!Actual) {
- // If we are JIT'ing non-lazily but need to call a function that does not
- // exist yet, add it to the JIT's work list so that we can fill in the
- // stub address later.
- assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
- "'Actual' should have been set above.");
- TheJIT->addPendingFunction(F);
- }
-
- return Stub;
-}
-
-/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
-/// GV address.
-void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
- MutexGuard locked(TheJIT->lock);
-
- // If we already have a stub for this global variable, recycle it.
- void *&IndirectSym = state.getGlobalToIndirectSymMap()[GV];
- if (IndirectSym) return IndirectSym;
-
- // Otherwise, codegen a new indirect symbol.
- IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
- JE);
-
- DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
- << "] for GV '" << GV->getName() << "'\n");
-
- return IndirectSym;
-}
-
-/// getExternalFunctionStub - Return a stub for the function at the
-/// specified address, created lazily on demand.
-void *JITResolver::getExternalFunctionStub(void *FnAddr) {
- // If we already have a stub for this function, recycle it.
- void *&Stub = ExternalFnToStubMap[FnAddr];
- if (Stub) return Stub;
-
- TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
- JE.startGVStub(nullptr, SL.Size, SL.Alignment);
- Stub = TheJIT->getJITInfo().emitFunctionStub(nullptr, FnAddr, JE);
- JE.finishGVStub();
-
- DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
- << "] for external function at '" << FnAddr << "'\n");
- return Stub;
-}
-
-unsigned JITResolver::getGOTIndexForAddr(void* addr) {
- unsigned idx = revGOTMap[addr];
- if (!idx) {
- idx = ++nextGOTIndex;
- revGOTMap[addr] = idx;
- DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
- << addr << "]\n");
- }
- return idx;
-}
-
-/// JITCompilerFn - This function is called when a lazy compilation stub has
-/// been entered. It looks up which function this stub corresponds to, compiles
-/// it if necessary, then returns the resultant function pointer.
-void *JITResolver::JITCompilerFn(void *Stub) {
- JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
- assert(JR && "Unable to find the corresponding JITResolver to the call site");
-
- Function* F = nullptr;
- void* ActualPtr = nullptr;
-
- {
- // Only lock for getting the Function. The call getPointerToFunction made
- // in this function might trigger function materializing, which requires
- // JIT lock to be unlocked.
- MutexGuard locked(JR->TheJIT->lock);
-
- // The address given to us for the stub may not be exactly right, it might
- // be a little bit after the stub. As such, use upper_bound to find it.
- std::pair<void*, Function*> I =
- JR->state.LookupFunctionFromCallSite(Stub);
- F = I.second;
- ActualPtr = I.first;
- }
-
- // If we have already code generated the function, just return the address.
- void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
-
- if (!Result) {
- // Otherwise we don't have it, do lazy compilation now.
-
- // If lazy compilation is disabled, emit a useful error message and abort.
- if (!JR->TheJIT->isCompilingLazily()) {
- report_fatal_error("LLVM JIT requested to do lazy compilation of"
- " function '"
- + F->getName() + "' when lazy compiles are disabled!");
- }
-
- DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
- << "' In stub ptr = " << Stub << " actual ptr = "
- << ActualPtr << "\n");
- (void)ActualPtr;
-
- Result = JR->TheJIT->getPointerToFunction(F);
- }
-
- // Reacquire the lock to update the GOT map.
- MutexGuard locked(JR->TheJIT->lock);
-
- // We might like to remove the call site from the CallSiteToFunction map, but
- // we can't do that! Multiple threads could be stuck, waiting to acquire the
- // lock above. As soon as the 1st function finishes compiling the function,
- // the next one will be released, and needs to be able to find the function it
- // needs to call.
-
- // FIXME: We could rewrite all references to this stub if we knew them.
-
- // What we will do is set the compiled function address to map to the
- // same GOT entry as the stub so that later clients may update the GOT
- // if they see it still using the stub address.
- // Note: this is done so the Resolver doesn't have to manage GOT memory
- // Do this without allocating map space if the target isn't using a GOT
- if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
- JR->revGOTMap[Result] = JR->revGOTMap[Stub];
-
- return Result;
-}
-
-//===----------------------------------------------------------------------===//
-// JITEmitter code.
-//
-
-static GlobalObject *getSimpleAliasee(Constant *C) {
- C = C->stripPointerCasts();
- return dyn_cast<GlobalObject>(C);
-}
-
-void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
- bool MayNeedFarStub) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return TheJIT->getOrEmitGlobalVariable(GV);
-
- if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- // We can only handle simple cases.
- if (GlobalValue *GV = getSimpleAliasee(GA->getAliasee()))
- return TheJIT->getPointerToGlobal(GV);
- return nullptr;
- }
-
- // If we have already compiled the function, return a pointer to its body.
- Function *F = cast<Function>(V);
-
- void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
- if (FnStub) {
- // Return the function stub if it's already created. We do this first so
- // that we're returning the same address for the function as any previous
- // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
- // close enough to call.
- return FnStub;
- }
-
- // If we know the target can handle arbitrary-distance calls, try to
- // return a direct pointer.
- if (!MayNeedFarStub) {
- // If we have code, go ahead and return that.
- void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
- if (ResultPtr) return ResultPtr;
-
- // If this is an external function pointer, we can force the JIT to
- // 'compile' it, which really just adds it to the map.
- if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
- return TheJIT->getPointerToFunction(F);
- }
-
- // Otherwise, we may need a to emit a stub, and, conservatively, we always do
- // so. Note that it's possible to return null from getLazyFunctionStub in the
- // case of a weak extern that fails to resolve.
- return Resolver.getLazyFunctionStub(F);
-}
-
-void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
- // Make sure GV is emitted first, and create a stub containing the fully
- // resolved address.
- void *GVAddress = getPointerToGlobal(V, Reference, false);
- void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
- return StubAddr;
-}
-
-void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
- if (DL.isUnknown()) return;
- if (!BeforePrintingInsn) return;
-
- const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
-
- if (DL.getScope(Context) != nullptr && PrevDL != DL) {
- JITEvent_EmittedFunctionDetails::LineStart NextLine;
- NextLine.Address = getCurrentPCValue();
- NextLine.Loc = DL;
- EmissionDetails.LineStarts.push_back(NextLine);
- }
-
- PrevDL = DL;
-}
-
-static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
- const DataLayout *TD) {
- const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
- if (Constants.empty()) return 0;
-
- unsigned Size = 0;
- for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
- MachineConstantPoolEntry CPE = Constants[i];
- unsigned AlignMask = CPE.getAlignment() - 1;
- Size = (Size + AlignMask) & ~AlignMask;
- Type *Ty = CPE.getType();
- Size += TD->getTypeAllocSize(Ty);
- }
- return Size;
-}
-
-void JITEmitter::startFunction(MachineFunction &F) {
- DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
- << F.getName() << "\n");
-
- uintptr_t ActualSize = 0;
- // Set the memory writable, if it's not already
- MemMgr->setMemoryWritable();
-
- if (SizeEstimate > 0) {
- // SizeEstimate will be non-zero on reallocation attempts.
- ActualSize = SizeEstimate;
- }
-
- BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
- ActualSize);
- BufferEnd = BufferBegin+ActualSize;
- EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
-
- // Ensure the constant pool/jump table info is at least 4-byte aligned.
- emitAlignment(16);
-
- emitConstantPool(F.getConstantPool());
- if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
- initJumpTableInfo(MJTI);
-
- // About to start emitting the machine code for the function.
- emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
- TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
- EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
-
- MBBLocations.clear();
-
- EmissionDetails.MF = &F;
- EmissionDetails.LineStarts.clear();
-}
-
-bool JITEmitter::finishFunction(MachineFunction &F) {
- if (CurBufferPtr == BufferEnd) {
- // We must call endFunctionBody before retrying, because
- // deallocateMemForFunction requires it.
- MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
- retryWithMoreMemory(F);
- return true;
- }
-
- if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
- emitJumpTableInfo(MJTI);
-
- // FnStart is the start of the text, not the start of the constant pool and
- // other per-function data.
- uint8_t *FnStart =
- (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
-
- // FnEnd is the end of the function's machine code.
- uint8_t *FnEnd = CurBufferPtr;
-
- if (!Relocations.empty()) {
- CurFn = F.getFunction();
- NumRelos += Relocations.size();
-
- // Resolve the relocations to concrete pointers.
- for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
- MachineRelocation &MR = Relocations[i];
- void *ResultPtr = nullptr;
- if (!MR.letTargetResolve()) {
- if (MR.isExternalSymbol()) {
- ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
- false);
- DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
- << ResultPtr << "]\n");
-
- // If the target REALLY wants a stub for this function, emit it now.
- if (MR.mayNeedFarStub()) {
- ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
- }
- } else if (MR.isGlobalValue()) {
- ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
- BufferBegin+MR.getMachineCodeOffset(),
- MR.mayNeedFarStub());
- } else if (MR.isIndirectSymbol()) {
- ResultPtr = getPointerToGVIndirectSym(
- MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
- } else if (MR.isBasicBlock()) {
- ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
- } else if (MR.isConstantPoolIndex()) {
- ResultPtr =
- (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
- } else {
- assert(MR.isJumpTableIndex());
- ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
- }
-
- MR.setResultPointer(ResultPtr);
- }
-
- // if we are managing the GOT and the relocation wants an index,
- // give it one
- if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
- unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
- MR.setGOTIndex(idx);
- if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
- DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
- << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
- << "\n");
- ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
- }
- }
- }
-
- CurFn = nullptr;
- TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
- Relocations.size(), MemMgr->getGOTBase());
- }
-
- // Update the GOT entry for F to point to the new code.
- if (MemMgr->isManagingGOT()) {
- unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
- if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
- DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
- << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
- << "\n");
- ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
- }
- }
-
- // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
- // global variables that were referenced in the relocations.
- MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
-
- if (CurBufferPtr == BufferEnd) {
- retryWithMoreMemory(F);
- return true;
- } else {
- // Now that we've succeeded in emitting the function, reset the
- // SizeEstimate back down to zero.
- SizeEstimate = 0;
- }
-
- BufferBegin = CurBufferPtr = nullptr;
- NumBytes += FnEnd-FnStart;
-
- // Invalidate the icache if necessary.
- sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
-
- TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
- EmissionDetails);
-
- // Reset the previous debug location.
- PrevDL = DebugLoc();
-
- DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
- << "] Function: " << F.getName()
- << ": " << (FnEnd-FnStart) << " bytes of text, "
- << Relocations.size() << " relocations\n");
-
- Relocations.clear();
- ConstPoolAddresses.clear();
-
- // Mark code region readable and executable if it's not so already.
- MemMgr->setMemoryExecutable();
-
- DEBUG({
- dbgs() << "JIT: Binary code:\n";
- uint8_t* q = FnStart;
- for (int i = 0; q < FnEnd; q += 4, ++i) {
- if (i == 4)
- i = 0;
- if (i == 0)
- dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
- bool Done = false;
- for (int j = 3; j >= 0; --j) {
- if (q + j >= FnEnd)
- Done = true;
- else
- dbgs() << (unsigned short)q[j];
- }
- if (Done)
- break;
- dbgs() << ' ';
- if (i == 3)
- dbgs() << '\n';
- }
- dbgs()<< '\n';
- });
-
- if (MMI)
- MMI->EndFunction();
-
- return false;
-}
-
-void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
- DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
- Relocations.clear(); // Clear the old relocations or we'll reapply them.
- ConstPoolAddresses.clear();
- ++NumRetries;
- deallocateMemForFunction(F.getFunction());
- // Try again with at least twice as much free space.
- SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
-
- for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
- if (MBB->hasAddressTaken())
- TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
- }
-}
-
-/// deallocateMemForFunction - Deallocate all memory for the specified
-/// function body. Also drop any references the function has to stubs.
-/// May be called while the Function is being destroyed inside ~Value().
-void JITEmitter::deallocateMemForFunction(const Function *F) {
- ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
- Emitted = EmittedFunctions.find(F);
- if (Emitted != EmittedFunctions.end()) {
- MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
- TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
-
- EmittedFunctions.erase(Emitted);
- }
-}
-
-
-void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
- if (BufferBegin)
- return JITCodeEmitter::allocateSpace(Size, Alignment);
-
- // create a new memory block if there is no active one.
- // care must be taken so that BufferBegin is invalidated when a
- // block is trimmed
- BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
- BufferEnd = BufferBegin+Size;
- return CurBufferPtr;
-}
-
-void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
- // Delegate this call through the memory manager.
- return MemMgr->allocateGlobal(Size, Alignment);
-}
-
-void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
- if (TheJIT->getJITInfo().hasCustomConstantPool())
- return;
-
- const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
- if (Constants.empty()) return;
-
- unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
- unsigned Align = MCP->getConstantPoolAlignment();
- ConstantPoolBase = allocateSpace(Size, Align);
- ConstantPool = MCP;
-
- if (!ConstantPoolBase) return; // Buffer overflow.
-
- DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
- << "] (size: " << Size << ", alignment: " << Align << ")\n");
-
- // Initialize the memory for all of the constant pool entries.
- unsigned Offset = 0;
- for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
- MachineConstantPoolEntry CPE = Constants[i];
- unsigned AlignMask = CPE.getAlignment() - 1;
- Offset = (Offset + AlignMask) & ~AlignMask;
-
- uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
- ConstPoolAddresses.push_back(CAddr);
- if (CPE.isMachineConstantPoolEntry()) {
- // FIXME: add support to lower machine constant pool values into bytes!
- report_fatal_error("Initialize memory with machine specific constant pool"
- "entry has not been implemented!");
- }
- TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
- DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
- dbgs().write_hex(CAddr) << "]\n");
-
- Type *Ty = CPE.Val.ConstVal->getType();
- Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
- }
-}
-
-void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
- if (TheJIT->getJITInfo().hasCustomJumpTables())
- return;
- if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
- return;
-
- const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
- if (JT.empty()) return;
-
- unsigned NumEntries = 0;
- for (unsigned i = 0, e = JT.size(); i != e; ++i)
- NumEntries += JT[i].MBBs.size();
-
- unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
-
- // Just allocate space for all the jump tables now. We will fix up the actual
- // MBB entries in the tables after we emit the code for each block, since then
- // we will know the final locations of the MBBs in memory.
- JumpTable = MJTI;
- JumpTableBase = allocateSpace(NumEntries * EntrySize,
- MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
-}
-
-void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
- if (TheJIT->getJITInfo().hasCustomJumpTables())
- return;
-
- const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
- if (JT.empty() || !JumpTableBase) return;
-
-
- switch (MJTI->getEntryKind()) {
- case MachineJumpTableInfo::EK_Inline:
- return;
- case MachineJumpTableInfo::EK_BlockAddress: {
- // EK_BlockAddress - Each entry is a plain address of block, e.g.:
- // .word LBB123
- assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
- "Cross JIT'ing?");
-
- // For each jump table, map each target in the jump table to the address of
- // an emitted MachineBasicBlock.
- intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
-
- for (unsigned i = 0, e = JT.size(); i != e; ++i) {
- const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
- // Store the address of the basic block for this jump table slot in the
- // memory we allocated for the jump table in 'initJumpTableInfo'
- for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
- *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
- }
- break;
- }
-
- case MachineJumpTableInfo::EK_Custom32:
- case MachineJumpTableInfo::EK_GPRel32BlockAddress:
- case MachineJumpTableInfo::EK_LabelDifference32: {
- assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
- // For each jump table, place the offset from the beginning of the table
- // to the target address.
- int *SlotPtr = (int*)JumpTableBase;
-
- for (unsigned i = 0, e = JT.size(); i != e; ++i) {
- const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
- // Store the offset of the basic block for this jump table slot in the
- // memory we allocated for the jump table in 'initJumpTableInfo'
- uintptr_t Base = (uintptr_t)SlotPtr;
- for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
- uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
- /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
- *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
- }
- }
- break;
- }
- case MachineJumpTableInfo::EK_GPRel64BlockAddress:
- llvm_unreachable(
- "JT Info emission not implemented for GPRel64BlockAddress yet.");
- }
-}
-
-void JITEmitter::startGVStub(const GlobalValue* GV,
- unsigned StubSize, unsigned Alignment) {
- SavedBufferBegin = BufferBegin;
- SavedBufferEnd = BufferEnd;
- SavedCurBufferPtr = CurBufferPtr;
-
- BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
- BufferEnd = BufferBegin+StubSize+1;
-}
-
-void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
- SavedBufferBegin = BufferBegin;
- SavedBufferEnd = BufferEnd;
- SavedCurBufferPtr = CurBufferPtr;
-
- BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
- BufferEnd = BufferBegin+StubSize+1;
-}
-
-void JITEmitter::finishGVStub() {
- assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
- NumBytes += getCurrentPCOffset();
- BufferBegin = SavedBufferBegin;
- BufferEnd = SavedBufferEnd;
- CurBufferPtr = SavedCurBufferPtr;
-}
-
-void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
- const uint8_t *Buffer, size_t Size,
- unsigned Alignment) {
- uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
- memcpy(IndGV, Buffer, Size);
- return IndGV;
-}
-
-// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
-// in the constant pool that was last emitted with the 'emitConstantPool'
-// method.
-//
-uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
- assert(ConstantNum < ConstantPool->getConstants().size() &&
- "Invalid ConstantPoolIndex!");
- return ConstPoolAddresses[ConstantNum];
-}
-
-// getJumpTableEntryAddress - Return the address of the JumpTable with index
-// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
-//
-uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
- const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
- assert(Index < JT.size() && "Invalid jump table index!");
-
- unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
-
- unsigned Offset = 0;
- for (unsigned i = 0; i < Index; ++i)
- Offset += JT[i].MBBs.size();
-
- Offset *= EntrySize;
-
- return (uintptr_t)((char *)JumpTableBase + Offset);
-}
-
-void JITEmitter::EmittedFunctionConfig::onDelete(
- JITEmitter *Emitter, const Function *F) {
- Emitter->deallocateMemForFunction(F);
-}
-void JITEmitter::EmittedFunctionConfig::onRAUW(
- JITEmitter *, const Function*, const Function*) {
- llvm_unreachable("The JIT doesn't know how to handle a"
- " RAUW on a value it has emitted.");
-}
-
-
-//===----------------------------------------------------------------------===//
-// Public interface to this file
-//===----------------------------------------------------------------------===//
-
-JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
- TargetMachine &tm) {
- return new JITEmitter(jit, JMM, tm);
-}
-
-// getPointerToFunctionOrStub - If the specified function has been
-// code-gen'd, return a pointer to the function. If not, compile it, or use
-// a stub to implement lazy compilation if available.
-//
-void *JIT::getPointerToFunctionOrStub(Function *F) {
- // If we have already code generated the function, just return the address.
- if (void *Addr = getPointerToGlobalIfAvailable(F))
- return Addr;
-
- // Get a stub if the target supports it.
- JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
- return JE->getJITResolver().getLazyFunctionStub(F);
-}
-
-void JIT::updateFunctionStubUnlocked(Function *F) {
- // Get the empty stub we generated earlier.
- JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
- void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
- void *Addr = getPointerToGlobalIfAvailable(F);
- assert(Addr != Stub && "Function must have non-stub address to be updated.");
-
- // Tell the target jit info to rewrite the stub at the specified address,
- // rather than creating a new one.
- TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
- JE->startGVStub(Stub, layout.Size);
- getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
- JE->finishGVStub();
-}
-
-/// freeMachineCodeForFunction - release machine code memory for given Function.
-///
-void JIT::freeMachineCodeForFunction(Function *F) {
- // Delete translation for this from the ExecutionEngine, so it will get
- // retranslated next time it is used.
- updateGlobalMapping(F, nullptr);
-
- // Free the actual memory for the function body and related stuff.
- static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
-}
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
deleted file mode 100644
index 584b93f..0000000
--- a/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
+++ /dev/null
@@ -1,904 +0,0 @@
-//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the DefaultJITMemoryManager class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Config/config.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/DynamicLibrary.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Memory.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cassert>
-#include <climits>
-#include <cstring>
-#include <vector>
-
-#if defined(__linux__)
-#if defined(HAVE_SYS_STAT_H)
-#include <sys/stat.h>
-#endif
-#include <fcntl.h>
-#include <unistd.h>
-#endif
-
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
-
-JITMemoryManager::~JITMemoryManager() {}
-
-//===----------------------------------------------------------------------===//
-// Memory Block Implementation.
-//===----------------------------------------------------------------------===//
-
-namespace {
- /// MemoryRangeHeader - For a range of memory, this is the header that we put
- /// on the block of memory. It is carefully crafted to be one word of memory.
- /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
- /// which starts with this.
- struct FreeRangeHeader;
- struct MemoryRangeHeader {
- /// ThisAllocated - This is true if this block is currently allocated. If
- /// not, this can be converted to a FreeRangeHeader.
- unsigned ThisAllocated : 1;
-
- /// PrevAllocated - Keep track of whether the block immediately before us is
- /// allocated. If not, the word immediately before this header is the size
- /// of the previous block.
- unsigned PrevAllocated : 1;
-
- /// BlockSize - This is the size in bytes of this memory block,
- /// including this header.
- uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
-
-
- /// getBlockAfter - Return the memory block immediately after this one.
- ///
- MemoryRangeHeader &getBlockAfter() const {
- return *reinterpret_cast<MemoryRangeHeader *>(
- reinterpret_cast<char*>(
- const_cast<MemoryRangeHeader *>(this))+BlockSize);
- }
-
- /// getFreeBlockBefore - If the block before this one is free, return it,
- /// otherwise return null.
- FreeRangeHeader *getFreeBlockBefore() const {
- if (PrevAllocated) return nullptr;
- intptr_t PrevSize = reinterpret_cast<intptr_t *>(
- const_cast<MemoryRangeHeader *>(this))[-1];
- return reinterpret_cast<FreeRangeHeader *>(
- reinterpret_cast<char*>(
- const_cast<MemoryRangeHeader *>(this))-PrevSize);
- }
-
- /// FreeBlock - Turn an allocated block into a free block, adjusting
- /// bits in the object headers, and adding an end of region memory block.
- FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
-
- /// TrimAllocationToSize - If this allocated block is significantly larger
- /// than NewSize, split it into two pieces (where the former is NewSize
- /// bytes, including the header), and add the new block to the free list.
- FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
- uint64_t NewSize);
- };
-
- /// FreeRangeHeader - For a memory block that isn't already allocated, this
- /// keeps track of the current block and has a pointer to the next free block.
- /// Free blocks are kept on a circularly linked list.
- struct FreeRangeHeader : public MemoryRangeHeader {
- FreeRangeHeader *Prev;
- FreeRangeHeader *Next;
-
- /// getMinBlockSize - Get the minimum size for a memory block. Blocks
- /// smaller than this size cannot be created.
- static unsigned getMinBlockSize() {
- return sizeof(FreeRangeHeader)+sizeof(intptr_t);
- }
-
- /// SetEndOfBlockSizeMarker - The word at the end of every free block is
- /// known to be the size of the free block. Set it for this block.
- void SetEndOfBlockSizeMarker() {
- void *EndOfBlock = (char*)this + BlockSize;
- ((intptr_t *)EndOfBlock)[-1] = BlockSize;
- }
-
- FreeRangeHeader *RemoveFromFreeList() {
- assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
- Next->Prev = Prev;
- return Prev->Next = Next;
- }
-
- void AddToFreeList(FreeRangeHeader *FreeList) {
- Next = FreeList;
- Prev = FreeList->Prev;
- Prev->Next = this;
- Next->Prev = this;
- }
-
- /// GrowBlock - The block after this block just got deallocated. Merge it
- /// into the current block.
- void GrowBlock(uintptr_t NewSize);
-
- /// AllocateBlock - Mark this entire block allocated, updating freelists
- /// etc. This returns a pointer to the circular free-list.
- FreeRangeHeader *AllocateBlock();
- };
-}
-
-
-/// AllocateBlock - Mark this entire block allocated, updating freelists
-/// etc. This returns a pointer to the circular free-list.
-FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
- assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
- "Cannot allocate an allocated block!");
- // Mark this block allocated.
- ThisAllocated = 1;
- getBlockAfter().PrevAllocated = 1;
-
- // Remove it from the free list.
- return RemoveFromFreeList();
-}
-
-/// FreeBlock - Turn an allocated block into a free block, adjusting
-/// bits in the object headers, and adding an end of region memory block.
-/// If possible, coalesce this block with neighboring blocks. Return the
-/// FreeRangeHeader to allocate from.
-FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
- MemoryRangeHeader *FollowingBlock = &getBlockAfter();
- assert(ThisAllocated && "This block is already free!");
- assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
-
- FreeRangeHeader *FreeListToReturn = FreeList;
-
- // If the block after this one is free, merge it into this block.
- if (!FollowingBlock->ThisAllocated) {
- FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
- // "FreeList" always needs to be a valid free block. If we're about to
- // coalesce with it, update our notion of what the free list is.
- if (&FollowingFreeBlock == FreeList) {
- FreeList = FollowingFreeBlock.Next;
- FreeListToReturn = nullptr;
- assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
- }
- FollowingFreeBlock.RemoveFromFreeList();
-
- // Include the following block into this one.
- BlockSize += FollowingFreeBlock.BlockSize;
- FollowingBlock = &FollowingFreeBlock.getBlockAfter();
-
- // Tell the block after the block we are coalescing that this block is
- // allocated.
- FollowingBlock->PrevAllocated = 1;
- }
-
- assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
-
- if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
- PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
- return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
- }
-
- // Otherwise, mark this block free.
- FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
- FollowingBlock->PrevAllocated = 0;
- FreeBlock.ThisAllocated = 0;
-
- // Link this into the linked list of free blocks.
- FreeBlock.AddToFreeList(FreeList);
-
- // Add a marker at the end of the block, indicating the size of this free
- // block.
- FreeBlock.SetEndOfBlockSizeMarker();
- return FreeListToReturn ? FreeListToReturn : &FreeBlock;
-}
-
-/// GrowBlock - The block after this block just got deallocated. Merge it
-/// into the current block.
-void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
- assert(NewSize > BlockSize && "Not growing block?");
- BlockSize = NewSize;
- SetEndOfBlockSizeMarker();
- getBlockAfter().PrevAllocated = 0;
-}
-
-/// TrimAllocationToSize - If this allocated block is significantly larger
-/// than NewSize, split it into two pieces (where the former is NewSize
-/// bytes, including the header), and add the new block to the free list.
-FreeRangeHeader *MemoryRangeHeader::
-TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
- assert(ThisAllocated && getBlockAfter().PrevAllocated &&
- "Cannot deallocate part of an allocated block!");
-
- // Don't allow blocks to be trimmed below minimum required size
- NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
-
- // Round up size for alignment of header.
- unsigned HeaderAlign = __alignof(FreeRangeHeader);
- NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
-
- // Size is now the size of the block we will remove from the start of the
- // current block.
- assert(NewSize <= BlockSize &&
- "Allocating more space from this block than exists!");
-
- // If splitting this block will cause the remainder to be too small, do not
- // split the block.
- if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
- return FreeList;
-
- // Otherwise, we splice the required number of bytes out of this block, form
- // a new block immediately after it, then mark this block allocated.
- MemoryRangeHeader &FormerNextBlock = getBlockAfter();
-
- // Change the size of this block.
- BlockSize = NewSize;
-
- // Get the new block we just sliced out and turn it into a free block.
- FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
- NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
- NewNextBlock.ThisAllocated = 0;
- NewNextBlock.PrevAllocated = 1;
- NewNextBlock.SetEndOfBlockSizeMarker();
- FormerNextBlock.PrevAllocated = 0;
- NewNextBlock.AddToFreeList(FreeList);
- return &NewNextBlock;
-}
-
-//===----------------------------------------------------------------------===//
-// Memory Block Implementation.
-//===----------------------------------------------------------------------===//
-
-namespace {
-
- class DefaultJITMemoryManager;
-
- class JITAllocator {
- DefaultJITMemoryManager &JMM;
- public:
- JITAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
- void *Allocate(size_t Size, size_t /*Alignment*/);
- void Deallocate(void *Slab, size_t Size);
- };
-
- /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
- /// This splits a large block of MAP_NORESERVE'd memory into two
- /// sections, one for function stubs, one for the functions themselves. We
- /// have to do this because we may need to emit a function stub while in the
- /// middle of emitting a function, and we don't know how large the function we
- /// are emitting is.
- class DefaultJITMemoryManager : public JITMemoryManager {
- public:
- /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
- /// least this much unless more is requested. Currently, in 512k slabs.
- static const size_t DefaultCodeSlabSize = 512 * 1024;
-
- /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably
- /// 16 pages) unless we get an allocation above SizeThreshold.
- static const size_t DefaultSlabSize = 64 * 1024;
-
- /// DefaultSizeThreshold - For any allocation larger than 16K (probably
- /// 4 pages), we should allocate a separate slab to avoid wasted space at
- /// the end of a normal slab.
- static const size_t DefaultSizeThreshold = 16 * 1024;
-
- private:
- // Whether to poison freed memory.
- bool PoisonMemory;
-
- /// LastSlab - This points to the last slab allocated and is used as the
- /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
- /// stubs, data, and code contiguously in memory. In general, however, this
- /// is not possible because the NearBlock parameter is ignored on Windows
- /// platforms and even on Unix it works on a best-effort pasis.
- sys::MemoryBlock LastSlab;
-
- // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
- // confuse them with the blocks of memory described above.
- std::vector<sys::MemoryBlock> CodeSlabs;
- BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize,
- DefaultSizeThreshold> StubAllocator;
- BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize,
- DefaultSizeThreshold> DataAllocator;
-
- // Circular list of free blocks.
- FreeRangeHeader *FreeMemoryList;
-
- // When emitting code into a memory block, this is the block.
- MemoryRangeHeader *CurBlock;
-
- uint8_t *GOTBase; // Target Specific reserved memory
- public:
- DefaultJITMemoryManager();
- ~DefaultJITMemoryManager();
-
- /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
- /// last slab it allocated, so that subsequent allocations follow it.
- sys::MemoryBlock allocateNewSlab(size_t size);
-
- /// getPointerToNamedFunction - This method returns the address of the
- /// specified function by using the dlsym function call.
- void *getPointerToNamedFunction(const std::string &Name,
- bool AbortOnFailure = true) override;
-
- void AllocateGOT() override;
-
- // Testing methods.
- bool CheckInvariants(std::string &ErrorStr) override;
- size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; }
- size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; }
- size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; }
- unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); }
- unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); }
- unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); }
-
- /// startFunctionBody - When a function starts, allocate a block of free
- /// executable memory, returning a pointer to it and its actual size.
- uint8_t *startFunctionBody(const Function *F,
- uintptr_t &ActualSize) override {
-
- FreeRangeHeader* candidateBlock = FreeMemoryList;
- FreeRangeHeader* head = FreeMemoryList;
- FreeRangeHeader* iter = head->Next;
-
- uintptr_t largest = candidateBlock->BlockSize;
-
- // Search for the largest free block
- while (iter != head) {
- if (iter->BlockSize > largest) {
- largest = iter->BlockSize;
- candidateBlock = iter;
- }
- iter = iter->Next;
- }
-
- largest = largest - sizeof(MemoryRangeHeader);
-
- // If this block isn't big enough for the allocation desired, allocate
- // another block of memory and add it to the free list.
- if (largest < ActualSize ||
- largest <= FreeRangeHeader::getMinBlockSize()) {
- DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
- candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
- }
-
- // Select this candidate block for allocation
- CurBlock = candidateBlock;
-
- // Allocate the entire memory block.
- FreeMemoryList = candidateBlock->AllocateBlock();
- ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
- return (uint8_t *)(CurBlock + 1);
- }
-
- /// allocateNewCodeSlab - Helper method to allocate a new slab of code
- /// memory from the OS and add it to the free list. Returns the new
- /// FreeRangeHeader at the base of the slab.
- FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
- // If the user needs at least MinSize free memory, then we account for
- // two MemoryRangeHeaders: the one in the user's block, and the one at the
- // end of the slab.
- size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
- size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
- sys::MemoryBlock B = allocateNewSlab(SlabSize);
- CodeSlabs.push_back(B);
- char *MemBase = (char*)(B.base());
-
- // Put a tiny allocated block at the end of the memory chunk, so when
- // FreeBlock calls getBlockAfter it doesn't fall off the end.
- MemoryRangeHeader *EndBlock =
- (MemoryRangeHeader*)(MemBase + B.size()) - 1;
- EndBlock->ThisAllocated = 1;
- EndBlock->PrevAllocated = 0;
- EndBlock->BlockSize = sizeof(MemoryRangeHeader);
-
- // Start out with a vast new block of free memory.
- FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
- NewBlock->ThisAllocated = 0;
- // Make sure getFreeBlockBefore doesn't look into unmapped memory.
- NewBlock->PrevAllocated = 1;
- NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
- NewBlock->SetEndOfBlockSizeMarker();
- NewBlock->AddToFreeList(FreeMemoryList);
-
- assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
- "The block was too small!");
- return NewBlock;
- }
-
- /// endFunctionBody - The function F is now allocated, and takes the memory
- /// in the range [FunctionStart,FunctionEnd).
- void endFunctionBody(const Function *F, uint8_t *FunctionStart,
- uint8_t *FunctionEnd) override {
- assert(FunctionEnd > FunctionStart);
- assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
- "Mismatched function start/end!");
-
- uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
-
- // Release the memory at the end of this block that isn't needed.
- FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
- }
-
- /// allocateSpace - Allocate a memory block of the given size. This method
- /// cannot be called between calls to startFunctionBody and endFunctionBody.
- uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override {
- CurBlock = FreeMemoryList;
- FreeMemoryList = FreeMemoryList->AllocateBlock();
-
- uint8_t *result = (uint8_t *)(CurBlock + 1);
-
- if (Alignment == 0) Alignment = 1;
- result = (uint8_t*)(((intptr_t)result+Alignment-1) &
- ~(intptr_t)(Alignment-1));
-
- uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
- FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
-
- return result;
- }
-
- /// allocateStub - Allocate memory for a function stub.
- uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
- unsigned Alignment) override {
- return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
- }
-
- /// allocateGlobal - Allocate memory for a global.
- uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override {
- return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
- }
-
- /// allocateCodeSection - Allocate memory for a code section.
- uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
- unsigned SectionID,
- StringRef SectionName) override {
- // Grow the required block size to account for the block header
- Size += sizeof(*CurBlock);
-
- // Alignment handling.
- if (!Alignment)
- Alignment = 16;
- Size += Alignment - 1;
-
- FreeRangeHeader* candidateBlock = FreeMemoryList;
- FreeRangeHeader* head = FreeMemoryList;
- FreeRangeHeader* iter = head->Next;
-
- uintptr_t largest = candidateBlock->BlockSize;
-
- // Search for the largest free block.
- while (iter != head) {
- if (iter->BlockSize > largest) {
- largest = iter->BlockSize;
- candidateBlock = iter;
- }
- iter = iter->Next;
- }
-
- largest = largest - sizeof(MemoryRangeHeader);
-
- // If this block isn't big enough for the allocation desired, allocate
- // another block of memory and add it to the free list.
- if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
- DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
- candidateBlock = allocateNewCodeSlab((size_t)Size);
- }
-
- // Select this candidate block for allocation
- CurBlock = candidateBlock;
-
- // Allocate the entire memory block.
- FreeMemoryList = candidateBlock->AllocateBlock();
- // Release the memory at the end of this block that isn't needed.
- FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
- uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
- return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
- }
-
- /// allocateDataSection - Allocate memory for a data section.
- uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
- unsigned SectionID, StringRef SectionName,
- bool IsReadOnly) override {
- return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
- }
-
- bool finalizeMemory(std::string *ErrMsg) override {
- return false;
- }
-
- uint8_t *getGOTBase() const override {
- return GOTBase;
- }
-
- void deallocateBlock(void *Block) {
- // Find the block that is allocated for this function.
- MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
- assert(MemRange->ThisAllocated && "Block isn't allocated!");
-
- // Fill the buffer with garbage!
- if (PoisonMemory) {
- memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
- }
-
- // Free the memory.
- FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
- }
-
- /// deallocateFunctionBody - Deallocate all memory for the specified
- /// function body.
- void deallocateFunctionBody(void *Body) override {
- if (Body) deallocateBlock(Body);
- }
-
- /// setMemoryWritable - When code generation is in progress,
- /// the code pages may need permissions changed.
- void setMemoryWritable() override {
- for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
- sys::Memory::setWritable(CodeSlabs[i]);
- }
- /// setMemoryExecutable - When code generation is done and we're ready to
- /// start execution, the code pages may need permissions changed.
- void setMemoryExecutable() override {
- for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
- sys::Memory::setExecutable(CodeSlabs[i]);
- }
-
- /// setPoisonMemory - Controls whether we write garbage over freed memory.
- ///
- void setPoisonMemory(bool poison) override {
- PoisonMemory = poison;
- }
- };
-}
-
-void *JITAllocator::Allocate(size_t Size, size_t /*Alignment*/) {
- sys::MemoryBlock B = JMM.allocateNewSlab(Size);
- return B.base();
-}
-
-void JITAllocator::Deallocate(void *Slab, size_t Size) {
- sys::MemoryBlock B(Slab, Size);
- sys::Memory::ReleaseRWX(B);
-}
-
-DefaultJITMemoryManager::DefaultJITMemoryManager()
- :
-#ifdef NDEBUG
- PoisonMemory(false),
-#else
- PoisonMemory(true),
-#endif
- LastSlab(nullptr, 0), StubAllocator(*this), DataAllocator(*this) {
-
- // Allocate space for code.
- sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
- CodeSlabs.push_back(MemBlock);
- uint8_t *MemBase = (uint8_t*)MemBlock.base();
-
- // We set up the memory chunk with 4 mem regions, like this:
- // [ START
- // [ Free #0 ] -> Large space to allocate functions from.
- // [ Allocated #1 ] -> Tiny space to separate regions.
- // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
- // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
- // END ]
- //
- // The last three blocks are never deallocated or touched.
-
- // Add MemoryRangeHeader to the end of the memory region, indicating that
- // the space after the block of memory is allocated. This is block #3.
- MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
- Mem3->ThisAllocated = 1;
- Mem3->PrevAllocated = 0;
- Mem3->BlockSize = sizeof(MemoryRangeHeader);
-
- /// Add a tiny free region so that the free list always has one entry.
- FreeRangeHeader *Mem2 =
- (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
- Mem2->ThisAllocated = 0;
- Mem2->PrevAllocated = 1;
- Mem2->BlockSize = FreeRangeHeader::getMinBlockSize();
- Mem2->SetEndOfBlockSizeMarker();
- Mem2->Prev = Mem2; // Mem2 *is* the free list for now.
- Mem2->Next = Mem2;
-
- /// Add a tiny allocated region so that Mem2 is never coalesced away.
- MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
- Mem1->ThisAllocated = 1;
- Mem1->PrevAllocated = 0;
- Mem1->BlockSize = sizeof(MemoryRangeHeader);
-
- // Add a FreeRangeHeader to the start of the function body region, indicating
- // that the space is free. Mark the previous block allocated so we never look
- // at it.
- FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
- Mem0->ThisAllocated = 0;
- Mem0->PrevAllocated = 1;
- Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
- Mem0->SetEndOfBlockSizeMarker();
- Mem0->AddToFreeList(Mem2);
-
- // Start out with the freelist pointing to Mem0.
- FreeMemoryList = Mem0;
-
- GOTBase = nullptr;
-}
-
-void DefaultJITMemoryManager::AllocateGOT() {
- assert(!GOTBase && "Cannot allocate the got multiple times");
- GOTBase = new uint8_t[sizeof(void*) * 8192];
- HasGOT = true;
-}
-
-DefaultJITMemoryManager::~DefaultJITMemoryManager() {
- for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
- sys::Memory::ReleaseRWX(CodeSlabs[i]);
-
- delete[] GOTBase;
-}
-
-sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
- // Allocate a new block close to the last one.
- std::string ErrMsg;
- sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : nullptr;
- sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
- if (!B.base()) {
- report_fatal_error("Allocation failed when allocating new memory in the"
- " JIT\n" + Twine(ErrMsg));
- }
- LastSlab = B;
- ++NumSlabs;
- // Initialize the slab to garbage when debugging.
- if (PoisonMemory) {
- memset(B.base(), 0xCD, B.size());
- }
- return B;
-}
-
-/// CheckInvariants - For testing only. Return "" if all internal invariants
-/// are preserved, and a helpful error message otherwise. For free and
-/// allocated blocks, make sure that adding BlockSize gives a valid block.
-/// For free blocks, make sure they're in the free list and that their end of
-/// block size marker is correct. This function should return an error before
-/// accessing bad memory. This function is defined here instead of in
-/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
-/// implementation details of DefaultJITMemoryManager.
-bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
- raw_string_ostream Err(ErrorStr);
-
- // Construct a the set of FreeRangeHeader pointers so we can query it
- // efficiently.
- llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
- FreeRangeHeader* FreeHead = FreeMemoryList;
- FreeRangeHeader* FreeRange = FreeHead;
-
- do {
- // Check that the free range pointer is in the blocks we've allocated.
- bool Found = false;
- for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
- E = CodeSlabs.end(); I != E && !Found; ++I) {
- char *Start = (char*)I->base();
- char *End = Start + I->size();
- Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
- }
- if (!Found) {
- Err << "Corrupt free list; points to " << FreeRange;
- return false;
- }
-
- if (FreeRange->Next->Prev != FreeRange) {
- Err << "Next and Prev pointers do not match.";
- return false;
- }
-
- // Otherwise, add it to the set.
- FreeHdrSet.insert(FreeRange);
- FreeRange = FreeRange->Next;
- } while (FreeRange != FreeHead);
-
- // Go over each block, and look at each MemoryRangeHeader.
- for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
- E = CodeSlabs.end(); I != E; ++I) {
- char *Start = (char*)I->base();
- char *End = Start + I->size();
-
- // Check each memory range.
- for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = nullptr;
- Start <= (char*)Hdr && (char*)Hdr < End;
- Hdr = &Hdr->getBlockAfter()) {
- if (Hdr->ThisAllocated == 0) {
- // Check that this range is in the free list.
- if (!FreeHdrSet.count(Hdr)) {
- Err << "Found free header at " << Hdr << " that is not in free list.";
- return false;
- }
-
- // Now make sure the size marker at the end of the block is correct.
- uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
- if (!(Start <= (char*)Marker && (char*)Marker < End)) {
- Err << "Block size in header points out of current MemoryBlock.";
- return false;
- }
- if (Hdr->BlockSize != *Marker) {
- Err << "End of block size marker (" << *Marker << ") "
- << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
- return false;
- }
- }
-
- if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
- Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
- << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
- return false;
- } else if (!LastHdr && !Hdr->PrevAllocated) {
- Err << "The first header should have PrevAllocated true.";
- return false;
- }
-
- // Remember the last header.
- LastHdr = Hdr;
- }
- }
-
- // All invariants are preserved.
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// getPointerToNamedFunction() implementation.
-//===----------------------------------------------------------------------===//
-
-// AtExitHandlers - List of functions to call when the program exits,
-// registered with the atexit() library function.
-static std::vector<void (*)()> AtExitHandlers;
-
-/// runAtExitHandlers - Run any functions registered by the program's
-/// calls to atexit(3), which we intercept and store in
-/// AtExitHandlers.
-///
-static void runAtExitHandlers() {
- while (!AtExitHandlers.empty()) {
- void (*Fn)() = AtExitHandlers.back();
- AtExitHandlers.pop_back();
- Fn();
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Function stubs that are invoked instead of certain library calls
-//
-// Force the following functions to be linked in to anything that uses the
-// JIT. This is a hack designed to work around the all-too-clever Glibc
-// strategy of making these functions work differently when inlined vs. when
-// not inlined, and hiding their real definitions in a separate archive file
-// that the dynamic linker can't see. For more info, search for
-// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
-#if defined(__linux__) && defined(__GLIBC__)
-/* stat functions are redirecting to __xstat with a version number. On x86-64
- * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
- * available as an exported symbol, so we have to add it explicitly.
- */
-namespace {
-class StatSymbols {
-public:
- StatSymbols() {
- sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
- sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
- sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
- sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
- sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
- sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
- sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
- sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
- sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
- sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
- sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
- }
-};
-}
-static StatSymbols initStatSymbols;
-#endif // __linux__
-
-// jit_exit - Used to intercept the "exit" library call.
-static void jit_exit(int Status) {
- runAtExitHandlers(); // Run atexit handlers...
- exit(Status);
-}
-
-// jit_atexit - Used to intercept the "atexit" library call.
-static int jit_atexit(void (*Fn)()) {
- AtExitHandlers.push_back(Fn); // Take note of atexit handler...
- return 0; // Always successful
-}
-
-static int jit_noop() {
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-//
-/// getPointerToNamedFunction - This method returns the address of the specified
-/// function by using the dynamic loader interface. As such it is only useful
-/// for resolving library symbols, not code generated symbols.
-///
-void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
- bool AbortOnFailure) {
- // Check to see if this is one of the functions we want to intercept. Note,
- // we cast to intptr_t here to silence a -pedantic warning that complains
- // about casting a function pointer to a normal pointer.
- if (Name == "exit") return (void*)(intptr_t)&jit_exit;
- if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
-
- // We should not invoke parent's ctors/dtors from generated main()!
- // On Mingw and Cygwin, the symbol __main is resolved to
- // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
- // (and register wrong callee's dtors with atexit(3)).
- // We expect ExecutionEngine::runStaticConstructorsDestructors()
- // is called before ExecutionEngine::runFunctionAsMain() is called.
- if (Name == "__main") return (void*)(intptr_t)&jit_noop;
-
- const char *NameStr = Name.c_str();
- // If this is an asm specifier, skip the sentinal.
- if (NameStr[0] == 1) ++NameStr;
-
- // If it's an external function, look it up in the process image...
- void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
- if (Ptr) return Ptr;
-
- // If it wasn't found and if it starts with an underscore ('_') character,
- // try again without the underscore.
- if (NameStr[0] == '_') {
- Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
- if (Ptr) return Ptr;
- }
-
- // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These
- // are references to hidden visibility symbols that dlsym cannot resolve.
- // If we have one of these, strip off $LDBLStub and try again.
-#if defined(__APPLE__) && defined(__ppc__)
- if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
- memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
- // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
- // This mirrors logic in libSystemStubs.a.
- std::string Prefix = std::string(Name.begin(), Name.end()-9);
- if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
- return Ptr;
- if (void *Ptr = getPointerToNamedFunction(Prefix, false))
- return Ptr;
- }
-#endif
-
- if (AbortOnFailure) {
- report_fatal_error("Program used external function '"+Name+
- "' which could not be resolved!");
- }
- return nullptr;
-}
-
-
-
-JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
- return new DefaultJITMemoryManager();
-}
-
-const size_t DefaultJITMemoryManager::DefaultCodeSlabSize;
-const size_t DefaultJITMemoryManager::DefaultSlabSize;
-const size_t DefaultJITMemoryManager::DefaultSizeThreshold;
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
index e9ba96a..f2d53f5 100644
--- a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
@@ -10,10 +10,7 @@
#include "MCJIT.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
-#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
-#include "llvm/ExecutionEngine/ObjectBuffer.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
@@ -22,15 +19,19 @@
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Object/Archive.h"
+#include "llvm/Object/ObjectFile.h"
#include "llvm/PassManager.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
+void ObjectCache::anchor() {}
+
namespace {
static struct RegisterJIT {
@@ -42,31 +43,26 @@ static struct RegisterJIT {
extern "C" void LLVMLinkInMCJIT() {
}
-ExecutionEngine *MCJIT::createJIT(Module *M,
+ExecutionEngine *MCJIT::createJIT(std::unique_ptr<Module> M,
std::string *ErrorStr,
- RTDyldMemoryManager *MemMgr,
- bool GVsWithCode,
- TargetMachine *TM) {
+ std::unique_ptr<RTDyldMemoryManager> MemMgr,
+ std::unique_ptr<TargetMachine> TM) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
- return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(),
- GVsWithCode);
-}
-
-MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
- bool AllocateGVsWithCode)
- : ExecutionEngine(m), TM(tm), Ctx(nullptr), MemMgr(this, MM), Dyld(&MemMgr),
- ObjCache(nullptr) {
+ std::unique_ptr<RTDyldMemoryManager> MM = std::move(MemMgr);
+ if (!MM)
+ MM = std::unique_ptr<SectionMemoryManager>(new SectionMemoryManager());
- OwnedModules.addModule(m);
- setDataLayout(TM->getDataLayout());
+ return new MCJIT(std::move(M), std::move(TM), std::move(MM));
}
-MCJIT::~MCJIT() {
- MutexGuard locked(lock);
+MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
+ std::unique_ptr<RTDyldMemoryManager> MM)
+ : ExecutionEngine(std::move(M)), TM(std::move(tm)), Ctx(nullptr),
+ MemMgr(this, std::move(MM)), Dyld(&MemMgr), ObjCache(nullptr) {
// FIXME: We are managing our modules, so we do not want the base class
// ExecutionEngine to manage them as well. To avoid double destruction
// of the first (and only) module added in ExecutionEngine constructor
@@ -77,33 +73,29 @@ MCJIT::~MCJIT() {
// If so, additional functions: addModule, removeModule, FindFunctionNamed,
// runStaticConstructorsDestructors could be moved back to EE as well.
//
+ std::unique_ptr<Module> First = std::move(Modules[0]);
Modules.clear();
+
+ OwnedModules.addModule(std::move(First));
+ setDataLayout(TM->getSubtargetImpl()->getDataLayout());
+ RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
+}
+
+MCJIT::~MCJIT() {
+ MutexGuard locked(lock);
+
Dyld.deregisterEHFrames();
- LoadedObjectList::iterator it, end;
- for (it = LoadedObjects.begin(), end = LoadedObjects.end(); it != end; ++it) {
- ObjectImage *Obj = *it;
- if (Obj) {
+ for (auto &Obj : LoadedObjects)
+ if (Obj)
NotifyFreeingObject(*Obj);
- delete Obj;
- }
- }
- LoadedObjects.clear();
-
- SmallVector<object::Archive *, 2>::iterator ArIt, ArEnd;
- for (ArIt = Archives.begin(), ArEnd = Archives.end(); ArIt != ArEnd; ++ArIt) {
- object::Archive *A = *ArIt;
- delete A;
- }
Archives.clear();
-
- delete TM;
}
-void MCJIT::addModule(Module *M) {
+void MCJIT::addModule(std::unique_ptr<Module> M) {
MutexGuard locked(lock);
- OwnedModules.addModule(M);
+ OwnedModules.addModule(std::move(M));
}
bool MCJIT::removeModule(Module *M) {
@@ -111,29 +103,34 @@ bool MCJIT::removeModule(Module *M) {
return OwnedModules.removeModule(M);
}
-
-
void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
- ObjectImage *LoadedObject = Dyld.loadObject(std::move(Obj));
- if (!LoadedObject || Dyld.hasError())
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
+ if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
- LoadedObjects.push_back(LoadedObject);
+ NotifyObjectEmitted(*Obj, *L);
- NotifyObjectEmitted(*LoadedObject);
+ LoadedObjects.push_back(std::move(Obj));
}
-void MCJIT::addArchive(object::Archive *A) {
- Archives.push_back(A);
+void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
+ std::unique_ptr<object::ObjectFile> ObjFile;
+ std::unique_ptr<MemoryBuffer> MemBuf;
+ std::tie(ObjFile, MemBuf) = Obj.takeBinary();
+ addObjectFile(std::move(ObjFile));
+ Buffers.push_back(std::move(MemBuf));
}
+void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
+ Archives.push_back(std::move(A));
+}
void MCJIT::setObjectCache(ObjectCache* NewCache) {
MutexGuard locked(lock);
ObjCache = NewCache;
}
-ObjectBufferStream* MCJIT::emitObject(Module *M) {
+std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
MutexGuard locked(lock);
// This must be a module which has already been added but not loaded to this
@@ -142,34 +139,36 @@ ObjectBufferStream* MCJIT::emitObject(Module *M) {
PassManager PM;
- M->setDataLayout(TM->getDataLayout());
- PM.add(new DataLayoutPass(M));
+ M->setDataLayout(TM->getSubtargetImpl()->getDataLayout());
+ PM.add(new DataLayoutPass());
// The RuntimeDyld will take ownership of this shortly
- std::unique_ptr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
+ SmallVector<char, 4096> ObjBufferSV;
+ raw_svector_ostream ObjStream(ObjBufferSV);
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
- if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(),
- !getVerifyModules())) {
+ if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
report_fatal_error("Target does not support MC emission!");
- }
// Initialize passes.
PM.run(*M);
// Flush the output buffer to get the generated code into memory
- CompiledObject->flush();
+ ObjStream.flush();
+
+ std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
+ new ObjectMemoryBuffer(std::move(ObjBufferSV)));
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
- std::unique_ptr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
- ObjCache->notifyObjectCompiled(M, MB.get());
+ MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
+ ObjCache->notifyObjectCompiled(M, MB);
}
- return CompiledObject.release();
+ return CompiledObjBuffer;
}
void MCJIT::generateCodeForModule(Module *M) {
@@ -184,31 +183,31 @@ void MCJIT::generateCodeForModule(Module *M) {
if (OwnedModules.hasModuleBeenLoaded(M))
return;
- std::unique_ptr<ObjectBuffer> ObjectToLoad;
+ std::unique_ptr<MemoryBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
- if (ObjCache) {
- std::unique_ptr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M));
- if (PreCompiledObject.get())
- ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.release()));
- }
+ if (ObjCache)
+ ObjectToLoad = ObjCache->getObject(M);
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
- ObjectToLoad.reset(emitObject(M));
- assert(ObjectToLoad.get() && "Compilation did not produce an object.");
+ ObjectToLoad = emitObject(M);
+ assert(ObjectToLoad && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
- ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.release());
- LoadedObjects.push_back(LoadedObject);
- if (!LoadedObject)
+ ErrorOr<std::unique_ptr<object::ObjectFile>> LoadedObject =
+ object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
+ Dyld.loadObject(*LoadedObject.get());
+
+ if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
- // FIXME: Make this optional, maybe even move it to a JIT event listener
- LoadedObject->registerWithDebugger();
+ NotifyObjectEmitted(*LoadedObject.get(), *L);
- NotifyObjectEmitted(*LoadedObject);
+ Buffers.push_back(std::move(ObjectToLoad));
+ LoadedObjects.push_back(std::move(*LoadedObject));
OwnedModules.markModuleAsLoaded(M);
}
@@ -232,12 +231,14 @@ void MCJIT::finalizeLoadedModules() {
void MCJIT::finalizeObject() {
MutexGuard locked(lock);
- for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
- E = OwnedModules.end_added();
- I != E; ++I) {
- Module *M = *I;
+ // Generate code for module is going to move objects out of the 'added' list,
+ // so we need to copy that out before using it:
+ SmallVector<Module*, 16> ModsToAdd;
+ for (auto M : OwnedModules.added())
+ ModsToAdd.push_back(M);
+
+ for (auto M : ModsToAdd)
generateCodeForModule(M);
- }
finalizeLoadedModules();
}
@@ -255,12 +256,8 @@ void MCJIT::finalizeModule(Module *M) {
finalizeLoadedModules();
}
-void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
- report_fatal_error("not yet implemented");
-}
-
uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) {
- Mangler Mang(TM->getDataLayout());
+ Mangler Mang(TM->getSubtargetImpl()->getDataLayout());
SmallString<128> FullName;
Mang.getNameWithPrefix(FullName, Name);
return Dyld.getSymbolLoadAddress(FullName);
@@ -299,9 +296,8 @@ uint64_t MCJIT::getSymbolAddress(const std::string &Name,
if (Addr)
return Addr;
- SmallVector<object::Archive*, 2>::iterator I, E;
- for (I = Archives.begin(), E = Archives.end(); I != E; ++I) {
- object::Archive *A = *I;
+ for (object::OwningBinary<object::Archive> &OB : Archives) {
+ object::Archive *A = OB.getBinary();
// Look for our symbols in each Archive
object::Archive::child_iterator ChildIt = A->findSym(Name);
if (ChildIt != A->child_end()) {
@@ -310,7 +306,7 @@ uint64_t MCJIT::getSymbolAddress(const std::string &Name,
ChildIt->getAsBinary();
if (ChildBinOrErr.getError())
continue;
- std::unique_ptr<object::Binary> ChildBin = std::move(ChildBinOrErr.get());
+ std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
if (ChildBin->isObject()) {
std::unique_ptr<object::ObjectFile> OF(
static_cast<object::ObjectFile *>(ChildBin.release()));
@@ -326,13 +322,19 @@ uint64_t MCJIT::getSymbolAddress(const std::string &Name,
// If it hasn't already been generated, see if it's in one of our modules.
Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
- if (!M)
- return 0;
+ if (M) {
+ generateCodeForModule(M);
- generateCodeForModule(M);
+ // Check the RuntimeDyld table again, it should be there now.
+ return getExistingSymbolAddress(Name);
+ }
+
+ // If a LazyFunctionCreator is installed, use it to get/create the function.
+ // FIXME: Should we instead have a LazySymbolCreator callback?
+ if (LazyFunctionCreator)
+ Addr = (uint64_t)LazyFunctionCreator(Name);
- // Check the RuntimeDyld table again, it should be there now.
- return getExistingSymbolAddress(Name);
+ return Addr;
}
uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
@@ -355,10 +357,14 @@ uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
void *MCJIT::getPointerToFunction(Function *F) {
MutexGuard locked(lock);
+ Mangler Mang(TM->getSubtargetImpl()->getDataLayout());
+ SmallString<128> Name;
+ TM->getNameWithPrefix(Name, F, Mang);
+
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
- void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
- addGlobalMapping(F, Addr);
+ void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
+ updateGlobalMapping(F, Addr);
return Addr;
}
@@ -368,32 +374,25 @@ void *MCJIT::getPointerToFunction(Function *F) {
// Make sure the relevant module has been compiled and loaded.
if (HasBeenAddedButNotLoaded)
generateCodeForModule(M);
- else if (!OwnedModules.hasModuleBeenLoaded(M))
+ else if (!OwnedModules.hasModuleBeenLoaded(M)) {
// If this function doesn't belong to one of our modules, we're done.
+ // FIXME: Asking for the pointer to a function that hasn't been registered,
+ // and isn't a declaration (which is handled above) should probably
+ // be an assertion.
return nullptr;
+ }
// FIXME: Should the Dyld be retaining module information? Probably not.
//
// This is the accessor for the target address, so make sure to check the
// load address of the symbol, not the local address.
- Mangler Mang(TM->getDataLayout());
- SmallString<128> Name;
- TM->getNameWithPrefix(Name, F, Mang);
return (void*)Dyld.getSymbolLoadAddress(Name);
}
-void *MCJIT::recompileAndRelinkFunction(Function *F) {
- report_fatal_error("not yet implemented");
-}
-
-void MCJIT::freeMachineCodeForFunction(Function *F) {
- report_fatal_error("not yet implemented");
-}
-
void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
for (; I != E; ++I) {
- ExecutionEngine::runStaticConstructorsDestructors(*I, isDtors);
+ ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
}
}
@@ -529,8 +528,7 @@ GenericValue MCJIT::runFunction(Function *F,
llvm_unreachable("Full-featured argument passing not supported yet!");
}
-void *MCJIT::getPointerToNamedFunction(const std::string &Name,
- bool AbortOnFailure) {
+void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
if (!isSymbolSearchingDisabled()) {
void *ptr = MemMgr.getPointerToNamedFunction(Name, false);
if (ptr)
@@ -555,29 +553,31 @@ void MCJIT::RegisterJITEventListener(JITEventListener *L) {
MutexGuard locked(lock);
EventListeners.push_back(L);
}
+
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (!L)
return;
MutexGuard locked(lock);
- SmallVector<JITEventListener*, 2>::reverse_iterator I=
- std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
-void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
+
+void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) {
MutexGuard locked(lock);
- MemMgr.notifyObjectLoaded(this, &Obj);
+ MemMgr.notifyObjectLoaded(this, Obj);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
- EventListeners[I]->NotifyObjectEmitted(Obj);
+ EventListeners[I]->NotifyObjectEmitted(Obj, L);
}
}
-void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
+
+void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
MutexGuard locked(lock);
- for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
- EventListeners[I]->NotifyFreeingObject(Obj);
- }
+ for (JITEventListener *L : EventListeners)
+ L->NotifyFreeingObject(Obj);
}
uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) {
@@ -588,5 +588,7 @@ uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) {
Result = ParentEngine->getSymbolAddress(Name.substr(1), false);
if (Result)
return Result;
+ if (ParentEngine->isSymbolSearchingDisabled())
+ return 0;
return ClientMM->getSymbolAddress(Name);
}
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
index 100e9a2..f55dd60 100644
--- a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
@@ -7,15 +7,15 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_H
-#define LLVM_LIB_EXECUTIONENGINE_MCJIT_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H
+#define LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H
+#include "ObjectBuffer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/Module.h"
@@ -28,8 +28,9 @@ class MCJIT;
// to that object.
class LinkingMemoryManager : public RTDyldMemoryManager {
public:
- LinkingMemoryManager(MCJIT *Parent, RTDyldMemoryManager *MM)
- : ParentEngine(Parent), ClientMM(MM) {}
+ LinkingMemoryManager(MCJIT *Parent,
+ std::unique_ptr<RTDyldMemoryManager> MM)
+ : ParentEngine(Parent), ClientMM(std::move(MM)) {}
uint64_t getSymbolAddress(const std::string &Name) override;
@@ -57,7 +58,7 @@ public:
}
void notifyObjectLoaded(ExecutionEngine *EE,
- const ObjectImage *Obj) override {
+ const object::ObjectFile &Obj) override {
ClientMM->notifyObjectLoaded(EE, Obj);
}
@@ -101,8 +102,8 @@ private:
// called.
class MCJIT : public ExecutionEngine {
- MCJIT(Module *M, TargetMachine *tm, RTDyldMemoryManager *MemMgr,
- bool AllocateGVsWithCode);
+ MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
+ std::unique_ptr<RTDyldMemoryManager> MemMgr);
typedef llvm::SmallPtrSet<Module *, 4> ModulePtrSet;
@@ -118,6 +119,9 @@ class MCJIT : public ExecutionEngine {
ModulePtrSet::iterator begin_added() { return AddedModules.begin(); }
ModulePtrSet::iterator end_added() { return AddedModules.end(); }
+ iterator_range<ModulePtrSet::iterator> added() {
+ return iterator_range<ModulePtrSet::iterator>(begin_added(), end_added());
+ }
ModulePtrSet::iterator begin_loaded() { return LoadedModules.begin(); }
ModulePtrSet::iterator end_loaded() { return LoadedModules.end(); }
@@ -125,8 +129,8 @@ class MCJIT : public ExecutionEngine {
ModulePtrSet::iterator begin_finalized() { return FinalizedModules.begin(); }
ModulePtrSet::iterator end_finalized() { return FinalizedModules.end(); }
- void addModule(Module *M) {
- AddedModules.insert(M);
+ void addModule(std::unique_ptr<Module> M) {
+ AddedModules.insert(M.release());
}
bool removeModule(Module *M) {
@@ -208,18 +212,18 @@ class MCJIT : public ExecutionEngine {
}
};
- TargetMachine *TM;
+ std::unique_ptr<TargetMachine> TM;
MCContext *Ctx;
LinkingMemoryManager MemMgr;
RuntimeDyld Dyld;
- SmallVector<JITEventListener*, 2> EventListeners;
+ std::vector<JITEventListener*> EventListeners;
OwningModuleContainer OwnedModules;
- SmallVector<object::Archive*, 2> Archives;
+ SmallVector<object::OwningBinary<object::Archive>, 2> Archives;
+ SmallVector<std::unique_ptr<MemoryBuffer>, 2> Buffers;
- typedef SmallVector<ObjectImage *, 2> LoadedObjectList;
- LoadedObjectList LoadedObjects;
+ SmallVector<std::unique_ptr<object::ObjectFile>, 2> LoadedObjects;
// An optional ObjectCache to be notified of compiled objects and used to
// perform lookup of pre-compiled code to avoid re-compilation.
@@ -238,9 +242,10 @@ public:
/// @name ExecutionEngine interface implementation
/// @{
- void addModule(Module *M) override;
+ void addModule(std::unique_ptr<Module> M) override;
void addObjectFile(std::unique_ptr<object::ObjectFile> O) override;
- void addArchive(object::Archive *O) override;
+ void addObjectFile(object::OwningBinary<object::ObjectFile> O) override;
+ void addArchive(object::OwningBinary<object::Archive> O) override;
bool removeModule(Module *M) override;
/// FindFunctionNamed - Search all of the active modules to find the one that
@@ -276,14 +281,8 @@ public:
/// \param isDtors - Run the destructors instead of constructors.
void runStaticConstructorsDestructors(bool isDtors) override;
- void *getPointerToBasicBlock(BasicBlock *BB) override;
-
void *getPointerToFunction(Function *F) override;
- void *recompileAndRelinkFunction(Function *F) override;
-
- void freeMachineCodeForFunction(Function *F) override;
-
GenericValue runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) override;
@@ -295,7 +294,7 @@ public:
/// found, this function silently returns a null pointer. Otherwise,
/// it prints a message to stderr and aborts.
///
- void *getPointerToNamedFunction(const std::string &Name,
+ void *getPointerToNamedFunction(StringRef Name,
bool AbortOnFailure = true) override;
/// mapSectionAddress - map a section to its target address space value.
@@ -315,7 +314,7 @@ public:
uint64_t getGlobalValueAddress(const std::string &Name) override;
uint64_t getFunctionAddress(const std::string &Name) override;
- TargetMachine *getTargetMachine() override { return TM; }
+ TargetMachine *getTargetMachine() override { return TM.get(); }
/// @}
/// @name (Private) Registration Interfaces
@@ -325,11 +324,10 @@ public:
MCJITCtor = createJIT;
}
- static ExecutionEngine *createJIT(Module *M,
+ static ExecutionEngine *createJIT(std::unique_ptr<Module> M,
std::string *ErrorStr,
- RTDyldMemoryManager *MemMgr,
- bool GVsWithCode,
- TargetMachine *TM);
+ std::unique_ptr<RTDyldMemoryManager> MemMgr,
+ std::unique_ptr<TargetMachine> TM);
// @}
@@ -344,10 +342,11 @@ protected:
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
/// the future.
- ObjectBufferStream* emitObject(Module *M);
+ std::unique_ptr<MemoryBuffer> emitObject(Module *M);
- void NotifyObjectEmitted(const ObjectImage& Obj);
- void NotifyFreeingObject(const ObjectImage& Obj);
+ void NotifyObjectEmitted(const object::ObjectFile& Obj,
+ const RuntimeDyld::LoadedObjectInfo &L);
+ void NotifyFreeingObject(const object::ObjectFile& Obj);
uint64_t getExistingSymbolAddress(const std::string &Name);
Module *findModuleForSymbol(const std::string &Name,
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h
new file mode 100644
index 0000000..92310f3
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h
@@ -0,0 +1,48 @@
+//===--- ObjectBuffer.h - Utility class to wrap object memory ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares a wrapper class to hold the memory into which an
+// object will be generated.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
+#define LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class ObjectMemoryBuffer : public MemoryBuffer {
+public:
+ template <unsigned N>
+ ObjectMemoryBuffer(SmallVector<char, N> SV)
+ : SV(SV), BufferName("<in-memory object>") {
+ init(this->SV.begin(), this->SV.end(), false);
+ }
+
+ template <unsigned N>
+ ObjectMemoryBuffer(SmallVector<char, N> SV, StringRef Name)
+ : SV(SV), BufferName(Name) {
+ init(this->SV.begin(), this->SV.end(), false);
+ }
+ const char* getBufferIdentifier() const override { return BufferName.c_str(); }
+
+ BufferKind getBufferKind() const override { return MemoryBuffer_Malloc; }
+
+private:
+ SmallVector<char, 4096> SV;
+ std::string BufferName;
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
index fd37a13..9ab4003 100644
--- a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
@@ -13,55 +13,50 @@
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
+#include "EventListenerCommon.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
-
+#include "llvm/ExecutionEngine/OProfileWrapper.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
-#include "llvm/ExecutionEngine/OProfileWrapper.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Errno.h"
-#include "EventListenerCommon.h"
-
+#include "llvm/Support/raw_ostream.h"
#include <dirent.h>
#include <fcntl.h>
using namespace llvm;
using namespace llvm::jitprofiling;
+using namespace llvm::object;
#define DEBUG_TYPE "oprofile-jit-event-listener"
namespace {
class OProfileJITEventListener : public JITEventListener {
- OProfileWrapper& Wrapper;
+ std::unique_ptr<OProfileWrapper> Wrapper;
void initialize();
+ std::map<const char*, OwningBinary<ObjectFile>> DebugObjects;
public:
- OProfileJITEventListener(OProfileWrapper& LibraryWrapper)
- : Wrapper(LibraryWrapper) {
+ OProfileJITEventListener(std::unique_ptr<OProfileWrapper> LibraryWrapper)
+ : Wrapper(std::move(LibraryWrapper)) {
initialize();
}
~OProfileJITEventListener();
- virtual void NotifyFunctionEmitted(const Function &F,
- void *FnStart, size_t FnSize,
- const JITEvent_EmittedFunctionDetails &Details);
-
- virtual void NotifyFreeingMachineCode(void *OldPtr);
+ void NotifyObjectEmitted(const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) override;
- virtual void NotifyObjectEmitted(const ObjectImage &Obj);
-
- virtual void NotifyFreeingObject(const ObjectImage &Obj);
+ void NotifyFreeingObject(const ObjectFile &Obj) override;
};
void OProfileJITEventListener::initialize() {
- if (!Wrapper.op_open_agent()) {
+ if (!Wrapper->op_open_agent()) {
const std::string err_str = sys::StrError();
DEBUG(dbgs() << "Failed to connect to OProfile agent: " << err_str << "\n");
} else {
@@ -70,8 +65,8 @@ void OProfileJITEventListener::initialize() {
}
OProfileJITEventListener::~OProfileJITEventListener() {
- if (Wrapper.isAgentAvailable()) {
- if (Wrapper.op_close_agent() == -1) {
+ if (Wrapper->isAgentAvailable()) {
+ if (Wrapper->op_close_agent() == -1) {
const std::string err_str = sys::StrError();
DEBUG(dbgs() << "Failed to disconnect from OProfile agent: "
<< err_str << "\n");
@@ -81,101 +76,22 @@ OProfileJITEventListener::~OProfileJITEventListener() {
}
}
-static debug_line_info LineStartToOProfileFormat(
- const MachineFunction &MF, FilenameCache &Filenames,
- uintptr_t Address, DebugLoc Loc) {
- debug_line_info Result;
- Result.vma = Address;
- Result.lineno = Loc.getLine();
- Result.filename = Filenames.getFilename(
- Loc.getScope(MF.getFunction()->getContext()));
- DEBUG(dbgs() << "Mapping " << reinterpret_cast<void*>(Result.vma) << " to "
- << Result.filename << ":" << Result.lineno << "\n");
- return Result;
-}
-
-// Adds the just-emitted function to the symbol table.
-void OProfileJITEventListener::NotifyFunctionEmitted(
- const Function &F, void *FnStart, size_t FnSize,
- const JITEvent_EmittedFunctionDetails &Details) {
- assert(F.hasName() && FnStart != 0 && "Bad symbol to add");
- if (Wrapper.op_write_native_code(F.getName().data(),
- reinterpret_cast<uint64_t>(FnStart),
- FnStart, FnSize) == -1) {
- DEBUG(dbgs() << "Failed to tell OProfile about native function "
- << F.getName() << " at ["
- << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
+void OProfileJITEventListener::NotifyObjectEmitted(
+ const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) {
+ if (!Wrapper->isAgentAvailable()) {
return;
}
- if (!Details.LineStarts.empty()) {
- // Now we convert the line number information from the address/DebugLoc
- // format in Details to the address/filename/lineno format that OProfile
- // expects. Note that OProfile 0.9.4 has a bug that causes it to ignore
- // line numbers for addresses above 4G.
- FilenameCache Filenames;
- std::vector<debug_line_info> LineInfo;
- LineInfo.reserve(1 + Details.LineStarts.size());
-
- DebugLoc FirstLoc = Details.LineStarts[0].Loc;
- assert(!FirstLoc.isUnknown()
- && "LineStarts should not contain unknown DebugLocs");
- MDNode *FirstLocScope = FirstLoc.getScope(F.getContext());
- DISubprogram FunctionDI = getDISubprogram(FirstLocScope);
- if (FunctionDI.Verify()) {
- // If we have debug info for the function itself, use that as the line
- // number of the first several instructions. Otherwise, after filling
- // LineInfo, we'll adjust the address of the first line number to point at
- // the start of the function.
- debug_line_info line_info;
- line_info.vma = reinterpret_cast<uintptr_t>(FnStart);
- line_info.lineno = FunctionDI.getLineNumber();
- line_info.filename = Filenames.getFilename(FirstLocScope);
- LineInfo.push_back(line_info);
- }
-
- for (std::vector<EmittedFunctionDetails::LineStart>::const_iterator
- I = Details.LineStarts.begin(), E = Details.LineStarts.end();
- I != E; ++I) {
- LineInfo.push_back(LineStartToOProfileFormat(
- *Details.MF, Filenames, I->Address, I->Loc));
- }
-
- // In case the function didn't have line info of its own, adjust the first
- // line info's address to include the start of the function.
- LineInfo[0].vma = reinterpret_cast<uintptr_t>(FnStart);
-
- if (Wrapper.op_write_debug_line_info(FnStart, LineInfo.size(),
- &*LineInfo.begin()) == -1) {
- DEBUG(dbgs()
- << "Failed to tell OProfile about line numbers for native function "
- << F.getName() << " at ["
- << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
- }
- }
-}
-
-// Removes the being-deleted function from the symbol table.
-void OProfileJITEventListener::NotifyFreeingMachineCode(void *FnStart) {
- assert(FnStart && "Invalid function pointer");
- if (Wrapper.op_unload_native_code(reinterpret_cast<uint64_t>(FnStart)) == -1) {
- DEBUG(dbgs()
- << "Failed to tell OProfile about unload of native function at "
- << FnStart << "\n");
- }
-}
-
-void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
- if (!Wrapper.isAgentAvailable()) {
- return;
- }
+ OwningBinary<ObjectFile> DebugObjOwner = L.getObjectForDebug(Obj);
+ const ObjectFile &DebugObj = *DebugObjOwner.getBinary();
// Use symbol info to iterate functions in the object.
- for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
+ for (symbol_iterator I = DebugObj.symbol_begin(), E = DebugObj.symbol_end();
I != E; ++I) {
- object::SymbolRef::Type SymType;
+ SymbolRef::Type SymType;
if (I->getType(SymType)) continue;
- if (SymType == object::SymbolRef::ST_Function) {
+ if (SymType == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
uint64_t Size;
@@ -183,7 +99,7 @@ void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
if (I->getAddress(Addr)) continue;
if (I->getSize(Size)) continue;
- if (Wrapper.op_write_native_code(Name.data(), Addr, (void*)Addr, Size)
+ if (Wrapper->op_write_native_code(Name.data(), Addr, (void*)Addr, Size)
== -1) {
DEBUG(dbgs() << "Failed to tell OProfile about native function "
<< Name << " at ["
@@ -193,45 +109,48 @@ void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
// TODO: support line number info (similar to IntelJITEventListener.cpp)
}
}
+
+ DebugObjects[Obj.getData().data()] = std::move(DebugObjOwner);
}
-void OProfileJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
- if (!Wrapper.isAgentAvailable()) {
- return;
- }
+void OProfileJITEventListener::NotifyFreeingObject(const ObjectFile &Obj) {
+ if (Wrapper->isAgentAvailable()) {
- // Use symbol info to iterate functions in the object.
- for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
- I != E; ++I) {
- object::SymbolRef::Type SymType;
- if (I->getType(SymType)) continue;
- if (SymType == object::SymbolRef::ST_Function) {
- uint64_t Addr;
- if (I->getAddress(Addr)) continue;
+ // If there was no agent registered when the original object was loaded then
+ // we won't have created a debug object for it, so bail out.
+ if (DebugObjects.find(Obj.getData().data()) == DebugObjects.end())
+ return;
- if (Wrapper.op_unload_native_code(Addr) == -1) {
- DEBUG(dbgs()
- << "Failed to tell OProfile about unload of native function at "
- << (void*)Addr << "\n");
- continue;
+ const ObjectFile &DebugObj = *DebugObjects[Obj.getData().data()].getBinary();
+
+ // Use symbol info to iterate functions in the object.
+ for (symbol_iterator I = DebugObj.symbol_begin(),
+ E = DebugObj.symbol_end();
+ I != E; ++I) {
+ SymbolRef::Type SymType;
+ if (I->getType(SymType)) continue;
+ if (SymType == SymbolRef::ST_Function) {
+ uint64_t Addr;
+ if (I->getAddress(Addr)) continue;
+
+ if (Wrapper->op_unload_native_code(Addr) == -1) {
+ DEBUG(dbgs()
+ << "Failed to tell OProfile about unload of native function at "
+ << (void*)Addr << "\n");
+ continue;
+ }
}
}
}
+
+ DebugObjects.erase(Obj.getData().data());
}
} // anonymous namespace.
namespace llvm {
JITEventListener *JITEventListener::createOProfileJITEventListener() {
- static std::unique_ptr<OProfileWrapper> JITProfilingWrapper(
- new OProfileWrapper);
- return new OProfileJITEventListener(*JITProfilingWrapper);
-}
-
-// for testing
-JITEventListener *JITEventListener::createOProfileJITEventListener(
- OProfileWrapper* TestImpl) {
- return new OProfileJITEventListener(*TestImpl);
+ return new OProfileJITEventListener(llvm::make_unique<OProfileWrapper>());
}
} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp
index 1646937..2a5e4f8 100644
--- a/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp
@@ -13,6 +13,7 @@
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/Support/Compiler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include <cstdlib>
@@ -210,7 +211,13 @@ ARM_MATH_IMPORTS(ARM_MATH_DECL)
#undef ARM_MATH_DECL
#endif
-uint64_t RTDyldMemoryManager::getSymbolAddress(const std::string &Name) {
+#if defined(__linux__) && defined(__GLIBC__) && \
+ (defined(__i386__) || defined(__x86_64__))
+extern "C" LLVM_ATTRIBUTE_WEAK void __morestack();
+#endif
+
+uint64_t
+RTDyldMemoryManager::getSymbolAddressInProcess(const std::string &Name) {
// This implementation assumes that the host program is the target.
// Clients generating code for a remote target should implement their own
// memory manager.
@@ -232,6 +239,12 @@ uint64_t RTDyldMemoryManager::getSymbolAddress(const std::string &Name) {
if (Name == "lstat64") return (uint64_t)&lstat64;
if (Name == "atexit") return (uint64_t)&atexit;
if (Name == "mknod") return (uint64_t)&mknod;
+
+#if defined(__i386__) || defined(__x86_64__)
+ // __morestack lives in libgcc, a static library.
+ if (&__morestack && Name == "__morestack")
+ return (uint64_t)&__morestack;
+#endif
#endif // __linux__ && __GLIBC__
// See ARM_MATH_IMPORTS definition for explanation
@@ -253,19 +266,19 @@ uint64_t RTDyldMemoryManager::getSymbolAddress(const std::string &Name) {
// is called before ExecutionEngine::runFunctionAsMain() is called.
if (Name == "__main") return (uint64_t)&jit_noop;
+ // Try to demangle Name before looking it up in the process, otherwise symbol
+ // '_<Name>' (if present) will shadow '<Name>', and there will be no way to
+ // refer to the latter.
+
const char *NameStr = Name.c_str();
- void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
- if (Ptr)
- return (uint64_t)Ptr;
-
- // If it wasn't found and if it starts with an underscore ('_') character,
- // try again without the underscore.
- if (NameStr[0] == '_') {
- Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
- if (Ptr)
+
+ if (NameStr[0] == '_')
+ if (void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr + 1))
return (uint64_t)Ptr;
- }
- return 0;
+
+ // If we Name did not require demangling, or we failed to find the demangled
+ // name, try again without demangling.
+ return (uint64_t)sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
}
void *RTDyldMemoryManager::getPointerToNamedFunction(const std::string &Name,
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h
deleted file mode 100644
index 6a514ea..0000000
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h
+++ /dev/null
@@ -1,44 +0,0 @@
-//===-- JITRegistrar.h - Registers objects with a debugger ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_EXECUTION_ENGINE_JIT_REGISTRAR_H
-#define LLVM_EXECUTION_ENGINE_JIT_REGISTRAR_H
-
-#include "llvm/ExecutionEngine/ObjectBuffer.h"
-
-namespace llvm {
-
-/// Global access point for the JIT debugging interface.
-class JITRegistrar {
- virtual void anchor();
-public:
- /// Instantiates the JIT service.
- JITRegistrar() {}
-
- /// Unregisters each object that was previously registered and releases all
- /// internal resources.
- virtual ~JITRegistrar() {}
-
- /// Creates an entry in the JIT registry for the buffer @p Object,
- /// which must contain an object file in executable memory with any
- /// debug information for the debugger.
- virtual void registerObject(const ObjectBuffer &Object) = 0;
-
- /// Removes the internal registration of @p Object, and
- /// frees associated resources.
- /// Returns true if @p Object was previously registered.
- virtual bool deregisterObject(const ObjectBuffer &Object) = 0;
-
- /// Returns a reference to a GDB JIT registrar singleton
- static JITRegistrar& getGDBRegistrar();
-};
-
-} // end namespace llvm
-
-#endif // LLVM_EXECUTION_ENGINE_JIT_REGISTRAR_H
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h
deleted file mode 100644
index c3a2182..0000000
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h
+++ /dev/null
@@ -1,89 +0,0 @@
-//===-- ObjectImageCommon.h - Format independent executuable object image -===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file declares a file format independent ObjectImage class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
-#define LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
-
-#include "llvm/ExecutionEngine/ObjectBuffer.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
-#include "llvm/Object/ObjectFile.h"
-
-#include <memory>
-
-namespace llvm {
-
-namespace object {
- class ObjectFile;
-}
-
-class ObjectImageCommon : public ObjectImage {
- ObjectImageCommon(); // = delete
- ObjectImageCommon(const ObjectImageCommon &other); // = delete
- void anchor() override;
-
-protected:
- std::unique_ptr<object::ObjectFile> ObjFile;
-
- // This form of the constructor allows subclasses to use
- // format-specific subclasses of ObjectFile directly
- ObjectImageCommon(ObjectBuffer *Input, std::unique_ptr<object::ObjectFile> Obj)
- : ObjectImage(Input), // saves Input as Buffer and takes ownership
- ObjFile(std::move(Obj))
- {
- }
-
-public:
- ObjectImageCommon(ObjectBuffer* Input)
- : ObjectImage(Input) // saves Input as Buffer and takes ownership
- {
- // FIXME: error checking? createObjectFile returns an ErrorOr<ObjectFile*>
- // and should probably be checked for failure.
- std::unique_ptr<MemoryBuffer> Buf(Buffer->getMemBuffer());
- ObjFile.reset(object::ObjectFile::createObjectFile(Buf).get());
- }
- ObjectImageCommon(std::unique_ptr<object::ObjectFile> Input)
- : ObjectImage(nullptr), ObjFile(std::move(Input)) {}
- virtual ~ObjectImageCommon() { }
-
- object::symbol_iterator begin_symbols() const override
- { return ObjFile->symbol_begin(); }
- object::symbol_iterator end_symbols() const override
- { return ObjFile->symbol_end(); }
-
- object::section_iterator begin_sections() const override
- { return ObjFile->section_begin(); }
- object::section_iterator end_sections() const override
- { return ObjFile->section_end(); }
-
- /* Triple::ArchType */ unsigned getArch() const override
- { return ObjFile->getArch(); }
-
- StringRef getData() const override { return ObjFile->getData(); }
-
- object::ObjectFile* getObjectFile() const override { return ObjFile.get(); }
-
- // Subclasses can override these methods to update the image with loaded
- // addresses for sections and common symbols
- void updateSectionAddress(const object::SectionRef &Sec,
- uint64_t Addr) override {}
- void updateSymbolAddress(const object::SymbolRef &Sym,
- uint64_t Addr) override {}
-
- // Subclasses can override these methods to provide JIT debugging support
- void registerWithDebugger() override {}
- void deregisterWithDebugger() override {}
-};
-
-} // end namespace llvm
-
-#endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
index d86a751..304014e 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -12,12 +12,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "JITRegistrar.h"
-#include "ObjectImageCommon.h"
+#include "RuntimeDyldCheckerImpl.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
-#include "llvm/Object/ELF.h"
+#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MutexGuard.h"
@@ -29,10 +28,8 @@ using namespace llvm::object;
// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}
-// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
-void JITRegistrar::anchor() {}
-void ObjectImage::anchor() {}
-void ObjectImageCommon::anchor() {}
+// Pin LoadedObjectInfo's vtables to this file.
+void RuntimeDyld::LoadedObjectInfo::anchor() {}
namespace llvm {
@@ -40,6 +37,44 @@ void RuntimeDyldImpl::registerEHFrames() {}
void RuntimeDyldImpl::deregisterEHFrames() {}
+#ifndef NDEBUG
+static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
+ dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
+
+ if (S.Address == nullptr) {
+ dbgs() << "\n <section not emitted>\n";
+ return;
+ }
+
+ const unsigned ColsPerRow = 16;
+
+ uint8_t *DataAddr = S.Address;
+ uint64_t LoadAddr = S.LoadAddress;
+
+ unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
+ unsigned BytesRemaining = S.Size;
+
+ if (StartPadding) {
+ dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr & ~(ColsPerRow - 1)) << ":";
+ while (StartPadding--)
+ dbgs() << " ";
+ }
+
+ while (BytesRemaining > 0) {
+ if ((LoadAddr & (ColsPerRow - 1)) == 0)
+ dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
+
+ dbgs() << " " << format("%02x", *DataAddr);
+
+ ++DataAddr;
+ ++LoadAddr;
+ --BytesRemaining;
+ }
+
+ dbgs() << "\n";
+}
+#endif
+
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
MutexGuard locked(lock);
@@ -55,8 +90,10 @@ void RuntimeDyldImpl::resolveRelocations() {
// entry provides the section to which the relocation will be applied.
uint64_t Addr = Sections[i].LoadAddress;
DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
- << format("%p", (uint8_t *)Addr) << "\n");
+ << format("0x%x", Addr) << "\n");
+ DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
resolveRelocationList(Relocations[i], Addr);
+ DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
Relocations.erase(i);
}
}
@@ -88,40 +125,36 @@ static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
if (std::error_code EC = Sym.getSection(SecI))
return EC;
- if (SecI == Obj->section_end()) {
- Result = UnknownAddressOrSize;
- return object_error::success;
- }
-
- uint64_t SectionAddress;
- if (std::error_code EC = SecI->getAddress(SectionAddress))
- return EC;
+ if (SecI == Obj->section_end()) {
+ Result = UnknownAddressOrSize;
+ return object_error::success;
+ }
+ uint64_t SectionAddress = SecI->getAddress();
Result = Address - SectionAddress;
return object_error::success;
}
-ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
+std::pair<unsigned, unsigned>
+RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
MutexGuard locked(lock);
- std::unique_ptr<ObjectImage> Obj(InputObject);
- if (!Obj)
- return nullptr;
+ // Grab the first Section ID. We'll use this later to construct the underlying
+ // range for the returned LoadedObjectInfo.
+ unsigned SectionsAddedBeginIdx = Sections.size();
// Save information about our target
- Arch = (Triple::ArchType)Obj->getArch();
- IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
+ Arch = (Triple::ArchType)Obj.getArch();
+ IsTargetLittleEndian = Obj.isLittleEndian();
// Compute the memory size required to load all sections to be loaded
// and pass this information to the memory manager
if (MemMgr->needsToReserveAllocationSpace()) {
uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
- computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
+ computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
}
- // Symbols found in this object
- StringMap<SymbolLoc> LocalSymbols;
// Used sections from the object file
ObjSectionToIDMap LocalSections;
@@ -132,7 +165,7 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
- for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
+ for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
++I) {
object::SymbolRef::Type SymType;
StringRef Name;
@@ -158,17 +191,15 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
SymType == object::SymbolRef::ST_Unknown) {
uint64_t SectOffset;
StringRef SectionData;
- bool IsCode;
- section_iterator SI = Obj->end_sections();
+ section_iterator SI = Obj.section_end();
Check(getOffset(*I, SectOffset));
Check(I->getSection(SI));
- if (SI == Obj->end_sections())
+ if (SI == Obj.section_end())
continue;
Check(SI->getContents(SectionData));
- Check(SI->isText(IsCode));
+ bool IsCode = SI->isText();
unsigned SectionID =
- findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
- LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
+ findOrEmitSection(Obj, *SI, IsCode, LocalSections);
DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
<< " flags: " << Flags << " SID: " << SectionID);
GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
@@ -179,11 +210,11 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
// Allocate common symbols
if (CommonSize != 0)
- emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
+ emitCommonSymbols(Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
// Parse and process relocations
DEBUG(dbgs() << "Parse relocations:\n");
- for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
unsigned SectionID = 0;
StubMap Stubs;
@@ -195,21 +226,26 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
if (I == E && !ProcessAllSections)
continue;
- bool IsCode = false;
- Check(RelocatedSection->isText(IsCode));
+ bool IsCode = RelocatedSection->isText();
SectionID =
- findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
+ findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
for (; I != E;)
- I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
- Stubs);
+ I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
+
+ // If there is an attached checker, notify it about the stubs for this
+ // section so that they can be verified.
+ if (Checker)
+ Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
}
// Give the subclasses a chance to tie-up any loose ends.
- finalizeLoad(*Obj, LocalSections);
+ finalizeLoad(Obj, LocalSections);
- return Obj.release();
+ unsigned SectionsAddedEndIdx = Sections.size();
+
+ return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
}
// A helper method for computeTotalAllocSize.
@@ -227,9 +263,37 @@ computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
return TotalSize;
}
+static bool isRequiredForExecution(const SectionRef &Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
+ return ELFObj->getSectionFlags(Section) & ELF::SHF_ALLOC;
+ assert(isa<MachOObjectFile>(Obj));
+ return true;
+ }
+
+static bool isReadOnlyData(const SectionRef &Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
+ return !(ELFObj->getSectionFlags(Section) &
+ (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
+ assert(isa<MachOObjectFile>(Obj));
+ return false;
+}
+
+static bool isZeroInit(const SectionRef &Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
+ return ELFObj->getSectionType(Section) == ELF::SHT_NOBITS;
+
+ auto *MachO = cast<MachOObjectFile>(Obj);
+ unsigned SectionType = MachO->getSectionType(Section);
+ return SectionType == MachO::S_ZEROFILL ||
+ SectionType == MachO::S_GB_ZEROFILL;
+}
+
// Compute an upper bound of the memory size that is required to load all
// sections
-void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
+void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
uint64_t &CodeSize,
uint64_t &DataSizeRO,
uint64_t &DataSizeRW) {
@@ -241,24 +305,19 @@ void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
// Collect sizes of all sections to be loaded;
// also determine the max alignment of all sections
- for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
- bool IsRequired;
- Check(Section.isRequiredForExecution(IsRequired));
+ bool IsRequired = isRequiredForExecution(Section);
// Consider only the sections that are required to be loaded for execution
if (IsRequired) {
- uint64_t DataSize = 0;
- uint64_t Alignment64 = 0;
- bool IsCode = false;
- bool IsReadOnly = false;
StringRef Name;
- Check(Section.getSize(DataSize));
- Check(Section.getAlignment(Alignment64));
- Check(Section.isText(IsCode));
- Check(Section.isReadOnlyData(IsReadOnly));
+ uint64_t DataSize = Section.getSize();
+ uint64_t Alignment64 = Section.getAlignment();
+ bool IsCode = Section.isText();
+ bool IsReadOnly = isReadOnlyData(Section);
Check(Section.getName(Name));
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
@@ -292,7 +351,7 @@ void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
// Compute the size of all common symbols
uint64_t CommonSize = 0;
- for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
+ for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
++I) {
uint32_t Flags = I->getFlags();
if (Flags & SymbolRef::SF_Common) {
@@ -317,7 +376,7 @@ void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
}
// compute stub buffer size for the given section
-unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
+unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
const SectionRef &Section) {
unsigned StubSize = getMaxStubSize();
if (StubSize == 0) {
@@ -327,7 +386,7 @@ unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
// necessary section allocation size in loadObject by walking all the sections
// once.
unsigned StubBufSize = 0;
- for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
SI != SE; ++SI) {
section_iterator RelSecI = SI->getRelocatedSection();
if (!(RelSecI == Section))
@@ -340,10 +399,8 @@ unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
}
// Get section data size and alignment
- uint64_t Alignment64;
- uint64_t DataSize;
- Check(Section.getSize(DataSize));
- Check(Section.getAlignment(Alignment64));
+ uint64_t DataSize = Section.getSize();
+ uint64_t Alignment64 = Section.getAlignment();
// Add stubbuf size alignment
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
@@ -354,7 +411,37 @@ unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
return StubBufSize;
}
-void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
+uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
+ unsigned Size) const {
+ uint64_t Result = 0;
+ if (IsTargetLittleEndian) {
+ Src += Size - 1;
+ while (Size--)
+ Result = (Result << 8) | *Src--;
+ } else
+ while (Size--)
+ Result = (Result << 8) | *Src++;
+
+ return Result;
+}
+
+void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
+ unsigned Size) const {
+ if (IsTargetLittleEndian) {
+ while (Size--) {
+ *Dst++ = Value & 0xFF;
+ Value >>= 8;
+ }
+ } else {
+ Dst += Size - 1;
+ while (Size--) {
+ *Dst-- = Value & 0xFF;
+ Value >>= 8;
+ }
+ }
+}
+
+void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
const CommonSymbolMap &CommonSymbols,
uint64_t TotalSize,
SymbolTableMap &SymbolTable) {
@@ -365,7 +452,7 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
- Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
+ Sections.push_back(SectionEntry("<common symbols>", Addr, TotalSize, 0));
memset(Addr, 0, TotalSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
@@ -386,35 +473,28 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
<< format("%p\n", Addr));
}
- Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
Offset += Size;
Addr += Size;
}
}
-unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
+unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
const SectionRef &Section, bool IsCode) {
StringRef data;
- uint64_t Alignment64;
Check(Section.getContents(data));
- Check(Section.getAlignment(Alignment64));
+ uint64_t Alignment64 = Section.getAlignment();
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
- bool IsRequired;
- bool IsVirtual;
- bool IsZeroInit;
- bool IsReadOnly;
- uint64_t DataSize;
unsigned PaddingSize = 0;
unsigned StubBufSize = 0;
StringRef Name;
- Check(Section.isRequiredForExecution(IsRequired));
- Check(Section.isVirtual(IsVirtual));
- Check(Section.isZeroInit(IsZeroInit));
- Check(Section.isReadOnlyData(IsReadOnly));
- Check(Section.getSize(DataSize));
+ bool IsRequired = isRequiredForExecution(Section);
+ bool IsVirtual = Section.isVirtual();
+ bool IsZeroInit = isZeroInit(Section);
+ bool IsReadOnly = isReadOnlyData(Section);
+ uint64_t DataSize = Section.getSize();
Check(Section.getName(Name));
StubBufSize = computeSectionStubBufSize(Obj, Section);
@@ -463,7 +543,6 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate << "\n");
- Obj.updateSectionAddress(Section, (uint64_t)Addr);
} else {
// Even if we didn't load the section, we need to record an entry for it
// to handle later processing (and by 'handle' I mean don't do anything
@@ -477,10 +556,14 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
}
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
+
+ if (Checker)
+ Checker->registerSection(Obj.getFileName(), SectionID);
+
return SectionID;
}
-unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
+unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections) {
@@ -519,33 +602,24 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
unsigned AbiVariant) {
- if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
- Arch == Triple::arm64 || Arch == Triple::arm64_be) {
+ if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
// This stub has to be able to access the full address space,
// since symbol lookup won't necessarily find a handy, in-range,
// PLT stub for functions which could be anywhere.
- uint32_t *StubAddr = (uint32_t *)Addr;
-
// Stub can use ip0 (== x16) to calculate address
- *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
- StubAddr++;
- *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
- StubAddr++;
- *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
- StubAddr++;
- *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
- StubAddr++;
- *StubAddr = 0xd61f0200; // br ip0
+ writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
+ writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
+ writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
+ writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
+ writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
return Addr;
} else if (Arch == Triple::arm || Arch == Triple::armeb) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
- uint32_t *StubAddr = (uint32_t *)Addr;
- *StubAddr = 0xe51ff004; // ldr pc,<label>
- return (uint8_t *)++StubAddr;
+ writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
+ return Addr + 4;
} else if (Arch == Triple::mipsel || Arch == Triple::mips) {
- uint32_t *StubAddr = (uint32_t *)Addr;
// 0: 3c190000 lui t9,%hi(addr).
// 4: 27390000 addiu t9,t9,%lo(addr).
// 8: 03200008 jr t9.
@@ -553,13 +627,10 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
- *StubAddr = LuiT9Instr;
- StubAddr++;
- *StubAddr = AdduiT9Instr;
- StubAddr++;
- *StubAddr = JrT9Instr;
- StubAddr++;
- *StubAddr = NopInstr;
+ writeBytesUnaligned(LuiT9Instr, Addr, 4);
+ writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
+ writeBytesUnaligned(JrT9Instr, Addr+8, 4);
+ writeBytesUnaligned(NopInstr, Addr+12, 4);
return Addr;
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
// Depending on which version of the ELF ABI is in use, we need to
@@ -619,6 +690,10 @@ void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
+ DEBUG(dbgs() << "Reassigning address for section "
+ << SectionID << " (" << Sections[SectionID].Name << "): "
+ << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
+ << format("0x%016" PRIx64, Addr) << "\n");
Sections[SectionID].LoadAddress = Addr;
}
@@ -685,6 +760,16 @@ void RuntimeDyldImpl::resolveExternalSymbols() {
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
+
+uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
+ StringRef SectionName) const {
+ for (unsigned I = BeginIdx; I != EndIdx; ++I)
+ if (RTDyld.Sections[I].Name == SectionName)
+ return RTDyld.Sections[I].LoadAddress;
+
+ return 0;
+}
+
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
// FIXME: There's a potential issue lurking here if a single instance of
// RuntimeDyld is used to load multiple objects. The current implementation
@@ -695,104 +780,55 @@ RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
Dyld = nullptr;
MM = mm;
ProcessAllSections = false;
+ Checker = nullptr;
}
-RuntimeDyld::~RuntimeDyld() { delete Dyld; }
+RuntimeDyld::~RuntimeDyld() {}
static std::unique_ptr<RuntimeDyldELF>
-createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
+createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections,
+ RuntimeDyldCheckerImpl *Checker) {
std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
- bool ProcessAllSections) {
+ bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setRuntimeDyldChecker(Checker);
return Dyld;
}
-ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
- std::unique_ptr<ObjectImage> InputImage;
-
- ObjectFile &Obj = *InputObject;
-
- if (InputObject->isELF()) {
- InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
- if (!Dyld)
- Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
- } else if (InputObject->isMachO()) {
- InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
- if (!Dyld)
- Dyld = createRuntimeDyldMachO(
- static_cast<Triple::ArchType>(InputImage->getArch()),
- MM, ProcessAllSections).release();
- } else
- report_fatal_error("Incompatible object format!");
-
- if (!Dyld->isCompatibleFile(&Obj))
- report_fatal_error("Incompatible object format!");
-
- Dyld->loadObject(InputImage.get());
- return InputImage.release();
-}
-
-ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
- std::unique_ptr<ObjectImage> InputImage;
- sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
-
- switch (Type) {
- case sys::fs::file_magic::elf_relocatable:
- case sys::fs::file_magic::elf_executable:
- case sys::fs::file_magic::elf_shared_object:
- case sys::fs::file_magic::elf_core:
- InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
- if (!Dyld)
- Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
- break;
- case sys::fs::file_magic::macho_object:
- case sys::fs::file_magic::macho_executable:
- case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
- case sys::fs::file_magic::macho_core:
- case sys::fs::file_magic::macho_preload_executable:
- case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
- case sys::fs::file_magic::macho_dynamic_linker:
- case sys::fs::file_magic::macho_bundle:
- case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
- case sys::fs::file_magic::macho_dsym_companion:
- InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
- if (!Dyld)
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyld::loadObject(const ObjectFile &Obj) {
+ if (!Dyld) {
+ if (Obj.isELF())
+ Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker);
+ else if (Obj.isMachO())
Dyld = createRuntimeDyldMachO(
- static_cast<Triple::ArchType>(InputImage->getArch()),
- MM, ProcessAllSections).release();
- break;
- case sys::fs::file_magic::unknown:
- case sys::fs::file_magic::bitcode:
- case sys::fs::file_magic::archive:
- case sys::fs::file_magic::coff_object:
- case sys::fs::file_magic::coff_import_library:
- case sys::fs::file_magic::pecoff_executable:
- case sys::fs::file_magic::macho_universal_binary:
- case sys::fs::file_magic::windows_resource:
- report_fatal_error("Incompatible object format!");
+ static_cast<Triple::ArchType>(Obj.getArch()), MM,
+ ProcessAllSections, Checker);
+ else
+ report_fatal_error("Incompatible object format!");
}
- if (!Dyld->isCompatibleFormat(InputBuffer))
+ if (!Dyld->isCompatibleFile(Obj))
report_fatal_error("Incompatible object format!");
- Dyld->loadObject(InputImage.get());
- return InputImage.release();
+ return Dyld->loadObject(Obj);
}
-void *RuntimeDyld::getSymbolAddress(StringRef Name) {
+void *RuntimeDyld::getSymbolAddress(StringRef Name) const {
if (!Dyld)
return nullptr;
return Dyld->getSymbolAddress(Name);
}
-uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
+uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) const {
if (!Dyld)
return 0;
return Dyld->getSymbolLoadAddress(Name);
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp
index 1e63d92..f3e5c77 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp
@@ -7,12 +7,14 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/ADT/STLExtras.h"
+#include "RuntimeDyldCheckerImpl.h"
+#include "RuntimeDyldImpl.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
-#include "llvm/Support/StringRefMemoryObject.h"
-#include "RuntimeDyldImpl.h"
+#include "llvm/Support/Path.h"
#include <cctype>
#include <memory>
@@ -22,594 +24,696 @@ using namespace llvm;
namespace llvm {
- // Helper class that implements the language evaluated by RuntimeDyldChecker.
- class RuntimeDyldCheckerExprEval {
- public:
-
- RuntimeDyldCheckerExprEval(const RuntimeDyldChecker &Checker,
- llvm::raw_ostream &ErrStream)
- : Checker(Checker), ErrStream(ErrStream) {}
-
- bool evaluate(StringRef Expr) const {
- // Expect equality expression of the form 'LHS = RHS'.
- Expr = Expr.trim();
- size_t EQIdx = Expr.find('=');
-
- // Evaluate LHS.
- StringRef LHSExpr = Expr.substr(0, EQIdx).rtrim();
- StringRef RemainingExpr;
- EvalResult LHSResult;
- std::tie(LHSResult, RemainingExpr) =
- evalComplexExpr(evalSimpleExpr(LHSExpr));
- if (LHSResult.hasError())
- return handleError(Expr, LHSResult);
- if (RemainingExpr != "")
- return handleError(Expr, unexpectedToken(RemainingExpr, LHSExpr, ""));
-
- // Evaluate RHS.
- StringRef RHSExpr = Expr.substr(EQIdx + 1).ltrim();
- EvalResult RHSResult;
- std::tie(RHSResult, RemainingExpr) =
- evalComplexExpr(evalSimpleExpr(RHSExpr));
- if (RHSResult.hasError())
- return handleError(Expr, RHSResult);
- if (RemainingExpr != "")
- return handleError(Expr, unexpectedToken(RemainingExpr, RHSExpr, ""));
-
- if (LHSResult.getValue() != RHSResult.getValue()) {
- ErrStream << "Expression '" << Expr << "' is false: "
- << format("0x%lx", LHSResult.getValue()) << " != "
- << format("0x%lx", RHSResult.getValue()) << "\n";
- return false;
- }
- return true;
+// Helper class that implements the language evaluated by RuntimeDyldChecker.
+class RuntimeDyldCheckerExprEval {
+public:
+ RuntimeDyldCheckerExprEval(const RuntimeDyldCheckerImpl &Checker,
+ raw_ostream &ErrStream)
+ : Checker(Checker) {}
+
+ bool evaluate(StringRef Expr) const {
+ // Expect equality expression of the form 'LHS = RHS'.
+ Expr = Expr.trim();
+ size_t EQIdx = Expr.find('=');
+
+ ParseContext OutsideLoad(false);
+
+ // Evaluate LHS.
+ StringRef LHSExpr = Expr.substr(0, EQIdx).rtrim();
+ StringRef RemainingExpr;
+ EvalResult LHSResult;
+ std::tie(LHSResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(LHSExpr, OutsideLoad), OutsideLoad);
+ if (LHSResult.hasError())
+ return handleError(Expr, LHSResult);
+ if (RemainingExpr != "")
+ return handleError(Expr, unexpectedToken(RemainingExpr, LHSExpr, ""));
+
+ // Evaluate RHS.
+ StringRef RHSExpr = Expr.substr(EQIdx + 1).ltrim();
+ EvalResult RHSResult;
+ std::tie(RHSResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(RHSExpr, OutsideLoad), OutsideLoad);
+ if (RHSResult.hasError())
+ return handleError(Expr, RHSResult);
+ if (RemainingExpr != "")
+ return handleError(Expr, unexpectedToken(RemainingExpr, RHSExpr, ""));
+
+ if (LHSResult.getValue() != RHSResult.getValue()) {
+ Checker.ErrStream << "Expression '" << Expr << "' is false: "
+ << format("0x%" PRIx64, LHSResult.getValue())
+ << " != " << format("0x%" PRIx64, RHSResult.getValue())
+ << "\n";
+ return false;
}
+ return true;
+ }
+
+private:
+ // RuntimeDyldCheckerExprEval requires some context when parsing exprs. In
+ // particular, it needs to know whether a symbol is being evaluated in the
+ // context of a load, in which case we want the linker's local address for
+ // the symbol, or outside of a load, in which case we want the symbol's
+ // address in the remote target.
+
+ struct ParseContext {
+ bool IsInsideLoad;
+ ParseContext(bool IsInsideLoad) : IsInsideLoad(IsInsideLoad) {}
+ };
+
+ const RuntimeDyldCheckerImpl &Checker;
+
+ enum class BinOpToken : unsigned {
+ Invalid,
+ Add,
+ Sub,
+ BitwiseAnd,
+ BitwiseOr,
+ ShiftLeft,
+ ShiftRight
+ };
+
+ class EvalResult {
+ public:
+ EvalResult() : Value(0), ErrorMsg("") {}
+ EvalResult(uint64_t Value) : Value(Value), ErrorMsg("") {}
+ EvalResult(std::string ErrorMsg) : Value(0), ErrorMsg(ErrorMsg) {}
+ uint64_t getValue() const { return Value; }
+ bool hasError() const { return ErrorMsg != ""; }
+ const std::string &getErrorMsg() const { return ErrorMsg; }
private:
- const RuntimeDyldChecker &Checker;
- llvm::raw_ostream &ErrStream;
-
- enum class BinOpToken : unsigned { Invalid, Add, Sub, BitwiseAnd,
- BitwiseOr, ShiftLeft, ShiftRight };
-
- class EvalResult {
- public:
- EvalResult()
- : Value(0), ErrorMsg("") {}
- EvalResult(uint64_t Value)
- : Value(Value), ErrorMsg("") {}
- EvalResult(std::string ErrorMsg)
- : Value(0), ErrorMsg(ErrorMsg) {}
- uint64_t getValue() const { return Value; }
- bool hasError() const { return ErrorMsg != ""; }
- const std::string& getErrorMsg() const { return ErrorMsg; }
- private:
- uint64_t Value;
- std::string ErrorMsg;
- };
-
- StringRef getTokenForError(StringRef Expr) const {
- if (Expr.empty())
- return "";
-
- StringRef Token, Remaining;
- if (isalpha(Expr[0]))
- std::tie(Token, Remaining) = parseSymbol(Expr);
- else if (isdigit(Expr[0]))
- std::tie(Token, Remaining) = parseNumberString(Expr);
- else {
- unsigned TokLen = 1;
- if (Expr.startswith("<<") || Expr.startswith(">>"))
- TokLen = 2;
- Token = Expr.substr(0, TokLen);
- }
- return Token;
- }
+ uint64_t Value;
+ std::string ErrorMsg;
+ };
- EvalResult unexpectedToken(StringRef TokenStart,
- StringRef SubExpr,
- StringRef ErrText) const {
- std::string ErrorMsg("Encountered unexpected token '");
- ErrorMsg += getTokenForError(TokenStart);
- if (SubExpr != "") {
- ErrorMsg += "' while parsing subexpression '";
- ErrorMsg += SubExpr;
- }
- ErrorMsg += "'";
- if (ErrText != "") {
- ErrorMsg += " ";
- ErrorMsg += ErrText;
- }
- return EvalResult(std::move(ErrorMsg));
+ StringRef getTokenForError(StringRef Expr) const {
+ if (Expr.empty())
+ return "";
+
+ StringRef Token, Remaining;
+ if (isalpha(Expr[0]))
+ std::tie(Token, Remaining) = parseSymbol(Expr);
+ else if (isdigit(Expr[0]))
+ std::tie(Token, Remaining) = parseNumberString(Expr);
+ else {
+ unsigned TokLen = 1;
+ if (Expr.startswith("<<") || Expr.startswith(">>"))
+ TokLen = 2;
+ Token = Expr.substr(0, TokLen);
}
+ return Token;
+ }
- bool handleError(StringRef Expr, const EvalResult &R) const {
- assert(R.hasError() && "Not an error result.");
- ErrStream << "Error evaluating expression '" << Expr << "': "
- << R.getErrorMsg() << "\n";
- return false;
+ EvalResult unexpectedToken(StringRef TokenStart, StringRef SubExpr,
+ StringRef ErrText) const {
+ std::string ErrorMsg("Encountered unexpected token '");
+ ErrorMsg += getTokenForError(TokenStart);
+ if (SubExpr != "") {
+ ErrorMsg += "' while parsing subexpression '";
+ ErrorMsg += SubExpr;
+ }
+ ErrorMsg += "'";
+ if (ErrText != "") {
+ ErrorMsg += " ";
+ ErrorMsg += ErrText;
}
+ return EvalResult(std::move(ErrorMsg));
+ }
- std::pair<BinOpToken, StringRef> parseBinOpToken(StringRef Expr) const {
- if (Expr.empty())
- return std::make_pair(BinOpToken::Invalid, "");
-
- // Handle the two 2-character tokens.
- if (Expr.startswith("<<"))
- return std::make_pair(BinOpToken::ShiftLeft,
- Expr.substr(2).ltrim());
- if (Expr.startswith(">>"))
- return std::make_pair(BinOpToken::ShiftRight,
- Expr.substr(2).ltrim());
-
- // Handle one-character tokens.
- BinOpToken Op;
- switch (Expr[0]) {
- default: return std::make_pair(BinOpToken::Invalid, Expr);
- case '+': Op = BinOpToken::Add; break;
- case '-': Op = BinOpToken::Sub; break;
- case '&': Op = BinOpToken::BitwiseAnd; break;
- case '|': Op = BinOpToken::BitwiseOr; break;
- }
+ bool handleError(StringRef Expr, const EvalResult &R) const {
+ assert(R.hasError() && "Not an error result.");
+ Checker.ErrStream << "Error evaluating expression '" << Expr
+ << "': " << R.getErrorMsg() << "\n";
+ return false;
+ }
- return std::make_pair(Op, Expr.substr(1).ltrim());
+ std::pair<BinOpToken, StringRef> parseBinOpToken(StringRef Expr) const {
+ if (Expr.empty())
+ return std::make_pair(BinOpToken::Invalid, "");
+
+ // Handle the two 2-character tokens.
+ if (Expr.startswith("<<"))
+ return std::make_pair(BinOpToken::ShiftLeft, Expr.substr(2).ltrim());
+ if (Expr.startswith(">>"))
+ return std::make_pair(BinOpToken::ShiftRight, Expr.substr(2).ltrim());
+
+ // Handle one-character tokens.
+ BinOpToken Op;
+ switch (Expr[0]) {
+ default:
+ return std::make_pair(BinOpToken::Invalid, Expr);
+ case '+':
+ Op = BinOpToken::Add;
+ break;
+ case '-':
+ Op = BinOpToken::Sub;
+ break;
+ case '&':
+ Op = BinOpToken::BitwiseAnd;
+ break;
+ case '|':
+ Op = BinOpToken::BitwiseOr;
+ break;
}
- EvalResult computeBinOpResult(BinOpToken Op, const EvalResult &LHSResult,
- const EvalResult &RHSResult) const {
- switch (Op) {
- default: llvm_unreachable("Tried to evaluate unrecognized operation.");
- case BinOpToken::Add:
- return EvalResult(LHSResult.getValue() + RHSResult.getValue());
- case BinOpToken::Sub:
- return EvalResult(LHSResult.getValue() - RHSResult.getValue());
- case BinOpToken::BitwiseAnd:
- return EvalResult(LHSResult.getValue() & RHSResult.getValue());
- case BinOpToken::BitwiseOr:
- return EvalResult(LHSResult.getValue() | RHSResult.getValue());
- case BinOpToken::ShiftLeft:
- return EvalResult(LHSResult.getValue() << RHSResult.getValue());
- case BinOpToken::ShiftRight:
- return EvalResult(LHSResult.getValue() >> RHSResult.getValue());
- }
- }
+ return std::make_pair(Op, Expr.substr(1).ltrim());
+ }
- // Parse a symbol and return a (string, string) pair representing the symbol
- // name and expression remaining to be parsed.
- std::pair<StringRef, StringRef> parseSymbol(StringRef Expr) const {
- size_t FirstNonSymbol =
- Expr.find_first_not_of("0123456789"
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- ":_");
- return std::make_pair(Expr.substr(0, FirstNonSymbol),
- Expr.substr(FirstNonSymbol).ltrim());
+ EvalResult computeBinOpResult(BinOpToken Op, const EvalResult &LHSResult,
+ const EvalResult &RHSResult) const {
+ switch (Op) {
+ default:
+ llvm_unreachable("Tried to evaluate unrecognized operation.");
+ case BinOpToken::Add:
+ return EvalResult(LHSResult.getValue() + RHSResult.getValue());
+ case BinOpToken::Sub:
+ return EvalResult(LHSResult.getValue() - RHSResult.getValue());
+ case BinOpToken::BitwiseAnd:
+ return EvalResult(LHSResult.getValue() & RHSResult.getValue());
+ case BinOpToken::BitwiseOr:
+ return EvalResult(LHSResult.getValue() | RHSResult.getValue());
+ case BinOpToken::ShiftLeft:
+ return EvalResult(LHSResult.getValue() << RHSResult.getValue());
+ case BinOpToken::ShiftRight:
+ return EvalResult(LHSResult.getValue() >> RHSResult.getValue());
}
+ }
- // Evaluate a call to decode_operand. Decode the instruction operand at the
- // given symbol and get the value of the requested operand.
- // Returns an error if the instruction cannot be decoded, or the requested
- // operand is not an immediate.
- // On success, retuns a pair containing the value of the operand, plus
- // the expression remaining to be evaluated.
- std::pair<EvalResult, StringRef> evalDecodeOperand(StringRef Expr) const {
- if (!Expr.startswith("("))
- return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
- StringRef RemainingExpr = Expr.substr(1).ltrim();
- StringRef Symbol;
- std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
-
- if (!Checker.isSymbolValid(Symbol))
- return std::make_pair(EvalResult(("Cannot decode unknown symbol '" +
- Symbol + "'").str()),
- "");
-
- if (!RemainingExpr.startswith(","))
- return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
- "expected ','"),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- EvalResult OpIdxExpr;
- std::tie(OpIdxExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
- if (OpIdxExpr.hasError())
- return std::make_pair(OpIdxExpr, "");
-
- if (!RemainingExpr.startswith(")"))
- return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
- "expected ')'"),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- MCInst Inst;
- uint64_t Size;
- if (!decodeInst(Symbol, Inst, Size))
- return std::make_pair(EvalResult(("Couldn't decode instruction at '" +
- Symbol + "'").str()),
- "");
-
- unsigned OpIdx = OpIdxExpr.getValue();
- if (OpIdx >= Inst.getNumOperands()) {
- std::string ErrMsg;
- raw_string_ostream ErrMsgStream(ErrMsg);
- ErrMsgStream << "Invalid operand index '" << format("%i", OpIdx)
- << "' for instruction '" << Symbol
- << "'. Instruction has only "
- << format("%i", Inst.getNumOperands())
- << " operands.\nInstruction is:\n ";
- Inst.dump_pretty(ErrMsgStream,
- Checker.Disassembler->getContext().getAsmInfo(),
- Checker.InstPrinter);
- return std::make_pair(EvalResult(ErrMsgStream.str()), "");
- }
+ // Parse a symbol and return a (string, string) pair representing the symbol
+ // name and expression remaining to be parsed.
+ std::pair<StringRef, StringRef> parseSymbol(StringRef Expr) const {
+ size_t FirstNonSymbol = Expr.find_first_not_of("0123456789"
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ ":_.$");
+ return std::make_pair(Expr.substr(0, FirstNonSymbol),
+ Expr.substr(FirstNonSymbol).ltrim());
+ }
- const MCOperand &Op = Inst.getOperand(OpIdx);
- if (!Op.isImm()) {
- std::string ErrMsg;
- raw_string_ostream ErrMsgStream(ErrMsg);
- ErrMsgStream << "Operand '" << format("%i", OpIdx)
- << "' of instruction '" << Symbol
- << "' is not an immediate.\nInstruction is:\n ";
- Inst.dump_pretty(ErrMsgStream,
- Checker.Disassembler->getContext().getAsmInfo(),
- Checker.InstPrinter);
-
- return std::make_pair(EvalResult(ErrMsgStream.str()), "");
- }
+ // Evaluate a call to decode_operand. Decode the instruction operand at the
+ // given symbol and get the value of the requested operand.
+ // Returns an error if the instruction cannot be decoded, or the requested
+ // operand is not an immediate.
+ // On success, retuns a pair containing the value of the operand, plus
+ // the expression remaining to be evaluated.
+ std::pair<EvalResult, StringRef> evalDecodeOperand(StringRef Expr) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+ StringRef Symbol;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!Checker.isSymbolValid(Symbol))
+ return std::make_pair(
+ EvalResult(("Cannot decode unknown symbol '" + Symbol + "'").str()),
+ "");
- return std::make_pair(EvalResult(Op.getImm()), RemainingExpr);
- }
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
- // Evaluate a call to next_pc. Decode the instruction at the given
- // symbol and return the following program counter..
- // Returns an error if the instruction cannot be decoded.
- // On success, returns a pair containing the next PC, plus the length of the
- // expression remaining to be evaluated.
- std::pair<EvalResult, StringRef> evalNextPC(StringRef Expr) const {
- if (!Expr.startswith("("))
- return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
- StringRef RemainingExpr = Expr.substr(1).ltrim();
- StringRef Symbol;
- std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
-
- if (!Checker.isSymbolValid(Symbol))
- return std::make_pair(EvalResult(("Cannot decode unknown symbol '"
- + Symbol + "'").str()),
- "");
-
- if (!RemainingExpr.startswith(")"))
- return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
- "expected ')'"),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- MCInst Inst;
- uint64_t Size;
- if (!decodeInst(Symbol, Inst, Size))
- return std::make_pair(EvalResult(("Couldn't decode instruction at '" +
- Symbol + "'").str()),
- "");
- uint64_t NextPC = Checker.getSymbolAddress(Symbol) + Size;
-
- return std::make_pair(EvalResult(NextPC), RemainingExpr);
- }
+ EvalResult OpIdxExpr;
+ std::tie(OpIdxExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+ if (OpIdxExpr.hasError())
+ return std::make_pair(OpIdxExpr, "");
- // Evaluate an identiefer expr, which may be a symbol, or a call to
- // one of the builtin functions: get_insn_opcode or get_insn_length.
- // Return the result, plus the expression remaining to be parsed.
- std::pair<EvalResult, StringRef> evalIdentifierExpr(StringRef Expr) const {
- StringRef Symbol;
- StringRef RemainingExpr;
- std::tie(Symbol, RemainingExpr) = parseSymbol(Expr);
-
- // Check for builtin function calls.
- if (Symbol == "decode_operand")
- return evalDecodeOperand(RemainingExpr);
- else if (Symbol == "next_pc")
- return evalNextPC(RemainingExpr);
-
- if (!Checker.isSymbolValid(Symbol)) {
- std::string ErrMsg("No known address for symbol '");
- ErrMsg += Symbol;
- ErrMsg += "'";
- if (Symbol.startswith("L"))
- ErrMsg += " (this appears to be an assembler local label - "
- " perhaps drop the 'L'?)";
-
- return std::make_pair(EvalResult(ErrMsg), "");
- }
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
- // Looks like a plain symbol reference.
- return std::make_pair(EvalResult(Checker.getSymbolAddress(Symbol)),
- RemainingExpr);
+ MCInst Inst;
+ uint64_t Size;
+ if (!decodeInst(Symbol, Inst, Size))
+ return std::make_pair(
+ EvalResult(("Couldn't decode instruction at '" + Symbol + "'").str()),
+ "");
+
+ unsigned OpIdx = OpIdxExpr.getValue();
+ if (OpIdx >= Inst.getNumOperands()) {
+ std::string ErrMsg;
+ raw_string_ostream ErrMsgStream(ErrMsg);
+ ErrMsgStream << "Invalid operand index '" << format("%i", OpIdx)
+ << "' for instruction '" << Symbol
+ << "'. Instruction has only "
+ << format("%i", Inst.getNumOperands())
+ << " operands.\nInstruction is:\n ";
+ Inst.dump_pretty(ErrMsgStream,
+ Checker.Disassembler->getContext().getAsmInfo(),
+ Checker.InstPrinter);
+ return std::make_pair(EvalResult(ErrMsgStream.str()), "");
}
- // Parse a number (hexadecimal or decimal) and return a (string, string)
- // pair representing the number and the expression remaining to be parsed.
- std::pair<StringRef, StringRef> parseNumberString(StringRef Expr) const {
- size_t FirstNonDigit = StringRef::npos;
- if (Expr.startswith("0x")) {
- FirstNonDigit = Expr.find_first_not_of("0123456789abcdefABCDEF", 2);
- if (FirstNonDigit == StringRef::npos)
- FirstNonDigit = Expr.size();
- } else {
- FirstNonDigit = Expr.find_first_not_of("0123456789");
- if (FirstNonDigit == StringRef::npos)
- FirstNonDigit = Expr.size();
- }
- return std::make_pair(Expr.substr(0, FirstNonDigit),
- Expr.substr(FirstNonDigit));
+ const MCOperand &Op = Inst.getOperand(OpIdx);
+ if (!Op.isImm()) {
+ std::string ErrMsg;
+ raw_string_ostream ErrMsgStream(ErrMsg);
+ ErrMsgStream << "Operand '" << format("%i", OpIdx) << "' of instruction '"
+ << Symbol << "' is not an immediate.\nInstruction is:\n ";
+ Inst.dump_pretty(ErrMsgStream,
+ Checker.Disassembler->getContext().getAsmInfo(),
+ Checker.InstPrinter);
+
+ return std::make_pair(EvalResult(ErrMsgStream.str()), "");
}
- // Evaluate a constant numeric expression (hexidecimal or decimal) and
- // return a pair containing the result, and the expression remaining to be
- // evaluated.
- std::pair<EvalResult, StringRef> evalNumberExpr(StringRef Expr) const {
- StringRef ValueStr;
- StringRef RemainingExpr;
- std::tie(ValueStr, RemainingExpr) = parseNumberString(Expr);
-
- if (ValueStr.empty() || !isdigit(ValueStr[0]))
- return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
- "expected number"),
- "");
- uint64_t Value;
- ValueStr.getAsInteger(0, Value);
- return std::make_pair(EvalResult(Value), RemainingExpr);
- }
+ return std::make_pair(EvalResult(Op.getImm()), RemainingExpr);
+ }
- // Evaluate an expression of the form "(<expr>)" and return a pair
- // containing the result of evaluating <expr>, plus the expression
- // remaining to be parsed.
- std::pair<EvalResult, StringRef> evalParensExpr(StringRef Expr) const {
- assert(Expr.startswith("(") && "Not a parenthesized expression");
- EvalResult SubExprResult;
- StringRef RemainingExpr;
- std::tie(SubExprResult, RemainingExpr) =
- evalComplexExpr(evalSimpleExpr(Expr.substr(1).ltrim()));
- if (SubExprResult.hasError())
- return std::make_pair(SubExprResult, "");
- if (!RemainingExpr.startswith(")"))
- return std::make_pair(unexpectedToken(RemainingExpr, Expr,
- "expected ')'"),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
- return std::make_pair(SubExprResult, RemainingExpr);
- }
+ // Evaluate a call to next_pc.
+ // Decode the instruction at the given symbol and return the following program
+ // counter.
+ // Returns an error if the instruction cannot be decoded.
+ // On success, returns a pair containing the next PC, plus of the
+ // expression remaining to be evaluated.
+ std::pair<EvalResult, StringRef> evalNextPC(StringRef Expr,
+ ParseContext PCtx) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+ StringRef Symbol;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!Checker.isSymbolValid(Symbol))
+ return std::make_pair(
+ EvalResult(("Cannot decode unknown symbol '" + Symbol + "'").str()),
+ "");
- // Evaluate an expression in one of the following forms:
- // *{<number>}<symbol>
- // *{<number>}(<symbol> + <number>)
- // *{<number>}(<symbol> - <number>)
- // Return a pair containing the result, plus the expression remaining to be
- // parsed.
- std::pair<EvalResult, StringRef> evalLoadExpr(StringRef Expr) const {
- assert(Expr.startswith("*") && "Not a load expression");
- StringRef RemainingExpr = Expr.substr(1).ltrim();
- // Parse read size.
- if (!RemainingExpr.startswith("{"))
- return std::make_pair(EvalResult("Expected '{' following '*'."), "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
- EvalResult ReadSizeExpr;
- std::tie(ReadSizeExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
- if (ReadSizeExpr.hasError())
- return std::make_pair(ReadSizeExpr, RemainingExpr);
- uint64_t ReadSize = ReadSizeExpr.getValue();
- if (ReadSize < 1 || ReadSize > 8)
- return std::make_pair(EvalResult("Invalid size for dereference."), "");
- if (!RemainingExpr.startswith("}"))
- return std::make_pair(EvalResult("Missing '}' for dereference."), "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- // Check for '(symbol +/- constant)' form.
- bool SymbolPlusConstant = false;
- if (RemainingExpr.startswith("(")) {
- SymbolPlusConstant = true;
- RemainingExpr = RemainingExpr.substr(1).ltrim();
- }
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ MCInst Inst;
+ uint64_t InstSize;
+ if (!decodeInst(Symbol, Inst, InstSize))
+ return std::make_pair(
+ EvalResult(("Couldn't decode instruction at '" + Symbol + "'").str()),
+ "");
+
+ uint64_t SymbolAddr = PCtx.IsInsideLoad
+ ? Checker.getSymbolLinkerAddr(Symbol)
+ : Checker.getSymbolRemoteAddr(Symbol);
+ uint64_t NextPC = SymbolAddr + InstSize;
+
+ return std::make_pair(EvalResult(NextPC), RemainingExpr);
+ }
+
+ // Evaluate a call to stub_addr.
+ // Look up and return the address of the stub for the given
+ // (<file name>, <section name>, <symbol name>) tuple.
+ // On success, returns a pair containing the stub address, plus the expression
+ // remaining to be evaluated.
+ std::pair<EvalResult, StringRef> evalStubAddr(StringRef Expr,
+ ParseContext PCtx) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+
+ // Handle file-name specially, as it may contain characters that aren't
+ // legal for symbols.
+ StringRef FileName;
+ size_t ComaIdx = RemainingExpr.find(',');
+ FileName = RemainingExpr.substr(0, ComaIdx).rtrim();
+ RemainingExpr = RemainingExpr.substr(ComaIdx).ltrim();
+
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
- // Read symbol.
- StringRef Symbol;
- std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
+ StringRef SectionName;
+ std::tie(SectionName, RemainingExpr) = parseSymbol(RemainingExpr);
- if (!Checker.isSymbolValid(Symbol))
- return std::make_pair(EvalResult(("Cannot dereference unknown symbol '"
- + Symbol + "'").str()),
- "");
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
- // Set up defaut offset.
- int64_t Offset = 0;
+ StringRef Symbol;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
- // Handle "+/- constant)" portion if necessary.
- if (SymbolPlusConstant) {
- char OpChar = RemainingExpr[0];
- if (OpChar != '+' && OpChar != '-')
- return std::make_pair(EvalResult("Invalid operator in load address."),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
- EvalResult OffsetExpr;
- std::tie(OffsetExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+ uint64_t StubAddr;
+ std::string ErrorMsg = "";
+ std::tie(StubAddr, ErrorMsg) = Checker.getStubAddrFor(
+ FileName, SectionName, Symbol, PCtx.IsInsideLoad);
- Offset = (OpChar == '+') ?
- OffsetExpr.getValue() : -1 * OffsetExpr.getValue();
+ if (ErrorMsg != "")
+ return std::make_pair(EvalResult(ErrorMsg), "");
- if (!RemainingExpr.startswith(")"))
- return std::make_pair(EvalResult("Missing ')' in load address."),
- "");
+ return std::make_pair(EvalResult(StubAddr), RemainingExpr);
+ }
- RemainingExpr = RemainingExpr.substr(1).ltrim();
- }
+ std::pair<EvalResult, StringRef> evalSectionAddr(StringRef Expr,
+ ParseContext PCtx) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+ // Handle file-name specially, as it may contain characters that aren't
+ // legal for symbols.
+ StringRef FileName;
+ size_t ComaIdx = RemainingExpr.find(',');
+ FileName = RemainingExpr.substr(0, ComaIdx).rtrim();
+ RemainingExpr = RemainingExpr.substr(ComaIdx).ltrim();
+
+ if (!RemainingExpr.startswith(","))
return std::make_pair(
- EvalResult(Checker.readMemoryAtSymbol(Symbol, Offset, ReadSize)),
- RemainingExpr);
+ unexpectedToken(RemainingExpr, Expr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ StringRef SectionName;
+ std::tie(SectionName, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ uint64_t StubAddr;
+ std::string ErrorMsg = "";
+ std::tie(StubAddr, ErrorMsg) = Checker.getSectionAddr(
+ FileName, SectionName, PCtx.IsInsideLoad);
+
+ if (ErrorMsg != "")
+ return std::make_pair(EvalResult(ErrorMsg), "");
+
+ return std::make_pair(EvalResult(StubAddr), RemainingExpr);
+ }
+
+ // Evaluate an identiefer expr, which may be a symbol, or a call to
+ // one of the builtin functions: get_insn_opcode or get_insn_length.
+ // Return the result, plus the expression remaining to be parsed.
+ std::pair<EvalResult, StringRef> evalIdentifierExpr(StringRef Expr,
+ ParseContext PCtx) const {
+ StringRef Symbol;
+ StringRef RemainingExpr;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(Expr);
+
+ // Check for builtin function calls.
+ if (Symbol == "decode_operand")
+ return evalDecodeOperand(RemainingExpr);
+ else if (Symbol == "next_pc")
+ return evalNextPC(RemainingExpr, PCtx);
+ else if (Symbol == "stub_addr")
+ return evalStubAddr(RemainingExpr, PCtx);
+ else if (Symbol == "section_addr")
+ return evalSectionAddr(RemainingExpr, PCtx);
+
+ if (!Checker.isSymbolValid(Symbol)) {
+ std::string ErrMsg("No known address for symbol '");
+ ErrMsg += Symbol;
+ ErrMsg += "'";
+ if (Symbol.startswith("L"))
+ ErrMsg += " (this appears to be an assembler local label - "
+ " perhaps drop the 'L'?)";
+
+ return std::make_pair(EvalResult(ErrMsg), "");
}
- // Evaluate a "simple" expression. This is any expression that _isn't_ an
- // un-parenthesized binary expression.
- //
- // "Simple" expressions can be optionally bit-sliced. See evalSlicedExpr.
- //
- // Returns a pair containing the result of the evaluation, plus the
- // expression remaining to be parsed.
- std::pair<EvalResult, StringRef> evalSimpleExpr(StringRef Expr) const {
- EvalResult SubExprResult;
- StringRef RemainingExpr;
-
- if (Expr.empty())
- return std::make_pair(EvalResult("Unexpected end of expression"), "");
-
- if (Expr[0] == '(')
- std::tie(SubExprResult, RemainingExpr) = evalParensExpr(Expr);
- else if (Expr[0] == '*')
- std::tie(SubExprResult, RemainingExpr) = evalLoadExpr(Expr);
- else if (isalpha(Expr[0]))
- std::tie(SubExprResult, RemainingExpr) = evalIdentifierExpr(Expr);
- else if (isdigit(Expr[0]))
- std::tie(SubExprResult, RemainingExpr) = evalNumberExpr(Expr);
-
- if (SubExprResult.hasError())
- return std::make_pair(SubExprResult, RemainingExpr);
-
- // Evaluate bit-slice if present.
- if (RemainingExpr.startswith("["))
- std::tie(SubExprResult, RemainingExpr) =
- evalSliceExpr(std::make_pair(SubExprResult, RemainingExpr));
+ // The value for the symbol depends on the context we're evaluating in:
+ // Inside a load this is the address in the linker's memory, outside a
+ // load it's the address in the target processes memory.
+ uint64_t Value = PCtx.IsInsideLoad ? Checker.getSymbolLinkerAddr(Symbol)
+ : Checker.getSymbolRemoteAddr(Symbol);
- return std::make_pair(SubExprResult, RemainingExpr);
+ // Looks like a plain symbol reference.
+ return std::make_pair(EvalResult(Value), RemainingExpr);
+ }
+
+ // Parse a number (hexadecimal or decimal) and return a (string, string)
+ // pair representing the number and the expression remaining to be parsed.
+ std::pair<StringRef, StringRef> parseNumberString(StringRef Expr) const {
+ size_t FirstNonDigit = StringRef::npos;
+ if (Expr.startswith("0x")) {
+ FirstNonDigit = Expr.find_first_not_of("0123456789abcdefABCDEF", 2);
+ if (FirstNonDigit == StringRef::npos)
+ FirstNonDigit = Expr.size();
+ } else {
+ FirstNonDigit = Expr.find_first_not_of("0123456789");
+ if (FirstNonDigit == StringRef::npos)
+ FirstNonDigit = Expr.size();
}
+ return std::make_pair(Expr.substr(0, FirstNonDigit),
+ Expr.substr(FirstNonDigit));
+ }
+
+ // Evaluate a constant numeric expression (hexidecimal or decimal) and
+ // return a pair containing the result, and the expression remaining to be
+ // evaluated.
+ std::pair<EvalResult, StringRef> evalNumberExpr(StringRef Expr) const {
+ StringRef ValueStr;
+ StringRef RemainingExpr;
+ std::tie(ValueStr, RemainingExpr) = parseNumberString(Expr);
+
+ if (ValueStr.empty() || !isdigit(ValueStr[0]))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected number"), "");
+ uint64_t Value;
+ ValueStr.getAsInteger(0, Value);
+ return std::make_pair(EvalResult(Value), RemainingExpr);
+ }
+
+ // Evaluate an expression of the form "(<expr>)" and return a pair
+ // containing the result of evaluating <expr>, plus the expression
+ // remaining to be parsed.
+ std::pair<EvalResult, StringRef> evalParensExpr(StringRef Expr,
+ ParseContext PCtx) const {
+ assert(Expr.startswith("(") && "Not a parenthesized expression");
+ EvalResult SubExprResult;
+ StringRef RemainingExpr;
+ std::tie(SubExprResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(Expr.substr(1).ltrim(), PCtx), PCtx);
+ if (SubExprResult.hasError())
+ return std::make_pair(SubExprResult, "");
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+ return std::make_pair(SubExprResult, RemainingExpr);
+ }
+
+ // Evaluate an expression in one of the following forms:
+ // *{<number>}<expr>
+ // Return a pair containing the result, plus the expression remaining to be
+ // parsed.
+ std::pair<EvalResult, StringRef> evalLoadExpr(StringRef Expr) const {
+ assert(Expr.startswith("*") && "Not a load expression");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+
+ // Parse read size.
+ if (!RemainingExpr.startswith("{"))
+ return std::make_pair(EvalResult("Expected '{' following '*'."), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+ EvalResult ReadSizeExpr;
+ std::tie(ReadSizeExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+ if (ReadSizeExpr.hasError())
+ return std::make_pair(ReadSizeExpr, RemainingExpr);
+ uint64_t ReadSize = ReadSizeExpr.getValue();
+ if (ReadSize < 1 || ReadSize > 8)
+ return std::make_pair(EvalResult("Invalid size for dereference."), "");
+ if (!RemainingExpr.startswith("}"))
+ return std::make_pair(EvalResult("Missing '}' for dereference."), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ // Evaluate the expression representing the load address.
+ ParseContext LoadCtx(true);
+ EvalResult LoadAddrExprResult;
+ std::tie(LoadAddrExprResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(RemainingExpr, LoadCtx), LoadCtx);
+
+ if (LoadAddrExprResult.hasError())
+ return std::make_pair(LoadAddrExprResult, "");
+
+ uint64_t LoadAddr = LoadAddrExprResult.getValue();
+
+ return std::make_pair(
+ EvalResult(Checker.readMemoryAtAddr(LoadAddr, ReadSize)),
+ RemainingExpr);
+ }
+
+ // Evaluate a "simple" expression. This is any expression that _isn't_ an
+ // un-parenthesized binary expression.
+ //
+ // "Simple" expressions can be optionally bit-sliced. See evalSlicedExpr.
+ //
+ // Returns a pair containing the result of the evaluation, plus the
+ // expression remaining to be parsed.
+ std::pair<EvalResult, StringRef> evalSimpleExpr(StringRef Expr,
+ ParseContext PCtx) const {
+ EvalResult SubExprResult;
+ StringRef RemainingExpr;
+
+ if (Expr.empty())
+ return std::make_pair(EvalResult("Unexpected end of expression"), "");
+
+ if (Expr[0] == '(')
+ std::tie(SubExprResult, RemainingExpr) = evalParensExpr(Expr, PCtx);
+ else if (Expr[0] == '*')
+ std::tie(SubExprResult, RemainingExpr) = evalLoadExpr(Expr);
+ else if (isalpha(Expr[0]) || Expr[0] == '_')
+ std::tie(SubExprResult, RemainingExpr) = evalIdentifierExpr(Expr, PCtx);
+ else if (isdigit(Expr[0]))
+ std::tie(SubExprResult, RemainingExpr) = evalNumberExpr(Expr);
+ else
+ return std::make_pair(
+ unexpectedToken(Expr, Expr,
+ "expected '(', '*', identifier, or number"), "");
+
+ if (SubExprResult.hasError())
+ return std::make_pair(SubExprResult, RemainingExpr);
+
+ // Evaluate bit-slice if present.
+ if (RemainingExpr.startswith("["))
+ std::tie(SubExprResult, RemainingExpr) =
+ evalSliceExpr(std::make_pair(SubExprResult, RemainingExpr));
- // Evaluate a bit-slice of an expression.
- // A bit-slice has the form "<expr>[high:low]". The result of evaluating a
- // slice is the bits between high and low (inclusive) in the original
- // expression, right shifted so that the "low" bit is in position 0 in the
+ return std::make_pair(SubExprResult, RemainingExpr);
+ }
+
+ // Evaluate a bit-slice of an expression.
+ // A bit-slice has the form "<expr>[high:low]". The result of evaluating a
+ // slice is the bits between high and low (inclusive) in the original
+ // expression, right shifted so that the "low" bit is in position 0 in the
+ // result.
+ // Returns a pair containing the result of the slice operation, plus the
+ // expression remaining to be parsed.
+ std::pair<EvalResult, StringRef>
+ evalSliceExpr(std::pair<EvalResult, StringRef> Ctx) const {
+ EvalResult SubExprResult;
+ StringRef RemainingExpr;
+ std::tie(SubExprResult, RemainingExpr) = Ctx;
+
+ assert(RemainingExpr.startswith("[") && "Not a slice expr.");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ EvalResult HighBitExpr;
+ std::tie(HighBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+
+ if (HighBitExpr.hasError())
+ return std::make_pair(HighBitExpr, RemainingExpr);
+
+ if (!RemainingExpr.startswith(":"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ':'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ EvalResult LowBitExpr;
+ std::tie(LowBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+
+ if (LowBitExpr.hasError())
+ return std::make_pair(LowBitExpr, RemainingExpr);
+
+ if (!RemainingExpr.startswith("]"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ']'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ unsigned HighBit = HighBitExpr.getValue();
+ unsigned LowBit = LowBitExpr.getValue();
+ uint64_t Mask = ((uint64_t)1 << (HighBit - LowBit + 1)) - 1;
+ uint64_t SlicedValue = (SubExprResult.getValue() >> LowBit) & Mask;
+ return std::make_pair(EvalResult(SlicedValue), RemainingExpr);
+ }
+
+ // Evaluate a "complex" expression.
+ // Takes an already evaluated subexpression and checks for the presence of a
+ // binary operator, computing the result of the binary operation if one is
+ // found. Used to make arithmetic expressions left-associative.
+ // Returns a pair containing the ultimate result of evaluating the
+ // expression, plus the expression remaining to be evaluated.
+ std::pair<EvalResult, StringRef>
+ evalComplexExpr(std::pair<EvalResult, StringRef> LHSAndRemaining,
+ ParseContext PCtx) const {
+ EvalResult LHSResult;
+ StringRef RemainingExpr;
+ std::tie(LHSResult, RemainingExpr) = LHSAndRemaining;
+
+ // If there was an error, or there's nothing left to evaluate, return the
// result.
- // Returns a pair containing the result of the slice operation, plus the
- // expression remaining to be parsed.
- std::pair<EvalResult, StringRef> evalSliceExpr(
- std::pair<EvalResult, StringRef> Ctx) const{
- EvalResult SubExprResult;
- StringRef RemainingExpr;
- std::tie(SubExprResult, RemainingExpr) = Ctx;
-
- assert(RemainingExpr.startswith("[") && "Not a slice expr.");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- EvalResult HighBitExpr;
- std::tie(HighBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
-
- if (HighBitExpr.hasError())
- return std::make_pair(HighBitExpr, RemainingExpr);
-
- if (!RemainingExpr.startswith(":"))
- return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
- "expected ':'"),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- EvalResult LowBitExpr;
- std::tie(LowBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
-
- if (LowBitExpr.hasError())
- return std::make_pair(LowBitExpr, RemainingExpr);
-
- if (!RemainingExpr.startswith("]"))
- return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
- "expected ']'"),
- "");
- RemainingExpr = RemainingExpr.substr(1).ltrim();
-
- unsigned HighBit = HighBitExpr.getValue();
- unsigned LowBit = LowBitExpr.getValue();
- uint64_t Mask = ((uint64_t)1 << (HighBit - LowBit + 1)) - 1;
- uint64_t SlicedValue = (SubExprResult.getValue() >> LowBit) & Mask;
- return std::make_pair(EvalResult(SlicedValue), RemainingExpr);
- }
+ if (LHSResult.hasError() || RemainingExpr == "")
+ return std::make_pair(LHSResult, RemainingExpr);
- // Evaluate a "complex" expression.
- // Takes an already evaluated subexpression and checks for the presence of a
- // binary operator, computing the result of the binary operation if one is
- // found. Used to make arithmetic expressions left-associative.
- // Returns a pair containing the ultimate result of evaluating the
- // expression, plus the expression remaining to be evaluated.
- std::pair<EvalResult, StringRef> evalComplexExpr(
- std::pair<EvalResult, StringRef> Ctx) const {
- EvalResult LHSResult;
- StringRef RemainingExpr;
- std::tie(LHSResult, RemainingExpr) = Ctx;
-
- // If there was an error, or there's nothing left to evaluate, return the
- // result.
- if (LHSResult.hasError() || RemainingExpr == "")
- return std::make_pair(LHSResult, RemainingExpr);
-
- // Otherwise check if this is a binary expressioan.
- BinOpToken BinOp;
- std::tie(BinOp, RemainingExpr) = parseBinOpToken(RemainingExpr);
-
- // If this isn't a recognized expression just return.
- if (BinOp == BinOpToken::Invalid)
- return std::make_pair(LHSResult, RemainingExpr);
-
- // This is a recognized bin-op. Evaluate the RHS, then evaluate the binop.
- EvalResult RHSResult;
- std::tie(RHSResult, RemainingExpr) = evalSimpleExpr(RemainingExpr);
-
- // If there was an error evaluating the RHS, return it.
- if (RHSResult.hasError())
- return std::make_pair(RHSResult, RemainingExpr);
-
- // This is a binary expression - evaluate and try to continue as a
- // complex expr.
- EvalResult ThisResult(computeBinOpResult(BinOp, LHSResult, RHSResult));
-
- return evalComplexExpr(std::make_pair(ThisResult, RemainingExpr));
- }
+ // Otherwise check if this is a binary expressioan.
+ BinOpToken BinOp;
+ std::tie(BinOp, RemainingExpr) = parseBinOpToken(RemainingExpr);
- bool decodeInst(StringRef Symbol, MCInst &Inst, uint64_t &Size) const {
- MCDisassembler *Dis = Checker.Disassembler;
- StringRef SectionMem = Checker.getSubsectionStartingAt(Symbol);
- StringRefMemoryObject SectionBytes(SectionMem, 0);
+ // If this isn't a recognized expression just return.
+ if (BinOp == BinOpToken::Invalid)
+ return std::make_pair(LHSResult, RemainingExpr);
- MCDisassembler::DecodeStatus S =
- Dis->getInstruction(Inst, Size, SectionBytes, 0, nulls(), nulls());
+ // This is a recognized bin-op. Evaluate the RHS, then evaluate the binop.
+ EvalResult RHSResult;
+ std::tie(RHSResult, RemainingExpr) = evalSimpleExpr(RemainingExpr, PCtx);
- return (S == MCDisassembler::Success);
- }
+ // If there was an error evaluating the RHS, return it.
+ if (RHSResult.hasError())
+ return std::make_pair(RHSResult, RemainingExpr);
- };
+ // This is a binary expression - evaluate and try to continue as a
+ // complex expr.
+ EvalResult ThisResult(computeBinOpResult(BinOp, LHSResult, RHSResult));
+
+ return evalComplexExpr(std::make_pair(ThisResult, RemainingExpr), PCtx);
+ }
+
+ bool decodeInst(StringRef Symbol, MCInst &Inst, uint64_t &Size) const {
+ MCDisassembler *Dis = Checker.Disassembler;
+ StringRef SectionMem = Checker.getSubsectionStartingAt(Symbol);
+ ArrayRef<uint8_t> SectionBytes(
+ reinterpret_cast<const uint8_t *>(SectionMem.data()),
+ SectionMem.size());
+
+ MCDisassembler::DecodeStatus S =
+ Dis->getInstruction(Inst, Size, SectionBytes, 0, nulls(), nulls());
+
+ return (S == MCDisassembler::Success);
+ }
+};
+}
+RuntimeDyldCheckerImpl::RuntimeDyldCheckerImpl(RuntimeDyld &RTDyld,
+ MCDisassembler *Disassembler,
+ MCInstPrinter *InstPrinter,
+ raw_ostream &ErrStream)
+ : RTDyld(RTDyld), Disassembler(Disassembler), InstPrinter(InstPrinter),
+ ErrStream(ErrStream) {
+ RTDyld.Checker = this;
}
-bool RuntimeDyldChecker::check(StringRef CheckExpr) const {
+bool RuntimeDyldCheckerImpl::check(StringRef CheckExpr) const {
CheckExpr = CheckExpr.trim();
- DEBUG(llvm::dbgs() << "RuntimeDyldChecker: Checking '" << CheckExpr
- << "'...\n");
+ DEBUG(dbgs() << "RuntimeDyldChecker: Checking '" << CheckExpr << "'...\n");
RuntimeDyldCheckerExprEval P(*this, ErrStream);
bool Result = P.evaluate(CheckExpr);
(void)Result;
- DEBUG(llvm::dbgs() << "RuntimeDyldChecker: '" << CheckExpr << "' "
- << (Result ? "passed" : "FAILED") << ".\n");
+ DEBUG(dbgs() << "RuntimeDyldChecker: '" << CheckExpr << "' "
+ << (Result ? "passed" : "FAILED") << ".\n");
return Result;
}
-bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix,
- MemoryBuffer* MemBuf) const {
+bool RuntimeDyldCheckerImpl::checkAllRulesInBuffer(StringRef RulePrefix,
+ MemoryBuffer *MemBuf) const {
bool DidAllTestsPass = true;
unsigned NumRules = 0;
const char *LineStart = MemBuf->getBufferStart();
// Eat whitespace.
- while (LineStart != MemBuf->getBufferEnd() &&
- std::isspace(*LineStart))
+ while (LineStart != MemBuf->getBufferEnd() && std::isspace(*LineStart))
++LineStart;
while (LineStart != MemBuf->getBufferEnd() && *LineStart != '\0') {
const char *LineEnd = LineStart;
- while (LineEnd != MemBuf->getBufferEnd() &&
- *LineEnd != '\r' && *LineEnd != '\n')
+ while (LineEnd != MemBuf->getBufferEnd() && *LineEnd != '\r' &&
+ *LineEnd != '\n')
++LineEnd;
StringRef Line(LineStart, LineEnd - LineStart);
@@ -620,37 +724,212 @@ bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix,
// Eat whitespace.
LineStart = LineEnd;
- while (LineStart != MemBuf->getBufferEnd() &&
- std::isspace(*LineStart))
+ while (LineStart != MemBuf->getBufferEnd() && std::isspace(*LineStart))
++LineStart;
}
return DidAllTestsPass && (NumRules != 0);
}
-bool RuntimeDyldChecker::isSymbolValid(StringRef Symbol) const {
- return RTDyld.getSymbolAddress(Symbol) != nullptr;
+bool RuntimeDyldCheckerImpl::isSymbolValid(StringRef Symbol) const {
+ return getRTDyld().getSymbolAddress(Symbol) != nullptr;
}
-uint64_t RuntimeDyldChecker::getSymbolAddress(StringRef Symbol) const {
- return RTDyld.getAnySymbolRemoteAddress(Symbol);
+uint64_t RuntimeDyldCheckerImpl::getSymbolLinkerAddr(StringRef Symbol) const {
+ return static_cast<uint64_t>(
+ reinterpret_cast<uintptr_t>(getRTDyld().getSymbolAddress(Symbol)));
}
-uint64_t RuntimeDyldChecker::readMemoryAtSymbol(StringRef Symbol,
- int64_t Offset,
- unsigned Size) const {
- uint8_t *Src = RTDyld.getSymbolAddress(Symbol);
- uint64_t Result = 0;
- memcpy(&Result, Src + Offset, Size);
- return Result;
+uint64_t RuntimeDyldCheckerImpl::getSymbolRemoteAddr(StringRef Symbol) const {
+ if (uint64_t InternalSymbolAddr = getRTDyld().getSymbolLoadAddress(Symbol))
+ return InternalSymbolAddr;
+ return getRTDyld().MemMgr->getSymbolAddress(Symbol);
+}
+
+uint64_t RuntimeDyldCheckerImpl::readMemoryAtAddr(uint64_t SrcAddr,
+ unsigned Size) const {
+ uintptr_t PtrSizedAddr = static_cast<uintptr_t>(SrcAddr);
+ assert(PtrSizedAddr == SrcAddr && "Linker memory pointer out-of-range.");
+ uint8_t *Src = reinterpret_cast<uint8_t*>(PtrSizedAddr);
+ return getRTDyld().readBytesUnaligned(Src, Size);
+}
+
+
+std::pair<const RuntimeDyldCheckerImpl::SectionAddressInfo*, std::string>
+RuntimeDyldCheckerImpl::findSectionAddrInfo(StringRef FileName,
+ StringRef SectionName) const {
+
+ auto SectionMapItr = Stubs.find(FileName);
+ if (SectionMapItr == Stubs.end()) {
+ std::string ErrorMsg = "File '";
+ ErrorMsg += FileName;
+ ErrorMsg += "' not found. ";
+ if (Stubs.empty())
+ ErrorMsg += "No stubs registered.";
+ else {
+ ErrorMsg += "Available files are:";
+ for (const auto& StubEntry : Stubs) {
+ ErrorMsg += " '";
+ ErrorMsg += StubEntry.first;
+ ErrorMsg += "'";
+ }
+ }
+ ErrorMsg += "\n";
+ return std::make_pair(nullptr, ErrorMsg);
+ }
+
+ auto SectionInfoItr = SectionMapItr->second.find(SectionName);
+ if (SectionInfoItr == SectionMapItr->second.end())
+ return std::make_pair(nullptr,
+ ("Section '" + SectionName + "' not found in file '" +
+ FileName + "'\n").str());
+
+ return std::make_pair(&SectionInfoItr->second, std::string(""));
+}
+
+std::pair<uint64_t, std::string> RuntimeDyldCheckerImpl::getSectionAddr(
+ StringRef FileName, StringRef SectionName, bool IsInsideLoad) const {
+
+ const SectionAddressInfo *SectionInfo = nullptr;
+ {
+ std::string ErrorMsg;
+ std::tie(SectionInfo, ErrorMsg) =
+ findSectionAddrInfo(FileName, SectionName);
+ if (ErrorMsg != "")
+ return std::make_pair(0, ErrorMsg);
+ }
+
+ unsigned SectionID = SectionInfo->SectionID;
+ uint64_t Addr;
+ if (IsInsideLoad)
+ Addr =
+ static_cast<uint64_t>(
+ reinterpret_cast<uintptr_t>(getRTDyld().Sections[SectionID].Address));
+ else
+ Addr = getRTDyld().Sections[SectionID].LoadAddress;
+
+ return std::make_pair(Addr, std::string(""));
+}
+
+std::pair<uint64_t, std::string> RuntimeDyldCheckerImpl::getStubAddrFor(
+ StringRef FileName, StringRef SectionName, StringRef SymbolName,
+ bool IsInsideLoad) const {
+
+ const SectionAddressInfo *SectionInfo = nullptr;
+ {
+ std::string ErrorMsg;
+ std::tie(SectionInfo, ErrorMsg) =
+ findSectionAddrInfo(FileName, SectionName);
+ if (ErrorMsg != "")
+ return std::make_pair(0, ErrorMsg);
+ }
+
+ unsigned SectionID = SectionInfo->SectionID;
+ const StubOffsetsMap &SymbolStubs = SectionInfo->StubOffsets;
+ auto StubOffsetItr = SymbolStubs.find(SymbolName);
+ if (StubOffsetItr == SymbolStubs.end())
+ return std::make_pair(0,
+ ("Stub for symbol '" + SymbolName + "' not found. "
+ "If '" + SymbolName + "' is an internal symbol this "
+ "may indicate that the stub target offset is being "
+ "computed incorrectly.\n").str());
+
+ uint64_t StubOffset = StubOffsetItr->second;
+
+ uint64_t Addr;
+ if (IsInsideLoad) {
+ uintptr_t SectionBase =
+ reinterpret_cast<uintptr_t>(getRTDyld().Sections[SectionID].Address);
+ Addr = static_cast<uint64_t>(SectionBase) + StubOffset;
+ } else {
+ uint64_t SectionBase = getRTDyld().Sections[SectionID].LoadAddress;
+ Addr = SectionBase + StubOffset;
+ }
+
+ return std::make_pair(Addr, std::string(""));
}
-StringRef RuntimeDyldChecker::getSubsectionStartingAt(StringRef Name) const {
+StringRef
+RuntimeDyldCheckerImpl::getSubsectionStartingAt(StringRef Name) const {
RuntimeDyldImpl::SymbolTableMap::const_iterator pos =
- RTDyld.GlobalSymbolTable.find(Name);
- if (pos == RTDyld.GlobalSymbolTable.end())
+ getRTDyld().GlobalSymbolTable.find(Name);
+ if (pos == getRTDyld().GlobalSymbolTable.end())
return StringRef();
RuntimeDyldImpl::SymbolLoc Loc = pos->second;
- uint8_t *SectionAddr = RTDyld.getSectionAddress(Loc.first);
- return StringRef(reinterpret_cast<const char*>(SectionAddr) + Loc.second,
- RTDyld.Sections[Loc.first].Size - Loc.second);
+ uint8_t *SectionAddr = getRTDyld().getSectionAddress(Loc.first);
+ return StringRef(reinterpret_cast<const char *>(SectionAddr) + Loc.second,
+ getRTDyld().Sections[Loc.first].Size - Loc.second);
+}
+
+void RuntimeDyldCheckerImpl::registerSection(
+ StringRef FilePath, unsigned SectionID) {
+ StringRef FileName = sys::path::filename(FilePath);
+ const SectionEntry &Section = getRTDyld().Sections[SectionID];
+ StringRef SectionName = Section.Name;
+
+ Stubs[FileName][SectionName].SectionID = SectionID;
+}
+
+void RuntimeDyldCheckerImpl::registerStubMap(
+ StringRef FilePath, unsigned SectionID,
+ const RuntimeDyldImpl::StubMap &RTDyldStubs) {
+ StringRef FileName = sys::path::filename(FilePath);
+ const SectionEntry &Section = getRTDyld().Sections[SectionID];
+ StringRef SectionName = Section.Name;
+
+ Stubs[FileName][SectionName].SectionID = SectionID;
+
+ for (auto &StubMapEntry : RTDyldStubs) {
+ std::string SymbolName = "";
+
+ if (StubMapEntry.first.SymbolName)
+ SymbolName = StubMapEntry.first.SymbolName;
+ else {
+ // If this is a (Section, Offset) pair, do a reverse lookup in the
+ // global symbol table to find the name.
+ for (auto &GSTEntry : getRTDyld().GlobalSymbolTable) {
+ if (GSTEntry.second.first == StubMapEntry.first.SectionID &&
+ GSTEntry.second.second ==
+ static_cast<uint64_t>(StubMapEntry.first.Offset)) {
+ SymbolName = GSTEntry.first();
+ break;
+ }
+ }
+ }
+
+ if (SymbolName != "")
+ Stubs[FileName][SectionName].StubOffsets[SymbolName] =
+ StubMapEntry.second;
+ }
+}
+
+RuntimeDyldChecker::RuntimeDyldChecker(RuntimeDyld &RTDyld,
+ MCDisassembler *Disassembler,
+ MCInstPrinter *InstPrinter,
+ raw_ostream &ErrStream)
+ : Impl(make_unique<RuntimeDyldCheckerImpl>(RTDyld, Disassembler,
+ InstPrinter, ErrStream)) {}
+
+RuntimeDyldChecker::~RuntimeDyldChecker() {}
+
+RuntimeDyld& RuntimeDyldChecker::getRTDyld() {
+ return Impl->RTDyld;
+}
+
+const RuntimeDyld& RuntimeDyldChecker::getRTDyld() const {
+ return Impl->RTDyld;
+}
+
+bool RuntimeDyldChecker::check(StringRef CheckExpr) const {
+ return Impl->check(CheckExpr);
+}
+
+bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix,
+ MemoryBuffer *MemBuf) const {
+ return Impl->checkAllRulesInBuffer(RulePrefix, MemBuf);
+}
+
+std::pair<uint64_t, std::string>
+RuntimeDyldChecker::getSectionAddr(StringRef FileName, StringRef SectionName,
+ bool LinkerAddress) {
+ return Impl->getSectionAddr(FileName, SectionName, LinkerAddress);
}
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h
new file mode 100644
index 0000000..de20c1e
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h
@@ -0,0 +1,76 @@
+//===-- RuntimeDyldCheckerImpl.h -- RuntimeDyld test framework --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDCHECKERIMPL_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDCHECKERIMPL_H
+
+#include "RuntimeDyldImpl.h"
+#include <set>
+
+namespace llvm {
+
+class RuntimeDyldCheckerImpl {
+ friend class RuntimeDyldChecker;
+ friend class RuntimeDyldImpl;
+ friend class RuntimeDyldCheckerExprEval;
+
+public:
+ RuntimeDyldCheckerImpl(RuntimeDyld &RTDyld, MCDisassembler *Disassembler,
+ MCInstPrinter *InstPrinter,
+ llvm::raw_ostream &ErrStream);
+
+ bool check(StringRef CheckExpr) const;
+ bool checkAllRulesInBuffer(StringRef RulePrefix, MemoryBuffer *MemBuf) const;
+
+private:
+
+ // StubMap typedefs.
+ typedef std::map<std::string, uint64_t> StubOffsetsMap;
+ struct SectionAddressInfo {
+ uint64_t SectionID;
+ StubOffsetsMap StubOffsets;
+ };
+ typedef std::map<std::string, SectionAddressInfo> SectionMap;
+ typedef std::map<std::string, SectionMap> StubMap;
+
+ RuntimeDyldImpl &getRTDyld() const { return *RTDyld.Dyld; }
+
+ bool isSymbolValid(StringRef Symbol) const;
+ uint64_t getSymbolLinkerAddr(StringRef Symbol) const;
+ uint64_t getSymbolRemoteAddr(StringRef Symbol) const;
+ uint64_t readMemoryAtAddr(uint64_t Addr, unsigned Size) const;
+
+ std::pair<const SectionAddressInfo*, std::string> findSectionAddrInfo(
+ StringRef FileName,
+ StringRef SectionName) const;
+
+ std::pair<uint64_t, std::string> getSectionAddr(StringRef FileName,
+ StringRef SectionName,
+ bool IsInsideLoad) const;
+
+ std::pair<uint64_t, std::string> getStubAddrFor(StringRef FileName,
+ StringRef SectionName,
+ StringRef Symbol,
+ bool IsInsideLoad) const;
+ StringRef getSubsectionStartingAt(StringRef Name) const;
+
+ void registerSection(StringRef FilePath, unsigned SectionID);
+ void registerStubMap(StringRef FilePath, unsigned SectionID,
+ const RuntimeDyldImpl::StubMap &RTDyldStubs);
+
+ RuntimeDyld &RTDyld;
+ MCDisassembler *Disassembler;
+ MCInstPrinter *InstPrinter;
+ llvm::raw_ostream &ErrStream;
+
+ StubMap Stubs;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
index 728138e..2664a10 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -12,26 +12,23 @@
//===----------------------------------------------------------------------===//
#include "RuntimeDyldELF.h"
-#include "JITRegistrar.h"
-#include "ObjectImageCommon.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
-#include "llvm/ExecutionEngine/ObjectBuffer.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/MC/MCStreamer.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
+#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "dyld"
-namespace {
-
static inline std::error_code check(std::error_code Err) {
if (Err) {
report_fatal_error(Err.message());
@@ -39,6 +36,8 @@ static inline std::error_code check(std::error_code Err) {
return Err;
}
+namespace {
+
template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
@@ -51,16 +50,12 @@ template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
- std::unique_ptr<ObjectFile> UnderlyingFile;
-
public:
- DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
- std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec);
-
- DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec);
+ DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
- void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
+
+ void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
// Methods for type inquiry through isa, cast and dyn_cast
static inline bool classof(const Binary *v) {
@@ -70,57 +65,17 @@ public:
static inline bool classof(const ELFObjectFile<ELFT> *v) {
return v->isDyldType();
}
-};
-
-template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
- bool Registered;
-
-public:
- ELFObjectImage(ObjectBuffer *Input, std::unique_ptr<DyldELFObject<ELFT>> Obj)
- : ObjectImageCommon(Input, std::move(Obj)), Registered(false) {}
-
- virtual ~ELFObjectImage() {
- if (Registered)
- deregisterWithDebugger();
- }
- // Subclasses can override these methods to update the image with loaded
- // addresses for sections and common symbols
- void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
- static_cast<DyldELFObject<ELFT>*>(getObjectFile())
- ->updateSectionAddress(Sec, Addr);
- }
+};
- void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
- static_cast<DyldELFObject<ELFT>*>(getObjectFile())
- ->updateSymbolAddress(Sym, Addr);
- }
- void registerWithDebugger() override {
- JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
- Registered = true;
- }
- void deregisterWithDebugger() override {
- JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
- }
-};
// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory. Ultimately, the Binary parent class will take ownership of
// this MemoryBuffer object but not the underlying memory.
template <class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper,
- std::error_code &EC)
- : ELFObjectFile<ELFT>(std::move(Wrapper), EC) {
- this->isDyldELFObject = true;
-}
-
-template <class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
- std::unique_ptr<MemoryBuffer> Wrapper,
- std::error_code &EC)
- : ELFObjectFile<ELFT>(std::move(Wrapper), EC),
- UnderlyingFile(std::move(UnderlyingFile)) {
+DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
+ : ELFObjectFile<ELFT>(Wrapper, EC) {
this->isDyldELFObject = true;
}
@@ -148,10 +103,89 @@ void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
sym->st_value = static_cast<addr_type>(Addr);
}
+class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
+public:
+ LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+ unsigned EndIdx)
+ : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
+
+ OwningBinary<ObjectFile>
+ getObjectForDebug(const ObjectFile &Obj) const override;
+};
+
+template <typename ELFT>
+std::unique_ptr<DyldELFObject<ELFT>>
+createRTDyldELFObject(MemoryBufferRef Buffer,
+ const LoadedELFObjectInfo &L,
+ std::error_code &ec) {
+ typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
+ typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+ std::unique_ptr<DyldELFObject<ELFT>> Obj =
+ llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
+
+ // Iterate over all sections in the object.
+ for (const auto &Sec : Obj->sections()) {
+ StringRef SectionName;
+ Sec.getName(SectionName);
+ if (SectionName != "") {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
+ reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
+ // This assumes that the address passed in matches the target address
+ // bitness. The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
+ }
+ }
+ }
+
+ return Obj;
+}
+
+OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
+ const LoadedELFObjectInfo &L) {
+ assert(Obj.isELF() && "Not an ELF object file.");
+
+ std::unique_ptr<MemoryBuffer> Buffer =
+ MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
+
+ std::error_code ec;
+
+ std::unique_ptr<ObjectFile> DebugObj;
+ if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
+ typedef ELFType<support::little, 2, false> ELF32LE;
+ DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
+ } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
+ typedef ELFType<support::big, 2, false> ELF32BE;
+ DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
+ } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
+ typedef ELFType<support::big, 2, true> ELF64BE;
+ DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
+ } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
+ typedef ELFType<support::little, 2, true> ELF64LE;
+ DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
+ } else
+ llvm_unreachable("Unexpected ELF format");
+
+ assert(!ec && "Could not construct copy ELF object file");
+
+ return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
+}
+
+OwningBinary<ObjectFile>
+LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
+ return createELFDebugObject(Obj, *this);
+}
+
} // namespace
namespace llvm {
+RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+RuntimeDyldELF::~RuntimeDyldELF() {}
+
void RuntimeDyldELF::registerEHFrames() {
if (!MemMgr)
return;
@@ -179,81 +213,14 @@ void RuntimeDyldELF::deregisterEHFrames() {
RegisteredEHFrameSections.clear();
}
-ObjectImage *
-RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) {
- if (!ObjFile)
- return nullptr;
-
- std::error_code ec;
- std::unique_ptr<MemoryBuffer> Buffer(
- MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false));
-
- if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
- auto Obj =
- llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>(
- std::move(ObjFile), std::move(Buffer), ec);
- return new ELFObjectImage<ELFType<support::little, 2, false>>(
- nullptr, std::move(Obj));
- } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
- auto Obj =
- llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>(
- std::move(ObjFile), std::move(Buffer), ec);
- return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj));
- } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
- auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>(
- std::move(ObjFile), std::move(Buffer), ec);
- return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr,
- std::move(Obj));
- } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
- auto Obj =
- llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>(
- std::move(ObjFile), std::move(Buffer), ec);
- return new ELFObjectImage<ELFType<support::little, 2, true>>(
- nullptr, std::move(Obj));
- } else
- llvm_unreachable("Unexpected ELF format");
-}
-
-ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
- if (Buffer->getBufferSize() < ELF::EI_NIDENT)
- llvm_unreachable("Unexpected ELF object size");
- std::pair<unsigned char, unsigned char> Ident =
- std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
- (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
- std::error_code ec;
-
- std::unique_ptr<MemoryBuffer> Buf(Buffer->getMemBuffer());
-
- if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
- auto Obj =
- llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>(
- std::move(Buf), ec);
- return new ELFObjectImage<ELFType<support::little, 4, false>>(
- Buffer, std::move(Obj));
- } else if (Ident.first == ELF::ELFCLASS32 &&
- Ident.second == ELF::ELFDATA2MSB) {
- auto Obj =
- llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>(
- std::move(Buf), ec);
- return new ELFObjectImage<ELFType<support::big, 4, false>>(Buffer,
- std::move(Obj));
- } else if (Ident.first == ELF::ELFCLASS64 &&
- Ident.second == ELF::ELFDATA2MSB) {
- auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>(
- std::move(Buf), ec);
- return new ELFObjectImage<ELFType<support::big, 8, true>>(Buffer, std::move(Obj));
- } else if (Ident.first == ELF::ELFCLASS64 &&
- Ident.second == ELF::ELFDATA2LSB) {
- auto Obj =
- llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>(
- std::move(Buf), ec);
- return new ELFObjectImage<ELFType<support::little, 8, true>>(Buffer, std::move(Obj));
- } else
- llvm_unreachable("Unexpected ELF format");
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
+ unsigned SectionStartIdx, SectionEndIdx;
+ std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+ return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
+ SectionEndIdx);
}
-RuntimeDyldELF::~RuntimeDyldELF() {}
-
void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
uint64_t Offset, uint64_t Value,
uint32_t Type, int64_t Addend,
@@ -263,10 +230,9 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
llvm_unreachable("Relocation type not implemented yet!");
break;
case ELF::R_X86_64_64: {
- uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
- *Target = Value + Addend;
+ support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
- << format("%p\n", Target));
+ << format("%p\n", Section.Address + Offset));
break;
}
case ELF::R_X86_64_32:
@@ -276,17 +242,15 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
(Type == ELF::R_X86_64_32S &&
((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
- uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
- *Target = TruncatedAddr;
+ support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
- << format("%p\n", Target));
+ << format("%p\n", Section.Address + Offset));
break;
}
case ELF::R_X86_64_GOTPCREL: {
// findGOTEntry returns the 'G + GOT' part of the relocation calculation
// based on the load/target address of the GOT (not the current/local addr).
uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
- uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
uint64_t FinalAddress = Section.LoadAddress + Offset;
// The processRelocationRef method combines the symbol offset and the addend
// and in most cases that's what we want. For this relocation type, we need
@@ -294,30 +258,29 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
- *Target = TruncOffset;
+ support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
break;
}
case ELF::R_X86_64_PC32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint32_t *Placeholder =
- reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
- uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+ support::ulittle32_t::ref Placeholder(
+ (void *)(Section.ObjAddress + Offset));
uint64_t FinalAddress = Section.LoadAddress + Offset;
- int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+ int64_t RealOffset = Placeholder + Value + Addend - FinalAddress;
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
- *Target = TruncOffset;
+ support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
break;
}
case ELF::R_X86_64_PC64: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint64_t *Placeholder =
- reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset);
- uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
+ support::ulittle64_t::ref Placeholder(
+ (void *)(Section.ObjAddress + Offset));
uint64_t FinalAddress = Section.LoadAddress + Offset;
- *Target = *Placeholder + Value + Addend - FinalAddress;
+ support::ulittle64_t::ref(Section.Address + Offset) =
+ Placeholder + Value + Addend - FinalAddress;
break;
}
}
@@ -330,21 +293,20 @@ void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
case ELF::R_386_32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint32_t *Placeholder =
- reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
- uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
- *Target = *Placeholder + Value + Addend;
+ support::ulittle32_t::ref Placeholder(
+ (void *)(Section.ObjAddress + Offset));
+ support::ulittle32_t::ref(Section.Address + Offset) =
+ Placeholder + Value + Addend;
break;
}
case ELF::R_386_PC32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint32_t *Placeholder =
- reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
- uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+ support::ulittle32_t::ref Placeholder(
+ (void *)(Section.ObjAddress + Offset));
uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
- uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
- *Target = RealOffset;
+ uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
+ support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
break;
}
default:
@@ -617,7 +579,7 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
}
// Return the .TOC. section and offset.
-void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
+void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel) {
// Set a default SectionID in case we do not find a TOC section below.
@@ -630,7 +592,7 @@ void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
// order. The TOC starts where the first of these sections starts.
- for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
+ for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
si != se; ++si) {
StringRef SectionName;
@@ -652,15 +614,15 @@ void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
-void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
+void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel) {
// Get the ELF symbol value (st_value) to compare with Relocation offset in
// .opd entries
- for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
+ for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
si != se; ++si) {
section_iterator RelSecI = si->getRelocatedSection();
- if (RelSecI == Obj.end_sections())
+ if (RelSecI == Obj.section_end())
continue;
StringRef RelSectionName;
@@ -702,10 +664,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
if (Rel.Addend != (int64_t)TargetSymbolOffset)
continue;
- section_iterator tsi(Obj.end_sections());
+ section_iterator tsi(Obj.section_end());
check(TargetSymbol->getSection(tsi));
- bool IsCode = false;
- tsi->isText(IsCode);
+ bool IsCode = tsi->isText();
Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
Rel.Addend = (intptr_t)Addend;
return;
@@ -911,8 +872,6 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
break;
case Triple::aarch64:
case Triple::aarch64_be:
- case Triple::arm64:
- case Triple::arm64_be:
resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
break;
case Triple::arm: // Fall through.
@@ -940,8 +899,9 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
}
relocation_iterator RuntimeDyldELF::processRelocationRef(
- unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
- ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
+ unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) {
uint64_t RelType;
Check(RelI->getType(RelType));
@@ -951,75 +911,65 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
// Obtain the symbol name which is referenced in the relocation
StringRef TargetName;
- if (Symbol != Obj.end_symbols())
+ if (Symbol != Obj.symbol_end())
Symbol->getName(TargetName);
DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
<< " TargetName: " << TargetName << "\n");
RelocationValueRef Value;
// First search for the symbol in the local symbol table
- SymbolTableMap::const_iterator lsi = Symbols.end();
SymbolRef::Type SymType = SymbolRef::ST_Unknown;
- if (Symbol != Obj.end_symbols()) {
- lsi = Symbols.find(TargetName.data());
+
+ // Search for the symbol in the global symbol table
+ SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
+ if (Symbol != Obj.symbol_end()) {
+ gsi = GlobalSymbolTable.find(TargetName.data());
Symbol->getType(SymType);
}
- if (lsi != Symbols.end()) {
- Value.SectionID = lsi->second.first;
- Value.Offset = lsi->second.second;
- Value.Addend = lsi->second.second + Addend;
+ if (gsi != GlobalSymbolTable.end()) {
+ Value.SectionID = gsi->second.first;
+ Value.Offset = gsi->second.second;
+ Value.Addend = gsi->second.second + Addend;
} else {
- // Search for the symbol in the global symbol table
- SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
- if (Symbol != Obj.end_symbols())
- gsi = GlobalSymbolTable.find(TargetName.data());
- if (gsi != GlobalSymbolTable.end()) {
- Value.SectionID = gsi->second.first;
- Value.Offset = gsi->second.second;
- Value.Addend = gsi->second.second + Addend;
- } else {
- switch (SymType) {
- case SymbolRef::ST_Debug: {
- // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
- // and can be changed by another developers. Maybe best way is add
- // a new symbol type ST_Section to SymbolRef and use it.
- section_iterator si(Obj.end_sections());
- Symbol->getSection(si);
- if (si == Obj.end_sections())
- llvm_unreachable("Symbol section not found, bad object file format!");
- DEBUG(dbgs() << "\t\tThis is section symbol\n");
- // Default to 'true' in case isText fails (though it never does).
- bool isCode = true;
- si->isText(isCode);
- Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
- Value.Addend = Addend;
- break;
- }
- case SymbolRef::ST_Data:
- case SymbolRef::ST_Unknown: {
- Value.SymbolName = TargetName.data();
- Value.Addend = Addend;
-
- // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
- // will manifest here as a NULL symbol name.
- // We can set this as a valid (but empty) symbol name, and rely
- // on addRelocationForSymbol to handle this.
- if (!Value.SymbolName)
- Value.SymbolName = "";
- break;
- }
- default:
- llvm_unreachable("Unresolved symbol type!");
- break;
- }
+ switch (SymType) {
+ case SymbolRef::ST_Debug: {
+ // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+ // and can be changed by another developers. Maybe best way is add
+ // a new symbol type ST_Section to SymbolRef and use it.
+ section_iterator si(Obj.section_end());
+ Symbol->getSection(si);
+ if (si == Obj.section_end())
+ llvm_unreachable("Symbol section not found, bad object file format!");
+ DEBUG(dbgs() << "\t\tThis is section symbol\n");
+ bool isCode = si->isText();
+ Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
+ Value.Addend = Addend;
+ break;
+ }
+ case SymbolRef::ST_Data:
+ case SymbolRef::ST_Unknown: {
+ Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+
+ // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+ // will manifest here as a NULL symbol name.
+ // We can set this as a valid (but empty) symbol name, and rely
+ // on addRelocationForSymbol to handle this.
+ if (!Value.SymbolName)
+ Value.SymbolName = "";
+ break;
+ }
+ default:
+ llvm_unreachable("Unresolved symbol type!");
+ break;
}
}
+
uint64_t Offset;
Check(RelI->getOffset(Offset));
DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
<< "\n");
- if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
- Arch == Triple::arm64 || Arch == Triple::arm64_be) &&
+ if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
(RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
// This is an AArch64 branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
@@ -1143,7 +1093,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
if (RelType == ELF::R_PPC64_REL24) {
// Determine ABI variant in use for this object.
unsigned AbiVariant;
- Obj.getObjectFile()->getPlatformFlags(AbiVariant);
+ Obj.getPlatformFlags(AbiVariant);
AbiVariant &= ELF::EF_PPC64_ABI;
// A PPC branch relocation will need a stub function if the target is
// an external symbol (Symbol::ST_Unknown) or if the target address
@@ -1323,7 +1273,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
Stubs[Value] = StubOffset;
createStubFunction((uint8_t *)StubAddress);
RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
- Value.Addend - Addend);
+ Value.Offset);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
@@ -1431,8 +1381,6 @@ size_t RuntimeDyldELF::getGOTEntrySize() {
case Triple::x86_64:
case Triple::aarch64:
case Triple::aarch64_be:
- case Triple::arm64:
- case Triple::arm64_be:
case Triple::ppc64:
case Triple::ppc64le:
case Triple::systemz:
@@ -1505,7 +1453,7 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
return 0;
}
-void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
+void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) {
// If necessary, allocate the global offset table
if (MemMgr) {
@@ -1543,15 +1491,8 @@ void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
}
}
-bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
- if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
- return false;
- return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
- strlen(ELF::ElfMagic))) == 0;
-}
-
-bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
- return Obj->isELF();
+bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
+ return Obj.isELF();
}
} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
index 59fdfbe..b4414b0 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIME_DYLD_ELF_H
-#define LLVM_RUNTIME_DYLD_ELF_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDELF_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDELF_H
#include "RuntimeDyldImpl.h"
#include "llvm/ADT/DenseMap.h"
@@ -28,9 +28,11 @@ std::error_code Check(std::error_code Err) {
}
return Err;
}
+
} // end anonymous namespace
class RuntimeDyldELF : public RuntimeDyldImpl {
+
void resolveRelocation(const SectionEntry &Section, uint64_t Offset,
uint64_t Value, uint32_t Type, int64_t Addend,
uint64_t SymOffset = 0);
@@ -58,8 +60,7 @@ class RuntimeDyldELF : public RuntimeDyldImpl {
uint64_t Value, uint32_t Type, int64_t Addend);
unsigned getMaxStubSize() override {
- if (Arch == Triple::aarch64 || Arch == Triple::arm64 ||
- Arch == Triple::aarch64_be || Arch == Triple::arm64_be)
+ if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
return 20; // movz; movk; movk; movk; br
if (Arch == Triple::arm || Arch == Triple::thumb)
return 8; // 32-bit instruction and 32-bit address
@@ -82,9 +83,11 @@ class RuntimeDyldELF : public RuntimeDyldImpl {
return 1;
}
- void findPPC64TOCSection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections,
+ void findPPC64TOCSection(const ObjectFile &Obj,
+ ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel);
- void findOPDEntrySection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections,
+ void findOPDEntrySection(const ObjectFile &Obj,
+ ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel);
uint64_t findGOTEntry(uint64_t LoadAddr, uint64_t Offset);
@@ -105,23 +108,23 @@ class RuntimeDyldELF : public RuntimeDyldImpl {
SmallVector<SID, 2> RegisteredEHFrameSections;
public:
- RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+ RuntimeDyldELF(RTDyldMemoryManager *mm);
+ virtual ~RuntimeDyldELF();
+
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &O) override;
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override;
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols, StubMap &Stubs) override;
- bool isCompatibleFormat(const ObjectBuffer *Buffer) const override;
- bool isCompatibleFile(const object::ObjectFile *Buffer) const override;
+ const ObjectFile &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override;
+ bool isCompatibleFile(const object::ObjectFile &Obj) const override;
void registerEHFrames() override;
void deregisterEHFrames() override;
- void finalizeLoad(ObjectImage &ObjImg,
+ void finalizeLoad(const ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) override;
- virtual ~RuntimeDyldELF();
-
- static ObjectImage *createObjectImage(ObjectBuffer *InputBuffer);
- static ObjectImage *createObjectImageFromFile(std::unique_ptr<object::ObjectFile> Obj);
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
index 0211d2b..2f3e3a8 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
@@ -11,14 +11,13 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIME_DYLD_IMPL_H
-#define LLVM_RUNTIME_DYLD_IMPL_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/Object/ObjectFile.h"
@@ -37,7 +36,6 @@ using namespace llvm::object;
namespace llvm {
-class ObjectBuffer;
class Twine;
/// SectionEntry - represents a section emitted into memory by the dynamic
@@ -70,7 +68,7 @@ public:
SectionEntry(StringRef name, uint8_t *address, size_t size,
uintptr_t objAddress)
: Name(name), Address(address), Size(size),
- LoadAddress((uintptr_t)address), StubOffset(size),
+ LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
ObjAddress(objAddress) {}
};
@@ -159,19 +157,15 @@ public:
};
class RuntimeDyldImpl {
- friend class RuntimeDyldChecker;
-private:
-
- uint64_t getAnySymbolRemoteAddress(StringRef Symbol) {
- if (uint64_t InternalSymbolAddr = getSymbolLoadAddress(Symbol))
- return InternalSymbolAddr;
- return MemMgr->getSymbolAddress(Symbol);
- }
-
+ friend class RuntimeDyld::LoadedObjectInfo;
+ friend class RuntimeDyldCheckerImpl;
protected:
// The MemoryManager to load objects into.
RTDyldMemoryManager *MemMgr;
+ // Attached RuntimeDyldChecker instance. Null if no instance attached.
+ RuntimeDyldCheckerImpl *Checker;
+
// A list of all sections emitted by the dynamic linker. These sections are
// referenced in the code by means of their index in this list - SectionID.
typedef SmallVector<SectionEntry, 64> SectionList;
@@ -211,6 +205,7 @@ protected:
// modules. This map is indexed by symbol name.
StringMap<RelocationList> ExternalSymbolRelocations;
+
typedef std::map<RelocationValueRef, uintptr_t> StubMap;
Triple::ArchType Arch;
@@ -245,11 +240,11 @@ protected:
return true;
}
- uint64_t getSectionLoadAddress(unsigned SectionID) {
+ uint64_t getSectionLoadAddress(unsigned SectionID) const {
return Sections[SectionID].LoadAddress;
}
- uint8_t *getSectionAddress(unsigned SectionID) {
+ uint8_t *getSectionAddress(unsigned SectionID) const {
return (uint8_t *)Sections[SectionID].Address;
}
@@ -282,17 +277,25 @@ protected:
*(Addr + 7) = Value & 0xFF;
}
+ /// Endian-aware read Read the least significant Size bytes from Src.
+ uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
+
+ /// Endian-aware write. Write the least significant Size bytes from Value to
+ /// Dst.
+ void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
+
/// \brief Given the common symbols discovered in the object file, emit a
/// new section for them and update the symbol mappings in the object and
/// symbol table.
- void emitCommonSymbols(ObjectImage &Obj, const CommonSymbolMap &CommonSymbols,
+ void emitCommonSymbols(const ObjectFile &Obj,
+ const CommonSymbolMap &CommonSymbols,
uint64_t TotalSize, SymbolTableMap &SymbolTable);
/// \brief Emits section data from the object file to the MemoryManager.
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emits, else allocateDataSection() will be used.
/// \return SectionID.
- unsigned emitSection(ObjectImage &Obj, const SectionRef &Section,
+ unsigned emitSection(const ObjectFile &Obj, const SectionRef &Section,
bool IsCode);
/// \brief Find Section in LocalSections. If the secton is not found - emit
@@ -300,7 +303,7 @@ protected:
/// \param IsCode if it's true then allocateCodeSection() will be
/// used for emmits, else allocateDataSection() will be used.
/// \return SectionID.
- unsigned findOrEmitSection(ObjectImage &Obj, const SectionRef &Section,
+ unsigned findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section,
bool IsCode, ObjSectionToIDMap &LocalSections);
// \brief Add a relocation entry that uses the given section.
@@ -328,8 +331,8 @@ protected:
/// \return Iterator to the next relocation that needs to be parsed.
virtual relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols, StubMap &Stubs) = 0;
+ const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) = 0;
/// \brief Resolve relocations to external symbols.
void resolveExternalSymbols();
@@ -340,16 +343,19 @@ protected:
// \brief Compute an upper bound of the memory that is required to load all
// sections
- void computeTotalAllocSize(ObjectImage &Obj, uint64_t &CodeSize,
+ void computeTotalAllocSize(const ObjectFile &Obj, uint64_t &CodeSize,
uint64_t &DataSizeRO, uint64_t &DataSizeRW);
// \brief Compute the stub buffer size required for a section
- unsigned computeSectionStubBufSize(ObjectImage &Obj,
+ unsigned computeSectionStubBufSize(const ObjectFile &Obj,
const SectionRef &Section);
+ // \brief Implementation of the generic part of the loadObject algorithm.
+ std::pair<unsigned, unsigned> loadObjectImpl(const object::ObjectFile &Obj);
+
public:
RuntimeDyldImpl(RTDyldMemoryManager *mm)
- : MemMgr(mm), ProcessAllSections(false), HasError(false) {
+ : MemMgr(mm), Checker(nullptr), ProcessAllSections(false), HasError(false) {
}
virtual ~RuntimeDyldImpl();
@@ -358,9 +364,14 @@ public:
this->ProcessAllSections = ProcessAllSections;
}
- ObjectImage *loadObject(ObjectImage *InputObject);
+ void setRuntimeDyldChecker(RuntimeDyldCheckerImpl *Checker) {
+ this->Checker = Checker;
+ }
+
+ virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &Obj) = 0;
- uint8_t* getSymbolAddress(StringRef Name) {
+ uint8_t* getSymbolAddress(StringRef Name) const {
// FIXME: Just look up as a function for now. Overly simple of course.
// Work in progress.
SymbolTableMap::const_iterator pos = GlobalSymbolTable.find(Name);
@@ -370,7 +381,7 @@ public:
return getSectionAddress(Loc.first) + Loc.second;
}
- uint64_t getSymbolLoadAddress(StringRef Name) {
+ uint64_t getSymbolLoadAddress(StringRef Name) const {
// FIXME: Just look up as a function for now. Overly simple of course.
// Work in progress.
SymbolTableMap::const_iterator pos = GlobalSymbolTable.find(Name);
@@ -395,14 +406,14 @@ public:
// Get the error message.
StringRef getErrorString() { return ErrorStr; }
- virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const = 0;
- virtual bool isCompatibleFile(const ObjectFile *Obj) const = 0;
+ virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
virtual void registerEHFrames();
virtual void deregisterEHFrames();
- virtual void finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) {}
+ virtual void finalizeLoad(const ObjectFile &ObjImg,
+ ObjSectionToIDMap &SectionMap) {}
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
index 58fb515..21893d2 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
@@ -12,35 +12,49 @@
//===----------------------------------------------------------------------===//
#include "RuntimeDyldMachO.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/StringRef.h"
-
-#include "Targets/RuntimeDyldMachOARM.h"
#include "Targets/RuntimeDyldMachOAArch64.h"
+#include "Targets/RuntimeDyldMachOARM.h"
#include "Targets/RuntimeDyldMachOI386.h"
#include "Targets/RuntimeDyldMachOX86_64.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "dyld"
+namespace {
+
+class LoadedMachOObjectInfo : public RuntimeDyld::LoadedObjectInfo {
+public:
+ LoadedMachOObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+ unsigned EndIdx)
+ : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
+
+ OwningBinary<ObjectFile>
+ getObjectForDebug(const ObjectFile &Obj) const override {
+ return OwningBinary<ObjectFile>();
+ }
+};
+
+}
+
namespace llvm {
-uint64_t RuntimeDyldMachO::decodeAddend(uint8_t *LocalAddress, unsigned NumBytes,
- uint32_t RelType) const {
- uint64_t Addend = 0;
- memcpy(&Addend, LocalAddress, NumBytes);
- return Addend;
+int64_t RuntimeDyldMachO::memcpyAddend(const RelocationEntry &RE) const {
+ unsigned NumBytes = 1 << RE.Size;
+ uint8_t *Src = Sections[RE.SectionID].Address + RE.Offset;
+
+ return static_cast<int64_t>(readBytesUnaligned(Src, NumBytes));
}
RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
- ObjectImage &ObjImg, const relocation_iterator &RI,
- const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols) {
+ const ObjectFile &BaseTObj, const relocation_iterator &RI,
+ const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+ static_cast<const MachOObjectFile &>(BaseTObj);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
RelocationValueRef Value;
@@ -50,38 +64,32 @@ RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
symbol_iterator Symbol = RI->getSymbol();
StringRef TargetName;
Symbol->getName(TargetName);
- SymbolTableMap::const_iterator SI = Symbols.find(TargetName.data());
- if (SI != Symbols.end()) {
+ SymbolTableMap::const_iterator SI =
+ GlobalSymbolTable.find(TargetName.data());
+ if (SI != GlobalSymbolTable.end()) {
Value.SectionID = SI->second.first;
- Value.Addend = SI->second.second + RE.Addend;
+ Value.Offset = SI->second.second + RE.Addend;
} else {
- SI = GlobalSymbolTable.find(TargetName.data());
- if (SI != GlobalSymbolTable.end()) {
- Value.SectionID = SI->second.first;
- Value.Addend = SI->second.second + RE.Addend;
- } else {
- Value.SymbolName = TargetName.data();
- Value.Addend = RE.Addend;
- }
+ Value.SymbolName = TargetName.data();
+ Value.Offset = RE.Addend;
}
} else {
SectionRef Sec = Obj.getRelocationSection(RelInfo);
- bool IsCode = false;
- Sec.isText(IsCode);
- Value.SectionID = findOrEmitSection(ObjImg, Sec, IsCode, ObjSectionToID);
- uint64_t Addr;
- Sec.getAddress(Addr);
- Value.Addend = RE.Addend - Addr;
+ bool IsCode = Sec.isText();
+ Value.SectionID = findOrEmitSection(Obj, Sec, IsCode, ObjSectionToID);
+ uint64_t Addr = Sec.getAddress();
+ Value.Offset = RE.Addend - Addr;
}
return Value;
}
void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value,
- ObjectImage &ObjImg,
- const relocation_iterator &RI) {
+ const ObjectFile &BaseTObj,
+ const relocation_iterator &RI,
+ unsigned OffsetToNextPC) {
const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+ static_cast<const MachOObjectFile &>(BaseTObj);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RI->getRawDataRefImpl());
@@ -89,8 +97,7 @@ void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value,
if (IsPCRel) {
uint64_t RelocAddr = 0;
RI->getAddress(RelocAddr);
- unsigned RelocSize = Obj.getAnyRelocationLength(RelInfo);
- Value.Addend += RelocAddr + (1ULL << RelocSize);
+ Value.Offset += RelocAddr + OffsetToNextPC;
}
}
@@ -102,80 +109,142 @@ void RuntimeDyldMachO::dumpRelocationToResolve(const RelocationEntry &RE,
dbgs() << "resolveRelocation Section: " << RE.SectionID
<< " LocalAddress: " << format("%p", LocalAddress)
- << " FinalAddress: " << format("%p", FinalAddress)
- << " Value: " << format("%p", Value) << " Addend: " << RE.Addend
+ << " FinalAddress: " << format("0x%016" PRIx64, FinalAddress)
+ << " Value: " << format("0x%016" PRIx64, Value) << " Addend: " << RE.Addend
<< " isPCRel: " << RE.IsPCRel << " MachoType: " << RE.RelType
<< " Size: " << (1 << RE.Size) << "\n";
}
-bool RuntimeDyldMachO::writeBytesUnaligned(uint8_t *Addr, uint64_t Value,
- unsigned Size) {
- for (unsigned i = 0; i < Size; ++i) {
- *Addr++ = (uint8_t)Value;
- Value >>= 8;
+section_iterator
+RuntimeDyldMachO::getSectionByAddress(const MachOObjectFile &Obj,
+ uint64_t Addr) {
+ section_iterator SI = Obj.section_begin();
+ section_iterator SE = Obj.section_end();
+
+ for (; SI != SE; ++SI) {
+ uint64_t SAddr = SI->getAddress();
+ uint64_t SSize = SI->getSize();
+ if ((Addr >= SAddr) && (Addr < SAddr + SSize))
+ return SI;
}
- return false;
+ return SE;
}
-bool
-RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const {
- if (InputBuffer->getBufferSize() < 4)
- return false;
- StringRef Magic(InputBuffer->getBufferStart(), 4);
- if (Magic == "\xFE\xED\xFA\xCE")
- return true;
- if (Magic == "\xCE\xFA\xED\xFE")
- return true;
- if (Magic == "\xFE\xED\xFA\xCF")
- return true;
- if (Magic == "\xCF\xFA\xED\xFE")
- return true;
- return false;
+
+// Populate __pointers section.
+void RuntimeDyldMachO::populateIndirectSymbolPointersSection(
+ const MachOObjectFile &Obj,
+ const SectionRef &PTSection,
+ unsigned PTSectionID) {
+ assert(!Obj.is64Bit() &&
+ "Pointer table section not supported in 64-bit MachO.");
+
+ MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
+ MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl());
+ uint32_t PTSectionSize = Sec32.size;
+ unsigned FirstIndirectSymbol = Sec32.reserved1;
+ const unsigned PTEntrySize = 4;
+ unsigned NumPTEntries = PTSectionSize / PTEntrySize;
+ unsigned PTEntryOffset = 0;
+
+ assert((PTSectionSize % PTEntrySize) == 0 &&
+ "Pointers section does not contain a whole number of stubs?");
+
+ DEBUG(dbgs() << "Populating pointer table section "
+ << Sections[PTSectionID].Name
+ << ", Section ID " << PTSectionID << ", "
+ << NumPTEntries << " entries, " << PTEntrySize
+ << " bytes each:\n");
+
+ for (unsigned i = 0; i < NumPTEntries; ++i) {
+ unsigned SymbolIndex =
+ Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
+ symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
+ StringRef IndirectSymbolName;
+ SI->getName(IndirectSymbolName);
+ DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex
+ << ", PT offset: " << PTEntryOffset << "\n");
+ RelocationEntry RE(PTSectionID, PTEntryOffset,
+ MachO::GENERIC_RELOC_VANILLA, 0, false, 2);
+ addRelocationForSymbol(RE, IndirectSymbolName);
+ PTEntryOffset += PTEntrySize;
+ }
+}
+
+bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile &Obj) const {
+ return Obj.isMachO();
}
-bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const {
- return Obj->isMachO();
+template <typename Impl>
+void RuntimeDyldMachOCRTPBase<Impl>::finalizeLoad(const ObjectFile &ObjImg,
+ ObjSectionToIDMap &SectionMap) {
+ unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
+ unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
+ unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID;
+ ObjSectionToIDMap::iterator i, e;
+
+ for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
+ const SectionRef &Section = i->first;
+ StringRef Name;
+ Section.getName(Name);
+ if (Name == "__eh_frame")
+ EHFrameSID = i->second;
+ else if (Name == "__text")
+ TextSID = i->second;
+ else if (Name == "__gcc_except_tab")
+ ExceptTabSID = i->second;
+ else
+ impl().finalizeSection(ObjImg, i->second, Section);
+ }
+ UnregisteredEHFrameSections.push_back(
+ EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID));
}
-static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText,
- intptr_t DeltaForEH) {
+template <typename Impl>
+unsigned char *RuntimeDyldMachOCRTPBase<Impl>::processFDE(unsigned char *P,
+ int64_t DeltaForText,
+ int64_t DeltaForEH) {
+ typedef typename Impl::TargetPtrT TargetPtrT;
+
DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText
<< ", Delta for EH: " << DeltaForEH << "\n");
- uint32_t Length = *((uint32_t *)P);
+ uint32_t Length = readBytesUnaligned(P, 4);
P += 4;
unsigned char *Ret = P + Length;
- uint32_t Offset = *((uint32_t *)P);
+ uint32_t Offset = readBytesUnaligned(P, 4);
if (Offset == 0) // is a CIE
return Ret;
P += 4;
- intptr_t FDELocation = *((intptr_t *)P);
- intptr_t NewLocation = FDELocation - DeltaForText;
- *((intptr_t *)P) = NewLocation;
- P += sizeof(intptr_t);
+ TargetPtrT FDELocation = readBytesUnaligned(P, sizeof(TargetPtrT));
+ TargetPtrT NewLocation = FDELocation - DeltaForText;
+ writeBytesUnaligned(NewLocation, P, sizeof(TargetPtrT));
+
+ P += sizeof(TargetPtrT);
// Skip the FDE address range
- P += sizeof(intptr_t);
+ P += sizeof(TargetPtrT);
uint8_t Augmentationsize = *P;
P += 1;
if (Augmentationsize != 0) {
- intptr_t LSDA = *((intptr_t *)P);
- intptr_t NewLSDA = LSDA - DeltaForEH;
- *((intptr_t *)P) = NewLSDA;
+ TargetPtrT LSDA = readBytesUnaligned(P, sizeof(TargetPtrT));
+ TargetPtrT NewLSDA = LSDA - DeltaForEH;
+ writeBytesUnaligned(NewLSDA, P, sizeof(TargetPtrT));
}
return Ret;
}
-static intptr_t computeDelta(SectionEntry *A, SectionEntry *B) {
- intptr_t ObjDistance = A->ObjAddress - B->ObjAddress;
- intptr_t MemDistance = A->LoadAddress - B->LoadAddress;
+static int64_t computeDelta(SectionEntry *A, SectionEntry *B) {
+ int64_t ObjDistance = A->ObjAddress - B->ObjAddress;
+ int64_t MemDistance = A->LoadAddress - B->LoadAddress;
return ObjDistance - MemDistance;
}
-void RuntimeDyldMachO::registerEHFrames() {
+template <typename Impl>
+void RuntimeDyldMachOCRTPBase<Impl>::registerEHFrames() {
if (!MemMgr)
return;
@@ -190,8 +259,8 @@ void RuntimeDyldMachO::registerEHFrames() {
if (SectionInfo.ExceptTabSID != RTDYLD_INVALID_SECTION_ID)
ExceptTab = &Sections[SectionInfo.ExceptTabSID];
- intptr_t DeltaForText = computeDelta(Text, EHFrame);
- intptr_t DeltaForEH = 0;
+ int64_t DeltaForText = computeDelta(Text, EHFrame);
+ int64_t DeltaForEH = 0;
if (ExceptTab)
DeltaForEH = computeDelta(ExceptTab, EHFrame);
@@ -208,16 +277,24 @@ void RuntimeDyldMachO::registerEHFrames() {
}
std::unique_ptr<RuntimeDyldMachO>
-llvm::RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
+RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) {
switch (Arch) {
default:
llvm_unreachable("Unsupported target for RuntimeDyldMachO.");
break;
case Triple::arm: return make_unique<RuntimeDyldMachOARM>(MM);
- case Triple::arm64: return make_unique<RuntimeDyldMachOAArch64>(MM);
+ case Triple::aarch64: return make_unique<RuntimeDyldMachOAArch64>(MM);
case Triple::x86: return make_unique<RuntimeDyldMachOI386>(MM);
case Triple::x86_64: return make_unique<RuntimeDyldMachOX86_64>(MM);
}
}
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldMachO::loadObject(const object::ObjectFile &O) {
+ unsigned SectionStartIdx, SectionEndIdx;
+ std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+ return llvm::make_unique<LoadedMachOObjectInfo>(*this, SectionStartIdx,
+ SectionEndIdx);
+}
+
} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
index 7d1dc02..f8bfc03 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
@@ -11,10 +11,9 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIME_DYLD_MACHO_H
-#define LLVM_RUNTIME_DYLD_MACHO_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
-#include "ObjectImageCommon.h"
#include "RuntimeDyldImpl.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Format.h"
@@ -37,6 +36,7 @@ protected:
: EHFrameSID(RTDYLD_INVALID_SECTION_ID),
TextSID(RTDYLD_INVALID_SECTION_ID),
ExceptTabSID(RTDYLD_INVALID_SECTION_ID) {}
+
EHFrameRelatedSections(SID EH, SID T, SID Ex)
: EHFrameSID(EH), TextSID(T), ExceptTabSID(Ex) {}
SID EHFrameSID;
@@ -51,9 +51,32 @@ protected:
RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
- /// Extract the addend encoded in the instruction.
- uint64_t decodeAddend(uint8_t *LocalAddress, unsigned NumBytes,
- uint32_t RelType) const;
+ /// This convenience method uses memcpy to extract a contiguous addend (the
+ /// addend size and offset are taken from the corresponding fields of the RE).
+ int64_t memcpyAddend(const RelocationEntry &RE) const;
+
+ /// Given a relocation_iterator for a non-scattered relocation, construct a
+ /// RelocationEntry and fill in the common fields. The 'Addend' field is *not*
+ /// filled in, since immediate encodings are highly target/opcode specific.
+ /// For targets/opcodes with simple, contiguous immediates (e.g. X86) the
+ /// memcpyAddend method can be used to read the immediate.
+ RelocationEntry getRelocationEntry(unsigned SectionID,
+ const ObjectFile &BaseTObj,
+ const relocation_iterator &RI) const {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseTObj);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RI->getRawDataRefImpl());
+
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
+ unsigned Size = Obj.getAnyRelocationLength(RelInfo);
+ uint64_t Offset;
+ RI->getOffset(Offset);
+ MachO::RelocationInfoType RelType =
+ static_cast<MachO::RelocationInfoType>(Obj.getAnyRelocationType(RelInfo));
+
+ return RelocationEntry(SectionID, Offset, RelType, 0, IsPCRel, Size);
+ }
/// Construct a RelocationValueRef representing the relocation target.
/// For Symbols in known sections, this will return a RelocationValueRef
@@ -64,44 +87,42 @@ protected:
/// In both cases the Addend field is *NOT* fixed up to be PC-relative. That
/// should be done by the caller where appropriate by calling makePCRel on
/// the RelocationValueRef.
- RelocationValueRef getRelocationValueRef(ObjectImage &ObjImg,
+ RelocationValueRef getRelocationValueRef(const ObjectFile &BaseTObj,
const relocation_iterator &RI,
const RelocationEntry &RE,
- ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols);
+ ObjSectionToIDMap &ObjSectionToID);
/// Make the RelocationValueRef addend PC-relative.
- void makeValueAddendPCRel(RelocationValueRef &Value, ObjectImage &ObjImg,
- const relocation_iterator &RI);
+ void makeValueAddendPCRel(RelocationValueRef &Value,
+ const ObjectFile &BaseTObj,
+ const relocation_iterator &RI,
+ unsigned OffsetToNextPC);
/// Dump information about the relocation entry (RE) and resolved value.
void dumpRelocationToResolve(const RelocationEntry &RE, uint64_t Value) const;
-public:
- /// Create an ObjectImage from the given ObjectBuffer.
- static ObjectImage *createObjectImage(ObjectBuffer *InputBuffer) {
- return new ObjectImageCommon(InputBuffer);
- }
+ // Return a section iterator for the section containing the given address.
+ static section_iterator getSectionByAddress(const MachOObjectFile &Obj,
+ uint64_t Addr);
- /// Create an ObjectImage from the given ObjectFile.
- static ObjectImage *
- createObjectImageFromFile(std::unique_ptr<object::ObjectFile> InputObject) {
- return new ObjectImageCommon(std::move(InputObject));
- }
+
+ // Populate __pointers section.
+ void populateIndirectSymbolPointersSection(const MachOObjectFile &Obj,
+ const SectionRef &PTSection,
+ unsigned PTSectionID);
+
+public:
/// Create a RuntimeDyldMachO instance for the given target architecture.
static std::unique_ptr<RuntimeDyldMachO> create(Triple::ArchType Arch,
RTDyldMemoryManager *mm);
- /// Write the least significant 'Size' bytes in 'Value' out at the address
- /// pointed to by Addr. Check for overflow.
- bool writeBytesUnaligned(uint8_t *Addr, uint64_t Value, unsigned Size);
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &O) override;
SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; }
- bool isCompatibleFormat(const ObjectBuffer *Buffer) const override;
- bool isCompatibleFile(const object::ObjectFile *Obj) const override;
- void registerEHFrames() override;
+ bool isCompatibleFile(const object::ObjectFile &Obj) const override;
};
/// RuntimeDyldMachOTarget - Templated base class for generic MachO linker
@@ -117,57 +138,15 @@ private:
Impl &impl() { return static_cast<Impl &>(*this); }
const Impl &impl() const { return static_cast<const Impl &>(*this); }
-protected:
-
- /// Parse the given relocation, which must be a non-scattered, and
- /// return a RelocationEntry representing the information. The 'Addend' field
- /// will contain the unmodified instruction immediate.
- RelocationEntry getBasicRelocationEntry(unsigned SectionID,
- ObjectImage &ObjImg,
- const relocation_iterator &RI) const {
- const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
- MachO::any_relocation_info RelInfo =
- Obj.getRelocation(RI->getRawDataRefImpl());
-
- const SectionEntry &Section = Sections[SectionID];
- bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
- unsigned Size = Obj.getAnyRelocationLength(RelInfo);
- uint64_t Offset;
- RI->getOffset(Offset);
- uint8_t *LocalAddress = Section.Address + Offset;
- unsigned NumBytes = 1 << Size;
- uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
- uint64_t Addend = impl().decodeAddend(LocalAddress, NumBytes, RelType);
-
- return RelocationEntry(SectionID, Offset, RelType, Addend, IsPCRel, Size);
- }
+ unsigned char *processFDE(unsigned char *P, int64_t DeltaForText,
+ int64_t DeltaForEH);
public:
RuntimeDyldMachOCRTPBase(RTDyldMemoryManager *mm) : RuntimeDyldMachO(mm) {}
- void finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) {
- unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
- unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
- unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID;
- ObjSectionToIDMap::iterator i, e;
-
- for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
- const SectionRef &Section = i->first;
- StringRef Name;
- Section.getName(Name);
- if (Name == "__eh_frame")
- EHFrameSID = i->second;
- else if (Name == "__text")
- TextSID = i->second;
- else if (Name == "__gcc_except_tab")
- ExceptTabSID = i->second;
- else
- impl().finalizeSection(ObjImg, i->second, Section);
- }
- UnregisteredEHFrameSections.push_back(
- EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID));
- }
+ void finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) override;
+ void registerEHFrames() override;
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h
index 775ed9e..196fa62 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h
@@ -7,10 +7,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIMEDYLDMACHOAARCH64_H
-#define LLVM_RUNTIMEDYLDMACHOAARCH64_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOAARCH64_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOAARCH64_H
#include "../RuntimeDyldMachO.h"
+#include "llvm/Support/Endian.h"
#define DEBUG_TYPE "dyld"
@@ -19,6 +20,9 @@ namespace llvm {
class RuntimeDyldMachOAArch64
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOAArch64> {
public:
+
+ typedef uint64_t TargetPtrT;
+
RuntimeDyldMachOAArch64(RTDyldMemoryManager *MM)
: RuntimeDyldMachOCRTPBase(MM) {}
@@ -26,12 +30,224 @@ public:
unsigned getStubAlignment() override { return 8; }
+ /// Extract the addend encoded in the instruction / memory location.
+ int64_t decodeAddend(const RelocationEntry &RE) const {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+ unsigned NumBytes = 1 << RE.Size;
+ int64_t Addend = 0;
+ // Verify that the relocation has the correct size and alignment.
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ assert((NumBytes == 4 || NumBytes == 8) && "Invalid relocation size.");
+ break;
+ case MachO::ARM64_RELOC_BRANCH26:
+ case MachO::ARM64_RELOC_PAGE21:
+ case MachO::ARM64_RELOC_PAGEOFF12:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
+ assert(NumBytes == 4 && "Invalid relocation size.");
+ assert((((uintptr_t)LocalAddress & 0x3) == 0) &&
+ "Instruction address is not aligned to 4 bytes.");
+ break;
+ }
+
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ // This could be an unaligned memory location.
+ if (NumBytes == 4)
+ Addend = *reinterpret_cast<support::ulittle32_t *>(LocalAddress);
+ else
+ Addend = *reinterpret_cast<support::ulittle64_t *>(LocalAddress);
+ break;
+ case MachO::ARM64_RELOC_BRANCH26: {
+ // Verify that the relocation points to the expected branch instruction.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0xFC000000) == 0x14000000 && "Expected branch instruction.");
+
+ // Get the 26 bit addend encoded in the branch instruction and sign-extend
+ // to 64 bit. The lower 2 bits are always zeros and are therefore implicit
+ // (<< 2).
+ Addend = (*p & 0x03FFFFFF) << 2;
+ Addend = SignExtend64(Addend, 28);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_PAGE21: {
+ // Verify that the relocation points to the expected adrp instruction.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0x9F000000) == 0x90000000 && "Expected adrp instruction.");
+
+ // Get the 21 bit addend encoded in the adrp instruction and sign-extend
+ // to 64 bit. The lower 12 bits (4096 byte page) are always zeros and are
+ // therefore implicit (<< 12).
+ Addend = ((*p & 0x60000000) >> 29) | ((*p & 0x01FFFFE0) >> 3) << 12;
+ Addend = SignExtend64(Addend, 33);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ (void)p;
+ assert((*p & 0x3B000000) == 0x39000000 &&
+ "Only expected load / store instructions.");
+ } // fall-through
+ case MachO::ARM64_RELOC_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // or add / sub instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((((*p & 0x3B000000) == 0x39000000) ||
+ ((*p & 0x11C00000) == 0x11000000) ) &&
+ "Expected load / store or add/sub instruction.");
+
+ // Get the 12 bit addend encoded in the instruction.
+ Addend = (*p & 0x003FFC00) >> 10;
+
+ // Check which instruction we are decoding to obtain the implicit shift
+ // factor of the instruction.
+ int ImplicitShift = 0;
+ if ((*p & 0x3B000000) == 0x39000000) { // << load / store
+ // For load / store instructions the size is encoded in bits 31:30.
+ ImplicitShift = ((*p >> 30) & 0x3);
+ if (ImplicitShift == 0) {
+ // Check if this a vector op to get the correct shift value.
+ if ((*p & 0x04800000) == 0x04800000)
+ ImplicitShift = 4;
+ }
+ }
+ // Compensate for implicit shift.
+ Addend <<= ImplicitShift;
+ break;
+ }
+ }
+ return Addend;
+ }
+
+ /// Extract the addend encoded in the instruction.
+ void encodeAddend(uint8_t *LocalAddress, unsigned NumBytes,
+ MachO::RelocationInfoType RelType, int64_t Addend) const {
+ // Verify that the relocation has the correct alignment.
+ switch (RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ assert((NumBytes == 4 || NumBytes == 8) && "Invalid relocation size.");
+ break;
+ case MachO::ARM64_RELOC_BRANCH26:
+ case MachO::ARM64_RELOC_PAGE21:
+ case MachO::ARM64_RELOC_PAGEOFF12:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
+ assert(NumBytes == 4 && "Invalid relocation size.");
+ assert((((uintptr_t)LocalAddress & 0x3) == 0) &&
+ "Instruction address is not aligned to 4 bytes.");
+ break;
+ }
+
+ switch (RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ // This could be an unaligned memory location.
+ if (NumBytes == 4)
+ *reinterpret_cast<support::ulittle32_t *>(LocalAddress) = Addend;
+ else
+ *reinterpret_cast<support::ulittle64_t *>(LocalAddress) = Addend;
+ break;
+ case MachO::ARM64_RELOC_BRANCH26: {
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ // Verify that the relocation points to the expected branch instruction.
+ assert((*p & 0xFC000000) == 0x14000000 && "Expected branch instruction.");
+
+ // Verify addend value.
+ assert((Addend & 0x3) == 0 && "Branch target is not aligned");
+ assert(isInt<28>(Addend) && "Branch target is out of range.");
+
+ // Encode the addend as 26 bit immediate in the branch instruction.
+ *p = (*p & 0xFC000000) | ((uint32_t)(Addend >> 2) & 0x03FFFFFF);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_PAGE21: {
+ // Verify that the relocation points to the expected adrp instruction.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0x9F000000) == 0x90000000 && "Expected adrp instruction.");
+
+ // Check that the addend fits into 21 bits (+ 12 lower bits).
+ assert((Addend & 0xFFF) == 0 && "ADRP target is not page aligned.");
+ assert(isInt<33>(Addend) && "Invalid page reloc value.");
+
+ // Encode the addend into the instruction.
+ uint32_t ImmLoValue = ((uint64_t)Addend << 17) & 0x60000000;
+ uint32_t ImmHiValue = ((uint64_t)Addend >> 9) & 0x00FFFFE0;
+ *p = (*p & 0x9F00001F) | ImmHiValue | ImmLoValue;
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0x3B000000) == 0x39000000 &&
+ "Only expected load / store instructions.");
+ (void)p;
+ } // fall-through
+ case MachO::ARM64_RELOC_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // or add / sub instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((((*p & 0x3B000000) == 0x39000000) ||
+ ((*p & 0x11C00000) == 0x11000000) ) &&
+ "Expected load / store or add/sub instruction.");
+
+ // Check which instruction we are decoding to obtain the implicit shift
+ // factor of the instruction and verify alignment.
+ int ImplicitShift = 0;
+ if ((*p & 0x3B000000) == 0x39000000) { // << load / store
+ // For load / store instructions the size is encoded in bits 31:30.
+ ImplicitShift = ((*p >> 30) & 0x3);
+ switch (ImplicitShift) {
+ case 0:
+ // Check if this a vector op to get the correct shift value.
+ if ((*p & 0x04800000) == 0x04800000) {
+ ImplicitShift = 4;
+ assert(((Addend & 0xF) == 0) &&
+ "128-bit LDR/STR not 16-byte aligned.");
+ }
+ break;
+ case 1:
+ assert(((Addend & 0x1) == 0) && "16-bit LDR/STR not 2-byte aligned.");
+ break;
+ case 2:
+ assert(((Addend & 0x3) == 0) && "32-bit LDR/STR not 4-byte aligned.");
+ break;
+ case 3:
+ assert(((Addend & 0x7) == 0) && "64-bit LDR/STR not 8-byte aligned.");
+ break;
+ }
+ }
+ // Compensate for implicit shift.
+ Addend >>= ImplicitShift;
+ assert(isUInt<12>(Addend) && "Addend cannot be encoded.");
+
+ // Encode the addend into the instruction.
+ *p = (*p & 0xFFC003FF) | ((uint32_t)(Addend << 10) & 0x003FFC00);
+ break;
+ }
+ }
+ }
+
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols, StubMap &Stubs) override {
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+ static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
@@ -41,34 +257,35 @@ public:
// addend for the following relocation. If found: (1) store the associated
// addend, (2) consume the next relocation, and (3) use the stored addend to
// override the addend.
- bool HasExplicitAddend = false;
int64_t ExplicitAddend = 0;
if (Obj.getAnyRelocationType(RelInfo) == MachO::ARM64_RELOC_ADDEND) {
assert(!Obj.getPlainRelocationExternal(RelInfo));
assert(!Obj.getAnyRelocationPCRel(RelInfo));
assert(Obj.getAnyRelocationLength(RelInfo) == 2);
- HasExplicitAddend = true;
int64_t RawAddend = Obj.getPlainRelocationSymbolNum(RelInfo);
// Sign-extend the 24-bit to 64-bit.
- ExplicitAddend = (RawAddend << 40) >> 40;
+ ExplicitAddend = SignExtend64(RawAddend, 24);
++RelI;
RelInfo = Obj.getRelocation(RelI->getRawDataRefImpl());
}
- RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = decodeAddend(RE);
RelocationValueRef Value(
- getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
- if (HasExplicitAddend) {
+ assert((ExplicitAddend == 0 || RE.Addend == 0) && "Relocation has "\
+ "ARM64_RELOC_ADDEND and embedded addend in the instruction.");
+ if (ExplicitAddend) {
RE.Addend = ExplicitAddend;
- Value.Addend = ExplicitAddend;
+ Value.Offset = ExplicitAddend;
}
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
- makeValueAddendPCRel(Value, ObjImg, RelI);
+ makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
- RE.Addend = Value.Addend;
+ RE.Addend = Value.Offset;
if (RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGE21 ||
RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12)
@@ -83,13 +300,15 @@ public:
return ++RelI;
}
- void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
+ MachO::RelocationInfoType RelType =
+ static_cast<MachO::RelocationInfoType>(RE.RelType);
- switch (RE.RelType) {
+ switch (RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM64_RELOC_UNSIGNED: {
@@ -99,117 +318,49 @@ public:
if (RE.Size < 2)
llvm_unreachable("Invalid size for ARM64_RELOC_UNSIGNED");
- writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size);
+ encodeAddend(LocalAddress, 1 << RE.Size, RelType, Value + RE.Addend);
break;
}
case MachO::ARM64_RELOC_BRANCH26: {
assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_BRANCH26 not supported");
- // Mask the value into the target address. We know instructions are
- // 32-bit aligned, so we can do it all at once.
- uint32_t *p = (uint32_t *)LocalAddress;
- // Check if the addend is encoded in the instruction.
- uint32_t EncodedAddend = *p & 0x03FFFFFF;
- if (EncodedAddend != 0) {
- if (RE.Addend == 0)
- llvm_unreachable("branch26 instruction has embedded addend.");
- else
- llvm_unreachable("branch26 instruction has embedded addend and"
- "ARM64_RELOC_ADDEND.");
- }
// Check if branch is in range.
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
- uint64_t PCRelVal = Value - FinalAddress + RE.Addend;
- assert(isInt<26>(PCRelVal) && "Branch target out of range!");
- // Insert the value into the instruction.
- *p = (*p & 0xFC000000) | ((uint32_t)(PCRelVal >> 2) & 0x03FFFFFF);
+ int64_t PCRelVal = Value - FinalAddress + RE.Addend;
+ encodeAddend(LocalAddress, /*Size=*/4, RelType, PCRelVal);
break;
}
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
case MachO::ARM64_RELOC_PAGE21: {
assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_PAGE21 not supported");
- // Mask the value into the target address. We know instructions are
- // 32-bit aligned, so we can do it all at once.
- uint32_t *p = (uint32_t *)LocalAddress;
- // Check if the addend is encoded in the instruction.
- uint32_t EncodedAddend =
- ((*p & 0x60000000) >> 29) | ((*p & 0x01FFFFE0) >> 3);
- if (EncodedAddend != 0) {
- if (RE.Addend == 0)
- llvm_unreachable("adrp instruction has embedded addend.");
- else
- llvm_unreachable("adrp instruction has embedded addend and"
- "ARM64_RELOC_ADDEND.");
- }
// Adjust for PC-relative relocation and offset.
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
- uint64_t PCRelVal =
- ((Value + RE.Addend) & (-4096)) - (FinalAddress & (-4096));
- // Check that the value fits into 21 bits (+ 12 lower bits).
- assert(isInt<33>(PCRelVal) && "Invalid page reloc value!");
- // Insert the value into the instruction.
- uint32_t ImmLoValue = (uint32_t)(PCRelVal << 17) & 0x60000000;
- uint32_t ImmHiValue = (uint32_t)(PCRelVal >> 9) & 0x00FFFFE0;
- *p = (*p & 0x9F00001F) | ImmHiValue | ImmLoValue;
+ int64_t PCRelVal =
+ ((Value + RE.Addend) & (-4096)) - (FinalAddress & (-4096));
+ encodeAddend(LocalAddress, /*Size=*/4, RelType, PCRelVal);
break;
}
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
case MachO::ARM64_RELOC_PAGEOFF12: {
assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_PAGEOFF21 not supported");
- // Mask the value into the target address. We know instructions are
- // 32-bit aligned, so we can do it all at once.
- uint32_t *p = (uint32_t *)LocalAddress;
- // Check if the addend is encoded in the instruction.
- uint32_t EncodedAddend = *p & 0x003FFC00;
- if (EncodedAddend != 0) {
- if (RE.Addend == 0)
- llvm_unreachable("adrp instruction has embedded addend.");
- else
- llvm_unreachable("adrp instruction has embedded addend and"
- "ARM64_RELOC_ADDEND.");
- }
// Add the offset from the symbol.
Value += RE.Addend;
// Mask out the page address and only use the lower 12 bits.
Value &= 0xFFF;
- // Check which instruction we are updating to obtain the implicit shift
- // factor from LDR/STR instructions.
- if (*p & 0x08000000) {
- uint32_t ImplicitShift = ((*p >> 30) & 0x3);
- switch (ImplicitShift) {
- case 0:
- // Check if this a vector op.
- if ((*p & 0x04800000) == 0x04800000) {
- ImplicitShift = 4;
- assert(((Value & 0xF) == 0) &&
- "128-bit LDR/STR not 16-byte aligned.");
- }
- break;
- case 1:
- assert(((Value & 0x1) == 0) && "16-bit LDR/STR not 2-byte aligned.");
- case 2:
- assert(((Value & 0x3) == 0) && "32-bit LDR/STR not 4-byte aligned.");
- case 3:
- assert(((Value & 0x7) == 0) && "64-bit LDR/STR not 8-byte aligned.");
- }
- // Compensate for implicit shift.
- Value >>= ImplicitShift;
- }
- // Insert the value into the instruction.
- *p = (*p & 0xFFC003FF) | ((uint32_t)(Value << 10) & 0x003FFC00);
+ encodeAddend(LocalAddress, /*Size=*/4, RelType, Value);
break;
}
case MachO::ARM64_RELOC_SUBTRACTOR:
case MachO::ARM64_RELOC_POINTER_TO_GOT:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
- llvm_unreachable("Relocation type not implemented yet!");
+ llvm_unreachable("Relocation type not yet implemented!");
case MachO::ARM64_RELOC_ADDEND:
llvm_unreachable("ARM64_RELOC_ADDEND should have been handeled by "
"processRelocationRef!");
}
}
- void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {}
private:
@@ -218,9 +369,9 @@ private:
assert(RE.Size == 2);
SectionEntry &Section = Sections[RE.SectionID];
StubMap::const_iterator i = Stubs.find(Value);
- uint8_t *Addr;
+ int64_t Offset;
if (i != Stubs.end())
- Addr = Section.Address + i->second;
+ Offset = static_cast<int64_t>(i->second);
else {
// FIXME: There must be a better way to do this then to check and fix the
// alignment every time!!!
@@ -234,22 +385,22 @@ private:
assert(((StubAddress % getStubAlignment()) == 0) &&
"GOT entry not aligned");
RelocationEntry GOTRE(RE.SectionID, StubOffset,
- MachO::ARM64_RELOC_UNSIGNED, Value.Addend,
+ MachO::ARM64_RELOC_UNSIGNED, Value.Offset,
/*IsPCRel=*/false, /*Size=*/3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
else
addRelocationForSection(GOTRE, Value.SectionID);
Section.StubOffset = StubOffset + getMaxStubSize();
- Addr = (uint8_t *)StubAddress;
+ Offset = static_cast<int64_t>(StubOffset);
}
- RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, /*Addend=*/0,
+ RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, Offset,
RE.IsPCRel, RE.Size);
- resolveRelocation(TargetRE, (uint64_t)Addr);
+ addRelocationForSection(TargetRE, RE.SectionID);
}
};
}
#undef DEBUG_TYPE
-#endif // LLVM_RUNTIMEDYLDMACHOAARCH64_H
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h
index 1de9942..09e430e 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIMEDYLDMACHOARM_H
-#define LLVM_RUNTIMEDYLDMACHOARM_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOARM_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOARM_H
#include "../RuntimeDyldMachO.h"
@@ -18,37 +18,66 @@ namespace llvm {
class RuntimeDyldMachOARM
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM> {
+private:
+ typedef RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM> ParentT;
+
public:
+
+ typedef uint32_t TargetPtrT;
+
RuntimeDyldMachOARM(RTDyldMemoryManager *MM) : RuntimeDyldMachOCRTPBase(MM) {}
unsigned getMaxStubSize() override { return 8; }
unsigned getStubAlignment() override { return 4; }
+ int64_t decodeAddend(const RelocationEntry &RE) const {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+
+ switch (RE.RelType) {
+ default:
+ return memcpyAddend(RE);
+ case MachO::ARM_RELOC_BR24: {
+ uint32_t Temp = readBytesUnaligned(LocalAddress, 4);
+ Temp &= 0x00ffffff; // Mask out the opcode.
+ // Now we've got the shifted immediate, shift by 2, sign extend and ret.
+ return SignExtend32<26>(Temp << 2);
+ }
+ }
+ }
+
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols, StubMap &Stubs) override {
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+ static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
+ uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
- if (Obj.isRelocationScattered(RelInfo))
- return ++++RelI;
+ if (Obj.isRelocationScattered(RelInfo)) {
+ if (RelType == MachO::ARM_RELOC_HALF_SECTDIFF)
+ return processHALFSECTDIFFRelocation(SectionID, RelI, Obj,
+ ObjSectionToID);
+ else
+ return ++++RelI;
+ }
- RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = decodeAddend(RE);
RelocationValueRef Value(
- getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
- bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
- if (!IsExtern && RE.IsPCRel)
- makeValueAddendPCRel(Value, ObjImg, RelI);
+ if (RE.IsPCRel)
+ makeValueAddendPCRel(Value, Obj, RelI, 8);
if ((RE.RelType & 0xf) == MachO::ARM_RELOC_BR24)
processBranchRelocation(RE, Value, Stubs);
else {
- RE.Addend = Value.Addend;
+ RE.Addend = Value.Offset;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
@@ -58,7 +87,7 @@ public:
return ++RelI;
}
- void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
@@ -78,33 +107,45 @@ public:
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM_RELOC_VANILLA:
- writeBytesUnaligned(LocalAddress, Value, 1 << RE.Size);
+ writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
break;
case MachO::ARM_RELOC_BR24: {
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
- uint32_t *p = (uint32_t *)LocalAddress;
+ Value += RE.Addend;
// The low two bits of the value are not encoded.
Value >>= 2;
// Mask the value to 24 bits.
uint64_t FinalValue = Value & 0xffffff;
- // Check for overflow.
- if (Value != FinalValue) {
- Error("ARM BR24 relocation out of range.");
- return;
- }
// FIXME: If the destination is a Thumb function (and the instruction
// is a non-predicated BL instruction), we need to change it to a BLX
// instruction instead.
// Insert the value into the instruction.
- *p = (*p & ~0xffffff) | FinalValue;
+ uint32_t Temp = readBytesUnaligned(LocalAddress, 4);
+ writeBytesUnaligned((Temp & ~0xffffff) | FinalValue, LocalAddress, 4);
+
+ break;
+ }
+ case MachO::ARM_RELOC_HALF_SECTDIFF: {
+ uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress;
+ uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress;
+ assert((Value == SectionABase || Value == SectionBBase) &&
+ "Unexpected HALFSECTDIFF relocation value.");
+ Value = SectionABase - SectionBBase + RE.Addend;
+ if (RE.Size & 0x1) // :upper16:
+ Value = (Value >> 16);
+ Value &= 0xffff;
+
+ uint32_t Insn = readBytesUnaligned(LocalAddress, 4);
+ Insn = (Insn & 0xfff0f000) | ((Value & 0xf000) << 4) | (Value & 0x0fff);
+ writeBytesUnaligned(Insn, LocalAddress, 4);
break;
}
+
case MachO::ARM_THUMB_RELOC_BR22:
case MachO::ARM_THUMB_32BIT_BRANCH:
case MachO::ARM_RELOC_HALF:
- case MachO::ARM_RELOC_HALF_SECTDIFF:
case MachO::ARM_RELOC_PAIR:
case MachO::ARM_RELOC_SECTDIFF:
case MachO::ARM_RELOC_LOCAL_SECTDIFF:
@@ -114,10 +155,18 @@ public:
}
}
- void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
- const SectionRef &Section) {}
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
+ const SectionRef &Section) {
+ StringRef Name;
+ Section.getName(Name);
+
+ if (Name == "__nl_symbol_ptr")
+ populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
+ Section, SectionID);
+ }
private:
+
void processBranchRelocation(const RelocationEntry &RE,
const RelocationValueRef &Value,
StubMap &Stubs) {
@@ -134,7 +183,8 @@ private:
uint8_t *StubTargetAddr =
createStubFunction(Section.Address + Section.StubOffset);
RelocationEntry StubRE(RE.SectionID, StubTargetAddr - Section.Address,
- MachO::GENERIC_RELOC_VANILLA, Value.Addend);
+ MachO::GENERIC_RELOC_VANILLA, Value.Offset, false,
+ 2);
if (Value.SymbolName)
addRelocationForSymbol(StubRE, Value.SymbolName);
else
@@ -142,13 +192,86 @@ private:
Addr = Section.Address + Section.StubOffset;
Section.StubOffset += getMaxStubSize();
}
- RelocationEntry TargetRE(Value.SectionID, RE.Offset, RE.RelType, 0,
+ RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, 0,
RE.IsPCRel, RE.Size);
resolveRelocation(TargetRE, (uint64_t)Addr);
}
+
+ relocation_iterator
+ processHALFSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseTObj,
+ ObjSectionToIDMap &ObjSectionToID) {
+ const MachOObjectFile &MachO =
+ static_cast<const MachOObjectFile&>(BaseTObj);
+ MachO::any_relocation_info RE =
+ MachO.getRelocation(RelI->getRawDataRefImpl());
+
+
+ // For a half-diff relocation the length bits actually record whether this
+ // is a movw/movt, and whether this is arm or thumb.
+ // Bit 0 indicates movw (b0 == 0) or movt (b0 == 1).
+ // Bit 1 indicates arm (b1 == 0) or thumb (b1 == 1).
+ unsigned HalfDiffKindBits = MachO.getAnyRelocationLength(RE);
+ if (HalfDiffKindBits & 0x2)
+ llvm_unreachable("Thumb not yet supported.");
+
+ SectionEntry &Section = Sections[SectionID];
+ uint32_t RelocType = MachO.getAnyRelocationType(RE);
+ bool IsPCRel = MachO.getAnyRelocationPCRel(RE);
+ uint64_t Offset;
+ RelI->getOffset(Offset);
+ uint8_t *LocalAddress = Section.Address + Offset;
+ int64_t Immediate = readBytesUnaligned(LocalAddress, 4); // Copy the whole instruction out.
+ Immediate = ((Immediate >> 4) & 0xf000) | (Immediate & 0xfff);
+
+ ++RelI;
+ MachO::any_relocation_info RE2 =
+ MachO.getRelocation(RelI->getRawDataRefImpl());
+ uint32_t AddrA = MachO.getScatteredRelocationValue(RE);
+ section_iterator SAI = getSectionByAddress(MachO, AddrA);
+ assert(SAI != MachO.section_end() && "Can't find section for address A");
+ uint64_t SectionABase = SAI->getAddress();
+ uint64_t SectionAOffset = AddrA - SectionABase;
+ SectionRef SectionA = *SAI;
+ bool IsCode = SectionA.isText();
+ uint32_t SectionAID =
+ findOrEmitSection(MachO, SectionA, IsCode, ObjSectionToID);
+
+ uint32_t AddrB = MachO.getScatteredRelocationValue(RE2);
+ section_iterator SBI = getSectionByAddress(MachO, AddrB);
+ assert(SBI != MachO.section_end() && "Can't find section for address B");
+ uint64_t SectionBBase = SBI->getAddress();
+ uint64_t SectionBOffset = AddrB - SectionBBase;
+ SectionRef SectionB = *SBI;
+ uint32_t SectionBID =
+ findOrEmitSection(MachO, SectionB, IsCode, ObjSectionToID);
+
+ uint32_t OtherHalf = MachO.getAnyRelocationAddress(RE2) & 0xffff;
+ unsigned Shift = (HalfDiffKindBits & 0x1) ? 16 : 0;
+ uint32_t FullImmVal = (Immediate << Shift) | (OtherHalf << (16 - Shift));
+ int64_t Addend = FullImmVal - (AddrA - AddrB);
+
+ // addend = Encoded - Expected
+ // = Encoded - (AddrA - AddrB)
+
+ DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB
+ << ", Addend: " << Addend << ", SectionA ID: " << SectionAID
+ << ", SectionAOffset: " << SectionAOffset
+ << ", SectionB ID: " << SectionBID
+ << ", SectionBOffset: " << SectionBOffset << "\n");
+ RelocationEntry R(SectionID, Offset, RelocType, Addend, SectionAID,
+ SectionAOffset, SectionBID, SectionBOffset, IsPCRel,
+ HalfDiffKindBits);
+
+ addRelocationForSection(R, SectionAID);
+ addRelocationForSection(R, SectionBID);
+
+ return ++RelI;
+ }
+
};
}
#undef DEBUG_TYPE
-#endif // LLVM_RUNTIMEDYLDMACHOARM_H
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h
index 856c6ca..67d7027 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIMEDYLDMACHOI386_H
-#define LLVM_RUNTIMEDYLDMACHOI386_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOI386_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOI386_H
#include "../RuntimeDyldMachO.h"
@@ -19,6 +19,9 @@ namespace llvm {
class RuntimeDyldMachOI386
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386> {
public:
+
+ typedef uint32_t TargetPtrT;
+
RuntimeDyldMachOI386(RTDyldMemoryManager *MM)
: RuntimeDyldMachOCRTPBase(MM) {}
@@ -28,10 +31,11 @@ public:
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols, StubMap &Stubs) override {
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+ static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
@@ -39,17 +43,18 @@ public:
if (Obj.isRelocationScattered(RelInfo)) {
if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
- return processSECTDIFFRelocation(SectionID, RelI, ObjImg,
+ return processSECTDIFFRelocation(SectionID, RelI, Obj,
ObjSectionToID);
- else if (Arch == Triple::x86 && RelType == MachO::GENERIC_RELOC_VANILLA)
- return processI386ScatteredVANILLA(SectionID, RelI, ObjImg,
+ else if (RelType == MachO::GENERIC_RELOC_VANILLA)
+ return processI386ScatteredVANILLA(SectionID, RelI, Obj,
ObjSectionToID);
llvm_unreachable("Unhandled scattered relocation.");
}
- RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = memcpyAddend(RE);
RelocationValueRef Value(
- getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
// Addends for external, PC-rel relocations on i386 point back to the zero
// offset. Calculate the final offset from the relocation target instead.
@@ -62,9 +67,9 @@ public:
// Value.Addend += RelocAddr + 4;
// }
if (RE.IsPCRel)
- makeValueAddendPCRel(Value, ObjImg, RelI);
+ makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
- RE.Addend = Value.Addend;
+ RE.Addend = Value.Offset;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
@@ -74,7 +79,7 @@ public:
return ++RelI;
}
- void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
@@ -89,7 +94,7 @@ public:
default:
llvm_unreachable("Invalid relocation type!");
case MachO::GENERIC_RELOC_VANILLA:
- writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size);
+ writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
break;
case MachO::GENERIC_RELOC_SECTDIFF:
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
@@ -98,7 +103,7 @@ public:
assert((Value == SectionABase || Value == SectionBBase) &&
"Unexpected SECTDIFF relocation value.");
Value = SectionABase - SectionBBase + RE.Addend;
- writeBytesUnaligned(LocalAddress, Value, 1 << RE.Size);
+ writeBytesUnaligned(Value, LocalAddress, 1 << RE.Size);
break;
}
case MachO::GENERIC_RELOC_PB_LA_PTR:
@@ -106,61 +111,56 @@ public:
}
}
- void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {
StringRef Name;
Section.getName(Name);
if (Name == "__jump_table")
- populateJumpTable(cast<MachOObjectFile>(*ObjImg.getObjectFile()), Section,
- SectionID);
+ populateJumpTable(cast<MachOObjectFile>(Obj), Section, SectionID);
else if (Name == "__pointers")
- populatePointersSection(cast<MachOObjectFile>(*ObjImg.getObjectFile()),
- Section, SectionID);
+ populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
+ Section, SectionID);
}
private:
relocation_iterator
processSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &Obj,
+ const ObjectFile &BaseObjT,
ObjSectionToIDMap &ObjSectionToID) {
- const MachOObjectFile *MachO =
- static_cast<const MachOObjectFile *>(Obj.getObjectFile());
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile&>(BaseObjT);
MachO::any_relocation_info RE =
- MachO->getRelocation(RelI->getRawDataRefImpl());
+ Obj.getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
- uint32_t RelocType = MachO->getAnyRelocationType(RE);
- bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
- unsigned Size = MachO->getAnyRelocationLength(RE);
+ uint32_t RelocType = Obj.getAnyRelocationType(RE);
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
+ unsigned Size = Obj.getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
- int64_t Addend = 0;
- memcpy(&Addend, LocalAddress, NumBytes);
+ uint64_t Addend = readBytesUnaligned(LocalAddress, NumBytes);
++RelI;
MachO::any_relocation_info RE2 =
- MachO->getRelocation(RelI->getRawDataRefImpl());
+ Obj.getRelocation(RelI->getRawDataRefImpl());
- uint32_t AddrA = MachO->getScatteredRelocationValue(RE);
- section_iterator SAI = getSectionByAddress(*MachO, AddrA);
- assert(SAI != MachO->section_end() && "Can't find section for address A");
- uint64_t SectionABase;
- SAI->getAddress(SectionABase);
+ uint32_t AddrA = Obj.getScatteredRelocationValue(RE);
+ section_iterator SAI = getSectionByAddress(Obj, AddrA);
+ assert(SAI != Obj.section_end() && "Can't find section for address A");
+ uint64_t SectionABase = SAI->getAddress();
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
- bool IsCode;
- SectionA.isText(IsCode);
+ bool IsCode = SectionA.isText();
uint32_t SectionAID =
findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID);
- uint32_t AddrB = MachO->getScatteredRelocationValue(RE2);
- section_iterator SBI = getSectionByAddress(*MachO, AddrB);
- assert(SBI != MachO->section_end() && "Can't find section for address B");
- uint64_t SectionBBase;
- SBI->getAddress(SectionBBase);
+ uint32_t AddrB = Obj.getScatteredRelocationValue(RE2);
+ section_iterator SBI = getSectionByAddress(Obj, AddrB);
+ assert(SBI != Obj.section_end() && "Can't find section for address B");
+ uint64_t SectionBBase = SBI->getAddress();
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
uint32_t SectionBID =
@@ -185,32 +185,30 @@ private:
}
relocation_iterator processI386ScatteredVANILLA(
- unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
+ unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
RuntimeDyldMachO::ObjSectionToIDMap &ObjSectionToID) {
- const MachOObjectFile *MachO =
- static_cast<const MachOObjectFile *>(Obj.getObjectFile());
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile&>(BaseObjT);
MachO::any_relocation_info RE =
- MachO->getRelocation(RelI->getRawDataRefImpl());
+ Obj.getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
- uint32_t RelocType = MachO->getAnyRelocationType(RE);
- bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
- unsigned Size = MachO->getAnyRelocationLength(RE);
+ uint32_t RelocType = Obj.getAnyRelocationType(RE);
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
+ unsigned Size = Obj.getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
- int64_t Addend = 0;
- memcpy(&Addend, LocalAddress, NumBytes);
-
- unsigned SymbolBaseAddr = MachO->getScatteredRelocationValue(RE);
- section_iterator TargetSI = getSectionByAddress(*MachO, SymbolBaseAddr);
- assert(TargetSI != MachO->section_end() && "Can't find section for symbol");
- uint64_t SectionBaseAddr;
- TargetSI->getAddress(SectionBaseAddr);
+ int64_t Addend = readBytesUnaligned(LocalAddress, NumBytes);
+
+ unsigned SymbolBaseAddr = Obj.getScatteredRelocationValue(RE);
+ section_iterator TargetSI = getSectionByAddress(Obj, SymbolBaseAddr);
+ assert(TargetSI != Obj.section_end() && "Can't find section for symbol");
+ uint64_t SectionBaseAddr = TargetSI->getAddress();
SectionRef TargetSection = *TargetSI;
- bool IsCode;
- TargetSection.isText(IsCode);
+ bool IsCode = TargetSection.isText();
uint32_t TargetSectionID =
findOrEmitSection(Obj, TargetSection, IsCode, ObjSectionToID);
@@ -223,7 +221,7 @@ private:
}
// Populate stubs in __jump_table section.
- void populateJumpTable(MachOObjectFile &Obj, const SectionRef &JTSection,
+ void populateJumpTable(const MachOObjectFile &Obj, const SectionRef &JTSection,
unsigned JTSectionID) {
assert(!Obj.is64Bit() &&
"__jump_table section not supported in 64-bit MachO.");
@@ -255,61 +253,9 @@ private:
}
}
- // Populate __pointers section.
- void populatePointersSection(MachOObjectFile &Obj,
- const SectionRef &PTSection,
- unsigned PTSectionID) {
- assert(!Obj.is64Bit() &&
- "__pointers section not supported in 64-bit MachO.");
-
- MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
- MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl());
- uint32_t PTSectionSize = Sec32.size;
- unsigned FirstIndirectSymbol = Sec32.reserved1;
- const unsigned PTEntrySize = 4;
- unsigned NumPTEntries = PTSectionSize / PTEntrySize;
- unsigned PTEntryOffset = 0;
-
- assert((PTSectionSize % PTEntrySize) == 0 &&
- "Pointers section does not contain a whole number of stubs?");
-
- DEBUG(dbgs() << "Populating __pointers, Section ID " << PTSectionID << ", "
- << NumPTEntries << " entries, " << PTEntrySize
- << " bytes each:\n");
-
- for (unsigned i = 0; i < NumPTEntries; ++i) {
- unsigned SymbolIndex =
- Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
- symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
- StringRef IndirectSymbolName;
- SI->getName(IndirectSymbolName);
- DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex
- << ", PT offset: " << PTEntryOffset << "\n");
- RelocationEntry RE(PTSectionID, PTEntryOffset,
- MachO::GENERIC_RELOC_VANILLA, 0, false, 2);
- addRelocationForSymbol(RE, IndirectSymbolName);
- PTEntryOffset += PTEntrySize;
- }
- }
-
- static section_iterator getSectionByAddress(const MachOObjectFile &Obj,
- uint64_t Addr) {
- section_iterator SI = Obj.section_begin();
- section_iterator SE = Obj.section_end();
-
- for (; SI != SE; ++SI) {
- uint64_t SAddr, SSize;
- SI->getAddress(SAddr);
- SI->getSize(SSize);
- if ((Addr >= SAddr) && (Addr < SAddr + SSize))
- return SI;
- }
-
- return SE;
- }
};
}
#undef DEBUG_TYPE
-#endif // LLVM_RUNTIMEDYLDMACHOI386_H
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h
index 99efe9d..0734017 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_RUNTIMEDYLDMACHOX86_64_H
-#define LLVM_RUNTIMEDYLDMACHOX86_64_H
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOX86_64_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOX86_64_H
#include "../RuntimeDyldMachO.h"
@@ -19,6 +19,9 @@ namespace llvm {
class RuntimeDyldMachOX86_64
: public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64> {
public:
+
+ typedef uint64_t TargetPtrT;
+
RuntimeDyldMachOX86_64(RTDyldMemoryManager *MM)
: RuntimeDyldMachOCRTPBase(MM) {}
@@ -28,29 +31,31 @@ public:
relocation_iterator
processRelocationRef(unsigned SectionID, relocation_iterator RelI,
- ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols, StubMap &Stubs) override {
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
const MachOObjectFile &Obj =
- static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile());
+ static_cast<const MachOObjectFile &>(BaseObjT);
MachO::any_relocation_info RelInfo =
Obj.getRelocation(RelI->getRawDataRefImpl());
assert(!Obj.isRelocationScattered(RelInfo) &&
"Scattered relocations not supported on X86_64");
- RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI));
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = memcpyAddend(RE);
RelocationValueRef Value(
- getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols));
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
if (!IsExtern && RE.IsPCRel)
- makeValueAddendPCRel(Value, ObjImg, RelI);
+ makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
if (RE.RelType == MachO::X86_64_RELOC_GOT ||
RE.RelType == MachO::X86_64_RELOC_GOT_LOAD)
processGOTRelocation(RE, Value, Stubs);
else {
- RE.Addend = Value.Addend;
+ RE.Addend = Value.Offset;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
@@ -60,7 +65,7 @@ public:
return ++RelI;
}
- void resolveRelocation(const RelocationEntry &RE, uint64_t Value) {
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
DEBUG(dumpRelocationToResolve(RE, Value));
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *LocalAddress = Section.Address + RE.Offset;
@@ -83,7 +88,7 @@ public:
case MachO::X86_64_RELOC_SIGNED:
case MachO::X86_64_RELOC_UNSIGNED:
case MachO::X86_64_RELOC_BRANCH:
- writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size);
+ writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
break;
case MachO::X86_64_RELOC_GOT_LOAD:
case MachO::X86_64_RELOC_GOT:
@@ -93,7 +98,7 @@ public:
}
}
- void finalizeSection(ObjectImage &ObjImg, unsigned SectionID,
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
const SectionRef &Section) {}
private:
@@ -102,7 +107,7 @@ private:
SectionEntry &Section = Sections[RE.SectionID];
assert(RE.IsPCRel);
assert(RE.Size == 2);
- Value.Addend -= RE.Addend;
+ Value.Offset -= RE.Addend;
RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
@@ -111,7 +116,7 @@ private:
Stubs[Value] = Section.StubOffset;
uint8_t *GOTEntry = Section.Address + Section.StubOffset;
RelocationEntry GOTRE(RE.SectionID, Section.StubOffset,
- MachO::X86_64_RELOC_UNSIGNED, Value.Addend, false,
+ MachO::X86_64_RELOC_UNSIGNED, Value.Offset, false,
3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
@@ -129,4 +134,4 @@ private:
#undef DEBUG_TYPE
-#endif // LLVM_RUNTIMEDYLDMACHOX86_64_H
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
index b10d51f..e6679cf 100644
--- a/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
@@ -30,7 +30,7 @@ TargetMachine *EngineBuilder::selectTarget() {
// MCJIT can generate code for remote targets, but the old JIT and Interpreter
// must use the host architecture.
- if (UseMCJIT && WhichEngine != EngineKind::Interpreter && M)
+ if (WhichEngine != EngineKind::Interpreter && M)
TT.setTriple(M->getTargetTriple());
return selectTarget(TT, MArch, MCPU, MAttrs);
@@ -89,8 +89,7 @@ TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple,
}
// FIXME: non-iOS ARM FastISel is broken with MCJIT.
- if (UseMCJIT &&
- TheTriple.getArch() == Triple::arm &&
+ if (TheTriple.getArch() == Triple::arm &&
!TheTriple.isiOS() &&
OptLevel == CodeGenOpt::None) {
OptLevel = CodeGenOpt::Less;
diff --git a/contrib/llvm/lib/IR/AsmWriter.cpp b/contrib/llvm/lib/IR/AsmWriter.cpp
index a7499bc..c494d6c 100644
--- a/contrib/llvm/lib/IR/AsmWriter.cpp
+++ b/contrib/llvm/lib/IR/AsmWriter.cpp
@@ -49,6 +49,218 @@ AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
// Helper Functions
//===----------------------------------------------------------------------===//
+namespace {
+struct OrderMap {
+ DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
+
+ unsigned size() const { return IDs.size(); }
+ std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
+ std::pair<unsigned, bool> lookup(const Value *V) const {
+ return IDs.lookup(V);
+ }
+ void index(const Value *V) {
+ // Explicitly sequence get-size and insert-value operations to avoid UB.
+ unsigned ID = IDs.size() + 1;
+ IDs[V].first = ID;
+ }
+};
+}
+
+static void orderValue(const Value *V, OrderMap &OM) {
+ if (OM.lookup(V).first)
+ return;
+
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands() && !isa<GlobalValue>(C))
+ for (const Value *Op : C->operands())
+ if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
+ orderValue(Op, OM);
+
+ // Note: we cannot cache this lookup above, since inserting into the map
+ // changes the map's size, and thus affects the other IDs.
+ OM.index(V);
+}
+
+static OrderMap orderModule(const Module *M) {
+ // This needs to match the order used by ValueEnumerator::ValueEnumerator()
+ // and ValueEnumerator::incorporateFunction().
+ OrderMap OM;
+
+ for (const GlobalVariable &G : M->globals()) {
+ if (G.hasInitializer())
+ if (!isa<GlobalValue>(G.getInitializer()))
+ orderValue(G.getInitializer(), OM);
+ orderValue(&G, OM);
+ }
+ for (const GlobalAlias &A : M->aliases()) {
+ if (!isa<GlobalValue>(A.getAliasee()))
+ orderValue(A.getAliasee(), OM);
+ orderValue(&A, OM);
+ }
+ for (const Function &F : *M) {
+ if (F.hasPrefixData())
+ if (!isa<GlobalValue>(F.getPrefixData()))
+ orderValue(F.getPrefixData(), OM);
+
+ if (F.hasPrologueData())
+ if (!isa<GlobalValue>(F.getPrologueData()))
+ orderValue(F.getPrologueData(), OM);
+
+ orderValue(&F, OM);
+
+ if (F.isDeclaration())
+ continue;
+
+ for (const Argument &A : F.args())
+ orderValue(&A, OM);
+ for (const BasicBlock &BB : F) {
+ orderValue(&BB, OM);
+ for (const Instruction &I : BB) {
+ for (const Value *Op : I.operands())
+ if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
+ isa<InlineAsm>(*Op))
+ orderValue(Op, OM);
+ orderValue(&I, OM);
+ }
+ }
+ }
+ return OM;
+}
+
+static void predictValueUseListOrderImpl(const Value *V, const Function *F,
+ unsigned ID, const OrderMap &OM,
+ UseListOrderStack &Stack) {
+ // Predict use-list order for this one.
+ typedef std::pair<const Use *, unsigned> Entry;
+ SmallVector<Entry, 64> List;
+ for (const Use &U : V->uses())
+ // Check if this user will be serialized.
+ if (OM.lookup(U.getUser()).first)
+ List.push_back(std::make_pair(&U, List.size()));
+
+ if (List.size() < 2)
+ // We may have lost some users.
+ return;
+
+ bool GetsReversed =
+ !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
+ if (auto *BA = dyn_cast<BlockAddress>(V))
+ ID = OM.lookup(BA->getBasicBlock()).first;
+ std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
+ const Use *LU = L.first;
+ const Use *RU = R.first;
+ if (LU == RU)
+ return false;
+
+ auto LID = OM.lookup(LU->getUser()).first;
+ auto RID = OM.lookup(RU->getUser()).first;
+
+ // If ID is 4, then expect: 7 6 5 1 2 3.
+ if (LID < RID) {
+ if (GetsReversed)
+ if (RID <= ID)
+ return true;
+ return false;
+ }
+ if (RID < LID) {
+ if (GetsReversed)
+ if (LID <= ID)
+ return false;
+ return true;
+ }
+
+ // LID and RID are equal, so we have different operands of the same user.
+ // Assume operands are added in order for all instructions.
+ if (GetsReversed)
+ if (LID <= ID)
+ return LU->getOperandNo() < RU->getOperandNo();
+ return LU->getOperandNo() > RU->getOperandNo();
+ });
+
+ if (std::is_sorted(
+ List.begin(), List.end(),
+ [](const Entry &L, const Entry &R) { return L.second < R.second; }))
+ // Order is already correct.
+ return;
+
+ // Store the shuffle.
+ Stack.emplace_back(V, F, List.size());
+ assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
+ for (size_t I = 0, E = List.size(); I != E; ++I)
+ Stack.back().Shuffle[I] = List[I].second;
+}
+
+static void predictValueUseListOrder(const Value *V, const Function *F,
+ OrderMap &OM, UseListOrderStack &Stack) {
+ auto &IDPair = OM[V];
+ assert(IDPair.first && "Unmapped value");
+ if (IDPair.second)
+ // Already predicted.
+ return;
+
+ // Do the actual prediction.
+ IDPair.second = true;
+ if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
+ predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
+
+ // Recursive descent into constants.
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands()) // Visit GlobalValues.
+ for (const Value *Op : C->operands())
+ if (isa<Constant>(Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, F, OM, Stack);
+}
+
+static UseListOrderStack predictUseListOrder(const Module *M) {
+ OrderMap OM = orderModule(M);
+
+ // Use-list orders need to be serialized after all the users have been added
+ // to a value, or else the shuffles will be incomplete. Store them per
+ // function in a stack.
+ //
+ // Aside from function order, the order of values doesn't matter much here.
+ UseListOrderStack Stack;
+
+ // We want to visit the functions backward now so we can list function-local
+ // constants in the last Function they're used in. Module-level constants
+ // have already been visited above.
+ for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
+ const Function &F = *I;
+ if (F.isDeclaration())
+ continue;
+ for (const BasicBlock &BB : F)
+ predictValueUseListOrder(&BB, &F, OM, Stack);
+ for (const Argument &A : F.args())
+ predictValueUseListOrder(&A, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ for (const Value *Op : I.operands())
+ if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ predictValueUseListOrder(&I, &F, OM, Stack);
+ }
+
+ // Visit globals last.
+ for (const GlobalVariable &G : M->globals())
+ predictValueUseListOrder(&G, nullptr, OM, Stack);
+ for (const Function &F : *M)
+ predictValueUseListOrder(&F, nullptr, OM, Stack);
+ for (const GlobalAlias &A : M->aliases())
+ predictValueUseListOrder(&A, nullptr, OM, Stack);
+ for (const GlobalVariable &G : M->globals())
+ if (G.hasInitializer())
+ predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
+ for (const GlobalAlias &A : M->aliases())
+ predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
+ for (const Function &F : *M)
+ if (F.hasPrefixData())
+ predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
+
+ return Stack;
+}
+
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
@@ -75,9 +287,11 @@ static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
case CallingConv::AnyReg: Out << "anyregcc"; break;
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
+ case CallingConv::GHC: Out << "ghccc"; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
+ case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
@@ -347,6 +561,8 @@ public:
FunctionProcessed = false;
}
+ const Function *getFunction() const { return TheFunction; }
+
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
@@ -418,13 +634,6 @@ static SlotTracker *createSlotTracker(const Value *V) {
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
- if (const MDNode *MD = dyn_cast<MDNode>(V)) {
- if (!MD->isFunctionLocal())
- return new SlotTracker(MD->getFunction());
-
- return new SlotTracker((Function *)nullptr);
- }
-
return nullptr;
}
@@ -437,16 +646,14 @@ static SlotTracker *createSlotTracker(const Value *V) {
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M)
- : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
- mNext(0), fNext(0), mdnNext(0), asNext(0) {
-}
+ : TheModule(M), TheFunction(nullptr), FunctionProcessed(false), mNext(0),
+ fNext(0), mdnNext(0), asNext(0) {}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F)
- : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
- FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0), asNext(0) {
-}
+ : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
+ FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0), asNext(0) {}
inline void SlotTracker::initialize() {
if (TheModule) {
@@ -508,7 +715,7 @@ void SlotTracker::processFunction() {
ST_DEBUG("Inserting Instructions:\n");
- SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDForInst;
// Add all of the basic blocks and instructions with no names.
for (Function::const_iterator BB = TheFunction->begin(),
@@ -528,8 +735,9 @@ void SlotTracker::processFunction() {
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
- CreateMetadataSlot(N);
+ if (auto *V = dyn_cast_or_null<MetadataAsValue>(I->getOperand(i)))
+ if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
+ CreateMetadataSlot(N);
// Add all the call attributes to the table.
AttributeSet Attrs = CI->getAttributes().getFnAttributes();
@@ -640,16 +848,10 @@ void SlotTracker::CreateFunctionSlot(const Value *V) {
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
assert(N && "Can't insert a null Value into SlotTracker!");
- // Don't insert if N is a function-local metadata, these are always printed
- // inline.
- if (!N->isFunctionLocal()) {
- mdn_iterator I = mdnMap.find(N);
- if (I != mdnMap.end())
- return;
-
- unsigned DestSlot = mdnNext++;
- mdnMap[N] = DestSlot;
- }
+ unsigned DestSlot = mdnNext;
+ if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
+ return;
+ ++mdnNext;
// Recursively add any MDNodes referenced by operands.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
@@ -678,6 +880,11 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
SlotTracker *Machine,
const Module *Context);
+static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context,
+ bool FromValue = false);
+
static const char *getPredicateText(unsigned predicate) {
const char * pred = "unknown";
switch (predicate) {
@@ -1042,20 +1249,21 @@ static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
Out << "<placeholder or erroneous Constant>";
}
-static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
- TypePrinting *TypePrinter,
- SlotTracker *Machine,
- const Module *Context) {
+static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
Out << "!{";
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
- const Value *V = Node->getOperand(mi);
- if (!V)
+ const Metadata *MD = Node->getOperand(mi);
+ if (!MD)
Out << "null";
- else {
+ else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
+ Value *V = MDV->getValue();
TypePrinter->print(V->getType(), Out);
Out << ' ';
- WriteAsOperandInternal(Out, Node->getOperand(mi),
- TypePrinter, Machine, Context);
+ WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
+ } else {
+ WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
if (mi + 1 != me)
Out << ", ";
@@ -1064,6 +1272,60 @@ static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
Out << "}";
}
+namespace {
+struct FieldSeparator {
+ bool Skip;
+ FieldSeparator() : Skip(true) {}
+};
+raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
+ if (FS.Skip) {
+ FS.Skip = false;
+ return OS;
+ }
+ return OS << ", ";
+}
+} // end namespace
+
+static void writeMDLocation(raw_ostream &Out, const MDLocation *DL,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!MDLocation(";
+ FieldSeparator FS;
+ // Always output the line, since 0 is a relevant and important value for it.
+ Out << FS << "line: " << DL->getLine();
+ if (DL->getColumn())
+ Out << FS << "column: " << DL->getColumn();
+ Out << FS << "scope: ";
+ WriteAsOperandInternal(Out, DL->getScope(), TypePrinter, Machine, Context);
+ if (DL->getInlinedAt()) {
+ Out << FS << "inlinedAt: ";
+ WriteAsOperandInternal(Out, DL->getInlinedAt(), TypePrinter, Machine,
+ Context);
+ }
+ Out << ")";
+}
+
+static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ assert(isa<UniquableMDNode>(Node) && "Expected uniquable MDNode");
+
+ auto *Uniquable = cast<UniquableMDNode>(Node);
+ if (Uniquable->isDistinct())
+ Out << "distinct ";
+
+ switch (Uniquable->getMetadataID()) {
+ default:
+ llvm_unreachable("Expected uniquable MDNode");
+#define HANDLE_UNIQUABLE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ write##CLASS(Out, cast<CLASS>(Uniquable), TypePrinter, Machine, Context); \
+ break;
+#include "llvm/IR/Metadata.def"
+ }
+}
+
// Full implementation of printing a Value as an operand with support for
// TypePrinting, etc.
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
@@ -1099,31 +1361,9 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
return;
}
- if (const MDNode *N = dyn_cast<MDNode>(V)) {
- if (N->isFunctionLocal()) {
- // Print metadata inline, not via slot reference number.
- WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
- return;
- }
-
- if (!Machine) {
- if (N->isFunctionLocal())
- Machine = new SlotTracker(N->getFunction());
- else
- Machine = new SlotTracker(Context);
- }
- int Slot = Machine->getMetadataSlot(N);
- if (Slot == -1)
- Out << "<badref>";
- else
- Out << '!' << Slot;
- return;
- }
-
- if (const MDString *MDS = dyn_cast<MDString>(V)) {
- Out << "!\"";
- PrintEscapedString(MDS->getString(), Out);
- Out << '"';
+ if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
+ WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
+ Context, /* FromValue */ true);
return;
}
@@ -1166,6 +1406,40 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
Out << "<badref>";
}
+static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context,
+ bool FromValue) {
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ if (!Machine)
+ Machine = new SlotTracker(Context);
+ int Slot = Machine->getMetadataSlot(N);
+ if (Slot == -1)
+ // Give the pointer value instead of "badref", since this comes up all
+ // the time when debugging.
+ Out << "<" << N << ">";
+ else
+ Out << '!' << Slot;
+ return;
+ }
+
+ if (const MDString *MDS = dyn_cast<MDString>(MD)) {
+ Out << "!\"";
+ PrintEscapedString(MDS->getString(), Out);
+ Out << '"';
+ return;
+ }
+
+ auto *V = cast<ValueAsMetadata>(MD);
+ assert(TypePrinter && "TypePrinter required for metadata values");
+ assert((FromValue || !isa<LocalAsMetadata>(V)) &&
+ "Unexpected function-local metadata outside of value argument");
+
+ TypePrinter->print(V->getValue()->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
+}
+
void AssemblyWriter::init() {
if (!TheModule)
return;
@@ -1279,6 +1553,9 @@ void AssemblyWriter::writeParamOperand(const Value *Operand,
void AssemblyWriter::printModule(const Module *M) {
Machine.initialize();
+ if (shouldPreserveAssemblyUseListOrder())
+ UseListOrders = predictUseListOrder(M);
+
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
@@ -1339,9 +1616,13 @@ void AssemblyWriter::printModule(const Module *M) {
I != E; ++I)
printAlias(I);
+ // Output global use-lists.
+ printUseLists(nullptr);
+
// Output all of the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
+ assert(UseListOrders.empty() && "All use-lists should have been consumed");
// Output all attribute groups.
if (!Machine.as_empty()) {
@@ -1455,6 +1736,24 @@ static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
}
}
+static void maybePrintComdat(formatted_raw_ostream &Out,
+ const GlobalObject &GO) {
+ const Comdat *C = GO.getComdat();
+ if (!C)
+ return;
+
+ if (isa<GlobalVariable>(GO))
+ Out << ',';
+ Out << " comdat";
+
+ if (GO.getName() == C->getName())
+ return;
+
+ Out << '(';
+ PrintLLVMName(Out, C->getName(), ComdatPrefix);
+ Out << ')';
+}
+
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->isMaterializable())
Out << "; Materializable\n";
@@ -1488,10 +1787,7 @@ void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
PrintEscapedString(GV->getSection(), Out);
Out << '"';
}
- if (GV->hasComdat()) {
- Out << ", comdat ";
- PrintLLVMName(Out, GV->getComdat()->getName(), ComdatPrefix);
- }
+ maybePrintComdat(Out, *GV);
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
@@ -1509,6 +1805,7 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) {
PrintLLVMName(Out, GA);
Out << " = ";
}
+ PrintLinkage(GA->getLinkage(), Out);
PrintVisibility(GA->getVisibility(), Out);
PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
@@ -1517,8 +1814,6 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) {
Out << "alias ";
- PrintLinkage(GA->getLinkage(), Out);
-
const Constant *Aliasee = GA->getAliasee();
if (!Aliasee) {
@@ -1673,10 +1968,7 @@ void AssemblyWriter::printFunction(const Function *F) {
PrintEscapedString(F->getSection(), Out);
Out << '"';
}
- if (F->hasComdat()) {
- Out << " comdat ";
- PrintLLVMName(Out, F->getComdat()->getName(), ComdatPrefix);
- }
+ maybePrintComdat(Out, *F);
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
@@ -1685,6 +1977,11 @@ void AssemblyWriter::printFunction(const Function *F) {
Out << " prefix ";
writeOperand(F->getPrefixData(), true);
}
+ if (F->hasPrologueData()) {
+ Out << " prologue ";
+ writeOperand(F->getPrologueData(), true);
+ }
+
if (F->isDeclaration()) {
Out << '\n';
} else {
@@ -1693,6 +1990,9 @@ void AssemblyWriter::printFunction(const Function *F) {
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
+ // Output the function's use-lists.
+ printUseLists(F);
+
Out << "}\n";
}
@@ -1956,6 +2256,14 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
Out << ", ";
writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
}
+
+ // Emit an ellipsis if this is a musttail call in a vararg function. This
+ // is only to aid readability, musttail calls forward varargs by default.
+ if (CI->isMustTailCall() && CI->getParent() &&
+ CI->getParent()->getParent() &&
+ CI->getParent()->getParent()->isVarArg())
+ Out << ", ...";
+
Out << ')';
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
@@ -2088,7 +2396,7 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
}
// Print Metadata info.
- SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
+ SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
I.getAllMetadata(InstMD);
if (!InstMD.empty()) {
SmallVector<StringRef, 8> MDNames;
@@ -2113,8 +2421,8 @@ static void WriteMDNodeComment(const MDNode *Node,
if (Node->getNumOperands() < 1)
return;
- Value *Op = Node->getOperand(0);
- if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
+ Metadata *Op = Node->getOperand(0);
+ if (!Op || !isa<MDString>(Op))
return;
DIDescriptor Desc(Node);
@@ -2132,7 +2440,7 @@ static void WriteMDNodeComment(const MDNode *Node,
}
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
- Out << '!' << Slot << " = metadata ";
+ Out << '!' << Slot << " = ";
printMDNodeBody(Node);
}
@@ -2170,6 +2478,45 @@ void AssemblyWriter::writeAllAttributeGroups() {
} // namespace llvm
+void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
+ bool IsInFunction = Machine.getFunction();
+ if (IsInFunction)
+ Out << " ";
+
+ Out << "uselistorder";
+ if (const BasicBlock *BB =
+ IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
+ Out << "_bb ";
+ writeOperand(BB->getParent(), false);
+ Out << ", ";
+ writeOperand(BB, false);
+ } else {
+ Out << " ";
+ writeOperand(Order.V, true);
+ }
+ Out << ", { ";
+
+ assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
+ Out << Order.Shuffle[0];
+ for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
+ Out << ", " << Order.Shuffle[I];
+ Out << " }\n";
+}
+
+void AssemblyWriter::printUseLists(const Function *F) {
+ auto hasMore =
+ [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
+ if (!hasMore())
+ // Nothing to do.
+ return;
+
+ Out << "\n; uselistorder directives\n";
+ while (hasMore()) {
+ printUseListOrder(UseListOrders.back());
+ UseListOrders.pop_back();
+ }
+}
+
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
@@ -2245,18 +2592,14 @@ void Value::print(raw_ostream &ROS) const {
W.printFunction(F);
else
W.printAlias(cast<GlobalAlias>(GV));
- } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
- const Function *F = N->getFunction();
- SlotTracker SlotTable(F);
- AssemblyWriter W(OS, SlotTable, F ? F->getParent() : nullptr, nullptr);
- W.printMDNodeBody(N);
+ } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
+ V->getMetadata()->print(ROS);
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
OS << ' ';
WriteConstantInternal(OS, C, TypePrinter, nullptr, nullptr);
- } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
- isa<Argument>(this)) {
+ } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
this->printAsOperand(OS);
} else {
llvm_unreachable("Unknown value to print out!");
@@ -2266,9 +2609,8 @@ void Value::print(raw_ostream &ROS) const {
void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const {
// Fast path: Don't construct and populate a TypePrinting object if we
// won't be needing any types printed.
- if (!PrintType &&
- ((!isa<Constant>(this) && !isa<MDNode>(this)) ||
- hasName() || isa<GlobalValue>(this))) {
+ if (!PrintType && ((!isa<Constant>(this) && !isa<MetadataAsValue>(this)) ||
+ hasName() || isa<GlobalValue>(this))) {
WriteAsOperandInternal(O, this, nullptr, nullptr, M);
return;
}
@@ -2287,11 +2629,37 @@ void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) cons
WriteAsOperandInternal(O, this, &TypePrinter, nullptr, M);
}
+void Metadata::print(raw_ostream &ROS) const {
+ formatted_raw_ostream OS(ROS);
+ if (auto *N = dyn_cast<MDNode>(this)) {
+ SlotTracker SlotTable(static_cast<Function *>(nullptr));
+ AssemblyWriter W(OS, SlotTable, nullptr, nullptr);
+ W.printMDNodeBody(N);
+
+ return;
+ }
+ printAsOperand(OS);
+}
+
+void Metadata::printAsOperand(raw_ostream &ROS, bool PrintType,
+ const Module *M) const {
+ formatted_raw_ostream OS(ROS);
+
+ std::unique_ptr<TypePrinting> TypePrinter;
+ if (PrintType) {
+ TypePrinter.reset(new TypePrinting);
+ if (M)
+ TypePrinter->incorporateTypes(*M);
+ }
+ WriteAsOperandInternal(OS, this, TypePrinter.get(), nullptr, M,
+ /* FromValue */ true);
+}
+
// Value::dump - allow easy printing of Values from the debugger.
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
-void Type::dump() const { print(dbgs()); }
+void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
// Module::dump() - Allow printing of Modules from the debugger.
void Module::dump() const { print(dbgs(), nullptr); }
@@ -2301,3 +2669,8 @@ void Comdat::dump() const { print(dbgs()); }
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
void NamedMDNode::dump() const { print(dbgs()); }
+
+void Metadata::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
diff --git a/contrib/llvm/lib/IR/AsmWriter.h b/contrib/llvm/lib/IR/AsmWriter.h
index aef9c8a..60da5ad 100644
--- a/contrib/llvm/lib/IR/AsmWriter.h
+++ b/contrib/llvm/lib/IR/AsmWriter.h
@@ -12,14 +12,15 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_IR_ASSEMBLYWRITER_H
-#define LLVM_IR_ASSEMBLYWRITER_H
+#ifndef LLVM_LIB_IR_ASMWRITER_H
+#define LLVM_LIB_IR_ASMWRITER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/TypeFinder.h"
+#include "llvm/IR/UseListOrder.h"
#include "llvm/Support/FormattedStream.h"
namespace llvm {
@@ -73,6 +74,7 @@ private:
TypePrinting TypePrinter;
AssemblyAnnotationWriter *AnnotationWriter;
SetVector<const Comdat *> Comdats;
+ UseListOrderStack UseListOrders;
public:
/// Construct an AssemblyWriter with an external SlotTracker
@@ -111,6 +113,9 @@ public:
void printInstructionLine(const Instruction &I);
void printInstruction(const Instruction &I);
+ void printUseListOrder(const UseListOrder &Order);
+ void printUseLists(const Function *F);
+
private:
void init();
@@ -121,4 +126,4 @@ private:
} // namespace llvm
-#endif //LLVM_IR_ASMWRITER_H
+#endif
diff --git a/contrib/llvm/lib/IR/AttributeImpl.h b/contrib/llvm/lib/IR/AttributeImpl.h
index cc6d557..0448dc17 100644
--- a/contrib/llvm/lib/IR/AttributeImpl.h
+++ b/contrib/llvm/lib/IR/AttributeImpl.h
@@ -13,8 +13,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef LLVM_ATTRIBUTESIMPL_H
-#define LLVM_ATTRIBUTESIMPL_H
+#ifndef LLVM_LIB_IR_ATTRIBUTEIMPL_H
+#define LLVM_LIB_IR_ATTRIBUTEIMPL_H
#include "llvm/ADT/FoldingSet.h"
#include "llvm/IR/Attributes.h"
diff --git a/contrib/llvm/lib/IR/AutoUpgrade.cpp b/contrib/llvm/lib/IR/AutoUpgrade.cpp
index 459bd88..e3544df 100644
--- a/contrib/llvm/lib/IR/AutoUpgrade.cpp
+++ b/contrib/llvm/lib/IR/AutoUpgrade.cpp
@@ -15,6 +15,7 @@
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
@@ -43,6 +44,22 @@ static bool UpgradeSSE41Function(Function* F, Intrinsic::ID IID,
return true;
}
+// Upgrade the declarations of intrinsic functions whose 8-bit immediate mask
+// arguments have changed their type from i32 to i8.
+static bool UpgradeX86IntrinsicsWith8BitMask(Function *F, Intrinsic::ID IID,
+ Function *&NewFn) {
+ // Check that the last argument is an i32.
+ Type *LastArgType = F->getFunctionType()->getParamType(
+ F->getFunctionType()->getNumParams() - 1);
+ if (!LastArgType->isIntegerTy(32))
+ return false;
+
+ // Move this function aside and map down.
+ F->setName(F->getName() + ".old");
+ NewFn = Intrinsic::getDeclaration(F->getParent(), IID);
+ return true;
+}
+
static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
assert(F && "Illegal to upgrade a non-existent Function.");
@@ -90,6 +107,20 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
}
break;
}
+ case 'd': {
+ if (Name.startswith("dbg.declare") && F->arg_size() == 2) {
+ F->setName(Name + ".old");
+ NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::dbg_declare);
+ return true;
+ }
+ if (Name.startswith("dbg.value") && F->arg_size() == 3) {
+ F->setName(Name + ".old");
+ NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::dbg_value);
+ return true;
+ }
+ break;
+ }
+
case 'o':
// We only need to change the name to match the mangling including the
// address space.
@@ -130,6 +161,51 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
if (Name == "x86.sse41.ptestnzc")
return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestnzc, NewFn);
}
+ // Several blend and other instructions with maskes used the wrong number of
+ // bits.
+ if (Name == "x86.sse41.pblendw")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_pblendw,
+ NewFn);
+ if (Name == "x86.sse41.blendpd")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_blendpd,
+ NewFn);
+ if (Name == "x86.sse41.blendps")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_blendps,
+ NewFn);
+ if (Name == "x86.sse41.insertps")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_insertps,
+ NewFn);
+ if (Name == "x86.sse41.dppd")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dppd,
+ NewFn);
+ if (Name == "x86.sse41.dpps")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dpps,
+ NewFn);
+ if (Name == "x86.sse41.mpsadbw")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_mpsadbw,
+ NewFn);
+ if (Name == "x86.avx.blend.pd.256")
+ return UpgradeX86IntrinsicsWith8BitMask(
+ F, Intrinsic::x86_avx_blend_pd_256, NewFn);
+ if (Name == "x86.avx.blend.ps.256")
+ return UpgradeX86IntrinsicsWith8BitMask(
+ F, Intrinsic::x86_avx_blend_ps_256, NewFn);
+ if (Name == "x86.avx.dp.ps.256")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx_dp_ps_256,
+ NewFn);
+ if (Name == "x86.avx2.pblendw")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_pblendw,
+ NewFn);
+ if (Name == "x86.avx2.pblendd.128")
+ return UpgradeX86IntrinsicsWith8BitMask(
+ F, Intrinsic::x86_avx2_pblendd_128, NewFn);
+ if (Name == "x86.avx2.pblendd.256")
+ return UpgradeX86IntrinsicsWith8BitMask(
+ F, Intrinsic::x86_avx2_pblendd_256, NewFn);
+ if (Name == "x86.avx2.mpsadbw")
+ return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_mpsadbw,
+ NewFn);
+
// frcz.ss/sd may need to have an argument dropped
if (Name.startswith("x86.xop.vfrcz.ss") && F->arg_size() == 2) {
F->setName(Name + ".old");
@@ -173,66 +249,28 @@ bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
return Upgraded;
}
-static bool UpgradeGlobalStructors(GlobalVariable *GV) {
- ArrayType *ATy = dyn_cast<ArrayType>(GV->getType()->getElementType());
- StructType *OldTy =
- ATy ? dyn_cast<StructType>(ATy->getElementType()) : nullptr;
-
- // Only upgrade an array of a two field struct with the appropriate field
- // types.
- if (!OldTy || OldTy->getNumElements() != 2)
- return false;
-
- // Get the upgraded 3 element type.
- PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
- Type *Tys[3] = {
- OldTy->getElementType(0),
- OldTy->getElementType(1),
- VoidPtrTy
- };
- StructType *NewTy =
- StructType::get(GV->getContext(), Tys, /*isPacked=*/false);
-
- // Build new constants with a null third field filled in.
- Constant *OldInitC = GV->getInitializer();
- ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
- if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
- return false;
- std::vector<Constant *> Initializers;
- if (OldInit) {
- for (Use &U : OldInit->operands()) {
- ConstantStruct *Init = cast<ConstantStruct>(&U);
- Constant *NewInit =
- ConstantStruct::get(NewTy, Init->getOperand(0), Init->getOperand(1),
- Constant::getNullValue(VoidPtrTy), nullptr);
- Initializers.push_back(NewInit);
- }
- }
- assert(Initializers.size() == ATy->getNumElements());
-
- // Replace the old GV with a new one.
- ATy = ArrayType::get(NewTy, Initializers.size());
- Constant *NewInit = ConstantArray::get(ATy, Initializers);
- GlobalVariable *NewGV = new GlobalVariable(
- *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
- GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
- GV->isExternallyInitialized());
- NewGV->copyAttributesFrom(GV);
- NewGV->takeName(GV);
- assert(GV->use_empty() && "program cannot use initializer list");
- GV->eraseFromParent();
- return true;
-}
-
bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) {
- if (GV->getName() == "llvm.global_ctors" ||
- GV->getName() == "llvm.global_dtors")
- return UpgradeGlobalStructors(GV);
-
// Nothing to do yet.
return false;
}
+static MDNode *getNodeField(const MDNode *DbgNode, unsigned Elt) {
+ if (!DbgNode || Elt >= DbgNode->getNumOperands())
+ return nullptr;
+ return dyn_cast_or_null<MDNode>(DbgNode->getOperand(Elt));
+}
+
+static MetadataAsValue *getExpression(Value *VarOperand, Function *F) {
+ // Old-style DIVariables have an optional expression as the 8th element.
+ DIExpression Expr(getNodeField(
+ cast<MDNode>(cast<MetadataAsValue>(VarOperand)->getMetadata()), 8));
+ if (!Expr) {
+ DIBuilder DIB(*F->getParent(), /*AllowUnresolved*/ false);
+ Expr = DIB.createExpression();
+ }
+ return MetadataAsValue::get(F->getContext(), Expr);
+}
+
// UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
// upgraded intrinsic. All argument and return casting must be provided in
// order to seamlessly integrate with existing context.
@@ -269,8 +307,9 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Builder.SetInsertPoint(CI->getParent(), CI);
Module *M = F->getParent();
- SmallVector<Value *, 1> Elts;
- Elts.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
+ SmallVector<Metadata *, 1> Elts;
+ Elts.push_back(
+ ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1)));
MDNode *Node = MDNode::get(C, Elts);
Value *Arg0 = CI->getArgOperand(0);
@@ -396,12 +435,32 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
}
std::string Name = CI->getName().str();
- CI->setName(Name + ".old");
+ if (!Name.empty())
+ CI->setName(Name + ".old");
switch (NewFn->getIntrinsicID()) {
default:
llvm_unreachable("Unknown function for CallInst upgrade.");
+ // Upgrade debug intrinsics to use an additional DIExpression argument.
+ case Intrinsic::dbg_declare: {
+ auto NewCI =
+ Builder.CreateCall3(NewFn, CI->getArgOperand(0), CI->getArgOperand(1),
+ getExpression(CI->getArgOperand(1), F), Name);
+ NewCI->setDebugLoc(CI->getDebugLoc());
+ CI->replaceAllUsesWith(NewCI);
+ CI->eraseFromParent();
+ return;
+ }
+ case Intrinsic::dbg_value: {
+ auto NewCI = Builder.CreateCall4(
+ NewFn, CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2),
+ getExpression(CI->getArgOperand(2), F), Name);
+ NewCI->setDebugLoc(CI->getDebugLoc());
+ CI->replaceAllUsesWith(NewCI);
+ CI->eraseFromParent();
+ return;
+ }
case Intrinsic::ctlz:
case Intrinsic::cttz:
assert(CI->getNumArgOperands() == 1 &&
@@ -419,14 +478,6 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
CI->eraseFromParent();
return;
- case Intrinsic::arm_neon_vclz: {
- // Change name from llvm.arm.neon.vclz.* to llvm.ctlz.*
- CI->replaceAllUsesWith(Builder.CreateCall2(NewFn, CI->getArgOperand(0),
- Builder.getFalse(),
- "llvm.ctlz." + Name.substr(14)));
- CI->eraseFromParent();
- return;
- }
case Intrinsic::ctpop: {
CI->replaceAllUsesWith(Builder.CreateCall(NewFn, CI->getArgOperand(0)));
CI->eraseFromParent();
@@ -468,6 +519,34 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
CI->eraseFromParent();
return;
}
+
+ case Intrinsic::x86_sse41_pblendw:
+ case Intrinsic::x86_sse41_blendpd:
+ case Intrinsic::x86_sse41_blendps:
+ case Intrinsic::x86_sse41_insertps:
+ case Intrinsic::x86_sse41_dppd:
+ case Intrinsic::x86_sse41_dpps:
+ case Intrinsic::x86_sse41_mpsadbw:
+ case Intrinsic::x86_avx_blend_pd_256:
+ case Intrinsic::x86_avx_blend_ps_256:
+ case Intrinsic::x86_avx_dp_ps_256:
+ case Intrinsic::x86_avx2_pblendw:
+ case Intrinsic::x86_avx2_pblendd_128:
+ case Intrinsic::x86_avx2_pblendd_256:
+ case Intrinsic::x86_avx2_mpsadbw: {
+ // Need to truncate the last argument from i32 to i8 -- this argument models
+ // an inherently 8-bit immediate operand to these x86 instructions.
+ SmallVector<Value *, 4> Args(CI->arg_operands().begin(),
+ CI->arg_operands().end());
+
+ // Replace the last argument with a trunc.
+ Args.back() = Builder.CreateTrunc(Args.back(), Type::getInt8Ty(C), "trunc");
+
+ CallInst *NewCall = Builder.CreateCall(NewFn, Args);
+ CI->replaceAllUsesWith(NewCall);
+ CI->eraseFromParent();
+ return;
+ }
}
}
@@ -501,22 +580,18 @@ void llvm::UpgradeInstWithTBAATag(Instruction *I) {
return;
if (MD->getNumOperands() == 3) {
- Value *Elts[] = {
- MD->getOperand(0),
- MD->getOperand(1)
- };
+ Metadata *Elts[] = {MD->getOperand(0), MD->getOperand(1)};
MDNode *ScalarType = MDNode::get(I->getContext(), Elts);
// Create a MDNode <ScalarType, ScalarType, offset 0, const>
- Value *Elts2[] = {
- ScalarType, ScalarType,
- Constant::getNullValue(Type::getInt64Ty(I->getContext())),
- MD->getOperand(2)
- };
+ Metadata *Elts2[] = {ScalarType, ScalarType,
+ ConstantAsMetadata::get(Constant::getNullValue(
+ Type::getInt64Ty(I->getContext()))),
+ MD->getOperand(2)};
I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts2));
} else {
// Create a MDNode <MD, MD, offset 0>
- Value *Elts[] = {MD, MD,
- Constant::getNullValue(Type::getInt64Ty(I->getContext()))};
+ Metadata *Elts[] = {MD, MD, ConstantAsMetadata::get(Constant::getNullValue(
+ Type::getInt64Ty(I->getContext())))};
I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts));
}
}
diff --git a/contrib/llvm/lib/IR/BasicBlock.cpp b/contrib/llvm/lib/IR/BasicBlock.cpp
index ba07433..98a3062 100644
--- a/contrib/llvm/lib/IR/BasicBlock.cpp
+++ b/contrib/llvm/lib/IR/BasicBlock.cpp
@@ -19,7 +19,6 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/IR/Type.h"
#include <algorithm>
using namespace llvm;
@@ -47,20 +46,24 @@ BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
BasicBlock *InsertBefore)
: Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
- // Make sure that we get added to a function
- LeakDetector::addGarbageObject(this);
-
- if (InsertBefore) {
- assert(NewParent &&
+ if (NewParent)
+ insertInto(NewParent, InsertBefore);
+ else
+ assert(!InsertBefore &&
"Cannot insert block before another block with no function!");
- NewParent->getBasicBlockList().insert(InsertBefore, this);
- } else if (NewParent) {
- NewParent->getBasicBlockList().push_back(this);
- }
setName(Name);
}
+void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
+ assert(NewParent && "Expected a parent");
+ assert(!Parent && "Already has a parent");
+
+ if (InsertBefore)
+ NewParent->getBasicBlockList().insert(InsertBefore, this);
+ else
+ NewParent->getBasicBlockList().push_back(this);
+}
BasicBlock::~BasicBlock() {
// If the address of the block is taken and it is being deleted (e.g. because
@@ -87,14 +90,8 @@ BasicBlock::~BasicBlock() {
}
void BasicBlock::setParent(Function *parent) {
- if (getParent())
- LeakDetector::addGarbageObject(this);
-
// Set Parent=parent, updating instruction symtab entries as appropriate.
InstList.setSymTabObject(&Parent, parent);
-
- if (getParent())
- LeakDetector::removeGarbageObject(this);
}
void BasicBlock::removeFromParent() {
@@ -131,6 +128,37 @@ const TerminatorInst *BasicBlock::getTerminator() const {
return dyn_cast<TerminatorInst>(&InstList.back());
}
+CallInst *BasicBlock::getTerminatingMustTailCall() {
+ if (InstList.empty())
+ return nullptr;
+ ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
+ if (!RI || RI == &InstList.front())
+ return nullptr;
+
+ Instruction *Prev = RI->getPrevNode();
+ if (!Prev)
+ return nullptr;
+
+ if (Value *RV = RI->getReturnValue()) {
+ if (RV != Prev)
+ return nullptr;
+
+ // Look through the optional bitcast.
+ if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
+ RV = BI->getOperand(0);
+ Prev = BI->getPrevNode();
+ if (!Prev || RV != Prev)
+ return nullptr;
+ }
+ }
+
+ if (auto *CI = dyn_cast<CallInst>(Prev)) {
+ if (CI->isMustTailCall())
+ return CI;
+ }
+ return nullptr;
+}
+
Instruction* BasicBlock::getFirstNonPHI() {
BasicBlock::iterator i = begin();
// All valid basic blocks should have a terminator,
diff --git a/contrib/llvm/lib/IR/ConstantFold.cpp b/contrib/llvm/lib/IR/ConstantFold.cpp
index 395ac39..9176bf2 100644
--- a/contrib/llvm/lib/IR/ConstantFold.cpp
+++ b/contrib/llvm/lib/IR/ConstantFold.cpp
@@ -27,12 +27,14 @@
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include <limits>
using namespace llvm;
+using namespace llvm::PatternMatch;
//===----------------------------------------------------------------------===//
// ConstantFold*Instruction Implementations
@@ -593,8 +595,13 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
bool ignored;
uint64_t x[2];
uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
- APFloat::rmTowardZero, &ignored);
+ if (APFloat::opInvalidOp ==
+ V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored)) {
+ // Undefined behavior invoked - the destination type can't represent
+ // the input constant.
+ return UndefValue::get(DestTy);
+ }
APInt Val(DestBitWidth, x);
return ConstantInt::get(FPC->getContext(), Val);
}
@@ -653,9 +660,13 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
APInt api = CI->getValue();
APFloat apf(DestTy->getFltSemantics(),
APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
- (void)apf.convertFromAPInt(api,
- opc==Instruction::SIToFP,
- APFloat::rmNearestTiesToEven);
+ if (APFloat::opOverflow &
+ apf.convertFromAPInt(api, opc==Instruction::SIToFP,
+ APFloat::rmNearestTiesToEven)) {
+ // Undefined behavior invoked - the destination type can't represent
+ // the input constant.
+ return UndefValue::get(DestTy);
+ }
return ConstantFP::get(V->getContext(), apf);
}
return nullptr;
@@ -674,6 +685,9 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
}
return nullptr;
case Instruction::Trunc: {
+ if (V->getType()->isVectorTy())
+ return nullptr;
+
uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
return ConstantInt::get(V->getContext(),
@@ -901,49 +915,70 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
return C1;
return Constant::getNullValue(C1->getType()); // undef & X -> 0
case Instruction::Mul: {
- ConstantInt *CI;
- // X * undef -> undef if X is odd or undef
- if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
- ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
- (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
- return UndefValue::get(C1->getType());
+ // undef * undef -> undef
+ if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
+ return C1;
+ const APInt *CV;
+ // X * undef -> undef if X is odd
+ if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
+ if ((*CV)[0])
+ return UndefValue::get(C1->getType());
// X * undef -> 0 otherwise
return Constant::getNullValue(C1->getType());
}
- case Instruction::UDiv:
case Instruction::SDiv:
+ case Instruction::UDiv:
+ // X / undef -> undef
+ if (match(C1, m_Zero()))
+ return C2;
+ // undef / 0 -> undef
// undef / 1 -> undef
- if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
- if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
- if (CI2->isOne())
- return C1;
- // FALL THROUGH
+ if (match(C2, m_Zero()) || match(C2, m_One()))
+ return C1;
+ // undef / X -> 0 otherwise
+ return Constant::getNullValue(C1->getType());
case Instruction::URem:
case Instruction::SRem:
- if (!isa<UndefValue>(C2)) // undef / X -> 0
- return Constant::getNullValue(C1->getType());
- return C2; // X / undef -> undef
+ // X % undef -> undef
+ if (match(C2, m_Undef()))
+ return C2;
+ // undef % 0 -> undef
+ if (match(C2, m_Zero()))
+ return C1;
+ // undef % X -> 0 otherwise
+ return Constant::getNullValue(C1->getType());
case Instruction::Or: // X | undef -> -1
if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
return C1;
return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
case Instruction::LShr:
- if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
- return C1; // undef lshr undef -> undef
- return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
- // undef lshr X -> 0
+ // X >>l undef -> undef
+ if (isa<UndefValue>(C2))
+ return C2;
+ // undef >>l 0 -> undef
+ if (match(C2, m_Zero()))
+ return C1;
+ // undef >>l X -> 0
+ return Constant::getNullValue(C1->getType());
case Instruction::AShr:
- if (!isa<UndefValue>(C2)) // undef ashr X --> all ones
- return Constant::getAllOnesValue(C1->getType());
- else if (isa<UndefValue>(C1))
- return C1; // undef ashr undef -> undef
- else
- return C1; // X ashr undef --> X
+ // X >>a undef -> undef
+ if (isa<UndefValue>(C2))
+ return C2;
+ // undef >>a 0 -> undef
+ if (match(C2, m_Zero()))
+ return C1;
+ // TODO: undef >>a X -> undef if the shift is exact
+ // undef >>a X -> 0
+ return Constant::getNullValue(C1->getType());
case Instruction::Shl:
- if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
- return C1; // undef shl undef -> undef
- // undef << X -> 0 or X << undef -> 0
+ // X << undef -> undef
+ if (isa<UndefValue>(C2))
+ return C2;
+ // undef << 0 -> undef
+ if (match(C2, m_Zero()))
+ return C1;
+ // undef << X -> 0
return Constant::getNullValue(C1->getType());
}
}
@@ -1336,9 +1371,24 @@ static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
const GlobalValue *GV2) {
+ auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
+ if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
+ return true;
+ if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
+ Type *Ty = GVar->getType()->getPointerElementType();
+ // A global with opaque type might end up being zero sized.
+ if (!Ty->isSized())
+ return true;
+ // A global with an empty type might lie at the address of any other
+ // global.
+ if (Ty->isEmptyTy())
+ return true;
+ }
+ return false;
+ };
// Don't try to decide equality of aliases.
if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
- if (!GV1->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
+ if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
return ICmpInst::ICMP_NE;
return ICmpInst::BAD_ICMP_PREDICATE;
}
@@ -2144,9 +2194,10 @@ static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
// If all indices are known integers and normalized, we can do a simple
// check for the "inbounds" property.
- if (!Unknown && !inBounds &&
- isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
- return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
+ if (!Unknown && !inBounds)
+ if (auto *GV = dyn_cast<GlobalVariable>(C))
+ if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
+ return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
return nullptr;
}
diff --git a/contrib/llvm/lib/IR/ConstantFold.h b/contrib/llvm/lib/IR/ConstantFold.h
index e12f27a..a516abe 100644
--- a/contrib/llvm/lib/IR/ConstantFold.h
+++ b/contrib/llvm/lib/IR/ConstantFold.h
@@ -16,8 +16,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CONSTANTFOLDING_H
-#define CONSTANTFOLDING_H
+#ifndef LLVM_LIB_IR_CONSTANTFOLD_H
+#define LLVM_LIB_IR_CONSTANTFOLD_H
#include "llvm/ADT/ArrayRef.h"
diff --git a/contrib/llvm/lib/IR/Constants.cpp b/contrib/llvm/lib/IR/Constants.cpp
index b815936a..1d2602a 100644
--- a/contrib/llvm/lib/IR/Constants.cpp
+++ b/contrib/llvm/lib/IR/Constants.cpp
@@ -107,6 +107,28 @@ bool Constant::isAllOnesValue() const {
return false;
}
+bool Constant::isOneValue() const {
+ // Check for 1 integers
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
+ return CI->isOne();
+
+ // Check for FP which are bitcasted from 1 integers
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
+ return CFP->getValueAPF().bitcastToAPInt() == 1;
+
+ // Check for constant vectors which are splats of 1 values.
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
+ if (Constant *Splat = CV->getSplatValue())
+ return Splat->isOneValue();
+
+ // Check for constant vectors which are splats of 1 values.
+ if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
+ if (Constant *Splat = CV->getSplatValue())
+ return Splat->isOneValue();
+
+ return false;
+}
+
bool Constant::isMinSignedValue() const {
// Check for INT_MIN integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
@@ -129,6 +151,29 @@ bool Constant::isMinSignedValue() const {
return false;
}
+bool Constant::isNotMinSignedValue() const {
+ // Check for INT_MIN integers
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
+ return !CI->isMinValue(/*isSigned=*/true);
+
+ // Check for FP which are bitcasted from INT_MIN integers
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
+ return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
+
+ // Check for constant vectors which are splats of INT_MIN values.
+ if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
+ if (Constant *Splat = CV->getSplatValue())
+ return Splat->isNotMinSignedValue();
+
+ // Check for constant vectors which are splats of INT_MIN values.
+ if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
+ if (Constant *Splat = CV->getSplatValue())
+ return Splat->isNotMinSignedValue();
+
+ // It *may* contain INT_MIN, we can't tell.
+ return false;
+}
+
// Constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(Type *Ty) {
switch (Ty->getTypeID()) {
@@ -261,7 +306,7 @@ void Constant::destroyConstantImpl() {
}
static bool canTrapImpl(const Constant *C,
- SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
+ SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
@@ -271,7 +316,7 @@ static bool canTrapImpl(const Constant *C,
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
- if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
+ if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
return true;
}
}
@@ -318,7 +363,7 @@ ConstHasGlobalValuePredicate(const Constant *C,
const Constant *ConstOp = dyn_cast<Constant>(Op);
if (!ConstOp)
continue;
- if (Visited.insert(ConstOp))
+ if (Visited.insert(ConstOp).second)
WorkList.push_back(ConstOp);
}
}
@@ -509,19 +554,17 @@ Constant *ConstantInt::getFalse(Type *Ty) {
ConstantInt::getFalse(Ty->getContext()));
}
-
-// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
-// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
-// operator== and operator!= to ensure that the DenseMap doesn't attempt to
-// compare APInt's of different widths, which would violate an APInt class
-// invariant which generates an assertion.
+// Get a ConstantInt from an APInt.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
- // Get the corresponding integer type for the bit width of the value.
- IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
// get an existing value or the insertion position
LLVMContextImpl *pImpl = Context.pImpl;
- ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
- if (!Slot) Slot = new ConstantInt(ITy, V);
+ ConstantInt *&Slot = pImpl->IntConstants[V];
+ if (!Slot) {
+ // Get the corresponding integer type for the bit width of the value.
+ IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
+ Slot = new ConstantInt(ITy, V);
+ }
+ assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
return Slot;
}
@@ -644,7 +687,7 @@ Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
LLVMContextImpl* pImpl = Context.pImpl;
- ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
+ ConstantFP *&Slot = pImpl->FPConstants[V];
if (!Slot) {
Type *Ty;
@@ -781,6 +824,11 @@ ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
}
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
+ if (Constant *C = getImpl(Ty, V))
+ return C;
+ return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
+}
+Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
// Empty arrays are canonicalized to ConstantAggregateZero.
if (V.empty())
return ConstantAggregateZero::get(Ty);
@@ -789,7 +837,6 @@ Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
- LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// If this is an all-zero array, return a ConstantAggregateZero object. If
// all undef, return an UndefValue, if "all simple", then return a
@@ -871,7 +918,7 @@ Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
}
// Otherwise, we really do want to create a ConstantArray.
- return pImpl->ArrayConstants.getOrCreate(Ty, V);
+ return nullptr;
}
/// getTypeForElements - Return an anonymous struct type to use for a constant
@@ -959,9 +1006,14 @@ ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
// ConstantVector accessors.
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
+ if (Constant *C = getImpl(V))
+ return C;
+ VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
+ return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
+}
+Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
assert(!V.empty() && "Vectors can't be empty");
VectorType *T = VectorType::get(V.front()->getType(), V.size());
- LLVMContextImpl *pImpl = T->getContext().pImpl;
// If this is an all-undef or all-zero vector, return a
// ConstantAggregateZero or UndefValue.
@@ -1053,7 +1105,7 @@ Constant *ConstantVector::get(ArrayRef<Constant*> V) {
// Otherwise, the element type isn't compatible with ConstantDataVector, or
// the operand list constants a ConstantExpr or something else strange.
- return pImpl->VectorConstants.getOrCreate(T, V);
+ return nullptr;
}
Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
@@ -1141,8 +1193,8 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified array must
/// have the same number of operands as our current one.
-Constant *ConstantExpr::
-getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
+Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
+ bool OnlyIfReduced) const {
assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
bool AnyChange = Ty != getType();
for (unsigned i = 0; i != Ops.size(); ++i)
@@ -1151,6 +1203,7 @@ getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
if (!AnyChange) // No operands changed, return self.
return const_cast<ConstantExpr*>(this);
+ Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
@@ -1165,28 +1218,34 @@ getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
case Instruction::IntToPtr:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
- return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
+ return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
case Instruction::Select:
- return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
+ return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
case Instruction::InsertElement:
- return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
+ return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
+ OnlyIfReducedTy);
case Instruction::ExtractElement:
- return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
+ return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
case Instruction::InsertValue:
- return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
+ return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
+ OnlyIfReducedTy);
case Instruction::ExtractValue:
- return ConstantExpr::getExtractValue(Ops[0], getIndices());
+ return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
case Instruction::ShuffleVector:
- return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
+ return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
+ OnlyIfReducedTy);
case Instruction::GetElementPtr:
return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
- cast<GEPOperator>(this)->isInBounds());
+ cast<GEPOperator>(this)->isInBounds(),
+ OnlyIfReducedTy);
case Instruction::ICmp:
case Instruction::FCmp:
- return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
+ return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
+ OnlyIfReducedTy);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
- return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
+ return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
+ OnlyIfReducedTy);
}
}
@@ -1447,27 +1506,21 @@ void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
// and return early.
BlockAddress *&NewBA =
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
- if (!NewBA) {
- getBasicBlock()->AdjustBlockAddressRefCount(-1);
-
- // Remove the old entry, this can't cause the map to rehash (just a
- // tombstone will get added).
- getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
- getBasicBlock()));
- NewBA = this;
- setOperand(0, NewF);
- setOperand(1, NewBB);
- getBasicBlock()->AdjustBlockAddressRefCount(1);
+ if (NewBA) {
+ replaceUsesOfWithOnConstantImpl(NewBA);
return;
}
- // Otherwise, I do need to replace this with an existing value.
- assert(NewBA != this && "I didn't contain From!");
-
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(NewBA);
+ getBasicBlock()->AdjustBlockAddressRefCount(-1);
- destroyConstant();
+ // Remove the old entry, this can't cause the map to rehash (just a
+ // tombstone will get added).
+ getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
+ getBasicBlock()));
+ NewBA = this;
+ setOperand(0, NewF);
+ setOperand(1, NewBB);
+ getBasicBlock()->AdjustBlockAddressRefCount(1);
}
//---- ConstantExpr::get() implementations.
@@ -1475,22 +1528,26 @@ void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
-static inline Constant *getFoldedCast(
- Instruction::CastOps opc, Constant *C, Type *Ty) {
+static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
+ bool OnlyIfReduced = false) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
return FC;
+ if (OnlyIfReduced)
+ return nullptr;
+
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness.
- ExprMapKeyType Key(opc, C);
+ ConstantExprKeyType Key(opc, C);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
-Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
+Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
+ bool OnlyIfReduced) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
@@ -1499,19 +1556,32 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
switch (opc) {
default:
llvm_unreachable("Invalid cast opcode");
- case Instruction::Trunc: return getTrunc(C, Ty);
- case Instruction::ZExt: return getZExt(C, Ty);
- case Instruction::SExt: return getSExt(C, Ty);
- case Instruction::FPTrunc: return getFPTrunc(C, Ty);
- case Instruction::FPExt: return getFPExtend(C, Ty);
- case Instruction::UIToFP: return getUIToFP(C, Ty);
- case Instruction::SIToFP: return getSIToFP(C, Ty);
- case Instruction::FPToUI: return getFPToUI(C, Ty);
- case Instruction::FPToSI: return getFPToSI(C, Ty);
- case Instruction::PtrToInt: return getPtrToInt(C, Ty);
- case Instruction::IntToPtr: return getIntToPtr(C, Ty);
- case Instruction::BitCast: return getBitCast(C, Ty);
- case Instruction::AddrSpaceCast: return getAddrSpaceCast(C, Ty);
+ case Instruction::Trunc:
+ return getTrunc(C, Ty, OnlyIfReduced);
+ case Instruction::ZExt:
+ return getZExt(C, Ty, OnlyIfReduced);
+ case Instruction::SExt:
+ return getSExt(C, Ty, OnlyIfReduced);
+ case Instruction::FPTrunc:
+ return getFPTrunc(C, Ty, OnlyIfReduced);
+ case Instruction::FPExt:
+ return getFPExtend(C, Ty, OnlyIfReduced);
+ case Instruction::UIToFP:
+ return getUIToFP(C, Ty, OnlyIfReduced);
+ case Instruction::SIToFP:
+ return getSIToFP(C, Ty, OnlyIfReduced);
+ case Instruction::FPToUI:
+ return getFPToUI(C, Ty, OnlyIfReduced);
+ case Instruction::FPToSI:
+ return getFPToSI(C, Ty, OnlyIfReduced);
+ case Instruction::PtrToInt:
+ return getPtrToInt(C, Ty, OnlyIfReduced);
+ case Instruction::IntToPtr:
+ return getIntToPtr(C, Ty, OnlyIfReduced);
+ case Instruction::BitCast:
+ return getBitCast(C, Ty, OnlyIfReduced);
+ case Instruction::AddrSpaceCast:
+ return getAddrSpaceCast(C, Ty, OnlyIfReduced);
}
}
@@ -1584,7 +1654,7 @@ Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
return getCast(opcode, C, Ty);
}
-Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1595,10 +1665,10 @@ Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
- return getFoldedCast(Instruction::Trunc, C, Ty);
+ return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1609,10 +1679,10 @@ Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
- return getFoldedCast(Instruction::SExt, C, Ty);
+ return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1623,10 +1693,10 @@ Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
- return getFoldedCast(Instruction::ZExt, C, Ty);
+ return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1635,10 +1705,10 @@ Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"This is an illegal floating point truncation!");
- return getFoldedCast(Instruction::FPTrunc, C, Ty);
+ return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1647,10 +1717,10 @@ Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"This is an illegal floating point extension!");
- return getFoldedCast(Instruction::FPExt, C, Ty);
+ return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1658,10 +1728,10 @@ Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal uint to floating point cast!");
- return getFoldedCast(Instruction::UIToFP, C, Ty);
+ return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1669,10 +1739,10 @@ Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal sint to floating point cast!");
- return getFoldedCast(Instruction::SIToFP, C, Ty);
+ return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1680,10 +1750,10 @@ Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to uint cast!");
- return getFoldedCast(Instruction::FPToUI, C, Ty);
+ return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
+Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
@@ -1691,10 +1761,11 @@ Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to sint cast!");
- return getFoldedCast(Instruction::FPToSI, C, Ty);
+ return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
}
-Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
+Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
+ bool OnlyIfReduced) {
assert(C->getType()->getScalarType()->isPointerTy() &&
"PtrToInt source must be pointer or pointer vector");
assert(DstTy->getScalarType()->isIntegerTy() &&
@@ -1703,10 +1774,11 @@ Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
if (isa<VectorType>(C->getType()))
assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
"Invalid cast between a different number of vector elements");
- return getFoldedCast(Instruction::PtrToInt, C, DstTy);
+ return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
}
-Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
+Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
+ bool OnlyIfReduced) {
assert(C->getType()->getScalarType()->isIntegerTy() &&
"IntToPtr source must be integer or integer vector");
assert(DstTy->getScalarType()->isPointerTy() &&
@@ -1715,10 +1787,11 @@ Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
if (isa<VectorType>(C->getType()))
assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
"Invalid cast between a different number of vector elements");
- return getFoldedCast(Instruction::IntToPtr, C, DstTy);
+ return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
}
-Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
+Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
+ bool OnlyIfReduced) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
"Invalid constantexpr bitcast!");
@@ -1726,10 +1799,11 @@ Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
// speedily.
if (C->getType() == DstTy) return C;
- return getFoldedCast(Instruction::BitCast, C, DstTy);
+ return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
}
-Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
+Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
+ bool OnlyIfReduced) {
assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
"Invalid constantexpr addrspacecast!");
@@ -1746,11 +1820,11 @@ Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
}
C = getBitCast(C, MidTy);
}
- return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
+ return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
- unsigned Flags) {
+ unsigned Flags, Type *OnlyIfReducedTy) {
// Check the operands for consistency first.
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
@@ -1819,8 +1893,11 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases.
+ if (OnlyIfReducedTy == C1->getType())
+ return nullptr;
+
Constant *ArgVec[] = { C1, C2 };
- ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
+ ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
LLVMContextImpl *pImpl = C1->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
@@ -1840,7 +1917,7 @@ Constant *ConstantExpr::getAlignOf(Type* Ty) {
// alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Type *AligningTy =
- StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
+ StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
@@ -1868,8 +1945,8 @@ Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
Type::getInt64Ty(Ty->getContext()));
}
-Constant *ConstantExpr::getCompare(unsigned short Predicate,
- Constant *C1, Constant *C2) {
+Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
+ Constant *C2, bool OnlyIfReduced) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
switch (Predicate) {
@@ -1880,31 +1957,35 @@ Constant *ConstantExpr::getCompare(unsigned short Predicate,
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
- return getFCmp(Predicate, C1, C2);
+ return getFCmp(Predicate, C1, C2, OnlyIfReduced);
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
- return getICmp(Predicate, C1, C2);
+ return getICmp(Predicate, C1, C2, OnlyIfReduced);
}
}
-Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
+Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
+ Type *OnlyIfReducedTy) {
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
+ if (OnlyIfReducedTy == V1->getType())
+ return nullptr;
+
Constant *ArgVec[] = { C, V1, V2 };
- ExprMapKeyType Key(Instruction::Select, ArgVec);
+ ConstantExprKeyType Key(Instruction::Select, ArgVec);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
- bool InBounds) {
+ bool InBounds, Type *OnlyIfReducedTy) {
assert(C->getType()->isPtrOrPtrVectorTy() &&
"Non-pointer type for constant GetElementPtr expression");
@@ -1919,6 +2000,9 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
+ if (OnlyIfReducedTy == ReqTy)
+ return nullptr;
+
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(1 + Idxs.size());
@@ -1932,15 +2016,15 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
"getelementptr index type missmatch");
ArgVec.push_back(cast<Constant>(Idxs[i]));
}
- const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
- InBounds ? GEPOperator::IsInBounds : 0);
+ const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
+ InBounds ? GEPOperator::IsInBounds : 0);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
-Constant *
-ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
+Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
+ Constant *RHS, bool OnlyIfReduced) {
assert(LHS->getType() == RHS->getType());
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
@@ -1948,10 +2032,13 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
+ if (OnlyIfReduced)
+ return nullptr;
+
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
- const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
+ const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
@@ -1961,18 +2048,21 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
-Constant *
-ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
+Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
+ Constant *RHS, bool OnlyIfReduced) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
+ if (OnlyIfReduced)
+ return nullptr;
+
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
- const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
+ const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
@@ -1982,7 +2072,8 @@ ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
-Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
+Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
+ Type *OnlyIfReducedTy) {
assert(Val->getType()->isVectorTy() &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType()->isIntegerTy() &&
@@ -1991,17 +2082,20 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases.
+ Type *ReqTy = Val->getType()->getVectorElementType();
+ if (OnlyIfReducedTy == ReqTy)
+ return nullptr;
+
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Idx };
- const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
+ const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
- Type *ReqTy = Val->getType()->getVectorElementType();
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
-Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
- Constant *Idx) {
+Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
+ Constant *Idx, Type *OnlyIfReducedTy) {
assert(Val->getType()->isVectorTy() &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == Val->getType()->getVectorElementType() &&
@@ -2011,16 +2105,20 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases.
+
+ if (OnlyIfReducedTy == Val->getType())
+ return nullptr;
+
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Elt, Idx };
- const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
+ const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
}
-Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
- Constant *Mask) {
+Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
+ Constant *Mask, Type *OnlyIfReducedTy) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
@@ -2031,16 +2129,20 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Type *EltTy = V1->getType()->getVectorElementType();
Type *ShufTy = VectorType::get(EltTy, NElts);
+ if (OnlyIfReducedTy == ShufTy)
+ return nullptr;
+
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { V1, V2, Mask };
- const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
+ const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
}
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
- ArrayRef<unsigned> Idxs) {
+ ArrayRef<unsigned> Idxs,
+ Type *OnlyIfReducedTy) {
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant insertvalue expression");
@@ -2052,15 +2154,18 @@ Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
return FC;
+ if (OnlyIfReducedTy == ReqTy)
+ return nullptr;
+
Constant *ArgVec[] = { Agg, Val };
- const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
+ const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
-Constant *ConstantExpr::getExtractValue(Constant *Agg,
- ArrayRef<unsigned> Idxs) {
+Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
+ Type *OnlyIfReducedTy) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create extractelement operation on non-first-class type!");
@@ -2073,8 +2178,11 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg,
if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
return FC;
+ if (OnlyIfReducedTy == ReqTy)
+ return nullptr;
+
Constant *ArgVec[] = { Agg };
- const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
+ const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
@@ -2326,14 +2434,16 @@ Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
return ConstantAggregateZero::get(Ty);
// Do a lookup to see if we have already formed one of these.
- StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
- Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
+ auto &Slot =
+ *Ty->getContext()
+ .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
+ .first;
// The bucket can point to a linked list of different CDS's that have the same
// body but different types. For example, 0,0,0,1 could be a 4 element array
// of i8, or a 1-element array of i32. They'll both end up in the same
/// StringMap bucket, linked up by their Next pointers. Walk the list.
- ConstantDataSequential **Entry = &Slot.getValue();
+ ConstantDataSequential **Entry = &Slot.second;
for (ConstantDataSequential *Node = *Entry; Node;
Entry = &Node->Next, Node = *Entry)
if (Node->getType() == Ty)
@@ -2342,10 +2452,10 @@ Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
// Okay, we didn't get a hit. Create a node of the right class, link it in,
// and return it.
if (isa<ArrayType>(Ty))
- return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
+ return *Entry = new ConstantDataArray(Ty, Slot.first().data());
assert(isa<VectorType>(Ty));
- return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
+ return *Entry = new ConstantDataVector(Ty, Slot.first().data());
}
void ConstantDataSequential::destroyConstant() {
@@ -2431,7 +2541,7 @@ Constant *ConstantDataArray::getString(LLVMContext &Context,
StringRef Str, bool AddNull) {
if (!AddNull) {
const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
- return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
+ return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
Str.size()));
}
@@ -2602,7 +2712,7 @@ bool ConstantDataSequential::isCString() const {
}
/// getSplatValue - If this is a splat constant, meaning that all of the
-/// elements have the same value, return that value. Otherwise return NULL.
+/// elements have the same value, return that value. Otherwise return nullptr.
Constant *ConstantDataVector::getSplatValue() const {
const char *Base = getRawDataValues().data();
@@ -2630,16 +2740,23 @@ Constant *ConstantDataVector::getSplatValue() const {
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
+void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
+ // I do need to replace this with an existing value.
+ assert(Replacement != this && "I didn't contain From!");
+
+ // Everyone using this now uses the replacement.
+ replaceAllUsesWith(Replacement);
+
+ // Delete the old constant!
+ destroyConstant();
+}
+
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
- LLVMContextImpl *pImpl = getType()->getContext().pImpl;
-
SmallVector<Constant*, 8> Values;
- LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
- Lookup.first = cast<ArrayType>(getType());
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
@@ -2658,51 +2775,25 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
AllSame &= Val == ToC;
}
- Constant *Replacement = nullptr;
if (AllSame && ToC->isNullValue()) {
- Replacement = ConstantAggregateZero::get(getType());
- } else if (AllSame && isa<UndefValue>(ToC)) {
- Replacement = UndefValue::get(getType());
- } else {
- // Check to see if we have this array type already.
- Lookup.second = makeArrayRef(Values);
- LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
- pImpl->ArrayConstants.find(Lookup);
-
- if (I != pImpl->ArrayConstants.map_end()) {
- Replacement = I->first;
- } else {
- // Okay, the new shape doesn't exist in the system yet. Instead of
- // creating a new constant array, inserting it, replaceallusesof'ing the
- // old with the new, then deleting the old... just update the current one
- // in place!
- pImpl->ArrayConstants.remove(this);
-
- // Update to the new value. Optimize for the case when we have a single
- // operand that we're changing, but handle bulk updates efficiently.
- if (NumUpdated == 1) {
- unsigned OperandToUpdate = U - OperandList;
- assert(getOperand(OperandToUpdate) == From &&
- "ReplaceAllUsesWith broken!");
- setOperand(OperandToUpdate, ToC);
- } else {
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (getOperand(i) == From)
- setOperand(i, ToC);
- }
- pImpl->ArrayConstants.insert(this);
- return;
- }
+ replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
+ return;
+ }
+ if (AllSame && isa<UndefValue>(ToC)) {
+ replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
+ return;
}
- // Otherwise, I do need to replace this with an existing value.
- assert(Replacement != this && "I didn't contain From!");
-
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(Replacement);
+ // Check for any other type of constant-folding.
+ if (Constant *C = getImpl(getType(), Values)) {
+ replaceUsesOfWithOnConstantImpl(C);
+ return;
+ }
- // Delete the old constant!
- destroyConstant();
+ // Update to the new value.
+ if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
+ Values, this, From, ToC, NumUpdated, U - OperandList))
+ replaceUsesOfWithOnConstantImpl(C);
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
@@ -2714,8 +2805,6 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
SmallVector<Constant*, 8> Values;
- LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
- Lookup.first = cast<StructType>(getType());
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
@@ -2742,64 +2831,47 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
}
Values[OperandToUpdate] = ToC;
- LLVMContextImpl *pImpl = getContext().pImpl;
-
- Constant *Replacement = nullptr;
if (isAllZeros) {
- Replacement = ConstantAggregateZero::get(getType());
- } else if (isAllUndef) {
- Replacement = UndefValue::get(getType());
- } else {
- // Check to see if we have this struct type already.
- Lookup.second = makeArrayRef(Values);
- LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
- pImpl->StructConstants.find(Lookup);
-
- if (I != pImpl->StructConstants.map_end()) {
- Replacement = I->first;
- } else {
- // Okay, the new shape doesn't exist in the system yet. Instead of
- // creating a new constant struct, inserting it, replaceallusesof'ing the
- // old with the new, then deleting the old... just update the current one
- // in place!
- pImpl->StructConstants.remove(this);
-
- // Update to the new value.
- setOperand(OperandToUpdate, ToC);
- pImpl->StructConstants.insert(this);
- return;
- }
+ replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
+ return;
+ }
+ if (isAllUndef) {
+ replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
+ return;
}
- assert(Replacement != this && "I didn't contain From!");
-
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(Replacement);
-
- // Delete the old constant!
- destroyConstant();
+ // Update to the new value.
+ if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
+ Values, this, From, ToC))
+ replaceUsesOfWithOnConstantImpl(C);
}
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
+ Constant *ToC = cast<Constant>(To);
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array...
+ unsigned NumUpdated = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
- if (Val == From) Val = cast<Constant>(To);
+ if (Val == From) {
+ ++NumUpdated;
+ Val = ToC;
+ }
Values.push_back(Val);
}
- Constant *Replacement = get(Values);
- assert(Replacement != this && "I didn't contain From!");
-
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(Replacement);
+ if (Constant *C = getImpl(Values)) {
+ replaceUsesOfWithOnConstantImpl(C);
+ return;
+ }
- // Delete the old constant!
- destroyConstant();
+ // Update to the new value.
+ if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
+ Values, this, From, ToC, NumUpdated, U - OperandList))
+ replaceUsesOfWithOnConstantImpl(C);
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
@@ -2808,19 +2880,26 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Constant *To = cast<Constant>(ToV);
SmallVector<Constant*, 8> NewOps;
+ unsigned NumUpdated = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Op = getOperand(i);
- NewOps.push_back(Op == From ? To : Op);
+ if (Op == From) {
+ ++NumUpdated;
+ Op = To;
+ }
+ NewOps.push_back(Op);
}
+ assert(NumUpdated && "I didn't contain From!");
- Constant *Replacement = getWithOperands(NewOps);
- assert(Replacement != this && "I didn't contain From!");
-
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(Replacement);
+ if (Constant *C = getWithOperands(NewOps, getType(), true)) {
+ replaceUsesOfWithOnConstantImpl(C);
+ return;
+ }
- // Delete the old constant!
- destroyConstant();
+ // Update to the new value.
+ if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
+ NewOps, this, From, To, NumUpdated, U - OperandList))
+ replaceUsesOfWithOnConstantImpl(C);
}
Instruction *ConstantExpr::getAsInstruction() {
diff --git a/contrib/llvm/lib/IR/ConstantsContext.h b/contrib/llvm/lib/IR/ConstantsContext.h
index f06509f..571dec2 100644
--- a/contrib/llvm/lib/IR/ConstantsContext.h
+++ b/contrib/llvm/lib/IR/ConstantsContext.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CONSTANTSCONTEXT_H
-#define LLVM_CONSTANTSCONTEXT_H
+#ifndef LLVM_LIB_IR_CONSTANTSCONTEXT_H
+#define LLVM_LIB_IR_CONSTANTSCONTEXT_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
@@ -29,8 +29,6 @@
#define DEBUG_TYPE "ir"
namespace llvm {
-template<class ValType>
-struct ConstantTraits;
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
@@ -169,11 +167,10 @@ public:
void *operator new(size_t s) {
return User::operator new(s, 1);
}
- ExtractValueConstantExpr(Constant *Agg,
- const SmallVector<unsigned, 4> &IdxList,
+ ExtractValueConstantExpr(Constant *Agg, ArrayRef<unsigned> IdxList,
Type *DestTy)
- : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
- Indices(IdxList) {
+ : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
+ Indices(IdxList.begin(), IdxList.end()) {
Op<0>() = Agg;
}
@@ -196,10 +193,9 @@ public:
return User::operator new(s, 2);
}
InsertValueConstantExpr(Constant *Agg, Constant *Val,
- const SmallVector<unsigned, 4> &IdxList,
- Type *DestTy)
- : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
- Indices(IdxList) {
+ ArrayRef<unsigned> IdxList, Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
+ Indices(IdxList.begin(), IdxList.end()) {
Op<0>() = Agg;
Op<1>() = Val;
}
@@ -316,379 +312,241 @@ struct OperandTraits<CompareConstantExpr> :
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
-struct ExprMapKeyType {
- ExprMapKeyType(unsigned opc,
- ArrayRef<Constant*> ops,
- unsigned short flags = 0,
- unsigned short optionalflags = 0,
- ArrayRef<unsigned> inds = None)
- : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
- operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
- uint8_t opcode;
- uint8_t subclassoptionaldata;
- uint16_t subclassdata;
- std::vector<Constant*> operands;
- SmallVector<unsigned, 4> indices;
- bool operator==(const ExprMapKeyType& that) const {
- return this->opcode == that.opcode &&
- this->subclassdata == that.subclassdata &&
- this->subclassoptionaldata == that.subclassoptionaldata &&
- this->operands == that.operands &&
- this->indices == that.indices;
- }
- bool operator<(const ExprMapKeyType & that) const {
- return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
- indices) <
- std::tie(that.opcode, that.operands, that.subclassdata,
- that.subclassoptionaldata, that.indices);
- }
-
- bool operator!=(const ExprMapKeyType& that) const {
- return !(*this == that);
- }
-};
-
-struct InlineAsmKeyType {
- InlineAsmKeyType(StringRef AsmString,
- StringRef Constraints, bool hasSideEffects,
- bool isAlignStack, InlineAsm::AsmDialect asmDialect)
- : asm_string(AsmString), constraints(Constraints),
- has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
- asm_dialect(asmDialect) {}
- std::string asm_string;
- std::string constraints;
- bool has_side_effects;
- bool is_align_stack;
- InlineAsm::AsmDialect asm_dialect;
- bool operator==(const InlineAsmKeyType& that) const {
- return this->asm_string == that.asm_string &&
- this->constraints == that.constraints &&
- this->has_side_effects == that.has_side_effects &&
- this->is_align_stack == that.is_align_stack &&
- this->asm_dialect == that.asm_dialect;
- }
- bool operator<(const InlineAsmKeyType& that) const {
- return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
- asm_dialect) <
- std::tie(that.asm_string, that.constraints, that.has_side_effects,
- that.is_align_stack, that.asm_dialect);
- }
-
- bool operator!=(const InlineAsmKeyType& that) const {
- return !(*this == that);
- }
-};
+template <class ConstantClass> struct ConstantAggrKeyType;
+struct InlineAsmKeyType;
+struct ConstantExprKeyType;
-// The number of operands for each ConstantCreator::create method is
-// determined by the ConstantTraits template.
-// ConstantCreator - A class that is used to create constants by
-// ConstantUniqueMap*. This class should be partially specialized if there is
-// something strange that needs to be done to interface to the ctor for the
-// constant.
-//
-template<typename T, typename Alloc>
-struct ConstantTraits< std::vector<T, Alloc> > {
- static unsigned uses(const std::vector<T, Alloc>& v) {
- return v.size();
- }
-};
-
-template<>
-struct ConstantTraits<Constant *> {
- static unsigned uses(Constant * const & v) {
- return 1;
- }
+template <class ConstantClass> struct ConstantInfo;
+template <> struct ConstantInfo<ConstantExpr> {
+ typedef ConstantExprKeyType ValType;
+ typedef Type TypeClass;
};
-
-template<class ConstantClass, class TypeClass, class ValType>
-struct ConstantCreator {
- static ConstantClass *create(TypeClass *Ty, const ValType &V) {
- return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+template <> struct ConstantInfo<InlineAsm> {
+ typedef InlineAsmKeyType ValType;
+ typedef PointerType TypeClass;
+};
+template <> struct ConstantInfo<ConstantArray> {
+ typedef ConstantAggrKeyType<ConstantArray> ValType;
+ typedef ArrayType TypeClass;
+};
+template <> struct ConstantInfo<ConstantStruct> {
+ typedef ConstantAggrKeyType<ConstantStruct> ValType;
+ typedef StructType TypeClass;
+};
+template <> struct ConstantInfo<ConstantVector> {
+ typedef ConstantAggrKeyType<ConstantVector> ValType;
+ typedef VectorType TypeClass;
+};
+
+template <class ConstantClass> struct ConstantAggrKeyType {
+ ArrayRef<Constant *> Operands;
+ ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}
+ ConstantAggrKeyType(ArrayRef<Constant *> Operands, const ConstantClass *)
+ : Operands(Operands) {}
+ ConstantAggrKeyType(const ConstantClass *C,
+ SmallVectorImpl<Constant *> &Storage) {
+ assert(Storage.empty() && "Expected empty storage");
+ for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
+ Storage.push_back(C->getOperand(I));
+ Operands = Storage;
+ }
+
+ bool operator==(const ConstantAggrKeyType &X) const {
+ return Operands == X.Operands;
+ }
+ bool operator==(const ConstantClass *C) const {
+ if (Operands.size() != C->getNumOperands())
+ return false;
+ for (unsigned I = 0, E = Operands.size(); I != E; ++I)
+ if (Operands[I] != C->getOperand(I))
+ return false;
+ return true;
}
-};
-
-template<class ConstantClass, class TypeClass>
-struct ConstantArrayCreator {
- static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
- return new(V.size()) ConstantClass(Ty, V);
+ unsigned getHash() const {
+ return hash_combine_range(Operands.begin(), Operands.end());
}
-};
-template<class ConstantClass>
-struct ConstantKeyData {
- typedef void ValType;
- static ValType getValType(ConstantClass *C) {
- llvm_unreachable("Unknown Constant type!");
+ typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
+ ConstantClass *create(TypeClass *Ty) const {
+ return new (Operands.size()) ConstantClass(Ty, Operands);
}
};
-template<>
-struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
- static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
- unsigned short pred = 0) {
- if (Instruction::isCast(V.opcode))
- return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
- if ((V.opcode >= Instruction::BinaryOpsBegin &&
- V.opcode < Instruction::BinaryOpsEnd))
- return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
- V.subclassoptionaldata);
- if (V.opcode == Instruction::Select)
- return new SelectConstantExpr(V.operands[0], V.operands[1],
- V.operands[2]);
- if (V.opcode == Instruction::ExtractElement)
- return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::InsertElement)
- return new InsertElementConstantExpr(V.operands[0], V.operands[1],
- V.operands[2]);
- if (V.opcode == Instruction::ShuffleVector)
- return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
- V.operands[2]);
- if (V.opcode == Instruction::InsertValue)
- return new InsertValueConstantExpr(V.operands[0], V.operands[1],
- V.indices, Ty);
- if (V.opcode == Instruction::ExtractValue)
- return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
- if (V.opcode == Instruction::GetElementPtr) {
- std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
- return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
- V.subclassoptionaldata);
+struct InlineAsmKeyType {
+ StringRef AsmString;
+ StringRef Constraints;
+ bool HasSideEffects;
+ bool IsAlignStack;
+ InlineAsm::AsmDialect AsmDialect;
+
+ InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
+ bool HasSideEffects, bool IsAlignStack,
+ InlineAsm::AsmDialect AsmDialect)
+ : AsmString(AsmString), Constraints(Constraints),
+ HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
+ AsmDialect(AsmDialect) {}
+ InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
+ : AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
+ HasSideEffects(Asm->hasSideEffects()),
+ IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
+
+ bool operator==(const InlineAsmKeyType &X) const {
+ return HasSideEffects == X.HasSideEffects &&
+ IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
+ AsmString == X.AsmString && Constraints == X.Constraints;
+ }
+ bool operator==(const InlineAsm *Asm) const {
+ return HasSideEffects == Asm->hasSideEffects() &&
+ IsAlignStack == Asm->isAlignStack() &&
+ AsmDialect == Asm->getDialect() &&
+ AsmString == Asm->getAsmString() &&
+ Constraints == Asm->getConstraintString();
+ }
+ unsigned getHash() const {
+ return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
+ AsmDialect);
+ }
+
+ typedef ConstantInfo<InlineAsm>::TypeClass TypeClass;
+ InlineAsm *create(TypeClass *Ty) const {
+ return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
+ IsAlignStack, AsmDialect);
+ }
+};
+
+struct ConstantExprKeyType {
+ uint8_t Opcode;
+ uint8_t SubclassOptionalData;
+ uint16_t SubclassData;
+ ArrayRef<Constant *> Ops;
+ ArrayRef<unsigned> Indexes;
+
+ ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
+ unsigned short SubclassData = 0,
+ unsigned short SubclassOptionalData = 0,
+ ArrayRef<unsigned> Indexes = None)
+ : Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
+ SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
+ ConstantExprKeyType(ArrayRef<Constant *> Operands, const ConstantExpr *CE)
+ : Opcode(CE->getOpcode()),
+ SubclassOptionalData(CE->getRawSubclassOptionalData()),
+ SubclassData(CE->isCompare() ? CE->getPredicate() : 0), Ops(Operands),
+ Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {}
+ ConstantExprKeyType(const ConstantExpr *CE,
+ SmallVectorImpl<Constant *> &Storage)
+ : Opcode(CE->getOpcode()),
+ SubclassOptionalData(CE->getRawSubclassOptionalData()),
+ SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
+ Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
+ assert(Storage.empty() && "Expected empty storage");
+ for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
+ Storage.push_back(CE->getOperand(I));
+ Ops = Storage;
+ }
+
+ bool operator==(const ConstantExprKeyType &X) const {
+ return Opcode == X.Opcode && SubclassData == X.SubclassData &&
+ SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
+ Indexes == X.Indexes;
+ }
+
+ bool operator==(const ConstantExpr *CE) const {
+ if (Opcode != CE->getOpcode())
+ return false;
+ if (SubclassOptionalData != CE->getRawSubclassOptionalData())
+ return false;
+ if (Ops.size() != CE->getNumOperands())
+ return false;
+ if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
+ return false;
+ for (unsigned I = 0, E = Ops.size(); I != E; ++I)
+ if (Ops[I] != CE->getOperand(I))
+ return false;
+ if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
+ return false;
+ return true;
+ }
+
+ unsigned getHash() const {
+ return hash_combine(Opcode, SubclassOptionalData, SubclassData,
+ hash_combine_range(Ops.begin(), Ops.end()),
+ hash_combine_range(Indexes.begin(), Indexes.end()));
+ }
+
+ typedef ConstantInfo<ConstantExpr>::TypeClass TypeClass;
+ ConstantExpr *create(TypeClass *Ty) const {
+ switch (Opcode) {
+ default:
+ if (Instruction::isCast(Opcode))
+ return new UnaryConstantExpr(Opcode, Ops[0], Ty);
+ if ((Opcode >= Instruction::BinaryOpsBegin &&
+ Opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
+ SubclassOptionalData);
+ llvm_unreachable("Invalid ConstantExpr!");
+ case Instruction::Select:
+ return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ExtractElement:
+ return new ExtractElementConstantExpr(Ops[0], Ops[1]);
+ case Instruction::InsertElement:
+ return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ShuffleVector:
+ return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
+ case Instruction::InsertValue:
+ return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
+ case Instruction::ExtractValue:
+ return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
+ case Instruction::GetElementPtr:
+ return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
+ SubclassOptionalData);
+ case Instruction::ICmp:
+ return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
+ Ops[0], Ops[1]);
+ case Instruction::FCmp:
+ return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
+ Ops[0], Ops[1]);
}
-
- // The compare instructions are weird. We have to encode the predicate
- // value and it is combined with the instruction opcode by multiplying
- // the opcode by one hundred. We must decode this to get the predicate.
- if (V.opcode == Instruction::ICmp)
- return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
- V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::FCmp)
- return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
- V.operands[0], V.operands[1]);
- llvm_unreachable("Invalid ConstantExpr!");
- }
-};
-
-template<>
-struct ConstantKeyData<ConstantExpr> {
- typedef ExprMapKeyType ValType;
- static ValType getValType(ConstantExpr *CE) {
- std::vector<Constant*> Operands;
- Operands.reserve(CE->getNumOperands());
- for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
- Operands.push_back(cast<Constant>(CE->getOperand(i)));
- return ExprMapKeyType(CE->getOpcode(), Operands,
- CE->isCompare() ? CE->getPredicate() : 0,
- CE->getRawSubclassOptionalData(),
- CE->hasIndices() ?
- CE->getIndices() : ArrayRef<unsigned>());
- }
-};
-
-template<>
-struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
- static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
- return new InlineAsm(Ty, Key.asm_string, Key.constraints,
- Key.has_side_effects, Key.is_align_stack,
- Key.asm_dialect);
}
};
-template<>
-struct ConstantKeyData<InlineAsm> {
- typedef InlineAsmKeyType ValType;
- static ValType getValType(InlineAsm *Asm) {
- return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
- Asm->hasSideEffects(), Asm->isAlignStack(),
- Asm->getDialect());
- }
-};
-
-template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
- bool HasLargeKey = false /*true for arrays and structs*/ >
-class ConstantUniqueMap {
-public:
- typedef std::pair<TypeClass*, ValType> MapKey;
- typedef std::map<MapKey, ConstantClass *> MapTy;
- typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
-private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
- MapTy Map;
-
- /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
- /// from the constants to their element in Map. This is important for
- /// removal of constants from the array, which would otherwise have to scan
- /// through the map with very large keys.
- InverseMapTy InverseMap;
-
-public:
- typename MapTy::iterator map_begin() { return Map.begin(); }
- typename MapTy::iterator map_end() { return Map.end(); }
-
- void freeConstants() {
- for (typename MapTy::iterator I=Map.begin(), E=Map.end();
- I != E; ++I) {
- // Asserts that use_empty().
- delete I->second;
- }
- }
-
- /// InsertOrGetItem - Return an iterator for the specified element.
- /// If the element exists in the map, the returned iterator points to the
- /// entry and Exists=true. If not, the iterator points to the newly
- /// inserted entry and returns Exists=false. Newly inserted entries have
- /// I->second == 0, and should be filled in.
- typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
- &InsertVal,
- bool &Exists) {
- std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
- Exists = !IP.second;
- return IP.first;
- }
-
-private:
- typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
- if (HasLargeKey) {
- typename InverseMapTy::iterator IMI = InverseMap.find(CP);
- assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
- IMI->second->second == CP &&
- "InverseMap corrupt!");
- return IMI->second;
- }
-
- typename MapTy::iterator I =
- Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
- ConstantKeyData<ConstantClass>::getValType(CP)));
- if (I == Map.end() || I->second != CP) {
- // FIXME: This should not use a linear scan. If this gets to be a
- // performance problem, someone should look at this.
- for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
- /* empty */;
- }
- return I;
- }
-
- ConstantClass *Create(TypeClass *Ty, ValRefType V,
- typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
- assert(Result->getType() == Ty && "Type specified is not correct!");
- I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.insert(std::make_pair(Result, I));
-
- return Result;
- }
+template <class ConstantClass> class ConstantUniqueMap {
public:
-
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
- MapKey Lookup(Ty, V);
- ConstantClass* Result = nullptr;
-
- typename MapTy::iterator I = Map.find(Lookup);
- // Is it in the map?
- if (I != Map.end())
- Result = I->second;
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
-
- return Result;
- }
-
- void remove(ConstantClass *CP) {
- typename MapTy::iterator I = FindExistingElement(CP);
- assert(I != Map.end() && "Constant not found in constant table!");
- assert(I->second == CP && "Didn't find correct element?");
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.erase(CP);
-
- Map.erase(I);
- }
-
- /// MoveConstantToNewSlot - If we are about to change C to be the element
- /// specified by I, update our internal data structures to reflect this
- /// fact.
- void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
- // First, remove the old location of the specified constant in the map.
- typename MapTy::iterator OldI = FindExistingElement(C);
- assert(OldI != Map.end() && "Constant not found in constant table!");
- assert(OldI->second == C && "Didn't find correct element?");
-
- // Remove the old entry from the map.
- Map.erase(OldI);
-
- // Update the inverse map so that we know that this constant is now
- // located at descriptor I.
- if (HasLargeKey) {
- assert(I->second == C && "Bad inversemap entry!");
- InverseMap[C] = I;
- }
- }
+ typedef typename ConstantInfo<ConstantClass>::ValType ValType;
+ typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
+ typedef std::pair<TypeClass *, ValType> LookupKey;
- void dump() const {
- DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
- }
-};
-
-// Unique map for aggregate constants
-template<class TypeClass, class ConstantClass>
-class ConstantAggrUniqueMap {
-public:
- typedef ArrayRef<Constant*> Operands;
- typedef std::pair<TypeClass*, Operands> LookupKey;
private:
struct MapInfo {
- typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
- typedef DenseMapInfo<Constant*> ConstantInfo;
- typedef DenseMapInfo<TypeClass*> TypeClassInfo;
- static inline ConstantClass* getEmptyKey() {
+ typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
+ static inline ConstantClass *getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
- static inline ConstantClass* getTombstoneKey() {
+ static inline ConstantClass *getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
- SmallVector<Constant*, 8> CPOperands;
- CPOperands.reserve(CP->getNumOperands());
- for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
- CPOperands.push_back(CP->getOperand(I));
- return getHashValue(LookupKey(CP->getType(), CPOperands));
+ SmallVector<Constant *, 8> Storage;
+ return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
- return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
- Val.second.end()));
+ return hash_combine(Val.first, Val.second.getHash());
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
- if (LHS.first != RHS->getType()
- || LHS.second.size() != RHS->getNumOperands())
+ if (LHS.first != RHS->getType())
return false;
- for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
- if (LHS.second[I] != RHS->getOperand(I))
- return false;
- }
- return true;
+ return LHS.second == RHS;
}
};
+
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
MapTy Map;
public:
@@ -696,44 +554,33 @@ public:
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
- for (typename MapTy::iterator I=Map.begin(), E=Map.end();
- I != E; ++I) {
+ for (auto &I : Map)
// Asserts that use_empty().
- delete I->first;
- }
+ delete I.first;
}
private:
- typename MapTy::iterator findExistingElement(ConstantClass *CP) {
- return Map.find(CP);
- }
-
- ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
+ ConstantClass *create(TypeClass *Ty, ValType V) {
+ ConstantClass *Result = V.create(Ty);
assert(Result->getType() == Ty && "Type specified is not correct!");
- Map[Result] = '\0';
+ insert(Result);
return Result;
}
-public:
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
+public:
+ /// Return the specified constant from the map, creating it if necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
LookupKey Lookup(Ty, V);
- ConstantClass* Result = nullptr;
+ ConstantClass *Result = nullptr;
- typename MapTy::iterator I = Map.find_as(Lookup);
- // Is it in the map?
- if (I != Map.end())
+ auto I = find(Lookup);
+ if (I == Map.end())
+ Result = create(Ty, V);
+ else
Result = I->first;
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
+ assert(Result && "Unexpected nullptr");
return Result;
}
@@ -744,23 +591,44 @@ public:
}
/// Insert the constant into its proper slot.
- void insert(ConstantClass *CP) {
- Map[CP] = '\0';
- }
+ void insert(ConstantClass *CP) { Map[CP] = '\0'; }
/// Remove this constant from the map
void remove(ConstantClass *CP) {
- typename MapTy::iterator I = findExistingElement(CP);
+ typename MapTy::iterator I = Map.find(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
- void dump() const {
- DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ ConstantClass *replaceOperandsInPlace(ArrayRef<Constant *> Operands,
+ ConstantClass *CP, Value *From,
+ Constant *To, unsigned NumUpdated = 0,
+ unsigned OperandNo = ~0u) {
+ LookupKey Lookup(CP->getType(), ValType(Operands, CP));
+ auto I = find(Lookup);
+ if (I != Map.end())
+ return I->first;
+
+ // Update to the new value. Optimize for the case when we have a single
+ // operand that we're changing, but handle bulk updates efficiently.
+ remove(CP);
+ if (NumUpdated == 1) {
+ assert(OperandNo < CP->getNumOperands() && "Invalid index");
+ assert(CP->getOperand(OperandNo) != To && "I didn't contain From!");
+ CP->setOperand(OperandNo, To);
+ } else {
+ for (unsigned I = 0, E = CP->getNumOperands(); I != E; ++I)
+ if (CP->getOperand(I) == From)
+ CP->setOperand(I, To);
+ }
+ insert(CP);
+ return nullptr;
}
+
+ void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
};
-}
+} // end namespace llvm
#endif
diff --git a/contrib/llvm/lib/IR/Core.cpp b/contrib/llvm/lib/IR/Core.cpp
index 87099a6..753d9c2 100644
--- a/contrib/llvm/lib/IR/Core.cpp
+++ b/contrib/llvm/lib/IR/Core.cpp
@@ -183,20 +183,22 @@ void LLVMDumpModule(LLVMModuleRef M) {
LLVMBool LLVMPrintModuleToFile(LLVMModuleRef M, const char *Filename,
char **ErrorMessage) {
- std::string error;
- raw_fd_ostream dest(Filename, error, sys::fs::F_Text);
- if (!error.empty()) {
- *ErrorMessage = strdup(error.c_str());
+ std::error_code EC;
+ raw_fd_ostream dest(Filename, EC, sys::fs::F_Text);
+ if (EC) {
+ *ErrorMessage = strdup(EC.message().c_str());
return true;
}
unwrap(M)->print(dest, nullptr);
- if (!error.empty()) {
- *ErrorMessage = strdup(error.c_str());
+ dest.close();
+
+ if (dest.has_error()) {
+ *ErrorMessage = strdup("Error printing to file");
return true;
}
- dest.flush();
+
return false;
}
@@ -554,12 +556,31 @@ int LLVMHasMetadata(LLVMValueRef Inst) {
}
LLVMValueRef LLVMGetMetadata(LLVMValueRef Inst, unsigned KindID) {
- return wrap(unwrap<Instruction>(Inst)->getMetadata(KindID));
+ auto *I = unwrap<Instruction>(Inst);
+ assert(I && "Expected instruction");
+ if (auto *MD = I->getMetadata(KindID))
+ return wrap(MetadataAsValue::get(I->getContext(), MD));
+ return nullptr;
}
-void LLVMSetMetadata(LLVMValueRef Inst, unsigned KindID, LLVMValueRef MD) {
- unwrap<Instruction>(Inst)->setMetadata(KindID,
- MD ? unwrap<MDNode>(MD) : nullptr);
+// MetadataAsValue uses a canonical format which strips the actual MDNode for
+// MDNode with just a single constant value, storing just a ConstantAsMetadata
+// This undoes this canonicalization, reconstructing the MDNode.
+static MDNode *extractMDNode(MetadataAsValue *MAV) {
+ Metadata *MD = MAV->getMetadata();
+ assert((isa<MDNode>(MD) || isa<ConstantAsMetadata>(MD)) &&
+ "Expected a metadata node or a canonicalized constant");
+
+ if (MDNode *N = dyn_cast<MDNode>(MD))
+ return N;
+
+ return MDNode::get(MAV->getContext(), MD);
+}
+
+void LLVMSetMetadata(LLVMValueRef Inst, unsigned KindID, LLVMValueRef Val) {
+ MDNode *N = Val ? extractMDNode(unwrap<MetadataAsValue>(Val)) : nullptr;
+
+ unwrap<Instruction>(Inst)->setMetadata(KindID, N);
}
/*--.. Conversion functions ................................................--*/
@@ -571,6 +592,21 @@ void LLVMSetMetadata(LLVMValueRef Inst, unsigned KindID, LLVMValueRef MD) {
LLVM_FOR_EACH_VALUE_SUBCLASS(LLVM_DEFINE_VALUE_CAST)
+LLVMValueRef LLVMIsAMDNode(LLVMValueRef Val) {
+ if (auto *MD = dyn_cast_or_null<MetadataAsValue>(unwrap(Val)))
+ if (isa<MDNode>(MD->getMetadata()) ||
+ isa<ValueAsMetadata>(MD->getMetadata()))
+ return Val;
+ return nullptr;
+}
+
+LLVMValueRef LLVMIsAMDString(LLVMValueRef Val) {
+ if (auto *MD = dyn_cast_or_null<MetadataAsValue>(unwrap(Val)))
+ if (isa<MDString>(MD->getMetadata()))
+ return Val;
+ return nullptr;
+}
+
/*--.. Operations on Uses ..................................................--*/
LLVMUseRef LLVMGetFirstUse(LLVMValueRef Val) {
Value *V = unwrap(Val);
@@ -596,21 +632,45 @@ LLVMValueRef LLVMGetUsedValue(LLVMUseRef U) {
}
/*--.. Operations on Users .................................................--*/
+
+static LLVMValueRef getMDNodeOperandImpl(LLVMContext &Context, const MDNode *N,
+ unsigned Index) {
+ Metadata *Op = N->getOperand(Index);
+ if (!Op)
+ return nullptr;
+ if (auto *C = dyn_cast<ConstantAsMetadata>(Op))
+ return wrap(C->getValue());
+ return wrap(MetadataAsValue::get(Context, Op));
+}
+
LLVMValueRef LLVMGetOperand(LLVMValueRef Val, unsigned Index) {
Value *V = unwrap(Val);
- if (MDNode *MD = dyn_cast<MDNode>(V))
- return wrap(MD->getOperand(Index));
+ if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
+ if (auto *L = dyn_cast<ValueAsMetadata>(MD->getMetadata())) {
+ assert(Index == 0 && "Function-local metadata can only have one operand");
+ return wrap(L->getValue());
+ }
+ return getMDNodeOperandImpl(V->getContext(),
+ cast<MDNode>(MD->getMetadata()), Index);
+ }
+
return wrap(cast<User>(V)->getOperand(Index));
}
+LLVMUseRef LLVMGetOperandUse(LLVMValueRef Val, unsigned Index) {
+ Value *V = unwrap(Val);
+ return wrap(&cast<User>(V)->getOperandUse(Index));
+}
+
void LLVMSetOperand(LLVMValueRef Val, unsigned Index, LLVMValueRef Op) {
unwrap<User>(Val)->setOperand(Index, unwrap(Op));
}
int LLVMGetNumOperands(LLVMValueRef Val) {
Value *V = unwrap(Val);
- if (MDNode *MD = dyn_cast<MDNode>(V))
- return MD->getNumOperands();
+ if (isa<MetadataAsValue>(V))
+ return LLVMGetMDNodeNumOperands(Val);
+
return cast<User>(V)->getNumOperands();
}
@@ -651,7 +711,9 @@ LLVMValueRef LLVMConstPointerNull(LLVMTypeRef Ty) {
LLVMValueRef LLVMMDStringInContext(LLVMContextRef C, const char *Str,
unsigned SLen) {
- return wrap(MDString::get(*unwrap(C), StringRef(Str, SLen)));
+ LLVMContext &Context = *unwrap(C);
+ return wrap(MetadataAsValue::get(
+ Context, MDString::get(Context, StringRef(Str, SLen))));
}
LLVMValueRef LLVMMDString(const char *Str, unsigned SLen) {
@@ -660,8 +722,29 @@ LLVMValueRef LLVMMDString(const char *Str, unsigned SLen) {
LLVMValueRef LLVMMDNodeInContext(LLVMContextRef C, LLVMValueRef *Vals,
unsigned Count) {
- return wrap(MDNode::get(*unwrap(C),
- makeArrayRef(unwrap<Value>(Vals, Count), Count)));
+ LLVMContext &Context = *unwrap(C);
+ SmallVector<Metadata *, 8> MDs;
+ for (auto *OV : makeArrayRef(Vals, Count)) {
+ Value *V = unwrap(OV);
+ Metadata *MD;
+ if (!V)
+ MD = nullptr;
+ else if (auto *C = dyn_cast<Constant>(V))
+ MD = ConstantAsMetadata::get(C);
+ else if (auto *MDV = dyn_cast<MetadataAsValue>(V)) {
+ MD = MDV->getMetadata();
+ assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata "
+ "outside of direct argument to call");
+ } else {
+ // This is function-local metadata. Pretend to make an MDNode.
+ assert(Count == 1 &&
+ "Expected only one operand to function-local metadata");
+ return wrap(MetadataAsValue::get(Context, LocalAsMetadata::get(V)));
+ }
+
+ MDs.push_back(MD);
+ }
+ return wrap(MetadataAsValue::get(Context, MDNode::get(Context, MDs)));
}
LLVMValueRef LLVMMDNode(LLVMValueRef *Vals, unsigned Count) {
@@ -669,25 +752,35 @@ LLVMValueRef LLVMMDNode(LLVMValueRef *Vals, unsigned Count) {
}
const char *LLVMGetMDString(LLVMValueRef V, unsigned* Len) {
- if (const MDString *S = dyn_cast<MDString>(unwrap(V))) {
- *Len = S->getString().size();
- return S->getString().data();
- }
+ if (const auto *MD = dyn_cast<MetadataAsValue>(unwrap(V)))
+ if (const MDString *S = dyn_cast<MDString>(MD->getMetadata())) {
+ *Len = S->getString().size();
+ return S->getString().data();
+ }
*Len = 0;
return nullptr;
}
unsigned LLVMGetMDNodeNumOperands(LLVMValueRef V)
{
- return cast<MDNode>(unwrap(V))->getNumOperands();
+ auto *MD = cast<MetadataAsValue>(unwrap(V));
+ if (isa<ValueAsMetadata>(MD->getMetadata()))
+ return 1;
+ return cast<MDNode>(MD->getMetadata())->getNumOperands();
}
void LLVMGetMDNodeOperands(LLVMValueRef V, LLVMValueRef *Dest)
{
- const MDNode *N = cast<MDNode>(unwrap(V));
+ auto *MD = cast<MetadataAsValue>(unwrap(V));
+ if (auto *MDV = dyn_cast<ValueAsMetadata>(MD->getMetadata())) {
+ *Dest = wrap(MDV->getValue());
+ return;
+ }
+ const auto *N = cast<MDNode>(MD->getMetadata());
const unsigned numOperands = N->getNumOperands();
+ LLVMContext &Context = unwrap(V)->getContext();
for (unsigned i = 0; i < numOperands; i++)
- Dest[i] = wrap(N->getOperand(i));
+ Dest[i] = getMDNodeOperandImpl(Context, N, i);
}
unsigned LLVMGetNamedMetadataNumOperands(LLVMModuleRef M, const char* name)
@@ -703,8 +796,9 @@ void LLVMGetNamedMetadataOperands(LLVMModuleRef M, const char* name, LLVMValueRe
NamedMDNode *N = unwrap(M)->getNamedMetadata(name);
if (!N)
return;
+ LLVMContext &Context = unwrap(M)->getContext();
for (unsigned i=0;i<N->getNumOperands();i++)
- Dest[i] = wrap(N->getOperand(i));
+ Dest[i] = wrap(MetadataAsValue::get(Context, N->getOperand(i)));
}
void LLVMAddNamedMetadataOperand(LLVMModuleRef M, const char* name,
@@ -713,9 +807,9 @@ void LLVMAddNamedMetadataOperand(LLVMModuleRef M, const char* name,
NamedMDNode *N = unwrap(M)->getOrInsertNamedMetadata(name);
if (!N)
return;
- MDNode *Op = Val ? unwrap<MDNode>(Val) : nullptr;
- if (Op)
- N->addOperand(Op);
+ if (!Val)
+ return;
+ N->addOperand(extractMDNode(unwrap<MetadataAsValue>(Val)));
}
/*--.. Operations on scalar constants ......................................--*/
@@ -767,6 +861,27 @@ long long LLVMConstIntGetSExtValue(LLVMValueRef ConstantVal) {
return unwrap<ConstantInt>(ConstantVal)->getSExtValue();
}
+double LLVMConstRealGetDouble(LLVMValueRef ConstantVal, LLVMBool *LosesInfo) {
+ ConstantFP *cFP = unwrap<ConstantFP>(ConstantVal) ;
+ Type *Ty = cFP->getType();
+
+ if (Ty->isFloatTy()) {
+ *LosesInfo = false;
+ return cFP->getValueAPF().convertToFloat();
+ }
+
+ if (Ty->isDoubleTy()) {
+ *LosesInfo = false;
+ return cFP->getValueAPF().convertToDouble();
+ }
+
+ bool APFLosesInfo;
+ APFloat APF = cFP->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &APFLosesInfo);
+ *LosesInfo = APFLosesInfo;
+ return APF.convertToDouble();
+}
+
/*--.. Operations on composite constants ...................................--*/
LLVMValueRef LLVMConstStringInContext(LLVMContextRef C, const char *Str,
@@ -790,11 +905,27 @@ LLVMValueRef LLVMConstString(const char *Str, unsigned Length,
return LLVMConstStringInContext(LLVMGetGlobalContext(), Str, Length,
DontNullTerminate);
}
+
+LLVMValueRef LLVMGetElementAsConstant(LLVMValueRef c, unsigned idx) {
+ return wrap(static_cast<ConstantDataSequential*>(unwrap(c))->getElementAsConstant(idx));
+}
+
+LLVMBool LLVMIsConstantString(LLVMValueRef c) {
+ return static_cast<ConstantDataSequential*>(unwrap(c))->isString();
+}
+
+const char *LLVMGetAsString(LLVMValueRef c, size_t* Length) {
+ StringRef str = static_cast<ConstantDataSequential*>(unwrap(c))->getAsString();
+ *Length = str.size();
+ return str.data();
+}
+
LLVMValueRef LLVMConstArray(LLVMTypeRef ElementTy,
LLVMValueRef *ConstantVals, unsigned Length) {
ArrayRef<Constant*> V(unwrap<Constant>(ConstantVals, Length), Length);
return wrap(ConstantArray::get(ArrayType::get(unwrap(ElementTy), Length), V));
}
+
LLVMValueRef LLVMConstStruct(LLVMValueRef *ConstantVals, unsigned Count,
LLVMBool Packed) {
return LLVMConstStructInContext(LLVMGetGlobalContext(), ConstantVals, Count,
@@ -1859,12 +1990,27 @@ LLVMIntPredicate LLVMGetICmpPredicate(LLVMValueRef Inst) {
return (LLVMIntPredicate)0;
}
+LLVMRealPredicate LLVMGetFCmpPredicate(LLVMValueRef Inst) {
+ if (FCmpInst *I = dyn_cast<FCmpInst>(unwrap(Inst)))
+ return (LLVMRealPredicate)I->getPredicate();
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(unwrap(Inst)))
+ if (CE->getOpcode() == Instruction::FCmp)
+ return (LLVMRealPredicate)CE->getPredicate();
+ return (LLVMRealPredicate)0;
+}
+
LLVMOpcode LLVMGetInstructionOpcode(LLVMValueRef Inst) {
if (Instruction *C = dyn_cast<Instruction>(unwrap(Inst)))
return map_to_llvmopcode(C->getOpcode());
return (LLVMOpcode)0;
}
+LLVMValueRef LLVMInstructionClone(LLVMValueRef Inst) {
+ if (Instruction *C = dyn_cast<Instruction>(unwrap(Inst)))
+ return wrap(C->clone());
+ return nullptr;
+}
+
/*--.. Call and invoke instructions ........................................--*/
unsigned LLVMGetInstructionCallConv(LLVMValueRef Instr) {
@@ -1926,6 +2072,34 @@ void LLVMSetTailCall(LLVMValueRef Call, LLVMBool isTailCall) {
unwrap<CallInst>(Call)->setTailCall(isTailCall);
}
+/*--.. Operations on terminators ...........................................--*/
+
+unsigned LLVMGetNumSuccessors(LLVMValueRef Term) {
+ return unwrap<TerminatorInst>(Term)->getNumSuccessors();
+}
+
+LLVMBasicBlockRef LLVMGetSuccessor(LLVMValueRef Term, unsigned i) {
+ return wrap(unwrap<TerminatorInst>(Term)->getSuccessor(i));
+}
+
+void LLVMSetSuccessor(LLVMValueRef Term, unsigned i, LLVMBasicBlockRef block) {
+ return unwrap<TerminatorInst>(Term)->setSuccessor(i,unwrap(block));
+}
+
+/*--.. Operations on branch instructions (only) ............................--*/
+
+LLVMBool LLVMIsConditional(LLVMValueRef Branch) {
+ return unwrap<BranchInst>(Branch)->isConditional();
+}
+
+LLVMValueRef LLVMGetCondition(LLVMValueRef Branch) {
+ return wrap(unwrap<BranchInst>(Branch)->getCondition());
+}
+
+void LLVMSetCondition(LLVMValueRef Branch, LLVMValueRef Cond) {
+ return unwrap<BranchInst>(Branch)->setCondition(unwrap(Cond));
+}
+
/*--.. Operations on switch instructions (only) ............................--*/
LLVMBasicBlockRef LLVMGetSwitchDefaultDest(LLVMValueRef Switch) {
@@ -2005,13 +2179,16 @@ void LLVMDisposeBuilder(LLVMBuilderRef Builder) {
/*--.. Metadata builders ...................................................--*/
void LLVMSetCurrentDebugLocation(LLVMBuilderRef Builder, LLVMValueRef L) {
- MDNode *Loc = L ? unwrap<MDNode>(L) : nullptr;
+ MDNode *Loc =
+ L ? cast<MDNode>(unwrap<MetadataAsValue>(L)->getMetadata()) : nullptr;
unwrap(Builder)->SetCurrentDebugLocation(DebugLoc::getFromDILocation(Loc));
}
LLVMValueRef LLVMGetCurrentDebugLocation(LLVMBuilderRef Builder) {
- return wrap(unwrap(Builder)->getCurrentDebugLocation()
- .getAsMDNode(unwrap(Builder)->getContext()));
+ LLVMContext &Context = unwrap(Builder)->getContext();
+ return wrap(MetadataAsValue::get(
+ Context,
+ unwrap(Builder)->getCurrentDebugLocation().getAsMDNode(Context)));
}
void LLVMSetInstDebugLocation(LLVMBuilderRef Builder, LLVMValueRef Inst) {
@@ -2313,7 +2490,7 @@ static AtomicOrdering mapFromLLVMOrdering(LLVMAtomicOrdering Ordering) {
case LLVMAtomicOrderingSequentiallyConsistent:
return SequentiallyConsistent;
}
-
+
llvm_unreachable("Invalid LLVMAtomicOrdering value!");
}
@@ -2632,10 +2809,9 @@ LLVMMemoryBufferRef LLVMCreateMemoryBufferWithMemoryRange(
const char *BufferName,
LLVMBool RequiresNullTerminator) {
- return wrap(MemoryBuffer::getMemBuffer(
- StringRef(InputData, InputDataLength),
- StringRef(BufferName),
- RequiresNullTerminator));
+ return wrap(MemoryBuffer::getMemBuffer(StringRef(InputData, InputDataLength),
+ StringRef(BufferName),
+ RequiresNullTerminator).release());
}
LLVMMemoryBufferRef LLVMCreateMemoryBufferWithMemoryRangeCopy(
@@ -2643,9 +2819,9 @@ LLVMMemoryBufferRef LLVMCreateMemoryBufferWithMemoryRangeCopy(
size_t InputDataLength,
const char *BufferName) {
- return wrap(MemoryBuffer::getMemBufferCopy(
- StringRef(InputData, InputDataLength),
- StringRef(BufferName)));
+ return wrap(
+ MemoryBuffer::getMemBufferCopy(StringRef(InputData, InputDataLength),
+ StringRef(BufferName)).release());
}
const char *LLVMGetBufferStart(LLVMMemoryBufferRef MemBuf) {
diff --git a/contrib/llvm/lib/IR/DIBuilder.cpp b/contrib/llvm/lib/IR/DIBuilder.cpp
index 218787c..856bb3c 100644
--- a/contrib/llvm/lib/IR/DIBuilder.cpp
+++ b/contrib/llvm/lib/IR/DIBuilder.cpp
@@ -23,30 +23,64 @@
using namespace llvm;
using namespace llvm::dwarf;
-static Constant *GetTagConstant(LLVMContext &VMContext, unsigned Tag) {
- assert((Tag & LLVMDebugVersionMask) == 0 &&
- "Tag too large for debug encoding!");
- return ConstantInt::get(Type::getInt32Ty(VMContext), Tag | LLVMDebugVersion);
+namespace {
+class HeaderBuilder {
+ SmallVector<char, 256> Chars;
+
+public:
+ explicit HeaderBuilder(Twine T) { T.toVector(Chars); }
+ HeaderBuilder(const HeaderBuilder &X) : Chars(X.Chars) {}
+ HeaderBuilder(HeaderBuilder &&X) : Chars(std::move(X.Chars)) {}
+
+ template <class Twineable> HeaderBuilder &concat(Twineable &&X) {
+ Chars.push_back(0);
+ Twine(X).toVector(Chars);
+ return *this;
+ }
+
+ MDString *get(LLVMContext &Context) const {
+ return MDString::get(Context, StringRef(Chars.begin(), Chars.size()));
+ }
+
+ static HeaderBuilder get(unsigned Tag) {
+ return HeaderBuilder("0x" + Twine::utohexstr(Tag));
+ }
+};
}
-DIBuilder::DIBuilder(Module &m)
+DIBuilder::DIBuilder(Module &m, bool AllowUnresolvedNodes)
: M(m), VMContext(M.getContext()), TempEnumTypes(nullptr),
TempRetainTypes(nullptr), TempSubprograms(nullptr), TempGVs(nullptr),
- DeclareFn(nullptr), ValueFn(nullptr) {}
+ DeclareFn(nullptr), ValueFn(nullptr),
+ AllowUnresolvedNodes(AllowUnresolvedNodes) {}
+
+static bool isUnresolved(MDNode *N) {
+ return N &&
+ (isa<MDNodeFwdDecl>(N) || !cast<UniquableMDNode>(N)->isResolved());
+}
+
+void DIBuilder::trackIfUnresolved(MDNode *N) {
+ if (!AllowUnresolvedNodes) {
+ assert(!isUnresolved(N) && "Cannot handle unresolved nodes");
+ return;
+ }
+ if (isUnresolved(N))
+ UnresolvedNodes.emplace_back(N);
+ return;
+}
-/// finalize - Construct any deferred debug info descriptors.
void DIBuilder::finalize() {
DIArray Enums = getOrCreateArray(AllEnumTypes);
DIType(TempEnumTypes).replaceAllUsesWith(Enums);
- SmallVector<Value *, 16> RetainValues;
+ SmallVector<Metadata *, 16> RetainValues;
// Declarations and definitions of the same type may be retained. Some
// clients RAUW these pairs, leaving duplicates in the retained types
// list. Use a set to remove the duplicates while we transform the
// TrackingVHs back into Values.
- SmallPtrSet<Value *, 16> RetainSet;
+ SmallPtrSet<Metadata *, 16> RetainSet;
for (unsigned I = 0, E = AllRetainTypes.size(); I < E; I++)
- if (RetainSet.insert(AllRetainTypes[I]))
+ if (RetainSet.insert(AllRetainTypes[I]).second)
RetainValues.push_back(AllRetainTypes[I]);
DIArray RetainTypes = getOrCreateArray(RetainValues);
DIType(TempRetainTypes).replaceAllUsesWith(RetainTypes);
@@ -55,13 +89,10 @@ void DIBuilder::finalize() {
DIType(TempSubprograms).replaceAllUsesWith(SPs);
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) {
DISubprogram SP(SPs.getElement(i));
- SmallVector<Value *, 4> Variables;
- if (NamedMDNode *NMD = getFnSpecificMDNode(M, SP)) {
- for (unsigned ii = 0, ee = NMD->getNumOperands(); ii != ee; ++ii)
- Variables.push_back(NMD->getOperand(ii));
- NMD->eraseFromParent();
- }
if (MDNode *Temp = SP.getVariablesNodes()) {
+ SmallVector<Metadata *, 4> Variables;
+ for (Metadata *V : PreservedVariables.lookup(SP))
+ Variables.push_back(V);
DIArray AV = getOrCreateArray(Variables);
DIType(Temp).replaceAllUsesWith(AV);
}
@@ -70,15 +101,24 @@ void DIBuilder::finalize() {
DIArray GVs = getOrCreateArray(AllGVs);
DIType(TempGVs).replaceAllUsesWith(GVs);
- SmallVector<Value *, 16> RetainValuesI;
+ SmallVector<Metadata *, 16> RetainValuesI;
for (unsigned I = 0, E = AllImportedModules.size(); I < E; I++)
RetainValuesI.push_back(AllImportedModules[I]);
DIArray IMs = getOrCreateArray(RetainValuesI);
DIType(TempImportedModules).replaceAllUsesWith(IMs);
+
+ // Now that all temp nodes have been replaced or deleted, resolve remaining
+ // cycles.
+ for (const auto &N : UnresolvedNodes)
+ if (N)
+ cast<UniquableMDNode>(N)->resolveCycles();
+ UnresolvedNodes.clear();
+
+ // Can't handle unresolved nodes anymore.
+ AllowUnresolvedNodes = false;
}
-/// getNonCompileUnitScope - If N is compile unit return NULL otherwise return
-/// N.
+/// If N is compile unit return NULL otherwise return N.
static MDNode *getNonCompileUnitScope(MDNode *N) {
if (DIDescriptor(N).isCompileUnit())
return nullptr;
@@ -88,15 +128,11 @@ static MDNode *getNonCompileUnitScope(MDNode *N) {
static MDNode *createFilePathPair(LLVMContext &VMContext, StringRef Filename,
StringRef Directory) {
assert(!Filename.empty() && "Unable to create file without name");
- Value *Pair[] = {
- MDString::get(VMContext, Filename),
- MDString::get(VMContext, Directory)
- };
+ Metadata *Pair[] = {MDString::get(VMContext, Filename),
+ MDString::get(VMContext, Directory)};
return MDNode::get(VMContext, Pair);
}
-/// createCompileUnit - A CompileUnit provides an anchor for all debugging
-/// information generated during this instance of compilation.
DICompileUnit DIBuilder::createCompileUnit(unsigned Lang, StringRef Filename,
StringRef Directory,
StringRef Producer, bool isOptimized,
@@ -110,7 +146,7 @@ DICompileUnit DIBuilder::createCompileUnit(unsigned Lang, StringRef Filename,
"Invalid Language tag");
assert(!Filename.empty() &&
"Unable to create compile unit without filename");
- Value *TElts[] = { GetTagConstant(VMContext, DW_TAG_base_type) };
+ Metadata *TElts[] = {HeaderBuilder::get(DW_TAG_base_type).get(VMContext)};
TempEnumTypes = MDNode::getTemporary(VMContext, TElts);
TempRetainTypes = MDNode::getTemporary(VMContext, TElts);
@@ -121,22 +157,18 @@ DICompileUnit DIBuilder::createCompileUnit(unsigned Lang, StringRef Filename,
TempImportedModules = MDNode::getTemporary(VMContext, TElts);
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_compile_unit),
- createFilePathPair(VMContext, Filename, Directory),
- ConstantInt::get(Type::getInt32Ty(VMContext), Lang),
- MDString::get(VMContext, Producer),
- ConstantInt::get(Type::getInt1Ty(VMContext), isOptimized),
- MDString::get(VMContext, Flags),
- ConstantInt::get(Type::getInt32Ty(VMContext), RunTimeVer),
- TempEnumTypes,
- TempRetainTypes,
- TempSubprograms,
- TempGVs,
- TempImportedModules,
- MDString::get(VMContext, SplitName),
- ConstantInt::get(Type::getInt32Ty(VMContext), Kind)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_compile_unit)
+ .concat(Lang)
+ .concat(Producer)
+ .concat(isOptimized)
+ .concat(Flags)
+ .concat(RunTimeVer)
+ .concat(SplitName)
+ .concat(Kind)
+ .get(VMContext),
+ createFilePathPair(VMContext, Filename, Directory),
+ TempEnumTypes, TempRetainTypes, TempSubprograms, TempGVs,
+ TempImportedModules};
MDNode *CUNode = MDNode::get(VMContext, Elts);
@@ -150,35 +182,21 @@ DICompileUnit DIBuilder::createCompileUnit(unsigned Lang, StringRef Filename,
NMD->addOperand(CUNode);
}
+ trackIfUnresolved(CUNode);
return DICompileUnit(CUNode);
}
static DIImportedEntity
createImportedModule(LLVMContext &C, dwarf::Tag Tag, DIScope Context,
- Value *NS, unsigned Line, StringRef Name,
- SmallVectorImpl<TrackingVH<MDNode>> &AllImportedModules) {
+ Metadata *NS, unsigned Line, StringRef Name,
+ SmallVectorImpl<TrackingMDNodeRef> &AllImportedModules) {
const MDNode *R;
- if (Name.empty()) {
- Value *Elts[] = {
- GetTagConstant(C, Tag),
- Context,
- NS,
- ConstantInt::get(Type::getInt32Ty(C), Line),
- };
- R = MDNode::get(C, Elts);
- } else {
- Value *Elts[] = {
- GetTagConstant(C, Tag),
- Context,
- NS,
- ConstantInt::get(Type::getInt32Ty(C), Line),
- MDString::get(C, Name)
- };
- R = MDNode::get(C, Elts);
- }
+ Metadata *Elts[] = {HeaderBuilder::get(Tag).concat(Line).concat(Name).get(C),
+ Context, NS};
+ R = MDNode::get(C, Elts);
DIImportedEntity M(R);
assert(M.Verify() && "Imported module should be valid");
- AllImportedModules.push_back(TrackingVH<MDNode>(M));
+ AllImportedModules.emplace_back(M.get());
return M;
}
@@ -197,10 +215,14 @@ DIImportedEntity DIBuilder::createImportedModule(DIScope Context,
}
DIImportedEntity DIBuilder::createImportedDeclaration(DIScope Context,
- DIScope Decl,
+ DIDescriptor Decl,
unsigned Line, StringRef Name) {
+ // Make sure to use the unique identifier based metadata reference for
+ // types that have one.
+ Metadata *V =
+ Decl.isType() ? static_cast<Metadata *>(DIType(Decl).getRef()) : Decl;
return ::createImportedModule(VMContext, dwarf::DW_TAG_imported_declaration,
- Context, Decl.getRef(), Line, Name,
+ Context, V, Line, Name,
AllImportedModules);
}
@@ -211,215 +233,187 @@ DIImportedEntity DIBuilder::createImportedDeclaration(DIScope Context,
Context, Imp, Line, Name, AllImportedModules);
}
-/// createFile - Create a file descriptor to hold debugging information
-/// for a file.
DIFile DIBuilder::createFile(StringRef Filename, StringRef Directory) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_file_type),
- createFilePathPair(VMContext, Filename, Directory)
- };
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_file_type).get(VMContext),
+ createFilePathPair(VMContext, Filename, Directory)};
return DIFile(MDNode::get(VMContext, Elts));
}
-/// createEnumerator - Create a single enumerator value.
DIEnumerator DIBuilder::createEnumerator(StringRef Name, int64_t Val) {
assert(!Name.empty() && "Unable to create enumerator without name");
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_enumerator),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt64Ty(VMContext), Val)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_enumerator)
+ .concat(Name)
+ .concat(Val)
+ .get(VMContext)};
return DIEnumerator(MDNode::get(VMContext, Elts));
}
-/// \brief Create a DWARF unspecified type.
DIBasicType DIBuilder::createUnspecifiedType(StringRef Name) {
assert(!Name.empty() && "Unable to create type without name");
// Unspecified types are encoded in DIBasicType format. Line number, filename,
// size, alignment, offset and flags are always empty here.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_unspecified_type),
- nullptr, // Filename
- nullptr, // Unused
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags;
- ConstantInt::get(Type::getInt32Ty(VMContext), 0) // Encoding
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_unspecified_type)
+ .concat(Name)
+ .concat(0)
+ .concat(0)
+ .concat(0)
+ .concat(0)
+ .concat(0)
+ .concat(0)
+ .get(VMContext),
+ nullptr, // Filename
+ nullptr // Unused
};
return DIBasicType(MDNode::get(VMContext, Elts));
}
-/// \brief Create C++11 nullptr type.
DIBasicType DIBuilder::createNullPtrType() {
return createUnspecifiedType("decltype(nullptr)");
}
-/// createBasicType - Create debugging information entry for a basic
-/// type, e.g 'char'.
DIBasicType
DIBuilder::createBasicType(StringRef Name, uint64_t SizeInBits,
uint64_t AlignInBits, unsigned Encoding) {
assert(!Name.empty() && "Unable to create type without name");
// Basic types are encoded in DIBasicType format. Line number, filename,
// offset and flags are always empty here.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_base_type),
- nullptr, // File/directory name
- nullptr, // Unused
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags;
- ConstantInt::get(Type::getInt32Ty(VMContext), Encoding)
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_base_type)
+ .concat(Name)
+ .concat(0) // Line
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .concat(Encoding)
+ .get(VMContext),
+ nullptr, // Filename
+ nullptr // Unused
};
return DIBasicType(MDNode::get(VMContext, Elts));
}
-/// createQualifiedType - Create debugging information entry for a qualified
-/// type, e.g. 'const int'.
DIDerivedType DIBuilder::createQualifiedType(unsigned Tag, DIType FromTy) {
// Qualified types are encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- nullptr, // Filename
- nullptr, // Unused
- MDString::get(VMContext, StringRef()), // Empty name.
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- FromTy.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(Tag)
+ .concat(StringRef()) // Name
+ .concat(0) // Line
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .get(VMContext),
+ nullptr, // Filename
+ nullptr, // Unused
+ FromTy.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createPointerType - Create debugging information entry for a pointer.
DIDerivedType
DIBuilder::createPointerType(DIType PointeeTy, uint64_t SizeInBits,
uint64_t AlignInBits, StringRef Name) {
// Pointer types are encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_pointer_type),
- nullptr, // Filename
- nullptr, // Unused
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- PointeeTy.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_pointer_type)
+ .concat(Name)
+ .concat(0) // Line
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .get(VMContext),
+ nullptr, // Filename
+ nullptr, // Unused
+ PointeeTy.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-DIDerivedType DIBuilder::createMemberPointerType(DIType PointeeTy,
- DIType Base) {
+DIDerivedType
+DIBuilder::createMemberPointerType(DIType PointeeTy, DIType Base,
+ uint64_t SizeInBits, uint64_t AlignInBits) {
// Pointer types are encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_ptr_to_member_type),
- nullptr, // Filename
- nullptr, // Unused
- nullptr,
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- PointeeTy.getRef(),
- Base.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_ptr_to_member_type)
+ .concat(StringRef())
+ .concat(0) // Line
+ .concat(SizeInBits) // Size
+ .concat(AlignInBits) // Align
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .get(VMContext),
+ nullptr, // Filename
+ nullptr, // Unused
+ PointeeTy.getRef(), Base.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createReferenceType - Create debugging information entry for a reference
-/// type.
DIDerivedType DIBuilder::createReferenceType(unsigned Tag, DIType RTy) {
assert(RTy.isType() && "Unable to create reference type");
// References are encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- nullptr, // Filename
- nullptr, // TheCU,
- nullptr, // Name
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- RTy.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(Tag)
+ .concat(StringRef()) // Name
+ .concat(0) // Line
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .get(VMContext),
+ nullptr, // Filename
+ nullptr, // TheCU,
+ RTy.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createTypedef - Create debugging information entry for a typedef.
DIDerivedType DIBuilder::createTypedef(DIType Ty, StringRef Name, DIFile File,
unsigned LineNo, DIDescriptor Context) {
// typedefs are encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_typedef),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Context)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- Ty.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_typedef)
+ .concat(Name)
+ .concat(LineNo)
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .get(VMContext),
+ File.getFileNode(),
+ DIScope(getNonCompileUnitScope(Context)).getRef(),
+ Ty.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createFriend - Create debugging information entry for a 'friend'.
DIDerivedType DIBuilder::createFriend(DIType Ty, DIType FriendTy) {
// typedefs are encoded in DIDerivedType format.
assert(Ty.isType() && "Invalid type!");
assert(FriendTy.isType() && "Invalid friend type!");
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_friend),
- nullptr,
- Ty.getRef(),
- nullptr, // Name
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- FriendTy.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_friend)
+ .concat(StringRef()) // Name
+ .concat(0) // Line
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .get(VMContext),
+ nullptr, Ty.getRef(), FriendTy.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createInheritance - Create debugging information entry to establish
-/// inheritance relationship between two types.
DIDerivedType DIBuilder::createInheritance(DIType Ty, DIType BaseTy,
uint64_t BaseOffset,
unsigned Flags) {
assert(Ty.isType() && "Unable to create inheritance");
// TAG_inheritance is encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_inheritance),
- nullptr,
- Ty.getRef(),
- nullptr, // Name
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), BaseOffset),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- BaseTy.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_inheritance)
+ .concat(StringRef()) // Name
+ .concat(0) // Line
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(BaseOffset)
+ .concat(Flags)
+ .get(VMContext),
+ nullptr, Ty.getRef(), BaseTy.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createMemberType - Create debugging information entry for a member.
DIDerivedType DIBuilder::createMemberType(DIDescriptor Scope, StringRef Name,
DIFile File, unsigned LineNumber,
uint64_t SizeInBits,
@@ -427,76 +421,47 @@ DIDerivedType DIBuilder::createMemberType(DIDescriptor Scope, StringRef Name,
uint64_t OffsetInBits, unsigned Flags,
DIType Ty) {
// TAG_member is encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_member),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Scope)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), OffsetInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- Ty.getRef()
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_member)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(OffsetInBits)
+ .concat(Flags)
+ .get(VMContext),
+ File.getFileNode(),
+ DIScope(getNonCompileUnitScope(Scope)).getRef(),
+ Ty.getRef()};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createStaticMemberType - Create debugging information entry for a
-/// C++ static data member.
-DIDerivedType
-DIBuilder::createStaticMemberType(DIDescriptor Scope, StringRef Name,
- DIFile File, unsigned LineNumber,
- DIType Ty, unsigned Flags,
- llvm::Value *Val) {
- // TAG_member is encoded in DIDerivedType format.
- Flags |= DIDescriptor::FlagStaticMember;
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_member),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Scope)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- Ty.getRef(),
- Val
- };
- return DIDerivedType(MDNode::get(VMContext, Elts));
+static Metadata *getConstantOrNull(Constant *C) {
+ if (C)
+ return ConstantAsMetadata::get(C);
+ return nullptr;
}
-/// createObjCIVar - Create debugging information entry for Objective-C
-/// instance variable.
-DIDerivedType
-DIBuilder::createObjCIVar(StringRef Name, DIFile File, unsigned LineNumber,
- uint64_t SizeInBits, uint64_t AlignInBits,
- uint64_t OffsetInBits, unsigned Flags, DIType Ty,
- StringRef PropertyName, StringRef GetterName,
- StringRef SetterName, unsigned PropertyAttributes) {
+DIDerivedType DIBuilder::createStaticMemberType(DIDescriptor Scope,
+ StringRef Name, DIFile File,
+ unsigned LineNumber, DIType Ty,
+ unsigned Flags,
+ llvm::Constant *Val) {
// TAG_member is encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_member),
- File.getFileNode(),
- getNonCompileUnitScope(File),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), OffsetInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- Ty,
- MDString::get(VMContext, PropertyName),
- MDString::get(VMContext, GetterName),
- MDString::get(VMContext, SetterName),
- ConstantInt::get(Type::getInt32Ty(VMContext), PropertyAttributes)
- };
+ Flags |= DIDescriptor::FlagStaticMember;
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_member)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(0) // Offset
+ .concat(Flags)
+ .get(VMContext),
+ File.getFileNode(),
+ DIScope(getNonCompileUnitScope(Scope)).getRef(),
+ Ty.getRef(), getConstantOrNull(Val)};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createObjCIVar - Create debugging information entry for Objective-C
-/// instance variable.
DIDerivedType DIBuilder::createObjCIVar(StringRef Name, DIFile File,
unsigned LineNumber,
uint64_t SizeInBits,
@@ -504,88 +469,65 @@ DIDerivedType DIBuilder::createObjCIVar(StringRef Name, DIFile File,
uint64_t OffsetInBits, unsigned Flags,
DIType Ty, MDNode *PropertyNode) {
// TAG_member is encoded in DIDerivedType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_member),
- File.getFileNode(),
- getNonCompileUnitScope(File),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), OffsetInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- Ty,
- PropertyNode
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_member)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(OffsetInBits)
+ .concat(Flags)
+ .get(VMContext),
+ File.getFileNode(), getNonCompileUnitScope(File), Ty,
+ PropertyNode};
return DIDerivedType(MDNode::get(VMContext, Elts));
}
-/// createObjCProperty - Create debugging information entry for Objective-C
-/// property.
DIObjCProperty
DIBuilder::createObjCProperty(StringRef Name, DIFile File, unsigned LineNumber,
StringRef GetterName, StringRef SetterName,
unsigned PropertyAttributes, DIType Ty) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_APPLE_property),
- MDString::get(VMContext, Name),
- File,
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- MDString::get(VMContext, GetterName),
- MDString::get(VMContext, SetterName),
- ConstantInt::get(Type::getInt32Ty(VMContext), PropertyAttributes),
- Ty
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_APPLE_property)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(GetterName)
+ .concat(SetterName)
+ .concat(PropertyAttributes)
+ .get(VMContext),
+ File, Ty};
return DIObjCProperty(MDNode::get(VMContext, Elts));
}
-/// createTemplateTypeParameter - Create debugging information for template
-/// type parameter.
DITemplateTypeParameter
DIBuilder::createTemplateTypeParameter(DIDescriptor Context, StringRef Name,
DIType Ty, MDNode *File, unsigned LineNo,
unsigned ColumnNo) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_template_type_parameter),
- DIScope(getNonCompileUnitScope(Context)).getRef(),
- MDString::get(VMContext, Name),
- Ty.getRef(),
- File,
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
- ConstantInt::get(Type::getInt32Ty(VMContext), ColumnNo)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_template_type_parameter)
+ .concat(Name)
+ .concat(LineNo)
+ .concat(ColumnNo)
+ .get(VMContext),
+ DIScope(getNonCompileUnitScope(Context)).getRef(),
+ Ty.getRef(), File};
return DITemplateTypeParameter(MDNode::get(VMContext, Elts));
}
-DITemplateValueParameter
-DIBuilder::createTemplateValueParameter(unsigned Tag, DIDescriptor Context,
- StringRef Name, DIType Ty,
- Value *Val, MDNode *File,
- unsigned LineNo,
- unsigned ColumnNo) {
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- DIScope(getNonCompileUnitScope(Context)).getRef(),
- MDString::get(VMContext, Name),
- Ty.getRef(),
- Val,
- File,
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
- ConstantInt::get(Type::getInt32Ty(VMContext), ColumnNo)
- };
+static DITemplateValueParameter createTemplateValueParameterHelper(
+ LLVMContext &VMContext, unsigned Tag, DIDescriptor Context, StringRef Name,
+ DIType Ty, Metadata *MD, MDNode *File, unsigned LineNo, unsigned ColumnNo) {
+ Metadata *Elts[] = {
+ HeaderBuilder::get(Tag).concat(Name).concat(LineNo).concat(ColumnNo).get(
+ VMContext),
+ DIScope(getNonCompileUnitScope(Context)).getRef(), Ty.getRef(), MD, File};
return DITemplateValueParameter(MDNode::get(VMContext, Elts));
}
-/// createTemplateValueParameter - Create debugging information for template
-/// value parameter.
DITemplateValueParameter
DIBuilder::createTemplateValueParameter(DIDescriptor Context, StringRef Name,
- DIType Ty, Value *Val,
- MDNode *File, unsigned LineNo,
- unsigned ColumnNo) {
- return createTemplateValueParameter(dwarf::DW_TAG_template_value_parameter,
- Context, Name, Ty, Val, File, LineNo,
- ColumnNo);
+ DIType Ty, Constant *Val, MDNode *File,
+ unsigned LineNo, unsigned ColumnNo) {
+ return createTemplateValueParameterHelper(
+ VMContext, dwarf::DW_TAG_template_value_parameter, Context, Name, Ty,
+ getConstantOrNull(Val), File, LineNo, ColumnNo);
}
DITemplateValueParameter
@@ -593,8 +535,8 @@ DIBuilder::createTemplateTemplateParameter(DIDescriptor Context, StringRef Name,
DIType Ty, StringRef Val,
MDNode *File, unsigned LineNo,
unsigned ColumnNo) {
- return createTemplateValueParameter(
- dwarf::DW_TAG_GNU_template_template_param, Context, Name, Ty,
+ return createTemplateValueParameterHelper(
+ VMContext, dwarf::DW_TAG_GNU_template_template_param, Context, Name, Ty,
MDString::get(VMContext, Val), File, LineNo, ColumnNo);
}
@@ -603,12 +545,11 @@ DIBuilder::createTemplateParameterPack(DIDescriptor Context, StringRef Name,
DIType Ty, DIArray Val,
MDNode *File, unsigned LineNo,
unsigned ColumnNo) {
- return createTemplateValueParameter(dwarf::DW_TAG_GNU_template_parameter_pack,
- Context, Name, Ty, Val, File, LineNo,
- ColumnNo);
+ return createTemplateValueParameterHelper(
+ VMContext, dwarf::DW_TAG_GNU_template_parameter_pack, Context, Name, Ty,
+ Val, File, LineNo, ColumnNo);
}
-/// createClassType - Create debugging information entry for a class.
DICompositeType DIBuilder::createClassType(DIDescriptor Context, StringRef Name,
DIFile File, unsigned LineNumber,
uint64_t SizeInBits,
@@ -622,24 +563,20 @@ DICompositeType DIBuilder::createClassType(DIDescriptor Context, StringRef Name,
assert((!Context || Context.isScope() || Context.isType()) &&
"createClassType should be called with a valid Context");
// TAG_class_type is encoded in DICompositeType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_class_type),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Context)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), OffsetInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- DerivedFrom.getRef(),
- Elements,
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- VTableHolder.getRef(),
- TemplateParams,
- UniqueIdentifier.empty() ? nullptr
- : MDString::get(VMContext, UniqueIdentifier)
- };
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_class_type)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(OffsetInBits)
+ .concat(Flags)
+ .concat(0)
+ .get(VMContext),
+ File.getFileNode(), DIScope(getNonCompileUnitScope(Context)).getRef(),
+ DerivedFrom.getRef(), Elements, VTableHolder.getRef(), TemplateParams,
+ UniqueIdentifier.empty() ? nullptr
+ : MDString::get(VMContext, UniqueIdentifier)};
DICompositeType R(MDNode::get(VMContext, Elts));
assert(R.isCompositeType() &&
"createClassType should return a DICompositeType");
@@ -648,7 +585,6 @@ DICompositeType DIBuilder::createClassType(DIDescriptor Context, StringRef Name,
return R;
}
-/// createStructType - Create debugging information entry for a struct.
DICompositeType DIBuilder::createStructType(DIDescriptor Context,
StringRef Name, DIFile File,
unsigned LineNumber,
@@ -660,24 +596,20 @@ DICompositeType DIBuilder::createStructType(DIDescriptor Context,
DIType VTableHolder,
StringRef UniqueIdentifier) {
// TAG_structure_type is encoded in DICompositeType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_structure_type),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Context)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- DerivedFrom.getRef(),
- Elements,
- ConstantInt::get(Type::getInt32Ty(VMContext), RunTimeLang),
- VTableHolder.getRef(),
- nullptr,
- UniqueIdentifier.empty() ? nullptr
- : MDString::get(VMContext, UniqueIdentifier)
- };
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_structure_type)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0)
+ .concat(Flags)
+ .concat(RunTimeLang)
+ .get(VMContext),
+ File.getFileNode(), DIScope(getNonCompileUnitScope(Context)).getRef(),
+ DerivedFrom.getRef(), Elements, VTableHolder.getRef(), nullptr,
+ UniqueIdentifier.empty() ? nullptr
+ : MDString::get(VMContext, UniqueIdentifier)};
DICompositeType R(MDNode::get(VMContext, Elts));
assert(R.isCompositeType() &&
"createStructType should return a DICompositeType");
@@ -686,7 +618,6 @@ DICompositeType DIBuilder::createStructType(DIDescriptor Context,
return R;
}
-/// createUnionType - Create debugging information entry for an union.
DICompositeType DIBuilder::createUnionType(DIDescriptor Scope, StringRef Name,
DIFile File, unsigned LineNumber,
uint64_t SizeInBits,
@@ -695,80 +626,65 @@ DICompositeType DIBuilder::createUnionType(DIDescriptor Scope, StringRef Name,
unsigned RunTimeLang,
StringRef UniqueIdentifier) {
// TAG_union_type is encoded in DICompositeType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_union_type),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Scope)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- nullptr,
- Elements,
- ConstantInt::get(Type::getInt32Ty(VMContext), RunTimeLang),
- nullptr,
- nullptr,
- UniqueIdentifier.empty() ? nullptr
- : MDString::get(VMContext, UniqueIdentifier)
- };
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_union_type)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(Flags)
+ .concat(RunTimeLang)
+ .get(VMContext),
+ File.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(),
+ nullptr, Elements, nullptr, nullptr,
+ UniqueIdentifier.empty() ? nullptr
+ : MDString::get(VMContext, UniqueIdentifier)};
DICompositeType R(MDNode::get(VMContext, Elts));
if (!UniqueIdentifier.empty())
retainType(R);
return R;
}
-/// createSubroutineType - Create subroutine type.
-DICompositeType DIBuilder::createSubroutineType(DIFile File,
- DIArray ParameterTypes,
- unsigned Flags) {
+DISubroutineType DIBuilder::createSubroutineType(DIFile File,
+ DITypeArray ParameterTypes,
+ unsigned Flags) {
// TAG_subroutine_type is encoded in DICompositeType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_subroutine_type),
- Constant::getNullValue(Type::getInt32Ty(VMContext)),
- nullptr,
- MDString::get(VMContext, ""),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Size
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Align
- ConstantInt::get(Type::getInt64Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags), // Flags
- nullptr,
- ParameterTypes,
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- nullptr,
- nullptr,
- nullptr // Type Identifer
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_subroutine_type)
+ .concat(StringRef())
+ .concat(0) // Line
+ .concat(0) // Size
+ .concat(0) // Align
+ .concat(0) // Offset
+ .concat(Flags) // Flags
+ .concat(0)
+ .get(VMContext),
+ nullptr, nullptr, nullptr, ParameterTypes, nullptr, nullptr,
+ nullptr // Type Identifer
};
- return DICompositeType(MDNode::get(VMContext, Elts));
+ return DISubroutineType(MDNode::get(VMContext, Elts));
}
-/// createEnumerationType - Create debugging information entry for an
-/// enumeration.
DICompositeType DIBuilder::createEnumerationType(
DIDescriptor Scope, StringRef Name, DIFile File, unsigned LineNumber,
uint64_t SizeInBits, uint64_t AlignInBits, DIArray Elements,
DIType UnderlyingType, StringRef UniqueIdentifier) {
// TAG_enumeration_type is encoded in DICompositeType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_enumeration_type),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Scope)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- UnderlyingType.getRef(),
- Elements,
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- nullptr,
- nullptr,
- UniqueIdentifier.empty() ? nullptr
- : MDString::get(VMContext, UniqueIdentifier)
- };
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_enumeration_type)
+ .concat(Name)
+ .concat(LineNumber)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .concat(0)
+ .get(VMContext),
+ File.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(),
+ UnderlyingType.getRef(), Elements, nullptr, nullptr,
+ UniqueIdentifier.empty() ? nullptr
+ : MDString::get(VMContext, UniqueIdentifier)};
DICompositeType CTy(MDNode::get(VMContext, Elts));
AllEnumTypes.push_back(CTy);
if (!UniqueIdentifier.empty())
@@ -776,138 +692,115 @@ DICompositeType DIBuilder::createEnumerationType(
return CTy;
}
-/// createArrayType - Create debugging information entry for an array.
DICompositeType DIBuilder::createArrayType(uint64_t Size, uint64_t AlignInBits,
DIType Ty, DIArray Subscripts) {
// TAG_array_type is encoded in DICompositeType format.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_array_type),
- nullptr, // Filename/Directory,
- nullptr, // Unused
- MDString::get(VMContext, ""),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), Size),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Flags
- Ty.getRef(),
- Subscripts,
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- nullptr,
- nullptr,
- nullptr // Type Identifer
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_array_type)
+ .concat(StringRef())
+ .concat(0) // Line
+ .concat(Size)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(0) // Flags
+ .concat(0)
+ .get(VMContext),
+ nullptr, // Filename/Directory,
+ nullptr, // Unused
+ Ty.getRef(), Subscripts, nullptr, nullptr,
+ nullptr // Type Identifer
};
return DICompositeType(MDNode::get(VMContext, Elts));
}
-/// createVectorType - Create debugging information entry for a vector.
DICompositeType DIBuilder::createVectorType(uint64_t Size, uint64_t AlignInBits,
DIType Ty, DIArray Subscripts) {
// A vector is an array type with the FlagVector flag applied.
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_array_type),
- nullptr, // Filename/Directory,
- nullptr, // Unused
- MDString::get(VMContext, ""),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Line
- ConstantInt::get(Type::getInt64Ty(VMContext), Size),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), DIType::FlagVector),
- Ty.getRef(),
- Subscripts,
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- nullptr,
- nullptr,
- nullptr // Type Identifer
+ Metadata *Elts[] = {
+ HeaderBuilder::get(dwarf::DW_TAG_array_type)
+ .concat("")
+ .concat(0) // Line
+ .concat(Size)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(DIType::FlagVector)
+ .concat(0)
+ .get(VMContext),
+ nullptr, // Filename/Directory,
+ nullptr, // Unused
+ Ty.getRef(), Subscripts, nullptr, nullptr,
+ nullptr // Type Identifer
};
return DICompositeType(MDNode::get(VMContext, Elts));
}
-/// createArtificialType - Create a new DIType with "artificial" flag set.
-DIType DIBuilder::createArtificialType(DIType Ty) {
- if (Ty.isArtificial())
- return Ty;
+static HeaderBuilder setTypeFlagsInHeader(StringRef Header,
+ unsigned FlagsToSet) {
+ DIHeaderFieldIterator I(Header);
+ std::advance(I, 6);
- SmallVector<Value *, 9> Elts;
- MDNode *N = Ty;
- assert (N && "Unexpected input DIType!");
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- Elts.push_back(N->getOperand(i));
+ unsigned Flags;
+ if (I->getAsInteger(0, Flags))
+ Flags = 0;
+ Flags |= FlagsToSet;
- unsigned CurFlags = Ty.getFlags();
- CurFlags = CurFlags | DIType::FlagArtificial;
+ return HeaderBuilder(Twine(I.getPrefix())).concat(Flags).concat(
+ I.getSuffix());
+}
- // Flags are stored at this slot.
- // FIXME: Add an enum for this magic value.
- Elts[8] = ConstantInt::get(Type::getInt32Ty(VMContext), CurFlags);
+static DIType createTypeWithFlags(LLVMContext &Context, DIType Ty,
+ unsigned FlagsToSet) {
+ SmallVector<Metadata *, 9> Elts;
+ MDNode *N = Ty;
+ assert(N && "Unexpected input DIType!");
+ // Update header field.
+ Elts.push_back(setTypeFlagsInHeader(Ty.getHeader(), FlagsToSet).get(Context));
+ for (unsigned I = 1, E = N->getNumOperands(); I != E; ++I)
+ Elts.push_back(N->getOperand(I));
- return DIType(MDNode::get(VMContext, Elts));
+ return DIType(MDNode::get(Context, Elts));
+}
+
+DIType DIBuilder::createArtificialType(DIType Ty) {
+ if (Ty.isArtificial())
+ return Ty;
+ return createTypeWithFlags(VMContext, Ty, DIType::FlagArtificial);
}
-/// createObjectPointerType - Create a new type with both the object pointer
-/// and artificial flags set.
DIType DIBuilder::createObjectPointerType(DIType Ty) {
if (Ty.isObjectPointer())
return Ty;
-
- SmallVector<Value *, 9> Elts;
- MDNode *N = Ty;
- assert (N && "Unexpected input DIType!");
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- Elts.push_back(N->getOperand(i));
-
- unsigned CurFlags = Ty.getFlags();
- CurFlags = CurFlags | (DIType::FlagObjectPointer | DIType::FlagArtificial);
-
- // Flags are stored at this slot.
- // FIXME: Add an enum for this magic value.
- Elts[8] = ConstantInt::get(Type::getInt32Ty(VMContext), CurFlags);
-
- return DIType(MDNode::get(VMContext, Elts));
+ unsigned Flags = DIType::FlagObjectPointer | DIType::FlagArtificial;
+ return createTypeWithFlags(VMContext, Ty, Flags);
}
-/// retainType - Retain DIType in a module even if it is not referenced
-/// through debug info anchors.
-void DIBuilder::retainType(DIType T) {
- AllRetainTypes.push_back(TrackingVH<MDNode>(T));
-}
+void DIBuilder::retainType(DIType T) { AllRetainTypes.emplace_back(T); }
-/// createUnspecifiedParameter - Create unspeicified type descriptor
-/// for the subroutine type.
-DIDescriptor DIBuilder::createUnspecifiedParameter() {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_unspecified_parameters)
- };
- return DIDescriptor(MDNode::get(VMContext, Elts));
+DIBasicType DIBuilder::createUnspecifiedParameter() {
+ return DIBasicType();
}
-/// createForwardDecl - Create a temporary forward-declared type that
-/// can be RAUW'd if the full type is seen.
DICompositeType
DIBuilder::createForwardDecl(unsigned Tag, StringRef Name, DIDescriptor Scope,
DIFile F, unsigned Line, unsigned RuntimeLang,
uint64_t SizeInBits, uint64_t AlignInBits,
StringRef UniqueIdentifier) {
// Create a temporary MDNode.
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- F.getFileNode(),
- DIScope(getNonCompileUnitScope(Scope)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), Line),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), DIDescriptor::FlagFwdDecl),
- nullptr,
- DIArray(),
- ConstantInt::get(Type::getInt32Ty(VMContext), RuntimeLang),
- nullptr,
- nullptr, //TemplateParams
- UniqueIdentifier.empty() ? nullptr
- : MDString::get(VMContext, UniqueIdentifier)
- };
+ Metadata *Elts[] = {
+ HeaderBuilder::get(Tag)
+ .concat(Name)
+ .concat(Line)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(DIDescriptor::FlagFwdDecl)
+ .concat(RuntimeLang)
+ .get(VMContext),
+ F.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr,
+ DIArray(), nullptr,
+ nullptr, // TemplateParams
+ UniqueIdentifier.empty() ? nullptr
+ : MDString::get(VMContext, UniqueIdentifier)};
MDNode *Node = MDNode::get(VMContext, Elts);
DICompositeType RetTy(Node);
assert(RetTy.isCompositeType() &&
@@ -917,123 +810,108 @@ DIBuilder::createForwardDecl(unsigned Tag, StringRef Name, DIDescriptor Scope,
return RetTy;
}
-/// createForwardDecl - Create a temporary forward-declared type that
-/// can be RAUW'd if the full type is seen.
DICompositeType DIBuilder::createReplaceableForwardDecl(
unsigned Tag, StringRef Name, DIDescriptor Scope, DIFile F, unsigned Line,
unsigned RuntimeLang, uint64_t SizeInBits, uint64_t AlignInBits,
StringRef UniqueIdentifier) {
// Create a temporary MDNode.
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- F.getFileNode(),
- DIScope(getNonCompileUnitScope(Scope)).getRef(),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), Line),
- ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
- ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0), // Offset
- ConstantInt::get(Type::getInt32Ty(VMContext), DIDescriptor::FlagFwdDecl),
- nullptr,
- DIArray(),
- ConstantInt::get(Type::getInt32Ty(VMContext), RuntimeLang),
- nullptr,
- nullptr, //TemplateParams
- UniqueIdentifier.empty() ? nullptr
- : MDString::get(VMContext, UniqueIdentifier)
- };
- MDNode *Node = MDNode::getTemporary(VMContext, Elts);
- DICompositeType RetTy(Node);
+ Metadata *Elts[] = {
+ HeaderBuilder::get(Tag)
+ .concat(Name)
+ .concat(Line)
+ .concat(SizeInBits)
+ .concat(AlignInBits)
+ .concat(0) // Offset
+ .concat(DIDescriptor::FlagFwdDecl)
+ .concat(RuntimeLang)
+ .get(VMContext),
+ F.getFileNode(), DIScope(getNonCompileUnitScope(Scope)).getRef(), nullptr,
+ DIArray(), nullptr,
+ nullptr, // TemplateParams
+ UniqueIdentifier.empty() ? nullptr
+ : MDString::get(VMContext, UniqueIdentifier)};
+ DICompositeType RetTy(MDNode::getTemporary(VMContext, Elts));
assert(RetTy.isCompositeType() &&
- "createForwardDecl result should be a DIType");
+ "createReplaceableForwardDecl result should be a DIType");
if (!UniqueIdentifier.empty())
retainType(RetTy);
return RetTy;
}
-/// getOrCreateArray - Get a DIArray, create one if required.
-DIArray DIBuilder::getOrCreateArray(ArrayRef<Value *> Elements) {
+DIArray DIBuilder::getOrCreateArray(ArrayRef<Metadata *> Elements) {
return DIArray(MDNode::get(VMContext, Elements));
}
-/// getOrCreateSubrange - Create a descriptor for a value range. This
-/// implicitly uniques the values returned.
+DITypeArray DIBuilder::getOrCreateTypeArray(ArrayRef<Metadata *> Elements) {
+ SmallVector<llvm::Metadata *, 16> Elts;
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ if (Elements[i] && isa<MDNode>(Elements[i]))
+ Elts.push_back(DIType(cast<MDNode>(Elements[i])).getRef());
+ else
+ Elts.push_back(Elements[i]);
+ }
+ return DITypeArray(MDNode::get(VMContext, Elts));
+}
+
DISubrange DIBuilder::getOrCreateSubrange(int64_t Lo, int64_t Count) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_subrange_type),
- ConstantInt::get(Type::getInt64Ty(VMContext), Lo),
- ConstantInt::get(Type::getInt64Ty(VMContext), Count)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_subrange_type)
+ .concat(Lo)
+ .concat(Count)
+ .get(VMContext)};
return DISubrange(MDNode::get(VMContext, Elts));
}
-/// \brief Create a new descriptor for the specified global.
-DIGlobalVariable DIBuilder::createGlobalVariable(StringRef Name,
- StringRef LinkageName,
- DIFile F, unsigned LineNumber,
- DITypeRef Ty, bool isLocalToUnit,
- Value *Val) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_variable),
- Constant::getNullValue(Type::getInt32Ty(VMContext)),
- nullptr, // TheCU,
- MDString::get(VMContext, Name),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, LinkageName),
- F,
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- Ty,
- ConstantInt::get(Type::getInt32Ty(VMContext), isLocalToUnit),
- ConstantInt::get(Type::getInt32Ty(VMContext), 1), /* isDefinition*/
- Val,
- DIDescriptor()
- };
- MDNode *Node = MDNode::get(VMContext, Elts);
- AllGVs.push_back(Node);
- return DIGlobalVariable(Node);
-}
-
-/// \brief Create a new descriptor for the specified global.
-DIGlobalVariable DIBuilder::createGlobalVariable(StringRef Name, DIFile F,
- unsigned LineNumber,
- DITypeRef Ty,
- bool isLocalToUnit,
- Value *Val) {
- return createGlobalVariable(Name, Name, F, LineNumber, Ty, isLocalToUnit,
- Val);
-}
-
-/// createStaticVariable - Create a new descriptor for the specified static
-/// variable.
-DIGlobalVariable DIBuilder::createStaticVariable(DIDescriptor Context,
- StringRef Name,
- StringRef LinkageName,
- DIFile F, unsigned LineNumber,
- DITypeRef Ty,
- bool isLocalToUnit,
- Value *Val, MDNode *Decl) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_variable),
- Constant::getNullValue(Type::getInt32Ty(VMContext)),
- getNonCompileUnitScope(Context),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, LinkageName),
- F,
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
- Ty,
- ConstantInt::get(Type::getInt32Ty(VMContext), isLocalToUnit),
- ConstantInt::get(Type::getInt32Ty(VMContext), 1), /* isDefinition*/
- Val,
- DIDescriptor(Decl)
- };
- MDNode *Node = MDNode::get(VMContext, Elts);
- AllGVs.push_back(Node);
- return DIGlobalVariable(Node);
+static DIGlobalVariable createGlobalVariableHelper(
+ LLVMContext &VMContext, DIDescriptor Context, StringRef Name,
+ StringRef LinkageName, DIFile F, unsigned LineNumber, DITypeRef Ty,
+ bool isLocalToUnit, Constant *Val, MDNode *Decl, bool isDefinition,
+ std::function<MDNode *(ArrayRef<Metadata *>)> CreateFunc) {
+
+ MDNode *TheCtx = getNonCompileUnitScope(Context);
+ if (DIScope(TheCtx).isCompositeType()) {
+ assert(!DICompositeType(TheCtx).getIdentifier() &&
+ "Context of a global variable should not be a type with identifier");
+ }
+
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_variable)
+ .concat(Name)
+ .concat(Name)
+ .concat(LinkageName)
+ .concat(LineNumber)
+ .concat(isLocalToUnit)
+ .concat(isDefinition)
+ .get(VMContext),
+ TheCtx, F, Ty, getConstantOrNull(Val),
+ DIDescriptor(Decl)};
+
+ return DIGlobalVariable(CreateFunc(Elts));
+}
+
+DIGlobalVariable DIBuilder::createGlobalVariable(
+ DIDescriptor Context, StringRef Name, StringRef LinkageName, DIFile F,
+ unsigned LineNumber, DITypeRef Ty, bool isLocalToUnit, Constant *Val,
+ MDNode *Decl) {
+ return createGlobalVariableHelper(
+ VMContext, Context, Name, LinkageName, F, LineNumber, Ty, isLocalToUnit,
+ Val, Decl, true, [&](ArrayRef<Metadata *> Elts) -> MDNode *{
+ MDNode *Node = MDNode::get(VMContext, Elts);
+ AllGVs.push_back(Node);
+ return Node;
+ });
+}
+
+DIGlobalVariable DIBuilder::createTempGlobalVariableFwdDecl(
+ DIDescriptor Context, StringRef Name, StringRef LinkageName, DIFile F,
+ unsigned LineNumber, DITypeRef Ty, bool isLocalToUnit, Constant *Val,
+ MDNode *Decl) {
+ return createGlobalVariableHelper(VMContext, Context, Name, LinkageName, F,
+ LineNumber, Ty, isLocalToUnit, Val, Decl,
+ false, [&](ArrayRef<Metadata *> Elts) {
+ return MDNode::getTemporary(VMContext, Elts);
+ });
}
-/// createVariable - Create a new descriptor for the specified variable.
DIVariable DIBuilder::createLocalVariable(unsigned Tag, DIDescriptor Scope,
StringRef Name, DIFile File,
unsigned LineNo, DITypeRef Ty,
@@ -1042,24 +920,20 @@ DIVariable DIBuilder::createLocalVariable(unsigned Tag, DIDescriptor Scope,
DIDescriptor Context(getNonCompileUnitScope(Scope));
assert((!Context || Context.isScope()) &&
"createLocalVariable should be called with a valid Context");
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- getNonCompileUnitScope(Scope),
- MDString::get(VMContext, Name),
- File,
- ConstantInt::get(Type::getInt32Ty(VMContext), (LineNo | (ArgNo << 24))),
- Ty,
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- Constant::getNullValue(Type::getInt32Ty(VMContext))
- };
+ Metadata *Elts[] = {HeaderBuilder::get(Tag)
+ .concat(Name)
+ .concat(LineNo | (ArgNo << 24))
+ .concat(Flags)
+ .get(VMContext),
+ getNonCompileUnitScope(Scope), File, Ty};
MDNode *Node = MDNode::get(VMContext, Elts);
if (AlwaysPreserve) {
// The optimizer may remove local variable. If there is an interest
// to preserve variable info in such situation then stash it in a
// named mdnode.
DISubprogram Fn(getDISubprogram(Scope));
- NamedMDNode *FnLocals = getOrInsertFnSpecificMDNode(M, Fn);
- FnLocals->addOperand(Node);
+ assert(Fn && "Missing subprogram for local variable");
+ PreservedVariables[Fn].emplace_back(Node);
}
DIVariable RetVar(Node);
assert(RetVar.isVariable() &&
@@ -1067,33 +941,20 @@ DIVariable DIBuilder::createLocalVariable(unsigned Tag, DIDescriptor Scope,
return RetVar;
}
-/// createComplexVariable - Create a new descriptor for the specified variable
-/// which has a complex address expression for its address.
-DIVariable DIBuilder::createComplexVariable(unsigned Tag, DIDescriptor Scope,
- StringRef Name, DIFile F,
- unsigned LineNo,
- DITypeRef Ty,
- ArrayRef<Value *> Addr,
- unsigned ArgNo) {
- assert(Addr.size() > 0 && "complex address is empty");
- Value *Elts[] = {
- GetTagConstant(VMContext, Tag),
- getNonCompileUnitScope(Scope),
- MDString::get(VMContext, Name),
- F,
- ConstantInt::get(Type::getInt32Ty(VMContext),
- (LineNo | (ArgNo << 24))),
- Ty,
- Constant::getNullValue(Type::getInt32Ty(VMContext)),
- Constant::getNullValue(Type::getInt32Ty(VMContext)),
- MDNode::get(VMContext, Addr)
- };
- return DIVariable(MDNode::get(VMContext, Elts));
+DIExpression DIBuilder::createExpression(ArrayRef<int64_t> Addr) {
+ auto Header = HeaderBuilder::get(DW_TAG_expression);
+ for (int64_t I : Addr)
+ Header.concat(I);
+ Metadata *Elts[] = {Header.get(VMContext)};
+ return DIExpression(MDNode::get(VMContext, Elts));
+}
+
+DIExpression DIBuilder::createPieceExpression(unsigned OffsetInBytes,
+ unsigned SizeInBytes) {
+ int64_t Addr[] = {dwarf::DW_OP_piece, OffsetInBytes, SizeInBytes};
+ return createExpression(Addr);
}
-/// createFunction - Create a new descriptor for the specified function.
-/// FIXME: this is added for dragonegg. Once we update dragonegg
-/// to call resolve function, this will be removed.
DISubprogram DIBuilder::createFunction(DIScopeRef Context, StringRef Name,
StringRef LinkageName, DIFile File,
unsigned LineNo, DICompositeType Ty,
@@ -1109,7 +970,38 @@ DISubprogram DIBuilder::createFunction(DIScopeRef Context, StringRef Name,
Flags, isOptimized, Fn, TParams, Decl);
}
-/// createFunction - Create a new descriptor for the specified function.
+static DISubprogram createFunctionHelper(
+ LLVMContext &VMContext, DIDescriptor Context, StringRef Name,
+ StringRef LinkageName, DIFile File, unsigned LineNo, DICompositeType Ty,
+ bool isLocalToUnit, bool isDefinition, unsigned ScopeLine, unsigned Flags,
+ bool isOptimized, Function *Fn, MDNode *TParams, MDNode *Decl, MDNode *Vars,
+ std::function<MDNode *(ArrayRef<Metadata *>)> CreateFunc) {
+ assert(Ty.getTag() == dwarf::DW_TAG_subroutine_type &&
+ "function types should be subroutines");
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_subprogram)
+ .concat(Name)
+ .concat(Name)
+ .concat(LinkageName)
+ .concat(LineNo)
+ .concat(isLocalToUnit)
+ .concat(isDefinition)
+ .concat(0)
+ .concat(0)
+ .concat(Flags)
+ .concat(isOptimized)
+ .concat(ScopeLine)
+ .get(VMContext),
+ File.getFileNode(),
+ DIScope(getNonCompileUnitScope(Context)).getRef(), Ty,
+ nullptr, getConstantOrNull(Fn), TParams, Decl, Vars};
+
+ DISubprogram S(CreateFunc(Elts));
+ assert(S.isSubprogram() &&
+ "createFunction should return a valid DISubprogram");
+ return S;
+}
+
+
DISubprogram DIBuilder::createFunction(DIDescriptor Context, StringRef Name,
StringRef LinkageName, DIFile File,
unsigned LineNo, DICompositeType Ty,
@@ -1117,43 +1009,36 @@ DISubprogram DIBuilder::createFunction(DIDescriptor Context, StringRef Name,
unsigned ScopeLine, unsigned Flags,
bool isOptimized, Function *Fn,
MDNode *TParams, MDNode *Decl) {
- assert(Ty.getTag() == dwarf::DW_TAG_subroutine_type &&
- "function types should be subroutines");
- Value *TElts[] = { GetTagConstant(VMContext, DW_TAG_base_type) };
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_subprogram),
- File.getFileNode(),
- DIScope(getNonCompileUnitScope(Context)).getRef(),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, LinkageName),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
- Ty,
- ConstantInt::get(Type::getInt1Ty(VMContext), isLocalToUnit),
- ConstantInt::get(Type::getInt1Ty(VMContext), isDefinition),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- ConstantInt::get(Type::getInt32Ty(VMContext), 0),
- nullptr,
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- ConstantInt::get(Type::getInt1Ty(VMContext), isOptimized),
- Fn,
- TParams,
- Decl,
- MDNode::getTemporary(VMContext, TElts),
- ConstantInt::get(Type::getInt32Ty(VMContext), ScopeLine)
- };
- MDNode *Node = MDNode::get(VMContext, Elts);
+ return createFunctionHelper(VMContext, Context, Name, LinkageName, File,
+ LineNo, Ty, isLocalToUnit, isDefinition,
+ ScopeLine, Flags, isOptimized, Fn, TParams, Decl,
+ MDNode::getTemporary(VMContext, None),
+ [&](ArrayRef<Metadata *> Elts) -> MDNode *{
+ MDNode *Node = MDNode::get(VMContext, Elts);
+ // Create a named metadata so that we
+ // do not lose this mdnode.
+ if (isDefinition)
+ AllSubprograms.push_back(Node);
+ return Node;
+ });
+}
- // Create a named metadata so that we do not lose this mdnode.
- if (isDefinition)
- AllSubprograms.push_back(Node);
- DISubprogram S(Node);
- assert(S.isSubprogram() &&
- "createFunction should return a valid DISubprogram");
- return S;
+DISubprogram
+DIBuilder::createTempFunctionFwdDecl(DIDescriptor Context, StringRef Name,
+ StringRef LinkageName, DIFile File,
+ unsigned LineNo, DICompositeType Ty,
+ bool isLocalToUnit, bool isDefinition,
+ unsigned ScopeLine, unsigned Flags,
+ bool isOptimized, Function *Fn,
+ MDNode *TParams, MDNode *Decl) {
+ return createFunctionHelper(VMContext, Context, Name, LinkageName, File,
+ LineNo, Ty, isLocalToUnit, isDefinition,
+ ScopeLine, Flags, isOptimized, Fn, TParams, Decl,
+ nullptr, [&](ArrayRef<Metadata *> Elts) {
+ return MDNode::getTemporary(VMContext, Elts);
+ });
}
-/// createMethod - Create a new descriptor for the specified C++ method.
DISubprogram DIBuilder::createMethod(DIDescriptor Context, StringRef Name,
StringRef LinkageName, DIFile F,
unsigned LineNo, DICompositeType Ty,
@@ -1167,29 +1052,23 @@ DISubprogram DIBuilder::createMethod(DIDescriptor Context, StringRef Name,
assert(getNonCompileUnitScope(Context) &&
"Methods should have both a Context and a context that isn't "
"the compile unit.");
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_subprogram),
- F.getFileNode(),
- DIScope(Context).getRef(),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, Name),
- MDString::get(VMContext, LinkageName),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
- Ty,
- ConstantInt::get(Type::getInt1Ty(VMContext), isLocalToUnit),
- ConstantInt::get(Type::getInt1Ty(VMContext), isDefinition),
- ConstantInt::get(Type::getInt32Ty(VMContext), VK),
- ConstantInt::get(Type::getInt32Ty(VMContext), VIndex),
- VTableHolder.getRef(),
- ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
- ConstantInt::get(Type::getInt1Ty(VMContext), isOptimized),
- Fn,
- TParam,
- Constant::getNullValue(Type::getInt32Ty(VMContext)),
- nullptr,
- // FIXME: Do we want to use different scope/lines?
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_subprogram)
+ .concat(Name)
+ .concat(Name)
+ .concat(LinkageName)
+ .concat(LineNo)
+ .concat(isLocalToUnit)
+ .concat(isDefinition)
+ .concat(VK)
+ .concat(VIndex)
+ .concat(Flags)
+ .concat(isOptimized)
+ .concat(LineNo)
+ // FIXME: Do we want to use different scope/lines?
+ .get(VMContext),
+ F.getFileNode(), DIScope(Context).getRef(), Ty,
+ VTableHolder.getRef(), getConstantOrNull(Fn), TParam,
+ nullptr, nullptr};
MDNode *Node = MDNode::get(VMContext, Elts);
if (isDefinition)
AllSubprograms.push_back(Node);
@@ -1198,32 +1077,26 @@ DISubprogram DIBuilder::createMethod(DIDescriptor Context, StringRef Name,
return S;
}
-/// createNameSpace - This creates new descriptor for a namespace
-/// with the specified parent scope.
DINameSpace DIBuilder::createNameSpace(DIDescriptor Scope, StringRef Name,
DIFile File, unsigned LineNo) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_namespace),
- File.getFileNode(),
- getNonCompileUnitScope(Scope),
- MDString::get(VMContext, Name),
- ConstantInt::get(Type::getInt32Ty(VMContext), LineNo)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_namespace)
+ .concat(Name)
+ .concat(LineNo)
+ .get(VMContext),
+ File.getFileNode(), getNonCompileUnitScope(Scope)};
DINameSpace R(MDNode::get(VMContext, Elts));
assert(R.Verify() &&
"createNameSpace should return a verifiable DINameSpace");
return R;
}
-/// createLexicalBlockFile - This creates a new MDNode that encapsulates
-/// an existing scope with a new filename.
DILexicalBlockFile DIBuilder::createLexicalBlockFile(DIDescriptor Scope,
- DIFile File) {
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_lexical_block),
- File.getFileNode(),
- Scope
- };
+ DIFile File,
+ unsigned Discriminator) {
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_lexical_block)
+ .concat(Discriminator)
+ .get(VMContext),
+ File.getFileNode(), Scope};
DILexicalBlockFile R(MDNode::get(VMContext, Elts));
assert(
R.Verify() &&
@@ -1232,8 +1105,7 @@ DILexicalBlockFile DIBuilder::createLexicalBlockFile(DIDescriptor Scope,
}
DILexicalBlock DIBuilder::createLexicalBlock(DIDescriptor Scope, DIFile File,
- unsigned Line, unsigned Col,
- unsigned Discriminator) {
+ unsigned Line, unsigned Col) {
// FIXME: This isn't thread safe nor the right way to defeat MDNode uniquing.
// I believe the right way is to have a self-referential element in the node.
// Also: why do we bother with line/column - they're not used and the
@@ -1243,44 +1115,52 @@ DILexicalBlock DIBuilder::createLexicalBlock(DIDescriptor Scope, DIFile File,
// Defeat MDNode uniquing for lexical blocks by using unique id.
static unsigned int unique_id = 0;
- Value *Elts[] = {
- GetTagConstant(VMContext, dwarf::DW_TAG_lexical_block),
- File.getFileNode(),
- getNonCompileUnitScope(Scope),
- ConstantInt::get(Type::getInt32Ty(VMContext), Line),
- ConstantInt::get(Type::getInt32Ty(VMContext), Col),
- ConstantInt::get(Type::getInt32Ty(VMContext), Discriminator),
- ConstantInt::get(Type::getInt32Ty(VMContext), unique_id++)
- };
+ Metadata *Elts[] = {HeaderBuilder::get(dwarf::DW_TAG_lexical_block)
+ .concat(Line)
+ .concat(Col)
+ .concat(unique_id++)
+ .get(VMContext),
+ File.getFileNode(), getNonCompileUnitScope(Scope)};
DILexicalBlock R(MDNode::get(VMContext, Elts));
assert(R.Verify() &&
"createLexicalBlock should return a verifiable DILexicalBlock");
return R;
}
-/// insertDeclare - Insert a new llvm.dbg.declare intrinsic call.
+static Value *getDbgIntrinsicValueImpl(LLVMContext &VMContext, Value *V) {
+ assert(V && "no value passed to dbg intrinsic");
+ return MetadataAsValue::get(VMContext, ValueAsMetadata::get(V));
+}
+
Instruction *DIBuilder::insertDeclare(Value *Storage, DIVariable VarInfo,
+ DIExpression Expr,
Instruction *InsertBefore) {
- assert(Storage && "no storage passed to dbg.declare");
assert(VarInfo.isVariable() &&
"empty or invalid DIVariable passed to dbg.declare");
if (!DeclareFn)
DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
- Value *Args[] = { MDNode::get(Storage->getContext(), Storage), VarInfo };
+ trackIfUnresolved(VarInfo);
+ trackIfUnresolved(Expr);
+ Value *Args[] = {getDbgIntrinsicValueImpl(VMContext, Storage),
+ MetadataAsValue::get(VMContext, VarInfo),
+ MetadataAsValue::get(VMContext, Expr)};
return CallInst::Create(DeclareFn, Args, "", InsertBefore);
}
-/// insertDeclare - Insert a new llvm.dbg.declare intrinsic call.
Instruction *DIBuilder::insertDeclare(Value *Storage, DIVariable VarInfo,
+ DIExpression Expr,
BasicBlock *InsertAtEnd) {
- assert(Storage && "no storage passed to dbg.declare");
assert(VarInfo.isVariable() &&
"empty or invalid DIVariable passed to dbg.declare");
if (!DeclareFn)
DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
- Value *Args[] = { MDNode::get(Storage->getContext(), Storage), VarInfo };
+ trackIfUnresolved(VarInfo);
+ trackIfUnresolved(Expr);
+ Value *Args[] = {getDbgIntrinsicValueImpl(VMContext, Storage),
+ MetadataAsValue::get(VMContext, VarInfo),
+ MetadataAsValue::get(VMContext, Expr)};
// If this block already has a terminator then insert this intrinsic
// before the terminator.
@@ -1290,9 +1170,9 @@ Instruction *DIBuilder::insertDeclare(Value *Storage, DIVariable VarInfo,
return CallInst::Create(DeclareFn, Args, "", InsertAtEnd);
}
-/// insertDbgValueIntrinsic - Insert a new llvm.dbg.value intrinsic call.
Instruction *DIBuilder::insertDbgValueIntrinsic(Value *V, uint64_t Offset,
DIVariable VarInfo,
+ DIExpression Expr,
Instruction *InsertBefore) {
assert(V && "no value passed to dbg.value");
assert(VarInfo.isVariable() &&
@@ -1300,15 +1180,18 @@ Instruction *DIBuilder::insertDbgValueIntrinsic(Value *V, uint64_t Offset,
if (!ValueFn)
ValueFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_value);
- Value *Args[] = { MDNode::get(V->getContext(), V),
- ConstantInt::get(Type::getInt64Ty(V->getContext()), Offset),
- VarInfo };
+ trackIfUnresolved(VarInfo);
+ trackIfUnresolved(Expr);
+ Value *Args[] = {getDbgIntrinsicValueImpl(VMContext, V),
+ ConstantInt::get(Type::getInt64Ty(VMContext), Offset),
+ MetadataAsValue::get(VMContext, VarInfo),
+ MetadataAsValue::get(VMContext, Expr)};
return CallInst::Create(ValueFn, Args, "", InsertBefore);
}
-/// insertDbgValueIntrinsic - Insert a new llvm.dbg.value intrinsic call.
Instruction *DIBuilder::insertDbgValueIntrinsic(Value *V, uint64_t Offset,
DIVariable VarInfo,
+ DIExpression Expr,
BasicBlock *InsertAtEnd) {
assert(V && "no value passed to dbg.value");
assert(VarInfo.isVariable() &&
@@ -1316,8 +1199,43 @@ Instruction *DIBuilder::insertDbgValueIntrinsic(Value *V, uint64_t Offset,
if (!ValueFn)
ValueFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_value);
- Value *Args[] = { MDNode::get(V->getContext(), V),
- ConstantInt::get(Type::getInt64Ty(V->getContext()), Offset),
- VarInfo };
+ trackIfUnresolved(VarInfo);
+ trackIfUnresolved(Expr);
+ Value *Args[] = {getDbgIntrinsicValueImpl(VMContext, V),
+ ConstantInt::get(Type::getInt64Ty(VMContext), Offset),
+ MetadataAsValue::get(VMContext, VarInfo),
+ MetadataAsValue::get(VMContext, Expr)};
return CallInst::Create(ValueFn, Args, "", InsertAtEnd);
}
+
+void DIBuilder::replaceVTableHolder(DICompositeType &T, DICompositeType VTableHolder) {
+ T.setContainingType(VTableHolder);
+
+ // If this didn't create a self-reference, just return.
+ if (T != VTableHolder)
+ return;
+
+ // Look for unresolved operands. T has dropped RAUW support and is already
+ // marked resolved, orphaning any cycles underneath it.
+ assert(T->isResolved() && "Expected self-reference to be resolved");
+ for (const MDOperand &O : T->operands())
+ if (auto *N = dyn_cast_or_null<MDNode>(O))
+ trackIfUnresolved(N);
+}
+
+void DIBuilder::replaceArrays(DICompositeType &T, DIArray Elements,
+ DIArray TParams) {
+ T.setArrays(Elements, TParams);
+
+ // If T isn't resolved, there's no problem.
+ if (!T->isResolved())
+ return;
+
+ // If "T" is resolved, it may be due to a self-reference cycle. Track the
+ // arrays explicitly if they're unresolved, or else the cycles will be
+ // orphaned.
+ if (Elements)
+ trackIfUnresolved(Elements);
+ if (TParams)
+ trackIfUnresolved(TParams);
+}
diff --git a/contrib/llvm/lib/IR/DataLayout.cpp b/contrib/llvm/lib/IR/DataLayout.cpp
index dea05fb..cde3937 100644
--- a/contrib/llvm/lib/IR/DataLayout.cpp
+++ b/contrib/llvm/lib/IR/DataLayout.cpp
@@ -55,7 +55,7 @@ StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
// Add padding if necessary to align the data element properly.
if ((StructSize & (TyAlign-1)) != 0)
- StructSize = DataLayout::RoundUpAlignment(StructSize, TyAlign);
+ StructSize = RoundUpToAlignment(StructSize, TyAlign);
// Keep track of maximum alignment constraint.
StructAlignment = std::max(TyAlign, StructAlignment);
@@ -70,7 +70,7 @@ StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
// Add padding to the end of the struct so that it could be put in an array
// and all array elements would be aligned correctly.
if ((StructSize & (StructAlignment-1)) != 0)
- StructSize = DataLayout::RoundUpAlignment(StructSize, StructAlignment);
+ StructSize = RoundUpToAlignment(StructSize, StructAlignment);
}
@@ -179,7 +179,7 @@ void DataLayout::reset(StringRef Desc) {
clear();
LayoutMap = nullptr;
- LittleEndian = false;
+ BigEndian = false;
StackNaturalAlign = 0;
ManglingMode = MM_None;
@@ -197,8 +197,10 @@ void DataLayout::reset(StringRef Desc) {
static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
assert(!Str.empty() && "parse error, string can't be empty here");
std::pair<StringRef, StringRef> Split = Str.split(Separator);
- assert((!Split.second.empty() || Split.first == Str) &&
- "a trailing separator is not allowed");
+ if (Split.second.empty() && Split.first != Str)
+ report_fatal_error("Trailing separator in datalayout string");
+ if (!Split.second.empty() && Split.first.empty())
+ report_fatal_error("Expected token before separator in datalayout string");
return Split;
}
@@ -213,7 +215,8 @@ static unsigned getInt(StringRef R) {
/// Convert bits into bytes. Assert if not a byte width multiple.
static unsigned inBytes(unsigned Bits) {
- assert(Bits % 8 == 0 && "number of bits must be a byte width multiple");
+ if (Bits % 8)
+ report_fatal_error("number of bits must be a byte width multiple");
return Bits / 8;
}
@@ -239,22 +242,28 @@ void DataLayout::parseSpecifier(StringRef Desc) {
// FIXME: remove this on LLVM 4.0.
break;
case 'E':
- LittleEndian = false;
+ BigEndian = true;
break;
case 'e':
- LittleEndian = true;
+ BigEndian = false;
break;
case 'p': {
// Address space.
unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
- assert(AddrSpace < 1 << 24 &&
- "Invalid address space, must be a 24bit integer");
+ if (!isUInt<24>(AddrSpace))
+ report_fatal_error("Invalid address space, must be a 24bit integer");
// Size.
+ if (Rest.empty())
+ report_fatal_error(
+ "Missing size specification for pointer in datalayout string");
Split = split(Rest, ':');
unsigned PointerMemSize = inBytes(getInt(Tok));
// ABI alignment.
+ if (Rest.empty())
+ report_fatal_error(
+ "Missing alignment specification for pointer in datalayout string");
Split = split(Rest, ':');
unsigned PointerABIAlign = inBytes(getInt(Tok));
@@ -285,10 +294,14 @@ void DataLayout::parseSpecifier(StringRef Desc) {
// Bit size.
unsigned Size = Tok.empty() ? 0 : getInt(Tok);
- assert((AlignType != AGGREGATE_ALIGN || Size == 0) &&
- "These specifications don't have a size");
+ if (AlignType == AGGREGATE_ALIGN && Size != 0)
+ report_fatal_error(
+ "Sized aggregate specification in datalayout string");
// ABI alignment.
+ if (Rest.empty())
+ report_fatal_error(
+ "Missing alignment specification in datalayout string");
Split = split(Rest, ':');
unsigned ABIAlign = inBytes(getInt(Tok));
@@ -306,7 +319,9 @@ void DataLayout::parseSpecifier(StringRef Desc) {
case 'n': // Native integer types.
for (;;) {
unsigned Width = getInt(Tok);
- assert(Width != 0 && "width must be non-zero");
+ if (Width == 0)
+ report_fatal_error(
+ "Zero width native integer type in datalayout string");
LegalIntWidths.push_back(Width);
if (Rest.empty())
break;
@@ -318,11 +333,15 @@ void DataLayout::parseSpecifier(StringRef Desc) {
break;
}
case 'm':
- assert(Tok.empty());
- assert(Rest.size() == 1);
+ if (!Tok.empty())
+ report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string");
+ if (Rest.empty())
+ report_fatal_error("Expected mangling specifier in datalayout string");
+ if (Rest.size() > 1)
+ report_fatal_error("Unknown mangling specifier in datalayout string");
switch(Rest[0]) {
default:
- llvm_unreachable("Unknown mangling in datalayout string");
+ report_fatal_error("Unknown mangling in datalayout string");
case 'e':
ManglingMode = MM_ELF;
break;
@@ -338,13 +357,17 @@ void DataLayout::parseSpecifier(StringRef Desc) {
}
break;
default:
- llvm_unreachable("Unknown specifier in datalayout string");
+ report_fatal_error("Unknown specifier in datalayout string");
break;
}
}
}
DataLayout::DataLayout(const Module *M) : LayoutMap(nullptr) {
+ init(M);
+}
+
+void DataLayout::init(const Module *M) {
const DataLayout *Other = M->getDataLayout();
if (Other)
*this = *Other;
@@ -353,7 +376,7 @@ DataLayout::DataLayout(const Module *M) : LayoutMap(nullptr) {
}
bool DataLayout::operator==(const DataLayout &Other) const {
- bool Ret = LittleEndian == Other.LittleEndian &&
+ bool Ret = BigEndian == Other.BigEndian &&
StackNaturalAlign == Other.StackNaturalAlign &&
ManglingMode == Other.ManglingMode &&
LegalIntWidths == Other.LegalIntWidths &&
@@ -522,7 +545,7 @@ std::string DataLayout::getStringRepresentation() const {
std::string Result;
raw_string_ostream OS(Result);
- OS << (LittleEndian ? "e" : "E");
+ OS << (BigEndian ? "E" : "e");
switch (ManglingMode) {
case MM_None:
@@ -637,7 +660,7 @@ unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
? getPointerABIAlignment(0)
: getPointerPrefAlignment(0));
case Type::PointerTyID: {
- unsigned AS = dyn_cast<PointerType>(Ty)->getAddressSpace();
+ unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
return (abi_or_pref
? getPointerABIAlignment(AS)
: getPointerPrefAlignment(AS));
@@ -796,17 +819,17 @@ unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
}
DataLayoutPass::DataLayoutPass() : ImmutablePass(ID), DL("") {
- report_fatal_error("Bad DataLayoutPass ctor used. Tool did not specify a "
- "DataLayout to use?");
+ initializeDataLayoutPassPass(*PassRegistry::getPassRegistry());
}
DataLayoutPass::~DataLayoutPass() {}
-DataLayoutPass::DataLayoutPass(const DataLayout &DL)
- : ImmutablePass(ID), DL(DL) {
- initializeDataLayoutPassPass(*PassRegistry::getPassRegistry());
+bool DataLayoutPass::doInitialization(Module &M) {
+ DL.init(&M);
+ return false;
}
-DataLayoutPass::DataLayoutPass(const Module *M) : ImmutablePass(ID), DL(M) {
- initializeDataLayoutPassPass(*PassRegistry::getPassRegistry());
+bool DataLayoutPass::doFinalization(Module &M) {
+ DL.reset("");
+ return false;
}
diff --git a/contrib/llvm/lib/IR/DebugInfo.cpp b/contrib/llvm/lib/IR/DebugInfo.cpp
index 5e39b24..290dbe2 100644
--- a/contrib/llvm/lib/IR/DebugInfo.cpp
+++ b/contrib/llvm/lib/IR/DebugInfo.cpp
@@ -19,6 +19,7 @@
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
@@ -46,13 +47,12 @@ bool DIDescriptor::Verify() const {
DILexicalBlockFile(DbgNode).Verify() ||
DISubrange(DbgNode).Verify() || DIEnumerator(DbgNode).Verify() ||
DIObjCProperty(DbgNode).Verify() ||
- DIUnspecifiedParameter(DbgNode).Verify() ||
DITemplateTypeParameter(DbgNode).Verify() ||
DITemplateValueParameter(DbgNode).Verify() ||
- DIImportedEntity(DbgNode).Verify());
+ DIImportedEntity(DbgNode).Verify() || DIExpression(DbgNode).Verify());
}
-static Value *getField(const MDNode *DbgNode, unsigned Elt) {
+static Metadata *getField(const MDNode *DbgNode, unsigned Elt) {
if (!DbgNode || Elt >= DbgNode->getNumOperands())
return nullptr;
return DbgNode->getOperand(Elt);
@@ -73,25 +73,17 @@ StringRef DIDescriptor::getStringField(unsigned Elt) const {
}
uint64_t DIDescriptor::getUInt64Field(unsigned Elt) const {
- if (!DbgNode)
- return 0;
-
- if (Elt < DbgNode->getNumOperands())
- if (ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(DbgNode->getOperand(Elt)))
+ if (auto *C = getConstantField(Elt))
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
return CI->getZExtValue();
return 0;
}
int64_t DIDescriptor::getInt64Field(unsigned Elt) const {
- if (!DbgNode)
- return 0;
-
- if (Elt < DbgNode->getNumOperands())
- if (ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(DbgNode->getOperand(Elt)))
- return CI->getSExtValue();
+ if (auto *C = getConstantField(Elt))
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return CI->getZExtValue();
return 0;
}
@@ -102,12 +94,7 @@ DIDescriptor DIDescriptor::getDescriptorField(unsigned Elt) const {
}
GlobalVariable *DIDescriptor::getGlobalVariableField(unsigned Elt) const {
- if (!DbgNode)
- return nullptr;
-
- if (Elt < DbgNode->getNumOperands())
- return dyn_cast_or_null<GlobalVariable>(DbgNode->getOperand(Elt));
- return nullptr;
+ return dyn_cast_or_null<GlobalVariable>(getConstantField(Elt));
}
Constant *DIDescriptor::getConstantField(unsigned Elt) const {
@@ -115,17 +102,14 @@ Constant *DIDescriptor::getConstantField(unsigned Elt) const {
return nullptr;
if (Elt < DbgNode->getNumOperands())
- return dyn_cast_or_null<Constant>(DbgNode->getOperand(Elt));
+ if (auto *C =
+ dyn_cast_or_null<ConstantAsMetadata>(DbgNode->getOperand(Elt)))
+ return C->getValue();
return nullptr;
}
Function *DIDescriptor::getFunctionField(unsigned Elt) const {
- if (!DbgNode)
- return nullptr;
-
- if (Elt < DbgNode->getNumOperands())
- return dyn_cast_or_null<Function>(DbgNode->getOperand(Elt));
- return nullptr;
+ return dyn_cast_or_null<Function>(getConstantField(Elt));
}
void DIDescriptor::replaceFunctionField(unsigned Elt, Function *F) {
@@ -134,29 +118,57 @@ void DIDescriptor::replaceFunctionField(unsigned Elt, Function *F) {
if (Elt < DbgNode->getNumOperands()) {
MDNode *Node = const_cast<MDNode *>(DbgNode);
- Node->replaceOperandWith(Elt, F);
+ Node->replaceOperandWith(Elt, F ? ConstantAsMetadata::get(F) : nullptr);
}
}
-uint64_t DIVariable::getAddrElement(unsigned Idx) const {
- DIDescriptor ComplexExpr = getDescriptorField(8);
- if (Idx < ComplexExpr->getNumOperands())
- if (auto *CI = dyn_cast_or_null<ConstantInt>(ComplexExpr->getOperand(Idx)))
- return CI->getZExtValue();
+static unsigned DIVariableInlinedAtIndex = 4;
+MDNode *DIVariable::getInlinedAt() const {
+ return getNodeField(DbgNode, DIVariableInlinedAtIndex);
+}
- assert(false && "non-existing complex address element requested");
- return 0;
+/// \brief Return the size reported by the variable's type.
+unsigned DIVariable::getSizeInBits(const DITypeIdentifierMap &Map) {
+ DIType Ty = getType().resolve(Map);
+ // Follow derived types until we reach a type that
+ // reports back a size.
+ while (Ty.isDerivedType() && !Ty.getSizeInBits()) {
+ DIDerivedType DT(&*Ty);
+ Ty = DT.getTypeDerivedFrom().resolve(Map);
+ }
+ assert(Ty.getSizeInBits() && "type with size 0");
+ return Ty.getSizeInBits();
+}
+
+uint64_t DIExpression::getElement(unsigned Idx) const {
+ unsigned I = Idx + 1;
+ assert(I < getNumHeaderFields() &&
+ "non-existing complex address element requested");
+ return getHeaderFieldAs<int64_t>(I);
}
-/// getInlinedAt - If this variable is inlined then return inline location.
-MDNode *DIVariable::getInlinedAt() const { return getNodeField(DbgNode, 7); }
+bool DIExpression::isVariablePiece() const {
+ return getNumElements() && getElement(0) == dwarf::DW_OP_piece;
+}
+
+uint64_t DIExpression::getPieceOffset() const {
+ assert(isVariablePiece());
+ return getElement(1);
+}
+
+uint64_t DIExpression::getPieceSize() const {
+ assert(isVariablePiece());
+ return getElement(2);
+}
//===----------------------------------------------------------------------===//
// Predicates
//===----------------------------------------------------------------------===//
-/// isBasicType - Return true if the specified tag is legal for
-/// DIBasicType.
+bool DIDescriptor::isSubroutineType() const {
+ return DbgNode && getTag() == dwarf::DW_TAG_subroutine_type;
+}
+
bool DIDescriptor::isBasicType() const {
if (!DbgNode)
return false;
@@ -169,7 +181,6 @@ bool DIDescriptor::isBasicType() const {
}
}
-/// isDerivedType - Return true if the specified tag is legal for DIDerivedType.
bool DIDescriptor::isDerivedType() const {
if (!DbgNode)
return false;
@@ -192,8 +203,6 @@ bool DIDescriptor::isDerivedType() const {
}
}
-/// isCompositeType - Return true if the specified tag is legal for
-/// DICompositeType.
bool DIDescriptor::isCompositeType() const {
if (!DbgNode)
return false;
@@ -210,7 +219,6 @@ bool DIDescriptor::isCompositeType() const {
}
}
-/// isVariable - Return true if the specified tag is legal for DIVariable.
bool DIDescriptor::isVariable() const {
if (!DbgNode)
return false;
@@ -223,32 +231,19 @@ bool DIDescriptor::isVariable() const {
}
}
-/// isType - Return true if the specified tag is legal for DIType.
bool DIDescriptor::isType() const {
return isBasicType() || isCompositeType() || isDerivedType();
}
-/// isSubprogram - Return true if the specified tag is legal for
-/// DISubprogram.
bool DIDescriptor::isSubprogram() const {
return DbgNode && getTag() == dwarf::DW_TAG_subprogram;
}
-/// isGlobalVariable - Return true if the specified tag is legal for
-/// DIGlobalVariable.
bool DIDescriptor::isGlobalVariable() const {
return DbgNode && (getTag() == dwarf::DW_TAG_variable ||
getTag() == dwarf::DW_TAG_constant);
}
-/// isUnspecifiedParmeter - Return true if the specified tag is
-/// DW_TAG_unspecified_parameters.
-bool DIDescriptor::isUnspecifiedParameter() const {
- return DbgNode && getTag() == dwarf::DW_TAG_unspecified_parameters;
-}
-
-/// isScope - Return true if the specified tag is one of the scope
-/// related tag.
bool DIDescriptor::isScope() const {
if (!DbgNode)
return false;
@@ -265,83 +260,67 @@ bool DIDescriptor::isScope() const {
return isType();
}
-/// isTemplateTypeParameter - Return true if the specified tag is
-/// DW_TAG_template_type_parameter.
bool DIDescriptor::isTemplateTypeParameter() const {
return DbgNode && getTag() == dwarf::DW_TAG_template_type_parameter;
}
-/// isTemplateValueParameter - Return true if the specified tag is
-/// DW_TAG_template_value_parameter.
bool DIDescriptor::isTemplateValueParameter() const {
return DbgNode && (getTag() == dwarf::DW_TAG_template_value_parameter ||
getTag() == dwarf::DW_TAG_GNU_template_template_param ||
getTag() == dwarf::DW_TAG_GNU_template_parameter_pack);
}
-/// isCompileUnit - Return true if the specified tag is DW_TAG_compile_unit.
bool DIDescriptor::isCompileUnit() const {
return DbgNode && getTag() == dwarf::DW_TAG_compile_unit;
}
-/// isFile - Return true if the specified tag is DW_TAG_file_type.
bool DIDescriptor::isFile() const {
return DbgNode && getTag() == dwarf::DW_TAG_file_type;
}
-/// isNameSpace - Return true if the specified tag is DW_TAG_namespace.
bool DIDescriptor::isNameSpace() const {
return DbgNode && getTag() == dwarf::DW_TAG_namespace;
}
-/// isLexicalBlockFile - Return true if the specified descriptor is a
-/// lexical block with an extra file.
bool DIDescriptor::isLexicalBlockFile() const {
return DbgNode && getTag() == dwarf::DW_TAG_lexical_block &&
- (DbgNode->getNumOperands() == 3);
+ DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 2;
}
-/// isLexicalBlock - Return true if the specified tag is DW_TAG_lexical_block.
bool DIDescriptor::isLexicalBlock() const {
+ // FIXME: There are always exactly 4 header fields in DILexicalBlock, but
+ // something relies on this returning true for DILexicalBlockFile.
return DbgNode && getTag() == dwarf::DW_TAG_lexical_block &&
- (DbgNode->getNumOperands() > 3);
+ DbgNode->getNumOperands() == 3 &&
+ (getNumHeaderFields() == 2 || getNumHeaderFields() == 4);
}
-/// isSubrange - Return true if the specified tag is DW_TAG_subrange_type.
bool DIDescriptor::isSubrange() const {
return DbgNode && getTag() == dwarf::DW_TAG_subrange_type;
}
-/// isEnumerator - Return true if the specified tag is DW_TAG_enumerator.
bool DIDescriptor::isEnumerator() const {
return DbgNode && getTag() == dwarf::DW_TAG_enumerator;
}
-/// isObjCProperty - Return true if the specified tag is DW_TAG_APPLE_property.
bool DIDescriptor::isObjCProperty() const {
return DbgNode && getTag() == dwarf::DW_TAG_APPLE_property;
}
-/// \brief Return true if the specified tag is DW_TAG_imported_module or
-/// DW_TAG_imported_declaration.
bool DIDescriptor::isImportedEntity() const {
return DbgNode && (getTag() == dwarf::DW_TAG_imported_module ||
getTag() == dwarf::DW_TAG_imported_declaration);
}
+bool DIDescriptor::isExpression() const {
+ return DbgNode && (getTag() == dwarf::DW_TAG_expression);
+}
+
//===----------------------------------------------------------------------===//
// Simple Descriptor Constructors and other Methods
//===----------------------------------------------------------------------===//
-unsigned DIArray::getNumElements() const {
- if (!DbgNode)
- return 0;
- return DbgNode->getNumOperands();
-}
-
-/// replaceAllUsesWith - Replace all uses of the MDNode used by this
-/// type with the one in the passed descriptor.
-void DIType::replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D) {
+void DIDescriptor::replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D) {
assert(DbgNode && "Trying to replace an unverified type!");
@@ -352,33 +331,26 @@ void DIType::replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D) {
// itself.
const MDNode *DN = D;
if (DbgNode == DN) {
- SmallVector<Value*, 10> Ops(DbgNode->getNumOperands());
+ SmallVector<Metadata *, 10> Ops(DbgNode->getNumOperands());
for (size_t i = 0; i != Ops.size(); ++i)
Ops[i] = DbgNode->getOperand(i);
DN = MDNode::get(VMContext, Ops);
}
- MDNode *Node = const_cast<MDNode *>(DbgNode);
- const Value *V = cast_or_null<Value>(DN);
- Node->replaceAllUsesWith(const_cast<Value *>(V));
+ auto *Node = cast<MDNodeFwdDecl>(const_cast<MDNode *>(DbgNode));
+ Node->replaceAllUsesWith(const_cast<MDNode *>(DN));
MDNode::deleteTemporary(Node);
- DbgNode = D;
+ DbgNode = DN;
}
-/// replaceAllUsesWith - Replace all uses of the MDNode used by this
-/// type with the one in D.
-void DIType::replaceAllUsesWith(MDNode *D) {
-
+void DIDescriptor::replaceAllUsesWith(MDNode *D) {
assert(DbgNode && "Trying to replace an unverified type!");
assert(DbgNode != D && "This replacement should always happen");
- MDNode *Node = const_cast<MDNode *>(DbgNode);
- const MDNode *DN = D;
- const Value *V = cast_or_null<Value>(DN);
- Node->replaceAllUsesWith(const_cast<Value *>(V));
+ auto *Node = cast<MDNodeFwdDecl>(const_cast<MDNode *>(DbgNode));
+ Node->replaceAllUsesWith(D);
MDNode::deleteTemporary(Node);
}
-/// Verify - Verify that a compile unit is well formed.
bool DICompileUnit::Verify() const {
if (!isCompileUnit())
return false;
@@ -388,65 +360,66 @@ bool DICompileUnit::Verify() const {
if (getFilename().empty())
return false;
- return DbgNode->getNumOperands() == 14;
+ return DbgNode->getNumOperands() == 7 && getNumHeaderFields() == 8;
}
-/// Verify - Verify that an ObjC property is well formed.
bool DIObjCProperty::Verify() const {
if (!isObjCProperty())
return false;
// Don't worry about the rest of the strings for now.
- return DbgNode->getNumOperands() == 8;
+ return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 6;
}
-/// Check if a field at position Elt of a MDNode is a MDNode.
+/// \brief Check if a field at position Elt of a MDNode is a MDNode.
+///
/// We currently allow an empty string and an integer.
/// But we don't allow a non-empty string in a MDNode field.
static bool fieldIsMDNode(const MDNode *DbgNode, unsigned Elt) {
// FIXME: This function should return true, if the field is null or the field
// is indeed a MDNode: return !Fld || isa<MDNode>(Fld).
- Value *Fld = getField(DbgNode, Elt);
+ Metadata *Fld = getField(DbgNode, Elt);
if (Fld && isa<MDString>(Fld) && !cast<MDString>(Fld)->getString().empty())
return false;
return true;
}
-/// Check if a field at position Elt of a MDNode is a MDString.
+/// \brief Check if a field at position Elt of a MDNode is a MDString.
static bool fieldIsMDString(const MDNode *DbgNode, unsigned Elt) {
- Value *Fld = getField(DbgNode, Elt);
+ Metadata *Fld = getField(DbgNode, Elt);
return !Fld || isa<MDString>(Fld);
}
-/// Check if a value can be a reference to a type.
-static bool isTypeRef(const Value *Val) {
- return !Val ||
- (isa<MDString>(Val) && !cast<MDString>(Val)->getString().empty()) ||
- (isa<MDNode>(Val) && DIType(cast<MDNode>(Val)).isType());
+/// \brief Check if a value can be a reference to a type.
+static bool isTypeRef(const Metadata *MD) {
+ if (!MD)
+ return true;
+ if (auto *S = dyn_cast<MDString>(MD))
+ return !S->getString().empty();
+ if (auto *N = dyn_cast<MDNode>(MD))
+ return DIType(N).isType();
+ return false;
}
-/// Check if a field at position Elt of a MDNode can be a reference to a type.
+/// \brief Check if referenced field might be a type.
static bool fieldIsTypeRef(const MDNode *DbgNode, unsigned Elt) {
- Value *Fld = getField(DbgNode, Elt);
- return isTypeRef(Fld);
+ return isTypeRef(dyn_cast_or_null<Metadata>(getField(DbgNode, Elt)));
}
-/// Check if a value can be a ScopeRef.
-static bool isScopeRef(const Value *Val) {
- return !Val ||
- (isa<MDString>(Val) && !cast<MDString>(Val)->getString().empty()) ||
- // Not checking for Val->isScope() here, because it would work
- // only for lexical scopes and not all subclasses of DIScope.
- isa<MDNode>(Val);
+/// \brief Check if a value can be a ScopeRef.
+static bool isScopeRef(const Metadata *MD) {
+ if (!MD)
+ return true;
+ if (auto *S = dyn_cast<MDString>(MD))
+ return !S->getString().empty();
+ return isa<MDNode>(MD);
}
-/// Check if a field at position Elt of a MDNode can be a ScopeRef.
+/// \brief Check if a field at position Elt of a MDNode can be a ScopeRef.
static bool fieldIsScopeRef(const MDNode *DbgNode, unsigned Elt) {
- Value *Fld = getField(DbgNode, Elt);
- return isScopeRef(Fld);
+ return isScopeRef(dyn_cast_or_null<Metadata>(getField(DbgNode, Elt)));
}
-/// Verify - Verify that a type descriptor is well formed.
bool DIType::Verify() const {
if (!isType())
return false;
@@ -467,6 +440,7 @@ bool DIType::Verify() const {
Tag != dwarf::DW_TAG_inheritance && Tag != dwarf::DW_TAG_friend &&
getFilename().empty())
return false;
+
// DIType is abstract, it should be a BasicType, a DerivedType or
// a CompositeType.
if (isBasicType())
@@ -479,89 +453,112 @@ bool DIType::Verify() const {
return false;
}
-/// Verify - Verify that a basic type descriptor is well formed.
bool DIBasicType::Verify() const {
- return isBasicType() && DbgNode->getNumOperands() == 10;
+ return isBasicType() && DbgNode->getNumOperands() == 3 &&
+ getNumHeaderFields() == 8;
}
-/// Verify - Verify that a derived type descriptor is well formed.
bool DIDerivedType::Verify() const {
- // Make sure DerivedFrom @ field 9 is TypeRef.
- if (!fieldIsTypeRef(DbgNode, 9))
+ // Make sure DerivedFrom @ field 3 is TypeRef.
+ if (!fieldIsTypeRef(DbgNode, 3))
return false;
if (getTag() == dwarf::DW_TAG_ptr_to_member_type)
- // Make sure ClassType @ field 10 is a TypeRef.
- if (!fieldIsTypeRef(DbgNode, 10))
+ // Make sure ClassType @ field 4 is a TypeRef.
+ if (!fieldIsTypeRef(DbgNode, 4))
return false;
- return isDerivedType() && DbgNode->getNumOperands() >= 10 &&
- DbgNode->getNumOperands() <= 14;
+ return isDerivedType() && DbgNode->getNumOperands() >= 4 &&
+ DbgNode->getNumOperands() <= 8 && getNumHeaderFields() >= 7 &&
+ getNumHeaderFields() <= 8;
}
-/// Verify - Verify that a composite type descriptor is well formed.
bool DICompositeType::Verify() const {
if (!isCompositeType())
return false;
- // Make sure DerivedFrom @ field 9 and ContainingType @ field 12 are TypeRef.
- if (!fieldIsTypeRef(DbgNode, 9))
+ // Make sure DerivedFrom @ field 3 and ContainingType @ field 5 are TypeRef.
+ if (!fieldIsTypeRef(DbgNode, 3))
return false;
- if (!fieldIsTypeRef(DbgNode, 12))
+ if (!fieldIsTypeRef(DbgNode, 5))
return false;
- // Make sure the type identifier at field 14 is MDString, it can be null.
- if (!fieldIsMDString(DbgNode, 14))
+ // Make sure the type identifier at field 7 is MDString, it can be null.
+ if (!fieldIsMDString(DbgNode, 7))
return false;
// A subroutine type can't be both & and &&.
if (isLValueReference() && isRValueReference())
return false;
- return DbgNode->getNumOperands() == 15;
+ return DbgNode->getNumOperands() == 8 && getNumHeaderFields() == 8;
}
-/// Verify - Verify that a subprogram descriptor is well formed.
bool DISubprogram::Verify() const {
if (!isSubprogram())
return false;
- // Make sure context @ field 2 is a ScopeRef and type @ field 7 is a MDNode.
+ // Make sure context @ field 2 is a ScopeRef and type @ field 3 is a MDNode.
if (!fieldIsScopeRef(DbgNode, 2))
return false;
- if (!fieldIsMDNode(DbgNode, 7))
+ if (!fieldIsMDNode(DbgNode, 3))
return false;
- // Containing type @ field 12.
- if (!fieldIsTypeRef(DbgNode, 12))
+ // Containing type @ field 4.
+ if (!fieldIsTypeRef(DbgNode, 4))
return false;
// A subprogram can't be both & and &&.
if (isLValueReference() && isRValueReference())
return false;
- return DbgNode->getNumOperands() == 20;
+ // If a DISubprogram has an llvm::Function*, then scope chains from all
+ // instructions within the function should lead to this DISubprogram.
+ if (auto *F = getFunction()) {
+ for (auto &BB : *F) {
+ for (auto &I : BB) {
+ DebugLoc DL = I.getDebugLoc();
+ if (DL.isUnknown())
+ continue;
+
+ MDNode *Scope = nullptr;
+ MDNode *IA = nullptr;
+ // walk the inlined-at scopes
+ while ((IA = DL.getInlinedAt()))
+ DL = DebugLoc::getFromDILocation(IA);
+ DL.getScopeAndInlinedAt(Scope, IA);
+ assert(!IA);
+ while (!DIDescriptor(Scope).isSubprogram()) {
+ DILexicalBlockFile D(Scope);
+ Scope = D.isLexicalBlockFile()
+ ? D.getScope()
+ : DebugLoc::getFromDILexicalBlock(Scope).getScope();
+ }
+ if (!DISubprogram(Scope).describes(F))
+ return false;
+ }
+ }
+ }
+ return DbgNode->getNumOperands() == 9 && getNumHeaderFields() == 12;
}
-/// Verify - Verify that a global variable descriptor is well formed.
bool DIGlobalVariable::Verify() const {
if (!isGlobalVariable())
return false;
if (getDisplayName().empty())
return false;
- // Make sure context @ field 2 is an MDNode.
- if (!fieldIsMDNode(DbgNode, 2))
+ // Make sure context @ field 1 is an MDNode.
+ if (!fieldIsMDNode(DbgNode, 1))
return false;
- // Make sure that type @ field 8 is a DITypeRef.
- if (!fieldIsTypeRef(DbgNode, 8))
+ // Make sure that type @ field 3 is a DITypeRef.
+ if (!fieldIsTypeRef(DbgNode, 3))
return false;
- // Make sure StaticDataMemberDeclaration @ field 12 is MDNode.
- if (!fieldIsMDNode(DbgNode, 12))
+ // Make sure StaticDataMemberDeclaration @ field 5 is MDNode.
+ if (!fieldIsMDNode(DbgNode, 5))
return false;
- return DbgNode->getNumOperands() == 13;
+ return DbgNode->getNumOperands() == 6 && getNumHeaderFields() == 7;
}
-/// Verify - Verify that a variable descriptor is well formed.
bool DIVariable::Verify() const {
if (!isVariable())
return false;
@@ -569,127 +566,120 @@ bool DIVariable::Verify() const {
// Make sure context @ field 1 is an MDNode.
if (!fieldIsMDNode(DbgNode, 1))
return false;
- // Make sure that type @ field 5 is a DITypeRef.
- if (!fieldIsTypeRef(DbgNode, 5))
+ // Make sure that type @ field 3 is a DITypeRef.
+ if (!fieldIsTypeRef(DbgNode, 3))
return false;
- // Variable without a complex expression.
- if (DbgNode->getNumOperands() == 8)
+ // Check the number of header fields, which is common between complex and
+ // simple variables.
+ if (getNumHeaderFields() != 4)
+ return false;
+
+ // Variable without an inline location.
+ if (DbgNode->getNumOperands() == 4)
return true;
- // Make sure the complex expression is an MDNode.
- return (DbgNode->getNumOperands() == 9 && fieldIsMDNode(DbgNode, 8));
+ // Variable with an inline location.
+ return getInlinedAt() != nullptr && DbgNode->getNumOperands() == 5;
}
-/// Verify - Verify that a location descriptor is well formed.
-bool DILocation::Verify() const {
+bool DIExpression::Verify() const {
+ // Empty DIExpressions may be represented as a nullptr.
if (!DbgNode)
- return false;
+ return true;
- return DbgNode->getNumOperands() == 4;
+ return isExpression() && DbgNode->getNumOperands() == 1;
+}
+
+bool DILocation::Verify() const {
+ return DbgNode && isa<MDLocation>(DbgNode);
}
-/// Verify - Verify that a namespace descriptor is well formed.
bool DINameSpace::Verify() const {
if (!isNameSpace())
return false;
- return DbgNode->getNumOperands() == 5;
+ return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 3;
}
-/// \brief Retrieve the MDNode for the directory/file pair.
MDNode *DIFile::getFileNode() const { return getNodeField(DbgNode, 1); }
-/// \brief Verify that the file descriptor is well formed.
bool DIFile::Verify() const {
return isFile() && DbgNode->getNumOperands() == 2;
}
-/// \brief Verify that the enumerator descriptor is well formed.
bool DIEnumerator::Verify() const {
- return isEnumerator() && DbgNode->getNumOperands() == 3;
+ return isEnumerator() && DbgNode->getNumOperands() == 1 &&
+ getNumHeaderFields() == 3;
}
-/// \brief Verify that the subrange descriptor is well formed.
bool DISubrange::Verify() const {
- return isSubrange() && DbgNode->getNumOperands() == 3;
+ return isSubrange() && DbgNode->getNumOperands() == 1 &&
+ getNumHeaderFields() == 3;
}
-/// \brief Verify that the lexical block descriptor is well formed.
bool DILexicalBlock::Verify() const {
- return isLexicalBlock() && DbgNode->getNumOperands() == 7;
+ return isLexicalBlock() && DbgNode->getNumOperands() == 3 &&
+ getNumHeaderFields() == 4;
}
-/// \brief Verify that the file-scoped lexical block descriptor is well formed.
bool DILexicalBlockFile::Verify() const {
- return isLexicalBlockFile() && DbgNode->getNumOperands() == 3;
-}
-
-/// \brief Verify that an unspecified parameter descriptor is well formed.
-bool DIUnspecifiedParameter::Verify() const {
- return isUnspecifiedParameter() && DbgNode->getNumOperands() == 1;
+ return isLexicalBlockFile() && DbgNode->getNumOperands() == 3 &&
+ getNumHeaderFields() == 2;
}
-/// \brief Verify that the template type parameter descriptor is well formed.
bool DITemplateTypeParameter::Verify() const {
- return isTemplateTypeParameter() && DbgNode->getNumOperands() == 7;
+ return isTemplateTypeParameter() && DbgNode->getNumOperands() == 4 &&
+ getNumHeaderFields() == 4;
}
-/// \brief Verify that the template value parameter descriptor is well formed.
bool DITemplateValueParameter::Verify() const {
- return isTemplateValueParameter() && DbgNode->getNumOperands() == 8;
+ return isTemplateValueParameter() && DbgNode->getNumOperands() == 5 &&
+ getNumHeaderFields() == 4;
}
-/// \brief Verify that the imported module descriptor is well formed.
bool DIImportedEntity::Verify() const {
- return isImportedEntity() &&
- (DbgNode->getNumOperands() == 4 || DbgNode->getNumOperands() == 5);
+ return isImportedEntity() && DbgNode->getNumOperands() == 3 &&
+ getNumHeaderFields() == 3;
}
-/// getObjCProperty - Return property node, if this ivar is associated with one.
MDNode *DIDerivedType::getObjCProperty() const {
- return getNodeField(DbgNode, 10);
+ return getNodeField(DbgNode, 4);
}
MDString *DICompositeType::getIdentifier() const {
- return cast_or_null<MDString>(getField(DbgNode, 14));
+ return cast_or_null<MDString>(getField(DbgNode, 7));
}
#ifndef NDEBUG
static void VerifySubsetOf(const MDNode *LHS, const MDNode *RHS) {
for (unsigned i = 0; i != LHS->getNumOperands(); ++i) {
// Skip the 'empty' list (that's a single i32 0, rather than truly empty).
- if (i == 0 && isa<ConstantInt>(LHS->getOperand(i)))
+ if (i == 0 && mdconst::hasa<ConstantInt>(LHS->getOperand(i)))
continue;
const MDNode *E = cast<MDNode>(LHS->getOperand(i));
bool found = false;
for (unsigned j = 0; !found && j != RHS->getNumOperands(); ++j)
- found = E == RHS->getOperand(j);
+ found = (E == cast<MDNode>(RHS->getOperand(j)));
assert(found && "Losing a member during member list replacement");
}
}
#endif
-/// \brief Set the array of member DITypes.
-void DICompositeType::setTypeArray(DIArray Elements, DIArray TParams) {
- assert((!TParams || DbgNode->getNumOperands() == 15) &&
- "If you're setting the template parameters this should include a slot "
- "for that!");
- TrackingVH<MDNode> N(*this);
+void DICompositeType::setArraysHelper(MDNode *Elements, MDNode *TParams) {
+ TrackingMDNodeRef N(*this);
if (Elements) {
#ifndef NDEBUG
// Check that the new list of members contains all the old members as well.
- if (const MDNode *El = cast_or_null<MDNode>(N->getOperand(10)))
+ if (const MDNode *El = cast_or_null<MDNode>(N->getOperand(4)))
VerifySubsetOf(El, Elements);
#endif
- N->replaceOperandWith(10, Elements);
+ N->replaceOperandWith(4, Elements);
}
if (TParams)
- N->replaceOperandWith(13, TParams);
+ N->replaceOperandWith(6, TParams);
DbgNode = N;
}
-/// Generate a reference to this DIType. Uses the type identifier instead
-/// of the actual MDNode if possible, to help type uniquing.
DIScopeRef DIScope::getRef() const {
if (!isCompositeType())
return DIScopeRef(*this);
@@ -699,15 +689,12 @@ DIScopeRef DIScope::getRef() const {
return DIScopeRef(DTy.getIdentifier());
}
-/// \brief Set the containing type.
void DICompositeType::setContainingType(DICompositeType ContainingType) {
- TrackingVH<MDNode> N(*this);
- N->replaceOperandWith(12, ContainingType.getRef());
+ TrackingMDNodeRef N(*this);
+ N->replaceOperandWith(5, ContainingType.getRef());
DbgNode = N;
}
-/// isInlinedFnArgument - Return true if this variable provides debugging
-/// information for an inlined function arguments.
bool DIVariable::isInlinedFnArgument(const Function *CurFn) {
assert(CurFn && "Invalid function");
if (!getContext().isSubprogram())
@@ -717,8 +704,6 @@ bool DIVariable::isInlinedFnArgument(const Function *CurFn) {
return !DISubprogram(getContext()).describes(CurFn);
}
-/// describes - Return true if this subprogram provides debugging
-/// information for the function F.
bool DISubprogram::describes(const Function *F) {
assert(F && "Invalid function");
if (F == getFunction())
@@ -731,27 +716,18 @@ bool DISubprogram::describes(const Function *F) {
return false;
}
-unsigned DISubprogram::isOptimized() const {
- assert(DbgNode && "Invalid subprogram descriptor!");
- if (DbgNode->getNumOperands() == 15)
- return getUnsignedField(14);
- return 0;
-}
-
MDNode *DISubprogram::getVariablesNodes() const {
- return getNodeField(DbgNode, 18);
+ return getNodeField(DbgNode, 8);
}
DIArray DISubprogram::getVariables() const {
- return DIArray(getNodeField(DbgNode, 18));
+ return DIArray(getNodeField(DbgNode, 8));
}
-Value *DITemplateValueParameter::getValue() const {
- return getField(DbgNode, 4);
+Metadata *DITemplateValueParameter::getValue() const {
+ return DbgNode->getOperand(3);
}
-// If the current node has a parent scope then return that,
-// else return an empty scope.
DIScopeRef DIScope::getContext() const {
if (isType())
@@ -773,7 +749,6 @@ DIScopeRef DIScope::getContext() const {
return DIScopeRef(nullptr);
}
-// If the scope node has a name, return that, else return an empty string.
StringRef DIScope::getName() const {
if (isType())
return DIType(DbgNode).getName();
@@ -800,128 +775,103 @@ StringRef DIScope::getDirectory() const {
}
DIArray DICompileUnit::getEnumTypes() const {
- if (!DbgNode || DbgNode->getNumOperands() < 13)
+ if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
- return DIArray(getNodeField(DbgNode, 7));
+ return DIArray(getNodeField(DbgNode, 2));
}
DIArray DICompileUnit::getRetainedTypes() const {
- if (!DbgNode || DbgNode->getNumOperands() < 13)
+ if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
- return DIArray(getNodeField(DbgNode, 8));
+ return DIArray(getNodeField(DbgNode, 3));
}
DIArray DICompileUnit::getSubprograms() const {
- if (!DbgNode || DbgNode->getNumOperands() < 13)
+ if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
- return DIArray(getNodeField(DbgNode, 9));
+ return DIArray(getNodeField(DbgNode, 4));
}
DIArray DICompileUnit::getGlobalVariables() const {
- if (!DbgNode || DbgNode->getNumOperands() < 13)
+ if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
- return DIArray(getNodeField(DbgNode, 10));
+ return DIArray(getNodeField(DbgNode, 5));
}
DIArray DICompileUnit::getImportedEntities() const {
- if (!DbgNode || DbgNode->getNumOperands() < 13)
+ if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
- return DIArray(getNodeField(DbgNode, 11));
+ return DIArray(getNodeField(DbgNode, 6));
}
-/// copyWithNewScope - Return a copy of this location, replacing the
-/// current scope with the given one.
-DILocation DILocation::copyWithNewScope(LLVMContext &Ctx,
- DILexicalBlock NewScope) {
- SmallVector<Value *, 10> Elts;
- assert(Verify());
- for (unsigned I = 0; I < DbgNode->getNumOperands(); ++I) {
- if (I != 2)
- Elts.push_back(DbgNode->getOperand(I));
- else
- Elts.push_back(NewScope);
- }
- MDNode *NewDIL = MDNode::get(Ctx, Elts);
- return DILocation(NewDIL);
-}
+void DICompileUnit::replaceSubprograms(DIArray Subprograms) {
+ assert(Verify() && "Expected compile unit");
+ if (Subprograms == getSubprograms())
+ return;
-/// computeNewDiscriminator - Generate a new discriminator value for this
-/// file and line location.
-unsigned DILocation::computeNewDiscriminator(LLVMContext &Ctx) {
- std::pair<const char *, unsigned> Key(getFilename().data(), getLineNumber());
- return ++Ctx.pImpl->DiscriminatorTable[Key];
+ const_cast<MDNode *>(DbgNode)->replaceOperandWith(4, Subprograms);
}
-/// fixupSubprogramName - Replace contains special characters used
-/// in a typical Objective-C names with '.' in a given string.
-static void fixupSubprogramName(DISubprogram Fn, SmallVectorImpl<char> &Out) {
- StringRef FName =
- Fn.getFunction() ? Fn.getFunction()->getName() : Fn.getName();
- FName = Function::getRealLinkageName(FName);
-
- StringRef Prefix("llvm.dbg.lv.");
- Out.reserve(FName.size() + Prefix.size());
- Out.append(Prefix.begin(), Prefix.end());
-
- bool isObjCLike = false;
- for (size_t i = 0, e = FName.size(); i < e; ++i) {
- char C = FName[i];
- if (C == '[')
- isObjCLike = true;
-
- if (isObjCLike && (C == '[' || C == ']' || C == ' ' || C == ':' ||
- C == '+' || C == '(' || C == ')'))
- Out.push_back('.');
- else
- Out.push_back(C);
- }
+void DICompileUnit::replaceGlobalVariables(DIArray GlobalVariables) {
+ assert(Verify() && "Expected compile unit");
+ if (GlobalVariables == getGlobalVariables())
+ return;
+
+ const_cast<MDNode *>(DbgNode)->replaceOperandWith(5, GlobalVariables);
}
-/// getFnSpecificMDNode - Return a NameMDNode, if available, that is
-/// suitable to hold function specific information.
-NamedMDNode *llvm::getFnSpecificMDNode(const Module &M, DISubprogram Fn) {
- SmallString<32> Name;
- fixupSubprogramName(Fn, Name);
- return M.getNamedMetadata(Name.str());
+DILocation DILocation::copyWithNewScope(LLVMContext &Ctx,
+ DILexicalBlockFile NewScope) {
+ assert(Verify());
+ assert(NewScope && "Expected valid scope");
+
+ const auto *Old = cast<MDLocation>(DbgNode);
+ return DILocation(MDLocation::get(Ctx, Old->getLine(), Old->getColumn(),
+ NewScope, Old->getInlinedAt()));
}
-/// getOrInsertFnSpecificMDNode - Return a NameMDNode that is suitable
-/// to hold function specific information.
-NamedMDNode *llvm::getOrInsertFnSpecificMDNode(Module &M, DISubprogram Fn) {
- SmallString<32> Name;
- fixupSubprogramName(Fn, Name);
- return M.getOrInsertNamedMetadata(Name.str());
+unsigned DILocation::computeNewDiscriminator(LLVMContext &Ctx) {
+ std::pair<const char *, unsigned> Key(getFilename().data(), getLineNumber());
+ return ++Ctx.pImpl->DiscriminatorTable[Key];
}
-/// createInlinedVariable - Create a new inlined variable based on current
-/// variable.
-/// @param DV Current Variable.
-/// @param InlinedScope Location at current variable is inlined.
DIVariable llvm::createInlinedVariable(MDNode *DV, MDNode *InlinedScope,
LLVMContext &VMContext) {
- SmallVector<Value *, 16> Elts;
- // Insert inlined scope as 7th element.
- for (unsigned i = 0, e = DV->getNumOperands(); i != e; ++i)
- i == 7 ? Elts.push_back(InlinedScope) : Elts.push_back(DV->getOperand(i));
- return DIVariable(MDNode::get(VMContext, Elts));
+ assert(DIVariable(DV).Verify() && "Expected a DIVariable");
+ if (!InlinedScope)
+ return cleanseInlinedVariable(DV, VMContext);
+
+ // Insert inlined scope.
+ SmallVector<Metadata *, 8> Elts;
+ for (unsigned I = 0, E = DIVariableInlinedAtIndex; I != E; ++I)
+ Elts.push_back(DV->getOperand(I));
+ Elts.push_back(InlinedScope);
+
+ DIVariable Inlined(MDNode::get(VMContext, Elts));
+ assert(Inlined.Verify() && "Expected to create a DIVariable");
+ return Inlined;
}
-/// cleanseInlinedVariable - Remove inlined scope from the variable.
DIVariable llvm::cleanseInlinedVariable(MDNode *DV, LLVMContext &VMContext) {
- SmallVector<Value *, 16> Elts;
- // Insert inlined scope as 7th element.
- for (unsigned i = 0, e = DV->getNumOperands(); i != e; ++i)
- i == 7 ? Elts.push_back(Constant::getNullValue(Type::getInt32Ty(VMContext)))
- : Elts.push_back(DV->getOperand(i));
- return DIVariable(MDNode::get(VMContext, Elts));
+ assert(DIVariable(DV).Verify() && "Expected a DIVariable");
+ if (!DIVariable(DV).getInlinedAt())
+ return DIVariable(DV);
+
+ // Remove inlined scope.
+ SmallVector<Metadata *, 8> Elts;
+ for (unsigned I = 0, E = DIVariableInlinedAtIndex; I != E; ++I)
+ Elts.push_back(DV->getOperand(I));
+
+ DIVariable Cleansed(MDNode::get(VMContext, Elts));
+ assert(Cleansed.Verify() && "Expected to create a DIVariable");
+ return Cleansed;
}
-/// getDISubprogram - Find subprogram that is enclosing this scope.
DISubprogram llvm::getDISubprogram(const MDNode *Scope) {
DIDescriptor D(Scope);
if (D.isSubprogram())
@@ -936,7 +886,23 @@ DISubprogram llvm::getDISubprogram(const MDNode *Scope) {
return DISubprogram();
}
-/// getDICompositeType - Find underlying composite type.
+DISubprogram llvm::getDISubprogram(const Function *F) {
+ // We look for the first instr that has a debug annotation leading back to F.
+ for (auto &BB : *F) {
+ auto Inst = std::find_if(BB.begin(), BB.end(), [](const Instruction &Inst) {
+ return !Inst.getDebugLoc().isUnknown();
+ });
+ if (Inst == BB.end())
+ continue;
+ DebugLoc DLoc = Inst->getDebugLoc();
+ const MDNode *Scope = DLoc.getScopeNode();
+ DISubprogram Subprogram = getDISubprogram(Scope);
+ return Subprogram.describes(F) ? Subprogram : DISubprogram();
+ }
+
+ return DISubprogram();
+}
+
DICompositeType llvm::getDICompositeType(DIType T) {
if (T.isCompositeType())
return DICompositeType(T);
@@ -953,7 +919,6 @@ DICompositeType llvm::getDICompositeType(DIType T) {
return DICompositeType();
}
-/// Update DITypeIdentifierMap by going through retained types of each CU.
DITypeIdentifierMap
llvm::generateDITypeIdentifierMap(const NamedMDNode *CU_Nodes) {
DITypeIdentifierMap Map;
@@ -1002,7 +967,6 @@ void DebugInfoFinder::InitializeTypeMap(const Module &M) {
}
}
-/// processModule - Process entire module and collect debug info.
void DebugInfoFinder::processModule(const Module &M) {
InitializeTypeMap(M);
if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) {
@@ -1041,7 +1005,6 @@ void DebugInfoFinder::processModule(const Module &M) {
}
}
-/// processLocation - Process DILocation.
void DebugInfoFinder::processLocation(const Module &M, DILocation Loc) {
if (!Loc)
return;
@@ -1050,7 +1013,6 @@ void DebugInfoFinder::processLocation(const Module &M, DILocation Loc) {
processLocation(M, Loc.getOrigLocation());
}
-/// processType - Process DIType.
void DebugInfoFinder::processType(DIType DT) {
if (!addType(DT))
return;
@@ -1058,7 +1020,13 @@ void DebugInfoFinder::processType(DIType DT) {
if (DT.isCompositeType()) {
DICompositeType DCT(DT);
processType(DCT.getTypeDerivedFrom().resolve(TypeIdentifierMap));
- DIArray DA = DCT.getTypeArray();
+ if (DT.isSubroutineType()) {
+ DITypeArray DTA = DISubroutineType(DT).getTypeArray();
+ for (unsigned i = 0, e = DTA.getNumElements(); i != e; ++i)
+ processType(DTA.getElement(i).resolve(TypeIdentifierMap));
+ return;
+ }
+ DIArray DA = DCT.getElements();
for (unsigned i = 0, e = DA.getNumElements(); i != e; ++i) {
DIDescriptor D = DA.getElement(i);
if (D.isType())
@@ -1100,7 +1068,6 @@ void DebugInfoFinder::processScope(DIScope Scope) {
}
}
-/// processSubprogram - Process DISubprogram.
void DebugInfoFinder::processSubprogram(DISubprogram SP) {
if (!addSubprogram(SP))
return;
@@ -1121,7 +1088,6 @@ void DebugInfoFinder::processSubprogram(DISubprogram SP) {
}
}
-/// processDeclare - Process DbgDeclareInst.
void DebugInfoFinder::processDeclare(const Module &M,
const DbgDeclareInst *DDI) {
MDNode *N = dyn_cast<MDNode>(DDI->getVariable());
@@ -1133,7 +1099,7 @@ void DebugInfoFinder::processDeclare(const Module &M,
if (!DV.isVariable())
return;
- if (!NodesSeen.insert(DV))
+ if (!NodesSeen.insert(DV).second)
return;
processScope(DIVariable(N).getContext());
processType(DIVariable(N).getType().resolve(TypeIdentifierMap));
@@ -1149,53 +1115,49 @@ void DebugInfoFinder::processValue(const Module &M, const DbgValueInst *DVI) {
if (!DV.isVariable())
return;
- if (!NodesSeen.insert(DV))
+ if (!NodesSeen.insert(DV).second)
return;
processScope(DIVariable(N).getContext());
processType(DIVariable(N).getType().resolve(TypeIdentifierMap));
}
-/// addType - Add type into Tys.
bool DebugInfoFinder::addType(DIType DT) {
if (!DT)
return false;
- if (!NodesSeen.insert(DT))
+ if (!NodesSeen.insert(DT).second)
return false;
TYs.push_back(DT);
return true;
}
-/// addCompileUnit - Add compile unit into CUs.
bool DebugInfoFinder::addCompileUnit(DICompileUnit CU) {
if (!CU)
return false;
- if (!NodesSeen.insert(CU))
+ if (!NodesSeen.insert(CU).second)
return false;
CUs.push_back(CU);
return true;
}
-/// addGlobalVariable - Add global variable into GVs.
bool DebugInfoFinder::addGlobalVariable(DIGlobalVariable DIG) {
if (!DIG)
return false;
- if (!NodesSeen.insert(DIG))
+ if (!NodesSeen.insert(DIG).second)
return false;
GVs.push_back(DIG);
return true;
}
-// addSubprogram - Add subprgoram into SPs.
bool DebugInfoFinder::addSubprogram(DISubprogram SP) {
if (!SP)
return false;
- if (!NodesSeen.insert(SP))
+ if (!NodesSeen.insert(SP).second)
return false;
SPs.push_back(SP);
@@ -1209,7 +1171,7 @@ bool DebugInfoFinder::addScope(DIScope Scope) {
// as null for now.
if (Scope->getNumOperands() == 0)
return false;
- if (!NodesSeen.insert(Scope))
+ if (!NodesSeen.insert(Scope).second)
return false;
Scopes.push_back(Scope);
return true;
@@ -1219,13 +1181,11 @@ bool DebugInfoFinder::addScope(DIScope Scope) {
// DIDescriptor: dump routines for all descriptors.
//===----------------------------------------------------------------------===//
-/// dump - Print descriptor to dbgs() with a newline.
void DIDescriptor::dump() const {
print(dbgs());
dbgs() << '\n';
}
-/// print - Print descriptor.
void DIDescriptor::print(raw_ostream &OS) const {
if (!DbgNode)
return;
@@ -1259,6 +1219,8 @@ void DIDescriptor::print(raw_ostream &OS) const {
DINameSpace(DbgNode).printInternal(OS);
} else if (this->isScope()) {
DIScope(DbgNode).printInternal(OS);
+ } else if (this->isExpression()) {
+ DIExpression(DbgNode).printInternal(OS);
}
}
@@ -1311,6 +1273,8 @@ void DIType::printInternal(raw_ostream &OS) const {
OS << " [private]";
else if (isProtected())
OS << " [protected]";
+ else if (isPublic())
+ OS << " [public]";
if (isArtificial())
OS << " [artificial]";
@@ -1341,7 +1305,7 @@ void DIDerivedType::printInternal(raw_ostream &OS) const {
void DICompositeType::printInternal(raw_ostream &OS) const {
DIType::printInternal(OS);
- DIArray A = getTypeArray();
+ DIArray A = getElements();
OS << " [" << A.getNumElements() << " elements]";
}
@@ -1370,6 +1334,8 @@ void DISubprogram::printInternal(raw_ostream &OS) const {
OS << " [private]";
else if (isProtected())
OS << " [protected]";
+ else if (isPublic())
+ OS << " [public]";
if (isLValueReference())
OS << " [reference]";
@@ -1406,6 +1372,33 @@ void DIVariable::printInternal(raw_ostream &OS) const {
OS << " [line " << getLineNumber() << ']';
}
+void DIExpression::printInternal(raw_ostream &OS) const {
+ for (unsigned I = 0; I < getNumElements(); ++I) {
+ uint64_t OpCode = getElement(I);
+ OS << " [" << OperationEncodingString(OpCode);
+ switch (OpCode) {
+ case DW_OP_plus: {
+ OS << " " << getElement(++I);
+ break;
+ }
+ case DW_OP_piece: {
+ unsigned Offset = getElement(++I);
+ unsigned Size = getElement(++I);
+ OS << " offset=" << Offset << ", size=" << Size;
+ break;
+ }
+ case DW_OP_deref:
+ // No arguments.
+ break;
+ default:
+ // Else bail out early. This may be a line table entry.
+ OS << "Unknown]";
+ return;
+ }
+ OS << "]";
+ }
+}
+
void DIObjCProperty::printInternal(raw_ostream &OS) const {
StringRef Name = getObjCPropertyName();
if (!Name.empty())
@@ -1449,30 +1442,22 @@ void DIVariable::printExtendedName(raw_ostream &OS) const {
}
}
-/// Specialize constructor to make sure it has the correct type.
-template <> DIRef<DIScope>::DIRef(const Value *V) : Val(V) {
+template <> DIRef<DIScope>::DIRef(const Metadata *V) : Val(V) {
assert(isScopeRef(V) && "DIScopeRef should be a MDString or MDNode");
}
-template <> DIRef<DIType>::DIRef(const Value *V) : Val(V) {
+template <> DIRef<DIType>::DIRef(const Metadata *V) : Val(V) {
assert(isTypeRef(V) && "DITypeRef should be a MDString or MDNode");
}
-/// Specialize getFieldAs to handle fields that are references to DIScopes.
template <>
DIScopeRef DIDescriptor::getFieldAs<DIScopeRef>(unsigned Elt) const {
- return DIScopeRef(getField(DbgNode, Elt));
+ return DIScopeRef(cast_or_null<Metadata>(getField(DbgNode, Elt)));
}
-/// Specialize getFieldAs to handle fields that are references to DITypes.
template <> DITypeRef DIDescriptor::getFieldAs<DITypeRef>(unsigned Elt) const {
- return DITypeRef(getField(DbgNode, Elt));
+ return DITypeRef(cast_or_null<Metadata>(getField(DbgNode, Elt)));
}
-/// Strip debug info in the module if it exists.
-/// To do this, we remove all calls to the debugger intrinsics and any named
-/// metadata for debugging. We also remove debug locations for instructions.
-/// Return true if module is modified.
bool llvm::StripDebugInfo(Module &M) {
-
bool Changed = false;
// Remove all of the calls to the debugger intrinsics, and remove them from
@@ -1519,12 +1504,11 @@ bool llvm::StripDebugInfo(Module &M) {
return Changed;
}
-/// Return Debug Info Metadata Version by checking module flags.
unsigned llvm::getDebugMetadataVersionFromModule(const Module &M) {
- Value *Val = M.getModuleFlag("Debug Info Version");
- if (!Val)
- return 0;
- return cast<ConstantInt>(Val)->getZExtValue();
+ if (auto *Val = mdconst::extract_or_null<ConstantInt>(
+ M.getModuleFlag("Debug Info Version")))
+ return Val->getZExtValue();
+ return 0;
}
llvm::DenseMap<const llvm::Function *, llvm::DISubprogram>
diff --git a/contrib/llvm/lib/IR/DebugLoc.cpp b/contrib/llvm/lib/IR/DebugLoc.cpp
index e8bdcce..075f295 100644
--- a/contrib/llvm/lib/IR/DebugLoc.cpp
+++ b/contrib/llvm/lib/IR/DebugLoc.cpp
@@ -17,129 +17,60 @@ using namespace llvm;
// DebugLoc Implementation
//===----------------------------------------------------------------------===//
-MDNode *DebugLoc::getScope(const LLVMContext &Ctx) const {
- if (ScopeIdx == 0) return nullptr;
-
- if (ScopeIdx > 0) {
- // Positive ScopeIdx is an index into ScopeRecords, which has no inlined-at
- // position specified.
- assert(unsigned(ScopeIdx) <= Ctx.pImpl->ScopeRecords.size() &&
- "Invalid ScopeIdx!");
- return Ctx.pImpl->ScopeRecords[ScopeIdx-1].get();
- }
-
- // Otherwise, the index is in the ScopeInlinedAtRecords array.
- assert(unsigned(-ScopeIdx) <= Ctx.pImpl->ScopeInlinedAtRecords.size() &&
- "Invalid ScopeIdx");
- return Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].first.get();
-}
+unsigned DebugLoc::getLine() const { return DILocation(Loc).getLineNumber(); }
+unsigned DebugLoc::getCol() const { return DILocation(Loc).getColumnNumber(); }
+
+MDNode *DebugLoc::getScope() const { return DILocation(Loc).getScope(); }
-MDNode *DebugLoc::getInlinedAt(const LLVMContext &Ctx) const {
- // Positive ScopeIdx is an index into ScopeRecords, which has no inlined-at
- // position specified. Zero is invalid.
- if (ScopeIdx >= 0) return nullptr;
-
- // Otherwise, the index is in the ScopeInlinedAtRecords array.
- assert(unsigned(-ScopeIdx) <= Ctx.pImpl->ScopeInlinedAtRecords.size() &&
- "Invalid ScopeIdx");
- return Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].second.get();
+MDNode *DebugLoc::getInlinedAt() const {
+ return DILocation(Loc).getOrigLocation();
}
/// Return both the Scope and the InlinedAt values.
-void DebugLoc::getScopeAndInlinedAt(MDNode *&Scope, MDNode *&IA,
- const LLVMContext &Ctx) const {
- if (ScopeIdx == 0) {
- Scope = IA = nullptr;
- return;
- }
-
- if (ScopeIdx > 0) {
- // Positive ScopeIdx is an index into ScopeRecords, which has no inlined-at
- // position specified.
- assert(unsigned(ScopeIdx) <= Ctx.pImpl->ScopeRecords.size() &&
- "Invalid ScopeIdx!");
- Scope = Ctx.pImpl->ScopeRecords[ScopeIdx-1].get();
- IA = nullptr;
- return;
- }
-
- // Otherwise, the index is in the ScopeInlinedAtRecords array.
- assert(unsigned(-ScopeIdx) <= Ctx.pImpl->ScopeInlinedAtRecords.size() &&
- "Invalid ScopeIdx");
- Scope = Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].first.get();
- IA = Ctx.pImpl->ScopeInlinedAtRecords[-ScopeIdx-1].second.get();
+void DebugLoc::getScopeAndInlinedAt(MDNode *&Scope, MDNode *&IA) const {
+ Scope = getScope();
+ IA = getInlinedAt();
}
-MDNode *DebugLoc::getScopeNode(const LLVMContext &Ctx) const {
- if (MDNode *InlinedAt = getInlinedAt(Ctx))
- return DebugLoc::getFromDILocation(InlinedAt).getScopeNode(Ctx);
- return getScope(Ctx);
+MDNode *DebugLoc::getScopeNode() const {
+ if (MDNode *InlinedAt = getInlinedAt())
+ return DebugLoc::getFromDILocation(InlinedAt).getScopeNode();
+ return getScope();
}
-DebugLoc DebugLoc::getFnDebugLoc(const LLVMContext &Ctx) const {
- const MDNode *Scope = getScopeNode(Ctx);
+DebugLoc DebugLoc::getFnDebugLoc() const {
+ const MDNode *Scope = getScopeNode();
DISubprogram SP = getDISubprogram(Scope);
- if (SP.isSubprogram()) {
- // Check for number of operands since the compatibility is
- // cheap here. FIXME: Name the magic constant.
- if (SP->getNumOperands() > 19)
- return DebugLoc::get(SP.getScopeLineNumber(), 0, SP);
- else
- return DebugLoc::get(SP.getLineNumber(), 0, SP);
- }
+ if (SP.isSubprogram())
+ return DebugLoc::get(SP.getScopeLineNumber(), 0, SP);
return DebugLoc();
}
DebugLoc DebugLoc::get(unsigned Line, unsigned Col,
MDNode *Scope, MDNode *InlinedAt) {
- DebugLoc Result;
-
// If no scope is available, this is an unknown location.
- if (!Scope) return Result;
+ if (!Scope)
+ return DebugLoc();
// Saturate line and col to "unknown".
+ // FIXME: Allow 16-bits for columns.
if (Col > 255) Col = 0;
if (Line >= (1 << 24)) Line = 0;
- Result.LineCol = Line | (Col << 24);
-
- LLVMContext &Ctx = Scope->getContext();
-
- // If there is no inlined-at location, use the ScopeRecords array.
- if (!InlinedAt)
- Result.ScopeIdx = Ctx.pImpl->getOrAddScopeRecordIdxEntry(Scope, 0);
- else
- Result.ScopeIdx = Ctx.pImpl->getOrAddScopeInlinedAtIdxEntry(Scope,
- InlinedAt, 0);
- return Result;
+ return getFromDILocation(
+ MDLocation::get(Scope->getContext(), Line, Col, Scope, InlinedAt));
}
/// getAsMDNode - This method converts the compressed DebugLoc node into a
/// DILocation-compatible MDNode.
-MDNode *DebugLoc::getAsMDNode(const LLVMContext &Ctx) const {
- if (isUnknown()) return nullptr;
-
- MDNode *Scope, *IA;
- getScopeAndInlinedAt(Scope, IA, Ctx);
- assert(Scope && "If scope is null, this should be isUnknown()");
-
- LLVMContext &Ctx2 = Scope->getContext();
- Type *Int32 = Type::getInt32Ty(Ctx2);
- Value *Elts[] = {
- ConstantInt::get(Int32, getLine()), ConstantInt::get(Int32, getCol()),
- Scope, IA
- };
- return MDNode::get(Ctx2, Elts);
-}
+MDNode *DebugLoc::getAsMDNode() const { return Loc; }
/// getFromDILocation - Translate the DILocation quad into a DebugLoc.
DebugLoc DebugLoc::getFromDILocation(MDNode *N) {
- DILocation Loc(N);
- MDNode *Scope = Loc.getScope();
- if (!Scope) return DebugLoc();
- return get(Loc.getLineNumber(), Loc.getColumnNumber(), Scope,
- Loc.getOrigLocation());
+ DebugLoc Loc;
+ Loc.Loc.reset(N);
+ return Loc;
}
/// getFromDILexicalBlock - Translate the DILexicalBlock into a DebugLoc.
@@ -151,26 +82,26 @@ DebugLoc DebugLoc::getFromDILexicalBlock(MDNode *N) {
nullptr);
}
-void DebugLoc::dump(const LLVMContext &Ctx) const {
+void DebugLoc::dump() const {
#ifndef NDEBUG
if (!isUnknown()) {
dbgs() << getLine();
if (getCol() != 0)
dbgs() << ',' << getCol();
- DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(getInlinedAt(Ctx));
+ DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(getInlinedAt());
if (!InlinedAtDL.isUnknown()) {
dbgs() << " @ ";
- InlinedAtDL.dump(Ctx);
+ InlinedAtDL.dump();
} else
dbgs() << "\n";
}
#endif
}
-void DebugLoc::print(const LLVMContext &Ctx, raw_ostream &OS) const {
+void DebugLoc::print(raw_ostream &OS) const {
if (!isUnknown()) {
// Print source line info.
- DIScope Scope(getScope(Ctx));
+ DIScope Scope(getScope());
assert((!Scope || Scope.isScope()) &&
"Scope of a DebugLoc should be null or a DIScope.");
if (Scope)
@@ -180,179 +111,11 @@ void DebugLoc::print(const LLVMContext &Ctx, raw_ostream &OS) const {
OS << ':' << getLine();
if (getCol() != 0)
OS << ':' << getCol();
- DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(getInlinedAt(Ctx));
+ DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(getInlinedAt());
if (!InlinedAtDL.isUnknown()) {
OS << " @[ ";
- InlinedAtDL.print(Ctx, OS);
+ InlinedAtDL.print(OS);
OS << " ]";
}
}
}
-
-//===----------------------------------------------------------------------===//
-// DenseMap specialization
-//===----------------------------------------------------------------------===//
-
-unsigned DenseMapInfo<DebugLoc>::getHashValue(const DebugLoc &Key) {
- return static_cast<unsigned>(hash_combine(Key.LineCol, Key.ScopeIdx));
-}
-
-//===----------------------------------------------------------------------===//
-// LLVMContextImpl Implementation
-//===----------------------------------------------------------------------===//
-
-int LLVMContextImpl::getOrAddScopeRecordIdxEntry(MDNode *Scope,
- int ExistingIdx) {
- // If we already have an entry for this scope, return it.
- int &Idx = ScopeRecordIdx[Scope];
- if (Idx) return Idx;
-
- // If we don't have an entry, but ExistingIdx is specified, use it.
- if (ExistingIdx)
- return Idx = ExistingIdx;
-
- // Otherwise add a new entry.
-
- // Start out ScopeRecords with a minimal reasonable size to avoid
- // excessive reallocation starting out.
- if (ScopeRecords.empty())
- ScopeRecords.reserve(128);
-
- // Index is biased by 1 for index.
- Idx = ScopeRecords.size()+1;
- ScopeRecords.push_back(DebugRecVH(Scope, this, Idx));
- return Idx;
-}
-
-int LLVMContextImpl::getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,
- int ExistingIdx) {
- // If we already have an entry, return it.
- int &Idx = ScopeInlinedAtIdx[std::make_pair(Scope, IA)];
- if (Idx) return Idx;
-
- // If we don't have an entry, but ExistingIdx is specified, use it.
- if (ExistingIdx)
- return Idx = ExistingIdx;
-
- // Start out ScopeInlinedAtRecords with a minimal reasonable size to avoid
- // excessive reallocation starting out.
- if (ScopeInlinedAtRecords.empty())
- ScopeInlinedAtRecords.reserve(128);
-
- // Index is biased by 1 and negated.
- Idx = -ScopeInlinedAtRecords.size()-1;
- ScopeInlinedAtRecords.push_back(std::make_pair(DebugRecVH(Scope, this, Idx),
- DebugRecVH(IA, this, Idx)));
- return Idx;
-}
-
-
-//===----------------------------------------------------------------------===//
-// DebugRecVH Implementation
-//===----------------------------------------------------------------------===//
-
-/// deleted - The MDNode this is pointing to got deleted, so this pointer needs
-/// to drop to null and we need remove our entry from the DenseMap.
-void DebugRecVH::deleted() {
- // If this is a non-canonical reference, just drop the value to null, we know
- // it doesn't have a map entry.
- if (Idx == 0) {
- setValPtr(nullptr);
- return;
- }
-
- MDNode *Cur = get();
-
- // If the index is positive, it is an entry in ScopeRecords.
- if (Idx > 0) {
- assert(Ctx->ScopeRecordIdx[Cur] == Idx && "Mapping out of date!");
- Ctx->ScopeRecordIdx.erase(Cur);
- // Reset this VH to null and we're done.
- setValPtr(nullptr);
- Idx = 0;
- return;
- }
-
- // Otherwise, it is an entry in ScopeInlinedAtRecords, we don't know if it
- // is the scope or the inlined-at record entry.
- assert(unsigned(-Idx-1) < Ctx->ScopeInlinedAtRecords.size());
- std::pair<DebugRecVH, DebugRecVH> &Entry = Ctx->ScopeInlinedAtRecords[-Idx-1];
- assert((this == &Entry.first || this == &Entry.second) &&
- "Mapping out of date!");
-
- MDNode *OldScope = Entry.first.get();
- MDNode *OldInlinedAt = Entry.second.get();
- assert(OldScope && OldInlinedAt &&
- "Entry should be non-canonical if either val dropped to null");
-
- // Otherwise, we do have an entry in it, nuke it and we're done.
- assert(Ctx->ScopeInlinedAtIdx[std::make_pair(OldScope, OldInlinedAt)] == Idx&&
- "Mapping out of date");
- Ctx->ScopeInlinedAtIdx.erase(std::make_pair(OldScope, OldInlinedAt));
-
- // Reset this VH to null. Drop both 'Idx' values to null to indicate that
- // we're in non-canonical form now.
- setValPtr(nullptr);
- Entry.first.Idx = Entry.second.Idx = 0;
-}
-
-void DebugRecVH::allUsesReplacedWith(Value *NewVa) {
- // If being replaced with a non-mdnode value (e.g. undef) handle this as if
- // the mdnode got deleted.
- MDNode *NewVal = dyn_cast<MDNode>(NewVa);
- if (!NewVal) return deleted();
-
- // If this is a non-canonical reference, just change it, we know it already
- // doesn't have a map entry.
- if (Idx == 0) {
- setValPtr(NewVa);
- return;
- }
-
- MDNode *OldVal = get();
- assert(OldVal != NewVa && "Node replaced with self?");
-
- // If the index is positive, it is an entry in ScopeRecords.
- if (Idx > 0) {
- assert(Ctx->ScopeRecordIdx[OldVal] == Idx && "Mapping out of date!");
- Ctx->ScopeRecordIdx.erase(OldVal);
- setValPtr(NewVal);
-
- int NewEntry = Ctx->getOrAddScopeRecordIdxEntry(NewVal, Idx);
-
- // If NewVal already has an entry, this becomes a non-canonical reference,
- // just drop Idx to 0 to signify this.
- if (NewEntry != Idx)
- Idx = 0;
- return;
- }
-
- // Otherwise, it is an entry in ScopeInlinedAtRecords, we don't know if it
- // is the scope or the inlined-at record entry.
- assert(unsigned(-Idx-1) < Ctx->ScopeInlinedAtRecords.size());
- std::pair<DebugRecVH, DebugRecVH> &Entry = Ctx->ScopeInlinedAtRecords[-Idx-1];
- assert((this == &Entry.first || this == &Entry.second) &&
- "Mapping out of date!");
-
- MDNode *OldScope = Entry.first.get();
- MDNode *OldInlinedAt = Entry.second.get();
- assert(OldScope && OldInlinedAt &&
- "Entry should be non-canonical if either val dropped to null");
-
- // Otherwise, we do have an entry in it, nuke it and we're done.
- assert(Ctx->ScopeInlinedAtIdx[std::make_pair(OldScope, OldInlinedAt)] == Idx&&
- "Mapping out of date");
- Ctx->ScopeInlinedAtIdx.erase(std::make_pair(OldScope, OldInlinedAt));
-
- // Reset this VH to the new value.
- setValPtr(NewVal);
-
- int NewIdx = Ctx->getOrAddScopeInlinedAtIdxEntry(Entry.first.get(),
- Entry.second.get(), Idx);
- // If NewVal already has an entry, this becomes a non-canonical reference,
- // just drop Idx to 0 to signify this.
- if (NewIdx != Idx) {
- std::pair<DebugRecVH, DebugRecVH> &Entry=Ctx->ScopeInlinedAtRecords[-Idx-1];
- Entry.first.Idx = Entry.second.Idx = 0;
- }
-}
diff --git a/contrib/llvm/lib/IR/DiagnosticInfo.cpp b/contrib/llvm/lib/IR/DiagnosticInfo.cpp
index 37cce2b..cfb699a 100644
--- a/contrib/llvm/lib/IR/DiagnosticInfo.cpp
+++ b/contrib/llvm/lib/IR/DiagnosticInfo.cpp
@@ -98,7 +98,8 @@ DiagnosticInfoInlineAsm::DiagnosticInfoInlineAsm(const Instruction &I,
Instr(&I) {
if (const MDNode *SrcLoc = I.getMetadata("srcloc")) {
if (SrcLoc->getNumOperands() != 0)
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(SrcLoc->getOperand(0)))
+ if (const auto *CI =
+ mdconst::dyn_extract<ConstantInt>(SrcLoc->getOperand(0)))
LocCookie = CI->getZExtValue();
}
}
diff --git a/contrib/llvm/lib/IR/DiagnosticPrinter.cpp b/contrib/llvm/lib/IR/DiagnosticPrinter.cpp
index 5e16026..f25fc20 100644
--- a/contrib/llvm/lib/IR/DiagnosticPrinter.cpp
+++ b/contrib/llvm/lib/IR/DiagnosticPrinter.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
-// This file defines the a diagnostic printer relying on raw_ostream.
+// This file defines a diagnostic printer relying on raw_ostream.
//
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/IR/Dominators.cpp b/contrib/llvm/lib/IR/Dominators.cpp
index d6649d6..9b6ff1e 100644
--- a/contrib/llvm/lib/IR/Dominators.cpp
+++ b/contrib/llvm/lib/IR/Dominators.cpp
@@ -20,6 +20,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
@@ -298,10 +299,45 @@ void DominatorTree::verifyDomTree() const {
}
//===----------------------------------------------------------------------===//
+// DominatorTreeAnalysis and related pass implementations
+//===----------------------------------------------------------------------===//
+//
+// This implements the DominatorTreeAnalysis which is used with the new pass
+// manager. It also implements some methods from utility passes.
+//
+//===----------------------------------------------------------------------===//
+
+DominatorTree DominatorTreeAnalysis::run(Function &F) {
+ DominatorTree DT;
+ DT.recalculate(F);
+ return DT;
+}
+
+char DominatorTreeAnalysis::PassID;
+
+DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
+
+PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
+ FunctionAnalysisManager *AM) {
+ OS << "DominatorTree for function: " << F.getName() << "\n";
+ AM->getResult<DominatorTreeAnalysis>(F).print(OS);
+
+ return PreservedAnalyses::all();
+}
+
+PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
+ FunctionAnalysisManager *AM) {
+ AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
+
+ return PreservedAnalyses::all();
+}
+
+//===----------------------------------------------------------------------===//
// DominatorTreeWrapperPass Implementation
//===----------------------------------------------------------------------===//
//
-// The implementation details of the wrapper pass that holds a DominatorTree.
+// The implementation details of the wrapper pass that holds a DominatorTree
+// suitable for use with the legacy pass manager.
//
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/IR/Function.cpp b/contrib/llvm/lib/IR/Function.cpp
index de59b26..bfd0ca6 100644
--- a/contrib/llvm/lib/IR/Function.cpp
+++ b/contrib/llvm/lib/IR/Function.cpp
@@ -23,7 +23,6 @@
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/RWMutex.h"
@@ -46,20 +45,13 @@ Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
: Value(Ty, Value::ArgumentVal) {
Parent = nullptr;
- // Make sure that we get added to a function
- LeakDetector::addGarbageObject(this);
-
if (Par)
Par->getArgumentList().push_back(this);
setName(Name);
}
void Argument::setParent(Function *parent) {
- if (getParent())
- LeakDetector::addGarbageObject(this);
Parent = parent;
- if (getParent())
- LeakDetector::removeGarbageObject(this);
}
/// getArgNo - Return the index of this formal argument in its containing
@@ -166,6 +158,20 @@ bool Argument::hasReturnedAttr() const {
hasAttribute(getArgNo()+1, Attribute::Returned);
}
+/// hasZExtAttr - Return true if this argument has the zext attribute on it in
+/// its containing function.
+bool Argument::hasZExtAttr() const {
+ return getParent()->getAttributes().
+ hasAttribute(getArgNo()+1, Attribute::ZExt);
+}
+
+/// hasSExtAttr Return true if this argument has the sext attribute on it in its
+/// containing function.
+bool Argument::hasSExtAttr() const {
+ return getParent()->getAttributes().
+ hasAttribute(getArgNo()+1, Attribute::SExt);
+}
+
/// Return true if this argument has the readonly or readnone attribute on it
/// in its containing function.
bool Argument::onlyReadsMemory() const {
@@ -199,6 +205,12 @@ void Argument::removeAttr(AttributeSet AS) {
// Helper Methods in Function
//===----------------------------------------------------------------------===//
+bool Function::isMaterializable() const {
+ return getGlobalObjectSubClassData();
+}
+
+void Function::setIsMaterializable(bool V) { setGlobalObjectSubClassData(V); }
+
LLVMContext &Function::getContext() const {
return getType()->getContext();
}
@@ -227,21 +239,19 @@ void Function::eraseFromParent() {
// Function Implementation
//===----------------------------------------------------------------------===//
-Function::Function(FunctionType *Ty, LinkageTypes Linkage,
- const Twine &name, Module *ParentModule)
- : GlobalObject(PointerType::getUnqual(Ty),
- Value::FunctionVal, nullptr, 0, Linkage, name) {
+Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
+ Module *ParentModule)
+ : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0,
+ Linkage, name) {
assert(FunctionType::isValidReturnType(getReturnType()) &&
"invalid return type");
+ setIsMaterializable(false);
SymTab = new ValueSymbolTable();
// If the function has arguments, mark them as lazily built.
if (Ty->getNumParams())
setValueSubclassData(1); // Set the "has lazy arguments" bit.
- // Make sure that we get added to a function
- LeakDetector::addGarbageObject(this);
-
if (ParentModule)
ParentModule->getFunctionList().push_back(this);
@@ -277,7 +287,7 @@ void Function::BuildLazyArguments() const {
// Clear the lazy arguments bit.
unsigned SDC = getSubclassDataFromValue();
- const_cast<Function*>(this)->setValueSubclassData(SDC &= ~1);
+ const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
}
size_t Function::arg_size() const {
@@ -288,11 +298,7 @@ bool Function::arg_empty() const {
}
void Function::setParent(Module *parent) {
- if (getParent())
- LeakDetector::addGarbageObject(this);
Parent = parent;
- if (getParent())
- LeakDetector::removeGarbageObject(this);
}
// dropAllReferences() - This function causes all the subinstructions to "let
@@ -304,6 +310,8 @@ void Function::setParent(Module *parent) {
// delete.
//
void Function::dropAllReferences() {
+ setIsMaterializable(false);
+
for (iterator I = begin(), E = end(); I != E; ++I)
I->dropAllReferences();
@@ -312,8 +320,9 @@ void Function::dropAllReferences() {
while (!BasicBlocks.empty())
BasicBlocks.begin()->eraseFromParent();
- // Prefix data is stored in a side table.
+ // Prefix and prologue data are stored in a side table.
setPrefixData(nullptr);
+ setPrologueData(nullptr);
}
void Function::addAttribute(unsigned i, Attribute::AttrKind attr) {
@@ -393,6 +402,10 @@ void Function::copyAttributesFrom(const GlobalValue *Src) {
setPrefixData(SrcF->getPrefixData());
else
setPrefixData(nullptr);
+ if (SrcF->hasPrologueData())
+ setPrologueData(SrcF->getPrologueData());
+ else
+ setPrologueData(nullptr);
}
/// getIntrinsicID - This method returns the ID number of the specified
@@ -432,6 +445,42 @@ unsigned Function::lookupIntrinsicID() const {
return 0;
}
+/// Returns a stable mangling for the type specified for use in the name
+/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
+/// of named types is simply their name. Manglings for unnamed types consist
+/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
+/// combined with the mangling of their component types. A vararg function
+/// type will have a suffix of 'vararg'. Since function types can contain
+/// other function types, we close a function type mangling with suffix 'f'
+/// which can't be confused with it's prefix. This ensures we don't have
+/// collisions between two unrelated function types. Otherwise, you might
+/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
+static std::string getMangledTypeStr(Type* Ty) {
+ std::string Result;
+ if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
+ Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
+ getMangledTypeStr(PTyp->getElementType());
+ } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
+ Result += "a" + llvm::utostr(ATyp->getNumElements()) +
+ getMangledTypeStr(ATyp->getElementType());
+ } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
+ if (!STyp->isLiteral())
+ Result += STyp->getName();
+ else
+ llvm_unreachable("TODO: implement literal types");
+ } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
+ Result += "f_" + getMangledTypeStr(FT->getReturnType());
+ for (size_t i = 0; i < FT->getNumParams(); i++)
+ Result += getMangledTypeStr(FT->getParamType(i));
+ if (FT->isVarArg())
+ Result += "vararg";
+ // Ensure nested function types are distinguishable.
+ Result += "f";
+ } else if (Ty)
+ Result += EVT::getEVT(Ty).getEVTString();
+ return Result;
+}
+
std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
static const char * const Table[] = {
@@ -444,12 +493,7 @@ std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
return Table[id];
std::string Result(Table[id]);
for (unsigned i = 0; i < Tys.size(); ++i) {
- if (PointerType* PTyp = dyn_cast<PointerType>(Tys[i])) {
- Result += ".p" + llvm::utostr(PTyp->getAddressSpace()) +
- EVT::getEVT(PTyp->getElementType()).getEVTString();
- }
- else if (Tys[i])
- Result += "." + EVT::getEVT(Tys[i]).getEVTString();
+ Result += "." + getMangledTypeStr(Tys[i]);
}
return Result;
}
@@ -479,19 +523,22 @@ enum IIT_Info {
IIT_ARG = 15,
// Values from 16+ are only encodable with the inefficient encoding.
- IIT_MMX = 16,
- IIT_METADATA = 17,
- IIT_EMPTYSTRUCT = 18,
- IIT_STRUCT2 = 19,
- IIT_STRUCT3 = 20,
- IIT_STRUCT4 = 21,
- IIT_STRUCT5 = 22,
- IIT_EXTEND_ARG = 23,
- IIT_TRUNC_ARG = 24,
- IIT_ANYPTR = 25,
- IIT_V1 = 26,
- IIT_VARARG = 27,
- IIT_HALF_VEC_ARG = 28
+ IIT_V64 = 16,
+ IIT_MMX = 17,
+ IIT_METADATA = 18,
+ IIT_EMPTYSTRUCT = 19,
+ IIT_STRUCT2 = 20,
+ IIT_STRUCT3 = 21,
+ IIT_STRUCT4 = 22,
+ IIT_STRUCT5 = 23,
+ IIT_EXTEND_ARG = 24,
+ IIT_TRUNC_ARG = 25,
+ IIT_ANYPTR = 26,
+ IIT_V1 = 27,
+ IIT_VARARG = 28,
+ IIT_HALF_VEC_ARG = 29,
+ IIT_SAME_VEC_WIDTH_ARG = 30,
+ IIT_PTR_TO_ARG = 31
};
@@ -562,6 +609,10 @@ static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
DecodeIITType(NextElt, Infos, OutputTable);
return;
+ case IIT_V64:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
+ DecodeIITType(NextElt, Infos, OutputTable);
+ return;
case IIT_PTR:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
DecodeIITType(NextElt, Infos, OutputTable);
@@ -595,6 +646,18 @@ static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
ArgInfo));
return;
}
+ case IIT_SAME_VEC_WIDTH_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_PTR_TO_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
+ ArgInfo));
+ return;
+ }
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
@@ -678,7 +741,7 @@ static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
Elts[i] = DecodeFixedType(Infos, Tys, Context);
- return StructType::get(Context, ArrayRef<Type*>(Elts,D.Struct_NumElements));
+ return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
}
case IITDescriptor::Argument:
@@ -702,7 +765,19 @@ static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(cast<VectorType>(
Tys[D.getArgumentNumber()]));
+ case IITDescriptor::SameVecWidthArgument: {
+ Type *EltTy = DecodeFixedType(Infos, Tys, Context);
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ return VectorType::get(EltTy, VTy->getNumElements());
+ }
+ llvm_unreachable("unhandled");
+ }
+ case IITDescriptor::PtrToArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ return PointerType::getUnqual(Ty);
}
+ }
llvm_unreachable("unhandled");
}
@@ -720,6 +795,12 @@ FunctionType *Intrinsic::getType(LLVMContext &Context,
while (!TableRef.empty())
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
+ // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
+ // If we see void type as the type of the last argument, it is vararg intrinsic
+ if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
+ ArgTys.pop_back();
+ return FunctionType::get(ResultTy, ArgTys, true);
+ }
return FunctionType::get(ResultTy, ArgTys, false);
}
@@ -815,11 +896,40 @@ void Function::setPrefixData(Constant *PrefixData) {
PDHolder->setOperand(0, PrefixData);
else
PDHolder = ReturnInst::Create(getContext(), PrefixData);
- SCData |= 2;
+ SCData |= (1<<1);
} else {
delete PDHolder;
PDMap.erase(this);
- SCData &= ~2;
+ SCData &= ~(1<<1);
}
setValueSubclassData(SCData);
}
+
+Constant *Function::getPrologueData() const {
+ assert(hasPrologueData());
+ const LLVMContextImpl::PrologueDataMapTy &SOMap =
+ getContext().pImpl->PrologueDataMap;
+ assert(SOMap.find(this) != SOMap.end());
+ return cast<Constant>(SOMap.find(this)->second->getReturnValue());
+}
+
+void Function::setPrologueData(Constant *PrologueData) {
+ if (!PrologueData && !hasPrologueData())
+ return;
+
+ unsigned PDData = getSubclassDataFromValue();
+ LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap;
+ ReturnInst *&PDHolder = PDMap[this];
+ if (PrologueData) {
+ if (PDHolder)
+ PDHolder->setOperand(0, PrologueData);
+ else
+ PDHolder = ReturnInst::Create(getContext(), PrologueData);
+ PDData |= (1<<2);
+ } else {
+ delete PDHolder;
+ PDMap.erase(this);
+ PDData &= ~(1<<2);
+ }
+ setValueSubclassData(PDData);
+}
diff --git a/contrib/llvm/lib/IR/GCOV.cpp b/contrib/llvm/lib/IR/GCOV.cpp
index 1667401..245c500 100644
--- a/contrib/llvm/lib/IR/GCOV.cpp
+++ b/contrib/llvm/lib/IR/GCOV.cpp
@@ -298,7 +298,8 @@ uint64_t GCOVFunction::getExitCount() const {
/// dump - Dump GCOVFunction content to dbgs() for debugging purposes.
void GCOVFunction::dump() const {
- dbgs() << "===== " << Name << " @ " << Filename << ":" << LineNumber << "\n";
+ dbgs() << "===== " << Name << " (" << Ident << ") @ " << Filename << ":"
+ << LineNumber << "\n";
for (const auto &Block : Blocks)
Block->dump();
}
@@ -517,11 +518,11 @@ FileInfo::openCoveragePath(StringRef CoveragePath) {
if (Options.NoOutput)
return llvm::make_unique<raw_null_ostream>();
- std::string ErrorInfo;
- auto OS = llvm::make_unique<raw_fd_ostream>(CoveragePath.str().c_str(),
- ErrorInfo, sys::fs::F_Text);
- if (!ErrorInfo.empty()) {
- errs() << ErrorInfo << "\n";
+ std::error_code EC;
+ auto OS = llvm::make_unique<raw_fd_ostream>(CoveragePath.str(), EC,
+ sys::fs::F_Text);
+ if (EC) {
+ errs() << EC.message() << "\n";
return llvm::make_unique<raw_null_ostream>();
}
return std::move(OS);
diff --git a/contrib/llvm/lib/IR/Globals.cpp b/contrib/llvm/lib/IR/Globals.cpp
index 244e3e4..54197d9 100644
--- a/contrib/llvm/lib/IR/Globals.cpp
+++ b/contrib/llvm/lib/IR/Globals.cpp
@@ -18,7 +18,6 @@
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
@@ -29,13 +28,15 @@ using namespace llvm;
//===----------------------------------------------------------------------===//
bool GlobalValue::isMaterializable() const {
- return getParent() && getParent()->isMaterializable(this);
+ if (const Function *F = dyn_cast<Function>(this))
+ return F->isMaterializable();
+ return false;
}
bool GlobalValue::isDematerializable() const {
return getParent() && getParent()->isDematerializable(this);
}
-bool GlobalValue::Materialize(std::string *ErrInfo) {
- return getParent()->Materialize(this, ErrInfo);
+std::error_code GlobalValue::materialize() {
+ return getParent()->materialize(this);
}
void GlobalValue::Dematerialize() {
getParent()->Dematerialize(this);
@@ -77,10 +78,24 @@ void GlobalObject::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
- setGlobalValueSubClassData(Log2_32(Align) + 1);
+ unsigned AlignmentData = Log2_32(Align) + 1;
+ unsigned OldData = getGlobalValueSubClassData();
+ setGlobalValueSubClassData((OldData & ~AlignmentMask) | AlignmentData);
assert(getAlignment() == Align && "Alignment representation error!");
}
+unsigned GlobalObject::getGlobalObjectSubClassData() const {
+ unsigned ValueData = getGlobalValueSubClassData();
+ return ValueData >> AlignmentBits;
+}
+
+void GlobalObject::setGlobalObjectSubClassData(unsigned Val) {
+ unsigned OldData = getGlobalValueSubClassData();
+ setGlobalValueSubClassData((OldData & AlignmentMask) |
+ (Val << AlignmentBits));
+ assert(getGlobalObjectSubClassData() == Val && "representation error");
+}
+
void GlobalObject::copyAttributesFrom(const GlobalValue *Src) {
const auto *GV = cast<GlobalObject>(Src);
GlobalValue::copyAttributesFrom(GV);
@@ -117,7 +132,7 @@ bool GlobalValue::isDeclaration() const {
// Functions are definitions if they have a body.
if (const Function *F = dyn_cast<Function>(this))
- return F->empty();
+ return F->empty() && !F->isMaterializable();
// Aliases are always definitions.
assert(isa<GlobalAlias>(this));
@@ -143,8 +158,6 @@ GlobalVariable::GlobalVariable(Type *Ty, bool constant, LinkageTypes Link,
"Initializer should be the same type as the GlobalVariable!");
Op<0>() = InitVal;
}
-
- LeakDetector::addGarbageObject(this);
}
GlobalVariable::GlobalVariable(Module &M, Type *Ty, bool constant,
@@ -164,8 +177,6 @@ GlobalVariable::GlobalVariable(Module &M, Type *Ty, bool constant,
Op<0>() = InitVal;
}
- LeakDetector::addGarbageObject(this);
-
if (Before)
Before->getParent()->getGlobalList().insert(Before, this);
else
@@ -173,11 +184,7 @@ GlobalVariable::GlobalVariable(Module &M, Type *Ty, bool constant,
}
void GlobalVariable::setParent(Module *parent) {
- if (getParent())
- LeakDetector::addGarbageObject(this);
Parent = parent;
- if (getParent())
- LeakDetector::removeGarbageObject(this);
}
void GlobalVariable::removeFromParent() {
@@ -230,6 +237,7 @@ void GlobalVariable::copyAttributesFrom(const GlobalValue *Src) {
GlobalObject::copyAttributesFrom(Src);
const GlobalVariable *SrcVar = cast<GlobalVariable>(Src);
setThreadLocalMode(SrcVar->getThreadLocalMode());
+ setExternallyInitialized(SrcVar->isExternallyInitialized());
}
@@ -242,7 +250,6 @@ GlobalAlias::GlobalAlias(Type *Ty, unsigned AddressSpace, LinkageTypes Link,
Module *ParentModule)
: GlobalValue(PointerType::get(Ty, AddressSpace), Value::GlobalAliasVal,
&Op<0>(), 1, Link, Name) {
- LeakDetector::addGarbageObject(this);
Op<0>() = Aliasee;
if (ParentModule)
@@ -279,11 +286,7 @@ GlobalAlias *GlobalAlias::create(const Twine &Name, GlobalValue *Aliasee) {
}
void GlobalAlias::setParent(Module *parent) {
- if (getParent())
- LeakDetector::addGarbageObject(this);
Parent = parent;
- if (getParent())
- LeakDetector::removeGarbageObject(this);
}
void GlobalAlias::removeFromParent() {
diff --git a/contrib/llvm/lib/IR/IRBuilder.cpp b/contrib/llvm/lib/IR/IRBuilder.cpp
index 435e54f..ef1f226 100644
--- a/contrib/llvm/lib/IR/IRBuilder.cpp
+++ b/contrib/llvm/lib/IR/IRBuilder.cpp
@@ -53,8 +53,9 @@ Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) {
}
static CallInst *createCallHelper(Value *Callee, ArrayRef<Value *> Ops,
- IRBuilderBase *Builder) {
- CallInst *CI = CallInst::Create(Callee, Ops, "");
+ IRBuilderBase *Builder,
+ const Twine& Name="") {
+ CallInst *CI = CallInst::Create(Callee, Ops, Name);
Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(),CI);
Builder->SetInstDebugLocation(CI);
return CI;
@@ -62,7 +63,8 @@ static CallInst *createCallHelper(Value *Callee, ArrayRef<Value *> Ops,
CallInst *IRBuilderBase::
CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
- bool isVolatile, MDNode *TBAATag) {
+ bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
+ MDNode *NoAliasTag) {
Ptr = getCastedInt8PtrValue(Ptr);
Value *Ops[] = { Ptr, Val, Size, getInt32(Align), getInt1(isVolatile) };
Type *Tys[] = { Ptr->getType(), Size->getType() };
@@ -74,13 +76,20 @@ CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
-
+
+ if (ScopeTag)
+ CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
+
+ if (NoAliasTag)
+ CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
+
return CI;
}
CallInst *IRBuilderBase::
CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
- bool isVolatile, MDNode *TBAATag, MDNode *TBAAStructTag) {
+ bool isVolatile, MDNode *TBAATag, MDNode *TBAAStructTag,
+ MDNode *ScopeTag, MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
@@ -98,13 +107,20 @@ CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
-
+
+ if (ScopeTag)
+ CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
+
+ if (NoAliasTag)
+ CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
+
return CI;
}
CallInst *IRBuilderBase::
CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
- bool isVolatile, MDNode *TBAATag) {
+ bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
+ MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
@@ -118,7 +134,13 @@ CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
-
+
+ if (ScopeTag)
+ CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
+
+ if (NoAliasTag)
+ CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
+
return CI;
}
@@ -151,3 +173,126 @@ CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::lifetime_end);
return createCallHelper(TheFn, Ops, this);
}
+
+CallInst *IRBuilderBase::CreateAssumption(Value *Cond) {
+ assert(Cond->getType() == getInt1Ty() &&
+ "an assumption condition must be of type i1");
+
+ Value *Ops[] = { Cond };
+ Module *M = BB->getParent()->getParent();
+ Value *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
+ return createCallHelper(FnAssume, Ops, this);
+}
+
+/// Create a call to a Masked Load intrinsic.
+/// Ptr - the base pointer for the load
+/// Align - alignment of the source location
+/// Mask - an vector of booleans which indicates what vector lanes should
+/// be accessed in memory
+/// PassThru - a pass-through value that is used to fill the masked-off lanes
+/// of the result
+/// Name - name of the result variable
+CallInst *IRBuilderBase::CreateMaskedLoad(Value *Ptr, unsigned Align,
+ Value *Mask, Value *PassThru,
+ const Twine &Name) {
+ assert(Ptr->getType()->isPointerTy() && "Ptr must be of pointer type");
+ // DataTy is the overloaded type
+ Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
+ assert(DataTy->isVectorTy() && "Ptr should point to a vector");
+ if (!PassThru)
+ PassThru = UndefValue::get(DataTy);
+ Value *Ops[] = { Ptr, getInt32(Align), Mask, PassThru};
+ return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops, DataTy, Name);
+}
+
+/// Create a call to a Masked Store intrinsic.
+/// Val - the data to be stored,
+/// Ptr - the base pointer for the store
+/// Align - alignment of the destination location
+/// Mask - an vector of booleans which indicates what vector lanes should
+/// be accessed in memory
+CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
+ unsigned Align, Value *Mask) {
+ Value *Ops[] = { Val, Ptr, getInt32(Align), Mask };
+ // Type of the data to be stored - the only one overloaded type
+ return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, Val->getType());
+}
+
+/// Create a call to a Masked intrinsic, with given intrinsic Id,
+/// an array of operands - Ops, and one overloaded type - DataTy
+CallInst *IRBuilderBase::CreateMaskedIntrinsic(unsigned Id,
+ ArrayRef<Value *> Ops,
+ Type *DataTy,
+ const Twine &Name) {
+ Module *M = BB->getParent()->getParent();
+ Type *OverloadedTypes[] = { DataTy };
+ Value *TheFn = Intrinsic::getDeclaration(M, (Intrinsic::ID)Id, OverloadedTypes);
+ return createCallHelper(TheFn, Ops, this, Name);
+}
+
+CallInst *IRBuilderBase::CreateGCStatepoint(Value *ActualCallee,
+ ArrayRef<Value*> CallArgs,
+ ArrayRef<Value*> DeoptArgs,
+ ArrayRef<Value*> GCArgs,
+ const Twine& Name) {
+ // Extract out the type of the callee.
+ PointerType *FuncPtrType = cast<PointerType>(ActualCallee->getType());
+ assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
+ "actual callee must be a callable value");
+
+
+ Module *M = BB->getParent()->getParent();
+ // Fill in the one generic type'd argument (the function is also vararg)
+ Type *ArgTypes[] = { FuncPtrType };
+ Function *FnStatepoint =
+ Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
+ ArgTypes);
+
+ std::vector<llvm::Value *> args;
+ args.push_back(ActualCallee);
+ args.push_back(getInt32(CallArgs.size()));
+ args.push_back(getInt32(0 /*unused*/));
+ args.insert(args.end(), CallArgs.begin(), CallArgs.end());
+ args.push_back(getInt32(DeoptArgs.size()));
+ args.insert(args.end(), DeoptArgs.begin(), DeoptArgs.end());
+ args.insert(args.end(), GCArgs.begin(), GCArgs.end());
+
+ return createCallHelper(FnStatepoint, args, this, Name);
+}
+
+CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
+ Type *ResultType,
+ const Twine &Name) {
+ Intrinsic::ID ID;
+ if (ResultType->isIntegerTy()) {
+ ID = Intrinsic::experimental_gc_result_int;
+ } else if (ResultType->isFloatingPointTy()) {
+ ID = Intrinsic::experimental_gc_result_float;
+ } else if (ResultType->isPointerTy()) {
+ ID = Intrinsic::experimental_gc_result_ptr;
+ } else {
+ llvm_unreachable("unimplemented result type for gc.result");
+ }
+ Module *M = BB->getParent()->getParent();
+ Type *Types[] = {ResultType};
+ Value *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
+
+ Value *Args[] = {Statepoint};
+ return createCallHelper(FnGCResult, Args, this, Name);
+}
+
+CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
+ int BaseOffset,
+ int DerivedOffset,
+ Type *ResultType,
+ const Twine &Name) {
+ Module *M = BB->getParent()->getParent();
+ Type *Types[] = {ResultType};
+ Value *FnGCRelocate =
+ Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
+
+ Value *Args[] = {Statepoint,
+ getInt32(BaseOffset),
+ getInt32(DerivedOffset)};
+ return createCallHelper(FnGCRelocate, Args, this, Name);
+}
diff --git a/contrib/llvm/lib/IR/IRPrintingPasses.cpp b/contrib/llvm/lib/IR/IRPrintingPasses.cpp
index c8a1747..91ccfbb 100644
--- a/contrib/llvm/lib/IR/IRPrintingPasses.cpp
+++ b/contrib/llvm/lib/IR/IRPrintingPasses.cpp
@@ -24,8 +24,8 @@ PrintModulePass::PrintModulePass() : OS(dbgs()) {}
PrintModulePass::PrintModulePass(raw_ostream &OS, const std::string &Banner)
: OS(OS), Banner(Banner) {}
-PreservedAnalyses PrintModulePass::run(Module *M) {
- OS << Banner << *M;
+PreservedAnalyses PrintModulePass::run(Module &M) {
+ OS << Banner << M;
return PreservedAnalyses::all();
}
@@ -33,8 +33,8 @@ PrintFunctionPass::PrintFunctionPass() : OS(dbgs()) {}
PrintFunctionPass::PrintFunctionPass(raw_ostream &OS, const std::string &Banner)
: OS(OS), Banner(Banner) {}
-PreservedAnalyses PrintFunctionPass::run(Function *F) {
- OS << Banner << static_cast<Value &>(*F);
+PreservedAnalyses PrintFunctionPass::run(Function &F) {
+ OS << Banner << static_cast<Value &>(F);
return PreservedAnalyses::all();
}
@@ -50,7 +50,7 @@ public:
: ModulePass(ID), P(OS, Banner) {}
bool runOnModule(Module &M) override {
- P.run(&M);
+ P.run(M);
return false;
}
@@ -70,7 +70,7 @@ public:
// This pass just prints a banner followed by the function as it's processed.
bool runOnFunction(Function &F) override {
- P.run(&F);
+ P.run(F);
return false;
}
diff --git a/contrib/llvm/lib/IR/InlineAsm.cpp b/contrib/llvm/lib/IR/InlineAsm.cpp
index a3e1da3..16d874f3 100644
--- a/contrib/llvm/lib/IR/InlineAsm.cpp
+++ b/contrib/llvm/lib/IR/InlineAsm.cpp
@@ -91,6 +91,10 @@ bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
if (*I == '~') {
Type = isClobber;
++I;
+
+ // '{' must immediately follow '~'.
+ if (I != E && *I != '{')
+ return true;
} else if (*I == '=') {
++I;
Type = isOutput;
diff --git a/contrib/llvm/lib/IR/Instruction.cpp b/contrib/llvm/lib/IR/Instruction.cpp
index 86421c4..92c6e9f 100644
--- a/contrib/llvm/lib/IR/Instruction.cpp
+++ b/contrib/llvm/lib/IR/Instruction.cpp
@@ -15,7 +15,6 @@
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
@@ -24,8 +23,6 @@ using namespace llvm;
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
Instruction *InsertBefore)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
- // Make sure that we get added to a basicblock
- LeakDetector::addGarbageObject(this);
// If requested, insert this instruction into a basic block...
if (InsertBefore) {
@@ -42,8 +39,6 @@ const DataLayout *Instruction::getDataLayout() const {
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
BasicBlock *InsertAtEnd)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
- // Make sure that we get added to a basicblock
- LeakDetector::addGarbageObject(this);
// append this instruction into the basic block
assert(InsertAtEnd && "Basic block to append to may not be NULL!");
@@ -60,12 +55,6 @@ Instruction::~Instruction() {
void Instruction::setParent(BasicBlock *P) {
- if (getParent()) {
- if (!P) LeakDetector::addGarbageObject(this);
- } else {
- if (P) LeakDetector::removeGarbageObject(this);
- }
-
Parent = P;
}
@@ -143,6 +132,11 @@ void Instruction::setFastMathFlags(FastMathFlags FMF) {
cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}
+void Instruction::copyFastMathFlags(FastMathFlags FMF) {
+ assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
+ cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
+}
+
/// Determine whether the unsafe-algebra flag is set.
bool Instruction::hasUnsafeAlgebra() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
@@ -175,7 +169,7 @@ bool Instruction::hasAllowReciprocal() const {
/// Convenience function for getting all the fast-math flags, which must be an
/// operator which supports these flags. See LangRef.html for the meaning of
-/// these flats.
+/// these flags.
FastMathFlags Instruction::getFastMathFlags() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->getFastMathFlags();
@@ -183,7 +177,7 @@ FastMathFlags Instruction::getFastMathFlags() const {
/// Copy I's fast-math flags
void Instruction::copyFastMathFlags(const Instruction *I) {
- setFastMathFlags(I->getFastMathFlags());
+ copyFastMathFlags(I->getFastMathFlags());
}
@@ -438,6 +432,21 @@ bool Instruction::mayWriteToMemory() const {
}
}
+bool Instruction::isAtomic() const {
+ switch (getOpcode()) {
+ default:
+ return false;
+ case Instruction::AtomicCmpXchg:
+ case Instruction::AtomicRMW:
+ case Instruction::Fence:
+ return true;
+ case Instruction::Load:
+ return cast<LoadInst>(this)->getOrdering() != NotAtomic;
+ case Instruction::Store:
+ return cast<StoreInst>(this)->getOrdering() != NotAtomic;
+ }
+}
+
bool Instruction::mayThrow() const {
if (const CallInst *CI = dyn_cast<CallInst>(this))
return !CI->doesNotThrow();
@@ -528,7 +537,7 @@ Instruction *Instruction::clone() const {
// Otherwise, enumerate and copy over metadata from the old instruction to the
// new one.
- SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
+ SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
getAllMetadataOtherThanDebugLoc(TheMDs);
for (const auto &MD : TheMDs)
New->setMetadata(MD.first, MD.second);
diff --git a/contrib/llvm/lib/IR/Instructions.cpp b/contrib/llvm/lib/IR/Instructions.cpp
index 9553252..132800e 100644
--- a/contrib/llvm/lib/IR/Instructions.cpp
+++ b/contrib/llvm/lib/IR/Instructions.cpp
@@ -364,8 +364,9 @@ bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
/// IsConstantOne - Return true only if val is constant int 1
static bool IsConstantOne(Value *val) {
- assert(val && "IsConstantOne does not work with NULL val");
- return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
+ assert(val && "IsConstantOne does not work with nullptr val");
+ const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
+ return CVal && CVal->isOne();
}
static Instruction *createMalloc(Instruction *InsertBefore,
@@ -418,7 +419,7 @@ static Instruction *createMalloc(Instruction *InsertBefore,
Value *MallocFunc = MallocF;
if (!MallocFunc)
// prototype malloc as "void *malloc(size_t)"
- MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
+ MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
CallInst *MCall = nullptr;
Instruction *Result = nullptr;
@@ -491,7 +492,7 @@ static Instruction* createFree(Value* Source, Instruction *InsertBefore,
Type *VoidTy = Type::getVoidTy(M->getContext());
Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
// prototype free as "void free(void*)"
- Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
+ Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
CallInst* Result = nullptr;
Value *PtrCast = Source;
if (InsertBefore) {
@@ -795,11 +796,8 @@ void BranchInst::swapSuccessors() {
return;
// The first operand is the name. Fetch them backwards and build a new one.
- Value *Ops[] = {
- ProfileData->getOperand(0),
- ProfileData->getOperand(2),
- ProfileData->getOperand(1)
- };
+ Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
+ ProfileData->getOperand(1)};
setMetadata(LLVMContext::MD_prof,
MDNode::get(ProfileData->getContext(), Ops));
}
@@ -2030,6 +2028,39 @@ bool BinaryOperator::isExact() const {
return cast<PossiblyExactOperator>(this)->isExact();
}
+void BinaryOperator::copyIRFlags(const Value *V) {
+ // Copy the wrapping flags.
+ if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
+ setHasNoSignedWrap(OB->hasNoSignedWrap());
+ setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
+ }
+
+ // Copy the exact flag.
+ if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
+ setIsExact(PE->isExact());
+
+ // Copy the fast-math flags.
+ if (auto *FP = dyn_cast<FPMathOperator>(V))
+ copyFastMathFlags(FP->getFastMathFlags());
+}
+
+void BinaryOperator::andIRFlags(const Value *V) {
+ if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
+ setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
+ setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
+ }
+
+ if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
+ setIsExact(isExact() & PE->isExact());
+
+ if (auto *FP = dyn_cast<FPMathOperator>(V)) {
+ FastMathFlags FM = getFastMathFlags();
+ FM &= FP->getFastMathFlags();
+ copyFastMathFlags(FM);
+ }
+}
+
+
//===----------------------------------------------------------------------===//
// FPMathOperator Class
//===----------------------------------------------------------------------===//
@@ -2039,10 +2070,10 @@ bool BinaryOperator::isExact() const {
/// default precision.
float FPMathOperator::getFPAccuracy() const {
const MDNode *MD =
- cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
+ cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
if (!MD)
return 0.0;
- ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
+ ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
return Accuracy->getValueAPF().convertToFloat();
}
@@ -2525,6 +2556,17 @@ CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
}
+CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->isPointerTy() && Ty->isIntegerTy())
+ return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
+ if (S->getType()->isIntegerTy() && Ty->isPointerTy())
+ return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
+
+ return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+}
+
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
bool isSigned, const Twine &Name,
Instruction *InsertBefore) {
@@ -2682,6 +2724,18 @@ bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
return true;
}
+bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
+ const DataLayout *DL) {
+ if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
+ if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
+ return DL && IntTy->getBitWidth() == DL->getPointerTypeSizeInBits(PtrTy);
+ if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
+ if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
+ return DL && IntTy->getBitWidth() == DL->getPointerTypeSizeInBits(PtrTy);
+
+ return isBitCastable(SrcTy, DestTy);
+}
+
// Provide a way to get a "cast" where the cast opcode is inferred from the
// types and size of the operand. This, basically, is a parallel of the
// logic in the castIsValid function below. This axiom should hold:
diff --git a/contrib/llvm/lib/IR/IntrinsicInst.cpp b/contrib/llvm/lib/IR/IntrinsicInst.cpp
index 5725284..b9b5a29 100644
--- a/contrib/llvm/lib/IR/IntrinsicInst.cpp
+++ b/contrib/llvm/lib/IR/IntrinsicInst.cpp
@@ -49,15 +49,25 @@ Value *DbgInfoIntrinsic::StripCast(Value *C) {
return dyn_cast<GlobalVariable>(C);
}
+static Value *getValueImpl(Value *Op) {
+ auto *MD = cast<MetadataAsValue>(Op)->getMetadata();
+ if (auto *V = dyn_cast<ValueAsMetadata>(MD))
+ return V->getValue();
+
+ // When the value goes to null, it gets replaced by an empty MDNode.
+ assert(!cast<MDNode>(MD)->getNumOperands() && "Expected an empty MDNode");
+ return nullptr;
+}
+
//===----------------------------------------------------------------------===//
/// DbgDeclareInst - This represents the llvm.dbg.declare instruction.
///
Value *DbgDeclareInst::getAddress() const {
- if (MDNode* MD = cast_or_null<MDNode>(getArgOperand(0)))
- return MD->getOperand(0);
- else
+ if (!getArgOperand(0))
return nullptr;
+
+ return getValueImpl(getArgOperand(0));
}
//===----------------------------------------------------------------------===//
@@ -65,9 +75,7 @@ Value *DbgDeclareInst::getAddress() const {
///
const Value *DbgValueInst::getValue() const {
- return cast<MDNode>(getArgOperand(0))->getOperand(0);
+ return const_cast<DbgValueInst *>(this)->getValue();
}
-Value *DbgValueInst::getValue() {
- return cast<MDNode>(getArgOperand(0))->getOperand(0);
-}
+Value *DbgValueInst::getValue() { return getValueImpl(getArgOperand(0)); }
diff --git a/contrib/llvm/lib/IR/LLVMContext.cpp b/contrib/llvm/lib/IR/LLVMContext.cpp
index de825f0..b6d95c4 100644
--- a/contrib/llvm/lib/IR/LLVMContext.cpp
+++ b/contrib/llvm/lib/IR/LLVMContext.cpp
@@ -66,6 +66,33 @@ LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) {
unsigned InvariantLdId = getMDKindID("invariant.load");
assert(InvariantLdId == MD_invariant_load && "invariant.load kind id drifted");
(void)InvariantLdId;
+
+ // Create the 'alias.scope' metadata kind.
+ unsigned AliasScopeID = getMDKindID("alias.scope");
+ assert(AliasScopeID == MD_alias_scope && "alias.scope kind id drifted");
+ (void)AliasScopeID;
+
+ // Create the 'noalias' metadata kind.
+ unsigned NoAliasID = getMDKindID("noalias");
+ assert(NoAliasID == MD_noalias && "noalias kind id drifted");
+ (void)NoAliasID;
+
+ // Create the 'nontemporal' metadata kind.
+ unsigned NonTemporalID = getMDKindID("nontemporal");
+ assert(NonTemporalID == MD_nontemporal && "nontemporal kind id drifted");
+ (void)NonTemporalID;
+
+ // Create the 'llvm.mem.parallel_loop_access' metadata kind.
+ unsigned MemParallelLoopAccessID = getMDKindID("llvm.mem.parallel_loop_access");
+ assert(MemParallelLoopAccessID == MD_mem_parallel_loop_access &&
+ "mem_parallel_loop_access kind id drifted");
+ (void)MemParallelLoopAccessID;
+
+
+ // Create the 'nonnull' metadata kind.
+ unsigned NonNullID = getMDKindID("nonnull");
+ assert(NonNullID == MD_nonnull && "nonnull kind id drifted");
+ (void)NonNullID;
}
LLVMContext::~LLVMContext() { delete pImpl; }
@@ -102,9 +129,11 @@ void *LLVMContext::getInlineAsmDiagnosticContext() const {
}
void LLVMContext::setDiagnosticHandler(DiagnosticHandlerTy DiagnosticHandler,
- void *DiagnosticContext) {
+ void *DiagnosticContext,
+ bool RespectFilters) {
pImpl->DiagnosticHandler = DiagnosticHandler;
pImpl->DiagnosticContext = DiagnosticContext;
+ pImpl->RespectDiagnosticFilters = RespectFilters;
}
LLVMContext::DiagnosticHandlerTy LLVMContext::getDiagnosticHandler() const {
@@ -135,13 +164,7 @@ void LLVMContext::emitError(const Instruction *I, const Twine &ErrorStr) {
diagnose(DiagnosticInfoInlineAsm(*I, ErrorStr));
}
-void LLVMContext::diagnose(const DiagnosticInfo &DI) {
- // If there is a report handler, use it.
- if (pImpl->DiagnosticHandler) {
- pImpl->DiagnosticHandler(DI, pImpl->DiagnosticContext);
- return;
- }
-
+static bool isDiagnosticEnabled(const DiagnosticInfo &DI) {
// Optimization remarks are selective. They need to check whether the regexp
// pattern, passed via one of the -pass-remarks* flags, matches the name of
// the pass that is emitting the diagnostic. If there is no match, ignore the
@@ -149,19 +172,32 @@ void LLVMContext::diagnose(const DiagnosticInfo &DI) {
switch (DI.getKind()) {
case llvm::DK_OptimizationRemark:
if (!cast<DiagnosticInfoOptimizationRemark>(DI).isEnabled())
- return;
+ return false;
break;
case llvm::DK_OptimizationRemarkMissed:
if (!cast<DiagnosticInfoOptimizationRemarkMissed>(DI).isEnabled())
- return;
+ return false;
break;
case llvm::DK_OptimizationRemarkAnalysis:
if (!cast<DiagnosticInfoOptimizationRemarkAnalysis>(DI).isEnabled())
- return;
+ return false;
break;
default:
break;
}
+ return true;
+}
+
+void LLVMContext::diagnose(const DiagnosticInfo &DI) {
+ // If there is a report handler, use it.
+ if (pImpl->DiagnosticHandler) {
+ if (!pImpl->RespectDiagnosticFilters || isDiagnosticEnabled(DI))
+ pImpl->DiagnosticHandler(DI, pImpl->DiagnosticContext);
+ return;
+ }
+
+ if (!isDiagnosticEnabled(DI))
+ return;
// Otherwise, print the message with a prefix based on the severity.
std::string MsgStorage;
@@ -193,33 +229,16 @@ void LLVMContext::emitError(unsigned LocCookie, const Twine &ErrorStr) {
// Metadata Kind Uniquing
//===----------------------------------------------------------------------===//
-#ifndef NDEBUG
-/// isValidName - Return true if Name is a valid custom metadata handler name.
-static bool isValidName(StringRef MDName) {
- if (MDName.empty())
- return false;
-
- if (!std::isalpha(static_cast<unsigned char>(MDName[0])))
- return false;
-
- for (StringRef::iterator I = MDName.begin() + 1, E = MDName.end(); I != E;
- ++I) {
- if (!std::isalnum(static_cast<unsigned char>(*I)) && *I != '_' &&
- *I != '-' && *I != '.')
- return false;
- }
- return true;
-}
-#endif
-
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
unsigned LLVMContext::getMDKindID(StringRef Name) const {
- assert(isValidName(Name) && "Invalid MDNode name");
+ assert(!std::isdigit(Name.front()) &&
+ "Named metadata may not start with a digit");
// If this is new, assign it its ID.
- return
- pImpl->CustomMDKindNames.GetOrCreateValue(
- Name, pImpl->CustomMDKindNames.size()).second;
+ return pImpl->CustomMDKindNames.insert(std::make_pair(
+ Name,
+ pImpl->CustomMDKindNames.size()))
+ .first->second;
}
/// getHandlerNames - Populate client supplied smallvector using custome
diff --git a/contrib/llvm/lib/IR/LLVMContextImpl.cpp b/contrib/llvm/lib/IR/LLVMContextImpl.cpp
index 4c2791f..01a0e6c 100644
--- a/contrib/llvm/lib/IR/LLVMContextImpl.cpp
+++ b/contrib/llvm/lib/IR/LLVMContextImpl.cpp
@@ -40,6 +40,7 @@ LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
InlineAsmDiagContext = nullptr;
DiagnosticHandler = nullptr;
DiagnosticContext = nullptr;
+ RespectDiagnosticFilters = false;
YieldCallback = nullptr;
YieldOpaqueHandle = nullptr;
NamedStructTypesUniqueID = 0;
@@ -71,11 +72,34 @@ LLVMContextImpl::~LLVMContextImpl() {
// the container. Avoid iterators during this operation:
while (!OwnedModules.empty())
delete *OwnedModules.begin();
-
+
+ // Drop references for MDNodes. Do this before Values get deleted to avoid
+ // unnecessary RAUW when nodes are still unresolved.
+ for (auto *I : DistinctMDNodes)
+ I->dropAllReferences();
+ for (auto *I : MDTuples)
+ I->dropAllReferences();
+ for (auto *I : MDLocations)
+ I->dropAllReferences();
+
+ // Also drop references that come from the Value bridges.
+ for (auto &Pair : ValuesAsMetadata)
+ Pair.second->dropUsers();
+ for (auto &Pair : MetadataAsValues)
+ Pair.second->dropUse();
+
+ // Destroy MDNodes.
+ for (UniquableMDNode *I : DistinctMDNodes)
+ I->deleteAsSubclass();
+ for (MDTuple *I : MDTuples)
+ delete I;
+ for (MDLocation *I : MDLocations)
+ delete I;
+
// Free the constants. This is important to do here to ensure that they are
// freed before the LeakDetector is torn down.
std::for_each(ExprConstants.map_begin(), ExprConstants.map_end(),
- DropReferences());
+ DropFirst());
std::for_each(ArrayConstants.map_begin(), ArrayConstants.map_end(),
DropFirst());
std::for_each(StructConstants.map_begin(), StructConstants.map_end(),
@@ -119,22 +143,23 @@ LLVMContextImpl::~LLVMContextImpl() {
delete &*Elem;
}
- // Destroy MDNodes. ~MDNode can move and remove nodes between the MDNodeSet
- // and the NonUniquedMDNodes sets, so copy the values out first.
- SmallVector<MDNode*, 8> MDNodes;
- MDNodes.reserve(MDNodeSet.size() + NonUniquedMDNodes.size());
- for (FoldingSetIterator<MDNode> I = MDNodeSet.begin(), E = MDNodeSet.end();
- I != E; ++I)
- MDNodes.push_back(&*I);
- MDNodes.append(NonUniquedMDNodes.begin(), NonUniquedMDNodes.end());
- for (SmallVectorImpl<MDNode *>::iterator I = MDNodes.begin(),
- E = MDNodes.end(); I != E; ++I)
- (*I)->destroy();
- assert(MDNodeSet.empty() && NonUniquedMDNodes.empty() &&
- "Destroying all MDNodes didn't empty the Context's sets.");
+ // Destroy MetadataAsValues.
+ {
+ SmallVector<MetadataAsValue *, 8> MDVs;
+ MDVs.reserve(MetadataAsValues.size());
+ for (auto &Pair : MetadataAsValues)
+ MDVs.push_back(Pair.second);
+ MetadataAsValues.clear();
+ for (auto *V : MDVs)
+ delete V;
+ }
+
+ // Destroy ValuesAsMetadata.
+ for (auto &Pair : ValuesAsMetadata)
+ delete Pair.second;
// Destroy MDStrings.
- DeleteContainerSeconds(MDStringCache);
+ MDStringCache.clear();
}
// ConstantsContext anchors
diff --git a/contrib/llvm/lib/IR/LLVMContextImpl.h b/contrib/llvm/lib/IR/LLVMContextImpl.h
index 808c239..6ebc567 100644
--- a/contrib/llvm/lib/IR/LLVMContextImpl.h
+++ b/contrib/llvm/lib/IR/LLVMContextImpl.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_LLVMCONTEXT_IMPL_H
-#define LLVM_LLVMCONTEXT_IMPL_H
+#ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H
+#define LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#include "AttributeImpl.h"
#include "ConstantsContext.h"
@@ -22,6 +22,7 @@
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -45,55 +46,32 @@ class Type;
class Value;
struct DenseMapAPIntKeyInfo {
- struct KeyTy {
- APInt val;
- Type* type;
- KeyTy(const APInt& V, Type* Ty) : val(V), type(Ty) {}
- bool operator==(const KeyTy& that) const {
- return type == that.type && this->val == that.val;
- }
- bool operator!=(const KeyTy& that) const {
- return !this->operator==(that);
- }
- friend hash_code hash_value(const KeyTy &Key) {
- return hash_combine(Key.type, Key.val);
- }
- };
- static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), nullptr); }
- static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), nullptr); }
- static unsigned getHashValue(const KeyTy &Key) {
+ static inline APInt getEmptyKey() {
+ APInt V(nullptr, 0);
+ V.VAL = 0;
+ return V;
+ }
+ static inline APInt getTombstoneKey() {
+ APInt V(nullptr, 0);
+ V.VAL = 1;
+ return V;
+ }
+ static unsigned getHashValue(const APInt &Key) {
return static_cast<unsigned>(hash_value(Key));
}
- static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
- return LHS == RHS;
+ static bool isEqual(const APInt &LHS, const APInt &RHS) {
+ return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
}
};
struct DenseMapAPFloatKeyInfo {
- struct KeyTy {
- APFloat val;
- KeyTy(const APFloat& V) : val(V){}
- bool operator==(const KeyTy& that) const {
- return this->val.bitwiseIsEqual(that.val);
- }
- bool operator!=(const KeyTy& that) const {
- return !this->operator==(that);
- }
- friend hash_code hash_value(const KeyTy &Key) {
- return hash_combine(Key.val);
- }
- };
- static inline KeyTy getEmptyKey() {
- return KeyTy(APFloat(APFloat::Bogus,1));
- }
- static inline KeyTy getTombstoneKey() {
- return KeyTy(APFloat(APFloat::Bogus,2));
- }
- static unsigned getHashValue(const KeyTy &Key) {
+ static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus, 1); }
+ static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus, 2); }
+ static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
- static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
- return LHS == RHS;
+ static bool isEqual(const APFloat &LHS, const APFloat &RHS) {
+ return LHS.bitwiseIsEqual(RHS);
}
};
@@ -103,9 +81,8 @@ struct AnonStructTypeKeyInfo {
bool isPacked;
KeyTy(const ArrayRef<Type*>& E, bool P) :
ETypes(E), isPacked(P) {}
- KeyTy(const StructType* ST) :
- ETypes(ArrayRef<Type*>(ST->element_begin(), ST->element_end())),
- isPacked(ST->isPacked()) {}
+ KeyTy(const StructType *ST)
+ : ETypes(ST->elements()), isPacked(ST->isPacked()) {}
bool operator==(const KeyTy& that) const {
if (isPacked != that.isPacked)
return false;
@@ -148,10 +125,9 @@ struct FunctionTypeKeyInfo {
bool isVarArg;
KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) :
ReturnType(R), Params(P), isVarArg(V) {}
- KeyTy(const FunctionType* FT) :
- ReturnType(FT->getReturnType()),
- Params(ArrayRef<Type*>(FT->param_begin(), FT->param_end())),
- isVarArg(FT->isVarArg()) {}
+ KeyTy(const FunctionType *FT)
+ : ReturnType(FT->getReturnType()), Params(FT->params()),
+ isVarArg(FT->isVarArg()) {}
bool operator==(const KeyTy& that) const {
if (ReturnType != that.ReturnType)
return false;
@@ -190,49 +166,97 @@ struct FunctionTypeKeyInfo {
}
};
-// Provide a FoldingSetTrait::Equals specialization for MDNode that can use a
-// shortcut to avoid comparing all operands.
-template<> struct FoldingSetTrait<MDNode> : DefaultFoldingSetTrait<MDNode> {
- static bool Equals(const MDNode &X, const FoldingSetNodeID &ID,
- unsigned IDHash, FoldingSetNodeID &TempID) {
- assert(!X.isNotUniqued() && "Non-uniqued MDNode in FoldingSet?");
- // First, check if the cached hashes match. If they don't we can skip the
- // expensive operand walk.
- if (X.Hash != IDHash)
- return false;
+/// \brief DenseMapInfo for MDTuple.
+///
+/// Note that we don't need the is-function-local bit, since that's implicit in
+/// the operands.
+struct MDTupleInfo {
+ struct KeyTy {
+ ArrayRef<Metadata *> RawOps;
+ ArrayRef<MDOperand> Ops;
+ unsigned Hash;
+
+ KeyTy(ArrayRef<Metadata *> Ops)
+ : RawOps(Ops), Hash(hash_combine_range(Ops.begin(), Ops.end())) {}
+
+ KeyTy(MDTuple *N)
+ : Ops(N->op_begin(), N->op_end()), Hash(N->getHash()) {}
- // If they match we have to compare the operands.
- X.Profile(TempID);
- return TempID == ID;
+ bool operator==(const MDTuple *RHS) const {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ if (Hash != RHS->getHash())
+ return false;
+ assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?");
+ return RawOps.empty() ? compareOps(Ops, RHS) : compareOps(RawOps, RHS);
+ }
+ template <class T>
+ static bool compareOps(ArrayRef<T> Ops, const MDTuple *RHS) {
+ if (Ops.size() != RHS->getNumOperands())
+ return false;
+ return std::equal(Ops.begin(), Ops.end(), RHS->op_begin());
+ }
+ };
+ static inline MDTuple *getEmptyKey() {
+ return DenseMapInfo<MDTuple *>::getEmptyKey();
+ }
+ static inline MDTuple *getTombstoneKey() {
+ return DenseMapInfo<MDTuple *>::getTombstoneKey();
}
- static unsigned ComputeHash(const MDNode &X, FoldingSetNodeID &) {
- return X.Hash; // Return cached hash.
+ static unsigned getHashValue(const KeyTy &Key) { return Key.Hash; }
+ static unsigned getHashValue(const MDTuple *U) {
+ return U->getHash();
+ }
+ static bool isEqual(const KeyTy &LHS, const MDTuple *RHS) {
+ return LHS == RHS;
+ }
+ static bool isEqual(const MDTuple *LHS, const MDTuple *RHS) {
+ return LHS == RHS;
}
};
-/// DebugRecVH - This is a CallbackVH used to keep the Scope -> index maps
-/// up to date as MDNodes mutate. This class is implemented in DebugLoc.cpp.
-class DebugRecVH : public CallbackVH {
- /// Ctx - This is the LLVM Context being referenced.
- LLVMContextImpl *Ctx;
-
- /// Idx - The index into either ScopeRecordIdx or ScopeInlinedAtRecords that
- /// this reference lives in. If this is zero, then it represents a
- /// non-canonical entry that has no DenseMap value. This can happen due to
- /// RAUW.
- int Idx;
-public:
- DebugRecVH(MDNode *n, LLVMContextImpl *ctx, int idx)
- : CallbackVH(n), Ctx(ctx), Idx(idx) {}
-
- MDNode *get() const {
- return cast_or_null<MDNode>(getValPtr());
- }
+/// \brief DenseMapInfo for MDLocation.
+struct MDLocationInfo {
+ struct KeyTy {
+ unsigned Line;
+ unsigned Column;
+ Metadata *Scope;
+ Metadata *InlinedAt;
- void deleted() override;
- void allUsesReplacedWith(Value *VNew) override;
+ KeyTy(unsigned Line, unsigned Column, Metadata *Scope, Metadata *InlinedAt)
+ : Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt) {}
+
+ KeyTy(const MDLocation *L)
+ : Line(L->getLine()), Column(L->getColumn()), Scope(L->getScope()),
+ InlinedAt(L->getInlinedAt()) {}
+
+ bool operator==(const MDLocation *RHS) const {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ return Line == RHS->getLine() && Column == RHS->getColumn() &&
+ Scope == RHS->getScope() && InlinedAt == RHS->getInlinedAt();
+ }
+ };
+ static inline MDLocation *getEmptyKey() {
+ return DenseMapInfo<MDLocation *>::getEmptyKey();
+ }
+ static inline MDLocation *getTombstoneKey() {
+ return DenseMapInfo<MDLocation *>::getTombstoneKey();
+ }
+ static unsigned getHashValue(const KeyTy &Key) {
+ return hash_combine(Key.Line, Key.Column, Key.Scope, Key.InlinedAt);
+ }
+ static unsigned getHashValue(const MDLocation *U) {
+ return getHashValue(KeyTy(U));
+ }
+ static bool isEqual(const KeyTy &LHS, const MDLocation *RHS) {
+ return LHS == RHS;
+ }
+ static bool isEqual(const MDLocation *LHS, const MDLocation *RHS) {
+ return LHS == RHS;
+ }
};
-
+
class LLVMContextImpl {
public:
/// OwnedModules - The set of modules instantiated in this context, and which
@@ -244,41 +268,43 @@ public:
LLVMContext::DiagnosticHandlerTy DiagnosticHandler;
void *DiagnosticContext;
+ bool RespectDiagnosticFilters;
LLVMContext::YieldCallbackTy YieldCallback;
void *YieldOpaqueHandle;
- typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt *,
- DenseMapAPIntKeyInfo> IntMapTy;
+ typedef DenseMap<APInt, ConstantInt *, DenseMapAPIntKeyInfo> IntMapTy;
IntMapTy IntConstants;
-
- typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
- DenseMapAPFloatKeyInfo> FPMapTy;
+
+ typedef DenseMap<APFloat, ConstantFP *, DenseMapAPFloatKeyInfo> FPMapTy;
FPMapTy FPConstants;
FoldingSet<AttributeImpl> AttrsSet;
FoldingSet<AttributeSetImpl> AttrsLists;
FoldingSet<AttributeSetNode> AttrsSetNodes;
- StringMap<Value*> MDStringCache;
+ StringMap<MDString> MDStringCache;
+ DenseMap<Value *, ValueAsMetadata *> ValuesAsMetadata;
+ DenseMap<Metadata *, MetadataAsValue *> MetadataAsValues;
- FoldingSet<MDNode> MDNodeSet;
+ DenseSet<MDTuple *, MDTupleInfo> MDTuples;
+ DenseSet<MDLocation *, MDLocationInfo> MDLocations;
// MDNodes may be uniqued or not uniqued. When they're not uniqued, they
// aren't in the MDNodeSet, but they're still shared between objects, so no
// one object can destroy them. This set allows us to at least destroy them
// on Context destruction.
- SmallPtrSet<MDNode*, 1> NonUniquedMDNodes;
-
+ SmallPtrSet<UniquableMDNode *, 1> DistinctMDNodes;
+
DenseMap<Type*, ConstantAggregateZero*> CAZConstants;
- typedef ConstantAggrUniqueMap<ArrayType, ConstantArray> ArrayConstantsTy;
+ typedef ConstantUniqueMap<ConstantArray> ArrayConstantsTy;
ArrayConstantsTy ArrayConstants;
- typedef ConstantAggrUniqueMap<StructType, ConstantStruct> StructConstantsTy;
+ typedef ConstantUniqueMap<ConstantStruct> StructConstantsTy;
StructConstantsTy StructConstants;
- typedef ConstantAggrUniqueMap<VectorType, ConstantVector> VectorConstantsTy;
+ typedef ConstantUniqueMap<ConstantVector> VectorConstantsTy;
VectorConstantsTy VectorConstants;
DenseMap<PointerType*, ConstantPointerNull*> CPNConstants;
@@ -289,17 +315,16 @@ public:
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
- ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
- ExprConstants;
+ ConstantUniqueMap<ConstantExpr> ExprConstants;
+
+ ConstantUniqueMap<InlineAsm> InlineAsms;
- ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType,
- InlineAsm> InlineAsms;
-
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;
LeakDetectorImpl<Value> LLVMObjects;
-
+ LeakDetectorImpl<Metadata> LLVMMDObjects;
+
// Basic type instances.
Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy;
Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy;
@@ -311,11 +336,11 @@ public:
BumpPtrAllocator TypeAllocator;
DenseMap<unsigned, IntegerType*> IntegerTypes;
-
- typedef DenseMap<FunctionType*, bool, FunctionTypeKeyInfo> FunctionTypeMap;
- FunctionTypeMap FunctionTypes;
- typedef DenseMap<StructType*, bool, AnonStructTypeKeyInfo> StructTypeMap;
- StructTypeMap AnonStructTypes;
+
+ typedef DenseSet<FunctionType *, FunctionTypeKeyInfo> FunctionTypeSet;
+ FunctionTypeSet FunctionTypes;
+ typedef DenseSet<StructType *, AnonStructTypeKeyInfo> StructTypeSet;
+ StructTypeSet AnonStructTypes;
StringMap<StructType*> NamedStructTypes;
unsigned NamedStructTypesUniqueID;
@@ -333,32 +358,14 @@ public:
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
-
- typedef std::pair<unsigned, TrackingVH<MDNode> > MDPairTy;
+
+ typedef std::pair<unsigned, TrackingMDNodeRef> MDPairTy;
typedef SmallVector<MDPairTy, 2> MDMapTy;
/// MetadataStore - Collection of per-instruction metadata used in this
/// context.
DenseMap<const Instruction *, MDMapTy> MetadataStore;
- /// ScopeRecordIdx - This is the index in ScopeRecords for an MDNode scope
- /// entry with no "inlined at" element.
- DenseMap<MDNode*, int> ScopeRecordIdx;
-
- /// ScopeRecords - These are the actual mdnodes (in a value handle) for an
- /// index. The ValueHandle ensures that ScopeRecordIdx stays up to date if
- /// the MDNode is RAUW'd.
- std::vector<DebugRecVH> ScopeRecords;
-
- /// ScopeInlinedAtIdx - This is the index in ScopeInlinedAtRecords for an
- /// scope/inlined-at pair.
- DenseMap<std::pair<MDNode*, MDNode*>, int> ScopeInlinedAtIdx;
-
- /// ScopeInlinedAtRecords - These are the actual mdnodes (in value handles)
- /// for an index. The ValueHandle ensures that ScopeINlinedAtIdx stays up
- /// to date.
- std::vector<std::pair<DebugRecVH, DebugRecVH> > ScopeInlinedAtRecords;
-
/// DiscriminatorTable - This table maps file:line locations to an
/// integer representing the next DWARF path discriminator to assign to
/// instructions in different blocks at the same location.
@@ -374,6 +381,12 @@ public:
typedef DenseMap<const Function *, ReturnInst *> PrefixDataMapTy;
PrefixDataMapTy PrefixDataMap;
+ /// \brief Mapping from a function to its prologue data, which is stored as
+ /// the operand of an unparented ReturnInst so that the prologue data has a
+ /// Use.
+ typedef DenseMap<const Function *, ReturnInst *> PrologueDataMapTy;
+ PrologueDataMapTy PrologueDataMap;
+
int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx);
int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx);
diff --git a/contrib/llvm/lib/IR/LeakDetector.cpp b/contrib/llvm/lib/IR/LeakDetector.cpp
deleted file mode 100644
index 6f71627..0000000
--- a/contrib/llvm/lib/IR/LeakDetector.cpp
+++ /dev/null
@@ -1,69 +0,0 @@
-//===-- LeakDetector.cpp - Implement LeakDetector interface ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the LeakDetector class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/IR/LeakDetector.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Mutex.h"
-#include "llvm/Support/Threading.h"
-using namespace llvm;
-
-static ManagedStatic<sys::SmartMutex<true> > ObjectsLock;
-static ManagedStatic<LeakDetectorImpl<void> > Objects;
-
-static void clearGarbage(LLVMContext &Context) {
- Objects->clear();
- Context.pImpl->LLVMObjects.clear();
-}
-
-void LeakDetector::addGarbageObjectImpl(void *Object) {
- sys::SmartScopedLock<true> Lock(*ObjectsLock);
- Objects->addGarbage(Object);
-}
-
-void LeakDetector::addGarbageObjectImpl(const Value *Object) {
- LLVMContextImpl *pImpl = Object->getContext().pImpl;
- pImpl->LLVMObjects.addGarbage(Object);
-}
-
-void LeakDetector::removeGarbageObjectImpl(void *Object) {
- sys::SmartScopedLock<true> Lock(*ObjectsLock);
- Objects->removeGarbage(Object);
-}
-
-void LeakDetector::removeGarbageObjectImpl(const Value *Object) {
- LLVMContextImpl *pImpl = Object->getContext().pImpl;
- pImpl->LLVMObjects.removeGarbage(Object);
-}
-
-void LeakDetector::checkForGarbageImpl(LLVMContext &Context,
- const std::string &Message) {
- LLVMContextImpl *pImpl = Context.pImpl;
- sys::SmartScopedLock<true> Lock(*ObjectsLock);
-
- Objects->setName("GENERIC");
- pImpl->LLVMObjects.setName("LLVM");
-
- // use non-short-circuit version so that both checks are performed
- if (Objects->hasGarbage(Message) |
- pImpl->LLVMObjects.hasGarbage(Message))
- errs() << "\nThis is probably because you removed an object, but didn't "
- << "delete it. Please check your code for memory leaks.\n";
-
- // Clear out results so we don't get duplicate warnings on
- // next call...
- clearGarbage(Context);
-}
diff --git a/contrib/llvm/lib/IR/LeaksContext.h b/contrib/llvm/lib/IR/LeaksContext.h
index 52ac170..47704fa 100644
--- a/contrib/llvm/lib/IR/LeaksContext.h
+++ b/contrib/llvm/lib/IR/LeaksContext.h
@@ -12,10 +12,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_IR_LEAKSCONTEXT_H
-#define LLVM_IR_LEAKSCONTEXT_H
+#ifndef LLVM_LIB_IR_LEAKSCONTEXT_H
+#define LLVM_LIB_IR_LEAKSCONTEXT_H
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/raw_ostream.h"
@@ -31,6 +32,10 @@ struct PrinterTrait<Value> {
static void print(const Value* P) { errs() << *P; }
};
+template <> struct PrinterTrait<Metadata> {
+ static void print(const Metadata *P) { P->print(errs()); }
+};
+
template <typename T>
struct LeakDetectorImpl {
explicit LeakDetectorImpl(const char* const name = "") :
@@ -95,4 +100,4 @@ private:
}
-#endif // LLVM_IR_LEAKSCONTEXT_H
+#endif
diff --git a/contrib/llvm/lib/IR/LegacyPassManager.cpp b/contrib/llvm/lib/IR/LegacyPassManager.cpp
index d3f3482..fa8d50e 100644
--- a/contrib/llvm/lib/IR/LegacyPassManager.cpp
+++ b/contrib/llvm/lib/IR/LegacyPassManager.cpp
@@ -227,10 +227,7 @@ public:
Pass(PT_PassManager, ID), PMDataManager(),
PMTopLevelManager(new FPPassManager()), wasRun(false) {}
- /// add - Add a pass to the queue of passes to run. This passes ownership of
- /// the Pass to the PassManager. When the PassManager is destroyed, the pass
- /// will be destroyed as well, so there is no need to delete the pass. This
- /// implies that all passes MUST be allocated with 'new'.
+ /// \copydoc FunctionPassManager::add()
void add(Pass *P) {
schedulePass(P);
}
@@ -398,10 +395,7 @@ public:
Pass(PT_PassManager, ID), PMDataManager(),
PMTopLevelManager(new MPPassManager()) {}
- /// add - Add a pass to the queue of passes to run. This passes ownership of
- /// the Pass to the PassManager. When the PassManager is destroyed, the pass
- /// will be destroyed as well, so there is no need to delete the pass. This
- /// implies that all passes MUST be allocated with 'new'.
+ /// \copydoc PassManager::add()
void add(Pass *P) {
schedulePass(P);
}
@@ -573,9 +567,8 @@ void PMTopLevelManager::collectLastUses(SmallVectorImpl<Pass *> &LastUses,
return;
SmallPtrSet<Pass *, 8> &LU = DMI->second;
- for (SmallPtrSet<Pass *, 8>::iterator I = LU.begin(),
- E = LU.end(); I != E; ++I) {
- LastUses.push_back(*I);
+ for (Pass *LUP : LU) {
+ LastUses.push_back(LUP);
}
}
@@ -607,8 +600,7 @@ void PMTopLevelManager::schedulePass(Pass *P) {
// If P is an analysis pass and it is available then do not
// generate the analysis again. Stale analysis info should not be
// available at this point.
- const PassInfo *PI =
- PassRegistry::getPassRegistry()->getPassInfo(P->getPassID());
+ const PassInfo *PI = findAnalysisPassInfo(P->getPassID());
if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) {
delete P;
return;
@@ -626,7 +618,7 @@ void PMTopLevelManager::schedulePass(Pass *P) {
Pass *AnalysisPass = findAnalysisPass(*I);
if (!AnalysisPass) {
- const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I);
+ const PassInfo *PI = findAnalysisPassInfo(*I);
if (!PI) {
// Pass P is not in the global PassRegistry
@@ -723,8 +715,7 @@ Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
return *I;
// If Pass not found then check the interfaces implemented by Immutable Pass
- const PassInfo *PassInf =
- PassRegistry::getPassRegistry()->getPassInfo(PI);
+ const PassInfo *PassInf = findAnalysisPassInfo(PI);
assert(PassInf && "Expected all immutable passes to be initialized");
const std::vector<const PassInfo*> &ImmPI =
PassInf->getInterfacesImplemented();
@@ -738,6 +729,17 @@ Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
return nullptr;
}
+const PassInfo *PMTopLevelManager::findAnalysisPassInfo(AnalysisID AID) const {
+ const PassInfo *&PI = AnalysisPassInfos[AID];
+ if (!PI)
+ PI = PassRegistry::getPassRegistry()->getPassInfo(AID);
+ else
+ assert(PI == PassRegistry::getPassRegistry()->getPassInfo(AID) &&
+ "The pass info pointer changed for an analysis ID!");
+
+ return PI;
+}
+
// Print passes managed by this top level manager.
void PMTopLevelManager::dumpPasses() const {
@@ -766,8 +768,7 @@ void PMTopLevelManager::dumpArguments() const {
dbgs() << "Pass Arguments: ";
for (SmallVectorImpl<ImmutablePass *>::const_iterator I =
ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
- if (const PassInfo *PI =
- PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) {
+ if (const PassInfo *PI = findAnalysisPassInfo((*I)->getPassID())) {
assert(PI && "Expected all immutable passes to be initialized");
if (!PI->isAnalysisGroup())
dbgs() << " -" << PI->getPassArgument();
@@ -831,7 +832,7 @@ void PMDataManager::recordAvailableAnalysis(Pass *P) {
// This pass is the current implementation of all of the interfaces it
// implements as well.
- const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI);
+ const PassInfo *PInf = TPM->findAnalysisPassInfo(PI);
if (!PInf) return;
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
@@ -964,7 +965,7 @@ void PMDataManager::freePass(Pass *P, StringRef Msg,
}
AnalysisID PI = P->getPassID();
- if (const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI)) {
+ if (const PassInfo *PInf = TPM->findAnalysisPassInfo(PI)) {
// Remove the pass itself (if it is not already removed).
AvailableAnalysis.erase(PI);
@@ -1044,7 +1045,7 @@ void PMDataManager::add(Pass *P, bool ProcessAnalysis) {
for (SmallVectorImpl<AnalysisID>::iterator
I = ReqAnalysisNotAvailable.begin(),
E = ReqAnalysisNotAvailable.end() ;I != E; ++I) {
- const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I);
+ const PassInfo *PI = TPM->findAnalysisPassInfo(*I);
Pass *AnalysisPass = PI->createPass();
this->addLowerLevelRequiredPass(P, AnalysisPass);
}
@@ -1149,7 +1150,7 @@ void PMDataManager::dumpPassArguments() const {
PMD->dumpPassArguments();
else
if (const PassInfo *PI =
- PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID()))
+ TPM->findAnalysisPassInfo((*I)->getPassID()))
if (!PI->isAnalysisGroup())
dbgs() << " -" << PI->getPassArgument();
}
@@ -1225,7 +1226,7 @@ void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P,
dbgs() << (const void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
if (i) dbgs() << ',';
- const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(Set[i]);
+ const PassInfo *PInf = TPM->findAnalysisPassInfo(Set[i]);
if (!PInf) {
// Some preserved passes, such as AliasAnalysis, may not be initialized by
// all drivers.
@@ -1390,11 +1391,6 @@ FunctionPassManager::~FunctionPassManager() {
delete FPM;
}
-/// add - Add a pass to the queue of passes to run. This passes
-/// ownership of the Pass to the PassManager. When the
-/// PassManager_X is destroyed, the pass will be destroyed as well, so
-/// there is no need to delete the pass. (TODO delete passes.)
-/// This implies that all passes MUST be allocated with 'new'.
void FunctionPassManager::add(Pass *P) {
FPM->add(P);
}
@@ -1404,11 +1400,8 @@ void FunctionPassManager::add(Pass *P) {
/// so, return true.
///
bool FunctionPassManager::run(Function &F) {
- if (F.isMaterializable()) {
- std::string errstr;
- if (F.Materialize(&errstr))
- report_fatal_error("Error reading bitcode file: " + Twine(errstr));
- }
+ if (std::error_code EC = F.materialize())
+ report_fatal_error("Error reading bitcode file: " + EC.message());
return FPM->run(F);
}
@@ -1673,8 +1666,8 @@ void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
OnTheFlyManagers[P] = FPP;
}
- const PassInfo * RequiredPassPI =
- PassRegistry::getPassRegistry()->getPassInfo(RequiredPass->getPassID());
+ const PassInfo *RequiredPassPI =
+ TPM->findAnalysisPassInfo(RequiredPass->getPassID());
Pass *FoundPass = nullptr;
if (RequiredPassPI && RequiredPassPI->isAnalysis()) {
@@ -1684,7 +1677,7 @@ void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
if (!FoundPass) {
FoundPass = RequiredPass;
// This should be guaranteed to add RequiredPass to the passmanager given
- // that we checked for an avaiable analysis above.
+ // that we checked for an available analysis above.
FPP->add(RequiredPass);
}
// Register P as the last user of FoundPass or RequiredPass.
@@ -1753,10 +1746,6 @@ PassManager::~PassManager() {
delete PM;
}
-/// add - Add a pass to the queue of passes to run. This passes ownership of
-/// the Pass to the PassManager. When the PassManager is destroyed, the pass
-/// will be destroyed as well, so there is no need to delete the pass. This
-/// implies that all passes MUST be allocated with 'new'.
void PassManager::add(Pass *P) {
PM->add(P);
}
diff --git a/contrib/llvm/lib/IR/MDBuilder.cpp b/contrib/llvm/lib/IR/MDBuilder.cpp
index 65cdf38..c7fcf7a 100644
--- a/contrib/llvm/lib/IR/MDBuilder.cpp
+++ b/contrib/llvm/lib/IR/MDBuilder.cpp
@@ -21,11 +21,16 @@ MDString *MDBuilder::createString(StringRef Str) {
return MDString::get(Context, Str);
}
+ConstantAsMetadata *MDBuilder::createConstant(Constant *C) {
+ return ConstantAsMetadata::get(C);
+}
+
MDNode *MDBuilder::createFPMath(float Accuracy) {
if (Accuracy == 0.0)
return nullptr;
assert(Accuracy > 0.0 && "Invalid fpmath accuracy!");
- Value *Op = ConstantFP::get(Type::getFloatTy(Context), Accuracy);
+ auto *Op =
+ createConstant(ConstantFP::get(Type::getFloatTy(Context), Accuracy));
return MDNode::get(Context, Op);
}
@@ -38,12 +43,12 @@ MDNode *MDBuilder::createBranchWeights(uint32_t TrueWeight,
MDNode *MDBuilder::createBranchWeights(ArrayRef<uint32_t> Weights) {
assert(Weights.size() >= 2 && "Need at least two branch weights!");
- SmallVector<Value *, 4> Vals(Weights.size() + 1);
+ SmallVector<Metadata *, 4> Vals(Weights.size() + 1);
Vals[0] = createString("branch_weights");
Type *Int32Ty = Type::getInt32Ty(Context);
for (unsigned i = 0, e = Weights.size(); i != e; ++i)
- Vals[i + 1] = ConstantInt::get(Int32Ty, Weights[i]);
+ Vals[i + 1] = createConstant(ConstantInt::get(Int32Ty, Weights[i]));
return MDNode::get(Context, Vals);
}
@@ -56,14 +61,22 @@ MDNode *MDBuilder::createRange(const APInt &Lo, const APInt &Hi) {
// Return the range [Lo, Hi).
Type *Ty = IntegerType::get(Context, Lo.getBitWidth());
- Value *Range[2] = {ConstantInt::get(Ty, Lo), ConstantInt::get(Ty, Hi)};
+ Metadata *Range[2] = {createConstant(ConstantInt::get(Ty, Lo)),
+ createConstant(ConstantInt::get(Ty, Hi))};
return MDNode::get(Context, Range);
}
-MDNode *MDBuilder::createAnonymousTBAARoot() {
+MDNode *MDBuilder::createAnonymousAARoot(StringRef Name, MDNode *Extra) {
// To ensure uniqueness the root node is self-referential.
- MDNode *Dummy = MDNode::getTemporary(Context, ArrayRef<Value *>());
- MDNode *Root = MDNode::get(Context, Dummy);
+ MDNode *Dummy = MDNode::getTemporary(Context, None);
+
+ SmallVector<Metadata *, 3> Args(1, Dummy);
+ if (Extra)
+ Args.push_back(Extra);
+ if (!Name.empty())
+ Args.push_back(createString(Name));
+ MDNode *Root = MDNode::get(Context, Args);
+
// At this point we have
// !0 = metadata !{} <- dummy
// !1 = metadata !{metadata !0} <- root
@@ -85,22 +98,31 @@ MDNode *MDBuilder::createTBAANode(StringRef Name, MDNode *Parent,
bool isConstant) {
if (isConstant) {
Constant *Flags = ConstantInt::get(Type::getInt64Ty(Context), 1);
- Value *Ops[3] = {createString(Name), Parent, Flags};
+ Metadata *Ops[3] = {createString(Name), Parent, createConstant(Flags)};
return MDNode::get(Context, Ops);
} else {
- Value *Ops[2] = {createString(Name), Parent};
+ Metadata *Ops[2] = {createString(Name), Parent};
return MDNode::get(Context, Ops);
}
}
+MDNode *MDBuilder::createAliasScopeDomain(StringRef Name) {
+ return MDNode::get(Context, createString(Name));
+}
+
+MDNode *MDBuilder::createAliasScope(StringRef Name, MDNode *Domain) {
+ Metadata *Ops[2] = {createString(Name), Domain};
+ return MDNode::get(Context, Ops);
+}
+
/// \brief Return metadata for a tbaa.struct node with the given
/// struct field descriptions.
MDNode *MDBuilder::createTBAAStructNode(ArrayRef<TBAAStructField> Fields) {
- SmallVector<Value *, 4> Vals(Fields.size() * 3);
+ SmallVector<Metadata *, 4> Vals(Fields.size() * 3);
Type *Int64 = Type::getInt64Ty(Context);
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
- Vals[i * 3 + 0] = ConstantInt::get(Int64, Fields[i].Offset);
- Vals[i * 3 + 1] = ConstantInt::get(Int64, Fields[i].Size);
+ Vals[i * 3 + 0] = createConstant(ConstantInt::get(Int64, Fields[i].Offset));
+ Vals[i * 3 + 1] = createConstant(ConstantInt::get(Int64, Fields[i].Size));
Vals[i * 3 + 2] = Fields[i].TBAA;
}
return MDNode::get(Context, Vals);
@@ -110,12 +132,12 @@ MDNode *MDBuilder::createTBAAStructNode(ArrayRef<TBAAStructField> Fields) {
/// with the given name, a list of pairs (offset, field type in the type DAG).
MDNode *MDBuilder::createTBAAStructTypeNode(
StringRef Name, ArrayRef<std::pair<MDNode *, uint64_t>> Fields) {
- SmallVector<Value *, 4> Ops(Fields.size() * 2 + 1);
+ SmallVector<Metadata *, 4> Ops(Fields.size() * 2 + 1);
Type *Int64 = Type::getInt64Ty(Context);
Ops[0] = createString(Name);
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
Ops[i * 2 + 1] = Fields[i].first;
- Ops[i * 2 + 2] = ConstantInt::get(Int64, Fields[i].second);
+ Ops[i * 2 + 2] = createConstant(ConstantInt::get(Int64, Fields[i].second));
}
return MDNode::get(Context, Ops);
}
@@ -125,7 +147,7 @@ MDNode *MDBuilder::createTBAAStructTypeNode(
MDNode *MDBuilder::createTBAAScalarTypeNode(StringRef Name, MDNode *Parent,
uint64_t Offset) {
ConstantInt *Off = ConstantInt::get(Type::getInt64Ty(Context), Offset);
- Value *Ops[3] = {createString(Name), Parent, Off};
+ Metadata *Ops[3] = {createString(Name), Parent, createConstant(Off)};
return MDNode::get(Context, Ops);
}
@@ -134,6 +156,7 @@ MDNode *MDBuilder::createTBAAScalarTypeNode(StringRef Name, MDNode *Parent,
MDNode *MDBuilder::createTBAAStructTagNode(MDNode *BaseType, MDNode *AccessType,
uint64_t Offset) {
Type *Int64 = Type::getInt64Ty(Context);
- Value *Ops[3] = {BaseType, AccessType, ConstantInt::get(Int64, Offset)};
+ Metadata *Ops[3] = {BaseType, AccessType,
+ createConstant(ConstantInt::get(Int64, Offset))};
return MDNode::get(Context, Ops);
}
diff --git a/contrib/llvm/lib/IR/Mangler.cpp b/contrib/llvm/lib/IR/Mangler.cpp
index 27d973b..5eeb797 100644
--- a/contrib/llvm/lib/IR/Mangler.cpp
+++ b/contrib/llvm/lib/IR/Mangler.cpp
@@ -22,23 +22,25 @@ using namespace llvm;
static void getNameWithPrefixx(raw_ostream &OS, const Twine &GVName,
Mangler::ManglerPrefixTy PrefixTy,
- const DataLayout &DL, bool UseAt) {
+ const DataLayout &DL, char Prefix) {
SmallString<256> TmpData;
StringRef Name = GVName.toStringRef(TmpData);
assert(!Name.empty() && "getNameWithPrefix requires non-empty name");
+ // No need to do anything special if the global has the special "do not
+ // mangle" flag in the name.
+ if (Name[0] == '\1') {
+ OS << Name.substr(1);
+ return;
+ }
+
if (PrefixTy == Mangler::Private)
OS << DL.getPrivateGlobalPrefix();
else if (PrefixTy == Mangler::LinkerPrivate)
OS << DL.getLinkerPrivateGlobalPrefix();
- if (UseAt) {
- OS << '@';
- } else {
- char Prefix = DL.getGlobalPrefix();
- if (Prefix != '\0')
- OS << Prefix;
- }
+ if (Prefix != '\0')
+ OS << Prefix;
// If this is a simple string that doesn't need escaping, just append it.
OS << Name;
@@ -46,7 +48,8 @@ static void getNameWithPrefixx(raw_ostream &OS, const Twine &GVName,
void Mangler::getNameWithPrefix(raw_ostream &OS, const Twine &GVName,
ManglerPrefixTy PrefixTy) const {
- return getNameWithPrefixx(OS, GVName, PrefixTy, *DL, false);
+ char Prefix = DL->getGlobalPrefix();
+ return getNameWithPrefixx(OS, GVName, PrefixTy, *DL, Prefix);
}
void Mangler::getNameWithPrefix(SmallVectorImpl<char> &OutName,
@@ -56,11 +59,21 @@ void Mangler::getNameWithPrefix(SmallVectorImpl<char> &OutName,
return getNameWithPrefix(OS, GVName, PrefixTy);
}
-/// AddFastCallStdCallSuffix - Microsoft fastcall and stdcall functions require
-/// a suffix on their name indicating the number of words of arguments they
-/// take.
-static void AddFastCallStdCallSuffix(raw_ostream &OS, const Function *F,
- const DataLayout &TD) {
+static bool hasByteCountSuffix(CallingConv::ID CC) {
+ switch (CC) {
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_StdCall:
+ case CallingConv::X86_VectorCall:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// Microsoft fastcall and stdcall functions require a suffix on their name
+/// indicating the number of words of arguments they take.
+static void addByteCountSuffix(raw_ostream &OS, const Function *F,
+ const DataLayout &TD) {
// Calculate arguments size total.
unsigned ArgWords = 0;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
@@ -69,8 +82,9 @@ static void AddFastCallStdCallSuffix(raw_ostream &OS, const Function *F,
// 'Dereference' type in case of byval or inalloca parameter attribute.
if (AI->hasByValOrInAllocaAttr())
Ty = cast<PointerType>(Ty)->getElementType();
- // Size should be aligned to DWORD boundary
- ArgWords += ((TD.getTypeAllocSize(Ty) + 3)/4)*4;
+ // Size should be aligned to pointer size.
+ unsigned PtrSize = TD.getPointerSize();
+ ArgWords += RoundUpToAlignment(TD.getTypeAllocSize(Ty), PtrSize);
}
OS << '@' << ArgWords;
@@ -99,41 +113,41 @@ void Mangler::getNameWithPrefix(raw_ostream &OS, const GlobalValue *GV,
}
StringRef Name = GV->getName();
-
- // No need to do anything special if the global has the special "do not
- // mangle" flag in the name.
- if (Name[0] == '\1') {
- OS << Name.substr(1);
- return;
- }
-
- bool UseAt = false;
- const Function *MSFunc = nullptr;
- CallingConv::ID CC;
- if (DL->hasMicrosoftFastStdCallMangling()) {
- if ((MSFunc = dyn_cast<Function>(GV))) {
- CC = MSFunc->getCallingConv();
- // fastcall functions need to start with @ instead of _.
- if (CC == CallingConv::X86_FastCall)
- UseAt = true;
- }
+ char Prefix = DL->getGlobalPrefix();
+
+ // Mangle functions with Microsoft calling conventions specially. Only do
+ // this mangling for x86_64 vectorcall and 32-bit x86.
+ const Function *MSFunc = dyn_cast<Function>(GV);
+ if (Name.startswith("\01"))
+ MSFunc = nullptr; // Don't mangle when \01 is present.
+ CallingConv::ID CC =
+ MSFunc ? MSFunc->getCallingConv() : (unsigned)CallingConv::C;
+ if (!DL->hasMicrosoftFastStdCallMangling() &&
+ CC != CallingConv::X86_VectorCall)
+ MSFunc = nullptr;
+ if (MSFunc) {
+ if (CC == CallingConv::X86_FastCall)
+ Prefix = '@'; // fastcall functions have an @ prefix instead of _.
+ else if (CC == CallingConv::X86_VectorCall)
+ Prefix = '\0'; // vectorcall functions have no prefix.
}
- getNameWithPrefixx(OS, Name, PrefixTy, *DL, UseAt);
+ getNameWithPrefixx(OS, Name, PrefixTy, *DL, Prefix);
if (!MSFunc)
return;
- // If we are supposed to add a microsoft-style suffix for stdcall/fastcall,
- // add it.
- // fastcall and stdcall functions usually need @42 at the end to specify
- // the argument info.
+ // If we are supposed to add a microsoft-style suffix for stdcall, fastcall,
+ // or vectorcall, add it. These functions have a suffix of @N where N is the
+ // cumulative byte size of all of the parameters to the function in decimal.
+ if (CC == CallingConv::X86_VectorCall)
+ OS << '@'; // vectorcall functions use a double @ suffix.
FunctionType *FT = MSFunc->getFunctionType();
- if ((CC == CallingConv::X86_FastCall || CC == CallingConv::X86_StdCall) &&
+ if (hasByteCountSuffix(CC) &&
// "Pure" variadic functions do not receive @0 suffix.
(!FT->isVarArg() || FT->getNumParams() == 0 ||
(FT->getNumParams() == 1 && MSFunc->hasStructRetAttr())))
- AddFastCallStdCallSuffix(OS, MSFunc, *DL);
+ addByteCountSuffix(OS, MSFunc, *DL);
}
void Mangler::getNameWithPrefix(SmallVectorImpl<char> &OutName,
diff --git a/contrib/llvm/lib/IR/Metadata.cpp b/contrib/llvm/lib/IR/Metadata.cpp
index 59137e4..2c6b332 100644
--- a/contrib/llvm/lib/IR/Metadata.cpp
+++ b/contrib/llvm/lib/IR/Metadata.cpp
@@ -22,396 +22,816 @@
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
+
using namespace llvm;
-//===----------------------------------------------------------------------===//
-// MDString implementation.
-//
+MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
+ : Value(Ty, MetadataAsValueVal), MD(MD) {
+ track();
+}
-void MDString::anchor() { }
+MetadataAsValue::~MetadataAsValue() {
+ getType()->getContext().pImpl->MetadataAsValues.erase(MD);
+ untrack();
+}
-MDString::MDString(LLVMContext &C)
- : Value(Type::getMetadataTy(C), Value::MDStringVal) {}
+/// \brief Canonicalize metadata arguments to intrinsics.
+///
+/// To support bitcode upgrades (and assembly semantic sugar) for \a
+/// MetadataAsValue, we need to canonicalize certain metadata.
+///
+/// - nullptr is replaced by an empty MDNode.
+/// - An MDNode with a single null operand is replaced by an empty MDNode.
+/// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
+///
+/// This maintains readability of bitcode from when metadata was a type of
+/// value, and these bridges were unnecessary.
+static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
+ Metadata *MD) {
+ if (!MD)
+ // !{}
+ return MDNode::get(Context, None);
+
+ // Return early if this isn't a single-operand MDNode.
+ auto *N = dyn_cast<MDNode>(MD);
+ if (!N || N->getNumOperands() != 1)
+ return MD;
+
+ if (!N->getOperand(0))
+ // !{}
+ return MDNode::get(Context, None);
+
+ if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
+ // Look through the MDNode.
+ return C;
+
+ return MD;
+}
-MDString *MDString::get(LLVMContext &Context, StringRef Str) {
- LLVMContextImpl *pImpl = Context.pImpl;
- StringMapEntry<Value*> &Entry =
- pImpl->MDStringCache.GetOrCreateValue(Str);
- Value *&S = Entry.getValue();
- if (!S) S = new MDString(Context);
- S->setValueName(&Entry);
- return cast<MDString>(S);
+MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
+ MD = canonicalizeMetadataForValue(Context, MD);
+ auto *&Entry = Context.pImpl->MetadataAsValues[MD];
+ if (!Entry)
+ Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
+ return Entry;
}
-//===----------------------------------------------------------------------===//
-// MDNodeOperand implementation.
-//
+MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
+ Metadata *MD) {
+ MD = canonicalizeMetadataForValue(Context, MD);
+ auto &Store = Context.pImpl->MetadataAsValues;
+ auto I = Store.find(MD);
+ return I == Store.end() ? nullptr : I->second;
+}
-// Use CallbackVH to hold MDNode operands.
-namespace llvm {
-class MDNodeOperand : public CallbackVH {
- MDNode *getParent() {
- MDNodeOperand *Cur = this;
+void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
+ LLVMContext &Context = getContext();
+ MD = canonicalizeMetadataForValue(Context, MD);
+ auto &Store = Context.pImpl->MetadataAsValues;
+
+ // Stop tracking the old metadata.
+ Store.erase(this->MD);
+ untrack();
+ this->MD = nullptr;
+
+ // Start tracking MD, or RAUW if necessary.
+ auto *&Entry = Store[MD];
+ if (Entry) {
+ replaceAllUsesWith(Entry);
+ delete this;
+ return;
+ }
+
+ this->MD = MD;
+ track();
+ Entry = this;
+}
+
+void MetadataAsValue::track() {
+ if (MD)
+ MetadataTracking::track(&MD, *MD, *this);
+}
+
+void MetadataAsValue::untrack() {
+ if (MD)
+ MetadataTracking::untrack(MD);
+}
+
+void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
+ bool WasInserted =
+ UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
+ .second;
+ (void)WasInserted;
+ assert(WasInserted && "Expected to add a reference");
+
+ ++NextIndex;
+ assert(NextIndex != 0 && "Unexpected overflow");
+}
+
+void ReplaceableMetadataImpl::dropRef(void *Ref) {
+ bool WasErased = UseMap.erase(Ref);
+ (void)WasErased;
+ assert(WasErased && "Expected to drop a reference");
+}
+
+void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
+ const Metadata &MD) {
+ auto I = UseMap.find(Ref);
+ assert(I != UseMap.end() && "Expected to move a reference");
+ auto OwnerAndIndex = I->second;
+ UseMap.erase(I);
+ bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
+ (void)WasInserted;
+ assert(WasInserted && "Expected to add a reference");
+
+ // Check that the references are direct if there's no owner.
+ (void)MD;
+ assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
+ "Reference without owner must be direct");
+ assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
+ "Reference without owner must be direct");
+}
+
+void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
+ assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Expected non-temp node");
+
+ if (UseMap.empty())
+ return;
+
+ // Copy out uses since UseMap will get touched below.
+ typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
+ SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
+ std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
+ return L.second.second < R.second.second;
+ });
+ for (const auto &Pair : Uses) {
+ // Check that this Ref hasn't disappeared after RAUW (when updating a
+ // previous Ref).
+ if (!UseMap.count(Pair.first))
+ continue;
+
+ OwnerTy Owner = Pair.second.first;
+ if (!Owner) {
+ // Update unowned tracking references directly.
+ Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
+ Ref = MD;
+ if (MD)
+ MetadataTracking::track(Ref);
+ UseMap.erase(Pair.first);
+ continue;
+ }
+
+ // Check for MetadataAsValue.
+ if (Owner.is<MetadataAsValue *>()) {
+ Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
+ continue;
+ }
+
+ // There's a Metadata owner -- dispatch.
+ Metadata *OwnerMD = Owner.get<Metadata *>();
+ switch (OwnerMD->getMetadataID()) {
+#define HANDLE_METADATA_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
+ continue;
+#include "llvm/IR/Metadata.def"
+ default:
+ llvm_unreachable("Invalid metadata subclass");
+ }
+ }
+ assert(UseMap.empty() && "Expected all uses to be replaced");
+}
+
+void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
+ if (UseMap.empty())
+ return;
+
+ if (!ResolveUsers) {
+ UseMap.clear();
+ return;
+ }
+
+ // Copy out uses since UseMap could get touched below.
+ typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
+ SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
+ std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
+ return L.second.second < R.second.second;
+ });
+ UseMap.clear();
+ for (const auto &Pair : Uses) {
+ auto Owner = Pair.second.first;
+ if (!Owner)
+ continue;
+ if (Owner.is<MetadataAsValue *>())
+ continue;
- while (Cur->getValPtrInt() != 1)
- --Cur;
+ // Resolve UniquableMDNodes that point at this.
+ auto *OwnerMD = dyn_cast<UniquableMDNode>(Owner.get<Metadata *>());
+ if (!OwnerMD)
+ continue;
+ if (OwnerMD->isResolved())
+ continue;
+ OwnerMD->decrementUnresolvedOperandCount();
+ }
+}
- assert(Cur->getValPtrInt() == 1 &&
- "Couldn't find the beginning of the operand list!");
- return reinterpret_cast<MDNode*>(Cur) - 1;
+static Function *getLocalFunction(Value *V) {
+ assert(V && "Expected value");
+ if (auto *A = dyn_cast<Argument>(V))
+ return A->getParent();
+ if (BasicBlock *BB = cast<Instruction>(V)->getParent())
+ return BB->getParent();
+ return nullptr;
+}
+
+ValueAsMetadata *ValueAsMetadata::get(Value *V) {
+ assert(V && "Unexpected null Value");
+
+ auto &Context = V->getContext();
+ auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
+ if (!Entry) {
+ assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
+ "Expected constant or function-local value");
+ assert(!V->NameAndIsUsedByMD.getInt() &&
+ "Expected this to be the only metadata use");
+ V->NameAndIsUsedByMD.setInt(true);
+ if (auto *C = dyn_cast<Constant>(V))
+ Entry = new ConstantAsMetadata(C);
+ else
+ Entry = new LocalAsMetadata(V);
}
-public:
- MDNodeOperand(Value *V) : CallbackVH(V) {}
- virtual ~MDNodeOperand();
+ return Entry;
+}
+
+ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
+ assert(V && "Unexpected null Value");
+ return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
+}
- void set(Value *V) {
- unsigned IsFirst = this->getValPtrInt();
- this->setValPtr(V);
- this->setAsFirstOperand(IsFirst);
+void ValueAsMetadata::handleDeletion(Value *V) {
+ assert(V && "Expected valid value");
+
+ auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
+ auto I = Store.find(V);
+ if (I == Store.end())
+ return;
+
+ // Remove old entry from the map.
+ ValueAsMetadata *MD = I->second;
+ assert(MD && "Expected valid metadata");
+ assert(MD->getValue() == V && "Expected valid mapping");
+ Store.erase(I);
+
+ // Delete the metadata.
+ MD->replaceAllUsesWith(nullptr);
+ delete MD;
+}
+
+void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
+ assert(From && "Expected valid value");
+ assert(To && "Expected valid value");
+ assert(From != To && "Expected changed value");
+ assert(From->getType() == To->getType() && "Unexpected type change");
+
+ LLVMContext &Context = From->getType()->getContext();
+ auto &Store = Context.pImpl->ValuesAsMetadata;
+ auto I = Store.find(From);
+ if (I == Store.end()) {
+ assert(!From->NameAndIsUsedByMD.getInt() &&
+ "Expected From not to be used by metadata");
+ return;
+ }
+
+ // Remove old entry from the map.
+ assert(From->NameAndIsUsedByMD.getInt() &&
+ "Expected From to be used by metadata");
+ From->NameAndIsUsedByMD.setInt(false);
+ ValueAsMetadata *MD = I->second;
+ assert(MD && "Expected valid metadata");
+ assert(MD->getValue() == From && "Expected valid mapping");
+ Store.erase(I);
+
+ if (isa<LocalAsMetadata>(MD)) {
+ if (auto *C = dyn_cast<Constant>(To)) {
+ // Local became a constant.
+ MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
+ delete MD;
+ return;
+ }
+ if (getLocalFunction(From) && getLocalFunction(To) &&
+ getLocalFunction(From) != getLocalFunction(To)) {
+ // Function changed.
+ MD->replaceAllUsesWith(nullptr);
+ delete MD;
+ return;
+ }
+ } else if (!isa<Constant>(To)) {
+ // Changed to function-local value.
+ MD->replaceAllUsesWith(nullptr);
+ delete MD;
+ return;
}
- /// setAsFirstOperand - Accessor method to mark the operand as the first in
- /// the list.
- void setAsFirstOperand(unsigned V) { this->setValPtrInt(V); }
+ auto *&Entry = Store[To];
+ if (Entry) {
+ // The target already exists.
+ MD->replaceAllUsesWith(Entry);
+ delete MD;
+ return;
+ }
- void deleted() override;
- void allUsesReplacedWith(Value *NV) override;
-};
-} // end namespace llvm.
+ // Update MD in place (and update the map entry).
+ assert(!To->NameAndIsUsedByMD.getInt() &&
+ "Expected this to be the only metadata use");
+ To->NameAndIsUsedByMD.setInt(true);
+ MD->V = To;
+ Entry = MD;
+}
-// Provide out-of-line definition to prevent weak vtable.
-MDNodeOperand::~MDNodeOperand() {}
+//===----------------------------------------------------------------------===//
+// MDString implementation.
+//
-void MDNodeOperand::deleted() {
- getParent()->replaceOperand(this, nullptr);
+MDString *MDString::get(LLVMContext &Context, StringRef Str) {
+ auto &Store = Context.pImpl->MDStringCache;
+ auto I = Store.find(Str);
+ if (I != Store.end())
+ return &I->second;
+
+ auto *Entry =
+ StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
+ bool WasInserted = Store.insert(Entry);
+ (void)WasInserted;
+ assert(WasInserted && "Expected entry to be inserted");
+ Entry->second.Entry = Entry;
+ return &Entry->second;
}
-void MDNodeOperand::allUsesReplacedWith(Value *NV) {
- getParent()->replaceOperand(this, NV);
+StringRef MDString::getString() const {
+ assert(Entry && "Expected to find string map entry");
+ return Entry->first();
}
//===----------------------------------------------------------------------===//
// MDNode implementation.
//
-/// getOperandPtr - Helper function to get the MDNodeOperand's coallocated on
-/// the end of the MDNode.
-static MDNodeOperand *getOperandPtr(MDNode *N, unsigned Op) {
- // Use <= instead of < to permit a one-past-the-end address.
- assert(Op <= N->getNumOperands() && "Invalid operand number");
- return reinterpret_cast<MDNodeOperand*>(N + 1) + Op;
+void *MDNode::operator new(size_t Size, unsigned NumOps) {
+ void *Ptr = ::operator new(Size + NumOps * sizeof(MDOperand));
+ MDOperand *O = static_cast<MDOperand *>(Ptr);
+ for (MDOperand *E = O + NumOps; O != E; ++O)
+ (void)new (O) MDOperand;
+ return O;
}
-void MDNode::replaceOperandWith(unsigned i, Value *Val) {
- MDNodeOperand *Op = getOperandPtr(this, i);
- replaceOperand(Op, Val);
+void MDNode::operator delete(void *Mem) {
+ MDNode *N = static_cast<MDNode *>(Mem);
+ MDOperand *O = static_cast<MDOperand *>(Mem);
+ for (MDOperand *E = O - N->NumOperands; O != E; --O)
+ (O - 1)->~MDOperand();
+ ::operator delete(O);
}
-MDNode::MDNode(LLVMContext &C, ArrayRef<Value*> Vals, bool isFunctionLocal)
-: Value(Type::getMetadataTy(C), Value::MDNodeVal) {
- NumOperands = Vals.size();
+MDNode::MDNode(LLVMContext &Context, unsigned ID, ArrayRef<Metadata *> MDs)
+ : Metadata(ID), Context(Context), NumOperands(MDs.size()),
+ MDNodeSubclassData(0) {
+ for (unsigned I = 0, E = MDs.size(); I != E; ++I)
+ setOperand(I, MDs[I]);
+}
- if (isFunctionLocal)
- setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit);
+bool MDNode::isResolved() const {
+ if (isa<MDNodeFwdDecl>(this))
+ return false;
+ return cast<UniquableMDNode>(this)->isResolved();
+}
- // Initialize the operand list, which is co-allocated on the end of the node.
- unsigned i = 0;
- for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands;
- Op != E; ++Op, ++i) {
- new (Op) MDNodeOperand(Vals[i]);
+static bool isOperandUnresolved(Metadata *Op) {
+ if (auto *N = dyn_cast_or_null<MDNode>(Op))
+ return !N->isResolved();
+ return false;
+}
- // Mark the first MDNodeOperand as being the first in the list of operands.
- if (i == 0)
- Op->setAsFirstOperand(1);
- }
+UniquableMDNode::UniquableMDNode(LLVMContext &C, unsigned ID,
+ ArrayRef<Metadata *> Vals, bool AllowRAUW)
+ : MDNode(C, ID, Vals) {
+ if (!AllowRAUW)
+ return;
+
+ // Check whether any operands are unresolved, requiring re-uniquing.
+ unsigned NumUnresolved = 0;
+ for (const auto &Op : operands())
+ NumUnresolved += unsigned(isOperandUnresolved(Op));
+
+ if (!NumUnresolved)
+ return;
+
+ ReplaceableUses.reset(new ReplaceableMetadataImpl);
+ SubclassData32 = NumUnresolved;
}
-/// ~MDNode - Destroy MDNode.
-MDNode::~MDNode() {
- assert((getSubclassDataFromValue() & DestroyFlag) != 0 &&
- "Not being destroyed through destroy()?");
- LLVMContextImpl *pImpl = getType()->getContext().pImpl;
- if (isNotUniqued()) {
- pImpl->NonUniquedMDNodes.erase(this);
- } else {
- pImpl->MDNodeSet.RemoveNode(this);
- }
+void UniquableMDNode::resolve() {
+ assert(!isResolved() && "Expected this to be unresolved");
+
+ // Move the map, so that this immediately looks resolved.
+ auto Uses = std::move(ReplaceableUses);
+ SubclassData32 = 0;
+ assert(isResolved() && "Expected this to be resolved");
- // Destroy the operands.
- for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands;
- Op != E; ++Op)
- Op->~MDNodeOperand();
+ // Drop RAUW support.
+ Uses->resolveAllUses();
}
-static const Function *getFunctionForValue(Value *V) {
- if (!V) return nullptr;
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- BasicBlock *BB = I->getParent();
- return BB ? BB->getParent() : nullptr;
- }
- if (Argument *A = dyn_cast<Argument>(V))
- return A->getParent();
- if (BasicBlock *BB = dyn_cast<BasicBlock>(V))
- return BB->getParent();
- if (MDNode *MD = dyn_cast<MDNode>(V))
- return MD->getFunction();
- return nullptr;
+void UniquableMDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
+ assert(SubclassData32 != 0 && "Expected unresolved operands");
+
+ // Check if an operand was resolved.
+ if (!isOperandUnresolved(Old)) {
+ if (isOperandUnresolved(New))
+ // An operand was un-resolved!
+ ++SubclassData32;
+ } else if (!isOperandUnresolved(New))
+ decrementUnresolvedOperandCount();
}
-#ifndef NDEBUG
-static const Function *assertLocalFunction(const MDNode *N) {
- if (!N->isFunctionLocal()) return nullptr;
-
- // FIXME: This does not handle cyclic function local metadata.
- const Function *F = nullptr, *NewF = nullptr;
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- if (Value *V = N->getOperand(i)) {
- if (MDNode *MD = dyn_cast<MDNode>(V))
- NewF = assertLocalFunction(MD);
- else
- NewF = getFunctionForValue(V);
- }
- if (!F)
- F = NewF;
- else
- assert((NewF == nullptr || F == NewF) &&
- "inconsistent function-local metadata");
+void UniquableMDNode::decrementUnresolvedOperandCount() {
+ if (!--SubclassData32)
+ // Last unresolved operand has just been resolved.
+ resolve();
+}
+
+void UniquableMDNode::resolveCycles() {
+ if (isResolved())
+ return;
+
+ // Resolve this node immediately.
+ resolve();
+
+ // Resolve all operands.
+ for (const auto &Op : operands()) {
+ if (!Op)
+ continue;
+ assert(!isa<MDNodeFwdDecl>(Op) &&
+ "Expected all forward declarations to be resolved");
+ if (auto *N = dyn_cast<UniquableMDNode>(Op))
+ if (!N->isResolved())
+ N->resolveCycles();
}
- return F;
}
-#endif
-// getFunction - If this metadata is function-local and recursively has a
-// function-local operand, return the first such operand's parent function.
-// Otherwise, return null. getFunction() should not be used for performance-
-// critical code because it recursively visits all the MDNode's operands.
-const Function *MDNode::getFunction() const {
+void MDTuple::recalculateHash() {
+ setHash(hash_combine_range(op_begin(), op_end()));
#ifndef NDEBUG
- return assertLocalFunction(this);
-#else
- if (!isFunctionLocal()) return nullptr;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (const Function *F = getFunctionForValue(getOperand(i)))
- return F;
- return nullptr;
+ {
+ SmallVector<Metadata *, 8> MDs(op_begin(), op_end());
+ unsigned RawHash = hash_combine_range(MDs.begin(), MDs.end());
+ assert(getHash() == RawHash &&
+ "Expected hash of MDOperand to equal hash of Metadata*");
+ }
#endif
}
-// destroy - Delete this node. Only when there are no uses.
-void MDNode::destroy() {
- setValueSubclassData(getSubclassDataFromValue() | DestroyFlag);
- // Placement delete, then free the memory.
- this->~MDNode();
- free(this);
+void MDNode::dropAllReferences() {
+ for (unsigned I = 0, E = NumOperands; I != E; ++I)
+ setOperand(I, nullptr);
+ if (auto *N = dyn_cast<UniquableMDNode>(this))
+ if (!N->isResolved()) {
+ N->ReplaceableUses->resolveAllUses(/* ResolveUsers */ false);
+ N->ReplaceableUses.reset();
+ }
}
-/// isFunctionLocalValue - Return true if this is a value that would require a
-/// function-local MDNode.
-static bool isFunctionLocalValue(Value *V) {
- return isa<Instruction>(V) || isa<Argument>(V) || isa<BasicBlock>(V) ||
- (isa<MDNode>(V) && cast<MDNode>(V)->isFunctionLocal());
+namespace llvm {
+/// \brief Make MDOperand transparent for hashing.
+///
+/// This overload of an implementation detail of the hashing library makes
+/// MDOperand hash to the same value as a \a Metadata pointer.
+///
+/// Note that overloading \a hash_value() as follows:
+///
+/// \code
+/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
+/// \endcode
+///
+/// does not cause MDOperand to be transparent. In particular, a bare pointer
+/// doesn't get hashed before it's combined, whereas \a MDOperand would.
+static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
}
-MDNode *MDNode::getMDNode(LLVMContext &Context, ArrayRef<Value*> Vals,
- FunctionLocalness FL, bool Insert) {
- LLVMContextImpl *pImpl = Context.pImpl;
+void UniquableMDNode::handleChangedOperand(void *Ref, Metadata *New) {
+ unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
+ assert(Op < getNumOperands() && "Expected valid operand");
- // Add all the operand pointers. Note that we don't have to add the
- // isFunctionLocal bit because that's implied by the operands.
- // Note that if the operands are later nulled out, the node will be
- // removed from the uniquing map.
- FoldingSetNodeID ID;
- for (Value *V : Vals)
- ID.AddPointer(V);
+ if (isStoredDistinctInContext()) {
+ assert(isResolved() && "Expected distinct node to be resolved");
- void *InsertPoint;
- MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
+ // This node is not uniqued. Just set the operand and be done with it.
+ setOperand(Op, New);
+ return;
+ }
- if (N || !Insert)
- return N;
+ // This node is uniqued.
+ eraseFromStore();
- bool isFunctionLocal = false;
- switch (FL) {
- case FL_Unknown:
- for (Value *V : Vals) {
- if (!V) continue;
- if (isFunctionLocalValue(V)) {
- isFunctionLocal = true;
- break;
- }
- }
- break;
- case FL_No:
- isFunctionLocal = false;
+ Metadata *Old = getOperand(Op);
+ setOperand(Op, New);
+
+ // Drop uniquing for self-reference cycles.
+ if (New == this) {
+ storeDistinctInContext();
+ if (!isResolved())
+ resolve();
+ return;
+ }
+
+ // Re-unique the node.
+ auto *Uniqued = uniquify();
+ if (Uniqued == this) {
+ if (!isResolved())
+ resolveAfterOperandChange(Old, New);
+ return;
+ }
+
+ // Collision.
+ if (!isResolved()) {
+ // Still unresolved, so RAUW.
+ //
+ // First, clear out all operands to prevent any recursion (similar to
+ // dropAllReferences(), but we still need the use-list).
+ for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
+ setOperand(O, nullptr);
+ ReplaceableUses->replaceAllUsesWith(Uniqued);
+ deleteAsSubclass();
+ return;
+ }
+
+ // Store in non-uniqued form if RAUW isn't possible.
+ storeDistinctInContext();
+}
+
+void UniquableMDNode::deleteAsSubclass() {
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of UniquableMDNode");
+#define HANDLE_UNIQUABLE_LEAF(CLASS) \
+ case CLASS##Kind: \
+ delete cast<CLASS>(this); \
break;
- case FL_Yes:
- isFunctionLocal = true;
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+UniquableMDNode *UniquableMDNode::uniquify() {
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of UniquableMDNode");
+#define HANDLE_UNIQUABLE_LEAF(CLASS) \
+ case CLASS##Kind: \
+ return cast<CLASS>(this)->uniquifyImpl();
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+void UniquableMDNode::eraseFromStore() {
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of UniquableMDNode");
+#define HANDLE_UNIQUABLE_LEAF(CLASS) \
+ case CLASS##Kind: \
+ cast<CLASS>(this)->eraseFromStoreImpl(); \
break;
+#include "llvm/IR/Metadata.def"
}
+}
- // Coallocate space for the node and Operands together, then placement new.
- void *Ptr = malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand));
- N = new (Ptr) MDNode(Context, Vals, isFunctionLocal);
+MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
+ bool ShouldCreate) {
+ MDTupleInfo::KeyTy Key(MDs);
- // Cache the operand hash.
- N->Hash = ID.ComputeHash();
+ auto &Store = Context.pImpl->MDTuples;
+ auto I = Store.find_as(Key);
+ if (I != Store.end())
+ return *I;
+ if (!ShouldCreate)
+ return nullptr;
- // InsertPoint will have been set by the FindNodeOrInsertPos call.
- pImpl->MDNodeSet.InsertNode(N, InsertPoint);
+ // Coallocate space for the node and Operands together, then placement new.
+ auto *N = new (MDs.size()) MDTuple(Context, MDs, /* AllowRAUW */ true);
+ N->setHash(Key.Hash);
+ Store.insert(N);
+ return N;
+}
+MDTuple *MDTuple::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
+ auto *N = new (MDs.size()) MDTuple(Context, MDs, /* AllowRAUW */ false);
+ N->storeDistinctInContext();
return N;
}
-MDNode *MDNode::get(LLVMContext &Context, ArrayRef<Value*> Vals) {
- return getMDNode(Context, Vals, FL_Unknown);
+MDTuple *MDTuple::uniquifyImpl() {
+ recalculateHash();
+ MDTupleInfo::KeyTy Key(this);
+
+ auto &Store = getContext().pImpl->MDTuples;
+ auto I = Store.find_as(Key);
+ if (I == Store.end()) {
+ Store.insert(this);
+ return this;
+ }
+ return *I;
}
-MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context,
- ArrayRef<Value*> Vals,
- bool isFunctionLocal) {
- return getMDNode(Context, Vals, isFunctionLocal ? FL_Yes : FL_No);
+void MDTuple::eraseFromStoreImpl() { getContext().pImpl->MDTuples.erase(this); }
+
+MDLocation::MDLocation(LLVMContext &C, unsigned Line, unsigned Column,
+ ArrayRef<Metadata *> MDs, bool AllowRAUW)
+ : UniquableMDNode(C, MDLocationKind, MDs, AllowRAUW) {
+ assert((MDs.size() == 1 || MDs.size() == 2) &&
+ "Expected a scope and optional inlined-at");
+
+ // Set line and column.
+ assert(Line < (1u << 24) && "Expected 24-bit line");
+ assert(Column < (1u << 8) && "Expected 8-bit column");
+
+ MDNodeSubclassData = Line;
+ SubclassData16 = Column;
}
-MDNode *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Value*> Vals) {
- return getMDNode(Context, Vals, FL_Unknown, false);
+MDLocation *MDLocation::constructHelper(LLVMContext &Context, unsigned Line,
+ unsigned Column, Metadata *Scope,
+ Metadata *InlinedAt, bool AllowRAUW) {
+ SmallVector<Metadata *, 2> Ops;
+ Ops.push_back(Scope);
+ if (InlinedAt)
+ Ops.push_back(InlinedAt);
+ return new (Ops.size()) MDLocation(Context, Line, Column, Ops, AllowRAUW);
}
-MDNode *MDNode::getTemporary(LLVMContext &Context, ArrayRef<Value*> Vals) {
- MDNode *N =
- (MDNode *)malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand));
- N = new (N) MDNode(Context, Vals, FL_No);
- N->setValueSubclassData(N->getSubclassDataFromValue() |
- NotUniquedBit);
- LeakDetector::addGarbageObject(N);
+static void adjustLine(unsigned &Line) {
+ // Set to unknown on overflow. Still use 24 bits for now.
+ if (Line >= (1u << 24))
+ Line = 0;
+}
+
+static void adjustColumn(unsigned &Column) {
+ // Set to unknown on overflow. Still use 8 bits for now.
+ if (Column >= (1u << 8))
+ Column = 0;
+}
+
+MDLocation *MDLocation::getImpl(LLVMContext &Context, unsigned Line,
+ unsigned Column, Metadata *Scope,
+ Metadata *InlinedAt, bool ShouldCreate) {
+ // Fixup line/column.
+ adjustLine(Line);
+ adjustColumn(Column);
+
+ MDLocationInfo::KeyTy Key(Line, Column, Scope, InlinedAt);
+
+ auto &Store = Context.pImpl->MDLocations;
+ auto I = Store.find_as(Key);
+ if (I != Store.end())
+ return *I;
+ if (!ShouldCreate)
+ return nullptr;
+
+ auto *N = constructHelper(Context, Line, Column, Scope, InlinedAt,
+ /* AllowRAUW */ true);
+ Store.insert(N);
return N;
}
-void MDNode::deleteTemporary(MDNode *N) {
- assert(N->use_empty() && "Temporary MDNode has uses!");
- assert(!N->getContext().pImpl->MDNodeSet.RemoveNode(N) &&
- "Deleting a non-temporary uniqued node!");
- assert(!N->getContext().pImpl->NonUniquedMDNodes.erase(N) &&
- "Deleting a non-temporary non-uniqued node!");
- assert((N->getSubclassDataFromValue() & NotUniquedBit) &&
- "Temporary MDNode does not have NotUniquedBit set!");
- assert((N->getSubclassDataFromValue() & DestroyFlag) == 0 &&
- "Temporary MDNode has DestroyFlag set!");
- LeakDetector::removeGarbageObject(N);
- N->destroy();
-}
-
-/// getOperand - Return specified operand.
-Value *MDNode::getOperand(unsigned i) const {
- assert(i < getNumOperands() && "Invalid operand number");
- return *getOperandPtr(const_cast<MDNode*>(this), i);
-}
-
-void MDNode::Profile(FoldingSetNodeID &ID) const {
- // Add all the operand pointers. Note that we don't have to add the
- // isFunctionLocal bit because that's implied by the operands.
- // Note that if the operands are later nulled out, the node will be
- // removed from the uniquing map.
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- ID.AddPointer(getOperand(i));
-}
-
-void MDNode::setIsNotUniqued() {
- setValueSubclassData(getSubclassDataFromValue() | NotUniquedBit);
- LLVMContextImpl *pImpl = getType()->getContext().pImpl;
- pImpl->NonUniquedMDNodes.insert(this);
-}
-
-// Replace value from this node's operand list.
-void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) {
- Value *From = *Op;
-
- // If is possible that someone did GV->RAUW(inst), replacing a global variable
- // with an instruction or some other function-local object. If this is a
- // non-function-local MDNode, it can't point to a function-local object.
- // Handle this case by implicitly dropping the MDNode reference to null.
- // Likewise if the MDNode is function-local but for a different function.
- if (To && isFunctionLocalValue(To)) {
- if (!isFunctionLocal())
- To = nullptr;
- else {
- const Function *F = getFunction();
- const Function *FV = getFunctionForValue(To);
- // Metadata can be function-local without having an associated function.
- // So only consider functions to have changed if non-null.
- if (F && FV && F != FV)
- To = nullptr;
- }
+MDLocation *MDLocation::getDistinct(LLVMContext &Context, unsigned Line,
+ unsigned Column, Metadata *Scope,
+ Metadata *InlinedAt) {
+ // Fixup line/column.
+ adjustLine(Line);
+ adjustColumn(Column);
+
+ auto *N = constructHelper(Context, Line, Column, Scope, InlinedAt,
+ /* AllowRAUW */ false);
+ N->storeDistinctInContext();
+ return N;
+}
+
+MDLocation *MDLocation::uniquifyImpl() {
+ MDLocationInfo::KeyTy Key(this);
+
+ auto &Store = getContext().pImpl->MDLocations;
+ auto I = Store.find_as(Key);
+ if (I == Store.end()) {
+ Store.insert(this);
+ return this;
}
-
- if (From == To)
- return;
+ return *I;
+}
- // Update the operand.
- Op->set(To);
+void MDLocation::eraseFromStoreImpl() {
+ getContext().pImpl->MDLocations.erase(this);
+}
- // If this node is already not being uniqued (because one of the operands
- // already went to null), then there is nothing else to do here.
- if (isNotUniqued()) return;
+MDNodeFwdDecl *MDNode::getTemporary(LLVMContext &Context,
+ ArrayRef<Metadata *> MDs) {
+ return MDNodeFwdDecl::get(Context, MDs);
+}
- LLVMContextImpl *pImpl = getType()->getContext().pImpl;
+void MDNode::deleteTemporary(MDNode *N) { delete cast<MDNodeFwdDecl>(N); }
- // Remove "this" from the context map. FoldingSet doesn't have to reprofile
- // this node to remove it, so we don't care what state the operands are in.
- pImpl->MDNodeSet.RemoveNode(this);
+void UniquableMDNode::storeDistinctInContext() {
+ assert(!IsDistinctInContext && "Expected newly distinct metadata");
+ IsDistinctInContext = true;
+ if (auto *T = dyn_cast<MDTuple>(this))
+ T->setHash(0);
+ getContext().pImpl->DistinctMDNodes.insert(this);
+}
- // If we are dropping an argument to null, we choose to not unique the MDNode
- // anymore. This commonly occurs during destruction, and uniquing these
- // brings little reuse. Also, this means we don't need to include
- // isFunctionLocal bits in FoldingSetNodeIDs for MDNodes.
- if (!To) {
- setIsNotUniqued();
+void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
+ if (getOperand(I) == New)
return;
- }
- // Now that the node is out of the folding set, get ready to reinsert it.
- // First, check to see if another node with the same operands already exists
- // in the set. If so, then this node is redundant.
- FoldingSetNodeID ID;
- Profile(ID);
- void *InsertPoint;
- if (MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint)) {
- replaceAllUsesWith(N);
- destroy();
+ if (isDistinct()) {
+ setOperand(I, New);
return;
}
- // Cache the operand hash.
- Hash = ID.ComputeHash();
- // InsertPoint will have been set by the FindNodeOrInsertPos call.
- pImpl->MDNodeSet.InsertNode(this, InsertPoint);
-
- // If this MDValue was previously function-local but no longer is, clear
- // its function-local flag.
- if (isFunctionLocal() && !isFunctionLocalValue(To)) {
- bool isStillFunctionLocal = false;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- Value *V = getOperand(i);
- if (!V) continue;
- if (isFunctionLocalValue(V)) {
- isStillFunctionLocal = true;
+ cast<UniquableMDNode>(this)->handleChangedOperand(mutable_begin() + I, New);
+}
+
+void MDNode::setOperand(unsigned I, Metadata *New) {
+ assert(I < NumOperands);
+ if (isStoredDistinctInContext() || isa<MDNodeFwdDecl>(this))
+ // No need for a callback, this isn't uniqued.
+ mutable_begin()[I].reset(New, nullptr);
+ else
+ mutable_begin()[I].reset(New, this);
+}
+
+/// \brief Get a node, or a self-reference that looks like it.
+///
+/// Special handling for finding self-references, for use by \a
+/// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
+/// when self-referencing nodes were still uniqued. If the first operand has
+/// the same operands as \c Ops, return the first operand instead.
+static MDNode *getOrSelfReference(LLVMContext &Context,
+ ArrayRef<Metadata *> Ops) {
+ if (!Ops.empty())
+ if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
+ if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
+ for (unsigned I = 1, E = Ops.size(); I != E; ++I)
+ if (Ops[I] != N->getOperand(I))
+ return MDNode::get(Context, Ops);
+ return N;
+ }
+
+ return MDNode::get(Context, Ops);
+}
+
+MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
+ if (!A)
+ return B;
+ if (!B)
+ return A;
+
+ SmallVector<Metadata *, 4> MDs(A->getNumOperands() + B->getNumOperands());
+
+ unsigned j = 0;
+ for (unsigned i = 0, ie = A->getNumOperands(); i != ie; ++i)
+ MDs[j++] = A->getOperand(i);
+ for (unsigned i = 0, ie = B->getNumOperands(); i != ie; ++i)
+ MDs[j++] = B->getOperand(i);
+
+ // FIXME: This preserves long-standing behaviour, but is it really the right
+ // behaviour? Or was that an unintended side-effect of node uniquing?
+ return getOrSelfReference(A->getContext(), MDs);
+}
+
+MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
+ if (!A || !B)
+ return nullptr;
+
+ SmallVector<Metadata *, 4> MDs;
+ for (unsigned i = 0, ie = A->getNumOperands(); i != ie; ++i) {
+ Metadata *MD = A->getOperand(i);
+ for (unsigned j = 0, je = B->getNumOperands(); j != je; ++j)
+ if (MD == B->getOperand(j)) {
+ MDs.push_back(MD);
break;
}
- }
- if (!isStillFunctionLocal)
- setValueSubclassData(getSubclassDataFromValue() & ~FunctionLocalBit);
}
+
+ // FIXME: This preserves long-standing behaviour, but is it really the right
+ // behaviour? Or was that an unintended side-effect of node uniquing?
+ return getOrSelfReference(A->getContext(), MDs);
}
MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
if (!A || !B)
return nullptr;
- APFloat AVal = cast<ConstantFP>(A->getOperand(0))->getValueAPF();
- APFloat BVal = cast<ConstantFP>(B->getOperand(0))->getValueAPF();
+ APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
+ APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
if (AVal.compare(BVal) == APFloat::cmpLessThan)
return A;
return B;
@@ -425,25 +845,27 @@ static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
}
-static bool tryMergeRange(SmallVectorImpl<Value *> &EndPoints, ConstantInt *Low,
- ConstantInt *High) {
+static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
+ ConstantInt *Low, ConstantInt *High) {
ConstantRange NewRange(Low->getValue(), High->getValue());
unsigned Size = EndPoints.size();
- APInt LB = cast<ConstantInt>(EndPoints[Size - 2])->getValue();
- APInt LE = cast<ConstantInt>(EndPoints[Size - 1])->getValue();
+ APInt LB = EndPoints[Size - 2]->getValue();
+ APInt LE = EndPoints[Size - 1]->getValue();
ConstantRange LastRange(LB, LE);
if (canBeMerged(NewRange, LastRange)) {
ConstantRange Union = LastRange.unionWith(NewRange);
Type *Ty = High->getType();
- EndPoints[Size - 2] = ConstantInt::get(Ty, Union.getLower());
- EndPoints[Size - 1] = ConstantInt::get(Ty, Union.getUpper());
+ EndPoints[Size - 2] =
+ cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
+ EndPoints[Size - 1] =
+ cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
return true;
}
return false;
}
-static void addRange(SmallVectorImpl<Value *> &EndPoints, ConstantInt *Low,
- ConstantInt *High) {
+static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
+ ConstantInt *Low, ConstantInt *High) {
if (!EndPoints.empty())
if (tryMergeRange(EndPoints, Low, High))
return;
@@ -465,31 +887,33 @@ MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
// First, walk both lists in older of the lower boundary of each interval.
// At each step, try to merge the new interval to the last one we adedd.
- SmallVector<Value*, 4> EndPoints;
+ SmallVector<ConstantInt *, 4> EndPoints;
int AI = 0;
int BI = 0;
int AN = A->getNumOperands() / 2;
int BN = B->getNumOperands() / 2;
while (AI < AN && BI < BN) {
- ConstantInt *ALow = cast<ConstantInt>(A->getOperand(2 * AI));
- ConstantInt *BLow = cast<ConstantInt>(B->getOperand(2 * BI));
+ ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
+ ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
if (ALow->getValue().slt(BLow->getValue())) {
- addRange(EndPoints, ALow, cast<ConstantInt>(A->getOperand(2 * AI + 1)));
+ addRange(EndPoints, ALow,
+ mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
++AI;
} else {
- addRange(EndPoints, BLow, cast<ConstantInt>(B->getOperand(2 * BI + 1)));
+ addRange(EndPoints, BLow,
+ mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
++BI;
}
}
while (AI < AN) {
- addRange(EndPoints, cast<ConstantInt>(A->getOperand(2 * AI)),
- cast<ConstantInt>(A->getOperand(2 * AI + 1)));
+ addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
+ mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
++AI;
}
while (BI < BN) {
- addRange(EndPoints, cast<ConstantInt>(B->getOperand(2 * BI)),
- cast<ConstantInt>(B->getOperand(2 * BI + 1)));
+ addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
+ mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
++BI;
}
@@ -497,8 +921,8 @@ MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
// the last and first ones.
unsigned Size = EndPoints.size();
if (Size > 4) {
- ConstantInt *FB = cast<ConstantInt>(EndPoints[0]);
- ConstantInt *FE = cast<ConstantInt>(EndPoints[1]);
+ ConstantInt *FB = EndPoints[0];
+ ConstantInt *FE = EndPoints[1];
if (tryMergeRange(EndPoints, FB, FE)) {
for (unsigned i = 0; i < Size - 2; ++i) {
EndPoints[i] = EndPoints[i + 2];
@@ -510,63 +934,60 @@ MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
// If in the end we have a single range, it is possible that it is now the
// full range. Just drop the metadata in that case.
if (EndPoints.size() == 2) {
- ConstantRange Range(cast<ConstantInt>(EndPoints[0])->getValue(),
- cast<ConstantInt>(EndPoints[1])->getValue());
+ ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
if (Range.isFullSet())
return nullptr;
}
- return MDNode::get(A->getContext(), EndPoints);
+ SmallVector<Metadata *, 4> MDs;
+ MDs.reserve(EndPoints.size());
+ for (auto *I : EndPoints)
+ MDs.push_back(ConstantAsMetadata::get(I));
+ return MDNode::get(A->getContext(), MDs);
}
//===----------------------------------------------------------------------===//
// NamedMDNode implementation.
//
-static SmallVector<TrackingVH<MDNode>, 4> &getNMDOps(void *Operands) {
- return *(SmallVector<TrackingVH<MDNode>, 4>*)Operands;
+static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
+ return *(SmallVector<TrackingMDRef, 4> *)Operands;
}
NamedMDNode::NamedMDNode(const Twine &N)
- : Name(N.str()), Parent(nullptr),
- Operands(new SmallVector<TrackingVH<MDNode>, 4>()) {
-}
+ : Name(N.str()), Parent(nullptr),
+ Operands(new SmallVector<TrackingMDRef, 4>()) {}
NamedMDNode::~NamedMDNode() {
dropAllReferences();
delete &getNMDOps(Operands);
}
-/// getNumOperands - Return number of NamedMDNode operands.
unsigned NamedMDNode::getNumOperands() const {
return (unsigned)getNMDOps(Operands).size();
}
-/// getOperand - Return specified operand.
MDNode *NamedMDNode::getOperand(unsigned i) const {
assert(i < getNumOperands() && "Invalid Operand number!");
- return dyn_cast<MDNode>(&*getNMDOps(Operands)[i]);
+ auto *N = getNMDOps(Operands)[i].get();
+ return cast_or_null<MDNode>(N);
}
-/// addOperand - Add metadata Operand.
-void NamedMDNode::addOperand(MDNode *M) {
- assert(!M->isFunctionLocal() &&
- "NamedMDNode operands must not be function-local!");
- getNMDOps(Operands).push_back(TrackingVH<MDNode>(M));
+void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
+
+void NamedMDNode::setOperand(unsigned I, MDNode *New) {
+ assert(I < getNumOperands() && "Invalid operand number");
+ getNMDOps(Operands)[I].reset(New);
}
-/// eraseFromParent - Drop all references and remove the node from parent
-/// module.
void NamedMDNode::eraseFromParent() {
getParent()->eraseNamedMetadata(this);
}
-/// dropAllReferences - Remove all uses and clear node vector.
void NamedMDNode::dropAllReferences() {
getNMDOps(Operands).clear();
}
-/// getName - Return a constant reference to this named metadata's name.
StringRef NamedMDNode::getName() const {
return StringRef(Name);
}
@@ -576,7 +997,8 @@ StringRef NamedMDNode::getName() const {
//
void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
- if (!Node && !hasMetadata()) return;
+ if (!Node && !hasMetadata())
+ return;
setMetadata(getContext().getMDKindID(Kind), Node);
}
@@ -615,7 +1037,7 @@ void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
continue;
}
- Info[I] = Info.back();
+ Info[I] = std::move(Info.back());
Info.pop_back();
--E;
}
@@ -632,7 +1054,8 @@ void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
/// node. This updates/replaces metadata if already present, or removes it if
/// Node is null.
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
- if (!Node && !hasMetadata()) return;
+ if (!Node && !hasMetadata())
+ return;
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (KindID == LLVMContext::MD_dbg) {
@@ -651,13 +1074,14 @@ void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
// Handle replacement of an existing value.
for (auto &P : Info)
if (P.first == KindID) {
- P.second = Node;
+ P.second.reset(Node);
return;
}
}
// No replacement, just add it to the list.
- Info.push_back(std::make_pair(KindID, Node));
+ Info.emplace_back(std::piecewise_construct, std::make_tuple(KindID),
+ std::make_tuple(Node));
return;
}
@@ -679,7 +1103,7 @@ void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
// Handle removal of an existing value.
for (unsigned i = 0, e = Info.size(); i != e; ++i)
if (Info[i].first == KindID) {
- Info[i] = Info.back();
+ Info[i] = std::move(Info.back());
Info.pop_back();
assert(!Info.empty() && "Removing last entry should be handled above");
return;
@@ -687,11 +1111,17 @@ void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
// Otherwise, removing an entry that doesn't exist on the instruction.
}
+void Instruction::setAAMetadata(const AAMDNodes &N) {
+ setMetadata(LLVMContext::MD_tbaa, N.TBAA);
+ setMetadata(LLVMContext::MD_alias_scope, N.Scope);
+ setMetadata(LLVMContext::MD_noalias, N.NoAlias);
+}
+
MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (KindID == LLVMContext::MD_dbg)
- return DbgLoc.getAsMDNode(getContext());
-
+ return DbgLoc.getAsMDNode();
+
if (!hasMetadataHashEntry()) return nullptr;
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
@@ -703,14 +1133,14 @@ MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
return nullptr;
}
-void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,
- MDNode*> > &Result) const {
+void Instruction::getAllMetadataImpl(
+ SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
Result.clear();
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (!DbgLoc.isUnknown()) {
- Result.push_back(std::make_pair((unsigned)LLVMContext::MD_dbg,
- DbgLoc.getAsMDNode(getContext())));
+ Result.push_back(
+ std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
if (!hasMetadataHashEntry()) return;
}
@@ -721,16 +1151,17 @@ void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,
getContext().pImpl->MetadataStore.find(this)->second;
assert(!Info.empty() && "Shouldn't have called this");
- Result.append(Info.begin(), Info.end());
+ Result.reserve(Result.size() + Info.size());
+ for (auto &I : Info)
+ Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));
// Sort the resulting array so it is stable.
if (Result.size() > 1)
array_pod_sort(Result.begin(), Result.end());
}
-void Instruction::
-getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned,
- MDNode*> > &Result) const {
+void Instruction::getAllMetadataOtherThanDebugLocImpl(
+ SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
Result.clear();
assert(hasMetadataHashEntry() &&
getContext().pImpl->MetadataStore.count(this) &&
@@ -738,7 +1169,9 @@ getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned,
const LLVMContextImpl::MDMapTy &Info =
getContext().pImpl->MetadataStore.find(this)->second;
assert(!Info.empty() && "Shouldn't have called this");
- Result.append(Info.begin(), Info.end());
+ Result.reserve(Result.size() + Info.size());
+ for (auto &I : Info)
+ Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));
// Sort the resulting array so it is stable.
if (Result.size() > 1)
@@ -752,4 +1185,3 @@ void Instruction::clearMetadataHashEntries() {
getContext().pImpl->MetadataStore.erase(this);
setHasMetadataHashEntry(false);
}
-
diff --git a/contrib/llvm/lib/IR/MetadataTracking.cpp b/contrib/llvm/lib/IR/MetadataTracking.cpp
new file mode 100644
index 0000000..ba97ca0
--- /dev/null
+++ b/contrib/llvm/lib/IR/MetadataTracking.cpp
@@ -0,0 +1,58 @@
+//===- MetadataTracking.cpp - Implement metadata tracking -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Metadata tracking.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/MetadataTracking.h"
+#include "llvm/IR/Metadata.h"
+
+using namespace llvm;
+
+ReplaceableMetadataImpl *ReplaceableMetadataImpl::get(Metadata &MD) {
+ if (auto *N = dyn_cast<MDNode>(&MD)) {
+ if (auto *U = dyn_cast<UniquableMDNode>(N))
+ return U->ReplaceableUses.get();
+ return cast<MDNodeFwdDecl>(N);
+ }
+ return dyn_cast<ValueAsMetadata>(&MD);
+}
+
+bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
+ assert(Ref && "Expected live reference");
+ assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
+ "Reference without owner must be direct");
+ if (auto *R = ReplaceableMetadataImpl::get(MD)) {
+ R->addRef(Ref, Owner);
+ return true;
+ }
+ return false;
+}
+
+void MetadataTracking::untrack(void *Ref, Metadata &MD) {
+ assert(Ref && "Expected live reference");
+ if (auto *R = ReplaceableMetadataImpl::get(MD))
+ R->dropRef(Ref);
+}
+
+bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
+ assert(Ref && "Expected live reference");
+ assert(New && "Expected live reference");
+ assert(Ref != New && "Expected change");
+ if (auto *R = ReplaceableMetadataImpl::get(MD)) {
+ R->moveRef(Ref, New, MD);
+ return true;
+ }
+ return false;
+}
+
+bool MetadataTracking::isReplaceable(const Metadata &MD) {
+ return ReplaceableMetadataImpl::get(const_cast<Metadata &>(MD));
+}
diff --git a/contrib/llvm/lib/IR/Module.cpp b/contrib/llvm/lib/IR/Module.cpp
index 58584bd..d32ffcd 100644
--- a/contrib/llvm/lib/IR/Module.cpp
+++ b/contrib/llvm/lib/IR/Module.cpp
@@ -22,7 +22,7 @@
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/LeakDetector.h"
+#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
@@ -46,7 +46,7 @@ template class llvm::SymbolTableListTraits<GlobalAlias, Module>;
//
Module::Module(StringRef MID, LLVMContext &C)
- : Context(C), Materializer(), ModuleID(MID), RNG(nullptr), DL("") {
+ : Context(C), Materializer(), ModuleID(MID), DL("") {
ValSymTab = new ValueSymbolTable();
NamedMDSymTab = new StringMap<NamedMDNode *>();
Context.addModule(this);
@@ -61,9 +61,27 @@ Module::~Module() {
NamedMDList.clear();
delete ValSymTab;
delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
- delete RNG;
}
+RandomNumberGenerator *Module::createRNG(const Pass* P) const {
+ SmallString<32> Salt(P->getPassName());
+
+ // This RNG is guaranteed to produce the same random stream only
+ // when the Module ID and thus the input filename is the same. This
+ // might be problematic if the input filename extension changes
+ // (e.g. from .c to .bc or .ll).
+ //
+ // We could store this salt in NamedMetadata, but this would make
+ // the parameter non-const. This would unfortunately make this
+ // interface unusable by any Machine passes, since they only have a
+ // const reference to their IR Module. Alternatively we can always
+ // store salt metadata from the Module constructor.
+ Salt += sys::path::filename(getModuleIdentifier());
+
+ return new RandomNumberGenerator(Salt);
+}
+
+
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
@@ -259,6 +277,17 @@ void Module::eraseNamedMetadata(NamedMDNode *NMD) {
NamedMDList.erase(NMD);
}
+bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
+ if (ConstantInt *Behavior = mdconst::dyn_extract<ConstantInt>(MD)) {
+ uint64_t Val = Behavior->getLimitedValue();
+ if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
+ MFB = static_cast<ModFlagBehavior>(Val);
+ return true;
+ }
+ }
+ return false;
+}
+
/// getModuleFlagsMetadata - Returns the module flags in the provided vector.
void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
@@ -266,22 +295,22 @@ getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
if (!ModFlags) return;
for (const MDNode *Flag : ModFlags->operands()) {
- if (Flag->getNumOperands() >= 3 && isa<ConstantInt>(Flag->getOperand(0)) &&
+ ModFlagBehavior MFB;
+ if (Flag->getNumOperands() >= 3 &&
+ isValidModFlagBehavior(Flag->getOperand(0), MFB) &&
isa<MDString>(Flag->getOperand(1))) {
// Check the operands of the MDNode before accessing the operands.
// The verifier will actually catch these failures.
- ConstantInt *Behavior = cast<ConstantInt>(Flag->getOperand(0));
MDString *Key = cast<MDString>(Flag->getOperand(1));
- Value *Val = Flag->getOperand(2);
- Flags.push_back(ModuleFlagEntry(ModFlagBehavior(Behavior->getZExtValue()),
- Key, Val));
+ Metadata *Val = Flag->getOperand(2);
+ Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
}
}
}
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
-Value *Module::getModuleFlag(StringRef Key) const {
+Metadata *Module::getModuleFlag(StringRef Key) const {
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
getModuleFlagsMetadata(ModuleFlags);
for (const ModuleFlagEntry &MFE : ModuleFlags) {
@@ -309,14 +338,18 @@ NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
/// metadata. It will create the module-level flags named metadata if it doesn't
/// already exist.
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
- Value *Val) {
+ Metadata *Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
- Value *Ops[3] = {
- ConstantInt::get(Int32Ty, Behavior), MDString::get(Context, Key), Val
- };
+ Metadata *Ops[3] = {
+ ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
+ MDString::get(Context, Key), Val};
getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
+ Constant *Val) {
+ addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
+}
+void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
uint32_t Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
@@ -324,7 +357,7 @@ void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
void Module::addModuleFlag(MDNode *Node) {
assert(Node->getNumOperands() == 3 &&
"Invalid number of operands for module flag!");
- assert(isa<ConstantInt>(Node->getOperand(0)) &&
+ assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
isa<MDString>(Node->getOperand(1)) &&
"Invalid operand types for module flag!");
getOrInsertModuleFlagsMetadata()->addOperand(Node);
@@ -358,16 +391,6 @@ const DataLayout *Module::getDataLayout() const {
return &DL;
}
-// We want reproducible builds, but ModuleID may be a full path so we just use
-// the filename to salt the RNG (although it is not guaranteed to be unique).
-RandomNumberGenerator &Module::getRNG() const {
- if (RNG == nullptr) {
- StringRef Salt = sys::path::filename(ModuleID);
- RNG = new RandomNumberGenerator(Salt);
- }
- return *RNG;
-}
-
//===----------------------------------------------------------------------===//
// Methods to control the materialization of GlobalValues in the Module.
//
@@ -378,28 +401,17 @@ void Module::setMaterializer(GVMaterializer *GVM) {
Materializer.reset(GVM);
}
-bool Module::isMaterializable(const GlobalValue *GV) const {
- if (Materializer)
- return Materializer->isMaterializable(GV);
- return false;
-}
-
bool Module::isDematerializable(const GlobalValue *GV) const {
if (Materializer)
return Materializer->isDematerializable(GV);
return false;
}
-bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) {
+std::error_code Module::materialize(GlobalValue *GV) {
if (!Materializer)
- return false;
+ return std::error_code();
- std::error_code EC = Materializer->Materialize(GV);
- if (!EC)
- return false;
- if (ErrInfo)
- *ErrInfo = EC.message();
- return true;
+ return Materializer->materialize(GV);
}
void Module::Dematerialize(GlobalValue *GV) {
@@ -413,13 +425,10 @@ std::error_code Module::materializeAll() {
return Materializer->MaterializeModule(this);
}
-std::error_code Module::materializeAllPermanently(bool ReleaseBuffer) {
+std::error_code Module::materializeAllPermanently() {
if (std::error_code EC = materializeAll())
return EC;
- if (ReleaseBuffer)
- Materializer->releaseBuffer();
-
Materializer.reset();
return std::error_code();
}
@@ -428,6 +437,19 @@ std::error_code Module::materializeAllPermanently(bool ReleaseBuffer) {
// Other module related stuff.
//
+std::vector<StructType *> Module::getIdentifiedStructTypes() const {
+ // If we have a materializer, it is possible that some unread function
+ // uses a type that is currently not visible to a TypeFinder, so ask
+ // the materializer which types it created.
+ if (Materializer)
+ return Materializer->getIdentifiedStructTypes();
+
+ std::vector<StructType *> Ret;
+ TypeFinder SrcStructTypes;
+ SrcStructTypes.run(*this, true);
+ Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
+ return Ret;
+}
// dropAllReferences() - This function causes all the subelements to "let go"
// of all references that they are maintaining. This allows one to 'delete' a
@@ -448,27 +470,26 @@ void Module::dropAllReferences() {
}
unsigned Module::getDwarfVersion() const {
- Value *Val = getModuleFlag("Dwarf Version");
+ auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
if (!Val)
return dwarf::DWARF_VERSION;
- return cast<ConstantInt>(Val)->getZExtValue();
+ return cast<ConstantInt>(Val->getValue())->getZExtValue();
}
Comdat *Module::getOrInsertComdat(StringRef Name) {
- Comdat C;
- StringMapEntry<Comdat> &Entry =
- ComdatSymTab.GetOrCreateValue(Name, std::move(C));
+ auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
Entry.second.Name = &Entry;
return &Entry.second;
}
PICLevel::Level Module::getPICLevel() const {
- Value *Val = getModuleFlag("PIC Level");
+ auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));
if (Val == NULL)
return PICLevel::Default;
- return static_cast<PICLevel::Level>(cast<ConstantInt>(Val)->getZExtValue());
+ return static_cast<PICLevel::Level>(
+ cast<ConstantInt>(Val->getValue())->getZExtValue());
}
void Module::setPICLevel(PICLevel::Level PL) {
diff --git a/contrib/llvm/lib/IR/PassManager.cpp b/contrib/llvm/lib/IR/PassManager.cpp
index 2e2a7cb..a5f407c 100644
--- a/contrib/llvm/lib/IR/PassManager.cpp
+++ b/contrib/llvm/lib/IR/PassManager.cpp
@@ -10,174 +10,13 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
using namespace llvm;
-static cl::opt<bool>
-DebugPM("debug-pass-manager", cl::Hidden,
- cl::desc("Print pass management debugging information"));
-
-PreservedAnalyses ModulePassManager::run(Module *M, ModuleAnalysisManager *AM) {
- PreservedAnalyses PA = PreservedAnalyses::all();
-
- if (DebugPM)
- dbgs() << "Starting module pass manager run.\n";
-
- for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
- if (DebugPM)
- dbgs() << "Running module pass: " << Passes[Idx]->name() << "\n";
-
- PreservedAnalyses PassPA = Passes[Idx]->run(M, AM);
- if (AM)
- AM->invalidate(M, PassPA);
- PA.intersect(std::move(PassPA));
-
- M->getContext().yield();
- }
-
- if (DebugPM)
- dbgs() << "Finished module pass manager run.\n";
-
- return PA;
-}
-
-ModuleAnalysisManager::ResultConceptT &
-ModuleAnalysisManager::getResultImpl(void *PassID, Module *M) {
- ModuleAnalysisResultMapT::iterator RI;
- bool Inserted;
- std::tie(RI, Inserted) = ModuleAnalysisResults.insert(std::make_pair(
- PassID, std::unique_ptr<detail::AnalysisResultConcept<Module *>>()));
-
- // If we don't have a cached result for this module, look up the pass and run
- // it to produce a result, which we then add to the cache.
- if (Inserted)
- RI->second = lookupPass(PassID).run(M, this);
-
- return *RI->second;
-}
-
-ModuleAnalysisManager::ResultConceptT *
-ModuleAnalysisManager::getCachedResultImpl(void *PassID, Module *M) const {
- ModuleAnalysisResultMapT::const_iterator RI =
- ModuleAnalysisResults.find(PassID);
- return RI == ModuleAnalysisResults.end() ? nullptr : &*RI->second;
-}
-
-void ModuleAnalysisManager::invalidateImpl(void *PassID, Module *M) {
- ModuleAnalysisResults.erase(PassID);
-}
-
-void ModuleAnalysisManager::invalidateImpl(Module *M,
- const PreservedAnalyses &PA) {
- // FIXME: This is a total hack based on the fact that erasure doesn't
- // invalidate iteration for DenseMap.
- for (ModuleAnalysisResultMapT::iterator I = ModuleAnalysisResults.begin(),
- E = ModuleAnalysisResults.end();
- I != E; ++I)
- if (I->second->invalidate(M, PA))
- ModuleAnalysisResults.erase(I);
-}
-
-PreservedAnalyses FunctionPassManager::run(Function *F,
- FunctionAnalysisManager *AM) {
- PreservedAnalyses PA = PreservedAnalyses::all();
-
- if (DebugPM)
- dbgs() << "Starting function pass manager run.\n";
-
- for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
- if (DebugPM)
- dbgs() << "Running function pass: " << Passes[Idx]->name() << "\n";
-
- PreservedAnalyses PassPA = Passes[Idx]->run(F, AM);
- if (AM)
- AM->invalidate(F, PassPA);
- PA.intersect(std::move(PassPA));
-
- F->getContext().yield();
- }
-
- if (DebugPM)
- dbgs() << "Finished function pass manager run.\n";
-
- return PA;
-}
-
-bool FunctionAnalysisManager::empty() const {
- assert(FunctionAnalysisResults.empty() ==
- FunctionAnalysisResultLists.empty() &&
- "The storage and index of analysis results disagree on how many there "
- "are!");
- return FunctionAnalysisResults.empty();
-}
-
-void FunctionAnalysisManager::clear() {
- FunctionAnalysisResults.clear();
- FunctionAnalysisResultLists.clear();
-}
-
-FunctionAnalysisManager::ResultConceptT &
-FunctionAnalysisManager::getResultImpl(void *PassID, Function *F) {
- FunctionAnalysisResultMapT::iterator RI;
- bool Inserted;
- std::tie(RI, Inserted) = FunctionAnalysisResults.insert(std::make_pair(
- std::make_pair(PassID, F), FunctionAnalysisResultListT::iterator()));
-
- // If we don't have a cached result for this function, look up the pass and
- // run it to produce a result, which we then add to the cache.
- if (Inserted) {
- FunctionAnalysisResultListT &ResultList = FunctionAnalysisResultLists[F];
- ResultList.emplace_back(PassID, lookupPass(PassID).run(F, this));
- RI->second = std::prev(ResultList.end());
- }
-
- return *RI->second->second;
-}
-
-FunctionAnalysisManager::ResultConceptT *
-FunctionAnalysisManager::getCachedResultImpl(void *PassID, Function *F) const {
- FunctionAnalysisResultMapT::const_iterator RI =
- FunctionAnalysisResults.find(std::make_pair(PassID, F));
- return RI == FunctionAnalysisResults.end() ? nullptr : &*RI->second->second;
-}
-
-void FunctionAnalysisManager::invalidateImpl(void *PassID, Function *F) {
- FunctionAnalysisResultMapT::iterator RI =
- FunctionAnalysisResults.find(std::make_pair(PassID, F));
- if (RI == FunctionAnalysisResults.end())
- return;
-
- FunctionAnalysisResultLists[F].erase(RI->second);
-}
-
-void FunctionAnalysisManager::invalidateImpl(Function *F,
- const PreservedAnalyses &PA) {
- // Clear all the invalidated results associated specifically with this
- // function.
- SmallVector<void *, 8> InvalidatedPassIDs;
- FunctionAnalysisResultListT &ResultsList = FunctionAnalysisResultLists[F];
- for (FunctionAnalysisResultListT::iterator I = ResultsList.begin(),
- E = ResultsList.end();
- I != E;)
- if (I->second->invalidate(F, PA)) {
- InvalidatedPassIDs.push_back(I->first);
- I = ResultsList.erase(I);
- } else {
- ++I;
- }
- while (!InvalidatedPassIDs.empty())
- FunctionAnalysisResults.erase(
- std::make_pair(InvalidatedPassIDs.pop_back_val(), F));
- if (ResultsList.empty())
- FunctionAnalysisResultLists.erase(F);
-}
-
char FunctionAnalysisManagerModuleProxy::PassID;
FunctionAnalysisManagerModuleProxy::Result
-FunctionAnalysisManagerModuleProxy::run(Module *M) {
+FunctionAnalysisManagerModuleProxy::run(Module &M) {
assert(FAM->empty() && "Function analyses ran prior to the module proxy!");
return Result(*FAM);
}
@@ -189,7 +28,7 @@ FunctionAnalysisManagerModuleProxy::Result::~Result() {
}
bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
- Module *M, const PreservedAnalyses &PA) {
+ Module &M, const PreservedAnalyses &PA) {
// If this proxy isn't marked as preserved, then we can't even invalidate
// individual function analyses, there may be an invalid set of Function
// objects in the cache making it impossible to incrementally preserve them.
diff --git a/contrib/llvm/lib/IR/PassRegistry.cpp b/contrib/llvm/lib/IR/PassRegistry.cpp
index 91940a9..b879fef 100644
--- a/contrib/llvm/lib/IR/PassRegistry.cpp
+++ b/contrib/llvm/lib/IR/PassRegistry.cpp
@@ -36,8 +36,7 @@ PassRegistry *PassRegistry::getPassRegistry() {
// Accessors
//
-PassRegistry::~PassRegistry() {
-}
+PassRegistry::~PassRegistry() {}
const PassInfo *PassRegistry::getPassInfo(const void *TI) const {
sys::SmartScopedReader<true> Guard(Lock);
@@ -58,77 +57,62 @@ const PassInfo *PassRegistry::getPassInfo(StringRef Arg) const {
void PassRegistry::registerPass(const PassInfo &PI, bool ShouldFree) {
sys::SmartScopedWriter<true> Guard(Lock);
bool Inserted =
- PassInfoMap.insert(std::make_pair(PI.getTypeInfo(),&PI)).second;
+ PassInfoMap.insert(std::make_pair(PI.getTypeInfo(), &PI)).second;
assert(Inserted && "Pass registered multiple times!");
(void)Inserted;
PassInfoStringMap[PI.getPassArgument()] = &PI;
-
+
// Notify any listeners.
- for (std::vector<PassRegistrationListener*>::iterator
- I = Listeners.begin(), E = Listeners.end(); I != E; ++I)
- (*I)->passRegistered(&PI);
-
- if (ShouldFree) ToFree.push_back(std::unique_ptr<const PassInfo>(&PI));
-}
+ for (auto *Listener : Listeners)
+ Listener->passRegistered(&PI);
-void PassRegistry::unregisterPass(const PassInfo &PI) {
- sys::SmartScopedWriter<true> Guard(Lock);
- MapType::iterator I = PassInfoMap.find(PI.getTypeInfo());
- assert(I != PassInfoMap.end() && "Pass registered but not in map!");
-
- // Remove pass from the map.
- PassInfoMap.erase(I);
- PassInfoStringMap.erase(PI.getPassArgument());
+ if (ShouldFree)
+ ToFree.push_back(std::unique_ptr<const PassInfo>(&PI));
}
void PassRegistry::enumerateWith(PassRegistrationListener *L) {
sys::SmartScopedReader<true> Guard(Lock);
- for (auto I = PassInfoMap.begin(), E = PassInfoMap.end(); I != E; ++I)
- L->passEnumerate(I->second);
+ for (auto PassInfoPair : PassInfoMap)
+ L->passEnumerate(PassInfoPair.second);
}
-
/// Analysis Group Mechanisms.
-void PassRegistry::registerAnalysisGroup(const void *InterfaceID,
+void PassRegistry::registerAnalysisGroup(const void *InterfaceID,
const void *PassID,
- PassInfo& Registeree,
- bool isDefault,
+ PassInfo &Registeree, bool isDefault,
bool ShouldFree) {
- PassInfo *InterfaceInfo = const_cast<PassInfo*>(getPassInfo(InterfaceID));
+ PassInfo *InterfaceInfo = const_cast<PassInfo *>(getPassInfo(InterfaceID));
if (!InterfaceInfo) {
// First reference to Interface, register it now.
registerPass(Registeree);
InterfaceInfo = &Registeree;
}
- assert(Registeree.isAnalysisGroup() &&
+ assert(Registeree.isAnalysisGroup() &&
"Trying to join an analysis group that is a normal pass!");
if (PassID) {
- PassInfo *ImplementationInfo = const_cast<PassInfo*>(getPassInfo(PassID));
+ PassInfo *ImplementationInfo = const_cast<PassInfo *>(getPassInfo(PassID));
assert(ImplementationInfo &&
"Must register pass before adding to AnalysisGroup!");
sys::SmartScopedWriter<true> Guard(Lock);
-
+
// Make sure we keep track of the fact that the implementation implements
// the interface.
ImplementationInfo->addInterfaceImplemented(InterfaceInfo);
- AnalysisGroupInfo &AGI = AnalysisGroupInfoMap[InterfaceInfo];
- assert(AGI.Implementations.count(ImplementationInfo) == 0 &&
- "Cannot add a pass to the same analysis group more than once!");
- AGI.Implementations.insert(ImplementationInfo);
if (isDefault) {
assert(InterfaceInfo->getNormalCtor() == nullptr &&
"Default implementation for analysis group already specified!");
- assert(ImplementationInfo->getNormalCtor() &&
- "Cannot specify pass as default if it does not have a default ctor");
+ assert(
+ ImplementationInfo->getNormalCtor() &&
+ "Cannot specify pass as default if it does not have a default ctor");
InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor());
InterfaceInfo->setTargetMachineCtor(
ImplementationInfo->getTargetMachineCtor());
}
}
-
+
if (ShouldFree)
ToFree.push_back(std::unique_ptr<const PassInfo>(&Registeree));
}
@@ -140,7 +124,7 @@ void PassRegistry::addRegistrationListener(PassRegistrationListener *L) {
void PassRegistry::removeRegistrationListener(PassRegistrationListener *L) {
sys::SmartScopedWriter<true> Guard(Lock);
-
+
auto I = std::find(Listeners.begin(), Listeners.end(), L);
Listeners.erase(I);
}
diff --git a/contrib/llvm/lib/IR/Statepoint.cpp b/contrib/llvm/lib/IR/Statepoint.cpp
new file mode 100644
index 0000000..270c016
--- /dev/null
+++ b/contrib/llvm/lib/IR/Statepoint.cpp
@@ -0,0 +1,61 @@
+//===-- IR/Statepoint.cpp -- gc.statepoint utilities --- -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace std;
+using namespace llvm;
+
+bool llvm::isStatepoint(const ImmutableCallSite &CS) {
+ const Function *F = CS.getCalledFunction();
+ return (F && F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint);
+}
+bool llvm::isStatepoint(const Instruction *inst) {
+ if (isa<InvokeInst>(inst) || isa<CallInst>(inst)) {
+ ImmutableCallSite CS(inst);
+ return isStatepoint(CS);
+ }
+ return false;
+}
+bool llvm::isStatepoint(const Instruction &inst) {
+ return isStatepoint(&inst);
+}
+
+bool llvm::isGCRelocate(const ImmutableCallSite &CS) {
+ return isGCRelocate(CS.getInstruction());
+}
+bool llvm::isGCRelocate(const Instruction *inst) {
+ if (const CallInst *call = dyn_cast<CallInst>(inst)) {
+ if (const Function *F = call->getCalledFunction()) {
+ return F->getIntrinsicID() == Intrinsic::experimental_gc_relocate;
+ }
+ }
+ return false;
+}
+
+bool llvm::isGCResult(const ImmutableCallSite &CS) {
+ return isGCResult(CS.getInstruction());
+}
+bool llvm::isGCResult(const Instruction *inst) {
+ if (const CallInst *call = dyn_cast<CallInst>(inst)) {
+ if (Function *F = call->getCalledFunction()) {
+ return (F->getIntrinsicID() == Intrinsic::experimental_gc_result_int ||
+ F->getIntrinsicID() == Intrinsic::experimental_gc_result_float ||
+ F->getIntrinsicID() == Intrinsic::experimental_gc_result_ptr);
+ }
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/IR/SymbolTableListTraitsImpl.h b/contrib/llvm/lib/IR/SymbolTableListTraitsImpl.h
index 8302597..a18f982 100644
--- a/contrib/llvm/lib/IR/SymbolTableListTraitsImpl.h
+++ b/contrib/llvm/lib/IR/SymbolTableListTraitsImpl.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SYMBOLTABLELISTTRAITS_IMPL_H
-#define LLVM_SYMBOLTABLELISTTRAITS_IMPL_H
+#ifndef LLVM_LIB_IR_SYMBOLTABLELISTTRAITSIMPL_H
+#define LLVM_LIB_IR_SYMBOLTABLELISTTRAITSIMPL_H
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/ValueSymbolTable.h"
diff --git a/contrib/llvm/lib/IR/Type.cpp b/contrib/llvm/lib/IR/Type.cpp
index 1efde47..889705e 100644
--- a/contrib/llvm/lib/IR/Type.cpp
+++ b/contrib/llvm/lib/IR/Type.cpp
@@ -89,9 +89,13 @@ bool Type::canLosslesslyBitCastTo(Type *Ty) const {
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
- // else is not lossless.
- if (this->isPointerTy())
- return Ty->isPointerTy();
+ // else is not lossless. Conservatively assume we can't losslessly convert
+ // between pointers with different address spaces.
+ if (const PointerType *PTy = dyn_cast<PointerType>(this)) {
+ if (const PointerType *OtherPTy = dyn_cast<PointerType>(Ty))
+ return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
+ return false;
+ }
return false; // Other types have no identity values
}
@@ -155,7 +159,7 @@ int Type::getFPMantissaWidth() const {
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
-bool Type::isSizedDerivedType(SmallPtrSet<const Type*, 4> *Visited) const {
+bool Type::isSizedDerivedType(SmallPtrSetImpl<const Type*> *Visited) const {
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized(Visited);
@@ -356,8 +360,7 @@ FunctionType *FunctionType::get(Type *ReturnType,
ArrayRef<Type*> Params, bool isVarArg) {
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
- LLVMContextImpl::FunctionTypeMap::iterator I =
- pImpl->FunctionTypes.find_as(Key);
+ auto I = pImpl->FunctionTypes.find_as(Key);
FunctionType *FT;
if (I == pImpl->FunctionTypes.end()) {
@@ -365,9 +368,9 @@ FunctionType *FunctionType::get(Type *ReturnType,
Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
AlignOf<FunctionType>::Alignment);
new (FT) FunctionType(ReturnType, Params, isVarArg);
- pImpl->FunctionTypes[FT] = true;
+ pImpl->FunctionTypes.insert(FT);
} else {
- FT = I->first;
+ FT = *I;
}
return FT;
@@ -400,8 +403,7 @@ StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
bool isPacked) {
LLVMContextImpl *pImpl = Context.pImpl;
AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
- LLVMContextImpl::StructTypeMap::iterator I =
- pImpl->AnonStructTypes.find_as(Key);
+ auto I = pImpl->AnonStructTypes.find_as(Key);
StructType *ST;
if (I == pImpl->AnonStructTypes.end()) {
@@ -409,9 +411,9 @@ StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
ST = new (Context.pImpl->TypeAllocator) StructType(Context);
ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
ST->setBody(ETypes, isPacked);
- Context.pImpl->AnonStructTypes[ST] = true;
+ Context.pImpl->AnonStructTypes.insert(ST);
} else {
- ST = I->first;
+ ST = *I;
}
return ST;
@@ -454,10 +456,11 @@ void StructType::setName(StringRef Name) {
}
// Look up the entry for the name.
- EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
-
+ auto IterBool =
+ getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
+
// While we have a name collision, try a random rename.
- if (Entry->getValue()) {
+ if (!IterBool.second) {
SmallString<64> TempStr(Name);
TempStr.push_back('.');
raw_svector_ostream TmpStream(TempStr);
@@ -467,19 +470,16 @@ void StructType::setName(StringRef Name) {
TempStr.resize(NameSize + 1);
TmpStream.resync();
TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
-
- Entry = &getContext().pImpl->
- NamedStructTypes.GetOrCreateValue(TmpStream.str());
- } while (Entry->getValue());
- }
- // Okay, we found an entry that isn't used. It's us!
- Entry->setValue(this);
+ IterBool = getContext().pImpl->NamedStructTypes.insert(
+ std::make_pair(TmpStream.str(), this));
+ } while (!IterBool.second);
+ }
// Delete the old string data.
if (SymbolTableEntry)
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = Entry;
+ SymbolTableEntry = &*IterBool.first;
}
//===----------------------------------------------------------------------===//
@@ -506,7 +506,9 @@ StructType *StructType::get(Type *type, ...) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
- return llvm::StructType::get(Ctx, StructFields);
+ auto *Ret = llvm::StructType::get(Ctx, StructFields);
+ va_end(ap);
+ return Ret;
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
@@ -547,16 +549,18 @@ StructType *StructType::create(StringRef Name, Type *type, ...) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
- return llvm::StructType::create(Ctx, StructFields, Name);
+ auto *Ret = llvm::StructType::create(Ctx, StructFields, Name);
+ va_end(ap);
+ return Ret;
}
-bool StructType::isSized(SmallPtrSet<const Type*, 4> *Visited) const {
+bool StructType::isSized(SmallPtrSetImpl<const Type*> *Visited) const {
if ((getSubclassData() & SCDB_IsSized) != 0)
return true;
if (isOpaque())
return false;
- if (Visited && !Visited->insert(this))
+ if (Visited && !Visited->insert(this).second)
return false;
// Okay, our struct is sized if all of the elements are, but if one of the
@@ -591,6 +595,7 @@ void StructType::setBody(Type *type, ...) {
type = va_arg(ap, llvm::Type*);
}
setBody(StructFields);
+ va_end(ap);
}
bool StructType::isValidElementType(Type *ElemTy) {
diff --git a/contrib/llvm/lib/IR/TypeFinder.cpp b/contrib/llvm/lib/IR/TypeFinder.cpp
index 689b903..e2fb8f8 100644
--- a/contrib/llvm/lib/IR/TypeFinder.cpp
+++ b/contrib/llvm/lib/IR/TypeFinder.cpp
@@ -40,13 +40,16 @@ void TypeFinder::run(const Module &M, bool onlyNamed) {
}
// Get types from functions.
- SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDForInst;
for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
incorporateType(FI->getType());
if (FI->hasPrefixData())
incorporateValue(FI->getPrefixData());
+ if (FI->hasPrologueData())
+ incorporateValue(FI->getPrologueData());
+
// First incorporate the arguments.
for (Function::const_arg_iterator AI = FI->arg_begin(),
AE = FI->arg_end(); AI != AE; ++AI)
@@ -122,8 +125,13 @@ void TypeFinder::incorporateType(Type *Ty) {
/// other ways. GlobalValues, basic blocks, instructions, and inst operands are
/// all explicitly enumerated.
void TypeFinder::incorporateValue(const Value *V) {
- if (const MDNode *M = dyn_cast<MDNode>(V))
- return incorporateMDNode(M);
+ if (const auto *M = dyn_cast<MetadataAsValue>(V)) {
+ if (const auto *N = dyn_cast<MDNode>(M->getMetadata()))
+ return incorporateMDNode(N);
+ if (const auto *MDV = dyn_cast<ValueAsMetadata>(M->getMetadata()))
+ return incorporateValue(MDV->getValue());
+ return;
+ }
if (!isa<Constant>(V) || isa<GlobalValue>(V)) return;
@@ -149,11 +157,21 @@ void TypeFinder::incorporateValue(const Value *V) {
/// find types hiding within.
void TypeFinder::incorporateMDNode(const MDNode *V) {
// Already visited?
- if (!VisitedConstants.insert(V).second)
+ if (!VisitedMetadata.insert(V).second)
return;
// Look in operands for types.
- for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i)
- if (Value *Op = V->getOperand(i))
- incorporateValue(Op);
+ for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i) {
+ Metadata *Op = V->getOperand(i);
+ if (!Op)
+ continue;
+ if (auto *N = dyn_cast<MDNode>(Op)) {
+ incorporateMDNode(N);
+ continue;
+ }
+ if (auto *C = dyn_cast<ConstantAsMetadata>(Op)) {
+ incorporateValue(C->getValue());
+ continue;
+ }
+ }
}
diff --git a/contrib/llvm/lib/IR/Use.cpp b/contrib/llvm/lib/IR/Use.cpp
index 047861c..cae845d 100644
--- a/contrib/llvm/lib/IR/Use.cpp
+++ b/contrib/llvm/lib/IR/Use.cpp
@@ -52,7 +52,7 @@ unsigned Use::getOperandNo() const {
// Sets up the waymarking algorithm's tags for a series of Uses. See the
// algorithm details here:
//
-// http://www.llvm.org/docs/ProgrammersManual.html#UserLayout
+// http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
//
Use *Use::initTags(Use *const Start, Use *Stop) {
ptrdiff_t Done = 0;
diff --git a/contrib/llvm/lib/IR/UseListOrder.cpp b/contrib/llvm/lib/IR/UseListOrder.cpp
new file mode 100644
index 0000000..d064e67
--- /dev/null
+++ b/contrib/llvm/lib/IR/UseListOrder.cpp
@@ -0,0 +1,43 @@
+//===- UseListOrder.cpp - Implement Use List Order ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement structures and command-line options for preserving use-list order.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/UseListOrder.h"
+#include "llvm/Support/CommandLine.h"
+
+using namespace llvm;
+
+static cl::opt<bool> PreserveBitcodeUseListOrder(
+ "preserve-bc-use-list-order",
+ cl::desc("Experimental support to preserve bitcode use-list order."),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool> PreserveAssemblyUseListOrder(
+ "preserve-ll-use-list-order",
+ cl::desc("Experimental support to preserve assembly use-list order."),
+ cl::init(false), cl::Hidden);
+
+bool llvm::shouldPreserveBitcodeUseListOrder() {
+ return PreserveBitcodeUseListOrder;
+}
+
+bool llvm::shouldPreserveAssemblyUseListOrder() {
+ return PreserveAssemblyUseListOrder;
+}
+
+void llvm::setPreserveBitcodeUseListOrder(bool ShouldPreserve) {
+ PreserveBitcodeUseListOrder = ShouldPreserve;
+}
+
+void llvm::setPreserveAssemblyUseListOrder(bool ShouldPreserve) {
+ PreserveAssemblyUseListOrder = ShouldPreserve;
+}
diff --git a/contrib/llvm/lib/IR/User.cpp b/contrib/llvm/lib/IR/User.cpp
index 9406828..ee83eacf 100644
--- a/contrib/llvm/lib/IR/User.cpp
+++ b/contrib/llvm/lib/IR/User.cpp
@@ -20,9 +20,6 @@ namespace llvm {
void User::anchor() {}
-// replaceUsesOfWith - Replaces all references to the "From" definition with
-// references to the "To" definition.
-//
void User::replaceUsesOfWith(Value *From, Value *To) {
if (From == To) return; // Duh what?
diff --git a/contrib/llvm/lib/IR/Value.cpp b/contrib/llvm/lib/IR/Value.cpp
index 1ab2183..5f7e258 100644
--- a/contrib/llvm/lib/IR/Value.cpp
+++ b/contrib/llvm/lib/IR/Value.cpp
@@ -23,7 +23,6 @@
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
-#include "llvm/IR/LeakDetector.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
@@ -44,8 +43,8 @@ static inline Type *checkType(Type *Ty) {
}
Value::Value(Type *ty, unsigned scid)
- : VTy(checkType(ty)), UseList(nullptr), Name(nullptr), SubclassID(scid),
- HasValueHandle(0), SubclassOptionalData(0), SubclassData(0) {
+ : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
+ SubclassOptionalData(0), SubclassData(0), NumOperands(0) {
// FIXME: Why isn't this in the subclass gunk??
// Note, we cannot call isa<CallInst> before the CallInst has been
// constructed.
@@ -62,6 +61,8 @@ Value::~Value() {
// Notify all ValueHandles (if present) that this value is going away.
if (HasValueHandle)
ValueHandleBase::ValueIsDeleted(this);
+ if (isUsedByMetadata())
+ ValueAsMetadata::handleDeletion(this);
#ifndef NDEBUG // Only in -g mode...
// Check to make sure that there are no uses of this value that are still
@@ -81,15 +82,16 @@ Value::~Value() {
// If this value is named, destroy the name. This should not be in a symtab
// at this point.
- if (Name && SubclassID != MDStringVal)
- Name->Destroy();
+ destroyValueName();
+}
- // There should be no uses of this object anymore, remove it.
- LeakDetector::removeGarbageObject(this);
+void Value::destroyValueName() {
+ ValueName *Name = getValueName();
+ if (Name)
+ Name->Destroy();
+ setValueName(nullptr);
}
-/// hasNUses - Return true if this Value has exactly N users.
-///
bool Value::hasNUses(unsigned N) const {
const_use_iterator UI = use_begin(), E = use_end();
@@ -98,9 +100,6 @@ bool Value::hasNUses(unsigned N) const {
return UI == E;
}
-/// hasNUsesOrMore - Return true if this value has N users or more. This is
-/// logically equivalent to getNumUses() >= N.
-///
bool Value::hasNUsesOrMore(unsigned N) const {
const_use_iterator UI = use_begin(), E = use_end();
@@ -110,8 +109,6 @@ bool Value::hasNUsesOrMore(unsigned N) const {
return true;
}
-/// isUsedInBasicBlock - Return true if this value is used in the specified
-/// basic block.
bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
// This can be computed either by scanning the instructions in BB, or by
// scanning the use list of this Value. Both lists can be very long, but
@@ -133,10 +130,6 @@ bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
return false;
}
-
-/// getNumUses - This method computes the number of uses of this Value. This
-/// is a linear time operation. Use hasOneUse or hasNUses to check for specific
-/// values.
unsigned Value::getNumUses() const {
return (unsigned)std::distance(use_begin(), use_end());
}
@@ -156,9 +149,7 @@ static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
} else if (Argument *A = dyn_cast<Argument>(V)) {
if (Function *P = A->getParent())
ST = &P->getValueSymbolTable();
- } else if (isa<MDString>(V))
- return true;
- else {
+ } else {
assert(isa<Constant>(V) && "Unknown value type!");
return true; // no name is setable for this.
}
@@ -169,14 +160,12 @@ StringRef Value::getName() const {
// Make sure the empty string is still a C string. For historical reasons,
// some clients want to call .data() on the result and expect it to be null
// terminated.
- if (!Name) return StringRef("", 0);
- return Name->getKey();
+ if (!getValueName())
+ return StringRef("", 0);
+ return getValueName()->getKey();
}
void Value::setName(const Twine &NewName) {
- assert(SubclassID != MDStringVal &&
- "Cannot set the name of MDString with this method!");
-
// Fast path for common IRBuilder case of setName("") when there is no name.
if (NewName.isTriviallyEmpty() && !hasName())
return;
@@ -203,20 +192,17 @@ void Value::setName(const Twine &NewName) {
if (!ST) { // No symbol table to update? Just do the change.
if (NameRef.empty()) {
// Free the name for this value.
- Name->Destroy();
- Name = nullptr;
+ destroyValueName();
return;
}
- if (Name)
- Name->Destroy();
-
// NOTE: Could optimize for the case the name is shrinking to not deallocate
// then reallocated.
+ destroyValueName();
// Create the new name.
- Name = ValueName::Create(NameRef);
- Name->setValue(this);
+ setValueName(ValueName::Create(NameRef));
+ getValueName()->setValue(this);
return;
}
@@ -224,24 +210,18 @@ void Value::setName(const Twine &NewName) {
// then reallocated.
if (hasName()) {
// Remove old name.
- ST->removeValueName(Name);
- Name->Destroy();
- Name = nullptr;
+ ST->removeValueName(getValueName());
+ destroyValueName();
if (NameRef.empty())
return;
}
// Name is changing to something new.
- Name = ST->createValueName(NameRef, this);
+ setValueName(ST->createValueName(NameRef, this));
}
-
-/// takeName - transfer the name from V to this value, setting V's name to
-/// empty. It is an error to call V->takeName(V).
void Value::takeName(Value *V) {
- assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
-
ValueSymbolTable *ST = nullptr;
// If this value has a name, drop it.
if (hasName()) {
@@ -255,9 +235,8 @@ void Value::takeName(Value *V) {
// Remove old name.
if (ST)
- ST->removeValueName(Name);
- Name->Destroy();
- Name = nullptr;
+ ST->removeValueName(getValueName());
+ destroyValueName();
}
// Now we know that this has no name.
@@ -283,9 +262,9 @@ void Value::takeName(Value *V) {
// This works even if both values have no symtab yet.
if (ST == VST) {
// Take the name!
- Name = V->Name;
- V->Name = nullptr;
- Name->setValue(this);
+ setValueName(V->getValueName());
+ V->setValueName(nullptr);
+ getValueName()->setValue(this);
return;
}
@@ -293,19 +272,19 @@ void Value::takeName(Value *V) {
// then reinsert it into ST.
if (VST)
- VST->removeValueName(V->Name);
- Name = V->Name;
- V->Name = nullptr;
- Name->setValue(this);
+ VST->removeValueName(V->getValueName());
+ setValueName(V->getValueName());
+ V->setValueName(nullptr);
+ getValueName()->setValue(this);
if (ST)
ST->reinsertValue(this);
}
#ifndef NDEBUG
-static bool contains(SmallPtrSet<ConstantExpr *, 4> &Cache, ConstantExpr *Expr,
+static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
Constant *C) {
- if (!Cache.insert(Expr))
+ if (!Cache.insert(Expr).second)
return false;
for (auto &O : Expr->operands()) {
@@ -347,6 +326,8 @@ void Value::replaceAllUsesWith(Value *New) {
// Notify all ValueHandles (if present) that this value is going away.
if (HasValueHandle)
ValueHandleBase::ValueIsRAUWd(this, New);
+ if (isUsedByMetadata())
+ ValueAsMetadata::handleRAUW(this, New);
while (!use_empty()) {
Use &U = *UseList;
@@ -366,6 +347,28 @@ void Value::replaceAllUsesWith(Value *New) {
BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
}
+// Like replaceAllUsesWith except it does not handle constants or basic blocks.
+// This routine leaves uses within BB.
+void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
+ assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
+ assert(!contains(New, this) &&
+ "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
+ assert(New->getType() == getType() &&
+ "replaceUses of value with new value of different type!");
+ assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
+
+ use_iterator UI = use_begin(), E = use_end();
+ for (; UI != E;) {
+ Use &U = *UI;
+ ++UI;
+ auto *Usr = dyn_cast<Instruction>(U.getUser());
+ if (Usr && Usr->getParent() == BB)
+ continue;
+ U.set(New);
+ }
+ return;
+}
+
namespace {
// Various metrics for how much to strip off of pointers.
enum PointerStripKind {
@@ -414,7 +417,7 @@ static Value *stripPointerCastsAndOffsets(Value *V) {
return V;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(V));
+ } while (Visited.insert(V).second);
return V;
}
@@ -464,7 +467,7 @@ Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
return V;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(V));
+ } while (Visited.insert(V).second);
return V;
}
@@ -473,10 +476,12 @@ Value *Value::stripInBoundsOffsets() {
return stripPointerCastsAndOffsets<PSK_InBounds>(this);
}
-/// isDereferenceablePointer - Test if this value is always a pointer to
-/// allocated and suitably aligned memory for a simple load or store.
+/// \brief Check if Value is always a dereferenceable pointer.
+///
+/// Test if V is always a pointer to allocated and suitably aligned memory for
+/// a simple load or store.
static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
- SmallPtrSet<const Value *, 32> &Visited) {
+ SmallPtrSetImpl<const Value *> &Visited) {
// Note that it is not safe to speculate into a malloc'd region because
// malloc may return null.
@@ -533,7 +538,7 @@ static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
// For GEPs, determine if the indexing lands within the allocated object.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// Conservatively require that the base pointer be fully dereferenceable.
- if (!Visited.insert(GEP->getOperand(0)))
+ if (!Visited.insert(GEP->getOperand(0)).second)
return false;
if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
return false;
@@ -572,8 +577,6 @@ static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
return false;
}
-/// isDereferenceablePointer - Test if this value is always a pointer to
-/// allocated and suitably aligned memory for a simple load or store.
bool Value::isDereferenceablePointer(const DataLayout *DL) const {
// When dereferenceability information is provided by a dereferenceable
// attribute, we know exactly how many bytes are dereferenceable. If we can
@@ -600,10 +603,6 @@ bool Value::isDereferenceablePointer(const DataLayout *DL) const {
return ::isDereferenceablePointer(this, DL, Visited);
}
-/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
-/// return the value in the PHI node corresponding to PredBB. If not, return
-/// ourself. This is useful if you want to know the value something has in a
-/// predecessor block.
Value *Value::DoPHITranslation(const BasicBlock *CurBB,
const BasicBlock *PredBB) {
PHINode *PN = dyn_cast<PHINode>(this);
@@ -614,12 +613,29 @@ Value *Value::DoPHITranslation(const BasicBlock *CurBB,
LLVMContext &Value::getContext() const { return VTy->getContext(); }
+void Value::reverseUseList() {
+ if (!UseList || !UseList->Next)
+ // No need to reverse 0 or 1 uses.
+ return;
+
+ Use *Head = UseList;
+ Use *Current = UseList->Next;
+ Head->Next = nullptr;
+ while (Current) {
+ Use *Next = Current->Next;
+ Current->Next = Head;
+ Head->setPrev(&Current->Next);
+ Head = Current;
+ Current = Next;
+ }
+ UseList = Head;
+ Head->setPrev(&UseList);
+}
+
//===----------------------------------------------------------------------===//
// ValueHandleBase Class
//===----------------------------------------------------------------------===//
-/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
-/// List is known to point into the existing use list.
void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
assert(List && "Handle list is null?");
@@ -629,7 +645,7 @@ void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
setPrevPtr(List);
if (Next) {
Next->setPrevPtr(&Next);
- assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
+ assert(V == Next->V && "Added to wrong list?");
}
}
@@ -643,16 +659,15 @@ void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
Next->setPrevPtr(&Next);
}
-/// AddToUseList - Add this ValueHandle to the use list for VP.
void ValueHandleBase::AddToUseList() {
- assert(VP.getPointer() && "Null pointer doesn't have a use list!");
+ assert(V && "Null pointer doesn't have a use list!");
- LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
+ LLVMContextImpl *pImpl = V->getContext().pImpl;
- if (VP.getPointer()->HasValueHandle) {
+ if (V->HasValueHandle) {
// If this value already has a ValueHandle, then it must be in the
// ValueHandles map already.
- ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
+ ValueHandleBase *&Entry = pImpl->ValueHandles[V];
assert(Entry && "Value doesn't have any handles?");
AddToExistingUseList(&Entry);
return;
@@ -666,10 +681,10 @@ void ValueHandleBase::AddToUseList() {
DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
- ValueHandleBase *&Entry = Handles[VP.getPointer()];
+ ValueHandleBase *&Entry = Handles[V];
assert(!Entry && "Value really did already have handles?");
AddToExistingUseList(&Entry);
- VP.getPointer()->HasValueHandle = true;
+ V->HasValueHandle = true;
// If reallocation didn't happen or if this was the first insertion, don't
// walk the table.
@@ -681,15 +696,14 @@ void ValueHandleBase::AddToUseList() {
// Okay, reallocation did happen. Fix the Prev Pointers.
for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
E = Handles.end(); I != E; ++I) {
- assert(I->second && I->first == I->second->VP.getPointer() &&
+ assert(I->second && I->first == I->second->V &&
"List invariant broken!");
I->second->setPrevPtr(&I->second);
}
}
-/// RemoveFromUseList - Remove this ValueHandle from its current use list.
void ValueHandleBase::RemoveFromUseList() {
- assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
+ assert(V && V->HasValueHandle &&
"Pointer doesn't have a use list!");
// Unlink this from its use list.
@@ -706,11 +720,11 @@ void ValueHandleBase::RemoveFromUseList() {
// If the Next pointer was null, then it is possible that this was the last
// ValueHandle watching VP. If so, delete its entry from the ValueHandles
// map.
- LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
+ LLVMContextImpl *pImpl = V->getContext().pImpl;
DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
- Handles.erase(VP.getPointer());
- VP.getPointer()->HasValueHandle = false;
+ Handles.erase(V);
+ V->HasValueHandle = false;
}
}
@@ -775,6 +789,8 @@ void ValueHandleBase::ValueIsDeleted(Value *V) {
void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
assert(Old != New && "Changing value into itself!");
+ assert(Old->getType() == New->getType() &&
+ "replaceAllUses of value with new value of different type!");
// Get the linked list base, which is guaranteed to exist since the
// HasValueHandle flag is set.
diff --git a/contrib/llvm/lib/IR/ValueSymbolTable.cpp b/contrib/llvm/lib/IR/ValueSymbolTable.cpp
index e9e979a..4f078f0 100644
--- a/contrib/llvm/lib/IR/ValueSymbolTable.cpp
+++ b/contrib/llvm/lib/IR/ValueSymbolTable.cpp
@@ -38,8 +38,8 @@ void ValueSymbolTable::reinsertValue(Value* V) {
assert(V->hasName() && "Can't insert nameless Value into symbol table");
// Try inserting the name, assuming it won't conflict.
- if (vmap.insert(V->Name)) {
- //DEBUG(dbgs() << " Inserted value: " << V->Name << ": " << *V << "\n");
+ if (vmap.insert(V->getValueName())) {
+ //DEBUG(dbgs() << " Inserted value: " << V->getValueName() << ": " << *V << "\n");
return;
}
@@ -47,8 +47,8 @@ void ValueSymbolTable::reinsertValue(Value* V) {
SmallString<256> UniqueName(V->getName().begin(), V->getName().end());
// The name is too already used, just free it so we can allocate a new name.
- V->Name->Destroy();
-
+ V->getValueName()->Destroy();
+
unsigned BaseSize = UniqueName.size();
while (1) {
// Trim any suffix off and append the next number.
@@ -56,11 +56,10 @@ void ValueSymbolTable::reinsertValue(Value* V) {
raw_svector_ostream(UniqueName) << ++LastUnique;
// Try insert the vmap entry with this suffix.
- ValueName &NewName = vmap.GetOrCreateValue(UniqueName);
- if (!NewName.getValue()) {
+ auto IterBool = vmap.insert(std::make_pair(UniqueName, V));
+ if (IterBool.second) {
// Newly inserted name. Success!
- NewName.setValue(V);
- V->Name = &NewName;
+ V->setValueName(&*IterBool.first);
//DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
return;
}
@@ -78,12 +77,11 @@ void ValueSymbolTable::removeValueName(ValueName *V) {
/// auto-renames the name and returns that instead.
ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
// In the common case, the name is not already in the symbol table.
- ValueName &Entry = vmap.GetOrCreateValue(Name);
- if (!Entry.getValue()) {
- Entry.setValue(V);
+ auto IterBool = vmap.insert(std::make_pair(Name, V));
+ if (IterBool.second) {
//DEBUG(dbgs() << " Inserted value: " << Entry.getKeyData() << ": "
// << *V << "\n");
- return &Entry;
+ return &*IterBool.first;
}
// Otherwise, there is a naming conflict. Rename this value.
@@ -95,12 +93,11 @@ ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
raw_svector_ostream(UniqueName) << ++LastUnique;
// Try insert the vmap entry with this suffix.
- ValueName &NewName = vmap.GetOrCreateValue(UniqueName);
- if (!NewName.getValue()) {
- // Newly inserted name. Success!
- NewName.setValue(V);
- //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
- return &NewName;
+ auto IterBool = vmap.insert(std::make_pair(UniqueName, V));
+ if (IterBool.second) {
+ // DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V <<
+ // "\n");
+ return &*IterBool.first;
}
}
}
diff --git a/contrib/llvm/lib/IR/Verifier.cpp b/contrib/llvm/lib/IR/Verifier.cpp
index 9cf911b..4bf2d1a 100644
--- a/contrib/llvm/lib/IR/Verifier.cpp
+++ b/contrib/llvm/lib/IR/Verifier.cpp
@@ -68,6 +68,7 @@
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Statepoint.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -101,6 +102,13 @@ struct VerifierSupport {
}
}
+ void WriteMetadata(const Metadata *MD) {
+ if (!MD)
+ return;
+ MD->printAsOperand(OS, true, M);
+ OS << '\n';
+ }
+
void WriteType(Type *T) {
if (!T)
return;
@@ -127,6 +135,24 @@ struct VerifierSupport {
Broken = true;
}
+ void CheckFailed(const Twine &Message, const Metadata *V1, const Metadata *V2,
+ const Metadata *V3 = nullptr, const Metadata *V4 = nullptr) {
+ OS << Message.str() << "\n";
+ WriteMetadata(V1);
+ WriteMetadata(V2);
+ WriteMetadata(V3);
+ WriteMetadata(V4);
+ Broken = true;
+ }
+
+ void CheckFailed(const Twine &Message, const Metadata *V1,
+ const Value *V2 = nullptr) {
+ OS << Message.str() << "\n";
+ WriteMetadata(V1);
+ WriteValue(V2);
+ Broken = true;
+ }
+
void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
const Value *V3 = nullptr) {
OS << Message.str() << "\n";
@@ -155,7 +181,6 @@ class Verifier : public InstVisitor<Verifier>, VerifierSupport {
friend class InstVisitor<Verifier>;
LLVMContext *Context;
- const DataLayout *DL;
DominatorTree DT;
/// \brief When verifying a basic block, keep track of all of the
@@ -166,17 +191,21 @@ class Verifier : public InstVisitor<Verifier>, VerifierSupport {
SmallPtrSet<Instruction *, 16> InstsInThisBlock;
/// \brief Keep track of the metadata nodes that have been checked already.
- SmallPtrSet<MDNode *, 32> MDNodes;
+ SmallPtrSet<Metadata *, 32> MDNodes;
/// \brief The personality function referenced by the LandingPadInsts.
/// All LandingPadInsts within the same function must use the same
/// personality function.
const Value *PersonalityFn;
+ /// \brief Whether we've seen a call to @llvm.frameallocate in this function
+ /// already.
+ bool SawFrameAllocate;
+
public:
explicit Verifier(raw_ostream &OS = dbgs())
- : VerifierSupport(OS), Context(nullptr), DL(nullptr),
- PersonalityFn(nullptr) {}
+ : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr),
+ SawFrameAllocate(false) {}
bool verify(const Function &F) {
M = F.getParent();
@@ -211,6 +240,7 @@ public:
visit(const_cast<Function &>(F));
InstsInThisBlock.clear();
PersonalityFn = nullptr;
+ SawFrameAllocate = false;
return !Broken;
}
@@ -257,10 +287,12 @@ private:
void visitGlobalVariable(const GlobalVariable &GV);
void visitGlobalAlias(const GlobalAlias &GA);
void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
- void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
+ void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
const GlobalAlias &A, const Constant &C);
void visitNamedMDNode(const NamedMDNode &NMD);
- void visitMDNode(MDNode &MD, Function *F);
+ void visitMDNode(MDNode &MD);
+ void visitMetadataAsValue(MetadataAsValue &MD, Function *F);
+ void visitValueAsMetadata(ValueAsMetadata &MD, Function *F);
void visitComdat(const Comdat &C);
void visitModuleIdents(const Module &M);
void visitModuleFlags(const Module &M);
@@ -269,6 +301,8 @@ private:
SmallVectorImpl<const MDNode *> &Requirements);
void visitFunction(const Function &F);
void visitBasicBlock(BasicBlock &BB);
+ void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
+
// InstVisitor overrides...
using InstVisitor<Verifier>::visit;
@@ -335,7 +369,6 @@ private:
void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
const Value *V);
- void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
void VerifyConstantExprBitcastType(const ConstantExpr *CE);
};
class DebugInfoVerifier : public VerifierSupport {
@@ -375,8 +408,8 @@ void Verifier::visit(Instruction &I) {
void Verifier::visitGlobalValue(const GlobalValue &GV) {
- Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
- GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
+ Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() ||
+ GV.hasExternalWeakLinkage(),
"Global is external, but doesn't have external or weak linkage!",
&GV);
@@ -478,7 +511,7 @@ void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
while (!WorkStack.empty()) {
const Value *V = WorkStack.pop_back_val();
- if (!Visited.insert(V))
+ if (!Visited.insert(V).second)
continue;
if (const User *U = dyn_cast<User>(V)) {
@@ -502,13 +535,13 @@ void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
visitAliaseeSubExpr(Visited, GA, C);
}
-void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
+void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
const GlobalAlias &GA, const Constant &C) {
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
- Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
+ Assert1(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
&GA);
@@ -557,46 +590,77 @@ void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
if (!MD)
continue;
- Assert1(!MD->isFunctionLocal(),
- "Named metadata operand cannot be function local!", MD);
- visitMDNode(*MD, nullptr);
+ visitMDNode(*MD);
}
}
-void Verifier::visitMDNode(MDNode &MD, Function *F) {
+void Verifier::visitMDNode(MDNode &MD) {
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
- if (!MDNodes.insert(&MD))
+ if (!MDNodes.insert(&MD).second)
return;
for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
- Value *Op = MD.getOperand(i);
+ Metadata *Op = MD.getOperand(i);
if (!Op)
continue;
- if (isa<Constant>(Op) || isa<MDString>(Op))
+ Assert2(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
+ &MD, Op);
+ if (auto *N = dyn_cast<MDNode>(Op)) {
+ visitMDNode(*N);
continue;
- if (MDNode *N = dyn_cast<MDNode>(Op)) {
- Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
- "Global metadata operand cannot be function local!", &MD, N);
- visitMDNode(*N, F);
+ }
+ if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
+ visitValueAsMetadata(*V, nullptr);
continue;
}
- Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
-
- // If this was an instruction, bb, or argument, verify that it is in the
- // function that we expect.
- Function *ActualF = nullptr;
- if (Instruction *I = dyn_cast<Instruction>(Op))
- ActualF = I->getParent()->getParent();
- else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
- ActualF = BB->getParent();
- else if (Argument *A = dyn_cast<Argument>(Op))
- ActualF = A->getParent();
- assert(ActualF && "Unimplemented function local metadata case!");
-
- Assert2(ActualF == F, "function-local metadata used in wrong function",
- &MD, Op);
}
+
+ // Check these last, so we diagnose problems in operands first.
+ Assert1(!isa<MDNodeFwdDecl>(MD), "Expected no forward declarations!", &MD);
+ Assert1(MD.isResolved(), "All nodes should be resolved!", &MD);
+}
+
+void Verifier::visitValueAsMetadata(ValueAsMetadata &MD, Function *F) {
+ Assert1(MD.getValue(), "Expected valid value", &MD);
+ Assert2(!MD.getValue()->getType()->isMetadataTy(),
+ "Unexpected metadata round-trip through values", &MD, MD.getValue());
+
+ auto *L = dyn_cast<LocalAsMetadata>(&MD);
+ if (!L)
+ return;
+
+ Assert1(F, "function-local metadata used outside a function", L);
+
+ // If this was an instruction, bb, or argument, verify that it is in the
+ // function that we expect.
+ Function *ActualF = nullptr;
+ if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
+ Assert2(I->getParent(), "function-local metadata not in basic block", L, I);
+ ActualF = I->getParent()->getParent();
+ } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
+ ActualF = BB->getParent();
+ else if (Argument *A = dyn_cast<Argument>(L->getValue()))
+ ActualF = A->getParent();
+ assert(ActualF && "Unimplemented function local metadata case!");
+
+ Assert1(ActualF == F, "function-local metadata used in wrong function", L);
+}
+
+void Verifier::visitMetadataAsValue(MetadataAsValue &MDV, Function *F) {
+ Metadata *MD = MDV.getMetadata();
+ if (auto *N = dyn_cast<MDNode>(MD)) {
+ visitMDNode(*N);
+ return;
+ }
+
+ // Only visit each node once. Metadata can be mutually recursive, so this
+ // avoids infinite recursion here, as well as being an optimization.
+ if (!MDNodes.insert(MD).second)
+ return;
+
+ if (auto *V = dyn_cast<ValueAsMetadata>(MD))
+ visitValueAsMetadata(*V, F);
}
void Verifier::visitComdat(const Comdat &C) {
@@ -647,7 +711,7 @@ void Verifier::visitModuleFlags(const Module &M) {
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
const MDNode *Requirement = Requirements[I];
const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
- const Value *ReqValue = Requirement->getOperand(1);
+ const Metadata *ReqValue = Requirement->getOperand(1);
const MDNode *Op = SeenIDs.lookup(Flag);
if (!Op) {
@@ -673,24 +737,23 @@ Verifier::visitModuleFlag(const MDNode *Op,
// constant int), the flag ID (an MDString), and the value.
Assert1(Op->getNumOperands() == 3,
"incorrect number of operands in module flag", Op);
- ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
+ Module::ModFlagBehavior MFB;
+ if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
+ Assert1(
+ mdconst::dyn_extract<ConstantInt>(Op->getOperand(0)),
+ "invalid behavior operand in module flag (expected constant integer)",
+ Op->getOperand(0));
+ Assert1(false,
+ "invalid behavior operand in module flag (unexpected constant)",
+ Op->getOperand(0));
+ }
MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
- Assert1(Behavior,
- "invalid behavior operand in module flag (expected constant integer)",
- Op->getOperand(0));
- unsigned BehaviorValue = Behavior->getZExtValue();
Assert1(ID,
"invalid ID operand in module flag (expected metadata string)",
Op->getOperand(1));
// Sanity check the values for behaviors with additional requirements.
- switch (BehaviorValue) {
- default:
- Assert1(false,
- "invalid behavior operand in module flag (unexpected constant)",
- Op->getOperand(0));
- break;
-
+ switch (MFB) {
case Module::Error:
case Module::Warning:
case Module::Override:
@@ -726,7 +789,7 @@ Verifier::visitModuleFlag(const MDNode *Op,
}
// Unless this is a "requires" flag, check the ID is unique.
- if (BehaviorValue != Module::Require) {
+ if (MFB != Module::Require) {
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
Assert1(Inserted,
"module flag identifiers must be unique (or of 'require' type)",
@@ -959,48 +1022,13 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
}
}
-void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
- unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
-
- // BitCast implies a no-op cast of type only. No bits change.
- // However, you can't cast pointers to anything but pointers.
- Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
- "Bitcast requires both operands to be pointer or neither", V);
- Assert1(SrcBitSize == DestBitSize,
- "Bitcast requires types of same width", V);
-
- // Disallow aggregates.
- Assert1(!SrcTy->isAggregateType(),
- "Bitcast operand must not be aggregate", V);
- Assert1(!DestTy->isAggregateType(),
- "Bitcast type must not be aggregate", V);
-
- // Without datalayout, assume all address spaces are the same size.
- // Don't check if both types are not pointers.
- // Skip casts between scalars and vectors.
- if (!DL ||
- !SrcTy->isPtrOrPtrVectorTy() ||
- !DestTy->isPtrOrPtrVectorTy() ||
- SrcTy->isVectorTy() != DestTy->isVectorTy()) {
+void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
+ if (CE->getOpcode() != Instruction::BitCast)
return;
- }
-
- unsigned SrcAS = SrcTy->getPointerAddressSpace();
- unsigned DstAS = DestTy->getPointerAddressSpace();
-
- Assert1(SrcAS == DstAS,
- "Bitcasts between pointers of different address spaces is not legal."
- "Use AddrSpaceCast instead.", V);
-}
-void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
- if (CE->getOpcode() == Instruction::BitCast) {
- Type *SrcTy = CE->getOperand(0)->getType();
- Type *DstTy = CE->getType();
- VerifyBitcastType(CE, DstTy, SrcTy);
- }
+ Assert1(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
+ CE->getType()),
+ "Invalid bitcast", CE);
}
bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
@@ -1055,20 +1083,19 @@ void Verifier::visitFunction(const Function &F) {
"Attribute 'builtin' can only be applied to a callsite.", &F);
// Check that this function meets the restrictions on this calling convention.
+ // Sometimes varargs is used for perfectly forwarding thunks, so some of these
+ // restrictions can be lifted.
switch (F.getCallingConv()) {
default:
- break;
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
- case CallingConv::X86_FastCall:
- case CallingConv::X86_ThisCall:
case CallingConv::Intel_OCL_BI:
case CallingConv::PTX_Kernel:
case CallingConv::PTX_Device:
- Assert1(!F.isVarArg(),
- "Varargs functions must have C calling conventions!", &F);
+ Assert1(!F.isVarArg(), "Calling convention does not support varargs or "
+ "perfect forwarding!", &F);
break;
}
@@ -1101,7 +1128,7 @@ void Verifier::visitFunction(const Function &F) {
// Check the entry node
const BasicBlock *Entry = &F.getEntryBlock();
- Assert1(pred_begin(Entry) == pred_end(Entry),
+ Assert1(pred_empty(Entry),
"Entry block to function must not have predecessors!", Entry);
// The address of the entry block cannot be taken, unless it is dead.
@@ -1176,6 +1203,12 @@ void Verifier::visitBasicBlock(BasicBlock &BB) {
}
}
}
+
+ // Check that all instructions have their parent pointers set up correctly.
+ for (auto &I : BB)
+ {
+ Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
+ }
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
@@ -1218,7 +1251,7 @@ void Verifier::visitSwitchInst(SwitchInst &SI) {
for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
Assert1(i.getCaseValue()->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
- Assert2(Constants.insert(i.getCaseValue()),
+ Assert2(Constants.insert(i.getCaseValue()).second,
"Duplicate integer as switch case", &SI, i.getCaseValue());
}
@@ -1476,9 +1509,9 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
}
void Verifier::visitBitCastInst(BitCastInst &I) {
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- VerifyBitcastType(&I, DestTy, SrcTy);
+ Assert1(
+ CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
+ "Invalid bitcast", &I);
visitInstruction(I);
}
@@ -1887,6 +1920,57 @@ static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
+void Verifier::visitRangeMetadata(Instruction& I,
+ MDNode* Range, Type* Ty) {
+ assert(Range &&
+ Range == I.getMetadata(LLVMContext::MD_range) &&
+ "precondition violation");
+
+ unsigned NumOperands = Range->getNumOperands();
+ Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
+ unsigned NumRanges = NumOperands / 2;
+ Assert1(NumRanges >= 1, "It should have at least one range!", Range);
+
+ ConstantRange LastRange(1); // Dummy initial value
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Low =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
+ Assert1(Low, "The lower limit must be an integer!", Low);
+ ConstantInt *High =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
+ Assert1(High, "The upper limit must be an integer!", High);
+ Assert1(High->getType() == Low->getType() &&
+ High->getType() == Ty, "Range types must match instruction type!",
+ &I);
+
+ APInt HighV = High->getValue();
+ APInt LowV = Low->getValue();
+ ConstantRange CurRange(LowV, HighV);
+ Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
+ "Range must not be empty!", Range);
+ if (i != 0) {
+ Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
+ Range);
+ Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
+ Range);
+ }
+ LastRange = ConstantRange(LowV, HighV);
+ }
+ if (NumRanges > 2) {
+ APInt FirstLow =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
+ APInt FirstHigh =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
+ ConstantRange FirstRange(FirstLow, FirstHigh);
+ Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
+ Range);
+ }
+}
+
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert1(PTy, "Load operand must be a pointer.", &LI);
@@ -1914,52 +1998,6 @@ void Verifier::visitLoadInst(LoadInst &LI) {
"Non-atomic load cannot have SynchronizationScope specified", &LI);
}
- if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
- unsigned NumOperands = Range->getNumOperands();
- Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
- unsigned NumRanges = NumOperands / 2;
- Assert1(NumRanges >= 1, "It should have at least one range!", Range);
-
- ConstantRange LastRange(1); // Dummy initial value
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
- Assert1(Low, "The lower limit must be an integer!", Low);
- ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
- Assert1(High, "The upper limit must be an integer!", High);
- Assert1(High->getType() == Low->getType() &&
- High->getType() == ElTy, "Range types must match load type!",
- &LI);
-
- APInt HighV = High->getValue();
- APInt LowV = Low->getValue();
- ConstantRange CurRange(LowV, HighV);
- Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
- "Range must not be empty!", Range);
- if (i != 0) {
- Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
- Range);
- Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
- Range);
- }
- LastRange = ConstantRange(LowV, HighV);
- }
- if (NumRanges > 2) {
- APInt FirstLow =
- dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
- APInt FirstHigh =
- dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
- ConstantRange FirstRange(FirstLow, FirstHigh);
- Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
- Range);
- }
-
-
- }
-
visitInstruction(LI);
}
@@ -2214,11 +2252,15 @@ void Verifier::visitInstruction(Instruction &I) {
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
- Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
+ Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 :
+ isa<InvokeInst>(I) ? e-3 : 0),
"Cannot take the address of an intrinsic!", &I);
Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
- F->getIntrinsicID() == Intrinsic::donothing,
- "Cannot invoke an intrinsinc other than donothing", &I);
+ F->getIntrinsicID() == Intrinsic::donothing ||
+ F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
+ F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64,
+ "Cannot invoke an intrinsinc other than"
+ " donothing or patchpoint", &I);
Assert1(F->getParent() == M, "Referencing function in another module!",
&I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
@@ -2246,7 +2288,7 @@ void Verifier::visitInstruction(Instruction &I) {
while (!Stack.empty()) {
const ConstantExpr *V = Stack.pop_back_val();
- if (!Visited.insert(V))
+ if (!Visited.insert(V).second)
continue;
VerifyConstantExprBitcastType(V);
@@ -2264,8 +2306,8 @@ void Verifier::visitInstruction(Instruction &I) {
Assert1(I.getType()->isFPOrFPVectorTy(),
"fpmath requires a floating point result!", &I);
Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
- Value *Op0 = MD->getOperand(0);
- if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
+ if (ConstantFP *CFP0 =
+ mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
APFloat Accuracy = CFP0->getValueAPF();
Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I);
@@ -2274,9 +2316,19 @@ void Verifier::visitInstruction(Instruction &I) {
}
}
- MDNode *MD = I.getMetadata(LLVMContext::MD_range);
- Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
- "Ranges are only for loads, calls and invokes!", &I);
+ if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
+ Assert1(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Ranges are only for loads, calls and invokes!", &I);
+ visitRangeMetadata(I, Range, I.getType());
+ }
+
+ if (I.getMetadata(LLVMContext::MD_nonnull)) {
+ Assert1(I.getType()->isPointerTy(),
+ "nonnull applies only to pointer types", &I);
+ Assert1(isa<LoadInst>(I),
+ "nonnull applies only to load instructions, use attributes"
+ " for calls or invokes", &I);
+ }
InstsInThisBlock.insert(&I);
}
@@ -2382,6 +2434,26 @@ bool Verifier::VerifyIntrinsicType(Type *Ty,
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
+ case IITDescriptor::SameVecWidthArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+ VectorType * ReferenceType =
+ dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
+ if (!ThisArgType || !ReferenceType ||
+ (ReferenceType->getVectorNumElements() !=
+ ThisArgType->getVectorNumElements()))
+ return true;
+ return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
+ Infos, ArgTys);
+ }
+ case IITDescriptor::PtrToArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+ Type * ReferenceType = ArgTys[D.getArgumentNumber()];
+ PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
+ return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
+ }
}
llvm_unreachable("unhandled");
}
@@ -2459,8 +2531,8 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
// If the intrinsic takes MDNode arguments, verify that they are either global
// or are local to *this* function.
for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
- if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
- visitMDNode(*MD, CI.getParent()->getParent());
+ if (auto *MD = dyn_cast<MetadataAsValue>(CI.getArgOperand(i)))
+ visitMetadataAsValue(*MD, CI.getParent()->getParent());
switch (ID) {
default:
@@ -2472,11 +2544,8 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
"constant int", &CI);
break;
case Intrinsic::dbg_declare: { // llvm.dbg.declare
- Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
- "invalid llvm.dbg.declare intrinsic call 1", &CI);
- MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
- Assert1(MD->getNumOperands() == 1,
- "invalid llvm.dbg.declare intrinsic call 2", &CI);
+ Assert1(CI.getArgOperand(0) && isa<MetadataAsValue>(CI.getArgOperand(0)),
+ "invalid llvm.dbg.declare intrinsic call 1", &CI);
} break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
@@ -2536,7 +2605,189 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
"llvm.invariant.end parameter #2 must be a constant integer", &CI);
break;
+
+ case Intrinsic::frameallocate: {
+ BasicBlock *BB = CI.getParent();
+ Assert1(BB == &BB->getParent()->front(),
+ "llvm.frameallocate used outside of entry block", &CI);
+ Assert1(!SawFrameAllocate,
+ "multiple calls to llvm.frameallocate in one function", &CI);
+ SawFrameAllocate = true;
+ Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
+ "llvm.frameallocate argument must be constant integer size", &CI);
+ break;
+ }
+ case Intrinsic::framerecover: {
+ Value *FnArg = CI.getArgOperand(0)->stripPointerCasts();
+ Function *Fn = dyn_cast<Function>(FnArg);
+ Assert1(Fn && !Fn->isDeclaration(), "llvm.framerecover first "
+ "argument must be function defined in this module", &CI);
+ break;
+ }
+
+ case Intrinsic::experimental_gc_statepoint: {
+ Assert1(!CI.doesNotAccessMemory() &&
+ !CI.onlyReadsMemory(),
+ "gc.statepoint must read and write memory to preserve "
+ "reordering restrictions required by safepoint semantics", &CI);
+ Assert1(!CI.isInlineAsm(),
+ "gc.statepoint support for inline assembly unimplemented", &CI);
+
+ const Value *Target = CI.getArgOperand(0);
+ const PointerType *PT = dyn_cast<PointerType>(Target->getType());
+ Assert2(PT && PT->getElementType()->isFunctionTy(),
+ "gc.statepoint callee must be of function pointer type",
+ &CI, Target);
+ FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
+ Assert1(!TargetFuncType->isVarArg(),
+ "gc.statepoint support for var arg functions not implemented", &CI);
+
+ const Value *NumCallArgsV = CI.getArgOperand(1);
+ Assert1(isa<ConstantInt>(NumCallArgsV),
+ "gc.statepoint number of arguments to underlying call "
+ "must be constant integer", &CI);
+ const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
+ Assert1(NumCallArgs >= 0,
+ "gc.statepoint number of arguments to underlying call "
+ "must be positive", &CI);
+ Assert1(NumCallArgs == (int)TargetFuncType->getNumParams(),
+ "gc.statepoint mismatch in number of call args", &CI);
+
+ const Value *Unused = CI.getArgOperand(2);
+ Assert1(isa<ConstantInt>(Unused) &&
+ cast<ConstantInt>(Unused)->isNullValue(),
+ "gc.statepoint parameter #3 must be zero", &CI);
+
+ // Verify that the types of the call parameter arguments match
+ // the type of the wrapped callee.
+ for (int i = 0; i < NumCallArgs; i++) {
+ Type *ParamType = TargetFuncType->getParamType(i);
+ Type *ArgType = CI.getArgOperand(3+i)->getType();
+ Assert1(ArgType == ParamType,
+ "gc.statepoint call argument does not match wrapped "
+ "function type", &CI);
+ }
+ const int EndCallArgsInx = 2+NumCallArgs;
+ const Value *NumDeoptArgsV = CI.getArgOperand(EndCallArgsInx+1);
+ Assert1(isa<ConstantInt>(NumDeoptArgsV),
+ "gc.statepoint number of deoptimization arguments "
+ "must be constant integer", &CI);
+ const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
+ Assert1(NumDeoptArgs >= 0,
+ "gc.statepoint number of deoptimization arguments "
+ "must be positive", &CI);
+
+ Assert1(4 + NumCallArgs + NumDeoptArgs <= (int)CI.getNumArgOperands(),
+ "gc.statepoint too few arguments according to length fields", &CI);
+
+ // Check that the only uses of this gc.statepoint are gc.result or
+ // gc.relocate calls which are tied to this statepoint and thus part
+ // of the same statepoint sequence
+ for (User *U : CI.users()) {
+ const CallInst *Call = dyn_cast<const CallInst>(U);
+ Assert2(Call, "illegal use of statepoint token", &CI, U);
+ if (!Call) continue;
+ Assert2(isGCRelocate(Call) || isGCResult(Call),
+ "gc.result or gc.relocate are the only value uses"
+ "of a gc.statepoint", &CI, U);
+ if (isGCResult(Call)) {
+ Assert2(Call->getArgOperand(0) == &CI,
+ "gc.result connected to wrong gc.statepoint",
+ &CI, Call);
+ } else if (isGCRelocate(Call)) {
+ Assert2(Call->getArgOperand(0) == &CI,
+ "gc.relocate connected to wrong gc.statepoint",
+ &CI, Call);
+ }
+ }
+
+ // Note: It is legal for a single derived pointer to be listed multiple
+ // times. It's non-optimal, but it is legal. It can also happen after
+ // insertion if we strip a bitcast away.
+ // Note: It is really tempting to check that each base is relocated and
+ // that a derived pointer is never reused as a base pointer. This turns
+ // out to be problematic since optimizations run after safepoint insertion
+ // can recognize equality properties that the insertion logic doesn't know
+ // about. See example statepoint.ll in the verifier subdirectory
+ break;
}
+ case Intrinsic::experimental_gc_result_int:
+ case Intrinsic::experimental_gc_result_float:
+ case Intrinsic::experimental_gc_result_ptr: {
+ // Are we tied to a statepoint properly?
+ CallSite StatepointCS(CI.getArgOperand(0));
+ const Function *StatepointFn =
+ StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
+ Assert2(StatepointFn && StatepointFn->isDeclaration() &&
+ StatepointFn->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
+ "gc.result operand #1 must be from a statepoint",
+ &CI, CI.getArgOperand(0));
+
+ // Assert that result type matches wrapped callee.
+ const Value *Target = StatepointCS.getArgument(0);
+ const PointerType *PT = cast<PointerType>(Target->getType());
+ const FunctionType *TargetFuncType =
+ cast<FunctionType>(PT->getElementType());
+ Assert1(CI.getType() == TargetFuncType->getReturnType(),
+ "gc.result result type does not match wrapped callee",
+ &CI);
+ break;
+ }
+ case Intrinsic::experimental_gc_relocate: {
+ // Are we tied to a statepoint properly?
+ CallSite StatepointCS(CI.getArgOperand(0));
+ const Function *StatepointFn =
+ StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
+ Assert2(StatepointFn && StatepointFn->isDeclaration() &&
+ StatepointFn->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
+ "gc.relocate operand #1 must be from a statepoint",
+ &CI, CI.getArgOperand(0));
+
+ // Both the base and derived must be piped through the safepoint
+ Value* Base = CI.getArgOperand(1);
+ Assert1(isa<ConstantInt>(Base),
+ "gc.relocate operand #2 must be integer offset", &CI);
+
+ Value* Derived = CI.getArgOperand(2);
+ Assert1(isa<ConstantInt>(Derived),
+ "gc.relocate operand #3 must be integer offset", &CI);
+
+ const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
+ const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
+ // Check the bounds
+ Assert1(0 <= BaseIndex &&
+ BaseIndex < (int)StatepointCS.arg_size(),
+ "gc.relocate: statepoint base index out of bounds", &CI);
+ Assert1(0 <= DerivedIndex &&
+ DerivedIndex < (int)StatepointCS.arg_size(),
+ "gc.relocate: statepoint derived index out of bounds", &CI);
+
+ // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
+ // section of the statepoint's argument
+ const int NumCallArgs =
+ cast<ConstantInt>(StatepointCS.getArgument(1))->getZExtValue();
+ const int NumDeoptArgs =
+ cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue();
+ const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4;
+ const int GCParamArgsEnd = StatepointCS.arg_size();
+ Assert1(GCParamArgsStart <= BaseIndex &&
+ BaseIndex < GCParamArgsEnd,
+ "gc.relocate: statepoint base index doesn't fall within the "
+ "'gc parameters' section of the statepoint call", &CI);
+ Assert1(GCParamArgsStart <= DerivedIndex &&
+ DerivedIndex < GCParamArgsEnd,
+ "gc.relocate: statepoint derived index doesn't fall within the "
+ "'gc parameters' section of the statepoint call", &CI);
+
+
+ // Assert that the result type matches the type of the relocated pointer
+ GCRelocateOperands Operands(&CI);
+ Assert1(Operands.derivedPtr()->getType() == CI.getType(),
+ "gc.relocate: relocating a pointer shouldn't change its type",
+ &CI);
+ break;
+ }
+ };
}
void DebugInfoVerifier::verifyDebugInfo() {
@@ -2615,7 +2866,7 @@ bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
bool Broken = false;
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isDeclaration())
+ if (!I->isDeclaration() && !I->isMaterializable())
Broken |= !V.verify(*I);
// Note that this function's return value is inverted from what you would
@@ -2699,15 +2950,15 @@ ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
return new DebugInfoVerifierLegacyPass(FatalErrors);
}
-PreservedAnalyses VerifierPass::run(Module *M) {
- if (verifyModule(*M, &dbgs()) && FatalErrors)
+PreservedAnalyses VerifierPass::run(Module &M) {
+ if (verifyModule(M, &dbgs()) && FatalErrors)
report_fatal_error("Broken module found, compilation aborted!");
return PreservedAnalyses::all();
}
-PreservedAnalyses VerifierPass::run(Function *F) {
- if (verifyFunction(*F, &dbgs()) && FatalErrors)
+PreservedAnalyses VerifierPass::run(Function &F) {
+ if (verifyFunction(F, &dbgs()) && FatalErrors)
report_fatal_error("Broken function found, compilation aborted!");
return PreservedAnalyses::all();
diff --git a/contrib/llvm/lib/IRReader/IRReader.cpp b/contrib/llvm/lib/IRReader/IRReader.cpp
index f8d2f5a..7bc6f07 100644
--- a/contrib/llvm/lib/IRReader/IRReader.cpp
+++ b/contrib/llvm/lib/IRReader/IRReader.cpp
@@ -29,28 +29,27 @@ namespace llvm {
static const char *const TimeIRParsingGroupName = "LLVM IR Parsing";
static const char *const TimeIRParsingName = "Parse IR";
-static Module *getLazyIRModule(MemoryBuffer *Buffer, SMDiagnostic &Err,
- LLVMContext &Context) {
+static std::unique_ptr<Module>
+getLazyIRModule(std::unique_ptr<MemoryBuffer> Buffer, SMDiagnostic &Err,
+ LLVMContext &Context) {
if (isBitcode((const unsigned char *)Buffer->getBufferStart(),
(const unsigned char *)Buffer->getBufferEnd())) {
- std::string ErrMsg;
- ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context);
+ ErrorOr<Module *> ModuleOrErr =
+ getLazyBitcodeModule(std::move(Buffer), Context);
if (std::error_code EC = ModuleOrErr.getError()) {
Err = SMDiagnostic(Buffer->getBufferIdentifier(), SourceMgr::DK_Error,
EC.message());
- // getLazyBitcodeModule does not take ownership of the Buffer in the
- // case of an error.
- delete Buffer;
return nullptr;
}
- return ModuleOrErr.get();
+ return std::unique_ptr<Module>(ModuleOrErr.get());
}
- return ParseAssembly(Buffer, nullptr, Err, Context);
+ return parseAssembly(Buffer->getMemBufferRef(), Err, Context);
}
-Module *llvm::getLazyIRFileModule(const std::string &Filename, SMDiagnostic &Err,
- LLVMContext &Context) {
+std::unique_ptr<Module> llvm::getLazyIRFileModule(StringRef Filename,
+ SMDiagnostic &Err,
+ LLVMContext &Context) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = FileOrErr.getError()) {
@@ -59,33 +58,29 @@ Module *llvm::getLazyIRFileModule(const std::string &Filename, SMDiagnostic &Err
return nullptr;
}
- return getLazyIRModule(FileOrErr.get().release(), Err, Context);
+ return getLazyIRModule(std::move(FileOrErr.get()), Err, Context);
}
-Module *llvm::ParseIR(MemoryBuffer *Buffer, SMDiagnostic &Err,
- LLVMContext &Context) {
+std::unique_ptr<Module> llvm::parseIR(MemoryBufferRef Buffer, SMDiagnostic &Err,
+ LLVMContext &Context) {
NamedRegionTimer T(TimeIRParsingName, TimeIRParsingGroupName,
TimePassesIsEnabled);
- if (isBitcode((const unsigned char *)Buffer->getBufferStart(),
- (const unsigned char *)Buffer->getBufferEnd())) {
+ if (isBitcode((const unsigned char *)Buffer.getBufferStart(),
+ (const unsigned char *)Buffer.getBufferEnd())) {
ErrorOr<Module *> ModuleOrErr = parseBitcodeFile(Buffer, Context);
- Module *M = nullptr;
- if (std::error_code EC = ModuleOrErr.getError())
- Err = SMDiagnostic(Buffer->getBufferIdentifier(), SourceMgr::DK_Error,
+ if (std::error_code EC = ModuleOrErr.getError()) {
+ Err = SMDiagnostic(Buffer.getBufferIdentifier(), SourceMgr::DK_Error,
EC.message());
- else
- M = ModuleOrErr.get();
- // parseBitcodeFile does not take ownership of the Buffer.
- return M;
+ return nullptr;
+ }
+ return std::unique_ptr<Module>(ModuleOrErr.get());
}
- return ParseAssembly(MemoryBuffer::getMemBuffer(
- Buffer->getBuffer(), Buffer->getBufferIdentifier()),
- nullptr, Err, Context);
+ return parseAssembly(Buffer, Err, Context);
}
-Module *llvm::ParseIRFile(const std::string &Filename, SMDiagnostic &Err,
- LLVMContext &Context) {
+std::unique_ptr<Module> llvm::parseIRFile(StringRef Filename, SMDiagnostic &Err,
+ LLVMContext &Context) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = FileOrErr.getError()) {
@@ -94,7 +89,7 @@ Module *llvm::ParseIRFile(const std::string &Filename, SMDiagnostic &Err,
return nullptr;
}
- return ParseIR(FileOrErr.get().get(), Err, Context);
+ return parseIR(FileOrErr.get()->getMemBufferRef(), Err, Context);
}
//===----------------------------------------------------------------------===//
@@ -107,7 +102,8 @@ LLVMBool LLVMParseIRInContext(LLVMContextRef ContextRef,
SMDiagnostic Diag;
std::unique_ptr<MemoryBuffer> MB(unwrap(MemBuf));
- *OutM = wrap(ParseIR(MB.get(), Diag, *unwrap(ContextRef)));
+ *OutM =
+ wrap(parseIR(MB->getMemBufferRef(), Diag, *unwrap(ContextRef)).release());
if(!*OutM) {
if (OutMessage) {
diff --git a/contrib/llvm/lib/LTO/LTOCodeGenerator.cpp b/contrib/llvm/lib/LTO/LTOCodeGenerator.cpp
index 45a49e4..c663d43 100644
--- a/contrib/llvm/lib/LTO/LTOCodeGenerator.cpp
+++ b/contrib/llvm/lib/LTO/LTOCodeGenerator.cpp
@@ -48,6 +48,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/ObjCARC.h"
@@ -63,18 +64,30 @@ const char* LTOCodeGenerator::getVersionString() {
}
LTOCodeGenerator::LTOCodeGenerator()
- : Context(getGlobalContext()), IRLinker(new Module("ld-temp.o", Context)),
- TargetMach(nullptr), EmitDwarfDebugInfo(false),
- ScopeRestrictionsDone(false), CodeModel(LTO_CODEGEN_PIC_MODEL_DEFAULT),
- NativeObjectFile(nullptr), DiagHandler(nullptr), DiagContext(nullptr) {
+ : Context(getGlobalContext()), IRLinker(new Module("ld-temp.o", Context)) {
+ initialize();
+}
+
+LTOCodeGenerator::LTOCodeGenerator(std::unique_ptr<LLVMContext> Context)
+ : OwnedContext(std::move(Context)), Context(*OwnedContext),
+ IRLinker(new Module("ld-temp.o", *OwnedContext)) {
+ initialize();
+}
+
+void LTOCodeGenerator::initialize() {
+ TargetMach = nullptr;
+ EmitDwarfDebugInfo = false;
+ ScopeRestrictionsDone = false;
+ CodeModel = LTO_CODEGEN_PIC_MODEL_DEFAULT;
+ DiagHandler = nullptr;
+ DiagContext = nullptr;
+
initializeLTOPasses();
}
LTOCodeGenerator::~LTOCodeGenerator() {
delete TargetMach;
- delete NativeObjectFile;
TargetMach = nullptr;
- NativeObjectFile = nullptr;
IRLinker.deleteModule();
@@ -114,8 +127,11 @@ void LTOCodeGenerator::initializeLTOPasses() {
initializeCFGSimplifyPassPass(R);
}
-bool LTOCodeGenerator::addModule(LTOModule* mod, std::string& errMsg) {
- bool ret = IRLinker.linkInModule(&mod->getModule(), &errMsg);
+bool LTOCodeGenerator::addModule(LTOModule *mod) {
+ assert(&mod->getModule().getContext() == &Context &&
+ "Expected module in same context");
+
+ bool ret = IRLinker.linkInModule(&mod->getModule());
const std::vector<const char*> &undefs = mod->getAsmUndefinedRefs();
for (int i = 0, e = undefs.size(); i != e; ++i)
@@ -162,9 +178,9 @@ bool LTOCodeGenerator::writeMergedModules(const char *path,
applyScopeRestrictions();
// create output file
- std::string ErrInfo;
- tool_output_file Out(path, ErrInfo, sys::fs::F_None);
- if (!ErrInfo.empty()) {
+ std::error_code EC;
+ tool_output_file Out(path, EC, sys::fs::F_None);
+ if (EC) {
errMsg = "could not open bitcode file for writing: ";
errMsg += path;
return false;
@@ -189,6 +205,7 @@ bool LTOCodeGenerator::compile_to_file(const char** name,
bool disableOpt,
bool disableInline,
bool disableGVNLoadPRE,
+ bool disableVectorization,
std::string& errMsg) {
// make unique temp .o file to put generated object file
SmallString<128> Filename;
@@ -203,8 +220,9 @@ bool LTOCodeGenerator::compile_to_file(const char** name,
// generate object file
tool_output_file objFile(Filename.c_str(), FD);
- bool genResult = generateObjectFile(objFile.os(), disableOpt, disableInline,
- disableGVNLoadPRE, errMsg);
+ bool genResult =
+ generateObjectFile(objFile.os(), disableOpt, disableInline,
+ disableGVNLoadPRE, disableVectorization, errMsg);
objFile.os().close();
if (objFile.os().has_error()) {
objFile.os().clear_error();
@@ -227,15 +245,13 @@ const void* LTOCodeGenerator::compile(size_t* length,
bool disableOpt,
bool disableInline,
bool disableGVNLoadPRE,
+ bool disableVectorization,
std::string& errMsg) {
const char *name;
if (!compile_to_file(&name, disableOpt, disableInline, disableGVNLoadPRE,
- errMsg))
+ disableVectorization, errMsg))
return nullptr;
- // remove old buffer if compile() called twice
- delete NativeObjectFile;
-
// read .o file into memory buffer
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(name, -1, false);
@@ -244,7 +260,7 @@ const void* LTOCodeGenerator::compile(size_t* length,
sys::fs::remove(NativeObjectPath);
return nullptr;
}
- NativeObjectFile = BufferOrErr.get().release();
+ NativeObjectFile = std::move(*BufferOrErr);
// remove temp files
sys::fs::remove(NativeObjectPath);
@@ -299,8 +315,7 @@ bool LTOCodeGenerator::determineTarget(std::string &errMsg) {
MCpu = "core2";
else if (Triple.getArch() == llvm::Triple::x86)
MCpu = "yonah";
- else if (Triple.getArch() == llvm::Triple::arm64 ||
- Triple.getArch() == llvm::Triple::aarch64)
+ else if (Triple.getArch() == llvm::Triple::aarch64)
MCpu = "cyclone";
}
@@ -312,9 +327,9 @@ bool LTOCodeGenerator::determineTarget(std::string &errMsg) {
void LTOCodeGenerator::
applyRestriction(GlobalValue &GV,
- const ArrayRef<StringRef> &Libcalls,
+ ArrayRef<StringRef> Libcalls,
std::vector<const char*> &MustPreserveList,
- SmallPtrSet<GlobalValue*, 8> &AsmUsed,
+ SmallPtrSetImpl<GlobalValue*> &AsmUsed,
Mangler &Mangler) {
// There are no restrictions to apply to declarations.
if (GV.isDeclaration())
@@ -343,7 +358,7 @@ applyRestriction(GlobalValue &GV,
}
static void findUsedValues(GlobalVariable *LLVMUsed,
- SmallPtrSet<GlobalValue*, 8> &UsedValues) {
+ SmallPtrSetImpl<GlobalValue*> &UsedValues) {
if (!LLVMUsed) return;
ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer());
@@ -391,12 +406,13 @@ void LTOCodeGenerator::applyScopeRestrictions() {
passes.add(createDebugInfoVerifierPass());
// mark which symbols can not be internalized
- Mangler Mangler(TargetMach->getDataLayout());
+ Mangler Mangler(TargetMach->getSubtargetImpl()->getDataLayout());
std::vector<const char*> MustPreserveList;
SmallPtrSet<GlobalValue*, 8> AsmUsed;
std::vector<StringRef> Libcalls;
TargetLibraryInfo TLI(Triple(TargetMach->getTargetTriple()));
- accumulateAndSortLibcalls(Libcalls, TLI, TargetMach->getTargetLowering());
+ accumulateAndSortLibcalls(
+ Libcalls, TLI, TargetMach->getSubtargetImpl()->getTargetLowering());
for (Module::iterator f = mergedModule->begin(),
e = mergedModule->end(); f != e; ++f)
@@ -445,6 +461,7 @@ bool LTOCodeGenerator::generateObjectFile(raw_ostream &out,
bool DisableOpt,
bool DisableInline,
bool DisableGVNLoadPRE,
+ bool DisableVectorization,
std::string &errMsg) {
if (!this->determineTarget(errMsg))
return false;
@@ -457,35 +474,27 @@ bool LTOCodeGenerator::generateObjectFile(raw_ostream &out,
// Instantiate the pass manager to organize the passes.
PassManager passes;
- // Start off with a verification pass.
- passes.add(createVerifierPass());
- passes.add(createDebugInfoVerifierPass());
-
// Add an appropriate DataLayout instance for this module...
- mergedModule->setDataLayout(TargetMach->getDataLayout());
- passes.add(new DataLayoutPass(mergedModule));
-
- // Add appropriate TargetLibraryInfo for this module.
- passes.add(new TargetLibraryInfo(Triple(TargetMach->getTargetTriple())));
-
- TargetMach->addAnalysisPasses(passes);
-
- // Enabling internalize here would use its AllButMain variant. It
- // keeps only main if it exists and does nothing for libraries. Instead
- // we create the pass ourselves with the symbol list provided by the linker.
- if (!DisableOpt)
- PassManagerBuilder().populateLTOPassManager(passes,
- /*Internalize=*/false,
- !DisableInline,
- DisableGVNLoadPRE);
-
- // Make sure everything is still good.
- passes.add(createVerifierPass());
- passes.add(createDebugInfoVerifierPass());
+ mergedModule->setDataLayout(TargetMach->getSubtargetImpl()->getDataLayout());
+
+ Triple TargetTriple(TargetMach->getTargetTriple());
+ PassManagerBuilder PMB;
+ PMB.DisableGVNLoadPRE = DisableGVNLoadPRE;
+ PMB.LoopVectorize = !DisableVectorization;
+ PMB.SLPVectorize = !DisableVectorization;
+ if (!DisableInline)
+ PMB.Inliner = createFunctionInliningPass();
+ PMB.LibraryInfo = new TargetLibraryInfo(TargetTriple);
+ if (DisableOpt)
+ PMB.OptLevel = 0;
+ PMB.VerifyInput = true;
+ PMB.VerifyOutput = true;
+
+ PMB.populateLTOPassManager(passes, TargetMach);
PassManager codeGenPasses;
- codeGenPasses.add(new DataLayoutPass(mergedModule));
+ codeGenPasses.add(new DataLayoutPass());
formatted_raw_ostream Out(out);
@@ -572,5 +581,6 @@ LTOCodeGenerator::setDiagnosticHandler(lto_diagnostic_handler_t DiagHandler,
return Context.setDiagnosticHandler(nullptr, nullptr);
// Register the LTOCodeGenerator stub in the LLVMContext to forward the
// diagnostic to the external DiagHandler.
- Context.setDiagnosticHandler(LTOCodeGenerator::DiagnosticHandler, this);
+ Context.setDiagnosticHandler(LTOCodeGenerator::DiagnosticHandler, this,
+ /* RespectFilters */ true);
}
diff --git a/contrib/llvm/lib/LTO/LTOModule.cpp b/contrib/llvm/lib/LTO/LTOModule.cpp
index 844c0f2..8b4a2f4 100644
--- a/contrib/llvm/lib/LTO/LTOModule.cpp
+++ b/contrib/llvm/lib/LTO/LTOModule.cpp
@@ -15,7 +15,9 @@
#include "llvm/LTO/LTOModule.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
@@ -28,6 +30,8 @@
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/SubtargetFeature.h"
+#include "llvm/Object/IRObjectFile.h"
+#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
@@ -39,32 +43,51 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include <system_error>
using namespace llvm;
+using namespace llvm::object;
LTOModule::LTOModule(std::unique_ptr<object::IRObjectFile> Obj,
llvm::TargetMachine *TM)
: IRFile(std::move(Obj)), _target(TM) {}
+LTOModule::LTOModule(std::unique_ptr<object::IRObjectFile> Obj,
+ llvm::TargetMachine *TM,
+ std::unique_ptr<LLVMContext> Context)
+ : OwnedContext(std::move(Context)), IRFile(std::move(Obj)), _target(TM) {}
+
+LTOModule::~LTOModule() {}
+
/// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM
/// bitcode.
-bool LTOModule::isBitcodeFile(const void *mem, size_t length) {
- return sys::fs::identify_magic(StringRef((const char *)mem, length)) ==
- sys::fs::file_magic::bitcode;
+bool LTOModule::isBitcodeFile(const void *Mem, size_t Length) {
+ ErrorOr<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
+ MemoryBufferRef(StringRef((const char *)Mem, Length), "<mem>"));
+ return bool(BCData);
}
-bool LTOModule::isBitcodeFile(const char *path) {
- sys::fs::file_magic type;
- if (sys::fs::identify_magic(path, type))
+bool LTOModule::isBitcodeFile(const char *Path) {
+ ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
+ MemoryBuffer::getFile(Path);
+ if (!BufferOrErr)
return false;
- return type == sys::fs::file_magic::bitcode;
+
+ ErrorOr<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
+ BufferOrErr.get()->getMemBufferRef());
+ return bool(BCData);
}
-bool LTOModule::isBitcodeForTarget(MemoryBuffer *buffer,
- StringRef triplePrefix) {
- std::string Triple = getBitcodeTargetTriple(buffer, getGlobalContext());
- return StringRef(Triple).startswith(triplePrefix);
+bool LTOModule::isBitcodeForTarget(MemoryBuffer *Buffer,
+ StringRef TriplePrefix) {
+ ErrorOr<MemoryBufferRef> BCOrErr =
+ IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
+ if (!BCOrErr)
+ return false;
+ LLVMContext Context;
+ std::string Triple = getBitcodeTargetTriple(*BCOrErr, Context);
+ return StringRef(Triple).startswith(TriplePrefix);
}
LTOModule *LTOModule::createFromFile(const char *path, TargetOptions options,
@@ -75,7 +98,9 @@ LTOModule *LTOModule::createFromFile(const char *path, TargetOptions options,
errMsg = EC.message();
return nullptr;
}
- return makeLTOModule(std::move(BufferOrErr.get()), options, errMsg);
+ std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
+ return makeLTOModule(Buffer->getMemBufferRef(), options, errMsg,
+ &getGlobalContext());
}
LTOModule *LTOModule::createFromOpenFile(int fd, const char *path, size_t size,
@@ -94,28 +119,88 @@ LTOModule *LTOModule::createFromOpenFileSlice(int fd, const char *path,
errMsg = EC.message();
return nullptr;
}
- return makeLTOModule(std::move(BufferOrErr.get()), options, errMsg);
+ std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
+ return makeLTOModule(Buffer->getMemBufferRef(), options, errMsg,
+ &getGlobalContext());
}
LTOModule *LTOModule::createFromBuffer(const void *mem, size_t length,
TargetOptions options,
std::string &errMsg, StringRef path) {
- std::unique_ptr<MemoryBuffer> buffer(makeBuffer(mem, length, path));
- if (!buffer)
- return nullptr;
- return makeLTOModule(std::move(buffer), options, errMsg);
+ return createInContext(mem, length, options, errMsg, path,
+ &getGlobalContext());
}
-LTOModule *LTOModule::makeLTOModule(std::unique_ptr<MemoryBuffer> Buffer,
- TargetOptions options,
- std::string &errMsg) {
- ErrorOr<Module *> MOrErr =
- getLazyBitcodeModule(Buffer.get(), getGlobalContext());
- if (std::error_code EC = MOrErr.getError()) {
- errMsg = EC.message();
+LTOModule *LTOModule::createInLocalContext(const void *mem, size_t length,
+ TargetOptions options,
+ std::string &errMsg,
+ StringRef path) {
+ return createInContext(mem, length, options, errMsg, path, nullptr);
+}
+
+LTOModule *LTOModule::createInContext(const void *mem, size_t length,
+ TargetOptions options,
+ std::string &errMsg, StringRef path,
+ LLVMContext *Context) {
+ StringRef Data((const char *)mem, length);
+ MemoryBufferRef Buffer(Data, path);
+ return makeLTOModule(Buffer, options, errMsg, Context);
+}
+
+static Module *parseBitcodeFileImpl(MemoryBufferRef Buffer,
+ LLVMContext &Context, bool ShouldBeLazy,
+ std::string &ErrMsg) {
+
+ // Find the buffer.
+ ErrorOr<MemoryBufferRef> MBOrErr =
+ IRObjectFile::findBitcodeInMemBuffer(Buffer);
+ if (std::error_code EC = MBOrErr.getError()) {
+ ErrMsg = EC.message();
+ return nullptr;
+ }
+
+ std::function<void(const DiagnosticInfo &)> DiagnosticHandler =
+ [&ErrMsg](const DiagnosticInfo &DI) {
+ raw_string_ostream Stream(ErrMsg);
+ DiagnosticPrinterRawOStream DP(Stream);
+ DI.print(DP);
+ };
+
+ if (!ShouldBeLazy) {
+ // Parse the full file.
+ ErrorOr<Module *> M =
+ parseBitcodeFile(*MBOrErr, Context, DiagnosticHandler);
+ if (!M)
+ return nullptr;
+ return *M;
+ }
+
+ // Parse lazily.
+ std::unique_ptr<MemoryBuffer> LightweightBuf =
+ MemoryBuffer::getMemBuffer(*MBOrErr, false);
+ ErrorOr<Module *> M = getLazyBitcodeModule(std::move(LightweightBuf), Context,
+ DiagnosticHandler);
+ if (!M)
return nullptr;
+ return *M;
+}
+
+LTOModule *LTOModule::makeLTOModule(MemoryBufferRef Buffer,
+ TargetOptions options, std::string &errMsg,
+ LLVMContext *Context) {
+ std::unique_ptr<LLVMContext> OwnedContext;
+ if (!Context) {
+ OwnedContext = llvm::make_unique<LLVMContext>();
+ Context = OwnedContext.get();
}
- std::unique_ptr<Module> M(MOrErr.get());
+
+ // If we own a context, we know this is being used only for symbol
+ // extraction, not linking. Be lazy in that case.
+ std::unique_ptr<Module> M(parseBitcodeFileImpl(
+ Buffer, *Context,
+ /* ShouldBeLazy */ static_cast<bool>(OwnedContext), errMsg));
+ if (!M)
+ return nullptr;
std::string TripleStr = M->getTargetTriple();
if (TripleStr.empty())
@@ -138,20 +223,22 @@ LTOModule *LTOModule::makeLTOModule(std::unique_ptr<MemoryBuffer> Buffer,
CPU = "core2";
else if (Triple.getArch() == llvm::Triple::x86)
CPU = "yonah";
- else if (Triple.getArch() == llvm::Triple::arm64 ||
- Triple.getArch() == llvm::Triple::aarch64)
+ else if (Triple.getArch() == llvm::Triple::aarch64)
CPU = "cyclone";
}
TargetMachine *target = march->createTargetMachine(TripleStr, CPU, FeatureStr,
options);
- M->materializeAllPermanently(true);
- M->setDataLayout(target->getDataLayout());
+ M->setDataLayout(target->getSubtargetImpl()->getDataLayout());
std::unique_ptr<object::IRObjectFile> IRObj(
- new object::IRObjectFile(std::move(Buffer), std::move(M)));
+ new object::IRObjectFile(Buffer, std::move(M)));
- LTOModule *Ret = new LTOModule(std::move(IRObj), target);
+ LTOModule *Ret;
+ if (OwnedContext)
+ Ret = new LTOModule(std::move(IRObj), target, std::move(OwnedContext));
+ else
+ Ret = new LTOModule(std::move(IRObj), target);
if (Ret->parseSymbols(errMsg)) {
delete Ret;
@@ -164,8 +251,8 @@ LTOModule *LTOModule::makeLTOModule(std::unique_ptr<MemoryBuffer> Buffer,
}
/// Create a MemoryBuffer from a memory range with an optional name.
-MemoryBuffer *LTOModule::makeBuffer(const void *mem, size_t length,
- StringRef name) {
+std::unique_ptr<MemoryBuffer>
+LTOModule::makeBuffer(const void *mem, size_t length, StringRef name) {
const char *startPtr = (const char*)mem;
return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), name, false);
}
@@ -196,27 +283,24 @@ void LTOModule::addObjCClass(const GlobalVariable *clgv) {
// second slot in __OBJC,__class is pointer to superclass name
std::string superclassName;
if (objcClassNameFromExpression(c->getOperand(1), superclassName)) {
- NameAndAttributes info;
- StringMap<NameAndAttributes>::value_type &entry =
- _undefines.GetOrCreateValue(superclassName);
- if (!entry.getValue().name) {
- const char *symbolName = entry.getKey().data();
- info.name = symbolName;
+ auto IterBool =
+ _undefines.insert(std::make_pair(superclassName, NameAndAttributes()));
+ if (IterBool.second) {
+ NameAndAttributes &info = IterBool.first->second;
+ info.name = IterBool.first->first().data();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
- entry.setValue(info);
}
}
// third slot in __OBJC,__class is pointer to class name
std::string className;
if (objcClassNameFromExpression(c->getOperand(2), className)) {
- StringSet::value_type &entry = _defines.GetOrCreateValue(className);
- entry.setValue(1);
+ auto Iter = _defines.insert(className).first;
NameAndAttributes info;
- info.name = entry.getKey().data();
+ info.name = Iter->first().data();
info.attributes = LTO_SYMBOL_PERMISSIONS_DATA |
LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT;
info.isFunction = false;
@@ -235,19 +319,17 @@ void LTOModule::addObjCCategory(const GlobalVariable *clgv) {
if (!objcClassNameFromExpression(c->getOperand(1), targetclassName))
return;
- NameAndAttributes info;
- StringMap<NameAndAttributes>::value_type &entry =
- _undefines.GetOrCreateValue(targetclassName);
+ auto IterBool =
+ _undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
- if (entry.getValue().name)
+ if (!IterBool.second)
return;
- const char *symbolName = entry.getKey().data();
- info.name = symbolName;
+ NameAndAttributes &info = IterBool.first->second;
+ info.name = IterBool.first->first().data();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
- entry.setValue(info);
}
/// addObjCClassRef - Parse i386/ppc ObjC class list data structure.
@@ -256,18 +338,17 @@ void LTOModule::addObjCClassRef(const GlobalVariable *clgv) {
if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName))
return;
- NameAndAttributes info;
- StringMap<NameAndAttributes>::value_type &entry =
- _undefines.GetOrCreateValue(targetclassName);
- if (entry.getValue().name)
+ auto IterBool =
+ _undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
+
+ if (!IterBool.second)
return;
- const char *symbolName = entry.getKey().data();
- info.name = symbolName;
+ NameAndAttributes &info = IterBool.first->second;
+ info.name = IterBool.first->first().data();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
- entry.setValue(info);
}
void LTOModule::addDefinedDataSymbol(const object::BasicSymbolRef &Sym) {
@@ -348,30 +429,6 @@ void LTOModule::addDefinedFunctionSymbol(const char *Name, const Function *F) {
addDefinedSymbol(Name, F, true);
}
-static bool canBeHidden(const GlobalValue *GV) {
- // FIXME: this is duplicated with another static function in AsmPrinter.cpp
- GlobalValue::LinkageTypes L = GV->getLinkage();
-
- if (L != GlobalValue::LinkOnceODRLinkage)
- return false;
-
- if (GV->hasUnnamedAddr())
- return true;
-
- // If it is a non constant variable, it needs to be uniqued across shared
- // objects.
- if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
- if (!Var->isConstant())
- return false;
- }
-
- GlobalStatus GS;
- if (GlobalStatus::analyzeGlobal(GV, GS))
- return false;
-
- return !GS.IsCompared;
-}
-
void LTOModule::addDefinedSymbol(const char *Name, const GlobalValue *def,
bool isFunction) {
// set alignment part log2() can have rounding errors
@@ -405,17 +462,16 @@ void LTOModule::addDefinedSymbol(const char *Name, const GlobalValue *def,
attr |= LTO_SYMBOL_SCOPE_HIDDEN;
else if (def->hasProtectedVisibility())
attr |= LTO_SYMBOL_SCOPE_PROTECTED;
- else if (canBeHidden(def))
+ else if (canBeOmittedFromSymbolTable(def))
attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN;
else
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
- StringSet::value_type &entry = _defines.GetOrCreateValue(Name);
- entry.setValue(1);
+ auto Iter = _defines.insert(Name).first;
// fill information structure
NameAndAttributes info;
- StringRef NameRef = entry.getKey();
+ StringRef NameRef = Iter->first();
info.name = NameRef.data();
assert(info.name[NameRef.size()] == '\0');
info.attributes = attr;
@@ -430,15 +486,13 @@ void LTOModule::addDefinedSymbol(const char *Name, const GlobalValue *def,
/// defined list.
void LTOModule::addAsmGlobalSymbol(const char *name,
lto_symbol_attributes scope) {
- StringSet::value_type &entry = _defines.GetOrCreateValue(name);
+ auto IterBool = _defines.insert(name);
// only add new define if not already defined
- if (entry.getValue())
+ if (!IterBool.second)
return;
- entry.setValue(1);
-
- NameAndAttributes &info = _undefines[entry.getKey().data()];
+ NameAndAttributes &info = _undefines[IterBool.first->first().data()];
if (info.symbol == nullptr) {
// FIXME: This is trying to take care of module ASM like this:
@@ -450,7 +504,7 @@ void LTOModule::addAsmGlobalSymbol(const char *name,
// much.
// fill information structure
- info.name = entry.getKey().data();
+ info.name = IterBool.first->first().data();
info.attributes =
LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope;
info.isFunction = false;
@@ -473,24 +527,21 @@ void LTOModule::addAsmGlobalSymbol(const char *name,
/// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the
/// undefined list.
void LTOModule::addAsmGlobalSymbolUndef(const char *name) {
- StringMap<NameAndAttributes>::value_type &entry =
- _undefines.GetOrCreateValue(name);
+ auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
- _asm_undefines.push_back(entry.getKey().data());
+ _asm_undefines.push_back(IterBool.first->first().data());
// we already have the symbol
- if (entry.getValue().name)
+ if (!IterBool.second)
return;
uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
- NameAndAttributes info;
- info.name = entry.getKey().data();
+ NameAndAttributes &info = IterBool.first->second;
+ info.name = IterBool.first->first().data();
info.attributes = attr;
info.isFunction = false;
info.symbol = nullptr;
-
- entry.setValue(info);
}
/// Add a symbol which isn't defined just yet to a list to be resolved later.
@@ -502,16 +553,15 @@ void LTOModule::addPotentialUndefinedSymbol(const object::BasicSymbolRef &Sym,
Sym.printName(OS);
}
- StringMap<NameAndAttributes>::value_type &entry =
- _undefines.GetOrCreateValue(name);
+ auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
// we already have the symbol
- if (entry.getValue().name)
+ if (!IterBool.second)
return;
- NameAndAttributes info;
+ NameAndAttributes &info = IterBool.first->second;
- info.name = entry.getKey().data();
+ info.name = IterBool.first->first().data();
const GlobalValue *decl = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
@@ -522,8 +572,6 @@ void LTOModule::addPotentialUndefinedSymbol(const object::BasicSymbolRef &Sym,
info.isFunction = isFunc;
info.symbol = decl;
-
- entry.setValue(info);
}
/// parseSymbols - Parse the symbols from the module and model-level ASM and add
@@ -590,16 +638,21 @@ bool LTOModule::parseSymbols(std::string &errMsg) {
/// parseMetadata - Parse metadata from the module
void LTOModule::parseMetadata() {
// Linker Options
- if (Value *Val = getModule().getModuleFlag("Linker Options")) {
+ if (Metadata *Val = getModule().getModuleFlag("Linker Options")) {
MDNode *LinkerOptions = cast<MDNode>(Val);
for (unsigned i = 0, e = LinkerOptions->getNumOperands(); i != e; ++i) {
MDNode *MDOptions = cast<MDNode>(LinkerOptions->getOperand(i));
for (unsigned ii = 0, ie = MDOptions->getNumOperands(); ii != ie; ++ii) {
MDString *MDOption = cast<MDString>(MDOptions->getOperand(ii));
- StringRef Op = _linkeropt_strings.
- GetOrCreateValue(MDOption->getString()).getKey();
- StringRef DepLibName = _target->getTargetLowering()->
- getObjFileLowering().getDepLibFromLinkerOpt(Op);
+ // FIXME: Make StringSet::insert match Self-Associative Container
+ // requirements, returning <iter,bool> rather than bool, and use that
+ // here.
+ StringRef Op =
+ _linkeropt_strings.insert(MDOption->getString()).first->first();
+ StringRef DepLibName = _target->getSubtargetImpl()
+ ->getTargetLowering()
+ ->getObjFileLowering()
+ .getDepLibFromLinkerOpt(Op);
if (!DepLibName.empty())
_deplibs.push_back(DepLibName.data());
else if (!Op.empty())
diff --git a/contrib/llvm/lib/Linker/LinkModules.cpp b/contrib/llvm/lib/Linker/LinkModules.cpp
index 5bb2862..767d465 100644
--- a/contrib/llvm/lib/Linker/LinkModules.cpp
+++ b/contrib/llvm/lib/Linker/LinkModules.cpp
@@ -13,10 +13,16 @@
#include "llvm/Linker/Linker.h"
#include "llvm-c/Linker.h"
+#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/CommandLine.h"
@@ -33,94 +39,99 @@ using namespace llvm;
//===----------------------------------------------------------------------===//
namespace {
- typedef SmallPtrSet<StructType*, 32> TypeSet;
-
class TypeMapTy : public ValueMapTypeRemapper {
- /// MappedTypes - This is a mapping from a source type to a destination type
- /// to use.
+ /// This is a mapping from a source type to a destination type to use.
DenseMap<Type*, Type*> MappedTypes;
- /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
- /// we speculatively add types to MappedTypes, but keep track of them here in
- /// case we need to roll back.
+ /// When checking to see if two subgraphs are isomorphic, we speculatively
+ /// add types to MappedTypes, but keep track of them here in case we need to
+ /// roll back.
SmallVector<Type*, 16> SpeculativeTypes;
- /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
- /// source module that are mapped to an opaque struct in the destination
- /// module.
+ SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
+
+ /// This is a list of non-opaque structs in the source module that are mapped
+ /// to an opaque struct in the destination module.
SmallVector<StructType*, 16> SrcDefinitionsToResolve;
- /// DstResolvedOpaqueTypes - This is the set of opaque types in the
- /// destination modules who are getting a body from the source module.
+ /// This is the set of opaque types in the destination modules who are
+ /// getting a body from the source module.
SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
public:
- TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
+ TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
+ : DstStructTypesSet(DstStructTypesSet) {}
- TypeSet &DstStructTypesSet;
- /// addTypeMapping - Indicate that the specified type in the destination
- /// module is conceptually equivalent to the specified type in the source
- /// module.
+ Linker::IdentifiedStructTypeSet &DstStructTypesSet;
+ /// Indicate that the specified type in the destination module is conceptually
+ /// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
- /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
- /// module from a type definition in the source module.
+ /// Produce a body for an opaque type in the dest module from a type
+ /// definition in the source module.
void linkDefinedTypeBodies();
- /// get - Return the mapped type to use for the specified input type from the
+ /// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
+ Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
+
+ void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
- FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
+ FunctionType *get(FunctionType *T) {
+ return cast<FunctionType>(get((Type *)T));
+ }
- /// dump - Dump out the type map for debugging purposes.
+ /// Dump out the type map for debugging purposes.
void dump() const {
- for (DenseMap<Type*, Type*>::const_iterator
- I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
+ for (auto &Pair : MappedTypes) {
dbgs() << "TypeMap: ";
- I->first->dump();
+ Pair.first->print(dbgs());
dbgs() << " => ";
- I->second->dump();
+ Pair.second->print(dbgs());
dbgs() << '\n';
}
}
private:
- Type *getImpl(Type *T);
- /// remapType - Implement the ValueMapTypeRemapper interface.
- Type *remapType(Type *SrcTy) override {
- return get(SrcTy);
- }
+ Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
- Type *&Entry = MappedTypes[SrcTy];
- if (Entry) return;
-
- if (DstTy == SrcTy) {
- Entry = DstTy;
- return;
- }
+ assert(SpeculativeTypes.empty());
+ assert(SpeculativeDstOpaqueTypes.empty());
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
- for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
- MappedTypes.erase(SpeculativeTypes[i]);
+ for (Type *Ty : SpeculativeTypes)
+ MappedTypes.erase(Ty);
+
+ SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
+ SpeculativeDstOpaqueTypes.size());
+ for (StructType *Ty : SpeculativeDstOpaqueTypes)
+ DstResolvedOpaqueTypes.erase(Ty);
+ } else {
+ for (Type *Ty : SpeculativeTypes)
+ if (auto *STy = dyn_cast<StructType>(Ty))
+ if (STy->hasName())
+ STy->setName("");
}
SpeculativeTypes.clear();
+ SpeculativeDstOpaqueTypes.clear();
}
-/// areTypesIsomorphic - Recursively walk this pair of types, returning true
-/// if they are isomorphic, false if they are not.
+/// Recursively walk this pair of types, returning true if they are isomorphic,
+/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
- if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
+ if (DstTy->getTypeID() != SrcTy->getTypeID())
+ return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
@@ -147,14 +158,15 @@ bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
- // the dest, but fill it in later. This doesn't need to be speculative. If
- // this is the second (different) type that we're trying to map onto the
- // same opaque type then we fail.
+ // the dest, but fill it in later. If this is the second (different) type
+ // that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
- if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
+ if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
SrcDefinitionsToResolve.push_back(SSTy);
+ SpeculativeTypes.push_back(SrcTy);
+ SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
Entry = DstTy;
return true;
}
@@ -192,164 +204,153 @@ bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
- for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
- if (!areTypesIsomorphic(DstTy->getContainedType(i),
- SrcTy->getContainedType(i)))
+ for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
+ if (!areTypesIsomorphic(DstTy->getContainedType(I),
+ SrcTy->getContainedType(I)))
return false;
// If everything seems to have lined up, then everything is great.
return true;
}
-/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
-/// module from a type definition in the source module.
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type*, 16> Elements;
- SmallString<16> TmpName;
-
- // Note that processing entries in this loop (calling 'get') can add new
- // entries to the SrcDefinitionsToResolve vector.
- while (!SrcDefinitionsToResolve.empty()) {
- StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
+ for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
-
- // TypeMap is a many-to-one mapping, if there were multiple types that
- // provide a body for DstSTy then previous iterations of this loop may have
- // already handled it. Just ignore this case.
- if (!DstSTy->isOpaque()) continue;
- assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
+ assert(DstSTy->isOpaque());
// Map the body of the source type over to a new body for the dest type.
Elements.resize(SrcSTy->getNumElements());
- for (unsigned i = 0, e = Elements.size(); i != e; ++i)
- Elements[i] = getImpl(SrcSTy->getElementType(i));
+ for (unsigned I = 0, E = Elements.size(); I != E; ++I)
+ Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
+ }
+ SrcDefinitionsToResolve.clear();
+ DstResolvedOpaqueTypes.clear();
+}
- // If DstSTy has no name or has a longer name than STy, then viciously steal
- // STy's name.
- if (!SrcSTy->hasName()) continue;
- StringRef SrcName = SrcSTy->getName();
+void TypeMapTy::finishType(StructType *DTy, StructType *STy,
+ ArrayRef<Type *> ETypes) {
+ DTy->setBody(ETypes, STy->isPacked());
- if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
- TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
- SrcSTy->setName("");
- DstSTy->setName(TmpName.str());
- TmpName.clear();
- }
+ // Steal STy's name.
+ if (STy->hasName()) {
+ SmallString<16> TmpName = STy->getName();
+ STy->setName("");
+ DTy->setName(TmpName);
}
- DstResolvedOpaqueTypes.clear();
+ DstStructTypesSet.addNonOpaque(DTy);
}
-/// get - Return the mapped type to use for the specified input type from the
-/// source module.
Type *TypeMapTy::get(Type *Ty) {
- Type *Result = getImpl(Ty);
-
- // If this caused a reference to any struct type, resolve it before returning.
- if (!SrcDefinitionsToResolve.empty())
- linkDefinedTypeBodies();
- return Result;
+ SmallPtrSet<StructType *, 8> Visited;
+ return get(Ty, Visited);
}
-/// getImpl - This is the recursive version of get().
-Type *TypeMapTy::getImpl(Type *Ty) {
+Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
- if (*Entry) return *Entry;
+ if (*Entry)
+ return *Entry;
- // If this is not a named struct type, then just map all of the elements and
- // then rebuild the type from inside out.
- if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
- // If there are no element types to map, then the type is itself. This is
- // true for the anonymous {} struct, things like 'float', integers, etc.
- if (Ty->getNumContainedTypes() == 0)
- return *Entry = Ty;
+ // These are types that LLVM itself will unique.
+ bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
- // Remap all of the elements, keeping track of whether any of them change.
- bool AnyChange = false;
- SmallVector<Type*, 4> ElementTypes;
- ElementTypes.resize(Ty->getNumContainedTypes());
- for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
- ElementTypes[i] = getImpl(Ty->getContainedType(i));
- AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
+#ifndef NDEBUG
+ if (!IsUniqued) {
+ for (auto &Pair : MappedTypes) {
+ assert(!(Pair.first != Ty && Pair.second == Ty) &&
+ "mapping to a source type");
}
+ }
+#endif
- // If we found our type while recursively processing stuff, just use it.
- Entry = &MappedTypes[Ty];
- if (*Entry) return *Entry;
+ if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
+ StructType *DTy = StructType::create(Ty->getContext());
+ return *Entry = DTy;
+ }
- // If all of the element types mapped directly over, then the type is usable
- // as-is.
- if (!AnyChange)
- return *Entry = Ty;
+ // If this is not a recursive type, then just map all of the elements and
+ // then rebuild the type from inside out.
+ SmallVector<Type *, 4> ElementTypes;
+
+ // If there are no element types to map, then the type is itself. This is
+ // true for the anonymous {} struct, things like 'float', integers, etc.
+ if (Ty->getNumContainedTypes() == 0 && IsUniqued)
+ return *Entry = Ty;
+
+ // Remap all of the elements, keeping track of whether any of them change.
+ bool AnyChange = false;
+ ElementTypes.resize(Ty->getNumContainedTypes());
+ for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
+ ElementTypes[I] = get(Ty->getContainedType(I), Visited);
+ AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
+ }
- // Otherwise, rebuild a modified type.
- switch (Ty->getTypeID()) {
- default: llvm_unreachable("unknown derived type to remap");
- case Type::ArrayTyID:
- return *Entry = ArrayType::get(ElementTypes[0],
- cast<ArrayType>(Ty)->getNumElements());
- case Type::VectorTyID:
- return *Entry = VectorType::get(ElementTypes[0],
- cast<VectorType>(Ty)->getNumElements());
- case Type::PointerTyID:
- return *Entry = PointerType::get(ElementTypes[0],
- cast<PointerType>(Ty)->getAddressSpace());
- case Type::FunctionTyID:
- return *Entry = FunctionType::get(ElementTypes[0],
- makeArrayRef(ElementTypes).slice(1),
- cast<FunctionType>(Ty)->isVarArg());
- case Type::StructTyID:
- // Note that this is only reached for anonymous structs.
- return *Entry = StructType::get(Ty->getContext(), ElementTypes,
- cast<StructType>(Ty)->isPacked());
+ // If we found our type while recursively processing stuff, just use it.
+ Entry = &MappedTypes[Ty];
+ if (*Entry) {
+ if (auto *DTy = dyn_cast<StructType>(*Entry)) {
+ if (DTy->isOpaque()) {
+ auto *STy = cast<StructType>(Ty);
+ finishType(DTy, STy, ElementTypes);
+ }
}
+ return *Entry;
}
- // Otherwise, this is an unmapped named struct. If the struct can be directly
- // mapped over, just use it as-is. This happens in a case when the linked-in
- // module has something like:
- // %T = type {%T*, i32}
- // @GV = global %T* null
- // where T does not exist at all in the destination module.
- //
- // The other case we watch for is when the type is not in the destination
- // module, but that it has to be rebuilt because it refers to something that
- // is already mapped. For example, if the destination module has:
- // %A = type { i32 }
- // and the source module has something like
- // %A' = type { i32 }
- // %B = type { %A'* }
- // @GV = global %B* null
- // then we want to create a new type: "%B = type { %A*}" and have it take the
- // pristine "%B" name from the source module.
- //
- // To determine which case this is, we have to recursively walk the type graph
- // speculating that we'll be able to reuse it unmodified. Only if this is
- // safe would we map the entire thing over. Because this is an optimization,
- // and is not required for the prettiness of the linked module, we just skip
- // it and always rebuild a type here.
- StructType *STy = cast<StructType>(Ty);
-
- // If the type is opaque, we can just use it directly.
- if (STy->isOpaque()) {
- // A named structure type from src module is used. Add it to the Set of
- // identified structs in the destination module.
- DstStructTypesSet.insert(STy);
- return *Entry = STy;
- }
+ // If all of the element types mapped directly over and the type is not
+ // a nomed struct, then the type is usable as-is.
+ if (!AnyChange && IsUniqued)
+ return *Entry = Ty;
+
+ // Otherwise, rebuild a modified type.
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("unknown derived type to remap");
+ case Type::ArrayTyID:
+ return *Entry = ArrayType::get(ElementTypes[0],
+ cast<ArrayType>(Ty)->getNumElements());
+ case Type::VectorTyID:
+ return *Entry = VectorType::get(ElementTypes[0],
+ cast<VectorType>(Ty)->getNumElements());
+ case Type::PointerTyID:
+ return *Entry = PointerType::get(ElementTypes[0],
+ cast<PointerType>(Ty)->getAddressSpace());
+ case Type::FunctionTyID:
+ return *Entry = FunctionType::get(ElementTypes[0],
+ makeArrayRef(ElementTypes).slice(1),
+ cast<FunctionType>(Ty)->isVarArg());
+ case Type::StructTyID: {
+ auto *STy = cast<StructType>(Ty);
+ bool IsPacked = STy->isPacked();
+ if (IsUniqued)
+ return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
+
+ // If the type is opaque, we can just use it directly.
+ if (STy->isOpaque()) {
+ DstStructTypesSet.addOpaque(STy);
+ return *Entry = Ty;
+ }
+
+ if (StructType *OldT =
+ DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
+ STy->setName("");
+ return *Entry = OldT;
+ }
+
+ if (!AnyChange) {
+ DstStructTypesSet.addNonOpaque(STy);
+ return *Entry = Ty;
+ }
- // Otherwise we create a new type and resolve its body later. This will be
- // resolved by the top level of get().
- SrcDefinitionsToResolve.push_back(STy);
- StructType *DTy = StructType::create(STy->getContext());
- // A new identified structure type was created. Add it to the set of
- // identified structs in the destination module.
- DstStructTypesSet.insert(DTy);
- DstResolvedOpaqueTypes.insert(DTy);
- return *Entry = DTy;
+ StructType *DTy = StructType::create(Ty->getContext());
+ finishType(DTy, STy, ElementTypes);
+ return *Entry = DTy;
+ }
+ }
}
//===----------------------------------------------------------------------===//
@@ -357,135 +358,153 @@ Type *TypeMapTy::getImpl(Type *Ty) {
//===----------------------------------------------------------------------===//
namespace {
- class ModuleLinker;
-
- /// ValueMaterializerTy - Creates prototypes for functions that are lazily
- /// linked on the fly. This speeds up linking for modules with many
- /// lazily linked functions of which few get used.
- class ValueMaterializerTy : public ValueMaterializer {
- TypeMapTy &TypeMap;
- Module *DstM;
- std::vector<Function*> &LazilyLinkFunctions;
- public:
- ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
- std::vector<Function*> &LazilyLinkFunctions) :
- ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
- LazilyLinkFunctions(LazilyLinkFunctions) {
- }
+class ModuleLinker;
- Value *materializeValueFor(Value *V) override;
+/// Creates prototypes for functions that are lazily linked on the fly. This
+/// speeds up linking for modules with many/ lazily linked functions of which
+/// few get used.
+class ValueMaterializerTy : public ValueMaterializer {
+ TypeMapTy &TypeMap;
+ Module *DstM;
+ std::vector<GlobalValue *> &LazilyLinkGlobalValues;
+
+public:
+ ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
+ std::vector<GlobalValue *> &LazilyLinkGlobalValues)
+ : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
+ LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
+
+ Value *materializeValueFor(Value *V) override;
+};
+
+class LinkDiagnosticInfo : public DiagnosticInfo {
+ const Twine &Msg;
+
+public:
+ LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
+ void print(DiagnosticPrinter &DP) const override;
+};
+LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
+ const Twine &Msg)
+ : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
+void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
+
+/// This is an implementation class for the LinkModules function, which is the
+/// entrypoint for this file.
+class ModuleLinker {
+ Module *DstM, *SrcM;
+
+ TypeMapTy TypeMap;
+ ValueMaterializerTy ValMaterializer;
+
+ /// Mapping of values from what they used to be in Src, to what they are now
+ /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
+ /// due to the use of Value handles which the Linker doesn't actually need,
+ /// but this allows us to reuse the ValueMapper code.
+ ValueToValueMapTy ValueMap;
+
+ struct AppendingVarInfo {
+ GlobalVariable *NewGV; // New aggregate global in dest module.
+ const Constant *DstInit; // Old initializer from dest module.
+ const Constant *SrcInit; // Old initializer from src module.
};
- /// ModuleLinker - This is an implementation class for the LinkModules
- /// function, which is the entrypoint for this file.
- class ModuleLinker {
- Module *DstM, *SrcM;
+ std::vector<AppendingVarInfo> AppendingVars;
- TypeMapTy TypeMap;
- ValueMaterializerTy ValMaterializer;
+ // Set of items not to link in from source.
+ SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
- /// ValueMap - Mapping of values from what they used to be in Src, to what
- /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
- /// some overhead due to the use of Value handles which the Linker doesn't
- /// actually need, but this allows us to reuse the ValueMapper code.
- ValueToValueMapTy ValueMap;
+ // Vector of GlobalValues to lazily link in.
+ std::vector<GlobalValue *> LazilyLinkGlobalValues;
- struct AppendingVarInfo {
- GlobalVariable *NewGV; // New aggregate global in dest module.
- Constant *DstInit; // Old initializer from dest module.
- Constant *SrcInit; // Old initializer from src module.
- };
+ /// Functions that have replaced other functions.
+ SmallPtrSet<const Function *, 16> OverridingFunctions;
- std::vector<AppendingVarInfo> AppendingVars;
+ DiagnosticHandlerFunction DiagnosticHandler;
+
+public:
+ ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
+ DiagnosticHandlerFunction DiagnosticHandler)
+ : DstM(dstM), SrcM(srcM), TypeMap(Set),
+ ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
+ DiagnosticHandler(DiagnosticHandler) {}
- unsigned Mode; // Mode to treat source module.
+ bool run();
- // Set of items not to link in from source.
- SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
+private:
+ bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
+ const GlobalValue &Src);
- // Vector of functions to lazily link in.
- std::vector<Function*> LazilyLinkFunctions;
+ /// Helper method for setting a message and returning an error code.
+ bool emitError(const Twine &Message) {
+ DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
+ return true;
+ }
- bool SuppressWarnings;
+ void emitWarning(const Twine &Message) {
+ DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
+ }
- public:
- std::string ErrorMsg;
+ bool getComdatLeader(Module *M, StringRef ComdatName,
+ const GlobalVariable *&GVar);
+ bool computeResultingSelectionKind(StringRef ComdatName,
+ Comdat::SelectionKind Src,
+ Comdat::SelectionKind Dst,
+ Comdat::SelectionKind &Result,
+ bool &LinkFromSrc);
+ std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
+ ComdatsChosen;
+ bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
+ bool &LinkFromSrc);
+
+ /// Given a global in the source module, return the global in the
+ /// destination module that is being linked to, if any.
+ GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
+ // If the source has no name it can't link. If it has local linkage,
+ // there is no name match-up going on.
+ if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
+ return nullptr;
+
+ // Otherwise see if we have a match in the destination module's symtab.
+ GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
+ if (!DGV)
+ return nullptr;
+
+ // If we found a global with the same name in the dest module, but it has
+ // internal linkage, we are really not doing any linkage here.
+ if (DGV->hasLocalLinkage())
+ return nullptr;
+
+ // Otherwise, we do in fact link to the destination global.
+ return DGV;
+ }
- ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode,
- bool SuppressWarnings=false)
- : DstM(dstM), SrcM(srcM), TypeMap(Set),
- ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), Mode(mode),
- SuppressWarnings(SuppressWarnings) {}
+ void computeTypeMapping();
- bool run();
+ void upgradeMismatchedGlobalArray(StringRef Name);
+ void upgradeMismatchedGlobals();
- private:
- /// emitError - Helper method for setting a message and returning an error
- /// code.
- bool emitError(const Twine &Message) {
- ErrorMsg = Message.str();
- return true;
- }
+ bool linkAppendingVarProto(GlobalVariable *DstGV,
+ const GlobalVariable *SrcGV);
- bool getComdatLeader(Module *M, StringRef ComdatName,
- const GlobalVariable *&GVar);
- bool computeResultingSelectionKind(StringRef ComdatName,
- Comdat::SelectionKind Src,
- Comdat::SelectionKind Dst,
- Comdat::SelectionKind &Result,
- bool &LinkFromSrc);
- std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
- ComdatsChosen;
- bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
- bool &LinkFromSrc);
-
- /// getLinkageResult - This analyzes the two global values and determines
- /// what the result will look like in the destination module.
- bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
- GlobalValue::LinkageTypes &LT,
- GlobalValue::VisibilityTypes &Vis,
- bool &LinkFromSrc);
-
- /// getLinkedToGlobal - Given a global in the source module, return the
- /// global in the destination module that is being linked to, if any.
- GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
- // If the source has no name it can't link. If it has local linkage,
- // there is no name match-up going on.
- if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
- return nullptr;
-
- // Otherwise see if we have a match in the destination module's symtab.
- GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
- if (!DGV) return nullptr;
-
- // If we found a global with the same name in the dest module, but it has
- // internal linkage, we are really not doing any linkage here.
- if (DGV->hasLocalLinkage())
- return nullptr;
-
- // Otherwise, we do in fact link to the destination global.
- return DGV;
- }
+ bool linkGlobalValueProto(GlobalValue *GV);
+ bool linkModuleFlagsMetadata();
- void computeTypeMapping();
+ void linkAppendingVarInit(const AppendingVarInfo &AVI);
- bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
- bool linkGlobalProto(GlobalVariable *SrcGV);
- bool linkFunctionProto(Function *SrcF);
- bool linkAliasProto(GlobalAlias *SrcA);
- bool linkModuleFlagsMetadata();
+ void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
+ bool linkFunctionBody(Function &Dst, Function &Src);
+ void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
+ bool linkGlobalValueBody(GlobalValue &Src);
- void linkAppendingVarInit(const AppendingVarInfo &AVI);
- void linkGlobalInits();
- void linkFunctionBody(Function *Dst, Function *Src);
- void linkAliasBodies();
- void linkNamedMDNodes();
- };
+ void linkNamedMDNodes();
+ void stripReplacedSubprograms();
+};
}
-/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
-/// in the symbol table. This is good for all clients except for us. Go
-/// through the trouble to force this back.
+/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
+/// table. This is good for all clients except for us. Go through the trouble
+/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
@@ -504,20 +523,10 @@ static void forceRenaming(GlobalValue *GV, StringRef Name) {
}
}
-/// copyGVAttributes - copy additional attributes (those not needed to construct
-/// a GlobalValue) from the SrcGV to the DestGV.
+/// copy additional attributes (those not needed to construct a GlobalValue)
+/// from the SrcGV to the DestGV.
static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
- // Use the maximum alignment, rather than just copying the alignment of SrcGV.
- auto *DestGO = dyn_cast<GlobalObject>(DestGV);
- unsigned Alignment;
- if (DestGO)
- Alignment = std::max(DestGO->getAlignment(), SrcGV->getAlignment());
-
DestGV->copyAttributesFrom(SrcGV);
-
- if (DestGO)
- DestGO->setAlignment(Alignment);
-
forceRenaming(DestGV, SrcGV->getName());
}
@@ -534,17 +543,71 @@ static bool isLessConstraining(GlobalValue::VisibilityTypes a,
return false;
}
+/// Loop through the global variables in the src module and merge them into the
+/// dest module.
+static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
+ const GlobalVariable *SGVar) {
+ // No linking to be performed or linking from the source: simply create an
+ // identical version of the symbol over in the dest module... the
+ // initializer will be filled in later by LinkGlobalInits.
+ GlobalVariable *NewDGV = new GlobalVariable(
+ DstM, TypeMap.get(SGVar->getType()->getElementType()),
+ SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
+ SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
+ SGVar->getType()->getAddressSpace());
+
+ return NewDGV;
+}
+
+/// Link the function in the source module into the destination module if
+/// needed, setting up mapping information.
+static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
+ const Function *SF) {
+ // If there is no linkage to be performed or we are linking from the source,
+ // bring SF over.
+ return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
+ SF->getName(), &DstM);
+}
+
+/// Set up prototypes for any aliases that come over from the source module.
+static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
+ const GlobalAlias *SGA) {
+ // If there is no linkage to be performed or we're linking from the source,
+ // bring over SGA.
+ auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
+ return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
+ SGA->getLinkage(), SGA->getName(), &DstM);
+}
+
+static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
+ const GlobalValue *SGV) {
+ GlobalValue *NewGV;
+ if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
+ NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
+ else if (auto *SF = dyn_cast<Function>(SGV))
+ NewGV = copyFunctionProto(TypeMap, DstM, SF);
+ else
+ NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
+ copyGVAttributes(NewGV, SGV);
+ return NewGV;
+}
+
Value *ValueMaterializerTy::materializeValueFor(Value *V) {
- Function *SF = dyn_cast<Function>(V);
- if (!SF)
+ auto *SGV = dyn_cast<GlobalValue>(V);
+ if (!SGV)
return nullptr;
- Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
- SF->getLinkage(), SF->getName(), DstM);
- copyGVAttributes(DF, SF);
+ GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
+
+ if (Comdat *SC = SGV->getComdat()) {
+ if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
+ Comdat *DC = DstM->getOrInsertComdat(SC->getName());
+ DGO->setComdat(DC);
+ }
+ }
- LazilyLinkFunctions.push_back(SF);
- return DF;
+ LazilyLinkGlobalValues.push_back(SGV);
+ return DGV;
}
bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
@@ -644,177 +707,261 @@ bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
bool ModuleLinker::getComdatResult(const Comdat *SrcC,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
+ Comdat::SelectionKind SSK = SrcC->getSelectionKind();
StringRef ComdatName = SrcC->getName();
Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
- if (DstCI != ComdatSymTab.end()) {
- const Comdat *DstC = &DstCI->second;
- Comdat::SelectionKind SSK = SrcC->getSelectionKind();
- Comdat::SelectionKind DSK = DstC->getSelectionKind();
- if (computeResultingSelectionKind(ComdatName, SSK, DSK, Result, LinkFromSrc))
- return true;
+
+ if (DstCI == ComdatSymTab.end()) {
+ // Use the comdat if it is only available in one of the modules.
+ LinkFromSrc = true;
+ Result = SSK;
+ return false;
}
- return false;
+
+ const Comdat *DstC = &DstCI->second;
+ Comdat::SelectionKind DSK = DstC->getSelectionKind();
+ return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
+ LinkFromSrc);
}
-/// getLinkageResult - This analyzes the two global values and determines what
-/// the result will look like in the destination module. In particular, it
-/// computes the resultant linkage type and visibility, computes whether the
-/// global in the source should be copied over to the destination (replacing
-/// the existing one), and computes whether this linkage is an error or not.
-bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
- GlobalValue::LinkageTypes &LT,
- GlobalValue::VisibilityTypes &Vis,
- bool &LinkFromSrc) {
- assert(Dest && "Must have two globals being queried");
- assert(!Src->hasLocalLinkage() &&
- "If Src has internal linkage, Dest shouldn't be set!");
-
- bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
- bool DestIsDeclaration = Dest->isDeclaration();
+bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
+ const GlobalValue &Dest,
+ const GlobalValue &Src) {
+ // We always have to add Src if it has appending linkage.
+ if (Src.hasAppendingLinkage()) {
+ LinkFromSrc = true;
+ return false;
+ }
+
+ bool SrcIsDeclaration = Src.isDeclarationForLinker();
+ bool DestIsDeclaration = Dest.isDeclarationForLinker();
if (SrcIsDeclaration) {
// If Src is external or if both Src & Dest are external.. Just link the
// external globals, we aren't adding anything.
- if (Src->hasDLLImportStorageClass()) {
+ if (Src.hasDLLImportStorageClass()) {
// If one of GVs is marked as DLLImport, result should be dllimport'ed.
- if (DestIsDeclaration) {
- LinkFromSrc = true;
- LT = Src->getLinkage();
- }
- } else if (Dest->hasExternalWeakLinkage()) {
- // If the Dest is weak, use the source linkage.
- LinkFromSrc = true;
- LT = Src->getLinkage();
- } else {
- LinkFromSrc = false;
- LT = Dest->getLinkage();
+ LinkFromSrc = DestIsDeclaration;
+ return false;
}
- } else if (DestIsDeclaration && !Dest->hasDLLImportStorageClass()) {
+ // If the Dest is weak, use the source linkage.
+ LinkFromSrc = Dest.hasExternalWeakLinkage();
+ return false;
+ }
+
+ if (DestIsDeclaration) {
// If Dest is external but Src is not:
LinkFromSrc = true;
- LT = Src->getLinkage();
- } else if (Src->isWeakForLinker()) {
- // At this point we know that Dest has LinkOnce, External*, Weak, Common,
- // or DLL* linkage.
- if (Dest->hasExternalWeakLinkage() ||
- Dest->hasAvailableExternallyLinkage() ||
- (Dest->hasLinkOnceLinkage() &&
- (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
+ return false;
+ }
+
+ if (Src.hasCommonLinkage()) {
+ if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
LinkFromSrc = true;
- LT = Src->getLinkage();
- } else {
- LinkFromSrc = false;
- LT = Dest->getLinkage();
+ return false;
}
- } else if (Dest->isWeakForLinker()) {
- // At this point we know that Src has External* or DLL* linkage.
- if (Src->hasExternalWeakLinkage()) {
+
+ if (!Dest.hasCommonLinkage()) {
LinkFromSrc = false;
- LT = Dest->getLinkage();
- } else {
+ return false;
+ }
+
+ // FIXME: Make datalayout mandatory and just use getDataLayout().
+ DataLayout DL(Dest.getParent());
+
+ uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
+ uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
+ LinkFromSrc = SrcSize > DestSize;
+ return false;
+ }
+
+ if (Src.isWeakForLinker()) {
+ assert(!Dest.hasExternalWeakLinkage());
+ assert(!Dest.hasAvailableExternallyLinkage());
+
+ if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
LinkFromSrc = true;
- LT = GlobalValue::ExternalLinkage;
+ return false;
}
- } else {
- assert((Dest->hasExternalLinkage() || Dest->hasExternalWeakLinkage()) &&
- (Src->hasExternalLinkage() || Src->hasExternalWeakLinkage()) &&
- "Unexpected linkage type!");
- return emitError("Linking globals named '" + Src->getName() +
- "': symbol multiply defined!");
+
+ LinkFromSrc = false;
+ return false;
}
- // Compute the visibility. We follow the rules in the System V Application
- // Binary Interface.
- assert(!GlobalValue::isLocalLinkage(LT) &&
- "Symbols with local linkage should not be merged");
- Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
- Dest->getVisibility() : Src->getVisibility();
- return false;
+ if (Dest.isWeakForLinker()) {
+ assert(Src.hasExternalLinkage());
+ LinkFromSrc = true;
+ return false;
+ }
+
+ assert(!Src.hasExternalWeakLinkage());
+ assert(!Dest.hasExternalWeakLinkage());
+ assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
+ "Unexpected linkage type!");
+ return emitError("Linking globals named '" + Src.getName() +
+ "': symbol multiply defined!");
}
-/// computeTypeMapping - Loop over all of the linked values to compute type
-/// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
-/// we have two struct types 'Foo' but one got renamed when the module was
-/// loaded into the same LLVMContext.
+/// Loop over all of the linked values to compute type mappings. For example,
+/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
+/// types 'Foo' but one got renamed when the module was loaded into the same
+/// LLVMContext.
void ModuleLinker::computeTypeMapping() {
- // Incorporate globals.
- for (Module::global_iterator I = SrcM->global_begin(),
- E = SrcM->global_end(); I != E; ++I) {
- GlobalValue *DGV = getLinkedToGlobal(I);
- if (!DGV) continue;
+ for (GlobalValue &SGV : SrcM->globals()) {
+ GlobalValue *DGV = getLinkedToGlobal(&SGV);
+ if (!DGV)
+ continue;
- if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
- TypeMap.addTypeMapping(DGV->getType(), I->getType());
+ if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
continue;
}
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
- ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
+ ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
}
- // Incorporate functions.
- for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
- if (GlobalValue *DGV = getLinkedToGlobal(I))
- TypeMap.addTypeMapping(DGV->getType(), I->getType());
+ for (GlobalValue &SGV : *SrcM) {
+ if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+ }
+
+ for (GlobalValue &SGV : SrcM->aliases()) {
+ if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
- TypeFinder SrcStructTypes;
- SrcStructTypes.run(*SrcM, true);
- SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
- SrcStructTypes.end());
-
- for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
- StructType *ST = SrcStructTypes[i];
- if (!ST->hasName()) continue;
+ std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
+ for (StructType *ST : Types) {
+ if (!ST->hasName())
+ continue;
// Check to see if there is a dot in the name followed by a digit.
size_t DotPos = ST->getName().rfind('.');
if (DotPos == 0 || DotPos == StringRef::npos ||
ST->getName().back() == '.' ||
- !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
+ !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
continue;
// Check to see if the destination module has a struct with the prefix name.
- if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
- // Don't use it if this actually came from the source module. They're in
- // the same LLVMContext after all. Also don't use it unless the type is
- // actually used in the destination module. This can happen in situations
- // like this:
- //
- // Module A Module B
- // -------- --------
- // %Z = type { %A } %B = type { %C.1 }
- // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
- // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
- // %C = type { i8* } %B.3 = type { %C.1 }
- //
- // When we link Module B with Module A, the '%B' in Module B is
- // used. However, that would then use '%C.1'. But when we process '%C.1',
- // we prefer to take the '%C' version. So we are then left with both
- // '%C.1' and '%C' being used for the same types. This leads to some
- // variables using one type and some using the other.
- if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
- TypeMap.addTypeMapping(DST, ST);
- }
+ StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
+ if (!DST)
+ continue;
- // Don't bother incorporating aliases, they aren't generally typed well.
+ // Don't use it if this actually came from the source module. They're in
+ // the same LLVMContext after all. Also don't use it unless the type is
+ // actually used in the destination module. This can happen in situations
+ // like this:
+ //
+ // Module A Module B
+ // -------- --------
+ // %Z = type { %A } %B = type { %C.1 }
+ // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
+ // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
+ // %C = type { i8* } %B.3 = type { %C.1 }
+ //
+ // When we link Module B with Module A, the '%B' in Module B is
+ // used. However, that would then use '%C.1'. But when we process '%C.1',
+ // we prefer to take the '%C' version. So we are then left with both
+ // '%C.1' and '%C' being used for the same types. This leads to some
+ // variables using one type and some using the other.
+ if (TypeMap.DstStructTypesSet.hasType(DST))
+ TypeMap.addTypeMapping(DST, ST);
+ }
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
TypeMap.linkDefinedTypeBodies();
}
-/// linkAppendingVarProto - If there were any appending global variables, link
-/// them together now. Return true on error.
+static void upgradeGlobalArray(GlobalVariable *GV) {
+ ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
+ StructType *OldTy = cast<StructType>(ATy->getElementType());
+ assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
+
+ // Get the upgraded 3 element type.
+ PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
+ Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
+ VoidPtrTy};
+ StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
+
+ // Build new constants with a null third field filled in.
+ Constant *OldInitC = GV->getInitializer();
+ ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
+ if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
+ // Invalid initializer; give up.
+ return;
+ std::vector<Constant *> Initializers;
+ if (OldInit && OldInit->getNumOperands()) {
+ Value *Null = Constant::getNullValue(VoidPtrTy);
+ for (Use &U : OldInit->operands()) {
+ ConstantStruct *Init = cast<ConstantStruct>(U.get());
+ Initializers.push_back(ConstantStruct::get(
+ NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
+ }
+ }
+ assert(Initializers.size() == ATy->getNumElements() &&
+ "Failed to copy all array elements");
+
+ // Replace the old GV with a new one.
+ ATy = ArrayType::get(NewTy, Initializers.size());
+ Constant *NewInit = ConstantArray::get(ATy, Initializers);
+ GlobalVariable *NewGV = new GlobalVariable(
+ *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
+ GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
+ GV->isExternallyInitialized());
+ NewGV->copyAttributesFrom(GV);
+ NewGV->takeName(GV);
+ assert(GV->use_empty() && "program cannot use initializer list");
+ GV->eraseFromParent();
+}
+
+void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
+ // Look for the global arrays.
+ auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
+ if (!DstGV)
+ return;
+ auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
+ if (!SrcGV)
+ return;
+
+ // Check if the types already match.
+ auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
+ auto *SrcTy =
+ cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
+ if (DstTy == SrcTy)
+ return;
+
+ // Grab the element types. We can only upgrade an array of a two-field
+ // struct. Only bother if the other one has three-fields.
+ auto *DstEltTy = cast<StructType>(DstTy->getElementType());
+ auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
+ if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
+ upgradeGlobalArray(DstGV);
+ return;
+ }
+ if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
+ upgradeGlobalArray(SrcGV);
+
+ // We can't upgrade any other differences.
+}
+
+void ModuleLinker::upgradeMismatchedGlobals() {
+ upgradeMismatchedGlobalArray("llvm.global_ctors");
+ upgradeMismatchedGlobalArray("llvm.global_dtors");
+}
+
+/// If there were any appending global variables, link them together now.
+/// Return true on error.
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
- GlobalVariable *SrcGV) {
+ const GlobalVariable *SrcGV) {
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
return emitError("Linking globals named '" + SrcGV->getName() +
@@ -879,252 +1026,102 @@ bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
return false;
}
-/// linkGlobalProto - Loop through the global variables in the src module and
-/// merge them into the dest module.
-bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
+bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
- llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
+
+ // Handle the ultra special appending linkage case first.
+ if (DGV && DGV->hasAppendingLinkage())
+ return linkAppendingVarProto(cast<GlobalVariable>(DGV),
+ cast<GlobalVariable>(SGV));
+
+ bool LinkFromSrc = true;
+ Comdat *C = nullptr;
+ GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
bool HasUnnamedAddr = SGV->hasUnnamedAddr();
- bool LinkFromSrc = false;
- Comdat *DC = nullptr;
if (const Comdat *SC = SGV->getComdat()) {
Comdat::SelectionKind SK;
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
- DC = DstM->getOrInsertComdat(SC->getName());
- DC->setSelectionKind(SK);
+ C = DstM->getOrInsertComdat(SC->getName());
+ C->setSelectionKind(SK);
+ } else if (DGV) {
+ if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
+ return true;
}
- if (DGV) {
- if (!DC) {
- // Concatenation of appending linkage variables is magic and handled later.
- if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
- return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
-
- // Determine whether linkage of these two globals follows the source
- // module's definition or the destination module's definition.
- GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
- GlobalValue::VisibilityTypes NV;
- if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
- return true;
- NewVisibility = NV;
- HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
-
- // If we're not linking from the source, then keep the definition that we
- // have.
- if (!LinkFromSrc) {
- // Special case for const propagation.
- if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
- if (DGVar->isDeclaration() && SGV->isConstant() &&
- !DGVar->isConstant())
- DGVar->setConstant(true);
-
- // Set calculated linkage, visibility and unnamed_addr.
- DGV->setLinkage(NewLinkage);
- DGV->setVisibility(*NewVisibility);
- DGV->setUnnamedAddr(HasUnnamedAddr);
- }
- }
+ if (!LinkFromSrc) {
+ // Track the source global so that we don't attempt to copy it over when
+ // processing global initializers.
+ DoNotLinkFromSource.insert(SGV);
- if (!LinkFromSrc) {
+ if (DGV)
// Make sure to remember this mapping.
- ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
-
- // Track the source global so that we don't attempt to copy it over when
- // processing global initializers.
- DoNotLinkFromSource.insert(SGV);
-
- return false;
- }
+ ValueMap[SGV] =
+ ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
}
- // If the Comdat this variable was inside of wasn't selected, skip it.
- if (DC && !DGV && !LinkFromSrc) {
- DoNotLinkFromSource.insert(SGV);
- return false;
- }
-
- // No linking to be performed or linking from the source: simply create an
- // identical version of the symbol over in the dest module... the
- // initializer will be filled in later by LinkGlobalInits.
- GlobalVariable *NewDGV =
- new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
- SGV->isConstant(), SGV->getLinkage(), /*init*/nullptr,
- SGV->getName(), /*insertbefore*/nullptr,
- SGV->getThreadLocalMode(),
- SGV->getType()->getAddressSpace());
- // Propagate alignment, visibility and section info.
- copyGVAttributes(NewDGV, SGV);
- if (NewVisibility)
- NewDGV->setVisibility(*NewVisibility);
- NewDGV->setUnnamedAddr(HasUnnamedAddr);
-
- if (DC)
- NewDGV->setComdat(DC);
-
if (DGV) {
- DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
- DGV->eraseFromParent();
- }
-
- // Make sure to remember this mapping.
- ValueMap[SGV] = NewDGV;
- return false;
-}
-
-/// linkFunctionProto - Link the function in the source module into the
-/// destination module if needed, setting up mapping information.
-bool ModuleLinker::linkFunctionProto(Function *SF) {
- GlobalValue *DGV = getLinkedToGlobal(SF);
- llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
- bool HasUnnamedAddr = SF->hasUnnamedAddr();
-
- bool LinkFromSrc = false;
- Comdat *DC = nullptr;
- if (const Comdat *SC = SF->getComdat()) {
- Comdat::SelectionKind SK;
- std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
- DC = DstM->getOrInsertComdat(SC->getName());
- DC->setSelectionKind(SK);
+ Visibility = isLessConstraining(Visibility, DGV->getVisibility())
+ ? DGV->getVisibility()
+ : Visibility;
+ HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
}
- if (DGV) {
- if (!DC) {
- GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
- GlobalValue::VisibilityTypes NV;
- if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
- return true;
- NewVisibility = NV;
- HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
-
- if (!LinkFromSrc) {
- // Set calculated linkage
- DGV->setLinkage(NewLinkage);
- DGV->setVisibility(*NewVisibility);
- DGV->setUnnamedAddr(HasUnnamedAddr);
- }
- }
-
- if (!LinkFromSrc) {
- // Make sure to remember this mapping.
- ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
-
- // Track the function from the source module so we don't attempt to remap
- // it.
- DoNotLinkFromSource.insert(SF);
+ if (!LinkFromSrc && !DGV)
+ return false;
+ GlobalValue *NewGV;
+ if (!LinkFromSrc) {
+ NewGV = DGV;
+ } else {
+ // If the GV is to be lazily linked, don't create it just yet.
+ // The ValueMaterializerTy will deal with creating it if it's used.
+ if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
+ SGV->hasAvailableExternallyLinkage())) {
+ DoNotLinkFromSource.insert(SGV);
return false;
}
- }
- // If the function is to be lazily linked, don't create it just yet.
- // The ValueMaterializerTy will deal with creating it if it's used.
- if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
- SF->hasAvailableExternallyLinkage())) {
- DoNotLinkFromSource.insert(SF);
- return false;
- }
+ NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
- // If the Comdat this function was inside of wasn't selected, skip it.
- if (DC && !DGV && !LinkFromSrc) {
- DoNotLinkFromSource.insert(SF);
- return false;
+ if (DGV && isa<Function>(DGV))
+ if (auto *NewF = dyn_cast<Function>(NewGV))
+ OverridingFunctions.insert(NewF);
}
- // If there is no linkage to be performed or we are linking from the source,
- // bring SF over.
- Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
- SF->getLinkage(), SF->getName(), DstM);
- copyGVAttributes(NewDF, SF);
- if (NewVisibility)
- NewDF->setVisibility(*NewVisibility);
- NewDF->setUnnamedAddr(HasUnnamedAddr);
+ NewGV->setUnnamedAddr(HasUnnamedAddr);
+ NewGV->setVisibility(Visibility);
- if (DC)
- NewDF->setComdat(DC);
+ if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
+ if (C)
+ NewGO->setComdat(C);
- if (DGV) {
- // Any uses of DF need to change to NewDF, with cast.
- DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
- DGV->eraseFromParent();
+ if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
+ NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
}
- ValueMap[SF] = NewDF;
- return false;
-}
-
-/// LinkAliasProto - Set up prototypes for any aliases that come over from the
-/// source module.
-bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
- GlobalValue *DGV = getLinkedToGlobal(SGA);
- llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
- bool HasUnnamedAddr = SGA->hasUnnamedAddr();
-
- bool LinkFromSrc = false;
- Comdat *DC = nullptr;
- if (const Comdat *SC = SGA->getComdat()) {
- Comdat::SelectionKind SK;
- std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
- DC = DstM->getOrInsertComdat(SC->getName());
- DC->setSelectionKind(SK);
+ if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
+ auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
+ auto *SGVar = dyn_cast<GlobalVariable>(SGV);
+ if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
+ (!DGVar->isConstant() || !SGVar->isConstant()))
+ NewGVar->setConstant(false);
}
- if (DGV) {
- if (!DC) {
- GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
- GlobalValue::VisibilityTypes NV;
- if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
- return true;
- NewVisibility = NV;
- HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
-
- if (!LinkFromSrc) {
- // Set calculated linkage.
- DGV->setLinkage(NewLinkage);
- DGV->setVisibility(*NewVisibility);
- DGV->setUnnamedAddr(HasUnnamedAddr);
- }
- }
-
- if (!LinkFromSrc) {
- // Make sure to remember this mapping.
- ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
-
- // Track the alias from the source module so we don't attempt to remap it.
- DoNotLinkFromSource.insert(SGA);
-
- return false;
+ // Make sure to remember this mapping.
+ if (NewGV != DGV) {
+ if (DGV) {
+ DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
+ DGV->eraseFromParent();
}
+ ValueMap[SGV] = NewGV;
}
- // If the Comdat this alias was inside of wasn't selected, skip it.
- if (DC && !DGV && !LinkFromSrc) {
- DoNotLinkFromSource.insert(SGA);
- return false;
- }
-
- // If there is no linkage to be performed or we're linking from the source,
- // bring over SGA.
- auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
- auto *NewDA =
- GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
- SGA->getLinkage(), SGA->getName(), DstM);
- copyGVAttributes(NewDA, SGA);
- if (NewVisibility)
- NewDA->setVisibility(*NewVisibility);
- NewDA->setUnnamedAddr(HasUnnamedAddr);
-
- if (DGV) {
- // Any uses of DGV need to change to NewDA, with cast.
- DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
- DGV->eraseFromParent();
- }
-
- ValueMap[SGA] = NewDA;
return false;
}
-static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
+static void getArrayElements(const Constant *C,
+ SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
@@ -1133,94 +1130,115 @@ static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
// Merge the initializer.
- SmallVector<Constant*, 16> Elements;
- getArrayElements(AVI.DstInit, Elements);
+ SmallVector<Constant *, 16> DstElements;
+ getArrayElements(AVI.DstInit, DstElements);
- Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
- getArrayElements(SrcInit, Elements);
+ SmallVector<Constant *, 16> SrcElements;
+ getArrayElements(AVI.SrcInit, SrcElements);
ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
- AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
-}
-/// linkGlobalInits - Update the initializers in the Dest module now that all
-/// globals that may be referenced are in Dest.
-void ModuleLinker::linkGlobalInits() {
- // Loop over all of the globals in the src module, mapping them over as we go
- for (Module::const_global_iterator I = SrcM->global_begin(),
- E = SrcM->global_end(); I != E; ++I) {
+ StringRef Name = AVI.NewGV->getName();
+ bool IsNewStructor =
+ (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
+ cast<StructType>(NewType->getElementType())->getNumElements() == 3;
- // Only process initialized GV's or ones not already in dest.
- if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
-
- // Grab destination global variable.
- GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
- // Figure out what the initializer looks like in the dest module.
- DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
- RF_None, &TypeMap, &ValMaterializer));
+ for (auto *V : SrcElements) {
+ if (IsNewStructor) {
+ Constant *Key = V->getAggregateElement(2);
+ if (DoNotLinkFromSource.count(Key))
+ continue;
+ }
+ DstElements.push_back(
+ MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
}
+ if (IsNewStructor) {
+ NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
+ AVI.NewGV->mutateType(PointerType::get(NewType, 0));
+ }
+
+ AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
}
-/// linkFunctionBody - Copy the source function over into the dest function and
-/// fix up references to values. At this point we know that Dest is an external
-/// function, and that Src is not.
-void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
- assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
+/// Update the initializers in the Dest module now that all globals that may be
+/// referenced are in Dest.
+void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
+ // Figure out what the initializer looks like in the dest module.
+ Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
+ &ValMaterializer));
+}
+
+/// Copy the source function over into the dest function and fix up references
+/// to values. At this point we know that Dest is an external function, and
+/// that Src is not.
+bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
+ assert(Dst.isDeclaration() && !Src.isDeclaration());
+
+ // Materialize if needed.
+ if (std::error_code EC = Src.materialize())
+ return emitError(EC.message());
+
+ // Link in the prefix data.
+ if (Src.hasPrefixData())
+ Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
+ &ValMaterializer));
+
+ // Link in the prologue data.
+ if (Src.hasPrologueData())
+ Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
+ &TypeMap, &ValMaterializer));
// Go through and convert function arguments over, remembering the mapping.
- Function::arg_iterator DI = Dst->arg_begin();
- for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
- I != E; ++I, ++DI) {
- DI->setName(I->getName()); // Copy the name over.
+ Function::arg_iterator DI = Dst.arg_begin();
+ for (Argument &Arg : Src.args()) {
+ DI->setName(Arg.getName()); // Copy the name over.
// Add a mapping to our mapping.
- ValueMap[I] = DI;
+ ValueMap[&Arg] = DI;
+ ++DI;
}
- if (Mode == Linker::DestroySource) {
- // Splice the body of the source function into the dest function.
- Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
+ // Splice the body of the source function into the dest function.
+ Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
- // At this point, all of the instructions and values of the function are now
- // copied over. The only problem is that they are still referencing values in
- // the Source function as operands. Loop through all of the operands of the
- // functions and patch them up to point to the local versions.
- for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
- &TypeMap, &ValMaterializer);
-
- } else {
- // Clone the body of the function into the dest function.
- SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
- CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", nullptr,
- &TypeMap, &ValMaterializer);
- }
+ // At this point, all of the instructions and values of the function are now
+ // copied over. The only problem is that they are still referencing values in
+ // the Source function as operands. Loop through all of the operands of the
+ // functions and patch them up to point to the local versions.
+ for (BasicBlock &BB : Dst)
+ for (Instruction &I : BB)
+ RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
+ &ValMaterializer);
// There is no need to map the arguments anymore.
- for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
- I != E; ++I)
- ValueMap.erase(I);
+ for (Argument &Arg : Src.args())
+ ValueMap.erase(&Arg);
+ Src.Dematerialize();
+ return false;
}
-/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
-void ModuleLinker::linkAliasBodies() {
- for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
- I != E; ++I) {
- if (DoNotLinkFromSource.count(I))
- continue;
- if (Constant *Aliasee = I->getAliasee()) {
- GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
- Constant *Val =
- MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
- DA->setAliasee(Val);
- }
+void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
+ Constant *Aliasee = Src.getAliasee();
+ Constant *Val =
+ MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
+ Dst.setAliasee(Val);
+}
+
+bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
+ Value *Dst = ValueMap[&Src];
+ assert(Dst);
+ if (auto *F = dyn_cast<Function>(&Src))
+ return linkFunctionBody(cast<Function>(*Dst), *F);
+ if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
+ linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
+ return false;
}
+ linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
+ return false;
}
-/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
-/// module.
+/// Insert all of the named MDNodes in Src into the Dest module.
void ModuleLinker::linkNamedMDNodes() {
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
@@ -1230,13 +1248,54 @@ void ModuleLinker::linkNamedMDNodes() {
NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
// Add Src elements into Dest node.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
- RF_None, &TypeMap, &ValMaterializer));
+ DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
+ &TypeMap, &ValMaterializer));
}
}
-/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
-/// module.
+/// Drop DISubprograms that have been superseded.
+///
+/// FIXME: this creates an asymmetric result: we strip losing subprograms from
+/// DstM, but leave losing subprograms in SrcM. Instead we should also strip
+/// losers from SrcM, but this requires extra plumbing in MapMetadata.
+void ModuleLinker::stripReplacedSubprograms() {
+ // Avoid quadratic runtime by returning early when there's nothing to do.
+ if (OverridingFunctions.empty())
+ return;
+
+ // Move the functions now, so the set gets cleared even on early returns.
+ auto Functions = std::move(OverridingFunctions);
+ OverridingFunctions.clear();
+
+ // Drop subprograms whose functions have been overridden by the new compile
+ // unit.
+ NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
+ if (!CompileUnits)
+ return;
+ for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
+ DICompileUnit CU(CompileUnits->getOperand(I));
+ assert(CU && "Expected valid compile unit");
+
+ DITypedArray<DISubprogram> SPs(CU.getSubprograms());
+ assert(SPs && "Expected valid subprogram array");
+
+ SmallVector<Metadata *, 16> NewSPs;
+ NewSPs.reserve(SPs.getNumElements());
+ for (unsigned S = 0, SE = SPs.getNumElements(); S != SE; ++S) {
+ DISubprogram SP = SPs.getElement(S);
+ if (SP && SP.getFunction() && Functions.count(SP.getFunction()))
+ continue;
+
+ NewSPs.push_back(SP);
+ }
+
+ // Redirect operand to the overriding subprogram.
+ if (NewSPs.size() != SPs.getNumElements())
+ CU.replaceSubprograms(DIArray(MDNode::get(DstM->getContext(), NewSPs)));
+ }
+}
+
+/// Merge the linker flags in Src into the Dest module.
bool ModuleLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
@@ -1253,17 +1312,17 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
}
// First build a map of the existing module flags and requirements.
- DenseMap<MDString*, MDNode*> Flags;
+ DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode*, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
- ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
+ ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
} else {
- Flags[ID] = Op;
+ Flags[ID] = std::make_pair(Op, I);
}
}
@@ -1272,9 +1331,12 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
bool HasErr = false;
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
- ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
+ ConstantInt *SrcBehavior =
+ mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
- MDNode *DstOp = Flags.lookup(ID);
+ MDNode *DstOp;
+ unsigned DstIndex;
+ std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
@@ -1289,13 +1351,14 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
- Flags[ID] = SrcOp;
+ Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
DstModFlags->addOperand(SrcOp);
continue;
}
// Otherwise, perform a merge.
- ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
+ ConstantInt *DstBehavior =
+ mdconst::extract<ConstantInt>(DstOp->getOperand(0));
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
// If either flag has override behavior, handle it first.
@@ -1309,8 +1372,8 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
continue;
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
- DstOp->replaceOperandWith(0, SrcBehavior);
- DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
+ DstModFlags->setOperand(DstIndex, SrcOp);
+ Flags[ID].first = SrcOp;
continue;
}
@@ -1321,6 +1384,13 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
continue;
}
+ auto replaceDstValue = [&](MDNode *New) {
+ Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
+ MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
+ DstModFlags->setOperand(DstIndex, Flag);
+ Flags[ID].first = Flag;
+ };
+
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
@@ -1336,39 +1406,35 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
case Module::Warning: {
// Emit a warning if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
- if (!SuppressWarnings) {
- errs() << "WARNING: linking module flags '" << ID->getString()
- << "': IDs have conflicting values";
- }
+ emitWarning("linking module flags '" + ID->getString() +
+ "': IDs have conflicting values");
}
continue;
}
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
- unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
- Value **VP, **Values = VP = new Value*[NumOps];
- for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
- *VP = DstValue->getOperand(i);
- for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
- *VP = SrcValue->getOperand(i);
- DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
- ArrayRef<Value*>(Values,
- NumOps)));
- delete[] Values;
+ SmallVector<Metadata *, 8> MDs;
+ MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
+ for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
+ MDs.push_back(DstValue->getOperand(i));
+ for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
+ MDs.push_back(SrcValue->getOperand(i));
+
+ replaceDstValue(MDNode::get(DstM->getContext(), MDs));
break;
}
case Module::AppendUnique: {
- SmallSetVector<Value*, 16> Elts;
+ SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
Elts.insert(DstValue->getOperand(i));
for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
Elts.insert(SrcValue->getOperand(i));
- DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
- ArrayRef<Value*>(Elts.begin(),
- Elts.end())));
+
+ replaceDstValue(MDNode::get(DstM->getContext(),
+ makeArrayRef(Elts.begin(), Elts.end())));
break;
}
}
@@ -1378,9 +1444,9 @@ bool ModuleLinker::linkModuleFlagsMetadata() {
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
- Value *ReqValue = Requirement->getOperand(1);
+ Metadata *ReqValue = Requirement->getOperand(1);
- MDNode *Op = Flags[Flag];
+ MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue) {
HasErr |= emitError("linking module flags '" + Flag->getString() +
"': does not have the required value");
@@ -1406,23 +1472,19 @@ bool ModuleLinker::run() {
if (SrcM->getDataLayout() && DstM->getDataLayout() &&
*SrcM->getDataLayout() != *DstM->getDataLayout()) {
- if (!SuppressWarnings) {
- errs() << "WARNING: Linking two modules of different data layouts: '"
- << SrcM->getModuleIdentifier() << "' is '"
- << SrcM->getDataLayoutStr() << "' whereas '"
- << DstM->getModuleIdentifier() << "' is '"
- << DstM->getDataLayoutStr() << "'\n";
- }
+ emitWarning("Linking two modules of different data layouts: '" +
+ SrcM->getModuleIdentifier() + "' is '" +
+ SrcM->getDataLayoutStr() + "' whereas '" +
+ DstM->getModuleIdentifier() + "' is '" +
+ DstM->getDataLayoutStr() + "'\n");
}
if (!SrcM->getTargetTriple().empty() &&
DstM->getTargetTriple() != SrcM->getTargetTriple()) {
- if (!SuppressWarnings) {
- errs() << "WARNING: Linking two modules of different target triples: "
- << SrcM->getModuleIdentifier() << "' is '"
- << SrcM->getTargetTriple() << "' whereas '"
- << DstM->getModuleIdentifier() << "' is '"
- << DstM->getTargetTriple() << "'\n";
- }
+ emitWarning("Linking two modules of different target triples: " +
+ SrcM->getModuleIdentifier() + "' is '" +
+ SrcM->getTargetTriple() + "' whereas '" +
+ DstM->getModuleIdentifier() + "' is '" +
+ DstM->getTargetTriple() + "'\n");
}
// Append the module inline asm string.
@@ -1438,7 +1500,7 @@ bool ModuleLinker::run() {
computeTypeMapping();
ComdatsChosen.clear();
- for (const StringMapEntry<llvm::Comdat> &SMEC : SrcM->getComdatSymbolTable()) {
+ for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
const Comdat &C = SMEC.getValue();
if (ComdatsChosen.count(&C))
continue;
@@ -1449,11 +1511,14 @@ bool ModuleLinker::run() {
ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
}
+ // Upgrade mismatched global arrays.
+ upgradeMismatchedGlobals();
+
// Insert all of the globals in src into the DstM module... without linking
// initializers (which could refer to functions not yet mapped over).
for (Module::global_iterator I = SrcM->global_begin(),
E = SrcM->global_end(); I != E; ++I)
- if (linkGlobalProto(I))
+ if (linkGlobalValueProto(I))
return true;
// Link the functions together between the two modules, without doing function
@@ -1462,45 +1527,51 @@ bool ModuleLinker::run() {
// all of the global values that may be referenced are available in our
// ValueMap.
for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
- if (linkFunctionProto(I))
+ if (linkGlobalValueProto(I))
return true;
// If there were any aliases, link them now.
for (Module::alias_iterator I = SrcM->alias_begin(),
E = SrcM->alias_end(); I != E; ++I)
- if (linkAliasProto(I))
+ if (linkGlobalValueProto(I))
return true;
for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
linkAppendingVarInit(AppendingVars[i]);
+ for (const auto &Entry : DstM->getComdatSymbolTable()) {
+ const Comdat &C = Entry.getValue();
+ if (C.getSelectionKind() == Comdat::Any)
+ continue;
+ const GlobalValue *GV = SrcM->getNamedValue(C.getName());
+ assert(GV);
+ MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
+ }
+
// Link in the function bodies that are defined in the source module into
// DstM.
- for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
- // Skip if not linking from source.
- if (DoNotLinkFromSource.count(SF)) continue;
-
- Function *DF = cast<Function>(ValueMap[SF]);
- if (SF->hasPrefixData()) {
- // Link in the prefix data.
- DF->setPrefixData(MapValue(
- SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
- }
+ for (Function &SF : *SrcM) {
+ // Skip if no body (function is external).
+ if (SF.isDeclaration())
+ continue;
- // Skip if no body (function is external) or materialize.
- if (SF->isDeclaration()) {
- if (!SF->isMaterializable())
- continue;
- if (SF->Materialize(&ErrorMsg))
- return true;
- }
+ // Skip if not linking from source.
+ if (DoNotLinkFromSource.count(&SF))
+ continue;
- linkFunctionBody(DF, SF);
- SF->Dematerialize();
+ if (linkGlobalValueBody(SF))
+ return true;
}
// Resolve all uses of aliases with aliasees.
- linkAliasBodies();
+ for (GlobalAlias &Src : SrcM->aliases()) {
+ if (DoNotLinkFromSource.count(&Src))
+ continue;
+ linkGlobalValueBody(Src);
+ }
+
+ // Strip replaced subprograms before linking together compile units.
+ stripReplacedSubprograms();
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
@@ -1513,64 +1584,130 @@ bool ModuleLinker::run() {
// Update the initializers in the DstM module now that all globals that may
// be referenced are in DstM.
- linkGlobalInits();
+ for (GlobalVariable &Src : SrcM->globals()) {
+ // Only process initialized GV's or ones not already in dest.
+ if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
+ continue;
+ linkGlobalValueBody(Src);
+ }
// Process vector of lazily linked in functions.
- bool LinkedInAnyFunctions;
- do {
- LinkedInAnyFunctions = false;
-
- for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
- E = LazilyLinkFunctions.end(); I != E; ++I) {
- Function *SF = *I;
- if (!SF)
- continue;
+ while (!LazilyLinkGlobalValues.empty()) {
+ GlobalValue *SGV = LazilyLinkGlobalValues.back();
+ LazilyLinkGlobalValues.pop_back();
- Function *DF = cast<Function>(ValueMap[SF]);
- if (SF->hasPrefixData()) {
- // Link in the prefix data.
- DF->setPrefixData(MapValue(SF->getPrefixData(),
- ValueMap,
- RF_None,
- &TypeMap,
- &ValMaterializer));
- }
+ assert(!SGV->isDeclaration() && "users should not pass down decls");
+ if (linkGlobalValueBody(*SGV))
+ return true;
+ }
- // Materialize if necessary.
- if (SF->isDeclaration()) {
- if (!SF->isMaterializable())
- continue;
- if (SF->Materialize(&ErrorMsg))
- return true;
- }
+ return false;
+}
- // Erase from vector *before* the function body is linked - linkFunctionBody could
- // invalidate I.
- LazilyLinkFunctions.erase(I);
+Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
+ : ETypes(E), IsPacked(P) {}
- // Link in function body.
- linkFunctionBody(DF, SF);
- SF->Dematerialize();
+Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
+ : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
- // Set flag to indicate we may have more functions to lazily link in
- // since we linked in a function.
- LinkedInAnyFunctions = true;
- break;
- }
- } while (LinkedInAnyFunctions);
+bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
+ if (IsPacked != That.IsPacked)
+ return false;
+ if (ETypes != That.ETypes)
+ return false;
+ return true;
+}
- // Now that all of the types from the source are used, resolve any structs
- // copied over to the dest that didn't exist there.
- TypeMap.linkDefinedTypeBodies();
+bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
+ return !this->operator==(That);
+}
- return false;
+StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
+ return DenseMapInfo<StructType *>::getEmptyKey();
+}
+
+StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
+ return DenseMapInfo<StructType *>::getTombstoneKey();
+}
+
+unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
+ return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
+ Key.IsPacked);
+}
+
+unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
+ return getHashValue(KeyTy(ST));
+}
+
+bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ return LHS == KeyTy(RHS);
+}
+
+bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey())
+ return LHS == getEmptyKey();
+
+ if (RHS == getTombstoneKey())
+ return LHS == getTombstoneKey();
+
+ return KeyTy(LHS) == KeyTy(RHS);
+}
+
+void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
+ assert(!Ty->isOpaque());
+ NonOpaqueStructTypes.insert(Ty);
+}
+
+void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
+ assert(Ty->isOpaque());
+ OpaqueStructTypes.insert(Ty);
+}
+
+StructType *
+Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
+ bool IsPacked) {
+ Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
+ auto I = NonOpaqueStructTypes.find_as(Key);
+ if (I == NonOpaqueStructTypes.end())
+ return nullptr;
+ return *I;
}
-Linker::Linker(Module *M, bool SuppressWarnings)
- : Composite(M), SuppressWarnings(SuppressWarnings) {
+bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
+ if (Ty->isOpaque())
+ return OpaqueStructTypes.count(Ty);
+ auto I = NonOpaqueStructTypes.find(Ty);
+ if (I == NonOpaqueStructTypes.end())
+ return false;
+ return *I == Ty;
+}
+
+void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
+ this->Composite = M;
+ this->DiagnosticHandler = DiagnosticHandler;
+
TypeFinder StructTypes;
StructTypes.run(*M, true);
- IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
+ for (StructType *Ty : StructTypes) {
+ if (Ty->isOpaque())
+ IdentifiedStructTypes.addOpaque(Ty);
+ else
+ IdentifiedStructTypes.addNonOpaque(Ty);
+ }
+}
+
+Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
+ init(M, DiagnosticHandler);
+}
+
+Linker::Linker(Module *M) {
+ init(M, [this](const DiagnosticInfo &DI) {
+ Composite->getContext().diagnose(DI);
+ });
}
Linker::~Linker() {
@@ -1581,30 +1718,30 @@ void Linker::deleteModule() {
Composite = nullptr;
}
-bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
- ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode,
- SuppressWarnings);
- if (TheLinker.run()) {
- if (ErrorMsg)
- *ErrorMsg = TheLinker.ErrorMsg;
- return true;
- }
- return false;
+bool Linker::linkInModule(Module *Src) {
+ ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
+ DiagnosticHandler);
+ return TheLinker.run();
}
//===----------------------------------------------------------------------===//
// LinkModules entrypoint.
//===----------------------------------------------------------------------===//
-/// LinkModules - This function links two modules together, with the resulting
-/// Dest module modified to be the composite of the two input modules. If an
-/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
-/// the problem. Upon failure, the Dest module could be in a modified state,
-/// and shouldn't be relied on to be consistent.
-bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
- std::string *ErrorMsg) {
+/// This function links two modules together, with the resulting Dest module
+/// modified to be the composite of the two input modules. If an error occurs,
+/// true is returned and ErrorMsg (if not null) is set to indicate the problem.
+/// Upon failure, the Dest module could be in a modified state, and shouldn't be
+/// relied on to be consistent.
+bool Linker::LinkModules(Module *Dest, Module *Src,
+ DiagnosticHandlerFunction DiagnosticHandler) {
+ Linker L(Dest, DiagnosticHandler);
+ return L.linkInModule(Src);
+}
+
+bool Linker::LinkModules(Module *Dest, Module *Src) {
Linker L(Dest);
- return L.linkInModule(Src, Mode, ErrorMsg);
+ return L.linkInModule(Src);
}
//===----------------------------------------------------------------------===//
@@ -1612,11 +1749,16 @@ bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
//===----------------------------------------------------------------------===//
LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
- LLVMLinkerMode Mode, char **OutMessages) {
- std::string Messages;
- LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
- Mode, OutMessages? &Messages : nullptr);
- if (OutMessages)
- *OutMessages = strdup(Messages.c_str());
+ unsigned Unused, char **OutMessages) {
+ Module *D = unwrap(Dest);
+ std::string Message;
+ raw_string_ostream Stream(Message);
+ DiagnosticPrinterRawOStream DP(Stream);
+
+ LLVMBool Result = Linker::LinkModules(
+ D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
+
+ if (OutMessages && Result)
+ *OutMessages = strdup(Message.c_str());
return Result;
}
diff --git a/contrib/llvm/lib/MC/ConstantPools.cpp b/contrib/llvm/lib/MC/ConstantPools.cpp
index c4cea60..a239a8f 100644
--- a/contrib/llvm/lib/MC/ConstantPools.cpp
+++ b/contrib/llvm/lib/MC/ConstantPools.cpp
@@ -11,10 +11,10 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/MapVector.h"
+#include "llvm/MC/ConstantPools.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCStreamer.h"
-#include "llvm/MC/ConstantPools.h"
using namespace llvm;
//
diff --git a/contrib/llvm/lib/MC/ELFObjectWriter.cpp b/contrib/llvm/lib/MC/ELFObjectWriter.cpp
index 5779b27..e2439ab 100644
--- a/contrib/llvm/lib/MC/ELFObjectWriter.cpp
+++ b/contrib/llvm/lib/MC/ELFObjectWriter.cpp
@@ -31,8 +31,8 @@
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/Endian.h"
#include "llvm/Support/ELF.h"
+#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include <vector>
using namespace llvm;
@@ -81,23 +81,13 @@ public:
struct ELFRelocationEntry {
uint64_t Offset; // Where is the relocation.
- bool UseSymbol; // Relocate with a symbol, not the section.
- union {
- const MCSymbol *Symbol; // The symbol to relocate with.
- const MCSectionData *Section; // The section to relocate with.
- };
+ const MCSymbol *Symbol; // The symbol to relocate with.
unsigned Type; // The type of the relocation.
uint64_t Addend; // The addend to use.
ELFRelocationEntry(uint64_t Offset, const MCSymbol *Symbol, unsigned Type,
uint64_t Addend)
- : Offset(Offset), UseSymbol(true), Symbol(Symbol), Type(Type),
- Addend(Addend) {}
-
- ELFRelocationEntry(uint64_t Offset, const MCSectionData *Section,
- unsigned Type, uint64_t Addend)
- : Offset(Offset), UseSymbol(false), Section(Section), Type(Type),
- Addend(Addend) {}
+ : Offset(Offset), Symbol(Symbol), Type(Type), Addend(Addend) {}
};
class ELFObjectWriter : public MCObjectWriter {
@@ -137,6 +127,14 @@ class ELFObjectWriter : public MCObjectWriter {
// Support lexicographic sorting.
bool operator<(const ELFSymbolData &RHS) const {
+ unsigned LHSType = MCELF::GetType(*SymbolData);
+ unsigned RHSType = MCELF::GetType(*RHS.SymbolData);
+ if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
+ return false;
+ if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
+ return true;
+ if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
+ return SectionIndex < RHS.SectionIndex;
return Name < RHS.Name;
}
};
@@ -246,7 +244,7 @@ class ELFObjectWriter : public MCObjectWriter {
/// \param NumRegularSections - Number of non-relocation sections.
void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap,
- RevGroupMapTy RevGroupMap,
+ const RevGroupMapTy &RevGroupMap,
unsigned NumRegularSections);
void ComputeIndexMap(MCAssembler &Asm,
@@ -651,22 +649,6 @@ void ELFObjectWriter::WriteSymbolTable(MCDataFragment *SymtabF,
WriteSymbol(Writer, MSD, Layout);
}
- // Write out a symbol table entry for each regular section.
- for (MCAssembler::const_iterator i = Asm.begin(), e = Asm.end(); i != e;
- ++i) {
- const MCSectionELF &Section =
- static_cast<const MCSectionELF&>(i->getSection());
- if (Section.getType() == ELF::SHT_RELA ||
- Section.getType() == ELF::SHT_REL ||
- Section.getType() == ELF::SHT_STRTAB ||
- Section.getType() == ELF::SHT_SYMTAB ||
- Section.getType() == ELF::SHT_SYMTAB_SHNDX)
- continue;
- Writer.writeSymbol(0, ELF::STT_SECTION, 0, 0, ELF::STV_DEFAULT,
- SectionIndexMap.lookup(&Section), false);
- LastLocalSymbolIndex++;
- }
-
for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) {
ELFSymbolData &MSD = ExternalSymbolData[i];
MCSymbolData &Data = *MSD.SymbolData;
@@ -770,8 +752,9 @@ bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
}
// Most TLS relocations use a got, so they need the symbol. Even those that
- // are just an offset (@tpoff), require a symbol in some linkers (gold,
- // but not bfd ld).
+ // are just an offset (@tpoff), require a symbol in gold versions before
+ // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
+ // http://sourceware.org/PR16773.
if (Flags & ELF::SHF_TLS)
return true;
@@ -881,8 +864,11 @@ void ELFObjectWriter::RecordRelocation(const MCAssembler &Asm,
if (!RelocateWithSymbol) {
const MCSection *SecA =
(SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
- const MCSectionData *SecAD = SecA ? &Asm.getSectionData(*SecA) : nullptr;
- ELFRelocationEntry Rec(FixupOffset, SecAD, Type, Addend);
+ auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
+ MCSymbol *SectionSymbol =
+ ELFSec ? Asm.getContext().getOrCreateSectionSymbol(*ELFSec)
+ : nullptr;
+ ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
Relocations[FixupSection].push_back(Rec);
return;
}
@@ -991,7 +977,7 @@ void ELFObjectWriter::ComputeIndexMap(MCAssembler &Asm,
void
ELFObjectWriter::computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap,
- RevGroupMapTy RevGroupMap,
+ const RevGroupMapTy &RevGroupMap,
unsigned NumRegularSections) {
// FIXME: Is this the correct place to do this?
// FIXME: Why is an undefined reference to _GLOBAL_OFFSET_TABLE_ needed?
@@ -1037,7 +1023,7 @@ ELFObjectWriter::computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
MSD.SectionIndex = ELF::SHN_COMMON;
} else if (BaseSymbol->isUndefined()) {
if (isSignature && !Used)
- MSD.SectionIndex = SectionIndexMap.lookup(RevGroupMap[&Symbol]);
+ MSD.SectionIndex = SectionIndexMap.lookup(RevGroupMap.lookup(&Symbol));
else
MSD.SectionIndex = ELF::SHN_UNDEF;
if (!Used && WeakrefUsed)
@@ -1060,7 +1046,10 @@ ELFObjectWriter::computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
Buf += Name.substr(Pos + Skip);
Name = Buf;
}
- MSD.Name = StrTabBuilder.add(Name);
+
+ // Sections have their own string table
+ if (MCELF::GetType(SD) != ELF::STT_SECTION)
+ MSD.Name = StrTabBuilder.add(Name);
if (MSD.SectionIndex == ELF::SHN_UNDEF)
UndefinedSymbolData.push_back(MSD);
@@ -1073,14 +1062,16 @@ ELFObjectWriter::computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
StrTabBuilder.add(*i);
- StrTabBuilder.finalize();
+ StrTabBuilder.finalize(StringTableBuilder::ELF);
for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
FileSymbolData.push_back(StrTabBuilder.getOffset(*i));
- for (ELFSymbolData& MSD : LocalSymbolData)
- MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
- for (ELFSymbolData& MSD : ExternalSymbolData)
+ for (ELFSymbolData &MSD : LocalSymbolData)
+ MSD.StringIndex = MCELF::GetType(*MSD.SymbolData) == ELF::STT_SECTION
+ ? 0
+ : StrTabBuilder.getOffset(MSD.Name);
+ for (ELFSymbolData &MSD : ExternalSymbolData)
MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
for (ELFSymbolData& MSD : UndefinedSymbolData)
MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
@@ -1096,8 +1087,6 @@ ELFObjectWriter::computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
LocalSymbolData[i].SymbolData->setIndex(Index++);
- Index += NumRegularSections;
-
for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
ExternalSymbolData[i].SymbolData->setIndex(Index++);
for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
@@ -1353,18 +1342,8 @@ void ELFObjectWriter::WriteRelocationsFragment(const MCAssembler &Asm,
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
const ELFRelocationEntry &Entry = Relocs[e - i - 1];
-
- unsigned Index;
- if (Entry.UseSymbol) {
- Index = getSymbolIndexInSymbolTable(Asm, Entry.Symbol);
- } else {
- const MCSectionData *Sec = Entry.Section;
- if (Sec)
- Index = Sec->getOrdinal() + FileSymbolData.size() +
- LocalSymbolData.size() + 1;
- else
- Index = 0;
- }
+ unsigned Index =
+ Entry.Symbol ? getSymbolIndexInSymbolTable(Asm, Entry.Symbol) : 0;
if (is64Bit()) {
write(*F, Entry.Offset);
@@ -1446,7 +1425,7 @@ void ELFObjectWriter::CreateMetadataSections(MCAssembler &Asm,
static_cast<const MCSectionELF&>(it->getSection());
ShStrTabBuilder.add(Section.getSectionName());
}
- ShStrTabBuilder.finalize();
+ ShStrTabBuilder.finalize(StringTableBuilder::ELF);
F->getContents().append(ShStrTabBuilder.data().begin(),
ShStrTabBuilder.data().end());
}
@@ -1457,14 +1436,7 @@ void ELFObjectWriter::CreateIndexedSections(MCAssembler &Asm,
RevGroupMapTy &RevGroupMap,
SectionIndexMapTy &SectionIndexMap,
const RelMapTy &RelMap) {
- // Create the .note.GNU-stack section if needed.
MCContext &Ctx = Asm.getContext();
- if (Asm.getNoExecStack()) {
- const MCSectionELF *GnuStackSection =
- Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS, 0,
- SectionKind::getReadOnly());
- Asm.getOrCreateSectionData(*GnuStackSection);
- }
// Build the groups
for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
diff --git a/contrib/llvm/lib/MC/MCAnalysis/MCAtom.cpp b/contrib/llvm/lib/MC/MCAnalysis/MCAtom.cpp
deleted file mode 100644
index 82056ee..0000000
--- a/contrib/llvm/lib/MC/MCAnalysis/MCAtom.cpp
+++ /dev/null
@@ -1,114 +0,0 @@
-//===- lib/MC/MCAtom.cpp - MCAtom implementation --------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/MC/MCAnalysis/MCAtom.h"
-#include "llvm/MC/MCAnalysis/MCModule.h"
-#include "llvm/Support/ErrorHandling.h"
-#include <iterator>
-
-using namespace llvm;
-
-// Pin the vtable to this file.
-void MCAtom::anchor() {}
-
-void MCAtom::remap(uint64_t NewBegin, uint64_t NewEnd) {
- Parent->remap(this, NewBegin, NewEnd);
-}
-
-void MCAtom::remapForTruncate(uint64_t TruncPt) {
- assert((TruncPt >= Begin && TruncPt < End) &&
- "Truncation point not contained in atom!");
- remap(Begin, TruncPt);
-}
-
-void MCAtom::remapForSplit(uint64_t SplitPt,
- uint64_t &LBegin, uint64_t &LEnd,
- uint64_t &RBegin, uint64_t &REnd) {
- assert((SplitPt > Begin && SplitPt <= End) &&
- "Splitting at point not contained in atom!");
-
- // Compute the new begin/end points.
- LBegin = Begin;
- LEnd = SplitPt - 1;
- RBegin = SplitPt;
- REnd = End;
-
- // Remap this atom to become the lower of the two new ones.
- remap(LBegin, LEnd);
-}
-
-// MCDataAtom
-
-void MCDataAtom::addData(const MCData &D) {
- Data.push_back(D);
- if (Data.size() > End + 1 - Begin)
- remap(Begin, End + 1);
-}
-
-void MCDataAtom::truncate(uint64_t TruncPt) {
- remapForTruncate(TruncPt);
-
- Data.resize(TruncPt - Begin + 1);
-}
-
-MCDataAtom *MCDataAtom::split(uint64_t SplitPt) {
- uint64_t LBegin, LEnd, RBegin, REnd;
- remapForSplit(SplitPt, LBegin, LEnd, RBegin, REnd);
-
- MCDataAtom *RightAtom = Parent->createDataAtom(RBegin, REnd);
- RightAtom->setName(getName());
-
- std::vector<MCData>::iterator I = Data.begin() + (RBegin - LBegin);
- assert(I != Data.end() && "Split point not found in range!");
-
- std::copy(I, Data.end(), std::back_inserter(RightAtom->Data));
- Data.erase(I, Data.end());
- return RightAtom;
-}
-
-// MCTextAtom
-
-void MCTextAtom::addInst(const MCInst &I, uint64_t Size) {
- if (NextInstAddress + Size - 1 > End)
- remap(Begin, NextInstAddress + Size - 1);
- Insts.push_back(MCDecodedInst(I, NextInstAddress, Size));
- NextInstAddress += Size;
-}
-
-void MCTextAtom::truncate(uint64_t TruncPt) {
- remapForTruncate(TruncPt);
-
- InstListTy::iterator I = Insts.begin();
- while (I != Insts.end() && I->Address <= TruncPt) ++I;
-
- assert(I != Insts.end() && "Truncation point not found in disassembly!");
- assert(I->Address == TruncPt + 1 &&
- "Truncation point does not fall on instruction boundary");
-
- Insts.erase(I, Insts.end());
-}
-
-MCTextAtom *MCTextAtom::split(uint64_t SplitPt) {
- uint64_t LBegin, LEnd, RBegin, REnd;
- remapForSplit(SplitPt, LBegin, LEnd, RBegin, REnd);
-
- MCTextAtom *RightAtom = Parent->createTextAtom(RBegin, REnd);
- RightAtom->setName(getName());
-
- InstListTy::iterator I = Insts.begin();
- while (I != Insts.end() && I->Address < SplitPt) ++I;
- assert(I != Insts.end() && "Split point not found in disassembly!");
- assert(I->Address == SplitPt &&
- "Split point does not fall on instruction boundary!");
-
- std::copy(I, Insts.end(), std::back_inserter(RightAtom->Insts));
- Insts.erase(I, Insts.end());
- Parent->splitBasicBlocksForAtom(this, RightAtom);
- return RightAtom;
-}
diff --git a/contrib/llvm/lib/MC/MCAnalysis/MCFunction.cpp b/contrib/llvm/lib/MC/MCAnalysis/MCFunction.cpp
deleted file mode 100644
index 4e09d1a..0000000
--- a/contrib/llvm/lib/MC/MCAnalysis/MCFunction.cpp
+++ /dev/null
@@ -1,76 +0,0 @@
-//===-- lib/MC/MCFunction.cpp -----------------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/MC/MCAnalysis/MCFunction.h"
-#include "llvm/MC/MCAnalysis/MCAtom.h"
-#include "llvm/MC/MCAnalysis/MCModule.h"
-#include <algorithm>
-
-using namespace llvm;
-
-// MCFunction
-
-MCFunction::MCFunction(StringRef Name, MCModule *Parent)
- : Name(Name), ParentModule(Parent)
-{}
-
-MCBasicBlock &MCFunction::createBlock(const MCTextAtom &TA) {
- std::unique_ptr<MCBasicBlock> MCBB(new MCBasicBlock(TA, this));
- Blocks.push_back(std::move(MCBB));
- return *Blocks.back();
-}
-
-MCBasicBlock *MCFunction::find(uint64_t StartAddr) {
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- if ((*I)->getInsts()->getBeginAddr() == StartAddr)
- return I->get();
- return nullptr;
-}
-
-const MCBasicBlock *MCFunction::find(uint64_t StartAddr) const {
- return const_cast<MCFunction *>(this)->find(StartAddr);
-}
-
-// MCBasicBlock
-
-MCBasicBlock::MCBasicBlock(const MCTextAtom &Insts, MCFunction *Parent)
- : Insts(&Insts), Parent(Parent) {
- getParent()->getParent()->trackBBForAtom(&Insts, this);
-}
-
-void MCBasicBlock::addSuccessor(const MCBasicBlock *MCBB) {
- if (!isSuccessor(MCBB))
- Successors.push_back(MCBB);
-}
-
-bool MCBasicBlock::isSuccessor(const MCBasicBlock *MCBB) const {
- return std::find(Successors.begin(), Successors.end(),
- MCBB) != Successors.end();
-}
-
-void MCBasicBlock::addPredecessor(const MCBasicBlock *MCBB) {
- if (!isPredecessor(MCBB))
- Predecessors.push_back(MCBB);
-}
-
-bool MCBasicBlock::isPredecessor(const MCBasicBlock *MCBB) const {
- return std::find(Predecessors.begin(), Predecessors.end(),
- MCBB) != Predecessors.end();
-}
-
-void MCBasicBlock::splitBasicBlock(MCBasicBlock *SplitBB) {
- assert(Insts->getEndAddr() + 1 == SplitBB->Insts->getBeginAddr() &&
- "Splitting unrelated basic blocks!");
- SplitBB->addPredecessor(this);
- assert(SplitBB->Successors.empty() &&
- "Split basic block shouldn't already have successors!");
- SplitBB->Successors = Successors;
- Successors.clear();
- addSuccessor(SplitBB);
-}
diff --git a/contrib/llvm/lib/MC/MCAnalysis/MCModule.cpp b/contrib/llvm/lib/MC/MCAnalysis/MCModule.cpp
deleted file mode 100644
index 7512299..0000000
--- a/contrib/llvm/lib/MC/MCAnalysis/MCModule.cpp
+++ /dev/null
@@ -1,142 +0,0 @@
-//===- lib/MC/MCModule.cpp - MCModule implementation ----------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/MC/MCAnalysis/MCModule.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/MC/MCAnalysis/MCAtom.h"
-#include "llvm/MC/MCAnalysis/MCFunction.h"
-#include <algorithm>
-
-using namespace llvm;
-
-static bool AtomComp(const MCAtom *L, uint64_t Addr) {
- return L->getEndAddr() < Addr;
-}
-
-static bool AtomCompInv(uint64_t Addr, const MCAtom *R) {
- return Addr < R->getEndAddr();
-}
-
-void MCModule::map(MCAtom *NewAtom) {
- uint64_t Begin = NewAtom->Begin;
-
- assert(Begin <= NewAtom->End && "Creating MCAtom with endpoints reversed?");
-
- // Check for atoms already covering this range.
- AtomListTy::iterator I = std::lower_bound(atom_begin(), atom_end(),
- Begin, AtomComp);
- assert((I == atom_end() || (*I)->getBeginAddr() > NewAtom->End)
- && "Offset range already occupied!");
-
- // Insert the new atom to the list.
- Atoms.insert(I, NewAtom);
-}
-
-MCTextAtom *MCModule::createTextAtom(uint64_t Begin, uint64_t End) {
- MCTextAtom *NewAtom = new MCTextAtom(this, Begin, End);
- map(NewAtom);
- return NewAtom;
-}
-
-MCDataAtom *MCModule::createDataAtom(uint64_t Begin, uint64_t End) {
- MCDataAtom *NewAtom = new MCDataAtom(this, Begin, End);
- map(NewAtom);
- return NewAtom;
-}
-
-// remap - Update the interval mapping for an atom.
-void MCModule::remap(MCAtom *Atom, uint64_t NewBegin, uint64_t NewEnd) {
- // Find and erase the old mapping.
- AtomListTy::iterator I = std::lower_bound(atom_begin(), atom_end(),
- Atom->Begin, AtomComp);
- assert(I != atom_end() && "Atom offset not found in module!");
- assert(*I == Atom && "Previous atom mapping was invalid!");
- Atoms.erase(I);
-
- // FIXME: special case NewBegin == Atom->Begin
-
- // Insert the new mapping.
- AtomListTy::iterator NewI = std::lower_bound(atom_begin(), atom_end(),
- NewBegin, AtomComp);
- assert((NewI == atom_end() || (*NewI)->getBeginAddr() > Atom->End)
- && "Offset range already occupied!");
- Atoms.insert(NewI, Atom);
-
- // Update the atom internal bounds.
- Atom->Begin = NewBegin;
- Atom->End = NewEnd;
-}
-
-const MCAtom *MCModule::findAtomContaining(uint64_t Addr) const {
- AtomListTy::const_iterator I = std::lower_bound(atom_begin(), atom_end(),
- Addr, AtomComp);
- if (I != atom_end() && (*I)->getBeginAddr() <= Addr)
- return *I;
- return nullptr;
-}
-
-MCAtom *MCModule::findAtomContaining(uint64_t Addr) {
- return const_cast<MCAtom*>(
- const_cast<const MCModule *>(this)->findAtomContaining(Addr));
-}
-
-const MCAtom *MCModule::findFirstAtomAfter(uint64_t Addr) const {
- AtomListTy::const_iterator I = std::upper_bound(atom_begin(), atom_end(),
- Addr, AtomCompInv);
- if (I != atom_end())
- return *I;
- return nullptr;
-}
-
-MCAtom *MCModule::findFirstAtomAfter(uint64_t Addr) {
- return const_cast<MCAtom*>(
- const_cast<const MCModule *>(this)->findFirstAtomAfter(Addr));
-}
-
-MCFunction *MCModule::createFunction(StringRef Name) {
- std::unique_ptr<MCFunction> MCF(new MCFunction(Name, this));
- Functions.push_back(std::move(MCF));
- return Functions.back().get();
-}
-
-static bool CompBBToAtom(MCBasicBlock *BB, const MCTextAtom *Atom) {
- return BB->getInsts() < Atom;
-}
-
-void MCModule::splitBasicBlocksForAtom(const MCTextAtom *TA,
- const MCTextAtom *NewTA) {
- BBsByAtomTy::iterator
- I = std::lower_bound(BBsByAtom.begin(), BBsByAtom.end(),
- TA, CompBBToAtom);
- for (; I != BBsByAtom.end() && (*I)->getInsts() == TA; ++I) {
- MCBasicBlock *BB = *I;
- MCBasicBlock *NewBB = &BB->getParent()->createBlock(*NewTA);
- BB->splitBasicBlock(NewBB);
- }
-}
-
-void MCModule::trackBBForAtom(const MCTextAtom *Atom, MCBasicBlock *BB) {
- assert(Atom == BB->getInsts() && "Text atom doesn't back the basic block!");
- BBsByAtomTy::iterator I = std::lower_bound(BBsByAtom.begin(),
- BBsByAtom.end(),
- Atom, CompBBToAtom);
- for (; I != BBsByAtom.end() && (*I)->getInsts() == Atom; ++I)
- if (*I == BB)
- return;
- BBsByAtom.insert(I, BB);
-}
-
-MCModule::MCModule() : Entrypoint(0) { }
-
-MCModule::~MCModule() {
- for (AtomListTy::iterator AI = atom_begin(),
- AE = atom_end();
- AI != AE; ++AI)
- delete *AI;
-}
diff --git a/contrib/llvm/lib/MC/MCAnalysis/MCModuleYAML.cpp b/contrib/llvm/lib/MC/MCAnalysis/MCModuleYAML.cpp
deleted file mode 100644
index 876b06d..0000000
--- a/contrib/llvm/lib/MC/MCAnalysis/MCModuleYAML.cpp
+++ /dev/null
@@ -1,464 +0,0 @@
-//===- MCModuleYAML.cpp - MCModule YAMLIO implementation ------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines classes for handling the YAML representation of MCModule.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/MC/MCAnalysis/MCModuleYAML.h"
-#include "llvm/ADT/StringMap.h"
-#include "llvm/MC/MCAnalysis/MCAtom.h"
-#include "llvm/MC/MCAnalysis/MCFunction.h"
-#include "llvm/MC/MCInstrInfo.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/MC/YAML.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/YAMLTraits.h"
-#include <vector>
-
-namespace llvm {
-
-namespace {
-
-// This class is used to map opcode and register names to enum values.
-//
-// There are at least 3 obvious ways to do this:
-// 1- Generate an MII/MRI method using a tablegen StringMatcher
-// 2- Write an MII/MRI method using std::lower_bound and the assumption that
-// the enums are sorted (starting at a fixed value).
-// 3- Do the matching manually as is done here.
-//
-// Why 3?
-// 1- A StringMatcher function for thousands of entries would incur
-// a non-negligible binary size overhead.
-// 2- The lower_bound comparators would be somewhat involved and aren't
-// obviously reusable (see LessRecordRegister in llvm/TableGen/Record.h)
-// 3- This isn't actually something useful outside tests (but the same argument
-// can be made against having {MII,MRI}::getName).
-//
-// If this becomes useful outside this specific situation, feel free to do
-// the Right Thing (tm) and move the functionality to MII/MRI.
-//
-class InstrRegInfoHolder {
- typedef StringMap<unsigned, BumpPtrAllocator> EnumValByNameTy;
- EnumValByNameTy InstEnumValueByName;
- EnumValByNameTy RegEnumValueByName;
-
-public:
- const MCInstrInfo &MII;
- const MCRegisterInfo &MRI;
- InstrRegInfoHolder(const MCInstrInfo &MII, const MCRegisterInfo &MRI)
- : InstEnumValueByName(NextPowerOf2(MII.getNumOpcodes())),
- RegEnumValueByName(NextPowerOf2(MRI.getNumRegs())), MII(MII), MRI(MRI) {
- for (int i = 0, e = MII.getNumOpcodes(); i != e; ++i)
- InstEnumValueByName[MII.getName(i)] = i;
- for (int i = 0, e = MRI.getNumRegs(); i != e; ++i)
- RegEnumValueByName[MRI.getName(i)] = i;
- }
-
- bool matchRegister(StringRef Name, unsigned &Reg) {
- EnumValByNameTy::const_iterator It = RegEnumValueByName.find(Name);
- if (It == RegEnumValueByName.end())
- return false;
- Reg = It->getValue();
- return true;
- }
- bool matchOpcode(StringRef Name, unsigned &Opc) {
- EnumValByNameTy::const_iterator It = InstEnumValueByName.find(Name);
- if (It == InstEnumValueByName.end())
- return false;
- Opc = It->getValue();
- return true;
- }
-};
-
-} // end unnamed namespace
-
-namespace MCModuleYAML {
-
-LLVM_YAML_STRONG_TYPEDEF(unsigned, OpcodeEnum)
-
-struct Operand {
- MCOperand MCOp;
-};
-
-struct Inst {
- OpcodeEnum Opcode;
- std::vector<Operand> Operands;
- uint64_t Size;
-};
-
-struct Atom {
- MCAtom::AtomKind Type;
- yaml::Hex64 StartAddress;
- uint64_t Size;
-
- std::vector<Inst> Insts;
- yaml::BinaryRef Data;
-};
-
-struct BasicBlock {
- yaml::Hex64 Address;
- std::vector<yaml::Hex64> Preds;
- std::vector<yaml::Hex64> Succs;
-};
-
-struct Function {
- StringRef Name;
- std::vector<BasicBlock> BasicBlocks;
-};
-
-struct Module {
- std::vector<Atom> Atoms;
- std::vector<Function> Functions;
-};
-
-} // end namespace MCModuleYAML
-} // end namespace llvm
-
-LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
-LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::MCModuleYAML::Operand)
-LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Inst)
-LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Atom)
-LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::BasicBlock)
-LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Function)
-
-namespace llvm {
-
-namespace yaml {
-
-template <> struct ScalarEnumerationTraits<MCAtom::AtomKind> {
- static void enumeration(IO &IO, MCAtom::AtomKind &Kind);
-};
-
-template <> struct MappingTraits<MCModuleYAML::Atom> {
- static void mapping(IO &IO, MCModuleYAML::Atom &A);
-};
-
-template <> struct MappingTraits<MCModuleYAML::Inst> {
- static void mapping(IO &IO, MCModuleYAML::Inst &I);
-};
-
-template <> struct MappingTraits<MCModuleYAML::BasicBlock> {
- static void mapping(IO &IO, MCModuleYAML::BasicBlock &BB);
-};
-
-template <> struct MappingTraits<MCModuleYAML::Function> {
- static void mapping(IO &IO, MCModuleYAML::Function &Fn);
-};
-
-template <> struct MappingTraits<MCModuleYAML::Module> {
- static void mapping(IO &IO, MCModuleYAML::Module &M);
-};
-
-template <> struct ScalarTraits<MCModuleYAML::Operand> {
- static void output(const MCModuleYAML::Operand &, void *,
- llvm::raw_ostream &);
- static StringRef input(StringRef, void *, MCModuleYAML::Operand &);
- static bool mustQuote(StringRef) { return false; }
-};
-
-template <> struct ScalarTraits<MCModuleYAML::OpcodeEnum> {
- static void output(const MCModuleYAML::OpcodeEnum &, void *,
- llvm::raw_ostream &);
- static StringRef input(StringRef, void *, MCModuleYAML::OpcodeEnum &);
- static bool mustQuote(StringRef) { return false; }
-};
-
-void ScalarEnumerationTraits<MCAtom::AtomKind>::enumeration(
- IO &IO, MCAtom::AtomKind &Value) {
- IO.enumCase(Value, "Text", MCAtom::TextAtom);
- IO.enumCase(Value, "Data", MCAtom::DataAtom);
-}
-
-void MappingTraits<MCModuleYAML::Atom>::mapping(IO &IO, MCModuleYAML::Atom &A) {
- IO.mapRequired("StartAddress", A.StartAddress);
- IO.mapRequired("Size", A.Size);
- IO.mapRequired("Type", A.Type);
- if (A.Type == MCAtom::TextAtom)
- IO.mapRequired("Content", A.Insts);
- else if (A.Type == MCAtom::DataAtom)
- IO.mapRequired("Content", A.Data);
-}
-
-void MappingTraits<MCModuleYAML::Inst>::mapping(IO &IO, MCModuleYAML::Inst &I) {
- IO.mapRequired("Inst", I.Opcode);
- IO.mapRequired("Size", I.Size);
- IO.mapRequired("Ops", I.Operands);
-}
-
-void
-MappingTraits<MCModuleYAML::BasicBlock>::mapping(IO &IO,
- MCModuleYAML::BasicBlock &BB) {
- IO.mapRequired("Address", BB.Address);
- IO.mapRequired("Preds", BB.Preds);
- IO.mapRequired("Succs", BB.Succs);
-}
-
-void MappingTraits<MCModuleYAML::Function>::mapping(IO &IO,
- MCModuleYAML::Function &F) {
- IO.mapRequired("Name", F.Name);
- IO.mapRequired("BasicBlocks", F.BasicBlocks);
-}
-
-void MappingTraits<MCModuleYAML::Module>::mapping(IO &IO,
- MCModuleYAML::Module &M) {
- IO.mapRequired("Atoms", M.Atoms);
- IO.mapOptional("Functions", M.Functions);
-}
-
-void
-ScalarTraits<MCModuleYAML::Operand>::output(const MCModuleYAML::Operand &Val,
- void *Ctx, raw_ostream &Out) {
- InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
-
- // FIXME: Doesn't support FPImm and expr/inst, but do these make sense?
- if (Val.MCOp.isImm())
- Out << "I" << Val.MCOp.getImm();
- else if (Val.MCOp.isReg())
- Out << "R" << IRI->MRI.getName(Val.MCOp.getReg());
- else
- llvm_unreachable("Trying to output invalid MCOperand!");
-}
-
-StringRef
-ScalarTraits<MCModuleYAML::Operand>::input(StringRef Scalar, void *Ctx,
- MCModuleYAML::Operand &Val) {
- InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
- char Type = 0;
- if (Scalar.size() >= 1)
- Type = Scalar.front();
- if (Type != 'R' && Type != 'I')
- return "Operand must start with 'R' (register) or 'I' (immediate).";
- if (Type == 'R') {
- unsigned Reg;
- if (!IRI->matchRegister(Scalar.substr(1), Reg))
- return "Invalid register name.";
- Val.MCOp = MCOperand::CreateReg(Reg);
- } else if (Type == 'I') {
- int64_t RIVal;
- if (Scalar.substr(1).getAsInteger(10, RIVal))
- return "Invalid immediate value.";
- Val.MCOp = MCOperand::CreateImm(RIVal);
- } else {
- Val.MCOp = MCOperand();
- }
- return StringRef();
-}
-
-void ScalarTraits<MCModuleYAML::OpcodeEnum>::output(
- const MCModuleYAML::OpcodeEnum &Val, void *Ctx, raw_ostream &Out) {
- InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
- Out << IRI->MII.getName(Val);
-}
-
-StringRef
-ScalarTraits<MCModuleYAML::OpcodeEnum>::input(StringRef Scalar, void *Ctx,
- MCModuleYAML::OpcodeEnum &Val) {
- InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
- unsigned Opc;
- if (!IRI->matchOpcode(Scalar, Opc))
- return "Invalid instruction opcode.";
- Val = Opc;
- return "";
-}
-
-} // end namespace yaml
-
-namespace {
-
-class MCModule2YAML {
- const MCModule &MCM;
- MCModuleYAML::Module YAMLModule;
- void dumpAtom(const MCAtom *MCA);
- void dumpFunction(const MCFunction &MCF);
- void dumpBasicBlock(const MCBasicBlock *MCBB);
-
-public:
- MCModule2YAML(const MCModule &MCM);
- MCModuleYAML::Module &getYAMLModule();
-};
-
-class YAML2MCModule {
- MCModule &MCM;
-
-public:
- YAML2MCModule(MCModule &MCM);
- StringRef parse(const MCModuleYAML::Module &YAMLModule);
-};
-
-} // end unnamed namespace
-
-MCModule2YAML::MCModule2YAML(const MCModule &MCM) : MCM(MCM), YAMLModule() {
- for (MCModule::const_atom_iterator AI = MCM.atom_begin(), AE = MCM.atom_end();
- AI != AE; ++AI)
- dumpAtom(*AI);
- for (MCModule::const_func_iterator FI = MCM.func_begin(), FE = MCM.func_end();
- FI != FE; ++FI)
- dumpFunction(**FI);
-}
-
-void MCModule2YAML::dumpAtom(const MCAtom *MCA) {
- YAMLModule.Atoms.resize(YAMLModule.Atoms.size() + 1);
- MCModuleYAML::Atom &A = YAMLModule.Atoms.back();
- A.Type = MCA->getKind();
- A.StartAddress = MCA->getBeginAddr();
- A.Size = MCA->getEndAddr() - MCA->getBeginAddr() + 1;
- if (const MCTextAtom *TA = dyn_cast<MCTextAtom>(MCA)) {
- const size_t InstCount = TA->size();
- A.Insts.resize(InstCount);
- for (size_t i = 0; i != InstCount; ++i) {
- const MCDecodedInst &MCDI = TA->at(i);
- A.Insts[i].Opcode = MCDI.Inst.getOpcode();
- A.Insts[i].Size = MCDI.Size;
- const unsigned OpCount = MCDI.Inst.getNumOperands();
- A.Insts[i].Operands.resize(OpCount);
- for (unsigned oi = 0; oi != OpCount; ++oi)
- A.Insts[i].Operands[oi].MCOp = MCDI.Inst.getOperand(oi);
- }
- } else if (const MCDataAtom *DA = dyn_cast<MCDataAtom>(MCA)) {
- A.Data = DA->getData();
- } else {
- llvm_unreachable("Unknown atom type.");
- }
-}
-
-void MCModule2YAML::dumpFunction(const MCFunction &MCF) {
- YAMLModule.Functions.resize(YAMLModule.Functions.size() + 1);
- MCModuleYAML::Function &F = YAMLModule.Functions.back();
- F.Name = MCF.getName();
- for (MCFunction::const_iterator BBI = MCF.begin(), BBE = MCF.end();
- BBI != BBE; ++BBI) {
- const MCBasicBlock &MCBB = **BBI;
- F.BasicBlocks.resize(F.BasicBlocks.size() + 1);
- MCModuleYAML::BasicBlock &BB = F.BasicBlocks.back();
- BB.Address = MCBB.getInsts()->getBeginAddr();
- for (MCBasicBlock::pred_const_iterator PI = MCBB.pred_begin(),
- PE = MCBB.pred_end();
- PI != PE; ++PI)
- BB.Preds.push_back((*PI)->getInsts()->getBeginAddr());
- for (MCBasicBlock::succ_const_iterator SI = MCBB.succ_begin(),
- SE = MCBB.succ_end();
- SI != SE; ++SI)
- BB.Succs.push_back((*SI)->getInsts()->getBeginAddr());
- }
-}
-
-MCModuleYAML::Module &MCModule2YAML::getYAMLModule() { return YAMLModule; }
-
-YAML2MCModule::YAML2MCModule(MCModule &MCM) : MCM(MCM) {}
-
-StringRef YAML2MCModule::parse(const MCModuleYAML::Module &YAMLModule) {
- typedef std::vector<MCModuleYAML::Atom>::const_iterator AtomIt;
- typedef std::vector<MCModuleYAML::Inst>::const_iterator InstIt;
- typedef std::vector<MCModuleYAML::Operand>::const_iterator OpIt;
-
- typedef DenseMap<uint64_t, MCTextAtom *> AddrToTextAtomTy;
- AddrToTextAtomTy TAByAddr;
-
- for (AtomIt AI = YAMLModule.Atoms.begin(), AE = YAMLModule.Atoms.end();
- AI != AE; ++AI) {
- uint64_t StartAddress = AI->StartAddress;
- if (AI->Size == 0)
- return "Atoms can't be empty!";
- uint64_t EndAddress = StartAddress + AI->Size - 1;
- switch (AI->Type) {
- case MCAtom::TextAtom: {
- MCTextAtom *TA = MCM.createTextAtom(StartAddress, EndAddress);
- TAByAddr[StartAddress] = TA;
- for (InstIt II = AI->Insts.begin(), IE = AI->Insts.end(); II != IE;
- ++II) {
- MCInst MI;
- MI.setOpcode(II->Opcode);
- for (OpIt OI = II->Operands.begin(), OE = II->Operands.end(); OI != OE;
- ++OI)
- MI.addOperand(OI->MCOp);
- TA->addInst(MI, II->Size);
- }
- break;
- }
- case MCAtom::DataAtom: {
- MCDataAtom *DA = MCM.createDataAtom(StartAddress, EndAddress);
- SmallVector<char, 64> Data;
- raw_svector_ostream OS(Data);
- AI->Data.writeAsBinary(OS);
- OS.flush();
- for (size_t i = 0, e = Data.size(); i != e; ++i)
- DA->addData((uint8_t)Data[i]);
- break;
- }
- }
- }
-
- typedef std::vector<MCModuleYAML::Function>::const_iterator FuncIt;
- typedef std::vector<MCModuleYAML::BasicBlock>::const_iterator BBIt;
- typedef std::vector<yaml::Hex64>::const_iterator AddrIt;
- for (FuncIt FI = YAMLModule.Functions.begin(),
- FE = YAMLModule.Functions.end();
- FI != FE; ++FI) {
- MCFunction *MCFN = MCM.createFunction(FI->Name);
- for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
- BBI != BBE; ++BBI) {
- AddrToTextAtomTy::const_iterator It = TAByAddr.find(BBI->Address);
- if (It == TAByAddr.end())
- return "Basic block start address doesn't match any text atom!";
- MCFN->createBlock(*It->second);
- }
- for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
- BBI != BBE; ++BBI) {
- MCBasicBlock *MCBB = MCFN->find(BBI->Address);
- if (!MCBB)
- return "Couldn't find matching basic block in function.";
- for (AddrIt PI = BBI->Preds.begin(), PE = BBI->Preds.end(); PI != PE;
- ++PI) {
- MCBasicBlock *Pred = MCFN->find(*PI);
- if (!Pred)
- return "Couldn't find predecessor basic block.";
- MCBB->addPredecessor(Pred);
- }
- for (AddrIt SI = BBI->Succs.begin(), SE = BBI->Succs.end(); SI != SE;
- ++SI) {
- MCBasicBlock *Succ = MCFN->find(*SI);
- if (!Succ)
- return "Couldn't find predecessor basic block.";
- MCBB->addSuccessor(Succ);
- }
- }
- }
- return "";
-}
-
-StringRef mcmodule2yaml(raw_ostream &OS, const MCModule &MCM,
- const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
- MCModule2YAML Dumper(MCM);
- InstrRegInfoHolder IRI(MII, MRI);
- yaml::Output YOut(OS, (void *)&IRI);
- YOut << Dumper.getYAMLModule();
- return "";
-}
-
-StringRef yaml2mcmodule(std::unique_ptr<MCModule> &MCM, StringRef YamlContent,
- const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
- MCM.reset(new MCModule);
- YAML2MCModule Parser(*MCM);
- MCModuleYAML::Module YAMLModule;
- InstrRegInfoHolder IRI(MII, MRI);
- yaml::Input YIn(YamlContent, (void *)&IRI);
- YIn >> YAMLModule;
- if (std::error_code ec = YIn.error())
- return ec.message();
- StringRef err = Parser.parse(YAMLModule);
- if (!err.empty())
- return err;
- return "";
-}
-
-} // end namespace llvm
diff --git a/contrib/llvm/lib/MC/MCAnalysis/MCObjectDisassembler.cpp b/contrib/llvm/lib/MC/MCAnalysis/MCObjectDisassembler.cpp
deleted file mode 100644
index 0f789ff..0000000
--- a/contrib/llvm/lib/MC/MCAnalysis/MCObjectDisassembler.cpp
+++ /dev/null
@@ -1,574 +0,0 @@
-//===- lib/MC/MCObjectDisassembler.cpp ------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/MC/MCObjectDisassembler.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/MC/MCAnalysis/MCAtom.h"
-#include "llvm/MC/MCAnalysis/MCFunction.h"
-#include "llvm/MC/MCAnalysis/MCModule.h"
-#include "llvm/MC/MCDisassembler.h"
-#include "llvm/MC/MCInstrAnalysis.h"
-#include "llvm/MC/MCObjectSymbolizer.h"
-#include "llvm/Object/MachO.h"
-#include "llvm/Object/ObjectFile.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MachO.h"
-#include "llvm/Support/MemoryObject.h"
-#include "llvm/Support/StringRefMemoryObject.h"
-#include "llvm/Support/raw_ostream.h"
-#include <map>
-
-using namespace llvm;
-using namespace object;
-
-#define DEBUG_TYPE "mc"
-
-MCObjectDisassembler::MCObjectDisassembler(const ObjectFile &Obj,
- const MCDisassembler &Dis,
- const MCInstrAnalysis &MIA)
- : Obj(Obj), Dis(Dis), MIA(MIA), MOS(nullptr) {}
-
-uint64_t MCObjectDisassembler::getEntrypoint() {
- for (const SymbolRef &Symbol : Obj.symbols()) {
- StringRef Name;
- Symbol.getName(Name);
- if (Name == "main" || Name == "_main") {
- uint64_t Entrypoint;
- Symbol.getAddress(Entrypoint);
- return getEffectiveLoadAddr(Entrypoint);
- }
- }
- return 0;
-}
-
-ArrayRef<uint64_t> MCObjectDisassembler::getStaticInitFunctions() {
- return ArrayRef<uint64_t>();
-}
-
-ArrayRef<uint64_t> MCObjectDisassembler::getStaticExitFunctions() {
- return ArrayRef<uint64_t>();
-}
-
-MemoryObject *MCObjectDisassembler::getRegionFor(uint64_t Addr) {
- // FIXME: Keep track of object sections.
- return FallbackRegion.get();
-}
-
-uint64_t MCObjectDisassembler::getEffectiveLoadAddr(uint64_t Addr) {
- return Addr;
-}
-
-uint64_t MCObjectDisassembler::getOriginalLoadAddr(uint64_t Addr) {
- return Addr;
-}
-
-MCModule *MCObjectDisassembler::buildEmptyModule() {
- MCModule *Module = new MCModule;
- Module->Entrypoint = getEntrypoint();
- return Module;
-}
-
-MCModule *MCObjectDisassembler::buildModule(bool withCFG) {
- MCModule *Module = buildEmptyModule();
-
- buildSectionAtoms(Module);
- if (withCFG)
- buildCFG(Module);
- return Module;
-}
-
-void MCObjectDisassembler::buildSectionAtoms(MCModule *Module) {
- for (const SectionRef &Section : Obj.sections()) {
- bool isText;
- Section.isText(isText);
- bool isData;
- Section.isData(isData);
- if (!isData && !isText)
- continue;
-
- uint64_t StartAddr;
- Section.getAddress(StartAddr);
- uint64_t SecSize;
- Section.getSize(SecSize);
- if (StartAddr == UnknownAddressOrSize || SecSize == UnknownAddressOrSize)
- continue;
- StartAddr = getEffectiveLoadAddr(StartAddr);
-
- StringRef Contents;
- Section.getContents(Contents);
- StringRefMemoryObject memoryObject(Contents, StartAddr);
-
- // We don't care about things like non-file-backed sections yet.
- if (Contents.size() != SecSize || !SecSize)
- continue;
- uint64_t EndAddr = StartAddr + SecSize - 1;
-
- StringRef SecName;
- Section.getName(SecName);
-
- if (isText) {
- MCTextAtom *Text = nullptr;
- MCDataAtom *InvalidData = nullptr;
-
- uint64_t InstSize;
- for (uint64_t Index = 0; Index < SecSize; Index += InstSize) {
- const uint64_t CurAddr = StartAddr + Index;
- MCInst Inst;
- if (Dis.getInstruction(Inst, InstSize, memoryObject, CurAddr, nulls(),
- nulls())) {
- if (!Text) {
- Text = Module->createTextAtom(CurAddr, CurAddr);
- Text->setName(SecName);
- }
- Text->addInst(Inst, InstSize);
- InvalidData = nullptr;
- } else {
- assert(InstSize && "getInstruction() consumed no bytes");
- if (!InvalidData) {
- Text = nullptr;
- InvalidData = Module->createDataAtom(CurAddr, CurAddr+InstSize - 1);
- }
- for (uint64_t I = 0; I < InstSize; ++I)
- InvalidData->addData(Contents[Index+I]);
- }
- }
- } else {
- MCDataAtom *Data = Module->createDataAtom(StartAddr, EndAddr);
- Data->setName(SecName);
- for (uint64_t Index = 0; Index < SecSize; ++Index)
- Data->addData(Contents[Index]);
- }
- }
-}
-
-namespace {
- struct BBInfo;
- typedef SmallPtrSet<BBInfo*, 2> BBInfoSetTy;
-
- struct BBInfo {
- MCTextAtom *Atom;
- MCBasicBlock *BB;
- BBInfoSetTy Succs;
- BBInfoSetTy Preds;
- MCObjectDisassembler::AddressSetTy SuccAddrs;
-
- BBInfo() : Atom(nullptr), BB(nullptr) {}
-
- void addSucc(BBInfo &Succ) {
- Succs.insert(&Succ);
- Succ.Preds.insert(this);
- }
- };
-}
-
-static void RemoveDupsFromAddressVector(MCObjectDisassembler::AddressSetTy &V) {
- std::sort(V.begin(), V.end());
- V.erase(std::unique(V.begin(), V.end()), V.end());
-}
-
-void MCObjectDisassembler::buildCFG(MCModule *Module) {
- typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy;
- BBInfoByAddrTy BBInfos;
- AddressSetTy Splits;
- AddressSetTy Calls;
-
- for (const SymbolRef &Symbol : Obj.symbols()) {
- SymbolRef::Type SymType;
- Symbol.getType(SymType);
- if (SymType == SymbolRef::ST_Function) {
- uint64_t SymAddr;
- Symbol.getAddress(SymAddr);
- SymAddr = getEffectiveLoadAddr(SymAddr);
- Calls.push_back(SymAddr);
- Splits.push_back(SymAddr);
- }
- }
-
- assert(Module->func_begin() == Module->func_end()
- && "Module already has a CFG!");
-
- // First, determine the basic block boundaries and call targets.
- for (MCModule::atom_iterator AI = Module->atom_begin(),
- AE = Module->atom_end();
- AI != AE; ++AI) {
- MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI);
- if (!TA) continue;
- Calls.push_back(TA->getBeginAddr());
- BBInfos[TA->getBeginAddr()].Atom = TA;
- for (MCTextAtom::const_iterator II = TA->begin(), IE = TA->end();
- II != IE; ++II) {
- if (MIA.isTerminator(II->Inst))
- Splits.push_back(II->Address + II->Size);
- uint64_t Target;
- if (MIA.evaluateBranch(II->Inst, II->Address, II->Size, Target)) {
- if (MIA.isCall(II->Inst))
- Calls.push_back(Target);
- Splits.push_back(Target);
- }
- }
- }
-
- RemoveDupsFromAddressVector(Splits);
- RemoveDupsFromAddressVector(Calls);
-
- // Split text atoms into basic block atoms.
- for (AddressSetTy::const_iterator SI = Splits.begin(), SE = Splits.end();
- SI != SE; ++SI) {
- MCAtom *A = Module->findAtomContaining(*SI);
- if (!A) continue;
- MCTextAtom *TA = cast<MCTextAtom>(A);
- if (TA->getBeginAddr() == *SI)
- continue;
- MCTextAtom *NewAtom = TA->split(*SI);
- BBInfos[NewAtom->getBeginAddr()].Atom = NewAtom;
- StringRef BBName = TA->getName();
- BBName = BBName.substr(0, BBName.find_last_of(':'));
- NewAtom->setName((BBName + ":" + utohexstr(*SI)).str());
- }
-
- // Compute succs/preds.
- for (MCModule::atom_iterator AI = Module->atom_begin(),
- AE = Module->atom_end();
- AI != AE; ++AI) {
- MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI);
- if (!TA) continue;
- BBInfo &CurBB = BBInfos[TA->getBeginAddr()];
- const MCDecodedInst &LI = TA->back();
- if (MIA.isBranch(LI.Inst)) {
- uint64_t Target;
- if (MIA.evaluateBranch(LI.Inst, LI.Address, LI.Size, Target))
- CurBB.addSucc(BBInfos[Target]);
- if (MIA.isConditionalBranch(LI.Inst))
- CurBB.addSucc(BBInfos[LI.Address + LI.Size]);
- } else if (!MIA.isTerminator(LI.Inst))
- CurBB.addSucc(BBInfos[LI.Address + LI.Size]);
- }
-
-
- // Create functions and basic blocks.
- for (AddressSetTy::const_iterator CI = Calls.begin(), CE = Calls.end();
- CI != CE; ++CI) {
- BBInfo &BBI = BBInfos[*CI];
- if (!BBI.Atom) continue;
-
- MCFunction &MCFN = *Module->createFunction(BBI.Atom->getName());
-
- // Create MCBBs.
- SmallSetVector<BBInfo*, 16> Worklist;
- Worklist.insert(&BBI);
- for (size_t wi = 0; wi < Worklist.size(); ++wi) {
- BBInfo *BBI = Worklist[wi];
- if (!BBI->Atom)
- continue;
- BBI->BB = &MCFN.createBlock(*BBI->Atom);
- // Add all predecessors and successors to the worklist.
- for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end();
- SI != SE; ++SI)
- Worklist.insert(*SI);
- for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end();
- PI != PE; ++PI)
- Worklist.insert(*PI);
- }
-
- // Set preds/succs.
- for (size_t wi = 0; wi < Worklist.size(); ++wi) {
- BBInfo *BBI = Worklist[wi];
- MCBasicBlock *MCBB = BBI->BB;
- if (!MCBB)
- continue;
- for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end();
- SI != SE; ++SI)
- if ((*SI)->BB)
- MCBB->addSuccessor((*SI)->BB);
- for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end();
- PI != PE; ++PI)
- if ((*PI)->BB)
- MCBB->addPredecessor((*PI)->BB);
- }
- }
-}
-
-// Basic idea of the disassembly + discovery:
-//
-// start with the wanted address, insert it in the worklist
-// while worklist not empty, take next address in the worklist:
-// - check if atom exists there
-// - if middle of atom:
-// - split basic blocks referencing the atom
-// - look for an already encountered BBInfo (using a map<atom, bbinfo>)
-// - if there is, split it (new one, fallthrough, move succs, etc..)
-// - if start of atom: nothing else to do
-// - if no atom: create new atom and new bbinfo
-// - look at the last instruction in the atom, add succs to worklist
-// for all elements in the worklist:
-// - create basic block, update preds/succs, etc..
-//
-MCBasicBlock *MCObjectDisassembler::getBBAt(MCModule *Module, MCFunction *MCFN,
- uint64_t BBBeginAddr,
- AddressSetTy &CallTargets,
- AddressSetTy &TailCallTargets) {
- typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy;
- typedef SmallSetVector<uint64_t, 16> AddrWorklistTy;
- BBInfoByAddrTy BBInfos;
- AddrWorklistTy Worklist;
-
- Worklist.insert(BBBeginAddr);
- for (size_t wi = 0; wi < Worklist.size(); ++wi) {
- const uint64_t BeginAddr = Worklist[wi];
- BBInfo *BBI = &BBInfos[BeginAddr];
-
- MCTextAtom *&TA = BBI->Atom;
- assert(!TA && "Discovered basic block already has an associated atom!");
-
- // Look for an atom at BeginAddr.
- if (MCAtom *A = Module->findAtomContaining(BeginAddr)) {
- // FIXME: We don't care about mixed atoms, see above.
- TA = cast<MCTextAtom>(A);
-
- // The found atom doesn't begin at BeginAddr, we have to split it.
- if (TA->getBeginAddr() != BeginAddr) {
- // FIXME: Handle overlapping atoms: middle-starting instructions, etc..
- MCTextAtom *NewTA = TA->split(BeginAddr);
-
- // Look for an already encountered basic block that needs splitting
- BBInfoByAddrTy::iterator It = BBInfos.find(TA->getBeginAddr());
- if (It != BBInfos.end() && It->second.Atom) {
- BBI->SuccAddrs = It->second.SuccAddrs;
- It->second.SuccAddrs.clear();
- It->second.SuccAddrs.push_back(BeginAddr);
- }
- TA = NewTA;
- }
- BBI->Atom = TA;
- } else {
- // If we didn't find an atom, then we have to disassemble to create one!
-
- MemoryObject *Region = getRegionFor(BeginAddr);
- if (!Region)
- llvm_unreachable(("Couldn't find suitable region for disassembly at " +
- utostr(BeginAddr)).c_str());
-
- uint64_t InstSize;
- uint64_t EndAddr = Region->getBase() + Region->getExtent();
-
- // We want to stop before the next atom and have a fallthrough to it.
- if (MCTextAtom *NextAtom =
- cast_or_null<MCTextAtom>(Module->findFirstAtomAfter(BeginAddr)))
- EndAddr = std::min(EndAddr, NextAtom->getBeginAddr());
-
- for (uint64_t Addr = BeginAddr; Addr < EndAddr; Addr += InstSize) {
- MCInst Inst;
- if (Dis.getInstruction(Inst, InstSize, *Region, Addr, nulls(),
- nulls())) {
- if (!TA)
- TA = Module->createTextAtom(Addr, Addr);
- TA->addInst(Inst, InstSize);
- } else {
- // We don't care about splitting mixed atoms either.
- llvm_unreachable("Couldn't disassemble instruction in atom.");
- }
-
- uint64_t BranchTarget;
- if (MIA.evaluateBranch(Inst, Addr, InstSize, BranchTarget)) {
- if (MIA.isCall(Inst))
- CallTargets.push_back(BranchTarget);
- }
-
- if (MIA.isTerminator(Inst))
- break;
- }
- BBI->Atom = TA;
- }
-
- assert(TA && "Couldn't disassemble atom, none was created!");
- assert(TA->begin() != TA->end() && "Empty atom!");
-
- MemoryObject *Region = getRegionFor(TA->getBeginAddr());
- assert(Region && "Couldn't find region for already disassembled code!");
- uint64_t EndRegion = Region->getBase() + Region->getExtent();
-
- // Now we have a basic block atom, add successors.
- // Add the fallthrough block.
- if ((MIA.isConditionalBranch(TA->back().Inst) ||
- !MIA.isTerminator(TA->back().Inst)) &&
- (TA->getEndAddr() + 1 < EndRegion)) {
- BBI->SuccAddrs.push_back(TA->getEndAddr() + 1);
- Worklist.insert(TA->getEndAddr() + 1);
- }
-
- // If the terminator is a branch, add the target block.
- if (MIA.isBranch(TA->back().Inst)) {
- uint64_t BranchTarget;
- if (MIA.evaluateBranch(TA->back().Inst, TA->back().Address,
- TA->back().Size, BranchTarget)) {
- StringRef ExtFnName;
- if (MOS)
- ExtFnName =
- MOS->findExternalFunctionAt(getOriginalLoadAddr(BranchTarget));
- if (!ExtFnName.empty()) {
- TailCallTargets.push_back(BranchTarget);
- CallTargets.push_back(BranchTarget);
- } else {
- BBI->SuccAddrs.push_back(BranchTarget);
- Worklist.insert(BranchTarget);
- }
- }
- }
- }
-
- for (size_t wi = 0, we = Worklist.size(); wi != we; ++wi) {
- const uint64_t BeginAddr = Worklist[wi];
- BBInfo *BBI = &BBInfos[BeginAddr];
-
- assert(BBI->Atom && "Found a basic block without an associated atom!");
-
- // Look for a basic block at BeginAddr.
- BBI->BB = MCFN->find(BeginAddr);
- if (BBI->BB) {
- // FIXME: check that the succs/preds are the same
- continue;
- }
- // If there was none, we have to create one from the atom.
- BBI->BB = &MCFN->createBlock(*BBI->Atom);
- }
-
- for (size_t wi = 0, we = Worklist.size(); wi != we; ++wi) {
- const uint64_t BeginAddr = Worklist[wi];
- BBInfo *BBI = &BBInfos[BeginAddr];
- MCBasicBlock *BB = BBI->BB;
-
- RemoveDupsFromAddressVector(BBI->SuccAddrs);
- for (AddressSetTy::const_iterator SI = BBI->SuccAddrs.begin(),
- SE = BBI->SuccAddrs.end();
- SE != SE; ++SI) {
- MCBasicBlock *Succ = BBInfos[*SI].BB;
- BB->addSuccessor(Succ);
- Succ->addPredecessor(BB);
- }
- }
-
- assert(BBInfos[Worklist[0]].BB &&
- "No basic block created at requested address?");
-
- return BBInfos[Worklist[0]].BB;
-}
-
-MCFunction *
-MCObjectDisassembler::createFunction(MCModule *Module, uint64_t BeginAddr,
- AddressSetTy &CallTargets,
- AddressSetTy &TailCallTargets) {
- // First, check if this is an external function.
- StringRef ExtFnName;
- if (MOS)
- ExtFnName = MOS->findExternalFunctionAt(getOriginalLoadAddr(BeginAddr));
- if (!ExtFnName.empty())
- return Module->createFunction(ExtFnName);
-
- // If it's not, look for an existing function.
- for (MCModule::func_iterator FI = Module->func_begin(),
- FE = Module->func_end();
- FI != FE; ++FI) {
- if ((*FI)->empty())
- continue;
- // FIXME: MCModule should provide a findFunctionByAddr()
- if ((*FI)->getEntryBlock()->getInsts()->getBeginAddr() == BeginAddr)
- return FI->get();
- }
-
- // Finally, just create a new one.
- MCFunction *MCFN = Module->createFunction("");
- getBBAt(Module, MCFN, BeginAddr, CallTargets, TailCallTargets);
- return MCFN;
-}
-
-// MachO MCObjectDisassembler implementation.
-
-MCMachOObjectDisassembler::MCMachOObjectDisassembler(
- const MachOObjectFile &MOOF, const MCDisassembler &Dis,
- const MCInstrAnalysis &MIA, uint64_t VMAddrSlide,
- uint64_t HeaderLoadAddress)
- : MCObjectDisassembler(MOOF, Dis, MIA), MOOF(MOOF),
- VMAddrSlide(VMAddrSlide), HeaderLoadAddress(HeaderLoadAddress) {
-
- for (const SectionRef &Section : MOOF.sections()) {
- StringRef Name;
- Section.getName(Name);
- // FIXME: We should use the S_ section type instead of the name.
- if (Name == "__mod_init_func") {
- DEBUG(dbgs() << "Found __mod_init_func section!\n");
- Section.getContents(ModInitContents);
- } else if (Name == "__mod_exit_func") {
- DEBUG(dbgs() << "Found __mod_exit_func section!\n");
- Section.getContents(ModExitContents);
- }
- }
-}
-
-// FIXME: Only do the translations for addresses actually inside the object.
-uint64_t MCMachOObjectDisassembler::getEffectiveLoadAddr(uint64_t Addr) {
- return Addr + VMAddrSlide;
-}
-
-uint64_t
-MCMachOObjectDisassembler::getOriginalLoadAddr(uint64_t EffectiveAddr) {
- return EffectiveAddr - VMAddrSlide;
-}
-
-uint64_t MCMachOObjectDisassembler::getEntrypoint() {
- uint64_t EntryFileOffset = 0;
-
- // Look for LC_MAIN.
- {
- uint32_t LoadCommandCount = MOOF.getHeader().ncmds;
- MachOObjectFile::LoadCommandInfo Load = MOOF.getFirstLoadCommandInfo();
- for (unsigned I = 0;; ++I) {
- if (Load.C.cmd == MachO::LC_MAIN) {
- EntryFileOffset =
- ((const MachO::entry_point_command *)Load.Ptr)->entryoff;
- break;
- }
-
- if (I == LoadCommandCount - 1)
- break;
- else
- Load = MOOF.getNextLoadCommandInfo(Load);
- }
- }
-
- // If we didn't find anything, default to the common implementation.
- // FIXME: Maybe we could also look at LC_UNIXTHREAD and friends?
- if (EntryFileOffset)
- return MCObjectDisassembler::getEntrypoint();
-
- return EntryFileOffset + HeaderLoadAddress;
-}
-
-ArrayRef<uint64_t> MCMachOObjectDisassembler::getStaticInitFunctions() {
- // FIXME: We only handle 64bit mach-o
- assert(MOOF.is64Bit());
-
- size_t EntrySize = 8;
- size_t EntryCount = ModInitContents.size() / EntrySize;
- return ArrayRef<uint64_t>(
- reinterpret_cast<const uint64_t *>(ModInitContents.data()), EntryCount);
-}
-
-ArrayRef<uint64_t> MCMachOObjectDisassembler::getStaticExitFunctions() {
- // FIXME: We only handle 64bit mach-o
- assert(MOOF.is64Bit());
-
- size_t EntrySize = 8;
- size_t EntryCount = ModExitContents.size() / EntrySize;
- return ArrayRef<uint64_t>(
- reinterpret_cast<const uint64_t *>(ModExitContents.data()), EntryCount);
-}
diff --git a/contrib/llvm/lib/MC/MCAnalysis/MCObjectSymbolizer.cpp b/contrib/llvm/lib/MC/MCAnalysis/MCObjectSymbolizer.cpp
deleted file mode 100644
index b149596..0000000
--- a/contrib/llvm/lib/MC/MCAnalysis/MCObjectSymbolizer.cpp
+++ /dev/null
@@ -1,268 +0,0 @@
-//===-- lib/MC/MCObjectSymbolizer.cpp -------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/MC/MCObjectSymbolizer.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/MC/MCContext.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/MC/MCInst.h"
-#include "llvm/MC/MCRelocationInfo.h"
-#include "llvm/MC/MCSymbol.h"
-#include "llvm/Object/ELFObjectFile.h"
-#include "llvm/Object/MachO.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-
-using namespace llvm;
-using namespace object;
-
-//===- MCMachObjectSymbolizer ---------------------------------------------===//
-
-namespace {
-class MCMachObjectSymbolizer : public MCObjectSymbolizer {
- const MachOObjectFile *MOOF;
- // __TEXT;__stubs support.
- uint64_t StubsStart;
- uint64_t StubsCount;
- uint64_t StubSize;
- uint64_t StubsIndSymIndex;
-
-public:
- MCMachObjectSymbolizer(MCContext &Ctx,
- std::unique_ptr<MCRelocationInfo> RelInfo,
- const MachOObjectFile *MOOF);
-
- StringRef findExternalFunctionAt(uint64_t Addr) override;
-
- void tryAddingPcLoadReferenceComment(raw_ostream &cStream, int64_t Value,
- uint64_t Address) override;
-};
-} // End unnamed namespace
-
-MCMachObjectSymbolizer::MCMachObjectSymbolizer(
- MCContext &Ctx, std::unique_ptr<MCRelocationInfo> RelInfo,
- const MachOObjectFile *MOOF)
- : MCObjectSymbolizer(Ctx, std::move(RelInfo), MOOF), MOOF(MOOF),
- StubsStart(0), StubsCount(0), StubSize(0), StubsIndSymIndex(0) {
-
- for (const SectionRef &Section : MOOF->sections()) {
- StringRef Name;
- Section.getName(Name);
- if (Name == "__stubs") {
- SectionRef StubsSec = Section;
- if (MOOF->is64Bit()) {
- MachO::section_64 S = MOOF->getSection64(StubsSec.getRawDataRefImpl());
- StubsIndSymIndex = S.reserved1;
- StubSize = S.reserved2;
- } else {
- MachO::section S = MOOF->getSection(StubsSec.getRawDataRefImpl());
- StubsIndSymIndex = S.reserved1;
- StubSize = S.reserved2;
- }
- assert(StubSize && "Mach-O stub entry size can't be zero!");
- StubsSec.getAddress(StubsStart);
- StubsSec.getSize(StubsCount);
- StubsCount /= StubSize;
- }
- }
-}
-
-StringRef MCMachObjectSymbolizer::findExternalFunctionAt(uint64_t Addr) {
- // FIXME: also, this can all be done at the very beginning, by iterating over
- // all stubs and creating the calls to outside functions. Is it worth it
- // though?
- if (!StubSize)
- return StringRef();
- uint64_t StubIdx = (Addr - StubsStart) / StubSize;
- if (StubIdx >= StubsCount)
- return StringRef();
-
- uint32_t SymtabIdx =
- MOOF->getIndirectSymbolTableEntry(MOOF->getDysymtabLoadCommand(), StubIdx);
-
- StringRef SymName;
- symbol_iterator SI = MOOF->symbol_begin();
- for (uint32_t i = 0; i != SymtabIdx; ++i)
- ++SI;
- SI->getName(SymName);
- assert(SI != MOOF->symbol_end() && "Stub wasn't found in the symbol table!");
- assert(SymName.front() == '_' && "Mach-O symbol doesn't start with '_'!");
- return SymName.substr(1);
-}
-
-void MCMachObjectSymbolizer::
-tryAddingPcLoadReferenceComment(raw_ostream &cStream, int64_t Value,
- uint64_t Address) {
- if (const RelocationRef *R = findRelocationAt(Address)) {
- const MCExpr *RelExpr = RelInfo->createExprForRelocation(*R);
- if (!RelExpr || RelExpr->EvaluateAsAbsolute(Value) == false)
- return;
- }
- uint64_t Addr = Value;
- if (const SectionRef *S = findSectionContaining(Addr)) {
- StringRef Name; S->getName(Name);
- uint64_t SAddr; S->getAddress(SAddr);
- if (Name == "__cstring") {
- StringRef Contents;
- S->getContents(Contents);
- Contents = Contents.substr(Addr - SAddr);
- cStream << " ## literal pool for: "
- << Contents.substr(0, Contents.find_first_of(0));
- }
- }
-}
-
-//===- MCObjectSymbolizer -------------------------------------------------===//
-
-MCObjectSymbolizer::MCObjectSymbolizer(
- MCContext &Ctx, std::unique_ptr<MCRelocationInfo> RelInfo,
- const ObjectFile *Obj)
- : MCSymbolizer(Ctx, std::move(RelInfo)), Obj(Obj), SortedSections(),
- AddrToReloc() {}
-
-bool MCObjectSymbolizer::
-tryAddingSymbolicOperand(MCInst &MI, raw_ostream &cStream,
- int64_t Value, uint64_t Address, bool IsBranch,
- uint64_t Offset, uint64_t InstSize) {
- if (IsBranch) {
- StringRef ExtFnName = findExternalFunctionAt((uint64_t)Value);
- if (!ExtFnName.empty()) {
- MCSymbol *Sym = Ctx.GetOrCreateSymbol(ExtFnName);
- const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, Ctx);
- MI.addOperand(MCOperand::CreateExpr(Expr));
- return true;
- }
- }
-
- if (const RelocationRef *R = findRelocationAt(Address + Offset)) {
- if (const MCExpr *RelExpr = RelInfo->createExprForRelocation(*R)) {
- MI.addOperand(MCOperand::CreateExpr(RelExpr));
- return true;
- }
- // Only try to create a symbol+offset expression if there is no relocation.
- return false;
- }
-
- // Interpret Value as a branch target.
- if (IsBranch == false)
- return false;
- uint64_t UValue = Value;
- // FIXME: map instead of looping each time?
- for (const SymbolRef &Symbol : Obj->symbols()) {
- uint64_t SymAddr;
- Symbol.getAddress(SymAddr);
- uint64_t SymSize;
- Symbol.getSize(SymSize);
- StringRef SymName;
- Symbol.getName(SymName);
- SymbolRef::Type SymType;
- Symbol.getType(SymType);
- if (SymAddr == UnknownAddressOrSize || SymSize == UnknownAddressOrSize ||
- SymName.empty() || SymType != SymbolRef::ST_Function)
- continue;
-
- if ( SymAddr == UValue ||
- (SymAddr <= UValue && SymAddr + SymSize > UValue)) {
- MCSymbol *Sym = Ctx.GetOrCreateSymbol(SymName);
- const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, Ctx);
- if (SymAddr != UValue) {
- const MCExpr *Off = MCConstantExpr::Create(UValue - SymAddr, Ctx);
- Expr = MCBinaryExpr::CreateAdd(Expr, Off, Ctx);
- }
- MI.addOperand(MCOperand::CreateExpr(Expr));
- return true;
- }
- }
- return false;
-}
-
-void MCObjectSymbolizer::
-tryAddingPcLoadReferenceComment(raw_ostream &cStream,
- int64_t Value, uint64_t Address) {
-}
-
-StringRef MCObjectSymbolizer::findExternalFunctionAt(uint64_t Addr) {
- return StringRef();
-}
-
-MCObjectSymbolizer *MCObjectSymbolizer::createObjectSymbolizer(
- MCContext &Ctx, std::unique_ptr<MCRelocationInfo> RelInfo,
- const ObjectFile *Obj) {
- if (const MachOObjectFile *MOOF = dyn_cast<MachOObjectFile>(Obj))
- return new MCMachObjectSymbolizer(Ctx, std::move(RelInfo), MOOF);
- return new MCObjectSymbolizer(Ctx, std::move(RelInfo), Obj);
-}
-
-// SortedSections implementation.
-
-static bool SectionStartsBefore(const SectionRef &S, uint64_t Addr) {
- uint64_t SAddr; S.getAddress(SAddr);
- return SAddr < Addr;
-}
-
-const SectionRef *MCObjectSymbolizer::findSectionContaining(uint64_t Addr) {
- if (SortedSections.empty())
- buildSectionList();
-
- SortedSectionList::iterator
- EndIt = SortedSections.end(),
- It = std::lower_bound(SortedSections.begin(), EndIt,
- Addr, SectionStartsBefore);
- if (It == EndIt)
- return nullptr;
- uint64_t SAddr; It->getAddress(SAddr);
- uint64_t SSize; It->getSize(SSize);
- if (Addr >= SAddr + SSize)
- return nullptr;
- return &*It;
-}
-
-const RelocationRef *MCObjectSymbolizer::findRelocationAt(uint64_t Addr) {
- if (AddrToReloc.empty())
- buildRelocationByAddrMap();
-
- AddrToRelocMap::const_iterator RI = AddrToReloc.find(Addr);
- if (RI == AddrToReloc.end())
- return nullptr;
- return &RI->second;
-}
-
-void MCObjectSymbolizer::buildSectionList() {
- for (const SectionRef &Section : Obj->sections()) {
- bool RequiredForExec;
- Section.isRequiredForExecution(RequiredForExec);
- if (RequiredForExec == false)
- continue;
- uint64_t SAddr;
- Section.getAddress(SAddr);
- uint64_t SSize;
- Section.getSize(SSize);
- SortedSectionList::iterator It =
- std::lower_bound(SortedSections.begin(), SortedSections.end(), SAddr,
- SectionStartsBefore);
- if (It != SortedSections.end()) {
- uint64_t FoundSAddr; It->getAddress(FoundSAddr);
- if (FoundSAddr < SAddr + SSize)
- llvm_unreachable("Inserting overlapping sections");
- }
- SortedSections.insert(It, Section);
- }
-}
-
-void MCObjectSymbolizer::buildRelocationByAddrMap() {
- for (const SectionRef &Section : Obj->sections()) {
- for (const RelocationRef &Reloc : Section.relocations()) {
- uint64_t Address;
- Reloc.getAddress(Address);
- // At a specific address, only keep the first relocation.
- if (AddrToReloc.find(Address) == AddrToReloc.end())
- AddrToReloc[Address] = Reloc;
- }
- }
-}
diff --git a/contrib/llvm/lib/MC/MCAsmInfo.cpp b/contrib/llvm/lib/MC/MCAsmInfo.cpp
index f8081ef..04b8042 100644
--- a/contrib/llvm/lib/MC/MCAsmInfo.cpp
+++ b/contrib/llvm/lib/MC/MCAsmInfo.cpp
@@ -32,7 +32,6 @@ MCAsmInfo::MCAsmInfo() {
HasMachoZeroFillDirective = false;
HasMachoTBSSDirective = false;
HasStaticCtorDtorReferenceInStaticMode = false;
- LinkerRequiresNonEmptyDwarfLines = false;
MaxInstLength = 4;
MinInstAlignment = 1;
DollarIsPC = false;
@@ -41,6 +40,7 @@ MCAsmInfo::MCAsmInfo() {
LabelSuffix = ":";
UseAssignmentForEHBegin = false;
PrivateGlobalPrefix = "L";
+ PrivateLabelPrefix = PrivateGlobalPrefix;
LinkerPrivateGlobalPrefix = "";
InlineAsmStart = "APP";
InlineAsmEnd = "NO_APP";
@@ -64,7 +64,7 @@ MCAsmInfo::MCAsmInfo() {
GPRel64Directive = nullptr;
GPRel32Directive = nullptr;
GlobalDirective = "\t.globl\t";
- HasSetDirective = true;
+ SetDirectiveSuppressesReloc = false;
HasAggressiveSymbolFolding = true;
COMMDirectiveAlignmentIsInBytes = true;
LCOMMDirectiveAlignmentType = LCOMM::NoAlignment;
@@ -72,6 +72,7 @@ MCAsmInfo::MCAsmInfo() {
HasSingleParameterDotFile = true;
HasIdentDirective = false;
HasNoDeadStrip = false;
+ WeakDirective = "\t.weak\t";
WeakRefDirective = nullptr;
HasWeakDefDirective = false;
HasWeakDefCanBeHiddenDirective = false;
@@ -79,10 +80,9 @@ MCAsmInfo::MCAsmInfo() {
HiddenVisibilityAttr = MCSA_Hidden;
HiddenDeclarationVisibilityAttr = MCSA_Hidden;
ProtectedVisibilityAttr = MCSA_Protected;
- HasLEB128 = false;
SupportsDebugInformation = false;
ExceptionsType = ExceptionHandling::None;
- WinEHEncodingType = WinEH::EncodingType::ET_Invalid;
+ WinEHEncodingType = WinEH::EncodingType::Invalid;
DwarfUsesRelocationsAcrossSections = true;
DwarfFDESymbolsUseAbsDiff = false;
DwarfRegNumForCFI = false;
@@ -109,6 +109,10 @@ MCAsmInfo::MCAsmInfo() {
MCAsmInfo::~MCAsmInfo() {
}
+bool MCAsmInfo::isSectionAtomizableBySymbols(const MCSection &Section) const {
+ return false;
+}
+
const MCExpr *
MCAsmInfo::getExprForPersonalitySymbol(const MCSymbol *Sym,
unsigned Encoding,
diff --git a/contrib/llvm/lib/MC/MCAsmInfoCOFF.cpp b/contrib/llvm/lib/MC/MCAsmInfoCOFF.cpp
index 9945637..bb3f0d3 100644
--- a/contrib/llvm/lib/MC/MCAsmInfoCOFF.cpp
+++ b/contrib/llvm/lib/MC/MCAsmInfoCOFF.cpp
@@ -32,7 +32,6 @@ MCAsmInfoCOFF::MCAsmInfoCOFF() {
ProtectedVisibilityAttr = MCSA_Invalid;
// Set up DWARF directives
- HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
SupportsDebugInformation = true;
NeedsDwarfSectionOffsetDirective = true;
diff --git a/contrib/llvm/lib/MC/MCAsmInfoDarwin.cpp b/contrib/llvm/lib/MC/MCAsmInfoDarwin.cpp
index eaf28dd..04cc0ff 100644
--- a/contrib/llvm/lib/MC/MCAsmInfoDarwin.cpp
+++ b/contrib/llvm/lib/MC/MCAsmInfoDarwin.cpp
@@ -15,10 +15,57 @@
#include "llvm/MC/MCAsmInfoDarwin.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
using namespace llvm;
-void MCAsmInfoDarwin::anchor() { }
+bool MCAsmInfoDarwin::isSectionAtomizableBySymbols(
+ const MCSection &Section) const {
+ const MCSectionMachO &SMO = static_cast<const MCSectionMachO &>(Section);
+
+ // Sections holding 1 byte strings are atomized based on the data they
+ // contain.
+ // Sections holding 2 byte strings require symbols in order to be atomized.
+ // There is no dedicated section for 4 byte strings.
+ if (SMO.getKind().isMergeable1ByteCString())
+ return false;
+
+ if (SMO.getSegmentName() == "__TEXT" &&
+ SMO.getSectionName() == "__objc_classname" &&
+ SMO.getType() == MachO::S_CSTRING_LITERALS)
+ return false;
+
+ if (SMO.getSegmentName() == "__TEXT" &&
+ SMO.getSectionName() == "__objc_methname" &&
+ SMO.getType() == MachO::S_CSTRING_LITERALS)
+ return false;
+
+ if (SMO.getSegmentName() == "__TEXT" &&
+ SMO.getSectionName() == "__objc_methtype" &&
+ SMO.getType() == MachO::S_CSTRING_LITERALS)
+ return false;
+
+ if (SMO.getSegmentName() == "__DATA" && SMO.getSectionName() == "__cfstring")
+ return false;
+
+ switch (SMO.getType()) {
+ default:
+ return true;
+
+ // These sections are atomized at the element boundaries without using
+ // symbols.
+ case MachO::S_4BYTE_LITERALS:
+ case MachO::S_8BYTE_LITERALS:
+ case MachO::S_16BYTE_LITERALS:
+ case MachO::S_LITERAL_POINTERS:
+ case MachO::S_NON_LAZY_SYMBOL_POINTERS:
+ case MachO::S_LAZY_SYMBOL_POINTERS:
+ case MachO::S_MOD_INIT_FUNC_POINTERS:
+ case MachO::S_MOD_TERM_FUNC_POINTERS:
+ case MachO::S_INTERPOSING:
+ return false;
+ }
+}
MCAsmInfoDarwin::MCAsmInfoDarwin() {
// Common settings for all Darwin targets.
@@ -42,9 +89,6 @@ MCAsmInfoDarwin::MCAsmInfoDarwin() {
HasMachoTBSSDirective = true; // Uses .tbss
HasStaticCtorDtorReferenceInStaticMode = true;
- // FIXME: Darwin 10 and newer don't need this.
- LinkerRequiresNonEmptyDwarfLines = true;
-
// FIXME: Change this once MC is the system assembler.
HasAggressiveSymbolFolding = false;
@@ -60,4 +104,5 @@ MCAsmInfoDarwin::MCAsmInfoDarwin() {
DwarfUsesRelocationsAcrossSections = false;
UseIntegratedAssembler = true;
+ SetDirectiveSuppressesReloc = true;
}
diff --git a/contrib/llvm/lib/MC/MCAsmInfoELF.cpp b/contrib/llvm/lib/MC/MCAsmInfoELF.cpp
index ccb3dc3..2fe626e 100644
--- a/contrib/llvm/lib/MC/MCAsmInfoELF.cpp
+++ b/contrib/llvm/lib/MC/MCAsmInfoELF.cpp
@@ -13,12 +13,22 @@
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAsmInfoELF.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Support/ELF.h"
using namespace llvm;
void MCAsmInfoELF::anchor() { }
+const MCSection *
+MCAsmInfoELF::getNonexecutableStackSection(MCContext &Ctx) const {
+ return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
+ 0, SectionKind::getMetadata());
+}
+
MCAsmInfoELF::MCAsmInfoELF() {
HasIdentDirective = true;
WeakRefDirective = "\t.weak\t";
PrivateGlobalPrefix = ".L";
+ PrivateLabelPrefix = ".L";
}
diff --git a/contrib/llvm/lib/MC/MCAsmStreamer.cpp b/contrib/llvm/lib/MC/MCAsmStreamer.cpp
index 14f0f05..1fe0f63 100644
--- a/contrib/llvm/lib/MC/MCAsmStreamer.cpp
+++ b/contrib/llvm/lib/MC/MCAsmStreamer.cpp
@@ -8,8 +8,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCStreamer.h"
-#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
@@ -32,7 +32,6 @@
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include <cctype>
-#include <unordered_map>
using namespace llvm;
namespace {
@@ -436,14 +435,18 @@ bool MCAsmStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
case MCSA_Internal: OS << "\t.internal\t"; break;
case MCSA_LazyReference: OS << "\t.lazy_reference\t"; break;
case MCSA_Local: OS << "\t.local\t"; break;
- case MCSA_NoDeadStrip: OS << "\t.no_dead_strip\t"; break;
+ case MCSA_NoDeadStrip:
+ if (!MAI->hasNoDeadStrip())
+ return false;
+ OS << "\t.no_dead_strip\t";
+ break;
case MCSA_SymbolResolver: OS << "\t.symbol_resolver\t"; break;
case MCSA_PrivateExtern:
OS << "\t.private_extern\t";
break;
case MCSA_Protected: OS << "\t.protected\t"; break;
case MCSA_Reference: OS << "\t.reference\t"; break;
- case MCSA_Weak: OS << "\t.weak\t"; break;
+ case MCSA_Weak: OS << MAI->getWeakDirective(); break;
case MCSA_WeakDefinition:
OS << "\t.weak_definition\t";
break;
@@ -682,7 +685,11 @@ void MCAsmStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size,
// We truncate our partial emission to fit within the bounds of the
// emission domain. This produces nicer output and silences potential
// truncation warnings when round tripping through another assembler.
- ValueToEmit &= ~0ULL >> (64 - EmissionSize * 8);
+ uint64_t Shift = 64 - EmissionSize * 8;
+ assert(Shift < static_cast<uint64_t>(
+ std::numeric_limits<unsigned long long>::digits) &&
+ "undefined behavior");
+ ValueToEmit &= ~0ULL >> Shift;
EmitIntValue(ValueToEmit, EmissionSize);
Emitted += EmissionSize;
}
@@ -700,7 +707,6 @@ void MCAsmStreamer::EmitULEB128Value(const MCExpr *Value) {
EmitULEB128IntValue(IntValue);
return;
}
- assert(MAI->hasLEB128() && "Cannot print a .uleb");
OS << ".uleb128 " << *Value;
EmitEOL();
}
@@ -711,7 +717,6 @@ void MCAsmStreamer::EmitSLEB128Value(const MCExpr *Value) {
EmitSLEB128IntValue(IntValue);
return;
}
- assert(MAI->hasLEB128() && "Cannot print a .sleb");
OS << ".sleb128 " << *Value;
EmitEOL();
}
@@ -867,8 +872,6 @@ void MCAsmStreamer::EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
unsigned Isa,
unsigned Discriminator,
StringRef FileName) {
- this->MCStreamer::EmitDwarfLocDirective(FileNo, Line, Column, Flags,
- Isa, Discriminator, FileName);
OS << "\t.loc\t" << FileNo << " " << Line << " " << Column;
if (Flags & DWARF2_FLAG_BASIC_BLOCK)
OS << " basic_block";
@@ -898,6 +901,8 @@ void MCAsmStreamer::EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
<< Line << ':' << Column;
}
EmitEOL();
+ this->MCStreamer::EmitDwarfLocDirective(FileNo, Line, Column, Flags,
+ Isa, Discriminator, FileName);
}
MCSymbol *MCAsmStreamer::getDwarfLineTableSymbol(unsigned CUID) {
@@ -1089,19 +1094,6 @@ void MCAsmStreamer::EmitWinEHHandler(const MCSymbol *Sym, bool Unwind,
EmitEOL();
}
-static const MCSection *getWin64EHTableSection(StringRef suffix,
- MCContext &context) {
- // FIXME: This doesn't belong in MCObjectFileInfo. However,
- /// this duplicate code in MCWin64EH.cpp.
- if (suffix == "")
- return context.getObjectFileInfo()->getXDataSection();
- return context.getCOFFSection((".xdata"+suffix).str(),
- COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
- COFF::IMAGE_SCN_MEM_READ |
- COFF::IMAGE_SCN_MEM_WRITE,
- SectionKind::getDataRel());
-}
-
void MCAsmStreamer::EmitWinEHHandlerData() {
MCStreamer::EmitWinEHHandlerData();
@@ -1109,11 +1101,10 @@ void MCAsmStreamer::EmitWinEHHandlerData() {
// cause the section switch to be visible in the emitted assembly.
// We only do this so the section switch that terminates the handler
// data block is visible.
- MCWinFrameInfo *CurFrame = getCurrentWinFrameInfo();
- StringRef suffix=MCWin64EHUnwindEmitter::GetSectionSuffix(CurFrame->Function);
- const MCSection *xdataSect = getWin64EHTableSection(suffix, getContext());
- if (xdataSect)
- SwitchSectionNoChange(xdataSect);
+ WinEH::FrameInfo *CurFrame = getCurrentWinFrameInfo();
+ if (const MCSection *XData = WinEH::UnwindEmitter::getXDataSection(
+ CurFrame->Function, getContext()))
+ SwitchSectionNoChange(XData);
OS << "\t.seh_handlerdata";
EmitEOL();
diff --git a/contrib/llvm/lib/MC/MCAssembler.cpp b/contrib/llvm/lib/MC/MCAssembler.cpp
index a8aad71..e3c2443 100644
--- a/contrib/llvm/lib/MC/MCAssembler.cpp
+++ b/contrib/llvm/lib/MC/MCAssembler.cpp
@@ -12,6 +12,7 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
@@ -20,6 +21,7 @@
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
@@ -27,7 +29,6 @@
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/MC/MCSectionELF.h"
#include <tuple>
using namespace llvm;
@@ -141,7 +142,7 @@ static bool getSymbolOffsetImpl(const MCAsmLayout &Layout,
// If SD is a variable, evaluate it.
MCValue Target;
- if (!S.getVariableValue()->EvaluateAsValue(Target, &Layout))
+ if (!S.getVariableValue()->EvaluateAsValue(Target, &Layout, nullptr))
report_fatal_error("unable to evaluate offset for variable '" +
S.getName() + "'");
@@ -187,7 +188,7 @@ const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
const MCExpr *Expr = Symbol.getVariableValue();
MCValue Value;
- if (!Expr->EvaluateAsValue(Value, this))
+ if (!Expr->EvaluateAsValue(Value, this, nullptr))
llvm_unreachable("Invalid Expression");
const MCSymbolRefExpr *RefB = Value.getSymB();
@@ -291,7 +292,9 @@ MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(&_Section),
Ordinal(~UINT32_C(0)),
Alignment(1),
- BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
+ BundleLockState(NotBundleLocked),
+ BundleLockNestingDepth(0),
+ BundleGroupBeforeFirstInst(false),
HasInstructions(false)
{
if (A)
@@ -328,17 +331,33 @@ MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
return IP;
}
+void MCSectionData::setBundleLockState(BundleLockStateType NewState) {
+ if (NewState == NotBundleLocked) {
+ if (BundleLockNestingDepth == 0) {
+ report_fatal_error("Mismatched bundle_lock/unlock directives");
+ }
+ if (--BundleLockNestingDepth == 0) {
+ BundleLockState = NotBundleLocked;
+ }
+ return;
+ }
+
+ // If any of the directives is an align_to_end directive, the whole nested
+ // group is align_to_end. So don't downgrade from align_to_end to just locked.
+ if (BundleLockState != BundleLockedAlignToEnd) {
+ BundleLockState = NewState;
+ }
+ ++BundleLockNestingDepth;
+}
+
/* *** */
MCSymbolData::MCSymbolData() : Symbol(nullptr) {}
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
uint64_t _Offset, MCAssembler *A)
- : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
- IsExternal(false), IsPrivateExtern(false),
- CommonSize(0), SymbolSize(nullptr), CommonAlign(0),
- Flags(0), Index(0)
-{
+ : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
+ SymbolSize(nullptr), CommonAlign(-1U), Flags(0), Index(0) {
if (A)
A->getSymbolList().push_back(this);
}
@@ -348,9 +367,9 @@ MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
raw_ostream &OS_)
- : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
- OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
- SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
+ : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
+ OS(OS_), BundleAlignSize(0), RelaxAll(false),
+ SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
}
@@ -364,11 +383,15 @@ void MCAssembler::reset() {
SymbolMap.clear();
IndirectSymbols.clear();
DataRegions.clear();
+ LinkerOptions.clear();
+ FileNames.clear();
ThumbFuncs.clear();
+ BundleAlignSize = 0;
RelaxAll = false;
- NoExecStack = false;
SubsectionsViaSymbols = false;
ELFHeaderEFlags = 0;
+ LOHContainer.reset();
+ VersionMinInfo.Major = 0;
// reset objects owned by us
getBackend().reset();
@@ -426,8 +449,8 @@ const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
// Non-linker visible symbols in sections which can't be atomized have no
// defining atom.
- if (!getBackend().isSectionAtomizable(
- SD->getFragment()->getParent()->getSection()))
+ if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
+ SD->getFragment()->getParent()->getSection()))
return nullptr;
// Otherwise, return the atom for the containing fragment.
@@ -438,11 +461,12 @@ const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
// a relocatable expr.
// FIXME: Should this be the behavior of EvaluateAsRelocatable itself?
static bool evaluate(const MCExpr &Expr, const MCAsmLayout &Layout,
- MCValue &Target) {
- if (Expr.EvaluateAsValue(Target, &Layout))
+ const MCFixup &Fixup, MCValue &Target) {
+ if (Expr.EvaluateAsValue(Target, &Layout, &Fixup)) {
if (Target.isAbsolute())
return true;
- return Expr.EvaluateAsRelocatable(Target, &Layout);
+ }
+ return Expr.EvaluateAsRelocatable(Target, &Layout, &Fixup);
}
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
@@ -454,7 +478,7 @@ bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
// probably merge the two into a single callback that tries to evaluate a
// fixup and records a relocation if one is needed.
const MCExpr *Expr = Fixup.getValue();
- if (!evaluate(*Expr, Layout, Target))
+ if (!evaluate(*Expr, Layout, Fixup, Target))
getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
bool IsPCRel = Backend.getFixupKindInfo(
@@ -993,11 +1017,8 @@ bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
}
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
- int64_t Value = 0;
uint64_t OldSize = LF.getContents().size();
- bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
- (void)IsAbs;
- assert(IsAbs);
+ int64_t Value = LF.getValue().evaluateKnownAbsolute(Layout);
SmallString<8> &Data = LF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
@@ -1012,11 +1033,8 @@ bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
- int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
- bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
- (void)IsAbs;
- assert(IsAbs);
+ int64_t AddrDelta = DF.getAddrDelta().evaluateKnownAbsolute(Layout);
int64_t LineDelta;
LineDelta = DF.getLineDelta();
SmallString<8> &Data = DF.getContents();
@@ -1030,11 +1048,8 @@ bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
- int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
- bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
- (void)IsAbs;
- assert(IsAbs);
+ int64_t AddrDelta = DF.getAddrDelta().evaluateKnownAbsolute(Layout);
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
@@ -1247,8 +1262,10 @@ void MCSymbolData::dump() const {
raw_ostream &OS = llvm::errs();
OS << "<MCSymbolData Symbol:" << getSymbol()
- << " Fragment:" << getFragment() << " Offset:" << getOffset()
- << " Flags:" << getFlags() << " Index:" << getIndex();
+ << " Fragment:" << getFragment();
+ if (!isCommon())
+ OS << " Offset:" << getOffset();
+ OS << " Flags:" << getFlags() << " Index:" << getIndex();
if (isCommon())
OS << " (common, size:" << getCommonSize()
<< " align: " << getCommonAlignment() << ")";
diff --git a/contrib/llvm/lib/MC/MCContext.cpp b/contrib/llvm/lib/MC/MCContext.cpp
index 7702da3..b41e6d8 100644
--- a/contrib/llvm/lib/MC/MCContext.cpp
+++ b/contrib/llvm/lib/MC/MCContext.cpp
@@ -73,7 +73,10 @@ void MCContext::reset() {
Symbols.clear();
Allocator.Reset();
Instances.clear();
+ CompilationDir.clear();
+ MainFileName.clear();
MCDwarfLineTablesCUMap.clear();
+ SectionStartEndSyms.clear();
MCGenDwarfLabelEntries.clear();
DwarfDebugFlags = StringRef();
DwarfCompileUnitID = 0;
@@ -97,40 +100,62 @@ void MCContext::reset() {
MCSymbol *MCContext::GetOrCreateSymbol(StringRef Name) {
assert(!Name.empty() && "Normal symbols cannot be unnamed!");
- // Do the lookup and get the entire StringMapEntry. We want access to the
- // key if we are creating the entry.
- StringMapEntry<MCSymbol*> &Entry = Symbols.GetOrCreateValue(Name);
- MCSymbol *Sym = Entry.getValue();
+ MCSymbol *&Sym = Symbols[Name];
+ if (!Sym)
+ Sym = CreateSymbol(Name);
+
+ return Sym;
+}
+
+MCSymbol *MCContext::getOrCreateSectionSymbol(const MCSectionELF &Section) {
+ MCSymbol *&Sym = SectionSymbols[&Section];
if (Sym)
return Sym;
- Sym = CreateSymbol(Name);
- Entry.setValue(Sym);
+ StringRef Name = Section.getSectionName();
+
+ MCSymbol *&OldSym = Symbols[Name];
+ if (OldSym && OldSym->isUndefined()) {
+ Sym = OldSym;
+ return OldSym;
+ }
+
+ auto NameIter = UsedNames.insert(std::make_pair(Name, true)).first;
+ Sym = new (*this) MCSymbol(NameIter->getKey(), /*isTemporary*/ false);
+
+ if (!OldSym)
+ OldSym = Sym;
+
return Sym;
}
+MCSymbol *MCContext::getOrCreateFrameAllocSymbol(StringRef FuncName) {
+ return GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
+ "frameallocation_" + FuncName);
+}
+
MCSymbol *MCContext::CreateSymbol(StringRef Name) {
// Determine whether this is an assembler temporary or normal label, if used.
bool isTemporary = false;
if (AllowTemporaryLabels)
isTemporary = Name.startswith(MAI->getPrivateGlobalPrefix());
- StringMapEntry<bool> *NameEntry = &UsedNames.GetOrCreateValue(Name);
- if (NameEntry->getValue()) {
+ auto NameEntry = UsedNames.insert(std::make_pair(Name, true));
+ if (!NameEntry.second) {
assert(isTemporary && "Cannot rename non-temporary symbols");
SmallString<128> NewName = Name;
do {
NewName.resize(Name.size());
raw_svector_ostream(NewName) << NextUniqueID++;
- NameEntry = &UsedNames.GetOrCreateValue(NewName);
- } while (NameEntry->getValue());
+ NameEntry = UsedNames.insert(std::make_pair(NewName, true));
+ } while (!NameEntry.second);
}
- NameEntry->setValue(true);
// Ok, the entry doesn't already exist. Have the MCSymbol object itself refer
// to the copy of the string that is embedded in the UsedNames entry.
- MCSymbol *Result = new (*this) MCSymbol(NameEntry->getKey(), isTemporary);
+ MCSymbol *Result =
+ new (*this) MCSymbol(NameEntry.first->getKey(), isTemporary);
return Result;
}
@@ -317,6 +342,22 @@ const MCSectionCOFF *MCContext::getCOFFSection(StringRef Section) {
return Iter->second;
}
+const MCSectionCOFF *
+MCContext::getAssociativeCOFFSection(const MCSectionCOFF *Sec,
+ const MCSymbol *KeySym) {
+ // Return the normal section if we don't have to be associative.
+ if (!KeySym)
+ return Sec;
+
+ // Make an associative section with the same name and kind as the normal
+ // section.
+ unsigned Characteristics =
+ Sec->getCharacteristics() | COFF::IMAGE_SCN_LNK_COMDAT;
+ return getCOFFSection(Sec->getSectionName(), Characteristics, Sec->getKind(),
+ KeySym->getName(),
+ COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE);
+}
+
//===----------------------------------------------------------------------===//
// Dwarf Management
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/MC/MCDisassembler/Disassembler.cpp b/contrib/llvm/lib/MC/MCDisassembler/Disassembler.cpp
index 0530c26..d27d83b 100644
--- a/contrib/llvm/lib/MC/MCDisassembler/Disassembler.cpp
+++ b/contrib/llvm/lib/MC/MCDisassembler/Disassembler.cpp
@@ -21,7 +21,6 @@
#include "llvm/MC/MCSymbolizer.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -33,10 +32,11 @@ using namespace llvm;
// functions can all be passed as NULL. If successful, this returns a
// disassembler context. If not, it returns NULL.
//
-LLVMDisasmContextRef LLVMCreateDisasmCPU(const char *Triple, const char *CPU,
- void *DisInfo, int TagType,
- LLVMOpInfoCallback GetOpInfo,
- LLVMSymbolLookupCallback SymbolLookUp){
+LLVMDisasmContextRef
+LLVMCreateDisasmCPUFeatures(const char *Triple, const char *CPU,
+ const char *Features, void *DisInfo, int TagType,
+ LLVMOpInfoCallback GetOpInfo,
+ LLVMSymbolLookupCallback SymbolLookUp) {
// Get the target.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
@@ -56,11 +56,8 @@ LLVMDisasmContextRef LLVMCreateDisasmCPU(const char *Triple, const char *CPU,
if (!MII)
return nullptr;
- // Package up features to be passed to target/subtarget
- std::string FeaturesStr;
-
const MCSubtargetInfo *STI = TheTarget->createMCSubtargetInfo(Triple, CPU,
- FeaturesStr);
+ Features);
if (!STI)
return nullptr;
@@ -101,11 +98,19 @@ LLVMDisasmContextRef LLVMCreateDisasmCPU(const char *Triple, const char *CPU,
return DC;
}
+LLVMDisasmContextRef LLVMCreateDisasmCPU(const char *Triple, const char *CPU,
+ void *DisInfo, int TagType,
+ LLVMOpInfoCallback GetOpInfo,
+ LLVMSymbolLookupCallback SymbolLookUp){
+ return LLVMCreateDisasmCPUFeatures(Triple, CPU, "", DisInfo, TagType,
+ GetOpInfo, SymbolLookUp);
+}
+
LLVMDisasmContextRef LLVMCreateDisasm(const char *Triple, void *DisInfo,
int TagType, LLVMOpInfoCallback GetOpInfo,
LLVMSymbolLookupCallback SymbolLookUp) {
- return LLVMCreateDisasmCPU(Triple, "", DisInfo, TagType, GetOpInfo,
- SymbolLookUp);
+ return LLVMCreateDisasmCPUFeatures(Triple, "", "", DisInfo, TagType,
+ GetOpInfo, SymbolLookUp);
}
//
@@ -116,30 +121,6 @@ void LLVMDisasmDispose(LLVMDisasmContextRef DCR){
delete DC;
}
-namespace {
-//
-// The memory object created by LLVMDisasmInstruction().
-//
-class DisasmMemoryObject : public MemoryObject {
- uint8_t *Bytes;
- uint64_t Size;
- uint64_t BasePC;
-public:
- DisasmMemoryObject(uint8_t *bytes, uint64_t size, uint64_t basePC) :
- Bytes(bytes), Size(size), BasePC(basePC) {}
-
- uint64_t getBase() const override { return BasePC; }
- uint64_t getExtent() const override { return Size; }
-
- int readByte(uint64_t Addr, uint8_t *Byte) const override {
- if (Addr - BasePC >= Size)
- return -1;
- *Byte = Bytes[Addr - BasePC];
- return 0;
- }
-};
-} // end anonymous namespace
-
/// \brief Emits the comments that are stored in \p DC comment stream.
/// Each comment in the comment stream must end with a newline.
static void emitComments(LLVMDisasmContext *DC,
@@ -170,10 +151,10 @@ static void emitComments(LLVMDisasmContext *DC,
DC->CommentStream.resync();
}
-/// \brief Gets latency information for \p Inst form the itinerary
+/// \brief Gets latency information for \p Inst from the itinerary
/// scheduling model, based on \p DC information.
/// \return The maximum expected latency over all the operands or -1
-/// if no information are available.
+/// if no information is available.
static int getItineraryLatency(LLVMDisasmContext *DC, const MCInst &Inst) {
const int NoInformationAvailable = -1;
@@ -198,23 +179,23 @@ static int getItineraryLatency(LLVMDisasmContext *DC, const MCInst &Inst) {
/// \brief Gets latency information for \p Inst, based on \p DC information.
/// \return The maximum expected latency over all the definitions or -1
-/// if no information are available.
+/// if no information is available.
static int getLatency(LLVMDisasmContext *DC, const MCInst &Inst) {
// Try to compute scheduling information.
const MCSubtargetInfo *STI = DC->getSubtargetInfo();
- const MCSchedModel *SCModel = STI->getSchedModel();
+ const MCSchedModel SCModel = STI->getSchedModel();
const int NoInformationAvailable = -1;
// Check if we have a scheduling model for instructions.
- if (!SCModel || !SCModel->hasInstrSchedModel())
- // Try to fall back to the itinerary model if we do not have a
- // scheduling model.
+ if (!SCModel.hasInstrSchedModel())
+ // Try to fall back to the itinerary model if the scheduling model doesn't
+ // have a scheduling table. Note the default does not have a table.
return getItineraryLatency(DC, Inst);
// Get the scheduling class of the requested instruction.
const MCInstrDesc& Desc = DC->getInstrInfo()->get(Inst.getOpcode());
unsigned SCClass = Desc.getSchedClass();
- const MCSchedClassDesc *SCDesc = SCModel->getSchedClassDesc(SCClass);
+ const MCSchedClassDesc *SCDesc = SCModel.getSchedClassDesc(SCClass);
// Resolving the variant SchedClass requires an MI to pass to
// SubTargetInfo::resolveSchedClass.
if (!SCDesc || !SCDesc->isValid() || SCDesc->isVariant())
@@ -239,7 +220,7 @@ static int getLatency(LLVMDisasmContext *DC, const MCInst &Inst) {
static void emitLatency(LLVMDisasmContext *DC, const MCInst &Inst) {
int Latency = getLatency(DC, Inst);
- // Report only interesting latency.
+ // Report only interesting latencies.
if (Latency < 2)
return;
@@ -263,7 +244,7 @@ size_t LLVMDisasmInstruction(LLVMDisasmContextRef DCR, uint8_t *Bytes,
size_t OutStringSize){
LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR;
// Wrap the pointer to the Bytes, BytesSize and PC in a MemoryObject.
- DisasmMemoryObject MemoryObject(Bytes, BytesSize, PC);
+ ArrayRef<uint8_t> Data(Bytes, BytesSize);
uint64_t Size;
MCInst Inst;
@@ -272,7 +253,7 @@ size_t LLVMDisasmInstruction(LLVMDisasmContextRef DCR, uint8_t *Bytes,
MCDisassembler::DecodeStatus S;
SmallVector<char, 64> InsnStr;
raw_svector_ostream Annotations(InsnStr);
- S = DisAsm->getInstruction(Inst, Size, MemoryObject, PC,
+ S = DisAsm->getInstruction(Inst, Size, Data, PC,
/*REMOVE*/ nulls(), Annotations);
switch (S) {
case MCDisassembler::Fail:
diff --git a/contrib/llvm/lib/MC/MCDisassembler/Disassembler.h b/contrib/llvm/lib/MC/MCDisassembler/Disassembler.h
index d1d40cd..46d0c4c 100644
--- a/contrib/llvm/lib/MC/MCDisassembler/Disassembler.h
+++ b/contrib/llvm/lib/MC/MCDisassembler/Disassembler.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_MC_DISASSEMBLER_H
-#define LLVM_MC_DISASSEMBLER_H
+#ifndef LLVM_LIB_MC_MCDISASSEMBLER_DISASSEMBLER_H
+#define LLVM_LIB_MC_MCDISASSEMBLER_DISASSEMBLER_H
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/SmallString.h"
diff --git a/contrib/llvm/lib/MC/MCDisassembler.cpp b/contrib/llvm/lib/MC/MCDisassembler/MCDisassembler.cpp
index 77d9ce1..1084e5e 100644
--- a/contrib/llvm/lib/MC/MCDisassembler.cpp
+++ b/contrib/llvm/lib/MC/MCDisassembler/MCDisassembler.cpp
@@ -1,4 +1,4 @@
-//===-- lib/MC/MCDisassembler.cpp - Disassembler interface ------*- C++ -*-===//
+//===-- MCDisassembler.cpp - Disassembler interface -----------------------===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/contrib/llvm/lib/MC/MCExternalSymbolizer.cpp b/contrib/llvm/lib/MC/MCDisassembler/MCExternalSymbolizer.cpp
index 7c3073a..0145623 100644
--- a/contrib/llvm/lib/MC/MCExternalSymbolizer.cpp
+++ b/contrib/llvm/lib/MC/MCDisassembler/MCExternalSymbolizer.cpp
@@ -1,4 +1,4 @@
-//===-- lib/MC/MCExternalSymbolizer.cpp - External symbolizer ---*- C++ -*-===//
+//===-- MCExternalSymbolizer.cpp - External symbolizer --------------------===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/contrib/llvm/lib/MC/MCRelocationInfo.cpp b/contrib/llvm/lib/MC/MCDisassembler/MCRelocationInfo.cpp
index a00c009..ff0c27f 100644
--- a/contrib/llvm/lib/MC/MCRelocationInfo.cpp
+++ b/contrib/llvm/lib/MC/MCDisassembler/MCRelocationInfo.cpp
@@ -1,4 +1,4 @@
-//==-- lib/MC/MCRelocationInfo.cpp -------------------------------*- C++ -*-==//
+//==-- MCRelocationInfo.cpp ------------------------------------------------==//
//
// The LLVM Compiler Infrastructure
//
diff --git a/contrib/llvm/lib/MC/MCDwarf.cpp b/contrib/llvm/lib/MC/MCDwarf.cpp
index 3bf6f0f..5effb01 100644
--- a/contrib/llvm/lib/MC/MCDwarf.cpp
+++ b/contrib/llvm/lib/MC/MCDwarf.cpp
@@ -247,6 +247,22 @@ std::pair<MCSymbol *, MCSymbol *> MCDwarfLineTableHeader::Emit(MCStreamer *MCOS)
return Emit(MCOS, StandardOpcodeLengths);
}
+static const MCExpr *forceExpAbs(MCStreamer &OS, const MCExpr* Expr) {
+ MCContext &Context = OS.getContext();
+ assert(!isa<MCSymbolRefExpr>(Expr));
+ if (Context.getAsmInfo()->hasAggressiveSymbolFolding())
+ return Expr;
+
+ MCSymbol *ABS = Context.CreateTempSymbol();
+ OS.EmitAssignment(ABS, Expr);
+ return MCSymbolRefExpr::Create(ABS, Context);
+}
+
+static void emitAbsValue(MCStreamer &OS, const MCExpr *Value, unsigned Size) {
+ const MCExpr *ABS = forceExpAbs(OS, Value);
+ OS.EmitValue(ABS, Size);
+}
+
std::pair<MCSymbol *, MCSymbol *>
MCDwarfLineTableHeader::Emit(MCStreamer *MCOS,
ArrayRef<char> StandardOpcodeLengths) const {
@@ -265,8 +281,8 @@ MCDwarfLineTableHeader::Emit(MCStreamer *MCOS,
// The first 4 bytes is the total length of the information for this
// compilation unit (not including these 4 bytes for the length).
- MCOS->EmitAbsValue(MakeStartMinusEndExpr(*MCOS, *LineStartSym, *LineEndSym,4),
- 4);
+ emitAbsValue(*MCOS,
+ MakeStartMinusEndExpr(*MCOS, *LineStartSym, *LineEndSym, 4), 4);
// Next 2 bytes is the Version, which is Dwarf 2.
MCOS->EmitIntValue(2, 2);
@@ -278,8 +294,9 @@ MCDwarfLineTableHeader::Emit(MCStreamer *MCOS,
// section to the end of the prologue. Not including the 4 bytes for the
// total length, the 2 bytes for the version, and these 4 bytes for the
// length of the prologue.
- MCOS->EmitAbsValue(MakeStartMinusEndExpr(*MCOS, *LineStartSym, *ProEndSym,
- (4 + 2 + 4)), 4);
+ emitAbsValue(
+ *MCOS,
+ MakeStartMinusEndExpr(*MCOS, *LineStartSym, *ProEndSym, (4 + 2 + 4)), 4);
// Parameters of the state machine, are next.
MCOS->EmitIntValue(context.getAsmInfo()->getMinInstAlignment(), 1);
@@ -327,18 +344,6 @@ void MCDwarfLineTable::EmitCU(MCObjectStreamer *MCOS) const {
for (const auto &LineSec : MCLineSections.getMCLineEntries())
EmitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
- if (MCOS->getContext().getAsmInfo()->getLinkerRequiresNonEmptyDwarfLines() &&
- MCLineSections.getMCLineEntries().empty()) {
- // The darwin9 linker has a bug (see PR8715). For for 32-bit architectures
- // it requires:
- // total_length >= prologue_length + 10
- // We are 4 bytes short, since we have total_length = 51 and
- // prologue_length = 45
-
- // The regular end_sequence should be sufficient.
- MCDwarfLineAddr::Emit(MCOS, INT64_MAX, 0);
- }
-
// This is the end of the section, so set the value of the symbol at the end
// of this section (that was used in a previous expression).
MCOS->EmitLabel(LineEndSym);
@@ -363,10 +368,10 @@ unsigned MCDwarfLineTableHeader::getFile(StringRef &Directory,
FileNumber = SourceIdMap.size() + 1;
assert((MCDwarfFiles.empty() || FileNumber == MCDwarfFiles.size()) &&
"Don't mix autonumbered and explicit numbered line table usage");
- StringMapEntry<unsigned> &Ent = SourceIdMap.GetOrCreateValue(
- (Directory + Twine('\0') + FileName).str(), FileNumber);
- if (Ent.getValue() != FileNumber)
- return Ent.getValue();
+ auto IterBool = SourceIdMap.insert(
+ std::make_pair((Directory + Twine('\0') + FileName).str(), FileNumber));
+ if (!IterBool.second)
+ return IterBool.first->second;
}
// Make space for this FileNumber in the MCDwarfFiles vector if needed.
MCDwarfFiles.resize(FileNumber + 1);
@@ -597,7 +602,8 @@ static void EmitGenDwarfAranges(MCStreamer *MCOS,
// The 4 byte offset to the compile unit in the .debug_info from the start
// of the .debug_info.
if (InfoSectionSymbol)
- MCOS->EmitSymbolValue(InfoSectionSymbol, 4);
+ MCOS->EmitSymbolValue(InfoSectionSymbol, 4,
+ asmInfo->needsDwarfSectionOffsetDirective());
else
MCOS->EmitIntValue(0, 4);
// The 1 byte size of an address.
@@ -621,7 +627,7 @@ static void EmitGenDwarfAranges(MCStreamer *MCOS,
const MCExpr *Size = MakeStartMinusEndExpr(*MCOS,
*StartSymbol, *EndSymbol, 0);
MCOS->EmitValue(Addr, AddrSize);
- MCOS->EmitAbsValue(Size, AddrSize);
+ emitAbsValue(*MCOS, Size, AddrSize);
}
// And finally the pair of terminating zeros.
@@ -651,7 +657,7 @@ static void EmitGenDwarfInfo(MCStreamer *MCOS,
// The 4 byte total length of the information for this compilation unit, not
// including these 4 bytes.
const MCExpr *Length = MakeStartMinusEndExpr(*MCOS, *InfoStart, *InfoEnd, 4);
- MCOS->EmitAbsValue(Length, 4);
+ emitAbsValue(*MCOS, Length, 4);
// The 2 byte DWARF version.
MCOS->EmitIntValue(context.getDwarfVersion(), 2);
@@ -677,11 +683,11 @@ static void EmitGenDwarfInfo(MCStreamer *MCOS,
// DW_AT_stmt_list, a 4 byte offset from the start of the .debug_line section,
// which is at the start of that section so this is zero.
- if (LineSectionSymbol) {
- MCOS->EmitSymbolValue(LineSectionSymbol, 4);
- } else {
+ if (LineSectionSymbol)
+ MCOS->EmitSymbolValue(LineSectionSymbol, 4,
+ AsmInfo.needsDwarfSectionOffsetDirective());
+ else
MCOS->EmitIntValue(0, 4);
- }
if (RangesSectionSymbol) {
// There are multiple sections containing code, so we must use the
@@ -822,7 +828,7 @@ static void EmitGenDwarfRanges(MCStreamer *MCOS) {
const MCExpr *SectionSize = MakeStartMinusEndExpr(*MCOS,
*StartSymbol, *EndSymbol, 0);
MCOS->EmitIntValue(0, AddrSize);
- MCOS->EmitAbsValue(SectionSize, AddrSize);
+ emitAbsValue(*MCOS, SectionSize, AddrSize);
}
// Emit end of list entry
@@ -973,18 +979,16 @@ static unsigned getSizeForEncoding(MCStreamer &streamer,
}
}
-static void EmitFDESymbol(MCStreamer &streamer, const MCSymbol &symbol,
- unsigned symbolEncoding, bool isEH,
- const char *comment = nullptr) {
+static void emitFDESymbol(MCObjectStreamer &streamer, const MCSymbol &symbol,
+ unsigned symbolEncoding, bool isEH) {
MCContext &context = streamer.getContext();
const MCAsmInfo *asmInfo = context.getAsmInfo();
const MCExpr *v = asmInfo->getExprForFDESymbol(&symbol,
symbolEncoding,
streamer);
unsigned size = getSizeForEncoding(streamer, symbolEncoding);
- if (streamer.isVerboseAsm() && comment) streamer.AddComment(comment);
if (asmInfo->doDwarfFDESymbolsUseAbsDiff() && isEH)
- streamer.EmitAbsValue(v, size);
+ emitAbsValue(streamer, v, size);
else
streamer.EmitValue(v, size);
}
@@ -1003,17 +1007,16 @@ static void EmitPersonality(MCStreamer &streamer, const MCSymbol &symbol,
namespace {
class FrameEmitterImpl {
int CFAOffset;
- int CIENum;
bool IsEH;
const MCSymbol *SectionStart;
public:
FrameEmitterImpl(bool isEH)
- : CFAOffset(0), CIENum(0), IsEH(isEH), SectionStart(nullptr) {}
+ : CFAOffset(0), IsEH(isEH), SectionStart(nullptr) {}
void setSectionStart(const MCSymbol *Label) { SectionStart = Label; }
- /// EmitCompactUnwind - Emit the unwind information in a compact way.
- void EmitCompactUnwind(MCStreamer &streamer,
+ /// Emit the unwind information in a compact way.
+ void EmitCompactUnwind(MCObjectStreamer &streamer,
const MCDwarfFrameInfo &frame);
const MCSymbol &EmitCIE(MCObjectStreamer &streamer,
@@ -1035,65 +1038,18 @@ namespace {
} // end anonymous namespace
-static void EmitEncodingByte(MCStreamer &Streamer, unsigned Encoding,
- StringRef Prefix) {
- if (Streamer.isVerboseAsm()) {
- const char *EncStr;
- switch (Encoding) {
- default: EncStr = "<unknown encoding>"; break;
- case dwarf::DW_EH_PE_absptr: EncStr = "absptr"; break;
- case dwarf::DW_EH_PE_omit: EncStr = "omit"; break;
- case dwarf::DW_EH_PE_pcrel: EncStr = "pcrel"; break;
- case dwarf::DW_EH_PE_udata4: EncStr = "udata4"; break;
- case dwarf::DW_EH_PE_udata8: EncStr = "udata8"; break;
- case dwarf::DW_EH_PE_sdata4: EncStr = "sdata4"; break;
- case dwarf::DW_EH_PE_sdata8: EncStr = "sdata8"; break;
- case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
- EncStr = "pcrel udata4";
- break;
- case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
- EncStr = "pcrel sdata4";
- break;
- case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
- EncStr = "pcrel udata8";
- break;
- case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
- EncStr = "screl sdata8";
- break;
- case dwarf::DW_EH_PE_indirect |dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata4:
- EncStr = "indirect pcrel udata4";
- break;
- case dwarf::DW_EH_PE_indirect |dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata4:
- EncStr = "indirect pcrel sdata4";
- break;
- case dwarf::DW_EH_PE_indirect |dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata8:
- EncStr = "indirect pcrel udata8";
- break;
- case dwarf::DW_EH_PE_indirect |dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata8:
- EncStr = "indirect pcrel sdata8";
- break;
- }
-
- Streamer.AddComment(Twine(Prefix) + " = " + EncStr);
- }
-
+static void emitEncodingByte(MCObjectStreamer &Streamer, unsigned Encoding) {
Streamer.EmitIntValue(Encoding, 1);
}
void FrameEmitterImpl::EmitCFIInstruction(MCObjectStreamer &Streamer,
const MCCFIInstruction &Instr) {
int dataAlignmentFactor = getDataAlignmentFactor(Streamer);
- bool VerboseAsm = Streamer.isVerboseAsm();
switch (Instr.getOperation()) {
case MCCFIInstruction::OpRegister: {
unsigned Reg1 = Instr.getRegister();
unsigned Reg2 = Instr.getRegister2();
- if (VerboseAsm) {
- Streamer.AddComment("DW_CFA_register");
- Streamer.AddComment(Twine("Reg1 ") + Twine(Reg1));
- Streamer.AddComment(Twine("Reg2 ") + Twine(Reg2));
- }
Streamer.EmitIntValue(dwarf::DW_CFA_register, 1);
Streamer.EmitULEB128IntValue(Reg1);
Streamer.EmitULEB128IntValue(Reg2);
@@ -1105,10 +1061,6 @@ void FrameEmitterImpl::EmitCFIInstruction(MCObjectStreamer &Streamer,
}
case MCCFIInstruction::OpUndefined: {
unsigned Reg = Instr.getRegister();
- if (VerboseAsm) {
- Streamer.AddComment("DW_CFA_undefined");
- Streamer.AddComment(Twine("Reg ") + Twine(Reg));
- }
Streamer.EmitIntValue(dwarf::DW_CFA_undefined, 1);
Streamer.EmitULEB128IntValue(Reg);
return;
@@ -1118,8 +1070,6 @@ void FrameEmitterImpl::EmitCFIInstruction(MCObjectStreamer &Streamer,
const bool IsRelative =
Instr.getOperation() == MCCFIInstruction::OpAdjustCfaOffset;
- if (VerboseAsm)
- Streamer.AddComment("DW_CFA_def_cfa_offset");
Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_offset, 1);
if (IsRelative)
@@ -1127,37 +1077,21 @@ void FrameEmitterImpl::EmitCFIInstruction(MCObjectStreamer &Streamer,
else
CFAOffset = -Instr.getOffset();
- if (VerboseAsm)
- Streamer.AddComment(Twine("Offset " + Twine(CFAOffset)));
Streamer.EmitULEB128IntValue(CFAOffset);
return;
}
case MCCFIInstruction::OpDefCfa: {
- if (VerboseAsm)
- Streamer.AddComment("DW_CFA_def_cfa");
Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa, 1);
-
- if (VerboseAsm)
- Streamer.AddComment(Twine("Reg ") + Twine(Instr.getRegister()));
Streamer.EmitULEB128IntValue(Instr.getRegister());
-
CFAOffset = -Instr.getOffset();
-
- if (VerboseAsm)
- Streamer.AddComment(Twine("Offset " + Twine(CFAOffset)));
Streamer.EmitULEB128IntValue(CFAOffset);
return;
}
case MCCFIInstruction::OpDefCfaRegister: {
- if (VerboseAsm)
- Streamer.AddComment("DW_CFA_def_cfa_register");
Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_register, 1);
-
- if (VerboseAsm)
- Streamer.AddComment(Twine("Reg ") + Twine(Instr.getRegister()));
Streamer.EmitULEB128IntValue(Instr.getRegister());
return;
@@ -1175,63 +1109,44 @@ void FrameEmitterImpl::EmitCFIInstruction(MCObjectStreamer &Streamer,
Offset = Offset / dataAlignmentFactor;
if (Offset < 0) {
- if (VerboseAsm) Streamer.AddComment("DW_CFA_offset_extended_sf");
Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended_sf, 1);
- if (VerboseAsm) Streamer.AddComment(Twine("Reg ") + Twine(Reg));
Streamer.EmitULEB128IntValue(Reg);
- if (VerboseAsm) Streamer.AddComment(Twine("Offset ") + Twine(Offset));
Streamer.EmitSLEB128IntValue(Offset);
} else if (Reg < 64) {
- if (VerboseAsm) Streamer.AddComment(Twine("DW_CFA_offset + Reg(") +
- Twine(Reg) + ")");
Streamer.EmitIntValue(dwarf::DW_CFA_offset + Reg, 1);
- if (VerboseAsm) Streamer.AddComment(Twine("Offset ") + Twine(Offset));
Streamer.EmitULEB128IntValue(Offset);
} else {
- if (VerboseAsm) Streamer.AddComment("DW_CFA_offset_extended");
Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended, 1);
- if (VerboseAsm) Streamer.AddComment(Twine("Reg ") + Twine(Reg));
Streamer.EmitULEB128IntValue(Reg);
- if (VerboseAsm) Streamer.AddComment(Twine("Offset ") + Twine(Offset));
Streamer.EmitULEB128IntValue(Offset);
}
return;
}
case MCCFIInstruction::OpRememberState:
- if (VerboseAsm) Streamer.AddComment("DW_CFA_remember_state");
Streamer.EmitIntValue(dwarf::DW_CFA_remember_state, 1);
return;
case MCCFIInstruction::OpRestoreState:
- if (VerboseAsm) Streamer.AddComment("DW_CFA_restore_state");
Streamer.EmitIntValue(dwarf::DW_CFA_restore_state, 1);
return;
case MCCFIInstruction::OpSameValue: {
unsigned Reg = Instr.getRegister();
- if (VerboseAsm) Streamer.AddComment("DW_CFA_same_value");
Streamer.EmitIntValue(dwarf::DW_CFA_same_value, 1);
- if (VerboseAsm) Streamer.AddComment(Twine("Reg ") + Twine(Reg));
Streamer.EmitULEB128IntValue(Reg);
return;
}
case MCCFIInstruction::OpRestore: {
unsigned Reg = Instr.getRegister();
- if (VerboseAsm) {
- Streamer.AddComment("DW_CFA_restore");
- Streamer.AddComment(Twine("Reg ") + Twine(Reg));
- }
Streamer.EmitIntValue(dwarf::DW_CFA_restore | Reg, 1);
return;
}
case MCCFIInstruction::OpEscape:
- if (VerboseAsm) Streamer.AddComment("Escape bytes");
Streamer.EmitBytes(Instr.getValues());
return;
}
llvm_unreachable("Unhandled case in switch");
}
-/// EmitFrameMoves - Emit frame instructions to describe the layout of the
-/// frame.
+/// Emit frame instructions to describe the layout of the frame.
void FrameEmitterImpl::EmitCFIInstructions(MCObjectStreamer &streamer,
ArrayRef<MCCFIInstruction> Instrs,
MCSymbol *BaseLabel) {
@@ -1245,7 +1160,6 @@ void FrameEmitterImpl::EmitCFIInstructions(MCObjectStreamer &streamer,
if (BaseLabel && Label) {
MCSymbol *ThisSym = Label;
if (ThisSym != BaseLabel) {
- if (streamer.isVerboseAsm()) streamer.AddComment("DW_CFA_advance_loc4");
streamer.EmitDwarfAdvanceFrameAddr(BaseLabel, ThisSym);
BaseLabel = ThisSym;
}
@@ -1255,12 +1169,11 @@ void FrameEmitterImpl::EmitCFIInstructions(MCObjectStreamer &streamer,
}
}
-/// EmitCompactUnwind - Emit the unwind information in a compact way.
-void FrameEmitterImpl::EmitCompactUnwind(MCStreamer &Streamer,
+/// Emit the unwind information in a compact way.
+void FrameEmitterImpl::EmitCompactUnwind(MCObjectStreamer &Streamer,
const MCDwarfFrameInfo &Frame) {
MCContext &Context = Streamer.getContext();
const MCObjectFileInfo *MOFI = Context.getObjectFileInfo();
- bool VerboseAsm = Streamer.isVerboseAsm();
// range-start range-length compact-unwind-enc personality-func lsda
// _foo LfooEnd-_foo 0x00000023 0 0
@@ -1295,24 +1208,19 @@ void FrameEmitterImpl::EmitCompactUnwind(MCStreamer &Streamer,
// Range Start
unsigned FDEEncoding = MOFI->getFDEEncoding();
unsigned Size = getSizeForEncoding(Streamer, FDEEncoding);
- if (VerboseAsm) Streamer.AddComment("Range Start");
Streamer.EmitSymbolValue(Frame.Begin, Size);
// Range Length
const MCExpr *Range = MakeStartMinusEndExpr(Streamer, *Frame.Begin,
*Frame.End, 0);
- if (VerboseAsm) Streamer.AddComment("Range Length");
- Streamer.EmitAbsValue(Range, 4);
+ emitAbsValue(Streamer, Range, 4);
// Compact Encoding
Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_udata4);
- if (VerboseAsm) Streamer.AddComment("Compact Unwind Encoding: 0x" +
- Twine::utohexstr(Encoding));
Streamer.EmitIntValue(Encoding, Size);
// Personality Function
Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_absptr);
- if (VerboseAsm) Streamer.AddComment("Personality Function");
if (!DwarfEHFrameOnly && Frame.Personality)
Streamer.EmitSymbolValue(Frame.Personality, Size);
else
@@ -1320,7 +1228,6 @@ void FrameEmitterImpl::EmitCompactUnwind(MCStreamer &Streamer,
// LSDA
Size = getSizeForEncoding(Streamer, Frame.LsdaEncoding);
- if (VerboseAsm) Streamer.AddComment("LSDA");
if (!DwarfEHFrameOnly && Frame.Lsda)
Streamer.EmitSymbolValue(Frame.Lsda, Size);
else
@@ -1337,27 +1244,22 @@ const MCSymbol &FrameEmitterImpl::EmitCIE(MCObjectStreamer &streamer,
MCContext &context = streamer.getContext();
const MCRegisterInfo *MRI = context.getRegisterInfo();
const MCObjectFileInfo *MOFI = context.getObjectFileInfo();
- bool verboseAsm = streamer.isVerboseAsm();
MCSymbol *sectionStart = context.CreateTempSymbol();
streamer.EmitLabel(sectionStart);
- CIENum++;
MCSymbol *sectionEnd = context.CreateTempSymbol();
// Length
const MCExpr *Length = MakeStartMinusEndExpr(streamer, *sectionStart,
*sectionEnd, 4);
- if (verboseAsm) streamer.AddComment("CIE Length");
- streamer.EmitAbsValue(Length, 4);
+ emitAbsValue(streamer, Length, 4);
// CIE ID
unsigned CIE_ID = IsEH ? 0 : -1;
- if (verboseAsm) streamer.AddComment("CIE ID Tag");
streamer.EmitIntValue(CIE_ID, 4);
// Version
- if (verboseAsm) streamer.AddComment("DW_CIE_VERSION");
// For DWARF2, we use CIE version 1
// For DWARF3+, we use CIE version 3
uint8_t CIEVersion = context.getDwarfVersion() <= 2 ? 1 : 3;
@@ -1366,7 +1268,6 @@ const MCSymbol &FrameEmitterImpl::EmitCIE(MCObjectStreamer &streamer,
// Augmentation String
SmallString<8> Augmentation;
if (IsEH) {
- if (verboseAsm) streamer.AddComment("CIE Augmentation");
Augmentation += "z";
if (personality)
Augmentation += "P";
@@ -1380,15 +1281,12 @@ const MCSymbol &FrameEmitterImpl::EmitCIE(MCObjectStreamer &streamer,
streamer.EmitIntValue(0, 1);
// Code Alignment Factor
- if (verboseAsm) streamer.AddComment("CIE Code Alignment Factor");
streamer.EmitULEB128IntValue(context.getAsmInfo()->getMinInstAlignment());
// Data Alignment Factor
- if (verboseAsm) streamer.AddComment("CIE Data Alignment Factor");
streamer.EmitSLEB128IntValue(getDataAlignmentFactor(streamer));
// Return Address Register
- if (verboseAsm) streamer.AddComment("CIE Return Address Column");
if (CIEVersion == 1) {
assert(MRI->getRARegister() <= 255 &&
"DWARF 2 encodes return_address_register in one byte");
@@ -1413,24 +1311,21 @@ const MCSymbol &FrameEmitterImpl::EmitCIE(MCObjectStreamer &streamer,
// Encoding of the FDE pointers
augmentationLength += 1;
- if (verboseAsm) streamer.AddComment("Augmentation Size");
streamer.EmitULEB128IntValue(augmentationLength);
// Augmentation Data (optional)
if (personality) {
// Personality Encoding
- EmitEncodingByte(streamer, personalityEncoding,
- "Personality Encoding");
+ emitEncodingByte(streamer, personalityEncoding);
// Personality
- if (verboseAsm) streamer.AddComment("Personality");
EmitPersonality(streamer, *personality, personalityEncoding);
}
if (lsda)
- EmitEncodingByte(streamer, lsdaEncoding, "LSDA Encoding");
+ emitEncodingByte(streamer, lsdaEncoding);
// Encoding of the FDE pointers
- EmitEncodingByte(streamer, MOFI->getFDEEncoding(), "FDE Encoding");
+ emitEncodingByte(streamer, MOFI->getFDEEncoding());
}
// Initial Instructions
@@ -1456,12 +1351,10 @@ MCSymbol *FrameEmitterImpl::EmitFDE(MCObjectStreamer &streamer,
MCSymbol *fdeStart = context.CreateTempSymbol();
MCSymbol *fdeEnd = context.CreateTempSymbol();
const MCObjectFileInfo *MOFI = context.getObjectFileInfo();
- bool verboseAsm = streamer.isVerboseAsm();
// Length
const MCExpr *Length = MakeStartMinusEndExpr(streamer, *fdeStart, *fdeEnd, 0);
- if (verboseAsm) streamer.AddComment("FDE Length");
- streamer.EmitAbsValue(Length, 4);
+ emitAbsValue(streamer, Length, 4);
streamer.EmitLabel(fdeStart);
@@ -1470,12 +1363,11 @@ MCSymbol *FrameEmitterImpl::EmitFDE(MCObjectStreamer &streamer,
if (IsEH) {
const MCExpr *offset = MakeStartMinusEndExpr(streamer, cieStart, *fdeStart,
0);
- if (verboseAsm) streamer.AddComment("FDE CIE Offset");
- streamer.EmitAbsValue(offset, 4);
+ emitAbsValue(streamer, offset, 4);
} else if (!asmInfo->doesDwarfUseRelocationsAcrossSections()) {
const MCExpr *offset = MakeStartMinusEndExpr(streamer, *SectionStart,
cieStart, 0);
- streamer.EmitAbsValue(offset, 4);
+ emitAbsValue(streamer, offset, 4);
} else {
streamer.EmitSymbolValue(&cieStart, 4);
}
@@ -1484,13 +1376,12 @@ MCSymbol *FrameEmitterImpl::EmitFDE(MCObjectStreamer &streamer,
unsigned PCEncoding =
IsEH ? MOFI->getFDEEncoding() : (unsigned)dwarf::DW_EH_PE_absptr;
unsigned PCSize = getSizeForEncoding(streamer, PCEncoding);
- EmitFDESymbol(streamer, *frame.Begin, PCEncoding, IsEH, "FDE initial location");
+ emitFDESymbol(streamer, *frame.Begin, PCEncoding, IsEH);
// PC Range
const MCExpr *Range = MakeStartMinusEndExpr(streamer, *frame.Begin,
*frame.End, 0);
- if (verboseAsm) streamer.AddComment("FDE address range");
- streamer.EmitAbsValue(Range, PCSize);
+ emitAbsValue(streamer, Range, PCSize);
if (IsEH) {
// Augmentation Data Length
@@ -1499,13 +1390,11 @@ MCSymbol *FrameEmitterImpl::EmitFDE(MCObjectStreamer &streamer,
if (frame.Lsda)
augmentationLength += getSizeForEncoding(streamer, frame.LsdaEncoding);
- if (verboseAsm) streamer.AddComment("Augmentation size");
streamer.EmitULEB128IntValue(augmentationLength);
// Augmentation Data
if (frame.Lsda)
- EmitFDESymbol(streamer, *frame.Lsda, frame.LsdaEncoding, true,
- "Language Specific Data Area");
+ emitFDESymbol(streamer, *frame.Lsda, frame.LsdaEncoding, true);
}
// Call Frame Instructions
diff --git a/contrib/llvm/lib/MC/MCELFStreamer.cpp b/contrib/llvm/lib/MC/MCELFStreamer.cpp
index 7c70540..bdc4a84 100644
--- a/contrib/llvm/lib/MC/MCELFStreamer.cpp
+++ b/contrib/llvm/lib/MC/MCELFStreamer.cpp
@@ -15,6 +15,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
@@ -38,19 +39,23 @@ using namespace llvm;
MCELFStreamer::~MCELFStreamer() {
}
-void MCELFStreamer::InitSections() {
+void MCELFStreamer::InitSections(bool NoExecStack) {
// This emulates the same behavior of GNU as. This makes it easier
// to compare the output as the major sections are in the same order.
- SwitchSection(getContext().getObjectFileInfo()->getTextSection());
+ MCContext &Ctx = getContext();
+ SwitchSection(Ctx.getObjectFileInfo()->getTextSection());
EmitCodeAlignment(4);
- SwitchSection(getContext().getObjectFileInfo()->getDataSection());
+ SwitchSection(Ctx.getObjectFileInfo()->getDataSection());
EmitCodeAlignment(4);
- SwitchSection(getContext().getObjectFileInfo()->getBSSSection());
+ SwitchSection(Ctx.getObjectFileInfo()->getBSSSection());
EmitCodeAlignment(4);
- SwitchSection(getContext().getObjectFileInfo()->getTextSection());
+ SwitchSection(Ctx.getObjectFileInfo()->getTextSection());
+
+ if (NoExecStack)
+ SwitchSection(Ctx.getAsmInfo()->getNonexecutableStackSection(Ctx));
}
void MCELFStreamer::EmitLabel(MCSymbol *Symbol) {
@@ -87,10 +92,19 @@ void MCELFStreamer::ChangeSection(const MCSection *Section,
MCSectionData *CurSection = getCurrentSectionData();
if (CurSection && CurSection->isBundleLocked())
report_fatal_error("Unterminated .bundle_lock when changing a section");
- const MCSymbol *Grp = static_cast<const MCSectionELF *>(Section)->getGroup();
+
+ MCAssembler &Asm = getAssembler();
+ auto *SectionELF = static_cast<const MCSectionELF *>(Section);
+ const MCSymbol *Grp = SectionELF->getGroup();
if (Grp)
- getAssembler().getOrCreateSymbolData(*Grp);
+ Asm.getOrCreateSymbolData(*Grp);
+
this->MCObjectStreamer::ChangeSection(Section, Subsection);
+ MCSymbol *SectionSymbol = getContext().getOrCreateSectionSymbol(*SectionELF);
+ if (SectionSymbol->isUndefined()) {
+ EmitLabel(SectionSymbol);
+ MCELF::SetType(Asm.getSymbolData(*SectionSymbol), ELF::STT_SECTION);
+ }
}
void MCELFStreamer::EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) {
@@ -448,11 +462,13 @@ void MCELFStreamer::EmitInstToData(const MCInst &Inst,
} else {
DF = new MCDataFragment();
insert(DF);
- if (SD->getBundleLockState() == MCSectionData::BundleLockedAlignToEnd) {
- // If this is a new fragment created for a bundle-locked group, and the
- // group was marked as "align_to_end", set a flag in the fragment.
- DF->setAlignToBundleEnd(true);
- }
+ }
+ if (SD->getBundleLockState() == MCSectionData::BundleLockedAlignToEnd) {
+ // If this fragment is for a group marked "align_to_end", set a flag
+ // in the fragment. This can happen after the fragment has already been
+ // created if there are nested bundle_align groups and an inner one
+ // is the one marked align_to_end.
+ DF->setAlignToBundleEnd(true);
}
// We're now emitting an instruction in a bundle group, so this flag has
@@ -474,10 +490,11 @@ void MCELFStreamer::EmitInstToData(const MCInst &Inst,
void MCELFStreamer::EmitBundleAlignMode(unsigned AlignPow2) {
assert(AlignPow2 <= 30 && "Invalid bundle alignment");
MCAssembler &Assembler = getAssembler();
- if (Assembler.getBundleAlignSize() == 0 && AlignPow2 > 0)
- Assembler.setBundleAlignSize(1 << AlignPow2);
+ if (AlignPow2 > 0 && (Assembler.getBundleAlignSize() == 0 ||
+ Assembler.getBundleAlignSize() == 1U << AlignPow2))
+ Assembler.setBundleAlignSize(1U << AlignPow2);
else
- report_fatal_error(".bundle_align_mode should be only set once per file");
+ report_fatal_error(".bundle_align_mode cannot be changed once set");
}
void MCELFStreamer::EmitBundleLock(bool AlignToEnd) {
@@ -487,12 +504,12 @@ void MCELFStreamer::EmitBundleLock(bool AlignToEnd) {
//
if (!getAssembler().isBundlingEnabled())
report_fatal_error(".bundle_lock forbidden when bundling is disabled");
- else if (SD->isBundleLocked())
- report_fatal_error("Nesting of .bundle_lock is forbidden");
+
+ if (!SD->isBundleLocked())
+ SD->setBundleGroupBeforeFirstInst(true);
SD->setBundleLockState(AlignToEnd ? MCSectionData::BundleLockedAlignToEnd :
MCSectionData::BundleLocked);
- SD->setBundleGroupBeforeFirstInst(true);
}
void MCELFStreamer::EmitBundleUnlock() {
@@ -543,12 +560,10 @@ void MCELFStreamer::FinishImpl() {
MCStreamer *llvm::createELFStreamer(MCContext &Context, MCAsmBackend &MAB,
raw_ostream &OS, MCCodeEmitter *CE,
- bool RelaxAll, bool NoExecStack) {
+ bool RelaxAll) {
MCELFStreamer *S = new MCELFStreamer(Context, MAB, OS, CE);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
- if (NoExecStack)
- S->getAssembler().setNoExecStack(true);
return S;
}
diff --git a/contrib/llvm/lib/MC/MCExpr.cpp b/contrib/llvm/lib/MC/MCExpr.cpp
index 2d02392..709dc6b 100644
--- a/contrib/llvm/lib/MC/MCExpr.cpp
+++ b/contrib/llvm/lib/MC/MCExpr.cpp
@@ -49,12 +49,8 @@ void MCExpr::print(raw_ostream &OS) const {
else
OS << Sym;
- if (SRE.getKind() != MCSymbolRefExpr::VK_None) {
- if (SRE.getMCAsmInfo().useParensForSymbolVariant())
- OS << '(' << MCSymbolRefExpr::getVariantKindName(SRE.getKind()) << ')';
- else
- OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
- }
+ if (SRE.getKind() != MCSymbolRefExpr::VK_None)
+ SRE.printVariantKind(OS);
return;
}
@@ -150,6 +146,15 @@ const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
/* *** */
+MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
+ const MCAsmInfo *MAI)
+ : MCExpr(MCExpr::SymbolRef), Kind(Kind),
+ UseParensForSymbolVariant(MAI->useParensForSymbolVariant()),
+ HasSubsectionsViaSymbols(MAI->hasSubsectionsViaSymbols()),
+ Symbol(Symbol) {
+ assert(Symbol);
+}
+
const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
VariantKind Kind,
MCContext &Ctx) {
@@ -192,6 +197,7 @@ StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
case VK_ARM_TARGET1: return "target1";
case VK_ARM_TARGET2: return "target2";
case VK_ARM_PREL31: return "prel31";
+ case VK_ARM_SBREL: return "sbrel";
case VK_ARM_TLSLDO: return "tlsldo";
case VK_ARM_TLSCALL: return "tlscall";
case VK_ARM_TLSDESC: return "tlsdesc";
@@ -274,177 +280,105 @@ StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
case VK_Mips_CALL_LO16: return "CALL_LO16";
case VK_Mips_PCREL_HI16: return "PCREL_HI16";
case VK_Mips_PCREL_LO16: return "PCREL_LO16";
- case VK_COFF_IMGREL32: return "IMGREL32";
+ case VK_COFF_IMGREL32: return "IMGREL";
}
llvm_unreachable("Invalid variant kind");
}
MCSymbolRefExpr::VariantKind
MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
- return StringSwitch<VariantKind>(Name)
- .Case("GOT", VK_GOT)
+ return StringSwitch<VariantKind>(Name.lower())
.Case("got", VK_GOT)
- .Case("GOTOFF", VK_GOTOFF)
.Case("gotoff", VK_GOTOFF)
- .Case("GOTPCREL", VK_GOTPCREL)
.Case("gotpcrel", VK_GOTPCREL)
- .Case("GOT_PREL", VK_GOTPCREL)
.Case("got_prel", VK_GOTPCREL)
- .Case("GOTTPOFF", VK_GOTTPOFF)
.Case("gottpoff", VK_GOTTPOFF)
- .Case("INDNTPOFF", VK_INDNTPOFF)
.Case("indntpoff", VK_INDNTPOFF)
- .Case("NTPOFF", VK_NTPOFF)
.Case("ntpoff", VK_NTPOFF)
- .Case("GOTNTPOFF", VK_GOTNTPOFF)
.Case("gotntpoff", VK_GOTNTPOFF)
- .Case("PLT", VK_PLT)
.Case("plt", VK_PLT)
- .Case("TLSGD", VK_TLSGD)
.Case("tlsgd", VK_TLSGD)
- .Case("TLSLD", VK_TLSLD)
.Case("tlsld", VK_TLSLD)
- .Case("TLSLDM", VK_TLSLDM)
.Case("tlsldm", VK_TLSLDM)
- .Case("TPOFF", VK_TPOFF)
.Case("tpoff", VK_TPOFF)
- .Case("DTPOFF", VK_DTPOFF)
.Case("dtpoff", VK_DTPOFF)
- .Case("TLVP", VK_TLVP)
.Case("tlvp", VK_TLVP)
- .Case("TLVPPAGE", VK_TLVPPAGE)
.Case("tlvppage", VK_TLVPPAGE)
- .Case("TLVPPAGEOFF", VK_TLVPPAGEOFF)
.Case("tlvppageoff", VK_TLVPPAGEOFF)
- .Case("PAGE", VK_PAGE)
.Case("page", VK_PAGE)
- .Case("PAGEOFF", VK_PAGEOFF)
.Case("pageoff", VK_PAGEOFF)
- .Case("GOTPAGE", VK_GOTPAGE)
.Case("gotpage", VK_GOTPAGE)
- .Case("GOTPAGEOFF", VK_GOTPAGEOFF)
.Case("gotpageoff", VK_GOTPAGEOFF)
- .Case("IMGREL", VK_COFF_IMGREL32)
.Case("imgrel", VK_COFF_IMGREL32)
- .Case("SECREL32", VK_SECREL)
.Case("secrel32", VK_SECREL)
- .Case("L", VK_PPC_LO)
.Case("l", VK_PPC_LO)
- .Case("H", VK_PPC_HI)
.Case("h", VK_PPC_HI)
- .Case("HA", VK_PPC_HA)
.Case("ha", VK_PPC_HA)
- .Case("HIGHER", VK_PPC_HIGHER)
.Case("higher", VK_PPC_HIGHER)
- .Case("HIGHERA", VK_PPC_HIGHERA)
.Case("highera", VK_PPC_HIGHERA)
- .Case("HIGHEST", VK_PPC_HIGHEST)
.Case("highest", VK_PPC_HIGHEST)
- .Case("HIGHESTA", VK_PPC_HIGHESTA)
.Case("highesta", VK_PPC_HIGHESTA)
- .Case("GOT@L", VK_PPC_GOT_LO)
.Case("got@l", VK_PPC_GOT_LO)
- .Case("GOT@H", VK_PPC_GOT_HI)
.Case("got@h", VK_PPC_GOT_HI)
- .Case("GOT@HA", VK_PPC_GOT_HA)
.Case("got@ha", VK_PPC_GOT_HA)
.Case("local", VK_PPC_LOCAL)
- .Case("LOCAL", VK_PPC_LOCAL)
- .Case("TOCBASE", VK_PPC_TOCBASE)
.Case("tocbase", VK_PPC_TOCBASE)
- .Case("TOC", VK_PPC_TOC)
.Case("toc", VK_PPC_TOC)
- .Case("TOC@L", VK_PPC_TOC_LO)
.Case("toc@l", VK_PPC_TOC_LO)
- .Case("TOC@H", VK_PPC_TOC_HI)
.Case("toc@h", VK_PPC_TOC_HI)
- .Case("TOC@HA", VK_PPC_TOC_HA)
.Case("toc@ha", VK_PPC_TOC_HA)
- .Case("TLS", VK_PPC_TLS)
.Case("tls", VK_PPC_TLS)
- .Case("DTPMOD", VK_PPC_DTPMOD)
.Case("dtpmod", VK_PPC_DTPMOD)
- .Case("TPREL", VK_PPC_TPREL)
.Case("tprel", VK_PPC_TPREL)
- .Case("TPREL@L", VK_PPC_TPREL_LO)
.Case("tprel@l", VK_PPC_TPREL_LO)
- .Case("TPREL@H", VK_PPC_TPREL_HI)
.Case("tprel@h", VK_PPC_TPREL_HI)
- .Case("TPREL@HA", VK_PPC_TPREL_HA)
.Case("tprel@ha", VK_PPC_TPREL_HA)
- .Case("TPREL@HIGHER", VK_PPC_TPREL_HIGHER)
.Case("tprel@higher", VK_PPC_TPREL_HIGHER)
- .Case("TPREL@HIGHERA", VK_PPC_TPREL_HIGHERA)
.Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
- .Case("TPREL@HIGHEST", VK_PPC_TPREL_HIGHEST)
.Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
- .Case("TPREL@HIGHESTA", VK_PPC_TPREL_HIGHESTA)
.Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
- .Case("DTPREL", VK_PPC_DTPREL)
.Case("dtprel", VK_PPC_DTPREL)
- .Case("DTPREL@L", VK_PPC_DTPREL_LO)
.Case("dtprel@l", VK_PPC_DTPREL_LO)
- .Case("DTPREL@H", VK_PPC_DTPREL_HI)
.Case("dtprel@h", VK_PPC_DTPREL_HI)
- .Case("DTPREL@HA", VK_PPC_DTPREL_HA)
.Case("dtprel@ha", VK_PPC_DTPREL_HA)
- .Case("DTPREL@HIGHER", VK_PPC_DTPREL_HIGHER)
.Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
- .Case("DTPREL@HIGHERA", VK_PPC_DTPREL_HIGHERA)
.Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
- .Case("DTPREL@HIGHEST", VK_PPC_DTPREL_HIGHEST)
.Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
- .Case("DTPREL@HIGHESTA", VK_PPC_DTPREL_HIGHESTA)
.Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
- .Case("GOT@TPREL", VK_PPC_GOT_TPREL)
.Case("got@tprel", VK_PPC_GOT_TPREL)
- .Case("GOT@TPREL@L", VK_PPC_GOT_TPREL_LO)
.Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
- .Case("GOT@TPREL@H", VK_PPC_GOT_TPREL_HI)
.Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
- .Case("GOT@TPREL@HA", VK_PPC_GOT_TPREL_HA)
.Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
- .Case("GOT@DTPREL", VK_PPC_GOT_DTPREL)
.Case("got@dtprel", VK_PPC_GOT_DTPREL)
- .Case("GOT@DTPREL@L", VK_PPC_GOT_DTPREL_LO)
.Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
- .Case("GOT@DTPREL@H", VK_PPC_GOT_DTPREL_HI)
.Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
- .Case("GOT@DTPREL@HA", VK_PPC_GOT_DTPREL_HA)
.Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
- .Case("GOT@TLSGD", VK_PPC_GOT_TLSGD)
.Case("got@tlsgd", VK_PPC_GOT_TLSGD)
- .Case("GOT@TLSGD@L", VK_PPC_GOT_TLSGD_LO)
.Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
- .Case("GOT@TLSGD@H", VK_PPC_GOT_TLSGD_HI)
.Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
- .Case("GOT@TLSGD@HA", VK_PPC_GOT_TLSGD_HA)
.Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
- .Case("GOT@TLSLD", VK_PPC_GOT_TLSLD)
.Case("got@tlsld", VK_PPC_GOT_TLSLD)
- .Case("GOT@TLSLD@L", VK_PPC_GOT_TLSLD_LO)
.Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
- .Case("GOT@TLSLD@H", VK_PPC_GOT_TLSLD_HI)
.Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
- .Case("GOT@TLSLD@HA", VK_PPC_GOT_TLSLD_HA)
.Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
- .Case("NONE", VK_ARM_NONE)
.Case("none", VK_ARM_NONE)
- .Case("TARGET1", VK_ARM_TARGET1)
.Case("target1", VK_ARM_TARGET1)
- .Case("TARGET2", VK_ARM_TARGET2)
.Case("target2", VK_ARM_TARGET2)
- .Case("PREL31", VK_ARM_PREL31)
.Case("prel31", VK_ARM_PREL31)
- .Case("TLSLDO", VK_ARM_TLSLDO)
+ .Case("sbrel", VK_ARM_SBREL)
.Case("tlsldo", VK_ARM_TLSLDO)
- .Case("TLSCALL", VK_ARM_TLSCALL)
.Case("tlscall", VK_ARM_TLSCALL)
- .Case("TLSDESC", VK_ARM_TLSDESC)
.Case("tlsdesc", VK_ARM_TLSDESC)
.Default(VK_Invalid);
}
+void MCSymbolRefExpr::printVariantKind(raw_ostream &OS) const {
+ if (UseParensForSymbolVariant)
+ OS << '(' << MCSymbolRefExpr::getVariantKindName(getKind()) << ')';
+ else
+ OS << '@' << MCSymbolRefExpr::getVariantKindName(getKind());
+}
+
/* *** */
void MCTargetExpr::anchor() {}
@@ -470,9 +404,27 @@ bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
return EvaluateAsAbsolute(Res, &Asm, nullptr, nullptr);
}
+int64_t MCExpr::evaluateKnownAbsolute(const MCAsmLayout &Layout) const {
+ int64_t Res;
+ bool Abs =
+ evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr, true);
+ (void)Abs;
+ assert(Abs && "Not actually absolute");
+ return Res;
+}
+
bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
const MCAsmLayout *Layout,
const SectionAddrMap *Addrs) const {
+ // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
+ // absolutize differences across sections and that is what the MachO writer
+ // uses Addrs for.
+ return evaluateAsAbsolute(Res, Asm, Layout, Addrs, Addrs);
+}
+
+bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
+ const MCAsmLayout *Layout,
+ const SectionAddrMap *Addrs, bool InSet) const {
MCValue Value;
// Fast path constants.
@@ -481,12 +433,8 @@ bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
return true;
}
- // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
- // absolutize differences across sections and that is what the MachO writer
- // uses Addrs for.
- bool IsRelocatable =
- EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs,
- /*ForceVarExpansion*/ false);
+ bool IsRelocatable = EvaluateAsRelocatableImpl(
+ Value, Asm, Layout, nullptr, Addrs, InSet, /*ForceVarExpansion*/ false);
// Record the current value.
Res = Value.getConstant();
@@ -635,27 +583,31 @@ static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
}
bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
- const MCAsmLayout *Layout) const {
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const {
MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
- return EvaluateAsRelocatableImpl(Res, Assembler, Layout, nullptr, false,
- /*ForceVarExpansion*/ false);
+ return EvaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
+ false, /*ForceVarExpansion*/ false);
}
-bool MCExpr::EvaluateAsValue(MCValue &Res, const MCAsmLayout *Layout) const {
+bool MCExpr::EvaluateAsValue(MCValue &Res, const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const {
MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
- return EvaluateAsRelocatableImpl(Res, Assembler, Layout, nullptr, false,
- /*ForceVarExpansion*/ true);
+ return EvaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
+ false, /*ForceVarExpansion*/ true);
}
bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
const MCAsmLayout *Layout,
+ const MCFixup *Fixup,
const SectionAddrMap *Addrs, bool InSet,
bool ForceVarExpansion) const {
++stats::MCExprEvaluate;
switch (getKind()) {
case Target:
- return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
+ return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout,
+ Fixup);
case Constant:
Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
@@ -664,16 +616,15 @@ bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
case SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
const MCSymbol &Sym = SRE->getSymbol();
- const MCAsmInfo &MCAsmInfo = SRE->getMCAsmInfo();
// Evaluate recursively if this is a variable.
if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
if (Sym.getVariableValue()->EvaluateAsRelocatableImpl(
- Res, Asm, Layout, Addrs, true, ForceVarExpansion)) {
+ Res, Asm, Layout, Fixup, Addrs, true, ForceVarExpansion)) {
const MCSymbolRefExpr *A = Res.getSymA();
const MCSymbolRefExpr *B = Res.getSymB();
- if (MCAsmInfo.hasSubsectionsViaSymbols()) {
+ if (SRE->hasSubsectionsViaSymbols()) {
// FIXME: This is small hack. Given
// a = b + 4
// .long a
@@ -700,8 +651,9 @@ bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
MCValue Value;
- if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs,
- InSet, ForceVarExpansion))
+ if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
+ Fixup, Addrs, InSet,
+ ForceVarExpansion))
return false;
switch (AUE->getOpcode()) {
@@ -734,10 +686,12 @@ bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
MCValue LHSValue, RHSValue;
- if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout, Addrs,
- InSet, ForceVarExpansion) ||
- !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout, Addrs,
- InSet, ForceVarExpansion))
+ if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
+ Fixup, Addrs, InSet,
+ ForceVarExpansion) ||
+ !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
+ Fixup, Addrs, InSet,
+ ForceVarExpansion))
return false;
// We only support a few operations on non-constant expressions, handle
diff --git a/contrib/llvm/lib/MC/MCLinkerOptimizationHint.cpp b/contrib/llvm/lib/MC/MCLinkerOptimizationHint.cpp
index 3f8d620..7739878 100644
--- a/contrib/llvm/lib/MC/MCLinkerOptimizationHint.cpp
+++ b/contrib/llvm/lib/MC/MCLinkerOptimizationHint.cpp
@@ -9,8 +9,8 @@
#include "llvm/MC/MCLinkerOptimizationHint.h"
#include "llvm/MC/MCAsmLayout.h"
-#include "llvm/Support/LEB128.h"
#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/LEB128.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/MC/MCMachOStreamer.cpp b/contrib/llvm/lib/MC/MCMachOStreamer.cpp
index 9e8bc94..a147c3d 100644
--- a/contrib/llvm/lib/MC/MCMachOStreamer.cpp
+++ b/contrib/llvm/lib/MC/MCMachOStreamer.cpp
@@ -55,6 +55,12 @@ public:
: MCObjectStreamer(Context, MAB, OS, Emitter),
LabelSections(label) {}
+ /// state management
+ void reset() override {
+ HasSectionLabel.clear();
+ MCObjectStreamer::reset();
+ }
+
/// @name MCStreamer Interface
/// @{
@@ -90,8 +96,8 @@ public:
unsigned ByteAlignment) override;
void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = nullptr,
uint64_t Size = 0, unsigned ByteAlignment = 0) override;
- virtual void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol,
- uint64_t Size, unsigned ByteAlignment = 0) override;
+ void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size,
+ unsigned ByteAlignment = 0) override;
void EmitFileDirective(StringRef Filename) override {
// FIXME: Just ignore the .file; it isn't important enough to fail the
diff --git a/contrib/llvm/lib/MC/MCNullStreamer.cpp b/contrib/llvm/lib/MC/MCNullStreamer.cpp
index d543402..fc56728 100644
--- a/contrib/llvm/lib/MC/MCNullStreamer.cpp
+++ b/contrib/llvm/lib/MC/MCNullStreamer.cpp
@@ -29,7 +29,6 @@ namespace {
return true;
}
- void EmitCOFFSecRel32(MCSymbol const *Symbol) override {}
void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) override {}
void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = nullptr,
diff --git a/contrib/llvm/lib/MC/MCObjectFileInfo.cpp b/contrib/llvm/lib/MC/MCObjectFileInfo.cpp
index 1b52062..858181d 100644
--- a/contrib/llvm/lib/MC/MCObjectFileInfo.cpp
+++ b/contrib/llvm/lib/MC/MCObjectFileInfo.cpp
@@ -24,7 +24,7 @@ static bool useCompactUnwind(const Triple &T) {
return false;
// aarch64 always has it.
- if (T.getArch() == Triple::arm64 || T.getArch() == Triple::aarch64)
+ if (T.getArch() == Triple::aarch64)
return true;
// Use it on newer version of OS X.
@@ -43,8 +43,7 @@ void MCObjectFileInfo::InitMachOMCObjectFileInfo(Triple T) {
// MachO
SupportsWeakOmittedEHFrame = false;
- if (T.isOSDarwin() &&
- (T.getArch() == Triple::arm64 || T.getArch() == Triple::aarch64))
+ if (T.isOSDarwin() && T.getArch() == Triple::aarch64)
SupportsCompactUnwindWithoutEHFrame = true;
PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel
@@ -178,7 +177,7 @@ void MCObjectFileInfo::InitMachOMCObjectFileInfo(Triple T) {
if (T.getArch() == Triple::x86_64 || T.getArch() == Triple::x86)
CompactUnwindDwarfEHFrameOnly = 0x04000000;
- else if (T.getArch() == Triple::arm64 || T.getArch() == Triple::aarch64)
+ else if (T.getArch() == Triple::aarch64)
CompactUnwindDwarfEHFrameOnly = 0x03000000;
}
@@ -274,6 +273,12 @@ void MCObjectFileInfo::InitELFMCObjectFileInfo(Triple T) {
case Triple::mips64el:
FDECFIEncoding = dwarf::DW_EH_PE_sdata8;
break;
+ case Triple::x86_64:
+ FDECFIEncoding = dwarf::DW_EH_PE_pcrel |
+ ((CMModel == CodeModel::Large) ? dwarf::DW_EH_PE_sdata8
+ : dwarf::DW_EH_PE_sdata4);
+
+ break;
default:
FDECFIEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
break;
@@ -322,8 +327,6 @@ void MCObjectFileInfo::InitELFMCObjectFileInfo(Triple T) {
break;
case Triple::aarch64:
case Triple::aarch64_be:
- case Triple::arm64:
- case Triple::arm64_be:
// The small model guarantees static code/data size < 4GB, but not where it
// will be in memory. Most of these could end up >2GB away so even a signed
// pc-relative 32-bit address is insufficient, theoretically.
@@ -404,7 +407,7 @@ void MCObjectFileInfo::InitELFMCObjectFileInfo(Triple T) {
// platform.
EHSectionType = ELF::SHT_PROGBITS;
EHSectionFlags = ELF::SHF_ALLOC;
- if (T.getOS() == Triple::Solaris) {
+ if (T.isOSSolaris()) {
if (T.getArch() == Triple::x86_64)
EHSectionType = ELF::SHT_X86_64_UNWIND;
else
@@ -566,6 +569,9 @@ void MCObjectFileInfo::InitELFMCObjectFileInfo(Triple T) {
DwarfInfoDWOSection =
Ctx->getELFSection(".debug_info.dwo", ELF::SHT_PROGBITS, 0,
SectionKind::getMetadata());
+ DwarfTypesDWOSection =
+ Ctx->getELFSection(".debug_types.dwo", ELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
DwarfAbbrevDWOSection =
Ctx->getELFSection(".debug_abbrev.dwo", ELF::SHT_PROGBITS, 0,
SectionKind::getMetadata());
@@ -585,15 +591,19 @@ void MCObjectFileInfo::InitELFMCObjectFileInfo(Triple T) {
DwarfAddrSection =
Ctx->getELFSection(".debug_addr", ELF::SHT_PROGBITS, 0,
SectionKind::getMetadata());
+
+ StackMapSection =
+ Ctx->getELFSection(".llvm_stackmaps", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC,
+ SectionKind::getMetadata());
+
}
void MCObjectFileInfo::InitCOFFMCObjectFileInfo(Triple T) {
bool IsWoA = T.getArch() == Triple::arm || T.getArch() == Triple::thumb;
- // The object file format cannot represent common symbols with explicit
- // alignments.
- CommDirectiveSupportsAlignment = false;
+ CommDirectiveSupportsAlignment = true;
// COFF
BSSSection =
@@ -741,6 +751,10 @@ void MCObjectFileInfo::InitCOFFMCObjectFileInfo(Triple T) {
COFF::IMAGE_SCN_MEM_DISCARDABLE |
COFF::IMAGE_SCN_MEM_READ,
SectionKind::getMetadata());
+ DwarfTypesDWOSection =
+ Ctx->getCOFFSection(".debug_types.dwo", COFF::IMAGE_SCN_MEM_DISCARDABLE |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getMetadata());
DwarfAbbrevDWOSection =
Ctx->getCOFFSection(".debug_abbrev.dwo",
COFF::IMAGE_SCN_MEM_DISCARDABLE |
@@ -773,6 +787,27 @@ void MCObjectFileInfo::InitCOFFMCObjectFileInfo(Triple T) {
COFF::IMAGE_SCN_MEM_READ,
SectionKind::getMetadata());
+ DwarfAccelNamesSection =
+ Ctx->getCOFFSection(".apple_names",
+ COFF::IMAGE_SCN_MEM_DISCARDABLE |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getMetadata());
+ DwarfAccelNamespaceSection =
+ Ctx->getCOFFSection(".apple_namespaces",
+ COFF::IMAGE_SCN_MEM_DISCARDABLE |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getMetadata());
+ DwarfAccelTypesSection =
+ Ctx->getCOFFSection(".apple_types",
+ COFF::IMAGE_SCN_MEM_DISCARDABLE |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getMetadata());
+ DwarfAccelObjCSection =
+ Ctx->getCOFFSection(".apple_objc",
+ COFF::IMAGE_SCN_MEM_DISCARDABLE |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getMetadata());
+
DrectveSection =
Ctx->getCOFFSection(".drectve",
COFF::IMAGE_SCN_LNK_INFO |
@@ -830,7 +865,7 @@ void MCObjectFileInfo::InitMCObjectFileInfo(StringRef T, Reloc::Model relocm,
// cellspu-apple-darwin. Perhaps we should fix in Triple?
if ((Arch == Triple::x86 || Arch == Triple::x86_64 ||
Arch == Triple::arm || Arch == Triple::thumb ||
- Arch == Triple::arm64 || Arch == Triple::aarch64 ||
+ Arch == Triple::aarch64 ||
Arch == Triple::ppc || Arch == Triple::ppc64 ||
Arch == Triple::UnknownArch) &&
(TT.isOSDarwin() || TT.isOSBinFormatMachO())) {
@@ -852,13 +887,6 @@ const MCSection *MCObjectFileInfo::getDwarfTypesSection(uint64_t Hash) const {
SectionKind::getMetadata(), 0, utostr(Hash));
}
-const MCSection *
-MCObjectFileInfo::getDwarfTypesDWOSection(uint64_t Hash) const {
- return Ctx->getELFSection(".debug_types.dwo", ELF::SHT_PROGBITS,
- ELF::SHF_GROUP, SectionKind::getMetadata(), 0,
- utostr(Hash));
-}
-
void MCObjectFileInfo::InitEHFrameSection() {
if (Env == IsMachO)
EHFrameSection =
diff --git a/contrib/llvm/lib/MC/MCObjectStreamer.cpp b/contrib/llvm/lib/MC/MCObjectStreamer.cpp
index a721b59..08fe501 100644
--- a/contrib/llvm/lib/MC/MCObjectStreamer.cpp
+++ b/contrib/llvm/lib/MC/MCObjectStreamer.cpp
@@ -42,6 +42,21 @@ MCObjectStreamer::~MCObjectStreamer() {
delete Assembler;
}
+void MCObjectStreamer::flushPendingLabels(MCFragment *F) {
+ if (PendingLabels.size()) {
+ if (!F) {
+ F = new MCDataFragment();
+ CurSectionData->getFragmentList().insert(CurInsertionPoint, F);
+ F->setParent(CurSectionData);
+ }
+ for (MCSymbolData *SD : PendingLabels) {
+ SD->setFragment(F);
+ SD->setOffset(0);
+ }
+ PendingLabels.clear();
+ }
+}
+
void MCObjectStreamer::reset() {
if (Assembler)
Assembler->reset();
@@ -49,6 +64,7 @@ void MCObjectStreamer::reset() {
CurInsertionPoint = MCSectionData::iterator();
EmitEHFrame = true;
EmitDebugFrame = false;
+ PendingLabels.clear();
MCStreamer::reset();
}
@@ -72,7 +88,7 @@ MCFragment *MCObjectStreamer::getCurrentFragment() const {
return nullptr;
}
-MCDataFragment *MCObjectStreamer::getOrCreateDataFragment() const {
+MCDataFragment *MCObjectStreamer::getOrCreateDataFragment() {
MCDataFragment *F = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
// When bundling is enabled, we don't want to add data to a fragment that
// already has instructions (see MCELFStreamer::EmitInstToData for details)
@@ -127,15 +143,17 @@ void MCObjectStreamer::EmitLabel(MCSymbol *Symbol) {
MCStreamer::EmitLabel(Symbol);
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
-
- // FIXME: This is wasteful, we don't necessarily need to create a data
- // fragment. Instead, we should mark the symbol as pointing into the data
- // fragment if it exists, otherwise we should just queue the label and set its
- // fragment pointer when we emit the next fragment.
- MCDataFragment *F = getOrCreateDataFragment();
assert(!SD.getFragment() && "Unexpected fragment on symbol data!");
- SD.setFragment(F);
- SD.setOffset(F->getContents().size());
+
+ // If there is a current fragment, mark the symbol as pointing into it.
+ // Otherwise queue the label and set its fragment pointer when we emit the
+ // next fragment.
+ if (auto *F = dyn_cast_or_null<MCDataFragment>(getCurrentFragment())) {
+ SD.setFragment(F);
+ SD.setOffset(F->getContents().size());
+ } else {
+ PendingLabels.push_back(&SD);
+ }
}
void MCObjectStreamer::EmitULEB128Value(const MCExpr *Value) {
@@ -144,7 +162,6 @@ void MCObjectStreamer::EmitULEB128Value(const MCExpr *Value) {
EmitULEB128IntValue(IntValue);
return;
}
- Value = ForceExpAbs(Value);
insert(new MCLEBFragment(*Value, false));
}
@@ -154,7 +171,6 @@ void MCObjectStreamer::EmitSLEB128Value(const MCExpr *Value) {
EmitSLEB128IntValue(IntValue);
return;
}
- Value = ForceExpAbs(Value);
insert(new MCLEBFragment(*Value, true));
}
@@ -166,6 +182,7 @@ void MCObjectStreamer::EmitWeakReference(MCSymbol *Alias,
void MCObjectStreamer::ChangeSection(const MCSection *Section,
const MCExpr *Subsection) {
assert(Section && "Cannot switch to a null section!");
+ flushPendingLabels(nullptr);
CurSectionData = &getAssembler().getOrCreateSectionData(*Section);
@@ -266,33 +283,54 @@ void MCObjectStreamer::EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
Isa, Discriminator, FileName);
}
+static const MCExpr *buildSymbolDiff(MCObjectStreamer &OS, const MCSymbol *A,
+ const MCSymbol *B) {
+ MCContext &Context = OS.getContext();
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ const MCExpr *ARef = MCSymbolRefExpr::Create(A, Variant, Context);
+ const MCExpr *BRef = MCSymbolRefExpr::Create(B, Variant, Context);
+ const MCExpr *AddrDelta =
+ MCBinaryExpr::Create(MCBinaryExpr::Sub, ARef, BRef, Context);
+ return AddrDelta;
+}
+
+static void emitDwarfSetLineAddr(MCObjectStreamer &OS, int64_t LineDelta,
+ const MCSymbol *Label, int PointerSize) {
+ // emit the sequence to set the address
+ OS.EmitIntValue(dwarf::DW_LNS_extended_op, 1);
+ OS.EmitULEB128IntValue(PointerSize + 1);
+ OS.EmitIntValue(dwarf::DW_LNE_set_address, 1);
+ OS.EmitSymbolValue(Label, PointerSize);
+
+ // emit the sequence for the LineDelta (from 1) and a zero address delta.
+ MCDwarfLineAddr::Emit(&OS, LineDelta, 0);
+}
+
void MCObjectStreamer::EmitDwarfAdvanceLineAddr(int64_t LineDelta,
const MCSymbol *LastLabel,
const MCSymbol *Label,
unsigned PointerSize) {
if (!LastLabel) {
- EmitDwarfSetLineAddr(LineDelta, Label, PointerSize);
+ emitDwarfSetLineAddr(*this, LineDelta, Label, PointerSize);
return;
}
- const MCExpr *AddrDelta = BuildSymbolDiff(getContext(), Label, LastLabel);
+ const MCExpr *AddrDelta = buildSymbolDiff(*this, Label, LastLabel);
int64_t Res;
if (AddrDelta->EvaluateAsAbsolute(Res, getAssembler())) {
MCDwarfLineAddr::Emit(this, LineDelta, Res);
return;
}
- AddrDelta = ForceExpAbs(AddrDelta);
insert(new MCDwarfLineAddrFragment(LineDelta, *AddrDelta));
}
void MCObjectStreamer::EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel,
const MCSymbol *Label) {
- const MCExpr *AddrDelta = BuildSymbolDiff(getContext(), Label, LastLabel);
+ const MCExpr *AddrDelta = buildSymbolDiff(*this, Label, LastLabel);
int64_t Res;
if (AddrDelta->EvaluateAsAbsolute(Res, getAssembler())) {
MCDwarfFrameEmitter::EmitAdvanceLoc(*this, Res);
return;
}
- AddrDelta = ForceExpAbs(AddrDelta);
insert(new MCDwarfCallFrameFragment(*AddrDelta));
}
@@ -367,7 +405,9 @@ void MCObjectStreamer::EmitFill(uint64_t NumBytes, uint8_t FillValue) {
}
void MCObjectStreamer::EmitZeros(uint64_t NumBytes) {
- unsigned ItemSize = getCurrentSection().first->isVirtualSection() ? 0 : 1;
+ const MCSection *Sec = getCurrentSection().first;
+ assert(Sec && "need a section");
+ unsigned ItemSize = Sec->isVirtualSection() ? 0 : 1;
insert(new MCFillFragment(0, ItemSize, NumBytes));
}
@@ -379,5 +419,6 @@ void MCObjectStreamer::FinishImpl() {
// Dump out the dwarf file & directory tables and line tables.
MCDwarfLineTable::Emit(this);
+ flushPendingLabels(nullptr);
getAssembler().Finish();
}
diff --git a/contrib/llvm/lib/MC/MCParser/AsmLexer.cpp b/contrib/llvm/lib/MC/MCParser/AsmLexer.cpp
index 145ad4a..5c8ec66 100644
--- a/contrib/llvm/lib/MC/MCParser/AsmLexer.cpp
+++ b/contrib/llvm/lib/MC/MCParser/AsmLexer.cpp
@@ -417,7 +417,7 @@ AsmToken AsmLexer::LexQuote() {
StringRef AsmLexer::LexUntilEndOfStatement() {
TokStart = CurPtr;
- while (!isAtStartOfComment(*CurPtr) && // Start of line comment.
+ while (!isAtStartOfComment(CurPtr) && // Start of line comment.
!isAtStatementSeparator(CurPtr) && // End of statement marker.
*CurPtr != '\n' && *CurPtr != '\r' &&
(*CurPtr != 0 || CurPtr != CurBuf.end())) {
@@ -458,9 +458,17 @@ const AsmToken AsmLexer::peekTok(bool ShouldSkipSpace) {
return Token;
}
-bool AsmLexer::isAtStartOfComment(char Char) {
- // FIXME: This won't work for multi-character comment indicators like "//".
- return Char == *MAI.getCommentString();
+bool AsmLexer::isAtStartOfComment(const char *Ptr) {
+ const char *CommentString = MAI.getCommentString();
+
+ if (CommentString[1] == '\0')
+ return CommentString[0] == Ptr[0];
+
+ // FIXME: special case for the bogus "##" comment string in X86MCAsmInfoDarwin
+ if (CommentString[1] == '#')
+ return CommentString[0] == Ptr[0];
+
+ return strncmp(Ptr, CommentString, strlen(CommentString)) == 0;
}
bool AsmLexer::isAtStatementSeparator(const char *Ptr) {
@@ -473,7 +481,7 @@ AsmToken AsmLexer::LexToken() {
// This always consumes at least one character.
int CurChar = getNextChar();
- if (isAtStartOfComment(CurChar)) {
+ if (isAtStartOfComment(TokStart)) {
// If this comment starts with a '#', then return the Hash token and let
// the assembler parser see if it can be parsed as a cpp line filename
// comment. We do this only if we are at the start of a line.
diff --git a/contrib/llvm/lib/MC/MCParser/AsmParser.cpp b/contrib/llvm/lib/MC/MCParser/AsmParser.cpp
index ed1d704..8eff90a 100644
--- a/contrib/llvm/lib/MC/MCParser/AsmParser.cpp
+++ b/contrib/llvm/lib/MC/MCParser/AsmParser.cpp
@@ -45,10 +45,6 @@
#include <vector>
using namespace llvm;
-static cl::opt<bool>
-FatalAssemblerWarnings("fatal-assembler-warnings",
- cl::desc("Consider warnings as error"));
-
MCAsmParserSemaCallback::~MCAsmParserSemaCallback() {}
namespace {
@@ -73,19 +69,13 @@ struct MCAsmMacro {
MCAsmMacroParameters Parameters;
public:
- MCAsmMacro(StringRef N, StringRef B, ArrayRef<MCAsmMacroParameter> P) :
- Name(N), Body(B), Parameters(P) {}
+ MCAsmMacro(StringRef N, StringRef B, MCAsmMacroParameters P)
+ : Name(N), Body(B), Parameters(std::move(P)) {}
};
/// \brief Helper class for storing information about an active macro
/// instantiation.
struct MacroInstantiation {
- /// The macro being instantiated.
- const MCAsmMacro *TheMacro;
-
- /// The macro instantiation with substitutions.
- MemoryBuffer *Instantiation;
-
/// The location of the instantiation.
SMLoc InstantiationLoc;
@@ -95,9 +85,11 @@ struct MacroInstantiation {
/// The location where parsing should resume upon instantiation completion.
SMLoc ExitLoc;
+ /// The depth of TheCondStack at the start of the instantiation.
+ size_t CondStackDepth;
+
public:
- MacroInstantiation(const MCAsmMacro *M, SMLoc IL, int EB, SMLoc EL,
- MemoryBuffer *I);
+ MacroInstantiation(SMLoc IL, int EB, SMLoc EL, size_t CondStackDepth);
};
struct ParseStatementInfo {
@@ -129,7 +121,7 @@ private:
SourceMgr &SrcMgr;
SourceMgr::DiagHandlerTy SavedDiagHandler;
void *SavedDiagContext;
- MCAsmParserExtension *PlatformParser;
+ std::unique_ptr<MCAsmParserExtension> PlatformParser;
/// This is the current buffer index we're lexing from as managed by the
/// SourceMgr object.
@@ -144,7 +136,7 @@ private:
StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
/// \brief Map of currently defined macros.
- StringMap<MCAsmMacro*> MacroMap;
+ StringMap<MCAsmMacro> MacroMap;
/// \brief Stack of active macro instantiations.
std::vector<MacroInstantiation*> ActiveMacros;
@@ -246,7 +238,8 @@ public:
private:
- bool parseStatement(ParseStatementInfo &Info);
+ bool parseStatement(ParseStatementInfo &Info,
+ MCAsmParserSemaCallback *SI);
void eatToEndOfLine();
bool parseCppHashLineFilenameComment(const SMLoc &L);
@@ -269,7 +262,7 @@ private:
const MCAsmMacro* lookupMacro(StringRef Name);
/// \brief Define a new macro with the given name and information.
- void defineMacro(StringRef Name, const MCAsmMacro& Macro);
+ void defineMacro(StringRef Name, MCAsmMacro Macro);
/// \brief Undefine a macro. If no such macro was defined, it's a no-op.
void undefineMacro(StringRef Name);
@@ -355,9 +348,10 @@ private:
DK_CFI_REMEMBER_STATE, DK_CFI_RESTORE_STATE, DK_CFI_SAME_VALUE,
DK_CFI_RESTORE, DK_CFI_ESCAPE, DK_CFI_SIGNAL_FRAME, DK_CFI_UNDEFINED,
DK_CFI_REGISTER, DK_CFI_WINDOW_SAVE,
- DK_MACROS_ON, DK_MACROS_OFF, DK_MACRO, DK_ENDM, DK_ENDMACRO, DK_PURGEM,
+ DK_MACROS_ON, DK_MACROS_OFF,
+ DK_MACRO, DK_EXITM, DK_ENDM, DK_ENDMACRO, DK_PURGEM,
DK_SLEB128, DK_ULEB128,
- DK_ERR, DK_ERROR,
+ DK_ERR, DK_ERROR, DK_WARNING,
DK_END
};
@@ -407,6 +401,7 @@ private:
// macro directives
bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
+ bool parseDirectiveExitMacro(StringRef Directive);
bool parseDirectiveEndMacro(StringRef Directive);
bool parseDirectiveMacro(SMLoc DirectiveLoc);
bool parseDirectiveMacrosOnOff(StringRef Directive);
@@ -474,6 +469,9 @@ private:
// ".err" or ".error"
bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage);
+ // ".warning"
+ bool parseDirectiveWarning(SMLoc DirectiveLoc);
+
void initializeDirectiveKindMap();
};
}
@@ -504,34 +502,24 @@ AsmParser::AsmParser(SourceMgr &_SM, MCContext &_Ctx, MCStreamer &_Out,
// Initialize the platform / file format parser.
switch (_Ctx.getObjectFileInfo()->getObjectFileType()) {
case MCObjectFileInfo::IsCOFF:
- PlatformParser = createCOFFAsmParser();
- PlatformParser->Initialize(*this);
- break;
+ PlatformParser.reset(createCOFFAsmParser());
+ break;
case MCObjectFileInfo::IsMachO:
- PlatformParser = createDarwinAsmParser();
- PlatformParser->Initialize(*this);
- IsDarwin = true;
- break;
+ PlatformParser.reset(createDarwinAsmParser());
+ IsDarwin = true;
+ break;
case MCObjectFileInfo::IsELF:
- PlatformParser = createELFAsmParser();
- PlatformParser->Initialize(*this);
- break;
+ PlatformParser.reset(createELFAsmParser());
+ break;
}
+ PlatformParser->Initialize(*this);
initializeDirectiveKindMap();
}
AsmParser::~AsmParser() {
assert((HadError || ActiveMacros.empty()) &&
"Unexpected active macro instantiation!");
-
- // Destroy any macros.
- for (StringMap<MCAsmMacro *>::iterator it = MacroMap.begin(),
- ie = MacroMap.end();
- it != ie; ++it)
- delete it->getValue();
-
- delete PlatformParser;
}
void AsmParser::printMacroInstantiations() {
@@ -550,7 +538,7 @@ void AsmParser::Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges) {
}
bool AsmParser::Warning(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges) {
- if (FatalAssemblerWarnings)
+ if (getTargetParser().getTargetOptions().MCFatalWarnings)
return Error(L, Msg, Ranges);
printMessage(L, SourceMgr::DK_Warning, Msg, Ranges);
printMacroInstantiations();
@@ -619,7 +607,7 @@ const AsmToken &AsmParser::Lex() {
bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
// Create the initial section, if requested.
if (!NoInitialTextSection)
- Out.InitSections();
+ Out.InitSections(false);
// Prime the lexer.
Lex();
@@ -643,7 +631,7 @@ bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
// While we have input, parse each statement.
while (Lexer.isNot(AsmToken::Eof)) {
ParseStatementInfo Info;
- if (!parseStatement(Info))
+ if (!parseStatement(Info, nullptr))
continue;
// We had an error, validate that one was emitted and recover by skipping to
@@ -702,7 +690,7 @@ bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
void AsmParser::checkForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection().first) {
TokError("expected section directive before assembly directive");
- Out.InitSections();
+ Out.InitSections(false);
}
}
@@ -1188,7 +1176,8 @@ bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
/// ::= EndOfStatement
/// ::= Label* Directive ...Operands... EndOfStatement
/// ::= Label* Identifier OperandList* EndOfStatement
-bool AsmParser::parseStatement(ParseStatementInfo &Info) {
+bool AsmParser::parseStatement(ParseStatementInfo &Info,
+ MCAsmParserSemaCallback *SI) {
if (Lexer.is(AsmToken::EndOfStatement)) {
Out.AddBlankLine();
Lex();
@@ -1298,10 +1287,20 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info) {
// FIXME: This doesn't diagnose assignment to a symbol which has been
// implicitly marked as external.
MCSymbol *Sym;
- if (LocalLabelVal == -1)
+ if (LocalLabelVal == -1) {
+ if (ParsingInlineAsm && SI) {
+ StringRef RewrittenLabel = SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
+ assert(RewrittenLabel.size() && "We should have an internal name here.");
+ Info.AsmRewrites->push_back(AsmRewrite(AOK_Label, IDLoc,
+ IDVal.size(), RewrittenLabel));
+ IDVal = RewrittenLabel;
+ }
Sym = getContext().GetOrCreateSymbol(IDVal);
- else
+ } else
Sym = Ctx.CreateDirectionalLocalSymbol(LocalLabelVal);
+
+ Sym->redefineIfPossible();
+
if (!Sym->isUndefined() || Sym->isVariable())
return Error(IDLoc, "invalid symbol redefinition");
@@ -1542,6 +1541,8 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info) {
return parseDirectiveMacrosOnOff(IDVal);
case DK_MACRO:
return parseDirectiveMacro(IDLoc);
+ case DK_EXITM:
+ return parseDirectiveExitMacro(IDVal);
case DK_ENDM:
case DK_ENDMACRO:
return parseDirectiveEndMacro(IDVal);
@@ -1553,6 +1554,8 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info) {
return parseDirectiveError(IDLoc, false);
case DK_ERROR:
return parseDirectiveError(IDLoc, true);
+ case DK_WARNING:
+ return parseDirectiveWarning(IDLoc);
}
return Error(IDLoc, "unknown directive");
@@ -1595,14 +1598,18 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info) {
// directive for the instruction.
if (!HadError && getContext().getGenDwarfForAssembly() &&
getContext().getGenDwarfSectionSyms().count(
- getStreamer().getCurrentSection().first)) {
-
- unsigned Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer);
+ getStreamer().getCurrentSection().first)) {
+ unsigned Line;
+ if (ActiveMacros.empty())
+ Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer);
+ else
+ Line = SrcMgr.FindLineNumber(ActiveMacros.back()->InstantiationLoc,
+ ActiveMacros.back()->ExitBuffer);
// If we previously parsed a cpp hash file line comment then make sure the
// current Dwarf File is for the CppHashFilename if not then emit the
// Dwarf File table for it and adjust the line number for the .loc.
- if (CppHashFilename.size() != 0) {
+ if (CppHashFilename.size()) {
unsigned FileNumber = getStreamer().EmitDwarfFileDirective(
0, StringRef(), CppHashFilename);
getContext().setGenDwarfFileNumber(FileNumber);
@@ -1630,7 +1637,7 @@ bool AsmParser::parseStatement(ParseStatementInfo &Info) {
// If parsing succeeded, match the instruction.
if (!HadError) {
- unsigned ErrorInfo;
+ uint64_t ErrorInfo;
getTargetParser().MatchAndEmitInstruction(IDLoc, Info.Opcode,
Info.ParsedOperands, Out,
ErrorInfo, ParsingInlineAsm);
@@ -1856,10 +1863,10 @@ bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
return false;
}
-MacroInstantiation::MacroInstantiation(const MCAsmMacro *M, SMLoc IL, int EB,
- SMLoc EL, MemoryBuffer *I)
- : TheMacro(M), Instantiation(I), InstantiationLoc(IL), ExitBuffer(EB),
- ExitLoc(EL) {}
+MacroInstantiation::MacroInstantiation(SMLoc IL, int EB, SMLoc EL,
+ size_t CondStackDepth)
+ : InstantiationLoc(IL), ExitBuffer(EB), ExitLoc(EL),
+ CondStackDepth(CondStackDepth) {}
static bool isOperator(AsmToken::TokenKind kind) {
switch (kind) {
@@ -2078,21 +2085,15 @@ bool AsmParser::parseMacroArguments(const MCAsmMacro *M,
}
const MCAsmMacro *AsmParser::lookupMacro(StringRef Name) {
- StringMap<MCAsmMacro *>::iterator I = MacroMap.find(Name);
- return (I == MacroMap.end()) ? nullptr : I->getValue();
+ StringMap<MCAsmMacro>::iterator I = MacroMap.find(Name);
+ return (I == MacroMap.end()) ? nullptr : &I->getValue();
}
-void AsmParser::defineMacro(StringRef Name, const MCAsmMacro &Macro) {
- MacroMap[Name] = new MCAsmMacro(Macro);
+void AsmParser::defineMacro(StringRef Name, MCAsmMacro Macro) {
+ MacroMap.insert(std::make_pair(Name, std::move(Macro)));
}
-void AsmParser::undefineMacro(StringRef Name) {
- StringMap<MCAsmMacro *>::iterator I = MacroMap.find(Name);
- if (I != MacroMap.end()) {
- delete I->getValue();
- MacroMap.erase(I);
- }
-}
+void AsmParser::undefineMacro(StringRef Name) { MacroMap.erase(Name); }
bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) {
// Arbitrarily limit macro nesting depth, to match 'as'. We can eliminate
@@ -2117,17 +2118,17 @@ bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) {
// instantiation.
OS << ".endmacro\n";
- MemoryBuffer *Instantiation =
+ std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation(
- M, NameLoc, CurBuffer, getTok().getLoc(), Instantiation);
+ NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size());
ActiveMacros.push_back(MI);
// Jump to the macro instantiation and prime the lexer.
- CurBuffer = SrcMgr.AddNewSourceBuffer(MI->Instantiation, SMLoc());
+ CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
Lex();
@@ -2219,6 +2220,8 @@ bool AsmParser::parseAssignment(StringRef Name, bool allow_redef,
} else
Sym = getContext().GetOrCreateSymbol(Name);
+ Sym->setRedefinable(allow_redef);
+
// Do the assignment.
Out.EmitAssignment(Sym, Value);
if (NoDeadStrip)
@@ -2600,12 +2603,14 @@ bool AsmParser::parseDirectiveFill() {
if (!isUInt<32>(FillExpr) && FillSize > 4)
Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits");
- int64_t NonZeroFillSize = FillSize > 4 ? 4 : FillSize;
- FillExpr &= ~0ULL >> (64 - NonZeroFillSize * 8);
-
- for (uint64_t i = 0, e = NumValues; i != e; ++i) {
- getStreamer().EmitIntValue(FillExpr, NonZeroFillSize);
- getStreamer().EmitIntValue(0, FillSize - NonZeroFillSize);
+ if (NumValues > 0) {
+ int64_t NonZeroFillSize = FillSize > 4 ? 4 : FillSize;
+ FillExpr &= ~0ULL >> (64 - NonZeroFillSize * 8);
+ for (uint64_t i = 0, e = NumValues; i != e; ++i) {
+ getStreamer().EmitIntValue(FillExpr, NonZeroFillSize);
+ if (NonZeroFillSize < FillSize)
+ getStreamer().EmitIntValue(0, FillSize - NonZeroFillSize);
+ }
}
return false;
@@ -3292,7 +3297,7 @@ bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
if (Qualifier == "req")
Parameter.Required = true;
- else if (Qualifier == "vararg" && !IsDarwin)
+ else if (Qualifier == "vararg")
Parameter.Vararg = true;
else
return Error(QualLoc, Qualifier + " is not a valid parameter qualifier "
@@ -3313,7 +3318,7 @@ bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
"'" + Parameter.Name + "' in macro '" + Name + "'");
}
- Parameters.push_back(Parameter);
+ Parameters.push_back(std::move(Parameter));
if (getLexer().is(AsmToken::Comma))
Lex();
@@ -3365,7 +3370,7 @@ bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) {
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
checkForBadMacro(DirectiveLoc, Name, Body, Parameters);
- defineMacro(Name, MCAsmMacro(Name, Body, Parameters));
+ defineMacro(Name, MCAsmMacro(Name, Body, std::move(Parameters)));
return false;
}
@@ -3471,6 +3476,26 @@ void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name,
"found in body which will have no effect");
}
+/// parseDirectiveExitMacro
+/// ::= .exitm
+bool AsmParser::parseDirectiveExitMacro(StringRef Directive) {
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return TokError("unexpected token in '" + Directive + "' directive");
+
+ if (!isInsideMacroInstantiation())
+ return TokError("unexpected '" + Directive + "' in file, "
+ "no current macro definition");
+
+ // Exit all conditionals that are active in the current macro.
+ while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
+ TheCondState = TheCondStack.back();
+ TheCondStack.pop_back();
+ }
+
+ handleMacroExit();
+ return false;
+}
+
/// parseDirectiveEndMacro
/// ::= .endm
/// ::= .endmacro
@@ -4073,6 +4098,32 @@ bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) {
return true;
}
+/// parseDirectiveWarning
+/// ::= .warning [string]
+bool AsmParser::parseDirectiveWarning(SMLoc L) {
+ if (!TheCondStack.empty()) {
+ if (TheCondStack.back().Ignore) {
+ eatToEndOfStatement();
+ return false;
+ }
+ }
+
+ StringRef Message = ".warning directive invoked in source file";
+ if (Lexer.isNot(AsmToken::EndOfStatement)) {
+ if (Lexer.isNot(AsmToken::String)) {
+ TokError(".warning argument must be a string");
+ eatToEndOfStatement();
+ return true;
+ }
+
+ Message = getTok().getStringContents();
+ Lex();
+ }
+
+ Warning(L, Message);
+ return false;
+}
+
/// parseDirectiveEndIf
/// ::= .endif
bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) {
@@ -4200,11 +4251,13 @@ void AsmParser::initializeDirectiveKindMap() {
DirectiveKindMap[".macros_on"] = DK_MACROS_ON;
DirectiveKindMap[".macros_off"] = DK_MACROS_OFF;
DirectiveKindMap[".macro"] = DK_MACRO;
+ DirectiveKindMap[".exitm"] = DK_EXITM;
DirectiveKindMap[".endm"] = DK_ENDM;
DirectiveKindMap[".endmacro"] = DK_ENDMACRO;
DirectiveKindMap[".purgem"] = DK_PURGEM;
DirectiveKindMap[".err"] = DK_ERR;
DirectiveKindMap[".error"] = DK_ERROR;
+ DirectiveKindMap[".warning"] = DK_WARNING;
}
MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
@@ -4246,7 +4299,8 @@ MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
// We Are Anonymous.
- MacroLikeBodies.push_back(MCAsmMacro(StringRef(), Body, None));
+ MacroLikeBodies.push_back(
+ MCAsmMacro(StringRef(), Body, MCAsmMacroParameters()));
return &MacroLikeBodies.back();
}
@@ -4254,17 +4308,17 @@ void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS) {
OS << ".endr\n";
- MemoryBuffer *Instantiation =
+ std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation(
- M, DirectiveLoc, CurBuffer, getTok().getLoc(), Instantiation);
+ DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size());
ActiveMacros.push_back(MI);
// Jump to the macro instantiation and prime the lexer.
- CurBuffer = SrcMgr.AddNewSourceBuffer(MI->Instantiation, SMLoc());
+ CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
Lex();
}
@@ -4490,7 +4544,7 @@ bool AsmParser::parseMSInlineAsm(
unsigned OutputIdx = 0;
while (getLexer().isNot(AsmToken::Eof)) {
ParseStatementInfo Info(&AsmStrRewrites);
- if (parseStatement(Info))
+ if (parseStatement(Info, &SI))
return true;
if (Info.ParseError)
@@ -4616,6 +4670,9 @@ bool AsmParser::parseMSInlineAsm(
case AOK_ImmPrefix:
OS << "$$";
break;
+ case AOK_Label:
+ OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
+ break;
case AOK_Input:
OS << '$' << InputIdx++;
break;
diff --git a/contrib/llvm/lib/MC/MCParser/COFFAsmParser.cpp b/contrib/llvm/lib/MC/MCParser/COFFAsmParser.cpp
index 5ecf9e5..18bdb03 100644
--- a/contrib/llvm/lib/MC/MCParser/COFFAsmParser.cpp
+++ b/contrib/llvm/lib/MC/MCParser/COFFAsmParser.cpp
@@ -364,6 +364,10 @@ bool COFFAsmParser::ParseDirectiveSection(StringRef, SMLoc) {
Flags |= COFF::IMAGE_SCN_LNK_COMDAT;
+ if (!getLexer().is(AsmToken::Identifier))
+ return TokError("expected comdat type such as 'discard' or 'largest' "
+ "after protection bits");
+
if (parseCOMDATType(Type))
return true;
@@ -578,7 +582,7 @@ bool COFFAsmParser::ParseSEHDirectiveHandlerData(StringRef, SMLoc) {
}
bool COFFAsmParser::ParseSEHDirectivePushReg(StringRef, SMLoc L) {
- unsigned Reg;
+ unsigned Reg = 0;
if (ParseSEHRegisterNumber(Reg))
return true;
@@ -591,7 +595,7 @@ bool COFFAsmParser::ParseSEHDirectivePushReg(StringRef, SMLoc L) {
}
bool COFFAsmParser::ParseSEHDirectiveSetFrame(StringRef, SMLoc L) {
- unsigned Reg;
+ unsigned Reg = 0;
int64_t Off;
if (ParseSEHRegisterNumber(Reg))
return true;
@@ -632,7 +636,7 @@ bool COFFAsmParser::ParseSEHDirectiveAllocStack(StringRef, SMLoc) {
}
bool COFFAsmParser::ParseSEHDirectiveSaveReg(StringRef, SMLoc L) {
- unsigned Reg;
+ unsigned Reg = 0;
int64_t Off;
if (ParseSEHRegisterNumber(Reg))
return true;
@@ -659,7 +663,7 @@ bool COFFAsmParser::ParseSEHDirectiveSaveReg(StringRef, SMLoc L) {
// FIXME: This method is inherently x86-specific. It should really be in the
// x86 backend.
bool COFFAsmParser::ParseSEHDirectiveSaveXMM(StringRef, SMLoc L) {
- unsigned Reg;
+ unsigned Reg = 0;
int64_t Off;
if (ParseSEHRegisterNumber(Reg))
return true;
diff --git a/contrib/llvm/lib/MC/MCParser/DarwinAsmParser.cpp b/contrib/llvm/lib/MC/MCParser/DarwinAsmParser.cpp
index b2a6785..3ea745e 100644
--- a/contrib/llvm/lib/MC/MCParser/DarwinAsmParser.cpp
+++ b/contrib/llvm/lib/MC/MCParser/DarwinAsmParser.cpp
@@ -638,13 +638,13 @@ bool DarwinAsmParser::parseDirectiveSecureLogUnique(StringRef, SMLoc IDLoc) {
// Open the secure log file if we haven't already.
raw_ostream *OS = getContext().getSecureLog();
if (!OS) {
- std::string Err;
- OS = new raw_fd_ostream(SecureLogFile, Err,
+ std::error_code EC;
+ OS = new raw_fd_ostream(SecureLogFile, EC,
sys::fs::F_Append | sys::fs::F_Text);
- if (!Err.empty()) {
+ if (EC) {
delete OS;
return Error(IDLoc, Twine("can't open secure log file: ") +
- SecureLogFile + " (" + Err + ")");
+ SecureLogFile + " (" + EC.message() + ")");
}
getContext().setSecureLog(OS);
}
diff --git a/contrib/llvm/lib/MC/MCParser/MCAsmLexer.cpp b/contrib/llvm/lib/MC/MCParser/MCAsmLexer.cpp
index 530814b..795cc85 100644
--- a/contrib/llvm/lib/MC/MCParser/MCAsmLexer.cpp
+++ b/contrib/llvm/lib/MC/MCParser/MCAsmLexer.cpp
@@ -30,3 +30,7 @@ SMLoc AsmToken::getLoc() const {
SMLoc AsmToken::getEndLoc() const {
return SMLoc::getFromPointer(Str.data() + Str.size());
}
+
+SMRange AsmToken::getLocRange() const {
+ return SMRange(getLoc(), getEndLoc());
+}
diff --git a/contrib/llvm/lib/MC/MCParser/MCAsmParser.cpp b/contrib/llvm/lib/MC/MCParser/MCAsmParser.cpp
index e417aa9..290dcb2 100644
--- a/contrib/llvm/lib/MC/MCParser/MCAsmParser.cpp
+++ b/contrib/llvm/lib/MC/MCParser/MCAsmParser.cpp
@@ -29,7 +29,7 @@ void MCAsmParser::setTargetParser(MCTargetAsmParser &P) {
TargetParser->Initialize(*this);
}
-const AsmToken &MCAsmParser::getTok() {
+const AsmToken &MCAsmParser::getTok() const {
return getLexer().getTok();
}
diff --git a/contrib/llvm/lib/MC/MCSectionCOFF.cpp b/contrib/llvm/lib/MC/MCSectionCOFF.cpp
index fc2bd36..e95845f 100644
--- a/contrib/llvm/lib/MC/MCSectionCOFF.cpp
+++ b/contrib/llvm/lib/MC/MCSectionCOFF.cpp
@@ -47,18 +47,22 @@ void MCSectionCOFF::PrintSwitchToSection(const MCAsmInfo &MAI,
}
OS << "\t.section\t" << getSectionName() << ",\"";
- if (getKind().isText())
+ if (getCharacteristics() & COFF::IMAGE_SCN_MEM_EXECUTE)
OS << 'x';
- else if (getKind().isBSS())
- OS << 'b';
- if (getKind().isWriteable())
+ if (getCharacteristics() & COFF::IMAGE_SCN_MEM_WRITE)
OS << 'w';
- else
+ else if (getCharacteristics() & COFF::IMAGE_SCN_MEM_READ)
OS << 'r';
- if (getCharacteristics() & COFF::IMAGE_SCN_MEM_DISCARDABLE)
- OS << 'n';
+ else
+ OS << 'y';
if (getCharacteristics() & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
OS << 'd';
+ if (getCharacteristics() & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
+ OS << 'b';
+ if (getCharacteristics() & COFF::IMAGE_SCN_LNK_REMOVE)
+ OS << 'n';
+ if (getCharacteristics() & COFF::IMAGE_SCN_MEM_SHARED)
+ OS << 's';
OS << '"';
if (getCharacteristics() & COFF::IMAGE_SCN_LNK_COMDAT) {
diff --git a/contrib/llvm/lib/MC/MCSectionELF.cpp b/contrib/llvm/lib/MC/MCSectionELF.cpp
index 09eb3e7..a29bb97 100644
--- a/contrib/llvm/lib/MC/MCSectionELF.cpp
+++ b/contrib/llvm/lib/MC/MCSectionELF.cpp
@@ -19,8 +19,8 @@ using namespace llvm;
MCSectionELF::~MCSectionELF() {} // anchor.
-// ShouldOmitSectionDirective - Decides whether a '.section' directive
-// should be printed before the section name
+// Decides whether a '.section' directive
+// should be printed before the section name.
bool MCSectionELF::ShouldOmitSectionDirective(StringRef Name,
const MCAsmInfo &MAI) const {
diff --git a/contrib/llvm/lib/MC/MCStreamer.cpp b/contrib/llvm/lib/MC/MCStreamer.cpp
index 46e80cc..f11ee66 100644
--- a/contrib/llvm/lib/MC/MCStreamer.cpp
+++ b/contrib/llvm/lib/MC/MCStreamer.cpp
@@ -48,37 +48,16 @@ MCStreamer::~MCStreamer() {
}
void MCStreamer::reset() {
+ DwarfFrameInfos.clear();
for (unsigned i = 0; i < getNumWinFrameInfos(); ++i)
delete WinFrameInfos[i];
WinFrameInfos.clear();
CurrentWinFrameInfo = nullptr;
+ SymbolOrdering.clear();
SectionStack.clear();
SectionStack.push_back(std::pair<MCSectionSubPair, MCSectionSubPair>());
}
-const MCExpr *MCStreamer::BuildSymbolDiff(MCContext &Context,
- const MCSymbol *A,
- const MCSymbol *B) {
- MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
- const MCExpr *ARef =
- MCSymbolRefExpr::Create(A, Variant, Context);
- const MCExpr *BRef =
- MCSymbolRefExpr::Create(B, Variant, Context);
- const MCExpr *AddrDelta =
- MCBinaryExpr::Create(MCBinaryExpr::Sub, ARef, BRef, Context);
- return AddrDelta;
-}
-
-const MCExpr *MCStreamer::ForceExpAbs(const MCExpr* Expr) {
- assert(!isa<MCSymbolRefExpr>(Expr));
- if (Context.getAsmInfo()->hasAggressiveSymbolFolding())
- return Expr;
-
- MCSymbol *ABS = Context.CreateTempSymbol();
- EmitAssignment(ABS, Expr);
- return MCSymbolRefExpr::Create(ABS, Context);
-}
-
raw_ostream &MCStreamer::GetCommentOS() {
// By default, discard comments.
return nulls();
@@ -92,22 +71,10 @@ void MCStreamer::generateCompactUnwindEncodings(MCAsmBackend *MAB) {
(MAB ? MAB->generateCompactUnwindEncoding(FI.Instructions) : 0);
}
-void MCStreamer::EmitDwarfSetLineAddr(int64_t LineDelta,
- const MCSymbol *Label, int PointerSize) {
- // emit the sequence to set the address
- EmitIntValue(dwarf::DW_LNS_extended_op, 1);
- EmitULEB128IntValue(PointerSize + 1);
- EmitIntValue(dwarf::DW_LNE_set_address, 1);
- EmitSymbolValue(Label, PointerSize);
-
- // emit the sequence for the LineDelta (from 1) and a zero address delta.
- MCDwarfLineAddr::Emit(this, LineDelta, 0);
-}
-
/// EmitIntValue - Special case of EmitValue that avoids the client having to
/// pass in a MCExpr for constant integers.
void MCStreamer::EmitIntValue(uint64_t Value, unsigned Size) {
- assert(Size <= 8 && "Invalid size");
+ assert(1 <= Size && Size <= 8 && "Invalid size");
assert((isUIntN(8 * Size, Value) || isIntN(8 * Size, Value)) &&
"Invalid size");
char buf[8];
@@ -137,12 +104,6 @@ void MCStreamer::EmitSLEB128IntValue(int64_t Value) {
EmitBytes(OSE.str());
}
-void MCStreamer::EmitAbsValue(const MCExpr *Value, unsigned Size) {
- const MCExpr *ABS = ForceExpAbs(Value);
- EmitValue(ABS, Size);
-}
-
-
void MCStreamer::EmitValue(const MCExpr *Value, unsigned Size,
const SMLoc &Loc) {
EmitValueImpl(Value, Size, Loc);
@@ -221,7 +182,7 @@ void MCStreamer::EmitEHSymAttributes(const MCSymbol *Symbol,
MCSymbol *EHSymbol) {
}
-void MCStreamer::InitSections() {
+void MCStreamer::InitSections(bool NoExecStack) {
SwitchSection(getContext().getObjectFileInfo()->getTextSection());
}
@@ -246,12 +207,6 @@ void MCStreamer::EmitLabel(MCSymbol *Symbol) {
TS->emitLabel(Symbol);
}
-void MCStreamer::EmitCompactUnwindEncoding(uint32_t CompactUnwindEncoding) {
- EnsureValidDwarfFrame();
- MCDwarfFrameInfo *CurFrame = getCurrentDwarfFrameInfo();
- CurFrame->CompactUnwindEncoding = CompactUnwindEncoding;
-}
-
void MCStreamer::EmitCFISections(bool EH, bool Debug) {
assert(EH || Debug);
}
@@ -265,6 +220,16 @@ void MCStreamer::EmitCFIStartProc(bool IsSimple) {
Frame.IsSimple = IsSimple;
EmitCFIStartProcImpl(Frame);
+ const MCAsmInfo* MAI = Context.getAsmInfo();
+ if (MAI) {
+ for (const MCCFIInstruction& Inst : MAI->getInitialFrameState()) {
+ if (Inst.getOperation() == MCCFIInstruction::OpDefCfa ||
+ Inst.getOperation() == MCCFIInstruction::OpDefCfaRegister) {
+ Frame.CurrentCfaRegister = Inst.getRegister();
+ }
+ }
+ }
+
DwarfFrameInfos.push_back(Frame);
}
@@ -296,6 +261,7 @@ void MCStreamer::EmitCFIDefCfa(int64_t Register, int64_t Offset) {
MCCFIInstruction::createDefCfa(Label, Register, Offset);
MCDwarfFrameInfo *CurFrame = getCurrentDwarfFrameInfo();
CurFrame->Instructions.push_back(Instruction);
+ CurFrame->CurrentCfaRegister = static_cast<unsigned>(Register);
}
void MCStreamer::EmitCFIDefCfaOffset(int64_t Offset) {
@@ -320,6 +286,7 @@ void MCStreamer::EmitCFIDefCfaRegister(int64_t Register) {
MCCFIInstruction::createDefCfaRegister(Label, Register);
MCDwarfFrameInfo *CurFrame = getCurrentDwarfFrameInfo();
CurFrame->Instructions.push_back(Instruction);
+ CurFrame->CurrentCfaRegister = static_cast<unsigned>(Register);
}
void MCStreamer::EmitCFIOffset(int64_t Register, int64_t Offset) {
@@ -429,11 +396,11 @@ void MCStreamer::EnsureValidWinFrameInfo() {
void MCStreamer::EmitWinCFIStartProc(const MCSymbol *Symbol) {
if (CurrentWinFrameInfo && !CurrentWinFrameInfo->End)
report_fatal_error("Starting a function before ending the previous one!");
- MCWinFrameInfo *Frame = new MCWinFrameInfo;
- Frame->Begin = getContext().CreateTempSymbol();
- Frame->Function = Symbol;
- EmitLabel(Frame->Begin);
- WinFrameInfos.push_back(Frame);
+
+ MCSymbol *StartProc = getContext().CreateTempSymbol();
+ EmitLabel(StartProc);
+
+ WinFrameInfos.push_back(new WinEH::FrameInfo(Symbol, StartProc));
CurrentWinFrameInfo = WinFrameInfos.back();
}
@@ -441,18 +408,20 @@ void MCStreamer::EmitWinCFIEndProc() {
EnsureValidWinFrameInfo();
if (CurrentWinFrameInfo->ChainedParent)
report_fatal_error("Not all chained regions terminated!");
- CurrentWinFrameInfo->End = getContext().CreateTempSymbol();
- EmitLabel(CurrentWinFrameInfo->End);
+
+ MCSymbol *Label = getContext().CreateTempSymbol();
+ EmitLabel(Label);
+ CurrentWinFrameInfo->End = Label;
}
void MCStreamer::EmitWinCFIStartChained() {
EnsureValidWinFrameInfo();
- MCWinFrameInfo *Frame = new MCWinFrameInfo;
- Frame->Begin = getContext().CreateTempSymbol();
- Frame->Function = CurrentWinFrameInfo->Function;
- Frame->ChainedParent = CurrentWinFrameInfo;
- EmitLabel(Frame->Begin);
- WinFrameInfos.push_back(Frame);
+
+ MCSymbol *StartProc = getContext().CreateTempSymbol();
+ EmitLabel(StartProc);
+
+ WinFrameInfos.push_back(new WinEH::FrameInfo(CurrentWinFrameInfo->Function,
+ StartProc, CurrentWinFrameInfo));
CurrentWinFrameInfo = WinFrameInfos.back();
}
@@ -460,9 +429,13 @@ void MCStreamer::EmitWinCFIEndChained() {
EnsureValidWinFrameInfo();
if (!CurrentWinFrameInfo->ChainedParent)
report_fatal_error("End of a chained region outside a chained region!");
- CurrentWinFrameInfo->End = getContext().CreateTempSymbol();
- EmitLabel(CurrentWinFrameInfo->End);
- CurrentWinFrameInfo = CurrentWinFrameInfo->ChainedParent;
+
+ MCSymbol *Label = getContext().CreateTempSymbol();
+ EmitLabel(Label);
+
+ CurrentWinFrameInfo->End = Label;
+ CurrentWinFrameInfo =
+ const_cast<WinEH::FrameInfo *>(CurrentWinFrameInfo->ChainedParent);
}
void MCStreamer::EmitWinEHHandler(const MCSymbol *Sym, bool Unwind,
@@ -567,8 +540,11 @@ void MCStreamer::EmitWinCFIPushFrame(bool Code) {
void MCStreamer::EmitWinCFIEndProlog() {
EnsureValidWinFrameInfo();
- CurrentWinFrameInfo->PrologEnd = getContext().CreateTempSymbol();
- EmitLabel(CurrentWinFrameInfo->PrologEnd);
+
+ MCSymbol *Label = getContext().CreateTempSymbol();
+ EmitLabel(Label);
+
+ CurrentWinFrameInfo->PrologEnd = Label;
}
void MCStreamer::EmitCOFFSectionIndex(MCSymbol const *Symbol) {
@@ -592,10 +568,6 @@ void MCStreamer::EmitRawText(const Twine &T) {
}
void MCStreamer::EmitWindowsUnwindTables() {
- if (!getNumWinFrameInfos())
- return;
-
- MCWin64EHUnwindEmitter::Emit(*this);
}
void MCStreamer::Finish() {
diff --git a/contrib/llvm/lib/MC/MCSubtargetInfo.cpp b/contrib/llvm/lib/MC/MCSubtargetInfo.cpp
index 4424c91..b8e42bd 100644
--- a/contrib/llvm/lib/MC/MCSubtargetInfo.cpp
+++ b/contrib/llvm/lib/MC/MCSubtargetInfo.cpp
@@ -17,8 +17,6 @@
using namespace llvm;
-MCSchedModel MCSchedModel::DefaultSchedModel; // For unknown processors.
-
/// InitMCProcessorInfo - Set or change the CPU (optionally supplemented
/// with feature string). Recompute feature bits and scheduling model.
void
@@ -33,7 +31,7 @@ MCSubtargetInfo::InitCPUSchedModel(StringRef CPU) {
if (!CPU.empty())
CPUSchedModel = getSchedModelForCPU(CPU);
else
- CPUSchedModel = &MCSchedModel::DefaultSchedModel;
+ CPUSchedModel = MCSchedModel::GetDefaultSchedModel();
}
void
@@ -78,7 +76,7 @@ uint64_t MCSubtargetInfo::ToggleFeature(StringRef FS) {
}
-const MCSchedModel *
+MCSchedModel
MCSubtargetInfo::getSchedModelForCPU(StringRef CPU) const {
assert(ProcSchedModels && "Processor machine model not available!");
@@ -97,15 +95,15 @@ MCSubtargetInfo::getSchedModelForCPU(StringRef CPU) const {
errs() << "'" << CPU
<< "' is not a recognized processor for this target"
<< " (ignoring processor)\n";
- return &MCSchedModel::DefaultSchedModel;
+ return MCSchedModel::GetDefaultSchedModel();
}
assert(Found->Value && "Missing processor SchedModel value");
- return (const MCSchedModel *)Found->Value;
+ return *(const MCSchedModel *)Found->Value;
}
InstrItineraryData
MCSubtargetInfo::getInstrItineraryForCPU(StringRef CPU) const {
- const MCSchedModel *SchedModel = getSchedModelForCPU(CPU);
+ const MCSchedModel SchedModel = getSchedModelForCPU(CPU);
return InstrItineraryData(SchedModel, Stages, OperandCycles, ForwardingPaths);
}
diff --git a/contrib/llvm/lib/MC/MCTargetOptions.cpp b/contrib/llvm/lib/MC/MCTargetOptions.cpp
index efd724a..1258d9e 100644
--- a/contrib/llvm/lib/MC/MCTargetOptions.cpp
+++ b/contrib/llvm/lib/MC/MCTargetOptions.cpp
@@ -7,14 +7,19 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCTargetOptions.h"
namespace llvm {
MCTargetOptions::MCTargetOptions()
: SanitizeAddress(false), MCRelaxAll(false), MCNoExecStack(false),
- MCSaveTempLabels(false), MCUseDwarfDirectory(false),
- ShowMCEncoding(false), ShowMCInst(false), AsmVerbose(false),
- DwarfVersion(0) {}
+ MCFatalWarnings(false), MCSaveTempLabels(false),
+ MCUseDwarfDirectory(false), ShowMCEncoding(false), ShowMCInst(false),
+ AsmVerbose(false), DwarfVersion(0), ABIName() {}
+
+StringRef MCTargetOptions::getABIName() const {
+ return ABIName;
+}
} // end namespace llvm
diff --git a/contrib/llvm/lib/MC/MCWin64EH.cpp b/contrib/llvm/lib/MC/MCWin64EH.cpp
index 95e1983..dfadb3c 100644
--- a/contrib/llvm/lib/MC/MCWin64EH.cpp
+++ b/contrib/llvm/lib/MC/MCWin64EH.cpp
@@ -53,10 +53,10 @@ static void EmitAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS,
const MCExpr *Diff =
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(LHS, Context),
MCSymbolRefExpr::Create(RHS, Context), Context);
- Streamer.EmitAbsValue(Diff, 1);
+ Streamer.EmitValue(Diff, 1);
}
-static void EmitUnwindCode(MCStreamer &streamer, MCSymbol *begin,
+static void EmitUnwindCode(MCStreamer &streamer, const MCSymbol *begin,
WinEH::Instruction &inst) {
uint8_t b2;
uint16_t w;
@@ -136,7 +136,7 @@ static void EmitSymbolRefWithOfs(MCStreamer &streamer,
}
static void EmitRuntimeFunction(MCStreamer &streamer,
- const MCWinFrameInfo *info) {
+ const WinEH::FrameInfo *info) {
MCContext &context = streamer.getContext();
streamer.EmitValueToAlignment(4);
@@ -147,14 +147,17 @@ static void EmitRuntimeFunction(MCStreamer &streamer,
context), 4);
}
-static void EmitUnwindInfo(MCStreamer &streamer, MCWinFrameInfo *info) {
+static void EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info) {
// If this UNWIND_INFO already has a symbol, it's already been emitted.
- if (info->Symbol) return;
+ if (info->Symbol)
+ return;
MCContext &context = streamer.getContext();
+ MCSymbol *Label = context.CreateTempSymbol();
+
streamer.EmitValueToAlignment(4);
- info->Symbol = context.CreateTempSymbol();
- streamer.EmitLabel(info->Symbol);
+ streamer.EmitLabel(Label);
+ info->Symbol = Label;
// Upper 3 bits are the version number (currently 1).
uint8_t flags = 0x01;
@@ -215,65 +218,14 @@ static void EmitUnwindInfo(MCStreamer &streamer, MCWinFrameInfo *info) {
}
}
-StringRef MCWin64EHUnwindEmitter::GetSectionSuffix(const MCSymbol *func) {
- if (!func || !func->isInSection()) return "";
- const MCSection *section = &func->getSection();
- const MCSectionCOFF *COFFSection;
- if ((COFFSection = dyn_cast<MCSectionCOFF>(section))) {
- StringRef name = COFFSection->getSectionName();
- size_t dollar = name.find('$');
- size_t dot = name.find('.', 1);
- if (dollar == StringRef::npos && dot == StringRef::npos)
- return "";
- if (dot == StringRef::npos)
- return name.substr(dollar);
- if (dollar == StringRef::npos || dot < dollar)
- return name.substr(dot);
- return name.substr(dollar);
- }
- return "";
-}
-
-static const MCSection *getWin64EHTableSection(StringRef suffix,
- MCContext &context) {
- if (suffix == "")
- return context.getObjectFileInfo()->getXDataSection();
-
- return context.getCOFFSection((".xdata"+suffix).str(),
- COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
- COFF::IMAGE_SCN_MEM_READ,
- SectionKind::getDataRel());
-}
-
-static const MCSection *getWin64EHFuncTableSection(StringRef suffix,
- MCContext &context) {
- if (suffix == "")
- return context.getObjectFileInfo()->getPDataSection();
- return context.getCOFFSection((".pdata"+suffix).str(),
- COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
- COFF::IMAGE_SCN_MEM_READ,
- SectionKind::getDataRel());
-}
-
-void MCWin64EHUnwindEmitter::EmitUnwindInfo(MCStreamer &streamer,
- MCWinFrameInfo *info) {
- // Switch sections (the static function above is meant to be called from
- // here and from Emit().
- MCContext &context = streamer.getContext();
- const MCSection *xdataSect =
- getWin64EHTableSection(GetSectionSuffix(info->Function), context);
- streamer.SwitchSection(xdataSect);
-
- llvm::EmitUnwindInfo(streamer, info);
-}
-
-void MCWin64EHUnwindEmitter::Emit(MCStreamer &Streamer) {
+namespace Win64EH {
+void UnwindEmitter::Emit(MCStreamer &Streamer) const {
MCContext &Context = Streamer.getContext();
// Emit the unwind info structs first.
for (const auto &CFI : Streamer.getWinFrameInfos()) {
const MCSection *XData =
- getWin64EHTableSection(GetSectionSuffix(CFI->Function), Context);
+ getXDataSection(CFI->Function, Context);
Streamer.SwitchSection(XData);
EmitUnwindInfo(Streamer, CFI);
}
@@ -281,11 +233,23 @@ void MCWin64EHUnwindEmitter::Emit(MCStreamer &Streamer) {
// Now emit RUNTIME_FUNCTION entries.
for (const auto &CFI : Streamer.getWinFrameInfos()) {
const MCSection *PData =
- getWin64EHFuncTableSection(GetSectionSuffix(CFI->Function), Context);
+ getPDataSection(CFI->Function, Context);
Streamer.SwitchSection(PData);
EmitRuntimeFunction(Streamer, CFI);
}
}
+void UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer,
+ WinEH::FrameInfo *info) const {
+ // Switch sections (the static function above is meant to be called from
+ // here and from Emit().
+ MCContext &context = Streamer.getContext();
+ const MCSection *xdataSect =
+ getXDataSection(info->Function, context);
+ Streamer.SwitchSection(xdataSect);
+
+ llvm::EmitUnwindInfo(Streamer, info);
+}
+}
} // End of namespace llvm
diff --git a/contrib/llvm/lib/MC/MCWinEH.cpp b/contrib/llvm/lib/MC/MCWinEH.cpp
new file mode 100644
index 0000000..47eaf0f
--- /dev/null
+++ b/contrib/llvm/lib/MC/MCWinEH.cpp
@@ -0,0 +1,77 @@
+//===- lib/MC/MCWinEH.cpp - Windows EH implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCSectionCOFF.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCWinEH.h"
+#include "llvm/Support/COFF.h"
+
+namespace llvm {
+namespace WinEH {
+
+/// We can't have one section for all .pdata or .xdata because the Microsoft
+/// linker seems to want all code relocations to refer to the same object file
+/// section. If the code described is comdat, create a new comdat section
+/// associated with that comdat. If the code described is not in the main .text
+/// section, make a new section for it. Otherwise use the main unwind info
+/// section.
+static const MCSection *getUnwindInfoSection(
+ StringRef SecName, const MCSectionCOFF *UnwindSec, const MCSymbol *Function,
+ MCContext &Context) {
+ if (Function && Function->isInSection()) {
+ // If Function is in a COMDAT, get or create an unwind info section in that
+ // COMDAT group.
+ const MCSectionCOFF *FunctionSection =
+ cast<MCSectionCOFF>(&Function->getSection());
+ if (FunctionSection->getCharacteristics() & COFF::IMAGE_SCN_LNK_COMDAT) {
+ return Context.getAssociativeCOFFSection(
+ UnwindSec, FunctionSection->getCOMDATSymbol());
+ }
+
+ // If Function is in a section other than .text, create a new .pdata section.
+ // Otherwise use the plain .pdata section.
+ if (const auto *Section = dyn_cast<MCSectionCOFF>(FunctionSection)) {
+ StringRef CodeSecName = Section->getSectionName();
+ if (CodeSecName == ".text")
+ return UnwindSec;
+
+ if (CodeSecName.startswith(".text$"))
+ CodeSecName = CodeSecName.substr(6);
+
+ return Context.getCOFFSection(
+ (SecName + Twine('$') + CodeSecName).str(),
+ COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getDataRel());
+ }
+ }
+
+ return UnwindSec;
+
+}
+
+const MCSection *UnwindEmitter::getPDataSection(const MCSymbol *Function,
+ MCContext &Context) {
+ const MCSectionCOFF *PData =
+ cast<MCSectionCOFF>(Context.getObjectFileInfo()->getPDataSection());
+ return getUnwindInfoSection(".pdata", PData, Function, Context);
+}
+
+const MCSection *UnwindEmitter::getXDataSection(const MCSymbol *Function,
+ MCContext &Context) {
+ const MCSectionCOFF *XData =
+ cast<MCSectionCOFF>(Context.getObjectFileInfo()->getXDataSection());
+ return getUnwindInfoSection(".xdata", XData, Function, Context);
+}
+
+}
+}
+
diff --git a/contrib/llvm/lib/MC/MachObjectWriter.cpp b/contrib/llvm/lib/MC/MachObjectWriter.cpp
index 5214398..d3751bd 100644
--- a/contrib/llvm/lib/MC/MachObjectWriter.cpp
+++ b/contrib/llvm/lib/MC/MachObjectWriter.cpp
@@ -41,7 +41,7 @@ void MachObjectWriter::reset() {
bool MachObjectWriter::
doesSymbolRequireExternRelocation(const MCSymbolData *SD) {
// Undefined symbols are always extern.
- if (SD->Symbol->isUndefined())
+ if (SD->getSymbol().isUndefined())
return true;
// References to weak definitions require external relocation entries; the
@@ -84,7 +84,7 @@ uint64_t MachObjectWriter::getSymbolAddress(const MCSymbolData* SD,
MCValue Target;
- if (!S.getVariableValue()->EvaluateAsRelocatable(Target, &Layout))
+ if (!S.getVariableValue()->EvaluateAsRelocatable(Target, &Layout, nullptr))
report_fatal_error("unable to evaluate offset for variable '" +
S.getName() + "'");
@@ -418,7 +418,7 @@ void MachObjectWriter::WriteLinkeditLoadCommand(uint32_t Type,
static unsigned ComputeLinkerOptionsLoadCommandSize(
const std::vector<std::string> &Options, bool is64Bit)
{
- unsigned Size = sizeof(MachO::linker_options_command);
+ unsigned Size = sizeof(MachO::linker_option_command);
for (unsigned i = 0, e = Options.size(); i != e; ++i)
Size += Options[i].size() + 1;
return RoundUpToAlignment(Size, is64Bit ? 8 : 4);
@@ -431,10 +431,10 @@ void MachObjectWriter::WriteLinkerOptionsLoadCommand(
uint64_t Start = OS.tell();
(void) Start;
- Write32(MachO::LC_LINKER_OPTIONS);
+ Write32(MachO::LC_LINKER_OPTION);
Write32(Size);
Write32(Options.size());
- uint64_t BytesWritten = sizeof(MachO::linker_options_command);
+ uint64_t BytesWritten = sizeof(MachO::linker_option_command);
for (unsigned i = 0, e = Options.size(); i != e; ++i) {
// Write each string, including the null byte.
const std::string &Option = Options[i];
@@ -525,15 +525,10 @@ void MachObjectWriter::BindIndirectSymbols(MCAssembler &Asm) {
}
/// ComputeSymbolTable - Compute the symbol table data
-///
-/// \param StringTable [out] - The string table data.
-/// \param StringIndexMap [out] - Map from symbol names to offsets in the
-/// string table.
-void MachObjectWriter::
-ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
- std::vector<MachSymbolData> &LocalSymbolData,
- std::vector<MachSymbolData> &ExternalSymbolData,
- std::vector<MachSymbolData> &UndefinedSymbolData) {
+void MachObjectWriter::ComputeSymbolTable(
+ MCAssembler &Asm, std::vector<MachSymbolData> &LocalSymbolData,
+ std::vector<MachSymbolData> &ExternalSymbolData,
+ std::vector<MachSymbolData> &UndefinedSymbolData) {
// Build section lookup table.
DenseMap<const MCSection*, uint8_t> SectionIndexMap;
unsigned Index = 1;
@@ -542,37 +537,34 @@ ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
SectionIndexMap[&it->getSection()] = Index;
assert(Index <= 256 && "Too many sections!");
- // Index 0 is always the empty string.
- StringMap<uint64_t> StringIndexMap;
- StringTable += '\x00';
+ // Build the string table.
+ for (MCSymbolData &SD : Asm.symbols()) {
+ const MCSymbol &Symbol = SD.getSymbol();
+ if (!Asm.isSymbolLinkerVisible(Symbol))
+ continue;
+
+ StringTable.add(Symbol.getName());
+ }
+ StringTable.finalize(StringTableBuilder::MachO);
- // Build the symbol arrays and the string table, but only for non-local
- // symbols.
+ // Build the symbol arrays but only for non-local symbols.
//
- // The particular order that we collect the symbols and create the string
- // table, then sort the symbols is chosen to match 'as'. Even though it
- // doesn't matter for correctness, this is important for letting us diff .o
- // files.
+ // The particular order that we collect and then sort the symbols is chosen to
+ // match 'as'. Even though it doesn't matter for correctness, this is
+ // important for letting us diff .o files.
for (MCSymbolData &SD : Asm.symbols()) {
const MCSymbol &Symbol = SD.getSymbol();
// Ignore non-linker visible symbols.
- if (!Asm.isSymbolLinkerVisible(SD.getSymbol()))
+ if (!Asm.isSymbolLinkerVisible(Symbol))
continue;
if (!SD.isExternal() && !Symbol.isUndefined())
continue;
- uint64_t &Entry = StringIndexMap[Symbol.getName()];
- if (!Entry) {
- Entry = StringTable.size();
- StringTable += Symbol.getName();
- StringTable += '\x00';
- }
-
MachSymbolData MSD;
MSD.SymbolData = &SD;
- MSD.StringIndex = Entry;
+ MSD.StringIndex = StringTable.getOffset(Symbol.getName());
if (Symbol.isUndefined()) {
MSD.SectionIndex = 0;
@@ -592,22 +584,15 @@ ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
const MCSymbol &Symbol = SD.getSymbol();
// Ignore non-linker visible symbols.
- if (!Asm.isSymbolLinkerVisible(SD.getSymbol()))
+ if (!Asm.isSymbolLinkerVisible(Symbol))
continue;
if (SD.isExternal() || Symbol.isUndefined())
continue;
- uint64_t &Entry = StringIndexMap[Symbol.getName()];
- if (!Entry) {
- Entry = StringTable.size();
- StringTable += Symbol.getName();
- StringTable += '\x00';
- }
-
MachSymbolData MSD;
MSD.SymbolData = &SD;
- MSD.StringIndex = Entry;
+ MSD.StringIndex = StringTable.getOffset(Symbol.getName());
if (Symbol.isAbsolute()) {
MSD.SectionIndex = 0;
@@ -631,10 +616,6 @@ ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
ExternalSymbolData[i].SymbolData->setIndex(Index++);
for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
UndefinedSymbolData[i].SymbolData->setIndex(Index++);
-
- // The string table is padded to a multiple of 4.
- while (StringTable.size() % 4)
- StringTable += '\x00';
}
void MachObjectWriter::computeSectionAddresses(const MCAssembler &Asm,
@@ -664,7 +645,7 @@ void MachObjectWriter::markAbsoluteVariableSymbols(MCAssembler &Asm,
// and neither symbol is external, mark the variable as absolute.
const MCExpr *Expr = SD.getSymbol().getVariableValue();
MCValue Value;
- if (Expr->EvaluateAsRelocatable(Value, &Layout)) {
+ if (Expr->EvaluateAsRelocatable(Value, &Layout, nullptr)) {
if (Value.getSymA() && Value.getSymB())
const_cast<MCSymbol*>(&SD.getSymbol())->setAbsolute();
}
@@ -683,7 +664,7 @@ void MachObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
markAbsoluteVariableSymbols(Asm, Layout);
// Compute symbol table information and bind symbol indices.
- ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
+ ComputeSymbolTable(Asm, LocalSymbolData, ExternalSymbolData,
UndefinedSymbolData);
}
@@ -745,6 +726,10 @@ IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
return false;
}
+ // If they are not in the same section, we can't compute the diff.
+ if (&SecA != &SecB)
+ return false;
+
const MCFragment *FA = Asm.getSymbolData(SA).getFragment();
// Bail if the symbol has no fragment.
@@ -752,12 +737,7 @@ IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
return false;
A_Base = FA->getAtom();
- if (!A_Base)
- return false;
-
B_Base = FB.getAtom();
- if (!B_Base)
- return false;
// If the atoms are the same, they are guaranteed to have the same address.
if (A_Base == B_Base)
@@ -922,7 +902,7 @@ void MachObjectWriter::WriteObject(MCAssembler &Asm,
sizeof(MachO::nlist_64) :
sizeof(MachO::nlist));
WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
- StringTableOffset, StringTable.size());
+ StringTableOffset, StringTable.data().size());
WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
FirstExternalSymbol, NumExternalSymbols,
@@ -1028,7 +1008,7 @@ void MachObjectWriter::WriteObject(MCAssembler &Asm,
WriteNlist(UndefinedSymbolData[i], Layout);
// Write the string table.
- OS << StringTable.str();
+ OS << StringTable.data();
}
}
diff --git a/contrib/llvm/lib/MC/StringTableBuilder.cpp b/contrib/llvm/lib/MC/StringTableBuilder.cpp
index db58ece..9de9363 100644
--- a/contrib/llvm/lib/MC/StringTableBuilder.cpp
+++ b/contrib/llvm/lib/MC/StringTableBuilder.cpp
@@ -9,6 +9,8 @@
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/COFF.h"
+#include "llvm/Support/Endian.h"
using namespace llvm;
@@ -25,19 +27,32 @@ static bool compareBySuffix(StringRef a, StringRef b) {
return sizeA > sizeB;
}
-void StringTableBuilder::finalize() {
+void StringTableBuilder::finalize(Kind kind) {
SmallVector<StringRef, 8> Strings;
+ Strings.reserve(StringIndexMap.size());
+
for (auto i = StringIndexMap.begin(), e = StringIndexMap.end(); i != e; ++i)
Strings.push_back(i->getKey());
std::sort(Strings.begin(), Strings.end(), compareBySuffix);
- // FIXME: Starting with a null byte is ELF specific. Generalize this so we
- // can use the class with other object formats.
- StringTable += '\x00';
+ switch (kind) {
+ case ELF:
+ case MachO:
+ // Start the table with a NUL byte.
+ StringTable += '\x00';
+ break;
+ case WinCOFF:
+ // Make room to write the table size later.
+ StringTable.append(4, '\x00');
+ break;
+ }
StringRef Previous;
for (StringRef s : Strings) {
+ if (kind == WinCOFF)
+ assert(s.size() > COFF::NameSize && "Short string in COFF string table!");
+
if (Previous.endswith(s)) {
StringIndexMap[s] = StringTable.size() - 1 - s.size();
continue;
@@ -48,4 +63,26 @@ void StringTableBuilder::finalize() {
StringTable += '\x00';
Previous = s;
}
+
+ switch (kind) {
+ case ELF:
+ break;
+ case MachO:
+ // Pad to multiple of 4.
+ while (StringTable.size() % 4)
+ StringTable += '\x00';
+ break;
+ case WinCOFF:
+ // Write the table size in the first word.
+ assert(StringTable.size() <= std::numeric_limits<uint32_t>::max());
+ uint32_t size = static_cast<uint32_t>(StringTable.size());
+ support::endian::write<uint32_t, support::little, support::unaligned>(
+ StringTable.data(), size);
+ break;
+ }
+}
+
+void StringTableBuilder::clear() {
+ StringTable.clear();
+ StringIndexMap.clear();
}
diff --git a/contrib/llvm/lib/MC/SubtargetFeature.cpp b/contrib/llvm/lib/MC/SubtargetFeature.cpp
index 27525c7..587be54 100644
--- a/contrib/llvm/lib/MC/SubtargetFeature.cpp
+++ b/contrib/llvm/lib/MC/SubtargetFeature.cpp
@@ -27,7 +27,7 @@ using namespace llvm;
/// hasFlag - Determine if a feature has a flag; '+' or '-'
///
-static inline bool hasFlag(const StringRef Feature) {
+static inline bool hasFlag(StringRef Feature) {
assert(!Feature.empty() && "Empty string");
// Get first character
char Ch = Feature[0];
@@ -37,13 +37,13 @@ static inline bool hasFlag(const StringRef Feature) {
/// StripFlag - Return string stripped of flag.
///
-static inline std::string StripFlag(const StringRef Feature) {
+static inline std::string StripFlag(StringRef Feature) {
return hasFlag(Feature) ? Feature.substr(1) : Feature;
}
/// isEnabled - Return true if enable flag; '+'.
///
-static inline bool isEnabled(const StringRef Feature) {
+static inline bool isEnabled(StringRef Feature) {
assert(!Feature.empty() && "Empty string");
// Get first character
char Ch = Feature[0];
@@ -53,8 +53,8 @@ static inline bool isEnabled(const StringRef Feature) {
/// Split - Splits a string of comma separated items in to a vector of strings.
///
-static void Split(std::vector<std::string> &V, const StringRef S) {
- SmallVector<StringRef, 2> Tmp;
+static void Split(std::vector<std::string> &V, StringRef S) {
+ SmallVector<StringRef, 3> Tmp;
S.split(Tmp, ",", -1, false /* KeepEmpty */);
V.assign(Tmp.begin(), Tmp.end());
}
@@ -81,7 +81,7 @@ static std::string Join(const std::vector<std::string> &V) {
}
/// Adding features.
-void SubtargetFeatures::AddFeature(const StringRef String) {
+void SubtargetFeatures::AddFeature(StringRef String) {
// Don't add empty features or features we already have.
if (!String.empty())
// Convert to lowercase, prepend flag if we don't already have a flag.
@@ -136,7 +136,7 @@ static void Help(ArrayRef<SubtargetFeatureKV> CPUTable,
// SubtargetFeatures Implementation
//===----------------------------------------------------------------------===//
-SubtargetFeatures::SubtargetFeatures(const StringRef Initial) {
+SubtargetFeatures::SubtargetFeatures(StringRef Initial) {
// Break up string into separate features
Split(Features, Initial);
}
@@ -181,7 +181,7 @@ void ClearImpliedBits(uint64_t &Bits, const SubtargetFeatureKV *FeatureEntry,
/// ToggleFeature - Toggle a feature and returns the newly updated feature
/// bits.
uint64_t
-SubtargetFeatures::ToggleFeature(uint64_t Bits, const StringRef Feature,
+SubtargetFeatures::ToggleFeature(uint64_t Bits, StringRef Feature,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
// Find feature in table.
@@ -213,7 +213,7 @@ SubtargetFeatures::ToggleFeature(uint64_t Bits, const StringRef Feature,
/// getFeatureBits - Get feature bits a CPU.
///
uint64_t
-SubtargetFeatures::getFeatureBits(const StringRef CPU,
+SubtargetFeatures::getFeatureBits(StringRef CPU,
ArrayRef<SubtargetFeatureKV> CPUTable,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
diff --git a/contrib/llvm/lib/MC/WinCOFFObjectWriter.cpp b/contrib/llvm/lib/MC/WinCOFFObjectWriter.cpp
index 824895b..c17f99b 100644
--- a/contrib/llvm/lib/MC/WinCOFFObjectWriter.cpp
+++ b/contrib/llvm/lib/MC/WinCOFFObjectWriter.cpp
@@ -13,9 +13,9 @@
#include "llvm/MC/MCWinCOFFObjectWriter.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
@@ -26,8 +26,10 @@
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
+#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TimeValue.h"
#include <cstdio>
@@ -71,7 +73,6 @@ public:
MCSymbolData const *MCData;
COFFSymbol(StringRef name);
- size_t size() const;
void set_name_offset(uint32_t Offset);
bool should_keep() const;
@@ -102,20 +103,6 @@ public:
static size_t size();
};
-// This class holds the COFF string table.
-class StringTable {
- typedef StringMap<size_t> map;
- map Map;
-
- void update_length();
-public:
- std::vector<char> Data;
-
- StringTable();
- size_t size() const;
- size_t insert(StringRef String);
-};
-
class WinCOFFObjectWriter : public MCObjectWriter {
public:
@@ -131,13 +118,26 @@ public:
COFF::header Header;
sections Sections;
symbols Symbols;
- StringTable Strings;
+ StringTableBuilder Strings;
// Maps used during object file creation.
section_map SectionMap;
symbol_map SymbolMap;
+ bool UseBigObj;
+
WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_ostream &OS);
+
+ void reset() override {
+ memset(&Header, 0, sizeof(Header));
+ Header.Machine = TargetObjectWriter->getMachine();
+ Sections.clear();
+ Symbols.clear();
+ Strings.clear();
+ SectionMap.clear();
+ SymbolMap.clear();
+ MCObjectWriter::reset();
+ }
COFFSymbol *createSymbol(StringRef Name);
COFFSymbol *GetOrCreateCOFFSymbol(const MCSymbol * Symbol);
@@ -150,8 +150,8 @@ public:
void DefineSymbol(MCSymbolData const &SymbolData, MCAssembler &Assembler,
const MCAsmLayout &Layout);
- void MakeSymbolReal(COFFSymbol &S, size_t Index);
- void MakeSectionReal(COFFSection &S, size_t Number);
+ void SetSymbolName(COFFSymbol &S);
+ void SetSectionName(COFFSection &S);
bool ExportSymbol(const MCSymbol &Symbol, MCAssembler &Asm);
@@ -170,6 +170,11 @@ public:
void ExecutePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) override;
+ bool IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
+ const MCSymbolData &DataA,
+ const MCFragment &FB, bool InSet,
+ bool IsPCRel) const override;
+
void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
MCValue Target, bool &IsPCRel,
@@ -179,12 +184,9 @@ public:
};
}
-static inline void write_uint32_le(void *Data, uint32_t const &Value) {
- uint8_t *Ptr = reinterpret_cast<uint8_t *>(Data);
- Ptr[0] = (Value & 0x000000FF) >> 0;
- Ptr[1] = (Value & 0x0000FF00) >> 8;
- Ptr[2] = (Value & 0x00FF0000) >> 16;
- Ptr[3] = (Value & 0xFF000000) >> 24;
+static inline void write_uint32_le(void *Data, uint32_t Value) {
+ support::endian::write<uint32_t, support::little, support::unaligned>(Data,
+ Value);
}
//------------------------------------------------------------------------------
@@ -199,10 +201,6 @@ COFFSymbol::COFFSymbol(StringRef name)
memset(&Data, 0, sizeof(Data));
}
-size_t COFFSymbol::size() const {
- return COFF::SymbolSize + (Data.NumberOfAuxSymbols * COFF::SymbolSize);
-}
-
// In the case that the name does not fit within 8 bytes, the offset
// into the string table is stored in the last 4 bytes instead, leaving
// the first 4 bytes as 0.
@@ -254,55 +252,11 @@ size_t COFFSection::size() {
}
//------------------------------------------------------------------------------
-// StringTable class implementation
-
-/// Write the length of the string table into Data.
-/// The length of the string table includes uint32 length header.
-void StringTable::update_length() {
- write_uint32_le(&Data.front(), Data.size());
-}
-
-StringTable::StringTable() {
- // The string table data begins with the length of the entire string table
- // including the length header. Allocate space for this header.
- Data.resize(4);
- update_length();
-}
-
-size_t StringTable::size() const {
- return Data.size();
-}
-
-/// Add String to the table iff it is not already there.
-/// @returns the index into the string table where the string is now located.
-size_t StringTable::insert(StringRef String) {
- map::iterator i = Map.find(String);
-
- if (i != Map.end())
- return i->second;
-
- size_t Offset = Data.size();
-
- // Insert string data into string table.
- Data.insert(Data.end(), String.begin(), String.end());
- Data.push_back('\0');
-
- // Put a reference to it in the map.
- Map[String] = Offset;
-
- // Update the internal length field.
- update_length();
-
- return Offset;
-}
-
-//------------------------------------------------------------------------------
// WinCOFFObjectWriter class implementation
WinCOFFObjectWriter::WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW,
raw_ostream &OS)
- : MCObjectWriter(OS, true)
- , TargetObjectWriter(MOTW) {
+ : MCObjectWriter(OS, true), TargetObjectWriter(MOTW) {
memset(&Header, 0, sizeof(Header));
Header.Machine = TargetObjectWriter->getMachine();
@@ -312,12 +266,12 @@ COFFSymbol *WinCOFFObjectWriter::createSymbol(StringRef Name) {
return createCOFFEntity<COFFSymbol>(Name, Symbols);
}
-COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol * Symbol){
+COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol *Symbol) {
symbol_map::iterator i = SymbolMap.find(Symbol);
if (i != SymbolMap.end())
return i->second;
- COFFSymbol *RetSymbol
- = createCOFFEntity<COFFSymbol>(Symbol->getName(), Symbols);
+ COFFSymbol *RetSymbol =
+ createCOFFEntity<COFFSymbol>(Symbol->getName(), Symbols);
SymbolMap[Symbol] = RetSymbol;
return RetSymbol;
}
@@ -469,9 +423,9 @@ void WinCOFFObjectWriter::DefineSymbol(MCSymbolData const &SymbolData,
coff_symbol->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE;
} else {
const MCSymbolData &BaseData = Assembler.getSymbolData(*Base);
- if (BaseData.Fragment) {
+ if (BaseData.getFragment()) {
COFFSection *Sec =
- SectionMap[&BaseData.Fragment->getParent()->getSection()];
+ SectionMap[&BaseData.getFragment()->getParent()->getSection()];
if (coff_symbol->Section && coff_symbol->Section != Sec)
report_fatal_error("conflicting sections for symbol");
@@ -511,11 +465,9 @@ static void encodeBase64StringEntry(char* Buffer, uint64_t Value) {
}
}
-/// making a section real involves assigned it a number and putting
-/// name into the string table if needed
-void WinCOFFObjectWriter::MakeSectionReal(COFFSection &S, size_t Number) {
+void WinCOFFObjectWriter::SetSectionName(COFFSection &S) {
if (S.Name.size() > COFF::NameSize) {
- uint64_t StringTableEntry = Strings.insert(S.Name.c_str());
+ uint64_t StringTableEntry = Strings.getOffset(S.Name);
if (StringTableEntry <= Max6DecimalOffset) {
std::sprintf(S.Header.Name, "/%d", unsigned(StringTableEntry));
@@ -533,20 +485,13 @@ void WinCOFFObjectWriter::MakeSectionReal(COFFSection &S, size_t Number) {
}
} else
std::memcpy(S.Header.Name, S.Name.c_str(), S.Name.size());
-
- S.Number = Number;
- S.Symbol->Data.SectionNumber = S.Number;
- S.Symbol->Aux[0].Aux.SectionDefinition.Number = S.Number;
}
-void WinCOFFObjectWriter::MakeSymbolReal(COFFSymbol &S, size_t Index) {
- if (S.Name.size() > COFF::NameSize) {
- size_t StringTableEntry = Strings.insert(S.Name.c_str());
-
- S.set_name_offset(StringTableEntry);
- } else
+void WinCOFFObjectWriter::SetSymbolName(COFFSymbol &S) {
+ if (S.Name.size() > COFF::NameSize)
+ S.set_name_offset(Strings.getOffset(S.Name));
+ else
std::memcpy(S.Data.Name, S.Name.c_str(), S.Name.size());
- S.Index = Index;
}
bool WinCOFFObjectWriter::ExportSymbol(const MCSymbol &Symbol,
@@ -578,19 +523,39 @@ bool WinCOFFObjectWriter::IsPhysicalSection(COFFSection *S) {
// entity writing methods
void WinCOFFObjectWriter::WriteFileHeader(const COFF::header &Header) {
- WriteLE16(Header.Machine);
- WriteLE16(Header.NumberOfSections);
- WriteLE32(Header.TimeDateStamp);
- WriteLE32(Header.PointerToSymbolTable);
- WriteLE32(Header.NumberOfSymbols);
- WriteLE16(Header.SizeOfOptionalHeader);
- WriteLE16(Header.Characteristics);
+ if (UseBigObj) {
+ WriteLE16(COFF::IMAGE_FILE_MACHINE_UNKNOWN);
+ WriteLE16(0xFFFF);
+ WriteLE16(COFF::BigObjHeader::MinBigObjectVersion);
+ WriteLE16(Header.Machine);
+ WriteLE32(Header.TimeDateStamp);
+ for (uint8_t MagicChar : COFF::BigObjMagic)
+ Write8(MagicChar);
+ WriteLE32(0);
+ WriteLE32(0);
+ WriteLE32(0);
+ WriteLE32(0);
+ WriteLE32(Header.NumberOfSections);
+ WriteLE32(Header.PointerToSymbolTable);
+ WriteLE32(Header.NumberOfSymbols);
+ } else {
+ WriteLE16(Header.Machine);
+ WriteLE16(static_cast<int16_t>(Header.NumberOfSections));
+ WriteLE32(Header.TimeDateStamp);
+ WriteLE32(Header.PointerToSymbolTable);
+ WriteLE32(Header.NumberOfSymbols);
+ WriteLE16(Header.SizeOfOptionalHeader);
+ WriteLE16(Header.Characteristics);
+ }
}
void WinCOFFObjectWriter::WriteSymbol(const COFFSymbol &S) {
WriteBytes(StringRef(S.Data.Name, COFF::NameSize));
WriteLE32(S.Data.Value);
- WriteLE16(S.Data.SectionNumber);
+ if (UseBigObj)
+ WriteLE32(S.Data.SectionNumber);
+ else
+ WriteLE16(static_cast<int16_t>(S.Data.SectionNumber));
WriteLE16(S.Data.Type);
Write8(S.Data.StorageClass);
Write8(S.Data.NumberOfAuxSymbols);
@@ -608,6 +573,8 @@ void WinCOFFObjectWriter::WriteAuxiliarySymbols(
WriteLE32(i->Aux.FunctionDefinition.PointerToLinenumber);
WriteLE32(i->Aux.FunctionDefinition.PointerToNextFunction);
WriteZeros(sizeof(i->Aux.FunctionDefinition.unused));
+ if (UseBigObj)
+ WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
case ATbfAndefSymbol:
WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused1));
@@ -615,24 +582,32 @@ void WinCOFFObjectWriter::WriteAuxiliarySymbols(
WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused2));
WriteLE32(i->Aux.bfAndefSymbol.PointerToNextFunction);
WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused3));
+ if (UseBigObj)
+ WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
case ATWeakExternal:
WriteLE32(i->Aux.WeakExternal.TagIndex);
WriteLE32(i->Aux.WeakExternal.Characteristics);
WriteZeros(sizeof(i->Aux.WeakExternal.unused));
+ if (UseBigObj)
+ WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
case ATFile:
- WriteBytes(StringRef(reinterpret_cast<const char *>(i->Aux.File.FileName),
- sizeof(i->Aux.File.FileName)));
+ WriteBytes(
+ StringRef(reinterpret_cast<const char *>(&i->Aux),
+ UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size));
break;
case ATSectionDefinition:
WriteLE32(i->Aux.SectionDefinition.Length);
WriteLE16(i->Aux.SectionDefinition.NumberOfRelocations);
WriteLE16(i->Aux.SectionDefinition.NumberOfLinenumbers);
WriteLE32(i->Aux.SectionDefinition.CheckSum);
- WriteLE16(i->Aux.SectionDefinition.Number);
+ WriteLE16(static_cast<int16_t>(i->Aux.SectionDefinition.Number));
Write8(i->Aux.SectionDefinition.Selection);
WriteZeros(sizeof(i->Aux.SectionDefinition.unused));
+ WriteLE16(static_cast<int16_t>(i->Aux.SectionDefinition.Number >> 16));
+ if (UseBigObj)
+ WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
}
}
@@ -665,38 +640,7 @@ void WinCOFFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// "Define" each section & symbol. This creates section & symbol
// entries in the staging area.
-
- static_assert(sizeof(((COFF::AuxiliaryFile *)nullptr)->FileName) == COFF::SymbolSize,
- "size mismatch for COFF::AuxiliaryFile::FileName");
- for (auto FI = Asm.file_names_begin(), FE = Asm.file_names_end();
- FI != FE; ++FI) {
- // round up to calculate the number of auxiliary symbols required
- unsigned Count = (FI->size() + COFF::SymbolSize - 1) / COFF::SymbolSize;
-
- COFFSymbol *file = createSymbol(".file");
- file->Data.SectionNumber = COFF::IMAGE_SYM_DEBUG;
- file->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE;
- file->Aux.resize(Count);
-
- unsigned Offset = 0;
- unsigned Length = FI->size();
- for (auto & Aux : file->Aux) {
- Aux.AuxType = ATFile;
-
- if (Length > COFF::SymbolSize) {
- memcpy(Aux.Aux.File.FileName, FI->c_str() + Offset, COFF::SymbolSize);
- Length = Length - COFF::SymbolSize;
- } else {
- memcpy(Aux.Aux.File.FileName, FI->c_str() + Offset, Length);
- memset(&Aux.Aux.File.FileName[Length], 0, COFF::SymbolSize - Length);
- Length = 0;
- }
-
- Offset = Offset + COFF::SymbolSize;
- }
- }
-
- for (const auto & Section : Asm)
+ for (const auto &Section : Asm)
DefineSection(Section);
for (MCSymbolData &SD : Asm.symbols())
@@ -704,6 +648,19 @@ void WinCOFFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
DefineSymbol(SD, Asm, Layout);
}
+bool WinCOFFObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
+ const MCAssembler &Asm, const MCSymbolData &DataA, const MCFragment &FB,
+ bool InSet, bool IsPCRel) const {
+ // MS LINK expects to be able to replace all references to a function with a
+ // thunk to implement their /INCREMENTAL feature. Make sure we don't optimize
+ // away any relocations to functions.
+ if ((((DataA.getFlags() & COFF::SF_TypeMask) >> COFF::SF_TypeShift) >>
+ COFF::SCT_COMPLEX_TYPE_SHIFT) == COFF::IMAGE_SYM_DTYPE_FUNCTION)
+ return false;
+ return MCObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(Asm, DataA, FB,
+ InSet, IsPCRel);
+}
+
void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
@@ -755,7 +712,7 @@ void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
// Offset of the symbol in the section
int64_t a = Layout.getSymbolOffset(&B_SD);
- // Ofeset of the relocation in the section
+ // Offset of the relocation in the section
int64_t b = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
FixedValue = b - a;
@@ -776,8 +733,8 @@ void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
// Turn relocations for temporary symbols into section relocations.
if (coff_symbol->MCData->getSymbol().isTemporary() || CrossSection) {
Reloc.Symb = coff_symbol->Section->Symbol;
- FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->Fragment)
- + coff_symbol->MCData->getOffset();
+ FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->getFragment()) +
+ coff_symbol->MCData->getOffset();
} else
Reloc.Symb = coff_symbol;
@@ -839,26 +796,67 @@ void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
const MCAsmLayout &Layout) {
+ size_t SectionsSize = Sections.size();
+ if (SectionsSize > static_cast<size_t>(INT32_MAX))
+ report_fatal_error(
+ "PE COFF object files can't have more than 2147483647 sections");
+
// Assign symbol and section indexes and offsets.
- Header.NumberOfSections = 0;
+ int32_t NumberOfSections = static_cast<int32_t>(SectionsSize);
+
+ UseBigObj = NumberOfSections > COFF::MaxNumberOfSections16;
+
+ DenseMap<COFFSection *, int32_t> SectionIndices(
+ NextPowerOf2(NumberOfSections));
- DenseMap<COFFSection *, uint16_t> SectionIndices;
- for (auto & Section : Sections) {
- size_t Number = ++Header.NumberOfSections;
+ // Assign section numbers.
+ size_t Number = 1;
+ for (const auto &Section : Sections) {
SectionIndices[Section.get()] = Number;
- MakeSectionReal(*Section, Number);
+ Section->Number = Number;
+ Section->Symbol->Data.SectionNumber = Number;
+ Section->Symbol->Aux[0].Aux.SectionDefinition.Number = Number;
+ ++Number;
}
+ Header.NumberOfSections = NumberOfSections;
Header.NumberOfSymbols = 0;
- for (auto & Symbol : Symbols) {
+ for (auto FI = Asm.file_names_begin(), FE = Asm.file_names_end();
+ FI != FE; ++FI) {
+ // round up to calculate the number of auxiliary symbols required
+ unsigned SymbolSize = UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size;
+ unsigned Count = (FI->size() + SymbolSize - 1) / SymbolSize;
+
+ COFFSymbol *file = createSymbol(".file");
+ file->Data.SectionNumber = COFF::IMAGE_SYM_DEBUG;
+ file->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE;
+ file->Aux.resize(Count);
+
+ unsigned Offset = 0;
+ unsigned Length = FI->size();
+ for (auto &Aux : file->Aux) {
+ Aux.AuxType = ATFile;
+
+ if (Length > SymbolSize) {
+ memcpy(&Aux.Aux, FI->c_str() + Offset, SymbolSize);
+ Length = Length - SymbolSize;
+ } else {
+ memcpy(&Aux.Aux, FI->c_str() + Offset, Length);
+ memset((char *)&Aux.Aux + Length, 0, SymbolSize - Length);
+ break;
+ }
+
+ Offset += SymbolSize;
+ }
+ }
+
+ for (auto &Symbol : Symbols) {
// Update section number & offset for symbols that have them.
if (Symbol->Section)
Symbol->Data.SectionNumber = Symbol->Section->Number;
-
if (Symbol->should_keep()) {
- MakeSymbolReal(*Symbol, Header.NumberOfSymbols++);
-
+ Symbol->Index = Header.NumberOfSymbols++;
// Update auxiliary symbol info.
Symbol->Data.NumberOfAuxSymbols = Symbol->Aux.size();
Header.NumberOfSymbols += Symbol->Data.NumberOfAuxSymbols;
@@ -866,8 +864,24 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
Symbol->Index = -1;
}
+ // Build string table.
+ for (const auto &S : Sections)
+ if (S->Name.size() > COFF::NameSize)
+ Strings.add(S->Name);
+ for (const auto &S : Symbols)
+ if (S->should_keep() && S->Name.size() > COFF::NameSize)
+ Strings.add(S->Name);
+ Strings.finalize(StringTableBuilder::WinCOFF);
+
+ // Set names.
+ for (const auto &S : Sections)
+ SetSectionName(*S);
+ for (auto &S : Symbols)
+ if (S->should_keep())
+ SetSymbolName(*S);
+
// Fixup weak external references.
- for (auto & Symbol : Symbols) {
+ for (auto &Symbol : Symbols) {
if (Symbol->Other) {
assert(Symbol->Index != -1);
assert(Symbol->Aux.size() == 1 && "Symbol must contain one aux symbol!");
@@ -878,7 +892,7 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
}
// Fixup associative COMDAT sections.
- for (auto & Section : Sections) {
+ for (auto &Section : Sections) {
if (Section->Symbol->Aux[0].Aux.SectionDefinition.Selection !=
COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
continue;
@@ -908,10 +922,13 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
unsigned offset = 0;
- offset += COFF::HeaderSize;
+ if (UseBigObj)
+ offset += COFF::Header32Size;
+ else
+ offset += COFF::Header16Size;
offset += COFF::SectionSize * Header.NumberOfSections;
- for (const auto & Section : Asm) {
+ for (const auto &Section : Asm) {
COFFSection *Sec = SectionMap[&Section.getSection()];
if (Sec->Number == -1)
@@ -929,7 +946,7 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
bool RelocationsOverflow = Sec->Relocations.size() >= 0xffff;
if (RelocationsOverflow) {
- // Signal overflow by setting NumberOfSections to max value. Actual
+ // Signal overflow by setting NumberOfRelocations to max value. Actual
// size is found in reloc #0. Microsoft tools understand this.
Sec->Header.NumberOfRelocations = 0xffff;
} else {
@@ -944,7 +961,7 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
offset += COFF::RelocationSize * Sec->Relocations.size();
- for (auto & Relocation : Sec->Relocations) {
+ for (auto &Relocation : Sec->Relocations) {
assert(Relocation.Symb->Index != -1);
Relocation.Data.SymbolTableIndex = Relocation.Symb->Index;
}
@@ -974,7 +991,7 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
sections::iterator i, ie;
MCAssembler::const_iterator j, je;
- for (auto & Section : Sections) {
+ for (auto &Section : Sections) {
if (Section->Number != -1) {
if (Section->Relocations.size() >= 0xffff)
Section->Header.Characteristics |= COFF::IMAGE_SCN_LNK_NRELOC_OVFL;
@@ -1010,7 +1027,7 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
WriteRelocation(r);
}
- for (const auto & Relocation : (*i)->Relocations)
+ for (const auto &Relocation : (*i)->Relocations)
WriteRelocation(Relocation.Data);
} else
assert((*i)->Header.PointerToRelocations == 0 &&
@@ -1021,11 +1038,11 @@ void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
assert(OS.tell() == Header.PointerToSymbolTable &&
"Header::PointerToSymbolTable is insane!");
- for (auto & Symbol : Symbols)
+ for (auto &Symbol : Symbols)
if (Symbol->Index != -1)
WriteSymbol(*Symbol);
- OS.write((char const *)&Strings.Data.front(), Strings.Data.size());
+ OS.write(Strings.data().data(), Strings.data().size());
}
MCWinCOFFObjectTargetWriter::MCWinCOFFObjectTargetWriter(unsigned Machine_) :
diff --git a/contrib/llvm/lib/MC/WinCOFFStreamer.cpp b/contrib/llvm/lib/MC/WinCOFFStreamer.cpp
index d391a3f..41a3da7 100644
--- a/contrib/llvm/lib/MC/WinCOFFStreamer.cpp
+++ b/contrib/llvm/lib/MC/WinCOFFStreamer.cpp
@@ -12,7 +12,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringExtras.h"
-#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
@@ -23,13 +22,14 @@
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionCOFF.h"
+#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
-#include "llvm/MC/MCWin64EH.h"
#include "llvm/MC/MCWinCOFFStreamer.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
@@ -61,7 +61,7 @@ void MCWinCOFFStreamer::EmitInstToData(const MCInst &Inst,
DF->getContents().append(Code.begin(), Code.end());
}
-void MCWinCOFFStreamer::InitSections() {
+void MCWinCOFFStreamer::InitSections(bool NoExecStack) {
// FIXME: this is identical to the ELF one.
// This emulates the same behavior of GNU as. This makes it easier
// to compare the output as the major sections are in the same order.
@@ -133,7 +133,7 @@ void MCWinCOFFStreamer::EmitCOFFSymbolStorageClass(int StorageClass) {
if (!CurSymbol)
FatalError("storage class specified outside of symbol definition");
- if (StorageClass & ~0xff)
+ if (StorageClass & ~COFF::SSC_Invalid)
FatalError(Twine("storage class value '") + itostr(StorageClass) +
"' out of range");
@@ -163,7 +163,7 @@ void MCWinCOFFStreamer::EmitCOFFSectionIndex(MCSymbol const *Symbol) {
const MCSymbolRefExpr *SRE = MCSymbolRefExpr::Create(Symbol, getContext());
MCFixup Fixup = MCFixup::Create(DF->getContents().size(), SRE, FK_SecRel_2);
DF->getFixups().push_back(Fixup);
- DF->getContents().resize(DF->getContents().size() + 4, 0);
+ DF->getContents().resize(DF->getContents().size() + 2, 0);
}
void MCWinCOFFStreamer::EmitCOFFSecRel32(MCSymbol const *Symbol) {
@@ -184,14 +184,35 @@ void MCWinCOFFStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
Symbol->getSection().getVariant() == MCSection::SV_COFF) &&
"Got non-COFF section in the COFF backend!");
- if (ByteAlignment > 32)
- report_fatal_error("alignment is limited to 32-bytes");
+ const Triple &T = getContext().getObjectFileInfo()->getTargetTriple();
+ if (T.isKnownWindowsMSVCEnvironment()) {
+ if (ByteAlignment > 32)
+ report_fatal_error("alignment is limited to 32-bytes");
+
+ // Round size up to alignment so that we will honor the alignment request.
+ Size = std::max(Size, static_cast<uint64_t>(ByteAlignment));
+ }
AssignSection(Symbol, nullptr);
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
SD.setExternal(true);
SD.setCommon(Size, ByteAlignment);
+
+ if (!T.isKnownWindowsMSVCEnvironment() && ByteAlignment > 1) {
+ SmallString<128> Directive;
+ raw_svector_ostream OS(Directive);
+ const MCObjectFileInfo *MFI = getContext().getObjectFileInfo();
+
+ OS << " -aligncomm:\"" << Symbol->getName() << "\","
+ << Log2_32_Ceil(ByteAlignment);
+ OS.flush();
+
+ PushSection();
+ SwitchSection(MFI->getDrectveSection());
+ EmitBytes(Directive);
+ PopSection();
+ }
}
void MCWinCOFFStreamer::EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size,
diff --git a/contrib/llvm/lib/Object/Archive.cpp b/contrib/llvm/lib/Object/Archive.cpp
index e32bdd5..5aada91 100644
--- a/contrib/llvm/lib/Object/Archive.cpp
+++ b/contrib/llvm/lib/Object/Archive.cpp
@@ -22,6 +22,7 @@ using namespace llvm;
using namespace object;
static const char *const Magic = "!<arch>\n";
+static const char *const ThinMagic = "!<thin>\n";
void Archive::anchor() { }
@@ -86,7 +87,10 @@ Archive::Child::Child(const Archive *Parent, const char *Start)
const ArchiveMemberHeader *Header =
reinterpret_cast<const ArchiveMemberHeader *>(Start);
- Data = StringRef(Start, sizeof(ArchiveMemberHeader) + Header->getSize());
+ uint64_t Size = sizeof(ArchiveMemberHeader);
+ if (!Parent->IsThin || Header->getName() == "/" || Header->getName() == "//")
+ Size += Header->getSize();
+ Data = StringRef(Start, Size);
// Setup StartOfFile and PaddingBytes.
StartOfFile = sizeof(ArchiveMemberHeader);
@@ -100,6 +104,12 @@ Archive::Child::Child(const Archive *Parent, const char *Start)
}
}
+uint64_t Archive::Child::getSize() const {
+ if (Parent->IsThin)
+ return getHeader()->getSize();
+ return Data.size() - StartOfFile;
+}
+
Archive::Child Archive::Child::getNext() const {
size_t SpaceToSkip = Data.size();
// If it's odd, add 1 to make it even.
@@ -109,7 +119,7 @@ Archive::Child Archive::Child::getNext() const {
const char *NextLoc = Data.data() + SpaceToSkip;
// Check to see if this is past the end of the archive.
- if (NextLoc >= Parent->Data->getBufferEnd())
+ if (NextLoc >= Parent->Data.getBufferEnd())
return Child(Parent, nullptr);
return Child(Parent, NextLoc);
@@ -159,44 +169,40 @@ ErrorOr<StringRef> Archive::Child::getName() const {
return name;
}
-ErrorOr<std::unique_ptr<MemoryBuffer>>
-Archive::Child::getMemoryBuffer(bool FullPath) const {
+ErrorOr<MemoryBufferRef> Archive::Child::getMemoryBufferRef() const {
ErrorOr<StringRef> NameOrErr = getName();
if (std::error_code EC = NameOrErr.getError())
return EC;
StringRef Name = NameOrErr.get();
- SmallString<128> Path;
- std::unique_ptr<MemoryBuffer> Ret(MemoryBuffer::getMemBuffer(
- getBuffer(),
- FullPath
- ? (Twine(Parent->getFileName()) + "(" + Name + ")").toStringRef(Path)
- : Name,
- false));
- return std::move(Ret);
+ return MemoryBufferRef(getBuffer(), Name);
}
ErrorOr<std::unique_ptr<Binary>>
Archive::Child::getAsBinary(LLVMContext *Context) const {
- ErrorOr<std::unique_ptr<MemoryBuffer>> BuffOrErr = getMemoryBuffer();
+ ErrorOr<MemoryBufferRef> BuffOrErr = getMemoryBufferRef();
if (std::error_code EC = BuffOrErr.getError())
return EC;
- return createBinary(std::move(*BuffOrErr), Context);
+ return createBinary(BuffOrErr.get(), Context);
}
-ErrorOr<Archive *> Archive::create(std::unique_ptr<MemoryBuffer> Source) {
+ErrorOr<std::unique_ptr<Archive>> Archive::create(MemoryBufferRef Source) {
std::error_code EC;
- std::unique_ptr<Archive> Ret(new Archive(std::move(Source), EC));
+ std::unique_ptr<Archive> Ret(new Archive(Source, EC));
if (EC)
return EC;
- return Ret.release();
+ return std::move(Ret);
}
-Archive::Archive(std::unique_ptr<MemoryBuffer> Source, std::error_code &ec)
- : Binary(Binary::ID_Archive, std::move(Source)), SymbolTable(child_end()) {
+Archive::Archive(MemoryBufferRef Source, std::error_code &ec)
+ : Binary(Binary::ID_Archive, Source), SymbolTable(child_end()) {
+ StringRef Buffer = Data.getBuffer();
// Check for sufficient magic.
- if (Data->getBufferSize() < 8 ||
- StringRef(Data->getBufferStart(), 8) != Magic) {
+ if (Buffer.startswith(ThinMagic)) {
+ IsThin = true;
+ } else if (Buffer.startswith(Magic)) {
+ IsThin = false;
+ } else {
ec = object_error::invalid_file_type;
return;
}
@@ -248,7 +254,7 @@ Archive::Archive(std::unique_ptr<MemoryBuffer> Source, std::error_code &ec)
if (ec)
return;
Name = NameOrErr.get();
- if (Name == "__.SYMDEF SORTED") {
+ if (Name == "__.SYMDEF SORTED" || Name == "__.SYMDEF") {
SymbolTable = i;
++i;
}
@@ -310,13 +316,13 @@ Archive::Archive(std::unique_ptr<MemoryBuffer> Source, std::error_code &ec)
}
Archive::child_iterator Archive::child_begin(bool SkipInternal) const {
- if (Data->getBufferSize() == 8) // empty archive.
+ if (Data.getBufferSize() == 8) // empty archive.
return child_end();
if (SkipInternal)
return FirstRegular;
- const char *Loc = Data->getBufferStart() + strlen(Magic);
+ const char *Loc = Data.getBufferStart() + strlen(Magic);
Child c(this, Loc);
return c;
}
diff --git a/contrib/llvm/lib/Object/Binary.cpp b/contrib/llvm/lib/Object/Binary.cpp
index 552d5db..c56eeb1 100644
--- a/contrib/llvm/lib/Object/Binary.cpp
+++ b/contrib/llvm/lib/Object/Binary.cpp
@@ -27,24 +27,23 @@ using namespace object;
Binary::~Binary() {}
-Binary::Binary(unsigned int Type, std::unique_ptr<MemoryBuffer> Source)
- : TypeID(Type), Data(std::move(Source)) {}
+Binary::Binary(unsigned int Type, MemoryBufferRef Source)
+ : TypeID(Type), Data(Source) {}
-StringRef Binary::getData() const {
- return Data->getBuffer();
-}
+StringRef Binary::getData() const { return Data.getBuffer(); }
-StringRef Binary::getFileName() const {
- return Data->getBufferIdentifier();
-}
+StringRef Binary::getFileName() const { return Data.getBufferIdentifier(); }
+
+MemoryBufferRef Binary::getMemoryBufferRef() const { return Data; }
-ErrorOr<Binary *> object::createBinary(std::unique_ptr<MemoryBuffer> Buffer,
- LLVMContext *Context) {
- sys::fs::file_magic Type = sys::fs::identify_magic(Buffer->getBuffer());
+ErrorOr<std::unique_ptr<Binary>> object::createBinary(MemoryBufferRef Buffer,
+ LLVMContext *Context) {
+ sys::fs::file_magic Type = sys::fs::identify_magic(Buffer.getBuffer());
switch (Type) {
case sys::fs::file_magic::archive:
- return Archive::create(std::move(Buffer));
+ return Archive::create(Buffer);
+ case sys::fs::file_magic::elf:
case sys::fs::file_magic::elf_relocatable:
case sys::fs::file_magic::elf_executable:
case sys::fs::file_magic::elf_shared_object:
@@ -65,7 +64,7 @@ ErrorOr<Binary *> object::createBinary(std::unique_ptr<MemoryBuffer> Buffer,
case sys::fs::file_magic::bitcode:
return ObjectFile::createSymbolicFile(Buffer, Type, Context);
case sys::fs::file_magic::macho_universal_binary:
- return MachOUniversalBinary::create(std::move(Buffer));
+ return MachOUniversalBinary::create(Buffer);
case sys::fs::file_magic::unknown:
case sys::fs::file_magic::windows_resource:
// Unrecognized object file format.
@@ -74,10 +73,18 @@ ErrorOr<Binary *> object::createBinary(std::unique_ptr<MemoryBuffer> Buffer,
llvm_unreachable("Unexpected Binary File Type");
}
-ErrorOr<Binary *> object::createBinary(StringRef Path) {
+ErrorOr<OwningBinary<Binary>> object::createBinary(StringRef Path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(Path);
if (std::error_code EC = FileOrErr.getError())
return EC;
- return createBinary(std::move(*FileOrErr));
+ std::unique_ptr<MemoryBuffer> &Buffer = FileOrErr.get();
+
+ ErrorOr<std::unique_ptr<Binary>> BinOrErr =
+ createBinary(Buffer->getMemBufferRef());
+ if (std::error_code EC = BinOrErr.getError())
+ return EC;
+ std::unique_ptr<Binary> &Bin = BinOrErr.get();
+
+ return OwningBinary<Binary>(std::move(Bin), std::move(Buffer));
}
diff --git a/contrib/llvm/lib/Object/COFFObjectFile.cpp b/contrib/llvm/lib/Object/COFFObjectFile.cpp
index 46ef87d..cde6fdc 100644
--- a/contrib/llvm/lib/Object/COFFObjectFile.cpp
+++ b/contrib/llvm/lib/Object/COFFObjectFile.cpp
@@ -25,14 +25,13 @@
using namespace llvm;
using namespace object;
-using support::ulittle8_t;
using support::ulittle16_t;
using support::ulittle32_t;
+using support::ulittle64_t;
using support::little16_t;
// Returns false if size is greater than the buffer size. And sets ec.
-static bool checkSize(const MemoryBuffer &M, std::error_code &EC,
- uint64_t Size) {
+static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
if (M.getBufferSize() < Size) {
EC = object_error::unexpected_eof;
return false;
@@ -40,17 +39,25 @@ static bool checkSize(const MemoryBuffer &M, std::error_code &EC,
return true;
}
+static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
+ const uint64_t Size) {
+ if (Addr + Size < Addr || Addr + Size < Size ||
+ Addr + Size > uintptr_t(M.getBufferEnd()) ||
+ Addr < uintptr_t(M.getBufferStart())) {
+ return object_error::unexpected_eof;
+ }
+ return object_error::success;
+}
+
// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
// Returns unexpected_eof if error.
template <typename T>
-static std::error_code getObject(const T *&Obj, const MemoryBuffer &M,
- const uint8_t *Ptr,
- const size_t Size = sizeof(T)) {
+static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
+ const void *Ptr,
+ const uint64_t Size = sizeof(T)) {
uintptr_t Addr = uintptr_t(Ptr);
- if (Addr + Size < Addr || Addr + Size < Size ||
- Addr + Size > uintptr_t(M.getBufferEnd())) {
- return object_error::unexpected_eof;
- }
+ if (std::error_code EC = checkOffset(M, Addr, Size))
+ return EC;
Obj = reinterpret_cast<const T *>(Addr);
return object_error::success;
}
@@ -89,20 +96,19 @@ static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
return false;
}
-const coff_symbol *COFFObjectFile::toSymb(DataRefImpl Ref) const {
- const coff_symbol *Addr = reinterpret_cast<const coff_symbol*>(Ref.p);
+template <typename coff_symbol_type>
+const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
+ const coff_symbol_type *Addr =
+ reinterpret_cast<const coff_symbol_type *>(Ref.p);
-# ifndef NDEBUG
+ assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
+#ifndef NDEBUG
// Verify that the symbol points to a valid entry in the symbol table.
uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
- if (Offset < COFFHeader->PointerToSymbolTable
- || Offset >= COFFHeader->PointerToSymbolTable
- + (COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
- report_fatal_error("Symbol was outside of symbol table.");
- assert((Offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol)
- == 0 && "Symbol did not point to the beginning of a symbol");
-# endif
+ assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
+ "Symbol did not point to the beginning of a symbol");
+#endif
return Addr;
}
@@ -112,8 +118,7 @@ const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
# ifndef NDEBUG
// Verify that the section points to a valid entry in the section table.
- if (Addr < SectionTable
- || Addr >= (SectionTable + COFFHeader->NumberOfSections))
+ if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
report_fatal_error("Section was outside of section table.");
uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
@@ -125,112 +130,180 @@ const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
}
void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
- const coff_symbol *Symb = toSymb(Ref);
- Symb += 1 + Symb->NumberOfAuxSymbols;
- Ref.p = reinterpret_cast<uintptr_t>(Symb);
+ auto End = reinterpret_cast<uintptr_t>(StringTable);
+ if (SymbolTable16) {
+ const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
+ Symb += 1 + Symb->NumberOfAuxSymbols;
+ Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
+ } else if (SymbolTable32) {
+ const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
+ Symb += 1 + Symb->NumberOfAuxSymbols;
+ Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
+ } else {
+ llvm_unreachable("no symbol table pointer!");
+ }
}
std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref,
StringRef &Result) const {
- const coff_symbol *Symb = toSymb(Ref);
+ COFFSymbolRef Symb = getCOFFSymbol(Ref);
return getSymbolName(Symb, Result);
}
std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref,
uint64_t &Result) const {
- const coff_symbol *Symb = toSymb(Ref);
- const coff_section *Section = nullptr;
- if (std::error_code EC = getSection(Symb->SectionNumber, Section))
- return EC;
+ COFFSymbolRef Symb = getCOFFSymbol(Ref);
- if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
+ if (Symb.isAnyUndefined()) {
Result = UnknownAddressOrSize;
- else if (Section)
- Result = Section->VirtualAddress + Symb->Value;
- else
- Result = Symb->Value;
+ return object_error::success;
+ }
+ if (Symb.isCommon()) {
+ Result = UnknownAddressOrSize;
+ return object_error::success;
+ }
+ int32_t SectionNumber = Symb.getSectionNumber();
+ if (!COFF::isReservedSectionNumber(SectionNumber)) {
+ const coff_section *Section = nullptr;
+ if (std::error_code EC = getSection(SectionNumber, Section))
+ return EC;
+
+ Result = Section->VirtualAddress + Symb.getValue();
+ return object_error::success;
+ }
+
+ Result = Symb.getValue();
return object_error::success;
}
std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref,
SymbolRef::Type &Result) const {
- const coff_symbol *Symb = toSymb(Ref);
+ COFFSymbolRef Symb = getCOFFSymbol(Ref);
+ int32_t SectionNumber = Symb.getSectionNumber();
Result = SymbolRef::ST_Other;
- if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL &&
- Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) {
+
+ if (Symb.isAnyUndefined()) {
Result = SymbolRef::ST_Unknown;
- } else if (Symb->isFunctionDefinition()) {
+ } else if (Symb.isFunctionDefinition()) {
Result = SymbolRef::ST_Function;
- } else {
- uint32_t Characteristics = 0;
- if (!COFF::isReservedSectionNumber(Symb->SectionNumber)) {
- const coff_section *Section = nullptr;
- if (std::error_code EC = getSection(Symb->SectionNumber, Section))
- return EC;
- Characteristics = Section->Characteristics;
- }
- if (Characteristics & COFF::IMAGE_SCN_MEM_READ &&
- ~Characteristics & COFF::IMAGE_SCN_MEM_WRITE) // Read only.
+ } else if (Symb.isCommon()) {
+ Result = SymbolRef::ST_Data;
+ } else if (Symb.isFileRecord()) {
+ Result = SymbolRef::ST_File;
+ } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG) {
+ Result = SymbolRef::ST_Debug;
+ } else if (!COFF::isReservedSectionNumber(SectionNumber)) {
+ const coff_section *Section = nullptr;
+ if (std::error_code EC = getSection(SectionNumber, Section))
+ return EC;
+ uint32_t Characteristics = Section->Characteristics;
+ if (Characteristics & COFF::IMAGE_SCN_CNT_CODE)
+ Result = SymbolRef::ST_Function;
+ else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
+ COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA))
Result = SymbolRef::ST_Data;
}
return object_error::success;
}
uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
- const coff_symbol *Symb = toSymb(Ref);
+ COFFSymbolRef Symb = getCOFFSymbol(Ref);
uint32_t Result = SymbolRef::SF_None;
- // TODO: Correctly set SF_FormatSpecific, SF_Common
-
- if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) {
- if (Symb->Value == 0)
- Result |= SymbolRef::SF_Undefined;
- else
- Result |= SymbolRef::SF_Common;
- }
-
-
- // TODO: This are certainly too restrictive.
- if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL)
+ if (Symb.isExternal() || Symb.isWeakExternal())
Result |= SymbolRef::SF_Global;
- if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL)
+ if (Symb.isWeakExternal())
Result |= SymbolRef::SF_Weak;
- if (Symb->SectionNumber == COFF::IMAGE_SYM_ABSOLUTE)
+ if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
Result |= SymbolRef::SF_Absolute;
+ if (Symb.isFileRecord())
+ Result |= SymbolRef::SF_FormatSpecific;
+
+ if (Symb.isSectionDefinition())
+ Result |= SymbolRef::SF_FormatSpecific;
+
+ if (Symb.isCommon())
+ Result |= SymbolRef::SF_Common;
+
+ if (Symb.isAnyUndefined())
+ Result |= SymbolRef::SF_Undefined;
+
return Result;
}
std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref,
uint64_t &Result) const {
- // FIXME: Return the correct size. This requires looking at all the symbols
- // in the same section as this symbol, and looking for either the next
- // symbol, or the end of the section.
- const coff_symbol *Symb = toSymb(Ref);
- const coff_section *Section = nullptr;
- if (std::error_code EC = getSection(Symb->SectionNumber, Section))
- return EC;
+ COFFSymbolRef Symb = getCOFFSymbol(Ref);
- if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
+ if (Symb.isAnyUndefined()) {
Result = UnknownAddressOrSize;
- else if (Section)
- Result = Section->SizeOfRawData - Symb->Value;
- else
+ return object_error::success;
+ }
+ if (Symb.isCommon()) {
+ Result = Symb.getValue();
+ return object_error::success;
+ }
+
+ // Let's attempt to get the size of the symbol by looking at the address of
+ // the symbol after the symbol in question.
+ uint64_t SymbAddr;
+ if (std::error_code EC = getSymbolAddress(Ref, SymbAddr))
+ return EC;
+ int32_t SectionNumber = Symb.getSectionNumber();
+ if (COFF::isReservedSectionNumber(SectionNumber)) {
+ // Absolute and debug symbols aren't sorted in any interesting way.
Result = 0;
+ return object_error::success;
+ }
+ const section_iterator SecEnd = section_end();
+ uint64_t AfterAddr = UnknownAddressOrSize;
+ for (const symbol_iterator &SymbI : symbols()) {
+ section_iterator SecI = SecEnd;
+ if (std::error_code EC = SymbI->getSection(SecI))
+ return EC;
+ // Check the symbol's section, skip it if it's in the wrong section.
+ // First, make sure it is in any section.
+ if (SecI == SecEnd)
+ continue;
+ // Second, make sure it is in the same section as the symbol in question.
+ if (!sectionContainsSymbol(SecI->getRawDataRefImpl(), Ref))
+ continue;
+ uint64_t Addr;
+ if (std::error_code EC = SymbI->getAddress(Addr))
+ return EC;
+ // We want to compare our symbol in question with the closest possible
+ // symbol that comes after.
+ if (AfterAddr > Addr && Addr > SymbAddr)
+ AfterAddr = Addr;
+ }
+ if (AfterAddr == UnknownAddressOrSize) {
+ // No symbol comes after this one, assume that everything after our symbol
+ // is part of it.
+ const coff_section *Section = nullptr;
+ if (std::error_code EC = getSection(SectionNumber, Section))
+ return EC;
+ Result = Section->SizeOfRawData - Symb.getValue();
+ } else {
+ // Take the difference between our symbol and the symbol that comes after
+ // our symbol.
+ Result = AfterAddr - SymbAddr;
+ }
+
return object_error::success;
}
std::error_code
COFFObjectFile::getSymbolSection(DataRefImpl Ref,
section_iterator &Result) const {
- const coff_symbol *Symb = toSymb(Ref);
- if (COFF::isReservedSectionNumber(Symb->SectionNumber)) {
+ COFFSymbolRef Symb = getCOFFSymbol(Ref);
+ if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) {
Result = section_end();
} else {
const coff_section *Sec = nullptr;
- if (std::error_code EC = getSection(Symb->SectionNumber, Sec))
+ if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
return EC;
DataRefImpl Ref;
Ref.p = reinterpret_cast<uintptr_t>(Sec);
@@ -251,18 +324,13 @@ std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
return getSectionName(Sec, Result);
}
-std::error_code COFFObjectFile::getSectionAddress(DataRefImpl Ref,
- uint64_t &Result) const {
+uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
- Result = Sec->VirtualAddress;
- return object_error::success;
+ return Sec->VirtualAddress;
}
-std::error_code COFFObjectFile::getSectionSize(DataRefImpl Ref,
- uint64_t &Result) const {
- const coff_section *Sec = toSec(Ref);
- Result = Sec->SizeOfRawData;
- return object_error::success;
+uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
+ return getSectionSize(toSec(Ref));
}
std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
@@ -274,146 +342,117 @@ std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
return EC;
}
-std::error_code COFFObjectFile::getSectionAlignment(DataRefImpl Ref,
- uint64_t &Res) const {
+uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
- if (!Sec)
- return object_error::parse_failed;
- Res = uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1);
- return object_error::success;
+ return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1);
}
-std::error_code COFFObjectFile::isSectionText(DataRefImpl Ref,
- bool &Result) const {
+bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
- Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
- return object_error::success;
+ return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
}
-std::error_code COFFObjectFile::isSectionData(DataRefImpl Ref,
- bool &Result) const {
+bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
- Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
- return object_error::success;
+ return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
}
-std::error_code COFFObjectFile::isSectionBSS(DataRefImpl Ref,
- bool &Result) const {
+bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
- Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
- return object_error::success;
+ return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
}
-std::error_code
-COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref,
- bool &Result) const {
- // FIXME: Unimplemented
- Result = true;
- return object_error::success;
-}
-
-std::error_code COFFObjectFile::isSectionVirtual(DataRefImpl Ref,
- bool &Result) const {
+bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
- Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
- return object_error::success;
+ return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
}
-std::error_code COFFObjectFile::isSectionZeroInit(DataRefImpl Ref,
- bool &Result) const {
- // FIXME: Unimplemented.
- Result = false;
- return object_error::success;
-}
-
-std::error_code COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref,
- bool &Result) const {
- // FIXME: Unimplemented.
- Result = false;
- return object_error::success;
-}
-
-std::error_code COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef,
- DataRefImpl SymbRef,
- bool &Result) const {
+bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef,
+ DataRefImpl SymbRef) const {
const coff_section *Sec = toSec(SecRef);
- const coff_symbol *Symb = toSymb(SymbRef);
- const coff_section *SymbSec = nullptr;
- if (std::error_code EC = getSection(Symb->SectionNumber, SymbSec))
- return EC;
- if (SymbSec == Sec)
- Result = true;
- else
- Result = false;
- return object_error::success;
-}
-
-relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
- const coff_section *Sec = toSec(Ref);
- DataRefImpl Ret;
- if (Sec->NumberOfRelocations == 0) {
- Ret.p = 0;
- } else {
- auto begin = reinterpret_cast<const coff_relocation*>(
- base() + Sec->PointerToRelocations);
- if (Sec->hasExtendedRelocations()) {
- // Skip the first relocation entry repurposed to store the number of
- // relocations.
- begin++;
- }
- Ret.p = reinterpret_cast<uintptr_t>(begin);
- }
- return relocation_iterator(RelocationRef(Ret, this));
+ COFFSymbolRef Symb = getCOFFSymbol(SymbRef);
+ int32_t SecNumber = (Sec - SectionTable) + 1;
+ return SecNumber == Symb.getSectionNumber();
}
static uint32_t getNumberOfRelocations(const coff_section *Sec,
- const uint8_t *base) {
+ MemoryBufferRef M, const uint8_t *base) {
// The field for the number of relocations in COFF section table is only
// 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
// NumberOfRelocations field, and the actual relocation count is stored in the
// VirtualAddress field in the first relocation entry.
if (Sec->hasExtendedRelocations()) {
- auto *FirstReloc = reinterpret_cast<const coff_relocation*>(
- base + Sec->PointerToRelocations);
- return FirstReloc->VirtualAddress;
+ const coff_relocation *FirstReloc;
+ if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
+ base + Sec->PointerToRelocations)))
+ return 0;
+ // -1 to exclude this first relocation entry.
+ return FirstReloc->VirtualAddress - 1;
}
return Sec->NumberOfRelocations;
}
+static const coff_relocation *
+getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
+ uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
+ if (!NumRelocs)
+ return nullptr;
+ auto begin = reinterpret_cast<const coff_relocation *>(
+ Base + Sec->PointerToRelocations);
+ if (Sec->hasExtendedRelocations()) {
+ // Skip the first relocation entry repurposed to store the number of
+ // relocations.
+ begin++;
+ }
+ if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
+ return nullptr;
+ return begin;
+}
+
+relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
+ const coff_section *Sec = toSec(Ref);
+ const coff_relocation *begin = getFirstReloc(Sec, Data, base());
+ DataRefImpl Ret;
+ Ret.p = reinterpret_cast<uintptr_t>(begin);
+ return relocation_iterator(RelocationRef(Ret, this));
+}
+
relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
+ const coff_relocation *I = getFirstReloc(Sec, Data, base());
+ if (I)
+ I += getNumberOfRelocations(Sec, Data, base());
DataRefImpl Ret;
- if (Sec->NumberOfRelocations == 0) {
- Ret.p = 0;
- } else {
- auto begin = reinterpret_cast<const coff_relocation*>(
- base() + Sec->PointerToRelocations);
- uint32_t NumReloc = getNumberOfRelocations(Sec, base());
- Ret.p = reinterpret_cast<uintptr_t>(begin + NumReloc);
- }
+ Ret.p = reinterpret_cast<uintptr_t>(I);
return relocation_iterator(RelocationRef(Ret, this));
}
// Initialize the pointer to the symbol table.
std::error_code COFFObjectFile::initSymbolTablePtr() {
- if (std::error_code EC = getObject(
- SymbolTable, *Data, base() + COFFHeader->PointerToSymbolTable,
- COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
- return EC;
+ if (COFFHeader)
+ if (std::error_code EC = getObject(
+ SymbolTable16, Data, base() + getPointerToSymbolTable(),
+ (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
+ return EC;
+
+ if (COFFBigObjHeader)
+ if (std::error_code EC = getObject(
+ SymbolTable32, Data, base() + getPointerToSymbolTable(),
+ (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
+ return EC;
// Find string table. The first four byte of the string table contains the
// total size of the string table, including the size field itself. If the
// string table is empty, the value of the first four byte would be 4.
- const uint8_t *StringTableAddr =
- base() + COFFHeader->PointerToSymbolTable +
- COFFHeader->NumberOfSymbols * sizeof(coff_symbol);
+ uint32_t StringTableOffset = getPointerToSymbolTable() +
+ getNumberOfSymbols() * getSymbolTableEntrySize();
+ const uint8_t *StringTableAddr = base() + StringTableOffset;
const ulittle32_t *StringTableSizePtr;
- if (std::error_code EC =
- getObject(StringTableSizePtr, *Data, StringTableAddr))
+ if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
return EC;
StringTableSize = *StringTableSizePtr;
if (std::error_code EC =
- getObject(StringTable, *Data, StringTableAddr, StringTableSize))
+ getObject(StringTable, Data, StringTableAddr, StringTableSize))
return EC;
// Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
@@ -477,8 +516,9 @@ std::error_code COFFObjectFile::initImportTablePtr() {
return object_error::success;
uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
+ // -1 because the last entry is the null entry.
NumberOfImportDirectory = DataEntry->Size /
- sizeof(import_directory_table_entry);
+ sizeof(import_directory_table_entry) - 1;
// Find the section that contains the RVA. This is needed because the RVA is
// the import table's memory address which is different from its file offset.
@@ -490,6 +530,26 @@ std::error_code COFFObjectFile::initImportTablePtr() {
return object_error::success;
}
+// Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
+std::error_code COFFObjectFile::initDelayImportTablePtr() {
+ const data_directory *DataEntry;
+ if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
+ return object_error::success;
+ if (DataEntry->RelativeVirtualAddress == 0)
+ return object_error::success;
+
+ uint32_t RVA = DataEntry->RelativeVirtualAddress;
+ NumberOfDelayImportDirectory = DataEntry->Size /
+ sizeof(delay_import_directory_table_entry) - 1;
+
+ uintptr_t IntPtr = 0;
+ if (std::error_code EC = getRvaPtr(RVA, IntPtr))
+ return EC;
+ DelayImportDirectory = reinterpret_cast<
+ const delay_import_directory_table_entry *>(IntPtr);
+ return object_error::success;
+}
+
// Find the export table.
std::error_code COFFObjectFile::initExportTablePtr() {
// First, we get the RVA of the export table. If the file lacks a pointer to
@@ -511,15 +571,34 @@ std::error_code COFFObjectFile::initExportTablePtr() {
return object_error::success;
}
-COFFObjectFile::COFFObjectFile(std::unique_ptr<MemoryBuffer> Object,
- std::error_code &EC)
- : ObjectFile(Binary::ID_COFF, std::move(Object)), COFFHeader(nullptr),
- PE32Header(nullptr), PE32PlusHeader(nullptr), DataDirectory(nullptr),
- SectionTable(nullptr), SymbolTable(nullptr), StringTable(nullptr),
- StringTableSize(0), ImportDirectory(nullptr), NumberOfImportDirectory(0),
- ExportDirectory(nullptr) {
+std::error_code COFFObjectFile::initBaseRelocPtr() {
+ const data_directory *DataEntry;
+ if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
+ return object_error::success;
+ if (DataEntry->RelativeVirtualAddress == 0)
+ return object_error::success;
+
+ uintptr_t IntPtr = 0;
+ if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
+ return EC;
+ BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
+ IntPtr);
+ BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
+ IntPtr + DataEntry->Size);
+ return object_error::success;
+}
+
+COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
+ : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
+ COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
+ DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
+ SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
+ ImportDirectory(nullptr), NumberOfImportDirectory(0),
+ DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
+ ExportDirectory(nullptr), BaseRelocHeader(nullptr),
+ BaseRelocEnd(nullptr) {
// Check that we at least have enough room for a header.
- if (!checkSize(*Data, EC, sizeof(coff_file_header)))
+ if (!checkSize(Data, EC, sizeof(coff_file_header)))
return;
// The current location in the file where we are looking at.
@@ -530,37 +609,66 @@ COFFObjectFile::COFFObjectFile(std::unique_ptr<MemoryBuffer> Object,
bool HasPEHeader = false;
// Check if this is a PE/COFF file.
- if (base()[0] == 0x4d && base()[1] == 0x5a) {
+ if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
// PE/COFF, seek through MS-DOS compatibility stub and 4-byte
// PE signature to find 'normal' COFF header.
- if (!checkSize(*Data, EC, 0x3c + 8))
- return;
- CurPtr = *reinterpret_cast<const ulittle16_t *>(base() + 0x3c);
- // Check the PE magic bytes. ("PE\0\0")
- if (std::memcmp(base() + CurPtr, "PE\0\0", 4) != 0) {
- EC = object_error::parse_failed;
- return;
+ const auto *DH = reinterpret_cast<const dos_header *>(base());
+ if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
+ CurPtr = DH->AddressOfNewExeHeader;
+ // Check the PE magic bytes. ("PE\0\0")
+ if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
+ EC = object_error::parse_failed;
+ return;
+ }
+ CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
+ HasPEHeader = true;
}
- CurPtr += 4; // Skip the PE magic bytes.
- HasPEHeader = true;
}
- if ((EC = getObject(COFFHeader, *Data, base() + CurPtr)))
+ if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
return;
- CurPtr += sizeof(coff_file_header);
+
+ // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
+ // import libraries share a common prefix but bigobj is more restrictive.
+ if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
+ COFFHeader->NumberOfSections == uint16_t(0xffff) &&
+ checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
+ if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
+ return;
+
+ // Verify that we are dealing with bigobj.
+ if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
+ std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
+ sizeof(COFF::BigObjMagic)) == 0) {
+ COFFHeader = nullptr;
+ CurPtr += sizeof(coff_bigobj_file_header);
+ } else {
+ // It's not a bigobj.
+ COFFBigObjHeader = nullptr;
+ }
+ }
+ if (COFFHeader) {
+ // The prior checkSize call may have failed. This isn't a hard error
+ // because we were just trying to sniff out bigobj.
+ EC = object_error::success;
+ CurPtr += sizeof(coff_file_header);
+
+ if (COFFHeader->isImportLibrary())
+ return;
+ }
if (HasPEHeader) {
const pe32_header *Header;
- if ((EC = getObject(Header, *Data, base() + CurPtr)))
+ if ((EC = getObject(Header, Data, base() + CurPtr)))
return;
const uint8_t *DataDirAddr;
uint64_t DataDirSize;
- if (Header->Magic == 0x10b) {
+ if (Header->Magic == COFF::PE32Header::PE32) {
PE32Header = Header;
DataDirAddr = base() + CurPtr + sizeof(pe32_header);
DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
- } else if (Header->Magic == 0x20b) {
+ } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
@@ -569,37 +677,47 @@ COFFObjectFile::COFFObjectFile(std::unique_ptr<MemoryBuffer> Object,
EC = object_error::parse_failed;
return;
}
- if ((EC = getObject(DataDirectory, *Data, DataDirAddr, DataDirSize)))
+ if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
return;
CurPtr += COFFHeader->SizeOfOptionalHeader;
}
- if (COFFHeader->isImportLibrary())
- return;
-
- if ((EC = getObject(SectionTable, *Data, base() + CurPtr,
- COFFHeader->NumberOfSections * sizeof(coff_section))))
+ if ((EC = getObject(SectionTable, Data, base() + CurPtr,
+ (uint64_t)getNumberOfSections() * sizeof(coff_section))))
return;
// Initialize the pointer to the symbol table.
- if (COFFHeader->PointerToSymbolTable != 0)
+ if (getPointerToSymbolTable() != 0) {
if ((EC = initSymbolTablePtr()))
return;
+ } else {
+ // We had better not have any symbols if we don't have a symbol table.
+ if (getNumberOfSymbols() != 0) {
+ EC = object_error::parse_failed;
+ return;
+ }
+ }
// Initialize the pointer to the beginning of the import table.
if ((EC = initImportTablePtr()))
return;
+ if ((EC = initDelayImportTablePtr()))
+ return;
// Initialize the pointer to the export table.
if ((EC = initExportTablePtr()))
return;
+ // Initialize the pointer to the base relocation table.
+ if ((EC = initBaseRelocPtr()))
+ return;
+
EC = object_error::success;
}
basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
DataRefImpl Ret;
- Ret.p = reinterpret_cast<uintptr_t>(SymbolTable);
+ Ret.p = getSymbolTable();
return basic_symbol_iterator(SymbolRef(Ret, this));
}
@@ -610,21 +728,6 @@ basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
return basic_symbol_iterator(SymbolRef(Ret, this));
}
-library_iterator COFFObjectFile::needed_library_begin() const {
- // TODO: implement
- report_fatal_error("Libraries needed unimplemented in COFFObjectFile");
-}
-
-library_iterator COFFObjectFile::needed_library_end() const {
- // TODO: implement
- report_fatal_error("Libraries needed unimplemented in COFFObjectFile");
-}
-
-StringRef COFFObjectFile::getLoadName() const {
- // COFF does not have this field.
- return "";
-}
-
import_directory_iterator COFFObjectFile::import_directory_begin() const {
return import_directory_iterator(
ImportDirectoryEntryRef(ImportDirectory, 0, this));
@@ -635,6 +738,19 @@ import_directory_iterator COFFObjectFile::import_directory_end() const {
ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this));
}
+delay_import_directory_iterator
+COFFObjectFile::delay_import_directory_begin() const {
+ return delay_import_directory_iterator(
+ DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
+}
+
+delay_import_directory_iterator
+COFFObjectFile::delay_import_directory_end() const {
+ return delay_import_directory_iterator(
+ DelayImportDirectoryEntryRef(
+ DelayImportDirectory, NumberOfDelayImportDirectory, this));
+}
+
export_directory_iterator COFFObjectFile::export_directory_begin() const {
return export_directory_iterator(
ExportDirectoryEntryRef(ExportDirectory, 0, this));
@@ -656,18 +772,26 @@ section_iterator COFFObjectFile::section_begin() const {
section_iterator COFFObjectFile::section_end() const {
DataRefImpl Ret;
- int NumSections = COFFHeader->isImportLibrary()
- ? 0 : COFFHeader->NumberOfSections;
+ int NumSections =
+ COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
return section_iterator(SectionRef(Ret, this));
}
+base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
+ return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
+}
+
+base_reloc_iterator COFFObjectFile::base_reloc_end() const {
+ return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
+}
+
uint8_t COFFObjectFile::getBytesInAddress() const {
return getArch() == Triple::x86_64 ? 8 : 4;
}
StringRef COFFObjectFile::getFileFormatName() const {
- switch(COFFHeader->Machine) {
+ switch(getMachine()) {
case COFF::IMAGE_FILE_MACHINE_I386:
return "COFF-i386";
case COFF::IMAGE_FILE_MACHINE_AMD64:
@@ -680,7 +804,7 @@ StringRef COFFObjectFile::getFileFormatName() const {
}
unsigned COFFObjectFile::getArch() const {
- switch(COFFHeader->Machine) {
+ switch (getMachine()) {
case COFF::IMAGE_FILE_MACHINE_I386:
return Triple::x86;
case COFF::IMAGE_FILE_MACHINE_AMD64:
@@ -692,16 +816,24 @@ unsigned COFFObjectFile::getArch() const {
}
}
-// This method is kept here because lld uses this. As soon as we make
-// lld to use getCOFFHeader, this method will be removed.
-std::error_code COFFObjectFile::getHeader(const coff_file_header *&Res) const {
- return getCOFFHeader(Res);
+iterator_range<import_directory_iterator>
+COFFObjectFile::import_directories() const {
+ return make_range(import_directory_begin(), import_directory_end());
}
-std::error_code
-COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const {
- Res = COFFHeader;
- return object_error::success;
+iterator_range<delay_import_directory_iterator>
+COFFObjectFile::delay_import_directories() const {
+ return make_range(delay_import_directory_begin(),
+ delay_import_directory_end());
+}
+
+iterator_range<export_directory_iterator>
+COFFObjectFile::export_directories() const {
+ return make_range(export_directory_begin(), export_directory_end());
+}
+
+iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
+ return make_range(base_reloc_begin(), base_reloc_end());
}
std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
@@ -719,28 +851,32 @@ std::error_code
COFFObjectFile::getDataDirectory(uint32_t Index,
const data_directory *&Res) const {
// Error if if there's no data directory or the index is out of range.
- if (!DataDirectory)
+ if (!DataDirectory) {
+ Res = nullptr;
return object_error::parse_failed;
+ }
assert(PE32Header || PE32PlusHeader);
uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
: PE32PlusHeader->NumberOfRvaAndSize;
- if (Index > NumEnt)
+ if (Index >= NumEnt) {
+ Res = nullptr;
return object_error::parse_failed;
+ }
Res = &DataDirectory[Index];
return object_error::success;
}
std::error_code COFFObjectFile::getSection(int32_t Index,
const coff_section *&Result) const {
- // Check for special index values.
+ Result = nullptr;
if (COFF::isReservedSectionNumber(Index))
- Result = nullptr;
- else if (Index > 0 && Index <= COFFHeader->NumberOfSections)
+ return object_error::success;
+ if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
// We already verified the section table data, so no need to check again.
Result = SectionTable + (Index - 1);
- else
- return object_error::parse_failed;
- return object_error::success;
+ return object_error::success;
+ }
+ return object_error::parse_failed;
}
std::error_code COFFObjectFile::getString(uint32_t Offset,
@@ -754,71 +890,62 @@ std::error_code COFFObjectFile::getString(uint32_t Offset,
return object_error::success;
}
-std::error_code COFFObjectFile::getSymbol(uint32_t Index,
- const coff_symbol *&Result) const {
- if (Index < COFFHeader->NumberOfSymbols)
- Result = SymbolTable + Index;
- else
- return object_error::parse_failed;
- return object_error::success;
-}
-
-std::error_code COFFObjectFile::getSymbolName(const coff_symbol *Symbol,
+std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
StringRef &Res) const {
// Check for string table entry. First 4 bytes are 0.
- if (Symbol->Name.Offset.Zeroes == 0) {
- uint32_t Offset = Symbol->Name.Offset.Offset;
+ if (Symbol.getStringTableOffset().Zeroes == 0) {
+ uint32_t Offset = Symbol.getStringTableOffset().Offset;
if (std::error_code EC = getString(Offset, Res))
return EC;
return object_error::success;
}
- if (Symbol->Name.ShortName[7] == 0)
+ if (Symbol.getShortName()[COFF::NameSize - 1] == 0)
// Null terminated, let ::strlen figure out the length.
- Res = StringRef(Symbol->Name.ShortName);
+ Res = StringRef(Symbol.getShortName());
else
// Not null terminated, use all 8 bytes.
- Res = StringRef(Symbol->Name.ShortName, 8);
+ Res = StringRef(Symbol.getShortName(), COFF::NameSize);
return object_error::success;
}
-ArrayRef<uint8_t> COFFObjectFile::getSymbolAuxData(
- const coff_symbol *Symbol) const {
+ArrayRef<uint8_t>
+COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
const uint8_t *Aux = nullptr;
- if (Symbol->NumberOfAuxSymbols > 0) {
- // AUX data comes immediately after the symbol in COFF
- Aux = reinterpret_cast<const uint8_t *>(Symbol + 1);
+ size_t SymbolSize = getSymbolTableEntrySize();
+ if (Symbol.getNumberOfAuxSymbols() > 0) {
+ // AUX data comes immediately after the symbol in COFF
+ Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
# ifndef NDEBUG
// Verify that the Aux symbol points to a valid entry in the symbol table.
uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
- if (Offset < COFFHeader->PointerToSymbolTable
- || Offset >= COFFHeader->PointerToSymbolTable
- + (COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
+ if (Offset < getPointerToSymbolTable() ||
+ Offset >=
+ getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
report_fatal_error("Aux Symbol data was outside of symbol table.");
- assert((Offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol)
- == 0 && "Aux Symbol data did not point to the beginning of a symbol");
+ assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
+ "Aux Symbol data did not point to the beginning of a symbol");
# endif
}
- return ArrayRef<uint8_t>(Aux,
- Symbol->NumberOfAuxSymbols * sizeof(coff_symbol));
+ return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
}
std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
StringRef &Res) const {
StringRef Name;
- if (Sec->Name[7] == 0)
+ if (Sec->Name[COFF::NameSize - 1] == 0)
// Null terminated, let ::strlen figure out the length.
Name = Sec->Name;
else
// Not null terminated, use all 8 bytes.
- Name = StringRef(Sec->Name, 8);
+ Name = StringRef(Sec->Name, COFF::NameSize);
// Check for string table entry. First byte is '/'.
- if (Name[0] == '/') {
+ if (Name.startswith("/")) {
uint32_t Offset;
- if (Name[1] == '/') {
+ if (Name.startswith("//")) {
if (decodeBase64StringEntry(Name.substr(2), Offset))
return object_error::parse_failed;
} else {
@@ -833,18 +960,41 @@ std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
return object_error::success;
}
+uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
+ // SizeOfRawData and VirtualSize change what they represent depending on
+ // whether or not we have an executable image.
+ //
+ // For object files, SizeOfRawData contains the size of section's data;
+ // VirtualSize is always zero.
+ //
+ // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
+ // actual section size is in VirtualSize. It is possible for VirtualSize to
+ // be greater than SizeOfRawData; the contents past that point should be
+ // considered to be zero.
+ uint32_t SectionSize;
+ if (Sec->VirtualSize)
+ SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData);
+ else
+ SectionSize = Sec->SizeOfRawData;
+
+ return SectionSize;
+}
+
std::error_code
COFFObjectFile::getSectionContents(const coff_section *Sec,
ArrayRef<uint8_t> &Res) const {
+ // PointerToRawData and SizeOfRawData won't make sense for BSS sections,
+ // don't do anything interesting for them.
+ assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 &&
+ "BSS sections don't have contents!");
// The only thing that we need to verify is that the contents is contained
// within the file bounds. We don't need to make sure it doesn't cover other
// data, as there's nothing that says that is not allowed.
uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
- uintptr_t ConEnd = ConStart + Sec->SizeOfRawData;
- if (ConEnd > uintptr_t(Data->getBufferEnd()))
+ uint32_t SectionSize = getSectionSize(Sec);
+ if (checkOffset(Data, ConStart, SectionSize))
return object_error::parse_failed;
- Res = ArrayRef<uint8_t>(reinterpret_cast<const unsigned char*>(ConStart),
- Sec->SizeOfRawData);
+ Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
return object_error::success;
}
@@ -864,14 +1014,26 @@ std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel,
std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel,
uint64_t &Res) const {
- Res = toRel(Rel)->VirtualAddress;
+ const coff_relocation *R = toRel(Rel);
+ const support::ulittle32_t *VirtualAddressPtr;
+ if (std::error_code EC =
+ getObject(VirtualAddressPtr, Data, &R->VirtualAddress))
+ return EC;
+ Res = *VirtualAddressPtr;
return object_error::success;
}
symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
- const coff_relocation* R = toRel(Rel);
+ const coff_relocation *R = toRel(Rel);
DataRefImpl Ref;
- Ref.p = reinterpret_cast<uintptr_t>(SymbolTable + R->SymbolTableIndex);
+ if (R->SymbolTableIndex >= getNumberOfSymbols())
+ return symbol_end();
+ if (SymbolTable16)
+ Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
+ else if (SymbolTable32)
+ Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
+ else
+ llvm_unreachable("no symbol table pointer!");
return symbol_iterator(SymbolRef(Ref, this));
}
@@ -887,9 +1049,16 @@ COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
return toSec(Section.getRawDataRefImpl());
}
-const coff_symbol *
-COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
- return toSymb(Symbol.getRawDataRefImpl());
+COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
+ if (SymbolTable16)
+ return toSymb<coff_symbol16>(Ref);
+ if (SymbolTable32)
+ return toSymb<coff_symbol32>(Ref);
+ llvm_unreachable("no symbol table pointer!");
+}
+
+COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
+ return getCOFFSymbol(Symbol.getRawDataRefImpl());
}
const coff_relocation *
@@ -907,7 +1076,7 @@ COFFObjectFile::getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const coff_relocation *Reloc = toRel(Rel);
StringRef Res;
- switch (COFFHeader->Machine) {
+ switch (getMachine()) {
case COFF::IMAGE_FILE_MACHINE_AMD64:
switch (Reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
@@ -982,11 +1151,11 @@ std::error_code
COFFObjectFile::getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const coff_relocation *Reloc = toRel(Rel);
- const coff_symbol *Symb = nullptr;
- if (std::error_code EC = getSymbol(Reloc->SymbolTableIndex, Symb))
- return EC;
DataRefImpl Sym;
- Sym.p = reinterpret_cast<uintptr_t>(Symb);
+ ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex);
+ if (std::error_code EC = Symb.getError())
+ return EC;
+ Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr());
StringRef SymName;
if (std::error_code EC = getSymbolName(Sym, SymName))
return EC;
@@ -994,14 +1163,8 @@ COFFObjectFile::getRelocationValueString(DataRefImpl Rel,
return object_error::success;
}
-std::error_code COFFObjectFile::getLibraryNext(DataRefImpl LibData,
- LibraryRef &Result) const {
- report_fatal_error("getLibraryNext not implemented in COFFObjectFile");
-}
-
-std::error_code COFFObjectFile::getLibraryPath(DataRefImpl LibData,
- StringRef &Result) const {
- report_fatal_error("getLibraryPath not implemented in COFFObjectFile");
+bool COFFObjectFile::isRelocatableObject() const {
+ return !DataDirectory;
}
bool ImportDirectoryEntryRef::
@@ -1015,29 +1178,148 @@ void ImportDirectoryEntryRef::moveNext() {
std::error_code ImportDirectoryEntryRef::getImportTableEntry(
const import_directory_table_entry *&Result) const {
- Result = ImportTable;
+ Result = ImportTable + Index;
return object_error::success;
}
+static imported_symbol_iterator
+makeImportedSymbolIterator(const COFFObjectFile *Object,
+ uintptr_t Ptr, int Index) {
+ if (Object->getBytesInAddress() == 4) {
+ auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
+ return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
+ }
+ auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
+ return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
+}
+
+static imported_symbol_iterator
+importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
+ uintptr_t IntPtr = 0;
+ Object->getRvaPtr(RVA, IntPtr);
+ return makeImportedSymbolIterator(Object, IntPtr, 0);
+}
+
+static imported_symbol_iterator
+importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
+ uintptr_t IntPtr = 0;
+ Object->getRvaPtr(RVA, IntPtr);
+ // Forward the pointer to the last entry which is null.
+ int Index = 0;
+ if (Object->getBytesInAddress() == 4) {
+ auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
+ while (*Entry++)
+ ++Index;
+ } else {
+ auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
+ while (*Entry++)
+ ++Index;
+ }
+ return makeImportedSymbolIterator(Object, IntPtr, Index);
+}
+
+imported_symbol_iterator
+ImportDirectoryEntryRef::imported_symbol_begin() const {
+ return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
+ OwningObject);
+}
+
+imported_symbol_iterator
+ImportDirectoryEntryRef::imported_symbol_end() const {
+ return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
+ OwningObject);
+}
+
+iterator_range<imported_symbol_iterator>
+ImportDirectoryEntryRef::imported_symbols() const {
+ return make_range(imported_symbol_begin(), imported_symbol_end());
+}
+
std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (std::error_code EC =
- OwningObject->getRvaPtr(ImportTable->NameRVA, IntPtr))
+ OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return object_error::success;
}
+std::error_code
+ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
+ Result = ImportTable[Index].ImportLookupTableRVA;
+ return object_error::success;
+}
+
+std::error_code
+ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
+ Result = ImportTable[Index].ImportAddressTableRVA;
+ return object_error::success;
+}
+
std::error_code ImportDirectoryEntryRef::getImportLookupEntry(
const import_lookup_table_entry32 *&Result) const {
uintptr_t IntPtr = 0;
- if (std::error_code EC =
- OwningObject->getRvaPtr(ImportTable->ImportLookupTableRVA, IntPtr))
+ uint32_t RVA = ImportTable[Index].ImportLookupTableRVA;
+ if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
return EC;
Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
return object_error::success;
}
+bool DelayImportDirectoryEntryRef::
+operator==(const DelayImportDirectoryEntryRef &Other) const {
+ return Table == Other.Table && Index == Other.Index;
+}
+
+void DelayImportDirectoryEntryRef::moveNext() {
+ ++Index;
+}
+
+imported_symbol_iterator
+DelayImportDirectoryEntryRef::imported_symbol_begin() const {
+ return importedSymbolBegin(Table[Index].DelayImportNameTable,
+ OwningObject);
+}
+
+imported_symbol_iterator
+DelayImportDirectoryEntryRef::imported_symbol_end() const {
+ return importedSymbolEnd(Table[Index].DelayImportNameTable,
+ OwningObject);
+}
+
+iterator_range<imported_symbol_iterator>
+DelayImportDirectoryEntryRef::imported_symbols() const {
+ return make_range(imported_symbol_begin(), imported_symbol_end());
+}
+
+std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
+ uintptr_t IntPtr = 0;
+ if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
+ return EC;
+ Result = StringRef(reinterpret_cast<const char *>(IntPtr));
+ return object_error::success;
+}
+
+std::error_code DelayImportDirectoryEntryRef::
+getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
+ Result = Table;
+ return object_error::success;
+}
+
+std::error_code DelayImportDirectoryEntryRef::
+getImportAddress(int AddrIndex, uint64_t &Result) const {
+ uint32_t RVA = Table[Index].DelayImportAddressTable +
+ AddrIndex * (OwningObject->is64() ? 8 : 4);
+ uintptr_t IntPtr = 0;
+ if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
+ return EC;
+ if (OwningObject->is64())
+ Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
+ else
+ Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
+ return object_error::success;
+}
+
bool ExportDirectoryEntryRef::
operator==(const ExportDirectoryEntryRef &Other) const {
return ExportTable == Other.ExportTable && Index == Other.Index;
@@ -1112,12 +1394,98 @@ ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
return object_error::success;
}
-ErrorOr<ObjectFile *>
-ObjectFile::createCOFFObjectFile(std::unique_ptr<MemoryBuffer> Object) {
+bool ImportedSymbolRef::
+operator==(const ImportedSymbolRef &Other) const {
+ return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
+ && Index == Other.Index;
+}
+
+void ImportedSymbolRef::moveNext() {
+ ++Index;
+}
+
+std::error_code
+ImportedSymbolRef::getSymbolName(StringRef &Result) const {
+ uint32_t RVA;
+ if (Entry32) {
+ // If a symbol is imported only by ordinal, it has no name.
+ if (Entry32[Index].isOrdinal())
+ return object_error::success;
+ RVA = Entry32[Index].getHintNameRVA();
+ } else {
+ if (Entry64[Index].isOrdinal())
+ return object_error::success;
+ RVA = Entry64[Index].getHintNameRVA();
+ }
+ uintptr_t IntPtr = 0;
+ if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
+ return EC;
+ // +2 because the first two bytes is hint.
+ Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
+ return object_error::success;
+}
+
+std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
+ uint32_t RVA;
+ if (Entry32) {
+ if (Entry32[Index].isOrdinal()) {
+ Result = Entry32[Index].getOrdinal();
+ return object_error::success;
+ }
+ RVA = Entry32[Index].getHintNameRVA();
+ } else {
+ if (Entry64[Index].isOrdinal()) {
+ Result = Entry64[Index].getOrdinal();
+ return object_error::success;
+ }
+ RVA = Entry64[Index].getHintNameRVA();
+ }
+ uintptr_t IntPtr = 0;
+ if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
+ return EC;
+ Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
+ return object_error::success;
+}
+
+ErrorOr<std::unique_ptr<COFFObjectFile>>
+ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
std::error_code EC;
- std::unique_ptr<COFFObjectFile> Ret(
- new COFFObjectFile(std::move(Object), EC));
+ std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
if (EC)
return EC;
- return Ret.release();
+ return std::move(Ret);
+}
+
+bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
+ return Header == Other.Header && Index == Other.Index;
+}
+
+void BaseRelocRef::moveNext() {
+ // Header->BlockSize is the size of the current block, including the
+ // size of the header itself.
+ uint32_t Size = sizeof(*Header) +
+ sizeof(coff_base_reloc_block_entry) * (Index + 1);
+ if (Size == Header->BlockSize) {
+ // .reloc contains a list of base relocation blocks. Each block
+ // consists of the header followed by entries. The header contains
+ // how many entories will follow. When we reach the end of the
+ // current block, proceed to the next block.
+ Header = reinterpret_cast<const coff_base_reloc_block_header *>(
+ reinterpret_cast<const uint8_t *>(Header) + Size);
+ Index = 0;
+ } else {
+ ++Index;
+ }
+}
+
+std::error_code BaseRelocRef::getType(uint8_t &Type) const {
+ auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
+ Type = Entry[Index].getType();
+ return object_error::success;
+}
+
+std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
+ auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
+ Result = Header->PageRVA + Entry[Index].getOffset();
+ return object_error::success;
}
diff --git a/contrib/llvm/lib/Object/COFFYAML.cpp b/contrib/llvm/lib/Object/COFFYAML.cpp
index 49c5dda..9a24b53 100644
--- a/contrib/llvm/lib/Object/COFFYAML.cpp
+++ b/contrib/llvm/lib/Object/COFFYAML.cpp
@@ -168,6 +168,24 @@ void ScalarEnumerationTraits<COFF::RelocationTypeAMD64>::enumeration(
ECase(IMAGE_REL_AMD64_PAIR);
ECase(IMAGE_REL_AMD64_SSPAN32);
}
+
+void ScalarEnumerationTraits<COFF::WindowsSubsystem>::enumeration(
+ IO &IO, COFF::WindowsSubsystem &Value) {
+ ECase(IMAGE_SUBSYSTEM_UNKNOWN);
+ ECase(IMAGE_SUBSYSTEM_NATIVE);
+ ECase(IMAGE_SUBSYSTEM_WINDOWS_GUI);
+ ECase(IMAGE_SUBSYSTEM_WINDOWS_CUI);
+ ECase(IMAGE_SUBSYSTEM_OS2_CUI);
+ ECase(IMAGE_SUBSYSTEM_POSIX_CUI);
+ ECase(IMAGE_SUBSYSTEM_NATIVE_WINDOWS);
+ ECase(IMAGE_SUBSYSTEM_WINDOWS_CE_GUI);
+ ECase(IMAGE_SUBSYSTEM_EFI_APPLICATION);
+ ECase(IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER);
+ ECase(IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER);
+ ECase(IMAGE_SUBSYSTEM_EFI_ROM);
+ ECase(IMAGE_SUBSYSTEM_XBOX);
+ ECase(IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION);
+}
#undef ECase
#define BCase(X) IO.bitSetCase(Value, #X, COFF::X);
@@ -214,6 +232,21 @@ void ScalarBitSetTraits<COFF::SectionCharacteristics>::bitset(
BCase(IMAGE_SCN_MEM_READ);
BCase(IMAGE_SCN_MEM_WRITE);
}
+
+void ScalarBitSetTraits<COFF::DLLCharacteristics>::bitset(
+ IO &IO, COFF::DLLCharacteristics &Value) {
+ BCase(IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA);
+ BCase(IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE);
+ BCase(IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY);
+ BCase(IMAGE_DLL_CHARACTERISTICS_NX_COMPAT);
+ BCase(IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION);
+ BCase(IMAGE_DLL_CHARACTERISTICS_NO_SEH);
+ BCase(IMAGE_DLL_CHARACTERISTICS_NO_BIND);
+ BCase(IMAGE_DLL_CHARACTERISTICS_APPCONTAINER);
+ BCase(IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER);
+ BCase(IMAGE_DLL_CHARACTERISTICS_GUARD_CF);
+ BCase(IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE);
+}
#undef BCase
namespace {
@@ -285,6 +318,23 @@ struct NType {
RelocType Type;
};
+struct NWindowsSubsystem {
+ NWindowsSubsystem(IO &) : Subsystem(COFF::WindowsSubsystem(0)) {}
+ NWindowsSubsystem(IO &, uint16_t C) : Subsystem(COFF::WindowsSubsystem(C)) {}
+ uint16_t denormalize(IO &) { return Subsystem; }
+
+ COFF::WindowsSubsystem Subsystem;
+};
+
+struct NDLLCharacteristics {
+ NDLLCharacteristics(IO &) : Characteristics(COFF::DLLCharacteristics(0)) {}
+ NDLLCharacteristics(IO &, uint16_t C)
+ : Characteristics(COFF::DLLCharacteristics(C)) {}
+ uint16_t denormalize(IO &) { return Characteristics; }
+
+ COFF::DLLCharacteristics Characteristics;
+};
+
}
void MappingTraits<COFFYAML::Relocation>::mapping(IO &IO,
@@ -306,6 +356,59 @@ void MappingTraits<COFFYAML::Relocation>::mapping(IO &IO,
}
}
+void MappingTraits<COFF::DataDirectory>::mapping(IO &IO,
+ COFF::DataDirectory &DD) {
+ IO.mapRequired("RelativeVirtualAddress", DD.RelativeVirtualAddress);
+ IO.mapRequired("Size", DD.Size);
+}
+
+void MappingTraits<COFFYAML::PEHeader>::mapping(IO &IO,
+ COFFYAML::PEHeader &PH) {
+ MappingNormalization<NWindowsSubsystem, uint16_t> NWS(IO,
+ PH.Header.Subsystem);
+ MappingNormalization<NDLLCharacteristics, uint16_t> NDC(
+ IO, PH.Header.DLLCharacteristics);
+
+ IO.mapRequired("AddressOfEntryPoint", PH.Header.AddressOfEntryPoint);
+ IO.mapRequired("ImageBase", PH.Header.ImageBase);
+ IO.mapRequired("SectionAlignment", PH.Header.SectionAlignment);
+ IO.mapRequired("FileAlignment", PH.Header.FileAlignment);
+ IO.mapRequired("MajorOperatingSystemVersion",
+ PH.Header.MajorOperatingSystemVersion);
+ IO.mapRequired("MinorOperatingSystemVersion",
+ PH.Header.MinorOperatingSystemVersion);
+ IO.mapRequired("MajorImageVersion", PH.Header.MajorImageVersion);
+ IO.mapRequired("MinorImageVersion", PH.Header.MinorImageVersion);
+ IO.mapRequired("MajorSubsystemVersion", PH.Header.MajorSubsystemVersion);
+ IO.mapRequired("MinorSubsystemVersion", PH.Header.MinorSubsystemVersion);
+ IO.mapRequired("Subsystem", NWS->Subsystem);
+ IO.mapRequired("DLLCharacteristics", NDC->Characteristics);
+ IO.mapRequired("SizeOfStackReserve", PH.Header.SizeOfStackReserve);
+ IO.mapRequired("SizeOfStackCommit", PH.Header.SizeOfStackCommit);
+ IO.mapRequired("SizeOfHeapReserve", PH.Header.SizeOfHeapReserve);
+ IO.mapRequired("SizeOfHeapCommit", PH.Header.SizeOfHeapCommit);
+
+ IO.mapOptional("ExportTable", PH.DataDirectories[COFF::EXPORT_TABLE]);
+ IO.mapOptional("ImportTable", PH.DataDirectories[COFF::IMPORT_TABLE]);
+ IO.mapOptional("ResourceTable", PH.DataDirectories[COFF::RESOURCE_TABLE]);
+ IO.mapOptional("ExceptionTable", PH.DataDirectories[COFF::EXCEPTION_TABLE]);
+ IO.mapOptional("CertificateTable", PH.DataDirectories[COFF::CERTIFICATE_TABLE]);
+ IO.mapOptional("BaseRelocationTable",
+ PH.DataDirectories[COFF::BASE_RELOCATION_TABLE]);
+ IO.mapOptional("Debug", PH.DataDirectories[COFF::DEBUG]);
+ IO.mapOptional("Architecture", PH.DataDirectories[COFF::ARCHITECTURE]);
+ IO.mapOptional("GlobalPtr", PH.DataDirectories[COFF::GLOBAL_PTR]);
+ IO.mapOptional("TlsTable", PH.DataDirectories[COFF::TLS_TABLE]);
+ IO.mapOptional("LoadConfigTable",
+ PH.DataDirectories[COFF::LOAD_CONFIG_TABLE]);
+ IO.mapOptional("BoundImport", PH.DataDirectories[COFF::BOUND_IMPORT]);
+ IO.mapOptional("IAT", PH.DataDirectories[COFF::IAT]);
+ IO.mapOptional("DelayImportDescriptor",
+ PH.DataDirectories[COFF::DELAY_IMPORT_DESCRIPTOR]);
+ IO.mapOptional("ClrRuntimeHeader",
+ PH.DataDirectories[COFF::CLR_RUNTIME_HEADER]);
+}
+
void MappingTraits<COFF::header>::mapping(IO &IO, COFF::header &H) {
MappingNormalization<NMachine, uint16_t> NM(IO, H.Machine);
MappingNormalization<NHeaderCharacteristics, uint16_t> NC(IO,
@@ -380,12 +483,15 @@ void MappingTraits<COFFYAML::Section>::mapping(IO &IO, COFFYAML::Section &Sec) {
IO, Sec.Header.Characteristics);
IO.mapRequired("Name", Sec.Name);
IO.mapRequired("Characteristics", NC->Characteristics);
+ IO.mapOptional("VirtualAddress", Sec.Header.VirtualAddress, 0U);
+ IO.mapOptional("VirtualSize", Sec.Header.VirtualSize, 0U);
IO.mapOptional("Alignment", Sec.Alignment);
IO.mapRequired("SectionData", Sec.SectionData);
IO.mapOptional("Relocations", Sec.Relocations);
}
void MappingTraits<COFFYAML::Object>::mapping(IO &IO, COFFYAML::Object &Obj) {
+ IO.mapOptional("OptionalHeader", Obj.OptionalHeader);
IO.mapRequired("header", Obj.Header);
IO.mapRequired("sections", Obj.Sections);
IO.mapRequired("symbols", Obj.Symbols);
diff --git a/contrib/llvm/lib/Object/ELF.cpp b/contrib/llvm/lib/Object/ELF.cpp
index a2e2eed..398e9e4 100644
--- a/contrib/llvm/lib/Object/ELF.cpp
+++ b/contrib/llvm/lib/Object/ELF.cpp
@@ -12,719 +12,71 @@
namespace llvm {
namespace object {
-#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
- case ELF::enum: \
- return #enum; \
+#define ELF_RELOC(name, value) \
+ case ELF::name: \
+ return #name; \
StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type) {
switch (Machine) {
case ELF::EM_X86_64:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPLT64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLTOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_IRELATIVE);
+#include "llvm/Support/ELFRelocs/x86_64.def"
default:
break;
}
break;
case ELF::EM_386:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
+#include "llvm/Support/ELFRelocs/i386.def"
default:
break;
}
break;
case ELF::EM_MIPS:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_REL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_26);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_LITERAL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GPREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SHIFT5);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SHIFT6);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_DISP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_PAGE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_OFST);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SUB);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_INSERT_A);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_INSERT_B);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_DELETE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HIGHER);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HIGHEST);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SCN_DISP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_REL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_ADD_IMMEDIATE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PJUMP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_RELGOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_JALR);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPMOD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPMOD64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_GD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_LDM);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_GOTTPREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC21_S2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC26_S2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC18_S3);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC19_S2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PCHI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PCLO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS16_GOT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS16_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS16_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_JUMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_26_S1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_GOT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_PC16_S1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_CALL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_GOT_DISP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_GOT_PAGE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_GOT_OFST);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_TLS_GD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_TLS_LDM);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_TLS_DTPREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_TLS_DTPREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_TLS_TPREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MICROMIPS_TLS_TPREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_NUM);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC32);
+#include "llvm/Support/ELFRelocs/Mips.def"
default:
break;
}
break;
case ELF::EM_AARCH64:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_GOTREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_GOTREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLS_DTPREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLS_DTPMOD64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLS_TPREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_IRELATIVE);
+#include "llvm/Support/ELFRelocs/AArch64.def"
default:
break;
}
break;
case ELF::EM_ARM:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
+#include "llvm/Support/ELFRelocs/ARM.def"
default:
break;
}
break;
case ELF::EM_HEXAGON:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
+#include "llvm/Support/ELFRelocs/Hexagon.def"
default:
break;
}
break;
case ELF::EM_PPC:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14_BRTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14_BRNTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14_BRTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14_BRNTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_PLTREL24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_JMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_LOCAL24PC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TLS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_DTPMOD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_DTPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_DTPREL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_DTPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_DTPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_DTPREL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSGD16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSGD16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSGD16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSGD16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSLD16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSLD16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSLD16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TLSLD16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TPREL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_TPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_DTPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_DTPREL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_DTPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_GOT_DTPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TLSGD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TLSLD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL16_HA);
+#include "llvm/Support/ELFRelocs/PowerPC.def"
default:
break;
}
break;
case ELF::EM_PPC64:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR14);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR14_BRTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR14_BRNTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL24);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL14);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL14_BRTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL14_BRNTAKEN);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_JMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHER);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHERA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHEST);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHESTA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPMOD64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_DTPREL16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_DTPREL16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_DTPREL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_DTPREL16_HA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HIGHER);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HIGHERA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HIGHEST);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HIGHESTA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_LO_DS);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HIGHER);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HIGHERA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HIGHEST);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HIGHESTA);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLSGD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLSLD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL16_LO);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL16_HI);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL16_HA);
+#include "llvm/Support/ELFRelocs/PowerPC64.def"
default:
break;
}
break;
case ELF::EM_S390:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_JMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPC);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC16DBL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT16DBL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC32DBL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT32DBL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPCDBL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTENT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLTENT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LOAD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GDCALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDCALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GD64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE12);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDM32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDM64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IE32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IE64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IEENT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LE32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LE64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDO32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDO64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_DTPMOD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_DTPOFF);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_TPOFF);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_20);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT20);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT20);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE20);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_IRELATIVE);
+#include "llvm/Support/ELFRelocs/SystemZ.def"
default:
break;
}
@@ -733,90 +85,7 @@ StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type) {
case ELF::EM_SPARC32PLUS:
case ELF::EM_SPARCV9:
switch (Type) {
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_NONE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_DISP8);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_DISP16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_DISP32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_WDISP30);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_WDISP22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_HI22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_13);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_LO10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOT10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOT13);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOT22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PC10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PC22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_WPLT30);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_COPY);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GLOB_DAT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_JMP_SLOT);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_RELATIVE);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_UA32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_HIPLT22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_LOPLT10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PCPLT32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PCPLT22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PCPLT10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_11);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_OLO10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_HH22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_HM10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_LM22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PC_HH22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PC_HM10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PC_LM22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_WDISP16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_WDISP19);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_7);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_5);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_6);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_DISP64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_PLT64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_HIX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_LOX10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_H44);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_M44);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_L44);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_REGISTER);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_UA64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_UA16);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_GD_HI22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_GD_LO10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_GD_ADD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_GD_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDM_HI22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDM_LO10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDM_ADD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDM_CALL);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDO_HIX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDO_LOX10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LDO_ADD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_IE_HI22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_IE_LO10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_IE_LD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_IE_LDX);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_IE_ADD);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LE_HIX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_LE_LOX10);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_DTPMOD32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_DTPMOD64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_DTPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_DTPOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_TPOFF32);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_TLS_TPOFF64);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOTDATA_HIX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOTDATA_LOX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOTDATA_OP_HIX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOTDATA_OP_LOX22);
- LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_SPARC_GOTDATA_OP);
+#include "llvm/Support/ELFRelocs/Sparc.def"
default:
break;
}
@@ -827,7 +96,7 @@ StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type) {
return "Unknown";
}
-#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
+#undef ELF_RELOC
} // end namespace object
} // end namespace llvm
diff --git a/contrib/llvm/lib/Object/ELFObjectFile.cpp b/contrib/llvm/lib/Object/ELFObjectFile.cpp
index 4f0f60b..8ccb253 100644
--- a/contrib/llvm/lib/Object/ELFObjectFile.cpp
+++ b/contrib/llvm/lib/Object/ELFObjectFile.cpp
@@ -17,61 +17,56 @@
namespace llvm {
using namespace object;
-ErrorOr<ObjectFile *>
-ObjectFile::createELFObjectFile(std::unique_ptr<MemoryBuffer> &Obj) {
+ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
+ : ObjectFile(Type, Source) {}
+
+ErrorOr<std::unique_ptr<ObjectFile>>
+ObjectFile::createELFObjectFile(MemoryBufferRef Obj) {
std::pair<unsigned char, unsigned char> Ident =
- getElfArchType(Obj->getBuffer());
+ getElfArchType(Obj.getBuffer());
std::size_t MaxAlignment =
- 1ULL << countTrailingZeros(uintptr_t(Obj->getBufferStart()));
+ 1ULL << countTrailingZeros(uintptr_t(Obj.getBufferStart()));
std::error_code EC;
std::unique_ptr<ObjectFile> R;
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB)
#if !LLVM_IS_UNALIGNED_ACCESS_FAST
if (MaxAlignment >= 4)
- R.reset(new ELFObjectFile<ELFType<support::little, 4, false>>(
- std::move(Obj), EC));
+ R.reset(new ELFObjectFile<ELFType<support::little, 4, false>>(Obj, EC));
else
#endif
if (MaxAlignment >= 2)
- R.reset(new ELFObjectFile<ELFType<support::little, 2, false>>(
- std::move(Obj), EC));
+ R.reset(new ELFObjectFile<ELFType<support::little, 2, false>>(Obj, EC));
else
return object_error::parse_failed;
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB)
#if !LLVM_IS_UNALIGNED_ACCESS_FAST
if (MaxAlignment >= 4)
- R.reset(new ELFObjectFile<ELFType<support::big, 4, false>>(std::move(Obj),
- EC));
+ R.reset(new ELFObjectFile<ELFType<support::big, 4, false>>(Obj, EC));
else
#endif
if (MaxAlignment >= 2)
- R.reset(new ELFObjectFile<ELFType<support::big, 2, false>>(std::move(Obj),
- EC));
+ R.reset(new ELFObjectFile<ELFType<support::big, 2, false>>(Obj, EC));
else
return object_error::parse_failed;
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB)
#if !LLVM_IS_UNALIGNED_ACCESS_FAST
if (MaxAlignment >= 8)
- R.reset(new ELFObjectFile<ELFType<support::big, 8, true>>(std::move(Obj),
- EC));
+ R.reset(new ELFObjectFile<ELFType<support::big, 8, true>>(Obj, EC));
else
#endif
if (MaxAlignment >= 2)
- R.reset(new ELFObjectFile<ELFType<support::big, 2, true>>(std::move(Obj),
- EC));
+ R.reset(new ELFObjectFile<ELFType<support::big, 2, true>>(Obj, EC));
else
return object_error::parse_failed;
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
#if !LLVM_IS_UNALIGNED_ACCESS_FAST
if (MaxAlignment >= 8)
- R.reset(new ELFObjectFile<ELFType<support::little, 8, true>>(
- std::move(Obj), EC));
+ R.reset(new ELFObjectFile<ELFType<support::little, 8, true>>(Obj, EC));
else
#endif
if (MaxAlignment >= 2)
- R.reset(new ELFObjectFile<ELFType<support::little, 2, true>>(
- std::move(Obj), EC));
+ R.reset(new ELFObjectFile<ELFType<support::little, 2, true>>(Obj, EC));
else
return object_error::parse_failed;
}
@@ -80,7 +75,7 @@ ObjectFile::createELFObjectFile(std::unique_ptr<MemoryBuffer> &Obj) {
if (EC)
return EC;
- return R.release();
+ return std::move(R);
}
} // end namespace llvm
diff --git a/contrib/llvm/lib/Object/ELFYAML.cpp b/contrib/llvm/lib/Object/ELFYAML.cpp
index 6340841..7e35fb5 100644
--- a/contrib/llvm/lib/Object/ELFYAML.cpp
+++ b/contrib/llvm/lib/Object/ELFYAML.cpp
@@ -264,6 +264,7 @@ void ScalarBitSetTraits<ELFYAML::ELF_EF>::bitset(IO &IO,
BCase(EF_MIPS_CPIC)
BCase(EF_MIPS_ABI2)
BCase(EF_MIPS_32BITMODE)
+ BCase(EF_MIPS_NAN2008)
BCase(EF_MIPS_ABI_O32)
BCase(EF_MIPS_MICROMIPS)
BCase(EF_MIPS_ARCH_ASE_M16)
@@ -394,268 +395,53 @@ void ScalarEnumerationTraits<ELFYAML::ELF_STV>::enumeration(
#undef ECase
}
+void ScalarBitSetTraits<ELFYAML::ELF_STO>::bitset(IO &IO,
+ ELFYAML::ELF_STO &Value) {
+ const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
+ assert(Object && "The IO context is not initialized");
+#define BCase(X) IO.bitSetCase(Value, #X, ELF::X);
+ switch (Object->Header.Machine) {
+ case ELF::EM_MIPS:
+ BCase(STO_MIPS_OPTIONAL)
+ BCase(STO_MIPS_PLT)
+ BCase(STO_MIPS_PIC)
+ BCase(STO_MIPS_MICROMIPS)
+ break;
+ default:
+ break; // Nothing to do
+ }
+#undef BCase
+#undef BCaseMask
+}
+
void ScalarEnumerationTraits<ELFYAML::ELF_REL>::enumeration(
IO &IO, ELFYAML::ELF_REL &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
-#define ECase(X) IO.enumCase(Value, #X, ELF::X);
+#define ELF_RELOC(X, Y) IO.enumCase(Value, #X, ELF::X);
switch (Object->Header.Machine) {
case ELF::EM_X86_64:
- ECase(R_X86_64_NONE)
- ECase(R_X86_64_64)
- ECase(R_X86_64_PC32)
- ECase(R_X86_64_GOT32)
- ECase(R_X86_64_PLT32)
- ECase(R_X86_64_COPY)
- ECase(R_X86_64_GLOB_DAT)
- ECase(R_X86_64_JUMP_SLOT)
- ECase(R_X86_64_RELATIVE)
- ECase(R_X86_64_GOTPCREL)
- ECase(R_X86_64_32)
- ECase(R_X86_64_32S)
- ECase(R_X86_64_16)
- ECase(R_X86_64_PC16)
- ECase(R_X86_64_8)
- ECase(R_X86_64_PC8)
- ECase(R_X86_64_DTPMOD64)
- ECase(R_X86_64_DTPOFF64)
- ECase(R_X86_64_TPOFF64)
- ECase(R_X86_64_TLSGD)
- ECase(R_X86_64_TLSLD)
- ECase(R_X86_64_DTPOFF32)
- ECase(R_X86_64_GOTTPOFF)
- ECase(R_X86_64_TPOFF32)
- ECase(R_X86_64_PC64)
- ECase(R_X86_64_GOTOFF64)
- ECase(R_X86_64_GOTPC32)
- ECase(R_X86_64_GOT64)
- ECase(R_X86_64_GOTPCREL64)
- ECase(R_X86_64_GOTPC64)
- ECase(R_X86_64_GOTPLT64)
- ECase(R_X86_64_PLTOFF64)
- ECase(R_X86_64_SIZE32)
- ECase(R_X86_64_SIZE64)
- ECase(R_X86_64_GOTPC32_TLSDESC)
- ECase(R_X86_64_TLSDESC_CALL)
- ECase(R_X86_64_TLSDESC)
- ECase(R_X86_64_IRELATIVE)
+#include "llvm/Support/ELFRelocs/x86_64.def"
break;
case ELF::EM_MIPS:
- ECase(R_MIPS_NONE)
- ECase(R_MIPS_16)
- ECase(R_MIPS_32)
- ECase(R_MIPS_REL32)
- ECase(R_MIPS_26)
- ECase(R_MIPS_HI16)
- ECase(R_MIPS_LO16)
- ECase(R_MIPS_GPREL16)
- ECase(R_MIPS_LITERAL)
- ECase(R_MIPS_GOT16)
- ECase(R_MIPS_PC16)
- ECase(R_MIPS_CALL16)
- ECase(R_MIPS_GPREL32)
- ECase(R_MIPS_UNUSED1)
- ECase(R_MIPS_UNUSED2)
- ECase(R_MIPS_SHIFT5)
- ECase(R_MIPS_SHIFT6)
- ECase(R_MIPS_64)
- ECase(R_MIPS_GOT_DISP)
- ECase(R_MIPS_GOT_PAGE)
- ECase(R_MIPS_GOT_OFST)
- ECase(R_MIPS_GOT_HI16)
- ECase(R_MIPS_GOT_LO16)
- ECase(R_MIPS_SUB)
- ECase(R_MIPS_INSERT_A)
- ECase(R_MIPS_INSERT_B)
- ECase(R_MIPS_DELETE)
- ECase(R_MIPS_HIGHER)
- ECase(R_MIPS_HIGHEST)
- ECase(R_MIPS_CALL_HI16)
- ECase(R_MIPS_CALL_LO16)
- ECase(R_MIPS_SCN_DISP)
- ECase(R_MIPS_REL16)
- ECase(R_MIPS_ADD_IMMEDIATE)
- ECase(R_MIPS_PJUMP)
- ECase(R_MIPS_RELGOT)
- ECase(R_MIPS_JALR)
- ECase(R_MIPS_TLS_DTPMOD32)
- ECase(R_MIPS_TLS_DTPREL32)
- ECase(R_MIPS_TLS_DTPMOD64)
- ECase(R_MIPS_TLS_DTPREL64)
- ECase(R_MIPS_TLS_GD)
- ECase(R_MIPS_TLS_LDM)
- ECase(R_MIPS_TLS_DTPREL_HI16)
- ECase(R_MIPS_TLS_DTPREL_LO16)
- ECase(R_MIPS_TLS_GOTTPREL)
- ECase(R_MIPS_TLS_TPREL32)
- ECase(R_MIPS_TLS_TPREL64)
- ECase(R_MIPS_TLS_TPREL_HI16)
- ECase(R_MIPS_TLS_TPREL_LO16)
- ECase(R_MIPS_GLOB_DAT)
- ECase(R_MIPS_PC21_S2)
- ECase(R_MIPS_PC26_S2)
- ECase(R_MIPS_PC18_S3)
- ECase(R_MIPS_PC19_S2)
- ECase(R_MIPS_PCHI16)
- ECase(R_MIPS_PCLO16)
- ECase(R_MIPS16_GOT16)
- ECase(R_MIPS16_HI16)
- ECase(R_MIPS16_LO16)
- ECase(R_MIPS_COPY)
- ECase(R_MIPS_JUMP_SLOT)
- ECase(R_MICROMIPS_26_S1)
- ECase(R_MICROMIPS_HI16)
- ECase(R_MICROMIPS_LO16)
- ECase(R_MICROMIPS_GOT16)
- ECase(R_MICROMIPS_PC16_S1)
- ECase(R_MICROMIPS_CALL16)
- ECase(R_MICROMIPS_GOT_DISP)
- ECase(R_MICROMIPS_GOT_PAGE)
- ECase(R_MICROMIPS_GOT_OFST)
- ECase(R_MICROMIPS_TLS_GD)
- ECase(R_MICROMIPS_TLS_LDM)
- ECase(R_MICROMIPS_TLS_DTPREL_HI16)
- ECase(R_MICROMIPS_TLS_DTPREL_LO16)
- ECase(R_MICROMIPS_TLS_TPREL_HI16)
- ECase(R_MICROMIPS_TLS_TPREL_LO16)
- ECase(R_MIPS_NUM)
- ECase(R_MIPS_PC32)
+#include "llvm/Support/ELFRelocs/Mips.def"
break;
case ELF::EM_HEXAGON:
- ECase(R_HEX_NONE)
- ECase(R_HEX_B22_PCREL)
- ECase(R_HEX_B15_PCREL)
- ECase(R_HEX_B7_PCREL)
- ECase(R_HEX_LO16)
- ECase(R_HEX_HI16)
- ECase(R_HEX_32)
- ECase(R_HEX_16)
- ECase(R_HEX_8)
- ECase(R_HEX_GPREL16_0)
- ECase(R_HEX_GPREL16_1)
- ECase(R_HEX_GPREL16_2)
- ECase(R_HEX_GPREL16_3)
- ECase(R_HEX_HL16)
- ECase(R_HEX_B13_PCREL)
- ECase(R_HEX_B9_PCREL)
- ECase(R_HEX_B32_PCREL_X)
- ECase(R_HEX_32_6_X)
- ECase(R_HEX_B22_PCREL_X)
- ECase(R_HEX_B15_PCREL_X)
- ECase(R_HEX_B13_PCREL_X)
- ECase(R_HEX_B9_PCREL_X)
- ECase(R_HEX_B7_PCREL_X)
- ECase(R_HEX_16_X)
- ECase(R_HEX_12_X)
- ECase(R_HEX_11_X)
- ECase(R_HEX_10_X)
- ECase(R_HEX_9_X)
- ECase(R_HEX_8_X)
- ECase(R_HEX_7_X)
- ECase(R_HEX_6_X)
- ECase(R_HEX_32_PCREL)
- ECase(R_HEX_COPY)
- ECase(R_HEX_GLOB_DAT)
- ECase(R_HEX_JMP_SLOT)
- ECase(R_HEX_RELATIVE)
- ECase(R_HEX_PLT_B22_PCREL)
- ECase(R_HEX_GOTREL_LO16)
- ECase(R_HEX_GOTREL_HI16)
- ECase(R_HEX_GOTREL_32)
- ECase(R_HEX_GOT_LO16)
- ECase(R_HEX_GOT_HI16)
- ECase(R_HEX_GOT_32)
- ECase(R_HEX_GOT_16)
- ECase(R_HEX_DTPMOD_32)
- ECase(R_HEX_DTPREL_LO16)
- ECase(R_HEX_DTPREL_HI16)
- ECase(R_HEX_DTPREL_32)
- ECase(R_HEX_DTPREL_16)
- ECase(R_HEX_GD_PLT_B22_PCREL)
- ECase(R_HEX_GD_GOT_LO16)
- ECase(R_HEX_GD_GOT_HI16)
- ECase(R_HEX_GD_GOT_32)
- ECase(R_HEX_GD_GOT_16)
- ECase(R_HEX_IE_LO16)
- ECase(R_HEX_IE_HI16)
- ECase(R_HEX_IE_32)
- ECase(R_HEX_IE_GOT_LO16)
- ECase(R_HEX_IE_GOT_HI16)
- ECase(R_HEX_IE_GOT_32)
- ECase(R_HEX_IE_GOT_16)
- ECase(R_HEX_TPREL_LO16)
- ECase(R_HEX_TPREL_HI16)
- ECase(R_HEX_TPREL_32)
- ECase(R_HEX_TPREL_16)
- ECase(R_HEX_6_PCREL_X)
- ECase(R_HEX_GOTREL_32_6_X)
- ECase(R_HEX_GOTREL_16_X)
- ECase(R_HEX_GOTREL_11_X)
- ECase(R_HEX_GOT_32_6_X)
- ECase(R_HEX_GOT_16_X)
- ECase(R_HEX_GOT_11_X)
- ECase(R_HEX_DTPREL_32_6_X)
- ECase(R_HEX_DTPREL_16_X)
- ECase(R_HEX_DTPREL_11_X)
- ECase(R_HEX_GD_GOT_32_6_X)
- ECase(R_HEX_GD_GOT_16_X)
- ECase(R_HEX_GD_GOT_11_X)
- ECase(R_HEX_IE_32_6_X)
- ECase(R_HEX_IE_16_X)
- ECase(R_HEX_IE_GOT_32_6_X)
- ECase(R_HEX_IE_GOT_16_X)
- ECase(R_HEX_IE_GOT_11_X)
- ECase(R_HEX_TPREL_32_6_X)
- ECase(R_HEX_TPREL_16_X)
- ECase(R_HEX_TPREL_11_X)
+#include "llvm/Support/ELFRelocs/Hexagon.def"
break;
case ELF::EM_386:
- ECase(R_386_NONE)
- ECase(R_386_32)
- ECase(R_386_PC32)
- ECase(R_386_GOT32)
- ECase(R_386_PLT32)
- ECase(R_386_COPY)
- ECase(R_386_GLOB_DAT)
- ECase(R_386_JUMP_SLOT)
- ECase(R_386_RELATIVE)
- ECase(R_386_GOTOFF)
- ECase(R_386_GOTPC)
- ECase(R_386_32PLT)
- ECase(R_386_TLS_TPOFF)
- ECase(R_386_TLS_IE)
- ECase(R_386_TLS_GOTIE)
- ECase(R_386_TLS_LE)
- ECase(R_386_TLS_GD)
- ECase(R_386_TLS_LDM)
- ECase(R_386_16)
- ECase(R_386_PC16)
- ECase(R_386_8)
- ECase(R_386_PC8)
- ECase(R_386_TLS_GD_32)
- ECase(R_386_TLS_GD_PUSH)
- ECase(R_386_TLS_GD_CALL)
- ECase(R_386_TLS_GD_POP)
- ECase(R_386_TLS_LDM_32)
- ECase(R_386_TLS_LDM_PUSH)
- ECase(R_386_TLS_LDM_CALL)
- ECase(R_386_TLS_LDM_POP)
- ECase(R_386_TLS_LDO_32)
- ECase(R_386_TLS_IE_32)
- ECase(R_386_TLS_LE_32)
- ECase(R_386_TLS_DTPMOD32)
- ECase(R_386_TLS_DTPOFF32)
- ECase(R_386_TLS_TPOFF32)
- ECase(R_386_TLS_GOTDESC)
- ECase(R_386_TLS_DESC_CALL)
- ECase(R_386_TLS_DESC)
- ECase(R_386_IRELATIVE)
- ECase(R_386_NUM)
+#include "llvm/Support/ELFRelocs/i386.def"
+ break;
+ case ELF::EM_AARCH64:
+#include "llvm/Support/ELFRelocs/AArch64.def"
+ break;
+ case ELF::EM_ARM:
+#include "llvm/Support/ELFRelocs/ARM.def"
break;
default:
llvm_unreachable("Unsupported architecture");
}
-#undef ECase
+#undef ELF_RELOC
}
void MappingTraits<ELFYAML::FileHeader>::mapping(IO &IO,
@@ -669,13 +455,30 @@ void MappingTraits<ELFYAML::FileHeader>::mapping(IO &IO,
IO.mapOptional("Entry", FileHdr.Entry, Hex64(0));
}
+namespace {
+struct NormalizedOther {
+ NormalizedOther(IO &)
+ : Visibility(ELFYAML::ELF_STV(0)), Other(ELFYAML::ELF_STO(0)) {}
+ NormalizedOther(IO &, uint8_t Original)
+ : Visibility(Original & 0x3), Other(Original & ~0x3) {}
+
+ uint8_t denormalize(IO &) { return Visibility | Other; }
+
+ ELFYAML::ELF_STV Visibility;
+ ELFYAML::ELF_STO Other;
+};
+}
+
void MappingTraits<ELFYAML::Symbol>::mapping(IO &IO, ELFYAML::Symbol &Symbol) {
IO.mapOptional("Name", Symbol.Name, StringRef());
IO.mapOptional("Type", Symbol.Type, ELFYAML::ELF_STT(0));
IO.mapOptional("Section", Symbol.Section, StringRef());
IO.mapOptional("Value", Symbol.Value, Hex64(0));
IO.mapOptional("Size", Symbol.Size, Hex64(0));
- IO.mapOptional("Visibility", Symbol.Visibility, ELFYAML::ELF_STV(0));
+
+ MappingNormalization<NormalizedOther, uint8_t> Keys(IO, Symbol.Other);
+ IO.mapOptional("Visibility", Keys->Visibility, ELFYAML::ELF_STV(0));
+ IO.mapOptional("Other", Keys->Other, ELFYAML::ELF_STO(0));
}
void MappingTraits<ELFYAML::LocalGlobalWeakSymbols>::mapping(
diff --git a/contrib/llvm/lib/Object/Error.cpp b/contrib/llvm/lib/Object/Error.cpp
index 9d25269..d2daab7 100644
--- a/contrib/llvm/lib/Object/Error.cpp
+++ b/contrib/llvm/lib/Object/Error.cpp
@@ -13,6 +13,7 @@
#include "llvm/Object/Error.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
using namespace object;
@@ -25,7 +26,7 @@ public:
};
}
-const char *_object_error_category::name() const {
+const char *_object_error_category::name() const LLVM_NOEXCEPT {
return "llvm.object";
}
@@ -41,12 +42,15 @@ std::string _object_error_category::message(int EV) const {
return "Invalid data was encountered while parsing the file";
case object_error::unexpected_eof:
return "The end of the file was unexpectedly encountered";
+ case object_error::bitcode_section_not_found:
+ return "Bitcode section not found in object file";
}
llvm_unreachable("An enumerator of object_error does not have a message "
"defined.");
}
+static ManagedStatic<_object_error_category> error_category;
+
const std::error_category &object::object_category() {
- static _object_error_category o;
- return o;
+ return *error_category;
}
diff --git a/contrib/llvm/lib/Object/IRObjectFile.cpp b/contrib/llvm/lib/Object/IRObjectFile.cpp
index 5323d92..423ed9e 100644
--- a/contrib/llvm/lib/Object/IRObjectFile.cpp
+++ b/contrib/llvm/lib/Object/IRObjectFile.cpp
@@ -14,17 +14,18 @@
#include "llvm/Object/IRObjectFile.h"
#include "RecordStreamer.h"
#include "llvm/Bitcode/ReaderWriter.h"
-#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/GVMaterializer.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
-#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
-#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
@@ -32,9 +33,8 @@
using namespace llvm;
using namespace object;
-IRObjectFile::IRObjectFile(std::unique_ptr<MemoryBuffer> Object,
- std::unique_ptr<Module> Mod)
- : SymbolicFile(Binary::ID_IR, std::move(Object)), M(std::move(Mod)) {
+IRObjectFile::IRObjectFile(MemoryBufferRef Object, std::unique_ptr<Module> Mod)
+ : SymbolicFile(Binary::ID_IR, Object), M(std::move(Mod)) {
// If we have a DataLayout, setup a mangler.
const DataLayout *DL = M->getDataLayout();
if (!DL)
@@ -76,7 +76,7 @@ IRObjectFile::IRObjectFile(std::unique_ptr<MemoryBuffer> Object,
std::unique_ptr<MemoryBuffer> Buffer(MemoryBuffer::getMemBuffer(InlineAsm));
SourceMgr SrcMgr;
- SrcMgr.AddNewSourceBuffer(Buffer.release(), SMLoc());
+ SrcMgr.AddNewSourceBuffer(std::move(Buffer), SMLoc());
std::unique_ptr<MCAsmParser> Parser(
createMCAsmParser(SrcMgr, MCCtx, *Streamer, *MAI));
@@ -114,12 +114,9 @@ IRObjectFile::IRObjectFile(std::unique_ptr<MemoryBuffer> Object,
}
IRObjectFile::~IRObjectFile() {
- GVMaterializer *GVM = M->getMaterializer();
- if (GVM)
- GVM->releaseBuffer();
}
-static const GlobalValue *getGV(DataRefImpl &Symb) {
+static GlobalValue *getGV(DataRefImpl &Symb) {
if ((Symb.p & 3) == 3)
return nullptr;
@@ -184,6 +181,8 @@ void IRObjectFile::moveSymbolNext(DataRefImpl &Symb) const {
Res = (Index << 2) | 3;
break;
}
+ default:
+ llvm_unreachable("unreachable case");
}
Symb.p = Res;
@@ -207,16 +206,6 @@ std::error_code IRObjectFile::printSymbolName(raw_ostream &OS,
return object_error::success;
}
-static bool isDeclaration(const GlobalValue &V) {
- if (V.hasAvailableExternallyLinkage())
- return true;
-
- if (V.isMaterializable())
- return false;
-
- return V.isDeclaration();
-}
-
uint32_t IRObjectFile::getSymbolFlags(DataRefImpl Symb) const {
const GlobalValue *GV = getGV(Symb);
@@ -227,7 +216,7 @@ uint32_t IRObjectFile::getSymbolFlags(DataRefImpl Symb) const {
}
uint32_t Res = BasicSymbolRef::SF_None;
- if (isDeclaration(*GV))
+ if (GV->isDeclarationForLinker())
Res |= BasicSymbolRef::SF_Undefined;
if (GV->hasPrivateLinkage())
Res |= BasicSymbolRef::SF_FormatSpecific;
@@ -248,10 +237,9 @@ uint32_t IRObjectFile::getSymbolFlags(DataRefImpl Symb) const {
return Res;
}
-const GlobalValue *IRObjectFile::getSymbolGV(DataRefImpl Symb) const {
- const GlobalValue *GV = getGV(Symb);
- return GV;
-}
+GlobalValue *IRObjectFile::getSymbolGV(DataRefImpl Symb) { return getGV(Symb); }
+
+std::unique_ptr<Module> IRObjectFile::takeModule() { return std::move(M); }
basic_symbol_iterator IRObjectFile::symbol_begin_impl() const {
Module::const_iterator I = M->begin();
@@ -268,12 +256,55 @@ basic_symbol_iterator IRObjectFile::symbol_end_impl() const {
return basic_symbol_iterator(BasicSymbolRef(Ret, this));
}
-ErrorOr<IRObjectFile *> llvm::object::IRObjectFile::createIRObjectFile(
- std::unique_ptr<MemoryBuffer> Object, LLVMContext &Context) {
- ErrorOr<Module *> MOrErr = getLazyBitcodeModule(Object.get(), Context);
+ErrorOr<MemoryBufferRef> IRObjectFile::findBitcodeInObject(const ObjectFile &Obj) {
+ for (const SectionRef &Sec : Obj.sections()) {
+ StringRef SecName;
+ if (std::error_code EC = Sec.getName(SecName))
+ return EC;
+ if (SecName == ".llvmbc") {
+ StringRef SecContents;
+ if (std::error_code EC = Sec.getContents(SecContents))
+ return EC;
+ return MemoryBufferRef(SecContents, Obj.getFileName());
+ }
+ }
+
+ return object_error::bitcode_section_not_found;
+}
+
+ErrorOr<MemoryBufferRef> IRObjectFile::findBitcodeInMemBuffer(MemoryBufferRef Object) {
+ sys::fs::file_magic Type = sys::fs::identify_magic(Object.getBuffer());
+ switch (Type) {
+ case sys::fs::file_magic::bitcode:
+ return Object;
+ case sys::fs::file_magic::elf_relocatable:
+ case sys::fs::file_magic::macho_object:
+ case sys::fs::file_magic::coff_object: {
+ ErrorOr<std::unique_ptr<ObjectFile>> ObjFile =
+ ObjectFile::createObjectFile(Object, Type);
+ if (!ObjFile)
+ return ObjFile.getError();
+ return findBitcodeInObject(*ObjFile->get());
+ }
+ default:
+ return object_error::invalid_file_type;
+ }
+}
+
+ErrorOr<std::unique_ptr<IRObjectFile>>
+llvm::object::IRObjectFile::create(MemoryBufferRef Object,
+ LLVMContext &Context) {
+ ErrorOr<MemoryBufferRef> BCOrErr = findBitcodeInMemBuffer(Object);
+ if (!BCOrErr)
+ return BCOrErr.getError();
+
+ std::unique_ptr<MemoryBuffer> Buff(
+ MemoryBuffer::getMemBuffer(BCOrErr.get(), false));
+
+ ErrorOr<Module *> MOrErr = getLazyBitcodeModule(std::move(Buff), Context);
if (std::error_code EC = MOrErr.getError())
return EC;
std::unique_ptr<Module> M(MOrErr.get());
- return new IRObjectFile(std::move(Object), std::move(M));
+ return llvm::make_unique<IRObjectFile>(Object, std::move(M));
}
diff --git a/contrib/llvm/lib/Object/MachOObjectFile.cpp b/contrib/llvm/lib/Object/MachOObjectFile.cpp
index 51c4c33..e476976 100644
--- a/contrib/llvm/lib/Object/MachOObjectFile.cpp
+++ b/contrib/llvm/lib/Object/MachOObjectFile.cpp
@@ -14,10 +14,14 @@
#include "llvm/Object/MachO.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/DataExtractor.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Host.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
@@ -54,6 +58,17 @@ getSegmentLoadCommandNumSections(const MachOObjectFile *O,
return S.nsects;
}
+static bool isPageZeroSegment(const MachOObjectFile *O,
+ const MachOObjectFile::LoadCommandInfo &L) {
+ if (O->is64Bit()) {
+ MachO::segment_command_64 S = O->getSegment64LoadCommand(L);
+ return StringRef("__PAGEZERO").equals(S.segname);
+ }
+ MachO::segment_command S = O->getSegmentLoadCommand(L);
+ return StringRef("__PAGEZERO").equals(S.segname);
+}
+
+
static const char *
getSectionPtr(const MachOObjectFile *O, MachOObjectFile::LoadCommandInfo L,
unsigned Sec) {
@@ -129,11 +144,9 @@ static void printRelocationTargetName(const MachOObjectFile *O,
// to find a section beginning instead.
for (const SectionRef &Section : O->sections()) {
std::error_code ec;
- uint64_t Addr;
- StringRef Name;
- if ((ec = Section.getAddress(Addr)))
- report_fatal_error(ec.message());
+ StringRef Name;
+ uint64_t Addr = Section.getAddress();
if (Addr != Val)
continue;
if ((ec = Section.getName(Name)))
@@ -206,11 +219,6 @@ static unsigned getPlainRelocationType(const MachOObjectFile *O,
return RE.r_word1 & 0xf;
}
-static unsigned
-getScatteredRelocationType(const MachO::any_relocation_info &RE) {
- return (RE.r_word0 >> 24) & 0xf;
-}
-
static uint32_t getSectionFlags(const MachOObjectFile *O,
DataRefImpl Sec) {
if (O->is64Bit()) {
@@ -221,33 +229,65 @@ static uint32_t getSectionFlags(const MachOObjectFile *O,
return Sect.flags;
}
-MachOObjectFile::MachOObjectFile(std::unique_ptr<MemoryBuffer> Object,
- bool IsLittleEndian, bool Is64bits,
- std::error_code &EC)
- : ObjectFile(getMachOType(IsLittleEndian, Is64bits), std::move(Object)),
+MachOObjectFile::MachOObjectFile(MemoryBufferRef Object, bool IsLittleEndian,
+ bool Is64bits, std::error_code &EC)
+ : ObjectFile(getMachOType(IsLittleEndian, Is64bits), Object),
SymtabLoadCmd(nullptr), DysymtabLoadCmd(nullptr),
- DataInCodeLoadCmd(nullptr) {
+ DataInCodeLoadCmd(nullptr), DyldInfoLoadCmd(nullptr),
+ UuidLoadCmd(nullptr), HasPageZeroSegment(false) {
uint32_t LoadCommandCount = this->getHeader().ncmds;
+ if (LoadCommandCount == 0)
+ return;
+
MachO::LoadCommandType SegmentLoadType = is64Bit() ?
MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT;
MachOObjectFile::LoadCommandInfo Load = getFirstLoadCommandInfo();
for (unsigned I = 0; ; ++I) {
if (Load.C.cmd == MachO::LC_SYMTAB) {
- assert(!SymtabLoadCmd && "Multiple symbol tables");
+ // Multiple symbol tables
+ if (SymtabLoadCmd) {
+ EC = object_error::parse_failed;
+ return;
+ }
SymtabLoadCmd = Load.Ptr;
} else if (Load.C.cmd == MachO::LC_DYSYMTAB) {
- assert(!DysymtabLoadCmd && "Multiple dynamic symbol tables");
+ // Multiple dynamic symbol tables
+ if (DysymtabLoadCmd) {
+ EC = object_error::parse_failed;
+ return;
+ }
DysymtabLoadCmd = Load.Ptr;
} else if (Load.C.cmd == MachO::LC_DATA_IN_CODE) {
- assert(!DataInCodeLoadCmd && "Multiple data in code tables");
+ // Multiple data in code tables
+ if (DataInCodeLoadCmd) {
+ EC = object_error::parse_failed;
+ return;
+ }
DataInCodeLoadCmd = Load.Ptr;
+ } else if (Load.C.cmd == MachO::LC_DYLD_INFO ||
+ Load.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
+ // Multiple dyldinfo load commands
+ if (DyldInfoLoadCmd) {
+ EC = object_error::parse_failed;
+ return;
+ }
+ DyldInfoLoadCmd = Load.Ptr;
+ } else if (Load.C.cmd == MachO::LC_UUID) {
+ // Multiple UUID load commands
+ if (UuidLoadCmd) {
+ EC = object_error::parse_failed;
+ return;
+ }
+ UuidLoadCmd = Load.Ptr;
} else if (Load.C.cmd == SegmentLoadType) {
uint32_t NumSections = getSegmentLoadCommandNumSections(this, Load);
for (unsigned J = 0; J < NumSections; ++J) {
const char *Sec = getSectionPtr(this, Load, J);
Sections.push_back(Sec);
}
+ if (isPageZeroSegment(this, Load))
+ HasPageZeroSegment = true;
} else if (Load.C.cmd == MachO::LC_LOAD_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
@@ -279,6 +319,12 @@ std::error_code MachOObjectFile::getSymbolName(DataRefImpl Symb,
return object_error::success;
}
+unsigned MachOObjectFile::getSectionType(SectionRef Sec) const {
+ DataRefImpl DRI = Sec.getRawDataRefImpl();
+ uint32_t Flags = getSectionFlags(this, DRI);
+ return Flags & MachO::SECTION_TYPE;
+}
+
// getIndirectName() returns the name of the alias'ed symbol who's string table
// index is in the n_value field.
std::error_code MachOObjectFile::getIndirectName(DataRefImpl Symb,
@@ -373,11 +419,10 @@ std::error_code MachOObjectFile::getSymbolSize(DataRefImpl DRI,
EndOffset = Value;
}
if (!EndOffset) {
- uint64_t Size;
DataRefImpl Sec;
Sec.d.a = SectionIndex-1;
- getSectionSize(Sec, Size);
- getSectionAddress(Sec, EndOffset);
+ uint64_t Size = getSectionSize(Sec);
+ EndOffset = getSectionAddress(Sec);
EndOffset += Size;
}
Result = EndOffset - BeginOffset;
@@ -438,6 +483,9 @@ uint32_t MachOObjectFile::getSymbolFlags(DataRefImpl DRI) const {
if (MachOFlags & (MachO::N_WEAK_REF | MachO::N_WEAK_DEF))
Result |= SymbolRef::SF_Weak;
+ if (MachOFlags & (MachO::N_ARM_THUMB_DEF))
+ Result |= SymbolRef::SF_Thumb;
+
if ((MachOType & MachO::N_TYPE) == MachO::N_ABS)
Result |= SymbolRef::SF_Absolute;
@@ -471,29 +519,16 @@ std::error_code MachOObjectFile::getSectionName(DataRefImpl Sec,
return object_error::success;
}
-std::error_code MachOObjectFile::getSectionAddress(DataRefImpl Sec,
- uint64_t &Res) const {
- if (is64Bit()) {
- MachO::section_64 Sect = getSection64(Sec);
- Res = Sect.addr;
- } else {
- MachO::section Sect = getSection(Sec);
- Res = Sect.addr;
- }
- return object_error::success;
+uint64_t MachOObjectFile::getSectionAddress(DataRefImpl Sec) const {
+ if (is64Bit())
+ return getSection64(Sec).addr;
+ return getSection(Sec).addr;
}
-std::error_code MachOObjectFile::getSectionSize(DataRefImpl Sec,
- uint64_t &Res) const {
- if (is64Bit()) {
- MachO::section_64 Sect = getSection64(Sec);
- Res = Sect.size;
- } else {
- MachO::section Sect = getSection(Sec);
- Res = Sect.size;
- }
-
- return object_error::success;
+uint64_t MachOObjectFile::getSectionSize(DataRefImpl Sec) const {
+ if (is64Bit())
+ return getSection64(Sec).size;
+ return getSection(Sec).size;
}
std::error_code MachOObjectFile::getSectionContents(DataRefImpl Sec,
@@ -515,8 +550,7 @@ std::error_code MachOObjectFile::getSectionContents(DataRefImpl Sec,
return object_error::success;
}
-std::error_code MachOObjectFile::getSectionAlignment(DataRefImpl Sec,
- uint64_t &Res) const {
+uint64_t MachOObjectFile::getSectionAlignment(DataRefImpl Sec) const {
uint32_t Align;
if (is64Bit()) {
MachO::section_64 Sect = getSection64(Sec);
@@ -526,92 +560,49 @@ std::error_code MachOObjectFile::getSectionAlignment(DataRefImpl Sec,
Align = Sect.align;
}
- Res = uint64_t(1) << Align;
- return object_error::success;
-}
-
-std::error_code MachOObjectFile::isSectionText(DataRefImpl Sec,
- bool &Res) const {
- uint32_t Flags = getSectionFlags(this, Sec);
- Res = Flags & MachO::S_ATTR_PURE_INSTRUCTIONS;
- return object_error::success;
+ return uint64_t(1) << Align;
}
-std::error_code MachOObjectFile::isSectionData(DataRefImpl Sec,
- bool &Result) const {
+bool MachOObjectFile::isSectionText(DataRefImpl Sec) const {
uint32_t Flags = getSectionFlags(this, Sec);
- unsigned SectionType = Flags & MachO::SECTION_TYPE;
- Result = !(Flags & MachO::S_ATTR_PURE_INSTRUCTIONS) &&
- !(SectionType == MachO::S_ZEROFILL ||
- SectionType == MachO::S_GB_ZEROFILL);
- return object_error::success;
+ return Flags & MachO::S_ATTR_PURE_INSTRUCTIONS;
}
-std::error_code MachOObjectFile::isSectionBSS(DataRefImpl Sec,
- bool &Result) const {
+bool MachOObjectFile::isSectionData(DataRefImpl Sec) const {
uint32_t Flags = getSectionFlags(this, Sec);
unsigned SectionType = Flags & MachO::SECTION_TYPE;
- Result = !(Flags & MachO::S_ATTR_PURE_INSTRUCTIONS) &&
- (SectionType == MachO::S_ZEROFILL ||
- SectionType == MachO::S_GB_ZEROFILL);
- return object_error::success;
-}
-
-std::error_code
-MachOObjectFile::isSectionRequiredForExecution(DataRefImpl Sec,
- bool &Result) const {
- // FIXME: Unimplemented.
- Result = true;
- return object_error::success;
-}
-
-std::error_code MachOObjectFile::isSectionVirtual(DataRefImpl Sec,
- bool &Result) const {
- // FIXME: Unimplemented.
- Result = false;
- return object_error::success;
+ return !(Flags & MachO::S_ATTR_PURE_INSTRUCTIONS) &&
+ !(SectionType == MachO::S_ZEROFILL ||
+ SectionType == MachO::S_GB_ZEROFILL);
}
-std::error_code MachOObjectFile::isSectionZeroInit(DataRefImpl Sec,
- bool &Res) const {
+bool MachOObjectFile::isSectionBSS(DataRefImpl Sec) const {
uint32_t Flags = getSectionFlags(this, Sec);
unsigned SectionType = Flags & MachO::SECTION_TYPE;
- Res = SectionType == MachO::S_ZEROFILL ||
- SectionType == MachO::S_GB_ZEROFILL;
- return object_error::success;
+ return !(Flags & MachO::S_ATTR_PURE_INSTRUCTIONS) &&
+ (SectionType == MachO::S_ZEROFILL ||
+ SectionType == MachO::S_GB_ZEROFILL);
}
-std::error_code MachOObjectFile::isSectionReadOnlyData(DataRefImpl Sec,
- bool &Result) const {
- // Consider using the code from isSectionText to look for __const sections.
- // Alternately, emit S_ATTR_PURE_INSTRUCTIONS and/or S_ATTR_SOME_INSTRUCTIONS
- // to use section attributes to distinguish code from data.
-
+bool MachOObjectFile::isSectionVirtual(DataRefImpl Sec) const {
// FIXME: Unimplemented.
- Result = false;
- return object_error::success;
+ return false;
}
-std::error_code MachOObjectFile::sectionContainsSymbol(DataRefImpl Sec,
- DataRefImpl Symb,
- bool &Result) const {
+bool MachOObjectFile::sectionContainsSymbol(DataRefImpl Sec,
+ DataRefImpl Symb) const {
SymbolRef::Type ST;
this->getSymbolType(Symb, ST);
- if (ST == SymbolRef::ST_Unknown) {
- Result = false;
- return object_error::success;
- }
+ if (ST == SymbolRef::ST_Unknown)
+ return false;
- uint64_t SectBegin, SectEnd;
- getSectionAddress(Sec, SectBegin);
- getSectionSize(Sec, SectEnd);
+ uint64_t SectBegin = getSectionAddress(Sec);
+ uint64_t SectEnd = getSectionSize(Sec);
SectEnd += SectBegin;
uint64_t SymAddr;
getSymbolAddress(Symb, SymAddr);
- Result = (SymAddr >= SectBegin) && (SymAddr < SectEnd);
-
- return object_error::success;
+ return (SymAddr >= SectBegin) && (SymAddr < SectEnd);
}
relocation_iterator MachOObjectFile::section_rel_begin(DataRefImpl Sec) const {
@@ -649,8 +640,7 @@ std::error_code MachOObjectFile::getRelocationAddress(DataRefImpl Rel,
DataRefImpl Sec;
Sec.d.a = Rel.d.a;
- uint64_t SecAddress;
- getSectionAddress(Sec, SecAddress);
+ uint64_t SecAddress = getSectionAddress(Sec);
Res = SecAddress + Offset;
return object_error::success;
}
@@ -755,7 +745,6 @@ MachOObjectFile::getRelocationTypeName(DataRefImpl Rel,
res = Table[RType];
break;
}
- case Triple::arm64:
case Triple::aarch64: {
static const char *const Table[] = {
"ARM64_RELOC_UNSIGNED", "ARM64_RELOC_SUBTRACTOR",
@@ -1009,16 +998,6 @@ std::error_code MachOObjectFile::getRelocationHidden(DataRefImpl Rel,
return object_error::success;
}
-std::error_code MachOObjectFile::getLibraryNext(DataRefImpl LibData,
- LibraryRef &Res) const {
- report_fatal_error("Needed libraries unimplemented in MachOObjectFile");
-}
-
-std::error_code MachOObjectFile::getLibraryPath(DataRefImpl LibData,
- StringRef &Res) const {
- report_fatal_error("Needed libraries unimplemented in MachOObjectFile");
-}
-
//
// guessLibraryShortName() is passed a name of a dynamic library and returns a
// guess on what the short name is. Then name is returned as a substring of the
@@ -1167,31 +1146,26 @@ guess_qtx:
// It is passed the index (0 - based) of the library as translated from
// GET_LIBRARY_ORDINAL (1 - based).
std::error_code MachOObjectFile::getLibraryShortNameByIndex(unsigned Index,
- StringRef &Res) {
+ StringRef &Res) const {
if (Index >= Libraries.size())
return object_error::parse_failed;
- MachO::dylib_command D =
- getStruct<MachO::dylib_command>(this, Libraries[Index]);
- if (D.dylib.name >= D.cmdsize)
- return object_error::parse_failed;
-
// If the cache of LibrariesShortNames is not built up do that first for
// all the Libraries.
if (LibrariesShortNames.size() == 0) {
for (unsigned i = 0; i < Libraries.size(); i++) {
MachO::dylib_command D =
getStruct<MachO::dylib_command>(this, Libraries[i]);
- if (D.dylib.name >= D.cmdsize) {
- LibrariesShortNames.push_back(StringRef());
- continue;
- }
+ if (D.dylib.name >= D.cmdsize)
+ return object_error::parse_failed;
const char *P = (const char *)(Libraries[i]) + D.dylib.name;
StringRef Name = StringRef(P);
+ if (D.dylib.name+Name.size() >= D.cmdsize)
+ return object_error::parse_failed;
StringRef Suffix;
bool isFramework;
StringRef shortName = guessLibraryShortName(Name, isFramework, Suffix);
- if (shortName == StringRef())
+ if (shortName.empty())
LibrariesShortNames.push_back(Name);
else
LibrariesShortNames.push_back(shortName);
@@ -1246,16 +1220,6 @@ section_iterator MachOObjectFile::section_end() const {
return section_iterator(SectionRef(DRI, this));
}
-library_iterator MachOObjectFile::needed_library_begin() const {
- // TODO: implement
- report_fatal_error("Needed libraries unimplemented in MachOObjectFile");
-}
-
-library_iterator MachOObjectFile::needed_library_end() const {
- // TODO: implement
- report_fatal_error("Needed libraries unimplemented in MachOObjectFile");
-}
-
uint8_t MachOObjectFile::getBytesInAddress() const {
return is64Bit() ? 8 : 4;
}
@@ -1271,17 +1235,10 @@ StringRef MachOObjectFile::getFileFormatName() const {
case llvm::MachO::CPU_TYPE_POWERPC:
return "Mach-O 32-bit ppc";
default:
- assert((CPUType & llvm::MachO::CPU_ARCH_ABI64) == 0 &&
- "64-bit object file when we're not 64-bit?");
return "Mach-O 32-bit unknown";
}
}
- // Make sure the cpu type has the correct mask.
- assert((CPUType & llvm::MachO::CPU_ARCH_ABI64)
- == llvm::MachO::CPU_ARCH_ABI64 &&
- "32-bit object file when we're 64-bit?");
-
switch (CPUType) {
case llvm::MachO::CPU_TYPE_X86_64:
return "Mach-O 64-bit x86-64";
@@ -1303,7 +1260,7 @@ Triple::ArchType MachOObjectFile::getArch(uint32_t CPUType) {
case llvm::MachO::CPU_TYPE_ARM:
return Triple::arm;
case llvm::MachO::CPU_TYPE_ARM64:
- return Triple::arm64;
+ return Triple::aarch64;
case llvm::MachO::CPU_TYPE_POWERPC:
return Triple::ppc;
case llvm::MachO::CPU_TYPE_POWERPC64:
@@ -1313,7 +1270,11 @@ Triple::ArchType MachOObjectFile::getArch(uint32_t CPUType) {
}
}
-Triple MachOObjectFile::getArch(uint32_t CPUType, uint32_t CPUSubType) {
+Triple MachOObjectFile::getArch(uint32_t CPUType, uint32_t CPUSubType,
+ const char **McpuDefault) {
+ if (McpuDefault)
+ *McpuDefault = nullptr;
+
switch (CPUType) {
case MachO::CPU_TYPE_I386:
switch (CPUSubType & ~MachO::CPU_SUBTYPE_MASK) {
@@ -1337,15 +1298,25 @@ Triple MachOObjectFile::getArch(uint32_t CPUType, uint32_t CPUSubType) {
return Triple("armv4t-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
return Triple("armv5e-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_XSCALE:
+ return Triple("xscale-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V6:
return Triple("armv6-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V6M:
+ if (McpuDefault)
+ *McpuDefault = "cortex-m0";
return Triple("armv6m-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V7:
+ return Triple("armv7-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V7EM:
+ if (McpuDefault)
+ *McpuDefault = "cortex-m4";
return Triple("armv7em-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V7K:
return Triple("armv7k-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V7M:
+ if (McpuDefault)
+ *McpuDefault = "cortex-m3";
return Triple("armv7m-apple-darwin");
case MachO::CPU_SUBTYPE_ARM_V7S:
return Triple("armv7s-apple-darwin");
@@ -1378,50 +1349,102 @@ Triple MachOObjectFile::getArch(uint32_t CPUType, uint32_t CPUSubType) {
}
}
+Triple MachOObjectFile::getThumbArch(uint32_t CPUType, uint32_t CPUSubType,
+ const char **McpuDefault) {
+ if (McpuDefault)
+ *McpuDefault = nullptr;
+
+ switch (CPUType) {
+ case MachO::CPU_TYPE_ARM:
+ switch (CPUSubType & ~MachO::CPU_SUBTYPE_MASK) {
+ case MachO::CPU_SUBTYPE_ARM_V4T:
+ return Triple("thumbv4t-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V5TEJ:
+ return Triple("thumbv5e-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_XSCALE:
+ return Triple("xscale-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V6:
+ return Triple("thumbv6-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V6M:
+ if (McpuDefault)
+ *McpuDefault = "cortex-m0";
+ return Triple("thumbv6m-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V7:
+ return Triple("thumbv7-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V7EM:
+ if (McpuDefault)
+ *McpuDefault = "cortex-m4";
+ return Triple("thumbv7em-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V7K:
+ return Triple("thumbv7k-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V7M:
+ if (McpuDefault)
+ *McpuDefault = "cortex-m3";
+ return Triple("thumbv7m-apple-darwin");
+ case MachO::CPU_SUBTYPE_ARM_V7S:
+ return Triple("thumbv7s-apple-darwin");
+ default:
+ return Triple();
+ }
+ default:
+ return Triple();
+ }
+}
+
+Triple MachOObjectFile::getArch(uint32_t CPUType, uint32_t CPUSubType,
+ const char **McpuDefault,
+ Triple *ThumbTriple) {
+ Triple T = MachOObjectFile::getArch(CPUType, CPUSubType, McpuDefault);
+ *ThumbTriple = MachOObjectFile::getThumbArch(CPUType, CPUSubType,
+ McpuDefault);
+ return T;
+}
+
Triple MachOObjectFile::getHostArch() {
return Triple(sys::getDefaultTargetTriple());
}
-Triple MachOObjectFile::getArch(StringRef ArchFlag) {
- if (ArchFlag == "i386")
- return Triple("i386-apple-darwin");
- else if (ArchFlag == "x86_64")
- return Triple("x86_64-apple-darwin");
- else if (ArchFlag == "x86_64h")
- return Triple("x86_64h-apple-darwin");
- else if (ArchFlag == "armv4t" || ArchFlag == "arm")
- return Triple("armv4t-apple-darwin");
- else if (ArchFlag == "armv5e")
- return Triple("armv5e-apple-darwin");
- else if (ArchFlag == "armv6")
- return Triple("armv6-apple-darwin");
- else if (ArchFlag == "armv6m")
- return Triple("armv6m-apple-darwin");
- else if (ArchFlag == "armv7em")
- return Triple("armv7em-apple-darwin");
- else if (ArchFlag == "armv7k")
- return Triple("armv7k-apple-darwin");
- else if (ArchFlag == "armv7k")
- return Triple("armv7m-apple-darwin");
- else if (ArchFlag == "armv7s")
- return Triple("armv7s-apple-darwin");
- else if (ArchFlag == "arm64")
- return Triple("arm64-apple-darwin");
- else if (ArchFlag == "ppc")
- return Triple("ppc-apple-darwin");
- else if (ArchFlag == "ppc64")
- return Triple("ppc64-apple-darwin");
- else
- return Triple();
+bool MachOObjectFile::isValidArch(StringRef ArchFlag) {
+ return StringSwitch<bool>(ArchFlag)
+ .Case("i386", true)
+ .Case("x86_64", true)
+ .Case("x86_64h", true)
+ .Case("armv4t", true)
+ .Case("arm", true)
+ .Case("armv5e", true)
+ .Case("armv6", true)
+ .Case("armv6m", true)
+ .Case("armv7em", true)
+ .Case("armv7k", true)
+ .Case("armv7m", true)
+ .Case("armv7s", true)
+ .Case("arm64", true)
+ .Case("ppc", true)
+ .Case("ppc64", true)
+ .Default(false);
}
unsigned MachOObjectFile::getArch() const {
return getArch(getCPUType(this));
}
-StringRef MachOObjectFile::getLoadName() const {
- // TODO: Implement
- report_fatal_error("get_load_name() unimplemented in MachOObjectFile");
+Triple MachOObjectFile::getArch(const char **McpuDefault,
+ Triple *ThumbTriple) const {
+ Triple T;
+ if (is64Bit()) {
+ MachO::mach_header_64 H_64;
+ H_64 = getHeader64();
+ T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype, McpuDefault);
+ *ThumbTriple = MachOObjectFile::getThumbArch(H_64.cputype, H_64.cpusubtype,
+ McpuDefault);
+ } else {
+ MachO::mach_header H;
+ H = getHeader();
+ T = MachOObjectFile::getArch(H.cputype, H.cpusubtype, McpuDefault);
+ *ThumbTriple = MachOObjectFile::getThumbArch(H.cputype, H.cpusubtype,
+ McpuDefault);
+ }
+ return T;
}
relocation_iterator MachOObjectFile::section_rel_begin(unsigned Index) const {
@@ -1457,6 +1480,623 @@ dice_iterator MachOObjectFile::end_dices() const {
return dice_iterator(DiceRef(DRI, this));
}
+ExportEntry::ExportEntry(ArrayRef<uint8_t> T)
+ : Trie(T), Malformed(false), Done(false) { }
+
+void ExportEntry::moveToFirst() {
+ pushNode(0);
+ pushDownUntilBottom();
+}
+
+void ExportEntry::moveToEnd() {
+ Stack.clear();
+ Done = true;
+}
+
+bool ExportEntry::operator==(const ExportEntry &Other) const {
+ // Common case, one at end, other iterating from begin.
+ if (Done || Other.Done)
+ return (Done == Other.Done);
+ // Not equal if different stack sizes.
+ if (Stack.size() != Other.Stack.size())
+ return false;
+ // Not equal if different cumulative strings.
+ if (!CumulativeString.str().equals(Other.CumulativeString.str()))
+ return false;
+ // Equal if all nodes in both stacks match.
+ for (unsigned i=0; i < Stack.size(); ++i) {
+ if (Stack[i].Start != Other.Stack[i].Start)
+ return false;
+ }
+ return true;
+}
+
+uint64_t ExportEntry::readULEB128(const uint8_t *&Ptr) {
+ unsigned Count;
+ uint64_t Result = decodeULEB128(Ptr, &Count);
+ Ptr += Count;
+ if (Ptr > Trie.end()) {
+ Ptr = Trie.end();
+ Malformed = true;
+ }
+ return Result;
+}
+
+StringRef ExportEntry::name() const {
+ return CumulativeString.str();
+}
+
+uint64_t ExportEntry::flags() const {
+ return Stack.back().Flags;
+}
+
+uint64_t ExportEntry::address() const {
+ return Stack.back().Address;
+}
+
+uint64_t ExportEntry::other() const {
+ return Stack.back().Other;
+}
+
+StringRef ExportEntry::otherName() const {
+ const char* ImportName = Stack.back().ImportName;
+ if (ImportName)
+ return StringRef(ImportName);
+ return StringRef();
+}
+
+uint32_t ExportEntry::nodeOffset() const {
+ return Stack.back().Start - Trie.begin();
+}
+
+ExportEntry::NodeState::NodeState(const uint8_t *Ptr)
+ : Start(Ptr), Current(Ptr), Flags(0), Address(0), Other(0),
+ ImportName(nullptr), ChildCount(0), NextChildIndex(0),
+ ParentStringLength(0), IsExportNode(false) {
+}
+
+void ExportEntry::pushNode(uint64_t offset) {
+ const uint8_t *Ptr = Trie.begin() + offset;
+ NodeState State(Ptr);
+ uint64_t ExportInfoSize = readULEB128(State.Current);
+ State.IsExportNode = (ExportInfoSize != 0);
+ const uint8_t* Children = State.Current + ExportInfoSize;
+ if (State.IsExportNode) {
+ State.Flags = readULEB128(State.Current);
+ if (State.Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT) {
+ State.Address = 0;
+ State.Other = readULEB128(State.Current); // dylib ordinal
+ State.ImportName = reinterpret_cast<const char*>(State.Current);
+ } else {
+ State.Address = readULEB128(State.Current);
+ if (State.Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER)
+ State.Other = readULEB128(State.Current);
+ }
+ }
+ State.ChildCount = *Children;
+ State.Current = Children + 1;
+ State.NextChildIndex = 0;
+ State.ParentStringLength = CumulativeString.size();
+ Stack.push_back(State);
+}
+
+void ExportEntry::pushDownUntilBottom() {
+ while (Stack.back().NextChildIndex < Stack.back().ChildCount) {
+ NodeState &Top = Stack.back();
+ CumulativeString.resize(Top.ParentStringLength);
+ for (;*Top.Current != 0; Top.Current++) {
+ char C = *Top.Current;
+ CumulativeString.push_back(C);
+ }
+ Top.Current += 1;
+ uint64_t childNodeIndex = readULEB128(Top.Current);
+ Top.NextChildIndex += 1;
+ pushNode(childNodeIndex);
+ }
+ if (!Stack.back().IsExportNode) {
+ Malformed = true;
+ moveToEnd();
+ }
+}
+
+// We have a trie data structure and need a way to walk it that is compatible
+// with the C++ iterator model. The solution is a non-recursive depth first
+// traversal where the iterator contains a stack of parent nodes along with a
+// string that is the accumulation of all edge strings along the parent chain
+// to this point.
+//
+// There is one "export" node for each exported symbol. But because some
+// symbols may be a prefix of another symbol (e.g. _dup and _dup2), an export
+// node may have child nodes too.
+//
+// The algorithm for moveNext() is to keep moving down the leftmost unvisited
+// child until hitting a node with no children (which is an export node or
+// else the trie is malformed). On the way down, each node is pushed on the
+// stack ivar. If there is no more ways down, it pops up one and tries to go
+// down a sibling path until a childless node is reached.
+void ExportEntry::moveNext() {
+ if (Stack.empty() || !Stack.back().IsExportNode) {
+ Malformed = true;
+ moveToEnd();
+ return;
+ }
+
+ Stack.pop_back();
+ while (!Stack.empty()) {
+ NodeState &Top = Stack.back();
+ if (Top.NextChildIndex < Top.ChildCount) {
+ pushDownUntilBottom();
+ // Now at the next export node.
+ return;
+ } else {
+ if (Top.IsExportNode) {
+ // This node has no children but is itself an export node.
+ CumulativeString.resize(Top.ParentStringLength);
+ return;
+ }
+ Stack.pop_back();
+ }
+ }
+ Done = true;
+}
+
+iterator_range<export_iterator>
+MachOObjectFile::exports(ArrayRef<uint8_t> Trie) {
+ ExportEntry Start(Trie);
+ if (Trie.size() == 0)
+ Start.moveToEnd();
+ else
+ Start.moveToFirst();
+
+ ExportEntry Finish(Trie);
+ Finish.moveToEnd();
+
+ return iterator_range<export_iterator>(export_iterator(Start),
+ export_iterator(Finish));
+}
+
+iterator_range<export_iterator> MachOObjectFile::exports() const {
+ return exports(getDyldInfoExportsTrie());
+}
+
+
+MachORebaseEntry::MachORebaseEntry(ArrayRef<uint8_t> Bytes, bool is64Bit)
+ : Opcodes(Bytes), Ptr(Bytes.begin()), SegmentOffset(0), SegmentIndex(0),
+ RemainingLoopCount(0), AdvanceAmount(0), RebaseType(0),
+ PointerSize(is64Bit ? 8 : 4), Malformed(false), Done(false) {}
+
+void MachORebaseEntry::moveToFirst() {
+ Ptr = Opcodes.begin();
+ moveNext();
+}
+
+void MachORebaseEntry::moveToEnd() {
+ Ptr = Opcodes.end();
+ RemainingLoopCount = 0;
+ Done = true;
+}
+
+void MachORebaseEntry::moveNext() {
+ // If in the middle of some loop, move to next rebasing in loop.
+ SegmentOffset += AdvanceAmount;
+ if (RemainingLoopCount) {
+ --RemainingLoopCount;
+ return;
+ }
+ if (Ptr == Opcodes.end()) {
+ Done = true;
+ return;
+ }
+ bool More = true;
+ while (More && !Malformed) {
+ // Parse next opcode and set up next loop.
+ uint8_t Byte = *Ptr++;
+ uint8_t ImmValue = Byte & MachO::REBASE_IMMEDIATE_MASK;
+ uint8_t Opcode = Byte & MachO::REBASE_OPCODE_MASK;
+ switch (Opcode) {
+ case MachO::REBASE_OPCODE_DONE:
+ More = false;
+ Done = true;
+ moveToEnd();
+ DEBUG_WITH_TYPE("mach-o-rebase", llvm::dbgs() << "REBASE_OPCODE_DONE\n");
+ break;
+ case MachO::REBASE_OPCODE_SET_TYPE_IMM:
+ RebaseType = ImmValue;
+ DEBUG_WITH_TYPE(
+ "mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_SET_TYPE_IMM: "
+ << "RebaseType=" << (int) RebaseType << "\n");
+ break;
+ case MachO::REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
+ SegmentIndex = ImmValue;
+ SegmentOffset = readULEB128();
+ DEBUG_WITH_TYPE(
+ "mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: "
+ << "SegmentIndex=" << SegmentIndex << ", "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << "\n");
+ break;
+ case MachO::REBASE_OPCODE_ADD_ADDR_ULEB:
+ SegmentOffset += readULEB128();
+ DEBUG_WITH_TYPE("mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_ADD_ADDR_ULEB: "
+ << format("SegmentOffset=0x%06X",
+ SegmentOffset) << "\n");
+ break;
+ case MachO::REBASE_OPCODE_ADD_ADDR_IMM_SCALED:
+ SegmentOffset += ImmValue * PointerSize;
+ DEBUG_WITH_TYPE("mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_ADD_ADDR_IMM_SCALED: "
+ << format("SegmentOffset=0x%06X",
+ SegmentOffset) << "\n");
+ break;
+ case MachO::REBASE_OPCODE_DO_REBASE_IMM_TIMES:
+ AdvanceAmount = PointerSize;
+ RemainingLoopCount = ImmValue - 1;
+ DEBUG_WITH_TYPE(
+ "mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_DO_REBASE_IMM_TIMES: "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << ", AdvanceAmount=" << AdvanceAmount
+ << ", RemainingLoopCount=" << RemainingLoopCount
+ << "\n");
+ return;
+ case MachO::REBASE_OPCODE_DO_REBASE_ULEB_TIMES:
+ AdvanceAmount = PointerSize;
+ RemainingLoopCount = readULEB128() - 1;
+ DEBUG_WITH_TYPE(
+ "mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_DO_REBASE_ULEB_TIMES: "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << ", AdvanceAmount=" << AdvanceAmount
+ << ", RemainingLoopCount=" << RemainingLoopCount
+ << "\n");
+ return;
+ case MachO::REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB:
+ AdvanceAmount = readULEB128() + PointerSize;
+ RemainingLoopCount = 0;
+ DEBUG_WITH_TYPE(
+ "mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB: "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << ", AdvanceAmount=" << AdvanceAmount
+ << ", RemainingLoopCount=" << RemainingLoopCount
+ << "\n");
+ return;
+ case MachO::REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB:
+ RemainingLoopCount = readULEB128() - 1;
+ AdvanceAmount = readULEB128() + PointerSize;
+ DEBUG_WITH_TYPE(
+ "mach-o-rebase",
+ llvm::dbgs() << "REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB: "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << ", AdvanceAmount=" << AdvanceAmount
+ << ", RemainingLoopCount=" << RemainingLoopCount
+ << "\n");
+ return;
+ default:
+ Malformed = true;
+ }
+ }
+}
+
+uint64_t MachORebaseEntry::readULEB128() {
+ unsigned Count;
+ uint64_t Result = decodeULEB128(Ptr, &Count);
+ Ptr += Count;
+ if (Ptr > Opcodes.end()) {
+ Ptr = Opcodes.end();
+ Malformed = true;
+ }
+ return Result;
+}
+
+uint32_t MachORebaseEntry::segmentIndex() const { return SegmentIndex; }
+
+uint64_t MachORebaseEntry::segmentOffset() const { return SegmentOffset; }
+
+StringRef MachORebaseEntry::typeName() const {
+ switch (RebaseType) {
+ case MachO::REBASE_TYPE_POINTER:
+ return "pointer";
+ case MachO::REBASE_TYPE_TEXT_ABSOLUTE32:
+ return "text abs32";
+ case MachO::REBASE_TYPE_TEXT_PCREL32:
+ return "text rel32";
+ }
+ return "unknown";
+}
+
+bool MachORebaseEntry::operator==(const MachORebaseEntry &Other) const {
+ assert(Opcodes == Other.Opcodes && "compare iterators of different files");
+ return (Ptr == Other.Ptr) &&
+ (RemainingLoopCount == Other.RemainingLoopCount) &&
+ (Done == Other.Done);
+}
+
+iterator_range<rebase_iterator>
+MachOObjectFile::rebaseTable(ArrayRef<uint8_t> Opcodes, bool is64) {
+ MachORebaseEntry Start(Opcodes, is64);
+ Start.moveToFirst();
+
+ MachORebaseEntry Finish(Opcodes, is64);
+ Finish.moveToEnd();
+
+ return iterator_range<rebase_iterator>(rebase_iterator(Start),
+ rebase_iterator(Finish));
+}
+
+iterator_range<rebase_iterator> MachOObjectFile::rebaseTable() const {
+ return rebaseTable(getDyldInfoRebaseOpcodes(), is64Bit());
+}
+
+
+MachOBindEntry::MachOBindEntry(ArrayRef<uint8_t> Bytes, bool is64Bit,
+ Kind BK)
+ : Opcodes(Bytes), Ptr(Bytes.begin()), SegmentOffset(0), SegmentIndex(0),
+ Ordinal(0), Flags(0), Addend(0), RemainingLoopCount(0), AdvanceAmount(0),
+ BindType(0), PointerSize(is64Bit ? 8 : 4),
+ TableKind(BK), Malformed(false), Done(false) {}
+
+void MachOBindEntry::moveToFirst() {
+ Ptr = Opcodes.begin();
+ moveNext();
+}
+
+void MachOBindEntry::moveToEnd() {
+ Ptr = Opcodes.end();
+ RemainingLoopCount = 0;
+ Done = true;
+}
+
+void MachOBindEntry::moveNext() {
+ // If in the middle of some loop, move to next binding in loop.
+ SegmentOffset += AdvanceAmount;
+ if (RemainingLoopCount) {
+ --RemainingLoopCount;
+ return;
+ }
+ if (Ptr == Opcodes.end()) {
+ Done = true;
+ return;
+ }
+ bool More = true;
+ while (More && !Malformed) {
+ // Parse next opcode and set up next loop.
+ uint8_t Byte = *Ptr++;
+ uint8_t ImmValue = Byte & MachO::BIND_IMMEDIATE_MASK;
+ uint8_t Opcode = Byte & MachO::BIND_OPCODE_MASK;
+ int8_t SignExtended;
+ const uint8_t *SymStart;
+ switch (Opcode) {
+ case MachO::BIND_OPCODE_DONE:
+ if (TableKind == Kind::Lazy) {
+ // Lazying bindings have a DONE opcode between entries. Need to ignore
+ // it to advance to next entry. But need not if this is last entry.
+ bool NotLastEntry = false;
+ for (const uint8_t *P = Ptr; P < Opcodes.end(); ++P) {
+ if (*P) {
+ NotLastEntry = true;
+ }
+ }
+ if (NotLastEntry)
+ break;
+ }
+ More = false;
+ Done = true;
+ moveToEnd();
+ DEBUG_WITH_TYPE("mach-o-bind", llvm::dbgs() << "BIND_OPCODE_DONE\n");
+ break;
+ case MachO::BIND_OPCODE_SET_DYLIB_ORDINAL_IMM:
+ Ordinal = ImmValue;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_DYLIB_ORDINAL_IMM: "
+ << "Ordinal=" << Ordinal << "\n");
+ break;
+ case MachO::BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB:
+ Ordinal = readULEB128();
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB: "
+ << "Ordinal=" << Ordinal << "\n");
+ break;
+ case MachO::BIND_OPCODE_SET_DYLIB_SPECIAL_IMM:
+ if (ImmValue) {
+ SignExtended = MachO::BIND_OPCODE_MASK | ImmValue;
+ Ordinal = SignExtended;
+ } else
+ Ordinal = 0;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_DYLIB_SPECIAL_IMM: "
+ << "Ordinal=" << Ordinal << "\n");
+ break;
+ case MachO::BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM:
+ Flags = ImmValue;
+ SymStart = Ptr;
+ while (*Ptr) {
+ ++Ptr;
+ }
+ SymbolName = StringRef(reinterpret_cast<const char*>(SymStart),
+ Ptr-SymStart);
+ ++Ptr;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM: "
+ << "SymbolName=" << SymbolName << "\n");
+ if (TableKind == Kind::Weak) {
+ if (ImmValue & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
+ return;
+ }
+ break;
+ case MachO::BIND_OPCODE_SET_TYPE_IMM:
+ BindType = ImmValue;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_TYPE_IMM: "
+ << "BindType=" << (int)BindType << "\n");
+ break;
+ case MachO::BIND_OPCODE_SET_ADDEND_SLEB:
+ Addend = readSLEB128();
+ if (TableKind == Kind::Lazy)
+ Malformed = true;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_ADDEND_SLEB: "
+ << "Addend=" << Addend << "\n");
+ break;
+ case MachO::BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
+ SegmentIndex = ImmValue;
+ SegmentOffset = readULEB128();
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: "
+ << "SegmentIndex=" << SegmentIndex << ", "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << "\n");
+ break;
+ case MachO::BIND_OPCODE_ADD_ADDR_ULEB:
+ SegmentOffset += readULEB128();
+ DEBUG_WITH_TYPE("mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_ADD_ADDR_ULEB: "
+ << format("SegmentOffset=0x%06X",
+ SegmentOffset) << "\n");
+ break;
+ case MachO::BIND_OPCODE_DO_BIND:
+ AdvanceAmount = PointerSize;
+ RemainingLoopCount = 0;
+ DEBUG_WITH_TYPE("mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_DO_BIND: "
+ << format("SegmentOffset=0x%06X",
+ SegmentOffset) << "\n");
+ return;
+ case MachO::BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
+ AdvanceAmount = readULEB128() + PointerSize;
+ RemainingLoopCount = 0;
+ if (TableKind == Kind::Lazy)
+ Malformed = true;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << ", AdvanceAmount=" << AdvanceAmount
+ << ", RemainingLoopCount=" << RemainingLoopCount
+ << "\n");
+ return;
+ case MachO::BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
+ AdvanceAmount = ImmValue * PointerSize + PointerSize;
+ RemainingLoopCount = 0;
+ if (TableKind == Kind::Lazy)
+ Malformed = true;
+ DEBUG_WITH_TYPE("mach-o-bind",
+ llvm::dbgs()
+ << "BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: "
+ << format("SegmentOffset=0x%06X",
+ SegmentOffset) << "\n");
+ return;
+ case MachO::BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
+ RemainingLoopCount = readULEB128() - 1;
+ AdvanceAmount = readULEB128() + PointerSize;
+ if (TableKind == Kind::Lazy)
+ Malformed = true;
+ DEBUG_WITH_TYPE(
+ "mach-o-bind",
+ llvm::dbgs() << "BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: "
+ << format("SegmentOffset=0x%06X", SegmentOffset)
+ << ", AdvanceAmount=" << AdvanceAmount
+ << ", RemainingLoopCount=" << RemainingLoopCount
+ << "\n");
+ return;
+ default:
+ Malformed = true;
+ }
+ }
+}
+
+uint64_t MachOBindEntry::readULEB128() {
+ unsigned Count;
+ uint64_t Result = decodeULEB128(Ptr, &Count);
+ Ptr += Count;
+ if (Ptr > Opcodes.end()) {
+ Ptr = Opcodes.end();
+ Malformed = true;
+ }
+ return Result;
+}
+
+int64_t MachOBindEntry::readSLEB128() {
+ unsigned Count;
+ int64_t Result = decodeSLEB128(Ptr, &Count);
+ Ptr += Count;
+ if (Ptr > Opcodes.end()) {
+ Ptr = Opcodes.end();
+ Malformed = true;
+ }
+ return Result;
+}
+
+
+uint32_t MachOBindEntry::segmentIndex() const { return SegmentIndex; }
+
+uint64_t MachOBindEntry::segmentOffset() const { return SegmentOffset; }
+
+StringRef MachOBindEntry::typeName() const {
+ switch (BindType) {
+ case MachO::BIND_TYPE_POINTER:
+ return "pointer";
+ case MachO::BIND_TYPE_TEXT_ABSOLUTE32:
+ return "text abs32";
+ case MachO::BIND_TYPE_TEXT_PCREL32:
+ return "text rel32";
+ }
+ return "unknown";
+}
+
+StringRef MachOBindEntry::symbolName() const { return SymbolName; }
+
+int64_t MachOBindEntry::addend() const { return Addend; }
+
+uint32_t MachOBindEntry::flags() const { return Flags; }
+
+int MachOBindEntry::ordinal() const { return Ordinal; }
+
+bool MachOBindEntry::operator==(const MachOBindEntry &Other) const {
+ assert(Opcodes == Other.Opcodes && "compare iterators of different files");
+ return (Ptr == Other.Ptr) &&
+ (RemainingLoopCount == Other.RemainingLoopCount) &&
+ (Done == Other.Done);
+}
+
+iterator_range<bind_iterator>
+MachOObjectFile::bindTable(ArrayRef<uint8_t> Opcodes, bool is64,
+ MachOBindEntry::Kind BKind) {
+ MachOBindEntry Start(Opcodes, is64, BKind);
+ Start.moveToFirst();
+
+ MachOBindEntry Finish(Opcodes, is64, BKind);
+ Finish.moveToEnd();
+
+ return iterator_range<bind_iterator>(bind_iterator(Start),
+ bind_iterator(Finish));
+}
+
+iterator_range<bind_iterator> MachOObjectFile::bindTable() const {
+ return bindTable(getDyldInfoBindOpcodes(), is64Bit(),
+ MachOBindEntry::Kind::Regular);
+}
+
+iterator_range<bind_iterator> MachOObjectFile::lazyBindTable() const {
+ return bindTable(getDyldInfoLazyBindOpcodes(), is64Bit(),
+ MachOBindEntry::Kind::Lazy);
+}
+
+iterator_range<bind_iterator> MachOObjectFile::weakBindTable() const {
+ return bindTable(getDyldInfoWeakBindOpcodes(), is64Bit(),
+ MachOBindEntry::Kind::Weak);
+}
+
StringRef
MachOObjectFile::getSectionFinalSegmentName(DataRefImpl Sec) const {
ArrayRef<char> Raw = getSectionRawFinalSegmentName(Sec);
@@ -1467,14 +2107,14 @@ ArrayRef<char>
MachOObjectFile::getSectionRawName(DataRefImpl Sec) const {
const section_base *Base =
reinterpret_cast<const section_base *>(Sections[Sec.d.a]);
- return ArrayRef<char>(Base->sectname);
+ return makeArrayRef(Base->sectname);
}
ArrayRef<char>
MachOObjectFile::getSectionRawFinalSegmentName(DataRefImpl Sec) const {
const section_base *Base =
reinterpret_cast<const section_base *>(Sections[Sec.d.a]);
- return ArrayRef<char>(Base->segname);
+ return makeArrayRef(Base->segname);
}
bool
@@ -1509,6 +2149,11 @@ uint32_t MachOObjectFile::getScatteredRelocationValue(
return RE.r_word1;
}
+uint32_t MachOObjectFile::getScatteredRelocationType(
+ const MachO::any_relocation_info &RE) const {
+ return (RE.r_word0 >> 24) & 0xf;
+}
+
unsigned MachOObjectFile::getAnyRelocationAddress(
const MachO::any_relocation_info &RE) const {
if (isRelocationScattered(RE))
@@ -1615,9 +2260,9 @@ MachOObjectFile::getSegment64LoadCommand(const LoadCommandInfo &L) const {
return getStruct<MachO::segment_command_64>(this, L.Ptr);
}
-MachO::linker_options_command
-MachOObjectFile::getLinkerOptionsLoadCommand(const LoadCommandInfo &L) const {
- return getStruct<MachO::linker_options_command>(this, L.Ptr);
+MachO::linker_option_command
+MachOObjectFile::getLinkerOptionLoadCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::linker_option_command>(this, L.Ptr);
}
MachO::version_min_command
@@ -1630,6 +2275,80 @@ MachOObjectFile::getDylibIDLoadCommand(const LoadCommandInfo &L) const {
return getStruct<MachO::dylib_command>(this, L.Ptr);
}
+MachO::dyld_info_command
+MachOObjectFile::getDyldInfoLoadCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::dyld_info_command>(this, L.Ptr);
+}
+
+MachO::dylinker_command
+MachOObjectFile::getDylinkerCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::dylinker_command>(this, L.Ptr);
+}
+
+MachO::uuid_command
+MachOObjectFile::getUuidCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::uuid_command>(this, L.Ptr);
+}
+
+MachO::rpath_command
+MachOObjectFile::getRpathCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::rpath_command>(this, L.Ptr);
+}
+
+MachO::source_version_command
+MachOObjectFile::getSourceVersionCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::source_version_command>(this, L.Ptr);
+}
+
+MachO::entry_point_command
+MachOObjectFile::getEntryPointCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::entry_point_command>(this, L.Ptr);
+}
+
+MachO::encryption_info_command
+MachOObjectFile::getEncryptionInfoCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::encryption_info_command>(this, L.Ptr);
+}
+
+MachO::encryption_info_command_64
+MachOObjectFile::getEncryptionInfoCommand64(const LoadCommandInfo &L) const {
+ return getStruct<MachO::encryption_info_command_64>(this, L.Ptr);
+}
+
+MachO::sub_framework_command
+MachOObjectFile::getSubFrameworkCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::sub_framework_command>(this, L.Ptr);
+}
+
+MachO::sub_umbrella_command
+MachOObjectFile::getSubUmbrellaCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::sub_umbrella_command>(this, L.Ptr);
+}
+
+MachO::sub_library_command
+MachOObjectFile::getSubLibraryCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::sub_library_command>(this, L.Ptr);
+}
+
+MachO::sub_client_command
+MachOObjectFile::getSubClientCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::sub_client_command>(this, L.Ptr);
+}
+
+MachO::routines_command
+MachOObjectFile::getRoutinesCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::routines_command>(this, L.Ptr);
+}
+
+MachO::routines_command_64
+MachOObjectFile::getRoutinesCommand64(const LoadCommandInfo &L) const {
+ return getStruct<MachO::routines_command_64>(this, L.Ptr);
+}
+
+MachO::thread_command
+MachOObjectFile::getThreadCommand(const LoadCommandInfo &L) const {
+ return getStruct<MachO::thread_command>(this, L.Ptr);
+}
MachO::any_relocation_info
MachOObjectFile::getRelocation(DataRefImpl Rel) const {
@@ -1679,11 +2398,47 @@ MachOObjectFile::getDataInCodeTableEntry(uint32_t DataOffset,
}
MachO::symtab_command MachOObjectFile::getSymtabLoadCommand() const {
- return getStruct<MachO::symtab_command>(this, SymtabLoadCmd);
+ if (SymtabLoadCmd)
+ return getStruct<MachO::symtab_command>(this, SymtabLoadCmd);
+
+ // If there is no SymtabLoadCmd return a load command with zero'ed fields.
+ MachO::symtab_command Cmd;
+ Cmd.cmd = MachO::LC_SYMTAB;
+ Cmd.cmdsize = sizeof(MachO::symtab_command);
+ Cmd.symoff = 0;
+ Cmd.nsyms = 0;
+ Cmd.stroff = 0;
+ Cmd.strsize = 0;
+ return Cmd;
}
MachO::dysymtab_command MachOObjectFile::getDysymtabLoadCommand() const {
- return getStruct<MachO::dysymtab_command>(this, DysymtabLoadCmd);
+ if (DysymtabLoadCmd)
+ return getStruct<MachO::dysymtab_command>(this, DysymtabLoadCmd);
+
+ // If there is no DysymtabLoadCmd return a load command with zero'ed fields.
+ MachO::dysymtab_command Cmd;
+ Cmd.cmd = MachO::LC_DYSYMTAB;
+ Cmd.cmdsize = sizeof(MachO::dysymtab_command);
+ Cmd.ilocalsym = 0;
+ Cmd.nlocalsym = 0;
+ Cmd.iextdefsym = 0;
+ Cmd.nextdefsym = 0;
+ Cmd.iundefsym = 0;
+ Cmd.nundefsym = 0;
+ Cmd.tocoff = 0;
+ Cmd.ntoc = 0;
+ Cmd.modtaboff = 0;
+ Cmd.nmodtab = 0;
+ Cmd.extrefsymoff = 0;
+ Cmd.nextrefsyms = 0;
+ Cmd.indirectsymoff = 0;
+ Cmd.nindirectsyms = 0;
+ Cmd.extreloff = 0;
+ Cmd.nextrel = 0;
+ Cmd.locreloff = 0;
+ Cmd.nlocrel = 0;
+ return Cmd;
}
MachO::linkedit_data_command
@@ -1700,6 +2455,69 @@ MachOObjectFile::getDataInCodeLoadCommand() const {
return Cmd;
}
+ArrayRef<uint8_t> MachOObjectFile::getDyldInfoRebaseOpcodes() const {
+ if (!DyldInfoLoadCmd)
+ return ArrayRef<uint8_t>();
+
+ MachO::dyld_info_command DyldInfo
+ = getStruct<MachO::dyld_info_command>(this, DyldInfoLoadCmd);
+ const uint8_t *Ptr = reinterpret_cast<const uint8_t*>(
+ getPtr(this, DyldInfo.rebase_off));
+ return ArrayRef<uint8_t>(Ptr, DyldInfo.rebase_size);
+}
+
+ArrayRef<uint8_t> MachOObjectFile::getDyldInfoBindOpcodes() const {
+ if (!DyldInfoLoadCmd)
+ return ArrayRef<uint8_t>();
+
+ MachO::dyld_info_command DyldInfo
+ = getStruct<MachO::dyld_info_command>(this, DyldInfoLoadCmd);
+ const uint8_t *Ptr = reinterpret_cast<const uint8_t*>(
+ getPtr(this, DyldInfo.bind_off));
+ return ArrayRef<uint8_t>(Ptr, DyldInfo.bind_size);
+}
+
+ArrayRef<uint8_t> MachOObjectFile::getDyldInfoWeakBindOpcodes() const {
+ if (!DyldInfoLoadCmd)
+ return ArrayRef<uint8_t>();
+
+ MachO::dyld_info_command DyldInfo
+ = getStruct<MachO::dyld_info_command>(this, DyldInfoLoadCmd);
+ const uint8_t *Ptr = reinterpret_cast<const uint8_t*>(
+ getPtr(this, DyldInfo.weak_bind_off));
+ return ArrayRef<uint8_t>(Ptr, DyldInfo.weak_bind_size);
+}
+
+ArrayRef<uint8_t> MachOObjectFile::getDyldInfoLazyBindOpcodes() const {
+ if (!DyldInfoLoadCmd)
+ return ArrayRef<uint8_t>();
+
+ MachO::dyld_info_command DyldInfo
+ = getStruct<MachO::dyld_info_command>(this, DyldInfoLoadCmd);
+ const uint8_t *Ptr = reinterpret_cast<const uint8_t*>(
+ getPtr(this, DyldInfo.lazy_bind_off));
+ return ArrayRef<uint8_t>(Ptr, DyldInfo.lazy_bind_size);
+}
+
+ArrayRef<uint8_t> MachOObjectFile::getDyldInfoExportsTrie() const {
+ if (!DyldInfoLoadCmd)
+ return ArrayRef<uint8_t>();
+
+ MachO::dyld_info_command DyldInfo
+ = getStruct<MachO::dyld_info_command>(this, DyldInfoLoadCmd);
+ const uint8_t *Ptr = reinterpret_cast<const uint8_t*>(
+ getPtr(this, DyldInfo.export_off));
+ return ArrayRef<uint8_t>(Ptr, DyldInfo.export_size);
+}
+
+ArrayRef<uint8_t> MachOObjectFile::getUuid() const {
+ if (!UuidLoadCmd)
+ return ArrayRef<uint8_t>();
+ // Returning a pointer is fine as uuid doesn't need endian swapping.
+ const char *Ptr = UuidLoadCmd + offsetof(MachO::uuid_command, uuid);
+ return ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Ptr), 16);
+}
+
StringRef MachOObjectFile::getStringTableData() const {
MachO::symtab_command S = getSymtabLoadCommand();
return getData().substr(S.stroff, S.strsize);
@@ -1722,24 +2540,28 @@ void MachOObjectFile::ReadULEB128s(uint64_t Index,
}
}
-ErrorOr<ObjectFile *>
-ObjectFile::createMachOObjectFile(std::unique_ptr<MemoryBuffer> &Buffer) {
- StringRef Magic = Buffer->getBuffer().slice(0, 4);
+bool MachOObjectFile::isRelocatableObject() const {
+ return getHeader().filetype == MachO::MH_OBJECT;
+}
+
+ErrorOr<std::unique_ptr<MachOObjectFile>>
+ObjectFile::createMachOObjectFile(MemoryBufferRef Buffer) {
+ StringRef Magic = Buffer.getBuffer().slice(0, 4);
std::error_code EC;
std::unique_ptr<MachOObjectFile> Ret;
if (Magic == "\xFE\xED\xFA\xCE")
- Ret.reset(new MachOObjectFile(std::move(Buffer), false, false, EC));
+ Ret.reset(new MachOObjectFile(Buffer, false, false, EC));
else if (Magic == "\xCE\xFA\xED\xFE")
- Ret.reset(new MachOObjectFile(std::move(Buffer), true, false, EC));
+ Ret.reset(new MachOObjectFile(Buffer, true, false, EC));
else if (Magic == "\xFE\xED\xFA\xCF")
- Ret.reset(new MachOObjectFile(std::move(Buffer), false, true, EC));
+ Ret.reset(new MachOObjectFile(Buffer, false, true, EC));
else if (Magic == "\xCF\xFA\xED\xFE")
- Ret.reset(new MachOObjectFile(std::move(Buffer), true, true, EC));
+ Ret.reset(new MachOObjectFile(Buffer, true, true, EC));
else
return object_error::parse_failed;
if (EC)
return EC;
- return Ret.release();
+ return std::move(Ret);
}
diff --git a/contrib/llvm/lib/Object/MachOUniversal.cpp b/contrib/llvm/lib/Object/MachOUniversal.cpp
index 4ba5d96..a01c838 100644
--- a/contrib/llvm/lib/Object/MachOUniversal.cpp
+++ b/contrib/llvm/lib/Object/MachOUniversal.cpp
@@ -12,9 +12,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Object/MachOUniversal.h"
+#include "llvm/Object/Archive.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
-#include "llvm/Object/Archive.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
@@ -67,53 +67,46 @@ MachOUniversalBinary::ObjectForArch::ObjectForArch(
}
}
-ErrorOr<std::unique_ptr<ObjectFile>>
+ErrorOr<std::unique_ptr<MachOObjectFile>>
MachOUniversalBinary::ObjectForArch::getAsObjectFile() const {
if (Parent) {
StringRef ParentData = Parent->getData();
StringRef ObjectData = ParentData.substr(Header.offset, Header.size);
- std::string ObjectName = Parent->getFileName().str();
- std::unique_ptr<MemoryBuffer> ObjBuffer(
- MemoryBuffer::getMemBuffer(ObjectData, ObjectName, false));
+ StringRef ObjectName = Parent->getFileName();
+ MemoryBufferRef ObjBuffer(ObjectData, ObjectName);
return ObjectFile::createMachOObjectFile(ObjBuffer);
}
return object_error::parse_failed;
}
-std::error_code MachOUniversalBinary::ObjectForArch::getAsArchive(
- std::unique_ptr<Archive> &Result) const {
- if (Parent) {
- StringRef ParentData = Parent->getData();
- StringRef ObjectData = ParentData.substr(Header.offset, Header.size);
- std::string ObjectName = Parent->getFileName().str();
- std::unique_ptr<MemoryBuffer> ObjBuffer(
- MemoryBuffer::getMemBuffer(ObjectData, ObjectName, false));
- ErrorOr<Archive *> Obj = Archive::create(std::move(ObjBuffer));
- if (std::error_code EC = Obj.getError())
- return EC;
- Result.reset(Obj.get());
- return object_error::success;
- }
- return object_error::parse_failed;
+ErrorOr<std::unique_ptr<Archive>>
+MachOUniversalBinary::ObjectForArch::getAsArchive() const {
+ if (!Parent)
+ return object_error::parse_failed;
+
+ StringRef ParentData = Parent->getData();
+ StringRef ObjectData = ParentData.substr(Header.offset, Header.size);
+ StringRef ObjectName = Parent->getFileName();
+ MemoryBufferRef ObjBuffer(ObjectData, ObjectName);
+ return Archive::create(ObjBuffer);
}
void MachOUniversalBinary::anchor() { }
-ErrorOr<MachOUniversalBinary *>
-MachOUniversalBinary::create(std::unique_ptr<MemoryBuffer> Source) {
+ErrorOr<std::unique_ptr<MachOUniversalBinary>>
+MachOUniversalBinary::create(MemoryBufferRef Source) {
std::error_code EC;
std::unique_ptr<MachOUniversalBinary> Ret(
- new MachOUniversalBinary(std::move(Source), EC));
+ new MachOUniversalBinary(Source, EC));
if (EC)
return EC;
- return Ret.release();
+ return std::move(Ret);
}
-MachOUniversalBinary::MachOUniversalBinary(std::unique_ptr<MemoryBuffer> Source,
+MachOUniversalBinary::MachOUniversalBinary(MemoryBufferRef Source,
std::error_code &ec)
- : Binary(Binary::ID_MachOUniversalBinary, std::move(Source)),
- NumberOfObjects(0) {
- if (Data->getBufferSize() < sizeof(MachO::fat_header)) {
+ : Binary(Binary::ID_MachOUniversalBinary, Source), NumberOfObjects(0) {
+ if (Data.getBufferSize() < sizeof(MachO::fat_header)) {
ec = object_error::invalid_file_type;
return;
}
@@ -142,7 +135,7 @@ static bool getCTMForArch(Triple::ArchType Arch, MachO::CPUType &CTM) {
}
}
-ErrorOr<std::unique_ptr<ObjectFile>>
+ErrorOr<std::unique_ptr<MachOObjectFile>>
MachOUniversalBinary::getObjectForArch(Triple::ArchType Arch) const {
MachO::CPUType CTM;
if (!getCTMForArch(Arch, CTM))
diff --git a/contrib/llvm/lib/Object/Object.cpp b/contrib/llvm/lib/Object/Object.cpp
index 567d87f..84a5df0 100644
--- a/contrib/llvm/lib/Object/Object.cpp
+++ b/contrib/llvm/lib/Object/Object.cpp
@@ -19,12 +19,13 @@
using namespace llvm;
using namespace object;
-inline ObjectFile *unwrap(LLVMObjectFileRef OF) {
- return reinterpret_cast<ObjectFile*>(OF);
+inline OwningBinary<ObjectFile> *unwrap(LLVMObjectFileRef OF) {
+ return reinterpret_cast<OwningBinary<ObjectFile> *>(OF);
}
-inline LLVMObjectFileRef wrap(const ObjectFile *OF) {
- return reinterpret_cast<LLVMObjectFileRef>(const_cast<ObjectFile*>(OF));
+inline LLVMObjectFileRef wrap(const OwningBinary<ObjectFile> *OF) {
+ return reinterpret_cast<LLVMObjectFileRef>(
+ const_cast<OwningBinary<ObjectFile> *>(OF));
}
inline section_iterator *unwrap(LLVMSectionIteratorRef SI) {
@@ -60,10 +61,14 @@ wrap(const relocation_iterator *SI) {
// ObjectFile creation
LLVMObjectFileRef LLVMCreateObjectFile(LLVMMemoryBufferRef MemBuf) {
std::unique_ptr<MemoryBuffer> Buf(unwrap(MemBuf));
- ErrorOr<ObjectFile *> ObjOrErr(ObjectFile::createObjectFile(Buf));
- Buf.release();
- ObjectFile *Obj = ObjOrErr ? ObjOrErr.get() : nullptr;
- return wrap(Obj);
+ ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr(
+ ObjectFile::createObjectFile(Buf->getMemBufferRef()));
+ std::unique_ptr<ObjectFile> Obj;
+ if (!ObjOrErr)
+ return nullptr;
+
+ auto *Ret = new OwningBinary<ObjectFile>(std::move(ObjOrErr.get()), std::move(Buf));
+ return wrap(Ret);
}
void LLVMDisposeObjectFile(LLVMObjectFileRef ObjectFile) {
@@ -71,8 +76,9 @@ void LLVMDisposeObjectFile(LLVMObjectFileRef ObjectFile) {
}
// ObjectFile Section iterators
-LLVMSectionIteratorRef LLVMGetSections(LLVMObjectFileRef ObjectFile) {
- section_iterator SI = unwrap(ObjectFile)->section_begin();
+LLVMSectionIteratorRef LLVMGetSections(LLVMObjectFileRef OF) {
+ OwningBinary<ObjectFile> *OB = unwrap(OF);
+ section_iterator SI = OB->getBinary()->section_begin();
return wrap(new section_iterator(SI));
}
@@ -80,9 +86,10 @@ void LLVMDisposeSectionIterator(LLVMSectionIteratorRef SI) {
delete unwrap(SI);
}
-LLVMBool LLVMIsSectionIteratorAtEnd(LLVMObjectFileRef ObjectFile,
- LLVMSectionIteratorRef SI) {
- return (*unwrap(SI) == unwrap(ObjectFile)->section_end()) ? 1 : 0;
+LLVMBool LLVMIsSectionIteratorAtEnd(LLVMObjectFileRef OF,
+ LLVMSectionIteratorRef SI) {
+ OwningBinary<ObjectFile> *OB = unwrap(OF);
+ return (*unwrap(SI) == OB->getBinary()->section_end()) ? 1 : 0;
}
void LLVMMoveToNextSection(LLVMSectionIteratorRef SI) {
@@ -96,8 +103,9 @@ void LLVMMoveToContainingSection(LLVMSectionIteratorRef Sect,
}
// ObjectFile Symbol iterators
-LLVMSymbolIteratorRef LLVMGetSymbols(LLVMObjectFileRef ObjectFile) {
- symbol_iterator SI = unwrap(ObjectFile)->symbol_begin();
+LLVMSymbolIteratorRef LLVMGetSymbols(LLVMObjectFileRef OF) {
+ OwningBinary<ObjectFile> *OB = unwrap(OF);
+ symbol_iterator SI = OB->getBinary()->symbol_begin();
return wrap(new symbol_iterator(SI));
}
@@ -105,9 +113,10 @@ void LLVMDisposeSymbolIterator(LLVMSymbolIteratorRef SI) {
delete unwrap(SI);
}
-LLVMBool LLVMIsSymbolIteratorAtEnd(LLVMObjectFileRef ObjectFile,
- LLVMSymbolIteratorRef SI) {
- return (*unwrap(SI) == unwrap(ObjectFile)->symbol_end()) ? 1 : 0;
+LLVMBool LLVMIsSymbolIteratorAtEnd(LLVMObjectFileRef OF,
+ LLVMSymbolIteratorRef SI) {
+ OwningBinary<ObjectFile> *OB = unwrap(OF);
+ return (*unwrap(SI) == OB->getBinary()->symbol_end()) ? 1 : 0;
}
void LLVMMoveToNextSymbol(LLVMSymbolIteratorRef SI) {
@@ -123,10 +132,7 @@ const char *LLVMGetSectionName(LLVMSectionIteratorRef SI) {
}
uint64_t LLVMGetSectionSize(LLVMSectionIteratorRef SI) {
- uint64_t ret;
- if (std::error_code ec = (*unwrap(SI))->getSize(ret))
- report_fatal_error(ec.message());
- return ret;
+ return (*unwrap(SI))->getSize();
}
const char *LLVMGetSectionContents(LLVMSectionIteratorRef SI) {
@@ -137,18 +143,12 @@ const char *LLVMGetSectionContents(LLVMSectionIteratorRef SI) {
}
uint64_t LLVMGetSectionAddress(LLVMSectionIteratorRef SI) {
- uint64_t ret;
- if (std::error_code ec = (*unwrap(SI))->getAddress(ret))
- report_fatal_error(ec.message());
- return ret;
+ return (*unwrap(SI))->getAddress();
}
LLVMBool LLVMGetSectionContainsSymbol(LLVMSectionIteratorRef SI,
LLVMSymbolIteratorRef Sym) {
- bool ret;
- if (std::error_code ec = (*unwrap(SI))->containsSymbol(**unwrap(Sym), ret))
- report_fatal_error(ec.message());
- return ret;
+ return (*unwrap(SI))->containsSymbol(**unwrap(Sym));
}
// Section Relocation iterators
diff --git a/contrib/llvm/lib/Object/ObjectFile.cpp b/contrib/llvm/lib/Object/ObjectFile.cpp
index f5488c6..fd78271 100644
--- a/contrib/llvm/lib/Object/ObjectFile.cpp
+++ b/contrib/llvm/lib/Object/ObjectFile.cpp
@@ -11,6 +11,8 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Object/COFF.h"
+#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
@@ -23,8 +25,8 @@ using namespace object;
void ObjectFile::anchor() { }
-ObjectFile::ObjectFile(unsigned int Type, std::unique_ptr<MemoryBuffer> Source)
- : SymbolicFile(Type, std::move(Source)) {}
+ObjectFile::ObjectFile(unsigned int Type, MemoryBufferRef Source)
+ : SymbolicFile(Type, Source) {}
std::error_code ObjectFile::printSymbolName(raw_ostream &OS,
DataRefImpl Symb) const {
@@ -45,11 +47,11 @@ section_iterator ObjectFile::getRelocatedSection(DataRefImpl Sec) const {
return section_iterator(SectionRef(Sec, this));
}
-ErrorOr<ObjectFile *>
-ObjectFile::createObjectFile(std::unique_ptr<MemoryBuffer> &Object,
- sys::fs::file_magic Type) {
+ErrorOr<std::unique_ptr<ObjectFile>>
+ObjectFile::createObjectFile(MemoryBufferRef Object, sys::fs::file_magic Type) {
+ StringRef Data = Object.getBuffer();
if (Type == sys::fs::file_magic::unknown)
- Type = sys::fs::identify_magic(Object->getBuffer());
+ Type = sys::fs::identify_magic(Data);
switch (Type) {
case sys::fs::file_magic::unknown:
@@ -58,6 +60,7 @@ ObjectFile::createObjectFile(std::unique_ptr<MemoryBuffer> &Object,
case sys::fs::file_magic::macho_universal_binary:
case sys::fs::file_magic::windows_resource:
return object_error::invalid_file_type;
+ case sys::fs::file_magic::elf:
case sys::fs::file_magic::elf_relocatable:
case sys::fs::file_magic::elf_executable:
case sys::fs::file_magic::elf_shared_object:
@@ -77,15 +80,24 @@ ObjectFile::createObjectFile(std::unique_ptr<MemoryBuffer> &Object,
case sys::fs::file_magic::coff_object:
case sys::fs::file_magic::coff_import_library:
case sys::fs::file_magic::pecoff_executable:
- return createCOFFObjectFile(std::move(Object));
+ return createCOFFObjectFile(Object);
}
llvm_unreachable("Unexpected Object File Type");
}
-ErrorOr<ObjectFile *> ObjectFile::createObjectFile(StringRef ObjectPath) {
+ErrorOr<OwningBinary<ObjectFile>>
+ObjectFile::createObjectFile(StringRef ObjectPath) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFile(ObjectPath);
if (std::error_code EC = FileOrErr.getError())
return EC;
- return createObjectFile(FileOrErr.get());
+ std::unique_ptr<MemoryBuffer> Buffer = std::move(FileOrErr.get());
+
+ ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
+ createObjectFile(Buffer->getMemBufferRef());
+ if (std::error_code EC = ObjOrErr.getError())
+ return EC;
+ std::unique_ptr<ObjectFile> Obj = std::move(ObjOrErr.get());
+
+ return OwningBinary<ObjectFile>(std::move(Obj), std::move(Buffer));
}
diff --git a/contrib/llvm/lib/Object/RecordStreamer.h b/contrib/llvm/lib/Object/RecordStreamer.h
index 10e70ef..7dacbdf 100644
--- a/contrib/llvm/lib/Object/RecordStreamer.h
+++ b/contrib/llvm/lib/Object/RecordStreamer.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_OBJECT_RECORD_STREAMER
-#define LLVM_OBJECT_RECORD_STREAMER
+#ifndef LLVM_LIB_OBJECT_RECORDSTREAMER_H
+#define LLVM_LIB_OBJECT_RECORDSTREAMER_H
#include "llvm/MC/MCStreamer.h"
diff --git a/contrib/llvm/lib/Object/SymbolicFile.cpp b/contrib/llvm/lib/Object/SymbolicFile.cpp
index 30cf1a0..de98a12 100644
--- a/contrib/llvm/lib/Object/SymbolicFile.cpp
+++ b/contrib/llvm/lib/Object/SymbolicFile.cpp
@@ -19,34 +19,31 @@
using namespace llvm;
using namespace object;
-SymbolicFile::SymbolicFile(unsigned int Type,
- std::unique_ptr<MemoryBuffer> Source)
- : Binary(Type, std::move(Source)) {}
+SymbolicFile::SymbolicFile(unsigned int Type, MemoryBufferRef Source)
+ : Binary(Type, Source) {}
SymbolicFile::~SymbolicFile() {}
-ErrorOr<SymbolicFile *>
-SymbolicFile::createSymbolicFile(std::unique_ptr<MemoryBuffer> &Object,
- sys::fs::file_magic Type,
- LLVMContext *Context) {
+ErrorOr<std::unique_ptr<SymbolicFile>> SymbolicFile::createSymbolicFile(
+ MemoryBufferRef Object, sys::fs::file_magic Type, LLVMContext *Context) {
+ StringRef Data = Object.getBuffer();
if (Type == sys::fs::file_magic::unknown)
- Type = sys::fs::identify_magic(Object->getBuffer());
+ Type = sys::fs::identify_magic(Data);
switch (Type) {
case sys::fs::file_magic::bitcode:
if (Context)
- return IRObjectFile::createIRObjectFile(std::move(Object), *Context);
+ return IRObjectFile::create(Object, *Context);
// Fallthrough
case sys::fs::file_magic::unknown:
case sys::fs::file_magic::archive:
case sys::fs::file_magic::macho_universal_binary:
case sys::fs::file_magic::windows_resource:
return object_error::invalid_file_type;
- case sys::fs::file_magic::elf_relocatable:
+ case sys::fs::file_magic::elf:
case sys::fs::file_magic::elf_executable:
case sys::fs::file_magic::elf_shared_object:
case sys::fs::file_magic::elf_core:
- case sys::fs::file_magic::macho_object:
case sys::fs::file_magic::macho_executable:
case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
case sys::fs::file_magic::macho_core:
@@ -56,10 +53,26 @@ SymbolicFile::createSymbolicFile(std::unique_ptr<MemoryBuffer> &Object,
case sys::fs::file_magic::macho_bundle:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
case sys::fs::file_magic::macho_dsym_companion:
- case sys::fs::file_magic::coff_object:
case sys::fs::file_magic::coff_import_library:
case sys::fs::file_magic::pecoff_executable:
return ObjectFile::createObjectFile(Object, Type);
+ case sys::fs::file_magic::elf_relocatable:
+ case sys::fs::file_magic::macho_object:
+ case sys::fs::file_magic::coff_object: {
+ ErrorOr<std::unique_ptr<ObjectFile>> Obj =
+ ObjectFile::createObjectFile(Object, Type);
+ if (!Obj || !Context)
+ return std::move(Obj);
+
+ ErrorOr<MemoryBufferRef> BCData =
+ IRObjectFile::findBitcodeInObject(*Obj->get());
+ if (!BCData)
+ return std::move(Obj);
+
+ return IRObjectFile::create(
+ MemoryBufferRef(BCData->getBuffer(), Object.getBufferIdentifier()),
+ *Context);
+ }
}
llvm_unreachable("Unexpected Binary File Type");
}
diff --git a/contrib/llvm/lib/Option/ArgList.cpp b/contrib/llvm/lib/Option/ArgList.cpp
index 5848bb1..b1a916d 100644
--- a/contrib/llvm/lib/Option/ArgList.cpp
+++ b/contrib/llvm/lib/Option/ArgList.cpp
@@ -8,8 +8,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Option/ArgList.h"
-#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/Option.h"
@@ -54,6 +54,15 @@ Arg *ArgList::getLastArgNoClaim(OptSpecifier Id) const {
return nullptr;
}
+Arg *ArgList::getLastArgNoClaim(OptSpecifier Id0, OptSpecifier Id1) const {
+ // FIXME: Make search efficient?
+ for (const_reverse_iterator it = rbegin(), ie = rend(); it != ie; ++it)
+ if ((*it)->getOption().matches(Id0) ||
+ (*it)->getOption().matches(Id1))
+ return *it;
+ return nullptr;
+}
+
Arg *ArgList::getLastArg(OptSpecifier Id) const {
Arg *Res = nullptr;
for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
diff --git a/contrib/llvm/lib/Option/OptTable.cpp b/contrib/llvm/lib/Option/OptTable.cpp
index 6842f4d..dca02c17 100644
--- a/contrib/llvm/lib/Option/OptTable.cpp
+++ b/contrib/llvm/lib/Option/OptTable.cpp
@@ -264,6 +264,11 @@ InputArgList *OptTable::ParseArgs(const char *const *ArgBegin,
MissingArgIndex = MissingArgCount = 0;
unsigned Index = 0, End = ArgEnd - ArgBegin;
while (Index < End) {
+ // Ingore nullptrs, they are response file's EOL markers
+ if (Args->getArgString(Index) == nullptr) {
+ ++Index;
+ continue;
+ }
// Ignore empty arguments (other things may still take them as arguments).
StringRef Str = Args->getArgString(Index);
if (Str == "") {
@@ -300,7 +305,18 @@ static std::string getOptionHelpName(const OptTable &Opts, OptSpecifier Id) {
llvm_unreachable("Invalid option with help text.");
case Option::MultiArgClass:
- llvm_unreachable("Cannot print metavar for this kind of option.");
+ if (const char *MetaVarName = Opts.getOptionMetaVar(Id)) {
+ // For MultiArgs, metavar is full list of all argument names.
+ Name += ' ';
+ Name += MetaVarName;
+ }
+ else {
+ // For MultiArgs<N>, if metavar not supplied, print <value> N times.
+ for (unsigned i=0, e=O.getNumArgs(); i< e; ++i) {
+ Name += " <value>";
+ }
+ }
+ break;
case Option::FlagClass:
break;
diff --git a/contrib/llvm/lib/Option/Option.cpp b/contrib/llvm/lib/Option/Option.cpp
index 10662a3..cdc63c3 100644
--- a/contrib/llvm/lib/Option/Option.cpp
+++ b/contrib/llvm/lib/Option/Option.cpp
@@ -169,7 +169,8 @@ Arg *Option::accept(const ArgList &Args,
return nullptr;
Index += 2;
- if (Index > Args.getNumInputArgStrings())
+ if (Index > Args.getNumInputArgStrings() ||
+ Args.getArgString(Index - 1) == nullptr)
return nullptr;
return new Arg(UnaliasedOption, Spelling,
@@ -200,7 +201,8 @@ Arg *Option::accept(const ArgList &Args,
// Otherwise it must be separate.
Index += 2;
- if (Index > Args.getNumInputArgStrings())
+ if (Index > Args.getNumInputArgStrings() ||
+ Args.getArgString(Index - 1) == nullptr)
return nullptr;
return new Arg(UnaliasedOption, Spelling,
@@ -209,7 +211,8 @@ Arg *Option::accept(const ArgList &Args,
case JoinedAndSeparateClass:
// Always matches.
Index += 2;
- if (Index > Args.getNumInputArgStrings())
+ if (Index > Args.getNumInputArgStrings() ||
+ Args.getArgString(Index - 1) == nullptr)
return nullptr;
return new Arg(UnaliasedOption, Spelling, Index - 2,
@@ -221,7 +224,8 @@ Arg *Option::accept(const ArgList &Args,
if (ArgSize != strlen(Args.getArgString(Index)))
return nullptr;
Arg *A = new Arg(UnaliasedOption, Spelling, Index++);
- while (Index < Args.getNumInputArgStrings())
+ while (Index < Args.getNumInputArgStrings() &&
+ Args.getArgString(Index) != nullptr)
A->getValues().push_back(Args.getArgString(Index++));
return A;
}
diff --git a/contrib/llvm/lib/ProfileData/CoverageMapping.cpp b/contrib/llvm/lib/ProfileData/CoverageMapping.cpp
new file mode 100644
index 0000000..1752777
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/CoverageMapping.cpp
@@ -0,0 +1,474 @@
+//=-- CoverageMapping.cpp - Code coverage mapping support ---------*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for clang's and llvm's instrumentation based
+// code coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/CoverageMapping.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ProfileData/CoverageMappingReader.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+using namespace coverage;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+Counter CounterExpressionBuilder::get(const CounterExpression &E) {
+ auto It = ExpressionIndices.find(E);
+ if (It != ExpressionIndices.end())
+ return Counter::getExpression(It->second);
+ unsigned I = Expressions.size();
+ Expressions.push_back(E);
+ ExpressionIndices[E] = I;
+ return Counter::getExpression(I);
+}
+
+void CounterExpressionBuilder::extractTerms(
+ Counter C, int Sign, SmallVectorImpl<std::pair<unsigned, int>> &Terms) {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ break;
+ case Counter::CounterValueReference:
+ Terms.push_back(std::make_pair(C.getCounterID(), Sign));
+ break;
+ case Counter::Expression:
+ const auto &E = Expressions[C.getExpressionID()];
+ extractTerms(E.LHS, Sign, Terms);
+ extractTerms(E.RHS, E.Kind == CounterExpression::Subtract ? -Sign : Sign,
+ Terms);
+ break;
+ }
+}
+
+Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
+ // Gather constant terms.
+ llvm::SmallVector<std::pair<unsigned, int>, 32> Terms;
+ extractTerms(ExpressionTree, +1, Terms);
+
+ // If there are no terms, this is just a zero. The algorithm below assumes at
+ // least one term.
+ if (Terms.size() == 0)
+ return Counter::getZero();
+
+ // Group the terms by counter ID.
+ std::sort(Terms.begin(), Terms.end(),
+ [](const std::pair<unsigned, int> &LHS,
+ const std::pair<unsigned, int> &RHS) {
+ return LHS.first < RHS.first;
+ });
+
+ // Combine terms by counter ID to eliminate counters that sum to zero.
+ auto Prev = Terms.begin();
+ for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
+ if (I->first == Prev->first) {
+ Prev->second += I->second;
+ continue;
+ }
+ ++Prev;
+ *Prev = *I;
+ }
+ Terms.erase(++Prev, Terms.end());
+
+ Counter C;
+ // Create additions. We do this before subtractions to avoid constructs like
+ // ((0 - X) + Y), as opposed to (Y - X).
+ for (auto Term : Terms) {
+ if (Term.second <= 0)
+ continue;
+ for (int I = 0; I < Term.second; ++I)
+ if (C.isZero())
+ C = Counter::getCounter(Term.first);
+ else
+ C = get(CounterExpression(CounterExpression::Add, C,
+ Counter::getCounter(Term.first)));
+ }
+
+ // Create subtractions.
+ for (auto Term : Terms) {
+ if (Term.second >= 0)
+ continue;
+ for (int I = 0; I < -Term.second; ++I)
+ C = get(CounterExpression(CounterExpression::Subtract, C,
+ Counter::getCounter(Term.first)));
+ }
+ return C;
+}
+
+Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
+ return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
+}
+
+Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
+ return simplify(
+ get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
+}
+
+void CounterMappingContext::dump(const Counter &C,
+ llvm::raw_ostream &OS) const {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ OS << '0';
+ return;
+ case Counter::CounterValueReference:
+ OS << '#' << C.getCounterID();
+ break;
+ case Counter::Expression: {
+ if (C.getExpressionID() >= Expressions.size())
+ return;
+ const auto &E = Expressions[C.getExpressionID()];
+ OS << '(';
+ dump(E.LHS, OS);
+ OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
+ dump(E.RHS, OS);
+ OS << ')';
+ break;
+ }
+ }
+ if (CounterValues.empty())
+ return;
+ ErrorOr<int64_t> Value = evaluate(C);
+ if (!Value)
+ return;
+ OS << '[' << *Value << ']';
+}
+
+ErrorOr<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ return 0;
+ case Counter::CounterValueReference:
+ if (C.getCounterID() >= CounterValues.size())
+ return std::make_error_code(std::errc::argument_out_of_domain);
+ return CounterValues[C.getCounterID()];
+ case Counter::Expression: {
+ if (C.getExpressionID() >= Expressions.size())
+ return std::make_error_code(std::errc::argument_out_of_domain);
+ const auto &E = Expressions[C.getExpressionID()];
+ ErrorOr<int64_t> LHS = evaluate(E.LHS);
+ if (!LHS)
+ return LHS;
+ ErrorOr<int64_t> RHS = evaluate(E.RHS);
+ if (!RHS)
+ return RHS;
+ return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
+ }
+ }
+ llvm_unreachable("Unhandled CounterKind");
+}
+
+void FunctionRecordIterator::skipOtherFiles() {
+ while (Current != Records.end() && !Filename.empty() &&
+ Filename != Current->Filenames[0])
+ ++Current;
+ if (Current == Records.end())
+ *this = FunctionRecordIterator();
+}
+
+ErrorOr<std::unique_ptr<CoverageMapping>>
+CoverageMapping::load(ObjectFileCoverageMappingReader &CoverageReader,
+ IndexedInstrProfReader &ProfileReader) {
+ auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
+
+ std::vector<uint64_t> Counts;
+ for (const auto &Record : CoverageReader) {
+ Counts.clear();
+ if (std::error_code EC = ProfileReader.getFunctionCounts(
+ Record.FunctionName, Record.FunctionHash, Counts)) {
+ if (EC != instrprof_error::hash_mismatch &&
+ EC != instrprof_error::unknown_function)
+ return EC;
+ Coverage->MismatchedFunctionCount++;
+ continue;
+ }
+
+ assert(Counts.size() != 0 && "Function's counts are empty");
+ FunctionRecord Function(Record.FunctionName, Record.Filenames,
+ Counts.front());
+ CounterMappingContext Ctx(Record.Expressions, Counts);
+ for (const auto &Region : Record.MappingRegions) {
+ ErrorOr<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
+ if (!ExecutionCount)
+ break;
+ Function.CountedRegions.push_back(CountedRegion(Region, *ExecutionCount));
+ }
+ if (Function.CountedRegions.size() != Record.MappingRegions.size()) {
+ Coverage->MismatchedFunctionCount++;
+ continue;
+ }
+
+ Coverage->Functions.push_back(std::move(Function));
+ }
+
+ return std::move(Coverage);
+}
+
+ErrorOr<std::unique_ptr<CoverageMapping>>
+CoverageMapping::load(StringRef ObjectFilename, StringRef ProfileFilename) {
+ auto CounterMappingBuff = MemoryBuffer::getFileOrSTDIN(ObjectFilename);
+ if (auto EC = CounterMappingBuff.getError())
+ return EC;
+ ObjectFileCoverageMappingReader CoverageReader(CounterMappingBuff.get());
+ if (auto EC = CoverageReader.readHeader())
+ return EC;
+ std::unique_ptr<IndexedInstrProfReader> ProfileReader;
+ if (auto EC = IndexedInstrProfReader::create(ProfileFilename, ProfileReader))
+ return EC;
+ return load(CoverageReader, *ProfileReader);
+}
+
+namespace {
+/// \brief Distributes functions into instantiation sets.
+///
+/// An instantiation set is a collection of functions that have the same source
+/// code, ie, template functions specializations.
+class FunctionInstantiationSetCollector {
+ typedef DenseMap<std::pair<unsigned, unsigned>,
+ std::vector<const FunctionRecord *>> MapT;
+ MapT InstantiatedFunctions;
+
+public:
+ void insert(const FunctionRecord &Function, unsigned FileID) {
+ auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
+ while (I != E && I->FileID != FileID)
+ ++I;
+ assert(I != E && "function does not cover the given file");
+ auto &Functions = InstantiatedFunctions[I->startLoc()];
+ Functions.push_back(&Function);
+ }
+
+ MapT::iterator begin() { return InstantiatedFunctions.begin(); }
+
+ MapT::iterator end() { return InstantiatedFunctions.end(); }
+};
+
+class SegmentBuilder {
+ std::vector<CoverageSegment> Segments;
+ SmallVector<const CountedRegion *, 8> ActiveRegions;
+
+ /// Start a segment with no count specified.
+ void startSegment(unsigned Line, unsigned Col) {
+ DEBUG(dbgs() << "Top level segment at " << Line << ":" << Col << "\n");
+ Segments.emplace_back(Line, Col, /*IsRegionEntry=*/false);
+ }
+
+ /// Start a segment with the given Region's count.
+ void startSegment(unsigned Line, unsigned Col, bool IsRegionEntry,
+ const CountedRegion &Region) {
+ if (Segments.empty())
+ Segments.emplace_back(Line, Col, IsRegionEntry);
+ CoverageSegment S = Segments.back();
+ // Avoid creating empty regions.
+ if (S.Line != Line || S.Col != Col) {
+ Segments.emplace_back(Line, Col, IsRegionEntry);
+ S = Segments.back();
+ }
+ DEBUG(dbgs() << "Segment at " << Line << ":" << Col);
+ // Set this region's count.
+ if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion) {
+ DEBUG(dbgs() << " with count " << Region.ExecutionCount);
+ Segments.back().setCount(Region.ExecutionCount);
+ }
+ DEBUG(dbgs() << "\n");
+ }
+
+ /// Start a segment for the given region.
+ void startSegment(const CountedRegion &Region) {
+ startSegment(Region.LineStart, Region.ColumnStart, true, Region);
+ }
+
+ /// Pop the top region off of the active stack, starting a new segment with
+ /// the containing Region's count.
+ void popRegion() {
+ const CountedRegion *Active = ActiveRegions.back();
+ unsigned Line = Active->LineEnd, Col = Active->ColumnEnd;
+ ActiveRegions.pop_back();
+ if (ActiveRegions.empty())
+ startSegment(Line, Col);
+ else
+ startSegment(Line, Col, false, *ActiveRegions.back());
+ }
+
+public:
+ /// Build a list of CoverageSegments from a sorted list of Regions.
+ std::vector<CoverageSegment> buildSegments(ArrayRef<CountedRegion> Regions) {
+ for (const auto &Region : Regions) {
+ // Pop any regions that end before this one starts.
+ while (!ActiveRegions.empty() &&
+ ActiveRegions.back()->endLoc() <= Region.startLoc())
+ popRegion();
+ if (Segments.size() && Segments.back().Line == Region.LineStart &&
+ Segments.back().Col == Region.ColumnStart) {
+ if (Region.Kind != coverage::CounterMappingRegion::SkippedRegion)
+ Segments.back().addCount(Region.ExecutionCount);
+ } else {
+ // Add this region to the stack.
+ ActiveRegions.push_back(&Region);
+ startSegment(Region);
+ }
+ }
+ // Pop any regions that are left in the stack.
+ while (!ActiveRegions.empty())
+ popRegion();
+ return Segments;
+ }
+};
+}
+
+std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
+ std::vector<StringRef> Filenames;
+ for (const auto &Function : getCoveredFunctions())
+ for (const auto &Filename : Function.Filenames)
+ Filenames.push_back(Filename);
+ std::sort(Filenames.begin(), Filenames.end());
+ auto Last = std::unique(Filenames.begin(), Filenames.end());
+ Filenames.erase(Last, Filenames.end());
+ return Filenames;
+}
+
+static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
+ const FunctionRecord &Function) {
+ llvm::SmallVector<bool, 8> IsExpandedFile(Function.Filenames.size(), false);
+ llvm::SmallVector<bool, 8> FilenameEquivalence(Function.Filenames.size(),
+ false);
+ for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
+ if (SourceFile == Function.Filenames[I])
+ FilenameEquivalence[I] = true;
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.Kind == CounterMappingRegion::ExpansionRegion &&
+ FilenameEquivalence[CR.FileID])
+ IsExpandedFile[CR.ExpandedFileID] = true;
+ for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
+ if (FilenameEquivalence[I] && !IsExpandedFile[I])
+ return I;
+ return None;
+}
+
+static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
+ llvm::SmallVector<bool, 8> IsExpandedFile(Function.Filenames.size(), false);
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.Kind == CounterMappingRegion::ExpansionRegion)
+ IsExpandedFile[CR.ExpandedFileID] = true;
+ for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
+ if (!IsExpandedFile[I])
+ return I;
+ return None;
+}
+
+static SmallSet<unsigned, 8> gatherFileIDs(StringRef SourceFile,
+ const FunctionRecord &Function) {
+ SmallSet<unsigned, 8> IDs;
+ for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
+ if (SourceFile == Function.Filenames[I])
+ IDs.insert(I);
+ return IDs;
+}
+
+/// Sort a nested sequence of regions from a single file.
+template <class It> static void sortNestedRegions(It First, It Last) {
+ std::sort(First, Last,
+ [](const CountedRegion &LHS, const CountedRegion &RHS) {
+ if (LHS.startLoc() == RHS.startLoc())
+ // When LHS completely contains RHS, we sort LHS first.
+ return RHS.endLoc() < LHS.endLoc();
+ return LHS.startLoc() < RHS.startLoc();
+ });
+}
+
+static bool isExpansion(const CountedRegion &R, unsigned FileID) {
+ return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
+}
+
+CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) {
+ CoverageData FileCoverage(Filename);
+ std::vector<coverage::CountedRegion> Regions;
+
+ for (const auto &Function : Functions) {
+ auto MainFileID = findMainViewFileID(Filename, Function);
+ if (!MainFileID)
+ continue;
+ auto FileIDs = gatherFileIDs(Filename, Function);
+ for (const auto &CR : Function.CountedRegions)
+ if (FileIDs.count(CR.FileID)) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, *MainFileID))
+ FileCoverage.Expansions.emplace_back(CR, Function);
+ }
+ }
+
+ sortNestedRegions(Regions.begin(), Regions.end());
+ FileCoverage.Segments = SegmentBuilder().buildSegments(Regions);
+
+ return FileCoverage;
+}
+
+std::vector<const FunctionRecord *>
+CoverageMapping::getInstantiations(StringRef Filename) {
+ FunctionInstantiationSetCollector InstantiationSetCollector;
+ for (const auto &Function : Functions) {
+ auto MainFileID = findMainViewFileID(Filename, Function);
+ if (!MainFileID)
+ continue;
+ InstantiationSetCollector.insert(Function, *MainFileID);
+ }
+
+ std::vector<const FunctionRecord *> Result;
+ for (const auto &InstantiationSet : InstantiationSetCollector) {
+ if (InstantiationSet.second.size() < 2)
+ continue;
+ for (auto Function : InstantiationSet.second)
+ Result.push_back(Function);
+ }
+ return Result;
+}
+
+CoverageData
+CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) {
+ auto MainFileID = findMainViewFileID(Function);
+ if (!MainFileID)
+ return CoverageData();
+
+ CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
+ std::vector<coverage::CountedRegion> Regions;
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.FileID == *MainFileID) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, *MainFileID))
+ FunctionCoverage.Expansions.emplace_back(CR, Function);
+ }
+
+ sortNestedRegions(Regions.begin(), Regions.end());
+ FunctionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
+
+ return FunctionCoverage;
+}
+
+CoverageData
+CoverageMapping::getCoverageForExpansion(const ExpansionRecord &Expansion) {
+ CoverageData ExpansionCoverage(
+ Expansion.Function.Filenames[Expansion.FileID]);
+ std::vector<coverage::CountedRegion> Regions;
+ for (const auto &CR : Expansion.Function.CountedRegions)
+ if (CR.FileID == Expansion.FileID) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, Expansion.FileID))
+ ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
+ }
+
+ sortNestedRegions(Regions.begin(), Regions.end());
+ ExpansionCoverage.Segments = SegmentBuilder().buildSegments(Regions);
+
+ return ExpansionCoverage;
+}
diff --git a/contrib/llvm/lib/ProfileData/CoverageMappingReader.cpp b/contrib/llvm/lib/ProfileData/CoverageMappingReader.cpp
new file mode 100644
index 0000000..6476d28
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/CoverageMappingReader.cpp
@@ -0,0 +1,553 @@
+//=-- CoverageMappingReader.cpp - Code coverage mapping reader ----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for reading coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/CoverageMappingReader.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/LEB128.h"
+
+using namespace llvm;
+using namespace coverage;
+using namespace object;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+void CoverageMappingIterator::increment() {
+ // Check if all the records were read or if an error occurred while reading
+ // the next record.
+ if (Reader->readNextRecord(Record))
+ *this = CoverageMappingIterator();
+}
+
+std::error_code RawCoverageReader::readULEB128(uint64_t &Result) {
+ if (Data.size() < 1)
+ return error(instrprof_error::truncated);
+ unsigned N = 0;
+ Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
+ if (N > Data.size())
+ return error(instrprof_error::malformed);
+ Data = Data.substr(N);
+ return success();
+}
+
+std::error_code RawCoverageReader::readIntMax(uint64_t &Result,
+ uint64_t MaxPlus1) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ if (Result >= MaxPlus1)
+ return error(instrprof_error::malformed);
+ return success();
+}
+
+std::error_code RawCoverageReader::readSize(uint64_t &Result) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ // Sanity check the number.
+ if (Result > Data.size())
+ return error(instrprof_error::malformed);
+ return success();
+}
+
+std::error_code RawCoverageReader::readString(StringRef &Result) {
+ uint64_t Length;
+ if (auto Err = readSize(Length))
+ return Err;
+ Result = Data.substr(0, Length);
+ Data = Data.substr(Length);
+ return success();
+}
+
+std::error_code RawCoverageFilenamesReader::read() {
+ uint64_t NumFilenames;
+ if (auto Err = readSize(NumFilenames))
+ return Err;
+ for (size_t I = 0; I < NumFilenames; ++I) {
+ StringRef Filename;
+ if (auto Err = readString(Filename))
+ return Err;
+ Filenames.push_back(Filename);
+ }
+ return success();
+}
+
+std::error_code RawCoverageMappingReader::decodeCounter(unsigned Value,
+ Counter &C) {
+ auto Tag = Value & Counter::EncodingTagMask;
+ switch (Tag) {
+ case Counter::Zero:
+ C = Counter::getZero();
+ return success();
+ case Counter::CounterValueReference:
+ C = Counter::getCounter(Value >> Counter::EncodingTagBits);
+ return success();
+ default:
+ break;
+ }
+ Tag -= Counter::Expression;
+ switch (Tag) {
+ case CounterExpression::Subtract:
+ case CounterExpression::Add: {
+ auto ID = Value >> Counter::EncodingTagBits;
+ if (ID >= Expressions.size())
+ return error(instrprof_error::malformed);
+ Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
+ C = Counter::getExpression(ID);
+ break;
+ }
+ default:
+ return error(instrprof_error::malformed);
+ }
+ return success();
+}
+
+std::error_code RawCoverageMappingReader::readCounter(Counter &C) {
+ uint64_t EncodedCounter;
+ if (auto Err =
+ readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = decodeCounter(EncodedCounter, C))
+ return Err;
+ return success();
+}
+
+static const unsigned EncodingExpansionRegionBit = 1
+ << Counter::EncodingTagBits;
+
+/// \brief Read the sub-array of regions for the given inferred file id.
+/// \param NumFileIDs the number of file ids that are defined for this
+/// function.
+std::error_code RawCoverageMappingReader::readMappingRegionsSubArray(
+ std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
+ size_t NumFileIDs) {
+ uint64_t NumRegions;
+ if (auto Err = readSize(NumRegions))
+ return Err;
+ unsigned LineStart = 0;
+ for (size_t I = 0; I < NumRegions; ++I) {
+ Counter C;
+ CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
+
+ // Read the combined counter + region kind.
+ uint64_t EncodedCounterAndRegion;
+ if (auto Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return Err;
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ uint64_t ExpandedFileID = 0;
+ if (Tag != Counter::Zero) {
+ if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
+ return Err;
+ } else {
+ // Is it an expansion region?
+ if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
+ Kind = CounterMappingRegion::ExpansionRegion;
+ ExpandedFileID = EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits;
+ if (ExpandedFileID >= NumFileIDs)
+ return error(instrprof_error::malformed);
+ } else {
+ switch (EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits) {
+ case CounterMappingRegion::CodeRegion:
+ // Don't do anything when we have a code region with a zero counter.
+ break;
+ case CounterMappingRegion::SkippedRegion:
+ Kind = CounterMappingRegion::SkippedRegion;
+ break;
+ default:
+ return error(instrprof_error::malformed);
+ }
+ }
+ }
+
+ // Read the source range.
+ uint64_t LineStartDelta, CodeBeforeColumnStart, NumLines, ColumnEnd;
+ if (auto Err =
+ readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readULEB128(CodeBeforeColumnStart))
+ return Err;
+ bool HasCodeBefore = CodeBeforeColumnStart & 1;
+ uint64_t ColumnStart = CodeBeforeColumnStart >>
+ CounterMappingRegion::EncodingHasCodeBeforeBits;
+ if (ColumnStart > std::numeric_limits<unsigned>::max())
+ return error(instrprof_error::malformed);
+ if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
+ return Err;
+ LineStart += LineStartDelta;
+ // Adjust the column locations for the empty regions that are supposed to
+ // cover whole lines. Those regions should be encoded with the
+ // column range (1 -> std::numeric_limits<unsigned>::max()), but because
+ // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
+ // we set the column range to (0 -> 0) to ensure that the column start and
+ // column end take up one byte each.
+ // The std::numeric_limits<unsigned>::max() is used to represent a column
+ // position at the end of the line without knowing the length of that line.
+ if (ColumnStart == 0 && ColumnEnd == 0) {
+ ColumnStart = 1;
+ ColumnEnd = std::numeric_limits<unsigned>::max();
+ }
+
+ DEBUG({
+ dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
+ << ColumnStart << " -> " << (LineStart + NumLines) << ":"
+ << ColumnEnd << ", ";
+ if (Kind == CounterMappingRegion::ExpansionRegion)
+ dbgs() << "Expands to file " << ExpandedFileID;
+ else
+ CounterMappingContext(Expressions).dump(C, dbgs());
+ dbgs() << "\n";
+ });
+
+ MappingRegions.push_back(CounterMappingRegion(
+ C, InferredFileID, LineStart, ColumnStart, LineStart + NumLines,
+ ColumnEnd, HasCodeBefore, Kind));
+ MappingRegions.back().ExpandedFileID = ExpandedFileID;
+ }
+ return success();
+}
+
+std::error_code RawCoverageMappingReader::read(CoverageMappingRecord &Record) {
+
+ // Read the virtual file mapping.
+ llvm::SmallVector<unsigned, 8> VirtualFileMapping;
+ uint64_t NumFileMappings;
+ if (auto Err = readSize(NumFileMappings))
+ return Err;
+ for (size_t I = 0; I < NumFileMappings; ++I) {
+ uint64_t FilenameIndex;
+ if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
+ return Err;
+ VirtualFileMapping.push_back(FilenameIndex);
+ }
+
+ // Construct the files using unique filenames and virtual file mapping.
+ for (auto I : VirtualFileMapping) {
+ Filenames.push_back(TranslationUnitFilenames[I]);
+ }
+
+ // Read the expressions.
+ uint64_t NumExpressions;
+ if (auto Err = readSize(NumExpressions))
+ return Err;
+ // Create an array of dummy expressions that get the proper counters
+ // when the expressions are read, and the proper kinds when the counters
+ // are decoded.
+ Expressions.resize(
+ NumExpressions,
+ CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
+ for (size_t I = 0; I < NumExpressions; ++I) {
+ if (auto Err = readCounter(Expressions[I].LHS))
+ return Err;
+ if (auto Err = readCounter(Expressions[I].RHS))
+ return Err;
+ }
+
+ // Read the mapping regions sub-arrays.
+ for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
+ InferredFileID < S; ++InferredFileID) {
+ if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
+ VirtualFileMapping.size()))
+ return Err;
+ }
+
+ // Set the counters for the expansion regions.
+ // i.e. Counter of expansion region = counter of the first region
+ // from the expanded file.
+ // Perform multiple passes to correctly propagate the counters through
+ // all the nested expansion regions.
+ SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
+ FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
+ for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
+ for (auto &R : MappingRegions) {
+ if (R.Kind != CounterMappingRegion::ExpansionRegion)
+ continue;
+ assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
+ FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
+ }
+ for (auto &R : MappingRegions) {
+ if (FileIDExpansionRegionMapping[R.FileID]) {
+ FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
+ FileIDExpansionRegionMapping[R.FileID] = nullptr;
+ }
+ }
+ }
+
+ Record.FunctionName = FunctionName;
+ Record.Filenames = Filenames;
+ Record.Expressions = Expressions;
+ Record.MappingRegions = MappingRegions;
+ return success();
+}
+
+ObjectFileCoverageMappingReader::ObjectFileCoverageMappingReader(
+ StringRef FileName)
+ : CurrentRecord(0) {
+ auto File = llvm::object::ObjectFile::createObjectFile(FileName);
+ if (!File)
+ error(File.getError());
+ else
+ Object = std::move(File.get());
+}
+
+namespace {
+/// \brief The coverage mapping data for a single function.
+/// It points to the function's name.
+template <typename IntPtrT> struct CoverageMappingFunctionRecord {
+ IntPtrT FunctionNamePtr;
+ uint32_t FunctionNameSize;
+ uint32_t CoverageMappingSize;
+ uint64_t FunctionHash;
+};
+
+/// \brief The coverage mapping data for a single translation unit.
+/// It points to the array of function coverage mapping records and the encoded
+/// filenames array.
+template <typename IntPtrT> struct CoverageMappingTURecord {
+ uint32_t FunctionRecordsSize;
+ uint32_t FilenamesSize;
+ uint32_t CoverageMappingsSize;
+ uint32_t Version;
+};
+
+/// \brief A helper structure to access the data from a section
+/// in an object file.
+struct SectionData {
+ StringRef Data;
+ uint64_t Address;
+
+ std::error_code load(SectionRef &Section) {
+ if (auto Err = Section.getContents(Data))
+ return Err;
+ Address = Section.getAddress();
+ return instrprof_error::success;
+ }
+
+ std::error_code get(uint64_t Pointer, size_t Size, StringRef &Result) {
+ if (Pointer < Address)
+ return instrprof_error::malformed;
+ auto Offset = Pointer - Address;
+ if (Offset + Size > Data.size())
+ return instrprof_error::malformed;
+ Result = Data.substr(Pointer - Address, Size);
+ return instrprof_error::success;
+ }
+};
+}
+
+template <typename T>
+std::error_code readCoverageMappingData(
+ SectionData &ProfileNames, StringRef Data,
+ std::vector<ObjectFileCoverageMappingReader::ProfileMappingRecord> &Records,
+ std::vector<StringRef> &Filenames) {
+ llvm::DenseSet<T> UniqueFunctionMappingData;
+
+ // Read the records in the coverage data section.
+ while (!Data.empty()) {
+ if (Data.size() < sizeof(CoverageMappingTURecord<T>))
+ return instrprof_error::malformed;
+ auto TU = reinterpret_cast<const CoverageMappingTURecord<T> *>(Data.data());
+ Data = Data.substr(sizeof(CoverageMappingTURecord<T>));
+ switch (TU->Version) {
+ case CoverageMappingVersion1:
+ break;
+ default:
+ return instrprof_error::unsupported_version;
+ }
+ auto Version = CoverageMappingVersion(TU->Version);
+
+ // Get the function records.
+ auto FunctionRecords =
+ reinterpret_cast<const CoverageMappingFunctionRecord<T> *>(Data.data());
+ if (Data.size() <
+ sizeof(CoverageMappingFunctionRecord<T>) * TU->FunctionRecordsSize)
+ return instrprof_error::malformed;
+ Data = Data.substr(sizeof(CoverageMappingFunctionRecord<T>) *
+ TU->FunctionRecordsSize);
+
+ // Get the filenames.
+ if (Data.size() < TU->FilenamesSize)
+ return instrprof_error::malformed;
+ auto RawFilenames = Data.substr(0, TU->FilenamesSize);
+ Data = Data.substr(TU->FilenamesSize);
+ size_t FilenamesBegin = Filenames.size();
+ RawCoverageFilenamesReader Reader(RawFilenames, Filenames);
+ if (auto Err = Reader.read())
+ return Err;
+
+ // Get the coverage mappings.
+ if (Data.size() < TU->CoverageMappingsSize)
+ return instrprof_error::malformed;
+ auto CoverageMappings = Data.substr(0, TU->CoverageMappingsSize);
+ Data = Data.substr(TU->CoverageMappingsSize);
+
+ for (unsigned I = 0; I < TU->FunctionRecordsSize; ++I) {
+ auto &MappingRecord = FunctionRecords[I];
+
+ // Get the coverage mapping.
+ if (CoverageMappings.size() < MappingRecord.CoverageMappingSize)
+ return instrprof_error::malformed;
+ auto Mapping =
+ CoverageMappings.substr(0, MappingRecord.CoverageMappingSize);
+ CoverageMappings =
+ CoverageMappings.substr(MappingRecord.CoverageMappingSize);
+
+ // Ignore this record if we already have a record that points to the same
+ // function name.
+ // This is useful to ignore the redundant records for the functions
+ // with ODR linkage.
+ if (!UniqueFunctionMappingData.insert(MappingRecord.FunctionNamePtr)
+ .second)
+ continue;
+ StringRef FunctionName;
+ if (auto Err =
+ ProfileNames.get(MappingRecord.FunctionNamePtr,
+ MappingRecord.FunctionNameSize, FunctionName))
+ return Err;
+ Records.push_back(ObjectFileCoverageMappingReader::ProfileMappingRecord(
+ Version, FunctionName, MappingRecord.FunctionHash, Mapping,
+ FilenamesBegin, Filenames.size() - FilenamesBegin));
+ }
+ }
+
+ return instrprof_error::success;
+}
+
+static const char *TestingFormatMagic = "llvmcovmtestdata";
+
+static std::error_code decodeTestingFormat(StringRef Data,
+ SectionData &ProfileNames,
+ StringRef &CoverageMapping) {
+ Data = Data.substr(StringRef(TestingFormatMagic).size());
+ if (Data.size() < 1)
+ return instrprof_error::truncated;
+ unsigned N = 0;
+ auto ProfileNamesSize =
+ decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
+ if (N > Data.size())
+ return instrprof_error::malformed;
+ Data = Data.substr(N);
+ if (Data.size() < 1)
+ return instrprof_error::truncated;
+ N = 0;
+ ProfileNames.Address =
+ decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
+ if (N > Data.size())
+ return instrprof_error::malformed;
+ Data = Data.substr(N);
+ if (Data.size() < ProfileNamesSize)
+ return instrprof_error::malformed;
+ ProfileNames.Data = Data.substr(0, ProfileNamesSize);
+ CoverageMapping = Data.substr(ProfileNamesSize);
+ return instrprof_error::success;
+}
+
+ObjectFileCoverageMappingReader::ObjectFileCoverageMappingReader(
+ std::unique_ptr<MemoryBuffer> &ObjectBuffer, sys::fs::file_magic Type)
+ : CurrentRecord(0) {
+ if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic)) {
+ // This is a special format used for testing.
+ SectionData ProfileNames;
+ StringRef CoverageMapping;
+ if (auto Err = decodeTestingFormat(ObjectBuffer->getBuffer(), ProfileNames,
+ CoverageMapping)) {
+ error(Err);
+ return;
+ }
+ error(readCoverageMappingData<uint64_t>(ProfileNames, CoverageMapping,
+ MappingRecords, Filenames));
+ Object = OwningBinary<ObjectFile>(std::unique_ptr<ObjectFile>(),
+ std::move(ObjectBuffer));
+ return;
+ }
+
+ auto File = object::ObjectFile::createObjectFile(
+ ObjectBuffer->getMemBufferRef(), Type);
+ if (!File)
+ error(File.getError());
+ else
+ Object = OwningBinary<ObjectFile>(std::move(File.get()),
+ std::move(ObjectBuffer));
+}
+
+std::error_code ObjectFileCoverageMappingReader::readHeader() {
+ const ObjectFile *OF = Object.getBinary();
+ if (!OF)
+ return getError();
+ auto BytesInAddress = OF->getBytesInAddress();
+ if (BytesInAddress != 4 && BytesInAddress != 8)
+ return error(instrprof_error::malformed);
+
+ // Look for the sections that we are interested in.
+ int FoundSectionCount = 0;
+ SectionRef ProfileNames, CoverageMapping;
+ for (const auto &Section : OF->sections()) {
+ StringRef Name;
+ if (auto Err = Section.getName(Name))
+ return Err;
+ if (Name == "__llvm_prf_names") {
+ ProfileNames = Section;
+ } else if (Name == "__llvm_covmap") {
+ CoverageMapping = Section;
+ } else
+ continue;
+ ++FoundSectionCount;
+ }
+ if (FoundSectionCount != 2)
+ return error(instrprof_error::bad_header);
+
+ // Get the contents of the given sections.
+ StringRef Data;
+ if (auto Err = CoverageMapping.getContents(Data))
+ return Err;
+ SectionData ProfileNamesData;
+ if (auto Err = ProfileNamesData.load(ProfileNames))
+ return Err;
+
+ // Load the data from the found sections.
+ std::error_code Err;
+ if (BytesInAddress == 4)
+ Err = readCoverageMappingData<uint32_t>(ProfileNamesData, Data,
+ MappingRecords, Filenames);
+ else
+ Err = readCoverageMappingData<uint64_t>(ProfileNamesData, Data,
+ MappingRecords, Filenames);
+ if (Err)
+ return error(Err);
+
+ return success();
+}
+
+std::error_code
+ObjectFileCoverageMappingReader::readNextRecord(CoverageMappingRecord &Record) {
+ if (CurrentRecord >= MappingRecords.size())
+ return error(instrprof_error::eof);
+
+ FunctionsFilenames.clear();
+ Expressions.clear();
+ MappingRegions.clear();
+ auto &R = MappingRecords[CurrentRecord];
+ RawCoverageMappingReader Reader(
+ R.FunctionName, R.CoverageMapping,
+ makeArrayRef(Filenames.data() + R.FilenamesBegin, R.FilenamesSize),
+ FunctionsFilenames, Expressions, MappingRegions);
+ if (auto Err = Reader.read(Record))
+ return Err;
+ Record.FunctionHash = R.FunctionHash;
+ ++CurrentRecord;
+ return success();
+}
diff --git a/contrib/llvm/lib/ProfileData/CoverageMappingWriter.cpp b/contrib/llvm/lib/ProfileData/CoverageMappingWriter.cpp
new file mode 100644
index 0000000..6969c2a
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/CoverageMappingWriter.cpp
@@ -0,0 +1,187 @@
+//=-- CoverageMappingWriter.cpp - Code coverage mapping writer -------------=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/CoverageMappingWriter.h"
+#include "llvm/Support/LEB128.h"
+
+using namespace llvm;
+using namespace coverage;
+
+void CoverageFilenamesSectionWriter::write(raw_ostream &OS) {
+ encodeULEB128(Filenames.size(), OS);
+ for (const auto &Filename : Filenames) {
+ encodeULEB128(Filename.size(), OS);
+ OS << Filename;
+ }
+}
+
+namespace {
+/// \brief Gather only the expressions that are used by the mapping
+/// regions in this function.
+class CounterExpressionsMinimizer {
+ ArrayRef<CounterExpression> Expressions;
+ llvm::SmallVector<CounterExpression, 16> UsedExpressions;
+ std::vector<unsigned> AdjustedExpressionIDs;
+
+public:
+ void mark(Counter C) {
+ if (!C.isExpression())
+ return;
+ unsigned ID = C.getExpressionID();
+ AdjustedExpressionIDs[ID] = 1;
+ mark(Expressions[ID].LHS);
+ mark(Expressions[ID].RHS);
+ }
+
+ void gatherUsed(Counter C) {
+ if (!C.isExpression() || !AdjustedExpressionIDs[C.getExpressionID()])
+ return;
+ AdjustedExpressionIDs[C.getExpressionID()] = UsedExpressions.size();
+ const auto &E = Expressions[C.getExpressionID()];
+ UsedExpressions.push_back(E);
+ gatherUsed(E.LHS);
+ gatherUsed(E.RHS);
+ }
+
+ CounterExpressionsMinimizer(ArrayRef<CounterExpression> Expressions,
+ ArrayRef<CounterMappingRegion> MappingRegions)
+ : Expressions(Expressions) {
+ AdjustedExpressionIDs.resize(Expressions.size(), 0);
+ for (const auto &I : MappingRegions)
+ mark(I.Count);
+ for (const auto &I : MappingRegions)
+ gatherUsed(I.Count);
+ }
+
+ ArrayRef<CounterExpression> getExpressions() const { return UsedExpressions; }
+
+ /// \brief Adjust the given counter to correctly transition from the old
+ /// expression ids to the new expression ids.
+ Counter adjust(Counter C) const {
+ if (C.isExpression())
+ C = Counter::getExpression(AdjustedExpressionIDs[C.getExpressionID()]);
+ return C;
+ }
+};
+}
+
+/// \brief Encode the counter.
+///
+/// The encoding uses the following format:
+/// Low 2 bits - Tag:
+/// Counter::Zero(0) - A Counter with kind Counter::Zero
+/// Counter::CounterValueReference(1) - A counter with kind
+/// Counter::CounterValueReference
+/// Counter::Expression(2) + CounterExpression::Subtract(0) -
+/// A counter with kind Counter::Expression and an expression
+/// with kind CounterExpression::Subtract
+/// Counter::Expression(2) + CounterExpression::Add(1) -
+/// A counter with kind Counter::Expression and an expression
+/// with kind CounterExpression::Add
+/// Remaining bits - Counter/Expression ID.
+static unsigned encodeCounter(ArrayRef<CounterExpression> Expressions,
+ Counter C) {
+ unsigned Tag = unsigned(C.getKind());
+ if (C.isExpression())
+ Tag += Expressions[C.getExpressionID()].Kind;
+ unsigned ID = C.getCounterID();
+ assert(ID <=
+ (std::numeric_limits<unsigned>::max() >> Counter::EncodingTagBits));
+ return Tag | (ID << Counter::EncodingTagBits);
+}
+
+static void writeCounter(ArrayRef<CounterExpression> Expressions, Counter C,
+ raw_ostream &OS) {
+ encodeULEB128(encodeCounter(Expressions, C), OS);
+}
+
+void CoverageMappingWriter::write(raw_ostream &OS) {
+ // Sort the regions in an ascending order by the file id and the starting
+ // location.
+ std::sort(MappingRegions.begin(), MappingRegions.end());
+
+ // Write out the fileid -> filename mapping.
+ encodeULEB128(VirtualFileMapping.size(), OS);
+ for (const auto &FileID : VirtualFileMapping)
+ encodeULEB128(FileID, OS);
+
+ // Write out the expressions.
+ CounterExpressionsMinimizer Minimizer(Expressions, MappingRegions);
+ auto MinExpressions = Minimizer.getExpressions();
+ encodeULEB128(MinExpressions.size(), OS);
+ for (const auto &E : MinExpressions) {
+ writeCounter(MinExpressions, Minimizer.adjust(E.LHS), OS);
+ writeCounter(MinExpressions, Minimizer.adjust(E.RHS), OS);
+ }
+
+ // Write out the mapping regions.
+ // Split the regions into subarrays where each region in a
+ // subarray has a fileID which is the index of that subarray.
+ unsigned PrevLineStart = 0;
+ unsigned CurrentFileID = ~0U;
+ for (auto I = MappingRegions.begin(), E = MappingRegions.end(); I != E; ++I) {
+ if (I->FileID != CurrentFileID) {
+ // Ensure that all file ids have at least one mapping region.
+ assert(I->FileID == (CurrentFileID + 1));
+ // Find the number of regions with this file id.
+ unsigned RegionCount = 1;
+ for (auto J = I + 1; J != E && I->FileID == J->FileID; ++J)
+ ++RegionCount;
+ // Start a new region sub-array.
+ encodeULEB128(RegionCount, OS);
+
+ CurrentFileID = I->FileID;
+ PrevLineStart = 0;
+ }
+ Counter Count = Minimizer.adjust(I->Count);
+ switch (I->Kind) {
+ case CounterMappingRegion::CodeRegion:
+ writeCounter(MinExpressions, Count, OS);
+ break;
+ case CounterMappingRegion::ExpansionRegion: {
+ assert(Count.isZero());
+ assert(I->ExpandedFileID <=
+ (std::numeric_limits<unsigned>::max() >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits));
+ // Mark an expansion region with a set bit that follows the counter tag,
+ // and pack the expanded file id into the remaining bits.
+ unsigned EncodedTagExpandedFileID =
+ (1 << Counter::EncodingTagBits) |
+ (I->ExpandedFileID
+ << Counter::EncodingCounterTagAndExpansionRegionTagBits);
+ encodeULEB128(EncodedTagExpandedFileID, OS);
+ break;
+ }
+ case CounterMappingRegion::SkippedRegion:
+ assert(Count.isZero());
+ encodeULEB128(unsigned(I->Kind)
+ << Counter::EncodingCounterTagAndExpansionRegionTagBits,
+ OS);
+ break;
+ }
+ assert(I->LineStart >= PrevLineStart);
+ encodeULEB128(I->LineStart - PrevLineStart, OS);
+ uint64_t CodeBeforeColumnStart =
+ uint64_t(I->HasCodeBefore) |
+ (uint64_t(I->ColumnStart)
+ << CounterMappingRegion::EncodingHasCodeBeforeBits);
+ encodeULEB128(CodeBeforeColumnStart, OS);
+ assert(I->LineEnd >= I->LineStart);
+ encodeULEB128(I->LineEnd - I->LineStart, OS);
+ encodeULEB128(I->ColumnEnd, OS);
+ PrevLineStart = I->LineStart;
+ }
+ // Ensure that all file ids have at least one mapping region.
+ assert(CurrentFileID == (VirtualFileMapping.size() - 1));
+}
diff --git a/contrib/llvm/lib/ProfileData/InstrProf.cpp b/contrib/llvm/lib/ProfileData/InstrProf.cpp
index 0121222..900dff9 100644
--- a/contrib/llvm/lib/ProfileData/InstrProf.cpp
+++ b/contrib/llvm/lib/ProfileData/InstrProf.cpp
@@ -14,6 +14,7 @@
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
using namespace llvm;
@@ -55,7 +56,8 @@ class InstrProfErrorCategoryType : public std::error_category {
};
}
+static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
+
const std::error_category &llvm::instrprof_category() {
- static InstrProfErrorCategoryType C;
- return C;
+ return *ErrorCategory;
}
diff --git a/contrib/llvm/lib/ProfileData/InstrProfIndexed.h b/contrib/llvm/lib/ProfileData/InstrProfIndexed.h
index 7761704..ebca7b2 100644
--- a/contrib/llvm/lib/ProfileData/InstrProfIndexed.h
+++ b/contrib/llvm/lib/ProfileData/InstrProfIndexed.h
@@ -11,9 +11,10 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_PROFILEDATA_INSTRPROF_INDEXED_H_
-#define LLVM_PROFILEDATA_INSTRPROF_INDEXED_H_
+#ifndef LLVM_LIB_PROFILEDATA_INSTRPROFINDEXED_H
+#define LLVM_LIB_PROFILEDATA_INSTRPROFINDEXED_H
+#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
@@ -46,10 +47,10 @@ static inline uint64_t ComputeHash(HashT Type, StringRef K) {
}
const uint64_t Magic = 0x8169666f72706cff; // "\xfflprofi\x81"
-const uint64_t Version = 1;
+const uint64_t Version = 2;
const HashT HashType = HashT::MD5;
}
} // end namespace llvm
-#endif // LLVM_PROFILEDATA_INSTRPROF_INDEXED_H_
+#endif
diff --git a/contrib/llvm/lib/ProfileData/InstrProfReader.cpp b/contrib/llvm/lib/ProfileData/InstrProfReader.cpp
index 0b36728..31ed130 100644
--- a/contrib/llvm/lib/ProfileData/InstrProfReader.cpp
+++ b/contrib/llvm/lib/ProfileData/InstrProfReader.cpp
@@ -13,40 +13,40 @@
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfReader.h"
-#include "llvm/ProfileData/InstrProf.h"
-
#include "InstrProfIndexed.h"
-
+#include "llvm/ProfileData/InstrProf.h"
#include <cassert>
using namespace llvm;
-static std::error_code
-setupMemoryBuffer(std::string Path, std::unique_ptr<MemoryBuffer> &Buffer) {
+static ErrorOr<std::unique_ptr<MemoryBuffer>>
+setupMemoryBuffer(std::string Path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFileOrSTDIN(Path);
if (std::error_code EC = BufferOrErr.getError())
return EC;
- Buffer = std::move(BufferOrErr.get());
+ auto Buffer = std::move(BufferOrErr.get());
// Sanity check the file.
if (Buffer->getBufferSize() > std::numeric_limits<unsigned>::max())
return instrprof_error::too_large;
- return instrprof_error::success;
+ return std::move(Buffer);
}
static std::error_code initializeReader(InstrProfReader &Reader) {
return Reader.readHeader();
}
-std::error_code
-InstrProfReader::create(std::string Path,
- std::unique_ptr<InstrProfReader> &Result) {
+ErrorOr<std::unique_ptr<InstrProfReader>>
+InstrProfReader::create(std::string Path) {
// Set up the buffer to read.
- std::unique_ptr<MemoryBuffer> Buffer;
- if (std::error_code EC = setupMemoryBuffer(Path, Buffer))
+ auto BufferOrError = setupMemoryBuffer(Path);
+ if (std::error_code EC = BufferOrError.getError())
return EC;
+ auto Buffer = std::move(BufferOrError.get());
+ std::unique_ptr<InstrProfReader> Result;
+
// Create the reader.
if (IndexedInstrProfReader::hasFormat(*Buffer))
Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
@@ -58,16 +58,20 @@ InstrProfReader::create(std::string Path,
Result.reset(new TextInstrProfReader(std::move(Buffer)));
// Initialize the reader and return the result.
- return initializeReader(*Result);
+ if (std::error_code EC = initializeReader(*Result))
+ return EC;
+
+ return std::move(Result);
}
std::error_code IndexedInstrProfReader::create(
std::string Path, std::unique_ptr<IndexedInstrProfReader> &Result) {
// Set up the buffer to read.
- std::unique_ptr<MemoryBuffer> Buffer;
- if (std::error_code EC = setupMemoryBuffer(Path, Buffer))
+ auto BufferOrError = setupMemoryBuffer(Path);
+ if (std::error_code EC = BufferOrError.getError())
return EC;
+ auto Buffer = std::move(BufferOrError.get());
// Create the reader.
if (!IndexedInstrProfReader::hasFormat(*Buffer))
return instrprof_error::bad_magic;
@@ -83,8 +87,8 @@ void InstrProfIterator::Increment() {
}
std::error_code TextInstrProfReader::readNextRecord(InstrProfRecord &Record) {
- // Skip empty lines.
- while (!Line.is_at_end() && Line->empty())
+ // Skip empty lines and comments.
+ while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
++Line;
// If we hit EOF while looking for a name, we're done.
if (Line.is_at_end())
@@ -190,6 +194,9 @@ RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
// garbage at the end of the file.
if (CurrentPos + sizeof(RawHeader) > End)
return instrprof_error::malformed;
+ // The writer ensures each profile is padded to start at an aligned address.
+ if (reinterpret_cast<size_t>(CurrentPos) % alignOf<uint64_t>())
+ return instrprof_error::malformed;
// The magic should have the same byte order as in the previous header.
uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
if (Magic != swap(getRawMagic<IntPtrT>()))
@@ -307,8 +314,8 @@ std::error_code IndexedInstrProfReader::readHeader() {
return error(instrprof_error::bad_magic);
// Read the version.
- uint64_t Version = endian::readNext<uint64_t, little, unaligned>(Cur);
- if (Version != IndexedInstrProf::Version)
+ FormatVersion = endian::readNext<uint64_t, little, unaligned>(Cur);
+ if (FormatVersion > IndexedInstrProf::Version)
return error(instrprof_error::unsupported_version);
// Read the maximal function count.
@@ -331,18 +338,31 @@ std::error_code IndexedInstrProfReader::readHeader() {
}
std::error_code IndexedInstrProfReader::getFunctionCounts(
- StringRef FuncName, uint64_t &FuncHash, std::vector<uint64_t> &Counts) {
- const auto &Iter = Index->find(FuncName);
+ StringRef FuncName, uint64_t FuncHash, std::vector<uint64_t> &Counts) {
+ auto Iter = Index->find(FuncName);
if (Iter == Index->end())
return error(instrprof_error::unknown_function);
- // Found it. Make sure it's valid before giving back a result.
- const InstrProfRecord &Record = *Iter;
- if (Record.Name.empty())
- return error(instrprof_error::malformed);
- FuncHash = Record.Hash;
- Counts = Record.Counts;
- return success();
+ // Found it. Look for counters with the right hash.
+ ArrayRef<uint64_t> Data = (*Iter).Data;
+ uint64_t NumCounts;
+ for (uint64_t I = 0, E = Data.size(); I != E; I += NumCounts) {
+ // The function hash comes first.
+ uint64_t FoundHash = Data[I++];
+ // In v1, we have at least one count. Later, we have the number of counts.
+ if (I == E)
+ return error(instrprof_error::malformed);
+ NumCounts = FormatVersion == 1 ? E - I : Data[I++];
+ // If we have more counts than data, this is bogus.
+ if (I + NumCounts > E)
+ return error(instrprof_error::malformed);
+ // Check for a match and fill the vector if there is one.
+ if (FoundHash == FuncHash) {
+ Counts = Data.slice(I, NumCounts);
+ return success();
+ }
+ }
+ return error(instrprof_error::hash_mismatch);
}
std::error_code
@@ -351,10 +371,30 @@ IndexedInstrProfReader::readNextRecord(InstrProfRecord &Record) {
if (RecordIterator == Index->data_end())
return error(instrprof_error::eof);
- // Read the next one.
- Record = *RecordIterator;
- ++RecordIterator;
- if (Record.Name.empty())
+ // Record the current function name.
+ Record.Name = (*RecordIterator).Name;
+
+ ArrayRef<uint64_t> Data = (*RecordIterator).Data;
+ // Valid data starts with a hash and either a count or the number of counts.
+ if (CurrentOffset + 1 > Data.size())
+ return error(instrprof_error::malformed);
+ // First we have a function hash.
+ Record.Hash = Data[CurrentOffset++];
+ // In version 1 we knew the number of counters implicitly, but in newer
+ // versions we store the number of counters next.
+ uint64_t NumCounts =
+ FormatVersion == 1 ? Data.size() - CurrentOffset : Data[CurrentOffset++];
+ if (CurrentOffset + NumCounts > Data.size())
return error(instrprof_error::malformed);
+ // And finally the counts themselves.
+ Record.Counts = Data.slice(CurrentOffset, NumCounts);
+
+ // If we've exhausted this function's data, increment the record.
+ CurrentOffset += NumCounts;
+ if (CurrentOffset == Data.size()) {
+ ++RecordIterator;
+ CurrentOffset = 0;
+ }
+
return success();
}
diff --git a/contrib/llvm/lib/ProfileData/InstrProfWriter.cpp b/contrib/llvm/lib/ProfileData/InstrProfWriter.cpp
index e55c299..d4cde2e 100644
--- a/contrib/llvm/lib/ProfileData/InstrProfWriter.cpp
+++ b/contrib/llvm/lib/ProfileData/InstrProfWriter.cpp
@@ -13,12 +13,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
+#include "InstrProfIndexed.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"
-#include "InstrProfIndexed.h"
-
using namespace llvm;
namespace {
@@ -45,7 +44,9 @@ public:
offset_type N = K.size();
LE.write<offset_type>(N);
- offset_type M = (1 + V->Counts.size()) * sizeof(uint64_t);
+ offset_type M = 0;
+ for (const auto &Counts : *V)
+ M += (2 + Counts.second.size()) * sizeof(uint64_t);
LE.write<offset_type>(M);
return std::make_pair(N, M);
@@ -59,9 +60,13 @@ public:
offset_type) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
- LE.write<uint64_t>(V->Hash);
- for (uint64_t I : V->Counts)
- LE.write<uint64_t>(I);
+
+ for (const auto &Counts : *V) {
+ LE.write<uint64_t>(Counts.first);
+ LE.write<uint64_t>(Counts.second.size());
+ for (uint64_t I : Counts.second)
+ LE.write<uint64_t>(I);
+ }
}
};
}
@@ -70,41 +75,43 @@ std::error_code
InstrProfWriter::addFunctionCounts(StringRef FunctionName,
uint64_t FunctionHash,
ArrayRef<uint64_t> Counters) {
- auto Where = FunctionData.find(FunctionName);
- if (Where == FunctionData.end()) {
- // If this is the first time we've seen this function, just add it.
- auto &Data = FunctionData[FunctionName];
- Data.Hash = FunctionHash;
- Data.Counts = Counters;
+ auto &CounterData = FunctionData[FunctionName];
+
+ auto Where = CounterData.find(FunctionHash);
+ if (Where == CounterData.end()) {
+ // We've never seen a function with this name and hash, add it.
+ CounterData[FunctionHash] = Counters;
+ // We keep track of the max function count as we go for simplicity.
+ if (Counters[0] > MaxFunctionCount)
+ MaxFunctionCount = Counters[0];
return instrprof_error::success;
}
- auto &Data = Where->getValue();
- // We can only add to existing functions if they match, so we check the hash
- // and number of counters.
- if (Data.Hash != FunctionHash)
- return instrprof_error::hash_mismatch;
- if (Data.Counts.size() != Counters.size())
+ // We're updating a function we've seen before.
+ auto &FoundCounters = Where->second;
+ // If the number of counters doesn't match we either have bad data or a hash
+ // collision.
+ if (FoundCounters.size() != Counters.size())
return instrprof_error::count_mismatch;
- // These match, add up the counters.
+
for (size_t I = 0, E = Counters.size(); I < E; ++I) {
- if (Data.Counts[I] + Counters[I] < Data.Counts[I])
+ if (FoundCounters[I] + Counters[I] < FoundCounters[I])
return instrprof_error::counter_overflow;
- Data.Counts[I] += Counters[I];
+ FoundCounters[I] += Counters[I];
}
+ // We keep track of the max function count as we go for simplicity.
+ if (FoundCounters[0] > MaxFunctionCount)
+ MaxFunctionCount = FoundCounters[0];
+
return instrprof_error::success;
}
void InstrProfWriter::write(raw_fd_ostream &OS) {
OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator;
- uint64_t MaxFunctionCount = 0;
// Populate the hash table generator.
- for (const auto &I : FunctionData) {
+ for (const auto &I : FunctionData)
Generator.insert(I.getKey(), &I.getValue());
- if (I.getValue().Counts[0] > MaxFunctionCount)
- MaxFunctionCount = I.getValue().Counts[0];
- }
using namespace llvm::support;
endian::Writer<little> LE(OS);
diff --git a/contrib/llvm/lib/ProfileData/SampleProf.cpp b/contrib/llvm/lib/ProfileData/SampleProf.cpp
new file mode 100644
index 0000000..920c48a
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/SampleProf.cpp
@@ -0,0 +1,51 @@
+//=-- SampleProf.cpp - Sample profiling format support --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains common definitions used in the reading and writing of
+// sample profile data.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+
+using namespace llvm;
+
+namespace {
+class SampleProfErrorCategoryType : public std::error_category {
+ const char *name() const LLVM_NOEXCEPT override { return "llvm.sampleprof"; }
+ std::string message(int IE) const override {
+ sampleprof_error E = static_cast<sampleprof_error>(IE);
+ switch (E) {
+ case sampleprof_error::success:
+ return "Success";
+ case sampleprof_error::bad_magic:
+ return "Invalid file format (bad magic)";
+ case sampleprof_error::unsupported_version:
+ return "Unsupported format version";
+ case sampleprof_error::too_large:
+ return "Too much profile data";
+ case sampleprof_error::truncated:
+ return "Truncated profile data";
+ case sampleprof_error::malformed:
+ return "Malformed profile data";
+ case sampleprof_error::unrecognized_format:
+ return "Unrecognized profile encoding format";
+ }
+ llvm_unreachable("A value of sampleprof_error has no message.");
+ }
+};
+}
+
+static ManagedStatic<SampleProfErrorCategoryType> ErrorCategory;
+
+const std::error_category &llvm::sampleprof_category() {
+ return *ErrorCategory;
+}
diff --git a/contrib/llvm/lib/ProfileData/SampleProfReader.cpp b/contrib/llvm/lib/ProfileData/SampleProfReader.cpp
new file mode 100644
index 0000000..b39bfd6
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/SampleProfReader.cpp
@@ -0,0 +1,399 @@
+//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the class that reads LLVM sample profiles. It
+// supports two file formats: text and binary. The textual representation
+// is useful for debugging and testing purposes. The binary representation
+// is more compact, resulting in smaller file sizes. However, they can
+// both be used interchangeably.
+//
+// NOTE: If you are making changes to the file format, please remember
+// to document them in the Clang documentation at
+// tools/clang/docs/UsersManual.rst.
+//
+// Text format
+// -----------
+//
+// Sample profiles are written as ASCII text. The file is divided into
+// sections, which correspond to each of the functions executed at runtime.
+// Each section has the following format
+//
+// function1:total_samples:total_head_samples
+// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
+// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
+// ...
+// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
+//
+// The file may contain blank lines between sections and within a
+// section. However, the spacing within a single line is fixed. Additional
+// spaces will result in an error while reading the file.
+//
+// Function names must be mangled in order for the profile loader to
+// match them in the current translation unit. The two numbers in the
+// function header specify how many total samples were accumulated in the
+// function (first number), and the total number of samples accumulated
+// in the prologue of the function (second number). This head sample
+// count provides an indicator of how frequently the function is invoked.
+//
+// Each sampled line may contain several items. Some are optional (marked
+// below):
+//
+// a. Source line offset. This number represents the line number
+// in the function where the sample was collected. The line number is
+// always relative to the line where symbol of the function is
+// defined. So, if the function has its header at line 280, the offset
+// 13 is at line 293 in the file.
+//
+// Note that this offset should never be a negative number. This could
+// happen in cases like macros. The debug machinery will register the
+// line number at the point of macro expansion. So, if the macro was
+// expanded in a line before the start of the function, the profile
+// converter should emit a 0 as the offset (this means that the optimizers
+// will not be able to associate a meaningful weight to the instructions
+// in the macro).
+//
+// b. [OPTIONAL] Discriminator. This is used if the sampled program
+// was compiled with DWARF discriminator support
+// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
+// DWARF discriminators are unsigned integer values that allow the
+// compiler to distinguish between multiple execution paths on the
+// same source line location.
+//
+// For example, consider the line of code ``if (cond) foo(); else bar();``.
+// If the predicate ``cond`` is true 80% of the time, then the edge
+// into function ``foo`` should be considered to be taken most of the
+// time. But both calls to ``foo`` and ``bar`` are at the same source
+// line, so a sample count at that line is not sufficient. The
+// compiler needs to know which part of that line is taken more
+// frequently.
+//
+// This is what discriminators provide. In this case, the calls to
+// ``foo`` and ``bar`` will be at the same line, but will have
+// different discriminator values. This allows the compiler to correctly
+// set edge weights into ``foo`` and ``bar``.
+//
+// c. Number of samples. This is an integer quantity representing the
+// number of samples collected by the profiler at this source
+// location.
+//
+// d. [OPTIONAL] Potential call targets and samples. If present, this
+// line contains a call instruction. This models both direct and
+// number of samples. For example,
+//
+// 130: 7 foo:3 bar:2 baz:7
+//
+// The above means that at relative line offset 130 there is a call
+// instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
+// with ``baz()`` being the relatively more frequently called target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProfReader.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/LineIterator.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Regex.h"
+
+using namespace llvm::sampleprof;
+using namespace llvm;
+
+/// \brief Print the samples collected for a function on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+void FunctionSamples::print(raw_ostream &OS) {
+ OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
+ << " sampled lines\n";
+ for (const auto &SI : BodySamples) {
+ LineLocation Loc = SI.first;
+ const SampleRecord &Sample = SI.second;
+ OS << "\tline offset: " << Loc.LineOffset
+ << ", discriminator: " << Loc.Discriminator
+ << ", number of samples: " << Sample.getSamples();
+ if (Sample.hasCalls()) {
+ OS << ", calls:";
+ for (const auto &I : Sample.getCallTargets())
+ OS << " " << I.first() << ":" << I.second;
+ }
+ OS << "\n";
+ }
+ OS << "\n";
+}
+
+/// \brief Dump the function profile for \p FName.
+///
+/// \param FName Name of the function to print.
+/// \param OS Stream to emit the output to.
+void SampleProfileReader::dumpFunctionProfile(StringRef FName,
+ raw_ostream &OS) {
+ OS << "Function: " << FName << ": ";
+ Profiles[FName].print(OS);
+}
+
+/// \brief Dump all the function profiles found on stream \p OS.
+void SampleProfileReader::dump(raw_ostream &OS) {
+ for (const auto &I : Profiles)
+ dumpFunctionProfile(I.getKey(), OS);
+}
+
+/// \brief Load samples from a text file.
+///
+/// See the documentation at the top of the file for an explanation of
+/// the expected format.
+///
+/// \returns true if the file was loaded successfully, false otherwise.
+std::error_code SampleProfileReaderText::read() {
+ line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
+
+ // Read the profile of each function. Since each function may be
+ // mentioned more than once, and we are collecting flat profiles,
+ // accumulate samples as we parse them.
+ Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
+ Regex LineSampleRE("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
+ Regex CallSampleRE(" +([^0-9 ][^ ]*):([0-9]+)");
+ while (!LineIt.is_at_eof()) {
+ // Read the header of each function.
+ //
+ // Note that for function identifiers we are actually expecting
+ // mangled names, but we may not always get them. This happens when
+ // the compiler decides not to emit the function (e.g., it was inlined
+ // and removed). In this case, the binary will not have the linkage
+ // name for the function, so the profiler will emit the function's
+ // unmangled name, which may contain characters like ':' and '>' in its
+ // name (member functions, templates, etc).
+ //
+ // The only requirement we place on the identifier, then, is that it
+ // should not begin with a number.
+ SmallVector<StringRef, 4> Matches;
+ if (!HeadRE.match(*LineIt, &Matches)) {
+ reportParseError(LineIt.line_number(),
+ "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
+ return sampleprof_error::malformed;
+ }
+ assert(Matches.size() == 4);
+ StringRef FName = Matches[1];
+ unsigned NumSamples, NumHeadSamples;
+ Matches[2].getAsInteger(10, NumSamples);
+ Matches[3].getAsInteger(10, NumHeadSamples);
+ Profiles[FName] = FunctionSamples();
+ FunctionSamples &FProfile = Profiles[FName];
+ FProfile.addTotalSamples(NumSamples);
+ FProfile.addHeadSamples(NumHeadSamples);
+ ++LineIt;
+
+ // Now read the body. The body of the function ends when we reach
+ // EOF or when we see the start of the next function.
+ while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
+ if (!LineSampleRE.match(*LineIt, &Matches)) {
+ reportParseError(
+ LineIt.line_number(),
+ "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
+ return sampleprof_error::malformed;
+ }
+ assert(Matches.size() == 5);
+ unsigned LineOffset, NumSamples, Discriminator = 0;
+ Matches[1].getAsInteger(10, LineOffset);
+ if (Matches[2] != "")
+ Matches[2].getAsInteger(10, Discriminator);
+ Matches[3].getAsInteger(10, NumSamples);
+
+ // If there are function calls in this line, generate a call sample
+ // entry for each call.
+ std::string CallsLine(Matches[4]);
+ while (CallsLine != "") {
+ SmallVector<StringRef, 3> CallSample;
+ if (!CallSampleRE.match(CallsLine, &CallSample)) {
+ reportParseError(LineIt.line_number(),
+ "Expected 'mangled_name:NUM', found " + CallsLine);
+ return sampleprof_error::malformed;
+ }
+ StringRef CalledFunction = CallSample[1];
+ unsigned CalledFunctionSamples;
+ CallSample[2].getAsInteger(10, CalledFunctionSamples);
+ FProfile.addCalledTargetSamples(LineOffset, Discriminator,
+ CalledFunction, CalledFunctionSamples);
+ CallsLine = CallSampleRE.sub("", CallsLine);
+ }
+
+ FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
+ ++LineIt;
+ }
+ }
+
+ return sampleprof_error::success;
+}
+
+template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
+ unsigned NumBytesRead = 0;
+ std::error_code EC;
+ uint64_t Val = decodeULEB128(Data, &NumBytesRead);
+
+ if (Val > std::numeric_limits<T>::max())
+ EC = sampleprof_error::malformed;
+ else if (Data + NumBytesRead > End)
+ EC = sampleprof_error::truncated;
+ else
+ EC = sampleprof_error::success;
+
+ if (EC) {
+ reportParseError(0, EC.message());
+ return EC;
+ }
+
+ Data += NumBytesRead;
+ return static_cast<T>(Val);
+}
+
+ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
+ std::error_code EC;
+ StringRef Str(reinterpret_cast<const char *>(Data));
+ if (Data + Str.size() + 1 > End) {
+ EC = sampleprof_error::truncated;
+ reportParseError(0, EC.message());
+ return EC;
+ }
+
+ Data += Str.size() + 1;
+ return Str;
+}
+
+std::error_code SampleProfileReaderBinary::read() {
+ while (!at_eof()) {
+ auto FName(readString());
+ if (std::error_code EC = FName.getError())
+ return EC;
+
+ Profiles[*FName] = FunctionSamples();
+ FunctionSamples &FProfile = Profiles[*FName];
+
+ auto Val = readNumber<unsigned>();
+ if (std::error_code EC = Val.getError())
+ return EC;
+ FProfile.addTotalSamples(*Val);
+
+ Val = readNumber<unsigned>();
+ if (std::error_code EC = Val.getError())
+ return EC;
+ FProfile.addHeadSamples(*Val);
+
+ // Read the samples in the body.
+ auto NumRecords = readNumber<unsigned>();
+ if (std::error_code EC = NumRecords.getError())
+ return EC;
+ for (unsigned I = 0; I < *NumRecords; ++I) {
+ auto LineOffset = readNumber<uint64_t>();
+ if (std::error_code EC = LineOffset.getError())
+ return EC;
+
+ auto Discriminator = readNumber<uint64_t>();
+ if (std::error_code EC = Discriminator.getError())
+ return EC;
+
+ auto NumSamples = readNumber<uint64_t>();
+ if (std::error_code EC = NumSamples.getError())
+ return EC;
+
+ auto NumCalls = readNumber<unsigned>();
+ if (std::error_code EC = NumCalls.getError())
+ return EC;
+
+ for (unsigned J = 0; J < *NumCalls; ++J) {
+ auto CalledFunction(readString());
+ if (std::error_code EC = CalledFunction.getError())
+ return EC;
+
+ auto CalledFunctionSamples = readNumber<uint64_t>();
+ if (std::error_code EC = CalledFunctionSamples.getError())
+ return EC;
+
+ FProfile.addCalledTargetSamples(*LineOffset, *Discriminator,
+ *CalledFunction,
+ *CalledFunctionSamples);
+ }
+
+ FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples);
+ }
+ }
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderBinary::readHeader() {
+ Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
+ End = Data + Buffer->getBufferSize();
+
+ // Read and check the magic identifier.
+ auto Magic = readNumber<uint64_t>();
+ if (std::error_code EC = Magic.getError())
+ return EC;
+ else if (*Magic != SPMagic())
+ return sampleprof_error::bad_magic;
+
+ // Read the version number.
+ auto Version = readNumber<uint64_t>();
+ if (std::error_code EC = Version.getError())
+ return EC;
+ else if (*Version != SPVersion())
+ return sampleprof_error::unsupported_version;
+
+ return sampleprof_error::success;
+}
+
+bool SampleProfileReaderBinary::hasFormat(const MemoryBuffer &Buffer) {
+ const uint8_t *Data =
+ reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
+ uint64_t Magic = decodeULEB128(Data);
+ return Magic == SPMagic();
+}
+
+/// \brief Prepare a memory buffer for the contents of \p Filename.
+///
+/// \returns an error code indicating the status of the buffer.
+static ErrorOr<std::unique_ptr<MemoryBuffer>>
+setupMemoryBuffer(std::string Filename) {
+ auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename);
+ if (std::error_code EC = BufferOrErr.getError())
+ return EC;
+ auto Buffer = std::move(BufferOrErr.get());
+
+ // Sanity check the file.
+ if (Buffer->getBufferSize() > std::numeric_limits<unsigned>::max())
+ return sampleprof_error::too_large;
+
+ return std::move(Buffer);
+}
+
+/// \brief Create a sample profile reader based on the format of the input file.
+///
+/// \param Filename The file to open.
+///
+/// \param Reader The reader to instantiate according to \p Filename's format.
+///
+/// \param C The LLVM context to use to emit diagnostics.
+///
+/// \returns an error code indicating the status of the created reader.
+ErrorOr<std::unique_ptr<SampleProfileReader>>
+SampleProfileReader::create(StringRef Filename, LLVMContext &C) {
+ auto BufferOrError = setupMemoryBuffer(Filename);
+ if (std::error_code EC = BufferOrError.getError())
+ return EC;
+
+ auto Buffer = std::move(BufferOrError.get());
+ std::unique_ptr<SampleProfileReader> Reader;
+ if (SampleProfileReaderBinary::hasFormat(*Buffer))
+ Reader.reset(new SampleProfileReaderBinary(std::move(Buffer), C));
+ else
+ Reader.reset(new SampleProfileReaderText(std::move(Buffer), C));
+
+ if (std::error_code EC = Reader->readHeader())
+ return EC;
+
+ return std::move(Reader);
+}
diff --git a/contrib/llvm/lib/ProfileData/SampleProfWriter.cpp b/contrib/llvm/lib/ProfileData/SampleProfWriter.cpp
new file mode 100644
index 0000000..c95267a
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/SampleProfWriter.cpp
@@ -0,0 +1,126 @@
+//===- SampleProfWriter.cpp - Write LLVM sample profile data --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the class that writes LLVM sample profiles. It
+// supports two file formats: text and binary. The textual representation
+// is useful for debugging and testing purposes. The binary representation
+// is more compact, resulting in smaller file sizes. However, they can
+// both be used interchangeably.
+//
+// See lib/ProfileData/SampleProfReader.cpp for documentation on each of the
+// supported formats.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProfWriter.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/LineIterator.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Regex.h"
+
+using namespace llvm::sampleprof;
+using namespace llvm;
+
+/// \brief Write samples to a text file.
+bool SampleProfileWriterText::write(StringRef FName, const FunctionSamples &S) {
+ if (S.empty())
+ return true;
+
+ OS << FName << ":" << S.getTotalSamples() << ":" << S.getHeadSamples()
+ << "\n";
+
+ for (const auto &I : S.getBodySamples()) {
+ LineLocation Loc = I.first;
+ const SampleRecord &Sample = I.second;
+ if (Loc.Discriminator == 0)
+ OS << Loc.LineOffset << ": ";
+ else
+ OS << Loc.LineOffset << "." << Loc.Discriminator << ": ";
+
+ OS << Sample.getSamples();
+
+ for (const auto &J : Sample.getCallTargets())
+ OS << " " << J.first() << ":" << J.second;
+ OS << "\n";
+ }
+
+ return true;
+}
+
+SampleProfileWriterBinary::SampleProfileWriterBinary(StringRef F,
+ std::error_code &EC)
+ : SampleProfileWriter(F, EC, sys::fs::F_None) {
+ if (EC)
+ return;
+
+ // Write the file header.
+ encodeULEB128(SPMagic(), OS);
+ encodeULEB128(SPVersion(), OS);
+}
+
+/// \brief Write samples to a binary file.
+///
+/// \returns true if the samples were written successfully, false otherwise.
+bool SampleProfileWriterBinary::write(StringRef FName,
+ const FunctionSamples &S) {
+ if (S.empty())
+ return true;
+
+ OS << FName;
+ encodeULEB128(0, OS);
+ encodeULEB128(S.getTotalSamples(), OS);
+ encodeULEB128(S.getHeadSamples(), OS);
+ encodeULEB128(S.getBodySamples().size(), OS);
+ for (const auto &I : S.getBodySamples()) {
+ LineLocation Loc = I.first;
+ const SampleRecord &Sample = I.second;
+ encodeULEB128(Loc.LineOffset, OS);
+ encodeULEB128(Loc.Discriminator, OS);
+ encodeULEB128(Sample.getSamples(), OS);
+ encodeULEB128(Sample.getCallTargets().size(), OS);
+ for (const auto &J : Sample.getCallTargets()) {
+ std::string Callee = J.first();
+ unsigned CalleeSamples = J.second;
+ OS << Callee;
+ encodeULEB128(0, OS);
+ encodeULEB128(CalleeSamples, OS);
+ }
+ }
+
+ return true;
+}
+
+/// \brief Create a sample profile writer based on the specified format.
+///
+/// \param Filename The file to create.
+///
+/// \param Writer The writer to instantiate according to the specified format.
+///
+/// \param Format Encoding format for the profile file.
+///
+/// \returns an error code indicating the status of the created writer.
+ErrorOr<std::unique_ptr<SampleProfileWriter>>
+SampleProfileWriter::create(StringRef Filename, SampleProfileFormat Format) {
+ std::error_code EC;
+ std::unique_ptr<SampleProfileWriter> Writer;
+
+ if (Format == SPF_Binary)
+ Writer.reset(new SampleProfileWriterBinary(Filename, EC));
+ else if (Format == SPF_Text)
+ Writer.reset(new SampleProfileWriterText(Filename, EC));
+ else
+ EC = sampleprof_error::unrecognized_format;
+
+ if (EC)
+ return EC;
+
+ return std::move(Writer);
+}
diff --git a/contrib/llvm/lib/Support/APFloat.cpp b/contrib/llvm/lib/Support/APFloat.cpp
index 7989e30..393ecf4 100644
--- a/contrib/llvm/lib/Support/APFloat.cpp
+++ b/contrib/llvm/lib/Support/APFloat.cpp
@@ -35,8 +35,7 @@ using namespace llvm;
/* Assumed in hexadecimal significand parsing, and conversion to
hexadecimal strings. */
-#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
-COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
+static_assert(integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
namespace llvm {
@@ -212,15 +211,15 @@ skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
{
StringRef::iterator p = begin;
*dot = end;
- while (*p == '0' && p != end)
+ while (p != end && *p == '0')
p++;
- if (*p == '.') {
+ if (p != end && *p == '.') {
*dot = p++;
assert(end - begin != 1 && "Significand has no digits");
- while (*p == '0' && p != end)
+ while (p != end && *p == '0')
p++;
}
@@ -927,7 +926,10 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
assert(semantics == rhs.semantics);
precision = semantics->precision;
- newPartsCount = partCountForBits(precision * 2);
+
+ // Allocate space for twice as many bits as the original significand, plus one
+ // extra bit for the addition to overflow into.
+ newPartsCount = partCountForBits(precision * 2 + 1);
if (newPartsCount > 4)
fullSignificand = new integerPart[newPartsCount];
@@ -949,13 +951,14 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
// *this = a23 . a22 ... a0 * 2^e1
// rhs = b23 . b22 ... b0 * 2^e2
// the result of multiplication is:
- // *this = c47 c46 . c45 ... c0 * 2^(e1+e2)
- // Note that there are two significant bits at the left-hand side of the
- // radix point. Move the radix point toward left by one bit, and adjust
- // exponent accordingly.
- exponent += 1;
-
- if (addend) {
+ // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
+ // Note that there are three significant bits at the left-hand side of the
+ // radix point: two for the multiplication, and an overflow bit for the
+ // addition (that will always be zero at this point). Move the radix point
+ // toward left by two bits, and adjust exponent accordingly.
+ exponent += 2;
+
+ if (addend && addend->isNonZero()) {
// The intermediate result of the multiplication has "2 * precision"
// signicant bit; adjust the addend to be consistent with mul result.
//
@@ -965,13 +968,13 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
opStatus status;
unsigned int extendedPrecision;
- /* Normalize our MSB. */
- extendedPrecision = 2 * precision;
- if (omsb != extendedPrecision) {
+ // Normalize our MSB to one below the top bit to allow for overflow.
+ extendedPrecision = 2 * precision + 1;
+ if (omsb != extendedPrecision - 1) {
assert(extendedPrecision > omsb);
APInt::tcShiftLeft(fullSignificand, newPartsCount,
- extendedPrecision - omsb);
- exponent -= extendedPrecision - omsb;
+ (extendedPrecision - 1) - omsb);
+ exponent -= (extendedPrecision - 1) - omsb;
}
/* Create new semantics. */
@@ -988,6 +991,14 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
assert(status == opOK);
(void)status;
+
+ // Shift the significand of the addend right by one bit. This guarantees
+ // that the high bit of the significand is zero (same as fullSignificand),
+ // so the addition will overflow (if it does overflow at all) into the top bit.
+ lost_fraction = extendedAddend.shiftSignificandRight(1);
+ assert(lost_fraction == lfExactlyZero &&
+ "Lost precision while shifting addend for fused-multiply-add.");
+
lost_fraction = addOrSubtractSignificand(extendedAddend, false);
/* Restore our state. */
@@ -1003,7 +1014,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
// having "precision" significant-bits. First, move the radix point from
// poision "2*precision - 1" to "precision - 1". The exponent need to be
// adjusted by "2*precision - 1" - "precision - 1" = "precision".
- exponent -= precision;
+ exponent -= precision + 1;
// In case MSB resides at the left-hand side of radix point, shift the
// mantissa right by some amount to make sure the MSB reside right before
@@ -1801,7 +1812,7 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
extended-precision calculation. */
if (isFiniteNonZero() &&
multiplicand.isFiniteNonZero() &&
- addend.isFiniteNonZero()) {
+ addend.isFinite()) {
lostFraction lost_fraction;
lost_fraction = multiplySignificand(multiplicand, &addend);
@@ -1812,7 +1823,7 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
positive zero unless rounding to minus infinity, except that
adding two like-signed zeroes gives that zero. */
- if (category == fcZero && sign != addend.sign)
+ if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
sign = (rounding_mode == rmTowardNegative);
} else {
fs = multiplySpecials(multiplicand);
@@ -3377,7 +3388,9 @@ void APFloat::makeLargest(bool Negative) {
// internal consistency.
const unsigned NumUnusedHighBits =
PartCount*integerPartWidth - semantics->precision;
- significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits;
+ significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
+ ? (~integerPart(0) >> NumUnusedHighBits)
+ : 0;
}
/// Make this number the smallest magnitude denormal number in the given
@@ -3904,3 +3917,20 @@ APFloat::makeZero(bool Negative) {
exponent = semantics->minExponent-1;
APInt::tcSet(significandParts(), 0, partCount());
}
+
+APFloat llvm::scalbn(APFloat X, int Exp) {
+ if (X.isInfinity() || X.isZero() || X.isNaN())
+ return std::move(X);
+
+ auto MaxExp = X.getSemantics().maxExponent;
+ auto MinExp = X.getSemantics().minExponent;
+ if (Exp > (MaxExp - X.exponent))
+ // Overflow saturates to infinity.
+ return APFloat::getInf(X.getSemantics(), X.isNegative());
+ if (Exp < (MinExp - X.exponent))
+ // Underflow saturates to zero.
+ return APFloat::getZero(X.getSemantics(), X.isNegative());
+
+ X.exponent += Exp;
+ return std::move(X);
+}
diff --git a/contrib/llvm/lib/Support/APInt.cpp b/contrib/llvm/lib/Support/APInt.cpp
index fa929eb..0ddc2ab 100644
--- a/contrib/llvm/lib/Support/APInt.cpp
+++ b/contrib/llvm/lib/Support/APInt.cpp
@@ -454,8 +454,10 @@ APInt APInt::XorSlowCase(const APInt& RHS) const {
for (unsigned i = 0; i < numWords; ++i)
val[i] = pVal[i] ^ RHS.pVal[i];
+ APInt Result(val, getBitWidth());
// 0^0==1 so clear the high bits in case they got set.
- return APInt(val, getBitWidth()).clearUnusedBits();
+ Result.clearUnusedBits();
+ return Result;
}
APInt APInt::operator*(const APInt& RHS) const {
@@ -473,7 +475,8 @@ APInt APInt::operator+(const APInt& RHS) const {
return APInt(BitWidth, VAL + RHS.VAL);
APInt Result(BitWidth, 0);
add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
- return Result.clearUnusedBits();
+ Result.clearUnusedBits();
+ return Result;
}
APInt APInt::operator-(const APInt& RHS) const {
@@ -482,7 +485,8 @@ APInt APInt::operator-(const APInt& RHS) const {
return APInt(BitWidth, VAL - RHS.VAL);
APInt Result(BitWidth, 0);
sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
- return Result.clearUnusedBits();
+ Result.clearUnusedBits();
+ return Result;
}
bool APInt::EqualSlowCase(const APInt& RHS) const {
@@ -1114,7 +1118,9 @@ APInt APInt::ashr(unsigned shiftAmt) const {
uint64_t fillValue = (isNegative() ? -1ULL : 0);
for (unsigned i = breakWord+1; i < getNumWords(); ++i)
val[i] = fillValue;
- return APInt(val, BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
/// Logical right-shift this APInt by shiftAmt.
@@ -1151,7 +1157,9 @@ APInt APInt::lshr(unsigned shiftAmt) const {
// If we are shifting less than a word, compute the shift with a simple carry
if (shiftAmt < APINT_BITS_PER_WORD) {
lshrNear(val, pVal, getNumWords(), shiftAmt);
- return APInt(val, BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
// Compute some values needed by the remaining shift algorithms
@@ -1164,7 +1172,9 @@ APInt APInt::lshr(unsigned shiftAmt) const {
val[i] = pVal[i+offset];
for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
val[i] = 0;
- return APInt(val,BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
// Shift the low order words
@@ -1178,7 +1188,9 @@ APInt APInt::lshr(unsigned shiftAmt) const {
// Remaining words are 0
for (unsigned i = breakWord+1; i < getNumWords(); ++i)
val[i] = 0;
- return APInt(val, BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
/// Left-shift this APInt by shiftAmt.
@@ -1211,7 +1223,9 @@ APInt APInt::shlSlowCase(unsigned shiftAmt) const {
val[i] = pVal[i] << shiftAmt | carry;
carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
}
- return APInt(val, BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
// Compute some values needed by the remaining shift algorithms
@@ -1224,7 +1238,9 @@ APInt APInt::shlSlowCase(unsigned shiftAmt) const {
val[i] = 0;
for (unsigned i = offset; i < getNumWords(); i++)
val[i] = pVal[i-offset];
- return APInt(val,BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
// Copy whole words from this to Result.
@@ -1235,7 +1251,9 @@ APInt APInt::shlSlowCase(unsigned shiftAmt) const {
val[offset] = pVal[0] << wordShift;
for (i = 0; i < offset; ++i)
val[i] = 0;
- return APInt(val, BitWidth).clearUnusedBits();
+ APInt Result(val, BitWidth);
+ Result.clearUnusedBits();
+ return Result;
}
APInt APInt::rotl(const APInt &rotateAmt) const {
@@ -1303,7 +1321,7 @@ APInt APInt::sqrt() const {
// Okay, all the short cuts are exhausted. We must compute it. The following
// is a classical Babylonian method for computing the square root. This code
- // was adapted to APINt from a wikipedia article on such computations.
+ // was adapted to APInt from a wikipedia article on such computations.
// See http://www.wikipedia.org/ and go to the page named
// Calculate_an_integer_square_root.
unsigned nbits = BitWidth, i = 4;
@@ -1938,6 +1956,18 @@ APInt APInt::srem(const APInt &RHS) const {
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder) {
+ assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
+
+ // First, deal with the easy case
+ if (LHS.isSingleWord()) {
+ assert(RHS.VAL != 0 && "Divide by zero?");
+ uint64_t QuotVal = LHS.VAL / RHS.VAL;
+ uint64_t RemVal = LHS.VAL % RHS.VAL;
+ Quotient = APInt(LHS.BitWidth, QuotVal);
+ Remainder = APInt(LHS.BitWidth, RemVal);
+ return;
+ }
+
// Get some size facts about the dividend and divisor
unsigned lhsBits = LHS.getActiveBits();
unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
@@ -2046,19 +2076,29 @@ APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
return Res;
}
-APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
- Overflow = ShAmt >= getBitWidth();
+APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
+ Overflow = ShAmt.uge(getBitWidth());
if (Overflow)
- ShAmt = getBitWidth()-1;
+ return APInt(BitWidth, 0);
if (isNonNegative()) // Don't allow sign change.
- Overflow = ShAmt >= countLeadingZeros();
+ Overflow = ShAmt.uge(countLeadingZeros());
else
- Overflow = ShAmt >= countLeadingOnes();
+ Overflow = ShAmt.uge(countLeadingOnes());
return *this << ShAmt;
}
+APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
+ Overflow = ShAmt.uge(getBitWidth());
+ if (Overflow)
+ return APInt(BitWidth, 0);
+
+ Overflow = ShAmt.ugt(countLeadingZeros());
+
+ return *this << ShAmt;
+}
+
@@ -2270,8 +2310,7 @@ void APInt::print(raw_ostream &OS, bool isSigned) const {
// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
// and unrestricting assumption.
-#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
-COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
+static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
/* Some handy functions local to this file. */
namespace {
diff --git a/contrib/llvm/lib/Support/CommandLine.cpp b/contrib/llvm/lib/Support/CommandLine.cpp
index 586ecea..40570ca 100644
--- a/contrib/llvm/lib/Support/CommandLine.cpp
+++ b/contrib/llvm/lib/Support/CommandLine.cpp
@@ -17,6 +17,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/CommandLine.h"
+#include "llvm-c/Support.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
@@ -43,7 +44,8 @@ using namespace cl;
//===----------------------------------------------------------------------===//
// Template instantiations and anchors.
//
-namespace llvm { namespace cl {
+namespace llvm {
+namespace cl {
TEMPLATE_INSTANTIATION(class basic_parser<bool>);
TEMPLATE_INSTANTIATION(class basic_parser<boolOrDefault>);
TEMPLATE_INSTANTIATION(class basic_parser<int>);
@@ -59,7 +61,8 @@ TEMPLATE_INSTANTIATION(class opt<int>);
TEMPLATE_INSTANTIATION(class opt<std::string>);
TEMPLATE_INSTANTIATION(class opt<char>);
TEMPLATE_INSTANTIATION(class opt<bool>);
-} } // end namespace llvm::cl
+}
+} // end namespace llvm::cl
// Pin the vtables to this file.
void GenericOptionValue::anchor() {}
@@ -86,19 +89,16 @@ static char ProgramName[80] = "<premain>";
static const char *ProgramOverview = nullptr;
// This collects additional help to be printed.
-static ManagedStatic<std::vector<const char*> > MoreHelp;
+static ManagedStatic<std::vector<const char *>> MoreHelp;
-extrahelp::extrahelp(const char *Help)
- : morehelp(Help) {
+extrahelp::extrahelp(const char *Help) : morehelp(Help) {
MoreHelp->push_back(Help);
}
static bool OptionListChanged = false;
// MarkOptionsChanged - Internal helper function.
-void cl::MarkOptionsChanged() {
- OptionListChanged = true;
-}
+void cl::MarkOptionsChanged() { OptionListChanged = true; }
/// RegisteredOptionList - This is the list of the command line options that
/// have statically constructed themselves.
@@ -113,14 +113,20 @@ void Option::addArgument() {
}
void Option::removeArgument() {
- assert(NextRegistered && "argument never registered");
- assert(RegisteredOptionList == this && "argument is not the last registered");
- RegisteredOptionList = NextRegistered;
+ if (RegisteredOptionList == this) {
+ RegisteredOptionList = NextRegistered;
+ MarkOptionsChanged();
+ return;
+ }
+ Option *O = RegisteredOptionList;
+ for (; O->NextRegistered != this; O = O->NextRegistered)
+ ;
+ O->NextRegistered = NextRegistered;
MarkOptionsChanged();
}
// This collects the different option categories that have been registered.
-typedef SmallPtrSet<OptionCategory*,16> OptionCatSet;
+typedef SmallPtrSet<OptionCategory *, 16> OptionCatSet;
static ManagedStatic<OptionCatSet> RegisteredOptionCategories;
// Initialise the general option category.
@@ -131,7 +137,8 @@ void OptionCategory::registerCategory() {
RegisteredOptionCategories->end(),
[this](const OptionCategory *Category) {
return getName() == Category->getName();
- }) == 0 && "Duplicate option categories");
+ }) == 0 &&
+ "Duplicate option categories");
RegisteredOptionCategories->insert(this);
}
@@ -142,12 +149,12 @@ void OptionCategory::registerCategory() {
/// GetOptionInfo - Scan the list of registered options, turning them into data
/// structures that are easier to handle.
-static void GetOptionInfo(SmallVectorImpl<Option*> &PositionalOpts,
- SmallVectorImpl<Option*> &SinkOpts,
- StringMap<Option*> &OptionsMap) {
+static void GetOptionInfo(SmallVectorImpl<Option *> &PositionalOpts,
+ SmallVectorImpl<Option *> &SinkOpts,
+ StringMap<Option *> &OptionsMap) {
bool HadErrors = false;
- SmallVector<const char*, 16> OptionNames;
- Option *CAOpt = nullptr; // The ConsumeAfter option if it exists.
+ SmallVector<const char *, 16> OptionNames;
+ Option *CAOpt = nullptr; // The ConsumeAfter option if it exists.
for (Option *O = RegisteredOptionList; O; O = O->getNextRegisteredOption()) {
// If this option wants to handle multiple option names, get the full set.
// This handles enum options like "-O1 -O2" etc.
@@ -158,7 +165,7 @@ static void GetOptionInfo(SmallVectorImpl<Option*> &PositionalOpts,
// Handle named options.
for (size_t i = 0, e = OptionNames.size(); i != e; ++i) {
// Add argument to the argument map!
- if (OptionsMap.GetOrCreateValue(OptionNames[i], O).second != O) {
+ if (!OptionsMap.insert(std::make_pair(OptionNames[i], O)).second) {
errs() << ProgramName << ": CommandLine Error: Option '"
<< OptionNames[i] << "' registered more than once!\n";
HadErrors = true;
@@ -194,31 +201,32 @@ static void GetOptionInfo(SmallVectorImpl<Option*> &PositionalOpts,
report_fatal_error("inconsistency in registered CommandLine options");
}
-
/// LookupOption - Lookup the option specified by the specified option on the
/// command line. If there is a value specified (after an equal sign) return
/// that as well. This assumes that leading dashes have already been stripped.
static Option *LookupOption(StringRef &Arg, StringRef &Value,
- const StringMap<Option*> &OptionsMap) {
+ const StringMap<Option *> &OptionsMap) {
// Reject all dashes.
- if (Arg.empty()) return nullptr;
+ if (Arg.empty())
+ return nullptr;
size_t EqualPos = Arg.find('=');
// If we have an equals sign, remember the value.
if (EqualPos == StringRef::npos) {
// Look up the option.
- StringMap<Option*>::const_iterator I = OptionsMap.find(Arg);
+ StringMap<Option *>::const_iterator I = OptionsMap.find(Arg);
return I != OptionsMap.end() ? I->second : nullptr;
}
// If the argument before the = is a valid option name, we match. If not,
// return Arg unmolested.
- StringMap<Option*>::const_iterator I =
- OptionsMap.find(Arg.substr(0, EqualPos));
- if (I == OptionsMap.end()) return nullptr;
+ StringMap<Option *>::const_iterator I =
+ OptionsMap.find(Arg.substr(0, EqualPos));
+ if (I == OptionsMap.end())
+ return nullptr;
- Value = Arg.substr(EqualPos+1);
+ Value = Arg.substr(EqualPos + 1);
Arg = Arg.substr(0, EqualPos);
return I->second;
}
@@ -228,23 +236,25 @@ static Option *LookupOption(StringRef &Arg, StringRef &Value,
/// (after an equal sign) return that as well. This assumes that leading dashes
/// have already been stripped.
static Option *LookupNearestOption(StringRef Arg,
- const StringMap<Option*> &OptionsMap,
+ const StringMap<Option *> &OptionsMap,
std::string &NearestString) {
// Reject all dashes.
- if (Arg.empty()) return nullptr;
+ if (Arg.empty())
+ return nullptr;
// Split on any equal sign.
std::pair<StringRef, StringRef> SplitArg = Arg.split('=');
- StringRef &LHS = SplitArg.first; // LHS == Arg when no '=' is present.
+ StringRef &LHS = SplitArg.first; // LHS == Arg when no '=' is present.
StringRef &RHS = SplitArg.second;
// Find the closest match.
Option *Best = nullptr;
unsigned BestDistance = 0;
- for (StringMap<Option*>::const_iterator it = OptionsMap.begin(),
- ie = OptionsMap.end(); it != ie; ++it) {
+ for (StringMap<Option *>::const_iterator it = OptionsMap.begin(),
+ ie = OptionsMap.end();
+ it != ie; ++it) {
Option *O = it->second;
- SmallVector<const char*, 16> OptionNames;
+ SmallVector<const char *, 16> OptionNames;
O->getExtraOptionNames(OptionNames);
if (O->ArgStr[0])
OptionNames.push_back(O->ArgStr);
@@ -254,7 +264,7 @@ static Option *LookupNearestOption(StringRef Arg,
for (size_t i = 0, e = OptionNames.size(); i != e; ++i) {
StringRef Name = OptionNames[i];
unsigned Distance = StringRef(Name).edit_distance(
- Flag, /*AllowReplacements=*/true, /*MaxEditDistance=*/BestDistance);
+ Flag, /*AllowReplacements=*/true, /*MaxEditDistance=*/BestDistance);
if (!Best || Distance < BestDistance) {
Best = O;
BestDistance = Distance;
@@ -285,8 +295,8 @@ static bool CommaSeparateAndAddOccurrence(Option *Handler, unsigned pos,
if (Handler->addOccurrence(pos, ArgName, Val.substr(0, Pos), MultiArg))
return true;
// Erase the portion before the comma, AND the comma.
- Val = Val.substr(Pos+1);
- Value.substr(Pos+1); // Increment the original value pointer as well.
+ Val = Val.substr(Pos + 1);
+ Value.substr(Pos + 1); // Increment the original value pointer as well.
// Check for another comma.
Pos = Val.find(',');
}
@@ -313,9 +323,10 @@ static inline bool ProvideOption(Option *Handler, StringRef ArgName,
switch (Handler->getValueExpectedFlag()) {
case ValueRequired:
if (!Value.data()) { // No value specified?
- if (i+1 >= argc)
+ if (i + 1 >= argc)
return Handler->error("requires a value!");
// Steal the next argument, like for '-o filename'
+ assert(argv && "null check");
Value = argv[++i];
}
break;
@@ -325,8 +336,8 @@ static inline bool ProvideOption(Option *Handler, StringRef ArgName,
" with ValueDisallowed modifier!");
if (Value.data())
- return Handler->error("does not allow a value! '" +
- Twine(Value) + "' specified.");
+ return Handler->error("does not allow a value! '" + Twine(Value) +
+ "' specified.");
break;
case ValueOptional:
break;
@@ -347,8 +358,9 @@ static inline bool ProvideOption(Option *Handler, StringRef ArgName,
}
while (NumAdditionalVals > 0) {
- if (i+1 >= argc)
+ if (i + 1 >= argc)
return Handler->error("not enough values!");
+ assert(argv && "null check");
Value = argv[++i];
if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg))
@@ -364,7 +376,6 @@ static bool ProvidePositionalOption(Option *Handler, StringRef Arg, int i) {
return ProvideOption(Handler, Handler->ArgStr, Arg, 0, nullptr, Dummy);
}
-
// Option predicates...
static inline bool isGrouping(const Option *O) {
return O->getFormattingFlag() == cl::Grouping;
@@ -380,39 +391,42 @@ static inline bool isPrefixedOrGrouping(const Option *O) {
// otherwise return null.
//
static Option *getOptionPred(StringRef Name, size_t &Length,
- bool (*Pred)(const Option*),
- const StringMap<Option*> &OptionsMap) {
+ bool (*Pred)(const Option *),
+ const StringMap<Option *> &OptionsMap) {
- StringMap<Option*>::const_iterator OMI = OptionsMap.find(Name);
+ StringMap<Option *>::const_iterator OMI = OptionsMap.find(Name);
// Loop while we haven't found an option and Name still has at least two
// characters in it (so that the next iteration will not be the empty
// string.
while (OMI == OptionsMap.end() && Name.size() > 1) {
- Name = Name.substr(0, Name.size()-1); // Chop off the last character.
+ Name = Name.substr(0, Name.size() - 1); // Chop off the last character.
OMI = OptionsMap.find(Name);
}
if (OMI != OptionsMap.end() && Pred(OMI->second)) {
Length = Name.size();
- return OMI->second; // Found one!
+ return OMI->second; // Found one!
}
- return nullptr; // No option found!
+ return nullptr; // No option found!
}
/// HandlePrefixedOrGroupedOption - The specified argument string (which started
/// with at least one '-') does not fully match an available option. Check to
/// see if this is a prefix or grouped option. If so, split arg into output an
/// Arg/Value pair and return the Option to parse it with.
-static Option *HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
- bool &ErrorParsing,
- const StringMap<Option*> &OptionsMap) {
- if (Arg.size() == 1) return nullptr;
+static Option *
+HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
+ bool &ErrorParsing,
+ const StringMap<Option *> &OptionsMap) {
+ if (Arg.size() == 1)
+ return nullptr;
// Do the lookup!
size_t Length = 0;
Option *PGOpt = getOptionPred(Arg, Length, isPrefixedOrGrouping, OptionsMap);
- if (!PGOpt) return nullptr;
+ if (!PGOpt)
+ return nullptr;
// If the option is a prefixed option, then the value is simply the
// rest of the name... so fall through to later processing, by
@@ -438,8 +452,8 @@ static Option *HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired &&
"Option can not be cl::Grouping AND cl::ValueRequired!");
int Dummy = 0;
- ErrorParsing |= ProvideOption(PGOpt, OneArgName,
- StringRef(), 0, nullptr, Dummy);
+ ErrorParsing |=
+ ProvideOption(PGOpt, OneArgName, StringRef(), 0, nullptr, Dummy);
// Get the next grouping option.
PGOpt = getOptionPred(Arg, Length, isGrouping, OptionsMap);
@@ -449,8 +463,6 @@ static Option *HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
return PGOpt;
}
-
-
static bool RequiresValue(const Option *O) {
return O->getNumOccurrencesFlag() == cl::Required ||
O->getNumOccurrencesFlag() == cl::OneOrMore;
@@ -461,33 +473,33 @@ static bool EatsUnboundedNumberOfValues(const Option *O) {
O->getNumOccurrencesFlag() == cl::OneOrMore;
}
-static bool isWhitespace(char C) {
- return strchr(" \t\n\r\f\v", C);
-}
+static bool isWhitespace(char C) { return strchr(" \t\n\r\f\v", C); }
-static bool isQuote(char C) {
- return C == '\"' || C == '\'';
-}
+static bool isQuote(char C) { return C == '\"' || C == '\''; }
-static bool isGNUSpecial(char C) {
- return strchr("\\\"\' ", C);
-}
+static bool isGNUSpecial(char C) { return strchr("\\\"\' ", C); }
void cl::TokenizeGNUCommandLine(StringRef Src, StringSaver &Saver,
- SmallVectorImpl<const char *> &NewArgv) {
+ SmallVectorImpl<const char *> &NewArgv,
+ bool MarkEOLs) {
SmallString<128> Token;
for (size_t I = 0, E = Src.size(); I != E; ++I) {
// Consume runs of whitespace.
if (Token.empty()) {
- while (I != E && isWhitespace(Src[I]))
+ while (I != E && isWhitespace(Src[I])) {
+ // Mark the end of lines in response files
+ if (MarkEOLs && Src[I] == '\n')
+ NewArgv.push_back(nullptr);
++I;
- if (I == E) break;
+ }
+ if (I == E)
+ break;
}
// Backslashes can escape backslashes, spaces, and other quotes. Otherwise
// they are literal. This makes it much easier to read Windows file paths.
if (I + 1 < E && Src[I] == '\\' && isGNUSpecial(Src[I + 1])) {
- ++I; // Skip the escape.
+ ++I; // Skip the escape.
Token.push_back(Src[I]);
continue;
}
@@ -502,7 +514,8 @@ void cl::TokenizeGNUCommandLine(StringRef Src, StringSaver &Saver,
Token.push_back(Src[I]);
++I;
}
- if (I == E) break;
+ if (I == E)
+ break;
continue;
}
@@ -521,6 +534,9 @@ void cl::TokenizeGNUCommandLine(StringRef Src, StringSaver &Saver,
// Append the last token after hitting EOF with no whitespace.
if (!Token.empty())
NewArgv.push_back(Saver.SaveString(Token.c_str()));
+ // Mark the end of response files
+ if (MarkEOLs)
+ NewArgv.push_back(nullptr);
}
/// Backslashes are interpreted in a rather complicated way in the Windows-style
@@ -562,7 +578,8 @@ static size_t parseBackslash(StringRef Src, size_t I, SmallString<128> &Token) {
}
void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver,
- SmallVectorImpl<const char *> &NewArgv) {
+ SmallVectorImpl<const char *> &NewArgv,
+ bool MarkEOLs) {
SmallString<128> Token;
// This is a small state machine to consume characters until it reaches the
@@ -572,8 +589,12 @@ void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver,
// INIT state indicates that the current input index is at the start of
// the string or between tokens.
if (State == INIT) {
- if (isWhitespace(Src[I]))
+ if (isWhitespace(Src[I])) {
+ // Mark the end of lines in response files
+ if (MarkEOLs && Src[I] == '\n')
+ NewArgv.push_back(nullptr);
continue;
+ }
if (Src[I] == '"') {
State = QUOTED;
continue;
@@ -596,6 +617,9 @@ void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver,
NewArgv.push_back(Saver.SaveString(Token.c_str()));
Token.clear();
State = INIT;
+ // Mark the end of lines in response files
+ if (MarkEOLs && Src[I] == '\n')
+ NewArgv.push_back(nullptr);
continue;
}
if (Src[I] == '"') {
@@ -626,20 +650,24 @@ void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver,
// Append the last token after hitting EOF with no whitespace.
if (!Token.empty())
NewArgv.push_back(Saver.SaveString(Token.c_str()));
+ // Mark the end of response files
+ if (MarkEOLs)
+ NewArgv.push_back(nullptr);
}
static bool ExpandResponseFile(const char *FName, StringSaver &Saver,
TokenizerCallback Tokenizer,
- SmallVectorImpl<const char *> &NewArgv) {
+ SmallVectorImpl<const char *> &NewArgv,
+ bool MarkEOLs = false) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MemBufOrErr =
MemoryBuffer::getFile(FName);
if (!MemBufOrErr)
return false;
- std::unique_ptr<MemoryBuffer> MemBuf = std::move(MemBufOrErr.get());
- StringRef Str(MemBuf->getBufferStart(), MemBuf->getBufferSize());
+ MemoryBuffer &MemBuf = *MemBufOrErr.get();
+ StringRef Str(MemBuf.getBufferStart(), MemBuf.getBufferSize());
// If we have a UTF-16 byte order mark, convert to UTF-8 for parsing.
- ArrayRef<char> BufRef(MemBuf->getBufferStart(), MemBuf->getBufferEnd());
+ ArrayRef<char> BufRef(MemBuf.getBufferStart(), MemBuf.getBufferEnd());
std::string UTF8Buf;
if (hasUTF16ByteOrderMark(BufRef)) {
if (!convertUTF16ToUTF8String(BufRef, UTF8Buf))
@@ -648,7 +676,7 @@ static bool ExpandResponseFile(const char *FName, StringSaver &Saver,
}
// Tokenize the contents into NewArgv.
- Tokenizer(Str, Saver, NewArgv);
+ Tokenizer(Str, Saver, NewArgv, MarkEOLs);
return true;
}
@@ -656,13 +684,19 @@ static bool ExpandResponseFile(const char *FName, StringSaver &Saver,
/// \brief Expand response files on a command line recursively using the given
/// StringSaver and tokenization strategy.
bool cl::ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer,
- SmallVectorImpl<const char *> &Argv) {
+ SmallVectorImpl<const char *> &Argv,
+ bool MarkEOLs) {
unsigned RspFiles = 0;
bool AllExpanded = true;
// Don't cache Argv.size() because it can change.
- for (unsigned I = 0; I != Argv.size(); ) {
+ for (unsigned I = 0; I != Argv.size();) {
const char *Arg = Argv[I];
+ // Check if it is an EOL marker
+ if (Arg == nullptr) {
+ ++I;
+ continue;
+ }
if (Arg[0] != '@') {
++I;
continue;
@@ -678,7 +712,8 @@ bool cl::ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer,
// FIXME: If a nested response file uses a relative path, is it relative to
// the cwd of the process or the response file?
SmallVector<const char *, 0> ExpandedArgv;
- if (!ExpandResponseFile(Arg + 1, Saver, Tokenizer, ExpandedArgv)) {
+ if (!ExpandResponseFile(Arg + 1, Saver, Tokenizer, ExpandedArgv,
+ MarkEOLs)) {
// We couldn't read this file, so we leave it in the argument stream and
// move on.
AllExpanded = false;
@@ -692,22 +727,23 @@ bool cl::ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer,
}
namespace {
- class StrDupSaver : public StringSaver {
- std::vector<char*> Dups;
- public:
- ~StrDupSaver() {
- for (std::vector<char *>::iterator I = Dups.begin(), E = Dups.end();
- I != E; ++I) {
- char *Dup = *I;
- free(Dup);
- }
- }
- const char *SaveString(const char *Str) override {
- char *Dup = strdup(Str);
- Dups.push_back(Dup);
- return Dup;
+class StrDupSaver : public StringSaver {
+ std::vector<char *> Dups;
+
+public:
+ ~StrDupSaver() {
+ for (std::vector<char *>::iterator I = Dups.begin(), E = Dups.end(); I != E;
+ ++I) {
+ char *Dup = *I;
+ free(Dup);
}
- };
+ }
+ const char *SaveString(const char *Str) override {
+ char *Dup = strdup(Str);
+ Dups.push_back(Dup);
+ return Dup;
+ }
+};
}
/// ParseEnvironmentOptions - An alternative entry point to the
@@ -739,16 +775,15 @@ void cl::ParseEnvironmentOptions(const char *progName, const char *envVar,
ParseCommandLineOptions(newArgc, &newArgv[0], Overview);
}
-void cl::ParseCommandLineOptions(int argc, const char * const *argv,
+void cl::ParseCommandLineOptions(int argc, const char *const *argv,
const char *Overview) {
// Process all registered options.
- SmallVector<Option*, 4> PositionalOpts;
- SmallVector<Option*, 4> SinkOpts;
- StringMap<Option*> Opts;
+ SmallVector<Option *, 4> PositionalOpts;
+ SmallVector<Option *, 4> SinkOpts;
+ StringMap<Option *> Opts;
GetOptionInfo(PositionalOpts, SinkOpts, Opts);
- assert((!Opts.empty() || !PositionalOpts.empty()) &&
- "No options specified!");
+ assert((!Opts.empty() || !PositionalOpts.empty()) && "No options specified!");
// Expand response files.
SmallVector<const char *, 20> newArgv;
@@ -784,8 +819,8 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// Calculate how many positional values are _required_.
bool UnboundedFound = false;
- for (size_t i = ConsumeAfterOpt ? 1 : 0, e = PositionalOpts.size();
- i != e; ++i) {
+ for (size_t i = ConsumeAfterOpt ? 1 : 0, e = PositionalOpts.size(); i != e;
+ ++i) {
Option *Opt = PositionalOpts[i];
if (RequiresValue(Opt))
++NumPositionalRequired;
@@ -793,10 +828,10 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// ConsumeAfter cannot be combined with "optional" positional options
// unless there is only one positional argument...
if (PositionalOpts.size() > 2)
- ErrorParsing |=
- Opt->error("error - this positional option will never be matched, "
- "because it does not Require a value, and a "
- "cl::ConsumeAfter option is active!");
+ ErrorParsing |= Opt->error(
+ "error - this positional option will never be matched, "
+ "because it does not Require a value, and a "
+ "cl::ConsumeAfter option is active!");
} else if (UnboundedFound && !Opt->ArgStr[0]) {
// This option does not "require" a value... Make sure this option is
// not specified after an option that eats all extra arguments, or this
@@ -815,7 +850,7 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// PositionalVals - A vector of "positional" arguments we accumulate into
// the process at the end.
//
- SmallVector<std::pair<StringRef,unsigned>, 4> PositionalVals;
+ SmallVector<std::pair<StringRef, unsigned>, 4> PositionalVals;
// If the program has named positional arguments, and the name has been run
// across, keep track of which positional argument was named. Otherwise put
@@ -823,7 +858,7 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
Option *ActivePositionalArg = nullptr;
// Loop over all of the arguments... processing them.
- bool DashDashFound = false; // Have we read '--'?
+ bool DashDashFound = false; // Have we read '--'?
for (int i = 1; i < argc; ++i) {
Option *Handler = nullptr;
Option *NearestHandler = nullptr;
@@ -850,19 +885,19 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// Positional argument!
if (ActivePositionalArg) {
ProvidePositionalOption(ActivePositionalArg, argv[i], i);
- continue; // We are done!
+ continue; // We are done!
}
if (!PositionalOpts.empty()) {
- PositionalVals.push_back(std::make_pair(argv[i],i));
+ PositionalVals.push_back(std::make_pair(argv[i], i));
// All of the positional arguments have been fulfulled, give the rest to
// the consume after option... if it's specified...
//
if (PositionalVals.size() >= NumPositionalRequired && ConsumeAfterOpt) {
for (++i; i < argc; ++i)
- PositionalVals.push_back(std::make_pair(argv[i],i));
- break; // Handle outside of the argument processing loop...
+ PositionalVals.push_back(std::make_pair(argv[i], i));
+ break; // Handle outside of the argument processing loop...
}
// Delay processing positional arguments until the end...
@@ -870,14 +905,14 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
}
} else if (argv[i][0] == '-' && argv[i][1] == '-' && argv[i][2] == 0 &&
!DashDashFound) {
- DashDashFound = true; // This is the mythical "--"?
- continue; // Don't try to process it as an argument itself.
+ DashDashFound = true; // This is the mythical "--"?
+ continue; // Don't try to process it as an argument itself.
} else if (ActivePositionalArg &&
(ActivePositionalArg->getMiscFlags() & PositionalEatsArgs)) {
// If there is a positional argument eating options, check to see if this
// option is another positional argument. If so, treat it as an argument,
// otherwise feed it to the eating positional.
- ArgName = argv[i]+1;
+ ArgName = argv[i] + 1;
// Eat leading dashes.
while (!ArgName.empty() && ArgName[0] == '-')
ArgName = ArgName.substr(1);
@@ -885,11 +920,11 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
Handler = LookupOption(ArgName, Value, Opts);
if (!Handler || Handler->getFormattingFlag() != cl::Positional) {
ProvidePositionalOption(ActivePositionalArg, argv[i], i);
- continue; // We are done!
+ continue; // We are done!
}
- } else { // We start with a '-', must be an argument.
- ArgName = argv[i]+1;
+ } else { // We start with a '-', must be an argument.
+ ArgName = argv[i] + 1;
// Eat leading dashes.
while (!ArgName.empty() && ArgName[0] == '-')
ArgName = ArgName.substr(1);
@@ -898,31 +933,32 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// Check to see if this "option" is really a prefixed or grouped argument.
if (!Handler)
- Handler = HandlePrefixedOrGroupedOption(ArgName, Value,
- ErrorParsing, Opts);
+ Handler =
+ HandlePrefixedOrGroupedOption(ArgName, Value, ErrorParsing, Opts);
// Otherwise, look for the closest available option to report to the user
// in the upcoming error.
if (!Handler && SinkOpts.empty())
- NearestHandler = LookupNearestOption(ArgName, Opts,
- NearestHandlerString);
+ NearestHandler =
+ LookupNearestOption(ArgName, Opts, NearestHandlerString);
}
if (!Handler) {
if (SinkOpts.empty()) {
- errs() << ProgramName << ": Unknown command line argument '"
- << argv[i] << "'. Try: '" << argv[0] << " -help'\n";
+ errs() << ProgramName << ": Unknown command line argument '" << argv[i]
+ << "'. Try: '" << argv[0] << " -help'\n";
if (NearestHandler) {
// If we know a near match, report it as well.
- errs() << ProgramName << ": Did you mean '-"
- << NearestHandlerString << "'?\n";
+ errs() << ProgramName << ": Did you mean '-" << NearestHandlerString
+ << "'?\n";
}
ErrorParsing = true;
} else {
- for (SmallVectorImpl<Option*>::iterator I = SinkOpts.begin(),
- E = SinkOpts.end(); I != E ; ++I)
+ for (SmallVectorImpl<Option *>::iterator I = SinkOpts.begin(),
+ E = SinkOpts.end();
+ I != E; ++I)
(*I)->addOccurrence(i, "", argv[i]);
}
continue;
@@ -939,17 +975,16 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// Check and handle positional arguments now...
if (NumPositionalRequired > PositionalVals.size()) {
errs() << ProgramName
- << ": Not enough positional command line arguments specified!\n"
- << "Must specify at least " << NumPositionalRequired
- << " positional arguments: See: " << argv[0] << " -help\n";
+ << ": Not enough positional command line arguments specified!\n"
+ << "Must specify at least " << NumPositionalRequired
+ << " positional arguments: See: " << argv[0] << " -help\n";
ErrorParsing = true;
} else if (!HasUnlimitedPositionals &&
PositionalVals.size() > PositionalOpts.size()) {
- errs() << ProgramName
- << ": Too many positional arguments specified!\n"
- << "Can specify at most " << PositionalOpts.size()
- << " positional arguments: See: " << argv[0] << " -help\n";
+ errs() << ProgramName << ": Too many positional arguments specified!\n"
+ << "Can specify at most " << PositionalOpts.size()
+ << " positional arguments: See: " << argv[0] << " -help\n";
ErrorParsing = true;
} else if (!ConsumeAfterOpt) {
@@ -960,7 +995,7 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
ProvidePositionalOption(PositionalOpts[i], PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
ValNo++;
- --NumPositionalRequired; // We fulfilled our duty...
+ --NumPositionalRequired; // We fulfilled our duty...
}
// If we _can_ give this option more arguments, do so now, as long as we
@@ -968,13 +1003,13 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// option even _WANTS_ any more.
//
bool Done = PositionalOpts[i]->getNumOccurrencesFlag() == cl::Required;
- while (NumVals-ValNo > NumPositionalRequired && !Done) {
+ while (NumVals - ValNo > NumPositionalRequired && !Done) {
switch (PositionalOpts[i]->getNumOccurrencesFlag()) {
case cl::Optional:
- Done = true; // Optional arguments want _at most_ one value
- // FALL THROUGH
- case cl::ZeroOrMore: // Zero or more will take all they can get...
- case cl::OneOrMore: // One or more will take all they can get...
+ Done = true; // Optional arguments want _at most_ one value
+ // FALL THROUGH
+ case cl::ZeroOrMore: // Zero or more will take all they can get...
+ case cl::OneOrMore: // One or more will take all they can get...
ProvidePositionalOption(PositionalOpts[i],
PositionalVals[ValNo].first,
PositionalVals[ValNo].second);
@@ -982,7 +1017,7 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
break;
default:
llvm_unreachable("Internal error, unexpected NumOccurrences flag in "
- "positional argument processing!");
+ "positional argument processing!");
}
}
}
@@ -1012,9 +1047,9 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// Handle over all of the rest of the arguments to the
// cl::ConsumeAfter command line option...
for (; ValNo != PositionalVals.size(); ++ValNo)
- ErrorParsing |= ProvidePositionalOption(ConsumeAfterOpt,
- PositionalVals[ValNo].first,
- PositionalVals[ValNo].second);
+ ErrorParsing |=
+ ProvidePositionalOption(ConsumeAfterOpt, PositionalVals[ValNo].first,
+ PositionalVals[ValNo].second);
}
// Loop over args and make sure all required args are specified!
@@ -1026,7 +1061,7 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
Opt.second->error("must be specified at least once!");
ErrorParsing = true;
}
- // Fall through
+ // Fall through
default:
break;
}
@@ -1036,10 +1071,8 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
// Note that if ReadResponseFiles == true, this must be done before the
// memory allocated for the expanded command line is free()d below.
DEBUG(dbgs() << "Args: ";
- for (int i = 0; i < argc; ++i)
- dbgs() << argv[i] << ' ';
- dbgs() << '\n';
- );
+ for (int i = 0; i < argc; ++i) dbgs() << argv[i] << ' ';
+ dbgs() << '\n';);
// Free all of the memory allocated to the map. Command line options may only
// be processed once!
@@ -1048,7 +1081,8 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
MoreHelp->clear();
// If we had an error processing our arguments, don't let the program execute
- if (ErrorParsing) exit(1);
+ if (ErrorParsing)
+ exit(1);
}
//===----------------------------------------------------------------------===//
@@ -1056,9 +1090,10 @@ void cl::ParseCommandLineOptions(int argc, const char * const *argv,
//
bool Option::error(const Twine &Message, StringRef ArgName) {
- if (!ArgName.data()) ArgName = ArgStr;
+ if (!ArgName.data())
+ ArgName = ArgStr;
if (ArgName.empty())
- errs() << HelpStr; // Be nice for positional arguments
+ errs() << HelpStr; // Be nice for positional arguments
else
errs() << ProgramName << ": for the -" << ArgName;
@@ -1066,10 +1101,10 @@ bool Option::error(const Twine &Message, StringRef ArgName) {
return true;
}
-bool Option::addOccurrence(unsigned pos, StringRef ArgName,
- StringRef Value, bool MultiArg) {
+bool Option::addOccurrence(unsigned pos, StringRef ArgName, StringRef Value,
+ bool MultiArg) {
if (!MultiArg)
- NumOccurrences++; // Increment the number of times we have been seen
+ NumOccurrences++; // Increment the number of times we have been seen
switch (getNumOccurrencesFlag()) {
case Optional:
@@ -1079,21 +1114,22 @@ bool Option::addOccurrence(unsigned pos, StringRef ArgName,
case Required:
if (NumOccurrences > 1)
return error("must occur exactly one time!", ArgName);
- // Fall through
+ // Fall through
case OneOrMore:
case ZeroOrMore:
- case ConsumeAfter: break;
+ case ConsumeAfter:
+ break;
}
return handleOccurrence(pos, ArgName, Value);
}
-
// getValueStr - Get the value description string, using "DefaultMsg" if nothing
// has been specified yet.
//
static const char *getValueStr(const Option &O, const char *DefaultMsg) {
- if (O.ValueStr[0] == 0) return DefaultMsg;
+ if (O.ValueStr[0] == 0)
+ return DefaultMsg;
return O.ValueStr;
}
@@ -1102,9 +1138,7 @@ static const char *getValueStr(const Option &O, const char *DefaultMsg) {
//
// Return the width of the option tag for printing...
-size_t alias::getOptionWidth() const {
- return std::strlen(ArgStr)+6;
-}
+size_t alias::getOptionWidth() const { return std::strlen(ArgStr) + 6; }
static void printHelpStr(StringRef HelpStr, size_t Indent,
size_t FirstLineIndentedBy) {
@@ -1133,7 +1167,7 @@ void alias::printOptionInfo(size_t GlobalWidth) const {
size_t basic_parser_impl::getOptionWidth(const Option &O) const {
size_t Len = std::strlen(O.ArgStr);
if (const char *ValName = getValueName())
- Len += std::strlen(getValueStr(O, ValName))+3;
+ Len += std::strlen(getValueStr(O, ValName)) + 3;
return Len + 6;
}
@@ -1154,14 +1188,13 @@ void basic_parser_impl::printOptionInfo(const Option &O,
void basic_parser_impl::printOptionName(const Option &O,
size_t GlobalWidth) const {
outs() << " -" << O.ArgStr;
- outs().indent(GlobalWidth-std::strlen(O.ArgStr));
+ outs().indent(GlobalWidth - std::strlen(O.ArgStr));
}
-
// parser<bool> implementation
//
-bool parser<bool>::parse(Option &O, StringRef ArgName,
- StringRef Arg, bool &Value) {
+bool parser<bool>::parse(Option &O, StringRef ArgName, StringRef Arg,
+ bool &Value) {
if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
Arg == "1") {
Value = true;
@@ -1178,8 +1211,8 @@ bool parser<bool>::parse(Option &O, StringRef ArgName,
// parser<boolOrDefault> implementation
//
-bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName,
- StringRef Arg, boolOrDefault &Value) {
+bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName, StringRef Arg,
+ boolOrDefault &Value) {
if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
Arg == "1") {
Value = BOU_TRUE;
@@ -1196,8 +1229,8 @@ bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName,
// parser<int> implementation
//
-bool parser<int>::parse(Option &O, StringRef ArgName,
- StringRef Arg, int &Value) {
+bool parser<int>::parse(Option &O, StringRef ArgName, StringRef Arg,
+ int &Value) {
if (Arg.getAsInteger(0, Value))
return O.error("'" + Arg + "' value invalid for integer argument!");
return false;
@@ -1205,8 +1238,8 @@ bool parser<int>::parse(Option &O, StringRef ArgName,
// parser<unsigned> implementation
//
-bool parser<unsigned>::parse(Option &O, StringRef ArgName,
- StringRef Arg, unsigned &Value) {
+bool parser<unsigned>::parse(Option &O, StringRef ArgName, StringRef Arg,
+ unsigned &Value) {
if (Arg.getAsInteger(0, Value))
return O.error("'" + Arg + "' value invalid for uint argument!");
@@ -1216,7 +1249,8 @@ bool parser<unsigned>::parse(Option &O, StringRef ArgName,
// parser<unsigned long long> implementation
//
bool parser<unsigned long long>::parse(Option &O, StringRef ArgName,
- StringRef Arg, unsigned long long &Value){
+ StringRef Arg,
+ unsigned long long &Value) {
if (Arg.getAsInteger(0, Value))
return O.error("'" + Arg + "' value invalid for uint argument!");
@@ -1235,13 +1269,13 @@ static bool parseDouble(Option &O, StringRef Arg, double &Value) {
return false;
}
-bool parser<double>::parse(Option &O, StringRef ArgName,
- StringRef Arg, double &Val) {
+bool parser<double>::parse(Option &O, StringRef ArgName, StringRef Arg,
+ double &Val) {
return parseDouble(O, Arg, Val);
}
-bool parser<float>::parse(Option &O, StringRef ArgName,
- StringRef Arg, float &Val) {
+bool parser<float>::parse(Option &O, StringRef ArgName, StringRef Arg,
+ float &Val) {
double dVal;
if (parseDouble(O, Arg, dVal))
return true;
@@ -1249,8 +1283,6 @@ bool parser<float>::parse(Option &O, StringRef ArgName,
return false;
}
-
-
// generic_parser_base implementation
//
@@ -1267,18 +1299,17 @@ unsigned generic_parser_base::findOption(const char *Name) {
return e;
}
-
// Return the width of the option tag for printing...
size_t generic_parser_base::getOptionWidth(const Option &O) const {
if (O.hasArgStr()) {
- size_t Size = std::strlen(O.ArgStr)+6;
+ size_t Size = std::strlen(O.ArgStr) + 6;
for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
- Size = std::max(Size, std::strlen(getOption(i))+8);
+ Size = std::max(Size, std::strlen(getOption(i)) + 8);
return Size;
} else {
size_t BaseSize = 0;
for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
- BaseSize = std::max(BaseSize, std::strlen(getOption(i))+8);
+ BaseSize = std::max(BaseSize, std::strlen(getOption(i)) + 8);
return BaseSize;
}
}
@@ -1293,7 +1324,7 @@ void generic_parser_base::printOptionInfo(const Option &O,
printHelpStr(O.HelpStr, GlobalWidth, std::strlen(O.ArgStr) + 6);
for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
- size_t NumSpaces = GlobalWidth-strlen(getOption(i))-8;
+ size_t NumSpaces = GlobalWidth - strlen(getOption(i)) - 8;
outs() << " =" << getOption(i);
outs().indent(NumSpaces) << " - " << getDescription(i) << '\n';
}
@@ -1313,12 +1344,11 @@ static const size_t MaxOptWidth = 8; // arbitrary spacing for printOptionDiff
// printGenericOptionDiff - Print the value of this option and it's default.
//
// "Generic" options have each value mapped to a name.
-void generic_parser_base::
-printGenericOptionDiff(const Option &O, const GenericOptionValue &Value,
- const GenericOptionValue &Default,
- size_t GlobalWidth) const {
+void generic_parser_base::printGenericOptionDiff(
+ const Option &O, const GenericOptionValue &Value,
+ const GenericOptionValue &Default, size_t GlobalWidth) const {
outs() << " -" << O.ArgStr;
- outs().indent(GlobalWidth-std::strlen(O.ArgStr));
+ outs().indent(GlobalWidth - std::strlen(O.ArgStr));
unsigned NumOpts = getNumOptions();
for (unsigned i = 0; i != NumOpts; ++i) {
@@ -1343,25 +1373,25 @@ printGenericOptionDiff(const Option &O, const GenericOptionValue &Value,
// printOptionDiff - Specializations for printing basic value types.
//
-#define PRINT_OPT_DIFF(T) \
- void parser<T>:: \
- printOptionDiff(const Option &O, T V, OptionValue<T> D, \
- size_t GlobalWidth) const { \
- printOptionName(O, GlobalWidth); \
- std::string Str; \
- { \
- raw_string_ostream SS(Str); \
- SS << V; \
- } \
- outs() << "= " << Str; \
- size_t NumSpaces = MaxOptWidth > Str.size() ? MaxOptWidth - Str.size() : 0;\
- outs().indent(NumSpaces) << " (default: "; \
- if (D.hasValue()) \
- outs() << D.getValue(); \
- else \
- outs() << "*no default*"; \
- outs() << ")\n"; \
- } \
+#define PRINT_OPT_DIFF(T) \
+ void parser<T>::printOptionDiff(const Option &O, T V, OptionValue<T> D, \
+ size_t GlobalWidth) const { \
+ printOptionName(O, GlobalWidth); \
+ std::string Str; \
+ { \
+ raw_string_ostream SS(Str); \
+ SS << V; \
+ } \
+ outs() << "= " << Str; \
+ size_t NumSpaces = \
+ MaxOptWidth > Str.size() ? MaxOptWidth - Str.size() : 0; \
+ outs().indent(NumSpaces) << " (default: "; \
+ if (D.hasValue()) \
+ outs() << D.getValue(); \
+ else \
+ outs() << "*no default*"; \
+ outs() << ")\n"; \
+ }
PRINT_OPT_DIFF(bool)
PRINT_OPT_DIFF(boolOrDefault)
@@ -1372,9 +1402,9 @@ PRINT_OPT_DIFF(double)
PRINT_OPT_DIFF(float)
PRINT_OPT_DIFF(char)
-void parser<std::string>::
-printOptionDiff(const Option &O, StringRef V, OptionValue<std::string> D,
- size_t GlobalWidth) const {
+void parser<std::string>::printOptionDiff(const Option &O, StringRef V,
+ OptionValue<std::string> D,
+ size_t GlobalWidth) const {
printOptionName(O, GlobalWidth);
outs() << "= " << V;
size_t NumSpaces = MaxOptWidth > V.size() ? MaxOptWidth - V.size() : 0;
@@ -1387,8 +1417,8 @@ printOptionDiff(const Option &O, StringRef V, OptionValue<std::string> D,
}
// Print a placeholder for options that don't yet support printOptionDiff().
-void basic_parser_impl::
-printOptionNoValue(const Option &O, size_t GlobalWidth) const {
+void basic_parser_impl::printOptionNoValue(const Option &O,
+ size_t GlobalWidth) const {
printOptionName(O, GlobalWidth);
outs() << "= *cannot print option value*\n";
}
@@ -1398,19 +1428,18 @@ printOptionNoValue(const Option &O, size_t GlobalWidth) const {
//
static int OptNameCompare(const void *LHS, const void *RHS) {
- typedef std::pair<const char *, Option*> pair_ty;
+ typedef std::pair<const char *, Option *> pair_ty;
- return strcmp(((const pair_ty*)LHS)->first, ((const pair_ty*)RHS)->first);
+ return strcmp(((const pair_ty *)LHS)->first, ((const pair_ty *)RHS)->first);
}
// Copy Options into a vector so we can sort them as we like.
-static void
-sortOpts(StringMap<Option*> &OptMap,
- SmallVectorImpl< std::pair<const char *, Option*> > &Opts,
- bool ShowHidden) {
- SmallPtrSet<Option*, 128> OptionSet; // Duplicate option detection.
+static void sortOpts(StringMap<Option *> &OptMap,
+ SmallVectorImpl<std::pair<const char *, Option *>> &Opts,
+ bool ShowHidden) {
+ SmallPtrSet<Option *, 128> OptionSet; // Duplicate option detection.
- for (StringMap<Option*>::iterator I = OptMap.begin(), E = OptMap.end();
+ for (StringMap<Option *>::iterator I = OptMap.begin(), E = OptMap.end();
I != E; ++I) {
// Ignore really-hidden options.
if (I->second->getOptionHiddenFlag() == ReallyHidden)
@@ -1421,11 +1450,11 @@ sortOpts(StringMap<Option*> &OptMap,
continue;
// If we've already seen this option, don't add it to the list again.
- if (!OptionSet.insert(I->second))
+ if (!OptionSet.insert(I->second).second)
continue;
- Opts.push_back(std::pair<const char *, Option*>(I->getKey().data(),
- I->second));
+ Opts.push_back(
+ std::pair<const char *, Option *>(I->getKey().data(), I->second));
}
// Sort the options list alphabetically.
@@ -1437,7 +1466,8 @@ namespace {
class HelpPrinter {
protected:
const bool ShowHidden;
- typedef SmallVector<std::pair<const char *, Option*>,128> StrOptionPairVector;
+ typedef SmallVector<std::pair<const char *, Option *>, 128>
+ StrOptionPairVector;
// Print the options. Opts is assumed to be alphabetically sorted.
virtual void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) {
for (size_t i = 0, e = Opts.size(); i != e; ++i)
@@ -1450,12 +1480,13 @@ public:
// Invoke the printer.
void operator=(bool Value) {
- if (Value == false) return;
+ if (Value == false)
+ return;
// Get all the options.
- SmallVector<Option*, 4> PositionalOpts;
- SmallVector<Option*, 4> SinkOpts;
- StringMap<Option*> OptMap;
+ SmallVector<Option *, 4> PositionalOpts;
+ SmallVector<Option *, 4> SinkOpts;
+ StringMap<Option *> OptMap;
GetOptionInfo(PositionalOpts, SinkOpts, OptMap);
StrOptionPairVector Opts;
@@ -1467,7 +1498,7 @@ public:
outs() << "USAGE: " << ProgramName << " [options]";
// Print out the positional options.
- Option *CAOpt = nullptr; // The cl::ConsumeAfter option, if it exists...
+ Option *CAOpt = nullptr; // The cl::ConsumeAfter option, if it exists...
if (!PositionalOpts.empty() &&
PositionalOpts[0]->getNumOccurrencesFlag() == ConsumeAfter)
CAOpt = PositionalOpts[0];
@@ -1479,7 +1510,8 @@ public:
}
// Print the consume after option info if it exists...
- if (CAOpt) outs() << " " << CAOpt->HelpStr;
+ if (CAOpt)
+ outs() << " " << CAOpt->HelpStr;
outs() << "\n\n";
@@ -1515,12 +1547,12 @@ public:
}
// Make sure we inherit our base class's operator=()
- using HelpPrinter::operator= ;
+ using HelpPrinter::operator=;
protected:
void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) override {
std::vector<OptionCategory *> SortedCategories;
- std::map<OptionCategory *, std::vector<Option *> > CategorizedOptions;
+ std::map<OptionCategory *, std::vector<Option *>> CategorizedOptions;
// Collect registered option categories into vector in preparation for
// sorting.
@@ -1597,9 +1629,9 @@ private:
public:
explicit HelpPrinterWrapper(HelpPrinter &UncategorizedPrinter,
- CategorizedHelpPrinter &CategorizedPrinter) :
- UncategorizedPrinter(UncategorizedPrinter),
- CategorizedPrinter(CategorizedPrinter) { }
+ CategorizedHelpPrinter &CategorizedPrinter)
+ : UncategorizedPrinter(UncategorizedPrinter),
+ CategorizedPrinter(CategorizedPrinter) {}
// Invoke the printer.
void operator=(bool Value);
@@ -1614,7 +1646,6 @@ static HelpPrinter UncategorizedHiddenPrinter(true);
static CategorizedHelpPrinter CategorizedNormalPrinter(false);
static CategorizedHelpPrinter CategorizedHiddenPrinter(true);
-
// Declare HelpPrinter wrappers that will decide whether or not to invoke
// a categorizing help printer
static HelpPrinterWrapper WrappedNormalPrinter(UncategorizedNormalPrinter,
@@ -1625,38 +1656,36 @@ static HelpPrinterWrapper WrappedHiddenPrinter(UncategorizedHiddenPrinter,
// Define uncategorized help printers.
// -help-list is hidden by default because if Option categories are being used
// then -help behaves the same as -help-list.
-static cl::opt<HelpPrinter, true, parser<bool> >
-HLOp("help-list",
- cl::desc("Display list of available options (-help-list-hidden for more)"),
- cl::location(UncategorizedNormalPrinter), cl::Hidden, cl::ValueDisallowed);
+static cl::opt<HelpPrinter, true, parser<bool>> HLOp(
+ "help-list",
+ cl::desc("Display list of available options (-help-list-hidden for more)"),
+ cl::location(UncategorizedNormalPrinter), cl::Hidden, cl::ValueDisallowed);
-static cl::opt<HelpPrinter, true, parser<bool> >
-HLHOp("help-list-hidden",
- cl::desc("Display list of all available options"),
- cl::location(UncategorizedHiddenPrinter), cl::Hidden, cl::ValueDisallowed);
+static cl::opt<HelpPrinter, true, parser<bool>>
+ HLHOp("help-list-hidden", cl::desc("Display list of all available options"),
+ cl::location(UncategorizedHiddenPrinter), cl::Hidden,
+ cl::ValueDisallowed);
// Define uncategorized/categorized help printers. These printers change their
// behaviour at runtime depending on whether one or more Option categories have
// been declared.
-static cl::opt<HelpPrinterWrapper, true, parser<bool> >
-HOp("help", cl::desc("Display available options (-help-hidden for more)"),
- cl::location(WrappedNormalPrinter), cl::ValueDisallowed);
-
-static cl::opt<HelpPrinterWrapper, true, parser<bool> >
-HHOp("help-hidden", cl::desc("Display all available options"),
- cl::location(WrappedHiddenPrinter), cl::Hidden, cl::ValueDisallowed);
-
+static cl::opt<HelpPrinterWrapper, true, parser<bool>>
+ HOp("help", cl::desc("Display available options (-help-hidden for more)"),
+ cl::location(WrappedNormalPrinter), cl::ValueDisallowed);
+static cl::opt<HelpPrinterWrapper, true, parser<bool>>
+ HHOp("help-hidden", cl::desc("Display all available options"),
+ cl::location(WrappedHiddenPrinter), cl::Hidden, cl::ValueDisallowed);
-static cl::opt<bool>
-PrintOptions("print-options",
- cl::desc("Print non-default options after command line parsing"),
- cl::Hidden, cl::init(false));
+static cl::opt<bool> PrintOptions(
+ "print-options",
+ cl::desc("Print non-default options after command line parsing"),
+ cl::Hidden, cl::init(false));
-static cl::opt<bool>
-PrintAllOptions("print-all-options",
- cl::desc("Print all option values after command line parsing"),
- cl::Hidden, cl::init(false));
+static cl::opt<bool> PrintAllOptions(
+ "print-all-options",
+ cl::desc("Print all option values after command line parsing"), cl::Hidden,
+ cl::init(false));
void HelpPrinterWrapper::operator=(bool Value) {
if (Value == false)
@@ -1671,23 +1700,23 @@ void HelpPrinterWrapper::operator=(bool Value) {
HLOp.setHiddenFlag(NotHidden);
CategorizedPrinter = true; // Invoke categorized printer
- }
- else
+ } else
UncategorizedPrinter = true; // Invoke uncategorized printer
}
// Print the value of each option.
void cl::PrintOptionValues() {
- if (!PrintOptions && !PrintAllOptions) return;
+ if (!PrintOptions && !PrintAllOptions)
+ return;
// Get all the options.
- SmallVector<Option*, 4> PositionalOpts;
- SmallVector<Option*, 4> SinkOpts;
- StringMap<Option*> OptMap;
+ SmallVector<Option *, 4> PositionalOpts;
+ SmallVector<Option *, 4> SinkOpts;
+ StringMap<Option *> OptMap;
GetOptionInfo(PositionalOpts, SinkOpts, OptMap);
- SmallVector<std::pair<const char *, Option*>, 128> Opts;
- sortOpts(OptMap, Opts, /*ShowHidden*/true);
+ SmallVector<std::pair<const char *, Option *>, 128> Opts;
+ sortOpts(OptMap, Opts, /*ShowHidden*/ true);
// Compute the maximum argument length...
size_t MaxArgLen = 0;
@@ -1700,7 +1729,7 @@ void cl::PrintOptionValues() {
static void (*OverrideVersionPrinter)() = nullptr;
-static std::vector<void (*)()>* ExtraVersionPrinters = nullptr;
+static std::vector<void (*)()> *ExtraVersionPrinters = nullptr;
namespace {
class VersionPrinter {
@@ -1722,7 +1751,8 @@ public:
OS << " with assertions";
#endif
std::string CPU = sys::getHostCPUName();
- if (CPU == "generic") CPU = "(unknown)";
+ if (CPU == "generic")
+ CPU = "(unknown)";
OS << ".\n"
#if (ENABLE_TIMESTAMPS == 1)
<< " Built " << __DATE__ << " (" << __TIME__ << ").\n"
@@ -1731,7 +1761,8 @@ public:
<< " Host CPU: " << CPU << '\n';
}
void operator=(bool OptionWasSpecified) {
- if (!OptionWasSpecified) return;
+ if (!OptionWasSpecified)
+ return;
if (OverrideVersionPrinter != nullptr) {
(*OverrideVersionPrinter)();
@@ -1754,13 +1785,12 @@ public:
};
} // End anonymous namespace
-
// Define the --version option that prints out the LLVM version for the tool
static VersionPrinter VersionPrinterInstance;
-static cl::opt<VersionPrinter, true, parser<bool> >
-VersOp("version", cl::desc("Display the version of this program"),
- cl::location(VersionPrinterInstance), cl::ValueDisallowed);
+static cl::opt<VersionPrinter, true, parser<bool>>
+ VersOp("version", cl::desc("Display the version of this program"),
+ cl::location(VersionPrinterInstance), cl::ValueDisallowed);
// Utility function for printing the help message.
void cl::PrintHelpMessage(bool Hidden, bool Categorized) {
@@ -1782,13 +1812,9 @@ void cl::PrintHelpMessage(bool Hidden, bool Categorized) {
}
/// Utility function for printing version number.
-void cl::PrintVersionMessage() {
- VersionPrinterInstance.print();
-}
+void cl::PrintVersionMessage() { VersionPrinterInstance.print(); }
-void cl::SetVersionPrinter(void (*func)()) {
- OverrideVersionPrinter = func;
-}
+void cl::SetVersionPrinter(void (*func)()) { OverrideVersionPrinter = func; }
void cl::AddExtraVersionPrinter(void (*func)()) {
if (!ExtraVersionPrinters)
@@ -1797,12 +1823,16 @@ void cl::AddExtraVersionPrinter(void (*func)()) {
ExtraVersionPrinters->push_back(func);
}
-void cl::getRegisteredOptions(StringMap<Option*> &Map)
-{
+void cl::getRegisteredOptions(StringMap<Option *> &Map) {
// Get all the options.
- SmallVector<Option*, 4> PositionalOpts; //NOT USED
- SmallVector<Option*, 4> SinkOpts; //NOT USED
+ SmallVector<Option *, 4> PositionalOpts; // NOT USED
+ SmallVector<Option *, 4> SinkOpts; // NOT USED
assert(Map.size() == 0 && "StringMap must be empty");
GetOptionInfo(PositionalOpts, SinkOpts, Map);
return;
}
+
+void LLVMParseCommandLineOptions(int argc, const char *const *argv,
+ const char *Overview) {
+ llvm::cl::ParseCommandLineOptions(argc, argv, Overview);
+}
diff --git a/contrib/llvm/lib/Support/Compression.cpp b/contrib/llvm/lib/Support/Compression.cpp
index c32eb21..17ae295 100644
--- a/contrib/llvm/lib/Support/Compression.cpp
+++ b/contrib/llvm/lib/Support/Compression.cpp
@@ -54,6 +54,9 @@ zlib::Status zlib::compress(StringRef InputBuffer,
Status Res = encodeZlibReturnValue(::compress2(
(Bytef *)CompressedBuffer.data(), &CompressedSize,
(const Bytef *)InputBuffer.data(), InputBuffer.size(), CLevel));
+ // Tell MemorySanitizer that zlib output buffer is fully initialized.
+ // This avoids a false report when running LLVM with uninstrumented ZLib.
+ __msan_unpoison(CompressedBuffer.data(), CompressedSize);
CompressedBuffer.resize(CompressedSize);
return Res;
}
@@ -65,6 +68,9 @@ zlib::Status zlib::uncompress(StringRef InputBuffer,
Status Res = encodeZlibReturnValue(::uncompress(
(Bytef *)UncompressedBuffer.data(), (uLongf *)&UncompressedSize,
(const Bytef *)InputBuffer.data(), InputBuffer.size()));
+ // Tell MemorySanitizer that zlib output buffer is fully initialized.
+ // This avoids a false report when running LLVM with uninstrumented ZLib.
+ __msan_unpoison(UncompressedBuffer.data(), UncompressedSize);
UncompressedBuffer.resize(UncompressedSize);
return Res;
}
diff --git a/contrib/llvm/lib/Support/DataStream.cpp b/contrib/llvm/lib/Support/DataStream.cpp
index 32653de..dbf6465 100644
--- a/contrib/llvm/lib/Support/DataStream.cpp
+++ b/contrib/llvm/lib/Support/DataStream.cpp
@@ -32,12 +32,12 @@ using namespace llvm;
#define DEBUG_TYPE "Data-stream"
// Interface goals:
-// * StreamableMemoryObject doesn't care about complexities like using
+// * StreamingMemoryObject doesn't care about complexities like using
// threads/async callbacks to actually overlap download+compile
// * Don't want to duplicate Data in memory
// * Don't need to know total Data len in advance
// Non-goals:
-// StreamableMemoryObject already has random access so this interface only does
+// StreamingMemoryObject already has random access so this interface only does
// in-order streaming (no arbitrary seeking, else we'd have to buffer all the
// Data here in addition to MemoryObject). This also means that if we want
// to be able to to free Data, BitstreamBytes/BitcodeReader will implement it
diff --git a/contrib/llvm/lib/Support/Debug.cpp b/contrib/llvm/lib/Support/Debug.cpp
index ad4d4ef..cb86ea6 100644
--- a/contrib/llvm/lib/Support/Debug.cpp
+++ b/contrib/llvm/lib/Support/Debug.cpp
@@ -25,6 +25,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/circular_raw_ostream.h"
@@ -50,14 +51,16 @@ DebugBufferSize("debug-buffer-size",
cl::Hidden,
cl::init(0));
-static std::string CurrentDebugType;
+static ManagedStatic<std::vector<std::string> > CurrentDebugType;
namespace {
struct DebugOnlyOpt {
void operator=(const std::string &Val) const {
- DebugFlag |= !Val.empty();
- CurrentDebugType = Val;
+ if (Val.empty())
+ return;
+ DebugFlag = true;
+ CurrentDebugType->push_back(Val);
}
};
@@ -67,7 +70,7 @@ static DebugOnlyOpt DebugOnlyOptLoc;
static cl::opt<DebugOnlyOpt, true, cl::parser<std::string> >
DebugOnly("debug-only", cl::desc("Enable a specific type of debug output"),
- cl::Hidden, cl::value_desc("debug string"),
+ cl::Hidden, cl::ZeroOrMore, cl::value_desc("debug string"),
cl::location(DebugOnlyOptLoc), cl::ValueRequired);
// Signal handlers - dump debug output on termination.
@@ -86,7 +89,15 @@ static void debug_user_sig_handler(void *Cookie) {
// with the -debug-only=X option.
//
bool llvm::isCurrentDebugType(const char *DebugType) {
- return CurrentDebugType.empty() || DebugType == CurrentDebugType;
+ if (CurrentDebugType->empty())
+ return true;
+ // see if DebugType is in list. Note: do not use find() as that forces us to
+ // unnecessarily create an std::string instance.
+ for (auto d : *CurrentDebugType) {
+ if (d == DebugType)
+ return true;
+ }
+ return false;
}
/// setCurrentDebugType - Set the current debug type, as if the -debug-only=X
@@ -94,7 +105,8 @@ bool llvm::isCurrentDebugType(const char *DebugType) {
/// debug output to be produced.
///
void llvm::setCurrentDebugType(const char *Type) {
- CurrentDebugType = Type;
+ CurrentDebugType->clear();
+ CurrentDebugType->push_back(Type);
}
/// dbgs - Return a circular-buffered debug stream.
diff --git a/contrib/llvm/lib/Support/Dwarf.cpp b/contrib/llvm/lib/Support/Dwarf.cpp
index c9efa61..4b6337e 100644
--- a/contrib/llvm/lib/Support/Dwarf.cpp
+++ b/contrib/llvm/lib/Support/Dwarf.cpp
@@ -17,8 +17,6 @@
using namespace llvm;
using namespace dwarf;
-/// TagString - Return the string for the specified tag.
-///
const char *llvm::dwarf::TagString(unsigned Tag) {
switch (Tag) {
case DW_TAG_array_type: return "DW_TAG_array_type";
@@ -82,6 +80,7 @@ const char *llvm::dwarf::TagString(unsigned Tag) {
case DW_TAG_hi_user: return "DW_TAG_hi_user";
case DW_TAG_auto_variable: return "DW_TAG_auto_variable";
case DW_TAG_arg_variable: return "DW_TAG_arg_variable";
+ case DW_TAG_expression: return "DW_TAG_expression";
case DW_TAG_rvalue_reference_type: return "DW_TAG_rvalue_reference_type";
case DW_TAG_template_alias: return "DW_TAG_template_alias";
case DW_TAG_coarray_type: return "DW_TAG_coarray_type";
@@ -103,8 +102,6 @@ const char *llvm::dwarf::TagString(unsigned Tag) {
return nullptr;
}
-/// ChildrenString - Return the string for the specified children flag.
-///
const char *llvm::dwarf::ChildrenString(unsigned Children) {
switch (Children) {
case DW_CHILDREN_no: return "DW_CHILDREN_no";
@@ -113,8 +110,6 @@ const char *llvm::dwarf::ChildrenString(unsigned Children) {
return nullptr;
}
-/// AttributeString - Return the string for the specified attribute.
-///
const char *llvm::dwarf::AttributeString(unsigned Attribute) {
switch (Attribute) {
case DW_AT_sibling: return "DW_AT_sibling";
@@ -274,8 +269,6 @@ const char *llvm::dwarf::AttributeString(unsigned Attribute) {
return nullptr;
}
-/// FormEncodingString - Return the string for the specified form encoding.
-///
const char *llvm::dwarf::FormEncodingString(unsigned Encoding) {
switch (Encoding) {
case DW_FORM_addr: return "DW_FORM_addr";
@@ -311,8 +304,6 @@ const char *llvm::dwarf::FormEncodingString(unsigned Encoding) {
return nullptr;
}
-/// OperationEncodingString - Return the string for the specified operation
-/// encoding.
const char *llvm::dwarf::OperationEncodingString(unsigned Encoding) {
switch (Encoding) {
case DW_OP_addr: return "DW_OP_addr";
@@ -480,8 +471,6 @@ const char *llvm::dwarf::OperationEncodingString(unsigned Encoding) {
return nullptr;
}
-/// AttributeEncodingString - Return the string for the specified attribute
-/// encoding.
const char *llvm::dwarf::AttributeEncodingString(unsigned Encoding) {
switch (Encoding) {
case DW_ATE_address: return "DW_ATE_address";
@@ -506,8 +495,6 @@ const char *llvm::dwarf::AttributeEncodingString(unsigned Encoding) {
return nullptr;
}
-/// DecimalSignString - Return the string for the specified decimal sign
-/// attribute.
const char *llvm::dwarf::DecimalSignString(unsigned Sign) {
switch (Sign) {
case DW_DS_unsigned: return "DW_DS_unsigned";
@@ -519,8 +506,6 @@ const char *llvm::dwarf::DecimalSignString(unsigned Sign) {
return nullptr;
}
-/// EndianityString - Return the string for the specified endianity.
-///
const char *llvm::dwarf::EndianityString(unsigned Endian) {
switch (Endian) {
case DW_END_default: return "DW_END_default";
@@ -532,8 +517,6 @@ const char *llvm::dwarf::EndianityString(unsigned Endian) {
return nullptr;
}
-/// AccessibilityString - Return the string for the specified accessibility.
-///
const char *llvm::dwarf::AccessibilityString(unsigned Access) {
switch (Access) {
// Accessibility codes
@@ -544,8 +527,6 @@ const char *llvm::dwarf::AccessibilityString(unsigned Access) {
return nullptr;
}
-/// VisibilityString - Return the string for the specified visibility.
-///
const char *llvm::dwarf::VisibilityString(unsigned Visibility) {
switch (Visibility) {
case DW_VIS_local: return "DW_VIS_local";
@@ -555,8 +536,6 @@ const char *llvm::dwarf::VisibilityString(unsigned Visibility) {
return nullptr;
}
-/// VirtualityString - Return the string for the specified virtuality.
-///
const char *llvm::dwarf::VirtualityString(unsigned Virtuality) {
switch (Virtuality) {
case DW_VIRTUALITY_none: return "DW_VIRTUALITY_none";
@@ -566,8 +545,6 @@ const char *llvm::dwarf::VirtualityString(unsigned Virtuality) {
return nullptr;
}
-/// LanguageString - Return the string for the specified language.
-///
const char *llvm::dwarf::LanguageString(unsigned Language) {
switch (Language) {
case DW_LANG_C89: return "DW_LANG_C89";
@@ -598,13 +575,12 @@ const char *llvm::dwarf::LanguageString(unsigned Language) {
case DW_LANG_C_plus_plus_11: return "DW_LANG_C_plus_plus_11";
case DW_LANG_OCaml: return "DW_LANG_OCaml";
case DW_LANG_lo_user: return "DW_LANG_lo_user";
+ case DW_LANG_Mips_Assembler: return "DW_LANG_Mips_Assembler";
case DW_LANG_hi_user: return "DW_LANG_hi_user";
}
return nullptr;
}
-/// CaseString - Return the string for the specified identifier case.
-///
const char *llvm::dwarf::CaseString(unsigned Case) {
switch (Case) {
case DW_ID_case_sensitive: return "DW_ID_case_sensitive";
@@ -615,8 +591,6 @@ const char *llvm::dwarf::CaseString(unsigned Case) {
return nullptr;
}
-/// ConventionString - Return the string for the specified calling convention.
-///
const char *llvm::dwarf::ConventionString(unsigned Convention) {
switch (Convention) {
case DW_CC_normal: return "DW_CC_normal";
@@ -628,8 +602,6 @@ const char *llvm::dwarf::ConventionString(unsigned Convention) {
return nullptr;
}
-/// InlineCodeString - Return the string for the specified inline code.
-///
const char *llvm::dwarf::InlineCodeString(unsigned Code) {
switch (Code) {
case DW_INL_not_inlined: return "DW_INL_not_inlined";
@@ -640,8 +612,6 @@ const char *llvm::dwarf::InlineCodeString(unsigned Code) {
return nullptr;
}
-/// ArrayOrderString - Return the string for the specified array order.
-///
const char *llvm::dwarf::ArrayOrderString(unsigned Order) {
switch (Order) {
case DW_ORD_row_major: return "DW_ORD_row_major";
@@ -650,8 +620,6 @@ const char *llvm::dwarf::ArrayOrderString(unsigned Order) {
return nullptr;
}
-/// DiscriminantString - Return the string for the specified discriminant
-/// descriptor.
const char *llvm::dwarf::DiscriminantString(unsigned Discriminant) {
switch (Discriminant) {
case DW_DSC_label: return "DW_DSC_label";
@@ -660,8 +628,6 @@ const char *llvm::dwarf::DiscriminantString(unsigned Discriminant) {
return nullptr;
}
-/// LNStandardString - Return the string for the specified line number standard.
-///
const char *llvm::dwarf::LNStandardString(unsigned Standard) {
switch (Standard) {
case DW_LNS_copy: return "DW_LNS_copy";
@@ -680,8 +646,6 @@ const char *llvm::dwarf::LNStandardString(unsigned Standard) {
return nullptr;
}
-/// LNExtendedString - Return the string for the specified line number extended
-/// opcode encodings.
const char *llvm::dwarf::LNExtendedString(unsigned Encoding) {
switch (Encoding) {
// Line Number Extended Opcode Encodings
@@ -695,8 +659,6 @@ const char *llvm::dwarf::LNExtendedString(unsigned Encoding) {
return nullptr;
}
-/// MacinfoString - Return the string for the specified macinfo type encodings.
-///
const char *llvm::dwarf::MacinfoString(unsigned Encoding) {
switch (Encoding) {
// Macinfo Type Encodings
@@ -709,8 +671,6 @@ const char *llvm::dwarf::MacinfoString(unsigned Encoding) {
return nullptr;
}
-/// CallFrameString - Return the string for the specified call frame instruction
-/// encodings.
const char *llvm::dwarf::CallFrameString(unsigned Encoding) {
switch (Encoding) {
case DW_CFA_nop: return "DW_CFA_nop";
@@ -748,6 +708,36 @@ const char *llvm::dwarf::CallFrameString(unsigned Encoding) {
return nullptr;
}
+const char *llvm::dwarf::ApplePropertyString(unsigned Prop) {
+ switch (Prop) {
+ case DW_APPLE_PROPERTY_readonly:
+ return "DW_APPLE_PROPERTY_readonly";
+ case DW_APPLE_PROPERTY_getter:
+ return "DW_APPLE_PROPERTY_getter";
+ case DW_APPLE_PROPERTY_assign:
+ return "DW_APPLE_PROPERTY_assign";
+ case DW_APPLE_PROPERTY_readwrite:
+ return "DW_APPLE_PROPERTY_readwrite";
+ case DW_APPLE_PROPERTY_retain:
+ return "DW_APPLE_PROPERTY_retain";
+ case DW_APPLE_PROPERTY_copy:
+ return "DW_APPLE_PROPERTY_copy";
+ case DW_APPLE_PROPERTY_nonatomic:
+ return "DW_APPLE_PROPERTY_nonatomic";
+ case DW_APPLE_PROPERTY_setter:
+ return "DW_APPLE_PROPERTY_setter";
+ case DW_APPLE_PROPERTY_atomic:
+ return "DW_APPLE_PROPERTY_atomic";
+ case DW_APPLE_PROPERTY_weak:
+ return "DW_APPLE_PROPERTY_weak";
+ case DW_APPLE_PROPERTY_strong:
+ return "DW_APPLE_PROPERTY_strong";
+ case DW_APPLE_PROPERTY_unsafe_unretained:
+ return "DW_APPLE_PROPERTY_unsafe_unretained";
+ }
+ return nullptr;
+}
+
const char *llvm::dwarf::AtomTypeString(unsigned AT) {
switch (AT) {
case dwarf::DW_ATOM_null:
@@ -795,3 +785,34 @@ const char *llvm::dwarf::GDBIndexEntryLinkageString(GDBIndexEntryLinkage Linkage
}
llvm_unreachable("Unknown GDBIndexEntryLinkage value");
}
+
+const char *llvm::dwarf::AttributeValueString(uint16_t Attr, unsigned Val) {
+ switch (Attr) {
+ case DW_AT_accessibility:
+ return AccessibilityString(Val);
+ case DW_AT_virtuality:
+ return VirtualityString(Val);
+ case DW_AT_language:
+ return LanguageString(Val);
+ case DW_AT_encoding:
+ return AttributeEncodingString(Val);
+ case DW_AT_decimal_sign:
+ return DecimalSignString(Val);
+ case DW_AT_endianity:
+ return EndianityString(Val);
+ case DW_AT_visibility:
+ return VisibilityString(Val);
+ case DW_AT_identifier_case:
+ return CaseString(Val);
+ case DW_AT_calling_convention:
+ return ConventionString(Val);
+ case DW_AT_inline:
+ return InlineCodeString(Val);
+ case DW_AT_ordering:
+ return ArrayOrderString(Val);
+ case DW_AT_discr_value:
+ return DiscriminantString(Val);
+ }
+
+ return nullptr;
+}
diff --git a/contrib/llvm/lib/Support/Errno.cpp b/contrib/llvm/lib/Support/Errno.cpp
index 1eefa3e..3ba2a12 100644
--- a/contrib/llvm/lib/Support/Errno.cpp
+++ b/contrib/llvm/lib/Support/Errno.cpp
@@ -35,12 +35,14 @@ std::string StrError() {
#endif // HAVE_ERRNO_H
std::string StrError(int errnum) {
- const int MaxErrStrLen = 2000;
- char buffer[MaxErrStrLen];
- buffer[0] = '\0';
std::string str;
if (errnum == 0)
return str;
+#if defined(HAVE_STRERROR_R) || HAVE_DECL_STRERROR_S
+ const int MaxErrStrLen = 2000;
+ char buffer[MaxErrStrLen];
+ buffer[0] = '\0';
+#endif
#ifdef HAVE_STRERROR_R
// strerror_r is thread-safe.
diff --git a/contrib/llvm/lib/Support/ErrorHandling.cpp b/contrib/llvm/lib/Support/ErrorHandling.cpp
index c36007f..a25e21a 100644
--- a/contrib/llvm/lib/Support/ErrorHandling.cpp
+++ b/contrib/llvm/lib/Support/ErrorHandling.cpp
@@ -19,9 +19,10 @@
#include "llvm/Config/config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
-#include "llvm/Support/Signals.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/Signals.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/WindowsError.h"
#include "llvm/Support/raw_ostream.h"
@@ -41,18 +42,18 @@ using namespace llvm;
static fatal_error_handler_t ErrorHandler = nullptr;
static void *ErrorHandlerUserData = nullptr;
-static sys::Mutex ErrorHandlerMutex;
+static ManagedStatic<sys::Mutex> ErrorHandlerMutex;
void llvm::install_fatal_error_handler(fatal_error_handler_t handler,
void *user_data) {
- llvm::MutexGuard Lock(ErrorHandlerMutex);
+ llvm::MutexGuard Lock(*ErrorHandlerMutex);
assert(!ErrorHandler && "Error handler already registered!\n");
ErrorHandler = handler;
ErrorHandlerUserData = user_data;
}
void llvm::remove_fatal_error_handler() {
- llvm::MutexGuard Lock(ErrorHandlerMutex);
+ llvm::MutexGuard Lock(*ErrorHandlerMutex);
ErrorHandler = nullptr;
ErrorHandlerUserData = nullptr;
}
@@ -75,7 +76,7 @@ void llvm::report_fatal_error(const Twine &Reason, bool GenCrashDiag) {
{
// Only acquire the mutex while reading the handler, so as not to invoke a
// user-supplied callback under a lock.
- llvm::MutexGuard Lock(ErrorHandlerMutex);
+ llvm::MutexGuard Lock(*ErrorHandlerMutex);
handler = ErrorHandler;
handlerData = ErrorHandlerUserData;
}
diff --git a/contrib/llvm/lib/Support/FileOutputBuffer.cpp b/contrib/llvm/lib/Support/FileOutputBuffer.cpp
index 94bcdc5..b176a8b 100644
--- a/contrib/llvm/lib/Support/FileOutputBuffer.cpp
+++ b/contrib/llvm/lib/Support/FileOutputBuffer.cpp
@@ -12,20 +12,24 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/Errc.h"
-#include "llvm/Support/FileOutputBuffer.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <system_error>
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+#include <unistd.h>
+#else
+#include <io.h>
+#endif
+
using llvm::sys::fs::mapped_file_region;
namespace llvm {
-FileOutputBuffer::FileOutputBuffer(mapped_file_region * R,
+FileOutputBuffer::FileOutputBuffer(std::unique_ptr<mapped_file_region> R,
StringRef Path, StringRef TmpPath)
- : Region(R)
- , FinalPath(Path)
- , TempPath(TmpPath) {
-}
+ : Region(std::move(R)), FinalPath(Path), TempPath(TmpPath) {}
FileOutputBuffer::~FileOutputBuffer() {
sys::fs::remove(Twine(TempPath));
@@ -73,28 +77,28 @@ FileOutputBuffer::create(StringRef FilePath, size_t Size,
if (EC)
return EC;
- std::unique_ptr<mapped_file_region> MappedFile(new mapped_file_region(
- FD, true, mapped_file_region::readwrite, Size, 0, EC));
+ EC = sys::fs::resize_file(FD, Size);
if (EC)
return EC;
- Result.reset(new FileOutputBuffer(MappedFile.get(), FilePath, TempFilePath));
- if (Result)
- MappedFile.release();
+ auto MappedFile = llvm::make_unique<mapped_file_region>(
+ FD, mapped_file_region::readwrite, Size, 0, EC);
+ int Ret = close(FD);
+ if (EC)
+ return EC;
+ if (Ret)
+ return std::error_code(errno, std::generic_category());
+
+ Result.reset(
+ new FileOutputBuffer(std::move(MappedFile), FilePath, TempFilePath));
return std::error_code();
}
-std::error_code FileOutputBuffer::commit(int64_t NewSmallerSize) {
+std::error_code FileOutputBuffer::commit() {
// Unmap buffer, letting OS flush dirty pages to file on disk.
Region.reset();
- // If requested, resize file as part of commit.
- if ( NewSmallerSize != -1 ) {
- std::error_code EC = sys::fs::resize_file(Twine(TempPath), NewSmallerSize);
- if (EC)
- return EC;
- }
// Rename file to final name.
return sys::fs::rename(Twine(TempPath), Twine(FinalPath));
diff --git a/contrib/llvm/lib/Support/FileUtilities.cpp b/contrib/llvm/lib/Support/FileUtilities.cpp
index 8a23491..5316f04 100644
--- a/contrib/llvm/lib/Support/FileUtilities.cpp
+++ b/contrib/llvm/lib/Support/FileUtilities.cpp
@@ -182,7 +182,7 @@ int llvm::DiffFilesWithTolerance(StringRef NameA,
*Error = EC.message();
return 2;
}
- std::unique_ptr<MemoryBuffer> F1 = std::move(F1OrErr.get());
+ MemoryBuffer &F1 = *F1OrErr.get();
ErrorOr<std::unique_ptr<MemoryBuffer>> F2OrErr = MemoryBuffer::getFile(NameB);
if (std::error_code EC = F2OrErr.getError()) {
@@ -190,17 +190,17 @@ int llvm::DiffFilesWithTolerance(StringRef NameA,
*Error = EC.message();
return 2;
}
- std::unique_ptr<MemoryBuffer> F2 = std::move(F2OrErr.get());
+ MemoryBuffer &F2 = *F2OrErr.get();
// Okay, now that we opened the files, scan them for the first difference.
- const char *File1Start = F1->getBufferStart();
- const char *File2Start = F2->getBufferStart();
- const char *File1End = F1->getBufferEnd();
- const char *File2End = F2->getBufferEnd();
+ const char *File1Start = F1.getBufferStart();
+ const char *File2Start = F2.getBufferStart();
+ const char *File1End = F1.getBufferEnd();
+ const char *File2End = F2.getBufferEnd();
const char *F1P = File1Start;
const char *F2P = File2Start;
- uint64_t A_size = F1->getBufferSize();
- uint64_t B_size = F2->getBufferSize();
+ uint64_t A_size = F1.getBufferSize();
+ uint64_t B_size = F2.getBufferSize();
// Are the buffers identical? Common case: Handle this efficiently.
if (A_size == B_size &&
diff --git a/contrib/llvm/lib/Support/GraphWriter.cpp b/contrib/llvm/lib/Support/GraphWriter.cpp
index e68ee43..054df52 100644
--- a/contrib/llvm/lib/Support/GraphWriter.cpp
+++ b/contrib/llvm/lib/Support/GraphWriter.cpp
@@ -105,9 +105,10 @@ struct GraphSession {
SmallVector<StringRef, 8> parts;
Names.split(parts, "|");
for (auto Name : parts) {
- ProgramPath = sys::FindProgramByName(Name);
- if (!ProgramPath.empty())
+ if (ErrorOr<std::string> P = sys::findProgramByName(Name)) {
+ ProgramPath = *P;
return true;
+ }
Log << " Tried '" << Name << "'\n";
}
return false;
diff --git a/contrib/llvm/lib/Support/Host.cpp b/contrib/llvm/lib/Support/Host.cpp
index e2dd6d5..2abbc14 100644
--- a/contrib/llvm/lib/Support/Host.cpp
+++ b/contrib/llvm/lib/Support/Host.cpp
@@ -17,8 +17,8 @@
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
-#include "llvm/Support/DataStream.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <string.h>
@@ -49,6 +49,26 @@
using namespace llvm;
+#if defined(__linux__)
+static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) {
+ // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
+ // memory buffer because the 'file' has 0 size (it can be read from only
+ // as a stream).
+
+ int FD;
+ std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD);
+ if (EC) {
+ DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n");
+ return -1;
+ }
+ int Ret = read(FD, Buf, Size);
+ int CloseStatus = close(FD);
+ if (CloseStatus)
+ return -1;
+ return Ret;
+}
+#endif
+
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
@@ -489,22 +509,12 @@ StringRef sys::getHostCPUName() {
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
const char *generic = "generic";
- // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
- // memory buffer because the 'file' has 0 size (it can be read from only
- // as a stream).
-
- std::string Err;
- DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
- if (!DS) {
- DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
- return generic;
- }
-
// The cpu line is second (after the 'processor: 0' line), so if this
// buffer is too small then something has changed (or is wrong).
char buffer[1024];
- size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
- delete DS;
+ ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
+ if (CPUInfoSize == -1)
+ return generic;
const char *CPUInfoStart = buffer;
const char *CPUInfoEnd = buffer + CPUInfoSize;
@@ -578,22 +588,13 @@ StringRef sys::getHostCPUName() {
StringRef sys::getHostCPUName() {
// The cpuid register on arm is not accessible from user space. On Linux,
// it is exposed through the /proc/cpuinfo file.
- // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
- // memory buffer because the 'file' has 0 size (it can be read from only
- // as a stream).
-
- std::string Err;
- DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
- if (!DS) {
- DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
- return "generic";
- }
// Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
// in all cases.
char buffer[1024];
- size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
- delete DS;
+ ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
+ if (CPUInfoSize == -1)
+ return "generic";
StringRef Str(buffer, CPUInfoSize);
@@ -643,22 +644,13 @@ StringRef sys::getHostCPUName() {
#elif defined(__linux__) && defined(__s390x__)
StringRef sys::getHostCPUName() {
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
- // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
- // memory buffer because the 'file' has 0 size (it can be read from only
- // as a stream).
-
- std::string Err;
- DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
- if (!DS) {
- DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
- return "generic";
- }
// The "processor 0:" line comes after a fair amount of other information,
// including a cache breakdown, but this should be plenty.
char buffer[2048];
- size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
- delete DS;
+ ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
+ if (CPUInfoSize == -1)
+ return "generic";
StringRef Str(buffer, CPUInfoSize);
SmallVector<StringRef, 32> Lines;
@@ -690,18 +682,12 @@ StringRef sys::getHostCPUName() {
#if defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
- std::string Err;
- DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
- if (!DS) {
- DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
- return false;
- }
-
// Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
// in all cases.
char buffer[1024];
- size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
- delete DS;
+ ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
+ if (CPUInfoSize == -1)
+ return false;
StringRef Str(buffer, CPUInfoSize);
@@ -759,13 +745,13 @@ bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
#endif
if (LLVMFeatureStr != "")
- Features.GetOrCreateValue(LLVMFeatureStr).setValue(true);
+ Features[LLVMFeatureStr] = true;
}
#if defined(__aarch64__)
// If we have all crypto bits we can add the feature
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
- Features.GetOrCreateValue("crypto").setValue(true);
+ Features["crypto"] = true;
#endif
return true;
diff --git a/contrib/llvm/lib/Support/IncludeFile.cpp b/contrib/llvm/lib/Support/IncludeFile.cpp
deleted file mode 100644
index e67acb3..0000000
--- a/contrib/llvm/lib/Support/IncludeFile.cpp
+++ /dev/null
@@ -1,20 +0,0 @@
-//===- lib/Support/IncludeFile.cpp - Ensure Linking Of Implementation -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the IncludeFile constructor.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/IncludeFile.h"
-
-using namespace llvm;
-
-// This constructor is used to ensure linking of other modules. See the
-// llvm/Support/IncludeFile.h header for details.
-IncludeFile::IncludeFile(const void*) {}
diff --git a/contrib/llvm/lib/Support/LineIterator.cpp b/contrib/llvm/lib/Support/LineIterator.cpp
index 947a8fb..5baa1a3 100644
--- a/contrib/llvm/lib/Support/LineIterator.cpp
+++ b/contrib/llvm/lib/Support/LineIterator.cpp
@@ -12,16 +12,39 @@
using namespace llvm;
-line_iterator::line_iterator(const MemoryBuffer &Buffer, char CommentMarker)
+static bool isAtLineEnd(const char *P) {
+ if (*P == '\n')
+ return true;
+ if (*P == '\r' && *(P + 1) == '\n')
+ return true;
+ return false;
+}
+
+static bool skipIfAtLineEnd(const char *&P) {
+ if (*P == '\n') {
+ ++P;
+ return true;
+ }
+ if (*P == '\r' && *(P + 1) == '\n') {
+ P += 2;
+ return true;
+ }
+ return false;
+}
+
+line_iterator::line_iterator(const MemoryBuffer &Buffer, bool SkipBlanks,
+ char CommentMarker)
: Buffer(Buffer.getBufferSize() ? &Buffer : nullptr),
- CommentMarker(CommentMarker), LineNumber(1),
+ CommentMarker(CommentMarker), SkipBlanks(SkipBlanks), LineNumber(1),
CurrentLine(Buffer.getBufferSize() ? Buffer.getBufferStart() : nullptr,
0) {
// Ensure that if we are constructed on a non-empty memory buffer that it is
// a null terminated buffer.
if (Buffer.getBufferSize()) {
assert(Buffer.getBufferEnd()[0] == '\0');
- advance();
+ // Make sure we don't skip a leading newline if we're keeping blanks
+ if (SkipBlanks || !isAtLineEnd(Buffer.getBufferStart()))
+ advance();
}
}
@@ -29,25 +52,27 @@ void line_iterator::advance() {
assert(Buffer && "Cannot advance past the end!");
const char *Pos = CurrentLine.end();
- assert(Pos == Buffer->getBufferStart() || *Pos == '\n' || *Pos == '\0');
+ assert(Pos == Buffer->getBufferStart() || isAtLineEnd(Pos) || *Pos == '\0');
- if (CommentMarker == '\0') {
+ if (skipIfAtLineEnd(Pos))
+ ++LineNumber;
+ if (!SkipBlanks && isAtLineEnd(Pos)) {
+ // Nothing to do for a blank line.
+ } else if (CommentMarker == '\0') {
// If we're not stripping comments, this is simpler.
- size_t Blanks = 0;
- while (Pos[Blanks] == '\n')
- ++Blanks;
- Pos += Blanks;
- LineNumber += Blanks;
+ while (skipIfAtLineEnd(Pos))
+ ++LineNumber;
} else {
// Skip comments and count line numbers, which is a bit more complex.
for (;;) {
+ if (isAtLineEnd(Pos) && !SkipBlanks)
+ break;
if (*Pos == CommentMarker)
do {
++Pos;
- } while (*Pos != '\0' && *Pos != '\n');
- if (*Pos != '\n')
+ } while (*Pos != '\0' && !isAtLineEnd(Pos));
+ if (!skipIfAtLineEnd(Pos))
break;
- ++Pos;
++LineNumber;
}
}
@@ -61,9 +86,9 @@ void line_iterator::advance() {
// Measure the line.
size_t Length = 0;
- do {
+ while (Pos[Length] != '\0' && !isAtLineEnd(&Pos[Length])) {
++Length;
- } while (Pos[Length] != '\0' && Pos[Length] != '\n');
+ }
CurrentLine = StringRef(Pos, Length);
}
diff --git a/contrib/llvm/lib/Support/LockFileManager.cpp b/contrib/llvm/lib/Support/LockFileManager.cpp
index 3f224e0..5b82c36 100644
--- a/contrib/llvm/lib/Support/LockFileManager.cpp
+++ b/contrib/llvm/lib/Support/LockFileManager.cpp
@@ -39,11 +39,11 @@ LockFileManager::readLockFile(StringRef LockFileName) {
sys::fs::remove(LockFileName);
return None;
}
- std::unique_ptr<MemoryBuffer> MB = std::move(MBOrErr.get());
+ MemoryBuffer &MB = *MBOrErr.get();
StringRef Hostname;
StringRef PIDStr;
- std::tie(Hostname, PIDStr) = getToken(MB->getBuffer(), " ");
+ std::tie(Hostname, PIDStr) = getToken(MB.getBuffer(), " ");
PIDStr = PIDStr.substr(PIDStr.find_first_not_of(" "));
int PID;
if (!PIDStr.getAsInteger(10, PID)) {
@@ -204,8 +204,8 @@ LockFileManager::WaitForUnlockResult LockFileManager::waitForUnlock() {
// If the lock file is still expected to be there, check whether it still
// is.
if (!LockFileGone) {
- bool Exists;
- if (!sys::fs::exists(LockFileName.str(), Exists) && !Exists) {
+ if (sys::fs::access(LockFileName.c_str(), sys::fs::AccessMode::Exist) ==
+ errc::no_such_file_or_directory) {
LockFileGone = true;
LockFileJustDisappeared = true;
}
diff --git a/contrib/llvm/lib/Support/MD5.cpp b/contrib/llvm/lib/Support/MD5.cpp
index 514466c..ceab580 100644
--- a/contrib/llvm/lib/Support/MD5.cpp
+++ b/contrib/llvm/lib/Support/MD5.cpp
@@ -208,11 +208,11 @@ void MD5::update(ArrayRef<uint8_t> Data) {
memcpy(&buffer[used], Ptr, free);
Ptr = Ptr + free;
Size -= free;
- body(ArrayRef<uint8_t>(buffer, 64));
+ body(makeArrayRef(buffer, 64));
}
if (Size >= 64) {
- Ptr = body(ArrayRef<uint8_t>(Ptr, Size & ~(unsigned long) 0x3f));
+ Ptr = body(makeArrayRef(Ptr, Size & ~(unsigned long) 0x3f));
Size &= 0x3f;
}
@@ -229,7 +229,7 @@ void MD5::update(StringRef Str) {
/// \brief Finish the hash and place the resulting hash into \p result.
/// \param result is assumed to be a minimum of 16-bytes in size.
-void MD5::final(MD5Result &result) {
+void MD5::final(MD5Result &Result) {
unsigned long used, free;
used = lo & 0x3f;
@@ -240,7 +240,7 @@ void MD5::final(MD5Result &result) {
if (free < 8) {
memset(&buffer[used], 0, free);
- body(ArrayRef<uint8_t>(buffer, 64));
+ body(makeArrayRef(buffer, 64));
used = 0;
free = 64;
}
@@ -257,30 +257,30 @@ void MD5::final(MD5Result &result) {
buffer[62] = hi >> 16;
buffer[63] = hi >> 24;
- body(ArrayRef<uint8_t>(buffer, 64));
-
- result[0] = a;
- result[1] = a >> 8;
- result[2] = a >> 16;
- result[3] = a >> 24;
- result[4] = b;
- result[5] = b >> 8;
- result[6] = b >> 16;
- result[7] = b >> 24;
- result[8] = c;
- result[9] = c >> 8;
- result[10] = c >> 16;
- result[11] = c >> 24;
- result[12] = d;
- result[13] = d >> 8;
- result[14] = d >> 16;
- result[15] = d >> 24;
+ body(makeArrayRef(buffer, 64));
+
+ Result[0] = a;
+ Result[1] = a >> 8;
+ Result[2] = a >> 16;
+ Result[3] = a >> 24;
+ Result[4] = b;
+ Result[5] = b >> 8;
+ Result[6] = b >> 16;
+ Result[7] = b >> 24;
+ Result[8] = c;
+ Result[9] = c >> 8;
+ Result[10] = c >> 16;
+ Result[11] = c >> 24;
+ Result[12] = d;
+ Result[13] = d >> 8;
+ Result[14] = d >> 16;
+ Result[15] = d >> 24;
}
-void MD5::stringifyResult(MD5Result &result, SmallString<32> &Str) {
+void MD5::stringifyResult(MD5Result &Result, SmallString<32> &Str) {
raw_svector_ostream Res(Str);
for (int i = 0; i < 16; ++i)
- Res << format("%.2x", result[i]);
+ Res << format("%.2x", Result[i]);
}
}
diff --git a/contrib/llvm/lib/Support/MathExtras.cpp b/contrib/llvm/lib/Support/MathExtras.cpp
new file mode 100644
index 0000000..ba09245
--- /dev/null
+++ b/contrib/llvm/lib/Support/MathExtras.cpp
@@ -0,0 +1,32 @@
+//===-- MathExtras.cpp - Implement the MathExtras header --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MathExtras.h header
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/MathExtras.h"
+
+#ifdef _MSC_VER
+#include <limits>
+#else
+#include <math.h>
+#endif
+
+namespace llvm {
+
+#if defined(_MSC_VER)
+ // Visual Studio defines the HUGE_VAL class of macros using purposeful
+ // constant arithmetic overflow, which it then warns on when encountered.
+ const float huge_valf = std::numeric_limits<float>::infinity();
+#else
+ const float huge_valf = HUGE_VALF;
+#endif
+
+}
diff --git a/contrib/llvm/lib/Support/MemoryBuffer.cpp b/contrib/llvm/lib/Support/MemoryBuffer.cpp
index 5f4b7da..379db88 100644
--- a/contrib/llvm/lib/Support/MemoryBuffer.cpp
+++ b/contrib/llvm/lib/Support/MemoryBuffer.cpp
@@ -64,14 +64,17 @@ static void CopyStringRef(char *Memory, StringRef Data) {
namespace {
struct NamedBufferAlloc {
- StringRef Name;
- NamedBufferAlloc(StringRef Name) : Name(Name) {}
+ const Twine &Name;
+ NamedBufferAlloc(const Twine &Name) : Name(Name) {}
};
}
void *operator new(size_t N, const NamedBufferAlloc &Alloc) {
- char *Mem = static_cast<char *>(operator new(N + Alloc.Name.size() + 1));
- CopyStringRef(Mem + N, Alloc.Name);
+ SmallString<256> NameBuf;
+ StringRef NameRef = Alloc.Name.toStringRef(NameBuf);
+
+ char *Mem = static_cast<char *>(operator new(N + NameRef.size() + 1));
+ CopyStringRef(Mem + N, NameRef);
return Mem;
}
@@ -94,71 +97,86 @@ public:
};
}
-/// getMemBuffer - Open the specified memory range as a MemoryBuffer. Note
-/// that InputData must be a null terminated if RequiresNullTerminator is true!
-MemoryBuffer *MemoryBuffer::getMemBuffer(StringRef InputData,
- StringRef BufferName,
- bool RequiresNullTerminator) {
- return new (NamedBufferAlloc(BufferName))
+static ErrorOr<std::unique_ptr<MemoryBuffer>>
+getFileAux(const Twine &Filename, int64_t FileSize, uint64_t MapSize,
+ uint64_t Offset, bool RequiresNullTerminator, bool IsVolatileSize);
+
+std::unique_ptr<MemoryBuffer>
+MemoryBuffer::getMemBuffer(StringRef InputData, StringRef BufferName,
+ bool RequiresNullTerminator) {
+ auto *Ret = new (NamedBufferAlloc(BufferName))
MemoryBufferMem(InputData, RequiresNullTerminator);
+ return std::unique_ptr<MemoryBuffer>(Ret);
+}
+
+std::unique_ptr<MemoryBuffer>
+MemoryBuffer::getMemBuffer(MemoryBufferRef Ref, bool RequiresNullTerminator) {
+ return std::unique_ptr<MemoryBuffer>(getMemBuffer(
+ Ref.getBuffer(), Ref.getBufferIdentifier(), RequiresNullTerminator));
}
-/// getMemBufferCopy - Open the specified memory range as a MemoryBuffer,
-/// copying the contents and taking ownership of it. This has no requirements
-/// on EndPtr[0].
-MemoryBuffer *MemoryBuffer::getMemBufferCopy(StringRef InputData,
- StringRef BufferName) {
- MemoryBuffer *Buf = getNewUninitMemBuffer(InputData.size(), BufferName);
- if (!Buf) return nullptr;
+std::unique_ptr<MemoryBuffer>
+MemoryBuffer::getMemBufferCopy(StringRef InputData, const Twine &BufferName) {
+ std::unique_ptr<MemoryBuffer> Buf =
+ getNewUninitMemBuffer(InputData.size(), BufferName);
+ if (!Buf)
+ return nullptr;
memcpy(const_cast<char*>(Buf->getBufferStart()), InputData.data(),
InputData.size());
return Buf;
}
-/// getNewUninitMemBuffer - Allocate a new MemoryBuffer of the specified size
-/// that is not initialized. Note that the caller should initialize the
-/// memory allocated by this method. The memory is owned by the MemoryBuffer
-/// object.
-MemoryBuffer *MemoryBuffer::getNewUninitMemBuffer(size_t Size,
- StringRef BufferName) {
+std::unique_ptr<MemoryBuffer>
+MemoryBuffer::getNewUninitMemBuffer(size_t Size, const Twine &BufferName) {
// Allocate space for the MemoryBuffer, the data and the name. It is important
// that MemoryBuffer and data are aligned so PointerIntPair works with them.
// TODO: Is 16-byte alignment enough? We copy small object files with large
// alignment expectations into this buffer.
+ SmallString<256> NameBuf;
+ StringRef NameRef = BufferName.toStringRef(NameBuf);
size_t AlignedStringLen =
- RoundUpToAlignment(sizeof(MemoryBufferMem) + BufferName.size() + 1, 16);
+ RoundUpToAlignment(sizeof(MemoryBufferMem) + NameRef.size() + 1, 16);
size_t RealLen = AlignedStringLen + Size + 1;
char *Mem = static_cast<char*>(operator new(RealLen, std::nothrow));
- if (!Mem) return nullptr;
+ if (!Mem)
+ return nullptr;
// The name is stored after the class itself.
- CopyStringRef(Mem + sizeof(MemoryBufferMem), BufferName);
+ CopyStringRef(Mem + sizeof(MemoryBufferMem), NameRef);
// The buffer begins after the name and must be aligned.
char *Buf = Mem + AlignedStringLen;
Buf[Size] = 0; // Null terminate buffer.
- return new (Mem) MemoryBufferMem(StringRef(Buf, Size), true);
+ auto *Ret = new (Mem) MemoryBufferMem(StringRef(Buf, Size), true);
+ return std::unique_ptr<MemoryBuffer>(Ret);
}
-/// getNewMemBuffer - Allocate a new MemoryBuffer of the specified size that
-/// is completely initialized to zeros. Note that the caller should
-/// initialize the memory allocated by this method. The memory is owned by
-/// the MemoryBuffer object.
-MemoryBuffer *MemoryBuffer::getNewMemBuffer(size_t Size, StringRef BufferName) {
- MemoryBuffer *SB = getNewUninitMemBuffer(Size, BufferName);
- if (!SB) return nullptr;
+std::unique_ptr<MemoryBuffer>
+MemoryBuffer::getNewMemBuffer(size_t Size, StringRef BufferName) {
+ std::unique_ptr<MemoryBuffer> SB = getNewUninitMemBuffer(Size, BufferName);
+ if (!SB)
+ return nullptr;
memset(const_cast<char*>(SB->getBufferStart()), 0, Size);
return SB;
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
-MemoryBuffer::getFileOrSTDIN(StringRef Filename, int64_t FileSize) {
- if (Filename == "-")
+MemoryBuffer::getFileOrSTDIN(const Twine &Filename, int64_t FileSize) {
+ SmallString<256> NameBuf;
+ StringRef NameRef = Filename.toStringRef(NameBuf);
+
+ if (NameRef == "-")
return getSTDIN();
return getFile(Filename, FileSize);
}
+ErrorOr<std::unique_ptr<MemoryBuffer>>
+MemoryBuffer::getFileSlice(const Twine &FilePath, uint64_t MapSize,
+ uint64_t Offset) {
+ return getFileAux(FilePath, -1, MapSize, Offset, false, false);
+}
+
//===----------------------------------------------------------------------===//
// MemoryBuffer::getFile implementation.
@@ -185,8 +203,8 @@ class MemoryBufferMMapFile : public MemoryBuffer {
public:
MemoryBufferMMapFile(bool RequiresNullTerminator, int FD, uint64_t Len,
- uint64_t Offset, std::error_code EC)
- : MFR(FD, false, sys::fs::mapped_file_region::readonly,
+ uint64_t Offset, std::error_code &EC)
+ : MFR(FD, sys::fs::mapped_file_region::readonly,
getLegalMapSize(Len, Offset), getLegalMapOffset(Offset), EC) {
if (!EC) {
const char *Start = getStart(Len, Offset);
@@ -206,7 +224,7 @@ public:
}
static ErrorOr<std::unique_ptr<MemoryBuffer>>
-getMemoryBufferForStream(int FD, StringRef BufferName) {
+getMemoryBufferForStream(int FD, const Twine &BufferName) {
const ssize_t ChunkSize = 4096*4;
SmallString<ChunkSize> Buffer;
ssize_t ReadBytes;
@@ -221,40 +239,32 @@ getMemoryBufferForStream(int FD, StringRef BufferName) {
Buffer.set_size(Buffer.size() + ReadBytes);
} while (ReadBytes != 0);
- std::unique_ptr<MemoryBuffer> Ret(
- MemoryBuffer::getMemBufferCopy(Buffer, BufferName));
- return std::move(Ret);
+ return MemoryBuffer::getMemBufferCopy(Buffer, BufferName);
}
-static ErrorOr<std::unique_ptr<MemoryBuffer>>
-getFileAux(const char *Filename, int64_t FileSize, bool RequiresNullTerminator,
- bool IsVolatileSize);
ErrorOr<std::unique_ptr<MemoryBuffer>>
-MemoryBuffer::getFile(Twine Filename, int64_t FileSize,
+MemoryBuffer::getFile(const Twine &Filename, int64_t FileSize,
bool RequiresNullTerminator, bool IsVolatileSize) {
- // Ensure the path is null terminated.
- SmallString<256> PathBuf;
- StringRef NullTerminatedName = Filename.toNullTerminatedStringRef(PathBuf);
- return getFileAux(NullTerminatedName.data(), FileSize, RequiresNullTerminator,
- IsVolatileSize);
+ return getFileAux(Filename, FileSize, FileSize, 0,
+ RequiresNullTerminator, IsVolatileSize);
}
static ErrorOr<std::unique_ptr<MemoryBuffer>>
-getOpenFileImpl(int FD, const char *Filename, uint64_t FileSize,
+getOpenFileImpl(int FD, const Twine &Filename, uint64_t FileSize,
uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator,
bool IsVolatileSize);
static ErrorOr<std::unique_ptr<MemoryBuffer>>
-getFileAux(const char *Filename, int64_t FileSize, bool RequiresNullTerminator,
- bool IsVolatileSize) {
+getFileAux(const Twine &Filename, int64_t FileSize, uint64_t MapSize,
+ uint64_t Offset, bool RequiresNullTerminator, bool IsVolatileSize) {
int FD;
std::error_code EC = sys::fs::openFileForRead(Filename, FD);
if (EC)
return EC;
ErrorOr<std::unique_ptr<MemoryBuffer>> Ret =
- getOpenFileImpl(FD, Filename, FileSize, FileSize, 0,
+ getOpenFileImpl(FD, Filename, FileSize, MapSize, Offset,
RequiresNullTerminator, IsVolatileSize);
close(FD);
return Ret;
@@ -305,14 +315,22 @@ static bool shouldUseMmap(int FD,
if ((FileSize & (PageSize -1)) == 0)
return false;
+#if defined(__CYGWIN__)
+ // Don't try to map files that are exactly a multiple of the physical page size
+ // if we need a null terminator.
+ // FIXME: We should reorganize again getPageSize() on Win32.
+ if ((FileSize & (4096 - 1)) == 0)
+ return false;
+#endif
+
return true;
}
static ErrorOr<std::unique_ptr<MemoryBuffer>>
-getOpenFileImpl(int FD, const char *Filename, uint64_t FileSize,
+getOpenFileImpl(int FD, const Twine &Filename, uint64_t FileSize,
uint64_t MapSize, int64_t Offset, bool RequiresNullTerminator,
bool IsVolatileSize) {
- static int PageSize = sys::process::get_self()->page_size();
+ static int PageSize = sys::Process::getPageSize();
// Default is to map the full file.
if (MapSize == uint64_t(-1)) {
@@ -347,15 +365,15 @@ getOpenFileImpl(int FD, const char *Filename, uint64_t FileSize,
return std::move(Result);
}
- MemoryBuffer *Buf = MemoryBuffer::getNewUninitMemBuffer(MapSize, Filename);
+ std::unique_ptr<MemoryBuffer> Buf =
+ MemoryBuffer::getNewUninitMemBuffer(MapSize, Filename);
if (!Buf) {
// Failed to create a buffer. The only way it can fail is if
// new(std::nothrow) returns 0.
return make_error_code(errc::not_enough_memory);
}
- std::unique_ptr<MemoryBuffer> SB(Buf);
- char *BufPtr = const_cast<char*>(SB->getBufferStart());
+ char *BufPtr = const_cast<char *>(Buf->getBufferStart());
size_t BytesLeft = MapSize;
#ifndef HAVE_PREAD
@@ -383,21 +401,22 @@ getOpenFileImpl(int FD, const char *Filename, uint64_t FileSize,
BufPtr += NumRead;
}
- return std::move(SB);
+ return std::move(Buf);
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
-MemoryBuffer::getOpenFile(int FD, const char *Filename, uint64_t FileSize,
+MemoryBuffer::getOpenFile(int FD, const Twine &Filename, uint64_t FileSize,
bool RequiresNullTerminator, bool IsVolatileSize) {
return getOpenFileImpl(FD, Filename, FileSize, FileSize, 0,
RequiresNullTerminator, IsVolatileSize);
}
ErrorOr<std::unique_ptr<MemoryBuffer>>
-MemoryBuffer::getOpenFileSlice(int FD, const char *Filename, uint64_t MapSize,
- int64_t Offset, bool IsVolatileSize) {
+MemoryBuffer::getOpenFileSlice(int FD, const Twine &Filename, uint64_t MapSize,
+ int64_t Offset) {
+ assert(MapSize != uint64_t(-1));
return getOpenFileImpl(FD, Filename, -1, MapSize, Offset, false,
- IsVolatileSize);
+ /*IsVolatileSize*/ false);
}
ErrorOr<std::unique_ptr<MemoryBuffer>> MemoryBuffer::getSTDIN() {
@@ -409,3 +428,9 @@ ErrorOr<std::unique_ptr<MemoryBuffer>> MemoryBuffer::getSTDIN() {
return getMemoryBufferForStream(0, "<stdin>");
}
+
+MemoryBufferRef MemoryBuffer::getMemBufferRef() const {
+ StringRef Data = getBuffer();
+ StringRef Identifier = getBufferIdentifier();
+ return MemoryBufferRef(Data, Identifier);
+}
diff --git a/contrib/llvm/lib/Support/MemoryObject.cpp b/contrib/llvm/lib/Support/MemoryObject.cpp
index 02b5b50..d796acf 100644
--- a/contrib/llvm/lib/Support/MemoryObject.cpp
+++ b/contrib/llvm/lib/Support/MemoryObject.cpp
@@ -12,22 +12,3 @@ using namespace llvm;
MemoryObject::~MemoryObject() {
}
-
-int MemoryObject::readBytes(uint64_t address,
- uint64_t size,
- uint8_t* buf) const {
- uint64_t current = address;
- uint64_t limit = getBase() + getExtent();
-
- if (current + size > limit)
- return -1;
-
- while (current - address < size) {
- if (readByte(current, &buf[(current - address)]))
- return -1;
-
- current++;
- }
-
- return 0;
-}
diff --git a/contrib/llvm/lib/Support/Options.cpp b/contrib/llvm/lib/Support/Options.cpp
new file mode 100644
index 0000000..7125845
--- /dev/null
+++ b/contrib/llvm/lib/Support/Options.cpp
@@ -0,0 +1,33 @@
+//===- llvm/Support/Options.cpp - Debug options support ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the helper objects for defining debug options using the
+// new API built on cl::opt, but not requiring the use of static globals.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Options.h"
+#include "llvm/Support/ManagedStatic.h"
+
+using namespace llvm;
+
+OptionRegistry::~OptionRegistry() {
+ for (auto IT = Options.begin(); IT != Options.end(); ++IT)
+ delete IT->second;
+}
+
+void OptionRegistry::addOption(void *Key, cl::Option *O) {
+ assert(Options.find(Key) == Options.end() &&
+ "Argument with this key already registerd");
+ Options.insert(std::make_pair(Key, O));
+}
+
+static ManagedStatic<OptionRegistry> OR;
+
+OptionRegistry &OptionRegistry::instance() { return *OR; }
diff --git a/contrib/llvm/lib/Support/Path.cpp b/contrib/llvm/lib/Support/Path.cpp
index d5a0ec5..fdb27e6 100644
--- a/contrib/llvm/lib/Support/Path.cpp
+++ b/contrib/llvm/lib/Support/Path.cpp
@@ -11,11 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Support/Errc.h"
-#include "llvm/Support/Path.h"
+#include "llvm/Support/COFF.h"
#include "llvm/Support/Endian.h"
+#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include <cctype>
#include <cstdio>
@@ -164,9 +165,6 @@ enum FSEntity {
FS_Name
};
-// Implemented in Unix/Path.inc and Windows/Path.inc.
-static std::error_code TempDir(SmallVectorImpl<char> &result);
-
static std::error_code createUniqueEntity(const Twine &Model, int &ResultFD,
SmallVectorImpl<char> &ResultPath,
bool MakeAbsolute, unsigned Mode,
@@ -178,8 +176,7 @@ static std::error_code createUniqueEntity(const Twine &Model, int &ResultFD,
// Make model absolute by prepending a temp directory if it's not already.
if (!sys::path::is_absolute(Twine(ModelStorage))) {
SmallString<128> TDir;
- if (std::error_code EC = TempDir(TDir))
- return EC;
+ sys::path::system_temp_directory(true, TDir);
sys::path::append(TDir, Twine(ModelStorage));
ModelStorage.swap(TDir);
}
@@ -214,13 +211,13 @@ retry_random_path:
}
case FS_Name: {
- bool Exists;
- std::error_code EC = sys::fs::exists(ResultPath.begin(), Exists);
+ std::error_code EC =
+ sys::fs::access(ResultPath.begin(), sys::fs::AccessMode::Exist);
+ if (EC == errc::no_such_file_or_directory)
+ return std::error_code();
if (EC)
return EC;
- if (Exists)
- goto retry_random_path;
- return std::error_code();
+ goto retry_random_path;
}
case FS_Dir: {
@@ -308,7 +305,30 @@ const_iterator &const_iterator::operator++() {
return *this;
}
-const_iterator &const_iterator::operator--() {
+bool const_iterator::operator==(const const_iterator &RHS) const {
+ return Path.begin() == RHS.Path.begin() && Position == RHS.Position;
+}
+
+ptrdiff_t const_iterator::operator-(const const_iterator &RHS) const {
+ return Position - RHS.Position;
+}
+
+reverse_iterator rbegin(StringRef Path) {
+ reverse_iterator I;
+ I.Path = Path;
+ I.Position = Path.size();
+ return ++I;
+}
+
+reverse_iterator rend(StringRef Path) {
+ reverse_iterator I;
+ I.Path = Path;
+ I.Component = Path.substr(0, 0);
+ I.Position = 0;
+ return I;
+}
+
+reverse_iterator &reverse_iterator::operator++() {
// If we're at the end and the previous char was a '/', return '.' unless
// we are the root path.
size_t root_dir_pos = root_dir_start(Path);
@@ -335,20 +355,12 @@ const_iterator &const_iterator::operator--() {
return *this;
}
-bool const_iterator::operator==(const const_iterator &RHS) const {
- return Path.begin() == RHS.Path.begin() &&
+bool reverse_iterator::operator==(const reverse_iterator &RHS) const {
+ return Path.begin() == RHS.Path.begin() && Component == RHS.Component &&
Position == RHS.Position;
}
-bool const_iterator::operator!=(const const_iterator &RHS) const {
- return !(*this == RHS);
-}
-
-ptrdiff_t const_iterator::operator-(const const_iterator &RHS) const {
- return Position - RHS.Position;
-}
-
-const StringRef root_path(StringRef path) {
+StringRef root_path(StringRef path) {
const_iterator b = begin(path),
pos = b,
e = end(path);
@@ -380,7 +392,7 @@ const StringRef root_path(StringRef path) {
return StringRef();
}
-const StringRef root_name(StringRef path) {
+StringRef root_name(StringRef path) {
const_iterator b = begin(path),
e = end(path);
if (b != e) {
@@ -402,7 +414,7 @@ const StringRef root_name(StringRef path) {
return StringRef();
}
-const StringRef root_directory(StringRef path) {
+StringRef root_directory(StringRef path) {
const_iterator b = begin(path),
pos = b,
e = end(path);
@@ -431,7 +443,7 @@ const StringRef root_directory(StringRef path) {
return StringRef();
}
-const StringRef relative_path(StringRef path) {
+StringRef relative_path(StringRef path) {
StringRef root = root_path(path);
return path.substr(root.size());
}
@@ -483,7 +495,7 @@ void append(SmallVectorImpl<char> &path,
path::append(path, *begin);
}
-const StringRef parent_path(StringRef path) {
+StringRef parent_path(StringRef path) {
size_t end_pos = parent_path_end(path);
if (end_pos == StringRef::npos)
return StringRef();
@@ -525,17 +537,27 @@ void native(const Twine &path, SmallVectorImpl<char> &result) {
native(result);
}
-void native(SmallVectorImpl<char> &path) {
+void native(SmallVectorImpl<char> &Path) {
#ifdef LLVM_ON_WIN32
- std::replace(path.begin(), path.end(), '/', '\\');
+ std::replace(Path.begin(), Path.end(), '/', '\\');
+#else
+ for (auto PI = Path.begin(), PE = Path.end(); PI < PE; ++PI) {
+ if (*PI == '\\') {
+ auto PN = PI + 1;
+ if (PN < PE && *PN == '\\')
+ ++PI; // increment once, the for loop will move over the escaped slash
+ else
+ *PI = '/';
+ }
+ }
#endif
}
-const StringRef filename(StringRef path) {
- return *(--end(path));
+StringRef filename(StringRef path) {
+ return *rbegin(path);
}
-const StringRef stem(StringRef path) {
+StringRef stem(StringRef path) {
StringRef fname = filename(path);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
@@ -548,7 +570,7 @@ const StringRef stem(StringRef path) {
return fname.substr(0, pos);
}
-const StringRef extension(StringRef path) {
+StringRef extension(StringRef path) {
StringRef fname = filename(path);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
@@ -573,62 +595,10 @@ bool is_separator(char value) {
static const char preferred_separator_string[] = { preferred_separator, '\0' };
-const StringRef get_separator() {
+StringRef get_separator() {
return preferred_separator_string;
}
-void system_temp_directory(bool erasedOnReboot, SmallVectorImpl<char> &result) {
- result.clear();
-
-#if defined(_CS_DARWIN_USER_TEMP_DIR) && defined(_CS_DARWIN_USER_CACHE_DIR)
- // On Darwin, use DARWIN_USER_TEMP_DIR or DARWIN_USER_CACHE_DIR.
- // macros defined in <unistd.h> on darwin >= 9
- int ConfName = erasedOnReboot? _CS_DARWIN_USER_TEMP_DIR
- : _CS_DARWIN_USER_CACHE_DIR;
- size_t ConfLen = confstr(ConfName, nullptr, 0);
- if (ConfLen > 0) {
- do {
- result.resize(ConfLen);
- ConfLen = confstr(ConfName, result.data(), result.size());
- } while (ConfLen > 0 && ConfLen != result.size());
-
- if (ConfLen > 0) {
- assert(result.back() == 0);
- result.pop_back();
- return;
- }
-
- result.clear();
- }
-#endif
-
- // Check whether the temporary directory is specified by an environment
- // variable.
- const char *EnvironmentVariable;
-#ifdef LLVM_ON_WIN32
- EnvironmentVariable = "TEMP";
-#else
- EnvironmentVariable = "TMPDIR";
-#endif
- if (char *RequestedDir = getenv(EnvironmentVariable)) {
- result.append(RequestedDir, RequestedDir + strlen(RequestedDir));
- return;
- }
-
- // Fall back to a system default.
- const char *DefaultResult;
-#ifdef LLVM_ON_WIN32
- (void)erasedOnReboot;
- DefaultResult = "C:\\TEMP";
-#else
- if (erasedOnReboot)
- DefaultResult = "/tmp";
- else
- DefaultResult = "/var/tmp";
-#endif
- result.append(DefaultResult, DefaultResult + strlen(DefaultResult));
-}
-
bool has_root_name(const Twine &path) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
@@ -918,6 +888,14 @@ bool is_other(file_status status) {
!is_directory(status);
}
+std::error_code is_other(const Twine &Path, bool &Result) {
+ file_status FileStatus;
+ if (std::error_code EC = status(Path, FileStatus))
+ return EC;
+ Result = is_other(FileStatus);
+ return std::error_code();
+}
+
void directory_entry::replace_filename(const Twine &filename, file_status st) {
SmallString<128> path(Path.begin(), Path.end());
path::remove_filename(path);
@@ -932,10 +910,23 @@ file_magic identify_magic(StringRef Magic) {
return file_magic::unknown;
switch ((unsigned char)Magic[0]) {
case 0x00: {
- // COFF short import library file
+ // COFF bigobj or short import library file
if (Magic[1] == (char)0x00 && Magic[2] == (char)0xff &&
- Magic[3] == (char)0xff)
- return file_magic::coff_import_library;
+ Magic[3] == (char)0xff) {
+ size_t MinSize = offsetof(COFF::BigObjHeader, UUID) + sizeof(COFF::BigObjMagic);
+ if (Magic.size() < MinSize)
+ return file_magic::coff_import_library;
+
+ int BigObjVersion = *reinterpret_cast<const support::ulittle16_t*>(
+ Magic.data() + offsetof(COFF::BigObjHeader, Version));
+ if (BigObjVersion < COFF::BigObjHeader::MinBigObjectVersion)
+ return file_magic::coff_import_library;
+
+ const char *Start = Magic.data() + offsetof(COFF::BigObjHeader, UUID);
+ if (memcmp(Start, COFF::BigObjMagic, sizeof(COFF::BigObjMagic)) != 0)
+ return file_magic::coff_import_library;
+ return file_magic::coff_object;
+ }
// Windows resource file
const char Expected[] = { 0, 0, 0, 0, '\x20', 0, 0, 0, '\xff' };
if (Magic.size() >= sizeof(Expected) &&
@@ -975,6 +966,9 @@ file_magic identify_magic(StringRef Magic) {
case 3: return file_magic::elf_shared_object;
case 4: return file_magic::elf_core;
}
+ else
+ // It's still some type of ELF file.
+ return file_magic::elf;
}
break;
@@ -1016,7 +1010,7 @@ file_magic identify_magic(StringRef Magic) {
case 6: return file_magic::macho_dynamically_linked_shared_lib;
case 7: return file_magic::macho_dynamic_linker;
case 8: return file_magic::macho_bundle;
- case 9: return file_magic::macho_dynamic_linker;
+ case 9: return file_magic::macho_dynamically_linked_shared_lib_stub;
case 10: return file_magic::macho_dsym_companion;
}
break;
@@ -1037,12 +1031,13 @@ file_magic identify_magic(StringRef Magic) {
return file_magic::coff_object;
break;
- case 0x4d: // Possible MS-DOS stub on Windows PE file
- if (Magic[1] == 0x5a) {
+ case 'M': // Possible MS-DOS stub on Windows PE file
+ if (Magic[1] == 'Z') {
uint32_t off =
*reinterpret_cast<const support::ulittle32_t*>(Magic.data() + 0x3c);
// PE/COFF file, either EXE or DLL.
- if (off < Magic.size() && memcmp(Magic.data() + off, "PE\0\0",4) == 0)
+ if (off < Magic.size() &&
+ memcmp(Magic.data()+off, COFF::PEMagic, sizeof(COFF::PEMagic)) == 0)
return file_magic::pecoff_executable;
}
break;
diff --git a/contrib/llvm/lib/Support/Process.cpp b/contrib/llvm/lib/Support/Process.cpp
index 0d42e0e..ad67e1b 100644
--- a/contrib/llvm/lib/Support/Process.cpp
+++ b/contrib/llvm/lib/Support/Process.cpp
@@ -26,25 +26,6 @@ using namespace sys;
//=== independent code.
//===----------------------------------------------------------------------===//
-// Empty virtual destructor to anchor the vtable for the process class.
-process::~process() {}
-
-self_process *process::get_self() {
- // Use a function local static for thread safe initialization and allocate it
- // as a raw pointer to ensure it is never destroyed.
- static self_process *SP = new self_process();
-
- return SP;
-}
-
-// The destructor for the self_process subclass must never actually be
-// executed. There should be at most one instance of this class, and that
-// instance should live until the process terminates to avoid the potential for
-// racy accesses during shutdown.
-self_process::~self_process() {
- llvm_unreachable("This destructor must never be executed!");
-}
-
/// \brief A helper function to compute the elapsed wall-time since the program
/// started.
///
@@ -63,12 +44,6 @@ static TimeValue getElapsedWallTime() {
/// create race conditions during program startup or shutdown.
static volatile TimeValue DummyTimeValue = getElapsedWallTime();
-// Implement this routine by using the static helpers above. They're already
-// portable.
-TimeValue self_process::get_wall_time() const {
- return getElapsedWallTime();
-}
-
Optional<std::string> Process::FindInEnvPath(const std::string& EnvName,
const std::string& FileName)
{
diff --git a/contrib/llvm/lib/Support/RandomNumberGenerator.cpp b/contrib/llvm/lib/Support/RandomNumberGenerator.cpp
index c50e7cb..2943137 100644
--- a/contrib/llvm/lib/Support/RandomNumberGenerator.cpp
+++ b/contrib/llvm/lib/Support/RandomNumberGenerator.cpp
@@ -7,16 +7,16 @@
//
//===----------------------------------------------------------------------===//
//
-// This file implements random number generation (RNG).
+// This file implements deterministic random number generation (RNG).
// The current implementation is NOT cryptographically secure as it uses
// the C++11 <random> facilities.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "rng"
-#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/RandomNumberGenerator.h"
using namespace llvm;
@@ -31,31 +31,25 @@ Seed("rng-seed", cl::value_desc("seed"),
RandomNumberGenerator::RandomNumberGenerator(StringRef Salt) {
DEBUG(
if (Seed == 0)
- errs() << "Warning! Using unseeded random number generator.\n"
+ dbgs() << "Warning! Using unseeded random number generator.\n"
);
- // Combine seed and salt using std::seed_seq.
- // Entropy: Seed-low, Seed-high, Salt...
+ // Combine seed and salts using std::seed_seq.
+ // Data: Seed-low, Seed-high, Salt
+ // Note: std::seed_seq can only store 32-bit values, even though we
+ // are using a 64-bit RNG. This isn't a problem since the Mersenne
+ // twister constructor copies these correctly into its initial state.
std::vector<uint32_t> Data;
- Data.reserve(2 + Salt.size()/4 + 1);
+ Data.reserve(2 + Salt.size());
Data.push_back(Seed);
Data.push_back(Seed >> 32);
- uint32_t Pack = 0;
- for (size_t I = 0; I < Salt.size(); ++I) {
- Pack <<= 8;
- Pack += Salt[I];
-
- if (I%4 == 3)
- Data.push_back(Pack);
- }
- Data.push_back(Pack);
+ std::copy(Salt.begin(), Salt.end(), Data.end());
std::seed_seq SeedSeq(Data.begin(), Data.end());
Generator.seed(SeedSeq);
}
-uint64_t RandomNumberGenerator::next(uint64_t Max) {
- std::uniform_int_distribution<uint64_t> distribution(0, Max - 1);
- return distribution(Generator);
+uint_fast64_t RandomNumberGenerator::operator()() {
+ return Generator();
}
diff --git a/contrib/llvm/lib/Support/ScaledNumber.cpp b/contrib/llvm/lib/Support/ScaledNumber.cpp
index 3fe027b..6f6699c 100644
--- a/contrib/llvm/lib/Support/ScaledNumber.cpp
+++ b/contrib/llvm/lib/Support/ScaledNumber.cpp
@@ -12,7 +12,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/ScaledNumber.h"
-
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/Debug.h"
@@ -169,6 +168,7 @@ static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
int Shift = 63 - (NewE - E);
assert(Shift <= LeadingZeros);
assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
+ assert(Shift >= 0 && Shift < 64 && "undefined behavior");
D <<= Shift;
E = NewE;
@@ -220,6 +220,9 @@ std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
} else if (E > -64) {
Above0 = D >> -E;
Below0 = D << (64 + E);
+ } else if (E == -64) {
+ // Special case: shift by 64 bits is undefined behavior.
+ Below0 = D;
} else if (E > -120) {
Below0 = D >> (-E - 64);
Extra = D << (128 + E);
diff --git a/contrib/llvm/lib/Support/SmallPtrSet.cpp b/contrib/llvm/lib/Support/SmallPtrSet.cpp
index a80e095..c87ee7d 100644
--- a/contrib/llvm/lib/Support/SmallPtrSet.cpp
+++ b/contrib/llvm/lib/Support/SmallPtrSet.cpp
@@ -34,18 +34,19 @@ void SmallPtrSetImplBase::shrink_and_clear() {
memset(CurArray, -1, CurArraySize*sizeof(void*));
}
-bool SmallPtrSetImplBase::insert_imp(const void * Ptr) {
+std::pair<const void *const *, bool>
+SmallPtrSetImplBase::insert_imp(const void *Ptr) {
if (isSmall()) {
// Check to see if it is already in the set.
for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
APtr != E; ++APtr)
if (*APtr == Ptr)
- return false;
-
+ return std::make_pair(APtr, false);
+
// Nope, there isn't. If we stay small, just 'pushback' now.
- if (NumElements < CurArraySize-1) {
+ if (NumElements < CurArraySize) {
SmallArray[NumElements++] = Ptr;
- return true;
+ return std::make_pair(SmallArray + (NumElements - 1), true);
}
// Otherwise, hit the big set case, which will call grow.
}
@@ -61,14 +62,15 @@ bool SmallPtrSetImplBase::insert_imp(const void * Ptr) {
// Okay, we know we have space. Find a hash bucket.
const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
- if (*Bucket == Ptr) return false; // Already inserted, good.
-
+ if (*Bucket == Ptr)
+ return std::make_pair(Bucket, false); // Already inserted, good.
+
// Otherwise, insert it!
if (*Bucket == getTombstoneMarker())
--NumTombstones;
*Bucket = Ptr;
++NumElements; // Track density.
- return true;
+ return std::make_pair(Bucket, true);
}
bool SmallPtrSetImplBase::erase_imp(const void * Ptr) {
@@ -200,13 +202,12 @@ SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
if (that.isSmall()) {
CurArray = SmallArray;
memcpy(CurArray, that.CurArray, sizeof(void *) * CurArraySize);
- return;
+ } else {
+ // Otherwise, we steal the large memory allocation and no copy is needed.
+ CurArray = that.CurArray;
+ that.CurArray = that.SmallArray;
}
- // Otherwise, we steal the large memory allocation and no copy is needed.
- CurArray = that.CurArray;
- that.CurArray = that.SmallArray;
-
// Make the "that" object small and empty.
that.CurArraySize = SmallSize;
assert(that.CurArray == that.SmallArray);
diff --git a/contrib/llvm/lib/Support/SourceMgr.cpp b/contrib/llvm/lib/Support/SourceMgr.cpp
index 003cb56..b50a66b 100644
--- a/contrib/llvm/lib/Support/SourceMgr.cpp
+++ b/contrib/llvm/lib/Support/SourceMgr.cpp
@@ -42,11 +42,6 @@ SourceMgr::~SourceMgr() {
// Delete the line # cache if allocated.
if (LineNoCacheTy *Cache = getCache(LineNoCache))
delete Cache;
-
- while (!Buffers.empty()) {
- delete Buffers.back().Buffer;
- Buffers.pop_back();
- }
}
unsigned SourceMgr::AddIncludeFile(const std::string &Filename,
@@ -54,20 +49,20 @@ unsigned SourceMgr::AddIncludeFile(const std::string &Filename,
std::string &IncludedFile) {
IncludedFile = Filename;
ErrorOr<std::unique_ptr<MemoryBuffer>> NewBufOrErr =
- MemoryBuffer::getFile(IncludedFile.c_str());
+ MemoryBuffer::getFile(IncludedFile);
// If the file didn't exist directly, see if it's in an include path.
for (unsigned i = 0, e = IncludeDirectories.size(); i != e && !NewBufOrErr;
++i) {
IncludedFile =
IncludeDirectories[i] + sys::path::get_separator().data() + Filename;
- NewBufOrErr = MemoryBuffer::getFile(IncludedFile.c_str());
+ NewBufOrErr = MemoryBuffer::getFile(IncludedFile);
}
if (!NewBufOrErr)
return 0;
- return AddNewSourceBuffer(NewBufOrErr.get().release(), IncludeLoc);
+ return AddNewSourceBuffer(std::move(*NewBufOrErr), IncludeLoc);
}
unsigned SourceMgr::FindBufferContainingLoc(SMLoc Loc) const {
diff --git a/contrib/llvm/lib/Support/SpecialCaseList.cpp b/contrib/llvm/lib/Support/SpecialCaseList.cpp
index 21e43c5..785cc60 100644
--- a/contrib/llvm/lib/Support/SpecialCaseList.cpp
+++ b/contrib/llvm/lib/Support/SpecialCaseList.cpp
@@ -48,10 +48,10 @@ struct SpecialCaseList::Entry {
SpecialCaseList::SpecialCaseList() : Entries() {}
-SpecialCaseList *SpecialCaseList::create(
- const StringRef Path, std::string &Error) {
+std::unique_ptr<SpecialCaseList> SpecialCaseList::create(StringRef Path,
+ std::string &Error) {
if (Path.empty())
- return new SpecialCaseList();
+ return std::unique_ptr<SpecialCaseList>(new SpecialCaseList());
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFile(Path);
if (std::error_code EC = FileOrErr.getError()) {
@@ -61,17 +61,17 @@ SpecialCaseList *SpecialCaseList::create(
return create(FileOrErr.get().get(), Error);
}
-SpecialCaseList *SpecialCaseList::create(
- const MemoryBuffer *MB, std::string &Error) {
+std::unique_ptr<SpecialCaseList> SpecialCaseList::create(const MemoryBuffer *MB,
+ std::string &Error) {
std::unique_ptr<SpecialCaseList> SCL(new SpecialCaseList());
if (!SCL->parse(MB, Error))
return nullptr;
- return SCL.release();
+ return SCL;
}
-SpecialCaseList *SpecialCaseList::createOrDie(const StringRef Path) {
+std::unique_ptr<SpecialCaseList> SpecialCaseList::createOrDie(StringRef Path) {
std::string Error;
- if (SpecialCaseList *SCL = create(Path, Error))
+ if (auto SCL = create(Path, Error))
return SCL;
report_fatal_error(Error);
}
@@ -103,18 +103,6 @@ bool SpecialCaseList::parse(const MemoryBuffer *MB, std::string &Error) {
std::string Regexp = SplitRegexp.first;
StringRef Category = SplitRegexp.second;
- // Backwards compatibility.
- if (Prefix == "global-init") {
- Prefix = "global";
- Category = "init";
- } else if (Prefix == "global-init-type") {
- Prefix = "type";
- Category = "init";
- } else if (Prefix == "global-init-src") {
- Prefix = "src";
- Category = "init";
- }
-
// See if we can store Regexp in Strings.
if (Regex::isLiteralERE(Regexp)) {
Entries[Prefix][Category].Strings.insert(Regexp);
@@ -157,8 +145,8 @@ bool SpecialCaseList::parse(const MemoryBuffer *MB, std::string &Error) {
SpecialCaseList::~SpecialCaseList() {}
-bool SpecialCaseList::inSection(const StringRef Section, const StringRef Query,
- const StringRef Category) const {
+bool SpecialCaseList::inSection(StringRef Section, StringRef Query,
+ StringRef Category) const {
StringMap<StringMap<Entry> >::const_iterator I = Entries.find(Section);
if (I == Entries.end()) return false;
StringMap<Entry>::const_iterator II = I->second.find(Category);
diff --git a/contrib/llvm/lib/Support/StreamableMemoryObject.cpp b/contrib/llvm/lib/Support/StreamingMemoryObject.cpp
index 5cb0680..68beeef 100644
--- a/contrib/llvm/lib/Support/StreamableMemoryObject.cpp
+++ b/contrib/llvm/lib/Support/StreamingMemoryObject.cpp
@@ -1,4 +1,4 @@
-//===- StreamableMemoryObject.cpp - Streamable data interface -------------===//
+//===- StreamingMemoryObject.cpp - Streamable data interface -------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Support/StreamableMemoryObject.h"
+#include "llvm/Support/StreamingMemoryObject.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstddef>
@@ -18,27 +18,22 @@ using namespace llvm;
namespace {
-class RawMemoryObject : public StreamableMemoryObject {
+class RawMemoryObject : public MemoryObject {
public:
RawMemoryObject(const unsigned char *Start, const unsigned char *End) :
FirstChar(Start), LastChar(End) {
assert(LastChar >= FirstChar && "Invalid start/end range");
}
- uint64_t getBase() const override { return 0; }
uint64_t getExtent() const override {
return LastChar - FirstChar;
}
- int readByte(uint64_t address, uint8_t* ptr) const override;
- int readBytes(uint64_t address, uint64_t size,
- uint8_t *buf) const override;
+ uint64_t readBytes(uint8_t *Buf, uint64_t Size,
+ uint64_t Address) const override;
const uint8_t *getPointer(uint64_t address, uint64_t size) const override;
bool isValidAddress(uint64_t address) const override {
return validAddress(address);
}
- bool isObjectEnd(uint64_t address) const override {
- return objectEnd(address);
- }
private:
const uint8_t* const FirstChar;
@@ -49,26 +44,25 @@ private:
bool validAddress(uint64_t address) const {
return static_cast<std::ptrdiff_t>(address) < LastChar - FirstChar;
}
- bool objectEnd(uint64_t address) const {
- return static_cast<std::ptrdiff_t>(address) == LastChar - FirstChar;
- }
RawMemoryObject(const RawMemoryObject&) LLVM_DELETED_FUNCTION;
void operator=(const RawMemoryObject&) LLVM_DELETED_FUNCTION;
};
-int RawMemoryObject::readByte(uint64_t address, uint8_t* ptr) const {
- if (!validAddress(address)) return -1;
- *ptr = *((uint8_t *)(uintptr_t)(address + FirstChar));
- return 0;
-}
+uint64_t RawMemoryObject::readBytes(uint8_t *Buf, uint64_t Size,
+ uint64_t Address) const {
+ uint64_t BufferSize = LastChar - FirstChar;
+ if (Address >= BufferSize)
+ return 0;
-int RawMemoryObject::readBytes(uint64_t address,
- uint64_t size,
- uint8_t *buf) const {
- if (!validAddress(address) || !validAddress(address + size - 1)) return -1;
- memcpy(buf, (uint8_t *)(uintptr_t)(address + FirstChar), size);
- return size;
+ uint64_t End = Address + Size;
+ if (End > BufferSize)
+ End = BufferSize;
+
+ assert(static_cast<int64_t>(End - Address) >= 0);
+ Size = End - Address;
+ memcpy(Buf, Address + FirstChar, Size);
+ return Size;
}
const uint8_t *RawMemoryObject::getPointer(uint64_t address,
@@ -85,12 +79,6 @@ bool StreamingMemoryObject::isValidAddress(uint64_t address) const {
return fetchToPos(address);
}
-bool StreamingMemoryObject::isObjectEnd(uint64_t address) const {
- if (ObjectSize) return address == ObjectSize;
- fetchToPos(address);
- return address == ObjectSize && address != 0;
-}
-
uint64_t StreamingMemoryObject::getExtent() const {
if (ObjectSize) return ObjectSize;
size_t pos = BytesRead + kChunkSize;
@@ -99,18 +87,19 @@ uint64_t StreamingMemoryObject::getExtent() const {
return ObjectSize;
}
-int StreamingMemoryObject::readByte(uint64_t address, uint8_t* ptr) const {
- if (!fetchToPos(address)) return -1;
- *ptr = Bytes[address + BytesSkipped];
- return 0;
-}
-
-int StreamingMemoryObject::readBytes(uint64_t address,
- uint64_t size,
- uint8_t *buf) const {
- if (!fetchToPos(address + size - 1)) return -1;
- memcpy(buf, &Bytes[address + BytesSkipped], size);
- return 0;
+uint64_t StreamingMemoryObject::readBytes(uint8_t *Buf, uint64_t Size,
+ uint64_t Address) const {
+ fetchToPos(Address + Size - 1);
+ if (Address >= BytesRead)
+ return 0;
+
+ uint64_t End = Address + Size;
+ if (End > BytesRead)
+ End = BytesRead;
+ assert(static_cast<int64_t>(End - Address) >= 0);
+ Size = End - Address;
+ memcpy(Buf, &Bytes[Address + BytesSkipped], Size);
+ return Size;
}
bool StreamingMemoryObject::dropLeadingBytes(size_t s) {
@@ -125,13 +114,11 @@ void StreamingMemoryObject::setKnownObjectSize(size_t size) {
Bytes.reserve(size);
}
-StreamableMemoryObject *getNonStreamedMemoryObject(
- const unsigned char *Start, const unsigned char *End) {
+MemoryObject *getNonStreamedMemoryObject(const unsigned char *Start,
+ const unsigned char *End) {
return new RawMemoryObject(Start, End);
}
-StreamableMemoryObject::~StreamableMemoryObject() { }
-
StreamingMemoryObject::StreamingMemoryObject(DataStreamer *streamer) :
Bytes(kChunkSize), Streamer(streamer), BytesRead(0), BytesSkipped(0),
ObjectSize(0), EOFReached(false) {
diff --git a/contrib/llvm/lib/Support/StringRef.cpp b/contrib/llvm/lib/Support/StringRef.cpp
index cde8258..ddece08 100644
--- a/contrib/llvm/lib/Support/StringRef.cpp
+++ b/contrib/llvm/lib/Support/StringRef.cpp
@@ -50,7 +50,7 @@ static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
/// compare_lower - Compare strings, ignoring case.
int StringRef::compare_lower(StringRef RHS) const {
- if (int Res = ascii_strncasecmp(Data, RHS.Data, min(Length, RHS.Length)))
+ if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
return Res;
if (Length == RHS.Length)
return 0;
@@ -71,7 +71,7 @@ bool StringRef::endswith_lower(StringRef Suffix) const {
/// compare_numeric - Compare strings, handle embedded numbers.
int StringRef::compare_numeric(StringRef RHS) const {
- for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
+ for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
// Check for sequences of digits.
if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
// The longer sequence of numbers is considered larger.
@@ -105,8 +105,8 @@ unsigned StringRef::edit_distance(llvm::StringRef Other,
bool AllowReplacements,
unsigned MaxEditDistance) const {
return llvm::ComputeEditDistance(
- llvm::ArrayRef<char>(data(), size()),
- llvm::ArrayRef<char>(Other.data(), Other.size()),
+ makeArrayRef(data(), size()),
+ makeArrayRef(Other.data(), Other.size()),
AllowReplacements, MaxEditDistance);
}
@@ -146,7 +146,7 @@ size_t StringRef::find(StringRef Str, size_t From) const {
// For short haystacks or unsupported needles fall back to the naive algorithm
if (Length < 16 || N > 255 || N == 0) {
- for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
+ for (size_t e = Length - N + 1, i = std::min(From, e); i != e; ++i)
if (substr(i, N).equals(Str))
return i;
return npos;
@@ -201,7 +201,7 @@ StringRef::size_type StringRef::find_first_of(StringRef Chars,
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
- for (size_type i = min(From, Length), e = Length; i != e; ++i)
+ for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
if (CharBits.test((unsigned char)Data[i]))
return i;
return npos;
@@ -210,7 +210,7 @@ StringRef::size_type StringRef::find_first_of(StringRef Chars,
/// find_first_not_of - Find the first character in the string that is not
/// \arg C or npos if not found.
StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
- for (size_type i = min(From, Length), e = Length; i != e; ++i)
+ for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
if (Data[i] != C)
return i;
return npos;
@@ -226,7 +226,7 @@ StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
- for (size_type i = min(From, Length), e = Length; i != e; ++i)
+ for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
if (!CharBits.test((unsigned char)Data[i]))
return i;
return npos;
@@ -242,7 +242,7 @@ StringRef::size_type StringRef::find_last_of(StringRef Chars,
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
- for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
+ for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
if (CharBits.test((unsigned char)Data[i]))
return i;
return npos;
@@ -251,7 +251,7 @@ StringRef::size_type StringRef::find_last_of(StringRef Chars,
/// find_last_not_of - Find the last character in the string that is not
/// \arg C, or npos if not found.
StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
- for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
+ for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
if (Data[i] != C)
return i;
return npos;
@@ -267,7 +267,7 @@ StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
for (size_type i = 0, e = Chars.size(); i != e; ++i)
CharBits.set((unsigned char)Chars[i]);
- for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
+ for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
if (!CharBits.test((unsigned char)Data[i]))
return i;
return npos;
diff --git a/contrib/llvm/lib/Support/StringRefMemoryObject.cpp b/contrib/llvm/lib/Support/StringRefMemoryObject.cpp
deleted file mode 100644
index e035ed1..0000000
--- a/contrib/llvm/lib/Support/StringRefMemoryObject.cpp
+++ /dev/null
@@ -1,29 +0,0 @@
-//===- lib/Support/StringRefMemoryObject.cpp --------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/StringRefMemoryObject.h"
-
-using namespace llvm;
-
-int StringRefMemoryObject::readByte(uint64_t Addr, uint8_t *Byte) const {
- if (Addr >= Base + getExtent() || Addr < Base)
- return -1;
- *Byte = Bytes[Addr - Base];
- return 0;
-}
-
-int StringRefMemoryObject::readBytes(uint64_t Addr,
- uint64_t Size,
- uint8_t *Buf) const {
- uint64_t Offset = Addr - Base;
- if (Addr >= Base + getExtent() || Offset + Size > getExtent() || Addr < Base)
- return -1;
- memcpy(Buf, Bytes.data() + Offset, Size);
- return 0;
-}
diff --git a/contrib/llvm/lib/Support/ThreadLocal.cpp b/contrib/llvm/lib/Support/ThreadLocal.cpp
index 2dec9eb..9da1603 100644
--- a/contrib/llvm/lib/Support/ThreadLocal.cpp
+++ b/contrib/llvm/lib/Support/ThreadLocal.cpp
@@ -31,58 +31,14 @@ void ThreadLocalImpl::setInstance(const void* d) {
void **pd = reinterpret_cast<void**>(&data);
*pd = const_cast<void*>(d);
}
-const void* ThreadLocalImpl::getInstance() {
+void *ThreadLocalImpl::getInstance() {
void **pd = reinterpret_cast<void**>(&data);
return *pd;
}
void ThreadLocalImpl::removeInstance() {
- setInstance(0);
-}
-}
-#else
-
-#if defined(HAVE_PTHREAD_H) && defined(HAVE_PTHREAD_GETSPECIFIC)
-
-#include <cassert>
-#include <pthread.h>
-#include <stdlib.h>
-
-namespace llvm {
-using namespace sys;
-
-ThreadLocalImpl::ThreadLocalImpl() : data() {
- static_assert(sizeof(pthread_key_t) <= sizeof(data), "size too big");
- pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
- int errorcode = pthread_key_create(key, nullptr);
- assert(errorcode == 0);
- (void) errorcode;
-}
-
-ThreadLocalImpl::~ThreadLocalImpl() {
- pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
- int errorcode = pthread_key_delete(*key);
- assert(errorcode == 0);
- (void) errorcode;
-}
-
-void ThreadLocalImpl::setInstance(const void* d) {
- pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
- int errorcode = pthread_setspecific(*key, d);
- assert(errorcode == 0);
- (void) errorcode;
-}
-
-const void* ThreadLocalImpl::getInstance() {
- pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
- return pthread_getspecific(*key);
-}
-
-void ThreadLocalImpl::removeInstance() {
setInstance(nullptr);
}
-
}
-
#elif defined(LLVM_ON_UNIX)
#include "Unix/ThreadLocal.inc"
#elif defined( LLVM_ON_WIN32)
@@ -90,4 +46,3 @@ void ThreadLocalImpl::removeInstance() {
#else
#warning Neither LLVM_ON_UNIX nor LLVM_ON_WIN32 set in Support/ThreadLocal.cpp
#endif
-#endif
diff --git a/contrib/llvm/lib/Support/TimeValue.cpp b/contrib/llvm/lib/Support/TimeValue.cpp
index 4a70797..136b93e 100644
--- a/contrib/llvm/lib/Support/TimeValue.cpp
+++ b/contrib/llvm/lib/Support/TimeValue.cpp
@@ -22,12 +22,6 @@ const TimeValue::SecondsType
const TimeValue::SecondsType
TimeValue::Win32ZeroTimeSeconds = -12591158400ULL;
-const TimeValue TimeValue::MinTime = TimeValue ( INT64_MIN,0 );
-const TimeValue TimeValue::MaxTime = TimeValue ( INT64_MAX,0 );
-const TimeValue TimeValue::ZeroTime = TimeValue ( 0,0 );
-const TimeValue TimeValue::PosixZeroTime = TimeValue ( PosixZeroTimeSeconds,0 );
-const TimeValue TimeValue::Win32ZeroTime = TimeValue ( Win32ZeroTimeSeconds,0 );
-
void
TimeValue::normalize( void ) {
if ( nanos_ >= NANOSECONDS_PER_SECOND ) {
diff --git a/contrib/llvm/lib/Support/Timer.cpp b/contrib/llvm/lib/Support/Timer.cpp
index 210bda7..e1a531a 100644
--- a/contrib/llvm/lib/Support/Timer.cpp
+++ b/contrib/llvm/lib/Support/Timer.cpp
@@ -66,10 +66,10 @@ raw_ostream *llvm::CreateInfoOutputFile() {
// each time -stats or -time-passes wants to print output to it. To
// compensate for this, the test-suite Makefiles have code to delete the
// info output file before running commands which write to it.
- std::string Error;
- raw_ostream *Result = new raw_fd_ostream(
- OutputFilename.c_str(), Error, sys::fs::F_Append | sys::fs::F_Text);
- if (Error.empty())
+ std::error_code EC;
+ raw_ostream *Result = new raw_fd_ostream(OutputFilename, EC,
+ sys::fs::F_Append | sys::fs::F_Text);
+ if (!EC)
return Result;
errs() << "Error opening info-output-file '"
diff --git a/contrib/llvm/lib/Support/ToolOutputFile.cpp b/contrib/llvm/lib/Support/ToolOutputFile.cpp
index b5fb20f..8ae977d 100644
--- a/contrib/llvm/lib/Support/ToolOutputFile.cpp
+++ b/contrib/llvm/lib/Support/ToolOutputFile.cpp
@@ -16,8 +16,8 @@
#include "llvm/Support/Signals.h"
using namespace llvm;
-tool_output_file::CleanupInstaller::CleanupInstaller(const char *filename)
- : Filename(filename), Keep(false) {
+tool_output_file::CleanupInstaller::CleanupInstaller(StringRef Filename)
+ : Filename(Filename), Keep(false) {
// Arrange for the file to be deleted if the process is killed.
if (Filename != "-")
sys::RemoveFileOnSignal(Filename);
@@ -34,14 +34,13 @@ tool_output_file::CleanupInstaller::~CleanupInstaller() {
sys::DontRemoveFileOnSignal(Filename);
}
-tool_output_file::tool_output_file(const char *filename, std::string &ErrorInfo,
+tool_output_file::tool_output_file(StringRef Filename, std::error_code &EC,
sys::fs::OpenFlags Flags)
- : Installer(filename), OS(filename, ErrorInfo, Flags) {
+ : Installer(Filename), OS(Filename, EC, Flags) {
// If open fails, no cleanup is needed.
- if (!ErrorInfo.empty())
+ if (EC)
Installer.Keep = true;
}
-tool_output_file::tool_output_file(const char *Filename, int FD)
- : Installer(Filename), OS(FD, true) {
-}
+tool_output_file::tool_output_file(StringRef Filename, int FD)
+ : Installer(Filename), OS(FD, true) {}
diff --git a/contrib/llvm/lib/Support/Triple.cpp b/contrib/llvm/lib/Support/Triple.cpp
index ca68775..0838e90 100644
--- a/contrib/llvm/lib/Support/Triple.cpp
+++ b/contrib/llvm/lib/Support/Triple.cpp
@@ -23,8 +23,6 @@ const char *Triple::getArchTypeName(ArchType Kind) {
case aarch64_be: return "aarch64_be";
case arm: return "arm";
case armeb: return "armeb";
- case arm64: return "arm64";
- case arm64_be: return "arm64_be";
case hexagon: return "hexagon";
case mips: return "mips";
case mipsel: return "mipsel";
@@ -35,6 +33,7 @@ const char *Triple::getArchTypeName(ArchType Kind) {
case ppc64le: return "powerpc64le";
case ppc: return "powerpc";
case r600: return "r600";
+ case amdgcn: return "amdgcn";
case sparc: return "sparc";
case sparcv9: return "sparcv9";
case systemz: return "s390x";
@@ -47,7 +46,11 @@ const char *Triple::getArchTypeName(ArchType Kind) {
case nvptx: return "nvptx";
case nvptx64: return "nvptx64";
case le32: return "le32";
+ case le64: return "le64";
case amdil: return "amdil";
+ case amdil64: return "amdil64";
+ case hsail: return "hsail";
+ case hsail64: return "hsail64";
case spir: return "spir";
case spir64: return "spir64";
case kalimba: return "kalimba";
@@ -61,8 +64,6 @@ const char *Triple::getArchTypePrefix(ArchType Kind) {
default:
return nullptr;
- case arm64:
- case arm64_be:
case aarch64:
case aarch64_be: return "aarch64";
@@ -82,7 +83,8 @@ const char *Triple::getArchTypePrefix(ArchType Kind) {
case hexagon: return "hexagon";
- case r600: return "r600";
+ case amdgcn:
+ case r600: return "amdgpu";
case sparcv9:
case sparc: return "sparc";
@@ -98,8 +100,15 @@ const char *Triple::getArchTypePrefix(ArchType Kind) {
case nvptx64: return "nvptx";
case le32: return "le32";
- case amdil: return "amdil";
- case spir: return "spir";
+ case le64: return "le64";
+
+ case amdil:
+ case amdil64: return "amdil";
+
+ case hsail:
+ case hsail64: return "hsail";
+
+ case spir:
case spir64: return "spir";
case kalimba: return "kalimba";
}
@@ -129,8 +138,6 @@ const char *Triple::getOSTypeName(OSType Kind) {
switch (Kind) {
case UnknownOS: return "unknown";
- case AuroraUX: return "auroraux";
- case Cygwin: return "cygwin";
case Darwin: return "darwin";
case DragonFly: return "dragonfly";
case FreeBSD: return "freebsd";
@@ -139,7 +146,6 @@ const char *Triple::getOSTypeName(OSType Kind) {
case Linux: return "linux";
case Lv2: return "lv2";
case MacOSX: return "macosx";
- case MinGW32: return "mingw32";
case NetBSD: return "netbsd";
case OpenBSD: return "openbsd";
case Solaris: return "solaris";
@@ -153,6 +159,7 @@ const char *Triple::getOSTypeName(OSType Kind) {
case AIX: return "aix";
case CUDA: return "cuda";
case NVCL: return "nvcl";
+ case AMDHSA: return "amdhsa";
}
llvm_unreachable("Invalid OSType");
@@ -181,10 +188,9 @@ Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {
return StringSwitch<Triple::ArchType>(Name)
.Case("aarch64", aarch64)
.Case("aarch64_be", aarch64_be)
+ .Case("arm64", aarch64) // "arm64" is an alias for "aarch64"
.Case("arm", arm)
.Case("armeb", armeb)
- .Case("arm64", arm64)
- .Case("arm64_be", arm64_be)
.Case("mips", mips)
.Case("mipsel", mipsel)
.Case("mips64", mips64)
@@ -195,6 +201,7 @@ Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {
.Case("ppc", ppc)
.Case("ppc64le", ppc64le)
.Case("r600", r600)
+ .Case("amdgcn", amdgcn)
.Case("hexagon", hexagon)
.Case("sparc", sparc)
.Case("sparcv9", sparcv9)
@@ -208,43 +215,72 @@ Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {
.Case("nvptx", nvptx)
.Case("nvptx64", nvptx64)
.Case("le32", le32)
+ .Case("le64", le64)
.Case("amdil", amdil)
+ .Case("amdil64", amdil64)
+ .Case("hsail", hsail)
+ .Case("hsail64", hsail64)
.Case("spir", spir)
.Case("spir64", spir64)
.Case("kalimba", kalimba)
.Default(UnknownArch);
}
-// Returns architecture name that is understood by the target assembler.
-const char *Triple::getArchNameForAssembler() {
- if (!isOSDarwin() && getVendor() != Triple::Apple)
- return nullptr;
-
- return StringSwitch<const char*>(getArchName())
- .Case("i386", "i386")
- .Case("x86_64", "x86_64")
- .Case("powerpc", "ppc")
- .Case("powerpc64", "ppc64")
- .Case("powerpc64le", "ppc64le")
- .Case("arm", "arm")
- .Cases("armv4t", "thumbv4t", "armv4t")
- .Cases("armv5", "armv5e", "thumbv5", "thumbv5e", "armv5")
- .Cases("armv6", "thumbv6", "armv6")
- .Cases("armv7", "thumbv7", "armv7")
- .Case("armeb", "armeb")
- .Case("arm64", "arm64")
- .Case("arm64_be", "arm64")
- .Case("r600", "r600")
- .Case("nvptx", "nvptx")
- .Case("nvptx64", "nvptx64")
- .Case("le32", "le32")
- .Case("amdil", "amdil")
- .Case("spir", "spir")
- .Case("spir64", "spir64")
- .Default(nullptr);
+static Triple::ArchType parseARMArch(StringRef ArchName) {
+ size_t offset = StringRef::npos;
+ Triple::ArchType arch = Triple::UnknownArch;
+ bool isThumb = ArchName.startswith("thumb");
+
+ if (ArchName.equals("arm"))
+ return Triple::arm;
+ if (ArchName.equals("armeb"))
+ return Triple::armeb;
+ if (ArchName.equals("thumb"))
+ return Triple::thumb;
+ if (ArchName.equals("thumbeb"))
+ return Triple::thumbeb;
+ if (ArchName.equals("arm64") || ArchName.equals("aarch64"))
+ return Triple::aarch64;
+ if (ArchName.equals("aarch64_be"))
+ return Triple::aarch64_be;
+
+ if (ArchName.startswith("armv")) {
+ offset = 3;
+ if (ArchName.endswith("eb")) {
+ arch = Triple::armeb;
+ ArchName = ArchName.substr(0, ArchName.size() - 2);
+ } else
+ arch = Triple::arm;
+ } else if (ArchName.startswith("armebv")) {
+ offset = 5;
+ arch = Triple::armeb;
+ } else if (ArchName.startswith("thumbv")) {
+ offset = 5;
+ if (ArchName.endswith("eb")) {
+ arch = Triple::thumbeb;
+ ArchName = ArchName.substr(0, ArchName.size() - 2);
+ } else
+ arch = Triple::thumb;
+ } else if (ArchName.startswith("thumbebv")) {
+ offset = 7;
+ arch = Triple::thumbeb;
+ }
+ return StringSwitch<Triple::ArchType>(ArchName.substr(offset))
+ .Cases("v2", "v2a", isThumb ? Triple::UnknownArch : arch)
+ .Cases("v3", "v3m", isThumb ? Triple::UnknownArch : arch)
+ .Cases("v4", "v4t", arch)
+ .Cases("v5", "v5e", "v5t", "v5te", "v5tej", arch)
+ .Cases("v6", "v6j", "v6k", "v6m", arch)
+ .Cases("v6t2", "v6z", "v6zk", arch)
+ .Cases("v7", "v7a", "v7em", "v7l", arch)
+ .Cases("v7m", "v7r", "v7s", arch)
+ .Cases("v8", "v8a", arch)
+ .Default(Triple::UnknownArch);
}
static Triple::ArchType parseArch(StringRef ArchName) {
+ Triple::ArchType ARMArch(parseARMArch(ArchName));
+
return StringSwitch<Triple::ArchType>(ArchName)
.Cases("i386", "i486", "i586", "i686", Triple::x86)
// FIXME: Do we need to support these?
@@ -253,26 +289,18 @@ static Triple::ArchType parseArch(StringRef ArchName) {
.Case("powerpc", Triple::ppc)
.Cases("powerpc64", "ppu", Triple::ppc64)
.Case("powerpc64le", Triple::ppc64le)
- .Case("aarch64", Triple::aarch64)
- .Case("aarch64_be", Triple::aarch64_be)
- .Cases("arm", "xscale", Triple::arm)
- // FIXME: It would be good to replace these with explicit names for all the
- // various suffixes supported.
- .StartsWith("armv", Triple::arm)
- .Case("armeb", Triple::armeb)
- .StartsWith("armebv", Triple::armeb)
- .Case("thumb", Triple::thumb)
- .StartsWith("thumbv", Triple::thumb)
- .Case("thumbeb", Triple::thumbeb)
- .StartsWith("thumbebv", Triple::thumbeb)
- .Case("arm64", Triple::arm64)
- .Case("arm64_be", Triple::arm64_be)
+ .Case("xscale", Triple::arm)
+ .Case("xscaleeb", Triple::armeb)
+ .StartsWith("arm", ARMArch)
+ .StartsWith("thumb", ARMArch)
+ .StartsWith("aarch64", ARMArch)
.Case("msp430", Triple::msp430)
.Cases("mips", "mipseb", "mipsallegrex", Triple::mips)
.Cases("mipsel", "mipsallegrexel", Triple::mipsel)
.Cases("mips64", "mips64eb", Triple::mips64)
.Case("mips64el", Triple::mips64el)
.Case("r600", Triple::r600)
+ .Case("amdgcn", Triple::amdgcn)
.Case("hexagon", Triple::hexagon)
.Case("s390x", Triple::systemz)
.Case("sparc", Triple::sparc)
@@ -282,10 +310,14 @@ static Triple::ArchType parseArch(StringRef ArchName) {
.Case("nvptx", Triple::nvptx)
.Case("nvptx64", Triple::nvptx64)
.Case("le32", Triple::le32)
+ .Case("le64", Triple::le64)
.Case("amdil", Triple::amdil)
+ .Case("amdil64", Triple::amdil64)
+ .Case("hsail", Triple::hsail)
+ .Case("hsail64", Triple::hsail64)
.Case("spir", Triple::spir)
.Case("spir64", Triple::spir64)
- .Case("kalimba", Triple::kalimba)
+ .StartsWith("kalimba", Triple::kalimba)
.Default(Triple::UnknownArch);
}
@@ -307,8 +339,6 @@ static Triple::VendorType parseVendor(StringRef VendorName) {
static Triple::OSType parseOS(StringRef OSName) {
return StringSwitch<Triple::OSType>(OSName)
- .StartsWith("auroraux", Triple::AuroraUX)
- .StartsWith("cygwin", Triple::Cygwin)
.StartsWith("darwin", Triple::Darwin)
.StartsWith("dragonfly", Triple::DragonFly)
.StartsWith("freebsd", Triple::FreeBSD)
@@ -317,7 +347,6 @@ static Triple::OSType parseOS(StringRef OSName) {
.StartsWith("linux", Triple::Linux)
.StartsWith("lv2", Triple::Lv2)
.StartsWith("macosx", Triple::MacOSX)
- .StartsWith("mingw32", Triple::MinGW32)
.StartsWith("netbsd", Triple::NetBSD)
.StartsWith("openbsd", Triple::OpenBSD)
.StartsWith("solaris", Triple::Solaris)
@@ -332,6 +361,7 @@ static Triple::OSType parseOS(StringRef OSName) {
.StartsWith("aix", Triple::AIX)
.StartsWith("cuda", Triple::CUDA)
.StartsWith("nvcl", Triple::NVCL)
+ .StartsWith("amdhsa", Triple::AMDHSA)
.Default(Triple::UnknownOS);
}
@@ -360,6 +390,9 @@ static Triple::ObjectFormatType parseFormat(StringRef EnvironmentName) {
}
static Triple::SubArchType parseSubArch(StringRef SubArchName) {
+ if (SubArchName.endswith("eb"))
+ SubArchName = SubArchName.substr(0, SubArchName.size() - 2);
+
return StringSwitch<Triple::SubArchType>(SubArchName)
.EndsWith("v8", Triple::ARMSubArch_v8)
.EndsWith("v8a", Triple::ARMSubArch_v8)
@@ -378,6 +411,9 @@ static Triple::SubArchType parseSubArch(StringRef SubArchName) {
.EndsWith("v5t", Triple::ARMSubArch_v5)
.EndsWith("v5te", Triple::ARMSubArch_v5te)
.EndsWith("v4t", Triple::ARMSubArch_v4t)
+ .EndsWith("kalimba3", Triple::KalimbaSubArch_v3)
+ .EndsWith("kalimba4", Triple::KalimbaSubArch_v4)
+ .EndsWith("kalimba5", Triple::KalimbaSubArch_v5)
.Default(Triple::NoSubArch);
}
@@ -451,6 +487,9 @@ Triple::Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr,
}
std::string Triple::normalize(StringRef Str) {
+ bool IsMinGW32 = false;
+ bool IsCygwin = false;
+
// Parse into components.
SmallVector<StringRef, 4> Components;
Str.split(Components, "-");
@@ -467,8 +506,11 @@ std::string Triple::normalize(StringRef Str) {
if (Components.size() > 1)
Vendor = parseVendor(Components[1]);
OSType OS = UnknownOS;
- if (Components.size() > 2)
+ if (Components.size() > 2) {
OS = parseOS(Components[2]);
+ IsCygwin = Components[2].startswith("cygwin");
+ IsMinGW32 = Components[2].startswith("mingw");
+ }
EnvironmentType Environment = UnknownEnvironment;
if (Components.size() > 3)
Environment = parseEnvironment(Components[3]);
@@ -511,7 +553,9 @@ std::string Triple::normalize(StringRef Str) {
break;
case 2:
OS = parseOS(Comp);
- Valid = OS != UnknownOS;
+ IsCygwin = Comp.startswith("cygwin");
+ IsMinGW32 = Comp.startswith("mingw");
+ Valid = OS != UnknownOS || IsCygwin || IsMinGW32;
break;
case 3:
Environment = parseEnvironment(Comp);
@@ -591,16 +635,16 @@ std::string Triple::normalize(StringRef Str) {
else
Components[3] = getObjectFormatTypeName(ObjectFormat);
}
- } else if (OS == Triple::MinGW32) {
+ } else if (IsMinGW32) {
Components.resize(4);
Components[2] = "windows";
Components[3] = "gnu";
- } else if (OS == Triple::Cygwin) {
+ } else if (IsCygwin) {
Components.resize(4);
Components[2] = "windows";
Components[3] = "cygnus";
}
- if (OS == Triple::MinGW32 || OS == Triple::Cygwin ||
+ if (IsMinGW32 || IsCygwin ||
(OS == Triple::Win32 && Environment != UnknownEnvironment)) {
if (ObjectFormat != UnknownObjectFormat && ObjectFormat != Triple::COFF) {
Components.resize(5);
@@ -742,7 +786,7 @@ void Triple::getiOSVersion(unsigned &Major, unsigned &Minor,
getOSVersion(Major, Minor, Micro);
// Default to 5.0 (or 7.0 for arm64).
if (Major == 0)
- Major = (getArch() == arm64) ? 7 : 5;
+ Major = (getArch() == aarch64) ? 7 : 5;
break;
}
}
@@ -815,7 +859,6 @@ static unsigned getArchPointerBitWidth(llvm::Triple::ArchType Arch) {
case llvm::Triple::msp430:
return 16;
- case llvm::Triple::amdil:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::hexagon:
@@ -831,14 +874,16 @@ static unsigned getArchPointerBitWidth(llvm::Triple::ArchType Arch) {
case llvm::Triple::thumbeb:
case llvm::Triple::x86:
case llvm::Triple::xcore:
+ case llvm::Triple::amdil:
+ case llvm::Triple::hsail:
case llvm::Triple::spir:
case llvm::Triple::kalimba:
return 32;
- case llvm::Triple::arm64:
- case llvm::Triple::arm64_be:
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
+ case llvm::Triple::amdgcn:
+ case llvm::Triple::le64:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::nvptx64:
@@ -847,6 +892,8 @@ static unsigned getArchPointerBitWidth(llvm::Triple::ArchType Arch) {
case llvm::Triple::sparcv9:
case llvm::Triple::systemz:
case llvm::Triple::x86_64:
+ case llvm::Triple::amdil64:
+ case llvm::Triple::hsail64:
case llvm::Triple::spir64:
return 64;
}
@@ -871,8 +918,7 @@ Triple Triple::get32BitArchVariant() const {
case Triple::UnknownArch:
case Triple::aarch64:
case Triple::aarch64_be:
- case Triple::arm64:
- case Triple::arm64_be:
+ case Triple::amdgcn:
case Triple::msp430:
case Triple::systemz:
case Triple::ppc64le:
@@ -880,6 +926,7 @@ Triple Triple::get32BitArchVariant() const {
break;
case Triple::amdil:
+ case Triple::hsail:
case Triple::spir:
case Triple::arm:
case Triple::armeb:
@@ -900,12 +947,15 @@ Triple Triple::get32BitArchVariant() const {
// Already 32-bit.
break;
+ case Triple::le64: T.setArch(Triple::le32); break;
case Triple::mips64: T.setArch(Triple::mips); break;
case Triple::mips64el: T.setArch(Triple::mipsel); break;
case Triple::nvptx64: T.setArch(Triple::nvptx); break;
case Triple::ppc64: T.setArch(Triple::ppc); break;
case Triple::sparcv9: T.setArch(Triple::sparc); break;
case Triple::x86_64: T.setArch(Triple::x86); break;
+ case Triple::amdil64: T.setArch(Triple::amdil); break;
+ case Triple::hsail64: T.setArch(Triple::hsail); break;
case Triple::spir64: T.setArch(Triple::spir); break;
}
return T;
@@ -915,12 +965,10 @@ Triple Triple::get64BitArchVariant() const {
Triple T(*this);
switch (getArch()) {
case Triple::UnknownArch:
- case Triple::amdil:
case Triple::arm:
case Triple::armeb:
case Triple::hexagon:
case Triple::kalimba:
- case Triple::le32:
case Triple::msp430:
case Triple::r600:
case Triple::tce:
@@ -932,6 +980,10 @@ Triple Triple::get64BitArchVariant() const {
case Triple::aarch64:
case Triple::aarch64_be:
+ case Triple::le64:
+ case Triple::amdil64:
+ case Triple::amdgcn:
+ case Triple::hsail64:
case Triple::spir64:
case Triple::mips64:
case Triple::mips64el:
@@ -941,17 +993,18 @@ Triple Triple::get64BitArchVariant() const {
case Triple::sparcv9:
case Triple::systemz:
case Triple::x86_64:
- case Triple::arm64:
- case Triple::arm64_be:
// Already 64-bit.
break;
+ case Triple::le32: T.setArch(Triple::le64); break;
case Triple::mips: T.setArch(Triple::mips64); break;
case Triple::mipsel: T.setArch(Triple::mips64el); break;
case Triple::nvptx: T.setArch(Triple::nvptx64); break;
case Triple::ppc: T.setArch(Triple::ppc64); break;
case Triple::sparc: T.setArch(Triple::sparcv9); break;
case Triple::x86: T.setArch(Triple::x86_64); break;
+ case Triple::amdil: T.setArch(Triple::amdil64); break;
+ case Triple::hsail: T.setArch(Triple::hsail64); break;
case Triple::spir: T.setArch(Triple::spir64); break;
}
return T;
@@ -983,6 +1036,8 @@ const char *Triple::getARMCPUForArch(StringRef MArch) const {
offset = 5;
if (offset != StringRef::npos && MArch.substr(offset, 2) == "eb")
offset += 2;
+ if (MArch.endswith("eb"))
+ MArch = MArch.substr(0, MArch.size() - 2);
if (offset != StringRef::npos)
result = llvm::StringSwitch<const char *>(MArch.substr(offset))
.Cases("v2", "v2a", "arm2")
diff --git a/contrib/llvm/lib/Support/Unix/Host.inc b/contrib/llvm/lib/Support/Unix/Host.inc
index 7941166..519f2a1 100644
--- a/contrib/llvm/lib/Support/Unix/Host.inc
+++ b/contrib/llvm/lib/Support/Unix/Host.inc
@@ -1,4 +1,4 @@
- //===- llvm/Support/Unix/Host.inc -------------------------------*- C++ -*-===//
+//===- llvm/Support/Unix/Host.inc -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -16,21 +16,15 @@
//=== is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//
-#include "llvm/Config/config.h"
-#include "llvm/ADT/StringRef.h"
#include "Unix.h"
-#include <sys/utsname.h>
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Config/config.h"
#include <cctype>
#include <string>
-#include <cstdlib> // ::getenv
+#include <sys/utsname.h>
using namespace llvm;
-#ifdef __FreeBSD__
-std::string sys::getDefaultTargetTriple() {
- return LLVM_DEFAULT_TARGET_TRIPLE;
-}
-#else // __FreeBSD__
static std::string getOSVersion() {
struct utsname info;
@@ -44,7 +38,8 @@ std::string sys::getDefaultTargetTriple() {
StringRef TargetTripleString(LLVM_DEFAULT_TARGET_TRIPLE);
std::pair<StringRef, StringRef> ArchSplit = TargetTripleString.split('-');
- // Normalize the arch, since the target triple may not actually match the target.
+ // Normalize the arch, since the target triple may not actually match the
+ // target.
std::string Arch = ArchSplit.first;
std::string Triple(Arch);
@@ -66,4 +61,3 @@ std::string sys::getDefaultTargetTriple() {
return Triple::normalize(Triple);
}
-#endif // __FreeBSD__
diff --git a/contrib/llvm/lib/Support/Unix/Memory.inc b/contrib/llvm/lib/Support/Unix/Memory.inc
index c9d89a8..7ccde46 100644
--- a/contrib/llvm/lib/Support/Unix/Memory.inc
+++ b/contrib/llvm/lib/Support/Unix/Memory.inc
@@ -88,7 +88,7 @@ Memory::allocateMappedMemory(size_t NumBytes,
if (NumBytes == 0)
return MemoryBlock();
- static const size_t PageSize = process::get_self()->page_size();
+ static const size_t PageSize = Process::getPageSize();
const size_t NumPages = (NumBytes+PageSize-1)/PageSize;
int fd = -1;
@@ -181,7 +181,7 @@ Memory::AllocateRWX(size_t NumBytes, const MemoryBlock* NearBlock,
std::string *ErrMsg) {
if (NumBytes == 0) return MemoryBlock();
- size_t PageSize = process::get_self()->page_size();
+ size_t PageSize = Process::getPageSize();
size_t NumPages = (NumBytes+PageSize-1)/PageSize;
int fd = -1;
diff --git a/contrib/llvm/lib/Support/Unix/Path.inc b/contrib/llvm/lib/Support/Unix/Path.inc
index 623547a..973d010 100644
--- a/contrib/llvm/lib/Support/Unix/Path.inc
+++ b/contrib/llvm/lib/Support/Unix/Path.inc
@@ -62,47 +62,6 @@
using namespace llvm;
-namespace {
- /// This class automatically closes the given file descriptor when it goes out
- /// of scope. You can take back explicit ownership of the file descriptor by
- /// calling take(). The destructor does not verify that close was successful.
- /// Therefore, never allow this class to call close on a file descriptor that
- /// has been read from or written to.
- struct AutoFD {
- int FileDescriptor;
-
- AutoFD(int fd) : FileDescriptor(fd) {}
- ~AutoFD() {
- if (FileDescriptor >= 0)
- ::close(FileDescriptor);
- }
-
- int take() {
- int ret = FileDescriptor;
- FileDescriptor = -1;
- return ret;
- }
-
- operator int() const {return FileDescriptor;}
- };
-}
-
-static std::error_code TempDir(SmallVectorImpl<char> &result) {
- // FIXME: Don't use TMPDIR if program is SUID or SGID enabled.
- const char *dir = nullptr;
- (dir = std::getenv("TMPDIR")) || (dir = std::getenv("TMP")) ||
- (dir = std::getenv("TEMP")) || (dir = std::getenv("TEMPDIR")) ||
-#ifdef P_tmpdir
- (dir = P_tmpdir) ||
-#endif
- (dir = "/tmp");
-
- result.clear();
- StringRef d(dir);
- result.append(d.begin(), d.end());
- return std::error_code();
-}
-
namespace llvm {
namespace sys {
namespace fs {
@@ -191,7 +150,7 @@ std::string getMainExecutable(const char *argv0, void *MainAddr) {
// /proc is not always mounted under Linux (chroot for example).
ssize_t len = readlink(aPath.str().c_str(), exe_path, sizeof(exe_path));
if (len >= 0)
- return StringRef(exe_path, len);
+ return std::string(exe_path, len);
} else {
// Fall back to the classical detection.
if (getprogpath(exe_path, argv0) != NULL)
@@ -272,19 +231,6 @@ std::error_code create_directory(const Twine &path, bool IgnoreExisting) {
return std::error_code();
}
-std::error_code normalize_separators(SmallVectorImpl<char> &Path) {
- for (auto PI = Path.begin(), PE = Path.end(); PI < PE; ++PI) {
- if (*PI == '\\') {
- auto PN = PI + 1;
- if (PN < PE && *PN == '\\')
- ++PI; // increment once, the for loop will move over the escaped slash
- else
- *PI = '/';
- }
- }
- return std::error_code();
-}
-
// Note that we are using symbolic link because hard links are not supported by
// all filesystems (SMB doesn't).
std::error_code create_link(const Twine &to, const Twine &from) {
@@ -340,48 +286,42 @@ std::error_code rename(const Twine &from, const Twine &to) {
return std::error_code();
}
-std::error_code resize_file(const Twine &path, uint64_t size) {
- SmallString<128> path_storage;
- StringRef p = path.toNullTerminatedStringRef(path_storage);
-
- if (::truncate(p.begin(), size) == -1)
+std::error_code resize_file(int FD, uint64_t Size) {
+ if (::ftruncate(FD, Size) == -1)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
-std::error_code exists(const Twine &path, bool &result) {
- SmallString<128> path_storage;
- StringRef p = path.toNullTerminatedStringRef(path_storage);
-
- if (::access(p.begin(), F_OK) == -1) {
- if (errno != ENOENT)
- return std::error_code(errno, std::generic_category());
- result = false;
- } else
- result = true;
-
- return std::error_code();
+static int convertAccessMode(AccessMode Mode) {
+ switch (Mode) {
+ case AccessMode::Exist:
+ return F_OK;
+ case AccessMode::Write:
+ return W_OK;
+ case AccessMode::Execute:
+ return R_OK | X_OK; // scripts also need R_OK.
+ }
+ llvm_unreachable("invalid enum");
}
-bool can_write(const Twine &Path) {
+std::error_code access(const Twine &Path, AccessMode Mode) {
SmallString<128> PathStorage;
StringRef P = Path.toNullTerminatedStringRef(PathStorage);
- return 0 == access(P.begin(), W_OK);
-}
-bool can_execute(const Twine &Path) {
- SmallString<128> PathStorage;
- StringRef P = Path.toNullTerminatedStringRef(PathStorage);
+ if (::access(P.begin(), convertAccessMode(Mode)) == -1)
+ return std::error_code(errno, std::generic_category());
- if (0 != access(P.begin(), R_OK | X_OK))
- return false;
- struct stat buf;
- if (0 != stat(P.begin(), &buf))
- return false;
- if (!S_ISREG(buf.st_mode))
- return false;
- return true;
+ if (Mode == AccessMode::Execute) {
+ // Don't say that directories are executable.
+ struct stat buf;
+ if (0 != stat(P.begin(), &buf))
+ return errc::permission_denied;
+ if (!S_ISREG(buf.st_mode))
+ return errc::permission_denied;
+ }
+
+ return std::error_code();
}
bool equivalent(file_status A, file_status B) {
@@ -472,80 +412,28 @@ std::error_code setLastModificationAndAccessTime(int FD, TimeValue Time) {
#endif
}
-std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset) {
- AutoFD ScopedFD(FD);
- if (!CloseFD)
- ScopedFD.take();
-
- // Figure out how large the file is.
- struct stat FileInfo;
- if (fstat(FD, &FileInfo) == -1)
- return std::error_code(errno, std::generic_category());
- uint64_t FileSize = FileInfo.st_size;
-
- if (Size == 0)
- Size = FileSize;
- else if (FileSize < Size) {
- // We need to grow the file.
- if (ftruncate(FD, Size) == -1)
- return std::error_code(errno, std::generic_category());
- }
+std::error_code mapped_file_region::init(int FD, uint64_t Offset,
+ mapmode Mode) {
+ assert(Size != 0);
int flags = (Mode == readwrite) ? MAP_SHARED : MAP_PRIVATE;
int prot = (Mode == readonly) ? PROT_READ : (PROT_READ | PROT_WRITE);
-#ifdef MAP_FILE
- flags |= MAP_FILE;
-#endif
Mapping = ::mmap(nullptr, Size, prot, flags, FD, Offset);
if (Mapping == MAP_FAILED)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
-mapped_file_region::mapped_file_region(const Twine &path,
- mapmode mode,
- uint64_t length,
- uint64_t offset,
- std::error_code &ec)
- : Mode(mode)
- , Size(length)
- , Mapping() {
+mapped_file_region::mapped_file_region(int fd, mapmode mode, uint64_t length,
+ uint64_t offset, std::error_code &ec)
+ : Size(length), Mapping() {
// Make sure that the requested size fits within SIZE_T.
if (length > std::numeric_limits<size_t>::max()) {
ec = make_error_code(errc::invalid_argument);
return;
}
- SmallString<128> path_storage;
- StringRef name = path.toNullTerminatedStringRef(path_storage);
- int oflags = (mode == readonly) ? O_RDONLY : O_RDWR;
- int ofd = ::open(name.begin(), oflags);
- if (ofd == -1) {
- ec = std::error_code(errno, std::generic_category());
- return;
- }
-
- ec = init(ofd, true, offset);
- if (ec)
- Mapping = nullptr;
-}
-
-mapped_file_region::mapped_file_region(int fd,
- bool closefd,
- mapmode mode,
- uint64_t length,
- uint64_t offset,
- std::error_code &ec)
- : Mode(mode)
- , Size(length)
- , Mapping() {
- // Make sure that the requested size fits within SIZE_T.
- if (length > std::numeric_limits<size_t>::max()) {
- ec = make_error_code(errc::invalid_argument);
- return;
- }
-
- ec = init(fd, closefd, offset);
+ ec = init(fd, offset, mode);
if (ec)
Mapping = nullptr;
}
@@ -555,16 +443,6 @@ mapped_file_region::~mapped_file_region() {
::munmap(Mapping, Size);
}
-mapped_file_region::mapped_file_region(mapped_file_region &&other)
- : Mode(other.Mode), Size(other.Size), Mapping(other.Mapping) {
- other.Mapping = nullptr;
-}
-
-mapped_file_region::mapmode mapped_file_region::flags() const {
- assert(Mapping && "Mapping failed but used anyway!");
- return Mode;
-}
-
uint64_t mapped_file_region::size() const {
assert(Mapping && "Mapping failed but used anyway!");
return Size;
@@ -572,7 +450,6 @@ uint64_t mapped_file_region::size() const {
char *mapped_file_region::data() const {
assert(Mapping && "Mapping failed but used anyway!");
- assert(Mode != readonly && "Cannot get non-const data for readonly mapping!");
return reinterpret_cast<char*>(Mapping);
}
@@ -582,7 +459,7 @@ const char *mapped_file_region::const_data() const {
}
int mapped_file_region::alignment() {
- return process::get_self()->page_size();
+ return Process::getPageSize();
}
std::error_code detail::directory_iterator_construct(detail::DirIterState &it,
@@ -678,6 +555,66 @@ bool home_directory(SmallVectorImpl<char> &result) {
return false;
}
+static const char *getEnvTempDir() {
+ // Check whether the temporary directory is specified by an environment
+ // variable.
+ const char *EnvironmentVariables[] = {"TMPDIR", "TMP", "TEMP", "TEMPDIR"};
+ for (const char *Env : EnvironmentVariables) {
+ if (const char *Dir = std::getenv(Env))
+ return Dir;
+ }
+
+ return nullptr;
+}
+
+static const char *getDefaultTempDir(bool ErasedOnReboot) {
+#ifdef P_tmpdir
+ if ((bool)P_tmpdir)
+ return P_tmpdir;
+#endif
+
+ if (ErasedOnReboot)
+ return "/tmp";
+ return "/var/tmp";
+}
+
+void system_temp_directory(bool ErasedOnReboot, SmallVectorImpl<char> &Result) {
+ Result.clear();
+
+ if (ErasedOnReboot) {
+ // There is no env variable for the cache directory.
+ if (const char *RequestedDir = getEnvTempDir()) {
+ Result.append(RequestedDir, RequestedDir + strlen(RequestedDir));
+ return;
+ }
+ }
+
+#if defined(_CS_DARWIN_USER_TEMP_DIR) && defined(_CS_DARWIN_USER_CACHE_DIR)
+ // On Darwin, use DARWIN_USER_TEMP_DIR or DARWIN_USER_CACHE_DIR.
+ // macros defined in <unistd.h> on darwin >= 9
+ int ConfName = ErasedOnReboot? _CS_DARWIN_USER_TEMP_DIR
+ : _CS_DARWIN_USER_CACHE_DIR;
+ size_t ConfLen = confstr(ConfName, nullptr, 0);
+ if (ConfLen > 0) {
+ do {
+ Result.resize(ConfLen);
+ ConfLen = confstr(ConfName, Result.data(), Result.size());
+ } while (ConfLen > 0 && ConfLen != Result.size());
+
+ if (ConfLen > 0) {
+ assert(Result.back() == 0);
+ Result.pop_back();
+ return;
+ }
+
+ Result.clear();
+ }
+#endif
+
+ const char *RequestedDir = getDefaultTempDir(ErasedOnReboot);
+ Result.append(RequestedDir, RequestedDir + strlen(RequestedDir));
+}
+
} // end namespace path
} // end namespace sys
diff --git a/contrib/llvm/lib/Support/Unix/Process.inc b/contrib/llvm/lib/Support/Unix/Process.inc
index d2c5dbc..530f86c 100644
--- a/contrib/llvm/lib/Support/Unix/Process.inc
+++ b/contrib/llvm/lib/Support/Unix/Process.inc
@@ -14,15 +14,25 @@
#include "Unix.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/TimeValue.h"
+#if HAVE_FCNTL_H
+#include <fcntl.h>
+#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
+#ifdef HAVE_SYS_STAT_H
+#include <sys/stat.h>
+#endif
+#if HAVE_SIGNAL_H
+#include <signal.h>
+#endif
// DragonFlyBSD, OpenBSD, and Bitrig have deprecated <malloc.h> for
// <stdlib.h> instead. Unix.h includes this for us already.
#if defined(HAVE_MALLOC_H) && !defined(__DragonFly__) && \
@@ -47,10 +57,6 @@
using namespace llvm;
using namespace sys;
-process::id_type self_process::get_id() {
- return getpid();
-}
-
static std::pair<TimeValue, TimeValue> getRUsageTimes() {
#if defined(HAVE_GETRUSAGE)
struct rusage RU;
@@ -70,43 +76,19 @@ static std::pair<TimeValue, TimeValue> getRUsageTimes() {
#endif
}
-TimeValue self_process::get_user_time() const {
-#if _POSIX_TIMERS > 0 && _POSIX_CPUTIME > 0
- // Try to get a high resolution CPU timer.
- struct timespec TS;
- if (::clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &TS) == 0)
- return TimeValue(static_cast<TimeValue::SecondsType>(TS.tv_sec),
- static_cast<TimeValue::NanoSecondsType>(TS.tv_nsec));
-#endif
-
- // Otherwise fall back to rusage based timing.
- return getRUsageTimes().first;
-}
-
-TimeValue self_process::get_system_time() const {
- // We can only collect system time by inspecting the results of getrusage.
- return getRUsageTimes().second;
-}
-
// On Cygwin, getpagesize() returns 64k(AllocationGranularity) and
// offset in mmap(3) should be aligned to the AllocationGranularity.
-static unsigned getPageSize() {
+unsigned Process::getPageSize() {
#if defined(HAVE_GETPAGESIZE)
- const int page_size = ::getpagesize();
+ static const int page_size = ::getpagesize();
#elif defined(HAVE_SYSCONF)
- long page_size = ::sysconf(_SC_PAGE_SIZE);
+ static long page_size = ::sysconf(_SC_PAGE_SIZE);
#else
#warning Cannot get the page size on this machine
#endif
return static_cast<unsigned>(page_size);
}
-// This constructor guaranteed to be run exactly once on a single thread, and
-// sets up various process invariants that can be queried cheaply from then on.
-self_process::self_process() : PageSize(getPageSize()) {
-}
-
-
size_t Process::GetMallocUsage() {
#if defined(HAVE_MALLINFO)
struct mallinfo mi;
@@ -198,6 +180,97 @@ Process::GetArgumentVector(SmallVectorImpl<const char *> &ArgsOut,
return std::error_code();
}
+namespace {
+class FDCloser {
+public:
+ FDCloser(int &FD) : FD(FD), KeepOpen(false) {}
+ void keepOpen() { KeepOpen = true; }
+ ~FDCloser() {
+ if (!KeepOpen && FD >= 0)
+ ::close(FD);
+ }
+
+private:
+ FDCloser(const FDCloser &) LLVM_DELETED_FUNCTION;
+ void operator=(const FDCloser &) LLVM_DELETED_FUNCTION;
+
+ int &FD;
+ bool KeepOpen;
+};
+}
+
+std::error_code Process::FixupStandardFileDescriptors() {
+ int NullFD = -1;
+ FDCloser FDC(NullFD);
+ const int StandardFDs[] = {STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO};
+ for (int StandardFD : StandardFDs) {
+ struct stat st;
+ errno = 0;
+ while (fstat(StandardFD, &st) < 0) {
+ assert(errno && "expected errno to be set if fstat failed!");
+ // fstat should return EBADF if the file descriptor is closed.
+ if (errno == EBADF)
+ break;
+ // retry fstat if we got EINTR, otherwise bubble up the failure.
+ if (errno != EINTR)
+ return std::error_code(errno, std::generic_category());
+ }
+ // if fstat succeeds, move on to the next FD.
+ if (!errno)
+ continue;
+ assert(errno == EBADF && "expected errno to have EBADF at this point!");
+
+ if (NullFD < 0) {
+ while ((NullFD = open("/dev/null", O_RDWR)) < 0) {
+ if (errno == EINTR)
+ continue;
+ return std::error_code(errno, std::generic_category());
+ }
+ }
+
+ if (NullFD == StandardFD)
+ FDC.keepOpen();
+ else if (dup2(NullFD, StandardFD) < 0)
+ return std::error_code(errno, std::generic_category());
+ }
+ return std::error_code();
+}
+
+std::error_code Process::SafelyCloseFileDescriptor(int FD) {
+ // Create a signal set filled with *all* signals.
+ sigset_t FullSet;
+ if (sigfillset(&FullSet) < 0)
+ return std::error_code(errno, std::generic_category());
+ // Atomically swap our current signal mask with a full mask.
+ sigset_t SavedSet;
+#if LLVM_ENABLE_THREADS
+ if (int EC = pthread_sigmask(SIG_SETMASK, &FullSet, &SavedSet))
+ return std::error_code(EC, std::generic_category());
+#else
+ if (sigprocmask(SIG_SETMASK, &FullSet, &SavedSet) < 0)
+ return std::error_code(errno, std::generic_category());
+#endif
+ // Attempt to close the file descriptor.
+ // We need to save the error, if one occurs, because our subsequent call to
+ // pthread_sigmask might tamper with errno.
+ int ErrnoFromClose = 0;
+ if (::close(FD) < 0)
+ ErrnoFromClose = errno;
+ // Restore the signal mask back to what we saved earlier.
+ int EC = 0;
+#if LLVM_ENABLE_THREADS
+ EC = pthread_sigmask(SIG_SETMASK, &SavedSet, nullptr);
+#else
+ if (sigprocmask(SIG_SETMASK, &SavedSet, nullptr) < 0)
+ EC = errno;
+#endif
+ // The error code from close takes precedence over the one from
+ // pthread_sigmask.
+ if (ErrnoFromClose)
+ return std::error_code(ErrnoFromClose, std::generic_category());
+ return std::error_code(EC, std::generic_category());
+}
+
bool Process::StandardInIsUserInput() {
return FileDescriptorIsDisplayed(STDIN_FILENO);
}
@@ -263,11 +336,14 @@ extern "C" int del_curterm(struct term *termp);
extern "C" int tigetnum(char *capname);
#endif
+#ifdef HAVE_TERMINFO
+static ManagedStatic<sys::Mutex> TermColorMutex;
+#endif
+
static bool terminalHasColors(int fd) {
#ifdef HAVE_TERMINFO
// First, acquire a global lock because these C routines are thread hostile.
- static sys::Mutex M;
- MutexGuard G(M);
+ MutexGuard G(*TermColorMutex);
int errret = 0;
if (setupterm((char *)nullptr, fd, &errret) != 0)
diff --git a/contrib/llvm/lib/Support/Unix/Program.inc b/contrib/llvm/lib/Support/Unix/Program.inc
index 06a33cd..0f45df1 100644
--- a/contrib/llvm/lib/Support/Unix/Program.inc
+++ b/contrib/llvm/lib/Support/Unix/Program.inc
@@ -17,8 +17,10 @@
//===----------------------------------------------------------------------===//
#include "Unix.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/raw_ostream.h"
#include <llvm/Config/config.h>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
@@ -53,50 +55,32 @@ using namespace sys;
ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {}
-// This function just uses the PATH environment variable to find the program.
-std::string
-sys::FindProgramByName(const std::string& progName) {
-
- // Check some degenerate cases
- if (progName.length() == 0) // no program
- return "";
- std::string temp = progName;
+ErrorOr<std::string> sys::findProgramByName(StringRef Name,
+ ArrayRef<StringRef> Paths) {
+ assert(!Name.empty() && "Must have a name!");
// Use the given path verbatim if it contains any slashes; this matches
// the behavior of sh(1) and friends.
- if (progName.find('/') != std::string::npos)
- return temp;
-
- // At this point, the file name is valid and does not contain slashes. Search
- // for it through the directories specified in the PATH environment variable.
-
- // Get the path. If its empty, we can't do anything to find it.
- const char *PathStr = getenv("PATH");
- if (!PathStr)
- return "";
+ if (Name.find('/') != StringRef::npos)
+ return std::string(Name);
+
+ SmallVector<StringRef, 16> EnvironmentPaths;
+ if (Paths.empty())
+ if (const char *PathEnv = std::getenv("PATH")) {
+ SplitString(PathEnv, EnvironmentPaths, ":");
+ Paths = EnvironmentPaths;
+ }
- // Now we have a colon separated list of directories to search; try them.
- size_t PathLen = strlen(PathStr);
- while (PathLen) {
- // Find the first colon...
- const char *Colon = std::find(PathStr, PathStr+PathLen, ':');
+ for (auto Path : Paths) {
+ if (Path.empty())
+ continue;
// Check to see if this first directory contains the executable...
- SmallString<128> FilePath(PathStr,Colon);
- sys::path::append(FilePath, progName);
- if (sys::fs::can_execute(Twine(FilePath)))
- return FilePath.str(); // Found the executable!
-
- // Nope it wasn't in this directory, check the next path in the list!
- PathLen -= Colon-PathStr;
- PathStr = Colon;
-
- // Advance past duplicate colons
- while (*PathStr == ':') {
- PathStr++;
- PathLen--;
- }
+ SmallString<128> FilePath(Path);
+ sys::path::append(FilePath, Name);
+ if (sys::fs::can_execute(FilePath.c_str()))
+ return std::string(FilePath.str()); // Found the executable!
}
- return "";
+ return std::errc::no_such_file_or_directory;
}
static bool RedirectIO(const StringRef *Path, int FD, std::string* ErrMsg) {
@@ -334,7 +318,6 @@ ProcessInfo sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait,
pid_t ChildPid = PI.Pid;
if (WaitUntilTerminates) {
SecondsToWait = 0;
- ChildPid = -1; // mimic a wait() using waitpid()
} else if (SecondsToWait) {
// Install a timeout handler. The handler itself does nothing, but the
// simple fact of having a handler at all causes the wait below to return
@@ -440,6 +423,23 @@ ProcessInfo sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait,
return std::error_code();
}
+std::error_code
+llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents,
+ WindowsEncodingMethod Encoding /*unused*/) {
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(FileName, EC, llvm::sys::fs::OpenFlags::F_Text);
+
+ if (EC)
+ return EC;
+
+ OS << Contents;
+
+ if (OS.has_error())
+ return std::make_error_code(std::errc::io_error);
+
+ return EC;
+}
+
bool llvm::sys::argumentsFitWithinSystemLimits(ArrayRef<const char*> Args) {
static long ArgMax = sysconf(_SC_ARG_MAX);
@@ -448,13 +448,13 @@ bool llvm::sys::argumentsFitWithinSystemLimits(ArrayRef<const char*> Args) {
return true;
// Conservatively account for space required by environment variables.
- ArgMax /= 2;
+ long HalfArgMax = ArgMax / 2;
size_t ArgLength = 0;
for (ArrayRef<const char*>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
ArgLength += strlen(*I) + 1;
- if (ArgLength > size_t(ArgMax)) {
+ if (ArgLength > size_t(HalfArgMax)) {
return false;
}
}
diff --git a/contrib/llvm/lib/Support/Unix/RWMutex.inc b/contrib/llvm/lib/Support/Unix/RWMutex.inc
index edcbd52..85a1043 100644
--- a/contrib/llvm/lib/Support/Unix/RWMutex.inc
+++ b/contrib/llvm/lib/Support/Unix/RWMutex.inc
@@ -26,26 +26,26 @@ using namespace sys;
// will therefore deadlock if a thread tries to acquire a read lock
// multiple times.
-RWMutexImpl::RWMutexImpl() : data_(new Mutex(false)) { }
+RWMutexImpl::RWMutexImpl() : data_(new MutexImpl(false)) { }
RWMutexImpl::~RWMutexImpl() {
- delete static_cast<Mutex *>(data_);
+ delete static_cast<MutexImpl *>(data_);
}
bool RWMutexImpl::reader_acquire() {
- return static_cast<Mutex *>(data_)->acquire();
+ return static_cast<MutexImpl *>(data_)->acquire();
}
bool RWMutexImpl::reader_release() {
- return static_cast<Mutex *>(data_)->release();
+ return static_cast<MutexImpl *>(data_)->release();
}
bool RWMutexImpl::writer_acquire() {
- return static_cast<Mutex *>(data_)->acquire();
+ return static_cast<MutexImpl *>(data_)->acquire();
}
bool RWMutexImpl::writer_release() {
- return static_cast<Mutex *>(data_)->release();
+ return static_cast<MutexImpl *>(data_)->release();
}
}
diff --git a/contrib/llvm/lib/Support/Unix/Signals.inc b/contrib/llvm/lib/Support/Unix/Signals.inc
index 1841fea..e8f4643 100644
--- a/contrib/llvm/lib/Support/Unix/Signals.inc
+++ b/contrib/llvm/lib/Support/Unix/Signals.inc
@@ -14,7 +14,14 @@
#include "Unix.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/UniqueLock.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
#include <vector>
@@ -36,18 +43,22 @@
#if HAVE_MACH_MACH_H
#include <mach/mach.h>
#endif
+#if HAVE_LINK_H
+#include <link.h>
+#endif
using namespace llvm;
static RETSIGTYPE SignalHandler(int Sig); // defined below.
-static SmartMutex<true> SignalsMutex;
+static ManagedStatic<SmartMutex<true> > SignalsMutex;
/// InterruptFunction - The function to call if ctrl-c is pressed.
static void (*InterruptFunction)() = nullptr;
-static std::vector<std::string> FilesToRemove;
-static std::vector<std::pair<void(*)(void*), void*> > CallBacksToRun;
+static ManagedStatic<std::vector<std::string>> FilesToRemove;
+static ManagedStatic<std::vector<std::pair<void (*)(void *), void *>>>
+ CallBacksToRun;
// IntSigs - Signals that represent requested termination. There's no bug
// or failure, or if there is, it's not our direct responsibility. For whatever
@@ -55,7 +66,6 @@ static std::vector<std::pair<void(*)(void*), void*> > CallBacksToRun;
static const int IntSigs[] = {
SIGHUP, SIGINT, SIGPIPE, SIGTERM, SIGUSR1, SIGUSR2
};
-static const int *const IntSigsEnd = std::end(IntSigs);
// KillSigs - Signals that represent that we have a bug, and our prompt
// termination has been ordered.
@@ -74,7 +84,6 @@ static const int KillSigs[] = {
, SIGEMT
#endif
};
-static const int *const KillSigsEnd = std::end(KillSigs);
static unsigned NumRegisteredSignals = 0;
static struct {
@@ -105,8 +114,8 @@ static void RegisterHandlers() {
// If the handlers are already registered, we're done.
if (NumRegisteredSignals != 0) return;
- std::for_each(IntSigs, IntSigsEnd, RegisterHandler);
- std::for_each(KillSigs, KillSigsEnd, RegisterHandler);
+ for (auto S : IntSigs) RegisterHandler(S);
+ for (auto S : KillSigs) RegisterHandler(S);
}
static void UnregisterHandlers() {
@@ -125,11 +134,12 @@ static void UnregisterHandlers() {
static void RemoveFilesToRemove() {
// We avoid iterators in case of debug iterators that allocate or release
// memory.
- for (unsigned i = 0, e = FilesToRemove.size(); i != e; ++i) {
+ std::vector<std::string>& FilesToRemoveRef = *FilesToRemove;
+ for (unsigned i = 0, e = FilesToRemoveRef.size(); i != e; ++i) {
// We rely on a std::string implementation for which repeated calls to
// 'c_str()' don't allocate memory. We pre-call 'c_str()' on all of these
// strings to try to ensure this is safe.
- const char *path = FilesToRemove[i].c_str();
+ const char *path = FilesToRemoveRef[i].c_str();
// Get the status so we can determine if it's a file or directory. If we
// can't stat the file, ignore it.
@@ -162,28 +172,31 @@ static RETSIGTYPE SignalHandler(int Sig) {
sigfillset(&SigMask);
sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);
- SignalsMutex.acquire();
- RemoveFilesToRemove();
-
- if (std::find(IntSigs, IntSigsEnd, Sig) != IntSigsEnd) {
- if (InterruptFunction) {
- void (*IF)() = InterruptFunction;
- SignalsMutex.release();
- InterruptFunction = nullptr;
- IF(); // run the interrupt function.
+ {
+ unique_lock<SmartMutex<true>> Guard(*SignalsMutex);
+ RemoveFilesToRemove();
+
+ if (std::find(std::begin(IntSigs), std::end(IntSigs), Sig)
+ != std::end(IntSigs)) {
+ if (InterruptFunction) {
+ void (*IF)() = InterruptFunction;
+ Guard.unlock();
+ InterruptFunction = nullptr;
+ IF(); // run the interrupt function.
+ return;
+ }
+
+ Guard.unlock();
+ raise(Sig); // Execute the default handler.
return;
- }
-
- SignalsMutex.release();
- raise(Sig); // Execute the default handler.
- return;
+ }
}
- SignalsMutex.release();
-
// Otherwise if it is a fault (like SEGV) run any handler.
- for (unsigned i = 0, e = CallBacksToRun.size(); i != e; ++i)
- CallBacksToRun[i].first(CallBacksToRun[i].second);
+ std::vector<std::pair<void (*)(void *), void *>>& CallBacksToRunRef =
+ *CallBacksToRun;
+ for (unsigned i = 0, e = CallBacksToRun->size(); i != e; ++i)
+ CallBacksToRunRef[i].first(CallBacksToRunRef[i].second);
#ifdef __s390__
// On S/390, certain signals are delivered with PSW Address pointing to
@@ -196,37 +209,39 @@ static RETSIGTYPE SignalHandler(int Sig) {
}
void llvm::sys::RunInterruptHandlers() {
- SignalsMutex.acquire();
+ sys::SmartScopedLock<true> Guard(*SignalsMutex);
RemoveFilesToRemove();
- SignalsMutex.release();
}
void llvm::sys::SetInterruptFunction(void (*IF)()) {
- SignalsMutex.acquire();
- InterruptFunction = IF;
- SignalsMutex.release();
+ {
+ sys::SmartScopedLock<true> Guard(*SignalsMutex);
+ InterruptFunction = IF;
+ }
RegisterHandlers();
}
// RemoveFileOnSignal - The public API
bool llvm::sys::RemoveFileOnSignal(StringRef Filename,
std::string* ErrMsg) {
- SignalsMutex.acquire();
- std::string *OldPtr = FilesToRemove.empty() ? nullptr : &FilesToRemove[0];
- FilesToRemove.push_back(Filename);
-
- // We want to call 'c_str()' on every std::string in this vector so that if
- // the underlying implementation requires a re-allocation, it happens here
- // rather than inside of the signal handler. If we see the vector grow, we
- // have to call it on every entry. If it remains in place, we only need to
- // call it on the latest one.
- if (OldPtr == &FilesToRemove[0])
- FilesToRemove.back().c_str();
- else
- for (unsigned i = 0, e = FilesToRemove.size(); i != e; ++i)
- FilesToRemove[i].c_str();
-
- SignalsMutex.release();
+ {
+ sys::SmartScopedLock<true> Guard(*SignalsMutex);
+ std::vector<std::string>& FilesToRemoveRef = *FilesToRemove;
+ std::string *OldPtr =
+ FilesToRemoveRef.empty() ? nullptr : &FilesToRemoveRef[0];
+ FilesToRemoveRef.push_back(Filename);
+
+ // We want to call 'c_str()' on every std::string in this vector so that if
+ // the underlying implementation requires a re-allocation, it happens here
+ // rather than inside of the signal handler. If we see the vector grow, we
+ // have to call it on every entry. If it remains in place, we only need to
+ // call it on the latest one.
+ if (OldPtr == &FilesToRemoveRef[0])
+ FilesToRemoveRef.back().c_str();
+ else
+ for (unsigned i = 0, e = FilesToRemoveRef.size(); i != e; ++i)
+ FilesToRemoveRef[i].c_str();
+ }
RegisterHandlers();
return false;
@@ -234,31 +249,166 @@ bool llvm::sys::RemoveFileOnSignal(StringRef Filename,
// DontRemoveFileOnSignal - The public API
void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) {
- SignalsMutex.acquire();
+ sys::SmartScopedLock<true> Guard(*SignalsMutex);
std::vector<std::string>::reverse_iterator RI =
- std::find(FilesToRemove.rbegin(), FilesToRemove.rend(), Filename);
- std::vector<std::string>::iterator I = FilesToRemove.end();
- if (RI != FilesToRemove.rend())
- I = FilesToRemove.erase(RI.base()-1);
+ std::find(FilesToRemove->rbegin(), FilesToRemove->rend(), Filename);
+ std::vector<std::string>::iterator I = FilesToRemove->end();
+ if (RI != FilesToRemove->rend())
+ I = FilesToRemove->erase(RI.base()-1);
// We need to call c_str() on every element which would have been moved by
// the erase. These elements, in a C++98 implementation where c_str()
// requires a reallocation on the first call may have had the call to c_str()
// made on insertion become invalid by being copied down an element.
- for (std::vector<std::string>::iterator E = FilesToRemove.end(); I != E; ++I)
+ for (std::vector<std::string>::iterator E = FilesToRemove->end(); I != E; ++I)
I->c_str();
-
- SignalsMutex.release();
}
/// AddSignalHandler - Add a function to be called when a signal is delivered
/// to the process. The handler can have a cookie passed to it to identify
/// what instance of the handler it is.
void llvm::sys::AddSignalHandler(void (*FnPtr)(void *), void *Cookie) {
- CallBacksToRun.push_back(std::make_pair(FnPtr, Cookie));
+ CallBacksToRun->push_back(std::make_pair(FnPtr, Cookie));
RegisterHandlers();
}
+#if defined(HAVE_BACKTRACE) && defined(ENABLE_BACKTRACES)
+
+#if HAVE_LINK_H && (defined(__linux__) || defined(__FreeBSD__) || \
+ defined(__FreeBSD_kernel__) || defined(__NetBSD__))
+struct DlIteratePhdrData {
+ void **StackTrace;
+ int depth;
+ bool first;
+ const char **modules;
+ intptr_t *offsets;
+ const char *main_exec_name;
+};
+
+static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
+ DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
+ const char *name = data->first ? data->main_exec_name : info->dlpi_name;
+ data->first = false;
+ for (int i = 0; i < info->dlpi_phnum; i++) {
+ const auto *phdr = &info->dlpi_phdr[i];
+ if (phdr->p_type != PT_LOAD)
+ continue;
+ intptr_t beg = info->dlpi_addr + phdr->p_vaddr;
+ intptr_t end = beg + phdr->p_memsz;
+ for (int j = 0; j < data->depth; j++) {
+ if (data->modules[j])
+ continue;
+ intptr_t addr = (intptr_t)data->StackTrace[j];
+ if (beg <= addr && addr < end) {
+ data->modules[j] = name;
+ data->offsets[j] = addr - info->dlpi_addr;
+ }
+ }
+ }
+ return 0;
+}
+
+static bool findModulesAndOffsets(void **StackTrace, int Depth,
+ const char **Modules, intptr_t *Offsets,
+ const char *MainExecutableName) {
+ DlIteratePhdrData data = {StackTrace, Depth, true,
+ Modules, Offsets, MainExecutableName};
+ dl_iterate_phdr(dl_iterate_phdr_cb, &data);
+ return true;
+}
+#else
+static bool findModulesAndOffsets(void **StackTrace, int Depth,
+ const char **Modules, intptr_t *Offsets,
+ const char *MainExecutableName) {
+ return false;
+}
+#endif
+
+static bool printSymbolizedStackTrace(void **StackTrace, int Depth, FILE *FD) {
+ // FIXME: Subtract necessary number from StackTrace entries to turn return addresses
+ // into actual instruction addresses.
+ // Use llvm-symbolizer tool to symbolize the stack traces.
+ ErrorOr<std::string> LLVMSymbolizerPathOrErr =
+ sys::findProgramByName("llvm-symbolizer");
+ if (!LLVMSymbolizerPathOrErr)
+ return false;
+ const std::string &LLVMSymbolizerPath = *LLVMSymbolizerPathOrErr;
+ // We don't know argv0 or the address of main() at this point, but try
+ // to guess it anyway (it's possible on some platforms).
+ std::string MainExecutableName = sys::fs::getMainExecutable(nullptr, nullptr);
+ if (MainExecutableName.empty() ||
+ MainExecutableName.find("llvm-symbolizer") != std::string::npos)
+ return false;
+
+ std::vector<const char *> Modules(Depth, nullptr);
+ std::vector<intptr_t> Offsets(Depth, 0);
+ if (!findModulesAndOffsets(StackTrace, Depth, Modules.data(), Offsets.data(),
+ MainExecutableName.c_str()))
+ return false;
+ int InputFD;
+ SmallString<32> InputFile, OutputFile;
+ sys::fs::createTemporaryFile("symbolizer-input", "", InputFD, InputFile);
+ sys::fs::createTemporaryFile("symbolizer-output", "", OutputFile);
+ FileRemover InputRemover(InputFile.c_str());
+ FileRemover OutputRemover(OutputFile.c_str());
+
+ {
+ raw_fd_ostream Input(InputFD, true);
+ for (int i = 0; i < Depth; i++) {
+ if (Modules[i])
+ Input << Modules[i] << " " << (void*)Offsets[i] << "\n";
+ }
+ }
+
+ StringRef InputFileStr(InputFile);
+ StringRef OutputFileStr(OutputFile);
+ StringRef StderrFileStr;
+ const StringRef *Redirects[] = {&InputFileStr, &OutputFileStr,
+ &StderrFileStr};
+ const char *Args[] = {"llvm-symbolizer", "--functions=linkage", "--inlining",
+ "--demangle", nullptr};
+ int RunResult =
+ sys::ExecuteAndWait(LLVMSymbolizerPath, Args, nullptr, Redirects);
+ if (RunResult != 0)
+ return false;
+
+ auto OutputBuf = MemoryBuffer::getFile(OutputFile.c_str());
+ if (!OutputBuf)
+ return false;
+ StringRef Output = OutputBuf.get()->getBuffer();
+ SmallVector<StringRef, 32> Lines;
+ Output.split(Lines, "\n");
+ auto CurLine = Lines.begin();
+ int frame_no = 0;
+ for (int i = 0; i < Depth; i++) {
+ if (!Modules[i]) {
+ fprintf(FD, "#%d %p\n", frame_no++, StackTrace[i]);
+ continue;
+ }
+ // Read pairs of lines (function name and file/line info) until we
+ // encounter empty line.
+ for (;;) {
+ if (CurLine == Lines.end())
+ return false;
+ StringRef FunctionName = *CurLine++;
+ if (FunctionName.empty())
+ break;
+ fprintf(FD, "#%d %p ", frame_no++, StackTrace[i]);
+ if (!FunctionName.startswith("??"))
+ fprintf(FD, "%s ", FunctionName.str().c_str());
+ if (CurLine == Lines.end())
+ return false;
+ StringRef FileLineInfo = *CurLine++;
+ if (!FileLineInfo.startswith("??"))
+ fprintf(FD, "%s", FileLineInfo.str().c_str());
+ else
+ fprintf(FD, "(%s+%p)", Modules[i], (void *)Offsets[i]);
+ fprintf(FD, "\n");
+ }
+ }
+ return true;
+}
+#endif // defined(HAVE_BACKTRACE) && defined(ENABLE_BACKTRACES)
// PrintStackTrace - In the case of a program crash or fault, print out a stack
// trace so that the user has an indication of why and where we died.
@@ -271,6 +421,8 @@ void llvm::sys::PrintStackTrace(FILE *FD) {
// Use backtrace() to output a backtrace on Linux systems with glibc.
int depth = backtrace(StackTrace,
static_cast<int>(array_lengthof(StackTrace)));
+ if (printSymbolizedStackTrace(StackTrace, depth, FD))
+ return;
#if HAVE_DLFCN_H && __GNUG__
int width = 0;
for (int i = 0; i < depth; ++i) {
diff --git a/contrib/llvm/lib/Support/Unix/ThreadLocal.inc b/contrib/llvm/lib/Support/Unix/ThreadLocal.inc
index f14d0fa..31c3f38 100644
--- a/contrib/llvm/lib/Support/Unix/ThreadLocal.inc
+++ b/contrib/llvm/lib/Support/Unix/ThreadLocal.inc
@@ -16,11 +16,54 @@
//=== is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//
+#if defined(HAVE_PTHREAD_H) && defined(HAVE_PTHREAD_GETSPECIFIC)
+
+#include <cassert>
+#include <pthread.h>
+#include <stdlib.h>
+
+namespace llvm {
+using namespace sys;
+
+ThreadLocalImpl::ThreadLocalImpl() : data() {
+ static_assert(sizeof(pthread_key_t) <= sizeof(data), "size too big");
+ pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
+ int errorcode = pthread_key_create(key, nullptr);
+ assert(errorcode == 0);
+ (void) errorcode;
+}
+
+ThreadLocalImpl::~ThreadLocalImpl() {
+ pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
+ int errorcode = pthread_key_delete(*key);
+ assert(errorcode == 0);
+ (void) errorcode;
+}
+
+void ThreadLocalImpl::setInstance(const void* d) {
+ pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
+ int errorcode = pthread_setspecific(*key, d);
+ assert(errorcode == 0);
+ (void) errorcode;
+}
+
+void *ThreadLocalImpl::getInstance() {
+ pthread_key_t* key = reinterpret_cast<pthread_key_t*>(&data);
+ return pthread_getspecific(*key);
+}
+
+void ThreadLocalImpl::removeInstance() {
+ setInstance(nullptr);
+}
+
+}
+#else
namespace llvm {
using namespace sys;
ThreadLocalImpl::ThreadLocalImpl() : data() { }
ThreadLocalImpl::~ThreadLocalImpl() { }
void ThreadLocalImpl::setInstance(const void* d) { data = const_cast<void*>(d);}
-const void* ThreadLocalImpl::getInstance() { return data; }
+void *ThreadLocalImpl::getInstance() { return data; }
void ThreadLocalImpl::removeInstance() { setInstance(0); }
}
+#endif
diff --git a/contrib/llvm/lib/Support/Unix/TimeValue.inc b/contrib/llvm/lib/Support/Unix/TimeValue.inc
index 7d4acf7..042e0da 100644
--- a/contrib/llvm/lib/Support/Unix/TimeValue.inc
+++ b/contrib/llvm/lib/Support/Unix/TimeValue.inc
@@ -41,7 +41,7 @@ TimeValue TimeValue::now() {
// errors concern the timezone parameter which we're passing in as 0.
// In the unlikely case it does happen, just return MinTime, no error
// message needed.
- return MinTime;
+ return MinTime();
}
return TimeValue(
diff --git a/contrib/llvm/lib/Support/Unix/Unix.h b/contrib/llvm/lib/Support/Unix/Unix.h
index ba688e3..e16a226 100644
--- a/contrib/llvm/lib/Support/Unix/Unix.h
+++ b/contrib/llvm/lib/Support/Unix/Unix.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SYSTEM_UNIX_UNIX_H
-#define LLVM_SYSTEM_UNIX_UNIX_H
+#ifndef LLVM_LIB_SUPPORT_UNIX_UNIX_H
+#define LLVM_LIB_SUPPORT_UNIX_UNIX_H
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only generic UNIX code that
diff --git a/contrib/llvm/lib/Support/Windows/DynamicLibrary.inc b/contrib/llvm/lib/Support/Windows/DynamicLibrary.inc
index 5ed0b70..79d5f79 100644
--- a/contrib/llvm/lib/Support/Windows/DynamicLibrary.inc
+++ b/contrib/llvm/lib/Support/Windows/DynamicLibrary.inc
@@ -41,32 +41,11 @@ using namespace sys;
static DenseSet<HMODULE> *OpenedHandles;
-extern "C" {
-
- static BOOL CALLBACK ELM_Callback(WIN32_ELMCB_PCSTR ModuleName,
- ULONG_PTR ModuleBase,
- ULONG ModuleSize,
- PVOID UserContext)
- {
- // Ignore VC++ runtimes prior to 7.1. Somehow some of them get loaded
- // into the process.
- if (stricmp(ModuleName, "msvci70") != 0 &&
- stricmp(ModuleName, "msvcirt") != 0 &&
- stricmp(ModuleName, "msvcp50") != 0 &&
- stricmp(ModuleName, "msvcp60") != 0 &&
- stricmp(ModuleName, "msvcp70") != 0 &&
- stricmp(ModuleName, "msvcr70") != 0 &&
-#ifndef __MINGW32__
- // Mingw32 uses msvcrt.dll by default. Don't ignore it.
- // Otherwise the user should be aware what they are doing.
- stricmp(ModuleName, "msvcrt") != 0 &&
-#endif
- stricmp(ModuleName, "msvcrt20") != 0 &&
- stricmp(ModuleName, "msvcrt40") != 0) {
- OpenedHandles->insert((HMODULE)ModuleBase);
- }
- return TRUE;
- }
+static BOOL CALLBACK
+ELM_Callback(WIN32_ELMCB_PCSTR ModuleName, ULONG_PTR ModuleBase,
+ ULONG ModuleSize, PVOID UserContext) {
+ OpenedHandles->insert((HMODULE)ModuleBase);
+ return TRUE;
}
DynamicLibrary DynamicLibrary::getPermanentLibrary(const char *filename,
@@ -115,10 +94,24 @@ DynamicLibrary DynamicLibrary::getPermanentLibrary(const char *filename,
extern "C" { extern void *SYM; }
#define EXPLICIT_SYMBOL2(SYMFROM, SYMTO) EXPLICIT_SYMBOL(SYMTO)
+#ifdef _M_IX86
+// Win32 on x86 implements certain single-precision math functions as macros.
+// These functions are not exported by the DLL, but will still be needed
+// for symbol-resolution by the JIT loader. Therefore, this Support libray
+// provides helper functions with the same implementation.
+
+#define INLINE_DEF_SYMBOL1(TYP, SYM) \
+ extern "C" TYP inline_##SYM(TYP _X) { return SYM(_X); }
+#define INLINE_DEF_SYMBOL2(TYP, SYM) \
+ extern "C" TYP inline_##SYM(TYP _X, TYP _Y) { return SYM(_X, _Y); }
+#endif
+
#include "explicit_symbols.inc"
#undef EXPLICIT_SYMBOL
#undef EXPLICIT_SYMBOL2
+#undef INLINE_DEF_SYMBOL1
+#undef INLINE_DEF_SYMBOL2
void* DynamicLibrary::SearchForAddressOfSymbol(const char* symbolName) {
SmartScopedLock<true> Lock(*SymbolsMutex);
@@ -142,22 +135,32 @@ void* DynamicLibrary::SearchForAddressOfSymbol(const char* symbolName) {
}
}
- #define EXPLICIT_SYMBOL(SYM) \
- if (!strcmp(symbolName, #SYM)) return (void*)&SYM;
- #define EXPLICIT_SYMBOL2(SYMFROM, SYMTO) \
- if (!strcmp(symbolName, #SYMFROM)) return (void*)&SYMTO;
+#define EXPLICIT_SYMBOL(SYM) \
+ if (!strcmp(symbolName, #SYM)) \
+ return (void *)&SYM;
+#define EXPLICIT_SYMBOL2(SYMFROM, SYMTO) \
+ if (!strcmp(symbolName, #SYMFROM)) \
+ return (void *)&SYMTO;
+
+#ifdef _M_IX86
+#define INLINE_DEF_SYMBOL1(TYP, SYM) \
+ if (!strcmp(symbolName, #SYM)) \
+ return (void *)&inline_##SYM;
+#define INLINE_DEF_SYMBOL2(TYP, SYM) INLINE_DEF_SYMBOL1(TYP, SYM)
+#endif
{
- #include "explicit_symbols.inc"
+#include "explicit_symbols.inc"
}
- #undef EXPLICIT_SYMBOL
- #undef EXPLICIT_SYMBOL2
+#undef EXPLICIT_SYMBOL
+#undef EXPLICIT_SYMBOL2
+#undef INLINE_DEF_SYMBOL1
+#undef INLINE_DEF_SYMBOL2
return 0;
}
-
void *DynamicLibrary::getAddressOfSymbol(const char *symbolName) {
if (!isValid())
return NULL;
@@ -166,5 +169,4 @@ void *DynamicLibrary::getAddressOfSymbol(const char *symbolName) {
return (void *)(intptr_t)GetProcAddress((HMODULE)Data, symbolName);
}
-
}
diff --git a/contrib/llvm/lib/Support/Windows/Host.inc b/contrib/llvm/lib/Support/Windows/Host.inc
index 0c02bf9..fe89fe0 100644
--- a/contrib/llvm/lib/Support/Windows/Host.inc
+++ b/contrib/llvm/lib/Support/Windows/Host.inc
@@ -1,4 +1,4 @@
-//===- llvm/Support/Win32/Host.inc -------------------------------*- C++ -*-===//
+//===- llvm/Support/Win32/Host.inc ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/contrib/llvm/lib/Support/Windows/Path.inc b/contrib/llvm/lib/Support/Windows/Path.inc
index 7a1bc0447..d8b5702 100644
--- a/contrib/llvm/lib/Support/Windows/Path.inc
+++ b/contrib/llvm/lib/Support/Windows/Path.inc
@@ -44,28 +44,12 @@ using namespace llvm;
using llvm::sys::windows::UTF8ToUTF16;
using llvm::sys::windows::UTF16ToUTF8;
+using llvm::sys::path::widenPath;
static std::error_code windows_error(DWORD E) {
return mapWindowsError(E);
}
-static std::error_code TempDir(SmallVectorImpl<char> &Result) {
- SmallVector<wchar_t, 64> Res;
-retry_temp_dir:
- DWORD Len = ::GetTempPathW(Res.capacity(), Res.begin());
-
- if (Len == 0)
- return windows_error(::GetLastError());
-
- if (Len > Res.capacity()) {
- Res.reserve(Len);
- goto retry_temp_dir;
- }
-
- Res.set_size(Len);
- return UTF16ToUTF8(Res.begin(), Res.size(), Result);
-}
-
static bool is_separator(const wchar_t value) {
switch (value) {
case L'\\':
@@ -78,6 +62,62 @@ static bool is_separator(const wchar_t value) {
namespace llvm {
namespace sys {
+namespace path {
+
+// Convert a UTF-8 path to UTF-16. Also, if the absolute equivalent of the
+// path is longer than CreateDirectory can tolerate, make it absolute and
+// prefixed by '\\?\'.
+std::error_code widenPath(const Twine &Path8,
+ SmallVectorImpl<wchar_t> &Path16) {
+ const size_t MaxDirLen = MAX_PATH - 12; // Must leave room for 8.3 filename.
+
+ // Several operations would convert Path8 to SmallString; more efficient to
+ // do it once up front.
+ SmallString<128> Path8Str;
+ Path8.toVector(Path8Str);
+
+ // If we made this path absolute, how much longer would it get?
+ size_t CurPathLen;
+ if (llvm::sys::path::is_absolute(Twine(Path8Str)))
+ CurPathLen = 0; // No contribution from current_path needed.
+ else {
+ CurPathLen = ::GetCurrentDirectoryW(0, NULL);
+ if (CurPathLen == 0)
+ return windows_error(::GetLastError());
+ }
+
+ // Would the absolute path be longer than our limit?
+ if ((Path8Str.size() + CurPathLen) >= MaxDirLen &&
+ !Path8Str.startswith("\\\\?\\")) {
+ SmallString<2*MAX_PATH> FullPath("\\\\?\\");
+ if (CurPathLen) {
+ SmallString<80> CurPath;
+ if (std::error_code EC = llvm::sys::fs::current_path(CurPath))
+ return EC;
+ FullPath.append(CurPath);
+ }
+ // Traverse the requested path, canonicalizing . and .. as we go (because
+ // the \\?\ prefix is documented to treat them as real components).
+ // The iterators don't report separators and append() always attaches
+ // preferred_separator so we don't need to call native() on the result.
+ for (llvm::sys::path::const_iterator I = llvm::sys::path::begin(Path8Str),
+ E = llvm::sys::path::end(Path8Str);
+ I != E; ++I) {
+ if (I->size() == 1 && *I == ".")
+ continue;
+ if (I->size() == 2 && *I == "..")
+ llvm::sys::path::remove_filename(FullPath);
+ else
+ llvm::sys::path::append(FullPath, *I);
+ }
+ return UTF8ToUTF16(FullPath, Path16);
+ }
+
+ // Just use the caller's original path.
+ return UTF8ToUTF16(Path8Str, Path16);
+}
+} // end namespace path
+
namespace fs {
std::string getMainExecutable(const char *argv0, void *MainExecAddr) {
@@ -147,11 +187,9 @@ std::error_code current_path(SmallVectorImpl<char> &result) {
}
std::error_code create_directory(const Twine &path, bool IgnoreExisting) {
- SmallString<128> path_storage;
SmallVector<wchar_t, 128> path_utf16;
- if (std::error_code ec =
- UTF8ToUTF16(path.toStringRef(path_storage), path_utf16))
+ if (std::error_code ec = widenPath(path, path_utf16))
return ec;
if (!::CreateDirectoryW(path_utf16.begin(), NULL)) {
@@ -163,25 +201,14 @@ std::error_code create_directory(const Twine &path, bool IgnoreExisting) {
return std::error_code();
}
-std::error_code normalize_separators(SmallVectorImpl<char> &Path) {
- (void) Path;
- return std::error_code();
-}
-
// We can't use symbolic links for windows.
std::error_code create_link(const Twine &to, const Twine &from) {
- // Get arguments.
- SmallString<128> from_storage;
- SmallString<128> to_storage;
- StringRef f = from.toStringRef(from_storage);
- StringRef t = to.toStringRef(to_storage);
-
// Convert to utf-16.
SmallVector<wchar_t, 128> wide_from;
SmallVector<wchar_t, 128> wide_to;
- if (std::error_code ec = UTF8ToUTF16(f, wide_from))
+ if (std::error_code ec = widenPath(from, wide_from))
return ec;
- if (std::error_code ec = UTF8ToUTF16(t, wide_to))
+ if (std::error_code ec = widenPath(to, wide_to))
return ec;
if (!::CreateHardLinkW(wide_from.begin(), wide_to.begin(), NULL))
@@ -191,7 +218,6 @@ std::error_code create_link(const Twine &to, const Twine &from) {
}
std::error_code remove(const Twine &path, bool IgnoreNonExisting) {
- SmallString<128> path_storage;
SmallVector<wchar_t, 128> path_utf16;
file_status ST;
@@ -201,8 +227,7 @@ std::error_code remove(const Twine &path, bool IgnoreNonExisting) {
return std::error_code();
}
- if (std::error_code ec =
- UTF8ToUTF16(path.toStringRef(path_storage), path_utf16))
+ if (std::error_code ec = widenPath(path, path_utf16))
return ec;
if (ST.type() == file_type::directory_file) {
@@ -222,18 +247,12 @@ std::error_code remove(const Twine &path, bool IgnoreNonExisting) {
}
std::error_code rename(const Twine &from, const Twine &to) {
- // Get arguments.
- SmallString<128> from_storage;
- SmallString<128> to_storage;
- StringRef f = from.toStringRef(from_storage);
- StringRef t = to.toStringRef(to_storage);
-
// Convert to utf-16.
SmallVector<wchar_t, 128> wide_from;
SmallVector<wchar_t, 128> wide_to;
- if (std::error_code ec = UTF8ToUTF16(f, wide_from))
+ if (std::error_code ec = widenPath(from, wide_from))
return ec;
- if (std::error_code ec = UTF8ToUTF16(t, wide_to))
+ if (std::error_code ec = widenPath(to, wide_to))
return ec;
std::error_code ec = std::error_code();
@@ -253,69 +272,36 @@ std::error_code rename(const Twine &from, const Twine &to) {
return ec;
}
-std::error_code resize_file(const Twine &path, uint64_t size) {
- SmallString<128> path_storage;
- SmallVector<wchar_t, 128> path_utf16;
-
- if (std::error_code ec =
- UTF8ToUTF16(path.toStringRef(path_storage), path_utf16))
- return ec;
-
- int fd = ::_wopen(path_utf16.begin(), O_BINARY | _O_RDWR, S_IWRITE);
- if (fd == -1)
- return std::error_code(errno, std::generic_category());
+std::error_code resize_file(int FD, uint64_t Size) {
#ifdef HAVE__CHSIZE_S
- errno_t error = ::_chsize_s(fd, size);
+ errno_t error = ::_chsize_s(FD, Size);
#else
- errno_t error = ::_chsize(fd, size);
+ errno_t error = ::_chsize(FD, Size);
#endif
- ::close(fd);
return std::error_code(error, std::generic_category());
}
-std::error_code exists(const Twine &path, bool &result) {
- SmallString<128> path_storage;
- SmallVector<wchar_t, 128> path_utf16;
+std::error_code access(const Twine &Path, AccessMode Mode) {
+ SmallVector<wchar_t, 128> PathUtf16;
- if (std::error_code ec =
- UTF8ToUTF16(path.toStringRef(path_storage), path_utf16))
- return ec;
+ if (std::error_code EC = widenPath(Path, PathUtf16))
+ return EC;
- DWORD attributes = ::GetFileAttributesW(path_utf16.begin());
+ DWORD Attributes = ::GetFileAttributesW(PathUtf16.begin());
- if (attributes == INVALID_FILE_ATTRIBUTES) {
+ if (Attributes == INVALID_FILE_ATTRIBUTES) {
// See if the file didn't actually exist.
DWORD LastError = ::GetLastError();
if (LastError != ERROR_FILE_NOT_FOUND &&
LastError != ERROR_PATH_NOT_FOUND)
return windows_error(LastError);
- result = false;
- } else
- result = true;
- return std::error_code();
-}
-
-bool can_write(const Twine &Path) {
- // FIXME: take security attributes into account.
- SmallString<128> PathStorage;
- SmallVector<wchar_t, 128> PathUtf16;
-
- if (UTF8ToUTF16(Path.toStringRef(PathStorage), PathUtf16))
- return false;
-
- DWORD Attr = ::GetFileAttributesW(PathUtf16.begin());
- return (Attr != INVALID_FILE_ATTRIBUTES) && !(Attr & FILE_ATTRIBUTE_READONLY);
-}
-
-bool can_execute(const Twine &Path) {
- SmallString<128> PathStorage;
- SmallVector<wchar_t, 128> PathUtf16;
+ return errc::no_such_file_or_directory;
+ }
- if (UTF8ToUTF16(Path.toStringRef(PathStorage), PathUtf16))
- return false;
+ if (Mode == AccessMode::Write && (Attributes & FILE_ATTRIBUTE_READONLY))
+ return errc::permission_denied;
- DWORD Attr = ::GetFileAttributesW(PathUtf16.begin());
- return Attr != INVALID_FILE_ATTRIBUTES;
+ return std::error_code();
}
bool equivalent(file_status A, file_status B) {
@@ -424,7 +410,7 @@ std::error_code status(const Twine &path, file_status &result) {
return std::error_code();
}
- if (std::error_code ec = UTF8ToUTF16(path8, path_utf16))
+ if (std::error_code ec = widenPath(path8, path_utf16))
return ec;
DWORD attr = ::GetFileAttributesW(path_utf16.begin());
@@ -472,17 +458,15 @@ std::error_code setLastModificationAndAccessTime(int FD, TimeValue Time) {
return std::error_code();
}
-std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset) {
- FileDescriptor = FD;
+std::error_code mapped_file_region::init(int FD, uint64_t Offset,
+ mapmode Mode) {
// Make sure that the requested size fits within SIZE_T.
- if (Size > std::numeric_limits<SIZE_T>::max()) {
- if (FileDescriptor) {
- if (CloseFD)
- _close(FileDescriptor);
- } else
- ::CloseHandle(FileHandle);
+ if (Size > std::numeric_limits<SIZE_T>::max())
return make_error_code(errc::invalid_argument);
- }
+
+ HANDLE FileHandle = reinterpret_cast<HANDLE>(_get_osfhandle(FD));
+ if (FileHandle == INVALID_HANDLE_VALUE)
+ return make_error_code(errc::bad_file_descriptor);
DWORD flprotect;
switch (Mode) {
@@ -491,18 +475,13 @@ std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset)
case priv: flprotect = PAGE_WRITECOPY; break;
}
- FileMappingHandle =
+ HANDLE FileMappingHandle =
::CreateFileMappingW(FileHandle, 0, flprotect,
(Offset + Size) >> 32,
(Offset + Size) & 0xffffffff,
0);
if (FileMappingHandle == NULL) {
std::error_code ec = windows_error(GetLastError());
- if (FileDescriptor) {
- if (CloseFD)
- _close(FileDescriptor);
- } else
- ::CloseHandle(FileHandle);
return ec;
}
@@ -520,11 +499,6 @@ std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset)
if (Mapping == NULL) {
std::error_code ec = windows_error(GetLastError());
::CloseHandle(FileMappingHandle);
- if (FileDescriptor) {
- if (CloseFD)
- _close(FileDescriptor);
- } else
- ::CloseHandle(FileHandle);
return ec;
}
@@ -535,11 +509,6 @@ std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset)
std::error_code ec = windows_error(GetLastError());
::UnmapViewOfFile(Mapping);
::CloseHandle(FileMappingHandle);
- if (FileDescriptor) {
- if (CloseFD)
- _close(FileDescriptor);
- } else
- ::CloseHandle(FileHandle);
return ec;
}
Size = mbi.RegionSize;
@@ -548,85 +517,15 @@ std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset)
// Close all the handles except for the view. It will keep the other handles
// alive.
::CloseHandle(FileMappingHandle);
- if (FileDescriptor) {
- if (CloseFD)
- _close(FileDescriptor); // Also closes FileHandle.
- } else
- ::CloseHandle(FileHandle);
return std::error_code();
}
-mapped_file_region::mapped_file_region(const Twine &path,
- mapmode mode,
- uint64_t length,
- uint64_t offset,
- std::error_code &ec)
- : Mode(mode)
- , Size(length)
- , Mapping()
- , FileDescriptor()
- , FileHandle(INVALID_HANDLE_VALUE)
- , FileMappingHandle() {
- SmallString<128> path_storage;
- SmallVector<wchar_t, 128> path_utf16;
-
- // Convert path to UTF-16.
- if ((ec = UTF8ToUTF16(path.toStringRef(path_storage), path_utf16)))
- return;
-
- // Get file handle for creating a file mapping.
- FileHandle = ::CreateFileW(c_str(path_utf16),
- Mode == readonly ? GENERIC_READ
- : GENERIC_READ | GENERIC_WRITE,
- Mode == readonly ? FILE_SHARE_READ
- : 0,
- 0,
- Mode == readonly ? OPEN_EXISTING
- : OPEN_ALWAYS,
- Mode == readonly ? FILE_ATTRIBUTE_READONLY
- : FILE_ATTRIBUTE_NORMAL,
- 0);
- if (FileHandle == INVALID_HANDLE_VALUE) {
- ec = windows_error(::GetLastError());
- return;
- }
-
- FileDescriptor = 0;
- ec = init(FileDescriptor, true, offset);
- if (ec) {
- Mapping = FileMappingHandle = 0;
- FileHandle = INVALID_HANDLE_VALUE;
- FileDescriptor = 0;
- }
-}
-
-mapped_file_region::mapped_file_region(int fd,
- bool closefd,
- mapmode mode,
- uint64_t length,
- uint64_t offset,
- std::error_code &ec)
- : Mode(mode)
- , Size(length)
- , Mapping()
- , FileDescriptor(fd)
- , FileHandle(INVALID_HANDLE_VALUE)
- , FileMappingHandle() {
- FileHandle = reinterpret_cast<HANDLE>(_get_osfhandle(fd));
- if (FileHandle == INVALID_HANDLE_VALUE) {
- if (closefd)
- _close(FileDescriptor);
- FileDescriptor = 0;
- ec = make_error_code(errc::bad_file_descriptor);
- return;
- }
-
- ec = init(FileDescriptor, closefd, offset);
- if (ec) {
- Mapping = FileMappingHandle = 0;
- FileHandle = INVALID_HANDLE_VALUE;
- FileDescriptor = 0;
- }
+mapped_file_region::mapped_file_region(int fd, mapmode mode, uint64_t length,
+ uint64_t offset, std::error_code &ec)
+ : Size(length), Mapping() {
+ ec = init(fd, offset, mode);
+ if (ec)
+ Mapping = 0;
}
mapped_file_region::~mapped_file_region() {
@@ -634,30 +533,12 @@ mapped_file_region::~mapped_file_region() {
::UnmapViewOfFile(Mapping);
}
-mapped_file_region::mapped_file_region(mapped_file_region &&other)
- : Mode(other.Mode)
- , Size(other.Size)
- , Mapping(other.Mapping)
- , FileDescriptor(other.FileDescriptor)
- , FileHandle(other.FileHandle)
- , FileMappingHandle(other.FileMappingHandle) {
- other.Mapping = other.FileMappingHandle = 0;
- other.FileHandle = INVALID_HANDLE_VALUE;
- other.FileDescriptor = 0;
-}
-
-mapped_file_region::mapmode mapped_file_region::flags() const {
- assert(Mapping && "Mapping failed but used anyway!");
- return Mode;
-}
-
uint64_t mapped_file_region::size() const {
assert(Mapping && "Mapping failed but used anyway!");
return Size;
}
char *mapped_file_region::data() const {
- assert(Mode != readonly && "Cannot get non-const data for readonly mapping!");
assert(Mapping && "Mapping failed but used anyway!");
return reinterpret_cast<char*>(Mapping);
}
@@ -677,7 +558,7 @@ std::error_code detail::directory_iterator_construct(detail::DirIterState &it,
StringRef path){
SmallVector<wchar_t, 128> path_utf16;
- if (std::error_code ec = UTF8ToUTF16(path, path_utf16))
+ if (std::error_code ec = widenPath(path, path_utf16))
return ec;
// Convert path to the format that Windows is happy with.
@@ -760,11 +641,9 @@ std::error_code detail::directory_iterator_increment(detail::DirIterState &it) {
}
std::error_code openFileForRead(const Twine &Name, int &ResultFD) {
- SmallString<128> PathStorage;
SmallVector<wchar_t, 128> PathUTF16;
- if (std::error_code EC =
- UTF8ToUTF16(Name.toStringRef(PathStorage), PathUTF16))
+ if (std::error_code EC = widenPath(Name, PathUTF16))
return EC;
HANDLE H = ::CreateFileW(PathUTF16.begin(), GENERIC_READ,
@@ -799,11 +678,9 @@ std::error_code openFileForWrite(const Twine &Name, int &ResultFD,
assert((!(Flags & sys::fs::F_Excl) || !(Flags & sys::fs::F_Append)) &&
"Cannot specify both 'excl' and 'append' file creation flags!");
- SmallString<128> PathStorage;
SmallVector<wchar_t, 128> PathUTF16;
- if (std::error_code EC =
- UTF8ToUTF16(Name.toStringRef(PathStorage), PathUTF16))
+ if (std::error_code EC = widenPath(Name, PathUTF16))
return EC;
DWORD CreationDisposition;
@@ -867,6 +744,51 @@ bool home_directory(SmallVectorImpl<char> &result) {
return true;
}
+static bool getTempDirEnvVar(const char *Var, SmallVectorImpl<char> &Res) {
+ SmallVector<wchar_t, 128> NameUTF16;
+ if (windows::UTF8ToUTF16(Var, NameUTF16))
+ return false;
+
+ SmallVector<wchar_t, 1024> Buf;
+ size_t Size = 1024;
+ do {
+ Buf.reserve(Size);
+ Size =
+ GetEnvironmentVariableW(NameUTF16.data(), Buf.data(), Buf.capacity());
+ if (Size == 0)
+ return false;
+
+ // Try again with larger buffer.
+ } while (Size > Buf.capacity());
+ Buf.set_size(Size);
+
+ if (windows::UTF16ToUTF8(Buf.data(), Size, Res))
+ return false;
+ return true;
+}
+
+static bool getTempDirEnvVar(SmallVectorImpl<char> &Res) {
+ const char *EnvironmentVariables[] = {"TMP", "TEMP", "USERPROFILE"};
+ for (const char *Env : EnvironmentVariables) {
+ if (getTempDirEnvVar(Env, Res))
+ return true;
+ }
+ return false;
+}
+
+void system_temp_directory(bool ErasedOnReboot, SmallVectorImpl<char> &Result) {
+ (void)ErasedOnReboot;
+ Result.clear();
+
+ // Check whether the temporary directory is specified by an environment
+ // variable.
+ if (getTempDirEnvVar(Result))
+ return;
+
+ // Fall back to a system default.
+ const char *DefaultResult = "C:\\TEMP";
+ Result.append(DefaultResult, DefaultResult + strlen(DefaultResult));
+}
} // end namespace path
namespace windows {
@@ -896,11 +818,13 @@ std::error_code UTF8ToUTF16(llvm::StringRef utf8,
return std::error_code();
}
-std::error_code UTF16ToUTF8(const wchar_t *utf16, size_t utf16_len,
- llvm::SmallVectorImpl<char> &utf8) {
+static
+std::error_code UTF16ToCodePage(unsigned codepage, const wchar_t *utf16,
+ size_t utf16_len,
+ llvm::SmallVectorImpl<char> &utf8) {
if (utf16_len) {
// Get length.
- int len = ::WideCharToMultiByte(CP_UTF8, 0, utf16, utf16_len, utf8.begin(),
+ int len = ::WideCharToMultiByte(codepage, 0, utf16, utf16_len, utf8.begin(),
0, NULL, NULL);
if (len == 0)
@@ -910,7 +834,7 @@ std::error_code UTF16ToUTF8(const wchar_t *utf16, size_t utf16_len,
utf8.set_size(len);
// Now do the actual conversion.
- len = ::WideCharToMultiByte(CP_UTF8, 0, utf16, utf16_len, utf8.data(),
+ len = ::WideCharToMultiByte(codepage, 0, utf16, utf16_len, utf8.data(),
utf8.size(), NULL, NULL);
if (len == 0)
@@ -923,6 +847,16 @@ std::error_code UTF16ToUTF8(const wchar_t *utf16, size_t utf16_len,
return std::error_code();
}
+
+std::error_code UTF16ToUTF8(const wchar_t *utf16, size_t utf16_len,
+ llvm::SmallVectorImpl<char> &utf8) {
+ return UTF16ToCodePage(CP_UTF8, utf16, utf16_len, utf8);
+}
+
+std::error_code UTF16ToCurCP(const wchar_t *utf16, size_t utf16_len,
+ llvm::SmallVectorImpl<char> &utf8) {
+ return UTF16ToCodePage(CP_ACP, utf16, utf16_len, utf8);
+}
} // end namespace windows
} // end namespace sys
} // end namespace llvm
diff --git a/contrib/llvm/lib/Support/Windows/Process.inc b/contrib/llvm/lib/Support/Windows/Process.inc
index 61749a7..854eac7 100644
--- a/contrib/llvm/lib/Support/Windows/Process.inc
+++ b/contrib/llvm/lib/Support/Windows/Process.inc
@@ -49,10 +49,6 @@
using namespace llvm;
using namespace sys;
-process::id_type self_process::get_id() {
- return GetCurrentProcessId();
-}
-
static TimeValue getTimeValueFromFILETIME(FILETIME Time) {
ULARGE_INTEGER TimeInteger;
TimeInteger.LowPart = Time.dwLowDateTime;
@@ -65,28 +61,10 @@ static TimeValue getTimeValueFromFILETIME(FILETIME Time) {
(TimeInteger.QuadPart % 10000000) * 100));
}
-TimeValue self_process::get_user_time() const {
- FILETIME ProcCreate, ProcExit, KernelTime, UserTime;
- if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime,
- &UserTime) == 0)
- return TimeValue();
-
- return getTimeValueFromFILETIME(UserTime);
-}
-
-TimeValue self_process::get_system_time() const {
- FILETIME ProcCreate, ProcExit, KernelTime, UserTime;
- if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime,
- &UserTime) == 0)
- return TimeValue();
-
- return getTimeValueFromFILETIME(KernelTime);
-}
-
// This function retrieves the page size using GetNativeSystemInfo() and is
// present solely so it can be called once to initialize the self_process member
// below.
-static unsigned getPageSize() {
+static unsigned computePageSize() {
// GetNativeSystemInfo() provides the physical page size which may differ
// from GetSystemInfo() in 32-bit applications running under WOW64.
SYSTEM_INFO info;
@@ -96,12 +74,11 @@ static unsigned getPageSize() {
return static_cast<unsigned>(info.dwPageSize);
}
-// This constructor guaranteed to be run exactly once on a single thread, and
-// sets up various process invariants that can be queried cheaply from then on.
-self_process::self_process() : PageSize(getPageSize()) {
+unsigned Process::getPageSize() {
+ static unsigned Ret = computePageSize();
+ return Ret;
}
-
size_t
Process::GetMallocUsage()
{
@@ -273,6 +250,16 @@ Process::GetArgumentVector(SmallVectorImpl<const char *> &Args,
return ec;
}
+std::error_code Process::FixupStandardFileDescriptors() {
+ return std::error_code();
+}
+
+std::error_code Process::SafelyCloseFileDescriptor(int FD) {
+ if (::close(FD) < 0)
+ return std::error_code(errno, std::generic_category());
+ return std::error_code();
+}
+
bool Process::StandardInIsUserInput() {
return FileDescriptorIsDisplayed(0);
}
diff --git a/contrib/llvm/lib/Support/Windows/Program.inc b/contrib/llvm/lib/Support/Windows/Program.inc
index b2f71ae..c370077 100644
--- a/contrib/llvm/lib/Support/Windows/Program.inc
+++ b/contrib/llvm/lib/Support/Windows/Program.inc
@@ -12,7 +12,11 @@
//===----------------------------------------------------------------------===//
#include "WindowsSupport.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/WindowsError.h"
+#include "llvm/Support/raw_ostream.h"
#include <cstdio>
#include <fcntl.h>
#include <io.h>
@@ -28,43 +32,68 @@ using namespace sys;
ProcessInfo::ProcessInfo() : ProcessHandle(0), Pid(0), ReturnCode(0) {}
-// This function just uses the PATH environment variable to find the program.
-std::string sys::FindProgramByName(const std::string &progName) {
- // Check some degenerate cases
- if (progName.length() == 0) // no program
- return "";
- std::string temp = progName;
- // Return paths with slashes verbatim.
- if (progName.find('\\') != std::string::npos ||
- progName.find('/') != std::string::npos)
- return temp;
-
- // At this point, the file name is valid and does not contain slashes.
- // Let Windows search for it.
- SmallVector<wchar_t, MAX_PATH> progNameUnicode;
- if (windows::UTF8ToUTF16(progName, progNameUnicode))
- return "";
-
- SmallVector<wchar_t, MAX_PATH> buffer;
- DWORD len = MAX_PATH;
- do {
- buffer.reserve(len);
- len = ::SearchPathW(NULL, progNameUnicode.data(), L".exe",
- buffer.capacity(), buffer.data(), NULL);
-
- // See if it wasn't found.
- if (len == 0)
- return "";
-
- // Buffer was too small; grow and retry.
- } while (len > buffer.capacity());
-
- buffer.set_size(len);
- SmallVector<char, MAX_PATH> result;
- if (windows::UTF16ToUTF8(buffer.begin(), buffer.size(), result))
- return "";
-
- return std::string(result.data(), result.size());
+ErrorOr<std::string> sys::findProgramByName(StringRef Name,
+ ArrayRef<StringRef> Paths) {
+ assert(!Name.empty() && "Must have a name!");
+
+ if (Name.find_first_of("/\\") != StringRef::npos)
+ return std::string(Name);
+
+ const wchar_t *Path = nullptr;
+ std::wstring PathStorage;
+ if (!Paths.empty()) {
+ PathStorage.reserve(Paths.size() * MAX_PATH);
+ for (unsigned i = 0; i < Paths.size(); ++i) {
+ if (i)
+ PathStorage.push_back(L';');
+ StringRef P = Paths[i];
+ SmallVector<wchar_t, MAX_PATH> TmpPath;
+ if (std::error_code EC = windows::UTF8ToUTF16(P, TmpPath))
+ return EC;
+ PathStorage.append(TmpPath.begin(), TmpPath.end());
+ }
+ Path = PathStorage.c_str();
+ }
+
+ SmallVector<wchar_t, MAX_PATH> U16Name;
+ if (std::error_code EC = windows::UTF8ToUTF16(Name, U16Name))
+ return EC;
+
+ SmallVector<StringRef, 12> PathExts;
+ PathExts.push_back("");
+ PathExts.push_back(".exe"); // FIXME: This must be in %PATHEXT%.
+ if (const char *PathExtEnv = std::getenv("PATHEXT"))
+ SplitString(PathExtEnv, PathExts, ";");
+
+ SmallVector<wchar_t, MAX_PATH> U16Result;
+ DWORD Len = MAX_PATH;
+ for (StringRef Ext : PathExts) {
+ SmallVector<wchar_t, MAX_PATH> U16Ext;
+ if (std::error_code EC = windows::UTF8ToUTF16(Ext, U16Ext))
+ return EC;
+
+ do {
+ U16Result.reserve(Len);
+ Len = ::SearchPathW(Path, c_str(U16Name),
+ U16Ext.empty() ? nullptr : c_str(U16Ext),
+ U16Result.capacity(), U16Result.data(), nullptr);
+ } while (Len > U16Result.capacity());
+
+ if (Len != 0)
+ break; // Found it.
+ }
+
+ if (Len == 0)
+ return mapWindowsError(::GetLastError());
+
+ U16Result.set_size(Len);
+
+ SmallVector<char, MAX_PATH> U8Result;
+ if (std::error_code EC =
+ windows::UTF16ToUTF8(U16Result.data(), U16Result.size(), U8Result))
+ return EC;
+
+ return std::string(U8Result.begin(), U8Result.end());
}
static HANDLE RedirectIO(const StringRef *path, int fd, std::string* ErrMsg) {
@@ -89,14 +118,19 @@ static HANDLE RedirectIO(const StringRef *path, int fd, std::string* ErrMsg) {
sa.bInheritHandle = TRUE;
SmallVector<wchar_t, 128> fnameUnicode;
- if (windows::UTF8ToUTF16(fname, fnameUnicode))
- return INVALID_HANDLE_VALUE;
-
+ if (path->empty()) {
+ // Don't play long-path tricks on "NUL".
+ if (windows::UTF8ToUTF16(fname, fnameUnicode))
+ return INVALID_HANDLE_VALUE;
+ } else {
+ if (path::widenPath(fname, fnameUnicode))
+ return INVALID_HANDLE_VALUE;
+ }
h = CreateFileW(fnameUnicode.data(), fd ? GENERIC_WRITE : GENERIC_READ,
FILE_SHARE_READ, &sa, fd == 0 ? OPEN_EXISTING : CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
if (h == INVALID_HANDLE_VALUE) {
- MakeErrMsg(ErrMsg, std::string(fname) + ": Can't open file for " +
+ MakeErrMsg(ErrMsg, fname + ": Can't open file for " +
(fd ? "input: " : "output: "));
}
@@ -166,19 +200,7 @@ static unsigned int ArgLenWithQuotes(const char *Str) {
}
-static bool Execute(ProcessInfo &PI, StringRef Program, const char **args,
- const char **envp, const StringRef **redirects,
- unsigned memoryLimit, std::string *ErrMsg) {
- if (!sys::fs::can_execute(Program)) {
- if (ErrMsg)
- *ErrMsg = "program not executable";
- return false;
- }
-
- // Windows wants a command line, not an array of args, to pass to the new
- // process. We have to concatenate them all, while quoting the args that
- // have embedded spaces (or are empty).
-
+static std::unique_ptr<char[]> flattenArgs(const char **args) {
// First, determine the length of the command line.
unsigned len = 0;
for (unsigned i = 0; args[i]; i++) {
@@ -216,6 +238,22 @@ static bool Execute(ProcessInfo &PI, StringRef Program, const char **args,
}
*p = 0;
+ return command;
+}
+
+static bool Execute(ProcessInfo &PI, StringRef Program, const char **args,
+ const char **envp, const StringRef **redirects,
+ unsigned memoryLimit, std::string *ErrMsg) {
+ if (!sys::fs::can_execute(Program)) {
+ if (ErrMsg)
+ *ErrMsg = "program not executable";
+ return false;
+ }
+
+ // Windows wants a command line, not an array of args, to pass to the new
+ // process. We have to concatenate them all, while quoting the args that
+ // have embedded spaces (or are empty).
+ std::unique_ptr<char[]> command = flattenArgs(args);
// The pointer to the environment block for the new process.
std::vector<wchar_t> EnvBlock;
@@ -290,7 +328,7 @@ static bool Execute(ProcessInfo &PI, StringRef Program, const char **args,
fflush(stderr);
SmallVector<wchar_t, MAX_PATH> ProgramUtf16;
- if (std::error_code ec = windows::UTF8ToUTF16(Program, ProgramUtf16)) {
+ if (std::error_code ec = path::widenPath(Program, ProgramUtf16)) {
SetLastError(ec.value());
MakeErrMsg(ErrMsg,
std::string("Unable to convert application name to UTF-16"));
@@ -422,20 +460,64 @@ ProcessInfo sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait,
return WaitResult;
}
- std::error_code sys::ChangeStdinToBinary(){
- int result = _setmode( _fileno(stdin), _O_BINARY );
+std::error_code sys::ChangeStdinToBinary() {
+ int result = _setmode(_fileno(stdin), _O_BINARY);
if (result == -1)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
- std::error_code sys::ChangeStdoutToBinary(){
- int result = _setmode( _fileno(stdout), _O_BINARY );
+std::error_code sys::ChangeStdoutToBinary() {
+ int result = _setmode(_fileno(stdout), _O_BINARY);
if (result == -1)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
+std::error_code
+llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents,
+ WindowsEncodingMethod Encoding) {
+ std::error_code EC;
+ llvm::raw_fd_ostream OS(FileName, EC, llvm::sys::fs::OpenFlags::F_Text);
+ if (EC)
+ return EC;
+
+ if (Encoding == WEM_UTF8) {
+ OS << Contents;
+ } else if (Encoding == WEM_CurrentCodePage) {
+ SmallVector<wchar_t, 1> ArgsUTF16;
+ SmallVector<char, 1> ArgsCurCP;
+
+ if ((EC = windows::UTF8ToUTF16(Contents, ArgsUTF16)))
+ return EC;
+
+ if ((EC = windows::UTF16ToCurCP(
+ ArgsUTF16.data(), ArgsUTF16.size(), ArgsCurCP)))
+ return EC;
+
+ OS.write(ArgsCurCP.data(), ArgsCurCP.size());
+ } else if (Encoding == WEM_UTF16) {
+ SmallVector<wchar_t, 1> ArgsUTF16;
+
+ if ((EC = windows::UTF8ToUTF16(Contents, ArgsUTF16)))
+ return EC;
+
+ // Endianness guessing
+ char BOM[2];
+ uint16_t src = UNI_UTF16_BYTE_ORDER_MARK_NATIVE;
+ memcpy(BOM, &src, 2);
+ OS.write(BOM, 2);
+ OS.write((char *)ArgsUTF16.data(), ArgsUTF16.size() << 1);
+ } else {
+ llvm_unreachable("Unknown encoding");
+ }
+
+ if (OS.has_error())
+ return std::make_error_code(std::errc::io_error);
+
+ return EC;
+}
+
bool llvm::sys::argumentsFitWithinSystemLimits(ArrayRef<const char*> Args) {
// The documented max length of the command line passed to CreateProcess.
static const size_t MaxCommandStringLength = 32768;
diff --git a/contrib/llvm/lib/Support/Windows/RWMutex.inc b/contrib/llvm/lib/Support/Windows/RWMutex.inc
index 00d0e93..2d1d25f 100644
--- a/contrib/llvm/lib/Support/Windows/RWMutex.inc
+++ b/contrib/llvm/lib/Support/Windows/RWMutex.inc
@@ -84,12 +84,10 @@ RWMutexImpl::RWMutexImpl() {
}
RWMutexImpl::~RWMutexImpl() {
- if (sHasSRW) {
- // Nothing to do in the case of slim reader/writers
- } else {
+ if (!sHasSRW)
DeleteCriticalSection(static_cast<LPCRITICAL_SECTION>(data_));
- free(data_);
- }
+ // Nothing to do in the case of slim reader/writers except free the memory.
+ free(data_);
}
bool RWMutexImpl::reader_acquire() {
diff --git a/contrib/llvm/lib/Support/Windows/ThreadLocal.inc b/contrib/llvm/lib/Support/Windows/ThreadLocal.inc
index 14ce619..b9cb8ff 100644
--- a/contrib/llvm/lib/Support/Windows/ThreadLocal.inc
+++ b/contrib/llvm/lib/Support/Windows/ThreadLocal.inc
@@ -34,7 +34,7 @@ ThreadLocalImpl::~ThreadLocalImpl() {
TlsFree(*tls);
}
-const void* ThreadLocalImpl::getInstance() {
+void *ThreadLocalImpl::getInstance() {
DWORD* tls = reinterpret_cast<DWORD*>(&data);
return TlsGetValue(*tls);
}
diff --git a/contrib/llvm/lib/Support/Windows/WindowsSupport.h b/contrib/llvm/lib/Support/Windows/WindowsSupport.h
index f68835b..1d1cedc 100644
--- a/contrib/llvm/lib/Support/Windows/WindowsSupport.h
+++ b/contrib/llvm/lib/Support/Windows/WindowsSupport.h
@@ -30,6 +30,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
#include "llvm/Config/config.h" // Get build system configuration settings
#include "llvm/Support/Compiler.h"
#include <system_error>
@@ -162,10 +163,18 @@ c_str(SmallVectorImpl<T> &str) {
}
namespace sys {
+namespace path {
+std::error_code widenPath(const Twine &Path8,
+ SmallVectorImpl<wchar_t> &Path16);
+} // end namespace path
+
namespace windows {
std::error_code UTF8ToUTF16(StringRef utf8, SmallVectorImpl<wchar_t> &utf16);
std::error_code UTF16ToUTF8(const wchar_t *utf16, size_t utf16_len,
SmallVectorImpl<char> &utf8);
+/// Convert from UTF16 to the current code page used in the system
+std::error_code UTF16ToCurCP(const wchar_t *utf16, size_t utf16_len,
+ SmallVectorImpl<char> &utf8);
} // end namespace windows
} // end namespace sys
} // end namespace llvm.
diff --git a/contrib/llvm/lib/Support/Windows/explicit_symbols.inc b/contrib/llvm/lib/Support/Windows/explicit_symbols.inc
index 379645d..cd56b13 100644
--- a/contrib/llvm/lib/Support/Windows/explicit_symbols.inc
+++ b/contrib/llvm/lib/Support/Windows/explicit_symbols.inc
@@ -63,4 +63,34 @@
/* msvcrt */
#if defined(_MSC_VER)
EXPLICIT_SYMBOL2(alloca, _alloca_probe)
+
+#ifdef _M_IX86
+#define INLINE_DEF_FLOAT_SYMBOL(SYM, ARGC) INLINE_DEF_SYMBOL##ARGC(float, SYM)
+ INLINE_DEF_FLOAT_SYMBOL(acosf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(asinf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(atanf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(atan2f, 2)
+ INLINE_DEF_FLOAT_SYMBOL(ceilf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(cosf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(coshf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(expf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(floorf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(fmodf, 2)
+ INLINE_DEF_FLOAT_SYMBOL(logf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(powf, 2)
+ INLINE_DEF_FLOAT_SYMBOL(sinf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(sinhf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(sqrtf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(tanf, 1)
+ INLINE_DEF_FLOAT_SYMBOL(tanhf, 1)
+
+ // These were added in VS 2013.
+#if (1800 <= _MSC_VER && _MSC_VER < 1900)
+ INLINE_DEF_FLOAT_SYMBOL(copysignf, 2)
+ INLINE_DEF_FLOAT_SYMBOL(fminf, 2)
+ INLINE_DEF_FLOAT_SYMBOL(fmaxf, 2)
+#endif
+#undef INLINE_DEF_FLOAT_SYMBOL
+#endif
+
#endif
diff --git a/contrib/llvm/lib/Support/YAMLParser.cpp b/contrib/llvm/lib/Support/YAMLParser.cpp
index 3be02ee..4688ff1 100644
--- a/contrib/llvm/lib/Support/YAMLParser.cpp
+++ b/contrib/llvm/lib/Support/YAMLParser.cpp
@@ -259,8 +259,8 @@ namespace yaml {
/// @brief Scans YAML tokens from a MemoryBuffer.
class Scanner {
public:
- Scanner(const StringRef Input, SourceMgr &SM);
- Scanner(MemoryBuffer *Buffer, SourceMgr &SM_);
+ Scanner(StringRef Input, SourceMgr &SM);
+ Scanner(MemoryBufferRef Buffer, SourceMgr &SM_);
/// @brief Parse the next token and return it without popping it.
Token &peekNext();
@@ -294,6 +294,8 @@ public:
}
private:
+ void init(MemoryBufferRef Buffer);
+
StringRef currentInput() {
return StringRef(Current, End - Current);
}
@@ -469,7 +471,7 @@ private:
SourceMgr &SM;
/// @brief The original input.
- MemoryBuffer *InputBuffer;
+ MemoryBufferRef InputBuffer;
/// @brief The current position of the scanner.
StringRef::iterator Current;
@@ -699,34 +701,28 @@ std::string yaml::escape(StringRef Input) {
return EscapedInput;
}
-Scanner::Scanner(StringRef Input, SourceMgr &sm)
- : SM(sm)
- , Indent(-1)
- , Column(0)
- , Line(0)
- , FlowLevel(0)
- , IsStartOfStream(true)
- , IsSimpleKeyAllowed(true)
- , Failed(false) {
- InputBuffer = MemoryBuffer::getMemBuffer(Input, "YAML");
- SM.AddNewSourceBuffer(InputBuffer, SMLoc());
- Current = InputBuffer->getBufferStart();
- End = InputBuffer->getBufferEnd();
-}
-
-Scanner::Scanner(MemoryBuffer *Buffer, SourceMgr &SM_)
- : SM(SM_)
- , InputBuffer(Buffer)
- , Current(InputBuffer->getBufferStart())
- , End(InputBuffer->getBufferEnd())
- , Indent(-1)
- , Column(0)
- , Line(0)
- , FlowLevel(0)
- , IsStartOfStream(true)
- , IsSimpleKeyAllowed(true)
- , Failed(false) {
- SM.AddNewSourceBuffer(InputBuffer, SMLoc());
+Scanner::Scanner(StringRef Input, SourceMgr &sm) : SM(sm) {
+ init(MemoryBufferRef(Input, "YAML"));
+}
+
+Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_) : SM(SM_) {
+ init(Buffer);
+}
+
+void Scanner::init(MemoryBufferRef Buffer) {
+ InputBuffer = Buffer;
+ Current = InputBuffer.getBufferStart();
+ End = InputBuffer.getBufferEnd();
+ Indent = -1;
+ Column = 0;
+ Line = 0;
+ FlowLevel = 0;
+ IsStartOfStream = true;
+ IsSimpleKeyAllowed = true;
+ Failed = false;
+ std::unique_ptr<MemoryBuffer> InputBufferOwner =
+ MemoryBuffer::getMemBuffer(Buffer);
+ SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
}
Token &Scanner::peekNext() {
@@ -1524,7 +1520,7 @@ bool Scanner::fetchMoreTokens() {
Stream::Stream(StringRef Input, SourceMgr &SM)
: scanner(new Scanner(Input, SM)), CurrentDoc() {}
-Stream::Stream(MemoryBuffer *InputBuffer, SourceMgr &SM)
+Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM)
: scanner(new Scanner(InputBuffer, SM)), CurrentDoc() {}
Stream::~Stream() {}
diff --git a/contrib/llvm/lib/Support/YAMLTraits.cpp b/contrib/llvm/lib/Support/YAMLTraits.cpp
index 5212624..c87790e 100644
--- a/contrib/llvm/lib/Support/YAMLTraits.cpp
+++ b/contrib/llvm/lib/Support/YAMLTraits.cpp
@@ -8,12 +8,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/Errc.h"
-#include "llvm/Support/YAMLTraits.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/YAMLParser.h"
+#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <cstring>
@@ -63,6 +63,8 @@ std::error_code Input::error() { return EC; }
void Input::HNode::anchor() {}
void Input::EmptyHNode::anchor() {}
void Input::ScalarHNode::anchor() {}
+void Input::MapHNode::anchor() {}
+void Input::SequenceHNode::anchor() {}
bool Input::outputting() {
return false;
@@ -82,7 +84,7 @@ bool Input::setCurrentDocument() {
++DocIterator;
return setCurrentDocument();
}
- TopNode.reset(this->createHNodes(N));
+ TopNode = this->createHNodes(N);
CurrentNode = TopNode.get();
return true;
}
@@ -133,7 +135,7 @@ bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
return false;
}
MN->ValidKeys.push_back(Key);
- HNode *Value = MN->Mapping[Key];
+ HNode *Value = MN->Mapping[Key].get();
if (!Value) {
if (Required)
setError(CurrentNode, Twine("missing required key '") + Key + "'");
@@ -159,7 +161,7 @@ void Input::endMapping() {
return;
for (const auto &NN : MN->Mapping) {
if (!MN->isValidKey(NN.first())) {
- setError(NN.second, Twine("unknown key '") + NN.first() + "'");
+ setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
break;
}
}
@@ -180,7 +182,7 @@ bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
SaveInfo = CurrentNode;
- CurrentNode = SQ->Entries[Index];
+ CurrentNode = SQ->Entries[Index].get();
return true;
}
return false;
@@ -202,7 +204,7 @@ bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
SaveInfo = CurrentNode;
- CurrentNode = SQ->Entries[index];
+ CurrentNode = SQ->Entries[index].get();
return true;
}
return false;
@@ -253,8 +255,8 @@ bool Input::bitSetMatch(const char *Str, bool) {
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
unsigned Index = 0;
- for (HNode *N : SQ->Entries) {
- if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N)) {
+ for (auto &N : SQ->Entries) {
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
if (SN->value().equals(Str)) {
BitValuesUsed[Index] = true;
return true;
@@ -277,7 +279,7 @@ void Input::endBitSetScalar() {
assert(BitValuesUsed.size() == SQ->Entries.size());
for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
if (!BitValuesUsed[i]) {
- setError(SQ->Entries[i], "unknown bit value");
+ setError(SQ->Entries[i].get(), "unknown bit value");
return;
}
}
@@ -302,7 +304,7 @@ void Input::setError(Node *node, const Twine &message) {
EC = make_error_code(errc::invalid_argument);
}
-Input::HNode *Input::createHNodes(Node *N) {
+std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
SmallString<128> StringStorage;
if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
StringRef KeyStr = SN->getValue(StringStorage);
@@ -313,20 +315,25 @@ Input::HNode *Input::createHNodes(Node *N) {
memcpy(Buf, &StringStorage[0], Len);
KeyStr = StringRef(Buf, Len);
}
- return new ScalarHNode(N, KeyStr);
+ return llvm::make_unique<ScalarHNode>(N, KeyStr);
} else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
- SequenceHNode *SQHNode = new SequenceHNode(N);
+ auto SQHNode = llvm::make_unique<SequenceHNode>(N);
for (Node &SN : *SQ) {
- HNode *Entry = this->createHNodes(&SN);
+ auto Entry = this->createHNodes(&SN);
if (EC)
break;
- SQHNode->Entries.push_back(Entry);
+ SQHNode->Entries.push_back(std::move(Entry));
}
- return SQHNode;
+ return std::move(SQHNode);
} else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
- MapHNode *mapHNode = new MapHNode(N);
+ auto mapHNode = llvm::make_unique<MapHNode>(N);
for (KeyValueNode &KVN : *Map) {
- ScalarNode *KeyScalar = dyn_cast<ScalarNode>(KVN.getKey());
+ Node *KeyNode = KVN.getKey();
+ ScalarNode *KeyScalar = dyn_cast<ScalarNode>(KeyNode);
+ if (!KeyScalar) {
+ setError(KeyNode, "Map key must be a scalar");
+ break;
+ }
StringStorage.clear();
StringRef KeyStr = KeyScalar->getValue(StringStorage);
if (!StringStorage.empty()) {
@@ -336,14 +343,14 @@ Input::HNode *Input::createHNodes(Node *N) {
memcpy(Buf, &StringStorage[0], Len);
KeyStr = StringRef(Buf, Len);
}
- HNode *ValueHNode = this->createHNodes(KVN.getValue());
+ auto ValueHNode = this->createHNodes(KVN.getValue());
if (EC)
break;
- mapHNode->Mapping[KeyStr] = ValueHNode;
+ mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
}
- return mapHNode;
+ return std::move(mapHNode);
} else if (isa<NullNode>(N)) {
- return new EmptyHNode(N);
+ return llvm::make_unique<EmptyHNode>(N);
} else {
setError(N, "unknown node kind");
return nullptr;
@@ -366,18 +373,6 @@ bool Input::canElideEmptySequence() {
return false;
}
-Input::MapHNode::~MapHNode() {
- for (auto &N : Mapping)
- delete N.second;
-}
-
-Input::SequenceHNode::~SequenceHNode() {
- for (HNode *N : Entries)
- delete N;
-}
-
-
-
//===----------------------------------------------------------------------===//
// Output
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Support/raw_ostream.cpp b/contrib/llvm/lib/Support/raw_ostream.cpp
index 0790be5..1bcc31b 100644
--- a/contrib/llvm/lib/Support/raw_ostream.cpp
+++ b/contrib/llvm/lib/Support/raw_ostream.cpp
@@ -20,6 +20,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
+#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include <cctype>
@@ -311,6 +312,7 @@ raw_ostream &raw_ostream::write(const char *Ptr, size_t Size) {
// than the buffer. Directly write the chunk that is a multiple of the
// preferred buffer size and put the remainder in the buffer.
if (LLVM_UNLIKELY(OutBufCur == OutBufStart)) {
+ assert(NumBytes != 0 && "undefined behavior");
size_t BytesToWrite = Size - (Size % NumBytes);
write_impl(Ptr, BytesToWrite);
size_t BytesRemaining = Size - BytesToWrite;
@@ -394,6 +396,62 @@ raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) {
}
}
+raw_ostream &raw_ostream::operator<<(const FormattedString &FS) {
+ unsigned Len = FS.Str.size();
+ int PadAmount = FS.Width - Len;
+ if (FS.RightJustify && (PadAmount > 0))
+ this->indent(PadAmount);
+ this->operator<<(FS.Str);
+ if (!FS.RightJustify && (PadAmount > 0))
+ this->indent(PadAmount);
+ return *this;
+}
+
+raw_ostream &raw_ostream::operator<<(const FormattedNumber &FN) {
+ if (FN.Hex) {
+ unsigned Nibbles = (64 - countLeadingZeros(FN.HexValue)+3)/4;
+ unsigned Width = (FN.Width > Nibbles+2) ? FN.Width : Nibbles+2;
+
+ char NumberBuffer[20] = "0x0000000000000000";
+ char *EndPtr = NumberBuffer+Width;
+ char *CurPtr = EndPtr;
+ const char A = FN.Upper ? 'A' : 'a';
+ unsigned long long N = FN.HexValue;
+ while (N) {
+ uintptr_t x = N % 16;
+ *--CurPtr = (x < 10 ? '0' + x : A + x - 10);
+ N /= 16;
+ }
+
+ return write(NumberBuffer, Width);
+ } else {
+ // Zero is a special case.
+ if (FN.DecValue == 0) {
+ this->indent(FN.Width-1);
+ return *this << '0';
+ }
+ char NumberBuffer[32];
+ char *EndPtr = NumberBuffer+sizeof(NumberBuffer);
+ char *CurPtr = EndPtr;
+ bool Neg = (FN.DecValue < 0);
+ uint64_t N = Neg ? -static_cast<uint64_t>(FN.DecValue) : FN.DecValue;
+ while (N) {
+ *--CurPtr = '0' + char(N % 10);
+ N /= 10;
+ }
+ int Len = EndPtr - CurPtr;
+ int Pad = FN.Width - Len;
+ if (Neg)
+ --Pad;
+ if (Pad > 0)
+ this->indent(Pad);
+ if (Neg)
+ *this << '-';
+ return write(CurPtr, Len);
+ }
+}
+
+
/// indent - Insert 'NumSpaces' spaces.
raw_ostream &raw_ostream::indent(unsigned NumSpaces) {
static const char Spaces[] = " "
@@ -426,20 +484,14 @@ void format_object_base::home() {
// raw_fd_ostream
//===----------------------------------------------------------------------===//
-/// raw_fd_ostream - Open the specified file for writing. If an error
-/// occurs, information about the error is put into ErrorInfo, and the
-/// stream should be immediately destroyed; the string will be empty
-/// if no error occurred.
-raw_fd_ostream::raw_fd_ostream(const char *Filename, std::string &ErrorInfo,
+raw_fd_ostream::raw_fd_ostream(StringRef Filename, std::error_code &EC,
sys::fs::OpenFlags Flags)
: Error(false), UseAtomicWrites(false), pos(0) {
- assert(Filename && "Filename is null");
- ErrorInfo.clear();
-
+ EC = std::error_code();
// Handle "-" as stdout. Note that when we do this, we consider ourself
// the owner of stdout. This means that we can do things like close the
// file descriptor when we're done and set the "binary" flag globally.
- if (Filename[0] == '-' && Filename[1] == 0) {
+ if (Filename == "-") {
FD = STDOUT_FILENO;
// If user requested binary then put stdout into binary mode if
// possible.
@@ -450,11 +502,9 @@ raw_fd_ostream::raw_fd_ostream(const char *Filename, std::string &ErrorInfo,
return;
}
- std::error_code EC = sys::fs::openFileForWrite(Filename, FD, Flags);
+ EC = sys::fs::openFileForWrite(Filename, FD, Flags);
if (EC) {
- ErrorInfo = "Error opening output file '" + std::string(Filename) + "': " +
- EC.message();
ShouldClose = false;
return;
}
@@ -487,12 +537,8 @@ raw_fd_ostream::raw_fd_ostream(int fd, bool shouldClose, bool unbuffered)
raw_fd_ostream::~raw_fd_ostream() {
if (FD >= 0) {
flush();
- if (ShouldClose)
- while (::close(FD) != 0)
- if (errno != EINTR) {
- error_detected();
- break;
- }
+ if (ShouldClose && sys::Process::SafelyCloseFileDescriptor(FD))
+ error_detected();
}
#ifdef __MINGW32__
@@ -566,11 +612,8 @@ void raw_fd_ostream::close() {
assert(ShouldClose);
ShouldClose = false;
flush();
- while (::close(FD) != 0)
- if (errno != EINTR) {
- error_detected();
- break;
- }
+ if (sys::Process::SafelyCloseFileDescriptor(FD))
+ error_detected();
FD = -1;
}
diff --git a/contrib/llvm/lib/TableGen/Main.cpp b/contrib/llvm/lib/TableGen/Main.cpp
index e317fbf..c440451 100644
--- a/contrib/llvm/lib/TableGen/Main.cpp
+++ b/contrib/llvm/lib/TableGen/Main.cpp
@@ -56,19 +56,16 @@ static int createDependencyFile(const TGParser &Parser, const char *argv0) {
errs() << argv0 << ": the option -d must be used together with -o\n";
return 1;
}
- std::string Error;
- tool_output_file DepOut(DependFilename.c_str(), Error, sys::fs::F_Text);
- if (!Error.empty()) {
- errs() << argv0 << ": error opening " << DependFilename
- << ":" << Error << "\n";
+ std::error_code EC;
+ tool_output_file DepOut(DependFilename, EC, sys::fs::F_Text);
+ if (EC) {
+ errs() << argv0 << ": error opening " << DependFilename << ":"
+ << EC.message() << "\n";
return 1;
}
DepOut.os() << OutputFilename << ":";
- const TGLexer::DependenciesMapTy &Dependencies = Parser.getDependencies();
- for (TGLexer::DependenciesMapTy::const_iterator I = Dependencies.begin(),
- E = Dependencies.end();
- I != E; ++I) {
- DepOut.os() << " " << I->first;
+ for (const auto &Dep : Parser.getDependencies()) {
+ DepOut.os() << ' ' << Dep.first;
}
DepOut.os() << "\n";
DepOut.keep();
@@ -88,10 +85,9 @@ int TableGenMain(char *argv0, TableGenMainFn *MainFn) {
<< "': " << EC.message() << "\n";
return 1;
}
- MemoryBuffer *F = FileOrErr.get().release();
// Tell SrcMgr about this buffer, which is what TGParser will pick up.
- SrcMgr.AddNewSourceBuffer(F, SMLoc());
+ SrcMgr.AddNewSourceBuffer(std::move(*FileOrErr), SMLoc());
// Record the location of the include directory so that the lexer can find
// it later.
@@ -102,11 +98,11 @@ int TableGenMain(char *argv0, TableGenMainFn *MainFn) {
if (Parser.ParseFile())
return 1;
- std::string Error;
- tool_output_file Out(OutputFilename.c_str(), Error, sys::fs::F_Text);
- if (!Error.empty()) {
- errs() << argv0 << ": error opening " << OutputFilename
- << ":" << Error << "\n";
+ std::error_code EC;
+ tool_output_file Out(OutputFilename, EC, sys::fs::F_Text);
+ if (EC) {
+ errs() << argv0 << ": error opening " << OutputFilename << ":"
+ << EC.message() << "\n";
return 1;
}
if (!DependFilename.empty()) {
diff --git a/contrib/llvm/lib/TableGen/Record.cpp b/contrib/llvm/lib/TableGen/Record.cpp
index 0f40904..3a2ae96 100644
--- a/contrib/llvm/lib/TableGen/Record.cpp
+++ b/contrib/llvm/lib/TableGen/Record.cpp
@@ -114,8 +114,21 @@ Init *BitRecTy::convertValue(IntInit *II) {
Init *BitRecTy::convertValue(TypedInit *VI) {
RecTy *Ty = VI->getType();
- if (isa<BitRecTy>(Ty) || isa<BitsRecTy>(Ty) || isa<IntRecTy>(Ty))
+ if (isa<BitRecTy>(Ty))
return VI; // Accept variable if it is already of bit type!
+ if (auto *BitsTy = dyn_cast<BitsRecTy>(Ty))
+ // Accept only bits<1> expression.
+ return BitsTy->getNumBits() == 1 ? VI : nullptr;
+ // Ternary !if can be converted to bit, but only if both sides are
+ // convertible to a bit.
+ if (TernOpInit *TOI = dyn_cast<TernOpInit>(VI)) {
+ if (TOI->getOpcode() != TernOpInit::TernaryOp::IF)
+ return nullptr;
+ if (!TOI->getMHS()->convertInitializerTo(BitRecTy::get()) ||
+ !TOI->getRHS()->convertInitializerTo(BitRecTy::get()))
+ return nullptr;
+ return TOI;
+ }
return nullptr;
}
@@ -799,7 +812,7 @@ Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
return VarInit::get(MCName, RV->getType());
}
}
-
+ assert(CurRec && "NULL pointer");
if (Record *D = (CurRec->getRecords()).getDef(Name))
return DefInit::get(D);
@@ -952,6 +965,7 @@ Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
break;
}
case ADD:
+ case AND:
case SHL:
case SRA:
case SRL: {
@@ -965,6 +979,7 @@ Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
default: llvm_unreachable("Bad opcode!");
case ADD: Result = LHSv + RHSv; break;
+ case AND: Result = LHSv & RHSv; break;
case SHL: Result = LHSv << RHSv; break;
case SRA: Result = LHSv >> RHSv; break;
case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
@@ -991,6 +1006,7 @@ std::string BinOpInit::getAsString() const {
switch (Opc) {
case CONCAT: Result = "!con"; break;
case ADD: Result = "!add"; break;
+ case AND: Result = "!and"; break;
case SHL: Result = "!shl"; break;
case SRA: Result = "!sra"; break;
case SRL: Result = "!srl"; break;
@@ -1692,13 +1708,6 @@ const std::string &Record::getName() const {
}
void Record::setName(Init *NewName) {
- if (TrackedRecords.getDef(Name->getAsUnquotedString()) == this) {
- TrackedRecords.removeDef(Name->getAsUnquotedString());
- TrackedRecords.addDef(this);
- } else if (TrackedRecords.getClass(Name->getAsUnquotedString()) == this) {
- TrackedRecords.removeClass(Name->getAsUnquotedString());
- TrackedRecords.addClass(this);
- } // Otherwise this isn't yet registered.
Name = NewName;
checkName();
// DO NOT resolve record values to the name at this point because
@@ -1998,16 +2007,14 @@ void RecordKeeper::dump() const { errs() << *this; }
raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
OS << "------------- Classes -----------------\n";
- const std::map<std::string, Record*> &Classes = RK.getClasses();
- for (std::map<std::string, Record*>::const_iterator I = Classes.begin(),
- E = Classes.end(); I != E; ++I)
- OS << "class " << *I->second;
+ const auto &Classes = RK.getClasses();
+ for (const auto &C : Classes)
+ OS << "class " << *C.second;
OS << "------------- Defs -----------------\n";
- const std::map<std::string, Record*> &Defs = RK.getDefs();
- for (std::map<std::string, Record*>::const_iterator I = Defs.begin(),
- E = Defs.end(); I != E; ++I)
- OS << "def " << *I->second;
+ const auto &Defs = RK.getDefs();
+ for (const auto &D : Defs)
+ OS << "def " << *D.second;
return OS;
}
@@ -2022,10 +2029,9 @@ RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const {
PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n");
std::vector<Record*> Defs;
- for (std::map<std::string, Record*>::const_iterator I = getDefs().begin(),
- E = getDefs().end(); I != E; ++I)
- if (I->second->isSubClassOf(Class))
- Defs.push_back(I->second);
+ for (const auto &D : getDefs())
+ if (D.second->isSubClassOf(Class))
+ Defs.push_back(D.second.get());
return Defs;
}
diff --git a/contrib/llvm/lib/TableGen/TGLexer.cpp b/contrib/llvm/lib/TableGen/TGLexer.cpp
index fc1d3ca..63b8584 100644
--- a/contrib/llvm/lib/TableGen/TGLexer.cpp
+++ b/contrib/llvm/lib/TableGen/TGLexer.cpp
@@ -411,7 +411,7 @@ tgtok::TokKind TGLexer::LexNumber() {
if (CurPtr == NumStart)
return ReturnError(CurPtr-2, "Invalid binary number");
CurIntVal = strtoll(NumStart, nullptr, 2);
- return tgtok::IntVal;
+ return tgtok::BinaryIntVal;
}
}
@@ -471,6 +471,7 @@ tgtok::TokKind TGLexer::LexExclaim() {
.Case("tail", tgtok::XTail)
.Case("con", tgtok::XConcat)
.Case("add", tgtok::XADD)
+ .Case("and", tgtok::XAND)
.Case("shl", tgtok::XSHL)
.Case("sra", tgtok::XSRA)
.Case("srl", tgtok::XSRL)
diff --git a/contrib/llvm/lib/TableGen/TGLexer.h b/contrib/llvm/lib/TableGen/TGLexer.h
index a2c95ca..1f750fc 100644
--- a/contrib/llvm/lib/TableGen/TGLexer.h
+++ b/contrib/llvm/lib/TableGen/TGLexer.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TGLEXER_H
-#define TGLEXER_H
+#ifndef LLVM_LIB_TABLEGEN_TGLEXER_H
+#define LLVM_LIB_TABLEGEN_TGLEXER_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/DataTypes.h"
@@ -47,11 +47,15 @@ namespace tgtok {
MultiClass, String,
// !keywords.
- XConcat, XADD, XSRA, XSRL, XSHL, XListConcat, XStrConcat, XCast, XSubst,
- XForEach, XHead, XTail, XEmpty, XIf, XEq,
+ XConcat, XADD, XAND, XSRA, XSRL, XSHL, XListConcat, XStrConcat, XCast,
+ XSubst, XForEach, XHead, XTail, XEmpty, XIf, XEq,
// Integer value.
IntVal,
+
+ // Binary constant. Note that these are sized according to the number of
+ // bits given.
+ BinaryIntVal,
// String valued tokens.
Id, StrVal, VarName, CodeFragment
@@ -105,6 +109,11 @@ public:
assert(CurCode == tgtok::IntVal && "This token isn't an integer");
return CurIntVal;
}
+ std::pair<int64_t, unsigned> getCurBinaryIntVal() const {
+ assert(CurCode == tgtok::BinaryIntVal &&
+ "This token isn't a binary integer");
+ return std::make_pair(CurIntVal, (CurPtr - TokStart)-2);
+ }
SMLoc getLoc() const;
diff --git a/contrib/llvm/lib/TableGen/TGParser.cpp b/contrib/llvm/lib/TableGen/TGParser.cpp
index 0550692..a438cb6 100644
--- a/contrib/llvm/lib/TableGen/TGParser.cpp
+++ b/contrib/llvm/lib/TableGen/TGParser.cpp
@@ -135,11 +135,18 @@ bool TGParser::SetValue(Record *CurRec, SMLoc Loc, Init *ValName,
V = BitsInit::get(NewBits);
}
- if (RV->setValue(V))
+ if (RV->setValue(V)) {
+ std::string InitType = "";
+ if (BitsInit *BI = dyn_cast<BitsInit>(V)) {
+ InitType = (Twine("' of type bit initializer with length ") +
+ Twine(BI->getNumBits())).str();
+ }
return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' of type '"
+ RV->getType()->getAsString() +
"' is incompatible with initializer '" + V->getAsString()
+ + InitType
+ "'");
+ }
return false;
}
@@ -217,7 +224,7 @@ bool TGParser::AddSubMultiClass(MultiClass *CurMC,
if (AddValue(CurRec, SubMultiClass.RefRange.Start, SMCVals[i]))
return true;
- int newDefStart = CurMC->DefPrototypes.size();
+ unsigned newDefStart = CurMC->DefPrototypes.size();
// Add all of the defs in the subclass into the current multiclass.
for (MultiClass::RecordVector::const_iterator i = SMC->DefPrototypes.begin(),
@@ -225,14 +232,14 @@ bool TGParser::AddSubMultiClass(MultiClass *CurMC,
i != iend;
++i) {
// Clone the def and add it to the current multiclass
- Record *NewDef = new Record(**i);
+ auto NewDef = make_unique<Record>(**i);
// Add all of the values in the superclass into the current def.
for (unsigned i = 0, e = MCVals.size(); i != e; ++i)
- if (AddValue(NewDef, SubMultiClass.RefRange.Start, MCVals[i]))
+ if (AddValue(NewDef.get(), SubMultiClass.RefRange.Start, MCVals[i]))
return true;
- CurMC->DefPrototypes.push_back(NewDef);
+ CurMC->DefPrototypes.push_back(std::move(NewDef));
}
const std::vector<Init *> &SMCTArgs = SMC->Rec.getTemplateArgs();
@@ -262,14 +269,9 @@ bool TGParser::AddSubMultiClass(MultiClass *CurMC,
// If a value is specified for this template arg, set it in the
// new defs now.
- for (MultiClass::RecordVector::iterator j =
- CurMC->DefPrototypes.begin() + newDefStart,
- jend = CurMC->DefPrototypes.end();
- j != jend;
- ++j) {
- Record *Def = *j;
-
- if (SetValue(Def, SubMultiClass.RefRange.Start, SMCTArgs[i],
+ for (const auto &Def :
+ makeArrayRef(CurMC->DefPrototypes).slice(newDefStart)) {
+ if (SetValue(Def.get(), SubMultiClass.RefRange.Start, SMCTArgs[i],
std::vector<unsigned>(),
SubMultiClass.TemplateArgs[i]))
return true;
@@ -333,24 +335,20 @@ bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc, IterSet &IterVals){
// This is the bottom of the recursion. We have all of the iterator values
// for this point in the iteration space. Instantiate a new record to
// reflect this combination of values.
- Record *IterRec = new Record(*CurRec);
+ auto IterRec = make_unique<Record>(*CurRec);
// Set the iterator values now.
for (unsigned i = 0, e = IterVals.size(); i != e; ++i) {
VarInit *IterVar = IterVals[i].IterVar;
TypedInit *IVal = dyn_cast<TypedInit>(IterVals[i].IterValue);
- if (!IVal) {
- Error(Loc, "foreach iterator value is untyped");
- return true;
- }
+ if (!IVal)
+ return Error(Loc, "foreach iterator value is untyped");
IterRec->addValue(RecordVal(IterVar->getName(), IVal->getType(), false));
- if (SetValue(IterRec, Loc, IterVar->getName(),
- std::vector<unsigned>(), IVal)) {
- Error(Loc, "when instantiating this def");
- return true;
- }
+ if (SetValue(IterRec.get(), Loc, IterVar->getName(),
+ std::vector<unsigned>(), IVal))
+ return Error(Loc, "when instantiating this def");
// Resolve it next.
IterRec->resolveReferencesTo(IterRec->getValue(IterVar->getName()));
@@ -361,16 +359,15 @@ bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc, IterSet &IterVals){
if (Records.getDef(IterRec->getNameInitAsString())) {
// If this record is anonymous, it's no problem, just generate a new name
- if (IterRec->isAnonymous())
- IterRec->setName(GetNewAnonymousName());
- else {
- Error(Loc, "def already exists: " + IterRec->getNameInitAsString());
- return true;
- }
+ if (!IterRec->isAnonymous())
+ return Error(Loc, "def already exists: " +IterRec->getNameInitAsString());
+
+ IterRec->setName(GetNewAnonymousName());
}
- Records.addDef(IterRec);
- IterRec->resolveReferences();
+ Record *IterRecSave = IterRec.get(); // Keep a copy before release.
+ Records.addDef(std::move(IterRec));
+ IterRecSave->resolveReferences();
return false;
}
@@ -457,7 +454,7 @@ MultiClass *TGParser::ParseMultiClassID() {
return nullptr;
}
- MultiClass *Result = MultiClasses[Lex.getCurStrVal()];
+ MultiClass *Result = MultiClasses[Lex.getCurStrVal()].get();
if (!Result)
TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'");
@@ -904,6 +901,7 @@ Init *TGParser::ParseOperation(Record *CurRec, RecTy *ItemType) {
case tgtok::XConcat:
case tgtok::XADD:
+ case tgtok::XAND:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
@@ -921,6 +919,7 @@ Init *TGParser::ParseOperation(Record *CurRec, RecTy *ItemType) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XConcat: Code = BinOpInit::CONCAT;Type = DagRecTy::get(); break;
case tgtok::XADD: Code = BinOpInit::ADD; Type = IntRecTy::get(); break;
+ case tgtok::XAND: Code = BinOpInit::AND; Type = IntRecTy::get(); break;
case tgtok::XSRA: Code = BinOpInit::SRA; Type = IntRecTy::get(); break;
case tgtok::XSRL: Code = BinOpInit::SRL; Type = IntRecTy::get(); break;
case tgtok::XSHL: Code = BinOpInit::SHL; Type = IntRecTy::get(); break;
@@ -1173,6 +1172,15 @@ Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
Lex.Lex(); // Skip '#'.
return ParseSimpleValue(CurRec, ItemType, Mode);
case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break;
+ case tgtok::BinaryIntVal: {
+ auto BinaryVal = Lex.getCurBinaryIntVal();
+ SmallVector<Init*, 16> Bits(BinaryVal.second);
+ for (unsigned i = 0, e = BinaryVal.second; i != e; ++i)
+ Bits[i] = BitInit::get(BinaryVal.first & (1LL << i));
+ R = BitsInit::get(Bits);
+ Lex.Lex();
+ break;
+ }
case tgtok::StrVal: {
std::string Val = Lex.getCurStrVal();
Lex.Lex();
@@ -1226,8 +1234,9 @@ Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
SMLoc EndLoc = Lex.getLoc();
// Create the new record, set it as CurRec temporarily.
- Record *NewRec = new Record(GetNewAnonymousName(), NameLoc, Records,
- /*IsAnonymous=*/true);
+ auto NewRecOwner = llvm::make_unique<Record>(GetNewAnonymousName(), NameLoc,
+ Records, /*IsAnonymous=*/true);
+ Record *NewRec = NewRecOwner.get(); // Keep a copy since we may release.
SubClassReference SCRef;
SCRef.RefRange = SMRange(NameLoc, EndLoc);
SCRef.Rec = Class;
@@ -1235,12 +1244,16 @@ Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
// Add info about the subclass to NewRec.
if (AddSubClass(NewRec, SCRef))
return nullptr;
+
if (!CurMultiClass) {
NewRec->resolveReferences();
- Records.addDef(NewRec);
+ Records.addDef(std::move(NewRecOwner));
} else {
+ // This needs to get resolved once the multiclass template arguments are
+ // known before any use.
+ NewRec->setResolveFirst(true);
// Otherwise, we're inside a multiclass, add it to the multiclass.
- CurMultiClass->DefPrototypes.push_back(NewRec);
+ CurMultiClass->DefPrototypes.push_back(std::move(NewRecOwner));
// Copy the template arguments for the multiclass into the def.
const std::vector<Init *> &TArgs =
@@ -1284,17 +1297,40 @@ Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
}
Lex.Lex(); // eat the '}'
- SmallVector<Init *, 16> NewBits(Vals.size());
+ SmallVector<Init *, 16> NewBits;
+ // As we parse { a, b, ... }, 'a' is the highest bit, but we parse it
+ // first. We'll first read everything in to a vector, then we can reverse
+ // it to get the bits in the correct order for the BitsInit value.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ // FIXME: The following two loops would not be duplicated
+ // if the API was a little more orthogonal.
+
+ // bits<n> values are allowed to initialize n bits.
+ if (BitsInit *BI = dyn_cast<BitsInit>(Vals[i])) {
+ for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i)
+ NewBits.push_back(BI->getBit((e - i) - 1));
+ continue;
+ }
+ // bits<n> can also come from variable initializers.
+ if (VarInit *VI = dyn_cast<VarInit>(Vals[i])) {
+ if (BitsRecTy *BitsRec = dyn_cast<BitsRecTy>(VI->getType())) {
+ for (unsigned i = 0, e = BitsRec->getNumBits(); i != e; ++i)
+ NewBits.push_back(VI->getBit((e - i) - 1));
+ continue;
+ }
+ // Fallthrough to try convert this to a bit.
+ }
+ // All other values must be convertible to just a single bit.
Init *Bit = Vals[i]->convertInitializerTo(BitRecTy::get());
if (!Bit) {
Error(BraceLoc, "Element #" + utostr(i) + " (" + Vals[i]->getAsString()+
") is not convertable to a bit");
return nullptr;
}
- NewBits[Vals.size()-i-1] = Bit;
+ NewBits.push_back(Bit);
}
+ std::reverse(NewBits.begin(), NewBits.end());
return BitsInit::get(NewBits);
}
case tgtok::l_square: { // Value ::= '[' ValueList ']'
@@ -1439,6 +1475,7 @@ Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
case tgtok::XCast: // Value ::= !unop '(' Value ')'
case tgtok::XConcat:
case tgtok::XADD:
+ case tgtok::XAND:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
@@ -1727,7 +1764,10 @@ Init *TGParser::ParseDeclaration(Record *CurRec,
Init *Val = ParseValue(CurRec, Type);
if (!Val ||
SetValue(CurRec, ValLoc, DeclName, std::vector<unsigned>(), Val))
- return nullptr;
+ // Return the name, even if an error is thrown. This is so that we can
+ // continue to make some progress, even without the value having been
+ // initialized.
+ return DeclName;
}
return DeclName;
@@ -1983,24 +2023,23 @@ bool TGParser::ParseDef(MultiClass *CurMultiClass) {
Lex.Lex(); // Eat the 'def' token.
// Parse ObjectName and make a record for it.
- Record *CurRec;
+ std::unique_ptr<Record> CurRecOwner;
Init *Name = ParseObjectName(CurMultiClass);
if (Name)
- CurRec = new Record(Name, DefLoc, Records);
+ CurRecOwner = make_unique<Record>(Name, DefLoc, Records);
else
- CurRec = new Record(GetNewAnonymousName(), DefLoc, Records,
- /*IsAnonymous=*/true);
+ CurRecOwner = llvm::make_unique<Record>(GetNewAnonymousName(), DefLoc,
+ Records, /*IsAnonymous=*/true);
+ Record *CurRec = CurRecOwner.get(); // Keep a copy since we may release.
if (!CurMultiClass && Loops.empty()) {
// Top-level def definition.
// Ensure redefinition doesn't happen.
- if (Records.getDef(CurRec->getNameInitAsString())) {
- Error(DefLoc, "def '" + CurRec->getNameInitAsString()
- + "' already defined");
- return true;
- }
- Records.addDef(CurRec);
+ if (Records.getDef(CurRec->getNameInitAsString()))
+ return Error(DefLoc, "def '" + CurRec->getNameInitAsString()+
+ "' already defined");
+ Records.addDef(std::move(CurRecOwner));
if (ParseObjectBody(CurRec))
return true;
@@ -2016,14 +2055,13 @@ bool TGParser::ParseDef(MultiClass *CurMultiClass) {
// Otherwise, a def inside a multiclass, add it to the multiclass.
for (unsigned i = 0, e = CurMultiClass->DefPrototypes.size(); i != e; ++i)
if (CurMultiClass->DefPrototypes[i]->getNameInit()
- == CurRec->getNameInit()) {
- Error(DefLoc, "def '" + CurRec->getNameInitAsString() +
- "' already defined in this multiclass!");
- return true;
- }
- CurMultiClass->DefPrototypes.push_back(CurRec);
- } else if (ParseObjectBody(CurRec))
+ == CurRec->getNameInit())
+ return Error(DefLoc, "def '" + CurRec->getNameInitAsString() +
+ "' already defined in this multiclass!");
+ CurMultiClass->DefPrototypes.push_back(std::move(CurRecOwner));
+ } else if (ParseObjectBody(CurRec)) {
return true;
+ }
if (!CurMultiClass) // Def's in multiclasses aren't really defs.
// See Record::setName(). This resolve step will see any new name
@@ -2047,9 +2085,8 @@ bool TGParser::ParseDef(MultiClass *CurMultiClass) {
}
if (ProcessForeachDefs(CurRec, DefLoc)) {
- Error(DefLoc,
- "Could not process loops for def" + CurRec->getNameInitAsString());
- return true;
+ return Error(DefLoc, "Could not process loops for def" +
+ CurRec->getNameInitAsString());
}
return false;
@@ -2127,8 +2164,10 @@ bool TGParser::ParseClass() {
+ "' already defined");
} else {
// If this is the first reference to this class, create and add it.
- CurRec = new Record(Lex.getCurStrVal(), Lex.getLoc(), Records);
- Records.addClass(CurRec);
+ auto NewRec =
+ llvm::make_unique<Record>(Lex.getCurStrVal(), Lex.getLoc(), Records);
+ CurRec = NewRec.get();
+ Records.addClass(std::move(NewRec));
}
Lex.Lex(); // eat the name.
@@ -2196,7 +2235,7 @@ bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) {
// Add this entry to the let stack.
std::vector<LetRecord> LetInfo = ParseLetList();
if (LetInfo.empty()) return true;
- LetStack.push_back(LetInfo);
+ LetStack.push_back(std::move(LetInfo));
if (Lex.getCode() != tgtok::In)
return TokError("expected 'in' at end of top-level 'let'");
@@ -2246,11 +2285,14 @@ bool TGParser::ParseMultiClass() {
return TokError("expected identifier after multiclass for name");
std::string Name = Lex.getCurStrVal();
- if (MultiClasses.count(Name))
+ auto Result =
+ MultiClasses.insert(std::make_pair(Name,
+ llvm::make_unique<MultiClass>(Name, Lex.getLoc(),Records)));
+
+ if (!Result.second)
return TokError("multiclass '" + Name + "' already defined");
- CurMultiClass = MultiClasses[Name] = new MultiClass(Name,
- Lex.getLoc(), Records);
+ CurMultiClass = Result.first->second.get();
Lex.Lex(); // Eat the identifier.
// If there are template args, parse them.
@@ -2286,25 +2328,24 @@ bool TGParser::ParseMultiClass() {
if (Lex.getCode() != tgtok::l_brace) {
if (!inherits)
return TokError("expected '{' in multiclass definition");
- else if (Lex.getCode() != tgtok::semi)
+ if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' in multiclass definition");
- else
- Lex.Lex(); // eat the ';'.
+ Lex.Lex(); // eat the ';'.
} else {
if (Lex.Lex() == tgtok::r_brace) // eat the '{'.
return TokError("multiclass must contain at least one def");
while (Lex.getCode() != tgtok::r_brace) {
switch (Lex.getCode()) {
- default:
- return TokError("expected 'let', 'def' or 'defm' in multiclass body");
- case tgtok::Let:
- case tgtok::Def:
- case tgtok::Defm:
- case tgtok::Foreach:
- if (ParseObject(CurMultiClass))
- return true;
- break;
+ default:
+ return TokError("expected 'let', 'def' or 'defm' in multiclass body");
+ case tgtok::Let:
+ case tgtok::Def:
+ case tgtok::Defm:
+ case tgtok::Foreach:
+ if (ParseObject(CurMultiClass))
+ return true;
+ break;
}
}
Lex.Lex(); // eat the '}'.
@@ -2350,18 +2391,18 @@ InstantiateMulticlassDef(MultiClass &MC,
// Make a trail of SMLocs from the multiclass instantiations.
SmallVector<SMLoc, 4> Locs(1, DefmPrefixRange.Start);
Locs.append(DefProto->getLoc().begin(), DefProto->getLoc().end());
- Record *CurRec = new Record(DefName, Locs, Records, IsAnonymous);
+ auto CurRec = make_unique<Record>(DefName, Locs, Records, IsAnonymous);
SubClassReference Ref;
Ref.RefRange = DefmPrefixRange;
Ref.Rec = DefProto;
- AddSubClass(CurRec, Ref);
+ AddSubClass(CurRec.get(), Ref);
// Set the value for NAME. We don't resolve references to it 'til later,
// though, so that uses in nested multiclass names don't get
// confused.
- if (SetValue(CurRec, Ref.RefRange.Start, "NAME", std::vector<unsigned>(),
- DefmPrefix)) {
+ if (SetValue(CurRec.get(), Ref.RefRange.Start, "NAME",
+ std::vector<unsigned>(), DefmPrefix)) {
Error(DefmPrefixRange.Start, "Could not resolve "
+ CurRec->getNameInitAsString() + ":NAME to '"
+ DefmPrefix->getAsUnquotedString() + "'");
@@ -2399,10 +2440,14 @@ InstantiateMulticlassDef(MultiClass &MC,
return nullptr;
}
- Records.addDef(CurRec);
+ Record *CurRecSave = CurRec.get(); // Keep a copy before we release.
+ Records.addDef(std::move(CurRec));
+ return CurRecSave;
}
- return CurRec;
+ // FIXME This is bad but the ownership transfer to caller is pretty messy.
+ // The unique_ptr in this function at least protects the exits above.
+ return CurRec.release();
}
bool TGParser::ResolveMulticlassDefArgs(MultiClass &MC,
@@ -2458,7 +2503,7 @@ bool TGParser::ResolveMulticlassDef(MultiClass &MC,
== CurRec->getNameInit())
return Error(DefmPrefixLoc, "defm '" + CurRec->getNameInitAsString() +
"' already defined in this multiclass!");
- CurMultiClass->DefPrototypes.push_back(CurRec);
+ CurMultiClass->DefPrototypes.push_back(std::unique_ptr<Record>(CurRec));
// Copy the template arguments for the multiclass into the new def.
const std::vector<Init *> &TA =
@@ -2508,7 +2553,7 @@ bool TGParser::ParseDefm(MultiClass *CurMultiClass) {
// To instantiate a multiclass, we need to first get the multiclass, then
// instantiate each def contained in the multiclass with the SubClassRef
// template parameters.
- MultiClass *MC = MultiClasses[Ref.Rec->getName()];
+ MultiClass *MC = MultiClasses[Ref.Rec->getName()].get();
assert(MC && "Didn't lookup multiclass correctly?");
std::vector<Init*> &TemplateVals = Ref.TemplateArgs;
@@ -2520,7 +2565,7 @@ bool TGParser::ParseDefm(MultiClass *CurMultiClass) {
// Loop over all the def's in the multiclass, instantiating each one.
for (unsigned i = 0, e = MC->DefPrototypes.size(); i != e; ++i) {
- Record *DefProto = MC->DefPrototypes[i];
+ Record *DefProto = MC->DefPrototypes[i].get();
Record *CurRec = InstantiateMulticlassDef(*MC, DefProto, DefmPrefix,
SMRange(DefmLoc,
@@ -2535,6 +2580,12 @@ bool TGParser::ParseDefm(MultiClass *CurMultiClass) {
if (ResolveMulticlassDef(*MC, CurRec, DefProto, DefmLoc))
return Error(SubClassLoc, "could not instantiate def");
+ // Defs that can be used by other definitions should be fully resolved
+ // before any use.
+ if (DefProto->isResolveFirst() && !CurMultiClass) {
+ CurRec->resolveReferences();
+ CurRec->setResolveFirst(false);
+ }
NewRecDefs.push_back(CurRec);
}
diff --git a/contrib/llvm/lib/TableGen/TGParser.h b/contrib/llvm/lib/TableGen/TGParser.h
index 9f4b7e9..22a00e5 100644
--- a/contrib/llvm/lib/TableGen/TGParser.h
+++ b/contrib/llvm/lib/TableGen/TGParser.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TGPARSER_H
-#define TGPARSER_H
+#ifndef LLVM_LIB_TABLEGEN_TGPARSER_H
+#define LLVM_LIB_TABLEGEN_TGPARSER_H
#include "TGLexer.h"
#include "llvm/ADT/Twine.h"
@@ -55,7 +55,7 @@ namespace llvm {
class TGParser {
TGLexer Lex;
std::vector<std::vector<LetRecord> > LetStack;
- std::map<std::string, MultiClass*> MultiClasses;
+ std::map<std::string, std::unique_ptr<MultiClass>> MultiClasses;
/// Loops - Keep track of any foreach loops we are within.
///
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64.h b/contrib/llvm/lib/Target/AArch64/AArch64.h
index 1c022aa..e96d18b 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64.h
@@ -12,13 +12,13 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_AArch64_H
-#define TARGET_AArch64_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64_H
-#include "Utils/AArch64BaseInfo.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
-#include "llvm/Target/TargetMachine.h"
+#include "Utils/AArch64BaseInfo.h"
#include "llvm/Support/DataTypes.h"
+#include "llvm/Target/TargetMachine.h"
namespace llvm {
@@ -36,7 +36,10 @@ FunctionPass *createAArch64StorePairSuppressPass();
FunctionPass *createAArch64ExpandPseudoPass();
FunctionPass *createAArch64LoadStoreOptimizationPass();
ModulePass *createAArch64PromoteConstantPass();
+FunctionPass *createAArch64ConditionOptimizerPass();
FunctionPass *createAArch64AddressTypePromotionPass();
+FunctionPass *createAArch64A57FPLoadBalancing();
+FunctionPass *createAArch64A53Fix835769();
/// \brief Creates an ARM-specific Target Transformation Info pass.
ImmutablePass *
createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM);
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64A53Fix835769.cpp b/contrib/llvm/lib/Target/AArch64/AArch64A53Fix835769.cpp
new file mode 100644
index 0000000..852a635
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64A53Fix835769.cpp
@@ -0,0 +1,240 @@
+//===-- AArch64A53Fix835769.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This pass changes code to work around Cortex-A53 erratum 835769.
+// It works around it by inserting a nop instruction in code sequences that
+// in some circumstances may trigger the erratum.
+// It inserts a nop instruction between a sequence of the following 2 classes
+// of instructions:
+// instr 1: mem-instr (including loads, stores and prefetches).
+// instr 2: non-SIMD integer multiply-accumulate writing 64-bit X registers.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-fix-cortex-a53-835769"
+
+STATISTIC(NumNopsAdded, "Number of Nops added to work around erratum 835769");
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+
+// Is the instruction a match for the instruction that comes first in the
+// sequence of instructions that can trigger the erratum?
+static bool isFirstInstructionInSequence(MachineInstr *MI) {
+ // Must return true if this instruction is a load, a store or a prefetch.
+ switch (MI->getOpcode()) {
+ case AArch64::PRFMl:
+ case AArch64::PRFMroW:
+ case AArch64::PRFMroX:
+ case AArch64::PRFMui:
+ case AArch64::PRFUMi:
+ return true;
+ default:
+ return (MI->mayLoad() || MI->mayStore());
+ }
+}
+
+// Is the instruction a match for the instruction that comes second in the
+// sequence that can trigger the erratum?
+static bool isSecondInstructionInSequence(MachineInstr *MI) {
+ // Must return true for non-SIMD integer multiply-accumulates, writing
+ // to a 64-bit register.
+ switch (MI->getOpcode()) {
+ // Erratum cannot be triggered when the destination register is 32 bits,
+ // therefore only include the following.
+ case AArch64::MSUBXrrr:
+ case AArch64::MADDXrrr:
+ case AArch64::SMADDLrrr:
+ case AArch64::SMSUBLrrr:
+ case AArch64::UMADDLrrr:
+ case AArch64::UMSUBLrrr:
+ // Erratum can only be triggered by multiply-adds, not by regular
+ // non-accumulating multiplies, i.e. when Ra=XZR='11111'
+ return MI->getOperand(3).getReg() != AArch64::XZR;
+ default:
+ return false;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AArch64A53Fix835769 : public MachineFunctionPass {
+ const AArch64InstrInfo *TII;
+
+public:
+ static char ID;
+ explicit AArch64A53Fix835769() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ const char *getPassName() const override {
+ return "Workaround A53 erratum 835769 pass";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ bool runOnBasicBlock(MachineBasicBlock &MBB);
+};
+char AArch64A53Fix835769::ID = 0;
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+
+bool
+AArch64A53Fix835769::runOnMachineFunction(MachineFunction &F) {
+ const TargetMachine &TM = F.getTarget();
+
+ bool Changed = false;
+ DEBUG(dbgs() << "***** AArch64A53Fix835769 *****\n");
+
+ TII = TM.getSubtarget<AArch64Subtarget>().getInstrInfo();
+
+ for (auto &MBB : F) {
+ Changed |= runOnBasicBlock(MBB);
+ }
+
+ return Changed;
+}
+
+// Return the block that was fallen through to get to MBB, if any,
+// otherwise nullptr.
+static MachineBasicBlock *getBBFallenThrough(MachineBasicBlock *MBB,
+ const TargetInstrInfo *TII) {
+ // Get the previous machine basic block in the function.
+ MachineFunction::iterator MBBI = *MBB;
+
+ // Can't go off top of function.
+ if (MBBI == MBB->getParent()->begin())
+ return nullptr;
+
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 2> Cond;
+
+ MachineBasicBlock *PrevBB = std::prev(MBBI);
+ for (MachineBasicBlock *S : MBB->predecessors())
+ if (S == PrevBB && !TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond) &&
+ !TBB && !FBB)
+ return S;
+
+ return nullptr;
+}
+
+// Iterate through fallen through blocks trying to find a previous non-pseudo if
+// there is one, otherwise return nullptr. Only look for instructions in
+// previous blocks, not the current block, since we only use this to look at
+// previous blocks.
+static MachineInstr *getLastNonPseudo(MachineBasicBlock &MBB,
+ const TargetInstrInfo *TII) {
+ MachineBasicBlock *FMBB = &MBB;
+
+ // If there is no non-pseudo in the current block, loop back around and try
+ // the previous block (if there is one).
+ while ((FMBB = getBBFallenThrough(FMBB, TII))) {
+ for (auto I = FMBB->rbegin(), E = FMBB->rend(); I != E; ++I) {
+ if (!I->isPseudo())
+ return &*I;
+ }
+ }
+
+ // There was no previous non-pseudo in the fallen through blocks
+ return nullptr;
+}
+
+static void insertNopBeforeInstruction(MachineBasicBlock &MBB, MachineInstr* MI,
+ const TargetInstrInfo *TII) {
+ // If we are the first instruction of the block, put the NOP at the end of
+ // the previous fallthrough block
+ if (MI == &MBB.front()) {
+ MachineInstr *I = getLastNonPseudo(MBB, TII);
+ assert(I && "Expected instruction");
+ DebugLoc DL = I->getDebugLoc();
+ BuildMI(I->getParent(), DL, TII->get(AArch64::HINT)).addImm(0);
+ }
+ else {
+ DebugLoc DL = MI->getDebugLoc();
+ BuildMI(MBB, MI, DL, TII->get(AArch64::HINT)).addImm(0);
+ }
+
+ ++NumNopsAdded;
+}
+
+bool
+AArch64A53Fix835769::runOnBasicBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+ DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
+
+ // First, scan the basic block, looking for a sequence of 2 instructions
+ // that match the conditions under which the erratum may trigger.
+
+ // List of terminating instructions in matching sequences
+ std::vector<MachineInstr*> Sequences;
+ unsigned Idx = 0;
+ MachineInstr *PrevInstr = nullptr;
+
+ // Try and find the last non-pseudo instruction in any fallen through blocks,
+ // if there isn't one, then we use nullptr to represent that.
+ PrevInstr = getLastNonPseudo(MBB, TII);
+
+ for (auto &MI : MBB) {
+ MachineInstr *CurrInstr = &MI;
+ DEBUG(dbgs() << " Examining: " << MI);
+ if (PrevInstr) {
+ DEBUG(dbgs() << " PrevInstr: " << *PrevInstr
+ << " CurrInstr: " << *CurrInstr
+ << " isFirstInstructionInSequence(PrevInstr): "
+ << isFirstInstructionInSequence(PrevInstr) << "\n"
+ << " isSecondInstructionInSequence(CurrInstr): "
+ << isSecondInstructionInSequence(CurrInstr) << "\n");
+ if (isFirstInstructionInSequence(PrevInstr) &&
+ isSecondInstructionInSequence(CurrInstr)) {
+ DEBUG(dbgs() << " ** pattern found at Idx " << Idx << "!\n");
+ Sequences.push_back(CurrInstr);
+ }
+ }
+ if (!CurrInstr->isPseudo())
+ PrevInstr = CurrInstr;
+ ++Idx;
+ }
+
+ DEBUG(dbgs() << "Scan complete, "<< Sequences.size()
+ << " occurences of pattern found.\n");
+
+ // Then update the basic block, inserting nops between the detected sequences.
+ for (auto &MI : Sequences) {
+ Changed = true;
+ insertNopBeforeInstruction(MBB, MI, TII);
+ }
+
+ return Changed;
+}
+
+// Factory function used by AArch64TargetMachine to add the pass to
+// the passmanager.
+FunctionPass *llvm::createAArch64A53Fix835769() {
+ return new AArch64A53Fix835769();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp b/contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp
new file mode 100644
index 0000000..dd1a1ea
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp
@@ -0,0 +1,706 @@
+//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// For best-case performance on Cortex-A57, we should try to use a balanced
+// mix of odd and even D-registers when performing a critical sequence of
+// independent, non-quadword FP/ASIMD floating-point multiply or
+// multiply-accumulate operations.
+//
+// This pass attempts to detect situations where the register allocation may
+// adversely affect this load balancing and to change the registers used so as
+// to better utilize the CPU.
+//
+// Ideally we'd just take each multiply or multiply-accumulate in turn and
+// allocate it alternating even or odd registers. However, multiply-accumulates
+// are most efficiently performed in the same functional unit as their
+// accumulation operand. Therefore this pass tries to find maximal sequences
+// ("Chains") of multiply-accumulates linked via their accumulation operand,
+// and assign them all the same "color" (oddness/evenness).
+//
+// This optimization affects S-register and D-register floating point
+// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
+// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
+// not affected.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <list>
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
+
+// Enforce the algorithm to use the scavenged register even when the original
+// destination register is the correct color. Used for testing.
+static cl::opt<bool>
+TransformAll("aarch64-a57-fp-load-balancing-force-all",
+ cl::desc("Always modify dest registers regardless of color"),
+ cl::init(false), cl::Hidden);
+
+// Never use the balance information obtained from chains - return a specific
+// color always. Used for testing.
+static cl::opt<unsigned>
+OverrideBalance("aarch64-a57-fp-load-balancing-override",
+ cl::desc("Ignore balance information, always return "
+ "(1: Even, 2: Odd)."),
+ cl::init(0), cl::Hidden);
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+
+// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
+static bool isMul(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case AArch64::FMULSrr:
+ case AArch64::FNMULSrr:
+ case AArch64::FMULDrr:
+ case AArch64::FNMULDrr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
+static bool isMla(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case AArch64::FMSUBSrrr:
+ case AArch64::FMADDSrrr:
+ case AArch64::FNMSUBSrrr:
+ case AArch64::FNMADDSrrr:
+ case AArch64::FMSUBDrrr:
+ case AArch64::FMADDDrrr:
+ case AArch64::FNMSUBDrrr:
+ case AArch64::FNMADDDrrr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// A "color", which is either even or odd. Yes, these aren't really colors
+/// but the algorithm is conceptually doing two-color graph coloring.
+enum class Color { Even, Odd };
+#ifndef NDEBUG
+static const char *ColorNames[2] = { "Even", "Odd" };
+#endif
+
+class Chain;
+
+class AArch64A57FPLoadBalancing : public MachineFunctionPass {
+ const AArch64InstrInfo *TII;
+ MachineRegisterInfo *MRI;
+ const TargetRegisterInfo *TRI;
+ RegisterClassInfo RCI;
+
+public:
+ static char ID;
+ explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ const char *getPassName() const override {
+ return "A57 FP Anti-dependency breaker";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ bool runOnBasicBlock(MachineBasicBlock &MBB);
+ bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
+ int &Balance);
+ bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
+ int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
+ void scanInstruction(MachineInstr *MI, unsigned Idx,
+ std::map<unsigned, Chain*> &Active,
+ std::set<std::unique_ptr<Chain>> &AllChains);
+ void maybeKillChain(MachineOperand &MO, unsigned Idx,
+ std::map<unsigned, Chain*> &RegChains);
+ Color getColor(unsigned Register);
+ Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
+};
+char AArch64A57FPLoadBalancing::ID = 0;
+
+/// A Chain is a sequence of instructions that are linked together by
+/// an accumulation operand. For example:
+///
+/// fmul d0<def>, ?
+/// fmla d1<def>, ?, ?, d0<kill>
+/// fmla d2<def>, ?, ?, d1<kill>
+///
+/// There may be other instructions interleaved in the sequence that
+/// do not belong to the chain. These other instructions must not use
+/// the "chain" register at any point.
+///
+/// We currently only support chains where the "chain" operand is killed
+/// at each link in the chain for simplicity.
+/// A chain has three important instructions - Start, Last and Kill.
+/// * The start instruction is the first instruction in the chain.
+/// * Last is the final instruction in the chain.
+/// * Kill may or may not be defined. If defined, Kill is the instruction
+/// where the outgoing value of the Last instruction is killed.
+/// This information is important as if we know the outgoing value is
+/// killed with no intervening uses, we can safely change its register.
+///
+/// Without a kill instruction, we must assume the outgoing value escapes
+/// beyond our model and either must not change its register or must
+/// create a fixup FMOV to keep the old register value consistent.
+///
+class Chain {
+public:
+ /// The important (marker) instructions.
+ MachineInstr *StartInst, *LastInst, *KillInst;
+ /// The index, from the start of the basic block, that each marker
+ /// appears. These are stored so we can do quick interval tests.
+ unsigned StartInstIdx, LastInstIdx, KillInstIdx;
+ /// All instructions in the chain.
+ std::set<MachineInstr*> Insts;
+ /// True if KillInst cannot be modified. If this is true,
+ /// we cannot change LastInst's outgoing register.
+ /// This will be true for tied values and regmasks.
+ bool KillIsImmutable;
+ /// The "color" of LastInst. This will be the preferred chain color,
+ /// as changing intermediate nodes is easy but changing the last
+ /// instruction can be more tricky.
+ Color LastColor;
+
+ Chain(MachineInstr *MI, unsigned Idx, Color C)
+ : StartInst(MI), LastInst(MI), KillInst(nullptr),
+ StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
+ LastColor(C) {
+ Insts.insert(MI);
+ }
+
+ /// Add a new instruction into the chain. The instruction's dest operand
+ /// has the given color.
+ void add(MachineInstr *MI, unsigned Idx, Color C) {
+ LastInst = MI;
+ LastInstIdx = Idx;
+ LastColor = C;
+ assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
+ "Chain: broken invariant. A Chain can only be killed after its last "
+ "def");
+
+ Insts.insert(MI);
+ }
+
+ /// Return true if MI is a member of the chain.
+ bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
+
+ /// Return the number of instructions in the chain.
+ unsigned size() const {
+ return Insts.size();
+ }
+
+ /// Inform the chain that its last active register (the dest register of
+ /// LastInst) is killed by MI with no intervening uses or defs.
+ void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
+ KillInst = MI;
+ KillInstIdx = Idx;
+ KillIsImmutable = Immutable;
+ assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
+ "Chain: broken invariant. A Chain can only be killed after its last "
+ "def");
+ }
+
+ /// Return the first instruction in the chain.
+ MachineInstr *getStart() const { return StartInst; }
+ /// Return the last instruction in the chain.
+ MachineInstr *getLast() const { return LastInst; }
+ /// Return the "kill" instruction (as set with setKill()) or NULL.
+ MachineInstr *getKill() const { return KillInst; }
+ /// Return an instruction that can be used as an iterator for the end
+ /// of the chain. This is the maximum of KillInst (if set) and LastInst.
+ MachineBasicBlock::iterator getEnd() const {
+ return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
+ }
+
+ /// Can the Kill instruction (assuming one exists) be modified?
+ bool isKillImmutable() const { return KillIsImmutable; }
+
+ /// Return the preferred color of this chain.
+ Color getPreferredColor() {
+ if (OverrideBalance != 0)
+ return OverrideBalance == 1 ? Color::Even : Color::Odd;
+ return LastColor;
+ }
+
+ /// Return true if this chain (StartInst..KillInst) overlaps with Other.
+ bool rangeOverlapsWith(const Chain &Other) const {
+ unsigned End = KillInst ? KillInstIdx : LastInstIdx;
+ unsigned OtherEnd = Other.KillInst ?
+ Other.KillInstIdx : Other.LastInstIdx;
+
+ return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
+ }
+
+ /// Return true if this chain starts before Other.
+ bool startsBefore(Chain *Other) {
+ return StartInstIdx < Other->StartInstIdx;
+ }
+
+ /// Return true if the group will require a fixup MOV at the end.
+ bool requiresFixup() const {
+ return (getKill() && isKillImmutable()) || !getKill();
+ }
+
+ /// Return a simple string representation of the chain.
+ std::string str() const {
+ std::string S;
+ raw_string_ostream OS(S);
+
+ OS << "{";
+ StartInst->print(OS, NULL, true);
+ OS << " -> ";
+ LastInst->print(OS, NULL, true);
+ if (KillInst) {
+ OS << " (kill @ ";
+ KillInst->print(OS, NULL, true);
+ OS << ")";
+ }
+ OS << "}";
+
+ return OS.str();
+ }
+
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+
+bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
+ bool Changed = false;
+ DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
+
+ const TargetMachine &TM = F.getTarget();
+ MRI = &F.getRegInfo();
+ TRI = F.getRegInfo().getTargetRegisterInfo();
+ TII = TM.getSubtarget<AArch64Subtarget>().getInstrInfo();
+ RCI.runOnMachineFunction(F);
+
+ for (auto &MBB : F) {
+ Changed |= runOnBasicBlock(MBB);
+ }
+
+ return Changed;
+}
+
+bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
+ bool Changed = false;
+ DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
+
+ // First, scan the basic block producing a set of chains.
+
+ // The currently "active" chains - chains that can be added to and haven't
+ // been killed yet. This is keyed by register - all chains can only have one
+ // "link" register between each inst in the chain.
+ std::map<unsigned, Chain*> ActiveChains;
+ std::set<std::unique_ptr<Chain>> AllChains;
+ unsigned Idx = 0;
+ for (auto &MI : MBB)
+ scanInstruction(&MI, Idx++, ActiveChains, AllChains);
+
+ DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
+
+ // Group the chains into disjoint sets based on their liveness range. This is
+ // a poor-man's version of graph coloring. Ideally we'd create an interference
+ // graph and perform full-on graph coloring on that, but;
+ // (a) That's rather heavyweight for only two colors.
+ // (b) We expect multiple disjoint interference regions - in practice the live
+ // range of chains is quite small and they are clustered between loads
+ // and stores.
+ EquivalenceClasses<Chain*> EC;
+ for (auto &I : AllChains)
+ EC.insert(I.get());
+
+ for (auto &I : AllChains)
+ for (auto &J : AllChains)
+ if (I != J && I->rangeOverlapsWith(*J))
+ EC.unionSets(I.get(), J.get());
+ DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
+
+ // Now we assume that every member of an equivalence class interferes
+ // with every other member of that class, and with no members of other classes.
+
+ // Convert the EquivalenceClasses to a simpler set of sets.
+ std::vector<std::vector<Chain*> > V;
+ for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
+ std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
+ if (Cs.empty()) continue;
+ V.push_back(std::move(Cs));
+ }
+
+ // Now we have a set of sets, order them by start address so
+ // we can iterate over them sequentially.
+ std::sort(V.begin(), V.end(),
+ [](const std::vector<Chain*> &A,
+ const std::vector<Chain*> &B) {
+ return A.front()->startsBefore(B.front());
+ });
+
+ // As we only have two colors, we can track the global (BB-level) balance of
+ // odds versus evens. We aim to keep this near zero to keep both execution
+ // units fed.
+ // Positive means we're even-heavy, negative we're odd-heavy.
+ //
+ // FIXME: If chains have interdependencies, for example:
+ // mul r0, r1, r2
+ // mul r3, r0, r1
+ // We do not model this and may color each one differently, assuming we'll
+ // get ILP when we obviously can't. This hasn't been seen to be a problem
+ // in practice so far, so we simplify the algorithm by ignoring it.
+ int Parity = 0;
+
+ for (auto &I : V)
+ Changed |= colorChainSet(std::move(I), MBB, Parity);
+
+ return Changed;
+}
+
+Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
+ std::vector<Chain*> &L) {
+ if (L.empty())
+ return nullptr;
+
+ // We try and get the best candidate from L to color next, given that our
+ // preferred color is "PreferredColor". L is ordered from larger to smaller
+ // chains. It is beneficial to color the large chains before the small chains,
+ // but if we can't find a chain of the maximum length with the preferred color,
+ // we fuzz the size and look for slightly smaller chains before giving up and
+ // returning a chain that must be recolored.
+
+ // FIXME: Does this need to be configurable?
+ const unsigned SizeFuzz = 1;
+ unsigned MinSize = L.front()->size() - SizeFuzz;
+ for (auto I = L.begin(), E = L.end(); I != E; ++I) {
+ if ((*I)->size() <= MinSize) {
+ // We've gone past the size limit. Return the previous item.
+ Chain *Ch = *--I;
+ L.erase(I);
+ return Ch;
+ }
+
+ if ((*I)->getPreferredColor() == PreferredColor) {
+ Chain *Ch = *I;
+ L.erase(I);
+ return Ch;
+ }
+ }
+
+ // Bailout case - just return the first item.
+ Chain *Ch = L.front();
+ L.erase(L.begin());
+ return Ch;
+}
+
+bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
+ MachineBasicBlock &MBB,
+ int &Parity) {
+ bool Changed = false;
+ DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
+
+ // Sort by descending size order so that we allocate the most important
+ // sets first.
+ // Tie-break equivalent sizes by sorting chains requiring fixups before
+ // those without fixups. The logic here is that we should look at the
+ // chains that we cannot change before we look at those we can,
+ // so the parity counter is updated and we know what color we should
+ // change them to!
+ std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
+ if (G1->size() != G2->size())
+ return G1->size() > G2->size();
+ return G1->requiresFixup() > G2->requiresFixup();
+ });
+
+ Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
+ while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
+ // Start off by assuming we'll color to our own preferred color.
+ Color C = PreferredColor;
+ if (Parity == 0)
+ // But if we really don't care, use the chain's preferred color.
+ C = G->getPreferredColor();
+
+ DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
+ << ColorNames[(int)C] << "\n");
+
+ // If we'll need a fixup FMOV, don't bother. Testing has shown that this
+ // happens infrequently and when it does it has at least a 50% chance of
+ // slowing code down instead of speeding it up.
+ if (G->requiresFixup() && C != G->getPreferredColor()) {
+ C = G->getPreferredColor();
+ DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
+ "color remains " << ColorNames[(int)C] << "\n");
+ }
+
+ Changed |= colorChain(G, C, MBB);
+
+ Parity += (C == Color::Even) ? G->size() : -G->size();
+ PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
+ }
+
+ return Changed;
+}
+
+int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
+ MachineBasicBlock &MBB) {
+ RegScavenger RS;
+ RS.enterBasicBlock(&MBB);
+ RS.forward(MachineBasicBlock::iterator(G->getStart()));
+
+ // Can we find an appropriate register that is available throughout the life
+ // of the chain?
+ unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
+ BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
+ for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
+ I != E; ++I) {
+ RS.forward(I);
+ AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
+
+ // Remove any registers clobbered by a regmask or any def register that is
+ // immediately dead.
+ for (auto J : I->operands()) {
+ if (J.isRegMask())
+ AvailableRegs.clearBitsNotInMask(J.getRegMask());
+
+ if (J.isReg() && J.isDef() && AvailableRegs[J.getReg()]) {
+ assert(J.isDead() && "Non-dead def should have been removed by now!");
+ AvailableRegs.reset(J.getReg());
+ }
+ }
+ }
+
+ // Make sure we allocate in-order, to get the cheapest registers first.
+ auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
+ for (auto Reg : Ord) {
+ if (!AvailableRegs[Reg])
+ continue;
+ if ((C == Color::Even && (Reg % 2) == 0) ||
+ (C == Color::Odd && (Reg % 2) == 1))
+ return Reg;
+ }
+
+ return -1;
+}
+
+bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
+ MachineBasicBlock &MBB) {
+ bool Changed = false;
+ DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
+ << ColorNames[(int)C] << ")\n");
+
+ // Try and obtain a free register of the right class. Without a register
+ // to play with we cannot continue.
+ int Reg = scavengeRegister(G, C, MBB);
+ if (Reg == -1) {
+ DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
+ return false;
+ }
+ DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
+
+ std::map<unsigned, unsigned> Substs;
+ for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
+ I != E; ++I) {
+ if (!G->contains(I) &&
+ (&*I != G->getKill() || G->isKillImmutable()))
+ continue;
+
+ // I is a member of G, or I is a mutable instruction that kills G.
+
+ std::vector<unsigned> ToErase;
+ for (auto &U : I->operands()) {
+ if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
+ unsigned OrigReg = U.getReg();
+ U.setReg(Substs[OrigReg]);
+ if (U.isKill())
+ // Don't erase straight away, because there may be other operands
+ // that also reference this substitution!
+ ToErase.push_back(OrigReg);
+ } else if (U.isRegMask()) {
+ for (auto J : Substs) {
+ if (U.clobbersPhysReg(J.first))
+ ToErase.push_back(J.first);
+ }
+ }
+ }
+ // Now it's safe to remove the substs identified earlier.
+ for (auto J : ToErase)
+ Substs.erase(J);
+
+ // Only change the def if this isn't the last instruction.
+ if (&*I != G->getKill()) {
+ MachineOperand &MO = I->getOperand(0);
+
+ bool Change = TransformAll || getColor(MO.getReg()) != C;
+ if (G->requiresFixup() && &*I == G->getLast())
+ Change = false;
+
+ if (Change) {
+ Substs[MO.getReg()] = Reg;
+ MO.setReg(Reg);
+ MRI->setPhysRegUsed(Reg);
+
+ Changed = true;
+ }
+ }
+ }
+ assert(Substs.size() == 0 && "No substitutions should be left active!");
+
+ if (G->getKill()) {
+ DEBUG(dbgs() << " - Kill instruction seen.\n");
+ } else {
+ // We didn't have a kill instruction, but we didn't seem to need to change
+ // the destination register anyway.
+ DEBUG(dbgs() << " - Destination register not changed.\n");
+ }
+ return Changed;
+}
+
+void AArch64A57FPLoadBalancing::
+scanInstruction(MachineInstr *MI, unsigned Idx,
+ std::map<unsigned, Chain*> &ActiveChains,
+ std::set<std::unique_ptr<Chain>> &AllChains) {
+ // Inspect "MI", updating ActiveChains and AllChains.
+
+ if (isMul(MI)) {
+
+ for (auto &I : MI->uses())
+ maybeKillChain(I, Idx, ActiveChains);
+ for (auto &I : MI->defs())
+ maybeKillChain(I, Idx, ActiveChains);
+
+ // Create a new chain. Multiplies don't require forwarding so can go on any
+ // unit.
+ unsigned DestReg = MI->getOperand(0).getReg();
+
+ DEBUG(dbgs() << "New chain started for register "
+ << TRI->getName(DestReg) << " at " << *MI);
+
+ auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
+ ActiveChains[DestReg] = G.get();
+ AllChains.insert(std::move(G));
+
+ } else if (isMla(MI)) {
+
+ // It is beneficial to keep MLAs on the same functional unit as their
+ // accumulator operand.
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned AccumReg = MI->getOperand(3).getReg();
+
+ maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
+ maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
+ if (DestReg != AccumReg)
+ maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
+
+ if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
+ DEBUG(dbgs() << "Chain found for accumulator register "
+ << TRI->getName(AccumReg) << " in MI " << *MI);
+
+ // For simplicity we only chain together sequences of MULs/MLAs where the
+ // accumulator register is killed on each instruction. This means we don't
+ // need to track other uses of the registers we want to rewrite.
+ //
+ // FIXME: We could extend to handle the non-kill cases for more coverage.
+ if (MI->getOperand(3).isKill()) {
+ // Add to chain.
+ DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
+ ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
+ // Handle cases where the destination is not the same as the accumulator.
+ if (DestReg != AccumReg) {
+ ActiveChains[DestReg] = ActiveChains[AccumReg];
+ ActiveChains.erase(AccumReg);
+ }
+ return;
+ }
+
+ DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
+ << "marked <kill>!\n");
+ maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
+ }
+
+ DEBUG(dbgs() << "Creating new chain for dest register "
+ << TRI->getName(DestReg) << "\n");
+ auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
+ ActiveChains[DestReg] = G.get();
+ AllChains.insert(std::move(G));
+
+ } else {
+
+ // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
+ // lists.
+ for (auto &I : MI->uses())
+ maybeKillChain(I, Idx, ActiveChains);
+ for (auto &I : MI->defs())
+ maybeKillChain(I, Idx, ActiveChains);
+
+ }
+}
+
+void AArch64A57FPLoadBalancing::
+maybeKillChain(MachineOperand &MO, unsigned Idx,
+ std::map<unsigned, Chain*> &ActiveChains) {
+ // Given an operand and the set of active chains (keyed by register),
+ // determine if a chain should be ended and remove from ActiveChains.
+ MachineInstr *MI = MO.getParent();
+
+ if (MO.isReg()) {
+
+ // If this is a KILL of a current chain, record it.
+ if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
+ DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
+ << "\n");
+ ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
+ }
+ ActiveChains.erase(MO.getReg());
+
+ } else if (MO.isRegMask()) {
+
+ for (auto I = ActiveChains.begin(), E = ActiveChains.end();
+ I != E;) {
+ if (MO.clobbersPhysReg(I->first)) {
+ DEBUG(dbgs() << "Kill (regmask) seen for chain "
+ << TRI->getName(I->first) << "\n");
+ I->second->setKill(MI, Idx, /*Immutable=*/true);
+ ActiveChains.erase(I++);
+ } else
+ ++I;
+ }
+
+ }
+}
+
+Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
+ if ((TRI->getEncodingValue(Reg) % 2) == 0)
+ return Color::Even;
+ else
+ return Color::Odd;
+}
+
+// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
+FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
+ return new AArch64A57FPLoadBalancing();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp
index ab2c4b7..287989f 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64AddressTypePromotion.cpp
@@ -19,7 +19,7 @@
// a = add nsw i64 f, 3
// e = getelementptr ..., i64 a
//
-// This is legal to do so if the computations are markers with either nsw or nuw
+// This is legal to do if the computations are marked with either nsw or nuw
// markers.
// Moreover, the current heuristic is simple: it does not create new sext
// operations, i.e., it gives up when a sext would have forked (e.g., if
@@ -223,7 +223,7 @@ AArch64AddressTypePromotion::shouldConsiderSExt(const Instruction *SExt) const {
}
// Input:
-// - SExtInsts contains all the sext instructions that are use direclty in
+// - SExtInsts contains all the sext instructions that are used directly in
// GetElementPtrInst, i.e., access to memory.
// Algorithm:
// - For each sext operation in SExtInsts:
@@ -353,7 +353,7 @@ AArch64AddressTypePromotion::propagateSignExtension(Instructions &SExtInsts) {
// If the use is already of the right type, connect its uses to its argument
// and delete it.
- // This can happen for an Instruction which all uses are sign extended.
+ // This can happen for an Instruction all uses of which are sign extended.
if (!ToRemove.count(SExt) &&
SExt->getType() == SExt->getOperand(0)->getType()) {
DEBUG(dbgs() << "Sign extension is useless, attach its use to "
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp
index 734fb21..5afe0f4 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp
@@ -36,9 +36,10 @@
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64RegisterInfo.h"
+#include "AArch64Subtarget.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -166,6 +167,12 @@ static int getTransformOpcode(unsigned Opc) {
return AArch64::ADDv1i64;
case AArch64::SUBXrr:
return AArch64::SUBv1i64;
+ case AArch64::ANDXrr:
+ return AArch64::ANDv8i8;
+ case AArch64::EORXrr:
+ return AArch64::EORv8i8;
+ case AArch64::ORRXrr:
+ return AArch64::ORRv8i8;
}
// No AdvSIMD equivalent, so just return the original opcode.
return Opc;
@@ -371,7 +378,8 @@ bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
const TargetMachine &TM = mf.getTarget();
MRI = &mf.getRegInfo();
- TII = static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
+ TII = static_cast<const AArch64InstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
// Just check things on a one-block-at-a-time basis.
for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp
index cd94e24..08ee687 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64AsmPrinter.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "AArch64.h"
-#include "AArch64MachineFunctionInfo.h"
#include "AArch64MCInstLower.h"
+#include "AArch64MachineFunctionInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "InstPrinter/AArch64InstPrinter.h"
@@ -23,8 +23,8 @@
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
@@ -54,7 +54,7 @@ public:
AArch64AsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer),
Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
- MCInstLowering(OutContext, *Mang, *this), SM(*this), AArch64FI(nullptr),
+ MCInstLowering(OutContext, *this), SM(*this), AArch64FI(nullptr),
LOHLabelCounter(0) {}
const char *getPassName() const override {
@@ -145,7 +145,7 @@ void AArch64AsmPrinter::EmitEndOfAsmFile(Module &M) {
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
OutStreamer.EmitLabel(Stubs[i].first);
@@ -252,8 +252,8 @@ bool AArch64AsmPrinter::printAsmRegInClass(const MachineOperand &MO,
const TargetRegisterClass *RC,
bool isVector, raw_ostream &O) {
assert(MO.isReg() && "Should only get here with a register!");
- const AArch64RegisterInfo *RI =
- static_cast<const AArch64RegisterInfo *>(TM.getRegisterInfo());
+ const AArch64RegisterInfo *RI = static_cast<const AArch64RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
unsigned Reg = MO.getReg();
unsigned RegToPrint = RC->getRegister(RI->getEncodingValue(Reg));
assert(RI->regsOverlap(RegToPrint, Reg));
@@ -381,8 +381,23 @@ void AArch64AsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
unsigned NumNOPBytes = MI.getOperand(1).getImm();
SM.recordStackMap(MI);
- // Emit padding.
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
+
+ // Scan ahead to trim the shadow.
+ const MachineBasicBlock &MBB = *MI.getParent();
+ MachineBasicBlock::const_iterator MII(MI);
+ ++MII;
+ while (NumNOPBytes > 0) {
+ if (MII == MBB.end() || MII->isCall() ||
+ MII->getOpcode() == AArch64::DBG_VALUE ||
+ MII->getOpcode() == TargetOpcode::PATCHPOINT ||
+ MII->getOpcode() == TargetOpcode::STACKMAP)
+ break;
+ ++MII;
+ NumNOPBytes -= 4;
+ }
+
+ // Emit nops.
for (unsigned i = 0; i < NumNOPBytes; i += 4)
EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
}
@@ -518,7 +533,5 @@ void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
extern "C" void LLVMInitializeAArch64AsmPrinter() {
RegisterAsmPrinter<AArch64AsmPrinter> X(TheAArch64leTarget);
RegisterAsmPrinter<AArch64AsmPrinter> Y(TheAArch64beTarget);
-
- RegisterAsmPrinter<AArch64AsmPrinter> Z(TheARM64leTarget);
- RegisterAsmPrinter<AArch64AsmPrinter> W(TheARM64beTarget);
+ RegisterAsmPrinter<AArch64AsmPrinter> Z(TheARM64Target);
}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp b/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp
index 484e7e8..e2b6367 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64BranchRelaxation.cpp
@@ -12,15 +12,16 @@
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
+#include "AArch64Subtarget.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/CommandLine.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-branch-relax"
@@ -136,7 +137,7 @@ static bool BBHasFallthrough(MachineBasicBlock *MBB) {
if (NextBB == MBB->getParent()->end())
return false;
- for (MachineBasicBlock *S : MBB->successors())
+ for (MachineBasicBlock *S : MBB->successors())
if (S == NextBB)
return true;
@@ -475,7 +476,9 @@ bool AArch64BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "***** AArch64BranchRelaxation *****\n");
- TII = (const AArch64InstrInfo *)MF->getTarget().getInstrInfo();
+ TII = (const AArch64InstrInfo *)MF->getTarget()
+ .getSubtargetImpl()
+ ->getInstrInfo();
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.h b/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.h
new file mode 100644
index 0000000..baf80bc
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.h
@@ -0,0 +1,141 @@
+//=== AArch64CallingConv.h - Custom Calling Convention Routines -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the custom routines for the AArch64 Calling Convention
+// that aren't done by tablegen.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64CALLINGCONVENTION_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64CALLINGCONVENTION_H
+
+#include "AArch64.h"
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+namespace {
+using namespace llvm;
+
+static const uint16_t XRegList[] = {AArch64::X0, AArch64::X1, AArch64::X2,
+ AArch64::X3, AArch64::X4, AArch64::X5,
+ AArch64::X6, AArch64::X7};
+static const uint16_t HRegList[] = {AArch64::H0, AArch64::H1, AArch64::H2,
+ AArch64::H3, AArch64::H4, AArch64::H5,
+ AArch64::H6, AArch64::H7};
+static const uint16_t SRegList[] = {AArch64::S0, AArch64::S1, AArch64::S2,
+ AArch64::S3, AArch64::S4, AArch64::S5,
+ AArch64::S6, AArch64::S7};
+static const uint16_t DRegList[] = {AArch64::D0, AArch64::D1, AArch64::D2,
+ AArch64::D3, AArch64::D4, AArch64::D5,
+ AArch64::D6, AArch64::D7};
+static const uint16_t QRegList[] = {AArch64::Q0, AArch64::Q1, AArch64::Q2,
+ AArch64::Q3, AArch64::Q4, AArch64::Q5,
+ AArch64::Q6, AArch64::Q7};
+
+static bool finishStackBlock(SmallVectorImpl<CCValAssign> &PendingMembers,
+ MVT LocVT, ISD::ArgFlagsTy &ArgFlags,
+ CCState &State, unsigned SlotAlign) {
+ unsigned Size = LocVT.getSizeInBits() / 8;
+ unsigned StackAlign = State.getMachineFunction()
+ .getSubtarget()
+ .getDataLayout()
+ ->getStackAlignment();
+ unsigned Align = std::min(ArgFlags.getOrigAlign(), StackAlign);
+
+ for (auto &It : PendingMembers) {
+ It.convertToMem(State.AllocateStack(Size, std::max(Align, SlotAlign)));
+ State.addLoc(It);
+ SlotAlign = 1;
+ }
+
+ // All pending members have now been allocated
+ PendingMembers.clear();
+ return true;
+}
+
+/// The Darwin variadic PCS places anonymous arguments in 8-byte stack slots. An
+/// [N x Ty] type must still be contiguous in memory though.
+static bool CC_AArch64_Custom_Stack_Block(
+ unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
+
+ // Add the argument to the list to be allocated once we know the size of the
+ // block.
+ PendingMembers.push_back(
+ CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
+
+ if (!ArgFlags.isInConsecutiveRegsLast())
+ return true;
+
+ return finishStackBlock(PendingMembers, LocVT, ArgFlags, State, 8);
+}
+
+/// Given an [N x Ty] block, it should be passed in a consecutive sequence of
+/// registers. If no such sequence is available, mark the rest of the registers
+/// of that type as used and place the argument on the stack.
+static bool CC_AArch64_Custom_Block(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // Try to allocate a contiguous block of registers, each of the correct
+ // size to hold one member.
+ ArrayRef<uint16_t> RegList;
+ if (LocVT.SimpleTy == MVT::i64)
+ RegList = XRegList;
+ else if (LocVT.SimpleTy == MVT::f16)
+ RegList = HRegList;
+ else if (LocVT.SimpleTy == MVT::f32 || LocVT.is32BitVector())
+ RegList = SRegList;
+ else if (LocVT.SimpleTy == MVT::f64 || LocVT.is64BitVector())
+ RegList = DRegList;
+ else if (LocVT.SimpleTy == MVT::f128 || LocVT.is128BitVector())
+ RegList = QRegList;
+ else {
+ // Not an array we want to split up after all.
+ return false;
+ }
+
+ SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
+
+ // Add the argument to the list to be allocated once we know the size of the
+ // block.
+ PendingMembers.push_back(
+ CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
+
+ if (!ArgFlags.isInConsecutiveRegsLast())
+ return true;
+
+ unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
+ if (RegResult) {
+ for (auto &It : PendingMembers) {
+ It.convertToReg(RegResult);
+ State.addLoc(It);
+ ++RegResult;
+ }
+ PendingMembers.clear();
+ return true;
+ }
+
+ // Mark all regs in the class as unavailable
+ for (auto Reg : RegList)
+ State.AllocateReg(Reg);
+
+ const AArch64Subtarget &Subtarget = static_cast<const AArch64Subtarget &>(
+ State.getMachineFunction().getSubtarget());
+ unsigned SlotAlign = Subtarget.isTargetDarwin() ? 1 : 8;
+
+ return finishStackBlock(PendingMembers, LocVT, ArgFlags, State, SlotAlign);
+}
+
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td b/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td
index 1fe5138..a391e76 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CallingConvention.td
@@ -16,7 +16,7 @@ class CCIfAlign<string Align, CCAction A> :
CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
/// CCIfBigEndian - Match only if we're in big endian mode.
class CCIfBigEndian<CCAction A> :
- CCIf<"State.getTarget().getDataLayout()->isBigEndian()", A>;
+ CCIf<"State.getMachineFunction().getSubtarget().getDataLayout()->isBigEndian()", A>;
//===----------------------------------------------------------------------===//
// ARM AAPCS64 Calling Convention
@@ -40,6 +40,8 @@ def CC_AArch64_AAPCS : CallingConv<[
// slot is 64-bit.
CCIfByVal<CCPassByVal<8, 8>>,
+ CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
+
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
// up to eight each of GPR and FPR.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
@@ -60,18 +62,18 @@ def CC_AArch64_AAPCS : CallingConv<[
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
// If more than will fit in registers, pass them on the stack instead.
CCIfType<[i1, i8, i16, f16], CCAssignToStack<8, 8>>,
CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
- CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8],
+ CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16],
CCAssignToStack<8, 8>>,
- CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToStack<16, 16>>
]>;
@@ -96,10 +98,10 @@ def RetCC_AArch64_AAPCS : CallingConv<[
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
]>;
@@ -119,6 +121,8 @@ def CC_AArch64_DarwinPCS : CallingConv<[
// slot is 64-bit.
CCIfByVal<CCPassByVal<8, 8>>,
+ CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
+
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
// up to eight each of GPR and FPR.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
@@ -139,25 +143,28 @@ def CC_AArch64_DarwinPCS : CallingConv<[
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
// If more than will fit in registers, pass them on the stack instead.
CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16", CCAssignToStack<2, 2>>,
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8],
+ CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16],
CCAssignToStack<8, 8>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>>
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
+ CCAssignToStack<16, 16>>
]>;
def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
+ CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
+
// Handle all scalar types as either i64 or f64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
CCIfType<[f16, f32], CCPromoteToType<f64>>,
@@ -165,8 +172,10 @@ def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
// Everything is on the stack.
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
- CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToStack<8, 8>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>>
+ CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
+ CCAssignToStack<8, 8>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
+ CCAssignToStack<16, 16>>
]>;
// The WebKit_JS calling convention only passes the first argument (the callee)
@@ -195,6 +204,44 @@ def RetCC_AArch64_WebKit_JS : CallingConv<[
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
]>;
+//===----------------------------------------------------------------------===//
+// ARM64 Calling Convention for GHC
+//===----------------------------------------------------------------------===//
+
+// This calling convention is specific to the Glasgow Haskell Compiler.
+// The only documentation is the GHC source code, specifically the C header
+// file:
+//
+// https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
+//
+// which defines the registers for the Spineless Tagless G-Machine (STG) that
+// GHC uses to implement lazy evaluation. The generic STG machine has a set of
+// registers which are mapped to appropriate set of architecture specific
+// registers for each CPU architecture.
+//
+// The STG Machine is documented here:
+//
+// https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
+//
+// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
+// register mapping".
+
+def CC_AArch64_GHC : CallingConv<[
+ // Handle all vector types as either f64 or v2f64.
+ CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
+ CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
+ CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
+
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
+ CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
+]>;
+
// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
// presumably a callee to someone. External functions may not do so, but this
// is currently safe since BL has LR as an implicit-def and what happens after a
@@ -240,3 +287,4 @@ def CSR_AArch64_AllRegs
(sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
(sequence "Q%u", 0, 31))>;
+def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
index 4d23dc5..aab8e38 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
@@ -94,7 +94,7 @@ struct LDTLSCleanup : public MachineFunctionPass {
MachineFunction *MF = I->getParent()->getParent();
const AArch64TargetMachine *TM =
static_cast<const AArch64TargetMachine *>(&MF->getTarget());
- const AArch64InstrInfo *TII = TM->getInstrInfo();
+ const AArch64InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
// code sequence assumes the address will be.
@@ -114,7 +114,7 @@ struct LDTLSCleanup : public MachineFunctionPass {
MachineFunction *MF = I->getParent()->getParent();
const AArch64TargetMachine *TM =
static_cast<const AArch64TargetMachine *>(&MF->getTarget());
- const AArch64InstrInfo *TII = TM->getInstrInfo();
+ const AArch64InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp b/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp
index 6b1f096..87b545b 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp
@@ -101,25 +101,26 @@
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
+#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-collect-loh"
@@ -194,12 +195,14 @@ typedef SetVector<const MachineInstr *> SetOfMachineInstr;
/// Map a basic block to a set of instructions per register.
/// This is used to represent the exposed uses of a basic block
/// per register.
-typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *>
+typedef MapVector<const MachineBasicBlock *,
+ std::unique_ptr<SetOfMachineInstr[]>>
BlockToSetOfInstrsPerColor;
/// Map a basic block to an instruction per register.
/// This is used to represent the live-out definitions of a basic block
/// per register.
-typedef MapVector<const MachineBasicBlock *, const MachineInstr **>
+typedef MapVector<const MachineBasicBlock *,
+ std::unique_ptr<const MachineInstr *[]>>
BlockToInstrPerColor;
/// Map an instruction to a set of instructions. Used to represent the
/// mapping def to reachable uses or use to definitions.
@@ -236,9 +239,9 @@ static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
SetOfMachineInstr *result;
BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
if (it != sets.end())
- result = it->second;
+ result = it->second.get();
else
- result = sets[&MBB] = new SetOfMachineInstr[nbRegs];
+ result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();
return result[reg];
}
@@ -283,14 +286,14 @@ static void initReachingDef(MachineFunction &MF,
const MapRegToId &RegToId,
const MachineInstr *DummyOp, bool ADRPMode) {
const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
unsigned NbReg = RegToId.size();
for (MachineBasicBlock &MBB : MF) {
- const MachineInstr **&BBGen = Gen[&MBB];
- BBGen = new const MachineInstr *[NbReg];
- memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg);
+ auto &BBGen = Gen[&MBB];
+ BBGen = make_unique<const MachineInstr *[]>(NbReg);
+ std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);
BitVector &BBKillSet = Kill[&MBB];
BBKillSet.resize(NbReg);
@@ -421,22 +424,6 @@ static void reachingDefAlgorithm(MachineFunction &MF,
} while (HasChanged);
}
-/// Release all memory dynamically allocated during the reaching
-/// definition algorithm.
-static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
- BlockToSetOfInstrsPerColor &Out,
- BlockToInstrPerColor &Gen,
- BlockToSetOfInstrsPerColor &ReachableUses) {
- for (auto &IT : Out)
- delete[] IT.second;
- for (auto &IT : In)
- delete[] IT.second;
- for (auto &IT : ReachableUses)
- delete[] IT.second;
- for (auto &IT : Gen)
- delete[] IT.second;
-}
-
/// Reaching definition algorithm.
/// \param MF function on which the algorithm will operate.
/// \param[out] ColorOpToReachedUses will contain the result of the reaching
@@ -473,9 +460,6 @@ static void reachingDef(MachineFunction &MF,
if (!DummyOp)
reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
ReachableUses, RegToId.size());
-
- // finit.
- finitReachingDef(In, Out, Gen, ReachableUses);
}
#ifndef NDEBUG
@@ -1043,7 +1027,7 @@ static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
MapRegToId RegToId;
@@ -1059,8 +1043,8 @@ bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
MachineInstr *DummyOp = nullptr;
if (BasicBlockScopeOnly) {
- const AArch64InstrInfo *TII =
- static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
+ const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
// For local analysis, create a dummy operation to record uses that are not
// local.
DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ConditionOptimizer.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ConditionOptimizer.cpp
new file mode 100644
index 0000000..0fbd3c6
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ConditionOptimizer.cpp
@@ -0,0 +1,422 @@
+//=- AArch64ConditionOptimizer.cpp - Remove useless comparisons for AArch64 -=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass tries to make consecutive compares of values use same operands to
+// allow CSE pass to remove duplicated instructions. For this it analyzes
+// branches and adjusts comparisons with immediate values by converting:
+// * GE -> GT
+// * GT -> GE
+// * LT -> LE
+// * LE -> LT
+// and adjusting immediate values appropriately. It basically corrects two
+// immediate values towards each other to make them equal.
+//
+// Consider the following example in C:
+//
+// if ((a < 5 && ...) || (a > 5 && ...)) {
+// ~~~~~ ~~~~~
+// ^ ^
+// x y
+//
+// Here both "x" and "y" expressions compare "a" with "5". When "x" evaluates
+// to "false", "y" can just check flags set by the first comparison. As a
+// result of the canonicalization employed by
+// SelectionDAGBuilder::visitSwitchCase, DAGCombine, and other target-specific
+// code, assembly ends up in the form that is not CSE friendly:
+//
+// ...
+// cmp w8, #4
+// b.gt .LBB0_3
+// ...
+// .LBB0_3:
+// cmp w8, #6
+// b.lt .LBB0_6
+// ...
+//
+// Same assembly after the pass:
+//
+// ...
+// cmp w8, #5
+// b.ge .LBB0_3
+// ...
+// .LBB0_3:
+// cmp w8, #5 // <-- CSE pass removes this instruction
+// b.le .LBB0_6
+// ...
+//
+// Currently only SUBS and ADDS followed by b.?? are supported.
+//
+// TODO: maybe handle TBNZ/TBZ the same way as CMP when used instead for "a < 0"
+// TODO: handle other conditional instructions (e.g. CSET)
+// TODO: allow second branching to be anything if it doesn't require adjusting
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <cstdlib>
+#include <tuple>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-condopt"
+
+STATISTIC(NumConditionsAdjusted, "Number of conditions adjusted");
+
+namespace {
+class AArch64ConditionOptimizer : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ MachineDominatorTree *DomTree;
+
+public:
+ // Stores immediate, compare instruction opcode and branch condition (in this
+ // order) of adjusted comparison.
+ typedef std::tuple<int, int, AArch64CC::CondCode> CmpInfo;
+
+ static char ID;
+ AArch64ConditionOptimizer() : MachineFunctionPass(ID) {}
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ MachineInstr *findSuitableCompare(MachineBasicBlock *MBB);
+ CmpInfo adjustCmp(MachineInstr *CmpMI, AArch64CC::CondCode Cmp);
+ void modifyCmp(MachineInstr *CmpMI, const CmpInfo &Info);
+ bool adjustTo(MachineInstr *CmpMI, AArch64CC::CondCode Cmp, MachineInstr *To,
+ int ToImm);
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ const char *getPassName() const override {
+ return "AArch64 Condition Optimizer";
+ }
+};
+} // end anonymous namespace
+
+char AArch64ConditionOptimizer::ID = 0;
+
+namespace llvm {
+void initializeAArch64ConditionOptimizerPass(PassRegistry &);
+}
+
+INITIALIZE_PASS_BEGIN(AArch64ConditionOptimizer, "aarch64-condopt",
+ "AArch64 CondOpt Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(AArch64ConditionOptimizer, "aarch64-condopt",
+ "AArch64 CondOpt Pass", false, false)
+
+FunctionPass *llvm::createAArch64ConditionOptimizerPass() {
+ return new AArch64ConditionOptimizer();
+}
+
+void AArch64ConditionOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+// Finds compare instruction that corresponds to supported types of branching.
+// Returns the instruction or nullptr on failures or detecting unsupported
+// instructions.
+MachineInstr *AArch64ConditionOptimizer::findSuitableCompare(
+ MachineBasicBlock *MBB) {
+ MachineBasicBlock::iterator I = MBB->getFirstTerminator();
+ if (I == MBB->end())
+ return nullptr;
+
+ if (I->getOpcode() != AArch64::Bcc)
+ return nullptr;
+
+ // Now find the instruction controlling the terminator.
+ for (MachineBasicBlock::iterator B = MBB->begin(); I != B;) {
+ --I;
+ assert(!I->isTerminator() && "Spurious terminator");
+ switch (I->getOpcode()) {
+ // cmp is an alias for subs with a dead destination register.
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXri:
+ // cmn is an alias for adds with a dead destination register.
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXri:
+ if (I->getOperand(0).isDead())
+ return I;
+
+ DEBUG(dbgs() << "Destination of cmp is not dead, " << *I << '\n');
+ return nullptr;
+
+ // Prevent false positive case like:
+ // cmp w19, #0
+ // cinc w0, w19, gt
+ // ...
+ // fcmp d8, #0.0
+ // b.gt .LBB0_5
+ case AArch64::FCMPDri:
+ case AArch64::FCMPSri:
+ case AArch64::FCMPESri:
+ case AArch64::FCMPEDri:
+
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSXrr:
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSXrr:
+ case AArch64::FCMPSrr:
+ case AArch64::FCMPDrr:
+ case AArch64::FCMPESrr:
+ case AArch64::FCMPEDrr:
+ // Skip comparison instructions without immediate operands.
+ return nullptr;
+ }
+ }
+ DEBUG(dbgs() << "Flags not defined in BB#" << MBB->getNumber() << '\n');
+ return nullptr;
+}
+
+// Changes opcode adds <-> subs considering register operand width.
+static int getComplementOpc(int Opc) {
+ switch (Opc) {
+ case AArch64::ADDSWri: return AArch64::SUBSWri;
+ case AArch64::ADDSXri: return AArch64::SUBSXri;
+ case AArch64::SUBSWri: return AArch64::ADDSWri;
+ case AArch64::SUBSXri: return AArch64::ADDSXri;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+// Changes form of comparison inclusive <-> exclusive.
+static AArch64CC::CondCode getAdjustedCmp(AArch64CC::CondCode Cmp) {
+ switch (Cmp) {
+ case AArch64CC::GT: return AArch64CC::GE;
+ case AArch64CC::GE: return AArch64CC::GT;
+ case AArch64CC::LT: return AArch64CC::LE;
+ case AArch64CC::LE: return AArch64CC::LT;
+ default:
+ llvm_unreachable("Unexpected condition code");
+ }
+}
+
+// Transforms GT -> GE, GE -> GT, LT -> LE, LE -> LT by updating comparison
+// operator and condition code.
+AArch64ConditionOptimizer::CmpInfo AArch64ConditionOptimizer::adjustCmp(
+ MachineInstr *CmpMI, AArch64CC::CondCode Cmp) {
+ int Opc = CmpMI->getOpcode();
+
+ // CMN (compare with negative immediate) is an alias to ADDS (as
+ // "operand - negative" == "operand + positive")
+ bool Negative = (Opc == AArch64::ADDSWri || Opc == AArch64::ADDSXri);
+
+ int Correction = (Cmp == AArch64CC::GT) ? 1 : -1;
+ // Negate Correction value for comparison with negative immediate (CMN).
+ if (Negative) {
+ Correction = -Correction;
+ }
+
+ const int OldImm = (int)CmpMI->getOperand(2).getImm();
+ const int NewImm = std::abs(OldImm + Correction);
+
+ // Handle +0 -> -1 and -0 -> +1 (CMN with 0 immediate) transitions by
+ // adjusting compare instruction opcode.
+ if (OldImm == 0 && ((Negative && Correction == 1) ||
+ (!Negative && Correction == -1))) {
+ Opc = getComplementOpc(Opc);
+ }
+
+ return CmpInfo(NewImm, Opc, getAdjustedCmp(Cmp));
+}
+
+// Applies changes to comparison instruction suggested by adjustCmp().
+void AArch64ConditionOptimizer::modifyCmp(MachineInstr *CmpMI,
+ const CmpInfo &Info) {
+ int Imm;
+ int Opc;
+ AArch64CC::CondCode Cmp;
+ std::tie(Imm, Opc, Cmp) = Info;
+
+ MachineBasicBlock *const MBB = CmpMI->getParent();
+
+ // Change immediate in comparison instruction (ADDS or SUBS).
+ BuildMI(*MBB, CmpMI, CmpMI->getDebugLoc(), TII->get(Opc))
+ .addOperand(CmpMI->getOperand(0))
+ .addOperand(CmpMI->getOperand(1))
+ .addImm(Imm)
+ .addOperand(CmpMI->getOperand(3));
+ CmpMI->eraseFromParent();
+
+ // The fact that this comparison was picked ensures that it's related to the
+ // first terminator instruction.
+ MachineInstr *BrMI = MBB->getFirstTerminator();
+
+ // Change condition in branch instruction.
+ BuildMI(*MBB, BrMI, BrMI->getDebugLoc(), TII->get(AArch64::Bcc))
+ .addImm(Cmp)
+ .addOperand(BrMI->getOperand(1));
+ BrMI->eraseFromParent();
+
+ MBB->updateTerminator();
+
+ ++NumConditionsAdjusted;
+}
+
+// Parse a condition code returned by AnalyzeBranch, and compute the CondCode
+// corresponding to TBB.
+// Returns true if parsing was successful, otherwise false is returned.
+static bool parseCond(ArrayRef<MachineOperand> Cond, AArch64CC::CondCode &CC) {
+ // A normal br.cond simply has the condition code.
+ if (Cond[0].getImm() != -1) {
+ assert(Cond.size() == 1 && "Unknown Cond array format");
+ CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
+ return true;
+ }
+ return false;
+}
+
+// Adjusts one cmp instruction to another one if result of adjustment will allow
+// CSE. Returns true if compare instruction was changed, otherwise false is
+// returned.
+bool AArch64ConditionOptimizer::adjustTo(MachineInstr *CmpMI,
+ AArch64CC::CondCode Cmp, MachineInstr *To, int ToImm)
+{
+ CmpInfo Info = adjustCmp(CmpMI, Cmp);
+ if (std::get<0>(Info) == ToImm && std::get<1>(Info) == To->getOpcode()) {
+ modifyCmp(CmpMI, Info);
+ return true;
+ }
+ return false;
+}
+
+bool AArch64ConditionOptimizer::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "********** AArch64 Conditional Compares **********\n"
+ << "********** Function: " << MF.getName() << '\n');
+ TII = MF.getTarget().getSubtargetImpl()->getInstrInfo();
+ DomTree = &getAnalysis<MachineDominatorTree>();
+
+ bool Changed = false;
+
+ // Visit blocks in dominator tree pre-order. The pre-order enables multiple
+ // cmp-conversions from the same head block.
+ // Note that updateDomTree() modifies the children of the DomTree node
+ // currently being visited. The df_iterator supports that; it doesn't look at
+ // child_begin() / child_end() until after a node has been visited.
+ for (MachineDomTreeNode *I : depth_first(DomTree)) {
+ MachineBasicBlock *HBB = I->getBlock();
+
+ SmallVector<MachineOperand, 4> HeadCond;
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ if (TII->AnalyzeBranch(*HBB, TBB, FBB, HeadCond)) {
+ continue;
+ }
+
+ // Equivalence check is to skip loops.
+ if (!TBB || TBB == HBB) {
+ continue;
+ }
+
+ SmallVector<MachineOperand, 4> TrueCond;
+ MachineBasicBlock *TBB_TBB = nullptr, *TBB_FBB = nullptr;
+ if (TII->AnalyzeBranch(*TBB, TBB_TBB, TBB_FBB, TrueCond)) {
+ continue;
+ }
+
+ MachineInstr *HeadCmpMI = findSuitableCompare(HBB);
+ if (!HeadCmpMI) {
+ continue;
+ }
+
+ MachineInstr *TrueCmpMI = findSuitableCompare(TBB);
+ if (!TrueCmpMI) {
+ continue;
+ }
+
+ AArch64CC::CondCode HeadCmp;
+ if (HeadCond.empty() || !parseCond(HeadCond, HeadCmp)) {
+ continue;
+ }
+
+ AArch64CC::CondCode TrueCmp;
+ if (TrueCond.empty() || !parseCond(TrueCond, TrueCmp)) {
+ continue;
+ }
+
+ const int HeadImm = (int)HeadCmpMI->getOperand(2).getImm();
+ const int TrueImm = (int)TrueCmpMI->getOperand(2).getImm();
+
+ DEBUG(dbgs() << "Head branch:\n");
+ DEBUG(dbgs() << "\tcondition: "
+ << AArch64CC::getCondCodeName(HeadCmp) << '\n');
+ DEBUG(dbgs() << "\timmediate: " << HeadImm << '\n');
+
+ DEBUG(dbgs() << "True branch:\n");
+ DEBUG(dbgs() << "\tcondition: "
+ << AArch64CC::getCondCodeName(TrueCmp) << '\n');
+ DEBUG(dbgs() << "\timmediate: " << TrueImm << '\n');
+
+ if (((HeadCmp == AArch64CC::GT && TrueCmp == AArch64CC::LT) ||
+ (HeadCmp == AArch64CC::LT && TrueCmp == AArch64CC::GT)) &&
+ std::abs(TrueImm - HeadImm) == 2) {
+ // This branch transforms machine instructions that correspond to
+ //
+ // 1) (a > {TrueImm} && ...) || (a < {HeadImm} && ...)
+ // 2) (a < {TrueImm} && ...) || (a > {HeadImm} && ...)
+ //
+ // into
+ //
+ // 1) (a >= {NewImm} && ...) || (a <= {NewImm} && ...)
+ // 2) (a <= {NewImm} && ...) || (a >= {NewImm} && ...)
+
+ CmpInfo HeadCmpInfo = adjustCmp(HeadCmpMI, HeadCmp);
+ CmpInfo TrueCmpInfo = adjustCmp(TrueCmpMI, TrueCmp);
+ if (std::get<0>(HeadCmpInfo) == std::get<0>(TrueCmpInfo) &&
+ std::get<1>(HeadCmpInfo) == std::get<1>(TrueCmpInfo)) {
+ modifyCmp(HeadCmpMI, HeadCmpInfo);
+ modifyCmp(TrueCmpMI, TrueCmpInfo);
+ Changed = true;
+ }
+ } else if (((HeadCmp == AArch64CC::GT && TrueCmp == AArch64CC::GT) ||
+ (HeadCmp == AArch64CC::LT && TrueCmp == AArch64CC::LT)) &&
+ std::abs(TrueImm - HeadImm) == 1) {
+ // This branch transforms machine instructions that correspond to
+ //
+ // 1) (a > {TrueImm} && ...) || (a > {HeadImm} && ...)
+ // 2) (a < {TrueImm} && ...) || (a < {HeadImm} && ...)
+ //
+ // into
+ //
+ // 1) (a <= {NewImm} && ...) || (a > {NewImm} && ...)
+ // 2) (a < {NewImm} && ...) || (a >= {NewImm} && ...)
+
+ // GT -> GE transformation increases immediate value, so picking the
+ // smaller one; LT -> LE decreases immediate value so invert the choice.
+ bool adjustHeadCond = (HeadImm < TrueImm);
+ if (HeadCmp == AArch64CC::LT) {
+ adjustHeadCond = !adjustHeadCond;
+ }
+
+ if (adjustHeadCond) {
+ Changed |= adjustTo(HeadCmpMI, HeadCmp, TrueCmpMI, TrueImm);
+ } else {
+ Changed |= adjustTo(TrueCmpMI, TrueCmp, HeadCmpMI, HeadImm);
+ }
+ }
+ // Other transformation cases almost never occur due to generation of < or >
+ // comparisons instead of <= and >=.
+ }
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp
index 452cdec..54f53dc 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ConditionalCompares.cpp
@@ -191,8 +191,8 @@ public:
/// runOnMachineFunction - Initialize per-function data structures.
void runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
}
@@ -723,7 +723,7 @@ namespace {
class AArch64ConditionalCompares : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
- const MCSchedModel *SchedModel;
+ MCSchedModel SchedModel;
// Does the proceeded function has Oz attribute.
bool MinSize;
MachineRegisterInfo *MRI;
@@ -845,7 +845,7 @@ bool AArch64ConditionalCompares::shouldConvert() {
// the cost of a misprediction.
//
// Set a limit on the delay we will accept.
- unsigned DelayLimit = SchedModel->MispredictPenalty * 3 / 4;
+ unsigned DelayLimit = SchedModel.MispredictPenalty * 3 / 4;
// Instruction depths can be computed for all trace instructions above CmpBB.
unsigned HeadDepth =
@@ -891,8 +891,8 @@ bool AArch64ConditionalCompares::tryConvert(MachineBasicBlock *MBB) {
bool AArch64ConditionalCompares::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** AArch64 Conditional Compares **********\n"
<< "********** Function: " << MF.getName() << '\n');
- TII = MF.getTarget().getInstrInfo();
- TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
SchedModel =
MF.getTarget().getSubtarget<TargetSubtargetInfo>().getSchedModel();
MRI = &MF.getRegInfo();
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp
index a2d853c..74fc167 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64DeadRegisterDefinitionsPass.cpp
@@ -14,11 +14,12 @@
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-dead-defs"
@@ -36,11 +37,11 @@ public:
static char ID; // Pass identification, replacement for typeid.
explicit AArch64DeadRegisterDefinitions() : MachineFunctionPass(ID) {}
- virtual bool runOnMachineFunction(MachineFunction &F) override;
+ bool runOnMachineFunction(MachineFunction &F) override;
const char *getPassName() const override { return "Dead register definitions"; }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -119,7 +120,7 @@ bool AArch64DeadRegisterDefinitions::processMachineBasicBlock(
// Scan the function for instructions that have a dead definition of a
// register. Replace that register with the zero register when possible.
bool AArch64DeadRegisterDefinitions::runOnMachineFunction(MachineFunction &MF) {
- TRI = MF.getTarget().getRegisterInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
bool Changed = false;
DEBUG(dbgs() << "***** AArch64DeadRegisterDefinitions *****\n");
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
index 8839085..c850680 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
@@ -16,6 +16,7 @@
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/MathExtras.h"
@@ -722,7 +723,7 @@ bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
}
bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
- TII = static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
+ TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
bool Modified = false;
for (auto &MBB : MF)
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp b/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp
index 2164d77..ca4e97b 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64FastISel.cpp
@@ -14,9 +14,11 @@
//===----------------------------------------------------------------------===//
#include "AArch64.h"
-#include "AArch64TargetMachine.h"
+#include "AArch64CallingConvention.h"
#include "AArch64Subtarget.h"
+#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
@@ -39,8 +41,7 @@ using namespace llvm;
namespace {
-class AArch64FastISel : public FastISel {
-
+class AArch64FastISel final : public FastISel {
class Address {
public:
typedef enum {
@@ -50,16 +51,23 @@ class AArch64FastISel : public FastISel {
private:
BaseKind Kind;
+ AArch64_AM::ShiftExtendType ExtType;
union {
unsigned Reg;
int FI;
} Base;
+ unsigned OffsetReg;
+ unsigned Shift;
int64_t Offset;
+ const GlobalValue *GV;
public:
- Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
+ Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
+ OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
void setKind(BaseKind K) { Kind = K; }
BaseKind getKind() const { return Kind; }
+ void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
+ AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
@@ -70,6 +78,12 @@ class AArch64FastISel : public FastISel {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
+ void setOffsetReg(unsigned Reg) {
+ OffsetReg = Reg;
+ }
+ unsigned getOffsetReg() const {
+ return OffsetReg;
+ }
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
Base.FI = FI;
@@ -80,8 +94,11 @@ class AArch64FastISel : public FastISel {
}
void setOffset(int64_t O) { Offset = O; }
int64_t getOffset() { return Offset; }
+ void setShift(unsigned S) { Shift = S; }
+ unsigned getShift() { return Shift; }
- bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
+ void setGlobalValue(const GlobalValue *G) { GV = G; }
+ const GlobalValue *getGlobalValue() { return GV; }
};
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
@@ -89,74 +106,152 @@ class AArch64FastISel : public FastISel {
const AArch64Subtarget *Subtarget;
LLVMContext *Context;
+ bool fastLowerArguments() override;
+ bool fastLowerCall(CallLoweringInfo &CLI) override;
+ bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
+
private:
// Selection routines.
- bool SelectLoad(const Instruction *I);
- bool SelectStore(const Instruction *I);
- bool SelectBranch(const Instruction *I);
- bool SelectIndirectBr(const Instruction *I);
- bool SelectCmp(const Instruction *I);
- bool SelectSelect(const Instruction *I);
- bool SelectFPExt(const Instruction *I);
- bool SelectFPTrunc(const Instruction *I);
- bool SelectFPToInt(const Instruction *I, bool Signed);
- bool SelectIntToFP(const Instruction *I, bool Signed);
- bool SelectRem(const Instruction *I, unsigned ISDOpcode);
- bool SelectCall(const Instruction *I, const char *IntrMemName);
- bool SelectIntrinsicCall(const IntrinsicInst &I);
- bool SelectRet(const Instruction *I);
- bool SelectTrunc(const Instruction *I);
- bool SelectIntExt(const Instruction *I);
- bool SelectMul(const Instruction *I);
+ bool selectAddSub(const Instruction *I);
+ bool selectLogicalOp(const Instruction *I);
+ bool selectLoad(const Instruction *I);
+ bool selectStore(const Instruction *I);
+ bool selectBranch(const Instruction *I);
+ bool selectIndirectBr(const Instruction *I);
+ bool selectCmp(const Instruction *I);
+ bool selectSelect(const Instruction *I);
+ bool selectFPExt(const Instruction *I);
+ bool selectFPTrunc(const Instruction *I);
+ bool selectFPToInt(const Instruction *I, bool Signed);
+ bool selectIntToFP(const Instruction *I, bool Signed);
+ bool selectRem(const Instruction *I, unsigned ISDOpcode);
+ bool selectRet(const Instruction *I);
+ bool selectTrunc(const Instruction *I);
+ bool selectIntExt(const Instruction *I);
+ bool selectMul(const Instruction *I);
+ bool selectShift(const Instruction *I);
+ bool selectBitCast(const Instruction *I);
+ bool selectFRem(const Instruction *I);
+ bool selectSDiv(const Instruction *I);
+ bool selectGetElementPtr(const Instruction *I);
// Utility helper routines.
bool isTypeLegal(Type *Ty, MVT &VT);
- bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
- bool ComputeAddress(const Value *Obj, Address &Addr);
- bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
- bool UseUnscaled);
- void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
- unsigned Flags, bool UseUnscaled);
- bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
- bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+ bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
+ bool isValueAvailable(const Value *V) const;
+ bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
+ bool computeCallAddress(const Value *V, Address &Addr);
+ bool simplifyAddress(Address &Addr, MVT VT);
+ void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
+ unsigned Flags, unsigned ScaleFactor,
+ MachineMemOperand *MMO);
+ bool isMemCpySmall(uint64_t Len, unsigned Alignment);
+ bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
unsigned Alignment);
- // Emit functions.
- bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
- bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
- bool UseUnscaled = false);
- bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
- bool UseUnscaled = false);
- unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
- unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+ bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
+ const Value *Cond);
+ bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
+ bool optimizeSelect(const SelectInst *SI);
+ std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
+
+ // Emit helper routines.
+ unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
+ const Value *RHS, bool SetFlags = false,
+ bool WantResult = true, bool IsZExt = false);
+ unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ bool SetFlags = false, bool WantResult = true);
+ unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
+ bool WantResult = true);
+ unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType,
+ uint64_t ShiftImm, bool SetFlags = false,
+ bool WantResult = true);
+ unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ExtType,
+ uint64_t ShiftImm, bool SetFlags = false,
+ bool WantResult = true);
- unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
- unsigned AArch64MaterializeGV(const GlobalValue *GV);
+ // Emit functions.
+ bool emitCompareAndBranch(const BranchInst *BI);
+ bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
+ bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
+ bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
+ bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
+ unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
+ MachineMemOperand *MMO = nullptr);
+ bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
+ MachineMemOperand *MMO = nullptr);
+ unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+ unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags = false, bool WantResult = true,
+ bool IsZExt = false);
+ unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
+ unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags = false, bool WantResult = true,
+ bool IsZExt = false);
+ unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
+ unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ unsigned RHSReg, bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
+ bool WantResult = true);
+ unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
+ const Value *RHS);
+ unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, uint64_t Imm);
+ unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
+ uint64_t ShiftImm);
+ unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
+ unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill);
+ unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill);
+ unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
+ uint64_t Imm, bool IsZExt = true);
+ unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill);
+ unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
+ uint64_t Imm, bool IsZExt = true);
+ unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill);
+ unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
+ uint64_t Imm, bool IsZExt = false);
+
+ unsigned materializeInt(const ConstantInt *CI, MVT VT);
+ unsigned materializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned materializeGV(const GlobalValue *GV);
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
- bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
- SmallVectorImpl<unsigned> &ArgRegs,
- SmallVectorImpl<MVT> &ArgVTs,
- SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
- SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+ bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
unsigned &NumBytes);
- bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
- const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
+ bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
public:
// Backend specific FastISel code.
- unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
- unsigned TargetMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
+ unsigned fastMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
- explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo)
- : FastISel(funcInfo, libInfo) {
+ explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo)
+ : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
Subtarget = &TM.getSubtarget<AArch64Subtarget>();
- Context = &funcInfo.Fn->getContext();
+ Context = &FuncInfo.Fn->getContext();
}
- bool TargetSelectInstruction(const Instruction *I) override;
+ bool fastSelectInstruction(const Instruction *I) override;
#include "AArch64GenFastISel.inc"
};
@@ -165,13 +260,54 @@ public:
#include "AArch64GenCallingConv.inc"
+/// \brief Check if the sign-/zero-extend will be a noop.
+static bool isIntExtFree(const Instruction *I) {
+ assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ "Unexpected integer extend instruction.");
+ assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
+ "Unexpected value type.");
+ bool IsZExt = isa<ZExtInst>(I);
+
+ if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
+ if (LI->hasOneUse())
+ return true;
+
+ if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
+ if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
+ return true;
+
+ return false;
+}
+
+/// \brief Determine the implicit scale factor that is applied by a memory
+/// operation for a given value type.
+static unsigned getImplicitScaleFactor(MVT VT) {
+ switch (VT.SimpleTy) {
+ default:
+ return 0; // invalid
+ case MVT::i1: // fall-through
+ case MVT::i8:
+ return 1;
+ case MVT::i16:
+ return 2;
+ case MVT::i32: // fall-through
+ case MVT::f32:
+ return 4;
+ case MVT::i64: // fall-through
+ case MVT::f64:
+ return 8;
+ }
+}
+
CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
if (CC == CallingConv::WebKit_JS)
return CC_AArch64_WebKit_JS;
+ if (CC == CallingConv::GHC)
+ return CC_AArch64_GHC;
return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
}
-unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
"Alloca should always return a pointer.");
@@ -183,7 +319,7 @@ unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
- unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
.addFrameIndex(SI->second)
@@ -195,28 +331,59 @@ unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
return 0;
}
-unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
+unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
+ if (VT > MVT::i64)
+ return 0;
+
+ if (!CI->isZero())
+ return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+
+ // Create a copy from the zero register to materialize a "0" value.
+ const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
+ : &AArch64::GPR32RegClass;
+ unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(ZeroReg, getKillRegState(true));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
+ // Positive zero (+0.0) has to be materialized with a fmov from the zero
+ // register, because the immediate version of fmov cannot encode zero.
+ if (CFP->isNullValue())
+ return fastMaterializeFloatZero(CFP);
+
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
const APFloat Val = CFP->getValueAPF();
- bool is64bit = (VT == MVT::f64);
-
+ bool Is64Bit = (VT == MVT::f64);
// This checks to see if we can use FMOV instructions to materialize
// a constant, otherwise we have to materialize via the constant pool.
if (TLI.isFPImmLegal(Val, VT)) {
- int Imm;
- unsigned Opc;
- if (is64bit) {
- Imm = AArch64_AM::getFP64Imm(Val);
- Opc = AArch64::FMOVDi;
- } else {
- Imm = AArch64_AM::getFP32Imm(Val);
- Opc = AArch64::FMOVSi;
- }
+ int Imm =
+ Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
+ assert((Imm != -1) && "Cannot encode floating-point constant.");
+ unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
+ return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
+ }
+
+ // For the MachO large code model materialize the FP constant in code.
+ if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
+ unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
+ const TargetRegisterClass *RC = Is64Bit ?
+ &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ unsigned TmpReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
+ .addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addImm(Imm);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(TmpReg, getKillRegState(true));
+
return ResultReg;
}
@@ -226,20 +393,20 @@ unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
if (Align == 0)
Align = DL.getTypeAllocSize(CFP->getType());
- unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+ unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
- ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE);
+ ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
- unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui;
+ unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(ADRPReg)
- .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
return ResultReg;
}
-unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
+unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
// We can't handle thread-local variables quickly yet.
if (GV->isThreadLocal())
return 0;
@@ -262,30 +429,34 @@ unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
// ADRP + LDRX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
ADRPReg)
- .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
ResultReg)
- .addReg(ADRPReg)
- .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
- AArch64II::MO_NC);
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ } else if (OpFlags & AArch64II::MO_CONSTPOOL) {
+ // We can't handle addresses loaded from a constant pool quickly yet.
+ return 0;
} else {
// ADRP + ADDX
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
- ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
+ ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
- .addReg(ADRPReg)
- .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
- .addImm(0);
+ .addReg(ADRPReg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
+ .addImm(0);
}
return ResultReg;
}
-unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
+unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
@@ -293,17 +464,48 @@ unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
return 0;
MVT VT = CEVT.getSimpleVT();
- // FIXME: Handle ConstantInt.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return AArch64MaterializeFP(CFP, VT);
+ if (const auto *CI = dyn_cast<ConstantInt>(C))
+ return materializeInt(CI, VT);
+ else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return materializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return AArch64MaterializeGV(GV);
+ return materializeGV(GV);
return 0;
}
+unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
+ assert(CFP->isNullValue() &&
+ "Floating-point constant is not a positive zero.");
+ MVT VT;
+ if (!isTypeLegal(CFP->getType(), VT))
+ return 0;
+
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return 0;
+
+ bool Is64Bit = (VT == MVT::f64);
+ unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+ unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
+ return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
+}
+
+/// \brief Check if the multiply is by a power-of-2 constant.
+static bool isMulPowOf2(const Value *I) {
+ if (const auto *MI = dyn_cast<MulOperator>(I)) {
+ if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
+ if (C->getValue().isPowerOf2())
+ return true;
+ if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
+ if (C->getValue().isPowerOf2())
+ return true;
+ }
+ return false;
+}
+
// Computes the address to get to an object.
-bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
+bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
+{
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
@@ -330,18 +532,18 @@ bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
break;
case Instruction::BitCast: {
// Look through bitcasts.
- return ComputeAddress(U->getOperand(0), Addr);
+ return computeAddress(U->getOperand(0), Addr, Ty);
}
case Instruction::IntToPtr: {
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
- return ComputeAddress(U->getOperand(0), Addr);
+ return computeAddress(U->getOperand(0), Addr, Ty);
break;
}
case Instruction::PtrToInt: {
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
- return ComputeAddress(U->getOperand(0), Addr);
+ return computeAddress(U->getOperand(0), Addr, Ty);
break;
}
case Instruction::GetElementPtr: {
@@ -383,7 +585,7 @@ bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
- if (ComputeAddress(U->getOperand(0), Addr))
+ if (computeAddress(U->getOperand(0), Addr, Ty))
return true;
// We failed, restore everything and try the other options.
@@ -403,14 +605,301 @@ bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
}
break;
}
+ case Instruction::Add: {
+ // Adds of constants are common and easy enough.
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ if (isa<ConstantInt>(LHS))
+ std::swap(LHS, RHS);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
+ return computeAddress(LHS, Addr, Ty);
+ }
+
+ Address Backup = Addr;
+ if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
+ return true;
+ Addr = Backup;
+
+ break;
+ }
+ case Instruction::Sub: {
+ // Subs of constants are common and easy enough.
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
+ return computeAddress(LHS, Addr, Ty);
+ }
+ break;
+ }
+ case Instruction::Shl: {
+ if (Addr.getOffsetReg())
+ break;
+
+ const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
+ if (!CI)
+ break;
+
+ unsigned Val = CI->getZExtValue();
+ if (Val < 1 || Val > 3)
+ break;
+
+ uint64_t NumBytes = 0;
+ if (Ty && Ty->isSized()) {
+ uint64_t NumBits = DL.getTypeSizeInBits(Ty);
+ NumBytes = NumBits / 8;
+ if (!isPowerOf2_64(NumBits))
+ NumBytes = 0;
+ }
+
+ if (NumBytes != (1ULL << Val))
+ break;
+
+ Addr.setShift(Val);
+ Addr.setExtendType(AArch64_AM::LSL);
+
+ const Value *Src = U->getOperand(0);
+ if (const auto *I = dyn_cast<Instruction>(Src))
+ if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
+ Src = I;
+
+ // Fold the zext or sext when it won't become a noop.
+ if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
+ if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ Src = ZE->getOperand(0);
+ }
+ } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
+ if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::SXTW);
+ Src = SE->getOperand(0);
+ }
+ }
+
+ if (const auto *AI = dyn_cast<BinaryOperator>(Src))
+ if (AI->getOpcode() == Instruction::And) {
+ const Value *LHS = AI->getOperand(0);
+ const Value *RHS = AI->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(LHS))
+ if (C->getValue() == 0xffffffff)
+ std::swap(LHS, RHS);
+
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 0xffffffff) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ unsigned Reg = getRegForValue(LHS);
+ if (!Reg)
+ return false;
+ bool RegIsKill = hasTrivialKill(LHS);
+ Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
+ AArch64::sub_32);
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ }
+
+ unsigned Reg = getRegForValue(Src);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ case Instruction::Mul: {
+ if (Addr.getOffsetReg())
+ break;
+
+ if (!isMulPowOf2(U))
+ break;
+
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ // Canonicalize power-of-2 value to the RHS.
+ if (const auto *C = dyn_cast<ConstantInt>(LHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(LHS, RHS);
+
+ assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
+ const auto *C = cast<ConstantInt>(RHS);
+ unsigned Val = C->getValue().logBase2();
+ if (Val < 1 || Val > 3)
+ break;
+
+ uint64_t NumBytes = 0;
+ if (Ty && Ty->isSized()) {
+ uint64_t NumBits = DL.getTypeSizeInBits(Ty);
+ NumBytes = NumBits / 8;
+ if (!isPowerOf2_64(NumBits))
+ NumBytes = 0;
+ }
+
+ if (NumBytes != (1ULL << Val))
+ break;
+
+ Addr.setShift(Val);
+ Addr.setExtendType(AArch64_AM::LSL);
+
+ const Value *Src = LHS;
+ if (const auto *I = dyn_cast<Instruction>(Src))
+ if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
+ Src = I;
+
+
+ // Fold the zext or sext when it won't become a noop.
+ if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
+ if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ Src = ZE->getOperand(0);
+ }
+ } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
+ if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::SXTW);
+ Src = SE->getOperand(0);
+ }
+ }
+
+ unsigned Reg = getRegForValue(Src);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ case Instruction::And: {
+ if (Addr.getOffsetReg())
+ break;
+
+ if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
+ break;
+
+ const Value *LHS = U->getOperand(0);
+ const Value *RHS = U->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(LHS))
+ if (C->getValue() == 0xffffffff)
+ std::swap(LHS, RHS);
+
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 0xffffffff) {
+ Addr.setShift(0);
+ Addr.setExtendType(AArch64_AM::LSL);
+ Addr.setExtendType(AArch64_AM::UXTW);
+
+ unsigned Reg = getRegForValue(LHS);
+ if (!Reg)
+ return false;
+ bool RegIsKill = hasTrivialKill(LHS);
+ Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
+ AArch64::sub_32);
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ break;
+ }
+ case Instruction::SExt:
+ case Instruction::ZExt: {
+ if (!Addr.getReg() || Addr.getOffsetReg())
+ break;
+
+ const Value *Src = nullptr;
+ // Fold the zext or sext when it won't become a noop.
+ if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
+ if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::UXTW);
+ Src = ZE->getOperand(0);
+ }
+ } else if (const auto *SE = dyn_cast<SExtInst>(U)) {
+ if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
+ Addr.setExtendType(AArch64_AM::SXTW);
+ Src = SE->getOperand(0);
+ }
+ }
+
+ if (!Src)
+ break;
+
+ Addr.setShift(0);
+ unsigned Reg = getRegForValue(Src);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+ } // end switch
+
+ if (Addr.isRegBase() && !Addr.getReg()) {
+ unsigned Reg = getRegForValue(Obj);
+ if (!Reg)
+ return false;
+ Addr.setReg(Reg);
+ return true;
+ }
+
+ if (!Addr.getOffsetReg()) {
+ unsigned Reg = getRegForValue(Obj);
+ if (!Reg)
+ return false;
+ Addr.setOffsetReg(Reg);
+ return true;
+ }
+
+ return false;
+}
+
+bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
+ const User *U = nullptr;
+ unsigned Opcode = Instruction::UserOp1;
+ bool InMBB = true;
+
+ if (const auto *I = dyn_cast<Instruction>(V)) {
+ Opcode = I->getOpcode();
+ U = I;
+ InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
+ } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts if its operand is in the same BB.
+ if (InMBB)
+ return computeCallAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return computeCallAddress(U->getOperand(0), Addr);
+ break;
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints if its operand is in the same BB.
+ if (InMBB &&
+ TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return computeCallAddress(U->getOperand(0), Addr);
+ break;
+ }
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Addr.setGlobalValue(GV);
+ return true;
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!Addr.getGlobalValue()) {
+ Addr.setReg(getRegForValue(V));
+ return Addr.getReg() != 0;
}
- // Try to get this in a register if nothing else has worked.
- if (!Addr.isValid())
- Addr.setReg(getRegForValue(Obj));
- return Addr.isValid();
+ return false;
}
+
bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
@@ -428,62 +917,122 @@ bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
return TLI.isTypeLegal(VT);
}
-bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
+/// \brief Determine if the value type is supported by FastISel.
+///
+/// FastISel for AArch64 can handle more value types than are legal. This adds
+/// simple value type such as i1, i8, and i16.
+bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
+ if (Ty->isVectorTy() && !IsVectorAllowed)
+ return false;
+
if (isTypeLegal(Ty, VT))
return true;
// If this is a type than can be sign or zero-extended to a basic operation
- // go ahead and accept it now. For stores, this reflects truncation.
+ // go ahead and accept it now.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
-bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
- int64_t ScaleFactor, bool UseUnscaled) {
- bool needsLowering = false;
- int64_t Offset = Addr.getOffset();
- switch (VT.SimpleTy) {
- default:
+bool AArch64FastISel::isValueAvailable(const Value *V) const {
+ if (!isa<Instruction>(V))
+ return true;
+
+ const auto *I = cast<Instruction>(V);
+ if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
+ return true;
+
+ return false;
+}
+
+bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
+ unsigned ScaleFactor = getImplicitScaleFactor(VT);
+ if (!ScaleFactor)
return false;
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
- case MVT::f32:
- case MVT::f64:
- if (!UseUnscaled)
- // Using scaled, 12-bit, unsigned immediate offsets.
- needsLowering = ((Offset & 0xfff) != Offset);
- else
- // Using unscaled, 9-bit, signed immediate offsets.
- needsLowering = (Offset > 256 || Offset < -256);
- break;
- }
- //If this is a stack pointer and the offset needs to be simplified then put
+ bool ImmediateOffsetNeedsLowering = false;
+ bool RegisterOffsetNeedsLowering = false;
+ int64_t Offset = Addr.getOffset();
+ if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
+ ImmediateOffsetNeedsLowering = true;
+ else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
+ !isUInt<12>(Offset / ScaleFactor))
+ ImmediateOffsetNeedsLowering = true;
+
+ // Cannot encode an offset register and an immediate offset in the same
+ // instruction. Fold the immediate offset into the load/store instruction and
+ // emit an additonal add to take care of the offset register.
+ if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
+ RegisterOffsetNeedsLowering = true;
+
+ // Cannot encode zero register as base.
+ if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
+ RegisterOffsetNeedsLowering = true;
+
+ // If this is a stack pointer and the offset needs to be simplified then put
// the alloca address into a register, set the base type back to register and
// continue. This should almost never happen.
- if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
- unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
+ {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
ResultReg)
- .addFrameIndex(Addr.getFI())
- .addImm(0)
- .addImm(0);
+ .addFrameIndex(Addr.getFI())
+ .addImm(0)
+ .addImm(0);
Addr.setKind(Address::RegBase);
Addr.setReg(ResultReg);
}
+ if (RegisterOffsetNeedsLowering) {
+ unsigned ResultReg = 0;
+ if (Addr.getReg()) {
+ if (Addr.getExtendType() == AArch64_AM::SXTW ||
+ Addr.getExtendType() == AArch64_AM::UXTW )
+ ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
+ /*TODO:IsKill=*/false, Addr.getOffsetReg(),
+ /*TODO:IsKill=*/false, Addr.getExtendType(),
+ Addr.getShift());
+ else
+ ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
+ /*TODO:IsKill=*/false, Addr.getOffsetReg(),
+ /*TODO:IsKill=*/false, AArch64_AM::LSL,
+ Addr.getShift());
+ } else {
+ if (Addr.getExtendType() == AArch64_AM::UXTW)
+ ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
+ /*Op0IsKill=*/false, Addr.getShift(),
+ /*IsZExt=*/true);
+ else if (Addr.getExtendType() == AArch64_AM::SXTW)
+ ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
+ /*Op0IsKill=*/false, Addr.getShift(),
+ /*IsZExt=*/false);
+ else
+ ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
+ /*Op0IsKill=*/false, Addr.getShift());
+ }
+ if (!ResultReg)
+ return false;
+
+ Addr.setReg(ResultReg);
+ Addr.setOffsetReg(0);
+ Addr.setShift(0);
+ Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
+ }
+
// Since the offset is too large for the load/store instruction get the
// reg+offset into a register.
- if (needsLowering) {
- uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
- unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
- UnscaledOffset, MVT::i64);
- if (ResultReg == 0)
+ if (ImmediateOffsetNeedsLowering) {
+ unsigned ResultReg;
+ if (Addr.getReg())
+ // Try to fold the immediate into the add instruction.
+ ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
+ else
+ ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
+
+ if (!ResultReg)
return false;
Addr.setReg(ResultReg);
Addr.setOffset(0);
@@ -491,222 +1040,1021 @@ bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
return true;
}
-void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
+void AArch64FastISel::addLoadStoreOperands(Address &Addr,
const MachineInstrBuilder &MIB,
- unsigned Flags, bool UseUnscaled) {
- int64_t Offset = Addr.getOffset();
+ unsigned Flags,
+ unsigned ScaleFactor,
+ MachineMemOperand *MMO) {
+ int64_t Offset = Addr.getOffset() / ScaleFactor;
// Frame base works a bit differently. Handle it separately.
- if (Addr.getKind() == Address::FrameIndexBase) {
+ if (Addr.isFIBase()) {
int FI = Addr.getFI();
// FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
// and alignment should be based on the VT.
- MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
- MachinePointerInfo::getFixedStack(FI, Offset), Flags,
- MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
+ MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI, Offset), Flags,
+ MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
// Now add the rest of the operands.
- MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
+ MIB.addFrameIndex(FI).addImm(Offset);
} else {
- // Now add the rest of the operands.
- MIB.addReg(Addr.getReg());
- MIB.addImm(Offset);
+ assert(Addr.isRegBase() && "Unexpected address kind.");
+ const MCInstrDesc &II = MIB->getDesc();
+ unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
+ Addr.setReg(
+ constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
+ Addr.setOffsetReg(
+ constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
+ if (Addr.getOffsetReg()) {
+ assert(Addr.getOffset() == 0 && "Unexpected offset");
+ bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
+ Addr.getExtendType() == AArch64_AM::SXTX;
+ MIB.addReg(Addr.getReg());
+ MIB.addReg(Addr.getOffsetReg());
+ MIB.addImm(IsSigned);
+ MIB.addImm(Addr.getShift() != 0);
+ } else
+ MIB.addReg(Addr.getReg()).addImm(Offset);
}
+
+ if (MMO)
+ MIB.addMemOperand(MMO);
}
-bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
- bool UseUnscaled) {
- // Negative offsets require unscaled, 9-bit, signed immediate offsets.
- // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
- if (!UseUnscaled && Addr.getOffset() < 0)
- UseUnscaled = true;
+unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
+ const Value *RHS, bool SetFlags,
+ bool WantResult, bool IsZExt) {
+ AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
+ bool NeedExtend = false;
+ switch (RetVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ NeedExtend = true;
+ break;
+ case MVT::i8:
+ NeedExtend = true;
+ ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
+ break;
+ case MVT::i16:
+ NeedExtend = true;
+ ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
+ break;
+ case MVT::i32: // fall-through
+ case MVT::i64:
+ break;
+ }
+ MVT SrcVT = RetVT;
+ RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
+
+ // Canonicalize immediates to the RHS first.
+ if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize mul by power of 2 to the RHS.
+ if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
+ if (isMulPowOf2(LHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize shift immediate to the RHS.
+ if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
+ if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
+ if (isa<ConstantInt>(SI->getOperand(1)))
+ if (SI->getOpcode() == Instruction::Shl ||
+ SI->getOpcode() == Instruction::LShr ||
+ SI->getOpcode() == Instruction::AShr )
+ std::swap(LHS, RHS);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return 0;
+ bool LHSIsKill = hasTrivialKill(LHS);
- unsigned Opc;
+ if (NeedExtend)
+ LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
+
+ unsigned ResultReg = 0;
+ if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
+ uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
+ if (C->isNegative())
+ ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
+ SetFlags, WantResult);
+ else
+ ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
+ WantResult);
+ } else if (const auto *C = dyn_cast<Constant>(RHS))
+ if (C->isNullValue())
+ ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
+ WantResult);
+
+ if (ResultReg)
+ return ResultReg;
+
+ // Only extend the RHS within the instruction if there is a valid extend type.
+ if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
+ isValueAvailable(RHS)) {
+ if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
+ if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
+ if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
+ unsigned RHSReg = getRegForValue(SI->getOperand(0));
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
+ return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ExtendType, C->getZExtValue(),
+ SetFlags, WantResult);
+ }
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(RHS);
+ return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ ExtendType, 0, SetFlags, WantResult);
+ }
+
+ // Check if the mul can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (isMulPowOf2(RHS)) {
+ const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
+ const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(MulLHS, MulRHS);
+
+ assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
+ uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
+ unsigned RHSReg = getRegForValue(MulLHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(MulLHS);
+ return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ AArch64_AM::LSL, ShiftVal, SetFlags, WantResult);
+ }
+
+ // Check if the shift can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
+ if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
+ switch (SI->getOpcode()) {
+ default: break;
+ case Instruction::Shl: ShiftType = AArch64_AM::LSL; break;
+ case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
+ case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
+ }
+ uint64_t ShiftVal = C->getZExtValue();
+ if (ShiftType != AArch64_AM::InvalidShiftExtend) {
+ unsigned RHSReg = getRegForValue(SI->getOperand(0));
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
+ return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftType, ShiftVal, SetFlags,
+ WantResult);
+ }
+ }
+ }
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (NeedExtend)
+ RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
+
+ return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ SetFlags, WantResult);
+}
+
+unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill, bool SetFlags,
+ bool WantResult) {
+ assert(LHSReg && RHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWrr, AArch64::SUBXrr },
+ { AArch64::ADDWrr, AArch64::ADDXrr } },
+ { { AArch64::SUBSWrr, AArch64::SUBSXrr },
+ { AArch64::ADDSWrr, AArch64::ADDSXrr } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, uint64_t Imm,
+ bool SetFlags, bool WantResult) {
+ assert(LHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ unsigned ShiftImm;
+ if (isUInt<12>(Imm))
+ ShiftImm = 0;
+ else if ((Imm & 0xfff000) == Imm) {
+ ShiftImm = 12;
+ Imm >>= 12;
+ } else
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWri, AArch64::SUBXri },
+ { AArch64::ADDWri, AArch64::ADDXri } },
+ { { AArch64::SUBSWri, AArch64::SUBSXri },
+ { AArch64::ADDSWri, AArch64::ADDSXri } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
const TargetRegisterClass *RC;
- bool VTIsi1 = false;
- int64_t ScaleFactor = 0;
+ if (SetFlags)
+ RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ else
+ RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addImm(Imm)
+ .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType,
+ uint64_t ShiftImm, bool SetFlags,
+ bool WantResult) {
+ assert(LHSReg && RHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWrs, AArch64::SUBXrs },
+ { AArch64::ADDWrs, AArch64::ADDXrs } },
+ { { AArch64::SUBSWrs, AArch64::SUBSXrs },
+ { AArch64::ADDSWrs, AArch64::ADDSXrs } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill))
+ .addImm(getShifterImm(ShiftType, ShiftImm));
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ExtType,
+ uint64_t ShiftImm, bool SetFlags,
+ bool WantResult) {
+ assert(LHSReg && RHSReg && "Invalid register number.");
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return 0;
+
+ static const unsigned OpcTable[2][2][2] = {
+ { { AArch64::SUBWrx, AArch64::SUBXrx },
+ { AArch64::ADDWrx, AArch64::ADDXrx } },
+ { { AArch64::SUBSWrx, AArch64::SUBSXrx },
+ { AArch64::ADDSWrx, AArch64::ADDSXrx } }
+ };
+ bool Is64Bit = RetVT == MVT::i64;
+ unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
+ const TargetRegisterClass *RC = nullptr;
+ if (SetFlags)
+ RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ else
+ RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
+ unsigned ResultReg;
+ if (WantResult)
+ ResultReg = createResultReg(RC);
+ else
+ ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
+
+ const MCInstrDesc &II = TII.get(Opc);
+ LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
+ RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill))
+ .addImm(getArithExtendImm(ExtType, ShiftImm));
+ return ResultReg;
+}
+
+bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
+ Type *Ty = LHS->getType();
+ EVT EVT = TLI.getValueType(Ty, true);
+ if (!EVT.isSimple())
+ return false;
+ MVT VT = EVT.getSimpleVT();
+
switch (VT.SimpleTy) {
default:
return false;
case MVT::i1:
- VTIsi1 = true;
- // Intentional fall-through.
case MVT::i8:
- Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ return emitICmp(VT, LHS, RHS, IsZExt);
+ case MVT::f32:
+ case MVT::f64:
+ return emitFCmp(VT, LHS, RHS);
+ }
+}
+
+bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool IsZExt) {
+ return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
+ IsZExt) != 0;
+}
+
+bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ uint64_t Imm) {
+ return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
+ /*SetFlags=*/true, /*WantResult=*/false) != 0;
+}
+
+bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
+ if (RetVT != MVT::f32 && RetVT != MVT::f64)
+ return false;
+
+ // Check to see if the 2nd operand is a constant that we can encode directly
+ // in the compare.
+ bool UseImm = false;
+ if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
+ if (CFP->isZero() && !CFP->isNegative())
+ UseImm = true;
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ if (UseImm) {
+ unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ return true;
+ }
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return false;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(LHSReg, getKillRegState(LHSIsKill))
+ .addReg(RHSReg, getKillRegState(RHSIsKill));
+ return true;
+}
+
+unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags, bool WantResult, bool IsZExt) {
+ return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
+ IsZExt);
+}
+
+/// \brief This method is a wrapper to simplify add emission.
+///
+/// First try to emit an add with an immediate operand using emitAddSub_ri. If
+/// that fails, then try to materialize the immediate into a register and use
+/// emitAddSub_rr instead.
+unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
+ int64_t Imm) {
+ unsigned ResultReg;
+ if (Imm < 0)
+ ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
+ else
+ ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
+
+ if (ResultReg)
+ return ResultReg;
+
+ unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
+ if (!CReg)
+ return 0;
+
+ ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
+ bool SetFlags, bool WantResult, bool IsZExt) {
+ return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
+ IsZExt);
+}
+
+unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill, bool WantResult) {
+ return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, /*SetFlags=*/true, WantResult);
+}
+
+unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
+ bool LHSIsKill, unsigned RHSReg,
+ bool RHSIsKill,
+ AArch64_AM::ShiftExtendType ShiftType,
+ uint64_t ShiftImm, bool WantResult) {
+ return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
+ WantResult);
+}
+
+unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
+ const Value *LHS, const Value *RHS) {
+ // Canonicalize immediates to the RHS first.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize mul by power-of-2 to the RHS.
+ if (LHS->hasOneUse() && isValueAvailable(LHS))
+ if (isMulPowOf2(LHS))
+ std::swap(LHS, RHS);
+
+ // Canonicalize shift immediate to the RHS.
+ if (LHS->hasOneUse() && isValueAvailable(LHS))
+ if (const auto *SI = dyn_cast<ShlOperator>(LHS))
+ if (isa<ConstantInt>(SI->getOperand(1)))
+ std::swap(LHS, RHS);
+
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return 0;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned ResultReg = 0;
+ if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
+ uint64_t Imm = C->getZExtValue();
+ ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
+ }
+ if (ResultReg)
+ return ResultReg;
+
+ // Check if the mul can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (isMulPowOf2(RHS)) {
+ const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
+ const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(MulLHS, MulRHS);
+
+ assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
+ uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
+
+ unsigned RHSReg = getRegForValue(MulLHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(MulLHS);
+ return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftVal);
+ }
+
+ // Check if the shift can be folded into the instruction.
+ if (RHS->hasOneUse() && isValueAvailable(RHS))
+ if (const auto *SI = dyn_cast<ShlOperator>(RHS))
+ if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ uint64_t ShiftVal = C->getZExtValue();
+ unsigned RHSReg = getRegForValue(SI->getOperand(0));
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
+ return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
+ RHSIsKill, ShiftVal);
+ }
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return 0;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
+ ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
+ uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
+ unsigned LHSReg, bool LHSIsKill,
+ uint64_t Imm) {
+ assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
+ "ISD nodes are not consecutive!");
+ static const unsigned OpcTable[3][2] = {
+ { AArch64::ANDWri, AArch64::ANDXri },
+ { AArch64::ORRWri, AArch64::ORRXri },
+ { AArch64::EORWri, AArch64::EORXri }
+ };
+ const TargetRegisterClass *RC;
+ unsigned Opc;
+ unsigned RegSize;
+ switch (RetVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32: {
+ unsigned Idx = ISDOpc - ISD::AND;
+ Opc = OpcTable[Idx][0];
+ RC = &AArch64::GPR32spRegClass;
+ RegSize = 32;
+ break;
+ }
+ case MVT::i64:
+ Opc = OpcTable[ISDOpc - ISD::AND][1];
+ RC = &AArch64::GPR64spRegClass;
+ RegSize = 64;
+ break;
+ }
+
+ if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
+ return 0;
+
+ unsigned ResultReg =
+ fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
+ AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
+ if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
+ uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
+ unsigned LHSReg, bool LHSIsKill,
+ unsigned RHSReg, bool RHSIsKill,
+ uint64_t ShiftImm) {
+ assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
+ "ISD nodes are not consecutive!");
+ static const unsigned OpcTable[3][2] = {
+ { AArch64::ANDWrs, AArch64::ANDXrs },
+ { AArch64::ORRWrs, AArch64::ORRXrs },
+ { AArch64::EORWrs, AArch64::EORXrs }
+ };
+ const TargetRegisterClass *RC;
+ unsigned Opc;
+ switch (RetVT.SimpleTy) {
+ default:
+ return 0;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ Opc = OpcTable[ISDOpc - ISD::AND][0];
RC = &AArch64::GPR32RegClass;
+ break;
+ case MVT::i64:
+ Opc = OpcTable[ISDOpc - ISD::AND][1];
+ RC = &AArch64::GPR64RegClass;
+ break;
+ }
+ unsigned ResultReg =
+ fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
+ if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
+ uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ }
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
+ uint64_t Imm) {
+ return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
+}
+
+unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
+ bool WantZExt, MachineMemOperand *MMO) {
+ // Simplify this down to something we can handle.
+ if (!simplifyAddress(Addr, VT))
+ return 0;
+
+ unsigned ScaleFactor = getImplicitScaleFactor(VT);
+ if (!ScaleFactor)
+ llvm_unreachable("Unexpected value type.");
+
+ // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+ // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+ bool UseScaled = true;
+ if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
+ UseScaled = false;
ScaleFactor = 1;
+ }
+
+ static const unsigned GPOpcTable[2][8][4] = {
+ // Sign-extend.
+ { { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi,
+ AArch64::LDURXi },
+ { AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi,
+ AArch64::LDURXi },
+ { AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui,
+ AArch64::LDRXui },
+ { AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui,
+ AArch64::LDRXui },
+ { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
+ AArch64::LDRXroW },
+ { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
+ AArch64::LDRXroW }
+ },
+ // Zero-extend.
+ { { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
+ AArch64::LDURXi },
+ { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
+ AArch64::LDURXi },
+ { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
+ AArch64::LDRXui },
+ { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
+ AArch64::LDRXui },
+ { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
+ AArch64::LDRXroX },
+ { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
+ AArch64::LDRXroW },
+ { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
+ AArch64::LDRXroW }
+ }
+ };
+
+ static const unsigned FPOpcTable[4][2] = {
+ { AArch64::LDURSi, AArch64::LDURDi },
+ { AArch64::LDRSui, AArch64::LDRDui },
+ { AArch64::LDRSroX, AArch64::LDRDroX },
+ { AArch64::LDRSroW, AArch64::LDRDroW }
+ };
+
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
+ Addr.getOffsetReg();
+ unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
+ if (Addr.getExtendType() == AArch64_AM::UXTW ||
+ Addr.getExtendType() == AArch64_AM::SXTW)
+ Idx++;
+
+ bool IsRet64Bit = RetVT == MVT::i64;
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("Unexpected value type.");
+ case MVT::i1: // Intentional fall-through.
+ case MVT::i8:
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
+ RC = (IsRet64Bit && !WantZExt) ?
+ &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i16:
- Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
- RC = &AArch64::GPR32RegClass;
- ScaleFactor = 2;
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
+ RC = (IsRet64Bit && !WantZExt) ?
+ &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i32:
- Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
- RC = &AArch64::GPR32RegClass;
- ScaleFactor = 4;
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
+ RC = (IsRet64Bit && !WantZExt) ?
+ &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
break;
case MVT::i64:
- Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
+ Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
RC = &AArch64::GPR64RegClass;
- ScaleFactor = 8;
break;
case MVT::f32:
- Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
- RC = TLI.getRegClassFor(VT);
- ScaleFactor = 4;
+ Opc = FPOpcTable[Idx][0];
+ RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
- Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
- RC = TLI.getRegClassFor(VT);
- ScaleFactor = 8;
+ Opc = FPOpcTable[Idx][1];
+ RC = &AArch64::FPR64RegClass;
break;
}
- // Scale the offset.
- if (!UseUnscaled) {
- int64_t Offset = Addr.getOffset();
- if (Offset & (ScaleFactor - 1))
- // Retry using an unscaled, 9-bit, signed immediate offset.
- return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
-
- Addr.setOffset(Offset / ScaleFactor);
- }
-
- // Simplify this down to something we can handle.
- if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
- return false;
// Create the base instruction, then add the operands.
- ResultReg = createResultReg(RC);
+ unsigned ResultReg = createResultReg(RC);
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg);
- AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
+ addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
// Loading an i1 requires special handling.
- if (VTIsi1) {
- MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(ResultReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ if (VT == MVT::i1) {
+ unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
+ assert(ANDReg && "Unexpected AND instruction emission failure.");
ResultReg = ANDReg;
}
+
+ // For zero-extending loads to 64bit we emit a 32bit load and then convert
+ // the 32bit reg to a 64bit reg.
+ if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
+ unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Reg64)
+ .addImm(0)
+ .addReg(ResultReg, getKillRegState(true))
+ .addImm(AArch64::sub_32);
+ ResultReg = Reg64;
+ }
+ return ResultReg;
+}
+
+bool AArch64FastISel::selectAddSub(const Instruction *I) {
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
+ return false;
+
+ if (VT.isVector())
+ return selectOperator(I, I->getOpcode());
+
+ unsigned ResultReg;
+ switch (I->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instruction.");
+ case Instruction::Add:
+ ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
+ break;
+ case Instruction::Sub:
+ ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
+ break;
+ }
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
+ return false;
+
+ if (VT.isVector())
+ return selectOperator(I, I->getOpcode());
+
+ unsigned ResultReg;
+ switch (I->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instruction.");
+ case Instruction::And:
+ ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
+ break;
+ case Instruction::Or:
+ ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
+ break;
+ case Instruction::Xor:
+ ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
+ break;
+ }
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectLoad(const Instruction *I) {
+bool AArch64FastISel::selectLoad(const Instruction *I) {
MVT VT;
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
- if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
+ cast<LoadInst>(I)->isAtomic())
return false;
// See if we can handle this address.
Address Addr;
- if (!ComputeAddress(I->getOperand(0), Addr))
+ if (!computeAddress(I->getOperand(0), Addr, I->getType()))
return false;
- unsigned ResultReg;
- if (!EmitLoad(VT, ResultReg, Addr))
+ // Fold the following sign-/zero-extend into the load instruction.
+ bool WantZExt = true;
+ MVT RetVT = VT;
+ const Value *IntExtVal = nullptr;
+ if (I->hasOneUse()) {
+ if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
+ if (isTypeSupported(ZE->getType(), RetVT))
+ IntExtVal = ZE;
+ else
+ RetVT = VT;
+ } else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
+ if (isTypeSupported(SE->getType(), RetVT))
+ IntExtVal = SE;
+ else
+ RetVT = VT;
+ WantZExt = false;
+ }
+ }
+
+ unsigned ResultReg =
+ emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
+ if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+ // There are a few different cases we have to handle, because the load or the
+ // sign-/zero-extend might not be selected by FastISel if we fall-back to
+ // SelectionDAG. There is also an ordering issue when both instructions are in
+ // different basic blocks.
+ // 1.) The load instruction is selected by FastISel, but the integer extend
+ // not. This usually happens when the integer extend is in a different
+ // basic block and SelectionDAG took over for that basic block.
+ // 2.) The load instruction is selected before the integer extend. This only
+ // happens when the integer extend is in a different basic block.
+ // 3.) The load instruction is selected by SelectionDAG and the integer extend
+ // by FastISel. This happens if there are instructions between the load
+ // and the integer extend that couldn't be selected by FastISel.
+ if (IntExtVal) {
+ // The integer extend hasn't been emitted yet. FastISel or SelectionDAG
+ // could select it. Emit a copy to subreg if necessary. FastISel will remove
+ // it when it selects the integer extend.
+ unsigned Reg = lookUpRegForValue(IntExtVal);
+ if (!Reg) {
+ if (RetVT == MVT::i64 && VT <= MVT::i32) {
+ if (WantZExt) {
+ // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
+ std::prev(FuncInfo.InsertPt)->eraseFromParent();
+ ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
+ } else
+ ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
+ /*IsKill=*/true,
+ AArch64::sub_32);
+ }
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ // The integer extend has already been emitted - delete all the instructions
+ // that have been emitted by the integer extend lowering code and use the
+ // result from the load instruction directly.
+ while (Reg) {
+ auto *MI = MRI.getUniqueVRegDef(Reg);
+ if (!MI)
+ break;
+ Reg = 0;
+ for (auto &Opnd : MI->uses()) {
+ if (Opnd.isReg()) {
+ Reg = Opnd.getReg();
+ break;
+ }
+ }
+ MI->eraseFromParent();
+ }
+ updateValueMap(IntExtVal, ResultReg);
+ return true;
+ }
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
- bool UseUnscaled) {
+bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
+ MachineMemOperand *MMO) {
+ // Simplify this down to something we can handle.
+ if (!simplifyAddress(Addr, VT))
+ return false;
+
+ unsigned ScaleFactor = getImplicitScaleFactor(VT);
+ if (!ScaleFactor)
+ llvm_unreachable("Unexpected value type.");
+
// Negative offsets require unscaled, 9-bit, signed immediate offsets.
// Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
- if (!UseUnscaled && Addr.getOffset() < 0)
- UseUnscaled = true;
-
- unsigned StrOpc;
- bool VTIsi1 = false;
- int64_t ScaleFactor = 0;
- // Using scaled, 12-bit, unsigned immediate offsets.
- switch (VT.SimpleTy) {
- default:
- return false;
- case MVT::i1:
- VTIsi1 = true;
- case MVT::i8:
- StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
+ bool UseScaled = true;
+ if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
+ UseScaled = false;
ScaleFactor = 1;
- break;
- case MVT::i16:
- StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
- ScaleFactor = 2;
- break;
- case MVT::i32:
- StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
- ScaleFactor = 4;
- break;
- case MVT::i64:
- StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
- ScaleFactor = 8;
- break;
- case MVT::f32:
- StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
- ScaleFactor = 4;
- break;
- case MVT::f64:
- StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
- ScaleFactor = 8;
- break;
}
- // Scale the offset.
- if (!UseUnscaled) {
- int64_t Offset = Addr.getOffset();
- if (Offset & (ScaleFactor - 1))
- // Retry using an unscaled, 9-bit, signed immediate offset.
- return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
- Addr.setOffset(Offset / ScaleFactor);
- }
+ static const unsigned OpcTable[4][6] = {
+ { AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi,
+ AArch64::STURSi, AArch64::STURDi },
+ { AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui,
+ AArch64::STRSui, AArch64::STRDui },
+ { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
+ AArch64::STRSroX, AArch64::STRDroX },
+ { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
+ AArch64::STRSroW, AArch64::STRDroW }
+ };
- // Simplify this down to something we can handle.
- if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
- return false;
+ unsigned Opc;
+ bool VTIsi1 = false;
+ bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
+ Addr.getOffsetReg();
+ unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
+ if (Addr.getExtendType() == AArch64_AM::UXTW ||
+ Addr.getExtendType() == AArch64_AM::SXTW)
+ Idx++;
+
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type.");
+ case MVT::i1: VTIsi1 = true;
+ case MVT::i8: Opc = OpcTable[Idx][0]; break;
+ case MVT::i16: Opc = OpcTable[Idx][1]; break;
+ case MVT::i32: Opc = OpcTable[Idx][2]; break;
+ case MVT::i64: Opc = OpcTable[Idx][3]; break;
+ case MVT::f32: Opc = OpcTable[Idx][4]; break;
+ case MVT::f64: Opc = OpcTable[Idx][5]; break;
+ }
// Storing an i1 requires special handling.
- if (VTIsi1) {
- MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(SrcReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ if (VTIsi1 && SrcReg != AArch64::WZR) {
+ unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
+ assert(ANDReg && "Unexpected AND instruction emission failure.");
SrcReg = ANDReg;
}
// Create the base instruction, then add the operands.
- MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(StrOpc)).addReg(SrcReg);
- AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
+ const MCInstrDesc &II = TII.get(Opc);
+ SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
+ addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
+
return true;
}
-bool AArch64FastISel::SelectStore(const Instruction *I) {
+bool AArch64FastISel::selectStore(const Instruction *I) {
MVT VT;
- Value *Op0 = I->getOperand(0);
+ const Value *Op0 = I->getOperand(0);
// Verify we have a legal type before going any further. Currently, we handle
// simple types that will directly fit in a register (i32/f32/i64/f64) or
// those that can be sign or zero-extended to a basic operation (i1/i8/i16).
- if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
+ if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
cast<StoreInst>(I)->isAtomic())
return false;
- // Get the value to be stored into a register.
- unsigned SrcReg = getRegForValue(Op0);
- if (SrcReg == 0)
+ // Get the value to be stored into a register. Use the zero register directly
+ // when possible to avoid an unnecessary copy and a wasted register.
+ unsigned SrcReg = 0;
+ if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
+ if (CI->isZero())
+ SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ } else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
+ if (CF->isZero() && !CF->isNegative()) {
+ VT = MVT::getIntegerVT(VT.getSizeInBits());
+ SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ }
+ }
+
+ if (!SrcReg)
+ SrcReg = getRegForValue(Op0);
+
+ if (!SrcReg)
return false;
// See if we can handle this address.
Address Addr;
- if (!ComputeAddress(I->getOperand(1), Addr))
+ if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
return false;
- if (!EmitStore(VT, SrcReg, Addr))
+ if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
return false;
return true;
}
@@ -757,58 +2105,235 @@ static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
}
}
-bool AArch64FastISel::SelectBranch(const Instruction *I) {
+/// \brief Try to emit a combined compare-and-branch instruction.
+bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
+ assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
+ const CmpInst *CI = cast<CmpInst>(BI->getCondition());
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+
+ const Value *LHS = CI->getOperand(0);
+ const Value *RHS = CI->getOperand(1);
+
+ MVT VT;
+ if (!isTypeSupported(LHS->getType(), VT))
+ return false;
+
+ unsigned BW = VT.getSizeInBits();
+ if (BW > 64)
+ return false;
+
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Try to take advantage of fallthrough opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ int TestBit = -1;
+ bool IsCmpNE;
+ switch (Predicate) {
+ default:
+ return false;
+ case CmpInst::ICMP_EQ:
+ case CmpInst::ICMP_NE:
+ if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
+ std::swap(LHS, RHS);
+
+ if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
+ return false;
+
+ if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
+ if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
+ const Value *AndLHS = AI->getOperand(0);
+ const Value *AndRHS = AI->getOperand(1);
+
+ if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
+ if (C->getValue().isPowerOf2())
+ std::swap(AndLHS, AndRHS);
+
+ if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
+ if (C->getValue().isPowerOf2()) {
+ TestBit = C->getValue().logBase2();
+ LHS = AndLHS;
+ }
+ }
+
+ if (VT == MVT::i1)
+ TestBit = 0;
+
+ IsCmpNE = Predicate == CmpInst::ICMP_NE;
+ break;
+ case CmpInst::ICMP_SLT:
+ case CmpInst::ICMP_SGE:
+ if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
+ return false;
+
+ TestBit = BW - 1;
+ IsCmpNE = Predicate == CmpInst::ICMP_SLT;
+ break;
+ case CmpInst::ICMP_SGT:
+ case CmpInst::ICMP_SLE:
+ if (!isa<ConstantInt>(RHS))
+ return false;
+
+ if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
+ return false;
+
+ TestBit = BW - 1;
+ IsCmpNE = Predicate == CmpInst::ICMP_SLE;
+ break;
+ } // end switch
+
+ static const unsigned OpcTable[2][2][2] = {
+ { {AArch64::CBZW, AArch64::CBZX },
+ {AArch64::CBNZW, AArch64::CBNZX} },
+ { {AArch64::TBZW, AArch64::TBZX },
+ {AArch64::TBNZW, AArch64::TBNZX} }
+ };
+
+ bool IsBitTest = TestBit != -1;
+ bool Is64Bit = BW == 64;
+ if (TestBit < 32 && TestBit >= 0)
+ Is64Bit = false;
+
+ unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
+ const MCInstrDesc &II = TII.get(Opc);
+
+ unsigned SrcReg = getRegForValue(LHS);
+ if (!SrcReg)
+ return false;
+ bool SrcIsKill = hasTrivialKill(LHS);
+
+ if (BW == 64 && !Is64Bit)
+ SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
+ AArch64::sub_32);
+
+ if ((BW < 32) && !IsBitTest)
+ SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
+
+ // Emit the combined compare and branch instruction.
+ SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
+ .addReg(SrcReg, getKillRegState(SrcIsKill));
+ if (IsBitTest)
+ MIB.addImm(TestBit);
+ MIB.addMBB(TBB);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+ fastEmitBranch(FBB, DbgLoc);
+
+ return true;
+}
+
+bool AArch64FastISel::selectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
+ if (BI->isUnconditional()) {
+ MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ fastEmitBranch(MSucc, BI->getDebugLoc());
+ return true;
+ }
+
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+ AArch64CC::CondCode CC = AArch64CC::NE;
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
- if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
- // We may not handle every CC for now.
- AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
- if (CC == AArch64CC::AL)
- return false;
+ if (CI->hasOneUse() && isValueAvailable(CI)) {
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_FALSE:
+ fastEmitBranch(FBB, DbgLoc);
+ return true;
+ case CmpInst::FCMP_TRUE:
+ fastEmitBranch(TBB, DbgLoc);
+ return true;
+ }
+
+ // Try to emit a combined compare-and-branch first.
+ if (emitCompareAndBranch(BI))
+ return true;
+
+ // Try to take advantage of fallthrough opportunities.
+ if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+ std::swap(TBB, FBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
// Emit the cmp.
- if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
+ // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
+ // instruction.
+ CC = getCompareCC(Predicate);
+ AArch64CC::CondCode ExtraCC = AArch64CC::AL;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_UEQ:
+ ExtraCC = AArch64CC::EQ;
+ CC = AArch64CC::VS;
+ break;
+ case CmpInst::FCMP_ONE:
+ ExtraCC = AArch64CC::MI;
+ CC = AArch64CC::GT;
+ break;
+ }
+ assert((CC != AArch64CC::AL) && "Unexpected condition code.");
+
+ // Emit the extra branch for FCMP_UEQ and FCMP_ONE.
+ if (ExtraCC != AArch64CC::AL) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(ExtraCC)
+ .addMBB(TBB);
+ }
+
// Emit the branch.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
- FuncInfo.MBB->addSuccessor(TBB);
- FastEmitBranch(FBB, DbgLoc);
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
MVT SrcVT;
- if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
- (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
+ if (TI->hasOneUse() && isValueAvailable(TI) &&
+ isTypeSupported(TI->getOperand(0)->getType(), SrcVT)) {
unsigned CondReg = getRegForValue(TI->getOperand(0));
- if (CondReg == 0)
+ if (!CondReg)
return false;
+ bool CondIsKill = hasTrivialKill(TI->getOperand(0));
// Issue an extract_subreg to get the lower 32-bits.
- if (SrcVT == MVT::i64)
- CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
+ if (SrcVT == MVT::i64) {
+ CondReg = fastEmitInst_extractsubreg(MVT::i32, CondReg, CondIsKill,
AArch64::sub_32);
+ CondIsKill = true;
+ }
- MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(AArch64::ANDWri), ANDReg)
- .addReg(CondReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(AArch64::SUBSWri))
- .addReg(ANDReg)
- .addReg(ANDReg)
- .addImm(0)
- .addImm(0);
+ unsigned ANDReg = emitAnd_ri(MVT::i32, CondReg, CondIsKill, 1);
+ assert(ANDReg && "Unexpected AND instruction emission failure.");
+ emitICmp_ri(MVT::i32, ANDReg, /*IsKill=*/true, 0);
- unsigned CC = AArch64CC::NE;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
@@ -816,23 +2341,57 @@ bool AArch64FastISel::SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
- FuncInfo.MBB->addSuccessor(TBB);
- FastEmitBranch(FBB, DbgLoc);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
- } else if (const ConstantInt *CI =
- dyn_cast<ConstantInt>(BI->getCondition())) {
+ } else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
.addMBB(Target);
- FuncInfo.MBB->addSuccessor(Target);
+
+ // Obtain the branch weight and add the target to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ Target->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(Target, BranchWeight);
+ return true;
+ } else if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
+ // Fake request the condition, otherwise the intrinsic might be completely
+ // optimized away.
+ unsigned CondReg = getRegForValue(BI->getCondition());
+ if (!CondReg)
+ return false;
+
+ // Emit the branch.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
+ .addImm(CC)
+ .addMBB(TBB);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
unsigned CondReg = getRegForValue(BI->getCondition());
if (CondReg == 0)
return false;
+ bool CondRegIsKill = hasTrivialKill(BI->getCondition());
// We've been divorced from our compare! Our block was split, and
// now our compare lives in a predecessor block. We musn't
@@ -841,13 +2400,8 @@ bool AArch64FastISel::SelectBranch(const Instruction *I) {
// Regardless, the compare has been done in the predecessor block,
// and it left a value for us in a virtual register. Ergo, we test
// the one-bit value left in the virtual register.
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
- AArch64::WZR)
- .addReg(CondReg)
- .addImm(0)
- .addImm(0);
+ emitICmp_ri(MVT::i32, CondReg, CondRegIsKill, 0);
- unsigned CC = AArch64CC::NE;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CC = AArch64CC::EQ;
@@ -856,20 +2410,28 @@ bool AArch64FastISel::SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
.addImm(CC)
.addMBB(TBB);
- FuncInfo.MBB->addSuccessor(TBB);
- FastEmitBranch(FBB, DbgLoc);
+
+ // Obtain the branch weight and add the TrueBB to the successor list.
+ uint32_t BranchWeight = 0;
+ if (FuncInfo.BPI)
+ BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
+ TBB->getBasicBlock());
+ FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
+
+ fastEmitBranch(FBB, DbgLoc);
return true;
}
-bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
+bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
const IndirectBrInst *BI = cast<IndirectBrInst>(I);
unsigned AddrReg = getRegForValue(BI->getOperand(0));
if (AddrReg == 0)
return false;
// Emit the indirect branch.
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
- .addReg(AddrReg);
+ const MCInstrDesc &II = TII.get(AArch64::BR);
+ AddrReg = constrainOperandRegClass(II, AddrReg, II.getNumDefs());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
// Make sure the CFG is up-to-date.
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
@@ -878,211 +2440,271 @@ bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
return true;
}
-bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
- Type *Ty = Src1Value->getType();
- EVT SrcEVT = TLI.getValueType(Ty, true);
- if (!SrcEVT.isSimple())
- return false;
- MVT SrcVT = SrcEVT.getSimpleVT();
-
- // Check to see if the 2nd operand is a constant that we can encode directly
- // in the compare.
- uint64_t Imm;
- bool UseImm = false;
- bool isNegativeImm = false;
- if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
- if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
- SrcVT == MVT::i8 || SrcVT == MVT::i1) {
- const APInt &CIVal = ConstInt->getValue();
-
- Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
- if (CIVal.isNegative()) {
- isNegativeImm = true;
- Imm = -Imm;
- }
- // FIXME: We can handle more immediates using shifts.
- UseImm = ((Imm & 0xfff) == Imm);
- }
- } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
- if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
- if (ConstFP->isZero() && !ConstFP->isNegative())
- UseImm = true;
- }
+bool AArch64FastISel::selectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
- unsigned ZReg;
- unsigned CmpOpc;
- bool isICmp = true;
- bool needsExt = false;
- switch (SrcVT.SimpleTy) {
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
+ unsigned ResultReg = 0;
+ switch (Predicate) {
default:
- return false;
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- needsExt = true;
- // Intentional fall-through.
- case MVT::i32:
- ZReg = AArch64::WZR;
- if (UseImm)
- CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
- else
- CmpOpc = AArch64::SUBSWrr;
break;
- case MVT::i64:
- ZReg = AArch64::XZR;
- if (UseImm)
- CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
- else
- CmpOpc = AArch64::SUBSXrr;
- break;
- case MVT::f32:
- isICmp = false;
- CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
+ case CmpInst::FCMP_FALSE:
+ ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(AArch64::WZR, getKillRegState(true));
break;
- case MVT::f64:
- isICmp = false;
- CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
+ case CmpInst::FCMP_TRUE:
+ ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
break;
}
- unsigned SrcReg1 = getRegForValue(Src1Value);
- if (SrcReg1 == 0)
- return false;
-
- unsigned SrcReg2;
- if (!UseImm) {
- SrcReg2 = getRegForValue(Src2Value);
- if (SrcReg2 == 0)
- return false;
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
+ return true;
}
- // We have i1, i8, or i16, we need to either zero extend or sign extend.
- if (needsExt) {
- SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
- if (SrcReg1 == 0)
- return false;
- if (!UseImm) {
- SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
- if (SrcReg2 == 0)
- return false;
- }
- }
+ // Emit the cmp.
+ if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+ return false;
- if (isICmp) {
- if (UseImm)
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(ZReg)
- .addReg(SrcReg1)
- .addImm(Imm)
- .addImm(0);
- else
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(ZReg)
- .addReg(SrcReg1)
- .addReg(SrcReg2);
- } else {
- if (UseImm)
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(SrcReg1);
- else
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
- .addReg(SrcReg1)
- .addReg(SrcReg2);
- }
- return true;
-}
+ ResultReg = createResultReg(&AArch64::GPR32RegClass);
-bool AArch64FastISel::SelectCmp(const Instruction *I) {
- const CmpInst *CI = cast<CmpInst>(I);
+ // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
+ // condition codes are inverted, because they are used by CSINC.
+ static unsigned CondCodeTable[2][2] = {
+ { AArch64CC::NE, AArch64CC::VC },
+ { AArch64CC::PL, AArch64CC::LE }
+ };
+ unsigned *CondCodes = nullptr;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_UEQ:
+ CondCodes = &CondCodeTable[0][0];
+ break;
+ case CmpInst::FCMP_ONE:
+ CondCodes = &CondCodeTable[1][0];
+ break;
+ }
- // We may not handle every CC for now.
- AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
- if (CC == AArch64CC::AL)
- return false;
+ if (CondCodes) {
+ unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
+ TmpReg1)
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addImm(CondCodes[0]);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
+ ResultReg)
+ .addReg(TmpReg1, getKillRegState(true))
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addImm(CondCodes[1]);
- // Emit the cmp.
- if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
- return false;
+ updateValueMap(I, ResultReg);
+ return true;
+ }
// Now set a register based on the comparison.
+ AArch64CC::CondCode CC = getCompareCC(Predicate);
+ assert((CC != AArch64CC::AL) && "Unexpected condition code.");
AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
- unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
ResultReg)
- .addReg(AArch64::WZR)
- .addReg(AArch64::WZR)
+ .addReg(AArch64::WZR, getKillRegState(true))
+ .addReg(AArch64::WZR, getKillRegState(true))
.addImm(invertedCC);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectSelect(const Instruction *I) {
- const SelectInst *SI = cast<SelectInst>(I);
-
- EVT DestEVT = TLI.getValueType(SI->getType(), true);
- if (!DestEVT.isSimple())
+/// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
+/// value.
+bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
+ if (!SI->getType()->isIntegerTy(1))
return false;
- MVT DestVT = DestEVT.getSimpleVT();
- if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
- DestVT != MVT::f64)
- return false;
+ const Value *Src1Val, *Src2Val;
+ unsigned Opc = 0;
+ bool NeedExtraOp = false;
+ if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
+ if (CI->isOne()) {
+ Src1Val = SI->getCondition();
+ Src2Val = SI->getFalseValue();
+ Opc = AArch64::ORRWrr;
+ } else {
+ assert(CI->isZero());
+ Src1Val = SI->getFalseValue();
+ Src2Val = SI->getCondition();
+ Opc = AArch64::BICWrr;
+ }
+ } else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
+ if (CI->isOne()) {
+ Src1Val = SI->getCondition();
+ Src2Val = SI->getTrueValue();
+ Opc = AArch64::ORRWrr;
+ NeedExtraOp = true;
+ } else {
+ assert(CI->isZero());
+ Src1Val = SI->getCondition();
+ Src2Val = SI->getTrueValue();
+ Opc = AArch64::ANDWrr;
+ }
+ }
- unsigned CondReg = getRegForValue(SI->getCondition());
- if (CondReg == 0)
- return false;
- unsigned TrueReg = getRegForValue(SI->getTrueValue());
- if (TrueReg == 0)
+ if (!Opc)
return false;
- unsigned FalseReg = getRegForValue(SI->getFalseValue());
- if (FalseReg == 0)
+
+ unsigned Src1Reg = getRegForValue(Src1Val);
+ if (!Src1Reg)
return false;
+ bool Src1IsKill = hasTrivialKill(Src1Val);
+ unsigned Src2Reg = getRegForValue(Src2Val);
+ if (!Src2Reg)
+ return false;
+ bool Src2IsKill = hasTrivialKill(Src2Val);
- MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(CondReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ if (NeedExtraOp) {
+ Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
+ Src1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32spRegClass, Src1Reg,
+ Src1IsKill, Src2Reg, Src2IsKill);
+ updateValueMap(SI, ResultReg);
+ return true;
+}
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
- .addReg(ANDReg)
- .addReg(ANDReg)
- .addImm(0)
- .addImm(0);
+bool AArch64FastISel::selectSelect(const Instruction *I) {
+ assert(isa<SelectInst>(I) && "Expected a select instruction.");
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT))
+ return false;
- unsigned SelectOpc;
- switch (DestVT.SimpleTy) {
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ switch (VT.SimpleTy) {
default:
return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
case MVT::i32:
- SelectOpc = AArch64::CSELWr;
+ Opc = AArch64::CSELWr;
+ RC = &AArch64::GPR32RegClass;
break;
case MVT::i64:
- SelectOpc = AArch64::CSELXr;
+ Opc = AArch64::CSELXr;
+ RC = &AArch64::GPR64RegClass;
break;
case MVT::f32:
- SelectOpc = AArch64::FCSELSrrr;
+ Opc = AArch64::FCSELSrrr;
+ RC = &AArch64::FPR32RegClass;
break;
case MVT::f64:
- SelectOpc = AArch64::FCSELDrrr;
+ Opc = AArch64::FCSELDrrr;
+ RC = &AArch64::FPR64RegClass;
break;
}
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
- ResultReg)
- .addReg(TrueReg)
- .addReg(FalseReg)
- .addImm(AArch64CC::NE);
+ const SelectInst *SI = cast<SelectInst>(I);
+ const Value *Cond = SI->getCondition();
+ AArch64CC::CondCode CC = AArch64CC::NE;
+ AArch64CC::CondCode ExtraCC = AArch64CC::AL;
- UpdateValueMap(I, ResultReg);
+ if (optimizeSelect(SI))
+ return true;
+
+ // Try to pickup the flags, so we don't have to emit another compare.
+ if (foldXALUIntrinsic(CC, I, Cond)) {
+ // Fake request the condition to force emission of the XALU intrinsic.
+ unsigned CondReg = getRegForValue(Cond);
+ if (!CondReg)
+ return false;
+ } else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
+ isValueAvailable(Cond)) {
+ const auto *Cmp = cast<CmpInst>(Cond);
+ // Try to optimize or fold the cmp.
+ CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
+ const Value *FoldSelect = nullptr;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_FALSE:
+ FoldSelect = SI->getFalseValue();
+ break;
+ case CmpInst::FCMP_TRUE:
+ FoldSelect = SI->getTrueValue();
+ break;
+ }
+
+ if (FoldSelect) {
+ unsigned SrcReg = getRegForValue(FoldSelect);
+ if (!SrcReg)
+ return false;
+ unsigned UseReg = lookUpRegForValue(SI);
+ if (UseReg)
+ MRI.clearKillFlags(UseReg);
+
+ updateValueMap(I, SrcReg);
+ return true;
+ }
+
+ // Emit the cmp.
+ if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
+ return false;
+
+ // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
+ CC = getCompareCC(Predicate);
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_UEQ:
+ ExtraCC = AArch64CC::EQ;
+ CC = AArch64CC::VS;
+ break;
+ case CmpInst::FCMP_ONE:
+ ExtraCC = AArch64CC::MI;
+ CC = AArch64CC::GT;
+ break;
+ }
+ assert((CC != AArch64CC::AL) && "Unexpected condition code.");
+ } else {
+ unsigned CondReg = getRegForValue(Cond);
+ if (!CondReg)
+ return false;
+ bool CondIsKill = hasTrivialKill(Cond);
+
+ // Emit a TST instruction (ANDS wzr, reg, #imm).
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDSWri),
+ AArch64::WZR)
+ .addReg(CondReg, getKillRegState(CondIsKill))
+ .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
+ }
+
+ unsigned Src1Reg = getRegForValue(SI->getTrueValue());
+ bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
+
+ unsigned Src2Reg = getRegForValue(SI->getFalseValue());
+ bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
+
+ if (!Src1Reg || !Src2Reg)
+ return false;
+
+ if (ExtraCC != AArch64CC::AL) {
+ Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
+ Src2IsKill, ExtraCC);
+ Src2IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
+ Src2IsKill, CC);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectFPExt(const Instruction *I) {
+bool AArch64FastISel::selectFPExt(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
return false;
@@ -1094,11 +2716,11 @@ bool AArch64FastISel::SelectFPExt(const Instruction *I) {
unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
ResultReg).addReg(Op);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
+bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
Value *V = I->getOperand(0);
if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
return false;
@@ -1110,12 +2732,12 @@ bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
ResultReg).addReg(Op);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
// FPToUI and FPToSI
-bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
+bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
@@ -1144,11 +2766,11 @@ bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
+bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
MVT DestVT;
if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
return false;
@@ -1156,22 +2778,21 @@ bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
"Unexpected value type.");
unsigned SrcReg = getRegForValue(I->getOperand(0));
- if (SrcReg == 0)
+ if (!SrcReg)
return false;
+ bool SrcIsKill = hasTrivialKill(I->getOperand(0));
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
// Handle sign-extension.
if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
SrcReg =
- EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
- if (SrcReg == 0)
+ emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
+ if (!SrcReg)
return false;
+ SrcIsKill = true;
}
- MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
- : &AArch64::GPR32RegClass);
-
unsigned Opc;
if (SrcVT == MVT::i64) {
if (Signed)
@@ -1185,21 +2806,128 @@ bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
}
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addReg(SrcReg);
- UpdateValueMap(I, ResultReg);
+ unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
+ SrcIsKill);
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::fastLowerArguments() {
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ const Function *F = FuncInfo.Fn;
+ if (F->isVarArg())
+ return false;
+
+ CallingConv::ID CC = F->getCallingConv();
+ if (CC != CallingConv::C)
+ return false;
+
+ // Only handle simple cases of up to 8 GPR and FPR each.
+ unsigned GPRCnt = 0;
+ unsigned FPRCnt = 0;
+ unsigned Idx = 0;
+ for (auto const &Arg : F->args()) {
+ // The first argument is at index 1.
+ ++Idx;
+ if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
+ F->getAttributes().hasAttribute(Idx, Attribute::Nest))
+ return false;
+
+ Type *ArgTy = Arg.getType();
+ if (ArgTy->isStructTy() || ArgTy->isArrayTy())
+ return false;
+
+ EVT ArgVT = TLI.getValueType(ArgTy);
+ if (!ArgVT.isSimple())
+ return false;
+
+ MVT VT = ArgVT.getSimpleVT().SimpleTy;
+ if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
+ return false;
+
+ if (VT.isVector() &&
+ (!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
+ return false;
+
+ if (VT >= MVT::i1 && VT <= MVT::i64)
+ ++GPRCnt;
+ else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
+ VT.is128BitVector())
+ ++FPRCnt;
+ else
+ return false;
+
+ if (GPRCnt > 8 || FPRCnt > 8)
+ return false;
+ }
+
+ static const MCPhysReg Registers[6][8] = {
+ { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
+ AArch64::W5, AArch64::W6, AArch64::W7 },
+ { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
+ AArch64::X5, AArch64::X6, AArch64::X7 },
+ { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
+ AArch64::H5, AArch64::H6, AArch64::H7 },
+ { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
+ AArch64::S5, AArch64::S6, AArch64::S7 },
+ { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
+ AArch64::D5, AArch64::D6, AArch64::D7 },
+ { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
+ AArch64::Q5, AArch64::Q6, AArch64::Q7 }
+ };
+
+ unsigned GPRIdx = 0;
+ unsigned FPRIdx = 0;
+ for (auto const &Arg : F->args()) {
+ MVT VT = TLI.getSimpleValueType(Arg.getType());
+ unsigned SrcReg;
+ const TargetRegisterClass *RC;
+ if (VT >= MVT::i1 && VT <= MVT::i32) {
+ SrcReg = Registers[0][GPRIdx++];
+ RC = &AArch64::GPR32RegClass;
+ VT = MVT::i32;
+ } else if (VT == MVT::i64) {
+ SrcReg = Registers[1][GPRIdx++];
+ RC = &AArch64::GPR64RegClass;
+ } else if (VT == MVT::f16) {
+ SrcReg = Registers[2][FPRIdx++];
+ RC = &AArch64::FPR16RegClass;
+ } else if (VT == MVT::f32) {
+ SrcReg = Registers[3][FPRIdx++];
+ RC = &AArch64::FPR32RegClass;
+ } else if ((VT == MVT::f64) || VT.is64BitVector()) {
+ SrcReg = Registers[4][FPRIdx++];
+ RC = &AArch64::FPR64RegClass;
+ } else if (VT.is128BitVector()) {
+ SrcReg = Registers[5][FPRIdx++];
+ RC = &AArch64::FPR128RegClass;
+ } else
+ llvm_unreachable("Unexpected value type.");
+
+ unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
+ // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
+ // Without this, EmitLiveInCopies may eliminate the livein if its only
+ // use is a bitcast (which isn't turned into an instruction).
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(DstReg, getKillRegState(true));
+ updateValueMap(&Arg, ResultReg);
+ }
return true;
}
-bool AArch64FastISel::ProcessCallArgs(
- SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs,
- SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
- SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
- unsigned &NumBytes) {
+bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
+ SmallVectorImpl<MVT> &OutVTs,
+ unsigned &NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
- CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
+ CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
@@ -1207,13 +2935,17 @@ bool AArch64FastISel::ProcessCallArgs(
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
- .addImm(NumBytes);
+ .addImm(NumBytes);
// Process the args.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
- unsigned Arg = ArgRegs[VA.getValNo()];
- MVT ArgVT = ArgVTs[VA.getValNo()];
+ const Value *ArgVal = CLI.OutVals[VA.getValNo()];
+ MVT ArgVT = OutVTs[VA.getValNo()];
+
+ unsigned ArgReg = getRegForValue(ArgVal);
+ if (!ArgReg)
+ return false;
// Handle arg promotion: SExt, ZExt, AExt.
switch (VA.getLocInfo()) {
@@ -1222,8 +2954,8 @@ bool AArch64FastISel::ProcessCallArgs(
case CCValAssign::SExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
- Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
- if (Arg == 0)
+ ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
+ if (!ArgReg)
return false;
break;
}
@@ -1232,8 +2964,8 @@ bool AArch64FastISel::ProcessCallArgs(
case CCValAssign::ZExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
- Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
- if (Arg == 0)
+ ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
+ if (!ArgReg)
return false;
break;
}
@@ -1244,14 +2976,18 @@ bool AArch64FastISel::ProcessCallArgs(
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
- RegArgs.push_back(VA.getLocReg());
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
+ CLI.OutRegs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
// FIXME: Handle custom args.
return false;
} else {
assert(VA.isMemLoc() && "Assuming store on stack.");
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
// Need to store on the stack.
unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
@@ -1264,26 +3000,31 @@ bool AArch64FastISel::ProcessCallArgs(
Addr.setReg(AArch64::SP);
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
- if (!EmitStore(ArgVT, Arg, Addr))
+ unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getStack(Addr.getOffset()),
+ MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
+
+ if (!emitStore(ArgVT, ArgReg, Addr, MMO))
return false;
}
}
return true;
}
-bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
- const Instruction *I, CallingConv::ID CC,
- unsigned &NumBytes) {
+bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
+ unsigned NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
+
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
- .addImm(NumBytes)
- .addImm(0);
+ .addImm(NumBytes).addImm(0);
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
// Only handle a single return value.
@@ -1294,147 +3035,147 @@ bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
MVT CopyVT = RVLocs[0].getValVT();
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY),
- ResultReg).addReg(RVLocs[0].getLocReg());
- UsedRegs.push_back(RVLocs[0].getLocReg());
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(RVLocs[0].getLocReg());
+ CLI.InRegs.push_back(RVLocs[0].getLocReg());
- // Finally update the result.
- UpdateValueMap(I, ResultReg);
+ CLI.ResultReg = ResultReg;
+ CLI.NumResultRegs = 1;
}
return true;
}
-bool AArch64FastISel::SelectCall(const Instruction *I,
- const char *IntrMemName = nullptr) {
- const CallInst *CI = cast<CallInst>(I);
- const Value *Callee = CI->getCalledValue();
+bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
+ CallingConv::ID CC = CLI.CallConv;
+ bool IsTailCall = CLI.IsTailCall;
+ bool IsVarArg = CLI.IsVarArg;
+ const Value *Callee = CLI.Callee;
+ const char *SymName = CLI.SymName;
- // Don't handle inline asm or intrinsics.
- if (isa<InlineAsm>(Callee))
+ if (!Callee && !SymName)
return false;
- // Only handle global variable Callees.
- const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
- if (!GV)
+ // Allow SelectionDAG isel to handle tail calls.
+ if (IsTailCall)
return false;
- // Check the calling convention.
- ImmutableCallSite CS(CI);
- CallingConv::ID CC = CS.getCallingConv();
+ CodeModel::Model CM = TM.getCodeModel();
+ // Only support the small and large code model.
+ if (CM != CodeModel::Small && CM != CodeModel::Large)
+ return false;
+
+ // FIXME: Add large code model support for ELF.
+ if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
+ return false;
// Let SDISel handle vararg functions.
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- if (FTy->isVarArg())
+ if (IsVarArg)
return false;
- // Handle *simple* calls for now.
+ // FIXME: Only handle *simple* calls for now.
MVT RetVT;
- Type *RetTy = I->getType();
- if (RetTy->isVoidTy())
+ if (CLI.RetTy->isVoidTy())
RetVT = MVT::isVoid;
- else if (!isTypeLegal(RetTy, RetVT))
+ else if (!isTypeLegal(CLI.RetTy, RetVT))
return false;
- // Set up the argument vectors.
- SmallVector<Value *, 8> Args;
- SmallVector<unsigned, 8> ArgRegs;
- SmallVector<MVT, 8> ArgVTs;
- SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
- Args.reserve(CS.arg_size());
- ArgRegs.reserve(CS.arg_size());
- ArgVTs.reserve(CS.arg_size());
- ArgFlags.reserve(CS.arg_size());
-
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- // If we're lowering a memory intrinsic instead of a regular call, skip the
- // last two arguments, which shouldn't be passed to the underlying function.
- if (IntrMemName && e - i <= 2)
- break;
-
- unsigned Arg = getRegForValue(*i);
- if (Arg == 0)
+ for (auto Flag : CLI.OutFlags)
+ if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
return false;
- ISD::ArgFlagsTy Flags;
- unsigned AttrInd = i - CS.arg_begin() + 1;
- if (CS.paramHasAttr(AttrInd, Attribute::SExt))
- Flags.setSExt();
- if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
- Flags.setZExt();
-
- // FIXME: Only handle *easy* calls for now.
- if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
- CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
- CS.paramHasAttr(AttrInd, Attribute::Nest) ||
- CS.paramHasAttr(AttrInd, Attribute::ByVal))
- return false;
+ // Set up the argument vectors.
+ SmallVector<MVT, 16> OutVTs;
+ OutVTs.reserve(CLI.OutVals.size());
- MVT ArgVT;
- Type *ArgTy = (*i)->getType();
- if (!isTypeLegal(ArgTy, ArgVT) &&
- !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
+ for (auto *Val : CLI.OutVals) {
+ MVT VT;
+ if (!isTypeLegal(Val->getType(), VT) &&
+ !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
return false;
// We don't handle vector parameters yet.
- if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+ if (VT.isVector() || VT.getSizeInBits() > 64)
return false;
- unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
- Flags.setOrigAlign(OriginalAlignment);
-
- Args.push_back(*i);
- ArgRegs.push_back(Arg);
- ArgVTs.push_back(ArgVT);
- ArgFlags.push_back(Flags);
+ OutVTs.push_back(VT);
}
+ Address Addr;
+ if (Callee && !computeCallAddress(Callee, Addr))
+ return false;
+
// Handle the arguments now that we've gotten them.
- SmallVector<unsigned, 4> RegArgs;
unsigned NumBytes;
- if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
+ if (!processCallArgs(CLI, OutVTs, NumBytes))
return false;
// Issue the call.
MachineInstrBuilder MIB;
- MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL));
- if (!IntrMemName)
- MIB.addGlobalAddress(GV, 0, 0);
- else
- MIB.addExternalSymbol(IntrMemName, 0);
+ if (CM == CodeModel::Small) {
+ const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
+ if (SymName)
+ MIB.addExternalSymbol(SymName, 0);
+ else if (Addr.getGlobalValue())
+ MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
+ else if (Addr.getReg()) {
+ unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
+ MIB.addReg(Reg);
+ } else
+ return false;
+ } else {
+ unsigned CallReg = 0;
+ if (SymName) {
+ unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
+ ADRPReg)
+ .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE);
+
+ CallReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
+ CallReg)
+ .addReg(ADRPReg)
+ .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ } else if (Addr.getGlobalValue())
+ CallReg = materializeGV(Addr.getGlobalValue());
+ else if (Addr.getReg())
+ CallReg = Addr.getReg();
+
+ if (!CallReg)
+ return false;
+
+ const MCInstrDesc &II = TII.get(AArch64::BLR);
+ CallReg = constrainOperandRegClass(II, CallReg, 0);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
+ }
// Add implicit physical register uses to the call.
- for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
- MIB.addReg(RegArgs[i], RegState::Implicit);
+ for (auto Reg : CLI.OutRegs)
+ MIB.addReg(Reg, RegState::Implicit);
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
- MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
-
- // Finish off the call including any return values.
- SmallVector<unsigned, 4> UsedRegs;
- if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
- return false;
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
- // Set all unused physreg defs as dead.
- static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+ CLI.Call = MIB;
- return true;
+ // Finish off the call including any return values.
+ return finishCall(CLI, RetVT, NumBytes);
}
-bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
+bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
if (Alignment)
return Len / Alignment <= 4;
else
return Len < 32;
}
-bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
+bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
uint64_t Len, unsigned Alignment) {
// Make sure we don't bloat code by inlining very large memcpy's.
- if (!IsMemCpySmall(Len, Alignment))
+ if (!isMemCpySmall(Len, Alignment))
return false;
int64_t UnscaledOffset = 0;
@@ -1464,14 +3205,11 @@ bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
}
}
- bool RV;
- unsigned ResultReg;
- RV = EmitLoad(VT, ResultReg, Src);
- if (!RV)
+ unsigned ResultReg = emitLoad(VT, VT, Src);
+ if (!ResultReg)
return false;
- RV = EmitStore(VT, ResultReg, Dest);
- if (!RV)
+ if (!emitStore(VT, ResultReg, Dest))
return false;
int64_t Size = VT.getSizeInBits() / 8;
@@ -1486,73 +3224,430 @@ bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
return true;
}
-bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
- // FIXME: Handle more intrinsics.
- switch (I.getIntrinsicID()) {
+/// \brief Check if it is possible to fold the condition from the XALU intrinsic
+/// into the user. The condition code will only be updated on success.
+bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
+ const Instruction *I,
+ const Value *Cond) {
+ if (!isa<ExtractValueInst>(Cond))
+ return false;
+
+ const auto *EV = cast<ExtractValueInst>(Cond);
+ if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
+ return false;
+
+ const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
+ MVT RetVT;
+ const Function *Callee = II->getCalledFunction();
+ Type *RetTy =
+ cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
+ if (!isTypeLegal(RetTy, RetVT))
+ return false;
+
+ if (RetVT != MVT::i32 && RetVT != MVT::i64)
+ return false;
+
+ const Value *LHS = II->getArgOperand(0);
+ const Value *RHS = II->getArgOperand(1);
+
+ // Canonicalize immediate to the RHS.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+ isCommutativeIntrinsic(II))
+ std::swap(LHS, RHS);
+
+ // Simplify multiplies.
+ unsigned IID = II->getIntrinsicID();
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::smul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2)
+ IID = Intrinsic::sadd_with_overflow;
+ break;
+ case Intrinsic::umul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2)
+ IID = Intrinsic::uadd_with_overflow;
+ break;
+ }
+
+ AArch64CC::CondCode TmpCC;
+ switch (IID) {
default:
return false;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ TmpCC = AArch64CC::VS;
+ break;
+ case Intrinsic::uadd_with_overflow:
+ TmpCC = AArch64CC::HS;
+ break;
+ case Intrinsic::usub_with_overflow:
+ TmpCC = AArch64CC::LO;
+ break;
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ TmpCC = AArch64CC::NE;
+ break;
+ }
+
+ // Check if both instructions are in the same basic block.
+ if (!isValueAvailable(II))
+ return false;
+
+ // Make sure nothing is in the way
+ BasicBlock::const_iterator Start = I;
+ BasicBlock::const_iterator End = II;
+ for (auto Itr = std::prev(Start); Itr != End; --Itr) {
+ // We only expect extractvalue instructions between the intrinsic and the
+ // instruction to be selected.
+ if (!isa<ExtractValueInst>(Itr))
+ return false;
+
+ // Check that the extractvalue operand comes from the intrinsic.
+ const auto *EVI = cast<ExtractValueInst>(Itr);
+ if (EVI->getAggregateOperand() != II)
+ return false;
+ }
+
+ CC = TmpCC;
+ return true;
+}
+
+bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
+ // FIXME: Handle more intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::frameaddress: {
+ MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ const AArch64RegisterInfo *RegInfo =
+ static_cast<const AArch64RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
+ unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
+ // Recursively load frame address
+ // ldr x0, [fp]
+ // ldr x0, [x0]
+ // ldr x0, [x0]
+ // ...
+ unsigned DestReg;
+ unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
+ while (Depth--) {
+ DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
+ SrcReg, /*IsKill=*/true, 0);
+ assert(DestReg && "Unexpected LDR instruction emission failure.");
+ SrcReg = DestReg;
+ }
+
+ updateValueMap(II, SrcReg);
+ return true;
+ }
case Intrinsic::memcpy:
case Intrinsic::memmove: {
- const MemTransferInst &MTI = cast<MemTransferInst>(I);
+ const auto *MTI = cast<MemTransferInst>(II);
// Don't handle volatile.
- if (MTI.isVolatile())
+ if (MTI->isVolatile())
return false;
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
// we would emit dead code because we don't currently handle memmoves.
- bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
- if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+ bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
+ if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
// Small memcpy's are common enough that we want to do them without a call
// if possible.
- uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
- unsigned Alignment = MTI.getAlignment();
- if (IsMemCpySmall(Len, Alignment)) {
+ uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
+ unsigned Alignment = MTI->getAlignment();
+ if (isMemCpySmall(Len, Alignment)) {
Address Dest, Src;
- if (!ComputeAddress(MTI.getRawDest(), Dest) ||
- !ComputeAddress(MTI.getRawSource(), Src))
+ if (!computeAddress(MTI->getRawDest(), Dest) ||
+ !computeAddress(MTI->getRawSource(), Src))
return false;
- if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+ if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
return true;
}
}
- if (!MTI.getLength()->getType()->isIntegerTy(64))
+ if (!MTI->getLength()->getType()->isIntegerTy(64))
return false;
- if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+ if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
- const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
- return SelectCall(&I, IntrMemName);
+ const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
+ return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
}
case Intrinsic::memset: {
- const MemSetInst &MSI = cast<MemSetInst>(I);
+ const MemSetInst *MSI = cast<MemSetInst>(II);
// Don't handle volatile.
- if (MSI.isVolatile())
+ if (MSI->isVolatile())
return false;
- if (!MSI.getLength()->getType()->isIntegerTy(64))
+ if (!MSI->getLength()->getType()->isIntegerTy(64))
return false;
- if (MSI.getDestAddressSpace() > 255)
+ if (MSI->getDestAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
- return SelectCall(&I, "memset");
+ return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+ }
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::pow: {
+ MVT RetVT;
+ if (!isTypeLegal(II->getType(), RetVT))
+ return false;
+
+ if (RetVT != MVT::f32 && RetVT != MVT::f64)
+ return false;
+
+ static const RTLIB::Libcall LibCallTable[3][2] = {
+ { RTLIB::SIN_F32, RTLIB::SIN_F64 },
+ { RTLIB::COS_F32, RTLIB::COS_F64 },
+ { RTLIB::POW_F32, RTLIB::POW_F64 }
+ };
+ RTLIB::Libcall LC;
+ bool Is64Bit = RetVT == MVT::f64;
+ switch (II->getIntrinsicID()) {
+ default:
+ llvm_unreachable("Unexpected intrinsic.");
+ case Intrinsic::sin:
+ LC = LibCallTable[0][Is64Bit];
+ break;
+ case Intrinsic::cos:
+ LC = LibCallTable[1][Is64Bit];
+ break;
+ case Intrinsic::pow:
+ LC = LibCallTable[2][Is64Bit];
+ break;
+ }
+
+ ArgListTy Args;
+ Args.reserve(II->getNumArgOperands());
+
+ // Populate the argument list.
+ for (auto &Arg : II->arg_operands()) {
+ ArgListEntry Entry;
+ Entry.Val = Arg;
+ Entry.Ty = Arg->getType();
+ Args.push_back(Entry);
+ }
+
+ CallLoweringInfo CLI;
+ CLI.setCallee(TLI.getLibcallCallingConv(LC), II->getType(),
+ TLI.getLibcallName(LC), std::move(Args));
+ if (!lowerCallTo(CLI))
+ return false;
+ updateValueMap(II, CLI.ResultReg);
+ return true;
+ }
+ case Intrinsic::fabs: {
+ MVT VT;
+ if (!isTypeLegal(II->getType(), VT))
+ return false;
+
+ unsigned Opc;
+ switch (VT.SimpleTy) {
+ default:
+ return false;
+ case MVT::f32:
+ Opc = AArch64::FABSSr;
+ break;
+ case MVT::f64:
+ Opc = AArch64::FABSDr;
+ break;
+ }
+ unsigned SrcReg = getRegForValue(II->getOperand(0));
+ if (!SrcReg)
+ return false;
+ bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+ .addReg(SrcReg, getKillRegState(SrcRegIsKill));
+ updateValueMap(II, ResultReg);
+ return true;
}
case Intrinsic::trap: {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
.addImm(1);
return true;
}
+ case Intrinsic::sqrt: {
+ Type *RetTy = II->getCalledFunction()->getReturnType();
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ unsigned Op0Reg = getRegForValue(II->getOperand(0));
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(II->getOperand(0));
+
+ unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(II, ResultReg);
+ return true;
+ }
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ // This implements the basic lowering of the xalu with overflow intrinsics.
+ const Function *Callee = II->getCalledFunction();
+ auto *Ty = cast<StructType>(Callee->getReturnType());
+ Type *RetTy = Ty->getTypeAtIndex(0U);
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return false;
+
+ const Value *LHS = II->getArgOperand(0);
+ const Value *RHS = II->getArgOperand(1);
+ // Canonicalize immediate to the RHS.
+ if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
+ isCommutativeIntrinsic(II))
+ std::swap(LHS, RHS);
+
+ // Simplify multiplies.
+ unsigned IID = II->getIntrinsicID();
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::smul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2) {
+ IID = Intrinsic::sadd_with_overflow;
+ RHS = LHS;
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ if (const auto *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue() == 2) {
+ IID = Intrinsic::uadd_with_overflow;
+ RHS = LHS;
+ }
+ break;
+ }
+
+ unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
+ AArch64CC::CondCode CC = AArch64CC::Invalid;
+ switch (IID) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::sadd_with_overflow:
+ ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::VS;
+ break;
+ case Intrinsic::uadd_with_overflow:
+ ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::HS;
+ break;
+ case Intrinsic::ssub_with_overflow:
+ ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::VS;
+ break;
+ case Intrinsic::usub_with_overflow:
+ ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
+ CC = AArch64CC::LO;
+ break;
+ case Intrinsic::smul_with_overflow: {
+ CC = AArch64CC::NE;
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return false;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (VT == MVT::i32) {
+ MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
+ /*IsKill=*/false, 32);
+ MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
+ AArch64::sub_32);
+ ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
+ AArch64::sub_32);
+ emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
+ AArch64_AM::ASR, 31, /*WantResult=*/false);
+ } else {
+ assert(VT == MVT::i64 && "Unexpected value type.");
+ MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
+ RHSReg, RHSIsKill);
+ emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
+ AArch64_AM::ASR, 63, /*WantResult=*/false);
+ }
+ break;
+ }
+ case Intrinsic::umul_with_overflow: {
+ CC = AArch64CC::NE;
+ unsigned LHSReg = getRegForValue(LHS);
+ if (!LHSReg)
+ return false;
+ bool LHSIsKill = hasTrivialKill(LHS);
+
+ unsigned RHSReg = getRegForValue(RHS);
+ if (!RHSReg)
+ return false;
+ bool RHSIsKill = hasTrivialKill(RHS);
+
+ if (VT == MVT::i32) {
+ MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
+ /*IsKill=*/false, AArch64_AM::LSR, 32,
+ /*WantResult=*/false);
+ MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
+ AArch64::sub_32);
+ } else {
+ assert(VT == MVT::i64 && "Unexpected value type.");
+ MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
+ unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
+ RHSReg, RHSIsKill);
+ emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
+ /*IsKill=*/false, /*WantResult=*/false);
+ }
+ break;
+ }
+ }
+
+ if (MulReg) {
+ ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
+ }
+
+ ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
+ AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
+ /*IsKill=*/true, getInvertedCondCode(CC));
+ (void)ResultReg2;
+ assert((ResultReg1 + 1) == ResultReg2 &&
+ "Nonconsecutive result registers.");
+ updateValueMap(II, ResultReg1, 2);
+ return true;
+ }
}
return false;
}
-bool AArch64FastISel::SelectRet(const Instruction *I) {
+bool AArch64FastISel::selectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
@@ -1572,8 +3667,7 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
- CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
- I->getContext());
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
CCInfo.AnalyzeReturn(Outs, RetCC);
@@ -1586,11 +3680,14 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
const Value *RV = Ret->getOperand(0);
// Don't bother handling odd stuff for now.
- if (VA.getLocInfo() != CCValAssign::Full)
+ if ((VA.getLocInfo() != CCValAssign::Full) &&
+ (VA.getLocInfo() != CCValAssign::BCvt))
return false;
+
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
+
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
@@ -1606,12 +3703,14 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
return false;
// Vectors (of > 1 lane) in big endian need tricky handling.
- if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
+ if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
+ !Subtarget->isLittleEndian())
return false;
MVT RVVT = RVEVT.getSimpleVT();
if (RVVT == MVT::f128)
return false;
+
MVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
@@ -1621,8 +3720,8 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
- bool isZExt = Outs[0].Flags.isZExt();
- SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
+ bool IsZExt = Outs[0].Flags.isZExt();
+ SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
if (SrcReg == 0)
return false;
}
@@ -1642,7 +3741,7 @@ bool AArch64FastISel::SelectRet(const Instruction *I) {
return true;
}
-bool AArch64FastISel::SelectTrunc(const Instruction *I) {
+bool AArch64FastISel::selectTrunc(const Instruction *I) {
Type *DestTy = I->getType();
Value *Op = I->getOperand(0);
Type *SrcTy = Op->getType();
@@ -1667,10 +3766,14 @@ bool AArch64FastISel::SelectTrunc(const Instruction *I) {
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg)
return false;
+ bool SrcIsKill = hasTrivialKill(Op);
// If we're truncating from i64 to a smaller non-legal type then generate an
- // AND. Otherwise, we know the high bits are undefined and a truncate doesn't
- // generate any code.
+ // AND. Otherwise, we know the high bits are undefined and a truncate only
+ // generate a COPY. We cannot mark the source register also as result
+ // register, because this can incorrectly transfer the kill flag onto the
+ // source register.
+ unsigned ResultReg;
if (SrcVT == MVT::i64) {
uint64_t Mask = 0;
switch (DestVT.SimpleTy) {
@@ -1688,23 +3791,23 @@ bool AArch64FastISel::SelectTrunc(const Instruction *I) {
break;
}
// Issue an extract_subreg to get the lower 32-bits.
- unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
+ unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
AArch64::sub_32);
- MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
// Create the AND instruction which performs the actual truncation.
- unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ANDReg)
- .addReg(Reg32)
- .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
- SrcReg = ANDReg;
+ ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
+ assert(ResultReg && "Unexpected AND instruction emission failure.");
+ } else {
+ ResultReg = createResultReg(&AArch64::GPR32RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(SrcReg, getKillRegState(SrcIsKill));
}
- UpdateValueMap(I, SrcReg);
+ updateValueMap(I, ResultReg);
return true;
}
-unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
+unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
DestVT == MVT::i64) &&
"Unexpected value type.");
@@ -1712,14 +3815,9 @@ unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
if (DestVT == MVT::i8 || DestVT == MVT::i16)
DestVT = MVT::i32;
- if (isZExt) {
- MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
- unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
- ResultReg)
- .addReg(SrcReg)
- .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
-
+ if (IsZExt) {
+ unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
+ assert(ResultReg && "Unexpected AND instruction emission failure.");
if (DestVT == MVT::i64) {
// We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
// upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
@@ -1737,18 +3835,389 @@ unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
// FIXME: We're SExt i1 to i64.
return 0;
}
- unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
- ResultReg)
- .addReg(SrcReg)
+ return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
+ /*TODO:IsKill=*/false, 0, 0);
+ }
+}
+
+unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ unsigned Opc, ZReg;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ RetVT = MVT::i32;
+ Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
+ case MVT::i64:
+ Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
+ /*IsKill=*/ZReg, true);
+}
+
+unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ if (RetVT != MVT::i64)
+ return 0;
+
+ return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
+ Op0, Op0IsKill, Op1, Op1IsKill,
+ AArch64::XZR, /*IsKill=*/true);
+}
+
+unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ if (RetVT != MVT::i64)
+ return 0;
+
+ return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
+ Op0, Op0IsKill, Op1, Op1IsKill,
+ AArch64::XZR, /*IsKill=*/true);
+}
+
+unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill) {
+ unsigned Opc = 0;
+ bool NeedTrunc = false;
+ uint64_t Mask = 0;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break;
+ case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
+ case MVT::i32: Opc = AArch64::LSLVWr; break;
+ case MVT::i64: Opc = AArch64::LSLVXr; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ if (NeedTrunc) {
+ Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
+ Op1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
+ Op1IsKill);
+ if (NeedTrunc)
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
+ bool Op0IsKill, uint64_t Shift,
+ bool IsZExt) {
+ assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
+ "Unexpected source/return type pair.");
+ assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
+ "Unexpected source value type.");
+ assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
+ RetVT == MVT::i64) && "Unexpected return value type.");
+
+ bool Is64Bit = (RetVT == MVT::i64);
+ unsigned RegSize = Is64Bit ? 64 : 32;
+ unsigned DstBits = RetVT.getSizeInBits();
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ // Just emit a copy for "zero" shifts.
+ if (Shift == 0) {
+ if (RetVT == SrcVT) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(Op0, getKillRegState(Op0IsKill));
+ return ResultReg;
+ } else
+ return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ }
+
+ // Don't deal with undefined shifts.
+ if (Shift >= DstBits)
+ return 0;
+
+ // For immediate shifts we can fold the zero-/sign-extension into the shift.
+ // {S|U}BFM Wd, Wn, #r, #s
+ // Wd<32+s-r,32-r> = Wn<s:0> when r > s
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = shl i16 %1, 4
+ // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
+ // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
+ // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
+ // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = shl i16 %1, 8
+ // Wd<32+7-24,32-24> = Wn<7:0>
+ // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
+ // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
+ // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = shl i16 %1, 12
+ // Wd<32+3-20,32-20> = Wn<3:0>
+ // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
+ // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
+
+ unsigned ImmR = RegSize - Shift;
+ // Limit the width to the length of the source type.
+ unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
+ static const unsigned OpcTable[2][2] = {
+ {AArch64::SBFMWri, AArch64::SBFMXri},
+ {AArch64::UBFMWri, AArch64::UBFMXri}
+ };
+ unsigned Opc = OpcTable[IsZExt][Is64Bit];
+ if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
+ unsigned TmpReg = MRI.createVirtualRegister(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), TmpReg)
.addImm(0)
- .addImm(0);
- return ResultReg;
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(AArch64::sub_32);
+ Op0 = TmpReg;
+ Op0IsKill = true;
}
+ return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
}
-unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
- bool isZExt) {
+unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill) {
+ unsigned Opc = 0;
+ bool NeedTrunc = false;
+ uint64_t Mask = 0;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break;
+ case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
+ case MVT::i32: Opc = AArch64::LSRVWr; break;
+ case MVT::i64: Opc = AArch64::LSRVXr; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ if (NeedTrunc) {
+ Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
+ Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
+ Op0IsKill = Op1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
+ Op1IsKill);
+ if (NeedTrunc)
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
+ bool Op0IsKill, uint64_t Shift,
+ bool IsZExt) {
+ assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
+ "Unexpected source/return type pair.");
+ assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
+ "Unexpected source value type.");
+ assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
+ RetVT == MVT::i64) && "Unexpected return value type.");
+
+ bool Is64Bit = (RetVT == MVT::i64);
+ unsigned RegSize = Is64Bit ? 64 : 32;
+ unsigned DstBits = RetVT.getSizeInBits();
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ // Just emit a copy for "zero" shifts.
+ if (Shift == 0) {
+ if (RetVT == SrcVT) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(Op0, getKillRegState(Op0IsKill));
+ return ResultReg;
+ } else
+ return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ }
+
+ // Don't deal with undefined shifts.
+ if (Shift >= DstBits)
+ return 0;
+
+ // For immediate shifts we can fold the zero-/sign-extension into the shift.
+ // {S|U}BFM Wd, Wn, #r, #s
+ // Wd<s-r:0> = Wn<s:r> when r <= s
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = lshr i16 %1, 4
+ // Wd<7-4:0> = Wn<7:4>
+ // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
+ // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = lshr i16 %1, 8
+ // Wd<7-7,0> = Wn<7:7>
+ // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = lshr i16 %1, 12
+ // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
+ // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ if (Shift >= SrcBits && IsZExt)
+ return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
+
+ // It is not possible to fold a sign-extend into the LShr instruction. In this
+ // case emit a sign-extend.
+ if (!IsZExt) {
+ Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ if (!Op0)
+ return 0;
+ Op0IsKill = true;
+ SrcVT = RetVT;
+ SrcBits = SrcVT.getSizeInBits();
+ IsZExt = true;
+ }
+
+ unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
+ unsigned ImmS = SrcBits - 1;
+ static const unsigned OpcTable[2][2] = {
+ {AArch64::SBFMWri, AArch64::SBFMXri},
+ {AArch64::UBFMWri, AArch64::UBFMXri}
+ };
+ unsigned Opc = OpcTable[IsZExt][Is64Bit];
+ if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
+ unsigned TmpReg = MRI.createVirtualRegister(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), TmpReg)
+ .addImm(0)
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(AArch64::sub_32);
+ Op0 = TmpReg;
+ Op0IsKill = true;
+ }
+ return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
+}
+
+unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
+ unsigned Op1Reg, bool Op1IsKill) {
+ unsigned Opc = 0;
+ bool NeedTrunc = false;
+ uint64_t Mask = 0;
+ switch (RetVT.SimpleTy) {
+ default: return 0;
+ case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break;
+ case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
+ case MVT::i32: Opc = AArch64::ASRVWr; break;
+ case MVT::i64: Opc = AArch64::ASRVXr; break;
+ }
+
+ const TargetRegisterClass *RC =
+ (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ if (NeedTrunc) {
+ Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*IsZExt=*/false);
+ Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
+ Op0IsKill = Op1IsKill = true;
+ }
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
+ Op1IsKill);
+ if (NeedTrunc)
+ ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
+ return ResultReg;
+}
+
+unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
+ bool Op0IsKill, uint64_t Shift,
+ bool IsZExt) {
+ assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
+ "Unexpected source/return type pair.");
+ assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
+ SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
+ "Unexpected source value type.");
+ assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
+ RetVT == MVT::i64) && "Unexpected return value type.");
+
+ bool Is64Bit = (RetVT == MVT::i64);
+ unsigned RegSize = Is64Bit ? 64 : 32;
+ unsigned DstBits = RetVT.getSizeInBits();
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ const TargetRegisterClass *RC =
+ Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+
+ // Just emit a copy for "zero" shifts.
+ if (Shift == 0) {
+ if (RetVT == SrcVT) {
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), ResultReg)
+ .addReg(Op0, getKillRegState(Op0IsKill));
+ return ResultReg;
+ } else
+ return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
+ }
+
+ // Don't deal with undefined shifts.
+ if (Shift >= DstBits)
+ return 0;
+
+ // For immediate shifts we can fold the zero-/sign-extension into the shift.
+ // {S|U}BFM Wd, Wn, #r, #s
+ // Wd<s-r:0> = Wn<s:r> when r <= s
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = ashr i16 %1, 4
+ // Wd<7-4:0> = Wn<7:4>
+ // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
+ // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = ashr i16 %1, 8
+ // Wd<7-7,0> = Wn<7:7>
+ // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
+ // %2 = ashr i16 %1, 12
+ // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
+ // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
+ // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
+
+ if (Shift >= SrcBits && IsZExt)
+ return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
+
+ unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
+ unsigned ImmS = SrcBits - 1;
+ static const unsigned OpcTable[2][2] = {
+ {AArch64::SBFMWri, AArch64::SBFMXri},
+ {AArch64::UBFMWri, AArch64::UBFMXri}
+ };
+ unsigned Opc = OpcTable[IsZExt][Is64Bit];
+ if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
+ unsigned TmpReg = MRI.createVirtualRegister(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), TmpReg)
+ .addImm(0)
+ .addReg(Op0, getKillRegState(Op0IsKill))
+ .addImm(AArch64::sub_32);
+ Op0 = TmpReg;
+ Op0IsKill = true;
+ }
+ return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
+}
+
+unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool IsZExt) {
assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
// FastISel does not have plumbing to deal with extensions where the SrcVT or
@@ -1768,24 +4237,24 @@ unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
default:
return 0;
case MVT::i1:
- return Emiti1Ext(SrcReg, DestVT, isZExt);
+ return emiti1Ext(SrcReg, DestVT, IsZExt);
case MVT::i8:
if (DestVT == MVT::i64)
- Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
- Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 7;
break;
case MVT::i16:
if (DestVT == MVT::i64)
- Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
else
- Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
+ Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
Imm = 15;
break;
case MVT::i32:
assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
- Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
+ Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
Imm = 31;
break;
}
@@ -1803,45 +4272,167 @@ unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
SrcReg = Src64;
}
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addReg(SrcReg)
- .addImm(0)
- .addImm(Imm);
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
+}
- return ResultReg;
+static bool isZExtLoad(const MachineInstr *LI) {
+ switch (LI->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDURBBi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURWi:
+ case AArch64::LDRBBui:
+ case AArch64::LDRHHui:
+ case AArch64::LDRWui:
+ case AArch64::LDRBBroX:
+ case AArch64::LDRHHroX:
+ case AArch64::LDRWroX:
+ case AArch64::LDRBBroW:
+ case AArch64::LDRHHroW:
+ case AArch64::LDRWroW:
+ return true;
+ }
}
-bool AArch64FastISel::SelectIntExt(const Instruction *I) {
- // On ARM, in general, integer casts don't involve legal types; this code
- // handles promotable integers. The high bits for a type smaller than
- // the register size are assumed to be undefined.
- Type *DestTy = I->getType();
- Value *Src = I->getOperand(0);
- Type *SrcTy = Src->getType();
+static bool isSExtLoad(const MachineInstr *LI) {
+ switch (LI->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDURSBWi:
+ case AArch64::LDURSHWi:
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSWi:
+ case AArch64::LDRSBWui:
+ case AArch64::LDRSHWui:
+ case AArch64::LDRSBXui:
+ case AArch64::LDRSHXui:
+ case AArch64::LDRSWui:
+ case AArch64::LDRSBWroX:
+ case AArch64::LDRSHWroX:
+ case AArch64::LDRSBXroX:
+ case AArch64::LDRSHXroX:
+ case AArch64::LDRSWroX:
+ case AArch64::LDRSBWroW:
+ case AArch64::LDRSHWroW:
+ case AArch64::LDRSBXroW:
+ case AArch64::LDRSHXroW:
+ case AArch64::LDRSWroW:
+ return true;
+ }
+}
- bool isZExt = isa<ZExtInst>(I);
- unsigned SrcReg = getRegForValue(Src);
- if (!SrcReg)
+bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
+ MVT SrcVT) {
+ const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
+ if (!LI || !LI->hasOneUse())
return false;
- EVT SrcEVT = TLI.getValueType(SrcTy, true);
- EVT DestEVT = TLI.getValueType(DestTy, true);
- if (!SrcEVT.isSimple())
+ // Check if the load instruction has already been selected.
+ unsigned Reg = lookUpRegForValue(LI);
+ if (!Reg)
return false;
- if (!DestEVT.isSimple())
+
+ MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
+ if (!MI)
return false;
- MVT SrcVT = SrcEVT.getSimpleVT();
- MVT DestVT = DestEVT.getSimpleVT();
- unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
- if (ResultReg == 0)
+ // Check if the correct load instruction has been emitted - SelectionDAG might
+ // have emitted a zero-extending load, but we need a sign-extending load.
+ bool IsZExt = isa<ZExtInst>(I);
+ const auto *LoadMI = MI;
+ if (LoadMI->getOpcode() == TargetOpcode::COPY &&
+ LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
+ unsigned LoadReg = MI->getOperand(1).getReg();
+ LoadMI = MRI.getUniqueVRegDef(LoadReg);
+ assert(LoadMI && "Expected valid instruction");
+ }
+ if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
+ return false;
+
+ // Nothing to be done.
+ if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
+ updateValueMap(I, Reg);
+ return true;
+ }
+
+ if (IsZExt) {
+ unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), Reg64)
+ .addImm(0)
+ .addReg(Reg, getKillRegState(true))
+ .addImm(AArch64::sub_32);
+ Reg = Reg64;
+ } else {
+ assert((MI->getOpcode() == TargetOpcode::COPY &&
+ MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
+ "Expected copy instruction");
+ Reg = MI->getOperand(1).getReg();
+ MI->eraseFromParent();
+ }
+ updateValueMap(I, Reg);
+ return true;
+}
+
+bool AArch64FastISel::selectIntExt(const Instruction *I) {
+ assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ "Unexpected integer extend instruction.");
+ MVT RetVT;
+ MVT SrcVT;
+ if (!isTypeSupported(I->getType(), RetVT))
+ return false;
+
+ if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
+ return false;
+
+ // Try to optimize already sign-/zero-extended values from load instructions.
+ if (optimizeIntExtLoad(I, RetVT, SrcVT))
+ return true;
+
+ unsigned SrcReg = getRegForValue(I->getOperand(0));
+ if (!SrcReg)
+ return false;
+ bool SrcIsKill = hasTrivialKill(I->getOperand(0));
+
+ // Try to optimize already sign-/zero-extended values from function arguments.
+ bool IsZExt = isa<ZExtInst>(I);
+ if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
+ if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
+ if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
+ unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(AArch64::SUBREG_TO_REG), ResultReg)
+ .addImm(0)
+ .addReg(SrcReg, getKillRegState(SrcIsKill))
+ .addImm(AArch64::sub_32);
+ SrcReg = ResultReg;
+ }
+ // Conservatively clear all kill flags from all uses, because we are
+ // replacing a sign-/zero-extend instruction at IR level with a nop at MI
+ // level. The result of the instruction at IR level might have been
+ // trivially dead, which is now not longer true.
+ unsigned UseReg = lookUpRegForValue(I);
+ if (UseReg)
+ MRI.clearKillFlags(UseReg);
+
+ updateValueMap(I, SrcReg);
+ return true;
+ }
+ }
+
+ unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
+ if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
+bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
EVT DestEVT = TLI.getValueType(I->getType(), true);
if (!DestEVT.isSimple())
return false;
@@ -1851,144 +4442,529 @@ bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
return false;
unsigned DivOpc;
- bool is64bit = (DestVT == MVT::i64);
+ bool Is64bit = (DestVT == MVT::i64);
switch (ISDOpcode) {
default:
return false;
case ISD::SREM:
- DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
+ DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
break;
case ISD::UREM:
- DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
+ DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
break;
}
- unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
+ unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
+ bool Src0IsKill = hasTrivialKill(I->getOperand(0));
unsigned Src1Reg = getRegForValue(I->getOperand(1));
if (!Src1Reg)
return false;
+ bool Src1IsKill = hasTrivialKill(I->getOperand(1));
- unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
- .addReg(Src0Reg)
- .addReg(Src1Reg);
+ const TargetRegisterClass *RC =
+ (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
+ Src1Reg, /*IsKill=*/false);
+ assert(QuotReg && "Unexpected DIV instruction emission failure.");
// The remainder is computed as numerator - (quotient * denominator) using the
// MSUB instruction.
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
- .addReg(QuotReg)
- .addReg(Src1Reg)
- .addReg(Src0Reg);
- UpdateValueMap(I, ResultReg);
+ unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
+ Src1Reg, Src1IsKill, Src0Reg,
+ Src0IsKill);
+ updateValueMap(I, ResultReg);
return true;
}
-bool AArch64FastISel::SelectMul(const Instruction *I) {
- EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
- if (!SrcEVT.isSimple())
+bool AArch64FastISel::selectMul(const Instruction *I) {
+ MVT VT;
+ if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
return false;
- MVT SrcVT = SrcEVT.getSimpleVT();
- // Must be simple value type. Don't handle vectors.
- if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
- SrcVT != MVT::i8)
+ if (VT.isVector())
+ return selectBinaryOp(I, ISD::MUL);
+
+ const Value *Src0 = I->getOperand(0);
+ const Value *Src1 = I->getOperand(1);
+ if (const auto *C = dyn_cast<ConstantInt>(Src0))
+ if (C->getValue().isPowerOf2())
+ std::swap(Src0, Src1);
+
+ // Try to simplify to a shift instruction.
+ if (const auto *C = dyn_cast<ConstantInt>(Src1))
+ if (C->getValue().isPowerOf2()) {
+ uint64_t ShiftVal = C->getValue().logBase2();
+ MVT SrcVT = VT;
+ bool IsZExt = true;
+ if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
+ if (!isIntExtFree(ZExt)) {
+ MVT VT;
+ if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
+ SrcVT = VT;
+ IsZExt = true;
+ Src0 = ZExt->getOperand(0);
+ }
+ }
+ } else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
+ if (!isIntExtFree(SExt)) {
+ MVT VT;
+ if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
+ SrcVT = VT;
+ IsZExt = false;
+ Src0 = SExt->getOperand(0);
+ }
+ }
+ }
+
+ unsigned Src0Reg = getRegForValue(Src0);
+ if (!Src0Reg)
+ return false;
+ bool Src0IsKill = hasTrivialKill(Src0);
+
+ unsigned ResultReg =
+ emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
+
+ if (ResultReg) {
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ unsigned Src0Reg = getRegForValue(I->getOperand(0));
+ if (!Src0Reg)
+ return false;
+ bool Src0IsKill = hasTrivialKill(I->getOperand(0));
+
+ unsigned Src1Reg = getRegForValue(I->getOperand(1));
+ if (!Src1Reg)
+ return false;
+ bool Src1IsKill = hasTrivialKill(I->getOperand(1));
+
+ unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectShift(const Instruction *I) {
+ MVT RetVT;
+ if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
+ return false;
+
+ if (RetVT.isVector())
+ return selectOperator(I, I->getOpcode());
+
+ if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ unsigned ResultReg = 0;
+ uint64_t ShiftVal = C->getZExtValue();
+ MVT SrcVT = RetVT;
+ bool IsZExt = (I->getOpcode() == Instruction::AShr) ? false : true;
+ const Value *Op0 = I->getOperand(0);
+ if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
+ if (!isIntExtFree(ZExt)) {
+ MVT TmpVT;
+ if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
+ SrcVT = TmpVT;
+ IsZExt = true;
+ Op0 = ZExt->getOperand(0);
+ }
+ }
+ } else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
+ if (!isIntExtFree(SExt)) {
+ MVT TmpVT;
+ if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
+ SrcVT = TmpVT;
+ IsZExt = false;
+ Op0 = SExt->getOperand(0);
+ }
+ }
+ }
+
+ unsigned Op0Reg = getRegForValue(Op0);
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(Op0);
+
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unexpected instruction.");
+ case Instruction::Shl:
+ ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
+ break;
+ case Instruction::AShr:
+ ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
+ break;
+ case Instruction::LShr:
+ ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
+ break;
+ }
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(I->getOperand(0));
+
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (!Op1Reg)
+ return false;
+ bool Op1IsKill = hasTrivialKill(I->getOperand(1));
+
+ unsigned ResultReg = 0;
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Unexpected instruction.");
+ case Instruction::Shl:
+ ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
+ break;
+ case Instruction::AShr:
+ ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
+ break;
+ case Instruction::LShr:
+ ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
+ break;
+ }
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectBitCast(const Instruction *I) {
+ MVT RetVT, SrcVT;
+
+ if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
+ return false;
+ if (!isTypeLegal(I->getType(), RetVT))
return false;
unsigned Opc;
- unsigned ZReg;
- switch (SrcVT.SimpleTy) {
+ if (RetVT == MVT::f32 && SrcVT == MVT::i32)
+ Opc = AArch64::FMOVWSr;
+ else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
+ Opc = AArch64::FMOVXDr;
+ else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
+ Opc = AArch64::FMOVSWr;
+ else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
+ Opc = AArch64::FMOVDXr;
+ else
+ return false;
+
+ const TargetRegisterClass *RC = nullptr;
+ switch (RetVT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type.");
+ case MVT::i32: RC = &AArch64::GPR32RegClass; break;
+ case MVT::i64: RC = &AArch64::GPR64RegClass; break;
+ case MVT::f32: RC = &AArch64::FPR32RegClass; break;
+ case MVT::f64: RC = &AArch64::FPR64RegClass; break;
+ }
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (!Op0Reg)
+ return false;
+ bool Op0IsKill = hasTrivialKill(I->getOperand(0));
+ unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectFRem(const Instruction *I) {
+ MVT RetVT;
+ if (!isTypeLegal(I->getType(), RetVT))
+ return false;
+
+ RTLIB::Libcall LC;
+ switch (RetVT.SimpleTy) {
default:
return false;
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- ZReg = AArch64::WZR;
- Opc = AArch64::MADDWrrr;
- SrcVT = MVT::i32;
+ case MVT::f32:
+ LC = RTLIB::REM_F32;
break;
- case MVT::i64:
- ZReg = AArch64::XZR;
- Opc = AArch64::MADDXrrr;
+ case MVT::f64:
+ LC = RTLIB::REM_F64;
break;
}
+ ArgListTy Args;
+ Args.reserve(I->getNumOperands());
+
+ // Populate the argument list.
+ for (auto &Arg : I->operands()) {
+ ArgListEntry Entry;
+ Entry.Val = Arg;
+ Entry.Ty = Arg->getType();
+ Args.push_back(Entry);
+ }
+
+ CallLoweringInfo CLI;
+ CLI.setCallee(TLI.getLibcallCallingConv(LC), I->getType(),
+ TLI.getLibcallName(LC), std::move(Args));
+ if (!lowerCallTo(CLI))
+ return false;
+ updateValueMap(I, CLI.ResultReg);
+ return true;
+}
+
+bool AArch64FastISel::selectSDiv(const Instruction *I) {
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ if (!isa<ConstantInt>(I->getOperand(1)))
+ return selectBinaryOp(I, ISD::SDIV);
+
+ const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
+ if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
+ !(C.isPowerOf2() || (-C).isPowerOf2()))
+ return selectBinaryOp(I, ISD::SDIV);
+
+ unsigned Lg2 = C.countTrailingZeros();
unsigned Src0Reg = getRegForValue(I->getOperand(0));
if (!Src0Reg)
return false;
+ bool Src0IsKill = hasTrivialKill(I->getOperand(0));
- unsigned Src1Reg = getRegForValue(I->getOperand(1));
- if (!Src1Reg)
+ if (cast<BinaryOperator>(I)->isExact()) {
+ unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
+ if (!ResultReg)
+ return false;
+ updateValueMap(I, ResultReg);
+ return true;
+ }
+
+ int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
+ unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
+ if (!AddReg)
return false;
- // Create the base instruction, then add the operands.
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
- .addReg(Src0Reg)
- .addReg(Src1Reg)
- .addReg(ZReg);
- UpdateValueMap(I, ResultReg);
+ // (Src0 < 0) ? Pow2 - 1 : 0;
+ if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
+ return false;
+
+ unsigned SelectOpc;
+ const TargetRegisterClass *RC;
+ if (VT == MVT::i64) {
+ SelectOpc = AArch64::CSELXr;
+ RC = &AArch64::GPR64RegClass;
+ } else {
+ SelectOpc = AArch64::CSELWr;
+ RC = &AArch64::GPR32RegClass;
+ }
+ unsigned SelectReg =
+ fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
+ Src0IsKill, AArch64CC::LT);
+ if (!SelectReg)
+ return false;
+
+ // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
+ // negate the result.
+ unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
+ unsigned ResultReg;
+ if (C.isNegative())
+ ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
+ SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
+ else
+ ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
+
+ if (!ResultReg)
+ return false;
+
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+/// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
+/// have to duplicate it for AArch64, because otherwise we would fail during the
+/// sign-extend emission.
+std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
+ unsigned IdxN = getRegForValue(Idx);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return std::pair<unsigned, bool>(0, false);
+
+ bool IdxNIsKill = hasTrivialKill(Idx);
+
+ // If the index is smaller or larger than intptr_t, truncate or extend it.
+ MVT PtrVT = TLI.getPointerTy();
+ EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
+ if (IdxVT.bitsLT(PtrVT)) {
+ IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*IsZExt=*/false);
+ IdxNIsKill = true;
+ } else if (IdxVT.bitsGT(PtrVT))
+ llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
+ return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
+}
+
+/// This is mostly a copy of the existing FastISel GEP code, but we have to
+/// duplicate it for AArch64, because otherwise we would bail out even for
+/// simple cases. This is because the standard fastEmit functions don't cover
+/// MUL at all and ADD is lowered very inefficientily.
+bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
+ unsigned N = getRegForValue(I->getOperand(0));
+ if (!N)
+ return false;
+ bool NIsKill = hasTrivialKill(I->getOperand(0));
+
+ // Keep a running tab of the total offset to coalesce multiple N = N + Offset
+ // into a single N = N + TotalOffset.
+ uint64_t TotalOffs = 0;
+ Type *Ty = I->getOperand(0)->getType();
+ MVT VT = TLI.getPointerTy();
+ for (auto OI = std::next(I->op_begin()), E = I->op_end(); OI != E; ++OI) {
+ const Value *Idx = *OI;
+ if (auto *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ // N = N + Offset
+ if (Field)
+ TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+ // If this is a constant subscript, handle it quickly.
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->isZero())
+ continue;
+ // N = N + Offset
+ TotalOffs +=
+ DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
+ continue;
+ }
+ if (TotalOffs) {
+ N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
+ if (!N)
+ return false;
+ NIsKill = true;
+ TotalOffs = 0;
+ }
+
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = DL.getTypeAllocSize(Ty);
+ std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
+ unsigned IdxN = Pair.first;
+ bool IdxNIsKill = Pair.second;
+ if (!IdxN)
+ return false;
+
+ if (ElementSize != 1) {
+ unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
+ if (!C)
+ return false;
+ IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
+ if (!IdxN)
+ return false;
+ IdxNIsKill = true;
+ }
+ N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
+ if (!N)
+ return false;
+ }
+ }
+ if (TotalOffs) {
+ N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
+ if (!N)
+ return false;
+ }
+ updateValueMap(I, N);
return true;
}
-bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
+bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
default:
break;
- case Instruction::Load:
- return SelectLoad(I);
- case Instruction::Store:
- return SelectStore(I);
+ case Instruction::Add:
+ case Instruction::Sub:
+ return selectAddSub(I);
+ case Instruction::Mul:
+ return selectMul(I);
+ case Instruction::SDiv:
+ return selectSDiv(I);
+ case Instruction::SRem:
+ if (!selectBinaryOp(I, ISD::SREM))
+ return selectRem(I, ISD::SREM);
+ return true;
+ case Instruction::URem:
+ if (!selectBinaryOp(I, ISD::UREM))
+ return selectRem(I, ISD::UREM);
+ return true;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return selectShift(I);
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return selectLogicalOp(I);
case Instruction::Br:
- return SelectBranch(I);
+ return selectBranch(I);
case Instruction::IndirectBr:
- return SelectIndirectBr(I);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return SelectCmp(I);
- case Instruction::Select:
- return SelectSelect(I);
- case Instruction::FPExt:
- return SelectFPExt(I);
- case Instruction::FPTrunc:
- return SelectFPTrunc(I);
+ return selectIndirectBr(I);
+ case Instruction::BitCast:
+ if (!FastISel::selectBitCast(I))
+ return selectBitCast(I);
+ return true;
case Instruction::FPToSI:
- return SelectFPToInt(I, /*Signed=*/true);
+ if (!selectCast(I, ISD::FP_TO_SINT))
+ return selectFPToInt(I, /*Signed=*/true);
+ return true;
case Instruction::FPToUI:
- return SelectFPToInt(I, /*Signed=*/false);
+ return selectFPToInt(I, /*Signed=*/false);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return selectIntExt(I);
+ case Instruction::Trunc:
+ if (!selectCast(I, ISD::TRUNCATE))
+ return selectTrunc(I);
+ return true;
+ case Instruction::FPExt:
+ return selectFPExt(I);
+ case Instruction::FPTrunc:
+ return selectFPTrunc(I);
case Instruction::SIToFP:
- return SelectIntToFP(I, /*Signed=*/true);
+ if (!selectCast(I, ISD::SINT_TO_FP))
+ return selectIntToFP(I, /*Signed=*/true);
+ return true;
case Instruction::UIToFP:
- return SelectIntToFP(I, /*Signed=*/false);
- case Instruction::SRem:
- return SelectRem(I, ISD::SREM);
- case Instruction::URem:
- return SelectRem(I, ISD::UREM);
- case Instruction::Call:
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- return SelectIntrinsicCall(*II);
- return SelectCall(I);
+ return selectIntToFP(I, /*Signed=*/false);
+ case Instruction::Load:
+ return selectLoad(I);
+ case Instruction::Store:
+ return selectStore(I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return selectCmp(I);
+ case Instruction::Select:
+ return selectSelect(I);
case Instruction::Ret:
- return SelectRet(I);
- case Instruction::Trunc:
- return SelectTrunc(I);
- case Instruction::ZExt:
- case Instruction::SExt:
- return SelectIntExt(I);
- case Instruction::Mul:
- // FIXME: This really should be handled by the target-independent selector.
- return SelectMul(I);
+ return selectRet(I);
+ case Instruction::FRem:
+ return selectFRem(I);
+ case Instruction::GetElementPtr:
+ return selectGetElementPtr(I);
}
- return false;
+
+ // fall-back to target-independent instruction selection.
+ return selectOperator(I, I->getOpcode());
// Silence warnings.
(void)&CC_AArch64_DarwinPCS_VarArg;
}
namespace llvm {
-llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo) {
- return new AArch64FastISel(funcInfo, libInfo);
+llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
+ const TargetLibraryInfo *LibInfo) {
+ return new AArch64FastISel(FuncInfo, LibInfo);
}
}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp
index 9c33717..d8e9156 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp
@@ -17,16 +17,16 @@
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
-#include "llvm/Support/Debug.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -86,13 +86,14 @@ bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
#ifndef NDEBUG
- const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
assert(!RegInfo->needsStackRealignment(MF) &&
"No stack realignment on AArch64!");
#endif
return (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
- MFI->isFrameAddressTaken());
+ MFI->isFrameAddressTaken() || MFI->hasStackMap() ||
+ MFI->hasPatchPoint());
}
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
@@ -109,13 +110,13 @@ void AArch64FrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const AArch64InstrInfo *TII =
- static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
DebugLoc DL = I->getDebugLoc();
int Opc = I->getOpcode();
bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!TFI->hasReservedCallFrame(MF)) {
unsigned Align = getStackAlignment();
@@ -131,7 +132,7 @@ void AArch64FrameLowering::eliminateCallFramePseudoInstr(
// FIXME: in-function stack adjustment for calls is limited to 24-bits
// because there's no guaranteed temporary register available.
//
- // ADD/SUB (immediate) has only LSL #0 and LSL #12 avaiable.
+ // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
// 1) For offset <= 12-bit, we use LSL #0
// 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
// LSL #0, and the other uses LSL #12.
@@ -158,7 +159,7 @@ void AArch64FrameLowering::emitCalleeSavedFrameMoves(
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
DebugLoc DL = MBB.findDebugLoc(MBBI);
// Add callee saved registers to move list.
@@ -166,7 +167,7 @@ void AArch64FrameLowering::emitCalleeSavedFrameMoves(
if (CSI.empty())
return;
- const DataLayout *TD = MF.getTarget().getDataLayout();
+ const DataLayout *TD = MF.getSubtarget().getDataLayout();
bool HasFP = hasFP(MF);
// Calculate amount of bytes used for return address storing.
@@ -195,7 +196,8 @@ void AArch64FrameLowering::emitCalleeSavedFrameMoves(
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
nullptr, DwarfReg, Offset - TotalSkipped));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
}
@@ -205,14 +207,19 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *Fn = MF.getFunction();
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
- MF.getTarget().getRegisterInfo());
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ MF.getSubtarget().getRegisterInfo());
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
MachineModuleInfo &MMI = MF.getMMI();
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry();
bool HasFP = hasFP(MF);
DebugLoc DL = MBB.findDebugLoc(MBBI);
+ // All calls are tail calls in GHC calling conv, and functions have no
+ // prologue/epilogue.
+ if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
+ return;
+
int NumBytes = (int)MFI->getStackSize();
if (!AFI->hasStackFrame()) {
assert(!HasFP && "unexpected function without stack frame but with FP");
@@ -233,7 +240,8 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
} else if (NumBytes) {
++NumRedZoneFunctions;
}
@@ -300,7 +308,7 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
TII->copyPhysReg(MBB, MBBI, DL, AArch64::X19, AArch64::SP, false);
if (needsFrameMoves) {
- const DataLayout *TD = MF.getTarget().getDataLayout();
+ const DataLayout *TD = MF.getSubtarget().getDataLayout();
const int StackGrowth = -TD->getPointerSize(0);
unsigned FramePtr = RegInfo->getFrameRegister(MF);
@@ -376,26 +384,30 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
// Record the location of the stored LR
unsigned LR = RegInfo->getDwarfRegNum(AArch64::LR, true);
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, LR, StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
// Record the location of the stored FP
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
} else {
// Encode the stack size of the leaf function.
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
// Now emit the moves for whatever callee saved regs we have.
@@ -435,15 +447,20 @@ void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
assert(MBBI->isReturn() && "Can only insert epilog into returning blocks");
MachineFrameInfo *MFI = MF.getFrameInfo();
const AArch64InstrInfo *TII =
- static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
- MF.getTarget().getRegisterInfo());
+ MF.getSubtarget().getRegisterInfo());
DebugLoc DL = MBBI->getDebugLoc();
unsigned RetOpcode = MBBI->getOpcode();
int NumBytes = MFI->getStackSize();
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ // All calls are tail calls in GHC calling conv, and functions have no
+ // prologue/epilogue.
+ if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
+ return;
+
// Initial and residual are named for consitency with the prologue. Note that
// in the epilogue, the residual adjustment is executed first.
uint64_t ArgumentPopSize = 0;
@@ -548,7 +565,7 @@ int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
bool PreferFP) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
- MF.getTarget().getRegisterInfo());
+ MF.getSubtarget().getRegisterInfo());
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
int FPOffset = MFI->getObjectOffset(FI) + 16;
int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
@@ -617,7 +634,7 @@ bool AArch64FrameLowering::spillCalleeSavedRegisters(
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned Count = CSI.size();
DebugLoc DL;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
@@ -693,7 +710,7 @@ bool AArch64FrameLowering::restoreCalleeSavedRegisters(
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned Count = CSI.size();
DebugLoc DL;
assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
@@ -761,7 +778,7 @@ bool AArch64FrameLowering::restoreCalleeSavedRegisters(
void AArch64FrameLowering::processFunctionBeforeCalleeSavedScan(
MachineFunction &MF, RegScavenger *RS) const {
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
- MF.getTarget().getRegisterInfo());
+ MF.getSubtarget().getRegisterInfo());
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
MachineRegisterInfo *MRI = &MF.getRegInfo();
SmallVector<unsigned, 4> UnspilledCSGPRs;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h
index 7686e6f..df3875f 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64FrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64_FRAMELOWERING_H
-#define AArch64_FRAMELOWERING_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64FRAMELOWERING_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64FRAMELOWERING_H
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
index 3f49fab..bb2e1e2 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
@@ -303,7 +303,7 @@ static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
/// \brief Determine wether it is worth to fold V into an extended register.
bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
- // it hurts if the a value is used at least twice, unless we are optimizing
+ // it hurts if the value is used at least twice, unless we are optimizing
// for code size.
if (ForCodeSize || V.hasOneUse())
return true;
@@ -569,6 +569,27 @@ bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
return isWorthFolding(N);
}
+/// If there's a use of this ADDlow that's not itself a load/store then we'll
+/// need to create a real ADD instruction from it anyway and there's no point in
+/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
+/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
+/// leads to duplaicated ADRP instructions.
+static bool isWorthFoldingADDlow(SDValue N) {
+ for (auto Use : N->uses()) {
+ if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
+ Use->getOpcode() != ISD::ATOMIC_LOAD &&
+ Use->getOpcode() != ISD::ATOMIC_STORE)
+ return false;
+
+ // ldar and stlr have much more restrictive addressing modes (just a
+ // register).
+ if (cast<MemSDNode>(Use)->getOrdering() > Monotonic)
+ return false;
+ }
+
+ return true;
+}
+
/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
/// immediate" address. The "Size" argument is the size in bytes of the memory
/// reference, which determines the scale.
@@ -582,7 +603,7 @@ bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
return true;
}
- if (N.getOpcode() == AArch64ISD::ADDlow) {
+ if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
GlobalAddressSDNode *GAN =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
Base = N.getOperand(0);
@@ -594,7 +615,7 @@ bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
unsigned Alignment = GV->getAlignment();
const DataLayout *DL = TLI->getDataLayout();
Type *Ty = GV->getType()->getElementType();
- if (Alignment == 0 && Ty->isSized() && !Subtarget->isTargetDarwin())
+ if (Alignment == 0 && Ty->isSized())
Alignment = DL->getABITypeAlignment(Ty);
if (Alignment >= Size)
@@ -777,6 +798,21 @@ bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
return false;
}
+// Check if the given immediate is preferred by ADD. If an immediate can be
+// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
+// encoded by one MOVZ, return true.
+static bool isPreferredADD(int64_t ImmOff) {
+ // Constant in [0x0, 0xfff] can be encoded in ADD.
+ if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
+ return true;
+ // Check if it can be encoded in an "ADD LSL #12".
+ if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
+ // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
+ return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
+ (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
+ return false;
+}
+
bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
SDValue &Base, SDValue &Offset,
SDValue &SignExtend,
@@ -786,11 +822,6 @@ bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
SDValue LHS = N.getOperand(0);
SDValue RHS = N.getOperand(1);
- // We don't want to match immediate adds here, because they are better lowered
- // to the register-immediate addressing modes.
- if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
- return false;
-
// Check if this particular node is reused in any non-memory related
// operation. If yes, do not try to fold this node into the address
// computation, since the computation will be kept.
@@ -800,6 +831,36 @@ bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
return false;
}
+ // Watch out if RHS is a wide immediate, it can not be selected into
+ // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
+ // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
+ // instructions like:
+ // MOV X0, WideImmediate
+ // ADD X1, BaseReg, X0
+ // LDR X2, [X1, 0]
+ // For such situation, using [BaseReg, XReg] addressing mode can save one
+ // ADD/SUB:
+ // MOV X0, WideImmediate
+ // LDR X2, [BaseReg, X0]
+ if (isa<ConstantSDNode>(RHS)) {
+ int64_t ImmOff = (int64_t)dyn_cast<ConstantSDNode>(RHS)->getZExtValue();
+ unsigned Scale = Log2_32(Size);
+ // Skip the immediate can be seleced by load/store addressing mode.
+ // Also skip the immediate can be encoded by a single ADD (SUB is also
+ // checked by using -ImmOff).
+ if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
+ isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
+ return false;
+
+ SDLoc DL(N.getNode());
+ SDValue Ops[] = { RHS };
+ SDNode *MOVI =
+ CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
+ SDValue MOVIV = SDValue(MOVI, 0);
+ // This ADD of two X register will be selected into [Reg+Reg] mode.
+ N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
+ }
+
// Remember if it is worth folding N when it produces extended register.
bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
@@ -1381,20 +1442,21 @@ static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
return true;
}
-static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
- unsigned &LSB, unsigned &MSB) {
- // We are looking for the following pattern which basically extracts a single
- // bit from the source value and places it in the LSB of the destination
- // value, all other bits of the destination value or set to zero:
+static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
+ SDValue &Opd0, unsigned &LSB,
+ unsigned &MSB) {
+ // We are looking for the following pattern which basically extracts several
+ // continuous bits from the source value and places it from the LSB of the
+ // destination value, all other bits of the destination value or set to zero:
//
// Value2 = AND Value, MaskImm
// SRL Value2, ShiftImm
//
- // with MaskImm >> ShiftImm == 1.
+ // with MaskImm >> ShiftImm to search for the bit width.
//
// This gets selected into a single UBFM:
//
- // UBFM Value, ShiftImm, ShiftImm
+ // UBFM Value, ShiftImm, BitWide + Srl_imm -1
//
if (N->getOpcode() != ISD::SRL)
@@ -1410,15 +1472,16 @@ static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
if (!isIntImmediate(N->getOperand(1), Srl_imm))
return false;
- // Check whether we really have a one bit extract here.
- if (And_mask >> Srl_imm == 0x1) {
+ // Check whether we really have several bits extract here.
+ unsigned BitWide = 64 - CountLeadingOnes_64(~(And_mask >> Srl_imm));
+ if (BitWide && isMask_64(And_mask >> Srl_imm)) {
if (N->getValueType(0) == MVT::i32)
Opc = AArch64::UBFMWri;
else
Opc = AArch64::UBFMXri;
- LSB = MSB = Srl_imm;
-
+ LSB = Srl_imm;
+ MSB = BitWide + Srl_imm - 1;
return true;
}
@@ -1439,8 +1502,8 @@ static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
assert((VT == MVT::i32 || VT == MVT::i64) &&
"Type checking must have been done before calling this function");
- // Check for AND + SRL doing a one bit extract.
- if (isOneBitExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
+ // Check for AND + SRL doing several bits extract.
+ if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
return true;
// we're looking for a shift of a shift
@@ -2116,7 +2179,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case 32:
SubReg = AArch64::ssub;
break;
- case 16: // FALLTHROUGH
+ case 16:
+ SubReg = AArch64::hsub;
+ break;
case 8:
llvm_unreachable("unexpected zext-requiring extract element!");
}
@@ -2204,9 +2269,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
@@ -2222,9 +2287,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
@@ -2240,9 +2305,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
@@ -2258,9 +2323,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
@@ -2276,9 +2341,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
@@ -2294,9 +2359,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
@@ -2312,9 +2377,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
@@ -2330,9 +2395,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
@@ -2348,9 +2413,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
@@ -2364,7 +2429,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case Intrinsic::aarch64_neon_ld2lane:
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectLoadLane(Node, 2, AArch64::LD2i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectLoadLane(Node, 2, AArch64::LD2i16);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2376,7 +2442,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case Intrinsic::aarch64_neon_ld3lane:
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectLoadLane(Node, 3, AArch64::LD3i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectLoadLane(Node, 3, AArch64::LD3i16);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2388,7 +2455,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case Intrinsic::aarch64_neon_ld4lane:
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectLoadLane(Node, 4, AArch64::LD4i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectLoadLane(Node, 4, AArch64::LD4i16);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2448,9 +2516,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectStore(Node, 2, AArch64::ST1Twov8b);
else if (VT == MVT::v16i8)
return SelectStore(Node, 2, AArch64::ST1Twov16b);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectStore(Node, 2, AArch64::ST1Twov4h);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectStore(Node, 2, AArch64::ST1Twov8h);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectStore(Node, 2, AArch64::ST1Twov2s);
@@ -2467,9 +2535,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectStore(Node, 3, AArch64::ST1Threev8b);
else if (VT == MVT::v16i8)
return SelectStore(Node, 3, AArch64::ST1Threev16b);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectStore(Node, 3, AArch64::ST1Threev4h);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectStore(Node, 3, AArch64::ST1Threev8h);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectStore(Node, 3, AArch64::ST1Threev2s);
@@ -2486,9 +2554,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectStore(Node, 4, AArch64::ST1Fourv8b);
else if (VT == MVT::v16i8)
return SelectStore(Node, 4, AArch64::ST1Fourv16b);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectStore(Node, 4, AArch64::ST1Fourv4h);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectStore(Node, 4, AArch64::ST1Fourv8h);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectStore(Node, 4, AArch64::ST1Fourv2s);
@@ -2505,9 +2573,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectStore(Node, 2, AArch64::ST2Twov8b);
else if (VT == MVT::v16i8)
return SelectStore(Node, 2, AArch64::ST2Twov16b);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectStore(Node, 2, AArch64::ST2Twov4h);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectStore(Node, 2, AArch64::ST2Twov8h);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectStore(Node, 2, AArch64::ST2Twov2s);
@@ -2524,9 +2592,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectStore(Node, 3, AArch64::ST3Threev8b);
else if (VT == MVT::v16i8)
return SelectStore(Node, 3, AArch64::ST3Threev16b);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectStore(Node, 3, AArch64::ST3Threev4h);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectStore(Node, 3, AArch64::ST3Threev8h);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectStore(Node, 3, AArch64::ST3Threev2s);
@@ -2543,9 +2611,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectStore(Node, 4, AArch64::ST4Fourv8b);
else if (VT == MVT::v16i8)
return SelectStore(Node, 4, AArch64::ST4Fourv16b);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectStore(Node, 4, AArch64::ST4Fourv4h);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectStore(Node, 4, AArch64::ST4Fourv8h);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectStore(Node, 4, AArch64::ST4Fourv2s);
@@ -2560,7 +2628,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case Intrinsic::aarch64_neon_st2lane: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectStoreLane(Node, 2, AArch64::ST2i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectStoreLane(Node, 2, AArch64::ST2i16);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2573,7 +2642,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case Intrinsic::aarch64_neon_st3lane: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectStoreLane(Node, 3, AArch64::ST3i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectStoreLane(Node, 3, AArch64::ST3i16);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2586,7 +2656,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case Intrinsic::aarch64_neon_st4lane: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectStoreLane(Node, 4, AArch64::ST4i8);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectStoreLane(Node, 4, AArch64::ST4i16);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2603,9 +2674,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
@@ -2622,9 +2693,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
@@ -2641,9 +2712,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
@@ -2660,9 +2731,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
@@ -2679,9 +2750,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
@@ -2698,9 +2769,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
@@ -2717,9 +2788,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
@@ -2736,9 +2807,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
@@ -2755,9 +2826,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
@@ -2774,9 +2845,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
else if (VT == MVT::v16i8)
return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
@@ -2791,7 +2862,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case AArch64ISD::LD1LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2804,7 +2876,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case AArch64ISD::LD2LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2817,7 +2890,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case AArch64ISD::LD3LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2830,7 +2904,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
case AArch64ISD::LD4LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2846,9 +2921,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
else if (VT == MVT::v16i8)
return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
@@ -2866,9 +2941,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
else if (VT == MVT::v16i8)
return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
@@ -2886,9 +2961,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
else if (VT == MVT::v16i8)
return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
@@ -2906,9 +2981,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
else if (VT == MVT::v16i8)
return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
@@ -2926,9 +3001,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
else if (VT == MVT::v16i8)
return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
@@ -2946,9 +3021,9 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
else if (VT == MVT::v16i8)
return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
- else if (VT == MVT::v4i16)
+ else if (VT == MVT::v4i16 || VT == MVT::v4f16)
return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
- else if (VT == MVT::v8i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
else if (VT == MVT::v2i32 || VT == MVT::v2f32)
return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
@@ -2964,7 +3039,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2978,7 +3054,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
@@ -2992,7 +3069,8 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v16i8 || VT == MVT::v8i8)
return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
- else if (VT == MVT::v8i16 || VT == MVT::v4i16)
+ else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
+ VT == MVT::v8f16)
return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32)
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
index df5b3e0..19f51ce 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp
@@ -12,9 +12,10 @@
//===----------------------------------------------------------------------===//
#include "AArch64ISelLowering.h"
+#include "AArch64CallingConvention.h"
+#include "AArch64MachineFunctionInfo.h"
#include "AArch64PerfectShuffle.h"
#include "AArch64Subtarget.h"
-#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "AArch64TargetObjectFile.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
@@ -38,10 +39,12 @@ using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
+namespace {
enum AlignMode {
StrictAlign,
NoStrictAlign
};
+}
static cl::opt<AlignMode>
Align(cl::desc("Load/store alignment support"),
@@ -64,18 +67,9 @@ EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
cl::desc("Allow AArch64 SLI/SRI formation"),
cl::init(false));
-//===----------------------------------------------------------------------===//
-// AArch64 Lowering public interface.
-//===----------------------------------------------------------------------===//
-static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
- if (TT.isOSBinFormatMachO())
- return new AArch64_MachoTargetObjectFile();
-
- return new AArch64_ELFTargetObjectFile();
-}
-AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
- : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
+AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM)
+ : TargetLowering(TM) {
Subtarget = &TM.getSubtarget<AArch64Subtarget>();
// AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
@@ -106,6 +100,7 @@ AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addDRTypeForNEON(MVT::v1f64);
+ addDRTypeForNEON(MVT::v4f16);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
@@ -113,6 +108,7 @@ AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
+ addQRTypeForNEON(MVT::v8f16);
}
// Compute derived properties from the register classes
@@ -278,6 +274,94 @@ AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ // f16 is storage-only, so we promote operations to f32 if we know this is
+ // valid, and ignore them otherwise. The operations not mentioned here will
+ // fail to select, but this is not a major problem as no source language
+ // should be emitting native f16 operations yet.
+ setOperationAction(ISD::FADD, MVT::f16, Promote);
+ setOperationAction(ISD::FDIV, MVT::f16, Promote);
+ setOperationAction(ISD::FMUL, MVT::f16, Promote);
+ setOperationAction(ISD::FSUB, MVT::f16, Promote);
+
+ // v4f16 is also a storage-only type, so promote it to v4f32 when that is
+ // known to be safe.
+ setOperationAction(ISD::FADD, MVT::v4f16, Promote);
+ setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
+ setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
+ setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
+ setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
+ setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
+ AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
+ AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
+ AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
+ AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
+ AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
+ AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
+
+ // Expand all other v4f16 operations.
+ // FIXME: We could generate better code by promoting some operations to
+ // a pair of v4f32s
+ setOperationAction(ISD::FABS, MVT::v4f16, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
+ setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
+ setOperationAction(ISD::FMA, MVT::v4f16, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
+ setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
+ setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
+ setOperationAction(ISD::FREM, MVT::v4f16, Expand);
+ setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
+ setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
+ setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
+ setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
+ setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
+ setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
+ setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
+ setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
+
+
+ // v8f16 is also a storage-only type, so expand it.
+ setOperationAction(ISD::FABS, MVT::v8f16, Expand);
+ setOperationAction(ISD::FADD, MVT::v8f16, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
+ setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
+ setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
+ setOperationAction(ISD::FMA, MVT::v8f16, Expand);
+ setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
+ setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
+ setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
+ setOperationAction(ISD::FREM, MVT::v8f16, Expand);
+ setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
+ setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
+ setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
+ setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
+ setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
+ setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
+ setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
+ setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
+ setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
+
// AArch64 has implementations of a lot of rounding-like FP operations.
static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
@@ -303,13 +387,24 @@ AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
}
+ // Make floating-point constants legal for the large code model, so they don't
+ // become loads from the constant pool.
+ if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+ }
+
// AArch64 does not have floating-point extending loads, i1 sign-extending
// load, floating-point truncating stores, or v2i32->v2i16 truncating store.
- setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
+ }
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
+
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
@@ -439,30 +534,31 @@ AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
// AArch64 doesn't have MUL.2d:
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
+ // Custom handling for some quad-vector types to detect MULL.
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
// Likewise, narrowing and extending vector loads/stores aren't handled
// directly.
- for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
-
- setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
- Expand);
-
- setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
-
- setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
-
- for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
- setTruncStoreAction((MVT::SimpleValueType)VT,
- (MVT::SimpleValueType)InnerVT, Expand);
- setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
- setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ for (MVT VT : MVT::vector_valuetypes()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+
+ setOperationAction(ISD::BSWAP, VT, Expand);
+
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
+ setTruncStoreAction(VT, InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
+ }
}
// AArch64 has implementations of a lot of rounding-like FP operations.
@@ -477,16 +573,20 @@ AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM)
setOperationAction(ISD::FROUND, Ty, Legal);
}
}
+
+ // Prefer likely predicted branches to selects on out-of-order cores.
+ if (Subtarget->isCortexA57())
+ PredictableSelectIsExpensive = true;
}
void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
- if (VT == MVT::v2f32) {
+ if (VT == MVT::v2f32 || VT == MVT::v4f16) {
setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
- } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
+ } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
@@ -523,7 +623,8 @@ void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
- setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
+ for (MVT InnerVT : MVT::all_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
// CNT supports only B element sizes.
if (VT != MVT::v8i8 && VT != MVT::v16i8)
@@ -727,6 +828,7 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
+ case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
@@ -756,6 +858,8 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
+ case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
+ case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
}
}
@@ -774,7 +878,8 @@ AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
// EndBB:
// Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineFunction *MF = MBB->getParent();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
DebugLoc DL = MI->getDebugLoc();
@@ -1020,6 +1125,8 @@ static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
+ SDValue Cmp;
+ AArch64CC::CondCode AArch64CC;
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
EVT VT = RHS.getValueType();
uint64_t C = RHSC->getZExtValue();
@@ -1051,9 +1158,9 @@ static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
break;
case ISD::SETLE:
case ISD::SETGT:
- if ((VT == MVT::i32 && C != 0x7fffffff &&
+ if ((VT == MVT::i32 && C != INT32_MAX &&
isLegalArithImmed((uint32_t)(C + 1))) ||
- (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
+ (VT == MVT::i64 && C != INT64_MAX &&
isLegalArithImmed(C + 1ULL))) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
@@ -1062,9 +1169,9 @@ static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
break;
case ISD::SETULE:
case ISD::SETUGT:
- if ((VT == MVT::i32 && C != 0xffffffff &&
+ if ((VT == MVT::i32 && C != UINT32_MAX &&
isLegalArithImmed((uint32_t)(C + 1))) ||
- (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
+ (VT == MVT::i64 && C != UINT64_MAX &&
isLegalArithImmed(C + 1ULL))) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
@@ -1074,9 +1181,45 @@ static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
}
}
}
-
- SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
- AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
+ // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
+ // For the i8 operand, the largest immediate is 255, so this can be easily
+ // encoded in the compare instruction. For the i16 operand, however, the
+ // largest immediate cannot be encoded in the compare.
+ // Therefore, use a sign extending load and cmn to avoid materializing the -1
+ // constant. For example,
+ // movz w1, #65535
+ // ldrh w0, [x0, #0]
+ // cmp w0, w1
+ // >
+ // ldrsh w0, [x0, #0]
+ // cmn w0, #1
+ // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
+ // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
+ // both the LHS and RHS are truely zero extended and to make sure the
+ // transformation is profitable.
+ if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
+ if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
+ isa<LoadSDNode>(LHS)) {
+ if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
+ cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
+ LHS.getNode()->hasNUsesOfValue(1, 0)) {
+ int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
+ if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
+ SDValue SExt =
+ DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
+ DAG.getValueType(MVT::i16));
+ Cmp = emitComparison(SExt,
+ DAG.getConstant(ValueofRHS, RHS.getValueType()),
+ CC, dl, DAG);
+ AArch64CC = changeIntCCToAArch64CC(CC);
+ AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
+ return Cmp;
+ }
+ }
+ }
+ }
+ Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+ AArch64CC = changeIntCCToAArch64CC(CC);
AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
return Cmp;
}
@@ -1333,8 +1476,7 @@ static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
- // The data thing is not used.
- // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+ unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
bool IsStream = !Locality;
// When the locality number is set
@@ -1349,6 +1491,7 @@ static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
// built the mask value encoding the expected behavior.
unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
+ (!IsData << 3) | // IsDataCache bit
(Locality << 1) | // Cache level bits
(unsigned)IsStream; // Stream bit
return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
@@ -1400,7 +1543,10 @@ static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
SDLoc dl(Op);
- SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
+ MVT ExtVT =
+ MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
+ VT.getVectorNumElements());
+ SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
}
@@ -1505,7 +1651,7 @@ SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
(ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
- StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
+ StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
.setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
@@ -1529,6 +1675,197 @@ static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
0);
}
+static EVT getExtensionTo64Bits(const EVT &OrigVT) {
+ if (OrigVT.getSizeInBits() >= 64)
+ return OrigVT;
+
+ assert(OrigVT.isSimple() && "Expecting a simple value type");
+
+ MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
+ switch (OrigSimpleTy) {
+ default: llvm_unreachable("Unexpected Vector Type");
+ case MVT::v2i8:
+ case MVT::v2i16:
+ return MVT::v2i32;
+ case MVT::v4i8:
+ return MVT::v4i16;
+ }
+}
+
+static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
+ const EVT &OrigTy,
+ const EVT &ExtTy,
+ unsigned ExtOpcode) {
+ // The vector originally had a size of OrigTy. It was then extended to ExtTy.
+ // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
+ // 64-bits we need to insert a new extension so that it will be 64-bits.
+ assert(ExtTy.is128BitVector() && "Unexpected extension size");
+ if (OrigTy.getSizeInBits() >= 64)
+ return N;
+
+ // Must extend size to at least 64 bits to be used as an operand for VMULL.
+ EVT NewVT = getExtensionTo64Bits(OrigTy);
+
+ return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
+}
+
+static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
+ bool isSigned) {
+ EVT VT = N->getValueType(0);
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ unsigned HalfSize = EltSize / 2;
+ if (isSigned) {
+ if (!isIntN(HalfSize, C->getSExtValue()))
+ return false;
+ } else {
+ if (!isUIntN(HalfSize, C->getZExtValue()))
+ return false;
+ }
+ continue;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
+ return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
+ N->getOperand(0)->getValueType(0),
+ N->getValueType(0),
+ N->getOpcode());
+
+ assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
+ EVT VT = N->getValueType(0);
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT TruncVT = MVT::getIntegerVT(EltSize);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
+ const APInt &CInt = C->getAPIntValue();
+ // Element types smaller than 32 bits are not legal, so use i32 elements.
+ // The values are implicitly truncated so sext vs. zext doesn't matter.
+ Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
+ MVT::getVectorVT(TruncVT, NumElts), Ops);
+}
+
+static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND)
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, true))
+ return true;
+ return false;
+}
+
+static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::ZERO_EXTEND)
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, false))
+ return true;
+ return false;
+}
+
+static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
+ }
+ return false;
+}
+
+static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
+ }
+ return false;
+}
+
+static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
+ // Multiplications are only custom-lowered for 128-bit vectors so that
+ // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
+ EVT VT = Op.getValueType();
+ assert(VT.is128BitVector() && VT.isInteger() &&
+ "unexpected type for custom-lowering ISD::MUL");
+ SDNode *N0 = Op.getOperand(0).getNode();
+ SDNode *N1 = Op.getOperand(1).getNode();
+ unsigned NewOpc = 0;
+ bool isMLA = false;
+ bool isN0SExt = isSignExtended(N0, DAG);
+ bool isN1SExt = isSignExtended(N1, DAG);
+ if (isN0SExt && isN1SExt)
+ NewOpc = AArch64ISD::SMULL;
+ else {
+ bool isN0ZExt = isZeroExtended(N0, DAG);
+ bool isN1ZExt = isZeroExtended(N1, DAG);
+ if (isN0ZExt && isN1ZExt)
+ NewOpc = AArch64ISD::UMULL;
+ else if (isN1SExt || isN1ZExt) {
+ // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
+ // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
+ if (isN1SExt && isAddSubSExt(N0, DAG)) {
+ NewOpc = AArch64ISD::SMULL;
+ isMLA = true;
+ } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
+ NewOpc = AArch64ISD::UMULL;
+ isMLA = true;
+ } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
+ std::swap(N0, N1);
+ NewOpc = AArch64ISD::UMULL;
+ isMLA = true;
+ }
+ }
+
+ if (!NewOpc) {
+ if (VT == MVT::v2i64)
+ // Fall through to expand this. It is not legal.
+ return SDValue();
+ else
+ // Other vector multiplications are legal.
+ return Op;
+ }
+ }
+
+ // Legalize to a S/UMULL instruction
+ SDLoc DL(Op);
+ SDValue Op0;
+ SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
+ if (!isMLA) {
+ Op0 = skipExtensionForVectorMULL(N0, DAG);
+ assert(Op0.getValueType().is64BitVector() &&
+ Op1.getValueType().is64BitVector() &&
+ "unexpected types for extended operands to VMULL");
+ return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
+ }
+ // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
+ // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
+ // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
+ SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
+ SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
+ EVT Op1VT = Op1.getValueType();
+ return DAG.getNode(N0->getOpcode(), DL, VT,
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
+}
SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
@@ -1629,6 +1966,8 @@ SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
return LowerFP_TO_INT(Op, DAG);
case ISD::FSINCOS:
return LowerFSINCOS(Op, DAG);
+ case ISD::MUL:
+ return LowerMUL(Op, DAG);
}
}
@@ -1643,8 +1982,7 @@ unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
#include "AArch64GenCallingConv.inc"
-/// Selects the correct CCAssignFn for a the given CallingConvention
-/// value.
+/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) const {
switch (CC) {
@@ -1652,6 +1990,8 @@ CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
llvm_unreachable("Unsupported calling convention.");
case CallingConv::WebKit_JS:
return CC_AArch64_WebKit_JS;
+ case CallingConv::GHC:
+ return CC_AArch64_GHC;
case CallingConv::C:
case CallingConv::Fast:
if (!Subtarget->isTargetDarwin())
@@ -1669,8 +2009,8 @@ SDValue AArch64TargetLowering::LowerFormalArguments(
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
// At this point, Ins[].VT may already be promoted to i32. To correctly
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
@@ -1774,10 +2114,11 @@ SDValue AArch64TargetLowering::LowerFormalArguments(
} else { // VA.isRegLoc()
assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
unsigned ArgOffset = VA.getLocMemOffset();
- unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
+ unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
uint32_t BEAlign = 0;
- if (ArgSize < 8 && !Subtarget->isLittleEndian())
+ if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
+ !Ins[i].Flags.isInConsecutiveRegs())
BEAlign = 8 - ArgSize;
int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
@@ -1809,7 +2150,7 @@ SDValue AArch64TargetLowering::LowerFormalArguments(
ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
- MemVT, false, false, false, nullptr);
+ MemVT, false, false, false, 0);
InVals.push_back(ArgValue);
}
@@ -1941,8 +2282,8 @@ SDValue AArch64TargetLowering::LowerCallResult(
: RetCC_AArch64_AAPCS;
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC);
// Copy all of the result registers out of their specified physreg.
@@ -2011,6 +2352,21 @@ bool AArch64TargetLowering::isEligibleForTailCallOptimization(
return false;
}
+ // Externally-defined functions with weak linkage should not be
+ // tail-called on AArch64 when the OS does not support dynamic
+ // pre-emption of symbols, as the AAELF spec requires normal calls
+ // to undefined weak functions to be replaced with a NOP or jump to the
+ // next instruction. The behaviour of branch instructions in this
+ // situation (as used for tail calls) is implementation-defined, so we
+ // cannot rely on the linker replacing the tail call with a return.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ const Triple TT(getTargetMachine().getTargetTriple());
+ if (GV->hasExternalWeakLinkage() &&
+ (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
+ return false;
+ }
+
// Now we search for cases where we can use a tail call without changing the
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
// concept.
@@ -2028,8 +2384,8 @@ bool AArch64TargetLowering::isEligibleForTailCallOptimization(
// FIXME: for now we take the most conservative of these in both cases:
// disallow all variadic memory operands.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
@@ -2041,13 +2397,13 @@ bool AArch64TargetLowering::isEligibleForTailCallOptimization(
// results are returned in the same way as what the caller expects.
if (!CCMatch) {
SmallVector<CCValAssign, 16> RVLocs1;
- CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs1, *DAG.getContext());
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
+ *DAG.getContext());
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
SmallVector<CCValAssign, 16> RVLocs2;
- CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs2, *DAG.getContext());
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
+ *DAG.getContext());
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
if (RVLocs1.size() != RVLocs2.size())
@@ -2072,8 +2428,8 @@ bool AArch64TargetLowering::isEligibleForTailCallOptimization(
return true;
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
@@ -2170,8 +2526,8 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
if (IsVarArg) {
// Handle fixed and variable vector arguments differently.
@@ -2316,9 +2672,10 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
// common case. It should also work for fundamental types too.
uint32_t BEAlign = 0;
unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
- : VA.getLocVT().getSizeInBits();
+ : VA.getValVT().getSizeInBits();
OpSize = (OpSize + 7) / 8;
- if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
+ if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
+ !Flags.isInConsecutiveRegs()) {
if (OpSize < 8)
BEAlign = 8 - OpSize;
}
@@ -2350,8 +2707,8 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
SDValue Cpy = DAG.getMemcpy(
Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
- /*isVolatile = */ false,
- /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
+ /*isVol = */ false,
+ /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
MemOpChains.push_back(Cpy);
} else {
@@ -2440,7 +2797,8 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
// Add a register mask operand representing the call-preserved registers.
const uint32_t *Mask;
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const AArch64RegisterInfo *ARI =
static_cast<const AArch64RegisterInfo *>(TRI);
if (IsThisReturn) {
@@ -2494,7 +2852,7 @@ bool AArch64TargetLowering::CanLowerReturn(
? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC);
}
@@ -2508,8 +2866,8 @@ AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
? RetCC_AArch64_WebKit_JS
: RetCC_AArch64_AAPCS;
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC);
// Copy the result values into the output registers.
@@ -2560,7 +2918,8 @@ SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy();
SDLoc DL(Op);
- const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GN->getGlobal();
unsigned char OpFlags =
Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
@@ -2575,6 +2934,25 @@ SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
}
+ if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
+ assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
+ "use of MO_CONSTPOOL only supported on small model");
+ SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
+ SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
+ SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
+ MachinePointerInfo::getConstantPool(),
+ /*isVolatile=*/ false,
+ /*isNonTemporal=*/ true,
+ /*isInvariant=*/ true, 8);
+ if (GN->getOffset() != 0)
+ return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
+ DAG.getConstant(GN->getOffset(), PtrVT));
+ return GlobalAddr;
+ }
+
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
const unsigned char MO_NC = AArch64II::MO_NC;
return DAG.getNode(
@@ -2651,7 +3029,8 @@ AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
// TLS calls preserve all registers except those that absolutely must be
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
// silly).
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const AArch64RegisterInfo *ARI =
static_cast<const AArch64RegisterInfo *>(TRI);
const uint32_t *Mask = ARI->getTLSCallPreservedMask();
@@ -2701,7 +3080,8 @@ SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
// TLS calls preserve all registers except those that absolutely must be
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
// silly).
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const AArch64RegisterInfo *ARI =
static_cast<const AArch64RegisterInfo *>(TRI);
const uint32_t *Mask = ARI->getTLSCallPreservedMask();
@@ -2916,11 +3296,6 @@ SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
SDValue Test = LHS.getOperand(0);
uint64_t Mask = LHS.getConstantOperandVal(1);
-
- // TBZ only operates on i64's, but the ext should be free.
- if (Test.getValueType() == MVT::i32)
- Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
-
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
}
@@ -2936,18 +3311,29 @@ SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
SDValue Test = LHS.getOperand(0);
uint64_t Mask = LHS.getConstantOperandVal(1);
-
- // TBNZ only operates on i64's, but the ext should be free.
- if (Test.getValueType() == MVT::i32)
- Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
-
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
}
return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
+ } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
+ // Don't combine AND since emitComparison converts the AND to an ANDS
+ // (a.k.a. TST) and the test in the test bit and branch instruction
+ // becomes redundant. This would also increase register pressure.
+ uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
+ return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
+ DAG.getConstant(Mask, MVT::i64), Dest);
}
}
+ if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
+ LHS.getOpcode() != ISD::AND) {
+ // Don't combine AND since emitComparison converts the AND to an ANDS
+ // (a.k.a. TST) and the test in the test bit and branch instruction
+ // becomes redundant. This would also increase register pressure.
+ uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
+ return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
+ DAG.getConstant(Mask, MVT::i64), Dest);
+ }
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
@@ -4016,8 +4402,10 @@ void AArch64TargetLowering::LowerAsmOperandForConstraint(
return;
case 'J': {
uint64_t NVal = -C->getSExtValue();
- if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
+ if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
+ CVal = C->getSExtValue();
break;
+ }
return;
}
// The K and L constraints apply *only* to logical immediates, including
@@ -4141,10 +4529,30 @@ SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
- SmallVector<SDValue, 2> SourceVecs;
- SmallVector<unsigned, 2> MinElts;
- SmallVector<unsigned, 2> MaxElts;
+ struct ShuffleSourceInfo {
+ SDValue Vec;
+ unsigned MinElt;
+ unsigned MaxElt;
+
+ // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
+ // be compatible with the shuffle we intend to construct. As a result
+ // ShuffleVec will be some sliding window into the original Vec.
+ SDValue ShuffleVec;
+
+ // Code should guarantee that element i in Vec starts at element "WindowBase
+ // + i * WindowScale in ShuffleVec".
+ int WindowBase;
+ int WindowScale;
+
+ bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
+ ShuffleSourceInfo(SDValue Vec)
+ : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
+ WindowScale(1) {}
+ };
+ // First gather all vectors used as an immediate source for this BUILD_VECTOR
+ // node.
+ SmallVector<ShuffleSourceInfo, 2> Sources;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.getOpcode() == ISD::UNDEF)
@@ -4155,133 +4563,155 @@ SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
return SDValue();
}
- // Record this extraction against the appropriate vector if possible...
+ // Add this element source to the list if it's not already there.
SDValue SourceVec = V.getOperand(0);
- unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
- bool FoundSource = false;
- for (unsigned j = 0; j < SourceVecs.size(); ++j) {
- if (SourceVecs[j] == SourceVec) {
- if (MinElts[j] > EltNo)
- MinElts[j] = EltNo;
- if (MaxElts[j] < EltNo)
- MaxElts[j] = EltNo;
- FoundSource = true;
- break;
- }
- }
+ auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
+ if (Source == Sources.end())
+ Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
- // Or record a new source if not...
- if (!FoundSource) {
- SourceVecs.push_back(SourceVec);
- MinElts.push_back(EltNo);
- MaxElts.push_back(EltNo);
- }
+ // Update the minimum and maximum lane number seen.
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ Source->MinElt = std::min(Source->MinElt, EltNo);
+ Source->MaxElt = std::max(Source->MaxElt, EltNo);
}
// Currently only do something sane when at most two source vectors
- // involved.
- if (SourceVecs.size() > 2)
+ // are involved.
+ if (Sources.size() > 2)
return SDValue();
- SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
- int VEXTOffsets[2] = { 0, 0 };
- int OffsetMultipliers[2] = { 1, 1 };
-
- // This loop extracts the usage patterns of the source vectors
- // and prepares appropriate SDValues for a shuffle if possible.
- for (unsigned i = 0; i < SourceVecs.size(); ++i) {
- unsigned NumSrcElts = SourceVecs[i].getValueType().getVectorNumElements();
- SDValue CurSource = SourceVecs[i];
- if (SourceVecs[i].getValueType().getVectorElementType() !=
- VT.getVectorElementType()) {
- // It may hit this case if SourceVecs[i] is AssertSext/AssertZext.
- // Then bitcast it to the vector which holds asserted element type,
- // and record the multiplier of element width between SourceVecs and
- // Build_vector which is needed to extract the correct lanes later.
- EVT CastVT =
- EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
- SourceVecs[i].getValueSizeInBits() /
- VT.getVectorElementType().getSizeInBits());
-
- CurSource = DAG.getNode(ISD::BITCAST, dl, CastVT, SourceVecs[i]);
- OffsetMultipliers[i] = CastVT.getVectorNumElements() / NumSrcElts;
- NumSrcElts *= OffsetMultipliers[i];
- MaxElts[i] *= OffsetMultipliers[i];
- MinElts[i] *= OffsetMultipliers[i];
+ // Find out the smallest element size among result and two sources, and use
+ // it as element size to build the shuffle_vector.
+ EVT SmallestEltTy = VT.getVectorElementType();
+ for (auto &Source : Sources) {
+ EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
+ if (SrcEltTy.bitsLT(SmallestEltTy)) {
+ SmallestEltTy = SrcEltTy;
}
+ }
+ unsigned ResMultiplier =
+ VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
+ NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
+ EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
+
+ // If the source vector is too wide or too narrow, we may nevertheless be able
+ // to construct a compatible shuffle either by concatenating it with UNDEF or
+ // extracting a suitable range of elements.
+ for (auto &Src : Sources) {
+ EVT SrcVT = Src.ShuffleVec.getValueType();
- if (CurSource.getValueType() == VT) {
- // No VEXT necessary
- ShuffleSrcs[i] = CurSource;
- VEXTOffsets[i] = 0;
+ if (SrcVT.getSizeInBits() == VT.getSizeInBits())
continue;
- } else if (NumSrcElts < NumElts) {
+
+ // This stage of the search produces a source with the same element type as
+ // the original, but with a total width matching the BUILD_VECTOR output.
+ EVT EltVT = SrcVT.getVectorElementType();
+ unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
+ EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
+
+ if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
+ assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
// We can pad out the smaller vector for free, so if it's part of a
// shuffle...
- ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, CurSource,
- DAG.getUNDEF(CurSource.getValueType()));
+ Src.ShuffleVec =
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
+ DAG.getUNDEF(Src.ShuffleVec.getValueType()));
continue;
}
- // Since only 64-bit and 128-bit vectors are legal on ARM and
- // we've eliminated the other cases...
- assert(NumSrcElts == 2 * NumElts &&
- "unexpected vector sizes in ReconstructShuffle");
+ assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
- if (MaxElts[i] - MinElts[i] >= NumElts) {
+ if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
// Span too large for a VEXT to cope
return SDValue();
}
- if (MinElts[i] >= NumElts) {
+ if (Src.MinElt >= NumSrcElts) {
// The extraction can just take the second half
- VEXTOffsets[i] = NumElts;
- ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
- DAG.getIntPtrConstant(NumElts));
- } else if (MaxElts[i] < NumElts) {
+ Src.ShuffleVec =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(NumSrcElts, MVT::i64));
+ Src.WindowBase = -NumSrcElts;
+ } else if (Src.MaxElt < NumSrcElts) {
// The extraction can just take the first half
- VEXTOffsets[i] = 0;
- ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
- DAG.getIntPtrConstant(0));
+ Src.ShuffleVec =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(0, MVT::i64));
} else {
// An actual VEXT is needed
- VEXTOffsets[i] = MinElts[i];
- SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
- DAG.getIntPtrConstant(0));
- SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource,
- DAG.getIntPtrConstant(NumElts));
- unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
- ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
- DAG.getConstant(Imm, MVT::i32));
+ SDValue VEXTSrc1 =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(0, MVT::i64));
+ SDValue VEXTSrc2 =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(NumSrcElts, MVT::i64));
+ unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
+
+ Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
+ VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
+ Src.WindowBase = -Src.MinElt;
}
}
- SmallVector<int, 8> Mask;
-
- for (unsigned i = 0; i < NumElts; ++i) {
+ // Another possible incompatibility occurs from the vector element types. We
+ // can fix this by bitcasting the source vectors to the same type we intend
+ // for the shuffle.
+ for (auto &Src : Sources) {
+ EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
+ if (SrcEltTy == SmallestEltTy)
+ continue;
+ assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
+ Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
+ Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
+ Src.WindowBase *= Src.WindowScale;
+ }
+
+ // Final sanity check before we try to actually produce a shuffle.
+ DEBUG(
+ for (auto Src : Sources)
+ assert(Src.ShuffleVec.getValueType() == ShuffleVT);
+ );
+
+ // The stars all align, our next step is to produce the mask for the shuffle.
+ SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
+ int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
+ for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
SDValue Entry = Op.getOperand(i);
- if (Entry.getOpcode() == ISD::UNDEF) {
- Mask.push_back(-1);
+ if (Entry.getOpcode() == ISD::UNDEF)
continue;
- }
- SDValue ExtractVec = Entry.getOperand(0);
- int ExtractElt =
- cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
- if (ExtractVec == SourceVecs[0]) {
- Mask.push_back(ExtractElt * OffsetMultipliers[0] - VEXTOffsets[0]);
- } else {
- Mask.push_back(ExtractElt * OffsetMultipliers[1] + NumElts -
- VEXTOffsets[1]);
- }
+ auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
+ int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
+
+ // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
+ // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
+ // segment.
+ EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
+ int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
+ VT.getVectorElementType().getSizeInBits());
+ int LanesDefined = BitsDefined / BitsPerShuffleLane;
+
+ // This source is expected to fill ResMultiplier lanes of the final shuffle,
+ // starting at the appropriate offset.
+ int *LaneMask = &Mask[i * ResMultiplier];
+
+ int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
+ ExtractBase += NumElts * (Src - Sources.begin());
+ for (int j = 0; j < LanesDefined; ++j)
+ LaneMask[j] = ExtractBase + j;
}
// Final check before we try to produce nonsense...
- if (isShuffleMaskLegal(Mask, VT))
- return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
- &Mask[0]);
+ if (!isShuffleMaskLegal(Mask, ShuffleVT))
+ return SDValue();
- return SDValue();
+ SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
+ for (unsigned i = 0; i < Sources.size(); ++i)
+ ShuffleOps[i] = Sources[i].ShuffleVec;
+
+ SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
+ ShuffleOps[1], &Mask[0]);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}
// check if an EXT instruction can handle the shuffle mask when the
@@ -4610,7 +5040,8 @@ static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
VT.getVectorElementType() == MVT::f32)
return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
// vrev <4 x i16> -> REV32
- if (VT.getVectorElementType() == MVT::i16)
+ if (VT.getVectorElementType() == MVT::i16 ||
+ VT.getVectorElementType() == MVT::f16)
return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
// vrev <4 x i8> -> REV16
assert(VT.getVectorElementType() == MVT::i8);
@@ -4730,7 +5161,7 @@ static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
static unsigned getDUPLANEOp(EVT EltType) {
if (EltType == MVT::i8)
return AArch64ISD::DUPLANE8;
- if (EltType == MVT::i16)
+ if (EltType == MVT::i16 || EltType == MVT::f16)
return AArch64ISD::DUPLANE16;
if (EltType == MVT::i32 || EltType == MVT::f32)
return AArch64ISD::DUPLANE32;
@@ -4860,7 +5291,8 @@ SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
EVT ScalarVT = VT.getVectorElementType();
- if (ScalarVT.getSizeInBits() < 32)
+
+ if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
ScalarVT = MVT::i32;
return DAG.getNode(
@@ -4948,7 +5380,7 @@ SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
@@ -4957,7 +5389,7 @@ SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
@@ -4966,7 +5398,7 @@ SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
@@ -4975,7 +5407,7 @@ SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
@@ -4984,7 +5416,7 @@ SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
@@ -4993,7 +5425,7 @@ SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
@@ -5148,7 +5580,7 @@ SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
@@ -5157,7 +5589,7 @@ SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
@@ -5166,7 +5598,7 @@ SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
@@ -5175,7 +5607,7 @@ SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
@@ -5184,7 +5616,7 @@ SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
@@ -5193,7 +5625,7 @@ SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
@@ -5266,13 +5698,13 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
if (VT.getSizeInBits() == 128) {
SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
// Support the V64 version via subregister insertion.
SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
@@ -5281,7 +5713,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
@@ -5290,7 +5722,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
@@ -5299,7 +5731,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
@@ -5308,7 +5740,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
@@ -5317,7 +5749,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
@@ -5326,7 +5758,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
@@ -5335,7 +5767,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(264, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
@@ -5344,7 +5776,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(272, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
@@ -5352,7 +5784,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
// The few faces of FMOV...
@@ -5361,7 +5793,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
@@ -5369,7 +5801,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
DAG.getConstant(CnstVal, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
// The many faces of MVNI...
@@ -5380,7 +5812,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
@@ -5389,7 +5821,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
@@ -5398,7 +5830,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(16, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
@@ -5407,7 +5839,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(24, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
@@ -5416,7 +5848,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(0, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
@@ -5425,7 +5857,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(8, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
@@ -5434,7 +5866,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(264, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
@@ -5443,7 +5875,7 @@ SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
DAG.getConstant(CnstVal, MVT::i32),
DAG.getConstant(272, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
@@ -5619,11 +6051,12 @@ SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
// Insertion/extraction are legal for V128 types.
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
- VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
+ VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
+ VT == MVT::v8f16)
return Op;
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
- VT != MVT::v1i64 && VT != MVT::v2f32)
+ VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
return SDValue();
// For V64 types, we perform insertion by expanding the value
@@ -5652,11 +6085,12 @@ AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
// Insertion/extraction are legal for V128 types.
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
- VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
+ VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
+ VT == MVT::v8f16)
return Op;
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
- VT != MVT::v1i64 && VT != MVT::v2f32)
+ VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
return SDValue();
// For V64 types, we perform extraction by expanding the value
@@ -6190,7 +6624,7 @@ EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::NoImplicitFloat) &&
(memOpAlign(SrcAlign, DstAlign, 16) ||
- (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
+ (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
return MVT::f128;
return Size >= 8 ? MVT::i64 : MVT::i32;
@@ -6385,6 +6819,48 @@ static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
return performIntegerAbsCombine(N, DAG);
}
+SDValue
+AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
+ SelectionDAG &DAG,
+ std::vector<SDNode *> *Created) const {
+ // fold (sdiv X, pow2)
+ EVT VT = N->getValueType(0);
+ if ((VT != MVT::i32 && VT != MVT::i64) ||
+ !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
+ return SDValue();
+
+ SDLoc DL(N);
+ SDValue N0 = N->getOperand(0);
+ unsigned Lg2 = Divisor.countTrailingZeros();
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
+
+ // Add (N0 < 0) ? Pow2 - 1 : 0;
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
+ SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
+
+ if (Created) {
+ Created->push_back(Cmp.getNode());
+ Created->push_back(Add.getNode());
+ Created->push_back(CSel.getNode());
+ }
+
+ // Divide by pow2.
+ SDValue SRA =
+ DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
+
+ // If we're dividing by a positive value, we're done. Otherwise, we must
+ // negate the result.
+ if (Divisor.isNonNegative())
+ return SRA;
+
+ if (Created)
+ Created->push_back(SRA.getNode());
+ return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
+}
+
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
@@ -6462,14 +6938,14 @@ static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
return SDValue();
- // Now check that the other operand of the AND is a constant splat. We could
+ // Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (BuildVectorSDNode *BV =
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
- // Bail out if the vector isn't a constant splat.
- if (!BV->getConstantSplatNode())
+ // Bail out if the vector isn't a constant.
+ if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
@@ -6489,7 +6965,8 @@ static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
return SDValue();
}
-static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
+static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
+ const AArch64Subtarget *Subtarget) {
// First try to optimize away the conversion when it's conditionally from
// a constant. Vectors only.
SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
@@ -6508,7 +6985,7 @@ static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
// conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
// This eliminates an "integer-to-vector-move UOP and improve throughput.
SDValue N0 = N->getOperand(0);
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+ if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
@@ -7269,11 +7746,11 @@ static SDValue performExtendCombine(SDNode *N,
// If the vector type isn't a simple VT, it's beyond the scope of what
// we're worried about here. Let legalization do its thing and hope for
// the best.
- if (!ResVT.isSimple())
+ SDValue Src = N->getOperand(0);
+ EVT SrcVT = Src->getValueType(0);
+ if (!ResVT.isSimple() || !SrcVT.isSimple())
return SDValue();
- SDValue Src = N->getOperand(0);
- MVT SrcVT = Src->getValueType(0).getSimpleVT();
// If the source VT is a 64-bit vector, we can play games and get the
// better results we want.
if (SrcVT.getSizeInBits() != 64)
@@ -7297,9 +7774,9 @@ static SDValue performExtendCombine(SDNode *N,
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
- DAG.getIntPtrConstant(0));
+ DAG.getConstant(0, MVT::i64));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
- DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
+ DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
@@ -7421,9 +7898,9 @@ static SDValue performSTORECombine(SDNode *N,
EVT HalfVT =
EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
- DAG.getIntPtrConstant(0));
+ DAG.getConstant(0, MVT::i64));
SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
- DAG.getIntPtrConstant(NumElts));
+ DAG.getConstant(NumElts, MVT::i64));
SDValue BasePtr = S->getBasePtr();
SDValue NewST1 =
DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
@@ -7507,7 +7984,7 @@ static SDValue performPostLD1Combine(SDNode *N,
Ops.push_back(Inc);
EVT Tys[3] = { VT, MVT::i64, MVT::Other };
- SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
+ SDVTList SDTys = DAG.getVTList(Tys);
unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
MemVT,
@@ -7637,7 +8114,7 @@ static SDValue performNEONPostLDSTCombine(SDNode *N,
Tys[n] = VecTy;
Tys[n++] = MVT::i64; // Type of write back register
Tys[n] = MVT::Other; // Type of the chain
- SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
+ SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
@@ -7658,10 +8135,272 @@ static SDValue performNEONPostLDSTCombine(SDNode *N,
return SDValue();
}
+// Checks to see if the value is the prescribed width and returns information
+// about its extension mode.
+static
+bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
+ ExtType = ISD::NON_EXTLOAD;
+ switch(V.getNode()->getOpcode()) {
+ default:
+ return false;
+ case ISD::LOAD: {
+ LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
+ if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
+ || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
+ ExtType = LoadNode->getExtensionType();
+ return true;
+ }
+ return false;
+ }
+ case ISD::AssertSext: {
+ VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
+ if ((TypeNode->getVT() == MVT::i8 && width == 8)
+ || (TypeNode->getVT() == MVT::i16 && width == 16)) {
+ ExtType = ISD::SEXTLOAD;
+ return true;
+ }
+ return false;
+ }
+ case ISD::AssertZext: {
+ VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
+ if ((TypeNode->getVT() == MVT::i8 && width == 8)
+ || (TypeNode->getVT() == MVT::i16 && width == 16)) {
+ ExtType = ISD::ZEXTLOAD;
+ return true;
+ }
+ return false;
+ }
+ case ISD::Constant:
+ case ISD::TargetConstant: {
+ if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
+ 1LL << (width - 1))
+ return true;
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// This function does a whole lot of voodoo to determine if the tests are
+// equivalent without and with a mask. Essentially what happens is that given a
+// DAG resembling:
+//
+// +-------------+ +-------------+ +-------------+ +-------------+
+// | Input | | AddConstant | | CompConstant| | CC |
+// +-------------+ +-------------+ +-------------+ +-------------+
+// | | | |
+// V V | +----------+
+// +-------------+ +----+ | |
+// | ADD | |0xff| | |
+// +-------------+ +----+ | |
+// | | | |
+// V V | |
+// +-------------+ | |
+// | AND | | |
+// +-------------+ | |
+// | | |
+// +-----+ | |
+// | | |
+// V V V
+// +-------------+
+// | CMP |
+// +-------------+
+//
+// The AND node may be safely removed for some combinations of inputs. In
+// particular we need to take into account the extension type of the Input,
+// the exact values of AddConstant, CompConstant, and CC, along with the nominal
+// width of the input (this can work for any width inputs, the above graph is
+// specific to 8 bits.
+//
+// The specific equations were worked out by generating output tables for each
+// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
+// problem was simplified by working with 4 bit inputs, which means we only
+// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
+// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
+// patterns present in both extensions (0,7). For every distinct set of
+// AddConstant and CompConstants bit patterns we can consider the masked and
+// unmasked versions to be equivalent if the result of this function is true for
+// all 16 distinct bit patterns of for the current extension type of Input (w0).
+//
+// sub w8, w0, w1
+// and w10, w8, #0x0f
+// cmp w8, w2
+// cset w9, AArch64CC
+// cmp w10, w2
+// cset w11, AArch64CC
+// cmp w9, w11
+// cset w0, eq
+// ret
+//
+// Since the above function shows when the outputs are equivalent it defines
+// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
+// would be expensive to run during compiles. The equations below were written
+// in a test harness that confirmed they gave equivalent outputs to the above
+// for all inputs function, so they can be used determine if the removal is
+// legal instead.
+//
+// isEquivalentMaskless() is the code for testing if the AND can be removed
+// factored out of the DAG recognition as the DAG can take several forms.
+
+static
+bool isEquivalentMaskless(unsigned CC, unsigned width,
+ ISD::LoadExtType ExtType, signed AddConstant,
+ signed CompConstant) {
+ // By being careful about our equations and only writing the in term
+ // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
+ // make them generally applicable to all bit widths.
+ signed MaxUInt = (1 << width);
+
+ // For the purposes of these comparisons sign extending the type is
+ // equivalent to zero extending the add and displacing it by half the integer
+ // width. Provided we are careful and make sure our equations are valid over
+ // the whole range we can just adjust the input and avoid writing equations
+ // for sign extended inputs.
+ if (ExtType == ISD::SEXTLOAD)
+ AddConstant -= (1 << (width-1));
+
+ switch(CC) {
+ case AArch64CC::LE:
+ case AArch64CC::GT: {
+ if ((AddConstant == 0) ||
+ (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
+ (AddConstant >= 0 && CompConstant < 0) ||
+ (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
+ return true;
+ } break;
+ case AArch64CC::LT:
+ case AArch64CC::GE: {
+ if ((AddConstant == 0) ||
+ (AddConstant >= 0 && CompConstant <= 0) ||
+ (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
+ return true;
+ } break;
+ case AArch64CC::HI:
+ case AArch64CC::LS: {
+ if ((AddConstant >= 0 && CompConstant < 0) ||
+ (AddConstant <= 0 && CompConstant >= -1 &&
+ CompConstant < AddConstant + MaxUInt))
+ return true;
+ } break;
+ case AArch64CC::PL:
+ case AArch64CC::MI: {
+ if ((AddConstant == 0) ||
+ (AddConstant > 0 && CompConstant <= 0) ||
+ (AddConstant < 0 && CompConstant <= AddConstant))
+ return true;
+ } break;
+ case AArch64CC::LO:
+ case AArch64CC::HS: {
+ if ((AddConstant >= 0 && CompConstant <= 0) ||
+ (AddConstant <= 0 && CompConstant >= 0 &&
+ CompConstant <= AddConstant + MaxUInt))
+ return true;
+ } break;
+ case AArch64CC::EQ:
+ case AArch64CC::NE: {
+ if ((AddConstant > 0 && CompConstant < 0) ||
+ (AddConstant < 0 && CompConstant >= 0 &&
+ CompConstant < AddConstant + MaxUInt) ||
+ (AddConstant >= 0 && CompConstant >= 0 &&
+ CompConstant >= AddConstant) ||
+ (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
+
+ return true;
+ } break;
+ case AArch64CC::VS:
+ case AArch64CC::VC:
+ case AArch64CC::AL:
+ case AArch64CC::NV:
+ return true;
+ case AArch64CC::Invalid:
+ break;
+ }
+
+ return false;
+}
+
+static
+SDValue performCONDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG, unsigned CCIndex,
+ unsigned CmpIndex) {
+ unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
+ SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
+ unsigned CondOpcode = SubsNode->getOpcode();
+
+ if (CondOpcode != AArch64ISD::SUBS)
+ return SDValue();
+
+ // There is a SUBS feeding this condition. Is it fed by a mask we can
+ // use?
+
+ SDNode *AndNode = SubsNode->getOperand(0).getNode();
+ unsigned MaskBits = 0;
+
+ if (AndNode->getOpcode() != ISD::AND)
+ return SDValue();
+
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
+ uint32_t CNV = CN->getZExtValue();
+ if (CNV == 255)
+ MaskBits = 8;
+ else if (CNV == 65535)
+ MaskBits = 16;
+ }
+
+ if (!MaskBits)
+ return SDValue();
+
+ SDValue AddValue = AndNode->getOperand(0);
+
+ if (AddValue.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ // The basic dag structure is correct, grab the inputs and validate them.
+
+ SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
+ SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
+ SDValue SubsInputValue = SubsNode->getOperand(1);
+
+ // The mask is present and the provenance of all the values is a smaller type,
+ // lets see if the mask is superfluous.
+
+ if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
+ !isa<ConstantSDNode>(SubsInputValue.getNode()))
+ return SDValue();
+
+ ISD::LoadExtType ExtType;
+
+ if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
+ !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
+ !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
+ return SDValue();
+
+ if(!isEquivalentMaskless(CC, MaskBits, ExtType,
+ cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
+ cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
+ return SDValue();
+
+ // The AND is not necessary, remove it.
+
+ SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
+ SubsNode->getValueType(1));
+ SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
+
+ SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
+ DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
+
+ return SDValue(N, 0);
+}
+
// Optimize compare with zero and branch.
static SDValue performBRCONDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
+ SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
+ if (NV.getNode())
+ N = NV.getNode();
SDValue Chain = N->getOperand(0);
SDValue Dest = N->getOperand(1);
SDValue CCVal = N->getOperand(2);
@@ -7750,21 +8489,29 @@ static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
EVT ResVT = N->getValueType(0);
- if (!N->getOperand(1).getValueType().isVector())
+ if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
return SDValue();
- if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
+ // If NumMaskElts == 0, the comparison is larger than select result. The
+ // largest real NEON comparison is 64-bits per lane, which means the result is
+ // at most 32-bits and an illegal vector. Just bail out for now.
+ EVT SrcVT = N0.getOperand(0).getValueType();
+
+ // Don't try to do this optimization when the setcc itself has i1 operands.
+ // There are no legal vectors of i1, so this would be pointless.
+ if (SrcVT == MVT::i1)
return SDValue();
- SDLoc DL(N0);
+ int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
+ if (!ResVT.isVector() || NumMaskElts == 0)
+ return SDValue();
- EVT SrcVT = N0.getOperand(0).getValueType();
- SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
- ResVT.getSizeInBits() / SrcVT.getSizeInBits());
+ SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
// First perform a vector comparison, where lane 0 is the one we're interested
// in.
+ SDLoc DL(N0);
SDValue LHS =
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
SDValue RHS =
@@ -7774,8 +8521,8 @@ static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
// Now duplicate the comparison mask we want across all other lanes.
SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
- Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
- Mask);
+ Mask = DAG.getNode(ISD::BITCAST, DL,
+ ResVT.changeVectorElementTypeToInteger(), Mask);
return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
}
@@ -7795,7 +8542,7 @@ SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
return performMulCombine(N, DAG, DCI, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
- return performIntToFpCombine(N, DAG);
+ return performIntToFpCombine(N, DAG, Subtarget);
case ISD::OR:
return performORCombine(N, DCI, Subtarget);
case ISD::INTRINSIC_WO_CHAIN:
@@ -7816,6 +8563,8 @@ SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
return performSTORECombine(N, DCI, DAG, Subtarget);
case AArch64ISD::BRCOND:
return performBRCONDCombine(N, DCI, DAG);
+ case AArch64ISD::CSEL:
+ return performCONDCombine(N, DCI, DAG, 2, 3);
case AArch64ISD::DUP:
return performPostLD1Combine(N, DCI, false);
case ISD::INSERT_VECTOR_ELT:
@@ -7971,13 +8720,12 @@ bool AArch64TargetLowering::getPostIndexedAddressParts(
static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
- if (N->getValueType(0) != MVT::i16)
- return;
-
SDLoc DL(N);
SDValue Op = N->getOperand(0);
- assert(Op.getValueType() == MVT::f16 &&
- "Inconsistent bitcast? Only 16-bit types should be i16 or f16");
+
+ if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
+ return;
+
Op = SDValue(
DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
DAG.getUNDEF(MVT::i32), Op,
@@ -8003,17 +8751,14 @@ void AArch64TargetLowering::ReplaceNodeResults(
}
}
-bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
- // Loads and stores less than 128-bits are already atomic; ones above that
- // are doomed anyway, so defer to the default libcall and blame the OS when
- // things go wrong:
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
- else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- return LI->getType()->getPrimitiveSizeInBits() == 128;
+bool AArch64TargetLowering::useLoadStackGuardNode() const {
+ return true;
+}
- // For the real atomic operations, we have ldxr/stxr up to 128 bits.
- return Inst->getType()->getPrimitiveSizeInBits() <= 128;
+bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
+ // Combine multiple FDIVs with the same divisor into multiple FMULs by the
+ // reciprocal if there are three or more FDIVs.
+ return NumUsers > 2;
}
TargetLoweringBase::LegalizeTypeAction
@@ -8028,12 +8773,37 @@ AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
return TargetLoweringBase::getPreferredVectorAction(VT);
}
+// Loads and stores less than 128-bits are already atomic; ones above that
+// are doomed anyway, so defer to the default libcall and blame the OS when
+// things go wrong.
+bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
+ return Size == 128;
+}
+
+// Loads and stores less than 128-bits are already atomic; ones above that
+// are doomed anyway, so defer to the default libcall and blame the OS when
+// things go wrong.
+bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ unsigned Size = LI->getType()->getPrimitiveSizeInBits();
+ return Size == 128;
+}
+
+// For the real atomic operations, we have ldxr/stxr up to 128 bits,
+bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ unsigned Size = AI->getType()->getPrimitiveSizeInBits();
+ return Size <= 128;
+}
+
+bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
+ return true;
+}
+
Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
- bool IsAcquire =
- Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+ bool IsAcquire = isAtLeastAcquire(Ord);
// Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
// intrinsic must return {i64, i64} and we have to recombine them into a
@@ -8068,8 +8838,7 @@ Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
Value *Val, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
- bool IsRelease =
- Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+ bool IsRelease = isAtLeastRelease(Ord);
// Since the intrinsics must have legal type, the i128 intrinsics take two
// parameters: "i64, i64". We must marshal Val into the appropriate form
@@ -8096,3 +8865,8 @@ Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
Val, Stxr->getFunctionType()->getParamType(0)),
Addr);
}
+
+bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
+ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
+ return Ty->isArrayTy();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h
index cb0b9ef..cc25bed 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_AArch64_ISELLOWERING_H
-#define LLVM_TARGET_AArch64_ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -162,6 +162,16 @@ enum {
SITOF,
UITOF,
+ /// Natural vector cast. ISD::BITCAST is not natural in the big-endian
+ /// world w.r.t vectors; which causes additional REV instructions to be
+ /// generated to compensate for the byte-swapping. But sometimes we do
+ /// need to re-interpret the data in SIMD vector registers in big-endian
+ /// mode without emitting such REV instructions.
+ NVCAST,
+
+ SMULL,
+ UMULL,
+
// NEON Load/Store with post-increment base updates
LD2post = ISD::FIRST_TARGET_MEMORY_OPCODE,
LD3post,
@@ -197,10 +207,9 @@ class AArch64TargetLowering : public TargetLowering {
bool RequireStrictAlign;
public:
- explicit AArch64TargetLowering(TargetMachine &TM);
+ explicit AArch64TargetLowering(const TargetMachine &TM);
- /// Selects the correct CCAssignFn for a the given CallingConvention
- /// value.
+ /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const;
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
@@ -212,10 +221,11 @@ public:
MVT getScalarShiftAmountTy(EVT LHSTy) const override;
- /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// allowsMisalignedMemoryAccesses - Returns true if the target allows
/// unaligned memory accesses. of the specified type.
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AddrSpace = 0,
- bool *Fast = nullptr) const override {
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace = 0,
+ unsigned Align = 1,
+ bool *Fast = nullptr) const override {
if (RequireStrictAlign)
return false;
// FIXME: True for Cyclone, but not necessary others.
@@ -317,13 +327,17 @@ public:
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
+ bool hasLoadLinkedStoreConditional() const override;
Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const override;
- bool shouldExpandAtomicInIR(Instruction *Inst) const override;
+ bool shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
+ bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
+ bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
+ bool useLoadStackGuardNode() const override;
TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const override;
@@ -424,6 +438,10 @@ private:
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
+ std::vector<SDNode *> *Created) const override;
+ bool combineRepeatedFPDivisors(unsigned NumUsers) const override;
+
ConstraintType
getConstraintType(const std::string &Constraint) const override;
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
@@ -455,6 +473,10 @@ private:
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
+
+ bool functionArgumentNeedsConsecutiveRegisters(Type *Ty,
+ CallingConv::ID CallConv,
+ bool isVarArg) const override;
};
namespace AArch64 {
@@ -464,4 +486,4 @@ FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
} // end namespace llvm
-#endif // LLVM_TARGET_AArch64_ISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td b/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td
index 3b9e3c6..4923a11 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrAtomics.td
@@ -29,8 +29,7 @@ def : Pat<(atomic_fence (imm), (imm)), (DMB (i32 0xb))>;
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- assert(Ordering != AcquireRelease && "unexpected load ordering");
- return Ordering == Acquire || Ordering == SequentiallyConsistent;
+ return isAtLeastAcquire(Ordering);
}]>;
// An atomic load operation that does not need either acquire or release
@@ -38,7 +37,7 @@ class acquiring_load<PatFrag base>
class relaxed_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- return Ordering == Monotonic || Ordering == Unordered;
+ return !isAtLeastAcquire(Ordering);
}]>;
// 8-bit loads
@@ -114,14 +113,14 @@ class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
assert(Ordering != AcquireRelease && "unexpected store ordering");
- return Ordering == Release || Ordering == SequentiallyConsistent;
+ return isAtLeastRelease(Ordering);
}]>;
// An atomic store operation that doesn't actually need to be atomic on AArch64.
class relaxed_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- return Ordering == Monotonic || Ordering == Unordered;
+ return !isAtLeastRelease(Ordering);
}]>;
// 8-bit stores
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td b/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td
index e88c0c0..d295c02 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrFormats.td
@@ -843,7 +843,7 @@ def MRSSystemRegisterOperand : AsmOperandClass {
let ParserMethod = "tryParseSysReg";
let DiagnosticType = "MRS";
}
-// concatenation of 1, op0, op1, CRn, CRm, op2. 16-bit immediate.
+// concatenation of op0, op1, CRn, CRm, op2. 16-bit immediate.
def mrs_sysreg_op : Operand<i32> {
let ParserMatchClass = MRSSystemRegisterOperand;
let DecoderMethod = "DecodeMRSSystemRegister";
@@ -863,9 +863,8 @@ def msr_sysreg_op : Operand<i32> {
class MRSI : RtSystemI<1, (outs GPR64:$Rt), (ins mrs_sysreg_op:$systemreg),
"mrs", "\t$Rt, $systemreg"> {
- bits<15> systemreg;
- let Inst{20} = 1;
- let Inst{19-5} = systemreg;
+ bits<16> systemreg;
+ let Inst{20-5} = systemreg;
}
// FIXME: Some of these def NZCV, others don't. Best way to model that?
@@ -873,9 +872,8 @@ class MRSI : RtSystemI<1, (outs GPR64:$Rt), (ins mrs_sysreg_op:$systemreg),
// would do it, but feels like overkill at this point.
class MSRI : RtSystemI<0, (outs), (ins msr_sysreg_op:$systemreg, GPR64:$Rt),
"msr", "\t$systemreg, $Rt"> {
- bits<15> systemreg;
- let Inst{20} = 1;
- let Inst{19-5} = systemreg;
+ bits<16> systemreg;
+ let Inst{20-5} = systemreg;
}
def SystemPStateFieldOperand : AsmOperandClass {
@@ -1351,14 +1349,15 @@ class BaseMulAccum<bit isSub, bits<3> opc, RegisterClass multype,
}
multiclass MulAccum<bit isSub, string asm, SDNode AccNode> {
+ // MADD/MSUB generation is decided by MachineCombiner.cpp
def Wrrr : BaseMulAccum<isSub, 0b000, GPR32, GPR32, asm,
- [(set GPR32:$Rd, (AccNode GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm)))]>,
+ [/*(set GPR32:$Rd, (AccNode GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm)))*/]>,
Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> {
let Inst{31} = 0;
}
def Xrrr : BaseMulAccum<isSub, 0b000, GPR64, GPR64, asm,
- [(set GPR64:$Rd, (AccNode GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm)))]>,
+ [/*(set GPR64:$Rd, (AccNode GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm)))*/]>,
Sched<[WriteIM64, ReadIM, ReadIM, ReadIMA]> {
let Inst{31} = 1;
}
@@ -1636,7 +1635,7 @@ class AddSubRegAlias<string asm, Instruction inst, RegisterClass dstRegtype,
multiclass AddSub<bit isSub, string mnemonic,
SDPatternOperator OpNode = null_frag> {
- let hasSideEffects = 0 in {
+ let hasSideEffects = 0, isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// Add/Subtract immediate
def Wri : BaseAddSubImm<isSub, 0, GPR32sp, GPR32sp, addsub_shifted_imm32,
mnemonic, OpNode> {
@@ -1961,14 +1960,14 @@ class LogicalRegAlias<string asm, Instruction inst, RegisterClass regtype>
multiclass LogicalImm<bits<2> opc, string mnemonic, SDNode OpNode,
string Alias> {
- let AddedComplexity = 6 in
+ let AddedComplexity = 6, isReMaterializable = 1, isAsCheapAsAMove = 1 in
def Wri : BaseLogicalImm<opc, GPR32sp, GPR32, logical_imm32, mnemonic,
[(set GPR32sp:$Rd, (OpNode GPR32:$Rn,
logical_imm32:$imm))]> {
let Inst{31} = 0;
let Inst{22} = 0; // 64-bit version has an additional bit of immediate.
}
- let AddedComplexity = 6 in
+ let AddedComplexity = 6, isReMaterializable = 1, isAsCheapAsAMove = 1 in
def Xri : BaseLogicalImm<opc, GPR64sp, GPR64, logical_imm64, mnemonic,
[(set GPR64sp:$Rd, (OpNode GPR64:$Rn,
logical_imm64:$imm))]> {
@@ -2013,8 +2012,10 @@ class BaseLogicalRegPseudo<RegisterClass regtype, SDPatternOperator OpNode>
// Split from LogicalImm as not all instructions have both.
multiclass LogicalReg<bits<2> opc, bit N, string mnemonic,
SDPatternOperator OpNode> {
+ let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>;
def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>;
+ }
def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic,
[(set GPR32:$Rd, (OpNode GPR32:$Rn,
@@ -2995,7 +2996,7 @@ class LoadPreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
: BaseLoadStorePreIdx<sz, V, opc,
(outs GPR64sp:$wback, regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset), asm,
- "$Rn = $wback", []>,
+ "$Rn = $wback,@earlyclobber $wback", []>,
Sched<[WriteLD, WriteAdr]>;
let mayStore = 1, mayLoad = 0 in
@@ -3004,7 +3005,7 @@ class StorePreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
: BaseLoadStorePreIdx<sz, V, opc,
(outs GPR64sp:$wback),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
- asm, "$Rn = $wback",
+ asm, "$Rn = $wback,@earlyclobber $wback",
[(set GPR64sp:$wback,
(storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>,
Sched<[WriteAdr, WriteST]>;
@@ -3014,7 +3015,6 @@ class StorePreIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
// Load/store post-indexed
//---
-// (pre-index) load/stores.
class BaseLoadStorePostIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
string asm, string cstr, list<dag> pat>
: I<oops, iops, asm, "\t$Rt, [$Rn], $offset", cstr, pat> {
@@ -3042,7 +3042,7 @@ class LoadPostIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
: BaseLoadStorePostIdx<sz, V, opc,
(outs GPR64sp:$wback, regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset),
- asm, "$Rn = $wback", []>,
+ asm, "$Rn = $wback,@earlyclobber $wback", []>,
Sched<[WriteLD, WriteI]>;
let mayStore = 1, mayLoad = 0 in
@@ -3051,7 +3051,7 @@ class StorePostIdx<bits<2> sz, bit V, bits<2> opc, RegisterClass regtype,
: BaseLoadStorePostIdx<sz, V, opc,
(outs GPR64sp:$wback),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
- asm, "$Rn = $wback",
+ asm, "$Rn = $wback,@earlyclobber $wback",
[(set GPR64sp:$wback,
(storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>,
Sched<[WriteAdr, WriteST, ReadAdrBase]>;
@@ -3115,7 +3115,7 @@ multiclass StorePairOffset<bits<2> opc, bit V, RegisterClass regtype,
// (pre-indexed)
class BaseLoadStorePairPreIdx<bits<2> opc, bit V, bit L, dag oops, dag iops,
string asm>
- : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]!", "$Rn = $wback", []> {
+ : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]!", "$Rn = $wback,@earlyclobber $wback", []> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
@@ -3156,7 +3156,7 @@ class StorePairPreIdx<bits<2> opc, bit V, RegisterClass regtype,
class BaseLoadStorePairPostIdx<bits<2> opc, bit V, bit L, dag oops, dag iops,
string asm>
- : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn], $offset", "$Rn = $wback", []> {
+ : I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn], $offset", "$Rn = $wback,@earlyclobber $wback", []> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
@@ -4383,7 +4383,7 @@ class BaseSIMDVectorLShiftLongBySize<bit Q, bits<2> size,
}
multiclass SIMDVectorLShiftLongBySizeBHS {
- let neverHasSideEffects = 1 in {
+ let hasSideEffects = 0 in {
def v8i8 : BaseSIMDVectorLShiftLongBySize<0, 0b00, V64,
"shll", ".8h", ".8b", "8">;
def v16i8 : BaseSIMDVectorLShiftLongBySize<1, 0b00, V128,
@@ -5260,6 +5260,10 @@ multiclass SIMDZipVector<bits<3>opc, string asm,
def v2i64 : BaseSIMDZipVector<0b111, opc, V128,
asm, ".2d", OpNode, v2i64>;
+ def : Pat<(v4f16 (OpNode V64:$Rn, V64:$Rm)),
+ (!cast<Instruction>(NAME#"v4i16") V64:$Rn, V64:$Rm)>;
+ def : Pat<(v8f16 (OpNode V128:$Rn, V128:$Rm)),
+ (!cast<Instruction>(NAME#"v8i16") V128:$Rn, V128:$Rm)>;
def : Pat<(v2f32 (OpNode V64:$Rn, V64:$Rm)),
(!cast<Instruction>(NAME#"v2i32") V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (OpNode V128:$Rn, V128:$Rm)),
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
index ce85b2c..e582ed4 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
+#include "AArch64MachineCombinerPattern.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -260,8 +261,9 @@ void AArch64InstrInfo::instantiateCondBranch(
BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
} else {
// Folded compare-and-branch
+ // Note that we use addOperand instead of addReg to keep the flags.
const MachineInstrBuilder MIB =
- BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
+ BuildMI(&MBB, DL, get(Cond[1].getImm())).addOperand(Cond[2]);
if (Cond.size() > 3)
MIB.addImm(Cond[3].getImm());
MIB.addMBB(TBB);
@@ -541,6 +543,51 @@ void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
CC);
}
+// FIXME: this implementation should be micro-architecture dependent, so a
+// micro-architecture target hook should be introduced here in future.
+bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr *MI) const {
+ if (!Subtarget.isCortexA57() && !Subtarget.isCortexA53())
+ return MI->isAsCheapAsAMove();
+
+ switch (MI->getOpcode()) {
+ default:
+ return false;
+
+ // add/sub on register without shift
+ case AArch64::ADDWri:
+ case AArch64::ADDXri:
+ case AArch64::SUBWri:
+ case AArch64::SUBXri:
+ return (MI->getOperand(3).getImm() == 0);
+
+ // logical ops on immediate
+ case AArch64::ANDWri:
+ case AArch64::ANDXri:
+ case AArch64::EORWri:
+ case AArch64::EORXri:
+ case AArch64::ORRWri:
+ case AArch64::ORRXri:
+ return true;
+
+ // logical ops on register without shift
+ case AArch64::ANDWrr:
+ case AArch64::ANDXrr:
+ case AArch64::BICWrr:
+ case AArch64::BICXrr:
+ case AArch64::EONWrr:
+ case AArch64::EONXrr:
+ case AArch64::EORWrr:
+ case AArch64::EORXrr:
+ case AArch64::ORNWrr:
+ case AArch64::ORNXrr:
+ case AArch64::ORRWrr:
+ case AArch64::ORRXrr:
+ return true;
+ }
+
+ llvm_unreachable("Unknown opcode to check as cheap as a move!");
+}
+
bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
@@ -561,6 +608,42 @@ bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
}
}
+bool
+AArch64InstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
+ MachineInstr *MIb,
+ AliasAnalysis *AA) const {
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ unsigned BaseRegA = 0, BaseRegB = 0;
+ int OffsetA = 0, OffsetB = 0;
+ int WidthA = 0, WidthB = 0;
+
+ assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
+ "MIa must be a store or a load");
+ assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
+ "MIb must be a store or a load");
+
+ if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
+ MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
+ return false;
+
+ // Retrieve the base register, offset from the base register and width. Width
+ // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
+ // base registers are identical, and the offset of a lower memory access +
+ // the width doesn't overlap the offset of a higher memory access,
+ // then the memory accesses are different.
+ if (getLdStBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) &&
+ getLdStBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) {
+ if (BaseRegA == BaseRegB) {
+ int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
+ int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
+ int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
+ if (LowOffset + LowWidth <= HighOffset)
+ return true;
+ }
+ }
+ return false;
+}
+
/// analyzeCompare - For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
/// Return true if the comparison instruction can be analyzed.
@@ -595,7 +678,8 @@ bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
- CmpValue = MI->getOperand(2).getImm();
+ // FIXME: In order to convert CmpValue to 0 or 1
+ CmpValue = (MI->getOperand(2).getImm() != 0);
return true;
case AArch64::ANDSWri:
case AArch64::ANDSXri:
@@ -604,9 +688,14 @@ bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
- CmpValue = AArch64_AM::decodeLogicalImmediate(
- MI->getOperand(2).getImm(),
- MI->getOpcode() == AArch64::ANDSWri ? 32 : 64);
+ // FIXME:The return val type of decodeLogicalImmediate is uint64_t,
+ // while the type of CmpValue is int. When converting uint64_t to int,
+ // the high 32 bits of uint64_t will be lost.
+ // In fact it causes a bug in spec2006-483.xalancbmk
+ // CmpValue is only used to compare with zero in OptimizeCompareInstr
+ CmpValue = (AArch64_AM::decodeLogicalImmediate(
+ MI->getOperand(2).getImm(),
+ MI->getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0);
return true;
}
@@ -619,8 +708,8 @@ static bool UpdateOperandRegClass(MachineInstr *Instr) {
MachineFunction *MF = MBB->getParent();
assert(MF && "Can't get MachineFunction here");
const TargetMachine *TM = &MF->getTarget();
- const TargetInstrInfo *TII = TM->getInstrInfo();
- const TargetRegisterInfo *TRI = TM->getRegisterInfo();
+ const TargetInstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
+ const TargetRegisterInfo *TRI = TM->getSubtargetImpl()->getRegisterInfo();
MachineRegisterInfo *MRI = &MF->getRegInfo();
for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
@@ -652,6 +741,87 @@ static bool UpdateOperandRegClass(MachineInstr *Instr) {
return true;
}
+/// \brief Return the opcode that does not set flags when possible - otherwise
+/// return the original opcode. The caller is responsible to do the actual
+/// substitution and legality checking.
+static unsigned convertFlagSettingOpcode(const MachineInstr *MI) {
+ // Don't convert all compare instructions, because for some the zero register
+ // encoding becomes the sp register.
+ bool MIDefinesZeroReg = false;
+ if (MI->definesRegister(AArch64::WZR) || MI->definesRegister(AArch64::XZR))
+ MIDefinesZeroReg = true;
+
+ switch (MI->getOpcode()) {
+ default:
+ return MI->getOpcode();
+ case AArch64::ADDSWrr:
+ return AArch64::ADDWrr;
+ case AArch64::ADDSWri:
+ return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
+ case AArch64::ADDSWrs:
+ return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
+ case AArch64::ADDSWrx:
+ return AArch64::ADDWrx;
+ case AArch64::ADDSXrr:
+ return AArch64::ADDXrr;
+ case AArch64::ADDSXri:
+ return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
+ case AArch64::ADDSXrs:
+ return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
+ case AArch64::ADDSXrx:
+ return AArch64::ADDXrx;
+ case AArch64::SUBSWrr:
+ return AArch64::SUBWrr;
+ case AArch64::SUBSWri:
+ return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
+ case AArch64::SUBSWrs:
+ return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
+ case AArch64::SUBSWrx:
+ return AArch64::SUBWrx;
+ case AArch64::SUBSXrr:
+ return AArch64::SUBXrr;
+ case AArch64::SUBSXri:
+ return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
+ case AArch64::SUBSXrs:
+ return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
+ case AArch64::SUBSXrx:
+ return AArch64::SUBXrx;
+ }
+}
+
+/// True when condition code could be modified on the instruction
+/// trace starting at from and ending at to.
+static bool modifiesConditionCode(MachineInstr *From, MachineInstr *To,
+ const bool CheckOnlyCCWrites,
+ const TargetRegisterInfo *TRI) {
+ // We iterate backward starting \p To until we hit \p From
+ MachineBasicBlock::iterator I = To, E = From, B = To->getParent()->begin();
+
+ // Early exit if To is at the beginning of the BB.
+ if (I == B)
+ return true;
+
+ // Check whether the definition of SrcReg is in the same basic block as
+ // Compare. If not, assume the condition code gets modified on some path.
+ if (To->getParent() != From->getParent())
+ return true;
+
+ // Check that NZCV isn't set on the trace.
+ for (--I; I != E; --I) {
+ const MachineInstr &Instr = *I;
+
+ if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
+ (!CheckOnlyCCWrites && Instr.readsRegister(AArch64::NZCV, TRI)))
+ // This instruction modifies or uses NZCV after the one we want to
+ // change.
+ return true;
+ if (I == B)
+ // We currently don't allow the instruction trace to cross basic
+ // block boundaries
+ return true;
+ }
+ return false;
+}
/// optimizeCompareInstr - Convert the instruction supplying the argument to the
/// comparison into one that sets the zero bit in the flags register.
bool AArch64InstrInfo::optimizeCompareInstr(
@@ -661,28 +831,15 @@ bool AArch64InstrInfo::optimizeCompareInstr(
// Replace SUBSWrr with SUBWrr if NZCV is not used.
int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
if (Cmp_NZCV != -1) {
- unsigned NewOpc;
- switch (CmpInstr->getOpcode()) {
- default:
- return false;
- case AArch64::ADDSWrr: NewOpc = AArch64::ADDWrr; break;
- case AArch64::ADDSWri: NewOpc = AArch64::ADDWri; break;
- case AArch64::ADDSWrs: NewOpc = AArch64::ADDWrs; break;
- case AArch64::ADDSWrx: NewOpc = AArch64::ADDWrx; break;
- case AArch64::ADDSXrr: NewOpc = AArch64::ADDXrr; break;
- case AArch64::ADDSXri: NewOpc = AArch64::ADDXri; break;
- case AArch64::ADDSXrs: NewOpc = AArch64::ADDXrs; break;
- case AArch64::ADDSXrx: NewOpc = AArch64::ADDXrx; break;
- case AArch64::SUBSWrr: NewOpc = AArch64::SUBWrr; break;
- case AArch64::SUBSWri: NewOpc = AArch64::SUBWri; break;
- case AArch64::SUBSWrs: NewOpc = AArch64::SUBWrs; break;
- case AArch64::SUBSWrx: NewOpc = AArch64::SUBWrx; break;
- case AArch64::SUBSXrr: NewOpc = AArch64::SUBXrr; break;
- case AArch64::SUBSXri: NewOpc = AArch64::SUBXri; break;
- case AArch64::SUBSXrs: NewOpc = AArch64::SUBXrs; break;
- case AArch64::SUBSXrx: NewOpc = AArch64::SUBXrx; break;
+ if (CmpInstr->definesRegister(AArch64::WZR) ||
+ CmpInstr->definesRegister(AArch64::XZR)) {
+ CmpInstr->eraseFromParent();
+ return true;
}
-
+ unsigned Opc = CmpInstr->getOpcode();
+ unsigned NewOpc = convertFlagSettingOpcode(CmpInstr);
+ if (NewOpc == Opc)
+ return false;
const MCInstrDesc &MCID = get(NewOpc);
CmpInstr->setDesc(MCID);
CmpInstr->RemoveOperand(Cmp_NZCV);
@@ -693,6 +850,9 @@ bool AArch64InstrInfo::optimizeCompareInstr(
}
// Continue only if we have a "ri" where immediate is zero.
+ // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
+ // function.
+ assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!");
if (CmpValue != 0 || SrcReg2 != 0)
return false;
@@ -705,36 +865,10 @@ bool AArch64InstrInfo::optimizeCompareInstr(
if (!MI)
return false;
- // We iterate backward, starting from the instruction before CmpInstr and
- // stop when reaching the definition of the source register or done with the
- // basic block, to check whether NZCV is used or modified in between.
- MachineBasicBlock::iterator I = CmpInstr, E = MI,
- B = CmpInstr->getParent()->begin();
-
- // Early exit if CmpInstr is at the beginning of the BB.
- if (I == B)
- return false;
-
- // Check whether the definition of SrcReg is in the same basic block as
- // Compare. If not, we can't optimize away the Compare.
- if (MI->getParent() != CmpInstr->getParent())
- return false;
-
- // Check that NZCV isn't set between the comparison instruction and the one we
- // want to change.
+ bool CheckOnlyCCWrites = false;
const TargetRegisterInfo *TRI = &getRegisterInfo();
- for (--I; I != E; --I) {
- const MachineInstr &Instr = *I;
-
- if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
- Instr.readsRegister(AArch64::NZCV, TRI))
- // This instruction modifies or uses NZCV after the one we want to
- // change. We can't do this transformation.
- return false;
- if (I == B)
- // The 'and' is below the comparison instruction.
- return false;
- }
+ if (modifiesConditionCode(MI, CmpInstr, CheckOnlyCCWrites, TRI))
+ return false;
unsigned NewOpc = MI->getOpcode();
switch (MI->getOpcode()) {
@@ -848,6 +982,56 @@ bool AArch64InstrInfo::optimizeCompareInstr(
return true;
}
+bool
+AArch64InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ if (MI->getOpcode() != TargetOpcode::LOAD_STACK_GUARD)
+ return false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Reg = MI->getOperand(0).getReg();
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MI->memoperands_begin())->getValue());
+ const TargetMachine &TM = MBB.getParent()->getTarget();
+ unsigned char OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
+ const unsigned char MO_NC = AArch64II::MO_NC;
+
+ if ((OpFlags & AArch64II::MO_GOT) != 0) {
+ BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT);
+ BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
+ .addReg(Reg, RegState::Kill).addImm(0)
+ .addMemOperand(*MI->memoperands_begin());
+ } else if (TM.getCodeModel() == CodeModel::Large) {
+ BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G3).addImm(48);
+ BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC).addImm(32);
+ BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC).addImm(16);
+ BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC).addImm(0);
+ BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
+ .addReg(Reg, RegState::Kill).addImm(0)
+ .addMemOperand(*MI->memoperands_begin());
+ } else {
+ BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
+ .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
+ unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
+ BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, LoFlags)
+ .addMemOperand(*MI->memoperands_begin());
+ }
+
+ MBB.erase(MI);
+
+ return true;
+}
+
/// Return true if this is this instruction has a non-zero immediate
bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
@@ -963,12 +1147,14 @@ bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
return true;
}
+ break;
case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
if (MI->getOperand(2).getImm() == 0) {
assert(MI->getDesc().getNumOperands() == 4 &&
MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
return true;
}
+ break;
}
return false;
}
@@ -991,6 +1177,7 @@ bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
"invalid ORRv16i8 operands");
return true;
}
+ break;
}
return false;
}
@@ -1152,6 +1339,102 @@ AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
};
}
+bool AArch64InstrInfo::getLdStBaseRegImmOfsWidth(
+ MachineInstr *LdSt, unsigned &BaseReg, int &Offset, int &Width,
+ const TargetRegisterInfo *TRI) const {
+ // Handle only loads/stores with base register followed by immediate offset.
+ if (LdSt->getNumOperands() != 3)
+ return false;
+ if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
+ return false;
+
+ // Offset is calculated as the immediate operand multiplied by the scaling factor.
+ // Unscaled instructions have scaling factor set to 1.
+ int Scale = 0;
+ switch (LdSt->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDURQi:
+ case AArch64::STURQi:
+ Width = 16;
+ Scale = 1;
+ break;
+ case AArch64::LDURXi:
+ case AArch64::LDURDi:
+ case AArch64::STURXi:
+ case AArch64::STURDi:
+ Width = 8;
+ Scale = 1;
+ break;
+ case AArch64::LDURWi:
+ case AArch64::LDURSi:
+ case AArch64::LDURSWi:
+ case AArch64::STURWi:
+ case AArch64::STURSi:
+ Width = 4;
+ Scale = 1;
+ break;
+ case AArch64::LDURHi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSHWi:
+ case AArch64::STURHi:
+ case AArch64::STURHHi:
+ Width = 2;
+ Scale = 1;
+ break;
+ case AArch64::LDURBi:
+ case AArch64::LDURBBi:
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSBWi:
+ case AArch64::STURBi:
+ case AArch64::STURBBi:
+ Width = 1;
+ Scale = 1;
+ break;
+ case AArch64::LDRXui:
+ case AArch64::STRXui:
+ Scale = Width = 8;
+ break;
+ case AArch64::LDRWui:
+ case AArch64::STRWui:
+ Scale = Width = 4;
+ break;
+ case AArch64::LDRBui:
+ case AArch64::STRBui:
+ Scale = Width = 1;
+ break;
+ case AArch64::LDRHui:
+ case AArch64::STRHui:
+ Scale = Width = 2;
+ break;
+ case AArch64::LDRSui:
+ case AArch64::STRSui:
+ Scale = Width = 4;
+ break;
+ case AArch64::LDRDui:
+ case AArch64::STRDui:
+ Scale = Width = 8;
+ break;
+ case AArch64::LDRQui:
+ case AArch64::STRQui:
+ Scale = Width = 16;
+ break;
+ case AArch64::LDRBBui:
+ case AArch64::STRBBui:
+ Scale = Width = 1;
+ break;
+ case AArch64::LDRHHui:
+ case AArch64::STRHHui:
+ Scale = Width = 2;
+ break;
+ };
+
+ BaseReg = LdSt->getOperand(1).getReg();
+ Offset = LdSt->getOperand(2).getImm() * Scale;
+ return true;
+}
+
/// Detect opportunities for ldp/stp formation.
///
/// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
@@ -1194,16 +1477,15 @@ bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
}
}
-MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
- int FrameIx,
- uint64_t Offset,
- const MDNode *MDPtr,
- DebugLoc DL) const {
+MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(
+ MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *Var,
+ const MDNode *Expr, DebugLoc DL) const {
MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
.addFrameIndex(FrameIx)
.addImm(0)
.addImm(Offset)
- .addMetadata(MDPtr);
+ .addMetadata(Var)
+ .addMetadata(Expr);
return &*MIB;
}
@@ -2087,3 +2369,592 @@ void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(AArch64::HINT);
NopInst.addOperand(MCOperand::CreateImm(0));
}
+/// useMachineCombiner - return true when a target supports MachineCombiner
+bool AArch64InstrInfo::useMachineCombiner() const {
+ // AArch64 supports the combiner
+ return true;
+}
+//
+// True when Opc sets flag
+static bool isCombineInstrSettingFlag(unsigned Opc) {
+ switch (Opc) {
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXri:
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSXrr:
+ // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXri:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+//
+// 32b Opcodes that can be combined with a MUL
+static bool isCombineInstrCandidate32(unsigned Opc) {
+ switch (Opc) {
+ case AArch64::ADDWrr:
+ case AArch64::ADDWri:
+ case AArch64::SUBWrr:
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWri:
+ case AArch64::SUBSWrr:
+ // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
+ case AArch64::SUBWri:
+ case AArch64::SUBSWri:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+//
+// 64b Opcodes that can be combined with a MUL
+static bool isCombineInstrCandidate64(unsigned Opc) {
+ switch (Opc) {
+ case AArch64::ADDXrr:
+ case AArch64::ADDXri:
+ case AArch64::SUBXrr:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXri:
+ case AArch64::SUBSXrr:
+ // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
+ case AArch64::SUBXri:
+ case AArch64::SUBSXri:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+//
+// Opcodes that can be combined with a MUL
+static bool isCombineInstrCandidate(unsigned Opc) {
+ return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
+}
+
+static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
+ unsigned MulOpc, unsigned ZeroReg) {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ MachineInstr *MI = nullptr;
+ // We need a virtual register definition.
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ MI = MRI.getUniqueVRegDef(MO.getReg());
+ // And it needs to be in the trace (otherwise, it won't have a depth).
+ if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != MulOpc)
+ return false;
+
+ assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
+
+ // The third input reg must be zero.
+ if (MI->getOperand(3).getReg() != ZeroReg)
+ return false;
+
+ // Must only used by the user we combine with.
+ if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
+ return false;
+
+ return true;
+}
+
+/// hasPattern - return true when there is potentially a faster code sequence
+/// for an instruction chain ending in \p Root. All potential patterns are
+/// listed
+/// in the \p Pattern vector. Pattern should be sorted in priority order since
+/// the pattern evaluator stops checking as soon as it finds a faster sequence.
+
+bool AArch64InstrInfo::hasPattern(
+ MachineInstr &Root,
+ SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Pattern) const {
+ unsigned Opc = Root.getOpcode();
+ MachineBasicBlock &MBB = *Root.getParent();
+ bool Found = false;
+
+ if (!isCombineInstrCandidate(Opc))
+ return 0;
+ if (isCombineInstrSettingFlag(Opc)) {
+ int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
+ // When NZCV is live bail out.
+ if (Cmp_NZCV == -1)
+ return 0;
+ unsigned NewOpc = convertFlagSettingOpcode(&Root);
+ // When opcode can't change bail out.
+ // CHECKME: do we miss any cases for opcode conversion?
+ if (NewOpc == Opc)
+ return 0;
+ Opc = NewOpc;
+ }
+
+ switch (Opc) {
+ default:
+ break;
+ case AArch64::ADDWrr:
+ assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
+ "ADDWrr does not have register operands");
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULADDW_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULADDW_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::ADDXrr:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULADDX_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULADDX_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBWrr:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULSUBW_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULSUBW_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBXrr:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULSUBX_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULSUBX_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::ADDWri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULADDWI_OP1);
+ Found = true;
+ }
+ break;
+ case AArch64::ADDXri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULADDXI_OP1);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBWri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULSUBWI_OP1);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBXri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Pattern.push_back(MachineCombinerPattern::MC_MULSUBXI_OP1);
+ Found = true;
+ }
+ break;
+ }
+ return Found;
+}
+
+/// genMadd - Generate madd instruction and combine mul and add.
+/// Example:
+/// MUL I=A,B,0
+/// ADD R,I,C
+/// ==> MADD R,A,B,C
+/// \param Root is the ADD instruction
+/// \param [out] InsInstrs is a vector of machine instructions and will
+/// contain the generated madd instruction
+/// \param IdxMulOpd is index of operand in Root that is the result of
+/// the MUL. In the example above IdxMulOpd is 1.
+/// \param MaddOpc the opcode fo the madd instruction
+static MachineInstr *genMadd(MachineFunction &MF, MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII, MachineInstr &Root,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ unsigned IdxMulOpd, unsigned MaddOpc,
+ const TargetRegisterClass *RC) {
+ assert(IdxMulOpd == 1 || IdxMulOpd == 2);
+
+ unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
+ MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
+ unsigned ResultReg = Root.getOperand(0).getReg();
+ unsigned SrcReg0 = MUL->getOperand(1).getReg();
+ bool Src0IsKill = MUL->getOperand(1).isKill();
+ unsigned SrcReg1 = MUL->getOperand(2).getReg();
+ bool Src1IsKill = MUL->getOperand(2).isKill();
+ unsigned SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
+ bool Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
+
+ if (TargetRegisterInfo::isVirtualRegister(ResultReg))
+ MRI.constrainRegClass(ResultReg, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
+ MRI.constrainRegClass(SrcReg0, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
+ MRI.constrainRegClass(SrcReg1, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg2))
+ MRI.constrainRegClass(SrcReg2, RC);
+
+ MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
+ ResultReg)
+ .addReg(SrcReg0, getKillRegState(Src0IsKill))
+ .addReg(SrcReg1, getKillRegState(Src1IsKill))
+ .addReg(SrcReg2, getKillRegState(Src2IsKill));
+ // Insert the MADD
+ InsInstrs.push_back(MIB);
+ return MUL;
+}
+
+/// genMaddR - Generate madd instruction and combine mul and add using
+/// an extra virtual register
+/// Example - an ADD intermediate needs to be stored in a register:
+/// MUL I=A,B,0
+/// ADD R,I,Imm
+/// ==> ORR V, ZR, Imm
+/// ==> MADD R,A,B,V
+/// \param Root is the ADD instruction
+/// \param [out] InsInstrs is a vector of machine instructions and will
+/// contain the generated madd instruction
+/// \param IdxMulOpd is index of operand in Root that is the result of
+/// the MUL. In the example above IdxMulOpd is 1.
+/// \param MaddOpc the opcode fo the madd instruction
+/// \param VR is a virtual register that holds the value of an ADD operand
+/// (V in the example above).
+static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII, MachineInstr &Root,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ unsigned IdxMulOpd, unsigned MaddOpc,
+ unsigned VR, const TargetRegisterClass *RC) {
+ assert(IdxMulOpd == 1 || IdxMulOpd == 2);
+
+ MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
+ unsigned ResultReg = Root.getOperand(0).getReg();
+ unsigned SrcReg0 = MUL->getOperand(1).getReg();
+ bool Src0IsKill = MUL->getOperand(1).isKill();
+ unsigned SrcReg1 = MUL->getOperand(2).getReg();
+ bool Src1IsKill = MUL->getOperand(2).isKill();
+
+ if (TargetRegisterInfo::isVirtualRegister(ResultReg))
+ MRI.constrainRegClass(ResultReg, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
+ MRI.constrainRegClass(SrcReg0, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
+ MRI.constrainRegClass(SrcReg1, RC);
+ if (TargetRegisterInfo::isVirtualRegister(VR))
+ MRI.constrainRegClass(VR, RC);
+
+ MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
+ ResultReg)
+ .addReg(SrcReg0, getKillRegState(Src0IsKill))
+ .addReg(SrcReg1, getKillRegState(Src1IsKill))
+ .addReg(VR);
+ // Insert the MADD
+ InsInstrs.push_back(MIB);
+ return MUL;
+}
+
+/// genAlternativeCodeSequence - when hasPattern() finds a pattern
+/// this function generates the instructions that could replace the
+/// original code sequence
+void AArch64InstrInfo::genAlternativeCodeSequence(
+ MachineInstr &Root, MachineCombinerPattern::MC_PATTERN Pattern,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
+ MachineBasicBlock &MBB = *Root.getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+
+ MachineInstr *MUL;
+ const TargetRegisterClass *RC;
+ unsigned Opc;
+ switch (Pattern) {
+ default:
+ // signal error.
+ break;
+ case MachineCombinerPattern::MC_MULADDW_OP1:
+ case MachineCombinerPattern::MC_MULADDX_OP1:
+ // MUL I=A,B,0
+ // ADD R,I,C
+ // ==> MADD R,A,B,C
+ // --- Create(MADD);
+ if (Pattern == MachineCombinerPattern::MC_MULADDW_OP1) {
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
+ break;
+ case MachineCombinerPattern::MC_MULADDW_OP2:
+ case MachineCombinerPattern::MC_MULADDX_OP2:
+ // MUL I=A,B,0
+ // ADD R,C,I
+ // ==> MADD R,A,B,C
+ // --- Create(MADD);
+ if (Pattern == MachineCombinerPattern::MC_MULADDW_OP2) {
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
+ break;
+ case MachineCombinerPattern::MC_MULADDWI_OP1:
+ case MachineCombinerPattern::MC_MULADDXI_OP1: {
+ // MUL I=A,B,0
+ // ADD R,I,Imm
+ // ==> ORR V, ZR, Imm
+ // ==> MADD R,A,B,V
+ // --- Create(MADD);
+ const TargetRegisterClass *OrrRC;
+ unsigned BitSize, OrrOpc, ZeroReg;
+ if (Pattern == MachineCombinerPattern::MC_MULADDWI_OP1) {
+ OrrOpc = AArch64::ORRWri;
+ OrrRC = &AArch64::GPR32spRegClass;
+ BitSize = 32;
+ ZeroReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ OrrOpc = AArch64::ORRXri;
+ OrrRC = &AArch64::GPR64spRegClass;
+ BitSize = 64;
+ ZeroReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ unsigned NewVR = MRI.createVirtualRegister(OrrRC);
+ uint64_t Imm = Root.getOperand(2).getImm();
+
+ if (Root.getOperand(3).isImm()) {
+ unsigned Val = Root.getOperand(3).getImm();
+ Imm = Imm << Val;
+ }
+ uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+ MachineInstrBuilder MIB1 =
+ BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
+ .addReg(ZeroReg)
+ .addImm(Encoding);
+ InsInstrs.push_back(MIB1);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+ MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
+ }
+ break;
+ }
+ case MachineCombinerPattern::MC_MULSUBW_OP1:
+ case MachineCombinerPattern::MC_MULSUBX_OP1: {
+ // MUL I=A,B,0
+ // SUB R,I, C
+ // ==> SUB V, 0, C
+ // ==> MADD R,A,B,V // = -C + A*B
+ // --- Create(MADD);
+ const TargetRegisterClass *SubRC;
+ unsigned SubOpc, ZeroReg;
+ if (Pattern == MachineCombinerPattern::MC_MULSUBW_OP1) {
+ SubOpc = AArch64::SUBWrr;
+ SubRC = &AArch64::GPR32spRegClass;
+ ZeroReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ SubOpc = AArch64::SUBXrr;
+ SubRC = &AArch64::GPR64spRegClass;
+ ZeroReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ unsigned NewVR = MRI.createVirtualRegister(SubRC);
+ // SUB NewVR, 0, C
+ MachineInstrBuilder MIB1 =
+ BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
+ .addReg(ZeroReg)
+ .addOperand(Root.getOperand(2));
+ InsInstrs.push_back(MIB1);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+ MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
+ break;
+ }
+ case MachineCombinerPattern::MC_MULSUBW_OP2:
+ case MachineCombinerPattern::MC_MULSUBX_OP2:
+ // MUL I=A,B,0
+ // SUB R,C,I
+ // ==> MSUB R,A,B,C (computes C - A*B)
+ // --- Create(MSUB);
+ if (Pattern == MachineCombinerPattern::MC_MULSUBW_OP2) {
+ Opc = AArch64::MSUBWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ Opc = AArch64::MSUBXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
+ break;
+ case MachineCombinerPattern::MC_MULSUBWI_OP1:
+ case MachineCombinerPattern::MC_MULSUBXI_OP1: {
+ // MUL I=A,B,0
+ // SUB R,I, Imm
+ // ==> ORR V, ZR, -Imm
+ // ==> MADD R,A,B,V // = -Imm + A*B
+ // --- Create(MADD);
+ const TargetRegisterClass *OrrRC;
+ unsigned BitSize, OrrOpc, ZeroReg;
+ if (Pattern == MachineCombinerPattern::MC_MULSUBWI_OP1) {
+ OrrOpc = AArch64::ORRWri;
+ OrrRC = &AArch64::GPR32spRegClass;
+ BitSize = 32;
+ ZeroReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ OrrOpc = AArch64::ORRXri;
+ OrrRC = &AArch64::GPR64spRegClass;
+ BitSize = 64;
+ ZeroReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ unsigned NewVR = MRI.createVirtualRegister(OrrRC);
+ int Imm = Root.getOperand(2).getImm();
+ if (Root.getOperand(3).isImm()) {
+ unsigned Val = Root.getOperand(3).getImm();
+ Imm = Imm << Val;
+ }
+ uint64_t UImm = -Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+ MachineInstrBuilder MIB1 =
+ BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
+ .addReg(ZeroReg)
+ .addImm(Encoding);
+ InsInstrs.push_back(MIB1);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+ MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
+ }
+ break;
+ }
+ } // end switch (Pattern)
+ // Record MUL and ADD/SUB for deletion
+ DelInstrs.push_back(MUL);
+ DelInstrs.push_back(&Root);
+
+ return;
+}
+
+/// \brief Replace csincr-branch sequence by simple conditional branch
+///
+/// Examples:
+/// 1.
+/// csinc w9, wzr, wzr, <condition code>
+/// tbnz w9, #0, 0x44
+/// to
+/// b.<inverted condition code>
+///
+/// 2.
+/// csinc w9, wzr, wzr, <condition code>
+/// tbz w9, #0, 0x44
+/// to
+/// b.<condition code>
+///
+/// \param MI Conditional Branch
+/// \return True when the simple conditional branch is generated
+///
+bool AArch64InstrInfo::optimizeCondBranch(MachineInstr *MI) const {
+ bool IsNegativeBranch = false;
+ bool IsTestAndBranch = false;
+ unsigned TargetBBInMI = 0;
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown branch instruction?");
+ case AArch64::Bcc:
+ return false;
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ TargetBBInMI = 1;
+ break;
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ TargetBBInMI = 1;
+ IsNegativeBranch = true;
+ break;
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ TargetBBInMI = 2;
+ IsTestAndBranch = true;
+ break;
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ TargetBBInMI = 2;
+ IsNegativeBranch = true;
+ IsTestAndBranch = true;
+ break;
+ }
+ // So we increment a zero register and test for bits other
+ // than bit 0? Conservatively bail out in case the verifier
+ // missed this case.
+ if (IsTestAndBranch && MI->getOperand(1).getImm())
+ return false;
+
+ // Find Definition.
+ assert(MI->getParent() && "Incomplete machine instruciton\n");
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ unsigned VReg = MI->getOperand(0).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VReg))
+ return false;
+
+ MachineInstr *DefMI = MRI->getVRegDef(VReg);
+
+ // Look for CSINC
+ if (!(DefMI->getOpcode() == AArch64::CSINCWr &&
+ DefMI->getOperand(1).getReg() == AArch64::WZR &&
+ DefMI->getOperand(2).getReg() == AArch64::WZR) &&
+ !(DefMI->getOpcode() == AArch64::CSINCXr &&
+ DefMI->getOperand(1).getReg() == AArch64::XZR &&
+ DefMI->getOperand(2).getReg() == AArch64::XZR))
+ return false;
+
+ if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
+ return false;
+
+ AArch64CC::CondCode CC =
+ (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
+ bool CheckOnlyCCWrites = true;
+ // Convert only when the condition code is not modified between
+ // the CSINC and the branch. The CC may be used by other
+ // instructions in between.
+ if (modifiesConditionCode(DefMI, MI, CheckOnlyCCWrites, &getRegisterInfo()))
+ return false;
+ MachineBasicBlock &RefToMBB = *MBB;
+ MachineBasicBlock *TBB = MI->getOperand(TargetBBInMI).getMBB();
+ DebugLoc DL = MI->getDebugLoc();
+ if (IsNegativeBranch)
+ CC = AArch64CC::getInvertedCondCode(CC);
+ BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
+ MI->eraseFromParent();
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h
index f70b82b..d8f1274 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.h
@@ -11,11 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_AArch64INSTRINFO_H
-#define LLVM_TARGET_AArch64INSTRINFO_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64INSTRINFO_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64INSTRINFO_H
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
+#include "llvm/CodeGen/MachineCombinerPattern.h"
#include "llvm/Target/TargetInstrInfo.h"
#define GET_INSTRINFO_HEADER
@@ -46,9 +47,15 @@ public:
unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+ bool isAsCheapAsAMove(const MachineInstr *MI) const override;
+
bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
unsigned &DstReg, unsigned &SubIdx) const override;
+ bool
+ areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
+ AliasAnalysis *AA = nullptr) const override;
+
unsigned isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const override;
unsigned isStoreToStackSlot(const MachineInstr *MI,
@@ -87,6 +94,10 @@ public:
unsigned &Offset,
const TargetRegisterInfo *TRI) const override;
+ bool getLdStBaseRegImmOfsWidth(MachineInstr *LdSt, unsigned &BaseReg,
+ int &Offset, int &Width,
+ const TargetRegisterInfo *TRI) const;
+
bool enableClusterLoads() const override { return true; }
bool shouldClusterLoads(MachineInstr *FirstLdSt, MachineInstr *SecondLdSt,
@@ -96,8 +107,8 @@ public:
MachineInstr *Second) const override;
MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
- uint64_t Offset, const MDNode *MDPtr,
- DebugLoc DL) const;
+ uint64_t Offset, const MDNode *Var,
+ const MDNode *Expr, DebugLoc DL) const;
void copyPhysRegTuple(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL, unsigned DestReg, unsigned SrcReg,
bool KillSrc, unsigned Opcode,
@@ -117,6 +128,7 @@ public:
int FrameIndex, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
+ using TargetInstrInfo::foldMemoryOperandImpl;
MachineInstr *
foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
@@ -153,7 +165,27 @@ public:
bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
unsigned SrcReg2, int CmpMask, int CmpValue,
const MachineRegisterInfo *MRI) const override;
-
+ bool optimizeCondBranch(MachineInstr *MI) const override;
+ /// hasPattern - return true when there is potentially a faster code sequence
+ /// for an instruction chain ending in <Root>. All potential patterns are
+ /// listed
+ /// in the <Pattern> array.
+ bool hasPattern(MachineInstr &Root,
+ SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Pattern)
+ const override;
+
+ /// genAlternativeCodeSequence - when hasPattern() finds a pattern
+ /// this function generates the instructions that could replace the
+ /// original code sequence
+ void genAlternativeCodeSequence(
+ MachineInstr &Root, MachineCombinerPattern::MC_PATTERN P,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
+ /// useMachineCombiner - AArch64 supports MachineCombiner
+ bool useMachineCombiner() const override;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
private:
void instantiateCondBranch(MachineBasicBlock &MBB, DebugLoc DL,
MachineBasicBlock *TBB,
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td
index 0ba069e..e0fb90a 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td
@@ -24,6 +24,7 @@ def HasCRC : Predicate<"Subtarget->hasCRC()">,
AssemblerPredicate<"FeatureCRC", "crc">;
def IsLE : Predicate<"Subtarget->isLittleEndian()">;
def IsBE : Predicate<"!Subtarget->isLittleEndian()">;
+def IsCyclone : Predicate<"Subtarget->isCyclone()">;
//===----------------------------------------------------------------------===//
// AArch64-specific DAG Nodes.
@@ -236,6 +237,12 @@ def AArch64tlsdesc_call : SDNode<"AArch64ISD::TLSDESC_CALL",
def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
SDT_AArch64WrapperLarge>;
+def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
+
+def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
+ SDTCisSameAs<1, 2>]>;
+def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
+def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
//===----------------------------------------------------------------------===//
@@ -474,6 +481,24 @@ def trunc_imm : SDNodeXForm<imm, [{
def : Pat<(i64 i64imm_32bit:$src),
(SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
+// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
+def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
+return CurDAG->getTargetConstant(
+ N->getValueAPF().bitcastToAPInt().getZExtValue(), MVT::i32);
+}]>;
+
+def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
+return CurDAG->getTargetConstant(
+ N->getValueAPF().bitcastToAPInt().getZExtValue(), MVT::i64);
+}]>;
+
+
+def : Pat<(f32 fpimm:$in),
+ (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
+def : Pat<(f64 fpimm:$in),
+ (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
+
+
// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
// sequences.
def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
@@ -632,6 +657,10 @@ def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
(MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
(MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
+def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
+ (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
+def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
+ (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
} // AddedComplexity = 7
let AddedComplexity = 5 in {
@@ -782,7 +811,7 @@ def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
//===----------------------------------------------------------------------===//
// Bitfield immediate extraction instruction.
//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
defm EXTR : ExtractImm<"extr">;
def : InstAlias<"ror $dst, $src, $shift",
(EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
@@ -797,7 +826,7 @@ def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
//===----------------------------------------------------------------------===//
// Other bitfield immediate instructions.
//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">;
defm SBFM : BitfieldImm<0b00, "sbfm">;
defm UBFM : BitfieldImm<0b10, "ubfm">;
@@ -970,9 +999,9 @@ def : InstAlias<"cneg $dst, $src, $cc",
// PC-relative instructions.
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in {
-let neverHasSideEffects = 1, mayStore = 0, mayLoad = 0 in {
+let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
def ADR : ADRI<0, "adr", adrlabel, []>;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
def ADRP : ADRI<1, "adrp", adrplabel,
[(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
@@ -1173,6 +1202,9 @@ defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>;
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
+defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>;
+defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>;
+
defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>;
@@ -1213,6 +1245,7 @@ let Predicates = [IsLE] in {
defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
+ defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
}
defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>;
@@ -1226,6 +1259,7 @@ let Predicates = [IsLE] in {
defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>;
+ defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>;
}
} // AddedComplexity = 10
@@ -1355,6 +1389,8 @@ let Predicates = [IsLE] in {
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
+ (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
}
def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
@@ -1376,6 +1412,8 @@ let Predicates = [IsLE] in {
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
+ (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
}
def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
@@ -1512,6 +1550,8 @@ let Predicates = [IsLE] in {
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
+ (LDURDi GPR64sp:$Rn, simm9:$offset)>;
}
def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
@@ -1532,6 +1572,8 @@ let Predicates = [IsLE] in {
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
+ (LDURQi GPR64sp:$Rn, simm9:$offset)>;
}
// anyext -> zext
@@ -1828,6 +1870,7 @@ let Predicates = [IsLE] in {
defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
+ defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
}
defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
@@ -1842,9 +1885,37 @@ let Predicates = [IsLE] in {
defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
+ defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
}
} // AddedComplexity = 10
+// Match stores from lane 0 to the appropriate subreg's store.
+multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
+ ValueType VecTy, ValueType STy,
+ SubRegIndex SubRegIdx,
+ Instruction STRW, Instruction STRX> {
+
+ def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
+ (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
+ (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
+ GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
+
+ def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
+ (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
+ (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
+ GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
+}
+
+let AddedComplexity = 19 in {
+ defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
+ defm : VecROStoreLane0Pat<ro16, store , v8i16, i16, hsub, STRHroW, STRHroX>;
+ defm : VecROStoreLane0Pat<ro32, truncstorei32, v4i32, i32, ssub, STRSroW, STRSroX>;
+ defm : VecROStoreLane0Pat<ro32, store , v4i32, i32, ssub, STRSroW, STRSroX>;
+ defm : VecROStoreLane0Pat<ro32, store , v4f32, f32, ssub, STRSroW, STRSroX>;
+ defm : VecROStoreLane0Pat<ro64, store , v2i64, i64, dsub, STRDroW, STRDroX>;
+ defm : VecROStoreLane0Pat<ro64, store , v2f64, f64, dsub, STRDroW, STRDroX>;
+}
+
//---
// (unsigned immediate)
defm STRX : StoreUI<0b11, 0, 0b00, GPR64, uimm12s8, "str",
@@ -1892,6 +1963,9 @@ let Predicates = [IsLE] in {
def : Pat<(store (v2i32 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
+ def : Pat<(store (v4f16 FPR64:$Rt),
+ (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
+ (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
}
def : Pat<(store (v1f64 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
@@ -1921,6 +1995,9 @@ let Predicates = [IsLE] in {
def : Pat<(store (v2i64 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
+ def : Pat<(store (v8f16 FPR128:$Rt),
+ (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
+ (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
}
def : Pat<(store (f128 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
@@ -1983,6 +2060,9 @@ let Predicates = [IsLE] in {
def : Pat<(store (v2i32 FPR64:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v4f16 FPR64:$Rt),
+ (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
+ (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
}
def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
@@ -2013,6 +2093,9 @@ let Predicates = [IsLE] in {
def : Pat<(store (v2f64 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
+ def : Pat<(store (v8f16 FPR128:$Rt),
+ (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
+ (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
}
// unscaled i64 truncating stores
@@ -2089,6 +2172,8 @@ def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
@@ -2102,6 +2187,8 @@ def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
//---
// (immediate post-indexed)
@@ -2139,6 +2226,8 @@ def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
@@ -2152,6 +2241,8 @@ def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
+def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
+ (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
//===----------------------------------------------------------------------===//
// Load/store exclusive instructions.
@@ -2384,6 +2475,28 @@ defm FMOV : FPMoveImmediate<"fmov">;
//===----------------------------------------------------------------------===//
defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", int_aarch64_neon_abs>;
+def : Pat<(xor (v8i8 (AArch64vashr V64:$src, (i32 7))),
+ (v8i8 (add V64:$src, (AArch64vashr V64:$src, (i32 7))))),
+ (ABSv8i8 V64:$src)>;
+def : Pat<(xor (v4i16 (AArch64vashr V64:$src, (i32 15))),
+ (v4i16 (add V64:$src, (AArch64vashr V64:$src, (i32 15))))),
+ (ABSv4i16 V64:$src)>;
+def : Pat<(xor (v2i32 (AArch64vashr V64:$src, (i32 31))),
+ (v2i32 (add V64:$src, (AArch64vashr V64:$src, (i32 31))))),
+ (ABSv2i32 V64:$src)>;
+def : Pat<(xor (v16i8 (AArch64vashr V128:$src, (i32 7))),
+ (v16i8 (add V128:$src, (AArch64vashr V128:$src, (i32 7))))),
+ (ABSv16i8 V128:$src)>;
+def : Pat<(xor (v8i16 (AArch64vashr V128:$src, (i32 15))),
+ (v8i16 (add V128:$src, (AArch64vashr V128:$src, (i32 15))))),
+ (ABSv8i16 V128:$src)>;
+def : Pat<(xor (v4i32 (AArch64vashr V128:$src, (i32 31))),
+ (v4i32 (add V128:$src, (AArch64vashr V128:$src, (i32 31))))),
+ (ABSv4i32 V128:$src)>;
+def : Pat<(xor (v2i64 (AArch64vashr V128:$src, (i32 63))),
+ (v2i64 (add V128:$src, (AArch64vashr V128:$src, (i32 63))))),
+ (ABSv2i64 V128:$src)>;
+
defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
@@ -2412,6 +2525,11 @@ def : Pat<(v2f64 (fextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
(i64 2))))),
(FCVTLv4i32 V128:$Rn)>;
+def : Pat<(v4f32 (fextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
+def : Pat<(v4f32 (fextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
+ (i64 4))))),
+ (FCVTLv8i16 V128:$Rn)>;
+
defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
@@ -2423,6 +2541,7 @@ def : Pat<(concat_vectors V64:$Rd,
(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
(FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
def : Pat<(v2f32 (fround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
+def : Pat<(v4f16 (fround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd, (v2f32 (fround (v2f64 V128:$Rn)))),
(FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
@@ -2505,6 +2624,10 @@ defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>
defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
+def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
+def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
+def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
+def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
@@ -3101,6 +3224,46 @@ defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw",
BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
+// Additional patterns for SMULL and UMULL
+multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
+ Instruction INST8B, Instruction INST4H, Instruction INST2S> {
+ def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
+ (INST8B V64:$Rn, V64:$Rm)>;
+ def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
+ (INST4H V64:$Rn, V64:$Rm)>;
+ def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
+ (INST2S V64:$Rn, V64:$Rm)>;
+}
+
+defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
+ SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
+defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
+ UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
+
+// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
+multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
+ Instruction INST8B, Instruction INST4H, Instruction INST2S> {
+ def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
+ (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
+ def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
+ (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
+ def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
+ (INST2S V128:$Rd, V64:$Rn, V64:$Rm)>;
+}
+
+defm : Neon_mulacc_widen_patterns<
+ TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
+ SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
+defm : Neon_mulacc_widen_patterns<
+ TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
+ UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
+defm : Neon_mulacc_widen_patterns<
+ TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
+ SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
+defm : Neon_mulacc_widen_patterns<
+ TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
+ UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
+
// Patterns for 64-bit pmull
def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
(PMULLv1i64 V64:$Rn, V64:$Rm)>;
@@ -3183,6 +3346,10 @@ def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
+def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
+ (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
+def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
+ (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
// We use EXT to handle extract_subvector to copy the upper 64-bits of a
// 128-bit vector.
@@ -3194,6 +3361,8 @@ def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
+def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
+ (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
@@ -3306,6 +3475,19 @@ def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
(v2f64 (DUPv2i64lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
(i64 0)))>;
+def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
+ (v4f16 (DUPv4i16lane
+ (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
+ (i64 0)))>;
+def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
+ (v8f16 (DUPv8i16lane
+ (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
+ (i64 0)))>;
+
+def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
+ (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
+def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
+ (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
(DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
@@ -3427,6 +3609,23 @@ def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
+def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
+ (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
+ (EXTRACT_SUBREG
+ (INSvi16lane
+ (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
+ VectorIndexS:$imm,
+ (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
+ (i64 0)),
+ dsub)>;
+
+def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
+ (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
+ (INSvi16lane
+ V128:$Rn, VectorIndexH:$imm,
+ (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
+ (i64 0))>;
+
def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
(EXTRACT_SUBREG
@@ -3507,6 +3706,7 @@ multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
dsub)>;
}
+defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, INSvi8lane>;
@@ -3522,6 +3722,8 @@ def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
(f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
(f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
+def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
+ (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
(f64 (EXTRACT_SUBREG
(INSvi64lane (v2f64 (IMPLICIT_DEF)), 0,
@@ -3532,6 +3734,11 @@ def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
(INSvi32lane (v4f32 (IMPLICIT_DEF)), 0,
V128:$Rn, VectorIndexS:$idx),
ssub))>;
+def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
+ (f16 (EXTRACT_SUBREG
+ (INSvi16lane (v8f16 (IMPLICIT_DEF)), 0,
+ V128:$Rn, VectorIndexH:$idx),
+ hsub))>;
// All concat_vectors operations are canonicalised to act on i64 vectors for
// AArch64. In the general case we need an instruction, which had just as well be
@@ -3546,6 +3753,7 @@ def : ConcatPat<v2f64, v1f64>;
def : ConcatPat<v4i32, v2i32>;
def : ConcatPat<v4f32, v2f32>;
def : ConcatPat<v8i16, v4i16>;
+def : ConcatPat<v8f16, v4f16>;
def : ConcatPat<v16i8, v8i8>;
// If the high lanes are undef, though, we can just ignore them:
@@ -3965,7 +4173,7 @@ def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
// AdvSIMD indexed element
//----------------------------------------------------------------------------
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm FMLA : SIMDFPIndexedSDTied<0, 0b0001, "fmla">;
defm FMLS : SIMDFPIndexedSDTied<0, 0b0101, "fmls">;
}
@@ -4386,7 +4594,7 @@ class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
0),
dsub)),
0),
- ssub)))>, Requires<[NotForCodeSize]>;
+ ssub)))>, Requires<[NotForCodeSize, IsCyclone]>;
def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
(LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
@@ -4439,8 +4647,8 @@ class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
0),
dsub)),
0),
- dsub)))>, Requires<[NotForCodeSize]>;
-
+ dsub)))>, Requires<[NotForCodeSize, IsCyclone]>;
+
def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
(LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
@@ -4519,7 +4727,7 @@ defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>;
defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>;
defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>;
@@ -4563,6 +4771,10 @@ def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
(LD1Rv2d GPR64sp:$Rn)>;
def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
(LD1Rv1d GPR64sp:$Rn)>;
+def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
+ (LD1Rv4h GPR64sp:$Rn)>;
+def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
+ (LD1Rv8h GPR64sp:$Rn)>;
class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction LD1>
@@ -4576,6 +4788,7 @@ def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>;
def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>;
def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>;
def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>;
+def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>;
class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction LD1>
@@ -4590,6 +4803,7 @@ def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>;
def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>;
def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>;
+def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>;
defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
@@ -4603,7 +4817,7 @@ defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>;
defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
-let AddedComplexity = 15 in
+let AddedComplexity = 19 in
class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1>
: Pat<(scalar_store
@@ -4617,8 +4831,9 @@ def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>;
def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>;
def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>;
def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>;
+def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>;
-let AddedComplexity = 15 in
+let AddedComplexity = 19 in
class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1>
: Pat<(scalar_store
@@ -4631,6 +4846,7 @@ def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>;
def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>;
def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>;
+def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>;
multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1,
@@ -4655,6 +4871,7 @@ defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
+defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1,
@@ -4678,8 +4895,9 @@ defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
+defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
-let mayStore = 1, neverHasSideEffects = 1 in {
+let mayStore = 1, hasSideEffects = 0 in {
defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>;
defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>;
defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>;
@@ -4856,10 +5074,77 @@ def : Pat<(trap), (BRK 1)>;
// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
//
+// Natural vector casts (64 bit)
+def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
+
+def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
+
+def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
+
+def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
+
+def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
+
+// Natural vector casts (128 bit)
+def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
+
+def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
+
+def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
+
+def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
+
+def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
+
+def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
+
let Predicates = [IsLE] in {
def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
+def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
@@ -4868,6 +5153,8 @@ def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
+def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
+ (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
@@ -4880,6 +5167,8 @@ def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
+def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
+ (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
@@ -4889,6 +5178,8 @@ def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
+def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
+ (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
}
@@ -4917,6 +5208,7 @@ let Predicates = [IsLE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
@@ -4926,6 +5218,8 @@ def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
(v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))),
(v1i64 (REV64v8i8 FPR64:$src))>;
+def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
+ (v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
(v1i64 (REV64v2i32 FPR64:$src))>;
}
@@ -4938,6 +5232,7 @@ def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
@@ -4950,6 +5245,8 @@ def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
+ (v2i32 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
@@ -4958,6 +5255,7 @@ def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
}
@@ -4970,6 +5268,8 @@ def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))),
(v4i16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))),
+ (v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
(v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
@@ -4977,12 +5277,41 @@ def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
}
let Predicates = [IsLE] in {
+def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
+def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
+def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
+def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
+def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
+def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
+def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
+ (v4f16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
+ (v4f16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))),
+ (v4f16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))),
+ (v4f16 (REV16v8i8 FPR64:$src))>;
+def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))),
+ (v4f16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
+ (v4f16 (REV64v4i16 FPR64:$src))>;
+def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
+ (v4f16 (REV64v4i16 FPR64:$src))>;
+}
+
+
+
+let Predicates = [IsLE] in {
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))),
@@ -4997,6 +5326,8 @@ def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))),
(v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
+def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))),
+ (v8i8 (REV16v8i8 FPR64:$src))>;
}
let Predicates = [IsLE] in {
@@ -5004,6 +5335,7 @@ def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>;
+def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))),
@@ -5014,6 +5346,8 @@ def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))),
(f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))),
(f64 (REV64v8i8 FPR64:$src))>;
+def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))),
+ (f64 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
@@ -5023,6 +5357,7 @@ def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
+def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
@@ -5033,6 +5368,8 @@ def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))),
(v1f64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
(v1f64 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
+ (v1f64 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
@@ -5043,6 +5380,7 @@ def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
@@ -5055,6 +5393,8 @@ def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
+def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
+ (v2f32 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
@@ -5064,6 +5404,7 @@ def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
+def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
}
let Predicates = [IsBE] in {
@@ -5075,6 +5416,9 @@ def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src), (i32 8)))>;
+def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
+ (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
+ (REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
@@ -5089,6 +5433,7 @@ let Predicates = [IsLE] in {
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
}
@@ -5100,6 +5445,8 @@ def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
(v2f64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
(v2f64 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
+ (v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
(v2f64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
@@ -5110,6 +5457,7 @@ def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
@@ -5120,6 +5468,8 @@ def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
(v4f32 (REV32v8i16 FPR128:$src))>;
+def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
+ (v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
(v4f32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
@@ -5135,6 +5485,7 @@ def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))),
@@ -5148,6 +5499,8 @@ def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
(v2i64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
(v2i64 (REV64v4i32 FPR128:$src))>;
+def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
+ (v2i64 (REV64v8i16 FPR128:$src))>;
}
def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
@@ -5157,6 +5510,7 @@ def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))),
@@ -5171,6 +5525,8 @@ def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
(v4i32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
(v4i32 (REV64v4i32 FPR128:$src))>;
+def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
+ (v4i32 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
@@ -5181,6 +5537,7 @@ def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))),
@@ -5197,6 +5554,36 @@ def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
(v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
(v8i16 (REV32v8i16 FPR128:$src))>;
+def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))),
+ (v8i16 (REV32v8i16 FPR128:$src))>;
+}
+
+let Predicates = [IsLE] in {
+def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>;
+def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
+def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
+def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
+def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
+def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
+def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
+}
+let Predicates = [IsBE] in {
+def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))),
+ (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
+ (REV64v8i16 FPR128:$src),
+ (i32 8)))>;
+def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
+ (v8f16 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
+ (v8f16 (REV32v8i16 FPR128:$src))>;
+def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))),
+ (v8f16 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
+ (v8f16 (REV16v16i8 FPR128:$src))>;
+def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
+ (v8f16 (REV64v8i16 FPR128:$src))>;
+def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
+ (v8f16 (REV32v8i16 FPR128:$src))>;
}
let Predicates = [IsLE] in {
@@ -5206,6 +5593,7 @@ def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))),
@@ -5222,6 +5610,8 @@ def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
(v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
(v16i8 (REV32v16i8 FPR128:$src))>;
+def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
+ (v16i8 (REV16v16i8 FPR128:$src))>;
}
def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
@@ -5245,6 +5635,8 @@ def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
+def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (i32 0)),
+ (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp b/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp
index 3df9c4f..8157981 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp
@@ -13,20 +13,21 @@
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-ldst-opt"
@@ -108,7 +109,7 @@ private:
int getMemSize(MachineInstr *MemMI);
};
char AArch64LoadStoreOpt::ID = 0;
-}
+} // namespace
static bool isUnscaledLdst(unsigned Opc) {
switch (Opc) {
@@ -931,8 +932,9 @@ bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB) {
bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
- TII = static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
- TRI = TM.getRegisterInfo();
+ TII = static_cast<const AArch64InstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+ TRI = TM.getSubtargetImpl()->getRegisterInfo();
bool Modified = false;
for (auto &MBB : Fn)
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp
index 75a17b9..e57b0f4 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.cpp
@@ -25,8 +25,7 @@
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
-AArch64MCInstLower::AArch64MCInstLower(MCContext &ctx, Mangler &mang,
- AsmPrinter &printer)
+AArch64MCInstLower::AArch64MCInstLower(MCContext &ctx, AsmPrinter &printer)
: Ctx(ctx), Printer(printer), TargetTriple(printer.getTargetTriple()) {}
MCSymbol *
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h
index ba50ba9..1e29b80 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MCInstLower.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64_MCINSTLOWER_H
-#define AArch64_MCINSTLOWER_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64MCINSTLOWER_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64MCINSTLOWER_H
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"
@@ -33,7 +33,7 @@ class LLVM_LIBRARY_VISIBILITY AArch64MCInstLower {
Triple TargetTriple;
public:
- AArch64MCInstLower(MCContext &ctx, Mangler &mang, AsmPrinter &printer);
+ AArch64MCInstLower(MCContext &ctx, AsmPrinter &printer);
bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const;
void Lower(const MachineInstr *MI, MCInst &OutMI) const;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MachineCombinerPattern.h b/contrib/llvm/lib/Target/AArch64/AArch64MachineCombinerPattern.h
new file mode 100644
index 0000000..4164b33
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MachineCombinerPattern.h
@@ -0,0 +1,42 @@
+//===- AArch64MachineCombinerPattern.h -===//
+//===- AArch64 instruction pattern supported by combiner -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines instruction pattern supported by combiner
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64MACHINECOMBINERPATTERN_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64MACHINECOMBINERPATTERN_H
+
+namespace llvm {
+
+/// Enumeration of instruction pattern supported by machine combiner
+///
+///
+namespace MachineCombinerPattern {
+enum MC_PATTERN : int {
+ MC_NONE = 0,
+ MC_MULADDW_OP1 = 1,
+ MC_MULADDW_OP2 = 2,
+ MC_MULSUBW_OP1 = 3,
+ MC_MULSUBW_OP2 = 4,
+ MC_MULADDWI_OP1 = 5,
+ MC_MULSUBWI_OP1 = 6,
+ MC_MULADDX_OP1 = 7,
+ MC_MULADDX_OP2 = 8,
+ MC_MULSUBX_OP1 = 9,
+ MC_MULSUBX_OP2 = 10,
+ MC_MULADDXI_OP1 = 11,
+ MC_MULSUBXI_OP1 = 12
+};
+} // end namespace MachineCombinerPattern
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h
index 7c257ba..536a8d0 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64MachineFunctionInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64MACHINEFUNCTIONINFO_H
-#define AArch64MACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64MACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64MACHINEFUNCTIONINFO_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
@@ -160,4 +160,4 @@ private:
};
} // End llvm namespace
-#endif // AArch64MACHINEFUNCTIONINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.cpp b/contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.cpp
new file mode 100644
index 0000000..f942c4e
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.cpp
@@ -0,0 +1,383 @@
+//===-- AArch64PBQPRegAlloc.cpp - AArch64 specific PBQP constraints -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file contains the AArch64 / Cortex-A57 specific register allocation
+// constraints for use by the PBQP register allocator.
+//
+// It is essentially a transcription of what is contained in
+// AArch64A57FPLoadBalancing, which tries to use a balanced
+// mix of odd and even D-registers when performing a critical sequence of
+// independent, non-quadword FP/ASIMD floating-point multiply-accumulates.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "aarch64-pbqp"
+
+#include "AArch64.h"
+#include "AArch64PBQPRegAlloc.h"
+#include "AArch64RegisterInfo.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegAllocPBQP.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+#ifndef NDEBUG
+bool isFPReg(unsigned reg) {
+ return AArch64::FPR32RegClass.contains(reg) ||
+ AArch64::FPR64RegClass.contains(reg) ||
+ AArch64::FPR128RegClass.contains(reg);
+}
+#endif
+
+bool isOdd(unsigned reg) {
+ switch (reg) {
+ default:
+ llvm_unreachable("Register is not from the expected class !");
+ case AArch64::S1:
+ case AArch64::S3:
+ case AArch64::S5:
+ case AArch64::S7:
+ case AArch64::S9:
+ case AArch64::S11:
+ case AArch64::S13:
+ case AArch64::S15:
+ case AArch64::S17:
+ case AArch64::S19:
+ case AArch64::S21:
+ case AArch64::S23:
+ case AArch64::S25:
+ case AArch64::S27:
+ case AArch64::S29:
+ case AArch64::S31:
+ case AArch64::D1:
+ case AArch64::D3:
+ case AArch64::D5:
+ case AArch64::D7:
+ case AArch64::D9:
+ case AArch64::D11:
+ case AArch64::D13:
+ case AArch64::D15:
+ case AArch64::D17:
+ case AArch64::D19:
+ case AArch64::D21:
+ case AArch64::D23:
+ case AArch64::D25:
+ case AArch64::D27:
+ case AArch64::D29:
+ case AArch64::D31:
+ case AArch64::Q1:
+ case AArch64::Q3:
+ case AArch64::Q5:
+ case AArch64::Q7:
+ case AArch64::Q9:
+ case AArch64::Q11:
+ case AArch64::Q13:
+ case AArch64::Q15:
+ case AArch64::Q17:
+ case AArch64::Q19:
+ case AArch64::Q21:
+ case AArch64::Q23:
+ case AArch64::Q25:
+ case AArch64::Q27:
+ case AArch64::Q29:
+ case AArch64::Q31:
+ return true;
+ case AArch64::S0:
+ case AArch64::S2:
+ case AArch64::S4:
+ case AArch64::S6:
+ case AArch64::S8:
+ case AArch64::S10:
+ case AArch64::S12:
+ case AArch64::S14:
+ case AArch64::S16:
+ case AArch64::S18:
+ case AArch64::S20:
+ case AArch64::S22:
+ case AArch64::S24:
+ case AArch64::S26:
+ case AArch64::S28:
+ case AArch64::S30:
+ case AArch64::D0:
+ case AArch64::D2:
+ case AArch64::D4:
+ case AArch64::D6:
+ case AArch64::D8:
+ case AArch64::D10:
+ case AArch64::D12:
+ case AArch64::D14:
+ case AArch64::D16:
+ case AArch64::D18:
+ case AArch64::D20:
+ case AArch64::D22:
+ case AArch64::D24:
+ case AArch64::D26:
+ case AArch64::D28:
+ case AArch64::D30:
+ case AArch64::Q0:
+ case AArch64::Q2:
+ case AArch64::Q4:
+ case AArch64::Q6:
+ case AArch64::Q8:
+ case AArch64::Q10:
+ case AArch64::Q12:
+ case AArch64::Q14:
+ case AArch64::Q16:
+ case AArch64::Q18:
+ case AArch64::Q20:
+ case AArch64::Q22:
+ case AArch64::Q24:
+ case AArch64::Q26:
+ case AArch64::Q28:
+ case AArch64::Q30:
+ return false;
+
+ }
+}
+
+bool haveSameParity(unsigned reg1, unsigned reg2) {
+ assert(isFPReg(reg1) && "Expecting an FP register for reg1");
+ assert(isFPReg(reg2) && "Expecting an FP register for reg2");
+
+ return isOdd(reg1) == isOdd(reg2);
+}
+
+}
+
+bool A57ChainingConstraint::addIntraChainConstraint(PBQPRAGraph &G, unsigned Rd,
+ unsigned Ra) {
+ if (Rd == Ra)
+ return false;
+
+ LiveIntervals &LIs = G.getMetadata().LIS;
+
+ if (TRI->isPhysicalRegister(Rd) || TRI->isPhysicalRegister(Ra)) {
+ DEBUG(dbgs() << "Rd is a physical reg:" << TRI->isPhysicalRegister(Rd)
+ << '\n');
+ DEBUG(dbgs() << "Ra is a physical reg:" << TRI->isPhysicalRegister(Ra)
+ << '\n');
+ return false;
+ }
+
+ PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);
+ PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(Ra);
+
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
+ &G.getNodeMetadata(node1).getAllowedRegs();
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRaAllowed =
+ &G.getNodeMetadata(node2).getAllowedRegs();
+
+ PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);
+
+ // The edge does not exist. Create one with the appropriate interference
+ // costs.
+ if (edge == G.invalidEdgeId()) {
+ const LiveInterval &ld = LIs.getInterval(Rd);
+ const LiveInterval &la = LIs.getInterval(Ra);
+ bool livesOverlap = ld.overlaps(la);
+
+ PBQPRAGraph::RawMatrix costs(vRdAllowed->size() + 1,
+ vRaAllowed->size() + 1, 0);
+ for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
+ unsigned pRd = (*vRdAllowed)[i];
+ for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
+ unsigned pRa = (*vRaAllowed)[j];
+ if (livesOverlap && TRI->regsOverlap(pRd, pRa))
+ costs[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+ else
+ costs[i + 1][j + 1] = haveSameParity(pRd, pRa) ? 0.0 : 1.0;
+ }
+ }
+ G.addEdge(node1, node2, std::move(costs));
+ return true;
+ }
+
+ if (G.getEdgeNode1Id(edge) == node2) {
+ std::swap(node1, node2);
+ std::swap(vRdAllowed, vRaAllowed);
+ }
+
+ // Enforce minCost(sameParity(RaClass)) > maxCost(otherParity(RdClass))
+ PBQPRAGraph::RawMatrix costs(G.getEdgeCosts(edge));
+ for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
+ unsigned pRd = (*vRdAllowed)[i];
+
+ // Get the maximum cost (excluding unallocatable reg) for same parity
+ // registers
+ PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
+ for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
+ unsigned pRa = (*vRaAllowed)[j];
+ if (haveSameParity(pRd, pRa))
+ if (costs[i + 1][j + 1] !=
+ std::numeric_limits<PBQP::PBQPNum>::infinity() &&
+ costs[i + 1][j + 1] > sameParityMax)
+ sameParityMax = costs[i + 1][j + 1];
+ }
+
+ // Ensure all registers with a different parity have a higher cost
+ // than sameParityMax
+ for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
+ unsigned pRa = (*vRaAllowed)[j];
+ if (!haveSameParity(pRd, pRa))
+ if (sameParityMax > costs[i + 1][j + 1])
+ costs[i + 1][j + 1] = sameParityMax + 1.0;
+ }
+ }
+ G.setEdgeCosts(edge, std::move(costs));
+
+ return true;
+}
+
+void A57ChainingConstraint::addInterChainConstraint(PBQPRAGraph &G, unsigned Rd,
+ unsigned Ra) {
+ LiveIntervals &LIs = G.getMetadata().LIS;
+
+ // Do some Chain management
+ if (Chains.count(Ra)) {
+ if (Rd != Ra) {
+ DEBUG(dbgs() << "Moving acc chain from " << PrintReg(Ra, TRI) << " to "
+ << PrintReg(Rd, TRI) << '\n';);
+ Chains.remove(Ra);
+ Chains.insert(Rd);
+ }
+ } else {
+ DEBUG(dbgs() << "Creating new acc chain for " << PrintReg(Rd, TRI)
+ << '\n';);
+ Chains.insert(Rd);
+ }
+
+ PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);
+
+ const LiveInterval &ld = LIs.getInterval(Rd);
+ for (auto r : Chains) {
+ // Skip self
+ if (r == Rd)
+ continue;
+
+ const LiveInterval &lr = LIs.getInterval(r);
+ if (ld.overlaps(lr)) {
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
+ &G.getNodeMetadata(node1).getAllowedRegs();
+
+ PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(r);
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRrAllowed =
+ &G.getNodeMetadata(node2).getAllowedRegs();
+
+ PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);
+ assert(edge != G.invalidEdgeId() &&
+ "PBQP error ! The edge should exist !");
+
+ DEBUG(dbgs() << "Refining constraint !\n";);
+
+ if (G.getEdgeNode1Id(edge) == node2) {
+ std::swap(node1, node2);
+ std::swap(vRdAllowed, vRrAllowed);
+ }
+
+ // Enforce that cost is higher with all other Chains of the same parity
+ PBQP::Matrix costs(G.getEdgeCosts(edge));
+ for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
+ unsigned pRd = (*vRdAllowed)[i];
+
+ // Get the maximum cost (excluding unallocatable reg) for all other
+ // parity registers
+ PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
+ for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
+ unsigned pRa = (*vRrAllowed)[j];
+ if (!haveSameParity(pRd, pRa))
+ if (costs[i + 1][j + 1] !=
+ std::numeric_limits<PBQP::PBQPNum>::infinity() &&
+ costs[i + 1][j + 1] > sameParityMax)
+ sameParityMax = costs[i + 1][j + 1];
+ }
+
+ // Ensure all registers with same parity have a higher cost
+ // than sameParityMax
+ for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
+ unsigned pRa = (*vRrAllowed)[j];
+ if (haveSameParity(pRd, pRa))
+ if (sameParityMax > costs[i + 1][j + 1])
+ costs[i + 1][j + 1] = sameParityMax + 1.0;
+ }
+ }
+ G.setEdgeCosts(edge, std::move(costs));
+ }
+ }
+}
+
+static bool regJustKilledBefore(const LiveIntervals &LIs, unsigned reg,
+ const MachineInstr &MI) {
+ LiveInterval LI = LIs.getInterval(reg);
+ SlotIndex SI = LIs.getInstructionIndex(&MI);
+ return LI.expiredAt(SI);
+}
+
+void A57ChainingConstraint::apply(PBQPRAGraph &G) {
+ const MachineFunction &MF = G.getMetadata().MF;
+ LiveIntervals &LIs = G.getMetadata().LIS;
+
+ TRI = MF.getTarget().getSubtargetImpl()->getRegisterInfo();
+ DEBUG(MF.dump());
+
+ for (const auto &MBB: MF) {
+ Chains.clear(); // FIXME: really needed ? Could not work at MF level ?
+
+ for (const auto &MI: MBB) {
+
+ // Forget Chains which have expired
+ for (auto r : Chains) {
+ SmallVector<unsigned, 8> toDel;
+ if(regJustKilledBefore(LIs, r, MI)) {
+ DEBUG(dbgs() << "Killing chain " << PrintReg(r, TRI) << " at ";
+ MI.print(dbgs()););
+ toDel.push_back(r);
+ }
+
+ while (!toDel.empty()) {
+ Chains.remove(toDel.back());
+ toDel.pop_back();
+ }
+ }
+
+ switch (MI.getOpcode()) {
+ case AArch64::FMSUBSrrr:
+ case AArch64::FMADDSrrr:
+ case AArch64::FNMSUBSrrr:
+ case AArch64::FNMADDSrrr:
+ case AArch64::FMSUBDrrr:
+ case AArch64::FMADDDrrr:
+ case AArch64::FNMSUBDrrr:
+ case AArch64::FNMADDDrrr: {
+ unsigned Rd = MI.getOperand(0).getReg();
+ unsigned Ra = MI.getOperand(3).getReg();
+
+ if (addIntraChainConstraint(G, Rd, Ra))
+ addInterChainConstraint(G, Rd, Ra);
+ break;
+ }
+
+ case AArch64::FMLAv2f32:
+ case AArch64::FMLSv2f32: {
+ unsigned Rd = MI.getOperand(0).getReg();
+ addInterChainConstraint(G, Rd, Rd);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ }
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.h b/contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.h
new file mode 100644
index 0000000..4f656f9
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64PBQPRegAlloc.h
@@ -0,0 +1,38 @@
+//===-- AArch64PBQPRegAlloc.h - AArch64 specific PBQP constraints -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64PBQPREGALOC_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64PBQPREGALOC_H
+
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/PBQPRAConstraint.h"
+
+namespace llvm {
+
+/// Add the accumulator chaining constraint to a PBQP graph
+class A57ChainingConstraint : public PBQPRAConstraint {
+public:
+ // Add A57 specific constraints to the PBQP graph.
+ void apply(PBQPRAGraph &G) override;
+
+private:
+ SmallSetVector<unsigned, 32> Chains;
+ const TargetRegisterInfo *TRI;
+
+ // Add the accumulator chaining constraint, inside the chain, i.e. so that
+ // parity(Rd) == parity(Ra).
+ // \return true if a constraint was added
+ bool addIntraChainConstraint(PBQPRAGraph &G, unsigned Rd, unsigned Ra);
+
+ // Add constraints between existing chains
+ void addInterChainConstraint(PBQPRAGraph &G, unsigned Rd, unsigned Ra);
+};
+}
+
+#endif // LLVM_LIB_TARGET_AARCH64_AARCH64PBQPREGALOC_H
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h b/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h
index b22fa24..9e9eec4 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64PerfectShuffle.h
@@ -12,6 +12,9 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64PERFECTSHUFFLE_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64PERFECTSHUFFLE_H
+
// 31 entries have cost 0
// 242 entries have cost 1
// 1447 entries have cost 2
@@ -6584,3 +6587,5 @@ static const unsigned PerfectShuffleTable[6561+1] = {
835584U, // <u,u,u,u>: Cost 0 copy LHS
0
};
+
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp b/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
index 4723cc4..97b0f0e 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
@@ -21,18 +21,18 @@
//===----------------------------------------------------------------------===//
#include "AArch64.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
@@ -193,7 +193,7 @@ private:
// Inserting into the DenseMap may invalidate existing iterator.
// Keep a copy of the key to find the iterator to erase.
Instruction *OldInstr = IPI->first;
- InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second));
+ InsertPts[NewPt] = std::move(IPI->second);
// Erase IPI.
IPI = InsertPts.find(OldInstr);
InsertPts.erase(IPI);
@@ -569,7 +569,7 @@ bool AArch64PromoteConstant::runOnFunction(Function &F) {
// global. Do not promote constant expressions either, as they may
// require some code expansion.
if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
- AlreadyChecked.insert(Cst))
+ AlreadyChecked.insert(Cst).second)
LocalChange |= promoteConstant(Cst);
}
}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp
index 5112430..206cdbb 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp
@@ -44,6 +44,10 @@ AArch64RegisterInfo::AArch64RegisterInfo(const AArch64InstrInfo *tii,
const MCPhysReg *
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
assert(MF && "Invalid MachineFunction pointer.");
+ if (MF->getFunction()->getCallingConv() == CallingConv::GHC)
+ // GHC set of callee saved regs is empty as all those regs are
+ // used for passing STG regs around
+ return CSR_AArch64_NoRegs_SaveList;
if (MF->getFunction()->getCallingConv() == CallingConv::AnyReg)
return CSR_AArch64_AllRegs_SaveList;
else
@@ -52,6 +56,9 @@ AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
const uint32_t *
AArch64RegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ if (CC == CallingConv::GHC)
+ // This is academic becase all GHC calls are (supposed to be) tail calls
+ return CSR_AArch64_NoRegs_RegMask;
if (CC == CallingConv::AnyReg)
return CSR_AArch64_AllRegs_RegMask;
else
@@ -67,7 +74,7 @@ const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
}
const uint32_t *
-AArch64RegisterInfo::getThisReturnPreservedMask(CallingConv::ID) const {
+AArch64RegisterInfo::getThisReturnPreservedMask(CallingConv::ID CC) const {
// This should return a register mask that is the same as that returned by
// getCallPreservedMask but that additionally preserves the register used for
// the first i64 argument (which must also be the register used to return a
@@ -75,12 +82,13 @@ AArch64RegisterInfo::getThisReturnPreservedMask(CallingConv::ID) const {
//
// In case that the calling convention does not use the same register for
// both, the function should return NULL (does not currently apply)
+ assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
return CSR_AArch64_AAPCS_ThisReturn_RegMask;
}
BitVector
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
// FIXME: avoid re-calculating this every time.
BitVector Reserved(getNumRegs());
@@ -109,7 +117,7 @@ AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
unsigned Reg) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
switch (Reg) {
default:
@@ -173,7 +181,7 @@ bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
unsigned
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
}
@@ -240,7 +248,7 @@ bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
// Note that the incoming offset is based on the SP value at function entry,
// so it'll be negative.
MachineFunction &MF = *MI->getParent()->getParent();
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo *MFI = MF.getFrameInfo();
// Estimate an offset from the frame pointer.
@@ -330,7 +338,7 @@ void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const AArch64FrameLowering *TFI = static_cast<const AArch64FrameLowering *>(
- MF.getTarget().getFrameLowering());
+ MF.getSubtarget().getFrameLowering());
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
unsigned FrameReg;
@@ -368,7 +376,7 @@ namespace llvm {
unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
switch (RC->getID()) {
default:
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h
index 76af1ed..51a5034 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_AArch64REGISTERINFO_H
-#define LLVM_TARGET_AArch64REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64REGISTERINFO_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64REGISTERINFO_H
#define GET_REGINFO_HEADER
#include "AArch64GenRegisterInfo.inc"
@@ -98,4 +98,4 @@ public:
} // end namespace llvm
-#endif // LLVM_TARGET_AArch64REGISTERINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td
index a30e4ad..d5ff3f1 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64RegisterInfo.td
@@ -390,13 +390,14 @@ def FPR16 : RegisterClass<"AArch64", [f16], 16, (sequence "H%u", 0, 31)> {
}
def FPR32 : RegisterClass<"AArch64", [f32, i32], 32,(sequence "S%u", 0, 31)>;
def FPR64 : RegisterClass<"AArch64", [f64, i64, v2f32, v1f64, v8i8, v4i16, v2i32,
- v1i64],
+ v1i64, v4f16],
64, (sequence "D%u", 0, 31)>;
// We don't (yet) have an f128 legal type, so don't use that here. We
// normalize 128-bit vectors to v2f64 for arg passing and such, so use
// that here.
def FPR128 : RegisterClass<"AArch64",
- [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128],
+ [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128,
+ v8f16],
128, (sequence "Q%u", 0, 31)>;
// The lower 16 vector registers. Some instructions can only take registers
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td
index 8209f96..3ec4157 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57.td
@@ -12,11 +12,24 @@
//
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// The Cortex-A57 is a traditional superscaler microprocessor with a
+// conservative 3-wide in-order stage for decode and dispatch. Combined with the
+// much wider out-of-order issue stage, this produced a need to carefully
+// schedule micro-ops so that all three decoded each cycle are successfully
+// issued as the reservation station(s) simply don't stay occupied for long.
+// Therefore, IssueWidth is set to the narrower of the two at three, while still
+// modeling the machine as out-of-order.
+
def CortexA57Model : SchedMachineModel {
- let IssueWidth = 8; // 3-way decode and 8-way issue
+ let IssueWidth = 3; // 3-way decode and dispatch
let MicroOpBufferSize = 128; // 128 micro-op re-order buffer
let LoadLatency = 4; // Optimistic load latency
let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch
+
+ // Enable partial & runtime unrolling. The magic number is chosen based on
+ // experiments and benchmarking data.
+ let LoopMicroOpBufferSize = 16;
}
//===----------------------------------------------------------------------===//
@@ -24,18 +37,17 @@ def CortexA57Model : SchedMachineModel {
// Cortex A-57 has 8 pipelines that each has its own 8-entry queue where
// micro-ops wait for their operands and then issue out-of-order.
-def A57UnitB : ProcResource<1> { let BufferSize = 8; } // Type B micro-ops
-def A57UnitI : ProcResource<2> { let BufferSize = 8; } // Type I micro-ops
-def A57UnitM : ProcResource<1> { let BufferSize = 8; } // Type M micro-ops
-def A57UnitL : ProcResource<1> { let BufferSize = 8; } // Type L micro-ops
-def A57UnitS : ProcResource<1> { let BufferSize = 8; } // Type S micro-ops
-def A57UnitX : ProcResource<1> { let BufferSize = 8; } // Type X micro-ops
-def A57UnitW : ProcResource<1> { let BufferSize = 8; } // Type W micro-ops
+def A57UnitB : ProcResource<1>; // Type B micro-ops
+def A57UnitI : ProcResource<2>; // Type I micro-ops
+def A57UnitM : ProcResource<1>; // Type M micro-ops
+def A57UnitL : ProcResource<1>; // Type L micro-ops
+def A57UnitS : ProcResource<1>; // Type S micro-ops
+def A57UnitX : ProcResource<1>; // Type X micro-ops
+def A57UnitW : ProcResource<1>; // Type W micro-ops
let SchedModel = CortexA57Model in {
def A57UnitV : ProcResGroup<[A57UnitX, A57UnitW]>; // Type V micro-ops
}
-
let SchedModel = CortexA57Model in {
//===----------------------------------------------------------------------===//
@@ -71,7 +83,7 @@ def : SchedAlias<WriteSTIdx, A57Write_1cyc_1I_1S>;
def : SchedAlias<WriteF, A57Write_3cyc_1V>;
def : SchedAlias<WriteFCmp, A57Write_3cyc_1V>;
def : SchedAlias<WriteFCvt, A57Write_5cyc_1V>;
-def : SchedAlias<WriteFCopy, A57Write_3cyc_1V>;
+def : SchedAlias<WriteFCopy, A57Write_5cyc_1L>;
def : SchedAlias<WriteFImm, A57Write_3cyc_1V>;
def : SchedAlias<WriteFMul, A57Write_5cyc_1V>;
def : SchedAlias<WriteFDiv, A57Write_18cyc_1X>;
@@ -85,13 +97,12 @@ def : WriteRes<WriteHint, []> { let Latency = 1; }
def : WriteRes<WriteLDHi, []> { let Latency = 4; }
-// Forwarding logic is not [yet] explicitly modeled beyond what is captured
-// in the latencies of the A57 Generic SchedWriteRes's.
+// Forwarding logic is only modeled for multiply and accumulate
def : ReadAdvance<ReadI, 0>;
def : ReadAdvance<ReadISReg, 0>;
def : ReadAdvance<ReadIEReg, 0>;
def : ReadAdvance<ReadIM, 0>;
-def : ReadAdvance<ReadIMA, 0>;
+def : ReadAdvance<ReadIMA, 2, [WriteIM32, WriteIM64]>;
def : ReadAdvance<ReadID, 0>;
def : ReadAdvance<ReadExtrHi, 0>;
def : ReadAdvance<ReadAdrBase, 0>;
@@ -134,7 +145,13 @@ def : InstRW<[A57Write_2cyc_1M], (instregex "BFM")>;
// Cryptography Extensions
// -----------------------------------------------------------------------------
-def : InstRW<[A57Write_3cyc_1W], (instregex "CRC32")>;
+def : InstRW<[A57Write_3cyc_1W], (instregex "^AES")>;
+def : InstRW<[A57Write_6cyc_2V], (instregex "^SHA1SU0")>;
+def : InstRW<[A57Write_3cyc_1W], (instregex "^SHA1(H|SU1)")>;
+def : InstRW<[A57Write_6cyc_2W], (instregex "^SHA1[CMP]")>;
+def : InstRW<[A57Write_3cyc_1W], (instregex "^SHA256SU0")>;
+def : InstRW<[A57Write_6cyc_2W], (instregex "^SHA256(H|H2|SU1)")>;
+def : InstRW<[A57Write_3cyc_1W], (instregex "^CRC32")>;
// Vector Load
@@ -301,4 +318,330 @@ def : InstRW<[A57Write_8cyc_8S_4V, WriteAdr], (instregex "ST4Fourv(16b|8h|4s)_PO
def : InstRW<[A57Write_8cyc_8S], (instregex "ST4Fourv(2d)$")>;
def : InstRW<[A57Write_8cyc_8S, WriteAdr], (instregex "ST4Fourv(2d)_POST$")>;
+// Vector - Integer
+// -----------------------------------------------------------------------------
+
+// Reference for forms in this group
+// D form - v8i8, v4i16, v2i32
+// Q form - v16i8, v8i16, v4i32
+// D form - v1i8, v1i16, v1i32, v1i64
+// Q form - v16i8, v8i16, v4i32, v2i64
+// D form - v8i8_v8i16, v4i16_v4i32, v2i32_v2i64
+// Q form - v16i8_v8i16, v8i16_v4i32, v4i32_v2i64
+
+// ASIMD absolute diff accum, D-form
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU]ABA(v8i8|v4i16|v2i32)$")>;
+// ASIMD absolute diff accum, Q-form
+def : InstRW<[A57Write_5cyc_2X], (instregex "^[SU]ABA(v16i8|v8i16|v4i32)$")>;
+// ASIMD absolute diff accum long
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU]ABAL")>;
+
+// ASIMD arith, reduce, 4H/4S
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU]?ADDL?V(v8i8|v4i16|v2i32)v$")>;
+// ASIMD arith, reduce, 8B/8H
+def : InstRW<[A57Write_7cyc_1V_1X], (instregex "^[SU]?ADDL?V(v8i16|v4i32)v$")>;
+// ASIMD arith, reduce, 16B
+def : InstRW<[A57Write_8cyc_2X], (instregex "^[SU]?ADDL?Vv16i8v$")>;
+
+// ASIMD max/min, reduce, 4H/4S
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU](MIN|MAX)V(v4i16|v4i32)v$")>;
+// ASIMD max/min, reduce, 8B/8H
+def : InstRW<[A57Write_7cyc_1V_1X], (instregex "^[SU](MIN|MAX)V(v8i8|v8i16)v$")>;
+// ASIMD max/min, reduce, 16B
+def : InstRW<[A57Write_8cyc_2X], (instregex "^[SU](MIN|MAX)Vv16i8v$")>;
+
+// ASIMD multiply, D-form
+def : InstRW<[A57Write_5cyc_1W], (instregex "^(P?MUL|SQR?DMULH)(v8i8|v4i16|v2i32|v1i8|v1i16|v1i32|v1i64)(_indexed)?$")>;
+// ASIMD multiply, Q-form
+def : InstRW<[A57Write_6cyc_2W], (instregex "^(P?MUL|SQR?DMULH)(v16i8|v8i16|v4i32)(_indexed)?$")>;
+
+// ASIMD multiply accumulate, D-form
+def : InstRW<[A57Write_5cyc_1W], (instregex "^ML[AS](v8i8|v4i16|v2i32)(_indexed)?$")>;
+// ASIMD multiply accumulate, Q-form
+def : InstRW<[A57Write_6cyc_2W], (instregex "^ML[AS](v16i8|v8i16|v4i32)(_indexed)?$")>;
+
+// ASIMD multiply accumulate long
+// ASIMD multiply accumulate saturating long
+def A57WriteIVMA : SchedWriteRes<[A57UnitW]> { let Latency = 5; }
+def A57ReadIVMA4 : SchedReadAdvance<4, [A57WriteIVMA]>;
+def : InstRW<[A57WriteIVMA, A57ReadIVMA4], (instregex "^(S|U|SQD)ML[AS]L")>;
+
+// ASIMD multiply long
+def : InstRW<[A57Write_5cyc_1W], (instregex "^(S|U|SQD)MULL")>;
+def : InstRW<[A57Write_5cyc_1W], (instregex "^PMULL(v8i8|v16i8)")>;
+def : InstRW<[A57Write_3cyc_1W], (instregex "^PMULL(v1i64|v2i64)")>;
+
+// ASIMD pairwise add and accumulate
+// ASIMD shift accumulate
+def A57WriteIVA : SchedWriteRes<[A57UnitX]> { let Latency = 4; }
+def A57ReadIVA3 : SchedReadAdvance<3, [A57WriteIVA]>;
+def : InstRW<[A57WriteIVA, A57ReadIVA3], (instregex "^[SU]ADALP")>;
+def : InstRW<[A57WriteIVA, A57ReadIVA3], (instregex "^(S|SR|U|UR)SRA")>;
+
+// ASIMD shift by immed, complex
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU]?(Q|R){1,2}SHR")>;
+def : InstRW<[A57Write_4cyc_1X], (instregex "^SQSHLU")>;
+
+
+// ASIMD shift by register, basic, Q-form
+def : InstRW<[A57Write_4cyc_2X], (instregex "^[SU]SHL(v16i8|v8i16|v4i32|v2i64)")>;
+
+// ASIMD shift by register, complex, D-form
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU][QR]{1,2}SHL(v1i8|v1i16|v1i32|v1i64|v8i8|v4i16|v2i32|b|d|h|s)")>;
+
+// ASIMD shift by register, complex, Q-form
+def : InstRW<[A57Write_5cyc_2X], (instregex "^[SU][QR]{1,2}SHL(v16i8|v8i16|v4i32|v2i64)")>;
+
+
+// Vector - Floating Point
+// -----------------------------------------------------------------------------
+
+// Reference for forms in this group
+// D form - v2f32
+// Q form - v4f32, v2f64
+// D form - 32, 64
+// D form - v1i32, v1i64
+// D form - v2i32
+// Q form - v4i32, v2i64
+
+// ASIMD FP arith, normal, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^(FABD|FADD|FSUB)(v2f32|32|64|v2i32p)")>;
+// ASIMD FP arith, normal, Q-form
+def : InstRW<[A57Write_5cyc_2V], (instregex "^(FABD|FADD|FSUB)(v4f32|v2f64|v2i64p)")>;
+
+// ASIMD FP arith, pairwise, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^FADDP(v2f32|32|64|v2i32)")>;
+// ASIMD FP arith, pairwise, Q-form
+def : InstRW<[A57Write_9cyc_3V], (instregex "^FADDP(v4f32|v2f64|v2i64)")>;
+
+// ASIMD FP compare, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^(FACGE|FACGT|FCMEQ|FCMGE|FCMGT|FCMLE|FCMLT)(v2f32|32|64|v1i32|v2i32|v1i64)")>;
+// ASIMD FP compare, Q-form
+def : InstRW<[A57Write_5cyc_2V], (instregex "^(FACGE|FACGT|FCMEQ|FCMGE|FCMGT|FCMLE|FCMLT)(v4f32|v2f64|v4i32|v2i64)")>;
+
+// ASIMD FP convert, long and narrow
+def : InstRW<[A57Write_8cyc_3V], (instregex "^FCVT(L|N|XN)v")>;
+// ASIMD FP convert, other, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^[FVSU]CVT([AMNPZ][SU])?(_Int)?(v2f32|v1i32|v2i32|v1i64)")>;
+// ASIMD FP convert, other, Q-form
+def : InstRW<[A57Write_5cyc_2V], (instregex "^[FVSU]CVT([AMNPZ][SU])?(_Int)?(v4f32|v2f64|v4i32|v2i64)")>;
+
+// ASIMD FP divide, D-form, F32
+def : InstRW<[A57Write_18cyc_1X], (instregex "FDIVv2f32")>;
+// ASIMD FP divide, Q-form, F32
+def : InstRW<[A57Write_36cyc_2X], (instregex "FDIVv4f32")>;
+// ASIMD FP divide, Q-form, F64
+def : InstRW<[A57Write_64cyc_2X], (instregex "FDIVv2f64")>;
+
+// Note: These were simply duplicated from ASIMD FDIV because of missing documentation
+// ASIMD FP square root, D-form, F32
+def : InstRW<[A57Write_18cyc_1X], (instregex "FSQRTv2f32")>;
+// ASIMD FP square root, Q-form, F32
+def : InstRW<[A57Write_36cyc_2X], (instregex "FSQRTv4f32")>;
+// ASIMD FP square root, Q-form, F64
+def : InstRW<[A57Write_64cyc_2X], (instregex "FSQRTv2f64")>;
+
+// ASIMD FP max/min, normal, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^(FMAX|FMIN)(NM)?(v2f32)")>;
+// ASIMD FP max/min, normal, Q-form
+def : InstRW<[A57Write_5cyc_2V], (instregex "^(FMAX|FMIN)(NM)?(v4f32|v2f64)")>;
+// ASIMD FP max/min, pairwise, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^(FMAX|FMIN)(NM)?P(v2f32|v2i32)")>;
+// ASIMD FP max/min, pairwise, Q-form
+def : InstRW<[A57Write_9cyc_3V], (instregex "^(FMAX|FMIN)(NM)?P(v4f32|v2f64|v2i64)")>;
+// ASIMD FP max/min, reduce
+def : InstRW<[A57Write_10cyc_3V], (instregex "^(FMAX|FMIN)(NM)?Vv")>;
+
+// ASIMD FP multiply, D-form, FZ
+def : InstRW<[A57Write_5cyc_1V], (instregex "^FMULX?(v2f32|v1i32|v2i32|v1i64|32|64)")>;
+// ASIMD FP multiply, Q-form, FZ
+def : InstRW<[A57Write_5cyc_2V], (instregex "^FMULX?(v4f32|v2f64|v4i32|v2i64)")>;
+
+// ASIMD FP multiply accumulate, D-form, FZ
+// ASIMD FP multiply accumulate, Q-form, FZ
+def A57WriteFPVMAD : SchedWriteRes<[A57UnitV]> { let Latency = 9; }
+def A57WriteFPVMAQ : SchedWriteRes<[A57UnitV, A57UnitV]> { let Latency = 10; }
+def A57ReadFPVMA5 : SchedReadAdvance<5, [A57WriteFPVMAD, A57WriteFPVMAQ]>;
+def : InstRW<[A57WriteFPVMAD, A57ReadFPVMA5], (instregex "^FML[AS](v2f32|v1i32|v2i32|v1i64)")>;
+def : InstRW<[A57WriteFPVMAQ, A57ReadFPVMA5], (instregex "^FML[AS](v4f32|v2f64|v4i32|v2i64)")>;
+
+// ASIMD FP round, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^FRINT[AIMNPXZ](v2f32)")>;
+// ASIMD FP round, Q-form
+def : InstRW<[A57Write_5cyc_2V], (instregex "^FRINT[AIMNPXZ](v4f32|v2f64)")>;
+
+
+// Vector - Miscellaneous
+// -----------------------------------------------------------------------------
+
+// Reference for forms in this group
+// D form - v8i8, v4i16, v2i32
+// Q form - v16i8, v8i16, v4i32
+// D form - v1i8, v1i16, v1i32, v1i64
+// Q form - v16i8, v8i16, v4i32, v2i64
+
+// ASIMD bitwise insert, Q-form
+def : InstRW<[A57Write_3cyc_2V], (instregex "^(BIF|BIT|BSL)v16i8")>;
+
+// ASIMD duplicate, gen reg, D-form and Q-form
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "^CPY")>;
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "^DUPv.+gpr")>;
+
+// ASIMD move, saturating
+def : InstRW<[A57Write_4cyc_1X], (instregex "^[SU]QXTU?N")>;
+
+// ASIMD reciprocal estimate, D-form
+def : InstRW<[A57Write_5cyc_1V], (instregex "^[FU](RECP|RSQRT)(E|X)(v2f32|v1i32|v2i32|v1i64)")>;
+// ASIMD reciprocal estimate, Q-form
+def : InstRW<[A57Write_5cyc_2V], (instregex "^[FU](RECP|RSQRT)(E|X)(v2f64|v4f32|v4i32)")>;
+
+// ASIMD reciprocal step, D-form, FZ
+def : InstRW<[A57Write_9cyc_1V], (instregex "^F(RECP|RSQRT)S(v2f32|v1i32|v2i32|v1i64|32|64)")>;
+// ASIMD reciprocal step, Q-form, FZ
+def : InstRW<[A57Write_9cyc_2V], (instregex "^F(RECP|RSQRT)S(v2f64|v4f32|v4i32)")>;
+
+// ASIMD table lookup, D-form
+def : InstRW<[A57Write_3cyc_1V], (instregex "^TB[LX]v8i8One")>;
+def : InstRW<[A57Write_6cyc_2V], (instregex "^TB[LX]v8i8Two")>;
+def : InstRW<[A57Write_9cyc_3V], (instregex "^TB[LX]v8i8Three")>;
+def : InstRW<[A57Write_12cyc_4V], (instregex "^TB[LX]v8i8Four")>;
+// ASIMD table lookup, Q-form
+def : InstRW<[A57Write_6cyc_3V], (instregex "^TB[LX]v16i8One")>;
+def : InstRW<[A57Write_9cyc_5V], (instregex "^TB[LX]v16i8Two")>;
+def : InstRW<[A57Write_12cyc_7V], (instregex "^TB[LX]v16i8Three")>;
+def : InstRW<[A57Write_15cyc_9V], (instregex "^TB[LX]v16i8Four")>;
+
+// ASIMD transfer, element to gen reg
+def : InstRW<[A57Write_6cyc_1I_1L], (instregex "^[SU]MOVv")>;
+
+// ASIMD transfer, gen reg to element
+def : InstRW<[A57Write_8cyc_1L_1V], (instregex "^INSv")>;
+
+// ASIMD unzip/zip, Q-form
+def : InstRW<[A57Write_6cyc_3V], (instregex "^(UZP|ZIP)(1|2)(v16i8|v8i16|v4i32|v2i64)")>;
+
+
+// Remainder
+// -----------------------------------------------------------------------------
+
+def : InstRW<[A57Write_5cyc_1V], (instregex "^F(ADD|SUB)[DS]rr")>;
+
+def A57WriteFPMA : SchedWriteRes<[A57UnitV]> { let Latency = 9; }
+def A57ReadFPMA5 : SchedReadAdvance<5, [A57WriteFPMA]>;
+def A57ReadFPM : SchedReadAdvance<0>;
+def : InstRW<[A57WriteFPMA, A57ReadFPM, A57ReadFPM, A57ReadFPMA5], (instregex "^FN?M(ADD|SUB)[DS]rrr")>;
+
+def : InstRW<[A57Write_10cyc_1L_1V], (instregex "^[FSU]CVT[AMNPZ][SU](_Int)?[SU]?[XW]?[DS]?[rds]i?")>;
+def : InstRW<[A57Write_10cyc_1L_1V], (instregex "^[SU]CVTF")>;
+
+def : InstRW<[A57Write_32cyc_1X], (instrs FDIVDrr)>;
+def : InstRW<[A57Write_18cyc_1X], (instrs FDIVSrr)>;
+
+def : InstRW<[A57Write_5cyc_1V], (instregex "^F(MAX|MIN).+rr")>;
+
+def : InstRW<[A57Write_5cyc_1V], (instregex "^FRINT.+r")>;
+
+def : InstRW<[A57Write_32cyc_1X], (instrs FSQRTDr)>;
+def : InstRW<[A57Write_18cyc_1X], (instrs FSQRTSr)>;
+
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi], (instrs LDNPDi)>;
+def : InstRW<[A57Write_6cyc_2L, WriteLDHi], (instrs LDNPQi)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi], (instrs LDNPSi)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi], (instrs LDPDi)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi, WriteAdr], (instrs LDPDpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi, WriteAdr], (instrs LDPDpre)>;
+def : InstRW<[A57Write_6cyc_2L, WriteLDHi], (instrs LDPQi)>;
+def : InstRW<[A57Write_6cyc_2L, WriteLDHi, WriteAdr], (instrs LDPQpost)>;
+def : InstRW<[A57Write_6cyc_2L, WriteLDHi, WriteAdr], (instrs LDPQpre)>;
+def : InstRW<[A57Write_5cyc_1I_2L, WriteLDHi], (instrs LDPSWi)>;
+def : InstRW<[A57Write_5cyc_1I_2L, WriteLDHi, WriteAdr], (instrs LDPSWpost)>;
+def : InstRW<[A57Write_5cyc_1I_2L, WriteLDHi, WriteAdr], (instrs LDPSWpre)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi], (instrs LDPSi)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi, WriteAdr], (instrs LDPSpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteLDHi, WriteAdr], (instrs LDPSpre)>;
+def : InstRW<[A57Write_5cyc_1L, WriteI], (instrs LDRBpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instrs LDRBpre)>;
+def : InstRW<[A57Write_5cyc_1L, ReadAdrBase], (instrs LDRBroW)>;
+def : InstRW<[A57Write_5cyc_1L, ReadAdrBase], (instrs LDRBroX)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRBui)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRDl)>;
+def : InstRW<[A57Write_5cyc_1L, WriteI], (instrs LDRDpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instrs LDRDpre)>;
+def : InstRW<[A57Write_5cyc_1L, ReadAdrBase], (instrs LDRDroW)>;
+def : InstRW<[A57Write_5cyc_1L, ReadAdrBase], (instrs LDRDroX)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRDui)>;
+def : InstRW<[A57Write_5cyc_1I_1L, ReadAdrBase], (instrs LDRHHroW)>;
+def : InstRW<[A57Write_5cyc_1I_1L, ReadAdrBase], (instrs LDRHHroX)>;
+def : InstRW<[A57Write_5cyc_1L, WriteI], (instrs LDRHpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instrs LDRHpre)>;
+def : InstRW<[A57Write_6cyc_1I_1L, ReadAdrBase], (instrs LDRHroW)>;
+def : InstRW<[A57Write_6cyc_1I_1L, ReadAdrBase], (instrs LDRHroX)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRHui)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRQl)>;
+def : InstRW<[A57Write_5cyc_1L, WriteI], (instrs LDRQpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instrs LDRQpre)>;
+def : InstRW<[A57Write_6cyc_1I_1L, ReadAdrBase], (instrs LDRQroW)>;
+def : InstRW<[A57Write_6cyc_1I_1L, ReadAdrBase], (instrs LDRQroX)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRQui)>;
+def : InstRW<[A57Write_5cyc_1I_1L, ReadAdrBase], (instrs LDRSHWroW)>;
+def : InstRW<[A57Write_5cyc_1I_1L, ReadAdrBase], (instrs LDRSHWroX)>;
+def : InstRW<[A57Write_5cyc_1I_1L, ReadAdrBase], (instrs LDRSHXroW)>;
+def : InstRW<[A57Write_5cyc_1I_1L, ReadAdrBase], (instrs LDRSHXroX)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRSl)>;
+def : InstRW<[A57Write_5cyc_1L, WriteI], (instrs LDRSpost)>;
+def : InstRW<[A57Write_5cyc_1L, WriteAdr], (instrs LDRSpre)>;
+def : InstRW<[A57Write_5cyc_1L, ReadAdrBase], (instrs LDRSroW)>;
+def : InstRW<[A57Write_5cyc_1L, ReadAdrBase], (instrs LDRSroX)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDRSui)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDURBi)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDURDi)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDURHi)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDURQi)>;
+def : InstRW<[A57Write_5cyc_1L], (instrs LDURSi)>;
+
+def : InstRW<[A57Write_2cyc_2S], (instrs STNPDi)>;
+def : InstRW<[A57Write_4cyc_1I_4S], (instrs STNPQi)>;
+def : InstRW<[A57Write_2cyc_2S], (instrs STNPXi)>;
+def : InstRW<[A57Write_2cyc_2S], (instrs STPDi)>;
+def : InstRW<[WriteAdr, A57Write_2cyc_1I_2S], (instrs STPDpost)>;
+def : InstRW<[WriteAdr, A57Write_2cyc_1I_2S], (instrs STPDpre)>;
+def : InstRW<[A57Write_4cyc_1I_4S], (instrs STPQi)>;
+def : InstRW<[WriteAdr, A57Write_4cyc_1I_4S], (instrs STPQpost)>;
+def : InstRW<[WriteAdr, A57Write_4cyc_2I_4S], (instrs STPQpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STPSpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STPSpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STPWpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STPWpre)>;
+def : InstRW<[A57Write_2cyc_2S], (instrs STPXi)>;
+def : InstRW<[WriteAdr, A57Write_2cyc_1I_2S], (instrs STPXpost)>;
+def : InstRW<[WriteAdr, A57Write_2cyc_1I_2S], (instrs STPXpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRBBpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRBBpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRBpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STRBpre)>;
+def : InstRW<[A57Write_3cyc_1I_1S, ReadAdrBase], (instrs STRBroW)>;
+def : InstRW<[A57Write_3cyc_1I_1S, ReadAdrBase], (instrs STRBroX)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRDpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STRDpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRHHpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRHHpre)>;
+def : InstRW<[A57Write_3cyc_1I_1S, ReadAdrBase], (instrs STRHHroW)>;
+def : InstRW<[A57Write_3cyc_1I_1S, ReadAdrBase], (instrs STRHHroX)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRHpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STRHpre)>;
+def : InstRW<[A57Write_3cyc_1I_1S, ReadAdrBase], (instrs STRHroW)>;
+def : InstRW<[A57Write_3cyc_1I_1S, ReadAdrBase], (instrs STRHroX)>;
+def : InstRW<[WriteAdr, A57Write_2cyc_1I_2S, ReadAdrBase], (instrs STRQpost)>;
+def : InstRW<[WriteAdr, A57Write_2cyc_1I_2S], (instrs STRQpre)>;
+def : InstRW<[A57Write_2cyc_1I_2S, ReadAdrBase], (instrs STRQroW)>;
+def : InstRW<[A57Write_2cyc_1I_2S, ReadAdrBase], (instrs STRQroX)>;
+def : InstRW<[A57Write_2cyc_1I_2S], (instrs STRQui)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRSpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S], (instrs STRSpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRWpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRWpre)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRXpost)>;
+def : InstRW<[WriteAdr, A57Write_1cyc_1I_1S, ReadAdrBase], (instrs STRXpre)>;
+def : InstRW<[A57Write_2cyc_2S], (instrs STURQi)>;
+
} // SchedModel = CortexA57Model
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td
index a8f421b..6f30108 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SchedA57WriteRes.td
@@ -28,14 +28,18 @@ def A57Write_5cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 5; }
def A57Write_5cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 5; }
def A57Write_5cyc_1W : SchedWriteRes<[A57UnitW]> { let Latency = 5; }
def A57Write_10cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 10; }
-def A57Write_18cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 18; }
-def A57Write_19cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 19; }
+def A57Write_18cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 18;
+ let ResourceCycles = [18]; }
+def A57Write_19cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 19;
+ let ResourceCycles = [19]; }
def A57Write_1cyc_1B : SchedWriteRes<[A57UnitB]> { let Latency = 1; }
def A57Write_1cyc_1I : SchedWriteRes<[A57UnitI]> { let Latency = 1; }
def A57Write_1cyc_1S : SchedWriteRes<[A57UnitS]> { let Latency = 1; }
def A57Write_2cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 2; }
-def A57Write_32cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 32; }
-def A57Write_35cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 35; }
+def A57Write_32cyc_1X : SchedWriteRes<[A57UnitX]> { let Latency = 32;
+ let ResourceCycles = [32]; }
+def A57Write_35cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 35;
+ let ResourceCycles = [35]; }
def A57Write_3cyc_1M : SchedWriteRes<[A57UnitM]> { let Latency = 3; }
def A57Write_3cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 3; }
def A57Write_3cyc_1W : SchedWriteRes<[A57UnitW]> { let Latency = 3; }
@@ -53,6 +57,7 @@ def A57Write_6cyc_1V : SchedWriteRes<[A57UnitV]> { let Latency = 6; }
def A57Write_64cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
let Latency = 64;
let NumMicroOps = 2;
+ let ResourceCycles = [32, 32];
}
def A57Write_6cyc_1I_1L : SchedWriteRes<[A57UnitI,
A57UnitL]> {
@@ -137,6 +142,7 @@ def A57Write_2cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
def A57Write_36cyc_2X : SchedWriteRes<[A57UnitX, A57UnitX]> {
let Latency = 36;
let NumMicroOps = 2;
+ let ResourceCycles = [18, 18];
}
def A57Write_3cyc_1I_1M : SchedWriteRes<[A57UnitI,
A57UnitM]> {
@@ -153,6 +159,10 @@ def A57Write_3cyc_1S_1V : SchedWriteRes<[A57UnitS,
let Latency = 3;
let NumMicroOps = 2;
}
+def A57Write_3cyc_2V : SchedWriteRes<[A57UnitV, A57UnitV]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+}
def A57Write_4cyc_1I_1L : SchedWriteRes<[A57UnitI,
A57UnitL]> {
let Latency = 4;
@@ -295,6 +305,11 @@ def A57Write_9cyc_1L_3V : SchedWriteRes<[A57UnitL,
let Latency = 9;
let NumMicroOps = 4;
}
+def A57Write_12cyc_4V : SchedWriteRes<[A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 12;
+ let NumMicroOps = 4;
+}
//===----------------------------------------------------------------------===//
@@ -334,6 +349,11 @@ def A57Write_9cyc_2L_3V : SchedWriteRes<[A57UnitL, A57UnitL,
let Latency = 9;
let NumMicroOps = 5;
}
+def A57Write_9cyc_5V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 9;
+ let NumMicroOps = 5;
+}
//===----------------------------------------------------------------------===//
@@ -399,7 +419,7 @@ def A57Write_4cyc_1I_4S_2V : SchedWriteRes<[A57UnitI,
let Latency = 4;
let NumMicroOps = 7;
}
-def A57Write_6cyc_1I_6S : SchedWriteRes<[A57UnitI,
+def A57Write_6cyc_1I_6S : SchedWriteRes<[A57UnitI,
A57UnitS, A57UnitS, A57UnitS,
A57UnitS, A57UnitS, A57UnitS]> {
let Latency = 6;
@@ -412,6 +432,12 @@ def A57Write_9cyc_1I_2L_4V : SchedWriteRes<[A57UnitI,
let Latency = 9;
let NumMicroOps = 7;
}
+def A57Write_12cyc_7V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV]> {
+ let Latency = 12;
+ let NumMicroOps = 7;
+}
//===----------------------------------------------------------------------===//
@@ -443,11 +469,11 @@ def A57Write_8cyc_8S : SchedWriteRes<[A57UnitS, A57UnitS,
//===----------------------------------------------------------------------===//
// Define Generic 9 micro-op types
-def A57Write_8cyc_1I_8S : SchedWriteRes<[A57UnitI,
- A57UnitS, A57UnitS,
- A57UnitS, A57UnitS,
- A57UnitS, A57UnitS,
- A57UnitS, A57UnitS]> {
+def A57Write_8cyc_1I_8S : SchedWriteRes<[A57UnitI,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS,
+ A57UnitS, A57UnitS]> {
let Latency = 8;
let NumMicroOps = 9;
}
@@ -459,6 +485,12 @@ def A57Write_11cyc_1I_4L_4V : SchedWriteRes<[A57UnitI,
let Latency = 11;
let NumMicroOps = 9;
}
+def A57Write_15cyc_9V : SchedWriteRes<[A57UnitV, A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV, A57UnitV,
+ A57UnitV, A57UnitV, A57UnitV]> {
+ let Latency = 15;
+ let NumMicroOps = 9;
+}
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp
index 1bf64fc..0cfd582 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.cpp
@@ -36,8 +36,7 @@ SDValue AArch64SelectionDAGInfo::EmitTargetCodeForMemset(
// instead of memset.
if (bzeroEntry && (!SizeValue || SizeValue->getZExtValue() > 256)) {
const AArch64TargetLowering &TLI =
- *static_cast<const AArch64TargetLowering *>(
- DAG.getTarget().getTargetLowering());
+ *DAG.getTarget().getSubtarget<AArch64Subtarget>().getTargetLowering();
EVT IntPtr = TLI.getPointerTy();
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h
index 1180eea..11932d2 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64SelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64SELECTIONDAGINFO_H
-#define AArch64SELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64SELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64SELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp b/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp
index 45f8ddb..0c36e8f 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64StorePairSuppress.cpp
@@ -39,7 +39,7 @@ public:
static char ID;
AArch64StorePairSuppress() : MachineFunctionPass(ID) {}
- virtual const char *getPassName() const override {
+ const char *getPassName() const override {
return "AArch64 Store Pair Suppression";
}
@@ -50,7 +50,7 @@ private:
bool isNarrowFPStore(const MachineInstr &MI);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineTraceMetrics>();
AU.addPreserved<MachineTraceMetrics>();
@@ -85,8 +85,7 @@ bool AArch64StorePairSuppress::shouldAddSTPToBlock(const MachineBasicBlock *BB)
// If a subtarget does not define resources for STPQi, bail here.
if (SCDesc->isValid() && !SCDesc->isVariant()) {
- unsigned ResLenWithSTP = BBTrace.getResourceLength(
- ArrayRef<const MachineBasicBlock *>(), SCDesc);
+ unsigned ResLenWithSTP = BBTrace.getResourceLength(None, SCDesc);
if (ResLenWithSTP > ResLength) {
DEBUG(dbgs() << " Suppress STP in BB: " << BB->getNumber()
<< " resources " << ResLength << " -> " << ResLenWithSTP
@@ -118,12 +117,13 @@ bool AArch64StorePairSuppress::isNarrowFPStore(const MachineInstr &MI) {
bool AArch64StorePairSuppress::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
- TII = static_cast<const AArch64InstrInfo *>(MF->getTarget().getInstrInfo());
- TRI = MF->getTarget().getRegisterInfo();
+ TII =
+ static_cast<const AArch64InstrInfo *>(MF->getSubtarget().getInstrInfo());
+ TRI = MF->getSubtarget().getRegisterInfo();
MRI = &MF->getRegInfo();
const TargetSubtargetInfo &ST =
MF->getTarget().getSubtarget<TargetSubtargetInfo>();
- SchedModel.init(*ST.getSchedModel(), &ST, TII);
+ SchedModel.init(ST.getSchedModel(), &ST, TII);
Traces = &getAnalysis<MachineTraceMetrics>();
MinInstr = nullptr;
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
index bb0b72c..47b5d54 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
+#include "AArch64PBQPRegAlloc.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineScheduler.h"
@@ -43,8 +44,8 @@ AArch64Subtarget::initializeSubtargetDependencies(StringRef FS) {
AArch64Subtarget::AArch64Subtarget(const std::string &TT,
const std::string &CPU,
- const std::string &FS, TargetMachine &TM,
- bool LittleEndian)
+ const std::string &FS,
+ const TargetMachine &TM, bool LittleEndian)
: AArch64GenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
HasFPARMv8(false), HasNEON(false), HasCrypto(false), HasCRC(false),
HasZeroCycleRegMove(false), HasZeroCycleZeroing(false), CPUString(CPU),
@@ -64,13 +65,7 @@ AArch64Subtarget::AArch64Subtarget(const std::string &TT,
unsigned char
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
-
- // Determine whether this is a reference to a definition or a declaration.
- // Materializable GVs (in JIT lazy compilation mode) do not require an extra
- // load from stub.
- bool isDecl = GV->hasAvailableExternallyLinkage();
- if (GV->isDeclaration() && !GV->isMaterializable())
- isDecl = true;
+ bool isDecl = GV->isDeclarationForLinker();
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
@@ -78,10 +73,15 @@ AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
return AArch64II::MO_GOT;
// The small code mode's direct accesses use ADRP, which cannot necessarily
- // produce the value 0 (if the code is above 4GB). Therefore they must use the
- // GOT.
- if (TM.getCodeModel() == CodeModel::Small && GV->isWeakForLinker() && isDecl)
- return AArch64II::MO_GOT;
+ // produce the value 0 (if the code is above 4GB).
+ if (TM.getCodeModel() == CodeModel::Small &&
+ GV->isWeakForLinker() && isDecl) {
+ // In PIC mode use the GOT, but in absolute mode use a constant pool load.
+ if (TM.getRelocationModel() == Reloc::Static)
+ return AArch64II::MO_CONSTPOOL;
+ else
+ return AArch64II::MO_GOT;
+ }
// If symbol visibility is hidden, the extra load is not needed if
// the symbol is definitely defined in the current translation unit.
@@ -128,3 +128,11 @@ void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
+
+std::unique_ptr<PBQPRAConstraint>
+AArch64Subtarget::getCustomPBQPConstraints() const {
+ if (!isCortexA57())
+ return nullptr;
+
+ return llvm::make_unique<A57ChainingConstraint>();
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h
index 52124f6..e2740f1 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64Subtarget.h
@@ -11,12 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64SUBTARGET_H
-#define AArch64SUBTARGET_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64SUBTARGET_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64SUBTARGET_H
-#include "AArch64InstrInfo.h"
#include "AArch64FrameLowering.h"
#include "AArch64ISelLowering.h"
+#include "AArch64InstrInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64SelectionDAGInfo.h"
#include "llvm/IR/DataLayout.h"
@@ -69,18 +69,27 @@ public:
/// This constructor initializes the data members to match that
/// of the specified triple.
AArch64Subtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, TargetMachine &TM, bool LittleEndian);
+ const std::string &FS, const TargetMachine &TM,
+ bool LittleEndian);
- const AArch64SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- const AArch64FrameLowering *getFrameLowering() const {
+ const AArch64SelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const AArch64FrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
- const AArch64TargetLowering *getTargetLowering() const {
+ const AArch64TargetLowering *getTargetLowering() const override {
return &TLInfo;
}
- const AArch64InstrInfo *getInstrInfo() const { return &InstrInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
+ const AArch64InstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const AArch64RegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
bool enableMachineScheduler() const override { return true; }
+ bool enablePostMachineScheduler() const override {
+ return isCortexA53() || isCortexA57();
+ }
bool hasZeroCycleRegMove() const { return HasZeroCycleRegMove; }
@@ -94,12 +103,19 @@ public:
bool isLittleEndian() const { return DL.isLittleEndian(); }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
+ bool isTargetIOS() const { return TargetTriple.isiOS(); }
+ bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
+ bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
+ bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
-
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
bool isCyclone() const { return CPUString == "cyclone"; }
+ bool isCortexA57() const { return CPUString == "cortex-a57"; }
+ bool isCortexA53() const { return CPUString == "cortex-a53"; }
+
+ bool useAA() const override { return isCortexA53(); }
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
@@ -126,7 +142,9 @@ public:
unsigned NumRegionInstrs) const override;
bool enableEarlyIfConversion() const override;
+
+ std::unique_ptr<PBQPRAConstraint> getCustomPBQPConstraints() const override;
};
} // End llvm namespace
-#endif // AArch64SUBTARGET_H
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp
index f99b90b..d4f19d2 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp
@@ -12,8 +12,11 @@
#include "AArch64.h"
#include "AArch64TargetMachine.h"
-#include "llvm/PassManager.h"
+#include "AArch64TargetObjectFile.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/IR/Function.h"
+#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
@@ -24,6 +27,10 @@ static cl::opt<bool>
EnableCCMP("aarch64-ccmp", cl::desc("Enable the CCMP formation pass"),
cl::init(true), cl::Hidden);
+static cl::opt<bool> EnableMCR("aarch64-mcr",
+ cl::desc("Enable the machine combiner pass"),
+ cl::init(true), cl::Hidden);
+
static cl::opt<bool>
EnableStPairSuppress("aarch64-stp-suppress", cl::desc("Suppress STP for AArch64"),
cl::init(true), cl::Hidden);
@@ -59,13 +66,41 @@ EnableAtomicTidy("aarch64-atomic-cfg-tidy", cl::Hidden,
" to make use of cmpxchg flow-based information"),
cl::init(true));
+static cl::opt<bool>
+EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden,
+ cl::desc("Run early if-conversion"),
+ cl::init(true));
+
+static cl::opt<bool>
+EnableCondOpt("aarch64-condopt",
+ cl::desc("Enable the condition optimizer pass"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden,
+ cl::desc("Work around Cortex-A53 erratum 835769"),
+ cl::init(false));
+
+static cl::opt<bool>
+EnableGEPOpt("aarch64-gep-opt", cl::Hidden,
+ cl::desc("Enable optimizations on complex GEPs"),
+ cl::init(true));
+
extern "C" void LLVMInitializeAArch64Target() {
// Register the target.
RegisterTargetMachine<AArch64leTargetMachine> X(TheAArch64leTarget);
RegisterTargetMachine<AArch64beTargetMachine> Y(TheAArch64beTarget);
+ RegisterTargetMachine<AArch64leTargetMachine> Z(TheARM64Target);
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Lowering public interface.
+//===----------------------------------------------------------------------===//
+static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
+ if (TT.isOSBinFormatMachO())
+ return make_unique<AArch64_MachoTargetObjectFile>();
- RegisterTargetMachine<AArch64leTargetMachine> Z(TheARM64leTarget);
- RegisterTargetMachine<AArch64beTargetMachine> W(TheARM64beTarget);
+ return make_unique<AArch64_ELFTargetObjectFile>();
}
/// TargetMachine ctor - Create an AArch64 architecture model.
@@ -77,10 +112,39 @@ AArch64TargetMachine::AArch64TargetMachine(const Target &T, StringRef TT,
CodeGenOpt::Level OL,
bool LittleEndian)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
- Subtarget(TT, CPU, FS, *this, LittleEndian) {
+ TLOF(createTLOF(Triple(getTargetTriple()))),
+ Subtarget(TT, CPU, FS, *this, LittleEndian), isLittle(LittleEndian) {
initAsmInfo();
}
+AArch64TargetMachine::~AArch64TargetMachine() {}
+
+const AArch64Subtarget *
+AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
+ AttributeSet FnAttrs = F.getAttributes();
+ Attribute CPUAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
+ Attribute FSAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
+
+ std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
+ ? CPUAttr.getValueAsString().str()
+ : TargetCPU;
+ std::string FS = !FSAttr.hasAttribute(Attribute::None)
+ ? FSAttr.getValueAsString().str()
+ : TargetFS;
+
+ auto &I = SubtargetMap[CPU + FS];
+ if (!I) {
+ // This needs to be done before we create a new subtarget since any
+ // creation will depend on the TM and the code generation flags on the
+ // function that reside in TargetOptions.
+ resetTargetOptions(F);
+ I = llvm::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, isLittle);
+ }
+ return I.get();
+}
+
void AArch64leTargetMachine::anchor() { }
AArch64leTargetMachine::
@@ -104,7 +168,10 @@ namespace {
class AArch64PassConfig : public TargetPassConfig {
public:
AArch64PassConfig(AArch64TargetMachine *TM, PassManagerBase &PM)
- : TargetPassConfig(TM, PM) {}
+ : TargetPassConfig(TM, PM) {
+ if (TM->getOptLevel() != CodeGenOpt::None)
+ substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
+ }
AArch64TargetMachine &getAArch64TargetMachine() const {
return getTM<AArch64TargetMachine>();
@@ -114,10 +181,10 @@ public:
bool addPreISel() override;
bool addInstSelector() override;
bool addILPOpts() override;
- bool addPreRegAlloc() override;
- bool addPostRegAlloc() override;
- bool addPreSched2() override;
- bool addPreEmitPass() override;
+ void addPreRegAlloc() override;
+ void addPostRegAlloc() override;
+ void addPreSched2() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -136,7 +203,7 @@ TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
void AArch64PassConfig::addIRPasses() {
// Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
// ourselves.
- addPass(createAtomicExpandLoadLinkedPass(TM));
+ addPass(createAtomicExpandPass(TM));
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
@@ -145,6 +212,19 @@ void AArch64PassConfig::addIRPasses() {
addPass(createCFGSimplificationPass());
TargetPassConfig::addIRPasses();
+
+ if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
+ // Call SeparateConstOffsetFromGEP pass to extract constants within indices
+ // and lower a GEP with multiple indices to either arithmetic operations or
+ // multiple GEPs with single index.
+ addPass(createSeparateConstOffsetFromGEPPass(TM, true));
+ // Call EarlyCSE pass to find and remove subexpressions in the lowered
+ // result.
+ addPass(createEarlyCSEPass());
+ // Do loop invariant code motion in case part of the lowered result is
+ // invariant.
+ addPass(createLICMPass());
+ }
}
// Pass Pipeline Configuration
@@ -174,43 +254,56 @@ bool AArch64PassConfig::addInstSelector() {
}
bool AArch64PassConfig::addILPOpts() {
+ if (EnableCondOpt)
+ addPass(createAArch64ConditionOptimizerPass());
if (EnableCCMP)
addPass(createAArch64ConditionalCompares());
- addPass(&EarlyIfConverterID);
+ if (EnableMCR)
+ addPass(&MachineCombinerID);
+ if (EnableEarlyIfConversion)
+ addPass(&EarlyIfConverterID);
if (EnableStPairSuppress)
addPass(createAArch64StorePairSuppressPass());
return true;
}
-bool AArch64PassConfig::addPreRegAlloc() {
+void AArch64PassConfig::addPreRegAlloc() {
// Use AdvSIMD scalar instructions whenever profitable.
- if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar)
+ if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) {
addPass(createAArch64AdvSIMDScalar());
- return true;
+ // The AdvSIMD pass may produce copies that can be rewritten to
+ // be register coaleascer friendly.
+ addPass(&PeepholeOptimizerID);
+ }
}
-bool AArch64PassConfig::addPostRegAlloc() {
+void AArch64PassConfig::addPostRegAlloc() {
// Change dead register definitions to refer to the zero register.
if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
addPass(createAArch64DeadRegisterDefinitions());
- return true;
+ if (TM->getOptLevel() != CodeGenOpt::None &&
+ (TM->getSubtarget<AArch64Subtarget>().isCortexA53() ||
+ TM->getSubtarget<AArch64Subtarget>().isCortexA57()) &&
+ usingDefaultRegAlloc())
+ // Improve performance for some FP/SIMD code for A57.
+ addPass(createAArch64A57FPLoadBalancing());
}
-bool AArch64PassConfig::addPreSched2() {
+void AArch64PassConfig::addPreSched2() {
// Expand some pseudo instructions to allow proper scheduling.
addPass(createAArch64ExpandPseudoPass());
// Use load/store pair instructions when possible.
if (TM->getOptLevel() != CodeGenOpt::None && EnableLoadStoreOpt)
addPass(createAArch64LoadStoreOptimizationPass());
- return true;
}
-bool AArch64PassConfig::addPreEmitPass() {
+void AArch64PassConfig::addPreEmitPass() {
+ if (EnableA53Fix835769)
+ addPass(createAArch64A53Fix835769());
// Relax conditional branch instructions if they're otherwise out of
// range of their destination.
addPass(createAArch64BranchRelaxation());
if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
TM->getSubtarget<AArch64Subtarget>().isTargetMachO())
addPass(createAArch64CollectLOHPass());
- return true;
}
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h
index 852cb3f..75c65c5 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64TARGETMACHINE_H
-#define AArch64TARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETMACHINE_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETMACHINE_H
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
@@ -23,7 +23,9 @@ namespace llvm {
class AArch64TargetMachine : public LLVMTargetMachine {
protected:
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
AArch64Subtarget Subtarget;
+ mutable StringMap<std::unique_ptr<AArch64Subtarget>> SubtargetMap;
public:
AArch64TargetMachine(const Target &T, StringRef TT, StringRef CPU,
@@ -31,33 +33,25 @@ public:
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool IsLittleEndian);
+ ~AArch64TargetMachine() override;
+
const AArch64Subtarget *getSubtargetImpl() const override {
return &Subtarget;
}
- const AArch64TargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- const AArch64FrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- const AArch64InstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const AArch64RegisterInfo *getRegisterInfo() const override {
- return &getInstrInfo()->getRegisterInfo();
- }
- const AArch64SelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
+ const AArch64Subtarget *getSubtargetImpl(const Function &F) const override;
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
/// \brief Register AArch64 analysis passes with a pass manager.
void addAnalysisPasses(PassManagerBase &PM) override;
+
+ TargetLoweringObjectFile* getObjFileLowering() const override {
+ return TLOF.get();
+ }
+
+private:
+ bool isLittle;
};
// AArch64leTargetMachine - AArch64 little endian target machine.
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h b/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h
index de63cb4..2e595f9 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_AArch64_TARGETOBJECTFILE_H
-#define LLVM_TARGET_AArch64_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
index 1dac14b..b1a2914 100644
--- a/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -51,7 +51,7 @@ public:
AArch64TTI(const AArch64TargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
- TLI(TM->getTargetLowering()) {
+ TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
}
@@ -104,7 +104,7 @@ public:
return 64;
}
- unsigned getMaximumUnrollFactor() const override { return 2; }
+ unsigned getMaxInterleaveFactor() const override;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
override;
@@ -112,10 +112,11 @@ public:
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
override;
- unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Opd1Info = OK_AnyValue,
- OperandValueKind Opd2Info = OK_AnyValue) const
- override;
+ unsigned getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
+ OperandValueKind Opd2Info = OK_AnyValue,
+ OperandValueProperties Opd1PropInfo = OP_None,
+ OperandValueProperties Opd2PropInfo = OP_None) const override;
unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
@@ -124,6 +125,13 @@ public:
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const override;
+
+ unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override;
+
+ void getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const override;
+
+
/// @}
};
@@ -400,18 +408,42 @@ unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
return 2;
}
-unsigned AArch64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Opd1Info,
- OperandValueKind Opd2Info) const {
+unsigned AArch64TTI::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) const {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ if (ISD == ISD::SDIV &&
+ Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ // On AArch64, scalar signed division by constants power-of-two are
+ // normally expanded to the sequence ADD + CMP + SELECT + SRA.
+ // The OperandValue properties many not be same as that of previous
+ // operation; conservatively assume OP_None.
+ unsigned Cost =
+ getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ return Cost;
+ }
+
switch (ISD) {
default:
- return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
- Opd2Info);
+ return TargetTransformInfo::getArithmeticInstrCost(
+ Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
@@ -498,3 +530,27 @@ unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
return LT.first;
}
+
+unsigned AArch64TTI::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const {
+ unsigned Cost = 0;
+ for (auto *I : Tys) {
+ if (!I->isVectorTy())
+ continue;
+ if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
+ Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
+ getMemoryOpCost(Instruction::Load, I, 128, 0);
+ }
+ return Cost;
+}
+
+unsigned AArch64TTI::getMaxInterleaveFactor() const {
+ if (ST->isCortexA57())
+ return 4;
+ return 2;
+}
+
+void AArch64TTI::getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const {
+ // Disable partial & runtime unrolling on -Os.
+ UP.PartialOptSizeThreshold = 0;
+}
diff --git a/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp b/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
index 37e9296..8eb906b 100644
--- a/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
+++ b/contrib/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
@@ -10,27 +10,28 @@
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "Utils/AArch64BaseInfo.h"
-#include "llvm/MC/MCParser/MCAsmLexer.h"
-#include "llvm/MC/MCParser/MCAsmParser.h"
-#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
-#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm/ADT/Twine.h"
#include <cstdio>
using namespace llvm;
@@ -42,7 +43,6 @@ class AArch64AsmParser : public MCTargetAsmParser {
private:
StringRef Mnemonic; ///< Instruction mnemonic.
MCSubtargetInfo &STI;
- MCAsmParser &Parser;
// Map of register aliases registers via the .req directive.
StringMap<std::pair<bool, unsigned> > RegisterReqs;
@@ -52,10 +52,7 @@ private:
return static_cast<AArch64TargetStreamer &>(TS);
}
- MCAsmParser &getParser() const { return Parser; }
- MCAsmLexer &getLexer() const { return Parser.getLexer(); }
-
- SMLoc getLoc() const { return Parser.getTok().getLoc(); }
+ SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
AArch64CC::CondCode parseCondCodeString(StringRef Cond);
@@ -69,11 +66,13 @@ private:
bool parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode);
- void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
- bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+ void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); }
+ bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); }
bool showMatchError(SMLoc Loc, unsigned ErrCode);
bool parseDirectiveWord(unsigned Size, SMLoc L);
+ bool parseDirectiveInst(SMLoc L);
+
bool parseDirectiveTLSDescCall(SMLoc L);
bool parseDirectiveLOH(StringRef LOH, SMLoc L);
@@ -85,7 +84,7 @@ private:
bool validateInstruction(MCInst &Inst, SmallVectorImpl<SMLoc> &Loc);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
/// @name Auto-generated Match Functions
/// {
@@ -117,10 +116,11 @@ public:
AArch64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
- : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
+ : MCTargetAsmParser(), STI(_STI) {
MCAsmParserExtension::Initialize(_Parser);
- if (Parser.getStreamer().getTargetStreamer() == nullptr)
- new AArch64TargetStreamer(Parser.getStreamer());
+ MCStreamer &S = getParser().getStreamer();
+ if (S.getTargetStreamer() == nullptr)
+ new AArch64TargetStreamer(S);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
@@ -1875,6 +1875,7 @@ unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name,
/// Identifier when called, and if it is a register name the token is eaten and
/// the register is added to the operand list.
int AArch64AsmParser::tryParseRegister() {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
@@ -1899,6 +1900,7 @@ int AArch64AsmParser::tryParseRegister() {
/// tryMatchVectorRegister - Try to parse a vector register name with optional
/// kind specifier. If it is a register specifier, eat the token and return it.
int AArch64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) {
+ MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
TokError("vector register expected");
return -1;
@@ -1931,6 +1933,7 @@ int AArch64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) {
/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
@@ -1960,6 +1963,7 @@ AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
/// tryParsePrefetch - Try to parse a prefetch operand.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
// Either an identifier for named values or a 5-bit immediate.
@@ -2007,6 +2011,7 @@ AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
/// instruction.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const MCExpr *Expr;
@@ -2057,6 +2062,7 @@ AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
/// instruction.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const MCExpr *Expr;
@@ -2076,6 +2082,7 @@ AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
/// tryParseFPImm - A floating point immediate expression operand.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
bool Hash = false;
@@ -2138,6 +2145,7 @@ AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
/// tryParseAddSubImm - Parse ADD/SUB shifted immediate operand
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseAddSubImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
if (Parser.getTok().is(AsmToken::Hash))
@@ -2229,6 +2237,7 @@ AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) {
/// parseCondCode - Parse a Condition Code operand.
bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
bool invertCondCode) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
@@ -2254,6 +2263,7 @@ bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
/// them if present.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
std::string LowerID = Tok.getString().lower();
AArch64_AM::ShiftExtendType ShOp =
@@ -2299,10 +2309,11 @@ AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
if (Hash)
Parser.Lex(); // Eat the '#'.
- // Make sure we do actually have a number
- if (!Parser.getTok().is(AsmToken::Integer)) {
- Error(Parser.getTok().getLoc(),
- "expected integer shift amount");
+ // Make sure we do actually have a number or a parenthesized expression.
+ SMLoc E = Parser.getTok().getLoc();
+ if (!Parser.getTok().is(AsmToken::Integer) &&
+ !Parser.getTok().is(AsmToken::LParen)) {
+ Error(E, "expected integer shift amount");
return MatchOperand_ParseFail;
}
@@ -2312,11 +2323,11 @@ AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
- TokError("expected #imm after shift specifier");
+ Error(E, "expected constant '#imm' after shift specifier");
return MatchOperand_ParseFail;
}
- SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
+ E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateShiftExtend(
ShOp, MCE->getValue(), true, S, E, getContext()));
return MatchOperand_Success;
@@ -2333,6 +2344,7 @@ bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
Operands.push_back(
AArch64Operand::CreateToken("sys", false, NameLoc, getContext()));
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
StringRef Op = Tok.getString();
SMLoc S = Tok.getLoc();
@@ -2571,6 +2583,7 @@ bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
// Can be either a #imm style literal or an option name
@@ -2624,6 +2637,7 @@ AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
@@ -2638,6 +2652,7 @@ AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
/// tryParseVectorRegister - Parse a vector register operand.
bool AArch64AsmParser::tryParseVectorRegister(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier))
return true;
@@ -2686,6 +2701,7 @@ bool AArch64AsmParser::tryParseVectorRegister(OperandVector &Operands) {
/// parseRegister - Parse a non-vector register operand.
bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
// Try for a vector register.
if (!tryParseVectorRegister(Operands))
@@ -2728,6 +2744,7 @@ bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
}
bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
+ MCAsmParser &Parser = getParser();
bool HasELFModifier = false;
AArch64MCExpr::VariantKind RefKind;
@@ -2806,6 +2823,7 @@ bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
/// parseVectorList - Parse a vector list operand for AdvSIMD instructions.
bool AArch64AsmParser::parseVectorList(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Bracket");
SMLoc S = getLoc();
Parser.Lex(); // Eat left bracket token.
@@ -2904,6 +2922,7 @@ bool AArch64AsmParser::parseVectorList(OperandVector &Operands) {
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
@@ -2949,6 +2968,7 @@ AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
/// operand regardless of the mnemonic.
bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode) {
+ MCAsmParser &Parser = getParser();
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
@@ -3114,6 +3134,7 @@ bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
Name = StringSwitch<StringRef>(Name.lower())
.Case("beq", "b.eq")
.Case("bne", "b.ne")
@@ -3562,12 +3583,12 @@ bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode) {
}
}
-static const char *getSubtargetFeatureName(unsigned Val);
+static const char *getSubtargetFeatureName(uint64_t Val);
bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]);
@@ -3817,7 +3838,7 @@ bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
// Special case the error message for the very common case where only
// a single subtarget feature is missing (neon, e.g.).
std::string Msg = "instruction requires:";
- unsigned Mask = 1;
+ uint64_t Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask) {
Msg += " ";
@@ -3831,7 +3852,7 @@ bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
return showMatchError(IDLoc, MatchResult);
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
@@ -3906,11 +3927,15 @@ bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
}
llvm_unreachable("Implement any new match types added!");
- return true;
}
/// ParseDirective parses the arm specific directives
bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
+ const MCObjectFileInfo::Environment Format =
+ getContext().getObjectFileInfo()->getObjectFileType();
+ bool IsMachO = Format == MCObjectFileInfo::IsMachO;
+ bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
+
StringRef IDVal = DirectiveID.getIdentifier();
SMLoc Loc = DirectiveID.getLoc();
if (IDVal == ".hword")
@@ -3926,12 +3951,18 @@ bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
if (IDVal == ".unreq")
return parseDirectiveUnreq(DirectiveID.getLoc());
+ if (!IsMachO && !IsCOFF) {
+ if (IDVal == ".inst")
+ return parseDirectiveInst(Loc);
+ }
+
return parseDirectiveLOH(IDVal, Loc);
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool AArch64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
@@ -3954,6 +3985,47 @@ bool AArch64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
return false;
}
+/// parseDirectiveInst
+/// ::= .inst opcode [, ...]
+bool AArch64AsmParser::parseDirectiveInst(SMLoc Loc) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().is(AsmToken::EndOfStatement)) {
+ Parser.eatToEndOfStatement();
+ Error(Loc, "expected expression following directive");
+ return false;
+ }
+
+ for (;;) {
+ const MCExpr *Expr;
+
+ if (getParser().parseExpression(Expr)) {
+ Error(Loc, "expected expression");
+ return false;
+ }
+
+ const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
+ if (!Value) {
+ Error(Loc, "expected constant expression");
+ return false;
+ }
+
+ getTargetStreamer().emitInst(Value->getValue());
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(Loc, "unexpected token in directive");
+ return false;
+ }
+
+ Parser.Lex(); // Eat comma.
+ }
+
+ Parser.Lex();
+ return false;
+}
+
// parseDirectiveTLSDescCall:
// ::= .tlsdesccall symbol
bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
@@ -3985,10 +4057,9 @@ bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
// We successfully get a numeric value for the identifier.
// Check if it is valid.
int64_t Id = getParser().getTok().getIntVal();
- Kind = (MCLOHType)Id;
- // Check that Id does not overflow MCLOHType.
- if (!isValidMCLOHType(Kind) || Id != Kind)
+ if (Id <= -1U && !isValidMCLOHType(Id))
return TokError("invalid numeric identifier in directive");
+ Kind = (MCLOHType)Id;
} else {
StringRef Name = getTok().getIdentifier();
// We successfully parse an identifier.
@@ -4036,6 +4107,7 @@ bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) {
/// parseDirectiveReq
/// ::= name .req registername
bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
+ MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the '.req' token.
SMLoc SRegLoc = getLoc();
unsigned RegNum = tryParseRegister();
@@ -4067,7 +4139,7 @@ bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
Parser.Lex(); // Consume the EndOfStatement
auto pair = std::make_pair(IsVector, RegNum);
- if (RegisterReqs.GetOrCreateValue(Name, pair).getValue() != pair)
+ if (!RegisterReqs.insert(std::make_pair(Name, pair)).second)
Warning(L, "ignoring redefinition of register alias '" + Name + "'");
return true;
@@ -4076,6 +4148,7 @@ bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
/// parseDirectiveUneq
/// ::= .unreq registername
bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected input in .unreq directive.");
Parser.eatToEndOfStatement();
@@ -4140,9 +4213,7 @@ AArch64AsmParser::classifySymbolRef(const MCExpr *Expr,
extern "C" void LLVMInitializeAArch64AsmParser() {
RegisterMCAsmParser<AArch64AsmParser> X(TheAArch64leTarget);
RegisterMCAsmParser<AArch64AsmParser> Y(TheAArch64beTarget);
-
- RegisterMCAsmParser<AArch64AsmParser> Z(TheARM64leTarget);
- RegisterMCAsmParser<AArch64AsmParser> W(TheARM64beTarget);
+ RegisterMCAsmParser<AArch64AsmParser> Z(TheARM64Target);
}
#define GET_REGISTER_MATCHER
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
index 6de27d6..878e29c 100644
--- a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
@@ -15,12 +15,11 @@
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
-#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/MemoryObject.h"
-#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -200,26 +199,24 @@ static MCDisassembler *createAArch64Disassembler(const Target &T,
}
DecodeStatus AArch64Disassembler::getInstruction(MCInst &MI, uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &os,
- raw_ostream &cs) const {
- CommentStream = &cs;
-
- uint8_t bytes[4];
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address,
+ raw_ostream &OS,
+ raw_ostream &CS) const {
+ CommentStream = &CS;
Size = 0;
// We want to read exactly 4 bytes of data.
- if (Region.readBytes(Address, 4, (uint8_t *)bytes) == -1)
+ if (Bytes.size() < 4)
return Fail;
Size = 4;
// Encoded as a small-endian 32-bit word in the stream.
- uint32_t insn =
- (bytes[3] << 24) | (bytes[2] << 16) | (bytes[1] << 8) | (bytes[0] << 0);
+ uint32_t Insn =
+ (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | (Bytes[0] << 0);
// Calling the auto-generated decoder function.
- return decodeInstruction(DecoderTable32, MI, insn, Address, this, STI);
+ return decodeInstruction(DecoderTable32, MI, Insn, Address, this, STI);
}
static MCSymbolizer *
@@ -243,13 +240,9 @@ extern "C" void LLVMInitializeAArch64Disassembler() {
TargetRegistry::RegisterMCSymbolizer(TheAArch64beTarget,
createAArch64ExternalSymbolizer);
- TargetRegistry::RegisterMCDisassembler(TheARM64leTarget,
- createAArch64Disassembler);
- TargetRegistry::RegisterMCDisassembler(TheARM64beTarget,
+ TargetRegistry::RegisterMCDisassembler(TheARM64Target,
createAArch64Disassembler);
- TargetRegistry::RegisterMCSymbolizer(TheARM64leTarget,
- createAArch64ExternalSymbolizer);
- TargetRegistry::RegisterMCSymbolizer(TheARM64beTarget,
+ TargetRegistry::RegisterMCSymbolizer(TheARM64Target,
createAArch64ExternalSymbolizer);
}
@@ -592,7 +585,7 @@ static DecodeStatus DecodeFixedPointScaleImm32(llvm::MCInst &Inst, unsigned Imm,
uint64_t Addr,
const void *Decoder) {
// scale{5} is asserted as 1 in tblgen.
- Imm |= 0x20;
+ Imm |= 0x20;
Inst.addOperand(MCOperand::CreateImm(64 - Imm));
return Success;
}
@@ -614,7 +607,7 @@ static DecodeStatus DecodePCRelLabel19(llvm::MCInst &Inst, unsigned Imm,
if (ImmVal & (1 << (19 - 1)))
ImmVal |= ~((1LL << 19) - 1);
- if (!Dis->tryAddingSymbolicOperand(Inst, ImmVal << 2, Addr,
+ if (!Dis->tryAddingSymbolicOperand(Inst, ImmVal * 4, Addr,
Inst.getOpcode() != AArch64::LDRXl, 0, 4))
Inst.addOperand(MCOperand::CreateImm(ImmVal));
return Success;
@@ -630,35 +623,19 @@ static DecodeStatus DecodeMemExtend(llvm::MCInst &Inst, unsigned Imm,
static DecodeStatus DecodeMRSSystemRegister(llvm::MCInst &Inst, unsigned Imm,
uint64_t Address,
const void *Decoder) {
- const AArch64Disassembler *Dis =
- static_cast<const AArch64Disassembler *>(Decoder);
- const MCSubtargetInfo &STI = Dis->getSubtargetInfo();
-
- Imm |= 0x8000;
Inst.addOperand(MCOperand::CreateImm(Imm));
- bool ValidNamed;
- (void)AArch64SysReg::MRSMapper(STI.getFeatureBits())
- .toString(Imm, ValidNamed);
-
- return ValidNamed ? Success : Fail;
+ // Every system register in the encoding space is valid with the syntax
+ // S<op0>_<op1>_<Cn>_<Cm>_<op2>, so decoding system registers always succeeds.
+ return Success;
}
static DecodeStatus DecodeMSRSystemRegister(llvm::MCInst &Inst, unsigned Imm,
uint64_t Address,
const void *Decoder) {
- const AArch64Disassembler *Dis =
- static_cast<const AArch64Disassembler *>(Decoder);
- const MCSubtargetInfo &STI = Dis->getSubtargetInfo();
-
- Imm |= 0x8000;
Inst.addOperand(MCOperand::CreateImm(Imm));
- bool ValidNamed;
- (void)AArch64SysReg::MSRMapper(STI.getFeatureBits())
- .toString(Imm, ValidNamed);
-
- return ValidNamed ? Success : Fail;
+ return Success;
}
static DecodeStatus DecodeFMOVLaneInstruction(llvm::MCInst &Inst, unsigned Insn,
@@ -1510,7 +1487,7 @@ static DecodeStatus DecodeUnconditionalBranch(llvm::MCInst &Inst, uint32_t insn,
if (imm & (1 << (26 - 1)))
imm |= ~((1LL << 26) - 1);
- if (!Dis->tryAddingSymbolicOperand(Inst, imm << 2, Addr, true, 0, 4))
+ if (!Dis->tryAddingSymbolicOperand(Inst, imm * 4, Addr, true, 0, 4))
Inst.addOperand(MCOperand::CreateImm(imm));
return Success;
@@ -1530,7 +1507,7 @@ static DecodeStatus DecodeSystemPStateInstruction(llvm::MCInst &Inst,
bool ValidNamed;
(void)AArch64PState::PStateMapper().toString(pstate_field, ValidNamed);
-
+
return ValidNamed ? Success : Fail;
}
@@ -1552,7 +1529,7 @@ static DecodeStatus DecodeTestAndBranch(llvm::MCInst &Inst, uint32_t insn,
else
DecodeGPR64RegisterClass(Inst, Rt, Addr, Decoder);
Inst.addOperand(MCOperand::CreateImm(bit));
- if (!Dis->tryAddingSymbolicOperand(Inst, dst << 2, Addr, true, 0, 4))
+ if (!Dis->tryAddingSymbolicOperand(Inst, dst * 4, Addr, true, 0, 4))
Inst.addOperand(MCOperand::CreateImm(dst));
return Success;
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h
index 68d4867..7fb57ad 100644
--- a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64Disassembler.h
@@ -10,8 +10,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64DISASSEMBLER_H
-#define AArch64DISASSEMBLER_H
+#ifndef LLVM_LIB_TARGET_AARCH64_DISASSEMBLER_AARCH64DISASSEMBLER_H
+#define LLVM_LIB_TARGET_AARCH64_DISASSEMBLER_AARCH64DISASSEMBLER_H
#include "llvm/MC/MCDisassembler.h"
@@ -28,11 +28,10 @@ public:
~AArch64Disassembler() {}
- /// getInstruction - See MCDisassembler.
MCDisassembler::DecodeStatus
- getInstruction(MCInst &instr, uint64_t &size, const MemoryObject &region,
- uint64_t address, raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes,
+ uint64_t Address, raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
} // namespace llvm
diff --git a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h
index 171d31c..12b8450 100644
--- a/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h
+++ b/contrib/llvm/lib/Target/AArch64/Disassembler/AArch64ExternalSymbolizer.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64EXTERNALSYMBOLIZER_H
-#define AArch64EXTERNALSYMBOLIZER_H
+#ifndef LLVM_LIB_TARGET_AARCH64_DISASSEMBLER_AARCH64EXTERNALSYMBOLIZER_H
+#define LLVM_LIB_TARGET_AARCH64_DISASSEMBLER_AARCH64EXTERNALSYMBOLIZER_H
#include "llvm/MC/MCExternalSymbolizer.h"
diff --git a/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
index 8a21f06..46a1d79 100644
--- a/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
+++ b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
@@ -16,8 +16,8 @@
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
@@ -1223,7 +1223,7 @@ void AArch64InstPrinter::printAlignedLabel(const MCInst *MI, unsigned OpNum,
// If the label has already been resolved to an immediate offset (say, when
// we're running the disassembler), just print the immediate.
if (Op.isImm()) {
- O << "#" << (Op.getImm() << 2);
+ O << "#" << (Op.getImm() * 4);
return;
}
@@ -1247,7 +1247,7 @@ void AArch64InstPrinter::printAdrpLabel(const MCInst *MI, unsigned OpNum,
// If the label has already been resolved to an immediate offset (say, when
// we're running the disassembler), just print the immediate.
if (Op.isImm()) {
- O << "#" << (Op.getImm() << 12);
+ O << "#" << (Op.getImm() * (1 << 12));
return;
}
@@ -1276,24 +1276,20 @@ void AArch64InstPrinter::printMRSSystemRegister(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
unsigned Val = MI->getOperand(OpNo).getImm();
- bool Valid;
auto Mapper = AArch64SysReg::MRSMapper(getAvailableFeatures());
- std::string Name = Mapper.toString(Val, Valid);
+ std::string Name = Mapper.toString(Val);
- if (Valid)
- O << StringRef(Name).upper();
+ O << StringRef(Name).upper();
}
void AArch64InstPrinter::printMSRSystemRegister(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
unsigned Val = MI->getOperand(OpNo).getImm();
- bool Valid;
auto Mapper = AArch64SysReg::MSRMapper(getAvailableFeatures());
- std::string Name = Mapper.toString(Val, Valid);
+ std::string Name = Mapper.toString(Val);
- if (Valid)
- O << StringRef(Name).upper();
+ O << StringRef(Name).upper();
}
void AArch64InstPrinter::printSystemPStateField(const MCInst *MI, unsigned OpNo,
diff --git a/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
index fe7666e..5f51621 100644
--- a/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
+++ b/contrib/llvm/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64INSTPRINTER_H
-#define AArch64INSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_AARCH64_INSTPRINTER_AARCH64INSTPRINTER_H
+#define LLVM_LIB_TARGET_AARCH64_INSTPRINTER_AARCH64INSTPRINTER_H
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "llvm/ADT/StringRef.h"
@@ -127,8 +127,9 @@ public:
void printInstruction(const MCInst *MI, raw_ostream &O) override;
bool printAliasInstr(const MCInst *MI, raw_ostream &O) override;
- virtual void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
- unsigned PrintMethodIdx, raw_ostream &O);
+ void printCustomAliasOperand(const MCInst *MI, unsigned OpIdx,
+ unsigned PrintMethodIdx,
+ raw_ostream &O) override;
StringRef getRegName(unsigned RegNo) const override {
return getRegisterName(RegNo);
}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
index 8b1e44e2..4db9dea 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
-#define LLVM_TARGET_AArch64_AArch64ADDRESSINGMODES_H
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
@@ -51,7 +51,7 @@ enum ShiftExtendType {
/// getShiftName - Get the string encoding for the shift type.
static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
switch (ST) {
- default: assert(false && "unhandled shift type!");
+ default: llvm_unreachable("unhandled shift type!");
case AArch64_AM::LSL: return "lsl";
case AArch64_AM::LSR: return "lsr";
case AArch64_AM::ASR: return "asr";
@@ -210,67 +210,63 @@ static inline uint64_t ror(uint64_t elt, unsigned size) {
/// as the immediate operand of a logical instruction for the given register
/// size. If so, return true with "encoding" set to the encoded value in
/// the form N:immr:imms.
-static inline bool processLogicalImmediate(uint64_t imm, unsigned regSize,
- uint64_t &encoding) {
- if (imm == 0ULL || imm == ~0ULL ||
- (regSize != 64 && (imm >> regSize != 0 || imm == ~0U)))
+static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
+ uint64_t &Encoding) {
+ if (Imm == 0ULL || Imm == ~0ULL ||
+ (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U)))
return false;
- unsigned size = 2;
- uint64_t eltVal = imm;
-
// First, determine the element size.
- while (size < regSize) {
- unsigned numElts = regSize / size;
- unsigned mask = (1ULL << size) - 1;
- uint64_t lowestEltVal = imm & mask;
-
- bool allMatched = true;
- for (unsigned i = 1; i < numElts; ++i) {
- uint64_t currEltVal = (imm >> (i*size)) & mask;
- if (currEltVal != lowestEltVal) {
- allMatched = false;
- break;
- }
- }
+ unsigned Size = RegSize;
+
+ do {
+ Size /= 2;
+ uint64_t Mask = (1ULL << Size) - 1;
- if (allMatched) {
- eltVal = lowestEltVal;
+ if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
+ Size *= 2;
break;
}
-
- size *= 2;
- }
+ } while (Size > 2);
// Second, determine the rotation to make the element be: 0^m 1^n.
- for (unsigned i = 0; i < size; ++i) {
- eltVal = ror(eltVal, size);
- uint32_t clz = countLeadingZeros(eltVal) - (64 - size);
- uint32_t cto = CountTrailingOnes_64(eltVal);
-
- if (clz + cto == size) {
- // Encode in immr the number of RORs it would take to get *from* this
- // element value to our target value, where i+1 is the number of RORs
- // to go the opposite direction.
- unsigned immr = size - (i + 1);
-
- // If size has a 1 in the n'th bit, create a value that has zeroes in
- // bits [0, n] and ones above that.
- uint64_t nimms = ~(size-1) << 1;
-
- // Or the CTO value into the low bits, which must be below the Nth bit
- // bit mentioned above.
- nimms |= (cto-1);
-
- // Extract the seventh bit and toggle it to create the N field.
- unsigned N = ((nimms >> 6) & 1) ^ 1;
-
- encoding = (N << 12) | (immr << 6) | (nimms & 0x3f);
- return true;
- }
+ uint32_t CTO, I;
+ uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
+ Imm &= Mask;
+
+ if (isShiftedMask_64(Imm)) {
+ I = countTrailingZeros(Imm);
+ assert(I < 64 && "undefined behavior");
+ CTO = CountTrailingOnes_64(Imm >> I);
+ } else {
+ Imm |= ~Mask;
+ if (!isShiftedMask_64(~Imm))
+ return false;
+
+ unsigned CLO = CountLeadingOnes_64(Imm);
+ I = 64 - CLO;
+ CTO = CLO + CountTrailingOnes_64(Imm) - (64 - Size);
}
- return false;
+ // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
+ // to our target value, where I is the number of RORs to go the opposite
+ // direction.
+ assert(Size > I && "I should be smaller than element size");
+ unsigned Immr = (Size - I) & (Size - 1);
+
+ // If size has a 1 in the n'th bit, create a value that has zeroes in
+ // bits [0, n] and ones above that.
+ uint64_t NImms = ~(Size-1) << 1;
+
+ // Or the CTO value into the low bits, which must be below the Nth bit
+ // bit mentioned above.
+ NImms |= (CTO-1);
+
+ // Extract the seventh bit and toggle it to create the N field.
+ unsigned N = ((NImms >> 6) & 1) ^ 1;
+
+ Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
+ return true;
}
/// isLogicalImmediate - Return true if the immediate is valid for a logical
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
index a917616..27cbac9 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
@@ -13,10 +13,11 @@
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCDirectives.h"
+#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
-#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachO.h"
using namespace llvm;
@@ -131,7 +132,7 @@ static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
int64_t SignedValue = static_cast<int64_t>(Value);
switch (Kind) {
default:
- assert(false && "Unknown fixup kind!");
+ llvm_unreachable("Unknown fixup kind!");
case AArch64::fixup_aarch64_pcrel_adr_imm21:
if (SignedValue > 2097151 || SignedValue < -2097152)
report_fatal_error("fixup value out of range");
@@ -238,7 +239,7 @@ bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
MCInst &Res) const {
- assert(false && "AArch64AsmBackend::relaxInstruction() unimplemented");
+ llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
}
bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
@@ -534,8 +535,8 @@ void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
// store fixups in .eh_frame section in big endian order
if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
const MCSection *Sec = Fixup.getValue()->FindAssociatedSection();
- const MCSectionELF *SecELF = static_cast<const MCSectionELF *>(Sec);
- if (SecELF->getSectionName() == ".eh_frame")
+ const MCSectionELF *SecELF = dyn_cast_or_null<const MCSectionELF>(Sec);
+ if (SecELF && SecELF->getSectionName() == ".eh_frame")
Value = ByteSwap_32(unsigned(Value));
}
AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
@@ -551,7 +552,8 @@ MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
return new DarwinAArch64AsmBackend(T, MRI);
assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
- return new ELFAArch64AsmBackend(T, TheTriple.getOS(), /*IsLittleEndian=*/true);
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
}
MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
@@ -561,6 +563,7 @@ MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
assert(TheTriple.isOSBinFormatELF() &&
"Big endian is only supported for ELF targets!");
- return new ELFAArch64AsmBackend(T, TheTriple.getOS(),
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ return new ELFAArch64AsmBackend(T, OSABI,
/*IsLittleEndian=*/false);
}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp
index e05191e..5ea49c3 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFObjectWriter.cpp
@@ -78,7 +78,7 @@ unsigned AArch64ELFObjectWriter::GetRelocType(const MCValue &Target,
if (SymLoc == AArch64MCExpr::VK_GOTTPREL && !IsNC)
return ELF::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21;
if (SymLoc == AArch64MCExpr::VK_TLSDESC && !IsNC)
- return ELF::R_AARCH64_TLSDESC_ADR_PAGE;
+ return ELF::R_AARCH64_TLSDESC_ADR_PAGE21;
llvm_unreachable("invalid symbol kind for ADRP relocation");
case AArch64::fixup_aarch64_pcrel_branch26:
return ELF::R_AARCH64_JUMP26;
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
index a79406d..8dc6c30 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
@@ -15,8 +15,10 @@
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
@@ -34,12 +36,42 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
+class AArch64ELFStreamer;
+
+class AArch64TargetAsmStreamer : public AArch64TargetStreamer {
+ formatted_raw_ostream &OS;
+
+ void emitInst(uint32_t Inst) override;
+
+public:
+ AArch64TargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS);
+};
+
+AArch64TargetAsmStreamer::AArch64TargetAsmStreamer(MCStreamer &S,
+ formatted_raw_ostream &OS)
+ : AArch64TargetStreamer(S), OS(OS) {}
+
+void AArch64TargetAsmStreamer::emitInst(uint32_t Inst) {
+ OS << "\t.inst\t0x" << utohexstr(Inst) << "\n";
+}
+
+class AArch64TargetELFStreamer : public AArch64TargetStreamer {
+private:
+ AArch64ELFStreamer &getStreamer();
+
+ void emitInst(uint32_t Inst) override;
+
+public:
+ AArch64TargetELFStreamer(MCStreamer &S) : AArch64TargetStreamer(S) {}
+};
+
/// Extend the generic ELFStreamer class so that it can emit mapping symbols at
/// the appropriate points in the object files. These symbols are defined in the
/// AArch64 ELF ABI:
@@ -55,6 +87,8 @@ namespace {
/// by MachO. Beware!
class AArch64ELFStreamer : public MCELFStreamer {
public:
+ friend class AArch64TargetELFStreamer;
+
AArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS,
MCCodeEmitter *Emitter)
: MCELFStreamer(Context, TAB, OS, Emitter), MappingSymbolCounter(0),
@@ -82,6 +116,18 @@ public:
MCELFStreamer::EmitInstruction(Inst, STI);
}
+ void emitInst(uint32_t Inst) {
+ char Buffer[4];
+ const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
+
+ EmitA64MappingSymbol();
+ for (unsigned II = 0; II != 4; ++II) {
+ const unsigned I = LittleEndian ? (4 - II - 1) : II;
+ Buffer[4 - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
+ }
+ MCELFStreamer::EmitBytes(StringRef(Buffer, 4));
+ }
+
/// This is one of the functions used to emit data into an ELF section, so the
/// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
/// if necessary.
@@ -131,7 +177,9 @@ private:
MCELF::SetType(SD, ELF::STT_NOTYPE);
MCELF::SetBinding(SD, ELF::STB_LOCAL);
SD.setExternal(false);
- Symbol->setSection(*getCurrentSection().first);
+ auto Sec = getCurrentSection().first;
+ assert(Sec && "need a section");
+ Symbol->setSection(*Sec);
const MCExpr *Value = MCSymbolRefExpr::Create(Start, getContext());
Symbol->setVariableValue(Value);
@@ -144,17 +192,35 @@ private:
/// @}
};
+} // end anonymous namespace
+
+AArch64ELFStreamer &AArch64TargetELFStreamer::getStreamer() {
+ return static_cast<AArch64ELFStreamer &>(Streamer);
+}
+
+void AArch64TargetELFStreamer::emitInst(uint32_t Inst) {
+ getStreamer().emitInst(Inst);
}
namespace llvm {
+MCStreamer *
+createAArch64MCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst) {
+ MCStreamer *S = llvm::createAsmStreamer(
+ Ctx, OS, isVerboseAsm, useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
+ new AArch64TargetAsmStreamer(*S, OS);
+ return S;
+}
+
MCELFStreamer *createAArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- bool RelaxAll, bool NoExecStack) {
+ bool RelaxAll) {
AArch64ELFStreamer *S = new AArch64ELFStreamer(Context, TAB, OS, Emitter);
+ new AArch64TargetELFStreamer(*S);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
- if (NoExecStack)
- S->getAssembler().setNoExecStack(true);
return S;
}
}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h
index bc6973b..71b05cc 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_AARCH64_ELF_STREAMER_H
-#define LLVM_AARCH64_ELF_STREAMER_H
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ELFSTREAMER_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ELFSTREAMER_H
#include "llvm/MC/MCELFStreamer.h"
@@ -20,7 +20,7 @@ namespace llvm {
MCELFStreamer *createAArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- bool RelaxAll, bool NoExecStack);
+ bool RelaxAll);
}
-#endif // AArch64_ELF_STREAMER_H
+#endif
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h
index bf405fb..0f5b765 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64FixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_AArch64FIXUPKINDS_H
-#define LLVM_AArch64FIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64FIXUPKINDS_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64FIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
index 1763b40..f048474 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
@@ -13,8 +13,8 @@
#include "AArch64MCAsmInfo.h"
#include "llvm/ADT/Triple.h"
-#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
@@ -37,6 +37,7 @@ AArch64MCAsmInfoDarwin::AArch64MCAsmInfoDarwin() {
AssemblerDialect = AsmWriterVariant == Default ? 1 : AsmWriterVariant;
PrivateGlobalPrefix = "L";
+ PrivateLabelPrefix = "L";
SeparatorString = "%%";
CommentString = ";";
PointerSize = CalleeSaveStackSlotSize = 8;
@@ -66,7 +67,7 @@ const MCExpr *AArch64MCAsmInfoDarwin::getExprForPersonalitySymbol(
AArch64MCAsmInfoELF::AArch64MCAsmInfoELF(StringRef TT) {
Triple T(TT);
- if (T.getArch() == Triple::arm64_be || T.getArch() == Triple::aarch64_be)
+ if (T.getArch() == Triple::aarch64_be)
IsLittleEndian = false;
// We prefer NEON instructions to be printed in the short form.
@@ -79,6 +80,7 @@ AArch64MCAsmInfoELF::AArch64MCAsmInfoELF(StringRef TT) {
CommentString = "//";
PrivateGlobalPrefix = ".L";
+ PrivateLabelPrefix = ".L";
Code32Directive = ".code\t32";
Data16bitsDirective = "\t.hword\t";
@@ -89,7 +91,6 @@ AArch64MCAsmInfoELF::AArch64MCAsmInfoELF(StringRef TT) {
WeakRefDirective = "\t.weak\t";
- HasLEB128 = true;
SupportsDebugInformation = true;
// Exceptions handling
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
index 42a031d..5d03c21 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64TARGETASMINFO_H
-#define AArch64TARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64MCASMINFO_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64MCASMINFO_H
#include "llvm/MC/MCAsmInfoDarwin.h"
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
index f051357..4756a192 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
@@ -15,13 +15,13 @@
#include "MCTargetDesc/AArch64FixupKinds.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "Utils/AArch64BaseInfo.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -437,8 +437,7 @@ AArch64MCCodeEmitter::getVecShifterOpValue(const MCInst &MI, unsigned OpIdx,
return 3;
}
- assert(false && "Invalid value for vector shift amount!");
- return 0;
+ llvm_unreachable("Invalid value for vector shift amount!");
}
uint32_t
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp
index 42a6787..e396df8 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.cpp
@@ -90,8 +90,9 @@ const MCSection *AArch64MCExpr::FindAssociatedSection() const {
}
bool AArch64MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const {
- if (!getSubExpr()->EvaluateAsRelocatable(Res, Layout))
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const {
+ if (!getSubExpr()->EvaluateAsRelocatable(Res, Layout, Fixup))
return false;
Res =
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h
index 5422f9d..db48ac9 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCExpr.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_AArch64MCEXPR_H
-#define LLVM_AArch64MCEXPR_H
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64MCEXPR_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64MCEXPR_H
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/ErrorHandling.h"
@@ -152,7 +152,8 @@ public:
const MCSection *FindAssociatedSection() const override;
bool EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const override;
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const override;
void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override;
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
index ae698c5..0f7a6b8 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
@@ -126,15 +126,14 @@ static MCInstPrinter *createAArch64MCInstPrinter(const Target &T,
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &TAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI, bool RelaxAll,
- bool NoExecStack) {
+ const MCSubtargetInfo &STI, bool RelaxAll) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin())
return createMachOStreamer(Ctx, TAB, OS, Emitter, RelaxAll,
/*LabelSections*/ true);
- return createAArch64ELFStreamer(Ctx, TAB, OS, Emitter, RelaxAll, NoExecStack);
+ return createAArch64ELFStreamer(Ctx, TAB, OS, Emitter, RelaxAll);
}
// Force static initialization.
@@ -142,17 +141,14 @@ extern "C" void LLVMInitializeAArch64TargetMC() {
// Register the MC asm info.
RegisterMCAsmInfoFn X(TheAArch64leTarget, createAArch64MCAsmInfo);
RegisterMCAsmInfoFn Y(TheAArch64beTarget, createAArch64MCAsmInfo);
- RegisterMCAsmInfoFn Z(TheARM64leTarget, createAArch64MCAsmInfo);
- RegisterMCAsmInfoFn W(TheARM64beTarget, createAArch64MCAsmInfo);
+ RegisterMCAsmInfoFn Z(TheARM64Target, createAArch64MCAsmInfo);
// Register the MC codegen info.
TargetRegistry::RegisterMCCodeGenInfo(TheAArch64leTarget,
createAArch64MCCodeGenInfo);
TargetRegistry::RegisterMCCodeGenInfo(TheAArch64beTarget,
createAArch64MCCodeGenInfo);
- TargetRegistry::RegisterMCCodeGenInfo(TheARM64leTarget,
- createAArch64MCCodeGenInfo);
- TargetRegistry::RegisterMCCodeGenInfo(TheARM64beTarget,
+ TargetRegistry::RegisterMCCodeGenInfo(TheARM64Target,
createAArch64MCCodeGenInfo);
// Register the MC instruction info.
@@ -160,9 +156,7 @@ extern "C" void LLVMInitializeAArch64TargetMC() {
createAArch64MCInstrInfo);
TargetRegistry::RegisterMCInstrInfo(TheAArch64beTarget,
createAArch64MCInstrInfo);
- TargetRegistry::RegisterMCInstrInfo(TheARM64leTarget,
- createAArch64MCInstrInfo);
- TargetRegistry::RegisterMCInstrInfo(TheARM64beTarget,
+ TargetRegistry::RegisterMCInstrInfo(TheARM64Target,
createAArch64MCInstrInfo);
// Register the MC register info.
@@ -170,9 +164,7 @@ extern "C" void LLVMInitializeAArch64TargetMC() {
createAArch64MCRegisterInfo);
TargetRegistry::RegisterMCRegInfo(TheAArch64beTarget,
createAArch64MCRegisterInfo);
- TargetRegistry::RegisterMCRegInfo(TheARM64leTarget,
- createAArch64MCRegisterInfo);
- TargetRegistry::RegisterMCRegInfo(TheARM64beTarget,
+ TargetRegistry::RegisterMCRegInfo(TheARM64Target,
createAArch64MCRegisterInfo);
// Register the MC subtarget info.
@@ -180,9 +172,7 @@ extern "C" void LLVMInitializeAArch64TargetMC() {
createAArch64MCSubtargetInfo);
TargetRegistry::RegisterMCSubtargetInfo(TheAArch64beTarget,
createAArch64MCSubtargetInfo);
- TargetRegistry::RegisterMCSubtargetInfo(TheARM64leTarget,
- createAArch64MCSubtargetInfo);
- TargetRegistry::RegisterMCSubtargetInfo(TheARM64beTarget,
+ TargetRegistry::RegisterMCSubtargetInfo(TheARM64Target,
createAArch64MCSubtargetInfo);
// Register the asm backend.
@@ -190,19 +180,15 @@ extern "C" void LLVMInitializeAArch64TargetMC() {
createAArch64leAsmBackend);
TargetRegistry::RegisterMCAsmBackend(TheAArch64beTarget,
createAArch64beAsmBackend);
- TargetRegistry::RegisterMCAsmBackend(TheARM64leTarget,
+ TargetRegistry::RegisterMCAsmBackend(TheARM64Target,
createAArch64leAsmBackend);
- TargetRegistry::RegisterMCAsmBackend(TheARM64beTarget,
- createAArch64beAsmBackend);
// Register the MC Code Emitter
TargetRegistry::RegisterMCCodeEmitter(TheAArch64leTarget,
createAArch64MCCodeEmitter);
TargetRegistry::RegisterMCCodeEmitter(TheAArch64beTarget,
createAArch64MCCodeEmitter);
- TargetRegistry::RegisterMCCodeEmitter(TheARM64leTarget,
- createAArch64MCCodeEmitter);
- TargetRegistry::RegisterMCCodeEmitter(TheARM64beTarget,
+ TargetRegistry::RegisterMCCodeEmitter(TheARM64Target,
createAArch64MCCodeEmitter);
// Register the object streamer.
@@ -210,16 +196,21 @@ extern "C" void LLVMInitializeAArch64TargetMC() {
createMCStreamer);
TargetRegistry::RegisterMCObjectStreamer(TheAArch64beTarget,
createMCStreamer);
- TargetRegistry::RegisterMCObjectStreamer(TheARM64leTarget, createMCStreamer);
- TargetRegistry::RegisterMCObjectStreamer(TheARM64beTarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheARM64Target, createMCStreamer);
+
+ // Register the asm streamer.
+ TargetRegistry::RegisterAsmStreamer(TheAArch64leTarget,
+ createAArch64MCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheAArch64beTarget,
+ createAArch64MCAsmStreamer);
+ TargetRegistry::RegisterAsmStreamer(TheARM64Target,
+ createAArch64MCAsmStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(TheAArch64leTarget,
createAArch64MCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheAArch64beTarget,
createAArch64MCInstPrinter);
- TargetRegistry::RegisterMCInstPrinter(TheARM64leTarget,
- createAArch64MCInstPrinter);
- TargetRegistry::RegisterMCInstPrinter(TheARM64beTarget,
+ TargetRegistry::RegisterMCInstPrinter(TheARM64Target,
createAArch64MCInstPrinter);
}
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
index d886ea2..1553115 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
@@ -11,19 +11,22 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64MCTARGETDESC_H
-#define AArch64MCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64MCTARGETDESC_H
+#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64MCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
#include <string>
namespace llvm {
+class formatted_raw_ostream;
class MCAsmBackend;
class MCCodeEmitter;
class MCContext;
class MCInstrInfo;
+class MCInstPrinter;
class MCRegisterInfo;
class MCObjectWriter;
+class MCStreamer;
class MCSubtargetInfo;
class StringRef;
class Target;
@@ -31,8 +34,7 @@ class raw_ostream;
extern Target TheAArch64leTarget;
extern Target TheAArch64beTarget;
-extern Target TheARM64leTarget;
-extern Target TheARM64beTarget;
+extern Target TheARM64Target;
MCCodeEmitter *createAArch64MCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
@@ -51,6 +53,11 @@ MCObjectWriter *createAArch64ELFObjectWriter(raw_ostream &OS, uint8_t OSABI,
MCObjectWriter *createAArch64MachObjectWriter(raw_ostream &OS, uint32_t CPUType,
uint32_t CPUSubtype);
+MCStreamer *
+createAArch64MCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
+ bool isVerboseAsm, bool useDwarfDirectory,
+ MCInstPrinter *InstPrint, MCCodeEmitter *CE,
+ MCAsmBackend *TAB, bool ShowInst);
} // End llvm namespace
// Defines symbolic names for AArch64 registers. This defines a mapping from
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp
index ba95366..e12a24b 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64MachObjectWriter.cpp
@@ -9,15 +9,15 @@
#include "MCTargetDesc/AArch64FixupKinds.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
-#include "llvm/MC/MCAssembler.h"
+#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmLayout.h"
+#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCValue.h"
-#include "llvm/ADT/Twine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachO.h"
using namespace llvm;
@@ -288,7 +288,8 @@ void AArch64MachObjectWriter::RecordRelocation(
// FIXME: Will the Target we already have ever have any data in it
// we need to preserve and merge with the new Target? How about
// the FixedValue?
- if (!Symbol->getVariableValue()->EvaluateAsRelocatable(Target, &Layout))
+ if (!Symbol->getVariableValue()->EvaluateAsRelocatable(Target, &Layout,
+ &Fixup))
Asm.getContext().FatalError(Fixup.getLoc(),
"unable to resolve variable '" +
Symbol->getName() + "'");
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp
index dcc1a3c..e3112fa 100644
--- a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp
+++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64TargetStreamer.cpp
@@ -39,3 +39,5 @@ void AArch64TargetStreamer::emitCurrentConstantPool() {
// finish() - write out any non-empty assembler constant pools.
void AArch64TargetStreamer::finish() { ConstantPools->emitAll(Streamer); }
+
+void AArch64TargetStreamer::emitInst(uint32_t Inst) {}
diff --git a/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp b/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
index 3a382c1..f42ecb1 100644
--- a/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
@@ -14,18 +14,19 @@ using namespace llvm;
namespace llvm {
Target TheAArch64leTarget;
Target TheAArch64beTarget;
-Target TheARM64leTarget;
-Target TheARM64beTarget;
+Target TheARM64Target;
} // end namespace llvm
extern "C" void LLVMInitializeAArch64TargetInfo() {
- RegisterTarget<Triple::arm64, /*HasJIT=*/true> X(TheARM64leTarget, "arm64",
- "AArch64 (little endian)");
- RegisterTarget<Triple::arm64_be, /*HasJIT=*/true> Y(TheARM64beTarget, "arm64_be",
- "AArch64 (big endian)");
+ // Now register the "arm64" name for use with "-march". We don't want it to
+ // take possession of the Triple::aarch64 tag though.
+ TargetRegistry::RegisterTarget(TheARM64Target, "arm64",
+ "ARM64 (little endian)",
+ [](Triple::ArchType) { return false; }, true);
RegisterTarget<Triple::aarch64, /*HasJIT=*/true> Z(
TheAArch64leTarget, "aarch64", "AArch64 (little endian)");
RegisterTarget<Triple::aarch64_be, /*HasJIT=*/true> W(
TheAArch64beTarget, "aarch64_be", "AArch64 (big endian)");
+
}
diff --git a/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
index 3c24bb3..bc6c7a9 100644
--- a/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
+++ b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
@@ -791,22 +791,22 @@ AArch64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
}
}
- // Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name, where the bits
- // are: 11 xxx 1x11 xxxx xxx
- Regex GenericRegPattern("^s3_([0-7])_c(1[15])_c([0-9]|1[0-5])_([0-7])$");
+ // Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name
+ Regex GenericRegPattern("^s([0-3])_([0-7])_c([0-9]|1[0-5])_c([0-9]|1[0-5])_([0-7])$");
- SmallVector<StringRef, 4> Ops;
+ SmallVector<StringRef, 5> Ops;
if (!GenericRegPattern.match(NameLower, &Ops)) {
Valid = false;
return -1;
}
- uint32_t Op0 = 3, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
+ uint32_t Op0 = 0, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
uint32_t Bits;
- Ops[1].getAsInteger(10, Op1);
- Ops[2].getAsInteger(10, CRn);
- Ops[3].getAsInteger(10, CRm);
- Ops[4].getAsInteger(10, Op2);
+ Ops[1].getAsInteger(10, Op0);
+ Ops[2].getAsInteger(10, Op1);
+ Ops[3].getAsInteger(10, CRn);
+ Ops[4].getAsInteger(10, CRm);
+ Ops[5].getAsInteger(10, Op2);
Bits = (Op0 << 14) | (Op1 << 11) | (CRn << 7) | (CRm << 3) | Op2;
Valid = true;
@@ -814,11 +814,10 @@ AArch64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
}
std::string
-AArch64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
+AArch64SysReg::SysRegMapper::toString(uint32_t Bits) const {
// First search the registers shared by all
for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
if (SysRegPairs[i].Value == Bits) {
- Valid = true;
return SysRegPairs[i].Name;
}
}
@@ -827,7 +826,6 @@ AArch64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
if (FeatureBits & AArch64::ProcCyclone) {
for (unsigned i = 0; i < array_lengthof(CycloneSysRegPairs); ++i) {
if (CycloneSysRegPairs[i].Value == Bits) {
- Valid = true;
return CycloneSysRegPairs[i].Name;
}
}
@@ -837,28 +835,18 @@ AArch64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
// write-only).
for (unsigned i = 0; i < NumInstPairs; ++i) {
if (InstPairs[i].Value == Bits) {
- Valid = true;
return InstPairs[i].Name;
}
}
+ assert(Bits < 0x10000);
uint32_t Op0 = (Bits >> 14) & 0x3;
uint32_t Op1 = (Bits >> 11) & 0x7;
uint32_t CRn = (Bits >> 7) & 0xf;
uint32_t CRm = (Bits >> 3) & 0xf;
uint32_t Op2 = Bits & 0x7;
- // Only combinations matching: 11 xxx 1x11 xxxx xxx are valid for a generic
- // name.
- if (Op0 != 3 || (CRn != 11 && CRn != 15)) {
- Valid = false;
- return "";
- }
-
- assert(Op0 == 3 && (CRn == 11 || CRn == 15) && "Invalid generic sysreg");
-
- Valid = true;
- return "s3_" + utostr(Op1) + "_c" + utostr(CRn)
+ return "s" + utostr(Op0)+ "_" + utostr(Op1) + "_c" + utostr(CRn)
+ "_c" + utostr(CRm) + "_" + utostr(Op2);
}
diff --git a/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h
index 9d2ce21..c60b09a 100644
--- a/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h
+++ b/contrib/llvm/lib/Target/AArch64/Utils/AArch64BaseInfo.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AArch64BASEINFO_H
-#define AArch64BASEINFO_H
+#ifndef LLVM_LIB_TARGET_AARCH64_UTILS_AARCH64BASEINFO_H
+#define LLVM_LIB_TARGET_AARCH64_UTILS_AARCH64BASEINFO_H
// FIXME: Is it easiest to fix this layering violation by moving the .inc
// #includes from AArch64MCTargetDesc.h to here?
@@ -1143,7 +1143,7 @@ namespace AArch64SysReg {
SysRegMapper(uint64_t FeatureBits) : FeatureBits(FeatureBits) { }
uint32_t fromString(StringRef Name, bool &Valid) const;
- std::string toString(uint32_t Bits, bool &Valid) const;
+ std::string toString(uint32_t Bits) const;
};
struct MSRMapper : SysRegMapper {
@@ -1271,7 +1271,12 @@ namespace AArch64II {
/// thread-local symbol. On Darwin, only one type of thread-local access
/// exists (pre linker-relaxation), but on ELF the TLSModel used for the
/// referee will affect interpretation.
- MO_TLS = 0x20
+ MO_TLS = 0x20,
+
+ /// MO_CONSTPOOL - This flag indicates that a symbol operand represents
+ /// the address of a constant pool entry for the symbol, rather than the
+ /// address of the symbol itself.
+ MO_CONSTPOOL = 0x40
};
} // end namespace AArch64II
diff --git a/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp b/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp
index 92eaf9e..387f1f6 100644
--- a/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp
+++ b/contrib/llvm/lib/Target/ARM/A15SDOptimizer.cpp
@@ -34,6 +34,8 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <map>
#include <set>
using namespace llvm;
@@ -676,8 +678,8 @@ bool A15SDOptimizer::runOnInstruction(MachineInstr *MI) {
}
bool A15SDOptimizer::runOnMachineFunction(MachineFunction &Fn) {
- TII = static_cast<const ARMBaseInstrInfo*>(Fn.getTarget().getInstrInfo());
- TRI = Fn.getTarget().getRegisterInfo();
+ TII = static_cast<const ARMBaseInstrInfo *>(Fn.getSubtarget().getInstrInfo());
+ TRI = Fn.getSubtarget().getRegisterInfo();
MRI = &Fn.getRegInfo();
bool Modified = false;
diff --git a/contrib/llvm/lib/Target/ARM/ARM.h b/contrib/llvm/lib/Target/ARM/ARM.h
index 55df29c..02db53a 100644
--- a/contrib/llvm/lib/Target/ARM/ARM.h
+++ b/contrib/llvm/lib/Target/ARM/ARM.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_ARM_H
-#define TARGET_ARM_H
+#ifndef LLVM_LIB_TARGET_ARM_ARM_H
+#define LLVM_LIB_TARGET_ARM_ARM_H
#include "llvm/Support/CodeGen.h"
@@ -23,7 +23,6 @@ class ARMAsmPrinter;
class ARMBaseTargetMachine;
class FunctionPass;
class ImmutablePass;
-class JITCodeEmitter;
class MachineInstr;
class MCInst;
class TargetLowering;
@@ -31,10 +30,6 @@ class TargetMachine;
FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM,
CodeGenOpt::Level OptLevel);
-
-FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
- JITCodeEmitter &JCE);
-
FunctionPass *createA15SDOptimizerPass();
FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
FunctionPass *createARMExpandPseudoPass();
diff --git a/contrib/llvm/lib/Target/ARM/ARM.td b/contrib/llvm/lib/Target/ARM/ARM.td
index 7916ccc..244014b 100644
--- a/contrib/llvm/lib/Target/ARM/ARM.td
+++ b/contrib/llvm/lib/Target/ARM/ARM.td
@@ -228,6 +228,15 @@ def ProcA15 : SubtargetFeature<"a15", "ARMProcFamily", "CortexA15",
FeatureAvoidPartialCPSR,
FeatureTrustZone, FeatureVirtualization]>;
+def ProcA17 : SubtargetFeature<"a17", "ARMProcFamily", "CortexA17",
+ "Cortex-A17 ARM processors",
+ [FeatureVMLxForwarding,
+ FeatureT2XtPk, FeatureVFP4,
+ FeatureHWDiv, FeatureHWDivARM,
+ FeatureAvoidPartialCPSR,
+ FeatureVirtualization,
+ FeatureTrustZone]>;
+
def ProcA53 : SubtargetFeature<"a53", "ARMProcFamily", "CortexA53",
"Cortex-A53 ARM processors",
[FeatureHWDiv, FeatureHWDivARM,
@@ -261,13 +270,6 @@ def ProcKrait : SubtargetFeature<"krait", "ARMProcFamily", "Krait",
FeatureHWDivARM]>;
-def FeatureAPCS : SubtargetFeature<"apcs", "TargetABI", "ARM_ABI_APCS",
- "Use the APCS ABI">;
-
-def FeatureAAPCS : SubtargetFeature<"aapcs", "TargetABI", "ARM_ABI_AAPCS",
- "Use the AAPCS ABI">;
-
-
class ProcNoItin<string Name, list<SubtargetFeature> Features>
: Processor<Name, NoItineraries, Features>;
@@ -347,12 +349,8 @@ def : ProcessorModel<"cortex-a8", CortexA8Model,
FeatureAClass]>;
def : ProcessorModel<"cortex-a9", CortexA9Model,
[ProcA9, HasV7Ops, FeatureNEON, FeatureDB,
- FeatureDSPThumb2, FeatureHasRAS,
+ FeatureDSPThumb2, FeatureHasRAS, FeatureMP,
FeatureAClass]>;
-def : ProcessorModel<"cortex-a9-mp", CortexA9Model,
- [ProcA9, HasV7Ops, FeatureNEON, FeatureDB,
- FeatureDSPThumb2, FeatureMP,
- FeatureHasRAS, FeatureAClass]>;
// FIXME: A12 has currently the same Schedule model as A9
def : ProcessorModel<"cortex-a12", CortexA9Model,
@@ -366,6 +364,12 @@ def : ProcessorModel<"cortex-a15", CortexA9Model,
FeatureDSPThumb2, FeatureHasRAS,
FeatureAClass]>;
+// FIXME: A17 has currently the same Schedule model as A9
+def : ProcessorModel<"cortex-a17", CortexA9Model,
+ [ProcA17, HasV7Ops, FeatureNEON, FeatureDB,
+ FeatureDSPThumb2, FeatureMP,
+ FeatureHasRAS, FeatureAClass]>;
+
// FIXME: krait has currently the same Schedule model as A9
def : ProcessorModel<"krait", CortexA9Model,
[ProcKrait, HasV7Ops,
@@ -392,6 +396,12 @@ def : ProcNoItin<"cortex-m4", [HasV7Ops,
FeatureT2XtPk, FeatureVFP4,
FeatureVFPOnlySP, FeatureD16,
FeatureMClass]>;
+def : ProcNoItin<"cortex-m7", [HasV7Ops,
+ FeatureThumb2, FeatureNoARM, FeatureDB,
+ FeatureHWDiv, FeatureDSPThumb2,
+ FeatureT2XtPk, FeatureFPARMv8,
+ FeatureD16, FeatureMClass]>;
+
// Swift uArch Processors.
def : ProcessorModel<"swift", SwiftModel,
diff --git a/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp
index 28d2610..b17d4aa 100644
--- a/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.cpp
@@ -76,7 +76,8 @@ void ARMAsmPrinter::EmitFunctionEntryLabel() {
}
void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
- uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
+ uint64_t Size =
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(CV->getType());
assert(Size && "C++ constructor pointer had zero size!");
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
@@ -119,6 +120,23 @@ bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Emit the rest of the function body.
EmitFunctionBody();
+ // If we need V4T thumb mode Register Indirect Jump pads, emit them.
+ // These are created per function, rather than per TU, since it's
+ // relatively easy to exceed the thumb branch range within a TU.
+ if (! ThumbIndirectPads.empty()) {
+ OutStreamer.EmitAssemblerFlag(MCAF_Code16);
+ EmitAlignment(1);
+ for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
+ OutStreamer.EmitLabel(ThumbIndirectPads[i].second);
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
+ .addReg(ThumbIndirectPads[i].first)
+ // Add predicate operands.
+ .addImm(ARMCC::AL)
+ .addReg(0));
+ }
+ ThumbIndirectPads.clear();
+ }
+
// We didn't modify anything.
return false;
}
@@ -136,7 +154,7 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
assert(!MO.getSubReg() && "Subregs should be eliminated!");
if(ARM::GPRPairRegClass.contains(Reg)) {
const MachineFunction &MF = *MI->getParent()->getParent();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Reg = TRI->getSubReg(Reg, ARM::gsub_0);
}
O << ARMInstPrinter::getRegisterName(Reg);
@@ -182,7 +200,7 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
SmallString<60> Name;
raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
@@ -191,7 +209,7 @@ GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
SmallString<60> Name;
raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
@@ -229,7 +247,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
case 'y': // Print a VFP single precision register as indexed double.
if (MI->getOperand(OpNum).isReg()) {
unsigned Reg = MI->getOperand(OpNum).getReg();
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
// Find the 'd' register that has this 's' register as a sub-register,
// and determine the lane number.
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
@@ -261,7 +279,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
// inline asm statement.
O << "{";
if (ARM::GPRPairRegClass.contains(RegBegin)) {
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
@@ -317,7 +335,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
ARM::gsub_0 : ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
@@ -343,7 +361,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned Reg = MI->getOperand(OpNum).getReg();
if (!ARM::QPRRegClass.contains(Reg))
return true;
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
ARM::dsub_0 : ARM::dsub_1);
O << ARMInstPrinter::getRegisterName(SubReg);
@@ -358,7 +376,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
if (!MO.isReg())
return true;
const MachineFunction &MF = *MI->getParent()->getParent();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
unsigned Reg = MO.getReg();
if(!ARM::GPRPairRegClass.contains(Reg))
return false;
@@ -478,6 +496,9 @@ void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
// Emit ARM Build Attributes
if (Subtarget->isTargetELF())
emitAttributes();
+
+ if (!M.getModuleInlineAsm().empty() && Subtarget->isThumb())
+ OutStreamer.EmitAssemblerFlag(MCAF_Code16);
}
static void
@@ -558,7 +579,7 @@ void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
for (auto &stub: Stubs) {
OutStreamer.EmitLabel(stub.first);
@@ -608,6 +629,8 @@ void ARMAsmPrinter::emitAttributes() {
MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
+ ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
+
ATS.switchVendor("aeabi");
std::string CPUString = Subtarget->getCPUString();
@@ -663,7 +686,9 @@ void ARMAsmPrinter::emitAttributes() {
ARMBuildAttrs::AllowNeonARMv8);
} else {
if (Subtarget->hasFPARMv8())
- ATS.emitFPU(ARM::FP_ARMV8);
+ // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
+ // FPU, but there are two different names for it depending on the CPU.
+ ATS.emitFPU(Subtarget->hasD16() ? ARM::FPV5_D16 : ARM::FP_ARMV8);
else if (Subtarget->hasVFP4())
ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4);
else if (Subtarget->hasVFP3())
@@ -688,11 +713,44 @@ void ARMAsmPrinter::emitAttributes() {
// Signal various FP modes.
if (!TM.Options.UnsafeFPMath) {
- ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed);
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
+ ARMBuildAttrs::IEEEDenormals);
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
ARMBuildAttrs::Allowed);
+
+ // If the user has permitted this code to choose the IEEE 754
+ // rounding at run-time, emit the rounding attribute.
+ if (TM.Options.HonorSignDependentRoundingFPMathOption)
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding,
+ ARMBuildAttrs::Allowed);
+ } else {
+ if (!Subtarget->hasVFP2()) {
+ // When the target doesn't have an FPU (by design or
+ // intention), the assumptions made on the software support
+ // mirror that of the equivalent hardware support *if it
+ // existed*. For v7 and better we indicate that denormals are
+ // flushed preserving sign, and for V6 we indicate that
+ // denormals are flushed to positive zero.
+ if (Subtarget->hasV7Ops())
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
+ ARMBuildAttrs::PreserveFPSign);
+ } else if (Subtarget->hasVFP3()) {
+ // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
+ // the sign bit of the zero matches the sign bit of the input or
+ // result that is being flushed to zero.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
+ ARMBuildAttrs::PreserveFPSign);
+ }
+ // For VFPv2 implementations it is implementation defined as
+ // to whether denormals are flushed to positive zero or to
+ // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
+ // LLVM has chosen to flush this to positive zero (most likely for
+ // GCC compatibility), so that's the chosen value here (the
+ // absence of its emission implies zero).
}
+ // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
+ // equivalent of GCC's -ffinite-math-only flag.
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
@@ -700,6 +758,13 @@ void ARMAsmPrinter::emitAttributes() {
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEE754);
+ if (Subtarget->allowsUnalignedMem())
+ ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
+ ARMBuildAttrs::Allowed);
+ else
+ ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
+ ARMBuildAttrs::Not_Allowed);
+
// FIXME: add more flags to ARMBuildAttributes.h
// 8-bytes alignment stuff.
ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
@@ -719,6 +784,13 @@ void ARMAsmPrinter::emitAttributes() {
if (Subtarget->hasFP16())
ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
+ // FIXME: To support emitting this build attribute as GCC does, the
+ // -mfp16-format option and associated plumbing must be
+ // supported. For now the __fp16 type is exposed by default, so this
+ // attribute should be emitted with value 1.
+ ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
+ ARMBuildAttrs::FP16FormatIEEE);
+
if (Subtarget->hasMPExtension())
ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
@@ -735,7 +807,7 @@ void ARMAsmPrinter::emitAttributes() {
if (const Module *SourceModule = MMI->getModule()) {
// ABI_PCS_wchar_t to indicate wchar_t width
// FIXME: There is no way to emit value 0 (wchar_t prohibited).
- if (auto WCharWidthValue = cast_or_null<ConstantInt>(
+ if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("wchar_size"))) {
int WCharWidth = WCharWidthValue->getZExtValue();
assert((WCharWidth == 2 || WCharWidth == 4) &&
@@ -746,7 +818,7 @@ void ARMAsmPrinter::emitAttributes() {
// ABI_enum_size to indicate enum width
// FIXME: There is no way to emit value 0 (enums prohibited) or value 3
// (all enums contain a value needing 32 bits to encode).
- if (auto EnumWidthValue = cast_or_null<ConstantInt>(
+ if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("min_enum_size"))) {
int EnumWidth = EnumWidthValue->getZExtValue();
assert((EnumWidth == 1 || EnumWidth == 4) &&
@@ -757,6 +829,17 @@ void ARMAsmPrinter::emitAttributes() {
}
}
+ // TODO: We currently only support either reserving the register, or treating
+ // it as another callee-saved register, but not as SB or a TLS pointer; It
+ // would instead be nicer to push this from the frontend as metadata, as we do
+ // for the wchar and enum size tags
+ if (Subtarget->isR9Reserved())
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
+ ARMBuildAttrs::R9Reserved);
+ else
+ ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
+ ARMBuildAttrs::R9IsGPR);
+
if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization())
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowTZVirtualization);
@@ -834,8 +917,9 @@ MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
- const DataLayout *DL = TM.getDataLayout();
- int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
+ int Size =
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
@@ -1013,7 +1097,7 @@ void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
MCTargetStreamer &TS = *OutStreamer.getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
const MachineFunction &MF = *MI->getParent()->getParent();
- const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
@@ -1151,7 +1235,7 @@ void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
#include "ARMGenMCPseudoLowering.inc"
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
// If we just ended a constant pool, mark it as such.
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
@@ -1226,18 +1310,34 @@ void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case ARM::tBX_CALL: {
- EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr)
- .addReg(ARM::LR)
- .addReg(ARM::PC)
- // Add predicate operands.
- .addImm(ARMCC::AL)
- .addReg(0));
+ if (Subtarget->hasV5TOps())
+ llvm_unreachable("Expected BLX to be selected for v5t+");
+
+ // On ARM v4t, when doing a call from thumb mode, we need to ensure
+ // that the saved lr has its LSB set correctly (the arch doesn't
+ // have blx).
+ // So here we generate a bl to a small jump pad that does bx rN.
+ // The jump pads are emitted after the function body.
+
+ unsigned TReg = MI->getOperand(0).getReg();
+ MCSymbol *TRegSym = nullptr;
+ for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
+ if (ThumbIndirectPads[i].first == TReg) {
+ TRegSym = ThumbIndirectPads[i].second;
+ break;
+ }
+ }
- EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX)
- .addReg(MI->getOperand(0).getReg())
- // Add predicate operands.
- .addImm(ARMCC::AL)
- .addReg(0));
+ if (!TRegSym) {
+ TRegSym = OutContext.CreateTempSymbol();
+ ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
+ }
+
+ // Create a link-saving branch to the Reg Indirect Jump Pad.
+ EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBL)
+ // Predicate comes first here.
+ .addImm(ARMCC::AL).addReg(0)
+ .addExpr(MCSymbolRefExpr::Create(TRegSym, OutContext)));
return;
}
case ARM::BMOVPCRX_CALL: {
@@ -1567,6 +1667,9 @@ void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
EmitJumpTable(MI);
return;
}
+ case ARM::SPACE:
+ OutStreamer.EmitZeros(MI->getOperand(1).getImm());
+ return;
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
diff --git a/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h
index 7c103c6..a621491 100644
--- a/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h
+++ b/contrib/llvm/lib/Target/ARM/ARMAsmPrinter.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMASMPRINTER_H
-#define ARMASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMASMPRINTER_H
+#define LLVM_LIB_TARGET_ARM_ARMASMPRINTER_H
#include "ARMSubtarget.h"
#include "llvm/CodeGen/AsmPrinter.h"
@@ -20,6 +20,7 @@ class ARMFunctionInfo;
class MCOperand;
class MachineConstantPool;
class MachineOperand;
+class MCSymbol;
namespace ARM {
enum DW_ISA {
@@ -45,6 +46,11 @@ class LLVM_LIBRARY_VISIBILITY ARMAsmPrinter : public AsmPrinter {
/// InConstantPool - Maintain state when emitting a sequence of constant
/// pool entries so we can properly mark them as data regions.
bool InConstantPool;
+
+ /// ThumbIndirectPads - These maintain a per-function list of jump pad
+ /// labels used for ARMv4t thumb code to make register indirect calls.
+ SmallVector<std::pair<unsigned, MCSymbol*>, 4> ThumbIndirectPads;
+
public:
explicit ARMAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer), AFI(nullptr), MCP(nullptr),
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
index 0288db9..e0397cc 100644
--- a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -108,7 +108,7 @@ ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const {
if (usePreRAHazardRecognizer()) {
const InstrItineraryData *II =
- &static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
+ static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
}
return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
@@ -518,6 +518,42 @@ bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
return Found;
}
+static bool isCPSRDefined(const MachineInstr *MI) {
+ for (const auto &MO : MI->operands())
+ if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef())
+ return true;
+ return false;
+}
+
+static bool isEligibleForITBlock(const MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return true;
+ case ARM::tADC: // ADC (register) T1
+ case ARM::tADDi3: // ADD (immediate) T1
+ case ARM::tADDi8: // ADD (immediate) T2
+ case ARM::tADDrr: // ADD (register) T1
+ case ARM::tAND: // AND (register) T1
+ case ARM::tASRri: // ASR (immediate) T1
+ case ARM::tASRrr: // ASR (register) T1
+ case ARM::tBIC: // BIC (register) T1
+ case ARM::tEOR: // EOR (register) T1
+ case ARM::tLSLri: // LSL (immediate) T1
+ case ARM::tLSLrr: // LSL (register) T1
+ case ARM::tLSRri: // LSR (immediate) T1
+ case ARM::tLSRrr: // LSR (register) T1
+ case ARM::tMUL: // MUL T1
+ case ARM::tMVN: // MVN (register) T1
+ case ARM::tORR: // ORR (register) T1
+ case ARM::tROR: // ROR (register) T1
+ case ARM::tRSB: // RSB (immediate) T1
+ case ARM::tSBC: // SBC (register) T1
+ case ARM::tSUBi3: // SUB (immediate) T1
+ case ARM::tSUBi8: // SUB (immediate) T2
+ case ARM::tSUBrr: // SUB (register) T1
+ return !isCPSRDefined(MI);
+ }
+}
+
/// isPredicable - Return true if the specified instruction can be predicated.
/// By default, this returns true for every instruction with a
/// PredicateOperand.
@@ -525,6 +561,9 @@ bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
if (!MI->isPredicable())
return false;
+ if (!isEligibleForITBlock(MI))
+ return false;
+
ARMFunctionInfo *AFI =
MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
@@ -555,16 +594,6 @@ template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
}
}
-/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
-LLVM_ATTRIBUTE_NOINLINE
-static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
- unsigned JTI);
-static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
- unsigned JTI) {
- assert(JTI < JT.size());
- return JT[JTI].MBBs.size();
-}
-
/// GetInstSize - Return the size of the specified MachineInstr.
///
unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
@@ -637,7 +666,7 @@ unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
// bytes, we can use 16-bit entries instead. Then there won't be an
// alignment issue.
unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
- unsigned NumEntries = getNumJTEntries(JT, JTI);
+ unsigned NumEntries = JT[JTI].MBBs.size();
if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction
@@ -645,6 +674,8 @@ unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
++NumEntries;
return NumEntries * EntrySize + InstSize;
}
+ case ARM::SPACE:
+ return MI->getOperand(1).getImm();
}
}
@@ -659,6 +690,49 @@ unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
return Size;
}
+void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const {
+ unsigned Opc = Subtarget.isThumb()
+ ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
+ : ARM::MRS;
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
+
+ // There is only 1 A/R class MRS instruction, and it always refers to
+ // APSR. However, there are lots of other possibilities on M-class cores.
+ if (Subtarget.isMClass())
+ MIB.addImm(0x800);
+
+ AddDefaultPred(MIB);
+
+ MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
+}
+
+void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const {
+ unsigned Opc = Subtarget.isThumb()
+ ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
+ : ARM::MSR;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
+
+ if (Subtarget.isMClass())
+ MIB.addImm(0x800);
+ else
+ MIB.addImm(8);
+
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+
+ AddDefaultPred(MIB);
+
+ MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
+}
+
void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
@@ -682,7 +756,7 @@ void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
Opc = ARM::VMOVRS;
else if (SPRDest && GPRSrc)
Opc = ARM::VMOVSR;
- else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
+ else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
Opc = ARM::VMOVD;
else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
Opc = ARM::VORRq;
@@ -742,6 +816,16 @@ void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
BeginIdx = ARM::dsub_0;
SubRegs = 4;
Spacing = 2;
+ } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
+ Opc = ARM::VMOVS;
+ BeginIdx = ARM::ssub_0;
+ SubRegs = 2;
+ } else if (SrcReg == ARM::CPSR) {
+ copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
+ return;
+ } else if (DestReg == ARM::CPSR) {
+ copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
+ return;
}
assert(Opc && "Impossible reg-to-reg copy");
@@ -1174,12 +1258,26 @@ unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
}
-bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
+bool
+ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ Reloc::Model RM = MF.getTarget().getRelocationModel();
+
+ if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
+ assert(getSubtarget().getTargetTriple().getObjectFormat() ==
+ Triple::MachO &&
+ "LOAD_STACK_GUARD currently supported only for MachO.");
+ expandLoadStackGuard(MI, RM);
+ MI->getParent()->erase(MI);
+ return true;
+ }
+
// This hook gets to expand COPY instructions before they become
// copyPhysReg() calls. Look for VMOVS instructions that can legally be
// widened to VMOVD. We prefer the VMOVD when possible because it may be
// changed into a VORR that can go down the NEON pipeline.
- if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
+ if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() ||
+ Subtarget.isFPOnlySP())
return false;
// Look for a copy between even S-registers. That is where we keep floats
@@ -1738,8 +1836,10 @@ bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
return false;
}
-MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
- bool PreferFalse) const {
+MachineInstr *
+ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
+ SmallPtrSetImpl<MachineInstr *> &SeenMIs,
+ bool PreferFalse) const {
assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
"Unknown select instruction");
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
@@ -1787,6 +1887,10 @@ MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
NewMI.addOperand(FalseReg);
NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
+ // Update SeenMIs set: register newly created MI and erase removed DefMI.
+ SeenMIs.insert(NewMI);
+ SeenMIs.erase(DefMI);
+
// The caller will erase MI, but not DefMI.
DefMI->eraseFromParent();
return NewMI;
@@ -2832,7 +2936,7 @@ static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
// FIXME: The current MachineInstr design does not support relying on machine
// mem operands to determine the width of a memory access. Instead, we expect
// the target to provide this information based on the instruction opcode and
-// operands. However, using MachineMemOperand is a the best solution now for
+// operands. However, using MachineMemOperand is the best solution now for
// two reasons:
//
// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
@@ -3933,6 +4037,38 @@ bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
return true;
}
+// LoadStackGuard has so far only been implemented for MachO. Different code
+// sequence is needed for other targets.
+void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
+ unsigned LoadImmOpc,
+ unsigned LoadOpc,
+ Reloc::Model RM) const {
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Reg = MI->getOperand(0).getReg();
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MI->memoperands_begin())->getValue());
+ MachineInstrBuilder MIB;
+
+ BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
+ .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
+
+ if (Subtarget.GVIsIndirectSymbol(GV, RM)) {
+ MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
+ MIB.addReg(Reg, RegState::Kill).addImm(0);
+ unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+ MachineMemOperand *MMO = MBB.getParent()->
+ getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 4, 4);
+ MIB.addMemOperand(MMO);
+ AddDefaultPred(MIB);
+ }
+
+ MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
+ MIB.addReg(Reg, RegState::Kill).addImm(0);
+ MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ AddDefaultPred(MIB);
+}
+
bool
ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
unsigned &AddSubOpc,
@@ -4361,29 +4497,6 @@ breakPartialRegDependency(MachineBasicBlock::iterator MI,
MI->addRegisterKilled(DReg, TRI, true);
}
-void ARMBaseInstrInfo::getUnconditionalBranch(
- MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
- if (Subtarget.isThumb())
- Branch.setOpcode(ARM::tB);
- else if (Subtarget.isThumb2())
- Branch.setOpcode(ARM::t2B);
- else
- Branch.setOpcode(ARM::Bcc);
-
- Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
- Branch.addOperand(MCOperand::CreateImm(ARMCC::AL));
- Branch.addOperand(MCOperand::CreateReg(0));
-}
-
-void ARMBaseInstrInfo::getTrap(MCInst &MI) const {
- if (Subtarget.isThumb())
- MI.setOpcode(ARM::tTRAP);
- else if (Subtarget.useNaClTrap())
- MI.setOpcode(ARM::TRAPNaCl);
- else
- MI.setOpcode(ARM::TRAP);
-}
-
bool ARMBaseInstrInfo::hasNOP() const {
return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
}
@@ -4401,3 +4514,72 @@ bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
return false;
}
+
+bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VMOVDRR:
+ // dX = VMOVDRR rY, rZ
+ // is the same as:
+ // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
+ // Populate the InputRegs accordingly.
+ // rY
+ const MachineOperand *MOReg = &MI.getOperand(1);
+ InputRegs.push_back(
+ RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
+ // rZ
+ MOReg = &MI.getOperand(2);
+ InputRegs.push_back(
+ RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPairAndIdx &InputReg) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VMOVRRD:
+ // rX, rY = VMOVRRD dZ
+ // is the same as:
+ // rX = EXTRACT_SUBREG dZ, ssub_0
+ // rY = EXTRACT_SUBREG dZ, ssub_1
+ const MachineOperand &MOReg = MI.getOperand(2);
+ InputReg.Reg = MOReg.getReg();
+ InputReg.SubReg = MOReg.getSubReg();
+ InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
+ RegSubRegPairAndIdx &InsertedReg) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VSETLNi32:
+ // dX = VSETLNi32 dY, rZ, imm
+ const MachineOperand &MOBaseReg = MI.getOperand(1);
+ const MachineOperand &MOInsertedReg = MI.getOperand(2);
+ const MachineOperand &MOIndex = MI.getOperand(3);
+ BaseReg.Reg = MOBaseReg.getReg();
+ BaseReg.SubReg = MOBaseReg.getSubReg();
+
+ InsertedReg.Reg = MOInsertedReg.getReg();
+ InsertedReg.SubReg = MOInsertedReg.getSubReg();
+ InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h
index b8d6758..ecbcf5c 100644
--- a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.h
@@ -11,13 +11,14 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMBASEINSTRUCTIONINFO_H
-#define ARMBASEINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H
+#define LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetInstrInfo.h"
#define GET_INSTRINFO_HEADER
@@ -34,6 +35,57 @@ protected:
// Can be only subclassed.
explicit ARMBaseInstrInfo(const ARMSubtarget &STI);
+ void expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
+ unsigned LoadImmOpc, unsigned LoadOpc,
+ Reloc::Model RM) const;
+
+ /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
+ /// and \p DefIdx.
+ /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
+ /// the list is modeled as <Reg:SubReg, SubIdx>.
+ /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
+ /// two elements:
+ /// - vreg1:sub1, sub0
+ /// - vreg2<:0>, sub1
+ ///
+ /// \returns true if it is possible to build such an input sequence
+ /// with the pair \p MI, \p DefIdx. False otherwise.
+ ///
+ /// \pre MI.isRegSequenceLike().
+ bool getRegSequenceLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const override;
+
+ /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
+ /// and \p DefIdx.
+ /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
+ /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
+ /// - vreg1:sub1, sub0
+ ///
+ /// \returns true if it is possible to build such an input sequence
+ /// with the pair \p MI, \p DefIdx. False otherwise.
+ ///
+ /// \pre MI.isExtractSubregLike().
+ bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPairAndIdx &InputReg) const override;
+
+ /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
+ /// and \p DefIdx.
+ /// \p [out] BaseReg and \p [out] InsertedReg contain
+ /// the equivalent inputs of INSERT_SUBREG.
+ /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
+ /// - BaseReg: vreg0:sub0
+ /// - InsertedReg: vreg1:sub1, sub3
+ ///
+ /// \returns true if it is possible to build such an input sequence
+ /// with the pair \p MI, \p DefIdx. False otherwise.
+ ///
+ /// \pre MI.isInsertSubregLike().
+ bool
+ getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPair &BaseReg,
+ RegSubRegPairAndIdx &InsertedReg) const override;
+
public:
// Return whether the target has an explicit NOP encoding.
bool hasNOP() const;
@@ -104,6 +156,13 @@ public:
unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const override;
+ void copyToCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const;
+ void copyFromCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const;
+
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL, unsigned DestReg, unsigned SrcReg,
bool KillSrc) const override;
@@ -202,7 +261,9 @@ public:
unsigned &TrueOp, unsigned &FalseOp,
bool &Optimizable) const override;
- MachineInstr *optimizeSelect(MachineInstr *MI, bool) const override;
+ MachineInstr *optimizeSelect(MachineInstr *MI,
+ SmallPtrSetImpl<MachineInstr *> &SeenMIs,
+ bool) const override;
/// FoldImmediate - 'Reg' is known to be defined by a move immediate
/// instruction, try to fold the immediate into the use instruction.
@@ -230,12 +291,6 @@ public:
void breakPartialRegDependency(MachineBasicBlock::iterator, unsigned,
const TargetRegisterInfo *TRI) const override;
- void
- getUnconditionalBranch(MCInst &Branch,
- const MCSymbolRefExpr *BranchTarget) const override;
-
- void getTrap(MCInst &MI) const override;
-
/// Get the number of addresses by LDM or VLDM or zero for unknown.
unsigned getNumLDMAddresses(const MachineInstr *MI) const;
@@ -286,6 +341,9 @@ private:
bool verifyInstruction(const MachineInstr *MI,
StringRef &ErrInfo) const override;
+ virtual void expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const = 0;
+
private:
/// Modeling special VFP / NEON fp MLA / MLS hazards.
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp
index 32b5f4a..8744f1c 100644
--- a/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.cpp
@@ -60,9 +60,8 @@ ARMBaseRegisterInfo::ARMBaseRegisterInfo(const ARMSubtarget &sti)
const MCPhysReg*
ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
- const MCPhysReg *RegList = (STI.isTargetIOS() && !STI.isAAPCS_ABI())
- ? CSR_iOS_SaveList
- : CSR_AAPCS_SaveList;
+ const MCPhysReg *RegList =
+ STI.isTargetDarwin() ? CSR_iOS_SaveList : CSR_AAPCS_SaveList;
if (!MF) return RegList;
@@ -95,8 +94,7 @@ ARMBaseRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
if (CC == CallingConv::GHC)
// This is academic becase all GHC calls are (supposed to be) tail calls
return CSR_NoRegs_RegMask;
- return (STI.isTargetIOS() && !STI.isAAPCS_ABI())
- ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
+ return STI.isTargetDarwin() ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
}
const uint32_t*
@@ -117,13 +115,13 @@ ARMBaseRegisterInfo::getThisReturnPreservedMask(CallingConv::ID CC) const {
if (CC == CallingConv::GHC)
// This is academic becase all GHC calls are (supposed to be) tail calls
return nullptr;
- return (STI.isTargetIOS() && !STI.isAAPCS_ABI())
- ? CSR_iOS_ThisReturn_RegMask : CSR_AAPCS_ThisReturn_RegMask;
+ return STI.isTargetDarwin() ? CSR_iOS_ThisReturn_RegMask
+ : CSR_AAPCS_ThisReturn_RegMask;
}
BitVector ARMBaseRegisterInfo::
getReservedRegs(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
// FIXME: avoid re-calculating this every time.
BitVector Reserved(getNumRegs());
@@ -182,14 +180,14 @@ ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind
const TargetRegisterClass *
ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &ARM::CCRRegClass)
- return nullptr; // Can't copy CCR registers.
+ return &ARM::rGPRRegClass; // Can't copy CCR registers.
return RC;
}
unsigned
ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
switch (RC->getID()) {
default:
@@ -311,7 +309,7 @@ ARMBaseRegisterInfo::avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
// When outgoing call frames are so large that we adjust the stack pointer
// around the call, we can no longer use the stack pointer to reach the
@@ -356,7 +354,10 @@ bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
return false;
// We may also need a base pointer if there are dynamic allocas or stack
// pointer adjustments around calls.
- if (MF.getTarget().getFrameLowering()->hasReservedCallFrame(MF))
+ if (MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->hasReservedCallFrame(MF))
return true;
// A base pointer is required and allowed. Check that it isn't too late to
// reserve it.
@@ -367,7 +368,10 @@ bool ARMBaseRegisterInfo::
needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
- unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned StackAlign = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
bool requiresRealignment =
((MFI->getMaxAlignment() > StackAlign) ||
F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
@@ -387,7 +391,7 @@ cannotEliminateFrame(const MachineFunction &MF) const {
unsigned
ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (TFI->hasFP(MF))
return FramePtr;
@@ -404,7 +408,7 @@ emitLoadConstPool(MachineBasicBlock &MBB,
ARMCC::CondCodes Pred,
unsigned PredReg, unsigned MIFlags) const {
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineConstantPool *ConstantPool = MF.getConstantPool();
const Constant *C =
ConstantInt::get(Type::getInt32Ty(MF.getFunction()->getContext()), Val);
@@ -417,11 +421,6 @@ emitLoadConstPool(MachineBasicBlock &MBB,
.setMIFlags(MIFlags);
}
-bool ARMBaseRegisterInfo::mayOverrideLocalAssignment() const {
- // The native linux build hits a downstream codegen bug when this is enabled.
- return STI.isTargetDarwin();
-}
-
bool ARMBaseRegisterInfo::
requiresRegisterScavenging(const MachineFunction &MF) const {
return true;
@@ -531,7 +530,7 @@ needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
// Note that the incoming offset is based on the SP value at function entry,
// so it'll be negative.
MachineFunction &MF = *MI->getParent()->getParent();
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
@@ -584,7 +583,7 @@ materializeFrameBaseRegister(MachineBasicBlock *MBB,
int64_t Offset) const {
ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
- (AFI->isThumb1OnlyFunction() ? ARM::tADDrSPi : ARM::t2ADDri);
+ (AFI->isThumb1OnlyFunction() ? ARM::tADDframe : ARM::t2ADDri);
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
@@ -593,15 +592,15 @@ materializeFrameBaseRegister(MachineBasicBlock *MBB,
const MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
- MachineInstrBuilder MIB = AddDefaultPred(BuildMI(*MBB, Ins, DL, MCID, BaseReg)
- .addFrameIndex(FrameIdx).addImm(Offset));
+ MachineInstrBuilder MIB = BuildMI(*MBB, Ins, DL, MCID, BaseReg)
+ .addFrameIndex(FrameIdx).addImm(Offset);
if (!AFI->isThumb1OnlyFunction())
- AddDefaultCC(MIB);
+ AddDefaultCC(AddDefaultPred(MIB));
}
void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
@@ -609,7 +608,7 @@ void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Off = Offset; // ARM doesn't need the general 64-bit offsets
unsigned i = 0;
@@ -708,9 +707,9 @@ ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
- const ARMFrameLowering *TFI =
- static_cast<const ARMFrameLowering*>(MF.getTarget().getFrameLowering());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const ARMFrameLowering *TFI = static_cast<const ARMFrameLowering *>(
+ MF.getSubtarget().getFrameLowering());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateFrameIndex does not support Thumb1!");
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h
index 833d3f2..e9bc412 100644
--- a/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseRegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMBASEREGISTERINFO_H
-#define ARMBASEREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMBASEREGISTERINFO_H
+#define LLVM_LIB_TARGET_ARM_ARMBASEREGISTERINFO_H
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -174,8 +174,6 @@ public:
unsigned MIFlags = MachineInstr::NoFlags)const;
/// Code Generation virtual methods...
- bool mayOverrideLocalAssignment() const override;
-
bool requiresRegisterScavenging(const MachineFunction &MF) const override;
bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const override;
diff --git a/contrib/llvm/lib/Target/ARM/ARMCallingConv.h b/contrib/llvm/lib/Target/ARM/ARMCallingConv.h
index dc41c1c..e0d0559 100644
--- a/contrib/llvm/lib/Target/ARM/ARMCallingConv.h
+++ b/contrib/llvm/lib/Target/ARM/ARMCallingConv.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMCALLINGCONV_H
-#define ARMCALLINGCONV_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H
+#define LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
@@ -177,8 +177,9 @@ static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
SmallVectorImpl<CCValAssign> &PendingHAMembers = State.getPendingLocs();
+
// AAPCS HFAs must have 1-4 elements, all of the same type
- assert(PendingHAMembers.size() < 8);
+ assert(PendingHAMembers.size() < 4);
if (PendingHAMembers.size() > 0)
assert(PendingHAMembers[0].getLocVT() == LocVT);
@@ -188,26 +189,21 @@ static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
if (ArgFlags.isInConsecutiveRegsLast()) {
- assert(PendingHAMembers.size() > 0 && PendingHAMembers.size() <= 8 &&
+ assert(PendingHAMembers.size() > 0 && PendingHAMembers.size() <= 4 &&
"Homogeneous aggregates must have between 1 and 4 members");
// Try to allocate a contiguous block of registers, each of the correct
// size to hold one member.
- const uint16_t *RegList;
- unsigned NumRegs;
+ ArrayRef<uint16_t> RegList;
switch (LocVT.SimpleTy) {
- case MVT::i32:
case MVT::f32:
RegList = SRegList;
- NumRegs = 16;
break;
case MVT::f64:
RegList = DRegList;
- NumRegs = 8;
break;
case MVT::v2f64:
RegList = QRegList;
- NumRegs = 4;
break;
default:
llvm_unreachable("Unexpected member type for HA");
@@ -215,7 +211,7 @@ static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
}
unsigned RegResult =
- State.AllocateRegBlock(RegList, NumRegs, PendingHAMembers.size());
+ State.AllocateRegBlock(RegList, PendingHAMembers.size());
if (RegResult) {
for (SmallVectorImpl<CCValAssign>::iterator It = PendingHAMembers.begin();
@@ -235,20 +231,11 @@ static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
State.AllocateReg(SRegList[regNo]);
unsigned Size = LocVT.getSizeInBits() / 8;
- unsigned Align = Size;
-
- if (LocVT.SimpleTy == MVT::v2f64 || LocVT.SimpleTy == MVT::i32) {
- // Vectors are always aligned to 8 bytes. If we've seen an i32 here
- // it's because it's been split from a larger type, also with align 8.
- Align = 8;
- }
+ unsigned Align = std::min(Size, 8U);
for (auto It : PendingHAMembers) {
It.convertToMem(State.AllocateStack(Size, Align));
State.addLoc(It);
-
- // Only the first member needs to be aligned.
- Align = 1;
}
// All pending members have now been allocated
diff --git a/contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp b/contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp
deleted file mode 100644
index 5fb6ebfe..0000000
--- a/contrib/llvm/lib/Target/ARM/ARMCodeEmitter.cpp
+++ /dev/null
@@ -1,1909 +0,0 @@
-//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the pass that transforms the ARM machine instructions into
-// relocatable machine code.
-//
-//===----------------------------------------------------------------------===//
-
-#include "ARM.h"
-#include "ARMBaseInstrInfo.h"
-#include "ARMConstantPoolValue.h"
-#include "ARMMachineFunctionInfo.h"
-#include "ARMRelocations.h"
-#include "ARMSubtarget.h"
-#include "ARMTargetMachine.h"
-#include "MCTargetDesc/ARMAddressingModes.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#ifndef NDEBUG
-#include <iomanip>
-#endif
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-STATISTIC(NumEmitted, "Number of machine instructions emitted");
-
-namespace {
-
- class ARMCodeEmitter : public MachineFunctionPass {
- ARMJITInfo *JTI;
- const ARMBaseInstrInfo *II;
- const DataLayout *TD;
- const ARMSubtarget *Subtarget;
- TargetMachine &TM;
- JITCodeEmitter &MCE;
- MachineModuleInfo *MMI;
- const std::vector<MachineConstantPoolEntry> *MCPEs;
- const std::vector<MachineJumpTableEntry> *MJTEs;
- bool IsPIC;
- bool IsThumb;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- static char ID;
- public:
- ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
- : MachineFunctionPass(ID), JTI(nullptr),
- II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
- TD(tm.getDataLayout()), TM(tm),
- MCE(mce), MCPEs(nullptr), MJTEs(nullptr),
- IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
-
- /// getBinaryCodeForInstr - This function, generated by the
- /// CodeEmitterGenerator using TableGen, produces the binary encoding for
- /// machine instructions.
- uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
-
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- const char *getPassName() const override {
- return "ARM Machine Code Emitter";
- }
-
- void emitInstruction(const MachineInstr &MI);
-
- private:
-
- void emitWordLE(unsigned Binary);
- void emitDWordLE(uint64_t Binary);
- void emitConstPoolInstruction(const MachineInstr &MI);
- void emitMOVi32immInstruction(const MachineInstr &MI);
- void emitMOVi2piecesInstruction(const MachineInstr &MI);
- void emitLEApcrelJTInstruction(const MachineInstr &MI);
- void emitPseudoMoveInstruction(const MachineInstr &MI);
- void addPCLabel(unsigned LabelID);
- void emitPseudoInstruction(const MachineInstr &MI);
- unsigned getMachineSoRegOpValue(const MachineInstr &MI,
- const MCInstrDesc &MCID,
- const MachineOperand &MO,
- unsigned OpIdx);
-
- unsigned getMachineSoImmOpValue(unsigned SoImm);
- unsigned getAddrModeSBit(const MachineInstr &MI,
- const MCInstrDesc &MCID) const;
-
- void emitDataProcessingInstruction(const MachineInstr &MI,
- unsigned ImplicitRd = 0,
- unsigned ImplicitRn = 0);
-
- void emitLoadStoreInstruction(const MachineInstr &MI,
- unsigned ImplicitRd = 0,
- unsigned ImplicitRn = 0);
-
- void emitMiscLoadStoreInstruction(const MachineInstr &MI,
- unsigned ImplicitRn = 0);
-
- void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
-
- void emitMulFrmInstruction(const MachineInstr &MI);
-
- void emitExtendInstruction(const MachineInstr &MI);
-
- void emitMiscArithInstruction(const MachineInstr &MI);
-
- void emitSaturateInstruction(const MachineInstr &MI);
-
- void emitBranchInstruction(const MachineInstr &MI);
-
- void emitInlineJumpTable(unsigned JTIndex);
-
- void emitMiscBranchInstruction(const MachineInstr &MI);
-
- void emitVFPArithInstruction(const MachineInstr &MI);
-
- void emitVFPConversionInstruction(const MachineInstr &MI);
-
- void emitVFPLoadStoreInstruction(const MachineInstr &MI);
-
- void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
-
- void emitNEONLaneInstruction(const MachineInstr &MI);
- void emitNEONDupInstruction(const MachineInstr &MI);
- void emitNEON1RegModImmInstruction(const MachineInstr &MI);
- void emitNEON2RegInstruction(const MachineInstr &MI);
- void emitNEON3RegInstruction(const MachineInstr &MI);
-
- /// getMachineOpValue - Return binary encoding of operand. If the machine
- /// operand requires relocation, record the relocation and return zero.
- unsigned getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const;
- unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
- return getMachineOpValue(MI, MI.getOperand(OpIdx));
- }
-
- // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
- // TableGen'erated getBinaryCodeForInstr() function to encode any
- // operand values, instead querying getMachineOpValue() directly for
- // each operand it needs to encode. Thus, any of the new encoder
- // helper functions can simply return 0 as the values the return
- // are already handled elsewhere. They are placeholders to allow this
- // encoder to continue to function until the MC encoder is sufficiently
- // far along that this one can be eliminated entirely.
- unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
- const { return 0; }
- unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
- const { return 0; }
- unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
- const { return 0; }
- unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
- const { return 0; }
- unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
- const { return 0; }
- unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
- unsigned Op) const { return 0; }
- unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
- const { return 0; }
- unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
- unsigned Op)
- const { return 0; }
- unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
- unsigned Op) const { return 0; }
- uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
- const { return 0; }
-
- unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
- const {
- // {17-13} = reg
- // {12} = (U)nsigned (add == '1', sub == '0')
- // {11-0} = imm12
- const MachineOperand &MO = MI.getOperand(Op);
- const MachineOperand &MO1 = MI.getOperand(Op + 1);
- if (!MO.isReg()) {
- emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
- return 0;
- }
- unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
- int32_t Imm12 = MO1.getImm();
- uint32_t Binary;
- Binary = Imm12 & 0xfff;
- if (Imm12 >= 0)
- Binary |= (1 << 12);
- Binary |= (Reg << 13);
- return Binary;
- }
-
- unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
- return 0;
- }
-
- uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
- const { return 0;}
- uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
- const { return 0;}
- uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
- const { return 0;}
- uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
- // {17-13} = reg
- // {12} = (U)nsigned (add == '1', sub == '0')
- // {11-0} = imm12
- const MachineOperand &MO = MI.getOperand(Op);
- const MachineOperand &MO1 = MI.getOperand(Op + 1);
- if (!MO.isReg()) {
- emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
- return 0;
- }
- unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
- int32_t Imm12 = MO1.getImm();
-
- // Special value for #-0
- if (Imm12 == INT32_MIN)
- Imm12 = 0;
-
- // Immediate is always encoded as positive. The 'U' bit controls add vs
- // sub.
- bool isAdd = true;
- if (Imm12 < 0) {
- Imm12 = -Imm12;
- isAdd = false;
- }
-
- uint32_t Binary = Imm12 & 0xfff;
- if (isAdd)
- Binary |= (1 << 12);
- Binary |= (Reg << 13);
- return Binary;
- }
- unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
-
- unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
- const { return 0; }
-
- unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
- const { return 0; }
- unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
- const { return 0; }
-
- /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
- /// machine operand requires relocation, record the relocation and return
- /// zero.
- unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
- unsigned Reloc);
-
- /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
- ///
- unsigned getShiftOp(unsigned Imm) const ;
-
- /// Routines that handle operands which add machine relocations which are
- /// fixed up by the relocation stage.
- void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
- bool MayNeedFarStub, bool Indirect,
- intptr_t ACPV = 0) const;
- void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
- void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
- void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
- void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
- intptr_t JTBase = 0) const;
- unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
- unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
- unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
- unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
- unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
- unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
- };
-}
-
-char ARMCodeEmitter::ID = 0;
-
-/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
-/// code to the specified MCE object.
-FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
- JITCodeEmitter &JCE) {
- return new ARMCodeEmitter(TM, JCE);
-}
-
-bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
- TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
-
- assert((Target.getRelocationModel() != Reloc::Default ||
- Target.getRelocationModel() != Reloc::Static) &&
- "JIT relocation model must be set to static or default!");
-
- JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
- II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
- TD = Target.getDataLayout();
-
- Subtarget = &TM.getSubtarget<ARMSubtarget>();
- MCPEs = &MF.getConstantPool()->getConstants();
- MJTEs = nullptr;
- if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
- IsPIC = TM.getRelocationModel() == Reloc::PIC_;
- IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
- JTI->Initialize(MF, IsPIC);
- MMI = &getAnalysis<MachineModuleInfo>();
- MCE.setModuleInfo(MMI);
-
- do {
- DEBUG(errs() << "JITTing function '"
- << MF.getName() << "'\n");
- MCE.startFunction(MF);
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
- MBB != E; ++MBB) {
- MCE.StartMachineBasicBlock(MBB);
- for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
- I != E; ++I)
- emitInstruction(*I);
- }
- } while (MCE.finishFunction(MF));
-
- return false;
-}
-
-/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
-///
-unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
- switch (ARM_AM::getAM2ShiftOpc(Imm)) {
- default: llvm_unreachable("Unknown shift opc!");
- case ARM_AM::asr: return 2;
- case ARM_AM::lsl: return 0;
- case ARM_AM::lsr: return 1;
- case ARM_AM::ror:
- case ARM_AM::rrx: return 3;
- }
-}
-
-/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
-/// machine operand requires relocation, record the relocation and return zero.
-unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
- const MachineOperand &MO,
- unsigned Reloc) {
- assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
- && "Relocation to this function should be for movt or movw");
-
- if (MO.isImm())
- return static_cast<unsigned>(MO.getImm());
- else if (MO.isGlobal())
- emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
- else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
- else if (MO.isMBB())
- emitMachineBasicBlock(MO.getMBB(), Reloc);
- else {
-#ifndef NDEBUG
- errs() << MO;
-#endif
- llvm_unreachable("Unsupported operand type for movw/movt");
- }
- return 0;
-}
-
-/// getMachineOpValue - Return binary encoding of operand. If the machine
-/// operand requires relocation, record the relocation and return zero.
-unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const {
- if (MO.isReg())
- return II->getRegisterInfo().getEncodingValue(MO.getReg());
- else if (MO.isImm())
- return static_cast<unsigned>(MO.getImm());
- else if (MO.isGlobal())
- emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
- else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
- else if (MO.isCPI()) {
- const MCInstrDesc &MCID = MI.getDesc();
- // For VFP load, the immediate offset is multiplied by 4.
- unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
- ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
- emitConstPoolAddress(MO.getIndex(), Reloc);
- } else if (MO.isJTI())
- emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
- else if (MO.isMBB())
- emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
- else
- llvm_unreachable("Unable to encode MachineOperand!");
- return 0;
-}
-
-/// emitGlobalAddress - Emit the specified address to the code stream.
-///
-void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
- bool MayNeedFarStub, bool Indirect,
- intptr_t ACPV) const {
- MachineRelocation MR = Indirect
- ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV),
- ACPV, MayNeedFarStub)
- : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV), ACPV,
- MayNeedFarStub);
- MCE.addRelocation(MR);
-}
-
-/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
-/// be emitted to the current location in the function, and allow it to be PC
-/// relative.
-void ARMCodeEmitter::
-emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
- Reloc, ES));
-}
-
-/// emitConstPoolAddress - Arrange for the address of an constant pool
-/// to be emitted to the current location in the function, and allow it to be PC
-/// relative.
-void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
- // Tell JIT emitter we'll resolve the address.
- MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
- Reloc, CPI, 0, true));
-}
-
-/// emitJumpTableAddress - Arrange for the address of a jump table to
-/// be emitted to the current location in the function, and allow it to be PC
-/// relative.
-void ARMCodeEmitter::
-emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
- Reloc, JTIndex, 0, true));
-}
-
-/// emitMachineBasicBlock - Emit the specified address basic block.
-void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
- unsigned Reloc,
- intptr_t JTBase) const {
- MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
- Reloc, BB, JTBase));
-}
-
-void ARMCodeEmitter::emitWordLE(unsigned Binary) {
- DEBUG(errs() << " 0x";
- errs().write_hex(Binary) << "\n");
- MCE.emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
- DEBUG(errs() << " 0x";
- errs().write_hex(Binary) << "\n");
- MCE.emitDWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
- DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
-
- MCE.processDebugLoc(MI.getDebugLoc(), true);
-
- ++NumEmitted; // Keep track of the # of mi's emitted
- switch (MI.getDesc().TSFlags & ARMII::FormMask) {
- default: {
- llvm_unreachable("Unhandled instruction encoding format!");
- }
- case ARMII::MiscFrm:
- if (MI.getOpcode() == ARM::LEApcrelJT) {
- // Materialize jumptable address.
- emitLEApcrelJTInstruction(MI);
- break;
- }
- llvm_unreachable("Unhandled instruction encoding!");
- case ARMII::Pseudo:
- emitPseudoInstruction(MI);
- break;
- case ARMII::DPFrm:
- case ARMII::DPSoRegFrm:
- emitDataProcessingInstruction(MI);
- break;
- case ARMII::LdFrm:
- case ARMII::StFrm:
- emitLoadStoreInstruction(MI);
- break;
- case ARMII::LdMiscFrm:
- case ARMII::StMiscFrm:
- emitMiscLoadStoreInstruction(MI);
- break;
- case ARMII::LdStMulFrm:
- emitLoadStoreMultipleInstruction(MI);
- break;
- case ARMII::MulFrm:
- emitMulFrmInstruction(MI);
- break;
- case ARMII::ExtFrm:
- emitExtendInstruction(MI);
- break;
- case ARMII::ArithMiscFrm:
- emitMiscArithInstruction(MI);
- break;
- case ARMII::SatFrm:
- emitSaturateInstruction(MI);
- break;
- case ARMII::BrFrm:
- emitBranchInstruction(MI);
- break;
- case ARMII::BrMiscFrm:
- emitMiscBranchInstruction(MI);
- break;
- // VFP instructions.
- case ARMII::VFPUnaryFrm:
- case ARMII::VFPBinaryFrm:
- emitVFPArithInstruction(MI);
- break;
- case ARMII::VFPConv1Frm:
- case ARMII::VFPConv2Frm:
- case ARMII::VFPConv3Frm:
- case ARMII::VFPConv4Frm:
- case ARMII::VFPConv5Frm:
- emitVFPConversionInstruction(MI);
- break;
- case ARMII::VFPLdStFrm:
- emitVFPLoadStoreInstruction(MI);
- break;
- case ARMII::VFPLdStMulFrm:
- emitVFPLoadStoreMultipleInstruction(MI);
- break;
-
- // NEON instructions.
- case ARMII::NGetLnFrm:
- case ARMII::NSetLnFrm:
- emitNEONLaneInstruction(MI);
- break;
- case ARMII::NDupFrm:
- emitNEONDupInstruction(MI);
- break;
- case ARMII::N1RegModImmFrm:
- emitNEON1RegModImmInstruction(MI);
- break;
- case ARMII::N2RegFrm:
- emitNEON2RegInstruction(MI);
- break;
- case ARMII::N3RegFrm:
- emitNEON3RegInstruction(MI);
- break;
- }
- MCE.processDebugLoc(MI.getDebugLoc(), false);
-}
-
-void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
- unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
- unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
- const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
-
- // Remember the CONSTPOOL_ENTRY address for later relocation.
- JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
-
- // Emit constpool island entry. In most cases, the actual values will be
- // resolved and relocated after code emission.
- if (MCPE.isMachineConstantPoolEntry()) {
- ARMConstantPoolValue *ACPV =
- static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
-
- DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
- << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
-
- assert(ACPV->isGlobalValue() && "unsupported constant pool value");
- const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
- if (GV) {
- Reloc::Model RelocM = TM.getRelocationModel();
- emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
- isa<Function>(GV),
- Subtarget->GVIsIndirectSymbol(GV, RelocM),
- (intptr_t)ACPV);
- } else {
- const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
- emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
- }
- emitWordLE(0);
- } else {
- const Constant *CV = MCPE.Val.ConstVal;
-
- DEBUG({
- errs() << " ** Constant pool #" << CPI << " @ "
- << (void*)MCE.getCurrentPCValue() << " ";
- if (const Function *F = dyn_cast<Function>(CV))
- errs() << F->getName();
- else
- errs() << *CV;
- errs() << '\n';
- });
-
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
- emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
- emitWordLE(0);
- } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- uint32_t Val = uint32_t(*CI->getValue().getRawData());
- emitWordLE(Val);
- } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- if (CFP->getType()->isFloatTy())
- emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
- else if (CFP->getType()->isDoubleTy())
- emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
- else {
- llvm_unreachable("Unable to handle this constantpool entry!");
- }
- } else {
- llvm_unreachable("Unable to handle this constantpool entry!");
- }
- }
-}
-
-void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
- const MachineOperand &MO0 = MI.getOperand(0);
- const MachineOperand &MO1 = MI.getOperand(1);
-
- // Emit the 'movw' instruction.
- unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
-
- unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
-
- // Set the conditional execution predicate.
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode Rd.
- Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
-
- // Encode imm16 as imm4:imm12
- Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
- Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
- emitWordLE(Binary);
-
- unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
- // Emit the 'movt' instruction.
- Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
-
- // Set the conditional execution predicate.
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode Rd.
- Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
-
- // Encode imm16 as imm4:imm1, same as movw above.
- Binary |= Hi16 & 0xFFF;
- Binary |= ((Hi16 >> 12) & 0xF) << 16;
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
- const MachineOperand &MO0 = MI.getOperand(0);
- const MachineOperand &MO1 = MI.getOperand(1);
- assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
- "Not a valid so_imm value!");
- unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
- unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
-
- // Emit the 'mov' instruction.
- unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
-
- // Set the conditional execution predicate.
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode Rd.
- Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
-
- // Encode so_imm.
- // Set bit I(25) to identify this is the immediate form of <shifter_op>
- Binary |= 1 << ARMII::I_BitShift;
- Binary |= getMachineSoImmOpValue(V1);
- emitWordLE(Binary);
-
- // Now the 'orr' instruction.
- Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
-
- // Set the conditional execution predicate.
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode Rd.
- Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
-
- // Encode Rn.
- Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
-
- // Encode so_imm.
- // Set bit I(25) to identify this is the immediate form of <shifter_op>
- Binary |= 1 << ARMII::I_BitShift;
- Binary |= getMachineSoImmOpValue(V2);
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
- // It's basically add r, pc, (LJTI - $+8)
-
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Emit the 'add' instruction.
- unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode S bit if MI modifies CPSR.
- Binary |= getAddrModeSBit(MI, MCID);
-
- // Encode Rd.
- Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
-
- // Encode Rn which is PC.
- Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
-
- // Encode the displacement.
- Binary |= 1 << ARMII::I_BitShift;
- emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
- unsigned Opcode = MI.getDesc().Opcode;
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode S bit if MI modifies CPSR.
- if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
- Binary |= 1 << ARMII::S_BitShift;
-
- // Encode register def if there is one.
- Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
-
- // Encode the shift operation.
- switch (Opcode) {
- default: break;
- case ARM::RRX:
- // rrx
- Binary |= 0x6 << 4;
- break;
- case ARM::MOVsrl_flag:
- // lsr #1
- Binary |= (0x2 << 4) | (1 << 7);
- break;
- case ARM::MOVsra_flag:
- // asr #1
- Binary |= (0x4 << 4) | (1 << 7);
- break;
- }
-
- // Encode register Rm.
- Binary |= getMachineOpValue(MI, 1);
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
- DEBUG(errs() << " ** LPC" << LabelID << " @ "
- << (void*)MCE.getCurrentPCValue() << '\n');
- JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
-}
-
-void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
- unsigned Opcode = MI.getDesc().Opcode;
- switch (Opcode) {
- default:
- llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
- case ARM::BX_CALL:
- case ARM::BMOVPCRX_CALL: {
- // First emit mov lr, pc
- unsigned Binary = 0x01a0e00f;
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
- emitWordLE(Binary);
-
- // and then emit the branch.
- emitMiscBranchInstruction(MI);
- break;
- }
- case TargetOpcode::INLINEASM: {
- // We allow inline assembler nodes with empty bodies - they can
- // implicitly define registers, which is ok for JIT.
- if (MI.getOperand(0).getSymbolName()[0]) {
- report_fatal_error("JIT does not support inline asm!");
- }
- break;
- }
- case TargetOpcode::CFI_INSTRUCTION:
- break;
- case TargetOpcode::EH_LABEL:
- MCE.emitLabel(MI.getOperand(0).getMCSymbol());
- break;
- case TargetOpcode::IMPLICIT_DEF:
- case TargetOpcode::KILL:
- // Do nothing.
- break;
- case ARM::CONSTPOOL_ENTRY:
- emitConstPoolInstruction(MI);
- break;
- case ARM::PICADD: {
- // Remember of the address of the PC label for relocation later.
- addPCLabel(MI.getOperand(2).getImm());
- // PICADD is just an add instruction that implicitly read pc.
- emitDataProcessingInstruction(MI, 0, ARM::PC);
- break;
- }
- case ARM::PICLDR:
- case ARM::PICLDRB:
- case ARM::PICSTR:
- case ARM::PICSTRB: {
- // Remember of the address of the PC label for relocation later.
- addPCLabel(MI.getOperand(2).getImm());
- // These are just load / store instructions that implicitly read pc.
- emitLoadStoreInstruction(MI, 0, ARM::PC);
- break;
- }
- case ARM::PICLDRH:
- case ARM::PICLDRSH:
- case ARM::PICLDRSB:
- case ARM::PICSTRH: {
- // Remember of the address of the PC label for relocation later.
- addPCLabel(MI.getOperand(2).getImm());
- // These are just load / store instructions that implicitly read pc.
- emitMiscLoadStoreInstruction(MI, ARM::PC);
- break;
- }
-
- case ARM::MOVi32imm:
- // Two instructions to materialize a constant.
- if (Subtarget->hasV6T2Ops())
- emitMOVi32immInstruction(MI);
- else
- emitMOVi2piecesInstruction(MI);
- break;
-
- case ARM::LEApcrelJT:
- // Materialize jumptable address.
- emitLEApcrelJTInstruction(MI);
- break;
- case ARM::RRX:
- case ARM::MOVsrl_flag:
- case ARM::MOVsra_flag:
- emitPseudoMoveInstruction(MI);
- break;
- }
-}
-
-unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
- const MCInstrDesc &MCID,
- const MachineOperand &MO,
- unsigned OpIdx) {
- unsigned Binary = getMachineOpValue(MI, MO);
-
- const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
- const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
- ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
-
- // Encode the shift opcode.
- unsigned SBits = 0;
- unsigned Rs = MO1.getReg();
- if (Rs) {
- // Set shift operand (bit[7:4]).
- // LSL - 0001
- // LSR - 0011
- // ASR - 0101
- // ROR - 0111
- // RRX - 0110 and bit[11:8] clear.
- switch (SOpc) {
- default: llvm_unreachable("Unknown shift opc!");
- case ARM_AM::lsl: SBits = 0x1; break;
- case ARM_AM::lsr: SBits = 0x3; break;
- case ARM_AM::asr: SBits = 0x5; break;
- case ARM_AM::ror: SBits = 0x7; break;
- case ARM_AM::rrx: SBits = 0x6; break;
- }
- } else {
- // Set shift operand (bit[6:4]).
- // LSL - 000
- // LSR - 010
- // ASR - 100
- // ROR - 110
- switch (SOpc) {
- default: llvm_unreachable("Unknown shift opc!");
- case ARM_AM::lsl: SBits = 0x0; break;
- case ARM_AM::lsr: SBits = 0x2; break;
- case ARM_AM::asr: SBits = 0x4; break;
- case ARM_AM::ror: SBits = 0x6; break;
- }
- }
- Binary |= SBits << 4;
- if (SOpc == ARM_AM::rrx)
- return Binary;
-
- // Encode the shift operation Rs or shift_imm (except rrx).
- if (Rs) {
- // Encode Rs bit[11:8].
- assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
- return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
- }
-
- // Encode shift_imm bit[11:7].
- return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
-}
-
-unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
- int SoImmVal = ARM_AM::getSOImmVal(SoImm);
- assert(SoImmVal != -1 && "Not a valid so_imm value!");
-
- // Encode rotate_imm.
- unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
- << ARMII::SoRotImmShift;
-
- // Encode immed_8.
- Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
- return Binary;
-}
-
-unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
- const MCInstrDesc &MCID) const {
- for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
- const MachineOperand &MO = MI.getOperand(i-1);
- if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
- return 1 << ARMII::S_BitShift;
- }
- return 0;
-}
-
-void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
- unsigned ImplicitRd,
- unsigned ImplicitRn) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode S bit if MI modifies CPSR.
- Binary |= getAddrModeSBit(MI, MCID);
-
- // Encode register def if there is one.
- unsigned NumDefs = MCID.getNumDefs();
- unsigned OpIdx = 0;
- if (NumDefs)
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
- else if (ImplicitRd)
- // Special handling for implicit use (e.g. PC).
- Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
-
- if (MCID.Opcode == ARM::MOVi16) {
- // Get immediate from MI.
- unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
- ARM::reloc_arm_movw);
- // Encode imm which is the same as in emitMOVi32immInstruction().
- Binary |= Lo16 & 0xFFF;
- Binary |= ((Lo16 >> 12) & 0xF) << 16;
- emitWordLE(Binary);
- return;
- } else if(MCID.Opcode == ARM::MOVTi16) {
- unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
- ARM::reloc_arm_movt) >> 16);
- Binary |= Hi16 & 0xFFF;
- Binary |= ((Hi16 >> 12) & 0xF) << 16;
- emitWordLE(Binary);
- return;
- } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
- uint32_t v = ~MI.getOperand(2).getImm();
- int32_t lsb = countTrailingZeros(v);
- int32_t msb = (32 - countLeadingZeros(v)) - 1;
- // Instr{20-16} = msb, Instr{11-7} = lsb
- Binary |= (msb & 0x1F) << 16;
- Binary |= (lsb & 0x1F) << 7;
- emitWordLE(Binary);
- return;
- } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
- // Encode Rn in Instr{0-3}
- Binary |= getMachineOpValue(MI, OpIdx++);
-
- uint32_t lsb = MI.getOperand(OpIdx++).getImm();
- uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
-
- // Instr{20-16} = widthm1, Instr{11-7} = lsb
- Binary |= (widthm1 & 0x1F) << 16;
- Binary |= (lsb & 0x1F) << 7;
- emitWordLE(Binary);
- return;
- }
-
- // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
- if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
-
- // Encode first non-shifter register operand if there is one.
- bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
- if (!isUnary) {
- if (ImplicitRn)
- // Special handling for implicit use (e.g. PC).
- Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
- else {
- Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
- ++OpIdx;
- }
- }
-
- // Encode shifter operand.
- const MachineOperand &MO = MI.getOperand(OpIdx);
- if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
- // Encode SoReg.
- emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
- return;
- }
-
- if (MO.isReg()) {
- // Encode register Rm.
- emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
- return;
- }
-
- // Encode so_imm.
- Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
- unsigned ImplicitRd,
- unsigned ImplicitRn) {
- const MCInstrDesc &MCID = MI.getDesc();
- unsigned Form = MCID.TSFlags & ARMII::FormMask;
- bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
- if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
- MI.getOpcode() == ARM::STRi12) {
- emitWordLE(Binary);
- return;
- }
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- unsigned OpIdx = 0;
-
- // Operand 0 of a pre- and post-indexed store is the address base
- // writeback. Skip it.
- bool Skipped = false;
- if (IsPrePost && Form == ARMII::StFrm) {
- ++OpIdx;
- Skipped = true;
- }
-
- // Set first operand
- if (ImplicitRd)
- // Special handling for implicit use (e.g. PC).
- Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
- else
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
-
- // Set second operand
- if (ImplicitRn)
- // Special handling for implicit use (e.g. PC).
- Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
- else
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
-
- // If this is a two-address operand, skip it. e.g. LDR_PRE.
- if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
-
- const MachineOperand &MO2 = MI.getOperand(OpIdx);
- unsigned AM2Opc = (ImplicitRn == ARM::PC)
- ? 0 : MI.getOperand(OpIdx+1).getImm();
-
- // Set bit U(23) according to sign of immed value (positive or negative).
- Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
- ARMII::U_BitShift);
- if (!MO2.getReg()) { // is immediate
- if (ARM_AM::getAM2Offset(AM2Opc))
- // Set the value of offset_12 field
- Binary |= ARM_AM::getAM2Offset(AM2Opc);
- emitWordLE(Binary);
- return;
- }
-
- // Set bit I(25), because this is not in immediate encoding.
- Binary |= 1 << ARMII::I_BitShift;
- assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
- // Set bit[3:0] to the corresponding Rm register
- Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
-
- // If this instr is in scaled register offset/index instruction, set
- // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
- if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
- Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
- Binary |= ShImm << ARMII::ShiftShift; // shift_immed
- }
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
- unsigned ImplicitRn) {
- const MCInstrDesc &MCID = MI.getDesc();
- unsigned Form = MCID.TSFlags & ARMII::FormMask;
- bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- unsigned OpIdx = 0;
-
- // Operand 0 of a pre- and post-indexed store is the address base
- // writeback. Skip it.
- bool Skipped = false;
- if (IsPrePost && Form == ARMII::StMiscFrm) {
- ++OpIdx;
- Skipped = true;
- }
-
- // Set first operand
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
-
- // Skip LDRD and STRD's second operand.
- if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
- ++OpIdx;
-
- // Set second operand
- if (ImplicitRn)
- // Special handling for implicit use (e.g. PC).
- Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
- else
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
-
- // If this is a two-address operand, skip it. e.g. LDRH_POST.
- if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
-
- const MachineOperand &MO2 = MI.getOperand(OpIdx);
- unsigned AM3Opc = (ImplicitRn == ARM::PC)
- ? 0 : MI.getOperand(OpIdx+1).getImm();
-
- // Set bit U(23) according to sign of immed value (positive or negative)
- Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
- ARMII::U_BitShift);
-
- // If this instr is in register offset/index encoding, set bit[3:0]
- // to the corresponding Rm register.
- if (MO2.getReg()) {
- Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
- emitWordLE(Binary);
- return;
- }
-
- // This instr is in immediate offset/index encoding, set bit 22 to 1.
- Binary |= 1 << ARMII::AM3_I_BitShift;
- if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
- // Set operands
- Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
- Binary |= (ImmOffs & 0xF); // immedL
- }
-
- emitWordLE(Binary);
-}
-
-static unsigned getAddrModeUPBits(unsigned Mode) {
- unsigned Binary = 0;
-
- // Set addressing mode by modifying bits U(23) and P(24)
- // IA - Increment after - bit U = 1 and bit P = 0
- // IB - Increment before - bit U = 1 and bit P = 1
- // DA - Decrement after - bit U = 0 and bit P = 0
- // DB - Decrement before - bit U = 0 and bit P = 1
- switch (Mode) {
- default: llvm_unreachable("Unknown addressing sub-mode!");
- case ARM_AM::da: break;
- case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
- case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
- case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
- }
-
- return Binary;
-}
-
-void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
- bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Skip operand 0 of an instruction with base register update.
- unsigned OpIdx = 0;
- if (IsUpdating)
- ++OpIdx;
-
- // Set base address operand
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
-
- // Set addressing mode by modifying bits U(23) and P(24)
- ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
- Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
-
- // Set bit W(21)
- if (IsUpdating)
- Binary |= 0x1 << ARMII::W_BitShift;
-
- // Set registers
- for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || MO.isImplicit())
- break;
- unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
- assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
- RegNum < 16);
- Binary |= 0x1 << RegNum;
- }
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode S bit if MI modifies CPSR.
- Binary |= getAddrModeSBit(MI, MCID);
-
- // 32x32->64bit operations have two destination registers. The number
- // of register definitions will tell us if that's what we're dealing with.
- unsigned OpIdx = 0;
- if (MCID.getNumDefs() == 2)
- Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
-
- // Encode Rd
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
-
- // Encode Rm
- Binary |= getMachineOpValue(MI, OpIdx++);
-
- // Encode Rs
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
-
- // Many multiple instructions (e.g. MLA) have three src operands. Encode
- // it as Rn (for multiply, that's in the same offset as RdLo.
- if (MCID.getNumOperands() > OpIdx &&
- !MCID.OpInfo[OpIdx].isPredicate() &&
- !MCID.OpInfo[OpIdx].isOptionalDef())
- Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- unsigned OpIdx = 0;
-
- // Encode Rd
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
-
- const MachineOperand &MO1 = MI.getOperand(OpIdx++);
- const MachineOperand &MO2 = MI.getOperand(OpIdx);
- if (MO2.isReg()) {
- // Two register operand form.
- // Encode Rn.
- Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
-
- // Encode Rm.
- Binary |= getMachineOpValue(MI, MO2);
- ++OpIdx;
- } else {
- Binary |= getMachineOpValue(MI, MO1);
- }
-
- // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
- if (MI.getOperand(OpIdx).isImm() &&
- !MCID.OpInfo[OpIdx].isPredicate() &&
- !MCID.OpInfo[OpIdx].isOptionalDef())
- Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // PKH instructions are finished at this point
- if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
- emitWordLE(Binary);
- return;
- }
-
- unsigned OpIdx = 0;
-
- // Encode Rd
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
-
- const MachineOperand &MO = MI.getOperand(OpIdx++);
- if (OpIdx == MCID.getNumOperands() ||
- MCID.OpInfo[OpIdx].isPredicate() ||
- MCID.OpInfo[OpIdx].isOptionalDef()) {
- // Encode Rm and it's done.
- Binary |= getMachineOpValue(MI, MO);
- emitWordLE(Binary);
- return;
- }
-
- // Encode Rn.
- Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
-
- // Encode Rm.
- Binary |= getMachineOpValue(MI, OpIdx++);
-
- // Encode shift_imm.
- unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
- if (MCID.Opcode == ARM::PKHTB) {
- assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
- if (ShiftAmt == 32)
- ShiftAmt = 0;
- }
- assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
- Binary |= ShiftAmt << ARMII::ShiftShift;
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Part of binary is determined by TableGen.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Encode Rd
- Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
-
- // Encode saturate bit position.
- unsigned Pos = MI.getOperand(1).getImm();
- if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
- Pos -= 1;
- assert((Pos < 16 || (Pos < 32 &&
- MCID.Opcode != ARM::SSAT16 &&
- MCID.Opcode != ARM::USAT16)) &&
- "saturate bit position out of range");
- Binary |= Pos << 16;
-
- // Encode Rm
- Binary |= getMachineOpValue(MI, 2);
-
- // Encode shift_imm.
- if (MCID.getNumOperands() == 4) {
- unsigned ShiftOp = MI.getOperand(3).getImm();
- ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
- if (Opc == ARM_AM::asr)
- Binary |= (1 << 6);
- unsigned ShiftAmt = MI.getOperand(3).getImm();
- if (ShiftAmt == 32 && Opc == ARM_AM::asr)
- ShiftAmt = 0;
- assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
- Binary |= ShiftAmt << ARMII::ShiftShift;
- }
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- if (MCID.Opcode == ARM::TPsoft) {
- llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
- }
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Set signed_immed_24 field
- Binary |= getMachineOpValue(MI, 0);
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
- // Remember the base address of the inline jump table.
- uintptr_t JTBase = MCE.getCurrentPCValue();
- JTI->addJumpTableBaseAddr(JTIndex, JTBase);
- DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
- << '\n');
-
- // Now emit the jump table entries.
- const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
- for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
- if (IsPIC)
- // DestBB address - JT base.
- emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
- else
- // Absolute DestBB address.
- emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
- emitWordLE(0);
- }
-}
-
-void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Handle jump tables.
- if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
- // First emit a ldr pc, [] instruction.
- emitDataProcessingInstruction(MI, ARM::PC);
-
- // Then emit the inline jump table.
- unsigned JTIndex =
- (MCID.Opcode == ARM::BR_JTr)
- ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
- emitInlineJumpTable(JTIndex);
- return;
- } else if (MCID.Opcode == ARM::BR_JTm) {
- // First emit a ldr pc, [] instruction.
- emitLoadStoreInstruction(MI, ARM::PC);
-
- // Then emit the inline jump table.
- emitInlineJumpTable(MI.getOperand(3).getIndex());
- return;
- }
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
- // The return register is LR.
- Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
- else
- // otherwise, set the return register
- Binary |= getMachineOpValue(MI, 0);
-
- emitWordLE(Binary);
-}
-
-unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
- unsigned OpIdx) const {
- unsigned RegD = MI.getOperand(OpIdx).getReg();
- unsigned Binary = 0;
- bool isSPVFP = ARM::SPRRegClass.contains(RegD);
- RegD = II->getRegisterInfo().getEncodingValue(RegD);
- if (!isSPVFP)
- Binary |= RegD << ARMII::RegRdShift;
- else {
- Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
- Binary |= (RegD & 0x01) << ARMII::D_BitShift;
- }
- return Binary;
-}
-
-unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
- unsigned OpIdx) const {
- unsigned RegN = MI.getOperand(OpIdx).getReg();
- unsigned Binary = 0;
- bool isSPVFP = ARM::SPRRegClass.contains(RegN);
- RegN = II->getRegisterInfo().getEncodingValue(RegN);
- if (!isSPVFP)
- Binary |= RegN << ARMII::RegRnShift;
- else {
- Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
- Binary |= (RegN & 0x01) << ARMII::N_BitShift;
- }
- return Binary;
-}
-
-unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
- unsigned OpIdx) const {
- unsigned RegM = MI.getOperand(OpIdx).getReg();
- unsigned Binary = 0;
- bool isSPVFP = ARM::SPRRegClass.contains(RegM);
- RegM = II->getRegisterInfo().getEncodingValue(RegM);
- if (!isSPVFP)
- Binary |= RegM;
- else {
- Binary |= ((RegM & 0x1E) >> 1);
- Binary |= (RegM & 0x01) << ARMII::M_BitShift;
- }
- return Binary;
-}
-
-void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- unsigned OpIdx = 0;
- assert((Binary & ARMII::D_BitShift) == 0 &&
- (Binary & ARMII::N_BitShift) == 0 &&
- (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
-
- // Encode Dd / Sd.
- Binary |= encodeVFPRd(MI, OpIdx++);
-
- // If this is a two-address operand, skip it, e.g. FMACD.
- if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
-
- // Encode Dn / Sn.
- if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
- Binary |= encodeVFPRn(MI, OpIdx++);
-
- if (OpIdx == MCID.getNumOperands() ||
- MCID.OpInfo[OpIdx].isPredicate() ||
- MCID.OpInfo[OpIdx].isOptionalDef()) {
- // FCMPEZD etc. has only one operand.
- emitWordLE(Binary);
- return;
- }
-
- // Encode Dm / Sm.
- Binary |= encodeVFPRm(MI, OpIdx);
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
- unsigned Form = MCID.TSFlags & ARMII::FormMask;
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- switch (Form) {
- default: break;
- case ARMII::VFPConv1Frm:
- case ARMII::VFPConv2Frm:
- case ARMII::VFPConv3Frm:
- // Encode Dd / Sd.
- Binary |= encodeVFPRd(MI, 0);
- break;
- case ARMII::VFPConv4Frm:
- // Encode Dn / Sn.
- Binary |= encodeVFPRn(MI, 0);
- break;
- case ARMII::VFPConv5Frm:
- // Encode Dm / Sm.
- Binary |= encodeVFPRm(MI, 0);
- break;
- }
-
- switch (Form) {
- default: break;
- case ARMII::VFPConv1Frm:
- // Encode Dm / Sm.
- Binary |= encodeVFPRm(MI, 1);
- break;
- case ARMII::VFPConv2Frm:
- case ARMII::VFPConv3Frm:
- // Encode Dn / Sn.
- Binary |= encodeVFPRn(MI, 1);
- break;
- case ARMII::VFPConv4Frm:
- case ARMII::VFPConv5Frm:
- // Encode Dd / Sd.
- Binary |= encodeVFPRd(MI, 1);
- break;
- }
-
- if (Form == ARMII::VFPConv5Frm)
- // Encode Dn / Sn.
- Binary |= encodeVFPRn(MI, 2);
- else if (Form == ARMII::VFPConv3Frm)
- // Encode Dm / Sm.
- Binary |= encodeVFPRm(MI, 2);
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- unsigned OpIdx = 0;
-
- // Encode Dd / Sd.
- Binary |= encodeVFPRd(MI, OpIdx++);
-
- // Encode address base.
- const MachineOperand &Base = MI.getOperand(OpIdx++);
- Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
-
- // If there is a non-zero immediate offset, encode it.
- if (Base.isReg()) {
- const MachineOperand &Offset = MI.getOperand(OpIdx);
- if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
- if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
- Binary |= 1 << ARMII::U_BitShift;
- Binary |= ImmOffs;
- emitWordLE(Binary);
- return;
- }
- }
-
- // If immediate offset is omitted, default to +0.
- Binary |= 1 << ARMII::U_BitShift;
-
- emitWordLE(Binary);
-}
-
-void
-ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
- bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
-
- // Part of binary is determined by TableGn.
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= II->getPredicate(&MI) << ARMII::CondShift;
-
- // Skip operand 0 of an instruction with base register update.
- unsigned OpIdx = 0;
- if (IsUpdating)
- ++OpIdx;
-
- // Set base address operand
- Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
-
- // Set addressing mode by modifying bits U(23) and P(24)
- ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
- Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
-
- // Set bit W(21)
- if (IsUpdating)
- Binary |= 0x1 << ARMII::W_BitShift;
-
- // First register is encoded in Dd.
- Binary |= encodeVFPRd(MI, OpIdx+2);
-
- // Count the number of registers.
- unsigned NumRegs = 1;
- for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || MO.isImplicit())
- break;
- ++NumRegs;
- }
- // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
- // Otherwise, it will be 0, in the case of 32-bit registers.
- if(Binary & 0x100)
- Binary |= NumRegs * 2;
- else
- Binary |= NumRegs;
-
- emitWordLE(Binary);
-}
-
-unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
- unsigned OpIdx) const {
- unsigned RegD = MI.getOperand(OpIdx).getReg();
- unsigned Binary = 0;
- RegD = II->getRegisterInfo().getEncodingValue(RegD);
- Binary |= (RegD & 0xf) << ARMII::RegRdShift;
- Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
- return Binary;
-}
-
-unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
- unsigned OpIdx) const {
- unsigned RegN = MI.getOperand(OpIdx).getReg();
- unsigned Binary = 0;
- RegN = II->getRegisterInfo().getEncodingValue(RegN);
- Binary |= (RegN & 0xf) << ARMII::RegRnShift;
- Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
- return Binary;
-}
-
-unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
- unsigned OpIdx) const {
- unsigned RegM = MI.getOperand(OpIdx).getReg();
- unsigned Binary = 0;
- RegM = II->getRegisterInfo().getEncodingValue(RegM);
- Binary |= (RegM & 0xf);
- Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
- return Binary;
-}
-
-/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
-/// data-processing instruction to the corresponding Thumb encoding.
-static unsigned convertNEONDataProcToThumb(unsigned Binary) {
- assert((Binary & 0xfe000000) == 0xf2000000 &&
- "not an ARM NEON data-processing instruction");
- unsigned UBit = (Binary >> 24) & 1;
- return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
-}
-
-void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
- const MCInstrDesc &MCID = MI.getDesc();
- if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
- RegTOpIdx = 0;
- RegNOpIdx = 1;
- LnOpIdx = 2;
- } else { // ARMII::NSetLnFrm
- RegTOpIdx = 2;
- RegNOpIdx = 0;
- LnOpIdx = 3;
- }
-
- // Set the conditional execution predicate
- Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
-
- unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
- RegT = II->getRegisterInfo().getEncodingValue(RegT);
- Binary |= (RegT << ARMII::RegRdShift);
- Binary |= encodeNEONRn(MI, RegNOpIdx);
-
- unsigned LaneShift;
- if ((Binary & (1 << 22)) != 0)
- LaneShift = 0; // 8-bit elements
- else if ((Binary & (1 << 5)) != 0)
- LaneShift = 1; // 16-bit elements
- else
- LaneShift = 2; // 32-bit elements
-
- unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
- unsigned Opc1 = Lane >> 2;
- unsigned Opc2 = Lane & 3;
- assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
- Binary |= (Opc1 << 21);
- Binary |= (Opc2 << 5);
-
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
- unsigned Binary = getBinaryCodeForInstr(MI);
-
- // Set the conditional execution predicate
- Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
-
- unsigned RegT = MI.getOperand(1).getReg();
- RegT = II->getRegisterInfo().getEncodingValue(RegT);
- Binary |= (RegT << ARMII::RegRdShift);
- Binary |= encodeNEONRn(MI, 0);
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
- unsigned Binary = getBinaryCodeForInstr(MI);
- // Destination register is encoded in Dd.
- Binary |= encodeNEONRd(MI, 0);
- // Immediate fields: Op, Cmode, I, Imm3, Imm4
- unsigned Imm = MI.getOperand(1).getImm();
- unsigned Op = (Imm >> 12) & 1;
- unsigned Cmode = (Imm >> 8) & 0xf;
- unsigned I = (Imm >> 7) & 1;
- unsigned Imm3 = (Imm >> 4) & 0x7;
- unsigned Imm4 = Imm & 0xf;
- Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
- if (IsThumb)
- Binary = convertNEONDataProcToThumb(Binary);
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
- unsigned Binary = getBinaryCodeForInstr(MI);
- // Destination register is encoded in Dd; source register in Dm.
- unsigned OpIdx = 0;
- Binary |= encodeNEONRd(MI, OpIdx++);
- if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
- Binary |= encodeNEONRm(MI, OpIdx);
- if (IsThumb)
- Binary = convertNEONDataProcToThumb(Binary);
- // FIXME: This does not handle VDUPfdf or VDUPfqf.
- emitWordLE(Binary);
-}
-
-void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
- const MCInstrDesc &MCID = MI.getDesc();
- unsigned Binary = getBinaryCodeForInstr(MI);
- // Destination register is encoded in Dd; source registers in Dn and Dm.
- unsigned OpIdx = 0;
- Binary |= encodeNEONRd(MI, OpIdx++);
- if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
- Binary |= encodeNEONRn(MI, OpIdx++);
- if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
- ++OpIdx;
- Binary |= encodeNEONRm(MI, OpIdx);
- if (IsThumb)
- Binary = convertNEONDataProcToThumb(Binary);
- // FIXME: This does not handle VMOVDneon or VMOVQ.
- emitWordLE(Binary);
-}
-
-#include "ARMGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp b/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
index ce264ee..5d29531 100644
--- a/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
@@ -275,6 +275,7 @@ namespace {
private:
void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
+ bool BBHasFallthrough(MachineBasicBlock *MBB);
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
unsigned getCPELogAlign(const MachineInstr *CPEMI);
void scanFunctionJumpTables();
@@ -382,7 +383,9 @@ bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
<< MCP->getConstants().size() << " CP entries, aligned to "
<< MCP->getConstantPoolAlignment() << " bytes *****\n");
- TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
+ TII = (const ARMBaseInstrInfo *)MF->getTarget()
+ .getSubtargetImpl()
+ ->getInstrInfo();
AFI = MF->getInfo<ARMFunctionInfo>();
STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
@@ -529,7 +532,7 @@ ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
// identity mapping of CPI's to CPE's.
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
- const DataLayout &TD = *MF->getTarget().getDataLayout();
+ const DataLayout &TD = *MF->getSubtarget().getDataLayout();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
assert(Size >= 4 && "Too small constant pool entry");
@@ -554,9 +557,7 @@ ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
InsPoint[a] = CPEMI;
// Add a new CPEntry, but no corresponding CPUser yet.
- std::vector<CPEntry> CPEs;
- CPEs.push_back(CPEntry(CPEMI, i));
- CPEntries.push_back(CPEs);
+ CPEntries.emplace_back(1, CPEntry(CPEMI, i));
++NumCPEs;
DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
<< Size << ", align = " << Align <<'\n');
@@ -566,7 +567,7 @@ ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
/// BBHasFallthrough - Return true if the specified basic block can fallthrough
/// into the block immediately after it.
-static bool BBHasFallthrough(MachineBasicBlock *MBB) {
+bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
// Get the next machine basic block in the function.
MachineFunction::iterator MBBI = MBB;
// Can't fall off end of function.
@@ -574,12 +575,15 @@ static bool BBHasFallthrough(MachineBasicBlock *MBB) {
return false;
MachineBasicBlock *NextBB = std::next(MBBI);
- for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
- E = MBB->succ_end(); I != E; ++I)
- if (*I == NextBB)
- return true;
+ if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end())
+ return false;
- return false;
+ // Try to analyze the end of the block. A potential fallthrough may already
+ // have an unconditional branch for whatever reason.
+ MachineBasicBlock *TBB, *FBB;
+ SmallVector<MachineOperand, 4> Cond;
+ bool TooDifficult = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond);
+ return TooDifficult || FBB == nullptr;
}
/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
@@ -1203,7 +1207,8 @@ bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
unsigned Growth;
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
- NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
+ NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
+ Growth < BestGrowth) {
// This is the least amount of required padding seen so far.
BestGrowth = Growth;
WaterIter = IP;
@@ -1265,7 +1270,7 @@ void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
ImmBranches.push_back(ImmBranch(&UserMBB->back(),
MaxDisp, false, UncondBr));
- BBInfo[UserMBB->getNumber()].Size += Delta;
+ computeBlockSize(UserMBB);
adjustBBOffsetsAfter(UserMBB);
return;
}
@@ -1309,7 +1314,12 @@ void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
// Back past any possible branches (allow for a conditional and a maximally
// long unconditional).
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
- BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
+ // Ensure BaseInsertOffset is larger than the offset of the instruction
+ // following UserMI so that the loop which searches for the split point
+ // iterates at least once.
+ BaseInsertOffset =
+ std::max(UserBBI.postOffset() - UPad - 8,
+ UserOffset + TII->GetInstSizeInBytes(UserMI) + 1);
DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
}
unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
@@ -1352,6 +1362,11 @@ void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
if (CC != ARMCC::AL)
MI = LastIT;
}
+
+ // We really must not split an IT block.
+ DEBUG(unsigned PredReg;
+ assert(!isThumb || getITInstrPredicate(MI, PredReg) == ARMCC::AL));
+
NewMBB = splitBlockBeforeInstr(MI);
}
@@ -1937,7 +1952,9 @@ bool ARMConstantIslands::optimizeThumb2JumpTables() {
DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI
<< " lea: " << *LeaMI);
unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
- MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
+ MachineBasicBlock::iterator MI_JT = MI;
+ MachineInstr *NewJTMI =
+ BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
.addReg(IdxReg, getKillRegState(IdxRegKill))
.addJumpTableIndex(JTI, JTOP.getTargetFlags())
.addImm(MI->getOperand(JTOpIdx+1).getImm());
diff --git a/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h b/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h
index c7a8415..13bef54 100644
--- a/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h
+++ b/contrib/llvm/lib/Target/ARM/ARMConstantPoolValue.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_ARM_CONSTANTPOOLVALUE_H
-#define LLVM_TARGET_ARM_CONSTANTPOOLVALUE_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMCONSTANTPOOLVALUE_H
+#define LLVM_LIB_TARGET_ARM_ARMCONSTANTPOOLVALUE_H
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/Support/Casting.h"
diff --git a/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp b/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp
index 51d3dbb..7ddf879 100644
--- a/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp
@@ -22,8 +22,8 @@
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h" // FIXME: for debug only. remove!
@@ -867,7 +867,7 @@ bool ARMExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
if (RI.hasBasePointer(MF)) {
int32_t NumBytes = AFI->getFramePtrSpillOffset();
unsigned FramePtr = RI.getFrameRegister(MF);
- assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
+ assert(MF.getSubtarget().getFrameLowering()->hasFP(MF) &&
"base pointer without frame pointer?");
if (AFI->isThumb2Function()) {
@@ -887,6 +887,9 @@ bool ARMExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
unsigned MaxAlign = MFI->getMaxAlignment();
assert (!AFI->isThumb1OnlyFunction());
// Emit bic r6, r6, MaxAlign
+ assert(MaxAlign <= 256 && "The BIC instruction cannot encode "
+ "immediates larger than 256 with all lower "
+ "bits set.");
unsigned bicOpc = AFI->isThumbFunction() ?
ARM::t2BICri : ARM::BICri;
AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, MI.getDebugLoc(),
@@ -980,7 +983,7 @@ bool ARMExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
unsigned LDRLITOpc = IsARM ? ARM::LDRi12 : ARM::tLDRpci;
unsigned PICAddOpc =
IsARM
- ? (Opcode == ARM::LDRLIT_ga_pcrel_ldr ? ARM::PICADD : ARM::PICLDR)
+ ? (Opcode == ARM::LDRLIT_ga_pcrel_ldr ? ARM::PICLDR : ARM::PICADD)
: ARM::tPICADD;
// We need a new const-pool entry to load from.
@@ -1343,8 +1346,9 @@ bool ARMExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
bool ARMExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
const TargetMachine &TM = MF.getTarget();
- TII = static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
- TRI = TM.getRegisterInfo();
+ TII = static_cast<const ARMBaseInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+ TRI = TM.getSubtargetImpl()->getRegisterInfo();
STI = &TM.getSubtarget<ARMSubtarget>();
AFI = MF.getInfo<ARMFunctionInfo>();
diff --git a/contrib/llvm/lib/Target/ARM/ARMFPUName.def b/contrib/llvm/lib/Target/ARM/ARMFPUName.def
index 1fef3b3..34ce85d 100644
--- a/contrib/llvm/lib/Target/ARM/ARMFPUName.def
+++ b/contrib/llvm/lib/Target/ARM/ARMFPUName.def
@@ -23,6 +23,7 @@ ARM_FPU_NAME("vfpv3", VFPV3)
ARM_FPU_NAME("vfpv3-d16", VFPV3_D16)
ARM_FPU_NAME("vfpv4", VFPV4)
ARM_FPU_NAME("vfpv4-d16", VFPV4_D16)
+ARM_FPU_NAME("fpv5-d16", FPV5_D16)
ARM_FPU_NAME("fp-armv8", FP_ARMV8)
ARM_FPU_NAME("neon", NEON)
ARM_FPU_NAME("neon-vfpv4", NEON_VFPV4)
diff --git a/contrib/llvm/lib/Target/ARM/ARMFPUName.h b/contrib/llvm/lib/Target/ARM/ARMFPUName.h
index 2a64cce..86acffb 100644
--- a/contrib/llvm/lib/Target/ARM/ARMFPUName.h
+++ b/contrib/llvm/lib/Target/ARM/ARMFPUName.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMFPUNAME_H
-#define ARMFPUNAME_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMFPUNAME_H
+#define LLVM_LIB_TARGET_ARM_ARMFPUNAME_H
namespace llvm {
namespace ARM {
@@ -23,4 +23,4 @@ enum FPUKind {
} // namespace ARM
} // namespace llvm
-#endif // ARMFPUNAME_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp b/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
index e2d90cd..29462f7 100644
--- a/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMFastISel.cpp
@@ -92,11 +92,11 @@ class ARMFastISel final : public FastISel {
public:
explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo)
- : FastISel(funcInfo, libInfo),
- M(const_cast<Module&>(*funcInfo.Fn->getParent())),
- TM(funcInfo.MF->getTarget()),
- TII(*TM.getInstrInfo()),
- TLI(*TM.getTargetLowering()) {
+ : FastISel(funcInfo, libInfo),
+ M(const_cast<Module &>(*funcInfo.Fn->getParent())),
+ TM(funcInfo.MF->getTarget()),
+ TII(*TM.getSubtargetImpl()->getInstrInfo()),
+ TLI(*TM.getSubtargetImpl()->getTargetLowering()) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
isThumb2 = AFI->isThumbFunction();
@@ -105,39 +105,39 @@ class ARMFastISel final : public FastISel {
// Code from FastISel.cpp.
private:
- unsigned FastEmitInst_r(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill);
- unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
- unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill);
- unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
- unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
- unsigned FastEmitInst_i(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm);
// Backend specific FastISel code.
private:
- bool TargetSelectInstruction(const Instruction *I) override;
- unsigned TargetMaterializeConstant(const Constant *C) override;
- unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
+ bool fastSelectInstruction(const Instruction *I) override;
+ unsigned fastMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI) override;
- bool FastLowerArguments() override;
+ bool fastLowerArguments() override;
private:
#include "ARMGenFastISel.inc"
@@ -189,7 +189,9 @@ class ARMFastISel final : public FastISel {
unsigned ARMSelectCallOp(bool UseReg);
unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
- const TargetLowering *getTargetLowering() { return TM.getTargetLowering(); }
+ const TargetLowering *getTargetLowering() {
+ return TM.getSubtargetImpl()->getTargetLowering();
+ }
// Call handling routines.
private:
@@ -283,7 +285,7 @@ ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
return MIB;
}
-unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
+unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill) {
unsigned ResultReg = createResultReg(RC);
@@ -305,7 +307,7 @@ unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
+unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
@@ -333,7 +335,7 @@ unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
+unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
@@ -365,7 +367,7 @@ unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
+unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm) {
@@ -391,7 +393,7 @@ unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
+unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
@@ -421,7 +423,7 @@ unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
+unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
@@ -511,7 +513,7 @@ unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
- return false;
+ return 0;
// If we can do this in a single instruction without a constant pool entry
// do so now.
@@ -534,7 +536,9 @@ unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
(ARM_AM::getSOImmVal(Imm) != -1);
if (UseImm) {
unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
- unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
+ &ARM::GPRRegClass;
+ unsigned ImmReg = createResultReg(RC);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ImmReg)
.addImm(Imm));
@@ -542,11 +546,16 @@ unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
}
}
+ unsigned ResultReg = 0;
+ if (Subtarget->useMovt(*FuncInfo.MF))
+ ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+
+ if (ResultReg)
+ return ResultReg;
+
// Load from constant pool. For now 32-bit only.
if (VT != MVT::i32)
- return false;
-
- unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
+ return 0;
// MachineConstantPool wants an explicit alignment.
unsigned Align = DL.getPrefTypeAlignment(C->getType());
@@ -555,21 +564,20 @@ unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
Align = DL.getTypeAllocSize(C->getType());
}
unsigned Idx = MCP.getConstantPoolIndex(C, Align);
-
+ ResultReg = createResultReg(TLI.getRegClassFor(VT));
if (isThumb2)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(ARM::t2LDRpci), DestReg)
- .addConstantPoolIndex(Idx));
+ TII.get(ARM::t2LDRpci), ResultReg)
+ .addConstantPoolIndex(Idx));
else {
// The extra immediate is for addrmode2.
- DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
+ ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(ARM::LDRcp), DestReg)
- .addConstantPoolIndex(Idx)
- .addImm(0));
+ TII.get(ARM::LDRcp), ResultReg)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
}
-
- return DestReg;
+ return ResultReg;
}
unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
@@ -578,9 +586,8 @@ unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
Reloc::Model RelocM = TM.getRelocationModel();
bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
- const TargetRegisterClass *RC = isThumb2 ?
- (const TargetRegisterClass*)&ARM::rGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
+ : &ARM::GPRRegClass;
unsigned DestReg = createResultReg(RC);
// FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
@@ -679,7 +686,7 @@ unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
return DestReg;
}
-unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
+unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
@@ -698,7 +705,7 @@ unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
-unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
// Don't handle dynamic allocas.
if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
@@ -885,9 +892,8 @@ void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
// put the alloca address into a register, set the base type back to
// register and continue. This should almost never happen.
if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
- const TargetRegisterClass *RC = isThumb2 ?
- (const TargetRegisterClass*)&ARM::tGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
unsigned ResultReg = createResultReg(RC);
unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
@@ -901,7 +907,7 @@ void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
// Since the offset is too large for the load/store instruction
// get the reg+offset into a register.
if (needsLowering) {
- Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
+ Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
/*Op0IsKill*/false, Addr.Offset, MVT::i32);
Addr.Offset = 0;
}
@@ -1074,7 +1080,7 @@ bool ARMFastISel::SelectLoad(const Instruction *I) {
unsigned ResultReg;
if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1086,9 +1092,8 @@ bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
// This is mostly going to be Neon/vector support.
default: return false;
case MVT::i1: {
- unsigned Res = createResultReg(isThumb2 ?
- (const TargetRegisterClass*)&ARM::tGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass);
+ unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass);
unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
@@ -1276,7 +1281,7 @@ bool ARMFastISel::SelectBranch(const Instruction *I) {
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
.addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
- FastEmitBranch(FBB, DbgLoc);
+ fastEmitBranch(FBB, DbgLoc);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
@@ -1301,7 +1306,7 @@ bool ARMFastISel::SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
.addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
- FastEmitBranch(FBB, DbgLoc);
+ fastEmitBranch(FBB, DbgLoc);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
@@ -1309,7 +1314,7 @@ bool ARMFastISel::SelectBranch(const Instruction *I) {
dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
- FastEmitBranch(Target, DbgLoc);
+ fastEmitBranch(Target, DbgLoc);
return true;
}
@@ -1339,7 +1344,7 @@ bool ARMFastISel::SelectBranch(const Instruction *I) {
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
.addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
- FastEmitBranch(FBB, DbgLoc);
+ fastEmitBranch(FBB, DbgLoc);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
@@ -1492,18 +1497,17 @@ bool ARMFastISel::SelectCmp(const Instruction *I) {
// Now set a register based on the comparison. Explicitly set the predicates
// here.
unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
- const TargetRegisterClass *RC = isThumb2 ?
- (const TargetRegisterClass*)&ARM::rGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
+ : &ARM::GPRRegClass;
unsigned DestReg = createResultReg(RC);
Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
- unsigned ZeroReg = TargetMaterializeConstant(Zero);
+ unsigned ZeroReg = fastMaterializeConstant(Zero);
// ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
.addReg(ZeroReg).addImm(1)
.addImm(ARMPred).addReg(ARM::CPSR);
- UpdateValueMap(I, DestReg);
+ updateValueMap(I, DestReg);
return true;
}
@@ -1522,7 +1526,7 @@ bool ARMFastISel::SelectFPExt(const Instruction *I) {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(ARM::VCVTDS), Result)
.addReg(Op));
- UpdateValueMap(I, Result);
+ updateValueMap(I, Result);
return true;
}
@@ -1541,7 +1545,7 @@ bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(ARM::VCVTSD), Result)
.addReg(Op));
- UpdateValueMap(I, Result);
+ updateValueMap(I, Result);
return true;
}
@@ -1585,7 +1589,7 @@ bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg).addReg(FP));
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1617,7 +1621,7 @@ bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
if (IntReg == 0) return false;
- UpdateValueMap(I, IntReg);
+ updateValueMap(I, IntReg);
return true;
}
@@ -1693,7 +1697,7 @@ bool ARMFastISel::SelectSelect(const Instruction *I) {
.addImm(ARMCC::EQ)
.addReg(ARM::CPSR);
}
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1783,7 +1787,7 @@ bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg)
.addReg(SrcReg1).addReg(SrcReg2));
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1825,7 +1829,7 @@ bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg)
.addReg(Op1).addReg(Op2));
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1883,7 +1887,7 @@ bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
unsigned &NumBytes,
bool isVarArg) {
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
CCAssignFnForCall(CC, false, isVarArg));
@@ -1941,6 +1945,7 @@ bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
// Process the args.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
+ const Value *ArgVal = Args[VA.getValNo()];
unsigned Arg = ArgRegs[VA.getValNo()];
MVT ArgVT = ArgVTs[VA.getValNo()];
@@ -1967,7 +1972,7 @@ bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
break;
}
case CCValAssign::BCvt: {
- unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
+ unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
/*TODO: Kill=*/false);
assert(BC != 0 && "Failed to emit a bitcast!");
Arg = BC;
@@ -2001,6 +2006,11 @@ bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
} else {
assert(VA.isMemLoc());
// Need to store on the stack.
+
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
Address Addr;
Addr.BaseType = Address::RegBase;
Addr.Base.Reg = ARM::SP;
@@ -2026,7 +2036,7 @@ bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
// Copy all of the result registers out of their specified physreg.
@@ -2045,7 +2055,7 @@ bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
UsedRegs.push_back(RVLocs[1].getLocReg());
// Finally update the result.
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
} else {
assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
MVT CopyVT = RVLocs[0].getValVT();
@@ -2063,7 +2073,7 @@ bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
UsedRegs.push_back(RVLocs[0].getLocReg());
// Finally update the result.
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
}
}
@@ -2087,7 +2097,7 @@ bool ARMFastISel::SelectRet(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
- CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
F.isVarArg()));
@@ -2192,7 +2202,7 @@ bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
// Can't handle non-double multi-reg retvals.
if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
if (RVLocs.size() >= 2 && RetVT != MVT::f64)
return false;
@@ -2303,7 +2313,7 @@ bool ARMFastISel::SelectCall(const Instruction *I,
if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
RetVT != MVT::i16 && RetVT != MVT::i32) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
if (RVLocs.size() >= 2 && RetVT != MVT::f64)
return false;
@@ -2476,18 +2486,13 @@ bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
MFI->setFrameAddressIsTaken(true);
- unsigned LdrOpc;
- const TargetRegisterClass *RC;
- if (isThumb2) {
- LdrOpc = ARM::t2LDRi12;
- RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
- } else {
- LdrOpc = ARM::LDRi12;
- RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
- }
+ unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
+ const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
const ARMBaseRegisterInfo *RegInfo =
- static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
+ static_cast<const ARMBaseRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
unsigned SrcReg = FramePtr;
@@ -2505,7 +2510,7 @@ bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
.addReg(SrcReg).addImm(0));
SrcReg = DestReg;
}
- UpdateValueMap(&I, SrcReg);
+ updateValueMap(&I, SrcReg);
return true;
}
case Intrinsic::memcpy:
@@ -2583,7 +2588,7 @@ bool ARMFastISel::SelectTrunc(const Instruction *I) {
// Because the high bits are undefined, a truncate doesn't generate
// any code.
- UpdateValueMap(I, SrcReg);
+ updateValueMap(I, SrcReg);
return true;
}
@@ -2745,7 +2750,7 @@ bool ARMFastISel::SelectIntExt(const Instruction *I) {
MVT DestVT = DestEVT.getSimpleVT();
unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
if (ResultReg == 0) return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -2800,12 +2805,12 @@ bool ARMFastISel::SelectShift(const Instruction *I,
}
AddOptionalDefs(MIB);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
// TODO: SoftFP support.
-bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
+bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
@@ -2983,7 +2988,7 @@ unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
return DestReg2;
}
-bool ARMFastISel::FastLowerArguments() {
+bool ARMFastISel::fastLowerArguments() {
if (!FuncInfo.CanLowerReturn)
return false;
@@ -3050,7 +3055,7 @@ bool ARMFastISel::FastLowerArguments() {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY),
ResultReg).addReg(DstReg, getKillRegState(true));
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
}
return true;
diff --git a/contrib/llvm/lib/Target/ARM/ARMFeatures.h b/contrib/llvm/lib/Target/ARM/ARMFeatures.h
index e191a3c..0c910ab 100644
--- a/contrib/llvm/lib/Target/ARM/ARMFeatures.h
+++ b/contrib/llvm/lib/Target/ARM/ARMFeatures.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_ARM_FEATURES_H
-#define TARGET_ARM_FEATURES_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMFEATURES_H
+#define LLVM_LIB_TARGET_ARM_ARMFEATURES_H
#include "MCTargetDesc/ARMMCTargetDesc.h"
diff --git a/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp
index 3624377..45c2c30 100644
--- a/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.cpp
@@ -47,7 +47,7 @@ ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
- const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
// iOS requires FP not to be clobbered for backtracing purpose.
if (STI.isTargetIOS())
@@ -137,12 +137,27 @@ static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
}
static int sizeOfSPAdjustment(const MachineInstr *MI) {
- assert(MI->getOpcode() == ARM::VSTMDDB_UPD);
+ int RegSize;
+ switch (MI->getOpcode()) {
+ case ARM::VSTMDDB_UPD:
+ RegSize = 8;
+ break;
+ case ARM::STMDB_UPD:
+ case ARM::t2STMDB_UPD:
+ RegSize = 4;
+ break;
+ case ARM::t2STR_PRE:
+ case ARM::STR_PRE_IMM:
+ return 4;
+ default:
+ llvm_unreachable("Unknown push or pop like instruction");
+ }
+
int count = 0;
// ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
// pred) so the list starts at 4.
for (int i = MI->getNumOperands() - 1; i >= 4; --i)
- count += 8;
+ count += RegSize;
return count;
}
@@ -154,6 +169,110 @@ static bool WindowsRequiresStackProbe(const MachineFunction &MF,
return StackSizeInBytes >= 4096;
}
+namespace {
+struct StackAdjustingInsts {
+ struct InstInfo {
+ MachineBasicBlock::iterator I;
+ unsigned SPAdjust;
+ bool BeforeFPSet;
+ };
+
+ SmallVector<InstInfo, 4> Insts;
+
+ void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
+ bool BeforeFPSet = false) {
+ InstInfo Info = {I, SPAdjust, BeforeFPSet};
+ Insts.push_back(Info);
+ }
+
+ void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
+ auto Info = std::find_if(Insts.begin(), Insts.end(),
+ [&](InstInfo &Info) { return Info.I == I; });
+ assert(Info != Insts.end() && "invalid sp adjusting instruction");
+ Info->SPAdjust += ExtraBytes;
+ }
+
+ void emitDefCFAOffsets(MachineModuleInfo &MMI, MachineBasicBlock &MBB,
+ DebugLoc dl, const ARMBaseInstrInfo &TII, bool HasFP) {
+ unsigned CFAOffset = 0;
+ for (auto &Info : Insts) {
+ if (HasFP && !Info.BeforeFPSet)
+ return;
+
+ CFAOffset -= Info.SPAdjust;
+ unsigned CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, std::next(Info.I), dl,
+ TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ }
+};
+}
+
+/// Emit an instruction sequence that will align the address in
+/// register Reg by zero-ing out the lower bits. For versions of the
+/// architecture that support Neon, this must be done in a single
+/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
+/// single instruction. That function only gets called when optimizing
+/// spilling of D registers on a core with the Neon instruction set
+/// present.
+static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
+ const TargetInstrInfo &TII,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, const unsigned Reg,
+ const unsigned Alignment,
+ const bool MustBeSingleInstruction) {
+ const ARMSubtarget &AST = MF.getTarget().getSubtarget<ARMSubtarget>();
+ const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
+ const unsigned AlignMask = Alignment - 1;
+ const unsigned NrBitsToZero = countTrailingZeros(Alignment);
+ assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
+ if (!AFI->isThumbFunction()) {
+ // if the BFC instruction is available, use that to zero the lower
+ // bits:
+ // bfc Reg, #0, log2(Alignment)
+ // otherwise use BIC, if the mask to zero the required number of bits
+ // can be encoded in the bic immediate field
+ // bic Reg, Reg, Alignment-1
+ // otherwise, emit
+ // lsr Reg, Reg, log2(Alignment)
+ // lsl Reg, Reg, log2(Alignment)
+ if (CanUseBFC) {
+ AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(~AlignMask));
+ } else if (AlignMask <= 255) {
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(AlignMask)));
+ } else {
+ assert(!MustBeSingleInstruction &&
+ "Shouldn't call emitAligningInstructions demanding a single "
+ "instruction to be emitted for large stack alignment for a target "
+ "without BFC.");
+ AddDefaultCC(AddDefaultPred(
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))));
+ AddDefaultCC(AddDefaultPred(
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))));
+ }
+ } else {
+ // Since this is only reached for Thumb-2 targets, the BFC instruction
+ // should always be available.
+ assert(CanUseBFC);
+ AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(~AlignMask));
+ }
+}
+
void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator MBBI = MBB.begin();
@@ -163,20 +282,20 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
MCContext &Context = MMI.getContext();
const TargetMachine &TM = MF.getTarget();
const MCRegisterInfo *MRI = Context.getRegisterInfo();
- const ARMBaseRegisterInfo *RegInfo =
- static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
- const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
+ const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ const ARMBaseInstrInfo &TII = *static_cast<const ARMBaseInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
assert(!AFI->isThumb1OnlyFunction() &&
"This emitPrologue does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
- unsigned Align = TM.getFrameLowering()->getStackAlignment();
+ unsigned Align =
+ TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment();
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
unsigned NumBytes = MFI->getStackSize();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
- int CFAOffset = 0;
// Determine the sizes of each callee-save spill areas and record which frame
// belongs to which callee-save spill areas.
@@ -189,15 +308,13 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
return;
+ StackAdjustingInsts DefCFAOffsetCandidates;
+
// Allocate the vararg register save area.
if (ArgRegsSaveSize) {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
MachineInstr::FrameSetup);
- CFAOffset -= ArgRegsSaveSize;
- unsigned CFIIndex = MMI.addFrameInst(
- MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
- BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
}
if (!AFI->hasStackFrame() &&
@@ -205,11 +322,8 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
if (NumBytes - ArgRegsSaveSize != 0) {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
MachineInstr::FrameSetup);
- CFAOffset -= NumBytes - ArgRegsSaveSize;
- unsigned CFIIndex = MMI.addFrameInst(
- MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
- BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI),
+ NumBytes - ArgRegsSaveSize, true);
}
return;
}
@@ -252,21 +366,23 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
}
// Move past area 1.
- MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push,
- DPRCSPush;
- if (GPRCS1Size > 0)
+ MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
+ if (GPRCS1Size > 0) {
GPRCS1Push = LastPush = MBBI++;
+ DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
+ }
// Determine starting offsets of spill areas.
bool HasFP = hasFP(MF);
- unsigned DPRCSOffset = NumBytes - (ArgRegsSaveSize + GPRCS1Size
- + GPRCS2Size + DPRCSSize);
- unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
- unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
+ unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
+ unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
+ unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
+ unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
+ unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
int FramePtrOffsetInPush = 0;
if (HasFP) {
- FramePtrOffsetInPush = MFI->getObjectOffset(FramePtrSpillFI)
- + GPRCS1Size + ArgRegsSaveSize;
+ FramePtrOffsetInPush =
+ MFI->getObjectOffset(FramePtrSpillFI) + ArgRegsSaveSize;
AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) +
NumBytes);
}
@@ -275,16 +391,32 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
// Move past area 2.
- if (GPRCS2Size > 0)
+ if (GPRCS2Size > 0) {
GPRCS2Push = LastPush = MBBI++;
+ DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
+ }
+
+ // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
+ // .cfi_offset operations will reflect that.
+ if (DPRGapSize) {
+ assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
+ if (tryFoldSPUpdateIntoPushPop(STI, MF, LastPush, DPRGapSize))
+ DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
+ else {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
+ MachineInstr::FrameSetup);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
+ }
+ }
// Move past area 3.
if (DPRCSSize > 0) {
- DPRCSPush = MBBI;
// Since vpush register list cannot have gaps, there may be multiple vpush
// instructions in the prologue.
- while (MBBI->getOpcode() == ARM::VSTMDDB_UPD)
+ while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
+ DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(MBBI));
LastPush = MBBI++;
+ }
}
// Move past the aligned DPRCS2 area.
@@ -343,18 +475,15 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
NumBytes = 0;
}
- unsigned adjustedGPRCS1Size = GPRCS1Size;
if (NumBytes) {
// Adjust SP after all the callee-save spills.
- if (tryFoldSPUpdateIntoPushPop(STI, MF, LastPush, NumBytes)) {
- if (LastPush == GPRCS1Push) {
- FramePtrOffsetInPush += NumBytes;
- adjustedGPRCS1Size += NumBytes;
- NumBytes = 0;
- }
- } else
+ if (tryFoldSPUpdateIntoPushPop(STI, MF, LastPush, NumBytes))
+ DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
+ else {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
MachineInstr::FrameSetup);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
+ }
if (HasFP && isARM)
// Restore from fp only in ARM mode: e.g. sub sp, r7, #24
@@ -368,13 +497,42 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
AFI->setShouldRestoreSPFromFP(true);
}
- if (adjustedGPRCS1Size > 0) {
- CFAOffset -= adjustedGPRCS1Size;
- unsigned CFIIndex = MMI.addFrameInst(
- MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
- MachineBasicBlock::iterator Pos = ++GPRCS1Push;
- BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ // Set FP to point to the stack slot that contains the previous FP.
+ // For iOS, FP is R7, which has now been stored in spill area 1.
+ // Otherwise, if this is not iOS, all the callee-saved registers go
+ // into spill area 1, including the FP in R11. In either case, it
+ // is in area one and the adjustment needs to take place just after
+ // that push.
+ if (HasFP) {
+ MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
+ unsigned PushSize = sizeOfSPAdjustment(GPRCS1Push);
+ emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
+ dl, TII, FramePtr, ARM::SP,
+ PushSize + FramePtrOffsetInPush,
+ MachineInstr::FrameSetup);
+ if (FramePtrOffsetInPush + PushSize != 0) {
+ unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true),
+ -(ArgRegsSaveSize - FramePtrOffsetInPush)));
+ BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ } else {
+ unsigned CFIIndex =
+ MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true)));
+ BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ }
+
+ // Now that the prologue's actual instructions are finalised, we can insert
+ // the necessary DWARF cf instructions to describe the situation. Start by
+ // recording where each register ended up:
+ if (GPRCS1Size > 0) {
+ MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
+ int CFIIndex;
for (const auto &Entry : CSI) {
unsigned Reg = Entry.getReg();
int FI = Entry.getFrameIdx();
@@ -399,47 +557,15 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(Reg, true), MFI->getObjectOffset(FI)));
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
break;
}
}
}
- // Set FP to point to the stack slot that contains the previous FP.
- // For iOS, FP is R7, which has now been stored in spill area 1.
- // Otherwise, if this is not iOS, all the callee-saved registers go
- // into spill area 1, including the FP in R11. In either case, it
- // is in area one and the adjustment needs to take place just after
- // that push.
- if (HasFP) {
- emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, GPRCS1Push, dl, TII,
- FramePtr, ARM::SP, FramePtrOffsetInPush,
- MachineInstr::FrameSetup);
- if (FramePtrOffsetInPush) {
- CFAOffset += FramePtrOffsetInPush;
- unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
- nullptr, MRI->getDwarfRegNum(FramePtr, true), CFAOffset));
- BuildMI(MBB, GPRCS1Push, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
-
- } else {
- unsigned CFIIndex =
- MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(
- nullptr, MRI->getDwarfRegNum(FramePtr, true)));
- BuildMI(MBB, GPRCS1Push, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
- }
- }
-
if (GPRCS2Size > 0) {
- MachineBasicBlock::iterator Pos = ++GPRCS2Push;
- if (!HasFP) {
- CFAOffset -= GPRCS2Size;
- unsigned CFIIndex = MMI.addFrameInst(
- MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
- BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
- }
+ MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
for (const auto &Entry : CSI) {
unsigned Reg = Entry.getReg();
int FI = Entry.getFrameIdx();
@@ -455,7 +581,8 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
break;
}
@@ -465,17 +592,7 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
if (DPRCSSize > 0) {
// Since vpush register list cannot have gaps, there may be multiple vpush
// instructions in the prologue.
- do {
- MachineBasicBlock::iterator Push = DPRCSPush++;
- if (!HasFP) {
- CFAOffset -= sizeOfSPAdjustment(Push);
- unsigned CFIIndex = MMI.addFrameInst(
- MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
- BuildMI(MBB, DPRCSPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
- }
- } while (DPRCSPush->getOpcode() == ARM::VSTMDDB_UPD);
-
+ MachineBasicBlock::iterator Pos = std::next(LastPush);
for (const auto &Entry : CSI) {
unsigned Reg = Entry.getReg();
int FI = Entry.getFrameIdx();
@@ -485,21 +602,18 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned Offset = MFI->getObjectOffset(FI);
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
- BuildMI(MBB, DPRCSPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
}
}
- if (NumBytes) {
- if (!HasFP) {
- CFAOffset -= NumBytes;
- unsigned CFIIndex = MMI.addFrameInst(
- MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
- BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
- }
- }
+ // Now we can emit descriptions of where the canonical frame address was
+ // throughout the process. If we have a frame pointer, it takes over the job
+ // half-way through, so only the first few .cfi_def_cfa_offset instructions
+ // actually get emitted.
+ DefCFAOffsetCandidates.emitDefCFAOffsets(MMI, MBB, dl, TII, HasFP);
if (STI.isTargetELF() && hasFP(MF))
MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
@@ -507,6 +621,7 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
+ AFI->setDPRCalleeSavedGapSize(DPRGapSize);
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
// If we need dynamic stack realignment, do it here. Be paranoid and make
@@ -515,28 +630,24 @@ void ARMFrameLowering::emitPrologue(MachineFunction &MF) const {
// realigned.
if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
unsigned MaxAlign = MFI->getMaxAlignment();
- assert (!AFI->isThumb1OnlyFunction());
+ assert(!AFI->isThumb1OnlyFunction());
if (!AFI->isThumbFunction()) {
- // Emit bic sp, sp, MaxAlign
- AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl,
- TII.get(ARM::BICri), ARM::SP)
- .addReg(ARM::SP, RegState::Kill)
- .addImm(MaxAlign-1)));
+ emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
+ false);
} else {
- // We cannot use sp as source/dest register here, thus we're emitting the
- // following sequence:
+ // We cannot use sp as source/dest register here, thus we're using r4 to
+ // perform the calculations. We're emitting the following sequence:
// mov r4, sp
- // bic r4, r4, MaxAlign
+ // -- use emitAligningInstructions to produce best sequence to zero
+ // -- out lower bits in r4
// mov sp, r4
// FIXME: It will be better just to find spare register here.
AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
- .addReg(ARM::SP, RegState::Kill));
- AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl,
- TII.get(ARM::t2BICri), ARM::R4)
- .addReg(ARM::R4, RegState::Kill)
- .addImm(MaxAlign-1)));
+ .addReg(ARM::SP, RegState::Kill));
+ emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
+ false);
AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
- .addReg(ARM::R4, RegState::Kill));
+ .addReg(ARM::R4, RegState::Kill));
}
AFI->setShouldRestoreSPFromFP(true);
@@ -574,7 +685,7 @@ void ARMFrameLowering::fixTCReturn(MachineFunction &MF,
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc dl = MBBI->getDebugLoc();
const ARMBaseInstrInfo &TII =
- *MF.getTarget().getSubtarget<ARMSubtarget>().getInstrInfo();
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (!(RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri))
return;
@@ -622,14 +733,17 @@ void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
DebugLoc dl = MBBI->getDebugLoc();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
assert(!AFI->isThumb1OnlyFunction() &&
"This emitEpilogue does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
- unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned Align = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
int NumBytes = (int)MFI->getStackSize();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
@@ -659,6 +773,7 @@ void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
NumBytes -= (ArgRegsSaveSize +
AFI->getGPRCalleeSavedArea1Size() +
AFI->getGPRCalleeSavedArea2Size() +
+ AFI->getDPRCalleeSavedGapSize() +
AFI->getDPRCalleeSavedAreaSize());
// Reset SP based on frame pointer only if the stack frame extends beyond
@@ -707,6 +822,12 @@ void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
while (MBBI->getOpcode() == ARM::VLDMDIA_UPD)
MBBI++;
}
+ if (AFI->getDPRCalleeSavedGapSize()) {
+ assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
+ "unexpected DPR alignment gap");
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
+ }
+
if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
}
@@ -732,8 +853,8 @@ ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
int FI, unsigned &FrameReg,
int SPAdj) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
- const ARMBaseRegisterInfo *RegInfo =
- static_cast<const ARMBaseRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
int FPOffset = Offset - AFI->getFramePtrSpillOffset();
@@ -818,7 +939,7 @@ void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
unsigned NumAlignedDPRCS2Regs,
unsigned MIFlags) const {
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
@@ -891,7 +1012,7 @@ void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
bool(*Func)(unsigned, bool),
unsigned NumAlignedDPRCS2Regs) const {
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL = MI->getDebugLoc();
unsigned RetOpcode = MI->getOpcode();
@@ -981,7 +1102,7 @@ static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL = MI->getDebugLoc();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineFrameInfo &MFI = *MF.getFrameInfo();
// Mark the D-register spill slots as properly aligned. Since MFI computes
@@ -1021,15 +1142,16 @@ static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
// The immediate is <= 64, so it doesn't need any special encoding.
unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
- .addReg(ARM::SP)
- .addImm(8 * NumAlignedDPRCS2Regs)));
+ .addReg(ARM::SP)
+ .addImm(8 * NumAlignedDPRCS2Regs)));
- // bic r4, r4, #align-1
- Opc = isThumb ? ARM::t2BICri : ARM::BICri;
unsigned MaxAlign = MF.getFrameInfo()->getMaxAlignment();
- AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
- .addReg(ARM::R4, RegState::Kill)
- .addImm(MaxAlign - 1)));
+ // We must set parameter MustBeSingleInstruction to true, since
+ // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
+ // stack alignment. Luckily, this can always be done since all ARM
+ // architecture versions that support Neon also support the BFC
+ // instruction.
+ emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
// mov sp, r4
// The stack pointer must be adjusted before spilling anything, otherwise
@@ -1140,7 +1262,7 @@ static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL = MI->getDebugLoc();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Find the frame index assigned to d8.
int D8SpillFI = 0;
@@ -1355,12 +1477,15 @@ static void checkNumAlignedDPRCS2Regs(MachineFunction &MF) {
return;
// Don't bother if the default stack alignment is sufficiently high.
- if (MF.getTarget().getFrameLowering()->getStackAlignment() >= 8)
+ if (MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment() >= 8)
return;
// Aligned spills require stack realignment.
- const ARMBaseRegisterInfo *RegInfo =
- static_cast<const ARMBaseRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
if (!RegInfo->canRealignStack(MF))
return;
@@ -1399,10 +1524,10 @@ ARMFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
unsigned NumGPRSpills = 0;
SmallVector<unsigned, 4> UnspilledCS1GPRs;
SmallVector<unsigned, 4> UnspilledCS2GPRs;
- const ARMBaseRegisterInfo *RegInfo =
- static_cast<const ARMBaseRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
@@ -1565,7 +1690,7 @@ ARMFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
// of GPRs, spill one extra callee save GPR so we won't have to pad between
// the integer and double callee save areas.
unsigned TargetAlign = getStackAlignment();
- if (TargetAlign == 8 && (NumGPRSpills & 1)) {
+ if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
unsigned Reg = UnspilledCS1GPRs[i];
@@ -1643,7 +1768,7 @@ void ARMFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (!hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
@@ -1761,7 +1886,7 @@ void ARMFrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
MCContext &Context = MMI.getContext();
const MCRegisterInfo *MRI = Context.getRegisterInfo();
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL;
diff --git a/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h
index 74629c3..b7be436 100644
--- a/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h
+++ b/contrib/llvm/lib/Target/ARM/ARMFrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARM_FRAMEINFO_H
-#define ARM_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMFRAMELOWERING_H
+#define LLVM_LIB_TARGET_ARM_ARMFRAMELOWERING_H
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp
index 0885c4e..0e4f81c 100644
--- a/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.cpp
@@ -46,8 +46,8 @@ ARMHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
const MCInstrDesc &LastMCID = LastMI->getDesc();
const TargetMachine &TM =
MI->getParent()->getParent()->getTarget();
- const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
+ const ARMBaseInstrInfo &TII = *static_cast<const ARMBaseInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
// Skip over one non-VFP / NEON instruction.
if (!LastMI->isBarrier() &&
diff --git a/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h
index a8198e2..ccf09db 100644
--- a/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h
+++ b/contrib/llvm/lib/Target/ARM/ARMHazardRecognizer.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMHAZARDRECOGNIZER_H
-#define ARMHAZARDRECOGNIZER_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMHAZARDRECOGNIZER_H
+#define LLVM_LIB_TARGET_ARM_ARMHAZARDRECOGNIZER_H
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
@@ -46,4 +46,4 @@ public:
} // end namespace llvm
-#endif // ARMHAZARDRECOGNIZER_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
index 38547cf..9621743 100644
--- a/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
@@ -425,7 +425,7 @@ bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
return true;
if (Use->isMachineOpcode()) {
const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
- CurDAG->getTarget().getInstrInfo());
+ CurDAG->getSubtarget().getInstrInfo());
const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
if (MCID.mayStore())
@@ -526,8 +526,7 @@ bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
if (N.getOpcode() == ISD::FrameIndex) {
// Match frame index.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
@@ -542,16 +541,15 @@ bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
}
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- int RHSC = (int)RHS->getZExtValue();
+ int RHSC = (int)RHS->getSExtValue();
if (N.getOpcode() == ISD::SUB)
RHSC = -RHSC;
- if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
+ if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
@@ -697,8 +695,7 @@ AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
Base = N;
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
} else if (N.getOpcode() == ARMISD::Wrapper &&
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
Base = N.getOperand(0);
@@ -718,8 +715,7 @@ AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
Offset = CurDAG->getRegister(0, MVT::i32);
@@ -896,8 +892,7 @@ bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
Base = N;
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
Offset = CurDAG->getRegister(0, MVT::i32);
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
@@ -911,8 +906,7 @@ bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
Offset = CurDAG->getRegister(0, MVT::i32);
@@ -957,8 +951,7 @@ bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
Base = N;
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
} else if (N.getOpcode() == ARMISD::Wrapper &&
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
Base = N.getOperand(0);
@@ -975,8 +968,7 @@ bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
ARM_AM::AddrOpc AddSub = ARM_AM::add;
@@ -1199,8 +1191,7 @@ bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
SDValue &Base, SDValue &OffImm) {
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
@@ -1217,8 +1208,7 @@ bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
@@ -1266,8 +1256,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
if (N.getOpcode() == ISD::FrameIndex) {
// Match frame index.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
@@ -1296,8 +1285,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
@@ -1326,8 +1314,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
@@ -1392,10 +1379,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
OffReg = OffReg.getOperand(0);
else {
ShAmt = 0;
- ShOpcVal = ARM_AM::no_shift;
}
- } else {
- ShOpcVal = ARM_AM::no_shift;
}
}
@@ -1425,7 +1409,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
}
OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
@@ -1800,6 +1784,7 @@ SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
case MVT::v8i16: OpcodeIndex = 1; break;
case MVT::v4f32:
case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2f64:
case MVT::v2i64: OpcodeIndex = 3;
assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
break;
@@ -1936,6 +1921,7 @@ SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
case MVT::v8i16: OpcodeIndex = 1; break;
case MVT::v4f32:
case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2f64:
case MVT::v2i64: OpcodeIndex = 3;
assert(NumVecs == 1 && "v2i64 type only supported for VST1");
break;
@@ -2361,6 +2347,25 @@ SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
}
}
+
+ if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
+ unsigned LSB = 0;
+ if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
+ !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
+ return nullptr;
+
+ if (LSB + Width > 32)
+ return nullptr;
+
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width - 1, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
+ }
+
return nullptr;
}
@@ -2457,10 +2462,9 @@ SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
}
if (UseCP) {
- SDValue CPIdx =
- CurDAG->getTargetConstantPool(ConstantInt::get(
- Type::getInt32Ty(*CurDAG->getContext()), Val),
- getTargetLowering()->getPointerTy());
+ SDValue CPIdx = CurDAG->getTargetConstantPool(
+ ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
+ TLI->getPointerTy());
SDNode *ResNode;
if (Subtarget->isThumb()) {
@@ -2490,12 +2494,10 @@ SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
case ISD::FrameIndex: {
// Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI,
- getTargetLowering()->getPointerTy());
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
if (Subtarget->isThumb1Only()) {
- SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
- getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
- return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops);
+ return CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
+ CurDAG->getTargetConstant(0, MVT::i32));
} else {
unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
ARM::t2ADDri : ARM::ADDri);
@@ -2509,6 +2511,7 @@ SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
return I;
break;
+ case ISD::SIGN_EXTEND_INREG:
case ISD::SRA:
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
return I;
@@ -3393,7 +3396,6 @@ SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
Ops.push_back(T1.getValue(1));
CurDAG->UpdateNodeOperands(GU, Ops);
- GU = T1.getNode();
}
else {
// For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
index f5baf2e..f92f257 100644
--- a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -29,6 +29,7 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -70,9 +71,9 @@ namespace {
class ARMCCState : public CCState {
public:
ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
- const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
- LLVMContext &C, ParmContext PC)
- : CCState(CC, isVarArg, MF, TM, locs, C) {
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
+ ParmContext PC)
+ : CCState(CC, isVarArg, MF, locs, C) {
assert(((PC == Call) || (PC == Prologue)) &&
"ARMCCState users must specify whether their context is call"
"or prologue generation.");
@@ -155,19 +156,11 @@ void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
}
-static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
- if (TT.isOSBinFormatMachO())
- return new TargetLoweringObjectFileMachO();
- if (TT.isOSWindows())
- return new TargetLoweringObjectFileCOFF();
- return new ARMElfTargetObjectFile();
-}
-
-ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
- : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
+ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM)
+ : TargetLowering(TM) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
- RegInfo = TM.getRegisterInfo();
- Itins = TM.getInstrItineraryData();
+ RegInfo = TM.getSubtargetImpl()->getRegisterInfo();
+ Itins = TM.getSubtargetImpl()->getInstrItineraryData();
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
@@ -312,6 +305,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
// Conversions between floating types.
// RTABI chapter 4.1.2, Table 7
{ RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer to floating-point conversions.
@@ -387,6 +381,19 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
}
+ // The half <-> float conversion functions are always soft-float, but are
+ // needed for some targets which use a hard-float calling convention by
+ // default.
+ if (Subtarget->isAAPCS_ABI()) {
+ setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
+ } else {
+ setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
+ setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
+ setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
+ }
+
if (Subtarget->isThumb1Only())
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
else
@@ -394,26 +401,23 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
!Subtarget->isThumb1Only()) {
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
- if (!Subtarget->isFPOnlySP())
- addRegisterClass(MVT::f64, &ARM::DPRRegClass);
+ addRegisterClass(MVT::f64, &ARM::DPRRegClass);
}
- for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
- for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
- setTruncStoreAction((MVT::SimpleValueType)VT,
- (MVT::SimpleValueType)InnerVT, Expand);
- setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
- setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ for (MVT VT : MVT::vector_valuetypes()) {
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
+ setTruncStoreAction(VT, InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
+ }
- setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
- setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
}
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
@@ -561,15 +565,18 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::FP_TO_UINT);
setTargetDAGCombine(ISD::FDIV);
+ setTargetDAGCombine(ISD::LOAD);
// It is legal to extload from v4i8 to v4i16 or v4i32.
MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
MVT::v4i16, MVT::v2i16,
MVT::v2i32};
for (unsigned i = 0; i < 6; ++i) {
- setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
- setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
- setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, Tys[i], Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, Tys[i], Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, Tys[i], Legal);
+ }
}
}
@@ -577,12 +584,47 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
if (!Subtarget->isThumb1Only())
setTargetDAGCombine(ISD::ADDC);
+ if (Subtarget->isFPOnlySP()) {
+ // When targetting a floating-point unit with only single-precision
+ // operations, f64 is legal for the few double-precision instructions which
+ // are present However, no double-precision operations other than moves,
+ // loads and stores are provided by the hardware.
+ setOperationAction(ISD::FADD, MVT::f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FDIV, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::f64, Expand);
+ setOperationAction(ISD::FABS, MVT::f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
+ }
computeRegisterProperties();
// ARM does not have floating-point extending loads.
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
+ }
// ... or truncating stores
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
@@ -590,7 +632,8 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
// ARM does not have i1 sign extending load.
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// ARM supports all 4 flavors of integer indexed load / store.
if (!Subtarget->isThumb1Only()) {
@@ -720,8 +763,12 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
- // the default expansion.
- if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
+ // the default expansion. If we are targeting a single threaded system,
+ // then set them all for expand so we can lower them later into their
+ // non-atomic form.
+ if (TM.Options.ThreadModel == ThreadModel::Single)
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
+ else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
// ATOMIC_FENCE needs custom lowering; the others should have been expanded
// to ldrex/strex loops already.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
@@ -729,7 +776,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
// On v8, we have particularly efficient implementations of atomic fences
// if they can be combined with nearby atomic loads and stores.
if (!Subtarget->hasV8Ops()) {
- // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
+ // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
setInsertFencesForAtomic(true);
}
} else {
@@ -830,8 +877,8 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
}
- // v8 adds f64 <-> f16 conversion. Before that it should be expanded.
- if (!Subtarget->hasV8Ops()) {
+ // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
+ if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
}
@@ -847,7 +894,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
if (Subtarget->hasSinCos()) {
setLibcallName(RTLIB::SINCOS_F32, "sincosf");
setLibcallName(RTLIB::SINCOS_F64, "sincos");
- if (Subtarget->getTargetTriple().getOS() == Triple::IOS) {
+ if (Subtarget->getTargetTriple().isiOS()) {
// For iOS, we don't want to the normal expansion of a libcall to
// sincos. We want to issue a libcall to __sincos_stret.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
@@ -855,6 +902,23 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
}
}
+ // FP-ARMv8 implements a lot of rounding-like FP operations.
+ if (Subtarget->hasFPARMv8()) {
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ if (!Subtarget->isFPOnlySP()) {
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FROUND, MVT::f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+ }
+ }
// We have target-specific dag combine patterns for the following nodes:
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
setTargetDAGCombine(ISD::ADD);
@@ -1130,7 +1194,8 @@ Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
// Load are scheduled for latency even if there instruction itinerary
// is not available.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
if (MCID.getNumDefs() == 0)
@@ -1267,8 +1332,8 @@ ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext(), Call);
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext(), Call);
CCInfo.AnalyzeCallResult(Ins,
CCAssignFnForNode(CallConv, /* Return*/ true,
isVarArg));
@@ -1428,8 +1493,8 @@ ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), Call);
CCInfo.AnalyzeCallOperands(Outs,
CCAssignFnForNode(CallConv, /* Return*/ false,
isVarArg));
@@ -1657,14 +1722,17 @@ ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
bool isStub = (isExt && Subtarget->isTargetMachO()) &&
getTargetMachine().getRelocationModel() != Reloc::Static;
- isARMFunc = !Subtarget->isThumb() || isStub;
+ isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
// ARM call to a local ARM function is predicable.
isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
// tBX takes a register source operand.
if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
- DAG.getTargetGlobalAddress(GV, dl, getPointerTy()));
+ DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
+ 0, ARMII::MO_NONLAZY));
+ Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
+ MachinePointerInfo::getGOT(), false, false, true, 0);
} else if (Subtarget->isTargetCOFF()) {
assert(Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target");
@@ -1690,7 +1758,7 @@ ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
isDirect = true;
bool isStub = Subtarget->isTargetMachO() &&
getTargetMachine().getRelocationModel() != Reloc::Static;
- isARMFunc = !Subtarget->isThumb() || isStub;
+ isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
@@ -1751,7 +1819,8 @@ ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Add a register mask operand representing the call-preserved registers.
if (!isTailCall) {
const uint32_t *Mask;
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
if (isThisReturn) {
// For 'this' returns, use the R0-preserving mask if applicable
@@ -1951,17 +2020,32 @@ ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
if (Subtarget->isThumb1Only())
return false;
+ // Externally-defined functions with weak linkage should not be
+ // tail-called on ARM when the OS does not support dynamic
+ // pre-emption of symbols, as the AAELF spec requires normal calls
+ // to undefined weak functions to be replaced with a NOP or jump to the
+ // next instruction. The behaviour of branch instructions in this
+ // situation (as used for tail calls) is implementation-defined, so we
+ // cannot rely on the linker replacing the tail call with a return.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ const Triple TT(getTargetMachine().getTargetTriple());
+ if (GV->hasExternalWeakLinkage() &&
+ (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
+ return false;
+ }
+
// If the calling conventions do not match, then we'd better make sure the
// results are returned in the same way as what the caller expects.
if (!CCMatch) {
SmallVector<CCValAssign, 16> RVLocs1;
- ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
+ ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
+ *DAG.getContext(), Call);
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
SmallVector<CCValAssign, 16> RVLocs2;
- ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
+ ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
+ *DAG.getContext(), Call);
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
if (RVLocs1.size() != RVLocs2.size())
@@ -1995,8 +2079,8 @@ ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
- ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
+ ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), Call);
CCInfo.AnalyzeCallOperands(Outs,
CCAssignFnForNode(CalleeCC, false, isVarArg));
if (CCInfo.getNextStackOffset()) {
@@ -2006,7 +2090,8 @@ ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// the caller's fixed stack objects.
MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
@@ -2049,7 +2134,7 @@ ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
isVarArg));
}
@@ -2097,8 +2182,8 @@ ARMTargetLowering::LowerReturn(SDValue Chain,
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
- ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext(), Call);
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext(), Call);
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
@@ -2109,6 +2194,10 @@ ARMTargetLowering::LowerReturn(SDValue Chain,
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
bool isLittleEndian = Subtarget->isLittle();
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ AFI->setReturnRegsCount(RVLocs.size());
+
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
@@ -2227,9 +2316,15 @@ bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (Copies.count(UseChain.getNode()))
// Second CopyToReg
Copy = *UI;
- else
+ else {
+ // We are at the top of this chain.
+ // If the copy has a glue operand, we conservatively assume it
+ // isn't safe to perform a tail call.
+ if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
// First CopyToReg
TCChain = UseChain;
+ }
}
} else if (Copy->getOpcode() == ISD::BITCAST) {
// f32 returned in a single GPR.
@@ -2238,6 +2333,10 @@ bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
Copy = *Copy->use_begin();
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
return false;
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
TCChain = Copy->getOperand(0);
} else {
return false;
@@ -2637,7 +2736,7 @@ static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
- unsigned Domain = ARM_MB::ISH;
+ ARM_MB::MemBOpt Domain = ARM_MB::ISH;
if (Subtarget->isMClass()) {
// Only a full system barrier exists in the M-class architectures.
Domain = ARM_MB::SY;
@@ -2750,7 +2849,10 @@ ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
}
- unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned Align = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
ArgRegsSize = NumGPRs * 4;
// If parameter is split between stack and GPRs...
@@ -2927,8 +3029,8 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), Prologue);
CCInfo.AnalyzeFormalArguments(Ins,
CCAssignFnForNode(CallConv, /* Return*/ false,
isVarArg));
@@ -2977,7 +3079,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
}
CCInfo.rewindByValRegsInfo();
lastInsIndex = -1;
- if (isVarArg) {
+ if (isVarArg && MFI->hasVAStart()) {
unsigned ExtraArgRegsSize;
unsigned ExtraArgRegsSaveSize;
computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsCount(), 0,
@@ -3033,9 +3135,8 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
else if (RegVT == MVT::v2f64)
RC = &ARM::QPRRegClass;
else if (RegVT == MVT::i32)
- RC = AFI->isThumb1OnlyFunction() ?
- (const TargetRegisterClass*)&ARM::tGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass;
+ RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
@@ -3119,7 +3220,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
}
// varargs
- if (isVarArg)
+ if (isVarArg && MFI->hasVAStart())
VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
CCInfo.getNextStackOffset(),
TotalArgRegsSaveSize);
@@ -3141,6 +3242,18 @@ static bool isFloatingPointZero(SDValue Op) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isPosZero();
}
+ } else if (Op->getOpcode() == ISD::BITCAST &&
+ Op->getValueType(0) == MVT::f64) {
+ // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
+ // created by LowerConstantFP().
+ SDValue BitcastOp = Op->getOperand(0);
+ if (BitcastOp->getOpcode() == ARMISD::VMOVIMM) {
+ SDValue MoveOp = BitcastOp->getOperand(0);
+ if (MoveOp->getOpcode() == ISD::TargetConstant &&
+ cast<ConstantSDNode>(MoveOp)->getZExtValue() == 0) {
+ return true;
+ }
+ }
}
return false;
}
@@ -3209,6 +3322,7 @@ ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
SDLoc dl) const {
+ assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
SDValue Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
@@ -3324,9 +3438,8 @@ SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
EVT VT = Op.getValueType();
- return DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, SelectTrue, SelectFalse,
- ARMcc, CCR, OverflowCmp);
-
+ return getCMOV(SDLoc(Op), VT, SelectTrue, SelectFalse, ARMcc, CCR,
+ OverflowCmp, DAG);
}
// Convert:
@@ -3360,7 +3473,7 @@ SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue CCR = Cond.getOperand(3);
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
assert(True.getValueType() == VT);
- return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
+ return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
}
}
}
@@ -3430,6 +3543,32 @@ static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
}
}
+SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
+ SDValue TrueVal, SDValue ARMcc, SDValue CCR,
+ SDValue Cmp, SelectionDAG &DAG) const {
+ if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
+ FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
+ TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
+
+ SDValue TrueLow = TrueVal.getValue(0);
+ SDValue TrueHigh = TrueVal.getValue(1);
+ SDValue FalseLow = FalseVal.getValue(0);
+ SDValue FalseHigh = FalseVal.getValue(1);
+
+ SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
+ ARMcc, CCR, Cmp);
+ SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
+ ARMcc, CCR, duplicateCmp(Cmp, DAG));
+
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
+ } else {
+ return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
+ Cmp);
+ }
+}
+
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
@@ -3439,6 +3578,18 @@ SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue FalseVal = Op.getOperand(3);
SDLoc dl(Op);
+ if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
+ DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
+ dl);
+
+ // If softenSetCCOperands only returned one value, we should compare it to
+ // zero.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
if (LHS.getValueType() == MVT::i32) {
// Try to generate VSEL on ARMv8.
// The VSEL instruction can't use all the usual ARM condition
@@ -3463,8 +3614,7 @@ SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
- return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
- Cmp);
+ return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
}
ARMCC::CondCodes CondCode, CondCode2;
@@ -3479,12 +3629,18 @@ SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
// select c, a, b
// We only do this in unsafe-fp-math, because signed zeros and NaNs are
// handled differently than the original code sequence.
- if (getTargetMachine().Options.UnsafeFPMath && LHS == TrueVal &&
- RHS == FalseVal) {
- if (CC == ISD::SETOGT || CC == ISD::SETUGT)
- return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
- if (CC == ISD::SETOLT || CC == ISD::SETULT)
- return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
+ if (getTargetMachine().Options.UnsafeFPMath) {
+ if (LHS == TrueVal && RHS == FalseVal) {
+ if (CC == ISD::SETOGT || CC == ISD::SETUGT)
+ return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
+ if (CC == ISD::SETOLT || CC == ISD::SETULT)
+ return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
+ } else if (LHS == FalseVal && RHS == TrueVal) {
+ if (CC == ISD::SETOLT || CC == ISD::SETULT)
+ return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
+ if (CC == ISD::SETOGT || CC == ISD::SETUGT)
+ return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
+ }
}
bool swpCmpOps = false;
@@ -3503,14 +3659,12 @@ SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
- SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
- ARMcc, CCR, Cmp);
+ SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
if (CondCode2 != ARMCC::AL) {
SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
- Result = DAG.getNode(ARMISD::CMOV, dl, VT,
- Result, TrueVal, ARMcc2, CCR, Cmp2);
+ Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
}
return Result;
}
@@ -3643,6 +3797,18 @@ SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
+ if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
+ DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
+ dl);
+
+ // If softenSetCCOperands only returned one value, we should compare it to
+ // zero.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
if (LHS.getValueType() == MVT::i32) {
SDValue ARMcc;
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
@@ -3735,11 +3901,23 @@ static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
}
-static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorFP_TO_INT(Op, DAG);
+ if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::FP_TO_SINT)
+ LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ else
+ LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
+ /*isSigned*/ false, SDLoc(Op)).first;
+ }
+
SDLoc dl(Op);
unsigned Opc;
@@ -3789,11 +3967,23 @@ static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(Opc, dl, VT, Op);
}
-static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorINT_TO_FP(Op, DAG);
+ if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::SINT_TO_FP)
+ LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ else
+ LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
+ /*isSigned*/ false, SDLoc(Op)).first;
+ }
+
SDLoc dl(Op);
unsigned Opc;
@@ -4302,7 +4492,7 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
SDLoc dl(Op);
- if (Op.getOperand(1).getValueType().isFloatingPoint()) {
+ if (Op1.getValueType().isFloatingPoint()) {
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal FP comparison");
case ISD::SETUNE:
@@ -4566,6 +4756,11 @@ SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
bool IsDouble = Op.getValueType() == MVT::f64;
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
+ // Use the default (constant pool) lowering for double constants when we have
+ // an SP-only FPU
+ if (IsDouble && Subtarget->isFPOnlySP())
+ return SDValue();
+
// Try splatting with a VMOV.f32...
APFloat FPVal = CFP->getValueAPF();
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
@@ -5744,7 +5939,7 @@ static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
// operation legalization where we can't create illegal types.
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
- LD->getMemoryVT(), LD->isVolatile(),
+ LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
LD->isNonTemporal(), LD->getAlignment());
}
@@ -6099,7 +6294,7 @@ SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Pair of floats / doubles used to pass the result.
- StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
+ StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
// Create stack object for sret.
const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
@@ -6269,6 +6464,8 @@ SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
return LowerDYNAMIC_STACKALLOC(Op, DAG);
llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
+ case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
}
}
@@ -6305,7 +6502,8 @@ void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
void ARMTargetLowering::
SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB, int FI) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
@@ -6322,9 +6520,8 @@ SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
- const TargetRegisterClass *TRC = isThumb ?
- (const TargetRegisterClass*)&ARM::tGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass;
+ const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
// Grab constant pool and fixed stack memory operands.
MachineMemOperand *CPMMO =
@@ -6388,9 +6585,9 @@ SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3, RegState::Kill));
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
- AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
- .addFrameIndex(FI)
- .addImm(36)); // &jbuf[1] :: pc
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
+ .addFrameIndex(FI)
+ .addImm(36); // &jbuf[1] :: pc
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg5, RegState::Kill)
@@ -6420,7 +6617,8 @@ SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
MachineBasicBlock *ARMTargetLowering::
EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
@@ -6428,9 +6626,8 @@ EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
MachineFrameInfo *MFI = MF->getFrameInfo();
int FI = MFI->getFunctionContextIndex();
- const TargetRegisterClass *TRC = Subtarget->isThumb() ?
- (const TargetRegisterClass*)&ARM::tGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
+ const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
+ : &ARM::GPRnopcRegClass;
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
@@ -6749,16 +6946,14 @@ EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
for (std::vector<MachineBasicBlock*>::iterator
I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
MachineBasicBlock *CurMBB = *I;
- if (SeenMBBs.insert(CurMBB))
+ if (SeenMBBs.insert(CurMBB).second)
DispContBB->addSuccessor(CurMBB);
}
// N.B. the order the invoke BBs are processed in doesn't matter here.
const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
SmallVector<MachineBasicBlock*, 64> MBBLPads;
- for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
- I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
- MachineBasicBlock *BB = *I;
+ for (MachineBasicBlock *BB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
@@ -6937,7 +7132,8 @@ ARMTargetLowering::EmitStructByval(MachineInstr *MI,
// This pseudo instruction has 3 operands: dst, src, size
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
// Otherwise, we will generate unrolled scalar copies.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
@@ -6979,14 +7175,11 @@ ARMTargetLowering::EmitStructByval(MachineInstr *MI,
// Select the correct opcode and register class for unit size load/store
bool IsNeon = UnitSize >= 8;
- TRC = (IsThumb1 || IsThumb2) ? (const TargetRegisterClass *)&ARM::tGPRRegClass
- : (const TargetRegisterClass *)&ARM::GPRRegClass;
+ TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
if (IsNeon)
- VecTRC = UnitSize == 16
- ? (const TargetRegisterClass *)&ARM::DPairRegClass
- : UnitSize == 8
- ? (const TargetRegisterClass *)&ARM::DPRRegClass
- : nullptr;
+ VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
+ : UnitSize == 8 ? &ARM::DPRRegClass
+ : nullptr;
unsigned BytesLeft = SizeVal % UnitSize;
unsigned LoopSize = SizeVal - BytesLeft;
@@ -7171,7 +7364,7 @@ MachineBasicBlock *
ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
MachineBasicBlock *MBB) const {
const TargetMachine &TM = getTargetMachine();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
assert(Subtarget->isTargetWindows() &&
@@ -7236,7 +7429,8 @@ ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
switch (MI->getOpcode()) {
@@ -7433,9 +7627,8 @@ ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineRegisterInfo &MRI = Fn->getRegInfo();
// In Thumb mode S must not be specified if source register is the SP or
// PC and if destination register is the SP, so restrict register class
- unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
- (const TargetRegisterClass*)&ARM::rGPRRegClass :
- (const TargetRegisterClass*)&ARM::GPRRegClass);
+ unsigned NewRsbDstReg =
+ MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
// Transfer the remainder of BB and its successor edges to sinkMBB.
SinkBB->splice(SinkBB->begin(), BB,
@@ -7489,12 +7682,6 @@ ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
- if (!MI->hasPostISelHook()) {
- assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
- "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
- return;
- }
-
const MCInstrDesc *MCID = &MI->getDesc();
// Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
// RSC. Coming out of isel, they have an implicit CPSR def, but the optional
@@ -7506,8 +7693,8 @@ void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
// Rename pseudo opcodes.
unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
if (NewOpc) {
- const ARMBaseInstrInfo *TII =
- static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
+ const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
MCID = &TII->get(NewOpc);
assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
@@ -8395,7 +8582,10 @@ static SDValue PerformBFICombine(SDNode *N,
unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
unsigned LSB = countTrailingZeros(~InvMask);
unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
- unsigned Mask = (1 << Width)-1;
+ assert(Width <
+ static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
+ "undefined behavior");
+ unsigned Mask = (1u << Width) - 1;
unsigned Mask2 = N11C->getZExtValue();
if ((Mask & (~Mask2)) == 0)
return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
@@ -8408,10 +8598,11 @@ static SDValue PerformBFICombine(SDNode *N,
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVRRD.
static SDValue PerformVMOVRRDCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
// vmovrrd(vmovdrr x, y) -> x,y
SDValue InDouble = N->getOperand(0);
- if (InDouble.getOpcode() == ARMISD::VMOVDRR)
+ if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
// vmovrrd(load f64) -> (load i32), (load i32)
@@ -8442,8 +8633,6 @@ static SDValue PerformVMOVRRDCombine(SDNode *N,
if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
std::swap (NewLD1, NewLD2);
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
- DCI.RemoveFromWorklist(LD);
- DAG.DeleteNode(LD);
return Result;
}
@@ -8468,147 +8657,6 @@ static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
return SDValue();
}
-/// PerformSTORECombine - Target-specific dag combine xforms for
-/// ISD::STORE.
-static SDValue PerformSTORECombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
- StoreSDNode *St = cast<StoreSDNode>(N);
- if (St->isVolatile())
- return SDValue();
-
- // Optimize trunc store (of multiple scalars) to shuffle and store. First,
- // pack all of the elements in one place. Next, store to memory in fewer
- // chunks.
- SDValue StVal = St->getValue();
- EVT VT = StVal.getValueType();
- if (St->isTruncatingStore() && VT.isVector()) {
- SelectionDAG &DAG = DCI.DAG;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT StVT = St->getMemoryVT();
- unsigned NumElems = VT.getVectorNumElements();
- assert(StVT != VT && "Cannot truncate to the same type");
- unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
- unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
-
- // From, To sizes and ElemCount must be pow of two
- if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
-
- // We are going to use the original vector elt for storing.
- // Accumulated smaller vector elements must be a multiple of the store size.
- if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
-
- unsigned SizeRatio = FromEltSz / ToEltSz;
- assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
-
- // Create a type on which we perform the shuffle.
- EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
- NumElems*SizeRatio);
- assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
-
- SDLoc DL(St);
- SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
- SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
- for (unsigned i = 0; i < NumElems; ++i)
- ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
-
- // Can't shuffle using an illegal type.
- if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
-
- SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
- DAG.getUNDEF(WideVec.getValueType()),
- ShuffleVec.data());
- // At this point all of the data is stored at the bottom of the
- // register. We now need to save it to mem.
-
- // Find the largest store unit
- MVT StoreType = MVT::i8;
- for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
- tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
- MVT Tp = (MVT::SimpleValueType)tp;
- if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
- StoreType = Tp;
- }
- // Didn't find a legal store type.
- if (!TLI.isTypeLegal(StoreType))
- return SDValue();
-
- // Bitcast the original vector into a vector of store-size units
- EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
- StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
- assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
- SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
- SmallVector<SDValue, 8> Chains;
- SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
- TLI.getPointerTy());
- SDValue BasePtr = St->getBasePtr();
-
- // Perform one or more big stores into memory.
- unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
- for (unsigned I = 0; I < E; I++) {
- SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- StoreType, ShuffWide,
- DAG.getIntPtrConstant(I));
- SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
- St->getPointerInfo(), St->isVolatile(),
- St->isNonTemporal(), St->getAlignment());
- BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
- Increment);
- Chains.push_back(Ch);
- }
- return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
- }
-
- if (!ISD::isNormalStore(St))
- return SDValue();
-
- // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
- // ARM stores of arguments in the same cache line.
- if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
- StVal.getNode()->hasOneUse()) {
- SelectionDAG &DAG = DCI.DAG;
- bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
- SDLoc DL(St);
- SDValue BasePtr = St->getBasePtr();
- SDValue NewST1 = DAG.getStore(St->getChain(), DL,
- StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
- BasePtr, St->getPointerInfo(), St->isVolatile(),
- St->isNonTemporal(), St->getAlignment());
-
- SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
- DAG.getConstant(4, MVT::i32));
- return DAG.getStore(NewST1.getValue(0), DL,
- StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
- OffsetPtr, St->getPointerInfo(), St->isVolatile(),
- St->isNonTemporal(),
- std::min(4U, St->getAlignment() / 2));
- }
-
- if (StVal.getValueType() != MVT::i64 ||
- StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
- return SDValue();
-
- // Bitcast an i64 store extracted from a vector to f64.
- // Otherwise, the i64 value will be legalized to a pair of i32 values.
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(StVal);
- SDValue IntVec = StVal.getOperand(0);
- EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
- IntVec.getValueType().getVectorNumElements());
- SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
- SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
- Vec, StVal.getOperand(1));
- dl = SDLoc(N);
- SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
- // Make the DAGCombiner fold the bitcasts.
- DCI.AddToWorklist(Vec.getNode());
- DCI.AddToWorklist(ExtElt.getNode());
- DCI.AddToWorklist(V.getNode());
- return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
- St->getPointerInfo(), St->isVolatile(),
- St->isNonTemporal(), St->getAlignment(),
- St->getTBAAInfo());
-}
-
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
/// are normal, non-volatile loads. If so, it is profitable to bitcast an
/// i64 vector to have f64 elements, since the value can then be loaded
@@ -8626,7 +8674,8 @@ static bool hasNormalLoadOperand(SDNode *N) {
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
/// ISD::BUILD_VECTOR.
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI){
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
// into a pair of GPRs, which is fine when the value is used as a scalar,
@@ -8828,17 +8877,18 @@ static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
DAG.getUNDEF(VT), NewMask.data());
}
-/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
-/// NEON load/store intrinsics to merge base address updates.
+/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
+/// NEON load/store intrinsics, and generic vector load/stores, to merge
+/// base address updates.
+/// For generic load/stores, the memory type is assumed to be a vector.
+/// The caller is assumed to have checked legality.
static SDValue CombineBaseUpdate(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
- if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
- return SDValue();
-
SelectionDAG &DAG = DCI.DAG;
bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
- unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
+ bool isStore = N->getOpcode() == ISD::STORE;
+ unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
SDValue Addr = N->getOperand(AddrOpIdx);
// Search for a use of the address operand that is an increment.
@@ -8899,6 +8949,10 @@ static SDValue CombineBaseUpdate(SDNode *N,
case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
+ case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
+ NumVecs = 1; isLaneOp = false; break;
+ case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
+ NumVecs = 1; isLoad = false; isLaneOp = false; break;
}
}
@@ -8906,8 +8960,11 @@ static SDValue CombineBaseUpdate(SDNode *N,
EVT VecTy;
if (isLoad)
VecTy = N->getValueType(0);
- else
+ else if (isIntrinsic)
VecTy = N->getOperand(AddrOpIdx+1).getValueType();
+ else
+ VecTy = N->getOperand(1).getValueType();
+
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (isLaneOp)
NumBytes /= VecTy.getVectorNumElements();
@@ -8924,25 +8981,70 @@ static SDValue CombineBaseUpdate(SDNode *N,
continue;
}
+ EVT AlignedVecTy = VecTy;
+
+ // If this is a less-than-standard-aligned load/store, change the type to
+ // match the standard alignment.
+ // The alignment is overlooked when selecting _UPD variants; and it's
+ // easier to introduce bitcasts here than fix that.
+ // There are 3 ways to get to this base-update combine:
+ // - intrinsics: they are assumed to be properly aligned (to the standard
+ // alignment of the memory type), so we don't need to do anything.
+ // - ARMISD::VLDx nodes: they are only generated from the aforementioned
+ // intrinsics, so, likewise, there's nothing to do.
+ // - generic load/store instructions: the alignment is specified as an
+ // explicit operand, rather than implicitly as the standard alignment
+ // of the memory type (like the intrisics). We need to change the
+ // memory type to match the explicit alignment. That way, we don't
+ // generate non-standard-aligned ARMISD::VLDx nodes.
+ if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N)) {
+ unsigned Alignment = LSN->getAlignment();
+ if (Alignment == 0)
+ Alignment = 1;
+ if (Alignment < VecTy.getScalarSizeInBits() / 8) {
+ MVT EltTy = MVT::getIntegerVT(Alignment * 8);
+ assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
+ assert(!isLaneOp && "Unexpected generic load/store lane.");
+ unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
+ AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
+ }
+ }
+
// Create the new updating load/store node.
+ // First, create an SDVTList for the new updating node's results.
EVT Tys[6];
unsigned NumResultVecs = (isLoad ? NumVecs : 0);
unsigned n;
for (n = 0; n < NumResultVecs; ++n)
- Tys[n] = VecTy;
+ Tys[n] = AlignedVecTy;
Tys[n++] = MVT::i32;
Tys[n] = MVT::Other;
- SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs+2));
+ SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
+
+ // Then, gather the new node's operands.
SmallVector<SDValue, 8> Ops;
Ops.push_back(N->getOperand(0)); // incoming chain
Ops.push_back(N->getOperand(AddrOpIdx));
Ops.push_back(Inc);
- for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
- Ops.push_back(N->getOperand(i));
+ if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
+ // Try to match the intrinsic's signature
+ Ops.push_back(StN->getValue());
+ Ops.push_back(DAG.getConstant(StN->getAlignment(), MVT::i32));
+ } else {
+ for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i)
+ Ops.push_back(N->getOperand(i));
}
- MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+
+ // If this is a non-standard-aligned store, the penultimate operand is the
+ // stored value. Bitcast it to the aligned type.
+ if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
+ SDValue &StVal = Ops[Ops.size()-2];
+ StVal = DAG.getNode(ISD::BITCAST, SDLoc(N), AlignedVecTy, StVal);
+ }
+
+ MemSDNode *MemInt = cast<MemSDNode>(N);
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
- Ops, MemInt->getMemoryVT(),
+ Ops, AlignedVecTy,
MemInt->getMemOperand());
// Update the uses.
@@ -8950,6 +9052,14 @@ static SDValue CombineBaseUpdate(SDNode *N,
for (unsigned i = 0; i < NumResultVecs; ++i) {
NewResults.push_back(SDValue(UpdN.getNode(), i));
}
+
+ // If this is an non-standard-aligned load, the first result is the loaded
+ // value. Bitcast it to the expected result type.
+ if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
+ SDValue &LdVal = NewResults[0];
+ LdVal = DAG.getNode(ISD::BITCAST, SDLoc(N), VecTy, LdVal);
+ }
+
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
DCI.CombineTo(N, NewResults);
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
@@ -8959,6 +9069,14 @@ static SDValue CombineBaseUpdate(SDNode *N,
return SDValue();
}
+static SDValue PerformVLDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ return CombineBaseUpdate(N, DCI);
+}
+
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
@@ -9011,7 +9129,7 @@ static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
for (n = 0; n < NumVecs; ++n)
Tys[n] = VT;
Tys[n] = MVT::Other;
- SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs+1));
+ SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
@@ -9072,6 +9190,164 @@ static SDValue PerformVDUPLANECombine(SDNode *N,
return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}
+static SDValue PerformLOADCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ EVT VT = N->getValueType(0);
+
+ // If this is a legal vector load, try to combine it into a VLD1_UPD.
+ if (ISD::isNormalLoad(N) && VT.isVector() &&
+ DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return CombineBaseUpdate(N, DCI);
+
+ return SDValue();
+}
+
+/// PerformSTORECombine - Target-specific dag combine xforms for
+/// ISD::STORE.
+static SDValue PerformSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ if (St->isVolatile())
+ return SDValue();
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store. First,
+ // pack all of the elements in one place. Next, store to memory in fewer
+ // chunks.
+ SDValue StVal = St->getValue();
+ EVT VT = StVal.getValueType();
+ if (St->isTruncatingStore() && VT.isVector()) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT StVT = St->getMemoryVT();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
+
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
+
+ unsigned SizeRatio = FromEltSz / ToEltSz;
+ assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle.
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
+ NumElems*SizeRatio);
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDLoc DL(St);
+ SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i < NumElems; ++i)
+ ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
+ DAG.getUNDEF(WideVec.getValueType()),
+ ShuffleVec.data());
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
+ StoreType = Tp;
+ }
+ // Didn't find a legal store type.
+ if (!TLI.isTypeLegal(StoreType))
+ return SDValue();
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
+ TLI.getPointerTy());
+ SDValue BasePtr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
+ for (unsigned I = 0; I < E; I++) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(I));
+ SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
+ Increment);
+ Chains.push_back(Ch);
+ }
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (!ISD::isNormalStore(St))
+ return SDValue();
+
+ // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
+ // ARM stores of arguments in the same cache line.
+ if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
+ StVal.getNode()->hasOneUse()) {
+ SelectionDAG &DAG = DCI.DAG;
+ bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
+ SDLoc DL(St);
+ SDValue BasePtr = St->getBasePtr();
+ SDValue NewST1 = DAG.getStore(St->getChain(), DL,
+ StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
+ BasePtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, MVT::i32));
+ return DAG.getStore(NewST1.getValue(0), DL,
+ StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
+ OffsetPtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(),
+ std::min(4U, St->getAlignment() / 2));
+ }
+
+ if (StVal.getValueType() == MVT::i64 &&
+ StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+
+ // Bitcast an i64 store extracted from a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(StVal);
+ SDValue IntVec = StVal.getOperand(0);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ IntVec.getValueType().getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
+ SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ Vec, StVal.getOperand(1));
+ dl = SDLoc(N);
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(ExtElt.getNode());
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment(),
+ St->getAAInfo());
+ }
+
+ // If this is a legal vector store, try to combine it into a VST1_UPD.
+ if (ISD::isNormalStore(N) && VT.isVector() &&
+ DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return CombineBaseUpdate(N, DCI);
+
+ return SDValue();
+}
+
// isConstVecPow2 - Return true if each vector element is a power of 2, all
// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
@@ -9128,16 +9404,18 @@ static SDValue PerformVCVTCombine(SDNode *N,
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
- if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
+ unsigned NumLanes = Op.getValueType().getVectorNumElements();
+ if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32 ||
+ NumLanes > 4) {
// These instructions only exist converting from f32 to i32. We can handle
// smaller integers by generating an extra truncate, but larger ones would
- // be lossy.
+ // be lossy. We also can't handle more then 4 lanes, since these intructions
+ // only support v2i32/v4i32 types.
return SDValue();
}
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
Intrinsic::arm_neon_vcvtfp2fxu;
- unsigned NumLanes = Op.getValueType().getVectorNumElements();
SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
@@ -9641,10 +9919,10 @@ SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
case ARMISD::BFI: return PerformBFICombine(N, DCI);
- case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
+ case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
case ISD::STORE: return PerformSTORECombine(N, DCI);
- case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
+ case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
@@ -9660,10 +9938,11 @@ SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
+ case ISD::LOAD: return PerformLOADCombine(N, DCI);
case ARMISD::VLD2DUP:
case ARMISD::VLD3DUP:
case ARMISD::VLD4DUP:
- return CombineBaseUpdate(N, DCI);
+ return PerformVLDCombine(N, DCI);
case ARMISD::BUILD_VECTOR:
return PerformARMBUILD_VECTORCombine(N, DCI);
case ISD::INTRINSIC_VOID:
@@ -9683,7 +9962,7 @@ SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane:
- return CombineBaseUpdate(N, DCI);
+ return PerformVLDCombine(N, DCI);
default: break;
}
break;
@@ -9696,8 +9975,10 @@ bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
}
-bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, unsigned,
- bool *Fast) const {
+bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
// The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
@@ -9751,11 +10032,12 @@ EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
bool Fast;
if (Size >= 16 &&
(memOpAlign(SrcAlign, DstAlign, 16) ||
- (allowsUnalignedMemoryAccesses(MVT::v2f64, 0, &Fast) && Fast))) {
+ (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
return MVT::v2f64;
} else if (Size >= 8 &&
(memOpAlign(SrcAlign, DstAlign, 8) ||
- (allowsUnalignedMemoryAccesses(MVT::f64, 0, &Fast) && Fast))) {
+ (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
+ Fast))) {
return MVT::f64;
}
}
@@ -10358,6 +10640,8 @@ ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
return RCPair(0U, &ARM::hGPRRegClass);
break;
case 'r':
+ if (Subtarget->isThumb1Only())
+ return RCPair(0U, &ARM::tGPRRegClass);
return RCPair(0U, &ARM::GPRRegClass);
case 'w':
if (VT == MVT::Other)
@@ -10562,7 +10846,7 @@ SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
unsigned Opcode = Op->getOpcode();
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
- "Invalid opcode for Div/Rem lowering");
+ "Invalid opcode for Div/Rem lowering");
bool isSigned = (Opcode == ISD::SDIVREM);
EVT VT = Op->getValueType(0);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
@@ -10570,10 +10854,10 @@ SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
RTLIB::Libcall LC;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
- case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
- case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
- case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
- case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
+ case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
+ case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
+ case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
+ case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
}
SDValue InChain = DAG.getEntryNode();
@@ -10593,7 +10877,7 @@ SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy());
- Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
+ Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
SDLoc dl(Op);
TargetLowering::CallLoweringInfo CLI(DAG);
@@ -10631,6 +10915,31 @@ ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
return DAG.getMergeValues(Ops, DL);
}
+SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
+ "Unexpected type for custom-lowering FP_EXTEND");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
+ /*isSigned*/ false, SDLoc(Op)).first;
+}
+
+SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getOperand(0).getValueType() == MVT::f64 &&
+ Subtarget->isFPOnlySP() &&
+ "Unexpected type for custom-lowering FP_ROUND");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
+ /*isSigned*/ false, SDLoc(Op)).first;
+}
+
bool
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The ARM target isn't yet aware of offsets.
@@ -10658,7 +10967,7 @@ bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
return false;
if (VT == MVT::f32)
return ARM_AM::getFP32Imm(Imm) != -1;
- if (VT == MVT::f64)
+ if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
return ARM_AM::getFP64Imm(Imm) != -1;
return false;
}
@@ -10785,31 +11094,154 @@ bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
return true;
}
-bool ARMTargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
- // Loads and stores less than 64-bits are already atomic; ones above that
- // are doomed anyway, so defer to the default libcall and blame the OS when
- // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
- // anything for those.
- bool IsMClass = Subtarget->isMClass();
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
- return Size == 64 && !IsMClass;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return LI->getType()->getPrimitiveSizeInBits() == 64 && !IsMClass;
+bool ARMTargetLowering::hasLoadLinkedStoreConditional() const { return true; }
+
+Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
+ ARM_MB::MemBOpt Domain) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+
+ // First, if the target has no DMB, see what fallback we can use.
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
+ Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
+ Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
+ Builder.getInt32(0), Builder.getInt32(7),
+ Builder.getInt32(10), Builder.getInt32(5)};
+ return Builder.CreateCall(MCR, args);
+ } else {
+ // Instead of using barriers, atomic accesses on these subtargets use
+ // libcalls.
+ llvm_unreachable("makeDMB on a target so old that it has no barriers");
+ }
+ } else {
+ Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
+ // Only a full system barrier exists in the M-class architectures.
+ Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
+ Constant *CDomain = Builder.getInt32(Domain);
+ return Builder.CreateCall(DMB, CDomain);
+ }
+}
+
+// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
+Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
+ AtomicOrdering Ord, bool IsStore,
+ bool IsLoad) const {
+ if (!getInsertFencesForAtomic())
+ return nullptr;
+
+ switch (Ord) {
+ case NotAtomic:
+ case Unordered:
+ llvm_unreachable("Invalid fence: unordered/non-atomic");
+ case Monotonic:
+ case Acquire:
+ return nullptr; // Nothing to do
+ case SequentiallyConsistent:
+ if (!IsStore)
+ return nullptr; // Nothing to do
+ /*FALLTHROUGH*/
+ case Release:
+ case AcquireRelease:
+ if (Subtarget->isSwift())
+ return makeDMB(Builder, ARM_MB::ISHST);
+ // FIXME: add a comment with a link to documentation justifying this.
+ else
+ return makeDMB(Builder, ARM_MB::ISH);
+ }
+ llvm_unreachable("Unknown fence ordering in emitLeadingFence");
+}
+
+Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
+ AtomicOrdering Ord, bool IsStore,
+ bool IsLoad) const {
+ if (!getInsertFencesForAtomic())
+ return nullptr;
+
+ switch (Ord) {
+ case NotAtomic:
+ case Unordered:
+ llvm_unreachable("Invalid fence: unordered/not-atomic");
+ case Monotonic:
+ case Release:
+ return nullptr; // Nothing to do
+ case Acquire:
+ case AcquireRelease:
+ case SequentiallyConsistent:
+ return makeDMB(Builder, ARM_MB::ISH);
}
+ llvm_unreachable("Unknown fence ordering in emitTrailingFence");
+}
+
+// Loads and stores less than 64-bits are already atomic; ones above that
+// are doomed anyway, so defer to the default libcall and blame the OS when
+// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
+// anything for those.
+bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
+ return (Size == 64) && !Subtarget->isMClass();
+}
+
+// Loads and stores less than 64-bits are already atomic; ones above that
+// are doomed anyway, so defer to the default libcall and blame the OS when
+// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
+// anything for those.
+// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
+// guarantee, see DDI0406C ARM architecture reference manual,
+// sections A8.8.72-74 LDRD)
+bool ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ unsigned Size = LI->getType()->getPrimitiveSizeInBits();
+ return (Size == 64) && !Subtarget->isMClass();
+}
+
+// For the real atomic operations, we have ldrex/strex up to 32 bits,
+// and up to 64 bits on the non-M profiles
+bool ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ unsigned Size = AI->getType()->getPrimitiveSizeInBits();
+ return Size <= (Subtarget->isMClass() ? 32U : 64U);
+}
+
+// This has so far only been implemented for MachO.
+bool ARMTargetLowering::useLoadStackGuardNode() const {
+ return Subtarget->isTargetMachO();
+}
+
+bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
+ unsigned &Cost) const {
+ // If we do not have NEON, vector types are not natively supported.
+ if (!Subtarget->hasNEON())
+ return false;
+
+ // Floating point values and vector values map to the same register file.
+ // Therefore, althought we could do a store extract of a vector type, this is
+ // better to leave at float as we have more freedom in the addressing mode for
+ // those.
+ if (VectorTy->isFPOrFPVectorTy())
+ return false;
+
+ // If the index is unknown at compile time, this is very expensive to lower
+ // and it is not possible to combine the store with the extract.
+ if (!isa<ConstantInt>(Idx))
+ return false;
- // For the real atomic operations, we have ldrex/strex up to 32 bits,
- // and up to 64 bits on the non-M profiles
- unsigned AtomicLimit = IsMClass ? 32 : 64;
- return Inst->getType()->getPrimitiveSizeInBits() <= AtomicLimit;
+ assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
+ unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
+ // We can do a store + vector extract on any vector that fits perfectly in a D
+ // or Q register.
+ if (BitWidth == 64 || BitWidth == 128) {
+ Cost = 0;
+ return true;
+ }
+ return false;
}
Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
- bool IsAcquire =
- Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+ bool IsAcquire = isAtLeastAcquire(Ord);
// Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
// intrinsic must return {i32, i32} and we have to recombine them into a
@@ -10845,8 +11277,7 @@ Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
- bool IsRelease =
- Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+ bool IsRelease = isAtLeastRelease(Ord);
// Since the intrinsics must have legal type, the i64 intrinsics take two
// parameters: "i32, i32". We must marshal Val into the appropriate form
@@ -10944,6 +11375,6 @@ bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
HABaseType Base = HA_UNKNOWN;
uint64_t Members = 0;
bool result = isHomogeneousAggregate(Ty, Base, Members);
- DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump(); dbgs() << "\n");
+ DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump());
return result;
}
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.h b/contrib/llvm/lib/Target/ARM/ARMISelLowering.h
index 1ace0f3..89b0c31 100644
--- a/contrib/llvm/lib/Target/ARM/ARMISelLowering.h
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMISELLOWERING_H
-#define ARMISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H
+#define LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
@@ -232,7 +232,7 @@ namespace llvm {
class ARMTargetLowering : public TargetLowering {
public:
- explicit ARMTargetLowering(TargetMachine &TM);
+ explicit ARMTargetLowering(const TargetMachine &TM);
unsigned getJumpTableEncoding() const override;
@@ -266,11 +266,12 @@ namespace llvm {
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override;
- /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// allowsMisalignedMemoryAccesses - Returns true if the target allows
/// unaligned memory accesses of the specified type. Returns whether it
/// is "fast" by reference in the second argument.
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
- bool *Fast) const override;
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
+ unsigned Align,
+ bool *Fast) const override;
EVT getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
@@ -391,12 +392,26 @@ namespace llvm {
bool functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override;
+ bool hasLoadLinkedStoreConditional() const override;
+ Instruction *makeDMB(IRBuilder<> &Builder, ARM_MB::MemBOpt Domain) const;
Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const override;
- bool shouldExpandAtomicInIR(Instruction *Inst) const override;
+ Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
+ bool IsStore, bool IsLoad) const override;
+ Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
+ bool IsStore, bool IsLoad) const override;
+
+ bool shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
+ bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
+ bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
+
+ bool useLoadStackGuardNode() const override;
+
+ bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
+ unsigned &Cost) const override;
protected:
std::pair<const TargetRegisterClass*, uint8_t>
@@ -473,6 +488,10 @@ namespace llvm {
SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDivRem(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
@@ -562,6 +581,9 @@ namespace llvm {
bool mayBeEmittedAsTailCall(CallInst *CI) const override;
+ SDValue getCMOV(SDLoc dl, EVT VT, SDValue FalseVal, SDValue TrueVal,
+ SDValue ARMcc, SDValue CCR, SDValue Cmp,
+ SelectionDAG &DAG) const;
SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMcc, SelectionDAG &DAG, SDLoc dl) const;
SDValue getVFPCmp(SDValue LHS, SDValue RHS,
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td b/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td
index 59e9260..7d27cf3 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrFormats.td
@@ -203,6 +203,16 @@ def msr_mask : Operand<i32> {
let ParserMatchClass = MSRMaskOperand;
}
+def BankedRegOperand : AsmOperandClass {
+ let Name = "BankedReg";
+ let ParserMethod = "parseBankedRegOperand";
+}
+def banked_reg : Operand<i32> {
+ let PrintMethod = "printBankedRegOperand";
+ let DecoderMethod = "DecodeBankedReg";
+ let ParserMatchClass = BankedRegOperand;
+}
+
// Shift Right Immediate - A shift right immediate is encoded differently from
// other shift immediates. The imm6 field is encoded like so:
//
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp
index f235ac2..17d1ffa 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.cpp
@@ -90,6 +90,49 @@ unsigned ARMInstrInfo::getUnindexedOpcode(unsigned Opc) const {
return 0;
}
+void ARMInstrInfo::expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const ARMSubtarget &Subtarget = MF.getTarget().getSubtarget<ARMSubtarget>();
+
+ if (!Subtarget.useMovt(MF)) {
+ if (RM == Reloc::PIC_)
+ expandLoadStackGuardBase(MI, ARM::LDRLIT_ga_pcrel, ARM::LDRi12, RM);
+ else
+ expandLoadStackGuardBase(MI, ARM::LDRLIT_ga_abs, ARM::LDRi12, RM);
+ return;
+ }
+
+ if (RM != Reloc::PIC_) {
+ expandLoadStackGuardBase(MI, ARM::MOVi32imm, ARM::LDRi12, RM);
+ return;
+ }
+
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MI->memoperands_begin())->getValue());
+
+ if (!Subtarget.GVIsIndirectSymbol(GV, RM)) {
+ expandLoadStackGuardBase(MI, ARM::MOV_ga_pcrel, ARM::LDRi12, RM);
+ return;
+ }
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Reg = MI->getOperand(0).getReg();
+ MachineInstrBuilder MIB;
+
+ MIB = BuildMI(MBB, MI, DL, get(ARM::MOV_ga_pcrel_ldr), Reg)
+ .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
+ unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+ MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
+ MachinePointerInfo::getGOT(), Flag, 4, 4);
+ MIB.addMemOperand(MMO);
+ MIB = BuildMI(MBB, MI, DL, get(ARM::LDRi12), Reg);
+ MIB.addReg(Reg, RegState::Kill).addImm(0);
+ MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ AddDefaultPred(MIB);
+}
+
namespace {
/// ARMCGBR - Create Global Base Reg pass. This initializes the PIC
/// global base register for ARM ELF.
@@ -113,8 +156,9 @@ namespace {
ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
*Context, "_GLOBAL_OFFSET_TABLE_", ARMPCLabelIndex, PCAdj);
- unsigned Align = TM->getDataLayout()
- ->getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
+ unsigned Align =
+ TM->getSubtargetImpl()->getDataLayout()->getPrefTypeAlignment(
+ Type::getInt32PtrTy(*Context));
unsigned Idx = MF.getConstantPool()->getConstantPoolIndex(CPV, Align);
MachineBasicBlock &FirstMBB = MF.front();
@@ -124,7 +168,7 @@ namespace {
MF.getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
unsigned Opc = TM->getSubtarget<ARMSubtarget>().isThumb2() ?
ARM::t2LDRpci : ARM::LDRcp;
- const TargetInstrInfo &TII = *TM->getInstrInfo();
+ const TargetInstrInfo &TII = *TM->getSubtargetImpl()->getInstrInfo();
MachineInstrBuilder MIB = BuildMI(FirstMBB, MBBI, DL,
TII.get(Opc), TempReg)
.addConstantPoolIndex(Idx);
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h
index b09958a..90f34ea 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMINSTRUCTIONINFO_H
-#define ARMINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMINSTRINFO_H
+#define LLVM_LIB_TARGET_ARM_ARMINSTRINFO_H
#include "ARMBaseInstrInfo.h"
#include "ARMRegisterInfo.h"
@@ -37,6 +37,10 @@ public:
/// always be able to get register info as well (through this method).
///
const ARMRegisterInfo &getRegisterInfo() const override { return RI; }
+
+private:
+ void expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const override;
};
}
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td
index 619be79..2340670 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrInfo.td
@@ -241,6 +241,9 @@ def HasDB : Predicate<"Subtarget->hasDataBarrier()">,
def HasMP : Predicate<"Subtarget->hasMPExtension()">,
AssemblerPredicate<"FeatureMP",
"mp-extensions">;
+def HasVirtualization: Predicate<"false">,
+ AssemblerPredicate<"FeatureVirtualization",
+ "virtualization-extensions">;
def HasTrustZone : Predicate<"Subtarget->hasTrustZone()">,
AssemblerPredicate<"FeatureTrustZone",
"TrustZone">;
@@ -260,8 +263,6 @@ def IsNotMClass : Predicate<"!Subtarget->isMClass()">,
"!armv*m">;
def IsARM : Predicate<"!Subtarget->isThumb()">,
AssemblerPredicate<"!ModeThumb", "arm-mode">;
-def IsIOS : Predicate<"Subtarget->isTargetIOS()">;
-def IsNotIOS : Predicate<"!Subtarget->isTargetIOS()">;
def IsMachO : Predicate<"Subtarget->isTargetMachO()">;
def IsNotMachO : Predicate<"!Subtarget->isTargetMachO()">;
def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">;
@@ -330,24 +331,6 @@ def imm16_31 : ImmLeaf<i32, [{
return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
}]>;
-def so_imm_neg_asmoperand : AsmOperandClass { let Name = "ARMSOImmNeg"; }
-def so_imm_neg : Operand<i32>, PatLeaf<(imm), [{
- unsigned Value = -(unsigned)N->getZExtValue();
- return Value && ARM_AM::getSOImmVal(Value) != -1;
- }], imm_neg_XFORM> {
- let ParserMatchClass = so_imm_neg_asmoperand;
-}
-
-// Note: this pattern doesn't require an encoder method and such, as it's
-// only used on aliases (Pat<> and InstAlias<>). The actual encoding
-// is handled by the destination instructions, which use so_imm.
-def so_imm_not_asmoperand : AsmOperandClass { let Name = "ARMSOImmNot"; }
-def so_imm_not : Operand<i32>, PatLeaf<(imm), [{
- return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
- }], imm_not_XFORM> {
- let ParserMatchClass = so_imm_not_asmoperand;
-}
-
// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
def sext_16_node : PatLeaf<(i32 GPR:$a), [{
return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
@@ -527,7 +510,7 @@ def shift_imm : Operand<i32> {
let ParserMatchClass = ShifterImmAsmOperand;
}
-// shifter_operand operands: so_reg_reg, so_reg_imm, and so_imm.
+// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
def so_reg_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectRegShifterOperand",
@@ -572,27 +555,43 @@ def shift_so_reg_imm : Operand<i32>, // reg reg imm
let MIOperandInfo = (ops GPR, i32imm);
}
-
-// so_imm - Match a 32-bit shifter_operand immediate operand, which is an
-// 8-bit immediate rotated by an arbitrary number of bits.
-def SOImmAsmOperand: ImmAsmOperand { let Name = "ARMSOImm"; }
-def so_imm : Operand<i32>, ImmLeaf<i32, [{
+// mod_imm: match a 32-bit immediate operand, which can be encoded into
+// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
+// - "Modified Immediate Constants"). Within the MC layer we keep this
+// immediate in its encoded form.
+def ModImmAsmOperand: AsmOperandClass {
+ let Name = "ModImm";
+ let ParserMethod = "parseModImm";
+}
+def mod_imm : Operand<i32>, ImmLeaf<i32, [{
return ARM_AM::getSOImmVal(Imm) != -1;
}]> {
- let EncoderMethod = "getSOImmOpValue";
- let ParserMatchClass = SOImmAsmOperand;
- let DecoderMethod = "DecodeSOImmOperand";
+ let EncoderMethod = "getModImmOpValue";
+ let PrintMethod = "printModImmOperand";
+ let ParserMatchClass = ModImmAsmOperand;
}
-// Break so_imm's up into two pieces. This handles immediates with up to 16
-// bits set in them. This uses so_imm2part to match and so_imm2part_[12] to
-// get the first/second pieces.
-def so_imm2part : PatLeaf<(imm), [{
- return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
-}]>;
+// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
+// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
+// The actual parsing, encoding, decoding are handled by the destination
+// instructions, which use mod_imm.
-/// arm_i32imm - True for +V6T2, or true only if so_imm2part is true.
-///
+def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
+def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
+ return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
+ }], imm_not_XFORM> {
+ let ParserMatchClass = ModImmNotAsmOperand;
+}
+
+def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
+def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
+ unsigned Value = -(unsigned)N->getZExtValue();
+ return Value && ARM_AM::getSOImmVal(Value) != -1;
+ }], imm_neg_XFORM> {
+ let ParserMatchClass = ModImmNegAsmOperand;
+}
+
+/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
def arm_i32imm : PatLeaf<(imm), [{
if (Subtarget->useMovt(*MF))
return true;
@@ -633,6 +632,8 @@ def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
let ParserMatchClass = Imm32AsmOperand;
}
+def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
+
/// imm1_7 predicate - Immediate in the range [1,7].
def Imm1_7AsmOperand: ImmAsmOperand { let Name = "Imm1_7"; }
def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
@@ -1199,7 +1200,7 @@ include "ARMInstrFormats.td"
// Multiclass helpers...
//
-/// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a
+/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
/// binop that produces a value.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AsI1_bin_irs<bits<4> opcod, string opc,
@@ -1208,9 +1209,9 @@ multiclass AsI1_bin_irs<bits<4> opcod, string opc,
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
- def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
- [(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]>,
+ [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
@@ -1281,9 +1282,9 @@ multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
- def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
- [(set GPR:$Rd, (opnode so_imm:$imm, GPR:$Rn))]>,
+ [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
@@ -1351,9 +1352,9 @@ let hasPostISelHook = 1, Defs = [CPSR] in {
multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
InstrItinClass iis, PatFrag opnode,
bit Commutable = 0> {
- def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm, pred:$p),
+ def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
4, iii,
- [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm))]>,
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
Sched<[WriteALU, ReadALU]>;
def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
@@ -1384,9 +1385,9 @@ let hasPostISelHook = 1, Defs = [CPSR] in {
multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
InstrItinClass iis, PatFrag opnode,
bit Commutable = 0> {
- def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm, pred:$p),
+ def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
4, iii,
- [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn))]>,
+ [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
Sched<[WriteALU, ReadALU]>;
def rsi : ARMPseudoInst<(outs GPR:$Rd),
@@ -1405,16 +1406,16 @@ multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
}
}
-/// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
+/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
let isCompare = 1, Defs = [CPSR] in {
multiclass AI1_cmp_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0> {
- def ri : AI1<opcod, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, iii,
+ def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
opc, "\t$Rn, $imm",
- [(opnode GPR:$Rn, so_imm:$imm)]>,
+ [(opnode GPR:$Rn, mod_imm:$imm)]>,
Sched<[WriteCMP, ReadALU]> {
bits<4> Rn;
bits<12> imm;
@@ -1542,9 +1543,9 @@ let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
- def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
- [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm, CPSR))]>,
+ [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
@@ -1612,9 +1613,9 @@ multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AI1_rsc_irs<bits<4> opcod, string opc, PatFrag opnode> {
let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
- def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
+ def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
- [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn, CPSR))]>,
+ [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
@@ -1808,7 +1809,7 @@ multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
/// the function. The first operand is the ID# for this instruction, the second
/// is the index into the MachineConstantPool that this is, the third is the
/// size in bytes of this constant pool entry.
-let neverHasSideEffects = 1, isNotDuplicable = 1 in
+let hasSideEffects = 0, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
@@ -1961,7 +1962,7 @@ def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
}
def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
- []>, Requires<[IsARM, HasV7]> {
+ [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
bits<4> opt;
let Inst{27-4} = 0b001100100000111100001111;
let Inst{3-0} = opt;
@@ -2052,7 +2053,7 @@ def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
-let neverHasSideEffects = 1, isReMaterializable = 1 in
+let hasSideEffects = 0, isReMaterializable = 1 in
// The 'adr' mnemonic encodes differently if the label is before or after
// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
// know until then which form of the instruction will be used.
@@ -2382,6 +2383,33 @@ def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
let Inst{24-23} = 0b11;
}
+// Hypervisor Call is a system instruction
+let isCall = 1 in {
+def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
+ "hvc", "\t$imm", []>,
+ Requires<[IsARM, HasVirtualization]> {
+ bits<16> imm;
+
+ // Even though HVC isn't predicable, it's encoding includes a condition field.
+ // The instruction is undefined if the condition field is 0xf otherwise it is
+ // unpredictable if it isn't condition AL (0xe).
+ let Inst{31-28} = 0b1110;
+ let Unpredictable{31-28} = 0b1111;
+ let Inst{27-24} = 0b0001;
+ let Inst{23-20} = 0b0100;
+ let Inst{19-8} = imm{15-4};
+ let Inst{7-4} = 0b0111;
+ let Inst{3-0} = imm{3-0};
+}
+}
+
+// Return from exception in Hypervisor mode.
+let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
+def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
+ Requires<[IsARM, HasVirtualization]> {
+ let Inst{23-0} = 0b011000000000000001101110;
+}
+
//===----------------------------------------------------------------------===//
// Load / Store Instructions.
//
@@ -2399,7 +2427,7 @@ defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
// Special LDR for loads from non-pc-relative constpools.
-let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1,
+let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
isReMaterializable = 1, isCodeGenOnly = 1 in
def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
@@ -2426,7 +2454,7 @@ def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
-let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// Load doubleword
def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
@@ -2503,7 +2531,7 @@ multiclass AI2_ldridx<bit isByte, string opc,
}
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
// IIC_iLoad_siu depending on whether it the offset register is shifted.
defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
@@ -2539,7 +2567,7 @@ multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
}
}
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
@@ -2572,10 +2600,10 @@ def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
let DecoderMethod = "DecodeAddrMode3Instruction";
}
} // hasExtraDefRegAllocReq = 1
-} // mayLoad = 1, neverHasSideEffects = 1
+} // mayLoad = 1, hasSideEffects = 0
// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, IIC_iLoad_ru,
@@ -2694,7 +2722,7 @@ def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
[(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
// Store doubleword
-let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
Requires<[IsARM, HasV5TE]> {
@@ -2767,7 +2795,7 @@ multiclass AI2_stridx<bit isByte, string opc,
}
}
-let mayStore = 1, neverHasSideEffects = 1 in {
+let mayStore = 1, hasSideEffects = 0 in {
// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
// IIC_iStore_siu depending on whether it the offset register is shifted.
defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
@@ -2830,7 +2858,8 @@ def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
StMiscFrm, IIC_iStore_bh_ru,
- "strh", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
+ "strh", "\t$Rt, $addr!",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
@@ -2843,7 +2872,8 @@ def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
- "strh", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
+ "strh", "\t$Rt, $addr, $offset",
+ "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
[(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
addr_offset_none:$addr,
am3offset:$offset))]> {
@@ -2857,7 +2887,7 @@ def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
let DecoderMethod = "DecodeAddrMode3Instruction";
}
-let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
IndexModePre, StMiscFrm, IIC_iStore_d_ru,
@@ -2887,7 +2917,7 @@ def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
-} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
+} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
// STRT, STRBT, and STRHT
@@ -2931,7 +2961,7 @@ def STRBT_POST
: ARMAsmPseudo<"strbt${q} $Rt, $addr",
(ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
-let mayStore = 1, neverHasSideEffects = 1 in {
+let mayStore = 1, hasSideEffects = 0 in {
def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, IIC_iStore_ru,
@@ -3096,17 +3126,18 @@ multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
}
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
- IIC_iLoad_mu>;
+ IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
- IIC_iStore_mu>;
+ IIC_iStore_mu>,
+ ComplexDeprecationPredicate<"ARMStore">;
-} // neverHasSideEffects
+} // hasSideEffects
// FIXME: remove when we have a way to marking a MI with these properties.
// FIXME: Should pc be an implicit operand like PICADD, etc?
@@ -3132,7 +3163,7 @@ defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
// Move Instructions.
//
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
"mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
@@ -3146,7 +3177,7 @@ def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
}
// A version for the smaller set of tail call registers.
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
@@ -3190,8 +3221,8 @@ def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
-def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, IIC_iMOVi,
- "mov", "\t$Rd, $imm", [(set GPR:$Rd, so_imm:$imm)]>, UnaryDP,
+def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
+ "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> imm;
@@ -3401,10 +3432,10 @@ defm RSC : AI1_rsc_irs<0b0111, "rsc",
// assume opposite meanings of the carry flag (i.e., carry == !borrow).
// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
// details.
-def : ARMPat<(add GPR:$src, so_imm_neg:$imm),
- (SUBri GPR:$src, so_imm_neg:$imm)>;
-def : ARMPat<(ARMaddc GPR:$src, so_imm_neg:$imm),
- (SUBSri GPR:$src, so_imm_neg:$imm)>;
+def : ARMPat<(add GPR:$src, mod_imm_neg:$imm),
+ (SUBri GPR:$src, mod_imm_neg:$imm)>;
+def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
+ (SUBSri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm),
(SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
@@ -3416,8 +3447,8 @@ def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
// The with-carry-in form matches bitwise not instead of the negation.
// Effectively, the inverse interpretation of the carry flag already accounts
// for part of the negation.
-def : ARMPat<(ARMadde GPR:$src, so_imm_not:$imm, CPSR),
- (SBCri GPR:$src, so_imm_not:$imm)>;
+def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
+ (SBCri GPR:$src, mod_imm_not:$imm)>;
def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
(SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
@@ -3698,9 +3729,9 @@ def MVNsr : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_reg:$shift),
let Inst{3-0} = shift{3-0};
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
-def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm,
+def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
IIC_iMVNi, "mvn", "\t$Rd, $imm",
- [(set GPR:$Rd, so_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
+ [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
@@ -3709,8 +3740,8 @@ def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm,
let Inst{11-0} = imm;
}
-def : ARMPat<(and GPR:$src, so_imm_not:$imm),
- (BICri GPR:$src, so_imm_not:$imm)>;
+def : ARMPat<(and GPR:$src, mod_imm_not:$imm),
+ (BICri GPR:$src, mod_imm_not:$imm)>;
//===----------------------------------------------------------------------===//
// Multiply Instructions.
@@ -3804,7 +3835,7 @@ def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
}
// Extra precision multiplies with low / high results
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let isCommutable = 1 in {
def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
@@ -3871,7 +3902,7 @@ def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
Requires<[IsARM, NoV6]>;
}
-} // neverHasSideEffects
+} // hasSideEffects
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
@@ -3935,14 +3966,12 @@ multiclass AI_smul<string opc, PatFrag opnode> {
def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
- [(set GPR:$Rd, (sra (opnode GPR:$Rn,
- (sext_inreg GPR:$Rm, i16)), (i32 16)))]>,
+ []>,
Requires<[IsARM, HasV5TE]>;
def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
- [(set GPR:$Rd, (sra (opnode GPR:$Rn,
- (sra GPR:$Rm, (i32 16))), (i32 16)))]>,
+ []>,
Requires<[IsARM, HasV5TE]>;
}
@@ -3984,17 +4013,13 @@ multiclass AI_smla<string opc, PatFrag opnode> {
def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
- [(set GPRnopc:$Rd,
- (add GPR:$Ra, (sra (opnode GPRnopc:$Rn,
- (sext_inreg GPRnopc:$Rm, i16)), (i32 16))))]>,
+ []>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
- [(set GPRnopc:$Rd,
- (add GPR:$Ra, (sra (opnode GPRnopc:$Rn,
- (sra GPRnopc:$Rm, (i32 16))), (i32 16))))]>,
+ []>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
}
}
@@ -4114,7 +4139,7 @@ def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
// Misc. Arithmetic Instructions.
//
-def CLZ : AMiscA1I<0b000010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
+def CLZ : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "clz", "\t$Rd, $Rm",
[(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
Sched<[WriteALU]>;
@@ -4241,8 +4266,8 @@ defm CMP : AI1_cmp_irs<0b1010, "cmp",
BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
// ARMcmpZ can re-use the above instruction definitions.
-def : ARMPat<(ARMcmpZ GPR:$src, so_imm:$imm),
- (CMPri GPR:$src, so_imm:$imm)>;
+def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
+ (CMPri GPR:$src, mod_imm:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
(CMPrr GPR:$src, GPR:$rhs)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
@@ -4252,9 +4277,9 @@ def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
// CMN register-integer
let isCompare = 1, Defs = [CPSR] in {
-def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, IIC_iCMPi,
+def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
"cmn", "\t$Rn, $imm",
- [(ARMcmn GPR:$Rn, so_imm:$imm)]>,
+ [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
Sched<[WriteCMP, ReadALU]> {
bits<4> Rn;
bits<12> imm;
@@ -4327,11 +4352,11 @@ def CMNzrsr : AI1<0b1011, (outs),
}
-def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm),
- (CMNri GPR:$src, so_imm_neg:$imm)>;
+def : ARMPat<(ARMcmp GPR:$src, mod_imm_neg:$imm),
+ (CMNri GPR:$src, mod_imm_neg:$imm)>;
-def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm),
- (CMNri GPR:$src, so_imm_neg:$imm)>;
+def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
+ (CMNri GPR:$src, mod_imm_neg:$imm)>;
// Note that TST/TEQ don't set all the same flags that CMP does!
defm TST : AI1_cmp_irs<0b1000, "tst",
@@ -4358,7 +4383,7 @@ def BCCZi64 : PseudoInst<(outs),
// Conditional moves
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let isCommutable = 1, isSelect = 1 in
def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
@@ -4395,9 +4420,9 @@ def MOVCCi16
let isMoveImm = 1 in
def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
- (ins GPR:$false, so_imm:$imm, cmovpred:$p),
+ (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4, IIC_iCMOVi,
- [(set GPR:$Rd, (ARMcmov GPR:$false, so_imm:$imm,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
@@ -4413,13 +4438,13 @@ def MOVCCi32imm
let isMoveImm = 1 in
def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
- (ins GPR:$false, so_imm:$imm, cmovpred:$p),
+ (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4, IIC_iCMOVi,
- [(set GPR:$Rd, (ARMcmov GPR:$false, so_imm_not:$imm,
+ [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
-} // neverHasSideEffects
+} // hasSideEffects
//===----------------------------------------------------------------------===//
@@ -4632,7 +4657,7 @@ def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- return Ordering == Acquire || Ordering == SequentiallyConsistent;
+ return isAtLeastAcquire(Ordering);
}]>;
def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
@@ -4642,7 +4667,7 @@ def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
- return Ordering == Release || Ordering == SequentiallyConsistent;
+ return isAtLeastRelease(Ordering);
}]>;
def atomic_store_release_8 : releasing_store<atomic_store_8>;
@@ -5063,12 +5088,31 @@ def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
let Unpredictable{11-0} = 0b110100001111;
}
+// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
+// separate encoding (distinguished by bit 5.
+def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
+ NoItinerary, "mrs", "\t$Rd, $banked", []>,
+ Requires<[IsARM, HasVirtualization]> {
+ bits<6> banked;
+ bits<4> Rd;
+
+ let Inst{23} = 0;
+ let Inst{22} = banked{5}; // R bit
+ let Inst{21-20} = 0b00;
+ let Inst{19-16} = banked{3-0};
+ let Inst{15-12} = Rd;
+ let Inst{11-9} = 0b001;
+ let Inst{8} = banked{4};
+ let Inst{7-0} = 0b00000000;
+}
+
// Move from ARM core register to Special Register
//
-// No need to have both system and application versions, the encodings are the
-// same and the assembly parser has no way to distinguish between them. The mask
-// operand contains the special register (R Bit) in bit 4 and bits 3-0 contains
-// the mask with the fields to be accessed in the special register.
+// No need to have both system and application versions of MSR (immediate) or
+// MSR (register), the encodings are the same and the assembly parser has no way
+// to distinguish between them. The mask operand contains the special register
+// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
+// accessed in the special register.
def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
"msr", "\t$mask, $Rn", []> {
bits<5> mask;
@@ -5083,17 +5127,36 @@ def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
let Inst{3-0} = Rn;
}
-def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, so_imm:$a), NoItinerary,
- "msr", "\t$mask, $a", []> {
+def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, mod_imm:$imm), NoItinerary,
+ "msr", "\t$mask, $imm", []> {
bits<5> mask;
- bits<12> a;
+ bits<12> imm;
let Inst{23} = 0;
let Inst{22} = mask{4}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = mask{3-0};
let Inst{15-12} = 0b1111;
- let Inst{11-0} = a;
+ let Inst{11-0} = imm;
+}
+
+// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
+// separate encoding (distinguished by bit 5.
+def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
+ NoItinerary, "msr", "\t$banked, $Rn", []>,
+ Requires<[IsARM, HasVirtualization]> {
+ bits<6> banked;
+ bits<4> Rn;
+
+ let Inst{23} = 0;
+ let Inst{22} = banked{5}; // R bit
+ let Inst{21-20} = 0b10;
+ let Inst{19-16} = banked{3-0};
+ let Inst{15-12} = 0b1111;
+ let Inst{11-9} = 0b001;
+ let Inst{8} = banked{4};
+ let Inst{7-4} = 0b0000;
+ let Inst{3-0} = Rn;
}
// Dynamic stack allocation yields a _chkstk for Windows targets. These calls
@@ -5165,7 +5228,7 @@ let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
NoItinerary,
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
- Requires<[IsARM, IsIOS]>;
+ Requires<[IsARM]>;
}
// eh.sjlj.dispatchsetup pseudo-instruction.
@@ -5189,7 +5252,7 @@ let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
// Large immediate handling.
-// 32-bit immediate using two piece so_imms or movw + movt.
+// 32-bit immediate using two piece mod_imms or movw + movt.
// This is a single pseudo instruction, the benefit is that it can be remat'd
// as a single unit instead of having to handle reg inputs.
// FIXME: Remove this when we can do generalized remat.
@@ -5218,6 +5281,7 @@ def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
(ARMWrapperPIC tglobaladdr:$addr))]>,
Requires<[IsARM, DontUseMovt]>;
+let AddedComplexity = 10 in
def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
NoItinerary,
[(set GPR:$dst,
@@ -5281,11 +5345,6 @@ def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b),
(SMULTB GPR:$a, GPR:$b)>;
-def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))),
- (i32 16)),
- (SMULWB GPR:$a, GPR:$b)>;
-def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), (i32 16)),
- (SMULWB GPR:$a, GPR:$b)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
@@ -5308,13 +5367,6 @@ def : ARMV5MOPat<(add GPR:$acc,
def : ARMV5MOPat<(add GPR:$acc,
(mul (sra GPR:$a, (i32 16)), sext_16_node:$b)),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
-def : ARMV5MOPat<(add GPR:$acc,
- (sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))),
- (i32 16))),
- (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
-def : ARMV5MOPat<(add GPR:$acc,
- (sra (mul GPR:$a, sext_16_node:$b), (i32 16))),
- (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
// Pre-v7 uses MCR for synchronization barriers.
@@ -5492,36 +5544,36 @@ def : MnemonicAlias<"uqsubaddx", "uqsax">;
// USAX == USUBADDX
def : MnemonicAlias<"usubaddx", "usax">;
-// "mov Rd, so_imm_not" can be handled via "mvn" in assembly, just like
+// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
// for isel.
def : ARMInstAlias<"mov${s}${p} $Rd, $imm",
- (MVNi rGPR:$Rd, so_imm_not:$imm, pred:$p, cc_out:$s)>;
+ (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
def : ARMInstAlias<"mvn${s}${p} $Rd, $imm",
- (MOVi rGPR:$Rd, so_imm_not:$imm, pred:$p, cc_out:$s)>;
+ (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
// Same for AND <--> BIC
def : ARMInstAlias<"bic${s}${p} $Rd, $Rn, $imm",
- (ANDri rGPR:$Rd, rGPR:$Rn, so_imm_not:$imm,
+ (ANDri rGPR:$Rd, rGPR:$Rn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstAlias<"bic${s}${p} $Rdn, $imm",
- (ANDri rGPR:$Rdn, rGPR:$Rdn, so_imm_not:$imm,
+ (ANDri rGPR:$Rdn, rGPR:$Rdn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstAlias<"and${s}${p} $Rd, $Rn, $imm",
- (BICri rGPR:$Rd, rGPR:$Rn, so_imm_not:$imm,
+ (BICri rGPR:$Rd, rGPR:$Rn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstAlias<"and${s}${p} $Rdn, $imm",
- (BICri rGPR:$Rdn, rGPR:$Rdn, so_imm_not:$imm,
+ (BICri rGPR:$Rdn, rGPR:$Rdn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
-// Likewise, "add Rd, so_imm_neg" -> sub
+// Likewise, "add Rd, mod_imm_neg" -> sub
def : ARMInstAlias<"add${s}${p} $Rd, $Rn, $imm",
- (SUBri GPR:$Rd, GPR:$Rn, so_imm_neg:$imm, pred:$p, cc_out:$s)>;
+ (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
def : ARMInstAlias<"add${s}${p} $Rd, $imm",
- (SUBri GPR:$Rd, GPR:$Rd, so_imm_neg:$imm, pred:$p, cc_out:$s)>;
-// Same for CMP <--> CMN via so_imm_neg
+ (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
+// Same for CMP <--> CMN via mod_imm_neg
def : ARMInstAlias<"cmp${p} $Rd, $imm",
- (CMNri rGPR:$Rd, so_imm_neg:$imm, pred:$p)>;
+ (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
def : ARMInstAlias<"cmn${p} $Rd, $imm",
- (CMPri rGPR:$Rd, so_imm_neg:$imm, pred:$p)>;
+ (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
// LSR, ROR, and RRX instructions.
@@ -5594,3 +5646,8 @@ def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
// is discarded.
def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
ComplexDeprecationPredicate<"IT">;
+
+let mayLoad = 1, mayStore =1, hasSideEffects = 1 in
+def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
+ NoItinerary,
+ [(set GPR:$Rd, (int_arm_space imm:$size, GPR:$Rn))]>;
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td b/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td
index c02bb3b..2a7b4b5 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrNEON.td
@@ -34,6 +34,14 @@ def nImmSplatI32 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
let ParserMatchClass = nImmSplatI32AsmOperand;
}
+def nImmSplatNotI16AsmOperand : AsmOperandClass { let Name = "NEONi16splatNot"; }
+def nImmSplatNotI16 : Operand<i32> {
+ let ParserMatchClass = nImmSplatNotI16AsmOperand;
+}
+def nImmSplatNotI32AsmOperand : AsmOperandClass { let Name = "NEONi32splatNot"; }
+def nImmSplatNotI32 : Operand<i32> {
+ let ParserMatchClass = nImmSplatNotI32AsmOperand;
+}
def nImmVMOVI32AsmOperand : AsmOperandClass { let Name = "NEONi32vmov"; }
def nImmVMOVI32 : Operand<i32> {
let PrintMethod = "printNEONModImmOperand";
@@ -657,7 +665,7 @@ class VLDQQQQWBPseudo<InstrItinClass itin>
(ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin,
"$addr.addr = $wb, $src = $dst">;
-let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// VLD1 : Vector Load (multiple single elements)
class VLD1D<bits<4> op7_4, string Dt, Operand AddrMode>
@@ -1015,7 +1023,7 @@ def VLD4q8oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
def VLD4q16oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
def VLD4q32oddPseudo_UPD : VLDQQQQWBPseudo<IIC_VLD4u>;
-} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+} // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1
// Classes for VLD*LN pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
@@ -1098,7 +1106,7 @@ def : Pat<(vector_insert (v4f32 QPR:$src),
(f32 (load addrmode6:$addr)), imm:$lane),
(VLD1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>;
-let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// ...with address register writeback:
class VLD1LNWB<bits<4> op11_8, bits<4> op7_4, string Dt>
@@ -1351,7 +1359,7 @@ def VLD4LNq32_UPD : VLD4LNWB<0b1011, {?,1,?,?}, "32"> {
def VLD4LNq16Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD4lnu>;
def VLD4LNq32Pseudo_UPD : VLDQQQQLNWBPseudo<IIC_VLD4lnu>;
-} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+} // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1
// VLD1DUP : Vector Load (single element to all lanes)
class VLD1DUP<bits<4> op7_4, string Dt, ValueType Ty, PatFrag LoadOp,
@@ -1397,7 +1405,7 @@ def VLD1DUPq32 : VLD1QDUP<{1,0,1,?}, "32", v4i32, load,
def : Pat<(v4f32 (NEONvdup (f32 (load addrmode6dup:$addr)))),
(VLD1DUPq32 addrmode6:$addr)>;
-let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// ...with address register writeback:
multiclass VLD1DUPWB<bits<4> op7_4, string Dt, Operand AddrMode> {
def _fixed : NLdSt<1, 0b10, 0b1100, op7_4,
@@ -1601,9 +1609,9 @@ def VLD4DUPd8Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
def VLD4DUPd16Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
def VLD4DUPd32Pseudo_UPD : VLDQQWBPseudo<IIC_VLD4dupu>;
-} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+} // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1
-let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
// Classes for VST* pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
@@ -2017,7 +2025,7 @@ def VST4q8oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
def VST4q16oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
def VST4q32oddPseudo_UPD : VSTQQQQWBPseudo<IIC_VST4u>;
-} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
+} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
// Classes for VST*LN pseudo-instructions with multi-register operands.
// These are expanded to real instructions after register allocation.
@@ -2121,7 +2129,7 @@ def VST1LNq8Pseudo_UPD : VST1QLNWBPseudo<v16i8, post_truncsti8, NEONvgetlaneu>;
def VST1LNq16Pseudo_UPD : VST1QLNWBPseudo<v8i16, post_truncsti16,NEONvgetlaneu>;
def VST1LNq32Pseudo_UPD : VST1QLNWBPseudo<v4i32, post_store, extractelt>;
-let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in {
+let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
// VST2LN : Vector Store (single 2-element structure from one lane)
class VST2LN<bits<4> op11_8, bits<4> op7_4, string Dt>
@@ -2343,7 +2351,7 @@ def VST4LNq32_UPD : VST4LNWB<0b1011, {?,1,?,?}, "32"> {
def VST4LNq16Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST4lnu>;
def VST4LNq32Pseudo_UPD : VSTQQQQLNWBPseudo<IIC_VST4lnu>;
-} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1
+} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
// Use vld1/vst1 for unaligned f64 load / store
def : Pat<(f64 (hword_alignedload addrmode6:$addr)),
@@ -4376,7 +4384,7 @@ defm VMLSLslu : N3VLMulOpSL_HS<1, 0b0110, "vmlsl", "u", NEONvmullu, sub>;
// VQDMLSL : Vector Saturating Doubling Multiply Subtract Long (Q -= D * D)
defm VQDMLSL : N3VLInt3_HS<0, 1, 0b1011, 0, IIC_VMACi16D, IIC_VMACi32D,
"vqdmlsl", "s", null_frag>;
-defm VQDMLSLsl: N3VLInt3SL_HS<0, 0b111, "vqdmlsl", "s", null_frag>;
+defm VQDMLSLsl: N3VLInt3SL_HS<0, 0b0111, "vqdmlsl", "s", null_frag>;
def : Pat<(v4i32 (int_arm_neon_vqsubs (v4i32 QPR:$src1),
(v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn),
@@ -5429,7 +5437,7 @@ def VGETLNi32 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, 0b00,
IIC_VMOVSI, "vmov", "32", "$R, $V$lane",
[(set GPR:$R, (extractelt (v2i32 DPR:$V),
imm:$lane))]>,
- Requires<[HasNEON, HasFastVGETLNi32]> {
+ Requires<[HasVFP2, HasFastVGETLNi32]> {
let Inst{21} = lane{0};
}
// def VGETLNf32: see FMRDH and FMRDL in ARMInstrVFP.td
@@ -5497,8 +5505,12 @@ def VSETLNi32 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, 0b00, (outs DPR:$V),
(ins DPR:$src1, GPR:$R, VectorIndex32:$lane),
IIC_VMOVISL, "vmov", "32", "$V$lane, $R",
[(set DPR:$V, (insertelt (v2i32 DPR:$src1),
- GPR:$R, imm:$lane))]> {
+ GPR:$R, imm:$lane))]>,
+ Requires<[HasVFP2]> {
let Inst{21} = lane{0};
+ // This instruction is equivalent as
+ // $V = INSERT_SUBREG $src1, $R, translateImmToSubIdx($imm)
+ let isInsertSubreg = 1;
}
}
def : Pat<(vector_insert (v16i8 QPR:$src1), GPR:$src2, imm:$lane),
@@ -6635,6 +6647,16 @@ defm : NEONDTAnyInstAlias<"vorr${p}", "$Vdn, $Vm",
(VORRd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>;
defm : NEONDTAnyInstAlias<"vorr${p}", "$Vdn, $Vm",
(VORRq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>;
+// ... immediates
+def : NEONInstAlias<"vand${p}.i16 $Vd, $imm",
+ (VBICiv4i16 DPR:$Vd, nImmSplatNotI16:$imm, pred:$p)>;
+def : NEONInstAlias<"vand${p}.i32 $Vd, $imm",
+ (VBICiv2i32 DPR:$Vd, nImmSplatNotI32:$imm, pred:$p)>;
+def : NEONInstAlias<"vand${p}.i16 $Vd, $imm",
+ (VBICiv8i16 QPR:$Vd, nImmSplatNotI16:$imm, pred:$p)>;
+def : NEONInstAlias<"vand${p}.i32 $Vd, $imm",
+ (VBICiv4i32 QPR:$Vd, nImmSplatNotI32:$imm, pred:$p)>;
+
// VLD1 single-lane pseudo-instructions. These need special handling for
// the lane index that an InstAlias can't handle, so we use these instead.
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td b/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td
index e17f73af..cc953c6 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrThumb.td
@@ -311,7 +311,7 @@ def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val",
}
def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
- []>, T1Encoding<0b101101>, Deprecated<HasV8Ops> {
+ []>, T1Encoding<0b101101>, Requires<[IsNotMClass]>, Deprecated<HasV8Ops> {
bits<1> end;
// A8.6.156
let Inst{9-5} = 0b10010;
@@ -360,6 +360,14 @@ def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
let DecoderMethod = "DecodeThumbAddSpecialReg";
}
+// Thumb1 frame lowering is rather fragile, we hope to be able to use
+// tADDrSPi, but we may need to insert a sequence that clobbers CPSR.
+def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset),
+ NoItinerary, []>,
+ Requires<[IsThumb, IsThumb1Only]> {
+ let Defs = [CPSR];
+}
+
// ADD sp, sp, #<imm7>
def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
IIC_iALUi, "add", "\t$Rdn, $imm", []>,
@@ -466,7 +474,7 @@ let isCall = 1,
(outs), (ins pred:$p, t_blxtarget:$func), IIC_Br,
"blx${p}\t$func",
[(ARMcall tglobaladdr:$func)]>,
- Requires<[IsThumb, HasV5T]>, Sched<[WriteBrL]> {
+ Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> {
bits<24> func;
let Inst{26} = func{23};
let Inst{25-16} = func{20-11};
@@ -706,7 +714,7 @@ def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
//
// These require base address to be written back or one of the loaded regs.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
@@ -746,7 +754,7 @@ def tSTMIA_UPD : Thumb1I<(outs GPR:$wb),
let Inst{7-0} = regs;
}
-} // neverHasSideEffects
+} // hasSideEffects
def : InstAlias<"ldm${p} $Rn!, $regs",
(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>,
@@ -880,7 +888,7 @@ def tADDrr : // A8.6.6 T1
"add", "\t$Rd, $Rn, $Rm",
[(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
"add", "\t$Rdn, $Rm", []>,
T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
@@ -1040,7 +1048,7 @@ def : tInstAlias <"movs $Rdn, $imm",
// A7-73: MOV(2) - mov setting flag.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
2, IIC_iMOVr,
"mov", "\t$Rd, $Rm", "", []>,
@@ -1062,7 +1070,7 @@ def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
-} // neverHasSideEffects
+} // hasSideEffects
// Multiply register
let isCommutable = 1 in
@@ -1240,7 +1248,7 @@ def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
let DecoderMethod = "DecodeThumbAddSpecialReg";
}
-let neverHasSideEffects = 1, isReMaterializable = 1 in
+let hasSideEffects = 0, isReMaterializable = 1 in
def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
2, IIC_iALUi, []>, Sched<[WriteALU]>;
@@ -1289,7 +1297,7 @@ def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
AddrModeNone, 0, IndexModeNone,
Pseudo, NoItinerary, "", "",
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
- Requires<[IsThumb, IsIOS]>;
+ Requires<[IsThumb]>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
@@ -1355,7 +1363,7 @@ def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
Requires<[IsThumb]>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
- Requires<[IsThumb, HasV5T]>;
+ Requires<[IsThumb, HasV5T, IsNotMClass]>;
// Indirect calls to ARM routines
def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td b/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td
index 85e9351..5e41ea1 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrThumb2.td
@@ -1241,7 +1241,7 @@ def t2ADR : T2PCOneRegImm<(outs rGPR:$Rd),
let DecoderMethod = "DecodeT2Adr";
}
-let neverHasSideEffects = 1, isReMaterializable = 1 in
+let hasSideEffects = 0, isReMaterializable = 1 in
def t2LEApcrel : t2PseudoInst<(outs rGPR:$Rd), (ins i32imm:$label, pred:$p),
4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
let hasSideEffects = 1 in
@@ -1262,22 +1262,22 @@ defm t2LDR : T2I_ld<0, 0b10, "ldr", IIC_iLoad_i, IIC_iLoad_si, GPR,
// Loads with zero extension
defm t2LDRH : T2I_ld<0, 0b01, "ldrh", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
- GPR, UnOpFrag<(zextloadi16 node:$Src)>>;
+ GPRnopc, UnOpFrag<(zextloadi16 node:$Src)>>;
defm t2LDRB : T2I_ld<0, 0b00, "ldrb", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
- GPR, UnOpFrag<(zextloadi8 node:$Src)>>;
+ GPRnopc, UnOpFrag<(zextloadi8 node:$Src)>>;
// Loads with sign extension
defm t2LDRSH : T2I_ld<1, 0b01, "ldrsh", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
- GPR, UnOpFrag<(sextloadi16 node:$Src)>>;
+ GPRnopc, UnOpFrag<(sextloadi16 node:$Src)>>;
defm t2LDRSB : T2I_ld<1, 0b00, "ldrsb", IIC_iLoad_bh_i, IIC_iLoad_bh_si,
- GPR, UnOpFrag<(sextloadi8 node:$Src)>>;
+ GPRnopc, UnOpFrag<(sextloadi8 node:$Src)>>;
-let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in {
+let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// Load doubleword
def t2LDRDi8 : T2Ii8s4<1, 0, 1, (outs rGPR:$Rt, rGPR:$Rt2),
(ins t2addrmode_imm8s4:$addr),
IIC_iLoad_d_i, "ldrd", "\t$Rt, $Rt2, $addr", "", []>;
-} // mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1
+} // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1
// zextload i1 -> zextload i8
def : T2Pat<(zextloadi1 t2addrmode_imm12:$addr),
@@ -1326,7 +1326,7 @@ def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)),
// Indexed loads
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
def t2LDR_PRE : T2Ipreldst<0, 0b10, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins t2addrmode_imm8_pre:$addr),
AddrModeT2_i8, IndexModePre, IIC_iLoad_iu,
@@ -1378,7 +1378,7 @@ def t2LDRSH_POST : T2Ipostldst<1, 0b01, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$Rn, t2am_imm8_offset:$offset),
AddrModeT2_i8, IndexModePost, IIC_iLoad_bh_iu,
"ldrsh", "\t$Rt, $Rn$offset", "$Rn = $Rn_wb", []>;
-} // mayLoad = 1, neverHasSideEffects = 1
+} // mayLoad = 1, hasSideEffects = 0
// LDRT, LDRBT, LDRHT, LDRSBT, LDRSHT all have offset mode (PUW=0b110).
// Ref: A8.6.57 LDR (immediate, Thumb) Encoding T4
@@ -1443,14 +1443,14 @@ defm t2STRH:T2I_st<0b01,"strh", IIC_iStore_bh_i, IIC_iStore_bh_si,
rGPR, BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
// Store doubleword
-let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in
+let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in
def t2STRDi8 : T2Ii8s4<1, 0, 0, (outs),
(ins rGPR:$Rt, rGPR:$Rt2, t2addrmode_imm8s4:$addr),
IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", "", []>;
// Indexed stores
-let mayStore = 1, neverHasSideEffects = 1 in {
+let mayStore = 1, hasSideEffects = 0 in {
def t2STR_PRE : T2Ipreldst<0, 0b10, 0, 1, (outs GPRnopc:$Rn_wb),
(ins GPRnopc:$Rt, t2addrmode_imm8_pre:$addr),
AddrModeT2_i8, IndexModePre, IIC_iStore_iu,
@@ -1468,7 +1468,7 @@ def t2STRB_PRE : T2Ipreldst<0, 0b00, 0, 1, (outs GPRnopc:$Rn_wb),
AddrModeT2_i8, IndexModePre, IIC_iStore_bh_iu,
"strb", "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []>;
-} // mayStore = 1, neverHasSideEffects = 1
+} // mayStore = 1, hasSideEffects = 0
def t2STR_POST : T2Ipostldst<0, 0b10, 0, 0, (outs GPRnopc:$Rn_wb),
(ins GPRnopc:$Rt, addr_offset_none:$Rn,
@@ -1763,7 +1763,7 @@ multiclass thumb2_ld_mult<string asm, InstrItinClass itin,
}
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm t2LDM : thumb2_ld_mult<"ldm", IIC_iLoad_m, IIC_iLoad_mu, 1>;
@@ -1848,14 +1848,14 @@ multiclass thumb2_st_mult<string asm, InstrItinClass itin,
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm t2STM : thumb2_st_mult<"stm", IIC_iStore_m, IIC_iStore_mu, 0>;
-} // neverHasSideEffects
+} // hasSideEffects
//===----------------------------------------------------------------------===//
// Move Instructions.
//
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def t2MOVr : T2sTwoReg<(outs GPRnopc:$Rd), (ins GPR:$Rm), IIC_iMOVr,
"mov", ".w\t$Rd, $Rm", []>, Sched<[WriteALU]> {
let Inst{31-27} = 0b11101;
@@ -1973,6 +1973,16 @@ def t2SXTAH : T2I_exta_rrot<0b000, "sxtah",
BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
def t2SXTAB16 : T2I_exta_rrot_np<0b010, "sxtab16">;
+// A simple right-shift can also be used in most cases (the exception is the
+// SXTH operations with a rotate of 24: there the non-contiguous bits are
+// relevant).
+def : Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
+ (t2SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot), i16)),
+ (t2SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+
// Zero extenders
let AddedComplexity = 16 in {
@@ -1999,8 +2009,16 @@ def t2UXTAB : T2I_exta_rrot<0b101, "uxtab",
def t2UXTAH : T2I_exta_rrot<0b001, "uxtah",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
def t2UXTAB16 : T2I_exta_rrot_np<0b011, "uxtab16">;
+
+def : Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
+ (t2UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
+def : Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
+ (t2UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>,
+ Requires<[HasT2ExtractPack, IsThumb2]>;
}
+
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
@@ -2554,7 +2572,7 @@ def t2MLS: T2FourReg<
}
// Extra precision multiplies with low / high results
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let isCommutable = 1 in {
def t2SMULL : T2MulLong<0b000, 0b0000,
(outs rGPR:$RdLo, rGPR:$RdHi),
@@ -2585,7 +2603,7 @@ def t2UMAAL : T2MulLong<0b110, 0b0110,
(ins rGPR:$Rn, rGPR:$Rm), IIC_iMAC64,
"umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsThumb2, HasThumb2DSP]>;
-} // neverHasSideEffects
+} // hasSideEffects
// Rounding variants of the below included for disassembly only
@@ -2708,8 +2726,7 @@ multiclass T2I_smul<string opc, PatFrag opnode> {
def WB : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
!strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
- [(set rGPR:$Rd, (sra (opnode rGPR:$Rn,
- (sext_inreg rGPR:$Rm, i16)), (i32 16)))]>,
+ []>,
Requires<[IsThumb2, HasThumb2DSP]> {
let Inst{31-27} = 0b11111;
let Inst{26-23} = 0b0110;
@@ -2721,8 +2738,7 @@ multiclass T2I_smul<string opc, PatFrag opnode> {
def WT : T2ThreeReg<(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm), IIC_iMUL16,
!strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
- [(set rGPR:$Rd, (sra (opnode rGPR:$Rn,
- (sra rGPR:$Rm, (i32 16))), (i32 16)))]>,
+ []>,
Requires<[IsThumb2, HasThumb2DSP]> {
let Inst{31-27} = 0b11111;
let Inst{26-23} = 0b0110;
@@ -2791,8 +2807,7 @@ multiclass T2I_smla<string opc, PatFrag opnode> {
def WB : T2FourReg<
(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
!strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
- [(set rGPR:$Rd, (add rGPR:$Ra, (sra (opnode rGPR:$Rn,
- (sext_inreg rGPR:$Rm, i16)), (i32 16))))]>,
+ []>,
Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
let Inst{31-27} = 0b11111;
let Inst{26-23} = 0b0110;
@@ -2804,8 +2819,7 @@ multiclass T2I_smla<string opc, PatFrag opnode> {
def WT : T2FourReg<
(outs rGPR:$Rd), (ins rGPR:$Rn, rGPR:$Rm, rGPR:$Ra), IIC_iMAC16,
!strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
- [(set rGPR:$Rd, (add rGPR:$Ra, (sra (opnode rGPR:$Rn,
- (sra rGPR:$Rm, (i32 16))), (i32 16))))]>,
+ []>,
Requires<[IsThumb2, HasThumb2DSP, UseMulOps]> {
let Inst{31-27} = 0b11111;
let Inst{26-23} = 0b0110;
@@ -3136,7 +3150,7 @@ defm t2TEQ : T2I_cmp_irs<0b0100, "teq",
BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>>;
// Conditional moves
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let isCommutable = 1, isSelect = 1 in
def t2MOVCCr : t2PseudoInst<(outs rGPR:$Rd),
@@ -3199,7 +3213,7 @@ def t2MOVCCi32imm
RegConstraint<"$false = $dst">;
} // isCodeGenOnly = 1
-} // neverHasSideEffects
+} // hasSideEffects
//===----------------------------------------------------------------------===//
// Atomic operations intrinsics
@@ -3291,7 +3305,8 @@ def t2LDREXD : T2I_ldrex<0b0111, (outs rGPR:$Rt, rGPR:$Rt2),
(ins addr_offset_none:$addr),
AddrModeNone, 4, NoItinerary,
"ldrexd", "\t$Rt, $Rt2, $addr", "",
- [], {?, ?, ?, ?}> {
+ [], {?, ?, ?, ?}>,
+ Requires<[IsThumb2, IsNotMClass]> {
bits<4> Rt2;
let Inst{11-8} = Rt2;
}
@@ -3367,7 +3382,8 @@ def t2STREXD : T2I_strex<0b0111, (outs rGPR:$Rd),
(ins rGPR:$Rt, rGPR:$Rt2, addr_offset_none:$addr),
AddrModeNone, 4, NoItinerary,
"strexd", "\t$Rd, $Rt, $Rt2, $addr", "", [],
- {?, ?, ?, ?}> {
+ {?, ?, ?, ?}>,
+ Requires<[IsThumb2, IsNotMClass]> {
bits<4> Rt2;
let Inst{11-8} = Rt2;
}
@@ -3614,7 +3630,7 @@ def t2IT : Thumb2XI<(outs), (ins it_pred:$cc, it_mask:$mask),
// Branch and Exchange Jazelle -- for disassembly only
// Rm = Inst{19-16}
def t2BXJ : T2I<(outs), (ins rGPR:$func), NoItinerary, "bxj", "\t$func", []>,
- Sched<[WriteBr]> {
+ Sched<[WriteBr]>, Requires<[IsThumb2, IsNotMClass, PreV8]> {
bits<4> func;
let Inst{31-27} = 0b11110;
let Inst{26} = 0;
@@ -3656,7 +3672,8 @@ let isBranch = 1, isTerminator = 1 in {
// operands, create 3 versions of the same instruction. Once there's a clean
// framework to represent optional operands, change this behavior.
class t2CPS<dag iops, string asm_op> : T2XI<(outs), iops, NoItinerary,
- !strconcat("cps", asm_op), []> {
+ !strconcat("cps", asm_op), []>,
+ Requires<[IsThumb2, IsNotMClass]> {
bits<2> imod;
bits<3> iflags;
bits<5> mode;
@@ -3702,7 +3719,8 @@ def : t2InstAlias<"sevl$p.w", (t2HINT 5, pred:$p)> {
let Predicates = [IsThumb2, HasV8];
}
-def t2DBG : T2I<(outs), (ins imm0_15:$opt), NoItinerary, "dbg", "\t$opt", []> {
+def t2DBG : T2I<(outs), (ins imm0_15:$opt), NoItinerary, "dbg", "\t$opt",
+ [(int_arm_dbg imm0_15:$opt)]> {
bits<4> opt;
let Inst{31-20} = 0b111100111010;
let Inst{19-16} = 0b1111;
@@ -3739,7 +3757,8 @@ def t2DCPS3 : T2DCPS<0b11, "dcps3">;
class T2SRS<bits<2> Op, bit W, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
- : T2I<oops, iops, itin, opc, asm, pattern> {
+ : T2I<oops, iops, itin, opc, asm, pattern>,
+ Requires<[IsThumb2,IsNotMClass]> {
bits<5> mode;
let Inst{31-25} = 0b1110100;
let Inst{24-23} = Op;
@@ -3770,7 +3789,8 @@ def : t2InstAlias<"srsia${p} $mode!", (t2SRSIA_UPD imm0_31:$mode, pred:$p)>;
// Return From Exception is a system instruction.
class T2RFE<bits<12> op31_20, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
- : T2I<oops, iops, itin, opc, asm, pattern> {
+ : T2I<oops, iops, itin, opc, asm, pattern>,
+ Requires<[IsThumb2,IsNotMClass]> {
let Inst{31-20} = op31_20{11-0};
bits<4> Rn;
@@ -3797,13 +3817,34 @@ let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
def t2SUBS_PC_LR : T2I <(outs), (ins imm0_255:$imm), NoItinerary,
"subs", "\tpc, lr, $imm",
[(ARMintretflag imm0_255:$imm)]>,
- Requires<[IsThumb2]> {
+ Requires<[IsThumb2,IsNotMClass]> {
let Inst{31-8} = 0b111100111101111010001111;
bits<8> imm;
let Inst{7-0} = imm;
}
+// Hypervisor Call is a system instruction.
+let isCall = 1 in {
+def t2HVC : T2XI <(outs), (ins imm0_65535:$imm16), IIC_Br, "hvc.w\t$imm16", []>,
+ Requires<[IsThumb2, HasVirtualization]>, Sched<[WriteBr]> {
+ bits<16> imm16;
+ let Inst{31-20} = 0b111101111110;
+ let Inst{19-16} = imm16{15-12};
+ let Inst{15-12} = 0b1000;
+ let Inst{11-0} = imm16{11-0};
+}
+}
+
+// Alias for HVC without the ".w" optional width specifier
+def : t2InstAlias<"hvc\t$imm16", (t2HVC imm0_65535:$imm16)>;
+
+// ERET - Return from exception in Hypervisor mode.
+// B9.3.3, B9.3.20: ERET is an alias for "SUBS PC, LR, #0" in an implementation that
+// includes virtualization extensions.
+def t2ERET : InstAlias<"eret${p}", (t2SUBS_PC_LR 0, pred:$p)>,
+ Requires<[IsThumb2, HasVirtualization]>;
+
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
@@ -3941,10 +3982,10 @@ defm t2LDC : t2LdStCop<0b1110, 1, 0, "ldc">;
defm t2LDCL : t2LdStCop<0b1110, 1, 1, "ldcl">;
defm t2STC : t2LdStCop<0b1110, 0, 0, "stc">;
defm t2STCL : t2LdStCop<0b1110, 0, 1, "stcl">;
-defm t2LDC2 : t2LdStCop<0b1111, 1, 0, "ldc2">, Requires<[PreV8]>;
-defm t2LDC2L : t2LdStCop<0b1111, 1, 1, "ldc2l">, Requires<[PreV8]>;
-defm t2STC2 : t2LdStCop<0b1111, 0, 0, "stc2">, Requires<[PreV8]>;
-defm t2STC2L : t2LdStCop<0b1111, 0, 1, "stc2l">, Requires<[PreV8]>;
+defm t2LDC2 : t2LdStCop<0b1111, 1, 0, "ldc2">, Requires<[PreV8,IsThumb2]>;
+defm t2LDC2L : t2LdStCop<0b1111, 1, 1, "ldc2l">, Requires<[PreV8,IsThumb2]>;
+defm t2STC2 : t2LdStCop<0b1111, 0, 0, "stc2">, Requires<[PreV8,IsThumb2]>;
+defm t2STC2L : t2LdStCop<0b1111, 0, 1, "stc2l">, Requires<[PreV8,IsThumb2]>;
//===----------------------------------------------------------------------===//
@@ -3960,7 +4001,7 @@ def t2MRS_AR : T2I<(outs GPR:$Rd), (ins), NoItinerary, "mrs", "\t$Rd, apsr",
bits<4> Rd;
let Inst{31-12} = 0b11110011111011111000;
let Inst{11-8} = Rd;
- let Inst{7-0} = 0b0000;
+ let Inst{7-0} = 0b00000000;
}
def : t2InstAlias<"mrs${p} $Rd, cpsr", (t2MRS_AR GPR:$Rd, pred:$p)>;
@@ -3970,22 +4011,41 @@ def t2MRSsys_AR: T2I<(outs GPR:$Rd), (ins), NoItinerary, "mrs", "\t$Rd, spsr",
bits<4> Rd;
let Inst{31-12} = 0b11110011111111111000;
let Inst{11-8} = Rd;
- let Inst{7-0} = 0b0000;
+ let Inst{7-0} = 0b00000000;
+}
+
+def t2MRSbanked : T2I<(outs rGPR:$Rd), (ins banked_reg:$banked),
+ NoItinerary, "mrs", "\t$Rd, $banked", []>,
+ Requires<[IsThumb, HasVirtualization]> {
+ bits<6> banked;
+ bits<4> Rd;
+
+ let Inst{31-21} = 0b11110011111;
+ let Inst{20} = banked{5}; // R bit
+ let Inst{19-16} = banked{3-0};
+ let Inst{15-12} = 0b1000;
+ let Inst{11-8} = Rd;
+ let Inst{7-5} = 0b001;
+ let Inst{4} = banked{4};
+ let Inst{3-0} = 0b0000;
}
+
// M class MRS.
//
// This MRS has a mask field in bits 7-0 and can take more values than
// the A/R class (a full msr_mask).
-def t2MRS_M : T2I<(outs rGPR:$Rd), (ins msr_mask:$mask), NoItinerary,
- "mrs", "\t$Rd, $mask", []>,
+def t2MRS_M : T2I<(outs rGPR:$Rd), (ins msr_mask:$SYSm), NoItinerary,
+ "mrs", "\t$Rd, $SYSm", []>,
Requires<[IsThumb,IsMClass]> {
bits<4> Rd;
- bits<8> mask;
+ bits<8> SYSm;
let Inst{31-12} = 0b11110011111011111000;
let Inst{11-8} = Rd;
- let Inst{19-16} = 0b1111;
- let Inst{7-0} = mask;
+ let Inst{7-0} = SYSm;
+
+ let Unpredictable{20-16} = 0b11111;
+ let Unpredictable{13} = 0b1;
}
@@ -4010,6 +4070,25 @@ def t2MSR_AR : T2I<(outs), (ins msr_mask:$mask, rGPR:$Rn),
let Inst{7-0} = 0;
}
+// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
+// separate encoding (distinguished by bit 5.
+def t2MSRbanked : T2I<(outs), (ins banked_reg:$banked, rGPR:$Rn),
+ NoItinerary, "msr", "\t$banked, $Rn", []>,
+ Requires<[IsThumb, HasVirtualization]> {
+ bits<6> banked;
+ bits<4> Rn;
+
+ let Inst{31-21} = 0b11110011100;
+ let Inst{20} = banked{5}; // R bit
+ let Inst{19-16} = Rn;
+ let Inst{15-12} = 0b1000;
+ let Inst{11-8} = banked{3-0};
+ let Inst{7-5} = 0b001;
+ let Inst{4} = banked{4};
+ let Inst{3-0} = 0b0000;
+}
+
+
// M class MSR.
//
// Move from ARM core register to Special Register
@@ -4022,7 +4101,13 @@ def t2MSR_M : T2I<(outs), (ins msr_mask:$SYSm, rGPR:$Rn),
let Inst{20} = 0b0;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b1000;
- let Inst{11-0} = SYSm;
+ let Inst{11-10} = SYSm{11-10};
+ let Inst{9-8} = 0b00;
+ let Inst{7-0} = SYSm{7-0};
+
+ let Unpredictable{20} = 0b1;
+ let Unpredictable{13} = 0b1;
+ let Unpredictable{9-8} = 0b11;
}
diff --git a/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td b/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td
index 55a6efc..e0a9314 100644
--- a/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td
+++ b/contrib/llvm/lib/Target/ARM/ARMInstrVFP.td
@@ -194,7 +194,7 @@ multiclass vfp_ldst_mult<string asm, bit L_bit,
}
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>;
@@ -202,7 +202,7 @@ defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpStore_m, IIC_fpStore_mu>;
-} // neverHasSideEffects
+} // hasSideEffects
def : MnemonicAlias<"vldm", "vldmia">;
def : MnemonicAlias<"vstm", "vstmia">;
@@ -515,6 +515,8 @@ def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0,
let Inst{5} = Sm{0};
let Inst{15-12} = Dd{3-0};
let Inst{22} = Dd{4};
+
+ let Predicates = [HasVFP2, HasDPVFP];
}
// Special case encoding: bits 11-8 is 0b1011.
@@ -625,27 +627,30 @@ def : Pat<(f16_to_fp GPR:$a),
def : Pat<(f64 (f16_to_fp GPR:$a)),
(VCVTBHD (COPY_TO_REGCLASS GPR:$a, SPR))>;
-
-multiclass vcvt_inst<string opc, bits<2> rm> {
+multiclass vcvt_inst<string opc, bits<2> rm,
+ SDPatternOperator node = null_frag> {
let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in {
def SS : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vcvt", opc, ".s32.f32\t$Sd, $Sm"),
- []>, Requires<[HasFPARMv8]> {
+ [(set SPR:$Sd, (arm_ftosi (node SPR:$Sm)))]>,
+ Requires<[HasFPARMv8]> {
let Inst{17-16} = rm;
}
def US : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vcvt", opc, ".u32.f32\t$Sd, $Sm"),
- []>, Requires<[HasFPARMv8]> {
+ [(set SPR:$Sd, (arm_ftoui (node SPR:$Sm)))]>,
+ Requires<[HasFPARMv8]> {
let Inst{17-16} = rm;
}
def SD : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
(outs SPR:$Sd), (ins DPR:$Dm),
NoItinerary, !strconcat("vcvt", opc, ".s32.f64\t$Sd, $Dm"),
- []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ [(set SPR:$Sd, (arm_ftosi (f64 (node (f64 DPR:$Dm)))))]>,
+ Requires<[HasFPARMv8, HasDPVFP]> {
bits<5> Dm;
let Inst{17-16} = rm;
@@ -659,7 +664,8 @@ multiclass vcvt_inst<string opc, bits<2> rm> {
def UD : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
(outs SPR:$Sd), (ins DPR:$Dm),
NoItinerary, !strconcat("vcvt", opc, ".u32.f64\t$Sd, $Dm"),
- []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ [(set SPR:$Sd, (arm_ftoui (f64 (node (f64 DPR:$Dm)))))]>,
+ Requires<[HasFPARMv8, HasDPVFP]> {
bits<5> Dm;
let Inst{17-16} = rm;
@@ -672,10 +678,10 @@ multiclass vcvt_inst<string opc, bits<2> rm> {
}
}
-defm VCVTA : vcvt_inst<"a", 0b00>;
+defm VCVTA : vcvt_inst<"a", 0b00, frnd>;
defm VCVTN : vcvt_inst<"n", 0b01>;
-defm VCVTP : vcvt_inst<"p", 0b10>;
-defm VCVTM : vcvt_inst<"m", 0b11>;
+defm VCVTP : vcvt_inst<"p", 0b10, fceil>;
+defm VCVTM : vcvt_inst<"m", 0b11, ffloor>;
def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
@@ -691,18 +697,20 @@ def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0,
let D = VFPNeonA8Domain;
}
-multiclass vrint_inst_zrx<string opc, bit op, bit op2> {
+multiclass vrint_inst_zrx<string opc, bit op, bit op2, SDPatternOperator node> {
def S : ASuI<0b11101, 0b11, 0b0110, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vrint", opc), ".f32\t$Sd, $Sm",
- []>, Requires<[HasFPARMv8]> {
+ [(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>,
+ Requires<[HasFPARMv8]> {
let Inst{7} = op2;
let Inst{16} = op;
}
def D : ADuI<0b11101, 0b11, 0b0110, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
NoItinerary, !strconcat("vrint", opc), ".f64\t$Dd, $Dm",
- []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ [(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>,
+ Requires<[HasFPARMv8, HasDPVFP]> {
let Inst{7} = op2;
let Inst{16} = op;
}
@@ -715,22 +723,25 @@ multiclass vrint_inst_zrx<string opc, bit op, bit op2> {
Requires<[HasFPARMv8,HasDPVFP]>;
}
-defm VRINTZ : vrint_inst_zrx<"z", 0, 1>;
-defm VRINTR : vrint_inst_zrx<"r", 0, 0>;
-defm VRINTX : vrint_inst_zrx<"x", 1, 0>;
+defm VRINTZ : vrint_inst_zrx<"z", 0, 1, ftrunc>;
+defm VRINTR : vrint_inst_zrx<"r", 0, 0, fnearbyint>;
+defm VRINTX : vrint_inst_zrx<"x", 1, 0, frint>;
-multiclass vrint_inst_anpm<string opc, bits<2> rm> {
+multiclass vrint_inst_anpm<string opc, bits<2> rm,
+ SDPatternOperator node = null_frag> {
let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in {
def S : ASuInp<0b11101, 0b11, 0b1000, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vrint", opc, ".f32\t$Sd, $Sm"),
- []>, Requires<[HasFPARMv8]> {
+ [(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>,
+ Requires<[HasFPARMv8]> {
let Inst{17-16} = rm;
}
def D : ADuInp<0b11101, 0b11, 0b1000, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
NoItinerary, !strconcat("vrint", opc, ".f64\t$Dd, $Dm"),
- []>, Requires<[HasFPARMv8, HasDPVFP]> {
+ [(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>,
+ Requires<[HasFPARMv8, HasDPVFP]> {
let Inst{17-16} = rm;
}
}
@@ -743,10 +754,10 @@ multiclass vrint_inst_anpm<string opc, bits<2> rm> {
Requires<[HasFPARMv8,HasDPVFP]>;
}
-defm VRINTA : vrint_inst_anpm<"a", 0b00>;
+defm VRINTA : vrint_inst_anpm<"a", 0b00, frnd>;
defm VRINTN : vrint_inst_anpm<"n", 0b01>;
-defm VRINTP : vrint_inst_anpm<"p", 0b10>;
-defm VRINTM : vrint_inst_anpm<"m", 0b11>;
+defm VRINTP : vrint_inst_anpm<"p", 0b10, fceil>;
+defm VRINTM : vrint_inst_anpm<"m", 0b11, ffloor>;
def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
@@ -758,7 +769,7 @@ def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0,
IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fsqrt SPR:$Sm))]>;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", []>;
@@ -766,7 +777,7 @@ def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0,
def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", []>;
-} // neverHasSideEffects
+} // hasSideEffects
//===----------------------------------------------------------------------===//
// FP <-> GPR Copies. Int <-> FP Conversions.
@@ -816,7 +827,7 @@ def VMOVSR : AVConv4I<0b11100000, 0b1010,
let D = VFPNeonDomain;
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def VMOVRRD : AVConv3I<0b11000101, 0b1011,
(outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm),
IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm",
@@ -837,6 +848,11 @@ def VMOVRRD : AVConv3I<0b11000101, 0b1011,
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
+
+ // This instruction is equivalent to
+ // $Rt = EXTRACT_SUBREG $Dm, ssub_0
+ // $Rt2 = EXTRACT_SUBREG $Dm, ssub_1
+ let isExtractSubreg = 1;
}
def VMOVRRS : AVConv3I<0b11000101, 0b1010,
@@ -860,7 +876,7 @@ def VMOVRRS : AVConv3I<0b11000101, 0b1010,
let D = VFPNeonDomain;
let DecoderMethod = "DecodeVMOVRRS";
}
-} // neverHasSideEffects
+} // hasSideEffects
// FMDHR: GPR -> SPR
// FMDLR: GPR -> SPR
@@ -885,9 +901,13 @@ def VMOVDRR : AVConv5I<0b11000100, 0b1011,
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
+
+ // This instruction is equivalent to
+ // $Dm = REG_SEQUENCE $Rt, ssub_0, $Rt2, ssub_1
+ let isRegSequence = 1;
}
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def VMOVSRR : AVConv5I<0b11000100, 0b1010,
(outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2),
IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2",
@@ -1523,7 +1543,7 @@ def : Pat<(fneg (f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin))),
// FP Conditional moves.
//
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def VMOVDcc : PseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, cmovpred:$p),
IIC_fpUNA64,
[(set (f64 DPR:$Dd),
@@ -1535,7 +1555,7 @@ def VMOVScc : PseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, cmovpred:$p),
[(set (f32 SPR:$Sd),
(ARMcmov SPR:$Sn, SPR:$Sm, cmovpred:$p))]>,
RegConstraint<"$Sn = $Sd">, Requires<[HasVFP2]>;
-} // neverHasSideEffects
+} // hasSideEffects
//===----------------------------------------------------------------------===//
// Move from VFP System Register to ARM core register.
diff --git a/contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp
deleted file mode 100644
index 6d1114d..0000000
--- a/contrib/llvm/lib/Target/ARM/ARMJITInfo.cpp
+++ /dev/null
@@ -1,344 +0,0 @@
-//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the JIT interfaces for the ARM target.
-//
-//===----------------------------------------------------------------------===//
-
-#include "ARMJITInfo.h"
-#include "ARMConstantPoolValue.h"
-#include "ARMMachineFunctionInfo.h"
-#include "ARMRelocations.h"
-#include "MCTargetDesc/ARMBaseInfo.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Memory.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cstdlib>
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
-}
-
-/// JITCompilerFunction - This contains the address of the JIT function used to
-/// compile a function lazily.
-static TargetJITInfo::JITCompilerFn JITCompilerFunction;
-
-// Get the ASMPREFIX for the current host. This is often '_'.
-#ifndef __USER_LABEL_PREFIX__
-#define __USER_LABEL_PREFIX__
-#endif
-#define GETASMPREFIX2(X) #X
-#define GETASMPREFIX(X) GETASMPREFIX2(X)
-#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
-
-// CompilationCallback stub - We can't use a C function with inline assembly in
-// it, because the prolog/epilog inserted by GCC won't work for us. (We need
-// to preserve more context and manipulate the stack directly). Instead,
-// write our own wrapper, which does things our way, so we have complete
-// control over register saving and restoring.
-extern "C" {
-#if defined(__arm__)
- void ARMCompilationCallback();
- asm(
- ".text\n"
- ".align 2\n"
- ".globl " ASMPREFIX "ARMCompilationCallback\n"
- ASMPREFIX "ARMCompilationCallback:\n"
- // Save caller saved registers since they may contain stuff
- // for the real target function right now. We have to act as if this
- // whole compilation callback doesn't exist as far as the caller is
- // concerned, so we can't just preserve the callee saved regs.
- "stmdb sp!, {r0, r1, r2, r3, lr}\n"
-#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
- "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
-#endif
- // The LR contains the address of the stub function on entry.
- // pass it as the argument to the C part of the callback
- "mov r0, lr\n"
- "sub sp, sp, #4\n"
- // Call the C portion of the callback
- "bl " ASMPREFIX "ARMCompilationCallbackC\n"
- "add sp, sp, #4\n"
- // Restoring the LR to the return address of the function that invoked
- // the stub and de-allocating the stack space for it requires us to
- // swap the two saved LR values on the stack, as they're backwards
- // for what we need since the pop instruction has a pre-determined
- // order for the registers.
- // +--------+
- // 0 | LR | Original return address
- // +--------+
- // 1 | LR | Stub address (start of stub)
- // 2-5 | R3..R0 | Saved registers (we need to preserve all regs)
- // 6-20 | D0..D7 | Saved VFP registers
- // +--------+
- //
-#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
- // Restore VFP caller-saved registers.
- "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
-#endif
- //
- // We need to exchange the values in slots 0 and 1 so we can
- // return to the address in slot 1 with the address in slot 0
- // restored to the LR.
- "ldr r0, [sp,#20]\n"
- "ldr r1, [sp,#16]\n"
- "str r1, [sp,#20]\n"
- "str r0, [sp,#16]\n"
- // Return to the (newly modified) stub to invoke the real function.
- // The above twiddling of the saved return addresses allows us to
- // deallocate everything, including the LR the stub saved, with two
- // updating load instructions.
- "ldmia sp!, {r0, r1, r2, r3, lr}\n"
- "ldr pc, [sp], #4\n"
- );
-#else // Not an ARM host
- void ARMCompilationCallback() {
- llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
- }
-#endif
-}
-
-/// ARMCompilationCallbackC - This is the target-specific function invoked
-/// by the function stub when we did not know the real target of a call.
-/// This function must locate the start of the stub or call site and pass
-/// it into the JIT compiler function.
-extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
- // Get the address of the compiled code for this function.
- intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
-
- // Rewrite the call target... so that we don't end up here every time we
- // execute the call. We're replacing the first two instructions of the
- // stub with:
- // ldr pc, [pc,#-4]
- // <addr>
- if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
- llvm_unreachable("ERROR: Unable to mark stub writable");
- }
- *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4]
- *(intptr_t *)(StubAddr+4) = NewVal;
- if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
- llvm_unreachable("ERROR: Unable to mark stub executable");
- }
-}
-
-TargetJITInfo::LazyResolverFn
-ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
- JITCompilerFunction = F;
- return ARMCompilationCallback;
-}
-
-void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
- JITCodeEmitter &JCE) {
- uint8_t Buffer[4];
- uint8_t *Cur = Buffer;
- MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
- void *PtrAddr = JCE.allocIndirectGV(
- GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
- addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
- return PtrAddr;
-}
-
-TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
- // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
- // 4-byte address. See emitFunctionStub for details.
- StubLayout Result = {16, 4};
- return Result;
-}
-
-void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
- JITCodeEmitter &JCE) {
- void *Addr;
- // If this is just a call to an external function, emit a branch instead of a
- // call. The code is the same except for one bit of the last instruction.
- if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
- // Branch to the corresponding function addr.
- if (IsPIC) {
- // The stub is 16-byte size and 4-aligned.
- intptr_t LazyPtr = getIndirectSymAddr(Fn);
- if (!LazyPtr) {
- // In PIC mode, the function stub is loading a lazy-ptr.
- LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
- DEBUG(if (F)
- errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
- << "] for GV '" << F->getName() << "'\n";
- else
- errs() << "JIT: Stub emitted at [" << LazyPtr
- << "] for external function at '" << Fn << "'\n");
- }
- JCE.emitAlignment(4);
- Addr = (void*)JCE.getCurrentPCValue();
- if (!sys::Memory::setRangeWritable(Addr, 16)) {
- llvm_unreachable("ERROR: Unable to mark stub writable");
- }
- JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4]
- JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip
- JCE.emitWordLE(0xe59cf000); // ldr pc, [ip]
- JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8)
- sys::Memory::InvalidateInstructionCache(Addr, 16);
- if (!sys::Memory::setRangeExecutable(Addr, 16)) {
- llvm_unreachable("ERROR: Unable to mark stub executable");
- }
- } else {
- // The stub is 8-byte size and 4-aligned.
- JCE.emitAlignment(4);
- Addr = (void*)JCE.getCurrentPCValue();
- if (!sys::Memory::setRangeWritable(Addr, 8)) {
- llvm_unreachable("ERROR: Unable to mark stub writable");
- }
- JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
- JCE.emitWordLE((intptr_t)Fn); // addr of function
- sys::Memory::InvalidateInstructionCache(Addr, 8);
- if (!sys::Memory::setRangeExecutable(Addr, 8)) {
- llvm_unreachable("ERROR: Unable to mark stub executable");
- }
- }
- } else {
- // The compilation callback will overwrite the first two words of this
- // stub with indirect branch instructions targeting the compiled code.
- // This stub sets the return address to restart the stub, so that
- // the new branch will be invoked when we come back.
- //
- // Branch and link to the compilation callback.
- // The stub is 16-byte size and 4-byte aligned.
- JCE.emitAlignment(4);
- Addr = (void*)JCE.getCurrentPCValue();
- if (!sys::Memory::setRangeWritable(Addr, 16)) {
- llvm_unreachable("ERROR: Unable to mark stub writable");
- }
- // Save LR so the callback can determine which stub called it.
- // The compilation callback is responsible for popping this prior
- // to returning.
- JCE.emitWordLE(0xe92d4000); // push {lr}
- // Set the return address to go back to the start of this stub.
- JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
- // Invoke the compilation callback.
- JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
- // The address of the compilation callback.
- JCE.emitWordLE((intptr_t)ARMCompilationCallback);
- sys::Memory::InvalidateInstructionCache(Addr, 16);
- if (!sys::Memory::setRangeExecutable(Addr, 16)) {
- llvm_unreachable("ERROR: Unable to mark stub executable");
- }
- }
-
- return Addr;
-}
-
-intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
- ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
- switch (RT) {
- default:
- return (intptr_t)(MR->getResultPointer());
- case ARM::reloc_arm_pic_jt:
- // Destination address - jump table base.
- return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
- case ARM::reloc_arm_jt_base:
- // Jump table base address.
- return getJumpTableBaseAddr(MR->getJumpTableIndex());
- case ARM::reloc_arm_cp_entry:
- case ARM::reloc_arm_vfp_cp_entry:
- // Constant pool entry address.
- return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
- case ARM::reloc_arm_machine_cp_entry: {
- ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
- assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
- "Can't handle this machine constant pool entry yet!");
- intptr_t Addr = (intptr_t)(MR->getResultPointer());
- Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
- return Addr;
- }
- }
-}
-
-/// relocate - Before the JIT can run a block of code that has been emitted,
-/// it must rewrite the code to contain the actual addresses of any
-/// referenced global symbols.
-void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) {
- for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
- void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
- intptr_t ResultPtr = resolveRelocDestAddr(MR);
- switch ((ARM::RelocationType)MR->getRelocationType()) {
- case ARM::reloc_arm_cp_entry:
- case ARM::reloc_arm_vfp_cp_entry:
- case ARM::reloc_arm_relative: {
- // It is necessary to calculate the correct PC relative value. We
- // subtract the base addr from the target addr to form a byte offset.
- ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
- // If the result is positive, set bit U(23) to 1.
- if (ResultPtr >= 0)
- *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
- else {
- // Otherwise, obtain the absolute value and set bit U(23) to 0.
- *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
- ResultPtr = - ResultPtr;
- }
- // Set the immed value calculated.
- // VFP immediate offset is multiplied by 4.
- if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
- ResultPtr = ResultPtr >> 2;
- *((intptr_t*)RelocPos) |= ResultPtr;
- // Set register Rn to PC (which is register 15 on all architectures).
- // FIXME: This avoids the need for register info in the JIT class.
- *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
- break;
- }
- case ARM::reloc_arm_pic_jt:
- case ARM::reloc_arm_machine_cp_entry:
- case ARM::reloc_arm_absolute: {
- // These addresses have already been resolved.
- *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
- break;
- }
- case ARM::reloc_arm_branch: {
- // It is necessary to calculate the correct value of signed_immed_24
- // field. We subtract the base addr from the target addr to form a
- // byte offset, which must be inside the range -33554432 and +33554428.
- // Then, we set the signed_immed_24 field of the instruction to bits
- // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
- ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
- ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
- assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
- *((intptr_t*)RelocPos) |= ResultPtr;
- break;
- }
- case ARM::reloc_arm_jt_base: {
- // JT base - (instruction addr + 8)
- ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
- *((intptr_t*)RelocPos) |= ResultPtr;
- break;
- }
- case ARM::reloc_arm_movw: {
- ResultPtr = ResultPtr & 0xFFFF;
- *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
- *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
- break;
- }
- case ARM::reloc_arm_movt: {
- ResultPtr = (ResultPtr >> 16) & 0xFFFF;
- *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
- *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
- break;
- }
- }
- }
-}
-
-void ARMJITInfo::Initialize(const MachineFunction &MF, bool isPIC) {
- const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- ConstPoolId2AddrMap.resize(AFI->getNumPICLabels());
- JumpTableId2AddrMap.resize(AFI->getNumJumpTables());
- IsPIC = isPIC;
-}
diff --git a/contrib/llvm/lib/Target/ARM/ARMJITInfo.h b/contrib/llvm/lib/Target/ARM/ARMJITInfo.h
deleted file mode 100644
index 27e2a20..0000000
--- a/contrib/llvm/lib/Target/ARM/ARMJITInfo.h
+++ /dev/null
@@ -1,177 +0,0 @@
-//===-- ARMJITInfo.h - ARM implementation of the JIT interface -*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the declaration of the ARMJITInfo class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef ARMJITINFO_H
-#define ARMJITINFO_H
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetJITInfo.h"
-
-namespace llvm {
- class ARMTargetMachine;
-
- class ARMJITInfo : public TargetJITInfo {
- // ConstPoolId2AddrMap - A map from constant pool ids to the corresponding
- // CONSTPOOL_ENTRY addresses.
- SmallVector<intptr_t, 16> ConstPoolId2AddrMap;
-
- // JumpTableId2AddrMap - A map from inline jumptable ids to the
- // corresponding inline jump table bases.
- SmallVector<intptr_t, 16> JumpTableId2AddrMap;
-
- // PCLabelMap - A map from PC labels to addresses.
- DenseMap<unsigned, intptr_t> PCLabelMap;
-
- // Sym2IndirectSymMap - A map from symbol (GlobalValue and ExternalSymbol)
- // addresses to their indirect symbol addresses.
- DenseMap<void*, intptr_t> Sym2IndirectSymMap;
-
- // IsPIC - True if the relocation model is PIC. This is used to determine
- // how to codegen function stubs.
- bool IsPIC;
-
- public:
- explicit ARMJITInfo() : IsPIC(false) { useGOT = false; }
-
- /// replaceMachineCodeForFunction - Make it so that calling the function
- /// whose machine code is at OLD turns into a call to NEW, perhaps by
- /// overwriting OLD with a branch to NEW. This is used for self-modifying
- /// code.
- ///
- void replaceMachineCodeForFunction(void *Old, void *New) override;
-
- /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object
- /// to emit an indirect symbol which contains the address of the specified
- /// ptr.
- void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
- JITCodeEmitter &JCE) override;
-
- // getStubLayout - Returns the size and alignment of the largest call stub
- // on ARM.
- StubLayout getStubLayout() override;
-
- /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
- /// small native function that simply calls the function at the specified
- /// address.
- void *emitFunctionStub(const Function* F, void *Fn,
- JITCodeEmitter &JCE) override;
-
- /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
- LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
-
- /// relocate - Before the JIT can run a block of code that has been emitted,
- /// it must rewrite the code to contain the actual addresses of any
- /// referenced global symbols.
- void relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) override;
-
- /// hasCustomConstantPool - Allows a target to specify that constant
- /// pool address resolution is handled by the target.
- bool hasCustomConstantPool() const override { return true; }
-
- /// hasCustomJumpTables - Allows a target to specify that jumptables
- /// are emitted by the target.
- bool hasCustomJumpTables() const override { return true; }
-
- /// allocateSeparateGVMemory - If true, globals should be placed in
- /// separately allocated heap memory rather than in the same
- /// code memory allocated by JITCodeEmitter.
- bool allocateSeparateGVMemory() const override {
-#ifdef __APPLE__
- return true;
-#else
- return false;
-#endif
- }
-
- /// Initialize - Initialize internal stage for the function being JITted.
- /// Resize constant pool ids to CONSTPOOL_ENTRY addresses map; resize
- /// jump table ids to jump table bases map; remember if codegen relocation
- /// model is PIC.
- void Initialize(const MachineFunction &MF, bool isPIC);
-
- /// getConstantPoolEntryAddr - The ARM target puts all constant
- /// pool entries into constant islands. This returns the address of the
- /// constant pool entry of the specified index.
- intptr_t getConstantPoolEntryAddr(unsigned CPI) const {
- assert(CPI < ConstPoolId2AddrMap.size());
- return ConstPoolId2AddrMap[CPI];
- }
-
- /// addConstantPoolEntryAddr - Map a Constant Pool Index to the address
- /// where its associated value is stored. When relocations are processed,
- /// this value will be used to resolve references to the constant.
- void addConstantPoolEntryAddr(unsigned CPI, intptr_t Addr) {
- assert(CPI < ConstPoolId2AddrMap.size());
- ConstPoolId2AddrMap[CPI] = Addr;
- }
-
- /// getJumpTableBaseAddr - The ARM target inline all jump tables within
- /// text section of the function. This returns the address of the base of
- /// the jump table of the specified index.
- intptr_t getJumpTableBaseAddr(unsigned JTI) const {
- assert(JTI < JumpTableId2AddrMap.size());
- return JumpTableId2AddrMap[JTI];
- }
-
- /// addJumpTableBaseAddr - Map a jump table index to the address where
- /// the corresponding inline jump table is emitted. When relocations are
- /// processed, this value will be used to resolve references to the
- /// jump table.
- void addJumpTableBaseAddr(unsigned JTI, intptr_t Addr) {
- assert(JTI < JumpTableId2AddrMap.size());
- JumpTableId2AddrMap[JTI] = Addr;
- }
-
- /// getPCLabelAddr - Retrieve the address of the PC label of the
- /// specified id.
- intptr_t getPCLabelAddr(unsigned Id) const {
- DenseMap<unsigned, intptr_t>::const_iterator I = PCLabelMap.find(Id);
- assert(I != PCLabelMap.end());
- return I->second;
- }
-
- /// addPCLabelAddr - Remember the address of the specified PC label.
- void addPCLabelAddr(unsigned Id, intptr_t Addr) {
- PCLabelMap.insert(std::make_pair(Id, Addr));
- }
-
- /// getIndirectSymAddr - Retrieve the address of the indirect symbol of the
- /// specified symbol located at address. Returns 0 if the indirect symbol
- /// has not been emitted.
- intptr_t getIndirectSymAddr(void *Addr) const {
- DenseMap<void*,intptr_t>::const_iterator I= Sym2IndirectSymMap.find(Addr);
- if (I != Sym2IndirectSymMap.end())
- return I->second;
- return 0;
- }
-
- /// addIndirectSymAddr - Add a mapping from address of an emitted symbol to
- /// its indirect symbol address.
- void addIndirectSymAddr(void *SymAddr, intptr_t IndSymAddr) {
- Sym2IndirectSymMap.insert(std::make_pair(SymAddr, IndSymAddr));
- }
-
- private:
- /// resolveRelocDestAddr - Resolve the resulting address of the relocation
- /// if it's not already solved. Constantpool entries must be resolved by
- /// ARM target.
- intptr_t resolveRelocDestAddr(MachineRelocation *MR) const;
- };
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp b/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
index a03bcdb..fda3e81 100644
--- a/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
@@ -144,6 +144,46 @@ namespace {
char ARMLoadStoreOpt::ID = 0;
}
+static bool definesCPSR(const MachineInstr *MI) {
+ for (const auto &MO : MI->operands()) {
+ if (!MO.isReg())
+ continue;
+ if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
+ // If the instruction has live CPSR def, then it's not safe to fold it
+ // into load / store.
+ return true;
+ }
+
+ return false;
+}
+
+static int getMemoryOpOffset(const MachineInstr *MI) {
+ int Opcode = MI->getOpcode();
+ bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
+ unsigned NumOperands = MI->getDesc().getNumOperands();
+ unsigned OffField = MI->getOperand(NumOperands-3).getImm();
+
+ if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
+ Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
+ Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
+ Opcode == ARM::LDRi12 || Opcode == ARM::STRi12)
+ return OffField;
+
+ // Thumb1 immediate offsets are scaled by 4
+ if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi)
+ return OffField * 4;
+
+ int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
+ : ARM_AM::getAM5Offset(OffField) * 4;
+ ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField)
+ : ARM_AM::getAM5Op(OffField);
+
+ if (Op == ARM_AM::sub)
+ return -Offset;
+
+ return Offset;
+}
+
static int getLoadStoreMultipleOpcode(int Opcode, ARM_AM::AMSubMode Mode) {
switch (Opcode) {
default: llvm_unreachable("Unhandled opcode!");
@@ -335,40 +375,50 @@ ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
unsigned WordOffset,
ARMCC::CondCodes Pred, unsigned PredReg) {
assert(isThumb1 && "Can only update base register uses for Thumb1!");
-
- // Start updating any instructions with immediate offsets. Insert a sub before
+ // Start updating any instructions with immediate offsets. Insert a SUB before
// the first non-updateable instruction (if any).
for (; MBBI != MBB.end(); ++MBBI) {
+ bool InsertSub = false;
+ unsigned Opc = MBBI->getOpcode();
+
if (MBBI->readsRegister(Base)) {
- unsigned Opc = MBBI->getOpcode();
int Offset;
- bool InsertSub = false;
+ bool IsLoad =
+ Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi;
+ bool IsStore =
+ Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi;
- if (Opc == ARM::tLDRi || Opc == ARM::tSTRi ||
- Opc == ARM::tLDRHi || Opc == ARM::tSTRHi ||
- Opc == ARM::tLDRBi || Opc == ARM::tSTRBi) {
+ if (IsLoad || IsStore) {
// Loads and stores with immediate offsets can be updated, but only if
// the new offset isn't negative.
// The MachineOperand containing the offset immediate is the last one
// before predicates.
MachineOperand &MO =
MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
- // The offsets are scaled by 1, 2 or 4 depending on the Opcode
+ // The offsets are scaled by 1, 2 or 4 depending on the Opcode.
Offset = MO.getImm() - WordOffset * getImmScale(Opc);
- if (Offset >= 0)
+
+ // If storing the base register, it needs to be reset first.
+ unsigned InstrSrcReg = MBBI->getOperand(0).getReg();
+
+ if (Offset >= 0 && !(IsStore && InstrSrcReg == Base))
MO.setImm(Offset);
else
InsertSub = true;
- } else if (Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) {
- // SUB/ADD using this register. Merge it with the update.
- // If the merged offset is too large, insert a new sub instead.
+ } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) &&
+ !definesCPSR(MBBI)) {
+ // SUBS/ADDS using this register, with a dead def of the CPSR.
+ // Merge it with the update; if the merged offset is too large,
+ // insert a new sub instead.
MachineOperand &MO =
MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
Offset = (Opc == ARM::tSUBi8) ?
MO.getImm() + WordOffset * 4 :
MO.getImm() - WordOffset * 4 ;
- if (TL->isLegalAddImmediate(Offset)) {
+ if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) {
+ // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if
+ // Offset == 0.
MO.setImm(Offset);
// The base register has now been reset, so exit early.
return;
@@ -381,13 +431,19 @@ ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
InsertSub = true;
}
- if (InsertSub) {
- // An instruction above couldn't be updated, so insert a sub.
- AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(ARM::tSUBi8), Base))
- .addReg(Base, getKillRegState(true)).addImm(WordOffset * 4)
- .addImm(Pred).addReg(PredReg);
- return;
- }
+ } else if (definesCPSR(MBBI) || MBBI->isCall() || MBBI->isBranch()) {
+ // Since SUBS sets the condition flags, we can't place the base reset
+ // after an instruction that has a live CPSR def.
+ // The base register might also contain an argument for a function call.
+ InsertSub = true;
+ }
+
+ if (InsertSub) {
+ // An instruction above couldn't be updated, so insert a sub.
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(ARM::tSUBi8), Base), true)
+ .addReg(Base, getKillRegState(false)).addImm(WordOffset * 4)
+ .addImm(Pred).addReg(PredReg);
+ return;
}
if (MBBI->killsRegister(Base))
@@ -395,15 +451,18 @@ ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
return;
}
- // The end of the block was reached. This means register liveness escapes the
- // block, and it's necessary to insert a sub before the last instruction.
- if (MBB.succ_size() > 0)
- // But only insert the SUB if there is actually a successor block.
- // FIXME: Check more carefully if register is live at this point, e.g. by
- // also examining the successor block's register liveness information.
- AddDefaultT1CC(BuildMI(MBB, --MBBI, dl, TII->get(ARM::tSUBi8), Base))
- .addReg(Base, getKillRegState(true)).addImm(WordOffset * 4)
+ // End of block was reached.
+ if (MBB.succ_size() > 0) {
+ // FIXME: Because of a bug, live registers are sometimes missing from
+ // the successor blocks' live-in sets. This means we can't trust that
+ // information and *always* have to reset at the end of a block.
+ // See PR21029.
+ if (MBBI != MBB.end()) --MBBI;
+ AddDefaultT1CC(
+ BuildMI(MBB, MBBI, dl, TII->get(ARM::tSUBi8), Base), true)
+ .addReg(Base, getKillRegState(false)).addImm(WordOffset * 4)
.addImm(Pred).addReg(PredReg);
+ }
}
/// MergeOps - Create and insert a LDM or STM with Base as base register and
@@ -422,6 +481,28 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
if (NumRegs <= 1)
return false;
+ // For Thumb1 targets, it might be necessary to clobber the CPSR to merge.
+ // Compute liveness information for that register to make the decision.
+ bool SafeToClobberCPSR = !isThumb1 ||
+ (MBB.computeRegisterLiveness(TRI, ARM::CPSR, std::prev(MBBI), 15) ==
+ MachineBasicBlock::LQR_Dead);
+
+ bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.
+
+ // Exception: If the base register is in the input reglist, Thumb1 LDM is
+ // non-writeback.
+ // It's also not possible to merge an STR of the base register in Thumb1.
+ if (isThumb1)
+ for (unsigned I = 0; I < NumRegs; ++I)
+ if (Base == Regs[I].first) {
+ if (Opcode == ARM::tLDRi) {
+ Writeback = false;
+ break;
+ } else if (Opcode == ARM::tSTRi) {
+ return false;
+ }
+ }
+
ARM_AM::AMSubMode Mode = ARM_AM::ia;
// VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA.
bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
@@ -445,6 +526,11 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
if (NumRegs <= 2)
return false;
+ // On Thumb1, it's not worth materializing a new base register without
+ // clobbering the CPSR (i.e. not using ADDS/SUBS).
+ if (!SafeToClobberCPSR)
+ return false;
+
unsigned NewBase;
if (isi32Load(Opcode)) {
// If it is a load, then just use one of the destination register to
@@ -459,13 +545,15 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
int BaseOpc =
isThumb2 ? ARM::t2ADDri :
+ (isThumb1 && Offset < 8) ? ARM::tADDi3 :
isThumb1 ? ARM::tADDi8 : ARM::ADDri;
if (Offset < 0) {
+ Offset = - Offset;
BaseOpc =
isThumb2 ? ARM::t2SUBri :
+ (isThumb1 && Offset < 8) ? ARM::tSUBi3 :
isThumb1 ? ARM::tSUBi8 : ARM::SUBri;
- Offset = - Offset;
}
if (!TL->isLegalAddImmediate(Offset))
@@ -473,22 +561,39 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
return false; // Probably not worth it then.
if (isThumb1) {
- if (Base != NewBase) {
+ // Thumb1: depending on immediate size, use either
+ // ADDS NewBase, Base, #imm3
+ // or
+ // MOV NewBase, Base
+ // ADDS NewBase, #imm8.
+ if (Base != NewBase && Offset >= 8) {
+ const ARMSubtarget &Subtarget = MBB.getParent()->getTarget()
+ .getSubtarget<ARMSubtarget>();
// Need to insert a MOV to the new base first.
- // FIXME: If the immediate fits in 3 bits, use ADD instead.
- BuildMI(MBB, MBBI, dl, TII->get(ARM::tMOVr), NewBase)
- .addReg(Base, getKillRegState(BaseKill))
- .addImm(Pred).addReg(PredReg);
+ if (isARMLowRegister(NewBase) && isARMLowRegister(Base) &&
+ !Subtarget.hasV6Ops()) {
+ // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr
+ if (Pred != ARMCC::AL)
+ return false;
+ BuildMI(MBB, MBBI, dl, TII->get(ARM::tMOVSr), NewBase)
+ .addReg(Base, getKillRegState(BaseKill));
+ } else
+ BuildMI(MBB, MBBI, dl, TII->get(ARM::tMOVr), NewBase)
+ .addReg(Base, getKillRegState(BaseKill))
+ .addImm(Pred).addReg(PredReg);
+
+ // Set up BaseKill and Base correctly to insert the ADDS/SUBS below.
+ Base = NewBase;
+ BaseKill = false;
}
- AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase))
- .addReg(NewBase, getKillRegState(true)).addImm(Offset)
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase), true)
+ .addReg(Base, getKillRegState(BaseKill)).addImm(Offset)
.addImm(Pred).addReg(PredReg);
} else {
BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase)
.addReg(Base, getKillRegState(BaseKill)).addImm(Offset)
.addImm(Pred).addReg(PredReg).addReg(0);
}
-
Base = NewBase;
BaseKill = true; // New base is always killed straight away.
}
@@ -501,16 +606,16 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
if (!Opcode) return false;
- bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.
-
- // Exception: If the base register is in the input reglist, Thumb1 LDM is
- // non-writeback. Check for this.
- if (Opcode == ARM::tLDMIA && isThumb1)
- for (unsigned I = 0; I < NumRegs; ++I)
- if (Base == Regs[I].first) {
- Writeback = false;
- break;
- }
+ // Check if a Thumb1 LDM/STM merge is safe. This is the case if:
+ // - There is no writeback (LDM of base register),
+ // - the base register is killed by the merged instruction,
+ // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS
+ // to reset the base register.
+ // Otherwise, don't merge.
+ // It's safe to return here since the code to materialize a new base register
+ // above is also conditional on SafeToClobberCPSR.
+ if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill)
+ return false;
MachineInstrBuilder MIB;
@@ -525,11 +630,11 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
MIB.addReg(Base, getDefRegState(true))
.addReg(Base, getKillRegState(BaseKill));
- // The base isn't dead after a merged instruction with writeback. Update
- // future uses of the base with the added offset (if possible), or reset
- // the base register as necessary.
+ // The base isn't dead after a merged instruction with writeback.
+ // Insert a sub instruction after the newly formed instruction to reset.
if (!BaseKill)
UpdateBaseRegUses(MBB, MBBI, dl, Base, NumRegs, Pred, PredReg);
+
} else {
// No writeback, simply build the MachineInstr.
MIB = BuildMI(MBB, MBBI, dl, TII->get(Opcode));
@@ -700,6 +805,11 @@ void ARMLoadStoreOpt::MergeOpsUpdate(MachineBasicBlock &MBB,
memOps[i].MBBI = Merges.back();
memOps[i].Position = insertPos;
}
+
+ // Update memOps offsets, since they may have been modified by MergeOps.
+ for (auto &MemOp : memOps) {
+ MemOp.Offset = getMemoryOpOffset(MemOp.MBBI);
+ }
}
/// MergeLDR_STR - Merge a number of load / store instructions into one or more
@@ -721,7 +831,7 @@ ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
unsigned PRegNum = PMO.isUndef() ? UINT_MAX : TRI->getEncodingValue(PReg);
unsigned Count = 1;
unsigned Limit = ~0U;
-
+ bool BaseKill = false;
// vldm / vstm limit are 32 for S variants, 16 for D variants.
switch (Opcode) {
@@ -760,36 +870,28 @@ ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
++Count;
} else {
// Can't merge this in. Try merge the earlier ones first.
- MergeOpsUpdate(MBB, MemOps, SIndex, i, insertAfter, SOffset,
- Base, false, Opcode, Pred, PredReg, Scratch, dl, Merges);
+ // We need to compute BaseKill here because the MemOps may have been
+ // reordered.
+ BaseKill = Loc->killsRegister(Base);
+
+ MergeOpsUpdate(MBB, MemOps, SIndex, i, insertAfter, SOffset, Base,
+ BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges);
MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch,
MemOps, Merges);
return;
}
- if (MemOps[i].Position > MemOps[insertAfter].Position)
+ if (MemOps[i].Position > MemOps[insertAfter].Position) {
insertAfter = i;
+ Loc = MemOps[i].MBBI;
+ }
}
- bool BaseKill = Loc->findRegisterUseOperandIdx(Base, true) != -1;
+ BaseKill = Loc->killsRegister(Base);
MergeOpsUpdate(MBB, MemOps, SIndex, MemOps.size(), insertAfter, SOffset,
Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges);
}
-static bool definesCPSR(MachineInstr *MI) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg())
- continue;
- if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
- // If the instruction has live CPSR def, then it's not safe to fold it
- // into load / store.
- return true;
- }
-
- return false;
-}
-
static bool isMatchingDecrement(MachineInstr *MI, unsigned Base,
unsigned Bytes, unsigned Limit,
ARMCC::CondCodes Pred, unsigned PredReg) {
@@ -1327,34 +1429,6 @@ void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) {
RS->forward(std::prev(Loc));
}
-static int getMemoryOpOffset(const MachineInstr *MI) {
- int Opcode = MI->getOpcode();
- bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
- unsigned NumOperands = MI->getDesc().getNumOperands();
- unsigned OffField = MI->getOperand(NumOperands-3).getImm();
-
- if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
- Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
- Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
- Opcode == ARM::LDRi12 || Opcode == ARM::STRi12)
- return OffField;
-
- // Thumb1 immediate offsets are scaled by 4
- if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi)
- return OffField * 4;
-
- int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
- : ARM_AM::getAM5Offset(OffField) * 4;
- if (isAM3) {
- if (ARM_AM::getAM3Op(OffField) == ARM_AM::sub)
- Offset = -Offset;
- } else {
- if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub)
- Offset = -Offset;
- }
- return Offset;
-}
-
static void InsertLDR_STR(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int Offset, bool isDef,
@@ -1725,21 +1799,15 @@ bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
- TL = TM.getTargetLowering();
+ TL = TM.getSubtargetImpl()->getTargetLowering();
AFI = Fn.getInfo<ARMFunctionInfo>();
- TII = TM.getInstrInfo();
- TRI = TM.getRegisterInfo();
+ TII = TM.getSubtargetImpl()->getInstrInfo();
+ TRI = TM.getSubtargetImpl()->getRegisterInfo();
STI = &TM.getSubtarget<ARMSubtarget>();
RS = new RegScavenger();
isThumb2 = AFI->isThumb2Function();
isThumb1 = AFI->isThumbFunction() && !isThumb2;
- // FIXME: Temporarily disabling for Thumb-1 due to miscompiles
- if (isThumb1) {
- delete RS;
- return false;
- }
-
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
@@ -1793,10 +1861,10 @@ namespace {
}
bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
- TD = Fn.getTarget().getDataLayout();
- TII = Fn.getTarget().getInstrInfo();
- TRI = Fn.getTarget().getRegisterInfo();
- STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
+ TD = Fn.getSubtarget().getDataLayout();
+ TII = Fn.getSubtarget().getInstrInfo();
+ TRI = Fn.getSubtarget().getRegisterInfo();
+ STI = &static_cast<const ARMSubtarget &>(Fn.getSubtarget());
MRI = &Fn.getRegInfo();
MF = &Fn;
@@ -1811,7 +1879,7 @@ bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E,
- SmallPtrSet<MachineInstr*, 4> &MemOps,
+ SmallPtrSetImpl<MachineInstr*> &MemOps,
SmallSet<unsigned, 4> &MemRegs,
const TargetRegisterInfo *TRI) {
// Are there stores / loads / calls between them?
diff --git a/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp b/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp
index 023f5f8..fd4f5ff 100644
--- a/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMMCInstLower.cpp
@@ -119,11 +119,45 @@ void llvm::LowerARMMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
ARMAsmPrinter &AP) {
OutMI.setOpcode(MI->getOpcode());
+ // In the MC layer, we keep modified immediates in their encoded form
+ bool EncodeImms = false;
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::MOVi:
+ case ARM::MVNi:
+ case ARM::CMPri:
+ case ARM::CMNri:
+ case ARM::TSTri:
+ case ARM::TEQri:
+ case ARM::MSRi:
+ case ARM::ADCri:
+ case ARM::ADDri:
+ case ARM::ADDSri:
+ case ARM::SBCri:
+ case ARM::SUBri:
+ case ARM::SUBSri:
+ case ARM::ANDri:
+ case ARM::ORRri:
+ case ARM::EORri:
+ case ARM::BICri:
+ case ARM::RSBri:
+ case ARM::RSBSri:
+ case ARM::RSCri:
+ EncodeImms = true;
+ break;
+ }
+
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
MCOperand MCOp;
- if (AP.lowerOperand(MO, MCOp))
+ if (AP.lowerOperand(MO, MCOp)) {
+ if (MCOp.isImm() && EncodeImms) {
+ int32_t Enc = ARM_AM::getSOImmVal(MCOp.getImm());
+ if (Enc != -1)
+ MCOp.setImm(Enc);
+ }
OutMI.addOperand(MCOp);
+ }
}
}
diff --git a/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h b/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h
index d3fabc3..ddfdb52 100644
--- a/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/ARM/ARMMachineFunctionInfo.h
@@ -11,15 +11,15 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMMACHINEFUNCTIONINFO_H
-#define ARMMACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_ARM_ARMMACHINEFUNCTIONINFO_H
#include "ARMSubtarget.h"
#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/ADT/DenseMap.h"
namespace llvm {
@@ -48,6 +48,9 @@ class ARMFunctionInfo : public MachineFunctionInfo {
///
unsigned ArgRegsSaveSize;
+ /// ReturnRegsCount - Number of registers used up in the return.
+ unsigned ReturnRegsCount;
+
/// HasStackFrame - True if this function has a stack frame. Set by
/// processFunctionBeforeCalleeSavedScan().
bool HasStackFrame;
@@ -83,6 +86,7 @@ class ARMFunctionInfo : public MachineFunctionInfo {
/// areas.
unsigned GPRCS1Size;
unsigned GPRCS2Size;
+ unsigned DPRCSAlignGapSize;
unsigned DPRCSSize;
/// NumAlignedDPRCS2Regs - The number of callee-saved DPRs that are saved in
@@ -127,10 +131,11 @@ public:
ARMFunctionInfo() :
isThumb(false),
hasThumb2(false),
- ArgRegsSaveSize(0), HasStackFrame(false), RestoreSPFromFP(false),
+ ArgRegsSaveSize(0), ReturnRegsCount(0), HasStackFrame(false),
+ RestoreSPFromFP(false),
LRSpilledForFarJump(false),
FramePtrSpillOffset(0), GPRCS1Offset(0), GPRCS2Offset(0), DPRCSOffset(0),
- GPRCS1Size(0), GPRCS2Size(0), DPRCSSize(0),
+ GPRCS1Size(0), GPRCS2Size(0), DPRCSAlignGapSize(0), DPRCSSize(0),
NumAlignedDPRCS2Regs(0),
JumpTableUId(0), PICLabelUId(0),
VarArgsFrameIndex(0), HasITBlocks(false), GlobalBaseReg(0) {}
@@ -151,6 +156,9 @@ public:
}
void setArgRegsSaveSize(unsigned s) { ArgRegsSaveSize = s; }
+ unsigned getReturnRegsCount() const { return ReturnRegsCount; }
+ void setReturnRegsCount(unsigned s) { ReturnRegsCount = s; }
+
bool hasStackFrame() const { return HasStackFrame; }
void setHasStackFrame(bool s) { HasStackFrame = s; }
@@ -176,10 +184,12 @@ public:
unsigned getGPRCalleeSavedArea1Size() const { return GPRCS1Size; }
unsigned getGPRCalleeSavedArea2Size() const { return GPRCS2Size; }
+ unsigned getDPRCalleeSavedGapSize() const { return DPRCSAlignGapSize; }
unsigned getDPRCalleeSavedAreaSize() const { return DPRCSSize; }
void setGPRCalleeSavedArea1Size(unsigned s) { GPRCS1Size = s; }
void setGPRCalleeSavedArea2Size(unsigned s) { GPRCS2Size = s; }
+ void setDPRCalleeSavedGapSize(unsigned s) { DPRCSAlignGapSize = s; }
void setDPRCalleeSavedAreaSize(unsigned s) { DPRCSSize = s; }
unsigned getArgumentStackSize() const { return ArgumentStackSize; }
@@ -238,4 +248,4 @@ public:
};
} // End llvm namespace
-#endif // ARMMACHINEFUNCTIONINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp b/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp
index 2a49255..1c50f9e 100644
--- a/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMOptimizeBarriersPass.cpp
@@ -9,8 +9,8 @@
//===------------------------------------------------------------------------------------------===//
#include "ARM.h"
-#include "ARMMachineFunctionInfo.h"
#include "ARMInstrInfo.h"
+#include "ARMMachineFunctionInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h b/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h
index efa22fb..3ff0bee 100644
--- a/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h
+++ b/contrib/llvm/lib/Target/ARM/ARMPerfectShuffle.h
@@ -12,6 +12,9 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_ARM_ARMPERFECTSHUFFLE_H
+#define LLVM_LIB_TARGET_ARM_ARMPERFECTSHUFFLE_H
+
// 31 entries have cost 0
// 242 entries have cost 1
// 1447 entries have cost 2
@@ -6584,3 +6587,5 @@ static const unsigned PerfectShuffleTable[6561+1] = {
835584U, // <u,u,u,u>: Cost 0 copy LHS
0
};
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h
index 3e6af3f..b623173 100644
--- a/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h
+++ b/contrib/llvm/lib/Target/ARM/ARMRegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMREGISTERINFO_H
-#define ARMREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMREGISTERINFO_H
+#define LLVM_LIB_TARGET_ARM_ARMREGISTERINFO_H
#include "ARMBaseRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/ARM/ARMRelocations.h b/contrib/llvm/lib/Target/ARM/ARMRelocations.h
deleted file mode 100644
index 21877fd..0000000
--- a/contrib/llvm/lib/Target/ARM/ARMRelocations.h
+++ /dev/null
@@ -1,62 +0,0 @@
-//===-- ARMRelocations.h - ARM Code Relocations -----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the ARM target-specific relocation types.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef ARMRELOCATIONS_H
-#define ARMRELOCATIONS_H
-
-#include "llvm/CodeGen/MachineRelocation.h"
-
-namespace llvm {
- namespace ARM {
- enum RelocationType {
- // reloc_arm_absolute - Absolute relocation, just add the relocated value
- // to the value already in memory.
- reloc_arm_absolute,
-
- // reloc_arm_relative - PC relative relocation, add the relocated value to
- // the value already in memory, after we adjust it for where the PC is.
- reloc_arm_relative,
-
- // reloc_arm_cp_entry - PC relative relocation for constpool_entry's whose
- // addresses are kept locally in a map.
- reloc_arm_cp_entry,
-
- // reloc_arm_vfp_cp_entry - Same as reloc_arm_cp_entry except the offset
- // should be divided by 4.
- reloc_arm_vfp_cp_entry,
-
- // reloc_arm_machine_cp_entry - Relocation of a ARM machine constantpool
- // entry.
- reloc_arm_machine_cp_entry,
-
- // reloc_arm_jt_base - PC relative relocation for jump tables whose
- // addresses are kept locally in a map.
- reloc_arm_jt_base,
-
- // reloc_arm_pic_jt - PIC jump table entry relocation: dest bb - jt base.
- reloc_arm_pic_jt,
-
- // reloc_arm_branch - Branch address relocation.
- reloc_arm_branch,
-
- // reloc_arm_movt - MOVT immediate relocation.
- reloc_arm_movt,
-
- // reloc_arm_movw - MOVW immediate relocation.
- reloc_arm_movw
- };
- }
-}
-
-#endif
-
diff --git a/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp
index 3dcc0df..fa30ac3 100644
--- a/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.cpp
@@ -157,7 +157,7 @@ EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
return SDValue();
const ARMTargetLowering &TLI =
- *static_cast<const ARMTargetLowering*>(DAG.getTarget().getTargetLowering());
+ *DAG.getTarget().getSubtarget<ARMSubtarget>().getTargetLowering();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
diff --git a/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h
index 13769dc..94b98e6 100644
--- a/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/ARM/ARMSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMSELECTIONDAGINFO_H
-#define ARMSELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMSELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_ARM_ARMSELECTIONDAGINFO_H
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp b/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp
index c1b4562..311afe9 100644
--- a/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMSubtarget.cpp
@@ -15,13 +15,14 @@
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
-#include "ARMJITInfo.h"
+#include "ARMMachineFunctionInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
-#include "ARMMachineFunctionInfo.h"
+#include "ARMTargetMachine.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
@@ -29,7 +30,6 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
@@ -50,11 +50,13 @@ static cl::opt<bool>
UseFusedMulOps("arm-use-mulops",
cl::init(true), cl::Hidden);
+namespace {
enum AlignMode {
DefaultAlign,
StrictAlign,
NoStrictAlign
};
+}
static cl::opt<AlignMode>
Align(cl::desc("Load/store alignment support"),
@@ -101,11 +103,6 @@ static std::string computeDataLayout(ARMSubtarget &ST) {
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
- // On thumb, i16,i18 and i1 have natural aligment requirements, but we try to
- // align to 32.
- if (ST.isThumb())
- Ret += "-i1:8:32-i8:8:32-i16:16:32";
-
// ABIs other than APCS have 64 bit integers with natural alignment.
if (!ST.isAPCS_ABI())
Ret += "-i64:64";
@@ -122,10 +119,9 @@ static std::string computeDataLayout(ARMSubtarget &ST) {
else
Ret += "-v128:64:128";
- // On thumb and APCS, only try to align aggregates to 32 bits (the default is
- // 64 bits).
- if (ST.isThumb() || ST.isAPCS_ABI())
- Ret += "-a:0:32";
+ // Try to align aggregates to 32 bits (the default is 64 bits, which has no
+ // particular hardware support on 32-bit ARM).
+ Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
@@ -147,18 +143,18 @@ static std::string computeDataLayout(ARMSubtarget &ST) {
ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
- resetSubtargetFeatures(CPU, FS);
+ initSubtargetFeatures(CPU, FS);
return *this;
}
ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, TargetMachine &TM,
- bool IsLittle, const TargetOptions &Options)
+ const std::string &FS, const ARMBaseTargetMachine &TM,
+ bool IsLittle)
: ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
- TargetTriple(TT), Options(Options), TargetABI(ARM_ABI_UNKNOWN),
+ TargetTriple(TT), Options(TM.Options), TM(TM),
DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
- TSInfo(DL), JITInfo(),
+ TSInfo(DL),
InstrInfo(isThumb1Only()
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
: !isThumb()
@@ -218,25 +214,9 @@ void ARMSubtarget::initializeEnvironment() {
UnsafeFPMath = false;
}
-void ARMSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
- AttributeSet FnAttrs = MF->getFunction()->getAttributes();
- Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
- "target-cpu");
- Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
- "target-features");
- std::string CPU =
- !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
- std::string FS =
- !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
- if (!FS.empty()) {
- initializeEnvironment();
- resetSubtargetFeatures(CPU, FS);
- }
-}
-
-void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
+void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
if (CPUString.empty()) {
- if (isTargetIOS() && TargetTriple.getArchName().endswith("v7s"))
+ if (isTargetDarwin() && TargetTriple.getArchName().endswith("v7s"))
// Default to the Swift CPU when targeting armv7s/thumbv7s.
CPUString = "swift";
else
@@ -246,8 +226,8 @@ void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
// Insert the architecture feature derived from the target triple into the
// feature string. This is important for setting features that are implied
// based on the architecture version.
- std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
- CPUString);
+ std::string ArchFS =
+ ARM_MC::ParseARMTriple(TargetTriple.getTriple(), CPUString);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = ArchFS + "," + FS.str();
@@ -266,31 +246,9 @@ void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUString);
- if (TargetABI == ARM_ABI_UNKNOWN) {
- switch (TargetTriple.getEnvironment()) {
- case Triple::Android:
- case Triple::EABI:
- case Triple::EABIHF:
- case Triple::GNUEABI:
- case Triple::GNUEABIHF:
- TargetABI = ARM_ABI_AAPCS;
- break;
- default:
- if ((isTargetIOS() && isMClass()) ||
- (TargetTriple.isOSBinFormatMachO() &&
- TargetTriple.getOS() == Triple::UnknownOS))
- TargetABI = ARM_ABI_AAPCS;
- else
- TargetABI = ARM_ABI_APCS;
- break;
- }
- }
-
// FIXME: this is invalid for WindowsCE
- if (isTargetWindows()) {
- TargetABI = ARM_ABI_AAPCS;
+ if (isTargetWindows())
NoARM = true;
- }
if (isAAPCS_ABI())
stackAlignment = 8;
@@ -300,46 +258,39 @@ void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
UseMovt = hasV6T2Ops() && ArmUseMOVT;
if (isTargetMachO()) {
- IsR9Reserved = ReserveR9 | !HasV6Ops;
+ IsR9Reserved = ReserveR9 || !HasV6Ops;
SupportsTailCall = !isTargetIOS() || !getTargetTriple().isOSVersionLT(5, 0);
} else {
IsR9Reserved = ReserveR9;
SupportsTailCall = !isThumb1Only();
}
- switch (Align) {
- case DefaultAlign:
- // Assume pre-ARMv6 doesn't support unaligned accesses.
- //
- // ARMv6 may or may not support unaligned accesses depending on the
- // SCTLR.U bit, which is architecture-specific. We assume ARMv6
- // Darwin and NetBSD targets support unaligned accesses, and others don't.
- //
- // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
- // which raises an alignment fault on unaligned accesses. Linux
- // defaults this bit to 0 and handles it as a system-wide (not
- // per-process) setting. It is therefore safe to assume that ARMv7+
- // Linux targets support unaligned accesses. The same goes for NaCl.
- //
- // The above behavior is consistent with GCC.
- AllowsUnalignedMem =
- (hasV7Ops() && (isTargetLinux() || isTargetNaCl() ||
- isTargetNetBSD())) ||
- (hasV6Ops() && (isTargetMachO() || isTargetNetBSD()));
- // The one exception is cortex-m0, which despite being v6, does not
- // support unaligned accesses. Rather than make the above boolean
- // expression even more obtuse, just override the value here.
- if (isThumb1Only() && isMClass())
- AllowsUnalignedMem = false;
- break;
- case StrictAlign:
- AllowsUnalignedMem = false;
- break;
- case NoStrictAlign:
- AllowsUnalignedMem = true;
- break;
+ if (Align == DefaultAlign) {
+ // Assume pre-ARMv6 doesn't support unaligned accesses.
+ //
+ // ARMv6 may or may not support unaligned accesses depending on the
+ // SCTLR.U bit, which is architecture-specific. We assume ARMv6
+ // Darwin and NetBSD targets support unaligned accesses, and others don't.
+ //
+ // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
+ // which raises an alignment fault on unaligned accesses. Linux
+ // defaults this bit to 0 and handles it as a system-wide (not
+ // per-process) setting. It is therefore safe to assume that ARMv7+
+ // Linux targets support unaligned accesses. The same goes for NaCl.
+ //
+ // The above behavior is consistent with GCC.
+ AllowsUnalignedMem =
+ (hasV7Ops() && (isTargetLinux() || isTargetNaCl() ||
+ isTargetNetBSD())) ||
+ (hasV6Ops() && (isTargetMachO() || isTargetNetBSD()));
+ } else {
+ AllowsUnalignedMem = !(Align == StrictAlign);
}
+ // No v6M core supports unaligned memory access (v6M ARM ARM A3.2)
+ if (isV6M())
+ AllowsUnalignedMem = false;
+
switch (IT) {
case DefaultIT:
RestrictIT = hasV8Ops() ? true : false;
@@ -359,6 +310,15 @@ void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
UseNEONForSinglePrecisionFP = true;
}
+bool ARMSubtarget::isAPCS_ABI() const {
+ assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
+ return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
+}
+bool ARMSubtarget::isAAPCS_ABI() const {
+ assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
+ return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS;
+}
+
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
bool
ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
@@ -366,11 +326,7 @@ ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
if (RelocM == Reloc::Static)
return false;
- // Materializable GVs (in JIT lazy compilation mode) do not require an extra
- // load from stub.
- bool isDecl = GV->hasAvailableExternallyLinkage();
- if (GV->isDeclaration() && !GV->isMaterializable())
- isDecl = true;
+ bool isDecl = GV->isDeclarationForLinker();
if (!isTargetMachO()) {
// Extra load is needed for all externally visible.
@@ -413,12 +369,11 @@ ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
}
unsigned ARMSubtarget::getMispredictionPenalty() const {
- return SchedModel->MispredictPenalty;
+ return SchedModel.MispredictPenalty;
}
bool ARMSubtarget::hasSinCos() const {
- return getTargetTriple().getOS() == Triple::IOS &&
- !getTargetTriple().isOSVersionLT(7, 0);
+ return getTargetTriple().isiOS() && !getTargetTriple().isOSVersionLT(7, 0);
}
// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
@@ -426,7 +381,7 @@ bool ARMSubtarget::enablePostMachineScheduler() const {
return (!isThumb() || hasThumb2());
}
-bool ARMSubtarget::enableAtomicExpandLoadLinked() const {
+bool ARMSubtarget::enableAtomicExpand() const {
return hasAnyDataBarrier() && !isThumb1Only();
}
diff --git a/contrib/llvm/lib/Target/ARM/ARMSubtarget.h b/contrib/llvm/lib/Target/ARM/ARMSubtarget.h
index f8283b0..dbacd4d 100644
--- a/contrib/llvm/lib/Target/ARM/ARMSubtarget.h
+++ b/contrib/llvm/lib/Target/ARM/ARMSubtarget.h
@@ -11,21 +11,19 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMSUBTARGET_H
-#define ARMSUBTARGET_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
+#define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
-#include "ARMJITInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
-#include "ARMJITInfo.h"
-#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCInstrItineraries.h"
@@ -39,12 +37,13 @@ namespace llvm {
class GlobalValue;
class StringRef;
class TargetOptions;
+class ARMBaseTargetMachine;
class ARMSubtarget : public ARMGenSubtargetInfo {
protected:
enum ARMProcFamilyEnum {
Others, CortexA5, CortexA7, CortexA8, CortexA9, CortexA12, CortexA15,
- CortexR5, Swift, CortexA53, CortexA57, Krait
+ CortexA17, CortexR5, Swift, CortexA53, CortexA57, Krait,
};
enum ARMProcClassEnum {
None, AClass, RClass, MClass
@@ -188,7 +187,7 @@ protected:
/// AllowsUnalignedMem - If true, the subtarget allows unaligned memory
/// accesses for some types. For details, see
- /// ARMTargetLowering::allowsUnalignedMemoryAccesses().
+ /// ARMTargetLowering::allowsMisalignedMemoryAccesses().
bool AllowsUnalignedMem;
/// RestrictIT - If true, the subtarget disallows generation of deprecated IT
@@ -219,7 +218,7 @@ protected:
Triple TargetTriple;
/// SchedModel - Processor specific instruction costs.
- const MCSchedModel *SchedModel;
+ MCSchedModel SchedModel;
/// Selected instruction itineraries (one entry per itinerary class.)
InstrItineraryData InstrItins;
@@ -227,19 +226,14 @@ protected:
/// Options passed via command line that could influence the target
const TargetOptions &Options;
- public:
- enum {
- ARM_ABI_UNKNOWN,
- ARM_ABI_APCS,
- ARM_ABI_AAPCS // ARM EABI
- } TargetABI;
+ const ARMBaseTargetMachine &TM;
+public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
ARMSubtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, TargetMachine &TM, bool IsLittle,
- const TargetOptions &Options);
+ const std::string &FS, const ARMBaseTargetMachine &TM, bool IsLittle);
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
@@ -250,27 +244,30 @@ protected:
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
- /// \brief Reset the features for the ARM target.
- void resetSubtargetFeatures(const MachineFunction *MF) override;
-
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
- const DataLayout *getDataLayout() const { return &DL; }
- const ARMSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- ARMJITInfo *getJITInfo() { return &JITInfo; }
- const ARMBaseInstrInfo *getInstrInfo() const { return InstrInfo.get(); }
- const ARMTargetLowering *getTargetLowering() const { return &TLInfo; }
- const ARMFrameLowering *getFrameLowering() const { return FrameLowering.get(); }
- const ARMBaseRegisterInfo *getRegisterInfo() const {
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const ARMBaseInstrInfo *getInstrInfo() const override {
+ return InstrInfo.get();
+ }
+ const ARMTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const ARMFrameLowering *getFrameLowering() const override {
+ return FrameLowering.get();
+ }
+ const ARMBaseRegisterInfo *getRegisterInfo() const override {
return &InstrInfo->getRegisterInfo();
}
private:
const DataLayout DL;
ARMSelectionDAGInfo TSInfo;
- ARMJITInfo JITInfo;
// Either Thumb1InstrInfo or Thumb2InstrInfo.
std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
ARMTargetLowering TLInfo;
@@ -278,7 +275,7 @@ private:
std::unique_ptr<ARMFrameLowering> FrameLowering;
void initializeEnvironment();
- void resetSubtargetFeatures(StringRef CPU, StringRef FS);
+ void initSubtargetFeatures(StringRef CPU, StringRef FS);
public:
void computeIssueWidth();
@@ -347,7 +344,7 @@ public:
bool isTargetIOS() const { return TargetTriple.isiOS(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
- bool isTargetNetBSD() const { return TargetTriple.getOS() == Triple::NetBSD; }
+ bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
@@ -388,14 +385,8 @@ public:
return TargetTriple.getEnvironment() == Triple::Android;
}
- bool isAPCS_ABI() const {
- assert(TargetABI != ARM_ABI_UNKNOWN);
- return TargetABI == ARM_ABI_APCS;
- }
- bool isAAPCS_ABI() const {
- assert(TargetABI != ARM_ABI_UNKNOWN);
- return TargetABI == ARM_ABI_AAPCS;
- }
+ bool isAPCS_ABI() const;
+ bool isAAPCS_ABI() const;
bool isThumb() const { return InThumbMode; }
bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
@@ -405,6 +396,10 @@ public:
bool isRClass() const { return ARMProcClass == RClass; }
bool isAClass() const { return ARMProcClass == AClass; }
+ bool isV6M() const {
+ return isThumb1Only() && isMClass();
+ }
+
bool isR9Reserved() const { return IsR9Reserved; }
bool useMovt(const MachineFunction &MF) const;
@@ -428,12 +423,14 @@ public:
/// True for some subtargets at > -O0.
bool enablePostMachineScheduler() const override;
- // enableAtomicExpandLoadLinked - True if we need to expand our atomics.
- bool enableAtomicExpandLoadLinked() const override;
+ // enableAtomicExpand- True if we need to expand our atomics.
+ bool enableAtomicExpand() const override;
- /// getInstrItins - Return the instruction itineraies based on subtarget
+ /// getInstrItins - Return the instruction itineraries based on subtarget
/// selection.
- const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &InstrItins;
+ }
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp
index d85194b..7a8181b 100644
--- a/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.cpp
@@ -11,9 +11,11 @@
//===----------------------------------------------------------------------===//
#include "ARM.h"
-#include "ARMTargetMachine.h"
#include "ARMFrameLowering.h"
+#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
@@ -42,6 +44,65 @@ extern "C" void LLVMInitializeARMTarget() {
RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
}
+static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
+ if (TT.isOSBinFormatMachO())
+ return make_unique<TargetLoweringObjectFileMachO>();
+ if (TT.isOSWindows())
+ return make_unique<TargetLoweringObjectFileCOFF>();
+ return make_unique<ARMElfTargetObjectFile>();
+}
+
+static ARMBaseTargetMachine::ARMABI
+computeTargetABI(const Triple &TT, StringRef CPU,
+ const TargetOptions &Options) {
+ if (Options.MCOptions.getABIName().startswith("aapcs"))
+ return ARMBaseTargetMachine::ARM_ABI_AAPCS;
+ else if (Options.MCOptions.getABIName().startswith("apcs"))
+ return ARMBaseTargetMachine::ARM_ABI_APCS;
+
+ assert(Options.MCOptions.getABIName().empty() &&
+ "Unknown target-abi option!");
+
+ ARMBaseTargetMachine::ARMABI TargetABI =
+ ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
+
+ // FIXME: This is duplicated code from the front end and should be unified.
+ if (TT.isOSBinFormatMachO()) {
+ if (TT.getEnvironment() == llvm::Triple::EABI ||
+ (TT.getOS() == llvm::Triple::UnknownOS &&
+ TT.getObjectFormat() == llvm::Triple::MachO) ||
+ CPU.startswith("cortex-m")) {
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
+ } else {
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
+ }
+ } else if (TT.isOSWindows()) {
+ // FIXME: this is invalid for WindowsCE
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
+ } else {
+ // Select the default based on the platform.
+ switch (TT.getEnvironment()) {
+ case llvm::Triple::Android:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::GNUEABIHF:
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::EABI:
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
+ break;
+ case llvm::Triple::GNU:
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
+ break;
+ default:
+ if (TT.getOS() == llvm::Triple::NetBSD)
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
+ else
+ TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
+ break;
+ }
+ }
+
+ return TargetABI;
+}
/// TargetMachine ctor - Create an ARM architecture model.
///
@@ -51,7 +112,9 @@ ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
- Subtarget(TT, CPU, FS, *this, isLittle, Options) {
+ TargetABI(computeTargetABI(Triple(TT), CPU, Options)),
+ TLOF(createTLOF(Triple(getTargetTriple()))),
+ Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default)
@@ -59,6 +122,46 @@ ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}
+ARMBaseTargetMachine::~ARMBaseTargetMachine() {}
+
+const ARMSubtarget *
+ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
+ AttributeSet FnAttrs = F.getAttributes();
+ Attribute CPUAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
+ Attribute FSAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
+
+ std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
+ ? CPUAttr.getValueAsString().str()
+ : TargetCPU;
+ std::string FS = !FSAttr.hasAttribute(Attribute::None)
+ ? FSAttr.getValueAsString().str()
+ : TargetFS;
+
+ // FIXME: This is related to the code below to reset the target options,
+ // we need to know whether or not the soft float flag is set on the
+ // function before we can generate a subtarget. We also need to use
+ // it as a key for the subtarget since that can be the only difference
+ // between two functions.
+ Attribute SFAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
+ bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
+ ? SFAttr.getValueAsString() == "true"
+ : Options.UseSoftFloat;
+
+ auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
+ : "use-soft-float=false")];
+ if (!I) {
+ // This needs to be done before we create a new subtarget since any
+ // creation will depend on the TM and the code generation flags on the
+ // function that reside in TargetOptions.
+ resetTargetOptions(F);
+ I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
+ }
+ return I.get();
+}
+
void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Add first the target-independent BasicTTI pass, then our ARM pass. This
// allows the ARM pass to delegate to the target independent layer when
@@ -147,9 +250,9 @@ public:
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
- bool addPreRegAlloc() override;
- bool addPreSched2() override;
- bool addPreEmitPass() override;
+ void addPreRegAlloc() override;
+ void addPreSched2() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -158,7 +261,10 @@ TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
}
void ARMPassConfig::addIRPasses() {
- addPass(createAtomicExpandLoadLinkedPass(TM));
+ if (TM->Options.ThreadModel == ThreadModel::Single)
+ addPass(createLowerAtomicPass());
+ else
+ addPass(createAtomicExpandPass(TM));
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
@@ -188,7 +294,7 @@ bool ARMPassConfig::addInstSelector() {
return false;
}
-bool ARMPassConfig::addPreRegAlloc() {
+void ARMPassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createARMLoadStoreOptimizationPass(true));
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9())
@@ -199,13 +305,11 @@ bool ARMPassConfig::addPreRegAlloc() {
getARMSubtarget().hasNEON() && !DisableA15SDOptimization) {
addPass(createA15SDOptimizerPass());
}
- return true;
}
-bool ARMPassConfig::addPreSched2() {
+void ARMPassConfig::addPreSched2() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(createARMLoadStoreOptimizationPass());
- printAndVerify("After ARM load / store optimizer");
if (getARMSubtarget().hasNEON())
addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
@@ -226,11 +330,9 @@ bool ARMPassConfig::addPreSched2() {
}
if (getARMSubtarget().isThumb2())
addPass(createThumb2ITBlockPass());
-
- return true;
}
-bool ARMPassConfig::addPreEmitPass() {
+void ARMPassConfig::addPreEmitPass() {
if (getARMSubtarget().isThumb2()) {
if (!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
@@ -241,13 +343,4 @@ bool ARMPassConfig::addPreEmitPass() {
addPass(createARMOptimizeBarriersPass());
addPass(createARMConstantIslandPass());
-
- return true;
-}
-
-bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) {
- // Machine code emitter pass for ARM.
- PM.add(createARMJITCodeEmitterPass(*this, JCE));
- return false;
}
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h
index b72b1df..18cf5fa 100644
--- a/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMTARGETMACHINE_H
-#define ARMTARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMTARGETMACHINE_H
+#define LLVM_LIB_TARGET_ARM_ARMTARGETMACHINE_H
#include "ARMInstrInfo.h"
#include "ARMSubtarget.h"
@@ -22,8 +22,19 @@
namespace llvm {
class ARMBaseTargetMachine : public LLVMTargetMachine {
+public:
+ enum ARMABI {
+ ARM_ABI_UNKNOWN,
+ ARM_ABI_APCS,
+ ARM_ABI_AAPCS // ARM EABI
+ } TargetABI;
+
protected:
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
ARMSubtarget Subtarget;
+ bool isLittle;
+ mutable StringMap<std::unique_ptr<ARMSubtarget>> SubtargetMap;
+
public:
ARMBaseTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
@@ -31,30 +42,10 @@ public:
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL,
bool isLittle);
+ ~ARMBaseTargetMachine() override;
const ARMSubtarget *getSubtargetImpl() const override { return &Subtarget; }
- const ARMBaseRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const ARMTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
- const ARMBaseInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const ARMFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- const InstrItineraryData *getInstrItineraryData() const override {
- return &getSubtargetImpl()->getInstrItineraryData();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- ARMJITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
+ const ARMSubtarget *getSubtargetImpl(const Function &F) const override;
/// \brief Register ARM analysis passes with a pass manager.
void addAnalysisPasses(PassManagerBase &PM) override;
@@ -62,7 +53,9 @@ public:
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
- bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &MCE) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
/// ARMTargetMachine - ARM target machine.
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h b/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h
index c926421..98e8763 100644
--- a/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_ARM_TARGETOBJECTFILE_H
-#define LLVM_TARGET_ARM_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_ARM_ARMTARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_ARM_ARMTARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
index a2ace62..ec834e8 100644
--- a/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
@@ -49,7 +49,7 @@ public:
ARMTTI(const ARMBaseTargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
- TLI(TM->getTargetLowering()) {
+ TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializeARMTTIPass(*PassRegistry::getPassRegistry());
}
@@ -104,7 +104,7 @@ public:
return 32;
}
- unsigned getMaximumUnrollFactor() const override {
+ unsigned getMaxInterleaveFactor() const override {
// These are out of order CPUs:
if (ST->isCortexA15() || ST->isSwift())
return 2;
@@ -126,10 +126,11 @@ public:
unsigned getAddressComputationCost(Type *Val,
bool IsComplex) const override;
- unsigned
- getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Op1Info = OK_AnyValue,
- OperandValueKind Op2Info = OK_AnyValue) const override;
+ unsigned getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Op1Info = OK_AnyValue,
+ OperandValueKind Op2Info = OK_AnyValue,
+ OperandValueProperties Opd1PropInfo = OP_None,
+ OperandValueProperties Opd2PropInfo = OP_None) const override;
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const override;
@@ -389,6 +390,13 @@ unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
ValTy->getScalarSizeInBits() <= 32)
return 3;
+ // Cross-class copies are expensive on many microarchitectures,
+ // so assume they are expensive by default.
+ if ((Opcode == Instruction::InsertElement ||
+ Opcode == Instruction::ExtractElement) &&
+ ValTy->getVectorElementType()->isIntegerTy())
+ return 3;
+
return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
}
@@ -497,9 +505,10 @@ unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
}
-unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Op1Info,
- OperandValueKind Op2Info) const {
+unsigned ARMTTI::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
+ OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) const {
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
@@ -555,8 +564,8 @@ unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
if (Idx != -1)
return LT.first * CostTbl[Idx].Cost;
- unsigned Cost =
- TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
+ unsigned Cost = TargetTransformInfo::getArithmeticInstrCost(
+ Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
// This is somewhat of a hack. The problem that we are facing is that SROA
// creates a sequence of shift, and, or instructions to construct values.
diff --git a/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp b/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
index faff9a7..96f3b4e 100644
--- a/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
+++ b/contrib/llvm/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
@@ -129,12 +129,13 @@ public:
class ARMAsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
- MCAsmParser &Parser;
const MCInstrInfo &MII;
const MCRegisterInfo *MRI;
UnwindContext UC;
ARMTargetStreamer &getTargetStreamer() {
+ assert(getParser().getStreamer().getTargetStreamer() &&
+ "do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<ARMTargetStreamer &>(TS);
}
@@ -163,7 +164,10 @@ class ARMAsmParser : public MCTargetAsmParser {
// according to count of instructions in block.
// ~0U if no active IT block.
} ITState;
- bool inITBlock() { return ITState.CurPosition != ~0U;}
+ bool inITBlock() { return ITState.CurPosition != ~0U; }
+ bool lastInITBlock() {
+ return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
+ }
void forwardITPosition() {
if (!inITBlock()) return;
// Move to the next instruction in the IT block, if there is one. If not,
@@ -173,22 +177,23 @@ class ARMAsmParser : public MCTargetAsmParser {
ITState.CurPosition = ~0U; // Done with the IT block after this.
}
-
- MCAsmParser &getParser() const { return Parser; }
- MCAsmLexer &getLexer() const { return Parser.getLexer(); }
-
void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
- return Parser.Note(L, Msg, Ranges);
+ return getParser().Note(L, Msg, Ranges);
}
bool Warning(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None) {
- return Parser.Warning(L, Msg, Ranges);
+ return getParser().Warning(L, Msg, Ranges);
}
bool Error(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None) {
- return Parser.Error(L, Msg, Ranges);
+ return getParser().Error(L, Msg, Ranges);
}
+ bool validatetLDMRegList(MCInst Inst, const OperandVector &Operands,
+ unsigned ListNo, bool IsARPop = false);
+ bool validatetSTMRegList(MCInst Inst, const OperandVector &Operands,
+ unsigned ListNo);
+
int tryParseRegister();
bool tryParseRegisterWithWriteBack(OperandVector &);
int tryParseShiftRegister(OperandVector &);
@@ -265,9 +270,15 @@ class ARMAsmParser : public MCTargetAsmParser {
bool hasARM() const {
return !(STI.getFeatureBits() & ARM::FeatureNoARM);
}
+ bool hasThumb2DSP() const {
+ return STI.getFeatureBits() & ARM::FeatureDSPThumb2;
+ }
+ bool hasD16() const {
+ return STI.getFeatureBits() & ARM::FeatureD16;
+ }
void SwitchMode() {
- unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
+ uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
setAvailableFeatures(FB);
}
bool isMClass() const {
@@ -290,6 +301,7 @@ class ARMAsmParser : public MCTargetAsmParser {
OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
+ OperandMatchResultTy parseBankedRegOperand(OperandVector &);
OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
int High);
OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
@@ -301,6 +313,7 @@ class ARMAsmParser : public MCTargetAsmParser {
OperandMatchResultTy parseSetEndImm(OperandVector &);
OperandMatchResultTy parseShifterImm(OperandVector &);
OperandMatchResultTy parseRotImm(OperandVector &);
+ OperandMatchResultTy parseModImm(OperandVector &);
OperandMatchResultTy parseBitfield(OperandVector &);
OperandMatchResultTy parsePostIdxReg(OperandVector &);
OperandMatchResultTy parseAM3Offset(OperandVector &);
@@ -329,10 +342,9 @@ public:
};
- ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
- const MCInstrInfo &MII,
- const MCTargetOptions &Options)
- : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), UC(_Parser) {
+ ARMAsmParser(MCSubtargetInfo & _STI, MCAsmParser & _Parser,
+ const MCInstrInfo &MII, const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(_STI), MII(MII), UC(_Parser) {
MCAsmParserExtension::Initialize(_Parser);
// Cache the MCRegisterInfo.
@@ -359,7 +371,7 @@ public:
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void onLabelParsed(MCSymbol *Symbol) override;
};
@@ -383,6 +395,7 @@ class ARMOperand : public MCParsedAsmOperand {
k_Memory,
k_PostIndexRegister,
k_MSRMask,
+ k_BankedReg,
k_ProcIFlags,
k_VectorIndex,
k_Register,
@@ -396,6 +409,7 @@ class ARMOperand : public MCParsedAsmOperand {
k_ShiftedImmediate,
k_ShifterImmediate,
k_RotateImmediate,
+ k_ModifiedImmediate,
k_BitfieldDescriptor,
k_Token
} Kind;
@@ -435,6 +449,10 @@ class ARMOperand : public MCParsedAsmOperand {
unsigned Val;
};
+ struct BankedRegOp {
+ unsigned Val;
+ };
+
struct TokOp {
const char *Data;
unsigned Length;
@@ -503,6 +521,11 @@ class ARMOperand : public MCParsedAsmOperand {
unsigned Imm;
};
+ struct ModImmOp {
+ unsigned Bits;
+ unsigned Rot;
+ };
+
struct BitfieldOp {
unsigned LSB;
unsigned Width;
@@ -517,6 +540,7 @@ class ARMOperand : public MCParsedAsmOperand {
struct ITMaskOp ITMask;
struct IFlagsOp IFlags;
struct MMaskOp MMask;
+ struct BankedRegOp BankedReg;
struct TokOp Tok;
struct RegOp Reg;
struct VectorListOp VectorList;
@@ -528,6 +552,7 @@ class ARMOperand : public MCParsedAsmOperand {
struct RegShiftedRegOp RegShiftedReg;
struct RegShiftedImmOp RegShiftedImm;
struct RotImmOp RotImm;
+ struct ModImmOp ModImm;
struct BitfieldOp Bitfield;
};
@@ -585,6 +610,9 @@ public:
case k_MSRMask:
MMask = o.MMask;
break;
+ case k_BankedReg:
+ BankedReg = o.BankedReg;
+ break;
case k_ProcIFlags:
IFlags = o.IFlags;
break;
@@ -600,6 +628,9 @@ public:
case k_RotateImmediate:
RotImm = o.RotImm;
break;
+ case k_ModifiedImmediate:
+ ModImm = o.ModImm;
+ break;
case k_BitfieldDescriptor:
Bitfield = o.Bitfield;
break;
@@ -679,6 +710,11 @@ public:
return MMask.Val;
}
+ unsigned getBankedReg() const {
+ assert(Kind == k_BankedReg && "Invalid access!");
+ return BankedReg.Val;
+ }
+
bool isCoprocNum() const { return Kind == k_CoprocNum; }
bool isCoprocReg() const { return Kind == k_CoprocReg; }
bool isCoprocOption() const { return Kind == k_CoprocOption; }
@@ -1003,33 +1039,17 @@ public:
}
bool isAdrLabel() const {
// If we have an immediate that's not a constant, treat it as a label
- // reference needing a fixup. If it is a constant, but it can't fit
- // into shift immediate encoding, we reject it.
- if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
- else return (isARMSOImm() || isARMSOImmNeg());
- }
- bool isARMSOImm() const {
- if (!isImm()) return false;
- const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
- if (!CE) return false;
- int64_t Value = CE->getValue();
- return ARM_AM::getSOImmVal(Value) != -1;
- }
- bool isARMSOImmNot() const {
- if (!isImm()) return false;
- const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
- if (!CE) return false;
- int64_t Value = CE->getValue();
- return ARM_AM::getSOImmVal(~Value) != -1;
- }
- bool isARMSOImmNeg() const {
+ // reference needing a fixup.
+ if (isImm() && !isa<MCConstantExpr>(getImm()))
+ return true;
+
+ // If it is a constant, it must fit into a modified immediate encoding.
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
- // Only use this when not representable as a plain so_imm.
- return ARM_AM::getSOImmVal(Value) == -1 &&
- ARM_AM::getSOImmVal(-Value) != -1;
+ return (ARM_AM::getSOImmVal(Value) != -1 ||
+ ARM_AM::getSOImmVal(-Value) != -1);;
}
bool isT2SOImm() const {
if (!isImm()) return false;
@@ -1074,6 +1094,22 @@ public:
bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
bool isRotImm() const { return Kind == k_RotateImmediate; }
+ bool isModImm() const { return Kind == k_ModifiedImmediate; }
+ bool isModImmNot() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getSOImmVal(~Value) != -1;
+ }
+ bool isModImmNeg() const {
+ if (!isImm()) return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+ int64_t Value = CE->getValue();
+ return ARM_AM::getSOImmVal(Value) == -1 &&
+ ARM_AM::getSOImmVal(-Value) != -1;
+ }
bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
bool isPostIdxReg() const {
@@ -1384,6 +1420,7 @@ public:
}
bool isMSRMask() const { return Kind == k_MSRMask; }
+ bool isBankedReg() const { return Kind == k_BankedReg; }
bool isProcIFlags() const { return Kind == k_ProcIFlags; }
// NEON operands.
@@ -1601,9 +1638,18 @@ public:
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
- int64_t Value = CE->getValue();
- // i16 value in the range [0,255] or [0x0100, 0xff00]
- return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
+ unsigned Value = CE->getValue();
+ return ARM_AM::isNEONi16splat(Value);
+ }
+
+ bool isNEONi16splatNot() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ unsigned Value = CE->getValue();
+ return ARM_AM::isNEONi16splat(~Value & 0xffff);
}
bool isNEONi32splat() const {
@@ -1614,12 +1660,18 @@ public:
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
- int64_t Value = CE->getValue();
- // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
- return (Value >= 0 && Value < 256) ||
- (Value >= 0x0100 && Value <= 0xff00) ||
- (Value >= 0x010000 && Value <= 0xff0000) ||
- (Value >= 0x01000000 && Value <= 0xff000000);
+ unsigned Value = CE->getValue();
+ return ARM_AM::isNEONi32splat(Value);
+ }
+
+ bool isNEONi32splatNot() const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ // Must be a constant.
+ if (!CE) return false;
+ unsigned Value = CE->getValue();
+ return ARM_AM::isNEONi32splat(~Value);
}
bool isNEONByteReplicate(unsigned NumBytes) const {
@@ -1655,6 +1707,7 @@ public:
int64_t Value = CE->getValue();
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
// for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
+ // FIXME: This is probably wrong and a copy and paste from previous example
return (Value >= 0 && Value < 256) ||
(Value >= 0x0100 && Value <= 0xff00) ||
(Value >= 0x010000 && Value <= 0xff0000) ||
@@ -1670,6 +1723,7 @@ public:
int64_t Value = ~CE->getValue();
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
// for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
+ // FIXME: This is probably wrong and a copy and paste from previous example
return (Value >= 0 && Value < 256) ||
(Value >= 0x0100 && Value <= 0xff00) ||
(Value >= 0x010000 && Value <= 0xff0000) ||
@@ -1791,6 +1845,30 @@ public:
Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
}
+ void addModImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ // Support for fixups (MCFixup)
+ if (isImm())
+ return addImmOperands(Inst, N);
+
+ Inst.addOperand(MCOperand::CreateImm(ModImm.Bits | (ModImm.Rot << 7)));
+ }
+
+ void addModImmNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
+ Inst.addOperand(MCOperand::CreateImm(Enc));
+ }
+
+ void addModImmNegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
+ Inst.addOperand(MCOperand::CreateImm(Enc));
+ }
+
void addBitfieldOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Munge the lsb/width into a bitfield mask.
@@ -1947,22 +2025,6 @@ public:
Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
}
- void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
- assert(N == 1 && "Invalid number of operands!");
- // The operand is actually a so_imm, but we have its bitwise
- // negation in the assembly source, so twiddle it here.
- const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
- Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
- }
-
- void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
- assert(N == 1 && "Invalid number of operands!");
- // The operand is actually a so_imm, but we have its
- // negation in the assembly source, so twiddle it here.
- const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
- Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
- }
-
void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
@@ -2334,6 +2396,11 @@ public:
Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
}
+ void addBankedRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateImm(unsigned(getBankedReg())));
+ }
+
void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
@@ -2378,10 +2445,16 @@ public:
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
- if (Value >= 256)
- Value = (Value >> 8) | 0xa00;
- else
- Value |= 0x800;
+ Value = ARM_AM::encodeNEONi16splat(Value);
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
Inst.addOperand(MCOperand::CreateImm(Value));
}
@@ -2390,12 +2463,16 @@ public:
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
- if (Value >= 256 && Value <= 0xff00)
- Value = (Value >> 8) | 0x200;
- else if (Value > 0xffff && Value <= 0xff0000)
- Value = (Value >> 16) | 0x400;
- else if (Value > 0xffffff)
- Value = (Value >> 24) | 0x600;
+ Value = ARM_AM::encodeNEONi32splat(Value);
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ }
+
+ void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ // The immediate encodes the type of constant as well as the value.
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ unsigned Value = CE->getValue();
+ Value = ARM_AM::encodeNEONi32splat(~Value);
Inst.addOperand(MCOperand::CreateImm(Value));
}
@@ -2580,6 +2657,16 @@ public:
return Op;
}
+ static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
+ SMLoc S, SMLoc E) {
+ auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
+ Op->ModImm.Bits = Bits;
+ Op->ModImm.Rot = Rot;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
static std::unique_ptr<ARMOperand>
CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
@@ -2736,6 +2823,14 @@ public:
Op->EndLoc = S;
return Op;
}
+
+ static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
+ auto Op = make_unique<ARMOperand>(k_BankedReg);
+ Op->BankedReg.Val = Reg;
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
};
} // end anonymous namespace.
@@ -2769,6 +2864,9 @@ void ARMOperand::print(raw_ostream &OS) const {
case k_MSRMask:
OS << "<mask: " << getMSRMask() << ">";
break;
+ case k_BankedReg:
+ OS << "<banked reg: " << getBankedReg() << ">";
+ break;
case k_Immediate:
getImm()->print(OS);
break;
@@ -2822,6 +2920,10 @@ void ARMOperand::print(raw_ostream &OS) const {
case k_RotateImmediate:
OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
break;
+ case k_ModifiedImmediate:
+ OS << "<mod_imm #" << ModImm.Bits << ", #"
+ << ModImm.Rot << ")>";
+ break;
case k_BitfieldDescriptor:
OS << "<bitfield " << "lsb: " << Bitfield.LSB
<< ", width: " << Bitfield.Width << ">";
@@ -2871,8 +2973,9 @@ static unsigned MatchRegisterName(StringRef Name);
bool ARMAsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
- StartLoc = Parser.getTok().getLoc();
- EndLoc = Parser.getTok().getEndLoc();
+ const AsmToken &Tok = getParser().getTok();
+ StartLoc = Tok.getLoc();
+ EndLoc = Tok.getEndLoc();
RegNo = tryParseRegister();
return (RegNo == (unsigned)-1);
@@ -2883,6 +2986,7 @@ bool ARMAsmParser::ParseRegister(unsigned &RegNo,
/// returned. Otherwise return -1.
///
int ARMAsmParser::tryParseRegister() {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) return -1;
@@ -2924,6 +3028,10 @@ int ARMAsmParser::tryParseRegister() {
return Entry->getValue();
}
+ // Some FPUs only have 16 D registers, so D16-D31 are invalid
+ if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
+ return -1;
+
Parser.Lex(); // Eat identifier token.
return RegNum;
@@ -2935,6 +3043,7 @@ int ARMAsmParser::tryParseRegister() {
// consumed in the process of trying to parse the shifter (i.e., when it is
// indeed a shifter operand, but malformed).
int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
@@ -3037,6 +3146,7 @@ int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &RegTok = Parser.getTok();
int RegNo = tryParseRegister();
if (RegNo == -1)
@@ -3133,6 +3243,7 @@ static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
/// parseITCondCode - Try to parse a condition code for an IT instruction.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseITCondCode(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
@@ -3170,6 +3281,7 @@ ARMAsmParser::parseITCondCode(OperandVector &Operands) {
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
@@ -3192,6 +3304,7 @@ ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
@@ -3210,6 +3323,7 @@ ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
/// coproc_option : '{' imm0_255 '}'
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
// If this isn't a '{', this isn't a coprocessor immediate operand.
@@ -3287,6 +3401,7 @@ static unsigned getDRegFromQReg(unsigned QReg) {
/// Parse a register list.
bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
assert(Parser.getTok().is(AsmToken::LCurly) &&
"Token is not a Left Curly Brace");
SMLoc S = Parser.getTok().getLoc();
@@ -3418,6 +3533,7 @@ bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
// Helper function to parse the lane index for vector lists.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
Index = 0; // Always return a defined index value.
if (Parser.getTok().is(AsmToken::LBrac)) {
Parser.Lex(); // Eat the '['.
@@ -3469,6 +3585,7 @@ parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
// parse a vector register list
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseVectorList(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
VectorLaneTy LaneKind;
unsigned LaneIndex;
SMLoc S = Parser.getTok().getLoc();
@@ -3720,6 +3837,7 @@ ARMAsmParser::parseVectorList(OperandVector &Operands) {
/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
unsigned Opt;
@@ -3791,6 +3909,7 @@ ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
unsigned Opt;
@@ -3842,6 +3961,7 @@ ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
@@ -3876,6 +3996,7 @@ ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
@@ -3896,9 +4017,6 @@ ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
// should really only be allowed when writing a special register. Note
// they get dropped in the MRS instruction reading a special register as
// the SYSm field is only 8 bits.
- //
- // FIXME: the _g and _nzcvqg versions are only allowed if the processor
- // includes the DSP extension but that is not checked.
.Case("apsr", 0x800)
.Case("apsr_nzcvq", 0x800)
.Case("apsr_g", 0x400)
@@ -3930,6 +4048,11 @@ ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
if (FlagsVal == ~0U)
return MatchOperand_NoMatch;
+ if (!hasThumb2DSP() && (FlagsVal & 0x400))
+ // The _g and _nzcvqg versions are only valid if the DSP extension is
+ // available.
+ return MatchOperand_NoMatch;
+
if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
// basepri, basepri_max and faultmask only valid for V7m.
return MatchOperand_NoMatch;
@@ -4002,9 +4125,67 @@ ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
return MatchOperand_Success;
}
+/// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
+/// use in the MRS/MSR instructions added to support virtualization.
+ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S = Parser.getTok().getLoc();
+ const AsmToken &Tok = Parser.getTok();
+ if (!Tok.is(AsmToken::Identifier))
+ return MatchOperand_NoMatch;
+ StringRef RegName = Tok.getString();
+
+ // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM
+ // and bit 5 is R.
+ unsigned Encoding = StringSwitch<unsigned>(RegName.lower())
+ .Case("r8_usr", 0x00)
+ .Case("r9_usr", 0x01)
+ .Case("r10_usr", 0x02)
+ .Case("r11_usr", 0x03)
+ .Case("r12_usr", 0x04)
+ .Case("sp_usr", 0x05)
+ .Case("lr_usr", 0x06)
+ .Case("r8_fiq", 0x08)
+ .Case("r9_fiq", 0x09)
+ .Case("r10_fiq", 0x0a)
+ .Case("r11_fiq", 0x0b)
+ .Case("r12_fiq", 0x0c)
+ .Case("sp_fiq", 0x0d)
+ .Case("lr_fiq", 0x0e)
+ .Case("lr_irq", 0x10)
+ .Case("sp_irq", 0x11)
+ .Case("lr_svc", 0x12)
+ .Case("sp_svc", 0x13)
+ .Case("lr_abt", 0x14)
+ .Case("sp_abt", 0x15)
+ .Case("lr_und", 0x16)
+ .Case("sp_und", 0x17)
+ .Case("lr_mon", 0x1c)
+ .Case("sp_mon", 0x1d)
+ .Case("elr_hyp", 0x1e)
+ .Case("sp_hyp", 0x1f)
+ .Case("spsr_fiq", 0x2e)
+ .Case("spsr_irq", 0x30)
+ .Case("spsr_svc", 0x32)
+ .Case("spsr_abt", 0x34)
+ .Case("spsr_und", 0x36)
+ .Case("spsr_mon", 0x3c)
+ .Case("spsr_hyp", 0x3e)
+ .Default(~0U);
+
+ if (Encoding == ~0U)
+ return MatchOperand_NoMatch;
+
+ Parser.Lex(); // Eat identifier token.
+ Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
+ return MatchOperand_Success;
+}
+
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
int High) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
@@ -4052,6 +4233,7 @@ ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
@@ -4081,6 +4263,7 @@ ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
/// n == 32 encoded as n == 0.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseShifterImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
@@ -4151,6 +4334,7 @@ ARMAsmParser::parseShifterImm(OperandVector &Operands) {
/// ror #n 'n' in {0, 8, 16, 24}
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseRotImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier))
@@ -4196,7 +4380,130 @@ ARMAsmParser::parseRotImm(OperandVector &Operands) {
}
ARMAsmParser::OperandMatchResultTy
+ARMAsmParser::parseModImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ MCAsmLexer &Lexer = getLexer();
+ int64_t Imm1, Imm2;
+
+ SMLoc S = Parser.getTok().getLoc();
+
+ // 1) A mod_imm operand can appear in the place of a register name:
+ // add r0, #mod_imm
+ // add r0, r0, #mod_imm
+ // to correctly handle the latter, we bail out as soon as we see an
+ // identifier.
+ //
+ // 2) Similarly, we do not want to parse into complex operands:
+ // mov r0, #mod_imm
+ // mov r0, :lower16:(_foo)
+ if (Parser.getTok().is(AsmToken::Identifier) ||
+ Parser.getTok().is(AsmToken::Colon))
+ return MatchOperand_NoMatch;
+
+ // Hash (dollar) is optional as per the ARMARM
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar)) {
+ // Avoid parsing into complex operands (#:)
+ if (Lexer.peekTok().is(AsmToken::Colon))
+ return MatchOperand_NoMatch;
+
+ // Eat the hash (dollar)
+ Parser.Lex();
+ }
+
+ SMLoc Sx1, Ex1;
+ Sx1 = Parser.getTok().getLoc();
+ const MCExpr *Imm1Exp;
+ if (getParser().parseExpression(Imm1Exp, Ex1)) {
+ Error(Sx1, "malformed expression");
+ return MatchOperand_ParseFail;
+ }
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
+
+ if (CE) {
+ // Immediate must fit within 32-bits
+ Imm1 = CE->getValue();
+ if (Imm1 < INT32_MIN || Imm1 > UINT32_MAX) {
+ Error(Sx1, "immediate operand must be representable with 32 bits");
+ return MatchOperand_ParseFail;
+ }
+
+ int Enc = ARM_AM::getSOImmVal(Imm1);
+ if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
+ // We have a match!
+ Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
+ (Enc & 0xF00) >> 7,
+ Sx1, Ex1));
+ return MatchOperand_Success;
+ }
+
+ // We have parsed an immediate which is not for us, fallback to a plain
+ // immediate. This can happen for instruction aliases. For an example,
+ // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
+ // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
+ // instruction with a mod_imm operand. The alias is defined such that the
+ // parser method is shared, that's why we have to do this here.
+ if (Parser.getTok().is(AsmToken::EndOfStatement)) {
+ Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
+ return MatchOperand_Success;
+ }
+ } else {
+ // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
+ // MCFixup). Fallback to a plain immediate.
+ Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
+ return MatchOperand_Success;
+ }
+
+ // From this point onward, we expect the input to be a (#bits, #rot) pair
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
+ return MatchOperand_ParseFail;
+ }
+
+ if (Imm1 & ~0xFF) {
+ Error(Sx1, "immediate operand must a number in the range [0, 255]");
+ return MatchOperand_ParseFail;
+ }
+
+ // Eat the comma
+ Parser.Lex();
+
+ // Repeat for #rot
+ SMLoc Sx2, Ex2;
+ Sx2 = Parser.getTok().getLoc();
+
+ // Eat the optional hash (dollar)
+ if (Parser.getTok().is(AsmToken::Hash) ||
+ Parser.getTok().is(AsmToken::Dollar))
+ Parser.Lex();
+
+ const MCExpr *Imm2Exp;
+ if (getParser().parseExpression(Imm2Exp, Ex2)) {
+ Error(Sx2, "malformed expression");
+ return MatchOperand_ParseFail;
+ }
+
+ CE = dyn_cast<MCConstantExpr>(Imm2Exp);
+
+ if (CE) {
+ Imm2 = CE->getValue();
+ if (!(Imm2 & ~0x1E)) {
+ // We have a match!
+ Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
+ return MatchOperand_Success;
+ }
+ Error(Sx2, "immediate operand must an even number in the range [0, 30]");
+ return MatchOperand_ParseFail;
+ } else {
+ Error(Sx2, "constant expression expected");
+ return MatchOperand_ParseFail;
+ }
+}
+
+ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseBitfield(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
// The bitfield descriptor is really two operands, the LSB and the width.
if (Parser.getTok().isNot(AsmToken::Hash) &&
@@ -4273,6 +4580,7 @@ ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
+ MCAsmParser &Parser = getParser();
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
bool haveEaten = false;
@@ -4325,6 +4633,7 @@ ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
+ MCAsmParser &Parser = getParser();
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
@@ -4462,6 +4771,7 @@ void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
/// Parse an ARM memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
bool ARMAsmParser::parseMemory(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LBrac) &&
"Token is not a Left Bracket");
@@ -4653,6 +4963,7 @@ bool ARMAsmParser::parseMemory(OperandVector &Operands) {
/// return true if it parses a shift otherwise it returns false.
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
unsigned &Amount) {
+ MCAsmParser &Parser = getParser();
SMLoc Loc = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
@@ -4713,6 +5024,7 @@ bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
/// parseFPImm - A floating point immediate expression operand.
ARMAsmParser::OperandMatchResultTy
ARMAsmParser::parseFPImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
// Anything that can accept a floating point constant as an operand
// needs to go through here, as the regular parseExpression is
// integer only.
@@ -4793,6 +5105,7 @@ ARMAsmParser::parseFPImm(OperandVector &Operands) {
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
+ MCAsmParser &Parser = getParser();
SMLoc S, E;
// Check if the current operand has a custom associated parser, if so, try to
@@ -4925,6 +5238,7 @@ bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
// :lower16: and :upper16:.
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
+ MCAsmParser &Parser = getParser();
RefKind = ARMMCExpr::VK_ARM_None;
// consume an optional '#' (GNU compatibility)
@@ -4940,15 +5254,52 @@ bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
return true;
}
+ enum {
+ COFF = (1 << MCObjectFileInfo::IsCOFF),
+ ELF = (1 << MCObjectFileInfo::IsELF),
+ MACHO = (1 << MCObjectFileInfo::IsMachO)
+ };
+ static const struct PrefixEntry {
+ const char *Spelling;
+ ARMMCExpr::VariantKind VariantKind;
+ uint8_t SupportedFormats;
+ } PrefixEntries[] = {
+ { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
+ { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
+ };
+
StringRef IDVal = Parser.getTok().getIdentifier();
- if (IDVal == "lower16") {
- RefKind = ARMMCExpr::VK_ARM_LO16;
- } else if (IDVal == "upper16") {
- RefKind = ARMMCExpr::VK_ARM_HI16;
- } else {
+
+ const auto &Prefix =
+ std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
+ [&IDVal](const PrefixEntry &PE) {
+ return PE.Spelling == IDVal;
+ });
+ if (Prefix == std::end(PrefixEntries)) {
Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
return true;
}
+
+ uint8_t CurrentFormat;
+ switch (getContext().getObjectFileInfo()->getObjectFileType()) {
+ case MCObjectFileInfo::IsMachO:
+ CurrentFormat = MACHO;
+ break;
+ case MCObjectFileInfo::IsELF:
+ CurrentFormat = ELF;
+ break;
+ case MCObjectFileInfo::IsCOFF:
+ CurrentFormat = COFF;
+ break;
+ }
+
+ if (~Prefix->SupportedFormats & CurrentFormat) {
+ Error(Parser.getTok().getLoc(),
+ "cannot represent relocation in the current file format");
+ return true;
+ }
+
+ RefKind = Prefix->VariantKind;
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon)) {
@@ -4956,6 +5307,7 @@ bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
return true;
}
Parser.Lex(); // Eat the last ':'
+
return false;
}
@@ -4988,7 +5340,8 @@ StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
- Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
+ Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
+ Mnemonic.startswith("vsel"))
return Mnemonic;
// First, split out any predication code. Ignore mnemonics we know aren't
@@ -5093,7 +5446,7 @@ getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
- Mnemonic == "vrintm" || Mnemonic.startswith("aes") ||
+ Mnemonic == "vrintm" || Mnemonic.startswith("aes") || Mnemonic == "hvc" ||
Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
(FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
// These mnemonics are never predicable
@@ -5131,7 +5484,7 @@ bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
// conditionally adding the cc_out in the first place because we need
// to check the type of the parsed immediate operand.
if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
- !static_cast<ARMOperand &>(*Operands[4]).isARMSOImm() &&
+ !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
return true;
@@ -5275,7 +5628,7 @@ static bool isDataTypeToken(StringRef Tok) {
static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
}
-static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
+static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
unsigned VariantID);
static bool RequiresVFPRegListValidation(StringRef Inst,
@@ -5300,6 +5653,7 @@ static bool RequiresVFPRegListValidation(StringRef Inst,
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
// FIXME: Can this be done via tablegen in some fashion?
bool RequireVFPRegisterListCheck;
bool AcceptSinglePrecisionOnly;
@@ -5313,7 +5667,7 @@ bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
// The generic tblgen'erated code does this later, at the start of
// MatchInstructionImpl(), but that's too late for aliases that include
// any sort of suffix.
- unsigned AvailableFeatures = getAvailableFeatures();
+ uint64_t AvailableFeatures = getAvailableFeatures();
unsigned AssemblerDialect = getParser().getAssemblerDialect();
applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
@@ -5419,6 +5773,8 @@ bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
Operands.push_back(ARMOperand::CreateImm(
MCConstantExpr::Create(ProcessorIMod, getContext()),
NameLoc, NameLoc));
+ } else if (Mnemonic == "cps" && isMClass()) {
+ return Error(NameLoc, "instruction 'cps' requires effect for M-class");
}
// Add the remaining tokens in the mnemonic.
@@ -5550,6 +5906,48 @@ bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
}
}
+ // If first 2 operands of a 3 operand instruction are the same
+ // then transform to 2 operand version of the same instruction
+ // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
+ // FIXME: We would really like to be able to tablegen'erate this.
+ if (isThumbOne() && Operands.size() == 6 &&
+ (Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
+ Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
+ Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
+ Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) {
+ ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
+ ARMOperand &Op4 = static_cast<ARMOperand &>(*Operands[4]);
+ ARMOperand &Op5 = static_cast<ARMOperand &>(*Operands[5]);
+
+ // If both registers are the same then remove one of them from
+ // the operand list.
+ if (Op3.isReg() && Op4.isReg() && Op3.getReg() == Op4.getReg()) {
+ // If 3rd operand (variable Op5) is a register and the instruction is adds/sub
+ // then do not transform as the backend already handles this instruction
+ // correctly.
+ if (!Op5.isReg() || !((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub")) {
+ Operands.erase(Operands.begin() + 3);
+ if (Mnemonic == "add" && !CarrySetting) {
+ // Special case for 'add' (not 'adds') instruction must
+ // remove the CCOut operand as well.
+ Operands.erase(Operands.begin() + 1);
+ }
+ }
+ }
+ }
+
+ // If instruction is 'add' and first two register operands
+ // use SP register, then remove one of the SP registers from
+ // the instruction.
+ // FIXME: We would really like to be able to tablegen'erate this.
+ if (isThumbOne() && Operands.size() == 5 && Mnemonic == "add" && !CarrySetting) {
+ ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
+ ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
+ if (Op2.isReg() && Op3.isReg() && Op2.getReg() == ARM::SP && Op3.getReg() == ARM::SP) {
+ Operands.erase(Operands.begin() + 2);
+ }
+ }
+
// GNU Assembler extension (compatibility)
if ((Mnemonic == "ldrd" || Mnemonic == "strd")) {
ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
@@ -5627,6 +6025,50 @@ static bool instIsBreakpoint(const MCInst &Inst) {
}
+bool ARMAsmParser::validatetLDMRegList(MCInst Inst,
+ const OperandVector &Operands,
+ unsigned ListNo, bool IsARPop) {
+ const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
+ bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
+
+ bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
+ bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
+ bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
+
+ if (!IsARPop && ListContainsSP)
+ return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
+ "SP may not be in the register list");
+ else if (ListContainsPC && ListContainsLR)
+ return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
+ "PC and LR may not be in the register list simultaneously");
+ else if (inITBlock() && !lastInITBlock() && ListContainsPC)
+ return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
+ "instruction must be outside of IT block or the last "
+ "instruction in an IT block");
+ return false;
+}
+
+bool ARMAsmParser::validatetSTMRegList(MCInst Inst,
+ const OperandVector &Operands,
+ unsigned ListNo) {
+ const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
+ bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
+
+ bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
+ bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
+
+ if (ListContainsSP && ListContainsPC)
+ return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
+ "SP and PC may not be in the register list");
+ else if (ListContainsSP)
+ return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
+ "SP may not be in the register list");
+ else if (ListContainsPC)
+ return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
+ "PC may not be in the register list");
+ return false;
+}
+
// FIXME: We would really like to be able to tablegen'erate this.
bool ARMAsmParser::validateInstruction(MCInst &Inst,
const OperandVector &Operands) {
@@ -5732,6 +6174,48 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
"source operands must be sequential");
return false;
}
+ case ARM::STR_PRE_IMM:
+ case ARM::STR_PRE_REG:
+ case ARM::STR_POST_IMM:
+ case ARM::STR_POST_REG:
+ case ARM::STRH_PRE:
+ case ARM::STRH_POST:
+ case ARM::STRB_PRE_IMM:
+ case ARM::STRB_PRE_REG:
+ case ARM::STRB_POST_IMM:
+ case ARM::STRB_POST_REG: {
+ // Rt must be different from Rn.
+ const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
+ const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
+
+ if (Rt == Rn)
+ return Error(Operands[3]->getStartLoc(),
+ "source register and base register can't be identical");
+ return false;
+ }
+ case ARM::LDR_PRE_IMM:
+ case ARM::LDR_PRE_REG:
+ case ARM::LDR_POST_IMM:
+ case ARM::LDR_POST_REG:
+ case ARM::LDRH_PRE:
+ case ARM::LDRH_POST:
+ case ARM::LDRSH_PRE:
+ case ARM::LDRSH_POST:
+ case ARM::LDRB_PRE_IMM:
+ case ARM::LDRB_PRE_REG:
+ case ARM::LDRB_POST_IMM:
+ case ARM::LDRB_POST_REG:
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSB_POST: {
+ // Rt must be different from Rn.
+ const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
+ const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
+
+ if (Rt == Rn)
+ return Error(Operands[3]->getStartLoc(),
+ "destination register and base register can't be identical");
+ return false;
+ }
case ARM::SBFX:
case ARM::UBFX: {
// Width must be in range [1, 32-lsb].
@@ -5769,6 +6253,8 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
"writeback operator '!' not allowed when base register "
"in register list");
+ if (validatetLDMRegList(Inst, Operands, 3))
+ return true;
break;
}
case ARM::LDMIA_UPD:
@@ -5779,7 +6265,20 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
// UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
if (!hasV7Ops())
break;
- // Fallthrough
+ if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
+ return Error(Operands.back()->getStartLoc(),
+ "writeback register not allowed in register list");
+ break;
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ if (validatetLDMRegList(Inst, Operands, 3))
+ return true;
+ break;
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ if (validatetSTMRegList(Inst, Operands, 3))
+ return true;
+ break;
case ARM::t2LDMIA_UPD:
case ARM::t2LDMDB_UPD:
case ARM::t2STMIA_UPD:
@@ -5787,6 +6286,14 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
return Error(Operands.back()->getStartLoc(),
"writeback register not allowed in register list");
+
+ if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
+ if (validatetLDMRegList(Inst, Operands, 3))
+ return true;
+ } else {
+ if (validatetSTMRegList(Inst, Operands, 3))
+ return true;
+ }
break;
}
case ARM::sysLDMIA_UPD:
@@ -5831,6 +6338,8 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
!isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or pc");
+ if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
+ return true;
break;
}
case ARM::tPUSH: {
@@ -5839,6 +6348,8 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
!isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or lr");
+ if (validatetSTMRegList(Inst, Operands, 2))
+ return true;
break;
}
case ARM::tSTMIA_UPD: {
@@ -5855,6 +6366,9 @@ bool ARMAsmParser::validateInstruction(MCInst &Inst,
return Error(Operands[4]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
+
+ if (validatetSTMRegList(Inst, Operands, 4))
+ return true;
break;
}
case ARM::tADDrSP: {
@@ -6224,7 +6738,11 @@ bool ARMAsmParser::processInstruction(MCInst &Inst,
TmpInst.setOpcode(ARM::ADR);
TmpInst.addOperand(Inst.getOperand(0));
if (Inst.getOperand(2).isImm()) {
- TmpInst.addOperand(Inst.getOperand(2));
+ // Immediate (mod_imm) will be in its encoded form, we must unencode it
+ // before passing it to the ADR instruction.
+ unsigned Enc = Inst.getOperand(2).getImm();
+ TmpInst.addOperand(MCOperand::CreateImm(
+ ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
} else {
// Turn PC-relative expression into absolute expression.
// Reading PC provides the start of the current instruction + 8 and
@@ -8034,7 +8552,7 @@ unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
}
// Some high-register supporting Thumb1 encodings only allow both registers
// to be from r0-r7 when in Thumb2.
- else if (Opc == ARM::tADDhirr && isThumbOne() &&
+ else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg()))
return Match_RequiresThumb2;
@@ -8052,10 +8570,10 @@ template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) {
}
}
-static const char *getSubtargetFeatureName(unsigned Val);
+static const char *getSubtargetFeatureName(uint64_t Val);
bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
- MCStreamer &Out, unsigned &ErrorInfo,
+ MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
@@ -8063,7 +8581,6 @@ bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
- default: break;
case Match_Success:
// Context sensitive operand constraints aren't handled by the matcher,
// so check them here.
@@ -8109,7 +8626,7 @@ bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
// Special case the error message for the very common case where only
// a single subtarget feature is missing (Thumb vs. ARM, e.g.).
std::string Msg = "instruction requires:";
- unsigned Mask = 1;
+ uint64_t Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask) {
Msg += " ";
@@ -8121,7 +8638,7 @@ bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
@@ -8198,6 +8715,7 @@ bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
const MCObjectFileInfo::Environment Format =
getContext().getObjectFileInfo()->getObjectFileType();
bool IsMachO = Format == MCObjectFileInfo::IsMachO;
+ bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
@@ -8249,7 +8767,7 @@ bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
else if (IDVal == ".thumb_set")
return parseDirectiveThumbSet(DirectiveID.getLoc());
- if (!IsMachO) {
+ if (!IsMachO && !IsCOFF) {
if (IDVal == ".arch")
return parseDirectiveArch(DirectiveID.getLoc());
else if (IDVal == ".cpu")
@@ -8280,6 +8798,7 @@ bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
/// ::= .short expression [, expression]*
/// ::= .word expression [, expression]*
bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
@@ -8309,6 +8828,7 @@ bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
/// parseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Error(L, "unexpected token in directive");
return false;
@@ -8330,6 +8850,7 @@ bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
/// parseDirectiveARM
/// ::= .arm
bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Error(L, "unexpected token in directive");
return false;
@@ -8358,12 +8879,13 @@ void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
/// parseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
- const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
- bool isMachO = MAI->hasSubsectionsViaSymbols();
+ MCAsmParser &Parser = getParser();
+ const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
+ bool IsMachO = Format == MCObjectFileInfo::IsMachO;
// Darwin asm has (optionally) function name after .thumb_func direction
// ELF doesn't
- if (isMachO) {
+ if (IsMachO) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::EndOfStatement)) {
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
@@ -8380,7 +8902,8 @@ bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- Error(L, "unexpected token in directive");
+ Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ Parser.eatToEndOfStatement();
return false;
}
@@ -8391,6 +8914,7 @@ bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
/// parseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
Error(L, "unexpected token in .syntax directive");
@@ -8422,6 +8946,7 @@ bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
/// parseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer)) {
Error(L, "unexpected token in .code directive");
@@ -8466,6 +8991,7 @@ bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
/// parseDirectiveReq
/// ::= name .req registername
bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
+ MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the '.req' token.
unsigned Reg;
SMLoc SRegLoc, ERegLoc;
@@ -8484,7 +9010,7 @@ bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
Parser.Lex(); // Consume the EndOfStatement
- if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg) {
+ if (!RegisterReqs.insert(std::make_pair(Name, Reg)).second) {
Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
return false;
}
@@ -8495,6 +9021,7 @@ bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
/// parseDirectiveUneq
/// ::= .unreq registername
bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Parser.eatToEndOfStatement();
Error(L, "unexpected input in .unreq directive.");
@@ -8531,6 +9058,7 @@ bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
/// ::= .eabi_attribute int, int [, "str"]
/// ::= .eabi_attribute Tag_name, int [, "str"]
bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
+ MCAsmParser &Parser = getParser();
int64_t Tag;
SMLoc TagLoc;
TagLoc = Parser.getTok().getLoc();
@@ -8608,8 +9136,13 @@ bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
if (Tag == ARMBuildAttrs::compatibility) {
if (Parser.getTok().isNot(AsmToken::Comma))
IsStringValue = false;
- else
- Parser.Lex();
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(), "comma expected");
+ Parser.eatToEndOfStatement();
+ return false;
+ } else {
+ Parser.Lex();
+ }
}
if (IsStringValue) {
@@ -8658,25 +9191,39 @@ bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
// FIXME: This is duplicated in getARMFPUFeatures() in
// tools/clang/lib/Driver/Tools.cpp
static const struct {
- const unsigned Fpu;
+ const unsigned ID;
const uint64_t Enabled;
const uint64_t Disabled;
-} Fpus[] = {
- {ARM::VFP, ARM::FeatureVFP2, ARM::FeatureNEON},
- {ARM::VFPV2, ARM::FeatureVFP2, ARM::FeatureNEON},
- {ARM::VFPV3, ARM::FeatureVFP3, ARM::FeatureNEON},
- {ARM::VFPV3_D16, ARM::FeatureVFP3 | ARM::FeatureD16, ARM::FeatureNEON},
- {ARM::VFPV4, ARM::FeatureVFP4, ARM::FeatureNEON},
- {ARM::VFPV4_D16, ARM::FeatureVFP4 | ARM::FeatureD16, ARM::FeatureNEON},
- {ARM::FP_ARMV8, ARM::FeatureFPARMv8,
- ARM::FeatureNEON | ARM::FeatureCrypto},
- {ARM::NEON, ARM::FeatureNEON, 0},
- {ARM::NEON_VFPV4, ARM::FeatureVFP4 | ARM::FeatureNEON, 0},
- {ARM::NEON_FP_ARMV8, ARM::FeatureFPARMv8 | ARM::FeatureNEON,
- ARM::FeatureCrypto},
- {ARM::CRYPTO_NEON_FP_ARMV8,
- ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto, 0},
- {ARM::SOFTVFP, 0, 0},
+} FPUs[] = {
+ {ARM::VFP, ARM::FeatureVFP2, ARM::FeatureNEON},
+ {ARM::VFPV2, ARM::FeatureVFP2, ARM::FeatureNEON},
+ {ARM::VFPV3, ARM::FeatureVFP2 | ARM::FeatureVFP3, ARM::FeatureNEON},
+ {ARM::VFPV3_D16, ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureD16,
+ ARM::FeatureNEON},
+ {ARM::VFPV4, ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4,
+ ARM::FeatureNEON},
+ {ARM::VFPV4_D16,
+ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | ARM::FeatureD16,
+ ARM::FeatureNEON},
+ {ARM::FPV5_D16, ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
+ ARM::FeatureFPARMv8 | ARM::FeatureD16,
+ ARM::FeatureNEON | ARM::FeatureCrypto},
+ {ARM::FP_ARMV8, ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
+ ARM::FeatureFPARMv8,
+ ARM::FeatureNEON | ARM::FeatureCrypto},
+ {ARM::NEON, ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureNEON, 0},
+ {ARM::NEON_VFPV4,
+ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | ARM::FeatureNEON,
+ 0},
+ {ARM::NEON_FP_ARMV8,
+ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
+ ARM::FeatureFPARMv8 | ARM::FeatureNEON,
+ ARM::FeatureCrypto},
+ {ARM::CRYPTO_NEON_FP_ARMV8,
+ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
+ ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto,
+ 0},
+ {ARM::SOFTVFP, 0, 0},
};
/// parseDirectiveFPU
@@ -8694,14 +9241,14 @@ bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
return false;
}
- for (const auto &Fpu : Fpus) {
- if (Fpu.Fpu != ID)
+ for (const auto &Entry : FPUs) {
+ if (Entry.ID != ID)
continue;
// Need to toggle features that should be on but are off and that
// should off but are on.
- unsigned Toggle = (Fpu.Enabled & ~STI.getFeatureBits()) |
- (Fpu.Disabled & STI.getFeatureBits());
+ uint64_t Toggle = (Entry.Enabled & ~STI.getFeatureBits()) |
+ (Entry.Disabled & STI.getFeatureBits());
setAvailableFeatures(ComputeAvailableFeatures(STI.ToggleFeature(Toggle)));
break;
}
@@ -8772,6 +9319,7 @@ bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
/// parseDirectivePersonality
/// ::= .personality name
bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
+ MCAsmParser &Parser = getParser();
bool HasExistingPersonality = UC.hasPersonality();
UC.recordPersonality(L);
@@ -8835,6 +9383,7 @@ bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
/// parseDirectiveSetFP
/// ::= .setfp fpreg, spreg [, offset]
bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
+ MCAsmParser &Parser = getParser();
// Check the ordering of unwind directives
if (!UC.hasFnStart()) {
Error(L, ".fnstart must precede .setfp directive");
@@ -8912,6 +9461,7 @@ bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
/// parseDirective
/// ::= .pad offset
bool ARMAsmParser::parseDirectivePad(SMLoc L) {
+ MCAsmParser &Parser = getParser();
// Check the ordering of unwind directives
if (!UC.hasFnStart()) {
Error(L, ".fnstart must precede .pad directive");
@@ -8986,6 +9536,7 @@ bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
/// ::= .inst.n opcode [, ...]
/// ::= .inst.w opcode [, ...]
bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
+ MCAsmParser &Parser = getParser();
int Width;
if (isThumb()) {
@@ -9082,7 +9633,7 @@ bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
}
if (!Section) {
- getStreamer().InitSections();
+ getStreamer().InitSections(false);
Section = getStreamer().getCurrentSection().first;
}
@@ -9098,6 +9649,7 @@ bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
/// parseDirectivePersonalityIndex
/// ::= .personalityindex index
bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
+ MCAsmParser &Parser = getParser();
bool HasExistingPersonality = UC.hasPersonality();
UC.recordPersonalityIndex(L);
@@ -9153,6 +9705,7 @@ bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
/// parseDirectiveUnwindRaw
/// ::= .unwind_raw offset, opcode [, opcode...]
bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (!UC.hasFnStart()) {
Parser.eatToEndOfStatement();
Error(L, ".fnstart must precede .unwind_raw directives");
@@ -9234,6 +9787,8 @@ bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
/// parseDirectiveTLSDescSeq
/// ::= .tlsdescseq tls-variable
bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+
if (getLexer().isNot(AsmToken::Identifier)) {
TokError("expected variable after '.tlsdescseq' directive");
Parser.eatToEndOfStatement();
@@ -9258,6 +9813,7 @@ bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
/// parseDirectiveMovSP
/// ::= .movsp reg [, #offset]
bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (!UC.hasFnStart()) {
Parser.eatToEndOfStatement();
Error(L, ".fnstart must precede .movsp directives");
@@ -9321,6 +9877,7 @@ bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
/// parseDirectiveObjectArch
/// ::= .object_arch name
bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier)) {
Error(getLexer().getLoc(), "unexpected token");
Parser.eatToEndOfStatement();
@@ -9377,6 +9934,8 @@ bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
/// parseDirectiveThumbSet
/// ::= .thumb_set name, value
bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+
StringRef Name;
if (Parser.parseIdentifier(Name)) {
TokError("expected identifier after '.thumb_set'");
@@ -9423,8 +9982,8 @@ extern "C" void LLVMInitializeARMAsmParser() {
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"
-static const struct ExtMapEntry {
- const char *Extension;
+static const struct {
+ const char *Name;
const unsigned ArchCheck;
const uint64_t Features;
} Extensions[] = {
@@ -9455,46 +10014,47 @@ static const struct ExtMapEntry {
/// parseDirectiveArchExtension
/// ::= .arch_extension [no]feature
bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
+ MCAsmParser &Parser = getParser();
+
if (getLexer().isNot(AsmToken::Identifier)) {
Error(getLexer().getLoc(), "unexpected token");
Parser.eatToEndOfStatement();
return false;
}
- StringRef Extension = Parser.getTok().getString();
+ StringRef Name = Parser.getTok().getString();
SMLoc ExtLoc = Parser.getTok().getLoc();
getLexer().Lex();
bool EnableFeature = true;
- if (Extension.startswith_lower("no")) {
+ if (Name.startswith_lower("no")) {
EnableFeature = false;
- Extension = Extension.substr(2);
+ Name = Name.substr(2);
}
- for (unsigned EI = 0, EE = array_lengthof(Extensions); EI != EE; ++EI) {
- if (Extensions[EI].Extension != Extension)
+ for (const auto &Extension : Extensions) {
+ if (Extension.Name != Name)
continue;
- unsigned FB = getAvailableFeatures();
- if ((FB & Extensions[EI].ArchCheck) != Extensions[EI].ArchCheck) {
- Error(ExtLoc, "architectural extension '" + Extension + "' is not "
+ if (!Extension.Features)
+ report_fatal_error("unsupported architectural extension: " + Name);
+
+ if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) {
+ Error(ExtLoc, "architectural extension '" + Name + "' is not "
"allowed for the current base architecture");
return false;
}
- if (!Extensions[EI].Features)
- report_fatal_error("unsupported architectural extension: " + Extension);
-
- if (EnableFeature)
- FB |= ComputeAvailableFeatures(Extensions[EI].Features);
- else
- FB &= ~ComputeAvailableFeatures(Extensions[EI].Features);
-
- setAvailableFeatures(FB);
+ uint64_t ToggleFeatures = EnableFeature
+ ? (~STI.getFeatureBits() & Extension.Features)
+ : ( STI.getFeatureBits() & Extension.Features);
+ uint64_t Features =
+ ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
+ setAvailableFeatures(Features);
return false;
}
- Error(ExtLoc, "unknown architectural extension: " + Extension);
+ Error(ExtLoc, "unknown architectural extension: " + Name);
Parser.eatToEndOfStatement();
return false;
}
@@ -9515,7 +10075,7 @@ unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
if (CE->getValue() == 0)
return Match_Success;
break;
- case MCK_ARMSOImm:
+ case MCK_ModImm:
if (Op.isImm()) {
const MCExpr *SOExpr = Op.getImm();
int64_t Value;
diff --git a/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp b/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
index 4d4038d..51faf69 100644
--- a/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
+++ b/contrib/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
@@ -20,7 +20,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
@@ -85,42 +84,34 @@ namespace {
}
namespace {
-/// ARMDisassembler - ARM disassembler for all ARM platforms.
+/// ARM disassembler for all ARM platforms.
class ARMDisassembler : public MCDisassembler {
public:
- /// Constructor - Initializes the disassembler.
- ///
ARMDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
MCDisassembler(STI, Ctx) {
}
- ~ARMDisassembler() {
- }
+ ~ARMDisassembler() {}
- /// getInstruction - See MCDisassembler.
- DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
- const MemoryObject &region, uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
-/// ThumbDisassembler - Thumb disassembler for all Thumb platforms.
+/// Thumb disassembler for all Thumb platforms.
class ThumbDisassembler : public MCDisassembler {
public:
- /// Constructor - Initializes the disassembler.
- ///
ThumbDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
MCDisassembler(STI, Ctx) {
}
- ~ThumbDisassembler() {
- }
+ ~ThumbDisassembler() {}
- /// getInstruction - See MCDisassembler.
- DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
- const MemoryObject &region, uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
private:
mutable ITStatus ITBlock;
@@ -185,8 +176,6 @@ static DecodeStatus DecodePredicateOperand(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeCCOutOperand(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder);
-static DecodeStatus DecodeSOImmOperand(MCInst &Inst, unsigned Val,
- uint64_t Address, const void *Decoder);
static DecodeStatus DecodeRegListOperand(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSPRRegListOperand(MCInst &Inst, unsigned Val,
@@ -281,6 +270,8 @@ static DecodeStatus DecodeInstSyncBarrierOption(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeMSRMask(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeBankedReg(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDoubleRegLoad(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDoubleRegStore(MCInst &Inst, unsigned Insn,
@@ -412,104 +403,122 @@ static MCDisassembler *createThumbDisassembler(const Target &T,
return new ThumbDisassembler(STI, Ctx);
}
-DecodeStatus ARMDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &os,
- raw_ostream &cs) const {
- CommentStream = &cs;
+// Post-decoding checks
+static DecodeStatus checkDecodedInstruction(MCInst &MI, uint64_t &Size,
+ uint64_t Address, raw_ostream &OS,
+ raw_ostream &CS,
+ uint32_t Insn,
+ DecodeStatus Result)
+{
+ switch (MI.getOpcode()) {
+ case ARM::HVC: {
+ // HVC is undefined if condition = 0xf otherwise upredictable
+ // if condition != 0xe
+ uint32_t Cond = (Insn >> 28) & 0xF;
+ if (Cond == 0xF)
+ return MCDisassembler::Fail;
+ if (Cond != 0xE)
+ return MCDisassembler::SoftFail;
+ return Result;
+ }
+ default: return Result;
+ }
+}
- uint8_t bytes[4];
+DecodeStatus ARMDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address, raw_ostream &OS,
+ raw_ostream &CS) const {
+ CommentStream = &CS;
assert(!(STI.getFeatureBits() & ARM::ModeThumb) &&
- "Asked to disassemble an ARM instruction but Subtarget is in Thumb mode!");
+ "Asked to disassemble an ARM instruction but Subtarget is in Thumb "
+ "mode!");
// We want to read exactly 4 bytes of data.
- if (Region.readBytes(Address, 4, bytes) == -1) {
+ if (Bytes.size() < 4) {
Size = 0;
return MCDisassembler::Fail;
}
// Encoded as a small-endian 32-bit word in the stream.
- uint32_t insn = (bytes[3] << 24) |
- (bytes[2] << 16) |
- (bytes[1] << 8) |
- (bytes[0] << 0);
+ uint32_t Insn =
+ (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | (Bytes[0] << 0);
// Calling the auto-generated decoder function.
- DecodeStatus result = decodeInstruction(DecoderTableARM32, MI, insn,
- Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ DecodeStatus Result =
+ decodeInstruction(DecoderTableARM32, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return checkDecodedInstruction(MI, Size, Address, OS, CS, Insn, Result);
}
// VFP and NEON instructions, similarly, are shared between ARM
// and Thumb modes.
MI.clear();
- result = decodeInstruction(DecoderTableVFP32, MI, insn, Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ Result = decodeInstruction(DecoderTableVFP32, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableVFPV832, MI, insn, Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ Result = decodeInstruction(DecoderTableVFPV832, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableNEONData32, MI, insn, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableNEONData32, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, this))
return MCDisassembler::Fail;
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableNEONLoadStore32, MI, insn, Address,
+ Result = decodeInstruction(DecoderTableNEONLoadStore32, MI, Insn, Address,
this, STI);
- if (result != MCDisassembler::Fail) {
+ if (Result != MCDisassembler::Fail) {
Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, this))
return MCDisassembler::Fail;
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableNEONDup32, MI, insn, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableNEONDup32, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, this))
return MCDisassembler::Fail;
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTablev8NEON32, MI, insn, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTablev8NEON32, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTablev8Crypto32, MI, insn, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTablev8Crypto32, MI, Insn, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
MI.clear();
@@ -681,55 +690,53 @@ void ThumbDisassembler::UpdateThumbVFPPredicate(MCInst &MI) const {
}
DecodeStatus ThumbDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
- const MemoryObject &Region,
+ ArrayRef<uint8_t> Bytes,
uint64_t Address,
- raw_ostream &os,
- raw_ostream &cs) const {
- CommentStream = &cs;
-
- uint8_t bytes[4];
+ raw_ostream &OS,
+ raw_ostream &CS) const {
+ CommentStream = &CS;
assert((STI.getFeatureBits() & ARM::ModeThumb) &&
"Asked to disassemble in Thumb mode but Subtarget is in ARM mode!");
// We want to read exactly 2 bytes of data.
- if (Region.readBytes(Address, 2, bytes) == -1) {
+ if (Bytes.size() < 2) {
Size = 0;
return MCDisassembler::Fail;
}
- uint16_t insn16 = (bytes[1] << 8) | bytes[0];
- DecodeStatus result = decodeInstruction(DecoderTableThumb16, MI, insn16,
- Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ uint16_t Insn16 = (Bytes[1] << 8) | Bytes[0];
+ DecodeStatus Result =
+ decodeInstruction(DecoderTableThumb16, MI, Insn16, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 2;
- Check(result, AddThumbPredicate(MI));
- return result;
+ Check(Result, AddThumbPredicate(MI));
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableThumbSBit16, MI, insn16,
- Address, this, STI);
- if (result) {
+ Result = decodeInstruction(DecoderTableThumbSBit16, MI, Insn16, Address, this,
+ STI);
+ if (Result) {
Size = 2;
bool InITBlock = ITBlock.instrInITBlock();
- Check(result, AddThumbPredicate(MI));
+ Check(Result, AddThumbPredicate(MI));
AddThumb1SBit(MI, InITBlock);
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableThumb216, MI, insn16,
- Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableThumb216, MI, Insn16, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 2;
// Nested IT blocks are UNPREDICTABLE. Must be checked before we add
// the Thumb predicate.
if (MI.getOpcode() == ARM::t2IT && ITBlock.instrInITBlock())
- result = MCDisassembler::SoftFail;
+ Result = MCDisassembler::SoftFail;
- Check(result, AddThumbPredicate(MI));
+ Check(Result, AddThumbPredicate(MI));
// If we find an IT instruction, we need to parse its condition
// code and mask operands so that we can apply them correctly
@@ -741,115 +748,115 @@ DecodeStatus ThumbDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ITBlock.setITState(Firstcond, Mask);
}
- return result;
+ return Result;
}
// We want to read exactly 4 bytes of data.
- if (Region.readBytes(Address, 4, bytes) == -1) {
+ if (Bytes.size() < 4) {
Size = 0;
return MCDisassembler::Fail;
}
- uint32_t insn32 = (bytes[3] << 8) |
- (bytes[2] << 0) |
- (bytes[1] << 24) |
- (bytes[0] << 16);
+ uint32_t Insn32 =
+ (Bytes[3] << 8) | (Bytes[2] << 0) | (Bytes[1] << 24) | (Bytes[0] << 16);
MI.clear();
- result = decodeInstruction(DecoderTableThumb32, MI, insn32, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableThumb32, MI, Insn32, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
bool InITBlock = ITBlock.instrInITBlock();
- Check(result, AddThumbPredicate(MI));
+ Check(Result, AddThumbPredicate(MI));
AddThumb1SBit(MI, InITBlock);
- return result;
+ return Result;
}
MI.clear();
- result = decodeInstruction(DecoderTableThumb232, MI, insn32, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableThumb232, MI, Insn32, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- Check(result, AddThumbPredicate(MI));
- return result;
+ Check(Result, AddThumbPredicate(MI));
+ return Result;
}
- if (fieldFromInstruction(insn32, 28, 4) == 0xE) {
+ if (fieldFromInstruction(Insn32, 28, 4) == 0xE) {
MI.clear();
- result = decodeInstruction(DecoderTableVFP32, MI, insn32, Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableVFP32, MI, Insn32, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
UpdateThumbVFPPredicate(MI);
- return result;
+ return Result;
}
}
MI.clear();
- result = decodeInstruction(DecoderTableVFPV832, MI, insn32, Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ Result =
+ decodeInstruction(DecoderTableVFPV832, MI, Insn32, Address, this, STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
- if (fieldFromInstruction(insn32, 28, 4) == 0xE) {
+ if (fieldFromInstruction(Insn32, 28, 4) == 0xE) {
MI.clear();
- result = decodeInstruction(DecoderTableNEONDup32, MI, insn32, Address,
- this, STI);
- if (result != MCDisassembler::Fail) {
+ Result = decodeInstruction(DecoderTableNEONDup32, MI, Insn32, Address, this,
+ STI);
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- Check(result, AddThumbPredicate(MI));
- return result;
+ Check(Result, AddThumbPredicate(MI));
+ return Result;
}
}
- if (fieldFromInstruction(insn32, 24, 8) == 0xF9) {
+ if (fieldFromInstruction(Insn32, 24, 8) == 0xF9) {
MI.clear();
- uint32_t NEONLdStInsn = insn32;
+ uint32_t NEONLdStInsn = Insn32;
NEONLdStInsn &= 0xF0FFFFFF;
NEONLdStInsn |= 0x04000000;
- result = decodeInstruction(DecoderTableNEONLoadStore32, MI, NEONLdStInsn,
+ Result = decodeInstruction(DecoderTableNEONLoadStore32, MI, NEONLdStInsn,
Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- Check(result, AddThumbPredicate(MI));
- return result;
+ Check(Result, AddThumbPredicate(MI));
+ return Result;
}
}
- if (fieldFromInstruction(insn32, 24, 4) == 0xF) {
+ if (fieldFromInstruction(Insn32, 24, 4) == 0xF) {
MI.clear();
- uint32_t NEONDataInsn = insn32;
+ uint32_t NEONDataInsn = Insn32;
NEONDataInsn &= 0xF0FFFFFF; // Clear bits 27-24
NEONDataInsn |= (NEONDataInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
NEONDataInsn |= 0x12000000; // Set bits 28 and 25
- result = decodeInstruction(DecoderTableNEONData32, MI, NEONDataInsn,
+ Result = decodeInstruction(DecoderTableNEONData32, MI, NEONDataInsn,
Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- Check(result, AddThumbPredicate(MI));
- return result;
+ Check(Result, AddThumbPredicate(MI));
+ return Result;
}
MI.clear();
- uint32_t NEONCryptoInsn = insn32;
+ uint32_t NEONCryptoInsn = Insn32;
NEONCryptoInsn &= 0xF0FFFFFF; // Clear bits 27-24
NEONCryptoInsn |= (NEONCryptoInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
NEONCryptoInsn |= 0x12000000; // Set bits 28 and 25
- result = decodeInstruction(DecoderTablev8Crypto32, MI, NEONCryptoInsn,
+ Result = decodeInstruction(DecoderTablev8Crypto32, MI, NEONCryptoInsn,
Address, this, STI);
- if (result != MCDisassembler::Fail) {
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
MI.clear();
- uint32_t NEONv8Insn = insn32;
+ uint32_t NEONv8Insn = Insn32;
NEONv8Insn &= 0xF3FFFFFF; // Clear bits 27-26
- result = decodeInstruction(DecoderTablev8NEON32, MI, NEONv8Insn, Address,
+ Result = decodeInstruction(DecoderTablev8NEON32, MI, NEONv8Insn, Address,
this, STI);
- if (result != MCDisassembler::Fail) {
+ if (Result != MCDisassembler::Fail) {
Size = 4;
- return result;
+ return Result;
}
}
@@ -1015,7 +1022,11 @@ static const uint16_t DPRDecoderTable[] = {
static DecodeStatus DecodeDPRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
- if (RegNo > 31)
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ bool hasD16 = featureBits & ARM::FeatureD16;
+
+ if (RegNo > 31 || (hasD16 && RegNo > 15))
return MCDisassembler::Fail;
unsigned Register = DPRDecoderTable[RegNo];
@@ -1122,15 +1133,6 @@ static DecodeStatus DecodeCCOutOperand(MCInst &Inst, unsigned Val,
return MCDisassembler::Success;
}
-static DecodeStatus DecodeSOImmOperand(MCInst &Inst, unsigned Val,
- uint64_t Address, const void *Decoder) {
- uint32_t imm = Val & 0xFF;
- uint32_t rot = (Val & 0xF00) >> 7;
- uint32_t rot_imm = (imm >> rot) | (imm << ((32-rot) & 0x1F));
- Inst.addOperand(MCOperand::CreateImm(rot_imm));
- return MCDisassembler::Success;
-}
-
static DecodeStatus DecodeSORegImmOperand(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder) {
DecodeStatus S = MCDisassembler::Success;
@@ -2973,11 +2975,9 @@ static DecodeStatus DecodeVLD4DupInstruction(MCInst &Inst, unsigned Insn,
if (size == 0x3) {
if (align == 0)
return MCDisassembler::Fail;
- size = 4;
align = 16;
} else {
if (size == 2) {
- size = 1 << size;
align *= 8;
} else {
size = 1 << size;
@@ -3267,6 +3267,11 @@ static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Insn,
unsigned Rt = fieldFromInstruction(Insn, 12, 4);
unsigned Rn = fieldFromInstruction(Insn, 16, 4);
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ bool hasMP = featureBits & ARM::FeatureMP;
+ bool hasV7Ops = featureBits & ARM::HasV7Ops;
+
if (Rn == 15) {
switch (Inst.getOpcode()) {
case ARM::t2LDRBs:
@@ -3302,11 +3307,10 @@ static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Insn,
case ARM::t2LDRSHs:
return MCDisassembler::Fail;
case ARM::t2LDRHs:
- // FIXME: this instruction is only available with MP extensions,
- // this should be checked first but we don't have access to the
- // feature bits here.
Inst.setOpcode(ARM::t2PLDWs);
break;
+ case ARM::t2LDRSBs:
+ Inst.setOpcode(ARM::t2PLIs);
default:
break;
}
@@ -3314,8 +3318,14 @@ static DecodeStatus DecodeT2LoadShift(MCInst &Inst, unsigned Insn,
switch (Inst.getOpcode()) {
case ARM::t2PLDs:
- case ARM::t2PLDWs:
+ break;
case ARM::t2PLIs:
+ if (!hasV7Ops)
+ return MCDisassembler::Fail;
+ break;
+ case ARM::t2PLDWs:
+ if (!hasV7Ops || !hasMP)
+ return MCDisassembler::Fail;
break;
default:
if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
@@ -3341,6 +3351,12 @@ static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn,
unsigned imm = fieldFromInstruction(Insn, 0, 8);
imm |= (U << 8);
imm |= (Rn << 9);
+ unsigned add = fieldFromInstruction(Insn, 9, 1);
+
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ bool hasMP = featureBits & ARM::FeatureMP;
+ bool hasV7Ops = featureBits & ARM::HasV7Ops;
if (Rn == 15) {
switch (Inst.getOpcode()) {
@@ -3375,6 +3391,13 @@ static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn,
switch (Inst.getOpcode()) {
case ARM::t2LDRSHi8:
return MCDisassembler::Fail;
+ case ARM::t2LDRHi8:
+ if (!add)
+ Inst.setOpcode(ARM::t2PLDWi8);
+ break;
+ case ARM::t2LDRSBi8:
+ Inst.setOpcode(ARM::t2PLIi8);
+ break;
default:
break;
}
@@ -3382,9 +3405,15 @@ static DecodeStatus DecodeT2LoadImm8(MCInst &Inst, unsigned Insn,
switch (Inst.getOpcode()) {
case ARM::t2PLDi8:
+ break;
case ARM::t2PLIi8:
- case ARM::t2PLDWi8:
+ if (!hasV7Ops)
+ return MCDisassembler::Fail;
break;
+ case ARM::t2PLDWi8:
+ if (!hasV7Ops || !hasMP)
+ return MCDisassembler::Fail;
+ break;
default:
if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler::Fail;
@@ -3404,6 +3433,11 @@ static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn,
unsigned imm = fieldFromInstruction(Insn, 0, 12);
imm |= (Rn << 13);
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ bool hasMP = (featureBits & ARM::FeatureMP);
+ bool hasV7Ops = (featureBits & ARM::HasV7Ops);
+
if (Rn == 15) {
switch (Inst.getOpcode()) {
case ARM::t2LDRi12:
@@ -3438,7 +3472,10 @@ static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn,
case ARM::t2LDRSHi12:
return MCDisassembler::Fail;
case ARM::t2LDRHi12:
- Inst.setOpcode(ARM::t2PLDi12);
+ Inst.setOpcode(ARM::t2PLDWi12);
+ break;
+ case ARM::t2LDRSBi12:
+ Inst.setOpcode(ARM::t2PLIi12);
break;
default:
break;
@@ -3447,9 +3484,15 @@ static DecodeStatus DecodeT2LoadImm12(MCInst &Inst, unsigned Insn,
switch (Inst.getOpcode()) {
case ARM::t2PLDi12:
- case ARM::t2PLDWi12:
+ break;
case ARM::t2PLIi12:
+ if (!hasV7Ops)
+ return MCDisassembler::Fail;
break;
+ case ARM::t2PLDWi12:
+ if (!hasV7Ops || !hasMP)
+ return MCDisassembler::Fail;
+ break;
default:
if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler::Fail;
@@ -3507,6 +3550,10 @@ static DecodeStatus DecodeT2LoadLabel(MCInst &Inst, unsigned Insn,
unsigned U = fieldFromInstruction(Insn, 23, 1);
int imm = fieldFromInstruction(Insn, 0, 12);
+ uint64_t featureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ bool hasV7Ops = (featureBits & ARM::HasV7Ops);
+
if (Rt == 15) {
switch (Inst.getOpcode()) {
case ARM::t2LDRBpci:
@@ -3525,7 +3572,10 @@ static DecodeStatus DecodeT2LoadLabel(MCInst &Inst, unsigned Insn,
switch(Inst.getOpcode()) {
case ARM::t2PLDpci:
+ break;
case ARM::t2PLIpci:
+ if (!hasV7Ops)
+ return MCDisassembler::Fail;
break;
default:
if (!Check(S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
@@ -3974,7 +4024,85 @@ static DecodeStatus DecodeInstSyncBarrierOption(MCInst &Inst, unsigned Val,
static DecodeStatus DecodeMSRMask(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder) {
- if (!Val) return MCDisassembler::Fail;
+ DecodeStatus S = MCDisassembler::Success;
+ uint64_t FeatureBits = ((const MCDisassembler*)Decoder)->getSubtargetInfo()
+ .getFeatureBits();
+ if (FeatureBits & ARM::FeatureMClass) {
+ unsigned ValLow = Val & 0xff;
+
+ // Validate the SYSm value first.
+ switch (ValLow) {
+ case 0: // apsr
+ case 1: // iapsr
+ case 2: // eapsr
+ case 3: // xpsr
+ case 5: // ipsr
+ case 6: // epsr
+ case 7: // iepsr
+ case 8: // msp
+ case 9: // psp
+ case 16: // primask
+ case 20: // control
+ break;
+ case 17: // basepri
+ case 18: // basepri_max
+ case 19: // faultmask
+ if (!(FeatureBits & ARM::HasV7Ops))
+ // Values basepri, basepri_max and faultmask are only valid for v7m.
+ return MCDisassembler::Fail;
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+
+ if (Inst.getOpcode() == ARM::t2MSR_M) {
+ unsigned Mask = fieldFromInstruction(Val, 10, 2);
+ if (!(FeatureBits & ARM::HasV7Ops)) {
+ // The ARMv6-M MSR bits {11-10} can be only 0b10, other values are
+ // unpredictable.
+ if (Mask != 2)
+ S = MCDisassembler::SoftFail;
+ }
+ else {
+ // The ARMv7-M architecture stores an additional 2-bit mask value in
+ // MSR bits {11-10}. The mask is used only with apsr, iapsr, eapsr and
+ // xpsr, it has to be 0b10 in other cases. Bit mask{1} indicates if
+ // the NZCVQ bits should be moved by the instruction. Bit mask{0}
+ // indicates the move for the GE{3:0} bits, the mask{0} bit can be set
+ // only if the processor includes the DSP extension.
+ if (Mask == 0 || (Mask != 2 && ValLow > 3) ||
+ (!(FeatureBits & ARM::FeatureDSPThumb2) && (Mask & 1)))
+ S = MCDisassembler::SoftFail;
+ }
+ }
+ } else {
+ // A/R class
+ if (Val == 0)
+ return MCDisassembler::Fail;
+ }
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return S;
+}
+
+static DecodeStatus DecodeBankedReg(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder) {
+
+ unsigned R = fieldFromInstruction(Val, 5, 1);
+ unsigned SysM = fieldFromInstruction(Val, 0, 5);
+
+ // The table of encodings for these banked registers comes from B9.2.3 of the
+ // ARM ARM. There are patterns, but nothing regular enough to make this logic
+ // neater. So by fiat, these values are UNPREDICTABLE:
+ if (!R) {
+ if (SysM == 0x7 || SysM == 0xf || SysM == 0x18 || SysM == 0x19 ||
+ SysM == 0x1a || SysM == 0x1b)
+ return MCDisassembler::SoftFail;
+ } else {
+ if (SysM != 0xe && SysM != 0x10 && SysM != 0x12 && SysM != 0x14 &&
+ SysM != 0x16 && SysM != 0x1c && SysM != 0x1e)
+ return MCDisassembler::SoftFail;
+ }
+
Inst.addOperand(MCOperand::CreateImm(Val));
return MCDisassembler::Success;
}
diff --git a/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp
index 228fb57..16eea33 100644
--- a/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp
@@ -269,7 +269,7 @@ void ARMInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
// expressed as a GPRPair, so we have to manually merge them.
// FIXME: We would really like to be able to tablegen'erate this.
case ARM::LDREXD: case ARM::STREXD:
- case ARM::LDAEXD: case ARM::STLEXD:
+ case ARM::LDAEXD: case ARM::STLEXD: {
const MCRegisterClass& MRC = MRI.getRegClass(ARM::GPRRegClassID);
bool isStore = Opcode == ARM::STREXD || Opcode == ARM::STLEXD;
unsigned Reg = MI->getOperand(isStore ? 1 : 0).getReg();
@@ -290,6 +290,23 @@ void ARMInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
printInstruction(&NewMI, O);
return;
}
+ break;
+ }
+ // B9.3.3 ERET (Thumb)
+ // For a target that has Virtualization Extensions, ERET is the preferred
+ // disassembly of SUBS PC, LR, #0
+ case ARM::t2SUBS_PC_LR: {
+ if (MI->getNumOperands() == 3 &&
+ MI->getOperand(0).isImm() &&
+ MI->getOperand(0).getImm() == 0 &&
+ (getAvailableFeatures() & ARM::FeatureVirtualization)) {
+ O << "\teret";
+ printPredicateOperand(MI, 1, O);
+ printAnnotation(O, Annot);
+ return;
+ }
+ break;
+ }
}
printInstruction(MI, O);
@@ -503,30 +520,6 @@ void ARMInstPrinter::printAddrMode2OffsetOperand(const MCInst *MI,
// Addressing Mode #3
//===--------------------------------------------------------------------===//
-void ARMInstPrinter::printAM3PostIndexOp(const MCInst *MI, unsigned Op,
- raw_ostream &O) {
- const MCOperand &MO1 = MI->getOperand(Op);
- const MCOperand &MO2 = MI->getOperand(Op+1);
- const MCOperand &MO3 = MI->getOperand(Op+2);
-
- O << markup("<mem:") << "[";
- printRegName(O, MO1.getReg());
- O << "], " << markup(">");
-
- if (MO2.getReg()) {
- O << (char)ARM_AM::getAM3Op(MO3.getImm());
- printRegName(O, MO2.getReg());
- return;
- }
-
- unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
- O << markup("<imm:")
- << '#'
- << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
- << ImmOffs
- << markup(">");
-}
-
void ARMInstPrinter::printAM3PreOrOffsetIndexOp(const MCInst *MI, unsigned Op,
raw_ostream &O,
bool AlwaysPrintImm0) {
@@ -568,13 +561,9 @@ void ARMInstPrinter::printAddrMode3Operand(const MCInst *MI, unsigned Op,
return;
}
- const MCOperand &MO3 = MI->getOperand(Op+2);
- unsigned IdxMode = ARM_AM::getAM3IdxMode(MO3.getImm());
-
- if (IdxMode == ARMII::IndexModePost) {
- printAM3PostIndexOp(MI, Op, O);
- return;
- }
+ assert(ARM_AM::getAM3IdxMode(MI->getOperand(Op + 2).getImm()) !=
+ ARMII::IndexModePost &&
+ "unexpected idxmode");
printAM3PreOrOffsetIndexOp(MI, Op, O, AlwaysPrintImm0);
}
@@ -807,52 +796,56 @@ void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum,
const MCOperand &Op = MI->getOperand(OpNum);
unsigned SpecRegRBit = Op.getImm() >> 4;
unsigned Mask = Op.getImm() & 0xf;
+ uint64_t FeatureBits = getAvailableFeatures();
- if (getAvailableFeatures() & ARM::FeatureMClass) {
+ if (FeatureBits & ARM::FeatureMClass) {
unsigned SYSm = Op.getImm();
unsigned Opcode = MI->getOpcode();
- // For reads of the special registers ignore the "mask encoding" bits
- // which are only for writes.
- if (Opcode == ARM::t2MRS_M)
- SYSm &= 0xff;
+
+ // For writes, handle extended mask bits if the DSP extension is present.
+ if (Opcode == ARM::t2MSR_M && (FeatureBits & ARM::FeatureDSPThumb2)) {
+ switch (SYSm) {
+ case 0x400: O << "apsr_g"; return;
+ case 0xc00: O << "apsr_nzcvqg"; return;
+ case 0x401: O << "iapsr_g"; return;
+ case 0xc01: O << "iapsr_nzcvqg"; return;
+ case 0x402: O << "eapsr_g"; return;
+ case 0xc02: O << "eapsr_nzcvqg"; return;
+ case 0x403: O << "xpsr_g"; return;
+ case 0xc03: O << "xpsr_nzcvqg"; return;
+ }
+ }
+
+ // Handle the basic 8-bit mask.
+ SYSm &= 0xff;
+
+ if (Opcode == ARM::t2MSR_M && (FeatureBits & ARM::HasV7Ops)) {
+ // ARMv7-M deprecates using MSR APSR without a _<bits> qualifier as an
+ // alias for MSR APSR_nzcvq.
+ switch (SYSm) {
+ case 0: O << "apsr_nzcvq"; return;
+ case 1: O << "iapsr_nzcvq"; return;
+ case 2: O << "eapsr_nzcvq"; return;
+ case 3: O << "xpsr_nzcvq"; return;
+ }
+ }
+
switch (SYSm) {
default: llvm_unreachable("Unexpected mask value!");
- case 0:
- case 0x800: O << "apsr"; return; // with _nzcvq bits is an alias for aspr
- case 0x400: O << "apsr_g"; return;
- case 0xc00: O << "apsr_nzcvqg"; return;
- case 1:
- case 0x801: O << "iapsr"; return; // with _nzcvq bits is an alias for iapsr
- case 0x401: O << "iapsr_g"; return;
- case 0xc01: O << "iapsr_nzcvqg"; return;
- case 2:
- case 0x802: O << "eapsr"; return; // with _nzcvq bits is an alias for eapsr
- case 0x402: O << "eapsr_g"; return;
- case 0xc02: O << "eapsr_nzcvqg"; return;
- case 3:
- case 0x803: O << "xpsr"; return; // with _nzcvq bits is an alias for xpsr
- case 0x403: O << "xpsr_g"; return;
- case 0xc03: O << "xpsr_nzcvqg"; return;
- case 5:
- case 0x805: O << "ipsr"; return;
- case 6:
- case 0x806: O << "epsr"; return;
- case 7:
- case 0x807: O << "iepsr"; return;
- case 8:
- case 0x808: O << "msp"; return;
- case 9:
- case 0x809: O << "psp"; return;
- case 0x10:
- case 0x810: O << "primask"; return;
- case 0x11:
- case 0x811: O << "basepri"; return;
- case 0x12:
- case 0x812: O << "basepri_max"; return;
- case 0x13:
- case 0x813: O << "faultmask"; return;
- case 0x14:
- case 0x814: O << "control"; return;
+ case 0: O << "apsr"; return;
+ case 1: O << "iapsr"; return;
+ case 2: O << "eapsr"; return;
+ case 3: O << "xpsr"; return;
+ case 5: O << "ipsr"; return;
+ case 6: O << "epsr"; return;
+ case 7: O << "iepsr"; return;
+ case 8: O << "msp"; return;
+ case 9: O << "psp"; return;
+ case 16: O << "primask"; return;
+ case 17: O << "basepri"; return;
+ case 18: O << "basepri_max"; return;
+ case 19: O << "faultmask"; return;
+ case 20: O << "control"; return;
}
}
@@ -882,6 +875,42 @@ void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum,
}
}
+void ARMInstPrinter::printBankedRegOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ uint32_t Banked = MI->getOperand(OpNum).getImm();
+ uint32_t R = (Banked & 0x20) >> 5;
+ uint32_t SysM = Banked & 0x1f;
+
+ // Nothing much we can do about this, the encodings are specified in B9.2.3 of
+ // the ARM ARM v7C, and are all over the shop.
+ if (R) {
+ O << "SPSR_";
+
+ switch(SysM) {
+ case 0x0e: O << "fiq"; return;
+ case 0x10: O << "irq"; return;
+ case 0x12: O << "svc"; return;
+ case 0x14: O << "abt"; return;
+ case 0x16: O << "und"; return;
+ case 0x1c: O << "mon"; return;
+ case 0x1e: O << "hyp"; return;
+ default: llvm_unreachable("Invalid banked SPSR register");
+ }
+ }
+
+ assert(!R && "should have dealt with SPSR regs");
+ const char *RegNames[] = {
+ "r8_usr", "r9_usr", "r10_usr", "r11_usr", "r12_usr", "sp_usr", "lr_usr", "",
+ "r8_fiq", "r9_fiq", "r10_fiq", "r11_fiq", "r12_fiq", "sp_fiq", "lr_fiq", "",
+ "lr_irq", "sp_irq", "lr_svc", "sp_svc", "lr_abt", "sp_abt", "lr_und", "sp_und",
+ "", "", "", "", "lr_mon", "sp_mon", "elr_hyp", "sp_hyp"
+ };
+ const char *Name = RegNames[SysM];
+ assert(Name[0] && "invalid banked register operand");
+
+ O << Name;
+}
+
void ARMInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
@@ -1289,6 +1318,52 @@ void ARMInstPrinter::printRotImmOperand(const MCInst *MI, unsigned OpNum,
O << markup(">");
}
+void ARMInstPrinter::printModImmOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ MCOperand Op = MI->getOperand(OpNum);
+
+ // Support for fixups (MCFixup)
+ if (Op.isExpr())
+ return printOperand(MI, OpNum, O);
+
+ unsigned Bits = Op.getImm() & 0xFF;
+ unsigned Rot = (Op.getImm() & 0xF00) >> 7;
+
+ bool PrintUnsigned = false;
+ switch (MI->getOpcode()){
+ case ARM::MOVi:
+ // Movs to PC should be treated unsigned
+ PrintUnsigned = (MI->getOperand(OpNum - 1).getReg() == ARM::PC);
+ break;
+ case ARM::MSRi:
+ // Movs to special registers should be treated unsigned
+ PrintUnsigned = true;
+ break;
+ }
+
+ int32_t Rotated = ARM_AM::rotr32(Bits, Rot);
+ if (ARM_AM::getSOImmVal(Rotated) == Op.getImm()) {
+ // #rot has the least possible value
+ O << "#" << markup("<imm:");
+ if (PrintUnsigned)
+ O << static_cast<uint32_t>(Rotated);
+ else
+ O << Rotated;
+ O << markup(">");
+ return;
+ }
+
+ // Explicit #bits, #rot implied
+ O << "#"
+ << markup("<imm:")
+ << Bits
+ << markup(">")
+ << ", #"
+ << markup("<imm:")
+ << Rot
+ << markup(">");
+}
+
void ARMInstPrinter::printFBits16(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << markup("<imm:")
diff --git a/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h
index f671fe4..f179e01 100644
--- a/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h
+++ b/contrib/llvm/lib/Target/ARM/InstPrinter/ARMInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMINSTPRINTER_H
-#define ARMINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_ARM_INSTPRINTER_ARMINSTPRINTER_H
+#define LLVM_LIB_TARGET_ARM_INSTPRINTER_ARMINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCSubtargetInfo.h"
@@ -51,7 +51,6 @@ public:
void printAddrMode3Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printAddrMode3OffsetOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O);
- void printAM3PostIndexOp(const MCInst *MI, unsigned Op, raw_ostream &O);
void printAM3PreOrOffsetIndexOp(const MCInst *MI, unsigned Op, raw_ostream &O,
bool AlwaysPrintImm0);
void printPostIdxImm8Operand(const MCInst *MI, unsigned OpNum,
@@ -117,6 +116,7 @@ public:
void printCPSIMod(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printCPSIFlag(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printMSRMaskOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printBankedRegOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printPredicateOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printMandatoryPredicateOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O);
@@ -131,6 +131,7 @@ public:
void printNEONModImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printImmPlusOneOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printRotImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printModImmOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printGPRPairOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
void printPCLabel(const MCInst *MI, unsigned OpNum, raw_ostream &O);
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
index b6c85c2..f0eed9b 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
-#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
@@ -575,6 +575,53 @@ namespace ARM_AM {
return Val;
}
+ // Generic validation for single-byte immediate (0X00, 00X0, etc).
+ static inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
+ assert(Size >= 1 && Size <= 4 && "Invalid size");
+ unsigned count = 0;
+ for (unsigned i = 0; i < Size; ++i) {
+ if (Value & 0xff) count++;
+ Value >>= 8;
+ }
+ return count == 1;
+ }
+
+ /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
+ static inline bool isNEONi16splat(unsigned Value) {
+ if (Value > 0xffff)
+ return false;
+ // i16 value with set bits only in one byte X0 or 0X.
+ return Value == 0 || isNEONBytesplat(Value, 2);
+ }
+
+ // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
+ static inline unsigned encodeNEONi16splat(unsigned Value) {
+ assert(isNEONi16splat(Value) && "Invalid NEON splat value");
+ if (Value >= 0x100)
+ Value = (Value >> 8) | 0xa00;
+ else
+ Value |= 0x800;
+ return Value;
+ }
+
+ /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
+ static inline bool isNEONi32splat(unsigned Value) {
+ // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
+ return Value == 0 || isNEONBytesplat(Value, 4);
+ }
+
+ /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
+ static inline unsigned encodeNEONi32splat(unsigned Value) {
+ assert(isNEONi32splat(Value) && "Invalid NEON splat value");
+ if (Value >= 0x100 && Value <= 0xff00)
+ Value = (Value >> 8) | 0x200;
+ else if (Value > 0xffff && Value <= 0xff0000)
+ Value = (Value >> 16) | 0x400;
+ else if (Value > 0xffffff)
+ Value = (Value >> 24) | 0x600;
+ return Value;
+ }
+
AMSubMode getLoadStoreMultipleSubMode(int Opcode);
//===--------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h
index 34b9fc1..bc05673 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMArchName.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMARCHNAME_H
-#define ARMARCHNAME_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMARCHNAME_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMARCHNAME_H
namespace llvm {
namespace ARM {
@@ -24,4 +24,4 @@ enum ArchKind {
} // namespace ARM
} // namespace llvm
-#endif // ARMARCHNAME_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
index 7acd9cc..0b2e3b0 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
@@ -9,6 +9,10 @@
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMAsmBackend.h"
+#include "MCTargetDesc/ARMAsmBackendDarwin.h"
+#include "MCTargetDesc/ARMAsmBackendELF.h"
+#include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMFixupKinds.h"
#include "llvm/ADT/StringSwitch.h"
@@ -35,164 +39,136 @@ namespace {
class ARMELFObjectWriter : public MCELFObjectTargetWriter {
public:
ARMELFObjectWriter(uint8_t OSABI)
- : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
- /*HasRelocationAddend*/ false) {}
+ : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
+ /*HasRelocationAddend*/ false) {}
};
-class ARMAsmBackend : public MCAsmBackend {
- const MCSubtargetInfo* STI;
- bool isThumbMode; // Currently emitting Thumb code.
- bool IsLittleEndian; // Big or little endian.
-public:
- ARMAsmBackend(const Target &T, const StringRef TT, bool IsLittle)
- : MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
- isThumbMode(TT.startswith("thumb")), IsLittleEndian(IsLittle) {}
-
- ~ARMAsmBackend() {
- delete STI;
- }
-
- unsigned getNumFixupKinds() const override {
- return ARM::NumTargetFixupKinds;
- }
-
- bool hasNOP() const {
- return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0;
- }
+const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
+ const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
+ // This table *must* be in the order that the fixup_* kinds are defined in
+ // ARMFixupKinds.h.
+ //
+ // Name Offset (bits) Size (bits) Flags
+ {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_ldst_pcrel_12", 0, 32,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_pcrel_10", 0, 32,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_thumb_adr_pcrel_10", 0, 8,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_adr_pcrel_12", 0, 32,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_cp", 0, 8,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
+ // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
+ // - 19.
+ {"fixup_arm_movt_hi16", 0, 20, 0},
+ {"fixup_arm_movw_lo16", 0, 20, 0},
+ {"fixup_t2_movt_hi16", 0, 20, 0},
+ {"fixup_t2_movw_lo16", 0, 20, 0},
+ };
+ const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
+ // This table *must* be in the order that the fixup_* kinds are defined in
+ // ARMFixupKinds.h.
+ //
+ // Name Offset (bits) Size (bits) Flags
+ {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_ldst_pcrel_12", 0, 32,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_pcrel_10", 0, 32,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_thumb_adr_pcrel_10", 8, 8,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_adr_pcrel_12", 0, 32,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
+ {"fixup_arm_thumb_cp", 8, 8,
+ MCFixupKindInfo::FKF_IsPCRel |
+ MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
+ {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
+ // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
+ // - 19.
+ {"fixup_arm_movt_hi16", 12, 20, 0},
+ {"fixup_arm_movw_lo16", 12, 20, 0},
+ {"fixup_t2_movt_hi16", 12, 20, 0},
+ {"fixup_t2_movw_lo16", 12, 20, 0},
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
+}
- const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
- const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
-// This table *must* be in the order that the fixup_* kinds are defined in
-// ARMFixupKinds.h.
-//
-// Name Offset (bits) Size (bits) Flags
-{ "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_thumb_adr_pcrel_10",0, 8, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_cp", 0, 8, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel },
-// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
-{ "fixup_arm_movt_hi16", 0, 20, 0 },
-{ "fixup_arm_movw_lo16", 0, 20, 0 },
-{ "fixup_t2_movt_hi16", 0, 20, 0 },
-{ "fixup_t2_movw_lo16", 0, 20, 0 },
- };
- const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
-// This table *must* be in the order that the fixup_* kinds are defined in
-// ARMFixupKinds.h.
-//
-// Name Offset (bits) Size (bits) Flags
-{ "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_thumb_adr_pcrel_10",8, 8, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
-{ "fixup_arm_thumb_cp", 8, 8, MCFixupKindInfo::FKF_IsPCRel |
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
-{ "fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel },
-// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
-{ "fixup_arm_movt_hi16", 12, 20, 0 },
-{ "fixup_arm_movw_lo16", 12, 20, 0 },
-{ "fixup_t2_movt_hi16", 12, 20, 0 },
-{ "fixup_t2_movw_lo16", 12, 20, 0 },
- };
-
- if (Kind < FirstTargetFixupKind)
- return MCAsmBackend::getFixupKindInfo(Kind);
-
- assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
- "Invalid kind!");
- return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
- }
-
- /// processFixupValue - Target hook to process the literal value of a fixup
- /// if necessary.
- void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
- const MCFixup &Fixup, const MCFragment *DF,
- const MCValue &Target, uint64_t &Value,
- bool &IsResolved) override;
-
-
- void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
- uint64_t Value, bool IsPCRel) const override;
-
- bool mayNeedRelaxation(const MCInst &Inst) const override;
-
- bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
- const MCRelaxableFragment *DF,
- const MCAsmLayout &Layout) const override;
-
- void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
-
- bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
-
- void handleAssemblerFlag(MCAssemblerFlag Flag) override {
- switch (Flag) {
- default: break;
- case MCAF_Code16:
- setIsThumb(true);
- break;
- case MCAF_Code32:
- setIsThumb(false);
- break;
- }
+void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
+ switch (Flag) {
+ default:
+ break;
+ case MCAF_Code16:
+ setIsThumb(true);
+ break;
+ case MCAF_Code32:
+ setIsThumb(false);
+ break;
}
-
- unsigned getPointerSize() const { return 4; }
- bool isThumb() const { return isThumbMode; }
- void setIsThumb(bool it) { isThumbMode = it; }
- bool isLittle() const { return IsLittleEndian; }
-};
+}
} // end anonymous namespace
static unsigned getRelaxedOpcode(unsigned Op) {
switch (Op) {
- default: return Op;
- case ARM::tBcc: return ARM::t2Bcc;
- case ARM::tLDRpci: return ARM::t2LDRpci;
- case ARM::tADR: return ARM::t2ADR;
- case ARM::tB: return ARM::t2B;
- case ARM::tCBZ: return ARM::tHINT;
- case ARM::tCBNZ: return ARM::tHINT;
+ default:
+ return Op;
+ case ARM::tBcc:
+ return ARM::t2Bcc;
+ case ARM::tLDRpci:
+ return ARM::t2LDRpci;
+ case ARM::tADR:
+ return ARM::t2ADR;
+ case ARM::tB:
+ return ARM::t2B;
+ case ARM::tCBZ:
+ return ARM::tHINT;
+ case ARM::tCBNZ:
+ return ARM::tHINT;
}
}
@@ -202,8 +178,7 @@ bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
return false;
}
-bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
- uint64_t Value,
+bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
switch ((unsigned)Fixup.getKind()) {
@@ -265,7 +240,7 @@ void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
Res.addOperand(MCOperand::CreateImm(14));
Res.addOperand(MCOperand::CreateReg(0));
return;
- }
+ }
// The rest of instructions we're relaxing have the same operands.
// We just need to update to the proper opcode.
@@ -276,11 +251,11 @@ void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
- const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
+ const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
if (isThumb()) {
- const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding
- : Thumb1_16bitNopEncoding;
+ const uint16_t nopEncoding =
+ hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
uint64_t NumNops = Count / 2;
for (uint64_t i = 0; i != NumNops; ++i)
OW->Write16(nopEncoding);
@@ -289,18 +264,26 @@ bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
return true;
}
// ARM mode
- const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding
- : ARMv4_NopEncoding;
+ const uint32_t nopEncoding =
+ hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
uint64_t NumNops = Count / 4;
for (uint64_t i = 0; i != NumNops; ++i)
OW->Write32(nopEncoding);
// FIXME: should this function return false when unable to write exactly
// 'Count' bytes with NOP encodings?
switch (Count % 4) {
- default: break; // No leftover bytes to write
- case 1: OW->Write8(0); break;
- case 2: OW->Write16(0); break;
- case 3: OW->Write16(0); OW->Write8(0xa0); break;
+ default:
+ break; // No leftover bytes to write
+ case 1:
+ OW->Write8(0);
+ break;
+ case 2:
+ OW->Write16(0);
+ break;
+ case 3:
+ OW->Write16(0);
+ OW->Write8(0xa0);
+ break;
}
return true;
@@ -313,8 +296,7 @@ static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
Swapped |= (Value & 0x0000FFFF) << 16;
return Swapped;
- }
- else
+ } else
return Value;
}
@@ -351,7 +333,7 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
case ARM::fixup_arm_movt_hi16:
if (!IsPCRel)
Value >>= 16;
- // Fallthrough
+ // Fallthrough
case ARM::fixup_arm_movw_lo16: {
unsigned Hi4 = (Value & 0xF000) >> 12;
unsigned Lo12 = Value & 0x0FFF;
@@ -363,7 +345,7 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
case ARM::fixup_t2_movt_hi16:
if (!IsPCRel)
Value >>= 16;
- // Fallthrough
+ // Fallthrough
case ARM::fixup_t2_movw_lo16: {
unsigned Hi4 = (Value & 0xF000) >> 12;
unsigned i = (Value & 0x800) >> 11;
@@ -379,7 +361,7 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
case ARM::fixup_arm_ldst_pcrel_12:
// ARM PC-relative values are offset by 8.
Value -= 4;
- // FALLTHROUGH
+ // FALLTHROUGH
case ARM::fixup_t2_ldst_pcrel_12: {
// Offset by 4, adjusted by two due to the half-word ordering of thumb.
Value -= 4;
@@ -438,7 +420,8 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
case ARM::fixup_arm_blx:
// These values don't encode the low two bits since they're always zero.
// Offset by 8 just as above.
- if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
+ if (const MCSymbolRefExpr *SRE =
+ dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
return 0;
return 0xffffff & ((Value - 8) >> 2);
@@ -447,17 +430,17 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
Value >>= 1; // Low bit is not encoded.
uint32_t out = 0;
- bool I = Value & 0x800000;
+ bool I = Value & 0x800000;
bool J1 = Value & 0x400000;
bool J2 = Value & 0x200000;
J1 ^= I;
J2 ^= I;
- out |= I << 26; // S bit
- out |= !J1 << 13; // J1 bit
- out |= !J2 << 11; // J2 bit
- out |= (Value & 0x1FF800) << 5; // imm6 field
- out |= (Value & 0x0007FF); // imm11 field
+ out |= I << 26; // S bit
+ out |= !J1 << 13; // J1 bit
+ out |= !J2 << 11; // J2 bit
+ out |= (Value & 0x1FF800) << 5; // imm6 field
+ out |= (Value & 0x0007FF); // imm11 field
return swapHalfWords(out, IsLittleEndian);
}
@@ -498,7 +481,7 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
- (uint16_t)imm11Bits);
+ (uint16_t)imm11Bits);
return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
}
case ARM::fixup_arm_thumb_blx: {
@@ -515,7 +498,8 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
// Note that the halfwords are stored high first, low second; so we need
// to transpose the fixup value here to map properly.
uint32_t offset = (Value - 2) >> 2;
- if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
+ if (const MCSymbolRefExpr *SRE =
+ dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
offset = 0;
uint32_t signBit = (offset & 0x400000) >> 22;
@@ -528,7 +512,7 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
- ((uint16_t)imm10LBits) << 1);
+ ((uint16_t)imm10LBits) << 1);
return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
}
case ARM::fixup_arm_thumb_cp:
@@ -564,7 +548,7 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
case ARM::fixup_arm_pcrel_10:
Value = Value - 4; // ARM fixups offset by an additional word and don't
// need to adjust for the half-word ordering.
- // Fall through.
+ // Fall through.
case ARM::fixup_t2_pcrel_10: {
// Offset by 4, adjusted by two due to the half-word ordering of thumb.
Value = Value - 4;
@@ -735,7 +719,8 @@ void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
bool IsPCRel) const {
unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
Value = adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian);
- if (!Value) return; // Doesn't change encoding.
+ if (!Value)
+ return; // Doesn't change encoding.
unsigned Offset = Fixup.getOffset();
assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
@@ -757,80 +742,36 @@ void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
}
}
-namespace {
-// FIXME: This should be in a separate file.
-class ARMWinCOFFAsmBackend : public ARMAsmBackend {
-public:
- ARMWinCOFFAsmBackend(const Target &T, const StringRef &Triple)
- : ARMAsmBackend(T, Triple, true) { }
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
- return createARMWinCOFFObjectWriter(OS, /*Is64Bit=*/false);
- }
-};
-
-// FIXME: This should be in a separate file.
-// ELF is an ELF of course...
-class ELFARMAsmBackend : public ARMAsmBackend {
-public:
- uint8_t OSABI;
- ELFARMAsmBackend(const Target &T, const StringRef TT,
- uint8_t OSABI, bool IsLittle)
- : ARMAsmBackend(T, TT, IsLittle), OSABI(OSABI) { }
-
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
- return createARMELFObjectWriter(OS, OSABI, isLittle());
- }
-};
-
-// FIXME: This should be in a separate file.
-class DarwinARMAsmBackend : public ARMAsmBackend {
-public:
- const MachO::CPUSubTypeARM Subtype;
- DarwinARMAsmBackend(const Target &T, const StringRef TT,
- MachO::CPUSubTypeARM st)
- : ARMAsmBackend(T, TT, /* IsLittleEndian */ true), Subtype(st) {
- HasDataInCodeSupport = true;
- }
-
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
- return createARMMachObjectWriter(OS, /*Is64Bit=*/false,
- MachO::CPU_TYPE_ARM,
- Subtype);
- }
-};
-
-} // end anonymous namespace
-
MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
- const MCRegisterInfo &MRI,
- StringRef TT, StringRef CPU,
- bool isLittle) {
+ const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU, bool isLittle) {
Triple TheTriple(TT);
switch (TheTriple.getObjectFormat()) {
- default: llvm_unreachable("unsupported object format");
+ default:
+ llvm_unreachable("unsupported object format");
case Triple::MachO: {
MachO::CPUSubTypeARM CS =
- StringSwitch<MachO::CPUSubTypeARM>(TheTriple.getArchName())
- .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
- .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
- .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
- .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
- .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
- .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
- .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
- .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
- .Default(MachO::CPU_SUBTYPE_ARM_V7);
-
- return new DarwinARMAsmBackend(T, TT, CS);
+ StringSwitch<MachO::CPUSubTypeARM>(TheTriple.getArchName())
+ .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
+ .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
+ .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
+ .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
+ .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
+ .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
+ .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
+ .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
+ .Default(MachO::CPU_SUBTYPE_ARM_V7);
+
+ return new ARMAsmBackendDarwin(T, TT, CS);
}
case Triple::COFF:
assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
- return new ARMWinCOFFAsmBackend(T, TT);
+ return new ARMAsmBackendWinCOFF(T, TT);
case Triple::ELF:
assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
- return new ELFARMAsmBackend(T, TT, OSABI, isLittle);
+ return new ARMAsmBackendELF(T, TT, OSABI, isLittle);
}
}
@@ -847,14 +788,13 @@ MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
}
MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
- const MCRegisterInfo &MRI,
- StringRef TT, StringRef CPU) {
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, true);
}
MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
- const MCRegisterInfo &MRI,
- StringRef TT, StringRef CPU) {
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, false);
}
-
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.h
new file mode 100644
index 0000000..f4f1082
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.h
@@ -0,0 +1,69 @@
+//===-- ARMAsmBackend.h - ARM Assembler Backend -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_ARM_ARMASMBACKEND_H
+#define LLVM_LIB_TARGET_ARM_ARMASMBACKEND_H
+
+#include "MCTargetDesc/ARMFixupKinds.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+
+using namespace llvm;
+
+namespace {
+
+class ARMAsmBackend : public MCAsmBackend {
+ const MCSubtargetInfo *STI;
+ bool isThumbMode; // Currently emitting Thumb code.
+ bool IsLittleEndian; // Big or little endian.
+public:
+ ARMAsmBackend(const Target &T, StringRef TT, bool IsLittle)
+ : MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
+ isThumbMode(TT.startswith("thumb")), IsLittleEndian(IsLittle) {}
+
+ ~ARMAsmBackend() override { delete STI; }
+
+ unsigned getNumFixupKinds() const override {
+ return ARM::NumTargetFixupKinds;
+ }
+
+ bool hasNOP() const { return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0; }
+
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
+
+ /// processFixupValue - Target hook to process the literal value of a fixup
+ /// if necessary.
+ void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
+ const MCFixup &Fixup, const MCFragment *DF,
+ const MCValue &Target, uint64_t &Value,
+ bool &IsResolved) override;
+
+ void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value, bool IsPCRel) const override;
+
+ bool mayNeedRelaxation(const MCInst &Inst) const override;
+
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override;
+
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
+
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
+
+ void handleAssemblerFlag(MCAssemblerFlag Flag) override;
+
+ unsigned getPointerSize() const { return 4; }
+ bool isThumb() const { return isThumbMode; }
+ void setIsThumb(bool it) { isThumbMode = it; }
+ bool isLittle() const { return IsLittleEndian; }
+};
+} // end anonymous namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendDarwin.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendDarwin.h
new file mode 100644
index 0000000..3bd7ab7
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendDarwin.h
@@ -0,0 +1,33 @@
+//===-- ARMAsmBackendDarwin.h ARM Asm Backend Darwin ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_ARM_ARMASMBACKENDDARWIN_H
+#define LLVM_LIB_TARGET_ARM_ARMASMBACKENDDARWIN_H
+
+#include "llvm/Support/MachO.h"
+
+using namespace llvm;
+
+namespace {
+class ARMAsmBackendDarwin : public ARMAsmBackend {
+public:
+ const MachO::CPUSubTypeARM Subtype;
+ ARMAsmBackendDarwin(const Target &T, StringRef TT, MachO::CPUSubTypeARM st)
+ : ARMAsmBackend(T, TT, /* IsLittleEndian */ true), Subtype(st) {
+ HasDataInCodeSupport = true;
+ }
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createARMMachObjectWriter(OS, /*Is64Bit=*/false, MachO::CPU_TYPE_ARM,
+ Subtype);
+ }
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendELF.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendELF.h
new file mode 100644
index 0000000..4efd325
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendELF.h
@@ -0,0 +1,27 @@
+//===-- ARMAsmBackendELF.h ARM Asm Backend ELF -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_ARM_ELFARMASMBACKEND_H
+#define LLVM_LIB_TARGET_ARM_ELFARMASMBACKEND_H
+
+using namespace llvm;
+namespace {
+class ARMAsmBackendELF : public ARMAsmBackend {
+public:
+ uint8_t OSABI;
+ ARMAsmBackendELF(const Target &T, StringRef TT, uint8_t OSABI, bool IsLittle)
+ : ARMAsmBackend(T, TT, IsLittle), OSABI(OSABI) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createARMELFObjectWriter(OS, OSABI, isLittle());
+ }
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendWinCOFF.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendWinCOFF.h
new file mode 100644
index 0000000..33be347
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackendWinCOFF.h
@@ -0,0 +1,26 @@
+//===-- ARMAsmBackendWinCOFF.h - ARM Asm Backend WinCOFF --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_ARM_ARMASMBACKENDWINCOFF_H
+#define LLVM_LIB_TARGET_ARM_ARMASMBACKENDWINCOFF_H
+
+using namespace llvm;
+
+namespace {
+class ARMAsmBackendWinCOFF : public ARMAsmBackend {
+public:
+ ARMAsmBackendWinCOFF(const Target &T, StringRef Triple)
+ : ARMAsmBackend(T, Triple, true) {}
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ return createARMWinCOFFObjectWriter(OS, /*Is64Bit=*/false);
+ }
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h
index 1686d76..4289a73 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMBaseInfo.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMBASEINFO_H
-#define ARMBASEINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMBASEINFO_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMBASEINFO_H
#include "ARMMCTargetDesc.h"
#include "llvm/Support/ErrorHandling.h"
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp
index a86601b..a821a6b 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFObjectWriter.cpp
@@ -51,7 +51,7 @@ ARMELFObjectWriter::~ARMELFObjectWriter() {}
bool ARMELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
unsigned Type) const {
- // FIXME: This is extremelly conservative. This really needs to use a
+ // FIXME: This is extremely conservative. This really needs to use a
// whitelist with a clear explanation for why each realocation needs to
// point to the symbol, not to the section.
switch (Type) {
@@ -102,7 +102,7 @@ unsigned ARMELFObjectWriter::GetRelocTypeInner(const MCValue &Target,
case ARM::fixup_arm_uncondbl:
switch (Modifier) {
case MCSymbolRefExpr::VK_PLT:
- Type = ELF::R_ARM_PLT32;
+ Type = ELF::R_ARM_CALL;
break;
case MCSymbolRefExpr::VK_ARM_TLSCALL:
Type = ELF::R_ARM_TLS_CALL;
@@ -148,6 +148,22 @@ unsigned ARMELFObjectWriter::GetRelocTypeInner(const MCValue &Target,
} else {
switch ((unsigned)Fixup.getKind()) {
default: llvm_unreachable("invalid fixup kind!");
+ case FK_Data_1:
+ switch (Modifier) {
+ default: llvm_unreachable("unsupported Modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_ARM_ABS8;
+ break;
+ }
+ break;
+ case FK_Data_2:
+ switch (Modifier) {
+ default: llvm_unreachable("unsupported modifier");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_ARM_ABS16;
+ break;
+ }
+ break;
case FK_Data_4:
switch (Modifier) {
default: llvm_unreachable("Unsupported Modifier");
@@ -184,6 +200,9 @@ unsigned ARMELFObjectWriter::GetRelocTypeInner(const MCValue &Target,
case MCSymbolRefExpr::VK_ARM_PREL31:
Type = ELF::R_ARM_PREL31;
break;
+ case MCSymbolRefExpr::VK_ARM_SBREL:
+ Type = ELF::R_ARM_SBREL32;
+ break;
case MCSymbolRefExpr::VK_ARM_TLSLDO:
Type = ELF::R_ARM_TLS_LDO32;
break;
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
index 7b5d8b0..99b5c62 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
@@ -300,7 +300,19 @@ private:
StringRef StringValue;
static bool LessTag(const AttributeItem &LHS, const AttributeItem &RHS) {
- return (LHS.Tag < RHS.Tag);
+ // The conformance tag must be emitted first when serialised
+ // into an object file. Specifically, the addenda to the ARM ABI
+ // states that (2.3.7.4):
+ //
+ // "To simplify recognition by consumers in the common case of
+ // claiming conformity for the whole file, this tag should be
+ // emitted first in a file-scope sub-subsection of the first
+ // public subsection of the attributes section."
+ //
+ // So it is special-cased in this comparison predicate when the
+ // attributes are sorted in finishAttributeSection().
+ return (RHS.Tag != ARMBuildAttrs::conformance) &&
+ ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag));
}
};
@@ -541,6 +553,10 @@ public:
/// necessary.
void EmitValueImpl(const MCExpr *Value, unsigned Size,
const SMLoc &Loc) override {
+ if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value))
+ if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4))
+ getContext().FatalError(Loc, "relocated expression must be 32-bit");
+
EmitDataMappingSymbol();
MCELFStreamer::EmitValueImpl(Value, Size);
}
@@ -848,6 +864,14 @@ void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
/* OverwriteExisting= */ false);
break;
+ // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so
+ // uses the FP_ARMV8_D16 build attribute.
+ case ARM::FPV5_D16:
+ setAttributeItem(ARMBuildAttrs::FP_arch,
+ ARMBuildAttrs::AllowFPARMv8B,
+ /* OverwriteExisting= */ false);
+ break;
+
case ARM::NEON:
setAttributeItem(ARMBuildAttrs::FP_arch,
ARMBuildAttrs::AllowFPv3A,
@@ -971,12 +995,12 @@ void ARMTargetELFStreamer::finishAttributeSection() {
Streamer.EmitULEB128IntValue(item.IntValue);
break;
case AttributeItem::TextAttribute:
- Streamer.EmitBytes(item.StringValue.upper());
+ Streamer.EmitBytes(item.StringValue);
Streamer.EmitIntValue(0, 1); // '\0'
break;
case AttributeItem::NumericAndTextAttributes:
Streamer.EmitULEB128IntValue(item.IntValue);
- Streamer.EmitBytes(item.StringValue.upper());
+ Streamer.EmitBytes(item.StringValue);
Streamer.EmitIntValue(0, 1); // '\0'
break;
}
@@ -1339,10 +1363,9 @@ MCStreamer *createARMNullStreamer(MCContext &Ctx) {
return S;
}
- MCELFStreamer* createARMELFStreamer(MCContext &Context, MCAsmBackend &TAB,
- raw_ostream &OS, MCCodeEmitter *Emitter,
- bool RelaxAll, bool NoExecStack,
- bool IsThumb) {
+MCELFStreamer *createARMELFStreamer(MCContext &Context, MCAsmBackend &TAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ bool RelaxAll, bool IsThumb) {
ARMELFStreamer *S = new ARMELFStreamer(Context, TAB, OS, Emitter, IsThumb);
new ARMTargetELFStreamer(*S);
// FIXME: This should eventually end up somewhere else where more
@@ -1352,8 +1375,6 @@ MCStreamer *createARMNullStreamer(MCContext &Ctx) {
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
- if (NoExecStack)
- S->getAssembler().setNoExecStack(true);
return S;
}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h
index bfd9e33..46ba571 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMFixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_ARM_ARMFIXUPKINDS_H
-#define LLVM_ARM_ARMFIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMFIXUPKINDS_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMFIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp
index 7a19208..66a1618 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.cpp
@@ -12,8 +12,8 @@
//===----------------------------------------------------------------------===//
#include "ARMMCAsmInfo.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/Support/CommandLine.h"
using namespace llvm;
@@ -55,7 +55,6 @@ ARMELFMCAsmInfo::ARMELFMCAsmInfo(StringRef TT) {
Code16Directive = ".code\t16";
Code32Directive = ".code\t32";
- HasLEB128 = true;
SupportsDebugInformation = true;
// Exceptions handling
@@ -90,6 +89,7 @@ ARMCOFFMCAsmInfoMicrosoft::ARMCOFFMCAsmInfoMicrosoft() {
AlignmentIsInBytes = false;
PrivateGlobalPrefix = "$M";
+ PrivateLabelPrefix = "$M";
}
void ARMCOFFMCAsmInfoGNU::anchor() { }
@@ -102,8 +102,8 @@ ARMCOFFMCAsmInfoGNU::ARMCOFFMCAsmInfoGNU() {
Code16Directive = ".code\t16";
Code32Directive = ".code\t32";
PrivateGlobalPrefix = ".L";
+ PrivateLabelPrefix = ".L";
- HasLEB128 = true;
SupportsDebugInformation = true;
ExceptionsType = ExceptionHandling::None;
UseParensForSymbolVariant = true;
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h
index 51cfa0ad..6cb4715 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_ARMTARGETASMINFO_H
-#define LLVM_ARMTARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMMCASMINFO_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMMCASMINFO_H
#include "llvm/MC/MCAsmInfoCOFF.h"
#include "llvm/MC/MCAsmInfoDarwin.h"
@@ -21,7 +21,8 @@
namespace llvm {
class ARMMCAsmInfoDarwin : public MCAsmInfoDarwin {
- void anchor() override;
+ virtual void anchor();
+
public:
explicit ARMMCAsmInfoDarwin(StringRef TT);
};
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp
index b8ee555..7320f40 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCCodeEmitter.cpp
@@ -304,6 +304,28 @@ public:
return Binary;
}
+ unsigned getModImmOpValue(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &ST) const {
+ const MCOperand &MO = MI.getOperand(Op);
+
+ // Support for fixups (MCFixup)
+ if (MO.isExpr()) {
+ const MCExpr *Expr = MO.getExpr();
+ // In instruction code this value always encoded as lowest 12 bits,
+ // so we don't have to perform any specific adjustments.
+ // Due to requirements of relocatable records we have to use FK_Data_4.
+ // See ARMELFObjectWriter::ExplicitRelSym and
+ // ARMELFObjectWriter::GetRelocTypeInner for more details.
+ MCFixupKind Kind = MCFixupKind(FK_Data_4);
+ Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc()));
+ return 0;
+ }
+
+ // Immediate is already in its encoded format
+ return MO.getImm();
+ }
+
/// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value.
unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op,
SmallVectorImpl<MCFixup> &Fixups,
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp
index e545e3c..68d32b2 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.cpp
@@ -35,12 +35,6 @@ void ARMMCExpr::PrintImpl(raw_ostream &OS) const {
OS << ')';
}
-bool
-ARMMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const {
- return false;
-}
-
void ARMMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
Streamer.visitUsedExpr(*getSubExpr());
}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h
index c5c0b10..06bf6c9 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCExpr.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMMCEXPR_H
-#define ARMMCEXPR_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMMCEXPR_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMMCEXPR_H
#include "llvm/MC/MCExpr.h"
@@ -58,8 +58,11 @@ public:
void PrintImpl(raw_ostream &OS) const override;
bool EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const override;
- void visitUsedExpr(MCStreamer &Streamer) const override;
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const override {
+ return false;
+ }
+ void visitUsedExpr(MCStreamer &Streamer) const override;
const MCSection *FindAssociatedSection() const override {
return getSubExpr()->FindAssociatedSection();
}
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp
index 6a3ec8f..a6310e5 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp
@@ -64,10 +64,60 @@ static bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
}
static bool getITDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
- std::string &Info) {
- if (STI.getFeatureBits() & llvm::ARM::HasV8Ops &&
- MI.getOperand(1).isImm() && MI.getOperand(1).getImm() != 8) {
- Info = "applying IT instruction to more than one subsequent instruction is deprecated";
+ std::string &Info) {
+ if (STI.getFeatureBits() & llvm::ARM::HasV8Ops && MI.getOperand(1).isImm() &&
+ MI.getOperand(1).getImm() != 8) {
+ Info = "applying IT instruction to more than one subsequent instruction is "
+ "deprecated";
+ return true;
+ }
+
+ return false;
+}
+
+static bool getARMStoreDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
+ std::string &Info) {
+ assert((~STI.getFeatureBits() & llvm::ARM::ModeThumb) &&
+ "cannot predicate thumb instructions");
+
+ assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
+ for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
+ assert(MI.getOperand(OI).isReg() && "expected register");
+ if (MI.getOperand(OI).getReg() == ARM::SP ||
+ MI.getOperand(OI).getReg() == ARM::PC) {
+ Info = "use of SP or PC in the list is deprecated";
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool getARMLoadDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
+ std::string &Info) {
+ assert((~STI.getFeatureBits() & llvm::ARM::ModeThumb) &&
+ "cannot predicate thumb instructions");
+
+ assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
+ bool ListContainsPC = false, ListContainsLR = false;
+ for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
+ assert(MI.getOperand(OI).isReg() && "expected register");
+ switch (MI.getOperand(OI).getReg()) {
+ default:
+ break;
+ case ARM::LR:
+ ListContainsLR = true;
+ break;
+ case ARM::PC:
+ ListContainsPC = true;
+ break;
+ case ARM::SP:
+ Info = "use of SP in the list is deprecated";
+ return true;
+ }
+ }
+
+ if (ListContainsPC && ListContainsLR) {
+ Info = "use of LR and PC simultaneously in the list is deprecated";
return true;
}
@@ -90,6 +140,8 @@ std::string ARM_MC::ParseARMTriple(StringRef TT, StringRef CPU) {
bool NoCPU = CPU == "generic" || CPU.empty();
std::string ARMArchFeature;
switch (triple.getSubArch()) {
+ default:
+ llvm_unreachable("invalid sub-architecture for ARM");
case Triple::ARMSubArch_v8:
if (NoCPU)
// v8a: FeatureDB, FeatureFPARMv8, FeatureNEON, FeatureDSPThumb2,
@@ -215,31 +267,14 @@ static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
Triple TheTriple(TT);
MCAsmInfo *MAI;
- switch (TheTriple.getOS()) {
- case llvm::Triple::Darwin:
- case llvm::Triple::IOS:
- case llvm::Triple::MacOSX:
+ if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
MAI = new ARMMCAsmInfoDarwin(TT);
- break;
- case llvm::Triple::Win32:
- switch (TheTriple.getEnvironment()) {
- case llvm::Triple::Itanium:
- MAI = new ARMCOFFMCAsmInfoGNU();
- break;
- case llvm::Triple::MSVC:
- MAI = new ARMCOFFMCAsmInfoMicrosoft();
- break;
- default:
- llvm_unreachable("invalid environment");
- }
- break;
- default:
- if (TheTriple.isOSBinFormatMachO())
- MAI = new ARMMCAsmInfoDarwin(TT);
- else
- MAI = new ARMELFMCAsmInfo(TT);
- break;
- }
+ else if (TheTriple.isWindowsItaniumEnvironment())
+ MAI = new ARMCOFFMCAsmInfoGNU();
+ else if (TheTriple.isWindowsMSVCEnvironment())
+ MAI = new ARMCOFFMCAsmInfoMicrosoft();
+ else
+ MAI = new ARMELFMCAsmInfo(TT);
unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
MAI->addInitialFrameState(MCCFIInstruction::createDefCfa(nullptr, Reg, 0));
@@ -263,11 +298,8 @@ static MCCodeGenInfo *createARMMCCodeGenInfo(StringRef TT, Reloc::Model RM,
// This is duplicated code. Refactor this.
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
- raw_ostream &OS,
- MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI,
- bool RelaxAll,
- bool NoExecStack) {
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll) {
Triple TheTriple(TT);
switch (TheTriple.getObjectFormat()) {
@@ -281,7 +313,7 @@ static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
return createARMWinCOFFStreamer(Ctx, MAB, *Emitter, OS);
case Triple::ELF:
- return createARMELFStreamer(Ctx, MAB, OS, Emitter, false, NoExecStack,
+ return createARMELFStreamer(Ctx, MAB, OS, Emitter, false,
TheTriple.getArch() == Triple::thumb);
}
}
@@ -356,8 +388,10 @@ extern "C" void LLVMInitializeARMTargetMC() {
// Register the MC codegen info.
TargetRegistry::RegisterMCCodeGenInfo(TheARMLETarget, createARMMCCodeGenInfo);
TargetRegistry::RegisterMCCodeGenInfo(TheARMBETarget, createARMMCCodeGenInfo);
- TargetRegistry::RegisterMCCodeGenInfo(TheThumbLETarget, createARMMCCodeGenInfo);
- TargetRegistry::RegisterMCCodeGenInfo(TheThumbBETarget, createARMMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheThumbLETarget,
+ createARMMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheThumbBETarget,
+ createARMMCCodeGenInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(TheARMLETarget, createARMMCInstrInfo);
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h
index 5326e56..a6c20d5 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARMMCTARGETDESC_H
-#define ARMMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMMCTARGETDESC_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMMCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
#include <string>
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp
index 186776a..7da5003 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMMachObjectWriter.cpp
@@ -428,7 +428,7 @@ void ARMMachObjectWriter::RecordRelocation(MachObjectWriter *Writer,
// For external relocations, make sure to offset the fixup value to
// compensate for the addend of the symbol address, if it was
// undefined. This occurs with weak definitions, for example.
- if (!SD->Symbol->isUndefined())
+ if (!SD->getSymbol().isUndefined())
FixedValue -= Layout.getSymbolOffset(SD);
} else {
// The index is the section ordinal (1-based).
diff --git a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h
index cd58759..e0c113e 100644
--- a/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h
+++ b/contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef ARM_UNWIND_OP_ASM_H
-#define ARM_UNWIND_OP_ASM_H
+#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMUNWINDOPASM_H
+#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMUNWINDOPASM_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/ARMEHABI.h"
@@ -90,4 +90,4 @@ private:
} // namespace llvm
-#endif // ARM_UNWIND_OP_ASM_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp b/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp
index f6d24e9e..35fe9b3 100644
--- a/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp
+++ b/contrib/llvm/lib/Target/ARM/MLxExpansionPass.cpp
@@ -378,8 +378,8 @@ bool MLxExpansion::ExpandFPMLxInstructions(MachineBasicBlock &MBB) {
}
bool MLxExpansion::runOnMachineFunction(MachineFunction &Fn) {
- TII = static_cast<const ARMBaseInstrInfo*>(Fn.getTarget().getInstrInfo());
- TRI = Fn.getTarget().getRegisterInfo();
+ TII = static_cast<const ARMBaseInstrInfo *>(Fn.getSubtarget().getInstrInfo());
+ TRI = Fn.getSubtarget().getRegisterInfo();
MRI = &Fn.getRegInfo();
const ARMSubtarget *STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
isLikeA9 = STI->isLikeA9() || STI->isSwift();
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp
index baa97a7..13f9358 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.cpp
@@ -52,9 +52,9 @@ void Thumb1FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const Thumb1InstrInfo &TII =
- *static_cast<const Thumb1InstrInfo*>(MF.getTarget().getInstrInfo());
- const Thumb1RegisterInfo *RegInfo =
- static_cast<const Thumb1RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const Thumb1InstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const Thumb1RegisterInfo *RegInfo = static_cast<const Thumb1RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
if (!hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
@@ -89,12 +89,15 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
- const Thumb1RegisterInfo *RegInfo =
- static_cast<const Thumb1RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const Thumb1RegisterInfo *RegInfo = static_cast<const Thumb1RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const Thumb1InstrInfo &TII =
- *static_cast<const Thumb1InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const Thumb1InstrInfo *>(MF.getSubtarget().getInstrInfo());
- unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned Align = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
unsigned NumBytes = MFI->getStackSize();
assert(NumBytes >= ArgRegsSaveSize &&
@@ -121,7 +124,8 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
if (!AFI->hasStackFrame()) {
@@ -132,7 +136,8 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
return;
}
@@ -196,7 +201,8 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
E = CSI.end(); I != E; ++I) {
@@ -223,7 +229,8 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(Reg, true), MFI->getObjectOffset(FI)));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
break;
}
}
@@ -241,13 +248,15 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(
nullptr, MRI->getDwarfRegNum(FramePtr, true), CFAOffset));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
} else {
unsigned CFIIndex =
MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(
nullptr, MRI->getDwarfRegNum(FramePtr, true)));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
if (NumBytes > 508)
// If offset is > 508 then sp cannot be adjusted in a single instruction,
@@ -264,7 +273,8 @@ void Thumb1FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
- .addCFIIndex(CFIIndex);
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
}
}
@@ -321,12 +331,15 @@ void Thumb1FrameLowering::emitEpilogue(MachineFunction &MF,
DebugLoc dl = MBBI->getDebugLoc();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- const Thumb1RegisterInfo *RegInfo =
- static_cast<const Thumb1RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const Thumb1RegisterInfo *RegInfo = static_cast<const Thumb1RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const Thumb1InstrInfo &TII =
- *static_cast<const Thumb1InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const Thumb1InstrInfo *>(MF.getSubtarget().getInstrInfo());
- unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned Align = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align);
int NumBytes = (int)MFI->getStackSize();
assert((unsigned)NumBytes >= ArgRegsSaveSize &&
@@ -382,28 +395,65 @@ void Thumb1FrameLowering::emitEpilogue(MachineFunction &MF,
}
}
- if (ArgRegsSaveSize) {
- // Unlike T2 and ARM mode, the T1 pop instruction cannot restore
- // to LR, and we can't pop the value directly to the PC since
- // we need to update the SP after popping the value. Therefore, we
- // pop the old LR into R3 as a temporary.
-
+ bool IsV4PopReturn = false;
+ for (const CalleeSavedInfo &CSI : MFI->getCalleeSavedInfo())
+ if (CSI.getReg() == ARM::LR)
+ IsV4PopReturn = true;
+ IsV4PopReturn &= STI.hasV4TOps() && !STI.hasV5TOps();
+
+ // Unlike T2 and ARM mode, the T1 pop instruction cannot restore
+ // to LR, and we can't pop the value directly to the PC since
+ // we need to update the SP after popping the value. So instead
+ // we have to emit:
+ // POP {r3}
+ // ADD sp, #offset
+ // BX r3
+ // If this would clobber a return value, then generate this sequence instead:
+ // MOV ip, r3
+ // POP {r3}
+ // ADD sp, #offset
+ // MOV lr, r3
+ // MOV r3, ip
+ // BX lr
+ if (ArgRegsSaveSize || IsV4PopReturn) {
// Get the last instruction, tBX_RET
MBBI = MBB.getLastNonDebugInstr();
assert (MBBI->getOpcode() == ARM::tBX_RET);
- // Epilogue for vararg functions: pop LR to R3 and branch off it.
- AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)))
- .addReg(ARM::R3, RegState::Define);
-
- emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, ArgRegsSaveSize);
-
- MachineInstrBuilder MIB =
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX_RET_vararg))
- .addReg(ARM::R3, RegState::Kill);
- AddDefaultPred(MIB);
- MIB.copyImplicitOps(&*MBBI);
- // erase the old tBX_RET instruction
- MBB.erase(MBBI);
+ DebugLoc dl = MBBI->getDebugLoc();
+
+ if (AFI->getReturnRegsCount() <= 3) {
+ // Epilogue: pop saved LR to R3 and branch off it.
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)))
+ .addReg(ARM::R3, RegState::Define);
+
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, ArgRegsSaveSize);
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX))
+ .addReg(ARM::R3, RegState::Kill);
+ AddDefaultPred(MIB);
+ MIB.copyImplicitOps(&*MBBI);
+ // erase the old tBX_RET instruction
+ MBB.erase(MBBI);
+ } else {
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr))
+ .addReg(ARM::R12, RegState::Define)
+ .addReg(ARM::R3, RegState::Kill));
+
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)))
+ .addReg(ARM::R3, RegState::Define);
+
+ emitSPUpdate(MBB, MBBI, TII, dl, *RegInfo, ArgRegsSaveSize);
+
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr))
+ .addReg(ARM::LR, RegState::Define)
+ .addReg(ARM::R3, RegState::Kill));
+
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr))
+ .addReg(ARM::R3, RegState::Define)
+ .addReg(ARM::R12, RegState::Kill));
+ // Keep the tBX_RET instruction
+ }
}
}
@@ -417,7 +467,7 @@ spillCalleeSavedRegisters(MachineBasicBlock &MBB,
DebugLoc DL;
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
if (MI != MBB.end()) DL = MI->getDebugLoc();
@@ -456,7 +506,7 @@ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
bool isVarArg = AFI->getArgRegsSaveSize() > 0;
DebugLoc DL = MI->getDebugLoc();
@@ -470,6 +520,9 @@ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
// Special epilogue for vararg functions. See emitEpilogue
if (isVarArg)
continue;
+ // ARMv4T requires BX, see emitEpilogue
+ if (STI.hasV4TOps() && !STI.hasV5TOps())
+ continue;
Reg = ARM::PC;
(*MIB).setDesc(TII.get(ARM::tPOP_RET));
MIB.copyImplicitOps(&*MI);
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h
index a227f8e..b785b28 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h
+++ b/contrib/llvm/lib/Target/ARM/Thumb1FrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_ARM_THUMB1FRAMELOWERING_H
-#define LLVM_ARM_THUMB1FRAMELOWERING_H
+#ifndef LLVM_LIB_TARGET_ARM_THUMB1FRAMELOWERING_H
+#define LLVM_LIB_TARGET_ARM_THUMB1FRAMELOWERING_H
#include "ARMFrameLowering.h"
#include "Thumb1InstrInfo.h"
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp
index 68cbb5c..8ea912e 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#include "ARMSubtarget.h"
#include "Thumb1InstrInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -41,10 +42,30 @@ void Thumb1InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg)
- .addReg(SrcReg, getKillRegState(KillSrc)));
+ // Need to check the arch.
+ MachineFunction &MF = *MBB.getParent();
+ const ARMSubtarget &st = MF.getTarget().getSubtarget<ARMSubtarget>();
+
assert(ARM::GPRRegClass.contains(DestReg, SrcReg) &&
"Thumb1 can only copy GPR registers");
+
+ if (st.hasV6Ops() || ARM::hGPRRegClass.contains(SrcReg)
+ || !ARM::tGPRRegClass.contains(DestReg))
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc)));
+ else {
+ // FIXME: The performance consequences of this are going to be atrocious.
+ // Some things to try that should be better:
+ // * 'mov hi, $src; mov $dst, hi', with hi as either r10 or r11
+ // * 'movs $dst, $src' if cpsr isn't live
+ // See: http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075998.html
+
+ // 'MOV lo, lo' is unpredictable on < v6, so use the stack to do it
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tPUSH)))
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tPOP)))
+ .addReg(DestReg, getDefRegState(true));
+ }
}
void Thumb1InstrInfo::
@@ -101,3 +122,12 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
}
}
+
+void
+Thumb1InstrInfo::expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const {
+ if (RM == Reloc::PIC_)
+ expandLoadStackGuardBase(MI, ARM::tLDRLIT_ga_pcrel, ARM::tLDRi, RM);
+ else
+ expandLoadStackGuardBase(MI, ARM::tLDRLIT_ga_abs, ARM::tLDRi, RM);
+}
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h
index c5845b7..9fba760 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h
+++ b/contrib/llvm/lib/Target/ARM/Thumb1InstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef THUMB1INSTRUCTIONINFO_H
-#define THUMB1INSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_THUMB1INSTRINFO_H
+#define LLVM_LIB_TARGET_ARM_THUMB1INSTRINFO_H
#include "ARMBaseInstrInfo.h"
#include "Thumb1RegisterInfo.h"
@@ -54,7 +54,10 @@ public:
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
+private:
+ void expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const override;
};
}
-#endif // THUMB1INSTRUCTIONINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp
index f907b14..928c8e3 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.cpp
@@ -66,8 +66,12 @@ Thumb1RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
int Val,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned MIFlags) const {
+ assert((isARMLowRegister(DestReg) ||
+ isVirtualRegister(DestReg)) &&
+ "Thumb1 does not have ldr to high register");
+
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineConstantPool *ConstantPool = MF.getConstantPool();
const Constant *C = ConstantInt::get(
Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Val);
@@ -106,15 +110,15 @@ void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
NumBytes = -NumBytes;
}
unsigned LdReg = DestReg;
- if (DestReg == ARM::SP) {
+ if (DestReg == ARM::SP)
assert(BaseReg == ARM::SP && "Unexpected!");
+ if (!isARMLowRegister(DestReg) && !MRI.isVirtualRegister(DestReg))
LdReg = MF.getRegInfo().createVirtualRegister(&ARM::tGPRRegClass);
- }
- if (NumBytes <= 255 && NumBytes >= 0)
+ if (NumBytes <= 255 && NumBytes >= 0 && CanChangeCC) {
AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg))
.addImm(NumBytes).setMIFlags(MIFlags);
- else if (NumBytes < 0 && NumBytes >= -255) {
+ } else if (NumBytes < 0 && NumBytes >= -255 && CanChangeCC) {
AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg))
.addImm(NumBytes).setMIFlags(MIFlags);
AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tRSB), LdReg))
@@ -124,7 +128,8 @@ void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
ARMCC::AL, 0, MIFlags);
// Emit add / sub.
- int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
+ int Opc = (isSub) ? ARM::tSUBrr : ((isHigh || !CanChangeCC) ? ARM::tADDhirr
+ : ARM::tADDrr);
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
if (Opc != ARM::tADDhirr)
@@ -136,32 +141,10 @@ void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
AddDefaultPred(MIB);
}
-/// calcNumMI - Returns the number of instructions required to materialize
-/// the specific add / sub r, c instruction.
-static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes,
- unsigned NumBits, unsigned Scale) {
- unsigned NumMIs = 0;
- unsigned Chunk = ((1 << NumBits) - 1) * Scale;
-
- if (Opc == ARM::tADDrSPi) {
- unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
- Bytes -= ThisVal;
- NumMIs++;
- NumBits = 8;
- Scale = 1; // Followed by a number of tADDi8.
- Chunk = ((1 << NumBits) - 1) * Scale;
- }
-
- NumMIs += Bytes / Chunk;
- if ((Bytes % Chunk) != 0)
- NumMIs++;
- if (ExtraOpc)
- NumMIs++;
- return NumMIs;
-}
-
/// emitThumbRegPlusImmediate - Emits a series of instructions to materialize
-/// a destreg = basereg + immediate in Thumb code.
+/// a destreg = basereg + immediate in Thumb code. Tries a series of ADDs or
+/// SUBs first, and uses a constant pool value if the instruction sequence would
+/// be too long. This is allowed to modify the condition flags.
void llvm::emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
DebugLoc dl,
@@ -172,151 +155,145 @@ void llvm::emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
bool isSub = NumBytes < 0;
unsigned Bytes = (unsigned)NumBytes;
if (isSub) Bytes = -NumBytes;
- bool isMul4 = (Bytes & 3) == 0;
- bool isTwoAddr = false;
- bool DstNotEqBase = false;
- unsigned NumBits = 1;
- unsigned Scale = 1;
- int Opc = 0;
+
+ int CopyOpc = 0;
+ unsigned CopyBits = 0;
+ unsigned CopyScale = 1;
+ bool CopyNeedsCC = false;
int ExtraOpc = 0;
- bool NeedCC = false;
-
- if (DestReg == BaseReg && BaseReg == ARM::SP) {
- assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
- NumBits = 7;
- Scale = 4;
- Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
- isTwoAddr = true;
- } else if (!isSub && BaseReg == ARM::SP) {
- // r1 = add sp, 403
- // =>
- // r1 = add sp, 100 * 4
- // r1 = add r1, 3
- if (!isMul4) {
- Bytes &= ~3;
- ExtraOpc = ARM::tADDi3;
+ unsigned ExtraBits = 0;
+ unsigned ExtraScale = 1;
+ bool ExtraNeedsCC = false;
+
+ // Strategy:
+ // We need to select two types of instruction, maximizing the available
+ // immediate range of each. The instructions we use will depend on whether
+ // DestReg and BaseReg are low, high or the stack pointer.
+ // * CopyOpc - DestReg = BaseReg + imm
+ // This will be emitted once if DestReg != BaseReg, and never if
+ // DestReg == BaseReg.
+ // * ExtraOpc - DestReg = DestReg + imm
+ // This will be emitted as many times as necessary to add the
+ // full immediate.
+ // If the immediate ranges of these instructions are not large enough to cover
+ // NumBytes with a reasonable number of instructions, we fall back to using a
+ // value loaded from a constant pool.
+ if (DestReg == ARM::SP) {
+ if (BaseReg == ARM::SP) {
+ // sp -> sp
+ // Already in right reg, no copy needed
+ } else {
+ // low -> sp or high -> sp
+ CopyOpc = ARM::tMOVr;
+ CopyBits = 0;
}
- NumBits = 8;
- Scale = 4;
- Opc = ARM::tADDrSPi;
- } else {
- // sp = sub sp, c
- // r1 = sub sp, c
- // r8 = sub sp, c
- if (DestReg != BaseReg)
- DstNotEqBase = true;
- NumBits = 8;
- if (DestReg == ARM::SP) {
- Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
- assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
- NumBits = 7;
- Scale = 4;
+ ExtraOpc = isSub ? ARM::tSUBspi : ARM::tADDspi;
+ ExtraBits = 7;
+ ExtraScale = 4;
+ } else if (isARMLowRegister(DestReg)) {
+ if (BaseReg == ARM::SP) {
+ // sp -> low
+ assert(!isSub && "Thumb1 does not have tSUBrSPi");
+ CopyOpc = ARM::tADDrSPi;
+ CopyBits = 8;
+ CopyScale = 4;
+ } else if (DestReg == BaseReg) {
+ // low -> same low
+ // Already in right reg, no copy needed
+ } else if (isARMLowRegister(BaseReg)) {
+ // low -> different low
+ CopyOpc = isSub ? ARM::tSUBi3 : ARM::tADDi3;
+ CopyBits = 3;
+ CopyNeedsCC = true;
} else {
- Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
- NumBits = 8;
- NeedCC = true;
+ // high -> low
+ CopyOpc = ARM::tMOVr;
+ CopyBits = 0;
}
- isTwoAddr = true;
+ ExtraOpc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
+ ExtraBits = 8;
+ ExtraNeedsCC = true;
+ } else /* DestReg is high */ {
+ if (DestReg == BaseReg) {
+ // high -> same high
+ // Already in right reg, no copy needed
+ } else {
+ // {low,high,sp} -> high
+ CopyOpc = ARM::tMOVr;
+ CopyBits = 0;
+ }
+ ExtraOpc = 0;
}
- unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale);
+ // We could handle an unaligned immediate with an unaligned copy instruction
+ // and an aligned extra instruction, but this case is not currently needed.
+ assert(((Bytes & 3) == 0 || ExtraScale == 1) &&
+ "Unaligned offset, but all instructions require alignment");
+
+ unsigned CopyRange = ((1 << CopyBits) - 1) * CopyScale;
+ // If we would emit the copy with an immediate of 0, just use tMOVr.
+ if (CopyOpc && Bytes < CopyScale) {
+ CopyOpc = ARM::tMOVr;
+ CopyScale = 1;
+ CopyNeedsCC = false;
+ CopyRange = 0;
+ }
+ unsigned ExtraRange = ((1 << ExtraBits) - 1) * ExtraScale; // per instruction
+ unsigned RequiredCopyInstrs = CopyOpc ? 1 : 0;
+ unsigned RangeAfterCopy = (CopyRange > Bytes) ? 0 : (Bytes - CopyRange);
+
+ // We could handle this case when the copy instruction does not require an
+ // aligned immediate, but we do not currently do this.
+ assert(RangeAfterCopy % ExtraScale == 0 &&
+ "Extra instruction requires immediate to be aligned");
+
+ unsigned RequiredExtraInstrs;
+ if (ExtraRange)
+ RequiredExtraInstrs = RoundUpToAlignment(RangeAfterCopy, ExtraRange) / ExtraRange;
+ else if (RangeAfterCopy > 0)
+ // We need an extra instruction but none is available
+ RequiredExtraInstrs = 1000000;
+ else
+ RequiredExtraInstrs = 0;
+ unsigned RequiredInstrs = RequiredCopyInstrs + RequiredExtraInstrs;
unsigned Threshold = (DestReg == ARM::SP) ? 3 : 2;
- if (NumMIs > Threshold) {
- // This will expand into too many instructions. Load the immediate from a
- // constpool entry.
+
+ // Use a constant pool, if the sequence of ADDs/SUBs is too expensive.
+ if (RequiredInstrs > Threshold) {
emitThumbRegPlusImmInReg(MBB, MBBI, dl,
DestReg, BaseReg, NumBytes, true,
TII, MRI, MIFlags);
return;
}
- if (DstNotEqBase) {
- if (isARMLowRegister(DestReg) && isARMLowRegister(BaseReg)) {
- // If both are low registers, emit DestReg = add BaseReg, max(Imm, 7)
- unsigned Chunk = (1 << 3) - 1;
- unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
- Bytes -= ThisVal;
- const MCInstrDesc &MCID = TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3);
- const MachineInstrBuilder MIB =
- AddDefaultT1CC(BuildMI(MBB, MBBI, dl, MCID, DestReg)
- .setMIFlags(MIFlags));
- AddDefaultPred(MIB.addReg(BaseReg, RegState::Kill).addImm(ThisVal));
- } else {
- AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg)
- .addReg(BaseReg, RegState::Kill))
- .setMIFlags(MIFlags);
+ // Emit zero or one copy instructions
+ if (CopyOpc) {
+ unsigned CopyImm = std::min(Bytes, CopyRange) / CopyScale;
+ Bytes -= CopyImm * CopyScale;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(CopyOpc), DestReg);
+ if (CopyNeedsCC)
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(BaseReg, RegState::Kill);
+ if (CopyOpc != ARM::tMOVr) {
+ MIB.addImm(CopyImm);
}
+ AddDefaultPred(MIB.setMIFlags(MIFlags));
+
BaseReg = DestReg;
}
- unsigned Chunk = ((1 << NumBits) - 1) * Scale;
+ // Emit zero or more in-place add/sub instructions
while (Bytes) {
- unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
- Bytes -= ThisVal;
- ThisVal /= Scale;
- // Build the new tADD / tSUB.
- if (isTwoAddr) {
- MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
- if (NeedCC)
- MIB = AddDefaultT1CC(MIB);
- MIB.addReg(DestReg).addImm(ThisVal);
- MIB = AddDefaultPred(MIB);
- MIB.setMIFlags(MIFlags);
- } else {
- bool isKill = BaseReg != ARM::SP;
- MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
- if (NeedCC)
- MIB = AddDefaultT1CC(MIB);
- MIB.addReg(BaseReg, getKillRegState(isKill)).addImm(ThisVal);
- MIB = AddDefaultPred(MIB);
- MIB.setMIFlags(MIFlags);
-
- BaseReg = DestReg;
- if (Opc == ARM::tADDrSPi) {
- // r4 = add sp, imm
- // r4 = add r4, imm
- // ...
- NumBits = 8;
- Scale = 1;
- Chunk = ((1 << NumBits) - 1) * Scale;
- Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
- NeedCC = isTwoAddr = true;
- }
- }
- }
-
- if (ExtraOpc) {
- const MCInstrDesc &MCID = TII.get(ExtraOpc);
- AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, MCID, DestReg))
- .addReg(DestReg, RegState::Kill)
- .addImm(((unsigned)NumBytes) & 3)
- .setMIFlags(MIFlags));
- }
-}
+ unsigned ExtraImm = std::min(Bytes, ExtraRange) / ExtraScale;
+ Bytes -= ExtraImm * ExtraScale;
-/// emitThumbConstant - Emit a series of instructions to materialize a
-/// constant.
-static void emitThumbConstant(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, int Imm,
- const TargetInstrInfo &TII,
- const Thumb1RegisterInfo& MRI,
- DebugLoc dl) {
- bool isSub = Imm < 0;
- if (isSub) Imm = -Imm;
-
- int Chunk = (1 << 8) - 1;
- int ThisVal = (Imm > Chunk) ? Chunk : Imm;
- Imm -= ThisVal;
- AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8),
- DestReg))
- .addImm(ThisVal));
- if (Imm > 0)
- emitThumbRegPlusImmediate(MBB, MBBI, dl, DestReg, DestReg, Imm, TII, MRI);
- if (isSub) {
- const MCInstrDesc &MCID = TII.get(ARM::tRSB);
- AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, MCID, DestReg))
- .addReg(DestReg, RegState::Kill));
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(ExtraOpc), DestReg);
+ if (ExtraNeedsCC)
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(BaseReg).addImm(ExtraImm);
+ MIB = AddDefaultPred(MIB);
+ MIB.setMIFlags(MIFlags);
}
}
@@ -352,86 +329,13 @@ rewriteFrameIndex(MachineBasicBlock::iterator II, unsigned FrameRegIdx,
const MCInstrDesc &Desc = MI.getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
- if (Opcode == ARM::tADDrSPi) {
+ if (Opcode == ARM::tADDframe) {
Offset += MI.getOperand(FrameRegIdx+1).getImm();
-
- // Can't use tADDrSPi if it's based off the frame pointer.
- unsigned NumBits = 0;
- unsigned Scale = 1;
- if (FrameReg != ARM::SP) {
- Opcode = ARM::tADDi3;
- NumBits = 3;
- } else {
- NumBits = 8;
- Scale = 4;
- assert((Offset & 3) == 0 &&
- "Thumb add/sub sp, #imm immediate must be multiple of 4!");
- }
-
- unsigned PredReg;
- if (Offset == 0 && getInstrPredicate(&MI, PredReg) == ARMCC::AL) {
- // Turn it into a move.
- MI.setDesc(TII.get(ARM::tMOVr));
- MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
- // Remove offset
- MI.RemoveOperand(FrameRegIdx+1);
- return true;
- }
-
- // Common case: small offset, fits into instruction.
- unsigned Mask = (1 << NumBits) - 1;
- if (((Offset / Scale) & ~Mask) == 0) {
- // Replace the FrameIndex with sp / fp
- if (Opcode == ARM::tADDi3) {
- MI.setDesc(TII.get(Opcode));
- removeOperands(MI, FrameRegIdx);
- AddDefaultPred(AddDefaultT1CC(MIB).addReg(FrameReg)
- .addImm(Offset / Scale));
- } else {
- MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
- MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset / Scale);
- }
- return true;
- }
-
unsigned DestReg = MI.getOperand(0).getReg();
- unsigned Bytes = (Offset > 0) ? Offset : -Offset;
- unsigned NumMIs = calcNumMI(Opcode, 0, Bytes, NumBits, Scale);
- // MI would expand into a large number of instructions. Don't try to
- // simplify the immediate.
- if (NumMIs > 2) {
- emitThumbRegPlusImmediate(MBB, II, dl, DestReg, FrameReg, Offset, TII,
- *this);
- MBB.erase(II);
- return true;
- }
- if (Offset > 0) {
- // Translate r0 = add sp, imm to
- // r0 = add sp, 255*4
- // r0 = add r0, (imm - 255*4)
- if (Opcode == ARM::tADDi3) {
- MI.setDesc(TII.get(Opcode));
- removeOperands(MI, FrameRegIdx);
- AddDefaultPred(AddDefaultT1CC(MIB).addReg(FrameReg).addImm(Mask));
- } else {
- MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
- MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Mask);
- }
- Offset = (Offset - Mask * Scale);
- MachineBasicBlock::iterator NII = std::next(II);
- emitThumbRegPlusImmediate(MBB, NII, dl, DestReg, DestReg, Offset, TII,
- *this);
- } else {
- // Translate r0 = add sp, -imm to
- // r0 = -imm (this is then translated into a series of instructions)
- // r0 = add r0, sp
- emitThumbConstant(MBB, II, DestReg, Offset, TII, *this, dl);
-
- MI.setDesc(TII.get(ARM::tADDhirr));
- MI.getOperand(FrameRegIdx).ChangeToRegister(DestReg, false, false, true);
- MI.getOperand(FrameRegIdx+1).ChangeToRegister(FrameReg, false);
- }
+ emitThumbRegPlusImmediate(MBB, II, dl, DestReg, FrameReg, Offset, TII,
+ *this);
+ MBB.erase(II);
return true;
} else {
if (AddrMode != ARMII::AddrModeT1_s)
@@ -485,8 +389,11 @@ rewriteFrameIndex(MachineBasicBlock::iterator II, unsigned FrameRegIdx,
void Thumb1RegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
int64_t Offset) const {
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(
- MI.getParent()->getParent()->getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MI.getParent()
+ ->getParent()
+ ->getTarget()
+ .getSubtargetImpl()
+ ->getInstrInfo());
int Off = Offset; // ARM doesn't need the general 64-bit offsets
unsigned i = 0;
@@ -512,7 +419,7 @@ Thumb1RegisterInfo::saveScavengerRegister(MachineBasicBlock &MBB,
// off the frame pointer (if, for example, there are alloca() calls in
// the function, the offset will be negative. Use R12 instead since that's
// a call clobbered register that we know won't be used in Thumb1 mode.
- const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MBB.getParent()->getSubtarget().getInstrInfo();
DebugLoc DL;
AddDefaultPred(BuildMI(MBB, I, DL, TII.get(ARM::tMOVr))
.addReg(ARM::R12, RegState::Define)
@@ -559,7 +466,7 @@ Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const ARMBaseInstrInfo &TII =
- *static_cast<const ARMBaseInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc dl = MI.getDebugLoc();
MachineInstrBuilder MIB(*MBB.getParent(), &MI);
@@ -570,7 +477,7 @@ Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MF.getFrameInfo()->getStackSize() + SPAdj;
if (MF.getFrameInfo()->hasVarSizedObjects()) {
- assert(SPAdj == 0 && MF.getTarget().getFrameLowering()->hasFP(MF) &&
+ assert(SPAdj == 0 && MF.getSubtarget().getFrameLowering()->hasFP(MF) &&
"Unexpected");
// There are alloca()'s in this function, must reference off the frame
// pointer or base pointer instead.
@@ -587,7 +494,10 @@ Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// when !hasReservedCallFrame().
#ifndef NDEBUG
if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){
- assert(MF.getTarget().getFrameLowering()->hasReservedCallFrame(MF) &&
+ assert(MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->hasReservedCallFrame(MF) &&
"Cannot use SP to access the emergency spill slot in "
"functions without a reserved call frame");
assert(!MF.getFrameInfo()->hasVarSizedObjects() &&
diff --git a/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h
index 0c0abbe..5feaf52 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h
+++ b/contrib/llvm/lib/Target/ARM/Thumb1RegisterInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef THUMB1REGISTERINFO_H
-#define THUMB1REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_THUMB1REGISTERINFO_H
+#define LLVM_LIB_TARGET_ARM_THUMB1REGISTERINFO_H
#include "ARMBaseRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -60,4 +60,4 @@ public:
};
}
-#endif // THUMB1REGISTERINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp b/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
index edb9ff3..fdcb522 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
@@ -188,7 +188,7 @@ bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
true/*isImp*/, false/*isKill*/));
MachineInstr *LastITMI = MI;
- MachineBasicBlock::iterator InsertPos = MIB;
+ MachineBasicBlock::iterator InsertPos = MIB.getInstr();
++MBBI;
// Form IT block.
@@ -255,8 +255,9 @@ bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
bool Thumb2ITBlockPass::runOnMachineFunction(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
AFI = Fn.getInfo<ARMFunctionInfo>();
- TII = static_cast<const Thumb2InstrInfo*>(TM.getInstrInfo());
- TRI = TM.getRegisterInfo();
+ TII = static_cast<const Thumb2InstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+ TRI = TM.getSubtargetImpl()->getRegisterInfo();
restrictIT = TM.getSubtarget<ARMSubtarget>().restrictIT();
if (!AFI->isThumbFunction())
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp
index a9df006..91973e1 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.cpp
@@ -209,6 +209,15 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC, TRI);
}
+void
+Thumb2InstrInfo::expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const {
+ if (RM == Reloc::PIC_)
+ expandLoadStackGuardBase(MI, ARM::t2MOV_ga_pcrel, ARM::t2LDRi12, RM);
+ else
+ expandLoadStackGuardBase(MI, ARM::t2MOVi32imm, ARM::t2LDRi12, RM);
+}
+
void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI, DebugLoc dl,
unsigned DestReg, unsigned BaseReg, int NumBytes,
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h
index 34d45d3..46a1f6d 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h
+++ b/contrib/llvm/lib/Target/ARM/Thumb2InstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef THUMB2INSTRUCTIONINFO_H
-#define THUMB2INSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_THUMB2INSTRINFO_H
+#define LLVM_LIB_TARGET_ARM_THUMB2INSTRINFO_H
#include "ARMBaseInstrInfo.h"
#include "Thumb2RegisterInfo.h"
@@ -61,6 +61,10 @@ public:
/// always be able to get register info as well (through this method).
///
const Thumb2RegisterInfo &getRegisterInfo() const override { return RI; }
+
+private:
+ void expandLoadStackGuard(MachineBasicBlock::iterator MI,
+ Reloc::Model RM) const override;
};
/// getITInstrPredicate - Valid only in Thumb2 mode. This function is identical
@@ -71,4 +75,4 @@ ARMCC::CondCodes getITInstrPredicate(const MachineInstr *MI, unsigned &PredReg);
}
-#endif // THUMB2INSTRUCTIONINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp
index 782d81f..0d5d85a 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.cpp
@@ -40,7 +40,7 @@ Thumb2RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned MIFlags) const {
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineConstantPool *ConstantPool = MF.getConstantPool();
const Constant *C = ConstantInt::get(
Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Val);
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h
index 8a33e6c..1dd94cc 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h
+++ b/contrib/llvm/lib/Target/ARM/Thumb2RegisterInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef THUMB2REGISTERINFO_H
-#define THUMB2REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_ARM_THUMB2REGISTERINFO_H
+#define LLVM_LIB_TARGET_ARM_THUMB2REGISTERINFO_H
#include "ARMBaseRegisterInfo.h"
@@ -35,4 +35,4 @@ public:
};
}
-#endif // THUMB2REGISTERINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp b/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp
index 09debe7..c51eb8b 100644
--- a/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp
+++ b/contrib/llvm/lib/Target/ARM/Thumb2SizeReduction.cpp
@@ -335,7 +335,7 @@ static bool VerifyLowRegs(MachineInstr *MI) {
bool isPCOk = (Opc == ARM::t2LDMIA_RET || Opc == ARM::t2LDMIA ||
Opc == ARM::t2LDMDB || Opc == ARM::t2LDMIA_UPD ||
Opc == ARM::t2LDMDB_UPD);
- bool isLROk = (Opc == ARM::t2STMIA_UPD || Opc == ARM::t2STMDB_UPD);
+ bool isLROk = (Opc == ARM::t2STMDB_UPD);
bool isSPOk = isPCOk || isLROk;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
@@ -384,7 +384,6 @@ Thumb2SizeReduce::ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
if (MI->getOperand(1).getReg() == ARM::SP) {
Opc = Entry.NarrowOpc2;
ImmLimit = Entry.Imm2Limit;
- HasOffReg = false;
}
Scale = 4;
@@ -1003,7 +1002,8 @@ bool Thumb2SizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
bool Thumb2SizeReduce::runOnMachineFunction(MachineFunction &MF) {
const TargetMachine &TM = MF.getTarget();
- TII = static_cast<const Thumb2InstrInfo*>(TM.getInstrInfo());
+ TII = static_cast<const Thumb2InstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
STI = &TM.getSubtarget<ARMSubtarget>();
// Optimizing / minimizing size?
diff --git a/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h b/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h
index 673ade7..4bae7f8 100644
--- a/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h
+++ b/contrib/llvm/lib/Target/CppBackend/CPPTargetMachine.h
@@ -11,29 +11,35 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CPPTARGETMACHINE_H
-#define CPPTARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_CPPBACKEND_CPPTARGETMACHINE_H
+#define LLVM_LIB_TARGET_CPPBACKEND_CPPTARGETMACHINE_H
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
namespace llvm {
class formatted_raw_ostream;
+class CPPSubtarget : public TargetSubtargetInfo {
+};
+
struct CPPTargetMachine : public TargetMachine {
CPPTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
- : TargetMachine(T, TT, CPU, FS, Options) {}
+ : TargetMachine(T, TT, CPU, FS, Options), Subtarget() {}
+private:
+ CPPSubtarget Subtarget;
+public:
+ const CPPSubtarget *getSubtargetImpl() const override { return &Subtarget; }
bool addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &Out,
CodeGenFileType FileType, bool DisableVerify,
AnalysisID StartAfter,
AnalysisID StopAfter) override;
-
- const DataLayout *getDataLayout() const override { return nullptr; }
};
extern Target TheCppBackendTarget;
diff --git a/contrib/llvm/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp b/contrib/llvm/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp
new file mode 100644
index 0000000..44f9d93
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp
@@ -0,0 +1,181 @@
+//===-- HexagonDisassembler.cpp - Disassembler for Hexagon ISA ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/HexagonBaseInfo.h"
+#include "MCTargetDesc/HexagonMCInst.h"
+#include "MCTargetDesc/HexagonMCTargetDesc.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <array>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-disassembler"
+
+// Pull DecodeStatus and its enum values into the global namespace.
+typedef llvm::MCDisassembler::DecodeStatus DecodeStatus;
+
+namespace {
+/// \brief Hexagon disassembler for all Hexagon platforms.
+class HexagonDisassembler : public MCDisassembler {
+public:
+ HexagonDisassembler(MCSubtargetInfo const &STI, MCContext &Ctx)
+ : MCDisassembler(STI, Ctx) {}
+
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
+};
+}
+
+static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
+
+static const uint16_t IntRegDecoderTable[] = {
+ Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
+ Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9,
+ Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
+ Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
+ Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
+ Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
+ Hexagon::R30, Hexagon::R31 };
+
+static const uint16_t PredRegDecoderTable[] = { Hexagon::P0, Hexagon::P1,
+Hexagon::P2, Hexagon::P3 };
+
+static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
+ const uint16_t Table[], size_t Size) {
+ if (RegNo < Size) {
+ Inst.addOperand(MCOperand::CreateReg(Table[RegNo]));
+ return MCDisassembler::Success;
+ }
+ else
+ return MCDisassembler::Fail;
+}
+
+static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t /*Address*/,
+ void const *Decoder) {
+ if (RegNo > 31)
+ return MCDisassembler::Fail;
+
+ unsigned Register = IntRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t /*Address*/, const void *Decoder) {
+ static const uint16_t CtrlRegDecoderTable[] = {
+ Hexagon::SA0, Hexagon::LC0, Hexagon::SA1, Hexagon::LC1,
+ Hexagon::P3_0, Hexagon::NoRegister, Hexagon::C6, Hexagon::C7,
+ Hexagon::USR, Hexagon::PC, Hexagon::UGP, Hexagon::GP,
+ Hexagon::CS0, Hexagon::CS1, Hexagon::UPCL, Hexagon::UPCH
+ };
+
+ if (RegNo >= sizeof(CtrlRegDecoderTable) / sizeof(CtrlRegDecoderTable[0]))
+ return MCDisassembler::Fail;
+
+ if (CtrlRegDecoderTable[RegNo] == Hexagon::NoRegister)
+ return MCDisassembler::Fail;
+
+ unsigned Register = CtrlRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t /*Address*/, const void *Decoder) {
+ unsigned Register = 0;
+ switch (RegNo) {
+ case 0:
+ Register = Hexagon::M0;
+ break;
+ case 1:
+ Register = Hexagon::M1;
+ break;
+ default:
+ return MCDisassembler::Fail;
+ }
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t /*Address*/, const void *Decoder) {
+ static const uint16_t DoubleRegDecoderTable[] = {
+ Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
+ Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7,
+ Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11,
+ Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15
+ };
+
+ return (DecodeRegisterClass(Inst, RegNo >> 1,
+ DoubleRegDecoderTable,
+ sizeof (DoubleRegDecoderTable)));
+}
+
+static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
+ uint64_t /*Address*/,
+ void const *Decoder) {
+ if (RegNo > 3)
+ return MCDisassembler::Fail;
+
+ unsigned Register = PredRegDecoderTable[RegNo];
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+#include "HexagonGenDisassemblerTables.inc"
+
+static MCDisassembler *createHexagonDisassembler(Target const &T,
+ MCSubtargetInfo const &STI,
+ MCContext &Ctx) {
+ return new HexagonDisassembler(STI, Ctx);
+}
+
+extern "C" void LLVMInitializeHexagonDisassembler() {
+ TargetRegistry::RegisterMCDisassembler(TheHexagonTarget,
+ createHexagonDisassembler);
+}
+
+DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address,
+ raw_ostream &os,
+ raw_ostream &cs) const {
+ Size = 4;
+ if (Bytes.size() < 4)
+ return MCDisassembler::Fail;
+
+ uint32_t insn =
+ llvm::support::endian::read<uint32_t, llvm::support::little,
+ llvm::support::unaligned>(Bytes.data());
+
+ // Remove parse bits.
+ insn &= ~static_cast<uint32_t>(HexagonII::InstParseBits::INST_PARSE_MASK);
+ DecodeStatus Result = decodeInstruction(DecoderTable32, MI, insn, Address, this, STI);
+ HexagonMCInst::AppendImplicitOperands(MI);
+ return Result;
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/Hexagon.h b/contrib/llvm/lib/Target/Hexagon/Hexagon.h
index 5467ee3..64ae69c 100644
--- a/contrib/llvm/lib/Target/Hexagon/Hexagon.h
+++ b/contrib/llvm/lib/Target/Hexagon/Hexagon.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_Hexagon_H
-#define TARGET_Hexagon_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGON_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGON_H
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/Target/TargetLowering.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/Hexagon.td b/contrib/llvm/lib/Target/Hexagon/Hexagon.td
index 5f4a6c6..2068c6d 100644
--- a/contrib/llvm/lib/Target/Hexagon/Hexagon.td
+++ b/contrib/llvm/lib/Target/Hexagon/Hexagon.td
@@ -50,6 +50,8 @@ def IEEERndNearV5T : Predicate<"Subtarget.modeIEEERndNear()">;
//===----------------------------------------------------------------------===//
// Classes used for relation maps.
//===----------------------------------------------------------------------===//
+
+class ImmRegShl;
// PredRel - Filter class used to relate non-predicated instructions with their
// predicated forms.
class PredRel;
@@ -137,7 +139,7 @@ def getPredOldOpcode : InstrMapping {
//
def getNewValueOpcode : InstrMapping {
let FilterClass = "NewValueRel";
- let RowFields = ["BaseOpcode", "PredSense", "PNewValue"];
+ let RowFields = ["BaseOpcode", "PredSense", "PNewValue", "addrMode"];
let ColFields = ["NValueST"];
let KeyCol = ["false"];
let ValueCols = [["true"]];
@@ -149,7 +151,7 @@ def getNewValueOpcode : InstrMapping {
//
def getNonNVStore : InstrMapping {
let FilterClass = "NewValueRel";
- let RowFields = ["BaseOpcode", "PredSense", "PNewValue"];
+ let RowFields = ["BaseOpcode", "PredSense", "PNewValue", "addrMode"];
let ColFields = ["NValueST"];
let KeyCol = ["true"];
let ValueCols = [["false"]];
@@ -180,6 +182,14 @@ def getRegForm : InstrMapping {
let ValueCols = [["reg"]];
}
+def getRegShlForm : InstrMapping {
+ let FilterClass = "ImmRegShl";
+ let RowFields = ["CextOpcode", "PredSense", "PNewValue", "isNVStore"];
+ let ColFields = ["InputType"];
+ let KeyCol = ["imm"];
+ let ValueCols = [["reg"]];
+}
+
//===----------------------------------------------------------------------===//
// Register File, Calling Conv, Instruction Descriptions
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp
index 2e011bd..50f2eca 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.cpp
@@ -18,7 +18,7 @@
#include "HexagonMachineFunctionInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
-#include "InstPrinter/HexagonInstPrinter.h"
+#include "MCTargetDesc/HexagonInstPrinter.h"
#include "MCTargetDesc/HexagonMCInst.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
@@ -174,7 +174,7 @@ bool HexagonAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
///
void HexagonAsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (MI->isBundle()) {
- std::vector<const MachineInstr*> BundleMIs;
+ std::vector<MachineInstr const *> BundleMIs;
const MachineBasicBlock *MBB = MI->getParent();
MachineBasicBlock::const_instr_iterator MII = MI;
@@ -183,33 +183,35 @@ void HexagonAsmPrinter::EmitInstruction(const MachineInstr *MI) {
while (MII != MBB->end() && MII->isInsideBundle()) {
const MachineInstr *MInst = MII;
if (MInst->getOpcode() == TargetOpcode::DBG_VALUE ||
- MInst->getOpcode() == TargetOpcode::IMPLICIT_DEF) {
- IgnoreCount++;
- ++MII;
- continue;
+ MInst->getOpcode() == TargetOpcode::IMPLICIT_DEF) {
+ IgnoreCount++;
+ ++MII;
+ continue;
}
- //BundleMIs.push_back(&*MII);
+ // BundleMIs.push_back(&*MII);
BundleMIs.push_back(MInst);
++MII;
}
unsigned Size = BundleMIs.size();
- assert((Size+IgnoreCount) == MI->getBundleSize() && "Corrupt Bundle!");
+ assert((Size + IgnoreCount) == MI->getBundleSize() && "Corrupt Bundle!");
for (unsigned Index = 0; Index < Size; Index++) {
HexagonMCInst MCI;
- MCI.setPacketStart(Index == 0);
- MCI.setPacketEnd(Index == (Size-1));
HexagonLowerToMC(BundleMIs[Index], MCI, *this);
+ HexagonMCInst::AppendImplicitOperands(MCI);
+ MCI.setPacketBegin(Index == 0);
+ MCI.setPacketEnd(Index == (Size - 1));
EmitToStreamer(OutStreamer, MCI);
}
}
else {
HexagonMCInst MCI;
+ HexagonLowerToMC(MI, MCI, *this);
+ HexagonMCInst::AppendImplicitOperands(MCI);
if (MI->getOpcode() == Hexagon::ENDLOOP0) {
- MCI.setPacketStart(true);
+ MCI.setPacketBegin(true);
MCI.setPacketEnd(true);
}
- HexagonLowerToMC(MI, MCI, *this);
EmitToStreamer(OutStreamer, MCI);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h
index 7fe8c57..5f4c162 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonAsmPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGONASMPRINTER_H
-#define HEXAGONASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONASMPRINTER_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONASMPRINTER_H
#include "Hexagon.h"
#include "HexagonTargetMachine.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp
index de340e0..307adad 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCFGOptimizer.cpp
@@ -59,36 +59,36 @@ private:
char HexagonCFGOptimizer::ID = 0;
static bool IsConditionalBranch(int Opc) {
- return (Opc == Hexagon::JMP_t) || (Opc == Hexagon::JMP_f)
- || (Opc == Hexagon::JMP_tnew_t) || (Opc == Hexagon::JMP_fnew_t);
+ return (Opc == Hexagon::J2_jumpt) || (Opc == Hexagon::J2_jumpf)
+ || (Opc == Hexagon::J2_jumptnewpt) || (Opc == Hexagon::J2_jumpfnewpt);
}
static bool IsUnconditionalJump(int Opc) {
- return (Opc == Hexagon::JMP);
+ return (Opc == Hexagon::J2_jump);
}
void
HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
MachineBasicBlock* NewTarget) {
- const HexagonInstrInfo *QII = QTM.getInstrInfo();
+ const HexagonInstrInfo *QII = QTM.getSubtargetImpl()->getInstrInfo();
int NewOpcode = 0;
switch(MI->getOpcode()) {
- case Hexagon::JMP_t:
- NewOpcode = Hexagon::JMP_f;
+ case Hexagon::J2_jumpt:
+ NewOpcode = Hexagon::J2_jumpf;
break;
- case Hexagon::JMP_f:
- NewOpcode = Hexagon::JMP_t;
+ case Hexagon::J2_jumpf:
+ NewOpcode = Hexagon::J2_jumpt;
break;
- case Hexagon::JMP_tnew_t:
- NewOpcode = Hexagon::JMP_fnew_t;
+ case Hexagon::J2_jumptnewpt:
+ NewOpcode = Hexagon::J2_jumpfnewpt;
break;
- case Hexagon::JMP_fnew_t:
- NewOpcode = Hexagon::JMP_tnew_t;
+ case Hexagon::J2_jumpfnewpt:
+ NewOpcode = Hexagon::J2_jumptnewpt;
break;
default:
@@ -163,8 +163,8 @@ bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
// The target of the unconditional branch must be JumpAroundTarget.
// TODO: If not, we should not invert the unconditional branch.
MachineBasicBlock* CondBranchTarget = nullptr;
- if ((MI->getOpcode() == Hexagon::JMP_t) ||
- (MI->getOpcode() == Hexagon::JMP_f)) {
+ if ((MI->getOpcode() == Hexagon::J2_jumpt) ||
+ (MI->getOpcode() == Hexagon::J2_jumpf)) {
CondBranchTarget = MI->getOperand(1).getMBB();
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp
index f5f958c..8d78409 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.cpp
@@ -21,6 +21,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
Hexagon_CCState::Hexagon_CCState(CallingConv::ID CC, bool isVarArg,
@@ -31,7 +32,8 @@ Hexagon_CCState::Hexagon_CCState(CallingConv::ID CC, bool isVarArg,
// No stack is used.
StackOffset = 0;
- UsedRegs.resize((TM.getRegisterInfo()->getNumRegs()+31)/32);
+ UsedRegs.resize(
+ (TM.getSubtargetImpl()->getRegisterInfo()->getNumRegs() + 31) / 32);
}
// HandleByVal - Allocate a stack slot large enough to pass an argument by
@@ -55,7 +57,7 @@ void Hexagon_CCState::HandleByVal(unsigned ValNo, EVT ValVT,
/// MarkAllocated - Mark a register and all of its aliases as allocated.
void Hexagon_CCState::MarkAllocated(unsigned Reg) {
- const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+ const TargetRegisterInfo &TRI = *TM.getSubtargetImpl()->getRegisterInfo();
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
UsedRegs[*AI/32] |= 1 << (*AI&31);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h
index 70b8b64..738ed1a 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCallingConvLower.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_Hexagon_CODEGEN_CALLINGCONVLOWER_H
-#define LLVM_Hexagon_CODEGEN_CALLINGCONVLOWER_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONCALLINGCONVLOWER_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONCALLINGCONVLOWER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp
index aeff680..1883ad8 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp
@@ -114,7 +114,7 @@ static bool isCombinableInstType(MachineInstr *MI,
const HexagonInstrInfo *TII,
bool ShouldCombineAggressively) {
switch(MI->getOpcode()) {
- case Hexagon::TFR: {
+ case Hexagon::A2_tfr: {
// A COPY instruction can be combined if its arguments are IntRegs (32bit).
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isReg());
@@ -124,7 +124,7 @@ static bool isCombinableInstType(MachineInstr *MI,
Hexagon::IntRegsRegClass.contains(SrcReg);
}
- case Hexagon::TFRI: {
+ case Hexagon::A2_tfrsi: {
// A transfer-immediate can be combined if its argument is a signed 8bit
// value.
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
@@ -158,11 +158,11 @@ static bool isCombinableInstType(MachineInstr *MI,
}
static bool isGreaterThan8BitTFRI(MachineInstr *I) {
- return I->getOpcode() == Hexagon::TFRI &&
+ return I->getOpcode() == Hexagon::A2_tfrsi &&
!isInt<8>(I->getOperand(1).getImm());
}
static bool isGreaterThan6BitTFRI(MachineInstr *I) {
- return I->getOpcode() == Hexagon::TFRI &&
+ return I->getOpcode() == Hexagon::A2_tfrsi &&
!isUInt<6>(I->getOperand(1).getImm());
}
@@ -171,11 +171,11 @@ static bool isGreaterThan6BitTFRI(MachineInstr *I) {
static bool areCombinableOperations(const TargetRegisterInfo *TRI,
MachineInstr *HighRegInst,
MachineInstr *LowRegInst) {
- assert((HighRegInst->getOpcode() == Hexagon::TFR ||
- HighRegInst->getOpcode() == Hexagon::TFRI ||
+ assert((HighRegInst->getOpcode() == Hexagon::A2_tfr ||
+ HighRegInst->getOpcode() == Hexagon::A2_tfrsi ||
HighRegInst->getOpcode() == Hexagon::TFRI_V4) &&
- (LowRegInst->getOpcode() == Hexagon::TFR ||
- LowRegInst->getOpcode() == Hexagon::TFRI ||
+ (LowRegInst->getOpcode() == Hexagon::A2_tfr ||
+ LowRegInst->getOpcode() == Hexagon::A2_tfrsi ||
LowRegInst->getOpcode() == Hexagon::TFRI_V4) &&
"Assume individual instructions are of a combinable type");
@@ -417,8 +417,8 @@ bool HexagonCopyToCombine::runOnMachineFunction(MachineFunction &MF) {
bool HasChanged = false;
// Get target info.
- TRI = MF.getTarget().getRegisterInfo();
- TII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
// Combine aggressively (for code size)
ShouldCombineAggressively =
@@ -563,14 +563,14 @@ void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
// Handle globals.
if (HiOperand.isGlobal()) {
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addImm(LoOperand.getImm());
return;
}
if (LoOperand.isGlobal()) {
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
@@ -580,7 +580,7 @@ void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
// Handle constant extended immediates.
if (!isInt<8>(HiOperand.getImm())) {
assert(isInt<8>(LoOperand.getImm()));
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
return;
@@ -588,7 +588,7 @@ void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
if (!isUInt<6>(LoOperand.getImm())) {
assert(isInt<8>(HiOperand.getImm()));
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
return;
@@ -596,7 +596,7 @@ void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
// Insert new combine instruction.
// DoubleRegDest = combine #HiImm, #LoImm
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combineii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
}
@@ -613,7 +613,7 @@ void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt,
// Handle global.
if (HiOperand.isGlobal()) {
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addReg(LoReg, LoRegKillFlag);
@@ -621,7 +621,7 @@ void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt,
}
// Insert new combine instruction.
// DoubleRegDest = combine #HiImm, LoReg
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineir), DoubleDestReg)
.addImm(HiOperand.getImm())
.addReg(LoReg, LoRegKillFlag);
}
@@ -638,7 +638,7 @@ void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt,
// Handle global.
if (LoOperand.isGlobal()) {
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
@@ -647,7 +647,7 @@ void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt,
// Insert new combine instruction.
// DoubleRegDest = combine HiReg, #LoImm
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A4_combineri), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addImm(LoOperand.getImm());
}
@@ -666,7 +666,7 @@ void HexagonCopyToCombine::emitCombineRR(MachineBasicBlock::iterator &InsertPt,
// Insert new combine instruction.
// DoubleRegDest = combine HiReg, LoReg
- BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rr), DoubleDestReg)
+ BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::A2_combinew), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addReg(LoReg, LoRegKillFlag);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp
index 3dafe80..a2a847c 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonExpandPredSpillCode.cpp
@@ -72,7 +72,7 @@ char HexagonExpandPredSpillCode::ID = 0;
bool HexagonExpandPredSpillCode::runOnMachineFunction(MachineFunction &Fn) {
- const HexagonInstrInfo *TII = QTM.getInstrInfo();
+ const HexagonInstrInfo *TII = QTM.getSubtargetImpl()->getInstrInfo();
// Loop over all of the basic blocks.
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
@@ -86,43 +86,45 @@ bool HexagonExpandPredSpillCode::runOnMachineFunction(MachineFunction &Fn) {
if (Opc == Hexagon::STriw_pred) {
// STriw_pred [R30], ofst, SrcReg;
unsigned FP = MI->getOperand(0).getReg();
- assert(FP == QTM.getRegisterInfo()->getFrameRegister() &&
- "Not a Frame Pointer, Nor a Spill Slot");
+ assert(
+ FP ==
+ QTM.getSubtargetImpl()->getRegisterInfo()->getFrameRegister() &&
+ "Not a Frame Pointer, Nor a Spill Slot");
assert(MI->getOperand(1).isImm() && "Not an offset");
int Offset = MI->getOperand(1).getImm();
int SrcReg = MI->getOperand(2).getReg();
assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
"Not a predicate register");
- if (!TII->isValidOffset(Hexagon::STriw_indexed, Offset)) {
+ if (!TII->isValidOffset(Hexagon::S2_storeri_io, Offset)) {
if (!TII->isValidOffset(Hexagon::ADD_ri, Offset)) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
TII->get(Hexagon::CONST32_Int_Real),
HEXAGON_RESERVED_REG_1).addImm(Offset);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_rr),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::A2_add),
HEXAGON_RESERVED_REG_1)
.addReg(FP).addReg(HEXAGON_RESERVED_REG_1);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_RsPd),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::C2_tfrpr),
HEXAGON_RESERVED_REG_2).addReg(SrcReg);
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::STriw_indexed))
+ TII->get(Hexagon::S2_storeri_io))
.addReg(HEXAGON_RESERVED_REG_1)
.addImm(0).addReg(HEXAGON_RESERVED_REG_2);
} else {
BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_ri),
HEXAGON_RESERVED_REG_1).addReg(FP).addImm(Offset);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_RsPd),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::C2_tfrpr),
HEXAGON_RESERVED_REG_2).addReg(SrcReg);
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::STriw_indexed))
+ TII->get(Hexagon::S2_storeri_io))
.addReg(HEXAGON_RESERVED_REG_1)
.addImm(0)
.addReg(HEXAGON_RESERVED_REG_2);
}
} else {
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_RsPd),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::C2_tfrpr),
HEXAGON_RESERVED_REG_2).addReg(SrcReg);
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::STriw_indexed)).
+ TII->get(Hexagon::S2_storeri_io)).
addReg(FP).addImm(Offset).addReg(HEXAGON_RESERVED_REG_2);
}
MII = MBB->erase(MI);
@@ -133,39 +135,41 @@ bool HexagonExpandPredSpillCode::runOnMachineFunction(MachineFunction &Fn) {
assert(Hexagon::PredRegsRegClass.contains(DstReg) &&
"Not a predicate register");
unsigned FP = MI->getOperand(1).getReg();
- assert(FP == QTM.getRegisterInfo()->getFrameRegister() &&
- "Not a Frame Pointer, Nor a Spill Slot");
+ assert(
+ FP ==
+ QTM.getSubtargetImpl()->getRegisterInfo()->getFrameRegister() &&
+ "Not a Frame Pointer, Nor a Spill Slot");
assert(MI->getOperand(2).isImm() && "Not an offset");
int Offset = MI->getOperand(2).getImm();
- if (!TII->isValidOffset(Hexagon::LDriw, Offset)) {
+ if (!TII->isValidOffset(Hexagon::L2_loadri_io, Offset)) {
if (!TII->isValidOffset(Hexagon::ADD_ri, Offset)) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
TII->get(Hexagon::CONST32_Int_Real),
HEXAGON_RESERVED_REG_1).addImm(Offset);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_rr),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::A2_add),
HEXAGON_RESERVED_REG_1)
.addReg(FP)
.addReg(HEXAGON_RESERVED_REG_1);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::LDriw),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::L2_loadri_io),
HEXAGON_RESERVED_REG_2)
.addReg(HEXAGON_RESERVED_REG_1)
.addImm(0);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_PdRs),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::C2_tfrrp),
DstReg).addReg(HEXAGON_RESERVED_REG_2);
} else {
BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::ADD_ri),
HEXAGON_RESERVED_REG_1).addReg(FP).addImm(Offset);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::LDriw),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::L2_loadri_io),
HEXAGON_RESERVED_REG_2)
.addReg(HEXAGON_RESERVED_REG_1)
.addImm(0);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_PdRs),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::C2_tfrrp),
DstReg).addReg(HEXAGON_RESERVED_REG_2);
}
} else {
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::LDriw),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::L2_loadri_io),
HEXAGON_RESERVED_REG_2).addReg(FP).addImm(Offset);
- BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::TFR_PdRs),
+ BuildMI(*MBB, MII, MI->getDebugLoc(), TII->get(Hexagon::C2_tfrrp),
DstReg).addReg(HEXAGON_RESERVED_REG_2);
}
MII = MBB->erase(MI);
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
index d41939a..e8d8f14 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
@@ -81,8 +81,8 @@ FunctionPass *llvm::createHexagonFixupHwLoops() {
/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr *MI) {
- return MI->getOpcode() == Hexagon::LOOP0_r ||
- MI->getOpcode() == Hexagon::LOOP0_i;
+ return MI->getOpcode() == Hexagon::J2_loop0r ||
+ MI->getOpcode() == Hexagon::J2_loop0i;
}
@@ -160,7 +160,7 @@ bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
MachineBasicBlock::iterator &MII,
RegScavenger &RS) {
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
MachineBasicBlock *MBB = MII->getParent();
DebugLoc DL = MII->getDebugLoc();
unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
@@ -168,18 +168,18 @@ void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
// First, set the LC0 with the trip count.
if (MII->getOperand(1).isReg()) {
// Trip count is a register
- BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::A2_tfrrcr), Hexagon::LC0)
.addReg(MII->getOperand(1).getReg());
} else {
// Trip count is an immediate.
- BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::A2_tfrsi), Scratch)
.addImm(MII->getOperand(1).getImm());
- BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::A2_tfrrcr), Hexagon::LC0)
.addReg(Scratch);
}
// Then, set the SA0 with the loop start address.
BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
.addMBB(MII->getOperand(0).getMBB());
- BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0)
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::A2_tfrrcr), Hexagon::SA0)
.addReg(Scratch);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
index 21df12f..9d1a527 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
@@ -50,7 +50,10 @@ void HexagonFrameLowering::determineFrameLayout(MachineFunction &MF) const {
unsigned FrameSize = MFI->getStackSize();
// Get the alignments provided by the target.
- unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned TargetAlign = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
// Get the maximum call frame size of all the calls.
unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
@@ -77,8 +80,8 @@ void HexagonFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
- const HexagonRegisterInfo *QRI =
- static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
+ const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
determineFrameLayout(MF);
@@ -115,21 +118,21 @@ void HexagonFrameLowering::emitPrologue(MachineFunction &MF) const {
// Check for overflow.
// Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
const int ALLOCFRAME_MAX = 16384;
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
if (NumBytes >= ALLOCFRAME_MAX) {
// Emit allocframe(#0).
- BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::ALLOCFRAME)).addImm(0);
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::S2_allocframe)).addImm(0);
// Subtract offset from frame pointer.
BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::CONST32_Int_Real),
HEXAGON_RESERVED_REG_1).addImm(NumBytes);
- BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::SUB_rr),
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::A2_sub),
QRI->getStackRegister()).
addReg(QRI->getStackRegister()).
addReg(HEXAGON_RESERVED_REG_1);
} else {
- BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::ALLOCFRAME)).addImm(NumBytes);
+ BuildMI(MBB, InsertPt, dl, TII.get(Hexagon::S2_allocframe)).addImm(NumBytes);
}
}
}
@@ -154,12 +157,12 @@ void HexagonFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock::iterator MBBI = std::prev(MBB.end());
MachineBasicBlock::iterator MBBI_end = MBB.end();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Handle EH_RETURN.
if (MBBI->getOpcode() == Hexagon::EH_RETURN_JMPR) {
assert(MBBI->getOperand(0).isReg() && "Offset should be in register!");
- BuildMI(MBB, MBBI, dl, TII.get(Hexagon::DEALLOCFRAME));
- BuildMI(MBB, MBBI, dl, TII.get(Hexagon::ADD_rr),
+ BuildMI(MBB, MBBI, dl, TII.get(Hexagon::L2_deallocframe));
+ BuildMI(MBB, MBBI, dl, TII.get(Hexagon::A2_add),
Hexagon::R29).addReg(Hexagon::R29).addReg(Hexagon::R28);
return;
}
@@ -180,7 +183,7 @@ void HexagonFrameLowering::emitEpilogue(MachineFunction &MF,
// Add dealloc_return.
MachineInstrBuilder MIB =
- BuildMI(MBB, MBBI_end, dl, TII.get(Hexagon::DEALLOC_RET_V4));
+ BuildMI(MBB, MBBI_end, dl, TII.get(Hexagon::L4_return));
// Transfer the function live-out registers.
MIB->copyImplicitOps(*MBB.getParent(), &*MBBI);
// Remove the JUMPR node.
@@ -195,7 +198,7 @@ void HexagonFrameLowering::emitEpilogue(MachineFunction &MF,
I->getOpcode() == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
return;
- BuildMI(MBB, MBBI, dl, TII.get(Hexagon::DEALLOCFRAME));
+ BuildMI(MBB, MBBI, dl, TII.get(Hexagon::L2_deallocframe));
}
}
}
@@ -225,7 +228,7 @@ HexagonFrameLowering::spillCalleeSavedRegisters(
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
- const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
if (CSI.empty()) {
return false;
@@ -280,7 +283,7 @@ bool HexagonFrameLowering::restoreCalleeSavedRegisters(
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
- const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
if (CSI.empty()) {
return false;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h
index 2d4b0b9..2d6b457 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGON_FRAMEINFO_H
-#define HEXAGON_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONFRAMELOWERING_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONFRAMELOWERING_H
#include "Hexagon.h"
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
index 7f76421..637b0a0 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -220,7 +220,7 @@ namespace {
int HexagonHardwareLoops::Counter = 0;
#endif
- /// \brief Abstraction for a trip count of a loop. A smaller vesrsion
+ /// \brief Abstraction for a trip count of a loop. A smaller version
/// of the MachineOperand class without the concerns of changing the
/// operand representation.
class CountValue {
@@ -266,7 +266,8 @@ namespace {
}
void print(raw_ostream &OS, const TargetMachine *TM = nullptr) const {
- const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : nullptr;
+ const TargetRegisterInfo *TRI =
+ TM ? TM->getSubtargetImpl()->getRegisterInfo() : nullptr;
if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
if (isImm()) { OS << Contents.ImmVal; }
}
@@ -284,8 +285,8 @@ INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr *MI) {
- return MI->getOpcode() == Hexagon::LOOP0_r ||
- MI->getOpcode() == Hexagon::LOOP0_i;
+ return MI->getOpcode() == Hexagon::J2_loop0r ||
+ MI->getOpcode() == Hexagon::J2_loop0i;
}
FunctionPass *llvm::createHexagonHardwareLoops() {
@@ -302,8 +303,10 @@ bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
MRI = &MF.getRegInfo();
MDT = &getAnalysis<MachineDominatorTree>();
TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
- TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo());
- TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo());
+ TII = static_cast<const HexagonInstrInfo *>(
+ TM->getSubtargetImpl()->getInstrInfo());
+ TRI = static_cast<const HexagonRegisterInfo *>(
+ TM->getSubtargetImpl()->getRegisterInfo());
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I) {
@@ -537,16 +540,16 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
return nullptr;
switch (CondOpc) {
- case Hexagon::CMPEQri:
- case Hexagon::CMPEQrr:
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpeq:
Cmp = !Negated ? Comparison::EQ : Comparison::NE;
break;
- case Hexagon::CMPGTUri:
- case Hexagon::CMPGTUrr:
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C2_cmpgtu:
Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
break;
- case Hexagon::CMPGTri:
- case Hexagon::CMPGTrr:
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgt:
Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
break;
// Very limited support for byte/halfword compares.
@@ -623,12 +626,12 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
// If so, use the immediate value rather than the register.
if (Start->isReg()) {
const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
- if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI)
+ if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi)
Start = &StartValInstr->getOperand(1);
}
if (End->isReg()) {
const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
- if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI)
+ if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi)
End = &EndValInstr->getOperand(1);
}
@@ -778,7 +781,7 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
DistR = End->getReg();
DistSR = End->getSubReg();
} else {
- const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) :
+ const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
(RegToImm ? TII->get(Hexagon::SUB_ri) :
TII->get(Hexagon::ADD_ri));
unsigned SubR = MRI->createVirtualRegister(IntRC);
@@ -829,7 +832,7 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
// Generate NormR = LSR DistR, Shift.
unsigned LsrR = MRI->createVirtualRegister(IntRC);
- const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri);
+ const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
.addReg(AdjR, 0, AdjSR)
.addImm(Shift);
@@ -1083,7 +1086,7 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
.addReg(TripCount->getReg(), 0, TripCount->getSubReg());
// Add the Loop instruction to the beginning of the loop.
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
.addMBB(LoopStart)
.addReg(CountReg);
} else {
@@ -1092,14 +1095,14 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
// if the immediate fits in the instructions. Otherwise, we need to
// create a new virtual register.
int64_t CountImm = TripCount->getImm();
- if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) {
+ if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) {
unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg)
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
.addImm(CountImm);
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
.addMBB(LoopStart).addReg(CountReg);
} else
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i))
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i))
.addMBB(LoopStart).addImm(CountImm);
}
@@ -1119,8 +1122,8 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
// The loop ends with either:
// - a conditional branch followed by an unconditional branch, or
// - a conditional branch to the loop start.
- if (LastI->getOpcode() == Hexagon::JMP_t ||
- LastI->getOpcode() == Hexagon::JMP_f) {
+ if (LastI->getOpcode() == Hexagon::J2_jumpt ||
+ LastI->getOpcode() == Hexagon::J2_jumpf) {
// Delete one and change/add an uncond. branch to out of the loop.
MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
LastI = LastMBB->erase(LastI);
@@ -1191,8 +1194,8 @@ MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
MachineInstr *DI = MRI->getVRegDef(R);
unsigned DOpc = DI->getOpcode();
switch (DOpc) {
- case Hexagon::TFRI:
- case Hexagon::TFRI64:
+ case Hexagon::A2_tfrsi:
+ case Hexagon::A2_tfrpi:
case Hexagon::CONST32_Int_Real:
case Hexagon::CONST64_Int_Real:
return DI;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
index dabe650..ea3a177 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
@@ -320,38 +320,38 @@ static unsigned doesIntrinsicContainPredicate(unsigned ID)
default:
return 0;
case Intrinsic::hexagon_C2_tfrpr:
- return Hexagon::TFR_RsPd;
+ return Hexagon::C2_tfrpr;
case Intrinsic::hexagon_C2_and:
- return Hexagon::AND_pp;
+ return Hexagon::C2_and;
case Intrinsic::hexagon_C2_xor:
- return Hexagon::XOR_pp;
+ return Hexagon::C2_xor;
case Intrinsic::hexagon_C2_or:
- return Hexagon::OR_pp;
+ return Hexagon::C2_or;
case Intrinsic::hexagon_C2_not:
- return Hexagon::NOT_p;
+ return Hexagon::C2_not;
case Intrinsic::hexagon_C2_any8:
- return Hexagon::ANY_pp;
+ return Hexagon::C2_any8;
case Intrinsic::hexagon_C2_all8:
- return Hexagon::ALL_pp;
+ return Hexagon::C2_all8;
case Intrinsic::hexagon_C2_vitpack:
- return Hexagon::VITPACK_pp;
+ return Hexagon::C2_vitpack;
case Intrinsic::hexagon_C2_mask:
- return Hexagon::MASK_p;
+ return Hexagon::C2_mask;
case Intrinsic::hexagon_C2_mux:
- return Hexagon::MUX_rr;
+ return Hexagon::C2_mux;
// Mapping hexagon_C2_muxir to MUX_pri. This is pretty weird - but
// that's how it's mapped in q6protos.h.
case Intrinsic::hexagon_C2_muxir:
- return Hexagon::MUX_ri;
+ return Hexagon::C2_muxri;
// Mapping hexagon_C2_muxri to MUX_pir. This is pretty weird - but
// that's how it's mapped in q6protos.h.
case Intrinsic::hexagon_C2_muxri:
- return Hexagon::MUX_ir;
+ return Hexagon::C2_muxir;
case Intrinsic::hexagon_C2_muxii:
- return Hexagon::MUX_ii;
+ return Hexagon::C2_muxii;
case Intrinsic::hexagon_C2_vmux:
return Hexagon::VMUX_prr64;
case Intrinsic::hexagon_S2_valignrb:
@@ -404,10 +404,10 @@ SDNode *HexagonDAGToDAGISel::SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl) {
dl, PointerTy,
TargAddr);
// Figure out base + offset opcode
- if (LoadedVT == MVT::i64) Opcode = Hexagon::LDrid_indexed;
- else if (LoadedVT == MVT::i32) Opcode = Hexagon::LDriw_indexed;
- else if (LoadedVT == MVT::i16) Opcode = Hexagon::LDrih_indexed;
- else if (LoadedVT == MVT::i8) Opcode = Hexagon::LDrib_indexed;
+ if (LoadedVT == MVT::i64) Opcode = Hexagon::L2_loadrd_io;
+ else if (LoadedVT == MVT::i32) Opcode = Hexagon::L2_loadri_io;
+ else if (LoadedVT == MVT::i16) Opcode = Hexagon::L2_loadrh_io;
+ else if (LoadedVT == MVT::i8) Opcode = Hexagon::L2_loadrb_io;
else llvm_unreachable("unknown memory type");
// Build indexed load.
@@ -446,14 +446,14 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
N1.getNode()->getValueType(0) == MVT::i32) {
- const HexagonInstrInfo *TII =
- static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
MVT::Other, Base, TargetConst,
Chain);
- SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl, MVT::i64,
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
SDValue(Result_1, 0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
@@ -474,7 +474,7 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other, Base, TargetConst0,
Chain);
- SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl,
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl,
MVT::i64, SDValue(Result_1, 0));
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl,
MVT::i32, Base, TargetConstVal,
@@ -513,17 +513,17 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
N1.getNode()->getValueType(0) == MVT::i32) {
- const HexagonInstrInfo *TII =
- static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::i32, MVT::Other, Base,
TargetConstVal, Chain);
- SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32,
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
TargetConst0);
- SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl,
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2,0),
SDValue(Result_1,0));
@@ -548,9 +548,9 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other,
Base, TargetConst0, Chain);
- SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32,
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
TargetConst0);
- SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl,
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2,0),
SDValue(Result_1,0));
@@ -591,28 +591,28 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
bool zextval = (LD->getExtensionType() == ISD::ZEXTLOAD);
// Figure out the opcode.
- const HexagonInstrInfo *TII =
- static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
if (LoadedVT == MVT::i64) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
- Opcode = Hexagon::POST_LDrid;
+ Opcode = Hexagon::L2_loadrd_pi;
else
- Opcode = Hexagon::LDrid;
+ Opcode = Hexagon::L2_loadrd_io;
} else if (LoadedVT == MVT::i32) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
- Opcode = Hexagon::POST_LDriw;
+ Opcode = Hexagon::L2_loadri_pi;
else
- Opcode = Hexagon::LDriw;
+ Opcode = Hexagon::L2_loadri_io;
} else if (LoadedVT == MVT::i16) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
- Opcode = zextval ? Hexagon::POST_LDriuh : Hexagon::POST_LDrih;
+ Opcode = zextval ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
else
- Opcode = zextval ? Hexagon::LDriuh : Hexagon::LDrih;
+ Opcode = zextval ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
} else if (LoadedVT == MVT::i8) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
- Opcode = zextval ? Hexagon::POST_LDriub : Hexagon::POST_LDrib;
+ Opcode = zextval ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
else
- Opcode = zextval ? Hexagon::LDriub : Hexagon::LDrib;
+ Opcode = zextval ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
} else
llvm_unreachable("unknown memory type");
@@ -701,18 +701,18 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
// Offset value must be within representable range
// and must have correct alignment properties.
- const HexagonInstrInfo *TII =
- static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
if (TII->isValidAutoIncImm(StoredVT, Val)) {
SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value,
Chain};
unsigned Opcode = 0;
// Figure out the post inc version of opcode.
- if (StoredVT == MVT::i64) Opcode = Hexagon::POST_STdri;
- else if (StoredVT == MVT::i32) Opcode = Hexagon::POST_STwri;
- else if (StoredVT == MVT::i16) Opcode = Hexagon::POST_SThri;
- else if (StoredVT == MVT::i8) Opcode = Hexagon::POST_STbri;
+ if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
else llvm_unreachable("unknown memory type");
// Build post increment store.
@@ -735,10 +735,10 @@ SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
unsigned Opcode = 0;
// Figure out the opcode.
- if (StoredVT == MVT::i64) Opcode = Hexagon::STrid;
- else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed;
- else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih;
- else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib;
+ if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
else llvm_unreachable("unknown memory type");
// Build regular store.
@@ -788,10 +788,10 @@ SDNode *HexagonDAGToDAGISel::SelectBaseOffsetStore(StoreSDNode *ST,
TargAddr);
// Figure out base + offset opcode
- if (StoredVT == MVT::i64) Opcode = Hexagon::STrid_indexed;
- else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed;
- else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih_indexed;
- else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib_indexed;
+ if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
else llvm_unreachable("unknown memory type");
SDValue Ops[] = {SDValue(NewBase,0),
@@ -865,7 +865,7 @@ SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
- OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
@@ -891,7 +891,7 @@ SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
- OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
@@ -900,7 +900,7 @@ SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
}
// Generate a mpy instruction.
- SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY64, dl, MVT::i64,
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
OP0, OP1);
ReplaceUses(N, Result);
return Result;
@@ -934,9 +934,9 @@ SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) {
if (N000 == N2 &&
N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
- SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl,
+ SDNode *SextNode = CurDAG->getMachineNode(Hexagon::A2_sxth, dl,
MVT::i32, N000);
- SDNode *Result = CurDAG->getMachineNode(Hexagon::MAXw_rr, dl,
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::A2_max, dl,
MVT::i32,
SDValue(SextNode, 0),
N1);
@@ -958,9 +958,9 @@ SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) {
if (N000 == N2 &&
N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
- SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl,
+ SDNode *SextNode = CurDAG->getMachineNode(Hexagon::A2_sxth, dl,
MVT::i32, N000);
- SDNode *Result = CurDAG->getMachineNode(Hexagon::MINw_rr, dl,
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::A2_min, dl,
MVT::i32,
SDValue(SextNode, 0),
N1);
@@ -1045,7 +1045,7 @@ SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) {
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
- OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(),
TargetConst0, Chain), 0);
@@ -1070,7 +1070,7 @@ SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) {
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
- OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
+ OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(),
TargetConst0, Chain), 0);
@@ -1079,7 +1079,7 @@ SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) {
}
// Generate a mpy instruction.
- SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY, dl, MVT::i32,
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpy_up, dl, MVT::i32,
OP0, OP1);
ReplaceUses(N, Result);
return Result;
@@ -1112,7 +1112,7 @@ SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
- CurDAG->getMachineNode(Hexagon::MPYI_ri, dl,
+ CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
MVT::i32, Mul_0, Val);
ReplaceUses(N, Result);
return Result;
@@ -1140,7 +1140,7 @@ SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
- CurDAG->getMachineNode(Hexagon::MPYI_ri, dl, MVT::i32,
+ CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
Shl2_0, Val);
ReplaceUses(N, Result);
return Result;
@@ -1177,13 +1177,13 @@ SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
if (N->getValueType(0) == MVT::i64) {
// Convert the zero_extend to Rs = Pd followed by COMBINE_rr(0,Rs).
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
- SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl,
+ SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
- SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl,
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
MVT::i32,
TargetConst0);
- SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl,
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2, 0),
SDValue(Result_1, 0));
@@ -1192,7 +1192,7 @@ SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
}
if (N->getValueType(0) == MVT::i32) {
// Convert the zero_extend to Rs = Pd
- SDNode* RsPd = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl,
+ SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
ReplaceUses(N, RsPd);
@@ -1218,10 +1218,10 @@ SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
// as at least one of the operands.
if (IntrinsicWithPred) {
SmallVector<SDValue, 8> Ops;
- const HexagonInstrInfo *TII =
- static_cast<const HexagonInstrInfo*>(TM.getInstrInfo());
+ const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
const MCInstrDesc &MCID = TII->get(IntrinsicWithPred);
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
// Iterate over all the operands of the intrinsics.
// For PredRegs, do the transfer.
@@ -1236,7 +1236,7 @@ SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
Ops.push_back(SDValue(Arg, 0));
} else if (RC == &Hexagon::PredRegsRegClass) {
// Do the transfer.
- SDNode *PdRs = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1,
+ SDNode *PdRs = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::i1,
SDValue(Arg, 0));
Ops.push_back(SDValue(PdRs,0));
} else if (!RC && (dyn_cast<ConstantSDNode>(Arg) != nullptr)) {
@@ -1289,19 +1289,19 @@ SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
if (Val == -1) {
// Create the IntReg = 1 node.
SDNode* IntRegTFR =
- CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32,
+ CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
CurDAG->getTargetConstant(0, MVT::i32));
// Pd = IntReg
- SDNode* Pd = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1,
+ SDNode* Pd = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::i1,
SDValue(IntRegTFR, 0));
// not(Pd)
- SDNode* NotPd = CurDAG->getMachineNode(Hexagon::NOT_p, dl, MVT::i1,
+ SDNode* NotPd = CurDAG->getMachineNode(Hexagon::C2_not, dl, MVT::i1,
SDValue(Pd, 0));
// xor(not(Pd))
- Result = CurDAG->getMachineNode(Hexagon::XOR_pp, dl, MVT::i1,
+ Result = CurDAG->getMachineNode(Hexagon::C2_xor, dl, MVT::i1,
SDValue(Pd, 0), SDValue(NotPd, 0));
// We have just built:
@@ -1334,7 +1334,7 @@ SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
// Rd and Rd' are assigned to the same register
- SDNode* Result = CurDAG->getMachineNode(Hexagon::ASR_ADD_rr, dl, MVT::i32,
+ SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
N->getOperand(1),
Src1->getOperand(0),
Src1->getOperand(1));
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
index a460ea4..ef5d6b9 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
@@ -51,9 +51,9 @@ class HexagonCCState : public CCState {
public:
HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
- const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
- LLVMContext &C, int NumNamedVarArgParams)
- : CCState(CC, isVarArg, MF, TM, locs, C),
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
+ int NumNamedVarArgParams)
+ : CCState(CC, isVarArg, MF, locs, C),
NumNamedVarArgParams(NumNamedVarArgParams) {}
int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
@@ -322,8 +322,8 @@ HexagonTargetLowering::LowerReturn(SDValue Chain,
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
// Analyze return values of ISD::RET
CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
@@ -372,8 +372,8 @@ HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
@@ -427,9 +427,8 @@ HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext(),
- NumNamedVarArgParams);
+ HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), NumNamedVarArgParams);
if (NumNamedVarArgParams > 0)
CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
@@ -464,7 +463,7 @@ HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVector<SDValue, 8> MemOpChains;
const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
- DAG.getTarget().getRegisterInfo());
+ DAG.getSubtarget().getRegisterInfo());
SDValue StackPtr =
DAG.getCopyFromReg(Chain, dl, QRI->getStackRegister(), getPointerTy());
@@ -723,7 +722,7 @@ SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
// Check it to be lr
const HexagonRegisterInfo *QRI =
static_cast<const HexagonRegisterInfo *>(
- DAG.getTarget().getRegisterInfo());
+ DAG.getSubtarget().getRegisterInfo());
if (Reg == QRI->getRARegister()) {
FuncInfo->setHasClobberLR(true);
break;
@@ -817,7 +816,7 @@ HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
// The Sub result contains the new stack start address, so it
// must be placed in the stack pointer register.
const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
- DAG.getTarget().getRegisterInfo());
+ DAG.getSubtarget().getRegisterInfo());
SDValue CopyChain = DAG.getCopyToReg(Chain, dl, QRI->getStackRegister(), Sub);
SDValue Ops[2] = { ArgAdjust, CopyChain };
@@ -843,8 +842,8 @@ const {
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
@@ -964,7 +963,7 @@ HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setReturnAddressIsTaken(true);
@@ -990,8 +989,8 @@ HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
- const HexagonRegisterInfo *TRI =
- static_cast<const HexagonRegisterInfo *>(DAG.getTarget().getRegisterInfo());
+ const HexagonRegisterInfo *TRI = static_cast<const HexagonRegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
@@ -1044,7 +1043,7 @@ HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
//===----------------------------------------------------------------------===//
HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
- : TargetLowering(targetmachine, new HexagonTargetObjectFile()),
+ : TargetLowering(targetmachine),
TM(targetmachine) {
const HexagonSubtarget &Subtarget = TM.getSubtarget<HexagonSubtarget>();
@@ -1302,9 +1301,11 @@ HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// Turn FP extload into load/fextend.
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ for (MVT VT : MVT::fp_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
// Hexagon has a i1 sign extending load.
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
@@ -1453,8 +1454,8 @@ HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
setMinFunctionAlignment(2);
// Needed for DYNAMIC_STACKALLOC expansion.
- const HexagonRegisterInfo *QRI =
- static_cast<const HexagonRegisterInfo *>(TM.getRegisterInfo());
+ const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
setStackPointerRegisterToSaveRestore(QRI->getStackRegister());
setSchedulingPreference(Sched::VLIW);
}
@@ -1706,3 +1707,17 @@ bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
// information is not available.
return true;
}
+
+// Return true when the given node fits in a positive half word.
+bool llvm::isPositiveHalfWord(SDNode *N) {
+ ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
+ if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
+ return true;
+
+ switch (N->getOpcode()) {
+ default:
+ return false;
+ case ISD::SIGN_EXTEND_INREG:
+ return true;
+ }
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h
index ec16cc8..d03b1b8 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef Hexagon_ISELLOWERING_H
-#define Hexagon_ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
#include "Hexagon.h"
#include "llvm/CodeGen/CallingConvLower.h"
@@ -21,6 +21,10 @@
#include "llvm/Target/TargetLowering.h"
namespace llvm {
+
+// Return true when the given node fits in a positive half word.
+bool isPositiveHalfWord(SDNode *N);
+
namespace HexagonISD {
enum {
FIRST_NUMBER = ISD::BUILTIN_OP_END,
@@ -48,7 +52,9 @@ namespace llvm {
CALL, // A call instruction.
RET_FLAG, // Return with a flag operand.
BR_JT, // Jump table.
- BARRIER, // Memory barrier.
+ BARRIER, // Memory barrier
+ POPCOUNT,
+ COMBINE,
WrapperJT,
WrapperCP,
WrapperCombineII,
@@ -63,7 +69,8 @@ namespace llvm {
WrapperShuffOB,
WrapperShuffOH,
TC_RETURN,
- EH_RETURN
+ EH_RETURN,
+ DCFETCH
};
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td
index 1057343..8373652 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormats.td
@@ -92,12 +92,18 @@ class InstHexagon<dag outs, dag ins, string asmstr, list<dag> pattern,
let AsmString = asmstr;
let Pattern = pattern;
let Constraints = cstr;
- let Itinerary = itin;
- let Size = 4;
-
- // *** Must match MCTargetDesc/HexagonBaseInfo.h ***
-
- // Instruction type according to the ISA.
+ let Itinerary = itin;
+ let Size = 4;
+
+ // SoftFail is a field the disassembler can use to provide a way for
+ // instructions to not match without killing the whole decode process. It is
+ // mainly used for ARM, but Tablegen expects this field to exist or it fails
+ // to build the decode table.
+ field bits<32> SoftFail = 0;
+
+ // *** Must match MCTargetDesc/HexagonBaseInfo.h ***
+
+ // Instruction type according to the ISA.
IType Type = type;
let TSFlags{4-0} = Type.Value;
@@ -180,12 +186,13 @@ class InstHexagon<dag outs, dag ins, string asmstr, list<dag> pattern,
string InputType = ""; // Input is "imm" or "reg" type.
string isMEMri = "false"; // Set to "true" for load/store with MEMri operand.
string isFloat = "false"; // Set to "true" for the floating-point load/store.
- string isBrTaken = ""; // Set to "true"/"false" for jump instructions
+ string isBrTaken = !if(isTaken, "true", "false"); // Set to "true"/"false" for jump instructions
let PredSense = !if(isPredicated, !if(isPredicatedFalse, "false", "true"),
"");
let PNewValue = !if(isPredicatedNew, "new", "");
let NValueST = !if(isNVStore, "true", "false");
+ let isCodeGenOnly = 1;
// *** Must match MCTargetDesc/HexagonBaseInfo.h ***
}
@@ -196,6 +203,7 @@ class InstHexagon<dag outs, dag ins, string asmstr, list<dag> pattern,
// LD Instruction Class in V2/V3/V4.
// Definition of the instruction class NOT CHANGED.
+let mayLoad = 1 in
class LDInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr = "", InstrItinClass itin = LD_tc_ld_SLOT01>
: InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeLD>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td
index d92f97b..5fec80b 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrFormatsV4.td
@@ -19,6 +19,7 @@
def TypeMEMOP : IType<9>;
def TypeNV : IType<10>;
+def TypeCOMPOUND : IType<12>;
def TypePREFIX : IType<30>;
//----------------------------------------------------------------------------//
@@ -65,3 +66,7 @@ let isCodeGenOnly = 1 in
class EXTENDERInst<dag outs, dag ins, string asmstr, list<dag> pattern = []>
: InstHexagon<outs, ins, asmstr, pattern, "", EXTENDER_tc_1_SLOT0123,
TypePREFIX>;
+
+class CJInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
+ string cstr = "">
+ : InstHexagon<outs, ins, asmstr, pattern, cstr, COMPOUND, TypeCOMPOUND>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
index 1c95e06..5d96259 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
@@ -78,11 +78,11 @@ unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
switch (MI->getOpcode()) {
default: break;
- case Hexagon::LDriw:
- case Hexagon::LDrid:
- case Hexagon::LDrih:
- case Hexagon::LDrib:
- case Hexagon::LDriub:
+ case Hexagon::L2_loadri_io:
+ case Hexagon::L2_loadrd_io:
+ case Hexagon::L2_loadrh_io:
+ case Hexagon::L2_loadrb_io:
+ case Hexagon::L2_loadrub_io:
if (MI->getOperand(2).isFI() &&
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
FrameIndex = MI->getOperand(2).getIndex();
@@ -103,10 +103,10 @@ unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
- case Hexagon::STriw:
- case Hexagon::STrid:
- case Hexagon::STrih:
- case Hexagon::STrib:
+ case Hexagon::S2_storeri_io:
+ case Hexagon::S2_storerd_io:
+ case Hexagon::S2_storerh_io:
+ case Hexagon::S2_storerb_io:
if (MI->getOperand(2).isFI() &&
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
FrameIndex = MI->getOperand(0).getIndex();
@@ -124,8 +124,8 @@ HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const{
- int BOpc = Hexagon::JMP;
- int BccOpc = Hexagon::JMP_t;
+ int BOpc = Hexagon::J2_jump;
+ int BccOpc = Hexagon::J2_jumpt;
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
@@ -134,7 +134,7 @@ HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
// If we want to reverse the branch an odd number of times, we want
// JMP_f.
if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
- BccOpc = Hexagon::JMP_f;
+ BccOpc = Hexagon::J2_jumpf;
regPos = 1;
}
@@ -213,7 +213,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
}
// Delete the JMP if it's equivalent to a fall-through.
- if (AllowModify && I->getOpcode() == Hexagon::JMP &&
+ if (AllowModify && I->getOpcode() == Hexagon::J2_jump &&
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
I->eraseFromParent();
@@ -249,7 +249,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
// If there is only one terminator instruction, process it.
if (LastInst && !SecondLastInst) {
- if (LastOpcode == Hexagon::JMP) {
+ if (LastOpcode == Hexagon::J2_jump) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
@@ -274,7 +274,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
- if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
+ if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
TBB = SecondLastInst->getOperand(1).getMBB();
if (SecLastOpcodeHasNot)
Cond.push_back(MachineOperand::CreateImm(0));
@@ -285,7 +285,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
// executed, so remove it.
- if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
+ if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
@@ -295,7 +295,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
// If the block ends with an ENDLOOP, and JMP, handle it.
if (SecLastOpcode == Hexagon::ENDLOOP0 &&
- LastOpcode == Hexagon::JMP) {
+ LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
@@ -308,9 +308,9 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
- int BOpc = Hexagon::JMP;
- int BccOpc = Hexagon::JMP_t;
- int BccOpcNot = Hexagon::JMP_f;
+ int BOpc = Hexagon::J2_jump;
+ int BccOpc = Hexagon::J2_jumpt;
+ int BccOpcNot = Hexagon::J2_jumpf;
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) return 0;
@@ -346,15 +346,15 @@ bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
// Set mask and the first source register.
switch (Opc) {
- case Hexagon::CMPEHexagon4rr:
- case Hexagon::CMPEQri:
- case Hexagon::CMPEQrr:
- case Hexagon::CMPGT64rr:
- case Hexagon::CMPGTU64rr:
- case Hexagon::CMPGTUri:
- case Hexagon::CMPGTUrr:
- case Hexagon::CMPGTri:
- case Hexagon::CMPGTrr:
+ case Hexagon::C2_cmpeqp:
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpgtp:
+ case Hexagon::C2_cmpgtup:
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgt:
SrcReg = MI->getOperand(1).getReg();
Mask = ~0;
break;
@@ -380,12 +380,12 @@ bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
// Set the value/second source register.
switch (Opc) {
- case Hexagon::CMPEHexagon4rr:
- case Hexagon::CMPEQrr:
- case Hexagon::CMPGT64rr:
- case Hexagon::CMPGTU64rr:
- case Hexagon::CMPGTUrr:
- case Hexagon::CMPGTrr:
+ case Hexagon::C2_cmpeqp:
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpgtp:
+ case Hexagon::C2_cmpgtup:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgt:
case Hexagon::CMPbEQrr_sbsb_V4:
case Hexagon::CMPbEQrr_ubub_V4:
case Hexagon::CMPbGTUrr_V4:
@@ -397,9 +397,9 @@ bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
SrcReg2 = MI->getOperand(2).getReg();
return true;
- case Hexagon::CMPEQri:
- case Hexagon::CMPGTUri:
- case Hexagon::CMPGTri:
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C2_cmpgti:
case Hexagon::CMPbEQri_V4:
case Hexagon::CMPbGTUri_V4:
case Hexagon::CMPhEQri_V4:
@@ -418,16 +418,16 @@ void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
- BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
- BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
// Map Pd = Ps to Pd = or(Ps, Ps).
- BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
+ BuildMI(MBB, I, DL, get(Hexagon::C2_or),
DestReg).addReg(SrcReg).addReg(SrcReg);
return;
}
@@ -436,31 +436,31 @@ void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// We can have an overlap between single and double reg: r1:0 = r0.
if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
// r1:0 = r0
- BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
+ BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Hexagon::subreg_hireg))).addImm(0);
} else {
// r1:0 = r1 or no overlap.
- BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
+ BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Hexagon::subreg_loreg))).addReg(SrcReg);
- BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
+ BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Hexagon::subreg_hireg))).addImm(0);
}
return;
}
- if (Hexagon::CRRegsRegClass.contains(DestReg) &&
+ if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
- BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
Hexagon::IntRegsRegClass.contains(DestReg)) {
- BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
+ BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
Hexagon::PredRegsRegClass.contains(DestReg)) {
- BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
+ BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
@@ -488,11 +488,11 @@ storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
Align);
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
- BuildMI(MBB, I, DL, get(Hexagon::STriw))
+ BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
- BuildMI(MBB, I, DL, get(Hexagon::STrid))
+ BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
@@ -533,10 +533,10 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
MFI.getObjectSize(FI),
Align);
if (RC == &Hexagon::IntRegsRegClass) {
- BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
+ BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (RC == &Hexagon::DoubleRegsRegClass) {
- BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
+ BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (RC == &Hexagon::PredRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
@@ -648,77 +648,67 @@ bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
const int Opc = MI->getOpcode();
switch(Opc) {
- case Hexagon::TFRI:
+ case Hexagon::A2_tfrsi:
return isInt<12>(MI->getOperand(1).getImm());
- case Hexagon::STrid:
- case Hexagon::STrid_indexed:
+ case Hexagon::S2_storerd_io:
return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
- case Hexagon::STriw:
- case Hexagon::STriw_indexed:
- case Hexagon::STriw_nv_V4:
+ case Hexagon::S2_storeri_io:
+ case Hexagon::S2_storerinew_io:
return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
- case Hexagon::STrih:
- case Hexagon::STrih_indexed:
- case Hexagon::STrih_nv_V4:
+ case Hexagon::S2_storerh_io:
+ case Hexagon::S2_storerhnew_io:
return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
- case Hexagon::STrib:
- case Hexagon::STrib_indexed:
- case Hexagon::STrib_nv_V4:
+ case Hexagon::S2_storerb_io:
+ case Hexagon::S2_storerbnew_io:
return isUInt<6>(MI->getOperand(1).getImm());
- case Hexagon::LDrid:
- case Hexagon::LDrid_indexed:
+ case Hexagon::L2_loadrd_io:
return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
- case Hexagon::LDriw:
- case Hexagon::LDriw_indexed:
+ case Hexagon::L2_loadri_io:
return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
- case Hexagon::LDrih:
- case Hexagon::LDriuh:
- case Hexagon::LDrih_indexed:
- case Hexagon::LDriuh_indexed:
+ case Hexagon::L2_loadrh_io:
+ case Hexagon::L2_loadruh_io:
return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
- case Hexagon::LDrib:
- case Hexagon::LDriub:
- case Hexagon::LDrib_indexed:
- case Hexagon::LDriub_indexed:
+ case Hexagon::L2_loadrb_io:
+ case Hexagon::L2_loadrub_io:
return isUInt<6>(MI->getOperand(2).getImm());
- case Hexagon::POST_LDrid:
+ case Hexagon::L2_loadrd_pi:
return isShiftedInt<4,3>(MI->getOperand(3).getImm());
- case Hexagon::POST_LDriw:
+ case Hexagon::L2_loadri_pi:
return isShiftedInt<4,2>(MI->getOperand(3).getImm());
- case Hexagon::POST_LDrih:
- case Hexagon::POST_LDriuh:
+ case Hexagon::L2_loadrh_pi:
+ case Hexagon::L2_loadruh_pi:
return isShiftedInt<4,1>(MI->getOperand(3).getImm());
- case Hexagon::POST_LDrib:
- case Hexagon::POST_LDriub:
+ case Hexagon::L2_loadrb_pi:
+ case Hexagon::L2_loadrub_pi:
return isInt<4>(MI->getOperand(3).getImm());
- case Hexagon::STrib_imm_V4:
- case Hexagon::STrih_imm_V4:
- case Hexagon::STriw_imm_V4:
+ case Hexagon::S4_storeirb_io:
+ case Hexagon::S4_storeirh_io:
+ case Hexagon::S4_storeiri_io:
return (isUInt<6>(MI->getOperand(1).getImm()) &&
isInt<6>(MI->getOperand(2).getImm()));
case Hexagon::ADD_ri:
return isInt<8>(MI->getOperand(2).getImm());
- case Hexagon::ASLH:
- case Hexagon::ASRH:
- case Hexagon::SXTB:
- case Hexagon::SXTH:
- case Hexagon::ZXTB:
- case Hexagon::ZXTH:
+ case Hexagon::A2_aslh:
+ case Hexagon::A2_asrh:
+ case Hexagon::A2_sxtb:
+ case Hexagon::A2_sxth:
+ case Hexagon::A2_zxtb:
+ case Hexagon::A2_zxth:
return Subtarget.hasV4TOps();
}
@@ -739,16 +729,16 @@ unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
switch(Opc) {
default: llvm_unreachable("Unexpected predicated instruction");
- case Hexagon::COMBINE_rr_cPt:
- return Hexagon::COMBINE_rr_cNotPt;
- case Hexagon::COMBINE_rr_cNotPt:
- return Hexagon::COMBINE_rr_cPt;
+ case Hexagon::C2_ccombinewt:
+ return Hexagon::C2_ccombinewf;
+ case Hexagon::C2_ccombinewf:
+ return Hexagon::C2_ccombinewt;
// Dealloc_return.
- case Hexagon::DEALLOC_RET_cPt_V4:
- return Hexagon::DEALLOC_RET_cNotPt_V4;
- case Hexagon::DEALLOC_RET_cNotPt_V4:
- return Hexagon::DEALLOC_RET_cPt_V4;
+ case Hexagon::L4_return_t:
+ return Hexagon::L4_return_f;
+ case Hexagon::L4_return_f:
+ return Hexagon::L4_return_t;
}
}
@@ -780,22 +770,22 @@ getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
case Hexagon::TFRI_f:
return !invertPredicate ? Hexagon::TFRI_cPt_f :
Hexagon::TFRI_cNotPt_f;
- case Hexagon::COMBINE_rr:
- return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
- Hexagon::COMBINE_rr_cNotPt;
+ case Hexagon::A2_combinew:
+ return !invertPredicate ? Hexagon::C2_ccombinewt :
+ Hexagon::C2_ccombinewf;
// Word.
case Hexagon::STriw_f:
- return !invertPredicate ? Hexagon::STriw_cPt :
- Hexagon::STriw_cNotPt;
+ return !invertPredicate ? Hexagon::S2_pstorerit_io:
+ Hexagon::S2_pstorerif_io;
case Hexagon::STriw_indexed_f:
- return !invertPredicate ? Hexagon::STriw_indexed_cPt :
- Hexagon::STriw_indexed_cNotPt;
+ return !invertPredicate ? Hexagon::S2_pstorerit_io:
+ Hexagon::S2_pstorerif_io;
// DEALLOC_RETURN.
- case Hexagon::DEALLOC_RET_V4:
- return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
- Hexagon::DEALLOC_RET_cNotPt_V4;
+ case Hexagon::L4_return:
+ return !invertPredicate ? Hexagon::L4_return_t:
+ Hexagon::L4_return_f;
}
llvm_unreachable("Unexpected predicable instruction");
}
@@ -901,7 +891,7 @@ PredicateInstruction(MachineInstr *MI,
continue;
}
else {
- assert(false && "Unexpected operand type");
+ llvm_unreachable("Unexpected operand type");
}
}
}
@@ -1082,13 +1072,13 @@ isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
- case Hexagon::DEALLOC_RET_V4 :
- case Hexagon::DEALLOC_RET_cPt_V4 :
- case Hexagon::DEALLOC_RET_cNotPt_V4 :
- case Hexagon::DEALLOC_RET_cdnPnt_V4 :
- case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
- case Hexagon::DEALLOC_RET_cdnPt_V4 :
- case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
+ case Hexagon::L4_return:
+ case Hexagon::L4_return_t:
+ case Hexagon::L4_return_f:
+ case Hexagon::L4_return_tnew_pnt:
+ case Hexagon::L4_return_fnew_pnt:
+ case Hexagon::L4_return_tnew_pt:
+ case Hexagon::L4_return_fnew_pt:
return true;
}
}
@@ -1107,33 +1097,29 @@ isValidOffset(const int Opcode, const int Offset) const {
switch(Opcode) {
- case Hexagon::LDriw:
- case Hexagon::LDriw_indexed:
+ case Hexagon::L2_loadri_io:
case Hexagon::LDriw_f:
- case Hexagon::STriw_indexed:
- case Hexagon::STriw:
+ case Hexagon::S2_storeri_io:
case Hexagon::STriw_f:
return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
(Offset <= Hexagon_MEMW_OFFSET_MAX);
- case Hexagon::LDrid:
- case Hexagon::LDrid_indexed:
+ case Hexagon::L2_loadrd_io:
case Hexagon::LDrid_f:
- case Hexagon::STrid:
- case Hexagon::STrid_indexed:
+ case Hexagon::S2_storerd_io:
case Hexagon::STrid_f:
return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
(Offset <= Hexagon_MEMD_OFFSET_MAX);
- case Hexagon::LDrih:
- case Hexagon::LDriuh:
- case Hexagon::STrih:
+ case Hexagon::L2_loadrh_io:
+ case Hexagon::L2_loadruh_io:
+ case Hexagon::S2_storerh_io:
return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
(Offset <= Hexagon_MEMH_OFFSET_MAX);
- case Hexagon::LDrib:
- case Hexagon::STrib:
- case Hexagon::LDriub:
+ case Hexagon::L2_loadrb_io:
+ case Hexagon::S2_storerb_io:
+ case Hexagon::L2_loadrub_io:
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
(Offset <= Hexagon_MEMB_OFFSET_MAX);
@@ -1142,28 +1128,28 @@ isValidOffset(const int Opcode, const int Offset) const {
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
(Offset <= Hexagon_ADDI_OFFSET_MAX);
- case Hexagon::MemOPw_ADDi_V4 :
- case Hexagon::MemOPw_SUBi_V4 :
- case Hexagon::MemOPw_ADDr_V4 :
- case Hexagon::MemOPw_SUBr_V4 :
- case Hexagon::MemOPw_ANDr_V4 :
- case Hexagon::MemOPw_ORr_V4 :
+ case Hexagon::L4_iadd_memopw_io:
+ case Hexagon::L4_isub_memopw_io:
+ case Hexagon::L4_add_memopw_io:
+ case Hexagon::L4_sub_memopw_io:
+ case Hexagon::L4_and_memopw_io:
+ case Hexagon::L4_or_memopw_io:
return (0 <= Offset && Offset <= 255);
- case Hexagon::MemOPh_ADDi_V4 :
- case Hexagon::MemOPh_SUBi_V4 :
- case Hexagon::MemOPh_ADDr_V4 :
- case Hexagon::MemOPh_SUBr_V4 :
- case Hexagon::MemOPh_ANDr_V4 :
- case Hexagon::MemOPh_ORr_V4 :
+ case Hexagon::L4_iadd_memoph_io:
+ case Hexagon::L4_isub_memoph_io:
+ case Hexagon::L4_add_memoph_io:
+ case Hexagon::L4_sub_memoph_io:
+ case Hexagon::L4_and_memoph_io:
+ case Hexagon::L4_or_memoph_io:
return (0 <= Offset && Offset <= 127);
- case Hexagon::MemOPb_ADDi_V4 :
- case Hexagon::MemOPb_SUBi_V4 :
- case Hexagon::MemOPb_ADDr_V4 :
- case Hexagon::MemOPb_SUBr_V4 :
- case Hexagon::MemOPb_ANDr_V4 :
- case Hexagon::MemOPb_ORr_V4 :
+ case Hexagon::L4_iadd_memopb_io:
+ case Hexagon::L4_isub_memopb_io:
+ case Hexagon::L4_add_memopb_io:
+ case Hexagon::L4_sub_memopb_io:
+ case Hexagon::L4_and_memopb_io:
+ case Hexagon::L4_or_memopb_io:
return (0 <= Offset && Offset <= 63);
// LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
@@ -1172,7 +1158,7 @@ isValidOffset(const int Opcode, const int Offset) const {
case Hexagon::LDriw_pred:
return true;
- case Hexagon::LOOP0_i:
+ case Hexagon::J2_loop0i:
return isUInt<10>(Offset);
// INLINEASM is very special.
@@ -1220,31 +1206,31 @@ isMemOp(const MachineInstr *MI) const {
switch (MI->getOpcode())
{
- default: return false;
- case Hexagon::MemOPw_ADDi_V4 :
- case Hexagon::MemOPw_SUBi_V4 :
- case Hexagon::MemOPw_ADDr_V4 :
- case Hexagon::MemOPw_SUBr_V4 :
- case Hexagon::MemOPw_ANDr_V4 :
- case Hexagon::MemOPw_ORr_V4 :
- case Hexagon::MemOPh_ADDi_V4 :
- case Hexagon::MemOPh_SUBi_V4 :
- case Hexagon::MemOPh_ADDr_V4 :
- case Hexagon::MemOPh_SUBr_V4 :
- case Hexagon::MemOPh_ANDr_V4 :
- case Hexagon::MemOPh_ORr_V4 :
- case Hexagon::MemOPb_ADDi_V4 :
- case Hexagon::MemOPb_SUBi_V4 :
- case Hexagon::MemOPb_ADDr_V4 :
- case Hexagon::MemOPb_SUBr_V4 :
- case Hexagon::MemOPb_ANDr_V4 :
- case Hexagon::MemOPb_ORr_V4 :
- case Hexagon::MemOPb_SETBITi_V4:
- case Hexagon::MemOPh_SETBITi_V4:
- case Hexagon::MemOPw_SETBITi_V4:
- case Hexagon::MemOPb_CLRBITi_V4:
- case Hexagon::MemOPh_CLRBITi_V4:
- case Hexagon::MemOPw_CLRBITi_V4:
+ default: return false;
+ case Hexagon::L4_iadd_memopw_io:
+ case Hexagon::L4_isub_memopw_io:
+ case Hexagon::L4_add_memopw_io:
+ case Hexagon::L4_sub_memopw_io:
+ case Hexagon::L4_and_memopw_io:
+ case Hexagon::L4_or_memopw_io:
+ case Hexagon::L4_iadd_memoph_io:
+ case Hexagon::L4_isub_memoph_io:
+ case Hexagon::L4_add_memoph_io:
+ case Hexagon::L4_sub_memoph_io:
+ case Hexagon::L4_and_memoph_io:
+ case Hexagon::L4_or_memoph_io:
+ case Hexagon::L4_iadd_memopb_io:
+ case Hexagon::L4_isub_memopb_io:
+ case Hexagon::L4_add_memopb_io:
+ case Hexagon::L4_sub_memopb_io:
+ case Hexagon::L4_and_memopb_io:
+ case Hexagon::L4_or_memopb_io:
+ case Hexagon::L4_ior_memopb_io:
+ case Hexagon::L4_ior_memoph_io:
+ case Hexagon::L4_ior_memopw_io:
+ case Hexagon::L4_iand_memopb_io:
+ case Hexagon::L4_iand_memoph_io:
+ case Hexagon::L4_iand_memopw_io:
return true;
}
return false;
@@ -1264,12 +1250,12 @@ isSpillPredRegOp(const MachineInstr *MI) const {
bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
- case Hexagon::CMPEQrr:
- case Hexagon::CMPEQri:
- case Hexagon::CMPGTrr:
- case Hexagon::CMPGTri:
- case Hexagon::CMPGTUrr:
- case Hexagon::CMPGTUri:
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgtui:
return true;
}
}
@@ -1278,51 +1264,71 @@ bool HexagonInstrInfo::
isConditionalTransfer (const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
- case Hexagon::TFR_cPt:
- case Hexagon::TFR_cNotPt:
- case Hexagon::TFRI_cPt:
- case Hexagon::TFRI_cNotPt:
- case Hexagon::TFR_cdnPt:
- case Hexagon::TFR_cdnNotPt:
- case Hexagon::TFRI_cdnPt:
- case Hexagon::TFRI_cdnNotPt:
+ case Hexagon::A2_tfrt:
+ case Hexagon::A2_tfrf:
+ case Hexagon::C2_cmoveit:
+ case Hexagon::C2_cmoveif:
+ case Hexagon::A2_tfrtnew:
+ case Hexagon::A2_tfrfnew:
+ case Hexagon::C2_cmovenewit:
+ case Hexagon::C2_cmovenewif:
return true;
}
}
bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
- const HexagonRegisterInfo& QRI = getRegisterInfo();
switch (MI->getOpcode())
{
default: return false;
+ case Hexagon::A2_paddf:
+ case Hexagon::A2_paddfnew:
+ case Hexagon::A2_paddt:
+ case Hexagon::A2_paddtnew:
+ case Hexagon::A2_pandf:
+ case Hexagon::A2_pandfnew:
+ case Hexagon::A2_pandt:
+ case Hexagon::A2_pandtnew:
+ case Hexagon::A4_paslhf:
+ case Hexagon::A4_paslhfnew:
+ case Hexagon::A4_paslht:
+ case Hexagon::A4_paslhtnew:
+ case Hexagon::A4_pasrhf:
+ case Hexagon::A4_pasrhfnew:
+ case Hexagon::A4_pasrht:
+ case Hexagon::A4_pasrhtnew:
+ case Hexagon::A2_porf:
+ case Hexagon::A2_porfnew:
+ case Hexagon::A2_port:
+ case Hexagon::A2_portnew:
+ case Hexagon::A2_psubf:
+ case Hexagon::A2_psubfnew:
+ case Hexagon::A2_psubt:
+ case Hexagon::A2_psubtnew:
+ case Hexagon::A2_pxorf:
+ case Hexagon::A2_pxorfnew:
+ case Hexagon::A2_pxort:
+ case Hexagon::A2_pxortnew:
+ case Hexagon::A4_psxthf:
+ case Hexagon::A4_psxthfnew:
+ case Hexagon::A4_psxtht:
+ case Hexagon::A4_psxthtnew:
+ case Hexagon::A4_psxtbf:
+ case Hexagon::A4_psxtbfnew:
+ case Hexagon::A4_psxtbt:
+ case Hexagon::A4_psxtbtnew:
+ case Hexagon::A4_pzxtbf:
+ case Hexagon::A4_pzxtbfnew:
+ case Hexagon::A4_pzxtbt:
+ case Hexagon::A4_pzxtbtnew:
+ case Hexagon::A4_pzxthf:
+ case Hexagon::A4_pzxthfnew:
+ case Hexagon::A4_pzxtht:
+ case Hexagon::A4_pzxthtnew:
case Hexagon::ADD_ri_cPt:
case Hexagon::ADD_ri_cNotPt:
- case Hexagon::ADD_rr_cPt:
- case Hexagon::ADD_rr_cNotPt:
- case Hexagon::XOR_rr_cPt:
- case Hexagon::XOR_rr_cNotPt:
- case Hexagon::AND_rr_cPt:
- case Hexagon::AND_rr_cNotPt:
- case Hexagon::OR_rr_cPt:
- case Hexagon::OR_rr_cNotPt:
- case Hexagon::SUB_rr_cPt:
- case Hexagon::SUB_rr_cNotPt:
- case Hexagon::COMBINE_rr_cPt:
- case Hexagon::COMBINE_rr_cNotPt:
+ case Hexagon::C2_ccombinewt:
+ case Hexagon::C2_ccombinewf:
return true;
- case Hexagon::ASLH_cPt_V4:
- case Hexagon::ASLH_cNotPt_V4:
- case Hexagon::ASRH_cPt_V4:
- case Hexagon::ASRH_cNotPt_V4:
- case Hexagon::SXTB_cPt_V4:
- case Hexagon::SXTB_cNotPt_V4:
- case Hexagon::SXTH_cPt_V4:
- case Hexagon::SXTH_cNotPt_V4:
- case Hexagon::ZXTB_cPt_V4:
- case Hexagon::ZXTB_cNotPt_V4:
- case Hexagon::ZXTH_cPt_V4:
- case Hexagon::ZXTH_cNotPt_V4:
- return QRI.Subtarget.hasV4TOps();
}
}
@@ -1332,56 +1338,44 @@ isConditionalLoad (const MachineInstr* MI) const {
switch (MI->getOpcode())
{
default: return false;
- case Hexagon::LDrid_cPt :
- case Hexagon::LDrid_cNotPt :
- case Hexagon::LDrid_indexed_cPt :
- case Hexagon::LDrid_indexed_cNotPt :
- case Hexagon::LDriw_cPt :
- case Hexagon::LDriw_cNotPt :
- case Hexagon::LDriw_indexed_cPt :
- case Hexagon::LDriw_indexed_cNotPt :
- case Hexagon::LDrih_cPt :
- case Hexagon::LDrih_cNotPt :
- case Hexagon::LDrih_indexed_cPt :
- case Hexagon::LDrih_indexed_cNotPt :
- case Hexagon::LDrib_cPt :
- case Hexagon::LDrib_cNotPt :
- case Hexagon::LDrib_indexed_cPt :
- case Hexagon::LDrib_indexed_cNotPt :
- case Hexagon::LDriuh_cPt :
- case Hexagon::LDriuh_cNotPt :
- case Hexagon::LDriuh_indexed_cPt :
- case Hexagon::LDriuh_indexed_cNotPt :
- case Hexagon::LDriub_cPt :
- case Hexagon::LDriub_cNotPt :
- case Hexagon::LDriub_indexed_cPt :
- case Hexagon::LDriub_indexed_cNotPt :
+ case Hexagon::L2_ploadrdt_io :
+ case Hexagon::L2_ploadrdf_io:
+ case Hexagon::L2_ploadrit_io:
+ case Hexagon::L2_ploadrif_io:
+ case Hexagon::L2_ploadrht_io:
+ case Hexagon::L2_ploadrhf_io:
+ case Hexagon::L2_ploadrbt_io:
+ case Hexagon::L2_ploadrbf_io:
+ case Hexagon::L2_ploadruht_io:
+ case Hexagon::L2_ploadruhf_io:
+ case Hexagon::L2_ploadrubt_io:
+ case Hexagon::L2_ploadrubf_io:
return true;
- case Hexagon::POST_LDrid_cPt :
- case Hexagon::POST_LDrid_cNotPt :
- case Hexagon::POST_LDriw_cPt :
- case Hexagon::POST_LDriw_cNotPt :
- case Hexagon::POST_LDrih_cPt :
- case Hexagon::POST_LDrih_cNotPt :
- case Hexagon::POST_LDrib_cPt :
- case Hexagon::POST_LDrib_cNotPt :
- case Hexagon::POST_LDriuh_cPt :
- case Hexagon::POST_LDriuh_cNotPt :
- case Hexagon::POST_LDriub_cPt :
- case Hexagon::POST_LDriub_cNotPt :
+ case Hexagon::L2_ploadrdt_pi:
+ case Hexagon::L2_ploadrdf_pi:
+ case Hexagon::L2_ploadrit_pi:
+ case Hexagon::L2_ploadrif_pi:
+ case Hexagon::L2_ploadrht_pi:
+ case Hexagon::L2_ploadrhf_pi:
+ case Hexagon::L2_ploadrbt_pi:
+ case Hexagon::L2_ploadrbf_pi:
+ case Hexagon::L2_ploadruht_pi:
+ case Hexagon::L2_ploadruhf_pi:
+ case Hexagon::L2_ploadrubt_pi:
+ case Hexagon::L2_ploadrubf_pi:
return QRI.Subtarget.hasV4TOps();
- case Hexagon::LDrid_indexed_shl_cPt_V4 :
- case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
- case Hexagon::LDrib_indexed_shl_cPt_V4 :
- case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
- case Hexagon::LDriub_indexed_shl_cPt_V4 :
- case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
- case Hexagon::LDrih_indexed_shl_cPt_V4 :
- case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
- case Hexagon::LDriuh_indexed_shl_cPt_V4 :
- case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
- case Hexagon::LDriw_indexed_shl_cPt_V4 :
- case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
+ case Hexagon::L4_ploadrdt_rr:
+ case Hexagon::L4_ploadrdf_rr:
+ case Hexagon::L4_ploadrbt_rr:
+ case Hexagon::L4_ploadrbf_rr:
+ case Hexagon::L4_ploadrubt_rr:
+ case Hexagon::L4_ploadrubf_rr:
+ case Hexagon::L4_ploadrht_rr:
+ case Hexagon::L4_ploadrhf_rr:
+ case Hexagon::L4_ploadruht_rr:
+ case Hexagon::L4_ploadruhf_rr:
+ case Hexagon::L4_ploadrit_rr:
+ case Hexagon::L4_ploadrif_rr:
return QRI.Subtarget.hasV4TOps();
}
}
@@ -1426,50 +1420,47 @@ isConditionalStore (const MachineInstr* MI) const {
switch (MI->getOpcode())
{
default: return false;
- case Hexagon::STrib_imm_cPt_V4 :
- case Hexagon::STrib_imm_cNotPt_V4 :
- case Hexagon::STrib_indexed_shl_cPt_V4 :
- case Hexagon::STrib_indexed_shl_cNotPt_V4 :
- case Hexagon::STrib_cPt :
- case Hexagon::STrib_cNotPt :
- case Hexagon::POST_STbri_cPt :
- case Hexagon::POST_STbri_cNotPt :
- case Hexagon::STrid_indexed_cPt :
- case Hexagon::STrid_indexed_cNotPt :
- case Hexagon::STrid_indexed_shl_cPt_V4 :
- case Hexagon::POST_STdri_cPt :
- case Hexagon::POST_STdri_cNotPt :
- case Hexagon::STrih_cPt :
- case Hexagon::STrih_cNotPt :
- case Hexagon::STrih_indexed_cPt :
- case Hexagon::STrih_indexed_cNotPt :
- case Hexagon::STrih_imm_cPt_V4 :
- case Hexagon::STrih_imm_cNotPt_V4 :
- case Hexagon::STrih_indexed_shl_cPt_V4 :
- case Hexagon::STrih_indexed_shl_cNotPt_V4 :
- case Hexagon::POST_SThri_cPt :
- case Hexagon::POST_SThri_cNotPt :
- case Hexagon::STriw_cPt :
- case Hexagon::STriw_cNotPt :
- case Hexagon::STriw_indexed_cPt :
- case Hexagon::STriw_indexed_cNotPt :
- case Hexagon::STriw_imm_cPt_V4 :
- case Hexagon::STriw_imm_cNotPt_V4 :
- case Hexagon::STriw_indexed_shl_cPt_V4 :
- case Hexagon::STriw_indexed_shl_cNotPt_V4 :
- case Hexagon::POST_STwri_cPt :
- case Hexagon::POST_STwri_cNotPt :
+ case Hexagon::S4_storeirbt_io:
+ case Hexagon::S4_storeirbf_io:
+ case Hexagon::S4_pstorerbt_rr:
+ case Hexagon::S4_pstorerbf_rr:
+ case Hexagon::S2_pstorerbt_io:
+ case Hexagon::S2_pstorerbf_io:
+ case Hexagon::S2_pstorerbt_pi:
+ case Hexagon::S2_pstorerbf_pi:
+ case Hexagon::S2_pstorerdt_io:
+ case Hexagon::S2_pstorerdf_io:
+ case Hexagon::S4_pstorerdt_rr:
+ case Hexagon::S4_pstorerdf_rr:
+ case Hexagon::S2_pstorerdt_pi:
+ case Hexagon::S2_pstorerdf_pi:
+ case Hexagon::S2_pstorerht_io:
+ case Hexagon::S2_pstorerhf_io:
+ case Hexagon::S4_storeirht_io:
+ case Hexagon::S4_storeirhf_io:
+ case Hexagon::S4_pstorerht_rr:
+ case Hexagon::S4_pstorerhf_rr:
+ case Hexagon::S2_pstorerht_pi:
+ case Hexagon::S2_pstorerhf_pi:
+ case Hexagon::S2_pstorerit_io:
+ case Hexagon::S2_pstorerif_io:
+ case Hexagon::S4_storeirit_io:
+ case Hexagon::S4_storeirif_io:
+ case Hexagon::S4_pstorerit_rr:
+ case Hexagon::S4_pstorerif_rr:
+ case Hexagon::S2_pstorerit_pi:
+ case Hexagon::S2_pstorerif_pi:
return QRI.Subtarget.hasV4TOps();
// V4 global address store before promoting to dot new.
- case Hexagon::STd_GP_cPt_V4 :
- case Hexagon::STd_GP_cNotPt_V4 :
- case Hexagon::STb_GP_cPt_V4 :
- case Hexagon::STb_GP_cNotPt_V4 :
- case Hexagon::STh_GP_cPt_V4 :
- case Hexagon::STh_GP_cNotPt_V4 :
- case Hexagon::STw_GP_cPt_V4 :
- case Hexagon::STw_GP_cNotPt_V4 :
+ case Hexagon::S4_pstorerdt_abs:
+ case Hexagon::S4_pstorerdf_abs:
+ case Hexagon::S4_pstorerbt_abs:
+ case Hexagon::S4_pstorerbf_abs:
+ case Hexagon::S4_pstorerht_abs:
+ case Hexagon::S4_pstorerhf_abs:
+ case Hexagon::S4_pstorerit_abs:
+ case Hexagon::S4_pstorerif_abs:
return QRI.Subtarget.hasV4TOps();
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
@@ -1565,10 +1556,10 @@ int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
return Hexagon::STrih_shl_nv_V4;
case Hexagon::STriw_f:
- return Hexagon::STriw_nv_V4;
+ return Hexagon::S2_storerinew_io;
case Hexagon::STriw_indexed_f:
- return Hexagon::STriw_indexed_nv_V4;
+ return Hexagon::S4_storerinew_rr;
case Hexagon::STriw_shl_V4:
return Hexagon::STriw_shl_nv_V4;
@@ -1589,28 +1580,28 @@ int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown .new type");
// Condtional Jumps
- case Hexagon::JMP_t:
- case Hexagon::JMP_f:
+ case Hexagon::J2_jumpt:
+ case Hexagon::J2_jumpf:
return getDotNewPredJumpOp(MI, MBPI);
- case Hexagon::JMPR_t:
- return Hexagon::JMPR_tnew_tV3;
+ case Hexagon::J2_jumprt:
+ return Hexagon::J2_jumptnewpt;
- case Hexagon::JMPR_f:
- return Hexagon::JMPR_fnew_tV3;
+ case Hexagon::J2_jumprf:
+ return Hexagon::J2_jumprfnewpt;
- case Hexagon::JMPret_t:
- return Hexagon::JMPret_tnew_tV3;
+ case Hexagon::JMPrett:
+ return Hexagon::J2_jumprtnewpt;
- case Hexagon::JMPret_f:
- return Hexagon::JMPret_fnew_tV3;
+ case Hexagon::JMPretf:
+ return Hexagon::J2_jumprfnewpt;
// Conditional combine
- case Hexagon::COMBINE_rr_cPt :
- return Hexagon::COMBINE_rr_cdnPt;
- case Hexagon::COMBINE_rr_cNotPt :
- return Hexagon::COMBINE_rr_cdnNotPt;
+ case Hexagon::C2_ccombinewt:
+ return Hexagon::C2_ccombinewnewt;
+ case Hexagon::C2_ccombinewf:
+ return Hexagon::C2_ccombinewnewf;
}
}
@@ -1636,11 +1627,10 @@ void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
}
-DFAPacketizer *HexagonInstrInfo::
-CreateTargetScheduleState(const TargetMachine *TM,
- const ScheduleDAG *DAG) const {
- const InstrItineraryData *II = TM->getInstrItineraryData();
- return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
+DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
+ const TargetSubtargetInfo &STI) const {
+ const InstrItineraryData *II = STI.getInstrItineraryData();
+ return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
}
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
@@ -1728,10 +1718,10 @@ HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
taken = true;
switch (MI->getOpcode()) {
- case Hexagon::JMP_t:
- return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
- case Hexagon::JMP_f:
- return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
+ case Hexagon::J2_jumpt:
+ return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
+ case Hexagon::J2_jumpf:
+ return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
default:
llvm_unreachable("Unexpected jump instruction.");
@@ -1765,7 +1755,7 @@ int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
- return -1 << (bits - 1);
+ return -1U << (bits - 1);
else
return 0;
}
@@ -1779,9 +1769,9 @@ int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
- return ~(-1 << (bits - 1));
+ return ~(-1U << (bits - 1));
else
- return ~(-1 << bits);
+ return ~(-1U << bits);
}
// Returns true if an instruction can be converted into a non-extended
@@ -1843,16 +1833,16 @@ short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
}
bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
- return (Opcode == Hexagon::JMP_t) ||
- (Opcode == Hexagon::JMP_f) ||
- (Opcode == Hexagon::JMP_tnew_t) ||
- (Opcode == Hexagon::JMP_fnew_t) ||
- (Opcode == Hexagon::JMP_tnew_nt) ||
- (Opcode == Hexagon::JMP_fnew_nt);
+ return (Opcode == Hexagon::J2_jumpt) ||
+ (Opcode == Hexagon::J2_jumpf) ||
+ (Opcode == Hexagon::J2_jumptnewpt) ||
+ (Opcode == Hexagon::J2_jumpfnewpt) ||
+ (Opcode == Hexagon::J2_jumpt) ||
+ (Opcode == Hexagon::J2_jumpf);
}
bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
- return (Opcode == Hexagon::JMP_f) ||
- (Opcode == Hexagon::JMP_fnew_t) ||
- (Opcode == Hexagon::JMP_fnew_nt);
+ return (Opcode == Hexagon::J2_jumpf) ||
+ (Opcode == Hexagon::J2_jumpfnewpt) ||
+ (Opcode == Hexagon::J2_jumpfnew);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h
index 6b032c9..6acfbec 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonINSTRUCTIONINFO_H
-#define HexagonINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
#include "HexagonRegisterInfo.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
@@ -148,9 +148,8 @@ public:
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
const BranchProbability &Probability) const override;
- DFAPacketizer*
- CreateTargetScheduleState(const TargetMachine *TM,
- const ScheduleDAG *DAG) const override;
+ DFAPacketizer *
+ CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
bool isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
index 4dcf101..7ce65f3 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
@@ -14,367 +14,606 @@
include "HexagonInstrFormats.td"
include "HexagonOperands.td"
+// Pattern fragment that combines the value type and the register class
+// into a single parameter.
+// The pat frags in the definitions below need to have a named register,
+// otherwise i32 will be assumed regardless of the register class. The
+// name of the register does not matter.
+def I1 : PatLeaf<(i1 PredRegs:$R)>;
+def I32 : PatLeaf<(i32 IntRegs:$R)>;
+def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
+def F32 : PatLeaf<(f32 IntRegs:$R)>;
+def F64 : PatLeaf<(f64 DoubleRegs:$R)>;
+
+// Pattern fragments to extract the low and high subregisters from a
+// 64-bit value.
+def LoReg: OutPatFrag<(ops node:$Rs),
+ (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>;
+
//===----------------------------------------------------------------------===//
-// Multi-class for logical operators.
-multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> {
- def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b),
- (i32 IntRegs:$c)))]>;
- def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")),
- [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b,
- (i32 IntRegs:$c)))]>;
-}
+//===----------------------------------------------------------------------===//
+// Compare
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1,
+ opExtendable = 2 in
+class T_CMP <string mnemonic, bits<2> MajOp, bit isNot, Operand ImmOp>
+ : ALU32Inst <(outs PredRegs:$dst),
+ (ins IntRegs:$src1, ImmOp:$src2),
+ "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)",
+ [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel {
+ bits<2> dst;
+ bits<5> src1;
+ bits<10> src2;
+ let CextOpcode = mnemonic;
+ let opExtentBits = !if(!eq(mnemonic, "cmp.gtu"), 9, 10);
+ let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1);
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0101;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9});
+ let Inst{20-16} = src1;
+ let Inst{13-5} = src2{8-0};
+ let Inst{4} = isNot;
+ let Inst{3-2} = 0b00;
+ let Inst{1-0} = dst;
+ }
-// Multi-class for compare ops.
-let isCompare = 1 in {
-multiclass CMP64_rr<string OpcStr, PatFrag OpNode> {
- def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>;
-}
+def C2_cmpeqi : T_CMP <"cmp.eq", 0b00, 0, s10Ext>;
+def C2_cmpgti : T_CMP <"cmp.gt", 0b01, 0, s10Ext>;
+def C2_cmpgtui : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>;
-multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> {
- let CextOpcode = CextOp in {
- let InputType = "reg" in
- def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred>
+ : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)),
+ (MI IntRegs:$src1, ImmPred:$src2)>;
- let isExtendable = 1, opExtendable = 2, isExtentSigned = 1,
- opExtentBits = 10, InputType = "imm" in
- def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>;
- }
-}
+def : T_CMP_pat <C2_cmpeqi, seteq, s10ImmPred>;
+def : T_CMP_pat <C2_cmpgti, setgt, s10ImmPred>;
+def : T_CMP_pat <C2_cmpgtui, setugt, u9ImmPred>;
-multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> {
- let CextOpcode = CextOp in {
- let InputType = "reg" in
- def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+//===----------------------------------------------------------------------===//
+// ALU32/ALU +
+//===----------------------------------------------------------------------===//
+def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
+ [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
- let isExtendable = 1, opExtendable = 2, isExtentSigned = 0,
- opExtentBits = 9, InputType = "imm" in
- def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
- [(set (i1 PredRegs:$dst),
- (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>;
- }
+def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
+
+let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in
+class T_ALU32_3op<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit OpsRev,
+ bit IsComm>
+ : ALU32_rr<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = "#mnemonic#"($Rs, $Rt)",
+ [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredRel {
+ let isCommutable = IsComm;
+ let BaseOpcode = mnemonic#_rr;
+ let CextOpcode = mnemonic;
+
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<5> Rd;
+
+ let IClass = 0b1111;
+ let Inst{27} = 0b0;
+ let Inst{26-24} = MajOp;
+ let Inst{23-21} = MinOp;
+ let Inst{20-16} = !if(OpsRev,Rt,Rs);
+ let Inst{12-8} = !if(OpsRev,Rs,Rt);
+ let Inst{4-0} = Rd;
}
-multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> {
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
- def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c),
- !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
- [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
- s8ExtPred:$c))]>;
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_ALU32_3op_pred<string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit OpsRev, bit PredNot, bit PredNew>
+ : ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
+ "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") "#
+ "$Rd = "#mnemonic#"($Rs, $Rt)",
+ [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
+ let isPredicated = 1;
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = PredNew;
+ let BaseOpcode = mnemonic#_rr;
+ let CextOpcode = mnemonic;
+
+ bits<2> Pu;
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<5> Rd;
+
+ let IClass = 0b1111;
+ let Inst{27} = 0b1;
+ let Inst{26-24} = MajOp;
+ let Inst{23-21} = MinOp;
+ let Inst{20-16} = !if(OpsRev,Rt,Rs);
+ let Inst{13} = PredNew;
+ let Inst{12-8} = !if(OpsRev,Rs,Rt);
+ let Inst{7} = PredNot;
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rd;
}
+
+class T_ALU32_combineh<string Op1, string Op2, bits<3> MajOp, bits<3> MinOp,
+ bit OpsRev>
+ : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> {
+ let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")";
}
-//===----------------------------------------------------------------------===//
-// ALU32/ALU (Instructions with register-register form)
-//===----------------------------------------------------------------------===//
-def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
- [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
+let isCodeGenOnly = 0 in {
+def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>;
+def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>;
+def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>;
+def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>;
+}
-def HexagonWrapperCombineII :
- SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>;
+class T_ALU32_3op_sfx<string mnemonic, string suffix, bits<3> MajOp,
+ bits<3> MinOp, bit OpsRev, bit IsComm>
+ : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> {
+ let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix;
+}
-def HexagonWrapperCombineRR :
- SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>;
+let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123,
+ isCodeGenOnly = 0 in {
+ def A2_addsat : T_ALU32_3op_sfx<"add", ":sat", 0b110, 0b010, 0, 1>;
+ def A2_subsat : T_ALU32_3op_sfx<"sub", ":sat", 0b110, 0b110, 1, 0>;
+}
-multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : ALU32_rr<(outs RC:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
- ") $dst = ")#mnemonic#"($src2, $src3)",
- []>;
+multiclass T_ALU32_3op_p<string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit OpsRev> {
+ def t : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 0>;
+ def f : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 1, 0>;
+ def tnew : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 1>;
+ def fnew : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 1, 1>;
}
-multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>;
- }
+multiclass T_ALU32_3op_A2<string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit OpsRev, bit IsComm> {
+ let isPredicable = 1 in
+ def A2_#NAME : T_ALU32_3op <mnemonic, MajOp, MinOp, OpsRev, IsComm>;
+ defm A2_p#NAME : T_ALU32_3op_p<mnemonic, MajOp, MinOp, OpsRev>;
}
-let InputType = "reg" in
-multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in {
- let isPredicable = 1 in
- def NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = "#mnemonic#"($src1, $src2)",
- [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
- let neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>;
- defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>;
- }
- }
+let isCodeGenOnly = 0 in {
+defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>;
+defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>;
+defm or : T_ALU32_3op_A2<"or", 0b001, 0b001, 0, 1>;
+defm sub : T_ALU32_3op_A2<"sub", 0b011, 0b001, 1, 0>;
+defm xor : T_ALU32_3op_A2<"xor", 0b001, 0b011, 0, 1>;
}
-let isCommutable = 1 in {
- defm ADD_rr : ALU32_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
- defm AND_rr : ALU32_base<"and", "AND", and>, ImmRegRel, PredNewRel;
- defm XOR_rr : ALU32_base<"xor", "XOR", xor>, ImmRegRel, PredNewRel;
- defm OR_rr : ALU32_base<"or", "OR", or>, ImmRegRel, PredNewRel;
+// Pats for instruction selection.
+class BinOp32_pat<SDNode Op, InstHexagon MI, ValueType ResT>
+ : Pat<(ResT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
+ (ResT (MI IntRegs:$Rs, IntRegs:$Rt))>;
+
+def: BinOp32_pat<add, A2_add, i32>;
+def: BinOp32_pat<and, A2_and, i32>;
+def: BinOp32_pat<or, A2_or, i32>;
+def: BinOp32_pat<sub, A2_sub, i32>;
+def: BinOp32_pat<xor, A2_xor, i32>;
+
+// A few special cases producing register pairs:
+let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0,
+ isCodeGenOnly = 0 in {
+ def S2_packhl : T_ALU32_3op <"packhl", 0b101, 0b100, 0, 0>;
+
+ let isPredicable = 1 in
+ def A2_combinew : T_ALU32_3op <"combine", 0b101, 0b000, 0, 0>;
+
+ // Conditional combinew uses "newt/f" instead of "t/fnew".
+ def C2_ccombinewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>;
+ def C2_ccombinewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>;
+ def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>;
+ def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>;
}
-defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel;
+let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg" in
+class T_ALU32_3op_cmp<string mnemonic, bits<2> MinOp, bit IsNeg, bit IsComm>
+ : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#mnemonic#"($Rs, $Rt)",
+ [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
+ let CextOpcode = mnemonic;
+ let isCommutable = IsComm;
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<2> Pd;
+
+ let IClass = 0b1111;
+ let Inst{27-24} = 0b0010;
+ let Inst{22-21} = MinOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{4} = IsNeg;
+ let Inst{3-2} = 0b00;
+ let Inst{1-0} = Pd;
+}
-// Combines the two integer registers SRC1 and SRC2 into a double register.
-let isPredicable = 1 in
-class T_Combine : ALU32_rr<(outs DoubleRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = combine($src1, $src2)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1),
- (i32 IntRegs:$src2))))]>;
-
-multiclass Combine_base {
- let BaseOpcode = "combine" in {
- def NAME : T_Combine;
- let neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>;
- defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>;
- }
- }
+let Itinerary = ALU32_3op_tc_2early_SLOT0123, isCodeGenOnly = 0 in {
+ def C2_cmpeq : T_ALU32_3op_cmp< "cmp.eq", 0b00, 0, 1>;
+ def C2_cmpgt : T_ALU32_3op_cmp< "cmp.gt", 0b10, 0, 0>;
+ def C2_cmpgtu : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>;
}
-defm COMBINE_rr : Combine_base, PredNewRel;
+// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
+// that reverse the order of the operands.
+class RevCmp<PatFrag F> : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>;
+
+// Pats for compares. They use PatFrags as operands, not SDNodes,
+// since seteq/setgt/etc. are defined as ParFrags.
+class T_cmp32_rr_pat<InstHexagon MI, PatFrag Op, ValueType VT>
+ : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
+ (VT (MI IntRegs:$Rs, IntRegs:$Rt))>;
+
+def: T_cmp32_rr_pat<C2_cmpeq, seteq, i1>;
+def: T_cmp32_rr_pat<C2_cmpgt, setgt, i1>;
+def: T_cmp32_rr_pat<C2_cmpgtu, setugt, i1>;
+
+def: T_cmp32_rr_pat<C2_cmpgt, RevCmp<setlt>, i1>;
+def: T_cmp32_rr_pat<C2_cmpgtu, RevCmp<setult>, i1>;
+
+let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1,
+ isCodeGenOnly = 0 in
+def C2_mux: ALU32_rr<(outs IntRegs:$Rd),
+ (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let CextOpcode = "mux";
+ let InputType = "reg";
+ let hasSideEffects = 0;
+ let IClass = 0b1111;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rd;
+}
-// Combines the two immediates SRC1 and SRC2 into a double register.
-class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> :
- ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2),
- "$dst = combine(#$src1, #$src2)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>;
+def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
+ (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>;
+
+// Combines the two immediates into a double register.
+// Increase complexity to make it greater than any complexity of a combine
+// that involves a register.
+
+let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
+ isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1,
+ AddedComplexity = 75, isCodeGenOnly = 0 in
+def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8),
+ "$Rdd = combine(#$s8, #$S8)",
+ [(set (i64 DoubleRegs:$Rdd),
+ (i64 (HexagonCOMBINE(i32 s8ExtPred:$s8), (i32 s8ImmPred:$S8))))]> {
+ bits<5> Rdd;
+ bits<8> s8;
+ bits<8> S8;
+
+ let IClass = 0b0111;
+ let Inst{27-23} = 0b11000;
+ let Inst{22-16} = S8{7-1};
+ let Inst{13} = S8{0};
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rdd;
+ }
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in
-def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>;
+//===----------------------------------------------------------------------===//
+// Template class for predicated ADD of a reg and an Immediate value.
+//===----------------------------------------------------------------------===//
+let hasNewValue = 1 in
+class T_Addri_Pred <bit PredNot, bit PredNew>
+ : ALU32_ri <(outs IntRegs:$Rd),
+ (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
+ !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ",
+ ") $Rd = ")#"add($Rs, #$s8)"> {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+ bits<8> s8;
+
+ let isPredicatedNew = PredNew;
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{23} = PredNot;
+ let Inst{22-21} = Pu;
+ let Inst{20-16} = Rs;
+ let Inst{13} = PredNew;
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+ }
//===----------------------------------------------------------------------===//
-// ALU32/ALU (ADD with register-immediate form)
+// A2_addi: Add a signed immediate to a register.
//===----------------------------------------------------------------------===//
-multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : ALU32_ri<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
- ") $dst = ")#mnemonic#"($src2, #$src3)",
- []>;
-}
+let hasNewValue = 1 in
+class T_Addri <Operand immOp, list<dag> pattern = [] >
+ : ALU32_ri <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, immOp:$s16),
+ "$Rd = add($Rs, #$s16)", pattern,
+ //[(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs), (s16ExtPred:$s16)))],
+ "", ALU32_ADDI_tc_1_SLOT0123> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<16> s16;
+
+ let IClass = 0b1011;
+
+ let Inst{27-21} = s16{15-9};
+ let Inst{20-16} = Rs;
+ let Inst{13-5} = s16{8-0};
+ let Inst{4-0} = Rd;
+ }
-multiclass ALU32ri_Pred<string mnemonic, bit PredNot> {
+//===----------------------------------------------------------------------===//
+// Multiclass for ADD of a register and an immediate value.
+//===----------------------------------------------------------------------===//
+multiclass Addri_Pred<string mnemonic, bit PredNot> {
let isPredicatedFalse = PredNot in {
- defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>;
+ def _c#NAME : T_Addri_Pred<PredNot, 0>;
// Predicate new
- defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>;
+ def _cdn#NAME : T_Addri_Pred<PredNot, 1>;
}
}
let isExtendable = 1, InputType = "imm" in
-multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in {
+multiclass Addri_base<string mnemonic, SDNode OpNode> {
+ let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in {
let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16,
isPredicable = 1 in
- def NAME : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s16Ext:$src2),
- "$dst = "#mnemonic#"($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
- (s16ExtPred:$src2)))]>;
+ def NAME : T_Addri< s16Ext, // Rd=add(Rs,#s16)
+ [(set (i32 IntRegs:$Rd),
+ (add IntRegs:$Rs, s16ExtPred:$s16))]>;
let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
- neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ALU32ri_Pred<mnemonic, 0>;
- defm NotPt : ALU32ri_Pred<mnemonic, 1>;
+ hasSideEffects = 0, isPredicated = 1 in {
+ defm Pt : Addri_Pred<mnemonic, 0>;
+ defm NotPt : Addri_Pred<mnemonic, 1>;
}
}
}
-defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
-
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
-CextOpcode = "OR", InputType = "imm" in
-def OR_ri : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s10Ext:$src2),
- "$dst = or($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
- s10ExtPred:$src2))]>, ImmRegRel;
+let isCodeGenOnly = 0 in
+defm ADD_ri : Addri_base<"add", add>, ImmRegRel, PredNewRel;
+//===----------------------------------------------------------------------===//
+// Template class used for the following ALU32 instructions.
+// Rd=and(Rs,#s10)
+// Rd=or(Rs,#s10)
+//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
-InputType = "imm", CextOpcode = "AND" in
-def AND_ri : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s10Ext:$src2),
- "$dst = and($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
- s10ExtPred:$src2))]>, ImmRegRel;
+InputType = "imm", hasNewValue = 1 in
+class T_ALU32ri_logical <string mnemonic, SDNode OpNode, bits<2> MinOp>
+ : ALU32_ri <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, s10Ext:$s10),
+ "$Rd = "#mnemonic#"($Rs, #$s10)" ,
+ [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10))]> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<10> s10;
+ let CextOpcode = mnemonic;
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0110;
+ let Inst{23-22} = MinOp;
+ let Inst{21} = s10{9};
+ let Inst{20-16} = Rs;
+ let Inst{13-5} = s10{8-0};
+ let Inst{4-0} = Rd;
+ }
-// Nop.
-let neverHasSideEffects = 1 in
-def NOP : ALU32_rr<(outs), (ins),
- "nop",
- []>;
+let isCodeGenOnly = 0 in {
+def OR_ri : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel;
+def AND_ri : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel;
+}
+// Subtract register from immediate
// Rd32=sub(#s10,Rs32)
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10,
-CextOpcode = "SUB", InputType = "imm" in
-def SUB_ri : ALU32_ri<(outs IntRegs:$dst),
- (ins s10Ext:$src1, IntRegs:$src2),
- "$dst = sub(#$src1, $src2)",
- [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>,
- ImmRegRel;
+CextOpcode = "sub", InputType = "imm", hasNewValue = 1, isCodeGenOnly = 0 in
+def SUB_ri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs),
+ "$Rd = sub(#$s10, $Rs)" ,
+ [(set IntRegs:$Rd, (sub s10ExtPred:$s10, IntRegs:$Rs))] > ,
+ ImmRegRel {
+ bits<5> Rd;
+ bits<10> s10;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+
+ let Inst{27-22} = 0b011001;
+ let Inst{21} = s10{9};
+ let Inst{20-16} = Rs;
+ let Inst{13-5} = s10{8-0};
+ let Inst{4-0} = Rd;
+ }
+// Nop.
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def A2_nop: ALU32Inst <(outs), (ins), "nop" > {
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b1111;
+}
// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
def : Pat<(not (i32 IntRegs:$src1)),
(SUB_ri -1, (i32 IntRegs:$src1))>;
-// Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs).
-// Pattern definition for 'neg' was not necessary.
-
-multiclass TFR_Pred<bit PredNot> {
- let isPredicatedFalse = PredNot in {
- def _c#NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2",
- []>;
- // Predicate new
- let isPredicatedNew = 1 in
- def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2",
- []>;
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_tfr16<bit isHi>
+ : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16),
+ "$Rx"#!if(isHi, ".h", ".l")#" = #$u16",
+ [], "$src1 = $Rx" > {
+ bits<5> Rx;
+ bits<16> u16;
+
+ let IClass = 0b0111;
+ let Inst{27-26} = 0b00;
+ let Inst{25-24} = !if(isHi, 0b10, 0b01);
+ let Inst{23-22} = u16{15-14};
+ let Inst{21} = 0b1;
+ let Inst{20-16} = Rx;
+ let Inst{13-0} = u16{13-0};
}
-}
-
-let InputType = "reg", neverHasSideEffects = 1 in
-multiclass TFR_base<string CextOp> {
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let isPredicable = 1 in
- def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1",
- []>;
- let isPredicated = 1 in {
- defm Pt : TFR_Pred<0>;
- defm NotPt : TFR_Pred<1>;
- }
- }
+let isCodeGenOnly = 0 in {
+def A2_tfril: T_tfr16<0>;
+def A2_tfrih: T_tfr16<1>;
}
-class T_TFR64_Pred<bit PredNot, bit isPredNew>
- : ALU32_rr<(outs DoubleRegs:$dst),
- (ins PredRegs:$src1, DoubleRegs:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#
- !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []>
-{
+// Conditional transfer is an alias to conditional "Rd = add(Rs, #0)".
+let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in
+class T_tfr_pred<bit isPredNot, bit isPredNew>
+ : ALU32Inst<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2),
+ "if ("#!if(isPredNot, "!", "")#
+ "$src1"#!if(isPredNew, ".new", "")#
+ ") $dst = $src2"> {
bits<5> dst;
bits<2> src1;
bits<5> src2;
- let IClass = 0b1111;
- let Inst{27-24} = 0b1101;
+ let isPredicatedFalse = isPredNot;
+ let isPredicatedNew = isPredNew;
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{23} = isPredNot;
let Inst{13} = isPredNew;
- let Inst{7} = PredNot;
+ let Inst{12-5} = 0;
let Inst{4-0} = dst;
- let Inst{6-5} = src1;
- let Inst{20-17} = src2{4-1};
- let Inst{16} = 0b1;
- let Inst{12-9} = src2{4-1};
- let Inst{8} = 0b0;
-}
+ let Inst{22-21} = src1;
+ let Inst{20-16} = src2;
+ }
-multiclass TFR64_Pred<bit PredNot> {
- let isPredicatedFalse = PredNot in {
- def _c#NAME : T_TFR64_Pred<PredNot, 0>;
+let isPredicable = 1 in
+class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src),
+ "$dst = $src"> {
+ bits<5> dst;
+ bits<5> src;
- let isPredicatedNew = 1 in
- def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new
+ let IClass = 0b0111;
+
+ let Inst{27-21} = 0b0000011;
+ let Inst{20-16} = src;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = dst;
}
-}
-let neverHasSideEffects = 1 in
-multiclass TFR64_base<string BaseName> {
- let BaseOpcode = BaseName in {
- let isPredicable = 1 in
- def NAME : ALU32Inst <(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1),
- "$dst = $src1" > {
- bits<5> dst;
- bits<5> src1;
-
- let IClass = 0b1111;
- let Inst{27-23} = 0b01010;
- let Inst{4-0} = dst;
- let Inst{20-17} = src1{4-1};
- let Inst{16} = 0b1;
- let Inst{12-9} = src1{4-1};
- let Inst{8} = 0b0;
- }
+let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in
+multiclass tfr_base<string CextOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp in {
+ def NAME : T_tfr;
- let isPredicated = 1 in {
- defm Pt : TFR64_Pred<0>;
- defm NotPt : TFR64_Pred<1>;
- }
+ // Predicate
+ def t : T_tfr_pred<0, 0>;
+ def f : T_tfr_pred<1, 0>;
+ // Predicate new
+ def tnew : T_tfr_pred<0, 1>;
+ def fnew : T_tfr_pred<1, 1>;
}
}
-multiclass TFRI_Pred<bit PredNot> {
- let isMoveImm = 1, isPredicatedFalse = PredNot in {
- def _c#NAME : ALU32_ri<(outs IntRegs:$dst),
- (ins PredRegs:$src1, s12Ext:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2",
- []>;
+// Assembler mapped to C2_ccombinew[t|f|newt|newf].
+// Please don't add bits to this instruction as it'll be converted into
+// 'combine' before object code emission.
+let isPredicated = 1 in
+class T_tfrp_pred<bit PredNot, bit PredNew>
+ : ALU32_rr <(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, DoubleRegs:$src2),
+ "if ("#!if(PredNot, "!", "")#"$src1"
+ #!if(PredNew, ".new", "")#") $dst = $src2" > {
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = PredNew;
+ }
+// Assembler mapped to A2_combinew.
+// Please don't add bits to this instruction as it'll be converted into
+// 'combine' before object code emission.
+class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src),
+ "$dst = $src">;
+
+let hasSideEffects = 0 in
+multiclass TFR64_base<string BaseName> {
+ let BaseOpcode = BaseName in {
+ let isPredicable = 1 in
+ def NAME : T_tfrp;
+ // Predicate
+ def t : T_tfrp_pred <0, 0>;
+ def f : T_tfrp_pred <1, 0>;
// Predicate new
- let isPredicatedNew = 1 in
- def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
- (ins PredRegs:$src1, s12Ext:$src2),
- !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2",
- []>;
+ def tnew : T_tfrp_pred <0, 1>;
+ def fnew : T_tfrp_pred <1, 1>;
}
}
-let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in
-multiclass TFRI_base<string CextOp> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#I in {
- let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16,
- isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in
- def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
- "$dst = #$src1",
- [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>;
+let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12,
+ isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR",
+ hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in
+class T_TFRI_Pred<bit PredNot, bit PredNew>
+ : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12),
+ "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12",
+ [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
+ let isPredicatedFalse = PredNot;
+ let isPredicatedNew = PredNew;
+
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<12> s12;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b1110;
+ let Inst{23} = PredNot;
+ let Inst{22-21} = Pu;
+ let Inst{20} = 0b0;
+ let Inst{19-16,12-5} = s12;
+ let Inst{13} = PredNew;
+ let Inst{4-0} = Rd;
+}
- let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1,
- isPredicated = 1 in {
- defm Pt : TFRI_Pred<0>;
- defm NotPt : TFRI_Pred<1>;
- }
- }
+let isCodeGenOnly = 0 in {
+def C2_cmoveit : T_TFRI_Pred<0, 0>;
+def C2_cmoveif : T_TFRI_Pred<1, 0>;
+def C2_cmovenewit : T_TFRI_Pred<0, 1>;
+def C2_cmovenewif : T_TFRI_Pred<1, 1>;
}
-defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel;
-defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel;
-defm TFR64 : TFR64_base<"TFR64">, PredNewRel;
+let InputType = "imm", isExtendable = 1, isExtentSigned = 1,
+ CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0,
+ isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1,
+ isPredicated = 0, isPredicable = 1, isReMaterializable = 1,
+ isCodeGenOnly = 0 in
+def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16",
+ [(set (i32 IntRegs:$Rd), s16ExtPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>,
+ ImmRegRel, PredRel {
+ bits<5> Rd;
+ bits<16> s16;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b1000;
+ let Inst{23-22,20-16,13-5} = s16;
+ let Inst{4-0} = Rd;
+}
+
+let isCodeGenOnly = 0 in
+defm A2_tfr : tfr_base<"TFR">, ImmRegRel, PredNewRel;
+defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel;
+
+// Assembler mapped
+let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1 in
+def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
+ "$dst = #$src1",
+ [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
+
+// TODO: see if this instruction can be deleted..
+let isExtendable = 1, opExtendable = 1, opExtentBits = 6 in
+def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u6Ext:$src1),
+ "$dst = #$src1">;
-// Transfer control register.
-let neverHasSideEffects = 1 in
-def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1",
- []>;
//===----------------------------------------------------------------------===//
// ALU32/ALU -
//===----------------------------------------------------------------------===//
@@ -383,105 +622,190 @@ def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//
+// Scalar mux register immediate.
+let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX",
+ InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in
+class T_MUX1 <bit MajOp, dag ins, string AsmStr>
+ : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<8> s8;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b0011;
+ let Inst{23} = MajOp;
+ let Inst{22-21} = Pu;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+}
-let neverHasSideEffects = 1 in
-def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst),
- (ins s8Imm:$src1, s8Imm:$src2),
- "$dst = combine(#$src1, #$src2)",
- []>;
+let opExtendable = 2, isCodeGenOnly = 0 in
+def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs),
+ "$Rd = mux($Pu, #$s8, $Rs)">;
+
+let opExtendable = 3, isCodeGenOnly = 0 in
+def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
+ "$Rd = mux($Pu, $Rs, #$s8)">;
+
+def : Pat<(i32 (select I1:$Pu, s8ExtPred:$s8, I32:$Rs)),
+ (C2_muxri I1:$Pu, s8ExtPred:$s8, I32:$Rs)>;
+
+def : Pat<(i32 (select I1:$Pu, I32:$Rs, s8ExtPred:$s8)),
+ (C2_muxir I1:$Pu, I32:$Rs, s8ExtPred:$s8)>;
+
+// C2_muxii: Scalar mux immediates.
+let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1,
+ opExtentBits = 8, opExtendable = 2, isCodeGenOnly = 0 in
+def C2_muxii: ALU32Inst <(outs IntRegs:$Rd),
+ (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8),
+ "$Rd = mux($Pu, #$s8, #$S8)" ,
+ [(set (i32 IntRegs:$Rd),
+ (i32 (select I1:$Pu, s8ExtPred:$s8, s8ImmPred:$S8)))] > {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<8> s8;
+ bits<8> S8;
+
+ let IClass = 0b0111;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-23} = Pu;
+ let Inst{22-16} = S8{7-1};
+ let Inst{13} = S8{0};
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+ }
-// Mux.
-def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
- DoubleRegs:$src2,
- DoubleRegs:$src3),
- "$dst = vmux($src1, $src2, $src3)",
- []>;
+//===----------------------------------------------------------------------===//
+// template class for non-predicated alu32_2op instructions
+// - aslh, asrh, sxtb, sxth, zxth
+//===----------------------------------------------------------------------===//
+let hasNewValue = 1, opNewValue = 0 in
+class T_ALU32_2op <string mnemonic, bits<3> minOp> :
+ ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs),
+ "$Rd = "#mnemonic#"($Rs)", [] > {
+ bits<5> Rd;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0000;
+ let Inst{23-21} = minOp;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+}
+
+//===----------------------------------------------------------------------===//
+// template class for predicated alu32_2op instructions
+// - aslh, asrh, sxtb, sxth, zxtb, zxth
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, validSubTargets = HasV4SubT,
+ hasNewValue = 1, opNewValue = 0 in
+class T_ALU32_2op_Pred <string mnemonic, bits<3> minOp, bit isPredNot,
+ bit isPredNew > :
+ ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs),
+ !if(isPredNot, "if (!$Pu", "if ($Pu")
+ #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> {
+ bits<5> Rd;
+ bits<2> Pu;
+ bits<5> Rs;
+
+ let IClass = 0b0111;
+
+ let Inst{27-24} = 0b0000;
+ let Inst{23-21} = minOp;
+ let Inst{13} = 0b1;
+ let Inst{11} = isPredNot;
+ let Inst{10} = isPredNew;
+ let Inst{4-0} = Rd;
+ let Inst{9-8} = Pu;
+ let Inst{20-16} = Rs;
+}
-let CextOpcode = "MUX", InputType = "reg" in
-def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst = mux($src1, $src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))]>, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
-CextOpcode = "MUX", InputType = "imm" in
-def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
- IntRegs:$src3),
- "$dst = mux($src1, #$src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2,
- (i32 IntRegs:$src3))))]>, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
-CextOpcode = "MUX", InputType = "imm" in
-def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2,
- s8Ext:$src3),
- "$dst = mux($src1, $src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
- s8ExtPred:$src3)))]>, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
-def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
- s8Imm:$src3),
- "$dst = mux($src1, #$src2, #$src3)",
- [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
- s8ExtPred:$src2,
- s8ImmPred:$src3)))]>;
-
-// ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth
-multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : ALU32Inst<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
- ") $dst = ")#mnemonic#"($src2)">,
- Requires<[HasV4T]>;
-}
-
-multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> {
+multiclass ALU32_2op_Pred<string mnemonic, bits<3> minOp, bit PredNot> {
let isPredicatedFalse = PredNot in {
- defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>;
+ def NAME : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 0>;
+
// Predicate new
- defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>;
+ let isPredicatedNew = 1 in
+ def NAME#new : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 1>;
}
}
-multiclass ALU32_2op_base<string mnemonic> {
+multiclass ALU32_2op_base<string mnemonic, bits<3> minOp> {
let BaseOpcode = mnemonic in {
- let isPredicable = 1, neverHasSideEffects = 1 in
- def NAME : ALU32Inst<(outs IntRegs:$dst),
- (ins IntRegs:$src1),
- "$dst = "#mnemonic#"($src1)">;
-
- let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1,
- neverHasSideEffects = 1 in {
- defm Pt_V4 : ALU32_2op_Pred<mnemonic, 0>;
- defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>;
+ let isPredicable = 1, hasSideEffects = 0 in
+ def A2_#NAME : T_ALU32_2op<mnemonic, minOp>;
+
+ let validSubTargets = HasV4SubT, isPredicated = 1, hasSideEffects = 0 in {
+ defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
+ defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
}
}
}
-defm ASLH : ALU32_2op_base<"aslh">, PredNewRel;
-defm ASRH : ALU32_2op_base<"asrh">, PredNewRel;
-defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel;
-defm SXTH : ALU32_2op_base<"sxth">, PredNewRel;
-defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel;
-defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel;
+let isCodeGenOnly = 0 in {
+defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel;
+defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel;
+defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel;
+defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel;
+defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel;
+}
-def : Pat <(shl (i32 IntRegs:$src1), (i32 16)),
- (ASLH IntRegs:$src1)>;
+// Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255).
+// Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has
+// predicated forms while 'and' doesn't. Since integrated assembler can't
+// handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where
+// immediate operand is set to '255'.
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs),
+ "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255)
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<10> s10 = 255;
+
+ let IClass = 0b0111;
+
+ let Inst{27-22} = 0b011000;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+ let Inst{21} = s10{9};
+ let Inst{13-5} = s10{8-0};
+}
-def : Pat <(sra (i32 IntRegs:$src1), (i32 16)),
- (ASRH IntRegs:$src1)>;
+//Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255)
+multiclass ZXTB_base <string mnemonic, bits<3> minOp> {
+ let BaseOpcode = mnemonic in {
+ let isPredicable = 1, hasSideEffects = 0 in
+ def A2_#NAME : T_ZXTB;
-def : Pat <(sext_inreg (i32 IntRegs:$src1), i8),
- (SXTB IntRegs:$src1)>;
+ let validSubTargets = HasV4SubT, isPredicated = 1, hasSideEffects = 0 in {
+ defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
+ defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
+ }
+ }
+}
+
+let isCodeGenOnly=0 in
+defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel;
+
+def: Pat<(shl I32:$src1, (i32 16)), (A2_aslh I32:$src1)>;
+def: Pat<(sra I32:$src1, (i32 16)), (A2_asrh I32:$src1)>;
+def: Pat<(sext_inreg I32:$src1, i8), (A2_sxtb I32:$src1)>;
+def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>;
+
+// Mux.
+def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
+ DoubleRegs:$src2,
+ DoubleRegs:$src3),
+ "$dst = vmux($src1, $src2, $src3)",
+ []>;
-def : Pat <(sext_inreg (i32 IntRegs:$src1), i16),
- (SXTH IntRegs:$src1)>;
//===----------------------------------------------------------------------===//
// ALU32/PERM -
@@ -492,11 +816,6 @@ def : Pat <(sext_inreg (i32 IntRegs:$src1), i16),
// ALU32/PRED +
//===----------------------------------------------------------------------===//
-// Compare.
-defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel;
-defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel;
-defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel;
-
// SDNode for converting immediate C to C-1.
def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
// Return the byte immediate const-1 as an SDNode.
@@ -511,14 +830,6 @@ def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
return XformUToUM1Imm(imm);
}]>;
-def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = cl0($src1)",
- [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>;
-
-def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
- "$dst = ct0($src1)",
- [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>;
-
def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
"$dst = cl0($src1)",
[(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>;
@@ -527,16 +838,6 @@ def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
"$dst = ct0($src1)",
[(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>;
-def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = tstbit($src1, $src2)",
- [(set (i1 PredRegs:$dst),
- (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>;
-
-def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = tstbit($src1, $src2)",
- [(set (i1 PredRegs:$dst),
- (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>;
-
//===----------------------------------------------------------------------===//
// ALU32/PRED -
//===----------------------------------------------------------------------===//
@@ -544,114 +845,279 @@ def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
//===----------------------------------------------------------------------===//
// ALU64/ALU +
+//===----------------------------------------------------------------------===//// Add.
+//===----------------------------------------------------------------------===//
+// Template Class
+// Add/Subtract halfword
+// Rd=add(Rt.L,Rs.[HL])[:sat]
+// Rd=sub(Rt.L,Rs.[HL])[:sat]
+// Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16]
+// Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16]
//===----------------------------------------------------------------------===//
-// Add.
-def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = add($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-// Add halfword.
+let hasNewValue = 1, opNewValue = 0 in
+class T_XTYPE_ADD_SUB <bits<2> LHbits, bit isSat, bit hasShift, bit isSub>
+ : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
+ "$Rd = "#!if(isSub,"sub","add")#"($Rt."
+ #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs."
+ #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)"))
+ #!if(isSat,":sat","")
+ #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rt;
+ bits<5> Rs;
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b01010;
+ let Inst{22} = hasShift;
+ let Inst{21} = isSub;
+ let Inst{7} = isSat;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rd;
+ let Inst{12-8} = Rt;
+ let Inst{20-16} = Rs;
+ }
-// Compare.
-defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>;
-defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>;
-defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>;
-
-// Logical operations.
-def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = and($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-
-def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = or($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-
-def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = xor($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
-
-// Maximum.
-def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = max($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setlt (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+//Rd=sub(Rt.L,Rs.[LH])
+let isCodeGenOnly = 0 in {
+def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>;
+def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>;
+}
-def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = maxu($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setult (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
-
-def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = max($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = maxu($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setult (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-// Minimum.
-def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = min($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setgt (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+let isCodeGenOnly = 0 in {
+//Rd=add(Rt.L,Rs.[LH])
+def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>;
+def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>;
+}
-def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = minu($src2, $src1)",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 (setugt (i32 IntRegs:$src2),
- (i32 IntRegs:$src1))),
- (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
-
-def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = min($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = minu($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setugt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>;
-
-// Subtract.
-def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = sub($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2)))]>;
+let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in {
+ //Rd=sub(Rt.L,Rs.[LH]):sat
+ def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>;
+ def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>;
+
+ //Rd=add(Rt.L,Rs.[LH]):sat
+ def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>;
+ def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>;
+}
+
+//Rd=sub(Rt.[LH],Rs.[LH]):<<16
+let isCodeGenOnly = 0 in {
+def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>;
+def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>;
+def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>;
+def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>;
+}
+
+//Rd=add(Rt.[LH],Rs.[LH]):<<16
+let isCodeGenOnly = 0 in {
+def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>;
+def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>;
+def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>;
+def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>;
+}
+
+let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in {
+ //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16
+ def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>;
+ def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>;
+ def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>;
+ def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>;
+
+ //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16
+ def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>;
+ def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>;
+ def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>;
+ def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>;
+}
+
+// Add halfword.
+def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16),
+ (A2_addh_l16_ll I32:$src1, I32:$src2)>;
+
+def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)),
+ (A2_addh_l16_hl I32:$src1, I32:$src2)>;
+
+def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)),
+ (A2_addh_h16_ll I32:$src1, I32:$src2)>;
// Subtract halfword.
+def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16),
+ (A2_subh_l16_ll I32:$src1, I32:$src2)>;
+
+def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)),
+ (A2_subh_h16_ll I32:$src1, I32:$src2)>;
+
+let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
+def S2_parityp: ALU64Inst<(outs IntRegs:$Rd),
+ (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = 0b0000;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{4-0} = Rd;
+}
+
+let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in
+class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned >
+ : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
+ "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","")
+ #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rt;
+ bits<5> Rs;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b01011;
+ let Inst{22-21} = !if(isMax, 0b10, 0b01);
+ let Inst{7} = isUnsigned;
+ let Inst{4-0} = Rd;
+ let Inst{12-8} = !if(isMax, Rs, Rt);
+ let Inst{20-16} = !if(isMax, Rt, Rs);
+ }
+
+let isCodeGenOnly = 0 in {
+def A2_min : T_XTYPE_MIN_MAX < 0, 0 >;
+def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >;
+def A2_max : T_XTYPE_MIN_MAX < 1, 0 >;
+def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >;
+}
+
+// Here, depending on the operand being selected, we'll either generate a
+// min or max instruction.
+// Ex:
+// (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected
+// is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'.
+// (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value
+// is selected and the corresponding HexagonInst is passed in 'SwapInst'.
+
+multiclass T_MinMax_pats <PatFrag Op, RegisterClass RC, ValueType VT,
+ InstHexagon Inst, InstHexagon SwapInst> {
+ def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
+ (VT RC:$src1), (VT RC:$src2)),
+ (Inst RC:$src1, RC:$src2)>;
+ def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
+ (VT RC:$src2), (VT RC:$src1)),
+ (SwapInst RC:$src1, RC:$src2)>;
+}
+
+
+multiclass MinMax_pats <PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
+ defm: T_MinMax_pats<Op, IntRegs, i32, Inst, SwapInst>;
+
+ def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
+ (i32 PositiveHalfWord:$src2))),
+ (i32 PositiveHalfWord:$src1),
+ (i32 PositiveHalfWord:$src2))), i16),
+ (Inst IntRegs:$src1, IntRegs:$src2)>;
+
+ def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
+ (i32 PositiveHalfWord:$src2))),
+ (i32 PositiveHalfWord:$src2),
+ (i32 PositiveHalfWord:$src1))), i16),
+ (SwapInst IntRegs:$src1, IntRegs:$src2)>;
+}
+
+let AddedComplexity = 200 in {
+ defm: MinMax_pats<setge, A2_max, A2_min>;
+ defm: MinMax_pats<setgt, A2_max, A2_min>;
+ defm: MinMax_pats<setle, A2_min, A2_max>;
+ defm: MinMax_pats<setlt, A2_min, A2_max>;
+ defm: MinMax_pats<setuge, A2_maxu, A2_minu>;
+ defm: MinMax_pats<setugt, A2_maxu, A2_minu>;
+ defm: MinMax_pats<setule, A2_minu, A2_maxu>;
+ defm: MinMax_pats<setult, A2_minu, A2_maxu>;
+}
+
+class T_cmp64_rr<string mnemonic, bits<3> MinOp, bit IsComm>
+ : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> {
+ let isCompare = 1;
+ let isCommutable = IsComm;
+ let hasSideEffects = 0;
+
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-21} = 0b0010100;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{1-0} = Pd;
+}
+
+let isCodeGenOnly = 0 in {
+def C2_cmpeqp : T_cmp64_rr<"cmp.eq", 0b000, 1>;
+def C2_cmpgtp : T_cmp64_rr<"cmp.gt", 0b010, 0>;
+def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>;
+}
+
+class T_cmp64_rr_pat<InstHexagon MI, PatFrag CmpOp>
+ : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))),
+ (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>;
+
+def: T_cmp64_rr_pat<C2_cmpeqp, seteq>;
+def: T_cmp64_rr_pat<C2_cmpgtp, setgt>;
+def: T_cmp64_rr_pat<C2_cmpgtup, setugt>;
+def: T_cmp64_rr_pat<C2_cmpgtp, RevCmp<setlt>>;
+def: T_cmp64_rr_pat<C2_cmpgtup, RevCmp<setult>>;
+
+class T_ALU64_rr<string mnemonic, string suffix, bits<4> RegType,
+ bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm,
+ string Op2Pfx>
+ : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
+ "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [],
+ "", ALU64_tc_1_SLOT23> {
+ let hasSideEffects = 0;
+ let isCommutable = IsComm;
+
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<5> Rd;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = RegType;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = !if (OpsRev,Rt,Rs);
+ let Inst{12-8} = !if (OpsRev,Rs,Rt);
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+}
+
+class T_ALU64_arith<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit IsSat,
+ bit OpsRev, bit IsComm>
+ : T_ALU64_rr<mnemonic, !if(IsSat,":sat",""), 0b0011, MajOp, MinOp, OpsRev,
+ IsComm, "">;
+
+let isCodeGenOnly = 0 in {
+def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>;
+def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>;
+}
+
+def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>;
+def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>;
+
+class T_ALU64_logical<string mnemonic, bits<3> MinOp, bit OpsRev, bit IsComm,
+ bit IsNeg>
+ : T_ALU64_rr<mnemonic, "", 0b0011, 0b111, MinOp, OpsRev, IsComm,
+ !if(IsNeg,"~","")>;
+
+let isCodeGenOnly = 0 in {
+def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>;
+def A2_orp : T_ALU64_logical<"or", 0b010, 0, 1, 0>;
+def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>;
+}
+
+def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>;
+def: Pat<(i64 (or I64:$Rs, I64:$Rt)), (A2_orp I64:$Rs, I64:$Rt)>;
+def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>;
//===----------------------------------------------------------------------===//
// ALU64/ALU -
@@ -683,29 +1149,90 @@ def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
// Pipelined looping instructions.
// Logical operations on predicates.
-def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
- "$dst = and($src1, $src2)",
- [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1),
- (i1 PredRegs:$src2)))]>;
-
-let neverHasSideEffects = 1 in
-def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1,
- PredRegs:$src2),
- "$dst = and($src1, !$src2)",
- []>;
-
-def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
- "$dst = any8($src1)",
- []>;
+let hasSideEffects = 0 in
+class T_LOGICAL_1OP<string MnOp, bits<2> OpBits>
+ : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps),
+ "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<2> Ps;
+
+ let IClass = 0b0110;
+ let Inst{27-23} = 0b10111;
+ let Inst{22-21} = OpBits;
+ let Inst{20} = 0b0;
+ let Inst{17-16} = Ps;
+ let Inst{13} = 0b0;
+ let Inst{1-0} = Pd;
+}
-def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
- "$dst = all8($src1)",
- []>;
+let isCodeGenOnly = 0 in {
+def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>;
+def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>;
+def C2_not : T_LOGICAL_1OP<"not", 0b10>;
+}
-def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1,
- PredRegs:$src2),
- "$dst = vitpack($src1, $src2)",
- []>;
+def: Pat<(i1 (not (i1 PredRegs:$Ps))),
+ (C2_not PredRegs:$Ps)>;
+
+let hasSideEffects = 0 in
+class T_LOGICAL_2OP<string MnOp, bits<3> OpBits, bit IsNeg, bit Rev>
+ : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt),
+ "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)",
+ [], "", CR_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<2> Ps;
+ bits<2> Pt;
+
+ let IClass = 0b0110;
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = OpBits;
+ let Inst{20} = 0b0;
+ let Inst{17-16} = !if(Rev,Pt,Ps); // Rs and Rt are reversed for some
+ let Inst{13} = 0b0; // instructions.
+ let Inst{9-8} = !if(Rev,Ps,Pt);
+ let Inst{1-0} = Pd;
+}
+
+let isCodeGenOnly = 0 in {
+def C2_and : T_LOGICAL_2OP<"and", 0b000, 0, 1>;
+def C2_or : T_LOGICAL_2OP<"or", 0b001, 0, 1>;
+def C2_xor : T_LOGICAL_2OP<"xor", 0b010, 0, 0>;
+def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>;
+def C2_orn : T_LOGICAL_2OP<"or", 0b111, 1, 1>;
+}
+
+def: Pat<(i1 (and I1:$Ps, I1:$Pt)), (C2_and I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (or I1:$Ps, I1:$Pt)), (C2_or I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (xor I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>;
+def: Pat<(i1 (or I1:$Ps, (not I1:$Pt))), (C2_orn I1:$Ps, I1:$Pt)>;
+
+let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
+def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt),
+ "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<2> Ps;
+ bits<2> Pt;
+
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b1001;
+ let Inst{22-21} = 0b00;
+ let Inst{17-16} = Ps;
+ let Inst{9-8} = Pt;
+ let Inst{4-0} = Rd;
+}
+
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt),
+ "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<2> Pt;
+
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b0110;
+ let Inst{9-8} = Pt;
+ let Inst{4-0} = Rd;
+}
def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2,
@@ -719,46 +1246,38 @@ def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
"$dst = vspliceb($src1, $src2, $src3)",
[]>;
-def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1),
- "$dst = mask($src1)",
- []>;
-
-def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
- "$dst = not($src1)",
- [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>;
-
-def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
- "$dst = or($src1, $src2)",
- [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1),
- (i1 PredRegs:$src2)))]>;
-
-def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
- "$dst = xor($src1, $src2)",
- [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1),
- (i1 PredRegs:$src2)))]>;
-
-
// User control register transfer.
//===----------------------------------------------------------------------===//
// CR -
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// JR +
+//===----------------------------------------------------------------------===//
+
def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
-def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone,
- [SDNPHasChain]>;
+def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
-let InputType = "imm", isBarrier = 1, isPredicable = 1,
-Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
-opExtentBits = 24 in
-class T_JMP <dag InsDag, list<dag> JumpList = []>
- : JInst<(outs), InsDag,
- "jump $dst" , JumpList> {
- bits<24> dst;
+class CondStr<string CReg, bit True, bit New> {
+ string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
+}
+class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
+ string S = Mnemonic # !if(New, !if(Taken,":t",":nt"), "");
+}
+let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
+ isPredicable = 1,
+ isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
+ opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
+class T_JMP<string ExtStr>
+ : JInst<(outs), (ins brtarget:$dst),
+ "jump " # ExtStr # "$dst",
+ [], "", J_tc_2early_SLOT23> {
+ bits<24> dst;
let IClass = 0b0101;
let Inst{27-25} = 0b100;
@@ -766,16 +1285,16 @@ class T_JMP <dag InsDag, list<dag> JumpList = []>
let Inst{13-1} = dst{14-2};
}
-let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
-Defs = [PC], isPredicated = 1, opExtentBits = 17 in
-class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>:
- JInst<(outs ), (ins PredRegs:$src, brtarget:$dst),
- !if(PredNot, "if (!$src", "if ($src")#
- !if(isPredNew, ".new) ", ") ")#"jump"#
- !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> {
-
+let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1,
+ isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
+ opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in
+class T_JMP_c<bit PredNot, bit isPredNew, bit isTak, string ExtStr>
+ : JInst<(outs), (ins PredRegs:$src, brtarget:$dst),
+ CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
+ JumpOpcStr<"jump", isPredNew, isTak>.S # " " #
+ ExtStr # "$dst",
+ [], "", J_tc_2early_SLOT23>, ImmRegRel {
let isTaken = isTak;
- let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
let isPredicatedFalse = PredNot;
let isPredicatedNew = isPredNew;
bits<2> src;
@@ -794,11 +1313,28 @@ class T_JMP_c <bit PredNot, bit isPredNew, bit isTak>:
let Inst{7-1} = dst{8-2};
}
-let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in
-class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
- : JRInst<(outs ), InsDag,
- "jumpr $dst" ,
- []> {
+multiclass JMP_Pred<bit PredNot, string ExtStr> {
+ def NAME : T_JMP_c<PredNot, 0, 0, ExtStr>;
+ // Predicate new
+ def NAME#newpt : T_JMP_c<PredNot, 1, 1, ExtStr>; // taken
+ def NAME#new : T_JMP_c<PredNot, 1, 0, ExtStr>; // not taken
+}
+
+multiclass JMP_base<string BaseOp, string ExtStr> {
+ let BaseOpcode = BaseOp in {
+ def NAME : T_JMP<ExtStr>;
+ defm t : JMP_Pred<0, ExtStr>;
+ defm f : JMP_Pred<1, ExtStr>;
+ }
+}
+
+// Jumps to address stored in a register, JUMPR_MISC
+// if ([[!]P[.new]]) jumpr[:t/nt] Rs
+let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
+ isPredicable = 1, hasSideEffects = 0, InputType = "reg" in
+class T_JMPr
+ : JRInst<(outs), (ins IntRegs:$dst),
+ "jumpr $dst", [], "", J_tc_2early_SLOT2> {
bits<5> dst;
let IClass = 0b0101;
@@ -806,15 +1342,15 @@ class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
let Inst{20-16} = dst;
}
-let Defs = [PC], isPredicated = 1, InputType = "reg" in
-class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>:
- JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst),
- !if(PredNot, "if (!$src", "if ($src")#
- !if(isPredNew, ".new) ", ") ")#"jumpr"#
- !if(isPredNew, !if(isTak, ":t ", ":nt "), " ")#"$dst"> {
+let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
+ hasSideEffects = 0, InputType = "reg" in
+class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>
+ : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst),
+ CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
+ JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [],
+ "", J_tc_2early_SLOT2> {
let isTaken = isTak;
- let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
let isPredicatedFalse = PredNot;
let isPredicatedNew = isPredNew;
bits<2> src;
@@ -828,70 +1364,85 @@ class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>:
let Inst{12} = !if(isPredNew, isTak, zero);
let Inst{11} = isPredNew;
let Inst{9-8} = src;
- let Predicates = !if(isPredNew, [HasV3T], [HasV2T]);
- let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT);
-}
-
-multiclass JMP_Pred<bit PredNot> {
- def _#NAME : T_JMP_c<PredNot, 0, 0>;
- // Predicate new
- def _#NAME#new_t : T_JMP_c<PredNot, 1, 1>; // taken
- def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken
-}
-
-multiclass JMP_base<string BaseOp> {
- let BaseOpcode = BaseOp in {
- def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>;
- defm t : JMP_Pred<0>;
- defm f : JMP_Pred<1>;
- }
}
multiclass JMPR_Pred<bit PredNot> {
def NAME: T_JMPr_c<PredNot, 0, 0>;
// Predicate new
- def NAME#new_tV3 : T_JMPr_c<PredNot, 1, 1>; // taken
- def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken
+ def NAME#newpt : T_JMPr_c<PredNot, 1, 1>; // taken
+ def NAME#new : T_JMPr_c<PredNot, 1, 0>; // not taken
}
multiclass JMPR_base<string BaseOp> {
let BaseOpcode = BaseOp in {
def NAME : T_JMPr;
- defm _t : JMPR_Pred<0>;
- defm _f : JMPR_Pred<1>;
+ defm t : JMPR_Pred<0>;
+ defm f : JMPR_Pred<1>;
}
}
-let isTerminator = 1, neverHasSideEffects = 1 in {
-let isBranch = 1 in
-defm JMP : JMP_base<"JMP">, PredNewRel;
+let isCall = 1, hasSideEffects = 1 in
+class JUMPR_MISC_CALLR<bit isPred, bit isPredNot,
+ dag InputDag = (ins IntRegs:$Rs)>
+ : JRInst<(outs), InputDag,
+ !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs",
+ "if ($Pu) callr $Rs"),
+ "callr $Rs"),
+ [], "", J_tc_2early_SLOT2> {
+ bits<5> Rs;
+ bits<2> Pu;
+ let isPredicated = isPred;
+ let isPredicatedFalse = isPredNot;
-let isBranch = 1, isIndirectBranch = 1 in
-defm JMPR : JMPR_base<"JMPr">, PredNewRel;
+ let IClass = 0b0101;
+ let Inst{27-25} = 0b000;
+ let Inst{24-23} = !if (isPred, 0b10, 0b01);
+ let Inst{22} = 0;
+ let Inst{21} = isPredNot;
+ let Inst{9-8} = !if (isPred, Pu, 0b00);
+ let Inst{20-16} = Rs;
-let isReturn = 1, isCodeGenOnly = 1 in
-defm JMPret : JMPR_base<"JMPret">, PredNewRel;
+ }
+
+let Defs = VolatileV3.Regs, isCodeGenOnly = 0 in {
+ def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>;
+ def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>;
}
-def : Pat<(retflag),
- (JMPret (i32 R31))>;
+let isTerminator = 1, hasSideEffects = 0, isCodeGenOnly = 0 in {
+ defm J2_jump : JMP_base<"JMP", "">, PredNewRel;
-def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset),
- (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
+ // Deal with explicit assembly
+ // - never extened a jump #, always extend a jump ##
+ let isAsmParserOnly = 1 in {
+ defm J2_jump_ext : JMP_base<"JMP", "##">;
+ defm J2_jump_noext : JMP_base<"JMP", "#">;
+ }
-// A return through builtin_eh_return.
-let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1,
-isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
-def EH_RETURN_JMPR : T_JMPr;
+ defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel;
+
+ let isReturn = 1, isCodeGenOnly = 1 in
+ defm JMPret : JMPR_base<"JMPret">, PredNewRel;
+}
-def : Pat<(eh_return),
- (EH_RETURN_JMPR (i32 R31))>;
+def: Pat<(br bb:$dst),
+ (J2_jump brtarget:$dst)>;
+def: Pat<(retflag),
+ (JMPret (i32 R31))>;
+def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset),
+ (J2_jumpt PredRegs:$src1, bb:$offset)>;
-def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
- (JMPR (i32 IntRegs:$dst))>;
+// A return through builtin_eh_return.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
+ isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
+def EH_RETURN_JMPR : T_JMPr;
-def : Pat<(brind (i32 IntRegs:$dst)),
- (JMPR (i32 IntRegs:$dst))>;
+def: Pat<(eh_return),
+ (EH_RETURN_JMPR (i32 R31))>;
+def: Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
+ (J2_jumpr IntRegs:$dst)>;
+def: Pat<(brind (i32 IntRegs:$dst)),
+ (J2_jumpr IntRegs:$dst)>;
//===----------------------------------------------------------------------===//
// JR -
@@ -900,265 +1451,502 @@ def : Pat<(brind (i32 IntRegs:$dst)),
//===----------------------------------------------------------------------===//
// LD +
//===----------------------------------------------------------------------===//
-///
-// Load -- MEMri operand
-multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2<(outs RC:$dst),
- (ins PredRegs:$src1, MEMri:$addr),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($addr)",
- []>;
-}
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in
+class T_load_io <string mnemonic, RegisterClass RC, bits<4> MajOp,
+ Operand ImmOp>
+ : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel {
+ bits<4> name;
+ bits<5> dst;
+ bits<5> src1;
+ bits<14> offset;
+ bits<11> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3},
+ !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2},
+ !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1},
+ /* s11_0Ext */ offset{10-0})));
+ let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
+ !if (!eq(ImmOpStr, "s11_2Ext"), 13,
+ !if (!eq(ImmOpStr, "s11_1Ext"), 12,
+ /* s11_0Ext */ 11)));
+ let hasNewValue = !if (!eq(ImmOpStr, "s11_3Ext"), 0, 1);
+
+ let IClass = 0b1001;
+
+ let Inst{27} = 0b0;
+ let Inst{26-25} = offsetBits{10-9};
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13-5} = offsetBits{8-0};
+ let Inst{4-0} = dst;
+ }
-multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
+let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in
+class T_pload_io <string mnemonic, RegisterClass RC, bits<4>MajOp,
+ Operand ImmOp, bit isNot, bit isPredNew>
+ : LDInst<(outs RC:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ "if ("#!if(isNot, "!$src1", "$src1")
+ #!if(isPredNew, ".new", "")
+ #") $dst = "#mnemonic#"($src2 + #$offset)",
+ [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel {
+ bits<5> dst;
+ bits<2> src1;
+ bits<5> src2;
+ bits<9> offset;
+ bits<6> offsetBits;
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3},
+ !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2},
+ !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1},
+ /* u6_0Ext */ offset{5-0})));
+ let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
+ !if (!eq(ImmOpStr, "u6_2Ext"), 8,
+ !if (!eq(ImmOpStr, "u6_1Ext"), 7,
+ /* u6_0Ext */ 6)));
+ let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1);
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isNot;
+
+ let IClass = 0b0100;
+
+ let Inst{27} = 0b0;
+ let Inst{27} = 0b0;
+ let Inst{26} = isNot;
+ let Inst{25} = isPredNew;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b0;
+ let Inst{12-11} = src1;
+ let Inst{10-5} = offsetBits;
+ let Inst{4-0} = dst;
}
-}
-let isExtendable = 1, neverHasSideEffects = 1 in
-multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC,
- bits<5> ImmBits, bits<5> PredImmBits> {
+let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in
+multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<4>MajOp> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ let isPredicable = 1 in
+ def L2_#NAME#_io : T_load_io <mnemonic, RC, MajOp, ImmOp>;
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr),
- "$dst = "#mnemonic#"($addr)",
- []>;
-
- let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >;
- defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >;
- }
+ // Predicated
+ def L2_p#NAME#t_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 0>;
+ def L2_p#NAME#f_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 0>;
+
+ // Predicated new
+ def L2_p#NAME#tnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 1>;
+ def L2_p#NAME#fnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 1>;
}
}
-let addrMode = BaseImmOffset, isMEMri = "true" in {
- let accessSize = ByteAccess in {
- defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel;
- defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel;
- }
+let accessSize = ByteAccess, isCodeGenOnly = 0 in {
+ defm loadrb: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>;
+ defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>;
+}
- let accessSize = HalfWordAccess in {
- defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel;
- defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel;
- }
+let accessSize = HalfWordAccess, opExtentAlign = 1, isCodeGenOnly = 0 in {
+ defm loadrh: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>;
+ defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>;
+}
- let accessSize = WordAccess in
- defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel;
+let accessSize = WordAccess, opExtentAlign = 2, isCodeGenOnly = 0 in
+defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>;
- let accessSize = DoubleWordAccess in
- defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel;
-}
+let accessSize = DoubleWordAccess, opExtentAlign = 3, isCodeGenOnly = 0 in
+defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>;
def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)),
- (LDrib ADDRriS11_0:$addr) >;
+ (L2_loadrb_io AddrFI:$addr, 0) >;
def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)),
- (LDriub ADDRriS11_0:$addr) >;
+ (L2_loadrub_io AddrFI:$addr, 0) >;
def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)),
- (LDrih ADDRriS11_1:$addr) >;
+ (L2_loadrh_io AddrFI:$addr, 0) >;
def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)),
- (LDriuh ADDRriS11_1:$addr) >;
+ (L2_loadruh_io AddrFI:$addr, 0) >;
def : Pat < (i32 (load ADDRriS11_2:$addr)),
- (LDriw ADDRriS11_2:$addr) >;
+ (L2_loadri_io AddrFI:$addr, 0) >;
def : Pat < (i64 (load ADDRriS11_3:$addr)),
- (LDrid ADDRriS11_3:$addr) >;
-
-
-// Load - Base with Immediate offset addressing mode
-multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2<(outs RC:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($src2+#$src3)",
- []>;
-}
-
-multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
- }
-}
-
-let isExtendable = 1, neverHasSideEffects = 1 in
-multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
- Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
- bits<5> PredImmBits> {
-
- let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
- let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1, AddedComplexity = 20 in
- def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
- "$dst = "#mnemonic#"($src1+#$offset)",
- []>;
-
- let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >;
- defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >;
- }
- }
-}
-
-let addrMode = BaseImmOffset in {
- let accessSize = ByteAccess in {
- defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext,
- 11, 6>, AddrModeRel;
- defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext,
- 11, 6>, AddrModeRel;
- }
- let accessSize = HalfWordAccess in {
- defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext,
- 12, 7>, AddrModeRel;
- defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext,
- 12, 7>, AddrModeRel;
- }
- let accessSize = WordAccess in
- defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext,
- 13, 8>, AddrModeRel;
-
- let accessSize = DoubleWordAccess in
- defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext,
- 14, 9>, AddrModeRel;
-}
+ (L2_loadrd_io AddrFI:$addr, 0) >;
let AddedComplexity = 20 in {
def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
- (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
+ (L2_loadrb_io IntRegs:$src1, s11_0ExtPred:$offset) >;
def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
- (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
+ (L2_loadrub_io IntRegs:$src1, s11_0ExtPred:$offset) >;
def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
- (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
+ (L2_loadrh_io IntRegs:$src1, s11_1ExtPred:$offset) >;
def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
- (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
+ (L2_loadruh_io IntRegs:$src1, s11_1ExtPred:$offset) >;
def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))),
- (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >;
+ (L2_loadri_io IntRegs:$src1, s11_2ExtPred:$offset) >;
def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))),
- (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >;
+ (L2_loadrd_io IntRegs:$src1, s11_3ExtPred:$offset) >;
}
//===----------------------------------------------------------------------===//
// Post increment load
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// Template class for non-predicated post increment loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, addrMode = PostInc in
+class T_load_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp >
+ : LDInstPI <(outs RC:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, ImmOp:$offset),
+ "$dst = "#mnemonic#"($src1++#$offset)" ,
+ [],
+ "$src1 = $dst2" > ,
+ PredNewRel {
+ bits<5> dst;
+ bits<5> src1;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13-12} = 0b00;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
+ }
-multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
- (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
- [],
- "$src2 = $dst2">;
-}
+//===----------------------------------------------------------------------===//
+// Template class for predicated post increment loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
+class T_pload_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp, bit isPredNot, bit isPredNew >
+ : LDInst <(outs RC:$dst, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
+ !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
+ [] ,
+ "$src2 = $dst2" > ,
+ PredNewRel {
+ bits<5> dst;
+ bits<2> src1;
+ bits<5> src2;
+ bits<7> offset;
+ bits<4> offsetBits;
-multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC,
- Operand ImmOp, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
- // Predicate new
- let Predicates = [HasV4T], validSubTargets = HasV4SubT in
- defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b1;
+ let Inst{12} = isPredNew;
+ let Inst{11} = isPredNot;
+ let Inst{10-9} = src1;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
}
-}
-multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
- Operand ImmOp> {
+//===----------------------------------------------------------------------===//
+// Multiclass for post increment loads with immediate offset.
+//===----------------------------------------------------------------------===//
+multiclass LD_PostInc <string mnemonic, string BaseOp, RegisterClass RC,
+ Operand ImmOp, bits<4> MajOp> {
let BaseOpcode = "POST_"#BaseOp in {
let isPredicable = 1 in
- def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
- (ins IntRegs:$src1, ImmOp:$offset),
- "$dst = "#mnemonic#"($src1++#$offset)",
- [],
- "$src1 = $dst2">;
-
- let isPredicated = 1 in {
- defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
- defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
- }
+ def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>;
+
+ // Predicated
+ def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>;
+ def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>;
+
+ // Predicated new
+ def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>;
+ def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>;
}
}
-let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in {
- defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>,
- PredNewRel;
- defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>,
- PredNewRel;
- defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>,
- PredNewRel;
- defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>,
- PredNewRel;
- defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>,
- PredNewRel;
- defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>,
- PredNewRel;
+// post increment byte loads with immediate offset
+let accessSize = ByteAccess, isCodeGenOnly = 0 in {
+ defm loadrb : LD_PostInc <"memb", "LDrib", IntRegs, s4_0Imm, 0b1000>;
+ defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>;
}
+// post increment halfword loads with immediate offset
+let accessSize = HalfWordAccess, opExtentAlign = 1, isCodeGenOnly = 0 in {
+ defm loadrh : LD_PostInc <"memh", "LDrih", IntRegs, s4_1Imm, 0b1010>;
+ defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>;
+}
+
+// post increment word loads with immediate offset
+let accessSize = WordAccess, opExtentAlign = 2, isCodeGenOnly = 0 in
+defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>;
+
+// post increment doubleword loads with immediate offset
+let accessSize = DoubleWordAccess, opExtentAlign = 3, isCodeGenOnly = 0 in
+defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>;
+
def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)),
- (i32 (LDrib ADDRriS11_0:$addr)) >;
+ (i32 (L2_loadrb_io AddrFI:$addr, 0)) >;
// Load byte any-extend.
def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)),
- (i32 (LDrib ADDRriS11_0:$addr)) >;
+ (i32 (L2_loadrb_io AddrFI:$addr, 0)) >;
// Indexed load byte any-extend.
let AddedComplexity = 20 in
def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))),
- (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >;
+ (i32 (L2_loadrb_io IntRegs:$src1, s11_0ImmPred:$offset)) >;
def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)),
- (i32 (LDrih ADDRriS11_1:$addr))>;
+ (i32 (L2_loadrh_io AddrFI:$addr, 0))>;
let AddedComplexity = 20 in
def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))),
- (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >;
+ (i32 (L2_loadrh_io IntRegs:$src1, s11_1ImmPred:$offset)) >;
let AddedComplexity = 10 in
def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)),
- (i32 (LDriub ADDRriS11_0:$addr))>;
+ (i32 (L2_loadrub_io AddrFI:$addr, 0))>;
let AddedComplexity = 20 in
def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))),
- (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>;
+ (i32 (L2_loadrub_io IntRegs:$src1, s11_0ImmPred:$offset))>;
+
+//===----------------------------------------------------------------------===//
+// Template class for post increment loads with register offset.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, addrMode = PostInc in
+class T_load_pr <string mnemonic, RegisterClass RC, bits<4> MajOp,
+ MemAccessSize AccessSz>
+ : LDInstPI <(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$src1, ModRegs:$src2),
+ "$dst = "#mnemonic#"($src1++$src2)" ,
+ [], "$src1 = $_dst_" > {
+ bits<5> dst;
+ bits<5> src1;
+ bits<1> src2;
+
+ let accessSize = AccessSz;
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b110;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = src2;
+ let Inst{12} = 0b0;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue = 1, isCodeGenOnly = 0 in {
+ def L2_loadrb_pr : T_load_pr <"memb", IntRegs, 0b1000, ByteAccess>;
+ def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>;
+ def L2_loadrh_pr : T_load_pr <"memh", IntRegs, 0b1010, HalfWordAccess>;
+ def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>;
+ def L2_loadri_pr : T_load_pr <"memw", IntRegs, 0b1100, WordAccess>;
+}
+
+let isCodeGenOnly = 0 in
+def L2_loadrd_pr : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
// Load predicate.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
-isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in
+isPseudo = 1, Defs = [R10,R11,D5], hasSideEffects = 0 in
def LDriw_pred : LDInst2<(outs PredRegs:$dst),
(ins MEMri:$addr),
"Error; should not emit",
[]>;
-// Deallocate stack frame.
-let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
- def DEALLOCFRAME : LDInst2<(outs), (ins),
+let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0, isCodeGenOnly = 0 in
+ def L2_deallocframe : LDInst<(outs), (ins),
"deallocframe",
- []>;
+ []> {
+ let IClass = 0b1001;
+
+ let Inst{27-16} = 0b000000011110;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = 0b11110;
+}
+
+// Load / Post increment circular addressing mode.
+let Uses = [CS], hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
+class T_load_pcr<string mnemonic, RegisterClass RC, bits<4> MajOp>
+ : LDInst <(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
+ "$Rz = $_dst_" > {
+ bits<5> dst;
+ bits<5> Rz;
+ bit Mu;
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{9} = 0b1;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+let accessSize = ByteAccess, isCodeGenOnly = 0 in {
+ def L2_loadrb_pcr : T_load_pcr <"memb", IntRegs, 0b1000>;
+ def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>;
+}
+
+let accessSize = HalfWordAccess, isCodeGenOnly = 0 in {
+ def L2_loadrh_pcr : T_load_pcr <"memh", IntRegs, 0b1010>;
+ def L2_loadruh_pcr : T_load_pcr <"memuh", IntRegs, 0b1011>;
+}
+
+let accessSize = WordAccess, isCodeGenOnly = 0 in {
+ def L2_loadri_pcr : T_load_pcr <"memw", IntRegs, 0b1100>;
}
-// Load and unpack bytes to halfwords.
+let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+def L2_loadrd_pcr : T_load_pcr <"memd", DoubleRegs, 0b1110>;
+
+//===----------------------------------------------------------------------===//
+// Circular loads with immediate offset.
+//===----------------------------------------------------------------------===//
+let Uses = [CS], mayLoad = 1, hasSideEffects = 0, hasNewValue = 1 in
+class T_load_pci <string mnemonic, RegisterClass RC,
+ Operand ImmOp, bits<4> MajOp>
+ : LDInstPI<(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [],
+ "$Rz = $_dst_"> {
+ bits<5> dst;
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let IClass = 0b1001;
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{9} = 0b0;
+ let Inst{8-5} = offsetBits;
+ let Inst{4-0} = dst;
+ }
+
+// Byte variants of circ load
+let accessSize = ByteAccess, isCodeGenOnly = 0 in {
+ def L2_loadrb_pci : T_load_pci <"memb", IntRegs, s4_0Imm, 0b1000>;
+ def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>;
+}
+
+// Half word variants of circ load
+let accessSize = HalfWordAccess, isCodeGenOnly = 0 in {
+ def L2_loadrh_pci : T_load_pci <"memh", IntRegs, s4_1Imm, 0b1010>;
+ def L2_loadruh_pci : T_load_pci <"memuh", IntRegs, s4_1Imm, 0b1011>;
+}
+
+// Word variants of circ load
+let accessSize = WordAccess, isCodeGenOnly = 0 in
+def L2_loadri_pci : T_load_pci <"memw", IntRegs, s4_2Imm, 0b1100>;
+
+let accessSize = DoubleWordAccess, hasNewValue = 0, isCodeGenOnly = 0 in
+def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>;
+
+// L[24]_load[wd]_locked: Load word/double with lock.
+let isSoloAX = 1 in
+class T_load_locked <string mnemonic, RegisterClass RC>
+ : LD0Inst <(outs RC:$dst),
+ (ins IntRegs:$src),
+ "$dst = "#mnemonic#"($src)"> {
+ bits<5> dst;
+ bits<5> src;
+ let IClass = 0b1001;
+ let Inst{27-21} = 0b0010000;
+ let Inst{20-16} = src;
+ let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00);
+ let Inst{4-0} = dst;
+}
+let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0, isCodeGenOnly = 0 in
+ def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>;
+let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+ def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>;
+//===----------------------------------------------------------------------===//
+// Bit-reversed loads with auto-increment register
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_load_pbr<string mnemonic, RegisterClass RC,
+ MemAccessSize addrSize, bits<4> majOp>
+ : LDInst
+ <(outs RC:$dst, IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu),
+ "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" ,
+ [] , "$Rz = $_dst_" > {
+
+ let accessSize = addrSize;
+
+ bits<5> dst;
+ bits<5> Rz;
+ bits<1> Mu;
+
+ let IClass = 0b1001;
+
+ let Inst{27-25} = 0b111;
+ let Inst{24-21} = majOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12} = 0b0;
+ let Inst{7} = 0b0;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue =1, opNewValue = 0, isCodeGenOnly = 0 in {
+ def L2_loadrb_pbr : T_load_pbr <"memb", IntRegs, ByteAccess, 0b1000>;
+ def L2_loadrub_pbr : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>;
+ def L2_loadrh_pbr : T_load_pbr <"memh", IntRegs, HalfWordAccess, 0b1010>;
+ def L2_loadruh_pbr : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>;
+ def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>;
+}
+
+let isCodeGenOnly = 0 in
+def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>;
+
//===----------------------------------------------------------------------===//
// LD -
//===----------------------------------------------------------------------===//
@@ -1180,180 +1968,663 @@ let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
//===----------------------------------------------------------------------===//
// MTYPE/MPYH +
//===----------------------------------------------------------------------===//
-// Multiply and use lower result.
-// Rd=+mpyi(Rs,#u8)
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in
-def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2),
- "$dst =+ mpyi($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
- u8ExtPred:$src2))]>;
-// Rd=-mpyi(Rs,#u8)
-def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
- "$dst =- mpyi($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1),
- u8ImmPred:$src2)))]>;
+//===----------------------------------------------------------------------===//
+// Template Class
+// MPYS / Multipy signed/unsigned halfwords
+//Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
+//===----------------------------------------------------------------------===//
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd,
+ bit hasShift, bit isUnsigned>
+ : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd","")
+ #!if(isSat,":sat",""),
+ [], "", M_tc_3x_SLOT23 > {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1100;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isRnd;
+ let Inst{7} = isSat;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
+
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]
+let isCodeGenOnly = 0 in {
+def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>;
+def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>;
+def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>;
+def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>;
+def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>;
+def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>;
+def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>;
+def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>;
+}
+
+//Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
+let isCodeGenOnly = 0 in {
+def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>;
+def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>;
+def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>;
+def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>;
+def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>;
+def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>;
+def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>;
+def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>;
+}
+
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd
+let isCodeGenOnly = 0 in {
+def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>;
+def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>;
+def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>;
+def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>;
+def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>;
+def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>;
+def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>;
+def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>;
+}
+
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat]
+//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
+let Defs = [USR_OVF], isCodeGenOnly = 0 in {
+ def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>;
+ def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>;
+ def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>;
+ def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>;
+ def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>;
+ def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>;
+ def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>;
+ def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>;
+
+ def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>;
+ def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>;
+ def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>;
+ def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>;
+ def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>;
+}
+
+//===----------------------------------------------------------------------===//
+// Template Class
+// MPYS / Multipy signed/unsigned halfwords and add/subtract the
+// result from the accumulator.
+//Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
+//===----------------------------------------------------------------------===//
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac,
+ bit hasShift, bit isUnsigned >
+ : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
+ #"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1","")
+ #!if(isSat,":sat",""),
+ [], "$dst2 = $Rx", M_tc_3x_SLOT23 > {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+ let Inst{27-24} = 0b1110;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isNac;
+ let Inst{7} = isSat;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
+
+//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]
+let isCodeGenOnly = 0 in {
+def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>;
+def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>;
+def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>;
+def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>;
+def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>;
+def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>;
+def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>;
+def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>;
+}
+
+//Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
+let isCodeGenOnly = 0 in {
+def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>;
+def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>;
+def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>;
+def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>;
+def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>;
+def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>;
+def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>;
+def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>;
+}
+
+//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]
+let isCodeGenOnly = 0 in {
+def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>;
+def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>;
+def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>;
+def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>;
+def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>;
+def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>;
+def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>;
+def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>;
+}
+
+//Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
+let isCodeGenOnly = 0 in {
+def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>;
+def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>;
+def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>;
+def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>;
+def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>;
+def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>;
+def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>;
+def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>;
+}
+
+//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
+let isCodeGenOnly = 0 in {
+def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>;
+def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>;
+def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>;
+def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>;
+def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>;
+}
+
+//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
+let isCodeGenOnly = 0 in {
+def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>;
+def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>;
+def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>;
+def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>;
+def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>;
+}
+
+//===----------------------------------------------------------------------===//
+// Template Class
+// MPYS / Multipy signed/unsigned halfwords and add/subtract the
+// result from the 64-bit destination register.
+//Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
+//===----------------------------------------------------------------------===//
+
+class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned>
+ : MInst_acc<(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
+ #"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1",""),
+ [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > {
+ bits<5> Rxx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0110;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isNac;
+ let Inst{7} = 0;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rxx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
+
+let isCodeGenOnly = 0 in {
+def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>;
+def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>;
+def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>;
+def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>;
+
+def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>;
+def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>;
+def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>;
+def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>;
+
+def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>;
+def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>;
+def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>;
+def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>;
+
+def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>;
+def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>;
+def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>;
+def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>;
+
+def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>;
+def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>;
+def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>;
+def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>;
+
+def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>;
+def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>;
+def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>;
+def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>;
+
+def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>;
+def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>;
+def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>;
+def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>;
+
+def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>;
+def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>;
+def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>;
+def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>;
+}
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_MType_mpy <string mnemonic, bits<4> RegTyBits, RegisterClass RC,
+ bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0,
+ string op2Suffix = "", bit isRaw = 0, bit isHi = 0 >
+ : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2),
+ "$dst = "#mnemonic
+ #"($src1, $src2"#op2Suffix#")"
+ #!if(MajOp{2}, ":<<1", "")
+ #!if(isRnd, ":rnd", "")
+ #!if(isSat, ":sat", "")
+ #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = src2;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+class T_MType_dd <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0 >
+ : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, isSat, isRnd>;
+
+class T_MType_rr1 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0 >
+ : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd>;
+
+class T_MType_rr2 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0, string op2str = "" >
+ : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd, op2str>;
+
+let CextOpcode = "mpyi", InputType = "reg", isCodeGenOnly = 0 in
+def M2_mpyi : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel;
+
+let isCodeGenOnly = 0 in {
+def M2_mpy_up : T_MType_rr1 <"mpy", 0b000, 0b001>;
+def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>;
+}
+
+let isCodeGenOnly = 0 in
+def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>;
+
+let isCodeGenOnly = 0 in {
+def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">;
+def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">;
+}
+
+// V4 Instructions
+let isCodeGenOnly = 0 in {
+def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>;
+def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>;
+
+def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">;
+def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">;
+}
+
+def: Pat<(i32 (mul I32:$src1, I32:$src2)), (M2_mpyi I32:$src1, I32:$src2)>;
+def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up I32:$src1, I32:$src2)>;
+def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>;
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_MType_mpy_ri <bit isNeg, Operand ImmOp, list<dag> pattern>
+ : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8),
+ "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" ,
+ pattern, "", M_tc_3x_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<8> u8;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0000;
+ let Inst{23} = isNeg;
+ let Inst{13} = 0b0;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rs;
+ let Inst{12-5} = u8;
+ }
+
+let isExtendable = 1, opExtentBits = 8, opExtendable = 2, isCodeGenOnly = 0 in
+def M2_mpysip : T_MType_mpy_ri <0, u8Ext,
+ [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u8ExtPred:$u8))]>;
+
+let isCodeGenOnly = 0 in
+def M2_mpysin : T_MType_mpy_ri <1, u8Imm,
+ [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs,
+ u8ImmPred:$u8)))]>;
+
+// Assember mapped to M2_mpyi
+let isAsmParserOnly = 1 in
+def M2_mpyui : MInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyui($src1, $src2)">;
// Rd=mpyi(Rs,#m9)
// s9 is NOT the same as m9 - but it works.. so far.
-// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8)
+// Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8)
// depending on the value of m9. See Arch Spec.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
-CextOpcode = "MPYI", InputType = "imm" in
-def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
- "$dst = mpyi($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
- s9ExtPred:$src2))]>, ImmRegRel;
-
-// Rd=mpyi(Rs,Rt)
-let CextOpcode = "MPYI", InputType = "reg" in
-def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpyi($src1, $src2)",
- [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>, ImmRegRel;
-
-// Rx+=mpyi(Rs,#u8)
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8,
-CextOpcode = "MPYI_acc", InputType = "imm" in
-def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
- "$dst += mpyi($src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
+ CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1 in
+def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
+ "$dst = mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ s9ExtPred:$src2))]>, ImmRegRel;
+
+let hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 3,
+ InputType = "imm" in
+class T_MType_acc_ri <string mnemonic, bits<3> MajOp, Operand ImmOp,
+ list<dag> pattern = []>
+ : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3),
+ "$dst "#mnemonic#"($src2, #$src3)",
+ pattern, "$src1 = $dst", M_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src2;
+ bits<8> src3;
+
+ let IClass = 0b1110;
-// Rx+=mpyi(Rs,Rt)
-let CextOpcode = "MPYI_acc", InputType = "reg" in
-def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst),
+ let Inst{27-26} = 0b00;
+ let Inst{25-23} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b0;
+ let Inst{12-5} = src3;
+ let Inst{4-0} = dst;
+ }
+
+let InputType = "reg", hasNewValue = 1 in
+class T_MType_acc_rr <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSwap = 0, list<dag> pattern = [], bit hasNot = 0,
+ bit isSat = 0, bit isShift = 0>
+ : MInst < (outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst += mpyi($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
-
-// Rx-=mpyi(Rs,#u8)
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in
-def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
- "$dst -= mpyi($src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
- u8ExtPred:$src3)))],
- "$src1 = $dst">;
-
-// Multiply and use upper result.
-// Rd=mpy(Rs,Rt.H):<<1:rnd:sat
-// Rd=mpy(Rs,Rt.L):<<1:rnd:sat
-// Rd=mpy(Rs,Rt)
-def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpy($src1, $src2)",
- [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-// Rd=mpy(Rs,Rt):rnd
-// Rd=mpyu(Rs,Rt)
-def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpyu($src1, $src2)",
- [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-// Multiply and use full result.
-// Rdd=mpyu(Rs,Rt)
-def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpyu($src1, $src2)",
- [(set (i64 DoubleRegs:$dst),
- (mul (i64 (anyext (i32 IntRegs:$src1))),
- (i64 (anyext (i32 IntRegs:$src2)))))]>;
-
-// Rdd=mpy(Rs,Rt)
-def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = mpy($src1, $src2)",
- [(set (i64 DoubleRegs:$dst),
- (mul (i64 (sext (i32 IntRegs:$src1))),
- (i64 (sext (i32 IntRegs:$src2)))))]>;
+ "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)")
+ #!if(isShift, ":<<1", "")
+ #!if(isSat, ":sat", ""),
+ pattern, "$src1 = $dst", M_tc_2_SLOT23 > {
+ bits<5> dst;
+ bits<5> src2;
+ bits<5> src3;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = !if(isSwap, src3, src2);
+ let Inst{13} = 0b0;
+ let Inst{12-8} = !if(isSwap, src2, src3);
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23, isCodeGenOnly = 0 in {
+ def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext,
+ [(set (i32 IntRegs:$dst),
+ (add (mul IntRegs:$src2, u8ExtPred:$src3),
+ IntRegs:$src1))]>, ImmRegRel;
+
+ def M2_maci : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0,
+ [(set (i32 IntRegs:$dst),
+ (add (mul IntRegs:$src2, IntRegs:$src3),
+ IntRegs:$src1))]>, ImmRegRel;
+}
+
+let CextOpcode = "ADD_acc", isCodeGenOnly = 0 in {
+ let isExtentSigned = 1 in
+ def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext,
+ [(set (i32 IntRegs:$dst),
+ (add (add (i32 IntRegs:$src2), s8_16ExtPred:$src3),
+ (i32 IntRegs:$src1)))]>, ImmRegRel;
+
+ def M2_acci : T_MType_acc_rr <"+= add", 0b000, 0b001, 0,
+ [(set (i32 IntRegs:$dst),
+ (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
+ (i32 IntRegs:$src1)))]>, ImmRegRel;
+}
+
+let CextOpcode = "SUB_acc", isCodeGenOnly = 0 in {
+ let isExtentSigned = 1 in
+ def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel;
+
+ def M2_nacci : T_MType_acc_rr <"-= add", 0b100, 0b001, 0>, ImmRegRel;
+}
+
+let Itinerary = M_tc_3x_SLOT23, isCodeGenOnly = 0 in
+def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>;
+
+let isCodeGenOnly = 0 in {
+def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>;
+def M2_subacc : T_MType_acc_rr <"+= sub", 0b000, 0b011, 1>;
+}
+
+class T_MType_acc_pat1 <InstHexagon MI, SDNode firstOp, SDNode secOp,
+ PatLeaf ImmPred>
+ : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)),
+ (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>;
+
+class T_MType_acc_pat2 <InstHexagon MI, SDNode firstOp, SDNode secOp>
+ : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))),
+ (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def : T_MType_acc_pat2 <M2_xor_xacc, xor, xor>;
+def : T_MType_acc_pat1 <M2_macsin, mul, sub, u8ExtPred>;
+
+def : T_MType_acc_pat1 <M2_naccii, add, sub, s8_16ExtPred>;
+def : T_MType_acc_pat2 <M2_nacci, add, sub>;
+//===----------------------------------------------------------------------===//
+// Template Class -- Multiply signed/unsigned halfwords with and without
+// saturation and rounding
+//===----------------------------------------------------------------------===//
+class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned >
+ : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
+ #", $Rt."#!if(LHbits{0},"h)","l)")
+ #!if(hasShift,":<<1","")
+ #!if(isRnd,":rnd",""),
+ [] > {
+ bits<5> Rdd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0100;
+ let Inst{23} = hasShift;
+ let Inst{22} = isUnsigned;
+ let Inst{21} = isRnd;
+ let Inst{6-5} = LHbits;
+ let Inst{4-0} = Rdd;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+}
+
+let isCodeGenOnly = 0 in {
+def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>;
+def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>;
+def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>;
+def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>;
+
+def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>;
+def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>;
+def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>;
+def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>;
+
+def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>;
+def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>;
+def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>;
+def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>;
+
+def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>;
+def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>;
+def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>;
+def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>;
+
+//Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1]
+def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>;
+def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>;
+def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>;
+def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>;
+
+def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>;
+def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>;
+def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>;
+def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>;
+}
+//===----------------------------------------------------------------------===//
+// Template Class for xtype mpy:
+// Vector multiply
+// Complex multiply
+// multiply 32X32 and use full result
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_XTYPE_mpy64 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat, bit hasShift, bit isConj>
+ : MInst <(outs DoubleRegs:$Rdd),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")")
+ #!if(hasShift,":<<1","")
+ #!if(isSat,":sat",""),
+ [] > {
+ bits<5> Rdd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0101;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ }
+
+//===----------------------------------------------------------------------===//
+// Template Class for xtype mpy with accumulation into 64-bit:
+// Vector multiply
+// Complex multiply
+// multiply 32X32 and use full result
+//===----------------------------------------------------------------------===//
+class T_XTYPE_mpy64_acc <string op1, string op2, bits<3> MajOp, bits<3> MinOp,
+ bit isSat, bit hasShift, bit isConj>
+ : MInst <(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")")
+ #!if(hasShift,":<<1","")
+ #!if(isSat,":sat",""),
+
+ [] , "$dst2 = $Rxx" > {
+ bits<5> Rxx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b0111;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rxx;
+ }
+
+// MPY - Multiply and use full result
+// Rdd = mpy[u](Rs,Rt)
+let isCodeGenOnly = 0 in {
+def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>;
+def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>;
+
+// Rxx[+-]= mpy[u](Rs,Rt)
+def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy", "+", 0b000, 0b000, 0, 0, 0>;
+def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy", "-", 0b001, 0b000, 0, 0, 0>;
+def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>;
+def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>;
+}
+
+def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))),
+ (i64 (anyext (i32 IntRegs:$src2))))),
+ (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>;
+
+def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))),
+ (i64 (sext (i32 IntRegs:$src2))))),
+ (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>;
+
+def: Pat<(i64 (mul (is_sext_i32:$src1),
+ (is_sext_i32:$src2))),
+ (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>;
// Multiply and accumulate, use full result.
// Rxx[+-]=mpy(Rs,Rt)
-// Rxx+=mpy(Rs,Rt)
-def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst += mpy($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (add (mul (i64 (sext (i32 IntRegs:$src2))),
- (i64 (sext (i32 IntRegs:$src3)))),
- (i64 DoubleRegs:$src1)))],
- "$src1 = $dst">;
-
-// Rxx-=mpy(Rs,Rt)
-def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst -= mpy($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (sub (i64 DoubleRegs:$src1),
- (mul (i64 (sext (i32 IntRegs:$src2))),
- (i64 (sext (i32 IntRegs:$src3))))))],
- "$src1 = $dst">;
-
-// Rxx[+-]=mpyu(Rs,Rt)
-// Rxx+=mpyu(Rs,Rt)
-def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst += mpyu($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (add (mul (i64 (anyext (i32 IntRegs:$src2))),
- (i64 (anyext (i32 IntRegs:$src3)))),
- (i64 DoubleRegs:$src1)))], "$src1 = $dst">;
-
-// Rxx-=mpyu(Rs,Rt)
-def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst -= mpyu($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (sub (i64 DoubleRegs:$src1),
- (mul (i64 (anyext (i32 IntRegs:$src2))),
- (i64 (anyext (i32 IntRegs:$src3))))))],
- "$src1 = $dst">;
-
-
-let InputType = "reg", CextOpcode = "ADD_acc" in
-def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst += add($src2, $src3)",
- [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
- (i32 IntRegs:$src3)),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
-InputType = "imm", CextOpcode = "ADD_acc" in
-def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, s8Ext:$src3),
- "$dst += add($src2, #$src3)",
- [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
- s8_16ExtPred:$src3),
- (i32 IntRegs:$src1)))],
- "$src1 = $dst">, ImmRegRel;
-
-let CextOpcode = "SUB_acc", InputType = "reg" in
-def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, IntRegs:$src3),
- "$dst -= add($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">, ImmRegRel;
-
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
-CextOpcode = "SUB_acc", InputType = "imm" in
-def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
- IntRegs:$src2, s8Ext:$src3),
- "$dst -= add($src2, #$src3)",
- [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
- (add (i32 IntRegs:$src2),
- s8_16ExtPred:$src3)))],
- "$src1 = $dst">, ImmRegRel;
+
+def: Pat<(i64 (add (i64 DoubleRegs:$src1),
+ (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (add (i64 DoubleRegs:$src1),
+ (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (add (i64 DoubleRegs:$src1),
+ (mul (i64 (zext (i32 IntRegs:$src2))),
+ (i64 (zext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
+
+def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (zext (i32 IntRegs:$src2))),
+ (i64 (zext (i32 IntRegs:$src3)))))),
+ (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
//===----------------------------------------------------------------------===//
// MTYPE/MPYH -
@@ -1385,245 +2656,459 @@ def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
//===----------------------------------------------------------------------===//
///
// Store doubleword.
-
//===----------------------------------------------------------------------===//
-// Post increment store
+// Template class for non-predicated post increment stores with immediate offset
//===----------------------------------------------------------------------===//
+let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in
+class T_store_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp, bit isHalf >
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
+ mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""),
+ [], "$src1 = $_dst_" >,
+ AddrModeRel {
+ bits<5> src1;
+ bits<5> src2;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+ let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+
+ let IClass = 0b1010;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = src2;
+ let Inst{7} = 0b0;
+ let Inst{6-3} = offsetBits;
+ let Inst{1} = 0b0;
+ }
-multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2PI<(outs IntRegs:$dst),
+//===----------------------------------------------------------------------===//
+// Template class for predicated post increment stores with immediate offset
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
+class T_pstore_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<4> MajOp, bit isHalf, bit isPredNot, bit isPredNew >
+ : STInst <(outs IntRegs:$_dst_),
(ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2++#$offset) = $src3",
- [],
- "$src2 = $dst">;
-}
+ !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""),
+ [], "$src2 = $_dst_" >,
+ AddrModeRel {
+ bits<2> src1;
+ bits<5> src2;
+ bits<7> offset;
+ bits<5> src3;
+ bits<4> offsetBits;
-multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC,
- Operand ImmOp, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
- // Predicate new
- let Predicates = [HasV4T], validSubTargets = HasV4SubT in
- defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
+ !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0})));
+
+ let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ let IClass = 0b1010;
+
+ let Inst{27-25} = 0b101;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b1;
+ let Inst{12-8} = src3;
+ let Inst{7} = isPredNew;
+ let Inst{6-3} = offsetBits;
+ let Inst{2} = isPredNot;
+ let Inst{1-0} = src1;
}
-}
-let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in
multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
- Operand ImmOp> {
+ Operand ImmOp, bits<4> MajOp, bit isHalf = 0 > {
- let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in {
- let isPredicable = 1 in
- def NAME : STInst2PI<(outs IntRegs:$dst),
- (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
- mnemonic#"($src1++#$offset) = $src2",
- [],
- "$src1 = $dst">;
-
- let isPredicated = 1 in {
- defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
- defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
- }
+ let BaseOpcode = "POST_"#BaseOp in {
+ def S2_#NAME#_pi : T_store_pi <mnemonic, RC, ImmOp, MajOp, isHalf>;
+
+ // Predicated
+ def S2_p#NAME#t_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 0, 0>;
+ def S2_p#NAME#f_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 1, 0>;
+
+ // Predicated new
+ def S2_p#NAME#tnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
+ isHalf, 0, 1>;
+ def S2_p#NAME#fnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
+ isHalf, 1, 1>;
}
}
-defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
-defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
-defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
+let accessSize = ByteAccess, isCodeGenOnly = 0 in
+defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>;
+
+let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
+defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>;
+
+let accessSize = WordAccess, isCodeGenOnly = 0 in
+defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>;
-let isNVStorable = 0 in
-defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel;
+let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>;
+
+let accessSize = HalfWordAccess, isNVStorable = 0, isCodeGenOnly = 0 in
+defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>;
def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2,
s4_3ImmPred:$offset),
- (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>;
+ (S2_storerb_pi IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>;
def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2,
s4_3ImmPred:$offset),
- (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
+ (S2_storerh_pi IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset),
- (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
+ (S2_storeri_pi IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2,
s4_3ImmPred:$offset),
- (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>;
+ (S2_storerd_pi IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>;
//===----------------------------------------------------------------------===//
-// multiclass for the store instructions with MEMri operand.
+// Template class for post increment stores with register offset.
//===----------------------------------------------------------------------===//
-multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2<(outs),
- (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($addr) = $src2",
- []>;
+let isNVStorable = 1 in
+class T_store_pr <string mnemonic, RegisterClass RC, bits<3> MajOp,
+ MemAccessSize AccessSz, bit isHalf = 0>
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, ModRegs:$src2, RC:$src3),
+ mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""),
+ [], "$src1 = $_dst_" > {
+ bits<5> src1;
+ bits<1> src2;
+ bits<5> src3;
+ let accessSize = AccessSz;
+
+ let IClass = 0b1010;
+
+ let Inst{27-24} = 0b1101;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = src2;
+ let Inst{12-8} = src3;
+ let Inst{7} = 0b0;
+ }
+
+let isCodeGenOnly = 0 in {
+def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>;
+def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>;
+def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>;
+def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>;
+
+def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>;
}
+let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
+class T_store_io <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<3>MajOp, bit isH = 0>
+ : STInst <(outs),
+ (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
+ mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>,
+ AddrModeRel, ImmRegRel {
+ bits<5> src1;
+ bits<14> src2; // Actual address offset
+ bits<5> src3;
+ bits<11> offsetBits; // Represents offset encoding
+
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
+ !if (!eq(ImmOpStr, "s11_2Ext"), 13,
+ !if (!eq(ImmOpStr, "s11_1Ext"), 12,
+ /* s11_0Ext */ 11)));
+ let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3},
+ !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2},
+ !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1},
+ /* s11_0Ext */ src2{10-0})));
+ let IClass = 0b1010;
+
+ let Inst{27} = 0b0;
+ let Inst{26-25} = offsetBits{10-9};
+ let Inst{24} = 0b1;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{13} = offsetBits{8};
+ let Inst{12-8} = src3;
+ let Inst{7-0} = offsetBits{7-0};
+ }
-multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
+let opExtendable = 2, isPredicated = 1 in
+class T_pstore_io <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<3>MajOp, bit PredNot, bit isPredNew, bit isH = 0>
+ : STInst <(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4),
+ !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""),
+ [],"",V2LDST_tc_st_SLOT01 >,
+ AddrModeRel, ImmRegRel {
+ bits<2> src1;
+ bits<5> src2;
+ bits<9> src3; // Actual address offset
+ bits<5> src4;
+ bits<6> offsetBits; // Represents offset encoding
- // Predicate new
- let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
- defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = PredNot;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
+ !if (!eq(ImmOpStr, "u6_2Ext"), 8,
+ !if (!eq(ImmOpStr, "u6_1Ext"), 7,
+ /* u6_0Ext */ 6)));
+ let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3},
+ !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2},
+ !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1},
+ /* u6_0Ext */ src3{5-0})));
+ let IClass = 0b0100;
+
+ let Inst{27} = 0b0;
+ let Inst{26} = PredNot;
+ let Inst{25} = isPredNew;
+ let Inst{24} = 0b0;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{13} = offsetBits{5};
+ let Inst{12-8} = src4;
+ let Inst{7-3} = offsetBits{4-0};
+ let Inst{1-0} = src1;
}
-}
-let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
-multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC,
- bits<5> ImmBits, bits<5> PredImmBits> {
+let isExtendable = 1, isNVStorable = 1, hasSideEffects = 0 in
+multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, Operand predImmOp, bits<3> MajOp, bit isH = 0> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
+ def S2_#NAME#_io : T_store_io <mnemonic, RC, ImmOp, MajOp, isH>;
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME : STInst2<(outs),
- (ins MEMri:$addr, RC:$src),
- mnemonic#"($addr) = $src",
- []>;
+ // Predicated
+ def S2_p#NAME#t_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 0, 0, isH>;
+ def S2_p#NAME#f_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 1, 0, isH>;
- let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>;
- defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>;
- }
+ // Predicated new
+ def S4_p#NAME#tnew_io : T_pstore_io <mnemonic, RC, predImmOp,
+ MajOp, 0, 1, isH>;
+ def S4_p#NAME#fnew_io : T_pstore_io <mnemonic, RC, predImmOp,
+ MajOp, 1, 1, isH>;
}
}
-let addrMode = BaseImmOffset, isMEMri = "true" in {
+let addrMode = BaseImmOffset, InputType = "imm", isCodeGenOnly = 0 in {
let accessSize = ByteAccess in
- defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
+ defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>;
- let accessSize = HalfWordAccess in
- defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
+ let accessSize = HalfWordAccess, opExtentAlign = 1 in
+ defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>;
- let accessSize = WordAccess in
- defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
+ let accessSize = WordAccess, opExtentAlign = 2 in
+ defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>;
- let accessSize = DoubleWordAccess, isNVStorable = 0 in
- defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel;
+ let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in
+ defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
+ u6_3Ext, 0b110>;
+
+ let accessSize = HalfWordAccess, opExtentAlign = 1 in
+ defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext,
+ u6_1Ext, 0b011, 1>;
}
def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr),
- (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>;
+ (S2_storerb_io AddrFI:$addr, 0, (i32 IntRegs:$src1))>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr),
- (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>;
+ (S2_storerh_io AddrFI:$addr, 0, (i32 IntRegs:$src1))>;
def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr),
- (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>;
+ (S2_storeri_io AddrFI:$addr, 0, (i32 IntRegs:$src1))>;
def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr),
- (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>;
-
-
-//===----------------------------------------------------------------------===//
-// multiclass for the store instructions with base+immediate offset
-// addressing mode
-//===----------------------------------------------------------------------===//
-multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2<(outs),
- (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2+#$src3) = $src4",
- []>;
-}
-
-multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit PredNot> {
- let isPredicatedFalse = PredNot, isPredicated = 1 in {
- defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
-
- // Predicate new
- let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
- defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
- }
-}
+ (S2_storerd_io AddrFI:$addr, 0, (i64 DoubleRegs:$src1))>;
-let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
-multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
- Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
- bits<5> PredImmBits> {
-
- let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
- let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME : STInst2<(outs),
- (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
- mnemonic#"($src1+#$src2) = $src3",
- []>;
-
- let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in {
- defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>;
- defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>;
- }
- }
-}
-
-let addrMode = BaseImmOffset, InputType = "reg" in {
- let accessSize = ByteAccess in
- defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext,
- u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel;
-
- let accessSize = HalfWordAccess in
- defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext,
- u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel;
-
- let accessSize = WordAccess in
- defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext,
- u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel;
-
- let accessSize = DoubleWordAccess, isNVStorable = 0 in
- defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
- u6_3Ext, 14, 9>, AddrModeRel;
-}
let AddedComplexity = 10 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2,
s11_0ExtPred:$offset)),
- (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset,
+ (S2_storerb_io IntRegs:$src2, s11_0ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2,
s11_1ExtPred:$offset)),
- (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset,
+ (S2_storerh_io IntRegs:$src2, s11_1ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2,
s11_2ExtPred:$offset)),
- (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset,
+ (S2_storeri_io IntRegs:$src2, s11_2ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2,
s11_3ExtPred:$offset)),
- (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset,
+ (S2_storerd_io IntRegs:$src2, s11_3ImmPred:$offset,
(i64 DoubleRegs:$src1))>;
}
// memh(Rx++#s4:1)=Rt.H
-// Store word.
// Store predicate.
-let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
-def STriw_pred : STInst2<(outs),
- (ins MEMri:$addr, PredRegs:$src1),
- "Error; should not emit",
- []>;
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
+ isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
+def STriw_pred : STInst<(outs),
+ (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1),
+ ".error \"should not emit\"", []>;
+
+// S2_allocframe: Allocate stack frame.
+let Defs = [R29, R30], Uses = [R29, R31, R30],
+ hasSideEffects = 0, accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+def S2_allocframe: ST0Inst <
+ (outs), (ins u11_3Imm:$u11_3),
+ "allocframe(#$u11_3)" > {
+ bits<14> u11_3;
+
+ let IClass = 0b1010;
+ let Inst{27-16} = 0b000010011101;
+ let Inst{13-11} = 0b000;
+ let Inst{10-0} = u11_3{13-3};
+ }
-// Allocate stack frame.
-let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in {
- def ALLOCFRAME : STInst2<(outs),
- (ins i32imm:$amt),
- "allocframe(#$amt)",
- []>;
+// S2_storer[bhwdf]_pci: Store byte/half/word/double.
+// S2_storer[bhwdf]_pci -> S2_storerbnew_pci
+let Uses = [CS], isNVStorable = 1 in
+class T_store_pci <string mnemonic, RegisterClass RC,
+ Operand Imm, bits<4>MajOp,
+ MemAccessSize AlignSize, string RegSrc = "Rt">
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt),
+ #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"",
+ [] ,
+ "$Rz = $_dst_" > {
+ bits<5> Rz;
+ bits<7> offset;
+ bits<1> Mu;
+ bits<5> Rt;
+ let accessSize = AlignSize;
+
+ let IClass = 0b1010;
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b0;
+ let Inst{6-3} =
+ !if (!eq(!cast<string>(AlignSize), "DoubleWordAccess"), offset{6-3},
+ !if (!eq(!cast<string>(AlignSize), "WordAccess"), offset{5-2},
+ !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1},
+ /* ByteAccess */ offset{3-0})));
+ let Inst{1} = 0b0;
+ }
+
+let isCodeGenOnly = 0 in {
+def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000,
+ ByteAccess>;
+def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010,
+ HalfWordAccess>;
+def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011,
+ HalfWordAccess, "Rt.h">;
+def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100,
+ WordAccess>;
+def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110,
+ DoubleWordAccess>;
}
+
+//===----------------------------------------------------------------------===//
+// Circular stores with auto-increment register
+//===----------------------------------------------------------------------===//
+let Uses = [CS], isNVStorable = 1, isCodeGenOnly = 0 in
+class T_store_pcr <string mnemonic, RegisterClass RC, bits<4>MajOp,
+ MemAccessSize AlignSize, string RegSrc = "Rt">
+ : STInst <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt),
+ #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"",
+ [],
+ "$Rz = $_dst_" > {
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<5> Rt;
+
+ let accessSize = AlignSize;
+
+ let IClass = 0b1010;
+ let Inst{27-25} = 0b100;
+ let Inst{24-21} = MajOp;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b0;
+ let Inst{1} = 0b1;
+ }
+
+let isCodeGenOnly = 0 in {
+def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>;
+def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>;
+def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>;
+def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
+def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011,
+ HalfWordAccess, "Rt.h">;
+}
+
+//===----------------------------------------------------------------------===//
+// Bit-reversed stores with auto-increment register
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_store_pbr<string mnemonic, RegisterClass RC,
+ MemAccessSize addrSize, bits<3> majOp,
+ bit isHalf = 0>
+ : STInst
+ <(outs IntRegs:$_dst_),
+ (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src),
+ #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""),
+ [], "$Rz = $_dst_" > {
+
+ let accessSize = addrSize;
+
+ bits<5> Rz;
+ bits<1> Mu;
+ bits<5> src;
+
+ let IClass = 0b1010;
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23-21} = majOp;
+ let Inst{7} = 0b0;
+ let Inst{20-16} = Rz;
+ let Inst{13} = Mu;
+ let Inst{12-8} = src;
+ }
+
+let isNVStorable = 1, isCodeGenOnly = 0 in {
+ let BaseOpcode = "S2_storerb_pbr" in
+ def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess,
+ 0b000>, NewValueRel;
+ let BaseOpcode = "S2_storerh_pbr" in
+ def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess,
+ 0b010>, NewValueRel;
+ let BaseOpcode = "S2_storeri_pbr" in
+ def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess,
+ 0b100>, NewValueRel;
+}
+let isCodeGenOnly = 0 in {
+def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>;
+def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>;
+}
+
//===----------------------------------------------------------------------===//
// ST -
//===----------------------------------------------------------------------===//
@@ -1637,69 +3122,423 @@ def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
[(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>;
-// Sign extend word to doubleword.
-def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
- "$dst = sxtw($src1)",
- [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>;
//===----------------------------------------------------------------------===//
// STYPE/ALU -
//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_S2op_1 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
+ RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat>
+ : SInst <(outs RCOut:$dst), (ins RCIn:$src),
+ "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""),
+ [], "", S_2op_tc_1_SLOT23 > {
+ bits<5> dst;
+ bits<5> src;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = 0b0;
+ let Inst{20-16} = src;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+class T_S2op_1_di <string mnemonic, bits<2> MajOp, bits<3> MinOp>
+ : T_S2op_1 <mnemonic, 0b0100, DoubleRegs, IntRegs, MajOp, MinOp, 0>;
+
+let hasNewValue = 1 in
+class T_S2op_1_id <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
+ : T_S2op_1 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, isSat>;
+
+let hasNewValue = 1 in
+class T_S2op_1_ii <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
+ : T_S2op_1 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp, isSat>;
+
+// Sign extend word to doubleword
+let isCodeGenOnly = 0 in
+def A2_sxtw : T_S2op_1_di <"sxtw", 0b01, 0b000>;
+
+def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>;
+
+// Swizzle the bytes of a word
+let isCodeGenOnly = 0 in
+def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>;
+
+// Saturate
+let Defs = [USR_OVF], isCodeGenOnly = 0 in {
+ def A2_sat : T_S2op_1_id <"sat", 0b11, 0b000>;
+ def A2_satb : T_S2op_1_ii <"satb", 0b11, 0b111>;
+ def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>;
+ def A2_sath : T_S2op_1_ii <"sath", 0b11, 0b100>;
+ def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>;
+}
+
+let Itinerary = S_2op_tc_2_SLOT23, isCodeGenOnly = 0 in {
+ // Absolute value word
+ def A2_abs : T_S2op_1_ii <"abs", 0b10, 0b100>;
+
+ let Defs = [USR_OVF] in
+ def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>;
+
+ // Negate with saturation
+ let Defs = [USR_OVF] in
+ def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>;
+}
+
+def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)),
+ (i32 (sub 0, (i32 IntRegs:$src))),
+ (i32 IntRegs:$src))),
+ (A2_abs IntRegs:$src)>;
+
+let AddedComplexity = 50 in
+def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)),
+ (i32 IntRegs:$src)),
+ (sra (i32 IntRegs:$src), (i32 31)))),
+ (A2_abs IntRegs:$src)>;
+
+class T_S2op_2 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
+ RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp,
+ bit isSat, bit isRnd, list<dag> pattern = []>
+ : SInst <(outs RCOut:$dst),
+ (ins RCIn:$src, u5Imm:$u5),
+ "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "")
+ #!if(isRnd, ":rnd", ""),
+ pattern, "", S_2op_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src;
+ bits<5> u5;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = u5;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+class T_S2op_2_di <string mnemonic, bits<3> MajOp, bits<3> MinOp>
+ : T_S2op_2 <mnemonic, 0b1000, DoubleRegs, IntRegs, MajOp, MinOp, 0, 0>;
+
+let hasNewValue = 1 in
+class T_S2op_2_id <string mnemonic, bits<3> MajOp, bits<3> MinOp>
+ : T_S2op_2 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, 0, 0>;
+
+let hasNewValue = 1 in
+class T_S2op_2_ii <string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit isSat = 0, bit isRnd = 0, list<dag> pattern = []>
+ : T_S2op_2 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp,
+ isSat, isRnd, pattern>;
+
+class T_S2op_shift <string mnemonic, bits<3> MajOp, bits<3> MinOp, SDNode OpNd>
+ : T_S2op_2_ii <mnemonic, MajOp, MinOp, 0, 0,
+ [(set (i32 IntRegs:$dst), (OpNd (i32 IntRegs:$src),
+ (u5ImmPred:$u5)))]>;
+
+// Arithmetic/logical shift right/left by immediate
+let Itinerary = S_2op_tc_1_SLOT23, isCodeGenOnly = 0 in {
+ def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>;
+ def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>;
+ def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>;
+}
+
+// Shift left by immediate with saturation
+let Defs = [USR_OVF], isCodeGenOnly = 0 in
+def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>;
+
+// Shift right with round
+let isCodeGenOnly = 0 in
+def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>;
+
+def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)),
+ (i32 1))),
+ (i32 1))),
+ (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>;
+
+class T_S2op_3<string opc, bits<2>MajOp, bits<3>minOp, bits<1> sat = 0>
+ : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss),
+ "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> {
+ bits<5> Rss;
+ bits<5> Rdd;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0;
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = Rss;
+ let Inst{7-5} = minOp;
+ let Inst{4-0} = Rdd;
+}
+
+let isCodeGenOnly = 0 in {
+def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>;
+def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>;
+def A2_notp : T_S2op_3 <"not", 0b10, 0b100>;
+}
+
+// Innterleave/deinterleave
+let isCodeGenOnly = 0 in {
+def S2_interleave : T_S2op_3 <"interleave", 0b11, 0b101>;
+def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>;
+}
+
//===----------------------------------------------------------------------===//
// STYPE/BIT +
//===----------------------------------------------------------------------===//
-// clrbit.
-def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = clrbit($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
- (not
- (shl 1, u5ImmPred:$src2))))]>;
+// Bit count
+
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_COUNT_LEADING<string MnOp, bits<3> MajOp, bits<3> MinOp, bit Is32,
+ dag Out, dag Inp>
+ : SInst<Out, Inp, "$Rd = "#MnOp#"($Rs)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rs;
+ bits<5> Rd;
+ let IClass = 0b1000;
+ let Inst{27} = 0b1;
+ let Inst{26} = Is32;
+ let Inst{25-24} = 0b00;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+}
-def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = clrbit($src1, #$src2)",
- []>;
+class T_COUNT_LEADING_32<string MnOp, bits<3> MajOp, bits<3> MinOp>
+ : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b1,
+ (outs IntRegs:$Rd), (ins IntRegs:$Rs)>;
+
+class T_COUNT_LEADING_64<string MnOp, bits<3> MajOp, bits<3> MinOp>
+ : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b0,
+ (outs IntRegs:$Rd), (ins DoubleRegs:$Rs)>;
+
+let isCodeGenOnly = 0 in {
+def S2_cl0 : T_COUNT_LEADING_32<"cl0", 0b000, 0b101>;
+def S2_cl1 : T_COUNT_LEADING_32<"cl1", 0b000, 0b110>;
+def S2_ct0 : T_COUNT_LEADING_32<"ct0", 0b010, 0b100>;
+def S2_ct1 : T_COUNT_LEADING_32<"ct1", 0b010, 0b101>;
+def S2_cl0p : T_COUNT_LEADING_64<"cl0", 0b010, 0b010>;
+def S2_cl1p : T_COUNT_LEADING_64<"cl1", 0b010, 0b100>;
+def S2_clb : T_COUNT_LEADING_32<"clb", 0b000, 0b100>;
+def S2_clbp : T_COUNT_LEADING_64<"clb", 0b010, 0b000>;
+def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>;
+}
-// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31).
-def : Pat <(and (i32 IntRegs:$src1), 2147483647),
- (CLRBIT_31 (i32 IntRegs:$src1), 31)>;
+def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>;
+def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>;
+def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>;
+def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>;
+def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>;
+def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
+
+// Bit set/clear/toggle
+
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_SCT_BIT_IMM<string MnOp, bits<3> MinOp>
+ : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5),
+ "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> u5;
+ let IClass = 0b1000;
+ let Inst{27-21} = 0b1100110;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = u5;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+}
-// setbit.
-def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = setbit($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
- (shl 1, u5ImmPred:$src2)))]>;
+let hasSideEffects = 0, hasNewValue = 1 in
+class T_SCT_BIT_REG<string MnOp, bits<2> MinOp>
+ : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+ let IClass = 0b1100;
+ let Inst{27-22} = 0b011010;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-6} = MinOp;
+ let Inst{4-0} = Rd;
+}
-// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31).
-def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = setbit($src1, #$src2)",
- []>;
+let isCodeGenOnly = 0 in {
+def S2_clrbit_i : T_SCT_BIT_IMM<"clrbit", 0b001>;
+def S2_setbit_i : T_SCT_BIT_IMM<"setbit", 0b000>;
+def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>;
+def S2_clrbit_r : T_SCT_BIT_REG<"clrbit", 0b01>;
+def S2_setbit_r : T_SCT_BIT_REG<"setbit", 0b00>;
+def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>;
+}
-def : Pat <(or (i32 IntRegs:$src1), -2147483648),
- (SETBIT_31 (i32 IntRegs:$src1), 31)>;
+def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))),
+ (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
+ (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
+ (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))),
+ (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
+def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
+ (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
+def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
+ (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
+
+// Bit test
+
+let hasSideEffects = 0 in
+class T_TEST_BIT_IMM<string MnOp, bits<3> MajOp>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5),
+ "$Pd = "#MnOp#"($Rs, #$u5)",
+ [], "", S_2op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> u5;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b0101;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0;
+ let Inst{12-8} = u5;
+ let Inst{1-0} = Pd;
+}
-// togglebit.
-def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = setbit($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
- (shl 1, u5ImmPred:$src2)))]>;
+let hasSideEffects = 0 in
+class T_TEST_BIT_REG<string MnOp, bit IsNeg>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#MnOp#"($Rs, $Rt)",
+ [], "", S_3op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+ let IClass = 0b1100;
+ let Inst{27-22} = 0b011100;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{1-0} = Pd;
+}
-// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31).
-def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = togglebit($src1, #$src2)",
- []>;
+let isCodeGenOnly = 0 in {
+def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>;
+def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>;
+}
+
+let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
+ def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
+ (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
+ def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
+ (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
+ def: Pat<(i1 (trunc (i32 IntRegs:$Rs))),
+ (S2_tstbit_i IntRegs:$Rs, 0)>;
+ def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))),
+ (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
+}
+let hasSideEffects = 0 in
+class T_TEST_BITS_IMM<string MnOp, bits<2> MajOp, bit IsNeg>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6),
+ "$Pd = "#MnOp#"($Rs, #$u6)",
+ [], "", S_2op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<6> u6;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b0101;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{13-8} = u6;
+ let Inst{1-0} = Pd;
+}
+
+let hasSideEffects = 0 in
+class T_TEST_BITS_REG<string MnOp, bits<2> MajOp, bit IsNeg>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#MnOp#"($Rs, $Rt)",
+ [], "", S_3op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+ let IClass = 0b1100;
+ let Inst{27-24} = 0b0111;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{1-0} = Pd;
+}
-def : Pat <(xor (i32 IntRegs:$src1), -2147483648),
- (TOGBIT_31 (i32 IntRegs:$src1), 31)>;
+let isCodeGenOnly = 0 in {
+def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>;
+def C2_bitsclr : T_TEST_BITS_REG<"bitsclr", 0b10, 0>;
+def C2_bitsset : T_TEST_BITS_REG<"bitsset", 0b01, 0>;
+}
+
+let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
+ def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)),
+ (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>;
+ def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)),
+ (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
+}
+
+let AddedComplexity = 10 in // Complexity greater than compare reg-reg.
+def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)),
+ (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
+
+//===----------------------------------------------------------------------===//
+// STYPE/BIT -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/COMPLEX +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// STYPE/COMPLEX -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// XTYPE/PERM +
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// XTYPE/PERM -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/PRED +
+//===----------------------------------------------------------------------===//
// Predicate transfer.
-let neverHasSideEffects = 1 in
-def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1),
- "$dst = $src1 /* Should almost never emit this. */",
- []>;
+let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
+def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps),
+ "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<2> Ps;
+
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b1001;
+ let Inst{22} = 0b1;
+ let Inst{17-16} = Ps;
+ let Inst{4-0} = Rd;
+}
+
+// Transfer general register to predicate.
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs),
+ "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+
+ let IClass = 0b1000;
+ let Inst{27-21} = 0b0101010;
+ let Inst{20-16} = Rs;
+ let Inst{1-0} = Pd;
+}
+
-def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
- "$dst = $src1 /* Should almost never emit this. */",
- [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>;
//===----------------------------------------------------------------------===//
// STYPE/PRED -
//===----------------------------------------------------------------------===//
@@ -1707,88 +3546,59 @@ def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
//===----------------------------------------------------------------------===//
// STYPE/SHIFT +
//===----------------------------------------------------------------------===//
+class S_2OpInstImm<string Mnemonic, bits<3>MajOp, bits<3>MinOp,
+ Operand Imm, list<dag> pattern = [], bit isRnd = 0>
+ : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2),
+ "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""),
+ pattern> {
+ bits<5> src1;
+ bits<5> dst;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+}
+
+class S_2OpInstImmI6<string Mnemonic, SDNode OpNode, bits<3>MinOp>
+ : S_2OpInstImm<Mnemonic, 0b000, MinOp, u6Imm,
+ [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]> {
+ bits<6> src2;
+ let Inst{13-8} = src2;
+}
+
// Shift by immediate.
-def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = asr($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
- u5ImmPred:$src2))]>;
-
-def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
- "$dst = asr($src1, #$src2)",
- [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
- u6ImmPred:$src2))]>;
-
-def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = asl($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
- u5ImmPred:$src2))]>;
-
-def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
- "$dst = asl($src1, #$src2)",
- [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
- u6ImmPred:$src2))]>;
-
-def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
- "$dst = lsr($src1, #$src2)",
- [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
- u5ImmPred:$src2))]>;
-
-def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
- "$dst = lsr($src1, #$src2)",
- [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
- u6ImmPred:$src2))]>;
-
-// Shift by immediate and add.
-let AddedComplexity = 100 in
-def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
- u3Imm:$src3),
- "$dst = addasl($src1, $src2, #$src3)",
- [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
- (shl (i32 IntRegs:$src2),
- u3ImmPred:$src3)))]>;
-
-// Shift by register.
-def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = asl($src1, $src2)",
- [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = asr($src1, $src2)",
- [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = lsl($src1, $src2)",
- [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
- "$dst = lsr($src1, $src2)",
- [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
- "$dst = asl($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
- "$dst = lsl($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- IntRegs:$src2),
- "$dst = asr($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
-
-def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- IntRegs:$src2),
- "$dst = lsr($src1, $src2)",
- [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
- (i32 IntRegs:$src2)))]>;
+let isCodeGenOnly = 0 in {
+def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>;
+def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>;
+def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>;
+}
+
+// Shift left by small amount and add.
+let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0,
+ isCodeGenOnly = 0 in
+def S2_addasl_rrri: SInst <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3),
+ "$Rd = addasl($Rt, $Rs, #$u3)" ,
+ [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt),
+ (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))],
+ "", S_3op_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rt;
+ bits<5> Rs;
+ bits<3> u3;
+
+ let IClass = 0b1100;
+
+ let Inst{27-21} = 0b0100000;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = u3;
+ let Inst{4-0} = Rd;
+ }
//===----------------------------------------------------------------------===//
// STYPE/SHIFT -
@@ -1815,38 +3625,191 @@ def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
//===----------------------------------------------------------------------===//
// SYSTEM/USER +
//===----------------------------------------------------------------------===//
-def SDHexagonBARRIER: SDTypeProfile<0, 0, []>;
-def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER,
- [SDNPHasChain]>;
+def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
-let hasSideEffects = 1, isSolo = 1 in
+let hasSideEffects = 1, isSoloAX = 1, isCodeGenOnly = 0 in
def BARRIER : SYSInst<(outs), (ins),
"barrier",
- [(HexagonBARRIER)]>;
+ [(HexagonBARRIER)],"",ST_tc_st_SLOT0> {
+ let Inst{31-28} = 0b1010;
+ let Inst{27-21} = 0b1000000;
+}
//===----------------------------------------------------------------------===//
// SYSTEM/SUPER -
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// CRUSER - Type.
+//===----------------------------------------------------------------------===//
+// HW loop
+let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, hasSideEffects = 0 in
+class LOOP_iBase<string mnemonic, Operand brOp, bit mustExtend = 0>
+ : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2),
+ #mnemonic#"($offset, #$src2)",
+ [], "" , CR_tc_3x_SLOT3> {
+ bits<9> offset;
+ bits<10> src2;
+
+ let IClass = 0b0110;
+
+ let Inst{27-22} = 0b100100;
+ let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
+ let Inst{20-16} = src2{9-5};
+ let Inst{12-8} = offset{8-4};
+ let Inst{7-5} = src2{4-2};
+ let Inst{4-3} = offset{3-2};
+ let Inst{1-0} = src2{1-0};
+}
+
+let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, hasSideEffects = 0 in
+class LOOP_rBase<string mnemonic, Operand brOp, bit mustExtend = 0>
+ : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2),
+ #mnemonic#"($offset, $src2)",
+ [], "" ,CR_tc_3x_SLOT3> {
+ bits<9> offset;
+ bits<5> src2;
+
+ let IClass = 0b0110;
+
+ let Inst{27-22} = 0b000000;
+ let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
+ let Inst{20-16} = src2;
+ let Inst{12-8} = offset{8-4};
+ let Inst{4-3} = offset{3-2};
+ }
+
+multiclass LOOP_ri<string mnemonic> {
+ def i : LOOP_iBase<mnemonic, brtarget>;
+ def r : LOOP_rBase<mnemonic, brtarget>;
+}
+
+
+let Defs = [SA0, LC0, USR], isCodeGenOnly = 0 in
+defm J2_loop0 : LOOP_ri<"loop0">;
+
+// Interestingly only loop0's appear to set usr.lpcfg
+let Defs = [SA1, LC1], isCodeGenOnly = 0 in
+defm J2_loop1 : LOOP_ri<"loop1">;
+
+let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
+ Defs = [PC, LC0], Uses = [SA0, LC0] in {
+def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
+ ":endloop0",
+ []>;
+}
+
+let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
+ Defs = [PC, LC1], Uses = [SA1, LC1] in {
+def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset),
+ ":endloop1",
+ []>;
+}
+
+// Pipelined loop instructions, sp[123]loop0
+let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
+ isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, isPredicateLate = 1 in
+class SPLOOP_iBase<string SP, bits<2> op>
+ : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10),
+ "p3 = sp"#SP#"loop0($r7_2, #$U10)" > {
+ bits<9> r7_2;
+ bits<10> U10;
+
+ let IClass = 0b0110;
+
+ let Inst{22-21} = op;
+ let Inst{27-23} = 0b10011;
+ let Inst{20-16} = U10{9-5};
+ let Inst{12-8} = r7_2{8-4};
+ let Inst{7-5} = U10{4-2};
+ let Inst{4-3} = r7_2{3-2};
+ let Inst{1-0} = U10{1-0};
+ }
+
+let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
+ isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
+ opExtendable = 0, isPredicateLate = 1 in
+class SPLOOP_rBase<string SP, bits<2> op>
+ : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs),
+ "p3 = sp"#SP#"loop0($r7_2, $Rs)" > {
+ bits<9> r7_2;
+ bits<5> Rs;
+
+ let IClass = 0b0110;
+
+ let Inst{22-21} = op;
+ let Inst{27-23} = 0b00001;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = r7_2{8-4};
+ let Inst{4-3} = r7_2{3-2};
+ }
+
+multiclass SPLOOP_ri<string mnemonic, bits<2> op> {
+ def i : SPLOOP_iBase<mnemonic, op>;
+ def r : SPLOOP_rBase<mnemonic, op>;
+}
+
+let isCodeGenOnly = 0 in {
+defm J2_ploop1s : SPLOOP_ri<"1", 0b01>;
+defm J2_ploop2s : SPLOOP_ri<"2", 0b10>;
+defm J2_ploop3s : SPLOOP_ri<"3", 0b11>;
+}
+
+// Transfer to/from Control/GPR Guest/GPR
+let hasSideEffects = 0 in
+class TFR_CR_RS_base<RegisterClass CTRC, RegisterClass RC, bit isDouble>
+ : CRInst <(outs CTRC:$dst), (ins RC:$src),
+ "$dst = $src", [], "", CR_tc_3x_SLOT3> {
+ bits<5> dst;
+ bits<5> src;
+
+ let IClass = 0b0110;
+
+ let Inst{27-25} = 0b001;
+ let Inst{24} = isDouble;
+ let Inst{23-21} = 0b001;
+ let Inst{20-16} = src;
+ let Inst{4-0} = dst;
+ }
+let isCodeGenOnly = 0 in
+def A2_tfrrcr : TFR_CR_RS_base<CtrRegs, IntRegs, 0b0>;
+def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>;
+def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>;
+
+let hasSideEffects = 0 in
+class TFR_RD_CR_base<RegisterClass RC, RegisterClass CTRC, bit isSingle>
+ : CRInst <(outs RC:$dst), (ins CTRC:$src),
+ "$dst = $src", [], "", CR_tc_3x_SLOT3> {
+ bits<5> dst;
+ bits<5> src;
+
+ let IClass = 0b0110;
+
+ let Inst{27-26} = 0b10;
+ let Inst{25} = isSingle;
+ let Inst{24-21} = 0b0000;
+ let Inst{20-16} = src;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue = 1, opNewValue = 0, isCodeGenOnly = 0 in
+def A2_tfrcrr : TFR_RD_CR_base<IntRegs, CtrRegs, 1>;
+def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>;
+def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>;
+
+// Y4_trace: Send value to etm trace.
+let isSoloAX = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
+def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs),
+ "trace($Rs)"> {
+ bits<5> Rs;
+
+ let IClass = 0b0110;
+ let Inst{27-21} = 0b0010010;
+ let Inst{20-16} = Rs;
+ }
-// TFRI64 - assembly mapped.
-let isReMaterializable = 1 in
-def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
- "$dst = #$src1",
- [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
-
-// Pseudo instruction to encode a set of conditional transfers.
-// This instruction is used instead of a mux and trades-off codesize
-// for performance. We conduct this transformation optimistically in
-// the hope that these instructions get promoted to dot-new transfers.
-let AddedComplexity = 100, isPredicated = 1 in
-def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
- IntRegs:$src2,
- IntRegs:$src3),
- "Error; should not emit",
- [(set (i32 IntRegs:$dst),
- (i32 (select (i1 PredRegs:$src1),
- (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))]>;
let AddedComplexity = 100, isPredicated = 1 in
def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3),
@@ -1877,28 +3840,6 @@ def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1),
"$dst = add($src1)",
[(set (i32 IntRegs:$dst), ADDRri:$src1)]>;
-//
-// CR - Type.
-//
-let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
-def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2),
- "loop0($offset, #$src2)",
- []>;
-}
-
-let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
-def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2),
- "loop0($offset, $src2)",
- []>;
-}
-
-let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1,
- Defs = [PC, LC0], Uses = [SA0, LC0] in {
-def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
- ":endloop0",
- []>;
-}
-
// Support for generating global address.
// Taken from X86InstrInfo.td.
def SDTHexagonCONST32 : SDTypeProfile<1, 1, [
@@ -1909,44 +3850,44 @@ def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
// HI/LO Instructions
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst.l = #LO($global)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst.h = #HI($global)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
"$dst.l = #LO($imm_value)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
"$dst.h = #HI($imm_value)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst.l = #LO($jt)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst.h = #HI($jt)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in
def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
"$dst.l = #LO($label)",
[]>;
-let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in
+let isReMaterializable = 1, isMoveImm = 1 , hasSideEffects = 0 in
def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
"$dst.h = #HI($label)",
[]>;
@@ -2044,22 +3985,16 @@ let Defs = [R29, R30, R31], Uses = [R29] in {
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Call subroutine.
-let isCall = 1, neverHasSideEffects = 1,
+let isCall = 1, hasSideEffects = 0,
Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
def CALL : JInst<(outs), (ins calltarget:$dst),
"call $dst", []>;
}
-// Call subroutine from register.
-let isCall = 1, neverHasSideEffects = 1,
- Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
- R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
- def CALLR : JRInst<(outs), (ins IntRegs:$dst),
- "callr $dst",
- []>;
- }
-
+// Call subroutine indirectly.
+let Defs = VolatileV3.Regs, isCodeGenOnly = 0 in
+def J2_callr : JUMPR_MISC_CALLR<0, 1>;
// Indirect tail-call.
let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in
@@ -2068,13 +4003,15 @@ def TCRETURNR : T_JMPr;
// Direct tail-calls.
let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
isTerminator = 1, isCodeGenOnly = 1 in {
- def TCRETURNtg : T_JMP<(ins calltarget:$dst)>;
- def TCRETURNtext : T_JMP<(ins calltarget:$dst)>;
+ def TCRETURNtg : JInst<(outs), (ins calltarget:$dst), "jump $dst",
+ [], "", J_tc_2early_SLOT23>;
+ def TCRETURNtext : JInst<(outs), (ins calltarget:$dst), "jump $dst",
+ [], "", J_tc_2early_SLOT23>;
}
// Map call instruction.
def : Pat<(call (i32 IntRegs:$dst)),
- (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
+ (J2_callr (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
def : Pat<(call tglobaladdr:$dst),
(CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>;
def : Pat<(call texternalsym:$dst),
@@ -2090,91 +4027,81 @@ def : Pat<(HexagonTCRet (i32 IntRegs:$dst)),
// Atomic load and store support
// 8 bit atomic load
def : Pat<(atomic_load_8 ADDRriS11_0:$src1),
- (i32 (LDriub ADDRriS11_0:$src1))>;
+ (i32 (L2_loadrub_io AddrFI:$src1, 0))>;
def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)),
- (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
+ (i32 (L2_loadrub_io (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
// 16 bit atomic load
def : Pat<(atomic_load_16 ADDRriS11_1:$src1),
- (i32 (LDriuh ADDRriS11_1:$src1))>;
+ (i32 (L2_loadruh_io AddrFI:$src1, 0))>;
def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)),
- (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
+ (i32 (L2_loadruh_io (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
def : Pat<(atomic_load_32 ADDRriS11_2:$src1),
- (i32 (LDriw ADDRriS11_2:$src1))>;
+ (i32 (L2_loadri_io AddrFI:$src1, 0))>;
def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)),
- (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
+ (i32 (L2_loadri_io (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
// 64 bit atomic load
def : Pat<(atomic_load_64 ADDRriS11_3:$src1),
- (i64 (LDrid ADDRriS11_3:$src1))>;
+ (i64 (L2_loadrd_io AddrFI:$src1, 0))>;
def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)),
- (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
+ (i64 (L2_loadrd_io (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)),
- (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>;
+ (S2_storerb_io AddrFI:$src2, 0, (i32 IntRegs:$src1))>;
def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset),
(i32 IntRegs:$src1)),
- (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset,
+ (S2_storerb_io (i32 IntRegs:$src2), s11_0ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)),
- (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>;
+ (S2_storerh_io AddrFI:$src2, 0, (i32 IntRegs:$src1))>;
def : Pat<(atomic_store_16 (i32 IntRegs:$src1),
(add (i32 IntRegs:$src2), s11_1ImmPred:$offset)),
- (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset,
+ (S2_storerh_io (i32 IntRegs:$src2), s11_1ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)),
- (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>;
+ (S2_storeri_io AddrFI:$src2, 0, (i32 IntRegs:$src1))>;
def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset),
(i32 IntRegs:$src1)),
- (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset,
+ (S2_storeri_io (i32 IntRegs:$src2), s11_2ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)),
- (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>;
+ (S2_storerd_io AddrFI:$src2, 0, (i64 DoubleRegs:$src1))>;
def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset),
(i64 DoubleRegs:$src1)),
- (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset,
+ (S2_storerd_io (i32 IntRegs:$src2), s11_3ImmPred:$offset,
(i64 DoubleRegs:$src1))>;
// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
def : Pat <(and (i32 IntRegs:$src1), 65535),
- (ZXTH (i32 IntRegs:$src1))>;
+ (A2_zxth (i32 IntRegs:$src1))>;
// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
def : Pat <(and (i32 IntRegs:$src1), 255),
- (ZXTB (i32 IntRegs:$src1))>;
+ (A2_zxtb (i32 IntRegs:$src1))>;
// Map Add(p1, true) to p1 = not(p1).
// Add(p1, false) should never be produced,
// if it does, it got to be mapped to NOOP.
def : Pat <(add (i1 PredRegs:$src1), -1),
- (NOT_p (i1 PredRegs:$src1))>;
-
-// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) =>
-// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1).
-// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
-def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i32 IntRegs:$src3),
- (i32 IntRegs:$src4)),
- (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)),
- (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>,
- Requires<[HasV2TOnly]>;
+ (C2_not (i1 PredRegs:$src1))>;
// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3),
@@ -2196,91 +4123,91 @@ def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3),
// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset),
- (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
+ (J2_jumpf (i1 PredRegs:$src1), bb:$offset)>;
// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2).
def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))),
- (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+ (i1 (C2_andn (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
let AddedComplexity = 100 in
def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))),
- (i64 (COMBINE_rr (TFRI 0),
- (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>,
+ (i64 (A2_combinew (A2_tfrsi 0),
+ (L2_loadrub_io (CONST32_set tglobaladdr:$global), 0)))>,
Requires<[NoV4T]>;
// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned.
let AddedComplexity = 10 in
def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)),
- (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>;
+ (i32 (A2_and (i32 (L2_loadrb_io AddrFI:$addr, 0)), (A2_tfrsi 0x1)))>;
-// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo).
+// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo).
def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
- (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
+ (i64 (A2_sxtw (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
-// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)).
+// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(SXTH(Rss.lo)).
def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
- (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ (i64 (A2_sxtw (i32 (A2_sxth (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg))))))>;
-// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)).
+// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(SXTB(Rss.lo)).
def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
- (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ (i64 (A2_sxtw (i32 (A2_sxtb (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg))))))>;
// We want to prevent emitting pnot's as much as possible.
-// Map brcond with an unsupported setcc to a JMP_f.
+// Map brcond with an unsupported setcc to a J2_jumpf.
def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
- (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
bb:$offset)>;
def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
bb:$offset),
- (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
+ (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
- (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
+ (J2_jumpf (i1 PredRegs:$src1), bb:$offset)>;
def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
- (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
+ (J2_jumpt (i1 PredRegs:$src1), bb:$offset)>;
// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
bb:$offset),
- (JMP_f (CMPGTri (i32 IntRegs:$src1),
+ (J2_jumpf (C2_cmpgti (i32 IntRegs:$src1),
(DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>;
// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
- (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
+ (J2_jumpt (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
bb:$offset),
- (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
+ (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
bb:$offset)>;
def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
- (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ (J2_jumpf (C2_cmpgtu (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
bb:$offset)>;
def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
bb:$offset),
- (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
bb:$offset)>;
// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src3)),
- (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1),
+ (i64 (A2_combinew (i32 (C2_mux (i1 PredRegs:$src1),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_hireg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
subreg_hireg)))),
- (i32 (MUX_rr (i1 PredRegs:$src1),
+ (i32 (C2_mux (i1 PredRegs:$src1),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
@@ -2290,12 +4217,12 @@ def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2),
(i1 PredRegs:$src3)),
- (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
- (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
+ (C2_or (C2_and (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
+ (C2_and (C2_not (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs.
def : Pat<(i1 (load ADDRriS11_2:$addr)),
- (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>;
+ (i1 (C2_tfrrp (i32 (L2_loadrb_io AddrFI:$addr, 0))))>;
// Map for truncating from 64 immediates to 32 bit immediates.
def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
@@ -2303,263 +4230,263 @@ def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
// Map for truncating from i64 immediates to i1 bit immediates.
def : Pat<(i1 (trunc (i64 DoubleRegs:$src))),
- (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (i1 (C2_tfrrp (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg))))>;
// Map memb(Rs) = Rdd -> memb(Rs) = Rt.
def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storerb_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memh(Rs) = Rdd -> memh(Rs) = Rt.
def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storerh_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memw(Rs) = Rdd -> memw(Rs) = Rt
def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memw(Rs) = Rdd -> memw(Rs) = Rt.
def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
- (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0.
def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
- (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+ (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>;
// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0.
def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
- (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+ (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>;
// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt.
def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr),
- (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>;
+ (S2_storerb_io AddrFI:$addr, 0, (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0)) )>;
-// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs).
+// Map Rdd = anyext(Rs) -> Rdd = A2_sxtw(Rs).
// Hexagon_TODO: We can probably use combine but that will cost 2 instructions.
// Better way to do this?
def : Pat<(i64 (anyext (i32 IntRegs:$src1))),
- (i64 (SXTW (i32 IntRegs:$src1)))>;
+ (i64 (A2_sxtw (i32 IntRegs:$src1)))>;
// Map cmple -> cmpgt.
// rs <= rt -> !(rs > rt).
def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)),
- (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>;
+ (i1 (C2_not (C2_cmpgti (i32 IntRegs:$src1), s10ExtPred:$src2)))>;
// rs <= rt -> !(rs > rt).
def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+ (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
// Rss <= Rtt -> !(Rss > Rtt).
def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+ (i1 (C2_not (C2_cmpgtp (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
// Map cmpne -> cmpeq.
// Hexagon_TODO: We should improve on this.
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)),
- (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>;
+ (i1 (C2_not(i1 (C2_cmpeqi (i32 IntRegs:$src1), s10ExtPred:$src2))))>;
// Map cmpne(Rs) -> !cmpeqe(Rs).
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
+ (i1 (C2_not (i1 (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
// Convert setne back to xor for hexagon since we compute w/ pred registers.
def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
- (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+ (i1 (C2_xor (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
// Map cmpne(Rss) -> !cmpew(Rss).
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1),
+ (i1 (C2_not (i1 (C2_cmpeqp (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))))>;
// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
+ (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
// cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)),
- (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
+ (i1 (C2_cmpgti (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
// rss >= rtt -> !(rtt > rss).
def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2),
+ (i1 (C2_not (i1 (C2_cmpgtp (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src1)))))>;
// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
// rs < rt -> !(rs >= rt).
def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)),
- (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>;
+ (i1 (C2_not (C2_cmpgti (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>;
// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs).
// rs < rt -> rt > rs.
// We can let assembler map it, or we can do in the compiler itself.
def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
+ (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss).
// rss < rtt -> (rtt > rss).
def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+ (i1 (C2_cmpgtp (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs)
// rs < rt -> rt > rs.
// We can let assembler map it, or we can do in the compiler itself.
def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
+ (i1 (C2_cmpgtu (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss).
// rs < rt -> rt > rs.
def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+ (i1 (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)),
- (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>;
+ (i1 (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>;
// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)),
- (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>;
+ (i1 (C2_cmpgtui (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>;
// Generate cmpgtu(Rs, #u9)
def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)),
- (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>;
+ (i1 (C2_cmpgtui (i32 IntRegs:$src1), u9ExtPred:$src2))>;
// Map from Rs >= Rt -> !(Rt > Rs).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
+ (i1 (C2_not (C2_cmpgtu (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
// Map from Rs >= Rt -> !(Rt > Rs).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
+ (i1 (C2_not (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
// Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt).
// Map from (Rs <= Rt) -> !(Rs > Rt).
def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+ (i1 (C2_not (C2_cmpgtu (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
// Map from (Rs <= Rt) -> !(Rs > Rt).
def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
- (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+ (i1 (C2_not (C2_cmpgtup (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
// Sign extends.
// i1 -> i32
def : Pat <(i32 (sext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>;
+ (i32 (C2_muxii (i1 PredRegs:$src1), -1, 0))>;
// i1 -> i64
def : Pat <(i64 (sext (i1 PredRegs:$src1))),
- (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>;
+ (i64 (A2_combinew (A2_tfrsi -1), (C2_muxii (i1 PredRegs:$src1), -1, 0)))>;
// Convert sign-extended load back to load and sign extend.
// i8 -> i64
def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)),
- (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
+ (i64 (A2_sxtw (L2_loadrb_io AddrFI:$src1, 0)))>;
// Convert any-extended load back to load and sign extend.
// i8 -> i64
def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)),
- (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
+ (i64 (A2_sxtw (L2_loadrb_io AddrFI:$src1, 0)))>;
// Convert sign-extended load back to load and sign extend.
// i16 -> i64
def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)),
- (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>;
+ (i64 (A2_sxtw (L2_loadrh_io AddrFI:$src1, 0)))>;
// Convert sign-extended load back to load and sign extend.
// i32 -> i64
def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)),
- (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>;
+ (i64 (A2_sxtw (L2_loadri_io AddrFI:$src1, 0)))>;
// Zero extends.
// i1 -> i32
def : Pat <(i32 (zext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+ (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))>;
// i1 -> i64
def : Pat <(i64 (zext (i1 PredRegs:$src1))),
- (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (C2_muxii (i1 PredRegs:$src1), 1, 0)))>,
Requires<[NoV4T]>;
// i32 -> i64
def : Pat <(i64 (zext (i32 IntRegs:$src1))),
- (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (i32 IntRegs:$src1)))>,
Requires<[NoV4T]>;
// i8 -> i64
def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io AddrFI:$src1, 0)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[NoV4T]>;
// i1 -> i64
def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io AddrFI:$src1, 0)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[NoV4T]>;
// i16 -> i64
def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadruh_io AddrFI:$src1, 0)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadruh_io IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[NoV4T]>;
// i32 -> i64
def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io AddrFI:$src1, 0)))>,
Requires<[NoV4T]>;
let AddedComplexity = 100 in
def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
- (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[NoV4T]>;
let AddedComplexity = 10 in
def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)),
- (i32 (LDriw ADDRriS11_0:$src1))>;
+ (i32 (L2_loadri_io AddrFI:$src1, 0))>;
// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
def : Pat <(i32 (zext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+ (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))>;
// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
def : Pat <(i32 (anyext (i1 PredRegs:$src1))),
- (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+ (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))>;
-// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
+// Map from Rss = Pd to Rdd = A2_sxtw (mux(Pd, #1, #0))
def : Pat <(i64 (anyext (i1 PredRegs:$src1))),
- (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>;
+ (i64 (A2_sxtw (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))))>;
let AddedComplexity = 100 in
@@ -2567,20 +4494,20 @@ def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 (i32 (add IntRegs:$src2,
s11_2ExtPred:$offset2)))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw_indexed IntRegs:$src2,
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (L2_loadri_io IntRegs:$src2,
s11_2ExtPred:$offset2)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw ADDRriS11_2:$srcLow)))>;
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (L2_loadri_io AddrFI:$srcLow, 0)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zext (i32 IntRegs:$srcLow))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
IntRegs:$srcLow))>;
let AddedComplexity = 100 in
@@ -2588,26 +4515,26 @@ def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 (i32 (add IntRegs:$src2,
s11_2ExtPred:$offset2)))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw_indexed IntRegs:$src2,
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (L2_loadri_io IntRegs:$src2,
s11_2ExtPred:$offset2)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
- (LDriw ADDRriS11_2:$srcLow)))>;
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (L2_loadri_io AddrFI:$srcLow, 0)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zext (i32 IntRegs:$srcLow))))),
- (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
+ (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
IntRegs:$srcLow))>;
// Any extended 64-bit load.
// anyext i32 -> i64
def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io AddrFI:$src1, 0)))>,
Requires<[NoV4T]>;
// When there is an offset we should prefer the pattern below over the pattern above.
@@ -2622,50 +4549,51 @@ def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
// ********************************************
let AddedComplexity = 100 in
def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
- (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[NoV4T]>;
// anyext i16 -> i64.
def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
- (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrh_io AddrFI:$src1, 0)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
- (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1,
+ (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrh_io IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[NoV4T]>;
// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs).
def : Pat<(i64 (zext (i32 IntRegs:$src1))),
- (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
+ (i64 (A2_combinew (A2_tfrsi 0), (i32 IntRegs:$src1)))>,
Requires<[NoV4T]>;
// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
(i64
- (MPYU64_acc
+ (M2_dpmpyuu_acc_s0
(i64
- (COMBINE_rr
- (TFRI 0),
+ (A2_combinew
+ (A2_tfrsi 0),
(i32
(EXTRACT_SUBREG
(i64
- (LSRd_ri
+ (S2_lsr_i_p
(i64
- (MPYU64_acc
+ (M2_dpmpyuu_acc_s0
(i64
- (MPYU64_acc
+ (M2_dpmpyuu_acc_s0
(i64
- (COMBINE_rr (TFRI 0),
+ (A2_combinew (A2_tfrsi 0),
(i32
(EXTRACT_SUBREG
(i64
- (LSRd_ri
+ (S2_lsr_i_p
(i64
- (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ (M2_dpmpyuu_s0
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)))), 32)),
@@ -2681,25 +4609,26 @@ def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
// Multiply 64-bit signed and use upper result.
def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
(i64
- (MPY64_acc
+ (M2_dpmpyss_acc_s0
(i64
- (COMBINE_rr (TFRI 0),
+ (A2_combinew (A2_tfrsi 0),
(i32
(EXTRACT_SUBREG
(i64
- (LSRd_ri
+ (S2_lsr_i_p
(i64
- (MPY64_acc
+ (M2_dpmpyss_acc_s0
(i64
- (MPY64_acc
+ (M2_dpmpyss_acc_s0
(i64
- (COMBINE_rr (TFRI 0),
+ (A2_combinew (A2_tfrsi 0),
(i32
(EXTRACT_SUBREG
(i64
- (LSRd_ri
+ (S2_lsr_i_p
(i64
- (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ (M2_dpmpyuu_s0
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)))), 32)),
@@ -2744,83 +4673,470 @@ def : Pat<(HexagonWrapperJT tjumptable:$dst),
(i32 (CONST32_set_jt tjumptable:$dst))>;
// XTYPE/SHIFT
-
-// Multi-class for logical operators :
+//
+//===----------------------------------------------------------------------===//
+// Template Class
// Shift by immediate/register and accumulate/logical
-multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
- def _ri : SInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
- [(set (i32 IntRegs:$dst),
- (OpNode2 (i32 IntRegs:$src1),
- (OpNode1 (i32 IntRegs:$src2),
- u5ImmPred:$src3)))],
- "$src1 = $dst">;
-
- def d_ri : SInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
- [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1),
- (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))],
- "$src1 = $dst">;
-}
-
-// Multi-class for logical operators :
-// Shift by register and accumulate/logical (32/64 bits)
-multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
- def _rr : SInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
- [(set (i32 IntRegs:$dst),
- (OpNode2 (i32 IntRegs:$src1),
- (OpNode1 (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">;
+//===----------------------------------------------------------------------===//
+
+// Rx[+-&|]=asr(Rs,#u5)
+// Rx[+-&|^]=lsr(Rs,#u5)
+// Rx[+-&|^]=asl(Rs,#u5)
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_shift_imm_acc_r <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp>
+ : SInst_acc<(outs IntRegs:$Rx),
+ (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5),
+ "$Rx "#opc2#opc1#"($Rs, #$u5)",
+ [(set (i32 IntRegs:$Rx),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))],
+ "$src1 = $Rx", S_2op_tc_2_SLOT23> {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> u5;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b1110;
+ let Inst{23-22} = majOp{2-1};
+ let Inst{13} = 0b0;
+ let Inst{7} = majOp{0};
+ let Inst{6-5} = minOp;
+ let Inst{4-0} = Rx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = u5;
+ }
+
+// Rx[+-&|]=asr(Rs,Rt)
+// Rx[+-&|^]=lsr(Rs,Rt)
+// Rx[+-&|^]=asl(Rs,Rt)
+
+let hasNewValue = 1, opNewValue = 0 in
+class T_shift_reg_acc_r <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<2> majOp, bits<2> minOp>
+ : SInst_acc<(outs IntRegs:$Rx),
+ (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rx "#opc2#opc1#"($Rs, $Rt)",
+ [(set (i32 IntRegs:$Rx),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))],
+ "$src1 = $Rx", S_3op_tc_2_SLOT23 > {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b1100;
+ let Inst{23-22} = majOp;
+ let Inst{7-6} = minOp;
+ let Inst{4-0} = Rx;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ }
- def d_rr : SInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
- !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
- [(set (i64 DoubleRegs:$dst),
- (OpNode2 (i64 DoubleRegs:$src1),
- (OpNode1 (i64 DoubleRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">;
+// Rxx[+-&|]=asr(Rss,#u6)
+// Rxx[+-&|^]=lsr(Rss,#u6)
+// Rxx[+-&|^]=asl(Rss,#u6)
+
+class T_shift_imm_acc_p <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp>
+ : SInst_acc<(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6),
+ "$Rxx "#opc2#opc1#"($Rss, #$u6)",
+ [(set (i64 DoubleRegs:$Rxx),
+ (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))],
+ "$src1 = $Rxx", S_2op_tc_2_SLOT23> {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<6> u6;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b0010;
+ let Inst{23-22} = majOp{2-1};
+ let Inst{7} = majOp{0};
+ let Inst{6-5} = minOp;
+ let Inst{4-0} = Rxx;
+ let Inst{20-16} = Rss;
+ let Inst{13-8} = u6;
+ }
+
+
+// Rxx[+-&|]=asr(Rss,Rt)
+// Rxx[+-&|^]=lsr(Rss,Rt)
+// Rxx[+-&|^]=asl(Rss,Rt)
+// Rxx[+-&|^]=lsl(Rss,Rt)
+
+class T_shift_reg_acc_p <string opc1, string opc2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp>
+ : SInst_acc<(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt),
+ "$Rxx "#opc2#opc1#"($Rss, $Rt)",
+ [(set (i64 DoubleRegs:$Rxx),
+ (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))],
+ "$src1 = $Rxx", S_3op_tc_2_SLOT23> {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = majOp;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rt;
+ let Inst{7-6} = minOp;
+ let Inst{4-0} = Rxx;
+ }
+
+//===----------------------------------------------------------------------===//
+// Multi-class for the shift instructions with logical/arithmetic operators.
+//===----------------------------------------------------------------------===//
+multiclass xtype_imm_base<string OpcStr1, string OpcStr2, SDNode OpNode1,
+ SDNode OpNode2, bits<3> majOp, bits<2> minOp > {
+ def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1,
+ OpNode2, majOp, minOp >;
+ def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1,
+ OpNode2, majOp, minOp >;
}
-multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> {
-let AddedComplexity = 100 in
- defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>;
- defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>;
- defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>;
- defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>;
+multiclass xtype_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
+ let AddedComplexity = 100 in
+ defm _acc : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>;
+
+ defm _nac : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>;
+ defm _and : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>;
+ defm _or : xtype_imm_base< opc1, "|= ", OpNode, or, 0b011, minOp>;
}
-multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> {
+multiclass xtype_xor_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
let AddedComplexity = 100 in
- defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>;
- defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>;
- defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>;
- defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>;
+ defm _xacc : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>;
}
-multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> {
-let AddedComplexity = 100 in
- defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>;
+let isCodeGenOnly = 0 in {
+defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>;
+
+defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>,
+ xtype_xor_imm_acc<"lsr", srl, 0b01>;
+
+defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>,
+ xtype_xor_imm_acc<"asl", shl, 0b10>;
}
-defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>,
- xtype_xor_imm<"asl", shl>;
+multiclass xtype_reg_acc_r<string opc1, SDNode OpNode, bits<2>minOp> {
+ let AddedComplexity = 100 in
+ def _acc : T_shift_reg_acc_r <opc1, "+= ", OpNode, add, 0b11, minOp>;
-defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>,
- xtype_xor_imm<"lsr", srl>;
+ def _nac : T_shift_reg_acc_r <opc1, "-= ", OpNode, sub, 0b10, minOp>;
+ def _and : T_shift_reg_acc_r <opc1, "&= ", OpNode, and, 0b01, minOp>;
+ def _or : T_shift_reg_acc_r <opc1, "|= ", OpNode, or, 0b00, minOp>;
+}
-defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>;
-defm LSL : basic_xtype_reg<"lsl", shl>;
+multiclass xtype_reg_acc_p<string opc1, SDNode OpNode, bits<2>minOp> {
+ let AddedComplexity = 100 in
+ def _acc : T_shift_reg_acc_p <opc1, "+= ", OpNode, add, 0b110, minOp>;
+
+ def _nac : T_shift_reg_acc_p <opc1, "-= ", OpNode, sub, 0b100, minOp>;
+ def _and : T_shift_reg_acc_p <opc1, "&= ", OpNode, and, 0b010, minOp>;
+ def _or : T_shift_reg_acc_p <opc1, "|= ", OpNode, or, 0b000, minOp>;
+ def _xor : T_shift_reg_acc_p <opc1, "^= ", OpNode, xor, 0b011, minOp>;
+}
+
+multiclass xtype_reg_acc<string OpcStr, SDNode OpNode, bits<2> minOp > {
+ defm _r_r : xtype_reg_acc_r <OpcStr, OpNode, minOp>;
+ defm _r_p : xtype_reg_acc_p <OpcStr, OpNode, minOp>;
+}
+
+let isCodeGenOnly = 0 in {
+defm S2_asl : xtype_reg_acc<"asl", shl, 0b10>;
+defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>;
+defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>;
+defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>;
+}
+
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_S3op_1 <string mnemonic, RegisterClass RC, bits<2> MajOp, bits<3> MinOp,
+ bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0>
+ : SInst <(outs RC:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2),
+ "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "")
+ #!if(hasShift,":>>1","")
+ #!if(isSat, ":sat", ""),
+ [], "", S_3op_tc_2_SLOT23 > {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b0001;
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = !if (SwapOps, src2, src1);
+ let Inst{12-8} = !if (SwapOps, src1, src2);
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+class T_S3op_64 <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit SwapOps,
+ bit isSat = 0, bit isRnd = 0, bit hasShift = 0 >
+ : T_S3op_1 <mnemonic, DoubleRegs, MajOp, MinOp, SwapOps,
+ isSat, isRnd, hasShift>;
+
+let isCodeGenOnly = 0 in
+def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>;
+
+//===----------------------------------------------------------------------===//
+// Template class used by vector shift, vector rotate, vector neg,
+// 32-bit shift, 64-bit shifts, etc.
+//===----------------------------------------------------------------------===//
+
+let hasSideEffects = 0 in
+class T_S3op_3 <string mnemonic, RegisterClass RC, bits<2> MajOp,
+ bits<2> MinOp, bit isSat = 0, list<dag> pattern = [] >
+ : SInst <(outs RC:$dst),
+ (ins RC:$src1, IntRegs:$src2),
+ "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""),
+ pattern, "", S_3op_tc_1_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b0110, 0b0011);
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{12-8} = src2;
+ let Inst{7-6} = MinOp;
+ let Inst{4-0} = dst;
+ }
+
+let hasNewValue = 1 in
+class T_S3op_shift32 <string mnemonic, SDNode OpNode, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, IntRegs, 0b01, MinOp, 0,
+ [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in
+class T_S3op_shift32_Sat <string mnemonic, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, IntRegs, 0b00, MinOp, 1, []>;
+
+
+class T_S3op_shift64 <string mnemonic, SDNode OpNode, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, DoubleRegs, 0b10, MinOp, 0,
+ [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+
+class T_S3op_shiftVect <string mnemonic, bits<2> MajOp, bits<2> MinOp>
+ : T_S3op_3 <mnemonic, DoubleRegs, MajOp, MinOp, 0, []>;
+
+
+// Shift by register
+// Rdd=[asr|lsr|asl|lsl](Rss,Rt)
+
+let isCodeGenOnly = 0 in {
+def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>;
+def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>;
+def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>;
+def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>;
+}
+
+// Rd=[asr|lsr|asl|lsl](Rs,Rt)
+
+let isCodeGenOnly = 0 in {
+def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>;
+def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>;
+def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>;
+def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>;
+}
+
+// Shift by register with saturation
+// Rd=asr(Rs,Rt):sat
+// Rd=asl(Rs,Rt):sat
+
+let Defs = [USR_OVF], isCodeGenOnly = 0 in {
+ def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>;
+ def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>;
+}
+
+//===----------------------------------------------------------------------===//
+// Template class for 'insert bitfield' instructions
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0 in
+class T_S3op_insert <string mnemonic, RegisterClass RC>
+ : SInst <(outs RC:$dst),
+ (ins RC:$src1, RC:$src2, DoubleRegs:$src3),
+ "$dst = "#mnemonic#"($src2, $src3)" ,
+ [], "$src1 = $dst", S_3op_tc_1_SLOT23 > {
+ bits<5> dst;
+ bits<5> src2;
+ bits<5> src3;
+
+ let IClass = 0b1100;
+
+ let Inst{27-26} = 0b10;
+ let Inst{25-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b00, 0b10);
+ let Inst{23} = 0b0;
+ let Inst{20-16} = src2;
+ let Inst{12-8} = src3;
+ let Inst{4-0} = dst;
+ }
+
+let hasSideEffects = 0 in
+class T_S2op_insert <bits<4> RegTyBits, RegisterClass RC, Operand ImmOp>
+ : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3),
+ "$dst = insert($src1, #$src2, #$src3)",
+ [], "$dst2 = $dst", S_2op_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<6> src2;
+ bits<6> src3;
+ bit bit23;
+ bit bit13;
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0);
+ let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23} = bit23;
+ let Inst{22-21} = src3{4-3};
+ let Inst{20-16} = src1;
+ let Inst{13} = bit13;
+ let Inst{12-8} = src2{4-0};
+ let Inst{7-5} = src3{2-0};
+ let Inst{4-0} = dst;
+ }
+
+// Rx=insert(Rs,Rtt)
+// Rx=insert(Rs,#u5,#U5)
+let hasNewValue = 1, isCodeGenOnly = 0 in {
+ def S2_insert_rp : T_S3op_insert <"insert", IntRegs>;
+ def S2_insert : T_S2op_insert <0b1111, IntRegs, u5Imm>;
+}
+
+// Rxx=insert(Rss,Rtt)
+// Rxx=insert(Rss,#u6,#U6)
+let isCodeGenOnly = 0 in {
+def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>;
+def S2_insertp : T_S2op_insert <0b0011, DoubleRegs, u6Imm>;
+}
+
+//===----------------------------------------------------------------------===//
+// Template class for 'extract bitfield' instructions
+//===----------------------------------------------------------------------===//
+let hasNewValue = 1, hasSideEffects = 0 in
+class T_S3op_extract <string mnemonic, bits<2> MinOp>
+ : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
+ "$Rd = "#mnemonic#"($Rs, $Rtt)",
+ [], "", S_3op_tc_2_SLOT23 > {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rtt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-22} = 0b100100;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rtt;
+ let Inst{7-6} = MinOp;
+ let Inst{4-0} = Rd;
+ }
+
+let hasSideEffects = 0 in
+class T_S2op_extract <string mnemonic, bits<4> RegTyBits,
+ RegisterClass RC, Operand ImmOp>
+ : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3),
+ "$dst = "#mnemonic#"($src1, #$src2, #$src3)",
+ [], "", S_2op_tc_2_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<6> src2;
+ bits<6> src3;
+ bit bit23;
+ bit bit13;
+ string ImmOpStr = !cast<string>(ImmOp);
+
+ let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5},
+ !if (!eq(mnemonic, "extractu"), 0, 1));
+
+ let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = RegTyBits;
+ let Inst{23} = bit23;
+ let Inst{22-21} = src3{4-3};
+ let Inst{20-16} = src1;
+ let Inst{13} = bit13;
+ let Inst{12-8} = src2{4-0};
+ let Inst{7-5} = src3{2-0};
+ let Inst{4-0} = dst;
+ }
+
+// Extract bitfield
+
+// Rdd=extractu(Rss,Rtt)
+// Rdd=extractu(Rss,#u6,#U6)
+let isCodeGenOnly = 0 in {
+def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>;
+def S2_extractup : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>;
+}
+
+// Rd=extractu(Rs,Rtt)
+// Rd=extractu(Rs,#u5,#U5)
+let hasNewValue = 1, isCodeGenOnly = 0 in {
+ def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>;
+ def S2_extractu : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>;
+}
+
+//===----------------------------------------------------------------------===//
+// :raw for of tableindx[bdhw] insns
+//===----------------------------------------------------------------------===//
+
+let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
+class tableidxRaw<string OpStr, bits<2>MinOp>
+ : SInst <(outs IntRegs:$Rx),
+ (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6),
+ "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw",
+ [], "$Rx = $_dst_" > {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<4> u4;
+ bits<6> S6;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b0111;
+ let Inst{23-22} = MinOp;
+ let Inst{21} = u4{3};
+ let Inst{20-16} = Rs;
+ let Inst{13-8} = S6;
+ let Inst{7-5} = u4{2-0};
+ let Inst{4-0} = Rx;
+ }
+
+let isCodeGenOnly = 0 in {
+def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>;
+def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>;
+def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>;
+def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>;
+}
// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
- (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
+ (i32 (M2_mpysin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
//===----------------------------------------------------------------------===//
// V3 Instructions +
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td
index 7e75554..8e91476 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV3.td
@@ -21,13 +21,52 @@ def callv3nr : SDNode<"HexagonISD::CALLv3nr", SDT_SPCall,
// J +
//===----------------------------------------------------------------------===//
// Call subroutine.
-let isCall = 1, neverHasSideEffects = 1,
- Defs = [D0, D1, D2, D3, D4, D5, D6, D7, R28, R31,
- P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
- def CALLv3 : JInst<(outs), (ins calltarget:$dst),
- "call $dst", []>, Requires<[HasV3T]>;
+let isCall = 1, hasSideEffects = 1, validSubTargets = HasV3SubT,
+ Defs = VolatileV3.Regs, isPredicable = 1,
+ isExtended = 0, isExtendable = 1, opExtendable = 0,
+ isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2 in
+class T_Call<string ExtStr>
+ : JInst<(outs), (ins calltarget:$dst),
+ "call " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23> {
+ let BaseOpcode = "call";
+ bits<24> dst;
+
+ let IClass = 0b0101;
+ let Inst{27-25} = 0b101;
+ let Inst{24-16,13-1} = dst{23-2};
+ let Inst{0} = 0b0;
+}
+
+let isCall = 1, hasSideEffects = 1, validSubTargets = HasV3SubT,
+ Defs = VolatileV3.Regs, isPredicated = 1,
+ isExtended = 0, isExtendable = 1, opExtendable = 1,
+ isExtentSigned = 1, opExtentBits = 17, opExtentAlign = 2 in
+class T_CallPred<bit IfTrue, string ExtStr>
+ : JInst<(outs), (ins PredRegs:$Pu, calltarget:$dst),
+ CondStr<"$Pu", IfTrue, 0>.S # "call " # ExtStr # "$dst",
+ [], "", J_tc_2early_SLOT23> {
+ let BaseOpcode = "call";
+ let isPredicatedFalse = !if(IfTrue,0,1);
+ bits<2> Pu;
+ bits<17> dst;
+
+ let IClass = 0b0101;
+ let Inst{27-24} = 0b1101;
+ let Inst{23-22,20-16,13,7-1} = dst{16-2};
+ let Inst{21} = !if(IfTrue,0,1);
+ let Inst{11} = 0b0;
+ let Inst{9-8} = Pu;
+}
+
+multiclass T_Calls<string ExtStr> {
+ def NAME : T_Call<ExtStr>;
+ def t : T_CallPred<1, ExtStr>;
+ def f : T_CallPred<0, ExtStr>;
}
+let isCodeGenOnly = 0 in
+defm J2_call: T_Calls<"">, PredRel;
+
//===----------------------------------------------------------------------===//
// J -
//===----------------------------------------------------------------------===//
@@ -37,7 +76,7 @@ let isCall = 1, neverHasSideEffects = 1,
// JR +
//===----------------------------------------------------------------------===//
// Call subroutine from register.
-let isCall = 1, neverHasSideEffects = 1,
+let isCall = 1, hasSideEffects = 0,
Defs = [D0, D1, D2, D3, D4, D5, D6, D7, R28, R31,
P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
def CALLRv3 : JRInst<(outs), (ins IntRegs:$dst),
@@ -53,27 +92,69 @@ let isCall = 1, neverHasSideEffects = 1,
// ALU64/ALU +
//===----------------------------------------------------------------------===//
-let AddedComplexity = 200 in
-def MAXw_dd : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = max($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>,
-Requires<[HasV3T]>;
-
-let AddedComplexity = 200 in
-def MINw_dd : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
- DoubleRegs:$src2),
- "$dst = min($src2, $src1)",
- [(set (i64 DoubleRegs:$dst),
- (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src1))),
- (i64 DoubleRegs:$src1),
- (i64 DoubleRegs:$src2))))]>,
-Requires<[HasV3T]>;
+
+let Defs = [USR_OVF], Itinerary = ALU64_tc_2_SLOT23,
+ validSubTargets = HasV3SubT, isCodeGenOnly = 0 in
+def A2_addpsat : T_ALU64_arith<"add", 0b011, 0b101, 1, 0, 1>;
+
+class T_ALU64_addsp_hl<string suffix, bits<3> MinOp>
+ : T_ALU64_rr<"add", suffix, 0b0011, 0b011, MinOp, 0, 0, "">;
+
+let isCodeGenOnly = 0 in {
+def A2_addspl : T_ALU64_addsp_hl<":raw:lo", 0b110>;
+def A2_addsph : T_ALU64_addsp_hl<":raw:hi", 0b111>;
+}
+
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def A2_addsp : ALU64_rr<(outs DoubleRegs:$Rd),
+ (ins IntRegs:$Rs, DoubleRegs:$Rt), "$Rd = add($Rs, $Rt)",
+ [(set (i64 DoubleRegs:$Rd), (i64 (add (i64 (sext (i32 IntRegs:$Rs))),
+ (i64 DoubleRegs:$Rt))))],
+ "", ALU64_tc_1_SLOT23>;
+
+
+let hasSideEffects = 0 in
+class T_XTYPE_MIN_MAX_P<bit isMax, bit isUnsigned>
+ : ALU64Inst<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rt, DoubleRegs:$Rs),
+ "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","")
+ #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b00111;
+ let Inst{22-21} = !if(isMax, 0b10, 0b01);
+ let Inst{20-16} = !if(isMax, Rt, Rs);
+ let Inst{12-8} = !if(isMax, Rs, Rt);
+ let Inst{7} = 0b1;
+ let Inst{6} = !if(isMax, 0b0, 0b1);
+ let Inst{5} = isUnsigned;
+ let Inst{4-0} = Rd;
+}
+
+let isCodeGenOnly = 0 in {
+def A2_minp : T_XTYPE_MIN_MAX_P<0, 0>;
+def A2_minup : T_XTYPE_MIN_MAX_P<0, 1>;
+def A2_maxp : T_XTYPE_MIN_MAX_P<1, 0>;
+def A2_maxup : T_XTYPE_MIN_MAX_P<1, 1>;
+}
+
+multiclass MinMax_pats_p<PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
+ defm: T_MinMax_pats<Op, DoubleRegs, i64, Inst, SwapInst>;
+}
+
+let AddedComplexity = 200 in {
+ defm: MinMax_pats_p<setge, A2_maxp, A2_minp>;
+ defm: MinMax_pats_p<setgt, A2_maxp, A2_minp>;
+ defm: MinMax_pats_p<setle, A2_minp, A2_maxp>;
+ defm: MinMax_pats_p<setlt, A2_minp, A2_maxp>;
+ defm: MinMax_pats_p<setuge, A2_maxup, A2_minup>;
+ defm: MinMax_pats_p<setugt, A2_maxup, A2_minup>;
+ defm: MinMax_pats_p<setule, A2_minup, A2_maxup>;
+ defm: MinMax_pats_p<setult, A2_minup, A2_maxup>;
+}
//===----------------------------------------------------------------------===//
// ALU64/ALU -
@@ -100,8 +181,8 @@ Requires<[HasV3T]>;
// Map call instruction
def : Pat<(call (i32 IntRegs:$dst)),
- (CALLRv3 (i32 IntRegs:$dst))>, Requires<[HasV3T]>;
+ (J2_call (i32 IntRegs:$dst))>, Requires<[HasV3T]>;
def : Pat<(call tglobaladdr:$dst),
- (CALLv3 tglobaladdr:$dst)>, Requires<[HasV3T]>;
+ (J2_call tglobaladdr:$dst)>, Requires<[HasV3T]>;
def : Pat<(call texternalsym:$dst),
- (CALLv3 texternalsym:$dst)>, Requires<[HasV3T]>;
+ (J2_call texternalsym:$dst)>, Requires<[HasV3T]>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td
index db5b7ea..08bfd67 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td
@@ -11,15 +11,32 @@
//
//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1 in
-class T_Immext<dag ins> :
- EXTENDERInst<(outs), ins, "immext(#$imm)", []>,
- Requires<[HasV4T]>;
+let hasSideEffects = 0 in
+class T_Immext<Operand ImmType>
+ : EXTENDERInst<(outs), (ins ImmType:$imm),
+ "immext(#$imm)", []> {
+ bits<32> imm;
+ let IClass = 0b0000;
+
+ let Inst{27-16} = imm{31-20};
+ let Inst{13-0} = imm{19-6};
+ }
+
+def A4_ext : T_Immext<u26_6Imm>;
+let isCodeGenOnly = 1 in {
+ let isBranch = 1 in
+ def A4_ext_b : T_Immext<brtarget>;
+ let isCall = 1 in
+ def A4_ext_c : T_Immext<calltarget>;
+ def A4_ext_g : T_Immext<globaladdress>;
+}
-def IMMEXT_b : T_Immext<(ins brtarget:$imm)>;
-def IMMEXT_c : T_Immext<(ins calltarget:$imm)>;
-def IMMEXT_g : T_Immext<(ins globaladdress:$imm)>;
-def IMMEXT_i : T_Immext<(ins u26_6Imm:$imm)>;
+def BITPOS32 : SDNodeXForm<imm, [{
+ // Return the bit position we will set [0-31].
+ // As an SDNode.
+ int32_t imm = N->getSExtValue();
+ return XformMskToBitPosU5Imm(imm);
+}]>;
// Fold (add (CONST32 tglobaladdr:$addr) <offset>) into a global address.
def FoldGlobalAddr : ComplexPattern<i32, 1, "foldGlobalAddress", [], []>;
@@ -95,63 +112,152 @@ def NumUsesBelowThresCONST32 : PatFrag<(ops node:$addr),
//===----------------------------------------------------------------------===//
// ALU32 +
//===----------------------------------------------------------------------===//
-// Generate frame index addresses.
-let neverHasSideEffects = 1, isReMaterializable = 1,
-isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT in
-def TFR_FI_immext_V4 : ALU32_ri<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s32Imm:$offset),
- "$dst = add($src1, ##$offset)",
- []>,
- Requires<[HasV4T]>;
-// Rd=cmp.eq(Rs,#s8)
-let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
-isExtentSigned = 1, opExtentBits = 8 in
-def V4_A4_rcmpeqi : ALU32_ri<(outs IntRegs:$Rd),
- (ins IntRegs:$Rs, s8Ext:$s8),
- "$Rd = cmp.eq($Rs, #$s8)",
- [(set (i32 IntRegs:$Rd),
- (i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
- s8ExtPred:$s8)))))]>,
- Requires<[HasV4T]>;
-
-// Preserve the TSTBIT generation
-def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
- (i32 IntRegs:$src1))), 0)))),
- (i32 (MUX_ii (i1 (TSTBIT_rr (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
- 1, 0))>;
-
-// Interfered with tstbit generation, above pattern preserves, see : tstbit.ll
-// Rd=cmp.ne(Rs,#s8)
-let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
-isExtentSigned = 1, opExtentBits = 8 in
-def V4_A4_rcmpneqi : ALU32_ri<(outs IntRegs:$Rd),
- (ins IntRegs:$Rs, s8Ext:$s8),
- "$Rd = !cmp.eq($Rs, #$s8)",
- [(set (i32 IntRegs:$Rd),
- (i32 (zext (i1 (setne (i32 IntRegs:$Rs),
- s8ExtPred:$s8)))))]>,
- Requires<[HasV4T]>;
-
-// Rd=cmp.eq(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def V4_A4_rcmpeq : ALU32_ri<(outs IntRegs:$Rd),
- (ins IntRegs:$Rs, IntRegs:$Rt),
- "$Rd = cmp.eq($Rs, $Rt)",
- [(set (i32 IntRegs:$Rd),
- (i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
- IntRegs:$Rt)))))]>,
- Requires<[HasV4T]>;
+class T_ALU32_3op_not<string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ bit OpsRev>
+ : T_ALU32_3op<mnemonic, MajOp, MinOp, OpsRev, 0> {
+ let AsmString = "$Rd = "#mnemonic#"($Rs, ~$Rt)";
+}
+
+let BaseOpcode = "andn_rr", CextOpcode = "andn", isCodeGenOnly = 0 in
+def A4_andn : T_ALU32_3op_not<"and", 0b001, 0b100, 1>;
+let BaseOpcode = "orn_rr", CextOpcode = "orn", isCodeGenOnly = 0 in
+def A4_orn : T_ALU32_3op_not<"or", 0b001, 0b101, 1>;
+
+let CextOpcode = "rcmp.eq", isCodeGenOnly = 0 in
+def A4_rcmpeq : T_ALU32_3op<"cmp.eq", 0b011, 0b010, 0, 1>;
+let CextOpcode = "!rcmp.eq", isCodeGenOnly = 0 in
+def A4_rcmpneq : T_ALU32_3op<"!cmp.eq", 0b011, 0b011, 0, 1>;
+
+let isCodeGenOnly = 0 in {
+def C4_cmpneq : T_ALU32_3op_cmp<"!cmp.eq", 0b00, 1, 1>;
+def C4_cmplte : T_ALU32_3op_cmp<"!cmp.gt", 0b10, 1, 0>;
+def C4_cmplteu : T_ALU32_3op_cmp<"!cmp.gtu", 0b11, 1, 0>;
+}
+
+// Pats for instruction selection.
+
+// A class to embed the usual comparison patfrags within a zext to i32.
+// The seteq/setne frags use "lhs" and "rhs" as operands, so use the same
+// names, or else the frag's "body" won't match the operands.
+class CmpInReg<PatFrag Op>
+ : PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>;
+
+def: T_cmp32_rr_pat<A4_rcmpeq, CmpInReg<seteq>, i32>;
+def: T_cmp32_rr_pat<A4_rcmpneq, CmpInReg<setne>, i32>;
+
+class T_CMP_rrbh<string mnemonic, bits<3> MinOp, bit IsComm>
+ : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23>,
+ ImmRegRel {
+ let validSubTargets = HasV4SubT;
+ let InputType = "reg";
+ let CextOpcode = mnemonic;
+ let isCompare = 1;
+ let isCommutable = IsComm;
+ let hasSideEffects = 0;
+
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
+ let Inst{27-21} = 0b0111110;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{1-0} = Pd;
+}
+
+let isCodeGenOnly = 0 in {
+def A4_cmpbeq : T_CMP_rrbh<"cmpb.eq", 0b110, 1>;
+def A4_cmpbgt : T_CMP_rrbh<"cmpb.gt", 0b010, 0>;
+def A4_cmpbgtu : T_CMP_rrbh<"cmpb.gtu", 0b111, 0>;
+def A4_cmpheq : T_CMP_rrbh<"cmph.eq", 0b011, 1>;
+def A4_cmphgt : T_CMP_rrbh<"cmph.gt", 0b100, 0>;
+def A4_cmphgtu : T_CMP_rrbh<"cmph.gtu", 0b101, 0>;
+}
+
+class T_CMP_ribh<string mnemonic, bits<2> MajOp, bit IsHalf, bit IsComm,
+ Operand ImmType, bit IsImmExt, bit IsImmSigned, int ImmBits>
+ : ALU64Inst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, ImmType:$Imm),
+ "$Pd = "#mnemonic#"($Rs, #$Imm)", [], "", ALU64_tc_2early_SLOT23>,
+ ImmRegRel {
+ let validSubTargets = HasV4SubT;
+ let InputType = "imm";
+ let CextOpcode = mnemonic;
+ let isCompare = 1;
+ let isCommutable = IsComm;
+ let hasSideEffects = 0;
+ let isExtendable = IsImmExt;
+ let opExtendable = !if (IsImmExt, 2, 0);
+ let isExtentSigned = IsImmSigned;
+ let opExtentBits = ImmBits;
+
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<8> Imm;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = 0b1101;
+ let Inst{22-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-5} = Imm;
+ let Inst{4} = 0b0;
+ let Inst{3} = IsHalf;
+ let Inst{1-0} = Pd;
+}
+
+let isCodeGenOnly = 0 in {
+def A4_cmpbeqi : T_CMP_ribh<"cmpb.eq", 0b00, 0, 1, u8Imm, 0, 0, 8>;
+def A4_cmpbgti : T_CMP_ribh<"cmpb.gt", 0b01, 0, 0, s8Imm, 0, 1, 8>;
+def A4_cmpbgtui : T_CMP_ribh<"cmpb.gtu", 0b10, 0, 0, u7Ext, 1, 0, 7>;
+def A4_cmpheqi : T_CMP_ribh<"cmph.eq", 0b00, 1, 1, s8Ext, 1, 1, 8>;
+def A4_cmphgti : T_CMP_ribh<"cmph.gt", 0b01, 1, 0, s8Ext, 1, 1, 8>;
+def A4_cmphgtui : T_CMP_ribh<"cmph.gtu", 0b10, 1, 0, u7Ext, 1, 0, 7>;
+}
+class T_RCMP_EQ_ri<string mnemonic, bit IsNeg>
+ : ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s8Ext:$s8),
+ "$Rd = "#mnemonic#"($Rs, #$s8)", [], "", ALU32_2op_tc_1_SLOT0123>,
+ ImmRegRel {
+ let validSubTargets = HasV4SubT;
+ let InputType = "imm";
+ let CextOpcode = !if (IsNeg, "!rcmp.eq", "rcmp.eq");
+ let isExtendable = 1;
+ let opExtendable = 2;
+ let isExtentSigned = 1;
+ let opExtentBits = 8;
+ let hasNewValue = 1;
+
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<8> s8;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b0011;
+ let Inst{22} = 0b1;
+ let Inst{21} = IsNeg;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b1;
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rd;
+}
+
+let isCodeGenOnly = 0 in {
+def A4_rcmpeqi : T_RCMP_EQ_ri<"cmp.eq", 0>;
+def A4_rcmpneqi : T_RCMP_EQ_ri<"!cmp.eq", 1>;
+}
+
+def: Pat<(i32 (zext (i1 (seteq (i32 IntRegs:$Rs), s8ExtPred:$s8)))),
+ (A4_rcmpeqi IntRegs:$Rs, s8ExtPred:$s8)>;
+def: Pat<(i32 (zext (i1 (setne (i32 IntRegs:$Rs), s8ExtPred:$s8)))),
+ (A4_rcmpneqi IntRegs:$Rs, s8ExtPred:$s8)>;
+
+// Preserve the S2_tstbit_r generation
+def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
+ (i32 IntRegs:$src1))), 0)))),
+ (C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>;
-// Rd=cmp.ne(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def V4_A4_rcmpneq : ALU32_ri<(outs IntRegs:$Rd),
- (ins IntRegs:$Rs, IntRegs:$Rt),
- "$Rd = !cmp.eq($Rs, $Rt)",
- [(set (i32 IntRegs:$Rd),
- (i32 (zext (i1 (setne (i32 IntRegs:$Rs),
- IntRegs:$Rt)))))]>,
- Requires<[HasV4T]>;
//===----------------------------------------------------------------------===//
// ALU32 -
@@ -162,24 +268,31 @@ def V4_A4_rcmpneq : ALU32_ri<(outs IntRegs:$Rd),
// ALU32/PERM +
//===----------------------------------------------------------------------===//
-// Combine
-// Rdd=combine(Rs, #s8)
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
- neverHasSideEffects = 1, validSubTargets = HasV4SubT in
-def COMBINE_rI_V4 : ALU32_ri<(outs DoubleRegs:$dst),
- (ins IntRegs:$src1, s8Ext:$src2),
- "$dst = combine($src1, #$src2)",
- []>,
- Requires<[HasV4T]>;
+// Combine a word and an immediate into a register pair.
+let hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1,
+ opExtentBits = 8 in
+class T_Combine1 <bits<2> MajOp, dag ins, string AsmStr>
+ : ALU32Inst <(outs DoubleRegs:$Rdd), ins, AsmStr> {
+ bits<5> Rdd;
+ bits<5> Rs;
+ bits<8> s8;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b0011;
+ let Inst{22-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b1;
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rdd;
+ }
-// Rdd=combine(#s8, Rs)
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
- neverHasSideEffects = 1, validSubTargets = HasV4SubT in
-def COMBINE_Ir_V4 : ALU32_ir<(outs DoubleRegs:$dst),
- (ins s8Ext:$src1, IntRegs:$src2),
- "$dst = combine(#$src1, $src2)",
- []>,
- Requires<[HasV4T]>;
+let opExtendable = 2, isCodeGenOnly = 0 in
+def A4_combineri : T_Combine1<0b00, (ins IntRegs:$Rs, s8Ext:$s8),
+ "$Rdd = combine($Rs, #$s8)">;
+
+let opExtendable = 1, isCodeGenOnly = 0 in
+def A4_combineir : T_Combine1<0b01, (ins s8Ext:$s8, IntRegs:$Rs),
+ "$Rdd = combine(#$s8, $Rs)">;
def HexagonWrapperCombineRI_V4 :
SDNode<"HexagonISD::WrapperCombineRI_V4", SDTHexagonI64I32I32>;
@@ -187,23 +300,31 @@ def HexagonWrapperCombineIR_V4 :
SDNode<"HexagonISD::WrapperCombineIR_V4", SDTHexagonI64I32I32>;
def : Pat <(HexagonWrapperCombineRI_V4 IntRegs:$r, s8ExtPred:$i),
- (COMBINE_rI_V4 IntRegs:$r, s8ExtPred:$i)>,
+ (A4_combineri IntRegs:$r, s8ExtPred:$i)>,
Requires<[HasV4T]>;
def : Pat <(HexagonWrapperCombineIR_V4 s8ExtPred:$i, IntRegs:$r),
- (COMBINE_Ir_V4 s8ExtPred:$i, IntRegs:$r)>,
+ (A4_combineir s8ExtPred:$i, IntRegs:$r)>,
Requires<[HasV4T]>;
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 6,
- neverHasSideEffects = 1, validSubTargets = HasV4SubT in
-def COMBINE_iI_V4 : ALU32_ii<(outs DoubleRegs:$dst),
- (ins s8Imm:$src1, u6Ext:$src2),
- "$dst = combine(#$src1, #$src2)",
- []>,
- Requires<[HasV4T]>;
+// A4_combineii: Set two small immediates.
+let hasSideEffects = 0, isExtendable = 1, opExtentBits = 6, opExtendable = 2 in
+def A4_combineii: ALU32Inst<(outs DoubleRegs:$Rdd), (ins s8Imm:$s8, u6Ext:$U6),
+ "$Rdd = combine(#$s8, #$U6)"> {
+ bits<5> Rdd;
+ bits<8> s8;
+ bits<6> U6;
+
+ let IClass = 0b0111;
+ let Inst{27-23} = 0b11001;
+ let Inst{20-16} = U6{5-1};
+ let Inst{13} = U6{0};
+ let Inst{12-5} = s8;
+ let Inst{4-0} = Rdd;
+ }
//===----------------------------------------------------------------------===//
-// ALU32/PERM +
+// ALU32/PERM -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
@@ -212,7 +333,7 @@ def COMBINE_iI_V4 : ALU32_ii<(outs DoubleRegs:$dst),
//===----------------------------------------------------------------------===//
// Template class for load instructions with Absolute set addressing mode.
//===----------------------------------------------------------------------===//
-let isExtended = 1, opExtendable = 2, neverHasSideEffects = 1,
+let isExtended = 1, opExtendable = 2, hasSideEffects = 0,
validSubTargets = HasV4SubT, addrMode = AbsoluteSet in
class T_LD_abs_set<string mnemonic, RegisterClass RC>:
LDInst2<(outs RC:$dst1, IntRegs:$dst2),
@@ -228,112 +349,152 @@ def LDrih_abs_set_V4 : T_LD_abs_set <"memh", IntRegs>;
def LDriw_abs_set_V4 : T_LD_abs_set <"memw", IntRegs>;
def LDriuh_abs_set_V4 : T_LD_abs_set <"memuh", IntRegs>;
+//===----------------------------------------------------------------------===//
+// Template classes for the non-predicated load instructions with
+// base + register offset addressing mode
+//===----------------------------------------------------------------------===//
+class T_load_rr <string mnemonic, RegisterClass RC, bits<3> MajOp>:
+ LDInst<(outs RC:$dst), (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$u2),
+ "$dst = "#mnemonic#"($src1 + $src2<<#$u2)",
+ [], "", V4LDST_tc_ld_SLOT01>, ImmRegShl, AddrModeRel {
+ bits<5> dst;
+ bits<5> src1;
+ bits<5> src2;
+ bits<2> u2;
-// multiclass for load instructions with base + register offset
-// addressing mode
-multiclass ld_idxd_shl_pbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2<(outs RC:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$offset),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$offset)",
- []>, Requires<[HasV4T]>;
-}
+ let IClass = 0b0011;
-multiclass ld_idxd_shl_pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 1>;
+ let Inst{27-24} = 0b1010;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src1;
+ let Inst{12-8} = src2;
+ let Inst{13} = u2{1};
+ let Inst{7} = u2{0};
+ let Inst{4-0} = dst;
}
-}
-let neverHasSideEffects = 1 in
-multiclass ld_idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
+//===----------------------------------------------------------------------===//
+// Template classes for the predicated load instructions with
+// base + register offset addressing mode
+//===----------------------------------------------------------------------===//
+let isPredicated = 1 in
+class T_pload_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
+ bit isNot, bit isPredNew>:
+ LDInst <(outs RC:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$u2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$u2)",
+ [], "", V4LDST_tc_ld_SLOT01>, AddrModeRel {
+ bits<5> dst;
+ bits<2> src1;
+ bits<5> src2;
+ bits<5> src3;
+ bits<2> u2;
+
+ let isPredicatedFalse = isNot;
+ let isPredicatedNew = isPredNew;
+
+ let IClass = 0b0011;
+
+ let Inst{27-26} = 0b00;
+ let Inst{25} = isPredNew;
+ let Inst{24} = isNot;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = src2;
+ let Inst{12-8} = src3;
+ let Inst{13} = u2{1};
+ let Inst{7} = u2{0};
+ let Inst{6-5} = src1;
+ let Inst{4-0} = dst;
+ }
+
+//===----------------------------------------------------------------------===//
+// multiclass for load instructions with base + register offset
+// addressing mode
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, addrMode = BaseRegOffset in
+multiclass ld_idxd_shl <string mnemonic, string CextOp, RegisterClass RC,
+ bits<3> MajOp > {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl,
+ InputType = "reg" in {
let isPredicable = 1 in
- def NAME#_V4 : LDInst2<(outs RC:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$offset),
- "$dst = "#mnemonic#"($src1+$src2<<#$offset)",
- []>, Requires<[HasV4T]>;
-
- let isPredicated = 1 in {
- defm Pt_V4 : ld_idxd_shl_pred<mnemonic, RC, 0 >;
- defm NotPt_V4 : ld_idxd_shl_pred<mnemonic, RC, 1>;
- }
+ def L4_#NAME#_rr : T_load_rr <mnemonic, RC, MajOp>;
+
+ // Predicated
+ def L4_p#NAME#t_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 0>;
+ def L4_p#NAME#f_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 0>;
+
+ // Predicated new
+ def L4_p#NAME#tnew_rr : T_pload_rr <mnemonic, RC, MajOp, 0, 1>;
+ def L4_p#NAME#fnew_rr : T_pload_rr <mnemonic, RC, MajOp, 1, 1>;
}
}
-let addrMode = BaseRegOffset in {
- let accessSize = ByteAccess in {
- defm LDrib_indexed_shl: ld_idxd_shl<"memb", "LDrib", IntRegs>,
- AddrModeRel;
- defm LDriub_indexed_shl: ld_idxd_shl<"memub", "LDriub", IntRegs>,
- AddrModeRel;
- }
- let accessSize = HalfWordAccess in {
- defm LDrih_indexed_shl: ld_idxd_shl<"memh", "LDrih", IntRegs>, AddrModeRel;
- defm LDriuh_indexed_shl: ld_idxd_shl<"memuh", "LDriuh", IntRegs>,
- AddrModeRel;
- }
- let accessSize = WordAccess in
- defm LDriw_indexed_shl: ld_idxd_shl<"memw", "LDriw", IntRegs>, AddrModeRel;
+let hasNewValue = 1, accessSize = ByteAccess, isCodeGenOnly = 0 in {
+ defm loadrb : ld_idxd_shl<"memb", "LDrib", IntRegs, 0b000>;
+ defm loadrub : ld_idxd_shl<"memub", "LDriub", IntRegs, 0b001>;
+}
- let accessSize = DoubleWordAccess in
- defm LDrid_indexed_shl: ld_idxd_shl<"memd", "LDrid", DoubleRegs>,
- AddrModeRel;
+let hasNewValue = 1, accessSize = HalfWordAccess, isCodeGenOnly = 0 in {
+ defm loadrh : ld_idxd_shl<"memh", "LDrih", IntRegs, 0b010>;
+ defm loadruh : ld_idxd_shl<"memuh", "LDriuh", IntRegs, 0b011>;
}
+let hasNewValue = 1, accessSize = WordAccess, isCodeGenOnly = 0 in
+defm loadri : ld_idxd_shl<"memw", "LDriw", IntRegs, 0b100>;
+
+let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+defm loadrd : ld_idxd_shl<"memd", "LDrid", DoubleRegs, 0b110>;
+
// 'def pats' for load instructions with base + register offset and non-zero
// immediate value. Immediate value is used to left-shift the second
// register operand.
let AddedComplexity = 40 in {
def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDrib_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadrb_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDriub_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadrub_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi8 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDriub_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadrub_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (sextloadi16 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDrih_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadrh_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi16 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDriuh_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadruh_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi16 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDriuh_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadruh_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (load (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDriw_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadri_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i64 (load (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
- (LDrid_indexed_shl_V4 IntRegs:$src1,
+ (L4_loadrd_rr IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
}
@@ -343,114 +504,114 @@ def : Pat <(i64 (load (add IntRegs:$src1,
// zero immediate value.
let AddedComplexity = 10 in {
def : Pat <(i64 (load (add IntRegs:$src1, IntRegs:$src2))),
- (LDrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadrd_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (sextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
- (LDrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadrb_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
- (LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadrub_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi8 (add IntRegs:$src1, IntRegs:$src2))),
- (LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadrub_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (sextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
- (LDrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadrh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
- (LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadruh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi16 (add IntRegs:$src1, IntRegs:$src2))),
- (LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadruh_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (load (add IntRegs:$src1, IntRegs:$src2))),
- (LDriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
+ (L4_loadri_rr IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
}
// zext i1->i64
def : Pat <(i64 (zext (i1 PredRegs:$src1))),
- (i64 (COMBINE_Ir_V4 0, (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
+ (i64 (A4_combineir 0, (C2_muxii (i1 PredRegs:$src1), 1, 0)))>,
Requires<[HasV4T]>;
// zext i32->i64
def : Pat <(i64 (zext (i32 IntRegs:$src1))),
- (i64 (COMBINE_Ir_V4 0, (i32 IntRegs:$src1)))>,
+ (i64 (A4_combineir 0, (i32 IntRegs:$src1)))>,
Requires<[HasV4T]>;
// zext i8->i64
def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
- (i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
+ (i64 (A4_combineir 0, (L2_loadrub_io AddrFI:$src1, 0)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
- (i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
+ (i64 (A4_combineir 0, (L2_loadrub_io IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[HasV4T]>;
// zext i1->i64
def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
- (i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
+ (i64 (A4_combineir 0, (L2_loadrub_io AddrFI:$src1, 0)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
- (i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
+ (i64 (A4_combineir 0, (L2_loadrub_io IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[HasV4T]>;
// zext i16->i64
def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
- (i64 (COMBINE_Ir_V4 0, (LDriuh ADDRriS11_1:$src1)))>,
+ (i64 (A4_combineir 0, (L2_loadruh_io AddrFI:$src1, 0)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
- (i64 (COMBINE_Ir_V4 0, (LDriuh_indexed IntRegs:$src1,
+ (i64 (A4_combineir 0, (L2_loadruh_io IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[HasV4T]>;
// anyext i16->i64
def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
- (i64 (COMBINE_Ir_V4 0, (LDrih ADDRriS11_2:$src1)))>,
+ (i64 (A4_combineir 0, (L2_loadrh_io AddrFI:$src1, 0)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
- (i64 (COMBINE_Ir_V4 0, (LDrih_indexed IntRegs:$src1,
+ (i64 (A4_combineir 0, (L2_loadrh_io IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[HasV4T]>;
// zext i32->i64
def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
- (i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
+ (i64 (A4_combineir 0, (L2_loadri_io AddrFI:$src1, 0)))>,
Requires<[HasV4T]>;
let AddedComplexity = 100 in
def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
- (i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
+ (i64 (A4_combineir 0, (L2_loadri_io IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[HasV4T]>;
// anyext i32->i64
def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
- (i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
+ (i64 (A4_combineir 0, (L2_loadri_io AddrFI:$src1, 0)))>,
Requires<[HasV4T]>;
let AddedComplexity = 100 in
def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
- (i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
+ (i64 (A4_combineir 0, (L2_loadri_io IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[HasV4T]>;
@@ -482,124 +643,209 @@ def STrih_abs_set_V4 : T_ST_abs_set <"memh", IntRegs>;
def STriw_abs_set_V4 : T_ST_abs_set <"memw", IntRegs>;
//===----------------------------------------------------------------------===//
-// multiclass for store instructions with base + register offset addressing
-// mode
+// Template classes for the non-predicated store instructions with
+// base + register offset addressing mode
//===----------------------------------------------------------------------===//
-multiclass ST_Idxd_shl_Pbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2<(outs),
- (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
- RC:$src5),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2+$src3<<#$src4) = $src5",
- []>,
- Requires<[HasV4T]>;
-}
+let isPredicable = 1 in
+class T_store_rr <string mnemonic, RegisterClass RC, bits<3> MajOp, bit isH>
+ : STInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
+ mnemonic#"($Rs + $Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
+ [],"",V4LDST_tc_st_SLOT01>, ImmRegShl, AddrModeRel {
-multiclass ST_Idxd_shl_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 1>;
+ bits<5> Rs;
+ bits<5> Ru;
+ bits<2> u2;
+ bits<5> Rt;
+
+ let IClass = 0b0011;
+
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Ru;
+ let Inst{13} = u2{1};
+ let Inst{7} = u2{0};
+ let Inst{4-0} = Rt;
+ }
+
+//===----------------------------------------------------------------------===//
+// Template classes for the predicated store instructions with
+// base + register offset addressing mode
+//===----------------------------------------------------------------------===//
+let isPredicated = 1 in
+class T_pstore_rr <string mnemonic, RegisterClass RC, bits<3> MajOp,
+ bit isNot, bit isPredNew, bit isH>
+ : STInst <(outs),
+ (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, RC:$Rt),
+
+ !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Rt"#!if(isH, ".h",""),
+ [], "", V4LDST_tc_st_SLOT01> , AddrModeRel{
+ bits<2> Pv;
+ bits<5> Rs;
+ bits<5> Ru;
+ bits<2> u2;
+ bits<5> Rt;
+
+ let isPredicatedFalse = isNot;
+ let isPredicatedNew = isPredNew;
+
+ let IClass = 0b0011;
+
+ let Inst{27-26} = 0b01;
+ let Inst{25} = isPredNew;
+ let Inst{24} = isNot;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Ru;
+ let Inst{13} = u2{1};
+ let Inst{7} = u2{0};
+ let Inst{6-5} = Pv;
+ let Inst{4-0} = Rt;
+ }
+
+//===----------------------------------------------------------------------===//
+// Template classes for the new-value store instructions with
+// base + register offset addressing mode
+//===----------------------------------------------------------------------===//
+let isPredicable = 1, isNewValue = 1, opNewValue = 3 in
+class T_store_new_rr <string mnemonic, bits<2> MajOp> :
+ NVInst < (outs ), (ins IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
+ mnemonic#"($Rs + $Ru<<#$u2) = $Nt.new",
+ [],"",V4LDST_tc_st_SLOT0>, ImmRegShl, AddrModeRel {
+
+ bits<5> Rs;
+ bits<5> Ru;
+ bits<2> u2;
+ bits<3> Nt;
+
+ let IClass = 0b0011;
+
+ let Inst{27-21} = 0b1011101;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Ru;
+ let Inst{13} = u2{1};
+ let Inst{7} = u2{0};
+ let Inst{4-3} = MajOp;
+ let Inst{2-0} = Nt;
}
-}
+//===----------------------------------------------------------------------===//
+// Template classes for the predicated new-value store instructions with
+// base + register offset addressing mode
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, isNewValue = 1, opNewValue = 4 in
+class T_pstore_new_rr <string mnemonic, bits<2> MajOp, bit isNot, bit isPredNew>
+ : NVInst<(outs),
+ (ins PredRegs:$Pv, IntRegs:$Rs, IntRegs:$Ru, u2Imm:$u2, IntRegs:$Nt),
+ !if(isNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($Rs+$Ru<<#$u2) = $Nt.new",
+ [], "", V4LDST_tc_st_SLOT0>, AddrModeRel {
+ bits<2> Pv;
+ bits<5> Rs;
+ bits<5> Ru;
+ bits<2> u2;
+ bits<3> Nt;
+
+ let isPredicatedFalse = isNot;
+ let isPredicatedNew = isPredNew;
+
+ let IClass = 0b0011;
+ let Inst{27-26} = 0b01;
+ let Inst{25} = isPredNew;
+ let Inst{24} = isNot;
+ let Inst{23-21} = 0b101;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Ru;
+ let Inst{13} = u2{1};
+ let Inst{7} = u2{0};
+ let Inst{6-5} = Pv;
+ let Inst{4-3} = MajOp;
+ let Inst{2-0} = Nt;
+ }
+
+//===----------------------------------------------------------------------===//
+// multiclass for store instructions with base + register offset addressing
+// mode
+//===----------------------------------------------------------------------===//
let isNVStorable = 1 in
-multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
+multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC,
+ bits<3> MajOp, bit isH = 0> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
- let isPredicable = 1 in
- def NAME#_V4 : STInst2<(outs),
- (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
- mnemonic#"($src1+$src2<<#$src3) = $src4",
- []>,
- Requires<[HasV4T]>;
+ def S4_#NAME#_rr : T_store_rr <mnemonic, RC, MajOp, isH>;
- let isPredicated = 1 in {
- defm Pt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 0 >;
- defm NotPt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 1>;
- }
+ // Predicated
+ def S4_p#NAME#t_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 0, isH>;
+ def S4_p#NAME#f_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 0, isH>;
+
+ // Predicated new
+ def S4_p#NAME#tnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 0, 1, isH>;
+ def S4_p#NAME#fnew_rr : T_pstore_rr <mnemonic, RC, MajOp, 1, 1, isH>;
}
}
+//===----------------------------------------------------------------------===//
// multiclass for new-value store instructions with base + register offset
// addressing mode.
-multiclass ST_Idxd_shl_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
- RC:$src5),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2+$src3<<#$src4) = $src5.new",
- []>,
- Requires<[HasV4T]>;
-}
-
-multiclass ST_Idxd_shl_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 1>;
- }
-}
-
+//===----------------------------------------------------------------------===//
let mayStore = 1, isNVStore = 1 in
-multiclass ST_Idxd_shl_nv<string mnemonic, string CextOp, RegisterClass RC> {
+multiclass ST_Idxd_shl_nv <string mnemonic, string CextOp, RegisterClass RC,
+ bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
- let isPredicable = 1 in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
- mnemonic#"($src1+$src2<<#$src3) = $src4.new",
- []>,
- Requires<[HasV4T]>;
+ def S4_#NAME#new_rr : T_store_new_rr<mnemonic, MajOp>;
- let isPredicated = 1 in {
- defm Pt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 0 >;
- defm NotPt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 1>;
- }
+ // Predicated
+ def S4_p#NAME#newt_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 0>;
+ def S4_p#NAME#newf_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 0>;
+
+ // Predicated new
+ def S4_p#NAME#newtnew_rr : T_pstore_new_rr <mnemonic, MajOp, 0, 1>;
+ def S4_p#NAME#newfnew_rr : T_pstore_new_rr <mnemonic, MajOp, 1, 1>;
}
}
-let addrMode = BaseRegOffset, neverHasSideEffects = 1,
-validSubTargets = HasV4SubT in {
+let addrMode = BaseRegOffset, InputType = "reg", hasSideEffects = 0,
+ isCodeGenOnly = 0 in {
let accessSize = ByteAccess in
- defm STrib_indexed_shl: ST_Idxd_shl<"memb", "STrib", IntRegs>,
- ST_Idxd_shl_nv<"memb", "STrib", IntRegs>, AddrModeRel;
+ defm storerb: ST_Idxd_shl<"memb", "STrib", IntRegs, 0b000>,
+ ST_Idxd_shl_nv<"memb", "STrib", IntRegs, 0b00>;
let accessSize = HalfWordAccess in
- defm STrih_indexed_shl: ST_Idxd_shl<"memh", "STrih", IntRegs>,
- ST_Idxd_shl_nv<"memh", "STrih", IntRegs>, AddrModeRel;
+ defm storerh: ST_Idxd_shl<"memh", "STrih", IntRegs, 0b010>,
+ ST_Idxd_shl_nv<"memh", "STrih", IntRegs, 0b01>;
let accessSize = WordAccess in
- defm STriw_indexed_shl: ST_Idxd_shl<"memw", "STriw", IntRegs>,
- ST_Idxd_shl_nv<"memw", "STriw", IntRegs>, AddrModeRel;
+ defm storeri: ST_Idxd_shl<"memw", "STriw", IntRegs, 0b100>,
+ ST_Idxd_shl_nv<"memw", "STriw", IntRegs, 0b10>;
let isNVStorable = 0, accessSize = DoubleWordAccess in
- defm STrid_indexed_shl: ST_Idxd_shl<"memd", "STrid", DoubleRegs>, AddrModeRel;
+ defm storerd: ST_Idxd_shl<"memd", "STrid", DoubleRegs, 0b110>;
+
+ let isNVStorable = 0, accessSize = HalfWordAccess in
+ defm storerf: ST_Idxd_shl<"memh", "STrif", IntRegs, 0b011, 1>;
}
let Predicates = [HasV4T], AddedComplexity = 10 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2,
u2ImmPred:$src3))),
- (STrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ (S4_storerb_rr IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, IntRegs:$src4)>;
def : Pat<(truncstorei16 (i32 IntRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2,
u2ImmPred:$src3))),
- (STrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ (S4_storerh_rr IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, IntRegs:$src4)>;
def : Pat<(store (i32 IntRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
- (STriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ (S4_storeri_rr IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, IntRegs:$src4)>;
def : Pat<(store (i64 DoubleRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
- (STrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
+ (S4_storerd_rr IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, DoubleRegs:$src4)>;
}
@@ -668,74 +914,123 @@ defm : T_ST_LOff_Pats<STrih_shl_V4, IntRegs, i32, truncstorei16>;
// TODO: needs to be implemented.
//===----------------------------------------------------------------------===//
+// Template class
+//===----------------------------------------------------------------------===//
+let isPredicable = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
+ opExtendable = 2 in
+class T_StoreImm <string mnemonic, Operand OffsetOp, bits<2> MajOp >
+ : STInst <(outs ), (ins IntRegs:$Rs, OffsetOp:$offset, s8Ext:$S8),
+ mnemonic#"($Rs+#$offset)=#$S8",
+ [], "", V4LDST_tc_st_SLOT01>,
+ ImmRegRel, PredNewRel {
+ bits<5> Rs;
+ bits<8> S8;
+ bits<8> offset;
+ bits<6> offsetBits;
+
+ string OffsetOpStr = !cast<string>(OffsetOp);
+ let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
+ !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
+ /* u6_0Imm */ offset{5-0}));
+
+ let IClass = 0b0011;
+
+ let Inst{27-25} = 0b110;
+ let Inst{22-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{12-7} = offsetBits;
+ let Inst{13} = S8{7};
+ let Inst{6-0} = S8{6-0};
+ }
+
+let isPredicated = 1, isExtendable = 1, isExtentSigned = 1, opExtentBits = 6,
+ opExtendable = 3 in
+class T_StoreImm_pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
+ bit isPredNot, bit isPredNew >
+ : STInst <(outs ),
+ (ins PredRegs:$Pv, IntRegs:$Rs, OffsetOp:$offset, s6Ext:$S6),
+ !if(isPredNot, "if (!$Pv", "if ($Pv")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($Rs+#$offset)=#$S6",
+ [], "", V4LDST_tc_st_SLOT01>,
+ ImmRegRel, PredNewRel {
+ bits<2> Pv;
+ bits<5> Rs;
+ bits<6> S6;
+ bits<8> offset;
+ bits<6> offsetBits;
+
+ string OffsetOpStr = !cast<string>(OffsetOp);
+ let offsetBits = !if (!eq(OffsetOpStr, "u6_2Imm"), offset{7-2},
+ !if (!eq(OffsetOpStr, "u6_1Imm"), offset{6-1},
+ /* u6_0Imm */ offset{5-0}));
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ let IClass = 0b0011;
+
+ let Inst{27-25} = 0b100;
+ let Inst{24} = isPredNew;
+ let Inst{23} = isPredNot;
+ let Inst{22-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{13} = S6{5};
+ let Inst{12-7} = offsetBits;
+ let Inst{6-5} = Pv;
+ let Inst{4-0} = S6{4-0};
+ }
+
+
+//===----------------------------------------------------------------------===//
// multiclass for store instructions with base + immediate offset
// addressing mode and immediate stored value.
// mem[bhw](Rx++#s4:3)=#s8
// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
//===----------------------------------------------------------------------===//
-multiclass ST_Imm_Pbase<string mnemonic, Operand OffsetOp, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : STInst2<(outs),
- (ins PredRegs:$src1, IntRegs:$src2, OffsetOp:$src3, s6Ext:$src4),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2+#$src3) = #$src4",
- []>,
- Requires<[HasV4T]>;
-}
-multiclass ST_Imm_Pred<string mnemonic, Operand OffsetOp, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 1>;
- }
+multiclass ST_Imm_Pred <string mnemonic, Operand OffsetOp, bits<2> MajOp,
+ bit PredNot> {
+ def _io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 0>;
+ // Predicate new
+ def new_io : T_StoreImm_pred <mnemonic, OffsetOp, MajOp, PredNot, 1>;
}
-let isExtendable = 1, isExtentSigned = 1, neverHasSideEffects = 1 in
-multiclass ST_Imm<string mnemonic, string CextOp, Operand OffsetOp> {
+multiclass ST_Imm <string mnemonic, string CextOp, Operand OffsetOp,
+ bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
- let opExtendable = 2, opExtentBits = 8, isPredicable = 1 in
- def NAME#_V4 : STInst2<(outs),
- (ins IntRegs:$src1, OffsetOp:$src2, s8Ext:$src3),
- mnemonic#"($src1+#$src2) = #$src3",
- []>,
- Requires<[HasV4T]>;
+ def _io : T_StoreImm <mnemonic, OffsetOp, MajOp>;
- let opExtendable = 3, opExtentBits = 6, isPredicated = 1 in {
- defm Pt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 0>;
- defm NotPt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 1 >;
- }
+ defm t : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 0>;
+ defm f : ST_Imm_Pred <mnemonic, OffsetOp, MajOp, 1>;
}
}
-let addrMode = BaseImmOffset, InputType = "imm",
-validSubTargets = HasV4SubT in {
+let hasSideEffects = 0, validSubTargets = HasV4SubT, addrMode = BaseImmOffset,
+ InputType = "imm", isCodeGenOnly = 0 in {
let accessSize = ByteAccess in
- defm STrib_imm : ST_Imm<"memb", "STrib", u6_0Imm>, ImmRegRel, PredNewRel;
+ defm S4_storeirb : ST_Imm<"memb", "STrib", u6_0Imm, 0b00>;
let accessSize = HalfWordAccess in
- defm STrih_imm : ST_Imm<"memh", "STrih", u6_1Imm>, ImmRegRel, PredNewRel;
+ defm S4_storeirh : ST_Imm<"memh", "STrih", u6_1Imm, 0b01>;
let accessSize = WordAccess in
- defm STriw_imm : ST_Imm<"memw", "STriw", u6_2Imm>, ImmRegRel, PredNewRel;
+ defm S4_storeiri : ST_Imm<"memw", "STriw", u6_2Imm, 0b10>;
}
let Predicates = [HasV4T], AddedComplexity = 10 in {
def: Pat<(truncstorei8 s8ExtPred:$src3, (add IntRegs:$src1, u6_0ImmPred:$src2)),
- (STrib_imm_V4 IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;
+ (S4_storeirb_io IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;
def: Pat<(truncstorei16 s8ExtPred:$src3, (add IntRegs:$src1,
u6_1ImmPred:$src2)),
- (STrih_imm_V4 IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;
+ (S4_storeirh_io IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;
def: Pat<(store s8ExtPred:$src3, (add IntRegs:$src1, u6_2ImmPred:$src2)),
- (STriw_imm_V4 IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
+ (S4_storeiri_io IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
}
let AddedComplexity = 6 in
def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
- (STrib_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
+ (S4_storeirb_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
Requires<[HasV4T]>;
// memb(Rx++#s4:0:circ(Mu))=Rt
@@ -751,7 +1046,7 @@ def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
// memh(Rs+#s11:1)=Rt.H
let AddedComplexity = 6 in
def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
- (STrih_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
+ (S4_storeirh_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
Requires<[HasV4T]>;
// memh(Rs+Ru<<#u2)=Rt.H
@@ -782,7 +1077,7 @@ def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
// TODO: Needs to be implemented.
// Store predicate:
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def STriw_pred_V4 : STInst2<(outs),
(ins MEMri:$addr, PredRegs:$src1),
"Error; should not emit",
@@ -791,7 +1086,7 @@ def STriw_pred_V4 : STInst2<(outs),
let AddedComplexity = 6 in
def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
- (STriw_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
+ (S4_storeiri_io IntRegs:$src1, 0, s8ExtPred:$src2)>,
Requires<[HasV4T]>;
// memw(Rx++#s4:2)=Rt
@@ -809,170 +1104,249 @@ def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
// NV/ST +
//===----------------------------------------------------------------------===//
-// multiclass for new-value store instructions with base + immediate offset.
-//
-multiclass ST_Idxd_Pbase_nv<string mnemonic, RegisterClass RC,
- Operand predImmOp, bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2+#$src3) = $src4.new",
- []>,
- Requires<[HasV4T]>;
-}
+let opNewValue = 2, opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
+class T_store_io_nv <string mnemonic, RegisterClass RC,
+ Operand ImmOp, bits<2>MajOp>
+ : NVInst_V4 <(outs),
+ (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
+ mnemonic#"($src1+#$src2) = $src3.new",
+ [],"",ST_tc_st_SLOT0> {
+ bits<5> src1;
+ bits<13> src2; // Actual address offset
+ bits<3> src3;
+ bits<11> offsetBits; // Represents offset encoding
+
+ let opExtentBits = !if (!eq(mnemonic, "memb"), 11,
+ !if (!eq(mnemonic, "memh"), 12,
+ !if (!eq(mnemonic, "memw"), 13, 0)));
+
+ let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
+ !if (!eq(mnemonic, "memh"), 1,
+ !if (!eq(mnemonic, "memw"), 2, 0)));
+
+ let offsetBits = !if (!eq(mnemonic, "memb"), src2{10-0},
+ !if (!eq(mnemonic, "memh"), src2{11-1},
+ !if (!eq(mnemonic, "memw"), src2{12-2}, 0)));
+
+ let IClass = 0b1010;
+
+ let Inst{27} = 0b0;
+ let Inst{26-25} = offsetBits{10-9};
+ let Inst{24-21} = 0b1101;
+ let Inst{20-16} = src1;
+ let Inst{13} = offsetBits{8};
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src3;
+ let Inst{7-0} = offsetBits{7-0};
+ }
-multiclass ST_Idxd_Pred_nv<string mnemonic, RegisterClass RC, Operand predImmOp,
- bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 1>;
+let opExtendable = 2, opNewValue = 3, isPredicated = 1 in
+class T_pstore_io_nv <string mnemonic, RegisterClass RC, Operand predImmOp,
+ bits<2>MajOp, bit PredNot, bit isPredNew>
+ : NVInst_V4 <(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC:$src4),
+ !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2+#$src3) = $src4.new",
+ [],"",V2LDST_tc_st_SLOT0> {
+ bits<2> src1;
+ bits<5> src2;
+ bits<9> src3;
+ bits<3> src4;
+ bits<6> offsetBits; // Represents offset encoding
+
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = PredNot;
+ let opExtentBits = !if (!eq(mnemonic, "memb"), 6,
+ !if (!eq(mnemonic, "memh"), 7,
+ !if (!eq(mnemonic, "memw"), 8, 0)));
+
+ let opExtentAlign = !if (!eq(mnemonic, "memb"), 0,
+ !if (!eq(mnemonic, "memh"), 1,
+ !if (!eq(mnemonic, "memw"), 2, 0)));
+
+ let offsetBits = !if (!eq(mnemonic, "memb"), src3{5-0},
+ !if (!eq(mnemonic, "memh"), src3{6-1},
+ !if (!eq(mnemonic, "memw"), src3{7-2}, 0)));
+
+ let IClass = 0b0100;
+
+ let Inst{27} = 0b0;
+ let Inst{26} = PredNot;
+ let Inst{25} = isPredNew;
+ let Inst{24-21} = 0b0101;
+ let Inst{20-16} = src2;
+ let Inst{13} = offsetBits{5};
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src4;
+ let Inst{7-3} = offsetBits{4-0};
+ let Inst{2} = 0b0;
+ let Inst{1-0} = src1;
}
-}
-let mayStore = 1, isNVStore = 1, neverHasSideEffects = 1, isExtendable = 1 in
+// multiclass for new-value store instructions with base + immediate offset.
+//
+let mayStore = 1, isNVStore = 1, isNewValue = 1, hasSideEffects = 0,
+ isExtendable = 1 in
multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
- Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
- bits<5> PredImmBits> {
+ Operand ImmOp, Operand predImmOp, bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
- let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
- mnemonic#"($src1+#$src2) = $src3.new",
- []>,
- Requires<[HasV4T]>;
-
- let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
- isPredicated = 1 in {
- defm Pt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 0>;
- defm NotPt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 1>;
- }
+ def S2_#NAME#new_io : T_store_io_nv <mnemonic, RC, ImmOp, MajOp>;
+ // Predicated
+ def S2_p#NAME#newt_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 0, 0>;
+ def S2_p#NAME#newf_io :T_pstore_io_nv <mnemonic, RC, predImmOp, MajOp, 1, 0>;
+ // Predicated new
+ def S4_p#NAME#newtnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
+ MajOp, 0, 1>;
+ def S4_p#NAME#newfnew_io :T_pstore_io_nv <mnemonic, RC, predImmOp,
+ MajOp, 1, 1>;
}
}
-let addrMode = BaseImmOffset, validSubTargets = HasV4SubT in {
+let addrMode = BaseImmOffset, InputType = "imm", isCodeGenOnly = 0 in {
let accessSize = ByteAccess in
- defm STrib_indexed: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
- u6_0Ext, 11, 6>, AddrModeRel;
+ defm storerb: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
+ u6_0Ext, 0b00>, AddrModeRel;
- let accessSize = HalfWordAccess in
- defm STrih_indexed: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
- u6_1Ext, 12, 7>, AddrModeRel;
+ let accessSize = HalfWordAccess, opExtentAlign = 1 in
+ defm storerh: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
+ u6_1Ext, 0b01>, AddrModeRel;
- let accessSize = WordAccess in
- defm STriw_indexed: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
- u6_2Ext, 13, 8>, AddrModeRel;
+ let accessSize = WordAccess, opExtentAlign = 2 in
+ defm storeri: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
+ u6_2Ext, 0b10>, AddrModeRel;
}
-// multiclass for new-value store instructions with base + immediate offset.
-// and MEMri operand.
-multiclass ST_MEMri_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($addr) = $src2.new",
- []>,
- Requires<[HasV4T]>;
-}
-
-multiclass ST_MEMri_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 0>;
+//===----------------------------------------------------------------------===//
+// Template class for non-predicated post increment .new stores
+// mem[bhwd](Rx++#s4:[0123])=Nt.new
+//===----------------------------------------------------------------------===//
+let isPredicable = 1, hasSideEffects = 0, validSubTargets = HasV4SubT,
+ addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 3 in
+class T_StorePI_nv <string mnemonic, Operand ImmOp, bits<2> MajOp >
+ : NVInstPI_V4 <(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, ImmOp:$offset, IntRegs:$src2),
+ mnemonic#"($src1++#$offset) = $src2.new",
+ [], "$src1 = $_dst_">,
+ AddrModeRel {
+ bits<5> src1;
+ bits<3> src2;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0}));
+ let IClass = 0b1010;
+
+ let Inst{27-21} = 0b1011101;
+ let Inst{20-16} = src1;
+ let Inst{13} = 0b0;
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src2;
+ let Inst{7} = 0b0;
+ let Inst{6-3} = offsetBits;
+ let Inst{1} = 0b0;
+ }
- // Predicate new
- defm _cdn#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 1>;
+//===----------------------------------------------------------------------===//
+// Template class for predicated post increment .new stores
+// if([!]Pv[.new]) mem[bhwd](Rx++#s4:[0123])=Nt.new
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, hasSideEffects = 0, validSubTargets = HasV4SubT,
+ addrMode = PostInc, isNVStore = 1, isNewValue = 1, opNewValue = 4 in
+class T_StorePI_nv_pred <string mnemonic, Operand ImmOp,
+ bits<2> MajOp, bit isPredNot, bit isPredNew >
+ : NVInstPI_V4 <(outs IntRegs:$_dst_),
+ (ins PredRegs:$src1, IntRegs:$src2,
+ ImmOp:$offset, IntRegs:$src3),
+ !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#mnemonic#"($src2++#$offset) = $src3.new",
+ [], "$src2 = $_dst_">,
+ AddrModeRel {
+ bits<2> src1;
+ bits<5> src2;
+ bits<3> src3;
+ bits<7> offset;
+ bits<4> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
+ !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
+ /* s4_0Imm */ offset{3-0}));
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ let IClass = 0b1010;
+
+ let Inst{27-21} = 0b1011101;
+ let Inst{20-16} = src2;
+ let Inst{13} = 0b1;
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src3;
+ let Inst{7} = isPredNew;
+ let Inst{6-3} = offsetBits;
+ let Inst{2} = isPredNot;
+ let Inst{1-0} = src1;
}
-}
-let mayStore = 1, isNVStore = 1, isExtendable = 1, neverHasSideEffects = 1 in
-multiclass ST_MEMri_nv<string mnemonic, string CextOp, RegisterClass RC,
- bits<5> ImmBits, bits<5> PredImmBits> {
+multiclass ST_PostInc_Pred_nv<string mnemonic, Operand ImmOp,
+ bits<2> MajOp, bit PredNot> {
+ def _pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 0>;
- let CextOpcode = CextOp, BaseOpcode = CextOp in {
- let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
- isPredicable = 1 in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins MEMri:$addr, RC:$src),
- mnemonic#"($addr) = $src.new",
- []>,
- Requires<[HasV4T]>;
+ // Predicate new
+ def new_pi : T_StorePI_nv_pred <mnemonic, ImmOp, MajOp, PredNot, 1>;
+}
- let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
- neverHasSideEffects = 1, isPredicated = 1 in {
- defm Pt : ST_MEMri_Pred_nv<mnemonic, RC, 0>;
- defm NotPt : ST_MEMri_Pred_nv<mnemonic, RC, 1>;
- }
+multiclass ST_PostInc_nv<string mnemonic, string BaseOp, Operand ImmOp,
+ bits<2> MajOp> {
+ let BaseOpcode = "POST_"#BaseOp in {
+ def S2_#NAME#_pi : T_StorePI_nv <mnemonic, ImmOp, MajOp>;
+
+ // Predicated
+ defm S2_p#NAME#t : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 0>;
+ defm S2_p#NAME#f : ST_PostInc_Pred_nv <mnemonic, ImmOp, MajOp, 1>;
}
}
-let addrMode = BaseImmOffset, isMEMri = "true", validSubTargets = HasV4SubT,
-mayStore = 1 in {
- let accessSize = ByteAccess in
- defm STrib: ST_MEMri_nv<"memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
+let accessSize = ByteAccess, isCodeGenOnly = 0 in
+defm storerbnew: ST_PostInc_nv <"memb", "STrib", s4_0Imm, 0b00>;
- let accessSize = HalfWordAccess in
- defm STrih: ST_MEMri_nv<"memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
+let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
+defm storerhnew: ST_PostInc_nv <"memh", "STrih", s4_1Imm, 0b01>;
- let accessSize = WordAccess in
- defm STriw: ST_MEMri_nv<"memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
-}
+let accessSize = WordAccess, isCodeGenOnly = 0 in
+defm storerinew: ST_PostInc_nv <"memw", "STriw", s4_2Imm, 0b10>;
//===----------------------------------------------------------------------===//
-// Post increment store
-// mem[bhwd](Rx++#s4:[0123])=Nt.new
+// Template class for post increment .new stores with register offset
//===----------------------------------------------------------------------===//
-
-multiclass ST_PostInc_Pbase_nv<string mnemonic, RegisterClass RC, Operand ImmOp,
- bit isNot, bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
- (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"($src2++#$offset) = $src3.new",
- [],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-}
-
-multiclass ST_PostInc_Pred_nv<string mnemonic, RegisterClass RC,
- Operand ImmOp, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 0>;
- // Predicate new
- let Predicates = [HasV4T], validSubTargets = HasV4SubT in
- defm _cdn#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 1>;
- }
-}
-
-let hasCtrlDep = 1, isNVStore = 1, neverHasSideEffects = 1 in
-multiclass ST_PostInc_nv<string mnemonic, string BaseOp, RegisterClass RC,
- Operand ImmOp> {
-
- let BaseOpcode = "POST_"#BaseOp in {
- let isPredicable = 1 in
- def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
- (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
- mnemonic#"($src1++#$offset) = $src2.new",
- [],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
-
- let isPredicated = 1 in {
- defm Pt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 0 >;
- defm NotPt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 1 >;
- }
+let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
+class T_StorePI_RegNV <string mnemonic, bits<2> MajOp, MemAccessSize AccessSz>
+ : NVInstPI_V4 <(outs IntRegs:$_dst_),
+ (ins IntRegs:$src1, ModRegs:$src2, IntRegs:$src3),
+ #mnemonic#"($src1++$src2) = $src3.new",
+ [], "$src1 = $_dst_"> {
+ bits<5> src1;
+ bits<1> src2;
+ bits<3> src3;
+ let accessSize = AccessSz;
+
+ let IClass = 0b1010;
+
+ let Inst{27-21} = 0b1101101;
+ let Inst{20-16} = src1;
+ let Inst{13} = src2;
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src3;
+ let Inst{7} = 0b0;
}
-}
-let addrMode = PostInc, validSubTargets = HasV4SubT in {
-defm POST_STbri: ST_PostInc_nv <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
-defm POST_SThri: ST_PostInc_nv <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
-defm POST_STwri: ST_PostInc_nv <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
+let isCodeGenOnly = 0 in {
+def S2_storerbnew_pr : T_StorePI_RegNV<"memb", 0b00, ByteAccess>;
+def S2_storerhnew_pr : T_StorePI_RegNV<"memh", 0b01, HalfWordAccess>;
+def S2_storerinew_pr : T_StorePI_RegNV<"memw", 0b10, WordAccess>;
}
// memb(Rx++#s4:0:circ(Mu))=Nt.new
@@ -1002,7 +1376,8 @@ defm POST_STwri: ST_PostInc_nv <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
// operands.
//===----------------------------------------------------------------------===//
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11 in
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
+ opExtentAlign = 2 in
class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
bit isNegCond, bit isTak>
: NVInst_V4<(outs),
@@ -1010,8 +1385,7 @@ class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
"if ("#!if(isNegCond, "!","")#mnemonic#
"($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
"$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
- #!if(isTak, "t","nt")#" $offset",
- []>, Requires<[HasV4T]> {
+ #!if(isTak, "t","nt")#" $offset", []> {
bits<5> src1;
bits<5> src2;
@@ -1020,8 +1394,8 @@ class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
bits<11> offset;
let isTaken = isTak;
- let isBrTaken = !if(isTaken, "true", "false");
let isPredicatedFalse = isNegCond;
+ let opNewValue{0} = NvOpNum;
let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
@@ -1064,7 +1438,8 @@ multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
// if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
- Defs = [PC], neverHasSideEffects = 1, validSubTargets = HasV4SubT in {
+ Defs = [PC], hasSideEffects = 0, validSubTargets = HasV4SubT,
+ isCodeGenOnly = 0 in {
defm CMPEQrr : NVJrr_base<"cmp.eq", "CMPEQ", 0b000, 0>, PredRel;
defm CMPGTrr : NVJrr_base<"cmp.gt", "CMPGT", 0b001, 0>, PredRel;
defm CMPGTUrr : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
@@ -1077,18 +1452,18 @@ let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
// with a register and an unsigned immediate (U5) operand.
//===----------------------------------------------------------------------===//
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11 in
+let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11,
+ opExtentAlign = 2 in
class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
- #!if(isTak, "t","nt")#" $offset",
- []>, Requires<[HasV4T]> {
+ #!if(isTak, "t","nt")#" $offset", []> {
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
- let isBrTaken = !if(isTaken, "true", "false");
+ let isTaken = isTak;
bits<3> src1;
bits<5> src2;
@@ -1124,7 +1499,8 @@ multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
// if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
- Defs = [PC], neverHasSideEffects = 1, validSubTargets = HasV4SubT in {
+ Defs = [PC], hasSideEffects = 0, validSubTargets = HasV4SubT,
+ isCodeGenOnly = 0 in {
defm CMPEQri : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
defm CMPGTri : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
defm CMPGTUri : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
@@ -1135,19 +1511,19 @@ let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
// with a register and an hardcoded 0/-1 immediate value.
//===----------------------------------------------------------------------===//
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11 in
+let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11,
+ opExtentAlign = 2 in
class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
bit isNegCond, bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic
#"($src1.new, #"#ImmVal#")) jump:"
- #!if(isTak, "t","nt")#" $offset",
- []>, Requires<[HasV4T]> {
+ #!if(isTak, "t","nt")#" $offset", []> {
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
- let isBrTaken = !if(isTaken, "true", "false");
+ let isTaken = isTak;
bits<3> src1;
bits<11> offset;
@@ -1172,8 +1548,8 @@ multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
string ImmVal> {
let BaseOpcode = BaseOp#_NVJ_ConstImm in {
- defm _t_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True cond
- defm _f_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False Cond
+ defm _t_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True
+ defm _f_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False
}
}
@@ -1182,266 +1558,328 @@ multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
// if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
- Defs = [PC], neverHasSideEffects = 1 in {
+ Defs = [PC], hasSideEffects = 0, isCodeGenOnly = 0 in {
defm TSTBIT0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
defm CMPEQn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ", 0b100, "-1">, PredRel;
defm CMPGTn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT", 0b101, "-1">, PredRel;
}
+// J4_hintjumpr: Hint indirect conditional jump.
+let isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
+def J4_hintjumpr: JRInst <
+ (outs),
+ (ins IntRegs:$Rs),
+ "hintjr($Rs)"> {
+ bits<5> Rs;
+ let IClass = 0b0101;
+ let Inst{27-21} = 0b0010101;
+ let Inst{20-16} = Rs;
+ }
+
//===----------------------------------------------------------------------===//
-// XTYPE/ALU +
+// NV/J -
//===----------------------------------------------------------------------===//
-// Add and accumulate.
-// Rd=add(Rs,add(Ru,#s6))
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 6,
-validSubTargets = HasV4SubT in
-def ADDr_ADDri_V4 : MInst<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, s6Ext:$src3),
- "$dst = add($src1, add($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (add (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
- s6_16ExtPred:$src3)))]>,
- Requires<[HasV4T]>;
+//===----------------------------------------------------------------------===//
+// CR +
+//===----------------------------------------------------------------------===//
-// Rd=add(Rs,sub(#s6,Ru))
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
-validSubTargets = HasV4SubT in
-def ADDr_SUBri_V4 : MInst<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
- "$dst = add($src1, sub(#$src2, $src3))",
- [(set (i32 IntRegs:$dst),
- (add (i32 IntRegs:$src1), (sub s6_10ExtPred:$src2,
- (i32 IntRegs:$src3))))]>,
- Requires<[HasV4T]>;
+// PC-relative add
+let hasNewValue = 1, isExtendable = 1, opExtendable = 1,
+ isExtentSigned = 0, opExtentBits = 6, hasSideEffects = 0,
+ Uses = [PC], validSubTargets = HasV4SubT in
+def C4_addipc : CRInst <(outs IntRegs:$Rd), (ins u6Ext:$u6),
+ "$Rd = add(pc, #$u6)", [], "", CR_tc_2_SLOT3 > {
+ bits<5> Rd;
+ bits<6> u6;
+
+ let IClass = 0b0110;
+ let Inst{27-16} = 0b101001001001;
+ let Inst{12-7} = u6;
+ let Inst{4-0} = Rd;
+ }
-// Generates the same instruction as ADDr_SUBri_V4 but matches different
-// pattern.
-// Rd=add(Rs,sub(#s6,Ru))
-let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
-validSubTargets = HasV4SubT in
-def ADDri_SUBr_V4 : MInst<(outs IntRegs:$dst),
- (ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
- "$dst = add($src1, sub(#$src2, $src3))",
- [(set (i32 IntRegs:$dst),
- (sub (add (i32 IntRegs:$src1), s6_10ExtPred:$src2),
- (i32 IntRegs:$src3)))]>,
- Requires<[HasV4T]>;
-// Add or subtract doublewords with carry.
-//TODO:
-// Rdd=add(Rss,Rtt,Px):carry
-//TODO:
-// Rdd=sub(Rss,Rtt,Px):carry
+let hasSideEffects = 0 in
+class T_LOGICAL_3OP<string MnOp1, string MnOp2, bits<2> OpBits, bit IsNeg>
+ : CRInst<(outs PredRegs:$Pd),
+ (ins PredRegs:$Ps, PredRegs:$Pt, PredRegs:$Pu),
+ "$Pd = " # MnOp1 # "($Ps, " # MnOp2 # "($Pt, " #
+ !if (IsNeg,"!","") # "$Pu))",
+ [], "", CR_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<2> Ps;
+ bits<2> Pt;
+ bits<2> Pu;
+
+ let IClass = 0b0110;
+ let Inst{27-24} = 0b1011;
+ let Inst{23} = IsNeg;
+ let Inst{22-21} = OpBits;
+ let Inst{20} = 0b1;
+ let Inst{17-16} = Ps;
+ let Inst{13} = 0b0;
+ let Inst{9-8} = Pt;
+ let Inst{7-6} = Pu;
+ let Inst{1-0} = Pd;
+}
+let isCodeGenOnly = 0 in {
+def C4_and_and : T_LOGICAL_3OP<"and", "and", 0b00, 0>;
+def C4_and_or : T_LOGICAL_3OP<"and", "or", 0b01, 0>;
+def C4_or_and : T_LOGICAL_3OP<"or", "and", 0b10, 0>;
+def C4_or_or : T_LOGICAL_3OP<"or", "or", 0b11, 0>;
+def C4_and_andn : T_LOGICAL_3OP<"and", "and", 0b00, 1>;
+def C4_and_orn : T_LOGICAL_3OP<"and", "or", 0b01, 1>;
+def C4_or_andn : T_LOGICAL_3OP<"or", "and", 0b10, 1>;
+def C4_or_orn : T_LOGICAL_3OP<"or", "or", 0b11, 1>;
+}
-// Logical doublewords.
-// Rdd=and(Rtt,~Rss)
-let validSubTargets = HasV4SubT in
-def ANDd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2),
- "$dst = and($src1, ~$src2)",
- [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
- (not (i64 DoubleRegs:$src2))))]>,
- Requires<[HasV4T]>;
+//===----------------------------------------------------------------------===//
+// CR -
+//===----------------------------------------------------------------------===//
-// Rdd=or(Rtt,~Rss)
-let validSubTargets = HasV4SubT in
-def ORd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2),
- "$dst = or($src1, ~$src2)",
- [(set (i64 DoubleRegs:$dst),
- (or (i64 DoubleRegs:$src1), (not (i64 DoubleRegs:$src2))))]>,
- Requires<[HasV4T]>;
+//===----------------------------------------------------------------------===//
+// XTYPE/ALU +
+//===----------------------------------------------------------------------===//
+// Logical with-not instructions.
+let validSubTargets = HasV4SubT, isCodeGenOnly = 0 in {
+ def A4_andnp : T_ALU64_logical<"and", 0b001, 1, 0, 1>;
+ def A4_ornp : T_ALU64_logical<"or", 0b011, 1, 0, 1>;
+}
-// Logical-logical doublewords.
-// Rxx^=xor(Rss,Rtt)
-let validSubTargets = HasV4SubT in
-def XORd_XORdd: MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3),
- "$dst ^= xor($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (xor (i64 DoubleRegs:$src1), (xor (i64 DoubleRegs:$src2),
- (i64 DoubleRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
+def S4_parity: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-21} = 0b0101111;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{4-0} = Rd;
+}
+// Add and accumulate.
+// Rd=add(Rs,add(Ru,#s6))
+let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 6,
+ opExtendable = 3, isCodeGenOnly = 0 in
+def S4_addaddi : ALU64Inst <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, IntRegs:$Ru, s6Ext:$s6),
+ "$Rd = add($Rs, add($Ru, #$s6))" ,
+ [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs),
+ (add (i32 IntRegs:$Ru), s6_16ExtPred:$s6)))],
+ "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Ru;
+ bits<6> s6;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b10110;
+ let Inst{22-21} = s6{5-4};
+ let Inst{20-16} = Rs;
+ let Inst{13} = s6{3};
+ let Inst{12-8} = Rd;
+ let Inst{7-5} = s6{2-0};
+ let Inst{4-0} = Ru;
+ }
+let isExtentSigned = 1, hasSideEffects = 0, hasNewValue = 1, isExtendable = 1,
+ opExtentBits = 6, opExtendable = 2, isCodeGenOnly = 0 in
+def S4_subaddi: ALU64Inst <(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, s6Ext:$s6, IntRegs:$Ru),
+ "$Rd = add($Rs, sub(#$s6, $Ru))",
+ [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<6> s6;
+ bits<5> Ru;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b10111;
+ let Inst{22-21} = s6{5-4};
+ let Inst{20-16} = Rs;
+ let Inst{13} = s6{3};
+ let Inst{12-8} = Rd;
+ let Inst{7-5} = s6{2-0};
+ let Inst{4-0} = Ru;
+ }
+
+// Extract bitfield
+// Rdd=extract(Rss,#u6,#U6)
+// Rdd=extract(Rss,Rtt)
+// Rd=extract(Rs,Rtt)
+// Rd=extract(Rs,#u5,#U5)
+
+let isCodeGenOnly = 0 in {
+def S4_extractp_rp : T_S3op_64 < "extract", 0b11, 0b100, 0>;
+def S4_extractp : T_S2op_extract <"extract", 0b1010, DoubleRegs, u6Imm>;
+}
-// Logical-logical words.
-// Rx=or(Ru,and(Rx,#s10))
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
-validSubTargets = HasV4SubT in
-def ORr_ANDri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
- "$dst = or($src1, and($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- s10ExtPred:$src3)))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
+let hasNewValue = 1, isCodeGenOnly = 0 in {
+ def S4_extract_rp : T_S3op_extract<"extract", 0b01>;
+ def S4_extract : T_S2op_extract <"extract", 0b1101, IntRegs, u5Imm>;
+}
-// Rx[&|^]=and(Rs,Rt)
-// Rx&=and(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def ANDr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst &= and($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let Itinerary = M_tc_3x_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in {
+ def M4_mac_up_s1_sat: T_MType_acc_rr<"+= mpy", 0b011, 0b000, 0, [], 0, 1, 1>;
+ def M4_nac_up_s1_sat: T_MType_acc_rr<"-= mpy", 0b011, 0b001, 0, [], 0, 1, 1>;
+}
-// Rx|=and(Rs,Rt)
-let validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "reg" in
-def ORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst |= and($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>, ImmRegRel;
+// Logical xor with xor accumulation.
+// Rxx^=xor(Rss,Rtt)
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def M4_xor_xacc
+ : SInst <(outs DoubleRegs:$Rxx),
+ (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Rxx ^= xor($Rss, $Rtt)",
+ [(set (i64 DoubleRegs:$Rxx),
+ (xor (i64 DoubleRegs:$dst2), (xor (i64 DoubleRegs:$Rss),
+ (i64 DoubleRegs:$Rtt))))],
+ "$dst2 = $Rxx", S_3op_tc_1_SLOT23> {
+ bits<5> Rxx;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-23} = 0b10101;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ let Inst{4-0} = Rxx;
+ }
+
+// Split bitfield
+let isCodeGenOnly = 0 in
+def A4_bitspliti : T_S2op_2_di <"bitsplit", 0b110, 0b100>;
-// Rx^=and(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def XORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst ^= and($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Arithmetic/Convergent round
+let isCodeGenOnly = 0 in
+def A4_cround_ri : T_S2op_2_ii <"cround", 0b111, 0b000>;
-// Rx[&|^]=and(Rs,~Rt)
-// Rx&=and(Rs,~Rt)
-let validSubTargets = HasV4SubT in
-def ANDr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst &= and($src2, ~$src3)",
- [(set (i32 IntRegs:$dst),
- (and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- (not (i32 IntRegs:$src3)))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let isCodeGenOnly = 0 in
+def A4_round_ri : T_S2op_2_ii <"round", 0b111, 0b100>;
-// Rx|=and(Rs,~Rt)
-let validSubTargets = HasV4SubT in
-def ORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst |= and($src2, ~$src3)",
- [(set (i32 IntRegs:$dst),
- (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- (not (i32 IntRegs:$src3)))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let Defs = [USR_OVF], isCodeGenOnly = 0 in
+def A4_round_ri_sat : T_S2op_2_ii <"round", 0b111, 0b110, 1>;
-// Rx^=and(Rs,~Rt)
-let validSubTargets = HasV4SubT in
-def XORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst ^= and($src2, ~$src3)",
- [(set (i32 IntRegs:$dst),
- (xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- (not (i32 IntRegs:$src3)))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Logical-logical words.
+// Compound or-and -- Rx=or(Ru,and(Rx,#s10))
+let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 10,
+ opExtendable = 3, isCodeGenOnly = 0 in
+def S4_or_andix:
+ ALU64Inst<(outs IntRegs:$Rx),
+ (ins IntRegs:$Ru, IntRegs:$_src_, s10Ext:$s10),
+ "$Rx = or($Ru, and($_src_, #$s10))" ,
+ [(set (i32 IntRegs:$Rx),
+ (or (i32 IntRegs:$Ru), (and (i32 IntRegs:$_src_), s10ExtPred:$s10)))] ,
+ "$_src_ = $Rx", ALU64_tc_2_SLOT23> {
+ bits<5> Rx;
+ bits<5> Ru;
+ bits<10> s10;
+
+ let IClass = 0b1101;
+
+ let Inst{27-22} = 0b101001;
+ let Inst{20-16} = Rx;
+ let Inst{21} = s10{9};
+ let Inst{13-5} = s10{8-0};
+ let Inst{4-0} = Ru;
+ }
-// Rx[&|^]=or(Rs,Rt)
-// Rx&=or(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def ANDr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst &= or($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (and (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Miscellaneous ALU64 instructions.
+//
+let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
+def A4_modwrapu: ALU64Inst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = modwrap($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-21} = 0b0011111;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = 0b111;
+ let Inst{4-0} = Rd;
+}
-// Rx|=or(Rs,Rt)
-let validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "reg" in
-def ORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst |= or($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (or (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>, ImmRegRel;
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def A4_bitsplit: ALU64Inst<(outs DoubleRegs:$Rd),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = bitsplit($Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = 0b0100;
+ let Inst{21} = 0b1;
+ let Inst{20-16} = Rs;
+ let Inst{12-8} = Rt;
+ let Inst{4-0} = Rd;
+}
-// Rx^=or(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def XORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst ^= or($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (xor (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let isCodeGenOnly = 0 in {
+// Rx[&|]=xor(Rs,Rt)
+def M4_or_xor : T_MType_acc_rr < "|= xor", 0b110, 0b001, 0>;
+def M4_and_xor : T_MType_acc_rr < "&= xor", 0b010, 0b010, 0>;
-// Rx[&|^]=xor(Rs,Rt)
-// Rx&=xor(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def ANDr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst &= xor($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Rx[&|^]=or(Rs,Rt)
+def M4_xor_or : T_MType_acc_rr < "^= or", 0b110, 0b011, 0>;
-// Rx|=xor(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def ORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst |= xor($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let CextOpcode = "ORr_ORr" in
+def M4_or_or : T_MType_acc_rr < "|= or", 0b110, 0b000, 0>;
+def M4_and_or : T_MType_acc_rr < "&= or", 0b010, 0b001, 0>;
-// Rx^=xor(Rs,Rt)
-let validSubTargets = HasV4SubT in
-def XORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
- "$dst ^= xor($src2, $src3)",
- [(set (i32 IntRegs:$dst),
- (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Rx[&|^]=and(Rs,Rt)
+def M4_xor_and : T_MType_acc_rr < "^= and", 0b110, 0b010, 0>;
-// Rx|=and(Rs,#s10)
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
-validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "imm" in
-def ORr_ANDri2_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
- "$dst |= and($src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- s10ExtPred:$src3)))],
- "$src1 = $dst">,
- Requires<[HasV4T]>, ImmRegRel;
+let CextOpcode = "ORr_ANDr" in
+def M4_or_and : T_MType_acc_rr < "|= and", 0b010, 0b011, 0>;
+def M4_and_and : T_MType_acc_rr < "&= and", 0b010, 0b000, 0>;
-// Rx|=or(Rs,#s10)
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
-validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "imm" in
-def ORr_ORri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
- "$dst |= or($src2, #$src3)",
- [(set (i32 IntRegs:$dst),
- (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
- s10ExtPred:$src3)))],
- "$src1 = $dst">,
- Requires<[HasV4T]>, ImmRegRel;
+// Rx[&|^]=and(Rs,~Rt)
+def M4_xor_andn : T_MType_acc_rr < "^= and", 0b001, 0b010, 0, [], 1>;
+def M4_or_andn : T_MType_acc_rr < "|= and", 0b001, 0b000, 0, [], 1>;
+def M4_and_andn : T_MType_acc_rr < "&= and", 0b001, 0b001, 0, [], 1>;
+}
+
+// Compound or-or and or-and
+let isExtentSigned = 1, InputType = "imm", hasNewValue = 1, isExtendable = 1,
+ opExtentBits = 10, opExtendable = 3 in
+class T_CompOR <string mnemonic, bits<2> MajOp, SDNode OpNode>
+ : MInst_acc <(outs IntRegs:$Rx),
+ (ins IntRegs:$src1, IntRegs:$Rs, s10Ext:$s10),
+ "$Rx |= "#mnemonic#"($Rs, #$s10)",
+ [(set (i32 IntRegs:$Rx), (or (i32 IntRegs:$src1),
+ (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10)))],
+ "$src1 = $Rx", ALU64_tc_2_SLOT23>, ImmRegRel {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<10> s10;
+
+ let IClass = 0b1101;
+
+ let Inst{27-24} = 0b1010;
+ let Inst{23-22} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{21} = s10{9};
+ let Inst{13-5} = s10{8-0};
+ let Inst{4-0} = Rx;
+ }
+let CextOpcode = "ORr_ANDr", isCodeGenOnly = 0 in
+def S4_or_andi : T_CompOR <"and", 0b00, and>;
+
+let CextOpcode = "ORr_ORr", isCodeGenOnly = 0 in
+def S4_or_ori : T_CompOR <"or", 0b10, or>;
// Modulo wrap
// Rd=modwrap(Rs,Rt)
@@ -1480,79 +1918,229 @@ def ORr_ORri_V4 : MInst_acc<(outs IntRegs:$dst),
// XTYPE/ALU -
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// XTYPE/BIT +
+//===----------------------------------------------------------------------===//
+
+// Bit reverse
+let isCodeGenOnly = 0 in
+def S2_brevp : T_S2op_3 <"brev", 0b11, 0b110>;
+
+// Bit count
+let isCodeGenOnly = 0 in {
+def S2_ct0p : T_COUNT_LEADING_64<"ct0", 0b111, 0b010>;
+def S2_ct1p : T_COUNT_LEADING_64<"ct1", 0b111, 0b100>;
+def S4_clbpnorm : T_COUNT_LEADING_64<"normamt", 0b011, 0b000>;
+}
+
+def: Pat<(i32 (trunc (cttz (i64 DoubleRegs:$Rss)))),
+ (S2_ct0p (i64 DoubleRegs:$Rss))>;
+def: Pat<(i32 (trunc (cttz (not (i64 DoubleRegs:$Rss))))),
+ (S2_ct1p (i64 DoubleRegs:$Rss))>;
+
+let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
+def S4_clbaddi : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, s6Imm:$s6),
+ "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
+ bits<5> Rs;
+ bits<5> Rd;
+ bits<6> s6;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b1100;
+ let Inst{23-21} = 0b001;
+ let Inst{20-16} = Rs;
+ let Inst{13-8} = s6;
+ let Inst{7-5} = 0b000;
+ let Inst{4-0} = Rd;
+}
+
+let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
+def S4_clbpaddi : SInst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, s6Imm:$s6),
+ "$Rd = add(clb($Rs), #$s6)", [], "", S_2op_tc_2_SLOT23> {
+ bits<5> Rs;
+ bits<5> Rd;
+ bits<6> s6;
+ let IClass = 0b1000;
+ let Inst{27-24} = 0b1000;
+ let Inst{23-21} = 0b011;
+ let Inst{20-16} = Rs;
+ let Inst{13-8} = s6;
+ let Inst{7-5} = 0b010;
+ let Inst{4-0} = Rd;
+}
+
+
+// Bit test/set/clear
+let isCodeGenOnly = 0 in {
+def S4_ntstbit_i : T_TEST_BIT_IMM<"!tstbit", 0b001>;
+def S4_ntstbit_r : T_TEST_BIT_REG<"!tstbit", 1>;
+}
+
+let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
+ def: Pat<(i1 (seteq (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
+ (S4_ntstbit_i (i32 IntRegs:$Rs), u5ImmPred:$u5)>;
+ def: Pat<(i1 (seteq (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
+ (S4_ntstbit_r (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))>;
+}
+
+// Add extra complexity to prefer these instructions over bitsset/bitsclr.
+// The reason is that tstbit/ntstbit can be folded into a compound instruction:
+// if ([!]tstbit(...)) jump ...
+let AddedComplexity = 100 in
+def: Pat<(i1 (setne (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
+ (S2_tstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
+
+let AddedComplexity = 100 in
+def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 Set5ImmPred:$u5)), (i32 0))),
+ (S4_ntstbit_i (i32 IntRegs:$Rs), (BITPOS32 Set5ImmPred:$u5))>;
+
+let isCodeGenOnly = 0 in {
+def C4_nbitsset : T_TEST_BITS_REG<"!bitsset", 0b01, 1>;
+def C4_nbitsclr : T_TEST_BITS_REG<"!bitsclr", 0b10, 1>;
+def C4_nbitsclri : T_TEST_BITS_IMM<"!bitsclr", 0b10, 1>;
+}
+
+// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
+// represented as a compare against "value & 0xFF", which is an exact match
+// for cmpb (same for cmph). The patterns below do not contain any additional
+// complexity that would make them preferable, and if they were actually used
+// instead of cmpb/cmph, they would result in a compare against register that
+// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
+def: Pat<(i1 (setne (and I32:$Rs, u6ImmPred:$u6), 0)),
+ (C4_nbitsclri I32:$Rs, u6ImmPred:$u6)>;
+def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
+ (C4_nbitsclr I32:$Rs, I32:$Rt)>;
+def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
+ (C4_nbitsset I32:$Rs, I32:$Rt)>;
+
+//===----------------------------------------------------------------------===//
+// XTYPE/BIT -
+//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// XTYPE/MPY +
//===----------------------------------------------------------------------===//
-// Multiply and user lower result.
-// Rd=add(#u6,mpyi(Rs,#U6))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
-validSubTargets = HasV4SubT in
-def ADDi_MPYri_V4 : MInst<(outs IntRegs:$dst),
- (ins u6Ext:$src1, IntRegs:$src2, u6Imm:$src3),
- "$dst = add(#$src1, mpyi($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
- u6ExtPred:$src1))]>,
- Requires<[HasV4T]>;
+// Rd=add(#u6,mpyi(Rs,#U6)) -- Multiply by immed and add immed.
+
+let hasNewValue = 1, isExtendable = 1, opExtentBits = 6, opExtendable = 1,
+ isCodeGenOnly = 0 in
+def M4_mpyri_addi : MInst<(outs IntRegs:$Rd),
+ (ins u6Ext:$u6, IntRegs:$Rs, u6Imm:$U6),
+ "$Rd = add(#$u6, mpyi($Rs, #$U6))" ,
+ [(set (i32 IntRegs:$Rd),
+ (add (mul (i32 IntRegs:$Rs), u6ImmPred:$U6),
+ u6ExtPred:$u6))] ,"",ALU64_tc_3x_SLOT23> {
+ bits<5> Rd;
+ bits<6> u6;
+ bits<5> Rs;
+ bits<6> U6;
+
+ let IClass = 0b1101;
+
+ let Inst{27-24} = 0b1000;
+ let Inst{23} = U6{5};
+ let Inst{22-21} = u6{5-4};
+ let Inst{20-16} = Rs;
+ let Inst{13} = u6{3};
+ let Inst{12-8} = Rd;
+ let Inst{7-5} = u6{2-0};
+ let Inst{4-0} = U6{4-0};
+ }
+
+// Rd=add(#u6,mpyi(Rs,Rt))
+let CextOpcode = "ADD_MPY", InputType = "imm", hasNewValue = 1,
+ isExtendable = 1, opExtentBits = 6, opExtendable = 1, isCodeGenOnly = 0 in
+def M4_mpyrr_addi : MInst <(outs IntRegs:$Rd),
+ (ins u6Ext:$u6, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = add(#$u6, mpyi($Rs, $Rt))" ,
+ [(set (i32 IntRegs:$Rd),
+ (add (mul (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), u6ExtPred:$u6))],
+ "", ALU64_tc_3x_SLOT23>, ImmRegRel {
+ bits<5> Rd;
+ bits<6> u6;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b01110;
+ let Inst{22-21} = u6{5-4};
+ let Inst{20-16} = Rs;
+ let Inst{13} = u6{3};
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = u6{2-0};
+ let Inst{4-0} = Rd;
+ }
+
+let hasNewValue = 1 in
+class T_AddMpy <bit MajOp, PatLeaf ImmPred, dag ins>
+ : ALU64Inst <(outs IntRegs:$dst), ins,
+ "$dst = add($src1, mpyi("#!if(MajOp,"$src3, #$src2))",
+ "#$src2, $src3))"),
+ [(set (i32 IntRegs:$dst),
+ (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3), ImmPred:$src2)))],
+ "", ALU64_tc_3x_SLOT23> {
+ bits<5> dst;
+ bits<5> src1;
+ bits<8> src2;
+ bits<5> src3;
+
+ let IClass = 0b1101;
+
+ bits<6> ImmValue = !if(MajOp, src2{5-0}, src2{7-2});
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23} = MajOp;
+ let Inst{22-21} = ImmValue{5-4};
+ let Inst{20-16} = src3;
+ let Inst{13} = ImmValue{3};
+ let Inst{12-8} = dst;
+ let Inst{7-5} = ImmValue{2-0};
+ let Inst{4-0} = src1;
+ }
+
+let isCodeGenOnly = 0 in
+def M4_mpyri_addr_u2 : T_AddMpy<0b0, u6_2ImmPred,
+ (ins IntRegs:$src1, u6_2Imm:$src2, IntRegs:$src3)>;
+
+let isExtendable = 1, opExtentBits = 6, opExtendable = 3,
+ CextOpcode = "ADD_MPY", InputType = "imm", isCodeGenOnly = 0 in
+def M4_mpyri_addr : T_AddMpy<0b1, u6ExtPred,
+ (ins IntRegs:$src1, IntRegs:$src3, u6Ext:$src2)>, ImmRegRel;
+
+// Rx=add(Ru,mpyi(Rx,Rs))
+let validSubTargets = HasV4SubT, CextOpcode = "ADD_MPY", InputType = "reg",
+ hasNewValue = 1, isCodeGenOnly = 0 in
+def M4_mpyrr_addr: MInst_acc <(outs IntRegs:$Rx),
+ (ins IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs),
+ "$Rx = add($Ru, mpyi($_src_, $Rs))",
+ [(set (i32 IntRegs:$Rx), (add (i32 IntRegs:$Ru),
+ (mul (i32 IntRegs:$_src_), (i32 IntRegs:$Rs))))],
+ "$_src_ = $Rx", M_tc_3x_SLOT23>, ImmRegRel {
+ bits<5> Rx;
+ bits<5> Ru;
+ bits<5> Rs;
+
+ let IClass = 0b1110;
+
+ let Inst{27-21} = 0b0011000;
+ let Inst{12-8} = Rx;
+ let Inst{4-0} = Ru;
+ let Inst{20-16} = Rs;
+ }
// Rd=add(##,mpyi(Rs,#U6))
def : Pat <(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
(HexagonCONST32 tglobaladdr:$src1)),
- (i32 (ADDi_MPYri_V4 tglobaladdr:$src1, IntRegs:$src2,
+ (i32 (M4_mpyri_addi tglobaladdr:$src1, IntRegs:$src2,
u6ImmPred:$src3))>;
-// Rd=add(#u6,mpyi(Rs,Rt))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
-validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
-def ADDi_MPYrr_V4 : MInst<(outs IntRegs:$dst),
- (ins u6Ext:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst = add(#$src1, mpyi($src2, $src3))",
- [(set (i32 IntRegs:$dst),
- (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
- u6ExtPred:$src1))]>,
- Requires<[HasV4T]>, ImmRegRel;
-
// Rd=add(##,mpyi(Rs,Rt))
def : Pat <(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
(HexagonCONST32 tglobaladdr:$src1)),
- (i32 (ADDi_MPYrr_V4 tglobaladdr:$src1, IntRegs:$src2,
+ (i32 (M4_mpyrr_addi tglobaladdr:$src1, IntRegs:$src2,
IntRegs:$src3))>;
-// Rd=add(Ru,mpyi(#u6:2,Rs))
-let validSubTargets = HasV4SubT in
-def ADDr_MPYir_V4 : MInst<(outs IntRegs:$dst),
- (ins IntRegs:$src1, u6Imm:$src2, IntRegs:$src3),
- "$dst = add($src1, mpyi(#$src2, $src3))",
- [(set (i32 IntRegs:$dst),
- (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3),
- u6_2ImmPred:$src2)))]>,
- Requires<[HasV4T]>;
-
-// Rd=add(Ru,mpyi(Rs,#u6))
-let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 6,
-validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
-def ADDr_MPYri_V4 : MInst<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, u6Ext:$src3),
- "$dst = add($src1, mpyi($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
- u6ExtPred:$src3)))]>,
- Requires<[HasV4T]>, ImmRegRel;
-
-// Rx=add(Ru,mpyi(Rx,Rs))
-let validSubTargets = HasV4SubT, InputType = "reg", CextOpcode = "ADD_MPY" in
-def ADDr_MPYrr_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
- "$dst = add($src1, mpyi($src2, $src3))",
- [(set (i32 IntRegs:$dst),
- (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src2 = $dst">,
- Requires<[HasV4T]>, ImmRegRel;
-
-
// Polynomial multiply words
// Rdd=pmpyw(Rs,Rt)
// Rxx^=pmpyw(Rs,Rt)
@@ -1590,159 +2178,115 @@ def ADDr_MPYrr_V4 : MInst_acc<(outs IntRegs:$dst),
//===----------------------------------------------------------------------===//
// XTYPE/SHIFT +
//===----------------------------------------------------------------------===//
-
-// Shift by immediate and accumulate.
-// Rx=add(#u8,asl(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-validSubTargets = HasV4SubT in
-def ADDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = add(#$src1, asl($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (add (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-
-// Rx=add(#u8,lsr(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-validSubTargets = HasV4SubT in
-def ADDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = add(#$src1, lsr($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (add (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-
-// Rx=sub(#u8,asl(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-validSubTargets = HasV4SubT in
-def SUBi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = sub(#$src1, asl($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (sub (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-
-// Rx=sub(#u8,lsr(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-validSubTargets = HasV4SubT in
-def SUBi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = sub(#$src1, lsr($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (sub (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-
-
-//Shift by immediate and logical.
-//Rx=and(#u8,asl(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-validSubTargets = HasV4SubT in
-def ANDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = and(#$src1, asl($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (and (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-
-//Rx=and(#u8,lsr(Rx,#U5))
+// Shift by immediate and accumulate/logical.
+// Rx=add(#u8,asl(Rx,#U5)) Rx=add(#u8,lsr(Rx,#U5))
+// Rx=sub(#u8,asl(Rx,#U5)) Rx=sub(#u8,lsr(Rx,#U5))
+// Rx=and(#u8,asl(Rx,#U5)) Rx=and(#u8,lsr(Rx,#U5))
+// Rx=or(#u8,asl(Rx,#U5)) Rx=or(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-validSubTargets = HasV4SubT in
-def ANDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = and(#$src1, lsr($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (and (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
-
-//Rx=or(#u8,asl(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-AddedComplexity = 30, validSubTargets = HasV4SubT in
-def ORi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = or(#$src1, asl($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (or (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
+ hasNewValue = 1, opNewValue = 0, validSubTargets = HasV4SubT in
+class T_S4_ShiftOperate<string MnOp, string MnSh, SDNode Op, SDNode Sh,
+ bit asl_lsr, bits<2> MajOp, InstrItinClass Itin>
+ : MInst_acc<(outs IntRegs:$Rd), (ins u8Ext:$u8, IntRegs:$Rx, u5Imm:$U5),
+ "$Rd = "#MnOp#"(#$u8, "#MnSh#"($Rx, #$U5))",
+ [(set (i32 IntRegs:$Rd),
+ (Op (Sh I32:$Rx, u5ImmPred:$U5), u8ExtPred:$u8))],
+ "$Rd = $Rx", Itin> {
+
+ bits<5> Rd;
+ bits<8> u8;
+ bits<5> Rx;
+ bits<5> U5;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = 0b1110;
+ let Inst{23-21} = u8{7-5};
+ let Inst{20-16} = Rd;
+ let Inst{13} = u8{4};
+ let Inst{12-8} = U5;
+ let Inst{7-5} = u8{3-1};
+ let Inst{4} = asl_lsr;
+ let Inst{3} = u8{0};
+ let Inst{2-1} = MajOp;
+}
-//Rx=or(#u8,lsr(Rx,#U5))
-let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
-AddedComplexity = 30, validSubTargets = HasV4SubT in
-def ORi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
- (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
- "$dst = or(#$src1, lsr($src2, #$src3))",
- [(set (i32 IntRegs:$dst),
- (or (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
- u8ExtPred:$src1))],
- "$src2 = $dst">,
- Requires<[HasV4T]>;
+multiclass T_ShiftOperate<string mnemonic, SDNode Op, bits<2> MajOp,
+ InstrItinClass Itin> {
+ def _asl_ri : T_S4_ShiftOperate<mnemonic, "asl", Op, shl, 0, MajOp, Itin>;
+ def _lsr_ri : T_S4_ShiftOperate<mnemonic, "lsr", Op, srl, 1, MajOp, Itin>;
+}
+let AddedComplexity = 200, isCodeGenOnly = 0 in {
+ defm S4_addi : T_ShiftOperate<"add", add, 0b10, ALU64_tc_2_SLOT23>;
+ defm S4_andi : T_ShiftOperate<"and", and, 0b00, ALU64_tc_2_SLOT23>;
+}
-//Shift by register.
-//Rd=lsl(#s6,Rt)
-let validSubTargets = HasV4SubT in {
-def LSLi_V4 : MInst<(outs IntRegs:$dst), (ins s6Imm:$src1, IntRegs:$src2),
- "$dst = lsl(#$src1, $src2)",
- [(set (i32 IntRegs:$dst), (shl s6ImmPred:$src1,
- (i32 IntRegs:$src2)))]>,
- Requires<[HasV4T]>;
+let AddedComplexity = 30, isCodeGenOnly = 0 in
+defm S4_ori : T_ShiftOperate<"or", or, 0b01, ALU64_tc_1_SLOT23>;
+let isCodeGenOnly = 0 in
+defm S4_subi : T_ShiftOperate<"sub", sub, 0b11, ALU64_tc_1_SLOT23>;
-//Shift by register and logical.
-//Rxx^=asl(Rss,Rt)
-def ASLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
- "$dst ^= asl($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (xor (i64 DoubleRegs:$src1), (shl (i64 DoubleRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
-//Rxx^=asr(Rss,Rt)
-def ASRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
- "$dst ^= asr($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (xor (i64 DoubleRegs:$src1), (sra (i64 DoubleRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Rd=[cround|round](Rs,Rt)
+let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23, isCodeGenOnly = 0 in {
+ def A4_cround_rr : T_S3op_3 < "cround", IntRegs, 0b11, 0b00>;
+ def A4_round_rr : T_S3op_3 < "round", IntRegs, 0b11, 0b10>;
+}
-//Rxx^=lsl(Rss,Rt)
-def LSLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
- "$dst ^= lsl($src2, $src3)",
- [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
- (shl (i64 DoubleRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+// Rd=round(Rs,Rt):sat
+let hasNewValue = 1, Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23,
+ isCodeGenOnly = 0 in
+def A4_round_rr_sat : T_S3op_3 < "round", IntRegs, 0b11, 0b11, 1>;
+
+// Rdd=[add|sub](Rss,Rtt,Px):carry
+let isPredicateLate = 1, hasSideEffects = 0 in
+class T_S3op_carry <string mnemonic, bits<3> MajOp>
+ : SInst < (outs DoubleRegs:$Rdd, PredRegs:$Px),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
+ "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu):carry",
+ [], "$Px = $Pu", S_3op_tc_1_SLOT23 > {
+ bits<5> Rdd;
+ bits<5> Rss;
+ bits<5> Rtt;
+ bits<2> Pu;
+
+ let IClass = 0b1100;
+
+ let Inst{27-24} = 0b0010;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rdd;
+ }
-//Rxx^=lsr(Rss,Rt)
-def LSRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
- "$dst ^= lsr($src2, $src3)",
- [(set (i64 DoubleRegs:$dst),
- (xor (i64 DoubleRegs:$src1), (srl (i64 DoubleRegs:$src2),
- (i32 IntRegs:$src3))))],
- "$src1 = $dst">,
- Requires<[HasV4T]>;
+let isCodeGenOnly = 0 in {
+def A4_addp_c : T_S3op_carry < "add", 0b110 >;
+def A4_subp_c : T_S3op_carry < "sub", 0b111 >;
}
+// Shift an immediate left by register amount.
+let hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
+def S4_lsli: SInst <(outs IntRegs:$Rd), (ins s6Imm:$s6, IntRegs:$Rt),
+ "$Rd = lsl(#$s6, $Rt)" ,
+ [(set (i32 IntRegs:$Rd), (shl s6ImmPred:$s6,
+ (i32 IntRegs:$Rt)))],
+ "", S_3op_tc_1_SLOT23> {
+ bits<5> Rd;
+ bits<6> s6;
+ bits<5> Rt;
+
+ let IClass = 0b1100;
+
+ let Inst{27-22} = 0b011010;
+ let Inst{20-16} = s6{5-1};
+ let Inst{12-8} = Rt;
+ let Inst{7-6} = 0b11;
+ let Inst{4-0} = Rd;
+ let Inst{5} = s6{0};
+ }
+
//===----------------------------------------------------------------------===//
// XTYPE/SHIFT -
//===----------------------------------------------------------------------===//
@@ -1830,7 +2374,7 @@ class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
(ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
opc#"($base+#$offset)"#memOp#"$delta",
[]>,
- Requires<[HasV4T, UseMEMOP]> {
+ Requires<[UseMEMOP]> {
bits<5> base;
bits<5> delta;
@@ -1841,6 +2385,7 @@ class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
!if (!eq(opcBits, 0b01), offset{6-1},
!if (!eq(opcBits, 0b10), offset{7-2},0)));
+ let opExtentAlign = opcBits;
let IClass = 0b0011;
let Inst{27-24} = 0b1110;
let Inst{22-21} = opcBits;
@@ -1861,7 +2406,7 @@ class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
opc#"($base+#$offset)"#memOp#"#$delta"
#!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
[]>,
- Requires<[HasV4T, UseMEMOP]> {
+ Requires<[UseMEMOP]> {
bits<5> base;
bits<5> delta;
@@ -1872,6 +2417,7 @@ class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
!if (!eq(opcBits, 0b01), offset{6-1},
!if (!eq(opcBits, 0b10), offset{7-2},0)));
+ let opExtentAlign = opcBits;
let IClass = 0b0011;
let Inst{27-24} = 0b1111;
let Inst{22-21} = opcBits;
@@ -1884,36 +2430,36 @@ class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
// multiclass to define MemOp instructions with register operand.
multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
- def _ADD#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
- def _SUB#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
- def _AND#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
- def _OR#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
+ def L4_add#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
+ def L4_sub#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
+ def L4_and#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
+ def L4_or#NAME : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
}
// multiclass to define MemOp instructions with immediate Operand.
multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
- def _ADD#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
- def _SUB#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
- def _CLRBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =clrbit(", 0b10>;
- def _SETBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =setbit(", 0b11>;
+ def L4_iadd#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
+ def L4_isub#NAME : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
+ def L4_iand#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = clrbit(", 0b10>;
+ def L4_ior#NAME : MemOp_ri_base<opc, opcBits, ImmOp, " = setbit(", 0b11>;
}
multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
- defm r : MemOp_rr <opc, opcBits, ImmOp>;
- defm i : MemOp_ri <opc, opcBits, ImmOp>;
+ defm _#NAME : MemOp_rr <opc, opcBits, ImmOp>;
+ defm _#NAME : MemOp_ri <opc, opcBits, ImmOp>;
}
// Define MemOp instructions.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0,
-validSubTargets =HasV4SubT in {
- let opExtentBits = 6, accessSize = ByteAccess in
- defm MemOPb : MemOp_base <"memb", 0b00, u6_0Ext>;
+ validSubTargets =HasV4SubT in {
+ let opExtentBits = 6, accessSize = ByteAccess, isCodeGenOnly = 0 in
+ defm memopb_io : MemOp_base <"memb", 0b00, u6_0Ext>;
- let opExtentBits = 7, accessSize = HalfWordAccess in
- defm MemOPh : MemOp_base <"memh", 0b01, u6_1Ext>;
+ let opExtentBits = 7, accessSize = HalfWordAccess, isCodeGenOnly = 0 in
+ defm memoph_io : MemOp_base <"memh", 0b01, u6_1Ext>;
- let opExtentBits = 8, accessSize = WordAccess in
- defm MemOPw : MemOp_base <"memw", 0b10, u6_2Ext>;
+ let opExtentBits = 8, accessSize = WordAccess, isCodeGenOnly = 0 in
+ defm memopw_io : MemOp_base <"memw", 0b10, u6_2Ext>;
}
//===----------------------------------------------------------------------===//
@@ -1946,10 +2492,10 @@ multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm : MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u6_1ExtPred,
- MemOPh_ADDi_V4, MemOPh_SUBi_V4>;
+ L4_iadd_memoph_io, L4_isub_memoph_io>;
// Byte
defm : MemOpi_u5ALUOp <ldOpByte, truncstorei8, u6ExtPred,
- MemOPb_ADDi_V4, MemOPb_SUBi_V4>;
+ L4_iadd_memopb_io, L4_isub_memopb_io>;
}
let Predicates = [HasV4T, UseMEMOP] in {
@@ -1958,8 +2504,8 @@ let Predicates = [HasV4T, UseMEMOP] in {
defm : MemOpi_u5ExtType<extloadi8, extloadi16>; // any extend
// Word
- defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, MemOPw_ADDi_V4,
- MemOPw_SUBi_V4>;
+ defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, L4_iadd_memopw_io,
+ L4_isub_memopw_io>;
}
//===----------------------------------------------------------------------===//
@@ -1987,10 +2533,10 @@ multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm : MemOpi_m5Pats <ldOpHalf, truncstorei16, u6_1ExtPred, m5HImmPred,
- ADDRriU6_1, MEMOPIMM_HALF, MemOPh_SUBi_V4>;
+ ADDRriU6_1, MEMOPIMM_HALF, L4_isub_memoph_io>;
// Byte
defm : MemOpi_m5Pats <ldOpByte, truncstorei8, u6ExtPred, m5BImmPred,
- ADDRriU6_0, MEMOPIMM_BYTE, MemOPb_SUBi_V4>;
+ ADDRriU6_0, MEMOPIMM_BYTE, L4_isub_memopb_io>;
}
let Predicates = [HasV4T, UseMEMOP] in {
@@ -2000,7 +2546,7 @@ let Predicates = [HasV4T, UseMEMOP] in {
// Word
defm : MemOpi_m5Pats <load, store, u6_2ExtPred, m5ImmPred,
- ADDRriU6_2, MEMOPIMM, MemOPw_SUBi_V4>;
+ ADDRriU6_2, MEMOPIMM, L4_isub_memopw_io>;
}
//===----------------------------------------------------------------------===//
@@ -2031,16 +2577,16 @@ multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Byte - clrbit
defm : MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u6ExtPred,
- ADDRriU6_0, CLRMEMIMM_BYTE, MemOPb_CLRBITi_V4, and>;
+ ADDRriU6_0, CLRMEMIMM_BYTE, L4_iand_memopb_io, and>;
// Byte - setbit
defm : MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred, u6ExtPred,
- ADDRriU6_0, SETMEMIMM_BYTE, MemOPb_SETBITi_V4, or>;
+ ADDRriU6_0, SETMEMIMM_BYTE, L4_ior_memopb_io, or>;
// Half Word - clrbit
defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u6_1ExtPred,
- ADDRriU6_1, CLRMEMIMM_SHORT, MemOPh_CLRBITi_V4, and>;
+ ADDRriU6_1, CLRMEMIMM_SHORT, L4_iand_memoph_io, and>;
// Half Word - setbit
defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u6_1ExtPred,
- ADDRriU6_1, SETMEMIMM_SHORT, MemOPh_SETBITi_V4, or>;
+ ADDRriU6_1, SETMEMIMM_SHORT, L4_ior_memoph_io, or>;
}
let Predicates = [HasV4T, UseMEMOP] in {
@@ -2053,9 +2599,9 @@ let Predicates = [HasV4T, UseMEMOP] in {
// memw(Rs+#0) = [clrbit|setbit](#U5)
// memw(Rs+#u6:2) = [clrbit|setbit](#U5)
defm : MemOpi_bitPats<load, store, Clr5ImmPred, u6_2ExtPred, ADDRriU6_2,
- CLRMEMIMM, MemOPw_CLRBITi_V4, and>;
+ CLRMEMIMM, L4_iand_memopw_io, and>;
defm : MemOpi_bitPats<load, store, Set5ImmPred, u6_2ExtPred, ADDRriU6_2,
- SETMEMIMM, MemOPw_SETBITi_V4, or>;
+ SETMEMIMM, L4_ior_memopw_io, or>;
}
//===----------------------------------------------------------------------===//
@@ -2096,12 +2642,12 @@ multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp,
multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm : MemOPr_ALUOp <ldOpHalf, truncstorei16, ADDRriU6_1, u6_1ExtPred,
- MemOPh_ADDr_V4, MemOPh_SUBr_V4,
- MemOPh_ANDr_V4, MemOPh_ORr_V4>;
+ L4_add_memoph_io, L4_sub_memoph_io,
+ L4_and_memoph_io, L4_or_memoph_io>;
// Byte
defm : MemOPr_ALUOp <ldOpByte, truncstorei8, ADDRriU6_0, u6ExtPred,
- MemOPb_ADDr_V4, MemOPb_SUBr_V4,
- MemOPb_ANDr_V4, MemOPb_ORr_V4>;
+ L4_add_memopb_io, L4_sub_memopb_io,
+ L4_and_memopb_io, L4_or_memopb_io>;
}
// Define 'def Pats' for MemOps with register addend.
@@ -2111,8 +2657,8 @@ let Predicates = [HasV4T, UseMEMOP] in {
defm : MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
defm : MemOPr_ExtType<extloadi8, extloadi16>; // any extend
// Word
- defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, MemOPw_ADDr_V4,
- MemOPw_SUBr_V4, MemOPw_ANDr_V4, MemOPw_ORr_V4 >;
+ defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, L4_add_memopw_io,
+ L4_sub_memopw_io, L4_and_memopw_io, L4_or_memopw_io >;
}
//===----------------------------------------------------------------------===//
@@ -2130,6 +2676,42 @@ let Predicates = [HasV4T, UseMEMOP] in {
// incorrect code for negative numbers.
// Pd=cmpb.eq(Rs,#u8)
+let isCompare = 1, isExtendable = 1, opExtendable = 2, hasSideEffects = 0,
+ validSubTargets = HasV4SubT in
+class CMP_NOT_REG_IMM<string OpName, bits<2> op, Operand ImmOp,
+ list<dag> Pattern>
+ : ALU32Inst <(outs PredRegs:$dst), (ins IntRegs:$src1, ImmOp:$src2),
+ "$dst = !cmp."#OpName#"($src1, #$src2)",
+ Pattern,
+ "", ALU32_2op_tc_2early_SLOT0123> {
+ bits<2> dst;
+ bits<5> src1;
+ bits<10> src2;
+
+ let IClass = 0b0111;
+ let Inst{27-24} = 0b0101;
+ let Inst{23-22} = op;
+ let Inst{20-16} = src1;
+ let Inst{21} = !if (!eq(OpName, "gtu"), 0b0, src2{9});
+ let Inst{13-5} = src2{8-0};
+ let Inst{4-2} = 0b100;
+ let Inst{1-0} = dst;
+}
+
+let opExtentBits = 10, isExtentSigned = 1 in {
+def C4_cmpneqi : CMP_NOT_REG_IMM <"eq", 0b00, s10Ext, [(set (i1 PredRegs:$dst),
+ (setne (i32 IntRegs:$src1), s10ExtPred:$src2))]>;
+
+def C4_cmpltei : CMP_NOT_REG_IMM <"gt", 0b01, s10Ext, [(set (i1 PredRegs:$dst),
+ (not (setgt (i32 IntRegs:$src1), s10ExtPred:$src2)))]>;
+
+}
+let opExtentBits = 9 in
+def C4_cmplteui : CMP_NOT_REG_IMM <"gtu", 0b10, u9Ext, [(set (i1 PredRegs:$dst),
+ (not (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)))]>;
+
+
+
// p=!cmp.eq(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
@@ -2139,15 +2721,6 @@ def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
(setne (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>,
Requires<[HasV4T]>;
-// p=!cmp.eq(r1,#s10)
-let isCompare = 1, validSubTargets = HasV4SubT in
-def CMPnotEQ_ri : ALU32_ri<(outs PredRegs:$dst),
- (ins IntRegs:$src1, s10Ext:$src2),
- "$dst = !cmp.eq($src1, #$src2)",
- [(set (i1 PredRegs:$dst),
- (setne (i32 IntRegs:$src1), s10ImmPred:$src2))]>,
- Requires<[HasV4T]>;
-
// p=!cmp.gt(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
@@ -2157,14 +2730,6 @@ def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
(not (setgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
Requires<[HasV4T]>;
-// p=!cmp.gt(r1,#s10)
-let isCompare = 1, validSubTargets = HasV4SubT in
-def CMPnotGT_ri : ALU32_ri<(outs PredRegs:$dst),
- (ins IntRegs:$src1, s10Ext:$src2),
- "$dst = !cmp.gt($src1, #$src2)",
- [(set (i1 PredRegs:$dst),
- (not (setgt (i32 IntRegs:$src1), s10ImmPred:$src2)))]>,
- Requires<[HasV4T]>;
// p=!cmp.gtu(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
@@ -2175,15 +2740,6 @@ def CMPnotGTU_rr : ALU32_rr<(outs PredRegs:$dst),
(not (setugt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
Requires<[HasV4T]>;
-// p=!cmp.gtu(r1,#u9)
-let isCompare = 1, validSubTargets = HasV4SubT in
-def CMPnotGTU_ri : ALU32_ri<(outs PredRegs:$dst),
- (ins IntRegs:$src1, u9Ext:$src2),
- "$dst = !cmp.gtu($src1, #$src2)",
- [(set (i1 PredRegs:$dst),
- (not (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)))]>,
- Requires<[HasV4T]>;
-
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, u8Imm:$src2),
@@ -2194,7 +2750,7 @@ def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
def : Pat <(brcond (i1 (setne (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2)),
bb:$offset),
- (JMP_f (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
+ (J2_jumpf (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
bb:$offset)>,
Requires<[HasV4T]>;
@@ -2331,7 +2887,7 @@ def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 254)),
// if (!Pd.new) Rd=#0
// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
1, 0))>,
Requires<[HasV4T]>;
@@ -2344,7 +2900,7 @@ def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
// if (!Pd.new) Rd=#0
// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
1, 0))>,
Requires<[HasV4T]>;
@@ -2356,7 +2912,7 @@ def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
1, 0))>,
Requires<[HasV4T]>;
@@ -2378,7 +2934,7 @@ def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
// if (!Pd.new) Rd=#1
// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
0, 1))>,
Requires<[HasV4T]>;
@@ -2391,7 +2947,7 @@ def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
// if (!Pd.new) Rd=#1
// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
0, 1))>,
Requires<[HasV4T]>;
@@ -2403,7 +2959,7 @@ def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgtu (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
0, 1))>,
Requires<[HasV4T]>;
@@ -2415,7 +2971,7 @@ def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
- (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rs),
+ (i32 (TFR_condset_ii (i1 (C2_cmpgt (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
0, 1))>,
Requires<[HasV4T]>;
@@ -2439,7 +2995,7 @@ def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
let AddedComplexity = 139 in
def : Pat <(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
u7StrictPosImmPred:$src2)))),
- (i32 (MUX_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
+ (i32 (C2_muxii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
(DEC_CONST_BYTE u7StrictPosImmPred:$src2))),
0, 1))>,
Requires<[HasV4T]>;
@@ -2566,17 +3122,61 @@ def NTSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
// XTYPE/PRED -
//===----------------------------------------------------------------------===//
-//Deallocate frame and return.
-// dealloc_return
-let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicable = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_V4 : LD0Inst<(outs), (ins),
- "dealloc_return",
- []>,
- Requires<[HasV4T]>;
+//===----------------------------------------------------------------------===//
+// Multiclass for DeallocReturn
+//===----------------------------------------------------------------------===//
+class L4_RETURN<string mnemonic, bit isNot, bit isPredNew, bit isTak>
+ : LD0Inst<(outs), (ins PredRegs:$src),
+ !if(isNot, "if (!$src", "if ($src")#
+ !if(isPredNew, ".new) ", ") ")#mnemonic#
+ !if(isPredNew, #!if(isTak,":t", ":nt"),""),
+ [], "", LD_tc_3or4stall_SLOT0> {
+
+ bits<2> src;
+ let BaseOpcode = "L4_RETURN";
+ let isPredicatedFalse = isNot;
+ let isPredicatedNew = isPredNew;
+ let isTaken = isTak;
+ let IClass = 0b1001;
+
+ let Inst{27-16} = 0b011000011110;
+
+ let Inst{13} = isNot;
+ let Inst{12} = isTak;
+ let Inst{11} = isPredNew;
+ let Inst{10} = 0b0;
+ let Inst{9-8} = src;
+ let Inst{4-0} = 0b11110;
+ }
+
+// Produce all predicated forms, p, !p, p.new, !p.new, :t, :nt
+multiclass L4_RETURN_PRED<string mnemonic, bit PredNot> {
+ let isPredicated = 1 in {
+ def _#NAME# : L4_RETURN <mnemonic, PredNot, 0, 1>;
+ def _#NAME#new_pnt : L4_RETURN <mnemonic, PredNot, 1, 0>;
+ def _#NAME#new_pt : L4_RETURN <mnemonic, PredNot, 1, 1>;
+ }
+}
+
+multiclass LD_MISC_L4_RETURN<string mnemonic> {
+ let isBarrier = 1, isPredicable = 1 in
+ def NAME : LD0Inst <(outs), (ins), mnemonic, [], "",
+ LD_tc_3or4stall_SLOT0> {
+ let BaseOpcode = "L4_RETURN";
+ let IClass = 0b1001;
+ let Inst{27-16} = 0b011000011110;
+ let Inst{13-10} = 0b0000;
+ let Inst{4-0} = 0b11110;
+ }
+ defm t : L4_RETURN_PRED<mnemonic, 0 >;
+ defm f : L4_RETURN_PRED<mnemonic, 1 >;
}
+let isReturn = 1, isTerminator = 1,
+ Defs = [R29, R30, R31, PC], Uses = [R30], hasSideEffects = 0,
+ validSubTargets = HasV4SubT, isCodeGenOnly = 0 in
+defm L4_return: LD_MISC_L4_RETURN <"dealloc_return">, PredNewRel;
+
// Restore registers and dealloc return function call.
let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC] in {
@@ -2609,454 +3209,579 @@ let isCall = 1, isBarrier = 1,
Requires<[HasV4T]>;
}
-// if (Ps) dealloc_return
-let isReturn = 1, isTerminator = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
- isPredicated = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_cPt_V4 : LD0Inst<(outs),
- (ins PredRegs:$src1),
- "if ($src1) dealloc_return",
- []>,
- Requires<[HasV4T]>;
-}
+//===----------------------------------------------------------------------===//
+// Template class for non predicated store instructions with
+// GP-Relative or absolute addressing.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, isPredicable = 1, isNVStorable = 1 in
+class T_StoreAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<2>MajOp, Operand AddrOp, bit isAbs, bit isHalf>
+ : STInst<(outs), (ins AddrOp:$addr, RC:$src),
+ mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src"#!if(isHalf, ".h",""),
+ [], "", V2LDST_tc_st_SLOT01> {
+ bits<19> addr;
+ bits<5> src;
+ bits<16> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
+ !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
+ !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
+ /* u16_0Imm */ addr{15-0})));
+ let IClass = 0b0100;
+ let Inst{27} = 1;
+ let Inst{26-25} = offsetBits{15-14};
+ let Inst{24} = 0b0;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = isHalf;
+ let Inst{20-16} = offsetBits{13-9};
+ let Inst{13} = offsetBits{8};
+ let Inst{12-8} = src;
+ let Inst{7-0} = offsetBits{7-0};
+ }
-// if (!Ps) dealloc_return
-let isReturn = 1, isTerminator = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
- isPredicated = 1, isPredicatedFalse = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_cNotPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
- "if (!$src1) dealloc_return",
- []>,
- Requires<[HasV4T]>;
-}
+//===----------------------------------------------------------------------===//
+// Template class for predicated store instructions with
+// GP-Relative or absolute addressing.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, isPredicated = 1, isNVStorable = 1, opExtentBits = 6,
+ opExtendable = 1 in
+class T_StoreAbs_Pred <string mnemonic, RegisterClass RC, bits<2> MajOp,
+ bit isHalf, bit isNot, bit isNew>
+ : STInst<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, RC: $src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
+ ") ")#mnemonic#"(#$absaddr) = $src2"#!if(isHalf, ".h",""),
+ [], "", ST_tc_st_SLOT01>, AddrModeRel {
+ bits<2> src1;
+ bits<6> absaddr;
+ bits<5> src2;
+
+ let isPredicatedNew = isNew;
+ let isPredicatedFalse = isNot;
+
+ let IClass = 0b1010;
-// if (Ps.new) dealloc_return:nt
-let isReturn = 1, isTerminator = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
- isPredicated = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_cdnPnt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
- "if ($src1.new) dealloc_return:nt",
- []>,
- Requires<[HasV4T]>;
-}
+ let Inst{27-24} = 0b1111;
+ let Inst{23-22} = MajOp;
+ let Inst{21} = isHalf;
+ let Inst{17-16} = absaddr{5-4};
+ let Inst{13} = isNew;
+ let Inst{12-8} = src2;
+ let Inst{7} = 0b1;
+ let Inst{6-3} = absaddr{3-0};
+ let Inst{2} = isNot;
+ let Inst{1-0} = src1;
+ }
-// if (!Ps.new) dealloc_return:nt
-let isReturn = 1, isTerminator = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
- isPredicated = 1, isPredicatedFalse = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_cNotdnPnt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
- "if (!$src1.new) dealloc_return:nt",
- []>,
- Requires<[HasV4T]>;
+//===----------------------------------------------------------------------===//
+// Template class for predicated store instructions with absolute addressing.
+//===----------------------------------------------------------------------===//
+class T_StoreAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<2> MajOp, bit isHalf>
+ : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, u0AlwaysExt, 1, isHalf>,
+ AddrModeRel {
+ string ImmOpStr = !cast<string>(ImmOp);
+ let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
+ !if (!eq(ImmOpStr, "u16_2Imm"), 18,
+ !if (!eq(ImmOpStr, "u16_1Imm"), 17,
+ /* u16_0Imm */ 16)));
+
+ let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
+ !if (!eq(ImmOpStr, "u16_2Imm"), 2,
+ !if (!eq(ImmOpStr, "u16_1Imm"), 1,
+ /* u16_0Imm */ 0)));
}
-// if (Ps.new) dealloc_return:t
-let isReturn = 1, isTerminator = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
- isPredicated = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_cdnPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
- "if ($src1.new) dealloc_return:t",
- []>,
- Requires<[HasV4T]>;
-}
+//===----------------------------------------------------------------------===//
+// Multiclass for store instructions with absolute addressing.
+//===----------------------------------------------------------------------===//
+let validSubTargets = HasV4SubT, addrMode = Absolute, isExtended = 1 in
+multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, bits<2> MajOp, bit isHalf = 0> {
+ let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
+ let opExtendable = 0, isPredicable = 1 in
+ def S2_#NAME#abs : T_StoreAbs <mnemonic, RC, ImmOp, MajOp, isHalf>;
-// if (!Ps.new) dealloc_return:nt
-let isReturn = 1, isTerminator = 1,
- Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
- isPredicated = 1, isPredicatedFalse = 1 in {
-let validSubTargets = HasV4SubT in
- def DEALLOC_RET_cNotdnPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
- "if (!$src1.new) dealloc_return:t",
- []>,
- Requires<[HasV4T]>;
+ // Predicated
+ def S4_p#NAME#t_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 0>;
+ def S4_p#NAME#f_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 0>;
+
+ // .new Predicated
+ def S4_p#NAME#tnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 0, 1>;
+ def S4_p#NAME#fnew_abs : T_StoreAbs_Pred<mnemonic, RC, MajOp, isHalf, 1, 1>;
+ }
}
-// Load/Store with absolute addressing mode
-// memw(#u6)=Rt
+//===----------------------------------------------------------------------===//
+// Template class for non predicated new-value store instructions with
+// GP-Relative or absolute addressing.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, isPredicable = 1, mayStore = 1, isNVStore = 1,
+ isNewValue = 1, opNewValue = 1 in
+class T_StoreAbsGP_NV <string mnemonic, Operand ImmOp, bits<2>MajOp, bit isAbs>
+ : NVInst_V4<(outs), (ins u0AlwaysExt:$addr, IntRegs:$src),
+ mnemonic # !if(isAbs, "(##", "(#")#"$addr) = $src.new",
+ [], "", V2LDST_tc_st_SLOT0> {
+ bits<19> addr;
+ bits<3> src;
+ bits<16> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
+ !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
+ !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
+ /* u16_0Imm */ addr{15-0})));
+ let IClass = 0b0100;
+
+ let Inst{27} = 1;
+ let Inst{26-25} = offsetBits{15-14};
+ let Inst{24-21} = 0b0101;
+ let Inst{20-16} = offsetBits{13-9};
+ let Inst{13} = offsetBits{8};
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src;
+ let Inst{7-0} = offsetBits{7-0};
+ }
-multiclass ST_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME#_V4 : STInst2<(outs),
- (ins PredRegs:$src1, u0AlwaysExt:$absaddr, RC: $src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"(##$absaddr) = $src2",
- []>,
- Requires<[HasV4T]>;
+//===----------------------------------------------------------------------===//
+// Template class for predicated new-value store instructions with
+// absolute addressing.
+//===----------------------------------------------------------------------===//
+let hasSideEffects = 0, isPredicated = 1, mayStore = 1, isNVStore = 1,
+ isNewValue = 1, opNewValue = 2, opExtentBits = 6, opExtendable = 1 in
+class T_StoreAbs_NV_Pred <string mnemonic, bits<2> MajOp, bit isNot, bit isNew>
+ : NVInst_V4<(outs), (ins PredRegs:$src1, u6Ext:$absaddr, IntRegs:$src2),
+ !if(isNot, "if (!$src1", "if ($src1")#!if(isNew, ".new) ",
+ ") ")#mnemonic#"(#$absaddr) = $src2.new",
+ [], "", ST_tc_st_SLOT0>, AddrModeRel {
+ bits<2> src1;
+ bits<6> absaddr;
+ bits<3> src2;
+
+ let isPredicatedNew = isNew;
+ let isPredicatedFalse = isNot;
+
+ let IClass = 0b1010;
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23-21} = 0b101;
+ let Inst{17-16} = absaddr{5-4};
+ let Inst{13} = isNew;
+ let Inst{12-11} = MajOp;
+ let Inst{10-8} = src2;
+ let Inst{7} = 0b1;
+ let Inst{6-3} = absaddr{3-0};
+ let Inst{2} = isNot;
+ let Inst{1-0} = src1;
}
-multiclass ST_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 1>;
- }
+//===----------------------------------------------------------------------===//
+// Template class for non-predicated new-value store instructions with
+// absolute addressing.
+//===----------------------------------------------------------------------===//
+class T_StoreAbs_NV <string mnemonic, Operand ImmOp, bits<2> MajOp>
+ : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 1>, AddrModeRel {
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
+ !if (!eq(ImmOpStr, "u16_2Imm"), 18,
+ !if (!eq(ImmOpStr, "u16_1Imm"), 17,
+ /* u16_0Imm */ 16)));
+
+ let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
+ !if (!eq(ImmOpStr, "u16_2Imm"), 2,
+ !if (!eq(ImmOpStr, "u16_1Imm"), 1,
+ /* u16_0Imm */ 0)));
}
-let isNVStorable = 1, isExtended = 1, neverHasSideEffects = 1 in
-multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC> {
+//===----------------------------------------------------------------------===//
+// Multiclass for new-value store instructions with absolute addressing.
+//===----------------------------------------------------------------------===//
+let validSubTargets = HasV4SubT, addrMode = Absolute, isExtended = 1 in
+multiclass ST_Abs_NV <string mnemonic, string CextOp, Operand ImmOp,
+ bits<2> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 0, isPredicable = 1 in
- def NAME#_V4 : STInst2<(outs),
- (ins u0AlwaysExt:$absaddr, RC:$src),
- mnemonic#"(##$absaddr) = $src",
- []>,
- Requires<[HasV4T]>;
+ def S2_#NAME#newabs : T_StoreAbs_NV <mnemonic, ImmOp, MajOp>;
- let opExtendable = 1, isPredicated = 1 in {
- defm Pt : ST_Abs_Pred<mnemonic, RC, 0>;
- defm NotPt : ST_Abs_Pred<mnemonic, RC, 1>;
- }
+ // Predicated
+ def S4_p#NAME#newt_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 0>;
+ def S4_p#NAME#newf_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 0>;
+
+ // .new Predicated
+ def S4_p#NAME#newtnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 0, 1>;
+ def S4_p#NAME#newfnew_abs : T_StoreAbs_NV_Pred <mnemonic, MajOp, 1, 1>;
}
}
-multiclass ST_Abs_Predbase_nv<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins PredRegs:$src1, u0AlwaysExt:$absaddr, RC: $src2),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#mnemonic#"(##$absaddr) = $src2.new",
- []>,
- Requires<[HasV4T]>;
-}
+//===----------------------------------------------------------------------===//
+// Stores with absolute addressing
+//===----------------------------------------------------------------------===//
+let accessSize = ByteAccess, isCodeGenOnly = 0 in
+defm storerb : ST_Abs <"memb", "STrib", IntRegs, u16_0Imm, 0b00>,
+ ST_Abs_NV <"memb", "STrib", u16_0Imm, 0b00>;
-multiclass ST_Abs_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 1>;
- }
-}
+let accessSize = HalfWordAccess, isCodeGenOnly = 0 in
+defm storerh : ST_Abs <"memh", "STrih", IntRegs, u16_1Imm, 0b01>,
+ ST_Abs_NV <"memh", "STrih", u16_1Imm, 0b01>;
-let mayStore = 1, isNVStore = 1, isExtended = 1, neverHasSideEffects = 1 in
-multiclass ST_Abs_nv<string mnemonic, string CextOp, RegisterClass RC> {
- let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
- let opExtendable = 0, isPredicable = 1 in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins u0AlwaysExt:$absaddr, RC:$src),
- mnemonic#"(##$absaddr) = $src.new",
- []>,
- Requires<[HasV4T]>;
+let accessSize = WordAccess, isCodeGenOnly = 0 in
+defm storeri : ST_Abs <"memw", "STriw", IntRegs, u16_2Imm, 0b10>,
+ ST_Abs_NV <"memw", "STriw", u16_2Imm, 0b10>;
- let opExtendable = 1, isPredicated = 1 in {
- defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
- defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
- }
+let isNVStorable = 0, accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+defm storerd : ST_Abs <"memd", "STrid", DoubleRegs, u16_3Imm, 0b11>;
+
+let isNVStorable = 0, accessSize = HalfWordAccess, isCodeGenOnly = 0 in
+defm storerf : ST_Abs <"memh", "STrif", IntRegs, u16_1Imm, 0b01, 1>;
+
+//===----------------------------------------------------------------------===//
+// GP-relative stores.
+// mem[bhwd](#global)=Rt
+// Once predicated, these instructions map to absolute addressing mode.
+// if ([!]Pv[.new]) mem[bhwd](##global)=Rt
+//===----------------------------------------------------------------------===//
+
+let validSubTargets = HasV4SubT in
+class T_StoreGP <string mnemonic, string BaseOp, RegisterClass RC,
+ Operand ImmOp, bits<2> MajOp, bit isHalf = 0>
+ : T_StoreAbsGP <mnemonic, RC, ImmOp, MajOp, globaladdress, 0, isHalf> {
+ // Set BaseOpcode same as absolute addressing instructions so that
+ // non-predicated GP-Rel instructions can have relate with predicated
+ // Absolute instruction.
+ let BaseOpcode = BaseOp#_abs;
+ }
+
+let validSubTargets = HasV4SubT in
+multiclass ST_GP <string mnemonic, string BaseOp, Operand ImmOp,
+ bits<2> MajOp, bit isHalf = 0> {
+ // Set BaseOpcode same as absolute addressing instructions so that
+ // non-predicated GP-Rel instructions can have relate with predicated
+ // Absolute instruction.
+ let BaseOpcode = BaseOp#_abs in {
+ def NAME#gp : T_StoreAbsGP <mnemonic, IntRegs, ImmOp, MajOp,
+ globaladdress, 0, isHalf>;
+ // New-value store
+ def NAME#newgp : T_StoreAbsGP_NV <mnemonic, ImmOp, MajOp, 0> ;
}
}
-let addrMode = Absolute in {
- let accessSize = ByteAccess in
- defm STrib_abs : ST_Abs<"memb", "STrib", IntRegs>,
- ST_Abs_nv<"memb", "STrib", IntRegs>, AddrModeRel;
+let accessSize = ByteAccess in
+defm S2_storerb : ST_GP<"memb", "STrib", u16_0Imm, 0b00>, NewValueRel;
- let accessSize = HalfWordAccess in
- defm STrih_abs : ST_Abs<"memh", "STrih", IntRegs>,
- ST_Abs_nv<"memh", "STrih", IntRegs>, AddrModeRel;
+let accessSize = HalfWordAccess in
+defm S2_storerh : ST_GP<"memh", "STrih", u16_1Imm, 0b01>, NewValueRel;
- let accessSize = WordAccess in
- defm STriw_abs : ST_Abs<"memw", "STriw", IntRegs>,
- ST_Abs_nv<"memw", "STriw", IntRegs>, AddrModeRel;
+let accessSize = WordAccess in
+defm S2_storeri : ST_GP<"memw", "STriw", u16_2Imm, 0b10>, NewValueRel;
- let accessSize = DoubleWordAccess, isNVStorable = 0 in
- defm STrid_abs : ST_Abs<"memd", "STrid", DoubleRegs>, AddrModeRel;
-}
+let isNVStorable = 0, accessSize = DoubleWordAccess in
+def S2_storerdgp : T_StoreGP <"memd", "STrid", DoubleRegs,
+ u16_3Imm, 0b11>, PredNewRel;
+
+let isNVStorable = 0, accessSize = HalfWordAccess in
+def S2_storerfgp : T_StoreGP <"memh", "STrif", IntRegs,
+ u16_1Imm, 0b01, 1>, PredNewRel;
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1),
(HexagonCONST32 tglobaladdr:$absaddr)),
- (STrib_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
+ (S2_storerbabs tglobaladdr: $absaddr, IntRegs: $src1)>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1),
(HexagonCONST32 tglobaladdr:$absaddr)),
- (STrih_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
+ (S2_storerhabs tglobaladdr: $absaddr, IntRegs: $src1)>;
def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32 tglobaladdr:$absaddr)),
- (STriw_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
+ (S2_storeriabs tglobaladdr: $absaddr, IntRegs: $src1)>;
def : Pat<(store (i64 DoubleRegs:$src1),
(HexagonCONST32 tglobaladdr:$absaddr)),
- (STrid_abs_V4 tglobaladdr: $absaddr, DoubleRegs: $src1)>;
-}
-
-//===----------------------------------------------------------------------===//
-// multiclass for store instructions with GP-relative addressing mode.
-// mem[bhwd](#global)=Rt
-// if ([!]Pv[.new]) mem[bhwd](##global) = Rt
-//===----------------------------------------------------------------------===//
-let mayStore = 1, isNVStorable = 1 in
-multiclass ST_GP<string mnemonic, string BaseOp, RegisterClass RC> {
- let BaseOpcode = BaseOp, isPredicable = 1 in
- def NAME#_V4 : STInst2<(outs),
- (ins globaladdress:$global, RC:$src),
- mnemonic#"(#$global) = $src",
- []>;
-
- // When GP-relative instructions are predicated, their addressing mode is
- // changed to absolute and they are always constant extended.
- let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
- isPredicated = 1 in {
- defm Pt : ST_Abs_Pred <mnemonic, RC, 0>;
- defm NotPt : ST_Abs_Pred <mnemonic, RC, 1>;
- }
-}
-
-let mayStore = 1, isNVStore = 1 in
-multiclass ST_GP_nv<string mnemonic, string BaseOp, RegisterClass RC> {
- let BaseOpcode = BaseOp, isPredicable = 1 in
- def NAME#_nv_V4 : NVInst_V4<(outs),
- (ins u0AlwaysExt:$global, RC:$src),
- mnemonic#"(#$global) = $src.new",
- []>,
- Requires<[HasV4T]>;
-
- // When GP-relative instructions are predicated, their addressing mode is
- // changed to absolute and they are always constant extended.
- let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
- isPredicated = 1 in {
- defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
- defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
- }
-}
-
-let validSubTargets = HasV4SubT, neverHasSideEffects = 1 in {
- let isNVStorable = 0 in
- defm STd_GP : ST_GP <"memd", "STd_GP", DoubleRegs>, PredNewRel;
-
- defm STb_GP : ST_GP<"memb", "STb_GP", IntRegs>,
- ST_GP_nv<"memb", "STb_GP", IntRegs>, NewValueRel;
- defm STh_GP : ST_GP<"memh", "STh_GP", IntRegs>,
- ST_GP_nv<"memh", "STh_GP", IntRegs>, NewValueRel;
- defm STw_GP : ST_GP<"memw", "STw_GP", IntRegs>,
- ST_GP_nv<"memw", "STw_GP", IntRegs>, NewValueRel;
+ (S2_storerdabs tglobaladdr: $absaddr, DoubleRegs: $src1)>;
}
// 64 bit atomic store
def : Pat <(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
(i64 DoubleRegs:$src1)),
- (STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
+ (S2_storerdgp tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress) -> memd(#foo)
let AddedComplexity = 100 in
def : Pat <(store (i64 DoubleRegs:$src1),
(HexagonCONST32_GP tglobaladdr:$global)),
- (STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>;
+ (S2_storerdgp tglobaladdr:$global, (i64 DoubleRegs:$src1))>;
// 8 bit atomic store
def : Pat < (atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
(i32 IntRegs:$src1)),
- (STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+ (S2_storerbgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from store(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat<(truncstorei8 (i32 IntRegs:$src1),
(HexagonCONST32_GP tglobaladdr:$global)),
- (STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+ (S2_storerbgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
// to "r0 = 1; memw(#foo) = r0"
let AddedComplexity = 100 in
def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
- (STb_GP_V4 tglobaladdr:$global, (TFRI 1))>;
+ (S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>;
def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
(i32 IntRegs:$src1)),
- (STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+ (S2_storerhgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from store(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat<(truncstorei16 (i32 IntRegs:$src1),
(HexagonCONST32_GP tglobaladdr:$global)),
- (STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+ (S2_storerhgp tglobaladdr:$global, (i32 IntRegs:$src1))>;
// 32 bit atomic store
def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
(i32 IntRegs:$src1)),
- (STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+ (S2_storerigp tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from store(globaladdress) -> memw(#foo)
let AddedComplexity = 100 in
def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
- (STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
+ (S2_storerigp tglobaladdr:$global, (i32 IntRegs:$src1))>;
//===----------------------------------------------------------------------===//
-// Multiclass for the load instructions with absolute addressing mode.
+// Template class for non predicated load instructions with
+// absolute addressing mode.
//===----------------------------------------------------------------------===//
-multiclass LD_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
- bit isPredNew> {
- let isPredicatedNew = isPredNew in
- def NAME : LDInst2<(outs RC:$dst),
- (ins PredRegs:$src1, u0AlwaysExt:$absaddr),
- !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
- ") ")#"$dst = "#mnemonic#"(##$absaddr)",
- []>,
- Requires<[HasV4T]>;
-}
+let isPredicable = 1, hasSideEffects = 0, validSubTargets = HasV4SubT in
+class T_LoadAbsGP <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<3> MajOp, Operand AddrOp, bit isAbs>
+ : LDInst <(outs RC:$dst), (ins AddrOp:$addr),
+ "$dst = "#mnemonic# !if(isAbs, "(##", "(#")#"$addr)",
+ [], "", V2LDST_tc_ld_SLOT01> {
+ bits<5> dst;
+ bits<19> addr;
+ bits<16> offsetBits;
+
+ string ImmOpStr = !cast<string>(ImmOp);
+ let offsetBits = !if (!eq(ImmOpStr, "u16_3Imm"), addr{18-3},
+ !if (!eq(ImmOpStr, "u16_2Imm"), addr{17-2},
+ !if (!eq(ImmOpStr, "u16_1Imm"), addr{16-1},
+ /* u16_0Imm */ addr{15-0})));
+
+ let IClass = 0b0100;
+
+ let Inst{27} = 0b1;
+ let Inst{26-25} = offsetBits{15-14};
+ let Inst{24} = 0b1;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = offsetBits{13-9};
+ let Inst{13-5} = offsetBits{8-0};
+ let Inst{4-0} = dst;
+ }
+
+class T_LoadAbs <string mnemonic, RegisterClass RC, Operand ImmOp,
+ bits<3> MajOp>
+ : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp, u0AlwaysExt, 1>, AddrModeRel {
-multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
- let isPredicatedFalse = PredNot in {
- defm _c#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 0>;
- // Predicate new
- defm _cdn#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 1>;
+ string ImmOpStr = !cast<string>(ImmOp);
+ let opExtentBits = !if (!eq(ImmOpStr, "u16_3Imm"), 19,
+ !if (!eq(ImmOpStr, "u16_2Imm"), 18,
+ !if (!eq(ImmOpStr, "u16_1Imm"), 17,
+ /* u16_0Imm */ 16)));
+
+ let opExtentAlign = !if (!eq(ImmOpStr, "u16_3Imm"), 3,
+ !if (!eq(ImmOpStr, "u16_2Imm"), 2,
+ !if (!eq(ImmOpStr, "u16_1Imm"), 1,
+ /* u16_0Imm */ 0)));
}
+//===----------------------------------------------------------------------===//
+// Template class for predicated load instructions with
+// absolute addressing mode.
+//===----------------------------------------------------------------------===//
+let isPredicated = 1, hasNewValue = 1, opExtentBits = 6, opExtendable = 2 in
+class T_LoadAbs_Pred <string mnemonic, RegisterClass RC, bits<3> MajOp,
+ bit isPredNot, bit isPredNew>
+ : LDInst <(outs RC:$dst), (ins PredRegs:$src1, u6Ext:$absaddr),
+ !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
+ ") ")#"$dst = "#mnemonic#"(#$absaddr)">, AddrModeRel {
+ bits<5> dst;
+ bits<2> src1;
+ bits<6> absaddr;
+
+ let isPredicatedNew = isPredNew;
+ let isPredicatedFalse = isPredNot;
+
+ let IClass = 0b1001;
+
+ let Inst{27-24} = 0b1111;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = absaddr{5-1};
+ let Inst{13} = 0b1;
+ let Inst{12} = isPredNew;
+ let Inst{11} = isPredNot;
+ let Inst{10-9} = src1;
+ let Inst{8} = absaddr{0};
+ let Inst{7} = 0b1;
+ let Inst{4-0} = dst;
+ }
+
+//===----------------------------------------------------------------------===//
+// Multiclass for the load instructions with absolute addressing mode.
+//===----------------------------------------------------------------------===//
+multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bits<3> MajOp,
+ bit PredNot> {
+ def _abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 0>;
+ // Predicate new
+ def new_abs : T_LoadAbs_Pred <mnemonic, RC, MajOp, PredNot, 1>;
}
-let isExtended = 1, neverHasSideEffects = 1 in
-multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC> {
+let addrMode = Absolute, isExtended = 1 in
+multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC,
+ Operand ImmOp, bits<3> MajOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
- let opExtendable = 1, isPredicable = 1 in
- def NAME#_V4 : LDInst2<(outs RC:$dst),
- (ins u0AlwaysExt:$absaddr),
- "$dst = "#mnemonic#"(##$absaddr)",
- []>,
- Requires<[HasV4T]>;
+ let opExtendable = 1, isPredicable = 1 in
+ def L4_#NAME#_abs: T_LoadAbs <mnemonic, RC, ImmOp, MajOp>;
- let opExtendable = 2, isPredicated = 1 in {
- defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
- defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
- }
+ // Predicated
+ defm L4_p#NAME#t : LD_Abs_Pred<mnemonic, RC, MajOp, 0>;
+ defm L4_p#NAME#f : LD_Abs_Pred<mnemonic, RC, MajOp, 1>;
}
}
-let addrMode = Absolute in {
- let accessSize = ByteAccess in {
- defm LDrib_abs : LD_Abs<"memb", "LDrib", IntRegs>, AddrModeRel;
- defm LDriub_abs : LD_Abs<"memub", "LDriub", IntRegs>, AddrModeRel;
- }
- let accessSize = HalfWordAccess in {
- defm LDrih_abs : LD_Abs<"memh", "LDrih", IntRegs>, AddrModeRel;
- defm LDriuh_abs : LD_Abs<"memuh", "LDriuh", IntRegs>, AddrModeRel;
+let accessSize = ByteAccess, hasNewValue = 1, isCodeGenOnly = 0 in {
+ defm loadrb : LD_Abs<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>;
+ defm loadrub : LD_Abs<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
+}
+
+let accessSize = HalfWordAccess, hasNewValue = 1, isCodeGenOnly = 0 in {
+ defm loadrh : LD_Abs<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>;
+ defm loadruh : LD_Abs<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
+}
+
+let accessSize = WordAccess, hasNewValue = 1, isCodeGenOnly = 0 in
+defm loadri : LD_Abs<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>;
+
+let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in
+defm loadrd : LD_Abs<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
+
+//===----------------------------------------------------------------------===//
+// multiclass for load instructions with GP-relative addressing mode.
+// Rx=mem[bhwd](##global)
+// Once predicated, these instructions map to absolute addressing mode.
+// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
+//===----------------------------------------------------------------------===//
+
+class T_LoadGP <string mnemonic, string BaseOp, RegisterClass RC, Operand ImmOp,
+ bits<3> MajOp>
+ : T_LoadAbsGP <mnemonic, RC, ImmOp, MajOp, globaladdress, 0>, PredNewRel {
+ let BaseOpcode = BaseOp#_abs;
}
- let accessSize = WordAccess in
- defm LDriw_abs : LD_Abs<"memw", "LDriw", IntRegs>, AddrModeRel;
- let accessSize = DoubleWordAccess in
- defm LDrid_abs : LD_Abs<"memd", "LDrid", DoubleRegs>, AddrModeRel;
+let accessSize = ByteAccess, hasNewValue = 1 in {
+ def L2_loadrbgp : T_LoadGP<"memb", "LDrib", IntRegs, u16_0Imm, 0b000>;
+ def L2_loadrubgp : T_LoadGP<"memub", "LDriub", IntRegs, u16_0Imm, 0b001>;
+}
+
+let accessSize = HalfWordAccess, hasNewValue = 1 in {
+ def L2_loadrhgp : T_LoadGP<"memh", "LDrih", IntRegs, u16_1Imm, 0b010>;
+ def L2_loadruhgp : T_LoadGP<"memuh", "LDriuh", IntRegs, u16_1Imm, 0b011>;
}
+let accessSize = WordAccess, hasNewValue = 1 in
+def L2_loadrigp : T_LoadGP<"memw", "LDriw", IntRegs, u16_2Imm, 0b100>;
+
+let accessSize = DoubleWordAccess in
+def L2_loadrdgp : T_LoadGP<"memd", "LDrid", DoubleRegs, u16_3Imm, 0b110>;
+
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(i32 (load (HexagonCONST32 tglobaladdr:$absaddr))),
- (LDriw_abs_V4 tglobaladdr: $absaddr)>;
+ (L4_loadri_abs tglobaladdr: $absaddr)>;
def : Pat<(i32 (sextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
- (LDrib_abs_V4 tglobaladdr:$absaddr)>;
+ (L4_loadrb_abs tglobaladdr:$absaddr)>;
def : Pat<(i32 (zextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
- (LDriub_abs_V4 tglobaladdr:$absaddr)>;
+ (L4_loadrub_abs tglobaladdr:$absaddr)>;
def : Pat<(i32 (sextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
- (LDrih_abs_V4 tglobaladdr:$absaddr)>;
+ (L4_loadrh_abs tglobaladdr:$absaddr)>;
def : Pat<(i32 (zextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
- (LDriuh_abs_V4 tglobaladdr:$absaddr)>;
-}
-
-//===----------------------------------------------------------------------===//
-// multiclass for load instructions with GP-relative addressing mode.
-// Rx=mem[bhwd](##global)
-// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
-//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1, validSubTargets = HasV4SubT in
-multiclass LD_GP<string mnemonic, string BaseOp, RegisterClass RC> {
- let BaseOpcode = BaseOp in {
- let isPredicable = 1 in
- def NAME#_V4 : LDInst2<(outs RC:$dst),
- (ins globaladdress:$global),
- "$dst = "#mnemonic#"(#$global)",
- []>;
-
- let isExtended = 1, opExtendable = 2, isPredicated = 1 in {
- defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
- defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
- }
- }
+ (L4_loadruh_abs tglobaladdr:$absaddr)>;
}
-defm LDd_GP : LD_GP<"memd", "LDd_GP", DoubleRegs>, PredNewRel;
-defm LDb_GP : LD_GP<"memb", "LDb_GP", IntRegs>, PredNewRel;
-defm LDub_GP : LD_GP<"memub", "LDub_GP", IntRegs>, PredNewRel;
-defm LDh_GP : LD_GP<"memh", "LDh_GP", IntRegs>, PredNewRel;
-defm LDuh_GP : LD_GP<"memuh", "LDuh_GP", IntRegs>, PredNewRel;
-defm LDw_GP : LD_GP<"memw", "LDw_GP", IntRegs>, PredNewRel;
-
def : Pat <(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
- (i64 (LDd_GP_V4 tglobaladdr:$global))>;
+ (i64 (L2_loadrdgp tglobaladdr:$global))>;
def : Pat <(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
- (i32 (LDw_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrigp tglobaladdr:$global))>;
def : Pat <(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
- (i32 (LDuh_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadruhgp tglobaladdr:$global))>;
def : Pat <(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
- (i32 (LDub_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrubgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memw(#foo + 0)
let AddedComplexity = 100 in
def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
- (i64 (LDd_GP_V4 tglobaladdr:$global))>;
+ (i64 (L2_loadrdgp tglobaladdr:$global))>;
// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
let AddedComplexity = 100 in
def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
- (i1 (TFR_PdRs (i32 (LDb_GP_V4 tglobaladdr:$global))))>;
+ (i1 (C2_tfrrp (i32 (L2_loadrbgp tglobaladdr:$global))))>;
// When the Interprocedural Global Variable optimizer realizes that a certain
// global variable takes only two constant values, it shrinks the global to
// a boolean. Catch those loads here in the following 3 patterns.
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrbgp tglobaladdr:$global))>;
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrbgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrbgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDb_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrbgp tglobaladdr:$global))>;
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDub_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrubgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memub(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDub_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrubgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDh_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrhgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDh_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrhgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memuh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDuh_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadruhgp tglobaladdr:$global))>;
// Map from load(globaladdress) -> memw(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
- (i32 (LDw_GP_V4 tglobaladdr:$global))>;
+ (i32 (L2_loadrigp tglobaladdr:$global))>;
// Transfer global address into a register
@@ -3073,7 +3798,7 @@ def : Pat<(HexagonCONST32_GP tblockaddress:$src1),
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50,
-neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if($src1) $dst = #$src2",
@@ -3081,7 +3806,7 @@ def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
-neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if(!$src1) $dst = #$src2",
@@ -3089,7 +3814,7 @@ def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50,
-neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if($src1.new) $dst = #$src2",
@@ -3097,7 +3822,7 @@ def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
-neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
+hasSideEffects = 0, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cdnNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if(!$src1.new) $dst = #$src2",
@@ -3157,30 +3882,30 @@ def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
- (STrib_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
+ (S2_storerbabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
- (STrih_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
+ (S2_storerhabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
def : Pat<(store (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
- (STriw_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
+ (S2_storeriabs u0AlwaysExtPred:$src2, IntRegs: $src1)>;
}
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(i32 (load u0AlwaysExtPred:$src)),
- (LDriw_abs_V4 u0AlwaysExtPred:$src)>;
+ (L4_loadri_abs u0AlwaysExtPred:$src)>;
def : Pat<(i32 (sextloadi8 u0AlwaysExtPred:$src)),
- (LDrib_abs_V4 u0AlwaysExtPred:$src)>;
+ (L4_loadrb_abs u0AlwaysExtPred:$src)>;
def : Pat<(i32 (zextloadi8 u0AlwaysExtPred:$src)),
- (LDriub_abs_V4 u0AlwaysExtPred:$src)>;
+ (L4_loadrub_abs u0AlwaysExtPred:$src)>;
def : Pat<(i32 (sextloadi16 u0AlwaysExtPred:$src)),
- (LDrih_abs_V4 u0AlwaysExtPred:$src)>;
+ (L4_loadrh_abs u0AlwaysExtPred:$src)>;
def : Pat<(i32 (zextloadi16 u0AlwaysExtPred:$src)),
- (LDriuh_abs_V4 u0AlwaysExtPred:$src)>;
+ (L4_loadruh_abs u0AlwaysExtPred:$src)>;
}
// Indexed store word - global address.
@@ -3194,11 +3919,11 @@ def STriw_offset_ext_V4 : STInst<(outs),
Requires<[HasV4T]>;
def : Pat<(i64 (ctlz (i64 DoubleRegs:$src1))),
- (i64 (COMBINE_Ir_V4 (i32 0), (i32 (CTLZ64_rr DoubleRegs:$src1))))>,
+ (i64 (A4_combineir (i32 0), (i32 (CTLZ64_rr DoubleRegs:$src1))))>,
Requires<[HasV4T]>;
def : Pat<(i64 (cttz (i64 DoubleRegs:$src1))),
- (i64 (COMBINE_Ir_V4 (i32 0), (i32 (CTTZ64_rr DoubleRegs:$src1))))>,
+ (i64 (A4_combineir (i32 0), (i32 (CTTZ64_rr DoubleRegs:$src1))))>,
Requires<[HasV4T]>;
@@ -3207,49 +3932,49 @@ def : Pat<(i64 (cttz (i64 DoubleRegs:$src1))),
// zextloadi8.
let Predicates = [HasV4T], AddedComplexity = 120 in {
def: Pat <(i64 (extloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (COMBINE_Ir_V4 0, (LDrib_abs_V4 tglobaladdr:$addr)))>;
+ (i64 (A4_combineir 0, (L4_loadrb_abs tglobaladdr:$addr)))>;
def: Pat <(i64 (zextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (COMBINE_Ir_V4 0, (LDriub_abs_V4 tglobaladdr:$addr)))>;
+ (i64 (A4_combineir 0, (L4_loadrub_abs tglobaladdr:$addr)))>;
def: Pat <(i64 (sextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (SXTW (LDrib_abs_V4 tglobaladdr:$addr)))>;
+ (i64 (A2_sxtw (L4_loadrb_abs tglobaladdr:$addr)))>;
def: Pat <(i64 (extloadi8 FoldGlobalAddr:$addr)),
- (i64 (COMBINE_Ir_V4 0, (LDrib_abs_V4 FoldGlobalAddr:$addr)))>;
+ (i64 (A4_combineir 0, (L4_loadrb_abs FoldGlobalAddr:$addr)))>;
def: Pat <(i64 (zextloadi8 FoldGlobalAddr:$addr)),
- (i64 (COMBINE_Ir_V4 0, (LDriub_abs_V4 FoldGlobalAddr:$addr)))>;
+ (i64 (A4_combineir 0, (L4_loadrub_abs FoldGlobalAddr:$addr)))>;
def: Pat <(i64 (sextloadi8 FoldGlobalAddr:$addr)),
- (i64 (SXTW (LDrib_abs_V4 FoldGlobalAddr:$addr)))>;
+ (i64 (A2_sxtw (L4_loadrb_abs FoldGlobalAddr:$addr)))>;
}
// i16 -> i64 loads
// We need a complexity of 120 here to override preceding handling of
// zextloadi16.
let AddedComplexity = 120 in {
def: Pat <(i64 (extloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (COMBINE_Ir_V4 0, (LDrih_abs_V4 tglobaladdr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadrh_abs tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (COMBINE_Ir_V4 0, (LDriuh_abs_V4 tglobaladdr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadruh_abs tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (SXTW (LDrih_abs_V4 tglobaladdr:$addr)))>,
+ (i64 (A2_sxtw (L4_loadrh_abs tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (extloadi16 FoldGlobalAddr:$addr)),
- (i64 (COMBINE_Ir_V4 0, (LDrih_abs_V4 FoldGlobalAddr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadrh_abs FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi16 FoldGlobalAddr:$addr)),
- (i64 (COMBINE_Ir_V4 0, (LDriuh_abs_V4 FoldGlobalAddr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadruh_abs FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi16 FoldGlobalAddr:$addr)),
- (i64 (SXTW (LDrih_abs_V4 FoldGlobalAddr:$addr)))>,
+ (i64 (A2_sxtw (L4_loadrh_abs FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
}
// i32->i64 loads
@@ -3257,27 +3982,27 @@ def: Pat <(i64 (sextloadi16 FoldGlobalAddr:$addr)),
// zextloadi32.
let AddedComplexity = 120 in {
def: Pat <(i64 (extloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 tglobaladdr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadri_abs tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 tglobaladdr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadri_abs tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
- (i64 (SXTW (LDriw_abs_V4 tglobaladdr:$addr)))>,
+ (i64 (A2_sxtw (L4_loadri_abs tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (extloadi32 FoldGlobalAddr:$addr)),
- (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadri_abs FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi32 FoldGlobalAddr:$addr)),
- (i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
+ (i64 (A4_combineir 0, (L4_loadri_abs FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi32 FoldGlobalAddr:$addr)),
- (i64 (SXTW (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
+ (i64 (A2_sxtw (L4_loadri_abs FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
}
@@ -3294,104 +4019,457 @@ def STrih_offset_ext_V4 : STInst<(outs),
let AddedComplexity = 100 in
def : Pat<(store (i64 DoubleRegs:$src1),
FoldGlobalAddrGP:$addr),
- (STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
+ (S2_storerdabs FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_64 FoldGlobalAddrGP:$addr,
(i64 DoubleRegs:$src1)),
- (STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
+ (S2_storerdabs FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(truncstorei8 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
- (STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ (S2_storerbabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_8 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
- (STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ (S2_storerbabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(truncstorei16 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
- (STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ (S2_storerhabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_16 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
- (STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ (S2_storerhabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memw(#foo + x)
let AddedComplexity = 100 in
def : Pat<(store (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
- (STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ (S2_storeriabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_32 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
- (STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
+ (S2_storeriabs FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memd(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i64 (load FoldGlobalAddrGP:$addr)),
- (i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i64 (L4_loadrd_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_64 FoldGlobalAddrGP:$addr),
- (i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i64 (L4_loadrd_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (extloadi8 FoldGlobalAddrGP:$addr)),
- (i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadrb_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (sextloadi8 FoldGlobalAddrGP:$addr)),
- (i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadrb_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
//let AddedComplexity = 100 in
let AddedComplexity = 100 in
def : Pat<(i32 (extloadi16 FoldGlobalAddrGP:$addr)),
- (i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadrh_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (sextloadi16 FoldGlobalAddrGP:$addr)),
- (i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadrh_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memuh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (zextloadi16 FoldGlobalAddrGP:$addr)),
- (i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadruh_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_16 FoldGlobalAddrGP:$addr),
- (i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadruh_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memub(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (zextloadi8 FoldGlobalAddrGP:$addr)),
- (i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadrub_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_8 FoldGlobalAddrGP:$addr),
- (i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadrub_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memw(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (load FoldGlobalAddrGP:$addr)),
- (i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadri_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_32 FoldGlobalAddrGP:$addr),
- (i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
+ (i32 (L4_loadri_abs FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
+
+//===----------------------------------------------------------------------===//
+// :raw for of boundscheck:hi:lo insns
+//===----------------------------------------------------------------------===//
+
+// A4_boundscheck_lo: Detect if a register is within bounds.
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def A4_boundscheck_lo: ALU64Inst <
+ (outs PredRegs:$Pd),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Pd = boundscheck($Rss, $Rtt):raw:lo"> {
+ bits<2> Pd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b00100;
+ let Inst{13} = 0b1;
+ let Inst{7-5} = 0b100;
+ let Inst{1-0} = Pd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+// A4_boundscheck_hi: Detect if a register is within bounds.
+let hasSideEffects = 0, isCodeGenOnly = 0 in
+def A4_boundscheck_hi: ALU64Inst <
+ (outs PredRegs:$Pd),
+ (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
+ "$Pd = boundscheck($Rss, $Rtt):raw:hi"> {
+ bits<2> Pd;
+ bits<5> Rss;
+ bits<5> Rtt;
+
+ let IClass = 0b1101;
+
+ let Inst{27-23} = 0b00100;
+ let Inst{13} = 0b1;
+ let Inst{7-5} = 0b101;
+ let Inst{1-0} = Pd;
+ let Inst{20-16} = Rss;
+ let Inst{12-8} = Rtt;
+ }
+
+let hasSideEffects = 0 in
+def A4_boundscheck : MInst <
+ (outs PredRegs:$Pd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
+ "$Pd=boundscheck($Rs,$Rtt)">;
+
+// A4_tlbmatch: Detect if a VA/ASID matches a TLB entry.
+let isPredicateLate = 1, hasSideEffects = 0, isCodeGenOnly = 0 in
+def A4_tlbmatch : ALU64Inst<(outs PredRegs:$Pd),
+ (ins DoubleRegs:$Rs, IntRegs:$Rt),
+ "$Pd = tlbmatch($Rs, $Rt)",
+ [], "", ALU64_tc_2early_SLOT23> {
+ bits<2> Pd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1101;
+ let Inst{27-23} = 0b00100;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b1;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = 0b011;
+ let Inst{1-0} = Pd;
+ }
+
+// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
+// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
+// We don't really want either one here.
+def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
+def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
+ [SDNPHasChain]>;
+
+// Use LD0Inst for dcfetch, but set "mayLoad" to 0 because this doesn't
+// really do a load.
+let hasSideEffects = 1, mayLoad = 0, isCodeGenOnly = 0 in
+def Y2_dcfetchbo : LD0Inst<(outs), (ins IntRegs:$Rs, u11_3Imm:$u11_3),
+ "dcfetch($Rs + #$u11_3)",
+ [(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3)],
+ "", LD_tc_ld_SLOT0> {
+ bits<5> Rs;
+ bits<14> u11_3;
+
+ let IClass = 0b1001;
+ let Inst{27-21} = 0b0100000;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{10-0} = u11_3{13-3};
+}
+
+//===----------------------------------------------------------------------===//
+// Compound instructions
+//===----------------------------------------------------------------------===//
+
+let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
+ isPredicated = 1, isPredicatedNew = 1, isExtendable = 1,
+ opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
+ isTerminator = 1, validSubTargets = HasV4SubT in
+class CJInst_tstbit_R0<string px, bit np, string tnt>
+ : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
+ ""#px#" = tstbit($Rs, #0); if ("
+ #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
+ [], "", COMPOUND, TypeCOMPOUND> {
+ bits<4> Rs;
+ bits<11> r9_2;
+
+ // np: !p[01]
+ let isPredicatedFalse = np;
+ // tnt: Taken/Not Taken
+ let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
+ let isTaken = !if (!eq(tnt, "t"), 1, 0);
+
+ let IClass = 0b0001;
+ let Inst{27-26} = 0b00;
+ let Inst{25} = !if (!eq(px, "!p1"), 1,
+ !if (!eq(px, "p1"), 1, 0));
+ let Inst{24-23} = 0b11;
+ let Inst{22} = np;
+ let Inst{21-20} = r9_2{10-9};
+ let Inst{19-16} = Rs;
+ let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
+ let Inst{9-8} = 0b11;
+ let Inst{7-1} = r9_2{8-2};
+}
+
+let Defs = [PC, P0], Uses = [P0], isCodeGenOnly = 0 in {
+ def J4_tstbit0_tp0_jump_nt : CJInst_tstbit_R0<"p0", 0, "nt">;
+ def J4_tstbit0_tp0_jump_t : CJInst_tstbit_R0<"p0", 0, "t">;
+ def J4_tstbit0_fp0_jump_nt : CJInst_tstbit_R0<"p0", 1, "nt">;
+ def J4_tstbit0_fp0_jump_t : CJInst_tstbit_R0<"p0", 1, "t">;
+}
+
+let Defs = [PC, P1], Uses = [P1], isCodeGenOnly = 0 in {
+ def J4_tstbit0_tp1_jump_nt : CJInst_tstbit_R0<"p1", 0, "nt">;
+ def J4_tstbit0_tp1_jump_t : CJInst_tstbit_R0<"p1", 0, "t">;
+ def J4_tstbit0_fp1_jump_nt : CJInst_tstbit_R0<"p1", 1, "nt">;
+ def J4_tstbit0_fp1_jump_t : CJInst_tstbit_R0<"p1", 1, "t">;
+}
+
+
+let isBranch = 1, hasSideEffects = 0,
+ isExtentSigned = 1, isPredicated = 1, isPredicatedNew = 1,
+ isExtendable = 1, opExtentBits = 11, opExtentAlign = 2,
+ opExtendable = 2, isTerminator = 1, validSubTargets = HasV4SubT in
+class CJInst_RR<string px, string op, bit np, string tnt>
+ : InstHexagon<(outs), (ins IntRegs:$Rs, IntRegs:$Rt, brtarget:$r9_2),
+ ""#px#" = cmp."#op#"($Rs, $Rt); if ("
+ #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
+ [], "", COMPOUND, TypeCOMPOUND> {
+ bits<4> Rs;
+ bits<4> Rt;
+ bits<11> r9_2;
+
+ // np: !p[01]
+ let isPredicatedFalse = np;
+ // tnt: Taken/Not Taken
+ let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
+ let isTaken = !if (!eq(tnt, "t"), 1, 0);
+
+ let IClass = 0b0001;
+ let Inst{27-23} = !if (!eq(op, "eq"), 0b01000,
+ !if (!eq(op, "gt"), 0b01001,
+ !if (!eq(op, "gtu"), 0b01010, 0)));
+ let Inst{22} = np;
+ let Inst{21-20} = r9_2{10-9};
+ let Inst{19-16} = Rs;
+ let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
+ // px: Predicate reg 0/1
+ let Inst{12} = !if (!eq(px, "!p1"), 1,
+ !if (!eq(px, "p1"), 1, 0));
+ let Inst{11-8} = Rt;
+ let Inst{7-1} = r9_2{8-2};
+}
+
+// P[10] taken/not taken.
+multiclass T_tnt_CJInst_RR<string op, bit np> {
+ let Defs = [PC, P0], Uses = [P0] in {
+ def NAME#p0_jump_nt : CJInst_RR<"p0", op, np, "nt">;
+ def NAME#p0_jump_t : CJInst_RR<"p0", op, np, "t">;
+ }
+ let Defs = [PC, P1], Uses = [P1] in {
+ def NAME#p1_jump_nt : CJInst_RR<"p1", op, np, "nt">;
+ def NAME#p1_jump_t : CJInst_RR<"p1", op, np, "t">;
+ }
+}
+// Predicate / !Predicate
+multiclass T_pnp_CJInst_RR<string op>{
+ defm J4_cmp#NAME#_t : T_tnt_CJInst_RR<op, 0>;
+ defm J4_cmp#NAME#_f : T_tnt_CJInst_RR<op, 1>;
+}
+// TypeCJ Instructions compare RR and jump
+let isCodeGenOnly = 0 in {
+defm eq : T_pnp_CJInst_RR<"eq">;
+defm gt : T_pnp_CJInst_RR<"gt">;
+defm gtu : T_pnp_CJInst_RR<"gtu">;
+}
+
+let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
+ isPredicated = 1, isPredicatedNew = 1, isExtendable = 1, opExtentBits = 11,
+ opExtentAlign = 2, opExtendable = 2, isTerminator = 1,
+ validSubTargets = HasV4SubT in
+class CJInst_RU5<string px, string op, bit np, string tnt>
+ : InstHexagon<(outs), (ins IntRegs:$Rs, u5Imm:$U5, brtarget:$r9_2),
+ ""#px#" = cmp."#op#"($Rs, #$U5); if ("
+ #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
+ [], "", COMPOUND, TypeCOMPOUND> {
+ bits<4> Rs;
+ bits<5> U5;
+ bits<11> r9_2;
+
+ // np: !p[01]
+ let isPredicatedFalse = np;
+ // tnt: Taken/Not Taken
+ let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
+ let isTaken = !if (!eq(tnt, "t"), 1, 0);
+
+ let IClass = 0b0001;
+ let Inst{27-26} = 0b00;
+ // px: Predicate reg 0/1
+ let Inst{25} = !if (!eq(px, "!p1"), 1,
+ !if (!eq(px, "p1"), 1, 0));
+ let Inst{24-23} = !if (!eq(op, "eq"), 0b00,
+ !if (!eq(op, "gt"), 0b01,
+ !if (!eq(op, "gtu"), 0b10, 0)));
+ let Inst{22} = np;
+ let Inst{21-20} = r9_2{10-9};
+ let Inst{19-16} = Rs;
+ let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
+ let Inst{12-8} = U5;
+ let Inst{7-1} = r9_2{8-2};
+}
+// P[10] taken/not taken.
+multiclass T_tnt_CJInst_RU5<string op, bit np> {
+ let Defs = [PC, P0], Uses = [P0] in {
+ def NAME#p0_jump_nt : CJInst_RU5<"p0", op, np, "nt">;
+ def NAME#p0_jump_t : CJInst_RU5<"p0", op, np, "t">;
+ }
+ let Defs = [PC, P1], Uses = [P1] in {
+ def NAME#p1_jump_nt : CJInst_RU5<"p1", op, np, "nt">;
+ def NAME#p1_jump_t : CJInst_RU5<"p1", op, np, "t">;
+ }
+}
+// Predicate / !Predicate
+multiclass T_pnp_CJInst_RU5<string op>{
+ defm J4_cmp#NAME#i_t : T_tnt_CJInst_RU5<op, 0>;
+ defm J4_cmp#NAME#i_f : T_tnt_CJInst_RU5<op, 1>;
+}
+// TypeCJ Instructions compare RI and jump
+let isCodeGenOnly = 0 in {
+defm eq : T_pnp_CJInst_RU5<"eq">;
+defm gt : T_pnp_CJInst_RU5<"gt">;
+defm gtu : T_pnp_CJInst_RU5<"gtu">;
+}
+
+let isBranch = 1, hasSideEffects = 0, isExtentSigned = 1,
+ isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1,
+ isExtendable = 1, opExtentBits = 11, opExtentAlign = 2, opExtendable = 1,
+ isTerminator = 1, validSubTargets = HasV4SubT in
+class CJInst_Rn1<string px, string op, bit np, string tnt>
+ : InstHexagon<(outs), (ins IntRegs:$Rs, brtarget:$r9_2),
+ ""#px#" = cmp."#op#"($Rs,#-1); if ("
+ #!if(np, "!","")#""#px#".new) jump:"#tnt#" $r9_2",
+ [], "", COMPOUND, TypeCOMPOUND> {
+ bits<4> Rs;
+ bits<11> r9_2;
+
+ // np: !p[01]
+ let isPredicatedFalse = np;
+ // tnt: Taken/Not Taken
+ let isBrTaken = !if (!eq(tnt, "t"), "true", "false");
+ let isTaken = !if (!eq(tnt, "t"), 1, 0);
+
+ let IClass = 0b0001;
+ let Inst{27-26} = 0b00;
+ let Inst{25} = !if (!eq(px, "!p1"), 1,
+ !if (!eq(px, "p1"), 1, 0));
+
+ let Inst{24-23} = 0b11;
+ let Inst{22} = np;
+ let Inst{21-20} = r9_2{10-9};
+ let Inst{19-16} = Rs;
+ let Inst{13} = !if (!eq(tnt, "t"), 1, 0);
+ let Inst{9-8} = !if (!eq(op, "eq"), 0b00,
+ !if (!eq(op, "gt"), 0b01, 0));
+ let Inst{7-1} = r9_2{8-2};
+}
+
+// P[10] taken/not taken.
+multiclass T_tnt_CJInst_Rn1<string op, bit np> {
+ let Defs = [PC, P0], Uses = [P0] in {
+ def NAME#p0_jump_nt : CJInst_Rn1<"p0", op, np, "nt">;
+ def NAME#p0_jump_t : CJInst_Rn1<"p0", op, np, "t">;
+ }
+ let Defs = [PC, P1], Uses = [P1] in {
+ def NAME#p1_jump_nt : CJInst_Rn1<"p1", op, np, "nt">;
+ def NAME#p1_jump_t : CJInst_Rn1<"p1", op, np, "t">;
+ }
+}
+// Predicate / !Predicate
+multiclass T_pnp_CJInst_Rn1<string op>{
+ defm J4_cmp#NAME#n1_t : T_tnt_CJInst_Rn1<op, 0>;
+ defm J4_cmp#NAME#n1_f : T_tnt_CJInst_Rn1<op, 1>;
+}
+// TypeCJ Instructions compare -1 and jump
+let isCodeGenOnly = 0 in {
+defm eq : T_pnp_CJInst_Rn1<"eq">;
+defm gt : T_pnp_CJInst_Rn1<"gt">;
+}
+
+// J4_jumpseti: Direct unconditional jump and set register to immediate.
+let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
+ isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
+ opExtentAlign = 2, opExtendable = 2, validSubTargets = HasV4SubT,
+ isCodeGenOnly = 0 in
+def J4_jumpseti: CJInst <
+ (outs IntRegs:$Rd),
+ (ins u6Imm:$U6, brtarget:$r9_2),
+ "$Rd = #$U6 ; jump $r9_2"> {
+ bits<4> Rd;
+ bits<6> U6;
+ bits<11> r9_2;
+
+ let IClass = 0b0001;
+ let Inst{27-24} = 0b0110;
+ let Inst{21-20} = r9_2{10-9};
+ let Inst{19-16} = Rd;
+ let Inst{13-8} = U6;
+ let Inst{7-1} = r9_2{8-2};
+ }
+
+// J4_jumpsetr: Direct unconditional jump and transfer register.
+let Defs = [PC], isBranch = 1, hasSideEffects = 0, hasNewValue = 1,
+ isExtentSigned = 1, opNewValue = 0, isExtendable = 1, opExtentBits = 11,
+ opExtentAlign = 2, opExtendable = 2, validSubTargets = HasV4SubT,
+ isCodeGenOnly = 0 in
+def J4_jumpsetr: CJInst <
+ (outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, brtarget:$r9_2),
+ "$Rd = $Rs ; jump $r9_2"> {
+ bits<4> Rd;
+ bits<4> Rs;
+ bits<11> r9_2;
+
+ let IClass = 0b0001;
+ let Inst{27-24} = 0b0111;
+ let Inst{21-20} = r9_2{10-9};
+ let Inst{11-8} = Rd;
+ let Inst{19-16} = Rs;
+ let Inst{7-1} = r9_2{8-2};
+ }
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td
index 9da6074..5674aa3 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfoV5.td
@@ -1,3 +1,42 @@
+//=- HexagonInstrInfoV5.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon V5 instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// XTYPE/MPY
+//===----------------------------------------------------------------------===//
+
+let isCodeGenOnly = 0 in
+def S2_asr_i_p_rnd : S_2OpInstImm<"asr", 0b110, 0b111, u6Imm,
+ [(set I64:$dst,
+ (sra (i64 (add (i64 (sra I64:$src1, u6ImmPred:$src2)), 1)),
+ (i32 1)))], 1>,
+ Requires<[HasV5T]> {
+ bits<6> src2;
+ let Inst{13-8} = src2;
+}
+
+let isCodeGenOnly = 0 in
+def C4_fastcorner9 : T_LOGICAL_2OP<"fastcorner9", 0b000, 0, 0>,
+ Requires<[HasV5T]> {
+ let Inst{13,7,4} = 0b111;
+}
+
+let isCodeGenOnly = 0 in
+def C4_fastcorner9_not : T_LOGICAL_2OP<"!fastcorner9", 0b000, 0, 0>,
+ Requires<[HasV5T]> {
+ let Inst{20,13,7,4} = 0b1111;
+}
+
def SDTHexagonFCONST32 : SDTypeProfile<1, 1, [
SDTCisVT<0, f32>,
SDTCisPtrTy<1>]>;
@@ -37,7 +76,7 @@ def TFRI_f : ALU32_ri<(outs IntRegs:$dst), (ins f32Ext:$src1),
Requires<[HasV5T]>;
let isExtended = 1, opExtendable = 2, isPredicated = 1,
-neverHasSideEffects = 1, validSubTargets = HasV5SubT in
+hasSideEffects = 0, validSubTargets = HasV5SubT in
def TFRI_cPt_f : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, f32Ext:$src2),
"if ($src1) $dst = #$src2",
@@ -45,13 +84,405 @@ def TFRI_cPt_f : ALU32_ri<(outs IntRegs:$dst),
Requires<[HasV5T]>;
let isExtended = 1, opExtendable = 2, isPredicated = 1, isPredicatedFalse = 1,
-neverHasSideEffects = 1, validSubTargets = HasV5SubT in
+hasSideEffects = 0, validSubTargets = HasV5SubT in
def TFRI_cNotPt_f : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, f32Ext:$src2),
"if (!$src1) $dst =#$src2",
[]>,
Requires<[HasV5T]>;
+def SDTHexagonI32I64: SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
+ SDTCisVT<1, i64>]>;
+
+def HexagonPOPCOUNT: SDNode<"HexagonISD::POPCOUNT", SDTHexagonI32I64>;
+
+let hasNewValue = 1, validSubTargets = HasV5SubT, isCodeGenOnly = 0 in
+def S5_popcountp : ALU64_rr<(outs IntRegs:$Rd), (ins DoubleRegs:$Rss),
+ "$Rd = popcount($Rss)",
+ [(set I32:$Rd, (HexagonPOPCOUNT I64:$Rss))], "", S_2op_tc_2_SLOT23>,
+ Requires<[HasV5T]> {
+ bits<5> Rd;
+ bits<5> Rss;
+
+ let IClass = 0b1000;
+
+ let Inst{27-21} = 0b1000011;
+ let Inst{7-5} = 0b011;
+ let Inst{4-0} = Rd;
+ let Inst{20-16} = Rss;
+ }
+
+let isFP = 1, hasNewValue = 1, opNewValue = 0 in
+class T_MInstFloat <string mnemonic, bits<3> MajOp, bits<3> MinOp>
+ : MInst<(outs IntRegs:$Rd),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd = "#mnemonic#"($Rs, $Rt)", [],
+ "" , M_tc_3or4x_SLOT23 > ,
+ Requires<[HasV5T]> {
+ bits<5> Rd;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = Rt;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+ }
+
+let isCommutable = 1, isCodeGenOnly = 0 in {
+ def F2_sfadd : T_MInstFloat < "sfadd", 0b000, 0b000>;
+ def F2_sfmpy : T_MInstFloat < "sfmpy", 0b010, 0b000>;
+}
+
+let isCodeGenOnly = 0 in
+def F2_sfsub : T_MInstFloat < "sfsub", 0b000, 0b001>;
+
+let Itinerary = M_tc_3x_SLOT23, isCodeGenOnly = 0 in {
+ def F2_sfmax : T_MInstFloat < "sfmax", 0b100, 0b000>;
+ def F2_sfmin : T_MInstFloat < "sfmin", 0b100, 0b001>;
+}
+
+let isCodeGenOnly = 0 in {
+def F2_sffixupn : T_MInstFloat < "sffixupn", 0b110, 0b000>;
+def F2_sffixupd : T_MInstFloat < "sffixupd", 0b110, 0b001>;
+}
+
+// F2_sfrecipa: Reciprocal approximation for division.
+let isPredicateLate = 1, isFP = 1,
+hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in
+def F2_sfrecipa: MInst <
+ (outs IntRegs:$Rd, PredRegs:$Pe),
+ (ins IntRegs:$Rs, IntRegs:$Rt),
+ "$Rd, $Pe = sfrecipa($Rs, $Rt)">,
+ Requires<[HasV5T]> {
+ bits<5> Rd;
+ bits<2> Pe;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+ let Inst{27-21} = 0b1011111;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b1;
+ let Inst{6-5} = Pe;
+ let Inst{4-0} = Rd;
+ }
+
+// F2_dfcmpeq: Floating point compare for equal.
+let isCompare = 1, isFP = 1 in
+class T_fcmp <string mnemonic, RegisterClass RC, bits<3> MinOp,
+ list<dag> pattern = [] >
+ : ALU64Inst <(outs PredRegs:$dst), (ins RC:$src1, RC:$src2),
+ "$dst = "#mnemonic#"($src1, $src2)", pattern,
+ "" , ALU64_tc_2early_SLOT23 > ,
+ Requires<[HasV5T]> {
+ bits<2> dst;
+ bits<5> src1;
+ bits<5> src2;
+
+ let IClass = 0b1101;
+
+ let Inst{27-21} = 0b0010111;
+ let Inst{20-16} = src1;
+ let Inst{12-8} = src2;
+ let Inst{7-5} = MinOp;
+ let Inst{1-0} = dst;
+ }
+
+class T_fcmp64 <string mnemonic, PatFrag OpNode, bits<3> MinOp>
+ : T_fcmp <mnemonic, DoubleRegs, MinOp,
+ [(set I1:$dst, (OpNode F64:$src1, F64:$src2))]> {
+ let IClass = 0b1101;
+ let Inst{27-21} = 0b0010111;
+}
+
+class T_fcmp32 <string mnemonic, PatFrag OpNode, bits<3> MinOp>
+ : T_fcmp <mnemonic, IntRegs, MinOp,
+ [(set I1:$dst, (OpNode F32:$src1, F32:$src2))]> {
+ let IClass = 0b1100;
+ let Inst{27-21} = 0b0111111;
+}
+
+let isCodeGenOnly = 0 in {
+def F2_dfcmpeq : T_fcmp64<"dfcmp.eq", setoeq, 0b000>;
+def F2_dfcmpgt : T_fcmp64<"dfcmp.gt", setogt, 0b001>;
+def F2_dfcmpge : T_fcmp64<"dfcmp.ge", setoge, 0b010>;
+def F2_dfcmpuo : T_fcmp64<"dfcmp.uo", setuo, 0b011>;
+
+def F2_sfcmpge : T_fcmp32<"sfcmp.ge", setoge, 0b000>;
+def F2_sfcmpuo : T_fcmp32<"sfcmp.uo", setuo, 0b001>;
+def F2_sfcmpeq : T_fcmp32<"sfcmp.eq", setoeq, 0b011>;
+def F2_sfcmpgt : T_fcmp32<"sfcmp.gt", setogt, 0b100>;
+}
+
+// F2 convert template classes:
+let isFP = 1 in
+class F2_RDD_RSS_CONVERT<string mnemonic, bits<3> MinOp,
+ SDNode Op, PatLeaf RCOut, PatLeaf RCIn,
+ string chop ="">
+ : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss),
+ "$Rdd = "#mnemonic#"($Rss)"#chop,
+ [(set RCOut:$Rdd, (Op RCIn:$Rss))], "",
+ S_2op_tc_3or4x_SLOT23> {
+ bits<5> Rdd;
+ bits<5> Rss;
+
+ let IClass = 0b1000;
+
+ let Inst{27-21} = 0b0000111;
+ let Inst{20-16} = Rss;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ }
+
+let isFP = 1 in
+class F2_RDD_RS_CONVERT<string mnemonic, bits<3> MinOp,
+ SDNode Op, PatLeaf RCOut, PatLeaf RCIn,
+ string chop ="">
+ : SInst <(outs DoubleRegs:$Rdd), (ins IntRegs:$Rs),
+ "$Rdd = "#mnemonic#"($Rs)"#chop,
+ [(set RCOut:$Rdd, (Op RCIn:$Rs))], "",
+ S_2op_tc_3or4x_SLOT23> {
+ bits<5> Rdd;
+ bits<5> Rs;
+
+ let IClass = 0b1000;
+
+ let Inst{27-21} = 0b0100100;
+ let Inst{20-16} = Rs;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rdd;
+ }
+
+let isFP = 1, hasNewValue = 1 in
+class F2_RD_RSS_CONVERT<string mnemonic, bits<3> MinOp,
+ SDNode Op, PatLeaf RCOut, PatLeaf RCIn,
+ string chop ="">
+ : SInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss),
+ "$Rd = "#mnemonic#"($Rss)"#chop,
+ [(set RCOut:$Rd, (Op RCIn:$Rss))], "",
+ S_2op_tc_3or4x_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rss;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b1000;
+ let Inst{23-21} = MinOp;
+ let Inst{20-16} = Rss;
+ let Inst{7-5} = 0b001;
+ let Inst{4-0} = Rd;
+ }
+
+let isFP = 1, hasNewValue = 1 in
+class F2_RD_RS_CONVERT<string mnemonic, bits<3> MajOp, bits<3> MinOp,
+ SDNode Op, PatLeaf RCOut, PatLeaf RCIn,
+ string chop ="">
+ : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs),
+ "$Rd = "#mnemonic#"($Rs)"#chop,
+ [(set RCOut:$Rd, (Op RCIn:$Rs))], "",
+ S_2op_tc_3or4x_SLOT23> {
+ bits<5> Rd;
+ bits<5> Rs;
+
+ let IClass = 0b1000;
+
+ let Inst{27-24} = 0b1011;
+ let Inst{23-21} = MajOp;
+ let Inst{20-16} = Rs;
+ let Inst{7-5} = MinOp;
+ let Inst{4-0} = Rd;
+ }
+
+// Convert single precision to double precision and vice-versa.
+let isCodeGenOnly = 0 in {
+def F2_conv_sf2df : F2_RDD_RS_CONVERT <"convert_sf2df", 0b000,
+ fextend, F64, F32>;
+
+def F2_conv_df2sf : F2_RD_RSS_CONVERT <"convert_df2sf", 0b000,
+ fround, F32, F64>;
+
+// Convert Integer to Floating Point.
+def F2_conv_d2sf : F2_RD_RSS_CONVERT <"convert_d2sf", 0b010,
+ sint_to_fp, F32, I64>;
+def F2_conv_ud2sf : F2_RD_RSS_CONVERT <"convert_ud2sf", 0b001,
+ uint_to_fp, F32, I64>;
+def F2_conv_uw2sf : F2_RD_RS_CONVERT <"convert_uw2sf", 0b001, 0b000,
+ uint_to_fp, F32, I32>;
+def F2_conv_w2sf : F2_RD_RS_CONVERT <"convert_w2sf", 0b010, 0b000,
+ sint_to_fp, F32, I32>;
+def F2_conv_d2df : F2_RDD_RSS_CONVERT <"convert_d2df", 0b011,
+ sint_to_fp, F64, I64>;
+def F2_conv_ud2df : F2_RDD_RSS_CONVERT <"convert_ud2df", 0b010,
+ uint_to_fp, F64, I64>;
+def F2_conv_uw2df : F2_RDD_RS_CONVERT <"convert_uw2df", 0b001,
+ uint_to_fp, F64, I32>;
+def F2_conv_w2df : F2_RDD_RS_CONVERT <"convert_w2df", 0b010,
+ sint_to_fp, F64, I32>;
+
+// Convert Floating Point to Integer - default.
+def F2_conv_df2uw_chop : F2_RD_RSS_CONVERT <"convert_df2uw", 0b101,
+ fp_to_uint, I32, F64, ":chop">;
+def F2_conv_df2w_chop : F2_RD_RSS_CONVERT <"convert_df2w", 0b111,
+ fp_to_sint, I32, F64, ":chop">;
+def F2_conv_sf2uw_chop : F2_RD_RS_CONVERT <"convert_sf2uw", 0b011, 0b001,
+ fp_to_uint, I32, F32, ":chop">;
+def F2_conv_sf2w_chop : F2_RD_RS_CONVERT <"convert_sf2w", 0b100, 0b001,
+ fp_to_sint, I32, F32, ":chop">;
+def F2_conv_df2d_chop : F2_RDD_RSS_CONVERT <"convert_df2d", 0b110,
+ fp_to_sint, I64, F64, ":chop">;
+def F2_conv_df2ud_chop : F2_RDD_RSS_CONVERT <"convert_df2ud", 0b111,
+ fp_to_uint, I64, F64, ":chop">;
+def F2_conv_sf2d_chop : F2_RDD_RS_CONVERT <"convert_sf2d", 0b110,
+ fp_to_sint, I64, F32, ":chop">;
+def F2_conv_sf2ud_chop : F2_RDD_RS_CONVERT <"convert_sf2ud", 0b101,
+ fp_to_uint, I64, F32, ":chop">;
+
+// Convert Floating Point to Integer: non-chopped.
+let AddedComplexity = 20, Predicates = [HasV5T, IEEERndNearV5T] in {
+ def F2_conv_df2d : F2_RDD_RSS_CONVERT <"convert_df2d", 0b000,
+ fp_to_sint, I64, F64>;
+ def F2_conv_df2ud : F2_RDD_RSS_CONVERT <"convert_df2ud", 0b001,
+ fp_to_uint, I64, F64>;
+ def F2_conv_sf2ud : F2_RDD_RS_CONVERT <"convert_sf2ud", 0b011,
+ fp_to_uint, I64, F32>;
+ def F2_conv_sf2d : F2_RDD_RS_CONVERT <"convert_sf2d", 0b100,
+ fp_to_sint, I64, F32>;
+ def F2_conv_df2uw : F2_RD_RSS_CONVERT <"convert_df2uw", 0b011,
+ fp_to_uint, I32, F64>;
+ def F2_conv_df2w : F2_RD_RSS_CONVERT <"convert_df2w", 0b100,
+ fp_to_sint, I32, F64>;
+ def F2_conv_sf2uw : F2_RD_RS_CONVERT <"convert_sf2uw", 0b011, 0b000,
+ fp_to_uint, I32, F32>;
+ def F2_conv_sf2w : F2_RD_RS_CONVERT <"convert_sf2w", 0b100, 0b000,
+ fp_to_sint, I32, F32>;
+}
+}
+
+// Fix up radicand.
+let isFP = 1, hasNewValue = 1, isCodeGenOnly = 0 in
+def F2_sffixupr: SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs),
+ "$Rd = sffixupr($Rs)",
+ [], "" , S_2op_tc_3or4x_SLOT23>, Requires<[HasV5T]> {
+ bits<5> Rd;
+ bits<5> Rs;
+
+ let IClass = 0b1000;
+
+ let Inst{27-21} = 0b1011101;
+ let Inst{20-16} = Rs;
+ let Inst{7-5} = 0b000;
+ let Inst{4-0} = Rd;
+ }
+
+// F2_sffma: Floating-point fused multiply add.
+let isFP = 1, hasNewValue = 1 in
+class T_sfmpy_acc <bit isSub, bit isLib>
+ : MInst<(outs IntRegs:$Rx),
+ (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
+ "$Rx "#!if(isSub, "-=","+=")#" sfmpy($Rs, $Rt)"#!if(isLib, ":lib",""),
+ [], "$dst2 = $Rx" , M_tc_3_SLOT23 > ,
+ Requires<[HasV5T]> {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> Rt;
+
+ let IClass = 0b1110;
+
+ let Inst{27-21} = 0b1111000;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b1;
+ let Inst{6} = isLib;
+ let Inst{5} = isSub;
+ let Inst{4-0} = Rx;
+ }
+
+let isCodeGenOnly = 0 in {
+def F2_sffma: T_sfmpy_acc <0, 0>;
+def F2_sffms: T_sfmpy_acc <1, 0>;
+def F2_sffma_lib: T_sfmpy_acc <0, 1>;
+def F2_sffms_lib: T_sfmpy_acc <1, 1>;
+}
+
+// Floating-point fused multiply add w/ additional scaling (2**pu).
+let isFP = 1, hasNewValue = 1, isCodeGenOnly = 0 in
+def F2_sffma_sc: MInst <
+ (outs IntRegs:$Rx),
+ (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt, PredRegs:$Pu),
+ "$Rx += sfmpy($Rs, $Rt, $Pu):scale" ,
+ [], "$dst2 = $Rx" , M_tc_3_SLOT23 > ,
+ Requires<[HasV5T]> {
+ bits<5> Rx;
+ bits<5> Rs;
+ bits<5> Rt;
+ bits<2> Pu;
+
+ let IClass = 0b1110;
+
+ let Inst{27-21} = 0b1111011;
+ let Inst{20-16} = Rs;
+ let Inst{13} = 0b0;
+ let Inst{12-8} = Rt;
+ let Inst{7} = 0b1;
+ let Inst{6-5} = Pu;
+ let Inst{4-0} = Rx;
+ }
+
+// Classify floating-point value
+let isFP = 1, isCodeGenOnly = 0 in
+ def F2_sfclass : T_TEST_BIT_IMM<"sfclass", 0b111>;
+
+let isFP = 1, isCodeGenOnly = 0 in
+def F2_dfclass: ALU64Inst<(outs PredRegs:$Pd), (ins DoubleRegs:$Rss, u5Imm:$u5),
+ "$Pd = dfclass($Rss, #$u5)",
+ [], "" , ALU64_tc_2early_SLOT23 > , Requires<[HasV5T]> {
+ bits<2> Pd;
+ bits<5> Rss;
+ bits<5> u5;
+
+ let IClass = 0b1101;
+ let Inst{27-21} = 0b1100100;
+ let Inst{20-16} = Rss;
+ let Inst{12-10} = 0b000;
+ let Inst{9-5} = u5;
+ let Inst{4-3} = 0b10;
+ let Inst{1-0} = Pd;
+ }
+
+// Instructions to create floating point constant
+let hasNewValue = 1, opNewValue = 0 in
+class T_fimm <string mnemonic, RegisterClass RC, bits<4> RegType, bit isNeg>
+ : ALU64Inst<(outs RC:$dst), (ins u10Imm:$src),
+ "$dst = "#mnemonic#"(#$src)"#!if(isNeg, ":neg", ":pos"),
+ [], "", ALU64_tc_3x_SLOT23>, Requires<[HasV5T]> {
+ bits<5> dst;
+ bits<10> src;
+
+ let IClass = 0b1101;
+ let Inst{27-24} = RegType;
+ let Inst{23} = 0b0;
+ let Inst{22} = isNeg;
+ let Inst{21} = src{9};
+ let Inst{13-5} = src{8-0};
+ let Inst{4-0} = dst;
+ }
+
+let isCodeGenOnly = 0 in {
+def F2_sfimm_p : T_fimm <"sfmake", IntRegs, 0b0110, 0>;
+def F2_sfimm_n : T_fimm <"sfmake", IntRegs, 0b0110, 1>;
+def F2_dfimm_p : T_fimm <"dfmake", DoubleRegs, 0b1001, 0>;
+def F2_dfimm_n : T_fimm <"dfmake", DoubleRegs, 0b1001, 1>;
+}
+
// Convert single precision to double precision and vice-versa.
def CONVERT_sf2df : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
"$dst = convert_sf2df($src)",
@@ -290,36 +721,36 @@ def : Pat<(i1 (setule (f64 DoubleRegs:$src1), (fpimm:$src2))),
// ne.
def : Pat<(i1 (setone (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
- (i1 (NOT_p (FCMPOEQ32_rr IntRegs:$src1, IntRegs:$src2)))>,
+ (i1 (C2_not (FCMPOEQ32_rr IntRegs:$src1, IntRegs:$src2)))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setone (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
- (i1 (NOT_p (FCMPOEQ64_rr DoubleRegs:$src1, DoubleRegs:$src2)))>,
+ (i1 (C2_not (FCMPOEQ64_rr DoubleRegs:$src1, DoubleRegs:$src2)))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setune (f32 IntRegs:$src1), (f32 IntRegs:$src2))),
- (i1 (NOT_p (FCMPUEQ32_rr IntRegs:$src1, IntRegs:$src2)))>,
+ (i1 (C2_not (FCMPUEQ32_rr IntRegs:$src1, IntRegs:$src2)))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setune (f64 DoubleRegs:$src1), (f64 DoubleRegs:$src2))),
- (i1 (NOT_p (FCMPUEQ64_rr DoubleRegs:$src1, DoubleRegs:$src2)))>,
+ (i1 (C2_not (FCMPUEQ64_rr DoubleRegs:$src1, DoubleRegs:$src2)))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setone (f32 IntRegs:$src1), (fpimm:$src2))),
- (i1 (NOT_p (FCMPOEQ32_rr IntRegs:$src1, (f32 (TFRI_f fpimm:$src2)))))>,
+ (i1 (C2_not (FCMPOEQ32_rr IntRegs:$src1, (f32 (TFRI_f fpimm:$src2)))))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setone (f64 DoubleRegs:$src1), (fpimm:$src2))),
- (i1 (NOT_p (FCMPOEQ64_rr DoubleRegs:$src1,
+ (i1 (C2_not (FCMPOEQ64_rr DoubleRegs:$src1,
(f64 (CONST64_Float_Real fpimm:$src2)))))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setune (f32 IntRegs:$src1), (fpimm:$src2))),
- (i1 (NOT_p (FCMPUEQ32_rr IntRegs:$src1, (f32 (TFRI_f fpimm:$src2)))))>,
+ (i1 (C2_not (FCMPUEQ32_rr IntRegs:$src1, (f32 (TFRI_f fpimm:$src2)))))>,
Requires<[HasV5T]>;
def : Pat<(i1 (setune (f64 DoubleRegs:$src1), (fpimm:$src2))),
- (i1 (NOT_p (FCMPUEQ64_rr DoubleRegs:$src1,
+ (i1 (C2_not (FCMPUEQ64_rr DoubleRegs:$src1,
(f64 (CONST64_Float_Real fpimm:$src2)))))>,
Requires<[HasV5T]>;
@@ -458,30 +889,21 @@ def CONVERT_sf2ud_nchop : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src),
// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
def : Pat <(i32 (bitconvert (f32 IntRegs:$src))),
- (i32 (TFR IntRegs:$src))>,
+ (i32 (A2_tfr IntRegs:$src))>,
Requires<[HasV5T]>;
def : Pat <(f32 (bitconvert (i32 IntRegs:$src))),
- (f32 (TFR IntRegs:$src))>,
+ (f32 (A2_tfr IntRegs:$src))>,
Requires<[HasV5T]>;
def : Pat <(i64 (bitconvert (f64 DoubleRegs:$src))),
- (i64 (TFR64 DoubleRegs:$src))>,
+ (i64 (A2_tfrp DoubleRegs:$src))>,
Requires<[HasV5T]>;
def : Pat <(f64 (bitconvert (i64 DoubleRegs:$src))),
- (f64 (TFR64 DoubleRegs:$src))>,
+ (f64 (A2_tfrp DoubleRegs:$src))>,
Requires<[HasV5T]>;
-// Floating point fused multiply-add.
-def FMADD_dp : ALU64_acc<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3),
- "$dst += dfmpy($src2, $src3)",
- [(set (f64 DoubleRegs:$dst),
- (fma DoubleRegs:$src2, DoubleRegs:$src3, DoubleRegs:$src1))],
- "$src1 = $dst">,
- Requires<[HasV5T]>;
-
def FMADD_sp : ALU64_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst += sfmpy($src2, $src3)",
@@ -492,15 +914,6 @@ def FMADD_sp : ALU64_acc<(outs IntRegs:$dst),
// Floating point max/min.
-let AddedComplexity = 100 in
-def FMAX_dp : ALU64_rr<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2),
- "$dst = dfmax($src1, $src2)",
- [(set DoubleRegs:$dst, (f64 (select (i1 (setolt DoubleRegs:$src2,
- DoubleRegs:$src1)),
- DoubleRegs:$src1,
- DoubleRegs:$src2)))]>,
- Requires<[HasV5T]>;
let AddedComplexity = 100 in
def FMAX_sp : ALU64_rr<(outs IntRegs:$dst),
@@ -513,16 +926,6 @@ def FMAX_sp : ALU64_rr<(outs IntRegs:$dst),
Requires<[HasV5T]>;
let AddedComplexity = 100 in
-def FMIN_dp : ALU64_rr<(outs DoubleRegs:$dst),
- (ins DoubleRegs:$src1, DoubleRegs:$src2),
- "$dst = dfmin($src1, $src2)",
- [(set DoubleRegs:$dst, (f64 (select (i1 (setogt DoubleRegs:$src2,
- DoubleRegs:$src1)),
- DoubleRegs:$src1,
- DoubleRegs:$src2)))]>,
- Requires<[HasV5T]>;
-
-let AddedComplexity = 100 in
def FMIN_sp : ALU64_rr<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = sfmin($src1, $src2)",
@@ -615,19 +1018,19 @@ def : Pat <(i32 (fp_to_sint (f64 DoubleRegs:$src1))),
Requires<[HasV5T]>;
def : Pat <(fabs (f32 IntRegs:$src1)),
- (CLRBIT_31 (f32 IntRegs:$src1), 31)>,
+ (S2_clrbit_i (f32 IntRegs:$src1), 31)>,
Requires<[HasV5T]>;
def : Pat <(fneg (f32 IntRegs:$src1)),
- (TOGBIT_31 (f32 IntRegs:$src1), 31)>,
+ (S2_togglebit_i (f32 IntRegs:$src1), 31)>,
Requires<[HasV5T]>;
/*
def : Pat <(fabs (f64 DoubleRegs:$src1)),
- (CLRBIT_31 (f32 (EXTRACT_SUBREG DoubleRegs:$src1, subreg_hireg)), 31)>,
+ (S2_clrbit_i (f32 (EXTRACT_SUBREG DoubleRegs:$src1, subreg_hireg)), 31)>,
Requires<[HasV5T]>;
def : Pat <(fabs (f64 DoubleRegs:$src1)),
- (CLRBIT_31 (f32 (EXTRACT_SUBREG DoubleRegs:$src1, subreg_hireg)), 31)>,
+ (S2_clrbit_i (f32 (EXTRACT_SUBREG DoubleRegs:$src1, subreg_hireg)), 31)>,
Requires<[HasV5T]>;
*/
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td
index 99f59d5..7d3f9d9 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsics.td
@@ -1843,13 +1843,18 @@ class si_MInst_didi<string opc, Intrinsic IntID>
!strconcat("$dst = ", !strconcat(opc , "($src1, $src2)")),
[(set IntRegs:$dst, (IntID DoubleRegs:$src1, DoubleRegs:$src2))]>;
+
+class T_RI_pat <InstHexagon MI, Intrinsic IntID>
+ : Pat<(IntID (i32 IntRegs:$Rs), imm:$It),
+ (MI IntRegs:$Rs, imm:$It)>;
+
//
// LDInst classes.
//
-let mayLoad = 1, neverHasSideEffects = 1 in
+let mayLoad = 1, hasSideEffects = 0 in
class di_LDInstPI_diu4<string opc, Intrinsic IntID>
: LDInstPI<(outs IntRegs:$dst, DoubleRegs:$dst2),
- (ins IntRegs:$src1, IntRegs:$src2, CRRegs:$src3, s4Imm:$offset),
+ (ins IntRegs:$src1, IntRegs:$src2, CtrRegs:$src3, s4Imm:$offset),
"$dst2 = memd($src1++#$offset:circ($src3))",
[],
"$src1 = $dst">;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td
index 2788101..df89378 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsDerived.td
@@ -13,13 +13,13 @@
//
def : Pat <(mul DoubleRegs:$src1, DoubleRegs:$src2),
(i64
- (COMBINE_rr
+ (A2_combinew
(HEXAGON_M2_maci
(HEXAGON_M2_maci
(i32
(EXTRACT_SUBREG
(i64
- (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ (M2_dpmpyuu_s0 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)))),
@@ -31,7 +31,8 @@ def : Pat <(mul DoubleRegs:$src1, DoubleRegs:$src2),
(i32
(EXTRACT_SUBREG
(i64
- (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (M2_dpmpyuu_s0
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)))), subreg_loreg))))>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td
index dd28ebb..77b148b 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonIntrinsicsV4.td
@@ -217,12 +217,13 @@ def Hexagon_A4_combineri : di_ALU32_sis8 <"combine", int_hexagon_A4_combineri>;
// ALU32 / PRED / Conditional Sign Extend.
// ALU32 / PRED / Conditional Zero Extend.
// ALU32 / PRED / Compare.
-def Hexagon_C4_cmpneq : qi_neg_ALU32_sisi <"cmp.eq", int_hexagon_C4_cmpneq>;
-def Hexagon_C4_cmpneqi : qi_neg_ALU32_sis10 <"cmp.eq", int_hexagon_C4_cmpneqi>;
-def Hexagon_C4_cmplte : qi_neg_ALU32_sisi <"cmp.gt", int_hexagon_C4_cmplte>;
def Hexagon_C4_cmpltei : qi_neg_ALU32_sis10 <"cmp.gt", int_hexagon_C4_cmpltei>;
+def Hexagon_C4_cmplte : qi_neg_ALU32_sisi <"cmp.gt", int_hexagon_C4_cmplte>;
def Hexagon_C4_cmplteu : qi_neg_ALU32_sisi <"cmp.gtu",int_hexagon_C4_cmplteu>;
-def Hexagon_C4_cmplteui: qi_neg_ALU32_siu9 <"cmp.gtu",int_hexagon_C4_cmplteui>;
+
+def: T_RI_pat<C4_cmpneqi, int_hexagon_C4_cmpneqi>;
+def: T_RI_pat<C4_cmpltei, int_hexagon_C4_cmpltei>;
+def: T_RI_pat<C4_cmplteui, int_hexagon_C4_cmplteui>;
// ALU32 / PRED / cmpare To General Register.
def Hexagon_A4_rcmpneq : si_neg_ALU32_sisi <"cmp.eq", int_hexagon_A4_rcmpneq>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp
index 5e4346d..3f5d6d8 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMCInstLower.cpp
@@ -42,7 +42,6 @@ static MCOperand GetSymbolRef(const MachineOperand& MO, const MCSymbol* Symbol,
void llvm::HexagonLowerToMC(const MachineInstr* MI, HexagonMCInst& MCI,
HexagonAsmPrinter& AP) {
MCI.setOpcode(MI->getOpcode());
- MCI.setDesc(MI->getDesc());
for (unsigned i = 0, e = MI->getNumOperands(); i < e; i++) {
const MachineOperand &MO = MI->getOperand(i);
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h
index d799bdb..cb18df6 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineFunctionInfo.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonMACHINEFUNCTIONINFO_H
-#define HexagonMACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONMACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFunction.h"
#include <map>
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp
index 6fcaa20..97c626f 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp
@@ -145,7 +145,7 @@ void VLIWMachineScheduler::schedule() {
<< "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
<< " " << BB->getName()
<< " in_func " << BB->getParent()->getFunction()->getName()
- << " at loop depth " << MLI.getLoopDepth(BB)
+ << " at loop depth " << MLI->getLoopDepth(BB)
<< " \n");
buildDAGWithRegPressure();
@@ -208,8 +208,12 @@ void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
const TargetMachine &TM = DAG->MF.getTarget();
delete Top.HazardRec;
delete Bot.HazardRec;
- Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
- Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ Top.HazardRec =
+ TM.getSubtargetImpl()->getInstrInfo()->CreateTargetMIHazardRecognizer(
+ Itin, DAG);
+ Bot.HazardRec =
+ TM.getSubtargetImpl()->getInstrInfo()->CreateTargetMIHazardRecognizer(
+ Itin, DAG);
delete Top.ResourceModel;
delete Bot.ResourceModel;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h
index 8c41086..1e023c3 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonMachineScheduler.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGONASMPRINTER_H
-#define HEXAGONASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONMACHINESCHEDULER_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONMACHINESCHEDULER_H
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/Analysis/AliasAnalysis.h"
@@ -56,7 +56,9 @@ class VLIWResourceModel {
public:
VLIWResourceModel(const TargetMachine &TM, const TargetSchedModel *SM) :
SchedModel(SM), TotalPackets(0) {
- ResourcesModel = TM.getInstrInfo()->CreateTargetScheduleState(&TM, nullptr);
+ ResourcesModel =
+ TM.getSubtargetImpl()->getInstrInfo()->CreateTargetScheduleState(
+ *TM.getSubtargetImpl());
// This hard requirement could be relaxed,
// but for now do not let it proceed.
@@ -99,7 +101,7 @@ public:
/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
- virtual void schedule() override;
+ void schedule() override;
/// Perform platform-specific DAG postprocessing.
void postprocessDAG();
};
@@ -207,15 +209,15 @@ public:
: DAG(nullptr), SchedModel(nullptr), Top(TopQID, "TopQ"),
Bot(BotQID, "BotQ") {}
- virtual void initialize(ScheduleDAGMI *dag) override;
+ void initialize(ScheduleDAGMI *dag) override;
- virtual SUnit *pickNode(bool &IsTopNode) override;
+ SUnit *pickNode(bool &IsTopNode) override;
- virtual void schedNode(SUnit *SU, bool IsTopNode) override;
+ void schedNode(SUnit *SU, bool IsTopNode) override;
- virtual void releaseTopNode(SUnit *SU) override;
+ void releaseTopNode(SUnit *SU) override;
- virtual void releaseBottomNode(SUnit *SU) override;
+ void releaseBottomNode(SUnit *SU) override;
unsigned ReportPackets() {
return Top.ResourceModel->getTotalPackets() +
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp
index b7c03a7..7edba92 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonNewValueJump.cpp
@@ -176,7 +176,7 @@ static bool commonChecksToProhibitNewValueJump(bool afterRA,
return false;
// if call in path, bail out.
- if (MII->getOpcode() == Hexagon::CALLv3)
+ if (MII->getOpcode() == Hexagon::J2_call)
return false;
// if NVJ is running prior to RA, do the following checks.
@@ -199,8 +199,7 @@ static bool commonChecksToProhibitNewValueJump(bool afterRA,
// of registers by individual passes in the backend. At this time,
// we don't know the scope of usage and definitions of these
// instructions.
- if (MII->getOpcode() == Hexagon::TFR_condset_rr ||
- MII->getOpcode() == Hexagon::TFR_condset_ii ||
+ if (MII->getOpcode() == Hexagon::TFR_condset_ii ||
MII->getOpcode() == Hexagon::TFR_condset_ri ||
MII->getOpcode() == Hexagon::TFR_condset_ir ||
MII->getOpcode() == Hexagon::LDriw_pred ||
@@ -228,8 +227,8 @@ static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
int64_t v = MI->getOperand(2).getImm();
if (!(isUInt<5>(v) ||
- ((MI->getOpcode() == Hexagon::CMPEQri ||
- MI->getOpcode() == Hexagon::CMPGTri) &&
+ ((MI->getOpcode() == Hexagon::C2_cmpeqi ||
+ MI->getOpcode() == Hexagon::C2_cmpgti) &&
(v == -1))))
return false;
}
@@ -299,11 +298,11 @@ static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
taken = true;
switch (MI->getOpcode()) {
- case Hexagon::CMPEQrr:
+ case Hexagon::C2_cmpeq:
return taken ? Hexagon::CMPEQrr_t_Jumpnv_t_V4
: Hexagon::CMPEQrr_t_Jumpnv_nt_V4;
- case Hexagon::CMPEQri: {
+ case Hexagon::C2_cmpeqi: {
if (reg >= 0)
return taken ? Hexagon::CMPEQri_t_Jumpnv_t_V4
: Hexagon::CMPEQri_t_Jumpnv_nt_V4;
@@ -312,7 +311,7 @@ static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
: Hexagon::CMPEQn1_t_Jumpnv_nt_V4;
}
- case Hexagon::CMPGTrr: {
+ case Hexagon::C2_cmpgt: {
if (secondRegNewified)
return taken ? Hexagon::CMPLTrr_t_Jumpnv_t_V4
: Hexagon::CMPLTrr_t_Jumpnv_nt_V4;
@@ -321,7 +320,7 @@ static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
: Hexagon::CMPGTrr_t_Jumpnv_nt_V4;
}
- case Hexagon::CMPGTri: {
+ case Hexagon::C2_cmpgti: {
if (reg >= 0)
return taken ? Hexagon::CMPGTri_t_Jumpnv_t_V4
: Hexagon::CMPGTri_t_Jumpnv_nt_V4;
@@ -330,7 +329,7 @@ static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
: Hexagon::CMPGTn1_t_Jumpnv_nt_V4;
}
- case Hexagon::CMPGTUrr: {
+ case Hexagon::C2_cmpgtu: {
if (secondRegNewified)
return taken ? Hexagon::CMPLTUrr_t_Jumpnv_t_V4
: Hexagon::CMPLTUrr_t_Jumpnv_nt_V4;
@@ -339,7 +338,7 @@ static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
: Hexagon::CMPGTUrr_t_Jumpnv_nt_V4;
}
- case Hexagon::CMPGTUri:
+ case Hexagon::C2_cmpgtui:
return taken ? Hexagon::CMPGTUri_t_Jumpnv_t_V4
: Hexagon::CMPGTUri_t_Jumpnv_nt_V4;
@@ -362,9 +361,9 @@ bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
LiveVariables &LVs = getAnalysis<LiveVariables>();
#endif
- QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
- QRI =
- static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
+ QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ QRI = static_cast<const HexagonRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
if (!QRI->Subtarget.hasV4TOps() ||
@@ -413,12 +412,12 @@ bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
if (!foundJump &&
- (MI->getOpcode() == Hexagon::JMP_t ||
- MI->getOpcode() == Hexagon::JMP_f ||
- MI->getOpcode() == Hexagon::JMP_tnew_t ||
- MI->getOpcode() == Hexagon::JMP_tnew_nt ||
- MI->getOpcode() == Hexagon::JMP_fnew_t ||
- MI->getOpcode() == Hexagon::JMP_fnew_nt)) {
+ (MI->getOpcode() == Hexagon::J2_jumpt ||
+ MI->getOpcode() == Hexagon::J2_jumpf ||
+ MI->getOpcode() == Hexagon::J2_jumptnewpt ||
+ MI->getOpcode() == Hexagon::J2_jumptnew ||
+ MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
+ MI->getOpcode() == Hexagon::J2_jumpfnew)) {
// This is where you would insert your compare and
// instr that feeds compare
jmpPos = MII;
@@ -454,9 +453,9 @@ bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
jmpTarget = MI->getOperand(1).getMBB();
foundJump = true;
- if (MI->getOpcode() == Hexagon::JMP_f ||
- MI->getOpcode() == Hexagon::JMP_fnew_t ||
- MI->getOpcode() == Hexagon::JMP_fnew_nt) {
+ if (MI->getOpcode() == Hexagon::J2_jumpf ||
+ MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
+ MI->getOpcode() == Hexagon::J2_jumpfnew) {
invertPredicate = true;
}
continue;
@@ -545,7 +544,7 @@ bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
if (isSecondOpReg) {
// In case of CMPLT, or CMPLTU, or EQ with the second register
// to newify, swap the operands.
- if (cmpInstr->getOpcode() == Hexagon::CMPEQrr &&
+ if (cmpInstr->getOpcode() == Hexagon::C2_cmpeq &&
feederReg == (unsigned) cmpOp2) {
unsigned tmp = cmpReg1;
bool tmpIsKill = MO1IsKill;
@@ -612,8 +611,8 @@ bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
.addReg(cmpOp2, getKillRegState(MO2IsKill))
.addMBB(jmpTarget);
- else if ((cmpInstr->getOpcode() == Hexagon::CMPEQri ||
- cmpInstr->getOpcode() == Hexagon::CMPGTri) &&
+ else if ((cmpInstr->getOpcode() == Hexagon::C2_cmpeqi ||
+ cmpInstr->getOpcode() == Hexagon::C2_cmpgti) &&
cmpOp2 == -1 )
// Corresponding new-value compare jump instructions don't have the
// operand for -1 immediate value.
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td b/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td
index c79d78f..5a6de0a 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonOperands.td
@@ -39,6 +39,7 @@ let PrintMethod = "printImmOperand" in {
def u16_0Imm : Operand<i32>;
def u16_1Imm : Operand<i32>;
def u16_2Imm : Operand<i32>;
+ def u16_3Imm : Operand<i32>;
def u11_3Imm : Operand<i32>;
def u10Imm : Operand<i32>;
def u9Imm : Operand<i32>;
@@ -258,6 +259,13 @@ def u16_s8ImmPred : PatLeaf<(i32 imm), [{
return isShiftedUInt<16,8>(v);
}]>;
+def u11_3ImmPred : PatLeaf<(i32 imm), [{
+ // True if the immediate fits in a 14-bit unsigned field, and the lowest
+ // three bits are 0.
+ int64_t v = (int64_t)N->getSExtValue();
+ return isShiftedUInt<11,3>(v);
+}]>;
+
def u9ImmPred : PatLeaf<(i32 imm), [{
// u9ImmPred predicate - True if the immediate fits in a 9-bit unsigned
// field.
@@ -800,6 +808,12 @@ def u6_3ExtPred : PatLeaf<(i32 imm), [{
}
}]>;
+
+// This complex pattern exists only to create a machine instruction operand
+// of type "frame index". There doesn't seem to be a way to do that directly
+// in the patterns.
+def AddrFI : ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
+
// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
@@ -856,3 +870,12 @@ def symbolHi32 : Operand<i32> {
def symbolLo32 : Operand<i32> {
let PrintMethod = "printSymbolLo";
}
+
+// Return true if for a 32 to 64-bit sign-extended load.
+def is_sext_i32 : PatLeaf<(i64 DoubleRegs:$src1), [{
+ LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
+ if (!LD)
+ return false;
+ return LD->getExtensionType() == ISD::SEXTLOAD &&
+ LD->getMemoryVT().getScalarType() == MVT::i32;
+}]>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp
index 48b6159..e9b2ef6 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonPeephole.cpp
@@ -111,10 +111,8 @@ INITIALIZE_PASS(HexagonPeephole, "hexagon-peephole", "Hexagon Peephole",
false, false)
bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
- QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().
- getInstrInfo());
- QRI = static_cast<const HexagonRegisterInfo *>(MF.getTarget().
- getRegisterInfo());
+ QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ QRI = MF.getTarget().getSubtarget<HexagonSubtarget>().getRegisterInfo();
MRI = &MF.getRegInfo();
DenseMap<unsigned, unsigned> PeepholeMap;
@@ -135,7 +133,7 @@ bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
MachineInstr *MI = MII;
// Look for sign extends:
// %vreg170<def> = SXTW %vreg166
- if (!DisableOptSZExt && MI->getOpcode() == Hexagon::SXTW) {
+ if (!DisableOptSZExt && MI->getOpcode() == Hexagon::A2_sxtw) {
assert (MI->getNumOperands() == 2);
MachineOperand &Dst = MI->getOperand(0);
MachineOperand &Src = MI->getOperand(1);
@@ -154,7 +152,7 @@ bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
// Look for %vreg170<def> = COMBINE_ir_V4 (0, %vreg169)
// %vreg170:DoublRegs, %vreg169:IntRegs
if (!DisableOptExtTo64 &&
- MI->getOpcode () == Hexagon::COMBINE_Ir_V4) {
+ MI->getOpcode () == Hexagon::A4_combineir) {
assert (MI->getNumOperands() == 3);
MachineOperand &Dst = MI->getOperand(0);
MachineOperand &Src1 = MI->getOperand(1);
@@ -171,7 +169,7 @@ bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
// %vregIntReg = COPY %vregDoubleReg1:subreg_loreg.
// and convert into
// %vregIntReg = COPY %vregDoubleReg0:subreg_hireg.
- if (MI->getOpcode() == Hexagon::LSRd_ri) {
+ if (MI->getOpcode() == Hexagon::S2_lsr_i_p) {
assert(MI->getNumOperands() == 3);
MachineOperand &Dst = MI->getOperand(0);
MachineOperand &Src1 = MI->getOperand(1);
@@ -186,7 +184,7 @@ bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
// Look for P=NOT(P).
if (!DisablePNotP &&
- (MI->getOpcode() == Hexagon::NOT_p)) {
+ (MI->getOpcode() == Hexagon::C2_not)) {
assert (MI->getNumOperands() == 2);
MachineOperand &Dst = MI->getOperand(0);
MachineOperand &Src = MI->getOperand(1);
@@ -271,10 +269,9 @@ bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
unsigned PR = 1, S1 = 2, S2 = 3; // Operand indices.
switch (Op) {
- case Hexagon::TFR_condset_rr:
+ case Hexagon::C2_mux:
+ case Hexagon::C2_muxii:
case Hexagon::TFR_condset_ii:
- case Hexagon::MUX_ii:
- case Hexagon::MUX_rr:
NewOp = Op;
break;
case Hexagon::TFR_condset_ri:
@@ -283,11 +280,11 @@ bool HexagonPeephole::runOnMachineFunction(MachineFunction &MF) {
case Hexagon::TFR_condset_ir:
NewOp = Hexagon::TFR_condset_ri;
break;
- case Hexagon::MUX_ri:
- NewOp = Hexagon::MUX_ir;
+ case Hexagon::C2_muxri:
+ NewOp = Hexagon::C2_muxir;
break;
- case Hexagon::MUX_ir:
- NewOp = Hexagon::MUX_ri;
+ case Hexagon::C2_muxir:
+ NewOp = Hexagon::C2_muxri;
break;
}
if (NewOp) {
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp
index fb466d3..a64c9df 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.cpp
@@ -128,12 +128,12 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// Addressable stack objects are accessed using neg. offsets from %fp.
MachineFunction &MF = *MI.getParent()->getParent();
const HexagonInstrInfo &TII =
- *static_cast<const HexagonInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned FrameReg = getFrameRegister(MF);
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!TFI->hasFP(MF)) {
// We will not reserve space on the stack for the lr and fp registers.
Offset -= 2 * Hexagon_WordSize;
@@ -159,15 +159,15 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
//
// r0 = add(r30, #10000)
// r0 = memw(r0)
- if ( (MI.getOpcode() == Hexagon::LDriw) ||
- (MI.getOpcode() == Hexagon::LDrid) ||
- (MI.getOpcode() == Hexagon::LDrih) ||
- (MI.getOpcode() == Hexagon::LDriuh) ||
- (MI.getOpcode() == Hexagon::LDrib) ||
- (MI.getOpcode() == Hexagon::LDriub) ||
+ if ( (MI.getOpcode() == Hexagon::L2_loadri_io) ||
+ (MI.getOpcode() == Hexagon::L2_loadrd_io) ||
+ (MI.getOpcode() == Hexagon::L2_loadrh_io) ||
+ (MI.getOpcode() == Hexagon::L2_loadruh_io) ||
+ (MI.getOpcode() == Hexagon::L2_loadrb_io) ||
+ (MI.getOpcode() == Hexagon::L2_loadrub_io) ||
(MI.getOpcode() == Hexagon::LDriw_f) ||
(MI.getOpcode() == Hexagon::LDrid_f)) {
- unsigned dstReg = (MI.getOpcode() == Hexagon::LDrid) ?
+ unsigned dstReg = (MI.getOpcode() == Hexagon::L2_loadrd_io) ?
getSubReg(MI.getOperand(0).getReg(), Hexagon::subreg_loreg) :
MI.getOperand(0).getReg();
@@ -176,7 +176,7 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
TII.get(Hexagon::CONST32_Int_Real), dstReg).addImm(Offset);
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
- TII.get(Hexagon::ADD_rr),
+ TII.get(Hexagon::A2_add),
dstReg).addReg(FrameReg).addReg(dstReg);
} else {
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
@@ -186,11 +186,10 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MI.getOperand(FIOperandNum).ChangeToRegister(dstReg, false, false,true);
MI.getOperand(FIOperandNum+1).ChangeToImmediate(0);
- } else if ((MI.getOpcode() == Hexagon::STriw_indexed) ||
- (MI.getOpcode() == Hexagon::STriw) ||
- (MI.getOpcode() == Hexagon::STrid) ||
- (MI.getOpcode() == Hexagon::STrih) ||
- (MI.getOpcode() == Hexagon::STrib) ||
+ } else if ((MI.getOpcode() == Hexagon::S2_storeri_io) ||
+ (MI.getOpcode() == Hexagon::S2_storerd_io) ||
+ (MI.getOpcode() == Hexagon::S2_storerh_io) ||
+ (MI.getOpcode() == Hexagon::S2_storerb_io) ||
(MI.getOpcode() == Hexagon::STrid_f) ||
(MI.getOpcode() == Hexagon::STriw_f)) {
// For stores, we need a reserved register. Change
@@ -205,7 +204,7 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
TII.get(Hexagon::CONST32_Int_Real), resReg).addImm(Offset);
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
- TII.get(Hexagon::ADD_rr),
+ TII.get(Hexagon::A2_add),
resReg).addReg(FrameReg).addReg(resReg);
} else {
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
@@ -237,7 +236,7 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
TII.get(Hexagon::CONST32_Int_Real), ResReg).addImm(Offset);
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
- TII.get(Hexagon::ADD_rr), ResReg).addReg(FrameReg).
+ TII.get(Hexagon::A2_add), ResReg).addReg(FrameReg).
addReg(ResReg);
MI.getOperand(FIOperandNum).ChangeToRegister(ResReg, false, false,
true);
@@ -256,7 +255,7 @@ void HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
TII.get(Hexagon::CONST32_Int_Real), dstReg).addImm(Offset);
BuildMI(*MI.getParent(), II, MI.getDebugLoc(),
- TII.get(Hexagon::ADD_rr),
+ TII.get(Hexagon::A2_add),
dstReg).addReg(FrameReg).addReg(dstReg);
// Can we delete MI??? r2 = add (r2, #0).
MI.getOperand(FIOperandNum).ChangeToRegister(dstReg, false, false,true);
@@ -278,7 +277,7 @@ unsigned HexagonRegisterInfo::getRARegister() const {
unsigned HexagonRegisterInfo::getFrameRegister(const MachineFunction
&MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (TFI->hasFP(MF)) {
return Hexagon::R30;
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h
index 648b4af..a83b502 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonREGISTERINFO_H
-#define HexagonREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONREGISTERINFO_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONREGISTERINFO_H
#include "llvm/MC/MachineLocation.h"
#include "llvm/Target/TargetRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td
index 8ea1b7e..decd947 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRegisterInfo.td
@@ -13,90 +13,78 @@
let Namespace = "Hexagon" in {
- class HexagonReg<string n> : Register<n> {
+ class HexagonReg<bits<5> num, string n, list<string> alt = [],
+ list<Register> alias = []> : Register<n> {
field bits<5> Num;
+ let Aliases = alias;
+ let HWEncoding{4-0} = num;
}
- class HexagonDoubleReg<string n, list<Register> subregs> :
+ class HexagonDoubleReg<bits<5> num, string n, list<Register> subregs,
+ list<string> alt = []> :
RegisterWithSubRegs<n, subregs> {
field bits<5> Num;
+
+ let AltNames = alt;
+ let HWEncoding{4-0} = num;
}
// Registers are identified with 5-bit ID numbers.
// Ri - 32-bit integer registers.
- class Ri<bits<5> num, string n> : HexagonReg<n> {
+ class Ri<bits<5> num, string n, list<string> alt = []> : HexagonReg<num, n, alt> {
let Num = num;
}
// Rf - 32-bit floating-point registers.
- class Rf<bits<5> num, string n> : HexagonReg<n> {
+ class Rf<bits<5> num, string n> : HexagonReg<num, n> {
let Num = num;
}
// Rd - 64-bit registers.
class Rd<bits<5> num, string n, list<Register> subregs> :
- HexagonDoubleReg<n, subregs> {
+ HexagonDoubleReg<num, n, subregs> {
let Num = num;
let SubRegs = subregs;
}
// Rp - predicate registers
- class Rp<bits<5> num, string n> : HexagonReg<n> {
+ class Rp<bits<5> num, string n> : HexagonReg<num, n> {
let Num = num;
}
// Rc - control registers
- class Rc<bits<5> num, string n> : HexagonReg<n> {
+ class Rc<bits<5> num, string n,
+ list<string> alt = [], list<Register> alias = []> :
+ HexagonReg<num, n, alt, alias> {
+ let Num = num;
+ }
+
+ // Rcc - 64-bit control registers.
+ class Rcc<bits<5> num, string n, list<Register> subregs,
+ list<string> alt = []> :
+ HexagonDoubleReg<num, n, subregs, alt> {
let Num = num;
+ let SubRegs = subregs;
}
- // Rj - aliased integer registers
- class Rj<string n, Ri R>: HexagonReg<n> {
- let Num = R.Num;
- let Aliases = [R];
+ // Mx - address modifier registers
+ class Mx<bits<1> num, string n> : HexagonReg<{0b0000, num}, n> {
+ let Num = !cast<bits<5>>(num);
}
def subreg_loreg : SubRegIndex<32>;
def subreg_hireg : SubRegIndex<32, 32>;
+ def subreg_overflow : SubRegIndex<1, 0>;
// Integer registers.
- def R0 : Ri< 0, "r0">, DwarfRegNum<[0]>;
- def R1 : Ri< 1, "r1">, DwarfRegNum<[1]>;
- def R2 : Ri< 2, "r2">, DwarfRegNum<[2]>;
- def R3 : Ri< 3, "r3">, DwarfRegNum<[3]>;
- def R4 : Ri< 4, "r4">, DwarfRegNum<[4]>;
- def R5 : Ri< 5, "r5">, DwarfRegNum<[5]>;
- def R6 : Ri< 6, "r6">, DwarfRegNum<[6]>;
- def R7 : Ri< 7, "r7">, DwarfRegNum<[7]>;
- def R8 : Ri< 8, "r8">, DwarfRegNum<[8]>;
- def R9 : Ri< 9, "r9">, DwarfRegNum<[9]>;
- def R10 : Ri<10, "r10">, DwarfRegNum<[10]>;
- def R11 : Ri<11, "r11">, DwarfRegNum<[11]>;
- def R12 : Ri<12, "r12">, DwarfRegNum<[12]>;
- def R13 : Ri<13, "r13">, DwarfRegNum<[13]>;
- def R14 : Ri<14, "r14">, DwarfRegNum<[14]>;
- def R15 : Ri<15, "r15">, DwarfRegNum<[15]>;
- def R16 : Ri<16, "r16">, DwarfRegNum<[16]>;
- def R17 : Ri<17, "r17">, DwarfRegNum<[17]>;
- def R18 : Ri<18, "r18">, DwarfRegNum<[18]>;
- def R19 : Ri<19, "r19">, DwarfRegNum<[19]>;
- def R20 : Ri<20, "r20">, DwarfRegNum<[20]>;
- def R21 : Ri<21, "r21">, DwarfRegNum<[21]>;
- def R22 : Ri<22, "r22">, DwarfRegNum<[22]>;
- def R23 : Ri<23, "r23">, DwarfRegNum<[23]>;
- def R24 : Ri<24, "r24">, DwarfRegNum<[24]>;
- def R25 : Ri<25, "r25">, DwarfRegNum<[25]>;
- def R26 : Ri<26, "r26">, DwarfRegNum<[26]>;
- def R27 : Ri<27, "r27">, DwarfRegNum<[27]>;
- def R28 : Ri<28, "r28">, DwarfRegNum<[28]>;
- def R29 : Ri<29, "r29">, DwarfRegNum<[29]>;
- def R30 : Ri<30, "r30">, DwarfRegNum<[30]>;
- def R31 : Ri<31, "r31">, DwarfRegNum<[31]>;
-
- def SP : Rj<"sp", R29>, DwarfRegNum<[29]>;
- def FP : Rj<"fp", R30>, DwarfRegNum<[30]>;
- def LR : Rj<"lr", R31>, DwarfRegNum<[31]>;
+ foreach i = 0-28 in {
+ def R#i : Ri<i, "r"#i>, DwarfRegNum<[i]>;
+ }
+
+ def R29 : Ri<29, "r29", ["sp"]>, DwarfRegNum<[29]>;
+ def R30 : Ri<30, "r30", ["fp"]>, DwarfRegNum<[30]>;
+ def R31 : Ri<31, "r31", ["lr"]>, DwarfRegNum<[31]>;
// Aliases of the R* registers used to hold 64-bit int values (doubles).
let SubRegIndices = [subreg_loreg, subreg_hireg], CoveredBySubRegs = 1 in {
@@ -124,20 +112,52 @@ let Namespace = "Hexagon" in {
def P2 : Rp<2, "p2">, DwarfRegNum<[65]>;
def P3 : Rp<3, "p3">, DwarfRegNum<[66]>;
- // Control registers.
- def SA0 : Rc<0, "sa0">, DwarfRegNum<[67]>;
- def LC0 : Rc<1, "lc0">, DwarfRegNum<[68]>;
-
- def SA1 : Rc<2, "sa1">, DwarfRegNum<[69]>;
- def LC1 : Rc<3, "lc1">, DwarfRegNum<[70]>;
+ // Modifier registers.
+ // C6 and C7 can also be M0 and M1, but register names must be unique, even
+ // if belonging to different register classes.
+ def M0 : Mx<0, "m0">, DwarfRegNum<[72]>;
+ def M1 : Mx<1, "m1">, DwarfRegNum<[73]>;
- def M0 : Rc<6, "m0">, DwarfRegNum<[71]>;
- def M1 : Rc<7, "m1">, DwarfRegNum<[72]>;
+ // Fake register to represent USR.OVF bit. Artihmetic/saturating instruc-
+ // tions modify this bit, and multiple such instructions are allowed in the
+ // same packet. We need to ignore output dependencies on this bit, but not
+ // on the entire USR.
+ def USR_OVF : Rc<?, "usr.ovf">;
- def PC : Rc<9, "pc">, DwarfRegNum<[32]>; // is the Dwarf number correct?
- def GP : Rc<11, "gp">, DwarfRegNum<[33]>; // is the Dwarf number correct?
+ // Control registers.
+ def SA0 : Rc<0, "sa0", ["c0"]>, DwarfRegNum<[67]>;
+ def LC0 : Rc<1, "lc0", ["c1"]>, DwarfRegNum<[68]>;
+ def SA1 : Rc<2, "sa1", ["c2"]>, DwarfRegNum<[69]>;
+ def LC1 : Rc<3, "lc1", ["c3"]>, DwarfRegNum<[70]>;
+ def P3_0 : Rc<4, "p3:0", ["c4"], [P0, P1, P2, P3]>,
+ DwarfRegNum<[71]>;
+ def C6 : Rc<6, "c6", [], [M0]>, DwarfRegNum<[72]>;
+ def C7 : Rc<7, "c7", [], [M1]>, DwarfRegNum<[73]>;
+
+ def USR : Rc<8, "usr", ["c8"]>, DwarfRegNum<[74]> {
+ let SubRegIndices = [subreg_overflow];
+ let SubRegs = [USR_OVF];
+ }
+ def PC : Rc<9, "pc">, DwarfRegNum<[75]>;
+ def UGP : Rc<10, "ugp", ["c10"]>, DwarfRegNum<[76]>;
+ def GP : Rc<11, "gp">, DwarfRegNum<[77]>;
+ def CS0 : Rc<12, "cs0", ["c12"]>, DwarfRegNum<[78]>;
+ def CS1 : Rc<13, "cs1", ["c13"]>, DwarfRegNum<[79]>;
+ def UPCL : Rc<14, "upcyclelo", ["c14"]>, DwarfRegNum<[80]>;
+ def UPCH : Rc<15, "upcyclehi", ["c15"]>, DwarfRegNum<[81]>;
}
+ // Control registers pairs.
+ let SubRegIndices = [subreg_loreg, subreg_hireg], CoveredBySubRegs = 1 in {
+ def C1_0 : Rcc<0, "c1:0", [SA0, LC0], ["lc0:sa0"]>, DwarfRegNum<[67]>;
+ def C3_2 : Rcc<2, "c3:2", [SA1, LC1], ["lc1:sa1"]>, DwarfRegNum<[69]>;
+ def C7_6 : Rcc<6, "c7:6", [C6, C7], ["m1:0"]>, DwarfRegNum<[72]>;
+ def C9_8 : Rcc<8, "c9:8", [USR, PC]>, DwarfRegNum<[74]>;
+ def C11_10 : Rcc<10, "c11:10", [UGP, GP]>, DwarfRegNum<[76]>;
+ def CS : Rcc<12, "c13:12", [CS0, CS1], ["cs1:0"]>, DwarfRegNum<[78]>;
+ def UPC : Rcc<14, "c15:14", [UPCL, UPCH]>, DwarfRegNum<[80]>;
+ }
+
// Register classes.
//
// FIXME: the register order should be defined in terms of the preferred
@@ -159,9 +179,29 @@ def PredRegs : RegisterClass<"Hexagon", [i1], 32, (add (sequence "P%u", 0, 3))>
let Size = 32;
}
-def CRRegs : RegisterClass<"Hexagon", [i32], 32,
- (add (sequence "LC%u", 0, 1),
- (sequence "SA%u", 0, 1),
- (sequence "M%u", 0, 1), PC, GP)> {
- let Size = 32;
+let Size = 32 in
+def ModRegs : RegisterClass<"Hexagon", [i32], 32, (add M0, M1)>;
+
+let Size = 32, isAllocatable = 0 in
+def CtrRegs : RegisterClass<"Hexagon", [i32], 32,
+ (add LC0, SA0, LC1, SA1,
+ P3_0,
+ M0, M1, C6, C7, CS0, CS1, UPCL, UPCH,
+ USR, USR_OVF, UGP, GP, PC)>;
+
+let Size = 64, isAllocatable = 0 in
+def CtrRegs64 : RegisterClass<"Hexagon", [i64], 64,
+ (add C1_0, C3_2, C7_6, C9_8, C11_10, CS, UPC)>;
+
+def VolatileV3 {
+ list<Register> Regs = [D0, D1, D2, D3, D4, D5, D6, D7,
+ R28, R31,
+ P0, P1, P2, P3,
+ M0, M1,
+ LC0, LC1, SA0, SA1, USR, USR_OVF];
}
+
+def PositiveHalfWord : PatLeaf<(i32 IntRegs:$a),
+[{
+ return isPositiveHalfWord(N);
+}]>;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp
index 2b459a4..0c24075 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonRemoveSZExtArgs.cpp
@@ -15,6 +15,7 @@
#include "Hexagon.h"
#include "HexagonTargetMachine.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
@@ -42,7 +43,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineFunctionAnalysis>();
AU.addPreserved<MachineFunctionAnalysis>();
- AU.addPreserved("stack-protector");
+ AU.addPreserved<StackProtector>();
FunctionPass::getAnalysisUsage(AU);
}
};
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h b/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h
index b40b303..8ac2e43 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonSELECTIONDAGINFO_H
-#define HexagonSELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONSELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONSELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp
index 247207f..8fdd493 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst64.cpp
@@ -68,12 +68,13 @@ char HexagonSplitConst32AndConst64::ID = 0;
bool HexagonSplitConst32AndConst64::runOnMachineFunction(MachineFunction &Fn) {
const HexagonTargetObjectFile &TLOF =
- (const HexagonTargetObjectFile &)
- QTM.getTargetLowering()->getObjFileLowering();
+ (const HexagonTargetObjectFile &)QTM.getSubtargetImpl()
+ ->getTargetLowering()
+ ->getObjFileLowering();
if (TLOF.IsSmallDataEnabled())
return true;
- const TargetInstrInfo *TII = QTM.getInstrInfo();
+ const TargetInstrInfo *TII = QTM.getSubtargetImpl()->getInstrInfo();
// Loop over all of the basic blocks
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
@@ -138,10 +139,10 @@ bool HexagonSplitConst32AndConst64::runOnMachineFunction(MachineFunction &Fn) {
else if (Opc == Hexagon::CONST64_Int_Real) {
int DestReg = MI->getOperand(0).getReg();
int64_t ImmValue = MI->getOperand(1).getImm ();
- unsigned DestLo =
- QTM.getRegisterInfo()->getSubReg (DestReg, Hexagon::subreg_loreg);
- unsigned DestHi =
- QTM.getRegisterInfo()->getSubReg (DestReg, Hexagon::subreg_hireg);
+ unsigned DestLo = QTM.getSubtargetImpl()->getRegisterInfo()->getSubReg(
+ DestReg, Hexagon::subreg_loreg);
+ unsigned DestHi = QTM.getSubtargetImpl()->getRegisterInfo()->getSubReg(
+ DestReg, Hexagon::subreg_hireg);
int32_t LowWord = (ImmValue & 0xFFFFFFFF);
int32_t HighWord = (ImmValue >> 32) & 0xFFFFFFFF;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp
index 9601090..a304e65 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSplitTFRCondSets.cpp
@@ -80,7 +80,7 @@ char HexagonSplitTFRCondSets::ID = 0;
bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
- const TargetInstrInfo *TII = QTM.getInstrInfo();
+ const TargetInstrInfo *TII = QTM.getSubtargetImpl()->getInstrInfo();
// Loop over all of the basic blocks.
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
@@ -92,21 +92,19 @@ bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
MachineInstr *MI = MII;
int Opc1, Opc2;
switch(MI->getOpcode()) {
- case Hexagon::TFR_condset_rr:
case Hexagon::TFR_condset_rr_f:
case Hexagon::TFR_condset_rr64_f: {
int DestReg = MI->getOperand(0).getReg();
int SrcReg1 = MI->getOperand(2).getReg();
int SrcReg2 = MI->getOperand(3).getReg();
- if (MI->getOpcode() == Hexagon::TFR_condset_rr ||
- MI->getOpcode() == Hexagon::TFR_condset_rr_f) {
- Opc1 = Hexagon::TFR_cPt;
- Opc2 = Hexagon::TFR_cNotPt;
+ if (MI->getOpcode() == Hexagon::TFR_condset_rr_f) {
+ Opc1 = Hexagon::A2_tfrt;
+ Opc2 = Hexagon::A2_tfrf;
}
else if (MI->getOpcode() == Hexagon::TFR_condset_rr64_f) {
- Opc1 = Hexagon::TFR64_cPt;
- Opc2 = Hexagon::TFR64_cNotPt;
+ Opc1 = Hexagon::A2_tfrpt;
+ Opc2 = Hexagon::A2_tfrpf;
}
// Minor optimization: do not emit the predicated copy if the source
@@ -132,12 +130,12 @@ bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
// is the same register.
if (DestReg != SrcReg1) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::TFR_cPt), DestReg).
+ TII->get(Hexagon::A2_tfrt), DestReg).
addReg(MI->getOperand(1).getReg()).addReg(SrcReg1);
}
if (MI->getOpcode() == Hexagon::TFR_condset_ri ) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::TFRI_cNotPt), DestReg).
+ TII->get(Hexagon::C2_cmoveif), DestReg).
addReg(MI->getOperand(1).getReg()).
addImm(MI->getOperand(3).getImm());
} else if (MI->getOpcode() == Hexagon::TFR_condset_ri_f ) {
@@ -158,7 +156,7 @@ bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
if (MI->getOpcode() == Hexagon::TFR_condset_ir ) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::TFRI_cPt), DestReg).
+ TII->get(Hexagon::C2_cmoveit), DestReg).
addReg(MI->getOperand(1).getReg()).
addImm(MI->getOperand(2).getImm());
} else if (MI->getOpcode() == Hexagon::TFR_condset_ir_f ) {
@@ -172,7 +170,7 @@ bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
// the destination is the same register.
if (DestReg != SrcReg2) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::TFR_cNotPt), DestReg).
+ TII->get(Hexagon::A2_tfrf), DestReg).
addReg(MI->getOperand(1).getReg()).addReg(SrcReg2);
}
MII = MBB->erase(MI);
@@ -188,10 +186,10 @@ bool HexagonSplitTFRCondSets::runOnMachineFunction(MachineFunction &Fn) {
int Immed1 = MI->getOperand(2).getImm();
int Immed2 = MI->getOperand(3).getImm();
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::TFRI_cPt),
+ TII->get(Hexagon::C2_cmoveit),
DestReg).addReg(SrcReg1).addImm(Immed1);
BuildMI(*MBB, MII, MI->getDebugLoc(),
- TII->get(Hexagon::TFRI_cNotPt),
+ TII->get(Hexagon::C2_cmoveif),
DestReg).addReg(SrcReg1).addImm(Immed2);
} else if (MI->getOpcode() == Hexagon::TFR_condset_ii_f ) {
BuildMI(*MBB, MII, MI->getDebugLoc(),
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h b/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h
index b184e62..34e327f 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonSubtarget.h
@@ -11,12 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef Hexagon_SUBTARGET_H
-#define Hexagon_SUBTARGET_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONSUBTARGET_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONSUBTARGET_H
#include "HexagonFrameLowering.h"
-#include "HexagonInstrInfo.h"
#include "HexagonISelLowering.h"
+#include "HexagonInstrInfo.h"
#include "HexagonSelectionDAGInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
@@ -56,19 +56,25 @@ public:
HexagonSubtarget(StringRef TT, StringRef CPU, StringRef FS,
const TargetMachine &TM);
- /// getInstrItins - Return the instruction itineraies based on subtarget
+ /// getInstrItins - Return the instruction itineraries based on subtarget
/// selection.
- const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
- const HexagonInstrInfo *getInstrInfo() const { return &InstrInfo; }
- const HexagonRegisterInfo *getRegisterInfo() const {
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &InstrItins;
+ }
+ const HexagonInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const HexagonRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
- const HexagonTargetLowering *getTargetLowering() const { return &TLInfo; }
- const HexagonFrameLowering *getFrameLowering() const {
+ const HexagonTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const HexagonFrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
- const HexagonSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
+ const HexagonSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const DataLayout *getDataLayout() const override { return &DL; }
HexagonSubtarget &initializeSubtargetDependencies(StringRef CPU,
StringRef FS);
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
index 7831410..52aff27 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.cpp
@@ -70,10 +70,13 @@ HexagonTargetMachine::HexagonTargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(make_unique<HexagonTargetObjectFile>()),
Subtarget(TT, CPU, FS, *this) {
initAsmInfo();
}
+HexagonTargetMachine::~HexagonTargetMachine() {}
+
namespace {
/// Hexagon Code Generator Pass Configuration Options.
class HexagonPassConfig : public TargetPassConfig {
@@ -100,10 +103,10 @@ public:
}
bool addInstSelector() override;
- bool addPreRegAlloc() override;
- bool addPostRegAlloc() override;
- bool addPreSched2() override;
- bool addPreEmitPass() override;
+ void addPreRegAlloc() override;
+ void addPostRegAlloc() override;
+ void addPreSched2() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -128,51 +131,45 @@ bool HexagonPassConfig::addInstSelector() {
return false;
}
-bool HexagonPassConfig::addPreRegAlloc() {
+void HexagonPassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None)
if (!DisableHardwareLoops)
- addPass(createHexagonHardwareLoops());
- return false;
+ addPass(createHexagonHardwareLoops(), false);
}
-bool HexagonPassConfig::addPostRegAlloc() {
+void HexagonPassConfig::addPostRegAlloc() {
const HexagonTargetMachine &TM = getHexagonTargetMachine();
if (getOptLevel() != CodeGenOpt::None)
if (!DisableHexagonCFGOpt)
- addPass(createHexagonCFGOptimizer(TM));
- return false;
+ addPass(createHexagonCFGOptimizer(TM), false);
}
-bool HexagonPassConfig::addPreSched2() {
+void HexagonPassConfig::addPreSched2() {
const HexagonTargetMachine &TM = getHexagonTargetMachine();
- addPass(createHexagonCopyToCombine());
+ addPass(createHexagonCopyToCombine(), false);
if (getOptLevel() != CodeGenOpt::None)
- addPass(&IfConverterID);
+ addPass(&IfConverterID, false);
addPass(createHexagonSplitConst32AndConst64(TM));
- printAndVerify("After hexagon split const32/64 pass");
- return true;
}
-bool HexagonPassConfig::addPreEmitPass() {
+void HexagonPassConfig::addPreEmitPass() {
const HexagonTargetMachine &TM = getHexagonTargetMachine();
bool NoOpt = (getOptLevel() == CodeGenOpt::None);
if (!NoOpt)
- addPass(createHexagonNewValueJump());
+ addPass(createHexagonNewValueJump(), false);
// Expand Spill code for predicate registers.
- addPass(createHexagonExpandPredSpillCode(TM));
+ addPass(createHexagonExpandPredSpillCode(TM), false);
// Split up TFRcondsets into conditional transfers.
- addPass(createHexagonSplitTFRCondSets(TM));
+ addPass(createHexagonSplitTFRCondSets(TM), false);
// Create Packets.
if (!NoOpt) {
if (!DisableHardwareLoops)
- addPass(createHexagonFixupHwLoops());
- addPass(createHexagonPacketizer());
+ addPass(createHexagonFixupHwLoops(), false);
+ addPass(createHexagonPacketizer(), false);
}
-
- return false;
}
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h
index d88178e..4a9f447 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonTARGETMACHINE_H
-#define HexagonTARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETMACHINE_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETMACHINE_H
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
@@ -23,6 +23,7 @@ namespace llvm {
class Module;
class HexagonTargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
HexagonSubtarget Subtarget;
public:
@@ -30,34 +31,18 @@ public:
StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
+ ~HexagonTargetMachine() override;
- const HexagonInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
const HexagonSubtarget *getSubtargetImpl() const override {
return &Subtarget;
}
- const HexagonRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const InstrItineraryData* getInstrItineraryData() const override {
- return &getSubtargetImpl()->getInstrItineraryData();
- }
- const HexagonTargetLowering* getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const HexagonFrameLowering* getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- const HexagonSelectionDAGInfo* getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
static unsigned getModuleMatchQuality(const Module &M);
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
extern bool flag_aligned_memcpy;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp
index c97526e..f4ab5e2 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp
@@ -31,7 +31,7 @@ static cl::opt<int> SmallDataThreshold("hexagon-small-data-threshold",
void HexagonTargetObjectFile::Initialize(MCContext &Ctx,
const TargetMachine &TM) {
TargetLoweringObjectFileELF::Initialize(Ctx, TM);
-
+ InitializeELF(TM.Options.UseInitArray);
SmallDataSection =
getContext().getELFSection(".sdata", ELF::SHT_PROGBITS,
@@ -79,7 +79,8 @@ IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
if (Kind.isBSS() || Kind.isDataNoRel() || Kind.isCommon()) {
Type *Ty = GV->getType()->getElementType();
- return IsInSmallSection(TM.getDataLayout()->getTypeAllocSize(Ty));
+ return IsInSmallSection(
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Ty));
}
return false;
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h
index 1bd1272..c974204 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonTARGETOBJECTFILE_H
-#define HexagonTARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_HEXAGON_HEXAGONTARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/MC/MCSectionELF.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
index 87ce960..c960527 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
@@ -118,7 +118,6 @@ namespace {
public:
// Ctor.
HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
- MachineDominatorTree &MDT,
const MachineBranchProbabilityInfo *MBPI);
// initPacketizerState - initialize some internal flags.
@@ -146,23 +145,23 @@ namespace {
bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
MachineBasicBlock::iterator &MII,
const TargetRegisterClass* RC);
- bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
- unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit,
+ bool CanPromoteToDotNew(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit,
MachineBasicBlock::iterator &MII,
- const TargetRegisterClass* RC);
- bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
- unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit,
- MachineBasicBlock::iterator &MII);
- bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
- unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit);
- bool DemoteToDotOld(MachineInstr* MI);
- bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
- std::map <MachineInstr*, SUnit*> MIToSUnit);
- bool RestrictingDepExistInPacket(MachineInstr*,
- unsigned, std::map <MachineInstr*, SUnit*>);
+ const TargetRegisterClass *RC);
+ bool
+ CanPromoteToNewValue(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit,
+ MachineBasicBlock::iterator &MII);
+ bool CanPromoteToNewValueStore(
+ MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit);
+ bool DemoteToDotOld(MachineInstr *MI);
+ bool ArePredicatesComplements(
+ MachineInstr *MI1, MachineInstr *MI2,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit);
+ bool RestrictingDepExistInPacket(MachineInstr *, unsigned,
+ const std::map<MachineInstr *, SUnit *> &);
bool isNewifiable(MachineInstr* MI);
bool isCondInst(MachineInstr* MI);
bool tryAllocateResourcesForConstExt(MachineInstr* MI);
@@ -184,20 +183,19 @@ INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
// HexagonPacketizerList Ctor.
HexagonPacketizerList::HexagonPacketizerList(
- MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT,
- const MachineBranchProbabilityInfo *MBPI)
- : VLIWPacketizerList(MF, MLI, MDT, true){
+ MachineFunction &MF, MachineLoopInfo &MLI,
+ const MachineBranchProbabilityInfo *MBPI)
+ : VLIWPacketizerList(MF, MLI, true) {
this->MBPI = MBPI;
}
bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
- const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
- MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
const MachineBranchProbabilityInfo *MBPI =
&getAnalysis<MachineBranchProbabilityInfo>();
// Instantiate the packetizer.
- HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI);
+ HexagonPacketizerList Packetizer(Fn, MLI, MBPI);
// DFA state table should not be empty.
assert(Packetizer.getResourceTracker() && "Empty DFA table!");
@@ -266,7 +264,7 @@ bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
static bool IsIndirectCall(MachineInstr* MI) {
- return ((MI->getOpcode() == Hexagon::CALLR) ||
+ return ((MI->getOpcode() == Hexagon::J2_callr) ||
(MI->getOpcode() == Hexagon::CALLRv3));
}
@@ -275,7 +273,7 @@ static bool IsIndirectCall(MachineInstr* MI) {
void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
MachineFunction *MF = MI->getParent()->getParent();
- MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
+ MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
MI->getDebugLoc());
if (ResourceTracker->canReserveResources(PseudoMI)) {
@@ -293,7 +291,7 @@ bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
"Should only be called for constant extended instructions");
MachineFunction *MF = MI->getParent()->getParent();
- MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
+ MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
MI->getDebugLoc());
bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
MF->DeleteMachineInstr(PseudoMI);
@@ -305,7 +303,7 @@ bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
MachineFunction *MF = MI->getParent()->getParent();
- MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
+ MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
MI->getDebugLoc());
if (ResourceTracker->canReserveResources(PseudoMI)) {
@@ -324,8 +322,8 @@ bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
unsigned DepReg) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
- const HexagonRegisterInfo* QRI =
- (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ const HexagonRegisterInfo *QRI =
+ (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
// Check for lr dependence
if (DepReg == QRI->getRARegister()) {
@@ -368,7 +366,7 @@ static bool IsRegDependence(const SDep::Kind DepType) {
}
static bool IsDirectJump(MachineInstr* MI) {
- return (MI->getOpcode() == Hexagon::JMP);
+ return (MI->getOpcode() == Hexagon::J2_jump);
}
static bool IsSchedBarrier(MachineInstr* MI) {
@@ -384,8 +382,8 @@ static bool IsControlFlow(MachineInstr* MI) {
}
static bool IsLoopN(MachineInstr *MI) {
- return (MI->getOpcode() == Hexagon::LOOP0_i ||
- MI->getOpcode() == Hexagon::LOOP0_r);
+ return (MI->getOpcode() == Hexagon::J2_loop0i ||
+ MI->getOpcode() == Hexagon::J2_loop0r);
}
/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
@@ -536,9 +534,9 @@ static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
// if there is a new value store in the packet. Corollary, if there is
// already a store in a packet, there can not be a new value store.
// Arch Spec: 3.4.4.2
-bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
- MachineInstr *PacketMI, unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit) {
+bool HexagonPacketizerList::CanPromoteToNewValueStore(
+ MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
// Make sure we are looking at the store, that can be promoted.
if (!QII->mayBeNewStore(MI))
@@ -549,8 +547,8 @@ bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
GetStoreValueOperand(MI).getReg() != DepReg)
return false;
- const HexagonRegisterInfo* QRI =
- (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ const HexagonRegisterInfo *QRI =
+ (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
const MCInstrDesc& MCID = PacketMI->getDesc();
// first operand is always the result
@@ -561,12 +559,12 @@ bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
VE = CurrentPacketMIs.end();
(VI != VE); ++VI) {
- SUnit* PacketSU = MIToSUnit[*VI];
+ SUnit *PacketSU = MIToSUnit.find(*VI)->second;
if (PacketSU->getInstr()->getDesc().mayStore() ||
// if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
// then we don't need this
- PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
- PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
+ PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
+ PacketSU->getInstr()->getOpcode() == Hexagon::L2_deallocframe)
return false;
}
@@ -661,7 +659,7 @@ bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
(VI != VE); ++VI) {
- SUnit* TempSU = MIToSUnit[*VI];
+ SUnit *TempSU = MIToSUnit.find(*VI)->second;
MachineInstr* TempMI = TempSU->getInstr();
// Following condition is true for all the instructions until PacketMI is
@@ -717,15 +715,14 @@ bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
// can this MI to promoted to either
// new value store or new value jump
-bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
- SUnit *PacketSU, unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit,
- MachineBasicBlock::iterator &MII)
-{
+bool HexagonPacketizerList::CanPromoteToNewValue(
+ MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit,
+ MachineBasicBlock::iterator &MII) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
- const HexagonRegisterInfo* QRI =
- (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ const HexagonRegisterInfo *QRI =
+ (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
if (!QRI->Subtarget.hasV4TOps() ||
!QII->mayBeNewStore(MI))
return false;
@@ -746,12 +743,10 @@ bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
// 1. dot new on predicate - V2/V3/V4
// 2. dot new on stores NV/ST - V4
// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
-bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
- SUnit *PacketSU, unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit,
- MachineBasicBlock::iterator &MII,
- const TargetRegisterClass* RC )
-{
+bool HexagonPacketizerList::CanPromoteToDotNew(
+ MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit,
+ MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
// Already a dot new instruction.
if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
@@ -803,12 +798,12 @@ bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
// The P3 from a) and d) will be complements after
// a)'s P3 is converted to .new form
// Anti Dep between c) and b) is irrelevant for this case
-bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
- unsigned DepReg,
- std::map <MachineInstr*, SUnit*> MIToSUnit) {
+bool HexagonPacketizerList::RestrictingDepExistInPacket(
+ MachineInstr *MI, unsigned DepReg,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
- SUnit* PacketSUDep = MIToSUnit[MI];
+ SUnit *PacketSUDep = MIToSUnit.find(MI)->second;
for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
@@ -817,7 +812,7 @@ bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
if(!QII->isPredicated(*VIN)) continue;
// Scheduling Unit for current insn in the packet
- SUnit* PacketSU = MIToSUnit[*VIN];
+ SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
// Look at dependencies between current members of the packet
// and predicate defining instruction MI.
@@ -861,8 +856,9 @@ static unsigned getPredicatedRegister(MachineInstr *MI,
// Given two predicated instructions, this function detects whether
// the predicates are complements
-bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
- MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
+bool HexagonPacketizerList::ArePredicatesComplements(
+ MachineInstr *MI1, MachineInstr *MI2,
+ const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
@@ -873,7 +869,7 @@ bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
return false;
// Scheduling unit for candidate
- SUnit* SU = MIToSUnit[MI1];
+ SUnit *SU = MIToSUnit.find(MI1)->second;
// One corner case deals with the following scenario:
// Trying to add
@@ -898,7 +894,7 @@ bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
// Scheduling Unit for current insn in the packet
- SUnit* PacketSU = MIToSUnit[*VIN];
+ SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
// If this instruction in the packet is succeeded by the candidate...
if (PacketSU->isSucc(SU)) {
@@ -1007,8 +1003,8 @@ bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
MachineBasicBlock::iterator II = I;
const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
- const HexagonRegisterInfo* QRI =
- (const HexagonRegisterInfo *) TM.getRegisterInfo();
+ const HexagonRegisterInfo *QRI =
+ (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
// Inline asm cannot go in the packet.
@@ -1103,7 +1099,7 @@ bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
VI = CurrentPacketMIs.begin(),
VE = CurrentPacketMIs.end();
(VI != VE && maintainNewValueJump); ++VI) {
- SUnit* PacketSU = MIToSUnit[*VI];
+ SUnit *PacketSU = MIToSUnit.find(*VI)->second;
// NVJ can not be part of the dual jump - Arch Spec: section 7.8
if (PacketSU->getInstr()->getDesc().isCall()) {
@@ -1119,7 +1115,7 @@ bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
// first operand is also a reg), first reg is not defined in
// the same packet.
if (PacketSU->getInstr()->getDesc().mayStore() ||
- PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
+ PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
// Check #2.
(!secondRegMatch && NextMI->getOperand(1).isReg() &&
PacketSU->getInstr()->modifiesRegister(
@@ -1278,15 +1274,15 @@ bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
}
// For V4, special case ALLOCFRAME. Even though there is dependency
- // between ALLOCAFRAME and subsequent store, allow it to be
+ // between ALLOCFRAME and subsequent store, allow it to be
// packetized in a same packet. This implies that the store is using
- // caller's SP. Hense, offset needs to be updated accordingly.
+ // caller's SP. Hence, offset needs to be updated accordingly.
else if (DepType == SDep::Data
&& QRI->Subtarget.hasV4TOps()
- && J->getOpcode() == Hexagon::ALLOCFRAME
- && (I->getOpcode() == Hexagon::STrid
- || I->getOpcode() == Hexagon::STriw
- || I->getOpcode() == Hexagon::STrib)
+ && J->getOpcode() == Hexagon::S2_allocframe
+ && (I->getOpcode() == Hexagon::S2_storerd_io
+ || I->getOpcode() == Hexagon::S2_storeri_io
+ || I->getOpcode() == Hexagon::S2_storerb_io)
&& I->getOperand(0).getReg() == QRI->getStackRegister()
&& QII->isValidOffset(I->getOpcode(),
I->getOperand(1).getImm() -
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h b/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h
index 668ca98..edbe29a 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonVarargsCallingConvention.h
@@ -74,10 +74,14 @@ static bool CC_Hexagon32_VarArgs(unsigned ValNo, EVT ValVT,
}
const Type* ArgTy = LocVT.getTypeForEVT(State.getContext());
- unsigned Alignment =
- State.getTarget().getDataLayout()->getABITypeAlignment(ArgTy);
+ unsigned Alignment = State.getTarget()
+ .getSubtargetImpl()
+ ->getDataLayout()
+ ->getABITypeAlignment(ArgTy);
unsigned Size =
- State.getTarget().getDataLayout()->getTypeSizeInBits(ArgTy) / 8;
+ State.getTarget().getSubtargetImpl()->getDataLayout()->getTypeSizeInBits(
+ ArgTy) /
+ 8;
// If it's passed by value, then we need the size of the aggregate not of
// the pointer.
@@ -129,10 +133,14 @@ static bool RetCC_Hexagon32_VarArgs(unsigned ValNo, EVT ValVT,
}
const Type* ArgTy = LocVT.getTypeForEVT(State.getContext());
- unsigned Alignment =
- State.getTarget().getDataLayout()->getABITypeAlignment(ArgTy);
+ unsigned Alignment = State.getTarget()
+ .getSubtargetImpl()
+ ->getDataLayout()
+ ->getABITypeAlignment(ArgTy);
unsigned Size =
- State.getTarget().getDataLayout()->getTypeSizeInBits(ArgTy) / 8;
+ State.getTarget().getSubtargetImpl()->getDataLayout()->getTypeSizeInBits(
+ ArgTy) /
+ 8;
unsigned Offset3 = State.AllocateStack(Size, Alignment);
State.addLoc(CCValAssign::getMem(ValNo, ValVT.getSimpleVT(), Offset3,
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp
new file mode 100644
index 0000000..bdccf88
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp
@@ -0,0 +1,74 @@
+//===-- HexagonAsmBackend.cpp - Hexagon Assembler Backend -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonMCTargetDesc.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+
+using namespace llvm;
+
+namespace {
+
+class HexagonAsmBackend : public MCAsmBackend {
+public:
+ HexagonAsmBackend(Target const & /*T*/) {}
+
+ unsigned getNumFixupKinds() const override { return 0; }
+
+ void applyFixup(MCFixup const & /*Fixup*/, char * /*Data*/,
+ unsigned /*DataSize*/, uint64_t /*Value*/,
+ bool /*IsPCRel*/) const override {
+ return;
+ }
+
+ bool mayNeedRelaxation(MCInst const & /*Inst*/) const override {
+ return false;
+ }
+
+ bool fixupNeedsRelaxation(MCFixup const & /*Fixup*/, uint64_t /*Value*/,
+ MCRelaxableFragment const * /*DF*/,
+ MCAsmLayout const & /*Layout*/) const override {
+ llvm_unreachable("fixupNeedsRelaxation() unimplemented");
+ }
+
+ void relaxInstruction(MCInst const & /*Inst*/,
+ MCInst & /*Res*/) const override {
+ llvm_unreachable("relaxInstruction() unimplemented");
+ }
+
+ bool writeNopData(uint64_t /*Count*/,
+ MCObjectWriter * /*OW*/) const override {
+ return true;
+ }
+};
+} // end anonymous namespace
+
+namespace {
+class ELFHexagonAsmBackend : public HexagonAsmBackend {
+ uint8_t OSABI;
+
+public:
+ ELFHexagonAsmBackend(Target const &T, uint8_t OSABI)
+ : HexagonAsmBackend(T), OSABI(OSABI) {}
+
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
+ StringRef CPU("HexagonV4");
+ return createHexagonELFObjectWriter(OS, OSABI, CPU);
+ }
+};
+} // end anonymous namespace
+
+namespace llvm {
+MCAsmBackend *createHexagonAsmBackend(Target const &T,
+ MCRegisterInfo const & /*MRI*/,
+ StringRef TT, StringRef /*CPU*/) {
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
+ return new ELFHexagonAsmBackend(T, OSABI);
+}
+}
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
index f8be77c..8e02f79 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
@@ -14,11 +14,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGONBASEINFO_H
-#define HEXAGONBASEINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONBASEINFO_H
+#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONBASEINFO_H
#include "HexagonMCTargetDesc.h"
#include "llvm/Support/ErrorHandling.h"
+#include <stdint.h>
namespace llvm {
@@ -189,6 +190,15 @@ namespace HexagonII {
MO_GPREL
};
+ enum class InstParseBits : uint32_t {
+ INST_PARSE_MASK = 0x0000c000,
+ INST_PARSE_PACKET_END = 0x0000c000,
+ INST_PARSE_LOOP_END = 0x00008000,
+ INST_PARSE_NOT_END = 0x00004000,
+ INST_PARSE_DUPLEX = 0x00000000,
+ INST_PARSE_EXTENDER = 0x00000000
+ };
+
} // End namespace HexagonII.
} // End namespace llvm.
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonELFObjectWriter.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonELFObjectWriter.cpp
new file mode 100644
index 0000000..56c9dc7
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonELFObjectWriter.cpp
@@ -0,0 +1,62 @@
+//===-- HexagonELFObjectWriter.cpp - Hexagon Target Descriptions ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "hexagon-elf-writer"
+
+using namespace llvm;
+using namespace Hexagon;
+
+namespace {
+
+class HexagonELFObjectWriter : public MCELFObjectTargetWriter {
+private:
+ StringRef CPU;
+
+public:
+ HexagonELFObjectWriter(uint8_t OSABI, StringRef C);
+
+ virtual unsigned GetRelocType(MCValue const &Target, MCFixup const &Fixup,
+ bool IsPCRel) const override;
+};
+}
+
+HexagonELFObjectWriter::HexagonELFObjectWriter(uint8_t OSABI, StringRef C)
+ : MCELFObjectTargetWriter(/*Is64bit*/ false, OSABI, ELF::EM_HEXAGON,
+ /*HasRelocationAddend*/ true),
+ CPU(C) {}
+
+unsigned HexagonELFObjectWriter::GetRelocType(MCValue const &/*Target*/,
+ MCFixup const &Fixup,
+ bool IsPCRel) const {
+ unsigned Type = (unsigned)ELF::R_HEX_NONE;
+ llvm::MCFixupKind Kind = Fixup.getKind();
+
+ switch (Kind) {
+ default:
+ DEBUG(dbgs() << "unrecognized relocation " << Fixup.getKind() << "\n");
+ llvm_unreachable("Unimplemented Fixup kind!");
+ break;
+ case FK_Data_4:
+ Type = (IsPCRel) ? ELF::R_HEX_32_PCREL : ELF::R_HEX_32;
+ break;
+ }
+ return Type;
+}
+
+MCObjectWriter *llvm::createHexagonELFObjectWriter(raw_ostream &OS,
+ uint8_t OSABI,
+ StringRef CPU) {
+ MCELFObjectTargetWriter *MOTW = new HexagonELFObjectWriter(OSABI, CPU);
+ return createELFObjectWriter(MOTW, OS, /*IsLittleEndian*/ true);
+} \ No newline at end of file
diff --git a/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp
index 9942a60..5c6f036 100644
--- a/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp
@@ -29,6 +29,45 @@ using namespace llvm;
#include "HexagonGenAsmWriter.inc"
const char HexagonInstPrinter::PacketPadding = '\t';
+// Return the minimum value that a constant extendable operand can have
+// without being extended.
+static int getMinValue(uint64_t TSFlags) {
+ unsigned isSigned =
+ (TSFlags >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
+ unsigned bits =
+ (TSFlags >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
+
+ if (isSigned)
+ return -1U << (bits - 1);
+
+ return 0;
+}
+
+// Return the maximum value that a constant extendable operand can have
+// without being extended.
+static int getMaxValue(uint64_t TSFlags) {
+ unsigned isSigned =
+ (TSFlags >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
+ unsigned bits =
+ (TSFlags >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
+
+ if (isSigned)
+ return ~(-1U << (bits - 1));
+
+ return ~(-1U << bits);
+}
+
+// Return true if the instruction must be extended.
+static bool isExtended(uint64_t TSFlags) {
+ return (TSFlags >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
+}
+
+// Currently just used in an assert statement
+static bool isExtendable(uint64_t TSFlags) LLVM_ATTRIBUTE_UNUSED;
+// Return true if the instruction may be extended based on the operand value.
+static bool isExtendable(uint64_t TSFlags) {
+ return (TSFlags >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
+}
StringRef HexagonInstPrinter::getOpcodeName(unsigned Opcode) const {
return MII.getName(Opcode);
@@ -52,14 +91,14 @@ void HexagonInstPrinter::printInst(const HexagonMCInst *MI, raw_ostream &O,
// Ending a harware loop is different from ending an regular packet.
assert(MI->isPacketEnd() && "Loop-end must also end the packet");
- if (MI->isPacketStart()) {
+ if (MI->isPacketBegin()) {
// There must be a packet to end a loop.
// FIXME: when shuffling is always run, this shouldn't be needed.
HexagonMCInst Nop;
StringRef NoAnnot;
- Nop.setOpcode (Hexagon::NOP);
- Nop.setPacketStart (MI->isPacketStart());
+ Nop.setOpcode (Hexagon::A2_nop);
+ Nop.setPacketBegin (MI->isPacketBegin());
printInst (&Nop, O, NoAnnot);
}
@@ -71,7 +110,7 @@ void HexagonInstPrinter::printInst(const HexagonMCInst *MI, raw_ostream &O,
}
else {
// Prefix the insn opening the packet.
- if (MI->isPacketStart())
+ if (MI->isPacketBegin())
O << PacketPadding << startPacket << '\n';
printInstruction(MI, O);
@@ -116,9 +155,20 @@ void HexagonInstPrinter::printImmOperand(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printExtOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
- const HexagonMCInst *HMCI = static_cast<const HexagonMCInst*>(MI);
- if (HMCI->isConstExtended())
+ const MCOperand &MO = MI->getOperand(OpNo);
+ const MCInstrDesc &MII = getMII().get(MI->getOpcode());
+
+ assert((isExtendable(MII.TSFlags) || isExtended(MII.TSFlags)) &&
+ "Expecting an extendable operand");
+
+ if (MO.isExpr() || isExtended(MII.TSFlags)) {
O << "#";
+ } else if (MO.isImm()) {
+ int ImmValue = MO.getImm();
+ if (ImmValue < getMinValue(MII.TSFlags) ||
+ ImmValue > getMaxValue(MII.TSFlags))
+ O << "#";
+ }
printOperand(MI, OpNo, O);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.h
index 09e3f88..55ae95c 100644
--- a/contrib/llvm/lib/Target/Hexagon/InstPrinter/HexagonInstPrinter.h
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGONINSTPRINTER_H
-#define HEXAGONINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_INSTPRINTER_HEXAGONINSTPRINTER_H
+#define LLVM_LIB_TARGET_HEXAGON_INSTPRINTER_HEXAGONINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp
index 141e514..ad5e0fb 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.cpp
@@ -24,7 +24,6 @@ HexagonMCAsmInfo::HexagonMCAsmInfo(StringRef TT) {
Data64bitsDirective = nullptr; // .xword is only supported by V9.
ZeroDirective = "\t.skip\t";
CommentString = "//";
- HasLEB128 = true;
LCOMMDirectiveAlignmentType = LCOMM::ByteAlignment;
InlineAsmStart = "# InlineAsm Start";
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h
index 953d804..ab18f0b 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HexagonMCASMINFO_H
-#define HexagonMCASMINFO_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCASMINFO_H
+#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCASMINFO_H
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCAsmInfoELF.h"
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
new file mode 100644
index 0000000..487872a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
@@ -0,0 +1,88 @@
+//===-- HexagonMCCodeEmitter.cpp - Hexagon Target Descriptions ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "MCTargetDesc/HexagonBaseInfo.h"
+#include "MCTargetDesc/HexagonMCCodeEmitter.h"
+#include "MCTargetDesc/HexagonMCInst.h"
+#include "MCTargetDesc/HexagonMCTargetDesc.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "mccodeemitter"
+
+using namespace llvm;
+using namespace Hexagon;
+
+STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
+
+namespace {
+/// \brief 10.6 Instruction Packets
+/// Possible values for instruction packet parse field.
+enum class ParseField { duplex = 0x0, last0 = 0x1, last1 = 0x2, end = 0x3 };
+/// \brief Returns the packet bits based on instruction position.
+uint32_t getPacketBits(HexagonMCInst const &HMI) {
+ unsigned const ParseFieldOffset = 14;
+ ParseField Field = HMI.isPacketEnd() ? ParseField::end : ParseField::last0;
+ return static_cast <uint32_t> (Field) << ParseFieldOffset;
+}
+void emitLittleEndian(uint64_t Binary, raw_ostream &OS) {
+ OS << static_cast<uint8_t>((Binary >> 0x00) & 0xff);
+ OS << static_cast<uint8_t>((Binary >> 0x08) & 0xff);
+ OS << static_cast<uint8_t>((Binary >> 0x10) & 0xff);
+ OS << static_cast<uint8_t>((Binary >> 0x18) & 0xff);
+}
+}
+
+HexagonMCCodeEmitter::HexagonMCCodeEmitter(MCInstrInfo const &aMII,
+ MCSubtargetInfo const &aMST,
+ MCContext &aMCT)
+ : MST(aMST), MCT(aMCT) {}
+
+void HexagonMCCodeEmitter::EncodeInstruction(MCInst const &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ MCSubtargetInfo const &STI) const {
+ HexagonMCInst const &HMB = static_cast<HexagonMCInst const &>(MI);
+ uint64_t Binary = getBinaryCodeForInstr(HMB, Fixups, STI) | getPacketBits(HMB);
+ assert(HMB.getDesc().getSize() == 4 && "All instructions should be 32bit");
+ emitLittleEndian(Binary, OS);
+ ++MCNumEmitted;
+}
+
+unsigned
+HexagonMCCodeEmitter::getMachineOpValue(MCInst const &MI, MCOperand const &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ MCSubtargetInfo const &STI) const {
+ if (MO.isReg())
+ return MCT.getRegisterInfo()->getEncodingValue(MO.getReg());
+ if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ llvm_unreachable("Only Immediates and Registers implemented right now");
+}
+
+MCSubtargetInfo const &HexagonMCCodeEmitter::getSubtargetInfo() const {
+ return MST;
+}
+
+MCCodeEmitter *llvm::createHexagonMCCodeEmitter(MCInstrInfo const &MII,
+ MCRegisterInfo const &MRI,
+ MCSubtargetInfo const &MST,
+ MCContext &MCT) {
+ return new HexagonMCCodeEmitter(MII, MST, MCT);
+}
+
+#include "HexagonGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.h
new file mode 100644
index 0000000..96048ad
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.h
@@ -0,0 +1,60 @@
+//===-- HexagonMCCodeEmitter.h - Hexagon Target Descriptions ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Definition for classes that emit Hexagon machine code from MCInsts
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef HEXAGONMCCODEEMITTER_H
+#define HEXAGONMCCODEEMITTER_H
+
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class HexagonMCCodeEmitter : public MCCodeEmitter {
+ MCSubtargetInfo const &MST;
+ MCContext &MCT;
+
+public:
+ HexagonMCCodeEmitter(MCInstrInfo const &aMII, MCSubtargetInfo const &aMST,
+ MCContext &aMCT);
+
+ MCSubtargetInfo const &getSubtargetInfo() const;
+
+ void EncodeInstruction(MCInst const &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ MCSubtargetInfo const &STI) const override;
+
+ // \brief TableGen'erated function for getting the
+ // binary encoding for an instruction.
+ uint64_t getBinaryCodeForInstr(MCInst const &MI,
+ SmallVectorImpl<MCFixup> &Fixups,
+ MCSubtargetInfo const &STI) const;
+
+ /// \brief Return binary encoding of operand.
+ unsigned getMachineOpValue(MCInst const &MI, MCOperand const &MO,
+ SmallVectorImpl<MCFixup> &Fixups,
+ MCSubtargetInfo const &STI) const;
+
+private:
+ HexagonMCCodeEmitter(HexagonMCCodeEmitter const &) LLVM_DELETED_FUNCTION;
+ void operator=(HexagonMCCodeEmitter const &) LLVM_DELETED_FUNCTION;
+}; // class HexagonMCCodeEmitter
+
+} // namespace llvm
+
+#endif /* HEXAGONMCCODEEMITTER_H */
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp
index 9260b4a..d8b9a25 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.cpp
@@ -18,27 +18,77 @@
using namespace llvm;
+std::unique_ptr <MCInstrInfo const> HexagonMCInst::MCII;
+
+HexagonMCInst::HexagonMCInst() : MCInst() {}
+HexagonMCInst::HexagonMCInst(MCInstrDesc const &mcid) : MCInst() {}
+
+void HexagonMCInst::AppendImplicitOperands(MCInst &MCI) {
+ MCI.addOperand(MCOperand::CreateImm(0));
+ MCI.addOperand(MCOperand::CreateInst(nullptr));
+}
+
+std::bitset<16> HexagonMCInst::GetImplicitBits(MCInst const &MCI) {
+ SanityCheckImplicitOperands(MCI);
+ std::bitset<16> Bits(MCI.getOperand(MCI.getNumOperands() - 2).getImm());
+ return Bits;
+}
+
+void HexagonMCInst::SetImplicitBits(MCInst &MCI, std::bitset<16> Bits) {
+ SanityCheckImplicitOperands(MCI);
+ MCI.getOperand(MCI.getNumOperands() - 2).setImm(Bits.to_ulong());
+}
+
+void HexagonMCInst::setPacketBegin(bool f) {
+ std::bitset<16> Bits(GetImplicitBits(*this));
+ Bits.set(packetBeginIndex, f);
+ SetImplicitBits(*this, Bits);
+}
+
+bool HexagonMCInst::isPacketBegin() const {
+ std::bitset<16> Bits(GetImplicitBits(*this));
+ return Bits.test(packetBeginIndex);
+}
+
+void HexagonMCInst::setPacketEnd(bool f) {
+ std::bitset<16> Bits(GetImplicitBits(*this));
+ Bits.set(packetEndIndex, f);
+ SetImplicitBits(*this, Bits);
+}
+
+bool HexagonMCInst::isPacketEnd() const {
+ std::bitset<16> Bits(GetImplicitBits(*this));
+ return Bits.test(packetEndIndex);
+}
+
+void HexagonMCInst::resetPacket() {
+ setPacketBegin(false);
+ setPacketEnd(false);
+}
+
// Return the slots used by the insn.
-unsigned HexagonMCInst::getUnits(const HexagonTargetMachine* TM) const {
- const HexagonInstrInfo* QII = TM->getInstrInfo();
- const InstrItineraryData* II = TM->getInstrItineraryData();
- const InstrStage*
- IS = II->beginStage(QII->get(this->getOpcode()).getSchedClass());
+unsigned HexagonMCInst::getUnits(const HexagonTargetMachine *TM) const {
+ const HexagonInstrInfo *QII = TM->getSubtargetImpl()->getInstrInfo();
+ const InstrItineraryData *II =
+ TM->getSubtargetImpl()->getInstrItineraryData();
+ const InstrStage *IS =
+ II->beginStage(QII->get(this->getOpcode()).getSchedClass());
return (IS->getUnits());
}
+MCInstrDesc const& HexagonMCInst::getDesc() const { return (MCII->get(getOpcode())); }
+
// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInst::getType() const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}
// Return whether the insn is an actual insn.
bool HexagonMCInst::isCanon() const {
- return (!MCID->isPseudo() &&
- !isPrefix() &&
+ return (!getDesc().isPseudo() && !isPrefix() &&
getType() != HexagonII::TypeENDLOOP);
}
@@ -49,30 +99,30 @@ bool HexagonMCInst::isPrefix() const {
// Return whether the insn is solo, i.e., cannot be in a packet.
bool HexagonMCInst::isSolo() const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
// Return whether the insn is a new-value consumer.
bool HexagonMCInst::isNewValue() const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
// Return whether the instruction is a legal new-value producer.
bool HexagonMCInst::hasNewValue() const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
// Return the operand that consumes or produces a new value.
-const MCOperand& HexagonMCInst::getNewValue() const {
- const uint64_t F = MCID->TSFlags;
- const unsigned O = (F >> HexagonII::NewValueOpPos) &
- HexagonII::NewValueOpMask;
- const MCOperand& MCO = getOperand(O);
+const MCOperand &HexagonMCInst::getNewValue() const {
+ const uint64_t F = getDesc().TSFlags;
+ const unsigned O =
+ (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
+ const MCOperand &MCO = getOperand(O);
- assert ((isNewValue() || hasNewValue()) && MCO.isReg());
+ assert((isNewValue() || hasNewValue()) && MCO.isReg());
return (MCO);
}
@@ -92,9 +142,9 @@ bool HexagonMCInst::isConstExtended(void) const {
return false;
short ExtOpNum = getCExtOpNum();
- int MinValue = getMinValue();
- int MaxValue = getMaxValue();
- const MCOperand& MO = getOperand(ExtOpNum);
+ int MinValue = getMinValue();
+ int MaxValue = getMaxValue();
+ const MCOperand &MO = getOperand(ExtOpNum);
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
@@ -115,46 +165,45 @@ bool HexagonMCInst::isConstExtended(void) const {
// Return whether the instruction must be always extended.
bool HexagonMCInst::isExtended(void) const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
// Return true if the instruction may be extended based on the operand value.
bool HexagonMCInst::isExtendable(void) const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}
// Return number of bits in the constant extended operand.
unsigned HexagonMCInst::getBitCount(void) const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
// Return constant extended operand number.
unsigned short HexagonMCInst::getCExtOpNum(void) const {
- const uint64_t F = MCID->TSFlags;
+ const uint64_t F = getDesc().TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
// Return whether the operand can be constant extended.
bool HexagonMCInst::isOperandExtended(const unsigned short OperandNum) const {
- const uint64_t F = MCID->TSFlags;
- return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
- == OperandNum;
+ const uint64_t F = getDesc().TSFlags;
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
+ OperandNum;
}
// Return the min value that a constant extendable operand can have
// without being extended.
int HexagonMCInst::getMinValue(void) const {
- const uint64_t F = MCID->TSFlags;
- unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
- & HexagonII::ExtentSignedMask;
- unsigned bits = (F >> HexagonII::ExtentBitsPos)
- & HexagonII::ExtentBitsMask;
+ const uint64_t F = getDesc().TSFlags;
+ unsigned isSigned =
+ (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
- return -1 << (bits - 1);
+ return -1U << (bits - 1);
else
return 0;
}
@@ -162,14 +211,13 @@ int HexagonMCInst::getMinValue(void) const {
// Return the max value that a constant extendable operand can have
// without being extended.
int HexagonMCInst::getMaxValue(void) const {
- const uint64_t F = MCID->TSFlags;
- unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
- & HexagonII::ExtentSignedMask;
- unsigned bits = (F >> HexagonII::ExtentBitsPos)
- & HexagonII::ExtentBitsMask;
+ const uint64_t F = getDesc().TSFlags;
+ unsigned isSigned =
+ (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
+ unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
- return ~(-1 << (bits - 1));
+ return ~(-1U << (bits - 1));
else
- return ~(-1 << bits);
+ return ~(-1U << bits);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h
index 3c52d456..ce9a8db 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInst.h
@@ -11,90 +11,98 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGONMCINST_H
-#define HEXAGONMCINST_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINST_H
+#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINST_H
#include "HexagonTargetMachine.h"
#include "llvm/MC/MCInst.h"
+#include <memory>
+extern "C" void LLVMInitializeHexagonTargetMC();
namespace llvm {
- class MCOperand;
+class MCOperand;
- class HexagonMCInst: public MCInst {
- // MCID is set during instruction lowering.
- // It is needed in order to access TSFlags for
- // use in checking MC instruction properties.
- const MCInstrDesc *MCID;
+class HexagonMCInst : public MCInst {
+ friend void ::LLVMInitializeHexagonTargetMC();
+ // Used to access TSFlags
+ static std::unique_ptr <MCInstrInfo const> MCII;
- // Packet start and end markers
- unsigned packetStart: 1, packetEnd: 1;
+public:
+ explicit HexagonMCInst();
+ HexagonMCInst(const MCInstrDesc &mcid);
- public:
- explicit HexagonMCInst():
- MCInst(), MCID(nullptr), packetStart(0), packetEnd(0) {};
- HexagonMCInst(const MCInstrDesc& mcid):
- MCInst(), MCID(&mcid), packetStart(0), packetEnd(0) {};
+ static void AppendImplicitOperands(MCInst &MCI);
+ static std::bitset<16> GetImplicitBits(MCInst const &MCI);
+ static void SetImplicitBits(MCInst &MCI, std::bitset<16> Bits);
+ static void SanityCheckImplicitOperands(MCInst const &MCI) {
+ assert(MCI.getNumOperands() >= 2 && "At least the two implicit operands");
+ assert(MCI.getOperand(MCI.getNumOperands() - 1).isInst() &&
+ "Implicit bits and flags");
+ assert(MCI.getOperand(MCI.getNumOperands() - 2).isImm() &&
+ "Parent pointer");
+ }
- bool isPacketStart() const { return (packetStart); };
- bool isPacketEnd() const { return (packetEnd); };
- void setPacketStart(bool Y) { packetStart = Y; };
- void setPacketEnd(bool Y) { packetEnd = Y; };
- void resetPacket() { setPacketStart(false); setPacketEnd(false); };
+ void setPacketBegin(bool Y);
+ bool isPacketBegin() const;
+ static const size_t packetBeginIndex = 0;
+ void setPacketEnd(bool Y);
+ bool isPacketEnd() const;
+ static const size_t packetEndIndex = 1;
+ void resetPacket();
- // Return the slots used by the insn.
- unsigned getUnits(const HexagonTargetMachine* TM) const;
+ // Return the slots used by the insn.
+ unsigned getUnits(const HexagonTargetMachine *TM) const;
- // Return the Hexagon ISA class for the insn.
- unsigned getType() const;
+ // Return the Hexagon ISA class for the insn.
+ unsigned getType() const;
- void setDesc(const MCInstrDesc& mcid) { MCID = &mcid; };
- const MCInstrDesc& getDesc(void) const { return *MCID; };
+ MCInstrDesc const &getDesc() const;
- // Return whether the insn is an actual insn.
- bool isCanon() const;
+ // Return whether the insn is an actual insn.
+ bool isCanon() const;
- // Return whether the insn is a prefix.
- bool isPrefix() const;
+ // Return whether the insn is a prefix.
+ bool isPrefix() const;
- // Return whether the insn is solo, i.e., cannot be in a packet.
- bool isSolo() const;
+ // Return whether the insn is solo, i.e., cannot be in a packet.
+ bool isSolo() const;
- // Return whether the instruction needs to be constant extended.
- bool isConstExtended() const;
+ // Return whether the instruction needs to be constant extended.
+ bool isConstExtended() const;
- // Return constant extended operand number.
- unsigned short getCExtOpNum(void) const;
+ // Return constant extended operand number.
+ unsigned short getCExtOpNum(void) const;
- // Return whether the insn is a new-value consumer.
- bool isNewValue() const;
+ // Return whether the insn is a new-value consumer.
+ bool isNewValue() const;
- // Return whether the instruction is a legal new-value producer.
- bool hasNewValue() const;
+ // Return whether the instruction is a legal new-value producer.
+ bool hasNewValue() const;
- // Return the operand that consumes or produces a new value.
- const MCOperand& getNewValue() const;
+ // Return the operand that consumes or produces a new value.
+ const MCOperand &getNewValue() const;
- // Return number of bits in the constant extended operand.
- unsigned getBitCount(void) const;
+ // Return number of bits in the constant extended operand.
+ unsigned getBitCount(void) const;
- private:
- // Return whether the instruction must be always extended.
- bool isExtended() const;
+private:
+ // Return whether the instruction must be always extended.
+ bool isExtended() const;
- // Return true if the insn may be extended based on the operand value.
- bool isExtendable() const;
+ // Return true if the insn may be extended based on the operand value.
+ bool isExtendable() const;
- // Return true if the operand can be constant extended.
- bool isOperandExtended(const unsigned short OperandNum) const;
+ // Return true if the operand can be constant extended.
+ bool isOperandExtended(const unsigned short OperandNum) const;
- // Return the min value that a constant extendable operand can have
- // without being extended.
- int getMinValue() const;
+ // Return the min value that a constant extendable operand can have
+ // without being extended.
+ int getMinValue() const;
- // Return the max value that a constant extendable operand can have
- // without being extended.
- int getMaxValue() const;
- };
+ // Return the max value that a constant extendable operand can have
+ // without being extended.
+ int getMaxValue() const;
+};
}
#endif
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp
index 581674d..ae5a22b 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp
@@ -13,8 +13,10 @@
#include "HexagonMCTargetDesc.h"
#include "HexagonMCAsmInfo.h"
-#include "InstPrinter/HexagonInstPrinter.h"
+#include "MCTargetDesc/HexagonInstPrinter.h"
+#include "MCTargetDesc/HexagonMCInst.h"
#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
@@ -46,9 +48,17 @@ static MCRegisterInfo *createHexagonMCRegisterInfo(StringRef TT) {
return X;
}
-static MCSubtargetInfo *createHexagonMCSubtargetInfo(StringRef TT,
- StringRef CPU,
- StringRef FS) {
+static MCStreamer *
+createHexagonELFStreamer(MCContext &Context, MCAsmBackend &MAB,
+ raw_ostream &OS, MCCodeEmitter *CE,
+ bool RelaxAll) {
+ MCELFStreamer *ES = new MCELFStreamer(Context, MAB, OS, CE);
+ return ES;
+}
+
+
+static MCSubtargetInfo *
+createHexagonMCSubtargetInfo(StringRef TT, StringRef CPU, StringRef FS) {
MCSubtargetInfo *X = new MCSubtargetInfo();
InitHexagonMCSubtargetInfo(X, TT, CPU, FS);
return X;
@@ -59,22 +69,40 @@ static MCAsmInfo *createHexagonMCAsmInfo(const MCRegisterInfo &MRI,
MCAsmInfo *MAI = new HexagonMCAsmInfo(TT);
// VirtualFP = (R30 + #0).
- MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(
- nullptr, Hexagon::R30, 0);
+ MCCFIInstruction Inst =
+ MCCFIInstruction::createDefCfa(nullptr, Hexagon::R30, 0);
MAI->addInitialFrameState(Inst);
return MAI;
}
+static MCStreamer *createMCStreamer(Target const &T, StringRef TT,
+ MCContext &Context, MCAsmBackend &MAB,
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ MCSubtargetInfo const &STI, bool RelaxAll) {
+ MCStreamer *ES = createHexagonELFStreamer(Context, MAB, OS, Emitter, RelaxAll);
+ new MCTargetStreamer(*ES);
+ return ES;
+}
+
+
static MCCodeGenInfo *createHexagonMCCodeGenInfo(StringRef TT, Reloc::Model RM,
- CodeModel::Model CM,
- CodeGenOpt::Level OL) {
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
// For the time being, use static relocations, since there's really no
// support for PIC yet.
X->InitMCCodeGenInfo(Reloc::Static, CM, OL);
return X;
}
+static MCInstPrinter *createHexagonMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new HexagonInstPrinter(MAI, MII, MRI);
+}
// Force static initialization.
extern "C" void LLVMInitializeHexagonTargetMC() {
@@ -86,7 +114,9 @@ extern "C" void LLVMInitializeHexagonTargetMC() {
createHexagonMCCodeGenInfo);
// Register the MC instruction info.
- TargetRegistry::RegisterMCInstrInfo(TheHexagonTarget, createHexagonMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheHexagonTarget,
+ createHexagonMCInstrInfo);
+ HexagonMCInst::MCII.reset (createHexagonMCInstrInfo());
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(TheHexagonTarget,
@@ -95,4 +125,19 @@ extern "C" void LLVMInitializeHexagonTargetMC() {
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(TheHexagonTarget,
createHexagonMCSubtargetInfo);
+
+ // Register the MC Code Emitter
+ TargetRegistry::RegisterMCCodeEmitter(TheHexagonTarget,
+ createHexagonMCCodeEmitter);
+
+ // Register the MC Inst Printer
+ TargetRegistry::RegisterMCInstPrinter(TheHexagonTarget,
+ createHexagonMCInstPrinter);
+
+ // Register the asm backend
+ TargetRegistry::RegisterMCAsmBackend(TheHexagonTarget,
+ createHexagonAsmBackend);
+
+ // Register the obj streamer
+ TargetRegistry::RegisterMCObjectStreamer(TheHexagonTarget, createMCStreamer);
}
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h
index 2238b1a..02fd516 100644
--- a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.h
@@ -11,15 +11,37 @@
//
//===----------------------------------------------------------------------===//
-#ifndef HEXAGONMCTARGETDESC_H
-#define HEXAGONMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCTARGETDESC_H
+#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCTARGETDESC_H
+
+#include <cstdint>
namespace llvm {
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
class MCSubtargetInfo;
class Target;
+class StringRef;
+class raw_ostream;
extern Target TheHexagonTarget;
+MCCodeEmitter *createHexagonMCCodeEmitter(MCInstrInfo const &MCII,
+ MCRegisterInfo const &MRI,
+ MCSubtargetInfo const &MST,
+ MCContext &MCT);
+
+MCAsmBackend *createHexagonAsmBackend(Target const &T,
+ MCRegisterInfo const &MRI, StringRef TT,
+ StringRef CPU);
+
+MCObjectWriter *createHexagonELFObjectWriter(raw_ostream &OS, uint8_t OSABI,
+ StringRef CPU);
+
} // End llvm namespace
// Define symbolic names for Hexagon registers. This defines a mapping from
diff --git a/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h b/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h
index 5afbd20..7fae505 100644
--- a/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h
+++ b/contrib/llvm/lib/Target/MSP430/InstPrinter/MSP430InstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430INSTPRINTER_H
-#define MSP430INSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_MSP430_INSTPRINTER_MSP430INSTPRINTER_H
+#define LLVM_LIB_TARGET_MSP430_INSTPRINTER_MSP430INSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h
index ef805bb..2c9532d 100644
--- a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430TARGETASMINFO_H
-#define MSP430TARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_MSP430_MCTARGETDESC_MSP430MCASMINFO_H
+#define LLVM_LIB_TARGET_MSP430_MCTARGETDESC_MSP430MCASMINFO_H
#include "llvm/MC/MCAsmInfoELF.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp
index 72adb45..4c70803 100644
--- a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.cpp
@@ -39,7 +39,7 @@ static MCInstrInfo *createMSP430MCInstrInfo() {
static MCRegisterInfo *createMSP430MCRegisterInfo(StringRef TT) {
MCRegisterInfo *X = new MCRegisterInfo();
- InitMSP430MCRegisterInfo(X, MSP430::PCW);
+ InitMSP430MCRegisterInfo(X, MSP430::PC);
return X;
}
diff --git a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h
index 7f3505c..586f5d9 100644
--- a/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h
+++ b/contrib/llvm/lib/Target/MSP430/MCTargetDesc/MSP430MCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430MCTARGETDESC_H
-#define MSP430MCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_MSP430_MCTARGETDESC_MSP430MCTARGETDESC_H
+#define LLVM_LIB_TARGET_MSP430_MCTARGETDESC_MSP430MCTARGETDESC_H
namespace llvm {
class Target;
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430.h b/contrib/llvm/lib/Target/MSP430/MSP430.h
index 4574ce5..796f252 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MSP430_H
-#define LLVM_TARGET_MSP430_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430_H
+#define LLVM_LIB_TARGET_MSP430_MSP430_H
#include "MCTargetDesc/MSP430MCTargetDesc.h"
#include "llvm/Target/TargetMachine.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp b/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp
index a96930a..ffcf222 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430BranchSelector.cpp
@@ -17,6 +17,7 @@
#include "MSP430.h"
#include "MSP430InstrInfo.h"
+#include "MSP430Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -54,7 +55,7 @@ FunctionPass *llvm::createMSP430BranchSelectionPass() {
bool MSP430BSel::runOnMachineFunction(MachineFunction &Fn) {
const MSP430InstrInfo *TII =
- static_cast<const MSP430InstrInfo*>(Fn.getTarget().getInstrInfo());
+ static_cast<const MSP430InstrInfo *>(Fn.getSubtarget().getInstrInfo());
// Give the blocks of the function a dense, in-order, numbering.
Fn.RenumberBlocks();
BlockSizes.resize(Fn.getNumBlockIDs());
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td b/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td
index 8a69d1e..b38f578 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td
+++ b/contrib/llvm/lib/Target/MSP430/MSP430CallingConv.td
@@ -17,7 +17,7 @@ def RetCC_MSP430 : CallingConv<[
CCIfType<[i8], CCAssignToReg<[R15B, R14B, R13B, R12B]>>,
// i16 are returned in registers R15, R14, R13, R12
- CCIfType<[i16], CCAssignToReg<[R15W, R14W, R13W, R12W]>>
+ CCIfType<[i16], CCAssignToReg<[R15, R14, R13, R12]>>
]>;
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp
index 82c8b29..d6cb9f6 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.cpp
@@ -14,6 +14,7 @@
#include "MSP430FrameLowering.h"
#include "MSP430InstrInfo.h"
#include "MSP430MachineFunctionInfo.h"
+#include "MSP430Subtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -43,7 +44,7 @@ void MSP430FrameLowering::emitPrologue(MachineFunction &MF) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
MSP430MachineFunctionInfo *MSP430FI = MF.getInfo<MSP430MachineFunctionInfo>();
const MSP430InstrInfo &TII =
- *static_cast<const MSP430InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const MSP430InstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineBasicBlock::iterator MBBI = MBB.begin();
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
@@ -62,18 +63,18 @@ void MSP430FrameLowering::emitPrologue(MachineFunction &MF) const {
// Update the frame offset adjustment.
MFI->setOffsetAdjustment(-NumBytes);
- // Save FPW into the appropriate stack slot...
+ // Save FP into the appropriate stack slot...
BuildMI(MBB, MBBI, DL, TII.get(MSP430::PUSH16r))
- .addReg(MSP430::FPW, RegState::Kill);
+ .addReg(MSP430::FP, RegState::Kill);
- // Update FPW with the new base value...
- BuildMI(MBB, MBBI, DL, TII.get(MSP430::MOV16rr), MSP430::FPW)
- .addReg(MSP430::SPW);
+ // Update FP with the new base value...
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::MOV16rr), MSP430::FP)
+ .addReg(MSP430::SP);
// Mark the FramePtr as live-in in every block except the entry.
for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
I != E; ++I)
- I->addLiveIn(MSP430::FPW);
+ I->addLiveIn(MSP430::FP);
} else
NumBytes = StackSize - MSP430FI->getCalleeSavedFrameSize();
@@ -85,18 +86,18 @@ void MSP430FrameLowering::emitPrologue(MachineFunction &MF) const {
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
- if (NumBytes) { // adjust stack pointer: SPW -= numbytes
- // If there is an SUB16ri of SPW immediately before this instruction, merge
+ if (NumBytes) { // adjust stack pointer: SP -= numbytes
+ // If there is an SUB16ri of SP immediately before this instruction, merge
// the two.
//NumBytes -= mergeSPUpdates(MBB, MBBI, true);
- // If there is an ADD16ri or SUB16ri of SPW immediately after this
+ // If there is an ADD16ri or SUB16ri of SP immediately after this
// instruction, merge the two instructions.
// mergeSPUpdatesDown(MBB, MBBI, &NumBytes);
if (NumBytes) {
MachineInstr *MI =
- BuildMI(MBB, MBBI, DL, TII.get(MSP430::SUB16ri), MSP430::SPW)
- .addReg(MSP430::SPW).addImm(NumBytes);
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::SUB16ri), MSP430::SP)
+ .addReg(MSP430::SP).addImm(NumBytes);
// The SRW implicit def is dead.
MI->getOperand(3).setIsDead();
}
@@ -108,7 +109,7 @@ void MSP430FrameLowering::emitEpilogue(MachineFunction &MF,
const MachineFrameInfo *MFI = MF.getFrameInfo();
MSP430MachineFunctionInfo *MSP430FI = MF.getInfo<MSP430MachineFunctionInfo>();
const MSP430InstrInfo &TII =
- *static_cast<const MSP430InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const MSP430InstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
unsigned RetOpcode = MBBI->getOpcode();
@@ -131,8 +132,8 @@ void MSP430FrameLowering::emitEpilogue(MachineFunction &MF,
uint64_t FrameSize = StackSize - 2;
NumBytes = FrameSize - CSSize;
- // pop FPW.
- BuildMI(MBB, MBBI, DL, TII.get(MSP430::POP16r), MSP430::FPW);
+ // pop FP.
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::POP16r), MSP430::FP);
} else
NumBytes = StackSize - CSSize;
@@ -147,28 +148,28 @@ void MSP430FrameLowering::emitEpilogue(MachineFunction &MF,
DL = MBBI->getDebugLoc();
- // If there is an ADD16ri or SUB16ri of SPW immediately before this
+ // If there is an ADD16ri or SUB16ri of SP immediately before this
// instruction, merge the two instructions.
//if (NumBytes || MFI->hasVarSizedObjects())
// mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
if (MFI->hasVarSizedObjects()) {
BuildMI(MBB, MBBI, DL,
- TII.get(MSP430::MOV16rr), MSP430::SPW).addReg(MSP430::FPW);
+ TII.get(MSP430::MOV16rr), MSP430::SP).addReg(MSP430::FP);
if (CSSize) {
MachineInstr *MI =
BuildMI(MBB, MBBI, DL,
- TII.get(MSP430::SUB16ri), MSP430::SPW)
- .addReg(MSP430::SPW).addImm(CSSize);
+ TII.get(MSP430::SUB16ri), MSP430::SP)
+ .addReg(MSP430::SP).addImm(CSSize);
// The SRW implicit def is dead.
MI->getOperand(3).setIsDead();
}
} else {
- // adjust stack pointer back: SPW += numbytes
+ // adjust stack pointer back: SP += numbytes
if (NumBytes) {
MachineInstr *MI =
- BuildMI(MBB, MBBI, DL, TII.get(MSP430::ADD16ri), MSP430::SPW)
- .addReg(MSP430::SPW).addImm(NumBytes);
+ BuildMI(MBB, MBBI, DL, TII.get(MSP430::ADD16ri), MSP430::SP)
+ .addReg(MSP430::SP).addImm(NumBytes);
// The SRW implicit def is dead.
MI->getOperand(3).setIsDead();
}
@@ -188,7 +189,7 @@ MSP430FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MSP430MachineFunctionInfo *MFI = MF.getInfo<MSP430MachineFunctionInfo>();
MFI->setCalleeSavedFrameSize(CSI.size() * 2);
@@ -214,7 +215,7 @@ MSP430FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
for (unsigned i = 0, e = CSI.size(); i != e; ++i)
BuildMI(MBB, MI, DL, TII.get(MSP430::POP16r), CSI[i].getReg());
@@ -226,13 +227,13 @@ void MSP430FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const MSP430InstrInfo &TII =
- *static_cast<const MSP430InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const MSP430InstrInfo *>(MF.getSubtarget().getInstrInfo());
unsigned StackAlign = getStackAlignment();
if (!hasReservedCallFrame(MF)) {
// If the stack pointer can be changed after prologue, turn the
- // adjcallstackup instruction into a 'sub SPW, <amt>' and the
- // adjcallstackdown instruction into 'add SPW, <amt>'
+ // adjcallstackup instruction into a 'sub SP, <amt>' and the
+ // adjcallstackdown instruction into 'add SP, <amt>'
// TODO: consider using push / pop instead of sub + store / add
MachineInstr *Old = I;
uint64_t Amount = Old->getOperand(0).getImm();
@@ -245,8 +246,8 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineInstr *New = nullptr;
if (Old->getOpcode() == TII.getCallFrameSetupOpcode()) {
New = BuildMI(MF, Old->getDebugLoc(),
- TII.get(MSP430::SUB16ri), MSP430::SPW)
- .addReg(MSP430::SPW).addImm(Amount);
+ TII.get(MSP430::SUB16ri), MSP430::SP)
+ .addReg(MSP430::SP).addImm(Amount);
} else {
assert(Old->getOpcode() == TII.getCallFrameDestroyOpcode());
// factor out the amount the callee already popped.
@@ -254,8 +255,8 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
Amount -= CalleeAmt;
if (Amount)
New = BuildMI(MF, Old->getDebugLoc(),
- TII.get(MSP430::ADD16ri), MSP430::SPW)
- .addReg(MSP430::SPW).addImm(Amount);
+ TII.get(MSP430::ADD16ri), MSP430::SP)
+ .addReg(MSP430::SP).addImm(Amount);
}
if (New) {
@@ -273,7 +274,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineInstr *Old = I;
MachineInstr *New =
BuildMI(MF, Old->getDebugLoc(), TII.get(MSP430::SUB16ri),
- MSP430::SPW).addReg(MSP430::SPW).addImm(CalleeAmt);
+ MSP430::SP).addReg(MSP430::SP).addImm(CalleeAmt);
// The SRW implicit def is dead.
New->getOperand(3).setIsDead();
@@ -287,11 +288,11 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
void
MSP430FrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
RegScavenger *) const {
- // Create a frame entry for the FPW register that must be saved.
+ // Create a frame entry for the FP register that must be saved.
if (hasFP(MF)) {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(2, -4, true);
(void)FrameIdx;
assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
- "Slot for FPW register must be last in order to be found!");
+ "Slot for FP register must be last in order to be found!");
}
}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h
index fadfeed..1941af2 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430FrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430_FRAMEINFO_H
-#define MSP430_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430FRAMELOWERING_H
+#define LLVM_LIB_TARGET_MSP430_MSP430FRAMELOWERING_H
#include "MSP430.h"
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
index a9b9035..81c176b 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
@@ -97,9 +97,9 @@ namespace {
public:
MSP430DAGToDAGISel(MSP430TargetMachine &TM, CodeGenOpt::Level OptLevel)
- : SelectionDAGISel(TM, OptLevel),
- Lowering(*TM.getTargetLowering()),
- Subtarget(*TM.getSubtargetImpl()) { }
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getSubtargetImpl()->getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) {}
const char *getPassName() const override {
return "MSP430 DAG->DAG Pattern Instruction Selection";
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp
index 3d3ee92..04bb6d0 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp
@@ -58,7 +58,7 @@ HWMultMode("msp430-hwmult-mode", cl::Hidden,
clEnumValEnd));
MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM)
- : TargetLowering(TM, new TargetLoweringObjectFileELF()) {
+ : TargetLowering(TM) {
// Set up the register classes.
addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
@@ -72,7 +72,7 @@ MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM)
// Division is expensive
setIntDivIsCheap(false);
- setStackPointerRegisterToSaveRestore(MSP430::SPW);
+ setStackPointerRegisterToSaveRestore(MSP430::SP);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
@@ -80,11 +80,13 @@ MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM)
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
- setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
+ }
// We don't have any truncstores
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
@@ -282,7 +284,7 @@ static void AnalyzeArguments(CCState &State,
SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<ArgT> &Args) {
static const MCPhysReg RegList[] = {
- MSP430::R15W, MSP430::R14W, MSP430::R13W, MSP430::R12W
+ MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12
};
static const unsigned NbRegs = array_lengthof(RegList);
@@ -437,8 +439,8 @@ MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
AnalyzeArguments(CCInfo, ArgLocs, Ins);
// Create frame index for the start of the first vararg value
@@ -533,8 +535,8 @@ MSP430TargetLowering::LowerReturn(SDValue Chain,
report_fatal_error("ISRs cannot return any value");
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
// Analize return values.
AnalyzeReturnValues(CCInfo, RVLocs, Outs);
@@ -583,8 +585,8 @@ MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
SmallVectorImpl<SDValue> &InVals) const {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
AnalyzeArguments(CCInfo, ArgLocs, Outs);
// Get a count of how many bytes are to be pushed on the stack.
@@ -627,7 +629,7 @@ MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
assert(VA.isMemLoc());
if (!StackPtr.getNode())
- StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SPW, getPointerTy());
+ StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, getPointerTy());
SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
StackPtr,
@@ -719,8 +721,8 @@ MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
AnalyzeReturnValues(CCInfo, RVLocs, Ins);
@@ -941,31 +943,31 @@ SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
Convert = false;
break;
case MSP430CC::COND_HS:
- // Res = SRW & 1, no processing is required
+ // Res = SR & 1, no processing is required
break;
case MSP430CC::COND_LO:
- // Res = ~(SRW & 1)
+ // Res = ~(SR & 1)
Invert = true;
break;
case MSP430CC::COND_NE:
if (andCC) {
- // C = ~Z, thus Res = SRW & 1, no processing is required
+ // C = ~Z, thus Res = SR & 1, no processing is required
} else {
- // Res = ~((SRW >> 1) & 1)
+ // Res = ~((SR >> 1) & 1)
Shift = true;
Invert = true;
}
break;
case MSP430CC::COND_E:
Shift = true;
- // C = ~Z for AND instruction, thus we can put Res = ~(SRW & 1), however,
- // Res = (SRW >> 1) & 1 is 1 word shorter.
+ // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
+ // Res = (SR >> 1) & 1 is 1 word shorter.
break;
}
EVT VT = Op.getValueType();
SDValue One = DAG.getConstant(1, VT);
if (Convert) {
- SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SRW,
+ SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
MVT::i16, Flag);
if (Shift)
// FIXME: somewhere this is turned into a SRL, lower it MSP specific?
@@ -1074,7 +1076,7 @@ SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
- MSP430::FPW, VT);
+ MSP430::FP, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo(),
@@ -1199,7 +1201,8 @@ MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
MachineFunction *F = BB->getParent();
MachineRegisterInfo &RI = F->getRegInfo();
DebugLoc dl = MI->getDebugLoc();
- const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ const TargetInstrInfo &TII =
+ *getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned Opc;
const TargetRegisterClass * RC;
@@ -1310,7 +1313,8 @@ MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
return EmitShiftInstr(MI, BB);
- const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ const TargetInstrInfo &TII =
+ *getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h
index 3e2f344..073ddc9 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430ISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MSP430_ISELLOWERING_H
-#define LLVM_TARGET_MSP430_ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430ISELLOWERING_H
+#define LLVM_LIB_TARGET_MSP430_MSP430ISELLOWERING_H
#include "MSP430.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -170,4 +170,4 @@ namespace llvm {
};
} // namespace llvm
-#endif // LLVM_TARGET_MSP430_ISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp
index ccb6c09..27681aa 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.cpp
@@ -307,7 +307,7 @@ unsigned MSP430InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
return 0;
case TargetOpcode::INLINEASM: {
const MachineFunction *MF = MI->getParent()->getParent();
- const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
return TII.getInlineAsmLength(MI->getOperand(0).getSymbolName(),
*MF->getTarget().getMCAsmInfo());
}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h
index e6baaef..f9b25b6 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MSP430INSTRINFO_H
-#define LLVM_TARGET_MSP430INSTRINFO_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430INSTRINFO_H
+#define LLVM_LIB_TARGET_MSP430_MSP430INSTRINFO_H
#include "MSP430RegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td
index 50e3fda..c0c29b9 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td
+++ b/contrib/llvm/lib/Target/MSP430/MSP430InstrInfo.td
@@ -111,8 +111,8 @@ def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
-// sub / add which can clobber SRW.
-let Defs = [SPW, SRW], Uses = [SPW] in {
+// sub / add which can clobber SR.
+let Defs = [SP, SR], Uses = [SP] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i16imm:$amt),
"#ADJCALLSTACKDOWN",
[(MSP430callseq_start timm:$amt)]>;
@@ -130,7 +130,7 @@ let usesCustomInserter = 1 in {
"# Select16 PSEUDO",
[(set GR16:$dst,
(MSP430selectcc GR16:$src, GR16:$src2, imm:$cc))]>;
- let Defs = [SRW] in {
+ let Defs = [SR] in {
def Shl8 : Pseudo<(outs GR8:$dst), (ins GR8:$src, GR8:$cnt),
"# Shl8 PSEUDO",
[(set GR8:$dst, (MSP430shl GR8:$src, GR8:$cnt))]>;
@@ -153,7 +153,7 @@ let usesCustomInserter = 1 in {
}
}
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def NOP : Pseudo<(outs), (ins), "nop", []>;
//===----------------------------------------------------------------------===//
@@ -192,7 +192,7 @@ let isBarrier = 1 in {
}
// Conditional branches
-let Uses = [SRW] in
+let Uses = [SR] in
def JCC : CJForm<0, 0,
(outs), (ins jmptarget:$dst, cc:$cc),
"j$cc\t$dst",
@@ -207,8 +207,8 @@ let isCall = 1 in
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
- let Defs = [R12W, R13W, R14W, R15W, SRW],
- Uses = [SPW] in {
+ let Defs = [R12, R13, R14, R15, SR],
+ Uses = [SP] in {
def CALLi : II16i<0x0,
(outs), (ins i16imm:$dst),
"call\t$dst", [(MSP430call imm:$dst)]>;
@@ -224,7 +224,7 @@ let isCall = 1 in
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
-let Defs = [SPW], Uses = [SPW], neverHasSideEffects=1 in {
+let Defs = [SP], Uses = [SP], hasSideEffects=0 in {
let mayLoad = 1 in
def POP16r : IForm16<0x0, DstReg, SrcPostInc, Size2Bytes,
(outs GR16:$reg), (ins), "pop.w\t$reg", []>;
@@ -238,7 +238,7 @@ def PUSH16r : II16r<0x0,
// Move Instructions
// FIXME: Provide proper encoding!
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def MOV8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src),
"mov.b\t{$src, $dst}",
@@ -337,7 +337,7 @@ def MOV16mm : I16mm<0x0,
let Constraints = "$src = $dst" in {
-let Defs = [SRW] in {
+let Defs = [SR] in {
let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
@@ -345,24 +345,24 @@ def ADD8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src, GR8:$src2),
"add.b\t{$src2, $dst}",
[(set GR8:$dst, (add GR8:$src, GR8:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD16rr : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src, GR16:$src2),
"add.w\t{$src2, $dst}",
[(set GR16:$dst, (add GR16:$src, GR16:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
def ADD8rm : I8rm<0x0,
(outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
"add.b\t{$src2, $dst}",
[(set GR8:$dst, (add GR8:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD16rm : I16rm<0x0,
(outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
"add.w\t{$src2, $dst}",
[(set GR16:$dst, (add GR16:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
let mayLoad = 1, hasExtraDefRegAllocReq = 1,
Constraints = "$base = $base_wb, $src = $dst" in {
@@ -381,160 +381,160 @@ def ADD8ri : I8ri<0x0,
(outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
"add.b\t{$src2, $dst}",
[(set GR8:$dst, (add GR8:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD16ri : I16ri<0x0,
(outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
"add.w\t{$src2, $dst}",
[(set GR16:$dst, (add GR16:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
let Constraints = "" in {
def ADD8mr : I8mr<0x0,
(outs), (ins memdst:$dst, GR8:$src),
"add.b\t{$src, $dst}",
[(store (add (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD16mr : I16mr<0x0,
(outs), (ins memdst:$dst, GR16:$src),
"add.w\t{$src, $dst}",
[(store (add (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD8mi : I8mi<0x0,
(outs), (ins memdst:$dst, i8imm:$src),
"add.b\t{$src, $dst}",
[(store (add (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD16mi : I16mi<0x0,
(outs), (ins memdst:$dst, i16imm:$src),
"add.w\t{$src, $dst}",
[(store (add (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD8mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"add.b\t{$src, $dst}",
[(store (add (load addr:$dst),
(i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADD16mm : I16mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"add.w\t{$src, $dst}",
[(store (add (load addr:$dst),
(i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
-let Uses = [SRW] in {
+let Uses = [SR] in {
let isCommutable = 1 in { // X = ADDC Y, Z == X = ADDC Z, Y
def ADC8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src, GR8:$src2),
"addc.b\t{$src2, $dst}",
[(set GR8:$dst, (adde GR8:$src, GR8:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC16rr : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src, GR16:$src2),
"addc.w\t{$src2, $dst}",
[(set GR16:$dst, (adde GR16:$src, GR16:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
} // isCommutable
def ADC8ri : I8ri<0x0,
(outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
"addc.b\t{$src2, $dst}",
[(set GR8:$dst, (adde GR8:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC16ri : I16ri<0x0,
(outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
"addc.w\t{$src2, $dst}",
[(set GR16:$dst, (adde GR16:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC8rm : I8rm<0x0,
(outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
"addc.b\t{$src2, $dst}",
[(set GR8:$dst, (adde GR8:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC16rm : I16rm<0x0,
(outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
"addc.w\t{$src2, $dst}",
[(set GR16:$dst, (adde GR16:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
let Constraints = "" in {
def ADC8mr : I8mr<0x0,
(outs), (ins memdst:$dst, GR8:$src),
"addc.b\t{$src, $dst}",
[(store (adde (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC16mr : I16mr<0x0,
(outs), (ins memdst:$dst, GR16:$src),
"addc.w\t{$src, $dst}",
[(store (adde (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC8mi : I8mi<0x0,
(outs), (ins memdst:$dst, i8imm:$src),
"addc.b\t{$src, $dst}",
[(store (adde (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC16mi : I16mi<0x0,
(outs), (ins memdst:$dst, i16imm:$src),
"addc.w\t{$src, $dst}",
[(store (adde (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC8mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"addc.b\t{$src, $dst}",
[(store (adde (load addr:$dst),
(i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def ADC16mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"addc.w\t{$src, $dst}",
[(store (adde (load addr:$dst),
(i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
-} // Uses = [SRW]
+} // Uses = [SR]
let isCommutable = 1 in { // X = AND Y, Z == X = AND Z, Y
def AND8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src, GR8:$src2),
"and.b\t{$src2, $dst}",
[(set GR8:$dst, (and GR8:$src, GR8:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND16rr : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src, GR16:$src2),
"and.w\t{$src2, $dst}",
[(set GR16:$dst, (and GR16:$src, GR16:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
def AND8ri : I8ri<0x0,
(outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
"and.b\t{$src2, $dst}",
[(set GR8:$dst, (and GR8:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND16ri : I16ri<0x0,
(outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
"and.w\t{$src2, $dst}",
[(set GR16:$dst, (and GR16:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND8rm : I8rm<0x0,
(outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
"and.b\t{$src2, $dst}",
[(set GR8:$dst, (and GR8:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND16rm : I16rm<0x0,
(outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
"and.w\t{$src2, $dst}",
[(set GR16:$dst, (and GR16:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
let mayLoad = 1, hasExtraDefRegAllocReq = 1,
Constraints = "$base = $base_wb, $src = $dst" in {
@@ -553,36 +553,36 @@ def AND8mr : I8mr<0x0,
(outs), (ins memdst:$dst, GR8:$src),
"and.b\t{$src, $dst}",
[(store (and (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND16mr : I16mr<0x0,
(outs), (ins memdst:$dst, GR16:$src),
"and.w\t{$src, $dst}",
[(store (and (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND8mi : I8mi<0x0,
(outs), (ins memdst:$dst, i8imm:$src),
"and.b\t{$src, $dst}",
[(store (and (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND16mi : I16mi<0x0,
(outs), (ins memdst:$dst, i16imm:$src),
"and.w\t{$src, $dst}",
[(store (and (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND8mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"and.b\t{$src, $dst}",
[(store (and (load addr:$dst),
(i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def AND16mm : I16mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"and.w\t{$src, $dst}",
[(store (and (load addr:$dst),
(i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y
@@ -703,35 +703,35 @@ def XOR8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src, GR8:$src2),
"xor.b\t{$src2, $dst}",
[(set GR8:$dst, (xor GR8:$src, GR8:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR16rr : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src, GR16:$src2),
"xor.w\t{$src2, $dst}",
[(set GR16:$dst, (xor GR16:$src, GR16:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
def XOR8ri : I8ri<0x0,
(outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
"xor.b\t{$src2, $dst}",
[(set GR8:$dst, (xor GR8:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR16ri : I16ri<0x0,
(outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
"xor.w\t{$src2, $dst}",
[(set GR16:$dst, (xor GR16:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR8rm : I8rm<0x0,
(outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
"xor.b\t{$src2, $dst}",
[(set GR8:$dst, (xor GR8:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR16rm : I16rm<0x0,
(outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
"xor.w\t{$src2, $dst}",
[(set GR16:$dst, (xor GR16:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
let mayLoad = 1, hasExtraDefRegAllocReq = 1,
Constraints = "$base = $base_wb, $src = $dst" in {
@@ -750,34 +750,34 @@ def XOR8mr : I8mr<0x0,
(outs), (ins memdst:$dst, GR8:$src),
"xor.b\t{$src, $dst}",
[(store (xor (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR16mr : I16mr<0x0,
(outs), (ins memdst:$dst, GR16:$src),
"xor.w\t{$src, $dst}",
[(store (xor (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR8mi : I8mi<0x0,
(outs), (ins memdst:$dst, i8imm:$src),
"xor.b\t{$src, $dst}",
[(store (xor (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR16mi : I16mi<0x0,
(outs), (ins memdst:$dst, i16imm:$src),
"xor.w\t{$src, $dst}",
[(store (xor (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR8mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"xor.b\t{$src, $dst}",
[(store (xor (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def XOR16mm : I16mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"xor.w\t{$src, $dst}",
[(store (xor (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
@@ -785,34 +785,34 @@ def SUB8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src, GR8:$src2),
"sub.b\t{$src2, $dst}",
[(set GR8:$dst, (sub GR8:$src, GR8:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB16rr : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src, GR16:$src2),
"sub.w\t{$src2, $dst}",
[(set GR16:$dst, (sub GR16:$src, GR16:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB8ri : I8ri<0x0,
(outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
"sub.b\t{$src2, $dst}",
[(set GR8:$dst, (sub GR8:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB16ri : I16ri<0x0,
(outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
"sub.w\t{$src2, $dst}",
[(set GR16:$dst, (sub GR16:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB8rm : I8rm<0x0,
(outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
"sub.b\t{$src2, $dst}",
[(set GR8:$dst, (sub GR8:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB16rm : I16rm<0x0,
(outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
"sub.w\t{$src2, $dst}",
[(set GR16:$dst, (sub GR16:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
let mayLoad = 1, hasExtraDefRegAllocReq = 1,
Constraints = "$base = $base_wb, $src = $dst" in {
@@ -831,153 +831,153 @@ def SUB8mr : I8mr<0x0,
(outs), (ins memdst:$dst, GR8:$src),
"sub.b\t{$src, $dst}",
[(store (sub (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB16mr : I16mr<0x0,
(outs), (ins memdst:$dst, GR16:$src),
"sub.w\t{$src, $dst}",
[(store (sub (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB8mi : I8mi<0x0,
(outs), (ins memdst:$dst, i8imm:$src),
"sub.b\t{$src, $dst}",
[(store (sub (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB16mi : I16mi<0x0,
(outs), (ins memdst:$dst, i16imm:$src),
"sub.w\t{$src, $dst}",
[(store (sub (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB8mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"sub.b\t{$src, $dst}",
[(store (sub (load addr:$dst),
(i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SUB16mm : I16mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"sub.w\t{$src, $dst}",
[(store (sub (load addr:$dst),
(i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
-let Uses = [SRW] in {
+let Uses = [SR] in {
def SBC8rr : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src, GR8:$src2),
"subc.b\t{$src2, $dst}",
[(set GR8:$dst, (sube GR8:$src, GR8:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC16rr : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src, GR16:$src2),
"subc.w\t{$src2, $dst}",
[(set GR16:$dst, (sube GR16:$src, GR16:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC8ri : I8ri<0x0,
(outs GR8:$dst), (ins GR8:$src, i8imm:$src2),
"subc.b\t{$src2, $dst}",
[(set GR8:$dst, (sube GR8:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC16ri : I16ri<0x0,
(outs GR16:$dst), (ins GR16:$src, i16imm:$src2),
"subc.w\t{$src2, $dst}",
[(set GR16:$dst, (sube GR16:$src, imm:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC8rm : I8rm<0x0,
(outs GR8:$dst), (ins GR8:$src, memsrc:$src2),
"subc.b\t{$src2, $dst}",
[(set GR8:$dst, (sube GR8:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC16rm : I16rm<0x0,
(outs GR16:$dst), (ins GR16:$src, memsrc:$src2),
"subc.w\t{$src2, $dst}",
[(set GR16:$dst, (sube GR16:$src, (load addr:$src2))),
- (implicit SRW)]>;
+ (implicit SR)]>;
let Constraints = "" in {
def SBC8mr : I8mr<0x0,
(outs), (ins memdst:$dst, GR8:$src),
"subc.b\t{$src, $dst}",
[(store (sube (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC16mr : I16mr<0x0,
(outs), (ins memdst:$dst, GR16:$src),
"subc.w\t{$src, $dst}",
[(store (sube (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC8mi : I8mi<0x0,
(outs), (ins memdst:$dst, i8imm:$src),
"subc.b\t{$src, $dst}",
[(store (sube (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC16mi : I16mi<0x0,
(outs), (ins memdst:$dst, i16imm:$src),
"subc.w\t{$src, $dst}",
[(store (sube (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC8mm : I8mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"subc.b\t{$src, $dst}",
[(store (sube (load addr:$dst),
(i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SBC16mm : I16mm<0x0,
(outs), (ins memdst:$dst, memsrc:$src),
"subc.w\t{$src, $dst}",
[(store (sube (load addr:$dst),
(i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
-} // Uses = [SRW]
+} // Uses = [SR]
// FIXME: memory variant!
def SAR8r1 : II8r<0x0,
(outs GR8:$dst), (ins GR8:$src),
"rra.b\t$dst",
[(set GR8:$dst, (MSP430rra GR8:$src)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SAR16r1 : II16r<0x0,
(outs GR16:$dst), (ins GR16:$src),
"rra.w\t$dst",
[(set GR16:$dst, (MSP430rra GR16:$src)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SHL8r1 : I8rr<0x0,
(outs GR8:$dst), (ins GR8:$src),
"rla.b\t$dst",
[(set GR8:$dst, (MSP430rla GR8:$src)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SHL16r1 : I16rr<0x0,
(outs GR16:$dst), (ins GR16:$src),
"rla.w\t$dst",
[(set GR16:$dst, (MSP430rla GR16:$src)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SAR8r1c : Pseudo<(outs GR8:$dst), (ins GR8:$src),
"clrc\n\t"
"rrc.b\t$dst",
[(set GR8:$dst, (MSP430rrc GR8:$src)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def SAR16r1c : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"clrc\n\t"
"rrc.w\t$dst",
[(set GR16:$dst, (MSP430rrc GR16:$src)),
- (implicit SRW)]>;
+ (implicit SR)]>;
// FIXME: Memory sext's ?
def SEXT16r : II16r<0x0,
(outs GR16:$dst), (ins GR16:$src),
"sxt\t$dst",
[(set GR16:$dst, (sext_inreg GR16:$src, i8)),
- (implicit SRW)]>;
+ (implicit SR)]>;
-} // Defs = [SRW]
+} // Defs = [SR]
def ZEXT16r : I8rr<0x0,
(outs GR16:$dst), (ins GR16:$src),
@@ -993,57 +993,57 @@ def SWPB16r : II16r<0x0,
} // Constraints = "$src = $dst"
// Integer comparisons
-let Defs = [SRW] in {
+let Defs = [SR] in {
def CMP8rr : I8rr<0x0,
(outs), (ins GR8:$src, GR8:$src2),
"cmp.b\t{$src2, $src}",
- [(MSP430cmp GR8:$src, GR8:$src2), (implicit SRW)]>;
+ [(MSP430cmp GR8:$src, GR8:$src2), (implicit SR)]>;
def CMP16rr : I16rr<0x0,
(outs), (ins GR16:$src, GR16:$src2),
"cmp.w\t{$src2, $src}",
- [(MSP430cmp GR16:$src, GR16:$src2), (implicit SRW)]>;
+ [(MSP430cmp GR16:$src, GR16:$src2), (implicit SR)]>;
def CMP8ri : I8ri<0x0,
(outs), (ins GR8:$src, i8imm:$src2),
"cmp.b\t{$src2, $src}",
- [(MSP430cmp GR8:$src, imm:$src2), (implicit SRW)]>;
+ [(MSP430cmp GR8:$src, imm:$src2), (implicit SR)]>;
def CMP16ri : I16ri<0x0,
(outs), (ins GR16:$src, i16imm:$src2),
"cmp.w\t{$src2, $src}",
- [(MSP430cmp GR16:$src, imm:$src2), (implicit SRW)]>;
+ [(MSP430cmp GR16:$src, imm:$src2), (implicit SR)]>;
def CMP8mi : I8mi<0x0,
(outs), (ins memsrc:$src, i8imm:$src2),
"cmp.b\t{$src2, $src}",
[(MSP430cmp (load addr:$src),
- (i8 imm:$src2)), (implicit SRW)]>;
+ (i8 imm:$src2)), (implicit SR)]>;
def CMP16mi : I16mi<0x0,
(outs), (ins memsrc:$src, i16imm:$src2),
"cmp.w\t{$src2, $src}",
[(MSP430cmp (load addr:$src),
- (i16 imm:$src2)), (implicit SRW)]>;
+ (i16 imm:$src2)), (implicit SR)]>;
def CMP8rm : I8rm<0x0,
(outs), (ins GR8:$src, memsrc:$src2),
"cmp.b\t{$src2, $src}",
[(MSP430cmp GR8:$src, (load addr:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def CMP16rm : I16rm<0x0,
(outs), (ins GR16:$src, memsrc:$src2),
"cmp.w\t{$src2, $src}",
[(MSP430cmp GR16:$src, (load addr:$src2)),
- (implicit SRW)]>;
+ (implicit SR)]>;
def CMP8mr : I8mr<0x0,
(outs), (ins memsrc:$src, GR8:$src2),
"cmp.b\t{$src2, $src}",
[(MSP430cmp (load addr:$src), GR8:$src2),
- (implicit SRW)]>;
+ (implicit SR)]>;
def CMP16mr : I16mr<0x0,
(outs), (ins memsrc:$src, GR16:$src2),
"cmp.w\t{$src2, $src}",
[(MSP430cmp (load addr:$src), GR16:$src2),
- (implicit SRW)]>;
+ (implicit SR)]>;
// BIT TESTS, just sets condition codes
@@ -1053,56 +1053,56 @@ def BIT8rr : I8rr<0x0,
(outs), (ins GR8:$src, GR8:$src2),
"bit.b\t{$src2, $src}",
[(MSP430cmp (and_su GR8:$src, GR8:$src2), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT16rr : I16rr<0x0,
(outs), (ins GR16:$src, GR16:$src2),
"bit.w\t{$src2, $src}",
[(MSP430cmp (and_su GR16:$src, GR16:$src2), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
}
def BIT8ri : I8ri<0x0,
(outs), (ins GR8:$src, i8imm:$src2),
"bit.b\t{$src2, $src}",
[(MSP430cmp (and_su GR8:$src, imm:$src2), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT16ri : I16ri<0x0,
(outs), (ins GR16:$src, i16imm:$src2),
"bit.w\t{$src2, $src}",
[(MSP430cmp (and_su GR16:$src, imm:$src2), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT8rm : I8rm<0x0,
(outs), (ins GR8:$src, memdst:$src2),
"bit.b\t{$src2, $src}",
[(MSP430cmp (and_su GR8:$src, (load addr:$src2)), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT16rm : I16rm<0x0,
(outs), (ins GR16:$src, memdst:$src2),
"bit.w\t{$src2, $src}",
[(MSP430cmp (and_su GR16:$src, (load addr:$src2)), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT8mr : I8mr<0x0,
(outs), (ins memsrc:$src, GR8:$src2),
"bit.b\t{$src2, $src}",
[(MSP430cmp (and_su (load addr:$src), GR8:$src2), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT16mr : I16mr<0x0,
(outs), (ins memsrc:$src, GR16:$src2),
"bit.w\t{$src2, $src}",
[(MSP430cmp (and_su (load addr:$src), GR16:$src2), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT8mi : I8mi<0x0,
(outs), (ins memsrc:$src, i8imm:$src2),
"bit.b\t{$src2, $src}",
[(MSP430cmp (and_su (load addr:$src), (i8 imm:$src2)), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT16mi : I16mi<0x0,
(outs), (ins memsrc:$src, i16imm:$src2),
"bit.w\t{$src2, $src}",
[(MSP430cmp (and_su (load addr:$src), (i16 imm:$src2)), 0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT8mm : I8mm<0x0,
(outs), (ins memsrc:$src, memsrc:$src2),
@@ -1110,15 +1110,15 @@ def BIT8mm : I8mm<0x0,
[(MSP430cmp (and_su (i8 (load addr:$src)),
(load addr:$src2)),
0),
- (implicit SRW)]>;
+ (implicit SR)]>;
def BIT16mm : I16mm<0x0,
(outs), (ins memsrc:$src, memsrc:$src2),
"bit.w\t{$src2, $src}",
[(MSP430cmp (and_su (i16 (load addr:$src)),
(load addr:$src2)),
0),
- (implicit SRW)]>;
-} // Defs = [SRW]
+ (implicit SR)]>;
+} // Defs = [SR]
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp
index 05352a2..77b91b7 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.cpp
@@ -26,6 +26,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
MCSymbol *MSP430MCInstLower::
@@ -50,7 +51,7 @@ GetExternalSymbolSymbol(const MachineOperand &MO) const {
MCSymbol *MSP430MCInstLower::
GetJumpTableSymbol(const MachineOperand &MO) const {
- const DataLayout *DL = Printer.TM.getDataLayout();
+ const DataLayout *DL = Printer.TM.getSubtargetImpl()->getDataLayout();
SmallString<256> Name;
raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI"
<< Printer.getFunctionNumber() << '_'
@@ -67,7 +68,7 @@ GetJumpTableSymbol(const MachineOperand &MO) const {
MCSymbol *MSP430MCInstLower::
GetConstantPoolIndexSymbol(const MachineOperand &MO) const {
- const DataLayout *DL = Printer.TM.getDataLayout();
+ const DataLayout *DL = Printer.TM.getSubtargetImpl()->getDataLayout();
SmallString<256> Name;
raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "CPI"
<< Printer.getFunctionNumber() << '_'
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h
index 794aa56..ebd6397 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MCInstLower.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430_MCINSTLOWER_H
-#define MSP430_MCINSTLOWER_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430MCINSTLOWER_H
+#define LLVM_LIB_TARGET_MSP430_MSP430MCINSTLOWER_H
#include "llvm/Support/Compiler.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h
index d1697f4..fcc5f5b 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430MachineFunctionInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430MACHINEFUNCTIONINFO_H
-#define MSP430MACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430MACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_MSP430_MSP430MACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFunction.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp
index 691bcee..614467b 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.cpp
@@ -33,32 +33,32 @@ using namespace llvm;
// FIXME: Provide proper call frame setup / destroy opcodes.
MSP430RegisterInfo::MSP430RegisterInfo()
- : MSP430GenRegisterInfo(MSP430::PCW) {}
+ : MSP430GenRegisterInfo(MSP430::PC) {}
const MCPhysReg*
MSP430RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
- const TargetFrameLowering *TFI = MF->getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
const Function* F = MF->getFunction();
static const MCPhysReg CalleeSavedRegs[] = {
- MSP430::FPW, MSP430::R5W, MSP430::R6W, MSP430::R7W,
- MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
+ MSP430::FP, MSP430::R5, MSP430::R6, MSP430::R7,
+ MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
0
};
static const MCPhysReg CalleeSavedRegsFP[] = {
- MSP430::R5W, MSP430::R6W, MSP430::R7W,
- MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
+ MSP430::R5, MSP430::R6, MSP430::R7,
+ MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
0
};
static const MCPhysReg CalleeSavedRegsIntr[] = {
- MSP430::FPW, MSP430::R5W, MSP430::R6W, MSP430::R7W,
- MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
- MSP430::R12W, MSP430::R13W, MSP430::R14W, MSP430::R15W,
+ MSP430::FP, MSP430::R5, MSP430::R6, MSP430::R7,
+ MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
+ MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15,
0
};
static const MCPhysReg CalleeSavedRegsIntrFP[] = {
- MSP430::R5W, MSP430::R6W, MSP430::R7W,
- MSP430::R8W, MSP430::R9W, MSP430::R10W, MSP430::R11W,
- MSP430::R12W, MSP430::R13W, MSP430::R14W, MSP430::R15W,
+ MSP430::R5, MSP430::R6, MSP430::R7,
+ MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
+ MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15,
0
};
@@ -73,22 +73,22 @@ MSP430RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
BitVector MSP430RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
// Mark 4 special registers with subregisters as reserved.
Reserved.set(MSP430::PCB);
Reserved.set(MSP430::SPB);
Reserved.set(MSP430::SRB);
Reserved.set(MSP430::CGB);
- Reserved.set(MSP430::PCW);
- Reserved.set(MSP430::SPW);
- Reserved.set(MSP430::SRW);
- Reserved.set(MSP430::CGW);
+ Reserved.set(MSP430::PC);
+ Reserved.set(MSP430::SP);
+ Reserved.set(MSP430::SR);
+ Reserved.set(MSP430::CG);
// Mark frame pointer as reserved if needed.
if (TFI->hasFP(MF)) {
Reserved.set(MSP430::FPB);
- Reserved.set(MSP430::FPW);
+ Reserved.set(MSP430::FP);
}
return Reserved;
@@ -109,11 +109,11 @@ MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
DebugLoc dl = MI.getDebugLoc();
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
- unsigned BasePtr = (TFI->hasFP(MF) ? MSP430::FPW : MSP430::SPW);
+ unsigned BasePtr = (TFI->hasFP(MF) ? MSP430::FP : MSP430::SP);
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
// Skip the saved PC
@@ -122,7 +122,7 @@ MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
if (!TFI->hasFP(MF))
Offset += MF.getFrameInfo()->getStackSize();
else
- Offset += 2; // Skip the saved FPW
+ Offset += 2; // Skip the saved FP
// Fold imm into offset
Offset += MI.getOperand(FIOperandNum + 1).getImm();
@@ -131,7 +131,7 @@ MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// This is actually "load effective address" of the stack slot
// instruction. We have only two-address instructions, thus we need to
// expand it into mov + add
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MI.setDesc(TII.get(MSP430::MOV16rr));
MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
@@ -156,7 +156,7 @@ MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
}
unsigned MSP430RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
- return TFI->hasFP(MF) ? MSP430::FPW : MSP430::SPW;
+ return TFI->hasFP(MF) ? MSP430::FP : MSP430::SP;
}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h
index cb01961..3f88a69 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MSP430REGISTERINFO_H
-#define LLVM_TARGET_MSP430REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430REGISTERINFO_H
+#define LLVM_LIB_TARGET_MSP430_MSP430REGISTERINFO_H
#include "llvm/Target/TargetRegisterInfo.h"
@@ -44,4 +44,4 @@ public:
} // end namespace llvm
-#endif // LLVM_TARGET_MSP430REGISTERINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td
index 4010781..b5a6ed0 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td
+++ b/contrib/llvm/lib/Target/MSP430/MSP430RegisterInfo.td
@@ -46,22 +46,22 @@ def R15B : MSP430Reg<15, "r15">;
def subreg_8bit : SubRegIndex<8> { let Namespace = "MSP430"; }
let SubRegIndices = [subreg_8bit] in {
-def PCW : MSP430RegWithSubregs<0, "r0", [PCB]>;
-def SPW : MSP430RegWithSubregs<1, "r1", [SPB]>;
-def SRW : MSP430RegWithSubregs<2, "r2", [SRB]>;
-def CGW : MSP430RegWithSubregs<3, "r3", [CGB]>;
-def FPW : MSP430RegWithSubregs<4, "r4", [FPB]>;
-def R5W : MSP430RegWithSubregs<5, "r5", [R5B]>;
-def R6W : MSP430RegWithSubregs<6, "r6", [R6B]>;
-def R7W : MSP430RegWithSubregs<7, "r7", [R7B]>;
-def R8W : MSP430RegWithSubregs<8, "r8", [R8B]>;
-def R9W : MSP430RegWithSubregs<9, "r9", [R9B]>;
-def R10W : MSP430RegWithSubregs<10, "r10", [R10B]>;
-def R11W : MSP430RegWithSubregs<11, "r11", [R11B]>;
-def R12W : MSP430RegWithSubregs<12, "r12", [R12B]>;
-def R13W : MSP430RegWithSubregs<13, "r13", [R13B]>;
-def R14W : MSP430RegWithSubregs<14, "r14", [R14B]>;
-def R15W : MSP430RegWithSubregs<15, "r15", [R15B]>;
+def PC : MSP430RegWithSubregs<0, "r0", [PCB]>;
+def SP : MSP430RegWithSubregs<1, "r1", [SPB]>;
+def SR : MSP430RegWithSubregs<2, "r2", [SRB]>;
+def CG : MSP430RegWithSubregs<3, "r3", [CGB]>;
+def FP : MSP430RegWithSubregs<4, "r4", [FPB]>;
+def R5 : MSP430RegWithSubregs<5, "r5", [R5B]>;
+def R6 : MSP430RegWithSubregs<6, "r6", [R6B]>;
+def R7 : MSP430RegWithSubregs<7, "r7", [R7B]>;
+def R8 : MSP430RegWithSubregs<8, "r8", [R8B]>;
+def R9 : MSP430RegWithSubregs<9, "r9", [R9B]>;
+def R10 : MSP430RegWithSubregs<10, "r10", [R10B]>;
+def R11 : MSP430RegWithSubregs<11, "r11", [R11B]>;
+def R12 : MSP430RegWithSubregs<12, "r12", [R12B]>;
+def R13 : MSP430RegWithSubregs<13, "r13", [R13B]>;
+def R14 : MSP430RegWithSubregs<14, "r14", [R14B]>;
+def R15 : MSP430RegWithSubregs<15, "r15", [R15B]>;
}
def GR8 : RegisterClass<"MSP430", [i8], 8,
@@ -74,8 +74,8 @@ def GR8 : RegisterClass<"MSP430", [i8], 8,
def GR16 : RegisterClass<"MSP430", [i16], 16,
// Volatile registers
- (add R12W, R13W, R14W, R15W, R11W, R10W, R9W, R8W, R7W, R6W, R5W,
+ (add R12, R13, R14, R15, R11, R10, R9, R8, R7, R6, R5,
// Frame pointer, sometimes allocable
- FPW,
+ FP,
// Volatile, but not allocable
- PCW, SPW, SRW, CGW)>;
+ PC, SP, SR, CG)>;
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h b/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h
index cb04adc..61a6b19 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430SelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MSP430SELECTIONDAGINFO_H
-#define MSP430SELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430SELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_MSP430_MSP430SELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp
index dbddc52..cb83b92 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.cpp
@@ -34,6 +34,6 @@ MSP430Subtarget::MSP430Subtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM)
: MSP430GenSubtargetInfo(TT, CPU, FS),
// FIXME: Check DataLayout string.
- DL("e-m:e-p:16:16-i32:16:32-n8:16"), FrameLowering(),
+ DL("e-m:e-p:16:16-i32:16:32-a:16-n8:16"), FrameLowering(),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
TSInfo(DL) {}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h
index 0152ad1..58eb07b 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430Subtarget.h
@@ -11,12 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MSP430_SUBTARGET_H
-#define LLVM_TARGET_MSP430_SUBTARGET_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430SUBTARGET_H
+#define LLVM_LIB_TARGET_MSP430_MSP430SUBTARGET_H
#include "MSP430FrameLowering.h"
-#include "MSP430InstrInfo.h"
#include "MSP430ISelLowering.h"
+#include "MSP430InstrInfo.h"
#include "MSP430RegisterInfo.h"
#include "MSP430SelectionDAGInfo.h"
#include "llvm/IR/DataLayout.h"
@@ -51,14 +51,20 @@ public:
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
- const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
- const MSP430InstrInfo *getInstrInfo() const { return &InstrInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
- const TargetRegisterInfo *getRegisterInfo() const {
+ const TargetFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const MSP430InstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const TargetRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
- const MSP430TargetLowering *getTargetLowering() const { return &TLInfo; }
- const MSP430SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const MSP430TargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const MSP430SelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp
index 5ca36f2..66e7503 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp
+++ b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.cpp
@@ -14,6 +14,7 @@
#include "MSP430TargetMachine.h"
#include "MSP430.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetRegistry.h"
@@ -30,10 +31,13 @@ MSP430TargetMachine::MSP430TargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(make_unique<TargetLoweringObjectFileELF>()),
Subtarget(TT, CPU, FS, *this) {
initAsmInfo();
}
+MSP430TargetMachine::~MSP430TargetMachine() {}
+
namespace {
/// MSP430 Code Generator Pass Configuration Options.
class MSP430PassConfig : public TargetPassConfig {
@@ -46,7 +50,7 @@ public:
}
bool addInstSelector() override;
- bool addPreEmitPass() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -60,8 +64,7 @@ bool MSP430PassConfig::addInstSelector() {
return false;
}
-bool MSP430PassConfig::addPreEmitPass() {
+void MSP430PassConfig::addPreEmitPass() {
// Must run branch selection immediately preceding the asm printer.
- addPass(createMSP430BranchSelectionPass());
- return false;
+ addPass(createMSP430BranchSelectionPass(), false);
}
diff --git a/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h
index efa8403..0e54ed6 100644
--- a/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h
+++ b/contrib/llvm/lib/Target/MSP430/MSP430TargetMachine.h
@@ -12,8 +12,8 @@
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MSP430_TARGETMACHINE_H
-#define LLVM_TARGET_MSP430_TARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_MSP430_MSP430TARGETMACHINE_H
+#define LLVM_LIB_TARGET_MSP430_MSP430TARGETMACHINE_H
#include "MSP430Subtarget.h"
#include "llvm/Target/TargetFrameLowering.h"
@@ -24,6 +24,7 @@ namespace llvm {
/// MSP430TargetMachine
///
class MSP430TargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
MSP430Subtarget Subtarget;
public:
@@ -31,31 +32,18 @@ public:
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
+ ~MSP430TargetMachine() override;
- const TargetFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- const MSP430InstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
const MSP430Subtarget *getSubtargetImpl() const override {
return &Subtarget;
}
- const TargetRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const MSP430TargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const MSP430SelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
}; // MSP430TargetMachine.
} // end namespace llvm
-#endif // LLVM_TARGET_MSP430_TARGETMACHINE_H
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
index 2d65b08..7db5b34 100644
--- a/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
+++ b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
@@ -12,6 +12,7 @@
#include "MipsRegisterInfo.h"
#include "MipsTargetStreamer.h"
#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
@@ -25,7 +26,9 @@
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
+#include <memory>
using namespace llvm;
@@ -38,36 +41,69 @@ class MCInstrInfo;
namespace {
class MipsAssemblerOptions {
public:
- MipsAssemblerOptions() : aTReg(1), reorder(true), macro(true) {}
+ MipsAssemblerOptions(uint64_t Features_) :
+ ATReg(1), Reorder(true), Macro(true), Features(Features_) {}
- unsigned getATRegNum() { return aTReg; }
- bool setATReg(unsigned Reg);
+ MipsAssemblerOptions(const MipsAssemblerOptions *Opts) {
+ ATReg = Opts->getATRegNum();
+ Reorder = Opts->isReorder();
+ Macro = Opts->isMacro();
+ Features = Opts->getFeatures();
+ }
- bool isReorder() { return reorder; }
- void setReorder() { reorder = true; }
- void setNoreorder() { reorder = false; }
+ unsigned getATRegNum() const { return ATReg; }
+ bool setATReg(unsigned Reg);
- bool isMacro() { return macro; }
- void setMacro() { macro = true; }
- void setNomacro() { macro = false; }
+ bool isReorder() const { return Reorder; }
+ void setReorder() { Reorder = true; }
+ void setNoReorder() { Reorder = false; }
+
+ bool isMacro() const { return Macro; }
+ void setMacro() { Macro = true; }
+ void setNoMacro() { Macro = false; }
+
+ uint64_t getFeatures() const { return Features; }
+ void setFeatures(uint64_t Features_) { Features = Features_; }
+
+ // Set of features that are either architecture features or referenced
+ // by them (e.g.: FeatureNaN2008 implied by FeatureMips32r6).
+ // The full table can be found in MipsGenSubtargetInfo.inc (MipsFeatureKV[]).
+ // The reason we need this mask is explained in the selectArch function.
+ // FIXME: Ideally we would like TableGen to generate this information.
+ static const uint64_t AllArchRelatedMask =
+ Mips::FeatureMips1 | Mips::FeatureMips2 | Mips::FeatureMips3 |
+ Mips::FeatureMips3_32 | Mips::FeatureMips3_32r2 | Mips::FeatureMips4 |
+ Mips::FeatureMips4_32 | Mips::FeatureMips4_32r2 | Mips::FeatureMips5 |
+ Mips::FeatureMips5_32r2 | Mips::FeatureMips32 | Mips::FeatureMips32r2 |
+ Mips::FeatureMips32r6 | Mips::FeatureMips64 | Mips::FeatureMips64r2 |
+ Mips::FeatureMips64r6 | Mips::FeatureCnMips | Mips::FeatureFP64Bit |
+ Mips::FeatureGP64Bit | Mips::FeatureNaN2008;
private:
- unsigned aTReg;
- bool reorder;
- bool macro;
+ unsigned ATReg;
+ bool Reorder;
+ bool Macro;
+ uint64_t Features;
};
}
namespace {
class MipsAsmParser : public MCTargetAsmParser {
MipsTargetStreamer &getTargetStreamer() {
- MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
+ MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<MipsTargetStreamer &>(TS);
}
MCSubtargetInfo &STI;
- MCAsmParser &Parser;
- MipsAssemblerOptions Options;
+ SmallVector<std::unique_ptr<MipsAssemblerOptions>, 2> AssemblerOptions;
+ MCSymbol *CurrentFn; // Pointer to the function being parsed. It may be a
+ // nullptr, which indicates that no function is currently
+ // selected. This usually happens after an '.end func'
+ // directive.
+
+ // Print a warning along with its fix-it message at the given range.
+ void printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
+ SMRange Range, bool ShowColors = true);
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
@@ -76,15 +112,15 @@ class MipsAsmParser : public MCTargetAsmParser {
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
/// Parse a register as used in CFI directives
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
- bool ParseParenSuffix(StringRef Name, OperandVector &Operands);
+ bool parseParenSuffix(StringRef Name, OperandVector &Operands);
- bool ParseBracketSuffix(StringRef Name, OperandVector &Operands);
+ bool parseBracketSuffix(StringRef Name, OperandVector &Operands);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
@@ -94,25 +130,31 @@ class MipsAsmParser : public MCTargetAsmParser {
MipsAsmParser::OperandMatchResultTy parseMemOperand(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy
- MatchAnyRegisterNameWithoutDollar(OperandVector &Operands,
+ matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
StringRef Identifier, SMLoc S);
MipsAsmParser::OperandMatchResultTy
- MatchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S);
+ matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S);
- MipsAsmParser::OperandMatchResultTy ParseAnyRegister(OperandVector &Operands);
+ MipsAsmParser::OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
- MipsAsmParser::OperandMatchResultTy ParseImm(OperandVector &Operands);
+ MipsAsmParser::OperandMatchResultTy parseImm(OperandVector &Operands);
- MipsAsmParser::OperandMatchResultTy ParseJumpTarget(OperandVector &Operands);
+ MipsAsmParser::OperandMatchResultTy parseJumpTarget(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy parseInvNum(OperandVector &Operands);
- MipsAsmParser::OperandMatchResultTy ParseLSAImm(OperandVector &Operands);
+ MipsAsmParser::OperandMatchResultTy parseLSAImm(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ parseRegisterPair (OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ parseRegisterList (OperandVector &Operands);
bool searchSymbolAlias(OperandVector &Operands);
- bool ParseOperand(OperandVector &, StringRef Mnemonic);
+ bool parseOperand(OperandVector &, StringRef Mnemonic);
bool needsExpansion(MCInst &Inst);
@@ -130,6 +172,9 @@ class MipsAsmParser : public MCTargetAsmParser {
bool expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
+ void expandLoadAddressSym(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
void expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, bool isLoad,
bool isImmOpnd);
@@ -142,8 +187,10 @@ class MipsAsmParser : public MCTargetAsmParser {
const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
bool isEvaluated(const MCExpr *Expr);
+ bool parseSetMips0Directive();
+ bool parseSetArchDirective();
bool parseSetFeature(uint64_t Feature);
- bool parseDirectiveCPLoad(SMLoc Loc);
+ bool parseDirectiveCpLoad(SMLoc Loc);
bool parseDirectiveCPSetup();
bool parseDirectiveNaN();
bool parseDirectiveSet();
@@ -153,10 +200,16 @@ class MipsAsmParser : public MCTargetAsmParser {
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
+ bool parseSetMsaDirective();
+ bool parseSetNoMsaDirective();
+ bool parseSetNoDspDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
+ bool parseSetMips16Directive();
bool parseSetNoMips16Directive();
bool parseSetFpDirective();
+ bool parseSetPopDirective();
+ bool parseSetPushDirective();
bool parseSetAssignment();
@@ -174,6 +227,8 @@ class MipsAsmParser : public MCTargetAsmParser {
int matchCPURegisterName(StringRef Symbol);
+ int matchHWRegsRegisterName(StringRef Symbol);
+
int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
int matchFPURegisterName(StringRef Name);
@@ -200,11 +255,43 @@ class MipsAsmParser : public MCTargetAsmParser {
// Example: INSERT.B $w0[n], $1 => 16 > n >= 0
bool validateMSAIndex(int Val, int RegKind);
+ // Selects a new architecture by updating the FeatureBits with the necessary
+ // info including implied dependencies.
+ // Internally, it clears all the feature bits related to *any* architecture
+ // and selects the new one using the ToggleFeature functionality of the
+ // MCSubtargetInfo object that handles implied dependencies. The reason we
+ // clear all the arch related bits manually is because ToggleFeature only
+ // clears the features that imply the feature being cleared and not the
+ // features implied by the feature being cleared. This is easier to see
+ // with an example:
+ // --------------------------------------------------
+ // | Feature | Implies |
+ // | -------------------------------------------------|
+ // | FeatureMips1 | None |
+ // | FeatureMips2 | FeatureMips1 |
+ // | FeatureMips3 | FeatureMips2 | FeatureMipsGP64 |
+ // | FeatureMips4 | FeatureMips3 |
+ // | ... | |
+ // --------------------------------------------------
+ //
+ // Setting Mips3 is equivalent to set: (FeatureMips3 | FeatureMips2 |
+ // FeatureMipsGP64 | FeatureMips1)
+ // Clearing Mips3 is equivalent to clear (FeatureMips3 | FeatureMips4).
+ void selectArch(StringRef ArchFeature) {
+ uint64_t FeatureBits = STI.getFeatureBits();
+ FeatureBits &= ~MipsAssemblerOptions::AllArchRelatedMask;
+ STI.setFeatureBits(FeatureBits);
+ setAvailableFeatures(
+ ComputeAvailableFeatures(STI.ToggleFeature(ArchFeature)));
+ AssemblerOptions.back()->setFeatures(getAvailableFeatures());
+ }
+
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(STI.getFeatureBits() & Feature)) {
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
+ AssemblerOptions.back()->setFeatures(getAvailableFeatures());
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
@@ -212,6 +299,7 @@ class MipsAsmParser : public MCTargetAsmParser {
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
+ AssemblerOptions.back()->setFeatures(getAvailableFeatures());
}
public:
@@ -225,9 +313,19 @@ public:
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
- : MCTargetAsmParser(), STI(sti), Parser(parser) {
+ : MCTargetAsmParser(), STI(sti) {
+ MCAsmParserExtension::Initialize(parser);
+
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+
+ // Remember the initial assembler options. The user can not modify these.
+ AssemblerOptions.push_back(
+ make_unique<MipsAssemblerOptions>(getAvailableFeatures()));
+
+ // Create an assembler options environment for the user to modify.
+ AssemblerOptions.push_back(
+ make_unique<MipsAssemblerOptions>(getAvailableFeatures()));
getTargetStreamer().updateABIInfo(*this);
@@ -239,10 +337,9 @@ public:
if (!isABI_O32() && !useOddSPReg() != 0)
report_fatal_error("-mno-odd-spreg requires the O32 ABI");
- }
- MCAsmParser &getParser() const { return Parser; }
- MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+ CurrentFn = nullptr;
+ }
/// True if all of $fcc0 - $fcc7 exist for the current ISA.
bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); }
@@ -295,7 +392,7 @@ public:
bool abiUsesSoftFloat() const { return false; }
/// Warn if RegNo is the current assembler temporary.
- void WarnIfAssemblerTemporary(int RegNo, SMLoc Loc);
+ void warnIfAssemblerTemporary(int RegNo, SMLoc Loc);
};
}
@@ -333,7 +430,9 @@ private:
k_Memory, /// Base + Offset Memory Address
k_PhysRegister, /// A physical register from the Mips namespace
k_RegisterIndex, /// A register index in one or more RegKind.
- k_Token /// A simple token
+ k_Token, /// A simple token
+ k_RegList, /// A physical register list
+ k_RegPair /// A pair of physical register
} Kind;
public:
@@ -368,12 +467,17 @@ private:
const MCExpr *Off;
};
+ struct RegListOp {
+ SmallVector<unsigned, 10> *List;
+ };
+
union {
struct Token Tok;
struct PhysRegOp PhysReg;
struct RegIdxOp RegIdx;
struct ImmOp Imm;
struct MemOp Mem;
+ struct RegListOp RegList;
};
SMLoc StartLoc, EndLoc;
@@ -397,7 +501,15 @@ public:
/// target.
unsigned getGPR32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
- AsmParser.WarnIfAssemblerTemporary(RegIdx.Index, StartLoc);
+ AsmParser.warnIfAssemblerTemporary(RegIdx.Index, StartLoc);
+ unsigned ClassID = Mips::GPR32RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to GPR32 and return the real register for the current
+ /// target.
+ unsigned getGPRMM16Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
unsigned ClassID = Mips::GPR32RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
@@ -550,6 +662,16 @@ public:
Inst.addOperand(MCOperand::CreateReg(getGPR32Reg()));
}
+ void addGPRMM16AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getGPRMM16Reg()));
+ }
+
+ void addGPRMM16AsmRegZeroOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getGPRMM16Reg()));
+ }
+
/// Render the operand to an MCInst as a GPR64
/// Asserts if the wrong number of operands are requested, or the operand
/// is not a k_RegisterIndex compatible with RegKind_GPR
@@ -647,6 +769,29 @@ public:
addExpr(Inst, Expr);
}
+ void addMicroMipsMemOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::CreateReg(getMemBase()->getGPRMM16Reg()));
+
+ const MCExpr *Expr = getMemOff();
+ addExpr(Inst, Expr);
+ }
+
+ void addRegListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ for (auto RegNo : getRegList())
+ Inst.addOperand(MCOperand::CreateReg(RegNo));
+ }
+
+ void addRegPairOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ unsigned RegNo = getRegPair();
+ Inst.addOperand(MCOperand::CreateReg(RegNo++));
+ Inst.addOperand(MCOperand::CreateReg(RegNo));
+ }
+
bool isReg() const override {
// As a special case until we sort out the definition of div/divu, pretend
// that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
@@ -672,6 +817,37 @@ public:
template <unsigned Bits> bool isMemWithSimmOffset() const {
return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff());
}
+ bool isMemWithGRPMM16Base() const {
+ return isMem() && getMemBase()->isMM16AsmReg();
+ }
+ template <unsigned Bits> bool isMemWithUimmOffsetSP() const {
+ return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
+ && getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP);
+ }
+ template <unsigned Bits> bool isMemWithUimmWordAlignedOffsetSP() const {
+ return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
+ && (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx()
+ && (getMemBase()->getGPR32Reg() == Mips::SP);
+ }
+ bool isRegList16() const {
+ if (!isRegList())
+ return false;
+
+ int Size = RegList.List->size();
+ if (Size < 2 || Size > 5 || *RegList.List->begin() != Mips::S0 ||
+ RegList.List->back() != Mips::RA)
+ return false;
+
+ int PrevReg = *RegList.List->begin();
+ for (int i = 1; i < Size - 1; i++) {
+ int Reg = (*(RegList.List))[i];
+ if ( Reg != PrevReg + 1)
+ return false;
+ PrevReg = Reg;
+ }
+
+ return true;
+ }
bool isInvNum() const { return Kind == k_Immediate; }
bool isLSAImm() const {
if (!isConstantImm())
@@ -679,11 +855,13 @@ public:
int64_t Val = getConstantImm();
return 1 <= Val && Val <= 4;
}
+ bool isRegList() const { return Kind == k_RegList; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
+ bool isRegPair() const { return Kind == k_RegPair; }
unsigned getReg() const override {
// As a special case until we sort out the definition of div/divu, pretend
@@ -720,6 +898,16 @@ public:
return static_cast<const MCConstantExpr *>(getMemOff())->getValue();
}
+ const SmallVectorImpl<unsigned> &getRegList() const {
+ assert((Kind == k_RegList) && "Invalid access!");
+ return *(RegList.List);
+ }
+
+ unsigned getRegPair() const {
+ assert((Kind == k_RegPair) && "Invalid access!");
+ return RegIdx.Index;
+ }
+
static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S,
MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Token, Parser);
@@ -733,16 +921,16 @@ public:
/// Create a numeric register (e.g. $1). The exact register remains
/// unresolved until an instruction successfully matches
static std::unique_ptr<MipsOperand>
- CreateNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ createNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
- DEBUG(dbgs() << "CreateNumericReg(" << Index << ", ...)\n");
+ DEBUG(dbgs() << "createNumericReg(" << Index << ", ...)\n");
return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a GPR.
/// This is typically only used for named registers such as $gp.
static std::unique_ptr<MipsOperand>
- CreateGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ createGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser);
}
@@ -750,15 +938,23 @@ public:
/// Create a register that is definitely a FGR.
/// This is typically only used for named registers such as $f0.
static std::unique_ptr<MipsOperand>
- CreateFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ createFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser);
}
+ /// Create a register that is definitely a HWReg.
+ /// This is typically only used for named registers such as $hwr_cpunum.
+ static std::unique_ptr<MipsOperand>
+ createHWRegsReg(unsigned Index, const MCRegisterInfo *RegInfo,
+ SMLoc S, SMLoc E, MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_HWRegs, RegInfo, S, E, Parser);
+ }
+
/// Create a register that is definitely an FCC.
/// This is typically only used for named registers such as $fcc0.
static std::unique_ptr<MipsOperand>
- CreateFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ createFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser);
}
@@ -766,7 +962,7 @@ public:
/// Create a register that is definitely an ACC.
/// This is typically only used for named registers such as $ac0.
static std::unique_ptr<MipsOperand>
- CreateACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ createACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser);
}
@@ -774,7 +970,7 @@ public:
/// Create a register that is definitely an MSA128.
/// This is typically only used for named registers such as $w0.
static std::unique_ptr<MipsOperand>
- CreateMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ createMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser);
}
@@ -782,7 +978,7 @@ public:
/// Create a register that is definitely an MSACtrl.
/// This is typically only used for named registers such as $msaaccess.
static std::unique_ptr<MipsOperand>
- CreateMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ createMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser);
}
@@ -807,9 +1003,45 @@ public:
return Op;
}
+ static std::unique_ptr<MipsOperand>
+ CreateRegList(SmallVectorImpl<unsigned> &Regs, SMLoc StartLoc, SMLoc EndLoc,
+ MipsAsmParser &Parser) {
+ assert (Regs.size() > 0 && "Empty list not allowed");
+
+ auto Op = make_unique<MipsOperand>(k_RegList, Parser);
+ Op->RegList.List = new SmallVector<unsigned, 10>();
+ for (auto Reg : Regs)
+ Op->RegList.List->push_back(Reg);
+ Op->StartLoc = StartLoc;
+ Op->EndLoc = EndLoc;
+ return Op;
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateRegPair(unsigned RegNo, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_RegPair, Parser);
+ Op->RegIdx.Index = RegNo;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
bool isGPRAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31;
}
+ bool isMM16AsmReg() const {
+ if (!(isRegIdx() && RegIdx.Kind))
+ return false;
+ return ((RegIdx.Index >= 2 && RegIdx.Index <= 7)
+ || RegIdx.Index == 16 || RegIdx.Index == 17);
+ }
+ bool isMM16AsmRegZero() const {
+ if (!(isRegIdx() && RegIdx.Kind))
+ return false;
+ return (RegIdx.Index == 0 ||
+ (RegIdx.Index >= 2 && RegIdx.Index <= 7) ||
+ RegIdx.Index == 17);
+ }
bool isFGRAsmReg() const {
// AFGR64 is $0-$15 but we handle this in getAFGR64()
return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31;
@@ -855,9 +1087,12 @@ public:
case k_Memory:
delete Mem.Base;
break;
+ case k_RegList:
+ delete RegList.List;
case k_PhysRegister:
case k_RegisterIndex:
case k_Token:
+ case k_RegPair:
break;
}
}
@@ -885,6 +1120,15 @@ public:
case k_Token:
OS << Tok.Data;
break;
+ case k_RegList:
+ OS << "RegList< ";
+ for (auto Reg : (*RegList.List))
+ OS << Reg << " ";
+ OS << ">";
+ break;
+ case k_RegPair:
+ OS << "RegPair<" << RegIdx.Index << "," << RegIdx.Index + 1 << ">";
+ break;
}
}
}; // class MipsOperand
@@ -897,6 +1141,19 @@ static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return MipsInsts[Opcode];
}
+static bool hasShortDelaySlot(unsigned Opcode) {
+ switch (Opcode) {
+ case Mips::JALS_MM:
+ case Mips::JALRS_MM:
+ case Mips::JALRS16_MM:
+ case Mips::BGEZALS_MM:
+ case Mips::BLTZALS_MM:
+ return true;
+ default:
+ return false;
+ }
+}
+
bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
@@ -950,6 +1207,17 @@ bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
1LL << (inMicroMipsMode() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
+ case Mips::BEQZ16_MM:
+ case Mips::BNEZ16_MM:
+ assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
+ Offset = Inst.getOperand(1);
+ if (!Offset.isImm())
+ break; // We'll deal with this situation later on when applying fixups.
+ if (!isIntN(8, Offset.getImm()))
+ return Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(), 2LL))
+ return Error(IDLoc, "branch to misaligned address");
+ break;
}
}
@@ -961,15 +1229,21 @@ bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
"nop instruction");
}
- if (MCID.hasDelaySlot() && Options.isReorder()) {
+ if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder()) {
// If this instruction has a delay slot and .set reorder is active,
// emit a NOP after it.
Instructions.push_back(Inst);
MCInst NopInst;
- NopInst.setOpcode(Mips::SLL);
- NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
- NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
- NopInst.addOperand(MCOperand::CreateImm(0));
+ if (hasShortDelaySlot(Inst.getOpcode())) {
+ NopInst.setOpcode(Mips::MOVE16_MM);
+ NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ } else {
+ NopInst.setOpcode(Mips::SLL);
+ NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::CreateImm(0));
+ }
Instructions.push_back(NopInst);
return false;
}
@@ -1008,6 +1282,123 @@ bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
} // for
} // if load/store
+ // TODO: Handle this with the AsmOperandClass.PredicateMethod.
+ if (inMicroMipsMode()) {
+ MCOperand Opnd;
+ int Imm;
+
+ switch (Inst.getOpcode()) {
+ default:
+ break;
+ case Mips::ADDIUS5_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -8 || Imm > 7)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUSP_MM:
+ Opnd = Inst.getOperand(0);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -1032 || Imm > 1028 || (Imm < 8 && Imm > -12) ||
+ Imm % 4 != 0)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::SLL16_MM:
+ case Mips::SRL16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 1 || Imm > 8)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LI16_MM:
+ Opnd = Inst.getOperand(1);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -1 || Imm > 126)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUR2_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!(Imm == 1 || Imm == -1 ||
+ ((Imm % 4 == 0) && Imm < 28 && Imm > 0)))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUR1SP_MM:
+ Opnd = Inst.getOperand(1);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (OffsetToAlignment(Imm, 4LL))
+ return Error(IDLoc, "misaligned immediate operand value");
+ if (Imm < 0 || Imm > 255)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ANDI16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!(Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 ||
+ Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 ||
+ Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LBU16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -1 || Imm > 14)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::SB16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 15)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LHU16_MM:
+ case Mips::SH16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 30 || (Imm % 2 != 0))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LW16_MM:
+ case Mips::SW16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 60 || (Imm % 4 != 0))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::CACHE:
+ case Mips::PREF:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!isUInt<5>(Imm))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ }
+ }
+
if (needsExpansion(Inst))
return expandInstruction(Inst, IDLoc, Instructions);
else
@@ -1032,14 +1423,12 @@ bool MipsAsmParser::needsExpansion(MCInst &Inst) {
bool MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
switch (Inst.getOpcode()) {
- default:
- assert(0 && "unimplemented expansion");
- return true;
+ default: llvm_unreachable("unimplemented expansion");
case Mips::LoadImm32Reg:
return expandLoadImm(Inst, IDLoc, Instructions);
case Mips::LoadImm64Reg:
if (!isGP64bit()) {
- Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ Error(IDLoc, "instruction requires a 64-bit architecture");
return true;
}
return expandLoadImm(Inst, IDLoc, Instructions);
@@ -1051,8 +1440,8 @@ bool MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
}
namespace {
-template <int Shift, bool PerformShift>
-void createShiftOr(int64_t Value, unsigned RegNo, SMLoc IDLoc,
+template <bool PerformShift>
+void createShiftOr(MCOperand Operand, unsigned RegNo, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
if (PerformShift) {
@@ -1067,11 +1456,18 @@ void createShiftOr(int64_t Value, unsigned RegNo, SMLoc IDLoc,
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegNo));
tmpInst.addOperand(MCOperand::CreateReg(RegNo));
- tmpInst.addOperand(
- MCOperand::CreateImm(((Value & (0xffffLL << Shift)) >> Shift)));
+ tmpInst.addOperand(Operand);
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
+
+template <int Shift, bool PerformShift>
+void createShiftOr(int64_t Value, unsigned RegNo, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ createShiftOr<PerformShift>(
+ MCOperand::CreateImm(((Value & (0xffffLL << Shift)) >> Shift)), RegNo,
+ IDLoc, Instructions);
+}
}
bool MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
@@ -1114,7 +1510,7 @@ bool MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
createShiftOr<0, false>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
} else if ((ImmValue & (0xffffLL << 48)) == 0) {
if (!isGP64bit()) {
- Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ Error(IDLoc, "instruction requires a 64-bit architecture");
return true;
}
@@ -1141,7 +1537,7 @@ bool MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
createShiftOr<0, true>(ImmValue, RegOp.getReg(), IDLoc, Instructions);
} else {
if (!isGP64bit()) {
- Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ Error(IDLoc, "instruction requires a 64-bit architecture");
return true;
}
@@ -1176,7 +1572,12 @@ MipsAsmParser::expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(2);
- assert(ImmOp.isImm() && "expected immediate operand kind");
+ assert((ImmOp.isImm() || ImmOp.isExpr()) &&
+ "expected immediate operand kind");
+ if (!ImmOp.isImm()) {
+ expandLoadAddressSym(Inst, IDLoc, Instructions);
+ return false;
+ }
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
@@ -1220,7 +1621,12 @@ MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
- assert(ImmOp.isImm() && "expected immediate operand kind");
+ assert((ImmOp.isImm() || ImmOp.isExpr()) &&
+ "expected immediate operand kind");
+ if (!ImmOp.isImm()) {
+ expandLoadAddressSym(Inst, IDLoc, Instructions);
+ return false;
+ }
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
@@ -1250,6 +1656,71 @@ MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
return false;
}
+void
+MipsAsmParser::expandLoadAddressSym(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ // FIXME: If we do have a valid at register to use, we should generate a
+ // slightly shorter sequence here.
+ MCInst tmpInst;
+ int ExprOperandNo = 1;
+ // Sometimes the assembly parser will get the immediate expression as
+ // a $zero + an immediate.
+ if (Inst.getNumOperands() == 3) {
+ assert(Inst.getOperand(1).getReg() ==
+ (isGP64bit() ? Mips::ZERO_64 : Mips::ZERO));
+ ExprOperandNo = 2;
+ }
+ const MCOperand &SymOp = Inst.getOperand(ExprOperandNo);
+ assert(SymOp.isExpr() && "expected symbol operand kind");
+ const MCOperand &RegOp = Inst.getOperand(0);
+ unsigned RegNo = RegOp.getReg();
+ const MCSymbolRefExpr *Symbol = cast<MCSymbolRefExpr>(SymOp.getExpr());
+ const MCSymbolRefExpr *HiExpr =
+ MCSymbolRefExpr::Create(Symbol->getSymbol().getName(),
+ MCSymbolRefExpr::VK_Mips_ABS_HI, getContext());
+ const MCSymbolRefExpr *LoExpr =
+ MCSymbolRefExpr::Create(Symbol->getSymbol().getName(),
+ MCSymbolRefExpr::VK_Mips_ABS_LO, getContext());
+ if (isGP64bit()) {
+ // If it's a 64-bit architecture, expand to:
+ // la d,sym => lui d,highest(sym)
+ // ori d,d,higher(sym)
+ // dsll d,d,16
+ // ori d,d,hi16(sym)
+ // dsll d,d,16
+ // ori d,d,lo16(sym)
+ const MCSymbolRefExpr *HighestExpr =
+ MCSymbolRefExpr::Create(Symbol->getSymbol().getName(),
+ MCSymbolRefExpr::VK_Mips_HIGHEST, getContext());
+ const MCSymbolRefExpr *HigherExpr =
+ MCSymbolRefExpr::Create(Symbol->getSymbol().getName(),
+ MCSymbolRefExpr::VK_Mips_HIGHER, getContext());
+
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ tmpInst.addOperand(MCOperand::CreateExpr(HighestExpr));
+ Instructions.push_back(tmpInst);
+
+ createShiftOr<false>(MCOperand::CreateExpr(HigherExpr), RegNo, SMLoc(),
+ Instructions);
+ createShiftOr<true>(MCOperand::CreateExpr(HiExpr), RegNo, SMLoc(),
+ Instructions);
+ createShiftOr<true>(MCOperand::CreateExpr(LoExpr), RegNo, SMLoc(),
+ Instructions);
+ } else {
+ // Otherwise, expand to:
+ // la d,sym => lui d,hi16(sym)
+ // ori d,d,lo16(sym)
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::CreateReg(RegNo));
+ tmpInst.addOperand(MCOperand::CreateExpr(HiExpr));
+ Instructions.push_back(tmpInst);
+
+ createShiftOr<false>(MCOperand::CreateExpr(LoExpr), RegNo, SMLoc(),
+ Instructions);
+ }
+}
+
void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
bool isLoad, bool isImmOpnd) {
@@ -1381,7 +1852,7 @@ unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
@@ -1390,8 +1861,6 @@ bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
- default:
- break;
case Match_Success: {
if (processInstruction(Inst, IDLoc, Instructions))
return true;
@@ -1404,7 +1873,7 @@ bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
@@ -1420,19 +1889,29 @@ bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
case Match_RequiresDifferentSrcAndDst:
return Error(IDLoc, "source and destination must be different");
}
- return true;
+
+ llvm_unreachable("Implement any new match types added!");
}
-void MipsAsmParser::WarnIfAssemblerTemporary(int RegIndex, SMLoc Loc) {
- if ((RegIndex != 0) && ((int)Options.getATRegNum() == RegIndex)) {
+void MipsAsmParser::warnIfAssemblerTemporary(int RegIndex, SMLoc Loc) {
+ if ((RegIndex != 0) &&
+ ((int)AssemblerOptions.back()->getATRegNum() == RegIndex)) {
if (RegIndex == 1)
- Warning(Loc, "Used $at without \".set noat\"");
+ Warning(Loc, "used $at without \".set noat\"");
else
- Warning(Loc, Twine("Used $") + Twine(RegIndex) + " with \".set at=$" +
+ Warning(Loc, Twine("used $") + Twine(RegIndex) + " with \".set at=$" +
Twine(RegIndex) + "\"");
}
}
+void
+MipsAsmParser::printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
+ SMRange Range, bool ShowColors) {
+ getSourceManager().PrintMessage(Range.Start, SourceMgr::DK_Warning, Msg,
+ Range, SMFixIt(Range, FixMsg),
+ ShowColors);
+}
+
int MipsAsmParser::matchCPURegisterName(StringRef Name) {
int CC;
@@ -1472,23 +1951,55 @@ int MipsAsmParser::matchCPURegisterName(StringRef Name) {
.Case("t9", 25)
.Default(-1);
- if (isABI_N32() || isABI_N64()) {
- // Although SGI documentation just cuts out t0-t3 for n32/n64,
- // GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
- // We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
- if (8 <= CC && CC <= 11)
- CC += 4;
+ if (!(isABI_N32() || isABI_N64()))
+ return CC;
+
+ if (12 <= CC && CC <= 15) {
+ // Name is one of t4-t7
+ AsmToken RegTok = getLexer().peekTok();
+ SMRange RegRange = RegTok.getLocRange();
+
+ StringRef FixedName = StringSwitch<StringRef>(Name)
+ .Case("t4", "t0")
+ .Case("t5", "t1")
+ .Case("t6", "t2")
+ .Case("t7", "t3")
+ .Default("");
+ assert(FixedName != "" && "Register name is not one of t4-t7.");
+
+ printWarningWithFixIt("register names $t4-$t7 are only available in O32.",
+ "Did you mean $" + FixedName + "?", RegRange);
+ }
+
+ // Although SGI documentation just cuts out t0-t3 for n32/n64,
+ // GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
+ // We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
+ if (8 <= CC && CC <= 11)
+ CC += 4;
+
+ if (CC == -1)
+ CC = StringSwitch<unsigned>(Name)
+ .Case("a4", 8)
+ .Case("a5", 9)
+ .Case("a6", 10)
+ .Case("a7", 11)
+ .Case("kt0", 26)
+ .Case("kt1", 27)
+ .Default(-1);
- if (CC == -1)
- CC = StringSwitch<unsigned>(Name)
- .Case("a4", 8)
- .Case("a5", 9)
- .Case("a6", 10)
- .Case("a7", 11)
- .Case("kt0", 26)
- .Case("kt1", 27)
- .Default(-1);
- }
+ return CC;
+}
+
+int MipsAsmParser::matchHWRegsRegisterName(StringRef Name) {
+ int CC;
+
+ CC = StringSwitch<unsigned>(Name)
+ .Case("hwr_cpunum", 0)
+ .Case("hwr_synci_step", 1)
+ .Case("hwr_cc", 2)
+ .Case("hwr_ccres", 3)
+ .Case("hwr_ulr", 29)
+ .Default(-1);
return CC;
}
@@ -1568,15 +2079,15 @@ bool MipsAssemblerOptions::setATReg(unsigned Reg) {
if (Reg > 31)
return false;
- aTReg = Reg;
+ ATReg = Reg;
return true;
}
int MipsAsmParser::getATReg(SMLoc Loc) {
- int AT = Options.getATRegNum();
+ int AT = AssemblerOptions.back()->getATRegNum();
if (AT == 0)
reportParseError(Loc,
- "Pseudo instruction requires $at, which is not available");
+ "pseudo-instruction requires $at, which is not available");
return AT;
}
@@ -1597,8 +2108,9 @@ int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
return getReg(RegClass, RegNum);
}
-bool MipsAsmParser::ParseOperand(OperandVector &Operands, StringRef Mnemonic) {
- DEBUG(dbgs() << "ParseOperand\n");
+bool MipsAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseOperand\n");
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
@@ -1626,7 +2138,7 @@ bool MipsAsmParser::ParseOperand(OperandVector &Operands, StringRef Mnemonic) {
// for div, divu, and similar instructions because it is not an operand
// to the instruction definition but an explicit register. Special case
// this situation for now.
- if (ParseAnyRegister(Operands) != MatchOperand_NoMatch)
+ if (parseAnyRegister(Operands) != MatchOperand_NoMatch)
return false;
// Maybe it is a symbol reference.
@@ -1651,7 +2163,7 @@ bool MipsAsmParser::ParseOperand(OperandVector &Operands, StringRef Mnemonic) {
case AsmToken::Tilde:
case AsmToken::String: {
DEBUG(dbgs() << ".. generic integer\n");
- OperandMatchResultTy ResTy = ParseImm(Operands);
+ OperandMatchResultTy ResTy = parseImm(Operands);
return ResTy != MatchOperand_Success;
}
case AsmToken::Percent: {
@@ -1696,7 +2208,7 @@ const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
Val = ((MCE->getValue() + 0x800080008000LL) >> 48) & 0xffff;
break;
default:
- report_fatal_error("Unsupported reloc value!");
+ report_fatal_error("unsupported reloc value");
}
return MCConstantExpr::Create(Val, getContext());
}
@@ -1753,6 +2265,7 @@ bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
+ MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the % token.
const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
if (Tok.isNot(AsmToken::Identifier))
@@ -1797,7 +2310,7 @@ bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
- OperandMatchResultTy ResTy = ParseAnyRegister(Operands);
+ OperandMatchResultTy ResTy = parseAnyRegister(Operands);
if (ResTy == MatchOperand_Success) {
assert(Operands.size() == 1);
MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front());
@@ -1821,6 +2334,7 @@ bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
+ MCAsmParser &Parser = getParser();
SMLoc S;
bool Result = true;
@@ -1850,6 +2364,7 @@ bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMemOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseMemOperand\n");
const MCExpr *IdVal = nullptr;
SMLoc S;
@@ -1882,7 +2397,7 @@ MipsAsmParser::parseMemOperand(OperandVector &Operands) {
// Zero register assumed, add a memory operand with ZERO as its base.
// "Base" will be managed by k_Memory.
- auto Base = MipsOperand::CreateGPRReg(0, getContext().getRegisterInfo(),
+ auto Base = MipsOperand::createGPRReg(0, getContext().getRegisterInfo(),
S, E, *this);
Operands.push_back(
MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this));
@@ -1895,7 +2410,7 @@ MipsAsmParser::parseMemOperand(OperandVector &Operands) {
Parser.Lex(); // Eat the '(' token.
}
- Res = ParseAnyRegister(Operands);
+ Res = parseAnyRegister(Operands);
if (Res != MatchOperand_Success)
return Res;
@@ -1932,7 +2447,7 @@ MipsAsmParser::parseMemOperand(OperandVector &Operands) {
}
bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
-
+ MCAsmParser &Parser = getParser();
MCSymbol *Sym = getContext().LookupSymbol(Parser.getTok().getIdentifier());
if (Sym) {
SMLoc S = Parser.getTok().getLoc();
@@ -1943,10 +2458,10 @@ bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
return false;
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
- const StringRef DefSymbol = Ref->getSymbol().getName();
+ StringRef DefSymbol = Ref->getSymbol().getName();
if (DefSymbol.startswith("$")) {
OperandMatchResultTy ResTy =
- MatchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S);
+ matchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S);
if (ResTy == MatchOperand_Success) {
Parser.Lex();
return true;
@@ -1966,47 +2481,54 @@ bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
}
MipsAsmParser::OperandMatchResultTy
-MipsAsmParser::MatchAnyRegisterNameWithoutDollar(OperandVector &Operands,
+MipsAsmParser::matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
StringRef Identifier,
SMLoc S) {
int Index = matchCPURegisterName(Identifier);
if (Index != -1) {
- Operands.push_back(MipsOperand::CreateGPRReg(
+ Operands.push_back(MipsOperand::createGPRReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchHWRegsRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createHWRegsReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchFPURegisterName(Identifier);
if (Index != -1) {
- Operands.push_back(MipsOperand::CreateFGRReg(
+ Operands.push_back(MipsOperand::createFGRReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchFCCRegisterName(Identifier);
if (Index != -1) {
- Operands.push_back(MipsOperand::CreateFCCReg(
+ Operands.push_back(MipsOperand::createFCCReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchACRegisterName(Identifier);
if (Index != -1) {
- Operands.push_back(MipsOperand::CreateACCReg(
+ Operands.push_back(MipsOperand::createACCReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchMSA128RegisterName(Identifier);
if (Index != -1) {
- Operands.push_back(MipsOperand::CreateMSA128Reg(
+ Operands.push_back(MipsOperand::createMSA128Reg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchMSA128CtrlRegisterName(Identifier);
if (Index != -1) {
- Operands.push_back(MipsOperand::CreateMSACtrlReg(
+ Operands.push_back(MipsOperand::createMSACtrlReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
@@ -2015,18 +2537,19 @@ MipsAsmParser::MatchAnyRegisterNameWithoutDollar(OperandVector &Operands,
}
MipsAsmParser::OperandMatchResultTy
-MipsAsmParser::MatchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
+MipsAsmParser::matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
+ MCAsmParser &Parser = getParser();
auto Token = Parser.getLexer().peekTok(false);
if (Token.is(AsmToken::Identifier)) {
DEBUG(dbgs() << ".. identifier\n");
StringRef Identifier = Token.getIdentifier();
OperandMatchResultTy ResTy =
- MatchAnyRegisterNameWithoutDollar(Operands, Identifier, S);
+ matchAnyRegisterNameWithoutDollar(Operands, Identifier, S);
return ResTy;
} else if (Token.is(AsmToken::Integer)) {
DEBUG(dbgs() << ".. integer\n");
- Operands.push_back(MipsOperand::CreateNumericReg(
+ Operands.push_back(MipsOperand::createNumericReg(
Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(),
*this));
return MatchOperand_Success;
@@ -2038,8 +2561,9 @@ MipsAsmParser::MatchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
}
MipsAsmParser::OperandMatchResultTy
-MipsAsmParser::ParseAnyRegister(OperandVector &Operands) {
- DEBUG(dbgs() << "ParseAnyRegister\n");
+MipsAsmParser::parseAnyRegister(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseAnyRegister\n");
auto Token = Parser.getTok();
@@ -2056,7 +2580,7 @@ MipsAsmParser::ParseAnyRegister(OperandVector &Operands) {
}
DEBUG(dbgs() << ".. $\n");
- OperandMatchResultTy ResTy = MatchAnyRegisterWithoutDollar(Operands, S);
+ OperandMatchResultTy ResTy = matchAnyRegisterWithoutDollar(Operands, S);
if (ResTy == MatchOperand_Success) {
Parser.Lex(); // $
Parser.Lex(); // identifier
@@ -2065,7 +2589,8 @@ MipsAsmParser::ParseAnyRegister(OperandVector &Operands) {
}
MipsAsmParser::OperandMatchResultTy
-MipsAsmParser::ParseImm(OperandVector &Operands) {
+MipsAsmParser::parseImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
@@ -2089,18 +2614,19 @@ MipsAsmParser::ParseImm(OperandVector &Operands) {
}
MipsAsmParser::OperandMatchResultTy
-MipsAsmParser::ParseJumpTarget(OperandVector &Operands) {
- DEBUG(dbgs() << "ParseJumpTarget\n");
+MipsAsmParser::parseJumpTarget(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseJumpTarget\n");
SMLoc S = getLexer().getLoc();
// Integers and expressions are acceptable
- OperandMatchResultTy ResTy = ParseImm(Operands);
+ OperandMatchResultTy ResTy = parseImm(Operands);
if (ResTy != MatchOperand_NoMatch)
return ResTy;
// Registers are a valid target and have priority over symbols.
- ResTy = ParseAnyRegister(Operands);
+ ResTy = parseAnyRegister(Operands);
if (ResTy != MatchOperand_NoMatch)
return ResTy;
@@ -2116,6 +2642,7 @@ MipsAsmParser::ParseJumpTarget(OperandVector &Operands) {
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseInvNum(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
const MCExpr *IdVal;
// If the first token is '$' we may have register operand.
if (Parser.getTok().is(AsmToken::Dollar))
@@ -2133,7 +2660,8 @@ MipsAsmParser::parseInvNum(OperandVector &Operands) {
}
MipsAsmParser::OperandMatchResultTy
-MipsAsmParser::ParseLSAImm(OperandVector &Operands) {
+MipsAsmParser::parseLSAImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
@@ -2171,6 +2699,98 @@ MipsAsmParser::ParseLSAImm(OperandVector &Operands) {
return MatchOperand_Success;
}
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseRegisterList(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SmallVector<unsigned, 10> Regs;
+ unsigned RegNo;
+ unsigned PrevReg = Mips::NoRegister;
+ bool RegRange = false;
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
+
+ if (Parser.getTok().isNot(AsmToken::Dollar))
+ return MatchOperand_ParseFail;
+
+ SMLoc S = Parser.getTok().getLoc();
+ while (parseAnyRegister(TmpOperands) == MatchOperand_Success) {
+ SMLoc E = getLexer().getLoc();
+ MipsOperand &Reg = static_cast<MipsOperand &>(*TmpOperands.back());
+ RegNo = isGP64bit() ? Reg.getGPR64Reg() : Reg.getGPR32Reg();
+ if (RegRange) {
+ // Remove last register operand because registers from register range
+ // should be inserted first.
+ if (RegNo == Mips::RA) {
+ Regs.push_back(RegNo);
+ } else {
+ unsigned TmpReg = PrevReg + 1;
+ while (TmpReg <= RegNo) {
+ if ((TmpReg < Mips::S0) || (TmpReg > Mips::S7)) {
+ Error(E, "invalid register operand");
+ return MatchOperand_ParseFail;
+ }
+
+ PrevReg = TmpReg;
+ Regs.push_back(TmpReg++);
+ }
+ }
+
+ RegRange = false;
+ } else {
+ if ((PrevReg == Mips::NoRegister) && (RegNo != Mips::S0) &&
+ (RegNo != Mips::RA)) {
+ Error(E, "$16 or $31 expected");
+ return MatchOperand_ParseFail;
+ } else if (((RegNo < Mips::S0) || (RegNo > Mips::S7)) &&
+ (RegNo != Mips::FP) && (RegNo != Mips::RA)) {
+ Error(E, "invalid register operand");
+ return MatchOperand_ParseFail;
+ } else if ((PrevReg != Mips::NoRegister) && (RegNo != PrevReg + 1) &&
+ (RegNo != Mips::FP) && (RegNo != Mips::RA)) {
+ Error(E, "consecutive register numbers expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Regs.push_back(RegNo);
+ }
+
+ if (Parser.getTok().is(AsmToken::Minus))
+ RegRange = true;
+
+ if (!Parser.getTok().isNot(AsmToken::Minus) &&
+ !Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(E, "',' or '-' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Lex(); // Consume comma or minus
+ if (Parser.getTok().isNot(AsmToken::Dollar))
+ break;
+
+ PrevReg = RegNo;
+ }
+
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
+ parseMemOperand(Operands);
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseRegisterPair(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+
+ SMLoc S = Parser.getTok().getLoc();
+ if (parseAnyRegister(Operands) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ SMLoc E = Parser.getTok().getLoc();
+ MipsOperand &Op = static_cast<MipsOperand &>(*Operands.back());
+ unsigned Reg = Op.getGPR32Reg();
+ Operands.pop_back();
+ Operands.push_back(MipsOperand::CreateRegPair(Reg, S, E, *this));
+ return MatchOperand_Success;
+}
+
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK =
@@ -2212,12 +2832,13 @@ MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
/// ::= '(', register, ')'
/// handle it before we iterate so we don't get tripped up by the lack of
/// a comma.
-bool MipsAsmParser::ParseParenSuffix(StringRef Name, OperandVector &Operands) {
+bool MipsAsmParser::parseParenSuffix(StringRef Name, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LParen)) {
Operands.push_back(
MipsOperand::CreateToken("(", getLexer().getLoc(), *this));
Parser.Lex();
- if (ParseOperand(Operands, Name)) {
+ if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
@@ -2240,13 +2861,14 @@ bool MipsAsmParser::ParseParenSuffix(StringRef Name, OperandVector &Operands) {
/// ::= '[', integer, ']'
/// handle it before we iterate so we don't get tripped up by the lack of
/// a comma.
-bool MipsAsmParser::ParseBracketSuffix(StringRef Name,
+bool MipsAsmParser::parseBracketSuffix(StringRef Name,
OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LBrac)) {
Operands.push_back(
MipsOperand::CreateToken("[", getLexer().getLoc(), *this));
Parser.Lex();
- if (ParseOperand(Operands, Name)) {
+ if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
@@ -2265,14 +2887,16 @@ bool MipsAsmParser::ParseBracketSuffix(StringRef Name,
bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "ParseInstruction\n");
- // We have reached first instruction, module directive after
- // this is forbidden.
- getTargetStreamer().setCanHaveModuleDir(false);
+
+ // We have reached first instruction, module directive are now forbidden.
+ getTargetStreamer().forbidModuleDirective();
+
// Check if we have valid mnemonic
if (!mnemonicIsValid(Name, 0)) {
Parser.eatToEndOfStatement();
- return Error(NameLoc, "Unknown instruction");
+ return Error(NameLoc, "unknown instruction");
}
// First operand in MCInst is instruction mnemonic.
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this));
@@ -2280,29 +2904,29 @@ bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
- if (ParseOperand(Operands, Name)) {
+ if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
- if (getLexer().is(AsmToken::LBrac) && ParseBracketSuffix(Name, Operands))
+ if (getLexer().is(AsmToken::LBrac) && parseBracketSuffix(Name, Operands))
return true;
// AFAIK, parenthesis suffixes are never on the first operand
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
- if (ParseOperand(Operands, Name)) {
+ if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
// Parse bracket and parenthesis suffixes before we iterate
if (getLexer().is(AsmToken::LBrac)) {
- if (ParseBracketSuffix(Name, Operands))
+ if (parseBracketSuffix(Name, Operands))
return true;
} else if (getLexer().is(AsmToken::LParen) &&
- ParseParenSuffix(Name, Operands))
+ parseParenSuffix(Name, Operands))
return true;
}
}
@@ -2316,6 +2940,7 @@ bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
}
bool MipsAsmParser::reportParseError(Twine ErrorMsg) {
+ MCAsmParser &Parser = getParser();
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorMsg);
@@ -2326,14 +2951,15 @@ bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) {
}
bool MipsAsmParser::parseSetNoAtDirective() {
+ MCAsmParser &Parser = getParser();
// Line should look like: ".set noat".
// set at reg to 0.
- Options.setATReg(0);
+ AssemblerOptions.back()->setATReg(0);
// eat noat
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
@@ -2341,18 +2967,19 @@ bool MipsAsmParser::parseSetNoAtDirective() {
}
bool MipsAsmParser::parseSetAtDirective() {
+ MCAsmParser &Parser = getParser();
// Line can be .set at - defaults to $1
// or .set at=$reg
int AtRegNo;
getParser().Lex();
if (getLexer().is(AsmToken::EndOfStatement)) {
- Options.setATReg(1);
+ AssemblerOptions.back()->setATReg(1);
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else if (getLexer().is(AsmToken::Equal)) {
getParser().Lex(); // Eat the '='.
if (getLexer().isNot(AsmToken::Dollar)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected dollar sign '$'");
return false;
}
Parser.Lex(); // Eat the '$'.
@@ -2362,7 +2989,7 @@ bool MipsAsmParser::parseSetAtDirective() {
} else if (Reg.is(AsmToken::Integer)) {
AtRegNo = Reg.getIntVal();
} else {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected identifier or integer");
return false;
}
@@ -2371,14 +2998,14 @@ bool MipsAsmParser::parseSetAtDirective() {
return false;
}
- if (!Options.setATReg(AtRegNo)) {
- reportParseError("unexpected token in statement");
+ if (!AssemblerOptions.back()->setATReg(AtRegNo)) {
+ reportParseError("invalid register");
return false;
}
getParser().Lex(); // Eat the register.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
@@ -2390,72 +3017,138 @@ bool MipsAsmParser::parseSetAtDirective() {
}
bool MipsAsmParser::parseSetReorderDirective() {
+ MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
- Options.setReorder();
+ AssemblerOptions.back()->setReorder();
getTargetStreamer().emitDirectiveSetReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
+ MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
- Options.setNoreorder();
+ AssemblerOptions.back()->setNoReorder();
getTargetStreamer().emitDirectiveSetNoReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
+ MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
- Options.setMacro();
+ AssemblerOptions.back()->setMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
+ MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("`noreorder' must be set before `nomacro'");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
- if (Options.isReorder()) {
+ if (AssemblerOptions.back()->isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
- Options.setNomacro();
+ AssemblerOptions.back()->setNoMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
-bool MipsAsmParser::parseSetNoMips16Directive() {
+bool MipsAsmParser::parseSetMsaDirective() {
+ MCAsmParser &Parser = getParser();
Parser.Lex();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ setFeatureBits(Mips::FeatureMSA, "msa");
+ getTargetStreamer().emitDirectiveSetMsa();
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMsaDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ clearFeatureBits(Mips::FeatureMSA, "msa");
+ getTargetStreamer().emitDirectiveSetNoMsa();
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoDspDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "nodsp".
+
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ clearFeatureBits(Mips::FeatureDSP, "dsp");
+ getTargetStreamer().emitDirectiveSetNoDsp();
+ return false;
+}
+
+bool MipsAsmParser::parseSetMips16Directive() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "mips16".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ setFeatureBits(Mips::FeatureMips16, "mips16");
+ getTargetStreamer().emitDirectiveSetMips16();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMips16Directive() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "nomips16".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
return false;
}
- // For now do nothing.
+
+ clearFeatureBits(Mips::FeatureMips16, "mips16");
+ getTargetStreamer().emitDirectiveSetNoMips16();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetFpDirective() {
+ MCAsmParser &Parser = getParser();
MipsABIFlagsSection::FpABIKind FpAbiVal;
// Line can be: .set fp=32
// .set fp=xx
@@ -2463,7 +3156,7 @@ bool MipsAsmParser::parseSetFpDirective() {
Parser.Lex(); // Eat fp token
AsmToken Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Equal)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected equals sign '='");
return false;
}
Parser.Lex(); // Eat '=' token.
@@ -2473,7 +3166,7 @@ bool MipsAsmParser::parseSetFpDirective() {
return false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetFp(FpAbiVal);
@@ -2481,15 +3174,50 @@ bool MipsAsmParser::parseSetFpDirective() {
return false;
}
+bool MipsAsmParser::parseSetPopDirective() {
+ MCAsmParser &Parser = getParser();
+ SMLoc Loc = getLexer().getLoc();
+
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ // Always keep an element on the options "stack" to prevent the user
+ // from changing the initial options. This is how we remember them.
+ if (AssemblerOptions.size() == 2)
+ return reportParseError(Loc, ".set pop with no .set push");
+
+ AssemblerOptions.pop_back();
+ setAvailableFeatures(AssemblerOptions.back()->getFeatures());
+
+ getTargetStreamer().emitDirectiveSetPop();
+ return false;
+}
+
+bool MipsAsmParser::parseSetPushDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ // Create a copy of the current assembler options environment and push it.
+ AssemblerOptions.push_back(
+ make_unique<MipsAssemblerOptions>(AssemblerOptions.back().get()));
+
+ getTargetStreamer().emitDirectiveSetPush();
+ return false;
+}
+
bool MipsAsmParser::parseSetAssignment() {
StringRef Name;
const MCExpr *Value;
+ MCAsmParser &Parser = getParser();
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier after .set");
if (getLexer().isNot(AsmToken::Comma))
- return reportParseError("unexpected token in .set directive");
+ return reportParseError("unexpected token, expected comma");
Lex(); // Eat comma
if (Parser.parseExpression(Value))
@@ -2505,10 +3233,61 @@ bool MipsAsmParser::parseSetAssignment() {
return false;
}
+bool MipsAsmParser::parseSetMips0Directive() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ // Reset assembler options to their initial values.
+ setAvailableFeatures(AssemblerOptions.front()->getFeatures());
+ AssemblerOptions.back()->setFeatures(AssemblerOptions.front()->getFeatures());
+
+ getTargetStreamer().emitDirectiveSetMips0();
+ return false;
+}
+
+bool MipsAsmParser::parseSetArchDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::Equal))
+ return reportParseError("unexpected token, expected equals sign");
+
+ Parser.Lex();
+ StringRef Arch;
+ if (Parser.parseIdentifier(Arch))
+ return reportParseError("expected arch identifier");
+
+ StringRef ArchFeatureName =
+ StringSwitch<StringRef>(Arch)
+ .Case("mips1", "mips1")
+ .Case("mips2", "mips2")
+ .Case("mips3", "mips3")
+ .Case("mips4", "mips4")
+ .Case("mips5", "mips5")
+ .Case("mips32", "mips32")
+ .Case("mips32r2", "mips32r2")
+ .Case("mips32r6", "mips32r6")
+ .Case("mips64", "mips64")
+ .Case("mips64r2", "mips64r2")
+ .Case("mips64r6", "mips64r6")
+ .Case("cnmips", "cnmips")
+ .Case("r4000", "mips3") // This is an implementation of Mips3.
+ .Default("");
+
+ if (ArchFeatureName.empty())
+ return reportParseError("unsupported architecture");
+
+ selectArch(ArchFeatureName);
+ getTargetStreamer().emitDirectiveSetArch(Arch);
+ return false;
+}
+
bool MipsAsmParser::parseSetFeature(uint64_t Feature) {
+ MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
- return reportParseError("unexpected token in .set directive");
+ return reportParseError("unexpected token, expected end of statement");
switch (Feature) {
default:
@@ -2520,26 +3299,56 @@ bool MipsAsmParser::parseSetFeature(uint64_t Feature) {
case Mips::FeatureMicroMips:
getTargetStreamer().emitDirectiveSetMicroMips();
break;
- case Mips::FeatureMips16:
- getTargetStreamer().emitDirectiveSetMips16();
+ case Mips::FeatureMips1:
+ selectArch("mips1");
+ getTargetStreamer().emitDirectiveSetMips1();
+ break;
+ case Mips::FeatureMips2:
+ selectArch("mips2");
+ getTargetStreamer().emitDirectiveSetMips2();
+ break;
+ case Mips::FeatureMips3:
+ selectArch("mips3");
+ getTargetStreamer().emitDirectiveSetMips3();
+ break;
+ case Mips::FeatureMips4:
+ selectArch("mips4");
+ getTargetStreamer().emitDirectiveSetMips4();
+ break;
+ case Mips::FeatureMips5:
+ selectArch("mips5");
+ getTargetStreamer().emitDirectiveSetMips5();
+ break;
+ case Mips::FeatureMips32:
+ selectArch("mips32");
+ getTargetStreamer().emitDirectiveSetMips32();
break;
case Mips::FeatureMips32r2:
- setFeatureBits(Mips::FeatureMips32r2, "mips32r2");
+ selectArch("mips32r2");
getTargetStreamer().emitDirectiveSetMips32R2();
break;
+ case Mips::FeatureMips32r6:
+ selectArch("mips32r6");
+ getTargetStreamer().emitDirectiveSetMips32R6();
+ break;
case Mips::FeatureMips64:
- setFeatureBits(Mips::FeatureMips64, "mips64");
+ selectArch("mips64");
getTargetStreamer().emitDirectiveSetMips64();
break;
case Mips::FeatureMips64r2:
- setFeatureBits(Mips::FeatureMips64r2, "mips64r2");
+ selectArch("mips64r2");
getTargetStreamer().emitDirectiveSetMips64R2();
break;
+ case Mips::FeatureMips64r6:
+ selectArch("mips64r6");
+ getTargetStreamer().emitDirectiveSetMips64R6();
+ break;
}
return false;
}
bool MipsAsmParser::eatComma(StringRef ErrorStr) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Comma)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
@@ -2550,14 +3359,17 @@ bool MipsAsmParser::eatComma(StringRef ErrorStr) {
return true;
}
-bool MipsAsmParser::parseDirectiveCPLoad(SMLoc Loc) {
- if (Options.isReorder())
- Warning(Loc, ".cpload in reorder section");
+bool MipsAsmParser::parseDirectiveCpLoad(SMLoc Loc) {
+ if (AssemblerOptions.back()->isReorder())
+ Warning(Loc, ".cpload should be inside a noreorder section");
- // FIXME: Warn if cpload is used in Mips16 mode.
+ if (inMips16Mode()) {
+ reportParseError(".cpload is not supported in Mips16 mode");
+ return false;
+ }
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg;
- OperandMatchResultTy ResTy = ParseAnyRegister(Reg);
+ OperandMatchResultTy ResTy = parseAnyRegister(Reg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected register containing function address");
return false;
@@ -2569,17 +3381,24 @@ bool MipsAsmParser::parseDirectiveCPLoad(SMLoc Loc) {
return false;
}
- getTargetStreamer().emitDirectiveCpload(RegOpnd.getGPR32Reg());
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveCpLoad(RegOpnd.getGPR32Reg());
return false;
}
bool MipsAsmParser::parseDirectiveCPSetup() {
+ MCAsmParser &Parser = getParser();
unsigned FuncReg;
unsigned Save;
bool SaveIsReg = true;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
- OperandMatchResultTy ResTy = ParseAnyRegister(TmpReg);
+ OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch) {
reportParseError("expected register containing function address");
Parser.eatToEndOfStatement();
@@ -2596,10 +3415,10 @@ bool MipsAsmParser::parseDirectiveCPSetup() {
FuncReg = FuncRegOpnd.getGPR32Reg();
TmpReg.clear();
- if (!eatComma("expected comma parsing directive"))
+ if (!eatComma("unexpected token, expected comma"))
return true;
- ResTy = ParseAnyRegister(TmpReg);
+ ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch) {
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Integer)) {
@@ -2621,7 +3440,7 @@ bool MipsAsmParser::parseDirectiveCPSetup() {
Save = SaveOpnd.getGPR32Reg();
}
- if (!eatComma("expected comma parsing directive"))
+ if (!eatComma("unexpected token, expected comma"))
return true;
StringRef Name;
@@ -2634,6 +3453,7 @@ bool MipsAsmParser::parseDirectiveCPSetup() {
}
bool MipsAsmParser::parseDirectiveNaN() {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
const AsmToken &Tok = Parser.getTok();
@@ -2654,7 +3474,7 @@ bool MipsAsmParser::parseDirectiveNaN() {
}
bool MipsAsmParser::parseDirectiveSet() {
-
+ MCAsmParser &Parser = getParser();
// Get the next token.
const AsmToken &Tok = Parser.getTok();
@@ -2662,8 +3482,14 @@ bool MipsAsmParser::parseDirectiveSet() {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
+ } else if (Tok.getString() == "arch") {
+ return parseSetArchDirective();
} else if (Tok.getString() == "fp") {
return parseSetFpDirective();
+ } else if (Tok.getString() == "pop") {
+ return parseSetPopDirective();
+ } else if (Tok.getString() == "push") {
+ return parseSetPushDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
@@ -2673,7 +3499,7 @@ bool MipsAsmParser::parseDirectiveSet() {
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "mips16") {
- return parseSetFeature(Mips::FeatureMips16);
+ return parseSetMips16Directive();
} else if (Tok.getString() == "nomips16") {
return parseSetNoMips16Directive();
} else if (Tok.getString() == "nomicromips") {
@@ -2682,14 +3508,38 @@ bool MipsAsmParser::parseDirectiveSet() {
return false;
} else if (Tok.getString() == "micromips") {
return parseSetFeature(Mips::FeatureMicroMips);
+ } else if (Tok.getString() == "mips0") {
+ return parseSetMips0Directive();
+ } else if (Tok.getString() == "mips1") {
+ return parseSetFeature(Mips::FeatureMips1);
+ } else if (Tok.getString() == "mips2") {
+ return parseSetFeature(Mips::FeatureMips2);
+ } else if (Tok.getString() == "mips3") {
+ return parseSetFeature(Mips::FeatureMips3);
+ } else if (Tok.getString() == "mips4") {
+ return parseSetFeature(Mips::FeatureMips4);
+ } else if (Tok.getString() == "mips5") {
+ return parseSetFeature(Mips::FeatureMips5);
+ } else if (Tok.getString() == "mips32") {
+ return parseSetFeature(Mips::FeatureMips32);
} else if (Tok.getString() == "mips32r2") {
return parseSetFeature(Mips::FeatureMips32r2);
+ } else if (Tok.getString() == "mips32r6") {
+ return parseSetFeature(Mips::FeatureMips32r6);
} else if (Tok.getString() == "mips64") {
return parseSetFeature(Mips::FeatureMips64);
} else if (Tok.getString() == "mips64r2") {
return parseSetFeature(Mips::FeatureMips64r2);
+ } else if (Tok.getString() == "mips64r6") {
+ return parseSetFeature(Mips::FeatureMips64r6);
} else if (Tok.getString() == "dsp") {
return parseSetFeature(Mips::FeatureDSP);
+ } else if (Tok.getString() == "nodsp") {
+ return parseSetNoDspDirective();
+ } else if (Tok.getString() == "msa") {
+ return parseSetMsaDirective();
+ } else if (Tok.getString() == "nomsa") {
+ return parseSetNoMsaDirective();
} else {
// It is just an identifier, look for an assignment.
parseSetAssignment();
@@ -2702,6 +3552,7 @@ bool MipsAsmParser::parseDirectiveSet() {
/// parseDataDirective
/// ::= .word [ expression (, expression)* ]
bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
@@ -2713,9 +3564,8 @@ bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
if (getLexer().is(AsmToken::EndOfStatement))
break;
- // FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
- return Error(L, "unexpected token in directive");
+ return Error(L, "unexpected token, expected comma");
Parser.Lex();
}
}
@@ -2727,6 +3577,7 @@ bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
/// parseDirectiveGpWord
/// ::= .gpword local_sym
bool MipsAsmParser::parseDirectiveGpWord() {
+ MCAsmParser &Parser = getParser();
const MCExpr *Value;
// EmitGPRel32Value requires an expression, so we are using base class
// method to evaluate the expression.
@@ -2735,7 +3586,8 @@ bool MipsAsmParser::parseDirectiveGpWord() {
getParser().getStreamer().EmitGPRel32Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
- return Error(getLexer().getLoc(), "unexpected token in directive");
+ return Error(getLexer().getLoc(),
+ "unexpected token, expected end of statement");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
@@ -2743,6 +3595,7 @@ bool MipsAsmParser::parseDirectiveGpWord() {
/// parseDirectiveGpDWord
/// ::= .gpdword local_sym
bool MipsAsmParser::parseDirectiveGpDWord() {
+ MCAsmParser &Parser = getParser();
const MCExpr *Value;
// EmitGPRel64Value requires an expression, so we are using base class
// method to evaluate the expression.
@@ -2751,17 +3604,19 @@ bool MipsAsmParser::parseDirectiveGpDWord() {
getParser().getStreamer().EmitGPRel64Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
- return Error(getLexer().getLoc(), "unexpected token in directive");
+ return Error(getLexer().getLoc(),
+ "unexpected token, expected end of statement");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
bool MipsAsmParser::parseDirectiveOption() {
+ MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier)) {
- Error(Parser.getTok().getLoc(), "unexpected token in .option directive");
+ Error(Parser.getTok().getLoc(), "unexpected token, expected identifier");
Parser.eatToEndOfStatement();
return false;
}
@@ -2773,7 +3628,7 @@ bool MipsAsmParser::parseDirectiveOption() {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
- "unexpected token in .option pic0 directive");
+ "unexpected token, expected end of statement");
Parser.eatToEndOfStatement();
}
return false;
@@ -2784,14 +3639,15 @@ bool MipsAsmParser::parseDirectiveOption() {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
- "unexpected token in .option pic2 directive");
+ "unexpected token, expected end of statement");
Parser.eatToEndOfStatement();
}
return false;
}
// Unknown option.
- Warning(Parser.getTok().getLoc(), "unknown option in .option directive");
+ Warning(Parser.getTok().getLoc(),
+ "unknown option, expected 'pic0' or 'pic2'");
Parser.eatToEndOfStatement();
return false;
}
@@ -2801,10 +3657,11 @@ bool MipsAsmParser::parseDirectiveOption() {
/// ::= .module nooddspreg
/// ::= .module fp=value
bool MipsAsmParser::parseDirectiveModule() {
+ MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
SMLoc L = Lexer.getLoc();
- if (!getTargetStreamer().getCanHaveModuleDir()) {
+ if (!getTargetStreamer().isModuleDirectiveAllowed()) {
// TODO : get a better message.
reportParseError(".module directive must appear before any code");
return false;
@@ -2819,7 +3676,7 @@ bool MipsAsmParser::parseDirectiveModule() {
clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("Expected end of statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
@@ -2834,7 +3691,7 @@ bool MipsAsmParser::parseDirectiveModule() {
setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("Expected end of statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
@@ -2854,10 +3711,11 @@ bool MipsAsmParser::parseDirectiveModule() {
/// ::= =xx
/// ::= =64
bool MipsAsmParser::parseDirectiveModuleFP() {
+ MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
if (Lexer.isNot(AsmToken::Equal)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected equals sign '='");
return false;
}
Parser.Lex(); // Eat '=' token.
@@ -2867,7 +3725,7 @@ bool MipsAsmParser::parseDirectiveModuleFP() {
return false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- reportParseError("unexpected token in statement");
+ reportParseError("unexpected token, expected end of statement");
return false;
}
@@ -2879,6 +3737,7 @@ bool MipsAsmParser::parseDirectiveModuleFP() {
bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
StringRef Directive) {
+ MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
if (Lexer.is(AsmToken::Identifier)) {
@@ -2925,30 +3784,160 @@ bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
+ MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".cpload")
- return parseDirectiveCPLoad(DirectiveID.getLoc());
+ return parseDirectiveCpLoad(DirectiveID.getLoc());
if (IDVal == ".dword") {
parseDataDirective(8, DirectiveID.getLoc());
return false;
}
-
if (IDVal == ".ent") {
- // Ignore this directive for now.
- Parser.Lex();
+ StringRef SymbolName;
+
+ if (Parser.parseIdentifier(SymbolName)) {
+ reportParseError("expected identifier after .ent");
+ return false;
+ }
+
+ // There's an undocumented extension that allows an integer to
+ // follow the name of the procedure which AFAICS is ignored by GAS.
+ // Example: .ent foo,2
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (getLexer().isNot(AsmToken::Comma)) {
+ // Even though we accept this undocumented extension for compatibility
+ // reasons, the additional integer argument does not actually change
+ // the behaviour of the '.ent' directive, so we would like to discourage
+ // its use. We do this by not referring to the extended version in
+ // error messages which are not directly related to its use.
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ Parser.Lex(); // Eat the comma.
+ const MCExpr *DummyNumber;
+ int64_t DummyNumberVal;
+ // If the user was explicitly trying to use the extended version,
+ // we still give helpful extension-related error messages.
+ if (Parser.parseExpression(DummyNumber)) {
+ reportParseError("expected number after comma");
+ return false;
+ }
+ if (!DummyNumber->EvaluateAsAbsolute(DummyNumberVal)) {
+ reportParseError("expected an absolute expression after comma");
+ return false;
+ }
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(SymbolName);
+
+ getTargetStreamer().emitDirectiveEnt(*Sym);
+ CurrentFn = Sym;
return false;
}
if (IDVal == ".end") {
- // Ignore this directive for now.
- Parser.Lex();
+ StringRef SymbolName;
+
+ if (Parser.parseIdentifier(SymbolName)) {
+ reportParseError("expected identifier after .end");
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ if (CurrentFn == nullptr) {
+ reportParseError(".end used without .ent");
+ return false;
+ }
+
+ if ((SymbolName != CurrentFn->getName())) {
+ reportParseError(".end symbol does not match .ent symbol");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveEnd(SymbolName);
+ CurrentFn = nullptr;
return false;
}
if (IDVal == ".frame") {
- // Ignore this directive for now.
- Parser.eatToEndOfStatement();
+ // .frame $stack_reg, frame_size_in_bytes, $return_reg
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
+ OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
+ reportParseError("expected stack register");
+ return false;
+ }
+
+ MipsOperand &StackRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!StackRegOpnd.isGPRAsmReg()) {
+ reportParseError(StackRegOpnd.getStartLoc(),
+ "expected general purpose register");
+ return false;
+ }
+ unsigned StackReg = StackRegOpnd.getGPR32Reg();
+
+ if (Parser.getTok().is(AsmToken::Comma))
+ Parser.Lex();
+ else {
+ reportParseError("unexpected token, expected comma");
+ return false;
+ }
+
+ // Parse the frame size.
+ const MCExpr *FrameSize;
+ int64_t FrameSizeVal;
+
+ if (Parser.parseExpression(FrameSize)) {
+ reportParseError("expected frame size value");
+ return false;
+ }
+
+ if (!FrameSize->EvaluateAsAbsolute(FrameSizeVal)) {
+ reportParseError("frame size not an absolute expression");
+ return false;
+ }
+
+ if (Parser.getTok().is(AsmToken::Comma))
+ Parser.Lex();
+ else {
+ reportParseError("unexpected token, expected comma");
+ return false;
+ }
+
+ // Parse the return register.
+ TmpReg.clear();
+ ResTy = parseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
+ reportParseError("expected return register");
+ return false;
+ }
+
+ MipsOperand &ReturnRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!ReturnRegOpnd.isGPRAsmReg()) {
+ reportParseError(ReturnRegOpnd.getStartLoc(),
+ "expected general purpose register");
+ return false;
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().emitFrame(StackReg, FrameSizeVal,
+ ReturnRegOpnd.getGPR32Reg());
return false;
}
@@ -2956,15 +3945,61 @@ bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
return parseDirectiveSet();
}
- if (IDVal == ".fmask") {
- // Ignore this directive for now.
- Parser.eatToEndOfStatement();
- return false;
- }
+ if (IDVal == ".mask" || IDVal == ".fmask") {
+ // .mask bitmask, frame_offset
+ // bitmask: One bit for each register used.
+ // frame_offset: Offset from Canonical Frame Address ($sp on entry) where
+ // first register is expected to be saved.
+ // Examples:
+ // .mask 0x80000000, -4
+ // .fmask 0x80000000, -4
+ //
- if (IDVal == ".mask") {
- // Ignore this directive for now.
- Parser.eatToEndOfStatement();
+ // Parse the bitmask
+ const MCExpr *BitMask;
+ int64_t BitMaskVal;
+
+ if (Parser.parseExpression(BitMask)) {
+ reportParseError("expected bitmask value");
+ return false;
+ }
+
+ if (!BitMask->EvaluateAsAbsolute(BitMaskVal)) {
+ reportParseError("bitmask not an absolute expression");
+ return false;
+ }
+
+ if (Parser.getTok().is(AsmToken::Comma))
+ Parser.Lex();
+ else {
+ reportParseError("unexpected token, expected comma");
+ return false;
+ }
+
+ // Parse the frame_offset
+ const MCExpr *FrameOffset;
+ int64_t FrameOffsetVal;
+
+ if (Parser.parseExpression(FrameOffset)) {
+ reportParseError("expected frame offset value");
+ return false;
+ }
+
+ if (!FrameOffset->EvaluateAsAbsolute(FrameOffsetVal)) {
+ reportParseError("frame offset not an absolute expression");
+ return false;
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ if (IDVal == ".mask")
+ getTargetStreamer().emitMask(BitMaskVal, FrameOffsetVal);
+ else
+ getTargetStreamer().emitFMask(BitMaskVal, FrameOffsetVal);
return false;
}
@@ -2992,7 +4027,8 @@ bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
if (IDVal == ".abicalls") {
getTargetStreamer().emitDirectiveAbiCalls();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
- Error(Parser.getTok().getLoc(), "unexpected token in directive");
+ Error(Parser.getTok().getLoc(),
+ "unexpected token, expected end of statement");
// Clear line
Parser.eatToEndOfStatement();
}
diff --git a/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp b/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp
index 53fb7a1..da33f3b 100644
--- a/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp
+++ b/contrib/llvm/lib/Target/Mips/Disassembler/MipsDisassembler.cpp
@@ -20,7 +20,6 @@
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -31,32 +30,29 @@ typedef MCDisassembler::DecodeStatus DecodeStatus;
namespace {
-/// MipsDisassemblerBase - a disasembler class for Mips.
+/// A disasembler class for Mips.
class MipsDisassemblerBase : public MCDisassembler {
public:
- /// Constructor - Initializes the disassembler.
- ///
MipsDisassemblerBase(const MCSubtargetInfo &STI, MCContext &Ctx,
- bool bigEndian) :
- MCDisassembler(STI, Ctx),
- IsN64(STI.getFeatureBits() & Mips::FeatureN64), isBigEndian(bigEndian) {}
+ bool IsBigEndian)
+ : MCDisassembler(STI, Ctx),
+ IsGP64Bit(STI.getFeatureBits() & Mips::FeatureGP64Bit),
+ IsBigEndian(IsBigEndian) {}
virtual ~MipsDisassemblerBase() {}
- bool isN64() const { return IsN64; }
+ bool isGP64Bit() const { return IsGP64Bit; }
private:
- bool IsN64;
+ bool IsGP64Bit;
protected:
- bool isBigEndian;
+ bool IsBigEndian;
};
-/// MipsDisassembler - a disasembler class for Mips32.
+/// A disasembler class for Mips32.
class MipsDisassembler : public MipsDisassemblerBase {
bool IsMicroMips;
public:
- /// Constructor - Initializes the disassembler.
- ///
MipsDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, bool bigEndian)
: MipsDisassemblerBase(STI, Ctx, bigEndian) {
IsMicroMips = STI.getFeatureBits() & Mips::FeatureMicroMips;
@@ -75,32 +71,23 @@ public:
return !hasMips32() && !hasMips3();
}
- /// getInstruction - See MCDisassembler.
- DecodeStatus getInstruction(MCInst &instr,
- uint64_t &size,
- const MemoryObject &region,
- uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
-
-/// Mips64Disassembler - a disasembler class for Mips64.
+/// A disasembler class for Mips64.
class Mips64Disassembler : public MipsDisassemblerBase {
public:
- /// Constructor - Initializes the disassembler.
- ///
Mips64Disassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
bool bigEndian) :
MipsDisassemblerBase(STI, Ctx, bigEndian) {}
- /// getInstruction - See MCDisassembler.
- DecodeStatus getInstruction(MCInst &instr,
- uint64_t &size,
- const MemoryObject &region,
- uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
} // end anonymous namespace
@@ -117,6 +104,16 @@ static DecodeStatus DecodeCPU16RegsRegisterClass(MCInst &Inst,
uint64_t Address,
const void *Decoder);
+static DecodeStatus DecodeGPRMM16RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeGPRMM16ZeroRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
static DecodeStatus DecodeGPR32RegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
@@ -231,6 +228,13 @@ static DecodeStatus DecodeBranchTarget26(MCInst &Inst,
uint64_t Address,
const void *Decoder);
+// DecodeBranchTarget7MM - Decode microMIPS branch offset, which is
+// shifted left by 1 bit.
+static DecodeStatus DecodeBranchTarget7MM(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder);
+
// DecodeBranchTargetMM - Decode microMIPS branch offset, which is
// shifted left by 1 bit.
static DecodeStatus DecodeBranchTargetMM(MCInst &Inst,
@@ -255,9 +259,29 @@ static DecodeStatus DecodeCacheOp(MCInst &Inst,
uint64_t Address,
const void *Decoder);
+static DecodeStatus DecodeCacheOpMM(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeSyncI(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
static DecodeStatus DecodeMSA128Mem(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeMemMMImm4(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeMemMMSPImm5Lsl2(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
static DecodeStatus DecodeMemMMImm12(MCInst &Inst,
unsigned Insn,
uint64_t Address,
@@ -285,6 +309,26 @@ static DecodeStatus DecodeSpecial3LlSc(MCInst &Inst,
uint64_t Address,
const void *Decoder);
+static DecodeStatus DecodeAddiur2Simm7(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeUImm6Lsl2(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeLiSimm7(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeSimm4(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder);
+
static DecodeStatus DecodeSimm16(MCInst &Inst,
unsigned Insn,
uint64_t Address,
@@ -313,6 +357,15 @@ static DecodeStatus DecodeSimm19Lsl2(MCInst &Inst, unsigned Insn,
static DecodeStatus DecodeSimm18Lsl3(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeSimm9SP(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeANDI16Imm(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
+static DecodeStatus DecodeUImm5lsl2(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder);
+
/// INSVE_[BHWD] have an implicit operand that the generated decoder doesn't
/// handle.
template <typename InsnType>
@@ -349,6 +402,14 @@ static DecodeStatus
DecodeBlezGroupBranch(MCInst &MI, InsnType insn, uint64_t Address,
const void *Decoder);
+static DecodeStatus DecodeRegListOperand(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeRegListOperand16(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
namespace llvm {
extern Target TheMipselTarget, TheMipsTarget, TheMips64Target,
TheMips64elTarget;
@@ -704,43 +765,55 @@ static DecodeStatus DecodeBlezGroupBranch(MCInst &MI, InsnType insn,
return MCDisassembler::Success;
}
- /// readInstruction - read four bytes from the MemoryObject
- /// and return 32 bit word sorted according to the given endianess
-static DecodeStatus readInstruction32(const MemoryObject &region,
- uint64_t address,
- uint64_t &size,
- uint32_t &insn,
- bool isBigEndian,
- bool IsMicroMips) {
- uint8_t Bytes[4];
+/// Read two bytes from the ArrayRef and return 16 bit halfword sorted
+/// according to the given endianess.
+static DecodeStatus readInstruction16(ArrayRef<uint8_t> Bytes, uint64_t Address,
+ uint64_t &Size, uint32_t &Insn,
+ bool IsBigEndian) {
+ // We want to read exactly 2 Bytes of data.
+ if (Bytes.size() < 2) {
+ Size = 0;
+ return MCDisassembler::Fail;
+ }
+ if (IsBigEndian) {
+ Insn = (Bytes[0] << 8) | Bytes[1];
+ } else {
+ Insn = (Bytes[1] << 8) | Bytes[0];
+ }
+
+ return MCDisassembler::Success;
+}
+
+/// Read four bytes from the ArrayRef and return 32 bit word sorted
+/// according to the given endianess
+static DecodeStatus readInstruction32(ArrayRef<uint8_t> Bytes, uint64_t Address,
+ uint64_t &Size, uint32_t &Insn,
+ bool IsBigEndian, bool IsMicroMips) {
// We want to read exactly 4 Bytes of data.
- if (region.readBytes(address, 4, Bytes) == -1) {
- size = 0;
+ if (Bytes.size() < 4) {
+ Size = 0;
return MCDisassembler::Fail;
}
- if (isBigEndian) {
+ // High 16 bits of a 32-bit microMIPS instruction (where the opcode is)
+ // always precede the low 16 bits in the instruction stream (that is, they
+ // are placed at lower addresses in the instruction stream).
+ //
+ // microMIPS byte ordering:
+ // Big-endian: 0 | 1 | 2 | 3
+ // Little-endian: 1 | 0 | 3 | 2
+
+ if (IsBigEndian) {
// Encoded as a big-endian 32-bit word in the stream.
- insn = (Bytes[3] << 0) |
- (Bytes[2] << 8) |
- (Bytes[1] << 16) |
- (Bytes[0] << 24);
- }
- else {
- // Encoded as a small-endian 32-bit word in the stream.
- // Little-endian byte ordering:
- // mips32r2: 4 | 3 | 2 | 1
- // microMIPS: 2 | 1 | 4 | 3
+ Insn =
+ (Bytes[3] << 0) | (Bytes[2] << 8) | (Bytes[1] << 16) | (Bytes[0] << 24);
+ } else {
if (IsMicroMips) {
- insn = (Bytes[2] << 0) |
- (Bytes[3] << 8) |
- (Bytes[0] << 16) |
+ Insn = (Bytes[2] << 0) | (Bytes[3] << 8) | (Bytes[0] << 16) |
(Bytes[1] << 24);
} else {
- insn = (Bytes[0] << 0) |
- (Bytes[1] << 8) |
- (Bytes[2] << 16) |
+ Insn = (Bytes[0] << 0) | (Bytes[1] << 8) | (Bytes[2] << 16) |
(Bytes[3] << 24);
}
}
@@ -748,24 +821,33 @@ static DecodeStatus readInstruction32(const MemoryObject &region,
return MCDisassembler::Success;
}
-DecodeStatus
-MipsDisassembler::getInstruction(MCInst &instr,
- uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &vStream,
- raw_ostream &cStream) const {
+DecodeStatus MipsDisassembler::getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const {
uint32_t Insn;
-
- DecodeStatus Result = readInstruction32(Region, Address, Size,
- Insn, isBigEndian, IsMicroMips);
- if (Result == MCDisassembler::Fail)
- return MCDisassembler::Fail;
+ DecodeStatus Result;
if (IsMicroMips) {
- DEBUG(dbgs() << "Trying MicroMips32 table (32-bit opcodes):\n");
+ Result = readInstruction16(Bytes, Address, Size, Insn, IsBigEndian);
+
+ DEBUG(dbgs() << "Trying MicroMips16 table (16-bit instructions):\n");
+ // Calling the auto-generated decoder function.
+ Result = decodeInstruction(DecoderTableMicroMips16, Instr, Insn, Address,
+ this, STI);
+ if (Result != MCDisassembler::Fail) {
+ Size = 2;
+ return Result;
+ }
+
+ Result = readInstruction32(Bytes, Address, Size, Insn, IsBigEndian, true);
+ if (Result == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+
+ DEBUG(dbgs() << "Trying MicroMips32 table (32-bit instructions):\n");
// Calling the auto-generated decoder function.
- Result = decodeInstruction(DecoderTableMicroMips32, instr, Insn, Address,
+ Result = decodeInstruction(DecoderTableMicroMips32, Instr, Insn, Address,
this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
@@ -774,10 +856,14 @@ MipsDisassembler::getInstruction(MCInst &instr,
return MCDisassembler::Fail;
}
+ Result = readInstruction32(Bytes, Address, Size, Insn, IsBigEndian, false);
+ if (Result == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+
if (hasCOP3()) {
DEBUG(dbgs() << "Trying COP3_ table (32-bit opcodes):\n");
Result =
- decodeInstruction(DecoderTableCOP3_32, instr, Insn, Address, this, STI);
+ decodeInstruction(DecoderTableCOP3_32, Instr, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return Result;
@@ -786,7 +872,7 @@ MipsDisassembler::getInstruction(MCInst &instr,
if (hasMips32r6() && isGP64()) {
DEBUG(dbgs() << "Trying Mips32r6_64r6 (GPR64) table (32-bit opcodes):\n");
- Result = decodeInstruction(DecoderTableMips32r6_64r6_GP6432, instr, Insn,
+ Result = decodeInstruction(DecoderTableMips32r6_64r6_GP6432, Instr, Insn,
Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
@@ -796,7 +882,7 @@ MipsDisassembler::getInstruction(MCInst &instr,
if (hasMips32r6()) {
DEBUG(dbgs() << "Trying Mips32r6_64r6 table (32-bit opcodes):\n");
- Result = decodeInstruction(DecoderTableMips32r6_64r632, instr, Insn,
+ Result = decodeInstruction(DecoderTableMips32r6_64r632, Instr, Insn,
Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
@@ -806,8 +892,8 @@ MipsDisassembler::getInstruction(MCInst &instr,
DEBUG(dbgs() << "Trying Mips table (32-bit opcodes):\n");
// Calling the auto-generated decoder function.
- Result = decodeInstruction(DecoderTableMips32, instr, Insn, Address,
- this, STI);
+ Result =
+ decodeInstruction(DecoderTableMips32, Instr, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return Result;
@@ -816,30 +902,28 @@ MipsDisassembler::getInstruction(MCInst &instr,
return MCDisassembler::Fail;
}
-DecodeStatus
-Mips64Disassembler::getInstruction(MCInst &instr,
- uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &vStream,
- raw_ostream &cStream) const {
+DecodeStatus Mips64Disassembler::getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const {
uint32_t Insn;
- DecodeStatus Result = readInstruction32(Region, Address, Size,
- Insn, isBigEndian, false);
+ DecodeStatus Result =
+ readInstruction32(Bytes, Address, Size, Insn, IsBigEndian, false);
if (Result == MCDisassembler::Fail)
return MCDisassembler::Fail;
// Calling the auto-generated decoder function.
- Result = decodeInstruction(DecoderTableMips6432, instr, Insn, Address,
- this, STI);
+ Result =
+ decodeInstruction(DecoderTableMips6432, Instr, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return Result;
}
// If we fail to decode in Mips64 decoder space we can try in Mips32
- Result = decodeInstruction(DecoderTableMips32, instr, Insn, Address,
- this, STI);
+ Result =
+ decodeInstruction(DecoderTableMips32, Instr, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
return Result;
@@ -870,6 +954,28 @@ static DecodeStatus DecodeGPR64RegisterClass(MCInst &Inst,
return MCDisassembler::Success;
}
+static DecodeStatus DecodeGPRMM16RegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 7)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, Mips::GPRMM16RegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeGPRMM16ZeroRegisterClass(MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 7)
+ return MCDisassembler::Fail;
+ unsigned Reg = getReg(Decoder, Mips::GPRMM16ZeroRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ return MCDisassembler::Success;
+}
+
static DecodeStatus DecodeGPR32RegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
@@ -885,7 +991,7 @@ static DecodeStatus DecodePtrRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder) {
- if (static_cast<const MipsDisassembler *>(Decoder)->isN64())
+ if (static_cast<const MipsDisassembler *>(Decoder)->isGP64Bit())
return DecodeGPR64RegisterClass(Inst, RegNo, Address, Decoder);
return DecodeGPR32RegisterClass(Inst, RegNo, Address, Decoder);
@@ -966,7 +1072,8 @@ static DecodeStatus DecodeMem(MCInst &Inst,
Reg = getReg(Decoder, Mips::GPR32RegClassID, Reg);
Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
- if(Inst.getOpcode() == Mips::SC){
+ if(Inst.getOpcode() == Mips::SC ||
+ Inst.getOpcode() == Mips::SCD){
Inst.addOperand(MCOperand::CreateReg(Reg));
}
@@ -994,6 +1101,38 @@ static DecodeStatus DecodeCacheOp(MCInst &Inst,
return MCDisassembler::Success;
}
+static DecodeStatus DecodeCacheOpMM(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Offset = SignExtend32<12>(Insn & 0xfff);
+ unsigned Base = fieldFromInstruction(Insn, 16, 5);
+ unsigned Hint = fieldFromInstruction(Insn, 21, 5);
+
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+ Inst.addOperand(MCOperand::CreateImm(Hint));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSyncI(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ int Offset = SignExtend32<16>(Insn & 0xffff);
+ unsigned Base = fieldFromInstruction(Insn, 21, 5);
+
+ Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
+
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+
+ return MCDisassembler::Success;
+}
+
static DecodeStatus DecodeMSA128Mem(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder) {
int Offset = SignExtend32<10>(fieldFromInstruction(Insn, 16, 10));
@@ -1040,6 +1179,74 @@ static DecodeStatus DecodeMSA128Mem(MCInst &Inst, unsigned Insn,
return MCDisassembler::Success;
}
+static DecodeStatus DecodeMemMMImm4(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned Offset = Insn & 0xf;
+ unsigned Reg = fieldFromInstruction(Insn, 7, 3);
+ unsigned Base = fieldFromInstruction(Insn, 4, 3);
+
+ switch (Inst.getOpcode()) {
+ case Mips::LBU16_MM:
+ case Mips::LHU16_MM:
+ case Mips::LW16_MM:
+ if (DecodeGPRMM16RegisterClass(Inst, Reg, Address, Decoder)
+ == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ break;
+ case Mips::SB16_MM:
+ case Mips::SH16_MM:
+ case Mips::SW16_MM:
+ if (DecodeGPRMM16ZeroRegisterClass(Inst, Reg, Address, Decoder)
+ == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ break;
+ }
+
+ if (DecodeGPRMM16RegisterClass(Inst, Base, Address, Decoder)
+ == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+
+ switch (Inst.getOpcode()) {
+ case Mips::LBU16_MM:
+ if (Offset == 0xf)
+ Inst.addOperand(MCOperand::CreateImm(-1));
+ else
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+ break;
+ case Mips::SB16_MM:
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+ break;
+ case Mips::LHU16_MM:
+ case Mips::SH16_MM:
+ Inst.addOperand(MCOperand::CreateImm(Offset << 1));
+ break;
+ case Mips::LW16_MM:
+ case Mips::SW16_MM:
+ Inst.addOperand(MCOperand::CreateImm(Offset << 2));
+ break;
+ }
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeMemMMSPImm5Lsl2(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned Offset = Insn & 0x1F;
+ unsigned Reg = fieldFromInstruction(Insn, 5, 5);
+
+ Reg = getReg(Decoder, Mips::GPR32RegClassID, Reg);
+
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ Inst.addOperand(MCOperand::CreateReg(Mips::SP));
+ Inst.addOperand(MCOperand::CreateImm(Offset << 2));
+
+ return MCDisassembler::Success;
+}
+
static DecodeStatus DecodeMemMMImm12(MCInst &Inst,
unsigned Insn,
uint64_t Address,
@@ -1051,12 +1258,26 @@ static DecodeStatus DecodeMemMMImm12(MCInst &Inst,
Reg = getReg(Decoder, Mips::GPR32RegClassID, Reg);
Base = getReg(Decoder, Mips::GPR32RegClassID, Base);
- if (Inst.getOpcode() == Mips::SC_MM)
+ switch (Inst.getOpcode()) {
+ case Mips::SWM32_MM:
+ case Mips::LWM32_MM:
+ if (DecodeRegListOperand(Inst, Insn, Address, Decoder)
+ == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+ break;
+ case Mips::SC_MM:
+ Inst.addOperand(MCOperand::CreateReg(Reg));
+ // fallthrough
+ default:
Inst.addOperand(MCOperand::CreateReg(Reg));
+ if (Inst.getOpcode() == Mips::LWP_MM || Inst.getOpcode() == Mips::SWP_MM)
+ Inst.addOperand(MCOperand::CreateReg(Reg+1));
- Inst.addOperand(MCOperand::CreateReg(Reg));
- Inst.addOperand(MCOperand::CreateReg(Base));
- Inst.addOperand(MCOperand::CreateImm(Offset));
+ Inst.addOperand(MCOperand::CreateReg(Base));
+ Inst.addOperand(MCOperand::CreateImm(Offset));
+ }
return MCDisassembler::Success;
}
@@ -1326,6 +1547,15 @@ static DecodeStatus DecodeBranchTarget26(MCInst &Inst,
return MCDisassembler::Success;
}
+static DecodeStatus DecodeBranchTarget7MM(MCInst &Inst,
+ unsigned Offset,
+ uint64_t Address,
+ const void *Decoder) {
+ int32_t BranchOffset = SignExtend32<7>(Offset) << 1;
+ Inst.addOperand(MCOperand::CreateImm(BranchOffset));
+ return MCDisassembler::Success;
+}
+
static DecodeStatus DecodeBranchTargetMM(MCInst &Inst,
unsigned Offset,
uint64_t Address,
@@ -1344,6 +1574,46 @@ static DecodeStatus DecodeJumpTargetMM(MCInst &Inst,
return MCDisassembler::Success;
}
+static DecodeStatus DecodeAddiur2Simm7(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder) {
+ if (Value == 0)
+ Inst.addOperand(MCOperand::CreateImm(1));
+ else if (Value == 0x7)
+ Inst.addOperand(MCOperand::CreateImm(-1));
+ else
+ Inst.addOperand(MCOperand::CreateImm(Value << 2));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeUImm6Lsl2(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(Value << 2));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeLiSimm7(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder) {
+ if (Value == 0x7F)
+ Inst.addOperand(MCOperand::CreateImm(-1));
+ else
+ Inst.addOperand(MCOperand::CreateImm(Value));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSimm4(MCInst &Inst,
+ unsigned Value,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(SignExtend32<4>(Value)));
+ return MCDisassembler::Success;
+}
+
static DecodeStatus DecodeSimm16(MCInst &Inst,
unsigned Insn,
uint64_t Address,
@@ -1392,3 +1662,76 @@ static DecodeStatus DecodeSimm18Lsl3(MCInst &Inst, unsigned Insn,
Inst.addOperand(MCOperand::CreateImm(SignExtend32<18>(Insn) * 8));
return MCDisassembler::Success;
}
+
+static DecodeStatus DecodeSimm9SP(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ int32_t DecodedValue;
+ switch (Insn) {
+ case 0: DecodedValue = 256; break;
+ case 1: DecodedValue = 257; break;
+ case 510: DecodedValue = -258; break;
+ case 511: DecodedValue = -257; break;
+ default: DecodedValue = SignExtend32<9>(Insn); break;
+ }
+ Inst.addOperand(MCOperand::CreateImm(DecodedValue * 4));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeANDI16Imm(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ // Insn must be >= 0, since it is unsigned that condition is always true.
+ assert(Insn < 16);
+ int32_t DecodedValues[] = {128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64,
+ 255, 32768, 65535};
+ Inst.addOperand(MCOperand::CreateImm(DecodedValues[Insn]));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeUImm5lsl2(MCInst &Inst, unsigned Insn,
+ uint64_t Address, const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(Insn << 2));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeRegListOperand(MCInst &Inst,
+ unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned Regs[] = {Mips::S0, Mips::S1, Mips::S2, Mips::S3, Mips::S4, Mips::S5,
+ Mips::S6, Mips::FP};
+ unsigned RegNum;
+
+ unsigned RegLst = fieldFromInstruction(Insn, 21, 5);
+ // Empty register lists are not allowed.
+ if (RegLst == 0)
+ return MCDisassembler::Fail;
+
+ RegNum = RegLst & 0xf;
+ for (unsigned i = 0; i < RegNum; i++)
+ Inst.addOperand(MCOperand::CreateReg(Regs[i]));
+
+ if (RegLst & 0x10)
+ Inst.addOperand(MCOperand::CreateReg(Mips::RA));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeRegListOperand16(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned Regs[] = {Mips::S0, Mips::S1, Mips::S2, Mips::S3};
+ unsigned RegNum;
+
+ unsigned RegLst = fieldFromInstruction(Insn, 4, 2);
+ // Empty register lists are not allowed.
+ if (RegLst == 0)
+ return MCDisassembler::Fail;
+
+ RegNum = RegLst & 0x3;
+ for (unsigned i = 0; i < RegNum - 1; i++)
+ Inst.addOperand(MCOperand::CreateReg(Regs[i]));
+
+ Inst.addOperand(MCOperand::CreateReg(Mips::RA));
+
+ return MCDisassembler::Success;
+}
diff --git a/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp
index 8c79751..61743ff 100644
--- a/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.cpp
@@ -134,8 +134,8 @@ static void printExpr(const MCExpr *Expr, raw_ostream &OS) {
} else if (const MipsMCExpr *ME = dyn_cast<MipsMCExpr>(Expr)) {
ME->print(OS);
return;
- } else if (!(SRE = dyn_cast<MCSymbolRefExpr>(Expr)))
- assert(false && "Unexpected MCExpr type.");
+ } else
+ SRE = cast<MCSymbolRefExpr>(Expr);
MCSymbolRefExpr::VariantKind Kind = SRE->getKind();
@@ -225,6 +225,20 @@ printMemOperand(const MCInst *MI, int opNum, raw_ostream &O) {
// Load/Store memory operands -- imm($reg)
// If PIC target the target is loaded as the
// pattern lw $25,%call16($28)
+
+ // opNum can be invalid if instruction had reglist as operand.
+ // MemOperand is always last operand of instruction (base + offset).
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case Mips::SWM32_MM:
+ case Mips::LWM32_MM:
+ case Mips::SWM16_MM:
+ case Mips::LWM16_MM:
+ opNum = MI->getNumOperands() - 2;
+ break;
+ }
+
printOperand(MI, opNum+1, O);
O << "(";
printOperand(MI, opNum, O);
@@ -248,6 +262,11 @@ printFCCOperand(const MCInst *MI, int opNum, raw_ostream &O) {
}
void MipsInstPrinter::
+printRegisterPair(const MCInst *MI, int opNum, raw_ostream &O) {
+ printRegName(O, MI->getOperand(opNum).getReg());
+}
+
+void MipsInstPrinter::
printSHFMask(const MCInst *MI, int opNum, raw_ostream &O) {
llvm_unreachable("TODO");
}
@@ -324,3 +343,13 @@ void MipsInstPrinter::printSaveRestore(const MCInst *MI, raw_ostream &O) {
}
}
+void MipsInstPrinter::
+printRegisterList(const MCInst *MI, int opNum, raw_ostream &O) {
+ // - 2 because register List is always first operand of instruction and it is
+ // always followed by memory operand (base + offset).
+ for (int i = opNum, e = MI->getNumOperands() - 2; i != e; ++i) {
+ if (i != opNum)
+ O << ", ";
+ printRegName(O, MI->getOperand(i).getReg());
+ }
+}
diff --git a/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h
index 550a0f10..468dc07 100644
--- a/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h
+++ b/contrib/llvm/lib/Target/Mips/InstPrinter/MipsInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSINSTPRINTER_H
-#define MIPSINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_MIPS_INSTPRINTER_MIPSINSTPRINTER_H
+#define LLVM_LIB_TARGET_MIPS_INSTPRINTER_MIPSINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
namespace llvm {
@@ -99,6 +99,7 @@ private:
void printMemOperand(const MCInst *MI, int opNum, raw_ostream &O);
void printMemOperandEA(const MCInst *MI, int opNum, raw_ostream &O);
void printFCCOperand(const MCInst *MI, int opNum, raw_ostream &O);
+ void printRegisterPair(const MCInst *MI, int opNum, raw_ostream &O);
void printSHFMask(const MCInst *MI, int opNum, raw_ostream &O);
bool printAlias(const char *Str, const MCInst &MI, unsigned OpNo,
@@ -107,6 +108,7 @@ private:
unsigned OpNo1, raw_ostream &OS);
bool printAlias(const MCInst &MI, raw_ostream &OS);
void printSaveRestore(const MCInst *MI, raw_ostream &O);
+ void printRegisterList(const MCInst *MI, int opNum, raw_ostream &O);
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h
index ea5bc12..8bcfb0f 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIFlagsSection.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSABIFLAGSSECTION_H
-#define MIPSABIFLAGSSECTION_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSABIFLAGSSECTION_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSABIFLAGSSECTION_H
#include "llvm/MC/MCStreamer.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsABIInfo.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIInfo.cpp
index f885369..f885369 100644
--- a/contrib/llvm/lib/Target/Mips/MipsABIInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIInfo.cpp
diff --git a/contrib/llvm/lib/Target/Mips/MipsABIInfo.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIInfo.h
index bea585e..eccb50d8 100644
--- a/contrib/llvm/lib/Target/Mips/MipsABIInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsABIInfo.h
@@ -11,8 +11,8 @@
#define MIPSABIINFO_H
#include "llvm/ADT/ArrayRef.h"
-#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
+#include "llvm/MC/MCRegisterInfo.h"
namespace llvm {
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp
index d8e6128..6670dc2 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.cpp
@@ -103,6 +103,14 @@ static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
case Mips::fixup_MICROMIPS_26_S1:
Value >>= 1;
break;
+ case Mips::fixup_MICROMIPS_PC7_S1:
+ Value -= 4;
+ // Forcing a signed division because Value can be negative.
+ Value = (int64_t) Value / 2;
+ // We now check if Value can be encoded as a 7-bit signed immediate.
+ if (!isIntN(7, Value) && Ctx)
+ Ctx->FatalError(Fixup.getLoc(), "out of range PC7 fixup");
+ break;
case Mips::fixup_MICROMIPS_PC16_S1:
Value -= 4;
// Forcing a signed division because Value can be negative.
@@ -271,6 +279,7 @@ getFixupKindInfo(MCFixupKind Kind) const {
{ "fixup_MICROMIPS_HI16", 0, 16, 0 },
{ "fixup_MICROMIPS_LO16", 0, 16, 0 },
{ "fixup_MICROMIPS_GOT16", 0, 16, 0 },
+ { "fixup_MICROMIPS_PC7_S1", 0, 7, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_MICROMIPS_PC16_S1", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_MICROMIPS_CALL16", 0, 16, 0 },
{ "fixup_MICROMIPS_GOT_DISP", 0, 16, 0 },
@@ -334,6 +343,7 @@ getFixupKindInfo(MCFixupKind Kind) const {
{ "fixup_MICROMIPS_HI16", 16, 16, 0 },
{ "fixup_MICROMIPS_LO16", 16, 16, 0 },
{ "fixup_MICROMIPS_GOT16", 16, 16, 0 },
+ { "fixup_MICROMIPS_PC7_S1", 9, 7, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_MICROMIPS_PC16_S1",16, 16, MCFixupKindInfo::FKF_IsPCRel },
{ "fixup_MICROMIPS_CALL16", 16, 16, 0 },
{ "fixup_MICROMIPS_GOT_DISP", 16, 16, 0 },
@@ -367,7 +377,12 @@ bool MipsAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
// Check for a less than instruction size number of bytes
// FIXME: 16 bit instructions are not handled yet here.
// We shouldn't be using a hard coded number for instruction size.
- if (Count % 4) return false;
+
+ // If the count is not 4-byte aligned, we must be writing data into the text
+ // section (otherwise we have unaligned instructions, and thus have far
+ // bigger problems), so just write zeros instead.
+ for (uint64_t i = 0, e = Count % 4; i != e; ++i)
+ OW->Write8(0);
uint64_t NumNops = Count / 4;
for (uint64_t i = 0; i != NumNops; ++i)
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h
index d5c3dbc..dd0e54c 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsAsmBackend.h
@@ -12,12 +12,12 @@
//===----------------------------------------------------------------------===//
//
-#ifndef MIPSASMBACKEND_H
-#define MIPSASMBACKEND_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSASMBACKEND_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSASMBACKEND_H
#include "MCTargetDesc/MipsFixupKinds.h"
-#include "llvm/MC/MCAsmBackend.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCAsmBackend.h"
namespace llvm {
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h
index d2323dc..ff7779e 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsBaseInfo.h
@@ -11,8 +11,8 @@
// the Mips target useful for the compiler back-end and the MC libraries.
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSBASEINFO_H
-#define MIPSBASEINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSBASEINFO_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSBASEINFO_H
#include "MipsFixupKinds.h"
#include "MipsMCTargetDesc.h"
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp
index 4ea7846..56aac4e 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp
@@ -11,6 +11,7 @@
#include "MCTargetDesc/MipsFixupKinds.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCELF.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSection.h"
@@ -161,6 +162,9 @@ unsigned MipsELFObjectWriter::GetRelocType(const MCValue &Target,
case Mips::fixup_MICROMIPS_GOT16:
Type = ELF::R_MICROMIPS_GOT16;
break;
+ case Mips::fixup_MICROMIPS_PC7_S1:
+ Type = ELF::R_MICROMIPS_PC7_S1;
+ break;
case Mips::fixup_MICROMIPS_PC16_S1:
Type = ELF::R_MICROMIPS_PC16_S1;
break;
@@ -219,7 +223,7 @@ unsigned MipsELFObjectWriter::GetRelocType(const MCValue &Target,
bool
MipsELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
unsigned Type) const {
- // FIXME: This is extremelly conservative. This really needs to use a
+ // FIXME: This is extremely conservative. This really needs to use a
// whitelist with a clear explanation for why each realocation needs to
// point to the symbol, not to the section.
switch (Type) {
@@ -244,8 +248,11 @@ MipsELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
case ELF::R_MICROMIPS_LO16:
return true;
- case ELF::R_MIPS_26:
case ELF::R_MIPS_32:
+ if (MCELF::getOther(SD) & (ELF::STO_MIPS_MICROMIPS >> 2))
+ return true;
+ // falltrough
+ case ELF::R_MIPS_26:
case ELF::R_MIPS_64:
case ELF::R_MIPS_GPREL16:
return false;
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp
index 803ab85..18c4a20 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.cpp
@@ -8,7 +8,12 @@
//===----------------------------------------------------------------------===//
#include "MipsELFStreamer.h"
+#include "MipsTargetStreamer.h"
+#include "llvm/MC/MCELF.h"
#include "llvm/MC/MCInst.h"
+#include "llvm/Support/ELF.h"
+
+using namespace llvm;
void MipsELFStreamer::EmitInstruction(const MCInst &Inst,
const MCSubtargetInfo &STI) {
@@ -16,6 +21,8 @@ void MipsELFStreamer::EmitInstruction(const MCInst &Inst,
MCContext &Context = getContext();
const MCRegisterInfo *MCRegInfo = Context.getRegisterInfo();
+ MipsTargetELFStreamer *ELFTargetStreamer =
+ static_cast<MipsTargetELFStreamer *>(getTargetStreamer());
for (unsigned OpIndex = 0; OpIndex < Inst.getNumOperands(); ++OpIndex) {
const MCOperand &Op = Inst.getOperand(OpIndex);
@@ -26,6 +33,35 @@ void MipsELFStreamer::EmitInstruction(const MCInst &Inst,
unsigned Reg = Op.getReg();
RegInfoRecord->SetPhysRegUsed(Reg, MCRegInfo);
}
+
+ if (ELFTargetStreamer->isMicroMipsEnabled()) {
+ for (auto Label : Labels) {
+ MCSymbolData &Data = getOrCreateSymbolData(Label);
+ // The "other" values are stored in the last 6 bits of the second byte.
+ // The traditional defines for STO values assume the full byte and thus
+ // the shift to pack it.
+ MCELF::setOther(Data, ELF::STO_MIPS_MICROMIPS >> 2);
+ }
+ }
+
+ Labels.clear();
+}
+
+void MipsELFStreamer::EmitLabel(MCSymbol *Symbol) {
+ MCELFStreamer::EmitLabel(Symbol);
+ Labels.push_back(Symbol);
+}
+
+void MipsELFStreamer::SwitchSection(const MCSection * Section,
+ const MCExpr *Subsection) {
+ MCELFStreamer::SwitchSection(Section, Subsection);
+ Labels.clear();
+}
+
+void MipsELFStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size,
+ const SMLoc &Loc) {
+ MCELFStreamer::EmitValueImpl(Value, Size, Loc);
+ Labels.clear();
}
void MipsELFStreamer::EmitMipsOptionRecords() {
@@ -36,8 +72,8 @@ void MipsELFStreamer::EmitMipsOptionRecords() {
namespace llvm {
MCELFStreamer *createMipsELFStreamer(MCContext &Context, MCAsmBackend &MAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI, bool RelaxAll,
- bool NoExecStack) {
+ const MCSubtargetInfo &STI,
+ bool RelaxAll) {
return new MipsELFStreamer(Context, MAB, OS, Emitter, STI);
}
}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h
index 58863be..136146b 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsELFStreamer.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSELFSTREAMER_H
-#define MIPSELFSTREAMER_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSELFSTREAMER_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSELFSTREAMER_H
#include "MipsOptionRecord.h"
#include "llvm/ADT/SmallVector.h"
@@ -29,6 +29,8 @@ class MCSubtargetInfo;
class MipsELFStreamer : public MCELFStreamer {
SmallVector<std::unique_ptr<MipsOptionRecord>, 8> MipsOptionRecords;
MipsRegInfoRecord *RegInfoRecord;
+ SmallVector<MCSymbol*, 4> Labels;
+
public:
MipsELFStreamer(MCContext &Context, MCAsmBackend &MAB, raw_ostream &OS,
@@ -46,13 +48,27 @@ public:
/// usage for the translation unit.
void EmitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI) override;
+ /// Overriding this function allows us to record all labels that should be
+ /// marked as microMIPS. Based on this data marking is done in
+ /// EmitInstruction.
+ void EmitLabel(MCSymbol *Symbol) override;
+
+ /// Overriding this function allows us to dismiss all labels that are
+ /// candidates for marking as microMIPS when .section directive is processed.
+ void SwitchSection(const MCSection *Section,
+ const MCExpr *Subsection = nullptr) override;
+
+ /// Overriding this function allows us to dismiss all labels that are
+ /// candidates for marking as microMIPS when .word directive is emitted.
+ void EmitValueImpl(const MCExpr *Value, unsigned Size,
+ const SMLoc &Loc) override;
+
/// Emits all the option records stored up until the point it's called.
void EmitMipsOptionRecords();
};
MCELFStreamer *createMipsELFStreamer(MCContext &Context, MCAsmBackend &MAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI, bool RelaxAll,
- bool NoExecStack);
+ const MCSubtargetInfo &STI, bool RelaxAll);
} // namespace llvm.
#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h
index 05080f0..71c11d7 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsFixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_MIPS_MIPSFIXUPKINDS_H
-#define LLVM_MIPS_MIPSFIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSFIXUPKINDS_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSFIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
@@ -158,6 +158,9 @@ namespace Mips {
// resulting in - R_MICROMIPS_GOT16
fixup_MICROMIPS_GOT16,
+ // resulting in - R_MICROMIPS_PC7_S1
+ fixup_MICROMIPS_PC7_S1,
+
// resulting in - R_MICROMIPS_PC16_S1
fixup_MICROMIPS_PC16_S1,
@@ -199,4 +202,4 @@ namespace Mips {
} // namespace llvm
-#endif // LLVM_MIPS_MIPSFIXUPKINDS_H
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp
index e415412..e2bd5a8 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.cpp
@@ -34,6 +34,7 @@ MipsMCAsmInfo::MipsMCAsmInfo(StringRef TT) {
Data32bitsDirective = "\t.4byte\t";
Data64bitsDirective = "\t.8byte\t";
PrivateGlobalPrefix = "$";
+ PrivateLabelPrefix = "$";
CommentString = "#";
ZeroDirective = "\t.space\t";
GPRel32Directive = "\t.gpword\t";
@@ -41,6 +42,5 @@ MipsMCAsmInfo::MipsMCAsmInfo(StringRef TT) {
UseAssignmentForEHBegin = true;
SupportsDebugInformation = true;
ExceptionsType = ExceptionHandling::DwarfCFI;
- HasLEB128 = true;
DwarfRegNumForCFI = true;
}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h
index 37ba0c4..59ff1c4 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSTARGETASMINFO_H
-#define MIPSTARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCASMINFO_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCASMINFO_H
#include "llvm/MC/MCAsmInfoELF.h"
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp
index 43fc521..a54a2eb 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp
@@ -20,9 +20,9 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
-#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/raw_ostream.h"
@@ -173,7 +173,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// Unfortunately in MIPS both NOP and SLL will come in with Binary == 0
// so we have to special check for them.
unsigned Opcode = TmpInst.getOpcode();
- if ((Opcode != Mips::NOP) && (Opcode != Mips::SLL) && !Binary)
+ if ((Opcode != Mips::NOP) && (Opcode != Mips::SLL) &&
+ (Opcode != Mips::SLL_MM) && !Binary)
llvm_unreachable("unimplemented opcode in EncodeInstruction()");
if (STI.getFeatureBits() & Mips::FeatureMicroMips) {
@@ -219,6 +220,28 @@ getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
return 0;
}
+/// getBranchTarget7OpValueMM - Return binary encoding of the microMIPS branch
+/// target operand. If the machine operand requires relocation,
+/// record the relocation and return zero.
+unsigned MipsMCCodeEmitter::
+getBranchTarget7OpValueMM(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+
+ // If the destination is an immediate, divide by 2.
+ if (MO.isImm()) return MO.getImm() >> 1;
+
+ assert(MO.isExpr() &&
+ "getBranchTargetOpValueMM expects only expressions or immediates");
+
+ const MCExpr *Expr = MO.getExpr();
+ Fixups.push_back(MCFixup::Create(0, Expr,
+ MCFixupKind(Mips::fixup_MICROMIPS_PC7_S1)));
+ return 0;
+}
+
/// getBranchTargetOpValue - Return binary encoding of the microMIPS branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
@@ -345,6 +368,67 @@ getJumpTargetOpValueMM(const MCInst &MI, unsigned OpNo,
}
unsigned MipsMCCodeEmitter::
+getUImm5Lsl2Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm()) {
+ // The immediate is encoded as 'immediate << 2'.
+ unsigned Res = getMachineOpValue(MI, MO, Fixups, STI);
+ assert((Res & 3) == 0);
+ return Res >> 2;
+ }
+
+ assert(MO.isExpr() &&
+ "getUImm5Lsl2Encoding expects only expressions or an immediate");
+
+ return 0;
+}
+
+unsigned MipsMCCodeEmitter::
+getSImm3Lsa2Value(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm()) {
+ int Value = MO.getImm();
+ return Value >> 2;
+ }
+
+ return 0;
+}
+
+unsigned MipsMCCodeEmitter::
+getUImm6Lsl2Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm()) {
+ unsigned Value = MO.getImm();
+ return Value >> 2;
+ }
+
+ return 0;
+}
+
+unsigned MipsMCCodeEmitter::
+getSImm9AddiuspValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ if (MO.isImm()) {
+ unsigned Binary = (MO.getImm() >> 2) & 0x0000ffff;
+ return (((Binary & 0x8000) >> 7) | (Binary & 0x00ff));
+ }
+
+ return 0;
+}
+
+unsigned MipsMCCodeEmitter::
getExprOpValue(const MCExpr *Expr,SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
int64_t Res;
@@ -574,9 +658,76 @@ MipsMCCodeEmitter::getMemEncoding(const MCInst &MI, unsigned OpNo,
}
unsigned MipsMCCodeEmitter::
+getMemEncodingMMImm4(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
+ Fixups, STI) << 4;
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
+ Fixups, STI);
+
+ return (OffBits & 0xF) | RegBits;
+}
+
+unsigned MipsMCCodeEmitter::
+getMemEncodingMMImm4Lsl1(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
+ Fixups, STI) << 4;
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
+ Fixups, STI) >> 1;
+
+ return (OffBits & 0xF) | RegBits;
+}
+
+unsigned MipsMCCodeEmitter::
+getMemEncodingMMImm4Lsl2(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
+ assert(MI.getOperand(OpNo).isReg());
+ unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
+ Fixups, STI) << 4;
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
+ Fixups, STI) >> 2;
+
+ return (OffBits & 0xF) | RegBits;
+}
+
+unsigned MipsMCCodeEmitter::
+getMemEncodingMMSPImm5Lsl2(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // Register is encoded in bits 9-5, offset is encoded in bits 4-0.
+ assert(MI.getOperand(OpNo).isReg() &&
+ MI.getOperand(OpNo).getReg() == Mips::SP &&
+ "Unexpected base register!");
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
+ Fixups, STI) >> 2;
+
+ return OffBits & 0x1F;
+}
+
+unsigned MipsMCCodeEmitter::
getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
+ // opNum can be invalid if instruction had reglist as operand.
+ // MemOperand is always last operand of instruction (base + offset).
+ switch (MI.getOpcode()) {
+ default:
+ break;
+ case Mips::SWM32_MM:
+ case Mips::LWM32_MM:
+ OpNo = MI.getNumOperands() - 2;
+ break;
+ }
+
// Base register is encoded in bits 20-16, offset is encoded in bits 11-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16;
@@ -585,6 +736,30 @@ getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
return (OffBits & 0x0FFF) | RegBits;
}
+unsigned MipsMCCodeEmitter::
+getMemEncodingMMImm4sp(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ // opNum can be invalid if instruction had reglist as operand
+ // MemOperand is always last operand of instruction (base + offset)
+ switch (MI.getOpcode()) {
+ default:
+ break;
+ case Mips::SWM16_MM:
+ case Mips::LWM16_MM:
+ OpNo = MI.getNumOperands() - 2;
+ break;
+ }
+
+ // Offset is encoded in bits 4-0.
+ assert(MI.getOperand(OpNo).isReg());
+ // Base register is always SP - thus it is not encoded.
+ assert(MI.getOperand(OpNo+1).isImm());
+ unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
+
+ return ((OffBits >> 2) & 0x0F);
+}
+
unsigned
MipsMCCodeEmitter::getSizeExtEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
@@ -659,4 +834,75 @@ MipsMCCodeEmitter::getSimm18Lsl3Encoding(const MCInst &MI, unsigned OpNo,
return 0;
}
+unsigned
+MipsMCCodeEmitter::getUImm3Mod8Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ assert(MI.getOperand(OpNo).isImm());
+ const MCOperand &MO = MI.getOperand(OpNo);
+ return MO.getImm() % 8;
+}
+
+unsigned
+MipsMCCodeEmitter::getUImm4AndValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ assert(MI.getOperand(OpNo).isImm());
+ const MCOperand &MO = MI.getOperand(OpNo);
+ unsigned Value = MO.getImm();
+ switch (Value) {
+ case 128: return 0x0;
+ case 1: return 0x1;
+ case 2: return 0x2;
+ case 3: return 0x3;
+ case 4: return 0x4;
+ case 7: return 0x5;
+ case 8: return 0x6;
+ case 15: return 0x7;
+ case 16: return 0x8;
+ case 31: return 0x9;
+ case 32: return 0xa;
+ case 63: return 0xb;
+ case 64: return 0xc;
+ case 255: return 0xd;
+ case 32768: return 0xe;
+ case 65535: return 0xf;
+ }
+ llvm_unreachable("Unexpected value");
+}
+
+unsigned
+MipsMCCodeEmitter::getRegisterListOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned res = 0;
+
+ // Register list operand is always first operand of instruction and it is
+ // placed before memory operand (register + imm).
+
+ for (unsigned I = OpNo, E = MI.getNumOperands() - 2; I < E; ++I) {
+ unsigned Reg = MI.getOperand(I).getReg();
+ unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg);
+ if (RegNo != 31)
+ res++;
+ else
+ res |= 0x10;
+ }
+ return res;
+}
+
+unsigned
+MipsMCCodeEmitter::getRegisterListOpValue16(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return (MI.getNumOperands() - 4);
+}
+
+unsigned
+MipsMCCodeEmitter::getRegisterPairOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ return getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
+}
+
#include "MipsGenMCCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h
index 304167f..0f0f49d 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.h
@@ -12,8 +12,8 @@
//===----------------------------------------------------------------------===//
//
-#ifndef MIPS_MC_CODE_EMITTER_H
-#define MIPS_MC_CODE_EMITTER_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCCODEEMITTER_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCCODEEMITTER_H
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/Support/DataTypes.h"
@@ -60,7 +60,7 @@ public:
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
- // getBranchJumpOpValue - Return binary encoding of the jump
+ // getJumpTargetOpValue - Return binary encoding of the jump
// target operand. If the machine operand requires relocation,
// record the relocation and return zero.
unsigned getJumpTargetOpValue(const MCInst &MI, unsigned OpNo,
@@ -74,6 +74,26 @@ public:
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ // getUImm5Lsl2Encoding - Return binary encoding of the microMIPS jump
+ // target operand.
+ unsigned getUImm5Lsl2Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getSImm3Lsa2Value(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getUImm6Lsl2Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ // getSImm9AddiuspValue - Return binary encoding of the microMIPS addiusp
+ // instruction immediate operand.
+ unsigned getSImm9AddiuspValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
// getBranchTargetOpValue - Return binary encoding of the branch
// target operand. If the machine operand requires relocation,
// record the relocation and return zero.
@@ -81,6 +101,13 @@ public:
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ // getBranchTarget7OpValue - Return binary encoding of the microMIPS branch
+ // target operand. If the machine operand requires relocation,
+ // record the relocation and return zero.
+ unsigned getBranchTarget7OpValueMM(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
// getBranchTargetOpValue - Return binary encoding of the microMIPS branch
// target operand. If the machine operand requires relocation,
// record the relocation and return zero.
@@ -122,9 +149,24 @@ public:
unsigned getMemEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ unsigned getMemEncodingMMImm4(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getMemEncodingMMImm4Lsl1(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getMemEncodingMMImm4Lsl2(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getMemEncodingMMSPImm5Lsl2(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
unsigned getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ unsigned getMemEncodingMMImm4sp(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
unsigned getSizeExtEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
@@ -145,9 +187,27 @@ public:
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ unsigned getUImm3Mod8Encoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getUImm4AndValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getRegisterPairOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
unsigned getExprOpValue(const MCExpr *Expr, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ unsigned getRegisterListOpValue(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ unsigned getRegisterListOpValue16(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
}; // class MipsMCCodeEmitter
} // namespace llvm.
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp
index 5bba3e5..74490f3 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.cpp
@@ -80,8 +80,9 @@ void MipsMCExpr::PrintImpl(raw_ostream &OS) const {
bool
MipsMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const {
- return getSubExpr()->EvaluateAsRelocatable(Res, Layout);
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const {
+ return getSubExpr()->EvaluateAsRelocatable(Res, Layout, Fixup);
}
void MipsMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h
index f193dc9..2b8f0c8 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCExpr.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSMCEXPR_H
-#define MIPSMCEXPR_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCEXPR_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCEXPR_H
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCExpr.h"
@@ -48,7 +48,8 @@ public:
void PrintImpl(raw_ostream &OS) const override;
bool EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const override;
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const override;
void visitUsedExpr(MCStreamer &Streamer) const override;
const MCSection *FindAssociatedSection() const override {
return getSubExpr()->FindAssociatedSection();
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h
index 01d5363..e756b47 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCNaCl.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSMCNACL_H
-#define MIPSMCNACL_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCNACL_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCNACL_H
#include "llvm/MC/MCELFStreamer.h"
@@ -26,8 +26,7 @@ MCELFStreamer *createMipsNaClELFStreamer(MCContext &Context, MCAsmBackend &TAB,
raw_ostream &OS,
MCCodeEmitter *Emitter,
const MCSubtargetInfo &STI,
- bool RelaxAll, bool NoExecStack);
-
+ bool RelaxAll);
}
#endif
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp
index d2b929b..bab4254 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp
@@ -109,15 +109,12 @@ static MCInstPrinter *createMipsMCInstPrinter(const Target &T,
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Context, MCAsmBackend &MAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI,
- bool RelaxAll, bool NoExecStack) {
+ const MCSubtargetInfo &STI, bool RelaxAll) {
MCStreamer *S;
if (!Triple(TT).isOSNaCl())
- S = createMipsELFStreamer(Context, MAB, OS, Emitter, STI, RelaxAll,
- NoExecStack);
+ S = createMipsELFStreamer(Context, MAB, OS, Emitter, STI, RelaxAll);
else
- S = createMipsNaClELFStreamer(Context, MAB, OS, Emitter, STI, RelaxAll,
- NoExecStack);
+ S = createMipsNaClELFStreamer(Context, MAB, OS, Emitter, STI, RelaxAll);
new MipsTargetELFStreamer(*S, STI);
return S;
}
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h
index 161d1ea..f08a8f4 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSMCTARGETDESC_H
-#define MIPSMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCTARGETDESC_H
+#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSMCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp
index 6cde8f9..92b8455 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsNaClELFStreamer.cpp
@@ -255,13 +255,11 @@ MCELFStreamer *createMipsNaClELFStreamer(MCContext &Context, MCAsmBackend &TAB,
raw_ostream &OS,
MCCodeEmitter *Emitter,
const MCSubtargetInfo &STI,
- bool RelaxAll, bool NoExecStack) {
+ bool RelaxAll) {
MipsNaClELFStreamer *S = new MipsNaClELFStreamer(Context, TAB, OS, Emitter,
STI);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
- if (NoExecStack)
- S->getAssembler().setNoExecStack(true);
// Set bundle-alignment as required by the NaCl ABI for the target.
S->EmitBundleAlignMode(MIPS_NACL_BUNDLE_ALIGN);
diff --git a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp
index 4a178e2..1e092f2 100644
--- a/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp
+++ b/contrib/llvm/lib/Target/Mips/MCTargetDesc/MipsTargetStreamer.cpp
@@ -29,17 +29,21 @@
using namespace llvm;
MipsTargetStreamer::MipsTargetStreamer(MCStreamer &S)
- : MCTargetStreamer(S), canHaveModuleDirective(true) {}
+ : MCTargetStreamer(S), ModuleDirectiveAllowed(true) {
+ GPRInfoSet = FPRInfoSet = FrameInfoSet = false;
+}
void MipsTargetStreamer::emitDirectiveSetMicroMips() {}
void MipsTargetStreamer::emitDirectiveSetNoMicroMips() {}
void MipsTargetStreamer::emitDirectiveSetMips16() {}
-void MipsTargetStreamer::emitDirectiveSetNoMips16() {}
-void MipsTargetStreamer::emitDirectiveSetReorder() {}
+void MipsTargetStreamer::emitDirectiveSetNoMips16() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetReorder() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveSetNoReorder() {}
-void MipsTargetStreamer::emitDirectiveSetMacro() {}
-void MipsTargetStreamer::emitDirectiveSetNoMacro() {}
-void MipsTargetStreamer::emitDirectiveSetAt() {}
-void MipsTargetStreamer::emitDirectiveSetNoAt() {}
+void MipsTargetStreamer::emitDirectiveSetMacro() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetNoMacro() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMsa() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetNoMsa() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetAt() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetNoAt() { forbidModuleDirective(); }
void MipsTargetStreamer::emitDirectiveEnd(StringRef Name) {}
void MipsTargetStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {}
void MipsTargetStreamer::emitDirectiveAbiCalls() {}
@@ -52,11 +56,26 @@ void MipsTargetStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
void MipsTargetStreamer::emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) {}
void MipsTargetStreamer::emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) {
}
-void MipsTargetStreamer::emitDirectiveSetMips32R2() {}
-void MipsTargetStreamer::emitDirectiveSetMips64() {}
-void MipsTargetStreamer::emitDirectiveSetMips64R2() {}
-void MipsTargetStreamer::emitDirectiveSetDsp() {}
-void MipsTargetStreamer::emitDirectiveCpload(unsigned RegNo) {}
+void MipsTargetStreamer::emitDirectiveSetArch(StringRef Arch) {
+ forbidModuleDirective();
+}
+void MipsTargetStreamer::emitDirectiveSetMips0() {}
+void MipsTargetStreamer::emitDirectiveSetMips1() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips2() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips3() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips4() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips5() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips32() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips32R2() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips32R6() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips64() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips64R2() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetMips64R6() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetPop() {}
+void MipsTargetStreamer::emitDirectiveSetPush() {}
+void MipsTargetStreamer::emitDirectiveSetDsp() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveSetNoDsp() { forbidModuleDirective(); }
+void MipsTargetStreamer::emitDirectiveCpLoad(unsigned RegNo) {}
void MipsTargetStreamer::emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
const MCSymbol &Sym, bool IsReg) {
}
@@ -72,52 +91,62 @@ MipsTargetAsmStreamer::MipsTargetAsmStreamer(MCStreamer &S,
void MipsTargetAsmStreamer::emitDirectiveSetMicroMips() {
OS << "\t.set\tmicromips\n";
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMicroMips() {
OS << "\t.set\tnomicromips\n";
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips16() {
OS << "\t.set\tmips16\n";
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMips16() {
OS << "\t.set\tnomips16\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetNoMips16();
}
void MipsTargetAsmStreamer::emitDirectiveSetReorder() {
OS << "\t.set\treorder\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetReorder();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoReorder() {
OS << "\t.set\tnoreorder\n";
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveSetMacro() {
OS << "\t.set\tmacro\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetMacro();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoMacro() {
OS << "\t.set\tnomacro\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetNoMacro();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMsa() {
+ OS << "\t.set\tmsa\n";
+ MipsTargetStreamer::emitDirectiveSetMsa();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoMsa() {
+ OS << "\t.set\tnomsa\n";
+ MipsTargetStreamer::emitDirectiveSetNoMsa();
}
void MipsTargetAsmStreamer::emitDirectiveSetAt() {
OS << "\t.set\tat\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetAt();
}
void MipsTargetAsmStreamer::emitDirectiveSetNoAt() {
OS << "\t.set\tnoat\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetNoAt();
}
void MipsTargetAsmStreamer::emitDirectiveEnd(StringRef Name) {
@@ -152,25 +181,82 @@ void MipsTargetAsmStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
<< StringRef(MipsInstPrinter::getRegisterName(ReturnReg)).lower() << '\n';
}
+void MipsTargetAsmStreamer::emitDirectiveSetArch(StringRef Arch) {
+ OS << "\t.set arch=" << Arch << "\n";
+ MipsTargetStreamer::emitDirectiveSetArch(Arch);
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips0() { OS << "\t.set\tmips0\n"; }
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips1() {
+ OS << "\t.set\tmips1\n";
+ MipsTargetStreamer::emitDirectiveSetMips1();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips2() {
+ OS << "\t.set\tmips2\n";
+ MipsTargetStreamer::emitDirectiveSetMips2();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips3() {
+ OS << "\t.set\tmips3\n";
+ MipsTargetStreamer::emitDirectiveSetMips3();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips4() {
+ OS << "\t.set\tmips4\n";
+ MipsTargetStreamer::emitDirectiveSetMips4();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips5() {
+ OS << "\t.set\tmips5\n";
+ MipsTargetStreamer::emitDirectiveSetMips5();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips32() {
+ OS << "\t.set\tmips32\n";
+ MipsTargetStreamer::emitDirectiveSetMips32();
+}
+
void MipsTargetAsmStreamer::emitDirectiveSetMips32R2() {
OS << "\t.set\tmips32r2\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetMips32R2();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips32R6() {
+ OS << "\t.set\tmips32r6\n";
+ MipsTargetStreamer::emitDirectiveSetMips32R6();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64() {
OS << "\t.set\tmips64\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetMips64();
}
void MipsTargetAsmStreamer::emitDirectiveSetMips64R2() {
OS << "\t.set\tmips64r2\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetMips64R2();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetMips64R6() {
+ OS << "\t.set\tmips64r6\n";
+ MipsTargetStreamer::emitDirectiveSetMips64R6();
}
void MipsTargetAsmStreamer::emitDirectiveSetDsp() {
OS << "\t.set\tdsp\n";
- setCanHaveModuleDir(false);
+ MipsTargetStreamer::emitDirectiveSetDsp();
+}
+
+void MipsTargetAsmStreamer::emitDirectiveSetNoDsp() {
+ OS << "\t.set\tnodsp\n";
+ MipsTargetStreamer::emitDirectiveSetNoDsp();
}
+
+void MipsTargetAsmStreamer::emitDirectiveSetPop() { OS << "\t.set\tpop\n"; }
+
+void MipsTargetAsmStreamer::emitDirectiveSetPush() { OS << "\t.set\tpush\n"; }
+
// Print a 32 bit hex number with all numbers.
static void printHex32(unsigned Value, raw_ostream &OS) {
OS << "0x";
@@ -192,10 +278,10 @@ void MipsTargetAsmStreamer::emitFMask(unsigned FPUBitmask,
OS << "," << FPUTopSavedRegOff << '\n';
}
-void MipsTargetAsmStreamer::emitDirectiveCpload(unsigned RegNo) {
+void MipsTargetAsmStreamer::emitDirectiveCpLoad(unsigned RegNo) {
OS << "\t.cpload\t$"
<< StringRef(MipsInstPrinter::getRegisterName(RegNo)).lower() << "\n";
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveCpsetup(unsigned RegNo,
@@ -214,7 +300,7 @@ void MipsTargetAsmStreamer::emitDirectiveCpsetup(unsigned RegNo,
OS << ", ";
OS << Sym.getName() << "\n";
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetAsmStreamer::emitDirectiveModuleFP(
@@ -378,11 +464,12 @@ void MipsTargetELFStreamer::emitDirectiveSetMicroMips() {
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_MICROMIPS;
MCA.setELFHeaderEFlags(Flags);
+ forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveSetNoMicroMips() {
MicroMipsEnabled = false;
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveSetMips16() {
@@ -390,17 +477,7 @@ void MipsTargetELFStreamer::emitDirectiveSetMips16() {
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_ARCH_ASE_M16;
MCA.setELFHeaderEFlags(Flags);
- setCanHaveModuleDir(false);
-}
-
-void MipsTargetELFStreamer::emitDirectiveSetNoMips16() {
- // FIXME: implement.
- setCanHaveModuleDir(false);
-}
-
-void MipsTargetELFStreamer::emitDirectiveSetReorder() {
- // FIXME: implement.
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveSetNoReorder() {
@@ -408,35 +485,49 @@ void MipsTargetELFStreamer::emitDirectiveSetNoReorder() {
unsigned Flags = MCA.getELFHeaderEFlags();
Flags |= ELF::EF_MIPS_NOREORDER;
MCA.setELFHeaderEFlags(Flags);
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
-void MipsTargetELFStreamer::emitDirectiveSetMacro() {
- // FIXME: implement.
- setCanHaveModuleDir(false);
-}
+void MipsTargetELFStreamer::emitDirectiveEnd(StringRef Name) {
+ MCAssembler &MCA = getStreamer().getAssembler();
+ MCContext &Context = MCA.getContext();
+ MCStreamer &OS = getStreamer();
-void MipsTargetELFStreamer::emitDirectiveSetNoMacro() {
- // FIXME: implement.
- setCanHaveModuleDir(false);
-}
+ const MCSectionELF *Sec = Context.getELFSection(".pdr", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHT_REL,
+ SectionKind::getMetadata());
-void MipsTargetELFStreamer::emitDirectiveSetAt() {
- // FIXME: implement.
- setCanHaveModuleDir(false);
-}
+ const MCSymbolRefExpr *ExprRef =
+ MCSymbolRefExpr::Create(Name, MCSymbolRefExpr::VK_None, Context);
-void MipsTargetELFStreamer::emitDirectiveSetNoAt() {
- // FIXME: implement.
- setCanHaveModuleDir(false);
-}
+ MCSectionData &SecData = MCA.getOrCreateSectionData(*Sec);
+ SecData.setAlignment(4);
-void MipsTargetELFStreamer::emitDirectiveEnd(StringRef Name) {
- // FIXME: implement.
+ OS.PushSection();
+
+ OS.SwitchSection(Sec);
+
+ OS.EmitValueImpl(ExprRef, 4);
+
+ OS.EmitIntValue(GPRInfoSet ? GPRBitMask : 0, 4); // reg_mask
+ OS.EmitIntValue(GPRInfoSet ? GPROffset : 0, 4); // reg_offset
+
+ OS.EmitIntValue(FPRInfoSet ? FPRBitMask : 0, 4); // fpreg_mask
+ OS.EmitIntValue(FPRInfoSet ? FPROffset : 0, 4); // fpreg_offset
+
+ OS.EmitIntValue(FrameInfoSet ? FrameOffset : 0, 4); // frame_offset
+ OS.EmitIntValue(FrameInfoSet ? FrameReg : 0, 4); // frame_reg
+ OS.EmitIntValue(FrameInfoSet ? ReturnReg : 0, 4); // return_reg
+
+ // The .end directive marks the end of a procedure. Invalidate
+ // the information gathered up until this point.
+ GPRInfoSet = FPRInfoSet = FrameInfoSet = false;
+
+ OS.PopSection();
}
void MipsTargetELFStreamer::emitDirectiveEnt(const MCSymbol &Symbol) {
- // FIXME: implement.
+ GPRInfoSet = FPRInfoSet = FrameInfoSet = false;
}
void MipsTargetELFStreamer::emitDirectiveAbiCalls() {
@@ -482,37 +573,31 @@ void MipsTargetELFStreamer::emitDirectiveOptionPic2() {
}
void MipsTargetELFStreamer::emitFrame(unsigned StackReg, unsigned StackSize,
- unsigned ReturnReg) {
- // FIXME: implement.
+ unsigned ReturnReg_) {
+ MCContext &Context = getStreamer().getAssembler().getContext();
+ const MCRegisterInfo *RegInfo = Context.getRegisterInfo();
+
+ FrameInfoSet = true;
+ FrameReg = RegInfo->getEncodingValue(StackReg);
+ FrameOffset = StackSize;
+ ReturnReg = RegInfo->getEncodingValue(ReturnReg_);
}
void MipsTargetELFStreamer::emitMask(unsigned CPUBitmask,
int CPUTopSavedRegOff) {
- // FIXME: implement.
+ GPRInfoSet = true;
+ GPRBitMask = CPUBitmask;
+ GPROffset = CPUTopSavedRegOff;
}
void MipsTargetELFStreamer::emitFMask(unsigned FPUBitmask,
int FPUTopSavedRegOff) {
- // FIXME: implement.
-}
-
-void MipsTargetELFStreamer::emitDirectiveSetMips32R2() {
- setCanHaveModuleDir(false);
-}
-
-void MipsTargetELFStreamer::emitDirectiveSetMips64() {
- setCanHaveModuleDir(false);
-}
-
-void MipsTargetELFStreamer::emitDirectiveSetMips64R2() {
- setCanHaveModuleDir(false);
-}
-
-void MipsTargetELFStreamer::emitDirectiveSetDsp() {
- setCanHaveModuleDir(false);
+ FPRInfoSet = true;
+ FPRBitMask = FPUBitmask;
+ FPROffset = FPUTopSavedRegOff;
}
-void MipsTargetELFStreamer::emitDirectiveCpload(unsigned RegNo) {
+void MipsTargetELFStreamer::emitDirectiveCpLoad(unsigned RegNo) {
// .cpload $reg
// This directive expands to:
// lui $gp, %hi(_gp_disp)
@@ -560,7 +645,7 @@ void MipsTargetELFStreamer::emitDirectiveCpload(unsigned RegNo) {
TmpInst.addOperand(MCOperand::CreateReg(RegNo));
getStreamer().EmitInstruction(TmpInst, STI);
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetELFStreamer::emitDirectiveCpsetup(unsigned RegNo,
@@ -617,7 +702,7 @@ void MipsTargetELFStreamer::emitDirectiveCpsetup(unsigned RegNo,
Inst.addOperand(MCOperand::CreateReg(RegNo));
getStreamer().EmitInstruction(Inst, STI);
- setCanHaveModuleDir(false);
+ forbidModuleDirective();
}
void MipsTargetELFStreamer::emitMipsAbiFlags() {
diff --git a/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td
index b93017a..fae7059 100644
--- a/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td
+++ b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFPU.td
@@ -123,10 +123,10 @@ def MFC1_MM : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd,
II_MFC1, bitconvert>, MFC1_FM_MM<0x80>;
def MTC1_MM : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd,
II_MTC1, bitconvert>, MFC1_FM_MM<0xa0>;
-def MFHC1_MM : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, FGRH32Opnd, II_MFHC1>,
- MFC1_FM_MM<3>, ISA_MIPS32R2;
-def MTHC1_MM : MMRel, MTC1_FT<"mthc1", FGRH32Opnd, GPR32Opnd, II_MTHC1>,
- MFC1_FM_MM<7>, ISA_MIPS32R2;
+def MFHC1_MM : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, AFGR64Opnd, II_MFHC1>,
+ MFC1_FM_MM<0xc0>, ISA_MIPS32R2, AdditionalRequires<[NotFP64bit]>;
+def MTHC1_MM : MMRel, MTC1_64_FT<"mthc1", AFGR64Opnd, GPR32Opnd, II_MTHC1>,
+ MFC1_FM_MM<0xe0>, ISA_MIPS32R2, AdditionalRequires<[NotFP64bit]>;
def MADD_S_MM : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>,
MADDS_FM_MM<0x1>;
diff --git a/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td
index 15b951d..51b5c0c 100644
--- a/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td
+++ b/contrib/llvm/lib/Target/Mips/MicroMipsInstrFormats.td
@@ -41,6 +41,118 @@ class MicroMipsInst16<dag outs, dag ins, string asmstr, list<dag> pattern,
// MicroMIPS 16-bit Instruction Formats
//===----------------------------------------------------------------------===//
+class ARITH_FM_MM16<bit funct> {
+ bits<3> rd;
+ bits<3> rt;
+ bits<3> rs;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x01;
+ let Inst{9-7} = rd;
+ let Inst{6-4} = rt;
+ let Inst{3-1} = rs;
+ let Inst{0} = funct;
+}
+
+class ANDI_FM_MM16<bits<6> funct> {
+ bits<3> rd;
+ bits<3> rs;
+ bits<4> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = funct;
+ let Inst{9-7} = rd;
+ let Inst{6-4} = rs;
+ let Inst{3-0} = imm;
+}
+
+class LOGIC_FM_MM16<bits<4> funct> {
+ bits<3> rt;
+ bits<3> rs;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x11;
+ let Inst{9-6} = funct;
+ let Inst{5-3} = rt;
+ let Inst{2-0} = rs;
+}
+
+class SHIFT_FM_MM16<bits<1> funct> {
+ bits<3> rd;
+ bits<3> rt;
+ bits<3> shamt;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x09;
+ let Inst{9-7} = rd;
+ let Inst{6-4} = rt;
+ let Inst{3-1} = shamt;
+ let Inst{0} = funct;
+}
+
+class ADDIUR2_FM_MM16 {
+ bits<3> rd;
+ bits<3> rs;
+ bits<3> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x1b;
+ let Inst{9-7} = rd;
+ let Inst{6-4} = rs;
+ let Inst{3-1} = imm;
+ let Inst{0} = 0;
+}
+
+class LOAD_STORE_FM_MM16<bits<6> op> {
+ bits<3> rt;
+ bits<7> addr;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = op;
+ let Inst{9-7} = rt;
+ let Inst{6-4} = addr{6-4};
+ let Inst{3-0} = addr{3-0};
+}
+
+class LOAD_STORE_SP_FM_MM16<bits<6> op> {
+ bits<5> rt;
+ bits<5> offset;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = op;
+ let Inst{9-5} = rt;
+ let Inst{4-0} = offset;
+}
+
+class ADDIUS5_FM_MM16 {
+ bits<5> rd;
+ bits<4> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x13;
+ let Inst{9-5} = rd;
+ let Inst{4-1} = imm;
+ let Inst{0} = 0;
+}
+
+class ADDIUSP_FM_MM16 {
+ bits<9> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x13;
+ let Inst{9-1} = imm;
+ let Inst{0} = 1;
+}
+
class MOVE_FM_MM16<bits<6> funct> {
bits<5> rs;
bits<5> rd;
@@ -52,6 +164,17 @@ class MOVE_FM_MM16<bits<6> funct> {
let Inst{4-0} = rs;
}
+class LI_FM_MM16 {
+ bits<3> rd;
+ bits<7> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x3b;
+ let Inst{9-7} = rd;
+ let Inst{6-0} = imm;
+}
+
class JALR_FM_MM16<bits<5> op> {
bits<5> rs;
@@ -72,6 +195,49 @@ class MFHILO_FM_MM16<bits<5> funct> {
let Inst{4-0} = rd;
}
+class JRADDIUSP_FM_MM16<bits<5> op> {
+ bits<5> rs;
+ bits<5> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x11;
+ let Inst{9-5} = op;
+ let Inst{4-0} = imm;
+}
+
+class ADDIUR1SP_FM_MM16 {
+ bits<3> rd;
+ bits<6> imm;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x1b;
+ let Inst{9-7} = rd;
+ let Inst{6-1} = imm;
+ let Inst{0} = 1;
+}
+
+class BRKSDBBP16_FM_MM<bits<6> op> {
+ bits<4> code_;
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x11;
+ let Inst{9-4} = op;
+ let Inst{3-0} = code_;
+}
+
+class BEQNEZ_FM_MM16<bits<6> op> {
+ bits<3> rs;
+ bits<7> offset;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = op;
+ let Inst{9-7} = rs;
+ let Inst{6-0} = offset;
+}
+
//===----------------------------------------------------------------------===//
// MicroMIPS 32-bit Instruction Formats
//===----------------------------------------------------------------------===//
@@ -621,3 +787,114 @@ class MADDS_FM_MM<bits<6> funct>: MMArch {
let Inst{10-6} = fr;
let Inst{5-0} = funct;
}
+
+class COMPACT_BRANCH_FM_MM<bits<5> funct> {
+ bits<5> rs;
+ bits<16> offset;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x10;
+ let Inst{25-21} = funct;
+ let Inst{20-16} = rs;
+ let Inst{15-0} = offset;
+}
+
+class COP0_TLB_FM_MM<bits<10> op> : MMArch {
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x0;
+ let Inst{25-16} = 0x0;
+ let Inst{15-6} = op;
+ let Inst{5-0} = 0x3c;
+}
+
+class SDBBP_FM_MM : MMArch {
+ bits<10> code_;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x0;
+ let Inst{25-16} = code_;
+ let Inst{15-6} = 0x36d;
+ let Inst{5-0} = 0x3c;
+}
+
+class RDHWR_FM_MM : MMArch {
+ bits<5> rt;
+ bits<5> rd;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x0;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = rd;
+ let Inst{15-6} = 0x1ac;
+ let Inst{5-0} = 0x3c;
+}
+
+class LWXS_FM_MM<bits<10> funct> {
+ bits<5> rd;
+ bits<5> base;
+ bits<5> index;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x0;
+ let Inst{25-21} = index;
+ let Inst{20-16} = base;
+ let Inst{15-11} = rd;
+ let Inst{10} = 0;
+ let Inst{9-0} = funct;
+}
+
+class LWM_FM_MM<bits<4> funct> : MMArch {
+ bits<5> rt;
+ bits<21> addr;
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x8;
+ let Inst{25-21} = rt;
+ let Inst{20-16} = addr{20-16};
+ let Inst{15-12} = funct;
+ let Inst{11-0} = addr{11-0};
+}
+
+class LWM_FM_MM16<bits<4> funct> : MMArch {
+ bits<2> rt;
+ bits<4> addr;
+
+ bits<16> Inst;
+
+ let Inst{15-10} = 0x11;
+ let Inst{9-6} = funct;
+ let Inst{5-4} = rt;
+ let Inst{3-0} = addr;
+}
+
+class CACHE_PREF_FM_MM<bits<6> op, bits<4> funct> : MMArch {
+ bits<21> addr;
+ bits<5> hint;
+ bits<5> base = addr{20-16};
+ bits<12> offset = addr{11-0};
+
+ bits<32> Inst;
+
+ let Inst{31-26} = op;
+ let Inst{25-21} = hint;
+ let Inst{20-16} = base;
+ let Inst{15-12} = funct;
+ let Inst{11-0} = offset;
+}
+
+class BARRIER_FM_MM<bits<5> op> : MMArch {
+ bits<32> Inst;
+
+ let Inst{31-26} = 0x0;
+ let Inst{25-21} = 0x0;
+ let Inst{20-16} = 0x0;
+ let Inst{15-11} = op;
+ let Inst{10-6} = 0x0;
+ let Inst{5-0} = 0x0;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td b/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td
index 87a3a3e..241f452 100644
--- a/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td
+++ b/contrib/llvm/lib/Target/Mips/MicroMipsInstrInfo.td
@@ -1,9 +1,101 @@
def addrimm12 : ComplexPattern<iPTR, 2, "selectIntAddrMM", [frameindex]>;
+def simm4 : Operand<i32> {
+ let DecoderMethod = "DecodeSimm4";
+}
+def li_simm7 : Operand<i32> {
+ let DecoderMethod = "DecodeLiSimm7";
+}
+
def simm12 : Operand<i32> {
let DecoderMethod = "DecodeSimm12";
}
+def uimm5_lsl2 : Operand<OtherVT> {
+ let EncoderMethod = "getUImm5Lsl2Encoding";
+ let DecoderMethod = "DecodeUImm5lsl2";
+}
+
+def uimm6_lsl2 : Operand<i32> {
+ let EncoderMethod = "getUImm6Lsl2Encoding";
+ let DecoderMethod = "DecodeUImm6Lsl2";
+}
+
+def simm9_addiusp : Operand<i32> {
+ let EncoderMethod = "getSImm9AddiuspValue";
+ let DecoderMethod = "DecodeSimm9SP";
+}
+
+def uimm3_shift : Operand<i32> {
+ let EncoderMethod = "getUImm3Mod8Encoding";
+}
+
+def simm3_lsa2 : Operand<i32> {
+ let EncoderMethod = "getSImm3Lsa2Value";
+ let DecoderMethod = "DecodeAddiur2Simm7";
+}
+
+def uimm4_andi : Operand<i32> {
+ let EncoderMethod = "getUImm4AndValue";
+ let DecoderMethod = "DecodeANDI16Imm";
+}
+
+def immSExtAddiur2 : ImmLeaf<i32, [{return Imm == 1 || Imm == -1 ||
+ ((Imm % 4 == 0) &&
+ Imm < 28 && Imm > 0);}]>;
+
+def immSExtAddius5 : ImmLeaf<i32, [{return Imm >= -8 && Imm <= 7;}]>;
+
+def immZExtAndi16 : ImmLeaf<i32,
+ [{return (Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 ||
+ Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 ||
+ Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535 );}]>;
+
+def immZExt2Shift : ImmLeaf<i32, [{return Imm >= 1 && Imm <= 8;}]>;
+
+def immLi16 : ImmLeaf<i32, [{return Imm >= -1 && Imm <= 126;}]>;
+
+def MicroMipsMemGPRMM16AsmOperand : AsmOperandClass {
+ let Name = "MicroMipsMem";
+ let RenderMethod = "addMicroMipsMemOperands";
+ let ParserMethod = "parseMemOperand";
+ let PredicateMethod = "isMemWithGRPMM16Base";
+}
+
+class mem_mm_4_generic : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops ptr_rc, simm4);
+ let OperandType = "OPERAND_MEMORY";
+ let ParserMatchClass = MicroMipsMemGPRMM16AsmOperand;
+}
+
+def mem_mm_4 : mem_mm_4_generic {
+ let EncoderMethod = "getMemEncodingMMImm4";
+}
+
+def mem_mm_4_lsl1 : mem_mm_4_generic {
+ let EncoderMethod = "getMemEncodingMMImm4Lsl1";
+}
+
+def mem_mm_4_lsl2 : mem_mm_4_generic {
+ let EncoderMethod = "getMemEncodingMMImm4Lsl2";
+}
+
+def MicroMipsMemSPAsmOperand : AsmOperandClass {
+ let Name = "MicroMipsMemSP";
+ let RenderMethod = "addMemOperands";
+ let ParserMethod = "parseMemOperand";
+ let PredicateMethod = "isMemWithUimmWordAlignedOffsetSP<7>";
+}
+
+def mem_mm_sp_imm5_lsl2 : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops GPR32:$base, simm5:$offset);
+ let OperandType = "OPERAND_MEMORY";
+ let ParserMatchClass = MicroMipsMemSPAsmOperand;
+ let EncoderMethod = "getMemEncodingMMSPImm5Lsl2";
+}
+
def mem_mm_12 : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops GPR32, simm12);
@@ -12,6 +104,22 @@ def mem_mm_12 : Operand<i32> {
let OperandType = "OPERAND_MEMORY";
}
+def MipsMemUimm4AsmOperand : AsmOperandClass {
+ let Name = "MemOffsetUimm4";
+ let SuperClasses = [MipsMemAsmOperand];
+ let RenderMethod = "addMemOperands";
+ let ParserMethod = "parseMemOperand";
+ let PredicateMethod = "isMemWithUimmOffsetSP<6>";
+}
+
+def mem_mm_4sp : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops GPR32, uimm8);
+ let EncoderMethod = "getMemEncodingMMImm4sp";
+ let ParserMatchClass = MipsMemUimm4AsmOperand;
+ let OperandType = "OPERAND_MEMORY";
+}
+
def jmptarget_mm : Operand<OtherVT> {
let EncoderMethod = "getJumpTargetOpValueMM";
}
@@ -20,12 +128,29 @@ def calltarget_mm : Operand<iPTR> {
let EncoderMethod = "getJumpTargetOpValueMM";
}
+def brtarget7_mm : Operand<OtherVT> {
+ let EncoderMethod = "getBranchTarget7OpValueMM";
+ let OperandType = "OPERAND_PCREL";
+ let DecoderMethod = "DecodeBranchTarget7MM";
+ let ParserMatchClass = MipsJumpTargetAsmOperand;
+}
+
def brtarget_mm : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValueMM";
let OperandType = "OPERAND_PCREL";
let DecoderMethod = "DecodeBranchTargetMM";
}
+class CompactBranchMM<string opstr, DAGOperand opnd, PatFrag cond_op,
+ RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, opnd:$offset),
+ !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 0;
+ let Defs = [AT];
+}
+
let canFoldAsLoad = 1 in
class LoadLeftRightMM<string opstr, SDNode OpNode, RegisterOperand RO,
Operand MemOpnd> :
@@ -45,6 +170,36 @@ class StoreLeftRightMM<string opstr, SDNode OpNode, RegisterOperand RO,
let DecoderMethod = "DecodeMemMMImm12";
}
+/// A register pair used by load/store pair instructions.
+def RegPairAsmOperand : AsmOperandClass {
+ let Name = "RegPair";
+ let ParserMethod = "parseRegisterPair";
+}
+
+def regpair : Operand<i32> {
+ let EncoderMethod = "getRegisterPairOpValue";
+ let ParserMatchClass = RegPairAsmOperand;
+ let PrintMethod = "printRegisterPair";
+ let DecoderMethod = "DecodeRegPairOperand";
+ let MIOperandInfo = (ops GPR32Opnd, GPR32Opnd);
+}
+
+class StorePairMM<string opstr, InstrItinClass Itin = NoItinerary,
+ ComplexPattern Addr = addr> :
+ InstSE<(outs), (ins regpair:$rt, mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI, opstr> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let mayStore = 1;
+}
+
+class LoadPairMM<string opstr, InstrItinClass Itin = NoItinerary,
+ ComplexPattern Addr = addr> :
+ InstSE<(outs regpair:$rt), (ins mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI, opstr> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let mayLoad = 1;
+}
+
class LLBaseMM<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins mem_mm_12:$addr),
!strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
@@ -70,6 +225,96 @@ class LoadMM<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
let mayLoad = 1;
}
+class ArithRMM16<string opstr, RegisterOperand RO, bit isComm = 0,
+ InstrItinClass Itin = NoItinerary,
+ SDPatternOperator OpNode = null_frag> :
+ MicroMipsInst16<(outs RO:$rd), (ins RO:$rs, RO:$rt),
+ !strconcat(opstr, "\t$rd, $rs, $rt"),
+ [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> {
+ let isCommutable = isComm;
+}
+
+class AndImmMM16<string opstr, RegisterOperand RO,
+ InstrItinClass Itin = NoItinerary> :
+ MicroMipsInst16<(outs RO:$rd), (ins RO:$rs, uimm4_andi:$imm),
+ !strconcat(opstr, "\t$rd, $rs, $imm"), [], Itin, FrmI>;
+
+class LogicRMM16<string opstr, RegisterOperand RO,
+ InstrItinClass Itin = NoItinerary,
+ SDPatternOperator OpNode = null_frag> :
+ MicroMipsInst16<(outs RO:$dst), (ins RO:$rs, RO:$rt),
+ !strconcat(opstr, "\t$rt, $rs"),
+ [(set RO:$dst, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> {
+ let isCommutable = 1;
+ let Constraints = "$rt = $dst";
+}
+
+class NotMM16<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs RO:$rt), (ins RO:$rs),
+ !strconcat(opstr, "\t$rt, $rs"),
+ [(set RO:$rt, (not RO:$rs))], NoItinerary, FrmR>;
+
+class ShiftIMM16<string opstr, Operand ImmOpnd, RegisterOperand RO,
+ InstrItinClass Itin = NoItinerary> :
+ MicroMipsInst16<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
+ !strconcat(opstr, "\t$rd, $rt, $shamt"), [], Itin, FrmR>;
+
+class LoadMM16<string opstr, DAGOperand RO, SDPatternOperator OpNode,
+ InstrItinClass Itin, Operand MemOpnd> :
+ MicroMipsInst16<(outs RO:$rt), (ins MemOpnd:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm4";
+ let canFoldAsLoad = 1;
+ let mayLoad = 1;
+}
+
+class StoreMM16<string opstr, DAGOperand RTOpnd, DAGOperand RO,
+ SDPatternOperator OpNode, InstrItinClass Itin,
+ Operand MemOpnd> :
+ MicroMipsInst16<(outs), (ins RTOpnd:$rt, MemOpnd:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI> {
+ let DecoderMethod = "DecodeMemMMImm4";
+ let mayStore = 1;
+}
+
+class LoadSPMM16<string opstr, DAGOperand RO, InstrItinClass Itin,
+ Operand MemOpnd> :
+ MicroMipsInst16<(outs RO:$rt), (ins MemOpnd:$offset),
+ !strconcat(opstr, "\t$rt, $offset"), [], Itin, FrmI> {
+ let DecoderMethod = "DecodeMemMMSPImm5Lsl2";
+ let canFoldAsLoad = 1;
+ let mayLoad = 1;
+}
+
+class StoreSPMM16<string opstr, DAGOperand RO, InstrItinClass Itin,
+ Operand MemOpnd> :
+ MicroMipsInst16<(outs), (ins RO:$rt, MemOpnd:$offset),
+ !strconcat(opstr, "\t$rt, $offset"), [], Itin, FrmI> {
+ let DecoderMethod = "DecodeMemMMSPImm5Lsl2";
+ let mayStore = 1;
+}
+
+class AddImmUR2<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs RO:$rd), (ins RO:$rs, simm3_lsa2:$imm),
+ !strconcat(opstr, "\t$rd, $rs, $imm"),
+ [], NoItinerary, FrmR> {
+ let isCommutable = 1;
+}
+
+class AddImmUS5<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs RO:$dst), (ins RO:$rd, simm4:$imm),
+ !strconcat(opstr, "\t$rd, $imm"), [], NoItinerary, FrmR> {
+ let Constraints = "$rd = $dst";
+}
+
+class AddImmUR1SP<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs RO:$rd), (ins uimm6_lsl2:$imm),
+ !strconcat(opstr, "\t$rd, $imm"), [], NoItinerary, FrmR>;
+
+class AddImmUSP<string opstr> :
+ MicroMipsInst16<(outs), (ins simm9_addiusp:$imm),
+ !strconcat(opstr, "\t$imm"), [], NoItinerary, FrmI>;
+
class MoveFromHILOMM<string opstr, RegisterOperand RO, Register UseReg> :
MicroMipsInst16<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"),
[], II_MFHI_MFLO, FrmR> {
@@ -85,6 +330,12 @@ class MoveMM16<string opstr, RegisterOperand RO, bit isComm = 0,
let isReMaterializable = 1;
}
+class LoadImmMM16<string opstr, Operand Od, RegisterOperand RO> :
+ MicroMipsInst16<(outs RO:$rd), (ins Od:$imm),
+ !strconcat(opstr, "\t$rd, $imm"), [], NoItinerary, FrmI> {
+ let isReMaterializable = 1;
+}
+
// 16-bit Jump and Link (Call)
class JumpLinkRegMM16<string opstr, RegisterOperand RO> :
MicroMipsInst16<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"),
@@ -94,16 +345,207 @@ class JumpLinkRegMM16<string opstr, RegisterOperand RO> :
let Defs = [RA];
}
+// 16-bit Jump Reg
+class JumpRegMM16<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"),
+ [], IIBranch, FrmR> {
+ let hasDelaySlot = 1;
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+}
+
+// Base class for JRADDIUSP instruction.
+class JumpRAddiuStackMM16 :
+ MicroMipsInst16<(outs), (ins uimm5_lsl2:$imm), "jraddiusp\t$imm",
+ [], IIBranch, FrmR> {
+ let isTerminator = 1;
+ let isBarrier = 1;
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+}
+
+// 16-bit Jump and Link (Call) - Short Delay Slot
+class JumpLinkRegSMM16<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"),
+ [], IIBranch, FrmR> {
+ let isCall = 1;
+ let hasDelaySlot = 1;
+ let Defs = [RA];
+}
+
+// 16-bit Jump Register Compact - No delay slot
+class JumpRegCMM16<string opstr, RegisterOperand RO> :
+ MicroMipsInst16<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"),
+ [], IIBranch, FrmR> {
+ let isTerminator = 1;
+ let isBarrier = 1;
+ let isBranch = 1;
+ let isIndirectBranch = 1;
+}
+
+// Break16 and Sdbbp16
+class BrkSdbbp16MM<string opstr> :
+ MicroMipsInst16<(outs), (ins uimm4:$code_),
+ !strconcat(opstr, "\t$code_"),
+ [], NoItinerary, FrmOther>;
+
+class CBranchZeroMM<string opstr, DAGOperand opnd, RegisterOperand RO> :
+ MicroMipsInst16<(outs), (ins RO:$rs, opnd:$offset),
+ !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+ let Defs = [AT];
+}
+
+// MicroMIPS Jump and Link (Call) - Short Delay Slot
+let isCall = 1, hasDelaySlot = 1, Defs = [RA] in {
+ class JumpLinkMM<string opstr, DAGOperand opnd> :
+ InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
+ [], IIBranch, FrmJ, opstr> {
+ let DecoderMethod = "DecodeJumpTargetMM";
+ }
+
+ class JumpLinkRegMM<string opstr, RegisterOperand RO>:
+ InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
+ [], IIBranch, FrmR>;
+
+ class BranchCompareToZeroLinkMM<string opstr, DAGOperand opnd,
+ RegisterOperand RO> :
+ InstSE<(outs), (ins RO:$rs, opnd:$offset),
+ !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI, opstr>;
+}
+
+class LoadWordIndexedScaledMM<string opstr, RegisterOperand RO,
+ InstrItinClass Itin = NoItinerary,
+ SDPatternOperator OpNode = null_frag> :
+ InstSE<(outs RO:$rd), (ins PtrRC:$base, PtrRC:$index),
+ !strconcat(opstr, "\t$rd, ${index}(${base})"), [], Itin, FrmFI>;
+
+/// A list of registers used by load/store multiple instructions.
+def RegListAsmOperand : AsmOperandClass {
+ let Name = "RegList";
+ let ParserMethod = "parseRegisterList";
+}
+
+def reglist : Operand<i32> {
+ let EncoderMethod = "getRegisterListOpValue";
+ let ParserMatchClass = RegListAsmOperand;
+ let PrintMethod = "printRegisterList";
+ let DecoderMethod = "DecodeRegListOperand";
+}
+
+def RegList16AsmOperand : AsmOperandClass {
+ let Name = "RegList16";
+ let ParserMethod = "parseRegisterList";
+ let PredicateMethod = "isRegList16";
+ let RenderMethod = "addRegListOperands";
+}
+
+def reglist16 : Operand<i32> {
+ let EncoderMethod = "getRegisterListOpValue16";
+ let DecoderMethod = "DecodeRegListOperand16";
+ let PrintMethod = "printRegisterList";
+ let ParserMatchClass = RegList16AsmOperand;
+}
+
+class StoreMultMM<string opstr,
+ InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
+ InstSE<(outs), (ins reglist:$rt, mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI, opstr> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let mayStore = 1;
+}
+
+class LoadMultMM<string opstr,
+ InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
+ InstSE<(outs reglist:$rt), (ins mem_mm_12:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI, opstr> {
+ let DecoderMethod = "DecodeMemMMImm12";
+ let mayLoad = 1;
+}
+
+class StoreMultMM16<string opstr,
+ InstrItinClass Itin = NoItinerary,
+ ComplexPattern Addr = addr> :
+ MicroMipsInst16<(outs), (ins reglist16:$rt, mem_mm_4sp:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI> {
+ let mayStore = 1;
+}
+
+class LoadMultMM16<string opstr,
+ InstrItinClass Itin = NoItinerary,
+ ComplexPattern Addr = addr> :
+ MicroMipsInst16<(outs reglist16:$rt), (ins mem_mm_4sp:$addr),
+ !strconcat(opstr, "\t$rt, $addr"), [], Itin, FrmI> {
+ let mayLoad = 1;
+}
+
+def ADDU16_MM : ArithRMM16<"addu16", GPRMM16Opnd, 1, II_ADDU, add>,
+ ARITH_FM_MM16<0>;
+def SUBU16_MM : ArithRMM16<"subu16", GPRMM16Opnd, 0, II_SUBU, sub>,
+ ARITH_FM_MM16<1>;
+def ANDI16_MM : AndImmMM16<"andi16", GPRMM16Opnd, II_AND>, ANDI_FM_MM16<0x0b>;
+def AND16_MM : LogicRMM16<"and16", GPRMM16Opnd, II_AND, and>,
+ LOGIC_FM_MM16<0x2>;
+def OR16_MM : LogicRMM16<"or16", GPRMM16Opnd, II_OR, or>,
+ LOGIC_FM_MM16<0x3>;
+def XOR16_MM : LogicRMM16<"xor16", GPRMM16Opnd, II_XOR, xor>,
+ LOGIC_FM_MM16<0x1>;
+def NOT16_MM : NotMM16<"not16", GPRMM16Opnd>, LOGIC_FM_MM16<0x0>;
+def SLL16_MM : ShiftIMM16<"sll16", uimm3_shift, GPRMM16Opnd, II_SLL>,
+ SHIFT_FM_MM16<0>;
+def SRL16_MM : ShiftIMM16<"srl16", uimm3_shift, GPRMM16Opnd, II_SRL>,
+ SHIFT_FM_MM16<1>;
+def LBU16_MM : LoadMM16<"lbu16", GPRMM16Opnd, zextloadi8, II_LBU,
+ mem_mm_4>, LOAD_STORE_FM_MM16<0x02>;
+def LHU16_MM : LoadMM16<"lhu16", GPRMM16Opnd, zextloadi16, II_LHU,
+ mem_mm_4_lsl1>, LOAD_STORE_FM_MM16<0x0a>;
+def LW16_MM : LoadMM16<"lw16", GPRMM16Opnd, load, II_LW, mem_mm_4_lsl2>,
+ LOAD_STORE_FM_MM16<0x1a>;
+def SB16_MM : StoreMM16<"sb16", GPRMM16OpndZero, GPRMM16Opnd, truncstorei8,
+ II_SB, mem_mm_4>, LOAD_STORE_FM_MM16<0x22>;
+def SH16_MM : StoreMM16<"sh16", GPRMM16OpndZero, GPRMM16Opnd, truncstorei16,
+ II_SH, mem_mm_4_lsl1>,
+ LOAD_STORE_FM_MM16<0x2a>;
+def SW16_MM : StoreMM16<"sw16", GPRMM16OpndZero, GPRMM16Opnd, store, II_SW,
+ mem_mm_4_lsl2>, LOAD_STORE_FM_MM16<0x3a>;
+def LWSP_MM : LoadSPMM16<"lw", GPR32Opnd, II_LW, mem_mm_sp_imm5_lsl2>,
+ LOAD_STORE_SP_FM_MM16<0x12>;
+def SWSP_MM : StoreSPMM16<"sw", GPR32Opnd, II_SW, mem_mm_sp_imm5_lsl2>,
+ LOAD_STORE_SP_FM_MM16<0x32>;
+def ADDIUR1SP_MM : AddImmUR1SP<"addiur1sp", GPRMM16Opnd>, ADDIUR1SP_FM_MM16;
+def ADDIUR2_MM : AddImmUR2<"addiur2", GPRMM16Opnd>, ADDIUR2_FM_MM16;
+def ADDIUS5_MM : AddImmUS5<"addius5", GPR32Opnd>, ADDIUS5_FM_MM16;
+def ADDIUSP_MM : AddImmUSP<"addiusp">, ADDIUSP_FM_MM16;
def MFHI16_MM : MoveFromHILOMM<"mfhi", GPR32Opnd, AC0>, MFHILO_FM_MM16<0x10>;
def MFLO16_MM : MoveFromHILOMM<"mflo", GPR32Opnd, AC0>, MFHILO_FM_MM16<0x12>;
def MOVE16_MM : MoveMM16<"move", GPR32Opnd>, MOVE_FM_MM16<0x03>;
+def LI16_MM : LoadImmMM16<"li16", li_simm7, GPRMM16Opnd>, LI_FM_MM16,
+ IsAsCheapAsAMove;
def JALR16_MM : JumpLinkRegMM16<"jalr", GPR32Opnd>, JALR_FM_MM16<0x0e>;
+def JALRS16_MM : JumpLinkRegSMM16<"jalrs16", GPR32Opnd>, JALR_FM_MM16<0x0f>;
+def JRC16_MM : JumpRegCMM16<"jrc", GPR32Opnd>, JALR_FM_MM16<0x0d>;
+def JRADDIUSP : JumpRAddiuStackMM16, JRADDIUSP_FM_MM16<0x18>;
+def JR16_MM : JumpRegMM16<"jr16", GPR32Opnd>, JALR_FM_MM16<0x0c>;
+def BEQZ16_MM : CBranchZeroMM<"beqz16", brtarget7_mm, GPRMM16Opnd>,
+ BEQNEZ_FM_MM16<0x23>;
+def BNEZ16_MM : CBranchZeroMM<"bnez16", brtarget7_mm, GPRMM16Opnd>,
+ BEQNEZ_FM_MM16<0x2b>;
+def BREAK16_MM : BrkSdbbp16MM<"break16">, BRKSDBBP16_FM_MM<0x28>;
+def SDBBP16_MM : BrkSdbbp16MM<"sdbbp16">, BRKSDBBP16_FM_MM<0x2C>;
class WaitMM<string opstr> :
InstSE<(outs), (ins uimm10:$code_), !strconcat(opstr, "\t$code_"), [],
NoItinerary, FrmOther, opstr>;
let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
+ /// Compact Branch Instructions
+ def BEQZC_MM : CompactBranchMM<"beqzc", brtarget_mm, seteq, GPR32Opnd>,
+ COMPACT_BRANCH_FM_MM<0x7>;
+ def BNEZC_MM : CompactBranchMM<"bnezc", brtarget_mm, setne, GPR32Opnd>,
+ COMPACT_BRANCH_FM_MM<0x5>;
+
/// Arithmetic Instructions (ALU Immediate)
def ADDiu_MM : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd>,
ADDI_FM_MM<0xc>;
@@ -179,6 +621,8 @@ let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
def SW_MM : Store<"sw", GPR32Opnd>, MMRel, LW_FM_MM<0x3e>;
}
+ def LWXS_MM : LoadWordIndexedScaledMM<"lwxs", GPR32Opnd>, LWXS_FM_MM<0x118>;
+
def LWU_MM : LoadMM<"lwu", GPR32Opnd, zextloadi32, II_LWU>, LL_FM_MM<0xe>;
/// Load and Store Instructions - unaligned
@@ -191,6 +635,16 @@ let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
def SWR_MM : StoreLeftRightMM<"swr", MipsSWR, GPR32Opnd, mem_mm_12>,
LWL_FM_MM<0x9>;
+ /// Load and Store Instructions - multiple
+ def SWM32_MM : StoreMultMM<"swm32">, LWM_FM_MM<0xd>;
+ def LWM32_MM : LoadMultMM<"lwm32">, LWM_FM_MM<0x5>;
+ def SWM16_MM : StoreMultMM16<"swm16">, LWM_FM_MM16<0x5>;
+ def LWM16_MM : LoadMultMM16<"lwm16">, LWM_FM_MM16<0x4>;
+
+ /// Load and Store Pair Instructions
+ def SWP_MM : StorePairMM<"swp">, LWM_FM_MM<0x9>;
+ def LWP_MM : LoadPairMM<"lwp">, LWM_FM_MM<0x1>;
+
/// Move Conditional
def MOVZ_I_MM : MMRel, CMov_I_I_FT<"movz", GPR32Opnd, GPR32Opnd,
NoItinerary>, ADD_FM_MM<0, 0x58>;
@@ -247,6 +701,10 @@ let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
def JR_MM : MMRel, IndirectBranch<"jr", GPR32Opnd>, JR_FM_MM<0x3c>;
def JALR_MM : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM_MM<0x03c>;
+ /// Jump Instructions - Short Delay Slot
+ def JALS_MM : JumpLinkMM<"jals", calltarget_mm>, J_FM_MM<0x1d>;
+ def JALRS_MM : JumpLinkRegMM<"jalrs", GPR32Opnd>, JALR_FM_MM<0x13c>;
+
/// Branch Instructions
def BEQ_MM : MMRel, CBranch<"beq", brtarget_mm, seteq, GPR32Opnd>,
BEQ_FM_MM<0x25>;
@@ -265,6 +723,12 @@ let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
def BLTZAL_MM : MMRel, BGEZAL_FT<"bltzal", brtarget_mm, GPR32Opnd>,
BGEZAL_FM_MM<0x01>;
+ /// Branch Instructions - Short Delay Slot
+ def BGEZALS_MM : BranchCompareToZeroLinkMM<"bgezals", brtarget_mm,
+ GPR32Opnd>, BGEZAL_FM_MM<0x13>;
+ def BLTZALS_MM : BranchCompareToZeroLinkMM<"bltzals", brtarget_mm,
+ GPR32Opnd>, BGEZAL_FM_MM<0x11>;
+
/// Control Instructions
def SYNC_MM : MMRel, SYNC_FT<"sync">, SYNC_FM_MM;
def BREAK_MM : MMRel, BRK_FT<"break">, BRK_FM_MM;
@@ -295,12 +759,66 @@ let DecoderNamespace = "MicroMips", Predicates = [InMicroMips] in {
/// Load-linked, Store-conditional
def LL_MM : LLBaseMM<"ll", GPR32Opnd>, LL_FM_MM<0x3>;
def SC_MM : SCBaseMM<"sc", GPR32Opnd>, LL_FM_MM<0xb>;
+
+ let DecoderMethod = "DecodeCacheOpMM" in {
+ def CACHE_MM : MMRel, CacheOp<"cache", mem_mm_12>,
+ CACHE_PREF_FM_MM<0x08, 0x6>;
+ def PREF_MM : MMRel, CacheOp<"pref", mem_mm_12>,
+ CACHE_PREF_FM_MM<0x18, 0x2>;
+ }
+ def SSNOP_MM : MMRel, Barrier<"ssnop">, BARRIER_FM_MM<0x1>;
+ def EHB_MM : MMRel, Barrier<"ehb">, BARRIER_FM_MM<0x3>;
+ def PAUSE_MM : MMRel, Barrier<"pause">, BARRIER_FM_MM<0x5>;
+
+ def TLBP_MM : MMRel, TLB<"tlbp">, COP0_TLB_FM_MM<0x0d>;
+ def TLBR_MM : MMRel, TLB<"tlbr">, COP0_TLB_FM_MM<0x4d>;
+ def TLBWI_MM : MMRel, TLB<"tlbwi">, COP0_TLB_FM_MM<0x8d>;
+ def TLBWR_MM : MMRel, TLB<"tlbwr">, COP0_TLB_FM_MM<0xcd>;
+
+ def SDBBP_MM : MMRel, SYS_FT<"sdbbp">, SDBBP_FM_MM;
+ def RDHWR_MM : MMRel, ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM_MM;
}
+let Predicates = [InMicroMips] in {
+
+//===----------------------------------------------------------------------===//
+// MicroMips arbitrary patterns that map to one or more instructions
+//===----------------------------------------------------------------------===//
+
+def : MipsPat<(i32 immLi16:$imm),
+ (LI16_MM immLi16:$imm)>;
+def : MipsPat<(i32 immSExt16:$imm),
+ (ADDiu_MM ZERO, immSExt16:$imm)>;
+def : MipsPat<(i32 immZExt16:$imm),
+ (ORi_MM ZERO, immZExt16:$imm)>;
+
+def : MipsPat<(add GPRMM16:$src, immSExtAddiur2:$imm),
+ (ADDIUR2_MM GPRMM16:$src, immSExtAddiur2:$imm)>;
+def : MipsPat<(add GPR32:$src, immSExtAddius5:$imm),
+ (ADDIUS5_MM GPR32:$src, immSExtAddius5:$imm)>;
+def : MipsPat<(add GPR32:$src, immSExt16:$imm),
+ (ADDiu_MM GPR32:$src, immSExt16:$imm)>;
+
+def : MipsPat<(and GPRMM16:$src, immZExtAndi16:$imm),
+ (ANDI16_MM GPRMM16:$src, immZExtAndi16:$imm)>;
+def : MipsPat<(and GPR32:$src, immZExt16:$imm),
+ (ANDi_MM GPR32:$src, immZExt16:$imm)>;
+
+def : MipsPat<(shl GPRMM16:$src, immZExt2Shift:$imm),
+ (SLL16_MM GPRMM16:$src, immZExt2Shift:$imm)>;
+def : MipsPat<(shl GPR32:$src, immZExt5:$imm),
+ (SLL_MM GPR32:$src, immZExt5:$imm)>;
+
+def : MipsPat<(srl GPRMM16:$src, immZExt2Shift:$imm),
+ (SRL16_MM GPRMM16:$src, immZExt2Shift:$imm)>;
+def : MipsPat<(srl GPR32:$src, immZExt5:$imm),
+ (SRL_MM GPR32:$src, immZExt5:$imm)>;
+
//===----------------------------------------------------------------------===//
// MicroMips instruction aliases
//===----------------------------------------------------------------------===//
-let Predicates = [InMicroMips] in {
def : MipsInstAlias<"wait", (WAIT_MM 0x0), 1>;
+ def : MipsInstAlias<"nop", (SLL_MM ZERO, ZERO, 0), 1>;
+ def : MipsInstAlias<"nop", (MOVE16_MM ZERO, ZERO), 1>;
}
diff --git a/contrib/llvm/lib/Target/Mips/Mips.h b/contrib/llvm/lib/Target/Mips/Mips.h
index d512d65..87f1b04 100644
--- a/contrib/llvm/lib/Target/Mips/Mips.h
+++ b/contrib/llvm/lib/Target/Mips/Mips.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_MIPS_H
-#define TARGET_MIPS_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS_H
+#define LLVM_LIB_TARGET_MIPS_MIPS_H
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "llvm/Target/TargetMachine.h"
@@ -26,8 +26,6 @@ namespace llvm {
FunctionPass *createMipsOptimizePICCallPass(MipsTargetMachine &TM);
FunctionPass *createMipsDelaySlotFillerPass(MipsTargetMachine &TM);
FunctionPass *createMipsLongBranchPass(MipsTargetMachine &TM);
- FunctionPass *createMipsJITCodeEmitterPass(MipsTargetMachine &TM,
- JITCodeEmitter &JCE);
FunctionPass *createMipsConstantIslandPass(MipsTargetMachine &tm);
} // end namespace llvm;
diff --git a/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp
index 93706c2..6070276 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp
+++ b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.cpp
@@ -36,7 +36,7 @@ void Mips16FrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineFrameInfo *MFI = MF.getFrameInfo();
const Mips16InstrInfo &TII =
- *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const Mips16InstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineBasicBlock::iterator MBBI = MBB.begin();
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
uint64_t StackSize = MFI->getStackSize();
@@ -84,7 +84,7 @@ void Mips16FrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
MachineFrameInfo *MFI = MF.getFrameInfo();
const Mips16InstrInfo &TII =
- *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const Mips16InstrInfo *>(MF.getSubtarget().getInstrInfo());
DebugLoc dl = MBBI->getDebugLoc();
uint64_t StackSize = MFI->getStackSize();
@@ -154,7 +154,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
Amount = -Amount;
const Mips16InstrInfo &TII =
- *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const Mips16InstrInfo *>(MF.getSubtarget().getInstrInfo());
TII.adjustStackPtr(Mips::SP, Amount, MBB, I);
}
@@ -174,7 +174,7 @@ void Mips16FrameLowering::
processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
const Mips16InstrInfo &TII =
- *static_cast<const Mips16InstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const Mips16InstrInfo *>(MF.getSubtarget().getInstrInfo());
const MipsRegisterInfo &RI = TII.getRegisterInfo();
const BitVector Reserved = RI.getReservedRegs(MF);
bool SaveS2 = Reserved[Mips::S2];
diff --git a/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h
index 1fb7eda..012d558 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16FrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS16_FRAMEINFO_H
-#define MIPS16_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16FRAMELOWERING_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16FRAMELOWERING_H
#include "MipsFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp
index 14055d6..32dc90a 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.cpp
@@ -247,12 +247,12 @@ static void swapFPIntParams
// Having called needsFPHelperFromSig
//
static void assureFPCallStub(Function &F, Module *M,
- const MipsSubtarget &Subtarget) {
+ const MipsTargetMachine &TM) {
// for now we only need them for static relocation
- if (Subtarget.getRelocationModel() == Reloc::PIC_)
+ if (TM.getRelocationModel() == Reloc::PIC_)
return;
LLVMContext &Context = M->getContext();
- bool LE = Subtarget.isLittle();
+ bool LE = TM.isLittleEndian();
std::string Name = F.getName();
std::string SectionName = ".mips16.call.fp." + Name;
std::string StubName = "__call_stub_fp_" + Name;
@@ -362,8 +362,8 @@ static bool isIntrinsicInline(Function *F) {
// Returns of float, double and complex need to be handled with a helper
// function.
//
-static bool fixupFPReturnAndCall
- (Function &F, Module *M, const MipsSubtarget &Subtarget) {
+static bool fixupFPReturnAndCall(Function &F, Module *M,
+ const MipsTargetMachine &TM) {
bool Modified = false;
LLVMContext &C = M->getContext();
Type *MyVoid = Type::getVoidTy(C);
@@ -403,7 +403,7 @@ static bool fixupFPReturnAndCall
Attribute::ReadNone);
A = A.addAttribute(C, AttributeSet::FunctionIndex,
Attribute::NoInline);
- Value *F = (M->getOrInsertFunction(Name, A, MyVoid, T, NULL));
+ Value *F = (M->getOrInsertFunction(Name, A, MyVoid, T, nullptr));
CallInst::Create(F, Params, "", &Inst );
} else if (const CallInst *CI = dyn_cast<CallInst>(I)) {
const Value* V = CI->getCalledValue();
@@ -426,9 +426,9 @@ static bool fixupFPReturnAndCall
Modified=true;
F.addFnAttr("saveS2");
}
- if (Subtarget.getRelocationModel() != Reloc::PIC_ ) {
+ if (TM.getRelocationModel() != Reloc::PIC_ ) {
if (needsFPHelperFromSig(*F_)) {
- assureFPCallStub(*F_, M, Subtarget);
+ assureFPCallStub(*F_, M, TM);
Modified=true;
}
}
@@ -439,9 +439,9 @@ static bool fixupFPReturnAndCall
}
static void createFPFnStub(Function *F, Module *M, FPParamVariant PV,
- const MipsSubtarget &Subtarget ) {
- bool PicMode = Subtarget.getRelocationModel() == Reloc::PIC_;
- bool LE = Subtarget.isLittle();
+ const MipsTargetMachine &TM) {
+ bool PicMode = TM.getRelocationModel() == Reloc::PIC_;
+ bool LE = TM.isLittleEndian();
LLVMContext &Context = M->getContext();
std::string Name = F->getName();
std::string SectionName = ".mips16.fn." + Name;
@@ -458,7 +458,6 @@ static void createFPFnStub(Function *F, Module *M, FPParamVariant PV,
FStub->setSection(SectionName);
BasicBlock *BB = BasicBlock::Create(Context, "entry", FStub);
InlineAsmHelper IAH(Context, BB);
- IAH.Out(" .set macro");
if (PicMode) {
IAH.Out(".set noreorder");
IAH.Out(".cpload $$25");
@@ -467,7 +466,6 @@ static void createFPFnStub(Function *F, Module *M, FPParamVariant PV,
IAH.Out("la $$25," + LocalName);
}
else {
- IAH.Out(".set reorder");
IAH.Out("la $$25," + Name);
}
swapFPIntParams(PV, M, IAH, LE, false);
@@ -522,11 +520,11 @@ bool Mips16HardFloat::runOnModule(Module &M) {
}
if (F->isDeclaration() || F->hasFnAttribute("mips16_fp_stub") ||
F->hasFnAttribute("nomips16")) continue;
- Modified |= fixupFPReturnAndCall(*F, &M, Subtarget);
+ Modified |= fixupFPReturnAndCall(*F, &M, TM);
FPParamVariant V = whichFPParamVariantNeeded(*F);
if (V != NoSig) {
Modified = true;
- createFPFnStub(F, &M, V, Subtarget);
+ createFPFnStub(F, &M, V, TM);
}
}
return Modified;
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h
index 826887e..586cc25 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloat.h
@@ -12,40 +12,29 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16HARDFLOAT_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16HARDFLOAT_H
+
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsTargetMachine.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
-
-#ifndef MIPS16HARDFLOAT_H
-#define MIPS16HARDFLOAT_H
-
using namespace llvm;
namespace llvm {
class Mips16HardFloat : public ModulePass {
-
public:
static char ID;
- Mips16HardFloat(MipsTargetMachine &TM_) : ModulePass(ID),
- TM(TM_), Subtarget(TM.getSubtarget<MipsSubtarget>()) {
- }
-
- const char *getPassName() const override {
- return "MIPS16 Hard Float Pass";
- }
+ Mips16HardFloat(MipsTargetMachine &TM_) : ModulePass(ID), TM(TM_) {}
+ const char *getPassName() const override { return "MIPS16 Hard Float Pass"; }
bool runOnModule(Module &M) override;
protected:
- /// Keep a pointer to the MipsSubtarget around so that we can make the right
- /// decision when generating code for different targets.
- const TargetMachine &TM;
- const MipsSubtarget &Subtarget;
-
+ const MipsTargetMachine &TM;
};
ModulePass *createMips16HardFloat(MipsTargetMachine &TM);
diff --git a/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h b/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h
index 02444d9..7295c28 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16HardFloatInfo.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS16HARDFLOATINFO_H
-#define MIPS16HARDFLOATINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16HARDFLOATINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16HARDFLOATINFO_H
namespace llvm {
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp
index 7b05842..36b3ac9 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.cpp
@@ -72,11 +72,10 @@ void Mips16DAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator I = MBB.begin();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
unsigned V0, V1, V2, GlobalBaseReg = MipsFI->getGlobalBaseReg();
- const TargetRegisterClass *RC =
- (const TargetRegisterClass*)&Mips::CPU16RegsRegClass;
+ const TargetRegisterClass *RC = &Mips::CPU16RegsRegClass;
V0 = RegInfo.createVirtualRegister(RC);
V1 = RegInfo.createVirtualRegister(RC);
@@ -103,7 +102,7 @@ void Mips16DAGToDAGISel::initMips16SPAliasReg(MachineFunction &MF) {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator I = MBB.begin();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
unsigned Mips16SPAliasReg = MipsFI->getMips16SPAliasReg();
@@ -135,8 +134,9 @@ void Mips16DAGToDAGISel::getMips16SPRefReg(SDNode *Parent, SDValue &AliasReg) {
switch (SD->getMemoryVT().getSizeInBits()) {
case 8:
case 16:
- AliasReg = TM.getFrameLowering()->hasFP(*MF)?
- AliasFPReg: getMips16SPAliasReg();
+ AliasReg = TM.getSubtargetImpl()->getFrameLowering()->hasFP(*MF)
+ ? AliasFPReg
+ : getMips16SPAliasReg();
return;
}
break;
@@ -146,8 +146,9 @@ void Mips16DAGToDAGISel::getMips16SPRefReg(SDNode *Parent, SDValue &AliasReg) {
switch (SD->getMemoryVT().getSizeInBits()) {
case 8:
case 16:
- AliasReg = TM.getFrameLowering()->hasFP(*MF)?
- AliasFPReg: getMips16SPAliasReg();
+ AliasReg = TM.getSubtargetImpl()->getFrameLowering()->hasFP(*MF)
+ ? AliasFPReg
+ : getMips16SPAliasReg();
return;
}
break;
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h
index e653b39..ae0e61e 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelDAGToDAG.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS16ISELDAGTODAG_H
-#define MIPS16ISELDAGTODAG_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16ISELDAGTODAG_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16ISELDAGTODAG_H
#include "MipsISelDAGToDAG.h"
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
index 9576fd4..7479695 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
@@ -12,6 +12,8 @@
//===----------------------------------------------------------------------===//
#include "Mips16ISelLowering.h"
#include "MCTargetDesc/MipsBaseInfo.h"
+#include "Mips16HardFloatInfo.h"
+#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/StringRef.h"
@@ -27,7 +29,7 @@ using namespace llvm;
static cl::opt<bool> DontExpandCondPseudos16(
"mips16-dont-expand-cond-pseudo",
cl::init(false),
- cl::desc("Dont expand conditional move related "
+ cl::desc("Don't expand conditional move related "
"pseudos for Mips 16"),
cl::Hidden);
@@ -118,7 +120,7 @@ static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
{"truncf", "__mips16_call_stub_sf_1"},
};
-Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM,
+Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI)
: MipsTargetLowering(TM, STI) {
@@ -151,15 +153,16 @@ Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM,
}
const MipsTargetLowering *
-llvm::createMips16TargetLowering(MipsTargetMachine &TM,
+llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI) {
return new Mips16TargetLowering(TM, STI);
}
bool
-Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned,
- bool *Fast) const {
+Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
return false;
}
@@ -318,7 +321,7 @@ unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
}
//
-// prefixs are attached to stub numbers depending on the return type .
+// Prefixes are attached to stub numbers depending on the return type.
// return type: float sf_
// double df_
// single complex sc_
@@ -329,17 +332,16 @@ unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
// The full name of a helper function is__mips16_call_stub +
// return type dependent prefix + stub number
//
-//
-// This is something that probably should be in a different source file and
-// perhaps done differently but my main purpose is to not waste runtime
+// FIXME: This is something that probably should be in a different source file
+// and perhaps done differently but my main purpose is to not waste runtime
// on something that we can enumerate in the source. Another possibility is
// to have a python script to generate these mapping tables. This will do
// for now. There are a whole series of helper function mapping arrays, one
// for each return type class as outlined above. There there are 11 possible
-// entries. Ones with 0 are ones which should never be selected
+// entries. Ones with 0 are ones which should never be selected.
//
// All the arrays are similar except for ones which return neither
-// sf, df, sc, dc, in which only care about ones which have sf or df as a
+// sf, df, sc, dc, in which we only care about ones which have sf or df as a
// first parameter.
//
#define P_ "__mips16_call_stub_"
@@ -421,7 +423,8 @@ void Mips16TargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
- CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const {
SelectionDAG &DAG = CLI.DAG;
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
@@ -494,14 +497,14 @@ getOpndList(SmallVectorImpl<SDValue> &Ops,
SDValue JumpTarget = Callee;
// T9 should contain the address of the callee function if
- // -reloction-model=pic or it is an indirect call.
+ // -relocation-model=pic or it is an indirect call.
if (IsPICCall || !GlobalOrExternal) {
unsigned V0Reg = Mips::V0;
if (NeedMips16Helper) {
RegsToPass.push_front(std::make_pair(V0Reg, Callee));
JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
- JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG,
+ JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
MipsII::MO_GOT, Chain,
FuncInfo->callPtrInfo(S->getSymbol()));
} else
@@ -511,14 +514,16 @@ getOpndList(SmallVectorImpl<SDValue> &Ops,
Ops.push_back(JumpTarget);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
- InternalLinkage, CLI, Callee, Chain);
+ InternalLinkage, IsCallReloc, CLI, Callee,
+ Chain);
}
MachineBasicBlock *Mips16TargetLowering::
emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
@@ -580,7 +585,8 @@ MachineBasicBlock *Mips16TargetLowering::emitSelT16
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
@@ -644,7 +650,8 @@ MachineBasicBlock *Mips16TargetLowering::emitSeliT16
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
@@ -709,7 +716,8 @@ MachineBasicBlock
MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
unsigned regY = MI->getOperand(1).getReg();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
@@ -725,7 +733,8 @@ MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
int64_t imm = MI->getOperand(1).getImm();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
@@ -759,7 +768,8 @@ MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
unsigned regY = MI->getOperand(2).getReg();
@@ -776,7 +786,8 @@ MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
MachineInstr *MI, MachineBasicBlock *BB )const {
if (DontExpandCondPseudos16)
return BB;
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
int64_t Imm = MI->getOperand(2).getImm();
diff --git a/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h
index 1649fe6..d3b9f75 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.h
@@ -11,19 +11,20 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS16ISELLOWERING_H
-#define MIPS16ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16ISELLOWERING_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16ISELLOWERING_H
#include "MipsISelLowering.h"
namespace llvm {
class Mips16TargetLowering : public MipsTargetLowering {
public:
- explicit Mips16TargetLowering(MipsTargetMachine &TM,
+ explicit Mips16TargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
- bool *Fast) const override;
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
+ unsigned Align,
+ bool *Fast) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
@@ -46,7 +47,7 @@ namespace llvm {
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
- CallLoweringInfo &CLI, SDValue Callee,
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
SDValue Chain) const override;
MachineBasicBlock *emitSel16(unsigned Opc, MachineInstr *MI,
@@ -78,4 +79,4 @@ namespace llvm {
};
}
-#endif // Mips16ISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td b/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td
index da3a1f1..4ff68be 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrFormats.td
@@ -591,7 +591,7 @@ class FEXT_I816<bits<3> _funct, dag outs, dag ins, string asmstr,
bits<3> funct;
let funct = _funct;
- let I8 = 0b0110;
+ let I8 = 0b00110;
let Inst{26-21} = imm16{10-5};
let Inst{20-16} = imm16{15-11};
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp
index 4dd9af2..976becc 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.cpp
@@ -144,7 +144,6 @@ bool Mips16InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
/// opcode, e.g. turning BEQ to BNE.
unsigned Mips16InstrInfo::getOppositeBranchOpc(unsigned Opc) const {
switch (Opc) {
- default: llvm_unreachable("Illegal opcode!");
case Mips::BeqzRxImmX16: return Mips::BnezRxImmX16;
case Mips::BnezRxImmX16: return Mips::BeqzRxImmX16;
case Mips::BeqzRxImm16: return Mips::BnezRxImm16;
@@ -166,8 +165,7 @@ unsigned Mips16InstrInfo::getOppositeBranchOpc(unsigned Opc) const {
case Mips::BtnezT8SltX16: return Mips::BteqzT8SltX16;
case Mips::BtnezT8SltiX16: return Mips::BteqzT8SltiX16;
}
- assert(false && "Implement this function.");
- return 0;
+ llvm_unreachable("Illegal opcode!");
}
static void addSaveRestoreRegs(MachineInstrBuilder &MIB,
@@ -288,7 +286,7 @@ void Mips16InstrInfo::adjustStackPtrBig(unsigned SP, int64_t Amount,
void Mips16InstrInfo::adjustStackPtrBigUnrestricted(
unsigned SP, int64_t Amount, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
- assert(false && "adjust stack pointer amount exceeded");
+ llvm_unreachable("adjust stack pointer amount exceeded");
}
/// Adjust SP by Amount bytes.
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h
index a004c56..e7d0c07 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS16INSTRUCTIONINFO_H
-#define MIPS16INSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16INSTRINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16INSTRINFO_H
#include "Mips16RegisterInfo.h"
#include "MipsInstrInfo.h"
diff --git a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td
index 5e4eebb..10fff03 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td
+++ b/contrib/llvm/lib/Target/Mips/Mips16InstrInfo.td
@@ -502,7 +502,7 @@ class ArithLogic16Defs<bit isCom=0> {
bits<5> shamt = 0;
bit isCommutable = isCom;
bit isReMaterializable = 1;
- bit neverHasSideEffects = 1;
+ bit hasSideEffects = 0;
}
class branch16 {
@@ -879,7 +879,7 @@ def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
//
def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
let Uses = [HI0];
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
}
//
@@ -889,7 +889,7 @@ def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
//
def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
let Uses = [LO0];
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
}
//
@@ -897,13 +897,13 @@ def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
//
def MultRxRy16: FMULT16_ins<"mult", IIAlu> {
let isCommutable = 1;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let Defs = [HI0, LO0];
}
def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
let isCommutable = 1;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let Defs = [HI0, LO0];
}
@@ -914,7 +914,7 @@ def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
//
def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
let isCommutable = 1;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let Defs = [HI0, LO0];
}
@@ -925,7 +925,7 @@ def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
//
def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
let isCommutable = 1;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let Defs = [HI0, LO0];
}
@@ -1771,9 +1771,9 @@ def: Mips16Pat
//
// For constants, llvm transforms this to:
-// x > (k -1) and then reverses the operands to use setlt. So this pattern
+// x > (k - 1) and then reverses the operands to use setlt. So this pattern
// is not used now by the compiler. (Presumably checking that k-1 does not
-// overflow). The compiler never uses this at a the current time, due to
+// overflow). The compiler never uses this at the current time, due to
// other optimizations.
//
//def: Mips16Pat
@@ -1910,7 +1910,7 @@ def cpinst_operand : Operand<i32> {
// is the index into the MachineConstantPool that this is, the third is the
// size in bytes of this constant pool entry.
//
-let neverHasSideEffects = 1, isNotDuplicable = 1 in
+let hasSideEffects = 0, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), "foo", []>;
diff --git a/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp
index dbee774..0bb452a 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.cpp
@@ -65,7 +65,7 @@ bool Mips16RegisterInfo::saveScavengerRegister
const TargetRegisterClass *RC,
unsigned Reg) const {
DebugLoc DL;
- const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MBB.getParent()->getSubtarget().getInstrInfo();
TII.copyPhysReg(MBB, I, DL, Mips::T0, Reg, true);
TII.copyPhysReg(MBB, UseMI, DL, Reg, Mips::T0, true);
return true;
@@ -106,7 +106,7 @@ void Mips16RegisterInfo::eliminateFI(MachineBasicBlock::iterator II,
if (FrameIndex >= MinCSFI && FrameIndex <= MaxCSFI)
FrameReg = Mips::SP;
else {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (TFI->hasFP(MF)) {
FrameReg = Mips::S0;
}
@@ -140,8 +140,8 @@ void Mips16RegisterInfo::eliminateFI(MachineBasicBlock::iterator II,
DebugLoc DL = II->getDebugLoc();
unsigned NewImm;
const Mips16InstrInfo &TII =
- *static_cast<const Mips16InstrInfo*>(
- MBB.getParent()->getTarget().getInstrInfo());
+ *static_cast<const Mips16InstrInfo *>(
+ MBB.getParent()->getSubtarget().getInstrInfo());
FrameReg = TII.loadImmediate(FrameReg, Offset, MBB, II, DL, NewImm);
Offset = SignExtend64<16>(NewImm);
IsKill = true;
diff --git a/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h
index f59f1a7..3cdf836 100644
--- a/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h
+++ b/contrib/llvm/lib/Target/Mips/Mips16RegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS16REGISTERINFO_H
-#define MIPS16REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPS16REGISTERINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPS16REGISTERINFO_H
#include "MipsRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td b/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td
index e4ec96a..e9a4289 100644
--- a/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td
+++ b/contrib/llvm/lib/Target/Mips/Mips32r6InstrFormats.td
@@ -403,7 +403,7 @@ class JMP_IDX_COMPACT_FM<bits<6> funct> : MipsR6Inst {
bits<32> Inst;
let Inst{31-26} = funct;
- let Inst{25-21} = 0b000000;
+ let Inst{25-21} = 0b00000;
let Inst{20-16} = rt;
let Inst{15-0} = offset;
}
diff --git a/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td
index 6d6735b..185d12e 100644
--- a/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td
+++ b/contrib/llvm/lib/Target/Mips/Mips32r6InstrInfo.td
@@ -756,7 +756,7 @@ def : MipsPat<(setge f32:$lhs, f32:$rhs), (CMP_LT_S f32:$rhs, f32:$lhs)>,
ISA_MIPS32R6;
def : MipsPat<(setlt f32:$lhs, f32:$rhs), (CMP_LT_S f32:$lhs, f32:$rhs)>,
ISA_MIPS32R6;
-def : MipsPat<(setlt f32:$lhs, f32:$rhs), (CMP_LE_S f32:$lhs, f32:$rhs)>,
+def : MipsPat<(setle f32:$lhs, f32:$rhs), (CMP_LE_S f32:$lhs, f32:$rhs)>,
ISA_MIPS32R6;
def : MipsPat<(setne f32:$lhs, f32:$rhs),
(NOR (CMP_EQ_S f32:$lhs, f32:$rhs), ZERO)>, ISA_MIPS32R6;
@@ -776,7 +776,7 @@ def : MipsPat<(setge f64:$lhs, f64:$rhs), (CMP_LT_D f64:$rhs, f64:$lhs)>,
ISA_MIPS32R6;
def : MipsPat<(setlt f64:$lhs, f64:$rhs), (CMP_LT_D f64:$lhs, f64:$rhs)>,
ISA_MIPS32R6;
-def : MipsPat<(setlt f64:$lhs, f64:$rhs), (CMP_LE_D f64:$lhs, f64:$rhs)>,
+def : MipsPat<(setle f64:$lhs, f64:$rhs), (CMP_LE_D f64:$lhs, f64:$rhs)>,
ISA_MIPS32R6;
def : MipsPat<(setne f64:$lhs, f64:$rhs),
(NOR (CMP_EQ_D f64:$lhs, f64:$rhs), ZERO)>, ISA_MIPS32R6;
diff --git a/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td b/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td
index f2072a6..bfe2ba0 100644
--- a/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td
+++ b/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td
@@ -290,7 +290,8 @@ class ExtsCins<string opstr, SDPatternOperator Op = null_frag>:
class SetCC64_R<string opstr, PatFrag cond_op> :
InstSE<(outs GPR64Opnd:$rd), (ins GPR64Opnd:$rs, GPR64Opnd:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
- [(set GPR64Opnd:$rd, (cond_op GPR64Opnd:$rs, GPR64Opnd:$rt))],
+ [(set GPR64Opnd:$rd, (zext (cond_op GPR64Opnd:$rs,
+ GPR64Opnd:$rt)))],
II_SEQ_SNE, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rd = $rs";
}
@@ -298,7 +299,8 @@ class SetCC64_R<string opstr, PatFrag cond_op> :
class SetCC64_I<string opstr, PatFrag cond_op>:
InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, simm10_64:$imm10),
!strconcat(opstr, "\t$rt, $rs, $imm10"),
- [(set GPR64Opnd:$rt, (cond_op GPR64Opnd:$rs, immSExt10_64:$imm10))],
+ [(set GPR64Opnd:$rt, (zext (cond_op GPR64Opnd:$rs,
+ immSExt10_64:$imm10)))],
II_SEQI_SNEI, FrmI, opstr> {
let TwoOperandAliasConstraint = "$rt = $rs";
}
@@ -446,28 +448,22 @@ def : MipsInstAlias<"move $dst, $src",
GPR_64;
def : MipsInstAlias<"daddu $rs, $rt, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
- 0>;
+ 0>, ISA_MIPS3;
def : MipsInstAlias<"dadd $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"daddu $rs, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
- 0>;
+ 0>, ISA_MIPS3;
def : MipsInstAlias<"dadd $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
-def : MipsInstAlias<"add $rs, $imm",
- (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm),
- 0>;
-def : MipsInstAlias<"addu $rs, $imm",
- (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm),
- 0>;
def : MipsInstAlias<"dsll $rd, $rt, $rs",
(DSLLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
def : MipsInstAlias<"dsubu $rt, $rs, $imm",
(DADDiu GPR64Opnd:$rt, GPR64Opnd:$rs,
- InvertedImOperand64:$imm), 0>;
+ InvertedImOperand64:$imm), 0>, ISA_MIPS3;
def : MipsInstAlias<"dsubi $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
InvertedImOperand64:$imm),
@@ -487,7 +483,7 @@ def : MipsInstAlias<"dsub $rs, $imm",
def : MipsInstAlias<"dsubu $rs, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
- 0>;
+ 0>, ISA_MIPS3;
def : MipsInstAlias<"dsra $rd, $rt, $rs",
(DSRAV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
@@ -514,3 +510,9 @@ def : MipsInstAlias<"dmtc0 $rt, $rd", (DMTC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0
def : MipsInstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : MipsInstAlias<"dmtc2 $rt, $rd", (DMTC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
+let Predicates = [HasMips64, HasCnMips] in {
+def : MipsInstAlias<"synciobdma", (SYNC 0x2), 0>;
+def : MipsInstAlias<"syncs", (SYNC 0x6), 0>;
+def : MipsInstAlias<"syncw", (SYNC 0x4), 0>;
+def : MipsInstAlias<"syncws", (SYNC 0x5), 0>;
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp
index 31a9b7d..161345d 100644
--- a/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.cpp
@@ -72,7 +72,8 @@ void MipsAnalyzeImmediate::GetInstSeqLs(uint64_t Imm, unsigned RemSize,
if (Imm & 0x8000) {
InstSeqLs SeqLsORi;
GetInstSeqLsORi(Imm, RemSize, SeqLsORi);
- SeqLs.insert(SeqLs.end(), SeqLsORi.begin(), SeqLsORi.end());
+ SeqLs.append(std::make_move_iterator(SeqLsORi.begin()),
+ std::make_move_iterator(SeqLsORi.end()));
}
}
diff --git a/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h
index cc09034..ae3c38c 100644
--- a/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h
+++ b/contrib/llvm/lib/Target/Mips/MipsAnalyzeImmediate.h
@@ -6,8 +6,8 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS_ANALYZE_IMMEDIATE_H
-#define MIPS_ANALYZE_IMMEDIATE_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSANALYZEIMMEDIATE_H
+#define LLVM_LIB_TARGET_MIPS_MIPSANALYZEIMMEDIATE_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/DataTypes.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp
index 14463fc..50c0441 100644
--- a/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.cpp
@@ -53,7 +53,7 @@ using namespace llvm;
#define DEBUG_TYPE "mips-asm-printer"
-MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() {
+MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
return static_cast<MipsTargetStreamer &>(*OutStreamer.getTargetStreamer());
}
@@ -131,7 +131,7 @@ void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MipsTargetStreamer &TS = getTargetStreamer();
- TS.setCanHaveModuleDir(false);
+ TS.forbidModuleDirective();
if (MI->isDebugValue()) {
SmallString<128> Str;
@@ -266,7 +266,8 @@ void MipsAsmPrinter::printSavedRegsBitmask() {
if (Mips::GPR32RegClass.contains(Reg))
break;
- unsigned RegNum = TM.getRegisterInfo()->getEncodingValue(Reg);
+ unsigned RegNum =
+ TM.getSubtargetImpl()->getRegisterInfo()->getEncodingValue(Reg);
if (Mips::AFGR64RegClass.contains(Reg)) {
FPUBitmask |= (3 << RegNum);
CSFPRegsSize += AFGR64RegSize;
@@ -281,7 +282,8 @@ void MipsAsmPrinter::printSavedRegsBitmask() {
// Set CPU Bitmask.
for (; i != e; ++i) {
unsigned Reg = CSI[i].getReg();
- unsigned RegNum = TM.getRegisterInfo()->getEncodingValue(Reg);
+ unsigned RegNum =
+ TM.getSubtargetImpl()->getRegisterInfo()->getEncodingValue(Reg);
CPUBitmask |= (1 << RegNum);
}
@@ -306,7 +308,7 @@ void MipsAsmPrinter::printSavedRegsBitmask() {
/// Frame Directive
void MipsAsmPrinter::emitFrameDirective() {
- const TargetRegisterInfo &RI = *TM.getRegisterInfo();
+ const TargetRegisterInfo &RI = *TM.getSubtargetImpl()->getRegisterInfo();
unsigned stackReg = RI.getFrameRegister(*MF);
unsigned returnReg = RI.getRARegister();
@@ -558,7 +560,7 @@ bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O) {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
const MachineOperand &MO = MI->getOperand(opNum);
bool closeP = false;
@@ -643,6 +645,18 @@ printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
// Load/Store memory operands -- imm($reg)
// If PIC target the target is loaded as the
// pattern lw $25,%call16($28)
+
+ // opNum can be invalid if instruction has reglist as operand.
+ // MemOperand is always last operand of instruction (base + offset).
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case Mips::SWM32_MM:
+ case Mips::LWM32_MM:
+ opNum = MI->getNumOperands() - 2;
+ break;
+ }
+
printOperand(MI, opNum+1, O);
O << "(";
printOperand(MI, opNum, O);
@@ -666,6 +680,14 @@ printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
}
+void MipsAsmPrinter::
+printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
+ for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
+ if (i != opNum) O << ", ";
+ printOperand(MI, i, O);
+ }
+}
+
void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
bool IsABICalls = Subtarget->isABICalls();
if (IsABICalls) {
@@ -721,6 +743,29 @@ void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
Subtarget->isABI_O32());
}
+void MipsAsmPrinter::emitInlineAsmStart(
+ const MCSubtargetInfo &StartInfo) const {
+ MipsTargetStreamer &TS = getTargetStreamer();
+
+ // GCC's choice of assembler options for inline assembly code ('at', 'macro'
+ // and 'reorder') is different from LLVM's choice for generated code ('noat',
+ // 'nomacro' and 'noreorder').
+ // In order to maintain compatibility with inline assembly code which depends
+ // on GCC's assembler options being used, we have to switch to those options
+ // for the duration of the inline assembly block and then switch back.
+ TS.emitDirectiveSetPush();
+ TS.emitDirectiveSetAt();
+ TS.emitDirectiveSetMacro();
+ TS.emitDirectiveSetReorder();
+ OutStreamer.AddBlankLine();
+}
+
+void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
+ const MCSubtargetInfo *EndInfo) const {
+ OutStreamer.AddBlankLine();
+ getTargetStreamer().emitDirectiveSetPop();
+}
+
void MipsAsmPrinter::EmitJal(MCSymbol *Symbol) {
MCInst I;
I.setOpcode(Mips::JAL);
@@ -929,7 +974,7 @@ void MipsAsmPrinter::EmitFPCallStub(
// called otherwise. when the full stub generation is moved here
// we need to deal with pic.
//
- if (Subtarget->getRelocationModel() == Reloc::PIC_)
+ if (TM.getRelocationModel() == Reloc::PIC_)
llvm_unreachable("should not be here if we are compiling pic");
TS.emitDirectiveSetReorder();
//
diff --git a/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h
index abbd39b..723155f 100644
--- a/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h
+++ b/contrib/llvm/lib/Target/Mips/MipsAsmPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSASMPRINTER_H
-#define MIPSASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSASMPRINTER_H
+#define LLVM_LIB_TARGET_MIPS_MIPSASMPRINTER_H
#include "Mips16HardFloatInfo.h"
#include "MipsMCInstLower.h"
@@ -31,7 +31,7 @@ class Module;
class raw_ostream;
class LLVM_LIBRARY_VISIBILITY MipsAsmPrinter : public AsmPrinter {
- MipsTargetStreamer &getTargetStreamer();
+ MipsTargetStreamer &getTargetStreamer() const;
void EmitInstrWithMacroNoAT(const MachineInstr *MI);
@@ -60,6 +60,11 @@ private:
std::map<const char *, const llvm::Mips16HardFloatInfo::FuncSignature *>
StubsNeeded;
+ void emitInlineAsmStart(const MCSubtargetInfo &StartInfo) const override;
+
+ void emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
+ const MCSubtargetInfo *EndInfo) const override;
+
void EmitJal(MCSymbol *Symbol);
void EmitInstrReg(unsigned Opcode, unsigned Reg);
@@ -134,6 +139,7 @@ public:
void printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O);
void printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
const char *Modifier = nullptr);
+ void printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O);
void EmitStartOfAsmFile(Module &M) override;
void EmitEndOfAsmFile(Module &M) override;
void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
diff --git a/contrib/llvm/lib/Target/Mips/MipsCCState.h b/contrib/llvm/lib/Target/Mips/MipsCCState.h
index 026b7b5..9a08ade 100644
--- a/contrib/llvm/lib/Target/Mips/MipsCCState.h
+++ b/contrib/llvm/lib/Target/Mips/MipsCCState.h
@@ -10,9 +10,9 @@
#ifndef MIPSCCSTATE_H
#define MIPSCCSTATE_H
+#include "MipsISelLowering.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
-#include "MipsISelLowering.h"
namespace llvm {
class SDNode;
@@ -65,10 +65,9 @@ private:
public:
MipsCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
- const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
- LLVMContext &C,
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
SpecialCallingConvType SpecialCC = NoSpecialCallingConv)
- : CCState(CC, isVarArg, MF, TM, locs, C), SpecialCallingConv(SpecialCC) {}
+ : CCState(CC, isVarArg, MF, locs, C), SpecialCallingConv(SpecialCC) {}
void
AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
diff --git a/contrib/llvm/lib/Target/Mips/MipsCallingConv.td b/contrib/llvm/lib/Target/Mips/MipsCallingConv.td
index 76297dc..90bf9f3 100644
--- a/contrib/llvm/lib/Target/Mips/MipsCallingConv.td
+++ b/contrib/llvm/lib/Target/Mips/MipsCallingConv.td
@@ -12,14 +12,37 @@
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A, string Invert = "">
: CCIf<!strconcat(Invert,
- "State.getMachineFunction().getTarget()."
- "getSubtarget<const MipsSubtarget>().",
+ "static_cast<const MipsSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).",
F),
A>;
// The inverse of CCIfSubtarget
class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
+/// Match if the original argument (before lowering) was a float.
+/// For example, this is true for i32's that were lowered from soft-float.
+class CCIfOrigArgWasNotFloat<CCAction A>
+ : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
+ A>;
+
+/// Match if the original argument (before lowering) was a 128-bit float (i.e.
+/// long double).
+class CCIfOrigArgWasF128<CCAction A>
+ : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
+
+/// Match if this specific argument is a vararg.
+/// This is slightly different fro CCIfIsVarArg which matches if any argument is
+/// a vararg.
+class CCIfArgIsVarArg<CCAction A>
+ : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
+
+
+/// Match if the special calling conv is the specified value.
+class CCIfSpecialCallingConv<string CC, CCAction A>
+ : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
+ "MipsCCState::" # CC, A>;
+
// For soft-float, f128 values are returned in A0_64 rather than V1_64.
def RetCC_F128SoftFloat : CallingConv<[
CCAssignToReg<[V0_64, A0_64]>
@@ -51,6 +74,19 @@ def RetCC_F128 : CallingConv<[
// Mips O32 Calling Convention
//===----------------------------------------------------------------------===//
+def CC_MipsO32 : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
+
+ // Integer values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+
+ // Integer values get stored in stack slots that are 8 bytes in
+ // size and 8-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 8>>
+]>;
+
// Only the return rules are defined here for O32. The rules for argument
// passing are defined in MipsISelLowering.cpp.
def RetCC_MipsO32 : CallingConv<[
@@ -92,9 +128,7 @@ def CC_MipsN : CallingConv<[
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// All integers (except soft-float integers) are promoted to 64-bit.
- CCIfType<[i8, i16, i32],
- CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
- CCPromoteToType<i64>>>,
+ CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
// The only i32's we have left are soft-float arguments.
CCIfSubtarget<"abiUsesSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
@@ -149,9 +183,7 @@ def RetCC_MipsN : CallingConv<[
//
// f128 should only occur for the N64 ABI where long double is 128-bit. On
// N32, long double is equivalent to double.
- CCIfType<[i64],
- CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)",
- CCDelegateTo<RetCC_F128>>>,
+ CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
// Aggregate returns are positioned at the lowest address in the slot for
// both little and big-endian targets. When passing in registers, this
@@ -317,8 +349,7 @@ def CC_Mips16RetHelper : CallingConv<[
def CC_Mips_FixedArg : CallingConv<[
// Mips16 needs special handling on some functions.
CCIf<"State.getCallingConv() != CallingConv::Fast",
- CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
- "MipsCCState::Mips16RetHelperConv",
+ CCIfSpecialCallingConv<"Mips16RetHelperConv",
CCDelegateTo<CC_Mips16RetHelper>>>,
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
@@ -335,8 +366,7 @@ def CC_Mips_FixedArg : CallingConv<[
// N32, long double is equivalent to double.
CCIfType<[i64],
CCIfSubtargetNot<"abiUsesSoftFloat()",
- CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)",
- CCBitConvertToType<f64>>>>,
+ CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
@@ -356,9 +386,7 @@ def CC_Mips_VarArg : CallingConv<[
]>;
def CC_Mips : CallingConv<[
- CCIfVarArg<
- CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)",
- CCDelegateTo<CC_Mips_VarArg>>>,
+ CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
CCDelegateTo<CC_Mips_FixedArg>
]>;
diff --git a/contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp b/contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp
deleted file mode 100644
index 794c718..0000000
--- a/contrib/llvm/lib/Target/Mips/MipsCodeEmitter.cpp
+++ /dev/null
@@ -1,481 +0,0 @@
-//===-- Mips/MipsCodeEmitter.cpp - Convert Mips Code to Machine Code ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===---------------------------------------------------------------------===//
-//
-// This file contains the pass that transforms the Mips machine instructions
-// into relocatable machine code.
-//
-//===---------------------------------------------------------------------===//
-
-#include "Mips.h"
-#include "MCTargetDesc/MipsBaseInfo.h"
-#include "MipsInstrInfo.h"
-#include "MipsRelocations.h"
-#include "MipsSubtarget.h"
-#include "MipsTargetMachine.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#ifndef NDEBUG
-#include <iomanip>
-#endif
-
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-STATISTIC(NumEmitted, "Number of machine instructions emitted");
-
-namespace {
-
-class MipsCodeEmitter : public MachineFunctionPass {
- MipsJITInfo *JTI;
- const MipsInstrInfo *II;
- const DataLayout *TD;
- const MipsSubtarget *Subtarget;
- TargetMachine &TM;
- JITCodeEmitter &MCE;
- const std::vector<MachineConstantPoolEntry> *MCPEs;
- const std::vector<MachineJumpTableEntry> *MJTEs;
- bool IsPIC;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo> ();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- static char ID;
-
-public:
- MipsCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
- : MachineFunctionPass(ID), JTI(nullptr), II(nullptr), TD(nullptr),
- TM(tm), MCE(mce), MCPEs(nullptr), MJTEs(nullptr),
- IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
-
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- const char *getPassName() const override {
- return "Mips Machine Code Emitter";
- }
-
- /// getBinaryCodeForInstr - This function, generated by the
- /// CodeEmitterGenerator using TableGen, produces the binary encoding for
- /// machine instructions.
- uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
-
- void emitInstruction(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB);
-
-private:
-
- void emitWord(unsigned Word);
-
- /// Routines that handle operands which add machine relocations which are
- /// fixed up by the relocation stage.
- void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
- bool MayNeedFarStub) const;
- void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
- void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
- void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
- void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc) const;
-
- /// getMachineOpValue - Return binary encoding of operand. If the machine
- /// operand requires relocation, record the relocation and return zero.
- unsigned getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const;
-
- unsigned getRelocation(const MachineInstr &MI,
- const MachineOperand &MO) const;
-
- unsigned getJumpTargetOpValue(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getJumpTargetOpValueMM(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getBranchTargetOpValueMM(const MachineInstr &MI,
- unsigned OpNo) const;
-
- unsigned getBranchTarget21OpValue(const MachineInstr &MI,
- unsigned OpNo) const;
- unsigned getBranchTarget26OpValue(const MachineInstr &MI,
- unsigned OpNo) const;
- unsigned getJumpOffset16OpValue(const MachineInstr &MI, unsigned OpNo) const;
-
- unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getMemEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getMemEncodingMMImm12(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getMSAMemEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getSizeExtEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getSizeInsEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getLSAImmEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getSimm19Lsl2Encoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getSimm18Lsl3Encoding(const MachineInstr &MI, unsigned OpNo) const;
-
- /// Expand pseudo instructions with accumulator register operands.
- void expandACCInstr(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB, unsigned Opc) const;
-
- void expandPseudoIndirectBranch(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB) const;
-
- /// \brief Expand pseudo instruction. Return true if MI was expanded.
- bool expandPseudos(MachineBasicBlock::instr_iterator &MI,
- MachineBasicBlock &MBB) const;
-};
-}
-
-char MipsCodeEmitter::ID = 0;
-
-bool MipsCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
- MipsTargetMachine &Target = static_cast<MipsTargetMachine &>(
- const_cast<TargetMachine &>(MF.getTarget()));
-
- JTI = Target.getJITInfo();
- II = Target.getInstrInfo();
- TD = Target.getDataLayout();
- Subtarget = &TM.getSubtarget<MipsSubtarget> ();
- MCPEs = &MF.getConstantPool()->getConstants();
- MJTEs = nullptr;
- if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
- JTI->Initialize(MF, IsPIC, Subtarget->isLittle());
- MCE.setModuleInfo(&getAnalysis<MachineModuleInfo> ());
-
- do {
- DEBUG(errs() << "JITTing function '"
- << MF.getName() << "'\n");
- MCE.startFunction(MF);
-
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
- MBB != E; ++MBB){
- MCE.StartMachineBasicBlock(MBB);
- for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(),
- E = MBB->instr_end(); I != E;)
- emitInstruction(*I++, *MBB);
- }
- } while (MCE.finishFunction(MF));
-
- return false;
-}
-
-unsigned MipsCodeEmitter::getRelocation(const MachineInstr &MI,
- const MachineOperand &MO) const {
- // NOTE: This relocations are for static.
- uint64_t TSFlags = MI.getDesc().TSFlags;
- uint64_t Form = TSFlags & MipsII::FormMask;
- if (Form == MipsII::FrmJ)
- return Mips::reloc_mips_26;
- if ((Form == MipsII::FrmI || Form == MipsII::FrmFI)
- && MI.isBranch())
- return Mips::reloc_mips_pc16;
- if (Form == MipsII::FrmI && MI.getOpcode() == Mips::LUi)
- return Mips::reloc_mips_hi;
- return Mips::reloc_mips_lo;
-}
-
-unsigned MipsCodeEmitter::getJumpTargetOpValue(const MachineInstr &MI,
- unsigned OpNo) const {
- MachineOperand MO = MI.getOperand(OpNo);
- if (MO.isGlobal())
- emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO), true);
- else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO));
- else if (MO.isMBB())
- emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
- else
- llvm_unreachable("Unexpected jump target operand kind.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getJumpTargetOpValueMM(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getBranchTargetOpValueMM(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getBranchTarget21OpValue(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getBranchTarget26OpValue(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getJumpOffset16OpValue(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getBranchTargetOpValue(const MachineInstr &MI,
- unsigned OpNo) const {
- MachineOperand MO = MI.getOperand(OpNo);
- emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
- return 0;
-}
-
-unsigned MipsCodeEmitter::getMemEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- // Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
- assert(MI.getOperand(OpNo).isReg());
- unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo)) << 16;
- return (getMachineOpValue(MI, MI.getOperand(OpNo+1)) & 0xFFFF) | RegBits;
-}
-
-unsigned MipsCodeEmitter::getMemEncodingMMImm12(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getMSAMemEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getSizeExtEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- // size is encoded as size-1.
- return getMachineOpValue(MI, MI.getOperand(OpNo)) - 1;
-}
-
-unsigned MipsCodeEmitter::getSizeInsEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- // size is encoded as pos+size-1.
- return getMachineOpValue(MI, MI.getOperand(OpNo-1)) +
- getMachineOpValue(MI, MI.getOperand(OpNo)) - 1;
-}
-
-unsigned MipsCodeEmitter::getLSAImmEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getSimm18Lsl3Encoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-unsigned MipsCodeEmitter::getSimm19Lsl2Encoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Unimplemented function.");
- return 0;
-}
-
-/// getMachineOpValue - Return binary encoding of operand. If the machine
-/// operand requires relocation, record the relocation and return zero.
-unsigned MipsCodeEmitter::getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const {
- if (MO.isReg())
- return TM.getRegisterInfo()->getEncodingValue(MO.getReg());
- else if (MO.isImm())
- return static_cast<unsigned>(MO.getImm());
- else if (MO.isGlobal())
- emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO), true);
- else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO));
- else if (MO.isCPI())
- emitConstPoolAddress(MO.getIndex(), getRelocation(MI, MO));
- else if (MO.isJTI())
- emitJumpTableAddress(MO.getIndex(), getRelocation(MI, MO));
- else if (MO.isMBB())
- emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
- else
- llvm_unreachable("Unable to encode MachineOperand!");
- return 0;
-}
-
-void MipsCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
- bool MayNeedFarStub) const {
- MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV), 0,
- MayNeedFarStub));
-}
-
-void MipsCodeEmitter::
-emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
- Reloc, ES, 0, 0));
-}
-
-void MipsCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
- Reloc, CPI, 0, false));
-}
-
-void MipsCodeEmitter::
-emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
- Reloc, JTIndex, 0, false));
-}
-
-void MipsCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
- unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
- Reloc, BB));
-}
-
-void MipsCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB) {
- DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI);
-
- // Expand pseudo instruction. Skip if MI was not expanded.
- if (((MI->getDesc().TSFlags & MipsII::FormMask) == MipsII::Pseudo) &&
- !expandPseudos(MI, MBB))
- return;
-
- MCE.processDebugLoc(MI->getDebugLoc(), true);
-
- emitWord(getBinaryCodeForInstr(*MI));
- ++NumEmitted; // Keep track of the # of mi's emitted
-
- MCE.processDebugLoc(MI->getDebugLoc(), false);
-}
-
-void MipsCodeEmitter::emitWord(unsigned Word) {
- DEBUG(errs() << " 0x";
- errs().write_hex(Word) << "\n");
- if (Subtarget->isLittle())
- MCE.emitWordLE(Word);
- else
- MCE.emitWordBE(Word);
-}
-
-void MipsCodeEmitter::expandACCInstr(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB,
- unsigned Opc) const {
- // Expand "pseudomult $ac0, $t0, $t1" to "mult $t0, $t1".
- BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Opc))
- .addReg(MI->getOperand(1).getReg()).addReg(MI->getOperand(2).getReg());
-}
-
-void MipsCodeEmitter::expandPseudoIndirectBranch(
- MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB) const {
- // This logic is duplicated from MipsAsmPrinter::emitPseudoIndirectBranch()
- bool HasLinkReg = false;
- unsigned Opcode = 0;
-
- if (Subtarget->hasMips64r6()) {
- // MIPS64r6 should use (JALR64 ZERO_64, $rs)
- Opcode = Mips::JALR64;
- HasLinkReg = true;
- } else if (Subtarget->hasMips32r6()) {
- // MIPS32r6 should use (JALR ZERO, $rs)
- Opcode = Mips::JALR;
- HasLinkReg = true;
- } else if (Subtarget->inMicroMipsMode())
- // microMIPS should use (JR_MM $rs)
- Opcode = Mips::JR_MM;
- else {
- // Everything else should use (JR $rs)
- Opcode = Mips::JR;
- }
-
- auto MIB = BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Opcode));
-
- if (HasLinkReg) {
- unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
- MIB.addReg(ZeroReg);
- }
-
- MIB.addReg(MI->getOperand(0).getReg());
-}
-
-bool MipsCodeEmitter::expandPseudos(MachineBasicBlock::instr_iterator &MI,
- MachineBasicBlock &MBB) const {
- switch (MI->getOpcode()) {
- default:
- llvm_unreachable("Unhandled pseudo");
- return false;
- case Mips::NOP:
- BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::SLL), Mips::ZERO)
- .addReg(Mips::ZERO).addImm(0);
- break;
- case Mips::B:
- BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::BEQ)).addReg(Mips::ZERO)
- .addReg(Mips::ZERO).addOperand(MI->getOperand(0));
- break;
- case Mips::TRAP:
- BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::BREAK)).addImm(0)
- .addImm(0);
- break;
- case Mips::JALRPseudo:
- BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::JALR), Mips::RA)
- .addReg(MI->getOperand(0).getReg());
- break;
- case Mips::PseudoMULT:
- expandACCInstr(MI, MBB, Mips::MULT);
- break;
- case Mips::PseudoMULTu:
- expandACCInstr(MI, MBB, Mips::MULTu);
- break;
- case Mips::PseudoSDIV:
- expandACCInstr(MI, MBB, Mips::SDIV);
- break;
- case Mips::PseudoUDIV:
- expandACCInstr(MI, MBB, Mips::UDIV);
- break;
- case Mips::PseudoMADD:
- expandACCInstr(MI, MBB, Mips::MADD);
- break;
- case Mips::PseudoMADDU:
- expandACCInstr(MI, MBB, Mips::MADDU);
- break;
- case Mips::PseudoMSUB:
- expandACCInstr(MI, MBB, Mips::MSUB);
- break;
- case Mips::PseudoMSUBU:
- expandACCInstr(MI, MBB, Mips::MSUBU);
- break;
- case Mips::PseudoReturn:
- case Mips::PseudoReturn64:
- case Mips::PseudoIndirectBranch:
- case Mips::PseudoIndirectBranch64:
- expandPseudoIndirectBranch(MI, MBB);
- break;
- case TargetOpcode::CFI_INSTRUCTION:
- case TargetOpcode::IMPLICIT_DEF:
- case TargetOpcode::KILL:
- // Do nothing
- return false;
- }
-
- (MI--)->eraseFromBundle();
- return true;
-}
-
-/// createMipsJITCodeEmitterPass - Return a pass that emits the collected Mips
-/// code to the specified MCE object.
-FunctionPass *llvm::createMipsJITCodeEmitterPass(MipsTargetMachine &TM,
- JITCodeEmitter &JCE) {
- return new MipsCodeEmitter(TM, JCE);
-}
-
-#include "MipsGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Mips/MipsCondMov.td b/contrib/llvm/lib/Target/Mips/MipsCondMov.td
index 690f626..af10cd4 100644
--- a/contrib/llvm/lib/Target/Mips/MipsCondMov.td
+++ b/contrib/llvm/lib/Target/Mips/MipsCondMov.td
@@ -263,3 +263,40 @@ defm : MovnPats<GPR32, FGR64, MOVN_I_D64, XOR>, INSN_MIPS4_32_NOT_32R6_64R6,
FGR_64;
defm : MovnPats<GPR64, FGR64, MOVN_I64_D64, XOR64>, INSN_MIPS4_32_NOT_32R6_64R6,
FGR_64;
+
+// For targets that don't have conditional-move instructions
+// we have to match SELECT nodes with pseudo instructions.
+let usesCustomInserter = 1 in {
+ class Select_Pseudo<RegisterOperand RC> :
+ PseudoSE<(outs RC:$dst), (ins GPR32Opnd:$cond, RC:$T, RC:$F),
+ [(set RC:$dst, (select GPR32Opnd:$cond, RC:$T, RC:$F))]>,
+ ISA_MIPS1_NOT_4_32;
+
+ class SelectFP_Pseudo_T<RegisterOperand RC> :
+ PseudoSE<(outs RC:$dst), (ins GPR32Opnd:$cond, RC:$T, RC:$F),
+ [(set RC:$dst, (MipsCMovFP_T RC:$T, GPR32Opnd:$cond, RC:$F))]>,
+ ISA_MIPS1_NOT_4_32;
+
+ class SelectFP_Pseudo_F<RegisterOperand RC> :
+ PseudoSE<(outs RC:$dst), (ins GPR32Opnd:$cond, RC:$T, RC:$F),
+ [(set RC:$dst, (MipsCMovFP_F RC:$T, GPR32Opnd:$cond, RC:$F))]>,
+ ISA_MIPS1_NOT_4_32;
+}
+
+def PseudoSELECT_I : Select_Pseudo<GPR32Opnd>;
+def PseudoSELECT_I64 : Select_Pseudo<GPR64Opnd>;
+def PseudoSELECT_S : Select_Pseudo<FGR32Opnd>;
+def PseudoSELECT_D32 : Select_Pseudo<AFGR64Opnd>, FGR_32;
+def PseudoSELECT_D64 : Select_Pseudo<FGR64Opnd>, FGR_64;
+
+def PseudoSELECTFP_T_I : SelectFP_Pseudo_T<GPR32Opnd>;
+def PseudoSELECTFP_T_I64 : SelectFP_Pseudo_T<GPR64Opnd>;
+def PseudoSELECTFP_T_S : SelectFP_Pseudo_T<FGR32Opnd>;
+def PseudoSELECTFP_T_D32 : SelectFP_Pseudo_T<AFGR64Opnd>, FGR_32;
+def PseudoSELECTFP_T_D64 : SelectFP_Pseudo_T<FGR64Opnd>, FGR_64;
+
+def PseudoSELECTFP_F_I : SelectFP_Pseudo_F<GPR32Opnd>;
+def PseudoSELECTFP_F_I64 : SelectFP_Pseudo_F<GPR64Opnd>;
+def PseudoSELECTFP_F_S : SelectFP_Pseudo_F<FGR32Opnd>;
+def PseudoSELECTFP_F_D32 : SelectFP_Pseudo_F<AFGR64Opnd>, FGR_32;
+def PseudoSELECTFP_F_D64 : SelectFP_Pseudo_F<FGR64Opnd>, FGR_64;
diff --git a/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp b/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
index 76313b1..c4e5ac0 100644
--- a/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
@@ -28,6 +28,7 @@
#include "MipsTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -452,7 +453,9 @@ bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
return false;
}
- TII = (const Mips16InstrInfo*)MF->getTarget().getInstrInfo();
+ TII = (const Mips16InstrInfo *)MF->getTarget()
+ .getSubtargetImpl()
+ ->getInstrInfo();
MFI = MF->getInfo<MipsFunctionInfo>();
DEBUG(dbgs() << "constant island processing " << "\n");
//
@@ -559,7 +562,7 @@ MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
// identity mapping of CPI's to CPE's.
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
- const DataLayout &TD = *MF->getTarget().getDataLayout();
+ const DataLayout &TD = *MF->getSubtarget().getDataLayout();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
assert(Size >= 4 && "Too small constant pool entry");
@@ -585,9 +588,7 @@ MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
if (InsPoint[a] == InsAt)
InsPoint[a] = CPEMI;
// Add a new CPEntry, but no corresponding CPUser yet.
- std::vector<CPEntry> CPEs;
- CPEs.push_back(CPEntry(CPEMI, i));
- CPEntries.push_back(CPEs);
+ CPEntries.emplace_back(1, CPEntry(CPEMI, i));
++NumCPEs;
DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
<< Size << ", align = " << Align <<'\n');
diff --git a/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp b/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp
index bcfbc12..d5027b9 100644
--- a/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp
@@ -196,6 +196,9 @@ namespace {
private:
bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
+ Iter replaceWithCompactBranch(MachineBasicBlock &MBB,
+ Iter Branch, DebugLoc DL);
+
/// This function checks if it is valid to move Candidate to the delay slot
/// and returns true if it isn't. It also updates memory and register
/// dependence information.
@@ -207,7 +210,7 @@ namespace {
template<typename IterTy>
bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
RegDefsUses &RegDU, InspectMemInstr &IM,
- IterTy &Filler) const;
+ IterTy &Filler, Iter Slot) const;
/// This function searches in the backward direction for an instruction that
/// can be moved to the delay slot. Returns true on success.
@@ -275,7 +278,11 @@ static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
#ifndef NDEBUG
const MachineFunction &MF = *MBB.getParent();
- assert(MF.getTarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
+ assert(MF.getTarget()
+ .getSubtargetImpl()
+ ->getRegisterInfo()
+ ->getAllocatableSet(MF)
+ .test(R) &&
"Shouldn't move an instruction with unallocatable registers across "
"basic block boundaries.");
#endif
@@ -286,8 +293,8 @@ static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
}
RegDefsUses::RegDefsUses(TargetMachine &TM)
- : TRI(*TM.getRegisterInfo()), Defs(TRI.getNumRegs(), false),
- Uses(TRI.getNumRegs(), false) {}
+ : TRI(*TM.getSubtargetImpl()->getRegisterInfo()),
+ Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {}
void RegDefsUses::init(const MachineInstr &MI) {
// Add all register operands which are explicit and non-variadic.
@@ -451,7 +458,8 @@ bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
if (MayStore)
- return !Defs.insert(V) || Uses.count(V) || SeenNoObjStore || SeenNoObjLoad;
+ return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore ||
+ SeenNoObjLoad;
Uses.insert(V);
return Defs.count(V) || SeenNoObjStore;
@@ -489,10 +497,55 @@ getUnderlyingObjects(const MachineInstr &MI,
return true;
}
+// Replace Branch with the compact branch instruction.
+Iter Filler::replaceWithCompactBranch(MachineBasicBlock &MBB,
+ Iter Branch, DebugLoc DL) {
+ const MipsInstrInfo *TII= static_cast<const MipsInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+
+ unsigned NewOpcode =
+ (((unsigned) Branch->getOpcode()) == Mips::BEQ) ? Mips::BEQZC_MM
+ : Mips::BNEZC_MM;
+
+ const MCInstrDesc &NewDesc = TII->get(NewOpcode);
+ MachineInstrBuilder MIB = BuildMI(MBB, Branch, DL, NewDesc);
+
+ MIB.addReg(Branch->getOperand(0).getReg());
+ MIB.addMBB(Branch->getOperand(2).getMBB());
+
+ Iter tmpIter = Branch;
+ Branch = std::prev(Branch);
+ MBB.erase(tmpIter);
+
+ return Branch;
+}
+
+// For given opcode returns opcode of corresponding instruction with short
+// delay slot.
+static int getEquivalentCallShort(int Opcode) {
+ switch (Opcode) {
+ case Mips::BGEZAL:
+ return Mips::BGEZALS_MM;
+ case Mips::BLTZAL:
+ return Mips::BLTZALS_MM;
+ case Mips::JAL:
+ return Mips::JALS_MM;
+ case Mips::JALR:
+ return Mips::JALRS_MM;
+ case Mips::JALR16_MM:
+ return Mips::JALRS16_MM;
+ default:
+ llvm_unreachable("Unexpected call instruction for microMIPS.");
+ }
+}
+
/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
/// We assume there is only one delay slot per delayed instruction.
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Changed = false;
+ bool InMicroMipsMode = TM.getSubtarget<MipsSubtarget>().inMicroMipsMode();
+ const MipsInstrInfo *TII =
+ static_cast<const MipsInstrInfo *>(TM.getSubtargetImpl()->getInstrInfo());
for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
if (!hasUnoccupiedSlot(&*I))
@@ -503,22 +556,48 @@ bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
// Delay slot filling is disabled at -O0.
if (!DisableDelaySlotFiller && (TM.getOptLevel() != CodeGenOpt::None)) {
- if (searchBackward(MBB, I))
- continue;
-
- if (I->isTerminator()) {
- if (searchSuccBBs(MBB, I))
- continue;
+ bool Filled = false;
+
+ if (searchBackward(MBB, I)) {
+ Filled = true;
+ } else if (I->isTerminator()) {
+ if (searchSuccBBs(MBB, I)) {
+ Filled = true;
+ }
} else if (searchForward(MBB, I)) {
+ Filled = true;
+ }
+
+ if (Filled) {
+ // Get instruction with delay slot.
+ MachineBasicBlock::instr_iterator DSI(I);
+
+ if (InMicroMipsMode && TII->GetInstSizeInBytes(std::next(DSI)) == 2 &&
+ DSI->isCall()) {
+ // If instruction in delay slot is 16b change opcode to
+ // corresponding instruction with short delay slot.
+ DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode())));
+ }
+
continue;
}
}
- // Bundle the NOP to the instruction with the delay slot.
- const MipsInstrInfo *TII =
- static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
- BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
- MIBundleBuilder(MBB, I, std::next(I, 2));
+ // If instruction is BEQ or BNE with one ZERO register, then instead of
+ // adding NOP replace this instruction with the corresponding compact
+ // branch instruction, i.e. BEQZC or BNEZC.
+ unsigned Opcode = I->getOpcode();
+ if (InMicroMipsMode &&
+ (Opcode == Mips::BEQ || Opcode == Mips::BNE) &&
+ ((unsigned) I->getOperand(1).getReg()) == Mips::ZERO) {
+
+ I = replaceWithCompactBranch(MBB, I, I->getDebugLoc());
+
+ } else {
+ // Bundle the NOP to the instruction with the delay slot.
+ BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
+ MIBundleBuilder(MBB, I, std::next(I, 2));
+ }
}
return Changed;
@@ -533,7 +612,7 @@ FunctionPass *llvm::createMipsDelaySlotFillerPass(MipsTargetMachine &tm) {
template<typename IterTy>
bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
RegDefsUses &RegDU, InspectMemInstr& IM,
- IterTy &Filler) const {
+ IterTy &Filler, Iter Slot) const {
for (IterTy I = Begin; I != End; ++I) {
// skip debug value
if (I->isDebugValue())
@@ -554,12 +633,22 @@ bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
// branches are not checked because non-NaCl targets never put them in
// delay slots.
unsigned AddrIdx;
- if ((isBasePlusOffsetMemoryAccess(I->getOpcode(), &AddrIdx)
- && baseRegNeedsLoadStoreMask(I->getOperand(AddrIdx).getReg()))
- || I->modifiesRegister(Mips::SP, TM.getRegisterInfo()))
+ if ((isBasePlusOffsetMemoryAccess(I->getOpcode(), &AddrIdx) &&
+ baseRegNeedsLoadStoreMask(I->getOperand(AddrIdx).getReg())) ||
+ I->modifiesRegister(Mips::SP,
+ TM.getSubtargetImpl()->getRegisterInfo()))
continue;
}
+ bool InMicroMipsMode = TM.getSubtarget<MipsSubtarget>().inMicroMipsMode();
+ const MipsInstrInfo *TII = static_cast<const MipsInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+ unsigned Opcode = (*Slot).getOpcode();
+ if (InMicroMipsMode && TII->GetInstSizeInBytes(&(*I)) == 2 &&
+ (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch ||
+ Opcode == Mips::PseudoReturn))
+ continue;
+
Filler = I;
return true;
}
@@ -577,7 +666,8 @@ bool Filler::searchBackward(MachineBasicBlock &MBB, Iter Slot) const {
RegDU.init(*Slot);
- if (!searchRange(MBB, ReverseIter(Slot), MBB.rend(), RegDU, MemDU, Filler))
+ if (!searchRange(MBB, ReverseIter(Slot), MBB.rend(), RegDU, MemDU, Filler,
+ Slot))
return false;
MBB.splice(std::next(Slot), &MBB, std::next(Filler).base());
@@ -597,7 +687,7 @@ bool Filler::searchForward(MachineBasicBlock &MBB, Iter Slot) const {
RegDU.setCallerSaved(*Slot);
- if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Filler))
+ if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Filler, Slot))
return false;
MBB.splice(std::next(Slot), &MBB, Filler);
@@ -640,7 +730,8 @@ bool Filler::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const {
IM.reset(new MemDefsUses(MFI));
}
- if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Filler))
+ if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Filler,
+ Slot))
return false;
insertDelayFiller(Filler, BrMap);
@@ -667,7 +758,7 @@ MachineBasicBlock *Filler::selectSuccBB(MachineBasicBlock &B) const {
std::pair<MipsInstrInfo::BranchType, MachineInstr *>
Filler::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const {
const MipsInstrInfo *TII =
- static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ static_cast<const MipsInstrInfo *>(TM.getSubtargetImpl()->getInstrInfo());
MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
SmallVector<MachineInstr*, 2> BranchInstrs;
SmallVector<MachineOperand, 2> Cond;
diff --git a/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp b/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp
index 617801b..4588f40 100644
--- a/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsFastISel.cpp
@@ -2,42 +2,63 @@
//---------------------===//
#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "MipsCCState.h"
+#include "MipsISelLowering.h"
+#include "MipsMachineFunction.h"
+#include "MipsRegisterInfo.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "MipsRegisterInfo.h"
-#include "MipsISelLowering.h"
-#include "MipsMachineFunction.h"
-#include "MipsSubtarget.h"
-#include "MipsTargetMachine.h"
using namespace llvm;
namespace {
-// All possible address modes.
-typedef struct Address {
- enum { RegBase, FrameIndexBase } BaseType;
+class MipsFastISel final : public FastISel {
- union {
- unsigned Reg;
- int FI;
- } Base;
+ // All possible address modes.
+ class Address {
+ public:
+ typedef enum { RegBase, FrameIndexBase } BaseKind;
- int64_t Offset;
+ private:
+ BaseKind Kind;
+ union {
+ unsigned Reg;
+ int FI;
+ } Base;
- // Innocuous defaults for our address.
- Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; }
-} Address;
+ int64_t Offset;
-class MipsFastISel final : public FastISel {
+ const GlobalValue *GV;
+
+ public:
+ // Innocuous defaults for our address.
+ Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; }
+ void setKind(BaseKind K) { Kind = K; }
+ BaseKind getKind() const { return Kind; }
+ bool isRegBase() const { return Kind == RegBase; }
+ void setReg(unsigned Reg) {
+ assert(isRegBase() && "Invalid base register access!");
+ Base.Reg = Reg;
+ }
+ unsigned getReg() const {
+ assert(isRegBase() && "Invalid base register access!");
+ return Base.Reg;
+ }
+ void setOffset(int64_t Offset_) { Offset = Offset_; }
+ int64_t getOffset() const { return Offset; }
+ void setGlobalValue(const GlobalValue *G) { GV = G; }
+ const GlobalValue *getGlobalValue() { return GV; }
+ };
/// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
/// make the right decision when generating code for different targets.
- Module &M;
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
@@ -47,74 +68,265 @@ class MipsFastISel final : public FastISel {
// Convenience variables to avoid some queries.
LLVMContext *Context;
- bool TargetSupported;
+ bool fastLowerCall(CallLoweringInfo &CLI) override;
-public:
- explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
- const TargetLibraryInfo *libInfo)
- : FastISel(funcInfo, libInfo),
- M(const_cast<Module &>(*funcInfo.Fn->getParent())),
- TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()),
- TLI(*TM.getTargetLowering()),
- Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
- MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
- Context = &funcInfo.Fn->getContext();
- TargetSupported = ((Subtarget->getRelocationModel() == Reloc::PIC_) &&
- (Subtarget->hasMips32r2() && (Subtarget->isABI_O32())));
- }
+ bool TargetSupported;
+ bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
+ // floating point but not reject doing fast-isel in other
+ // situations
- bool TargetSelectInstruction(const Instruction *I) override;
- unsigned TargetMaterializeConstant(const Constant *C) override;
+private:
+ // Selection routines.
+ bool selectLoad(const Instruction *I);
+ bool selectStore(const Instruction *I);
+ bool selectBranch(const Instruction *I);
+ bool selectCmp(const Instruction *I);
+ bool selectFPExt(const Instruction *I);
+ bool selectFPTrunc(const Instruction *I);
+ bool selectFPToInt(const Instruction *I, bool IsSigned);
+ bool selectRet(const Instruction *I);
+ bool selectTrunc(const Instruction *I);
+ bool selectIntExt(const Instruction *I);
- bool ComputeAddress(const Value *Obj, Address &Addr);
+ // Utility helper routines.
+ bool isTypeLegal(Type *Ty, MVT &VT);
+ bool isLoadTypeLegal(Type *Ty, MVT &VT);
+ bool computeAddress(const Value *Obj, Address &Addr);
+ bool computeCallAddress(const Value *V, Address &Addr);
-private:
- bool EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ // Emit helper routines.
+ bool emitCmp(unsigned DestReg, const CmpInst *CI);
+ bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment = 0);
- bool EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+ bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
+ MachineMemOperand *MMO = nullptr);
+ bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment = 0);
- bool SelectLoad(const Instruction *I);
- bool SelectRet(const Instruction *I);
- bool SelectStore(const Instruction *I);
+ unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+ bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
- bool isTypeLegal(Type *Ty, MVT &VT);
- bool isLoadTypeLegal(Type *Ty, MVT &VT);
+ bool IsZExt);
+ bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
+
+ bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
+ bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg);
+ bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg);
+
+ unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
- unsigned MaterializeFP(const ConstantFP *CFP, MVT VT);
- unsigned MaterializeGV(const GlobalValue *GV, MVT VT);
- unsigned MaterializeInt(const Constant *C, MVT VT);
- unsigned Materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
+ unsigned materializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned materializeGV(const GlobalValue *GV, MVT VT);
+ unsigned materializeInt(const Constant *C, MVT VT);
+ unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
+ MachineInstrBuilder emitInst(unsigned Opc) {
+ return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ }
+ MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
+ return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
+ DstReg);
+ }
+ MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
+ unsigned MemReg, int64_t MemOffset) {
+ return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
+ }
+ MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
+ unsigned MemReg, int64_t MemOffset) {
+ return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
+ }
// for some reason, this default is not generated by tablegen
// so we explicitly generate it here.
//
- unsigned FastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
+ unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill, uint64_t imm1,
uint64_t imm2, unsigned Op3, bool Op3IsKill) {
return 0;
}
- MachineInstrBuilder EmitInst(unsigned Opc) {
- return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
+ // Call handling routines.
+private:
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
+ bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
+ unsigned &NumBytes);
+ bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
+
+public:
+ // Backend specific FastISel code.
+ explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo)
+ : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
+ TII(*TM.getSubtargetImpl()->getInstrInfo()),
+ TLI(*TM.getSubtargetImpl()->getTargetLowering()),
+ Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
+ MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
+ Context = &funcInfo.Fn->getContext();
+ TargetSupported = ((TM.getRelocationModel() == Reloc::PIC_) &&
+ ((Subtarget->hasMips32r2() || Subtarget->hasMips32()) &&
+ (Subtarget->isABI_O32())));
+ UnsupportedFPMode = Subtarget->isFP64bit();
}
- MachineInstrBuilder EmitInst(unsigned Opc, unsigned DstReg) {
- return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
- DstReg);
+ unsigned fastMaterializeConstant(const Constant *C) override;
+ bool fastSelectInstruction(const Instruction *I) override;
+
+#include "MipsGenFastISel.inc"
+};
+} // end anonymous namespace.
+
+static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State) LLVM_ATTRIBUTE_UNUSED;
+
+static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ llvm_unreachable("should not be called");
+}
+
+bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State) {
+ llvm_unreachable("should not be called");
+}
+
+#include "MipsGenCallingConv.inc"
+
+CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
+ return CC_MipsO32;
+}
+
+unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
+ if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
+ return 0;
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ const ConstantInt *CI = cast<ConstantInt>(C);
+ int64_t Imm;
+ if ((VT != MVT::i1) && CI->isNegative())
+ Imm = CI->getSExtValue();
+ else
+ Imm = CI->getZExtValue();
+ return materialize32BitInt(Imm, RC);
+}
+
+unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
+ const TargetRegisterClass *RC) {
+ unsigned ResultReg = createResultReg(RC);
+
+ if (isInt<16>(Imm)) {
+ unsigned Opc = Mips::ADDiu;
+ emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
+ return ResultReg;
+ } else if (isUInt<16>(Imm)) {
+ emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
+ return ResultReg;
}
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+ if (Lo) {
+ // Both Lo and Hi have nonzero bits.
+ unsigned TmpReg = createResultReg(RC);
+ emitInst(Mips::LUi, TmpReg).addImm(Hi);
+ emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
+ } else {
+ emitInst(Mips::LUi, ResultReg).addImm(Hi);
+ }
+ return ResultReg;
+}
- MachineInstrBuilder EmitInstStore(unsigned Opc, unsigned SrcReg,
- unsigned MemReg, int64_t MemOffset) {
- return EmitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
+unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
+ if (UnsupportedFPMode)
+ return 0;
+ int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
+ if (VT == MVT::f32) {
+ const TargetRegisterClass *RC = &Mips::FGR32RegClass;
+ unsigned DestReg = createResultReg(RC);
+ unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
+ emitInst(Mips::MTC1, DestReg).addReg(TempReg);
+ return DestReg;
+ } else if (VT == MVT::f64) {
+ const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
+ unsigned DestReg = createResultReg(RC);
+ unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
+ unsigned TempReg2 =
+ materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
+ emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
+ return DestReg;
}
+ return 0;
+}
- MachineInstrBuilder EmitInstLoad(unsigned Opc, unsigned DstReg,
- unsigned MemReg, int64_t MemOffset) {
- return EmitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
+unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
+ // For now 32-bit only.
+ if (VT != MVT::i32)
+ return 0;
+ const TargetRegisterClass *RC = &Mips::GPR32RegClass;
+ unsigned DestReg = createResultReg(RC);
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ bool IsThreadLocal = GVar && GVar->isThreadLocal();
+ // TLS not supported at this time.
+ if (IsThreadLocal)
+ return 0;
+ emitInst(Mips::LW, DestReg)
+ .addReg(MFI->getGlobalBaseReg())
+ .addGlobalAddress(GV, 0, MipsII::MO_GOT);
+ if ((GV->hasInternalLinkage() ||
+ (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
+ unsigned TempReg = createResultReg(RC);
+ emitInst(Mips::ADDiu, TempReg)
+ .addReg(DestReg)
+ .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
+ DestReg = TempReg;
}
+ return DestReg;
+}
-#include "MipsGenFastISel.inc"
-};
+// Materialize a constant into a register, and return the register
+// number (or zero if we failed to handle it).
+unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple())
+ return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return materializeGV(GV, VT);
+ else if (isa<ConstantInt>(C))
+ return materializeInt(C, VT);
+
+ return 0;
+}
+
+bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
+ // This construct looks a big awkward but it is how other ports handle this
+ // and as this function is more fully completed, these cases which
+ // return false will have additional code in them.
+ //
+ if (isa<Instruction>(Obj))
+ return false;
+ else if (isa<ConstantExpr>(Obj))
+ return false;
+ Addr.setReg(getRegForValue(Obj));
+ return Addr.getReg() != 0;
+}
+
+bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
+ const GlobalValue *GV = dyn_cast<GlobalValue>(V);
+ if (GV && isa<Function>(GV) && dyn_cast<Function>(GV)->isIntrinsic())
+ return false;
+ if (!GV)
+ return false;
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Addr.setGlobalValue(GV);
+ return true;
+ }
+ return false;
+}
bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
@@ -138,21 +350,134 @@ bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
return true;
return false;
}
-
-bool MipsFastISel::ComputeAddress(const Value *Obj, Address &Addr) {
- // This construct looks a big awkward but it is how other ports handle this
- // and as this function is more fully completed, these cases which
- // return false will have additional code in them.
- //
- if (isa<Instruction>(Obj))
+// Because of how EmitCmp is called with fast-isel, you can
+// end up with redundant "andi" instructions after the sequences emitted below.
+// We should try and solve this issue in the future.
+//
+bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
+ const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
+ bool IsUnsigned = CI->isUnsigned();
+ unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
+ if (LeftReg == 0)
return false;
- else if (isa<ConstantExpr>(Obj))
+ unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
+ if (RightReg == 0)
return false;
- Addr.Base.Reg = getRegForValue(Obj);
- return Addr.Base.Reg != 0;
-}
+ CmpInst::Predicate P = CI->getPredicate();
-bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
+ switch (P) {
+ default:
+ return false;
+ case CmpInst::ICMP_EQ: {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
+ emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
+ break;
+ }
+ case CmpInst::ICMP_NE: {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
+ emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
+ break;
+ }
+ case CmpInst::ICMP_UGT: {
+ emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
+ break;
+ }
+ case CmpInst::ICMP_ULT: {
+ emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
+ break;
+ }
+ case CmpInst::ICMP_UGE: {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
+ emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
+ break;
+ }
+ case CmpInst::ICMP_ULE: {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
+ emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
+ break;
+ }
+ case CmpInst::ICMP_SGT: {
+ emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
+ break;
+ }
+ case CmpInst::ICMP_SLT: {
+ emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
+ break;
+ }
+ case CmpInst::ICMP_SGE: {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
+ emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
+ break;
+ }
+ case CmpInst::ICMP_SLE: {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
+ emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
+ break;
+ }
+ case CmpInst::FCMP_OEQ:
+ case CmpInst::FCMP_UNE:
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_OGE: {
+ if (UnsupportedFPMode)
+ return false;
+ bool IsFloat = Left->getType()->isFloatTy();
+ bool IsDouble = Left->getType()->isDoubleTy();
+ if (!IsFloat && !IsDouble)
+ return false;
+ unsigned Opc, CondMovOpc;
+ switch (P) {
+ case CmpInst::FCMP_OEQ:
+ Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
+ CondMovOpc = Mips::MOVT_I;
+ break;
+ case CmpInst::FCMP_UNE:
+ Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
+ CondMovOpc = Mips::MOVF_I;
+ break;
+ case CmpInst::FCMP_OLT:
+ Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
+ CondMovOpc = Mips::MOVT_I;
+ break;
+ case CmpInst::FCMP_OLE:
+ Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
+ CondMovOpc = Mips::MOVT_I;
+ break;
+ case CmpInst::FCMP_OGT:
+ Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
+ CondMovOpc = Mips::MOVF_I;
+ break;
+ case CmpInst::FCMP_OGE:
+ Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
+ CondMovOpc = Mips::MOVF_I;
+ break;
+ default:
+ llvm_unreachable("Only switching of a subset of CCs.");
+ }
+ unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
+ unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
+ emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
+ emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg(
+ Mips::FCC0, RegState::ImplicitDefine);
+ MachineInstrBuilder MI = emitInst(CondMovOpc, ResultReg)
+ .addReg(RegWithOne)
+ .addReg(Mips::FCC0)
+ .addReg(RegWithZero, RegState::Implicit);
+ MI->tieOperands(0, 3);
+ break;
+ }
+ }
+ return true;
+}
+bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
@@ -175,11 +500,15 @@ bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
break;
}
case MVT::f32: {
+ if (UnsupportedFPMode)
+ return false;
ResultReg = createResultReg(&Mips::FGR32RegClass);
Opc = Mips::LWC1;
break;
}
case MVT::f64: {
+ if (UnsupportedFPMode)
+ return false;
ResultReg = createResultReg(&Mips::AFGR64RegClass);
Opc = Mips::LDC1;
break;
@@ -187,31 +516,11 @@ bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
default:
return false;
}
- EmitInstLoad(Opc, ResultReg, Addr.Base.Reg, Addr.Offset);
+ emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
return true;
}
-// Materialize a constant into a register, and return the register
-// number (or zero if we failed to handle it).
-unsigned MipsFastISel::TargetMaterializeConstant(const Constant *C) {
- EVT CEVT = TLI.getValueType(C->getType(), true);
-
- // Only handle simple types.
- if (!CEVT.isSimple())
- return 0;
- MVT VT = CEVT.getSimpleVT();
-
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return MaterializeFP(CFP, VT);
- else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return MaterializeGV(GV, VT);
- else if (isa<ConstantInt>(C))
- return MaterializeInt(C, VT);
-
- return 0;
-}
-
-bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
+bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
@@ -228,19 +537,23 @@ bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
Opc = Mips::SW;
break;
case MVT::f32:
+ if (UnsupportedFPMode)
+ return false;
Opc = Mips::SWC1;
break;
case MVT::f64:
+ if (UnsupportedFPMode)
+ return false;
Opc = Mips::SDC1;
break;
default:
return false;
}
- EmitInstStore(Opc, SrcReg, Addr.Base.Reg, Addr.Offset);
+ emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
return true;
}
-bool MipsFastISel::SelectLoad(const Instruction *I) {
+bool MipsFastISel::selectLoad(const Instruction *I) {
// Atomic loads need special handling.
if (cast<LoadInst>(I)->isAtomic())
return false;
@@ -252,17 +565,17 @@ bool MipsFastISel::SelectLoad(const Instruction *I) {
// See if we can handle this address.
Address Addr;
- if (!ComputeAddress(I->getOperand(0), Addr))
+ if (!computeAddress(I->getOperand(0), Addr))
return false;
unsigned ResultReg;
- if (!EmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
+ if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-bool MipsFastISel::SelectStore(const Instruction *I) {
+bool MipsFastISel::selectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
@@ -282,15 +595,394 @@ bool MipsFastISel::SelectStore(const Instruction *I) {
// See if we can handle this address.
Address Addr;
- if (!ComputeAddress(I->getOperand(1), Addr))
+ if (!computeAddress(I->getOperand(1), Addr))
return false;
- if (!EmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
+ if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
return false;
return true;
}
-bool MipsFastISel::SelectRet(const Instruction *I) {
+//
+// This can cause a redundant sltiu to be generated.
+// FIXME: try and eliminate this in a future patch.
+//
+bool MipsFastISel::selectBranch(const Instruction *I) {
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *BrBB = FuncInfo.MBB;
+ //
+ // TBB is the basic block for the case where the comparison is true.
+ // FBB is the basic block for the case where the comparison is false.
+ // if (cond) goto TBB
+ // goto FBB
+ // TBB:
+ //
+ MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+ BI->getCondition();
+ // For now, just try the simplest case where it's fed by a compare.
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ unsigned CondReg = createResultReg(&Mips::GPR32RegClass);
+ if (!emitCmp(CondReg, CI))
+ return false;
+ BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
+ .addReg(CondReg)
+ .addMBB(TBB);
+ fastEmitBranch(FBB, DbgLoc);
+ FuncInfo.MBB->addSuccessor(TBB);
+ return true;
+ }
+ return false;
+}
+
+bool MipsFastISel::selectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+ unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
+ if (!emitCmp(ResultReg, CI))
+ return false;
+ updateValueMap(I, ResultReg);
+ return true;
+}
+
+// Attempt to fast-select a floating-point extend instruction.
+bool MipsFastISel::selectFPExt(const Instruction *I) {
+ if (UnsupportedFPMode)
+ return false;
+ Value *Src = I->getOperand(0);
+ EVT SrcVT = TLI.getValueType(Src->getType(), true);
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::f32 || DestVT != MVT::f64)
+ return false;
+
+ unsigned SrcReg =
+ getRegForValue(Src); // his must be a 32 bit floating point register class
+ // maybe we should handle this differently
+ if (!SrcReg)
+ return false;
+
+ unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
+ emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
+ updateValueMap(I, DestReg);
+ return true;
+}
+
+// Attempt to fast-select a floating-point truncate instruction.
+bool MipsFastISel::selectFPTrunc(const Instruction *I) {
+ if (UnsupportedFPMode)
+ return false;
+ Value *Src = I->getOperand(0);
+ EVT SrcVT = TLI.getValueType(Src->getType(), true);
+ EVT DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::f64 || DestVT != MVT::f32)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
+ if (!DestReg)
+ return false;
+
+ emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
+ updateValueMap(I, DestReg);
+ return true;
+}
+
+// Attempt to fast-select a floating-point-to-integer conversion.
+bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
+ if (UnsupportedFPMode)
+ return false;
+ MVT DstVT, SrcVT;
+ if (!IsSigned)
+ return false; // We don't handle this case yet. There is no native
+ // instruction for this but it can be synthesized.
+ Type *DstTy = I->getType();
+ if (!isTypeLegal(DstTy, DstVT))
+ return false;
+
+ if (DstVT != MVT::i32)
+ return false;
+
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+ if (!isTypeLegal(SrcTy, SrcVT))
+ return false;
+
+ if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Src);
+ if (SrcReg == 0)
+ return false;
+
+ // Determine the opcode for the conversion, which takes place
+ // entirely within FPRs.
+ unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
+ unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
+ unsigned Opc;
+
+ if (SrcVT == MVT::f32)
+ Opc = Mips::TRUNC_W_S;
+ else
+ Opc = Mips::TRUNC_W_D32;
+
+ // Generate the convert.
+ emitInst(Opc, TempReg).addReg(SrcReg);
+
+ emitInst(Mips::MFC1, DestReg).addReg(TempReg);
+
+ updateValueMap(I, DestReg);
+ return true;
+}
+//
+bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
+ SmallVectorImpl<MVT> &OutVTs,
+ unsigned &NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
+ CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
+ // Get a count of how many bytes are to be pushed on the stack.
+ NumBytes = CCInfo.getNextStackOffset();
+ // This is the minimum argument area used for A0-A3.
+ if (NumBytes < 16)
+ NumBytes = 16;
+
+ emitInst(Mips::ADJCALLSTACKDOWN).addImm(16);
+ // Process the args.
+ MVT firstMVT;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ const Value *ArgVal = CLI.OutVals[VA.getValNo()];
+ MVT ArgVT = OutVTs[VA.getValNo()];
+
+ if (i == 0) {
+ firstMVT = ArgVT;
+ if (ArgVT == MVT::f32) {
+ VA.convertToReg(Mips::F12);
+ } else if (ArgVT == MVT::f64) {
+ VA.convertToReg(Mips::D6);
+ }
+ } else if (i == 1) {
+ if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
+ if (ArgVT == MVT::f32) {
+ VA.convertToReg(Mips::F14);
+ } else if (ArgVT == MVT::f64) {
+ VA.convertToReg(Mips::D7);
+ }
+ }
+ }
+ if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32)) && VA.isMemLoc()) {
+ switch (VA.getLocMemOffset()) {
+ case 0:
+ VA.convertToReg(Mips::A0);
+ break;
+ case 4:
+ VA.convertToReg(Mips::A1);
+ break;
+ case 8:
+ VA.convertToReg(Mips::A2);
+ break;
+ case 12:
+ VA.convertToReg(Mips::A3);
+ break;
+ default:
+ break;
+ }
+ }
+ unsigned ArgReg = getRegForValue(ArgVal);
+ if (!ArgReg)
+ return false;
+
+ // Handle arg promotion: SExt, ZExt, AExt.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::AExt:
+ case CCValAssign::SExt: {
+ MVT DestVT = VA.getLocVT();
+ MVT SrcVT = ArgVT;
+ ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
+ if (!ArgReg)
+ return false;
+ break;
+ }
+ case CCValAssign::ZExt: {
+ MVT DestVT = VA.getLocVT();
+ MVT SrcVT = ArgVT;
+ ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
+ if (!ArgReg)
+ return false;
+ break;
+ }
+ default:
+ llvm_unreachable("Unknown arg promotion!");
+ }
+
+ // Now copy/store arg to correct locations.
+ if (VA.isRegLoc() && !VA.needsCustom()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
+ CLI.OutRegs.push_back(VA.getLocReg());
+ } else if (VA.needsCustom()) {
+ llvm_unreachable("Mips does not use custom args.");
+ return false;
+ } else {
+ //
+ // FIXME: This path will currently return false. It was copied
+ // from the AArch64 port and should be essentially fine for Mips too.
+ // The work to finish up this path will be done in a follow-on patch.
+ //
+ assert(VA.isMemLoc() && "Assuming store on stack.");
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
+ // Need to store on the stack.
+ // FIXME: This alignment is incorrect but this path is disabled
+ // for now (will return false). We need to determine the right alignment
+ // based on the normal alignment for the underlying machine type.
+ //
+ unsigned ArgSize = RoundUpToAlignment(ArgVT.getSizeInBits(), 4);
+
+ unsigned BEAlign = 0;
+ if (ArgSize < 8 && !Subtarget->isLittle())
+ BEAlign = 8 - ArgSize;
+
+ Address Addr;
+ Addr.setKind(Address::RegBase);
+ Addr.setReg(Mips::SP);
+ Addr.setOffset(VA.getLocMemOffset() + BEAlign);
+
+ unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getStack(Addr.getOffset()),
+ MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
+ (void)(MMO);
+ // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
+ return false; // can't store on the stack yet.
+ }
+ }
+
+ return true;
+}
+
+bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
+ unsigned NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
+ emitInst(Mips::ADJCALLSTACKUP).addImm(16);
+ if (RetVT != MVT::isVoid) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
+ CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips);
+
+ // Only handle a single return value.
+ if (RVLocs.size() != 1)
+ return false;
+ // Copy all of the result registers out of their specified physreg.
+ MVT CopyVT = RVLocs[0].getValVT();
+ // Special handling for extended integers.
+ if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
+ CopyVT = MVT::i32;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY),
+ ResultReg).addReg(RVLocs[0].getLocReg());
+ CLI.InRegs.push_back(RVLocs[0].getLocReg());
+
+ CLI.ResultReg = ResultReg;
+ CLI.NumResultRegs = 1;
+ }
+ return true;
+}
+
+bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
+ CallingConv::ID CC = CLI.CallConv;
+ bool IsTailCall = CLI.IsTailCall;
+ bool IsVarArg = CLI.IsVarArg;
+ const Value *Callee = CLI.Callee;
+ // const char *SymName = CLI.SymName;
+
+ // Allow SelectionDAG isel to handle tail calls.
+ if (IsTailCall)
+ return false;
+
+ // Let SDISel handle vararg functions.
+ if (IsVarArg)
+ return false;
+
+ // FIXME: Only handle *simple* calls for now.
+ MVT RetVT;
+ if (CLI.RetTy->isVoidTy())
+ RetVT = MVT::isVoid;
+ else if (!isTypeLegal(CLI.RetTy, RetVT))
+ return false;
+
+ for (auto Flag : CLI.OutFlags)
+ if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
+ return false;
+
+ // Set up the argument vectors.
+ SmallVector<MVT, 16> OutVTs;
+ OutVTs.reserve(CLI.OutVals.size());
+
+ for (auto *Val : CLI.OutVals) {
+ MVT VT;
+ if (!isTypeLegal(Val->getType(), VT) &&
+ !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
+ return false;
+
+ // We don't handle vector parameters yet.
+ if (VT.isVector() || VT.getSizeInBits() > 64)
+ return false;
+
+ OutVTs.push_back(VT);
+ }
+
+ Address Addr;
+ if (!computeCallAddress(Callee, Addr))
+ return false;
+
+ // Handle the arguments now that we've gotten them.
+ unsigned NumBytes;
+ if (!processCallArgs(CLI, OutVTs, NumBytes))
+ return false;
+
+ // Issue the call.
+ unsigned DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
+ emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
+ MachineInstrBuilder MIB =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
+ Mips::RA).addReg(Mips::T9);
+
+ // Add implicit physical register uses to the call.
+ for (auto Reg : CLI.OutRegs)
+ MIB.addReg(Reg, RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ CLI.Call = MIB;
+
+ // Add implicit physical register uses to the call.
+ for (auto Reg : CLI.OutRegs)
+ MIB.addReg(Reg, RegState::Implicit);
+
+ // Add a register mask with the call-preserved registers. Proper
+ // defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CC));
+
+ CLI.Call = MIB;
+ // Finish off the call including any return values.
+ return finishCall(CLI, RetVT, NumBytes);
+}
+
+bool MipsFastISel::selectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
if (!FuncInfo.CanLowerReturn)
@@ -298,98 +990,181 @@ bool MipsFastISel::SelectRet(const Instruction *I) {
if (Ret->getNumOperands() > 0) {
return false;
}
- EmitInst(Mips::RetRA);
+ emitInst(Mips::RetRA);
return true;
}
-bool MipsFastISel::TargetSelectInstruction(const Instruction *I) {
- if (!TargetSupported)
+bool MipsFastISel::selectTrunc(const Instruction *I) {
+ // The high bits for a type smaller than the register size are assumed to be
+ // undefined.
+ Value *Op = I->getOperand(0);
+
+ EVT SrcVT, DestVT;
+ SrcVT = TLI.getValueType(Op->getType(), true);
+ DestVT = TLI.getValueType(I->getType(), true);
+
+ if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
return false;
- switch (I->getOpcode()) {
+ if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
+ return false;
+
+ unsigned SrcReg = getRegForValue(Op);
+ if (!SrcReg)
+ return false;
+
+ // Because the high bits are undefined, a truncate doesn't generate
+ // any code.
+ updateValueMap(I, SrcReg);
+ return true;
+}
+bool MipsFastISel::selectIntExt(const Instruction *I) {
+ Type *DestTy = I->getType();
+ Value *Src = I->getOperand(0);
+ Type *SrcTy = Src->getType();
+
+ bool isZExt = isa<ZExtInst>(I);
+ unsigned SrcReg = getRegForValue(Src);
+ if (!SrcReg)
+ return false;
+
+ EVT SrcEVT, DestEVT;
+ SrcEVT = TLI.getValueType(SrcTy, true);
+ DestEVT = TLI.getValueType(DestTy, true);
+ if (!SrcEVT.isSimple())
+ return false;
+ if (!DestEVT.isSimple())
+ return false;
+
+ MVT SrcVT = SrcEVT.getSimpleVT();
+ MVT DestVT = DestEVT.getSimpleVT();
+ unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
+
+ if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
+ return false;
+ updateValueMap(I, ResultReg);
+ return true;
+}
+bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg) {
+ unsigned ShiftAmt;
+ switch (SrcVT.SimpleTy) {
default:
+ return false;
+ case MVT::i8:
+ ShiftAmt = 24;
+ break;
+ case MVT::i16:
+ ShiftAmt = 16;
break;
- case Instruction::Load:
- return SelectLoad(I);
- case Instruction::Store:
- return SelectStore(I);
- case Instruction::Ret:
- return SelectRet(I);
}
- return false;
-}
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
+ emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
+ return true;
}
-unsigned MipsFastISel::MaterializeFP(const ConstantFP *CFP, MVT VT) {
- int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
- if (VT == MVT::f32) {
- const TargetRegisterClass *RC = &Mips::FGR32RegClass;
- unsigned DestReg = createResultReg(RC);
- unsigned TempReg = Materialize32BitInt(Imm, &Mips::GPR32RegClass);
- EmitInst(Mips::MTC1, DestReg).addReg(TempReg);
- return DestReg;
- } else if (VT == MVT::f64) {
- const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
- unsigned DestReg = createResultReg(RC);
- unsigned TempReg1 = Materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
- unsigned TempReg2 =
- Materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
- EmitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
- return DestReg;
+bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg) {
+ switch (SrcVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ emitInst(Mips::SEB, DestReg).addReg(SrcReg);
+ break;
+ case MVT::i16:
+ emitInst(Mips::SEH, DestReg).addReg(SrcReg);
+ break;
}
- return 0;
+ return true;
}
-unsigned MipsFastISel::MaterializeGV(const GlobalValue *GV, MVT VT) {
- // For now 32-bit only.
- if (VT != MVT::i32)
- return 0;
- const TargetRegisterClass *RC = &Mips::GPR32RegClass;
- unsigned DestReg = createResultReg(RC);
- const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
- bool IsThreadLocal = GVar && GVar->isThreadLocal();
- // TLS not supported at this time.
- if (IsThreadLocal)
- return 0;
- EmitInst(Mips::LW, DestReg).addReg(MFI->getGlobalBaseReg()).addGlobalAddress(
- GV, 0, MipsII::MO_GOT);
- return DestReg;
+bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg) {
+ if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
+ return false;
+ if (Subtarget->hasMips32r2())
+ return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
+ return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
}
-unsigned MipsFastISel::MaterializeInt(const Constant *C, MVT VT) {
- if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
- return 0;
- const TargetRegisterClass *RC = &Mips::GPR32RegClass;
- const ConstantInt *CI = cast<ConstantInt>(C);
- int64_t Imm;
- if (CI->isNegative())
- Imm = CI->getSExtValue();
- else
- Imm = CI->getZExtValue();
- return Materialize32BitInt(Imm, RC);
+
+bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg) {
+ switch (SrcVT.SimpleTy) {
+ default:
+ return false;
+ case MVT::i1:
+ emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(1);
+ break;
+ case MVT::i8:
+ emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(0xff);
+ break;
+ case MVT::i16:
+ emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(0xffff);
+ break;
+ }
+ return true;
}
-unsigned MipsFastISel::Materialize32BitInt(int64_t Imm,
- const TargetRegisterClass *RC) {
- unsigned ResultReg = createResultReg(RC);
+bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ unsigned DestReg, bool IsZExt) {
+ if (IsZExt)
+ return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
+ return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
+}
- if (isInt<16>(Imm)) {
- unsigned Opc = Mips::ADDiu;
- EmitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
- return ResultReg;
- } else if (isUInt<16>(Imm)) {
- EmitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
- return ResultReg;
+unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+ bool isZExt) {
+ unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
+ return emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
+}
+
+bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
+ if (!TargetSupported)
+ return false;
+ switch (I->getOpcode()) {
+ default:
+ break;
+ case Instruction::Load:
+ return selectLoad(I);
+ case Instruction::Store:
+ return selectStore(I);
+ case Instruction::Br:
+ return selectBranch(I);
+ case Instruction::Ret:
+ return selectRet(I);
+ case Instruction::Trunc:
+ return selectTrunc(I);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ return selectIntExt(I);
+ case Instruction::FPTrunc:
+ return selectFPTrunc(I);
+ case Instruction::FPExt:
+ return selectFPExt(I);
+ case Instruction::FPToSI:
+ return selectFPToInt(I, /*isSigned*/ true);
+ case Instruction::FPToUI:
+ return selectFPToInt(I, /*isSigned*/ false);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return selectCmp(I);
}
- unsigned Lo = Imm & 0xFFFF;
- unsigned Hi = (Imm >> 16) & 0xFFFF;
- if (Lo) {
- // Both Lo and Hi have nonzero bits.
- unsigned TmpReg = createResultReg(RC);
- EmitInst(Mips::LUi, TmpReg).addImm(Hi);
- EmitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
- } else {
- EmitInst(Mips::LUi, ResultReg).addImm(Hi);
+ return false;
+}
+
+unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
+ bool IsUnsigned) {
+ unsigned VReg = getRegForValue(V);
+ if (VReg == 0)
+ return 0;
+ MVT VMVT = TLI.getValueType(V->getType(), true).getSimpleVT();
+ if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
+ unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
+ if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
+ return 0;
+ VReg = TempReg;
}
- return ResultReg;
+ return VReg;
}
namespace llvm {
diff --git a/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp
index 61afe17..3014a0d 100644
--- a/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.cpp
@@ -100,7 +100,7 @@ bool MipsFrameLowering::hasFP(const MachineFunction &MF) const {
uint64_t MipsFrameLowering::estimateStackSize(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
- const TargetRegisterInfo &TRI = *MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
int64_t Offset = 0;
diff --git a/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h
index 9d59309..90a8d2a 100644
--- a/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h
+++ b/contrib/llvm/lib/Target/Mips/MipsFrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS_FRAMEINFO_H
-#define MIPS_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSFRAMELOWERING_H
+#define LLVM_LIB_TARGET_MIPS_MIPSFRAMELOWERING_H
#include "Mips.h"
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h
index 52f4c0d..ff8760d 100644
--- a/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h
+++ b/contrib/llvm/lib/Target/Mips/MipsISelDAGToDAG.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSISELDAGTODAG_H
-#define MIPSISELDAGTODAG_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSISELDAGTODAG_H
+#define LLVM_LIB_TARGET_MIPS_MIPSISELDAGTODAG_H
#include "Mips.h"
#include "MipsSubtarget.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
index 8e40668..d25f563 100644
--- a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
@@ -25,6 +25,7 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
@@ -200,9 +201,9 @@ const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
}
}
-MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM,
+MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI)
- : TargetLowering(TM, new MipsTargetObjectFile()), Subtarget(STI) {
+ : TargetLowering(TM), Subtarget(STI) {
// Mips does not have i1 type, so use i32 for
// setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
@@ -214,12 +215,15 @@ MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM,
ZeroOrNegativeOneBooleanContent);
// Load extented operations for i1 types must be promoted
- setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ }
// MIPS doesn't have extending float->double load/store
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ for (MVT VT : MVT::fp_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Used by legalize types to correctly generate the setcc result.
@@ -367,9 +371,9 @@ MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM,
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
if (Subtarget.isGP64bit()) {
- setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
setTruncStoreAction(MVT::i64, MVT::i32, Custom);
}
@@ -400,7 +404,7 @@ MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM,
isMicroMips = Subtarget.inMicroMipsMode();
}
-const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM,
+const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
const MipsSubtarget &STI) {
if (STI.inMips16Mode())
return llvm::createMips16TargetLowering(TM, STI);
@@ -932,18 +936,37 @@ MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case Mips::DIVU:
case Mips::MOD:
case Mips::MODU:
- return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
- false);
+ return insertDivByZeroTrap(
+ MI, *BB, *getTargetMachine().getSubtargetImpl()->getInstrInfo(), false);
case Mips::PseudoDSDIV:
case Mips::PseudoDUDIV:
case Mips::DDIV:
case Mips::DDIVU:
case Mips::DMOD:
case Mips::DMODU:
- return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
- true);
+ return insertDivByZeroTrap(
+ MI, *BB, *getTargetMachine().getSubtargetImpl()->getInstrInfo(), true);
case Mips::SEL_D:
return emitSEL_D(MI, BB);
+
+ case Mips::PseudoSELECT_I:
+ case Mips::PseudoSELECT_I64:
+ case Mips::PseudoSELECT_S:
+ case Mips::PseudoSELECT_D32:
+ case Mips::PseudoSELECT_D64:
+ return emitPseudoSELECT(MI, BB, false, Mips::BNE);
+ case Mips::PseudoSELECTFP_F_I:
+ case Mips::PseudoSELECTFP_F_I64:
+ case Mips::PseudoSELECTFP_F_S:
+ case Mips::PseudoSELECTFP_F_D32:
+ case Mips::PseudoSELECTFP_F_D64:
+ return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
+ case Mips::PseudoSELECTFP_T_I:
+ case Mips::PseudoSELECTFP_T_I64:
+ case Mips::PseudoSELECTFP_T_S:
+ case Mips::PseudoSELECTFP_T_D32:
+ case Mips::PseudoSELECTFP_T_D64:
+ return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
}
}
@@ -958,7 +981,8 @@ MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned LL, SC, AND, NOR, ZERO, BEQ;
@@ -1041,7 +1065,8 @@ MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
unsigned SrcReg) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
if (Subtarget.hasMips32r2() && Size == 1) {
@@ -1077,7 +1102,8 @@ MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
@@ -1174,7 +1200,8 @@ MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
// beq success,$0,loopMBB
BB = loopMBB;
- BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
+ unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL;
+ BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
if (Nand) {
// and andres, oldval, incr2
// nor binopres, $0, andres
@@ -1197,7 +1224,8 @@ MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal0).addReg(NewVal);
- BuildMI(BB, DL, TII->get(Mips::SC), Success)
+ unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC;
+ BuildMI(BB, DL, TII->get(SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, DL, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
@@ -1227,7 +1255,8 @@ MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned LL, SC, ZERO, BNE, BEQ;
@@ -1309,7 +1338,8 @@ MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
@@ -1406,7 +1436,8 @@ MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
// and maskedoldval0,oldval,mask
// bne maskedoldval0,shiftedcmpval,sinkMBB
BB = loop1MBB;
- BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
+ unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL;
+ BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::BNE))
@@ -1422,7 +1453,8 @@ MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal1).addReg(ShiftedNewVal);
- BuildMI(BB, DL, TII->get(Mips::SC), Success)
+ unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC;
+ BuildMI(BB, DL, TII->get(SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, DL, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
@@ -1444,8 +1476,10 @@ MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock::iterator II(MI);
@@ -1486,7 +1520,7 @@ SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
MachinePointerInfo::getJumpTable(), MemVT, false, false,
- 0);
+ false, 0);
Chain = Addr.getValue(1);
if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) ||
@@ -1568,8 +1602,6 @@ SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
- // FIXME there isn't actually debug info here
- SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = N->getGlobal();
@@ -1579,30 +1611,24 @@ SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
const MipsTargetObjectFile &TLOF =
(const MipsTargetObjectFile&)getObjFileLowering();
- // %gp_rel relocation
- if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
- SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
- MipsII::MO_GPREL);
- SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
- DAG.getVTList(MVT::i32), GA);
- SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
- return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
- }
+ if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine()))
+ // %gp_rel relocation
+ return getAddrGPRel(N, SDLoc(N), Ty, DAG);
// %hi/%lo relocation
- return getAddrNonPIC(N, Ty, DAG);
+ return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
}
if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
- return getAddrLocal(N, Ty, DAG,
+ return getAddrLocal(N, SDLoc(N), Ty, DAG,
Subtarget.isABI_N32() || Subtarget.isABI_N64());
if (LargeGOT)
- return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
+ return getAddrGlobalLargeGOT(N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16,
MipsII::MO_GOT_LO16, DAG.getEntryNode(),
MachinePointerInfo::getGOT());
- return getAddrGlobal(N, Ty, DAG,
+ return getAddrGlobal(N, SDLoc(N), Ty, DAG,
(Subtarget.isABI_N32() || Subtarget.isABI_N64())
? MipsII::MO_GOT_DISP
: MipsII::MO_GOT16,
@@ -1616,9 +1642,9 @@ SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
!Subtarget.isABI_N64())
- return getAddrNonPIC(N, Ty, DAG);
+ return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
- return getAddrLocal(N, Ty, DAG,
+ return getAddrLocal(N, SDLoc(N), Ty, DAG,
Subtarget.isABI_N32() || Subtarget.isABI_N64());
}
@@ -1709,32 +1735,31 @@ lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
!Subtarget.isABI_N64())
- return getAddrNonPIC(N, Ty, DAG);
+ return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
- return getAddrLocal(N, Ty, DAG,
+ return getAddrLocal(N, SDLoc(N), Ty, DAG,
Subtarget.isABI_N32() || Subtarget.isABI_N64());
}
SDValue MipsTargetLowering::
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
- // gp_rel relocation
- // FIXME: we should reference the constant pool using small data sections,
- // but the asm printer currently doesn't support this feature without
- // hacking it. This feature should come soon so we can uncomment the
- // stuff below.
- //if (IsInSmallSection(C->getType())) {
- // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
- // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
- // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
EVT Ty = Op.getValueType();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
- !Subtarget.isABI_N64())
- return getAddrNonPIC(N, Ty, DAG);
+ !Subtarget.isABI_N64()) {
+ const MipsTargetObjectFile &TLOF =
+ (const MipsTargetObjectFile&)getObjFileLowering();
+
+ if (TLOF.IsConstantInSmallSection(N->getConstVal(), getTargetMachine()))
+ // %gp_rel relocation
+ return getAddrGPRel(N, SDLoc(N), Ty, DAG);
+
+ return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
+ }
- return getAddrLocal(N, Ty, DAG,
+ return getAddrLocal(N, SDLoc(N), Ty, DAG,
Subtarget.isABI_N32() || Subtarget.isABI_N64());
}
@@ -2259,7 +2284,7 @@ SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
// an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
-// not used, it must be shadowed. If only A3 is avaiable, shadow it and
+// not used, it must be shadowed. If only A3 is available, shadow it and
// go to stack.
//
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
@@ -2373,6 +2398,10 @@ static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}
+static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State) LLVM_ATTRIBUTE_UNUSED;
+
#include "MipsGenCallingConv.inc"
//===----------------------------------------------------------------------===//
@@ -2407,13 +2436,19 @@ void MipsTargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
- CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const {
// Insert node "GP copy globalreg" before call to function.
//
// R_MIPS_CALL* operators (emitted when non-internal functions are called
// in PIC mode) allow symbols to be resolved via lazy binding.
// The lazy binding stub requires GP to point to the GOT.
- if (IsPICCall && !InternalLinkage) {
+ // Note that we don't need GP to point to the GOT for indirect calls
+ // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
+ // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
+ // used for the function (that is, Mips linker doesn't generate lazy binding
+ // stub for a function whose address is taken in the program).
+ if (IsPICCall && !InternalLinkage && IsCallReloc) {
unsigned GPReg = Subtarget.isABI_N64() ? Mips::GP_64 : Mips::GP;
EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32;
RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
@@ -2438,7 +2473,8 @@ getOpndList(SmallVectorImpl<SDValue> &Ops,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
if (Subtarget.inMips16HardFloat()) {
@@ -2474,15 +2510,14 @@ MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFL = MF.getSubtarget().getFrameLowering();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
MipsCCState CCInfo(
- CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext(),
+ CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
// Allocate the reserved argument area. It seems strange to do this from the
@@ -2636,7 +2671,7 @@ MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
bool IsPICCall =
(Subtarget.isABI_N64() || IsPIC); // true if calls are translated to
// jalr $25
- bool GlobalOrExternal = false, InternalLinkage = false;
+ bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false;
SDValue CalleeLo;
EVT Ty = Callee.getValueType();
@@ -2646,15 +2681,18 @@ MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
InternalLinkage = Val->hasInternalLinkage();
if (InternalLinkage)
- Callee = getAddrLocal(G, Ty, DAG,
+ Callee = getAddrLocal(G, DL, Ty, DAG,
Subtarget.isABI_N32() || Subtarget.isABI_N64());
- else if (LargeGOT)
- Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
+ else if (LargeGOT) {
+ Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16, Chain,
FuncInfo->callPtrInfo(Val));
- else
- Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
+ IsCallReloc = true;
+ } else {
+ Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
FuncInfo->callPtrInfo(Val));
+ IsCallReloc = true;
+ }
} else
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
MipsII::MO_NO_FLAG);
@@ -2664,15 +2702,18 @@ MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
const char *Sym = S->getSymbol();
if (!Subtarget.isABI_N64() && !IsPIC) // !N64 && static
- Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
- MipsII::MO_NO_FLAG);
- else if (LargeGOT)
- Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
+ Callee =
+ DAG.getTargetExternalSymbol(Sym, getPointerTy(), MipsII::MO_NO_FLAG);
+ else if (LargeGOT) {
+ Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16, Chain,
FuncInfo->callPtrInfo(Sym));
- else // N64 || PIC
- Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
+ IsCallReloc = true;
+ } else { // N64 || PIC
+ Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
FuncInfo->callPtrInfo(Sym));
+ IsCallReloc = true;
+ }
GlobalOrExternal = true;
}
@@ -2681,7 +2722,7 @@ MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
- CLI, Callee, Chain);
+ IsCallReloc, CLI, Callee, Chain);
if (IsTailCall)
return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
@@ -2709,8 +2750,8 @@ SDValue MipsTargetLowering::LowerCallResult(
TargetLowering::CallLoweringInfo &CLI) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI);
// Copy all of the result registers out of their specified physreg.
@@ -2843,8 +2884,8 @@ MipsTargetLowering::LowerFormalArguments(SDValue Chain,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
const MipsABIInfo &ABI = Subtarget.getABI();
CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
Function::const_arg_iterator FuncArg =
@@ -2982,8 +3023,7 @@ MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
- MipsCCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
- RVLocs, Context);
+ MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_Mips);
}
@@ -2999,8 +3039,7 @@ MipsTargetLowering::LowerReturn(SDValue Chain,
MachineFunction &MF = DAG.getMachineFunction();
// CCState - Info about the registers and stack slot.
- MipsCCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
- *DAG.getContext());
+ MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
@@ -3181,7 +3220,7 @@ MipsTargetLowering::getSingleConstraintMatchWeight(
/// that is returned indicates whether parsing was successful. The second flag
/// is true if the numeric part exists.
static std::pair<bool, bool>
-parsePhysicalReg(const StringRef &C, std::string &Prefix,
+parsePhysicalReg(StringRef C, std::string &Prefix,
unsigned long long &Reg) {
if (C.front() != '{' || C.back() != '}')
return std::make_pair(false, false);
@@ -3202,8 +3241,9 @@ parsePhysicalReg(const StringRef &C, std::string &Prefix,
}
std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
-parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const TargetRegisterClass *RC;
std::string Prefix;
unsigned long long Reg;
@@ -3585,7 +3625,8 @@ void MipsTargetLowering::passByValArg(
DAG.getConstant(OffsetInBytes, PtrTy));
SDValue LoadVal = DAG.getExtLoad(
ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
- MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, Alignment);
+ MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false,
+ Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
// Shift the loaded value.
@@ -3679,7 +3720,7 @@ void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
unsigned Align) const {
MachineFunction &MF = State->getMachineFunction();
- const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFL = MF.getSubtarget().getFrameLowering();
assert(Size && "Byval argument's size shouldn't be 0.");
@@ -3721,3 +3762,102 @@ void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
}
+
+MachineBasicBlock *
+MipsTargetLowering::emitPseudoSELECT(MachineInstr *MI, MachineBasicBlock *BB,
+ bool isFPCmp, unsigned Opc) const {
+ assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
+ "Subtarget already supports SELECT nodes with the use of"
+ "conditional-move instructions.");
+
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // To "insert" a SELECT instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ if (isFPCmp) {
+ // bc1[tf] cc, sinkMBB
+ BuildMI(BB, DL, TII->get(Opc))
+ .addReg(MI->getOperand(1).getReg())
+ .addMBB(sinkMBB);
+ } else {
+ // bne rs, $0, sinkMBB
+ BuildMI(BB, DL, TII->get(Opc))
+ .addReg(MI->getOperand(1).getReg())
+ .addReg(Mips::ZERO)
+ .addMBB(sinkMBB);
+ }
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
+ // ...
+ BB = sinkMBB;
+
+ BuildMI(*BB, BB->begin(), DL,
+ TII->get(Mips::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
+ .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+
+ return BB;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned MipsTargetLowering::getRegisterByName(const char* RegName,
+ EVT VT) const {
+ // Named registers is expected to be fairly rare. For now, just support $28
+ // since the linux kernel uses it.
+ if (Subtarget.isGP64bit()) {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("$28", Mips::GP_64)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ } else {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("$28", Mips::GP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ }
+ report_fatal_error("Invalid register name global variable");
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.h b/contrib/llvm/lib/Target/Mips/MipsISelLowering.h
index 23163b7..4132de6 100644
--- a/contrib/llvm/lib/Target/Mips/MipsISelLowering.h
+++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MipsISELLOWERING_H
-#define MipsISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H
+#define LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips.h"
@@ -215,10 +215,10 @@ namespace llvm {
class MipsTargetLowering : public TargetLowering {
bool isMicroMips;
public:
- explicit MipsTargetLowering(MipsTargetMachine &TM,
+ explicit MipsTargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
- static const MipsTargetLowering *create(MipsTargetMachine &TM,
+ static const MipsTargetLowering *create(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
/// createFastISel - This method returns a target specific FastISel object,
@@ -262,6 +262,8 @@ namespace llvm {
void HandleByVal(CCState *, unsigned &, unsigned) const override;
+ unsigned getRegisterByName(const char* RegName, EVT VT) const override;
+
protected:
SDValue getGlobalReg(SelectionDAG &DAG, EVT Ty) const;
@@ -270,9 +272,8 @@ namespace llvm {
//
// (add (load (wrapper $gp, %got(sym)), %lo(sym))
template <class NodeTy>
- SDValue getAddrLocal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
+ SDValue getAddrLocal(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG,
bool IsN32OrN64) const {
- SDLoc DL(N);
unsigned GOTFlag = IsN32OrN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
getTargetNode(N, Ty, DAG, GOTFlag));
@@ -289,11 +290,10 @@ namespace llvm {
// computing a global symbol's address:
//
// (load (wrapper $gp, %got(sym)))
- template<class NodeTy>
- SDValue getAddrGlobal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
+ template <class NodeTy>
+ SDValue getAddrGlobal(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG,
unsigned Flag, SDValue Chain,
const MachinePointerInfo &PtrInfo) const {
- SDLoc DL(N);
SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
getTargetNode(N, Ty, DAG, Flag));
return DAG.getLoad(Ty, DL, Chain, Tgt, PtrInfo, false, false, false, 0);
@@ -303,14 +303,13 @@ namespace llvm {
// computing a global symbol's address in large-GOT mode:
//
// (load (wrapper (add %hi(sym), $gp), %lo(sym)))
- template<class NodeTy>
- SDValue getAddrGlobalLargeGOT(NodeTy *N, EVT Ty, SelectionDAG &DAG,
- unsigned HiFlag, unsigned LoFlag,
- SDValue Chain,
+ template <class NodeTy>
+ SDValue getAddrGlobalLargeGOT(NodeTy *N, SDLoc DL, EVT Ty,
+ SelectionDAG &DAG, unsigned HiFlag,
+ unsigned LoFlag, SDValue Chain,
const MachinePointerInfo &PtrInfo) const {
- SDLoc DL(N);
- SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty,
- getTargetNode(N, Ty, DAG, HiFlag));
+ SDValue Hi =
+ DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(N, Ty, DAG, HiFlag));
Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
getTargetNode(N, Ty, DAG, LoFlag));
@@ -322,9 +321,9 @@ namespace llvm {
// computing a symbol's address in non-PIC mode:
//
// (add %hi(sym), %lo(sym))
- template<class NodeTy>
- SDValue getAddrNonPIC(NodeTy *N, EVT Ty, SelectionDAG &DAG) const {
- SDLoc DL(N);
+ template <class NodeTy>
+ SDValue getAddrNonPIC(NodeTy *N, SDLoc DL, EVT Ty,
+ SelectionDAG &DAG) const {
SDValue Hi = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_HI);
SDValue Lo = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_LO);
return DAG.getNode(ISD::ADD, DL, Ty,
@@ -332,6 +331,20 @@ namespace llvm {
DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
}
+ // This method creates the following nodes, which are necessary for
+ // computing a symbol's address using gp-relative addressing:
+ //
+ // (add $gp, %gp_rel(sym))
+ template <class NodeTy>
+ SDValue getAddrGPRel(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG) const {
+ assert(Ty == MVT::i32);
+ SDValue GPRel = getTargetNode(N, Ty, DAG, MipsII::MO_GPREL);
+ return DAG.getNode(ISD::ADD, DL, Ty,
+ DAG.getRegister(Mips::GP, Ty),
+ DAG.getNode(MipsISD::GPRel, DL, DAG.getVTList(Ty),
+ GPRel));
+ }
+
/// This function fills Ops, which is the list of operands that will later
/// be used when a function call node is created. It also generates
/// copyToReg nodes to set up argument registers.
@@ -339,7 +352,8 @@ namespace llvm {
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
- CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const;
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const;
protected:
SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
@@ -470,7 +484,7 @@ namespace llvm {
/// This function parses registers that appear in inline-asm constraints.
/// It returns pair (0, 0) on failure.
std::pair<unsigned, const TargetRegisterClass *>
- parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const;
+ parseRegForInlineAsmConstraint(StringRef C, MVT VT) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
@@ -518,13 +532,18 @@ namespace llvm {
MachineBasicBlock *emitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size) const;
MachineBasicBlock *emitSEL_D(MachineInstr *MI, MachineBasicBlock *BB) const;
+ MachineBasicBlock *emitPseudoSELECT(MachineInstr *MI,
+ MachineBasicBlock *BB, bool isFPCmp,
+ unsigned Opc) const;
};
/// Create MipsTargetLowering objects.
const MipsTargetLowering *
- createMips16TargetLowering(MipsTargetMachine &TM, const MipsSubtarget &STI);
+ createMips16TargetLowering(const MipsTargetMachine &TM,
+ const MipsSubtarget &STI);
const MipsTargetLowering *
- createMipsSETargetLowering(MipsTargetMachine &TM, const MipsSubtarget &STI);
+ createMipsSETargetLowering(const MipsTargetMachine &TM,
+ const MipsSubtarget &STI);
namespace Mips {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
@@ -532,4 +551,4 @@ namespace llvm {
}
}
-#endif // MipsISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td b/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td
index 1100e1e..2aa8328 100644
--- a/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrFPU.td
@@ -178,38 +178,6 @@ class SW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
let mayStore = 1;
}
-class SW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin,
- SDPatternOperator OpNode= null_frag> :
- InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
- [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
- let DecoderMethod = "DecodeFMem2";
- let mayStore = 1;
-}
-
-class LW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin,
- SDPatternOperator OpNode= null_frag> :
- InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
- [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
- let DecoderMethod = "DecodeFMem2";
- let mayLoad = 1;
-}
-
-class SW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin,
- SDPatternOperator OpNode= null_frag> :
- InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
- [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
- let DecoderMethod = "DecodeFMem3";
- let mayStore = 1;
-}
-
-class LW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin,
- SDPatternOperator OpNode= null_frag> :
- InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
- [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
- let DecoderMethod = "DecodeFMem3";
- let mayLoad = 1;
-}
-
class MADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
@@ -243,14 +211,14 @@ class SWXC1_FT<string opstr, RegisterOperand DRC,
}
class BC1F_FT<string opstr, DAGOperand opnd, InstrItinClass Itin,
- SDPatternOperator Op = null_frag> :
+ SDPatternOperator Op = null_frag, bit DelaySlot = 1> :
InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset),
!strconcat(opstr, "\t$fcc, $offset"),
[(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin,
FrmFI, opstr> {
let isBranch = 1;
let isTerminator = 1;
- let hasDelaySlot = 1;
+ let hasDelaySlot = DelaySlot;
let Defs = [AT];
}
@@ -436,30 +404,6 @@ def LDC1 : MMRel, LW_FT<"ldc1", AFGR64Opnd, II_LDC1, load>, LW_FM<0x35>,
def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, II_SDC1, store>, LW_FM<0x3d>,
ISA_MIPS2, FGR_32;
-// Cop2 Memory Instructions
-// FIXME: These aren't really FPU instructions and as such don't belong in this
-// file
-def LWC2 : LW_FT2<"lwc2", COP2Opnd, NoItinerary, load>, LW_FM<0x32>,
- ISA_MIPS1_NOT_32R6_64R6;
-def SWC2 : SW_FT2<"swc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3a>,
- ISA_MIPS1_NOT_32R6_64R6;
-def LDC2 : LW_FT2<"ldc2", COP2Opnd, NoItinerary, load>, LW_FM<0x36>,
- ISA_MIPS2_NOT_32R6_64R6;
-def SDC2 : SW_FT2<"sdc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3e>,
- ISA_MIPS2_NOT_32R6_64R6;
-
-// Cop3 Memory Instructions
-// FIXME: These aren't really FPU instructions and as such don't belong in this
-// file
-let DecoderNamespace = "COP3_" in {
- def LWC3 : LW_FT3<"lwc3", COP3Opnd, NoItinerary, load>, LW_FM<0x33>;
- def SWC3 : SW_FT3<"swc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3b>;
- def LDC3 : LW_FT3<"ldc3", COP3Opnd, NoItinerary, load>, LW_FM<0x37>,
- ISA_MIPS2;
- def SDC3 : SW_FT3<"sdc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3f>,
- ISA_MIPS2;
-}
-
// Indexed loads and stores.
// Base register + offset register addressing mode (indicated by "x" in the
// instruction mnemonic) is disallowed under NaCl.
@@ -562,8 +506,12 @@ def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, IIBranch, MIPS_BRANCH_F>,
BC1F_FM<0, 0>, ISA_MIPS1_NOT_32R6_64R6;
+def BC1FL : MMRel, BC1F_FT<"bc1fl", brtarget, IIBranch, MIPS_BRANCH_F, 0>,
+ BC1F_FM<1, 0>, ISA_MIPS2_NOT_32R6_64R6;
def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, IIBranch, MIPS_BRANCH_T>,
BC1F_FM<0, 1>, ISA_MIPS1_NOT_32R6_64R6;
+def BC1TL : MMRel, BC1F_FT<"bc1tl", brtarget, IIBranch, MIPS_BRANCH_T, 0>,
+ BC1F_FM<1, 1>, ISA_MIPS2_NOT_32R6_64R6;
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
@@ -629,8 +577,12 @@ def ExtractElementF64_64 : ExtractElementF64Base<FGR64Opnd>,
//===----------------------------------------------------------------------===//
def : MipsInstAlias<"bc1t $offset", (BC1T FCC0, brtarget:$offset)>,
ISA_MIPS1_NOT_32R6_64R6;
+def : MipsInstAlias<"bc1tl $offset", (BC1TL FCC0, brtarget:$offset)>,
+ ISA_MIPS2_NOT_32R6_64R6;
def : MipsInstAlias<"bc1f $offset", (BC1F FCC0, brtarget:$offset)>,
ISA_MIPS1_NOT_32R6_64R6;
+def : MipsInstAlias<"bc1fl $offset", (BC1FL FCC0, brtarget:$offset)>,
+ ISA_MIPS2_NOT_32R6_64R6;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td b/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td
index 6a01ae5..d8dae25 100644
--- a/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrFormats.td
@@ -411,6 +411,20 @@ class SYNC_FM : StdArch {
let Inst{5-0} = 0xf;
}
+class SYNCI_FM : StdArch {
+ // Produced by the mem_simm16 address as reg << 16 | imm (see getMemEncoding).
+ bits<21> addr;
+ bits<5> rs = addr{20-16};
+ bits<16> offset = addr{15-0};
+
+ bits<32> Inst;
+
+ let Inst{31-26} = 0b000001;
+ let Inst{25-21} = rs;
+ let Inst{20-16} = 0b11111;
+ let Inst{15-0} = offset;
+}
+
class MULT_FM<bits<6> op, bits<6> funct> : StdArch {
bits<5> rs;
bits<5> rt;
@@ -440,7 +454,7 @@ class EXT_FM<bits<6> funct> : StdArch {
let Inst{5-0} = funct;
}
-class RDHWR_FM {
+class RDHWR_FM : StdArch {
bits<5> rt;
bits<5> rd;
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp
index dcc0e24..0839147 100644
--- a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.cpp
@@ -15,7 +15,7 @@
#include "InstPrinter/MipsInstPrinter.h"
#include "MipsAnalyzeImmediate.h"
#include "MipsMachineFunction.h"
-#include "MipsTargetMachine.h"
+#include "MipsSubtarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h
index bdf2fd3..db149d4 100644
--- a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.h
@@ -15,8 +15,8 @@
// size in bytes; MipsLongBranch only expects it to be the correct upper bound.
//===----------------------------------------------------------------------===//
-#ifndef MIPSINSTRUCTIONINFO_H
-#define MIPSINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSINSTRINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPSINSTRINFO_H
#include "Mips.h"
#include "MipsAnalyzeImmediate.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td
index 26ecfbf..aef1039 100644
--- a/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td
+++ b/contrib/llvm/lib/Target/Mips/MipsInstrInfo.td
@@ -156,6 +156,8 @@ def HasMips3 : Predicate<"Subtarget->hasMips3()">,
AssemblerPredicate<"FeatureMips3">;
def HasMips4_32 : Predicate<"Subtarget->hasMips4_32()">,
AssemblerPredicate<"FeatureMips4_32">;
+def NotMips4_32 : Predicate<"!Subtarget->hasMips4_32()">,
+ AssemblerPredicate<"FeatureMips4_32">;
def HasMips4_32r2 : Predicate<"Subtarget->hasMips4_32r2()">,
AssemblerPredicate<"FeatureMips4_32r2">;
def HasMips5_32r2 : Predicate<"Subtarget->hasMips5_32r2()">,
@@ -180,8 +182,6 @@ def HasMips64r6 : Predicate<"Subtarget->hasMips64r6()">,
AssemblerPredicate<"FeatureMips64r6">;
def NotMips64r6 : Predicate<"!Subtarget->hasMips64r6()">,
AssemblerPredicate<"!FeatureMips64r6">;
-def IsN64 : Predicate<"Subtarget->isABI_N64()">,
- AssemblerPredicate<"FeatureN64">;
def InMips16Mode : Predicate<"Subtarget->inMips16Mode()">,
AssemblerPredicate<"FeatureMips16">;
def HasCnMips : Predicate<"Subtarget->hasCnMips()">,
@@ -220,6 +220,9 @@ class GPR_64 { list<Predicate> GPRPredicates = [IsGP64bit]; }
// subtractive predicate will hopefully keep us under the 32 predicate
// limit long enough to develop an alternative way to handle P1||P2
// predicates.
+class ISA_MIPS1_NOT_4_32 {
+ list<Predicate> InsnPredicates = [NotMips4_32];
+}
class ISA_MIPS1_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6];
}
@@ -316,7 +319,7 @@ class IsAsCheapAsAMove {
}
class NeverHasSideEffects {
- bit neverHasSideEffects = 1;
+ bit hasSideEffects = 0;
}
//===----------------------------------------------------------------------===//
@@ -331,7 +334,7 @@ include "MipsInstrFormats.td"
def MipsJumpTargetAsmOperand : AsmOperandClass {
let Name = "JumpTarget";
- let ParserMethod = "ParseJumpTarget";
+ let ParserMethod = "parseJumpTarget";
let PredicateMethod = "isImm";
let RenderMethod = "addImmOperands";
}
@@ -425,7 +428,14 @@ def MipsMemSimm11AsmOperand : AsmOperandClass {
let RenderMethod = "addMemOperands";
let ParserMethod = "parseMemOperand";
let PredicateMethod = "isMemWithSimmOffset<11>";
- //let DiagnosticType = "Simm11";
+}
+
+def MipsMemSimm16AsmOperand : AsmOperandClass {
+ let Name = "MemOffsetSimm16";
+ let SuperClasses = [MipsMemAsmOperand];
+ let RenderMethod = "addMemOperands";
+ let ParserMethod = "parseMemOperand";
+ let PredicateMethod = "isMemWithSimmOffset<16>";
}
def MipsInvertedImmoperand : AsmOperandClass {
@@ -470,6 +480,12 @@ def mem_simm11 : mem_generic {
let ParserMatchClass = MipsMemSimm11AsmOperand;
}
+def mem_simm16 : mem_generic {
+ let MIOperandInfo = (ops ptr_rc, simm16);
+ let EncoderMethod = "getMemEncoding";
+ let ParserMatchClass = MipsMemSimm16AsmOperand;
+}
+
def mem_ea : Operand<iPTR> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops ptr_rc, simm16);
@@ -632,7 +648,7 @@ class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin,
class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
[], II_LUI, FrmI, opstr>, IsAsCheapAsAMove {
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let isReMaterializable = 1;
}
@@ -672,28 +688,62 @@ class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
let DecoderMethod = "DecodeMem";
}
+// COP2 Load/Store
+class LW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
+ let DecoderMethod = "DecodeFMem2";
+ let mayLoad = 1;
+}
+
+class SW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
+ let DecoderMethod = "DecodeFMem2";
+ let mayStore = 1;
+}
+
+// COP3 Load/Store
+class LW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
+ let DecoderMethod = "DecodeFMem3";
+ let mayLoad = 1;
+}
+
+class SW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin,
+ SDPatternOperator OpNode= null_frag> :
+ InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
+ [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
+ let DecoderMethod = "DecodeFMem3";
+ let mayStore = 1;
+}
+
// Conditional Branch
class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op,
- RegisterOperand RO> :
+ RegisterOperand RO, bit DelaySlot = 1> :
InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset),
!strconcat(opstr, "\t$rs, $rt, $offset"),
[(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
FrmI, opstr> {
let isBranch = 1;
let isTerminator = 1;
- let hasDelaySlot = 1;
+ let hasDelaySlot = DelaySlot;
let Defs = [AT];
}
class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op,
- RegisterOperand RO> :
+ RegisterOperand RO, bit DelaySlot = 1> :
InstSE<(outs), (ins RO:$rs, opnd:$offset),
!strconcat(opstr, "\t$rs, $offset"),
[(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch,
FrmI, opstr> {
let isBranch = 1;
let isTerminator = 1;
- let hasDelaySlot = 1;
+ let hasDelaySlot = DelaySlot;
let Defs = [AT];
}
@@ -765,9 +815,12 @@ let isCall=1, hasDelaySlot=1, Defs = [RA] in {
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[], IIBranch, FrmR>;
- class BGEZAL_FT<string opstr, DAGOperand opnd, RegisterOperand RO> :
+ class BGEZAL_FT<string opstr, DAGOperand opnd,
+ RegisterOperand RO, bit DelaySlot = 1> :
InstSE<(outs), (ins RO:$rs, opnd:$offset),
- !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI, opstr>;
+ !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI, opstr> {
+ let hasDelaySlot = DelaySlot;
+ }
}
@@ -823,6 +876,13 @@ class SYNC_FT<string opstr> :
InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
NoItinerary, FrmOther, opstr>;
+class SYNCI_FT<string opstr> :
+ InstSE<(outs), (ins mem_simm16:$addr), !strconcat(opstr, "\t$addr"), [],
+ NoItinerary, FrmOther, opstr> {
+ let hasSideEffects = 1;
+ let DecoderMethod = "DecodeSyncI";
+}
+
let hasSideEffects = 1 in
class TEQ_FT<string opstr, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
@@ -839,7 +899,7 @@ class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
itin, FrmR, opstr> {
let isCommutable = 1;
let Defs = DefRegs;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
}
// Pseudo multiply/divide instruction with explicit accumulator register
@@ -885,7 +945,7 @@ class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>:
InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO,
FrmR, opstr> {
let Uses = [UseReg];
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
}
class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC>
@@ -897,7 +957,7 @@ class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO,
FrmR, opstr> {
let Defs = DefRegs;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
}
class EffectiveAddress<string opstr, RegisterOperand RO> :
@@ -927,13 +987,13 @@ class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO,
class SubwordSwap<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
NoItinerary, FrmR, opstr> {
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
}
// Read Hardware
class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
- II_RDHWR, FrmR>;
+ II_RDHWR, FrmR, "rdhwr">;
// Ext and Ins
class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd,
@@ -1059,18 +1119,20 @@ def LONG_BRANCH_ADDiu : PseudoSE<(outs GPR32Opnd:$dst),
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
+let AdditionalPredicates = [NotInMicroMips] in {
def ADDiu : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd, II_ADDIU, immSExt16,
- add>,
- ADDI_FM<0x9>, IsAsCheapAsAMove;
+ add>, ADDI_FM<0x9>, IsAsCheapAsAMove;
+}
def ADDi : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>,
ISA_MIPS1_NOT_32R6_64R6;
def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
SLTI_FM<0xa>;
def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
SLTI_FM<0xb>;
+let AdditionalPredicates = [NotInMicroMips] in {
def ANDi : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, immZExt16,
- and>,
- ADDI_FM<0xc>;
+ and>, ADDI_FM<0xc>;
+}
def ORi : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, immZExt16,
or>,
ADDI_FM<0xd>;
@@ -1100,10 +1162,12 @@ def XOR : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>,
def NOR : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
/// Shift Instructions
+let AdditionalPredicates = [NotInMicroMips] in {
def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl,
immZExt5>, SRA_FM<0, 0>;
def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl,
immZExt5>, SRA_FM<2, 0>;
+}
def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra,
immZExt5>, SRA_FM<3, 0>;
def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>,
@@ -1147,13 +1211,35 @@ def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>,
ISA_MIPS1_NOT_32R6_64R6;
}
+// COP2 Memory Instructions
+def LWC2 : LW_FT2<"lwc2", COP2Opnd, NoItinerary, load>, LW_FM<0x32>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def SWC2 : SW_FT2<"swc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3a>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def LDC2 : LW_FT2<"ldc2", COP2Opnd, NoItinerary, load>, LW_FM<0x36>,
+ ISA_MIPS2_NOT_32R6_64R6;
+def SDC2 : SW_FT2<"sdc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3e>,
+ ISA_MIPS2_NOT_32R6_64R6;
+
+// COP3 Memory Instructions
+let DecoderNamespace = "COP3_" in {
+ def LWC3 : LW_FT3<"lwc3", COP3Opnd, NoItinerary, load>, LW_FM<0x33>;
+ def SWC3 : SW_FT3<"swc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3b>;
+ def LDC3 : LW_FT3<"ldc3", COP3Opnd, NoItinerary, load>, LW_FM<0x37>,
+ ISA_MIPS2;
+ def SDC3 : SW_FT3<"sdc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3f>,
+ ISA_MIPS2;
+}
+
def SYNC : MMRel, SYNC_FT<"sync">, SYNC_FM, ISA_MIPS32;
-def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>;
-def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>;
-def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>;
-def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>;
-def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>;
-def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>;
+def SYNCI : MMRel, SYNCI_FT<"synci">, SYNCI_FM, ISA_MIPS32R2;
+
+def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>, ISA_MIPS2;
+def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>, ISA_MIPS2;
+def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>, ISA_MIPS2;
+def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>, ISA_MIPS2;
+def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>, ISA_MIPS2;
+def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>, ISA_MIPS2;
def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>,
ISA_MIPS2_NOT_32R6_64R6;
@@ -1171,7 +1257,7 @@ def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>,
def BREAK : MMRel, BRK_FT<"break">, BRK_FM<0xd>;
def SYSCALL : MMRel, SYS_FT<"syscall">, SYS_FM<0xc>;
def TRAP : TrapBase<BREAK>;
-def SDBBP : SYS_FT<"sdbbp">, SDBBP_FM, ISA_MIPS32_NOT_32R6_64R6;
+def SDBBP : MMRel, SYS_FT<"sdbbp">, SDBBP_FM, ISA_MIPS32_NOT_32R6_64R6;
def ERET : MMRel, ER_FT<"eret">, ER_FM<0x18>, INSN_MIPS3_32;
def DERET : MMRel, ER_FT<"deret">, ER_FM<0x1f>, ISA_MIPS32;
@@ -1193,15 +1279,27 @@ def J : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>,
AdditionalRequires<[RelocStatic]>, IsBranch;
def JR : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>;
def BEQ : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>;
+def BEQL : MMRel, CBranch<"beql", brtarget, seteq, GPR32Opnd, 0>,
+ BEQ_FM<20>, ISA_MIPS2_NOT_32R6_64R6;
def BNE : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>;
+def BNEL : MMRel, CBranch<"bnel", brtarget, setne, GPR32Opnd, 0>,
+ BEQ_FM<21>, ISA_MIPS2_NOT_32R6_64R6;
def BGEZ : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>,
BGEZ_FM<1, 1>;
+def BGEZL : MMRel, CBranchZero<"bgezl", brtarget, setge, GPR32Opnd, 0>,
+ BGEZ_FM<1, 3>, ISA_MIPS2_NOT_32R6_64R6;
def BGTZ : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>,
BGEZ_FM<7, 0>;
+def BGTZL : MMRel, CBranchZero<"bgtzl", brtarget, setgt, GPR32Opnd, 0>,
+ BGEZ_FM<23, 0>, ISA_MIPS2_NOT_32R6_64R6;
def BLEZ : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>,
BGEZ_FM<6, 0>;
+def BLEZL : MMRel, CBranchZero<"blezl", brtarget, setle, GPR32Opnd, 0>,
+ BGEZ_FM<22, 0>, ISA_MIPS2_NOT_32R6_64R6;
def BLTZ : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>,
BGEZ_FM<1, 0>;
+def BLTZL : MMRel, CBranchZero<"bltzl", brtarget, setlt, GPR32Opnd, 0>,
+ BGEZ_FM<1, 2>, ISA_MIPS2_NOT_32R6_64R6;
def B : UncondBranch<BEQ>;
def JAL : MMRel, JumpLink<"jal", calltarget>, FJ<3>;
@@ -1214,8 +1312,12 @@ let AdditionalPredicates = [NotInMicroMips] in {
def JALX : JumpLink<"jalx", calltarget>, FJ<0x1D>, ISA_MIPS32_NOT_32R6_64R6;
def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>,
ISA_MIPS1_NOT_32R6_64R6;
+def BGEZALL : MMRel, BGEZAL_FT<"bgezall", brtarget, GPR32Opnd, 0>,
+ BGEZAL_FM<0x13>, ISA_MIPS2_NOT_32R6_64R6;
def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>,
ISA_MIPS1_NOT_32R6_64R6;
+def BLTZALL : MMRel, BGEZAL_FT<"bltzall", brtarget, GPR32Opnd, 0>,
+ BGEZAL_FM<0x12>, ISA_MIPS2_NOT_32R6_64R6;
def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
def TAILCALL : TailCall<J>;
def TAILCALL_R : TailCallReg<GPR32Opnd, JR>;
@@ -1350,7 +1452,7 @@ def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV,
def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU,
0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6;
-def RDHWR : ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
+def RDHWR : MMRel, ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
def EXT : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>, EXT_FM<0>;
def INS : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>, EXT_FM<4>;
@@ -1362,10 +1464,10 @@ def MFC2 : MFC3OP<"mfc2", GPR32Opnd>, MFC3OP_FM<0x12, 0>;
def MTC2 : MFC3OP<"mtc2", GPR32Opnd>, MFC3OP_FM<0x12, 4>;
class Barrier<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
- FrmOther>;
-def SSNOP : Barrier<"ssnop">, BARRIER_FM<1>;
-def EHB : Barrier<"ehb">, BARRIER_FM<3>;
-def PAUSE : Barrier<"pause">, BARRIER_FM<5>, ISA_MIPS32R2;
+ FrmOther, asmstr>;
+def SSNOP : MMRel, Barrier<"ssnop">, BARRIER_FM<1>;
+def EHB : MMRel, Barrier<"ehb">, BARRIER_FM<3>;
+def PAUSE : MMRel, Barrier<"pause">, BARRIER_FM<5>, ISA_MIPS32R2;
// JR_HB and JALR_HB are defined here using the new style naming
// scheme because some of this code is shared with Mips32r6InstrInfo.td
@@ -1408,21 +1510,22 @@ def JR_HB : JR_HB_DESC, JR_HB_ENC, ISA_MIPS32_NOT_32R6_64R6;
def JALR_HB : JALR_HB_DESC, JALR_HB_ENC, ISA_MIPS32;
class TLB<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
- FrmOther>;
-def TLBP : TLB<"tlbp">, COP0_TLB_FM<0x08>;
-def TLBR : TLB<"tlbr">, COP0_TLB_FM<0x01>;
-def TLBWI : TLB<"tlbwi">, COP0_TLB_FM<0x02>;
-def TLBWR : TLB<"tlbwr">, COP0_TLB_FM<0x06>;
+ FrmOther, asmstr>;
+def TLBP : MMRel, TLB<"tlbp">, COP0_TLB_FM<0x08>;
+def TLBR : MMRel, TLB<"tlbr">, COP0_TLB_FM<0x01>;
+def TLBWI : MMRel, TLB<"tlbwi">, COP0_TLB_FM<0x02>;
+def TLBWR : MMRel, TLB<"tlbwr">, COP0_TLB_FM<0x06>;
class CacheOp<string instr_asm, Operand MemOpnd> :
InstSE<(outs), (ins MemOpnd:$addr, uimm5:$hint),
- !strconcat(instr_asm, "\t$hint, $addr"), [], NoItinerary, FrmOther> {
+ !strconcat(instr_asm, "\t$hint, $addr"), [], NoItinerary, FrmOther,
+ instr_asm> {
let DecoderMethod = "DecodeCacheOp";
}
-def CACHE : CacheOp<"cache", mem>, CACHEOP_FM<0b101111>,
+def CACHE : MMRel, CacheOp<"cache", mem>, CACHEOP_FM<0b101111>,
INSN_MIPS3_32_NOT_32R6_64R6;
-def PREF : CacheOp<"pref", mem>, CACHEOP_FM<0b110011>,
+def PREF : MMRel, CacheOp<"pref", mem>, CACHEOP_FM<0b110011>,
INSN_MIPS3_32_NOT_32R6_64R6;
//===----------------------------------------------------------------------===//
@@ -1437,8 +1540,14 @@ def : MipsInstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>,
ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"addu $rs, $rt, $imm",
(ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
+def : MipsInstAlias<"addu $rs, $imm",
+ (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>;
def : MipsInstAlias<"add $rs, $rt, $imm",
- (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
+ (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>,
+ ISA_MIPS1_NOT_32R6_64R6;
+def : MipsInstAlias<"add $rs, $imm",
+ (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>,
+ ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"and $rs, $rt, $imm",
(ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : MipsInstAlias<"and $rs, $imm",
@@ -1482,25 +1591,30 @@ def : MipsInstAlias<"syscall", (SYSCALL 0), 1>;
def : MipsInstAlias<"break", (BREAK 0, 0), 1>;
def : MipsInstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
-def : MipsInstAlias<"ei", (EI ZERO), 1>;
-def : MipsInstAlias<"di", (DI ZERO), 1>;
-
-def : MipsInstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
-def : MipsInstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
-def : MipsInstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0),
- 1>;
-def : MipsInstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
-def : MipsInstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0),
- 1>;
-def : MipsInstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
+def : MipsInstAlias<"ei", (EI ZERO), 1>, ISA_MIPS32R2;
+def : MipsInstAlias<"di", (DI ZERO), 1>, ISA_MIPS32R2;
+
+def : MipsInstAlias<"teq $rs, $rt",
+ (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
+def : MipsInstAlias<"tge $rs, $rt",
+ (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
+def : MipsInstAlias<"tgeu $rs, $rt",
+ (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
+def : MipsInstAlias<"tlt $rs, $rt",
+ (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
+def : MipsInstAlias<"tltu $rs, $rt",
+ (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
+def : MipsInstAlias<"tne $rs, $rt",
+ (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
+
def : MipsInstAlias<"sll $rd, $rt, $rs",
(SLLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
def : MipsInstAlias<"sub, $rd, $rs, $imm",
(ADDi GPR32Opnd:$rd, GPR32Opnd:$rs,
- InvertedImOperand:$imm), 0>;
+ InvertedImOperand:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"sub $rs, $imm",
(ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm),
- 0>;
+ 0>, ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"subu, $rd, $rs, $imm",
(ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs,
InvertedImOperand:$imm), 0>;
@@ -1544,10 +1658,12 @@ class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
// Small immediates
+let AdditionalPredicates = [NotInMicroMips] in {
def : MipsPat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : MipsPat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
+}
def : MipsPat<(i32 immLow16Zero:$in),
(LUi (HI16 imm:$in))>;
@@ -1565,6 +1681,12 @@ let AdditionalPredicates = [NotDSP] in {
(ADDiu GPR32:$src, imm:$imm)>;
}
+// Support multiplication for pre-Mips32 targets that don't have
+// the MUL instruction.
+def : MipsPat<(mul GPR32:$lhs, GPR32:$rhs),
+ (PseudoMFLO (PseudoMULT GPR32:$lhs, GPR32:$rhs))>,
+ ISA_MIPS1_NOT_32R6_64R6;
+
// SYNC
def : MipsPat<(MipsSync (i32 immz)),
(SYNC 0)>, ISA_MIPS2;
diff --git a/contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp
deleted file mode 100644
index 2072488..0000000
--- a/contrib/llvm/lib/Target/Mips/MipsJITInfo.cpp
+++ /dev/null
@@ -1,286 +0,0 @@
-//===-- MipsJITInfo.cpp - Implement the Mips JIT Interface ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the JIT interfaces for the Mips target.
-//
-//===----------------------------------------------------------------------===//
-
-#include "MipsJITInfo.h"
-#include "MipsInstrInfo.h"
-#include "MipsRelocations.h"
-#include "MipsSubtarget.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Memory.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cstdlib>
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-
-void MipsJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- unsigned NewAddr = (intptr_t)New;
- unsigned OldAddr = (intptr_t)Old;
- const unsigned NopInstr = 0x0;
-
- // If the functions are in the same memory segment, insert PC-region branch.
- if ((NewAddr & 0xF0000000) == ((OldAddr + 4) & 0xF0000000)) {
- unsigned *OldInstruction = (unsigned *)Old;
- *OldInstruction = 0x08000000;
- unsigned JTargetAddr = NewAddr & 0x0FFFFFFC;
-
- JTargetAddr >>= 2;
- *OldInstruction |= JTargetAddr;
-
- // Insert a NOP.
- OldInstruction++;
- *OldInstruction = NopInstr;
-
- sys::Memory::InvalidateInstructionCache(Old, 2 * 4);
- } else {
- // We need to clear hint bits from the instruction, in case it is 'jr ra'.
- const unsigned HintMask = 0xFFFFF83F, ReturnSequence = 0x03e00008;
- unsigned* CurrentInstr = (unsigned*)Old;
- unsigned CurrInstrHintClear = (*CurrentInstr) & HintMask;
- unsigned* NextInstr = CurrentInstr + 1;
- unsigned NextInstrHintClear = (*NextInstr) & HintMask;
-
- // Do absolute jump if there are 2 or more instructions before return from
- // the old function.
- if ((CurrInstrHintClear != ReturnSequence) &&
- (NextInstrHintClear != ReturnSequence)) {
- const unsigned LuiT0Instr = 0x3c080000, AddiuT0Instr = 0x25080000;
- const unsigned JrT0Instr = 0x01000008;
- // lui t0, high 16 bit of the NewAddr
- (*(CurrentInstr++)) = LuiT0Instr | ((NewAddr & 0xffff0000) >> 16);
- // addiu t0, t0, low 16 bit of the NewAddr
- (*(CurrentInstr++)) = AddiuT0Instr | (NewAddr & 0x0000ffff);
- // jr t0
- (*(CurrentInstr++)) = JrT0Instr;
- (*CurrentInstr) = NopInstr;
-
- sys::Memory::InvalidateInstructionCache(Old, 4 * 4);
- } else {
- // Unsupported case
- report_fatal_error("MipsJITInfo::replaceMachineCodeForFunction");
- }
- }
-}
-
-/// JITCompilerFunction - This contains the address of the JIT function used to
-/// compile a function lazily.
-static TargetJITInfo::JITCompilerFn JITCompilerFunction;
-
-// Get the ASMPREFIX for the current host. This is often '_'.
-#ifndef __USER_LABEL_PREFIX__
-#define __USER_LABEL_PREFIX__
-#endif
-#define GETASMPREFIX2(X) #X
-#define GETASMPREFIX(X) GETASMPREFIX2(X)
-#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
-
-// CompilationCallback stub - We can't use a C function with inline assembly in
-// it, because the prolog/epilog inserted by GCC won't work for us. Instead,
-// write our own wrapper, which does things our way, so we have complete control
-// over register saving and restoring. This code saves registers, calls
-// MipsCompilationCallbackC and restores registers.
-extern "C" {
-#if defined (__mips__)
-void MipsCompilationCallback();
-
- asm(
- ".text\n"
- ".align 2\n"
- ".globl " ASMPREFIX "MipsCompilationCallback\n"
- ASMPREFIX "MipsCompilationCallback:\n"
- ".ent " ASMPREFIX "MipsCompilationCallback\n"
- ".frame $sp, 32, $ra\n"
- ".set noreorder\n"
- ".cpload $t9\n"
-
- "addiu $sp, $sp, -64\n"
- ".cprestore 16\n"
-
- // Save argument registers a0, a1, a2, a3, f12, f14 since they may contain
- // stuff for the real target function right now. We have to act as if this
- // whole compilation callback doesn't exist as far as the caller is
- // concerned. We also need to save the ra register since it contains the
- // original return address, and t8 register since it contains the address
- // of the end of function stub.
- "sw $a0, 20($sp)\n"
- "sw $a1, 24($sp)\n"
- "sw $a2, 28($sp)\n"
- "sw $a3, 32($sp)\n"
- "sw $ra, 36($sp)\n"
- "sw $t8, 40($sp)\n"
- "sdc1 $f12, 48($sp)\n"
- "sdc1 $f14, 56($sp)\n"
-
- // t8 points at the end of function stub. Pass the beginning of the stub
- // to the MipsCompilationCallbackC.
- "addiu $a0, $t8, -16\n"
- "jal " ASMPREFIX "MipsCompilationCallbackC\n"
- "nop\n"
-
- // Restore registers.
- "lw $a0, 20($sp)\n"
- "lw $a1, 24($sp)\n"
- "lw $a2, 28($sp)\n"
- "lw $a3, 32($sp)\n"
- "lw $ra, 36($sp)\n"
- "lw $t8, 40($sp)\n"
- "ldc1 $f12, 48($sp)\n"
- "ldc1 $f14, 56($sp)\n"
- "addiu $sp, $sp, 64\n"
-
- // Jump to the (newly modified) stub to invoke the real function.
- "addiu $t8, $t8, -16\n"
- "jr $t8\n"
- "nop\n"
-
- ".set reorder\n"
- ".end " ASMPREFIX "MipsCompilationCallback\n"
- );
-#else // host != Mips
- void MipsCompilationCallback() {
- llvm_unreachable(
- "Cannot call MipsCompilationCallback() on a non-Mips arch!");
- }
-#endif
-}
-
-/// MipsCompilationCallbackC - This is the target-specific function invoked
-/// by the function stub when we did not know the real target of a call.
-/// This function must locate the start of the stub or call site and pass
-/// it into the JIT compiler function.
-extern "C" void MipsCompilationCallbackC(intptr_t StubAddr) {
- // Get the address of the compiled code for this function.
- intptr_t NewVal = (intptr_t) JITCompilerFunction((void*) StubAddr);
-
- // Rewrite the function stub so that we don't end up here every time we
- // execute the call. We're replacing the first four instructions of the
- // stub with code that jumps to the compiled function:
- // lui $t9, %hi(NewVal)
- // addiu $t9, $t9, %lo(NewVal)
- // jr $t9
- // nop
-
- int Hi = ((unsigned)NewVal & 0xffff0000) >> 16;
- if ((NewVal & 0x8000) != 0)
- Hi++;
- int Lo = (int)(NewVal & 0xffff);
-
- *(intptr_t *)(StubAddr) = 0xf << 26 | 25 << 16 | Hi;
- *(intptr_t *)(StubAddr + 4) = 9 << 26 | 25 << 21 | 25 << 16 | Lo;
- *(intptr_t *)(StubAddr + 8) = 25 << 21 | 8;
- *(intptr_t *)(StubAddr + 12) = 0;
-
- sys::Memory::InvalidateInstructionCache((void*) StubAddr, 16);
-}
-
-TargetJITInfo::LazyResolverFn MipsJITInfo::getLazyResolverFunction(
- JITCompilerFn F) {
- JITCompilerFunction = F;
- return MipsCompilationCallback;
-}
-
-TargetJITInfo::StubLayout MipsJITInfo::getStubLayout() {
- // The stub contains 4 4-byte instructions, aligned at 4 bytes. See
- // emitFunctionStub for details.
- StubLayout Result = { 4*4, 4 };
- return Result;
-}
-
-void *MipsJITInfo::emitFunctionStub(const Function *F, void *Fn,
- JITCodeEmitter &JCE) {
- JCE.emitAlignment(4);
- void *Addr = (void*) (JCE.getCurrentPCValue());
- if (!sys::Memory::setRangeWritable(Addr, 16))
- llvm_unreachable("ERROR: Unable to mark stub writable.");
-
- intptr_t EmittedAddr;
- if (Fn != (void*)(intptr_t)MipsCompilationCallback)
- EmittedAddr = (intptr_t)Fn;
- else
- EmittedAddr = (intptr_t)MipsCompilationCallback;
-
-
- int Hi = ((unsigned)EmittedAddr & 0xffff0000) >> 16;
- if ((EmittedAddr & 0x8000) != 0)
- Hi++;
- int Lo = (int)(EmittedAddr & 0xffff);
-
- // lui $t9, %hi(EmittedAddr)
- // addiu $t9, $t9, %lo(EmittedAddr)
- // jalr $t8, $t9
- // nop
- if (IsLittleEndian) {
- JCE.emitWordLE(0xf << 26 | 25 << 16 | Hi);
- JCE.emitWordLE(9 << 26 | 25 << 21 | 25 << 16 | Lo);
- JCE.emitWordLE(25 << 21 | 24 << 11 | 9);
- JCE.emitWordLE(0);
- } else {
- JCE.emitWordBE(0xf << 26 | 25 << 16 | Hi);
- JCE.emitWordBE(9 << 26 | 25 << 21 | 25 << 16 | Lo);
- JCE.emitWordBE(25 << 21 | 24 << 11 | 9);
- JCE.emitWordBE(0);
- }
-
- sys::Memory::InvalidateInstructionCache(Addr, 16);
- if (!sys::Memory::setRangeExecutable(Addr, 16))
- llvm_unreachable("ERROR: Unable to mark stub executable.");
-
- return Addr;
-}
-
-/// relocate - Before the JIT can run a block of code that has been emitted,
-/// it must rewrite the code to contain the actual addresses of any
-/// referenced global symbols.
-void MipsJITInfo::relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char *GOTBase) {
- for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
-
- void *RelocPos = (char*) Function + MR->getMachineCodeOffset();
- intptr_t ResultPtr = (intptr_t) MR->getResultPointer();
-
- switch ((Mips::RelocationType) MR->getRelocationType()) {
- case Mips::reloc_mips_pc16:
- ResultPtr = (((ResultPtr - (intptr_t) RelocPos) - 4) >> 2) & 0xffff;
- *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
- break;
-
- case Mips::reloc_mips_26:
- ResultPtr = (ResultPtr & 0x0fffffff) >> 2;
- *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
- break;
-
- case Mips::reloc_mips_hi:
- ResultPtr = ResultPtr >> 16;
- if ((((intptr_t) (MR->getResultPointer()) & 0xffff) >> 15) == 1) {
- ResultPtr += 1;
- }
- *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
- break;
-
- case Mips::reloc_mips_lo: {
- // Addend is needed for unaligned load/store instructions, where offset
- // for the second load/store in the expanded instruction sequence must
- // be modified by +1 or +3. Otherwise, Addend is 0.
- int Addend = *((unsigned*) RelocPos) & 0xffff;
- ResultPtr = (ResultPtr + Addend) & 0xffff;
- *((unsigned*) RelocPos) &= 0xffff0000;
- *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
- break;
- }
- }
- }
-}
diff --git a/contrib/llvm/lib/Target/Mips/MipsJITInfo.h b/contrib/llvm/lib/Target/Mips/MipsJITInfo.h
deleted file mode 100644
index c9dfd83..0000000
--- a/contrib/llvm/lib/Target/Mips/MipsJITInfo.h
+++ /dev/null
@@ -1,71 +0,0 @@
-//===- MipsJITInfo.h - Mips Implementation of the JIT Interface -*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the declaration of the MipsJITInfo class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MIPSJITINFO_H
-#define MIPSJITINFO_H
-
-#include "MipsMachineFunction.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetJITInfo.h"
-
-namespace llvm {
-class MipsTargetMachine;
-
-class MipsJITInfo : public TargetJITInfo {
-
- bool IsPIC;
- bool IsLittleEndian;
-
- public:
- explicit MipsJITInfo() :
- IsPIC(false), IsLittleEndian(true) {}
-
- /// replaceMachineCodeForFunction - Make it so that calling the function
- /// whose machine code is at OLD turns into a call to NEW, perhaps by
- /// overwriting OLD with a branch to NEW. This is used for self-modifying
- /// code.
- ///
- void replaceMachineCodeForFunction(void *Old, void *New) override;
-
- // getStubLayout - Returns the size and alignment of the largest call stub
- // on Mips.
- StubLayout getStubLayout() override;
-
- /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
- /// small native function that simply calls the function at the specified
- /// address.
- void *emitFunctionStub(const Function *F, void *Fn,
- JITCodeEmitter &JCE) override;
-
- /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
- LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
-
- /// relocate - Before the JIT can run a block of code that has been emitted,
- /// it must rewrite the code to contain the actual addresses of any
- /// referenced global symbols.
- void relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char *GOTBase) override;
-
- /// Initialize - Initialize internal stage for the function being JITted.
- void Initialize(const MachineFunction &MF, bool isPIC,
- bool isLittleEndian) {
- IsPIC = isPIC;
- IsLittleEndian = isLittleEndian;
- }
-
-};
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp b/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp
index 5790ed6..aae0922 100644
--- a/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsLongBranch.cpp
@@ -16,6 +16,7 @@
#include "Mips.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCNaCl.h"
+#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
@@ -109,8 +110,7 @@ static MachineBasicBlock *getTargetMBB(const MachineInstr &Br) {
return MO.getMBB();
}
- assert(false && "This instruction does not have an MBB operand.");
- return nullptr;
+ llvm_unreachable("This instruction does not have an MBB operand.");
}
// Traverse the list of instructions backwards until a non-debug instruction is
@@ -170,7 +170,7 @@ void MipsLongBranch::initMBBInfo() {
MBBInfos.resize(MF->size());
const MipsInstrInfo *TII =
- static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ static_cast<const MipsInstrInfo *>(TM.getSubtargetImpl()->getInstrInfo());
for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
MachineBasicBlock *MBB = MF->getBlockNumbered(I);
@@ -217,7 +217,7 @@ int64_t MipsLongBranch::computeOffset(const MachineInstr *Br) {
void MipsLongBranch::replaceBranch(MachineBasicBlock &MBB, Iter Br,
DebugLoc DL, MachineBasicBlock *MBBOpnd) {
const MipsInstrInfo *TII =
- static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ static_cast<const MipsInstrInfo *>(TM.getSubtargetImpl()->getInstrInfo());
unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode());
const MCInstrDesc &NewDesc = TII->get(NewOpc);
@@ -236,15 +236,21 @@ void MipsLongBranch::replaceBranch(MachineBasicBlock &MBB, Iter Br,
MIB.addMBB(MBBOpnd);
- // Bundle the instruction in the delay slot to the newly created branch
- // and erase the original branch.
- assert(Br->isBundledWithSucc());
- MachineBasicBlock::instr_iterator II(Br);
- MIBundleBuilder(&*MIB).append((++II)->removeFromBundle());
+ if (Br->hasDelaySlot()) {
+ // Bundle the instruction in the delay slot to the newly created branch
+ // and erase the original branch.
+ assert(Br->isBundledWithSucc());
+ MachineBasicBlock::instr_iterator II(Br);
+ MIBundleBuilder(&*MIB).append((++II)->removeFromBundle());
+ }
Br->eraseFromParent();
}
// Expand branch instructions to long branches.
+// TODO: This function has to be fixed for beqz16 and bnez16, because it
+// currently assumes that all branches have 16-bit offsets, and will produce
+// wrong code if branches whose allowed offsets are [-128, -126, ..., 126]
+// are present.
void MipsLongBranch::expandToLongBranch(MBBInfo &I) {
MachineBasicBlock::iterator Pos;
MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br);
@@ -254,7 +260,7 @@ void MipsLongBranch::expandToLongBranch(MBBInfo &I) {
MachineBasicBlock *LongBrMBB = MF->CreateMachineBasicBlock(BB);
const MipsInstrInfo *TII =
- static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ static_cast<const MipsInstrInfo *>(TM.getSubtargetImpl()->getInstrInfo());
MF->insert(FallThroughMBB, LongBrMBB);
MBB->removeSuccessor(TgtMBB);
@@ -447,7 +453,7 @@ static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII) {
bool MipsLongBranch::runOnMachineFunction(MachineFunction &F) {
const MipsInstrInfo *TII =
- static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
+ static_cast<const MipsInstrInfo *>(TM.getSubtargetImpl()->getInstrInfo());
const MipsSubtarget &STI = TM.getSubtarget<MipsSubtarget>();
if (STI.inMips16Mode() || !STI.enableLongBranchPass())
diff --git a/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h b/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h
index 269190f..1ce27e4 100644
--- a/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h
+++ b/contrib/llvm/lib/Target/Mips/MipsMCInstLower.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSMCINSTLOWER_H
-#define MIPSMCINSTLOWER_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSMCINSTLOWER_H
+#define LLVM_LIB_TARGET_MIPS_MIPSMCINSTLOWER_H
#include "MCTargetDesc/MipsMCExpr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineOperand.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td b/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td
index 285bb14..68230e6 100644
--- a/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td
+++ b/contrib/llvm/lib/Target/Mips/MipsMSAInstrInfo.td
@@ -69,7 +69,7 @@ def MipsVExtractZExt : SDNode<"MipsISD::VEXTRACT_ZEXT_ELT",
// as the encoded value should be subtracted by one.
def uimm2LSAAsmOperand : AsmOperandClass {
let Name = "LSAImm";
- let ParserMethod = "ParseLSAImm";
+ let ParserMethod = "parseLSAImm";
let RenderMethod = "addImmOperands";
}
diff --git a/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp
index bc896be..19babc7 100644
--- a/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.cpp
@@ -24,7 +24,7 @@ FixGlobalBaseReg("mips-fix-global-base-reg", cl::Hidden, cl::init(true),
cl::desc("Always use $gp as the global base register."));
// class MipsCallEntry.
-MipsCallEntry::MipsCallEntry(const StringRef &N) {
+MipsCallEntry::MipsCallEntry(StringRef N) {
#ifndef NDEBUG
Name = N;
Val = nullptr;
@@ -80,13 +80,10 @@ unsigned MipsFunctionInfo::getGlobalBaseReg() {
const MipsSubtarget &ST = MF.getTarget().getSubtarget<MipsSubtarget>();
- const TargetRegisterClass *RC;
- if (ST.inMips16Mode())
- RC=(const TargetRegisterClass*)&Mips::CPU16RegsRegClass;
- else
- RC = ST.isABI_N64() ?
- (const TargetRegisterClass*)&Mips::GPR64RegClass :
- (const TargetRegisterClass*)&Mips::GPR32RegClass;
+ const TargetRegisterClass *RC =
+ ST.inMips16Mode() ? &Mips::CPU16RegsRegClass
+ : ST.isABI_N64() ? &Mips::GPR64RegClass
+ : &Mips::GPR32RegClass;
return GlobalBaseReg = MF.getRegInfo().createVirtualRegister(RC);
}
@@ -98,8 +95,7 @@ unsigned MipsFunctionInfo::getMips16SPAliasReg() {
if (Mips16SPAliasReg)
return Mips16SPAliasReg;
- const TargetRegisterClass *RC;
- RC=(const TargetRegisterClass*)&Mips::CPU16RegsRegClass;
+ const TargetRegisterClass *RC = &Mips::CPU16RegsRegClass;
return Mips16SPAliasReg = MF.getRegInfo().createVirtualRegister(RC);
}
@@ -119,7 +115,7 @@ bool MipsFunctionInfo::isEhDataRegFI(int FI) const {
|| FI == EhDataRegFI[2] || FI == EhDataRegFI[3]);
}
-MachinePointerInfo MipsFunctionInfo::callPtrInfo(const StringRef &Name) {
+MachinePointerInfo MipsFunctionInfo::callPtrInfo(StringRef Name) {
const MipsCallEntry *&E = ExternalCallEntries[Name];
if (!E)
diff --git a/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h
index 61260e5..217f307 100644
--- a/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h
+++ b/contrib/llvm/lib/Target/Mips/MipsMachineFunction.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPS_MACHINE_FUNCTION_INFO_H
-#define MIPS_MACHINE_FUNCTION_INFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSMACHINEFUNCTION_H
+#define LLVM_LIB_TARGET_MIPS_MIPSMACHINEFUNCTION_H
#include "Mips16HardFloatInfo.h"
#include "llvm/ADT/StringMap.h"
@@ -34,7 +34,7 @@ namespace llvm {
/// resolved by lazy-binding.
class MipsCallEntry : public PseudoSourceValue {
public:
- explicit MipsCallEntry(const StringRef &N);
+ explicit MipsCallEntry(StringRef N);
explicit MipsCallEntry(const GlobalValue *V);
bool isConstant(const MachineFrameInfo *) const override;
bool isAliased(const MachineFrameInfo *) const override;
@@ -88,7 +88,7 @@ public:
/// \brief Create a MachinePointerInfo that has a MipsCallEntr object
/// representing a GOT entry for an external function.
- MachinePointerInfo callPtrInfo(const StringRef &Name);
+ MachinePointerInfo callPtrInfo(StringRef Name);
/// \brief Create a MachinePointerInfo that has a MipsCallEntr object
/// representing a GOT entry for a global function.
@@ -150,4 +150,4 @@ private:
} // end of namespace llvm
-#endif // MIPS_MACHINE_FUNCTION_INFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h
index f7a0310..85bae47 100644
--- a/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h
+++ b/contrib/llvm/lib/Target/Mips/MipsModuleISelDAGToDAG.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSMODULEISELDAGTODAG_H
-#define MIPSMODULEISELDAGTODAG_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSMODULEISELDAGTODAG_H
+#define LLVM_LIB_TARGET_MIPS_MIPSMODULEISELDAGTODAG_H
#include "Mips.h"
#include "MipsSubtarget.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp b/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp
index c234049..22c524e 100644
--- a/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsOptimizePICCall.cpp
@@ -130,7 +130,7 @@ static MVT::SimpleValueType getRegTy(unsigned Reg, MachineFunction &MF) {
static void setCallTargetReg(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I) {
MachineFunction &MF = *MBB->getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned SrcReg = I->getOperand(0).getReg();
unsigned DstReg = getRegTy(SrcReg, MF) == MVT::i32 ? Mips::T9 : Mips::T9_64;
BuildMI(*MBB, I, I->getDebugLoc(), TII.get(TargetOpcode::COPY), DstReg)
diff --git a/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h b/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h
index c0abce3..f82544a 100644
--- a/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h
+++ b/contrib/llvm/lib/Target/Mips/MipsOptionRecord.h
@@ -17,19 +17,16 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSOPTIONRECORD_H
-#define MIPSOPTIONRECORD_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSOPTIONRECORD_H
+#define LLVM_LIB_TARGET_MIPS_MIPSOPTIONRECORD_H
-#include "MipsMCTargetDesc.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCRegisterInfo.h"
-using namespace llvm;
-
namespace llvm {
class MipsELFStreamer;
class MCSubtargetInfo;
-}
class MipsOptionRecord {
public:
@@ -58,7 +55,7 @@ public:
}
~MipsRegInfoRecord() {}
- void EmitMipsOptionRecord();
+ void EmitMipsOptionRecord() override;
void SetPhysRegUsed(unsigned Reg, const MCRegisterInfo *MCRegInfo);
private:
@@ -77,4 +74,5 @@ private:
uint32_t ri_cprmask[4];
int64_t ri_gp_value;
};
+} // namespace llvm
#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsOs16.h b/contrib/llvm/lib/Target/Mips/MipsOs16.h
index 55e5a81..77183ec 100644
--- a/contrib/llvm/lib/Target/Mips/MipsOs16.h
+++ b/contrib/llvm/lib/Target/Mips/MipsOs16.h
@@ -11,16 +11,14 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSOS16_H
+#define LLVM_LIB_TARGET_MIPS_MIPSOS16_H
+
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsTargetMachine.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
-
-
-#ifndef MIPSOS16_H
-#define MIPSOS16_H
-
using namespace llvm;
namespace llvm {
diff --git a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp
index a616970..20ef3f3 100644
--- a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.cpp
@@ -62,7 +62,7 @@ MipsRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
case Mips::GPR32RegClassID:
case Mips::GPR64RegClassID:
case Mips::DSPRRegClassID: {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
return 28 - TFI->hasFP(MF);
}
case Mips::FGR32RegClassID:
@@ -167,7 +167,7 @@ getReservedRegs(const MachineFunction &MF) const {
Reserved.set(*Reg);
}
// Reserve FP if this function should have a dedicated frame pointer register.
- if (MF.getTarget().getFrameLowering()->hasFP(MF)) {
+ if (MF.getSubtarget().getFrameLowering()->hasFP(MF)) {
if (Subtarget.inMips16Mode())
Reserved.set(Mips::S0);
else {
@@ -256,7 +256,7 @@ eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
unsigned MipsRegisterInfo::
getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
bool IsN64 = Subtarget.isABI_N64();
if (Subtarget.inMips16Mode())
diff --git a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h
index b34496f..9ec4a38 100644
--- a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSREGISTERINFO_H
-#define MIPSREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSREGISTERINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPSREGISTERINFO_H
#include "Mips.h"
#include "llvm/Target/TargetRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td
index 74dfa4f..2b3b6c1 100644
--- a/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td
+++ b/contrib/llvm/lib/Target/Mips/MipsRegisterInfo.td
@@ -212,8 +212,13 @@ let Namespace = "Mips" in {
// PC register
def PC : Register<"pc">;
- // Hardware register $29
- foreach I = 0-31 in
+ // Hardware registers
+ def HWR0 : MipsReg<0, "hwr_cpunum">;
+ def HWR1 : MipsReg<1, "hwr_synci_step">;
+ def HWR2 : MipsReg<2, "hwr_cc">;
+ def HWR3 : MipsReg<3, "hwr_ccres">;
+
+ foreach I = 4-31 in
def HWR#I : MipsReg<#I, ""#I>;
// Accum registers
@@ -283,6 +288,20 @@ class GPR32Class<list<ValueType> regTypes> :
def GPR32 : GPR32Class<[i32]>;
def DSPR : GPR32Class<[v4i8, v2i16]>;
+def GPRMM16 : RegisterClass<"Mips", [i32], 32, (add
+ // Callee save
+ S0, S1,
+ // Return Values and Arguments
+ V0, V1, A0, A1, A2, A3)>;
+
+def GPRMM16Zero : RegisterClass<"Mips", [i32], 32, (add
+ // Reserved
+ ZERO,
+ // Callee save
+ S1,
+ // Return Values and Arguments
+ V0, V1, A0, A1, A2, A3)>;
+
def GPR64 : RegisterClass<"Mips", [i64], 64, (add
// Reserved
ZERO_64, AT_64,
@@ -417,7 +436,7 @@ def OCTEON_P : RegisterClass<"Mips", [i64], 64, (add P0, P1, P2)>,
// Register Operands.
class MipsAsmRegOperand : AsmOperandClass {
- let ParserMethod = "ParseAnyRegister";
+ let ParserMethod = "parseAnyRegister";
}
def GPR64AsmOperand : MipsAsmRegOperand {
@@ -430,6 +449,16 @@ def GPR32AsmOperand : MipsAsmRegOperand {
let PredicateMethod = "isGPRAsmReg";
}
+def GPRMM16AsmOperand : MipsAsmRegOperand {
+ let Name = "GPRMM16AsmReg";
+ let PredicateMethod = "isMM16AsmReg";
+}
+
+def GPRMM16AsmOperandZero : MipsAsmRegOperand {
+ let Name = "GPRMM16AsmRegZero";
+ let PredicateMethod = "isMM16AsmRegZero";
+}
+
def ACC64DSPAsmOperand : MipsAsmRegOperand {
let Name = "ACC64DSPAsmReg";
let PredicateMethod = "isACCAsmReg";
@@ -485,6 +514,14 @@ def GPR32Opnd : RegisterOperand<GPR32> {
let ParserMatchClass = GPR32AsmOperand;
}
+def GPRMM16Opnd : RegisterOperand<GPRMM16> {
+ let ParserMatchClass = GPRMM16AsmOperand;
+}
+
+def GPRMM16OpndZero : RegisterOperand<GPRMM16Zero> {
+ let ParserMatchClass = GPRMM16AsmOperandZero;
+}
+
def GPR64Opnd : RegisterOperand<GPR64> {
let ParserMatchClass = GPR64AsmOperand;
}
@@ -578,4 +615,3 @@ def MSA128DOpnd : RegisterOperand<MSA128D> {
def MSA128CROpnd : RegisterOperand<MSACtrl> {
let ParserMatchClass = MSACtrlAsmOperand;
}
-
diff --git a/contrib/llvm/lib/Target/Mips/MipsRelocations.h b/contrib/llvm/lib/Target/Mips/MipsRelocations.h
deleted file mode 100644
index 0787ed3..0000000
--- a/contrib/llvm/lib/Target/Mips/MipsRelocations.h
+++ /dev/null
@@ -1,41 +0,0 @@
-//===-- MipsRelocations.h - Mips Code Relocations ---------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the Mips target-specific relocation types
-// (for relocation-model=static).
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MIPSRELOCATIONS_H_
-#define MIPSRELOCATIONS_H_
-
-#include "llvm/CodeGen/MachineRelocation.h"
-
-namespace llvm {
- namespace Mips{
- enum RelocationType {
- // reloc_mips_pc16 - pc relative relocation for branches. The lower 18
- // bits of the difference between the branch target and the branch
- // instruction, shifted right by 2.
- reloc_mips_pc16 = 1,
-
- // reloc_mips_hi - upper 16 bits of the address (modified by +1 if the
- // lower 16 bits of the address is negative).
- reloc_mips_hi = 2,
-
- // reloc_mips_lo - lower 16 bits of the address.
- reloc_mips_lo = 3,
-
- // reloc_mips_26 - lower 28 bits of the address, shifted right by 2.
- reloc_mips_26 = 4
- };
- }
-}
-
-#endif /* MIPSRELOCATIONS_H_ */
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp
index 4825e1e..97d9edf 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.cpp
@@ -147,9 +147,9 @@ void ExpandPseudo::expandLoadCCond(MachineBasicBlock &MBB, Iter I) {
assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const TargetRegisterClass *RC = RegInfo.intRegClass(4);
unsigned VR = MRI.createVirtualRegister(RC);
@@ -167,9 +167,9 @@ void ExpandPseudo::expandStoreCCond(MachineBasicBlock &MBB, Iter I) {
assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const TargetRegisterClass *RC = RegInfo.intRegClass(4);
unsigned VR = MRI.createVirtualRegister(RC);
@@ -190,9 +190,9 @@ void ExpandPseudo::expandLoadACC(MachineBasicBlock &MBB, Iter I,
assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const TargetRegisterClass *RC = RegInfo.intRegClass(RegSize);
unsigned VR0 = MRI.createVirtualRegister(RC);
@@ -220,9 +220,9 @@ void ExpandPseudo::expandStoreACC(MachineBasicBlock &MBB, Iter I,
assert(I->getOperand(0).isReg() && I->getOperand(1).isFI());
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
const TargetRegisterClass *RC = RegInfo.intRegClass(RegSize);
unsigned VR0 = MRI.createVirtualRegister(RC);
@@ -255,9 +255,9 @@ bool ExpandPseudo::expandCopyACC(MachineBasicBlock &MBB, Iter I,
// copy dst_hi, $vr1
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
unsigned Dst = I->getOperand(0).getReg(), Src = I->getOperand(1).getReg();
unsigned VRegSize = RegInfo.getMinimalPhysRegClass(Dst)->getSize() / 2;
@@ -303,10 +303,10 @@ bool ExpandPseudo::expandBuildPairF64(MachineBasicBlock &MBB,
const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
if ((Subtarget.isABI_FPXX() && !Subtarget.hasMTHC1()) ||
(FP64 && !Subtarget.useOddSPReg())) {
- const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(TM.getInstrInfo());
- const MipsRegisterInfo &TRI =
- *static_cast<const MipsRegisterInfo*>(TM.getRegisterInfo());
+ const MipsSEInstrInfo &TII = *static_cast<const MipsSEInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+ const MipsRegisterInfo &TRI = *static_cast<const MipsRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
unsigned DstReg = I->getOperand(0).getReg();
unsigned LoReg = I->getOperand(1).getReg();
@@ -363,10 +363,10 @@ bool ExpandPseudo::expandExtractElementF64(MachineBasicBlock &MBB,
const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
if ((Subtarget.isABI_FPXX() && !Subtarget.hasMTHC1()) ||
(FP64 && !Subtarget.useOddSPReg())) {
- const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo *>(TM.getInstrInfo());
- const MipsRegisterInfo &TRI =
- *static_cast<const MipsRegisterInfo *>(TM.getRegisterInfo());
+ const MipsSEInstrInfo &TII = *static_cast<const MipsSEInstrInfo *>(
+ TM.getSubtargetImpl()->getInstrInfo());
+ const MipsRegisterInfo &TRI = *static_cast<const MipsRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
unsigned DstReg = I->getOperand(0).getReg();
unsigned SrcReg = I->getOperand(1).getReg();
@@ -415,9 +415,9 @@ void MipsSEFrameLowering::emitPrologue(MachineFunction &MF) const {
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
MachineBasicBlock::iterator MBBI = MBB.begin();
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
@@ -550,9 +550,9 @@ void MipsSEFrameLowering::emitEpilogue(MachineFunction &MF,
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
- const MipsRegisterInfo &RegInfo =
- *static_cast<const MipsRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const MipsRegisterInfo &RegInfo = *static_cast<const MipsRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
DebugLoc dl = MBBI->getDebugLoc();
unsigned SP = STI.isABI_N64() ? Mips::SP_64 : Mips::SP;
@@ -605,7 +605,7 @@ spillCalleeSavedRegisters(MachineBasicBlock &MBB,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
MachineBasicBlock *EntryBlock = MF->begin();
- const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
// Add the callee-saved register as live-in. Do not add if the register is
@@ -646,7 +646,7 @@ void MipsSEFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const MipsSEInstrInfo &TII =
- *static_cast<const MipsSEInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const MipsSEInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (!hasReservedCallFrame(MF)) {
int64_t Amount = I->getOperand(0).getImm();
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h
index e832848..0eca1df 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSEFrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSE_FRAMEINFO_H
-#define MIPSSE_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSEFRAMELOWERING_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSEFRAMELOWERING_H
#include "MipsFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp
index 47e1931..7096382 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp
@@ -130,15 +130,12 @@ void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator I = MBB.begin();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
const TargetRegisterClass *RC;
- if (Subtarget->isABI_N64())
- RC = (const TargetRegisterClass*)&Mips::GPR64RegClass;
- else
- RC = (const TargetRegisterClass*)&Mips::GPR32RegClass;
+ RC = (Subtarget->isABI_N64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
V0 = RegInfo.createVirtualRegister(RC);
V1 = RegInfo.createVirtualRegister(RC);
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h
index 57328d2..2e11fa7 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSEISELDAGTODAG_H
-#define MIPSSEISELDAGTODAG_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSEISELDAGTODAG_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSEISELDAGTODAG_H
#include "MipsISelDAGToDAG.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp
index d7452e2..29aac2e 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
#include "MipsSEISelLowering.h"
+#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -34,7 +35,7 @@ static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
"stores to their single precision "
"counterparts"));
-MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM,
+MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI)
: MipsTargetLowering(TM, STI) {
// Set up the register classes
@@ -45,17 +46,13 @@ MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM,
if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
// Expand all truncating stores and extending loads.
- unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
-
- for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
- for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
- setTruncStoreAction((MVT::SimpleValueType)VT0,
- (MVT::SimpleValueType)VT1, Expand);
-
- setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
- setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
+ for (MVT VT0 : MVT::vector_valuetypes()) {
+ for (MVT VT1 : MVT::vector_valuetypes()) {
+ setTruncStoreAction(VT0, VT1, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
+ }
}
}
@@ -127,6 +124,8 @@ MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM,
if (Subtarget.isGP64bit()) {
setOperationAction(ISD::MULHS, MVT::i64, Custom);
setOperationAction(ISD::MULHU, MVT::i64, Custom);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
}
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
@@ -134,8 +133,6 @@ MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM,
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
- setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
- setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
@@ -227,7 +224,7 @@ MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM,
}
const MipsTargetLowering *
-llvm::createMipsSETargetLowering(MipsTargetMachine &TM,
+llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI) {
return new MipsSETargetLowering(TM, STI);
}
@@ -329,9 +326,10 @@ addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
}
bool
-MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned,
- bool *Fast) const {
+MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
if (Subtarget.systemSupportsUnalignedAccess()) {
@@ -577,10 +575,9 @@ static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
Log2 == ExtendTySize) {
SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
- DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
- Op0->getVTList(),
- makeArrayRef(Ops, Op0->getNumOperands()));
- return Op0;
+ return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
+ Op0->getVTList(),
+ makeArrayRef(Ops, Op0->getNumOperands()));
}
}
@@ -922,10 +919,9 @@ static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
TotalBits <= 32)) {
SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
Op0Op0->getOperand(2) };
- DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
- Op0Op0->getVTList(),
- makeArrayRef(Ops, Op0Op0->getNumOperands()));
- return Op0Op0;
+ return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
+ Op0Op0->getVTList(),
+ makeArrayRef(Ops, Op0Op0->getNumOperands()));
}
}
}
@@ -1186,10 +1182,12 @@ void MipsSETargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
- CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const {
Ops.push_back(Callee);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
- InternalLinkage, CLI, Callee, Chain);
+ InternalLinkage, IsCallReloc, CLI, Callee,
+ Chain);
}
SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
@@ -1245,13 +1243,13 @@ SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
// i32 store to lower address.
Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
- Nd.getTBAAInfo());
+ Nd.getAAInfo());
// i32 store to higher address.
Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
Nd.isVolatile(), Nd.isNonTemporal(),
- std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
+ std::min(Nd.getAlignment(), 4U), Nd.getAAInfo());
}
SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
@@ -2745,7 +2743,8 @@ emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
// $vr0 = phi($vr2, $fbb, $vr1, $tbb)
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
@@ -2810,7 +2809,8 @@ emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
// $rd = phi($rd1, $fbb, $rd2, $tbb)
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
@@ -2871,7 +2871,8 @@ emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
MachineBasicBlock * MipsSETargetLowering::
emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Fd = MI->getOperand(0).getReg();
@@ -2905,7 +2906,8 @@ MachineBasicBlock * MipsSETargetLowering::
emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
assert(Subtarget.isFP64bit());
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
unsigned Fd = MI->getOperand(0).getReg();
unsigned Ws = MI->getOperand(1).getReg();
@@ -2934,7 +2936,8 @@ emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
MachineBasicBlock *
MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
@@ -2968,7 +2971,8 @@ MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
MachineBasicBlock *BB) const {
assert(Subtarget.isFP64bit());
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
@@ -3016,7 +3020,8 @@ MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned EltSizeInBytes,
bool IsFP) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
@@ -3126,7 +3131,8 @@ MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
MachineBasicBlock *
MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
@@ -3157,7 +3163,8 @@ MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
MachineBasicBlock *BB) const {
assert(Subtarget.isFP64bit());
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
@@ -3185,7 +3192,8 @@ MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
MachineBasicBlock *
MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
unsigned Ws1 = RegInfo.createVirtualRegister(RC);
@@ -3214,7 +3222,8 @@ MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
MachineBasicBlock *
MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
unsigned Ws1 = RegInfo.createVirtualRegister(RC);
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h
index 2121b3b..d44f8d8 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSEISelLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSEISELLOWERING_H
-#define MIPSSEISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSEISELLOWERING_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSEISELLOWERING_H
#include "MipsISelLowering.h"
#include "MipsRegisterInfo.h"
@@ -20,7 +20,7 @@
namespace llvm {
class MipsSETargetLowering : public MipsTargetLowering {
public:
- explicit MipsSETargetLowering(MipsTargetMachine &TM,
+ explicit MipsSETargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI);
/// \brief Enable MSA support for the given integer type and Register
@@ -31,8 +31,9 @@ namespace llvm {
void addMSAFloatType(MVT::SimpleValueType Ty,
const TargetRegisterClass *RC);
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS = 0,
- bool *Fast = nullptr) const override;
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS = 0,
+ unsigned Align = 1,
+ bool *Fast = nullptr) const override;
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
@@ -58,7 +59,7 @@ namespace llvm {
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
- CallLoweringInfo &CLI, SDValue Callee,
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
SDValue Chain) const override;
SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
@@ -113,4 +114,4 @@ namespace llvm {
};
}
-#endif // MipsSEISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp
index 69cb74c..74f291f 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp
@@ -27,7 +27,7 @@ using namespace llvm;
MipsSEInstrInfo::MipsSEInstrInfo(const MipsSubtarget &STI)
: MipsInstrInfo(STI, STI.getRelocationModel() == Reloc::PIC_ ? Mips::B
: Mips::J),
- RI(STI), IsN64(STI.isABI_N64()) {}
+ RI(STI) {}
const MipsRegisterInfo &MipsSEInstrInfo::getRegisterInfo() const {
return RI;
@@ -38,9 +38,8 @@ const MipsRegisterInfo &MipsSEInstrInfo::getRegisterInfo() const {
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
-unsigned MipsSEInstrInfo::
-isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
-{
+unsigned MipsSEInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
unsigned Opc = MI->getOpcode();
if ((Opc == Mips::LW) || (Opc == Mips::LD) ||
@@ -61,9 +60,8 @@ isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
-unsigned MipsSEInstrInfo::
-isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const
-{
+unsigned MipsSEInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
unsigned Opc = MI->getOpcode();
if ((Opc == Mips::SW) || (Opc == Mips::SD) ||
@@ -352,6 +350,8 @@ unsigned MipsSEInstrInfo::getOppositeBranchOpc(unsigned Opc) const {
case Mips::BLEZ64: return Mips::BGTZ64;
case Mips::BC1T: return Mips::BC1F;
case Mips::BC1F: return Mips::BC1T;
+ case Mips::BEQZC_MM: return Mips::BNEZC_MM;
+ case Mips::BNEZC_MM: return Mips::BEQZC_MM;
}
}
@@ -422,7 +422,7 @@ unsigned MipsSEInstrInfo::getAnalyzableBrOpc(unsigned Opc) const {
Opc == Mips::BEQ64 || Opc == Mips::BNE64 || Opc == Mips::BGTZ64 ||
Opc == Mips::BGEZ64 || Opc == Mips::BLTZ64 || Opc == Mips::BLEZ64 ||
Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::B ||
- Opc == Mips::J) ?
+ Opc == Mips::J || Opc == Mips::BEQZC_MM || Opc == Mips::BNEZC_MM) ?
Opc : 0;
}
@@ -620,15 +620,13 @@ void MipsSEInstrInfo::expandEhReturn(MachineBasicBlock &MBB,
// jr $ra (via RetRA)
const TargetMachine &TM = MBB.getParent()->getTarget();
if (TM.getRelocationModel() == Reloc::PIC_)
- BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), T9)
+ BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), T9)
.addReg(TargetReg)
.addReg(ZERO);
- BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), RA)
+ BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), RA)
.addReg(TargetReg)
.addReg(ZERO);
- BuildMI(MBB, I, I->getDebugLoc(), TM.getInstrInfo()->get(ADDU), SP)
- .addReg(SP)
- .addReg(OffsetReg);
+ BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), SP).addReg(SP).addReg(OffsetReg);
expandRetRA(MBB, I);
}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h
index 9576fef..d16fab2 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSEINSTRUCTIONINFO_H
-#define MIPSSEINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSEINSTRINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSEINSTRINFO_H
#include "MipsInstrInfo.h"
#include "MipsSERegisterInfo.h"
@@ -21,7 +21,6 @@ namespace llvm {
class MipsSEInstrInfo : public MipsInstrInfo {
const MipsSERegisterInfo RI;
- bool IsN64;
public:
explicit MipsSEInstrInfo(const MipsSubtarget &STI);
diff --git a/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp
index 0af1a6b..55c6638 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.cpp
@@ -172,7 +172,7 @@ void MipsSERegisterInfo::eliminateFI(MachineBasicBlock::iterator II,
unsigned Reg = RegInfo.createVirtualRegister(RC);
const MipsSEInstrInfo &TII =
*static_cast<const MipsSEInstrInfo *>(
- MBB.getParent()->getTarget().getInstrInfo());
+ MBB.getParent()->getSubtarget().getInstrInfo());
BuildMI(MBB, II, DL, TII.get(ADDiu), Reg).addReg(FrameReg).addImm(Offset);
FrameReg = Reg;
@@ -187,7 +187,7 @@ void MipsSERegisterInfo::eliminateFI(MachineBasicBlock::iterator II,
unsigned NewImm = 0;
const MipsSEInstrInfo &TII =
*static_cast<const MipsSEInstrInfo *>(
- MBB.getParent()->getTarget().getInstrInfo());
+ MBB.getParent()->getSubtarget().getInstrInfo());
unsigned Reg = TII.loadImmediate(Offset, MBB, II, DL,
OffsetBitSize == 16 ? &NewImm : nullptr);
BuildMI(MBB, II, DL, TII.get(ADDu), Reg).addReg(FrameReg)
diff --git a/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h
index f2f3a7e..6b70d07 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSERegisterInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSEREGISTERINFO_H
-#define MIPSSEREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSEREGISTERINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSEREGISTERINFO_H
#include "MipsRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h b/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h
index 2b3d527..061423f 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSELECTIONDAGINFO_H
-#define MIPSSELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp b/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp
index 9a1c409..d035ebe 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsSubtarget.cpp
@@ -58,6 +58,10 @@ Mips16ConstantIslands(
cl::desc("MIPS: mips16 constant islands enable."),
cl::init(true));
+static cl::opt<bool>
+GPOpt("mgpopt", cl::Hidden,
+ cl::desc("MIPS: Enable gp-relative addressing of small data items"));
+
/// Select the Mips CPU for the given triple and cpu name.
/// FIXME: Merge with the copy in MipsMCTargetDesc.cpp
static StringRef selectMipsCPU(Triple TT, StringRef CPU) {
@@ -104,34 +108,30 @@ static std::string computeDataLayout(const MipsSubtarget &ST) {
MipsSubtarget::MipsSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, bool little,
- MipsTargetMachine *_TM)
- : MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(Mips32),
+ const MipsTargetMachine &TM)
+ : MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(MipsDefault),
ABI(MipsABIInfo::Unknown()), IsLittle(little), IsSingleFloat(false),
IsFPXX(false), NoABICalls(false), IsFP64bit(false), UseOddSPReg(true),
IsNaN2008bit(false), IsGP64bit(false), HasVFPU(false), HasCnMips(false),
- IsLinux(true), HasMips3_32(false), HasMips3_32r2(false),
- HasMips4_32(false), HasMips4_32r2(false), HasMips5_32r2(false),
- InMips16Mode(false), InMips16HardFloat(Mips16HardFloat),
- InMicroMipsMode(false), HasDSP(false), HasDSPR2(false),
- AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16),
- HasMSA(false), TM(_TM), TargetTriple(TT),
+ HasMips3_32(false), HasMips3_32r2(false), HasMips4_32(false),
+ HasMips4_32r2(false), HasMips5_32r2(false), InMips16Mode(false),
+ InMips16HardFloat(Mips16HardFloat), InMicroMipsMode(false), HasDSP(false),
+ HasDSPR2(false), AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16),
+ HasMSA(false), TM(TM), TargetTriple(TT),
DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS, TM))),
- TSInfo(DL), JITInfo(), InstrInfo(MipsInstrInfo::create(*this)),
+ TSInfo(DL), InstrInfo(MipsInstrInfo::create(*this)),
FrameLowering(MipsFrameLowering::create(*this)),
- TLInfo(MipsTargetLowering::create(*TM, *this)) {
+ TLInfo(MipsTargetLowering::create(TM, *this)) {
PreviousInMips16Mode = InMips16Mode;
- // Don't even attempt to generate code for MIPS-I, MIPS-II, MIPS-III, and
- // MIPS-V. They have not been tested and currently exist for the integrated
- // assembler only.
+ if (MipsArchVersion == MipsDefault)
+ MipsArchVersion = Mips32;
+
+ // Don't even attempt to generate code for MIPS-I and MIPS-V. They have not
+ // been tested and currently exist for the integrated assembler only.
if (MipsArchVersion == Mips1)
report_fatal_error("Code generation for MIPS-I is not implemented", false);
- if (MipsArchVersion == Mips2)
- report_fatal_error("Code generation for MIPS-II is not implemented", false);
- if (MipsArchVersion == Mips3)
- report_fatal_error("Code generation for MIPS-III is not implemented",
- false);
if (MipsArchVersion == Mips5)
report_fatal_error("Code generation for MIPS-V is not implemented", false);
@@ -167,14 +167,16 @@ MipsSubtarget::MipsSubtarget(const std::string &TT, const std::string &CPU,
report_fatal_error(ISA + " is not compatible with the DSP ASE", false);
}
- // Is the target system Linux ?
- if (TT.find("linux") == std::string::npos)
- IsLinux = false;
+ if (NoABICalls && TM.getRelocationModel() == Reloc::PIC_)
+ report_fatal_error("position-independent code requires '-mabicalls'");
// Set UseSmallSection.
- // TODO: Investigate the IsLinux check. I suspect it's really checking for
- // bare-metal.
- UseSmallSection = !IsLinux && (TM->getRelocationModel() == Reloc::Static);
+ UseSmallSection = GPOpt;
+ if (!NoABICalls && GPOpt) {
+ errs() << "warning: cannot use small-data accesses for '-mabicalls'"
+ << "\n";
+ UseSmallSection = false;
+ }
}
/// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
@@ -192,7 +194,7 @@ CodeGenOpt::Level MipsSubtarget::getOptLevelToEnablePostRAScheduler() const {
MipsSubtarget &
MipsSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS,
- const TargetMachine *TM) {
+ const TargetMachine &TM) {
std::string CPUName = selectMipsCPU(TargetTriple, CPU);
// Parse features string.
@@ -200,14 +202,14 @@ MipsSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS,
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUName);
- if (InMips16Mode && !TM->Options.UseSoftFloat)
+ if (InMips16Mode && !TM.Options.UseSoftFloat)
InMips16HardFloat = true;
return *this;
}
bool MipsSubtarget::abiUsesSoftFloat() const {
- return TM->Options.UseSoftFloat && !InMips16HardFloat;
+ return TM.Options.UseSoftFloat && !InMips16HardFloat;
}
bool MipsSubtarget::useConstantIslands() {
@@ -216,5 +218,5 @@ bool MipsSubtarget::useConstantIslands() {
}
Reloc::Model MipsSubtarget::getRelocationModel() const {
- return TM->getRelocationModel();
+ return TM.getRelocationModel();
}
diff --git a/contrib/llvm/lib/Target/Mips/MipsSubtarget.h b/contrib/llvm/lib/Target/Mips/MipsSubtarget.h
index c5b9a3e..aca69a6 100644
--- a/contrib/llvm/lib/Target/Mips/MipsSubtarget.h
+++ b/contrib/llvm/lib/Target/Mips/MipsSubtarget.h
@@ -11,19 +11,18 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSSUBTARGET_H
-#define MIPSSUBTARGET_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSSUBTARGET_H
+#define LLVM_LIB_TARGET_MIPS_MIPSSUBTARGET_H
+#include "MCTargetDesc/MipsABIInfo.h"
#include "MipsFrameLowering.h"
#include "MipsISelLowering.h"
#include "MipsInstrInfo.h"
-#include "MipsJITInfo.h"
#include "MipsSelectionDAGInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetSubtargetInfo.h"
-#include "MipsABIInfo.h"
#include <string>
#define GET_SUBTARGETINFO_HEADER
@@ -38,6 +37,7 @@ class MipsSubtarget : public MipsGenSubtargetInfo {
virtual void anchor();
enum MipsArchEnum {
+ MipsDefault,
Mips1, Mips2, Mips32, Mips32r2, Mips32r6, Mips3, Mips4, Mips5, Mips64,
Mips64r2, Mips64r6
};
@@ -136,13 +136,12 @@ class MipsSubtarget : public MipsGenSubtargetInfo {
// as from the command line
enum {NoOverride, Mips16Override, NoMips16Override} OverrideMode;
- MipsTargetMachine *TM;
+ const MipsTargetMachine &TM;
Triple TargetTriple;
const DataLayout DL; // Calculates type size & alignment
const MipsSelectionDAGInfo TSInfo;
- MipsJITInfo JITInfo;
std::unique_ptr<const MipsInstrInfo> InstrInfo;
std::unique_ptr<const MipsFrameLowering> FrameLowering;
std::unique_ptr<const MipsTargetLowering> TLInfo;
@@ -164,7 +163,8 @@ public:
/// This constructor initializes the data members to match that
/// of the specified triple.
MipsSubtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, bool little, MipsTargetMachine *TM);
+ const std::string &FS, bool little,
+ const MipsTargetMachine &TM);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
@@ -223,7 +223,6 @@ public:
bool hasDSP() const { return HasDSP; }
bool hasDSPR2() const { return HasDSPR2; }
bool hasMSA() const { return HasMSA; }
- bool isLinux() const { return IsLinux; }
bool useSmallSection() const { return UseSmallSection; }
bool hasStandardEncoding() const { return !inMips16Mode(); }
@@ -238,7 +237,6 @@ public:
bool hasExtractInsert() const { return !inMips16Mode() && hasMips32r2(); }
bool hasMTHC1() const { return hasMips32r2(); }
- const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
bool allowMixed16_32() const { return inMips16ModeDefault() |
AllowMixed16_32;}
@@ -256,7 +254,7 @@ public:
Reloc::Model getRelocationModel() const;
MipsSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS,
- const TargetMachine *TM);
+ const TargetMachine &TM);
/// Does the system support unaligned memory access.
///
@@ -269,17 +267,23 @@ public:
void setHelperClassesMips16();
void setHelperClassesMipsSE();
- MipsJITInfo *getJITInfo() { return &JITInfo; }
- const MipsSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
- const MipsInstrInfo *getInstrInfo() const { return InstrInfo.get(); }
- const TargetFrameLowering *getFrameLowering() const {
+ const MipsSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const MipsInstrInfo *getInstrInfo() const override { return InstrInfo.get(); }
+ const TargetFrameLowering *getFrameLowering() const override {
return FrameLowering.get();
}
- const MipsRegisterInfo *getRegisterInfo() const {
+ const MipsRegisterInfo *getRegisterInfo() const override {
return &InstrInfo->getRegisterInfo();
}
- const MipsTargetLowering *getTargetLowering() const { return TLInfo.get(); }
+ const MipsTargetLowering *getTargetLowering() const override {
+ return TLInfo.get();
+ }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &InstrItins;
+ }
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp
index bb1870e..426b71d 100644
--- a/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.cpp
@@ -26,6 +26,7 @@
#include "MipsSEISelDAGToDAG.h"
#include "MipsSEISelLowering.h"
#include "MipsSEInstrInfo.h"
+#include "MipsTargetObjectFile.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/PassManager.h"
@@ -56,15 +57,20 @@ MipsTargetMachine::MipsTargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
- Subtarget(nullptr), DefaultSubtarget(TT, CPU, FS, isLittle, this),
+ isLittle(isLittle),
+ TLOF(make_unique<MipsTargetObjectFile>()),
+ Subtarget(nullptr),
+ DefaultSubtarget(TT, CPU, FS, isLittle, *this),
NoMips16Subtarget(TT, CPU, FS.empty() ? "-mips16" : FS.str() + ",-mips16",
- isLittle, this),
+ isLittle, *this),
Mips16Subtarget(TT, CPU, FS.empty() ? "+mips16" : FS.str() + ",+mips16",
- isLittle, this) {
+ isLittle, *this) {
Subtarget = &DefaultSubtarget;
initAsmInfo();
}
+MipsTargetMachine::~MipsTargetMachine() {}
+
void MipsebTargetMachine::anchor() { }
MipsebTargetMachine::
@@ -83,20 +89,60 @@ MipselTargetMachine(const Target &T, StringRef TT,
CodeGenOpt::Level OL)
: MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
+const MipsSubtarget *
+MipsTargetMachine::getSubtargetImpl(const Function &F) const {
+ AttributeSet FnAttrs = F.getAttributes();
+ Attribute CPUAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
+ Attribute FSAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
+
+ std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
+ ? CPUAttr.getValueAsString().str()
+ : TargetCPU;
+ std::string FS = !FSAttr.hasAttribute(Attribute::None)
+ ? FSAttr.getValueAsString().str()
+ : TargetFS;
+ bool hasMips16Attr =
+ !FnAttrs.getAttribute(AttributeSet::FunctionIndex, "mips16")
+ .hasAttribute(Attribute::None);
+ bool hasNoMips16Attr =
+ !FnAttrs.getAttribute(AttributeSet::FunctionIndex, "nomips16")
+ .hasAttribute(Attribute::None);
+
+ // FIXME: This is related to the code below to reset the target options,
+ // we need to know whether or not the soft float flag is set on the
+ // function before we can generate a subtarget. We also need to use
+ // it as a key for the subtarget since that can be the only difference
+ // between two functions.
+ Attribute SFAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
+ bool softFloat = !SFAttr.hasAttribute(Attribute::None)
+ ? SFAttr.getValueAsString() == "true"
+ : Options.UseSoftFloat;
+
+ if (hasMips16Attr)
+ FS += FS.empty() ? "+mips16" : ",+mips16";
+ else if (hasNoMips16Attr)
+ FS += FS.empty() ? "-mips16" : ",-mips16";
+
+ auto &I = SubtargetMap[CPU + FS + (softFloat ? "use-soft-float=true"
+ : "use-soft-float=false")];
+ if (!I) {
+ // This needs to be done before we create a new subtarget since any
+ // creation will depend on the TM and the code generation flags on the
+ // function that reside in TargetOptions.
+ resetTargetOptions(F);
+ I = llvm::make_unique<MipsSubtarget>(TargetTriple, CPU, FS, isLittle, *this);
+ }
+ return I.get();
+}
+
void MipsTargetMachine::resetSubtarget(MachineFunction *MF) {
DEBUG(dbgs() << "resetSubtarget\n");
- AttributeSet FnAttrs = MF->getFunction()->getAttributes();
- bool Mips16Attr = FnAttrs.hasAttribute(AttributeSet::FunctionIndex, "mips16");
- bool NoMips16Attr =
- FnAttrs.hasAttribute(AttributeSet::FunctionIndex, "nomips16");
- assert(!(Mips16Attr && NoMips16Attr) &&
- "mips16 and nomips16 specified on the same function");
- if (Mips16Attr)
- Subtarget = &Mips16Subtarget;
- else if (NoMips16Attr)
- Subtarget = &NoMips16Subtarget;
- else
- Subtarget = &DefaultSubtarget;
+
+ Subtarget = const_cast<MipsSubtarget *>(getSubtargetImpl(*MF->getFunction()));
+ MF->setSubtarget(Subtarget);
return;
}
@@ -124,9 +170,9 @@ public:
void addIRPasses() override;
bool addInstSelector() override;
void addMachineSSAOptimization() override;
- bool addPreEmitPass() override;
+ void addPreEmitPass() override;
- bool addPreRegAlloc() override;
+ void addPreRegAlloc() override;
};
} // namespace
@@ -137,11 +183,11 @@ TargetPassConfig *MipsTargetMachine::createPassConfig(PassManagerBase &PM) {
void MipsPassConfig::addIRPasses() {
TargetPassConfig::addIRPasses();
+ addPass(createAtomicExpandPass(&getMipsTargetMachine()));
if (getMipsSubtarget().os16())
addPass(createMipsOs16(getMipsTargetMachine()));
if (getMipsSubtarget().inMips16HardFloat())
addPass(createMips16HardFloat(getMipsTargetMachine()));
- addPass(createPartiallyInlineLibCallsPass());
}
// Install an instruction selector pass using
// the ISelDag to gen Mips code.
@@ -157,13 +203,9 @@ void MipsPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
}
-bool MipsPassConfig::addPreRegAlloc() {
- if (getOptLevel() == CodeGenOpt::None) {
+void MipsPassConfig::addPreRegAlloc() {
+ if (getOptLevel() == CodeGenOpt::None)
addPass(createMipsOptimizePICCallPass(getMipsTargetMachine()));
- return true;
- }
- else
- return false;
}
void MipsTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
@@ -182,17 +224,9 @@ void MipsTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Implemented by targets that want to run passes immediately before
// machine code is emitted. return true if -print-machineinstrs should
// print out the code after the passes.
-bool MipsPassConfig::addPreEmitPass() {
+void MipsPassConfig::addPreEmitPass() {
MipsTargetMachine &TM = getMipsTargetMachine();
addPass(createMipsDelaySlotFillerPass(TM));
addPass(createMipsLongBranchPass(TM));
addPass(createMipsConstantIslandPass(TM));
- return true;
-}
-
-bool MipsTargetMachine::addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) {
- // Machine code emitter pass for Mips.
- PM.add(createMipsJITCodeEmitterPass(*this, JCE));
- return false;
}
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h
index bcf411f..4b097a2 100644
--- a/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSTARGETMACHINE_H
-#define MIPSTARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSTARGETMACHINE_H
+#define LLVM_LIB_TARGET_MIPS_MIPSTARGETMACHINE_H
#include "MipsSubtarget.h"
#include "llvm/CodeGen/Passes.h"
@@ -25,57 +25,42 @@ class formatted_raw_ostream;
class MipsRegisterInfo;
class MipsTargetMachine : public LLVMTargetMachine {
+ bool isLittle;
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
MipsSubtarget *Subtarget;
MipsSubtarget DefaultSubtarget;
MipsSubtarget NoMips16Subtarget;
MipsSubtarget Mips16Subtarget;
+ mutable StringMap<std::unique_ptr<MipsSubtarget>> SubtargetMap;
+
public:
MipsTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle);
-
- virtual ~MipsTargetMachine() {}
+ ~MipsTargetMachine() override;
void addAnalysisPasses(PassManagerBase &PM) override;
- const MipsInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const TargetFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
const MipsSubtarget *getSubtargetImpl() const override {
if (Subtarget)
return Subtarget;
return &DefaultSubtarget;
}
- const InstrItineraryData *getInstrItineraryData() const override {
- return Subtarget->inMips16Mode()
- ? nullptr
- : &getSubtargetImpl()->getInstrItineraryData();
- }
- MipsJITInfo *getJITInfo() override {
- return Subtarget->getJITInfo();
- }
- const MipsRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const MipsTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- const MipsSelectionDAGInfo* getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
+
+ const MipsSubtarget *getSubtargetImpl(const Function &F) const override;
+
/// \brief Reset the subtarget for the Mips target.
void resetSubtarget(MachineFunction *MF);
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
- bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
+
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
+
+ bool isLittleEndian() const { return isLittle; }
};
/// MipsebTargetMachine - Mips32/64 big endian target machine.
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp
index 13f9408..b56c39b 100644
--- a/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.cpp
@@ -24,6 +24,17 @@ SSThreshold("mips-ssection-threshold", cl::Hidden,
cl::desc("Small data and bss section threshold size (default=8)"),
cl::init(8));
+static cl::opt<bool>
+LocalSData("mlocal-sdata", cl::Hidden,
+ cl::desc("MIPS: Use gp_rel for object-local data."),
+ cl::init(true));
+
+static cl::opt<bool>
+ExternSData("mextern-sdata", cl::Hidden,
+ cl::desc("MIPS: Use gp_rel for data that is not defined by the "
+ "current object."),
+ cl::init(true));
+
void MipsTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM){
TargetLoweringObjectFileELF::Initialize(Ctx, TM);
InitializeELF(TM.Options.UseInitArray);
@@ -37,29 +48,46 @@ void MipsTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM){
getContext().getELFSection(".sbss", ELF::SHT_NOBITS,
ELF::SHF_WRITE |ELF::SHF_ALLOC,
SectionKind::getBSS());
+ this->TM = &TM;
}
// A address must be loaded from a small section if its size is less than the
// small section size threshold. Data in this section must be addressed using
// gp_rel operator.
static bool IsInSmallSection(uint64_t Size) {
+ // gcc has traditionally not treated zero-sized objects as small data, so this
+ // is effectively part of the ABI.
return Size > 0 && Size <= SSThreshold;
}
-bool MipsTargetObjectFile::IsGlobalInSmallSection(const GlobalValue *GV,
- const TargetMachine &TM) const {
+/// Return true if this global address should be placed into small data/bss
+/// section.
+bool MipsTargetObjectFile::
+IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM) const {
+ // We first check the case where global is a declaration, because finding
+ // section kind using getKindForGlobal() is only allowed for global
+ // definitions.
if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage())
- return false;
+ return IsGlobalInSmallSectionImpl(GV, TM);
return IsGlobalInSmallSection(GV, TM, getKindForGlobal(GV, TM));
}
-/// IsGlobalInSmallSection - Return true if this global address should be
-/// placed into small data/bss section.
+/// Return true if this global address should be placed into small data/bss
+/// section.
bool MipsTargetObjectFile::
IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
SectionKind Kind) const {
+ return (IsGlobalInSmallSectionImpl(GV, TM) &&
+ (Kind.isDataRel() || Kind.isBSS() || Kind.isCommon()));
+}
+/// Return true if this global address should be placed into small data/bss
+/// section. This method does all the work, except for checking the section
+/// kind.
+bool MipsTargetObjectFile::
+IsGlobalInSmallSectionImpl(const GlobalValue *GV,
+ const TargetMachine &TM) const {
const MipsSubtarget &Subtarget = TM.getSubtarget<MipsSubtarget>();
// Return if small section is not available.
@@ -71,21 +99,20 @@ IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
if (!GVA)
return false;
- // We can only do this for datarel or BSS objects for now.
- if (!Kind.isBSS() && !Kind.isDataRel())
+ // Enforce -mlocal-sdata.
+ if (!LocalSData && GV->hasLocalLinkage())
return false;
- // If this is a internal constant string, there is a special
- // section for it, but not in small data/bss.
- if (Kind.isMergeable1ByteCString())
+ // Enforce -mextern-sdata.
+ if (!ExternSData && ((GV->hasExternalLinkage() && GV->isDeclaration()) ||
+ GV->hasCommonLinkage()))
return false;
Type *Ty = GV->getType()->getElementType();
- return IsInSmallSection(TM.getDataLayout()->getTypeAllocSize(Ty));
+ return IsInSmallSection(
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Ty));
}
-
-
const MCSection *MipsTargetObjectFile::
SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
Mangler &Mang, const TargetMachine &TM) const {
@@ -95,9 +122,27 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
// Handle Small Section classification here.
if (Kind.isBSS() && IsGlobalInSmallSection(GV, TM, Kind))
return SmallBSSSection;
- if (Kind.isDataNoRel() && IsGlobalInSmallSection(GV, TM, Kind))
+ if (Kind.isDataRel() && IsGlobalInSmallSection(GV, TM, Kind))
return SmallDataSection;
// Otherwise, we work the same as ELF.
return TargetLoweringObjectFileELF::SelectSectionForGlobal(GV, Kind, Mang,TM);
}
+
+/// Return true if this constant should be placed into small data section.
+bool MipsTargetObjectFile::
+IsConstantInSmallSection(const Constant *CN, const TargetMachine &TM) const {
+ return (TM.getSubtarget<MipsSubtarget>().useSmallSection() &&
+ LocalSData &&
+ IsInSmallSection(TM.getSubtargetImpl()->getDataLayout()
+ ->getTypeAllocSize(CN->getType())));
+}
+
+const MCSection *MipsTargetObjectFile::
+getSectionForConstant(SectionKind Kind, const Constant *C) const {
+ if (IsConstantInSmallSection(C, *TM))
+ return SmallDataSection;
+
+ // Otherwise, we work the same as ELF.
+ return TargetLoweringObjectFileELF::getSectionForConstant(Kind, C);
+}
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h
index 2bf5a75..3a2b298 100644
--- a/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_MIPS_TARGETOBJECTFILE_H
-#define LLVM_TARGET_MIPS_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSTARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_MIPS_MIPSTARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
@@ -17,21 +17,30 @@ namespace llvm {
class MipsTargetObjectFile : public TargetLoweringObjectFileELF {
const MCSection *SmallDataSection;
const MCSection *SmallBSSSection;
+ const TargetMachine *TM;
public:
void Initialize(MCContext &Ctx, const TargetMachine &TM) override;
-
- /// IsGlobalInSmallSection - Return true if this global address should be
- /// placed into small data/bss section.
- bool IsGlobalInSmallSection(const GlobalValue *GV,
- const TargetMachine &TM, SectionKind Kind)const;
+ /// Return true if this global address should be placed into small data/bss
+ /// section.
+ bool IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
+ SectionKind Kind) const;
bool IsGlobalInSmallSection(const GlobalValue *GV,
const TargetMachine &TM) const;
+ bool IsGlobalInSmallSectionImpl(const GlobalValue *GV,
+ const TargetMachine &TM) const;
const MCSection *SelectSectionForGlobal(const GlobalValue *GV,
SectionKind Kind, Mangler &Mang,
const TargetMachine &TM) const override;
+
+ /// Return true if this constant should be placed into small data section.
+ bool IsConstantInSmallSection(const Constant *CN,
+ const TargetMachine &TM) const;
+
+ const MCSection *getSectionForConstant(SectionKind Kind,
+ const Constant *C) const override;
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h b/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h
index 99f7d4c..6dcd15a 100644
--- a/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h
+++ b/contrib/llvm/lib/Target/Mips/MipsTargetStreamer.h
@@ -7,12 +7,13 @@
//
//===----------------------------------------------------------------------===//
-#ifndef MIPSTARGETSTREAMER_H
-#define MIPSTARGETSTREAMER_H
+#ifndef LLVM_LIB_TARGET_MIPS_MIPSTARGETSTREAMER_H
+#define LLVM_LIB_TARGET_MIPS_MIPSTARGETSTREAMER_H
+#include "MCTargetDesc/MipsABIFlagsSection.h"
#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
-#include "MCTargetDesc/MipsABIFlagsSection.h"
namespace llvm {
@@ -30,6 +31,8 @@ public:
virtual void emitDirectiveSetNoReorder();
virtual void emitDirectiveSetMacro();
virtual void emitDirectiveSetNoMacro();
+ virtual void emitDirectiveSetMsa();
+ virtual void emitDirectiveSetNoMsa();
virtual void emitDirectiveSetAt();
virtual void emitDirectiveSetNoAt();
virtual void emitDirectiveEnd(StringRef Name);
@@ -45,13 +48,26 @@ public:
virtual void emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff);
virtual void emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff);
+ virtual void emitDirectiveSetArch(StringRef Arch);
+ virtual void emitDirectiveSetMips0();
+ virtual void emitDirectiveSetMips1();
+ virtual void emitDirectiveSetMips2();
+ virtual void emitDirectiveSetMips3();
+ virtual void emitDirectiveSetMips4();
+ virtual void emitDirectiveSetMips5();
+ virtual void emitDirectiveSetMips32();
virtual void emitDirectiveSetMips32R2();
+ virtual void emitDirectiveSetMips32R6();
virtual void emitDirectiveSetMips64();
virtual void emitDirectiveSetMips64R2();
+ virtual void emitDirectiveSetMips64R6();
virtual void emitDirectiveSetDsp();
+ virtual void emitDirectiveSetNoDsp();
+ virtual void emitDirectiveSetPop();
+ virtual void emitDirectiveSetPush();
// PIC support
- virtual void emitDirectiveCpload(unsigned RegNo);
+ virtual void emitDirectiveCpLoad(unsigned RegNo);
virtual void emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
const MCSymbol &Sym, bool IsReg);
@@ -72,8 +88,8 @@ public:
virtual void emitDirectiveModuleOddSPReg(bool Enabled, bool IsO32ABI);
virtual void emitDirectiveSetFp(MipsABIFlagsSection::FpABIKind Value){};
virtual void emitMipsAbiFlags(){};
- void setCanHaveModuleDir(bool Can) { canHaveModuleDirective = Can; }
- bool getCanHaveModuleDir() { return canHaveModuleDirective; }
+ void forbidModuleDirective() { ModuleDirectiveAllowed = false; }
+ bool isModuleDirectiveAllowed() { return ModuleDirectiveAllowed; }
// This method enables template classes to set internal abi flags
// structure values.
@@ -87,8 +103,21 @@ public:
protected:
MipsABIFlagsSection ABIFlagsSection;
+ bool GPRInfoSet;
+ unsigned GPRBitMask;
+ int GPROffset;
+
+ bool FPRInfoSet;
+ unsigned FPRBitMask;
+ int FPROffset;
+
+ bool FrameInfoSet;
+ int FrameOffset;
+ unsigned FrameReg;
+ unsigned ReturnReg;
+
private:
- bool canHaveModuleDirective;
+ bool ModuleDirectiveAllowed;
};
// This part is for ascii assembly output
@@ -106,6 +135,8 @@ public:
void emitDirectiveSetNoReorder() override;
void emitDirectiveSetMacro() override;
void emitDirectiveSetNoMacro() override;
+ void emitDirectiveSetMsa() override;
+ void emitDirectiveSetNoMsa() override;
void emitDirectiveSetAt() override;
void emitDirectiveSetNoAt() override;
void emitDirectiveEnd(StringRef Name) override;
@@ -121,13 +152,26 @@ public:
void emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) override;
void emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) override;
+ void emitDirectiveSetArch(StringRef Arch) override;
+ void emitDirectiveSetMips0() override;
+ void emitDirectiveSetMips1() override;
+ void emitDirectiveSetMips2() override;
+ void emitDirectiveSetMips3() override;
+ void emitDirectiveSetMips4() override;
+ void emitDirectiveSetMips5() override;
+ void emitDirectiveSetMips32() override;
void emitDirectiveSetMips32R2() override;
+ void emitDirectiveSetMips32R6() override;
void emitDirectiveSetMips64() override;
void emitDirectiveSetMips64R2() override;
+ void emitDirectiveSetMips64R6() override;
void emitDirectiveSetDsp() override;
+ void emitDirectiveSetNoDsp() override;
+ void emitDirectiveSetPop() override;
+ void emitDirectiveSetPush() override;
// PIC support
- virtual void emitDirectiveCpload(unsigned RegNo);
+ void emitDirectiveCpLoad(unsigned RegNo) override;
void emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
const MCSymbol &Sym, bool IsReg) override;
@@ -157,14 +201,8 @@ public:
void emitDirectiveSetMicroMips() override;
void emitDirectiveSetNoMicroMips() override;
void emitDirectiveSetMips16() override;
- void emitDirectiveSetNoMips16() override;
- void emitDirectiveSetReorder() override;
void emitDirectiveSetNoReorder() override;
- void emitDirectiveSetMacro() override;
- void emitDirectiveSetNoMacro() override;
- void emitDirectiveSetAt() override;
- void emitDirectiveSetNoAt() override;
void emitDirectiveEnd(StringRef Name) override;
void emitDirectiveEnt(const MCSymbol &Symbol) override;
@@ -178,13 +216,8 @@ public:
void emitMask(unsigned CPUBitmask, int CPUTopSavedRegOff) override;
void emitFMask(unsigned FPUBitmask, int FPUTopSavedRegOff) override;
- void emitDirectiveSetMips32R2() override;
- void emitDirectiveSetMips64() override;
- void emitDirectiveSetMips64R2() override;
- void emitDirectiveSetDsp() override;
-
// PIC support
- virtual void emitDirectiveCpload(unsigned RegNo);
+ void emitDirectiveCpLoad(unsigned RegNo) override;
void emitDirectiveCpsetup(unsigned RegNo, int RegOrOffset,
const MCSymbol &Sym, bool IsReg) override;
diff --git a/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h b/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h
index 1fb3c57..0496964 100644
--- a/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h
+++ b/contrib/llvm/lib/Target/NVPTX/InstPrinter/NVPTXInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTX_INST_PRINTER_H
-#define NVPTX_INST_PRINTER_H
+#ifndef LLVM_LIB_TARGET_NVPTX_INSTPRINTER_NVPTXINSTPRINTER_H
+#define LLVM_LIB_TARGET_NVPTX_INSTPRINTER_NVPTXINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h
index 16ec19c..a72ae2e 100644
--- a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXBaseInfo.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXBASEINFO_H
-#define NVPTXBASEINFO_H
+#ifndef LLVM_LIB_TARGET_NVPTX_MCTARGETDESC_NVPTXBASEINFO_H
+#define LLVM_LIB_TARGET_NVPTX_MCTARGETDESC_NVPTXBASEINFO_H
namespace llvm {
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp
index 366341a..11d737e 100644
--- a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.cpp
@@ -25,7 +25,7 @@ static cl::opt<bool> CompileForDebugging("debug-compile",
void NVPTXMCAsmInfo::anchor() {}
-NVPTXMCAsmInfo::NVPTXMCAsmInfo(const StringRef &TT) {
+NVPTXMCAsmInfo::NVPTXMCAsmInfo(StringRef TT) {
Triple TheTriple(TT);
if (TheTriple.getArch() == Triple::nvptx64) {
PointerSize = CalleeSaveStackSlotSize = 8;
@@ -33,8 +33,6 @@ NVPTXMCAsmInfo::NVPTXMCAsmInfo(const StringRef &TT) {
CommentString = "//";
- HasSetDirective = false;
-
HasSingleParameterDotFile = false;
InlineAsmStart = " inline asm";
@@ -52,5 +50,6 @@ NVPTXMCAsmInfo::NVPTXMCAsmInfo(const StringRef &TT) {
AscizDirective = " .b8";
// @TODO: Can we just disable this?
+ WeakDirective = "\t// .weak\t";
GlobalDirective = "\t// .globl\t";
}
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h
index 7d1633f..c324286 100644
--- a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTX_MCASM_INFO_H
-#define NVPTX_MCASM_INFO_H
+#ifndef LLVM_LIB_TARGET_NVPTX_MCTARGETDESC_NVPTXMCASMINFO_H
+#define LLVM_LIB_TARGET_NVPTX_MCTARGETDESC_NVPTXMCASMINFO_H
#include "llvm/MC/MCAsmInfo.h"
@@ -23,8 +23,8 @@ class StringRef;
class NVPTXMCAsmInfo : public MCAsmInfo {
virtual void anchor();
public:
- explicit NVPTXMCAsmInfo(const StringRef &TT);
+ explicit NVPTXMCAsmInfo(StringRef TT);
};
} // namespace llvm
-#endif // NVPTX_MCASM_INFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h
index af95c76..98821d2 100644
--- a/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/NVPTX/MCTargetDesc/NVPTXMCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXMCTARGETDESC_H
-#define NVPTXMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_NVPTX_MCTARGETDESC_NVPTXMCTARGETDESC_H
+#define LLVM_LIB_TARGET_NVPTX_MCTARGETDESC_NVPTXMCTARGETDESC_H
namespace llvm {
class Target;
diff --git a/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h b/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h
index f9fb059..a2d670f 100644
--- a/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h
+++ b/contrib/llvm/lib/Target/NVPTX/ManagedStringPool.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SUPPORT_MANAGED_STRING_H
-#define LLVM_SUPPORT_MANAGED_STRING_H
+#ifndef LLVM_LIB_TARGET_NVPTX_MANAGEDSTRINGPOOL_H
+#define LLVM_LIB_TARGET_NVPTX_MANAGEDSTRINGPOOL_H
#include "llvm/ADT/SmallVector.h"
#include <string>
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTX.h b/contrib/llvm/lib/Target/NVPTX/NVPTX.h
index e74c808..a3382eb 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTX.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTX.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_NVPTX_H
-#define LLVM_TARGET_NVPTX_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTX_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTX_H
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "llvm/ADT/StringMap.h"
@@ -59,8 +59,9 @@ inline static const char *NVPTXCondCodeToString(NVPTXCC::CondCodes CC) {
llvm_unreachable("Unknown condition code");
}
-FunctionPass *
-createNVPTXISelDag(NVPTXTargetMachine &TM, llvm::CodeGenOpt::Level OptLevel);
+ImmutablePass *createNVPTXTargetTransformInfoPass(const NVPTXTargetMachine *TM);
+FunctionPass *createNVPTXISelDag(NVPTXTargetMachine &TM,
+ llvm::CodeGenOpt::Level OptLevel);
ModulePass *createNVPTXAssignValidGlobalNamesPass();
ModulePass *createGenericToNVVMPass();
FunctionPass *createNVPTXFavorNonGenericAddrSpacesPass();
@@ -69,6 +70,7 @@ ModulePass *createNVVMReflectPass(const StringMap<int>& Mapping);
MachineFunctionPass *createNVPTXPrologEpilogPass();
MachineFunctionPass *createNVPTXReplaceImageHandlesPass();
FunctionPass *createNVPTXImageOptimizerPass();
+FunctionPass *createNVPTXLowerStructArgsPass();
bool isImageOrSamplerVal(const Value *, const Module *);
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h b/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h
index 5b61068..c343980 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAllocaHoisting.h
@@ -11,10 +11,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTX_ALLOCA_HOISTING_H_
-#define NVPTX_ALLOCA_HOISTING_H_
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXALLOCAHOISTING_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXALLOCAHOISTING_H
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Pass.h"
@@ -32,8 +33,8 @@ public:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DataLayoutPass>();
- AU.addPreserved("stack-protector");
AU.addPreserved<MachineFunctionAnalysis>();
+ AU.addPreserved<StackProtector>();
}
const char *getPassName() const override {
@@ -47,4 +48,4 @@ extern FunctionPass *createAllocaHoisting();
} // end namespace llvm
-#endif // NVPTX_ALLOCA_HOISTING_H_
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
index 187b88c..beec9b2 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
@@ -17,8 +17,8 @@
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "NVPTX.h"
#include "NVPTXInstrInfo.h"
-#include "NVPTXMachineFunctionInfo.h"
#include "NVPTXMCExpr.h"
+#include "NVPTXMachineFunctionInfo.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
@@ -88,12 +88,9 @@ void VisitGlobalVariableForEmission(
return;
// Do we have a circular dependency?
- if (Visiting.count(GV))
+ if (!Visiting.insert(GV).second)
report_fatal_error("Circular dependency found in global variable set");
- // Start visiting this global
- Visiting.insert(GV);
-
// Make sure we visit all dependents first
DenseSet<const GlobalVariable *> Others;
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
@@ -111,159 +108,6 @@ void VisitGlobalVariableForEmission(
}
}
-// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
-// cannot just link to the existing version.
-/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
-///
-using namespace nvptx;
-const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
- MCContext &Ctx = AP.OutContext;
-
- if (CV->isNullValue() || isa<UndefValue>(CV))
- return MCConstantExpr::Create(0, Ctx);
-
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
- return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
-
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
- return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
-
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
- return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
-
- const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
- if (!CE)
- llvm_unreachable("Unknown constant value to lower!");
-
- switch (CE->getOpcode()) {
- default:
- // If the code isn't optimized, there may be outstanding folding
- // opportunities. Attempt to fold the expression using DataLayout as a
- // last resort before giving up.
- if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
- if (C != CE)
- return LowerConstant(C, AP);
-
- // Otherwise report the problem to the user.
- {
- std::string S;
- raw_string_ostream OS(S);
- OS << "Unsupported expression in static initializer: ";
- CE->printAsOperand(OS, /*PrintType=*/ false,
- !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
- report_fatal_error(OS.str());
- }
- case Instruction::AddrSpaceCast: {
- // Strip any addrspace(1)->addrspace(0) addrspace casts. These will be
- // handled by the generic() logic in the MCExpr printer
- PointerType *DstTy = cast<PointerType>(CE->getType());
- PointerType *SrcTy = cast<PointerType>(CE->getOperand(0)->getType());
- if (SrcTy->getAddressSpace() == 1 && DstTy->getAddressSpace() == 0) {
- return LowerConstant(cast<const Constant>(CE->getOperand(0)), AP);
- }
- std::string S;
- raw_string_ostream OS(S);
- OS << "Unsupported expression in static initializer: ";
- CE->printAsOperand(OS, /*PrintType=*/ false,
- !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
- report_fatal_error(OS.str());
- }
- case Instruction::GetElementPtr: {
- const DataLayout &TD = *AP.TM.getDataLayout();
- // Generate a symbolic expression for the byte address
- APInt OffsetAI(TD.getPointerSizeInBits(), 0);
- cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
-
- const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
- if (!OffsetAI)
- return Base;
-
- int64_t Offset = OffsetAI.getSExtValue();
- return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
- Ctx);
- }
-
- case Instruction::Trunc:
- // We emit the value and depend on the assembler to truncate the generated
- // expression properly. This is important for differences between
- // blockaddress labels. Since the two labels are in the same function, it
- // is reasonable to treat their delta as a 32-bit value.
- // FALL THROUGH.
- case Instruction::BitCast:
- return LowerConstant(CE->getOperand(0), AP);
-
- case Instruction::IntToPtr: {
- const DataLayout &TD = *AP.TM.getDataLayout();
- // Handle casts to pointers by changing them into casts to the appropriate
- // integer type. This promotes constant folding and simplifies this code.
- Constant *Op = CE->getOperand(0);
- Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
- false /*ZExt*/);
- return LowerConstant(Op, AP);
- }
-
- case Instruction::PtrToInt: {
- const DataLayout &TD = *AP.TM.getDataLayout();
- // Support only foldable casts to/from pointers that can be eliminated by
- // changing the pointer to the appropriately sized integer type.
- Constant *Op = CE->getOperand(0);
- Type *Ty = CE->getType();
-
- const MCExpr *OpExpr = LowerConstant(Op, AP);
-
- // We can emit the pointer value into this slot if the slot is an
- // integer slot equal to the size of the pointer.
- if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
- return OpExpr;
-
- // Otherwise the pointer is smaller than the resultant integer, mask off
- // the high bits so we are sure to get a proper truncation if the input is
- // a constant expr.
- unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
- const MCExpr *MaskExpr =
- MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
- return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
- }
-
- // The MC library also has a right-shift operator, but it isn't consistently
- // signed or unsigned between different targets.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::Shl:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
- const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
- switch (CE->getOpcode()) {
- default:
- llvm_unreachable("Unknown binary operator constant cast expr");
- case Instruction::Add:
- return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
- case Instruction::Sub:
- return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
- case Instruction::Mul:
- return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
- case Instruction::SDiv:
- return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
- case Instruction::SRem:
- return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
- case Instruction::Shl:
- return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
- case Instruction::And:
- return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
- case Instruction::Or:
- return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
- case Instruction::Xor:
- return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
- }
- }
- }
-}
-
void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
if (!EmitLineNumbers)
return;
@@ -502,8 +346,8 @@ MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
}
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
- const DataLayout *TD = TM.getDataLayout();
- const TargetLowering *TLI = TM.getTargetLowering();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
+ const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
Type *Ty = F->getReturnType();
@@ -530,17 +374,15 @@ void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
} else if (isa<PointerType>(Ty)) {
O << ".param .b" << TLI->getPointerTy().getSizeInBits()
<< " func_retval0";
- } else {
- if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
- unsigned totalsz = TD->getTypeAllocSize(Ty);
- unsigned retAlignment = 0;
- if (!llvm::getAlign(*F, 0, retAlignment))
- retAlignment = TD->getABITypeAlignment(Ty);
- O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
- << "]";
- } else
- assert(false && "Unknown return type");
- }
+ } else if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
+ unsigned totalsz = TD->getTypeAllocSize(Ty);
+ unsigned retAlignment = 0;
+ if (!llvm::getAlign(*F, 0, retAlignment))
+ retAlignment = TD->getABITypeAlignment(Ty);
+ O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
+ << "]";
+ } else
+ llvm_unreachable("Unknown return type");
} else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
@@ -626,13 +468,14 @@ void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
if (TRI->isVirtualRegister(RegNo)) {
OutStreamer.AddComment(Twine("implicit-def: ") +
getVirtualRegisterName(RegNo));
} else {
- OutStreamer.AddComment(Twine("implicit-def: ") +
- TM.getRegisterInfo()->getName(RegNo));
+ OutStreamer.AddComment(
+ Twine("implicit-def: ") +
+ TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo));
}
OutStreamer.AddBlankLine();
}
@@ -794,11 +637,6 @@ static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
return false;
}
- if (const MDNode *md = dyn_cast<MDNode>(U))
- if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
- (md->getName().str() == "llvm.dbg.sp")))
- return true;
-
for (const User *UU : U->users())
if (usedInOneFunc(UU, oneFunc) == false)
return false;
@@ -953,7 +791,7 @@ bool NVPTXAsmPrinter::doInitialization(Module &M) {
const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
.Initialize(OutContext, TM);
- Mang = new Mangler(TM.getDataLayout());
+ Mang = new Mangler(TM.getSubtargetImpl()->getDataLayout());
// Emit header before any dwarf directives are emitted below.
emitHeader(M, OS1);
@@ -1154,7 +992,7 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
GVar->getName().startswith("nvvm."))
return;
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
@@ -1288,7 +1126,7 @@ void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
else
O << " .align " << GVar->getAlignment();
- if (ETy->isSingleValueType()) {
+ if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
O << " .";
// Special case: ABI requires that we use .u8 for predicates
if (ETy->isIntegerTy(1))
@@ -1457,7 +1295,7 @@ NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
raw_ostream &O) {
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
@@ -1470,7 +1308,7 @@ void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
else
O << " .align " << GVar->getAlignment();
- if (ETy->isSingleValueType()) {
+ if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
@@ -1509,17 +1347,6 @@ static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
if (ATy)
return getOpenCLAlignment(TD, ATy->getElementType());
- const VectorType *VTy = dyn_cast<VectorType>(Ty);
- if (VTy) {
- Type *ETy = VTy->getElementType();
- unsigned int numE = VTy->getNumElements();
- unsigned int alignE = TD->getPrefTypeAlignment(ETy);
- if (numE == 3)
- return 4 * alignE;
- else
- return numE * alignE;
- }
-
const StructType *STy = dyn_cast<StructType>(Ty);
if (STy) {
unsigned int alignStruct = 1;
@@ -1578,9 +1405,9 @@ void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
}
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
const AttributeSet &PAL = F->getAttributes();
- const TargetLowering *TLI = TM.getTargetLowering();
+ const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
Function::const_arg_iterator I, E;
unsigned paramIndex = 0;
bool first = true;
@@ -1771,7 +1598,7 @@ void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
// Map the global virtual register number to a register class specific
// virtual register number starting from 1 with that class.
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
//unsigned numRegClasses = TRI->getNumRegClasses();
// Emit the Fake Stack Object
@@ -1901,7 +1728,7 @@ void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
}
return;
} else {
- O << *LowerConstant(CPV, *this);
+ O << *lowerConstant(CPV);
return;
}
}
@@ -1911,7 +1738,7 @@ void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
AggBuffer *aggBuffer) {
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
int s = TD->getTypeAllocSize(CPV->getType());
@@ -2035,7 +1862,7 @@ void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
AggBuffer *aggBuffer) {
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
int Bytes;
// Old constants
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h
index a9f9bdd..c11b579 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXASMPRINTER_H
-#define NVPTXASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXASMPRINTER_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXASMPRINTER_H
#include "NVPTX.h"
#include "NVPTXSubtarget.h"
@@ -39,13 +39,6 @@
// A better approach is to clone the MCAsmStreamer to a MCPTXAsmStreamer
// (subclass of MCStreamer).
-// This is defined in AsmPrinter.cpp.
-// Used to process the constant expressions in initializers.
-namespace nvptx {
-const llvm::MCExpr *
-LowerConstant(const llvm::Constant *CV, llvm::AsmPrinter &AP);
-}
-
namespace llvm {
class LineReader {
@@ -86,13 +79,13 @@ class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter {
// Once we have this AggBuffer setup, we can choose how to print
// it out.
public:
- unsigned size; // size of the buffer in bytes
- unsigned char *buffer; // the buffer
unsigned numSymbols; // number of symbol addresses
- SmallVector<unsigned, 4> symbolPosInBuffer;
- SmallVector<const Value *, 4> Symbols;
private:
+ const unsigned size; // size of the buffer in bytes
+ std::vector<unsigned char> buffer; // the buffer
+ SmallVector<unsigned, 4> symbolPosInBuffer;
+ SmallVector<const Value *, 4> Symbols;
unsigned curpos;
raw_ostream &O;
NVPTXAsmPrinter &AP;
@@ -100,14 +93,11 @@ class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter {
public:
AggBuffer(unsigned _size, raw_ostream &_O, NVPTXAsmPrinter &_AP)
- : O(_O), AP(_AP) {
- buffer = new unsigned char[_size];
- size = _size;
+ : size(_size), buffer(_size), O(_O), AP(_AP) {
curpos = 0;
numSymbols = 0;
EmitGeneric = AP.EmitGeneric;
}
- ~AggBuffer() { delete[] buffer; }
unsigned addBytes(unsigned char *Ptr, int Num, int Bytes) {
assert((curpos + Num) <= size);
assert((curpos + Bytes) <= size);
@@ -170,7 +160,7 @@ class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter {
O << *Name;
}
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(v)) {
- O << *nvptx::LowerConstant(Cexpr, AP);
+ O << *AP.lowerConstant(Cexpr);
} else
llvm_unreachable("symbol type unknown");
nSym++;
@@ -179,9 +169,9 @@ class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter {
else
nextSymbolPos = symbolPosInBuffer[nSym];
} else if (nBytes == 4)
- O << *(unsigned int *)(buffer + pos);
+ O << *(unsigned int *)(&buffer[pos]);
else
- O << *(unsigned long long *)(buffer + pos);
+ O << *(unsigned long long *)(&buffer[pos]);
}
}
}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp
index 8b08841..314df38 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.cpp
@@ -48,20 +48,20 @@ void NVPTXFrameLowering::emitPrologue(MachineFunction &MF) const {
if (is64bit) {
unsigned LocalReg = MRI.createVirtualRegister(&NVPTX::Int64RegsRegClass);
MachineInstr *MI =
- BuildMI(MBB, MBBI, dl,
- MF.getTarget().getInstrInfo()->get(NVPTX::cvta_local_yes_64),
+ BuildMI(MBB, MBBI, dl, MF.getSubtarget().getInstrInfo()->get(
+ NVPTX::cvta_local_yes_64),
NVPTX::VRFrame).addReg(LocalReg);
BuildMI(MBB, MI, dl,
- MF.getTarget().getInstrInfo()->get(NVPTX::MOV_DEPOT_ADDR_64),
+ MF.getSubtarget().getInstrInfo()->get(NVPTX::MOV_DEPOT_ADDR_64),
LocalReg).addImm(MF.getFunctionNumber());
} else {
unsigned LocalReg = MRI.createVirtualRegister(&NVPTX::Int32RegsRegClass);
MachineInstr *MI =
BuildMI(MBB, MBBI, dl,
- MF.getTarget().getInstrInfo()->get(NVPTX::cvta_local_yes),
+ MF.getSubtarget().getInstrInfo()->get(NVPTX::cvta_local_yes),
NVPTX::VRFrame).addReg(LocalReg);
BuildMI(MBB, MI, dl,
- MF.getTarget().getInstrInfo()->get(NVPTX::MOV_DEPOT_ADDR),
+ MF.getSubtarget().getInstrInfo()->get(NVPTX::MOV_DEPOT_ADDR),
LocalReg).addImm(MF.getFunctionNumber());
}
}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h
index 56fb673..0846b78 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTX_FRAMELOWERING_H
-#define NVPTX_FRAMELOWERING_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXFRAMELOWERING_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXFRAMELOWERING_H
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp
index faa9fdb..5f06d9a 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXGenericToNVVM.cpp
@@ -26,6 +26,7 @@
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/PassManager.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
@@ -54,8 +55,7 @@ private:
IRBuilder<> &Builder);
Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
IRBuilder<> &Builder);
- void remapNamedMDNode(Module *M, NamedMDNode *N);
- MDNode *remapMDNode(Module *M, MDNode *N);
+ void remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N);
typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
@@ -125,12 +125,17 @@ bool GenericToNVVM::runOnModule(Module &M) {
ConstantToValueMap.clear();
}
+ // Copy GVMap over to a standard value map.
+ ValueToValueMapTy VM;
+ for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
+ VM[I->first] = I->second;
+
// Walk through the metadata section and update the debug information
// associated with the global variables in the default address space.
for (Module::named_metadata_iterator I = M.named_metadata_begin(),
E = M.named_metadata_end();
I != E; I++) {
- remapNamedMDNode(&M, I);
+ remapNamedMDNode(VM, I);
}
// Walk through the global variable initializers, and replace any use of
@@ -140,20 +145,23 @@ bool GenericToNVVM::runOnModule(Module &M) {
for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
GlobalVariable *GV = I->first;
GlobalVariable *NewGV = I->second;
- ++I;
+
+ // Remove GV from the map so that it can be RAUWed. Note that
+ // DenseMap::erase() won't invalidate any iterators but this one.
+ auto Next = std::next(I);
+ GVMap.erase(I);
+ I = Next;
+
Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
// At this point, the remaining uses of GV should be found only in global
// variable initializers, as other uses have been already been removed
// while walking through the instructions in function definitions.
- for (Value::use_iterator UI = GV->use_begin(), UE = GV->use_end();
- UI != UE;)
- (UI++)->set(BitCastNewGV);
+ GV->replaceAllUsesWith(BitCastNewGV);
std::string Name = GV->getName();
- GV->removeDeadConstantUsers();
GV->eraseFromParent();
NewGV->setName(Name);
}
- GVMap.clear();
+ assert(GVMap.empty() && "Expected it to be empty by now");
return true;
}
@@ -359,7 +367,7 @@ Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
}
}
-void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
+void GenericToNVVM::remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N) {
bool OperandChanged = false;
SmallVector<MDNode *, 16> NewOperands;
@@ -369,7 +377,7 @@ void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
// converted to another value.
for (unsigned i = 0; i < NumOperands; ++i) {
MDNode *Operand = N->getOperand(i);
- MDNode *NewOperand = remapMDNode(M, Operand);
+ MDNode *NewOperand = MapMetadata(Operand, VM);
OperandChanged |= Operand != NewOperand;
NewOperands.push_back(NewOperand);
}
@@ -387,47 +395,3 @@ void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
N->addOperand(*I);
}
}
-
-MDNode *GenericToNVVM::remapMDNode(Module *M, MDNode *N) {
-
- bool OperandChanged = false;
- SmallVector<Value *, 8> NewOperands;
- unsigned NumOperands = N->getNumOperands();
-
- // Check if any operand is or contains a global variable in GVMap, and thus
- // converted to another value.
- for (unsigned i = 0; i < NumOperands; ++i) {
- Value *Operand = N->getOperand(i);
- Value *NewOperand = Operand;
- if (Operand) {
- if (isa<GlobalVariable>(Operand)) {
- GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(Operand));
- if (I != GVMap.end()) {
- NewOperand = I->second;
- if (++i < NumOperands) {
- NewOperands.push_back(NewOperand);
- // Address space of the global variable follows the global variable
- // in the global variable debug info (see createGlobalVariable in
- // lib/Analysis/DIBuilder.cpp).
- NewOperand =
- ConstantInt::get(Type::getInt32Ty(M->getContext()),
- I->second->getType()->getAddressSpace());
- }
- }
- } else if (isa<MDNode>(Operand)) {
- NewOperand = remapMDNode(M, cast<MDNode>(Operand));
- }
- }
- OperandChanged |= Operand != NewOperand;
- NewOperands.push_back(NewOperand);
- }
-
- // If none of the operands has been modified, return N as it is.
- if (!OperandChanged) {
- return N;
- }
-
- // If any of the operands has been modified, create a new MDNode with the new
- // operands.
- return MDNode::get(M->getContext(), makeArrayRef(NewOperands));
-}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
index 05205fb..cd0422d 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp
@@ -27,7 +27,7 @@ using namespace llvm;
static cl::opt<int> UsePrecDivF32(
"nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
- " IEEE Compliant F32 div.rnd if avaiable."),
+ " IEEE Compliant F32 div.rnd if available."),
cl::init(2));
static cl::opt<bool>
@@ -5041,17 +5041,10 @@ bool NVPTXDAGToDAGISel::SelectADDRri64(SDNode *OpNode, SDValue Addr,
bool NVPTXDAGToDAGISel::ChkMemSDNodeAddressSpace(SDNode *N,
unsigned int spN) const {
const Value *Src = nullptr;
- // Even though MemIntrinsicSDNode is a subclas of MemSDNode,
- // the classof() for MemSDNode does not include MemIntrinsicSDNode
- // (See SelectionDAGNodes.h). So we need to check for both.
if (MemSDNode *mN = dyn_cast<MemSDNode>(N)) {
if (spN == 0 && mN->getMemOperand()->getPseudoValue())
return true;
Src = mN->getMemOperand()->getValue();
- } else if (MemSDNode *mN = dyn_cast<MemIntrinsicSDNode>(N)) {
- if (spN == 0 && mN->getMemOperand()->getPseudoValue())
- return true;
- Src = mN->getMemOperand()->getValue();
}
if (!Src)
return false;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
index c62fc25..69afcd7 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.h
@@ -11,6 +11,9 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXISELDAGTODAG_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXISELDAGTODAG_H
+
#include "NVPTX.h"
#include "NVPTXISelLowering.h"
#include "NVPTXRegisterInfo.h"
@@ -92,3 +95,5 @@ private:
};
}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
index d76b20a..093ba1a 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.cpp
@@ -106,8 +106,8 @@ static void ComputePTXValueVTs(const TargetLowering &TLI, Type *Ty,
}
// NVPTXTargetLowering Constructor.
-NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
- : TargetLowering(TM, new NVPTXTargetObjectFile()), nvTM(&TM),
+NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM)
+ : TargetLowering(TM), nvTM(&TM),
nvptxSubtarget(TM.getSubtarget<NVPTXSubtarget>()) {
// always lower memset, memcpy, and memmove intrinsics to load/store
@@ -203,8 +203,9 @@ NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
// Turn FP extload into load/fextend
- setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
@@ -214,12 +215,11 @@ NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setTruncStoreAction(MVT::i64, MVT::i1, Expand);
- setTruncStoreAction(MVT::i32, MVT::i1, Expand);
- setTruncStoreAction(MVT::i16, MVT::i1, Expand);
- setTruncStoreAction(MVT::i8, MVT::i1, Expand);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setTruncStoreAction(VT, MVT::i1, Expand);
+ }
// This is legal in NVPTX
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
@@ -232,9 +232,7 @@ NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
setOperationAction(ISD::ADDE, MVT::i64, Expand);
// Register custom handling for vector loads/stores
- for (int i = MVT::FIRST_VECTOR_VALUETYPE; i <= MVT::LAST_VECTOR_VALUETYPE;
- ++i) {
- MVT VT = (MVT::SimpleValueType) i;
+ for (MVT VT : MVT::vector_valuetypes()) {
if (IsPTXVectorType(VT)) {
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
@@ -905,16 +903,14 @@ NVPTXTargetLowering::getPrototype(Type *retTy, const ArgListTy &Args,
O << ".param .b" << size << " _";
} else if (isa<PointerType>(retTy)) {
O << ".param .b" << getPointerTy().getSizeInBits() << " _";
+ } else if ((retTy->getTypeID() == Type::StructTyID) ||
+ isa<VectorType>(retTy)) {
+ O << ".param .align "
+ << retAlignment
+ << " .b8 _["
+ << getDataLayout()->getTypeAllocSize(retTy) << "]";
} else {
- if((retTy->getTypeID() == Type::StructTyID) ||
- isa<VectorType>(retTy)) {
- O << ".param .align "
- << retAlignment
- << " .b8 _["
- << getDataLayout()->getTypeAllocSize(retTy) << "]";
- } else {
- assert(false && "Unknown return type");
- }
+ llvm_unreachable("Unknown return type");
}
O << ") ";
}
@@ -1355,7 +1351,12 @@ SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// .param .align 16 .b8 retval0[<size-in-bytes>], or
// .param .b<size-in-bits> retval0
unsigned resultsz = TD->getTypeAllocSizeInBits(retTy);
- if (retTy->isSingleValueType()) {
+ // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
+ // these three types to match the logic in
+ // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
+ // Plus, this behavior is consistent with nvcc's.
+ if (retTy->isFloatingPointTy() || retTy->isIntegerTy() ||
+ retTy->isPointerTy()) {
// Scalar needs to be at least 32bit wide
if (resultsz < 32)
resultsz = 32;
@@ -1451,8 +1452,8 @@ SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
EVT ObjectVT = getValueType(retTy);
unsigned NumElts = ObjectVT.getVectorNumElements();
EVT EltVT = ObjectVT.getVectorElementType();
- assert(nvTM->getTargetLowering()->getNumRegisters(F->getContext(),
- ObjectVT) == NumElts &&
+ assert(nvTM->getSubtargetImpl()->getTargetLowering()->getNumRegisters(
+ F->getContext(), ObjectVT) == NumElts &&
"Vector was not scalarized");
unsigned sz = EltVT.getSizeInBits();
bool needTruncate = sz < 8 ? true : false;
@@ -2028,7 +2029,7 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
const Function *F = MF.getFunction();
const AttributeSet &PAL = F->getAttributes();
- const TargetLowering *TLI = DAG.getTarget().getTargetLowering();
+ const TargetLowering *TLI = DAG.getSubtarget().getTargetLowering();
SDValue Root = DAG.getRoot();
std::vector<SDValue> OutChains;
@@ -2142,7 +2143,7 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
ISD::SEXTLOAD : ISD::ZEXTLOAD;
p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
MachinePointerInfo(srcValue), partVT, false,
- false, partAlign);
+ false, false, partAlign);
} else {
p = DAG.getLoad(partVT, dl, Root, srcAddr,
MachinePointerInfo(srcValue), false, false, false,
@@ -2163,7 +2164,6 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
unsigned NumElts = ObjectVT.getVectorNumElements();
assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
"Vector was not scalarized");
- unsigned Ofst = 0;
EVT EltVT = ObjectVT.getVectorElementType();
// V1 load
@@ -2172,10 +2172,8 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
// We only have one element, so just directly load it
Value *SrcValue = Constant::getNullValue(PointerType::get(
EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
- SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
- DAG.getConstant(Ofst, getPointerTy()));
SDValue P = DAG.getLoad(
- EltVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
+ EltVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false,
false, true,
TD->getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
if (P.getNode())
@@ -2184,7 +2182,6 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
InVals.push_back(P);
- Ofst += TD->getTypeAllocSize(EltVT.getTypeForEVT(F->getContext()));
++InsIdx;
} else if (NumElts == 2) {
// V2 load
@@ -2192,10 +2189,8 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
Value *SrcValue = Constant::getNullValue(PointerType::get(
VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
- SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
- DAG.getConstant(Ofst, getPointerTy()));
SDValue P = DAG.getLoad(
- VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
+ VecVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false,
false, true,
TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
if (P.getNode())
@@ -2213,7 +2208,6 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
InVals.push_back(Elt0);
InVals.push_back(Elt1);
- Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
InsIdx += 2;
} else {
// V4 loads
@@ -2231,6 +2225,7 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
VecSize = 2;
}
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
+ unsigned Ofst = 0;
for (unsigned i = 0; i < NumElts; i += VecSize) {
Value *SrcValue = Constant::getNullValue(
PointerType::get(VecVT.getTypeForEVT(F->getContext()),
@@ -2275,6 +2270,7 @@ SDValue NVPTXTargetLowering::LowerFormalArguments(
ISD::SEXTLOAD : ISD::ZEXTLOAD;
p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, Arg,
MachinePointerInfo(srcValue), ObjectVT, false, false,
+ false,
TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
} else {
p = DAG.getLoad(Ins[InsIdx].VT, dl, Root, Arg,
@@ -3269,16 +3265,7 @@ bool NVPTXTargetLowering::getTgtMemIntrinsic(
Info.vol = 0;
Info.readMem = true;
Info.writeMem = false;
-
- // alignment is available as metadata.
- // Grab it and set the alignment.
- assert(I.hasMetadataOtherThanDebugLoc() && "Must have alignment metadata");
- MDNode *AlignMD = I.getMetadata("align");
- assert(AlignMD && "Must have a non-null MDNode");
- assert(AlignMD->getNumOperands() == 1 && "Must have a single operand");
- Value *Align = AlignMD->getOperand(0);
- int64_t Alignment = cast<ConstantInt>(Align)->getZExtValue();
- Info.align = Alignment;
+ Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
return true;
}
@@ -3298,16 +3285,7 @@ bool NVPTXTargetLowering::getTgtMemIntrinsic(
Info.vol = 0;
Info.readMem = true;
Info.writeMem = false;
-
- // alignment is available as metadata.
- // Grab it and set the alignment.
- assert(I.hasMetadataOtherThanDebugLoc() && "Must have alignment metadata");
- MDNode *AlignMD = I.getMetadata("align");
- assert(AlignMD && "Must have a non-null MDNode");
- assert(AlignMD->getNumOperands() == 1 && "Must have a single operand");
- Value *Align = AlignMD->getOperand(0);
- int64_t Alignment = cast<ConstantInt>(Align)->getZExtValue();
- Info.align = Alignment;
+ Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
return true;
}
@@ -3866,8 +3844,8 @@ static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
}
else if (N0.getOpcode() == ISD::FMUL) {
if (VT == MVT::f32 || VT == MVT::f64) {
- NVPTXTargetLowering *TLI =
- (NVPTXTargetLowering *)&DAG.getTargetLoweringInfo();
+ const auto *TLI = static_cast<const NVPTXTargetLowering *>(
+ &DAG.getTargetLoweringInfo());
if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
return SDValue();
@@ -4053,13 +4031,13 @@ static bool IsMulWideOperandDemotable(SDValue Op,
if (Op.getOpcode() == ISD::SIGN_EXTEND ||
Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
EVT OrigVT = Op.getOperand(0).getValueType();
- if (OrigVT.getSizeInBits() == OptSize) {
+ if (OrigVT.getSizeInBits() <= OptSize) {
S = Signed;
return true;
}
} else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
EVT OrigVT = Op.getOperand(0).getValueType();
- if (OrigVT.getSizeInBits() == OptSize) {
+ if (OrigVT.getSizeInBits() <= OptSize) {
S = Unsigned;
return true;
}
@@ -4514,3 +4492,10 @@ NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
delete DwarfRangesSection;
delete DwarfMacroInfoSection;
}
+
+const MCSection *
+NVPTXTargetObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const {
+ return getDataSection();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
index bef6ed9..b3fea3f 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXISELLOWERING_H
-#define NVPTXISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXISELLOWERING_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXISELLOWERING_H
#include "NVPTX.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -436,7 +436,7 @@ class NVPTXSubtarget;
//===--------------------------------------------------------------------===//
class NVPTXTargetLowering : public TargetLowering {
public:
- explicit NVPTXTargetLowering(NVPTXTargetMachine &TM);
+ explicit NVPTXTargetLowering(const NVPTXTargetMachine &TM);
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
@@ -495,7 +495,7 @@ public:
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
- NVPTXTargetMachine *nvTM;
+ const NVPTXTargetMachine *nvTM;
// PTX always uses 32-bit shift amounts
MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
@@ -505,9 +505,9 @@ public:
bool allowFMA(MachineFunction &MF, CodeGenOpt::Level OptLevel) const;
- virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
- return true;
- }
+ bool isFMAFasterThanFMulAndFAdd(EVT) const override { return true; }
+
+ bool enableAggressiveFMAFusion(EVT VT) const override { return true; }
private:
const NVPTXSubtarget &nvptxSubtarget; // cache the subtarget here
@@ -538,4 +538,4 @@ private:
};
} // namespace llvm
-#endif // NVPTXISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp
index a98fb37..aa36b6b 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXImageOptimizer.cpp
@@ -16,11 +16,11 @@
#include "NVPTX.h"
#include "NVPTXUtilities.h"
+#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
-#include "llvm/Analysis/ConstantFolding.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp
index b5b4fbe..740ca03 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.cpp
@@ -14,11 +14,11 @@
#include "NVPTX.h"
#include "NVPTXInstrInfo.h"
#include "NVPTXTargetMachine.h"
-#include "llvm/IR/Function.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
using namespace llvm;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h
index 2ac2974..6de7536 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXINSTRUCTIONINFO_H
-#define NVPTXINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXINSTRINFO_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXINSTRINFO_H
#include "NVPTX.h"
#include "NVPTXRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
index 9900b8c..2c571c4 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXInstrInfo.td
@@ -296,7 +296,7 @@ multiclass F2<string OpcStr, SDNode OpNode> {
// General Type Conversion
//-----------------------------------
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
// Generate a cvt to the given type from all possible types.
// Each instance takes a CvtMode immediate that defines the conversion mode to
// use. It can be CvtNONE to omit a conversion mode.
@@ -2094,7 +2094,7 @@ multiclass LD<NVPTXRegClass regclass> {
"$fromWidth \t$dst, [$addr+$offset];"), []>;
}
-let mayLoad=1, neverHasSideEffects=1 in {
+let mayLoad=1, hasSideEffects=0 in {
defm LD_i8 : LD<Int16Regs>;
defm LD_i16 : LD<Int16Regs>;
defm LD_i32 : LD<Int32Regs>;
@@ -2136,7 +2136,7 @@ multiclass ST<NVPTXRegClass regclass> {
" \t[$addr+$offset], $src;"), []>;
}
-let mayStore=1, neverHasSideEffects=1 in {
+let mayStore=1, hasSideEffects=0 in {
defm ST_i8 : ST<Int16Regs>;
defm ST_i16 : ST<Int16Regs>;
defm ST_i32 : ST<Int32Regs>;
@@ -2220,7 +2220,7 @@ multiclass LD_VEC<NVPTXRegClass regclass> {
"$fromWidth \t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];"),
[]>;
}
-let mayLoad=1, neverHasSideEffects=1 in {
+let mayLoad=1, hasSideEffects=0 in {
defm LDV_i8 : LD_VEC<Int16Regs>;
defm LDV_i16 : LD_VEC<Int16Regs>;
defm LDV_i32 : LD_VEC<Int32Regs>;
@@ -2303,7 +2303,7 @@ multiclass ST_VEC<NVPTXRegClass regclass> {
"$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};"),
[]>;
}
-let mayStore=1, neverHasSideEffects=1 in {
+let mayStore=1, hasSideEffects=0 in {
defm STV_i8 : ST_VEC<Int16Regs>;
defm STV_i16 : ST_VEC<Int16Regs>;
defm STV_i32 : ST_VEC<Int32Regs>;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h
index 5ec1fc9..da301d5 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.h
@@ -12,10 +12,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTX_LOWER_AGGR_COPIES_H
-#define NVPTX_LOWER_AGGR_COPIES_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXLOWERAGGRCOPIES_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXLOWERAGGRCOPIES_H
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Pass.h"
@@ -29,8 +30,8 @@ struct NVPTXLowerAggrCopies : public FunctionPass {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DataLayoutPass>();
- AU.addPreserved("stack-protector");
AU.addPreserved<MachineFunctionAnalysis>();
+ AU.addPreserved<StackProtector>();
}
bool runOnFunction(Function &F) override;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXLowerStructArgs.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerStructArgs.cpp
new file mode 100644
index 0000000..3149399
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXLowerStructArgs.cpp
@@ -0,0 +1,134 @@
+//===-- NVPTXLowerStructArgs.cpp - Copy struct args to local memory =====--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Copy struct args to local memory. This is needed for kernel functions only.
+// This is a preparation for handling cases like
+//
+// kernel void foo(struct A arg, ...)
+// {
+// struct A *p = &arg;
+// ...
+// ... = p->filed1 ... (this is no generic address for .param)
+// p->filed2 = ... (this is no write access to .param)
+// }
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTX.h"
+#include "NVPTXUtilities.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+
+using namespace llvm;
+
+namespace llvm {
+void initializeNVPTXLowerStructArgsPass(PassRegistry &);
+}
+
+class LLVM_LIBRARY_VISIBILITY NVPTXLowerStructArgs : public FunctionPass {
+ bool runOnFunction(Function &F) override;
+
+ void handleStructPtrArgs(Function &);
+ void handleParam(Argument *);
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ NVPTXLowerStructArgs() : FunctionPass(ID) {}
+ const char *getPassName() const override {
+ return "Copy structure (byval *) arguments to stack";
+ }
+};
+
+char NVPTXLowerStructArgs::ID = 1;
+
+INITIALIZE_PASS(NVPTXLowerStructArgs, "nvptx-lower-struct-args",
+ "Lower structure arguments (NVPTX)", false, false)
+
+void NVPTXLowerStructArgs::handleParam(Argument *Arg) {
+ Function *Func = Arg->getParent();
+ Instruction *FirstInst = &(Func->getEntryBlock().front());
+ PointerType *PType = dyn_cast<PointerType>(Arg->getType());
+
+ assert(PType && "Expecting pointer type in handleParam");
+
+ Type *StructType = PType->getElementType();
+ AllocaInst *AllocA = new AllocaInst(StructType, Arg->getName(), FirstInst);
+
+ /* Set the alignment to alignment of the byval parameter. This is because,
+ * later load/stores assume that alignment, and we are going to replace
+ * the use of the byval parameter with this alloca instruction.
+ */
+ AllocA->setAlignment(Func->getParamAlignment(Arg->getArgNo() + 1));
+
+ Arg->replaceAllUsesWith(AllocA);
+
+ // Get the cvt.gen.to.param intrinsic
+ Type *CvtTypes[] = {
+ Type::getInt8PtrTy(Func->getParent()->getContext(), ADDRESS_SPACE_PARAM),
+ Type::getInt8PtrTy(Func->getParent()->getContext(),
+ ADDRESS_SPACE_GENERIC)};
+ Function *CvtFunc = Intrinsic::getDeclaration(
+ Func->getParent(), Intrinsic::nvvm_ptr_gen_to_param, CvtTypes);
+
+ Value *BitcastArgs[] = {
+ new BitCastInst(Arg, Type::getInt8PtrTy(Func->getParent()->getContext(),
+ ADDRESS_SPACE_GENERIC),
+ Arg->getName(), FirstInst)};
+ CallInst *CallCVT =
+ CallInst::Create(CvtFunc, BitcastArgs, "cvt_to_param", FirstInst);
+
+ BitCastInst *BitCast = new BitCastInst(
+ CallCVT, PointerType::get(StructType, ADDRESS_SPACE_PARAM),
+ Arg->getName(), FirstInst);
+ LoadInst *LI = new LoadInst(BitCast, Arg->getName(), FirstInst);
+ new StoreInst(LI, AllocA, FirstInst);
+}
+
+// =============================================================================
+// If the function had a struct ptr arg, say foo(%struct.x *byval %d), then
+// add the following instructions to the first basic block :
+//
+// %temp = alloca %struct.x, align 8
+// %tt1 = bitcast %struct.x * %d to i8 *
+// %tt2 = llvm.nvvm.cvt.gen.to.param %tt2
+// %tempd = bitcast i8 addrspace(101) * to %struct.x addrspace(101) *
+// %tv = load %struct.x addrspace(101) * %tempd
+// store %struct.x %tv, %struct.x * %temp, align 8
+//
+// The above code allocates some space in the stack and copies the incoming
+// struct from param space to local space.
+// Then replace all occurences of %d by %temp.
+// =============================================================================
+void NVPTXLowerStructArgs::handleStructPtrArgs(Function &F) {
+ for (Argument &Arg : F.args()) {
+ if (Arg.getType()->isPointerTy() && Arg.hasByValAttr()) {
+ handleParam(&Arg);
+ }
+ }
+}
+
+// =============================================================================
+// Main function for this pass.
+// =============================================================================
+bool NVPTXLowerStructArgs::runOnFunction(Function &F) {
+ // Skip non-kernels. See the comments at the top of this file.
+ if (!isKernelFunction(F))
+ return false;
+
+ handleStructPtrArgs(F);
+ return true;
+}
+
+FunctionPass *llvm::createNVPTXLowerStructArgsPass() {
+ return new NVPTXLowerStructArgs();
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h b/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h
index 5547649..d39a394 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXMCExpr.h
@@ -9,8 +9,8 @@
// Modeled after ARMMCExpr
-#ifndef NVPTXMCEXPR_H
-#define NVPTXMCEXPR_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXMCEXPR_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXMCEXPR_H
#include "llvm/ADT/APFloat.h"
#include "llvm/MC/MCExpr.h"
@@ -63,7 +63,8 @@ public:
void PrintImpl(raw_ostream &OS) const override;
bool EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const override {
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const override {
return false;
}
void visitUsedExpr(MCStreamer &Streamer) const override {};
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h b/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h
index 67fb390..10f1135 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXMachineFunctionInfo.h
@@ -12,6 +12,9 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXMACHINEFUNCTIONINFO_H
+
#include "llvm/CodeGen/MachineFunction.h"
namespace llvm {
@@ -44,3 +47,5 @@ public:
}
};
}
+
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp
index 348ab0c..a1e1b9e 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXPrologEpilogPass.cpp
@@ -22,6 +22,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -48,8 +49,8 @@ char NVPTXPrologEpilogPass::ID = 0;
bool NVPTXPrologEpilogPass::runOnMachineFunction(MachineFunction &MF) {
const TargetMachine &TM = MF.getTarget();
- const TargetFrameLowering &TFI = *TM.getFrameLowering();
- const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+ const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
+ const TargetRegisterInfo &TRI = *TM.getSubtargetImpl()->getRegisterInfo();
bool Modified = false;
calculateFrameObjectOffsets(MF);
@@ -108,8 +109,8 @@ AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
void
NVPTXPrologEpilogPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
- const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
- const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
+ const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
+ const TargetRegisterInfo *RegInfo = Fn.getSubtarget().getRegisterInfo();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h
index a7594be..d2e6733 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXRegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXREGISTERINFO_H
-#define NVPTXREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXREGISTERINFO_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXREGISTERINFO_H
#include "ManagedStringPool.h"
#include "llvm/Target/TargetRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp
index 20d4e27..b7f53c7 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXReplaceImageHandles.cpp
@@ -16,11 +16,11 @@
#include "NVPTX.h"
#include "NVPTXMachineFunctionInfo.h"
#include "NVPTXSubtarget.h"
+#include "llvm/ADT/DenseSet.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DenseSet.h"
using namespace llvm;
@@ -33,9 +33,9 @@ private:
public:
NVPTXReplaceImageHandles();
- bool runOnMachineFunction(MachineFunction &MF);
+ bool runOnMachineFunction(MachineFunction &MF) override;
- virtual const char *getPassName() const {
+ const char *getPassName() const override {
return "NVPTX Replace Image Handles";
}
private:
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h b/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h
index aa0436b..f1d3cb4 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXSection.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_NVPTXSECTION_H
-#define LLVM_NVPTXSECTION_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXSECTION_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXSECTION_H
#include "llvm/IR/GlobalVariable.h"
#include "llvm/MC/MCSection.h"
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp
index d5cded2..3d52532 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.cpp
@@ -59,7 +59,8 @@ NVPTXSubtarget::NVPTXSubtarget(const std::string &TT, const std::string &CPU,
: NVPTXGenSubtargetInfo(TT, CPU, FS), Is64Bit(is64Bit), PTXVersion(0),
SmVersion(20), DL(computeDataLayout(is64Bit)),
InstrInfo(initializeSubtargetDependencies(CPU, FS)),
- TLInfo((NVPTXTargetMachine &)TM), TSInfo(&DL), FrameLowering(*this) {
+ TLInfo((const NVPTXTargetMachine &)TM), TSInfo(&DL),
+ FrameLowering(*this) {
Triple T(TT);
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h
index 4c41e4e..fb2d404 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXSubtarget.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXSUBTARGET_H
-#define NVPTXSUBTARGET_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXSUBTARGET_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXSUBTARGET_H
#include "NVPTX.h"
#include "NVPTXFrameLowering.h"
@@ -57,14 +57,20 @@ public:
NVPTXSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM, bool is64Bit);
- const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
- const NVPTXInstrInfo *getInstrInfo() const { return &InstrInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
- const NVPTXRegisterInfo *getRegisterInfo() const {
+ const TargetFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const NVPTXInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const NVPTXRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
- const NVPTXTargetLowering *getTargetLowering() const { return &TLInfo; }
- const TargetSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const NVPTXTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const TargetSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
bool hasBrkPt() const { return SmVersion >= 11; }
bool hasAtomRedG32() const { return SmVersion >= 11; }
@@ -113,4 +119,4 @@ public:
} // End llvm namespace
-#endif // NVPTXSUBTARGET_H
+#endif
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
index 069a1b9..c7f9507 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
@@ -16,6 +16,7 @@
#include "NVPTX.h"
#include "NVPTXAllocaHoisting.h"
#include "NVPTXLowerAggrCopies.h"
+#include "NVPTXTargetObjectFile.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
@@ -50,6 +51,7 @@ void initializeNVVMReflectPass(PassRegistry&);
void initializeGenericToNVVMPass(PassRegistry&);
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
+void initializeNVPTXLowerStructArgsPass(PassRegistry &);
}
extern "C" void LLVMInitializeNVPTXTarget() {
@@ -64,6 +66,7 @@ extern "C" void LLVMInitializeNVPTXTarget() {
initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
initializeNVPTXFavorNonGenericAddrSpacesPass(
*PassRegistry::getPassRegistry());
+ initializeNVPTXLowerStructArgsPass(*PassRegistry::getPassRegistry());
}
NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, StringRef TT,
@@ -72,10 +75,13 @@ NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool is64bit)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(make_unique<NVPTXTargetObjectFile>()),
Subtarget(TT, CPU, FS, *this, is64bit) {
initAsmInfo();
}
+NVPTXTargetMachine::~NVPTXTargetMachine() {}
+
void NVPTXTargetMachine32::anchor() {}
NVPTXTargetMachine32::NVPTXTargetMachine32(
@@ -104,8 +110,7 @@ public:
void addIRPasses() override;
bool addInstSelector() override;
- bool addPreRegAlloc() override;
- bool addPostRegAlloc() override;
+ void addPostRegAlloc() override;
void addMachineSSAOptimization() override;
FunctionPass *createTargetRegisterAllocator(bool) override;
@@ -119,6 +124,14 @@ TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
return PassConfig;
}
+void NVPTXTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
+ // Add first the target-independent BasicTTI pass, then our NVPTX pass. This
+ // allows the NVPTX pass to delegate to the target independent layer when
+ // appropriate.
+ PM.add(createBasicTargetTransformInfoPass(this));
+ PM.add(createNVPTXTargetTransformInfoPass(this));
+}
+
void NVPTXPassConfig::addIRPasses() {
// The following passes are known to not play well with virtual regs hanging
// around after register allocation (which in our case, is *all* registers).
@@ -169,10 +182,8 @@ bool NVPTXPassConfig::addInstSelector() {
return false;
}
-bool NVPTXPassConfig::addPreRegAlloc() { return false; }
-bool NVPTXPassConfig::addPostRegAlloc() {
- addPass(createNVPTXPrologEpilogPass());
- return false;
+void NVPTXPassConfig::addPostRegAlloc() {
+ addPass(createNVPTXPrologEpilogPass(), false);
}
FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h
index a7a1c8f..fa97ec8 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.h
@@ -11,11 +11,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTX_TARGETMACHINE_H
-#define NVPTX_TARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXTARGETMACHINE_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXTARGETMACHINE_H
-#include "NVPTXSubtarget.h"
#include "ManagedStringPool.h"
+#include "NVPTXSubtarget.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
@@ -25,6 +25,7 @@ namespace llvm {
/// NVPTXTargetMachine
///
class NVPTXTargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
NVPTXSubtarget Subtarget;
// Hold Strings that can be free'd all together with NVPTXTargetMachine
@@ -35,27 +36,9 @@ public:
const TargetOptions &Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OP, bool is64bit);
- const TargetFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- const NVPTXInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- const NVPTXSubtarget *getSubtargetImpl() const override { return &Subtarget; }
- const NVPTXRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
-
- const NVPTXTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
+ ~NVPTXTargetMachine() override;
- const TargetSelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
+ const NVPTXSubtarget *getSubtargetImpl() const override { return &Subtarget; }
ManagedStringPool *getManagedStrPool() const {
return const_cast<ManagedStringPool *>(&ManagedStrPool);
@@ -63,17 +46,17 @@ public:
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
- // Emission of machine code through JITCodeEmitter is not supported.
- bool addPassesToEmitMachineCode(PassManagerBase &, JITCodeEmitter &,
- bool = true) override {
- return true;
- }
-
// Emission of machine code through MCJIT is not supported.
bool addPassesToEmitMC(PassManagerBase &, MCContext *&, raw_ostream &,
bool = true) override {
return true;
}
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
+
+ /// \brief Register NVPTX analysis passes with a pass manager.
+ void addAnalysisPasses(PassManagerBase &PM) override;
}; // NVPTXTargetMachine.
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h
index ba8086d..00ceca5 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_NVPTX_TARGETOBJECTFILE_H
-#define LLVM_TARGET_NVPTX_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXTARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXTARGETOBJECTFILE_H
#include "NVPTXSection.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
@@ -98,6 +98,9 @@ public:
return DataSection;
}
+ const MCSection *
+ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
+ const TargetMachine &TM) const override;
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXTargetTransformInfo.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetTransformInfo.cpp
new file mode 100644
index 0000000..b09d0d4
--- /dev/null
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXTargetTransformInfo.cpp
@@ -0,0 +1,115 @@
+//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI pass ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// \file
+// This file implements a TargetTransformInfo analysis pass specific to the
+// NVPTX target machine. It uses the target's detailed information to provide
+// more precise answers to certain TTI queries, while letting the target
+// independent and default TTI implementations handle the rest.
+//
+//===----------------------------------------------------------------------===//
+
+#include "NVPTXTargetMachine.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "NVPTXtti"
+
+// Declare the pass initialization routine locally as target-specific passes
+// don't have a target-wide initialization entry point, and so we rely on the
+// pass constructor initialization.
+namespace llvm {
+void initializeNVPTXTTIPass(PassRegistry &);
+}
+
+namespace {
+
+class NVPTXTTI final : public ImmutablePass, public TargetTransformInfo {
+ const NVPTXTargetLowering *TLI;
+public:
+ NVPTXTTI() : ImmutablePass(ID), TLI(nullptr) {
+ llvm_unreachable("This pass cannot be directly constructed");
+ }
+
+ NVPTXTTI(const NVPTXTargetMachine *TM)
+ : ImmutablePass(ID), TLI(TM->getSubtargetImpl()->getTargetLowering()) {
+ initializeNVPTXTTIPass(*PassRegistry::getPassRegistry());
+ }
+
+ void initializePass() override { pushTTIStack(this); }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ TargetTransformInfo::getAnalysisUsage(AU);
+ }
+
+ /// Pass identification.
+ static char ID;
+
+ /// Provide necessary pointer adjustments for the two base classes.
+ void *getAdjustedAnalysisPointer(const void *ID) override {
+ if (ID == &TargetTransformInfo::ID)
+ return (TargetTransformInfo *)this;
+ return this;
+ }
+
+ bool hasBranchDivergence() const override;
+
+ unsigned getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
+ OperandValueKind Opd2Info = OK_AnyValue,
+ OperandValueProperties Opd1PropInfo = OP_None,
+ OperandValueProperties Opd2PropInfo = OP_None) const override;
+};
+
+} // end anonymous namespace
+
+INITIALIZE_AG_PASS(NVPTXTTI, TargetTransformInfo, "NVPTXtti",
+ "NVPTX Target Transform Info", true, true, false)
+char NVPTXTTI::ID = 0;
+
+ImmutablePass *
+llvm::createNVPTXTargetTransformInfoPass(const NVPTXTargetMachine *TM) {
+ return new NVPTXTTI(TM);
+}
+
+bool NVPTXTTI::hasBranchDivergence() const { return true; }
+
+unsigned NVPTXTTI::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) const {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+
+ switch (ISD) {
+ default:
+ return TargetTransformInfo::getArithmeticInstrCost(
+ Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::XOR:
+ case ISD::OR:
+ case ISD::AND:
+ // The machine code (SASS) simulates an i64 with two i32. Therefore, we
+ // estimate that arithmetic operations on i64 are twice as expensive as
+ // those on types that can fit into one machine register.
+ if (LT.second.SimpleTy == MVT::i64)
+ return 2 * LT.first;
+ // Delegate other cases to the basic TTI.
+ return TargetTransformInfo::getArithmeticInstrCost(
+ Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
+ }
+}
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp
index a9fd190..cf1feac 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.cpp
@@ -15,16 +15,16 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MutexGuard.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <string>
#include <vector>
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/Support/MutexGuard.h"
using namespace llvm;
@@ -52,7 +52,7 @@ static void cacheAnnotationFromMD(const MDNode *md, key_val_pair_t &retval) {
assert(prop && "Annotation property not a string");
// value
- ConstantInt *Val = dyn_cast<ConstantInt>(md->getOperand(i + 1));
+ ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(md->getOperand(i + 1));
assert(Val && "Value operand not a constant int");
std::string keyname = prop->getString().str();
@@ -75,7 +75,8 @@ static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
- Value *entity = elem->getOperand(0);
+ GlobalValue *entity =
+ mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
@@ -90,11 +91,11 @@ static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
return;
if ((*annotationCache).find(m) != (*annotationCache).end())
- (*annotationCache)[m][gv] = tmp;
+ (*annotationCache)[m][gv] = std::move(tmp);
else {
global_val_annot_t tmp1;
- tmp1[gv] = tmp;
- (*annotationCache)[m] = tmp1;
+ tmp1[gv] = std::move(tmp);
+ (*annotationCache)[m] = std::move(tmp1);
}
}
@@ -322,7 +323,7 @@ bool llvm::getAlign(const CallInst &I, unsigned index, unsigned &align) {
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
- dyn_cast<ConstantInt>(alignNode->getOperand(i))) {
+ mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned v = CI->getZExtValue();
if ((v >> 16) == index) {
align = v & 0xFFFF;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h
index 446bfa1..7e2ce73 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXUtilities.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef NVPTXUTILITIES_H
-#define NVPTXUTILITIES_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXUTILITIES_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXUTILITIES_H
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td b/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td
index 775df19..85aa34e 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXVector.td
@@ -661,7 +661,7 @@ class ShuffleAsmStr4<string type>
string s = !strconcat(t6, ShuffleOneLine<"4", "3", type>.s);
}
-let neverHasSideEffects=1, VecInstType=isVecShuffle.Value in {
+let hasSideEffects=0, VecInstType=isVecShuffle.Value in {
def VecShuffle_v4f32 : NVPTXVecInst<(outs V4F32Regs:$dst),
(ins V4F32Regs:$src1, V4F32Regs:$src2,
i8imm:$c0, i8imm:$c1, i8imm:$c2, i8imm:$c3),
@@ -847,7 +847,7 @@ class Vec_Move<string asmstr, NVPTXRegClass vclass, NVPTXInst sop=NOP>
!strconcat(asmstr, "\t${dst:vecfull}, ${src:vecfull};"),
[], sop>;
-let isAsCheapAsAMove=1, neverHasSideEffects=1, IsSimpleMove=1,
+let isAsCheapAsAMove=1, hasSideEffects=0, IsSimpleMove=1,
VecInstType=isVecOther.Value in {
def V4f32Mov : Vec_Move<"mov.v4.f32", V4F32Regs, FMOV32rr>;
def V2f32Mov : Vec_Move<"mov.v2.f32", V2F32Regs, FMOV32rr>;
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h b/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h
index d1d1171..1915dac 100644
--- a/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h
+++ b/contrib/llvm/lib/Target/NVPTX/NVPTXutil.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_NVPTX_UTIL_H
-#define LLVM_TARGET_NVPTX_UTIL_H
+#ifndef LLVM_LIB_TARGET_NVPTX_NVPTXUTIL_H
+#define LLVM_LIB_TARGET_NVPTX_NVPTXUTIL_H
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp b/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp
index d7066d5..cd36e58 100644
--- a/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp
@@ -32,9 +32,7 @@
using namespace llvm;
-namespace {
-
-static unsigned RRegs[32] = {
+static const MCPhysReg RRegs[32] = {
PPC::R0, PPC::R1, PPC::R2, PPC::R3,
PPC::R4, PPC::R5, PPC::R6, PPC::R7,
PPC::R8, PPC::R9, PPC::R10, PPC::R11,
@@ -44,7 +42,7 @@ static unsigned RRegs[32] = {
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31
};
-static unsigned RRegsNoR0[32] = {
+static const MCPhysReg RRegsNoR0[32] = {
PPC::ZERO,
PPC::R1, PPC::R2, PPC::R3,
PPC::R4, PPC::R5, PPC::R6, PPC::R7,
@@ -55,7 +53,7 @@ static unsigned RRegsNoR0[32] = {
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31
};
-static unsigned XRegs[32] = {
+static const MCPhysReg XRegs[32] = {
PPC::X0, PPC::X1, PPC::X2, PPC::X3,
PPC::X4, PPC::X5, PPC::X6, PPC::X7,
PPC::X8, PPC::X9, PPC::X10, PPC::X11,
@@ -65,7 +63,7 @@ static unsigned XRegs[32] = {
PPC::X24, PPC::X25, PPC::X26, PPC::X27,
PPC::X28, PPC::X29, PPC::X30, PPC::X31
};
-static unsigned XRegsNoX0[32] = {
+static const MCPhysReg XRegsNoX0[32] = {
PPC::ZERO8,
PPC::X1, PPC::X2, PPC::X3,
PPC::X4, PPC::X5, PPC::X6, PPC::X7,
@@ -76,7 +74,7 @@ static unsigned XRegsNoX0[32] = {
PPC::X24, PPC::X25, PPC::X26, PPC::X27,
PPC::X28, PPC::X29, PPC::X30, PPC::X31
};
-static unsigned FRegs[32] = {
+static const MCPhysReg FRegs[32] = {
PPC::F0, PPC::F1, PPC::F2, PPC::F3,
PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11,
@@ -86,7 +84,7 @@ static unsigned FRegs[32] = {
PPC::F24, PPC::F25, PPC::F26, PPC::F27,
PPC::F28, PPC::F29, PPC::F30, PPC::F31
};
-static unsigned VRegs[32] = {
+static const MCPhysReg VRegs[32] = {
PPC::V0, PPC::V1, PPC::V2, PPC::V3,
PPC::V4, PPC::V5, PPC::V6, PPC::V7,
PPC::V8, PPC::V9, PPC::V10, PPC::V11,
@@ -96,7 +94,7 @@ static unsigned VRegs[32] = {
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31
};
-static unsigned VSRegs[64] = {
+static const MCPhysReg VSRegs[64] = {
PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3,
PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7,
PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11,
@@ -115,7 +113,7 @@ static unsigned VSRegs[64] = {
PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27,
PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31
};
-static unsigned VSFRegs[64] = {
+static const MCPhysReg VSFRegs[64] = {
PPC::F0, PPC::F1, PPC::F2, PPC::F3,
PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11,
@@ -134,7 +132,7 @@ static unsigned VSFRegs[64] = {
PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27,
PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31
};
-static unsigned CRBITRegs[32] = {
+static const MCPhysReg CRBITRegs[32] = {
PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN,
PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN,
PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
@@ -144,7 +142,7 @@ static unsigned CRBITRegs[32] = {
PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN,
PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN
};
-static unsigned CRRegs[8] = {
+static const MCPhysReg CRRegs[8] = {
PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7
};
@@ -210,20 +208,18 @@ EvaluateCRExpr(const MCExpr *E) {
llvm_unreachable("Invalid expression kind!");
}
+namespace {
+
struct PPCOperand;
class PPCAsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
- MCAsmParser &Parser;
const MCInstrInfo &MII;
bool IsPPC64;
bool IsDarwin;
- MCAsmParser &getParser() const { return Parser; }
- MCAsmLexer &getLexer() const { return Parser.getLexer(); }
-
- void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
- bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+ void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); }
+ bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); }
bool isPPC64() const { return IsPPC64; }
bool isDarwin() const { return IsDarwin; }
@@ -250,7 +246,7 @@ class PPCAsmParser : public MCTargetAsmParser {
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void ProcessInstruction(MCInst &Inst, const OperandVector &Ops);
@@ -266,9 +262,8 @@ class PPCAsmParser : public MCTargetAsmParser {
public:
PPCAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
- const MCInstrInfo &_MII,
- const MCTargetOptions &Options)
- : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(_MII) {
+ const MCInstrInfo &_MII, const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(_STI), MII(_MII) {
// Check for 64-bit vs. 32-bit pointer mode.
Triple TheTriple(STI.getTargetTriple());
IsPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
@@ -297,6 +292,7 @@ struct PPCOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Immediate,
+ ContextImmediate,
Expression,
TLSRegister
} Kind;
@@ -341,6 +337,7 @@ public:
Tok = o.Tok;
break;
case Immediate:
+ case ContextImmediate:
Imm = o.Imm;
break;
case Expression:
@@ -365,6 +362,16 @@ public:
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
+ int64_t getImmS16Context() const {
+ assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!");
+ if (Kind == Immediate)
+ return Imm.Val;
+ return static_cast<int16_t>(Imm.Val);
+ }
+ int64_t getImmU16Context() const {
+ assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!");
+ return Imm.Val;
+ }
const MCExpr *getExpr() const {
assert(Kind == Expression && "Invalid access!");
@@ -409,22 +416,73 @@ public:
bool isToken() const override { return Kind == Token; }
bool isImm() const override { return Kind == Immediate || Kind == Expression; }
bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); }
+ bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); }
bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); }
bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); }
bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); }
- bool isU16Imm() const { return Kind == Expression ||
- (Kind == Immediate && isUInt<16>(getImm())); }
- bool isS16Imm() const { return Kind == Expression ||
- (Kind == Immediate && isInt<16>(getImm())); }
+ bool isU6ImmX2() const { return Kind == Immediate &&
+ isUInt<6>(getImm()) &&
+ (getImm() & 1) == 0; }
+ bool isU7ImmX4() const { return Kind == Immediate &&
+ isUInt<7>(getImm()) &&
+ (getImm() & 3) == 0; }
+ bool isU8ImmX8() const { return Kind == Immediate &&
+ isUInt<8>(getImm()) &&
+ (getImm() & 7) == 0; }
+ bool isU16Imm() const {
+ switch (Kind) {
+ case Expression:
+ return true;
+ case Immediate:
+ case ContextImmediate:
+ return isUInt<16>(getImmU16Context());
+ default:
+ return false;
+ }
+ }
+ bool isS16Imm() const {
+ switch (Kind) {
+ case Expression:
+ return true;
+ case Immediate:
+ case ContextImmediate:
+ return isInt<16>(getImmS16Context());
+ default:
+ return false;
+ }
+ }
bool isS16ImmX4() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 3) == 0); }
- bool isS17Imm() const { return Kind == Expression ||
- (Kind == Immediate && isInt<17>(getImm())); }
+ bool isS17Imm() const {
+ switch (Kind) {
+ case Expression:
+ return true;
+ case Immediate:
+ case ContextImmediate:
+ return isInt<17>(getImmS16Context());
+ default:
+ return false;
+ }
+ }
bool isTLSReg() const { return Kind == TLSRegister; }
- bool isDirectBr() const { return Kind == Expression ||
- (Kind == Immediate && isInt<26>(getImm()) &&
- (getImm() & 3) == 0); }
+ bool isDirectBr() const {
+ if (Kind == Expression)
+ return true;
+ if (Kind != Immediate)
+ return false;
+ // Operand must be 64-bit aligned, signed 27-bit immediate.
+ if ((getImm() & 3) != 0)
+ return false;
+ if (isInt<26>(getImm()))
+ return true;
+ if (!IsPPC64) {
+ // In 32-bit mode, large 32-bit quantities wrap around.
+ if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm())))
+ return true;
+ }
+ return false;
+ }
bool isCondBr() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 3) == 0); }
@@ -529,6 +587,36 @@ public:
Inst.addOperand(MCOperand::CreateExpr(getExpr()));
}
+ void addS16ImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ switch (Kind) {
+ case Immediate:
+ Inst.addOperand(MCOperand::CreateImm(getImm()));
+ break;
+ case ContextImmediate:
+ Inst.addOperand(MCOperand::CreateImm(getImmS16Context()));
+ break;
+ default:
+ Inst.addOperand(MCOperand::CreateExpr(getExpr()));
+ break;
+ }
+ }
+
+ void addU16ImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ switch (Kind) {
+ case Immediate:
+ Inst.addOperand(MCOperand::CreateImm(getImm()));
+ break;
+ case ContextImmediate:
+ Inst.addOperand(MCOperand::CreateImm(getImmU16Context()));
+ break;
+ default:
+ Inst.addOperand(MCOperand::CreateExpr(getExpr()));
+ break;
+ }
+ }
+
void addBranchTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (Kind == Immediate)
@@ -569,9 +657,9 @@ public:
// explicitly.
void *Mem = ::operator new(sizeof(PPCOperand) + Str.size());
std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token));
- Op->Tok.Data = (const char *)(Op.get() + 1);
+ Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1);
Op->Tok.Length = Str.size();
- std::memcpy((void *)Op->Tok.Data, Str.data(), Str.size());
+ std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size());
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsPPC64 = IsPPC64;
@@ -610,6 +698,16 @@ public:
}
static std::unique_ptr<PPCOperand>
+ CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) {
+ auto Op = make_unique<PPCOperand>(ContextImmediate);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ Op->IsPPC64 = IsPPC64;
+ return Op;
+ }
+
+ static std::unique_ptr<PPCOperand>
CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) {
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val))
return CreateImm(CE->getValue(), S, E, IsPPC64);
@@ -618,6 +716,12 @@ public:
if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS)
return CreateTLSReg(SRE, S, E, IsPPC64);
+ if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) {
+ int64_t Res;
+ if (TE->EvaluateAsConstant(Res))
+ return CreateContextImm(Res, S, E, IsPPC64);
+ }
+
return CreateExpr(Val, S, E, IsPPC64);
}
};
@@ -630,6 +734,7 @@ void PPCOperand::print(raw_ostream &OS) const {
OS << "'" << getToken() << "'";
break;
case Immediate:
+ case ContextImmediate:
OS << getImm();
break;
case Expression:
@@ -641,6 +746,29 @@ void PPCOperand::print(raw_ostream &OS) const {
}
}
+static void
+addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) {
+ if (Op.isImm()) {
+ Inst.addOperand(MCOperand::CreateImm(-Op.getImm()));
+ return;
+ }
+ const MCExpr *Expr = Op.getExpr();
+ if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) {
+ if (UnExpr->getOpcode() == MCUnaryExpr::Minus) {
+ Inst.addOperand(MCOperand::CreateExpr(UnExpr->getSubExpr()));
+ return;
+ }
+ } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) {
+ if (BinExpr->getOpcode() == MCBinaryExpr::Sub) {
+ const MCExpr *NE = MCBinaryExpr::CreateSub(BinExpr->getRHS(),
+ BinExpr->getLHS(), Ctx);
+ Inst.addOperand(MCOperand::CreateExpr(NE));
+ return;
+ }
+ }
+ Inst.addOperand(MCOperand::CreateExpr(MCUnaryExpr::CreateMinus(Expr, Ctx)));
+}
+
void PPCAsmParser::ProcessInstruction(MCInst &Inst,
const OperandVector &Operands) {
int Opcode = Inst.getOpcode();
@@ -656,41 +784,37 @@ void PPCAsmParser::ProcessInstruction(MCInst &Inst,
}
case PPC::SUBI: {
MCInst TmpInst;
- int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDI);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
- TmpInst.addOperand(MCOperand::CreateImm(-N));
+ addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::SUBIS: {
MCInst TmpInst;
- int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDIS);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
- TmpInst.addOperand(MCOperand::CreateImm(-N));
+ addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::SUBIC: {
MCInst TmpInst;
- int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDIC);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
- TmpInst.addOperand(MCOperand::CreateImm(-N));
+ addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::SUBICo: {
MCInst TmpInst;
- int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDICo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
- TmpInst.addOperand(MCOperand::CreateImm(-N));
+ addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
@@ -924,12 +1048,11 @@ void PPCAsmParser::ProcessInstruction(MCInst &Inst,
bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
- MCStreamer &Out, unsigned &ErrorInfo,
+ MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
- default: break;
case Match_Success:
// Post-process instructions (typically extended mnemonics)
ProcessInstruction(Inst, Operands);
@@ -939,10 +1062,10 @@ bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
case Match_MissingFeature:
return Error(IDLoc, "instruction use requires an option to be enabled");
case Match_MnemonicFail:
- return Error(IDLoc, "unrecognized instruction mnemonic");
+ return Error(IDLoc, "unrecognized instruction mnemonic");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
@@ -998,6 +1121,7 @@ MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) {
bool PPCAsmParser::
ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
@@ -1179,6 +1303,7 @@ ParseExpression(const MCExpr *&EVal) {
/// for this to be done at a higher level.
bool PPCAsmParser::
ParseDarwinExpression(const MCExpr *&EVal) {
+ MCAsmParser &Parser = getParser();
PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None;
switch (getLexer().getKind()) {
default:
@@ -1221,6 +1346,7 @@ ParseDarwinExpression(const MCExpr *&EVal) {
/// This handles registers in the form 'NN', '%rNN' for ELF platforms and
/// rNN for MachO.
bool PPCAsmParser::ParseOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *EVal;
@@ -1429,6 +1555,7 @@ bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) {
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
@@ -1453,6 +1580,7 @@ bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
/// ParseDirectiveTC
/// ::= .tc [ symbol (, expression)* ]
bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
// Skip TC symbol, which is only used with XCOFF.
while (getLexer().isNot(AsmToken::EndOfStatement)
&& getLexer().isNot(AsmToken::Comma))
@@ -1473,6 +1601,7 @@ bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) {
/// ParseDirectiveMachine (ELF platforms)
/// ::= .machine [ cpu | "push" | "pop" ]
bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier) &&
getLexer().isNot(AsmToken::String)) {
Error(L, "unexpected token in directive");
@@ -1507,6 +1636,7 @@ bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) {
/// ParseDarwinDirectiveMachine (Mach-o platforms)
/// ::= .machine cpu-identifier
bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier) &&
getLexer().isNot(AsmToken::String)) {
Error(L, "unexpected token in directive");
@@ -1623,6 +1753,10 @@ unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
case MCK_1: ImmVal = 1; break;
case MCK_2: ImmVal = 2; break;
case MCK_3: ImmVal = 3; break;
+ case MCK_4: ImmVal = 4; break;
+ case MCK_5: ImmVal = 5; break;
+ case MCK_6: ImmVal = 6; break;
+ case MCK_7: ImmVal = 7; break;
default: return Match_InvalidOperand;
}
diff --git a/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp b/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp
index a2305a9..5251b60 100644
--- a/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/Disassembler/PPCDisassembler.cpp
@@ -12,7 +12,6 @@
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -28,13 +27,10 @@ public:
: MCDisassembler(STI, Ctx) {}
virtual ~PPCDisassembler() {}
- // Override MCDisassembler.
- virtual DecodeStatus getInstruction(MCInst &instr,
- uint64_t &size,
- const MemoryObject &region,
- uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
} // end anonymous namespace
@@ -325,23 +321,19 @@ static DecodeStatus decodeCRBitMOperand(MCInst &Inst, uint64_t Imm,
#include "PPCGenDisassemblerTables.inc"
DecodeStatus PPCDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &os,
- raw_ostream &cs) const {
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address, raw_ostream &OS,
+ raw_ostream &CS) const {
// Get the four bytes of the instruction.
- uint8_t Bytes[4];
Size = 4;
- if (Region.readBytes(Address, Size, Bytes) == -1) {
+ if (Bytes.size() < 4) {
Size = 0;
return MCDisassembler::Fail;
}
// The instruction is big-endian encoded.
- uint32_t Inst = (Bytes[0] << 24) |
- (Bytes[1] << 16) |
- (Bytes[2] << 8) |
- (Bytes[3] << 0);
+ uint32_t Inst =
+ (Bytes[0] << 24) | (Bytes[1] << 16) | (Bytes[2] << 8) | (Bytes[3] << 0);
return decodeInstruction(DecoderTable32, MI, Inst, Address, this, STI);
}
diff --git a/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp
index 628819d..670c40a 100644
--- a/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.cpp
@@ -208,6 +208,13 @@ void PPCInstPrinter::printU2ImmOperand(const MCInst *MI, unsigned OpNo,
O << (unsigned int)Value;
}
+void PPCInstPrinter::printU4ImmOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned int Value = MI->getOperand(OpNo).getImm();
+ assert(Value <= 15 && "Invalid u4imm argument!");
+ O << (unsigned int)Value;
+}
+
void PPCInstPrinter::printS5ImmOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
int Value = MI->getOperand(OpNo).getImm();
diff --git a/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h
index 211a628..b21aa22 100644
--- a/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h
+++ b/contrib/llvm/lib/Target/PowerPC/InstPrinter/PPCInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPCINSTPRINTER_H
-#define PPCINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_POWERPC_INSTPRINTER_PPCINSTPRINTER_H
+#define LLVM_LIB_TARGET_POWERPC_INSTPRINTER_PPCINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
@@ -44,6 +44,7 @@ public:
raw_ostream &O, const char *Modifier = nullptr);
void printU2ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU4ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printS5ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printU5ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printU6ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp
index c54d5e7..bea88a2 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCAsmBackend.cpp
@@ -9,8 +9,8 @@
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCFixupKinds.h"
-#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELF.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp
index ff15748..b817394 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCELFObjectWriter.cpp
@@ -24,11 +24,7 @@ namespace {
public:
PPCELFObjectWriter(bool Is64Bit, uint8_t OSABI);
- virtual ~PPCELFObjectWriter();
protected:
- virtual unsigned getRelocTypeInner(const MCValue &Target,
- const MCFixup &Fixup,
- bool IsPCRel) const;
unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
bool IsPCRel) const override;
@@ -42,9 +38,6 @@ PPCELFObjectWriter::PPCELFObjectWriter(bool Is64Bit, uint8_t OSABI)
Is64Bit ? ELF::EM_PPC64 : ELF::EM_PPC,
/*HasRelocationAddend*/ true) {}
-PPCELFObjectWriter::~PPCELFObjectWriter() {
-}
-
static MCSymbolRefExpr::VariantKind getAccessVariant(const MCValue &Target,
const MCFixup &Fixup) {
const MCExpr *Expr = Fixup.getValue();
@@ -73,10 +66,9 @@ static MCSymbolRefExpr::VariantKind getAccessVariant(const MCValue &Target,
llvm_unreachable("unknown PPCMCExpr kind");
}
-unsigned PPCELFObjectWriter::getRelocTypeInner(const MCValue &Target,
- const MCFixup &Fixup,
- bool IsPCRel) const
-{
+unsigned PPCELFObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
MCSymbolRefExpr::VariantKind Modifier = getAccessVariant(Target, Fixup);
// determine the type of the relocation
@@ -403,12 +395,6 @@ unsigned PPCELFObjectWriter::getRelocTypeInner(const MCValue &Target,
return Type;
}
-unsigned PPCELFObjectWriter::GetRelocType(const MCValue &Target,
- const MCFixup &Fixup,
- bool IsPCRel) const {
- return getRelocTypeInner(Target, Fixup, IsPCRel);
-}
-
bool PPCELFObjectWriter::needsRelocateWithSymbol(const MCSymbolData &SD,
unsigned Type) const {
switch (Type) {
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h
index 68de8c1..ae43e59d 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCFixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_PPC_PPCFIXUPKINDS_H
-#define LLVM_PPC_PPCFIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCFIXUPKINDS_H
+#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCFIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp
index b95a2ac..2b4f2d8 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.cpp
@@ -42,9 +42,9 @@ PPCMCAsmInfoDarwin::PPCMCAsmInfoDarwin(bool is64Bit, const Triple& T) {
UseIntegratedAssembler = true;
}
-void PPCLinuxMCAsmInfo::anchor() { }
+void PPCELFMCAsmInfo::anchor() { }
-PPCLinuxMCAsmInfo::PPCLinuxMCAsmInfo(bool is64Bit, const Triple& T) {
+PPCELFMCAsmInfo::PPCELFMCAsmInfo(bool is64Bit, const Triple& T) {
if (is64Bit) {
PointerSize = CalleeSaveStackSlotSize = 8;
}
@@ -64,7 +64,6 @@ PPCLinuxMCAsmInfo::PPCLinuxMCAsmInfo(bool is64Bit, const Triple& T) {
DollarIsPC = true;
// Set up DWARF directives
- HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
MinInstAlignment = 4;
// Exceptions handling
@@ -73,10 +72,8 @@ PPCLinuxMCAsmInfo::PPCLinuxMCAsmInfo(bool is64Bit, const Triple& T) {
ZeroDirective = "\t.space\t";
Data64bitsDirective = is64Bit ? "\t.quad\t" : nullptr;
AssemblerDialect = 1; // New-Style mnemonics.
+ LCOMMDirectiveAlignmentType = LCOMM::ByteAlignment;
- if (T.getOS() == llvm::Triple::FreeBSD ||
- (T.getOS() == llvm::Triple::NetBSD && !is64Bit) ||
- (T.getOS() == llvm::Triple::OpenBSD && !is64Bit))
- UseIntegratedAssembler = true;
+ UseIntegratedAssembler = true;
}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h
index 754330b..86ad385 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPCTARGETASMINFO_H
-#define PPCTARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCASMINFO_H
+#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCASMINFO_H
#include "llvm/MC/MCAsmInfoDarwin.h"
#include "llvm/MC/MCAsmInfoELF.h"
@@ -21,15 +21,16 @@ namespace llvm {
class Triple;
class PPCMCAsmInfoDarwin : public MCAsmInfoDarwin {
- void anchor() override;
+ virtual void anchor();
+
public:
explicit PPCMCAsmInfoDarwin(bool is64Bit, const Triple&);
};
- class PPCLinuxMCAsmInfo : public MCAsmInfoELF {
+ class PPCELFMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit PPCLinuxMCAsmInfo(bool is64Bit, const Triple&);
+ explicit PPCELFMCAsmInfo(bool is64Bit, const Triple&);
};
} // namespace llvm
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp
index 435a93f..786b7fe 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp
@@ -66,6 +66,15 @@ public:
unsigned getMemRIXEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
+ unsigned getSPE8DisEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getSPE4DisEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+ unsigned getSPE2DisEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
unsigned getTLSRegEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
@@ -260,6 +269,54 @@ unsigned PPCMCCodeEmitter::getMemRIXEncoding(const MCInst &MI, unsigned OpNo,
}
+unsigned PPCMCCodeEmitter::getSPE8DisEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI)
+ const {
+ // Encode (imm, reg) as a spe8dis, which has the low 5-bits of (imm / 8)
+ // as the displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5;
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ assert(MO.isImm());
+ uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 3;
+ return reverseBits(Imm | RegBits) >> 22;
+}
+
+
+unsigned PPCMCCodeEmitter::getSPE4DisEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI)
+ const {
+ // Encode (imm, reg) as a spe4dis, which has the low 5-bits of (imm / 4)
+ // as the displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5;
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ assert(MO.isImm());
+ uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 2;
+ return reverseBits(Imm | RegBits) >> 22;
+}
+
+
+unsigned PPCMCCodeEmitter::getSPE2DisEncoding(const MCInst &MI, unsigned OpNo,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI)
+ const {
+ // Encode (imm, reg) as a spe2dis, which has the low 5-bits of (imm / 2)
+ // as the displacement and the next 5 bits as the register #.
+ assert(MI.getOperand(OpNo+1).isReg());
+ uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5;
+
+ const MCOperand &MO = MI.getOperand(OpNo);
+ assert(MO.isImm());
+ uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 1;
+ return reverseBits(Imm | RegBits) >> 22;
+}
+
+
unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp
index 3ac0aca..7204bef 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.cpp
@@ -7,6 +7,7 @@
//
//===----------------------------------------------------------------------===//
+#include "PPCFixupKinds.h"
#include "PPCMCExpr.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
@@ -52,40 +53,56 @@ void PPCMCExpr::PrintImpl(raw_ostream &OS) const {
}
bool
+PPCMCExpr::EvaluateAsConstant(int64_t &Res) const {
+ MCValue Value;
+
+ if (!getSubExpr()->EvaluateAsRelocatable(Value, nullptr, nullptr))
+ return false;
+
+ if (!Value.isAbsolute())
+ return false;
+
+ Res = EvaluateAsInt64(Value.getConstant());
+ return true;
+}
+
+int64_t
+PPCMCExpr::EvaluateAsInt64(int64_t Value) const {
+ switch (Kind) {
+ case VK_PPC_LO:
+ return Value & 0xffff;
+ case VK_PPC_HI:
+ return (Value >> 16) & 0xffff;
+ case VK_PPC_HA:
+ return ((Value + 0x8000) >> 16) & 0xffff;
+ case VK_PPC_HIGHER:
+ return (Value >> 32) & 0xffff;
+ case VK_PPC_HIGHERA:
+ return ((Value + 0x8000) >> 32) & 0xffff;
+ case VK_PPC_HIGHEST:
+ return (Value >> 48) & 0xffff;
+ case VK_PPC_HIGHESTA:
+ return ((Value + 0x8000) >> 48) & 0xffff;
+ case VK_PPC_None:
+ break;
+ }
+ llvm_unreachable("Invalid kind!");
+}
+
+bool
PPCMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const {
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const {
MCValue Value;
- if (!getSubExpr()->EvaluateAsRelocatable(Value, Layout))
+ if (!getSubExpr()->EvaluateAsRelocatable(Value, Layout, Fixup))
return false;
if (Value.isAbsolute()) {
- int64_t Result = Value.getConstant();
- switch (Kind) {
- default:
- llvm_unreachable("Invalid kind!");
- case VK_PPC_LO:
- Result = Result & 0xffff;
- break;
- case VK_PPC_HI:
- Result = (Result >> 16) & 0xffff;
- break;
- case VK_PPC_HA:
- Result = ((Result + 0x8000) >> 16) & 0xffff;
- break;
- case VK_PPC_HIGHER:
- Result = (Result >> 32) & 0xffff;
- break;
- case VK_PPC_HIGHERA:
- Result = ((Result + 0x8000) >> 32) & 0xffff;
- break;
- case VK_PPC_HIGHEST:
- Result = (Result >> 48) & 0xffff;
- break;
- case VK_PPC_HIGHESTA:
- Result = ((Result + 0x8000) >> 48) & 0xffff;
- break;
- }
+ int64_t Result = EvaluateAsInt64(Value.getConstant());
+ if ((Fixup == nullptr || (unsigned)Fixup->getKind() != PPC::fixup_ppc_half16) &&
+ (Result >= 0x8000))
+ return false;
Res = MCValue::get(Result);
} else {
if (!Layout)
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h
index bca4085..f0a6bb9 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPCMCEXPR_H
-#define PPCMCEXPR_H
+#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCEXPR_H
+#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCEXPR_H
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCExpr.h"
@@ -34,6 +34,8 @@ private:
const MCExpr *Expr;
bool IsDarwin;
+ int64_t EvaluateAsInt64(int64_t Value) const;
+
explicit PPCMCExpr(VariantKind _Kind, const MCExpr *_Expr,
bool _IsDarwin)
: Kind(_Kind), Expr(_Expr), IsDarwin(_IsDarwin) {}
@@ -78,7 +80,8 @@ public:
void PrintImpl(raw_ostream &OS) const override;
bool EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const override;
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const override;
void visitUsedExpr(MCStreamer &Streamer) const override;
const MCSection *FindAssociatedSection() const override {
return getSubExpr()->FindAssociatedSection();
@@ -87,6 +90,8 @@ public:
// There are no TLS PPCMCExprs at the moment.
void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override {}
+ bool EvaluateAsConstant(int64_t &Res) const;
+
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::Target;
}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp
index 1bb5173..f2da389 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp
@@ -79,7 +79,7 @@ static MCAsmInfo *createPPCMCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
if (TheTriple.isOSDarwin())
MAI = new PPCMCAsmInfoDarwin(isPPC64, TheTriple);
else
- MAI = new PPCLinuxMCAsmInfo(isPPC64, TheTriple);
+ MAI = new PPCELFMCAsmInfo(isPPC64, TheTriple);
// Initial state of the frame pointer is R1.
unsigned Reg = isPPC64 ? PPC::X1 : PPC::R1;
@@ -129,10 +129,10 @@ public:
void emitMachine(StringRef CPU) override {
OS << "\t.machine " << CPU << '\n';
}
- virtual void emitAbiVersion(int AbiVersion) override {
+ void emitAbiVersion(int AbiVersion) override {
OS << "\t.abiversion " << AbiVersion << '\n';
}
- virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) {
+ void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) override {
OS << "\t.localentry\t" << *S << ", " << *LocalOffset << '\n';
}
};
@@ -143,7 +143,7 @@ public:
MCELFStreamer &getStreamer() {
return static_cast<MCELFStreamer &>(Streamer);
}
- virtual void emitTCEntry(const MCSymbol &S) override {
+ void emitTCEntry(const MCSymbol &S) override {
// Creates a R_PPC64_TOC relocation
Streamer.EmitSymbolValue(&S, 8);
}
@@ -151,14 +151,14 @@ public:
// FIXME: Is there anything to do in here or does this directive only
// limit the parser?
}
- virtual void emitAbiVersion(int AbiVersion) override {
+ void emitAbiVersion(int AbiVersion) override {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags &= ~ELF::EF_PPC64_ABI;
Flags |= (AbiVersion & ELF::EF_PPC64_ABI);
MCA.setELFHeaderEFlags(Flags);
}
- virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) {
+ void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) override {
MCAssembler &MCA = getStreamer().getAssembler();
MCSymbolData &Data = getStreamer().getOrCreateSymbolData(S);
@@ -213,10 +213,10 @@ public:
// FIXME: We should update the CPUType, CPUSubType in the Object file if
// the new values are different from the defaults.
}
- virtual void emitAbiVersion(int AbiVersion) override {
+ void emitAbiVersion(int AbiVersion) override {
llvm_unreachable("Unknown pseudo-op: .abiversion");
}
- virtual void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) {
+ void emitLocalEntry(MCSymbol *S, const MCExpr *LocalOffset) override {
llvm_unreachable("Unknown pseudo-op: .localentry");
}
};
@@ -225,19 +225,15 @@ public:
// This is duplicated code. Refactor this.
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
- raw_ostream &OS,
- MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI,
- bool RelaxAll,
- bool NoExecStack) {
+ raw_ostream &OS, MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll) {
if (Triple(TT).isOSDarwin()) {
MCStreamer *S = createMachOStreamer(Ctx, MAB, OS, Emitter, RelaxAll);
new PPCTargetMachOStreamer(*S);
return S;
}
- MCStreamer *S =
- createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack);
+ MCStreamer *S = createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll);
new PPCTargetELFStreamer(*S);
return S;
}
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h
index 474395b..68f7f7a 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPCMCTARGETDESC_H
-#define PPCMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
+#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
// GCC #defines PPC on Linux but we use it as our namespace name
#undef PPC
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp
index cff27ba..df2f14a 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMachObjectWriter.cpp
@@ -80,7 +80,7 @@ static unsigned getFixupKindLog2Size(unsigned Kind) {
}
/// Translates generic PPC fixup kind to Mach-O/PPC relocation type enum.
-/// Outline based on PPCELFObjectWriter::getRelocTypeInner().
+/// Outline based on PPCELFObjectWriter::GetRelocType().
static unsigned getRelocType(const MCValue &Target,
const MCFixupKind FixupKind, // from
// Fixup.getKind()
@@ -360,7 +360,7 @@ void PPCMachObjectWriter::RecordPPCRelocation(
// For external relocations, make sure to offset the fixup value to
// compensate for the addend of the symbol address, if it was
// undefined. This occurs with weak definitions, for example.
- if (!SD->Symbol->isUndefined())
+ if (!SD->getSymbol().isUndefined())
FixedValue -= Layout.getSymbolOffset(SD);
} else {
// The index is the section ordinal (1-based).
diff --git a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h
index 10e328a..6075631 100644
--- a/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h
+++ b/contrib/llvm/lib/Target/PowerPC/MCTargetDesc/PPCPredicates.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_POWERPC_PPCPREDICATES_H
-#define LLVM_TARGET_POWERPC_PPCPREDICATES_H
+#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCPREDICATES_H
+#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCPREDICATES_H
// GCC #defines PPC on Linux but we use it as our namespace name
#undef PPC
diff --git a/contrib/llvm/lib/Target/PowerPC/PPC.h b/contrib/llvm/lib/Target/PowerPC/PPC.h
index 38840e6..8fb33df 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPC.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPC.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_POWERPC_H
-#define LLVM_TARGET_POWERPC_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPC_H
+#define LLVM_LIB_TARGET_POWERPC_PPC_H
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include <string>
@@ -26,7 +26,6 @@ namespace llvm {
class PassRegistry;
class FunctionPass;
class ImmutablePass;
- class JITCodeEmitter;
class MachineInstr;
class AsmPrinter;
class MCInst;
@@ -41,8 +40,6 @@ namespace llvm {
FunctionPass *createPPCVSXFMAMutatePass();
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPCISelDag(PPCTargetMachine &TM);
- FunctionPass *createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
- JITCodeEmitter &MCE);
void LowerPPCMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
AsmPrinter &AP, bool isDarwin);
diff --git a/contrib/llvm/lib/Target/PowerPC/PPC.td b/contrib/llvm/lib/Target/PowerPC/PPC.td
index a9842b2..a7fd62c 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPC.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPC.td
@@ -56,6 +56,8 @@ def FeatureCRBits : SubtargetFeature<"crbits", "UseCRBits", "true",
"Use condition-register bits individually">;
def FeatureAltivec : SubtargetFeature<"altivec","HasAltivec", "true",
"Enable Altivec instructions">;
+def FeatureSPE : SubtargetFeature<"spe","HasSPE", "true",
+ "Enable SPE instructions">;
def FeatureMFOCRF : SubtargetFeature<"mfocrf","HasMFOCRF", "true",
"Enable the MFOCRF instruction">;
def FeatureFSqrt : SubtargetFeature<"fsqrt","HasFSQRT", "true",
@@ -86,13 +88,27 @@ def FeaturePOPCNTD : SubtargetFeature<"popcntd","HasPOPCNTD", "true",
"Enable the popcnt[dw] instructions">;
def FeatureLDBRX : SubtargetFeature<"ldbrx","HasLDBRX", "true",
"Enable the ldbrx instruction">;
+def FeatureCMPB : SubtargetFeature<"cmpb", "HasCMPB", "true",
+ "Enable the cmpb instruction">;
def FeatureBookE : SubtargetFeature<"booke", "IsBookE", "true",
"Enable Book E instructions">;
+def FeatureMSYNC : SubtargetFeature<"msync", "HasOnlyMSYNC", "true",
+ "Has only the msync instruction instead of sync",
+ [FeatureBookE]>;
+def FeatureE500 : SubtargetFeature<"e500", "IsE500", "true",
+ "Enable E500/E500mc instructions">;
+def FeaturePPC4xx : SubtargetFeature<"ppc4xx", "IsPPC4xx", "true",
+ "Enable PPC 4xx instructions">;
+def FeaturePPC6xx : SubtargetFeature<"ppc6xx", "IsPPC6xx", "true",
+ "Enable PPC 6xx instructions">;
def FeatureQPX : SubtargetFeature<"qpx","HasQPX", "true",
"Enable QPX instructions">;
def FeatureVSX : SubtargetFeature<"vsx","HasVSX", "true",
"Enable VSX instructions",
[FeatureAltivec]>;
+def FeatureP8Vector : SubtargetFeature<"power8-vector", "HasP8Vector", "true",
+ "Enable POWER8 vector instructions",
+ [FeatureVSX, FeatureAltivec]>;
def DeprecatedMFTB : SubtargetFeature<"", "DeprecatedMFTB", "true",
"Treat mftb as deprecated">;
@@ -102,10 +118,18 @@ def DeprecatedDST : SubtargetFeature<"", "DeprecatedDST", "true",
// Note: Future features to add when support is extended to more
// recent ISA levels:
//
-// CMPB p6, p6x, p7 cmpb
// DFP p6, p6x, p7 decimal floating-point instructions
// POPCNTB p5 through p7 popcntb and related instructions
-// VSX p7 vector-scalar instruction set
+
+//===----------------------------------------------------------------------===//
+// ABI Selection //
+//===----------------------------------------------------------------------===//
+
+def FeatureELFv1 : SubtargetFeature<"elfv1", "TargetABI", "PPC_ABI_ELFv1",
+ "Use the ELFv1 ABI">;
+
+def FeatureELFv2 : SubtargetFeature<"elfv2", "TargetABI", "PPC_ABI_ELFv2",
+ "Use the ELFv2 ABI">;
//===----------------------------------------------------------------------===//
// Classes used for relation maps.
@@ -178,10 +202,12 @@ include "PPCInstrInfo.td"
def : Processor<"generic", G3Itineraries, [Directive32]>;
def : ProcessorModel<"440", PPC440Model, [Directive440, FeatureISEL,
FeatureFRES, FeatureFRSQRTE,
- FeatureBookE, DeprecatedMFTB]>;
+ FeatureBookE, FeatureMSYNC,
+ DeprecatedMFTB]>;
def : ProcessorModel<"450", PPC440Model, [Directive440, FeatureISEL,
FeatureFRES, FeatureFRSQRTE,
- FeatureBookE, DeprecatedMFTB]>;
+ FeatureBookE, FeatureMSYNC,
+ DeprecatedMFTB]>;
def : Processor<"601", G3Itineraries, [Directive601]>;
def : Processor<"602", G3Itineraries, [Directive602]>;
def : Processor<"603", G3Itineraries, [Directive603,
@@ -233,7 +259,7 @@ def : ProcessorModel<"a2", PPCA2Model,
FeatureFRSQRTE, FeatureFRSQRTES, FeatureRecipPrec,
FeatureSTFIWX, FeatureLFIWAX,
FeatureFPRND, FeatureFPCVT, FeatureISEL,
- FeaturePOPCNTD, FeatureLDBRX, Feature64Bit
+ FeaturePOPCNTD, FeatureCMPB, FeatureLDBRX, Feature64Bit
/*, Feature64BitRegs */, DeprecatedMFTB]>;
def : ProcessorModel<"a2q", PPCA2Model,
[DirectiveA2, FeatureBookE, FeatureMFOCRF,
@@ -241,7 +267,7 @@ def : ProcessorModel<"a2q", PPCA2Model,
FeatureFRSQRTE, FeatureFRSQRTES, FeatureRecipPrec,
FeatureSTFIWX, FeatureLFIWAX,
FeatureFPRND, FeatureFPCVT, FeatureISEL,
- FeaturePOPCNTD, FeatureLDBRX, Feature64Bit
+ FeaturePOPCNTD, FeatureCMPB, FeatureLDBRX, Feature64Bit
/*, Feature64BitRegs */, FeatureQPX, DeprecatedMFTB]>;
def : ProcessorModel<"pwr3", G5Model,
[DirectivePwr3, FeatureAltivec,
@@ -267,32 +293,32 @@ def : ProcessorModel<"pwr6", G5Model,
[DirectivePwr6, FeatureAltivec,
FeatureMFOCRF, FeatureFCPSGN, FeatureFSqrt, FeatureFRE,
FeatureFRES, FeatureFRSQRTE, FeatureFRSQRTES,
- FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX,
+ FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX, FeatureCMPB,
FeatureFPRND, Feature64Bit /*, Feature64BitRegs */,
DeprecatedMFTB, DeprecatedDST]>;
def : ProcessorModel<"pwr6x", G5Model,
[DirectivePwr5x, FeatureAltivec, FeatureMFOCRF,
FeatureFCPSGN, FeatureFSqrt, FeatureFRE, FeatureFRES,
FeatureFRSQRTE, FeatureFRSQRTES, FeatureRecipPrec,
- FeatureSTFIWX, FeatureLFIWAX,
+ FeatureSTFIWX, FeatureLFIWAX, FeatureCMPB,
FeatureFPRND, Feature64Bit,
DeprecatedMFTB, DeprecatedDST]>;
def : ProcessorModel<"pwr7", P7Model,
- [DirectivePwr7, FeatureAltivec,
+ [DirectivePwr7, FeatureAltivec, FeatureVSX,
FeatureMFOCRF, FeatureFCPSGN, FeatureFSqrt, FeatureFRE,
FeatureFRES, FeatureFRSQRTE, FeatureFRSQRTES,
FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX,
FeatureFPRND, FeatureFPCVT, FeatureISEL,
- FeaturePOPCNTD, FeatureLDBRX,
+ FeaturePOPCNTD, FeatureCMPB, FeatureLDBRX,
Feature64Bit /*, Feature64BitRegs */,
DeprecatedMFTB, DeprecatedDST]>;
-def : ProcessorModel<"pwr8", P7Model /* FIXME: Update to P8Model when available */,
- [DirectivePwr8, FeatureAltivec,
+def : ProcessorModel<"pwr8", P8Model,
+ [DirectivePwr8, FeatureAltivec, FeatureVSX, FeatureP8Vector,
FeatureMFOCRF, FeatureFCPSGN, FeatureFSqrt, FeatureFRE,
FeatureFRES, FeatureFRSQRTE, FeatureFRSQRTES,
FeatureRecipPrec, FeatureSTFIWX, FeatureLFIWAX,
FeatureFPRND, FeatureFPCVT, FeatureISEL,
- FeaturePOPCNTD, FeatureLDBRX,
+ FeaturePOPCNTD, FeatureCMPB, FeatureLDBRX,
Feature64Bit /*, Feature64BitRegs */,
DeprecatedMFTB, DeprecatedDST]>;
def : Processor<"ppc", G3Itineraries, [Directive32]>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp b/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
index de7547f..49fd2f9 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
@@ -18,9 +18,9 @@
#include "PPC.h"
#include "InstPrinter/PPCInstPrinter.h"
-#include "PPCMachineFunctionInfo.h"
#include "MCTargetDesc/PPCMCExpr.h"
#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "PPCTargetStreamer.h"
@@ -34,6 +34,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
@@ -69,10 +70,11 @@ namespace {
MapVector<MCSymbol*, MCSymbol*> TOC;
const PPCSubtarget &Subtarget;
uint64_t TOCLabelID;
+ StackMaps SM;
public:
explicit PPCAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer),
- Subtarget(TM.getSubtarget<PPCSubtarget>()), TOCLabelID(0) {}
+ Subtarget(TM.getSubtarget<PPCSubtarget>()), TOCLabelID(0), SM(*this) {}
const char *getPassName() const override {
return "PowerPC Assembly Printer";
@@ -90,6 +92,13 @@ namespace {
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) override;
+
+ void EmitEndOfAsmFile(Module &M) override;
+
+ void LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI);
+ void LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI);
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
@@ -147,7 +156,7 @@ static const char *stripRegisterPrefix(const char *RegName) {
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
@@ -275,6 +284,18 @@ bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
printOperand(MI, OpNo, O);
return false;
}
+ case 'U': // Print 'u' for update form.
+ case 'X': // Print 'x' for indexed form.
+ {
+ // FIXME: Currently for PowerPC memory operands are always loaded
+ // into a register, so we never get an update or indexed form.
+ // This is bad even for offset forms, since even if we know we
+ // have a value in -16(r1), we will generate a load into r<n>
+ // and then load from 0(r<n>). Until that issue is fixed,
+ // tolerate 'U' and 'X' but don't output anything.
+ assert(MI->getOperand(OpNo).isReg());
+ return false;
+ }
}
}
@@ -290,7 +311,7 @@ bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
/// exists for it. If not, create one. Then return a symbol that references
/// the TOC entry.
MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
MCSymbol *&TOCEntry = TOC[Sym];
// To avoid name clash check if the name already exists.
@@ -304,6 +325,80 @@ MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
return TOCEntry;
}
+void PPCAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ SM.serializeToStackMapSection();
+}
+
+void PPCAsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI) {
+ unsigned NumNOPBytes = MI.getOperand(1).getImm();
+
+ SM.recordStackMap(MI);
+ assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
+
+ // Scan ahead to trim the shadow.
+ const MachineBasicBlock &MBB = *MI.getParent();
+ MachineBasicBlock::const_iterator MII(MI);
+ ++MII;
+ while (NumNOPBytes > 0) {
+ if (MII == MBB.end() || MII->isCall() ||
+ MII->getOpcode() == PPC::DBG_VALUE ||
+ MII->getOpcode() == TargetOpcode::PATCHPOINT ||
+ MII->getOpcode() == TargetOpcode::STACKMAP)
+ break;
+ ++MII;
+ NumNOPBytes -= 4;
+ }
+
+ // Emit nops.
+ for (unsigned i = 0; i < NumNOPBytes; i += 4)
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::NOP));
+}
+
+// Lower a patchpoint of the form:
+// [<def>], <id>, <numBytes>, <target>, <numArgs>
+void PPCAsmPrinter::LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
+ const MachineInstr &MI) {
+ SM.recordPatchPoint(MI);
+ PatchPointOpers Opers(&MI);
+
+ int64_t CallTarget = Opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
+ unsigned EncodedBytes = 0;
+ if (CallTarget) {
+ assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
+ "High 16 bits of call target should be zero.");
+ unsigned ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
+ EncodedBytes = 6*4;
+ // Materialize the jump address:
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::LI8)
+ .addReg(ScratchReg)
+ .addImm((CallTarget >> 32) & 0xFFFF));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::RLDIC)
+ .addReg(ScratchReg)
+ .addReg(ScratchReg)
+ .addImm(32).addImm(16));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ORIS8)
+ .addReg(ScratchReg)
+ .addReg(ScratchReg)
+ .addImm((CallTarget >> 16) & 0xFFFF));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::ORI8)
+ .addReg(ScratchReg)
+ .addReg(ScratchReg)
+ .addImm(CallTarget & 0xFFFF));
+
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::MTCTR8).addReg(ScratchReg));
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::BCTRL8));
+ }
+
+ // Emit padding.
+ unsigned NumBytes = Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
+ assert(NumBytes >= EncodedBytes &&
+ "Patchpoint can't request size less than the length of a call.");
+ assert((NumBytes - EncodedBytes) % 4 == 0 &&
+ "Invalid number of NOP bytes requested!");
+ for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
+ EmitToStreamer(OutStreamer, MCInstBuilder(PPC::NOP));
+}
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
@@ -320,6 +415,11 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
default: break;
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
+ case TargetOpcode::STACKMAP:
+ return LowerSTACKMAP(OutStreamer, SM, *MI);
+ case TargetOpcode::PATCHPOINT:
+ return LowerPATCHPOINT(OutStreamer, SM, *MI);
+
case PPC::MoveGOTtoLR: {
// Transform %LR = MoveGOTtoLR
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
@@ -932,7 +1032,7 @@ void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
bool isPPC64 = TD->getPointerSizeInBits() == 64;
@@ -1138,7 +1238,8 @@ static MCSymbol *GetAnonSym(MCSymbol *Sym, MCContext &Ctx) {
void PPCDarwinAsmPrinter::
EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs) {
- bool isPPC64 = TM.getDataLayout()->getPointerSizeInBits() == 64;
+ bool isPPC64 =
+ TM.getSubtargetImpl()->getDataLayout()->getPointerSizeInBits() == 64;
bool isDarwin = Subtarget.isDarwin();
const TargetLoweringObjectFileMachO &TLOFMacho =
@@ -1274,7 +1375,8 @@ EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs) {
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
- bool isPPC64 = TM.getDataLayout()->getPointerSizeInBits() == 64;
+ bool isPPC64 =
+ TM.getSubtargetImpl()->getDataLayout()->getPointerSizeInBits() == 64;
// Darwin/PPC always uses mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp b/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp
index ee90671..940d55a 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCBranchSelector.cpp
@@ -23,6 +23,7 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-branch-select"
@@ -64,17 +65,42 @@ FunctionPass *llvm::createPPCBranchSelectionPass() {
bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
const PPCInstrInfo *TII =
- static_cast<const PPCInstrInfo*>(Fn.getTarget().getInstrInfo());
+ static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
// Give the blocks of the function a dense, in-order, numbering.
Fn.RenumberBlocks();
BlockSizes.resize(Fn.getNumBlockIDs());
+ auto GetAlignmentAdjustment =
+ [TII](MachineBasicBlock &MBB, unsigned Offset) -> unsigned {
+ unsigned Align = MBB.getAlignment();
+ if (!Align)
+ return 0;
+
+ unsigned AlignAmt = 1 << Align;
+ unsigned ParentAlign = MBB.getParent()->getAlignment();
+
+ if (Align <= ParentAlign)
+ return OffsetToAlignment(Offset, AlignAmt);
+
+ // The alignment of this MBB is larger than the function's alignment, so we
+ // can't tell whether or not it will insert nops. Assume that it will.
+ return AlignAmt + OffsetToAlignment(Offset, AlignAmt);
+ };
+
// Measure each MBB and compute a size for the entire function.
unsigned FuncSize = 0;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock *MBB = MFI;
+ // The end of the previous block may have extra nops if this block has an
+ // alignment requirement.
+ if (MBB->getNumber() > 0) {
+ unsigned AlignExtra = GetAlignmentAdjustment(*MBB, FuncSize);
+ BlockSizes[MBB->getNumber()-1] += AlignExtra;
+ FuncSize += AlignExtra;
+ }
+
unsigned BlockSize = 0;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
MBBI != EE; ++MBBI)
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp b/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp
index 2adde22..167f335 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp
@@ -229,7 +229,7 @@ bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
if (!TM)
return true;
- const TargetLowering *TLI = TM->getTargetLowering();
+ const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
if (Function *F = CI->getCalledFunction()) {
// Most intrinsics don't become function calls, but some might.
@@ -399,10 +399,9 @@ bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
if (!TM)
return true;
- const TargetLowering *TLI = TM->getTargetLowering();
+ const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
- if (TLI->supportJumpTables() &&
- SI->getNumCases()+1 >= (unsigned) TLI->getMinimumJumpTableEntries())
+ if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
return true;
}
for (Value *Operand : J->operands())
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.h b/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.h
new file mode 100644
index 0000000..eb904a8
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.h
@@ -0,0 +1,35 @@
+//=== PPCCallingConv.h - PPC Custom Calling Convention Routines -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the custom routines for the PPC Calling Convention that
+// aren't done by tablegen.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_PPC_PPCCALLINGCONV_H
+#define LLVM_LIB_TARGET_PPC_PPCCALLINGCONV_H
+
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+
+namespace llvm {
+
+inline bool CC_PPC_AnyReg_Error(unsigned &, MVT &, MVT &,
+ CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
+ CCState &) {
+ llvm_unreachable("The AnyReg calling convention is only supported by the " \
+ "stackmap and patchpoint intrinsics.");
+ // gracefully fallback to PPC C calling convention on Release builds.
+ return false;
+}
+
+} // End llvm namespace
+
+#endif
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td b/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td
index 222760a..56176f1 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCCallingConv.td
@@ -14,16 +14,35 @@
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
- : CCIf<!strconcat("State.getTarget().getSubtarget<PPCSubtarget>().", F), A>;
+ : CCIf<!strconcat("static_cast<const PPCSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).",
+ F),
+ A>;
class CCIfNotSubtarget<string F, CCAction A>
- : CCIf<!strconcat("!State.getTarget().getSubtarget<PPCSubtarget>().", F), A>;
+ : CCIf<!strconcat("!static_cast<const PPCSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).",
+ F),
+ A>;
//===----------------------------------------------------------------------===//
// Return Value Calling Convention
//===----------------------------------------------------------------------===//
+// PPC64 AnyReg return-value convention. No explicit register is specified for
+// the return-value. The register allocator is allowed and expected to choose
+// any free register.
+//
+// This calling convention is currently only supported by the stackmap and
+// patchpoint intrinsics. All other uses will result in an assert on Debug
+// builds. On Release builds we fallback to the PPC C calling convention.
+def RetCC_PPC64_AnyReg : CallingConv<[
+ CCCustom<"CC_PPC_AnyReg_Error">
+]>;
+
// Return-value convention for PowerPC
def RetCC_PPC : CallingConv<[
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
+
// On PPC64, integer return values are always promoted to i64
CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
@@ -45,6 +64,15 @@ def RetCC_PPC : CallingConv<[
CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>
]>;
+// No explicit register is specified for the AnyReg calling convention. The
+// register allocator may assign the arguments to any free register.
+//
+// This calling convention is currently only supported by the stackmap and
+// patchpoint intrinsics. All other uses will result in an assert on Debug
+// builds. On Release builds we fallback to the PPC C calling convention.
+def CC_PPC64_AnyReg : CallingConv<[
+ CCCustom<"CC_PPC_AnyReg_Error">
+]>;
// Note that we don't currently have calling conventions for 64-bit
// PowerPC, but handle all the complexities of the ABI in the lowering
@@ -55,6 +83,8 @@ def RetCC_PPC : CallingConv<[
// Only handle ints and floats. All ints are promoted to i64.
// Vector types and quadword ints are not handled.
def CC_PPC64_ELF_FIS : CallingConv<[
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>,
+
CCIfType<[i1], CCPromoteToType<i64>>,
CCIfType<[i8], CCPromoteToType<i64>>,
CCIfType<[i16], CCPromoteToType<i64>>,
@@ -68,6 +98,8 @@ def CC_PPC64_ELF_FIS : CallingConv<[
// and multiple register returns are "supported" to avoid compile
// errors, but none are handled by the fast selector.
def RetCC_PPC64_ELF_FIS : CallingConv<[
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
+
CCIfType<[i1], CCPromoteToType<i64>>,
CCIfType<[i8], CCPromoteToType<i64>>,
CCIfType<[i16], CCPromoteToType<i64>>,
@@ -197,3 +229,15 @@ def CSR_SVR464_Altivec : CalleeSavedRegs<(add CSR_SVR464, CSR_Altivec)>;
def CSR_NoRegs : CalleeSavedRegs<(add)>;
+def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10),
+ (sequence "X%u", 14, 31),
+ (sequence "F%u", 0, 31),
+ (sequence "CR%u", 0, 7))>;
+
+def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
+ (sequence "V%u", 0, 31))>;
+
+def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
+ (sequence "VSL%u", 0, 31),
+ (sequence "VSH%u", 0, 31))>;
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp b/contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp
deleted file mode 100644
index 0875523..0000000
--- a/contrib/llvm/lib/Target/PowerPC/PPCCodeEmitter.cpp
+++ /dev/null
@@ -1,293 +0,0 @@
-//===-- PPCCodeEmitter.cpp - JIT Code Emitter for PowerPC -----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the PowerPC 32-bit CodeEmitter and associated machinery to
-// JIT-compile bitcode to native PowerPC.
-//
-//===----------------------------------------------------------------------===//
-
-#include "PPC.h"
-#include "PPCRelocations.h"
-#include "PPCTargetMachine.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/IR/Module.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetOptions.h"
-using namespace llvm;
-
-namespace {
- class PPCCodeEmitter : public MachineFunctionPass {
- TargetMachine &TM;
- JITCodeEmitter &MCE;
- MachineModuleInfo *MMI;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- static char ID;
-
- /// MovePCtoLROffset - When/if we see a MovePCtoLR instruction, we record
- /// its address in the function into this pointer.
- void *MovePCtoLROffset;
- public:
-
- PPCCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
- : MachineFunctionPass(ID), TM(tm), MCE(mce) {}
-
- /// getBinaryCodeForInstr - This function, generated by the
- /// CodeEmitterGenerator using TableGen, produces the binary encoding for
- /// machine instructions.
- uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
-
-
- MachineRelocation GetRelocation(const MachineOperand &MO,
- unsigned RelocID) const;
-
- /// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr
- unsigned getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const;
-
- unsigned get_crbitm_encoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getDirectBrEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getCondBrEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getAbsDirectBrEncoding(const MachineInstr &MI,
- unsigned OpNo) const;
- unsigned getAbsCondBrEncoding(const MachineInstr &MI, unsigned OpNo) const;
-
- unsigned getImm16Encoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getMemRIEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getMemRIXEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getTLSRegEncoding(const MachineInstr &MI, unsigned OpNo) const;
- unsigned getTLSCallEncoding(const MachineInstr &MI, unsigned OpNo) const;
-
- const char *getPassName() const override {
- return "PowerPC Machine Code Emitter";
- }
-
- /// runOnMachineFunction - emits the given MachineFunction to memory
- ///
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- /// emitBasicBlock - emits the given MachineBasicBlock to memory
- ///
- void emitBasicBlock(MachineBasicBlock &MBB);
- };
-}
-
-char PPCCodeEmitter::ID = 0;
-
-/// createPPCCodeEmitterPass - Return a pass that emits the collected PPC code
-/// to the specified MCE object.
-FunctionPass *llvm::createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
- JITCodeEmitter &JCE) {
- return new PPCCodeEmitter(TM, JCE);
-}
-
-bool PPCCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
- assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
- MF.getTarget().getRelocationModel() != Reloc::Static) &&
- "JIT relocation model must be set to static or default!");
-
- MMI = &getAnalysis<MachineModuleInfo>();
- MCE.setModuleInfo(MMI);
- do {
- MovePCtoLROffset = nullptr;
- MCE.startFunction(MF);
- for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
- emitBasicBlock(*BB);
- } while (MCE.finishFunction(MF));
-
- return false;
-}
-
-void PPCCodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
- MCE.StartMachineBasicBlock(&MBB);
-
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
- const MachineInstr &MI = *I;
- MCE.processDebugLoc(MI.getDebugLoc(), true);
- switch (MI.getOpcode()) {
- default:
- MCE.emitWordBE(getBinaryCodeForInstr(MI));
- break;
- case TargetOpcode::CFI_INSTRUCTION:
- break;
- case TargetOpcode::EH_LABEL:
- MCE.emitLabel(MI.getOperand(0).getMCSymbol());
- break;
- case TargetOpcode::IMPLICIT_DEF:
- case TargetOpcode::KILL:
- break; // pseudo opcode, no side effects
- case PPC::MovePCtoLR:
- case PPC::MovePCtoLR8:
- assert(TM.getRelocationModel() == Reloc::PIC_);
- MovePCtoLROffset = (void*)MCE.getCurrentPCValue();
- MCE.emitWordBE(0x48000005); // bl 1
- break;
- }
- MCE.processDebugLoc(MI.getDebugLoc(), false);
- }
-}
-
-unsigned PPCCodeEmitter::get_crbitm_encoding(const MachineInstr &MI,
- unsigned OpNo) const {
- const MachineOperand &MO = MI.getOperand(OpNo);
- assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 ||
- MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) &&
- (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7));
- return 0x80 >> TM.getRegisterInfo()->getEncodingValue(MO.getReg());
-}
-
-MachineRelocation PPCCodeEmitter::GetRelocation(const MachineOperand &MO,
- unsigned RelocID) const {
- // If in PIC mode, we need to encode the negated address of the
- // 'movepctolr' into the unrelocated field. After relocation, we'll have
- // &gv-&movepctolr-4 in the imm field. Once &movepctolr is added to the imm
- // field, we get &gv. This doesn't happen for branch relocations, which are
- // always implicitly pc relative.
- intptr_t Cst = 0;
- if (TM.getRelocationModel() == Reloc::PIC_) {
- assert(MovePCtoLROffset && "MovePCtoLR not seen yet?");
- Cst = -(intptr_t)MovePCtoLROffset - 4;
- }
-
- if (MO.isGlobal())
- return MachineRelocation::getGV(MCE.getCurrentPCOffset(), RelocID,
- const_cast<GlobalValue *>(MO.getGlobal()),
- Cst, isa<Function>(MO.getGlobal()));
- if (MO.isSymbol())
- return MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
- RelocID, MO.getSymbolName(), Cst);
- if (MO.isCPI())
- return MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
- RelocID, MO.getIndex(), Cst);
-
- if (MO.isMBB())
- return MachineRelocation::getBB(MCE.getCurrentPCOffset(),
- RelocID, MO.getMBB());
-
- assert(MO.isJTI());
- return MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
- RelocID, MO.getIndex(), Cst);
-}
-
-unsigned PPCCodeEmitter::getDirectBrEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- const MachineOperand &MO = MI.getOperand(OpNo);
- if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
-
- MCE.addRelocation(GetRelocation(MO, PPC::reloc_pcrel_bx));
- return 0;
-}
-
-unsigned PPCCodeEmitter::getCondBrEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- const MachineOperand &MO = MI.getOperand(OpNo);
- MCE.addRelocation(GetRelocation(MO, PPC::reloc_pcrel_bcx));
- return 0;
-}
-
-unsigned PPCCodeEmitter::getAbsDirectBrEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- const MachineOperand &MO = MI.getOperand(OpNo);
- if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
-
- llvm_unreachable("Absolute branch relocations unsupported on the old JIT.");
-}
-
-unsigned PPCCodeEmitter::getAbsCondBrEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("Absolute branch relocations unsupported on the old JIT.");
-}
-
-unsigned PPCCodeEmitter::getImm16Encoding(const MachineInstr &MI,
- unsigned OpNo) const {
- const MachineOperand &MO = MI.getOperand(OpNo);
- if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
-
- unsigned RelocID;
- switch (MO.getTargetFlags() & PPCII::MO_ACCESS_MASK) {
- default: llvm_unreachable("Unsupported target operand flags!");
- case PPCII::MO_LO: RelocID = PPC::reloc_absolute_low; break;
- case PPCII::MO_HA: RelocID = PPC::reloc_absolute_high; break;
- }
-
- MCE.addRelocation(GetRelocation(MO, RelocID));
- return 0;
-}
-
-unsigned PPCCodeEmitter::getMemRIEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- // Encode (imm, reg) as a memri, which has the low 16-bits as the
- // displacement and the next 5 bits as the register #.
- assert(MI.getOperand(OpNo+1).isReg());
- unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1)) << 16;
-
- const MachineOperand &MO = MI.getOperand(OpNo);
- if (MO.isImm())
- return (getMachineOpValue(MI, MO) & 0xFFFF) | RegBits;
-
- // Add a fixup for the displacement field.
- MCE.addRelocation(GetRelocation(MO, PPC::reloc_absolute_low));
- return RegBits;
-}
-
-unsigned PPCCodeEmitter::getMemRIXEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- // Encode (imm, reg) as a memrix, which has the low 14-bits as the
- // displacement and the next 5 bits as the register #.
- assert(MI.getOperand(OpNo+1).isReg());
- unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1)) << 14;
-
- const MachineOperand &MO = MI.getOperand(OpNo);
- if (MO.isImm())
- return ((getMachineOpValue(MI, MO) >> 2) & 0x3FFF) | RegBits;
-
- MCE.addRelocation(GetRelocation(MO, PPC::reloc_absolute_low_ix));
- return RegBits;
-}
-
-
-unsigned PPCCodeEmitter::getTLSRegEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("TLS not supported on the old JIT.");
- return 0;
-}
-
-unsigned PPCCodeEmitter::getTLSCallEncoding(const MachineInstr &MI,
- unsigned OpNo) const {
- llvm_unreachable("TLS not supported on the old JIT.");
- return 0;
-}
-
-unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const {
-
- if (MO.isReg()) {
- // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand.
- // The GPR operand should come through here though.
- assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 &&
- MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) ||
- MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7);
- return TM.getRegisterInfo()->getEncodingValue(MO.getReg());
- }
-
- assert(MO.isImm() &&
- "Relocation required in an instruction that we cannot encode!");
- return MO.getImm();
-}
-
-#include "PPCGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp b/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp
index 9c55a29..13bd0c7 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCFastISel.cpp
@@ -15,6 +15,7 @@
#include "PPC.h"
#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCCallingConv.h"
#include "PPCISelLowering.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
@@ -39,7 +40,7 @@
//===----------------------------------------------------------------------===//
//
// TBD:
-// FastLowerArguments: Handle simple cases.
+// fastLowerArguments: Handle simple cases.
// PPCMaterializeGV: Handle TLS.
// SelectCall: Handle function pointers.
// SelectCall: Handle multi-register return values.
@@ -92,34 +93,35 @@ class PPCFastISel final : public FastISel {
public:
explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo)
- : FastISel(FuncInfo, LibInfo),
- TM(FuncInfo.MF->getTarget()),
- TII(*TM.getInstrInfo()),
- TLI(*TM.getTargetLowering()),
- PPCSubTarget(&TM.getSubtarget<PPCSubtarget>()),
- Context(&FuncInfo.Fn->getContext()) { }
+ : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
+ TII(*TM.getSubtargetImpl()->getInstrInfo()),
+ TLI(*TM.getSubtargetImpl()->getTargetLowering()),
+ PPCSubTarget(&TM.getSubtarget<PPCSubtarget>()),
+ Context(&FuncInfo.Fn->getContext()) {}
// Backend specific FastISel code.
private:
- bool TargetSelectInstruction(const Instruction *I) override;
- unsigned TargetMaterializeConstant(const Constant *C) override;
- unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
+ bool fastSelectInstruction(const Instruction *I) override;
+ unsigned fastMaterializeConstant(const Constant *C) override;
+ unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI) override;
- bool FastLowerArguments() override;
- unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
- unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
+ bool fastLowerArguments() override;
+ unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
+ unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
- unsigned FastEmitInst_r(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill);
- unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
+ unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
+ bool fastLowerCall(CallLoweringInfo &CLI) override;
+
// Instruction selection routines.
private:
bool SelectLoad(const Instruction *I);
@@ -131,7 +133,6 @@ class PPCFastISel final : public FastISel {
bool SelectIToFP(const Instruction *I, bool IsSigned);
bool SelectFPToI(const Instruction *I, bool IsSigned);
bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
- bool SelectCall(const Instruction *I);
bool SelectRet(const Instruction *I);
bool SelectTrunc(const Instruction *I);
bool SelectIntExt(const Instruction *I);
@@ -140,6 +141,9 @@ class PPCFastISel final : public FastISel {
private:
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadTypeLegal(Type *Ty, MVT &VT);
+ bool isVSFRCRegister(unsigned Register) const {
+ return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID;
+ }
bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
bool isZExt, unsigned DestReg);
bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
@@ -172,9 +176,7 @@ class PPCFastISel final : public FastISel {
CallingConv::ID CC,
unsigned &NumBytes,
bool IsVarArg);
- void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
- const Instruction *I, CallingConv::ID CC,
- unsigned &NumBytes, bool IsVarArg);
+ bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
CCAssignFn *usePPC32CCs(unsigned Flag);
private:
@@ -483,6 +485,16 @@ bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
// the indexed form. Also handle stack pointers with special needs.
unsigned IndexReg = 0;
PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
+
+ // If this is a potential VSX load with an offset of 0, a VSX indexed load can
+ // be used.
+ bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg);
+ if (IsVSFRC && (Opc == PPC::LFD) &&
+ (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
+ (Addr.Offset == 0)) {
+ UseOffset = false;
+ }
+
if (ResultReg == 0)
ResultReg = createResultReg(UseRC);
@@ -490,6 +502,8 @@ bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
// in range, as otherwise PPCSimplifyAddress would have converted it
// into a RegBase.
if (Addr.BaseType == Address::FrameIndexBase) {
+ // VSX only provides an indexed load.
+ if (IsVSFRC && Opc == PPC::LFD) return false;
MachineMemOperand *MMO =
FuncInfo.MF->getMachineMemOperand(
@@ -502,6 +516,8 @@ bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
// Base reg with offset in range.
} else if (UseOffset) {
+ // VSX only provides an indexed load.
+ if (IsVSFRC && Opc == PPC::LFD) return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addImm(Addr.Offset).addReg(Addr.Base.Reg);
@@ -525,7 +541,7 @@ bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
case PPC::LWA_32: Opc = PPC::LWAX_32; break;
case PPC::LD: Opc = PPC::LDX; break;
case PPC::LFS: Opc = PPC::LFSX; break;
- case PPC::LFD: Opc = PPC::LFDX; break;
+ case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(Addr.Base.Reg).addReg(IndexReg);
@@ -560,7 +576,7 @@ bool PPCFastISel::SelectLoad(const Instruction *I) {
unsigned ResultReg = 0;
if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -603,10 +619,22 @@ bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
unsigned IndexReg = 0;
PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
+ // If this is a potential VSX store with an offset of 0, a VSX indexed store
+ // can be used.
+ bool IsVSFRC = isVSFRCRegister(SrcReg);
+ if (IsVSFRC && (Opc == PPC::STFD) &&
+ (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
+ (Addr.Offset == 0)) {
+ UseOffset = false;
+ }
+
// Note: If we still have a frame index here, we know the offset is
// in range, as otherwise PPCSimplifyAddress would have converted it
// into a RegBase.
if (Addr.BaseType == Address::FrameIndexBase) {
+ // VSX only provides an indexed store.
+ if (IsVSFRC && Opc == PPC::STFD) return false;
+
MachineMemOperand *MMO =
FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
@@ -620,12 +648,15 @@ bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
.addMemOperand(MMO);
// Base reg with offset in range.
- } else if (UseOffset)
+ } else if (UseOffset) {
+ // VSX only provides an indexed store.
+ if (IsVSFRC && Opc == PPC::STFD) return false;
+
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
// Indexed form.
- else {
+ } else {
// Get the RR opcode corresponding to the RI one. FIXME: It would be
// preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
// is hard to get at.
@@ -639,7 +670,7 @@ bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
case PPC::STW8: Opc = PPC::STWX8; break;
case PPC::STD: Opc = PPC::STDX; break;
case PPC::STFS: Opc = PPC::STFSX; break;
- case PPC::STFD: Opc = PPC::STFDX; break;
+ case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
@@ -707,7 +738,7 @@ bool PPCFastISel::SelectBranch(const Instruction *I) {
BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
.addImm(PPCPred).addReg(CondReg).addMBB(TBB);
- FastEmitBranch(FBB, DbgLoc);
+ fastEmitBranch(FBB, DbgLoc);
FuncInfo.MBB->addSuccessor(TBB);
return true;
@@ -715,7 +746,7 @@ bool PPCFastISel::SelectBranch(const Instruction *I) {
dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
- FastEmitBranch(Target, DbgLoc);
+ fastEmitBranch(Target, DbgLoc);
return true;
}
@@ -838,7 +869,7 @@ bool PPCFastISel::SelectFPExt(const Instruction *I) {
return false;
// No code is generated for a FP extend.
- UpdateValueMap(I, SrcReg);
+ updateValueMap(I, SrcReg);
return true;
}
@@ -860,7 +891,7 @@ bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
.addReg(SrcReg);
- UpdateValueMap(I, DestReg);
+ updateValueMap(I, DestReg);
return true;
}
@@ -979,7 +1010,7 @@ bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
.addReg(FPReg);
- UpdateValueMap(I, DestReg);
+ updateValueMap(I, DestReg);
return true;
}
@@ -1080,7 +1111,7 @@ bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
if (IntReg == 0)
return false;
- UpdateValueMap(I, IntReg);
+ updateValueMap(I, IntReg);
return true;
}
@@ -1169,7 +1200,7 @@ bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
ResultReg)
.addReg(SrcReg1)
.addImm(Imm);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
}
@@ -1185,7 +1216,7 @@ bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(SrcReg1).addReg(SrcReg2);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1200,7 +1231,7 @@ bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
unsigned &NumBytes,
bool IsVarArg) {
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
// Reserve space for the linkage area on the stack.
bool isELFv2ABI = PPCSubTarget->isELFv2ABI();
@@ -1308,9 +1339,9 @@ bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
// For a call that we've determined we can fast-select, finish the
// call sequence and generate a copy to obtain the return value (if any).
-void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
- const Instruction *I, CallingConv::ID CC,
- unsigned &NumBytes, bool IsVarArg) {
+bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
+ CallingConv::ID CC = CLI.CallConv;
+
// Issue CallSEQ_END.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TII.getCallFrameDestroyOpcode()))
@@ -1321,7 +1352,7 @@ void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
// any real difficulties there.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
CCValAssign &VA = RVLocs[0];
assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
@@ -1366,39 +1397,35 @@ void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
}
assert(ResultReg && "ResultReg unset!");
- UsedRegs.push_back(SourcePhysReg);
- UpdateValueMap(I, ResultReg);
+ CLI.InRegs.push_back(SourcePhysReg);
+ CLI.ResultReg = ResultReg;
+ CLI.NumResultRegs = 1;
}
+
+ return true;
}
-// Attempt to fast-select a call instruction.
-bool PPCFastISel::SelectCall(const Instruction *I) {
- const CallInst *CI = cast<CallInst>(I);
- const Value *Callee = CI->getCalledValue();
+bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
+ CallingConv::ID CC = CLI.CallConv;
+ bool IsTailCall = CLI.IsTailCall;
+ bool IsVarArg = CLI.IsVarArg;
+ const Value *Callee = CLI.Callee;
+ const char *SymName = CLI.SymName;
- // Can't handle inline asm.
- if (isa<InlineAsm>(Callee))
+ if (!Callee && !SymName)
return false;
// Allow SelectionDAG isel to handle tail calls.
- if (CI->isTailCall())
+ if (IsTailCall)
return false;
- // Obtain calling convention.
- ImmutableCallSite CS(CI);
- CallingConv::ID CC = CS.getCallingConv();
-
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- bool IsVarArg = FTy->isVarArg();
-
- // Not ready for varargs yet.
+ // Let SDISel handle vararg functions.
if (IsVarArg)
return false;
// Handle simple calls for now, with legal return types and
// those that can be extended.
- Type *RetTy = I->getType();
+ Type *RetTy = CLI.RetTy;
MVT RetVT;
if (RetTy->isVoidTy())
RetVT = MVT::isVoid;
@@ -1411,7 +1438,7 @@ bool PPCFastISel::SelectCall(const Instruction *I) {
RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
RetVT != MVT::f64) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
if (RVLocs.size() > 1)
return false;
@@ -1419,7 +1446,7 @@ bool PPCFastISel::SelectCall(const Instruction *I) {
// Bail early if more than 8 arguments, as we only currently
// handle arguments passed in registers.
- unsigned NumArgs = CS.arg_size();
+ unsigned NumArgs = CLI.OutVals.size();
if (NumArgs > 8)
return false;
@@ -1434,28 +1461,16 @@ bool PPCFastISel::SelectCall(const Instruction *I) {
ArgVTs.reserve(NumArgs);
ArgFlags.reserve(NumArgs);
- for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
- II != IE; ++II) {
- // FIXME: ARM does something for intrinsic calls here, check into that.
-
- unsigned AttrIdx = II - CS.arg_begin() + 1;
-
+ for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
// Only handle easy calls for now. It would be reasonably easy
// to handle <= 8-byte structures passed ByVal in registers, but we
// have to ensure they are right-justified in the register.
- if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
- CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
- CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
- CS.paramHasAttr(AttrIdx, Attribute::ByVal))
+ ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
+ if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
return false;
- ISD::ArgFlagsTy Flags;
- if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
- Flags.setSExt();
- if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
- Flags.setZExt();
-
- Type *ArgTy = (*II)->getType();
+ Value *ArgValue = CLI.OutVals[i];
+ Type *ArgTy = ArgValue->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
return false;
@@ -1463,14 +1478,11 @@ bool PPCFastISel::SelectCall(const Instruction *I) {
if (ArgVT.isVector())
return false;
- unsigned Arg = getRegForValue(*II);
+ unsigned Arg = getRegForValue(ArgValue);
if (Arg == 0)
return false;
- unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
- Flags.setOrigAlign(OriginalAlignment);
-
- Args.push_back(*II);
+ Args.push_back(ArgValue);
ArgRegs.push_back(Arg);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
@@ -1484,18 +1496,28 @@ bool PPCFastISel::SelectCall(const Instruction *I) {
RegArgs, CC, NumBytes, IsVarArg))
return false;
+ MachineInstrBuilder MIB;
// FIXME: No handling for function pointers yet. This requires
// implementing the function descriptor (OPD) setup.
const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
- if (!GV)
- return false;
-
- // Build direct call with NOP for TOC restore.
- // FIXME: We can and should optimize away the NOP for local calls.
- MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(PPC::BL8_NOP));
- // Add callee.
- MIB.addGlobalAddress(GV);
+ if (!GV) {
+ // patchpoints are a special case; they always dispatch to a pointer value.
+ // However, we don't actually want to generate the indirect call sequence
+ // here (that will be generated, as necessary, during asm printing), and
+ // the call we generate here will be erased by FastISel::selectPatchpoint,
+ // so don't try very hard...
+ if (CLI.IsPatchPoint)
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
+ else
+ return false;
+ } else {
+ // Build direct call with NOP for TOC restore.
+ // FIXME: We can and should optimize away the NOP for local calls.
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(PPC::BL8_NOP));
+ // Add callee.
+ MIB.addGlobalAddress(GV);
+ }
// Add implicit physical register uses to the call.
for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
@@ -1509,14 +1531,10 @@ bool PPCFastISel::SelectCall(const Instruction *I) {
// defs for return values will be added by setPhysRegsDeadExcept().
MIB.addRegMask(TRI.getCallPreservedMask(CC));
- // Finish off the call including any return values.
- SmallVector<unsigned, 4> UsedRegs;
- finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
-
- // Set all unused physregs defs as dead.
- static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+ CLI.Call = MIB;
- return true;
+ // Finish off the call including any return values.
+ return finishCall(RetVT, CLI, NumBytes);
}
// Attempt to fast-select a return instruction.
@@ -1538,7 +1556,7 @@ bool PPCFastISel::SelectRet(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
- CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
const Value *RV = Ret->getOperand(0);
@@ -1627,7 +1645,7 @@ bool PPCFastISel::SelectRet(const Instruction *I) {
}
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(PPC::BLR));
+ TII.get(PPC::BLR8));
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
MIB.addReg(RetRegs[i], RegState::Implicit);
@@ -1731,7 +1749,7 @@ bool PPCFastISel::SelectTrunc(const Instruction *I) {
SrcReg = ResultReg;
}
- UpdateValueMap(I, SrcReg);
+ updateValueMap(I, SrcReg);
return true;
}
@@ -1770,13 +1788,13 @@ bool PPCFastISel::SelectIntExt(const Instruction *I) {
if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
// Attempt to fast-select an instruction that wasn't handled by
// the table-generated machinery.
-bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
+bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
@@ -1806,9 +1824,7 @@ bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
case Instruction::Sub:
return SelectBinaryIntOp(I, ISD::SUB);
case Instruction::Call:
- if (dyn_cast<IntrinsicInst>(I))
- return false;
- return SelectCall(I);
+ return selectCall(I);
case Instruction::Ret:
return SelectRet(I);
case Instruction::Trunc:
@@ -2066,7 +2082,7 @@ unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT,
// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
-unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
+unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
@@ -2078,14 +2094,14 @@ unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return PPCMaterializeGV(GV, VT);
else if (isa<ConstantInt>(C))
- return PPCMaterializeInt(C, VT);
+ return PPCMaterializeInt(C, VT, VT != MVT::i1);
return 0;
}
// Materialize the address created by an alloca into a register, and
// return the register number (or zero if we failed to handle it).
-unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
// Don't handle dynamic allocas.
if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
@@ -2185,7 +2201,7 @@ bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
// Attempt to lower call arguments in a faster way than done by
// the selection DAG code.
-bool PPCFastISel::FastLowerArguments() {
+bool PPCFastISel::fastLowerArguments() {
// Defer to normal argument lowering for now. It's reasonably
// efficient. Consider doing something like ARM to handle the
// case where all args fit in registers, no varargs, no float
@@ -2195,7 +2211,7 @@ bool PPCFastISel::FastLowerArguments() {
// Handle materializing integer constants into a register. This is not
// automatically generated for PowerPC, so must be explicitly created here.
-unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
+unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
if (Opc != ISD::Constant)
return 0;
@@ -2232,7 +2248,7 @@ unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
// assigning R0 or X0 to the output register for GPRC and G8RC
// register classes, as any such result could be used in ADDI, etc.,
// where those regs have another meaning.
-unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
+unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm) {
@@ -2245,27 +2261,27 @@ unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
(RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
(RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
- return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
+ return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
Op0, Op0IsKill, Imm);
}
// Override for instructions with one register operand to avoid use of
// R0/X0. The automatic infrastructure isn't aware of the context so
// we must be conservative.
-unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
+unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass* RC,
unsigned Op0, bool Op0IsKill) {
const TargetRegisterClass *UseRC =
(RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
(RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
- return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
+ return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
}
// Override for instructions with two register operands to avoid use
// of R0/X0. The automatic infrastructure isn't aware of the context
// so we must be conservative.
-unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
+unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass* RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
@@ -2273,7 +2289,7 @@ unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
(RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
(RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
- return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
+ return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
Op1, Op1IsKill);
}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
index 2a02dfc..1b85047 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
@@ -254,7 +254,7 @@ static void RemoveVRSaveCode(MachineInstr *MI) {
// transform this into the appropriate ORI instruction.
static void HandleVRSaveUpdate(MachineInstr *MI, const TargetInstrInfo &TII) {
MachineFunction *MF = MI->getParent()->getParent();
- const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned UsedRegMask = 0;
@@ -372,7 +372,7 @@ unsigned PPCFrameLowering::determineFrameLayout(MachineFunction &MF,
unsigned AlignMask = std::max(MaxAlign, TargetAlign) - 1;
const PPCRegisterInfo *RegInfo =
- static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const PPCRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
// If we are a leaf function, and use up to 224 bytes of stack space,
// don't have a frame pointer, calls, or dynamic alloca then we do not need
@@ -450,6 +450,7 @@ bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
MFI->hasVarSizedObjects() ||
+ MFI->hasStackMap() || MFI->hasPatchPoint() ||
(MF.getTarget().Options.GuaranteedTailCallOpt &&
MF.getInfo<PPCFunctionInfo>()->hasFastCall());
}
@@ -460,7 +461,7 @@ void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
const PPCRegisterInfo *RegInfo =
- static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const PPCRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
bool HasBP = RegInfo->hasBasePointer(MF);
unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FPReg;
@@ -498,9 +499,9 @@ void PPCFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
const PPCInstrInfo &TII =
- *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const PPCInstrInfo *>(MF.getSubtarget().getInstrInfo());
const PPCRegisterInfo *RegInfo =
- static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const PPCRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
@@ -611,6 +612,14 @@ void PPCFrameLowering::emitPrologue(MachineFunction &MF) const {
}
}
+ int PBPOffset = 0;
+ if (FI->usesPICBase()) {
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ int PBPIndex = FI->getPICBasePointerSaveIndex();
+ assert(PBPIndex && "No PIC Base Pointer Save Slot!");
+ PBPOffset = FFI->getObjectOffset(PBPIndex);
+ }
+
// Get stack alignments.
unsigned MaxAlign = MFI->getMaxAlignment();
if (HasBP && MaxAlign > 1)
@@ -644,6 +653,13 @@ void PPCFrameLowering::emitPrologue(MachineFunction &MF) const {
.addImm(FPOffset)
.addReg(SPReg);
+ if (FI->usesPICBase())
+ // FIXME: On PPC32 SVR4, we must not spill before claiming the stackframe.
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(PPC::R30)
+ .addImm(PBPOffset)
+ .addReg(SPReg);
+
if (HasBP)
// FIXME: On PPC32 SVR4, we must not spill before claiming the stackframe.
BuildMI(MBB, MBBI, dl, StoreInst)
@@ -755,6 +771,15 @@ void PPCFrameLowering::emitPrologue(MachineFunction &MF) const {
.addCFIIndex(CFIIndex);
}
+ if (FI->usesPICBase()) {
+ // Describe where FP was saved, at a fixed offset from CFA.
+ unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
+ CFIIndex = MMI.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
if (HasBP) {
// Describe where BP was saved, at a fixed offset from CFA.
unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
@@ -839,14 +864,15 @@ void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI != MBB.end() && "Returning block has no terminator");
const PPCInstrInfo &TII =
- *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const PPCInstrInfo *>(MF.getSubtarget().getInstrInfo());
const PPCRegisterInfo *RegInfo =
- static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const PPCRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc dl;
assert((RetOpcode == PPC::BLR ||
+ RetOpcode == PPC::BLR8 ||
RetOpcode == PPC::TCRETURNri ||
RetOpcode == PPC::TCRETURNdi ||
RetOpcode == PPC::TCRETURNai ||
@@ -924,6 +950,14 @@ void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
}
}
+ int PBPOffset = 0;
+ if (FI->usesPICBase()) {
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ int PBPIndex = FI->getPICBasePointerSaveIndex();
+ assert(PBPIndex && "No PIC Base Pointer Save Slot!");
+ PBPOffset = FFI->getObjectOffset(PBPIndex);
+ }
+
bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
RetOpcode == PPC::TCRETURNdi ||
RetOpcode == PPC::TCRETURNai ||
@@ -1003,6 +1037,13 @@ void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
.addImm(FPOffset)
.addReg(SPReg);
+ if (FI->usesPICBase())
+ // FIXME: On PPC32 SVR4, we must not spill before claiming the stackframe.
+ BuildMI(MBB, MBBI, dl, LoadInst)
+ .addReg(PPC::R30)
+ .addImm(PBPOffset)
+ .addReg(SPReg);
+
if (HasBP)
BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
.addImm(BPOffset)
@@ -1018,7 +1059,8 @@ void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
// Callee pop calling convention. Pop parameter/linkage area. Used for tail
// call optimization
- if (MF.getTarget().Options.GuaranteedTailCallOpt && RetOpcode == PPC::BLR &&
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
MF.getFunction()->getCallingConv() == CallingConv::Fast) {
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
unsigned CallerAllocatedAmt = FI->getMinReservedArea();
@@ -1084,7 +1126,7 @@ void
PPCFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *) const {
const PPCRegisterInfo *RegInfo =
- static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const PPCRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
// Save and clear the LR state.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
@@ -1119,6 +1161,14 @@ PPCFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
FI->setBasePointerSaveIndex(BPSI);
}
+ // Reserve stack space for the PIC Base register (R30).
+ // Only used in SVR4 32-bit.
+ if (FI->usesPICBase()) {
+ int PBPSI = FI->getPICBasePointerSaveIndex();
+ PBPSI = MFI->CreateFixedObject(4, -8, true);
+ FI->setPICBasePointerSaveIndex(PBPSI);
+ }
+
// Reserve stack space to move the linkage area to in case of a tail call.
int TCSPDelta = 0;
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
@@ -1216,7 +1266,7 @@ void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
}
PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
int64_t LowerBound = 0;
@@ -1250,8 +1300,17 @@ void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
}
+ if (PFI->usesPICBase()) {
+ HasGPSaveArea = true;
+
+ int FI = PFI->getPICBasePointerSaveIndex();
+ assert(FI && "No PIC Base Pointer Save Slot!");
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
const PPCRegisterInfo *RegInfo =
- static_cast<const PPCRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const PPCRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
if (RegInfo->hasBasePointer(MF)) {
HasGPSaveArea = true;
@@ -1399,7 +1458,7 @@ PPCFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineFunction *MF = MBB.getParent();
const PPCInstrInfo &TII =
- *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
+ *static_cast<const PPCInstrInfo *>(MF->getSubtarget().getInstrInfo());
DebugLoc DL;
bool CRSpilled = false;
MachineInstrBuilder CRMIB;
@@ -1461,7 +1520,7 @@ restoreCRs(bool isPPC64, bool is31,
MachineFunction *MF = MBB.getParent();
const PPCInstrInfo &TII =
- *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
+ *static_cast<const PPCInstrInfo *>(MF->getSubtarget().getInstrInfo());
DebugLoc DL;
unsigned RestoreOp, MoveReg;
@@ -1494,7 +1553,7 @@ void PPCFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const PPCInstrInfo &TII =
- *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const PPCInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
I->getOpcode() == PPC::ADJCALLSTACKUP) {
// Add (actually subtract) back the amount the callee popped on return.
@@ -1544,7 +1603,7 @@ PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineFunction *MF = MBB.getParent();
const PPCInstrInfo &TII =
- *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
+ *static_cast<const PPCInstrInfo *>(MF->getSubtarget().getInstrInfo());
bool CR2Spilled = false;
bool CR3Spilled = false;
bool CR4Spilled = false;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h
index c0c7d24..c482588 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCFrameLowering.h
@@ -10,8 +10,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPC_FRAMEINFO_H
-#define POWERPC_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCFRAMELOWERING_H
+#define LLVM_LIB_TARGET_POWERPC_PPCFRAMELOWERING_H
#include "PPC.h"
#include "llvm/ADT/STLExtras.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h b/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h
index 23f76c16..4b50214 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCHazardRecognizers.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPCHAZRECS_H
-#define PPCHAZRECS_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCHAZARDRECOGNIZERS_H
+#define LLVM_LIB_TARGET_POWERPC_PPCHAZARDRECOGNIZERS_H
#include "PPCInstrInfo.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
@@ -76,10 +76,10 @@ class PPCHazardRecognizer970 : public ScheduleHazardRecognizer {
public:
PPCHazardRecognizer970(const ScheduleDAG &DAG);
- virtual HazardType getHazardType(SUnit *SU, int Stalls) override;
- virtual void EmitInstruction(SUnit *SU) override;
- virtual void AdvanceCycle() override;
- virtual void Reset() override;
+ HazardType getHazardType(SUnit *SU, int Stalls) override;
+ void EmitInstruction(SUnit *SU) override;
+ void AdvanceCycle() override;
+ void Reset() override;
private:
/// EndDispatchGroup - Called when we are finishing a new dispatch group.
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
index d037b6a..75ab343 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -42,6 +42,12 @@ using namespace llvm;
cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
+cl::opt<bool> UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
+ cl::desc("use aggressive ppc isel for bit permutations"), cl::Hidden);
+cl::opt<bool> BPermRewriterNoMasking("ppc-bit-perm-rewriter-stress-rotates",
+ cl::desc("stress rotate selection in aggressive ppc isel for "
+ "bit permutations"), cl::Hidden);
+
namespace llvm {
void initializePPCDAGToDAGISelPass(PassRegistry&);
}
@@ -58,16 +64,16 @@ namespace {
unsigned GlobalBaseReg;
public:
explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
- : SelectionDAGISel(tm), TM(tm),
- PPCLowering(TM.getTargetLowering()),
- PPCSubTarget(TM.getSubtargetImpl()) {
+ : SelectionDAGISel(tm), TM(tm),
+ PPCLowering(TM.getSubtargetImpl()->getTargetLowering()),
+ PPCSubTarget(TM.getSubtargetImpl()) {
initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
- PPCLowering = TM.getTargetLowering();
+ PPCLowering = TM.getSubtargetImpl()->getTargetLowering();
PPCSubTarget = TM.getSubtargetImpl();
SelectionDAGISel::runOnMachineFunction(MF);
@@ -77,6 +83,7 @@ namespace {
return true;
}
+ void PreprocessISelDAG() override;
void PostprocessISelDAG() override;
/// getI32Imm - Return a target constant with the specified value, of type
@@ -112,11 +119,14 @@ namespace {
/// base register. Return the virtual register that holds this value.
SDNode *getGlobalBaseReg();
+ SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
+
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *Select(SDNode *N) override;
SDNode *SelectBitfieldInsert(SDNode *N);
+ SDNode *SelectBitPermutation(SDNode *N);
/// SelectCC - Select a comparison of the specified values with the
/// specified condition code, returning the CR# of the expression.
@@ -178,7 +188,7 @@ namespace {
std::vector<SDValue> &OutOps) override {
// We need to make sure that this one operand does not end up in r0
// (because we might end up lowering this as 0(%op)).
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
SDValue NewOp =
@@ -203,8 +213,12 @@ private:
SDNode *SelectSETCC(SDNode *N);
void PeepholePPC64();
+ void PeepholePPC64ZExt();
void PeepholeCROps();
+ SDValue combineToCMPB(SDNode *N);
+ void foldBoolExts(SDValue &Res, SDNode *&N);
+
bool AllUsersSelectZero(SDNode *N);
void SwapAllSelectUsers(SDNode *N);
};
@@ -244,7 +258,7 @@ void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
- const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
MachineBasicBlock &EntryBB = *Fn.begin();
DebugLoc dl;
// Emit the following code into the entry block:
@@ -280,7 +294,7 @@ void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
///
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
if (!GlobalBaseReg) {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
@@ -293,6 +307,7 @@ SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
if (M->getPICLevel() == PICLevel::Small) {
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
+ MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
} else {
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
@@ -373,6 +388,18 @@ static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
&& isInt32Immediate(N->getOperand(1).getNode(), Imm);
}
+SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
+ SDLoc dl(SN);
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
+ unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
+ if (SN->hasOneUse())
+ return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
+ getSmallIPtrImm(Offset));
+ return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
+ getSmallIPtrImm(Offset));
+}
+
bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
if (!Val)
return false;
@@ -517,6 +544,1401 @@ SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
return nullptr;
}
+// Predict the number of instructions that would be generated by calling
+// SelectInt64(N).
+static unsigned SelectInt64CountDirect(int64_t Imm) {
+ // Assume no remaining bits.
+ unsigned Remainder = 0;
+ // Assume no shift required.
+ unsigned Shift = 0;
+
+ // If it can't be represented as a 32 bit value.
+ if (!isInt<32>(Imm)) {
+ Shift = countTrailingZeros<uint64_t>(Imm);
+ int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
+
+ // If the shifted value fits 32 bits.
+ if (isInt<32>(ImmSh)) {
+ // Go with the shifted value.
+ Imm = ImmSh;
+ } else {
+ // Still stuck with a 64 bit value.
+ Remainder = Imm;
+ Shift = 32;
+ Imm >>= 32;
+ }
+ }
+
+ // Intermediate operand.
+ unsigned Result = 0;
+
+ // Handle first 32 bits.
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+
+ // Simple value.
+ if (isInt<16>(Imm)) {
+ // Just the Lo bits.
+ ++Result;
+ } else if (Lo) {
+ // Handle the Hi bits and Lo bits.
+ Result += 2;
+ } else {
+ // Just the Hi bits.
+ ++Result;
+ }
+
+ // If no shift, we're done.
+ if (!Shift) return Result;
+
+ // Shift for next step if the upper 32-bits were not zero.
+ if (Imm)
+ ++Result;
+
+ // Add in the last bits as required.
+ if ((Hi = (Remainder >> 16) & 0xFFFF))
+ ++Result;
+ if ((Lo = Remainder & 0xFFFF))
+ ++Result;
+
+ return Result;
+}
+
+static uint64_t Rot64(uint64_t Imm, unsigned R) {
+ return (Imm << R) | (Imm >> (64 - R));
+}
+
+static unsigned SelectInt64Count(int64_t Imm) {
+ unsigned Count = SelectInt64CountDirect(Imm);
+ if (Count == 1)
+ return Count;
+
+ for (unsigned r = 1; r < 63; ++r) {
+ uint64_t RImm = Rot64(Imm, r);
+ unsigned RCount = SelectInt64CountDirect(RImm) + 1;
+ Count = std::min(Count, RCount);
+
+ // See comments in SelectInt64 for an explanation of the logic below.
+ unsigned LS = findLastSet(RImm);
+ if (LS != r-1)
+ continue;
+
+ uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
+ uint64_t RImmWithOnes = RImm | OnesMask;
+
+ RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
+ Count = std::min(Count, RCount);
+ }
+
+ return Count;
+}
+
+// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
+// (above) needs to be kept in sync with this function.
+static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
+ // Assume no remaining bits.
+ unsigned Remainder = 0;
+ // Assume no shift required.
+ unsigned Shift = 0;
+
+ // If it can't be represented as a 32 bit value.
+ if (!isInt<32>(Imm)) {
+ Shift = countTrailingZeros<uint64_t>(Imm);
+ int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
+
+ // If the shifted value fits 32 bits.
+ if (isInt<32>(ImmSh)) {
+ // Go with the shifted value.
+ Imm = ImmSh;
+ } else {
+ // Still stuck with a 64 bit value.
+ Remainder = Imm;
+ Shift = 32;
+ Imm >>= 32;
+ }
+ }
+
+ // Intermediate operand.
+ SDNode *Result;
+
+ // Handle first 32 bits.
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+
+ auto getI32Imm = [CurDAG](unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ };
+
+ // Simple value.
+ if (isInt<16>(Imm)) {
+ // Just the Lo bits.
+ Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
+ } else if (Lo) {
+ // Handle the Hi bits.
+ unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
+ Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
+ // And Lo bits.
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
+ } else {
+ // Just the Hi bits.
+ Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
+ }
+
+ // If no shift, we're done.
+ if (!Shift) return Result;
+
+ // Shift for next step if the upper 32-bits were not zero.
+ if (Imm) {
+ Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
+ SDValue(Result, 0),
+ getI32Imm(Shift),
+ getI32Imm(63 - Shift));
+ }
+
+ // Add in the last bits as required.
+ if ((Hi = (Remainder >> 16) & 0xFFFF)) {
+ Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Hi));
+ }
+ if ((Lo = Remainder & 0xFFFF)) {
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
+ }
+
+ return Result;
+}
+
+static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
+ unsigned Count = SelectInt64CountDirect(Imm);
+ if (Count == 1)
+ return SelectInt64Direct(CurDAG, dl, Imm);
+
+ unsigned RMin = 0;
+
+ int64_t MatImm;
+ unsigned MaskEnd;
+
+ for (unsigned r = 1; r < 63; ++r) {
+ uint64_t RImm = Rot64(Imm, r);
+ unsigned RCount = SelectInt64CountDirect(RImm) + 1;
+ if (RCount < Count) {
+ Count = RCount;
+ RMin = r;
+ MatImm = RImm;
+ MaskEnd = 63;
+ }
+
+ // If the immediate to generate has many trailing zeros, it might be
+ // worthwhile to generate a rotated value with too many leading ones
+ // (because that's free with li/lis's sign-extension semantics), and then
+ // mask them off after rotation.
+
+ unsigned LS = findLastSet(RImm);
+ // We're adding (63-LS) higher-order ones, and we expect to mask them off
+ // after performing the inverse rotation by (64-r). So we need that:
+ // 63-LS == 64-r => LS == r-1
+ if (LS != r-1)
+ continue;
+
+ uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
+ uint64_t RImmWithOnes = RImm | OnesMask;
+
+ RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
+ if (RCount < Count) {
+ Count = RCount;
+ RMin = r;
+ MatImm = RImmWithOnes;
+ MaskEnd = LS;
+ }
+ }
+
+ if (!RMin)
+ return SelectInt64Direct(CurDAG, dl, Imm);
+
+ auto getI32Imm = [CurDAG](unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ };
+
+ SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
+ return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
+ getI32Imm(64 - RMin), getI32Imm(MaskEnd));
+}
+
+// Select a 64-bit constant.
+static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
+ SDLoc dl(N);
+
+ // Get 64 bit value.
+ int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return SelectInt64(CurDAG, dl, Imm);
+}
+
+namespace {
+class BitPermutationSelector {
+ struct ValueBit {
+ SDValue V;
+
+ // The bit number in the value, using a convention where bit 0 is the
+ // lowest-order bit.
+ unsigned Idx;
+
+ enum Kind {
+ ConstZero,
+ Variable
+ } K;
+
+ ValueBit(SDValue V, unsigned I, Kind K = Variable)
+ : V(V), Idx(I), K(K) {}
+ ValueBit(Kind K = Variable)
+ : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
+
+ bool isZero() const {
+ return K == ConstZero;
+ }
+
+ bool hasValue() const {
+ return K == Variable;
+ }
+
+ SDValue getValue() const {
+ assert(hasValue() && "Cannot get the value of a constant bit");
+ return V;
+ }
+
+ unsigned getValueBitIndex() const {
+ assert(hasValue() && "Cannot get the value bit index of a constant bit");
+ return Idx;
+ }
+ };
+
+ // A bit group has the same underlying value and the same rotate factor.
+ struct BitGroup {
+ SDValue V;
+ unsigned RLAmt;
+ unsigned StartIdx, EndIdx;
+
+ // This rotation amount assumes that the lower 32 bits of the quantity are
+ // replicated in the high 32 bits by the rotation operator (which is done
+ // by rlwinm and friends in 64-bit mode).
+ bool Repl32;
+ // Did converting to Repl32 == true change the rotation factor? If it did,
+ // it decreased it by 32.
+ bool Repl32CR;
+ // Was this group coalesced after setting Repl32 to true?
+ bool Repl32Coalesced;
+
+ BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
+ : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
+ Repl32Coalesced(false) {
+ DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
+ " [" << S << ", " << E << "]\n");
+ }
+ };
+
+ // Information on each (Value, RLAmt) pair (like the number of groups
+ // associated with each) used to choose the lowering method.
+ struct ValueRotInfo {
+ SDValue V;
+ unsigned RLAmt;
+ unsigned NumGroups;
+ unsigned FirstGroupStartIdx;
+ bool Repl32;
+
+ ValueRotInfo()
+ : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
+ Repl32(false) {}
+
+ // For sorting (in reverse order) by NumGroups, and then by
+ // FirstGroupStartIdx.
+ bool operator < (const ValueRotInfo &Other) const {
+ // We need to sort so that the non-Repl32 come first because, when we're
+ // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
+ // masking operation.
+ if (Repl32 < Other.Repl32)
+ return true;
+ else if (Repl32 > Other.Repl32)
+ return false;
+ else if (NumGroups > Other.NumGroups)
+ return true;
+ else if (NumGroups < Other.NumGroups)
+ return false;
+ else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
+ return true;
+ return false;
+ }
+ };
+
+ // Return true if something interesting was deduced, return false if we're
+ // providing only a generic representation of V (or something else likewise
+ // uninteresting for instruction selection).
+ bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
+ switch (V.getOpcode()) {
+ default: break;
+ case ISD::ROTL:
+ if (isa<ConstantSDNode>(V.getOperand(1))) {
+ unsigned RotAmt = V.getConstantOperandVal(1);
+
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
+
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
+
+ return true;
+ }
+ break;
+ case ISD::SHL:
+ if (isa<ConstantSDNode>(V.getOperand(1))) {
+ unsigned ShiftAmt = V.getConstantOperandVal(1);
+
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
+
+ for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
+ Bits[i] = LHSBits[i - ShiftAmt];
+
+ for (unsigned i = 0; i < ShiftAmt; ++i)
+ Bits[i] = ValueBit(ValueBit::ConstZero);
+
+ return true;
+ }
+ break;
+ case ISD::SRL:
+ if (isa<ConstantSDNode>(V.getOperand(1))) {
+ unsigned ShiftAmt = V.getConstantOperandVal(1);
+
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
+
+ for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
+ Bits[i] = LHSBits[i + ShiftAmt];
+
+ for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
+ Bits[i] = ValueBit(ValueBit::ConstZero);
+
+ return true;
+ }
+ break;
+ case ISD::AND:
+ if (isa<ConstantSDNode>(V.getOperand(1))) {
+ uint64_t Mask = V.getConstantOperandVal(1);
+
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
+
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ if (((Mask >> i) & 1) == 1)
+ Bits[i] = LHSBits[i];
+ else
+ Bits[i] = ValueBit(ValueBit::ConstZero);
+
+ // Mark this as interesting, only if the LHS was also interesting. This
+ // prevents the overall procedure from matching a single immediate 'and'
+ // (which is non-optimal because such an and might be folded with other
+ // things if we don't select it here).
+ return LHSTrivial;
+ }
+ break;
+ case ISD::OR: {
+ SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
+ getValueBits(V.getOperand(1), RHSBits);
+
+ bool AllDisjoint = true;
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ if (LHSBits[i].isZero())
+ Bits[i] = RHSBits[i];
+ else if (RHSBits[i].isZero())
+ Bits[i] = LHSBits[i];
+ else {
+ AllDisjoint = false;
+ break;
+ }
+
+ if (!AllDisjoint)
+ break;
+
+ return true;
+ }
+ }
+
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ Bits[i] = ValueBit(V, i);
+
+ return false;
+ }
+
+ // For each value (except the constant ones), compute the left-rotate amount
+ // to get it from its original to final position.
+ void computeRotationAmounts() {
+ HasZeros = false;
+ RLAmt.resize(Bits.size());
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ if (Bits[i].hasValue()) {
+ unsigned VBI = Bits[i].getValueBitIndex();
+ if (i >= VBI)
+ RLAmt[i] = i - VBI;
+ else
+ RLAmt[i] = Bits.size() - (VBI - i);
+ } else if (Bits[i].isZero()) {
+ HasZeros = true;
+ RLAmt[i] = UINT32_MAX;
+ } else {
+ llvm_unreachable("Unknown value bit type");
+ }
+ }
+
+ // Collect groups of consecutive bits with the same underlying value and
+ // rotation factor. If we're doing late masking, we ignore zeros, otherwise
+ // they break up groups.
+ void collectBitGroups(bool LateMask) {
+ BitGroups.clear();
+
+ unsigned LastRLAmt = RLAmt[0];
+ SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
+ unsigned LastGroupStartIdx = 0;
+ for (unsigned i = 1; i < Bits.size(); ++i) {
+ unsigned ThisRLAmt = RLAmt[i];
+ SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
+ if (LateMask && !ThisValue) {
+ ThisValue = LastValue;
+ ThisRLAmt = LastRLAmt;
+ // If we're doing late masking, then the first bit group always starts
+ // at zero (even if the first bits were zero).
+ if (BitGroups.empty())
+ LastGroupStartIdx = 0;
+ }
+
+ // If this bit has the same underlying value and the same rotate factor as
+ // the last one, then they're part of the same group.
+ if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
+ continue;
+
+ if (LastValue.getNode())
+ BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
+ i-1));
+ LastRLAmt = ThisRLAmt;
+ LastValue = ThisValue;
+ LastGroupStartIdx = i;
+ }
+ if (LastValue.getNode())
+ BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
+ Bits.size()-1));
+
+ if (BitGroups.empty())
+ return;
+
+ // We might be able to combine the first and last groups.
+ if (BitGroups.size() > 1) {
+ // If the first and last groups are the same, then remove the first group
+ // in favor of the last group, making the ending index of the last group
+ // equal to the ending index of the to-be-removed first group.
+ if (BitGroups[0].StartIdx == 0 &&
+ BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
+ BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
+ BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
+ DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
+ BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
+ BitGroups.erase(BitGroups.begin());
+ }
+ }
+ }
+
+ // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
+ // associated with each. If there is a degeneracy, pick the one that occurs
+ // first (in the final value).
+ void collectValueRotInfo() {
+ ValueRots.clear();
+
+ for (auto &BG : BitGroups) {
+ unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
+ ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
+ VRI.V = BG.V;
+ VRI.RLAmt = BG.RLAmt;
+ VRI.Repl32 = BG.Repl32;
+ VRI.NumGroups += 1;
+ VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
+ }
+
+ // Now that we've collected the various ValueRotInfo instances, we need to
+ // sort them.
+ ValueRotsVec.clear();
+ for (auto &I : ValueRots) {
+ ValueRotsVec.push_back(I.second);
+ }
+ std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
+ }
+
+ // In 64-bit mode, rlwinm and friends have a rotation operator that
+ // replicates the low-order 32 bits into the high-order 32-bits. The mask
+ // indices of these instructions can only be in the lower 32 bits, so they
+ // can only represent some 64-bit bit groups. However, when they can be used,
+ // the 32-bit replication can be used to represent, as a single bit group,
+ // otherwise separate bit groups. We'll convert to replicated-32-bit bit
+ // groups when possible. Returns true if any of the bit groups were
+ // converted.
+ void assignRepl32BitGroups() {
+ // If we have bits like this:
+ //
+ // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
+ // Groups: | RLAmt = 8 | RLAmt = 40 |
+ //
+ // But, making use of a 32-bit operation that replicates the low-order 32
+ // bits into the high-order 32 bits, this can be one bit group with a RLAmt
+ // of 8.
+
+ auto IsAllLow32 = [this](BitGroup & BG) {
+ if (BG.StartIdx <= BG.EndIdx) {
+ for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
+ if (!Bits[i].hasValue())
+ continue;
+ if (Bits[i].getValueBitIndex() >= 32)
+ return false;
+ }
+ } else {
+ for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
+ if (!Bits[i].hasValue())
+ continue;
+ if (Bits[i].getValueBitIndex() >= 32)
+ return false;
+ }
+ for (unsigned i = 0; i <= BG.EndIdx; ++i) {
+ if (!Bits[i].hasValue())
+ continue;
+ if (Bits[i].getValueBitIndex() >= 32)
+ return false;
+ }
+ }
+
+ return true;
+ };
+
+ for (auto &BG : BitGroups) {
+ if (BG.StartIdx < 32 && BG.EndIdx < 32) {
+ if (IsAllLow32(BG)) {
+ if (BG.RLAmt >= 32) {
+ BG.RLAmt -= 32;
+ BG.Repl32CR = true;
+ }
+
+ BG.Repl32 = true;
+
+ DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
+ BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
+ " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
+ }
+ }
+ }
+
+ // Now walk through the bit groups, consolidating where possible.
+ for (auto I = BitGroups.begin(); I != BitGroups.end();) {
+ // We might want to remove this bit group by merging it with the previous
+ // group (which might be the ending group).
+ auto IP = (I == BitGroups.begin()) ?
+ std::prev(BitGroups.end()) : std::prev(I);
+ if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
+ I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
+
+ DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
+ I->V.getNode() << " RLAmt = " << I->RLAmt <<
+ " [" << I->StartIdx << ", " << I->EndIdx <<
+ "] with group with range [" <<
+ IP->StartIdx << ", " << IP->EndIdx << "]\n");
+
+ IP->EndIdx = I->EndIdx;
+ IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
+ IP->Repl32Coalesced = true;
+ I = BitGroups.erase(I);
+ continue;
+ } else {
+ // There is a special case worth handling: If there is a single group
+ // covering the entire upper 32 bits, and it can be merged with both
+ // the next and previous groups (which might be the same group), then
+ // do so. If it is the same group (so there will be only one group in
+ // total), then we need to reverse the order of the range so that it
+ // covers the entire 64 bits.
+ if (I->StartIdx == 32 && I->EndIdx == 63) {
+ assert(std::next(I) == BitGroups.end() &&
+ "bit group ends at index 63 but there is another?");
+ auto IN = BitGroups.begin();
+
+ if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
+ (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
+ IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
+ IsAllLow32(*I)) {
+
+ DEBUG(dbgs() << "\tcombining bit group for " <<
+ I->V.getNode() << " RLAmt = " << I->RLAmt <<
+ " [" << I->StartIdx << ", " << I->EndIdx <<
+ "] with 32-bit replicated groups with ranges [" <<
+ IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
+ IN->StartIdx << ", " << IN->EndIdx << "]\n");
+
+ if (IP == IN) {
+ // There is only one other group; change it to cover the whole
+ // range (backward, so that it can still be Repl32 but cover the
+ // whole 64-bit range).
+ IP->StartIdx = 31;
+ IP->EndIdx = 30;
+ IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
+ IP->Repl32Coalesced = true;
+ I = BitGroups.erase(I);
+ } else {
+ // There are two separate groups, one before this group and one
+ // after us (at the beginning). We're going to remove this group,
+ // but also the group at the very beginning.
+ IP->EndIdx = IN->EndIdx;
+ IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
+ IP->Repl32Coalesced = true;
+ I = BitGroups.erase(I);
+ BitGroups.erase(BitGroups.begin());
+ }
+
+ // This must be the last group in the vector (and we might have
+ // just invalidated the iterator above), so break here.
+ break;
+ }
+ }
+ }
+
+ ++I;
+ }
+ }
+
+ SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ uint64_t getZerosMask() {
+ uint64_t Mask = 0;
+ for (unsigned i = 0; i < Bits.size(); ++i) {
+ if (Bits[i].hasValue())
+ continue;
+ Mask |= (UINT64_C(1) << i);
+ }
+
+ return ~Mask;
+ }
+
+ // Depending on the number of groups for a particular value, it might be
+ // better to rotate, mask explicitly (using andi/andis), and then or the
+ // result. Select this part of the result first.
+ void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
+ if (BPermRewriterNoMasking)
+ return;
+
+ for (ValueRotInfo &VRI : ValueRotsVec) {
+ unsigned Mask = 0;
+ for (unsigned i = 0; i < Bits.size(); ++i) {
+ if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
+ continue;
+ if (RLAmt[i] != VRI.RLAmt)
+ continue;
+ Mask |= (1u << i);
+ }
+
+ // Compute the masks for andi/andis that would be necessary.
+ unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
+ assert((ANDIMask != 0 || ANDISMask != 0) &&
+ "No set bits in mask for value bit groups");
+ bool NeedsRotate = VRI.RLAmt != 0;
+
+ // We're trying to minimize the number of instructions. If we have one
+ // group, using one of andi/andis can break even. If we have three
+ // groups, we can use both andi and andis and break even (to use both
+ // andi and andis we also need to or the results together). We need four
+ // groups if we also need to rotate. To use andi/andis we need to do more
+ // than break even because rotate-and-mask instructions tend to be easier
+ // to schedule.
+
+ // FIXME: We've biased here against using andi/andis, which is right for
+ // POWER cores, but not optimal everywhere. For example, on the A2,
+ // andi/andis have single-cycle latency whereas the rotate-and-mask
+ // instructions take two cycles, and it would be better to bias toward
+ // andi/andis in break-even cases.
+
+ unsigned NumAndInsts = (unsigned) NeedsRotate +
+ (unsigned) (ANDIMask != 0) +
+ (unsigned) (ANDISMask != 0) +
+ (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
+ (unsigned) (bool) Res;
+
+ DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
+ " RL: " << VRI.RLAmt << ":" <<
+ "\n\t\t\tisel using masking: " << NumAndInsts <<
+ " using rotates: " << VRI.NumGroups << "\n");
+
+ if (NumAndInsts >= VRI.NumGroups)
+ continue;
+
+ DEBUG(dbgs() << "\t\t\t\tusing masking\n");
+
+ if (InstCnt) *InstCnt += NumAndInsts;
+
+ SDValue VRot;
+ if (VRI.RLAmt) {
+ SDValue Ops[] =
+ { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
+ VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
+ Ops), 0);
+ } else {
+ VRot = VRI.V;
+ }
+
+ SDValue ANDIVal, ANDISVal;
+ if (ANDIMask != 0)
+ ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
+ VRot, getI32Imm(ANDIMask)), 0);
+ if (ANDISMask != 0)
+ ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
+ VRot, getI32Imm(ANDISMask)), 0);
+
+ SDValue TotalVal;
+ if (!ANDIVal)
+ TotalVal = ANDISVal;
+ else if (!ANDISVal)
+ TotalVal = ANDIVal;
+ else
+ TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
+ ANDIVal, ANDISVal), 0);
+
+ if (!Res)
+ Res = TotalVal;
+ else
+ Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
+ Res, TotalVal), 0);
+
+ // Now, remove all groups with this underlying value and rotation
+ // factor.
+ for (auto I = BitGroups.begin(); I != BitGroups.end();) {
+ if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
+ I = BitGroups.erase(I);
+ else
+ ++I;
+ }
+ }
+ }
+
+ // Instruction selection for the 32-bit case.
+ SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
+ SDLoc dl(N);
+ SDValue Res;
+
+ if (InstCnt) *InstCnt = 0;
+
+ // Take care of cases that should use andi/andis first.
+ SelectAndParts32(dl, Res, InstCnt);
+
+ // If we've not yet selected a 'starting' instruction, and we have no zeros
+ // to fill in, select the (Value, RLAmt) with the highest priority (largest
+ // number of groups), and start with this rotated value.
+ if ((!HasZeros || LateMask) && !Res) {
+ ValueRotInfo &VRI = ValueRotsVec[0];
+ if (VRI.RLAmt) {
+ if (InstCnt) *InstCnt += 1;
+ SDValue Ops[] =
+ { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
+ Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
+ } else {
+ Res = VRI.V;
+ }
+
+ // Now, remove all groups with this underlying value and rotation factor.
+ for (auto I = BitGroups.begin(); I != BitGroups.end();) {
+ if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
+ I = BitGroups.erase(I);
+ else
+ ++I;
+ }
+ }
+
+ if (InstCnt) *InstCnt += BitGroups.size();
+
+ // Insert the other groups (one at a time).
+ for (auto &BG : BitGroups) {
+ if (!Res) {
+ SDValue Ops[] =
+ { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
+ getI32Imm(Bits.size() - BG.StartIdx - 1) };
+ Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
+ } else {
+ SDValue Ops[] =
+ { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
+ getI32Imm(Bits.size() - BG.StartIdx - 1) };
+ Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
+ }
+ }
+
+ if (LateMask) {
+ unsigned Mask = (unsigned) getZerosMask();
+
+ unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
+ assert((ANDIMask != 0 || ANDISMask != 0) &&
+ "No set bits in zeros mask?");
+
+ if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
+ (unsigned) (ANDISMask != 0) +
+ (unsigned) (ANDIMask != 0 && ANDISMask != 0);
+
+ SDValue ANDIVal, ANDISVal;
+ if (ANDIMask != 0)
+ ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
+ Res, getI32Imm(ANDIMask)), 0);
+ if (ANDISMask != 0)
+ ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
+ Res, getI32Imm(ANDISMask)), 0);
+
+ if (!ANDIVal)
+ Res = ANDISVal;
+ else if (!ANDISVal)
+ Res = ANDIVal;
+ else
+ Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
+ ANDIVal, ANDISVal), 0);
+ }
+
+ return Res.getNode();
+ }
+
+ unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
+ unsigned MaskStart, unsigned MaskEnd,
+ bool IsIns) {
+ // In the notation used by the instructions, 'start' and 'end' are reversed
+ // because bits are counted from high to low order.
+ unsigned InstMaskStart = 64 - MaskEnd - 1,
+ InstMaskEnd = 64 - MaskStart - 1;
+
+ if (Repl32)
+ return 1;
+
+ if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
+ InstMaskEnd == 63 - RLAmt)
+ return 1;
+
+ return 2;
+ }
+
+ // For 64-bit values, not all combinations of rotates and masks are
+ // available. Produce one if it is available.
+ SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
+ unsigned MaskStart, unsigned MaskEnd,
+ unsigned *InstCnt = nullptr) {
+ // In the notation used by the instructions, 'start' and 'end' are reversed
+ // because bits are counted from high to low order.
+ unsigned InstMaskStart = 64 - MaskEnd - 1,
+ InstMaskEnd = 64 - MaskStart - 1;
+
+ if (InstCnt) *InstCnt += 1;
+
+ if (Repl32) {
+ // This rotation amount assumes that the lower 32 bits of the quantity
+ // are replicated in the high 32 bits by the rotation operator (which is
+ // done by rlwinm and friends).
+ assert(InstMaskStart >= 32 && "Mask cannot start out of range");
+ assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
+ SDValue Ops[] =
+ { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
+ getI32Imm(InstMaskEnd - 32) };
+ return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
+ Ops), 0);
+ }
+
+ if (InstMaskEnd == 63) {
+ SDValue Ops[] =
+ { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
+ return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
+ }
+
+ if (InstMaskStart == 0) {
+ SDValue Ops[] =
+ { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
+ return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
+ }
+
+ if (InstMaskEnd == 63 - RLAmt) {
+ SDValue Ops[] =
+ { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
+ return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
+ }
+
+ // We cannot do this with a single instruction, so we'll use two. The
+ // problem is that we're not free to choose both a rotation amount and mask
+ // start and end independently. We can choose an arbitrary mask start and
+ // end, but then the rotation amount is fixed. Rotation, however, can be
+ // inverted, and so by applying an "inverse" rotation first, we can get the
+ // desired result.
+ if (InstCnt) *InstCnt += 1;
+
+ // The rotation mask for the second instruction must be MaskStart.
+ unsigned RLAmt2 = MaskStart;
+ // The first instruction must rotate V so that the overall rotation amount
+ // is RLAmt.
+ unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
+ if (RLAmt1)
+ V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
+ return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
+ }
+
+ // For 64-bit values, not all combinations of rotates and masks are
+ // available. Produce a rotate-mask-and-insert if one is available.
+ SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
+ bool Repl32, unsigned MaskStart,
+ unsigned MaskEnd, unsigned *InstCnt = nullptr) {
+ // In the notation used by the instructions, 'start' and 'end' are reversed
+ // because bits are counted from high to low order.
+ unsigned InstMaskStart = 64 - MaskEnd - 1,
+ InstMaskEnd = 64 - MaskStart - 1;
+
+ if (InstCnt) *InstCnt += 1;
+
+ if (Repl32) {
+ // This rotation amount assumes that the lower 32 bits of the quantity
+ // are replicated in the high 32 bits by the rotation operator (which is
+ // done by rlwinm and friends).
+ assert(InstMaskStart >= 32 && "Mask cannot start out of range");
+ assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
+ SDValue Ops[] =
+ { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
+ getI32Imm(InstMaskEnd - 32) };
+ return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
+ Ops), 0);
+ }
+
+ if (InstMaskEnd == 63 - RLAmt) {
+ SDValue Ops[] =
+ { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
+ return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
+ }
+
+ // We cannot do this with a single instruction, so we'll use two. The
+ // problem is that we're not free to choose both a rotation amount and mask
+ // start and end independently. We can choose an arbitrary mask start and
+ // end, but then the rotation amount is fixed. Rotation, however, can be
+ // inverted, and so by applying an "inverse" rotation first, we can get the
+ // desired result.
+ if (InstCnt) *InstCnt += 1;
+
+ // The rotation mask for the second instruction must be MaskStart.
+ unsigned RLAmt2 = MaskStart;
+ // The first instruction must rotate V so that the overall rotation amount
+ // is RLAmt.
+ unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
+ if (RLAmt1)
+ V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
+ return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
+ }
+
+ void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
+ if (BPermRewriterNoMasking)
+ return;
+
+ // The idea here is the same as in the 32-bit version, but with additional
+ // complications from the fact that Repl32 might be true. Because we
+ // aggressively convert bit groups to Repl32 form (which, for small
+ // rotation factors, involves no other change), and then coalesce, it might
+ // be the case that a single 64-bit masking operation could handle both
+ // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
+ // form allowed coalescing, then we must use a 32-bit rotaton in order to
+ // completely capture the new combined bit group.
+
+ for (ValueRotInfo &VRI : ValueRotsVec) {
+ uint64_t Mask = 0;
+
+ // We need to add to the mask all bits from the associated bit groups.
+ // If Repl32 is false, we need to add bits from bit groups that have
+ // Repl32 true, but are trivially convertable to Repl32 false. Such a
+ // group is trivially convertable if it overlaps only with the lower 32
+ // bits, and the group has not been coalesced.
+ auto MatchingBG = [VRI](BitGroup &BG) {
+ if (VRI.V != BG.V)
+ return false;
+
+ unsigned EffRLAmt = BG.RLAmt;
+ if (!VRI.Repl32 && BG.Repl32) {
+ if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
+ !BG.Repl32Coalesced) {
+ if (BG.Repl32CR)
+ EffRLAmt += 32;
+ } else {
+ return false;
+ }
+ } else if (VRI.Repl32 != BG.Repl32) {
+ return false;
+ }
+
+ if (VRI.RLAmt != EffRLAmt)
+ return false;
+
+ return true;
+ };
+
+ for (auto &BG : BitGroups) {
+ if (!MatchingBG(BG))
+ continue;
+
+ if (BG.StartIdx <= BG.EndIdx) {
+ for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
+ Mask |= (UINT64_C(1) << i);
+ } else {
+ for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
+ Mask |= (UINT64_C(1) << i);
+ for (unsigned i = 0; i <= BG.EndIdx; ++i)
+ Mask |= (UINT64_C(1) << i);
+ }
+ }
+
+ // We can use the 32-bit andi/andis technique if the mask does not
+ // require any higher-order bits. This can save an instruction compared
+ // to always using the general 64-bit technique.
+ bool Use32BitInsts = isUInt<32>(Mask);
+ // Compute the masks for andi/andis that would be necessary.
+ unsigned ANDIMask = (Mask & UINT16_MAX),
+ ANDISMask = (Mask >> 16) & UINT16_MAX;
+
+ bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
+
+ unsigned NumAndInsts = (unsigned) NeedsRotate +
+ (unsigned) (bool) Res;
+ if (Use32BitInsts)
+ NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
+ (unsigned) (ANDIMask != 0 && ANDISMask != 0);
+ else
+ NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
+
+ unsigned NumRLInsts = 0;
+ bool FirstBG = true;
+ for (auto &BG : BitGroups) {
+ if (!MatchingBG(BG))
+ continue;
+ NumRLInsts +=
+ SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
+ !FirstBG);
+ FirstBG = false;
+ }
+
+ DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
+ " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
+ "\n\t\t\tisel using masking: " << NumAndInsts <<
+ " using rotates: " << NumRLInsts << "\n");
+
+ // When we'd use andi/andis, we bias toward using the rotates (andi only
+ // has a record form, and is cracked on POWER cores). However, when using
+ // general 64-bit constant formation, bias toward the constant form,
+ // because that exposes more opportunities for CSE.
+ if (NumAndInsts > NumRLInsts)
+ continue;
+ if (Use32BitInsts && NumAndInsts == NumRLInsts)
+ continue;
+
+ DEBUG(dbgs() << "\t\t\t\tusing masking\n");
+
+ if (InstCnt) *InstCnt += NumAndInsts;
+
+ SDValue VRot;
+ // We actually need to generate a rotation if we have a non-zero rotation
+ // factor or, in the Repl32 case, if we care about any of the
+ // higher-order replicated bits. In the latter case, we generate a mask
+ // backward so that it actually includes the entire 64 bits.
+ if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
+ VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
+ VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
+ else
+ VRot = VRI.V;
+
+ SDValue TotalVal;
+ if (Use32BitInsts) {
+ assert((ANDIMask != 0 || ANDISMask != 0) &&
+ "No set bits in mask when using 32-bit ands for 64-bit value");
+
+ SDValue ANDIVal, ANDISVal;
+ if (ANDIMask != 0)
+ ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
+ VRot, getI32Imm(ANDIMask)), 0);
+ if (ANDISMask != 0)
+ ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
+ VRot, getI32Imm(ANDISMask)), 0);
+
+ if (!ANDIVal)
+ TotalVal = ANDISVal;
+ else if (!ANDISVal)
+ TotalVal = ANDIVal;
+ else
+ TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
+ ANDIVal, ANDISVal), 0);
+ } else {
+ TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
+ TotalVal =
+ SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
+ VRot, TotalVal), 0);
+ }
+
+ if (!Res)
+ Res = TotalVal;
+ else
+ Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
+ Res, TotalVal), 0);
+
+ // Now, remove all groups with this underlying value and rotation
+ // factor.
+ for (auto I = BitGroups.begin(); I != BitGroups.end();) {
+ if (MatchingBG(*I))
+ I = BitGroups.erase(I);
+ else
+ ++I;
+ }
+ }
+ }
+
+ // Instruction selection for the 64-bit case.
+ SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
+ SDLoc dl(N);
+ SDValue Res;
+
+ if (InstCnt) *InstCnt = 0;
+
+ // Take care of cases that should use andi/andis first.
+ SelectAndParts64(dl, Res, InstCnt);
+
+ // If we've not yet selected a 'starting' instruction, and we have no zeros
+ // to fill in, select the (Value, RLAmt) with the highest priority (largest
+ // number of groups), and start with this rotated value.
+ if ((!HasZeros || LateMask) && !Res) {
+ // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
+ // groups will come first, and so the VRI representing the largest number
+ // of groups might not be first (it might be the first Repl32 groups).
+ unsigned MaxGroupsIdx = 0;
+ if (!ValueRotsVec[0].Repl32) {
+ for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
+ if (ValueRotsVec[i].Repl32) {
+ if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
+ MaxGroupsIdx = i;
+ break;
+ }
+ }
+
+ ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
+ bool NeedsRotate = false;
+ if (VRI.RLAmt) {
+ NeedsRotate = true;
+ } else if (VRI.Repl32) {
+ for (auto &BG : BitGroups) {
+ if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
+ BG.Repl32 != VRI.Repl32)
+ continue;
+
+ // We don't need a rotate if the bit group is confined to the lower
+ // 32 bits.
+ if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
+ continue;
+
+ NeedsRotate = true;
+ break;
+ }
+ }
+
+ if (NeedsRotate)
+ Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
+ VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
+ InstCnt);
+ else
+ Res = VRI.V;
+
+ // Now, remove all groups with this underlying value and rotation factor.
+ if (Res)
+ for (auto I = BitGroups.begin(); I != BitGroups.end();) {
+ if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
+ I = BitGroups.erase(I);
+ else
+ ++I;
+ }
+ }
+
+ // Because 64-bit rotates are more flexible than inserts, we might have a
+ // preference regarding which one we do first (to save one instruction).
+ if (!Res)
+ for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
+ if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
+ false) <
+ SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
+ true)) {
+ if (I != BitGroups.begin()) {
+ BitGroup BG = *I;
+ BitGroups.erase(I);
+ BitGroups.insert(BitGroups.begin(), BG);
+ }
+
+ break;
+ }
+ }
+
+ // Insert the other groups (one at a time).
+ for (auto &BG : BitGroups) {
+ if (!Res)
+ Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
+ BG.EndIdx, InstCnt);
+ else
+ Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
+ BG.StartIdx, BG.EndIdx, InstCnt);
+ }
+
+ if (LateMask) {
+ uint64_t Mask = getZerosMask();
+
+ // We can use the 32-bit andi/andis technique if the mask does not
+ // require any higher-order bits. This can save an instruction compared
+ // to always using the general 64-bit technique.
+ bool Use32BitInsts = isUInt<32>(Mask);
+ // Compute the masks for andi/andis that would be necessary.
+ unsigned ANDIMask = (Mask & UINT16_MAX),
+ ANDISMask = (Mask >> 16) & UINT16_MAX;
+
+ if (Use32BitInsts) {
+ assert((ANDIMask != 0 || ANDISMask != 0) &&
+ "No set bits in mask when using 32-bit ands for 64-bit value");
+
+ if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
+ (unsigned) (ANDISMask != 0) +
+ (unsigned) (ANDIMask != 0 && ANDISMask != 0);
+
+ SDValue ANDIVal, ANDISVal;
+ if (ANDIMask != 0)
+ ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
+ Res, getI32Imm(ANDIMask)), 0);
+ if (ANDISMask != 0)
+ ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
+ Res, getI32Imm(ANDISMask)), 0);
+
+ if (!ANDIVal)
+ Res = ANDISVal;
+ else if (!ANDISVal)
+ Res = ANDIVal;
+ else
+ Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
+ ANDIVal, ANDISVal), 0);
+ } else {
+ if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
+
+ SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
+ Res =
+ SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
+ Res, MaskVal), 0);
+ }
+ }
+
+ return Res.getNode();
+ }
+
+ SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
+ // Fill in BitGroups.
+ collectBitGroups(LateMask);
+ if (BitGroups.empty())
+ return nullptr;
+
+ // For 64-bit values, figure out when we can use 32-bit instructions.
+ if (Bits.size() == 64)
+ assignRepl32BitGroups();
+
+ // Fill in ValueRotsVec.
+ collectValueRotInfo();
+
+ if (Bits.size() == 32) {
+ return Select32(N, LateMask, InstCnt);
+ } else {
+ assert(Bits.size() == 64 && "Not 64 bits here?");
+ return Select64(N, LateMask, InstCnt);
+ }
+
+ return nullptr;
+ }
+
+ SmallVector<ValueBit, 64> Bits;
+
+ bool HasZeros;
+ SmallVector<unsigned, 64> RLAmt;
+
+ SmallVector<BitGroup, 16> BitGroups;
+
+ DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
+ SmallVector<ValueRotInfo, 16> ValueRotsVec;
+
+ SelectionDAG *CurDAG;
+
+public:
+ BitPermutationSelector(SelectionDAG *DAG)
+ : CurDAG(DAG) {}
+
+ // Here we try to match complex bit permutations into a set of
+ // rotate-and-shift/shift/and/or instructions, using a set of heuristics
+ // known to produce optimial code for common cases (like i32 byte swapping).
+ SDNode *Select(SDNode *N) {
+ Bits.resize(N->getValueType(0).getSizeInBits());
+ if (!getValueBits(SDValue(N, 0), Bits))
+ return nullptr;
+
+ DEBUG(dbgs() << "Considering bit-permutation-based instruction"
+ " selection for: ");
+ DEBUG(N->dump(CurDAG));
+
+ // Fill it RLAmt and set HasZeros.
+ computeRotationAmounts();
+
+ if (!HasZeros)
+ return Select(N, false);
+
+ // We currently have two techniques for handling results with zeros: early
+ // masking (the default) and late masking. Late masking is sometimes more
+ // efficient, but because the structure of the bit groups is different, it
+ // is hard to tell without generating both and comparing the results. With
+ // late masking, we ignore zeros in the resulting value when inserting each
+ // set of bit groups, and then mask in the zeros at the end. With early
+ // masking, we only insert the non-zero parts of the result at every step.
+
+ unsigned InstCnt, InstCntLateMask;
+ DEBUG(dbgs() << "\tEarly masking:\n");
+ SDNode *RN = Select(N, false, &InstCnt);
+ DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
+
+ DEBUG(dbgs() << "\tLate masking:\n");
+ SDNode *RNLM = Select(N, true, &InstCntLateMask);
+ DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
+ " instructions\n");
+
+ if (InstCnt <= InstCntLateMask) {
+ DEBUG(dbgs() << "\tUsing early-masking for isel\n");
+ return RN;
+ }
+
+ DEBUG(dbgs() << "\tUsing late-masking for isel\n");
+ return RNLM;
+ }
+};
+} // anonymous namespace
+
+SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
+ if (N->getValueType(0) != MVT::i32 &&
+ N->getValueType(0) != MVT::i64)
+ return nullptr;
+
+ if (!UseBitPermRewriter)
+ return nullptr;
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ROTL:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::AND:
+ case ISD::OR: {
+ BitPermutationSelector BPS(CurDAG);
+ return BPS.Select(N);
+ }
+ }
+
+ return nullptr;
+}
+
/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
@@ -925,81 +2347,23 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
return nullptr; // Already selected.
}
+ // In case any misguided DAG-level optimizations form an ADD with a
+ // TargetConstant operand, crash here instead of miscompiling (by selecting
+ // an r+r add instead of some kind of r+i add).
+ if (N->getOpcode() == ISD::ADD &&
+ N->getOperand(1).getOpcode() == ISD::TargetConstant)
+ llvm_unreachable("Invalid ADD with TargetConstant operand");
+
+ // Try matching complex bit permutations before doing anything else.
+ if (SDNode *NN = SelectBitPermutation(N))
+ return NN;
+
switch (N->getOpcode()) {
default: break;
case ISD::Constant: {
- if (N->getValueType(0) == MVT::i64) {
- // Get 64 bit value.
- int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
- // Assume no remaining bits.
- unsigned Remainder = 0;
- // Assume no shift required.
- unsigned Shift = 0;
-
- // If it can't be represented as a 32 bit value.
- if (!isInt<32>(Imm)) {
- Shift = countTrailingZeros<uint64_t>(Imm);
- int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
-
- // If the shifted value fits 32 bits.
- if (isInt<32>(ImmSh)) {
- // Go with the shifted value.
- Imm = ImmSh;
- } else {
- // Still stuck with a 64 bit value.
- Remainder = Imm;
- Shift = 32;
- Imm >>= 32;
- }
- }
-
- // Intermediate operand.
- SDNode *Result;
-
- // Handle first 32 bits.
- unsigned Lo = Imm & 0xFFFF;
- unsigned Hi = (Imm >> 16) & 0xFFFF;
-
- // Simple value.
- if (isInt<16>(Imm)) {
- // Just the Lo bits.
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
- } else if (Lo) {
- // Handle the Hi bits.
- unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
- // And Lo bits.
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Lo));
- } else {
- // Just the Hi bits.
- Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
- }
-
- // If no shift, we're done.
- if (!Shift) return Result;
-
- // Shift for next step if the upper 32-bits were not zero.
- if (Imm) {
- Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
- SDValue(Result, 0),
- getI32Imm(Shift),
- getI32Imm(63 - Shift));
- }
-
- // Add in the last bits as required.
- if ((Hi = (Remainder >> 16) & 0xFFFF)) {
- Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Hi));
- }
- if ((Lo = Remainder & 0xFFFF)) {
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Lo));
- }
-
- return Result;
- }
+ if (N->getValueType(0) == MVT::i64)
+ return SelectInt64(CurDAG, N);
break;
}
@@ -1012,16 +2376,8 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
case PPCISD::GlobalBaseReg:
return getGlobalBaseReg();
- case ISD::FrameIndex: {
- int FI = cast<FrameIndexSDNode>(N)->getIndex();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
- unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
- if (N->hasOneUse())
- return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
- getSmallIPtrImm(0));
- return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
- getSmallIPtrImm(0));
- }
+ case ISD::FrameIndex:
+ return getFrameIndex(N, N);
case PPCISD::MFOCRF: {
SDValue InFlag = N->getOperand(1);
@@ -1029,35 +2385,31 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
N->getOperand(0), InFlag);
}
- case ISD::SDIV: {
- // FIXME: since this depends on the setting of the carry flag from the srawi
- // we should really be making notes about that for the scheduler.
- // FIXME: It sure would be nice if we could cheaply recognize the
- // srl/add/sra pattern the dag combiner will generate for this as
- // sra/addze rather than having to handle sdiv ourselves. oh well.
- unsigned Imm;
- if (isInt32Immediate(N->getOperand(1), Imm)) {
- SDValue N0 = N->getOperand(0);
- if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
- SDNode *Op =
- CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
- N0, getI32Imm(Log2_32(Imm)));
- return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
- SDValue(Op, 0), SDValue(Op, 1));
- } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
- SDNode *Op =
- CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
- N0, getI32Imm(Log2_32(-Imm)));
- SDValue PT =
- SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
- SDValue(Op, 0), SDValue(Op, 1)),
- 0);
- return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
- }
- }
+ case PPCISD::READ_TIME_BASE: {
+ return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
+ MVT::Other, N->getOperand(0));
+ }
- // Other cases are autogenerated.
- break;
+ case PPCISD::SRA_ADDZE: {
+ SDValue N0 = N->getOperand(0);
+ SDValue ShiftAmt =
+ CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
+ getConstantIntValue(), N->getValueType(0));
+ if (N->getValueType(0) == MVT::i64) {
+ SDNode *Op =
+ CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
+ N0, ShiftAmt);
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
+ SDValue(Op, 0), SDValue(Op, 1));
+ } else {
+ assert(N->getValueType(0) == MVT::i32 &&
+ "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
+ SDNode *Op =
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
+ N0, ShiftAmt);
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1));
+ }
}
case ISD::LOAD: {
@@ -1210,13 +2562,34 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
// Other cases are autogenerated.
break;
}
- case ISD::OR:
+ case ISD::OR: {
if (N->getValueType(0) == MVT::i32)
if (SDNode *I = SelectBitfieldInsert(N))
return I;
+ short Imm;
+ if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
+ isIntS16Immediate(N->getOperand(1), Imm)) {
+ APInt LHSKnownZero, LHSKnownOne;
+ CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
+
+ // If this is equivalent to an add, then we can fold it with the
+ // FrameIndex calculation.
+ if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
+ return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
+ }
+
// Other cases are autogenerated.
break;
+ }
+ case ISD::ADD: {
+ short Imm;
+ if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
+ isIntS16Immediate(N->getOperand(1), Imm))
+ return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
+
+ break;
+ }
case ISD::SHL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
@@ -1332,7 +2705,13 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
else if (N->getValueType(0) == MVT::f32)
SelectCCOp = PPC::SELECT_CC_F4;
else if (N->getValueType(0) == MVT::f64)
- SelectCCOp = PPC::SELECT_CC_F8;
+ if (PPCSubTarget->hasVSX())
+ SelectCCOp = PPC::SELECT_CC_VSFRC;
+ else
+ SelectCCOp = PPC::SELECT_CC_F8;
+ else if (N->getValueType(0) == MVT::v2f64 ||
+ N->getValueType(0) == MVT::v2i64)
+ SelectCCOp = PPC::SELECT_CC_VSRC;
else
SelectCCOp = PPC::SELECT_CC_VRRC;
@@ -1362,6 +2741,15 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
else
DM[i] = 1;
+ // For little endian, we must swap the input operands and adjust
+ // the mask elements (reverse and invert them).
+ if (PPCSubTarget->isLittleEndian()) {
+ std::swap(Op1, Op2);
+ unsigned tmp = DM[0];
+ DM[0] = 1 - DM[1];
+ DM[1] = 1 - tmp;
+ }
+
SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
@@ -1452,7 +2840,7 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
SDValue GA = N->getOperand(0);
return CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
N->getOperand(1));
- }
+ }
// For medium and large code model, we generate two instructions as
// described below. Otherwise we allow SelectCodeCommon to handle this,
@@ -1573,6 +2961,324 @@ SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
return SelectCode(N);
}
+// If the target supports the cmpb instruction, do the idiom recognition here.
+// We don't do this as a DAG combine because we don't want to do it as nodes
+// are being combined (because we might miss part of the eventual idiom). We
+// don't want to do it during instruction selection because we want to reuse
+// the logic for lowering the masking operations already part of the
+// instruction selector.
+SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
+ SDLoc dl(N);
+
+ assert(N->getOpcode() == ISD::OR &&
+ "Only OR nodes are supported for CMPB");
+
+ SDValue Res;
+ if (!PPCSubTarget->hasCMPB())
+ return Res;
+
+ if (N->getValueType(0) != MVT::i32 &&
+ N->getValueType(0) != MVT::i64)
+ return Res;
+
+ EVT VT = N->getValueType(0);
+
+ SDValue RHS, LHS;
+ bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+ uint64_t Mask = 0, Alt = 0;
+
+ auto IsByteSelectCC = [this](SDValue O, unsigned &b,
+ uint64_t &Mask, uint64_t &Alt,
+ SDValue &LHS, SDValue &RHS) {
+ if (O.getOpcode() != ISD::SELECT_CC)
+ return false;
+ ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
+
+ if (!isa<ConstantSDNode>(O.getOperand(2)) ||
+ !isa<ConstantSDNode>(O.getOperand(3)))
+ return false;
+
+ uint64_t PM = O.getConstantOperandVal(2);
+ uint64_t PAlt = O.getConstantOperandVal(3);
+ for (b = 0; b < 8; ++b) {
+ uint64_t Mask = UINT64_C(0xFF) << (8*b);
+ if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
+ break;
+ }
+
+ if (b == 8)
+ return false;
+ Mask |= PM;
+ Alt |= PAlt;
+
+ if (!isa<ConstantSDNode>(O.getOperand(1)) ||
+ O.getConstantOperandVal(1) != 0) {
+ SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::TRUNCATE)
+ Op1 = Op1.getOperand(0);
+
+ if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
+ Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
+ isa<ConstantSDNode>(Op0.getOperand(1))) {
+
+ unsigned Bits = Op0.getValueType().getSizeInBits();
+ if (b != Bits/8-1)
+ return false;
+ if (Op0.getConstantOperandVal(1) != Bits-8)
+ return false;
+
+ LHS = Op0.getOperand(0);
+ RHS = Op1.getOperand(0);
+ return true;
+ }
+
+ // When we have small integers (i16 to be specific), the form present
+ // post-legalization uses SETULT in the SELECT_CC for the
+ // higher-order byte, depending on the fact that the
+ // even-higher-order bytes are known to all be zero, for example:
+ // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
+ // (so when the second byte is the same, because all higher-order
+ // bits from bytes 3 and 4 are known to be zero, the result of the
+ // xor can be at most 255)
+ if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
+ isa<ConstantSDNode>(O.getOperand(1))) {
+
+ uint64_t ULim = O.getConstantOperandVal(1);
+ if (ULim != (UINT64_C(1) << b*8))
+ return false;
+
+ // Now we need to make sure that the upper bytes are known to be
+ // zero.
+ unsigned Bits = Op0.getValueType().getSizeInBits();
+ if (!CurDAG->MaskedValueIsZero(Op0,
+ APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
+ return false;
+
+ LHS = Op0.getOperand(0);
+ RHS = Op0.getOperand(1);
+ return true;
+ }
+
+ return false;
+ }
+
+ if (CC != ISD::SETEQ)
+ return false;
+
+ SDValue Op = O.getOperand(0);
+ if (Op.getOpcode() == ISD::AND) {
+ if (!isa<ConstantSDNode>(Op.getOperand(1)))
+ return false;
+ if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
+ return false;
+
+ SDValue XOR = Op.getOperand(0);
+ if (XOR.getOpcode() == ISD::TRUNCATE)
+ XOR = XOR.getOperand(0);
+ if (XOR.getOpcode() != ISD::XOR)
+ return false;
+
+ LHS = XOR.getOperand(0);
+ RHS = XOR.getOperand(1);
+ return true;
+ } else if (Op.getOpcode() == ISD::SRL) {
+ if (!isa<ConstantSDNode>(Op.getOperand(1)))
+ return false;
+ unsigned Bits = Op.getValueType().getSizeInBits();
+ if (b != Bits/8-1)
+ return false;
+ if (Op.getConstantOperandVal(1) != Bits-8)
+ return false;
+
+ SDValue XOR = Op.getOperand(0);
+ if (XOR.getOpcode() == ISD::TRUNCATE)
+ XOR = XOR.getOperand(0);
+ if (XOR.getOpcode() != ISD::XOR)
+ return false;
+
+ LHS = XOR.getOperand(0);
+ RHS = XOR.getOperand(1);
+ return true;
+ }
+
+ return false;
+ };
+
+ SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
+ while (!Queue.empty()) {
+ SDValue V = Queue.pop_back_val();
+
+ for (const SDValue &O : V.getNode()->ops()) {
+ unsigned b;
+ uint64_t M = 0, A = 0;
+ SDValue OLHS, ORHS;
+ if (O.getOpcode() == ISD::OR) {
+ Queue.push_back(O);
+ } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
+ if (!LHS) {
+ LHS = OLHS;
+ RHS = ORHS;
+ BytesFound[b] = true;
+ Mask |= M;
+ Alt |= A;
+ } else if ((LHS == ORHS && RHS == OLHS) ||
+ (RHS == ORHS && LHS == OLHS)) {
+ BytesFound[b] = true;
+ Mask |= M;
+ Alt |= A;
+ } else {
+ return Res;
+ }
+ } else {
+ return Res;
+ }
+ }
+ }
+
+ unsigned LastB = 0, BCnt = 0;
+ for (unsigned i = 0; i < 8; ++i)
+ if (BytesFound[LastB]) {
+ ++BCnt;
+ LastB = i;
+ }
+
+ if (!LastB || BCnt < 2)
+ return Res;
+
+ // Because we'll be zero-extending the output anyway if don't have a specific
+ // value for each input byte (via the Mask), we can 'anyext' the inputs.
+ if (LHS.getValueType() != VT) {
+ LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
+ RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
+ }
+
+ Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
+
+ bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
+ if (NonTrivialMask && !Alt) {
+ // Res = Mask & CMPB
+ Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
+ } else if (Alt) {
+ // Res = (CMPB & Mask) | (~CMPB & Alt)
+ // Which, as suggested here:
+ // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
+ // can be written as:
+ // Res = Alt ^ ((Alt ^ Mask) & CMPB)
+ // useful because the (Alt ^ Mask) can be pre-computed.
+ Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
+ CurDAG->getConstant(Mask ^ Alt, VT));
+ Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
+ }
+
+ return Res;
+}
+
+// When CR bit registers are enabled, an extension of an i1 variable to a i32
+// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
+// involves constant materialization of a 0 or a 1 or both. If the result of
+// the extension is then operated upon by some operator that can be constant
+// folded with a constant 0 or 1, and that constant can be materialized using
+// only one instruction (like a zero or one), then we should fold in those
+// operations with the select.
+void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
+ if (!PPCSubTarget->useCRBits())
+ return;
+
+ if (N->getOpcode() != ISD::ZERO_EXTEND &&
+ N->getOpcode() != ISD::SIGN_EXTEND &&
+ N->getOpcode() != ISD::ANY_EXTEND)
+ return;
+
+ if (N->getOperand(0).getValueType() != MVT::i1)
+ return;
+
+ if (!N->hasOneUse())
+ return;
+
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Cond = N->getOperand(0);
+ SDValue ConstTrue =
+ CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT);
+ SDValue ConstFalse = CurDAG->getConstant(0, VT);
+
+ do {
+ SDNode *User = *N->use_begin();
+ if (User->getNumOperands() != 2)
+ break;
+
+ auto TryFold = [this, N, User](SDValue Val) {
+ SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
+ SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
+ SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
+
+ return CurDAG->FoldConstantArithmetic(User->getOpcode(),
+ User->getValueType(0),
+ O0.getNode(), O1.getNode());
+ };
+
+ SDValue TrueRes = TryFold(ConstTrue);
+ if (!TrueRes)
+ break;
+ SDValue FalseRes = TryFold(ConstFalse);
+ if (!FalseRes)
+ break;
+
+ // For us to materialize these using one instruction, we must be able to
+ // represent them as signed 16-bit integers.
+ uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
+ False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
+ if (!isInt<16>(True) || !isInt<16>(False))
+ break;
+
+ // We can replace User with a new SELECT node, and try again to see if we
+ // can fold the select with its user.
+ Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
+ N = User;
+ ConstTrue = TrueRes;
+ ConstFalse = FalseRes;
+ } while (N->hasOneUse());
+}
+
+void PPCDAGToDAGISel::PreprocessISelDAG() {
+ SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
+ ++Position;
+
+ bool MadeChange = false;
+ while (Position != CurDAG->allnodes_begin()) {
+ SDNode *N = --Position;
+ if (N->use_empty())
+ continue;
+
+ SDValue Res;
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::OR:
+ Res = combineToCMPB(N);
+ break;
+ }
+
+ if (!Res)
+ foldBoolExts(Res, N);
+
+ if (Res) {
+ DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
+ DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(Res.getNode()->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
+
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
+ MadeChange = true;
+ }
+ }
+
+ if (MadeChange)
+ CurDAG->RemoveDeadNodes();
+}
+
/// PostprocessISelDAG - Perform some late peephole optimizations
/// on the DAG representation.
void PPCDAGToDAGISel::PostprocessISelDAG() {
@@ -1583,6 +3289,7 @@ void PPCDAGToDAGISel::PostprocessISelDAG() {
PeepholePPC64();
PeepholeCROps();
+ PeepholePPC64ZExt();
}
// Check if all users of this node will become isel where the second operand
@@ -1697,7 +3404,9 @@ void PPCDAGToDAGISel::PeepholeCROps() {
case PPC::SELECT_I8:
case PPC::SELECT_F4:
case PPC::SELECT_F8:
- case PPC::SELECT_VRRC: {
+ case PPC::SELECT_VRRC:
+ case PPC::SELECT_VSFRC:
+ case PPC::SELECT_VSRC: {
SDValue Op = MachineNode->getOperand(0);
if (Op.isMachineOpcode()) {
if (Op.getMachineOpcode() == PPC::CRSET)
@@ -2003,6 +3712,8 @@ void PPCDAGToDAGISel::PeepholeCROps() {
case PPC::SELECT_F4:
case PPC::SELECT_F8:
case PPC::SELECT_VRRC:
+ case PPC::SELECT_VSFRC:
+ case PPC::SELECT_VSRC:
if (Op1Set)
ResNode = MachineNode->getOperand(1).getNode();
else if (Op1Unset)
@@ -2052,6 +3763,315 @@ void PPCDAGToDAGISel::PeepholeCROps() {
} while (IsModified);
}
+// Gather the set of 32-bit operations that are known to have their
+// higher-order 32 bits zero, where ToPromote contains all such operations.
+static bool PeepholePPC64ZExtGather(SDValue Op32,
+ SmallPtrSetImpl<SDNode *> &ToPromote) {
+ if (!Op32.isMachineOpcode())
+ return false;
+
+ // First, check for the "frontier" instructions (those that will clear the
+ // higher-order 32 bits.
+
+ // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
+ // around. If it does not, then these instructions will clear the
+ // higher-order bits.
+ if ((Op32.getMachineOpcode() == PPC::RLWINM ||
+ Op32.getMachineOpcode() == PPC::RLWNM) &&
+ Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
+ ToPromote.insert(Op32.getNode());
+ return true;
+ }
+
+ // SLW and SRW always clear the higher-order bits.
+ if (Op32.getMachineOpcode() == PPC::SLW ||
+ Op32.getMachineOpcode() == PPC::SRW) {
+ ToPromote.insert(Op32.getNode());
+ return true;
+ }
+
+ // For LI and LIS, we need the immediate to be positive (so that it is not
+ // sign extended).
+ if (Op32.getMachineOpcode() == PPC::LI ||
+ Op32.getMachineOpcode() == PPC::LIS) {
+ if (!isUInt<15>(Op32.getConstantOperandVal(0)))
+ return false;
+
+ ToPromote.insert(Op32.getNode());
+ return true;
+ }
+
+ // LHBRX and LWBRX always clear the higher-order bits.
+ if (Op32.getMachineOpcode() == PPC::LHBRX ||
+ Op32.getMachineOpcode() == PPC::LWBRX) {
+ ToPromote.insert(Op32.getNode());
+ return true;
+ }
+
+ // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
+ if (Op32.getMachineOpcode() == PPC::CNTLZW) {
+ ToPromote.insert(Op32.getNode());
+ return true;
+ }
+
+ // Next, check for those instructions we can look through.
+
+ // Assuming the mask does not wrap around, then the higher-order bits are
+ // taken directly from the first operand.
+ if (Op32.getMachineOpcode() == PPC::RLWIMI &&
+ Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
+ SmallPtrSet<SDNode *, 16> ToPromote1;
+ if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
+ return false;
+
+ ToPromote.insert(Op32.getNode());
+ ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
+ return true;
+ }
+
+ // For OR, the higher-order bits are zero if that is true for both operands.
+ // For SELECT_I4, the same is true (but the relevant operand numbers are
+ // shifted by 1).
+ if (Op32.getMachineOpcode() == PPC::OR ||
+ Op32.getMachineOpcode() == PPC::SELECT_I4) {
+ unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
+ SmallPtrSet<SDNode *, 16> ToPromote1;
+ if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
+ return false;
+ if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
+ return false;
+
+ ToPromote.insert(Op32.getNode());
+ ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
+ return true;
+ }
+
+ // For ORI and ORIS, we need the higher-order bits of the first operand to be
+ // zero, and also for the constant to be positive (so that it is not sign
+ // extended).
+ if (Op32.getMachineOpcode() == PPC::ORI ||
+ Op32.getMachineOpcode() == PPC::ORIS) {
+ SmallPtrSet<SDNode *, 16> ToPromote1;
+ if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
+ return false;
+ if (!isUInt<15>(Op32.getConstantOperandVal(1)))
+ return false;
+
+ ToPromote.insert(Op32.getNode());
+ ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
+ return true;
+ }
+
+ // The higher-order bits of AND are zero if that is true for at least one of
+ // the operands.
+ if (Op32.getMachineOpcode() == PPC::AND) {
+ SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
+ bool Op0OK =
+ PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
+ bool Op1OK =
+ PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
+ if (!Op0OK && !Op1OK)
+ return false;
+
+ ToPromote.insert(Op32.getNode());
+
+ if (Op0OK)
+ ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
+
+ if (Op1OK)
+ ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
+
+ return true;
+ }
+
+ // For ANDI and ANDIS, the higher-order bits are zero if either that is true
+ // of the first operand, or if the second operand is positive (so that it is
+ // not sign extended).
+ if (Op32.getMachineOpcode() == PPC::ANDIo ||
+ Op32.getMachineOpcode() == PPC::ANDISo) {
+ SmallPtrSet<SDNode *, 16> ToPromote1;
+ bool Op0OK =
+ PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
+ bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
+ if (!Op0OK && !Op1OK)
+ return false;
+
+ ToPromote.insert(Op32.getNode());
+
+ if (Op0OK)
+ ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
+
+ return true;
+ }
+
+ return false;
+}
+
+void PPCDAGToDAGISel::PeepholePPC64ZExt() {
+ if (!PPCSubTarget->isPPC64())
+ return;
+
+ // When we zero-extend from i32 to i64, we use a pattern like this:
+ // def : Pat<(i64 (zext i32:$in)),
+ // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
+ // 0, 32)>;
+ // There are several 32-bit shift/rotate instructions, however, that will
+ // clear the higher-order bits of their output, rendering the RLDICL
+ // unnecessary. When that happens, we remove it here, and redefine the
+ // relevant 32-bit operation to be a 64-bit operation.
+
+ SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
+ ++Position;
+
+ bool MadeChange = false;
+ while (Position != CurDAG->allnodes_begin()) {
+ SDNode *N = --Position;
+ // Skip dead nodes and any non-machine opcodes.
+ if (N->use_empty() || !N->isMachineOpcode())
+ continue;
+
+ if (N->getMachineOpcode() != PPC::RLDICL)
+ continue;
+
+ if (N->getConstantOperandVal(1) != 0 ||
+ N->getConstantOperandVal(2) != 32)
+ continue;
+
+ SDValue ISR = N->getOperand(0);
+ if (!ISR.isMachineOpcode() ||
+ ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
+ continue;
+
+ if (!ISR.hasOneUse())
+ continue;
+
+ if (ISR.getConstantOperandVal(2) != PPC::sub_32)
+ continue;
+
+ SDValue IDef = ISR.getOperand(0);
+ if (!IDef.isMachineOpcode() ||
+ IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
+ continue;
+
+ // We now know that we're looking at a canonical i32 -> i64 zext. See if we
+ // can get rid of it.
+
+ SDValue Op32 = ISR->getOperand(1);
+ if (!Op32.isMachineOpcode())
+ continue;
+
+ // There are some 32-bit instructions that always clear the high-order 32
+ // bits, there are also some instructions (like AND) that we can look
+ // through.
+ SmallPtrSet<SDNode *, 16> ToPromote;
+ if (!PeepholePPC64ZExtGather(Op32, ToPromote))
+ continue;
+
+ // If the ToPromote set contains nodes that have uses outside of the set
+ // (except for the original INSERT_SUBREG), then abort the transformation.
+ bool OutsideUse = false;
+ for (SDNode *PN : ToPromote) {
+ for (SDNode *UN : PN->uses()) {
+ if (!ToPromote.count(UN) && UN != ISR.getNode()) {
+ OutsideUse = true;
+ break;
+ }
+ }
+
+ if (OutsideUse)
+ break;
+ }
+ if (OutsideUse)
+ continue;
+
+ MadeChange = true;
+
+ // We now know that this zero extension can be removed by promoting to
+ // nodes in ToPromote to 64-bit operations, where for operations in the
+ // frontier of the set, we need to insert INSERT_SUBREGs for their
+ // operands.
+ for (SDNode *PN : ToPromote) {
+ unsigned NewOpcode;
+ switch (PN->getMachineOpcode()) {
+ default:
+ llvm_unreachable("Don't know the 64-bit variant of this instruction");
+ case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
+ case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
+ case PPC::SLW: NewOpcode = PPC::SLW8; break;
+ case PPC::SRW: NewOpcode = PPC::SRW8; break;
+ case PPC::LI: NewOpcode = PPC::LI8; break;
+ case PPC::LIS: NewOpcode = PPC::LIS8; break;
+ case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
+ case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
+ case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
+ case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
+ case PPC::OR: NewOpcode = PPC::OR8; break;
+ case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
+ case PPC::ORI: NewOpcode = PPC::ORI8; break;
+ case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
+ case PPC::AND: NewOpcode = PPC::AND8; break;
+ case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
+ case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
+ }
+
+ // Note: During the replacement process, the nodes will be in an
+ // inconsistent state (some instructions will have operands with values
+ // of the wrong type). Once done, however, everything should be right
+ // again.
+
+ SmallVector<SDValue, 4> Ops;
+ for (const SDValue &V : PN->ops()) {
+ if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
+ !isa<ConstantSDNode>(V)) {
+ SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
+ SDNode *ReplOp =
+ CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
+ ISR.getNode()->getVTList(), ReplOpOps);
+ Ops.push_back(SDValue(ReplOp, 0));
+ } else {
+ Ops.push_back(V);
+ }
+ }
+
+ // Because all to-be-promoted nodes only have users that are other
+ // promoted nodes (or the original INSERT_SUBREG), we can safely replace
+ // the i32 result value type with i64.
+
+ SmallVector<EVT, 2> NewVTs;
+ SDVTList VTs = PN->getVTList();
+ for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
+ if (VTs.VTs[i] == MVT::i32)
+ NewVTs.push_back(MVT::i64);
+ else
+ NewVTs.push_back(VTs.VTs[i]);
+
+ DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
+ DEBUG(PN->dump(CurDAG));
+
+ CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
+
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(PN->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
+ }
+
+ // Now we replace the original zero extend and its associated INSERT_SUBREG
+ // with the value feeding the INSERT_SUBREG (which has now been promoted to
+ // return an i64).
+
+ DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
+ DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(Op32.getNode()->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
+
+ ReplaceUses(N, Op32.getNode());
+ }
+
+ if (MadeChange)
+ CurDAG->RemoveDeadNodes();
+}
+
void PPCDAGToDAGISel::PeepholePPC64() {
// These optimizations are currently supported only for 64-bit SVR4.
if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
index 16ddaf1..5c52bb1 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -13,6 +13,7 @@
#include "PPCISelLowering.h"
#include "MCTargetDesc/PPCPredicates.h"
+#include "PPCCallingConv.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCPerfectShuffle.h"
#include "PPCTargetMachine.h"
@@ -24,6 +25,7 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
@@ -39,6 +41,10 @@
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
+// FIXME: Remove this once soft-float is supported.
+static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
+cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
+
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
@@ -51,20 +57,9 @@ cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
// FIXME: Remove this once the bug has been fixed!
extern cl::opt<bool> ANDIGlueBug;
-static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
- // If it isn't a Mach-O file then it's going to be a linux ELF
- // object file.
- if (TT.isOSDarwin())
- return new TargetLoweringObjectFileMachO();
-
- return new PPC64LinuxTargetObjectFile();
-}
-
-PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
- : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))),
+PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM)
+ : TargetLowering(TM),
Subtarget(*TM.getSubtargetImpl()) {
- setPow2DivIsCheap();
-
// Use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
@@ -80,8 +75,10 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
+ }
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
@@ -120,12 +117,11 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
if (ANDIGlueBug)
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setTruncStoreAction(MVT::i64, MVT::i1, Expand);
- setTruncStoreAction(MVT::i32, MVT::i1, Expand);
- setTruncStoreAction(MVT::i16, MVT::i1, Expand);
- setTruncStoreAction(MVT::i8, MVT::i1, Expand);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setTruncStoreAction(VT, MVT::i1, Expand);
+ }
addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
}
@@ -400,10 +396,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
if (Subtarget.hasAltivec()) {
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
- for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
-
+ for (MVT VT : MVT::vector_valuetypes()) {
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD , VT, Legal);
setOperationAction(ISD::SUB , VT, Legal);
@@ -470,14 +463,12 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
- for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
- j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
- MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
- setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
- setLoadExtAction(ISD::EXTLOAD, VT, Expand);
}
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
@@ -604,15 +595,15 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
}
}
- if (Subtarget.has64BitSupport()) {
+ if (Subtarget.has64BitSupport())
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
- setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
- }
- setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
- setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
- setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
- setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
+
+ if (!isPPC64) {
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
+ }
setBooleanContents(ZeroOrOneBooleanContent);
// Altivec instructions set fields to all zeros or all ones.
@@ -637,6 +628,8 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::SINT_TO_FP);
+ if (Subtarget.hasFPCVT())
+ setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
@@ -644,6 +637,8 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setTargetDAGCombine(ISD::BRCOND);
setTargetDAGCombine(ISD::BSWAP);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
@@ -684,10 +679,23 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
if (Subtarget.isDarwin())
setPrefFunctionAlignment(4);
- if (isPPC64 && Subtarget.isJITCodeModel())
- // Temporary workaround for the inability of PPC64 JIT to handle jump
- // tables.
- setSupportJumpTables(false);
+ switch (Subtarget.getDarwinDirective()) {
+ default: break;
+ case PPC::DIR_970:
+ case PPC::DIR_A2:
+ case PPC::DIR_E500mc:
+ case PPC::DIR_E5500:
+ case PPC::DIR_PWR4:
+ case PPC::DIR_PWR5:
+ case PPC::DIR_PWR5X:
+ case PPC::DIR_PWR6:
+ case PPC::DIR_PWR6X:
+ case PPC::DIR_PWR7:
+ case PPC::DIR_PWR8:
+ setPrefFunctionAlignment(4);
+ setPrefLoopAlignment(4);
+ break;
+ }
setInsertFencesForAtomic(true);
@@ -698,8 +706,8 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
computeRegisterProperties();
- // The Freescale cores does better with aggressive inlining of memcpy and
- // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
+ // The Freescale cores do better with aggressive inlining of memcpy and
+ // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
MaxStoresPerMemset = 32;
@@ -708,8 +716,6 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
MaxStoresPerMemcpyOptSize = 8;
MaxStoresPerMemmove = 32;
MaxStoresPerMemmoveOptSize = 8;
-
- setPrefFunctionAlignment(4);
}
}
@@ -761,14 +767,20 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
default: return nullptr;
case PPCISD::FSEL: return "PPCISD::FSEL";
case PPCISD::FCFID: return "PPCISD::FCFID";
+ case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
+ case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
+ case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
+ case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
+ case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
case PPCISD::FRE: return "PPCISD::FRE";
case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
case PPCISD::STFIWX: return "PPCISD::STFIWX";
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
case PPCISD::VPERM: return "PPCISD::VPERM";
+ case PPCISD::CMPB: return "PPCISD::CMPB";
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
@@ -785,7 +797,9 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
case PPCISD::CALL_NOP_TLS: return "PPCISD::CALL_NOP_TLS";
case PPCISD::MTCTR: return "PPCISD::MTCTR";
case PPCISD::BCTRL: return "PPCISD::BCTRL";
+ case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
+ case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
@@ -793,6 +807,8 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
case PPCISD::VCMPo: return "PPCISD::VCMPo";
case PPCISD::LBRX: return "PPCISD::LBRX";
case PPCISD::STBRX: return "PPCISD::STBRX";
+ case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
+ case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
case PPCISD::LARX: return "PPCISD::LARX";
case PPCISD::STCX: return "PPCISD::STCX";
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
@@ -827,6 +843,11 @@ EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
return VT.changeVectorElementTypeToInteger();
}
+bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
+ assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
+ return true;
+}
+
//===----------------------------------------------------------------------===//
// Node matching predicates, for use by the tblgen matching code.
//===----------------------------------------------------------------------===//
@@ -858,20 +879,21 @@ static bool isConstantOrUndef(int Op, int Val) {
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
+ bool IsLE = DAG.getSubtarget().getDataLayout()->isLittleEndian();
if (ShuffleKind == 0) {
- if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ if (IsLE)
return false;
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
return false;
} else if (ShuffleKind == 2) {
- if (!DAG.getTarget().getDataLayout()->isLittleEndian())
+ if (!IsLE)
return false;
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2))
return false;
} else if (ShuffleKind == 1) {
- unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1;
+ unsigned j = IsLE ? 0 : 1;
for (unsigned i = 0; i != 8; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
@@ -888,22 +910,23 @@ bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
+ bool IsLE = DAG.getSubtarget().getDataLayout()->isLittleEndian();
if (ShuffleKind == 0) {
- if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ if (IsLE)
return false;
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
return false;
} else if (ShuffleKind == 2) {
- if (!DAG.getTarget().getDataLayout()->isLittleEndian())
+ if (!IsLE)
return false;
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
return false;
} else if (ShuffleKind == 1) {
- unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 2;
+ unsigned j = IsLE ? 0 : 2;
for (unsigned i = 0; i != 8; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
@@ -942,7 +965,7 @@ static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG) {
- if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 0, 0);
else if (ShuffleKind == 2) // swapped
@@ -967,7 +990,7 @@ bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG) {
- if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ if (DAG.getSubtarget().getDataLayout()->isLittleEndian()) {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 8, 8);
else if (ShuffleKind == 2) // swapped
@@ -1011,7 +1034,8 @@ int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
- bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian();
+ bool isLE = DAG.getTarget().getSubtargetImpl()->getDataLayout()->
+ isLittleEndian();
if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
// Check the rest of the elements to see if they are consecutive.
@@ -1084,7 +1108,7 @@ unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
assert(isSplatShuffleMask(SVOp, EltSize));
- if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ if (DAG.getSubtarget().getDataLayout()->isLittleEndian())
return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
else
return SVOp->getMaskElt(0) / EltSize;
@@ -1881,7 +1905,7 @@ SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
// gpr_index
SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
VAListPtr, MachinePointerInfo(SV), MVT::i8,
- false, false, 0);
+ false, false, false, 0);
InChain = GprIndex.getValue(1);
if (VT == MVT::i64) {
@@ -1904,7 +1928,7 @@ SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
// fpr
SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
FprPtr, MachinePointerInfo(SV), MVT::i8,
- false, false, 0);
+ false, false, false, 0);
InChain = FprIndex.getValue(1);
SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
@@ -2318,7 +2342,8 @@ static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
/// ensure minimum alignment required for target.
static unsigned EnsureStackAlignment(const TargetMachine &Target,
unsigned NumBytes) {
- unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment();
+ unsigned TargetAlign =
+ Target.getSubtargetImpl()->getFrameLowering()->getStackAlignment();
unsigned AlignMask = TargetAlign - 1;
NumBytes = (NumBytes + AlignMask) & ~AlignMask;
return NumBytes;
@@ -2395,8 +2420,8 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
// Reserve space for the linkage area on the stack.
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false, false);
@@ -2470,7 +2495,7 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
// caller's stack frame, right above the parameter list area.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ByValArgLocs, *DAG.getContext());
+ ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
@@ -2503,7 +2528,9 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
};
- const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
+ unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
+ if (DisablePPCFloatInVariadic)
+ NumFPArgRegs = 0;
FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
NumGPArgRegs));
@@ -2512,7 +2539,7 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
// Make room for NumGPArgRegs and NumFPArgRegs.
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
- NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
+ NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
FuncInfo->setVarArgsStackOffset(
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
@@ -2554,7 +2581,7 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
- SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
+ SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
@@ -2703,7 +2730,7 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
int FI;
if (HasParameterArea ||
ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
- FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
+ FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
else
FI = MFI->CreateStackObject(ArgSize, Align, false);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
@@ -3069,7 +3096,7 @@ PPCTargetLowering::LowerFormalArguments_Darwin(
CurArgOffset = CurArgOffset + (4 - ObjSize);
}
// The value of the object is its address.
- int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false);
+ int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
if (ObjSize==1 || ObjSize==2) {
@@ -3547,9 +3574,24 @@ void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
InFlag = Chain.getValue(1);
}
+// Is this global address that of a function that can be called by name? (as
+// opposed to something that must hold a descriptor for an indirect call).
+static bool isFunctionGlobalAddress(SDValue Callee) {
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
+ Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
+ return false;
+
+ return G->getGlobal()->getType()->getElementType()->isFunctionTy();
+ }
+
+ return false;
+}
+
static
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
+ bool IsPatchPoint,
SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
const PPCSubtarget &Subtarget) {
@@ -3572,34 +3614,31 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
needIndirectCall = false;
}
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
- // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
- // Use indirect calls for ALL functions calls in JIT mode, since the
- // far-call stubs may be outside relocation limits for a BL instruction.
- if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
- unsigned OpFlags = 0;
- if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
- (Subtarget.getTargetTriple().isMacOSX() &&
- Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
- (G->getGlobal()->isDeclaration() ||
- G->getGlobal()->isWeakForLinker())) ||
- (Subtarget.isTargetELF() && !isPPC64 &&
- !G->getGlobal()->hasLocalLinkage() &&
- DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
- // PC-relative references to external symbols should go through $stub,
- // unless we're building with the leopard linker or later, which
- // automatically synthesizes these stubs.
- OpFlags = PPCII::MO_PLT_OR_STUB;
- }
-
- // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
- // every direct call is) turn it into a TargetGlobalAddress /
- // TargetExternalSymbol node so that legalize doesn't hack it.
- Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
- Callee.getValueType(),
- 0, OpFlags);
- needIndirectCall = false;
+ if (isFunctionGlobalAddress(Callee)) {
+ GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
+ // A call to a TLS address is actually an indirect call to a
+ // thread-specific pointer.
+ unsigned OpFlags = 0;
+ if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
+ (Subtarget.getTargetTriple().isMacOSX() &&
+ Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
+ (G->getGlobal()->isDeclaration() ||
+ G->getGlobal()->isWeakForLinker())) ||
+ (Subtarget.isTargetELF() && !isPPC64 &&
+ !G->getGlobal()->hasLocalLinkage() &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = PPCII::MO_PLT_OR_STUB;
}
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
+ // every direct call is) turn it into a TargetGlobalAddress /
+ // TargetExternalSymbol node so that legalize doesn't hack it.
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
+ Callee.getValueType(), 0, OpFlags);
+ needIndirectCall = false;
}
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
@@ -3609,7 +3648,7 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
(Subtarget.getTargetTriple().isMacOSX() &&
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
(Subtarget.isTargetELF() && !isPPC64 &&
- DAG.getTarget().getRelocationModel() == Reloc::PIC_) ) {
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
@@ -3621,6 +3660,16 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
needIndirectCall = false;
}
+ if (IsPatchPoint) {
+ // We'll form an invalid direct call when lowering a patchpoint; the full
+ // sequence for an indirect call is complicated, and many of the
+ // instructions introduced might have side effects (and, thus, can't be
+ // removed later). The call itself will be removed as soon as the
+ // argument/return lowering is complete, so the fact that it has the wrong
+ // kind of operands should not really matter.
+ needIndirectCall = false;
+ }
+
if (needIndirectCall) {
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
// to do the call, we can't use PPCISD::CALL.
@@ -3746,7 +3795,7 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
RegsToPass[i].second.getValueType()));
// Direct calls in the ELFv2 ABI need the TOC register live into the call.
- if (Callee.getNode() && isELFv2ABI)
+ if (Callee.getNode() && isELFv2ABI && !IsPatchPoint)
Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
return CallOpc;
@@ -3769,8 +3818,8 @@ PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
SmallVectorImpl<SDValue> &InVals) const {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
// Copy all of the result registers out of their specified physreg.
@@ -3809,7 +3858,7 @@ PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
SDValue
PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
- bool isTailCall, bool isVarArg,
+ bool isTailCall, bool isVarArg, bool IsPatchPoint,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
@@ -3823,8 +3872,8 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
std::vector<EVT> NodeTys;
SmallVector<SDValue, 8> Ops;
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
- isTailCall, RegsToPass, Ops, NodeTys,
- Subtarget);
+ isTailCall, IsPatchPoint, RegsToPass, Ops,
+ NodeTys, Subtarget);
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
@@ -3838,7 +3887,8 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
// Add a register mask operand representing the call-preserved registers.
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
@@ -3867,8 +3917,8 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
// stack frame. If caller and callee belong to the same module (and have the
// same TOC), the NOP will remain unchanged.
- bool needsTOCRestore = false;
- if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
+ if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
+ !IsPatchPoint) {
if (CallOpc == PPCISD::BCTRL) {
// This is a call through a function pointer.
// Restore the caller TOC from the save area into R2.
@@ -3879,7 +3929,17 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
// since r2 is a reserved register (which prevents the register allocator
// from allocating it), resulting in an additional register being
// allocated and an unnecessary move instruction being generated.
- needsTOCRestore = true;
+ CallOpc = PPCISD::BCTRL_LOAD_TOC;
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
+ unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI);
+ SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
+ SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
+
+ // The address needs to go after the chain input but before the flag (or
+ // any other variadic arguments).
+ Ops.insert(std::next(Ops.begin()), AddTOC);
} else if ((CallOpc == PPCISD::CALL) &&
(!isLocalCall(Callee) ||
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
@@ -3893,17 +3953,6 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
- if (needsTOCRestore) {
- SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
- EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
- SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
- unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset(isELFv2ABI);
- SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
- SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
- Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
- InFlag = Chain.getValue(1);
- }
-
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(BytesCalleePops, true),
InFlag, dl);
@@ -3927,6 +3976,7 @@ PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
+ bool IsPatchPoint = CLI.IsPatchPoint;
if (isTailCall)
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
@@ -3939,23 +3989,23 @@ PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
if (Subtarget.isSVR4ABI()) {
if (Subtarget.isPPC64())
return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
- isTailCall, Outs, OutVals, Ins,
+ isTailCall, IsPatchPoint, Outs, OutVals, Ins,
dl, DAG, InVals);
else
return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
- isTailCall, Outs, OutVals, Ins,
+ isTailCall, IsPatchPoint, Outs, OutVals, Ins,
dl, DAG, InVals);
}
return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
- isTailCall, Outs, OutVals, Ins,
+ isTailCall, IsPatchPoint, Outs, OutVals, Ins,
dl, DAG, InVals);
}
SDValue
PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
- bool isTailCall,
+ bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
@@ -3986,8 +4036,8 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
// Assign locations to all of the outgoing arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false, false),
@@ -4028,7 +4078,7 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
// Assign locations to all of the outgoing aggregate by value arguments.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ByValArgLocs, *DAG.getContext());
+ ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
@@ -4165,7 +4215,7 @@ PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
false, TailCallArguments);
- return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
Ins, InVals);
}
@@ -4193,7 +4243,7 @@ PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
SDValue
PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
- bool isTailCall,
+ bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
@@ -4365,7 +4415,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT,
- false, false, 0);
+ false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
@@ -4629,9 +4679,9 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
// Check if this is an indirect call (MTCTR/BCTRL).
// See PrepareCall() for more information about calls through function
// pointers in the 64-bit SVR4 ABI.
- if (!isTailCall &&
- !dyn_cast<GlobalAddressSDNode>(Callee) &&
- !dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ if (!isTailCall && !IsPatchPoint &&
+ !isFunctionGlobalAddress(Callee) &&
+ !isa<ExternalSymbolSDNode>(Callee)) {
// Load r2 into a virtual register and store it to the TOC save area.
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
// TOC save area offset.
@@ -4643,7 +4693,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
// In the ELFv2 ABI, R12 must contain the address of an indirect callee.
// This does not mean the MTCTR instruction must use R12; it's easier
// to model this as an extra parameter, so do that.
- if (isELFv2ABI)
+ if (isELFv2ABI && !IsPatchPoint)
RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
}
@@ -4660,7 +4710,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
FPOp, true, TailCallArguments);
- return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
Ins, InVals);
}
@@ -4668,7 +4718,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
SDValue
PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
- bool isTailCall,
+ bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
@@ -4835,7 +4885,7 @@ PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT,
- false, false, 0);
+ false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
@@ -5034,8 +5084,8 @@ PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
// not mean the MTCTR instruction must use R12; it's easier to model this as
// an extra parameter, so do that.
if (!isTailCall &&
- !dyn_cast<GlobalAddressSDNode>(Callee) &&
- !dyn_cast<ExternalSymbolSDNode>(Callee) &&
+ !isFunctionGlobalAddress(Callee) &&
+ !isa<ExternalSymbolSDNode>(Callee) &&
!isBLACompatibleAddress(Callee, DAG))
RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
PPC::R12), Callee));
@@ -5053,7 +5103,7 @@ PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
FPOp, true, TailCallArguments);
- return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
Ins, InVals);
}
@@ -5064,8 +5114,7 @@ PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
- RVLocs, Context);
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_PPC);
}
@@ -5077,8 +5126,8 @@ PPCTargetLowering::LowerReturn(SDValue Chain,
SDLoc dl, SelectionDAG &DAG) const {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
SDValue Flag;
@@ -5168,7 +5217,7 @@ PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
// Find out what the fix offset of the frame pointer save area.
int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
// Allocate the frame index for frame pointer save area.
- RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
+ RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
// Save the result.
FI->setReturnAddrSaveIndex(RASI);
}
@@ -5386,9 +5435,9 @@ SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
return Op;
}
-// FIXME: Split this code up when LegalizeDAGTypes lands.
-SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
- SDLoc dl) const {
+void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
+ SelectionDAG &DAG,
+ SDLoc dl) const {
assert(Op.getOperand(0).getValueType().isFloatingPoint());
SDValue Src = Op.getOperand(0);
if (Src.getValueType() == MVT::f32)
@@ -5437,15 +5486,95 @@ SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
if (Op.getValueType() == MVT::i32 && !i32Stack) {
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
DAG.getConstant(4, FIPtr.getValueType()));
- MPI = MachinePointerInfo();
+ MPI = MPI.getWithOffset(4);
}
- return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
- false, false, false, 0);
+ RLI.Chain = Chain;
+ RLI.Ptr = FIPtr;
+ RLI.MPI = MPI;
+}
+
+SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
+ SDLoc dl) const {
+ ReuseLoadInfo RLI;
+ LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
+
+ return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
+ false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
+ RLI.Ranges);
+}
+
+// We're trying to insert a regular store, S, and then a load, L. If the
+// incoming value, O, is a load, we might just be able to have our load use the
+// address used by O. However, we don't know if anything else will store to
+// that address before we can load from it. To prevent this situation, we need
+// to insert our load, L, into the chain as a peer of O. To do this, we give L
+// the same chain operand as O, we create a token factor from the chain results
+// of O and L, and we replace all uses of O's chain result with that token
+// factor (see spliceIntoChain below for this last part).
+bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
+ ReuseLoadInfo &RLI,
+ SelectionDAG &DAG,
+ ISD::LoadExtType ET) const {
+ SDLoc dl(Op);
+ if (ET == ISD::NON_EXTLOAD &&
+ (Op.getOpcode() == ISD::FP_TO_UINT ||
+ Op.getOpcode() == ISD::FP_TO_SINT) &&
+ isOperationLegalOrCustom(Op.getOpcode(),
+ Op.getOperand(0).getValueType())) {
+
+ LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
+ return true;
+ }
+
+ LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
+ if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
+ LD->isNonTemporal())
+ return false;
+ if (LD->getMemoryVT() != MemVT)
+ return false;
+
+ RLI.Ptr = LD->getBasePtr();
+ if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
+ assert(LD->getAddressingMode() == ISD::PRE_INC &&
+ "Non-pre-inc AM on PPC?");
+ RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
+ LD->getOffset());
+ }
+
+ RLI.Chain = LD->getChain();
+ RLI.MPI = LD->getPointerInfo();
+ RLI.IsInvariant = LD->isInvariant();
+ RLI.Alignment = LD->getAlignment();
+ RLI.AAInfo = LD->getAAInfo();
+ RLI.Ranges = LD->getRanges();
+
+ RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
+ return true;
+}
+
+// Given the head of the old chain, ResChain, insert a token factor containing
+// it and NewResChain, and make users of ResChain now be users of that token
+// factor.
+void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
+ SDValue NewResChain,
+ SelectionDAG &DAG) const {
+ if (!ResChain)
+ return;
+
+ SDLoc dl(NewResChain);
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ NewResChain, DAG.getUNDEF(MVT::Other));
+ assert(TF.getNode() != NewResChain.getNode() &&
+ "A new TF really is required here");
+
+ DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
+ DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
}
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
- SelectionDAG &DAG) const {
+ SelectionDAG &DAG) const {
SDLoc dl(Op);
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
@@ -5517,7 +5646,70 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
}
- SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
+ ReuseLoadInfo RLI;
+ SDValue Bits;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
+ Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
+ false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
+ RLI.Ranges);
+ spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
+ } else if (Subtarget.hasLFIWAX() &&
+ canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
+ RLI.Alignment, RLI.AAInfo, RLI.Ranges);
+ SDValue Ops[] = { RLI.Chain, RLI.Ptr };
+ Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
+ DAG.getVTList(MVT::f64, MVT::Other),
+ Ops, MVT::i32, MMO);
+ spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
+ } else if (Subtarget.hasFPCVT() &&
+ canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
+ RLI.Alignment, RLI.AAInfo, RLI.Ranges);
+ SDValue Ops[] = { RLI.Chain, RLI.Ptr };
+ Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
+ DAG.getVTList(MVT::f64, MVT::Other),
+ Ops, MVT::i32, MMO);
+ spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
+ } else if (((Subtarget.hasLFIWAX() &&
+ SINT.getOpcode() == ISD::SIGN_EXTEND) ||
+ (Subtarget.hasFPCVT() &&
+ SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
+ SINT.getOperand(0).getValueType() == MVT::i32) {
+ MachineFrameInfo *FrameInfo = MF.getFrameInfo();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+
+ int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDValue Store =
+ DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, 0);
+
+ assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
+ "Expected an i32 store");
+
+ RLI.Ptr = FIdx;
+ RLI.Chain = Store;
+ RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
+ RLI.Alignment = 4;
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
+ RLI.Alignment, RLI.AAInfo, RLI.Ranges);
+ SDValue Ops[] = { RLI.Chain, RLI.Ptr };
+ Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
+ PPCISD::LFIWZX : PPCISD::LFIWAX,
+ dl, DAG.getVTList(MVT::f64, MVT::Other),
+ Ops, MVT::i32, MMO);
+ } else
+ Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
+
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
@@ -5538,23 +5730,36 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
SDValue Ld;
if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
- int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
- MachinePointerInfo::getFixedStack(FrameIdx),
- false, false, 0);
+ ReuseLoadInfo RLI;
+ bool ReusingLoad;
+ if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
+ DAG))) {
+ int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
+ SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
+
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
+ MachinePointerInfo::getFixedStack(FrameIdx),
+ false, false, 0);
+
+ assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
+ "Expected an i32 store");
+
+ RLI.Ptr = FIdx;
+ RLI.Chain = Store;
+ RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
+ RLI.Alignment = 4;
+ }
- assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
- "Expected an i32 store");
MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
- MachineMemOperand::MOLoad, 4, 4);
- SDValue Ops[] = { Store, FIdx };
+ MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
+ RLI.Alignment, RLI.AAInfo, RLI.Ranges);
+ SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::LFIWZX : PPCISD::LFIWAX,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
+ if (ReusingLoad)
+ spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
} else {
assert(Subtarget.isPPC64() &&
"i32->FP without LFIWAX supported only on PPC64");
@@ -6467,7 +6672,7 @@ SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
- SDLoc(Op));
+ SDLoc(Op));
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
@@ -6502,6 +6707,15 @@ void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
+ case ISD::READCYCLECOUNTER: {
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
+ SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
+
+ Results.push_back(RTB);
+ Results.push_back(RTB.getValue(1));
+ Results.push_back(RTB.getValue(2));
+ break;
+ }
case ISD::INTRINSIC_W_CHAIN: {
if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
Intrinsic::ppc_is_decremented_ctr_nonzero)
@@ -6566,11 +6780,44 @@ void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
// Other Lowering Code
//===----------------------------------------------------------------------===//
+static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ Function *Func = Intrinsic::getDeclaration(M, Id);
+ return Builder.CreateCall(Func);
+}
+
+// The mappings for emitLeading/TrailingFence is taken from
+// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
+Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
+ AtomicOrdering Ord, bool IsStore,
+ bool IsLoad) const {
+ if (Ord == SequentiallyConsistent)
+ return callIntrinsic(Builder, Intrinsic::ppc_sync);
+ else if (isAtLeastRelease(Ord))
+ return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
+ else
+ return nullptr;
+}
+
+Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
+ AtomicOrdering Ord, bool IsStore,
+ bool IsLoad) const {
+ if (IsLoad && isAtLeastAcquire(Ord))
+ return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
+ // FIXME: this is too conservative, a dependent branch + isync is enough.
+ // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
+ // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
+ // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
+ else
+ return nullptr;
+}
+
MachineBasicBlock *
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
bool is64bit, unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
@@ -6593,9 +6840,8 @@ PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned TmpReg = (!BinOpcode) ? incr :
- RegInfo.createVirtualRegister(
- is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
- (const TargetRegisterClass *) &PPC::GPRCRegClass);
+ RegInfo.createVirtualRegister( is64bit ? &PPC::G8RCRegClass
+ : &PPC::GPRCRegClass);
// thisMBB:
// ...
@@ -6632,7 +6878,8 @@ PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
bool is8bit, // operation
unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
// In 64 bit mode we have to use 64 bits for addresses, even though the
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
// registers without caring whether they're 32 or 64, but here we're
@@ -6660,9 +6907,8 @@ PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
- const TargetRegisterClass *RC =
- is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
- (const TargetRegisterClass *) &PPC::GPRCRegClass;
+ const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
+ : &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
@@ -6760,7 +7006,8 @@ llvm::MachineBasicBlock*
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
@@ -6859,7 +7106,7 @@ PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
const PPCRegisterInfo *TRI =
- static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
+ getTargetMachine().getSubtarget<PPCSubtarget>().getRegisterInfo();
MIB.addRegMask(TRI->getNoPreservedMask());
BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
@@ -6908,7 +7155,8 @@ MachineBasicBlock *
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
@@ -7012,6 +7260,10 @@ PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
+ if (MI->getOpcode() == TargetOpcode::STACKMAP ||
+ MI->getOpcode() == TargetOpcode::PATCHPOINT)
+ return emitPatchPoint(MI, BB);
+
if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
return emitEHSjLjSetJmp(MI, BB);
@@ -7020,7 +7272,8 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
return emitEHSjLjLongJmp(MI, BB);
}
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
// To "insert" these instructions we actually have to insert their
// control-flow patterns.
@@ -7043,7 +7296,8 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
Cond.push_back(MI->getOperand(1));
DebugLoc dl = MI->getDebugLoc();
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const TargetInstrInfo *TII =
+ getTargetMachine().getSubtargetImpl()->getInstrInfo();
TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
Cond, MI->getOperand(2).getReg(),
MI->getOperand(3).getReg());
@@ -7052,11 +7306,15 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MI->getOpcode() == PPC::SELECT_CC_F4 ||
MI->getOpcode() == PPC::SELECT_CC_F8 ||
MI->getOpcode() == PPC::SELECT_CC_VRRC ||
+ MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
+ MI->getOpcode() == PPC::SELECT_CC_VSRC ||
MI->getOpcode() == PPC::SELECT_I4 ||
MI->getOpcode() == PPC::SELECT_I8 ||
MI->getOpcode() == PPC::SELECT_F4 ||
MI->getOpcode() == PPC::SELECT_F8 ||
- MI->getOpcode() == PPC::SELECT_VRRC) {
+ MI->getOpcode() == PPC::SELECT_VRRC ||
+ MI->getOpcode() == PPC::SELECT_VSFRC ||
+ MI->getOpcode() == PPC::SELECT_VSRC) {
// The incoming instruction knows the destination vreg to set, the
// condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
@@ -7087,7 +7345,9 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MI->getOpcode() == PPC::SELECT_I8 ||
MI->getOpcode() == PPC::SELECT_F4 ||
MI->getOpcode() == PPC::SELECT_F8 ||
- MI->getOpcode() == PPC::SELECT_VRRC) {
+ MI->getOpcode() == PPC::SELECT_VRRC ||
+ MI->getOpcode() == PPC::SELECT_VSFRC ||
+ MI->getOpcode() == PPC::SELECT_VSRC) {
BuildMI(BB, dl, TII->get(PPC::BC))
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
} else {
@@ -7112,6 +7372,51 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
TII->get(PPC::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+ } else if (MI->getOpcode() == PPC::ReadTB) {
+ // To read the 64-bit time-base register on a 32-bit target, we read the
+ // two halves. Should the counter have wrapped while it was being read, we
+ // need to try again.
+ // ...
+ // readLoop:
+ // mfspr Rx,TBU # load from TBU
+ // mfspr Ry,TB # load from TB
+ // mfspr Rz,TBU # load from TBU
+ // cmpw crX,Rx,Rz # check if ‘old’=’new’
+ // bne readLoop # branch if they're not equal
+ // ...
+
+ MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ DebugLoc dl = MI->getDebugLoc();
+ F->insert(It, readMBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(readMBB);
+ BB = readMBB;
+
+ MachineRegisterInfo &RegInfo = F->getRegInfo();
+ unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
+ unsigned LoReg = MI->getOperand(0).getReg();
+ unsigned HiReg = MI->getOperand(1).getReg();
+
+ BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
+ BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
+ BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
+
+ unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
+
+ BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
+ .addReg(HiReg).addReg(ReadAgainReg);
+ BuildMI(BB, dl, TII->get(PPC::BCC))
+ .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
+
+ BB->addSuccessor(readMBB);
+ BB->addSuccessor(sinkMBB);
}
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
@@ -7270,9 +7575,8 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
- const TargetRegisterClass *RC =
- is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
- (const TargetRegisterClass *) &PPC::GPRCRegClass;
+ const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
+ : &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
@@ -7448,151 +7752,76 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
-SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
- DAGCombinerInfo &DCI) const {
- if (DCI.isAfterLegalizeVectorOps())
- return SDValue();
-
- EVT VT = Op.getValueType();
-
- if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
- (VT == MVT::f64 && Subtarget.hasFRE()) ||
+SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const {
+ EVT VT = Operand.getValueType();
+ if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
+ (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
-
- // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
- // For the reciprocal, we need to find the zero of the function:
- // F(X) = A X - 1 [which has a zero at X = 1/A]
- // =>
- // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
- // does not require additional intermediate precision]
-
// Convergence is quadratic, so we essentially double the number of digits
- // correct after every iteration. The minimum architected relative
- // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
- // 23 digits and double has 52 digits.
- int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
+ // correct after every iteration. For both FRE and FRSQRTE, the minimum
+ // architected relative accuracy is 2^-5. When hasRecipPrec(), this is
+ // 2^-14. IEEE float has 23 digits and double has 52 digits.
+ RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
- ++Iterations;
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(Op);
-
- SDValue FPOne =
- DAG.getConstantFP(1.0, VT.getScalarType());
- if (VT.isVector()) {
- assert(VT.getVectorNumElements() == 4 &&
- "Unknown vector type");
- FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
- FPOne, FPOne, FPOne, FPOne);
- }
-
- SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
- DCI.AddToWorklist(Est.getNode());
-
- // Newton iterations: Est = Est + Est (1 - Arg * Est)
- for (int i = 0; i < Iterations; ++i) {
- SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
- DCI.AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
- DCI.AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
- DCI.AddToWorklist(NewEst.getNode());
-
- Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
- DCI.AddToWorklist(Est.getNode());
- }
-
- return Est;
+ ++RefinementSteps;
+ UseOneConstNR = true;
+ return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
}
-
return SDValue();
}
-SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
- DAGCombinerInfo &DCI) const {
- if (DCI.isAfterLegalizeVectorOps())
- return SDValue();
-
- EVT VT = Op.getValueType();
-
- if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
- (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
+SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const {
+ EVT VT = Operand.getValueType();
+ if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
+ (VT == MVT::f64 && Subtarget.hasFRE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
-
- // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
- // For the reciprocal sqrt, we need to find the zero of the function:
- // F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
- // =>
- // X_{i+1} = X_i (1.5 - A X_i^2 / 2)
- // As a result, we precompute A/2 prior to the iteration loop.
-
// Convergence is quadratic, so we essentially double the number of digits
- // correct after every iteration. The minimum architected relative
- // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
- // 23 digits and double has 52 digits.
- int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
+ // correct after every iteration. For both FRE and FRSQRTE, the minimum
+ // architected relative accuracy is 2^-5. When hasRecipPrec(), this is
+ // 2^-14. IEEE float has 23 digits and double has 52 digits.
+ RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
- ++Iterations;
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(Op);
-
- SDValue FPThreeHalves =
- DAG.getConstantFP(1.5, VT.getScalarType());
- if (VT.isVector()) {
- assert(VT.getVectorNumElements() == 4 &&
- "Unknown vector type");
- FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
- FPThreeHalves, FPThreeHalves,
- FPThreeHalves, FPThreeHalves);
- }
-
- SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
- DCI.AddToWorklist(Est.getNode());
-
- // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
- // this entire sequence requires only one FP constant.
- SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
- DCI.AddToWorklist(HalfArg.getNode());
-
- HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
- DCI.AddToWorklist(HalfArg.getNode());
-
- // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
- for (int i = 0; i < Iterations; ++i) {
- SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
- DCI.AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
- DCI.AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
- DCI.AddToWorklist(NewEst.getNode());
+ ++RefinementSteps;
+ return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
+ }
+ return SDValue();
+}
- Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
- DCI.AddToWorklist(Est.getNode());
- }
+bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
+ // Note: This functionality is used only when unsafe-fp-math is enabled, and
+ // on cores with reciprocal estimates (which are used when unsafe-fp-math is
+ // enabled for division), this functionality is redundant with the default
+ // combiner logic (once the division -> reciprocal/multiply transformation
+ // has taken place). As a result, this matters more for older cores than for
+ // newer ones.
- return Est;
+ // Combine multiple FDIVs with the same divisor into multiple FMULs by the
+ // reciprocal if there are two or more FDIVs (for embedded cores with only
+ // one FP pipeline) for three or more FDIVs (for generic OOO cores).
+ switch (Subtarget.getDarwinDirective()) {
+ default:
+ return NumUsers > 2;
+ case PPC::DIR_440:
+ case PPC::DIR_A2:
+ case PPC::DIR_E500mc:
+ case PPC::DIR_E5500:
+ return NumUsers > 1;
}
-
- return SDValue();
}
-// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
-// not enforce equality of the chain operands.
-static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
+static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
unsigned Bytes, int Dist,
SelectionDAG &DAG) {
- EVT VT = LS->getMemoryVT();
if (VT.getSizeInBits() / 8 != Bytes)
return false;
- SDValue Loc = LS->getBasePtr();
SDValue BaseLoc = Base->getBasePtr();
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
@@ -7623,11 +7852,77 @@ static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
return false;
}
+// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
+// not enforce equality of the chain operands.
+static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
+ unsigned Bytes, int Dist,
+ SelectionDAG &DAG) {
+ if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
+ EVT VT = LS->getMemoryVT();
+ SDValue Loc = LS->getBasePtr();
+ return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
+ }
+
+ if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
+ EVT VT;
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ default: return false;
+ case Intrinsic::ppc_altivec_lvx:
+ case Intrinsic::ppc_altivec_lvxl:
+ case Intrinsic::ppc_vsx_lxvw4x:
+ VT = MVT::v4i32;
+ break;
+ case Intrinsic::ppc_vsx_lxvd2x:
+ VT = MVT::v2f64;
+ break;
+ case Intrinsic::ppc_altivec_lvebx:
+ VT = MVT::i8;
+ break;
+ case Intrinsic::ppc_altivec_lvehx:
+ VT = MVT::i16;
+ break;
+ case Intrinsic::ppc_altivec_lvewx:
+ VT = MVT::i32;
+ break;
+ }
+
+ return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
+ }
+
+ if (N->getOpcode() == ISD::INTRINSIC_VOID) {
+ EVT VT;
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ default: return false;
+ case Intrinsic::ppc_altivec_stvx:
+ case Intrinsic::ppc_altivec_stvxl:
+ case Intrinsic::ppc_vsx_stxvw4x:
+ VT = MVT::v4i32;
+ break;
+ case Intrinsic::ppc_vsx_stxvd2x:
+ VT = MVT::v2f64;
+ break;
+ case Intrinsic::ppc_altivec_stvebx:
+ VT = MVT::i8;
+ break;
+ case Intrinsic::ppc_altivec_stvehx:
+ VT = MVT::i16;
+ break;
+ case Intrinsic::ppc_altivec_stvewx:
+ VT = MVT::i32;
+ break;
+ }
+
+ return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
+ }
+
+ return false;
+}
+
// Return true is there is a nearyby consecutive load to the one provided
// (regardless of alignment). We search up and down the chain, looking though
-// token factors and other loads (but nothing else). As a result, a true
-// results indicates that it is safe to create a new consecutive load adjacent
-// to the load provided.
+// token factors and other loads (but nothing else). As a result, a true result
+// indicates that it is safe to create a new consecutive load adjacent to the
+// load provided.
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
SDValue Chain = LD->getChain();
EVT VT = LD->getMemoryVT();
@@ -7641,10 +7936,10 @@ static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
// nodes just above the top-level loads and token factors.
while (!Queue.empty()) {
SDNode *ChainNext = Queue.pop_back_val();
- if (!Visited.insert(ChainNext))
+ if (!Visited.insert(ChainNext).second)
continue;
- if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
+ if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
@@ -7672,17 +7967,17 @@ static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
while (!Queue.empty()) {
SDNode *LoadRoot = Queue.pop_back_val();
- if (!Visited.insert(LoadRoot))
+ if (!Visited.insert(LoadRoot).second)
continue;
- if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
+ if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
for (SDNode::use_iterator UI = LoadRoot->use_begin(),
UE = LoadRoot->use_end(); UI != UE; ++UI)
- if (((isa<LoadSDNode>(*UI) &&
- cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
+ if (((isa<MemSDNode>(*UI) &&
+ cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
Queue.push_back(*UI);
}
@@ -7802,7 +8097,7 @@ SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
SDValue BinOp = BinOps.back();
BinOps.pop_back();
- if (!Visited.insert(BinOp.getNode()))
+ if (!Visited.insert(BinOp.getNode()).second)
continue;
PromOps.push_back(BinOp);
@@ -8016,7 +8311,7 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
SDValue BinOp = BinOps.back();
BinOps.pop_back();
- if (!Visited.insert(BinOp.getNode()))
+ if (!Visited.insert(BinOp.getNode()).second)
continue;
PromOps.push_back(BinOp);
@@ -8045,6 +8340,10 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
}
}
+ // The operands of a select that must be truncated when the select is
+ // promoted because the operand is actually part of the to-be-promoted set.
+ DenseMap<SDNode *, EVT> SelectTruncOp[2];
+
// Make sure that this is a self-contained cluster of operations (which
// is not quite the same thing as saying that everything has only one
// use).
@@ -8059,18 +8358,19 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
if (User != N && !Visited.count(User))
return SDValue();
- // Make sure that we're not going to promote the non-output-value
- // operand(s) or SELECT or SELECT_CC.
- // FIXME: Although we could sometimes handle this, and it does occur in
- // practice that one of the condition inputs to the select is also one of
- // the outputs, we currently can't deal with this.
+ // If we're going to promote the non-output-value operand(s) or SELECT or
+ // SELECT_CC, record them for truncation.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == Inputs[i])
- return SDValue();
+ SelectTruncOp[0].insert(std::make_pair(User,
+ User->getOperand(0).getValueType()));
} else if (User->getOpcode() == ISD::SELECT_CC) {
- if (User->getOperand(0) == Inputs[i] ||
- User->getOperand(1) == Inputs[i])
- return SDValue();
+ if (User->getOperand(0) == Inputs[i])
+ SelectTruncOp[0].insert(std::make_pair(User,
+ User->getOperand(0).getValueType()));
+ if (User->getOperand(1) == Inputs[i])
+ SelectTruncOp[1].insert(std::make_pair(User,
+ User->getOperand(1).getValueType()));
}
}
}
@@ -8083,18 +8383,19 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
if (User != N && !Visited.count(User))
return SDValue();
- // Make sure that we're not going to promote the non-output-value
- // operand(s) or SELECT or SELECT_CC.
- // FIXME: Although we could sometimes handle this, and it does occur in
- // practice that one of the condition inputs to the select is also one of
- // the outputs, we currently can't deal with this.
+ // If we're going to promote the non-output-value operand(s) or SELECT or
+ // SELECT_CC, record them for truncation.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == PromOps[i])
- return SDValue();
+ SelectTruncOp[0].insert(std::make_pair(User,
+ User->getOperand(0).getValueType()));
} else if (User->getOpcode() == ISD::SELECT_CC) {
- if (User->getOperand(0) == PromOps[i] ||
- User->getOperand(1) == PromOps[i])
- return SDValue();
+ if (User->getOperand(0) == PromOps[i])
+ SelectTruncOp[0].insert(std::make_pair(User,
+ User->getOperand(0).getValueType()));
+ if (User->getOperand(1) == PromOps[i])
+ SelectTruncOp[1].insert(std::make_pair(User,
+ User->getOperand(1).getValueType()));
}
}
}
@@ -8175,6 +8476,19 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
continue;
}
+ // For SELECT and SELECT_CC nodes, we do a similar check for any
+ // to-be-promoted comparison inputs.
+ if (PromOp.getOpcode() == ISD::SELECT ||
+ PromOp.getOpcode() == ISD::SELECT_CC) {
+ if ((SelectTruncOp[0].count(PromOp.getNode()) &&
+ PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
+ (SelectTruncOp[1].count(PromOp.getNode()) &&
+ PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
+ PromOps.insert(PromOps.begin(), PromOp);
+ continue;
+ }
+ }
+
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
PromOp.getNode()->op_end());
@@ -8193,6 +8507,18 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
}
+ // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
+ // truncate them again to the original value type.
+ if (PromOp.getOpcode() == ISD::SELECT ||
+ PromOp.getOpcode() == ISD::SELECT_CC) {
+ auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
+ if (SI0 != SelectTruncOp[0].end())
+ Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
+ auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
+ if (SI1 != SelectTruncOp[1].end())
+ Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
+ }
+
DAG.ReplaceAllUsesOfValueWith(PromOp,
DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
}
@@ -8219,6 +8545,174 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
N->getOperand(0), ShiftCst), ShiftCst);
}
+SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ assert((N->getOpcode() == ISD::SINT_TO_FP ||
+ N->getOpcode() == ISD::UINT_TO_FP) &&
+ "Need an int -> FP conversion node here");
+
+ if (!Subtarget.has64BitSupport())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ SDValue Op(N, 0);
+
+ // Don't handle ppc_fp128 here or i1 conversions.
+ if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
+ return SDValue();
+ if (Op.getOperand(0).getValueType() == MVT::i1)
+ return SDValue();
+
+ // For i32 intermediate values, unfortunately, the conversion functions
+ // leave the upper 32 bits of the value are undefined. Within the set of
+ // scalar instructions, we have no method for zero- or sign-extending the
+ // value. Thus, we cannot handle i32 intermediate values here.
+ if (Op.getOperand(0).getValueType() == MVT::i32)
+ return SDValue();
+
+ assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
+ "UINT_TO_FP is supported only with FPCVT");
+
+ // If we have FCFIDS, then use it when converting to single-precision.
+ // Otherwise, convert to double-precision and then round.
+ unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ (Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::FCFIDUS : PPCISD::FCFIDS) :
+ (Op.getOpcode() == ISD::UINT_TO_FP ?
+ PPCISD::FCFIDU : PPCISD::FCFID);
+ MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ MVT::f32 : MVT::f64;
+
+ // If we're converting from a float, to an int, and back to a float again,
+ // then we don't need the store/load pair at all.
+ if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
+ Subtarget.hasFPCVT()) ||
+ (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
+ SDValue Src = Op.getOperand(0).getOperand(0);
+ if (Src.getValueType() == MVT::f32) {
+ Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
+ DCI.AddToWorklist(Src.getNode());
+ }
+
+ unsigned FCTOp =
+ Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
+ PPCISD::FCTIDUZ;
+
+ SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
+ SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
+
+ if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
+ FP = DAG.getNode(ISD::FP_ROUND, dl,
+ MVT::f32, FP, DAG.getIntPtrConstant(0));
+ DCI.AddToWorklist(FP.getNode());
+ }
+
+ return FP;
+ }
+
+ return SDValue();
+}
+
+// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
+// builtins) into loads with swaps.
+SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ SDValue Chain;
+ SDValue Base;
+ MachineMemOperand *MMO;
+
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode for little endian VSX load");
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ Chain = LD->getChain();
+ Base = LD->getBasePtr();
+ MMO = LD->getMemOperand();
+ // If the MMO suggests this isn't a load of a full vector, leave
+ // things alone. For a built-in, we have to make the change for
+ // correctness, so if there is a size problem that will be a bug.
+ if (MMO->getSize() < 16)
+ return SDValue();
+ break;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
+ Chain = Intrin->getChain();
+ Base = Intrin->getBasePtr();
+ MMO = Intrin->getMemOperand();
+ break;
+ }
+ }
+
+ MVT VecTy = N->getValueType(0).getSimpleVT();
+ SDValue LoadOps[] = { Chain, Base };
+ SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
+ DAG.getVTList(VecTy, MVT::Other),
+ LoadOps, VecTy, MMO);
+ DCI.AddToWorklist(Load.getNode());
+ Chain = Load.getValue(1);
+ SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
+ DAG.getVTList(VecTy, MVT::Other), Chain, Load);
+ DCI.AddToWorklist(Swap.getNode());
+ return Swap;
+}
+
+// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
+// builtins) into stores with swaps.
+SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ SDValue Chain;
+ SDValue Base;
+ unsigned SrcOpnd;
+ MachineMemOperand *MMO;
+
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode for little endian VSX store");
+ case ISD::STORE: {
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ Chain = ST->getChain();
+ Base = ST->getBasePtr();
+ MMO = ST->getMemOperand();
+ SrcOpnd = 1;
+ // If the MMO suggests this isn't a store of a full vector, leave
+ // things alone. For a built-in, we have to make the change for
+ // correctness, so if there is a size problem that will be a bug.
+ if (MMO->getSize() < 16)
+ return SDValue();
+ break;
+ }
+ case ISD::INTRINSIC_VOID: {
+ MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
+ Chain = Intrin->getChain();
+ // Intrin->getBasePtr() oddly does not get what we want.
+ Base = Intrin->getOperand(3);
+ MMO = Intrin->getMemOperand();
+ SrcOpnd = 2;
+ break;
+ }
+ }
+
+ SDValue Src = N->getOperand(SrcOpnd);
+ MVT VecTy = Src.getValueType().getSimpleVT();
+ SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
+ DAG.getVTList(VecTy, MVT::Other), Chain, Src);
+ DCI.AddToWorklist(Swap.getNode());
+ Chain = Swap.getValue(1);
+ SDValue StoreOps[] = { Chain, Swap, Base };
+ SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
+ DAG.getVTList(MVT::Other),
+ StoreOps, VecTy, MMO);
+ DCI.AddToWorklist(Store.getNode());
+ return Store;
+}
+
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
const TargetMachine &TM = getTargetMachine();
@@ -8253,124 +8747,10 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
case ISD::SETCC:
case ISD::SELECT_CC:
return DAGCombineTruncBoolExt(N, DCI);
- case ISD::FDIV: {
- assert(TM.Options.UnsafeFPMath &&
- "Reciprocal estimates require UnsafeFPMath");
-
- if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
- SDValue RV =
- DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
- if (RV.getNode()) {
- DCI.AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
- N->getOperand(0), RV);
- }
- } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
- N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
- SDValue RV =
- DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
- DCI);
- if (RV.getNode()) {
- DCI.AddToWorklist(RV.getNode());
- RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
- N->getValueType(0), RV);
- DCI.AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
- N->getOperand(0), RV);
- }
- } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
- N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
- SDValue RV =
- DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
- DCI);
- if (RV.getNode()) {
- DCI.AddToWorklist(RV.getNode());
- RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
- N->getValueType(0), RV,
- N->getOperand(1).getOperand(1));
- DCI.AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
- N->getOperand(0), RV);
- }
- }
-
- SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
- if (RV.getNode()) {
- DCI.AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
- N->getOperand(0), RV);
- }
-
- }
- break;
- case ISD::FSQRT: {
- assert(TM.Options.UnsafeFPMath &&
- "Reciprocal estimates require UnsafeFPMath");
-
- // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
- // reciprocal sqrt.
- SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
- if (RV.getNode()) {
- DCI.AddToWorklist(RV.getNode());
- RV = DAGCombineFastRecip(RV, DCI);
- if (RV.getNode()) {
- // Unfortunately, RV is now NaN if the input was exactly 0. Select out
- // this case and force the answer to 0.
-
- EVT VT = RV.getValueType();
-
- SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
- if (VT.isVector()) {
- assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
- Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
- }
-
- SDValue ZeroCmp =
- DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
- N->getOperand(0), Zero, ISD::SETEQ);
- DCI.AddToWorklist(ZeroCmp.getNode());
- DCI.AddToWorklist(RV.getNode());
-
- RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
- ZeroCmp, Zero, RV);
- return RV;
- }
- }
-
- }
- break;
case ISD::SINT_TO_FP:
- if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
- if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
- // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
- // We allow the src/dst to be either f32/f64, but the intermediate
- // type must be i64.
- if (N->getOperand(0).getValueType() == MVT::i64 &&
- N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
- SDValue Val = N->getOperand(0).getOperand(0);
- if (Val.getValueType() == MVT::f32) {
- Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
- DCI.AddToWorklist(Val.getNode());
- }
-
- Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
- DCI.AddToWorklist(Val.getNode());
- Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
- DCI.AddToWorklist(Val.getNode());
- if (N->getValueType(0) == MVT::f32) {
- Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
- DAG.getIntPtrConstant(0));
- DCI.AddToWorklist(Val.getNode());
- }
- return Val;
- } else if (N->getOperand(0).getValueType() == MVT::i32) {
- // If the intermediate type is i32, we can avoid the load/store here
- // too.
- }
- }
- }
- break;
- case ISD::STORE:
+ case ISD::UINT_TO_FP:
+ return combineFPToIntToFP(N, DCI);
+ case ISD::STORE: {
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
!cast<StoreSDNode>(N)->isTruncatingStore() &&
@@ -8421,14 +8801,39 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
Ops, cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
}
+
+ // For little endian, VSX stores require generating xxswapd/lxvd2x.
+ EVT VT = N->getOperand(1).getValueType();
+ if (VT.isSimple()) {
+ MVT StoreVT = VT.getSimpleVT();
+ if (TM.getSubtarget<PPCSubtarget>().hasVSX() &&
+ TM.getSubtarget<PPCSubtarget>().isLittleEndian() &&
+ (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
+ StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
+ return expandVSXStoreForLE(N, DCI);
+ }
break;
+ }
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT VT = LD->getValueType(0);
+
+ // For little endian, VSX loads require generating lxvd2x/xxswapd.
+ if (VT.isSimple()) {
+ MVT LoadVT = VT.getSimpleVT();
+ if (TM.getSubtarget<PPCSubtarget>().hasVSX() &&
+ TM.getSubtarget<PPCSubtarget>().isLittleEndian() &&
+ (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
+ LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
+ return expandVSXLoadForLE(N, DCI);
+ }
+
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
+ // P8 and later hardware should just use LOAD.
+ !TM.getSubtarget<PPCSubtarget>().hasP8Vector() &&
(VT == MVT::v16i8 || VT == MVT::v8i16 ||
VT == MVT::v4i32 || VT == MVT::v4f32) &&
LD->getAlignment() < ABIAlignment) {
@@ -8466,17 +8871,25 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
Intrinsic::ppc_altivec_lvsl);
SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
- // Refine the alignment of the original load (a "new" load created here
- // which was identical to the first except for the alignment would be
- // merged with the existing node regardless).
+ // Create the new MMO for the new base load. It is like the original MMO,
+ // but represents an area in memory almost twice the vector size centered
+ // on the original address. If the address is unaligned, we might start
+ // reading up to (sizeof(vector)-1) bytes below the address of the
+ // original unaligned load.
MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(LD->getPointerInfo(),
- LD->getMemOperand()->getFlags(),
- LD->getMemoryVT().getStoreSize(),
- ABIAlignment);
- LD->refineAlignment(MMO);
- SDValue BaseLoad = SDValue(LD, 0);
+ MachineMemOperand *BaseMMO =
+ MF.getMachineMemOperand(LD->getMemOperand(),
+ -LD->getMemoryVT().getStoreSize()+1,
+ 2*LD->getMemoryVT().getStoreSize()-1);
+
+ // Create the new base load.
+ SDValue LDXIntID = DAG.getTargetConstant(Intrinsic::ppc_altivec_lvx,
+ getPointerTy());
+ SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
+ SDValue BaseLoad =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
+ DAG.getVTList(MVT::v4i32, MVT::Other),
+ BaseLoadOps, MVT::v4i32, BaseMMO);
// Note that the value of IncOffset (which is provided to the next
// load's pointer info offset value, and thus used to calculate the
@@ -8498,21 +8911,18 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ MachineMemOperand *ExtraMMO =
+ MF.getMachineMemOperand(LD->getMemOperand(),
+ 1, 2*LD->getMemoryVT().getStoreSize()-1);
+ SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
SDValue ExtraLoad =
- DAG.getLoad(VT, dl, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncOffset),
- LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(), ABIAlignment);
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
+ DAG.getVTList(MVT::v4i32, MVT::Other),
+ ExtraLoadOps, MVT::v4i32, ExtraMMO);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
BaseLoad.getValue(1), ExtraLoad.getValue(1));
- if (BaseLoad.getValueType() != MVT::v4i32)
- BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
-
- if (ExtraLoad.getValueType() != MVT::v4i32)
- ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
-
// Because vperm has a big-endian bias, we must reverse the order
// of the input vectors and complement the permute control vector
// when generating little endian code. We have already handled the
@@ -8529,36 +8939,9 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
if (VT != MVT::v4i32)
Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
- // Now we need to be really careful about how we update the users of the
- // original load. We cannot just call DCI.CombineTo (or
- // DAG.ReplaceAllUsesWith for that matter), because the load still has
- // uses created here (the permutation for example) that need to stay.
- SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- while (UI != UE) {
- SDUse &Use = UI.getUse();
- SDNode *User = *UI;
- // Note: BaseLoad is checked here because it might not be N, but a
- // bitcast of N.
- if (User == Perm.getNode() || User == BaseLoad.getNode() ||
- User == TF.getNode() || Use.getResNo() > 1) {
- ++UI;
- continue;
- }
-
- SDValue To = Use.getResNo() ? TF : Perm;
- ++UI;
-
- SmallVector<SDValue, 8> Ops;
- for (const SDUse &O : User->ops()) {
- if (O == Use)
- Ops.push_back(To);
- else
- Ops.push_back(O);
- }
-
- DAG.UpdateNodeOperands(User, Ops);
- }
-
+ // The output of the permutation is our loaded result, the TokenFactor is
+ // our new chain.
+ DCI.CombineTo(N, Perm, TF);
return SDValue(N, 0);
}
}
@@ -8593,6 +8976,34 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
}
break;
+ case ISD::INTRINSIC_W_CHAIN: {
+ // For little endian, VSX loads require generating lxvd2x/xxswapd.
+ if (TM.getSubtarget<PPCSubtarget>().hasVSX() &&
+ TM.getSubtarget<PPCSubtarget>().isLittleEndian()) {
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ default:
+ break;
+ case Intrinsic::ppc_vsx_lxvw4x:
+ case Intrinsic::ppc_vsx_lxvd2x:
+ return expandVSXLoadForLE(N, DCI);
+ }
+ }
+ break;
+ }
+ case ISD::INTRINSIC_VOID: {
+ // For little endian, VSX stores require generating xxswapd/stxvd2x.
+ if (TM.getSubtarget<PPCSubtarget>().hasVSX() &&
+ TM.getSubtarget<PPCSubtarget>().isLittleEndian()) {
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ default:
+ break;
+ case Intrinsic::ppc_vsx_stxvw4x:
+ case Intrinsic::ppc_vsx_stxvd2x:
+ return expandVSXStoreForLE(N, DCI);
+ }
+ }
+ break;
+ }
case ISD::BSWAP:
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
@@ -8803,6 +9214,38 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
return SDValue();
}
+SDValue
+PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
+ SelectionDAG &DAG,
+ std::vector<SDNode *> *Created) const {
+ // fold (sdiv X, pow2)
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::i64 && !Subtarget.isPPC64())
+ return SDValue();
+ if ((VT != MVT::i32 && VT != MVT::i64) ||
+ !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
+ return SDValue();
+
+ SDLoc DL(N);
+ SDValue N0 = N->getOperand(0);
+
+ bool IsNegPow2 = (-Divisor).isPowerOf2();
+ unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
+ SDValue ShiftAmt = DAG.getConstant(Lg2, VT);
+
+ SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
+ if (Created)
+ Created->push_back(Op.getNode());
+
+ if (IsNegPow2) {
+ Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), Op);
+ if (Created)
+ Created->push_back(Op.getNode());
+ }
+
+ return Op;
+}
+
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
@@ -8844,6 +9287,40 @@ void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
}
}
+unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
+ switch (Subtarget.getDarwinDirective()) {
+ default: break;
+ case PPC::DIR_970:
+ case PPC::DIR_PWR4:
+ case PPC::DIR_PWR5:
+ case PPC::DIR_PWR5X:
+ case PPC::DIR_PWR6:
+ case PPC::DIR_PWR6X:
+ case PPC::DIR_PWR7:
+ case PPC::DIR_PWR8: {
+ if (!ML)
+ break;
+
+ const PPCInstrInfo *TII =
+ static_cast<const PPCInstrInfo *>(getTargetMachine().getSubtargetImpl()->
+ getInstrInfo());
+
+ // For small loops (between 5 and 8 instructions), align to a 32-byte
+ // boundary so that the entire loop fits in one instruction-cache line.
+ uint64_t LoopSize = 0;
+ for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
+ for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
+ LoopSize += TII->GetInstSizeInBytes(J);
+
+ if (LoopSize > 16 && LoopSize <= 32)
+ return 5;
+
+ break;
+ }
+ }
+
+ return TargetLowering::getPrefLoopAlignment(ML);
+}
/// getConstraintType - Given a constraint, return the type of
/// constraint it is for this target.
@@ -8976,7 +9453,8 @@ PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
PPC::GPRCRegClass.contains(R.first)) {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
return std::make_pair(TRI->getMatchingSuperReg(R.first,
PPC::sub_32, &PPC::G8RCRegClass),
&PPC::G8RCRegClass);
@@ -9200,6 +9678,92 @@ PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
return false;
}
+bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+
+ switch (Intrinsic) {
+ case Intrinsic::ppc_altivec_lvx:
+ case Intrinsic::ppc_altivec_lvxl:
+ case Intrinsic::ppc_altivec_lvebx:
+ case Intrinsic::ppc_altivec_lvehx:
+ case Intrinsic::ppc_altivec_lvewx:
+ case Intrinsic::ppc_vsx_lxvd2x:
+ case Intrinsic::ppc_vsx_lxvw4x: {
+ EVT VT;
+ switch (Intrinsic) {
+ case Intrinsic::ppc_altivec_lvebx:
+ VT = MVT::i8;
+ break;
+ case Intrinsic::ppc_altivec_lvehx:
+ VT = MVT::i16;
+ break;
+ case Intrinsic::ppc_altivec_lvewx:
+ VT = MVT::i32;
+ break;
+ case Intrinsic::ppc_vsx_lxvd2x:
+ VT = MVT::v2f64;
+ break;
+ default:
+ VT = MVT::v4i32;
+ break;
+ }
+
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = VT;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = -VT.getStoreSize()+1;
+ Info.size = 2*VT.getStoreSize()-1;
+ Info.align = 1;
+ Info.vol = false;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::ppc_altivec_stvx:
+ case Intrinsic::ppc_altivec_stvxl:
+ case Intrinsic::ppc_altivec_stvebx:
+ case Intrinsic::ppc_altivec_stvehx:
+ case Intrinsic::ppc_altivec_stvewx:
+ case Intrinsic::ppc_vsx_stxvd2x:
+ case Intrinsic::ppc_vsx_stxvw4x: {
+ EVT VT;
+ switch (Intrinsic) {
+ case Intrinsic::ppc_altivec_stvebx:
+ VT = MVT::i8;
+ break;
+ case Intrinsic::ppc_altivec_stvehx:
+ VT = MVT::i16;
+ break;
+ case Intrinsic::ppc_altivec_stvewx:
+ VT = MVT::i32;
+ break;
+ case Intrinsic::ppc_vsx_stxvd2x:
+ VT = MVT::v2f64;
+ break;
+ default:
+ VT = MVT::v4i32;
+ break;
+ }
+
+ Info.opc = ISD::INTRINSIC_VOID;
+ Info.memVT = VT;
+ Info.ptrVal = I.getArgOperand(1);
+ Info.offset = -VT.getStoreSize()+1;
+ Info.size = 2*VT.getStoreSize()-1;
+ Info.align = 1;
+ Info.vol = false;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
+
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
@@ -9251,6 +9815,31 @@ bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
return NumBits1 == 64 && NumBits2 == 32;
}
+bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ // Generally speaking, zexts are not free, but they are free when they can be
+ // folded with other operations.
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
+ EVT MemVT = LD->getMemoryVT();
+ if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
+ (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
+ (LD->getExtensionType() == ISD::NON_EXTLOAD ||
+ LD->getExtensionType() == ISD::ZEXTLOAD))
+ return true;
+ }
+
+ // FIXME: Add other cases...
+ // - 32-bit shifts with a zext to i64
+ // - zext after ctlz, bswap, etc.
+ // - zext after and by a constant mask
+
+ return TargetLowering::isZExtFree(Val, VT2);
+}
+
+bool PPCTargetLowering::isFPExtFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+ return true;
+}
+
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<16>(Imm) || isUInt<16>(Imm);
}
@@ -9259,9 +9848,10 @@ bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
return isInt<16>(Imm) || isUInt<16>(Imm);
}
-bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned,
- bool *Fast) const {
+bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
if (DisablePPCUnaligned)
return false;
@@ -9276,7 +9866,8 @@ bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
if (VT.getSimpleVT().isVector()) {
if (Subtarget.hasVSX()) {
- if (VT != MVT::v2f64 && VT != MVT::v2i64)
+ if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
+ VT != MVT::v4f32 && VT != MVT::v4i32)
return false;
} else {
return false;
@@ -9309,6 +9900,19 @@ bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
return false;
}
+const MCPhysReg *
+PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
+ // LR is a callee-save register, but we must treat it as clobbered by any call
+ // site. Hence we include LR in the scratch registers, which are in turn added
+ // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
+ // to CTR, which is used by any indirect call.
+ static const MCPhysReg ScratchRegs[] = {
+ PPC::X11, PPC::X12, PPC::LR8, PPC::CTR8, 0
+ };
+
+ return ScratchRegs;
+}
+
bool
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
EVT VT , unsigned DefinedValues) const {
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h
index 7179adc..1b585d8 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
-#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
+#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
#include "PPC.h"
#include "PPCInstrInfo.h"
@@ -61,6 +61,9 @@ namespace llvm {
///
VPERM,
+ /// The CMPB instruction (takes two operands of i32 or i64).
+ CMPB,
+
/// Hi/Lo - These represent the high and low 16-bit parts of a global
/// address respectively. These nodes have two operands, the first of
/// which must be a TargetGlobalAddress, and the second of which must be a
@@ -94,6 +97,12 @@ namespace llvm {
/// code.
SRL, SRA, SHL,
+ /// The combination of sra[wd]i and addze used to implemented signed
+ /// integer division by a power of 2. The first operand is the dividend,
+ /// and the second is the constant shift amount (representing the
+ /// divisor).
+ SRA_ADDZE,
+
/// CALL - A direct function call.
/// CALL_NOP is a call with the special NOP which follows 64-bit
/// SVR4 calls.
@@ -111,6 +120,10 @@ namespace llvm {
/// BCTRL instruction.
BCTRL,
+ /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
+ /// instruction and the TOC reload required on SVR4 PPC64.
+ BCTRL_LOAD_TOC,
+
/// Return with a flag operand, matched by 'blr'
RET_FLAG,
@@ -125,6 +138,10 @@ namespace llvm {
/// implement truncation of i32 or i64 to i1.
ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
+ // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
+ // target (returns (Lo, Hi)). It takes a chain operand.
+ READ_TIME_BASE,
+
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
EH_SJLJ_SETJMP,
@@ -250,6 +267,13 @@ namespace llvm {
/// operand identifies the operating system entry point.
SC,
+ /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
+ /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
+ /// or stxvd2x instruction. The chain is necessary because the
+ /// sequence replaces a load and needs to provide the same number
+ /// of outputs.
+ XXSWAPD,
+
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
@@ -289,7 +313,17 @@ namespace llvm {
/// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
/// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
/// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
- ADDI_TOC_L
+ ADDI_TOC_L,
+
+ /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
+ /// Maps directly to an lxvd2x instruction that will be followed by
+ /// an xxswapd.
+ LXVD2X,
+
+ /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
+ /// Maps directly to an stxvd2x instruction that will be preceded by
+ /// an xxswapd.
+ STXVD2X
};
}
@@ -345,7 +379,7 @@ namespace llvm {
const PPCSubtarget &Subtarget;
public:
- explicit PPCTargetLowering(PPCTargetMachine &TM);
+ explicit PPCTargetLowering(const PPCTargetMachine &TM);
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
@@ -353,9 +387,22 @@ namespace llvm {
MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
+ bool isCheapToSpeculateCttz() const override {
+ return true;
+ }
+
+ bool isCheapToSpeculateCtlz() const override {
+ return true;
+ }
+
/// getSetCCResultType - Return the ISD::SETCC ValueType
EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
+ /// Return true if target always beneficiates from combining into FMA for a
+ /// given value type. This must typically return false on targets where FMA
+ /// takes more cycles to execute than FADD.
+ bool enableAggressiveFMAFusion(EVT VT) const override;
+
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
@@ -394,8 +441,14 @@ namespace llvm {
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const override;
+ SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
+
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
+ SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
+ std::vector<SDNode *> *Created) const override;
+
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
void computeKnownBitsForTargetNode(const SDValue Op,
@@ -404,6 +457,13 @@ namespace llvm {
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
+ unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
+
+ Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
+ bool IsStore, bool IsLoad) const override;
+ Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
+ bool IsStore, bool IsLoad) const override;
+
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const override;
@@ -466,6 +526,10 @@ namespace llvm {
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTruncateFree(EVT VT1, EVT VT2) const override;
+ bool isZExtFree(SDValue Val, EVT VT2) const override;
+
+ bool isFPExtFree(EVT VT) const override;
+
/// \brief Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
@@ -473,6 +537,10 @@ namespace llvm {
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
+ bool getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const override;
+
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
@@ -491,9 +559,10 @@ namespace llvm {
/// Is unaligned memory access allowed for the given type, and is it fast
/// relative to software emulation.
- bool allowsUnalignedMemoryAccesses(EVT VT,
- unsigned AddrSpace,
- bool *Fast = nullptr) const override;
+ bool allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned AddrSpace,
+ unsigned Align = 1,
+ bool *Fast = nullptr) const override;
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
@@ -501,6 +570,8 @@ namespace llvm {
/// expanded to fmul + fadd.
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
+ const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
+
// Should we expand the build vector with shuffles?
bool
shouldExpandBuildVectorWithShuffles(EVT VT,
@@ -526,6 +597,29 @@ namespace llvm {
}
private:
+
+ struct ReuseLoadInfo {
+ SDValue Ptr;
+ SDValue Chain;
+ SDValue ResChain;
+ MachinePointerInfo MPI;
+ bool IsInvariant;
+ unsigned Alignment;
+ AAMDNodes AAInfo;
+ const MDNode *Ranges;
+
+ ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
+ };
+
+ bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
+ SelectionDAG &DAG,
+ ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
+ void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
+ SelectionDAG &DAG) const;
+
+ void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
+ SelectionDAG &DAG, SDLoc dl) const;
+
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
@@ -589,7 +683,7 @@ namespace llvm {
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
- bool isVarArg,
+ bool isVarArg, bool IsPatchPoint,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
@@ -654,7 +748,7 @@ namespace llvm {
SDValue
LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv,
- bool isVarArg, bool isTailCall,
+ bool isVarArg, bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
@@ -663,7 +757,7 @@ namespace llvm {
SDValue
LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv,
- bool isVarArg, bool isTailCall,
+ bool isVarArg, bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
@@ -671,7 +765,7 @@ namespace llvm {
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
- bool isVarArg, bool isTailCall,
+ bool isVarArg, bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
@@ -683,8 +777,14 @@ namespace llvm {
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
- SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
- SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
+ SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
+
+ SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const override;
+ SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const override;
+ bool combineRepeatedFPDivisors(unsigned NumUsers) const override;
CCAssignFn *useFastISelCCs(unsigned Flag) const;
};
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td b/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td
index b85d9c0..5c6675d 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstr64Bit.td
@@ -81,6 +81,9 @@ def HI48_64 : SDNodeXForm<imm, [{
let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in {
+ let isReturn = 1, Uses = [LR8, RM] in
+ def BLR8 : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", IIC_BrB,
+ [(retflag)]>, Requires<[In64BitMode]>;
let isBranch = 1, isIndirectBranch = 1, Uses = [CTR8] in {
def BCTR8 : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB,
[]>,
@@ -167,6 +170,17 @@ let isCall = 1, PPC970_Unit = 7, Defs = [LR8] in {
}
}
}
+
+let isCall = 1, PPC970_Unit = 7, isCodeGenOnly = 1,
+ Defs = [LR8, X2], Uses = [CTR8, RM], RST = 2 in {
+ def BCTRL8_LDinto_toc :
+ XLForm_2_ext_and_DSForm_1<19, 528, 20, 0, 1, 58, 0, (outs),
+ (ins memrix:$src),
+ "bctrl\n\tld 2, $src", IIC_BrB,
+ [(PPCbctrl_load_toc ixaddr:$src)]>,
+ Requires<[In64BitMode]>;
+}
+
} // Interpretation64Bit
// FIXME: Duplicating this for the asm parser should be unnecessary, but the
@@ -282,7 +296,7 @@ def : Pat<(PPCtc_return CTRRC8:$dst, imm:$imm),
// 64-bit CR instructions
let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def MTOCRF8: XFXForm_5a<31, 144, (outs crbitm:$FXM), (ins g8rc:$ST),
"mtocrf $FXM, $ST", IIC_BrMCRX>,
PPC970_DGroup_First, PPC970_Unit_CRU;
@@ -299,7 +313,7 @@ def MFOCRF8: XFXForm_5a<31, 19, (outs g8rc:$rT), (ins crbitm:$FXM),
def MFCR8 : XFXForm_3<31, 19, (outs g8rc:$rT), (ins),
"mfcr $rT", IIC_SprMFCR>,
PPC970_MicroCode, PPC970_Unit_CRU;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
let Defs = [CTR8] in
@@ -366,7 +380,7 @@ def MFLR8 : XFXForm_1_ext<31, 339, 8, (outs g8rc:$rT), (ins),
let PPC970_Unit = 1 in { // FXU Operations.
let Interpretation64Bit = 1 in {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let isCodeGenOnly = 1 in {
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
@@ -517,7 +531,7 @@ defm MULHDU : XOForm_1r<31, 9, 0, (outs g8rc:$rT), (ins g8rc:$rA, g8rc:$rB),
}
} // Interpretation64Bit
-let isCompare = 1, neverHasSideEffects = 1 in {
+let isCompare = 1, hasSideEffects = 0 in {
def CMPD : XForm_16_ext<31, 0, (outs crrc:$crD), (ins g8rc:$rA, g8rc:$rB),
"cmpd $crD, $rA, $rB", IIC_IntCompare>, isPPC64;
def CMPLD : XForm_16_ext<31, 32, (outs crrc:$crD), (ins g8rc:$rA, g8rc:$rB),
@@ -529,7 +543,7 @@ let isCompare = 1, neverHasSideEffects = 1 in {
IIC_IntCompare>, isPPC64;
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm SLD : XForm_6r<31, 27, (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB),
"sld", "$rA, $rS, $rB", IIC_IntRotateD,
[(set i64:$rA, (PPCshl i64:$rS, i32:$rB))]>, isPPC64;
@@ -540,13 +554,21 @@ defm SRAD : XForm_6rc<31, 794, (outs g8rc:$rA), (ins g8rc:$rS, gprc:$rB),
"srad", "$rA, $rS, $rB", IIC_IntRotateD,
[(set i64:$rA, (PPCsra i64:$rS, i32:$rB))]>, isPPC64;
-let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
+defm CNTLZW8 : XForm_11r<31, 26, (outs g8rc:$rA), (ins g8rc:$rS),
+ "cntlzw", "$rA, $rS", IIC_IntGeneral, []>;
+
defm EXTSB8 : XForm_11r<31, 954, (outs g8rc:$rA), (ins g8rc:$rS),
"extsb", "$rA, $rS", IIC_IntSimple,
[(set i64:$rA, (sext_inreg i64:$rS, i8))]>;
defm EXTSH8 : XForm_11r<31, 922, (outs g8rc:$rA), (ins g8rc:$rS),
"extsh", "$rA, $rS", IIC_IntSimple,
[(set i64:$rA, (sext_inreg i64:$rS, i16))]>;
+
+defm SLW8 : XForm_6r<31, 24, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "slw", "$rA, $rS, $rB", IIC_IntGeneral, []>;
+defm SRW8 : XForm_6r<31, 536, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "srw", "$rA, $rS, $rB", IIC_IntGeneral, []>;
} // Interpretation64Bit
// For fast-isel:
@@ -575,6 +597,11 @@ def POPCNTD : XForm_11<31, 506, (outs g8rc:$rA), (ins g8rc:$rS),
"popcntd $rA, $rS", IIC_IntGeneral,
[(set i64:$rA, (ctpop i64:$rS))]>;
+let isCodeGenOnly = 1, isCommutable = 1 in
+def CMPB8 : XForm_6<31, 508, (outs g8rc:$rA), (ins g8rc:$rS, g8rc:$rB),
+ "cmpb $rA, $rS, $rB", IIC_IntGeneral,
+ [(set i64:$rA, (PPCcmpb i64:$rS, i64:$rB))]>;
+
// popcntw also does a population count on the high 32 bits (storing the
// results in the high 32-bits of the output). We'll ignore that here (which is
// safe because we never separately use the high part of the 64-bit registers).
@@ -600,14 +627,12 @@ def MULLI8 : DForm_2<7, (outs g8rc:$rD), (ins g8rc:$rA, s16imm64:$imm),
[(set i64:$rD, (mul i64:$rA, imm64SExt16:$imm))]>;
}
-let neverHasSideEffects = 1 in {
-let isCommutable = 1 in {
+let hasSideEffects = 0 in {
defm RLDIMI : MDForm_1r<30, 3, (outs g8rc:$rA),
(ins g8rc:$rSi, g8rc:$rS, u6imm:$SH, u6imm:$MBE),
"rldimi", "$rA, $rS, $SH, $MBE", IIC_IntRotateDI,
[]>, isPPC64, RegConstraint<"$rSi = $rA">,
NoEncode<"$rSi">;
-}
// Rotate instructions.
defm RLDCL : MDSForm_1r<30, 8,
@@ -645,7 +670,11 @@ defm RLWINM8 : MForm_2r<21, (outs g8rc:$rA),
"rlwinm", "$rA, $rS, $SH, $MB, $ME", IIC_IntGeneral,
[]>;
-let isCommutable = 1 in {
+defm RLWNM8 : MForm_2r<23, (outs g8rc:$rA),
+ (ins g8rc:$rS, g8rc:$rB, u5imm:$MB, u5imm:$ME),
+ "rlwnm", "$rA, $rS, $rB, $MB, $ME", IIC_IntGeneral,
+ []>;
+
// RLWIMI can be commuted if the rotate amount is zero.
let Interpretation64Bit = 1, isCodeGenOnly = 1 in
defm RLWIMI8 : MForm_2r<20, (outs g8rc:$rA),
@@ -653,7 +682,6 @@ defm RLWIMI8 : MForm_2r<20, (outs g8rc:$rA),
u5imm:$ME), "rlwimi", "$rA, $rS, $SH, $MB, $ME",
IIC_IntRotate, []>, PPC970_DGroup_Cracked,
RegConstraint<"$rSi = $rA">, NoEncode<"$rSi">;
-}
let isSelect = 1 in
def ISEL8 : AForm_4<31, 15,
@@ -661,7 +689,7 @@ def ISEL8 : AForm_4<31, 15,
"isel $rT, $rA, $rB, $cond", IIC_IntGeneral,
[]>;
} // Interpretation64Bit
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
} // End FXU Operations.
@@ -702,7 +730,7 @@ def LWAX_32 : XForm_1<31, 341, (outs gprc:$rD), (ins memrr:$src),
} // end fast-isel isCodeGenOnly
// Update forms.
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
let Interpretation64Bit = 1, isCodeGenOnly = 1 in
def LHAU8 : DForm_1<43, (outs g8rc:$rD, ptr_rc_nor0:$ea_result),
(ins memri:$addr),
@@ -750,7 +778,7 @@ def LWZX8 : XForm_1<31, 23, (outs g8rc:$rD), (ins memrr:$src),
// Update forms.
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
def LBZU8 : DForm_1<35, (outs g8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
"lbzu $rD, $addr", IIC_LdStLoadUpd,
[]>, RegConstraint<"$addr.reg = $ea_result">,
@@ -821,7 +849,14 @@ def LDBRX : XForm_1<31, 532, (outs g8rc:$rD), (ins memrr:$src),
"ldbrx $rD, $src", IIC_LdStLoad,
[(set i64:$rD, (PPClbrx xoaddr:$src, i64))]>, isPPC64;
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0, isCodeGenOnly = 1 in {
+def LHBRX8 : XForm_1<31, 790, (outs g8rc:$rD), (ins memrr:$src),
+ "lhbrx $rD, $src", IIC_LdStLoad, []>;
+def LWBRX8 : XForm_1<31, 534, (outs g8rc:$rD), (ins memrr:$src),
+ "lwbrx $rD, $src", IIC_LdStLoad, []>;
+}
+
+let mayLoad = 1, hasSideEffects = 0 in {
def LDU : DSForm_1<58, 1, (outs g8rc:$rD, ptr_rc_nor0:$ea_result), (ins memrix:$addr),
"ldu $rD, $addr", IIC_LdStLDU,
[]>, RegConstraint<"$addr.reg = $ea_result">, isPPC64,
@@ -1006,7 +1041,7 @@ def : Pat<(pre_store i64:$rS, iPTR:$ptrreg, iPTR:$ptroff),
//
-let PPC970_Unit = 3, neverHasSideEffects = 1,
+let PPC970_Unit = 3, hasSideEffects = 0,
Uses = [RM] in { // FPU Operations.
defm FCFID : XForm_26r<63, 846, (outs f8rc:$frD), (ins f8rc:$frB),
"fcfid", "$frD, $frB", IIC_FPGeneral,
@@ -1132,3 +1167,9 @@ def : Pat<(i64 (unaligned4load xoaddr:$src)),
def : Pat<(unaligned4store i64:$rS, xoaddr:$dst),
(STDX $rS, xoaddr:$dst)>;
+// 64-bits atomic loads and stores
+def : Pat<(atomic_load_64 ixaddr:$src), (LD memrix:$src)>;
+def : Pat<(atomic_load_64 xaddr:$src), (LDX memrr:$src)>;
+
+def : Pat<(atomic_store_64 ixaddr:$ptr, i64:$val), (STD g8rc:$val, memrix:$ptr)>;
+def : Pat<(atomic_store_64 xaddr:$ptr, i64:$val), (STDX g8rc:$val, memrr:$ptr)>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td
index b271b5d..4ef08eb 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td
@@ -275,48 +275,64 @@ class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
def HasAltivec : Predicate<"PPCSubTarget->hasAltivec()">;
let Predicates = [HasAltivec] in {
-let isCodeGenOnly = 1 in {
-def DSS : DSS_Form<822, (outs),
- (ins u5imm:$ZERO0, u5imm:$STRM,u5imm:$ZERO1,u5imm:$ZERO2),
- "dss $STRM", IIC_LdStLoad /*FIXME*/, []>,
- Deprecated<DeprecatedDST>;
-def DSSALL : DSS_Form<822, (outs),
- (ins u5imm:$ONE, u5imm:$ZERO0,u5imm:$ZERO1,u5imm:$ZERO2),
- "dssall", IIC_LdStLoad /*FIXME*/, []>,
- Deprecated<DeprecatedDST>;
-def DST : DSS_Form<342, (outs),
- (ins u5imm:$ZERO, u5imm:$STRM, gprc:$rA, gprc:$rB),
- "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
- Deprecated<DeprecatedDST>;
-def DSTT : DSS_Form<342, (outs),
- (ins u5imm:$ONE, u5imm:$STRM, gprc:$rA, gprc:$rB),
- "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
- Deprecated<DeprecatedDST>;
-def DSTST : DSS_Form<374, (outs),
- (ins u5imm:$ZERO, u5imm:$STRM, gprc:$rA, gprc:$rB),
- "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
- Deprecated<DeprecatedDST>;
-def DSTSTT : DSS_Form<374, (outs),
- (ins u5imm:$ONE, u5imm:$STRM, gprc:$rA, gprc:$rB),
- "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
- Deprecated<DeprecatedDST>;
+def DSS : DSS_Form<0, 822, (outs), (ins u5imm:$STRM),
+ "dss $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dss imm:$STRM)]>,
+ Deprecated<DeprecatedDST> {
+ let A = 0;
+ let B = 0;
+}
-def DST64 : DSS_Form<342, (outs),
- (ins u5imm:$ZERO, u5imm:$STRM, g8rc:$rA, gprc:$rB),
- "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+def DSSALL : DSS_Form<1, 822, (outs), (ins),
+ "dssall", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dssall)]>,
+ Deprecated<DeprecatedDST> {
+ let STRM = 0;
+ let A = 0;
+ let B = 0;
+}
+
+def DST : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
-def DSTT64 : DSS_Form<342, (outs),
- (ins u5imm:$ONE, u5imm:$STRM, g8rc:$rA, gprc:$rB),
- "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+
+def DSTT : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
-def DSTST64 : DSS_Form<374, (outs),
- (ins u5imm:$ZERO, u5imm:$STRM, g8rc:$rA, gprc:$rB),
- "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+
+def DSTST : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
-def DSTSTT64 : DSS_Form<374, (outs),
- (ins u5imm:$ONE, u5imm:$STRM, g8rc:$rA, gprc:$rB),
- "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, []>,
+
+def DSTSTT : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
+ "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM)]>,
Deprecated<DeprecatedDST>;
+
+let isCodeGenOnly = 1 in {
+ // The very same instructions as above, but formally matching 64bit registers.
+ def DST64 : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM)]>,
+ Deprecated<DeprecatedDST>;
+
+ def DSTT64 : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM)]>,
+ Deprecated<DeprecatedDST>;
+
+ def DSTST64 : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dstst i64:$rA, i32:$rB,
+ imm:$STRM)]>,
+ Deprecated<DeprecatedDST>;
+
+ def DSTSTT64 : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
+ "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
+ [(int_ppc_altivec_dststt i64:$rA, i32:$rB,
+ imm:$STRM)]>,
+ Deprecated<DeprecatedDST>;
}
def MFVSCR : VXForm_4<1540, (outs vrrc:$vD), (ins),
@@ -764,30 +780,6 @@ def V_SETALLONES : VXForm_3<908, (outs vrrc:$vD), (ins),
// Additional Altivec Patterns
//
-// DS* intrinsics
-def : Pat<(int_ppc_altivec_dssall), (DSSALL 1, 0, 0, 0)>;
-def : Pat<(int_ppc_altivec_dss imm:$STRM), (DSS 0, imm:$STRM, 0, 0)>;
-
-// * 32-bit
-def : Pat<(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM),
- (DST 0, imm:$STRM, $rA, $rB)>;
-def : Pat<(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM),
- (DSTT 1, imm:$STRM, $rA, $rB)>;
-def : Pat<(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM),
- (DSTST 0, imm:$STRM, $rA, $rB)>;
-def : Pat<(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM),
- (DSTSTT 1, imm:$STRM, $rA, $rB)>;
-
-// * 64-bit
-def : Pat<(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM),
- (DST64 0, imm:$STRM, $rA, $rB)>;
-def : Pat<(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM),
- (DSTT64 1, imm:$STRM, $rA, $rB)>;
-def : Pat<(int_ppc_altivec_dstst i64:$rA, i32:$rB, imm:$STRM),
- (DSTST64 0, imm:$STRM, $rA, $rB)>;
-def : Pat<(int_ppc_altivec_dststt i64:$rA, i32:$rB, imm:$STRM),
- (DSTSTT64 1, imm:$STRM, $rA, $rB)>;
-
// Loads.
def : Pat<(v4i32 (load xoaddr:$src)), (LVX xoaddr:$src)>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h b/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h
index b424d11..cf71b1c 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrBuilder.h
@@ -17,8 +17,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPC_INSTRBUILDER_H
-#define POWERPC_INSTRBUILDER_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRBUILDER_H
+#define LLVM_LIB_TARGET_POWERPC_PPCINSTRBUILDER_H
#include "llvm/CodeGen/MachineInstrBuilder.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td
index 1e4396c..186d5dc 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrFormats.td
@@ -380,6 +380,17 @@ class XForm_base_r3xo<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asms
let Inst{31} = RC;
}
+class XForm_tlb<bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin> : XForm_base_r3xo<31, xo, OOL, IOL, asmstr, itin, []> {
+ let RST = 0;
+}
+
+class XForm_attn<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ let Inst{21-30} = xo;
+}
+
// This is the same as XForm_base_r3xo, but the first two operands are swapped
// when code is emitted.
class XForm_base_r3xo_swapped
@@ -417,6 +428,22 @@ class XForm_rs<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
let B = 0;
}
+class XForm_tlbws<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RST;
+ bits<5> A;
+ bits<1> WS;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = RST;
+ let Inst{11-15} = A;
+ let Inst{20} = WS;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
class XForm_6<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: XForm_base_r3xo_swapped<opcode, xo, OOL, IOL, asmstr, itin> {
@@ -457,6 +484,52 @@ class XForm_16<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
let Inst{31} = 0;
}
+class XForm_icbt<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<4> CT;
+ bits<5> RA;
+ bits<5> RB;
+
+ let Inst{6} = 0;
+ let Inst{7-10} = CT;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-30} = xo;
+ let Inst{31} = 0;
+}
+
+class XForm_sr<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RS;
+ bits<4> SR;
+
+ let Inst{6-10} = RS;
+ let Inst{12-15} = SR;
+ let Inst{21-30} = xo;
+}
+
+class XForm_mbar<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> MO;
+
+ let Inst{6-10} = MO;
+ let Inst{21-30} = xo;
+}
+
+class XForm_srin<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin>
+ : I<opcode, OOL, IOL, asmstr, itin> {
+ bits<5> RS;
+ bits<5> RB;
+
+ let Inst{6-10} = RS;
+ let Inst{16-20} = RB;
+ let Inst{21-30} = xo;
+}
+
class XForm_mtmsr<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
InstrItinClass itin>
: I<opcode, OOL, IOL, asmstr, itin> {
@@ -764,10 +837,9 @@ class DCB_Form<bits<10> xo, bits<5> immfield, dag OOL, dag IOL, string asmstr,
// DSS_Form - Form X instruction, used for altivec dss* instructions.
-class DSS_Form<bits<10> xo, dag OOL, dag IOL, string asmstr,
+class DSS_Form<bits<1> T, bits<10> xo, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: I<31, OOL, IOL, asmstr, itin> {
- bits<1> T;
bits<2> STRM;
bits<5> A;
bits<5> B;
@@ -873,6 +945,45 @@ class XLForm_3<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
let Inst{31} = 0;
}
+class XLForm_2_and_DSForm_1<bits<6> opcode1, bits<10> xo1, bit lk,
+ bits<6> opcode2, bits<2> xo2,
+ dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : I2<opcode1, opcode2, OOL, IOL, asmstr, itin> {
+ bits<5> BO;
+ bits<5> BI;
+ bits<2> BH;
+
+ bits<5> RST;
+ bits<19> DS_RA;
+
+ let Pattern = pattern;
+
+ let Inst{6-10} = BO;
+ let Inst{11-15} = BI;
+ let Inst{16-18} = 0;
+ let Inst{19-20} = BH;
+ let Inst{21-30} = xo1;
+ let Inst{31} = lk;
+
+ let Inst{38-42} = RST;
+ let Inst{43-47} = DS_RA{18-14}; // Register #
+ let Inst{48-61} = DS_RA{13-0}; // Displacement.
+ let Inst{62-63} = xo2;
+}
+
+class XLForm_2_ext_and_DSForm_1<bits<6> opcode1, bits<10> xo1,
+ bits<5> bo, bits<5> bi, bit lk,
+ bits<6> opcode2, bits<2> xo2,
+ dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin, list<dag> pattern>
+ : XLForm_2_and_DSForm_1<opcode1, xo1, lk, opcode2, xo2,
+ OOL, IOL, asmstr, itin, pattern> {
+ let BO = bo;
+ let BI = bi;
+ let BH = 0;
+}
+
// 1.7.8 XFX-Form
class XFXForm_1<bits<6> opcode, bits<10> xo, dag OOL, dag IOL, string asmstr,
InstrItinClass itin>
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
index 9bac91d..2492229 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
@@ -29,6 +29,7 @@
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/StackMaps.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -75,7 +76,7 @@ PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
const InstrItineraryData *II =
- &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
+ static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
return new ScoreboardHazardRecognizer(II, DAG);
}
@@ -230,10 +231,12 @@ PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
// Normal instructions can be commuted the obvious way.
if (MI->getOpcode() != PPC::RLWIMI &&
- MI->getOpcode() != PPC::RLWIMIo &&
- MI->getOpcode() != PPC::RLWIMI8 &&
- MI->getOpcode() != PPC::RLWIMI8o)
+ MI->getOpcode() != PPC::RLWIMIo)
return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
+ // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
+ // changing the relative order of the mask operands might change what happens
+ // to the high-bits of the mask (and, thus, the result).
// Cannot commute if it has a non-zero rotate count.
if (MI->getOperand(3).getImm() != 0)
@@ -331,6 +334,11 @@ void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
BuildMI(MBB, MI, DL, get(Opcode));
}
+/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(PPC::NOP);
+}
+
// Branch analysis.
// Note: If the condition register is set to CTR or CTR8 then this is a
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
@@ -1106,7 +1114,7 @@ bool PPCInstrInfo::PredicateInstruction(
MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const {
unsigned OpC = MI->getOpcode();
- if (OpC == PPC::BLR) {
+ if (OpC == PPC::BLR || OpC == PPC::BLR8) {
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
bool isPPC64 = Subtarget.isPPC64();
MI->setDesc(get(Pred[0].getImm() ?
@@ -1270,6 +1278,7 @@ bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
return false;
case PPC::B:
case PPC::BLR:
+ case PPC::BLR8:
case PPC::BCTR:
case PPC::BCTR8:
case PPC::BCTRL:
@@ -1588,6 +1597,11 @@ unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const MachineFunction *MF = MI->getParent()->getParent();
const char *AsmStr = MI->getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ } else if (Opcode == TargetOpcode::STACKMAP) {
+ return MI->getOperand(1).getImm();
+ } else if (Opcode == TargetOpcode::PATCHPOINT) {
+ PatchPointOpers Opers(MI);
+ return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
} else {
const MCInstrDesc &Desc = get(Opcode);
return Desc.getSize();
@@ -1617,6 +1631,7 @@ protected:
bool Changed = false;
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
I != IE; ++I) {
MachineInstr *MI = I;
@@ -1682,16 +1697,26 @@ protected:
// In theory, there could be other uses of the addend copy before this
// fma. We could deal with this, but that would require additional
// logic below and I suspect it will not occur in any relevant
- // situations.
- bool OtherUsers = false;
+ // situations. Additionally, check whether the copy source is killed
+ // prior to the fma. In order to replace the addend here with the
+ // source of the copy, it must still be live here. We can't use
+ // interval testing for a physical register, so as long as we're
+ // walking the MIs we may as well test liveness here.
+ bool OtherUsers = false, KillsAddendSrc = false;
for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
- J != JE; --J)
+ J != JE; --J) {
if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
OtherUsers = true;
break;
}
+ if (J->modifiesRegister(AddendSrcReg, TRI) ||
+ J->killsRegister(AddendSrcReg, TRI)) {
+ KillsAddendSrc = true;
+ break;
+ }
+ }
- if (OtherUsers)
+ if (OtherUsers || KillsAddendSrc)
continue;
// Find one of the product operands that is killed by this instruction.
@@ -1712,10 +1737,11 @@ protected:
if (!KilledProdOp)
continue;
- // In order to replace the addend here with the source of the copy,
- // it must still be live here.
- if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
- continue;
+ // For virtual registers, verify that the addend source register
+ // is live here (as should have been assured above).
+ assert((!TargetRegisterInfo::isVirtualRegister(AddendSrcReg) ||
+ LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) &&
+ "Addend source register is not live!");
// Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
@@ -1737,6 +1763,12 @@ protected:
unsigned OldFMAReg = MI->getOperand(0).getReg();
+ // The transformation doesn't work well with things like:
+ // %vreg5 = A-form-op %vreg5, %vreg11, %vreg5;
+ // so leave such things alone.
+ if (OldFMAReg == KilledProdReg)
+ continue;
+
assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
"Addend copy not tied to old FMA output!");
@@ -1827,7 +1859,7 @@ public:
LIS = &getAnalysis<LiveIntervals>();
- TII = TM->getInstrInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
bool Changed = false;
@@ -1980,7 +2012,7 @@ public:
// If we don't have VSX on the subtarget, don't do anything.
if (!TM->getSubtargetImpl()->hasVSX())
return false;
- TII = TM->getInstrInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
bool Changed = false;
@@ -2057,7 +2089,7 @@ public:
// If we don't have VSX don't bother doing anything here.
if (!TM->getSubtargetImpl()->hasVSX())
return false;
- TII = TM->getInstrInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
bool Changed = false;
@@ -2113,7 +2145,8 @@ protected:
I = ReturnMBB.SkipPHIsAndLabels(I);
// The block must be essentially empty except for the blr.
- if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
+ if (I == ReturnMBB.end() ||
+ (I->getOpcode() != PPC::BLR && I->getOpcode() != PPC::BLR8) ||
I != ReturnMBB.getLastNonDebugInstr())
return Changed;
@@ -2126,7 +2159,7 @@ protected:
if (J->getOperand(0).getMBB() == &ReturnMBB) {
// This is an unconditional branch to the return. Replace the
// branch with a blr.
- BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
+ BuildMI(**PI, J, J->getDebugLoc(), TII->get(I->getOpcode()));
MachineBasicBlock::iterator K = J--;
K->eraseFromParent();
BlockChanged = true;
@@ -2214,7 +2247,7 @@ protected:
public:
bool runOnMachineFunction(MachineFunction &MF) override {
TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
- TII = TM->getInstrInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
bool Changed = false;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h
index 83f14c6..4add6f9 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPC_INSTRUCTIONINFO_H
-#define POWERPC_INSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
+#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
#include "PPC.h"
#include "PPCRegisterInfo.h"
@@ -106,6 +106,15 @@ public:
UseNode, UseIdx);
}
+ bool hasLowDefLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI,
+ unsigned DefIdx) const override {
+ // Machine LICM should hoist all instructions in low-register-pressure
+ // situations; none are sufficiently free to justify leaving in a loop
+ // body.
+ return false;
+ }
+
bool isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const override;
@@ -228,6 +237,8 @@ public:
/// instruction may be. This returns the maximum number of bytes.
///
unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
};
}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td
index ad3d38a..d597cdc 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td
@@ -118,6 +118,8 @@ def PPCaddiDtprelL : SDNode<"PPCISD::ADDI_DTPREL_L", SDTIntBinOp>;
def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>;
+def PPCcmpb : SDNode<"PPCISD::CMPB", SDTIntBinOp, []>;
+
// These nodes represent the 32-bit PPC shifts that operate on 6-bit shift
// amounts. These nodes are generated by the multi-precision shift code.
def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>;
@@ -153,6 +155,10 @@ def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall,
def PPCbctrl : SDNode<"PPCISD::BCTRL", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
+def PPCbctrl_load_toc : SDNode<"PPCISD::BCTRL_LOAD_TOC",
+ SDTypeProfile<0, 1, []>,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
@@ -424,6 +430,15 @@ def u2imm : Operand<i32> {
let PrintMethod = "printU2ImmOperand";
let ParserMatchClass = PPCU2ImmAsmOperand;
}
+
+def PPCU4ImmAsmOperand : AsmOperandClass {
+ let Name = "U4Imm"; let PredicateMethod = "isU4Imm";
+ let RenderMethod = "addImmOperands";
+}
+def u4imm : Operand<i32> {
+ let PrintMethod = "printU4ImmOperand";
+ let ParserMatchClass = PPCU4ImmAsmOperand;
+}
def PPCS5ImmAsmOperand : AsmOperandClass {
let Name = "S5Imm"; let PredicateMethod = "isS5Imm";
let RenderMethod = "addImmOperands";
@@ -453,7 +468,7 @@ def u6imm : Operand<i32> {
}
def PPCS16ImmAsmOperand : AsmOperandClass {
let Name = "S16Imm"; let PredicateMethod = "isS16Imm";
- let RenderMethod = "addImmOperands";
+ let RenderMethod = "addS16ImmOperands";
}
def s16imm : Operand<i32> {
let PrintMethod = "printS16ImmOperand";
@@ -463,7 +478,7 @@ def s16imm : Operand<i32> {
}
def PPCU16ImmAsmOperand : AsmOperandClass {
let Name = "U16Imm"; let PredicateMethod = "isU16Imm";
- let RenderMethod = "addImmOperands";
+ let RenderMethod = "addU16ImmOperands";
}
def u16imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
@@ -473,7 +488,7 @@ def u16imm : Operand<i32> {
}
def PPCS17ImmAsmOperand : AsmOperandClass {
let Name = "S17Imm"; let PredicateMethod = "isS17Imm";
- let RenderMethod = "addImmOperands";
+ let RenderMethod = "addS16ImmOperands";
}
def s17imm : Operand<i32> {
// This operand type is used for addis/lis to allow the assembler parser
@@ -549,7 +564,7 @@ def ptr_rc_idx : Operand<iPTR>, PointerLikeRegClass<0> {
def PPCDispRIOperand : AsmOperandClass {
let Name = "DispRI"; let PredicateMethod = "isS16Imm";
- let RenderMethod = "addImmOperands";
+ let RenderMethod = "addS16ImmOperands";
}
def dispRI : Operand<iPTR> {
let ParserMatchClass = PPCDispRIOperand;
@@ -561,6 +576,27 @@ def PPCDispRIXOperand : AsmOperandClass {
def dispRIX : Operand<iPTR> {
let ParserMatchClass = PPCDispRIXOperand;
}
+def PPCDispSPE8Operand : AsmOperandClass {
+ let Name = "DispSPE8"; let PredicateMethod = "isU8ImmX8";
+ let RenderMethod = "addImmOperands";
+}
+def dispSPE8 : Operand<iPTR> {
+ let ParserMatchClass = PPCDispSPE8Operand;
+}
+def PPCDispSPE4Operand : AsmOperandClass {
+ let Name = "DispSPE4"; let PredicateMethod = "isU7ImmX4";
+ let RenderMethod = "addImmOperands";
+}
+def dispSPE4 : Operand<iPTR> {
+ let ParserMatchClass = PPCDispSPE4Operand;
+}
+def PPCDispSPE2Operand : AsmOperandClass {
+ let Name = "DispSPE2"; let PredicateMethod = "isU6ImmX2";
+ let RenderMethod = "addImmOperands";
+}
+def dispSPE2 : Operand<iPTR> {
+ let ParserMatchClass = PPCDispSPE2Operand;
+}
def memri : Operand<iPTR> {
let PrintMethod = "printMemRegImm";
@@ -578,6 +614,21 @@ def memrix : Operand<iPTR> { // memri where the imm is 4-aligned.
let EncoderMethod = "getMemRIXEncoding";
let DecoderMethod = "decodeMemRIXOperands";
}
+def spe8dis : Operand<iPTR> { // SPE displacement where the imm is 8-aligned.
+ let PrintMethod = "printMemRegImm";
+ let MIOperandInfo = (ops dispSPE8:$imm, ptr_rc_nor0:$reg);
+ let EncoderMethod = "getSPE8DisEncoding";
+}
+def spe4dis : Operand<iPTR> { // SPE displacement where the imm is 4-aligned.
+ let PrintMethod = "printMemRegImm";
+ let MIOperandInfo = (ops dispSPE4:$imm, ptr_rc_nor0:$reg);
+ let EncoderMethod = "getSPE4DisEncoding";
+}
+def spe2dis : Operand<iPTR> { // SPE displacement where the imm is 2-aligned.
+ let PrintMethod = "printMemRegImm";
+ let MIOperandInfo = (ops dispSPE2:$imm, ptr_rc_nor0:$reg);
+ let EncoderMethod = "getSPE2DisEncoding";
+}
// A single-register address. This is used with the SjLj
// pseudo-instructions.
@@ -624,6 +675,12 @@ def In32BitMode : Predicate<"!PPCSubTarget->isPPC64()">;
def In64BitMode : Predicate<"PPCSubTarget->isPPC64()">;
def IsBookE : Predicate<"PPCSubTarget->isBookE()">;
def IsNotBookE : Predicate<"!PPCSubTarget->isBookE()">;
+def HasOnlyMSYNC : Predicate<"PPCSubTarget->hasOnlyMSYNC()">;
+def HasSYNC : Predicate<"!PPCSubTarget->hasOnlyMSYNC()">;
+def IsPPC4xx : Predicate<"PPCSubTarget->isPPC4xx()">;
+def IsPPC6xx : Predicate<"PPCSubTarget->isPPC6xx()">;
+def IsE500 : Predicate<"PPCSubTarget->isE500()">;
+def HasSPE : Predicate<"PPCSubTarget->HasSPE()">;
//===----------------------------------------------------------------------===//
// PowerPC Multiclass Definitions.
@@ -959,7 +1016,7 @@ def RESTORE_CRBIT : Pseudo<(outs crbitrc:$cond), (ins memri:$F),
let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in {
let isReturn = 1, Uses = [LR, RM] in
def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", IIC_BrB,
- [(retflag)]>;
+ [(retflag)]>, Requires<[In32BitMode]>;
let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in {
def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB,
[]>;
@@ -1261,8 +1318,15 @@ def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst), "dcbzl $dst",
IIC_LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>,
PPC970_DGroup_Single;
+def ICBT : XForm_icbt<31, 22, (outs), (ins u4imm:$CT, memrr:$src),
+ "icbt $CT, $src", IIC_LdStLoad>, Requires<[IsBookE]>;
+
def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)),
- (DCBT xoaddr:$dst)>;
+ (DCBT xoaddr:$dst)>; // data prefetch for loads
+def : Pat<(prefetch xoaddr:$dst, (i32 1), imm, (i32 1)),
+ (DCBTST xoaddr:$dst)>; // data prefetch for stores
+def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 0)),
+ (ICBT 0, xoaddr:$dst)>; // inst prefetch (for read)
// Atomic operations
let usesCustomInserter = 1 in {
@@ -1396,7 +1460,7 @@ def LFD : DForm_1<50, (outs f8rc:$rD), (ins memri:$src),
// Unindexed (r+i) Loads with Update (preinc).
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
def LBZU : DForm_1<35, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr),
"lbzu $rD, $addr", IIC_LdStLoadUpd,
[]>, RegConstraint<"$addr.reg = $ea_result">,
@@ -1646,17 +1710,19 @@ def STMW : DForm_1<47, (outs), (ins gprc:$rS, memri:$dst),
"stmw $rS, $dst", IIC_LdStLMW, []>;
def SYNC : XForm_24_sync<31, 598, (outs), (ins i32imm:$L),
- "sync $L", IIC_LdStSync, []>, Requires<[IsNotBookE]>;
+ "sync $L", IIC_LdStSync, []>;
let isCodeGenOnly = 1 in {
def MSYNC : XForm_24_sync<31, 598, (outs), (ins),
- "msync", IIC_LdStSync, []>, Requires<[IsBookE]> {
+ "msync", IIC_LdStSync, []> {
let L = 0;
}
}
-def : Pat<(int_ppc_sync), (SYNC 0)>, Requires<[IsNotBookE]>;
-def : Pat<(int_ppc_sync), (MSYNC)>, Requires<[IsBookE]>;
+def : Pat<(int_ppc_sync), (SYNC 0)>, Requires<[HasSYNC]>;
+def : Pat<(int_ppc_lwsync), (SYNC 1)>, Requires<[HasSYNC]>;
+def : Pat<(int_ppc_sync), (MSYNC)>, Requires<[HasOnlyMSYNC]>;
+def : Pat<(int_ppc_lwsync), (MSYNC)>, Requires<[HasOnlyMSYNC]>;
//===----------------------------------------------------------------------===//
// PPC32 Arithmetic Instructions.
@@ -1737,7 +1803,7 @@ def NOP_GT_PWR7 : DForm_4_fixedreg_zero<24, 2, (outs), (ins),
"ori 2, 2, 0", IIC_IntSimple, []>;
}
-let isCompare = 1, neverHasSideEffects = 1 in {
+let isCompare = 1, hasSideEffects = 0 in {
def CMPWI : DForm_5_ext<11, (outs crrc:$crD), (ins gprc:$rA, s16imm:$imm),
"cmpwi $crD, $rA, $imm", IIC_IntCompare>;
def CMPLWI : DForm_6_ext<10, (outs crrc:$dst), (ins gprc:$src1, u16imm:$src2),
@@ -1745,7 +1811,7 @@ let isCompare = 1, neverHasSideEffects = 1 in {
}
}
-let PPC970_Unit = 1, neverHasSideEffects = 1 in { // FXU Operations.
+let PPC970_Unit = 1, hasSideEffects = 0 in { // FXU Operations.
let isCommutable = 1 in {
defm NAND : XForm_6r<31, 476, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
"nand", "$rA, $rS, $rB", IIC_IntSimple,
@@ -1788,7 +1854,7 @@ defm SRAW : XForm_6rc<31, 792, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
}
let PPC970_Unit = 1 in { // FXU Operations.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm SRAWI : XForm_10rc<31, 824, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH),
"srawi", "$rA, $rS, $SH", IIC_IntShift,
[(set i32:$rA, (sra i32:$rS, (i32 imm:$SH)))]>;
@@ -1801,8 +1867,13 @@ defm EXTSB : XForm_11r<31, 954, (outs gprc:$rA), (ins gprc:$rS),
defm EXTSH : XForm_11r<31, 922, (outs gprc:$rA), (ins gprc:$rS),
"extsh", "$rA, $rS", IIC_IntSimple,
[(set i32:$rA, (sext_inreg i32:$rS, i16))]>;
+
+let isCommutable = 1 in
+def CMPB : XForm_6<31, 508, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB),
+ "cmpb $rA, $rS, $rB", IIC_IntGeneral,
+ [(set i32:$rA, (PPCcmpb i32:$rS, i32:$rB))]>;
}
-let isCompare = 1, neverHasSideEffects = 1 in {
+let isCompare = 1, hasSideEffects = 0 in {
def CMPW : XForm_16_ext<31, 0, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB),
"cmpw $crD, $rA, $rB", IIC_IntCompare>;
def CMPLW : XForm_16_ext<31, 32, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB),
@@ -1812,7 +1883,7 @@ let isCompare = 1, neverHasSideEffects = 1 in {
let PPC970_Unit = 3 in { // FPU Operations.
//def FCMPO : XForm_17<63, 32, (outs CRRC:$crD), (ins FPRC:$fA, FPRC:$fB),
// "fcmpo $crD, $fA, $fB", IIC_FPCompare>;
-let isCompare = 1, neverHasSideEffects = 1 in {
+let isCompare = 1, hasSideEffects = 0 in {
def FCMPUS : XForm_17<63, 0, (outs crrc:$crD), (ins f4rc:$fA, f4rc:$fB),
"fcmpu $crD, $fA, $fB", IIC_FPCompare>;
let Interpretation64Bit = 1, isCodeGenOnly = 1 in
@@ -1821,7 +1892,7 @@ let isCompare = 1, neverHasSideEffects = 1 in {
}
let Uses = [RM] in {
- let neverHasSideEffects = 1 in {
+ let hasSideEffects = 0 in {
defm FCTIW : XForm_26r<63, 14, (outs f8rc:$frD), (ins f8rc:$frB),
"fctiw", "$frD, $frB", IIC_FPGeneral,
[]>;
@@ -1842,7 +1913,7 @@ let Uses = [RM] in {
[(set f32:$frD, (frnd f32:$frB))]>;
}
- let neverHasSideEffects = 1 in {
+ let hasSideEffects = 0 in {
let Interpretation64Bit = 1, isCodeGenOnly = 1 in
defm FRIPD : XForm_26r<63, 456, (outs f8rc:$frD), (ins f8rc:$frB),
"frip", "$frD, $frB", IIC_FPGeneral,
@@ -1879,13 +1950,13 @@ let Uses = [RM] in {
/// often coalesced away and we don't want the dispatch group builder to think
/// that they will fill slots (which could cause the load of a LSU reject to
/// sneak into a d-group with a store).
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
defm FMR : XForm_26r<63, 72, (outs f4rc:$frD), (ins f4rc:$frB),
"fmr", "$frD, $frB", IIC_FPGeneral,
[]>, // (set f32:$frD, f32:$frB)
PPC970_Unit_Pseudo;
-let PPC970_Unit = 3, neverHasSideEffects = 1 in { // FPU Operations.
+let PPC970_Unit = 3, hasSideEffects = 0 in { // FPU Operations.
// These are artificially split into two different forms, for 4/8 byte FP.
defm FABSS : XForm_26r<63, 264, (outs f4rc:$frD), (ins f4rc:$frB),
"fabs", "$frD, $frB", IIC_FPGeneral,
@@ -1934,11 +2005,20 @@ defm FRSQRTES : XForm_26r<59, 26, (outs f4rc:$frD), (ins f4rc:$frB),
// XL-Form instructions. condition register logical ops.
//
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def MCRF : XLForm_3<19, 0, (outs crrc:$BF), (ins crrc:$BFA),
"mcrf $BF, $BFA", IIC_BrMCR>,
PPC970_DGroup_First, PPC970_Unit_CRU;
+// FIXME: According to the ISA (section 2.5.1 of version 2.06), the
+// condition-register logical instructions have preferred forms. Specifically,
+// it is preferred that the bit specified by the BT field be in the same
+// condition register as that specified by the bit BB. We might want to account
+// for this via hinting the register allocator and anti-dep breakers, or we
+// could constrain the register class to force this constraint and then loosen
+// it during register allocation via convertToThreeAddress or some similar
+// mechanism.
+
let isCommutable = 1 in {
def CRAND : XLForm_1<19, 257, (outs crbitrc:$CRD),
(ins crbitrc:$CRA, crbitrc:$CRB),
@@ -2012,6 +2092,12 @@ def MTSPR : XFXForm_1<31, 467, (outs), (ins i32imm:$SPR, gprc:$RT),
def MFTB : XFXForm_1<31, 371, (outs gprc:$RT), (ins i32imm:$SPR),
"mftb $RT, $SPR", IIC_SprMFTB>, Deprecated<DeprecatedMFTB>;
+// A pseudo-instruction used to implement the read of the 64-bit cycle counter
+// on a 32-bit target.
+let hasSideEffects = 1, usesCustomInserter = 1 in
+def ReadTB : Pseudo<(outs gprc:$lo, gprc:$hi), (ins),
+ "#ReadTB", []>;
+
let Uses = [CTR] in {
def MFCTR : XFXForm_1_ext<31, 339, 9, (outs gprc:$rT), (ins),
"mfctr $rT", IIC_SprMFSPR>,
@@ -2073,7 +2159,7 @@ let mayLoad = 1 in
def RESTORE_VRSAVE : Pseudo<(outs VRSAVERC:$vrsave), (ins memri:$F),
"#RESTORE_VRSAVE", []>;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def MTOCRF: XFXForm_5a<31, 144, (outs crbitm:$FXM), (ins gprc:$ST),
"mtocrf $FXM, $ST", IIC_BrMCRX>,
PPC970_DGroup_First, PPC970_Unit_CRU;
@@ -2090,7 +2176,7 @@ def MFOCRF: XFXForm_5a<31, 19, (outs gprc:$rT), (ins crbitm:$FXM),
def MFCR : XFXForm_3<31, 19, (outs gprc:$rT), (ins),
"mfcr $rT", IIC_SprMFCR>,
PPC970_MicroCode, PPC970_Unit_CRU;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
// Pseudo instruction to perform FADD in round-to-zero mode.
let usesCustomInserter = 1, Uses = [RM] in {
@@ -2119,7 +2205,7 @@ let Uses = [RM] in {
}
-let PPC970_Unit = 1, neverHasSideEffects = 1 in { // FXU Operations.
+let PPC970_Unit = 1, hasSideEffects = 0 in { // FXU Operations.
// XO-Form instructions. Arithmetic instructions that can set overflow bit
let isCommutable = 1 in
defm ADD4 : XOForm_1r<31, 266, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB),
@@ -2190,7 +2276,7 @@ defm SUBFZE : XOForm_3rc<31, 200, 0, (outs gprc:$rT), (ins gprc:$rA),
// A-Form instructions. Most of the instructions executed in the FPU are of
// this type.
//
-let PPC970_Unit = 3, neverHasSideEffects = 1 in { // FPU Operations.
+let PPC970_Unit = 3, hasSideEffects = 0 in { // FPU Operations.
let Uses = [RM] in {
let isCommutable = 1 in {
defm FMADD : AForm_1r<63, 29,
@@ -2286,7 +2372,7 @@ let Uses = [RM] in {
}
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let PPC970_Unit = 1 in { // FXU Operations.
let isSelect = 1 in
def ISEL : AForm_4<31, 15,
@@ -2322,7 +2408,7 @@ defm RLWNM : MForm_2r<23, (outs gprc:$rA),
"rlwnm", "$rA, $rS, $rB, $MB, $ME", IIC_IntGeneral,
[]>;
}
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
//===----------------------------------------------------------------------===//
// PowerPC Instruction Patterns
@@ -2488,8 +2574,15 @@ def : Pat<(f64 (extloadf32 xaddr:$src)),
def : Pat<(f64 (fextend f32:$src)),
(COPY_TO_REGCLASS $src, F8RC)>;
-def : Pat<(atomic_fence (imm), (imm)), (SYNC 0)>, Requires<[IsNotBookE]>;
-def : Pat<(atomic_fence (imm), (imm)), (MSYNC)>, Requires<[IsBookE]>;
+// Only seq_cst fences require the heavyweight sync (SYNC 0).
+// All others can use the lightweight sync (SYNC 1).
+// source: http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
+// The rule for seq_cst is duplicated to work with both 64 bits and 32 bits
+// versions of Power.
+def : Pat<(atomic_fence (i64 7), (imm)), (SYNC 0)>, Requires<[HasSYNC]>;
+def : Pat<(atomic_fence (i32 7), (imm)), (SYNC 0)>, Requires<[HasSYNC]>;
+def : Pat<(atomic_fence (imm), (imm)), (SYNC 1)>, Requires<[HasSYNC]>;
+def : Pat<(atomic_fence (imm), (imm)), (MSYNC)>, Requires<[HasOnlyMSYNC]>;
// Additional FNMSUB patterns: -a*c + b == -(a*c - b)
def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B),
@@ -2508,6 +2601,7 @@ def : Pat<(fcopysign f32:$frB, f64:$frA),
(FCPSGNS (COPY_TO_REGCLASS $frA, F4RC), $frB)>;
include "PPCInstrAltivec.td"
+include "PPCInstrSPE.td"
include "PPCInstr64Bit.td"
include "PPCInstrVSX.td"
@@ -3024,6 +3118,16 @@ def : Pat<(i1 (not (trunc i64:$in))),
// PowerPC Instructions used for assembler/disassembler only
//
+// FIXME: For B=0 or B > 8, the registers following RT are used.
+// WARNING: Do not add patterns for this instruction without fixing this.
+def LSWI : XForm_base_r3xo<31, 597, (outs gprc:$RT), (ins gprc:$A, u5imm:$B),
+ "lswi $RT, $A, $B", IIC_LdStLoad, []>;
+
+// FIXME: For B=0 or B > 8, the registers following RT are used.
+// WARNING: Do not add patterns for this instruction without fixing this.
+def STSWI : XForm_base_r3xo<31, 725, (outs), (ins gprc:$RT, gprc:$A, u5imm:$B),
+ "stswi $RT, $A, $B", IIC_LdStLoad, []>;
+
def ISYNC : XLForm_2_ext<19, 150, 0, 0, 0, (outs), (ins),
"isync", IIC_SprISYNC, []>;
@@ -3036,9 +3140,47 @@ def EIEIO : XForm_24_eieio<31, 854, (outs), (ins),
def WAIT : XForm_24_sync<31, 62, (outs), (ins i32imm:$L),
"wait $L", IIC_LdStLoad, []>;
+def MBAR : XForm_mbar<31, 854, (outs), (ins u5imm:$MO),
+ "mbar $MO", IIC_LdStLoad>, Requires<[IsBookE]>;
+
+def MTSR: XForm_sr<31, 210, (outs), (ins gprc:$RS, u4imm:$SR),
+ "mtsr $SR, $RS", IIC_SprMTSR>;
+
+def MFSR: XForm_sr<31, 595, (outs gprc:$RS), (ins u4imm:$SR),
+ "mfsr $RS, $SR", IIC_SprMFSR>;
+
+def MTSRIN: XForm_srin<31, 242, (outs), (ins gprc:$RS, gprc:$RB),
+ "mtsrin $RS, $RB", IIC_SprMTSR>;
+
+def MFSRIN: XForm_srin<31, 659, (outs gprc:$RS), (ins gprc:$RB),
+ "mfsrin $RS, $RB", IIC_SprMFSR>;
+
def MTMSR: XForm_mtmsr<31, 146, (outs), (ins gprc:$RS, i32imm:$L),
"mtmsr $RS, $L", IIC_SprMTMSR>;
+def WRTEE: XForm_mtmsr<31, 131, (outs), (ins gprc:$RS),
+ "wrtee $RS", IIC_SprMTMSR>, Requires<[IsBookE]> {
+ let L = 0;
+}
+
+def WRTEEI: I<31, (outs), (ins i1imm:$E), "wrteei $E", IIC_SprMTMSR>,
+ Requires<[IsBookE]> {
+ bits<1> E;
+
+ let Inst{16} = E;
+ let Inst{21-30} = 163;
+}
+
+def DCCCI : XForm_tlb<454, (outs), (ins gprc:$A, gprc:$B),
+ "dccci $A, $B", IIC_LdStLoad>, Requires<[IsPPC4xx]>;
+def ICCCI : XForm_tlb<966, (outs), (ins gprc:$A, gprc:$B),
+ "iccci $A, $B", IIC_LdStLoad>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"dci 0", (DCCCI R0, R0)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"dccci", (DCCCI R0, R0)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"ici 0", (ICCCI R0, R0)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"iccci", (ICCCI R0, R0)>, Requires<[IsPPC4xx]>;
+
def MFMSR : XForm_rs<31, 83, (outs gprc:$RT), (ins),
"mfmsr $RT", IIC_SprMFMSR, []>;
@@ -3056,15 +3198,86 @@ def SLBMFEE : XForm_26<31, 915, (outs gprc:$RT), (ins gprc:$RB),
def SLBIA : XForm_0<31, 498, (outs), (ins), "slbia", IIC_SprSLBIA, []>;
+def TLBIA : XForm_0<31, 370, (outs), (ins),
+ "tlbia", IIC_SprTLBIA, []>;
+
def TLBSYNC : XForm_0<31, 566, (outs), (ins),
"tlbsync", IIC_SprTLBSYNC, []>;
def TLBIEL : XForm_16b<31, 274, (outs), (ins gprc:$RB),
"tlbiel $RB", IIC_SprTLBIEL, []>;
+def TLBLD : XForm_16b<31, 978, (outs), (ins gprc:$RB),
+ "tlbld $RB", IIC_LdStLoad, []>, Requires<[IsPPC6xx]>;
+def TLBLI : XForm_16b<31, 1010, (outs), (ins gprc:$RB),
+ "tlbli $RB", IIC_LdStLoad, []>, Requires<[IsPPC6xx]>;
+
def TLBIE : XForm_26<31, 306, (outs), (ins gprc:$RS, gprc:$RB),
"tlbie $RB,$RS", IIC_SprTLBIE, []>;
+def TLBSX : XForm_tlb<914, (outs), (ins gprc:$A, gprc:$B), "tlbsx $A, $B",
+ IIC_LdStLoad>, Requires<[IsBookE]>;
+
+def TLBIVAX : XForm_tlb<786, (outs), (ins gprc:$A, gprc:$B), "tlbivax $A, $B",
+ IIC_LdStLoad>, Requires<[IsBookE]>;
+
+def TLBRE : XForm_24_eieio<31, 946, (outs), (ins),
+ "tlbre", IIC_LdStLoad, []>, Requires<[IsBookE]>;
+
+def TLBWE : XForm_24_eieio<31, 978, (outs), (ins),
+ "tlbwe", IIC_LdStLoad, []>, Requires<[IsBookE]>;
+
+def TLBRE2 : XForm_tlbws<31, 946, (outs gprc:$RS), (ins gprc:$A, i1imm:$WS),
+ "tlbre $RS, $A, $WS", IIC_LdStLoad, []>, Requires<[IsPPC4xx]>;
+
+def TLBWE2 : XForm_tlbws<31, 978, (outs), (ins gprc:$RS, gprc:$A, i1imm:$WS),
+ "tlbwe $RS, $A, $WS", IIC_LdStLoad, []>, Requires<[IsPPC4xx]>;
+
+def TLBSX2 : XForm_base_r3xo<31, 914, (outs), (ins gprc:$RST, gprc:$A, gprc:$B),
+ "tlbsx $RST, $A, $B", IIC_LdStLoad, []>,
+ Requires<[IsPPC4xx]>;
+def TLBSX2D : XForm_base_r3xo<31, 914, (outs),
+ (ins gprc:$RST, gprc:$A, gprc:$B),
+ "tlbsx. $RST, $A, $B", IIC_LdStLoad, []>,
+ Requires<[IsPPC4xx]>, isDOT;
+
+def RFID : XForm_0<19, 18, (outs), (ins), "rfid", IIC_IntRFID, []>;
+
+def RFI : XForm_0<19, 50, (outs), (ins), "rfi", IIC_SprRFI, []>,
+ Requires<[IsBookE]>;
+def RFCI : XForm_0<19, 51, (outs), (ins), "rfci", IIC_BrB, []>,
+ Requires<[IsBookE]>;
+
+def RFDI : XForm_0<19, 39, (outs), (ins), "rfdi", IIC_BrB, []>,
+ Requires<[IsE500]>;
+def RFMCI : XForm_0<19, 38, (outs), (ins), "rfmci", IIC_BrB, []>,
+ Requires<[IsE500]>;
+
+def MFDCR : XFXForm_1<31, 323, (outs gprc:$RT), (ins i32imm:$SPR),
+ "mfdcr $RT, $SPR", IIC_SprMFSPR>, Requires<[IsPPC4xx]>;
+def MTDCR : XFXForm_1<31, 451, (outs), (ins gprc:$RT, i32imm:$SPR),
+ "mtdcr $SPR, $RT", IIC_SprMTSPR>, Requires<[IsPPC4xx]>;
+
+def ATTN : XForm_attn<0, 256, (outs), (ins), "attn", IIC_BrB>;
+
+def LBZCIX : XForm_base_r3xo<31, 853, (outs gprc:$RST), (ins gprc:$A, gprc:$B),
+ "lbzcix $RST, $A, $B", IIC_LdStLoad, []>;
+def LHZCIX : XForm_base_r3xo<31, 821, (outs gprc:$RST), (ins gprc:$A, gprc:$B),
+ "lhzcix $RST, $A, $B", IIC_LdStLoad, []>;
+def LWZCIX : XForm_base_r3xo<31, 789, (outs gprc:$RST), (ins gprc:$A, gprc:$B),
+ "lwzcix $RST, $A, $B", IIC_LdStLoad, []>;
+def LDCIX : XForm_base_r3xo<31, 885, (outs gprc:$RST), (ins gprc:$A, gprc:$B),
+ "ldcix $RST, $A, $B", IIC_LdStLoad, []>;
+
+def STBCIX : XForm_base_r3xo<31, 981, (outs), (ins gprc:$RST, gprc:$A, gprc:$B),
+ "stbcix $RST, $A, $B", IIC_LdStLoad, []>;
+def STHCIX : XForm_base_r3xo<31, 949, (outs), (ins gprc:$RST, gprc:$A, gprc:$B),
+ "sthcix $RST, $A, $B", IIC_LdStLoad, []>;
+def STWCIX : XForm_base_r3xo<31, 917, (outs), (ins gprc:$RST, gprc:$A, gprc:$B),
+ "stwcix $RST, $A, $B", IIC_LdStLoad, []>;
+def STDCIX : XForm_base_r3xo<31, 1013, (outs), (ins gprc:$RST, gprc:$A, gprc:$B),
+ "stdcix $RST, $A, $B", IIC_LdStLoad, []>;
+
//===----------------------------------------------------------------------===//
// PowerPC Assembler Instruction Aliases
//
@@ -3087,15 +3300,17 @@ class PPCAsmPseudo<string asm, dag iops>
def : InstAlias<"sc", (SC 0)>;
-def : InstAlias<"sync", (SYNC 0)>, Requires<[IsNotBookE]>;
-def : InstAlias<"msync", (SYNC 0)>, Requires<[IsNotBookE]>;
-def : InstAlias<"lwsync", (SYNC 1)>, Requires<[IsNotBookE]>;
-def : InstAlias<"ptesync", (SYNC 2)>, Requires<[IsNotBookE]>;
+def : InstAlias<"sync", (SYNC 0)>, Requires<[HasSYNC]>;
+def : InstAlias<"msync", (SYNC 0)>, Requires<[HasSYNC]>;
+def : InstAlias<"lwsync", (SYNC 1)>, Requires<[HasSYNC]>;
+def : InstAlias<"ptesync", (SYNC 2)>, Requires<[HasSYNC]>;
def : InstAlias<"wait", (WAIT 0)>;
def : InstAlias<"waitrsv", (WAIT 1)>;
def : InstAlias<"waitimpl", (WAIT 2)>;
+def : InstAlias<"mbar", (MBAR 0)>, Requires<[IsBookE]>;
+
def : InstAlias<"crset $bx", (CREQV crbitrc:$bx, crbitrc:$bx, crbitrc:$bx)>;
def : InstAlias<"crclr $bx", (CRXOR crbitrc:$bx, crbitrc:$bx, crbitrc:$bx)>;
def : InstAlias<"crmove $bx, $by", (CROR crbitrc:$bx, crbitrc:$by, crbitrc:$by)>;
@@ -3104,9 +3319,57 @@ def : InstAlias<"crnot $bx, $by", (CRNOR crbitrc:$bx, crbitrc:$by, crbitrc:$by)>
def : InstAlias<"mtxer $Rx", (MTSPR 1, gprc:$Rx)>;
def : InstAlias<"mfxer $Rx", (MFSPR gprc:$Rx, 1)>;
+def : InstAlias<"mfrtcu $Rx", (MFSPR gprc:$Rx, 4)>;
+def : InstAlias<"mfrtcl $Rx", (MFSPR gprc:$Rx, 5)>;
+
+def : InstAlias<"mtdscr $Rx", (MTSPR 17, gprc:$Rx)>;
+def : InstAlias<"mfdscr $Rx", (MFSPR gprc:$Rx, 17)>;
+
+def : InstAlias<"mtdsisr $Rx", (MTSPR 18, gprc:$Rx)>;
+def : InstAlias<"mfdsisr $Rx", (MFSPR gprc:$Rx, 18)>;
+
+def : InstAlias<"mtdar $Rx", (MTSPR 19, gprc:$Rx)>;
+def : InstAlias<"mfdar $Rx", (MFSPR gprc:$Rx, 19)>;
+
+def : InstAlias<"mtdec $Rx", (MTSPR 22, gprc:$Rx)>;
+def : InstAlias<"mfdec $Rx", (MFSPR gprc:$Rx, 22)>;
+
+def : InstAlias<"mtsdr1 $Rx", (MTSPR 25, gprc:$Rx)>;
+def : InstAlias<"mfsdr1 $Rx", (MFSPR gprc:$Rx, 25)>;
+
+def : InstAlias<"mtsrr0 $Rx", (MTSPR 26, gprc:$Rx)>;
+def : InstAlias<"mfsrr0 $Rx", (MFSPR gprc:$Rx, 26)>;
+
+def : InstAlias<"mtsrr1 $Rx", (MTSPR 27, gprc:$Rx)>;
+def : InstAlias<"mfsrr1 $Rx", (MFSPR gprc:$Rx, 27)>;
+
+def : InstAlias<"mtsrr2 $Rx", (MTSPR 990, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mfsrr2 $Rx", (MFSPR gprc:$Rx, 990)>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"mtsrr3 $Rx", (MTSPR 991, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mfsrr3 $Rx", (MFSPR gprc:$Rx, 991)>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"mtcfar $Rx", (MTSPR 28, gprc:$Rx)>;
+def : InstAlias<"mfcfar $Rx", (MFSPR gprc:$Rx, 28)>;
+
+def : InstAlias<"mtamr $Rx", (MTSPR 29, gprc:$Rx)>;
+def : InstAlias<"mfamr $Rx", (MFSPR gprc:$Rx, 29)>;
+
+def : InstAlias<"mtpid $Rx", (MTSPR 48, gprc:$Rx)>, Requires<[IsBookE]>;
+def : InstAlias<"mfpid $Rx", (MFSPR gprc:$Rx, 48)>, Requires<[IsBookE]>;
+
def : InstAlias<"mftb $Rx", (MFTB gprc:$Rx, 268)>;
+def : InstAlias<"mftbl $Rx", (MFTB gprc:$Rx, 268)>;
def : InstAlias<"mftbu $Rx", (MFTB gprc:$Rx, 269)>;
+def : InstAlias<"mttbl $Rx", (MTSPR 284, gprc:$Rx)>;
+def : InstAlias<"mttbu $Rx", (MTSPR 285, gprc:$Rx)>;
+
+def : InstAlias<"mftblo $Rx", (MFSPR gprc:$Rx, 989)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mttblo $Rx", (MTSPR 989, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mftbhi $Rx", (MFSPR gprc:$Rx, 988)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mttbhi $Rx", (MTSPR 988, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+
def : InstAlias<"xnop", (XORI R0, R0, 0)>;
def : InstAlias<"mr $rA, $rB", (OR8 g8rc:$rA, g8rc:$rB, g8rc:$rB)>;
@@ -3117,6 +3380,60 @@ def : InstAlias<"not. $rA, $rB", (NOR8o g8rc:$rA, g8rc:$rB, g8rc:$rB)>;
def : InstAlias<"mtcr $rA", (MTCRF8 255, g8rc:$rA)>;
+foreach BATR = 0-3 in {
+ def : InstAlias<"mtdbatu "#BATR#", $Rx",
+ (MTSPR !add(BATR, !add(BATR, 536)), gprc:$Rx)>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mfdbatu $Rx, "#BATR,
+ (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 536)))>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mtdbatl "#BATR#", $Rx",
+ (MTSPR !add(BATR, !add(BATR, 537)), gprc:$Rx)>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mfdbatl $Rx, "#BATR,
+ (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 537)))>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mtibatu "#BATR#", $Rx",
+ (MTSPR !add(BATR, !add(BATR, 528)), gprc:$Rx)>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mfibatu $Rx, "#BATR,
+ (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 528)))>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mtibatl "#BATR#", $Rx",
+ (MTSPR !add(BATR, !add(BATR, 529)), gprc:$Rx)>,
+ Requires<[IsPPC6xx]>;
+ def : InstAlias<"mfibatl $Rx, "#BATR,
+ (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 529)))>,
+ Requires<[IsPPC6xx]>;
+}
+
+foreach BR = 0-7 in {
+ def : InstAlias<"mfbr"#BR#" $Rx",
+ (MFDCR gprc:$Rx, !add(BR, 0x80))>,
+ Requires<[IsPPC4xx]>;
+ def : InstAlias<"mtbr"#BR#" $Rx",
+ (MTDCR gprc:$Rx, !add(BR, 0x80))>,
+ Requires<[IsPPC4xx]>;
+}
+
+def : InstAlias<"mtdccr $Rx", (MTSPR 1018, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mfdccr $Rx", (MFSPR gprc:$Rx, 1018)>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"mticcr $Rx", (MTSPR 1019, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mficcr $Rx", (MFSPR gprc:$Rx, 1019)>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"mtdear $Rx", (MTSPR 981, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mfdear $Rx", (MFSPR gprc:$Rx, 981)>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"mtesr $Rx", (MTSPR 980, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mfesr $Rx", (MFSPR gprc:$Rx, 980)>, Requires<[IsPPC4xx]>;
+
+def : InstAlias<"mfspefscr $Rx", (MFSPR gprc:$Rx, 512)>;
+def : InstAlias<"mtspefscr $Rx", (MTSPR 512, gprc:$Rx)>;
+
+def : InstAlias<"mttcr $Rx", (MTSPR 986, gprc:$Rx)>, Requires<[IsPPC4xx]>;
+def : InstAlias<"mftcr $Rx", (MFSPR gprc:$Rx, 986)>, Requires<[IsPPC4xx]>;
+
def LAx : PPCAsmPseudo<"la $rA, $addr", (ins gprc:$rA, memri:$addr)>;
def SUBI : PPCAsmPseudo<"subi $rA, $rB, $imm",
@@ -3136,25 +3453,25 @@ def : InstAlias<"subc. $rA, $rB, $rC", (SUBFC8o g8rc:$rA, g8rc:$rC, g8rc:$rB)>;
def : InstAlias<"mtmsrd $RS", (MTMSRD gprc:$RS, 0)>;
def : InstAlias<"mtmsr $RS", (MTMSR gprc:$RS, 0)>;
-def : InstAlias<"mfsprg $RT, 0", (MFSPR gprc:$RT, 272)>;
-def : InstAlias<"mfsprg $RT, 1", (MFSPR gprc:$RT, 273)>;
-def : InstAlias<"mfsprg $RT, 2", (MFSPR gprc:$RT, 274)>;
-def : InstAlias<"mfsprg $RT, 3", (MFSPR gprc:$RT, 275)>;
-
-def : InstAlias<"mfsprg0 $RT", (MFSPR gprc:$RT, 272)>;
-def : InstAlias<"mfsprg1 $RT", (MFSPR gprc:$RT, 273)>;
-def : InstAlias<"mfsprg2 $RT", (MFSPR gprc:$RT, 274)>;
-def : InstAlias<"mfsprg3 $RT", (MFSPR gprc:$RT, 275)>;
+def : InstAlias<"mfasr $RT", (MFSPR gprc:$RT, 280)>;
+def : InstAlias<"mtasr $RT", (MTSPR 280, gprc:$RT)>;
-def : InstAlias<"mtsprg 0, $RT", (MTSPR 272, gprc:$RT)>;
-def : InstAlias<"mtsprg 1, $RT", (MTSPR 273, gprc:$RT)>;
-def : InstAlias<"mtsprg 2, $RT", (MTSPR 274, gprc:$RT)>;
-def : InstAlias<"mtsprg 3, $RT", (MTSPR 275, gprc:$RT)>;
-
-def : InstAlias<"mtsprg0 $RT", (MTSPR 272, gprc:$RT)>;
-def : InstAlias<"mtsprg1 $RT", (MTSPR 273, gprc:$RT)>;
-def : InstAlias<"mtsprg2 $RT", (MTSPR 274, gprc:$RT)>;
-def : InstAlias<"mtsprg3 $RT", (MTSPR 275, gprc:$RT)>;
+foreach SPRG = 0-3 in {
+ def : InstAlias<"mfsprg $RT, "#SPRG, (MFSPR gprc:$RT, !add(SPRG, 272))>;
+ def : InstAlias<"mfsprg"#SPRG#" $RT", (MFSPR gprc:$RT, !add(SPRG, 272))>;
+ def : InstAlias<"mtsprg "#SPRG#", $RT", (MTSPR !add(SPRG, 272), gprc:$RT)>;
+ def : InstAlias<"mtsprg"#SPRG#" $RT", (MTSPR !add(SPRG, 272), gprc:$RT)>;
+}
+foreach SPRG = 4-7 in {
+ def : InstAlias<"mfsprg $RT, "#SPRG, (MFSPR gprc:$RT, !add(SPRG, 256))>,
+ Requires<[IsBookE]>;
+ def : InstAlias<"mfsprg"#SPRG#" $RT", (MFSPR gprc:$RT, !add(SPRG, 256))>,
+ Requires<[IsBookE]>;
+ def : InstAlias<"mtsprg "#SPRG#", $RT", (MTSPR !add(SPRG, 256), gprc:$RT)>,
+ Requires<[IsBookE]>;
+ def : InstAlias<"mtsprg"#SPRG#" $RT", (MTSPR !add(SPRG, 256), gprc:$RT)>,
+ Requires<[IsBookE]>;
+}
def : InstAlias<"mtasr $RS", (MTSPR 280, gprc:$RS)>;
@@ -3173,6 +3490,15 @@ def : InstAlias<"mtsrr1 $RT", (MTSPR 27, gprc:$RT)>;
def : InstAlias<"tlbie $RB", (TLBIE R0, gprc:$RB)>;
+def : InstAlias<"tlbrehi $RS, $A", (TLBRE2 gprc:$RS, gprc:$A, 0)>,
+ Requires<[IsPPC4xx]>;
+def : InstAlias<"tlbrelo $RS, $A", (TLBRE2 gprc:$RS, gprc:$A, 1)>,
+ Requires<[IsPPC4xx]>;
+def : InstAlias<"tlbwehi $RS, $A", (TLBWE2 gprc:$RS, gprc:$A, 0)>,
+ Requires<[IsPPC4xx]>;
+def : InstAlias<"tlbwelo $RS, $A", (TLBWE2 gprc:$RS, gprc:$A, 1)>,
+ Requires<[IsPPC4xx]>;
+
def EXTLWI : PPCAsmPseudo<"extlwi $rA, $rS, $n, $b",
(ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>;
def EXTLWIo : PPCAsmPseudo<"extlwi. $rA, $rS, $n, $b",
@@ -3421,3 +3747,18 @@ defm : TrapExtendedMnemonic<"lnl", 5>;
defm : TrapExtendedMnemonic<"lng", 6>;
defm : TrapExtendedMnemonic<"u", 31>;
+// Atomic loads
+def : Pat<(atomic_load_8 iaddr:$src), (LBZ memri:$src)>;
+def : Pat<(atomic_load_16 iaddr:$src), (LHZ memri:$src)>;
+def : Pat<(atomic_load_32 iaddr:$src), (LWZ memri:$src)>;
+def : Pat<(atomic_load_8 xaddr:$src), (LBZX memrr:$src)>;
+def : Pat<(atomic_load_16 xaddr:$src), (LHZX memrr:$src)>;
+def : Pat<(atomic_load_32 xaddr:$src), (LWZX memrr:$src)>;
+
+// Atomic stores
+def : Pat<(atomic_store_8 iaddr:$ptr, i32:$val), (STB gprc:$val, memri:$ptr)>;
+def : Pat<(atomic_store_16 iaddr:$ptr, i32:$val), (STH gprc:$val, memri:$ptr)>;
+def : Pat<(atomic_store_32 iaddr:$ptr, i32:$val), (STW gprc:$val, memri:$ptr)>;
+def : Pat<(atomic_store_8 xaddr:$ptr, i32:$val), (STBX gprc:$val, memrr:$ptr)>;
+def : Pat<(atomic_store_16 xaddr:$ptr, i32:$val), (STHX gprc:$val, memrr:$ptr)>;
+def : Pat<(atomic_store_32 xaddr:$ptr, i32:$val), (STWX gprc:$val, memrr:$ptr)>;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrSPE.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrSPE.td
new file mode 100644
index 0000000..cc3a4d2
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrSPE.td
@@ -0,0 +1,447 @@
+//=======-- PPCInstrSPE.td - The PowerPC SPE Extension -*- tablegen -*-=======//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Signal Processing Engine extension to
+// the PowerPC instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+class EVXForm_1<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin> : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> RT;
+ bits<5> RA;
+ bits<5> RB;
+
+ let Pattern = [];
+
+ let Inst{6-10} = RT;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-31} = xo;
+}
+
+class EVXForm_2<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin> : EVXForm_1<xo, OOL, IOL, asmstr, itin> {
+ let RB = 0;
+}
+
+class EVXForm_3<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin> : I<4, OOL, IOL, asmstr, itin> {
+ bits<3> crD;
+ bits<5> RA;
+ bits<5> RB;
+
+ let Pattern = [];
+
+ let Inst{6-8} = crD;
+ let Inst{9-10} = 0;
+ let Inst{11-15} = RA;
+ let Inst{16-20} = RB;
+ let Inst{21-31} = xo;
+}
+
+class EVXForm_D<bits<11> xo, dag OOL, dag IOL, string asmstr,
+ InstrItinClass itin> : I<4, OOL, IOL, asmstr, itin> {
+ bits<5> RT;
+ bits<21> D;
+
+ let Pattern = [];
+
+ let Inst{6-10} = RT;
+ let Inst{20} = D{0};
+ let Inst{19} = D{1};
+ let Inst{18} = D{2};
+ let Inst{17} = D{3};
+ let Inst{16} = D{4};
+ let Inst{15} = D{5};
+ let Inst{14} = D{6};
+ let Inst{13} = D{7};
+ let Inst{12} = D{8};
+ let Inst{11} = D{9};
+ let Inst{11-20} = D{0-9};
+ let Inst{21-31} = xo;
+}
+
+let Predicates = [HasSPE], isAsmParserOnly = 1 in {
+
+def EVLDD : EVXForm_D<769, (outs gprc:$RT), (ins spe8dis:$dst),
+ "evldd $RT, $dst", IIC_VecFP>;
+def EVLDW : EVXForm_D<771, (outs gprc:$RT), (ins spe8dis:$dst),
+ "evldw $RT, $dst", IIC_VecFP>;
+def EVLDH : EVXForm_D<773, (outs gprc:$RT), (ins spe8dis:$dst),
+ "evldh $RT, $dst", IIC_VecFP>;
+def EVLHHESPLAT : EVXForm_D<777, (outs gprc:$RT), (ins spe2dis:$dst),
+ "evlhhesplat $RT, $dst", IIC_VecFP>;
+def EVLHHOUSPLAT : EVXForm_D<781, (outs gprc:$RT), (ins spe2dis:$dst),
+ "evlhhousplat $RT, $dst", IIC_VecFP>;
+def EVLHHOSSPLAT : EVXForm_D<783, (outs gprc:$RT), (ins spe2dis:$dst),
+ "evlhhossplat $RT, $dst", IIC_VecFP>;
+def EVLWHE : EVXForm_D<785, (outs gprc:$RT), (ins spe4dis:$dst),
+ "evlwhe $RT, $dst", IIC_VecFP>;
+def EVLWHOU : EVXForm_D<789, (outs gprc:$RT), (ins spe4dis:$dst),
+ "evlwhou $RT, $dst", IIC_VecFP>;
+def EVLWHOS : EVXForm_D<791, (outs gprc:$RT), (ins spe4dis:$dst),
+ "evlwhos $RT, $dst", IIC_VecFP>;
+def EVLWWSPLAT : EVXForm_D<793, (outs gprc:$RT), (ins spe4dis:$dst),
+ "evlwwsplat $RT, $dst", IIC_VecFP>;
+def EVLWHSPLAT : EVXForm_D<797, (outs gprc:$RT), (ins spe4dis:$dst),
+ "evlwhsplat $RT, $dst", IIC_VecFP>;
+
+def EVSTDD : EVXForm_D<801, (outs), (ins gprc:$RT, spe8dis:$dst),
+ "evstdd $RT, $dst", IIC_VecFP>;
+def EVSTDH : EVXForm_D<805, (outs), (ins gprc:$RT, spe8dis:$dst),
+ "evstdh $RT, $dst", IIC_VecFP>;
+def EVSTDW : EVXForm_D<803, (outs), (ins gprc:$RT, spe8dis:$dst),
+ "evstdw $RT, $dst", IIC_VecFP>;
+def EVSTWHE : EVXForm_D<817, (outs), (ins gprc:$RT, spe4dis:$dst),
+ "evstwhe $RT, $dst", IIC_VecFP>;
+def EVSTWHO : EVXForm_D<821, (outs), (ins gprc:$RT, spe4dis:$dst),
+ "evstwho $RT, $dst", IIC_VecFP>;
+def EVSTWWE : EVXForm_D<825, (outs), (ins gprc:$RT, spe4dis:$dst),
+ "evstwwe $RT, $dst", IIC_VecFP>;
+def EVSTWWO : EVXForm_D<829, (outs), (ins gprc:$RT, spe4dis:$dst),
+ "evstwwo $RT, $dst", IIC_VecFP>;
+
+def EVMRA : EVXForm_1<1220, (outs gprc:$RT), (ins gprc:$RA),
+ "evmra $RT, $RA", IIC_VecFP> {
+ let RB = 0;
+}
+
+def BRINC : EVXForm_1<527, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "brinc $RT, $RA, $RB", IIC_VecFP>;
+def EVABS : EVXForm_2<520, (outs gprc:$RT), (ins gprc:$RA),
+ "evabs $RT, $RA", IIC_VecFP>;
+
+def EVADDIW : EVXForm_1<514, (outs gprc:$RT), (ins gprc:$RA, u5imm:$RB),
+ "evaddiw $RT, $RB, $RA", IIC_VecFP>;
+def EVADDSMIAAW : EVXForm_2<1225, (outs gprc:$RT), (ins gprc:$RA),
+ "evaddsmiaaw $RT, $RA", IIC_VecFP>;
+def EVADDSSIAAW : EVXForm_2<1217, (outs gprc:$RT), (ins gprc:$RA),
+ "evaddssiaaw $RT, $RA", IIC_VecFP>;
+def EVADDUSIAAW : EVXForm_2<1216, (outs gprc:$RT), (ins gprc:$RA),
+ "evaddusiaaw $RT, $RA", IIC_VecFP>;
+def EVADDUMIAAW : EVXForm_2<1224, (outs gprc:$RT), (ins gprc:$RA),
+ "evaddumiaaw $RT, $RA", IIC_VecFP>;
+def EVADDW : EVXForm_1<512, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evaddw $RT, $RA, $RB", IIC_VecFP>;
+
+def EVAND : EVXForm_1<529, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evand $RT, $RA, $RB", IIC_VecFP>;
+def EVANDC : EVXForm_1<530, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evandc $RT, $RA, $RB", IIC_VecFP>;
+
+def EVCMPEQ : EVXForm_3<564, (outs crrc:$crD), (ins gprc:$RA, gprc:$RB),
+ "evcmpeq $crD, $RA, $RB", IIC_VecFP>;
+def EVCMPGTS : EVXForm_3<561, (outs crrc:$crD), (ins gprc:$RA, gprc:$RB),
+ "evcmpgts $crD, $RA, $RB", IIC_VecFP>;
+def EVCMPGTU : EVXForm_3<560, (outs crrc:$crD), (ins gprc:$RA, gprc:$RB),
+ "evcmpgtu $crD, $RA, $RB", IIC_VecFP>;
+def EVCMPLTS : EVXForm_3<563, (outs crrc:$crD), (ins gprc:$RA, gprc:$RB),
+ "evcmplts $crD, $RA, $RB", IIC_VecFP>;
+def EVCMPLTU : EVXForm_3<562, (outs crrc:$crD), (ins gprc:$RA, gprc:$RB),
+ "evcmpltu $crD, $RA, $RB", IIC_VecFP>;
+
+def EVCNTLSW : EVXForm_2<526, (outs gprc:$RT), (ins gprc:$RA),
+ "evcntlsw $RT, $RA", IIC_VecFP>;
+def EVCNTLZW : EVXForm_2<525, (outs gprc:$RT), (ins gprc:$RA),
+ "evcntlzw $RT, $RA", IIC_VecFP>;
+
+def EVDIVWS : EVXForm_1<1222, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evdivws $RT, $RA, $RB", IIC_VecFP>;
+def EVDIVWU : EVXForm_1<1223, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evdivwu $RT, $RA, $RB", IIC_VecFP>;
+
+def EVEQV : EVXForm_1<537, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "eveqv $RT, $RA, $RB", IIC_VecFP>;
+
+def EVEXTSB : EVXForm_2<522, (outs gprc:$RT), (ins gprc:$RA),
+ "evextsb $RT, $RA", IIC_VecFP>;
+def EVEXTSH : EVXForm_2<523, (outs gprc:$RT), (ins gprc:$RA),
+ "evextsh $RT, $RA", IIC_VecFP>;
+
+def EVLDDX : EVXForm_1<768, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlddx $RT, $RA, $RB", IIC_VecFP>;
+def EVLDWX : EVXForm_1<770, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evldwx $RT, $RA, $RB", IIC_VecFP>;
+def EVLDHX : EVXForm_1<772, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evldhx $RT, $RA, $RB", IIC_VecFP>;
+def EVLHHESPLATX : EVXForm_1<776, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlhhesplatx $RT, $RA, $RB", IIC_VecFP>;
+def EVLHHOUSPLATX : EVXForm_1<780, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlhhousplatx $RT, $RA, $RB", IIC_VecFP>;
+def EVLHHOSSPLATX : EVXForm_1<782, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlhhossplatx $RT, $RA, $RB", IIC_VecFP>;
+def EVLWHEX : EVXForm_1<784, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlwhex $RT, $RA, $RB", IIC_VecFP>;
+def EVLWHOUX : EVXForm_1<788, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlwhoux $RT, $RA, $RB", IIC_VecFP>;
+def EVLWHOSX : EVXForm_1<790, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlwhosx $RT, $RA, $RB", IIC_VecFP>;
+def EVLWWSPLATX : EVXForm_1<792, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlwwsplatx $RT, $RA, $RB", IIC_VecFP>;
+def EVLWHSPLATX : EVXForm_1<796, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evlwhsplatx $RT, $RA, $RB", IIC_VecFP>;
+
+def EVMERGEHI : EVXForm_1<556, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmergehi $RT, $RA, $RB", IIC_VecFP>;
+def EVMERGELO : EVXForm_1<557, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmergelo $RT, $RA, $RB", IIC_VecFP>;
+def EVMERGEHILO : EVXForm_1<558, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmergehilo $RT, $RA, $RB", IIC_VecFP>;
+def EVMERGELOHI : EVXForm_1<559, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmergelohi $RT, $RA, $RB", IIC_VecFP>;
+
+def EVMHEGSMFAA : EVXForm_1<1323, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhegsmfaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEGSMFAN : EVXForm_1<1451, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhegsmfan $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEGSMIAA : EVXForm_1<1321, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhegsmiaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEGSMIAN : EVXForm_1<1449, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhegsmian $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEGUMIAA : EVXForm_1<1320, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhegumiaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEGUMIAN : EVXForm_1<1448, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhegumian $RT, $RA, $RB", IIC_VecFP>;
+
+def EVMHESMF : EVXForm_1<1035, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmf $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMFA : EVXForm_1<1067, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMFAAW : EVXForm_1<1291, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmfaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMFANW : EVXForm_1<1419, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmfanw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMI : EVXForm_1<1033, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmi $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMIA : EVXForm_1<1065, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmia $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMIAAW : EVXForm_1<1289, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESMIANW : EVXForm_1<1417, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhesmianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESSF : EVXForm_1<1027, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhessf $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESSFA : EVXForm_1<1059, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhessfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESSFAAW : EVXForm_1<1283, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhessfaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESSFANW : EVXForm_1<1411, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhessfanw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESSIAAW : EVXForm_1<1281, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhessiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHESSIANW : EVXForm_1<1409, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhessianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEUMI : EVXForm_1<1032, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmheumi $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEUMIA : EVXForm_1<1064, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmheumia $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEUMIAAW : EVXForm_1<1288, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmheumiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEUMIANW : EVXForm_1<1416, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmheumianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEUSIAAW : EVXForm_1<1280, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmheusiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHEUSIANW : EVXForm_1<1408, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmheusianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOGSMFAA : EVXForm_1<1327, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhogsmfaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOGSMFAN : EVXForm_1<1455, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhogsmfan $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOGSMIAA : EVXForm_1<1325, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhogsmiaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOGSMIAN : EVXForm_1<1453, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhogsmian $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOGUMIAA : EVXForm_1<1324, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhogumiaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOGUMIAN : EVXForm_1<1452, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhogumian $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMF : EVXForm_1<1039, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmf $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMFA : EVXForm_1<1071, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMFAAW : EVXForm_1<1295, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmfaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMFANW : EVXForm_1<1423, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmfanw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMI : EVXForm_1<1037, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmi $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMIA : EVXForm_1<1069, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmia $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMIAAW : EVXForm_1<1293, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSMIANW : EVXForm_1<1421, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhosmianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSSF : EVXForm_1<1031, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhossf $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSSFA : EVXForm_1<1063, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhossfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSSFAAW : EVXForm_1<1287, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhossfaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSSFANW : EVXForm_1<1415, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhossfanw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSSIAAW : EVXForm_1<1285, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhossiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOSSIANW : EVXForm_1<1413, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhossianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOUMI : EVXForm_1<1036, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhoumi $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOUMIA : EVXForm_1<1068, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhoumia $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOUMIAAW : EVXForm_1<1292, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhoumiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOUMIANW : EVXForm_1<1420, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhoumianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOUSIAAW : EVXForm_1<1284, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhousiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMHOUSIANW : EVXForm_1<1412, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmhousianw $RT, $RA, $RB", IIC_VecFP>;
+
+
+def EVMWHSMF : EVXForm_1<1103, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhsmf $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHSMFA : EVXForm_1<1135, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhsmfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHSMI : EVXForm_1<1101, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhsmi $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHSMIA : EVXForm_1<1133, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhsmia $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHSSF : EVXForm_1<1095, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhssf $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHSSFA : EVXForm_1<1127, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhssfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHUMI : EVXForm_1<1100, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhumi $RT, $RA, $RB", IIC_VecFP>;
+def EVMWHUMIA : EVXForm_1<1132, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwhumia $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLSMIAAW : EVXForm_1<1353, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlsmiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLSMIANW : EVXForm_1<1481, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlsmianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLSSIAAW : EVXForm_1<1345, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlssiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLSSIANW : EVXForm_1<1473, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlssianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLUMI : EVXForm_1<1096, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlumi $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLUMIA : EVXForm_1<1128, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlumia $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLUMIAAW : EVXForm_1<1352, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlumiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLUMIANW : EVXForm_1<1480, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlumianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLUSIAAW : EVXForm_1<1344, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlusiaaw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWLUSIANW : EVXForm_1<1472, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwlusianw $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMF : EVXForm_1<1115, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmf $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMFA : EVXForm_1<1147, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMFAA : EVXForm_1<1371, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmfaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMFAN : EVXForm_1<1499, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmfan $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMI : EVXForm_1<1113, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmi $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMIA : EVXForm_1<1145, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmia $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMIAA : EVXForm_1<1369, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmiaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSMIAN : EVXForm_1<1497, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwsmian $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSSF : EVXForm_1<1107, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwssf $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSSFA : EVXForm_1<1139, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwssfa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSSFAA : EVXForm_1<1363, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwssfaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWSSFAN : EVXForm_1<1491, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwssfan $RT, $RA, $RB", IIC_VecFP>;
+def EVMWUMI : EVXForm_1<1112, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwumi $RT, $RA, $RB", IIC_VecFP>;
+def EVMWUMIA : EVXForm_1<1144, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwumia $RT, $RA, $RB", IIC_VecFP>;
+def EVMWUMIAA : EVXForm_1<1368, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwumiaa $RT, $RA, $RB", IIC_VecFP>;
+def EVMWUMIAN : EVXForm_1<1496, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evmwumian $RT, $RA, $RB", IIC_VecFP>;
+
+
+def EVNAND : EVXForm_1<542, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evnand $RT, $RA, $RB", IIC_VecFP>;
+
+def EVNEG : EVXForm_2<521, (outs gprc:$RT), (ins gprc:$RA),
+ "evneg $RT, $RA", IIC_VecFP>;
+
+def EVNOR : EVXForm_1<536, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evnor $RT, $RA, $RB", IIC_VecFP>;
+def EVOR : EVXForm_1<535, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evor $RT, $RA, $RB", IIC_VecFP>;
+def EVORC : EVXForm_1<539, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evorc $RT, $RA, $RB", IIC_VecFP>;
+
+def EVRLWI : EVXForm_1<554, (outs gprc:$RT), (ins gprc:$RA, u5imm:$RB),
+ "evrlwi $RT, $RA, $RB", IIC_VecFP>;
+def EVRLW : EVXForm_1<552, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evrlw $RT, $RA, $RB", IIC_VecFP>;
+
+def EVRNDW : EVXForm_2<524, (outs gprc:$RT), (ins gprc:$RA),
+ "evrndw $RT, $RA", IIC_VecFP>;
+
+def EVSLWI : EVXForm_1<550, (outs gprc:$RT), (ins gprc:$RA, u5imm:$RB),
+ "evslwi $RT, $RA, $RB", IIC_VecFP>;
+def EVSLW : EVXForm_1<548, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evslw $RT, $RA, $RB", IIC_VecFP>;
+
+def EVSPLATFI : EVXForm_2<555, (outs gprc:$RT), (ins i32imm:$RA),
+ "evsplatfi $RT, $RA", IIC_VecFP>;
+def EVSPLATI : EVXForm_2<553, (outs gprc:$RT), (ins i32imm:$RA),
+ "evsplati $RT, $RA", IIC_VecFP>;
+
+def EVSRWIS : EVXForm_1<547, (outs gprc:$RT), (ins gprc:$RA, u5imm:$RB),
+ "evsrwis $RT, $RA, $RB", IIC_VecFP>;
+def EVSRWIU : EVXForm_1<546, (outs gprc:$RT), (ins gprc:$RA, u5imm:$RB),
+ "evsrwiu $RT, $RA, $RB", IIC_VecFP>;
+def EVSRWS : EVXForm_1<545, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evsrws $RT, $RA, $RB", IIC_VecFP>;
+def EVSRWU : EVXForm_1<544, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evsrwu $RT, $RA, $RB", IIC_VecFP>;
+
+def EVSTDDX : EVXForm_1<800, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstddx $RT, $RA, $RB", IIC_VecFP>;
+def EVSTDHX : EVXForm_1<804, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstdhx $RT, $RA, $RB", IIC_VecFP>;
+def EVSTDWX : EVXForm_1<802, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstdwx $RT, $RA, $RB", IIC_VecFP>;
+def EVSTWHEX : EVXForm_1<816, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstwhex $RT, $RA, $RB", IIC_VecFP>;
+def EVSTWHOX : EVXForm_1<820, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstwhox $RT, $RA, $RB", IIC_VecFP>;
+def EVSTWWEX : EVXForm_1<824, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstwwex $RT, $RA, $RB", IIC_VecFP>;
+def EVSTWWOX : EVXForm_1<828, (outs), (ins gprc:$RT, gprc:$RA, gprc:$RB),
+ "evstwwox $RT, $RA, $RB", IIC_VecFP>;
+
+def EVSUBFSSIAAW : EVXForm_2<1219, (outs gprc:$RT), (ins gprc:$RA),
+ "evsubfssiaaw $RT, $RA", IIC_VecFP>;
+def EVSUBFSMIAAW : EVXForm_2<1227, (outs gprc:$RT), (ins gprc:$RA),
+ "evsubfsmiaaw $RT, $RA", IIC_VecFP>;
+def EVSUBFUMIAAW : EVXForm_2<1226, (outs gprc:$RT), (ins gprc:$RA),
+ "evsubfumiaaw $RT, $RA", IIC_VecFP>;
+def EVSUBFUSIAAW : EVXForm_2<1218, (outs gprc:$RT), (ins gprc:$RA),
+ "evsubfusiaaw $RT, $RA", IIC_VecFP>;
+def EVSUBFW : EVXForm_1<516, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evsubfw $RT, $RA, $RB", IIC_VecFP>;
+def EVSUBIFW : EVXForm_1<518, (outs gprc:$RT), (ins u5imm:$RA, gprc:$RB),
+ "evsubifw $RT, $RA, $RB", IIC_VecFP>;
+def EVXOR : EVXForm_1<534, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB),
+ "evxor $RT, $RA, $RB", IIC_VecFP>;
+
+} // HasSPE
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td
index 49bcc48..b21b251 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrVSX.td
@@ -25,6 +25,23 @@ def vsfrc : RegisterOperand<VSFRC> {
let ParserMatchClass = PPCRegVSFRCAsmOperand;
}
+// Little-endian-specific nodes.
+def SDT_PPClxvd2x : SDTypeProfile<1, 1, [
+ SDTCisVT<0, v2f64>, SDTCisPtrTy<1>
+]>;
+def SDT_PPCstxvd2x : SDTypeProfile<0, 2, [
+ SDTCisVT<0, v2f64>, SDTCisPtrTy<1>
+]>;
+def SDT_PPCxxswapd : SDTypeProfile<1, 1, [
+ SDTCisSameAs<0, 1>
+]>;
+
+def PPClxvd2x : SDNode<"PPCISD::LXVD2X", SDT_PPClxvd2x,
+ [SDNPHasChain, SDNPMayLoad]>;
+def PPCstxvd2x : SDNode<"PPCISD::STXVD2X", SDT_PPCstxvd2x,
+ [SDNPHasChain, SDNPMayStore]>;
+def PPCxxswapd : SDNode<"PPCISD::XXSWAPD", SDT_PPCxxswapd, [SDNPHasChain]>;
+
multiclass XX3Form_Rcr<bits<6> opcode, bits<7> xo, dag OOL, dag IOL,
string asmbase, string asmstr, InstrItinClass itin,
list<dag> pattern> {
@@ -40,30 +57,34 @@ multiclass XX3Form_Rcr<bits<6> opcode, bits<7> xo, dag OOL, dag IOL,
}
def HasVSX : Predicate<"PPCSubTarget->hasVSX()">;
+def IsLittleEndian : Predicate<"PPCSubTarget->isLittleEndian()">;
+def IsBigEndian : Predicate<"!PPCSubTarget->isLittleEndian()">;
+
let Predicates = [HasVSX] in {
let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
-let neverHasSideEffects = 1 in { // VSX instructions don't have side effects.
+let hasSideEffects = 0 in { // VSX instructions don't have side effects.
let Uses = [RM] in {
// Load indexed instructions
let mayLoad = 1, canFoldAsLoad = 1 in {
- def LXSDX : XForm_1<31, 588,
+ def LXSDX : XX1Form<31, 588,
(outs vsfrc:$XT), (ins memrr:$src),
"lxsdx $XT, $src", IIC_LdStLFD,
[(set f64:$XT, (load xoaddr:$src))]>;
- def LXVD2X : XForm_1<31, 844,
+ def LXVD2X : XX1Form<31, 844,
(outs vsrc:$XT), (ins memrr:$src),
"lxvd2x $XT, $src", IIC_LdStLFD,
- [(set v2f64:$XT, (load xoaddr:$src))]>;
+ [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
- def LXVDSX : XForm_1<31, 332,
+ def LXVDSX : XX1Form<31, 332,
(outs vsrc:$XT), (ins memrr:$src),
"lxvdsx $XT, $src", IIC_LdStLFD, []>;
- def LXVW4X : XForm_1<31, 780,
+ def LXVW4X : XX1Form<31, 780,
(outs vsrc:$XT), (ins memrr:$src),
- "lxvw4x $XT, $src", IIC_LdStLFD, []>;
+ "lxvw4x $XT, $src", IIC_LdStLFD,
+ [(set v4i32:$XT, (int_ppc_vsx_lxvw4x xoaddr:$src))]>;
}
// Store indexed instructions
@@ -76,11 +97,12 @@ let Uses = [RM] in {
def STXVD2X : XX1Form<31, 972,
(outs), (ins vsrc:$XT, memrr:$dst),
"stxvd2x $XT, $dst", IIC_LdStSTFD,
- [(store v2f64:$XT, xoaddr:$dst)]>;
+ [(int_ppc_vsx_stxvd2x v2f64:$XT, xoaddr:$dst)]>;
def STXVW4X : XX1Form<31, 908,
(outs), (ins vsrc:$XT, memrr:$dst),
- "stxvw4x $XT, $dst", IIC_LdStSTFD, []>;
+ "stxvw4x $XT, $dst", IIC_LdStSTFD,
+ [(int_ppc_vsx_stxvw4x v4i32:$XT, xoaddr:$dst)]>;
}
// Add/Mul Instructions
@@ -641,24 +663,36 @@ let Uses = [RM] in {
let isCommutable = 1 in {
def XSMAXDP : XX3Form<60, 160,
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
- "xsmaxdp $XT, $XA, $XB", IIC_VecFP, []>;
+ "xsmaxdp $XT, $XA, $XB", IIC_VecFP,
+ [(set vsfrc:$XT,
+ (int_ppc_vsx_xsmaxdp vsfrc:$XA, vsfrc:$XB))]>;
def XSMINDP : XX3Form<60, 168,
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
- "xsmindp $XT, $XA, $XB", IIC_VecFP, []>;
+ "xsmindp $XT, $XA, $XB", IIC_VecFP,
+ [(set vsfrc:$XT,
+ (int_ppc_vsx_xsmindp vsfrc:$XA, vsfrc:$XB))]>;
def XVMAXDP : XX3Form<60, 224,
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
- "xvmaxdp $XT, $XA, $XB", IIC_VecFP, []>;
+ "xvmaxdp $XT, $XA, $XB", IIC_VecFP,
+ [(set vsrc:$XT,
+ (int_ppc_vsx_xvmaxdp vsrc:$XA, vsrc:$XB))]>;
def XVMINDP : XX3Form<60, 232,
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
- "xvmindp $XT, $XA, $XB", IIC_VecFP, []>;
+ "xvmindp $XT, $XA, $XB", IIC_VecFP,
+ [(set vsrc:$XT,
+ (int_ppc_vsx_xvmindp vsrc:$XA, vsrc:$XB))]>;
def XVMAXSP : XX3Form<60, 192,
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
- "xvmaxsp $XT, $XA, $XB", IIC_VecFP, []>;
+ "xvmaxsp $XT, $XA, $XB", IIC_VecFP,
+ [(set vsrc:$XT,
+ (int_ppc_vsx_xvmaxsp vsrc:$XA, vsrc:$XB))]>;
def XVMINSP : XX3Form<60, 200,
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
- "xvminsp $XT, $XA, $XB", IIC_VecFP, []>;
+ "xvminsp $XT, $XA, $XB", IIC_VecFP,
+ [(set vsrc:$XT,
+ (int_ppc_vsx_xvminsp vsrc:$XA, vsrc:$XB))]>;
} // isCommutable
} // Uses = [RM]
@@ -714,7 +748,32 @@ let Uses = [RM] in {
def XXSPLTW : XX2Form_2<60, 164,
(outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
"xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
-} // neverHasSideEffects
+} // hasSideEffects
+
+// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
+// instruction selection into a branch sequence.
+let usesCustomInserter = 1, // Expanded after instruction selection.
+ PPC970_Single = 1 in {
+
+ def SELECT_CC_VSRC: Pseudo<(outs vsrc:$dst),
+ (ins crrc:$cond, vsrc:$T, vsrc:$F, i32imm:$BROPC),
+ "#SELECT_CC_VSRC",
+ []>;
+ def SELECT_VSRC: Pseudo<(outs vsrc:$dst),
+ (ins crbitrc:$cond, vsrc:$T, vsrc:$F),
+ "#SELECT_VSRC",
+ [(set v2f64:$dst,
+ (select i1:$cond, v2f64:$T, v2f64:$F))]>;
+ def SELECT_CC_VSFRC: Pseudo<(outs f8rc:$dst),
+ (ins crrc:$cond, f8rc:$T, f8rc:$F,
+ i32imm:$BROPC), "#SELECT_CC_VSFRC",
+ []>;
+ def SELECT_VSFRC: Pseudo<(outs f8rc:$dst),
+ (ins crbitrc:$cond, f8rc:$T, f8rc:$F),
+ "#SELECT_VSFRC",
+ [(set f64:$dst,
+ (select i1:$cond, f64:$T, f64:$F))]>;
+} // usesCustomInserter
} // AddedComplexity
def : InstAlias<"xvmovdp $XT, $XB",
@@ -734,6 +793,8 @@ def : InstAlias<"xxswapd $XT, $XB",
(XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 2)>;
let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
+
+let Predicates = [IsBigEndian] in {
def : Pat<(v2f64 (scalar_to_vector f64:$A)),
(v2f64 (SUBREG_TO_REG (i64 1), $A, sub_64))>;
@@ -741,6 +802,18 @@ def : Pat<(f64 (vector_extract v2f64:$S, 0)),
(f64 (EXTRACT_SUBREG $S, sub_64))>;
def : Pat<(f64 (vector_extract v2f64:$S, 1)),
(f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>;
+}
+
+let Predicates = [IsLittleEndian] in {
+def : Pat<(v2f64 (scalar_to_vector f64:$A)),
+ (v2f64 (XXPERMDI (SUBREG_TO_REG (i64 1), $A, sub_64),
+ (SUBREG_TO_REG (i64 1), $A, sub_64), 0))>;
+
+def : Pat<(f64 (vector_extract v2f64:$S, 0)),
+ (f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>;
+def : Pat<(f64 (vector_extract v2f64:$S, 1)),
+ (f64 (EXTRACT_SUBREG $S, sub_64))>;
+}
// Additional fnmsub patterns: -a*c + b == -(a*c - b)
def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B),
@@ -811,6 +884,57 @@ def : Pat<(sext_inreg v2i64:$C, v2i32),
def : Pat<(v2f64 (sint_to_fp (sext_inreg v2i64:$C, v2i32))),
(XVCVSXWDP (XXSLDWI $C, $C, 1))>;
+// Loads.
+def : Pat<(v2f64 (load xoaddr:$src)), (LXVD2X xoaddr:$src)>;
+def : Pat<(v2i64 (load xoaddr:$src)), (LXVD2X xoaddr:$src)>;
+def : Pat<(v4i32 (load xoaddr:$src)), (LXVW4X xoaddr:$src)>;
+def : Pat<(v2f64 (PPClxvd2x xoaddr:$src)), (LXVD2X xoaddr:$src)>;
+
+// Stores.
+def : Pat<(store v2f64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>;
+def : Pat<(store v2i64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>;
+def : Pat<(store v4i32:$rS, xoaddr:$dst), (STXVW4X $rS, xoaddr:$dst)>;
+def : Pat<(PPCstxvd2x v2f64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>;
+
+// Permutes.
+def : Pat<(v2f64 (PPCxxswapd v2f64:$src)), (XXPERMDI $src, $src, 2)>;
+def : Pat<(v2i64 (PPCxxswapd v2i64:$src)), (XXPERMDI $src, $src, 2)>;
+def : Pat<(v4f32 (PPCxxswapd v4f32:$src)), (XXPERMDI $src, $src, 2)>;
+def : Pat<(v4i32 (PPCxxswapd v4i32:$src)), (XXPERMDI $src, $src, 2)>;
+
+// Selects.
+def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETLT)),
+ (SELECT_VSRC (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETLE)),
+ (SELECT_VSRC (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETEQ)),
+ (SELECT_VSRC (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETGE)),
+ (SELECT_VSRC (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETGT)),
+ (SELECT_VSRC (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETNE)),
+ (SELECT_VSRC (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLT)),
+ (SELECT_VSFRC (CRANDC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLE)),
+ (SELECT_VSFRC (CRORC $rhs, $lhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETEQ)),
+ (SELECT_VSFRC (CREQV $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGE)),
+ (SELECT_VSFRC (CRORC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGT)),
+ (SELECT_VSFRC (CRANDC $lhs, $rhs), $tval, $fval)>;
+def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETNE)),
+ (SELECT_VSFRC (CRXOR $lhs, $rhs), $tval, $fval)>;
+
+// Divides.
+def : Pat<(int_ppc_vsx_xvdivsp v4f32:$A, v4f32:$B),
+ (XVDIVSP $A, $B)>;
+def : Pat<(int_ppc_vsx_xvdivdp v2f64:$A, v2f64:$B),
+ (XVDIVDP $A, $B)>;
+
} // AddedComplexity
} // HasVSX
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp
deleted file mode 100644
index e5f113a..0000000
--- a/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.cpp
+++ /dev/null
@@ -1,482 +0,0 @@
-//===-- PPCJITInfo.cpp - Implement the JIT interfaces for the PowerPC -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the JIT interfaces for the 32-bit PowerPC target.
-//
-//===----------------------------------------------------------------------===//
-
-#include "PPCJITInfo.h"
-#include "PPCRelocations.h"
-#include "PPCSubtarget.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Memory.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-static TargetJITInfo::JITCompilerFn JITCompilerFunction;
-
-PPCJITInfo::PPCJITInfo(PPCSubtarget &STI)
- : Subtarget(STI), is64Bit(STI.isPPC64()) {
- useGOT = 0;
-}
-
-#define BUILD_ADDIS(RD,RS,IMM16) \
- ((15 << 26) | ((RD) << 21) | ((RS) << 16) | ((IMM16) & 65535))
-#define BUILD_ORI(RD,RS,UIMM16) \
- ((24 << 26) | ((RS) << 21) | ((RD) << 16) | ((UIMM16) & 65535))
-#define BUILD_ORIS(RD,RS,UIMM16) \
- ((25 << 26) | ((RS) << 21) | ((RD) << 16) | ((UIMM16) & 65535))
-#define BUILD_RLDICR(RD,RS,SH,ME) \
- ((30 << 26) | ((RS) << 21) | ((RD) << 16) | (((SH) & 31) << 11) | \
- (((ME) & 63) << 6) | (1 << 2) | ((((SH) >> 5) & 1) << 1))
-#define BUILD_MTSPR(RS,SPR) \
- ((31 << 26) | ((RS) << 21) | ((SPR) << 16) | (467 << 1))
-#define BUILD_BCCTRx(BO,BI,LINK) \
- ((19 << 26) | ((BO) << 21) | ((BI) << 16) | (528 << 1) | ((LINK) & 1))
-#define BUILD_B(TARGET, LINK) \
- ((18 << 26) | (((TARGET) & 0x00FFFFFF) << 2) | ((LINK) & 1))
-
-// Pseudo-ops
-#define BUILD_LIS(RD,IMM16) BUILD_ADDIS(RD,0,IMM16)
-#define BUILD_SLDI(RD,RS,IMM6) BUILD_RLDICR(RD,RS,IMM6,63-IMM6)
-#define BUILD_MTCTR(RS) BUILD_MTSPR(RS,9)
-#define BUILD_BCTR(LINK) BUILD_BCCTRx(20,0,LINK)
-
-static void EmitBranchToAt(uint64_t At, uint64_t To, bool isCall, bool is64Bit){
- intptr_t Offset = ((intptr_t)To - (intptr_t)At) >> 2;
- unsigned *AtI = (unsigned*)(intptr_t)At;
-
- if (Offset >= -(1 << 23) && Offset < (1 << 23)) { // In range?
- AtI[0] = BUILD_B(Offset, isCall); // b/bl target
- } else if (!is64Bit) {
- AtI[0] = BUILD_LIS(12, To >> 16); // lis r12, hi16(address)
- AtI[1] = BUILD_ORI(12, 12, To); // ori r12, r12, lo16(address)
- AtI[2] = BUILD_MTCTR(12); // mtctr r12
- AtI[3] = BUILD_BCTR(isCall); // bctr/bctrl
- } else {
- AtI[0] = BUILD_LIS(12, To >> 48); // lis r12, hi16(address)
- AtI[1] = BUILD_ORI(12, 12, To >> 32); // ori r12, r12, lo16(address)
- AtI[2] = BUILD_SLDI(12, 12, 32); // sldi r12, r12, 32
- AtI[3] = BUILD_ORIS(12, 12, To >> 16); // oris r12, r12, hi16(address)
- AtI[4] = BUILD_ORI(12, 12, To); // ori r12, r12, lo16(address)
- AtI[5] = BUILD_MTCTR(12); // mtctr r12
- AtI[6] = BUILD_BCTR(isCall); // bctr/bctrl
- }
-}
-
-extern "C" void PPC32CompilationCallback();
-extern "C" void PPC64CompilationCallback();
-
-// The first clause of the preprocessor directive looks wrong, but it is
-// necessary when compiling this code on non-PowerPC hosts.
-#if (!defined(__ppc__) && !defined(__powerpc__)) || defined(__powerpc64__) || defined(__ppc64__)
-void PPC32CompilationCallback() {
- llvm_unreachable("This is not a 32bit PowerPC, you can't execute this!");
-}
-#elif !defined(__ELF__)
-// CompilationCallback stub - We can't use a C function with inline assembly in
-// it, because we the prolog/epilog inserted by GCC won't work for us. Instead,
-// write our own wrapper, which does things our way, so we have complete control
-// over register saving and restoring.
-asm(
- ".text\n"
- ".align 2\n"
- ".globl _PPC32CompilationCallback\n"
-"_PPC32CompilationCallback:\n"
- // Make space for 8 ints r[3-10] and 13 doubles f[1-13] and the
- // FIXME: need to save v[0-19] for altivec?
- // FIXME: could shrink frame
- // Set up a proper stack frame
- // FIXME Layout
- // PowerPC32 ABI linkage - 24 bytes
- // parameters - 32 bytes
- // 13 double registers - 104 bytes
- // 8 int registers - 32 bytes
- "mflr r0\n"
- "stw r0, 8(r1)\n"
- "stwu r1, -208(r1)\n"
- // Save all int arg registers
- "stw r10, 204(r1)\n" "stw r9, 200(r1)\n"
- "stw r8, 196(r1)\n" "stw r7, 192(r1)\n"
- "stw r6, 188(r1)\n" "stw r5, 184(r1)\n"
- "stw r4, 180(r1)\n" "stw r3, 176(r1)\n"
- // Save all call-clobbered FP regs.
- "stfd f13, 168(r1)\n" "stfd f12, 160(r1)\n"
- "stfd f11, 152(r1)\n" "stfd f10, 144(r1)\n"
- "stfd f9, 136(r1)\n" "stfd f8, 128(r1)\n"
- "stfd f7, 120(r1)\n" "stfd f6, 112(r1)\n"
- "stfd f5, 104(r1)\n" "stfd f4, 96(r1)\n"
- "stfd f3, 88(r1)\n" "stfd f2, 80(r1)\n"
- "stfd f1, 72(r1)\n"
- // Arguments to Compilation Callback:
- // r3 - our lr (address of the call instruction in stub plus 4)
- // r4 - stub's lr (address of instruction that called the stub plus 4)
- // r5 - is64Bit - always 0.
- "mr r3, r0\n"
- "lwz r2, 208(r1)\n" // stub's frame
- "lwz r4, 8(r2)\n" // stub's lr
- "li r5, 0\n" // 0 == 32 bit
- "bl _LLVMPPCCompilationCallback\n"
- "mtctr r3\n"
- // Restore all int arg registers
- "lwz r10, 204(r1)\n" "lwz r9, 200(r1)\n"
- "lwz r8, 196(r1)\n" "lwz r7, 192(r1)\n"
- "lwz r6, 188(r1)\n" "lwz r5, 184(r1)\n"
- "lwz r4, 180(r1)\n" "lwz r3, 176(r1)\n"
- // Restore all FP arg registers
- "lfd f13, 168(r1)\n" "lfd f12, 160(r1)\n"
- "lfd f11, 152(r1)\n" "lfd f10, 144(r1)\n"
- "lfd f9, 136(r1)\n" "lfd f8, 128(r1)\n"
- "lfd f7, 120(r1)\n" "lfd f6, 112(r1)\n"
- "lfd f5, 104(r1)\n" "lfd f4, 96(r1)\n"
- "lfd f3, 88(r1)\n" "lfd f2, 80(r1)\n"
- "lfd f1, 72(r1)\n"
- // Pop 3 frames off the stack and branch to target
- "lwz r1, 208(r1)\n"
- "lwz r2, 8(r1)\n"
- "mtlr r2\n"
- "bctr\n"
- );
-
-#else
-// ELF PPC 32 support
-
-// CompilationCallback stub - We can't use a C function with inline assembly in
-// it, because we the prolog/epilog inserted by GCC won't work for us. Instead,
-// write our own wrapper, which does things our way, so we have complete control
-// over register saving and restoring.
-asm(
- ".text\n"
- ".align 2\n"
- ".globl PPC32CompilationCallback\n"
-"PPC32CompilationCallback:\n"
- // Make space for 8 ints r[3-10] and 8 doubles f[1-8] and the
- // FIXME: need to save v[0-19] for altivec?
- // FIXME: could shrink frame
- // Set up a proper stack frame
- // FIXME Layout
- // 8 double registers - 64 bytes
- // 8 int registers - 32 bytes
- "mflr 0\n"
- "stw 0, 4(1)\n"
- "stwu 1, -104(1)\n"
- // Save all int arg registers
- "stw 10, 100(1)\n" "stw 9, 96(1)\n"
- "stw 8, 92(1)\n" "stw 7, 88(1)\n"
- "stw 6, 84(1)\n" "stw 5, 80(1)\n"
- "stw 4, 76(1)\n" "stw 3, 72(1)\n"
- // Save all call-clobbered FP regs.
- "stfd 8, 64(1)\n"
- "stfd 7, 56(1)\n" "stfd 6, 48(1)\n"
- "stfd 5, 40(1)\n" "stfd 4, 32(1)\n"
- "stfd 3, 24(1)\n" "stfd 2, 16(1)\n"
- "stfd 1, 8(1)\n"
- // Arguments to Compilation Callback:
- // r3 - our lr (address of the call instruction in stub plus 4)
- // r4 - stub's lr (address of instruction that called the stub plus 4)
- // r5 - is64Bit - always 0.
- "mr 3, 0\n"
- "lwz 5, 104(1)\n" // stub's frame
- "lwz 4, 4(5)\n" // stub's lr
- "li 5, 0\n" // 0 == 32 bit
- "bl LLVMPPCCompilationCallback\n"
- "mtctr 3\n"
- // Restore all int arg registers
- "lwz 10, 100(1)\n" "lwz 9, 96(1)\n"
- "lwz 8, 92(1)\n" "lwz 7, 88(1)\n"
- "lwz 6, 84(1)\n" "lwz 5, 80(1)\n"
- "lwz 4, 76(1)\n" "lwz 3, 72(1)\n"
- // Restore all FP arg registers
- "lfd 8, 64(1)\n"
- "lfd 7, 56(1)\n" "lfd 6, 48(1)\n"
- "lfd 5, 40(1)\n" "lfd 4, 32(1)\n"
- "lfd 3, 24(1)\n" "lfd 2, 16(1)\n"
- "lfd 1, 8(1)\n"
- // Pop 3 frames off the stack and branch to target
- "lwz 1, 104(1)\n"
- "lwz 0, 4(1)\n"
- "mtlr 0\n"
- "bctr\n"
- );
-#endif
-
-#if !defined(__powerpc64__) && !defined(__ppc64__)
-void PPC64CompilationCallback() {
- llvm_unreachable("This is not a 64bit PowerPC, you can't execute this!");
-}
-#else
-# ifdef __ELF__
-asm(
- ".text\n"
- ".align 2\n"
- ".globl PPC64CompilationCallback\n"
-#if _CALL_ELF == 2
- ".type PPC64CompilationCallback,@function\n"
-"PPC64CompilationCallback:\n"
-#else
- ".section \".opd\",\"aw\",@progbits\n"
- ".align 3\n"
-"PPC64CompilationCallback:\n"
- ".quad .L.PPC64CompilationCallback,.TOC.@tocbase,0\n"
- ".size PPC64CompilationCallback,24\n"
- ".previous\n"
- ".align 4\n"
- ".type PPC64CompilationCallback,@function\n"
-".L.PPC64CompilationCallback:\n"
-#endif
-# else
-asm(
- ".text\n"
- ".align 2\n"
- ".globl _PPC64CompilationCallback\n"
-"_PPC64CompilationCallback:\n"
-# endif
- // Make space for 8 ints r[3-10] and 13 doubles f[1-13] and the
- // FIXME: need to save v[0-19] for altivec?
- // Set up a proper stack frame
- // Layout
- // PowerPC64 ABI linkage - 48 bytes
- // parameters - 64 bytes
- // 13 double registers - 104 bytes
- // 8 int registers - 64 bytes
- "mflr 0\n"
- "std 0, 16(1)\n"
- "stdu 1, -280(1)\n"
- // Save all int arg registers
- "std 10, 272(1)\n" "std 9, 264(1)\n"
- "std 8, 256(1)\n" "std 7, 248(1)\n"
- "std 6, 240(1)\n" "std 5, 232(1)\n"
- "std 4, 224(1)\n" "std 3, 216(1)\n"
- // Save all call-clobbered FP regs.
- "stfd 13, 208(1)\n" "stfd 12, 200(1)\n"
- "stfd 11, 192(1)\n" "stfd 10, 184(1)\n"
- "stfd 9, 176(1)\n" "stfd 8, 168(1)\n"
- "stfd 7, 160(1)\n" "stfd 6, 152(1)\n"
- "stfd 5, 144(1)\n" "stfd 4, 136(1)\n"
- "stfd 3, 128(1)\n" "stfd 2, 120(1)\n"
- "stfd 1, 112(1)\n"
- // Arguments to Compilation Callback:
- // r3 - our lr (address of the call instruction in stub plus 4)
- // r4 - stub's lr (address of instruction that called the stub plus 4)
- // r5 - is64Bit - always 1.
- "mr 3, 0\n" // return address (still in r0)
- "ld 5, 280(1)\n" // stub's frame
- "ld 4, 16(5)\n" // stub's lr
- "li 5, 1\n" // 1 == 64 bit
-# ifdef __ELF__
- "bl LLVMPPCCompilationCallback\n"
- "nop\n"
-# else
- "bl _LLVMPPCCompilationCallback\n"
-# endif
- "mtctr 3\n"
- // Restore all int arg registers
- "ld 10, 272(1)\n" "ld 9, 264(1)\n"
- "ld 8, 256(1)\n" "ld 7, 248(1)\n"
- "ld 6, 240(1)\n" "ld 5, 232(1)\n"
- "ld 4, 224(1)\n" "ld 3, 216(1)\n"
- // Restore all FP arg registers
- "lfd 13, 208(1)\n" "lfd 12, 200(1)\n"
- "lfd 11, 192(1)\n" "lfd 10, 184(1)\n"
- "lfd 9, 176(1)\n" "lfd 8, 168(1)\n"
- "lfd 7, 160(1)\n" "lfd 6, 152(1)\n"
- "lfd 5, 144(1)\n" "lfd 4, 136(1)\n"
- "lfd 3, 128(1)\n" "lfd 2, 120(1)\n"
- "lfd 1, 112(1)\n"
- // Pop 3 frames off the stack and branch to target
- "ld 1, 280(1)\n"
- "ld 0, 16(1)\n"
- "mtlr 0\n"
- // XXX: any special TOC handling in the ELF case for JIT?
- "bctr\n"
- );
-#endif
-
-extern "C" {
-LLVM_LIBRARY_VISIBILITY void *
-LLVMPPCCompilationCallback(unsigned *StubCallAddrPlus4,
- unsigned *OrigCallAddrPlus4,
- bool is64Bit) {
- // Adjust the pointer to the address of the call instruction in the stub
- // emitted by emitFunctionStub, rather than the instruction after it.
- unsigned *StubCallAddr = StubCallAddrPlus4 - 1;
- unsigned *OrigCallAddr = OrigCallAddrPlus4 - 1;
-
- void *Target = JITCompilerFunction(StubCallAddr);
-
- // Check to see if *OrigCallAddr is a 'bl' instruction, and if we can rewrite
- // it to branch directly to the destination. If so, rewrite it so it does not
- // need to go through the stub anymore.
- unsigned OrigCallInst = *OrigCallAddr;
- if ((OrigCallInst >> 26) == 18) { // Direct call.
- intptr_t Offset = ((intptr_t)Target - (intptr_t)OrigCallAddr) >> 2;
-
- if (Offset >= -(1 << 23) && Offset < (1 << 23)) { // In range?
- // Clear the original target out.
- OrigCallInst &= (63 << 26) | 3;
- // Fill in the new target.
- OrigCallInst |= (Offset & ((1 << 24)-1)) << 2;
- // Replace the call.
- *OrigCallAddr = OrigCallInst;
- }
- }
-
- // Assert that we are coming from a stub that was created with our
- // emitFunctionStub.
- if ((*StubCallAddr >> 26) == 18)
- StubCallAddr -= 3;
- else {
- assert((*StubCallAddr >> 26) == 19 && "Call in stub is not indirect!");
- StubCallAddr -= is64Bit ? 9 : 6;
- }
-
- // Rewrite the stub with an unconditional branch to the target, for any users
- // who took the address of the stub.
- EmitBranchToAt((intptr_t)StubCallAddr, (intptr_t)Target, false, is64Bit);
- sys::Memory::InvalidateInstructionCache(StubCallAddr, 7*4);
-
- // Put the address of the target function to call and the address to return to
- // after calling the target function in a place that is easy to get on the
- // stack after we restore all regs.
- return Target;
-}
-}
-
-
-
-TargetJITInfo::LazyResolverFn
-PPCJITInfo::getLazyResolverFunction(JITCompilerFn Fn) {
- JITCompilerFunction = Fn;
- return is64Bit ? PPC64CompilationCallback : PPC32CompilationCallback;
-}
-
-TargetJITInfo::StubLayout PPCJITInfo::getStubLayout() {
- // The stub contains up to 10 4-byte instructions, aligned at 4 bytes: 3
- // instructions to save the caller's address if this is a lazy-compilation
- // stub, plus a 1-, 4-, or 7-instruction sequence to load an arbitrary address
- // into a register and jump through it.
- StubLayout Result = {10*4, 4};
- return Result;
-}
-
-#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
-defined(__APPLE__)
-extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
-#endif
-
-void *PPCJITInfo::emitFunctionStub(const Function* F, void *Fn,
- JITCodeEmitter &JCE) {
- // If this is just a call to an external function, emit a branch instead of a
- // call. The code is the same except for one bit of the last instruction.
- if (Fn != (void*)(intptr_t)PPC32CompilationCallback &&
- Fn != (void*)(intptr_t)PPC64CompilationCallback) {
- void *Addr = (void*)JCE.getCurrentPCValue();
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- EmitBranchToAt((intptr_t)Addr, (intptr_t)Fn, false, is64Bit);
- sys::Memory::InvalidateInstructionCache(Addr, 7*4);
- return Addr;
- }
-
- void *Addr = (void*)JCE.getCurrentPCValue();
- if (is64Bit) {
- JCE.emitWordBE(0xf821ffb1); // stdu r1,-80(r1)
- JCE.emitWordBE(0x7d6802a6); // mflr r11
- JCE.emitWordBE(0xf9610060); // std r11, 96(r1)
- } else if (Subtarget.isDarwinABI()){
- JCE.emitWordBE(0x9421ffe0); // stwu r1,-32(r1)
- JCE.emitWordBE(0x7d6802a6); // mflr r11
- JCE.emitWordBE(0x91610028); // stw r11, 40(r1)
- } else {
- JCE.emitWordBE(0x9421ffe0); // stwu r1,-32(r1)
- JCE.emitWordBE(0x7d6802a6); // mflr r11
- JCE.emitWordBE(0x91610024); // stw r11, 36(r1)
- }
- intptr_t BranchAddr = (intptr_t)JCE.getCurrentPCValue();
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- JCE.emitWordBE(0);
- EmitBranchToAt(BranchAddr, (intptr_t)Fn, true, is64Bit);
- sys::Memory::InvalidateInstructionCache(Addr, 10*4);
- return Addr;
-}
-
-
-void PPCJITInfo::relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) {
- for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
- unsigned *RelocPos = (unsigned*)Function + MR->getMachineCodeOffset()/4;
- intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
- switch ((PPC::RelocationType)MR->getRelocationType()) {
- default: llvm_unreachable("Unknown relocation type!");
- case PPC::reloc_pcrel_bx:
- // PC-relative relocation for b and bl instructions.
- ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2;
- assert(ResultPtr >= -(1 << 23) && ResultPtr < (1 << 23) &&
- "Relocation out of range!");
- *RelocPos |= (ResultPtr & ((1 << 24)-1)) << 2;
- break;
- case PPC::reloc_pcrel_bcx:
- // PC-relative relocation for BLT,BLE,BEQ,BGE,BGT,BNE, or other
- // bcx instructions.
- ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2;
- assert(ResultPtr >= -(1 << 13) && ResultPtr < (1 << 13) &&
- "Relocation out of range!");
- *RelocPos |= (ResultPtr & ((1 << 14)-1)) << 2;
- break;
- case PPC::reloc_absolute_high: // high bits of ref -> low 16 of instr
- case PPC::reloc_absolute_low: { // low bits of ref -> low 16 of instr
- ResultPtr += MR->getConstantVal();
-
- // If this is a high-part access, get the high-part.
- if (MR->getRelocationType() == PPC::reloc_absolute_high) {
- // If the low part will have a carry (really a borrow) from the low
- // 16-bits into the high 16, add a bit to borrow from.
- if (((int)ResultPtr << 16) < 0)
- ResultPtr += 1 << 16;
- ResultPtr >>= 16;
- }
-
- // Do the addition then mask, so the addition does not overflow the 16-bit
- // immediate section of the instruction.
- unsigned LowBits = (*RelocPos + ResultPtr) & 65535;
- unsigned HighBits = *RelocPos & ~65535;
- *RelocPos = LowBits | HighBits; // Slam into low 16-bits
- break;
- }
- case PPC::reloc_absolute_low_ix: { // low bits of ref -> low 14 of instr
- ResultPtr += MR->getConstantVal();
- // Do the addition then mask, so the addition does not overflow the 16-bit
- // immediate section of the instruction.
- unsigned LowBits = (*RelocPos + ResultPtr) & 0xFFFC;
- unsigned HighBits = *RelocPos & 0xFFFF0003;
- *RelocPos = LowBits | HighBits; // Slam into low 14-bits.
- break;
- }
- }
- }
-}
-
-void PPCJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- EmitBranchToAt((intptr_t)Old, (intptr_t)New, false, is64Bit);
- sys::Memory::InvalidateInstructionCache(Old, 7*4);
-}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h
deleted file mode 100644
index b6b37ff..0000000
--- a/contrib/llvm/lib/Target/PowerPC/PPCJITInfo.h
+++ /dev/null
@@ -1,46 +0,0 @@
-//===-- PPCJITInfo.h - PowerPC impl. of the JIT interface -------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the PowerPC implementation of the TargetJITInfo class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef POWERPC_JITINFO_H
-#define POWERPC_JITINFO_H
-
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/Target/TargetJITInfo.h"
-
-namespace llvm {
-class PPCSubtarget;
-class PPCJITInfo : public TargetJITInfo {
-protected:
- PPCSubtarget &Subtarget;
- bool is64Bit;
-
-public:
- PPCJITInfo(PPCSubtarget &STI);
-
- StubLayout getStubLayout() override;
- void *emitFunctionStub(const Function *F, void *Fn,
- JITCodeEmitter &JCE) override;
- LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
- void relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs,
- unsigned char *GOTBase) override;
-
- /// replaceMachineCodeForFunction - Make it so that calling the function
- /// whose machine code is at OLD turns into a call to NEW, perhaps by
- /// overwriting OLD with a branch to NEW. This is used for self-modifying
- /// code.
- ///
- void replaceMachineCodeForFunction(void *Old, void *New) override;
-};
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp b/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
index 681eda8..c417199 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
#include "PPC.h"
-#include "PPCSubtarget.h"
#include "MCTargetDesc/PPCMCExpr.h"
+#include "PPCSubtarget.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
@@ -38,9 +38,9 @@ static MachineModuleInfoMachO &getMachOMMI(AsmPrinter &AP) {
static MCSymbol *GetSymbolFromOperand(const MachineOperand &MO, AsmPrinter &AP){
const TargetMachine &TM = AP.TM;
Mangler *Mang = AP.Mang;
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
MCContext &Ctx = AP.OutContext;
- bool isDarwin = TM.getSubtarget<PPCSubtarget>().isDarwin();
+ bool isDarwin = Triple(TM.getTargetTriple()).isOSDarwin();
SmallString<128> Name;
StringRef Suffix;
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp
index 9da1b1b..4aff95a 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.cpp
@@ -11,13 +11,14 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
void PPCFunctionInfo::anchor() { }
MCSymbol *PPCFunctionInfo::getPICOffsetSymbol() const {
- const DataLayout *DL = MF.getTarget().getDataLayout();
+ const DataLayout *DL = MF.getSubtarget().getDataLayout();
return MF.getContext().GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
Twine(MF.getFunctionNumber())+"$poff");
}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h
index 9a2cec7..37b2ff8 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCMachineFunctionInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPC_MACHINE_FUNCTION_INFO_H
-#define PPC_MACHINE_FUNCTION_INFO_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_POWERPC_PPCMACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFunction.h"
@@ -35,6 +35,9 @@ class PPCFunctionInfo : public MachineFunctionInfo {
/// Frame index where the old base pointer is stored.
int BasePointerSaveIndex;
+ /// Frame index where the old PIC base pointer is stored.
+ int PICBasePointerSaveIndex;
+
/// MustSaveLR - Indicates whether LR is defined (or clobbered) in the current
/// function. This is only valid after the initial scan of the function by
/// PEI.
@@ -103,6 +106,7 @@ public:
: FramePointerSaveIndex(0),
ReturnAddrSaveIndex(0),
BasePointerSaveIndex(0),
+ PICBasePointerSaveIndex(0),
HasSpills(false),
HasNonRISpills(false),
SpillsCR(false),
@@ -128,6 +132,9 @@ public:
int getBasePointerSaveIndex() const { return BasePointerSaveIndex; }
void setBasePointerSaveIndex(int Idx) { BasePointerSaveIndex = Idx; }
+ int getPICBasePointerSaveIndex() const { return PICBasePointerSaveIndex; }
+ void setPICBasePointerSaveIndex(int Idx) { PICBasePointerSaveIndex = Idx; }
+
unsigned getMinReservedArea() const { return MinReservedArea; }
void setMinReservedArea(unsigned size) { MinReservedArea = size; }
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h b/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h
index 17b836d..8a1d680 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCPerfectShuffle.h
@@ -12,6 +12,9 @@
//
//===----------------------------------------------------------------------===//
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCPERFECTSHUFFLE_H
+#define LLVM_LIB_TARGET_POWERPC_PPCPERFECTSHUFFLE_H
+
// 31 entries have cost 0
// 292 entries have cost 1
// 1384 entries have cost 2
@@ -6584,3 +6587,5 @@ static const unsigned PerfectShuffleTable[6561+1] = {
835584U, // <u,u,u,u>: Cost 0 copy LHS
0
};
+
+#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp
index 9895ee6..aa0da7a 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp
@@ -99,6 +99,14 @@ PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
const MCPhysReg*
PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ if (MF->getFunction()->getCallingConv() == CallingConv::AnyReg) {
+ if (Subtarget.hasVSX())
+ return CSR_64_AllRegs_VSX_SaveList;
+ if (Subtarget.hasAltivec())
+ return CSR_64_AllRegs_Altivec_SaveList;
+ return CSR_64_AllRegs_SaveList;
+ }
+
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
CSR_Darwin64_Altivec_SaveList :
@@ -117,6 +125,14 @@ PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
const uint32_t*
PPCRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
+ if (CC == CallingConv::AnyReg) {
+ if (Subtarget.hasVSX())
+ return CSR_64_AllRegs_VSX_RegMask;
+ if (Subtarget.hasAltivec())
+ return CSR_64_AllRegs_Altivec_RegMask;
+ return CSR_64_AllRegs_RegMask;
+ }
+
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
CSR_Darwin64_Altivec_RegMask :
@@ -138,10 +154,18 @@ PPCRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
+void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
+ unsigned PseudoRegs[] = { PPC::ZERO, PPC::ZERO8, PPC::RM };
+ for (unsigned i = 0, ie = array_lengthof(PseudoRegs); i != ie; ++i) {
+ unsigned Reg = PseudoRegs[i];
+ Mask[Reg / 32] &= ~(1u << (Reg % 32));
+ }
+}
+
BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
- const PPCFrameLowering *PPCFI =
- static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
+ const PPCFrameLowering *PPCFI = static_cast<const PPCFrameLowering *>(
+ MF.getSubtarget().getFrameLowering());
// The ZERO register is not really a register, but the representation of r0
// when used in instructions that treat r0 as the constant 0.
@@ -223,7 +247,7 @@ BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
unsigned
PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const unsigned DefaultSafety = 1;
switch (RC->getID()) {
@@ -287,7 +311,7 @@ void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
// Get the frame info.
MachineFrameInfo *MFI = MF.getFrameInfo();
// Get the instruction info.
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = Subtarget.isPPC64();
DebugLoc dl = MI.getDebugLoc();
@@ -298,7 +322,10 @@ void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
unsigned FrameSize = MFI->getStackSize();
// Get stack alignments.
- unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned TargetAlign = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
unsigned MaxAlign = MFI->getMaxAlignment();
assert((maxCallFrameSize & (MaxAlign-1)) == 0 &&
"Maximum call-frame size not sufficiently aligned");
@@ -403,7 +430,7 @@ void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = Subtarget.isPPC64();
@@ -447,7 +474,7 @@ void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = Subtarget.isPPC64();
@@ -520,7 +547,7 @@ void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = Subtarget.isPPC64();
@@ -563,7 +590,7 @@ void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = Subtarget.isPPC64();
@@ -610,7 +637,7 @@ void PPCRegisterInfo::lowerVRSAVESpilling(MachineBasicBlock::iterator II,
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
@@ -635,7 +662,7 @@ void PPCRegisterInfo::lowerVRSAVERestore(MachineBasicBlock::iterator II,
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
@@ -697,7 +724,10 @@ static unsigned getOffsetONFromFION(const MachineInstr &MI,
// Take into account whether it's an add or mem instruction
unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
if (MI.isInlineAsm())
- OffsetOperandNo = FIOperandNum-1;
+ OffsetOperandNo = FIOperandNum - 1;
+ else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
+ MI.getOpcode() == TargetOpcode::PATCHPOINT)
+ OffsetOperandNo = FIOperandNum + 1;
return OffsetOperandNo;
}
@@ -715,7 +745,7 @@ PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the instruction info.
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Get the frame info.
MachineFrameInfo *MFI = MF.getFrameInfo();
DebugLoc dl = MI.getDebugLoc();
@@ -769,7 +799,8 @@ PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// If the instruction is not present in ImmToIdxMap, then it has no immediate
// form (and must be r+r).
- bool noImmForm = !MI.isInlineAsm() && !ImmToIdxMap.count(OpC);
+ bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
+ OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
// Now add the frame object offset to the offset from r1.
int Offset = MFI->getObjectOffset(FrameIndex);
@@ -793,8 +824,10 @@ PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// only "std" to a stack slot that is at least 4-byte aligned, but it can
// happen in invalid code.
assert(OpC != PPC::DBG_VALUE &&
- "This should be handle in a target independent way");
- if (!noImmForm && isInt<16>(Offset) && (!isIXAddr || (Offset & 3) == 0)) {
+ "This should be handled in a target-independent way");
+ if (!noImmForm && ((isInt<16>(Offset) && (!isIXAddr || (Offset & 3) == 0)) ||
+ OpC == TargetOpcode::STACKMAP ||
+ OpC == TargetOpcode::PATCHPOINT)) {
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
return;
}
@@ -840,7 +873,7 @@ PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
}
unsigned PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!Subtarget.isPPC64())
return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
@@ -884,7 +917,10 @@ bool PPCRegisterInfo::canRealignStack(const MachineFunction &MF) const {
bool PPCRegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
- unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned StackAlign = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
bool requiresRealignment =
((MFI->getMaxAlignment() > StackAlign) ||
F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
@@ -922,8 +958,8 @@ needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
MachineBasicBlock &MBB = *MI->getParent();
MachineFunction &MF = *MBB.getParent();
- const PPCFrameLowering *PPCFI =
- static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
+ const PPCFrameLowering *PPCFI = static_cast<const PPCFrameLowering *>(
+ MF.getSubtarget().getFrameLowering());
unsigned StackEst =
PPCFI->determineFrameLayout(MF, false, true);
@@ -957,7 +993,7 @@ materializeFrameBaseRegister(MachineBasicBlock *MBB,
DL = Ins->getDebugLoc();
const MachineFunction &MF = *MBB->getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
@@ -982,7 +1018,7 @@ void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const MCInstrDesc &MCID = MI.getDesc();
MachineRegisterInfo &MRI = MF.getRegInfo();
MRI.constrainRegClass(BaseReg,
@@ -1002,6 +1038,8 @@ bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
Offset += MI->getOperand(OffsetOperandNo).getImm();
return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
+ MI->getOpcode() == TargetOpcode::STACKMAP ||
+ MI->getOpcode() == TargetOpcode::PATCHPOINT ||
(isInt<16>(Offset) && (!usesIXAddr(*MI) || (Offset & 3) == 0));
}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h
index 13a35f6..4c2ef90 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPC32_REGISTERINFO_H
-#define POWERPC32_REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCREGISTERINFO_H
+#define LLVM_LIB_TARGET_POWERPC_PPCREGISTERINFO_H
#include "PPC.h"
#include "llvm/ADT/DenseMap.h"
@@ -49,6 +49,8 @@ public:
const uint32_t *getCallPreservedMask(CallingConv::ID CC) const override;
const uint32_t *getNoPreservedMask() const;
+ void adjustStackMapLiveOutMask(uint32_t *Mask) const override;
+
BitVector getReservedRegs(const MachineFunction &MF) const override;
/// We require the register scavenger.
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
index 0442a94..2fdf04e 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCRegisterInfo.td
@@ -131,8 +131,8 @@ foreach Index = 0-31 in {
}
// The reprsentation of r0 when treated as the constant 0.
-def ZERO : GPR<0, "0">;
-def ZERO8 : GP8<ZERO, "0">;
+def ZERO : GPR<0, "0">, DwarfRegAlias<R0>;
+def ZERO8 : GP8<ZERO, "0">, DwarfRegAlias<X0>;
// Representations of the frame pointer used by ISD::FRAMEADDR.
def FP : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
@@ -203,7 +203,7 @@ def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>;
// Carry bit. In the architecture this is really bit 0 of the XER register
// (which really is SPR register 1); this is the only bit interesting to a
// compiler.
-def CARRY: SPR<1, "ca">;
+def CARRY: SPR<1, "ca">, DwarfRegNum<[76]>;
// FP rounding mode: bits 30 and 31 of the FP status and control register
// This is not allocated as a normal register; it appears only in
@@ -212,8 +212,7 @@ def CARRY: SPR<1, "ca">;
// most registers, it has to be done in code; to make this work all the
// return and call instructions are described as Uses of RM, so instructions
// that do nothing but change RM will not get deleted.
-// Also, in the architecture it is not really a SPR; 512 is arbitrary.
-def RM: SPR<512, "**ROUNDING MODE**">;
+def RM: PPCReg<"**ROUNDING MODE**">;
/// Register classes
// Allocate volatiles first
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCRelocations.h b/contrib/llvm/lib/Target/PowerPC/PPCRelocations.h
deleted file mode 100644
index 0b392f9..0000000
--- a/contrib/llvm/lib/Target/PowerPC/PPCRelocations.h
+++ /dev/null
@@ -1,56 +0,0 @@
-//===-- PPCRelocations.h - PPC Code Relocations -----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the PowerPC 32-bit target-specific relocation types.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef PPCRELOCATIONS_H
-#define PPCRELOCATIONS_H
-
-#include "llvm/CodeGen/MachineRelocation.h"
-
-// Hack to rid us of a PPC pre-processor symbol which is erroneously
-// defined in a PowerPC header file (bug in Linux/PPC)
-#ifdef PPC
-#undef PPC
-#endif
-
-namespace llvm {
- namespace PPC {
- enum RelocationType {
- // reloc_vanilla - A standard relocation, where the address of the
- // relocated object completely overwrites the address of the relocation.
- reloc_vanilla,
-
- // reloc_pcrel_bx - PC relative relocation, for the b or bl instructions.
- reloc_pcrel_bx,
-
- // reloc_pcrel_bcx - PC relative relocation, for BLT,BLE,BEQ,BGE,BGT,BNE,
- // and other bcx instructions.
- reloc_pcrel_bcx,
-
- // reloc_absolute_high - Absolute relocation, for the loadhi instruction
- // (which is really addis). Add the high 16-bits of the specified global
- // address into the low 16-bits of the instruction.
- reloc_absolute_high,
-
- // reloc_absolute_low - Absolute relocation, for the la instruction (which
- // is really an addi). Add the low 16-bits of the specified global
- // address into the low 16-bits of the instruction.
- reloc_absolute_low,
-
- // reloc_absolute_low_ix - Absolute relocation for the 64-bit load/store
- // instruction which have two implicit zero bits.
- reloc_absolute_low_ix
- };
- }
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td b/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td
index 1221d41..3ae3793 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSchedule.td
@@ -106,6 +106,7 @@ def IIC_SprSLBIE : InstrItinClass;
def IIC_SprSLBMTE : InstrItinClass;
def IIC_SprSLBMFEE : InstrItinClass;
def IIC_SprSLBIA : InstrItinClass;
+def IIC_SprTLBIA : InstrItinClass;
def IIC_SprTLBIEL : InstrItinClass;
def IIC_SprTLBIE : InstrItinClass;
@@ -118,6 +119,7 @@ include "PPCScheduleG4.td"
include "PPCScheduleG4Plus.td"
include "PPCScheduleG5.td"
include "PPCScheduleP7.td"
+include "PPCScheduleP8.td"
include "PPCScheduleA2.td"
include "PPCScheduleE500mc.td"
include "PPCScheduleE5500.td"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td
index d3e4269..03693cb 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleP7.td
@@ -380,6 +380,9 @@ def P7Model : SchedMachineModel {
// Itineraries are queried instead.
let MispredictPenalty = 16;
+ // Try to make sure we have at least 10 dispatch groups in a loop.
+ let LoopMicroOpBufferSize = 40;
+
let Itineraries = P7Itineraries;
}
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCScheduleP8.td b/contrib/llvm/lib/Target/PowerPC/PPCScheduleP8.td
new file mode 100644
index 0000000..0797180
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCScheduleP8.td
@@ -0,0 +1,397 @@
+//===-- PPCScheduleP8.td - PPC P8 Scheduling Definitions ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the POWER8 processor.
+//
+//===----------------------------------------------------------------------===//
+
+// Scheduling for the P8 involves tracking two types of resources:
+// 1. The dispatch bundle slots
+// 2. The functional unit resources
+
+// Dispatch units:
+def P8_DU1 : FuncUnit;
+def P8_DU2 : FuncUnit;
+def P8_DU3 : FuncUnit;
+def P8_DU4 : FuncUnit;
+def P8_DU5 : FuncUnit;
+def P8_DU6 : FuncUnit;
+def P8_DU7 : FuncUnit; // Only branch instructions will use DU7,DU8
+def P8_DU8 : FuncUnit;
+
+// 10 insns per cycle (2-LU, 2-LSU, 2-FXU, 2-FPU, 1-CRU, 1-BRU).
+
+def P8_LU1 : FuncUnit; // Loads or fixed-point operations 1
+def P8_LU2 : FuncUnit; // Loads or fixed-point operations 2
+
+// Load/Store pipelines can handle Stores, fixed-point loads, and simple
+// fixed-point operations.
+def P8_LSU1 : FuncUnit; // Load/Store pipeline 1
+def P8_LSU2 : FuncUnit; // Load/Store pipeline 2
+
+// Fixed Point unit
+def P8_FXU1 : FuncUnit; // FX pipeline 1
+def P8_FXU2 : FuncUnit; // FX pipeline 2
+
+// The Floating-Point Unit (FPU) and Vector Media Extension (VMX) units
+// are combined on P7 and newer into a Vector Scalar Unit (VSU).
+// The P8 Instruction latency documents still refers to the unit as the
+// FPU, so keep in mind that FPU==VSU.
+// In contrast to the P7, the VMX units on P8 are symmetric, so no need to
+// split vector integer ops or 128-bit load/store/perms to the specific units.
+def P8_FPU1 : FuncUnit; // VS pipeline 1
+def P8_FPU2 : FuncUnit; // VS pipeline 2
+
+def P8_CRU : FuncUnit; // CR unit (CR logicals and move-from-SPRs)
+def P8_BRU : FuncUnit; // BR unit
+
+def P8Itineraries : ProcessorItineraries<
+ [P8_DU1, P8_DU2, P8_DU3, P8_DU4, P8_DU5, P8_DU6, P8_DU7, P8_DU8,
+ P8_LU1, P8_LU2, P8_LSU1, P8_LSU2, P8_FXU1, P8_FXU2,
+ P8_FPU1, P8_FPU2, P8_CRU, P8_BRU], [], [
+ InstrItinData<IIC_IntSimple , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2,
+ P8_LU1, P8_LU2,
+ P8_LSU1, P8_LSU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntGeneral , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2, P8_LU1,
+ P8_LU2, P8_LSU1, P8_LSU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntCompare , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntDivW , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<15, [P8_FXU1, P8_FXU2]>],
+ [15, 1, 1]>,
+ InstrItinData<IIC_IntDivD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<23, [P8_FXU1, P8_FXU2]>],
+ [23, 1, 1]>,
+ InstrItinData<IIC_IntMulHW , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_IntMulHWU , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_IntMulLI , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [4, 1, 1]>,
+ InstrItinData<IIC_IntRotate , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntRotateD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntShift , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_IntTrapW , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [1, 1]>,
+ InstrItinData<IIC_IntTrapD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [1, 1]>,
+ InstrItinData<IIC_BrB , [InstrStage<1, [P8_DU7, P8_DU8], 0>,
+ InstrStage<1, [P8_BRU]>],
+ [3, 1, 1]>,
+ // FIXME - the Br* groups below are not branch related, so should probably
+ // be renamed.
+ // IIC_BrCR consists of the cr* instructions. (crand,crnor,creqv, etc).
+ // and should be 'First' in dispatch.
+ InstrItinData<IIC_BrCR , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_CRU]>],
+ [3, 1, 1]>,
+ // IIC_BrMCR consists of the mcrf instruction.
+ InstrItinData<IIC_BrMCR , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_CRU]>],
+ [3, 1, 1]>,
+ // IIC_BrMCRX consists of mcrxr (obsolete instruction) and mtcrf, which
+ // should be first in the dispatch group.
+ InstrItinData<IIC_BrMCRX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_BrMCRX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 1]>,
+ InstrItinData<IIC_LdStLoad , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_LdStLoadUpd , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2 ], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [2, 2, 1, 1]>,
+ // Update-Indexed form loads/stores are no longer first and last in the
+ // dispatch group. They are simply cracked, so require DU1,DU2.
+ InstrItinData<IIC_LdStLoadUpdX, [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_LdStLDU , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [2, 2, 1, 1]>,
+ InstrItinData<IIC_LdStLDUX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLFD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLVecX , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLFDU , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLFDUX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 3, 1, 1]>,
+ InstrItinData<IIC_LdStLHA , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2,
+ P8_LU1, P8_LU2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLHAU , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [4, 4, 1, 1]>,
+ // first+last in dispatch group.
+ InstrItinData<IIC_LdStLHAUX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_DU3], 0>,
+ InstrStage<1, [P8_DU4], 0>,
+ InstrStage<1, [P8_DU5], 0>,
+ InstrStage<1, [P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [4, 4, 1, 1]>,
+ InstrItinData<IIC_LdStLWA , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2]>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLWARX, [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_DU3], 0>,
+ InstrStage<1, [P8_DU4], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2]>],
+ [3, 1, 1]>,
+ // first+last
+ InstrItinData<IIC_LdStLDARX, [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_DU3], 0>,
+ InstrStage<1, [P8_DU4], 0>,
+ InstrStage<1, [P8_DU5], 0>,
+ InstrStage<1, [P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2]>],
+ [3, 1, 1]>,
+ InstrItinData<IIC_LdStLMW , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2,
+ P8_LU1, P8_LU2]>],
+ [2, 1, 1]>,
+// Stores are dual-issued from the issue queue, so may only take up one
+// dispatch slot. The instruction will be broken into two IOPS. The agen
+// op is issued to the LSU, and the data op (register fetch) is issued
+// to either the LU (GPR store) or the VSU (FPR store).
+ InstrItinData<IIC_LdStStore , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2]>,
+ InstrStage<1, [P8_LU1, P8_LU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2,
+ P8_LSU1, P8_LSU2]>]
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTDU , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2,
+ P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [2, 1, 1, 1]>,
+ // First+last
+ InstrItinData<IIC_LdStSTDUX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_DU3], 0>,
+ InstrStage<1, [P8_DU4], 0>,
+ InstrStage<1, [P8_DU5], 0>,
+ InstrStage<1, [P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_LdStSTFD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTFDU , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [2, 1, 1, 1]>,
+ InstrItinData<IIC_LdStSTVEBX , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTDCX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_DU3], 0>,
+ InstrStage<1, [P8_DU4], 0>,
+ InstrStage<1, [P8_DU5], 0>,
+ InstrStage<1, [P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_LdStSTWCX , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_DU2], 0>,
+ InstrStage<1, [P8_DU3], 0>,
+ InstrStage<1, [P8_DU4], 0>,
+ InstrStage<1, [P8_DU5], 0>,
+ InstrStage<1, [P8_DU6], 0>,
+ InstrStage<1, [P8_LSU1, P8_LSU2], 0>,
+ InstrStage<1, [P8_LU1, P8_LU2]>],
+ [1, 1, 1]>,
+ InstrItinData<IIC_SprMFCR , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_CRU]>],
+ [6, 1]>,
+ InstrItinData<IIC_SprMFCRF , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_CRU]>],
+ [3, 1]>,
+ InstrItinData<IIC_SprMTSPR , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FXU1, P8_FXU2]>],
+ [4, 1]>, // mtctr
+ InstrItinData<IIC_FPGeneral , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [5, 1, 1]>,
+ InstrItinData<IIC_FPCompare , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [8, 1, 1]>,
+ InstrItinData<IIC_FPDivD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [33, 1, 1]>,
+ InstrItinData<IIC_FPDivS , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [27, 1, 1]>,
+ InstrItinData<IIC_FPSqrtD , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [44, 1, 1]>,
+ InstrItinData<IIC_FPSqrtS , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [32, 1, 1]>,
+ InstrItinData<IIC_FPFused , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [5, 1, 1, 1]>,
+ InstrItinData<IIC_FPRes , [InstrStage<1, [P8_DU1, P8_DU2, P8_DU3,
+ P8_DU4, P8_DU5, P8_DU6], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [5, 1, 1]>,
+ InstrItinData<IIC_VecGeneral , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VecVSL , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VecVSR , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [2, 1, 1]>,
+ InstrItinData<IIC_VecFP , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [6, 1, 1]>,
+ InstrItinData<IIC_VecFPCompare, [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [6, 1, 1]>,
+ InstrItinData<IIC_VecFPRound , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [6, 1, 1]>,
+ InstrItinData<IIC_VecComplex , [InstrStage<1, [P8_DU1], 0>,
+ InstrStage<1, [P8_FPU1, P8_FPU2]>],
+ [7, 1, 1]>,
+ InstrItinData<IIC_VecPerm , [InstrStage<1, [P8_DU1, P8_DU2], 0>,
+ InstrStage<1, [P8_FPU2, P8_FPU2]>],
+ [3, 1, 1]>
+]>;
+
+// ===---------------------------------------------------------------------===//
+// P8 machine model for scheduling and other instruction cost heuristics.
+// P8 has an 8 insn dispatch group (6 non-branch, 2 branch) and can issue up
+// to 10 insns per cycle (2-LU, 2-LSU, 2-FXU, 2-FPU, 1-CRU, 1-BRU).
+
+def P8Model : SchedMachineModel {
+ let IssueWidth = 8; // up to 8 instructions dispatched per cycle.
+ // up to six non-branch instructions.
+ // up to two branches in a dispatch group.
+
+ let MinLatency = 0; // Out-of-order dispatch.
+ let LoadLatency = 3; // Optimistic load latency assuming bypass.
+ // This is overriden by OperandCycles if the
+ // Itineraries are queried instead.
+ let MispredictPenalty = 16;
+
+ // Try to make sure we have at least 10 dispatch groups in a loop.
+ let LoopMicroOpBufferSize = 60;
+
+ let Itineraries = P8Itineraries;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h b/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h
index b2e7f3b..2c1378d 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPCCSELECTIONDAGINFO_H
-#define POWERPCCSELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCSELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_POWERPC_PPCSELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp
index b51512d..d8ba1c7 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.cpp
@@ -19,6 +19,7 @@
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
@@ -32,14 +33,16 @@ using namespace llvm;
#define GET_SUBTARGETINFO_CTOR
#include "PPCGenSubtargetInfo.inc"
-/// Return the datalayout string of a subtarget.
-static std::string getDataLayoutString(const PPCSubtarget &ST) {
- const Triple &T = ST.getTargetTriple();
+static cl::opt<bool> UseSubRegLiveness("ppc-track-subreg-liveness",
+cl::desc("Enable subregister liveness tracking for PPC"), cl::Hidden);
+/// Return the datalayout string of a subtarget.
+static std::string getDataLayoutString(const Triple &T) {
+ bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le;
std::string Ret;
// Most PPC* platforms are big endian, PPC64LE is little endian.
- if (ST.isLittleEndian())
+ if (T.getArch() == Triple::ppc64le)
Ret = "e";
else
Ret = "E";
@@ -48,18 +51,18 @@ static std::string getDataLayoutString(const PPCSubtarget &ST) {
// PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit
// pointers.
- if (!ST.isPPC64() || T.getOS() == Triple::Lv2)
+ if (!is64Bit || T.getOS() == Triple::Lv2)
Ret += "-p:32:32";
// Note, the alignment values for f64 and i64 on ppc64 in Darwin
// documentation are wrong; these are correct (i.e. "what gcc does").
- if (ST.isPPC64() || ST.isSVR4ABI())
+ if (is64Bit || !T.isOSDarwin())
Ret += "-i64:64";
else
Ret += "-f64:32:64";
// PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones.
- if (ST.isPPC64())
+ if (is64Bit)
Ret += "-n32:64";
else
Ret += "-n32";
@@ -70,47 +73,20 @@ static std::string getDataLayoutString(const PPCSubtarget &ST) {
PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
- resetSubtargetFeatures(CPU, FS);
+ initSubtargetFeatures(CPU, FS);
return *this;
}
PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, PPCTargetMachine &TM,
- bool is64Bit, CodeGenOpt::Level OptLevel)
- : PPCGenSubtargetInfo(TT, CPU, FS), IsPPC64(is64Bit), TargetTriple(TT),
- OptLevel(OptLevel),
- FrameLowering(initializeSubtargetDependencies(CPU, FS)),
- DL(getDataLayoutString(*this)), InstrInfo(*this), JITInfo(*this),
+ const std::string &FS, const PPCTargetMachine &TM)
+ : PPCGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT),
+ DL(getDataLayoutString(TargetTriple)),
+ IsPPC64(TargetTriple.getArch() == Triple::ppc64 ||
+ TargetTriple.getArch() == Triple::ppc64le),
+ TargetABI(PPC_ABI_UNKNOWN),
+ FrameLowering(initializeSubtargetDependencies(CPU, FS)), InstrInfo(*this),
TLInfo(TM), TSInfo(&DL) {}
-/// SetJITMode - This is called to inform the subtarget info that we are
-/// producing code for the JIT.
-void PPCSubtarget::SetJITMode() {
- // JIT mode doesn't want lazy resolver stubs, it knows exactly where
- // everything is. This matters for PPC64, which codegens in PIC mode without
- // stubs.
- HasLazyResolverStubs = false;
-
- // Calls to external functions need to use indirect calls
- IsJITCodeModel = true;
-}
-
-void PPCSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
- AttributeSet FnAttrs = MF->getFunction()->getAttributes();
- Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
- "target-cpu");
- Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
- "target-features");
- std::string CPU =
- !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : "";
- std::string FS =
- !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
- if (!FS.empty()) {
- initializeEnvironment();
- resetSubtargetFeatures(CPU, FS);
- }
-}
-
void PPCSubtarget::initializeEnvironment() {
StackAlignment = 16;
DarwinDirective = PPC::DIR_NONE;
@@ -119,8 +95,10 @@ void PPCSubtarget::initializeEnvironment() {
Use64BitRegs = false;
UseCRBits = false;
HasAltivec = false;
+ HasSPE = false;
HasQPX = false;
HasVSX = false;
+ HasP8Vector = false;
HasFCPSGN = false;
HasFSQRT = false;
HasFRE = false;
@@ -134,15 +112,19 @@ void PPCSubtarget::initializeEnvironment() {
HasFPCVT = false;
HasISEL = false;
HasPOPCNTD = false;
+ HasCMPB = false;
HasLDBRX = false;
IsBookE = false;
+ HasOnlyMSYNC = false;
+ IsPPC4xx = false;
+ IsPPC6xx = false;
+ IsE500 = false;
DeprecatedMFTB = false;
DeprecatedDST = false;
HasLazyResolverStubs = false;
- IsJITCodeModel = false;
}
-void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
+void PPCSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
// Determine default and user specified characteristics
std::string CPUName = CPU;
if (CPUName.empty())
@@ -156,35 +138,13 @@ void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUName);
- // Make sure 64-bit features are available when CPUname is generic
- std::string FullFS = FS;
-
- // If we are generating code for ppc64, verify that options make sense.
- if (IsPPC64) {
- Has64BitSupport = true;
- // Silently force 64-bit register use on ppc64.
- Use64BitRegs = true;
- if (!FullFS.empty())
- FullFS = "+64bit," + FullFS;
- else
- FullFS = "+64bit";
- }
-
- // At -O2 and above, track CR bits as individual registers.
- if (OptLevel >= CodeGenOpt::Default) {
- if (!FullFS.empty())
- FullFS = "+crbits," + FullFS;
- else
- FullFS = "+crbits";
- }
-
// Parse features string.
- ParseSubtargetFeatures(CPUName, FullFS);
+ ParseSubtargetFeatures(CPUName, FS);
// If the user requested use of 64-bit regs, but the cpu selected doesn't
// support it, ignore.
- if (use64BitRegs() && !has64BitSupport())
- Use64BitRegs = false;
+ if (IsPPC64 && has64BitSupport())
+ Use64BitRegs = true;
// Set up darwin-specific properties.
if (isDarwin())
@@ -199,10 +159,15 @@ void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
// Determine endianness.
IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le);
- // FIXME: For now, we disable VSX in little-endian mode until endian
- // issues in those instructions can be addressed.
- if (IsLittleEndian)
- HasVSX = false;
+ // Determine default ABI.
+ if (TargetABI == PPC_ABI_UNKNOWN) {
+ if (!isDarwin() && IsPPC64) {
+ if (IsLittleEndian)
+ TargetABI = PPC_ABI_ELFv2;
+ else
+ TargetABI = PPC_ABI_ELFv1;
+ }
+ }
}
/// hasLazyResolverStub - Return true if accesses to the specified global have
@@ -213,9 +178,7 @@ bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV,
// We never have stubs if HasLazyResolverStubs=false or if in static mode.
if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static)
return false;
- // If symbol visibility is hidden, the extra load is not needed if
- // the symbol is definitely defined in the current translation unit.
- bool isDecl = GV->isDeclaration() && !GV->isMaterializable();
+ bool isDecl = GV->isDeclaration();
if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage())
return false;
return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
@@ -275,3 +238,7 @@ bool PPCSubtarget::useAA() const {
return needsAggressiveScheduling(DarwinDirective);
}
+bool PPCSubtarget::enableSubRegLiveness() const {
+ return UseSubRegLiveness;
+}
+
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h
index a3cedaf..a1b644d 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCSubtarget.h
@@ -11,13 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPCSUBTARGET_H
-#define POWERPCSUBTARGET_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCSUBTARGET_H
+#define LLVM_LIB_TARGET_POWERPC_PPCSUBTARGET_H
#include "PPCFrameLowering.h"
-#include "PPCInstrInfo.h"
#include "PPCISelLowering.h"
-#include "PPCJITInfo.h"
+#include "PPCInstrInfo.h"
#include "PPCSelectionDAGInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
@@ -66,6 +65,12 @@ class TargetMachine;
class PPCSubtarget : public PPCGenSubtargetInfo {
protected:
+ /// TargetTriple - What processor and OS we're targeting.
+ Triple TargetTriple;
+
+ // Calculates type size & alignment
+ const DataLayout DL;
+
/// stackAlignment - The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
unsigned StackAlignment;
@@ -83,8 +88,10 @@ protected:
bool UseCRBits;
bool IsPPC64;
bool HasAltivec;
+ bool HasSPE;
bool HasQPX;
bool HasVSX;
+ bool HasP8Vector;
bool HasFCPSGN;
bool HasFSQRT;
bool HasFRE, HasFRES, HasFRSQRTE, HasFRSQRTES;
@@ -95,24 +102,26 @@ protected:
bool HasFPCVT;
bool HasISEL;
bool HasPOPCNTD;
+ bool HasCMPB;
bool HasLDBRX;
bool IsBookE;
+ bool HasOnlyMSYNC;
+ bool IsE500;
+ bool IsPPC4xx;
+ bool IsPPC6xx;
bool DeprecatedMFTB;
bool DeprecatedDST;
bool HasLazyResolverStubs;
- bool IsJITCodeModel;
bool IsLittleEndian;
- /// TargetTriple - What processor and OS we're targeting.
- Triple TargetTriple;
-
- /// OptLevel - What default optimization level we're emitting code for.
- CodeGenOpt::Level OptLevel;
+ enum {
+ PPC_ABI_UNKNOWN,
+ PPC_ABI_ELFv1,
+ PPC_ABI_ELFv2
+ } TargetABI;
PPCFrameLowering FrameLowering;
- const DataLayout DL;
PPCInstrInfo InstrInfo;
- PPCJITInfo JITInfo;
PPCTargetLowering TLInfo;
PPCSelectionDAGInfo TSInfo;
@@ -121,17 +130,12 @@ public:
/// of the specified triple.
///
PPCSubtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, PPCTargetMachine &TM, bool is64Bit,
- CodeGenOpt::Level OptLevel);
+ const std::string &FS, const PPCTargetMachine &TM);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
- /// SetJITMode - This is called to inform the subtarget info that we are
- /// producing code for the JIT.
- void SetJITMode();
-
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
@@ -143,24 +147,32 @@ public:
/// getInstrItins - Return the instruction itineraries based on subtarget
/// selection.
- const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
-
- const PPCFrameLowering *getFrameLowering() const { return &FrameLowering; }
- const DataLayout *getDataLayout() const { return &DL; }
- const PPCInstrInfo *getInstrInfo() const { return &InstrInfo; }
- PPCJITInfo *getJITInfo() { return &JITInfo; }
- const PPCTargetLowering *getTargetLowering() const { return &TLInfo; }
- const PPCSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &InstrItins;
+ }
+
+ const PPCFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const PPCInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const PPCTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const PPCSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const PPCRegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
PPCSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
- /// \brief Reset the features for the PowerPC target.
- void resetSubtargetFeatures(const MachineFunction *MF) override;
private:
void initializeEnvironment();
- void resetSubtargetFeatures(StringRef CPU, StringRef FS);
+ void initSubtargetFeatures(StringRef CPU, StringRef FS);
public:
/// isPPC64 - Return true if we are generating code for 64-bit pointer mode.
@@ -186,9 +198,6 @@ public:
bool hasLazyResolverStub(const GlobalValue *GV,
const TargetMachine &TM) const;
- // isJITCodeModel - True if we're generating code for the JIT
- bool isJITCodeModel() const { return IsJITCodeModel; }
-
// isLittleEndian - True if generating little-endian code
bool isLittleEndian() const { return IsLittleEndian; }
@@ -205,13 +214,20 @@ public:
bool hasFPRND() const { return HasFPRND; }
bool hasFPCVT() const { return HasFPCVT; }
bool hasAltivec() const { return HasAltivec; }
+ bool hasSPE() const { return HasSPE; }
bool hasQPX() const { return HasQPX; }
bool hasVSX() const { return HasVSX; }
+ bool hasP8Vector() const { return HasP8Vector; }
bool hasMFOCRF() const { return HasMFOCRF; }
bool hasISEL() const { return HasISEL; }
bool hasPOPCNTD() const { return HasPOPCNTD; }
+ bool hasCMPB() const { return HasCMPB; }
bool hasLDBRX() const { return HasLDBRX; }
bool isBookE() const { return IsBookE; }
+ bool hasOnlyMSYNC() const { return HasOnlyMSYNC; }
+ bool isPPC4xx() const { return IsPPC4xx; }
+ bool isPPC6xx() const { return IsPPC6xx; }
+ bool isE500() const { return IsE500; }
bool isDeprecatedMFTB() const { return DeprecatedMFTB; }
bool isDeprecatedDST() const { return DeprecatedDST; }
@@ -227,9 +243,7 @@ public:
bool isDarwinABI() const { return isDarwin(); }
bool isSVR4ABI() const { return !isDarwin(); }
- /// FIXME: Should use a command-line option.
- bool isELFv2ABI() const { return isPPC64() && isSVR4ABI() &&
- isLittleEndian(); }
+ bool isELFv2ABI() const { return TargetABI == PPC_ABI_ELFv2; }
bool enableEarlyIfConversion() const override { return hasISEL(); }
@@ -245,6 +259,8 @@ public:
MachineInstr *end,
unsigned NumRegionInstrs) const override;
bool useAA() const override;
+
+ bool enableSubRegLiveness() const override;
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp
index 9563b90..e07fd05 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -13,13 +13,16 @@
#include "PPCTargetMachine.h"
#include "PPC.h"
+#include "PPCTargetObjectFile.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Transforms/Scalar.h"
using namespace llvm;
static cl::
@@ -30,6 +33,11 @@ static cl::opt<bool>
VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early",
cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early"));
+static cl::opt<bool>
+EnableGEPOpt("ppc-gep-opt", cl::Hidden,
+ cl::desc("Enable optimizations on complex GEPs"),
+ cl::init(true));
+
extern "C" void LLVMInitializePowerPCTarget() {
// Register the targets
RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target);
@@ -37,15 +45,54 @@ extern "C" void LLVMInitializePowerPCTarget() {
RegisterTargetMachine<PPC64TargetMachine> C(ThePPC64LETarget);
}
+static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL, StringRef TT) {
+ std::string FullFS = FS;
+ Triple TargetTriple(TT);
+
+ // Make sure 64-bit features are available when CPUname is generic
+ if (TargetTriple.getArch() == Triple::ppc64 ||
+ TargetTriple.getArch() == Triple::ppc64le) {
+ if (!FullFS.empty())
+ FullFS = "+64bit," + FullFS;
+ else
+ FullFS = "+64bit";
+ }
+
+ if (OL >= CodeGenOpt::Default) {
+ if (!FullFS.empty())
+ FullFS = "+crbits," + FullFS;
+ else
+ FullFS = "+crbits";
+ }
+ return FullFS;
+}
+
+static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
+ // If it isn't a Mach-O file then it's going to be a linux ELF
+ // object file.
+ if (TT.isOSDarwin())
+ return make_unique<TargetLoweringObjectFileMachO>();
+
+ return make_unique<PPC64LinuxTargetObjectFile>();
+}
+
+// The FeatureString here is a little subtle. We are modifying the feature string
+// with what are (currently) non-function specific overrides as it goes into the
+// LLVMTargetMachine constructor and then using the stored value in the
+// Subtarget constructor below it.
PPCTargetMachine::PPCTargetMachine(const Target &T, StringRef TT, StringRef CPU,
StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
- CodeGenOpt::Level OL, bool is64Bit)
- : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
- Subtarget(TT, CPU, FS, *this, is64Bit, OL) {
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, computeFSAdditions(FS, OL, TT), Options, RM,
+ CM, OL),
+ TLOF(createTLOF(Triple(getTargetTriple()))),
+ Subtarget(TT, CPU, TargetFS, *this) {
initAsmInfo();
}
+PPCTargetMachine::~PPCTargetMachine() {}
+
void PPC32TargetMachine::anchor() { }
PPC32TargetMachine::PPC32TargetMachine(const Target &T, StringRef TT,
@@ -53,7 +100,7 @@ PPC32TargetMachine::PPC32TargetMachine(const Target &T, StringRef TT,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
- : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {
+ : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
}
void PPC64TargetMachine::anchor() { }
@@ -63,9 +110,34 @@ PPC64TargetMachine::PPC64TargetMachine(const Target &T, StringRef TT,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
- : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {
+ : PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
}
+const PPCSubtarget *
+PPCTargetMachine::getSubtargetImpl(const Function &F) const {
+ AttributeSet FnAttrs = F.getAttributes();
+ Attribute CPUAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
+ Attribute FSAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
+
+ std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
+ ? CPUAttr.getValueAsString().str()
+ : TargetCPU;
+ std::string FS = !FSAttr.hasAttribute(Attribute::None)
+ ? FSAttr.getValueAsString().str()
+ : TargetFS;
+
+ auto &I = SubtargetMap[CPU + FS];
+ if (!I) {
+ // This needs to be done before we create a new subtarget since any
+ // creation will depend on the TM and the code generation flags on the
+ // function that reside in TargetOptions.
+ resetTargetOptions(F);
+ I = llvm::make_unique<PPCSubtarget>(TargetTriple, CPU, FS, *this);
+ }
+ return I.get();
+}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
@@ -86,12 +158,13 @@ public:
return *getPPCTargetMachine().getSubtargetImpl();
}
+ void addIRPasses() override;
bool addPreISel() override;
bool addILPOpts() override;
bool addInstSelector() override;
- bool addPreRegAlloc() override;
- bool addPreSched2() override;
- bool addPreEmitPass() override;
+ void addPreRegAlloc() override;
+ void addPreSched2() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -99,6 +172,25 @@ TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) {
return new PPCPassConfig(this, PM);
}
+void PPCPassConfig::addIRPasses() {
+ addPass(createAtomicExpandPass(&getPPCTargetMachine()));
+
+ if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
+ // Call SeparateConstOffsetFromGEP pass to extract constants within indices
+ // and lower a GEP with multiple indices to either arithmetic operations or
+ // multiple GEPs with single index.
+ addPass(createSeparateConstOffsetFromGEPPass(TM, true));
+ // Call EarlyCSE pass to find and remove subexpressions in the lowered
+ // result.
+ addPass(createEarlyCSEPass());
+ // Do loop invariant code motion in case part of the lowered result is
+ // invariant.
+ addPass(createLICMPass());
+ }
+
+ TargetPassConfig::addIRPasses();
+}
+
bool PPCPassConfig::addPreISel() {
if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
addPass(createPPCCTRLoops(getPPCTargetMachine()));
@@ -124,40 +216,24 @@ bool PPCPassConfig::addInstSelector() {
return false;
}
-bool PPCPassConfig::addPreRegAlloc() {
+void PPCPassConfig::addPreRegAlloc() {
initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID,
&PPCVSXFMAMutateID);
- return false;
}
-bool PPCPassConfig::addPreSched2() {
- addPass(createPPCVSXCopyCleanupPass());
+void PPCPassConfig::addPreSched2() {
+ addPass(createPPCVSXCopyCleanupPass(), false);
if (getOptLevel() != CodeGenOpt::None)
addPass(&IfConverterID);
-
- return true;
}
-bool PPCPassConfig::addPreEmitPass() {
+void PPCPassConfig::addPreEmitPass() {
if (getOptLevel() != CodeGenOpt::None)
- addPass(createPPCEarlyReturnPass());
+ addPass(createPPCEarlyReturnPass(), false);
// Must run branch selection immediately preceding the asm printer.
- addPass(createPPCBranchSelectionPass());
- return false;
-}
-
-bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) {
- // Inform the subtarget that we are in JIT mode. FIXME: does this break macho
- // writing?
- Subtarget.SetJITMode();
-
- // Machine code emitter pass for PowerPC.
- PM.add(createPPCJITCodeEmitterPass(*this, JCE));
-
- return false;
+ addPass(createPPCBranchSelectionPass(), false);
}
void PPCTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h
index 4c7029c..5095d73 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPC_TARGETMACHINE_H
-#define PPC_TARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCTARGETMACHINE_H
+#define LLVM_LIB_TARGET_POWERPC_PPCTARGETMACHINE_H
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
@@ -24,46 +24,30 @@ namespace llvm {
/// PPCTargetMachine - Common code between 32-bit and 64-bit PowerPC targets.
///
class PPCTargetMachine : public LLVMTargetMachine {
- PPCSubtarget Subtarget;
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
+ PPCSubtarget Subtarget;
+
+ mutable StringMap<std::unique_ptr<PPCSubtarget>> SubtargetMap;
public:
PPCTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
- CodeGenOpt::Level OL, bool is64Bit);
+ CodeGenOpt::Level OL);
- const PPCInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const PPCFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- PPCJITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
- const PPCTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const PPCSelectionDAGInfo* getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
- const PPCRegisterInfo *getRegisterInfo() const override {
- return &getInstrInfo()->getRegisterInfo();
- }
+ ~PPCTargetMachine() override;
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- const PPCSubtarget *getSubtargetImpl() const override { return &Subtarget; }
- const InstrItineraryData *getInstrItineraryData() const override {
- return &getSubtargetImpl()->getInstrItineraryData();
- }
+ const PPCSubtarget *getSubtargetImpl() const override { return &Subtarget; }
+ const PPCSubtarget *getSubtargetImpl(const Function &F) const override;
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
- bool addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) override;
/// \brief Register PPC analysis passes with a pass manager.
void addAnalysisPasses(PassManagerBase &PM) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
/// PPC32TargetMachine - PowerPC 32-bit target machine.
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h b/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h
index 3e71bbc..cd84da2 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_PPC_TARGETOBJECTFILE_H
-#define LLVM_TARGET_PPC_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCTARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_POWERPC_PPCTARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h b/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h
index 73fb691..6493713 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetStreamer.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef PPCTARGETSTREAMER_H
-#define PPCTARGETSTREAMER_H
+#ifndef LLVM_LIB_TARGET_POWERPC_PPCTARGETSTREAMER_H
+#define LLVM_LIB_TARGET_POWERPC_PPCTARGETSTREAMER_H
#include "llvm/MC/MCStreamer.h"
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
index 007901b..a7bb252 100644
--- a/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
@@ -38,6 +38,7 @@ void initializePPCTTIPass(PassRegistry &);
namespace {
class PPCTTI final : public ImmutablePass, public TargetTransformInfo {
+ const TargetMachine *TM;
const PPCSubtarget *ST;
const PPCTargetLowering *TLI;
@@ -47,16 +48,16 @@ public:
}
PPCTTI(const PPCTargetMachine *TM)
- : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
- TLI(TM->getTargetLowering()) {
+ : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
+ TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializePPCTTIPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() override {
+ void initializePass() override {
pushTTIStack(this);
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
@@ -64,7 +65,7 @@ public:
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
- virtual void *getAdjustedAnalysisPointer(const void *ID) override {
+ void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
@@ -79,33 +80,31 @@ public:
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
- virtual PopcntSupportKind
- getPopcntSupport(unsigned TyWidth) const override;
- virtual void getUnrollingPreferences(
- Loop *L, UnrollingPreferences &UP) const override;
+ PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
+ void getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const override;
/// @}
/// \name Vector TTI Implementations
/// @{
- virtual unsigned getNumberOfRegisters(bool Vector) const override;
- virtual unsigned getRegisterBitWidth(bool Vector) const override;
- virtual unsigned getMaximumUnrollFactor() const override;
- virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind,
- OperandValueKind) const override;
- virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
- int Index, Type *SubTp) const override;
- virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const override;
- virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) const override;
- virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) const override;
- virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) const override;
+ unsigned getNumberOfRegisters(bool Vector) const override;
+ unsigned getRegisterBitWidth(bool Vector) const override;
+ unsigned getMaxInterleaveFactor() const override;
+ unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
+ OperandValueKind, OperandValueProperties,
+ OperandValueProperties) const override;
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
+ int Index, Type *SubTp) const override;
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src) const override;
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) const override;
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const override;
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override;
/// @}
};
@@ -184,6 +183,15 @@ unsigned PPCTTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
return TCC_Free;
break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TCC_Free;
+ break;
}
return PPCTTI::getIntImmCost(Imm, Ty);
}
@@ -271,12 +279,15 @@ unsigned PPCTTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
return PPCTTI::getIntImmCost(Imm, Ty);
}
-void PPCTTI::getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const {
- if (ST->getDarwinDirective() == PPC::DIR_A2) {
+void PPCTTI::getUnrollingPreferences(const Function *F, Loop *L,
+ UnrollingPreferences &UP) const {
+ if (TM->getSubtarget<PPCSubtarget>(F).getDarwinDirective() == PPC::DIR_A2) {
// The A2 is in-order with a deep pipeline, and concatenation unrolling
// helps expose latency-hiding opportunities to the instruction scheduler.
UP.Partial = UP.Runtime = true;
}
+
+ TargetTransformInfo::getUnrollingPreferences(F, L, UP);
}
unsigned PPCTTI::getNumberOfRegisters(bool Vector) const {
@@ -297,7 +308,7 @@ unsigned PPCTTI::getRegisterBitWidth(bool Vector) const {
}
-unsigned PPCTTI::getMaximumUnrollFactor() const {
+unsigned PPCTTI::getMaxInterleaveFactor() const {
unsigned Directive = ST->getDarwinDirective();
// The 440 has no SIMD support, but floating-point instructions
// have a 5-cycle latency, so unroll by 5x for latency hiding.
@@ -318,14 +329,15 @@ unsigned PPCTTI::getMaximumUnrollFactor() const {
return 2;
}
-unsigned PPCTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Op1Info,
- OperandValueKind Op2Info) const {
+unsigned PPCTTI::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
+ OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) const {
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
// Fallback to the default implementation.
- return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
- Op2Info);
+ return TargetTransformInfo::getArithmeticInstrCost(
+ Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
}
unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
diff --git a/contrib/llvm/lib/Target/R600/AMDGPU.h b/contrib/llvm/lib/Target/R600/AMDGPU.h
index d7e94f7..c660055 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPU.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPU.h
@@ -8,8 +8,8 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef AMDGPU_H
-#define AMDGPU_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPU_H
+#define LLVM_LIB_TARGET_R600_AMDGPU_H
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
@@ -38,21 +38,31 @@ FunctionPass *createAMDGPUCFGStructurizerPass();
// SI Passes
FunctionPass *createSITypeRewriter();
FunctionPass *createSIAnnotateControlFlowPass();
+FunctionPass *createSIFoldOperandsPass();
FunctionPass *createSILowerI1CopiesPass();
FunctionPass *createSIShrinkInstructionsPass();
+FunctionPass *createSILoadStoreOptimizerPass(TargetMachine &tm);
FunctionPass *createSILowerControlFlowPass(TargetMachine &tm);
FunctionPass *createSIFixSGPRCopiesPass(TargetMachine &tm);
FunctionPass *createSIFixSGPRLiveRangesPass();
FunctionPass *createSICodeEmitterPass(formatted_raw_ostream &OS);
FunctionPass *createSIInsertWaits(TargetMachine &tm);
+FunctionPass *createSIPrepareScratchRegs();
+
+void initializeSIFoldOperandsPass(PassRegistry &);
+extern char &SIFoldOperandsID;
void initializeSILowerI1CopiesPass(PassRegistry &);
extern char &SILowerI1CopiesID;
+void initializeSILoadStoreOptimizerPass(PassRegistry &);
+extern char &SILoadStoreOptimizerID;
+
// Passes common to R600 and SI
FunctionPass *createAMDGPUPromoteAlloca(const AMDGPUSubtarget &ST);
Pass *createAMDGPUStructurizeCFGPass();
FunctionPass *createAMDGPUISelDag(TargetMachine &tm);
+ModulePass *createAMDGPUAlwaysInlinePass();
/// \brief Creates an AMDGPU-specific Target Transformation Info pass.
ImmutablePass *
@@ -63,10 +73,15 @@ extern char &SIFixSGPRLiveRangesID;
extern Target TheAMDGPUTarget;
+extern Target TheGCNTarget;
namespace AMDGPU {
enum TargetIndex {
- TI_CONSTDATA_START
+ TI_CONSTDATA_START,
+ TI_SCRATCH_RSRC_DWORD0,
+ TI_SCRATCH_RSRC_DWORD1,
+ TI_SCRATCH_RSRC_DWORD2,
+ TI_SCRATCH_RSRC_DWORD3
};
}
@@ -127,4 +142,4 @@ enum AddressSpaces {
} // namespace AMDGPUAS
-#endif // AMDGPU_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPU.td b/contrib/llvm/lib/Target/R600/AMDGPU.td
index 5645f1a..1df4448 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPU.td
+++ b/contrib/llvm/lib/Target/R600/AMDGPU.td
@@ -81,6 +81,22 @@ def FeatureCFALUBug : SubtargetFeature<"cfalubug",
"true",
"GPU has CF_ALU bug">;
+// XXX - This should probably be removed once enabled by default
+def FeatureEnableLoadStoreOpt : SubtargetFeature <"load-store-opt",
+ "EnableLoadStoreOpt",
+ "true",
+ "Enable SI load/store optimizer pass">;
+
+def FeatureFlatAddressSpace : SubtargetFeature<"flat-address-space",
+ "FlatAddressSpace",
+ "true",
+ "Support flat address space">;
+
+def FeatureVGPRSpilling : SubtargetFeature<"vgpr-spilling",
+ "EnableVGPRSpilling",
+ "true",
+ "Enable spilling of VGPRs to scratch memory">;
+
class SubtargetFeatureFetchLimit <string Value> :
SubtargetFeature <"fetch"#Value,
"TexVTXClauseSize",
@@ -135,16 +151,28 @@ def FeatureSouthernIslands : SubtargetFeatureGeneration<"SOUTHERN_ISLANDS",
def FeatureSeaIslands : SubtargetFeatureGeneration<"SEA_ISLANDS",
[Feature64BitPtr, FeatureFP64, FeatureLocalMemorySize65536,
- FeatureWavefrontSize64]>;
+ FeatureWavefrontSize64, FeatureFlatAddressSpace]>;
+
+def FeatureVolcanicIslands : SubtargetFeatureGeneration<"VOLCANIC_ISLANDS",
+ [Feature64BitPtr, FeatureFP64, FeatureLocalMemorySize65536,
+ FeatureWavefrontSize64, FeatureFlatAddressSpace]>;
+
//===----------------------------------------------------------------------===//
def AMDGPUInstrInfo : InstrInfo {
let guessInstructionProperties = 1;
}
+def AMDGPUAsmParser : AsmParser {
+ // Some of the R600 registers have the same name, so this crashes.
+ // For example T0_XYZW and T0_XY both have the asm name T0.
+ let ShouldEmitMatchRegisterName = 0;
+}
+
def AMDGPU : Target {
// Pull in Instruction Info:
let InstructionSet = AMDGPUInstrInfo;
+ let AssemblyParsers = [AMDGPUAsmParser];
}
// Dummy Instruction itineraries for pseudo instructions
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUAlwaysInlinePass.cpp b/contrib/llvm/lib/Target/R600/AMDGPUAlwaysInlinePass.cpp
new file mode 100644
index 0000000..b545b45
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUAlwaysInlinePass.cpp
@@ -0,0 +1,66 @@
+//===-- AMDGPUAlwaysInlinePass.cpp - Promote Allocas ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass marks all internal functions as always_inline and creates
+/// duplicates of all other functions a marks the duplicates as always_inline.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+
+using namespace llvm;
+
+namespace {
+
+class AMDGPUAlwaysInline : public ModulePass {
+
+ static char ID;
+
+public:
+ AMDGPUAlwaysInline() : ModulePass(ID) { }
+ bool runOnModule(Module &M) override;
+ const char *getPassName() const override { return "AMDGPU Always Inline Pass"; }
+};
+
+} // End anonymous namespace
+
+char AMDGPUAlwaysInline::ID = 0;
+
+bool AMDGPUAlwaysInline::runOnModule(Module &M) {
+
+ std::vector<Function*> FuncsToClone;
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ Function &F = *I;
+ if (!F.hasLocalLinkage() && !F.isDeclaration() && !F.use_empty())
+ FuncsToClone.push_back(&F);
+ }
+
+ for (Function *F : FuncsToClone) {
+ ValueToValueMapTy VMap;
+ Function *NewFunc = CloneFunction(F, VMap, false);
+ NewFunc->setLinkage(GlobalValue::InternalLinkage);
+ F->getParent()->getFunctionList().push_back(NewFunc);
+ F->replaceAllUsesWith(NewFunc);
+ }
+
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ Function &F = *I;
+ if (F.hasLocalLinkage()) {
+ F.addFnAttr(Attribute::AlwaysInline);
+ }
+ }
+ return false;
+}
+
+ModulePass *llvm::createAMDGPUAlwaysInlinePass() {
+ return new AMDGPUAlwaysInline();
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp
index 73faaa1..6185e36 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.cpp
@@ -18,6 +18,7 @@
#include "AMDGPUAsmPrinter.h"
#include "AMDGPU.h"
+#include "AMDKernelCodeT.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
@@ -79,6 +80,7 @@ static AsmPrinter *createAMDGPUAsmPrinterPass(TargetMachine &tm,
extern "C" void LLVMInitializeR600AsmPrinter() {
TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
@@ -97,9 +99,13 @@ void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+
+ // The starting address of all shader programs must be 256 bytes aligned.
+ MF.setAlignment(8);
+
SetupMachineFunction(MF);
- OutStreamer.emitRawComment(Twine('@') + MF.getName() + Twine(':'));
+ EmitFunctionHeader();
MCContext &Context = getObjFileLowering().getContext();
const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config",
@@ -109,7 +115,11 @@ bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
- if (STM.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ if (STM.isAmdHsaOS()) {
+ getSIProgramInfo(KernelInfo, MF);
+ EmitAmdKernelCodeT(MF, KernelInfo);
+ OutStreamer.EmitCodeAlignment(2 << (MF.getAlignment() - 1));
+ } else if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
getSIProgramInfo(KernelInfo, MF);
EmitProgramInfoSI(MF, KernelInfo);
} else {
@@ -151,23 +161,18 @@ bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
}
}
- if (STM.dumpCode()) {
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- MF.dump();
-#endif
+ if (STM.dumpCode() && DisasmEnabled) {
- if (DisasmEnabled) {
- OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm",
- ELF::SHT_NOTE, 0,
- SectionKind::getReadOnly()));
+ OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm",
+ ELF::SHT_NOTE, 0,
+ SectionKind::getReadOnly()));
- for (size_t i = 0; i < DisasmLines.size(); ++i) {
- std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
- Comment += " ; " + HexLines[i] + "\n";
+ for (size_t i = 0; i < DisasmLines.size(); ++i) {
+ std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
+ Comment += " ; " + HexLines[i] + "\n";
- OutStreamer.EmitBytes(StringRef(DisasmLines[i]));
- OutStreamer.EmitBytes(StringRef(Comment));
- }
+ OutStreamer.EmitBytes(StringRef(DisasmLines[i]));
+ OutStreamer.EmitBytes(StringRef(Comment));
}
}
@@ -177,8 +182,8 @@ bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
unsigned MaxGPR = 0;
bool killPixel = false;
- const R600RegisterInfo *RI
- = static_cast<const R600RegisterInfo*>(TM.getRegisterInfo());
+ const R600RegisterInfo *RI = static_cast<const R600RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
@@ -236,12 +241,15 @@ void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) const {
+ const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
uint64_t CodeSize = 0;
unsigned MaxSGPR = 0;
unsigned MaxVGPR = 0;
bool VCCUsed = false;
- const SIRegisterInfo *RI
- = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
+ bool FlatUsed = false;
+ const SIRegisterInfo *RI = static_cast<const SIRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
@@ -262,6 +270,11 @@ void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
reg == AMDGPU::VCC_HI) {
VCCUsed = true;
continue;
+ } else if (reg == AMDGPU::FLAT_SCR ||
+ reg == AMDGPU::FLAT_SCR_LO ||
+ reg == AMDGPU::FLAT_SCR_HI) {
+ FlatUsed = true;
+ continue;
}
switch (reg) {
@@ -275,7 +288,7 @@ void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
if (AMDGPU::SReg_32RegClass.contains(reg)) {
isSGPR = true;
width = 1;
- } else if (AMDGPU::VReg_32RegClass.contains(reg)) {
+ } else if (AMDGPU::VGPR_32RegClass.contains(reg)) {
isSGPR = false;
width = 1;
} else if (AMDGPU::SReg_64RegClass.contains(reg)) {
@@ -322,9 +335,16 @@ void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
if (VCCUsed)
MaxSGPR += 2;
- ProgInfo.NumVGPR = MaxVGPR;
- ProgInfo.NumSGPR = MaxSGPR;
+ if (FlatUsed)
+ MaxSGPR += 2;
+
+ // We found the maximum register index. They start at 0, so add one to get the
+ // number of registers.
+ ProgInfo.NumVGPR = MaxVGPR + 1;
+ ProgInfo.NumSGPR = MaxSGPR + 1;
+ ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4;
+ ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8;
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(MF);
@@ -338,22 +358,9 @@ void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF);
+ ProgInfo.FlatUsed = FlatUsed;
+ ProgInfo.VCCUsed = VCCUsed;
ProgInfo.CodeLen = CodeSize;
-}
-
-void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
- const SIProgramInfo &KernelInfo) {
- const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
- const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
-
- unsigned RsrcReg;
- switch (MFI->getShaderType()) {
- default: // Fall through
- case ShaderType::COMPUTE: RsrcReg = R_00B848_COMPUTE_PGM_RSRC1; break;
- case ShaderType::GEOMETRY: RsrcReg = R_00B228_SPI_SHADER_PGM_RSRC1_GS; break;
- case ShaderType::PIXEL: RsrcReg = R_00B028_SPI_SHADER_PGM_RSRC1_PS; break;
- case ShaderType::VERTEX: RsrcReg = R_00B128_SPI_SHADER_PGM_RSRC1_VS; break;
- }
unsigned LDSAlignShift;
if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
@@ -364,52 +371,206 @@ void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
LDSAlignShift = 9;
}
- unsigned LDSBlocks =
- RoundUpToAlignment(MFI->LDSSize, 1 << LDSAlignShift) >> LDSAlignShift;
+ unsigned LDSSpillSize = MFI->LDSWaveSpillSize *
+ MFI->getMaximumWorkGroupSize(MF);
+
+ ProgInfo.LDSSize = MFI->LDSSize + LDSSpillSize;
+ ProgInfo.LDSBlocks =
+ RoundUpToAlignment(ProgInfo.LDSSize, 1 << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
- // is used by the entire wave. KernelInfo.ScratchSize is the amount of
+ // is used by the entire wave. ProgInfo.ScratchSize is the amount of
// scratch memory used per thread.
- unsigned ScratchBlocks =
- RoundUpToAlignment(KernelInfo.ScratchSize * STM.getWavefrontSize(),
+ ProgInfo.ScratchBlocks =
+ RoundUpToAlignment(ProgInfo.ScratchSize * STM.getWavefrontSize(),
1 << ScratchAlignShift) >> ScratchAlignShift;
+ ProgInfo.ComputePGMRSrc1 =
+ S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
+ S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
+ S_00B848_PRIORITY(ProgInfo.Priority) |
+ S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
+ S_00B848_PRIV(ProgInfo.Priv) |
+ S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
+ S_00B848_IEEE_MODE(ProgInfo.DebugMode) |
+ S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
+
+ ProgInfo.ComputePGMRSrc2 =
+ S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
+ S_00B84C_USER_SGPR(MFI->NumUserSGPRs) |
+ S_00B84C_TGID_X_EN(1) |
+ S_00B84C_TGID_Y_EN(1) |
+ S_00B84C_TGID_Z_EN(1) |
+ S_00B84C_TG_SIZE_EN(1) |
+ S_00B84C_TIDIG_COMP_CNT(2) |
+ S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks);
+}
+
+static unsigned getRsrcReg(unsigned ShaderType) {
+ switch (ShaderType) {
+ default: // Fall through
+ case ShaderType::COMPUTE: return R_00B848_COMPUTE_PGM_RSRC1;
+ case ShaderType::GEOMETRY: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
+ case ShaderType::PIXEL: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
+ case ShaderType::VERTEX: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
+ }
+}
+
+void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
+ const SIProgramInfo &KernelInfo) {
+ const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ unsigned RsrcReg = getRsrcReg(MFI->getShaderType());
+
if (MFI->getShaderType() == ShaderType::COMPUTE) {
OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
- const uint32_t ComputePGMRSrc1 =
- S_00B848_VGPRS(KernelInfo.NumVGPR / 4) |
- S_00B848_SGPRS(KernelInfo.NumSGPR / 8) |
- S_00B848_PRIORITY(KernelInfo.Priority) |
- S_00B848_FLOAT_MODE(KernelInfo.FloatMode) |
- S_00B848_PRIV(KernelInfo.Priv) |
- S_00B848_DX10_CLAMP(KernelInfo.DX10Clamp) |
- S_00B848_IEEE_MODE(KernelInfo.DebugMode) |
- S_00B848_IEEE_MODE(KernelInfo.IEEEMode);
-
- OutStreamer.EmitIntValue(ComputePGMRSrc1, 4);
+ OutStreamer.EmitIntValue(KernelInfo.ComputePGMRSrc1, 4);
OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
- const uint32_t ComputePGMRSrc2 =
- S_00B84C_LDS_SIZE(LDSBlocks) |
- S_00B02C_SCRATCH_EN(ScratchBlocks > 0);
-
- OutStreamer.EmitIntValue(ComputePGMRSrc2, 4);
+ OutStreamer.EmitIntValue(KernelInfo.ComputePGMRSrc2, 4);
OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
- OutStreamer.EmitIntValue(S_00B860_WAVESIZE(ScratchBlocks), 4);
+ OutStreamer.EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4);
+
+ // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
+ // 0" comment but I don't see a corresponding field in the register spec.
} else {
OutStreamer.EmitIntValue(RsrcReg, 4);
- OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.NumVGPR / 4) |
- S_00B028_SGPRS(KernelInfo.NumSGPR / 8), 4);
+ OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) |
+ S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4);
+ if (STM.isVGPRSpillingEnabled(MFI)) {
+ OutStreamer.EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
+ OutStreamer.EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4);
+ }
}
if (MFI->getShaderType() == ShaderType::PIXEL) {
OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
- OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(LDSBlocks), 4);
+ OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4);
OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
OutStreamer.EmitIntValue(MFI->PSInputAddr, 4);
}
}
+
+void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF,
+ const SIProgramInfo &KernelInfo) const {
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
+ amd_kernel_code_t header;
+
+ memset(&header, 0, sizeof(header));
+
+ header.amd_code_version_major = AMD_CODE_VERSION_MAJOR;
+ header.amd_code_version_minor = AMD_CODE_VERSION_MINOR;
+
+ header.struct_byte_size = sizeof(amd_kernel_code_t);
+
+ header.target_chip = STM.getAmdKernelCodeChipID();
+
+ header.kernel_code_entry_byte_offset = (1ULL << MF.getAlignment());
+
+ header.compute_pgm_resource_registers =
+ KernelInfo.ComputePGMRSrc1 |
+ (KernelInfo.ComputePGMRSrc2 << 32);
+
+ // Code Properties:
+ header.code_properties = AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR |
+ AMD_CODE_PROPERTY_IS_PTR64;
+
+ if (KernelInfo.FlatUsed)
+ header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
+
+ if (KernelInfo.ScratchBlocks)
+ header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE;
+
+ header.workitem_private_segment_byte_size = KernelInfo.ScratchSize;
+ header.workgroup_group_segment_byte_size = KernelInfo.LDSSize;
+
+ // MFI->ABIArgOffset is the number of bytes for the kernel arguments
+ // plus 36. 36 is the number of bytes reserved at the begining of the
+ // input buffer to store work-group size information.
+ // FIXME: We should be adding the size of the implicit arguments
+ // to this value.
+ header.kernarg_segment_byte_size = MFI->ABIArgOffset;
+
+ header.wavefront_sgpr_count = KernelInfo.NumSGPR;
+ header.workitem_vgpr_count = KernelInfo.NumVGPR;
+
+ // FIXME: What values do I put for these alignments
+ header.kernarg_segment_alignment = 0;
+ header.group_segment_alignment = 0;
+ header.private_segment_alignment = 0;
+
+ header.code_type = 1; // HSA_EXT_CODE_KERNEL
+
+ header.wavefront_size = STM.getWavefrontSize();
+
+ const MCSectionELF *VersionSection = OutContext.getELFSection(".hsa.version",
+ ELF::SHT_PROGBITS, 0, SectionKind::getReadOnly());
+ OutStreamer.SwitchSection(VersionSection);
+ OutStreamer.EmitBytes(Twine("HSA Code Unit:" +
+ Twine(header.hsail_version_major) + "." +
+ Twine(header.hsail_version_minor) + ":" +
+ "AMD:" +
+ Twine(header.amd_code_version_major) + "." +
+ Twine(header.amd_code_version_minor) + ":" +
+ "GFX8.1:0").str());
+
+ OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
+
+ if (isVerbose()) {
+ OutStreamer.emitRawComment("amd_code_version_major = " +
+ Twine(header.amd_code_version_major), false);
+ OutStreamer.emitRawComment("amd_code_version_minor = " +
+ Twine(header.amd_code_version_minor), false);
+ OutStreamer.emitRawComment("struct_byte_size = " +
+ Twine(header.struct_byte_size), false);
+ OutStreamer.emitRawComment("target_chip = " +
+ Twine(header.target_chip), false);
+ OutStreamer.emitRawComment(" compute_pgm_rsrc1: " +
+ Twine::utohexstr(KernelInfo.ComputePGMRSrc1), false);
+ OutStreamer.emitRawComment(" compute_pgm_rsrc2: " +
+ Twine::utohexstr(KernelInfo.ComputePGMRSrc2), false);
+ OutStreamer.emitRawComment("enable_sgpr_private_segment_buffer = " +
+ Twine((bool)(header.code_properties &
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE)), false);
+ OutStreamer.emitRawComment("enable_sgpr_kernarg_segment_ptr = " +
+ Twine((bool)(header.code_properties &
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)), false);
+ OutStreamer.emitRawComment("private_element_size = 2 ", false);
+ OutStreamer.emitRawComment("is_ptr64 = " +
+ Twine((bool)(header.code_properties & AMD_CODE_PROPERTY_IS_PTR64)), false);
+ OutStreamer.emitRawComment("workitem_private_segment_byte_size = " +
+ Twine(header.workitem_private_segment_byte_size),
+ false);
+ OutStreamer.emitRawComment("workgroup_group_segment_byte_size = " +
+ Twine(header.workgroup_group_segment_byte_size),
+ false);
+ OutStreamer.emitRawComment("gds_segment_byte_size = " +
+ Twine(header.gds_segment_byte_size), false);
+ OutStreamer.emitRawComment("kernarg_segment_byte_size = " +
+ Twine(header.kernarg_segment_byte_size), false);
+ OutStreamer.emitRawComment("wavefront_sgpr_count = " +
+ Twine(header.wavefront_sgpr_count), false);
+ OutStreamer.emitRawComment("workitem_vgpr_count = " +
+ Twine(header.workitem_vgpr_count), false);
+ OutStreamer.emitRawComment("code_type = " + Twine(header.code_type), false);
+ OutStreamer.emitRawComment("wavefront_size = " +
+ Twine((int)header.wavefront_size), false);
+ OutStreamer.emitRawComment("optimization_level = " +
+ Twine(header.optimization_level), false);
+ OutStreamer.emitRawComment("hsail_profile = " +
+ Twine(header.hsail_profile), false);
+ OutStreamer.emitRawComment("hsail_machine_model = " +
+ Twine(header.hsail_machine_model), false);
+ OutStreamer.emitRawComment("hsail_version_major = " +
+ Twine(header.hsail_version_major), false);
+ OutStreamer.emitRawComment("hsail_version_minor = " +
+ Twine(header.hsail_version_minor), false);
+ }
+
+ OutStreamer.EmitBytes(StringRef((char*)&header, sizeof(header)));
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h
index 19907cf..b360ae8 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUAsmPrinter.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPU_ASMPRINTER_H
-#define AMDGPU_ASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUASMPRINTER_H
+#define LLVM_LIB_TARGET_R600_AMDGPUASMPRINTER_H
#include "llvm/CodeGen/AsmPrinter.h"
#include <vector>
@@ -24,8 +24,8 @@ class AMDGPUAsmPrinter : public AsmPrinter {
private:
struct SIProgramInfo {
SIProgramInfo() :
- NumVGPR(0),
- NumSGPR(0),
+ VGPRBlocks(0),
+ SGPRBlocks(0),
Priority(0),
FloatMode(0),
Priv(0),
@@ -33,11 +33,19 @@ private:
DebugMode(0),
IEEEMode(0),
ScratchSize(0),
+ ComputePGMRSrc1(0),
+ LDSBlocks(0),
+ ScratchBlocks(0),
+ ComputePGMRSrc2(0),
+ NumVGPR(0),
+ NumSGPR(0),
+ FlatUsed(false),
+ VCCUsed(false),
CodeLen(0) {}
// Fields set in PGM_RSRC1 pm4 packet.
- uint32_t NumVGPR;
- uint32_t NumSGPR;
+ uint32_t VGPRBlocks;
+ uint32_t SGPRBlocks;
uint32_t Priority;
uint32_t FloatMode;
uint32_t Priv;
@@ -46,7 +54,21 @@ private:
uint32_t IEEEMode;
uint32_t ScratchSize;
+ uint64_t ComputePGMRSrc1;
+
+ // Fields set in PGM_RSRC2 pm4 packet.
+ uint32_t LDSBlocks;
+ uint32_t ScratchBlocks;
+
+ uint64_t ComputePGMRSrc2;
+
+ uint32_t NumVGPR;
+ uint32_t NumSGPR;
+ uint32_t LDSSize;
+ bool FlatUsed;
+
// Bonus information for debugging.
+ bool VCCUsed;
uint64_t CodeLen;
};
@@ -59,6 +81,8 @@ private:
/// can correctly setup the GPU state.
void EmitProgramInfoR600(const MachineFunction &MF);
void EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &KernelInfo);
+ void EmitAmdKernelCodeT(const MachineFunction &MF,
+ const SIProgramInfo &KernelInfo) const;
public:
explicit AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer);
@@ -82,4 +106,4 @@ protected:
} // End anonymous llvm
-#endif //AMDGPU_ASMPRINTER_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td b/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td
index 3586c88..6ffa7a0 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td
+++ b/contrib/llvm/lib/Target/R600/AMDGPUCallingConv.td
@@ -59,16 +59,24 @@ def CC_AMDGPU_Kernel : CallingConv<[
]>;
def CC_AMDGPU : CallingConv<[
- CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>().getGeneration() >= "
- "AMDGPUSubtarget::SOUTHERN_ISLANDS && "
- "State.getMachineFunction().getInfo<SIMachineFunctionInfo>()->"#
- "getShaderType() == ShaderType::COMPUTE", CCDelegateTo<CC_AMDGPU_Kernel>>,
- CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>().getGeneration() < "
- "AMDGPUSubtarget::SOUTHERN_ISLANDS && "
- "State.getMachineFunction().getInfo<R600MachineFunctionInfo>()->"
- "getShaderType() == ShaderType::COMPUTE", CCDelegateTo<CC_AMDGPU_Kernel>>,
- CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>()"#
- ".getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS", CCDelegateTo<CC_SI>>,
- CCIf<"State.getTarget().getSubtarget<AMDGPUSubtarget>()"#
- ".getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS", CCDelegateTo<CC_R600>>
+ CCIf<"static_cast<const AMDGPUSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).getGeneration() >="
+ "AMDGPUSubtarget::SOUTHERN_ISLANDS && "
+ "State.getMachineFunction().getInfo<SIMachineFunctionInfo>()"
+ "->getShaderType() == ShaderType::COMPUTE",
+ CCDelegateTo<CC_AMDGPU_Kernel>>,
+ CCIf<"static_cast<const AMDGPUSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).getGeneration() < "
+ "AMDGPUSubtarget::SOUTHERN_ISLANDS && "
+ "State.getMachineFunction().getInfo<R600MachineFunctionInfo>()"
+ "->getShaderType() == ShaderType::COMPUTE",
+ CCDelegateTo<CC_AMDGPU_Kernel>>,
+ CCIf<"static_cast<const AMDGPUSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).getGeneration() >= "
+ "AMDGPUSubtarget::SOUTHERN_ISLANDS",
+ CCDelegateTo<CC_SI>>,
+ CCIf<"static_cast<const AMDGPUSubtarget&>"
+ "(State.getMachineFunction().getSubtarget()).getGeneration() < "
+ "AMDGPUSubtarget::SOUTHERN_ISLANDS",
+ CCDelegateTo<CC_R600>>
]>;
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h b/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h
index d18ede5..15a6636 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUFrameLowering.h
@@ -12,8 +12,8 @@
/// machine.
//
//===----------------------------------------------------------------------===//
-#ifndef AMDILFRAME_LOWERING_H
-#define AMDILFRAME_LOWERING_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUFRAMELOWERING_H
+#define LLVM_LIB_TARGET_R600_AMDGPUFRAMELOWERING_H
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetFrameLowering.h"
@@ -42,4 +42,4 @@ public:
bool hasFP(const MachineFunction &MF) const override;
};
} // namespace llvm
-#endif // AMDILFRAME_LOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp b/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
index cc17b7e..15112c7 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
@@ -65,6 +65,7 @@ private:
static bool checkPrivateAddress(const MachineMemOperand *Op);
static bool isGlobalStore(const StoreSDNode *N);
+ static bool isFlatStore(const StoreSDNode *N);
static bool isPrivateStore(const StoreSDNode *N);
static bool isLocalStore(const StoreSDNode *N);
static bool isRegionStore(const StoreSDNode *N);
@@ -72,30 +73,49 @@ private:
bool isCPLoad(const LoadSDNode *N) const;
bool isConstantLoad(const LoadSDNode *N, int cbID) const;
bool isGlobalLoad(const LoadSDNode *N) const;
+ bool isFlatLoad(const LoadSDNode *N) const;
bool isParamLoad(const LoadSDNode *N) const;
bool isPrivateLoad(const LoadSDNode *N) const;
bool isLocalLoad(const LoadSDNode *N) const;
bool isRegionLoad(const LoadSDNode *N) const;
- /// \returns True if the current basic block being selected is at control
- /// flow depth 0. Meaning that the current block dominates the
- // exit block.
- bool isCFDepth0() const;
-
const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
SDValue& Offset);
bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
- bool SelectMUBUFAddr64(SDValue Addr, SDValue &Ptr, SDValue &Offset,
- SDValue &ImmOffset) const;
+ bool isDSOffsetLegal(const SDValue &Base, unsigned Offset,
+ unsigned OffsetBits) const;
+ bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
+ bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
+ SDValue &Offset1) const;
+ void SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
+ SDValue &SOffset, SDValue &Offset, SDValue &Offen,
+ SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
+ SDValue &TFE) const;
+ bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
+ SDValue &Offset) const;
+ bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
+ SDValue &VAddr, SDValue &Offset,
+ SDValue &SLC) const;
bool SelectMUBUFScratch(SDValue Addr, SDValue &RSrc, SDValue &VAddr,
SDValue &SOffset, SDValue &ImmOffset) const;
- bool SelectMUBUFAddr32(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
- SDValue &SOffset, SDValue &Offset, SDValue &Offen,
- SDValue &Idxen, SDValue &GLC, SDValue &SLC,
+ bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
+ SDValue &Offset, SDValue &GLC, SDValue &SLC,
SDValue &TFE) const;
+ bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
+ SDValue &Offset, SDValue &GLC) const;
+ SDNode *SelectAddrSpaceCast(SDNode *N);
+ bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
+ bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
+ SDValue &Clamp, SDValue &Omod) const;
+
+ bool SelectVOP3Mods0Clamp(SDValue In, SDValue &Src, SDValue &SrcMods,
+ SDValue &Omod) const;
+ bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods,
+ SDValue &Clamp,
+ SDValue &Omod) const;
SDNode *SelectADD_SUB_I64(SDNode *N);
SDNode *SelectDIV_SCALE(SDNode *N);
@@ -135,7 +155,8 @@ const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
switch (N->getMachineOpcode()) {
default: {
- const MCInstrDesc &Desc = TM.getInstrInfo()->get(N->getMachineOpcode());
+ const MCInstrDesc &Desc =
+ TM.getSubtargetImpl()->getInstrInfo()->get(N->getMachineOpcode());
unsigned OpIdx = Desc.getNumDefs() + OpNo;
if (OpIdx >= Desc.getNumOperands())
return nullptr;
@@ -143,15 +164,17 @@ const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
if (RegClass == -1)
return nullptr;
- return TM.getRegisterInfo()->getRegClass(RegClass);
+ return TM.getSubtargetImpl()->getRegisterInfo()->getRegClass(RegClass);
}
case AMDGPU::REG_SEQUENCE: {
unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
- const TargetRegisterClass *SuperRC = TM.getRegisterInfo()->getRegClass(RCID);
+ const TargetRegisterClass *SuperRC =
+ TM.getSubtargetImpl()->getRegisterInfo()->getRegClass(RCID);
SDValue SubRegOp = N->getOperand(OpNo + 1);
unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
- return TM.getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx);
+ return TM.getSubtargetImpl()->getRegisterInfo()->getSubClassWithSubReg(
+ SuperRC, SubRegIdx);
}
}
}
@@ -239,10 +262,10 @@ SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
case AMDGPUISD::BUILD_VERTICAL_VECTOR:
case ISD::BUILD_VECTOR: {
unsigned RegClassID;
- const AMDGPURegisterInfo *TRI =
- static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo());
- const SIRegisterInfo *SIRI =
- static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
+ const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
@@ -263,7 +286,7 @@ SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
}
}
switch(NumVectorElts) {
- case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID :
+ case 1: RegClassID = UseVReg ? AMDGPU::VGPR_32RegClassID :
AMDGPU::SReg_32RegClassID;
break;
case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID :
@@ -394,6 +417,28 @@ SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
N->getValueType(0), Ops);
}
+ case ISD::LOAD: {
+ // To simplify the TableGen patters, we replace all i64 loads with
+ // v2i32 loads. Alternatively, we could promote i64 loads to v2i32
+ // during DAG legalization, however, so places (ExpandUnalignedLoad)
+ // in the DAG legalizer assume that if i64 is legal, so doing this
+ // promotion early can cause problems.
+ EVT VT = N->getValueType(0);
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (VT != MVT::i64 || LD->getExtensionType() != ISD::NON_EXTLOAD)
+ break;
+
+ SDValue NewLoad = CurDAG->getLoad(MVT::v2i32, SDLoc(N), LD->getChain(),
+ LD->getBasePtr(), LD->getMemOperand());
+ SDValue BitCast = CurDAG->getNode(ISD::BITCAST, SDLoc(N),
+ MVT::i64, NewLoad);
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLoad.getValue(1));
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), BitCast);
+ SelectCode(NewLoad.getNode());
+ N = BitCast.getNode();
+ break;
+ }
+
case AMDGPUISD::REGISTER_LOAD: {
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
break;
@@ -470,7 +515,16 @@ SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
case AMDGPUISD::DIV_SCALE: {
return SelectDIV_SCALE(N);
}
+ case ISD::CopyToReg: {
+ const SITargetLowering& Lowering =
+ *static_cast<const SITargetLowering*>(getTargetLowering());
+ Lowering.legalizeTargetIndependentNode(N, *CurDAG);
+ break;
+ }
+ case ISD::ADDRSPACECAST:
+ return SelectAddrSpaceCast(N);
}
+
return SelectCode(N);
}
@@ -508,6 +562,10 @@ bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
}
+bool AMDGPUDAGToDAGISel::isFlatStore(const StoreSDNode *N) {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::FLAT_ADDRESS);
+}
+
bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
}
@@ -539,6 +597,10 @@ bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
}
+bool AMDGPUDAGToDAGISel::isFlatLoad(const LoadSDNode *N) const {
+ return checkType(N->getMemOperand()->getValue(), AMDGPUAS::FLAT_ADDRESS);
+}
+
bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
}
@@ -568,23 +630,16 @@ bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const {
const Value *MemVal = N->getMemOperand()->getValue();
if (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
+ !checkType(MemVal, AMDGPUAS::FLAT_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::REGION_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::PARAM_D_ADDRESS) &&
- !checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)){
+ !checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)) {
return true;
}
return false;
}
-bool AMDGPUDAGToDAGISel::isCFDepth0() const {
- // FIXME: Figure out a way to use DominatorTree analysis here.
- const BasicBlock *CurBlock = FuncInfo->MBB->getBasicBlock();
- const Function *Fn = FuncInfo->Fn;
- return &Fn->front() == CurBlock || &Fn->back() == CurBlock;
-}
-
-
const char *AMDGPUDAGToDAGISel::getPassName() const {
return "AMDGPU DAG->DAG Pattern Instruction Selection";
}
@@ -687,14 +742,9 @@ SDNode *AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
SDValue AddLoArgs[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
- unsigned Opc = IsAdd ? AMDGPU::S_ADD_I32 : AMDGPU::S_SUB_I32;
+ unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
- if (!isCFDepth0()) {
- Opc = IsAdd ? AMDGPU::V_ADD_I32_e32 : AMDGPU::V_SUB_I32_e32;
- CarryOpc = IsAdd ? AMDGPU::V_ADDC_U32_e32 : AMDGPU::V_SUBB_U32_e32;
- }
-
SDNode *AddLo = CurDAG->getMachineNode( Opc, DL, VTList, AddLoArgs);
SDValue Carry(AddLo, 1);
SDNode *AddHi
@@ -721,34 +771,134 @@ SDNode *AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
= (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
const SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
-
+ const SDValue False = CurDAG->getTargetConstant(0, MVT::i1);
SDValue Ops[] = {
- N->getOperand(0),
- N->getOperand(1),
- N->getOperand(2),
- Zero,
- Zero,
- Zero,
- Zero
+ Zero, // src0_modifiers
+ N->getOperand(0), // src0
+ Zero, // src1_modifiers
+ N->getOperand(1), // src1
+ Zero, // src2_modifiers
+ N->getOperand(2), // src2
+ False, // clamp
+ Zero // omod
};
return CurDAG->SelectNodeTo(N, Opc, VT, MVT::i1, Ops);
}
-static SDValue wrapAddr64Rsrc(SelectionDAG *DAG, SDLoc DL, SDValue Ptr) {
- return SDValue(DAG->getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::v4i32,
- Ptr), 0);
+bool AMDGPUDAGToDAGISel::isDSOffsetLegal(const SDValue &Base, unsigned Offset,
+ unsigned OffsetBits) const {
+ const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
+ if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
+ (OffsetBits == 8 && !isUInt<8>(Offset)))
+ return false;
+
+ if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS)
+ return true;
+
+ // On Southern Islands instruction with a negative base value and an offset
+ // don't seem to work.
+ return CurDAG->SignBitIsZero(Base);
+}
+
+bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
+ SDValue &Offset) const {
+ if (CurDAG->isBaseWithConstantOffset(Addr)) {
+ SDValue N0 = Addr.getOperand(0);
+ SDValue N1 = Addr.getOperand(1);
+ ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
+ if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
+ // (add n0, c0)
+ Base = N0;
+ Offset = N1;
+ return true;
+ }
+ }
+
+ // If we have a constant address, prefer to put the constant into the
+ // offset. This can save moves to load the constant address since multiple
+ // operations can share the zero base address register, and enables merging
+ // into read2 / write2 instructions.
+ if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
+ if (isUInt<16>(CAddr->getZExtValue())) {
+ SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
+ MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
+ SDLoc(Addr), MVT::i32, Zero);
+ Base = SDValue(MovZero, 0);
+ Offset = Addr;
+ return true;
+ }
+ }
+
+ // default case
+ Base = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i16);
+ return true;
+}
+
+bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
+ SDValue &Offset0,
+ SDValue &Offset1) const {
+ if (CurDAG->isBaseWithConstantOffset(Addr)) {
+ SDValue N0 = Addr.getOperand(0);
+ SDValue N1 = Addr.getOperand(1);
+ ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
+ unsigned DWordOffset0 = C1->getZExtValue() / 4;
+ unsigned DWordOffset1 = DWordOffset0 + 1;
+ // (add n0, c0)
+ if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
+ Base = N0;
+ Offset0 = CurDAG->getTargetConstant(DWordOffset0, MVT::i8);
+ Offset1 = CurDAG->getTargetConstant(DWordOffset1, MVT::i8);
+ return true;
+ }
+ }
+
+ if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
+ unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
+ unsigned DWordOffset1 = DWordOffset0 + 1;
+ assert(4 * DWordOffset0 == CAddr->getZExtValue());
+
+ if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
+ SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
+ MachineSDNode *MovZero
+ = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
+ SDLoc(Addr), MVT::i32, Zero);
+ Base = SDValue(MovZero, 0);
+ Offset0 = CurDAG->getTargetConstant(DWordOffset0, MVT::i8);
+ Offset1 = CurDAG->getTargetConstant(DWordOffset1, MVT::i8);
+ return true;
+ }
+ }
+
+ // default case
+ Base = Addr;
+ Offset0 = CurDAG->getTargetConstant(0, MVT::i8);
+ Offset1 = CurDAG->getTargetConstant(1, MVT::i8);
+ return true;
}
static bool isLegalMUBUFImmOffset(const ConstantSDNode *Imm) {
return isUInt<12>(Imm->getZExtValue());
}
-bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &Ptr,
- SDValue &Offset,
- SDValue &ImmOffset) const {
+void AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
+ SDValue &VAddr, SDValue &SOffset,
+ SDValue &Offset, SDValue &Offen,
+ SDValue &Idxen, SDValue &Addr64,
+ SDValue &GLC, SDValue &SLC,
+ SDValue &TFE) const {
SDLoc DL(Addr);
+ GLC = CurDAG->getTargetConstant(0, MVT::i1);
+ SLC = CurDAG->getTargetConstant(0, MVT::i1);
+ TFE = CurDAG->getTargetConstant(0, MVT::i1);
+
+ Idxen = CurDAG->getTargetConstant(0, MVT::i1);
+ Offen = CurDAG->getTargetConstant(0, MVT::i1);
+ Addr64 = CurDAG->getTargetConstant(0, MVT::i1);
+ SOffset = CurDAG->getTargetConstant(0, MVT::i32);
+
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
@@ -757,57 +907,69 @@ bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &Ptr,
if (isLegalMUBUFImmOffset(C1)) {
if (N0.getOpcode() == ISD::ADD) {
- // (add (add N2, N3), C1)
+ // (add (add N2, N3), C1) -> addr64
SDValue N2 = N0.getOperand(0);
SDValue N3 = N0.getOperand(1);
- Ptr = wrapAddr64Rsrc(CurDAG, DL, N2);
- Offset = N3;
- ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
- return true;
+ Addr64 = CurDAG->getTargetConstant(1, MVT::i1);
+ Ptr = N2;
+ VAddr = N3;
+ Offset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
+ return;
}
- // (add N0, C1)
- Ptr = wrapAddr64Rsrc(CurDAG, DL, CurDAG->getTargetConstant(0, MVT::i64));;
- Offset = N0;
- ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
- return true;
+ // (add N0, C1) -> offset
+ VAddr = CurDAG->getTargetConstant(0, MVT::i32);
+ Ptr = N0;
+ Offset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
+ return;
}
}
if (Addr.getOpcode() == ISD::ADD) {
- // (add N0, N1)
+ // (add N0, N1) -> addr64
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
- Ptr = wrapAddr64Rsrc(CurDAG, DL, N0);
- Offset = N1;
- ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
- return true;
+ Addr64 = CurDAG->getTargetConstant(1, MVT::i1);
+ Ptr = N0;
+ VAddr = N1;
+ Offset = CurDAG->getTargetConstant(0, MVT::i16);
+ return;
}
- // default case
- Ptr = wrapAddr64Rsrc(CurDAG, DL, CurDAG->getConstant(0, MVT::i64));
- Offset = Addr;
- ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
- return true;
+ // default case -> offset
+ VAddr = CurDAG->getTargetConstant(0, MVT::i32);
+ Ptr = Addr;
+ Offset = CurDAG->getTargetConstant(0, MVT::i16);
+
}
-/// \brief Return a resource descriptor with the 'Add TID' bit enabled
-/// The TID (Thread ID) is multipled by the stride value (bits [61:48]
-/// of the resource descriptor) to create an offset, which is added to the
-/// resource ponter.
-static SDValue buildScratchRSRC(SelectionDAG *DAG, SDLoc DL, SDValue Ptr) {
+bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
+ SDValue &VAddr,
+ SDValue &Offset) const {
+ SDValue Ptr, SOffset, Offen, Idxen, Addr64, GLC, SLC, TFE;
+
+ SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
+ GLC, SLC, TFE);
+
+ ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
+ if (C->getSExtValue()) {
+ SDLoc DL(Addr);
+
+ const SITargetLowering& Lowering =
+ *static_cast<const SITargetLowering*>(getTargetLowering());
- uint64_t Rsrc = AMDGPU::RSRC_DATA_FORMAT | AMDGPU::RSRC_TID_ENABLE |
- 0xffffffff;
+ SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
+ return true;
+ }
+
+ return false;
+}
- SDValue PtrLo = DAG->getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
- SDValue PtrHi = DAG->getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
- SDValue DataLo = DAG->getTargetConstant(
- Rsrc & APInt::getAllOnesValue(32).getZExtValue(), MVT::i32);
- SDValue DataHi = DAG->getTargetConstant(Rsrc >> 32, MVT::i32);
+bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
+ SDValue &VAddr, SDValue &Offset,
+ SDValue &SLC) const {
+ SLC = CurDAG->getTargetConstant(0, MVT::i1);
- const SDValue Ops[] = { PtrLo, PtrHi, DataLo, DataHi };
- return SDValue(DAG->getMachineNode(AMDGPU::SI_BUFFER_RSRC, DL,
- MVT::v4i32, Ops), 0);
+ return SelectMUBUFAddr64(Addr, SRsrc, VAddr, Offset);
}
bool AMDGPUDAGToDAGISel::SelectMUBUFScratch(SDValue Addr, SDValue &Rsrc,
@@ -816,16 +978,34 @@ bool AMDGPUDAGToDAGISel::SelectMUBUFScratch(SDValue Addr, SDValue &Rsrc,
SDLoc DL(Addr);
MachineFunction &MF = CurDAG->getMachineFunction();
- const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SITargetLowering& Lowering =
+ *static_cast<const SITargetLowering*>(getTargetLowering());
-
- unsigned ScratchPtrReg =
- TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
unsigned ScratchOffsetReg =
TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET);
+ Lowering.CreateLiveInRegister(*CurDAG, &AMDGPU::SReg_32RegClass,
+ ScratchOffsetReg, MVT::i32);
+ SDValue Sym0 = CurDAG->getExternalSymbol("SCRATCH_RSRC_DWORD0", MVT::i32);
+ SDValue ScratchRsrcDword0 =
+ SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, Sym0), 0);
- Rsrc = buildScratchRSRC(CurDAG, DL, CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, MRI.getLiveInVirtReg(ScratchPtrReg), MVT::i64));
+ SDValue Sym1 = CurDAG->getExternalSymbol("SCRATCH_RSRC_DWORD1", MVT::i32);
+ SDValue ScratchRsrcDword1 =
+ SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, Sym1), 0);
+
+ const SDValue RsrcOps[] = {
+ CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
+ ScratchRsrcDword0,
+ CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
+ ScratchRsrcDword1,
+ CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32),
+ };
+ SDValue ScratchPtr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
+ MVT::v2i32, RsrcOps), 0);
+ Rsrc = SDValue(Lowering.buildScratchRSRC(*CurDAG, DL, ScratchPtr), 0);
SOffset = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
MRI.getLiveInVirtReg(ScratchOffsetReg), MVT::i32);
@@ -841,42 +1021,156 @@ bool AMDGPUDAGToDAGISel::SelectMUBUFScratch(SDValue Addr, SDValue &Rsrc,
}
}
- // (add FI, n0)
- if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
- isa<FrameIndexSDNode>(Addr.getOperand(0))) {
- VAddr = Addr.getOperand(1);
- ImmOffset = Addr.getOperand(0);
+ // (node)
+ VAddr = Addr;
+ ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
+ return true;
+}
+
+bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
+ SDValue &SOffset, SDValue &Offset,
+ SDValue &GLC, SDValue &SLC,
+ SDValue &TFE) const {
+ SDValue Ptr, VAddr, Offen, Idxen, Addr64;
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(Subtarget.getInstrInfo());
+
+ SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
+ GLC, SLC, TFE);
+
+ if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
+ !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
+ !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
+ uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
+ APInt::getAllOnesValue(32).getZExtValue(); // Size
+ SDLoc DL(Addr);
+
+ const SITargetLowering& Lowering =
+ *static_cast<const SITargetLowering*>(getTargetLowering());
+
+ SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
return true;
}
+ return false;
+}
- // (FI)
- if (isa<FrameIndexSDNode>(Addr)) {
- VAddr = SDValue(CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
- CurDAG->getConstant(0, MVT::i32)), 0);
- ImmOffset = Addr;
- return true;
+bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
+ SDValue &Soffset, SDValue &Offset,
+ SDValue &GLC) const {
+ SDValue SLC, TFE;
+
+ return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE);
+}
+
+// FIXME: This is incorrect and only enough to be able to compile.
+SDNode *AMDGPUDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) {
+ AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(N);
+ SDLoc DL(N);
+
+ assert(Subtarget.hasFlatAddressSpace() &&
+ "addrspacecast only supported with flat address space!");
+
+ assert((ASC->getSrcAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
+ ASC->getDestAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) &&
+ "Cannot cast address space to / from constant address!");
+
+ assert((ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS ||
+ ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) &&
+ "Can only cast to / from flat address space!");
+
+ // The flat instructions read the address as the index of the VGPR holding the
+ // address, so casting should just be reinterpreting the base VGPR, so just
+ // insert trunc / bitcast / zext.
+
+ SDValue Src = ASC->getOperand(0);
+ EVT DestVT = ASC->getValueType(0);
+ EVT SrcVT = Src.getValueType();
+
+ unsigned SrcSize = SrcVT.getSizeInBits();
+ unsigned DestSize = DestVT.getSizeInBits();
+
+ if (SrcSize > DestSize) {
+ assert(SrcSize == 64 && DestSize == 32);
+ return CurDAG->getMachineNode(
+ TargetOpcode::EXTRACT_SUBREG,
+ DL,
+ DestVT,
+ Src,
+ CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32));
}
- // (node)
- VAddr = Addr;
- ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
+
+ if (DestSize > SrcSize) {
+ assert(SrcSize == 32 && DestSize == 64);
+
+ // FIXME: This is probably wrong, we should never be defining
+ // a register class with both VGPRs and SGPRs
+ SDValue RC = CurDAG->getTargetConstant(AMDGPU::VS_64RegClassID, MVT::i32);
+
+ const SDValue Ops[] = {
+ RC,
+ Src,
+ CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
+ SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
+ CurDAG->getConstant(0, MVT::i32)), 0),
+ CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32)
+ };
+
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
+ SDLoc(N), N->getValueType(0), Ops);
+ }
+
+ assert(SrcSize == 64 && DestSize == 64);
+ return CurDAG->getNode(ISD::BITCAST, DL, DestVT, Src).getNode();
+}
+
+bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
+ SDValue &SrcMods) const {
+
+ unsigned Mods = 0;
+
+ Src = In;
+
+ if (Src.getOpcode() == ISD::FNEG) {
+ Mods |= SISrcMods::NEG;
+ Src = Src.getOperand(0);
+ }
+
+ if (Src.getOpcode() == ISD::FABS) {
+ Mods |= SISrcMods::ABS;
+ Src = Src.getOperand(0);
+ }
+
+ SrcMods = CurDAG->getTargetConstant(Mods, MVT::i32);
+
return true;
}
-bool AMDGPUDAGToDAGISel::SelectMUBUFAddr32(SDValue Addr, SDValue &SRsrc,
- SDValue &VAddr, SDValue &SOffset,
- SDValue &Offset, SDValue &Offen,
- SDValue &Idxen, SDValue &GLC,
- SDValue &SLC, SDValue &TFE) const {
+bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
+ SDValue &SrcMods, SDValue &Clamp,
+ SDValue &Omod) const {
+ // FIXME: Handle Clamp and Omod
+ Clamp = CurDAG->getTargetConstant(0, MVT::i32);
+ Omod = CurDAG->getTargetConstant(0, MVT::i32);
- GLC = CurDAG->getTargetConstant(0, MVT::i1);
- SLC = CurDAG->getTargetConstant(0, MVT::i1);
- TFE = CurDAG->getTargetConstant(0, MVT::i1);
+ return SelectVOP3Mods(In, Src, SrcMods);
+}
- Idxen = CurDAG->getTargetConstant(0, MVT::i1);
- Offen = CurDAG->getTargetConstant(1, MVT::i1);
+bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp(SDValue In, SDValue &Src,
+ SDValue &SrcMods,
+ SDValue &Omod) const {
+ // FIXME: Handle Omod
+ Omod = CurDAG->getTargetConstant(0, MVT::i32);
+
+ return SelectVOP3Mods(In, Src, SrcMods);
+}
- return SelectMUBUFScratch(Addr, SRsrc, VAddr, SOffset, Offset);
+bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src,
+ SDValue &SrcMods,
+ SDValue &Clamp,
+ SDValue &Omod) const {
+ Clamp = Omod = CurDAG->getTargetConstant(0, MVT::i32);
+ return SelectVOP3Mods(In, Src, SrcMods);
}
void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
index 5a46297b..2adcdf1 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
@@ -103,7 +103,7 @@ EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
}
AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
- TargetLowering(TM, new TargetLoweringObjectFileELF()) {
+ TargetLowering(TM) {
Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
@@ -130,6 +130,9 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FREM, MVT::f32, Custom);
+ setOperationAction(ISD::FREM, MVT::f64, Custom);
+
// Lower floating point store/load to integer store/load to reduce the number
// of patterns in tablegen.
setOperationAction(ISD::STORE, MVT::f32, Promote);
@@ -184,9 +187,6 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
- setOperationAction(ISD::LOAD, MVT::i64, Promote);
- AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
-
setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
@@ -213,18 +213,28 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
+ // There are no 64-bit extloads. These should be done as a 32-bit extload and
+ // an extension to 64-bit.
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
+ }
+
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
+ }
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
@@ -243,7 +253,8 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
@@ -282,6 +293,9 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
if (!Subtarget->hasFFBH())
@@ -310,7 +324,6 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::SUB, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
- // TODO: Implement custom UREM / SREM routines.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
@@ -342,12 +355,15 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
for (MVT VT : FloatVectorTypes) {
setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FMINNUM, VT, Expand);
+ setOperationAction(ISD::FMAXNUM, VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
@@ -370,22 +386,29 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::STORE);
+ setBooleanContents(ZeroOrNegativeOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
setSchedulingPreference(Sched::RegPressure);
setJumpIsExpensive(true);
+ // SI at least has hardware support for floating point exceptions, but no way
+ // of using or handling them is implemented. They are also optional in OpenCL
+ // (Section 7.3)
+ setHasFloatingPointExceptions(false);
+
setSelectIsExpensive(false);
PredictableSelectIsExpensive = false;
// There are no integer divide instructions, and these expand to a pretty
// large sequence of instructions.
setIntDivIsCheap(false);
- setPow2DivIsCheap(false);
-
- // TODO: Investigate this when 64-bit divides are implemented.
- addBypassSlowDiv(64, 32);
+ setPow2SDivIsCheap(false);
+ setFsqrtIsCheap(true);
// FIXME: Need to really handle these.
MaxStoresPerMemcpy = 4096;
@@ -418,6 +441,29 @@ bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
}
+bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
+ ISD::LoadExtType,
+ EVT NewVT) const {
+
+ unsigned NewSize = NewVT.getStoreSizeInBits();
+
+ // If we are reducing to a 32-bit load, this is always better.
+ if (NewSize == 32)
+ return true;
+
+ EVT OldVT = N->getValueType(0);
+ unsigned OldSize = OldVT.getStoreSizeInBits();
+
+ // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
+ // extloads, so doing one requires using a buffer_load. In cases where we
+ // still couldn't use a scalar load, using the wider load shouldn't really
+ // hurt anything.
+
+ // If the old size already had to be an extload, there's no harm in continuing
+ // to reduce the width.
+ return (OldSize < 32);
+}
+
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
EVT CastTy) const {
if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
@@ -431,18 +477,30 @@ bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
(LScalarSize < 32));
}
+// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
+// profitable with the expansion for 64-bit since it's generally good to
+// speculate things.
+// FIXME: These should really have the size as a parameter.
+bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
+ return true;
+}
+
+bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
+ return true;
+}
+
//===---------------------------------------------------------------------===//
// Target Properties
//===---------------------------------------------------------------------===//
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
- return VT == MVT::f32;
+ return VT == MVT::f32 || VT == MVT::f64;
}
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
- return VT == MVT::f32;
+ return VT == MVT::f32 || VT == MVT::f64;
}
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
@@ -542,16 +600,18 @@ SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
- case ISD::SDIV: return LowerSDIV(Op, DAG);
- case ISD::SREM: return LowerSREM(Op, DAG);
case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
+ case ISD::FREM: return LowerFREM(Op, DAG);
case ISD::FCEIL: return LowerFCEIL(Op, DAG);
case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
case ISD::FRINT: return LowerFRINT(Op, DAG);
case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
}
return Op;
}
@@ -606,7 +666,7 @@ SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
const SDValue &InitPtr,
SDValue Chain,
SelectionDAG &DAG) const {
- const DataLayout *TD = getTargetMachine().getDataLayout();
+ const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
SDLoc DL(InitPtr);
Type *InitTy = Init->getType();
@@ -679,22 +739,35 @@ SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
llvm_unreachable("Unhandled constant initializer");
}
+static bool hasDefinedInitializer(const GlobalValue *GV) {
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (!GVar || !GVar->hasInitializer())
+ return false;
+
+ if (isa<UndefValue>(GVar->getInitializer()))
+ return false;
+
+ return true;
+}
+
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
SDValue Op,
SelectionDAG &DAG) const {
- const DataLayout *TD = getTargetMachine().getDataLayout();
+ const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = G->getGlobal();
switch (G->getAddressSpace()) {
- default: llvm_unreachable("Global Address lowering not implemented for this "
- "address space");
case AMDGPUAS::LOCAL_ADDRESS: {
// XXX: What does the value of G->getOffset() mean?
assert(G->getOffset() == 0 &&
"Do not know what to do with an non-zero offset");
+ // TODO: We could emit code to handle the initialization somewhere.
+ if (hasDefinedInitializer(GV))
+ break;
+
unsigned Offset;
if (MFI->LocalMemoryObjects.count(GV) == 0) {
uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
@@ -706,7 +779,7 @@ SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
Offset = MFI->LocalMemoryObjects[GV];
}
- return DAG.getConstant(Offset, getPointerTy(G->getAddressSpace()));
+ return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
}
case AMDGPUAS::CONSTANT_ADDRESS: {
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
@@ -748,6 +821,12 @@ SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
}
}
+
+ const Function &Fn = *DAG.getMachineFunction().getFunction();
+ DiagnosticInfoUnsupported BadInit(Fn,
+ "initializer for address space");
+ DAG.getContext()->diagnose(BadInit);
+ return SDValue();
}
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
@@ -778,8 +857,8 @@ SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
- const AMDGPUFrameLowering *TFL =
- static_cast<const AMDGPUFrameLowering*>(getTargetMachine().getFrameLowering());
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
+ getTargetMachine().getSubtargetImpl()->getFrameLowering());
FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
@@ -821,13 +900,21 @@ SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
+
+ // Note this order is opposite of the machine instruction's operations,
+ // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
+ // intrinsic has the numerator as the first operand to match a normal
+ // division operation.
+
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
- return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, VT,
- Src0, Denominator, Numerator);
+ return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
+ Denominator, Numerator);
}
case Intrinsic::AMDGPU_div_fmas:
+ // FIXME: Dropping bool parameter. Work is needed to support the implicit
+ // read from VCC.
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
@@ -849,7 +936,23 @@ SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
case Intrinsic::AMDGPU_rsq_clamped:
- return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ Type *Type = VT.getTypeForEVT(*DAG.getContext());
+ APFloat Max = APFloat::getLargest(Type->getFltSemantics());
+ APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
+
+ SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
+ SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
+ DAG.getConstantFP(Max, VT));
+ return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
+ DAG.getConstantFP(Min, VT));
+ } else {
+ return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
+ }
+
+ case Intrinsic::AMDGPU_ldexp:
+ return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_imax:
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
@@ -918,6 +1021,10 @@ SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
case AMDGPUIntrinsic::AMDGPU_brev:
return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
+ case Intrinsic::AMDGPU_class:
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
@@ -956,22 +1063,21 @@ SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
}
/// \brief Generate Min/Max node
-SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
- SelectionDAG &DAG) const {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- SDValue True = N->getOperand(2);
- SDValue False = N->getOperand(3);
- SDValue CC = N->getOperand(4);
+SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
+ EVT VT,
+ SDValue LHS,
+ SDValue RHS,
+ SDValue True,
+ SDValue False,
+ SDValue CC,
+ DAGCombinerInfo &DCI) const {
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return SDValue();
- if (VT != MVT::f32 ||
- !((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
return SDValue();
- }
+ SelectionDAG &DAG = DCI.DAG;
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
switch (CCOpcode) {
case ISD::SETOEQ:
@@ -986,24 +1092,49 @@ SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
case ISD::SETTRUE2:
case ISD::SETUO:
case ISD::SETO:
- llvm_unreachable("Operation should already be optimised!");
+ break;
case ISD::SETULE:
- case ISD::SETULT:
+ case ISD::SETULT: {
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
+ }
case ISD::SETOLE:
case ISD::SETOLT:
case ISD::SETLE:
case ISD::SETLT: {
- unsigned Opc = (LHS == True) ? AMDGPUISD::FMIN : AMDGPUISD::FMAX;
- return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ // Ordered. Assume ordered for undefined.
+
+ // Only do this after legalization to avoid interfering with other combines
+ // which might occur.
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
+ !DCI.isCalledByLegalizer())
+ return SDValue();
+
+ // We need to permute the operands to get the correct NaN behavior. The
+ // selected operand is the second one based on the failing compare with NaN,
+ // so permute it based on the compare type the hardware uses.
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
+ }
+ case ISD::SETUGE:
+ case ISD::SETUGT: {
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
}
case ISD::SETGT:
case ISD::SETGE:
- case ISD::SETUGE:
case ISD::SETOGE:
- case ISD::SETUGT:
case ISD::SETOGT: {
- unsigned Opc = (LHS == True) ? AMDGPUISD::FMAX : AMDGPUISD::FMIN;
- return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
+ !DCI.isCalledByLegalizer())
+ return SDValue();
+
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
}
case ISD::SETCC_INVALID:
llvm_unreachable("Invalid setcc condcode!");
@@ -1011,12 +1142,53 @@ SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
return SDValue();
}
-SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
- SelectionDAG &DAG) const {
- LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
- EVT MemEltVT = Load->getMemoryVT().getVectorElementType();
+/// \brief Generate Min/Max node
+SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
+ EVT VT,
+ SDValue LHS,
+ SDValue RHS,
+ SDValue True,
+ SDValue False,
+ SDValue CC,
+ SelectionDAG &DAG) const {
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
+ return SDValue();
+
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ switch (CCOpcode) {
+ case ISD::SETULE:
+ case ISD::SETULT: {
+ unsigned Opc = (LHS == True) ? AMDGPUISD::UMIN : AMDGPUISD::UMAX;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETLE:
+ case ISD::SETLT: {
+ unsigned Opc = (LHS == True) ? AMDGPUISD::SMIN : AMDGPUISD::SMAX;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETGT:
+ case ISD::SETGE: {
+ unsigned Opc = (LHS == True) ? AMDGPUISD::SMAX : AMDGPUISD::SMIN;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETUGE:
+ case ISD::SETUGT: {
+ unsigned Opc = (LHS == True) ? AMDGPUISD::UMAX : AMDGPUISD::UMIN;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ default:
+ return SDValue();
+ }
+}
+
+SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
+ SelectionDAG &DAG) const {
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ EVT MemVT = Load->getMemoryVT();
+ EVT MemEltVT = MemVT.getVectorElementType();
+
EVT LoadVT = Op.getValueType();
- EVT EltVT = Op.getValueType().getVectorElementType();
+ EVT EltVT = LoadVT.getVectorElementType();
EVT PtrVT = Load->getBasePtr().getValueType();
unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
@@ -1024,17 +1196,19 @@ SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
SmallVector<SDValue, 8> Chains;
SDLoc SL(Op);
+ unsigned MemEltSize = MemEltVT.getStoreSize();
+ MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
- for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ for (unsigned i = 0; i < NumElts; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
- DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8), PtrVT));
+ DAG.getConstant(i * MemEltSize, PtrVT));
SDValue NewLoad
= DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
Load->getChain(), Ptr,
- MachinePointerInfo(Load->getMemOperand()->getValue()),
+ SrcValue.getWithOffset(i * MemEltSize),
MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
- Load->getAlignment());
+ Load->isInvariant(), Load->getAlignment());
Loads.push_back(NewLoad.getValue(0));
Chains.push_back(NewLoad.getValue(1));
}
@@ -1047,6 +1221,55 @@ SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
return DAG.getMergeValues(Ops, SL);
}
+SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ // If this is a 2 element vector, we really want to scalarize and not create
+ // weird 1 element vectors.
+ if (VT.getVectorNumElements() == 2)
+ return ScalarizeVectorLoad(Op, DAG);
+
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ SDValue BasePtr = Load->getBasePtr();
+ EVT PtrVT = BasePtr.getValueType();
+ EVT MemVT = Load->getMemoryVT();
+ SDLoc SL(Op);
+ MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
+
+ EVT LoVT, HiVT;
+ EVT LoMemVT, HiMemVT;
+ SDValue Lo, Hi;
+
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
+ std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
+ SDValue LoLoad
+ = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
+ Load->getChain(), BasePtr,
+ SrcValue,
+ LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
+ Load->isInvariant(), Load->getAlignment());
+
+ SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
+ DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
+
+ SDValue HiLoad
+ = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
+ Load->getChain(), HiPtr,
+ SrcValue.getWithOffset(LoMemVT.getStoreSize()),
+ HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
+ Load->isInvariant(), Load->getAlignment());
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
+ DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
+ LoLoad.getValue(1), HiLoad.getValue(1))
+ };
+
+ return DAG.getMergeValues(Ops, SL);
+}
+
SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
@@ -1105,8 +1328,8 @@ SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
Store->getAlignment());
}
-SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
- SelectionDAG &DAG) const {
+SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
+ SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
EVT EltVT = Store->getValue().getValueType().getVectorElementType();
@@ -1116,21 +1339,77 @@ SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
SmallVector<SDValue, 8> Chains;
+ unsigned EltSize = MemEltVT.getStoreSize();
+ MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
+
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
- Store->getValue(), DAG.getConstant(i, MVT::i32));
- SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT,
- Store->getBasePtr(),
- DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8),
- PtrVT));
- Chains.push_back(DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
- MachinePointerInfo(Store->getMemOperand()->getValue()),
- MemEltVT, Store->isVolatile(), Store->isNonTemporal(),
- Store->getAlignment()));
+ Store->getValue(),
+ DAG.getConstant(i, MVT::i32));
+
+ SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
+ SDValue NewStore =
+ DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
+ SrcValue.getWithOffset(i * EltSize),
+ MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
+ Store->getAlignment());
+ Chains.push_back(NewStore);
}
+
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
}
+SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ SDValue Val = Store->getValue();
+ EVT VT = Val.getValueType();
+
+ // If this is a 2 element vector, we really want to scalarize and not create
+ // weird 1 element vectors.
+ if (VT.getVectorNumElements() == 2)
+ return ScalarizeVectorStore(Op, DAG);
+
+ EVT MemVT = Store->getMemoryVT();
+ SDValue Chain = Store->getChain();
+ SDValue BasePtr = Store->getBasePtr();
+ SDLoc SL(Op);
+
+ EVT LoVT, HiVT;
+ EVT LoMemVT, HiMemVT;
+ SDValue Lo, Hi;
+
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
+ std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
+
+ EVT PtrVT = BasePtr.getValueType();
+ SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
+ DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
+
+ MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
+ SDValue LoStore
+ = DAG.getTruncStore(Chain, SL, Lo,
+ BasePtr,
+ SrcValue,
+ LoMemVT,
+ Store->isNonTemporal(),
+ Store->isVolatile(),
+ Store->getAlignment());
+ SDValue HiStore
+ = DAG.getTruncStore(Chain, SL, Hi,
+ HiPtr,
+ SrcValue.getWithOffset(LoMemVT.getStoreSize()),
+ HiMemVT,
+ Store->isNonTemporal(),
+ Store->isVolatile(),
+ Store->getAlignment());
+
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
+}
+
+
SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
@@ -1138,24 +1417,6 @@ SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
EVT MemVT = Load->getMemoryVT();
- if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
- // We can do the extload to 32-bits, and then need to separately extend to
- // 64-bits.
-
- SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
- Load->getChain(),
- Load->getBasePtr(),
- MemVT,
- Load->getMemOperand());
-
- SDValue Ops[] = {
- DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32),
- ExtLoad32.getValue(1)
- };
-
- return DAG.getMergeValues(Ops, DL);
- }
-
if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
assert(VT == MVT::i1 && "Only i1 non-extloads expected");
// FIXME: Copied from PPC
@@ -1228,7 +1489,7 @@ SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
Store->getValue().getValueType().isVector()) {
- return SplitVectorStore(Op, DAG);
+ return ScalarizeVectorStore(Op, DAG);
}
EVT MemVT = Store->getMemoryVT();
@@ -1273,249 +1534,179 @@ SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
return SDValue();
}
-SDValue AMDGPUTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const {
+// This is a shortcut for integer division because we have fast i32<->f32
+// conversions, and fast f32 reciprocal instructions. The fractional part of a
+// float is enough to accurately represent up to a 24-bit integer.
+SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
SDLoc DL(Op);
- EVT OVT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
- MVT INTTY;
- MVT FLTTY;
- if (!OVT.isVector()) {
- INTTY = MVT::i32;
- FLTTY = MVT::f32;
- } else if (OVT.getVectorNumElements() == 2) {
- INTTY = MVT::v2i32;
- FLTTY = MVT::v2f32;
- } else if (OVT.getVectorNumElements() == 4) {
- INTTY = MVT::v4i32;
- FLTTY = MVT::v4f32;
- }
- unsigned bitsize = OVT.getScalarType().getSizeInBits();
- // char|short jq = ia ^ ib;
- SDValue jq = DAG.getNode(ISD::XOR, DL, OVT, LHS, RHS);
-
- // jq = jq >> (bitsize - 2)
- jq = DAG.getNode(ISD::SRA, DL, OVT, jq, DAG.getConstant(bitsize - 2, OVT));
-
- // jq = jq | 0x1
- jq = DAG.getNode(ISD::OR, DL, OVT, jq, DAG.getConstant(1, OVT));
-
- // jq = (int)jq
- jq = DAG.getSExtOrTrunc(jq, DL, INTTY);
+ MVT IntVT = MVT::i32;
+ MVT FltVT = MVT::f32;
+
+ ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
+ ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
+
+ if (VT.isVector()) {
+ unsigned NElts = VT.getVectorNumElements();
+ IntVT = MVT::getVectorVT(MVT::i32, NElts);
+ FltVT = MVT::getVectorVT(MVT::f32, NElts);
+ }
+
+ unsigned BitSize = VT.getScalarType().getSizeInBits();
+
+ SDValue jq = DAG.getConstant(1, IntVT);
+
+ if (sign) {
+ // char|short jq = ia ^ ib;
+ jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
+
+ // jq = jq >> (bitsize - 2)
+ jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
+
+ // jq = jq | 0x1
+ jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
+
+ // jq = (int)jq
+ jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
+ }
// int ia = (int)LHS;
- SDValue ia = DAG.getSExtOrTrunc(LHS, DL, INTTY);
+ SDValue ia = sign ?
+ DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
// int ib, (int)RHS;
- SDValue ib = DAG.getSExtOrTrunc(RHS, DL, INTTY);
+ SDValue ib = sign ?
+ DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
// float fa = (float)ia;
- SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia);
+ SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
// float fb = (float)ib;
- SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib);
+ SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
// float fq = native_divide(fa, fb);
- SDValue fq = DAG.getNode(ISD::FMUL, DL, FLTTY,
- fa, DAG.getNode(AMDGPUISD::RCP, DL, FLTTY, fb));
+ SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
+ fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
// fq = trunc(fq);
- fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq);
+ fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
// float fqneg = -fq;
- SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FLTTY, fq);
+ SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
// float fr = mad(fqneg, fb, fa);
- SDValue fr = DAG.getNode(ISD::FADD, DL, FLTTY,
- DAG.getNode(ISD::MUL, DL, FLTTY, fqneg, fb), fa);
+ SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
+ DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
// int iq = (int)fq;
- SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq);
+ SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
// fr = fabs(fr);
- fr = DAG.getNode(ISD::FABS, DL, FLTTY, fr);
+ fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
// fb = fabs(fb);
- fb = DAG.getNode(ISD::FABS, DL, FLTTY, fb);
+ fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
- // int cv = fr >= fb;
- SDValue cv;
- if (INTTY == MVT::i32) {
- cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
- } else {
- cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
- }
- // jq = (cv ? jq : 0);
- jq = DAG.getNode(ISD::SELECT, DL, OVT, cv, jq,
- DAG.getConstant(0, OVT));
- // dst = iq + jq;
- iq = DAG.getSExtOrTrunc(iq, DL, OVT);
- iq = DAG.getNode(ISD::ADD, DL, OVT, iq, jq);
- return iq;
-}
-
-SDValue AMDGPUTargetLowering::LowerSDIV32(SDValue Op, SelectionDAG &DAG) const {
- SDLoc DL(Op);
- EVT OVT = Op.getValueType();
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- // The LowerSDIV32 function generates equivalent to the following IL.
- // mov r0, LHS
- // mov r1, RHS
- // ilt r10, r0, 0
- // ilt r11, r1, 0
- // iadd r0, r0, r10
- // iadd r1, r1, r11
- // ixor r0, r0, r10
- // ixor r1, r1, r11
- // udiv r0, r0, r1
- // ixor r10, r10, r11
- // iadd r0, r0, r10
- // ixor DST, r0, r10
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
- // mov r0, LHS
- SDValue r0 = LHS;
-
- // mov r1, RHS
- SDValue r1 = RHS;
-
- // ilt r10, r0, 0
- SDValue r10 = DAG.getSelectCC(DL,
- r0, DAG.getConstant(0, OVT),
- DAG.getConstant(-1, OVT),
- DAG.getConstant(0, OVT),
- ISD::SETLT);
-
- // ilt r11, r1, 0
- SDValue r11 = DAG.getSelectCC(DL,
- r1, DAG.getConstant(0, OVT),
- DAG.getConstant(-1, OVT),
- DAG.getConstant(0, OVT),
- ISD::SETLT);
-
- // iadd r0, r0, r10
- r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
-
- // iadd r1, r1, r11
- r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
-
- // ixor r0, r0, r10
- r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
-
- // ixor r1, r1, r11
- r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
+ // int cv = fr >= fb;
+ SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
- // udiv r0, r0, r1
- r0 = DAG.getNode(ISD::UDIV, DL, OVT, r0, r1);
+ // jq = (cv ? jq : 0);
+ jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
- // ixor r10, r10, r11
- r10 = DAG.getNode(ISD::XOR, DL, OVT, r10, r11);
+ // dst = trunc/extend to legal type
+ iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
- // iadd r0, r0, r10
- r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+ // dst = iq + jq;
+ SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
- // ixor DST, r0, r10
- SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
- return DST;
-}
+ // Rem needs compensation, it's easier to recompute it
+ SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
+ Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
-SDValue AMDGPUTargetLowering::LowerSDIV64(SDValue Op, SelectionDAG &DAG) const {
- return SDValue(Op.getNode(), 0);
+ SDValue Res[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Res, DL);
}
-SDValue AMDGPUTargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
- EVT OVT = Op.getValueType().getScalarType();
-
- if (OVT == MVT::i64)
- return LowerSDIV64(Op, DAG);
-
- if (OVT.getScalarType() == MVT::i32)
- return LowerSDIV32(Op, DAG);
+void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &Results) const {
+ assert(Op.getValueType() == MVT::i64);
- if (OVT == MVT::i16 || OVT == MVT::i8) {
- // FIXME: We should be checking for the masked bits. This isn't reached
- // because i8 and i16 are not legal types.
- return LowerSDIV24(Op, DAG);
- }
-
- return SDValue(Op.getNode(), 0);
-}
-
-SDValue AMDGPUTargetLowering::LowerSREM32(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
- EVT OVT = Op.getValueType();
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- // The LowerSREM32 function generates equivalent to the following IL.
- // mov r0, LHS
- // mov r1, RHS
- // ilt r10, r0, 0
- // ilt r11, r1, 0
- // iadd r0, r0, r10
- // iadd r1, r1, r11
- // ixor r0, r0, r10
- // ixor r1, r1, r11
- // udiv r20, r0, r1
- // umul r20, r20, r1
- // sub r0, r0, r20
- // iadd r0, r0, r10
- // ixor DST, r0, r10
+ EVT VT = Op.getValueType();
+ EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
- // mov r0, LHS
- SDValue r0 = LHS;
+ SDValue one = DAG.getConstant(1, HalfVT);
+ SDValue zero = DAG.getConstant(0, HalfVT);
- // mov r1, RHS
- SDValue r1 = RHS;
+ //HiLo split
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
+ SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
- // ilt r10, r0, 0
- SDValue r10 = DAG.getSetCC(DL, OVT, r0, DAG.getConstant(0, OVT), ISD::SETLT);
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
+ SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
- // ilt r11, r1, 0
- SDValue r11 = DAG.getSetCC(DL, OVT, r1, DAG.getConstant(0, OVT), ISD::SETLT);
+ // Get Speculative values
+ SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
+ SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
- // iadd r0, r0, r10
- r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+ SDValue REM_Hi = zero;
+ SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
- // iadd r1, r1, r11
- r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
+ SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
+ SDValue DIV_Lo = zero;
- // ixor r0, r0, r10
- r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
+ const unsigned halfBitWidth = HalfVT.getSizeInBits();
- // ixor r1, r1, r11
- r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
+ for (unsigned i = 0; i < halfBitWidth; ++i) {
+ SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
+ // Get Value of high bit
+ SDValue HBit;
+ if (halfBitWidth == 32 && Subtarget->hasBFE()) {
+ HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
+ } else {
+ HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
+ HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
+ }
- // udiv r20, r0, r1
- SDValue r20 = DAG.getNode(ISD::UREM, DL, OVT, r0, r1);
+ SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
+ DAG.getConstant(halfBitWidth - 1, HalfVT));
+ REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
+ REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
- // umul r20, r20, r1
- r20 = DAG.getNode(AMDGPUISD::UMUL, DL, OVT, r20, r1);
+ REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
+ REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
- // sub r0, r0, r20
- r0 = DAG.getNode(ISD::SUB, DL, OVT, r0, r20);
- // iadd r0, r0, r10
- r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
+ SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
- // ixor DST, r0, r10
- SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
- return DST;
-}
+ SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
+ SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
-SDValue AMDGPUTargetLowering::LowerSREM64(SDValue Op, SelectionDAG &DAG) const {
- return SDValue(Op.getNode(), 0);
-}
+ DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
-SDValue AMDGPUTargetLowering::LowerSREM(SDValue Op, SelectionDAG &DAG) const {
- EVT OVT = Op.getValueType();
+ // Update REM
- if (OVT.getScalarType() == MVT::i64)
- return LowerSREM64(Op, DAG);
+ SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
- if (OVT.getScalarType() == MVT::i32)
- return LowerSREM32(Op, DAG);
+ REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
+ REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
+ REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
+ }
- return SDValue(Op.getNode(), 0);
+ SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
+ SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
+ Results.push_back(DIV);
+ Results.push_back(REM);
}
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
@@ -1523,15 +1714,31 @@ SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
SDLoc DL(Op);
EVT VT = Op.getValueType();
+ if (VT == MVT::i64) {
+ SmallVector<SDValue, 2> Results;
+ LowerUDIVREM64(Op, DAG, Results);
+ return DAG.getMergeValues(Results, DL);
+ }
+
SDValue Num = Op.getOperand(0);
SDValue Den = Op.getOperand(1);
+ if (VT == MVT::i32) {
+ if (DAG.MaskedValueIsZero(Op.getOperand(0), APInt(32, 0xff << 24)) &&
+ DAG.MaskedValueIsZero(Op.getOperand(1), APInt(32, 0xff << 24))) {
+ // TODO: We technically could do this for i64, but shouldn't that just be
+ // handled by something generally reducing 64-bit division on 32-bit
+ // values to 32-bit?
+ return LowerDIVREM24(Op, DAG, false);
+ }
+ }
+
// RCP = URECIP(Den) = 2^32 / Den + e
// e is rounding error.
SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
- // RCP_LO = umulo(RCP, Den) */
- SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
+ // RCP_LO = mul(RCP, Den) */
+ SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
// RCP_HI = mulhu (RCP, Den) */
SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
@@ -1562,7 +1769,7 @@ SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
// Num_S_Remainder = Quotient * Den
- SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
+ SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
// Remainder = Num - Num_S_Remainder
SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
@@ -1627,12 +1834,22 @@ SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
SDLoc DL(Op);
EVT VT = Op.getValueType();
- SDValue Zero = DAG.getConstant(0, VT);
- SDValue NegOne = DAG.getConstant(-1, VT);
-
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
+ if (VT == MVT::i32) {
+ if (DAG.ComputeNumSignBits(Op.getOperand(0)) > 8 &&
+ DAG.ComputeNumSignBits(Op.getOperand(1)) > 8) {
+ // TODO: We technically could do this for i64, but shouldn't that just be
+ // handled by something generally reducing 64-bit division on 32-bit
+ // values to 32-bit?
+ return LowerDIVREM24(Op, DAG, true);
+ }
+ }
+
+ SDValue Zero = DAG.getConstant(0, VT);
+ SDValue NegOne = DAG.getConstant(-1, VT);
+
SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
@@ -1660,6 +1877,20 @@ SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
return DAG.getMergeValues(Res, DL);
}
+// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
+SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ EVT VT = Op.getValueType();
+ SDValue X = Op.getOperand(0);
+ SDValue Y = Op.getOperand(1);
+
+ SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
+ SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
+
+ return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
+}
+
SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
@@ -1702,7 +1933,7 @@ SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
const unsigned ExpBits = 11;
// Extract the exponent.
- SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_I32, SL, MVT::i32,
+ SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
Hi,
DAG.getConstant(FractBits - 32, MVT::i32),
DAG.getConstant(ExpBits, MVT::i32));
@@ -1793,13 +2024,43 @@ SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
+SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
+ DAG.getConstant(1, MVT::i32));
+
+ SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
+ SL, MVT::f64, Hi);
+
+ SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
+
+ SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
+ DAG.getConstant(32, MVT::i32));
+
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
+}
+
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue S0 = Op.getOperand(0);
- SDLoc DL(Op);
- if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
+ if (S0.getValueType() != MVT::i64)
return SDValue();
+ EVT DestVT = Op.getValueType();
+ if (DestVT == MVT::f64)
+ return LowerINT_TO_FP64(Op, DAG, false);
+
+ assert(DestVT == MVT::f32);
+
+ SDLoc DL(Op);
+
// f32 uint_to_fp i64
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
DAG.getConstant(0, MVT::i32));
@@ -1812,16 +2073,62 @@ SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
}
-SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
- unsigned BitsDiff,
- SelectionDAG &DAG) const {
- MVT VT = Op.getSimpleValueType();
- SDLoc DL(Op);
- SDValue Shift = DAG.getConstant(BitsDiff, VT);
- // Shift left by 'Shift' bits.
- SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
- // Signed shift Right by 'Shift' bits.
- return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
+SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
+ return LowerINT_TO_FP64(Op, DAG, true);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ SDLoc SL(Op);
+
+ SDValue Src = Op.getOperand(0);
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ SDValue K0
+ = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), MVT::f64);
+ SDValue K1
+ = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), MVT::f64);
+
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
+
+ SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
+
+
+ SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
+
+ SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
+ MVT::i32, FloorMul);
+ SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
+
+ SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+
+ if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
+ return LowerFP64_TO_INT(Op, DAG, true);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+
+ if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
+ return LowerFP64_TO_INT(Op, DAG, false);
+
+ return SDValue();
}
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
@@ -1887,7 +2194,8 @@ template <typename IntTy>
static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
uint32_t Offset, uint32_t Width) {
if (Width + Offset < 32) {
- IntTy Result = (Src0 << (32 - Offset - Width)) >> (32 - Width);
+ uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
+ IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
return DAG.getConstant(Result, MVT::i32);
}
@@ -1916,7 +2224,8 @@ SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
SDValue Value = SN->getValue();
EVT VT = Value.getValueType();
- if (isTypeLegal(VT) || SN->isVolatile() || !ISD::isNormalLoad(Value.getNode()))
+ if (isTypeLegal(VT) || SN->isVolatile() ||
+ !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
return SDValue();
LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
@@ -1992,9 +2301,30 @@ SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
simplifyI24(N1, DCI);
return SDValue();
}
- case ISD::SELECT_CC: {
- return CombineMinMax(N, DAG);
+ case ISD::SELECT: {
+ SDValue Cond = N->getOperand(0);
+ if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ SDValue CC = Cond.getOperand(2);
+
+ SDValue True = N->getOperand(1);
+ SDValue False = N->getOperand(2);
+
+ if (VT == MVT::f32)
+ return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
+
+ // TODO: Implement min / max Evergreen instructions.
+ if (VT == MVT::i32 &&
+ Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
+ }
}
+
+ break;
+ }
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
assert(!N->getValueType(0).isVector() &&
@@ -2039,37 +2369,40 @@ SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
}
- if (ConstantSDNode *Val = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
if (Signed) {
return constantFoldBFE<int32_t>(DAG,
- Val->getSExtValue(),
+ CVal->getSExtValue(),
OffsetVal,
WidthVal);
}
return constantFoldBFE<uint32_t>(DAG,
- Val->getZExtValue(),
+ CVal->getZExtValue(),
OffsetVal,
WidthVal);
}
- APInt Demanded = APInt::getBitsSet(32,
- OffsetVal,
- OffsetVal + WidthVal);
-
if ((OffsetVal + WidthVal) >= 32) {
SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
BitsFrom, ShiftVal);
}
- APInt KnownZero, KnownOne;
- TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
- TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) {
- DCI.CommitTargetLoweringOpt(TLO);
+ if (BitsFrom.hasOneUse()) {
+ APInt Demanded = APInt::getBitsSet(32,
+ OffsetVal,
+ OffsetVal + WidthVal);
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
+ TLI.SimplifyDemandedBits(BitsFrom, Demanded,
+ KnownZero, KnownOne, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
}
break;
@@ -2167,12 +2500,19 @@ const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
NODE_NAME_CASE(DWORDADDR)
NODE_NAME_CASE(FRACT)
NODE_NAME_CASE(CLAMP)
- NODE_NAME_CASE(FMAX)
+ NODE_NAME_CASE(MAD)
+ NODE_NAME_CASE(FMAX_LEGACY)
NODE_NAME_CASE(SMAX)
NODE_NAME_CASE(UMAX)
- NODE_NAME_CASE(FMIN)
+ NODE_NAME_CASE(FMIN_LEGACY)
NODE_NAME_CASE(SMIN)
NODE_NAME_CASE(UMIN)
+ NODE_NAME_CASE(FMAX3)
+ NODE_NAME_CASE(SMAX3)
+ NODE_NAME_CASE(UMAX3)
+ NODE_NAME_CASE(FMIN3)
+ NODE_NAME_CASE(SMIN3)
+ NODE_NAME_CASE(UMIN3)
NODE_NAME_CASE(URECIP)
NODE_NAME_CASE(DIV_SCALE)
NODE_NAME_CASE(DIV_FMAS)
@@ -2182,6 +2522,8 @@ const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
NODE_NAME_CASE(RSQ)
NODE_NAME_CASE(RSQ_LEGACY)
NODE_NAME_CASE(RSQ_CLAMPED)
+ NODE_NAME_CASE(LDEXP)
+ NODE_NAME_CASE(FP_CLASS)
NODE_NAME_CASE(DOT4)
NODE_NAME_CASE(BFE_U32)
NODE_NAME_CASE(BFE_I32)
@@ -2213,6 +2555,46 @@ const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
}
}
+SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = Operand.getValueType();
+
+ if (VT == MVT::f32) {
+ RefinementSteps = 0;
+ return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
+ }
+
+ // TODO: There is also f64 rsq instruction, but the documentation is less
+ // clear on its precision.
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = Operand.getValueType();
+
+ if (VT == MVT::f32) {
+ // Reciprocal, < 1 ulp error.
+ //
+ // This reciprocal approximation converges to < 0.5 ulp error with one
+ // newton rhapson performed with two fused multiple adds (FMAs).
+
+ RefinementSteps = 0;
+ return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
+ }
+
+ // TODO: There is also f64 rcp instruction, but the documentation is less
+ // clear on its precision.
+
+ return SDValue();
+}
+
static void computeKnownBitsForMinMax(const SDValue Op0,
const SDValue Op1,
APInt &KnownZero,
@@ -2276,17 +2658,8 @@ void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
unsigned BitWidth = 32;
uint32_t Width = CWidth->getZExtValue() & 0x1f;
- if (Width == 0) {
- KnownZero = APInt::getAllOnesValue(BitWidth);
- KnownOne = APInt::getNullValue(BitWidth);
- return;
- }
- // FIXME: This could do a lot more. If offset is 0, should be the same as
- // sign_extend_inreg implementation, but that involves duplicating it.
- if (Opc == AMDGPUISD::BFE_I32)
- KnownOne = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
- else
+ if (Opc == AMDGPUISD::BFE_U32)
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
break;
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h
index 624d4e0..15f529c 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUISELLOWERING_H
-#define AMDGPUISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUISELLOWERING_H
+#define LLVM_LIB_TARGET_R600_AMDGPUISELLOWERING_H
#include "llvm/Target/TargetLowering.h"
@@ -43,25 +43,22 @@ private:
/// \brief Split a vector store into multiple scalar stores.
/// \returns The resulting chain.
- SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerSDIV24(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerSDIV32(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerSDIV64(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerSREM(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerSREM32(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerSREM64(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFREM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCEIL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, bool Signed) const;
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, bool Signed) const;
+ SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
- SDValue ExpandSIGN_EXTEND_INREG(SDValue Op,
- unsigned BitsDiff,
- SelectionDAG &DAG) const;
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
SDValue performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const;
@@ -73,12 +70,25 @@ protected:
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op,
SelectionDAG &DAG) const;
- /// \brief Split a vector load into multiple scalar loads.
- SDValue SplitVectorLoad(const SDValue &Op, SelectionDAG &DAG) const;
+
+ /// \brief Split a vector load into a scalar load of each component.
+ SDValue ScalarizeVectorLoad(SDValue Op, SelectionDAG &DAG) const;
+
+ /// \brief Split a vector load into 2 loads of half the vector.
+ SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const;
+
+ /// \brief Split a vector store into a scalar store of each component.
+ SDValue ScalarizeVectorStore(SDValue Op, SelectionDAG &DAG) const;
+
+ /// \brief Split a vector store into 2 stores of half the vector.
SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const;
+
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const;
+ void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &Results) const;
bool isHWTrueValue(SDValue Op) const;
bool isHWFalseValue(SDValue Op) const;
@@ -114,8 +124,14 @@ public:
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
bool ShouldShrinkFPConstant(EVT VT) const override;
+ bool shouldReduceLoadWidth(SDNode *Load,
+ ISD::LoadExtType ExtType,
+ EVT ExtVT) const override;
bool isLoadBitCastBeneficial(EVT, EVT) const override;
+ bool isCheapToSpeculateCttz() const override;
+ bool isCheapToSpeculateCtlz() const override;
+
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
@@ -132,9 +148,33 @@ public:
SDValue LowerIntrinsicIABS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerIntrinsicLRP(SDValue Op, SelectionDAG &DAG) const;
- SDValue CombineMinMax(SDNode *N, SelectionDAG &DAG) const;
+ SDValue CombineFMinMaxLegacy(SDLoc DL,
+ EVT VT,
+ SDValue LHS,
+ SDValue RHS,
+ SDValue True,
+ SDValue False,
+ SDValue CC,
+ DAGCombinerInfo &DCI) const;
+ SDValue CombineIMinMax(SDLoc DL,
+ EVT VT,
+ SDValue LHS,
+ SDValue RHS,
+ SDValue True,
+ SDValue False,
+ SDValue CC,
+ SelectionDAG &DAG) const;
+
const char* getTargetNodeName(unsigned Opcode) const override;
+ SDValue getRsqrtEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const override;
+ SDValue getRecipEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const override;
+
virtual SDNode *PostISelFolding(MachineSDNode *N,
SelectionDAG &DAG) const {
return N;
@@ -149,10 +189,8 @@ public:
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
- virtual unsigned ComputeNumSignBitsForTargetNode(
- SDValue Op,
- const SelectionDAG &DAG,
- unsigned Depth = 0) const override;
+ unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const SelectionDAG &DAG,
+ unsigned Depth = 0) const override;
/// \brief Helper function that adds Reg to the LiveIn list of the DAG's
/// MachineFunction.
@@ -176,17 +214,24 @@ enum {
DWORDADDR,
FRACT,
CLAMP,
+ MAD, // Multiply + add with same result as the separate operations.
// SIN_HW, COS_HW - f32 for SI, 1 ULP max error, valid from -100 pi to 100 pi.
// Denormals handled on some parts.
COS_HW,
SIN_HW,
- FMAX,
+ FMAX_LEGACY,
SMAX,
UMAX,
- FMIN,
+ FMIN_LEGACY,
SMIN,
UMIN,
+ FMAX3,
+ SMAX3,
+ UMAX3,
+ FMIN3,
+ SMIN3,
+ UMIN3,
URECIP,
DIV_SCALE,
DIV_FMAS,
@@ -199,6 +244,8 @@ enum {
RSQ,
RSQ_LEGACY,
RSQ_CLAMPED,
+ LDEXP,
+ FP_CLASS,
DOT4,
BFE_U32, // Extract range of bits with zero extension to 32-bits.
BFE_I32, // Extract range of bits with sign extension to 32-bits.
@@ -248,4 +295,4 @@ enum {
} // End namespace llvm
-#endif // AMDGPUISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp
index fef5b8c..e34a7b7 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp
@@ -86,21 +86,6 @@ AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
// TODO: Implement this function
return nullptr;
}
-bool AMDGPUInstrInfo::getNextBranchInstr(MachineBasicBlock::iterator &iter,
- MachineBasicBlock &MBB) const {
- while (iter != MBB.end()) {
- switch (iter->getOpcode()) {
- default:
- break;
- case AMDGPU::BRANCH_COND_i32:
- case AMDGPU::BRANCH_COND_f32:
- case AMDGPU::BRANCH:
- return true;
- };
- ++iter;
- }
- return false;
-}
void
AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
@@ -147,7 +132,6 @@ bool AMDGPUInstrInfo::expandPostRAPseudo (MachineBasicBlock::iterator MI) const
} else if (isRegisterStore(*MI)) {
int ValOpIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::val);
- AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
unsigned RegIndex = MI->getOperand(RegOpIdx).getImm();
unsigned Channel = MI->getOperand(ChanOpIdx).getImm();
unsigned Address = calculateIndirectAddress(RegIndex, Channel);
@@ -215,15 +199,30 @@ AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
return 0;
}
-bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
- int64_t Offset1, int64_t Offset2,
- unsigned NumLoads) const {
- assert(Offset2 > Offset1
- && "Second offset should be larger than first offset!");
- // If we have less than 16 loads in a row, and the offsets are within 16,
- // then schedule together.
- // TODO: Make the loads schedule near if it fits in a cacheline
- return (NumLoads < 16 && (Offset2 - Offset1) < 16);
+bool AMDGPUInstrInfo::enableClusterLoads() const {
+ return true;
+}
+
+// FIXME: This behaves strangely. If, for example, you have 32 load + stores,
+// the first 16 loads will be interleaved with the stores, and the next 16 will
+// be clustered as expected. It should really split into 2 16 store batches.
+//
+// Loads are clustered until this returns false, rather than trying to schedule
+// groups of stores. This also means we have to deal with saying different
+// address space loads should be clustered, and ones which might cause bank
+// conflicts.
+//
+// This might be deprecated so it might not be worth that much effort to fix.
+bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1,
+ int64_t Offset0, int64_t Offset1,
+ unsigned NumLoads) const {
+ assert(Offset1 > Offset0 &&
+ "Second offset should be larger than first offset!");
+ // If we have less than 16 loads in a row, and the offsets are within 64
+ // bytes, then schedule together.
+
+ // A cacheline is 64 bytes (for global memory).
+ return (NumLoads <= 16 && (Offset1 - Offset0) < 64);
}
bool
@@ -320,7 +319,10 @@ int AMDGPUInstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
return -1;
}
- Offset = MF.getTarget().getFrameLowering()->getFrameIndexOffset(MF, -1);
+ Offset = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getFrameIndexOffset(MF, -1);
return getIndirectIndexBegin(MF) + Offset;
}
@@ -335,12 +337,43 @@ int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const {
}
// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
-// header files, so we need to wrap it in a function that takes unsigned
+// header files, so we need to wrap it in a function that takes unsigned
// instead.
namespace llvm {
namespace AMDGPU {
-int getMCOpcode(uint16_t Opcode, unsigned Gen) {
- return getMCOpcode(Opcode);
+static int getMCOpcode(uint16_t Opcode, unsigned Gen) {
+ return getMCOpcodeGen(Opcode, (enum Subtarget)Gen);
+}
}
}
+
+// This must be kept in sync with the SISubtarget class in SIInstrInfo.td
+enum SISubtarget {
+ SI = 0,
+ VI = 1
+};
+
+enum SISubtarget AMDGPUSubtargetToSISubtarget(unsigned Gen) {
+ switch (Gen) {
+ default:
+ return SI;
+ case AMDGPUSubtarget::VOLCANIC_ISLANDS:
+ return VI;
+ }
+}
+
+int AMDGPUInstrInfo::pseudoToMCOpcode(int Opcode) const {
+ int MCOp = AMDGPU::getMCOpcode(Opcode,
+ AMDGPUSubtargetToSISubtarget(RI.ST.getGeneration()));
+
+ // -1 means that Opcode is already a native instruction.
+ if (MCOp == -1)
+ return Opcode;
+
+ // (uint16_t)-1 means that Opcode is a pseudo instruction that has
+ // no encoding in the given subtarget generation.
+ if (MCOp == (uint16_t)-1)
+ return -1;
+
+ return MCOp;
}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h
index d5041f5..e28ce0f 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.h
@@ -13,10 +13,9 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUINSTRUCTIONINFO_H
-#define AMDGPUINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUINSTRINFO_H
+#define LLVM_LIB_TARGET_R600_AMDGPUINSTRINFO_H
-#include "AMDGPUInstrInfo.h"
#include "AMDGPURegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <map>
@@ -41,8 +40,6 @@ class MachineInstrBuilder;
class AMDGPUInstrInfo : public AMDGPUGenInstrInfo {
private:
const AMDGPURegisterInfo RI;
- bool getNextBranchInstr(MachineBasicBlock::iterator &iter,
- MachineBasicBlock &MBB) const;
virtual void anchor();
protected:
const AMDGPUSubtarget &ST;
@@ -74,11 +71,6 @@ public:
LiveVariables *LV) const override;
- virtual void copyPhysReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, DebugLoc DL,
- unsigned DestReg, unsigned SrcReg,
- bool KillSrc) const = 0;
-
bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
void storeRegToStackSlot(MachineBasicBlock &MBB,
@@ -101,6 +93,7 @@ protected:
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const override;
+public:
/// \returns the smallest register index that will be accessed by an indirect
/// read or write or -1 if indirect addressing is not used by this program.
int getIndirectIndexBegin(const MachineFunction &MF) const;
@@ -109,7 +102,6 @@ protected:
/// read or write or -1 if indirect addressing is not used by this program.
int getIndirectIndexEnd(const MachineFunction &MF) const;
-public:
bool canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const override;
bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
@@ -120,6 +112,9 @@ public:
unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex = nullptr) const override;
+
+ bool enableClusterLoads() const override;
+
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const override;
@@ -140,6 +135,11 @@ public:
bool isRegisterStore(const MachineInstr &MI) const;
bool isRegisterLoad(const MachineInstr &MI) const;
+ /// \brief Return a target-specific opcode if Opcode is a pseudo instruction.
+ /// Return -1 if the target-specific opcode for the pseudo instruction does
+ /// not exist. If Opcode is not a pseudo instruction, this is identity.
+ int pseudoToMCOpcode(int Opcode) const;
+
//===---------------------------------------------------------------------===//
// Pure virtual funtions to be implemented by sub-classes.
//===---------------------------------------------------------------------===//
@@ -196,4 +196,4 @@ namespace AMDGPU {
#define AMDGPU_FLAG_REGISTER_LOAD (UINT64_C(1) << 63)
#define AMDGPU_FLAG_REGISTER_STORE (UINT64_C(1) << 62)
-#endif // AMDGPUINSTRINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td
index 820f1a8..0e34392b 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstrInfo.td
@@ -23,6 +23,14 @@ def AMDGPUTrigPreOp : SDTypeProfile<1, 2,
[SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2>]
>;
+def AMDGPULdExpOp : SDTypeProfile<1, 2,
+ [SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2>]
+>;
+
+def AMDGPUFPClassOp : SDTypeProfile<1, 2,
+ [SDTCisInt<0>, SDTCisFP<1>, SDTCisInt<2>]
+>;
+
def AMDGPUDivScaleOp : SDTypeProfile<2, 3,
[SDTCisFP<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisSameAs<0, 4>]
>;
@@ -52,12 +60,20 @@ def AMDGPUrsq_legacy : SDNode<"AMDGPUISD::RSQ_LEGACY", SDTFPUnaryOp>;
// out = 1.0 / sqrt(a) result clamped to +/- max_float.
def AMDGPUrsq_clamped : SDNode<"AMDGPUISD::RSQ_CLAMPED", SDTFPUnaryOp>;
-// out = max(a, b) a and b are floats
-def AMDGPUfmax : SDNode<"AMDGPUISD::FMAX", SDTFPBinOp,
- [SDNPCommutative, SDNPAssociative]
+def AMDGPUldexp : SDNode<"AMDGPUISD::LDEXP", AMDGPULdExpOp>;
+
+def AMDGPUfp_class : SDNode<"AMDGPUISD::FP_CLASS", AMDGPUFPClassOp>;
+
+// out = max(a, b) a and b are floats, where a nan comparison fails.
+// This is not commutative because this gives the second operand:
+// x < nan ? x : nan -> nan
+// nan < x ? nan : x -> x
+def AMDGPUfmax_legacy : SDNode<"AMDGPUISD::FMAX_LEGACY", SDTFPBinOp,
+ []
>;
def AMDGPUclamp : SDNode<"AMDGPUISD::CLAMP", SDTFPTernaryOp, []>;
+def AMDGPUmad : SDNode<"AMDGPUISD::MAD", SDTFPTernaryOp, []>;
// out = max(a, b) a and b are signed ints
def AMDGPUsmax : SDNode<"AMDGPUISD::SMAX", SDTIntBinOp,
@@ -69,12 +85,12 @@ def AMDGPUumax : SDNode<"AMDGPUISD::UMAX", SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]
>;
-// out = min(a, b) a and b are floats
-def AMDGPUfmin : SDNode<"AMDGPUISD::FMIN", SDTFPBinOp,
- [SDNPCommutative, SDNPAssociative]
+// out = min(a, b) a and b are floats, where a nan comparison fails.
+def AMDGPUfmin_legacy : SDNode<"AMDGPUISD::FMIN_LEGACY", SDTFPBinOp,
+ []
>;
-// out = min(a, b) a snd b are signed ints
+// out = min(a, b) a and b are signed ints
def AMDGPUsmin : SDNode<"AMDGPUISD::SMIN", SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]
>;
@@ -84,6 +100,37 @@ def AMDGPUumin : SDNode<"AMDGPUISD::UMIN", SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]
>;
+// FIXME: TableGen doesn't like commutative instructions with more
+// than 2 operands.
+// out = max(a, b, c) a, b and c are floats
+def AMDGPUfmax3 : SDNode<"AMDGPUISD::FMAX3", SDTFPTernaryOp,
+ [/*SDNPCommutative, SDNPAssociative*/]
+>;
+
+// out = max(a, b, c) a, b, and c are signed ints
+def AMDGPUsmax3 : SDNode<"AMDGPUISD::SMAX3", AMDGPUDTIntTernaryOp,
+ [/*SDNPCommutative, SDNPAssociative*/]
+>;
+
+// out = max(a, b, c) a, b and c are unsigned ints
+def AMDGPUumax3 : SDNode<"AMDGPUISD::UMAX3", AMDGPUDTIntTernaryOp,
+ [/*SDNPCommutative, SDNPAssociative*/]
+>;
+
+// out = min(a, b, c) a, b and c are floats
+def AMDGPUfmin3 : SDNode<"AMDGPUISD::FMIN3", SDTFPTernaryOp,
+ [/*SDNPCommutative, SDNPAssociative*/]
+>;
+
+// out = min(a, b, c) a, b and c are signed ints
+def AMDGPUsmin3 : SDNode<"AMDGPUISD::SMIN3", AMDGPUDTIntTernaryOp,
+ [/*SDNPCommutative, SDNPAssociative*/]
+>;
+
+// out = min(a, b) a and b are unsigned ints
+def AMDGPUumin3 : SDNode<"AMDGPUISD::UMIN3", AMDGPUDTIntTernaryOp,
+ [/*SDNPCommutative, SDNPAssociative*/]
+>;
def AMDGPUcvt_f32_ubyte0 : SDNode<"AMDGPUISD::CVT_F32_UBYTE0",
SDTIntToFPOp, []>;
@@ -130,7 +177,7 @@ def AMDGPUregister_store : SDNode<"AMDGPUISD::REGISTER_STORE",
// MSKOR(dst, mask, src) MEM[dst] = ((MEM[dst] & ~mask) | src)
//
// src0: vec4(src, 0, 0, mask)
-// src1: dst - rat offset (aka pointer) in dwords
+// src1: dst - rat offset (aka pointer) in dwords
def AMDGPUstore_mskor : SDNode<"AMDGPUISD::STORE_MSKOR",
SDTypeProfile<0, 2, []>,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td b/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td
index cd35603..4e536c3 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td
+++ b/contrib/llvm/lib/Target/R600/AMDGPUInstructions.td
@@ -23,6 +23,8 @@ class AMDGPUInst <dag outs, dag ins, string asm, list<dag> pattern> : Instructio
let Pattern = pattern;
let Itinerary = NullALU;
+ let isCodeGenOnly = 1;
+
let TSFlags{63} = isRegisterLoad;
let TSFlags{62} = isRegisterStore;
}
@@ -71,6 +73,11 @@ def COND_OEQ : PatLeaf <
[{return N->get() == ISD::SETOEQ || N->get() == ISD::SETEQ;}]
>;
+def COND_ONE : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETONE || N->get() == ISD::SETNE;}]
+>;
+
def COND_OGT : PatLeaf <
(cond),
[{return N->get() == ISD::SETOGT || N->get() == ISD::SETGT;}]
@@ -91,23 +98,28 @@ def COND_OLE : PatLeaf <
[{return N->get() == ISD::SETOLE || N->get() == ISD::SETLE;}]
>;
-def COND_UNE : PatLeaf <
- (cond),
- [{return N->get() == ISD::SETUNE || N->get() == ISD::SETNE;}]
->;
def COND_O : PatLeaf <(cond), [{return N->get() == ISD::SETO;}]>;
def COND_UO : PatLeaf <(cond), [{return N->get() == ISD::SETUO;}]>;
//===----------------------------------------------------------------------===//
-// PatLeafs for unsigned comparisons
+// PatLeafs for unsigned / unordered comparisons
//===----------------------------------------------------------------------===//
+def COND_UEQ : PatLeaf <(cond), [{return N->get() == ISD::SETUEQ;}]>;
+def COND_UNE : PatLeaf <(cond), [{return N->get() == ISD::SETUNE;}]>;
def COND_UGT : PatLeaf <(cond), [{return N->get() == ISD::SETUGT;}]>;
def COND_UGE : PatLeaf <(cond), [{return N->get() == ISD::SETUGE;}]>;
def COND_ULT : PatLeaf <(cond), [{return N->get() == ISD::SETULT;}]>;
def COND_ULE : PatLeaf <(cond), [{return N->get() == ISD::SETULE;}]>;
+// XXX - For some reason R600 version is preferring to use unordered
+// for setne?
+def COND_UNE_NE : PatLeaf <
+ (cond),
+ [{return N->get() == ISD::SETUNE || N->get() == ISD::SETNE;}]
+>;
+
//===----------------------------------------------------------------------===//
// PatLeafs for signed comparisons
//===----------------------------------------------------------------------===//
@@ -133,7 +145,7 @@ def COND_NE : PatLeaf <
def COND_NULL : PatLeaf <
(cond),
- [{return false;}]
+ [{(void)N; return false;}]
>;
//===----------------------------------------------------------------------===//
@@ -195,6 +207,14 @@ def sextloadi8_global : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr), [{
return isGlobalLoad(dyn_cast<LoadSDNode>(N));
}]>;
+def az_extloadi8_flat : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr), [{
+ return isFlatLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def sextloadi8_flat : PatFrag<(ops node:$ptr), (sextloadi8 node:$ptr), [{
+ return isFlatLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
def az_extloadi8_constant : PatFrag<(ops node:$ptr), (az_extloadi8 node:$ptr), [{
return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
}]>;
@@ -223,6 +243,14 @@ def sextloadi16_global : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr), [{
return isGlobalLoad(dyn_cast<LoadSDNode>(N));
}]>;
+def az_extloadi16_flat : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr), [{
+ return isFlatLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def sextloadi16_flat : PatFrag<(ops node:$ptr), (sextloadi16 node:$ptr), [{
+ return isFlatLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
def az_extloadi16_constant : PatFrag<(ops node:$ptr), (az_extloadi16 node:$ptr), [{
return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
}]>;
@@ -248,6 +276,11 @@ def az_extloadi32_global : PatFrag<(ops node:$ptr),
return isGlobalLoad(dyn_cast<LoadSDNode>(N));
}]>;
+def az_extloadi32_flat : PatFrag<(ops node:$ptr),
+ (az_extloadi32 node:$ptr), [{
+ return isFlatLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
def az_extloadi32_constant : PatFrag<(ops node:$ptr),
(az_extloadi32 node:$ptr), [{
return isConstantLoad(dyn_cast<LoadSDNode>(N), -1);
@@ -263,6 +296,16 @@ def truncstorei16_global : PatFrag<(ops node:$val, node:$ptr),
return isGlobalStore(dyn_cast<StoreSDNode>(N));
}]>;
+def truncstorei8_flat : PatFrag<(ops node:$val, node:$ptr),
+ (truncstorei8 node:$val, node:$ptr), [{
+ return isFlatStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def truncstorei16_flat : PatFrag<(ops node:$val, node:$ptr),
+ (truncstorei16 node:$val, node:$ptr), [{
+ return isFlatStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
def local_store : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return isLocalStore(dyn_cast<StoreSDNode>(N));
@@ -282,6 +325,17 @@ def local_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return isLocalLoad(dyn_cast<LoadSDNode>(N));
}]>;
+class Aligned8Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{
+ return cast<MemSDNode>(N)->getAlignment() % 8 == 0;
+}]>;
+
+def local_load_aligned8bytes : Aligned8Bytes <
+ (ops node:$ptr), (local_load node:$ptr)
+>;
+
+def local_store_aligned8bytes : Aligned8Bytes <
+ (ops node:$val, node:$ptr), (local_store node:$val, node:$ptr)
+>;
class local_binary_atomic_op<SDNode atomic_op> :
PatFrag<(ops node:$ptr, node:$value),
@@ -307,6 +361,7 @@ def mskor_global : PatFrag<(ops node:$val, node:$ptr),
return dyn_cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}]>;
+
def atomic_cmp_swap_32_local :
PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
(atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
@@ -323,6 +378,45 @@ def atomic_cmp_swap_64_local :
AN->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}]>;
+def flat_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+ return isFlatLoad(dyn_cast<LoadSDNode>(N));
+}]>;
+
+def flat_store : PatFrag<(ops node:$val, node:$ptr),
+ (store node:$val, node:$ptr), [{
+ return isFlatStore(dyn_cast<StoreSDNode>(N));
+}]>;
+
+def mskor_flat : PatFrag<(ops node:$val, node:$ptr),
+ (AMDGPUstore_mskor node:$val, node:$ptr), [{
+ return dyn_cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
+}]>;
+
+class global_binary_atomic_op<SDNode atomic_op> : PatFrag<
+ (ops node:$ptr, node:$value),
+ (atomic_op node:$ptr, node:$value),
+ [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;}]
+>;
+
+def atomic_swap_global : global_binary_atomic_op<atomic_swap>;
+def atomic_add_global : global_binary_atomic_op<atomic_load_add>;
+def atomic_and_global : global_binary_atomic_op<atomic_load_and>;
+def atomic_max_global : global_binary_atomic_op<atomic_load_max>;
+def atomic_min_global : global_binary_atomic_op<atomic_load_min>;
+def atomic_or_global : global_binary_atomic_op<atomic_load_or>;
+def atomic_sub_global : global_binary_atomic_op<atomic_load_sub>;
+def atomic_umax_global : global_binary_atomic_op<atomic_load_umax>;
+def atomic_umin_global : global_binary_atomic_op<atomic_load_umin>;
+def atomic_xor_global : global_binary_atomic_op<atomic_load_xor>;
+
+//===----------------------------------------------------------------------===//
+// Misc Pattern Fragments
+//===----------------------------------------------------------------------===//
+
+def fmad : PatFrag <
+ (ops node:$src0, node:$src1, node:$src2),
+ (fadd (fmul node:$src0, node:$src1), node:$src2)
+>;
class Constants {
int TWO_PI = 0x40c90fdb;
@@ -442,8 +536,9 @@ class DwordAddrPat<ValueType vt, RegisterClass rc> : Pat <
// BFI_INT patterns
-multiclass BFIPatterns <Instruction BFI_INT, Instruction LoadImm32> {
-
+multiclass BFIPatterns <Instruction BFI_INT,
+ Instruction LoadImm32,
+ RegisterClass RC64> {
// Definition from ISA doc:
// (y & x) | (z & ~x)
def : Pat <
@@ -465,8 +560,8 @@ multiclass BFIPatterns <Instruction BFI_INT, Instruction LoadImm32> {
def : Pat <
(f64 (fcopysign f64:$src0, f64:$src1)),
- (INSERT_SUBREG (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
- (i32 (EXTRACT_SUBREG $src0, sub0)), sub0),
+ (REG_SEQUENCE RC64,
+ (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
(BFI_INT (LoadImm32 0x7fffffff),
(i32 (EXTRACT_SUBREG $src0, sub1)),
(i32 (EXTRACT_SUBREG $src1, sub1))), sub1)
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp
index 58916a9..e94bb60 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.cpp
@@ -24,7 +24,7 @@ using namespace llvm;
#include "AMDGPUGenIntrinsics.inc"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
-AMDGPUIntrinsicInfo::AMDGPUIntrinsicInfo(TargetMachine *tm)
+AMDGPUIntrinsicInfo::AMDGPUIntrinsicInfo()
: TargetIntrinsicInfo() {}
std::string AMDGPUIntrinsicInfo::getName(unsigned IntrID, Type **Tys,
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h
index 5be68a2..4c95b5e 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUIntrinsicInfo.h
@@ -11,8 +11,8 @@
/// \brief Interface for the AMDGPU Implementation of the Intrinsic Info class.
//
//===-----------------------------------------------------------------------===//
-#ifndef AMDGPU_INTRINSICINFO_H
-#define AMDGPU_INTRINSICINFO_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUINTRINSICINFO_H
+#define LLVM_LIB_TARGET_R600_AMDGPUINTRINSICINFO_H
#include "llvm/IR/Intrinsics.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
@@ -33,7 +33,7 @@ enum ID {
class AMDGPUIntrinsicInfo : public TargetIntrinsicInfo {
public:
- AMDGPUIntrinsicInfo(TargetMachine *tm);
+ AMDGPUIntrinsicInfo();
std::string getName(unsigned IntrId, Type **Tys = nullptr,
unsigned numTys = 0) const override;
unsigned lookupName(const char *Name, unsigned Len) const override;
@@ -45,4 +45,4 @@ public:
} // end namespace llvm
-#endif // AMDGPU_INTRINSICINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp
index ce5c41c..03aa32d 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.cpp
@@ -22,6 +22,7 @@
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
@@ -39,37 +40,23 @@ AMDGPUMCInstLower::AMDGPUMCInstLower(MCContext &ctx, const AMDGPUSubtarget &st):
Ctx(ctx), ST(st)
{ }
-enum AMDGPUMCInstLower::SISubtarget
-AMDGPUMCInstLower::AMDGPUSubtargetToSISubtarget(unsigned) const {
- return AMDGPUMCInstLower::SI;
-}
-
-unsigned AMDGPUMCInstLower::getMCOpcode(unsigned MIOpcode) const {
+void AMDGPUMCInstLower::lower(const MachineInstr *MI, MCInst &OutMI) const {
- int MCOpcode = AMDGPU::getMCOpcode(MIOpcode,
- AMDGPUSubtargetToSISubtarget(ST.getGeneration()));
- if (MCOpcode == -1)
- MCOpcode = MIOpcode;
+ int MCOpcode = ST.getInstrInfo()->pseudoToMCOpcode(MI->getOpcode());
- return MCOpcode;
-}
-
-void AMDGPUMCInstLower::lower(const MachineInstr *MI, MCInst &OutMI) const {
+ if (MCOpcode == -1) {
+ LLVMContext &C = MI->getParent()->getParent()->getFunction()->getContext();
+ C.emitError("AMDGPUMCInstLower::lower - Pseudo instruction doesn't have "
+ "a target-specific version: " + Twine(MI->getOpcode()));
+ }
- OutMI.setOpcode(getMCOpcode(MI->getOpcode()));
+ OutMI.setOpcode(MCOpcode);
for (const MachineOperand &MO : MI->explicit_operands()) {
MCOperand MCOp;
switch (MO.getType()) {
default:
llvm_unreachable("unknown operand type");
- case MachineOperand::MO_FPImmediate: {
- const APFloat &FloatValue = MO.getFPImm()->getValueAPF();
- assert(&FloatValue.getSemantics() == &APFloat::IEEEsingle &&
- "Only floating point immediates are supported at the moment.");
- MCOp = MCOperand::CreateFPImm(FloatValue.convertToFloat());
- break;
- }
case MachineOperand::MO_Immediate:
MCOp = MCOperand::CreateImm(MO.getImm());
break;
@@ -93,6 +80,12 @@ void AMDGPUMCInstLower::lower(const MachineInstr *MI, MCInst &OutMI) const {
MCOp = MCOperand::CreateExpr(Expr);
break;
}
+ case MachineOperand::MO_ExternalSymbol: {
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(StringRef(MO.getSymbolName()));
+ const MCSymbolRefExpr *Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+ MCOp = MCOperand::CreateExpr(Expr);
+ break;
+ }
}
OutMI.addOperand(MCOp);
}
@@ -104,7 +97,7 @@ void AMDGPUAsmPrinter::EmitInstruction(const MachineInstr *MI) {
#ifdef _DEBUG
StringRef Err;
- if (!TM.getInstrInfo()->verifyInstruction(MI, Err)) {
+ if (!TM.getSubtargetImpl()->getInstrInfo()->verifyInstruction(MI, Err)) {
errs() << "Warning: Illegal instruction detected: " << Err << "\n";
MI->dump();
}
@@ -128,8 +121,9 @@ void AMDGPUAsmPrinter::EmitInstruction(const MachineInstr *MI) {
std::string &DisasmLine = DisasmLines.back();
raw_string_ostream DisasmStream(DisasmLine);
- AMDGPUInstPrinter InstPrinter(*TM.getMCAsmInfo(), *TM.getInstrInfo(),
- *TM.getRegisterInfo());
+ AMDGPUInstPrinter InstPrinter(*TM.getMCAsmInfo(),
+ *TM.getSubtargetImpl()->getInstrInfo(),
+ *TM.getSubtargetImpl()->getRegisterInfo());
InstPrinter.printInst(&TmpInst, DisasmStream, StringRef());
// Disassemble instruction/operands to hex representation.
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h
index 58fe34d..d322fe0 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMCInstLower.h
@@ -8,8 +8,8 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef AMDGPU_MCINSTLOWER_H
-#define AMDGPU_MCINSTLOWER_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUMCINSTLOWER_H
+#define LLVM_LIB_TARGET_R600_AMDGPUMCINSTLOWER_H
namespace llvm {
@@ -19,22 +19,9 @@ class MCContext;
class MCInst;
class AMDGPUMCInstLower {
-
- // This must be kept in sync with the SISubtarget class in SIInstrInfo.td
- enum SISubtarget {
- SI = 0
- };
-
MCContext &Ctx;
const AMDGPUSubtarget &ST;
- /// Convert a member of the AMDGPUSubtarget::Generation enum to the
- /// SISubtarget enum.
- enum SISubtarget AMDGPUSubtargetToSISubtarget(unsigned Gen) const;
-
- /// Get the MC opcode for this MachineInstr.
- unsigned getMCOpcode(unsigned MIOpcode) const;
-
public:
AMDGPUMCInstLower(MCContext &ctx, const AMDGPUSubtarget &ST);
@@ -45,4 +32,4 @@ public:
} // End namespace llvm
-#endif //AMDGPU_MCINSTLOWER_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp
index 90af801..0f3f9e2 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.cpp
@@ -12,7 +12,9 @@ void AMDGPUMachineFunction::anchor() {}
AMDGPUMachineFunction::AMDGPUMachineFunction(const MachineFunction &MF) :
MachineFunctionInfo(),
ShaderType(ShaderType::COMPUTE),
- LDSSize(0) {
+ LDSSize(0),
+ ScratchSize(0),
+ IsKernel(true) {
AttributeSet Set = MF.getFunction()->getAttributes();
Attribute A = Set.getAttribute(AttributeSet::FunctionIndex,
ShaderTypeAttribute);
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h
index 0854d58..f5e4694 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUMachineFunction.h
@@ -10,8 +10,8 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUMACHINEFUNCTION_H
-#define AMDGPUMACHINEFUNCTION_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUMACHINEFUNCTION_H
+#define LLVM_LIB_TARGET_R600_AMDGPUMACHINEFUNCTION_H
#include "llvm/CodeGen/MachineFunction.h"
#include <map>
@@ -30,10 +30,16 @@ public:
/// Number of bytes in the LDS that are being used.
unsigned LDSSize;
+ /// Start of implicit kernel args
+ unsigned ABIArgOffset;
+
unsigned getShaderType() const {
return ShaderType;
}
+
+ unsigned ScratchSize;
+ bool IsKernel;
};
}
-#endif // AMDGPUMACHINEFUNCTION_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp b/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp
index 218750d..b81fef4 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUPromoteAlloca.cpp
@@ -36,11 +36,9 @@ class AMDGPUPromoteAlloca : public FunctionPass,
public:
AMDGPUPromoteAlloca(const AMDGPUSubtarget &st) : FunctionPass(ID), ST(st),
LocalMemAvailable(0) { }
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
- virtual const char *getPassName() const {
- return "AMDGPU Promote Alloca";
- }
+ bool doInitialization(Module &M) override;
+ bool runOnFunction(Function &F) override;
+ const char *getPassName() const override { return "AMDGPU Promote Alloca"; }
void visitAlloca(AllocaInst &I);
};
@@ -107,14 +105,16 @@ static VectorType *arrayTypeToVecType(const Type *ArrayTy) {
ArrayTy->getArrayNumElements());
}
-static Value* calculateVectorIndex(Value *Ptr,
- std::map<GetElementPtrInst*, Value*> GEPIdx) {
+static Value *
+calculateVectorIndex(Value *Ptr,
+ const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
if (isa<AllocaInst>(Ptr))
return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext()));
GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
- return GEPIdx[GEP];
+ auto I = GEPIdx.find(GEP);
+ return I == GEPIdx.end() ? nullptr : I->second;
}
static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
@@ -234,7 +234,8 @@ static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
return true;
}
-static void collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) {
+static bool collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) {
+ bool Success = true;
for (User *User : Val->users()) {
if(std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end())
continue;
@@ -242,11 +243,20 @@ static void collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) {
WorkList.push_back(User);
continue;
}
+
+ // FIXME: Correctly handle ptrtoint instructions.
+ Instruction *UseInst = dyn_cast<Instruction>(User);
+ if (UseInst && UseInst->getOpcode() == Instruction::PtrToInt)
+ return false;
+
if (!User->getType()->isPointerTy())
continue;
+
WorkList.push_back(User);
- collectUsesWithPtrTypes(User, WorkList);
+
+ Success &= collectUsesWithPtrTypes(User, WorkList);
}
+ return Success;
}
void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) {
@@ -274,6 +284,13 @@ void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) {
return;
}
+ std::vector<Value*> WorkList;
+
+ if (!collectUsesWithPtrTypes(&I, WorkList)) {
+ DEBUG(dbgs() << " Do not know how to convert all uses\n");
+ return;
+ }
+
DEBUG(dbgs() << "Promoting alloca to local memory\n");
LocalMemAvailable -= AllocaSize;
@@ -320,10 +337,6 @@ void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) {
I.replaceAllUsesWith(Offset);
I.eraseFromParent();
- std::vector<Value*> WorkList;
-
- collectUsesWithPtrTypes(Offset, WorkList);
-
for (std::vector<Value*>::iterator i = WorkList.begin(),
e = WorkList.end(); i != e; ++i) {
Value *V = *i;
@@ -331,6 +344,13 @@ void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) {
if (!Call) {
Type *EltTy = V->getType()->getPointerElementType();
PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
+
+ // The operand's value should be corrected on its own.
+ if (isa<AddrSpaceCastInst>(V))
+ continue;
+
+ // FIXME: It doesn't really make sense to try to do this for all
+ // instructions.
V->mutateType(NewTy);
continue;
}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp
index 3433280..57b054b 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.cpp
@@ -42,8 +42,7 @@ void AMDGPURegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
}
unsigned AMDGPURegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- assert(!"Subroutines not supported yet");
- return 0;
+ return AMDGPU::NoRegister;
}
unsigned AMDGPURegisterInfo::getSubRegFromChannel(unsigned Channel) const {
diff --git a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h
index 46aa7a1..f27576a 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPURegisterInfo.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUREGISTERINFO_H
-#define AMDGPUREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUREGISTERINFO_H
+#define LLVM_LIB_TARGET_R600_AMDGPUREGISTERINFO_H
#include "llvm/ADT/BitVector.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -51,7 +51,7 @@ struct AMDGPURegisterInfo : public AMDGPUGenRegisterInfo {
unsigned getSubRegFromChannel(unsigned Channel) const;
const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF) const override;
- virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj,
+ void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj,
unsigned FIOperandNum,
RegScavenger *RS) const override;
unsigned getFrameRegister(const MachineFunction &MF) const override;
@@ -62,4 +62,4 @@ struct AMDGPURegisterInfo : public AMDGPUGenRegisterInfo {
} // End namespace llvm
-#endif // AMDIDSAREGISTERINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp
index e3c2a50..b1c7498 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.cpp
@@ -13,11 +13,14 @@
//===----------------------------------------------------------------------===//
#include "AMDGPUSubtarget.h"
+#include "R600ISelLowering.h"
#include "R600InstrInfo.h"
+#include "R600MachineScheduler.h"
+#include "SIISelLowering.h"
#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/SmallString.h"
-
-#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/MachineScheduler.h"
using namespace llvm;
@@ -28,26 +31,23 @@ using namespace llvm;
#define GET_SUBTARGETINFO_CTOR
#include "AMDGPUGenSubtargetInfo.inc"
-AMDGPUSubtarget::AMDGPUSubtarget(StringRef TT, StringRef GPU, StringRef FS) :
- AMDGPUGenSubtargetInfo(TT, GPU, FS),
- DevName(GPU),
- Is64bit(false),
- DumpCode(false),
- R600ALUInst(false),
- HasVertexCache(false),
- TexVTXClauseSize(0),
- Gen(AMDGPUSubtarget::R600),
- FP64(false),
- FP64Denormals(false),
- FP32Denormals(false),
- CaymanISA(false),
- EnableIRStructurizer(true),
- EnablePromoteAlloca(false),
- EnableIfCvt(true),
- WavefrontSize(0),
- CFALUBug(false),
- LocalMemorySize(0),
- InstrItins(getInstrItineraryForCPU(GPU)) {
+static std::string computeDataLayout(const AMDGPUSubtarget &ST) {
+ std::string Ret = "e-p:32:32";
+
+ if (ST.is64bit()) {
+ // 32-bit private, local, and region pointers. 64-bit global and constant.
+ Ret += "-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32-p24:64:64";
+ }
+
+ Ret += "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128-v192:256-v256:256"
+ "-v512:512-v1024:1024-v2048:2048-n32:64";
+
+ return Ret;
+}
+
+AMDGPUSubtarget &
+AMDGPUSubtarget::initializeSubtargetDependencies(StringRef GPU, StringRef FS) {
+ // Determine default and user-specified characteristics
// On SI+, we want FP64 denormals to be on by default. FP32 denormals can be
// enabled, but some instructions do not respect them and they run at the
// double precision rate, so don't enable by default.
@@ -61,16 +61,38 @@ AMDGPUSubtarget::AMDGPUSubtarget(StringRef TT, StringRef GPU, StringRef FS) :
ParseSubtargetFeatures(GPU, FullFS);
+ // FIXME: I don't think think Evergreen has any useful support for
+ // denormals, but should be checked. Should we issue a warning somewhere
+ // if someone tries to enable these?
if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
- InstrInfo.reset(new R600InstrInfo(*this));
-
- // FIXME: I don't think think Evergreen has any useful support for
- // denormals, but should be checked. Should we issue a warning somewhere if
- // someone tries to enable these?
FP32Denormals = false;
FP64Denormals = false;
+ }
+ return *this;
+}
+
+AMDGPUSubtarget::AMDGPUSubtarget(StringRef TT, StringRef GPU, StringRef FS,
+ TargetMachine &TM)
+ : AMDGPUGenSubtargetInfo(TT, GPU, FS), DevName(GPU), Is64bit(false),
+ DumpCode(false), R600ALUInst(false), HasVertexCache(false),
+ TexVTXClauseSize(0), Gen(AMDGPUSubtarget::R600), FP64(false),
+ FP64Denormals(false), FP32Denormals(false), CaymanISA(false),
+ FlatAddressSpace(false), EnableIRStructurizer(true),
+ EnablePromoteAlloca(false), EnableIfCvt(true),
+ EnableLoadStoreOpt(false), WavefrontSize(0), CFALUBug(false), LocalMemorySize(0),
+ EnableVGPRSpilling(false),
+ DL(computeDataLayout(initializeSubtargetDependencies(GPU, FS))),
+ FrameLowering(TargetFrameLowering::StackGrowsUp,
+ 64 * 16, // Maximum stack alignment (long16)
+ 0),
+ InstrItins(getInstrItineraryForCPU(GPU)),
+ TargetTriple(TT) {
+ if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
+ InstrInfo.reset(new R600InstrInfo(*this));
+ TLInfo.reset(new R600TargetLowering(TM));
} else {
InstrInfo.reset(new SIInstrInfo(*this));
+ TLInfo.reset(new SITargetLowering(TM));
}
}
@@ -87,3 +109,33 @@ unsigned AMDGPUSubtarget::getStackEntrySize() const {
llvm_unreachable("Illegal wavefront size.");
}
}
+
+unsigned AMDGPUSubtarget::getAmdKernelCodeChipID() const {
+ switch(getGeneration()) {
+ default: llvm_unreachable("ChipID unknown");
+ case SEA_ISLANDS: return 12;
+ }
+}
+
+bool AMDGPUSubtarget::isVGPRSpillingEnabled(
+ const SIMachineFunctionInfo *MFI) const {
+ return MFI->getShaderType() == ShaderType::COMPUTE || EnableVGPRSpilling;
+}
+
+void AMDGPUSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
+ MachineInstr *begin,
+ MachineInstr *end,
+ unsigned NumRegionInstrs) const {
+ if (getGeneration() >= SOUTHERN_ISLANDS) {
+
+ // Track register pressure so the scheduler can try to decrease
+ // pressure once register usage is above the threshold defined by
+ // SIRegisterInfo::getRegPressureSetLimit()
+ Policy.ShouldTrackPressure = true;
+
+ // Enabling both top down and bottom up scheduling seems to give us less
+ // register spills than just using one of these approaches on its own.
+ Policy.OnlyTopDown = false;
+ Policy.OnlyBottomUp = false;
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h
index a844b37..566b45c 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUSubtarget.h
@@ -12,24 +12,27 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUSUBTARGET_H
-#define AMDGPUSUBTARGET_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUSUBTARGET_H
+#define LLVM_LIB_TARGET_R600_AMDGPUSUBTARGET_H
#include "AMDGPU.h"
+#include "AMDGPUFrameLowering.h"
#include "AMDGPUInstrInfo.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "R600ISelLowering.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#define GET_SUBTARGETINFO_HEADER
#include "AMDGPUGenSubtargetInfo.inc"
-#define MAX_CB_SIZE (1 << 16)
-
namespace llvm {
-class AMDGPUSubtarget : public AMDGPUGenSubtargetInfo {
+class SIMachineFunctionInfo;
- std::unique_ptr<AMDGPUInstrInfo> InstrInfo;
+class AMDGPUSubtarget : public AMDGPUGenSubtargetInfo {
public:
enum Generation {
@@ -38,7 +41,8 @@ public:
EVERGREEN,
NORTHERN_ISLANDS,
SOUTHERN_ISLANDS,
- SEA_ISLANDS
+ SEA_ISLANDS,
+ VOLCANIC_ISLANDS,
};
private:
@@ -53,24 +57,42 @@ private:
bool FP64Denormals;
bool FP32Denormals;
bool CaymanISA;
+ bool FlatAddressSpace;
bool EnableIRStructurizer;
bool EnablePromoteAlloca;
bool EnableIfCvt;
+ bool EnableLoadStoreOpt;
unsigned WavefrontSize;
bool CFALUBug;
int LocalMemorySize;
+ bool EnableVGPRSpilling;
+ const DataLayout DL;
+ AMDGPUFrameLowering FrameLowering;
+ std::unique_ptr<AMDGPUTargetLowering> TLInfo;
+ std::unique_ptr<AMDGPUInstrInfo> InstrInfo;
InstrItineraryData InstrItins;
+ Triple TargetTriple;
public:
- AMDGPUSubtarget(StringRef TT, StringRef CPU, StringRef FS);
+ AMDGPUSubtarget(StringRef TT, StringRef CPU, StringRef FS, TargetMachine &TM);
+ AMDGPUSubtarget &initializeSubtargetDependencies(StringRef GPU, StringRef FS);
- const AMDGPUInstrInfo *getInstrInfo() const {
+ const AMDGPUFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const AMDGPUInstrInfo *getInstrInfo() const override {
return InstrInfo.get();
}
-
- const InstrItineraryData &getInstrItineraryData() const {
- return InstrItins;
+ const AMDGPURegisterInfo *getRegisterInfo() const override {
+ return &InstrInfo->getRegisterInfo();
+ }
+ AMDGPUTargetLowering *getTargetLowering() const override {
+ return TLInfo.get();
+ }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &InstrItins;
}
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
@@ -107,6 +129,10 @@ public:
return FP64Denormals;
}
+ bool hasFlatAddressSpace() const {
+ return FlatAddressSpace;
+ }
+
bool hasBFE() const {
return (getGeneration() >= EVERGREEN);
}
@@ -158,6 +184,10 @@ public:
return EnableIfCvt;
}
+ bool loadStoreOptEnabled() const {
+ return EnableLoadStoreOpt;
+ }
+
unsigned getWavefrontSize() const {
return WavefrontSize;
}
@@ -173,10 +203,16 @@ public:
return LocalMemorySize;
}
+ unsigned getAmdKernelCodeChipID() const;
+
bool enableMachineScheduler() const override {
return getGeneration() <= NORTHERN_ISLANDS;
}
+ void overrideSchedPolicy(MachineSchedPolicy &Policy,
+ MachineInstr *begin, MachineInstr *end,
+ unsigned NumRegionInstrs) const override;
+
// Helper functions to simplify if statements
bool isTargetELF() const {
return false;
@@ -192,8 +228,20 @@ public:
bool r600ALUEncoding() const {
return R600ALUInst;
}
+ bool isAmdHsaOS() const {
+ return TargetTriple.getOS() == Triple::AMDHSA;
+ }
+ bool isVGPRSpillingEnabled(const SIMachineFunctionInfo *MFI) const;
+
+ unsigned getMaxWavesPerCU() const {
+ if (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
+ return 10;
+
+ // FIXME: Not sure what this is for other subtagets.
+ llvm_unreachable("do not know max waves per CU for this subtarget.");
+ }
};
} // End namespace llvm
-#endif // AMDGPUSUBTARGET_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp
index 56ba719..a1da717 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.cpp
@@ -22,6 +22,7 @@
#include "SIInstrInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Verifier.h"
@@ -38,6 +39,7 @@ using namespace llvm;
extern "C" void LLVMInitializeR600Target() {
// Register the target
RegisterTargetMachine<AMDGPUTargetMachine> X(TheAMDGPUTarget);
+ RegisterTargetMachine<GCNTargetMachine> Y(TheGCNTarget);
}
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
@@ -48,46 +50,20 @@ static MachineSchedRegistry
SchedCustomRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
-static std::string computeDataLayout(const AMDGPUSubtarget &ST) {
- std::string Ret = "e-p:32:32";
-
- if (ST.is64bit()) {
- // 32-bit local, and region pointers. 64-bit private, global, and constant.
- Ret += "-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32-p24:64:64";
- }
-
- Ret += "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128-v192:256-v256:256"
- "-v512:512-v1024:1024-v2048:2048-n32:64";
-
- return Ret;
-}
-
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, StringRef TT,
- StringRef CPU, StringRef FS,
- TargetOptions Options,
- Reloc::Model RM, CodeModel::Model CM,
- CodeGenOpt::Level OptLevel
-)
-:
- LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OptLevel),
- Subtarget(TT, CPU, FS),
- Layout(computeDataLayout(Subtarget)),
- FrameLowering(TargetFrameLowering::StackGrowsUp,
- 64 * 16 // Maximum stack alignment (long16)
- , 0),
- IntrinsicInfo(this),
- InstrItins(&Subtarget.getInstrItineraryData()) {
- // TLInfo uses InstrInfo so it must be initialized after.
- if (Subtarget.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
- TLInfo.reset(new R600TargetLowering(*this));
- } else {
- TLInfo.reset(new SITargetLowering(*this));
- }
+ StringRef CPU, StringRef FS,
+ TargetOptions Options, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OptLevel)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OptLevel),
+ TLOF(new TargetLoweringObjectFileELF()),
+ Subtarget(TT, CPU, FS, *this), IntrinsicInfo() {
setRequiresStructuredCFG(true);
initAsmInfo();
}
AMDGPUTargetMachine::~AMDGPUTargetMachine() {
+ delete TLOF;
}
namespace {
@@ -108,13 +84,14 @@ public:
return nullptr;
}
- virtual void addCodeGenPrepare();
+ void addIRPasses() override;
+ void addCodeGenPrepare() override;
bool addPreISel() override;
bool addInstSelector() override;
- bool addPreRegAlloc() override;
- bool addPostRegAlloc() override;
- bool addPreSched2() override;
- bool addPreEmitPass() override;
+ void addPreRegAlloc() override;
+ void addPostRegAlloc() override;
+ void addPreSched2() override;
+ void addPreEmitPass() override;
};
} // End of anonymous namespace
@@ -134,6 +111,19 @@ void AMDGPUTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
PM.add(createAMDGPUTargetTransformInfoPass(this));
}
+void AMDGPUPassConfig::addIRPasses() {
+ // Function calls are not supported, so make sure we inline everything.
+ addPass(createAMDGPUAlwaysInlinePass());
+ addPass(createAlwaysInlinerPass());
+ // We need to add the barrier noop pass, otherwise adding the function
+ // inlining pass will cause all of the PassConfigs passes to be run
+ // one function at a time, which means if we have a nodule with two
+ // functions, then we will generate code for the first function
+ // without ever running any passes on the second.
+ addPass(createBarrierNoopPass());
+ TargetPassConfig::addIRPasses();
+}
+
void AMDGPUPassConfig::addCodeGenPrepare() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.isPromoteAllocaEnabled()) {
@@ -161,61 +151,82 @@ AMDGPUPassConfig::addPreISel() {
}
bool AMDGPUPassConfig::addInstSelector() {
+ const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
+
addPass(createAMDGPUISelDag(getAMDGPUTargetMachine()));
- addPass(createSILowerI1CopiesPass());
+
+ if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ addPass(createSILowerI1CopiesPass());
+ addPass(createSIFixSGPRCopiesPass(*TM));
+ addPass(createSIFoldOperandsPass());
+ }
+
return false;
}
-bool AMDGPUPassConfig::addPreRegAlloc() {
+void AMDGPUPassConfig::addPreRegAlloc() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
addPass(createR600VectorRegMerger(*TM));
} else {
- addPass(createSIFixSGPRCopiesPass(*TM));
- // SIFixSGPRCopies can generate a lot of duplicate instructions,
- // so we need to run MachineCSE afterwards.
- addPass(&MachineCSEID);
- addPass(createSIShrinkInstructionsPass());
- initializeSIFixSGPRLiveRangesPass(*PassRegistry::getPassRegistry());
- insertPass(&RegisterCoalescerID, &SIFixSGPRLiveRangesID);
+ if (getOptLevel() > CodeGenOpt::None && ST.loadStoreOptEnabled()) {
+ // Don't do this with no optimizations since it throws away debug info by
+ // merging nonadjacent loads.
+
+ // This should be run after scheduling, but before register allocation. It
+ // also need extra copies to the address operand to be eliminated.
+ initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry());
+ insertPass(&MachineSchedulerID, &SILoadStoreOptimizerID);
+ }
+
+ addPass(createSIShrinkInstructionsPass(), false);
+ addPass(createSIFixSGPRLiveRangesPass(), false);
}
- return false;
}
-bool AMDGPUPassConfig::addPostRegAlloc() {
+void AMDGPUPassConfig::addPostRegAlloc() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
- addPass(createSIShrinkInstructionsPass());
if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
- addPass(createSIInsertWaits(*TM));
+ addPass(createSIPrepareScratchRegs(), false);
+ addPass(createSIShrinkInstructionsPass(), false);
}
- return false;
}
-bool AMDGPUPassConfig::addPreSched2() {
+void AMDGPUPassConfig::addPreSched2() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
- addPass(createR600EmitClauseMarkers());
+ addPass(createR600EmitClauseMarkers(), false);
if (ST.isIfCvtEnabled())
- addPass(&IfConverterID);
+ addPass(&IfConverterID, false);
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
- addPass(createR600ClauseMergePass(*TM));
- return false;
+ addPass(createR600ClauseMergePass(*TM), false);
+ if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ addPass(createSIInsertWaits(*TM), false);
+ }
}
-bool AMDGPUPassConfig::addPreEmitPass() {
+void AMDGPUPassConfig::addPreEmitPass() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
- addPass(createAMDGPUCFGStructurizerPass());
- addPass(createR600ExpandSpecialInstrsPass(*TM));
- addPass(&FinalizeMachineBundlesID);
- addPass(createR600Packetizer(*TM));
- addPass(createR600ControlFlowFinalizer(*TM));
+ addPass(createAMDGPUCFGStructurizerPass(), false);
+ addPass(createR600ExpandSpecialInstrsPass(*TM), false);
+ addPass(&FinalizeMachineBundlesID, false);
+ addPass(createR600Packetizer(*TM), false);
+ addPass(createR600ControlFlowFinalizer(*TM), false);
} else {
- addPass(createSILowerControlFlowPass(*TM));
+ addPass(createSILowerControlFlowPass(*TM), false);
}
-
- return false;
}
+
+
+//===----------------------------------------------------------------------===//
+// GCN Target Machine (SI+)
+//===----------------------------------------------------------------------===//
+
+GCNTargetMachine::GCNTargetMachine(const Target &T, StringRef TT, StringRef FS,
+ StringRef CPU, TargetOptions Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL) :
+ AMDGPUTargetMachine(T, TT, FS, CPU, Options, RM, CM, OL) { }
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h
index 3bb15be..66b3070 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h
+++ b/contrib/llvm/lib/Target/R600/AMDGPUTargetMachine.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPU_TARGET_MACHINE_H
-#define AMDGPU_TARGET_MACHINE_H
+#ifndef LLVM_LIB_TARGET_R600_AMDGPUTARGETMACHINE_H
+#define LLVM_LIB_TARGET_R600_AMDGPUTARGETMACHINE_H
#include "AMDGPUFrameLowering.h"
#include "AMDGPUInstrInfo.h"
@@ -24,48 +24,48 @@
namespace llvm {
-class AMDGPUTargetMachine : public LLVMTargetMachine {
+//===----------------------------------------------------------------------===//
+// AMDGPU Target Machine (R600+)
+//===----------------------------------------------------------------------===//
+class AMDGPUTargetMachine : public LLVMTargetMachine {
+protected:
+ TargetLoweringObjectFile *TLOF;
AMDGPUSubtarget Subtarget;
- const DataLayout Layout;
- AMDGPUFrameLowering FrameLowering;
AMDGPUIntrinsicInfo IntrinsicInfo;
- std::unique_ptr<AMDGPUTargetLowering> TLInfo;
- const InstrItineraryData *InstrItins;
public:
AMDGPUTargetMachine(const Target &T, StringRef TT, StringRef FS,
StringRef CPU, TargetOptions Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL);
~AMDGPUTargetMachine();
- const AMDGPUFrameLowering *getFrameLowering() const override {
- return &FrameLowering;
- }
- const AMDGPUIntrinsicInfo *getIntrinsicInfo() const override {
- return &IntrinsicInfo;
- }
- const AMDGPUInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
const AMDGPUSubtarget *getSubtargetImpl() const override {
return &Subtarget;
}
- const AMDGPURegisterInfo *getRegisterInfo() const override {
- return &getInstrInfo()->getRegisterInfo();
- }
- AMDGPUTargetLowering *getTargetLowering() const override {
- return TLInfo.get();
- }
- const InstrItineraryData *getInstrItineraryData() const override {
- return InstrItins;
+ const AMDGPUIntrinsicInfo *getIntrinsicInfo() const override {
+ return &IntrinsicInfo;
}
- const DataLayout *getDataLayout() const override { return &Layout; }
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
/// \brief Register R600 analysis passes with a pass manager.
void addAnalysisPasses(PassManagerBase &PM) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// GCN Target Machine (SI+)
+//===----------------------------------------------------------------------===//
+
+class GCNTargetMachine : public AMDGPUTargetMachine {
+
+public:
+ GCNTargetMachine(const Target &T, StringRef TT, StringRef FS,
+ StringRef CPU, TargetOptions Options, Reloc::Model RM,
+ CodeModel::Model CM, CodeGenOpt::Level OL);
};
} // End namespace llvm
-#endif // AMDGPU_TARGET_MACHINE_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp b/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp
index 88934b6..e7bc006 100644
--- a/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDGPUTargetTransformInfo.cpp
@@ -52,7 +52,7 @@ public:
AMDGPUTTI(const AMDGPUTargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
- TLI(TM->getTargetLowering()) {
+ TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializeAMDGPUTTIPass(*PassRegistry::getPassRegistry());
}
@@ -74,16 +74,14 @@ public:
bool hasBranchDivergence() const override;
- void getUnrollingPreferences(Loop *L,
+ void getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const override;
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const override;
unsigned getNumberOfRegisters(bool Vector) const override;
unsigned getRegisterBitWidth(bool Vector) const override;
- unsigned getMaximumUnrollFactor() const override;
-
- /// @}
+ unsigned getMaxInterleaveFactor() const override;
};
} // end anonymous namespace
@@ -99,8 +97,14 @@ llvm::createAMDGPUTargetTransformInfoPass(const AMDGPUTargetMachine *TM) {
bool AMDGPUTTI::hasBranchDivergence() const { return true; }
-void AMDGPUTTI::getUnrollingPreferences(Loop *L,
+void AMDGPUTTI::getUnrollingPreferences(const Function *, Loop *L,
UnrollingPreferences &UP) const {
+ UP.Threshold = 300; // Twice the default.
+ UP.Count = UINT_MAX;
+ UP.Partial = true;
+
+ // TODO: Do we want runtime unrolling?
+
for (const BasicBlock *BB : L->getBlocks()) {
for (const Instruction &I : *BB) {
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
@@ -120,7 +124,7 @@ void AMDGPUTTI::getUnrollingPreferences(Loop *L,
//
// Don't use the maximum allowed value here as it will make some
// programs way too big.
- UP.Threshold = 500;
+ UP.Threshold = 800;
}
}
}
@@ -147,7 +151,7 @@ unsigned AMDGPUTTI::getRegisterBitWidth(bool) const {
return 32;
}
-unsigned AMDGPUTTI::getMaximumUnrollFactor() const {
+unsigned AMDGPUTTI::getMaxInterleaveFactor() const {
// Semi-arbitrary large amount.
return 64;
}
diff --git a/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp b/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp
index f3a0391..ee6e8ec 100644
--- a/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp
+++ b/contrib/llvm/lib/Target/R600/AMDILCFGStructurizer.cpp
@@ -11,6 +11,7 @@
#include "AMDGPU.h"
#include "AMDGPUInstrInfo.h"
#include "R600InstrInfo.h"
+#include "AMDGPUSubtarget.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SmallVector.h"
@@ -160,7 +161,7 @@ public:
bool prepare();
bool runOnMachineFunction(MachineFunction &MF) override {
- TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ TII = static_cast<const R600InstrInfo *>(MF.getSubtarget().getInstrInfo());
TRI = &TII->getRegisterInfo();
DEBUG(MF.dump(););
OrderedBlks.clear();
@@ -337,7 +338,7 @@ protected:
void setLoopLandBlock(MachineLoop *LoopRep, MachineBasicBlock *MBB = nullptr);
MachineBasicBlock *findNearestCommonPostDom(std::set<MachineBasicBlock *>&);
- /// This is work around solution for findNearestCommonDominator not avaiable
+ /// This is work around solution for findNearestCommonDominator not available
/// to post dom a proper fix should go to Dominators.h.
MachineBasicBlock *findNearestCommonPostDom(MachineBasicBlock *MBB1,
MachineBasicBlock *MBB2);
diff --git a/contrib/llvm/lib/Target/R600/AMDKernelCodeT.h b/contrib/llvm/lib/Target/R600/AMDKernelCodeT.h
new file mode 100644
index 0000000..4d3041f
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDKernelCodeT.h
@@ -0,0 +1,704 @@
+//===-- AMDGPUKernelCodeT.h - Print AMDGPU assembly code ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file AMDKernelCodeT.h
+//===----------------------------------------------------------------------===//
+
+#ifndef AMDKERNELCODET_H
+#define AMDKERNELCODET_H
+
+#include <cstddef>
+#include <cstdint>
+
+//---------------------------------------------------------------------------//
+// AMD Kernel Code, and its dependencies //
+//---------------------------------------------------------------------------//
+
+typedef uint8_t hsa_powertwo8_t;
+typedef uint32_t hsa_ext_code_kind_t;
+typedef uint8_t hsa_ext_brig_profile8_t;
+typedef uint8_t hsa_ext_brig_machine_model8_t;
+typedef uint64_t hsa_ext_control_directive_present64_t;
+typedef uint16_t hsa_ext_exception_kind16_t;
+typedef uint32_t hsa_ext_code_kind32_t;
+
+typedef struct hsa_dim3_s {
+ uint32_t x;
+ uint32_t y;
+ uint32_t z;
+} hsa_dim3_t;
+
+/// The version of the amd_*_code_t struct. Minor versions must be
+/// backward compatible.
+typedef uint32_t amd_code_version32_t;
+enum amd_code_version_t {
+ AMD_CODE_VERSION_MAJOR = 0,
+ AMD_CODE_VERSION_MINOR = 1
+};
+
+/// The values used to define the number of bytes to use for the
+/// swizzle element size.
+enum amd_element_byte_size_t {
+ AMD_ELEMENT_2_BYTES = 0,
+ AMD_ELEMENT_4_BYTES = 1,
+ AMD_ELEMENT_8_BYTES = 2,
+ AMD_ELEMENT_16_BYTES = 3
+};
+
+/// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
+/// COMPUTE_PGM_RSRC2 registers.
+typedef uint64_t amd_compute_pgm_resource_register64_t;
+
+/// Every amd_*_code_t has the following properties, which are composed of
+/// a number of bit fields. Every bit field has a mask (AMD_CODE_PROPERTY_*),
+/// bit width (AMD_CODE_PROPERTY_*_WIDTH, and bit shift amount
+/// (AMD_CODE_PROPERTY_*_SHIFT) for convenient access. Unused bits must be 0.
+///
+/// (Note that bit fields cannot be used as their layout is
+/// implementation defined in the C standard and so cannot be used to
+/// specify an ABI)
+typedef uint32_t amd_code_property32_t;
+enum amd_code_property_mask_t {
+
+ /// Enable the setup of the SGPR user data registers
+ /// (AMD_CODE_PROPERTY_ENABLE_SGPR_*), see documentation of amd_kernel_code_t
+ /// for initial register state.
+ ///
+ /// The total number of SGPRuser data registers requested must not
+ /// exceed 16. Any requests beyond 16 will be ignored.
+ ///
+ /// Used to set COMPUTE_PGM_RSRC2.USER_SGPR (set to total count of
+ /// SGPR user data registers enabled up to 16).
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT = 0,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT = 2,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT = 3,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT = 4,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT = 5,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT = 6,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT = 7,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT = 8,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT,
+
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT = 9,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT,
+
+ /// Control wave ID base counter for GDS ordered-append. Used to set
+ /// COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL. (Not sure if
+ /// ORDERED_APPEND_MODE also needs to be settable)
+ AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT = 10,
+ AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH = 1,
+ AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS = ((1 << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT,
+
+ /// The interleave (swizzle) element size in bytes required by the
+ /// code for private memory. This must be 2, 4, 8 or 16. This value
+ /// is provided to the finalizer when it is invoked and is recorded
+ /// here. The hardware will interleave the memory requests of each
+ /// lane of a wavefront by this element size to ensure each
+ /// work-item gets a distinct memory memory location. Therefore, the
+ /// finalizer ensures that all load and store operations done to
+ /// private memory do not exceed this size. For example, if the
+ /// element size is 4 (32-bits or dword) and a 64-bit value must be
+ /// loaded, the finalizer will generate two 32-bit loads. This
+ /// ensures that the interleaving will get the the work-item
+ /// specific dword for both halves of the 64-bit value. If it just
+ /// did a 64-bit load then it would get one dword which belonged to
+ /// its own work-item, but the second dword would belong to the
+ /// adjacent lane work-item since the interleaving is in dwords.
+ ///
+ /// The value used must match the value that the runtime configures
+ /// the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE). This
+ /// is generally DWORD.
+ ///
+ /// Use values from the amd_element_byte_size_t enum.
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT = 11,
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH = 2,
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE = ((1 << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT,
+
+ /// Are global memory addresses 64 bits. Must match
+ /// amd_kernel_code_t.hsail_machine_model ==
+ /// HSA_MACHINE_LARGE. Must also match
+ /// SH_MEM_CONFIG.PTR32 (GFX6 (SI)/GFX7 (CI)),
+ /// SH_MEM_CONFIG.ADDRESS_MODE (GFX8 (VI)+).
+ AMD_CODE_PROPERTY_IS_PTR64_SHIFT = 13,
+ AMD_CODE_PROPERTY_IS_PTR64_WIDTH = 1,
+ AMD_CODE_PROPERTY_IS_PTR64 = ((1 << AMD_CODE_PROPERTY_IS_PTR64_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_PTR64_SHIFT,
+
+ /// Indicate if the generated ISA is using a dynamically sized call
+ /// stack. This can happen if calls are implemented using a call
+ /// stack and recursion, alloca or calls to indirect functions are
+ /// present. In these cases the Finalizer cannot compute the total
+ /// private segment size at compile time. In this case the
+ /// workitem_private_segment_byte_size only specifies the statically
+ /// know private segment size, and additional space must be added
+ /// for the call stack.
+ AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT = 14,
+ AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH = 1,
+ AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK = ((1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT,
+
+ /// Indicate if code generated has support for debugging.
+ AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT = 15,
+ AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH = 1,
+ AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT
+};
+
+/// @brief The hsa_ext_control_directives_t specifies the values for the HSAIL
+/// control directives. These control how the finalizer generates code. This
+/// struct is used both as an argument to hsaFinalizeKernel to specify values for
+/// the control directives, and is used in HsaKernelCode to record the values of
+/// the control directives that the finalize used when generating the code which
+/// either came from the finalizer argument or explicit HSAIL control
+/// directives. See the definition of the control directives in HSA Programmer's
+/// Reference Manual which also defines how the values specified as finalizer
+/// arguments have to agree with the control directives in the HSAIL code.
+typedef struct hsa_ext_control_directives_s {
+ /// This is a bit set indicating which control directives have been
+ /// specified. If the value is 0 then there are no control directives specified
+ /// and the rest of the fields can be ignored. The bits are accessed using the
+ /// hsa_ext_control_directives_present_mask_t. Any control directive that is not
+ /// enabled in this bit set must have the value of all 0s.
+ hsa_ext_control_directive_present64_t enabled_control_directives;
+
+ /// If enableBreakExceptions is not enabled then must be 0, otherwise must be
+ /// non-0 and specifies the set of HSAIL exceptions that must have the BREAK
+ /// policy enabled. If this set is not empty then the generated code may have
+ /// lower performance than if the set is empty. If the kernel being finalized
+ /// has any enablebreakexceptions control directives, then the values specified
+ /// by this argument are unioned with the values in these control
+ /// directives. If any of the functions the kernel calls have an
+ /// enablebreakexceptions control directive, then they must be equal or a
+ /// subset of, this union.
+ hsa_ext_exception_kind16_t enable_break_exceptions;
+
+ /// If enableDetectExceptions is not enabled then must be 0, otherwise must be
+ /// non-0 and specifies the set of HSAIL exceptions that must have the DETECT
+ /// policy enabled. If this set is not empty then the generated code may have
+ /// lower performance than if the set is empty. However, an implementation
+ /// should endeavour to make the performance impact small. If the kernel being
+ /// finalized has any enabledetectexceptions control directives, then the
+ /// values specified by this argument are unioned with the values in these
+ /// control directives. If any of the functions the kernel calls have an
+ /// enabledetectexceptions control directive, then they must be equal or a
+ /// subset of, this union.
+ hsa_ext_exception_kind16_t enable_detect_exceptions;
+
+ /// If maxDynamicGroupSize is not enabled then must be 0, and any amount of
+ /// dynamic group segment can be allocated for a dispatch, otherwise the value
+ /// specifies the maximum number of bytes of dynamic group segment that can be
+ /// allocated for a dispatch. If the kernel being finalized has any
+ /// maxdynamicsize control directives, then the values must be the same, and
+ /// must be the same as this argument if it is enabled. This value can be used
+ /// by the finalizer to determine the maximum number of bytes of group memory
+ /// used by each work-group by adding this value to the group memory required
+ /// for all group segment variables used by the kernel and all functions it
+ /// calls, and group memory used to implement other HSAIL features such as
+ /// fbarriers and the detect exception operations. This can allow the finalizer
+ /// to determine the expected number of work-groups that can be executed by a
+ /// compute unit and allow more resources to be allocated to the work-items if
+ /// it is known that fewer work-groups can be executed due to group memory
+ /// limitations.
+ uint32_t max_dynamic_group_size;
+
+ /// If maxFlatGridSize is not enabled then must be 0, otherwise must be greater
+ /// than 0. See HSA Programmer's Reference Manual description of
+ /// maxflatgridsize control directive.
+ uint32_t max_flat_grid_size;
+
+ /// If maxFlatWorkgroupSize is not enabled then must be 0, otherwise must be
+ /// greater than 0. See HSA Programmer's Reference Manual description of
+ /// maxflatworkgroupsize control directive.
+ uint32_t max_flat_workgroup_size;
+
+ /// If requestedWorkgroupsPerCu is not enabled then must be 0, and the
+ /// finalizer is free to generate ISA that may result in any number of
+ /// work-groups executing on a single compute unit. Otherwise, the finalizer
+ /// should attempt to generate ISA that will allow the specified number of
+ /// work-groups to execute on a single compute unit. This is only a hint and
+ /// can be ignored by the finalizer. If the kernel being finalized, or any of
+ /// the functions it calls, has a requested control directive, then the values
+ /// must be the same. This can be used to determine the number of resources
+ /// that should be allocated to a single work-group and work-item. For example,
+ /// a low value may allow more resources to be allocated, resulting in higher
+ /// per work-item performance, as it is known there will never be more than the
+ /// specified number of work-groups actually executing on the compute
+ /// unit. Conversely, a high value may allocate fewer resources, resulting in
+ /// lower per work-item performance, which is offset by the fact it allows more
+ /// work-groups to actually execute on the compute unit.
+ uint32_t requested_workgroups_per_cu;
+
+ /// If not enabled then all elements for Dim3 must be 0, otherwise every
+ /// element must be greater than 0. See HSA Programmer's Reference Manual
+ /// description of requiredgridsize control directive.
+ hsa_dim3_t required_grid_size;
+
+ /// If requiredWorkgroupSize is not enabled then all elements for Dim3 must be
+ /// 0, and the produced code can be dispatched with any legal work-group range
+ /// consistent with the dispatch dimensions. Otherwise, the code produced must
+ /// always be dispatched with the specified work-group range. No element of the
+ /// specified range must be 0. It must be consistent with required_dimensions
+ /// and max_flat_workgroup_size. If the kernel being finalized, or any of the
+ /// functions it calls, has a requiredworkgroupsize control directive, then the
+ /// values must be the same. Specifying a value can allow the finalizer to
+ /// optimize work-group id operations, and if the number of work-items in the
+ /// work-group is less than the WAVESIZE then barrier operations can be
+ /// optimized to just a memory fence.
+ hsa_dim3_t required_workgroup_size;
+
+ /// If requiredDim is not enabled then must be 0 and the produced kernel code
+ /// can be dispatched with 1, 2 or 3 dimensions. If enabled then the value is
+ /// 1..3 and the code produced must only be dispatched with a dimension that
+ /// matches. Other values are illegal. If the kernel being finalized, or any of
+ /// the functions it calls, has a requireddimsize control directive, then the
+ /// values must be the same. This can be used to optimize the code generated to
+ /// compute the absolute and flat work-group and work-item id, and the dim
+ /// HSAIL operations.
+ uint8_t required_dim;
+
+ /// Reserved. Must be 0.
+ uint8_t reserved[75];
+} hsa_ext_control_directives_t;
+
+/// AMD Kernel Code Object (amd_kernel_code_t). GPU CP uses the AMD Kernel
+/// Code Object to set up the hardware to execute the kernel dispatch.
+///
+/// Initial Kernel Register State.
+///
+/// Initial kernel register state will be set up by CP/SPI prior to the start
+/// of execution of every wavefront. This is limited by the constraints of the
+/// current hardware.
+///
+/// The order of the SGPR registers is defined, but the Finalizer can specify
+/// which ones are actually setup in the amd_kernel_code_t object using the
+/// enable_sgpr_* bit fields. The register numbers used for enabled registers
+/// are dense starting at SGPR0: the first enabled register is SGPR0, the next
+/// enabled register is SGPR1 etc.; disabled registers do not have an SGPR
+/// number.
+///
+/// The initial SGPRs comprise up to 16 User SRGPs that are set up by CP and
+/// apply to all waves of the grid. It is possible to specify more than 16 User
+/// SGPRs using the enable_sgpr_* bit fields, in which case only the first 16
+/// are actually initialized. These are then immediately followed by the System
+/// SGPRs that are set up by ADC/SPI and can have different values for each wave
+/// of the grid dispatch.
+///
+/// SGPR register initial state is defined as follows:
+///
+/// Private Segment Buffer (enable_sgpr_private_segment_buffer):
+/// Number of User SGPR registers: 4. V# that can be used, together with
+/// Scratch Wave Offset as an offset, to access the Private/Spill/Arg
+/// segments using a segment address. It must be set as follows:
+/// - Base address: of the scratch memory area used by the dispatch. It
+/// does not include the scratch wave offset. It will be the per process
+/// SH_HIDDEN_PRIVATE_BASE_VMID plus any offset from this dispatch (for
+/// example there may be a per pipe offset, or per AQL Queue offset).
+/// - Stride + data_format: Element Size * Index Stride (???)
+/// - Cache swizzle: ???
+/// - Swizzle enable: SH_STATIC_MEM_CONFIG.SWIZZLE_ENABLE (must be 1 for
+/// scratch)
+/// - Num records: Flat Scratch Work Item Size / Element Size (???)
+/// - Dst_sel_*: ???
+/// - Num_format: ???
+/// - Element_size: SH_STATIC_MEM_CONFIG.ELEMENT_SIZE (will be DWORD, must
+/// agree with amd_kernel_code_t.privateElementSize)
+/// - Index_stride: SH_STATIC_MEM_CONFIG.INDEX_STRIDE (will be 64 as must
+/// be number of wavefront lanes for scratch, must agree with
+/// amd_kernel_code_t.wavefrontSize)
+/// - Add tid enable: 1
+/// - ATC: from SH_MEM_CONFIG.PRIVATE_ATC,
+/// - Hash_enable: ???
+/// - Heap: ???
+/// - Mtype: from SH_STATIC_MEM_CONFIG.PRIVATE_MTYPE
+/// - Type: 0 (a buffer) (???)
+///
+/// Dispatch Ptr (enable_sgpr_dispatch_ptr):
+/// Number of User SGPR registers: 2. 64 bit address of AQL dispatch packet
+/// for kernel actually executing.
+///
+/// Queue Ptr (enable_sgpr_queue_ptr):
+/// Number of User SGPR registers: 2. 64 bit address of AmdQueue object for
+/// AQL queue on which the dispatch packet was queued.
+///
+/// Kernarg Segment Ptr (enable_sgpr_kernarg_segment_ptr):
+/// Number of User SGPR registers: 2. 64 bit address of Kernarg segment. This
+/// is directly copied from the kernargPtr in the dispatch packet. Having CP
+/// load it once avoids loading it at the beginning of every wavefront.
+///
+/// Dispatch Id (enable_sgpr_dispatch_id):
+/// Number of User SGPR registers: 2. 64 bit Dispatch ID of the dispatch
+/// packet being executed.
+///
+/// Flat Scratch Init (enable_sgpr_flat_scratch_init):
+/// Number of User SGPR registers: 2. This is 2 SGPRs.
+///
+/// For CI/VI:
+/// The first SGPR is a 32 bit byte offset from SH_MEM_HIDDEN_PRIVATE_BASE
+/// to base of memory for scratch for this dispatch. This is the same offset
+/// used in computing the Scratch Segment Buffer base address. The value of
+/// Scratch Wave Offset must be added by the kernel code and moved to
+/// SGPRn-4 for use as the FLAT SCRATCH BASE in flat memory instructions.
+///
+/// The second SGPR is 32 bit byte size of a single work-item’s scratch
+/// memory usage. This is directly loaded from the dispatch packet Private
+/// Segment Byte Size and rounded up to a multiple of DWORD.
+///
+/// \todo [Does CP need to round this to >4 byte alignment?]
+///
+/// The kernel code must move to SGPRn-3 for use as the FLAT SCRATCH SIZE in
+/// flat memory instructions. Having CP load it once avoids loading it at
+/// the beginning of every wavefront.
+///
+/// For PI:
+/// This is the 64 bit base address of the scratch backing memory for
+/// allocated by CP for this dispatch.
+///
+/// Private Segment Size (enable_sgpr_private_segment_size):
+/// Number of User SGPR registers: 1. The 32 bit byte size of a single
+/// work-item’s scratch memory allocation. This is the value from the dispatch
+/// packet. Private Segment Byte Size rounded up by CP to a multiple of DWORD.
+///
+/// \todo [Does CP need to round this to >4 byte alignment?]
+///
+/// Having CP load it once avoids loading it at the beginning of every
+/// wavefront.
+///
+/// \todo [This will not be used for CI/VI since it is the same value as
+/// the second SGPR of Flat Scratch Init. However, it is need for PI which
+/// changes meaning of Flat Scratchg Init..]
+///
+/// Grid Work-Group Count X (enable_sgpr_grid_workgroup_count_x):
+/// Number of User SGPR registers: 1. 32 bit count of the number of
+/// work-groups in the X dimension for the grid being executed. Computed from
+/// the fields in the HsaDispatchPacket as
+/// ((gridSize.x+workgroupSize.x-1)/workgroupSize.x).
+///
+/// Grid Work-Group Count Y (enable_sgpr_grid_workgroup_count_y):
+/// Number of User SGPR registers: 1. 32 bit count of the number of
+/// work-groups in the Y dimension for the grid being executed. Computed from
+/// the fields in the HsaDispatchPacket as
+/// ((gridSize.y+workgroupSize.y-1)/workgroupSize.y).
+///
+/// Only initialized if <16 previous SGPRs initialized.
+///
+/// Grid Work-Group Count Z (enable_sgpr_grid_workgroup_count_z):
+/// Number of User SGPR registers: 1. 32 bit count of the number of
+/// work-groups in the Z dimension for the grid being executed. Computed
+/// from the fields in the HsaDispatchPacket as
+/// ((gridSize.z+workgroupSize.z-1)/workgroupSize.z).
+///
+/// Only initialized if <16 previous SGPRs initialized.
+///
+/// Work-Group Id X (enable_sgpr_workgroup_id_x):
+/// Number of System SGPR registers: 1. 32 bit work group id in X dimension
+/// of grid for wavefront. Always present.
+///
+/// Work-Group Id Y (enable_sgpr_workgroup_id_y):
+/// Number of System SGPR registers: 1. 32 bit work group id in Y dimension
+/// of grid for wavefront.
+///
+/// Work-Group Id Z (enable_sgpr_workgroup_id_z):
+/// Number of System SGPR registers: 1. 32 bit work group id in Z dimension
+/// of grid for wavefront. If present then Work-group Id Y will also be
+/// present
+///
+/// Work-Group Info (enable_sgpr_workgroup_info):
+/// Number of System SGPR registers: 1. {first_wave, 14’b0000,
+/// ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}
+///
+/// Private Segment Wave Byte Offset
+/// (enable_sgpr_private_segment_wave_byte_offset):
+/// Number of System SGPR registers: 1. 32 bit byte offset from base of
+/// dispatch scratch base. Must be used as an offset with Private/Spill/Arg
+/// segment address when using Scratch Segment Buffer. It must be added to
+/// Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.
+///
+///
+/// The order of the VGPR registers is defined, but the Finalizer can specify
+/// which ones are actually setup in the amd_kernel_code_t object using the
+/// enableVgpr* bit fields. The register numbers used for enabled registers
+/// are dense starting at VGPR0: the first enabled register is VGPR0, the next
+/// enabled register is VGPR1 etc.; disabled registers do not have an VGPR
+/// number.
+///
+/// VGPR register initial state is defined as follows:
+///
+/// Work-Item Id X (always initialized):
+/// Number of registers: 1. 32 bit work item id in X dimension of work-group
+/// for wavefront lane.
+///
+/// Work-Item Id X (enable_vgpr_workitem_id > 0):
+/// Number of registers: 1. 32 bit work item id in Y dimension of work-group
+/// for wavefront lane.
+///
+/// Work-Item Id X (enable_vgpr_workitem_id > 0):
+/// Number of registers: 1. 32 bit work item id in Z dimension of work-group
+/// for wavefront lane.
+///
+///
+/// The setting of registers is being done by existing GPU hardware as follows:
+/// 1) SGPRs before the Work-Group Ids are set by CP using the 16 User Data
+/// registers.
+/// 2) Work-group Id registers X, Y, Z are set by SPI which supports any
+/// combination including none.
+/// 3) Scratch Wave Offset is also set by SPI which is why its value cannot
+/// be added into the value Flat Scratch Offset which would avoid the
+/// Finalizer generated prolog having to do the add.
+/// 4) The VGPRs are set by SPI which only supports specifying either (X),
+/// (X, Y) or (X, Y, Z).
+///
+/// Flat Scratch Dispatch Offset and Flat Scratch Size are adjacent SGRRs so
+/// they can be moved as a 64 bit value to the hardware required SGPRn-3 and
+/// SGPRn-4 respectively using the Finalizer ?FLAT_SCRATCH? Register.
+///
+/// The global segment can be accessed either using flat operations or buffer
+/// operations. If buffer operations are used then the Global Buffer used to
+/// access HSAIL Global/Readonly/Kernarg (which are combine) segments using a
+/// segment address is not passed into the kernel code by CP since its base
+/// address is always 0. Instead the Finalizer generates prolog code to
+/// initialize 4 SGPRs with a V# that has the following properties, and then
+/// uses that in the buffer instructions:
+/// - base address of 0
+/// - no swizzle
+/// - ATC=1
+/// - MTYPE set to support memory coherence specified in
+/// amd_kernel_code_t.globalMemoryCoherence
+///
+/// When the Global Buffer is used to access the Kernarg segment, must add the
+/// dispatch packet kernArgPtr to a kernarg segment address before using this V#.
+/// Alternatively scalar loads can be used if the kernarg offset is uniform, as
+/// the kernarg segment is constant for the duration of the kernel execution.
+///
+typedef struct amd_kernel_code_s {
+ /// The AMD major version of the Code Object. Must be the value
+ /// AMD_CODE_VERSION_MAJOR.
+ amd_code_version32_t amd_code_version_major;
+
+ /// The AMD minor version of the Code Object. Minor versions must be
+ /// backward compatible. Must be the value
+ /// AMD_CODE_VERSION_MINOR.
+ amd_code_version32_t amd_code_version_minor;
+
+ /// The byte size of this struct. Must be set to
+ /// sizeof(amd_kernel_code_t). Used for backward
+ /// compatibility.
+ uint32_t struct_byte_size;
+
+ /// The target chip instruction set for which code has been
+ /// generated. Values are from the E_SC_INSTRUCTION_SET enumeration
+ /// in sc/Interface/SCCommon.h.
+ uint32_t target_chip;
+
+ /// Byte offset (possibly negative) from start of amd_kernel_code_t
+ /// object to kernel's entry point instruction. The actual code for
+ /// the kernel is required to be 256 byte aligned to match hardware
+ /// requirements (SQ cache line is 16). The code must be position
+ /// independent code (PIC) for AMD devices to give runtime the
+ /// option of copying code to discrete GPU memory or APU L2
+ /// cache. The Finalizer should endeavour to allocate all kernel
+ /// machine code in contiguous memory pages so that a device
+ /// pre-fetcher will tend to only pre-fetch Kernel Code objects,
+ /// improving cache performance.
+ int64_t kernel_code_entry_byte_offset;
+
+ /// Range of bytes to consider prefetching expressed as an offset
+ /// and size. The offset is from the start (possibly negative) of
+ /// amd_kernel_code_t object. Set both to 0 if no prefetch
+ /// information is available.
+ ///
+ /// \todo ttye 11/15/2013 Is the prefetch definition we want? Did
+ /// not make the size a uint64_t as prefetching more than 4GiB seems
+ /// excessive.
+ int64_t kernel_code_prefetch_byte_offset;
+ uint64_t kernel_code_prefetch_byte_size;
+
+ /// Number of bytes of scratch backing memory required for full
+ /// occupancy of target chip. This takes into account the number of
+ /// bytes of scratch per work-item, the wavefront size, the maximum
+ /// number of wavefronts per CU, and the number of CUs. This is an
+ /// upper limit on scratch. If the grid being dispatched is small it
+ /// may only need less than this. If the kernel uses no scratch, or
+ /// the Finalizer has not computed this value, it must be 0.
+ uint64_t max_scratch_backing_memory_byte_size;
+
+ /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
+ /// COMPUTE_PGM_RSRC2 registers.
+ amd_compute_pgm_resource_register64_t compute_pgm_resource_registers;
+
+ /// Code properties. See amd_code_property_mask_t for a full list of
+ /// properties.
+ amd_code_property32_t code_properties;
+
+ /// The amount of memory required for the combined private, spill
+ /// and arg segments for a work-item in bytes. If
+ /// is_dynamic_callstack is 1 then additional space must be added to
+ /// this value for the call stack.
+ uint32_t workitem_private_segment_byte_size;
+
+ /// The amount of group segment memory required by a work-group in
+ /// bytes. This does not include any dynamically allocated group
+ /// segment memory that may be added when the kernel is
+ /// dispatched.
+ uint32_t workgroup_group_segment_byte_size;
+
+ /// Number of byte of GDS required by kernel dispatch. Must be 0 if
+ /// not using GDS.
+ uint32_t gds_segment_byte_size;
+
+ /// The size in bytes of the kernarg segment that holds the values
+ /// of the arguments to the kernel. This could be used by CP to
+ /// prefetch the kernarg segment pointed to by the dispatch packet.
+ uint64_t kernarg_segment_byte_size;
+
+ /// Number of fbarrier's used in the kernel and all functions it
+ /// calls. If the implementation uses group memory to allocate the
+ /// fbarriers then that amount must already be included in the
+ /// workgroup_group_segment_byte_size total.
+ uint32_t workgroup_fbarrier_count;
+
+ /// Number of scalar registers used by a wavefront. This includes
+ /// the special SGPRs for VCC, Flat Scratch Base, Flat Scratch Size
+ /// and XNACK (for GFX8 (VI)). It does not include the 16 SGPR added if a
+ /// trap handler is enabled. Used to set COMPUTE_PGM_RSRC1.SGPRS.
+ uint16_t wavefront_sgpr_count;
+
+ /// Number of vector registers used by each work-item. Used to set
+ /// COMPUTE_PGM_RSRC1.VGPRS.
+ uint16_t workitem_vgpr_count;
+
+ /// If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the
+ /// first fixed VGPR number reserved.
+ uint16_t reserved_vgpr_first;
+
+ /// The number of consecutive VGPRs reserved by the client. If
+ /// is_debug_supported then this count includes VGPRs reserved
+ /// for debugger use.
+ uint16_t reserved_vgpr_count;
+
+ /// If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the
+ /// first fixed SGPR number reserved.
+ uint16_t reserved_sgpr_first;
+
+ /// The number of consecutive SGPRs reserved by the client. If
+ /// is_debug_supported then this count includes SGPRs reserved
+ /// for debugger use.
+ uint16_t reserved_sgpr_count;
+
+ /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
+ /// fixed SGPR number used to hold the wave scratch offset for the
+ /// entire kernel execution, or uint16_t(-1) if the register is not
+ /// used or not known.
+ uint16_t debug_wavefront_private_segment_offset_sgpr;
+
+ /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
+ /// fixed SGPR number of the first of 4 SGPRs used to hold the
+ /// scratch V# used for the entire kernel execution, or uint16_t(-1)
+ /// if the registers are not used or not known.
+ uint16_t debug_private_segment_buffer_sgpr;
+
+ /// The maximum byte alignment of variables used by the kernel in
+ /// the specified memory segment. Expressed as a power of two. Must
+ /// be at least HSA_POWERTWO_16.
+ hsa_powertwo8_t kernarg_segment_alignment;
+ hsa_powertwo8_t group_segment_alignment;
+ hsa_powertwo8_t private_segment_alignment;
+
+ uint8_t reserved3;
+
+ /// Type of code object.
+ hsa_ext_code_kind32_t code_type;
+
+ /// Reserved for code properties if any are defined in the future.
+ /// There are currently no code properties so this field must be 0.
+ uint32_t reserved4;
+
+ /// Wavefront size expressed as a power of two. Must be a power of 2
+ /// in range 1..64 inclusive. Used to support runtime query that
+ /// obtains wavefront size, which may be used by application to
+ /// allocated dynamic group memory and set the dispatch work-group
+ /// size.
+ hsa_powertwo8_t wavefront_size;
+
+ /// The optimization level specified when the kernel was
+ /// finalized.
+ uint8_t optimization_level;
+
+ /// The HSAIL profile defines which features are used. This
+ /// information is from the HSAIL version directive. If this
+ /// amd_kernel_code_t is not generated from an HSAIL compilation
+ /// unit then must be 0.
+ hsa_ext_brig_profile8_t hsail_profile;
+
+ /// The HSAIL machine model gives the address sizes used by the
+ /// code. This information is from the HSAIL version directive. If
+ /// not generated from an HSAIL compilation unit then must still
+ /// indicate for what machine mode the code is generated.
+ hsa_ext_brig_machine_model8_t hsail_machine_model;
+
+ /// The HSAIL major version. This information is from the HSAIL
+ /// version directive. If this amd_kernel_code_t is not
+ /// generated from an HSAIL compilation unit then must be 0.
+ uint32_t hsail_version_major;
+
+ /// The HSAIL minor version. This information is from the HSAIL
+ /// version directive. If this amd_kernel_code_t is not
+ /// generated from an HSAIL compilation unit then must be 0.
+ uint32_t hsail_version_minor;
+
+ /// Reserved for HSAIL target options if any are defined in the
+ /// future. There are currently no target options so this field
+ /// must be 0.
+ uint16_t reserved5;
+
+ /// Reserved. Must be 0.
+ uint16_t reserved6;
+
+ /// The values should be the actually values used by the finalizer
+ /// in generating the code. This may be the union of values
+ /// specified as finalizer arguments and explicit HSAIL control
+ /// directives. If the finalizer chooses to ignore a control
+ /// directive, and not generate constrained code, then the control
+ /// directive should not be marked as enabled even though it was
+ /// present in the HSAIL or finalizer argument. The values are
+ /// intended to reflect the constraints that the code actually
+ /// requires to correctly execute, not the values that were
+ /// actually specified at finalize time.
+ hsa_ext_control_directives_t control_directive;
+
+ /// The code can immediately follow the amd_kernel_code_t, or can
+ /// come after subsequent amd_kernel_code_t structs when there are
+ /// multiple kernels in the compilation unit.
+
+} amd_kernel_code_t;
+
+#endif // AMDKERNELCODET_H
diff --git a/contrib/llvm/lib/Target/R600/AsmParser/AMDGPUAsmParser.cpp b/contrib/llvm/lib/Target/R600/AsmParser/AMDGPUAsmParser.cpp
new file mode 100644
index 0000000..3b4ba1a
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AsmParser/AMDGPUAsmParser.cpp
@@ -0,0 +1,320 @@
+//===-- AMDGPUAsmParser.cpp - Parse SI asm to MCInst instructions ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+
+class AMDGPUAsmParser : public MCTargetAsmParser {
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+
+
+ /// @name Auto-generated Match Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "AMDGPUGenAsmMatcher.inc"
+
+ /// }
+
+public:
+ AMDGPUAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &_MII,
+ const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ }
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) override;
+ bool ParseDirective(AsmToken DirectiveID) override;
+ OperandMatchResultTy parseOperand(OperandVector &Operands, StringRef Mnemonic);
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool parseCnt(int64_t &IntVal);
+ OperandMatchResultTy parseSWaitCntOps(OperandVector &Operands);
+};
+
+class AMDGPUOperand : public MCParsedAsmOperand {
+ enum KindTy {
+ Token,
+ Immediate
+ } Kind;
+
+public:
+ AMDGPUOperand(enum KindTy K) : MCParsedAsmOperand(), Kind(K) {}
+
+ struct TokOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct ImmOp {
+ int64_t Val;
+ };
+
+ union {
+ TokOp Tok;
+ ImmOp Imm;
+ };
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ Inst.addOperand(MCOperand::CreateImm(getImm()));
+ }
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ llvm_unreachable("addRegOperands");
+ }
+ StringRef getToken() const {
+ return StringRef(Tok.Data, Tok.Length);
+ }
+ bool isToken() const override {
+ return Kind == Token;
+ }
+
+ bool isImm() const override {
+ return Kind == Immediate;
+ }
+
+ int64_t getImm() const {
+ return Imm.Val;
+ }
+
+ bool isReg() const override {
+ return false;
+ }
+
+ unsigned getReg() const override {
+ return 0;
+ }
+
+ bool isMem() const override {
+ return false;
+ }
+
+ SMLoc getStartLoc() const override {
+ return SMLoc();
+ }
+
+ SMLoc getEndLoc() const override {
+ return SMLoc();
+ }
+
+ void print(raw_ostream &OS) const override { }
+
+ static std::unique_ptr<AMDGPUOperand> CreateImm(int64_t Val) {
+ auto Op = llvm::make_unique<AMDGPUOperand>(Immediate);
+ Op->Imm.Val = Val;
+ return Op;
+ }
+
+ static std::unique_ptr<AMDGPUOperand> CreateToken(StringRef Str, SMLoc Loc) {
+ auto Res = llvm::make_unique<AMDGPUOperand>(Token);
+ Res->Tok.Data = Str.data();
+ Res->Tok.Length = Str.size();
+ return Res;
+ }
+
+ bool isSWaitCnt() const;
+};
+
+}
+
+bool AMDGPUAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
+ return true;
+}
+
+
+bool AMDGPUAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+
+ switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
+ case Match_Success:
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst, STI);
+ return false;
+ case Match_MissingFeature:
+ return Error(IDLoc, "instruction use requires an option to be enabled");
+ case Match_MnemonicFail:
+ return Error(IDLoc, "unrecognized instruction mnemonic");
+ case Match_InvalidOperand: {
+ if (ErrorInfo != ~0ULL) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ }
+ return Error(IDLoc, "invalid operand for instruction");
+ }
+ }
+ llvm_unreachable("Implement any new match types added!");
+}
+
+bool AMDGPUAsmParser::ParseDirective(AsmToken DirectiveID) {
+ return true;
+}
+
+AMDGPUAsmParser::OperandMatchResultTy
+AMDGPUAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
+
+ // Try to parse with a custom parser
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+
+ // If we successfully parsed the operand or if there as an error parsing,
+ // we are done.
+ if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail)
+ return ResTy;
+
+ switch(getLexer().getKind()) {
+ case AsmToken::Integer: {
+ int64_t IntVal;
+ if (getParser().parseAbsoluteExpression(IntVal))
+ return MatchOperand_ParseFail;
+ Operands.push_back(AMDGPUOperand::CreateImm(IntVal));
+ return MatchOperand_Success;
+ }
+ default:
+ return MatchOperand_NoMatch;
+ }
+}
+
+bool AMDGPUAsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ // Add the instruction mnemonic
+ Operands.push_back(AMDGPUOperand::CreateToken(Name, NameLoc));
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ return false;
+
+ AMDGPUAsmParser::OperandMatchResultTy Res = parseOperand(Operands, Name);
+ switch (Res) {
+ case MatchOperand_Success: return false;
+ case MatchOperand_ParseFail: return Error(NameLoc,
+ "Failed parsing operand");
+ case MatchOperand_NoMatch: return Error(NameLoc, "Not a valid operand");
+ }
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// s_waitcnt
+//===----------------------------------------------------------------------===//
+
+bool AMDGPUAsmParser::parseCnt(int64_t &IntVal) {
+ StringRef CntName = Parser.getTok().getString();
+ int64_t CntVal;
+
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::LParen))
+ return true;
+
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::Integer))
+ return true;
+
+ if (getParser().parseAbsoluteExpression(CntVal))
+ return true;
+
+ if (getLexer().isNot(AsmToken::RParen))
+ return true;
+
+ Parser.Lex();
+ if (getLexer().is(AsmToken::Amp) || getLexer().is(AsmToken::Comma))
+ Parser.Lex();
+
+ int CntShift;
+ int CntMask;
+
+ if (CntName == "vmcnt") {
+ CntMask = 0xf;
+ CntShift = 0;
+ } else if (CntName == "expcnt") {
+ CntMask = 0x7;
+ CntShift = 4;
+ } else if (CntName == "lgkmcnt") {
+ CntMask = 0x7;
+ CntShift = 8;
+ } else {
+ return true;
+ }
+
+ IntVal &= ~(CntMask << CntShift);
+ IntVal |= (CntVal << CntShift);
+ return false;
+}
+
+AMDGPUAsmParser::OperandMatchResultTy
+AMDGPUAsmParser::parseSWaitCntOps(OperandVector &Operands) {
+ // Disable all counters by default.
+ // vmcnt [3:0]
+ // expcnt [6:4]
+ // lgkmcnt [10:8]
+ int64_t CntVal = 0x77f;
+
+ switch(getLexer().getKind()) {
+ default: return MatchOperand_ParseFail;
+ case AsmToken::Integer:
+ // The operand can be an integer value.
+ if (getParser().parseAbsoluteExpression(CntVal))
+ return MatchOperand_ParseFail;
+ break;
+
+ case AsmToken::Identifier:
+ do {
+ if (parseCnt(CntVal))
+ return MatchOperand_ParseFail;
+ } while(getLexer().isNot(AsmToken::EndOfStatement));
+ break;
+ }
+ Operands.push_back(AMDGPUOperand::CreateImm(CntVal));
+ return MatchOperand_Success;
+}
+
+bool AMDGPUOperand::isSWaitCnt() const {
+ return isImm();
+}
+
+/// Force static initialization.
+extern "C" void LLVMInitializeR600AsmParser() {
+ RegisterMCAsmParser<AMDGPUAsmParser> A(TheAMDGPUTarget);
+ RegisterMCAsmParser<AMDGPUAsmParser> B(TheGCNTarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#include "AMDGPUGenAsmMatcher.inc"
+
diff --git a/contrib/llvm/lib/Target/R600/CIInstructions.td b/contrib/llvm/lib/Target/R600/CIInstructions.td
new file mode 100644
index 0000000..fdb58bb
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/CIInstructions.td
@@ -0,0 +1,42 @@
+//===-- CIInstructions.td - CI Instruction Defintions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// Instruction definitions for CI and newer.
+//===----------------------------------------------------------------------===//
+
+
+def isCIVI : Predicate <
+ "Subtarget.getGeneration() == AMDGPUSubtarget::SEA_ISLANDS || "
+ "Subtarget.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS"
+>;
+
+//===----------------------------------------------------------------------===//
+// VOP1 Instructions
+//===----------------------------------------------------------------------===//
+
+let SubtargetPredicate = isCIVI in {
+
+defm V_TRUNC_F64 : VOP1Inst <vop1<0x17>, "v_trunc_f64",
+ VOP_F64_F64, ftrunc
+>;
+defm V_CEIL_F64 : VOP1Inst <vop1<0x18>, "v_ceil_f64",
+ VOP_F64_F64, fceil
+>;
+defm V_FLOOR_F64 : VOP1Inst <vop1<0x1A>, "v_floor_f64",
+ VOP_F64_F64, ffloor
+>;
+defm V_RNDNE_F64 : VOP1Inst <vop1<0x19>, "v_rndne_f64",
+ VOP_F64_F64, frint
+>;
+defm V_LOG_LEGACY_F32 : VOP1Inst <vop1<0x45, 0x4c>, "v_log_legacy_f32",
+ VOP_F32_F32
+>;
+defm V_EXP_LEGACY_F32 : VOP1Inst <vop1<0x46, 0x4b>, "v_exp_legacy_f32",
+ VOP_F32_F32
+>;
+} // End SubtargetPredicate = isCIVI
diff --git a/contrib/llvm/lib/Target/R600/CaymanInstructions.td b/contrib/llvm/lib/Target/R600/CaymanInstructions.td
index 2630345..58b5ce2 100644
--- a/contrib/llvm/lib/Target/R600/CaymanInstructions.td
+++ b/contrib/llvm/lib/Target/R600/CaymanInstructions.td
@@ -46,6 +46,8 @@ def SIN_cm : SIN_Common<0x8D>;
def COS_cm : COS_Common<0x8E>;
} // End isVector = 1
+defm : RsqPat<RECIPSQRT_IEEE_cm, f32>;
+
def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL>;
defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
diff --git a/contrib/llvm/lib/Target/R600/EvergreenInstructions.td b/contrib/llvm/lib/Target/R600/EvergreenInstructions.td
index 484e522..f24f76b 100644
--- a/contrib/llvm/lib/Target/R600/EvergreenInstructions.td
+++ b/contrib/llvm/lib/Target/R600/EvergreenInstructions.td
@@ -69,6 +69,7 @@ def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
+defm : RsqPat<RECIPSQRT_IEEE_eg, f32>;
def SIN_eg : SIN_Common<0x8D>;
def COS_eg : COS_Common<0x8E>;
@@ -256,6 +257,12 @@ def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
let Predicates = [isEGorCayman] in {
+// Should be predicated on FeatureFP64
+// def FMA_64 : R600_3OP <
+// 0xA, "FMA_64",
+// [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
+// >;
+
// BFE_UINT - bit_extract, an optimization for mask and shift
// Src0 = Input
// Src1 = Offset
@@ -295,7 +302,7 @@ def : Pat<(i32 (sext_inreg i32:$src, i8)),
def : Pat<(i32 (sext_inreg i32:$src, i16)),
(BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;
-defm : BFIPatterns <BFI_INT_eg, MOV_IMM_I32>;
+defm : BFIPatterns <BFI_INT_eg, MOV_IMM_I32, R600_Reg64>;
def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
[(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
@@ -312,6 +319,7 @@ def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
def : ROTRPattern <BIT_ALIGN_INT_eg>;
def MULADD_eg : MULADD_Common<0x14>;
def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
+def FMA_eg : FMA_Common<0x7>;
def ASHR_eg : ASHR_Common<0x15>;
def LSHR_eg : LSHR_Common<0x16>;
def LSHL_eg : LSHL_Common<0x17>;
@@ -466,21 +474,47 @@ class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
let DisableEncoding = "$dst";
}
-class R600_LDS_1A2D <bits<6> lds_op, string name, list<dag> pattern> :
+class R600_LDS_1A2D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
+ string dst =""> :
R600_LDS <
- lds_op,
- (outs),
+ lds_op, outs,
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
- " "#name# "$last $src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
+ " "#name# "$last "#dst#"$src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
pattern> {
+
+ field string BaseOp;
+
+ let LDS_1A1D = 0;
let LDS_1A2D = 1;
}
+class R600_LDS_1A2D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
+ R600_LDS_1A2D <lds_op, (outs), name, pattern> {
+ let BaseOp = name;
+}
+
+class R600_LDS_1A2D_RET <bits<6> lds_op, string name, list<dag> pattern> :
+ R600_LDS_1A2D <lds_op, (outs R600_Reg32:$dst), name, pattern> {
+
+ let BaseOp = name;
+ let usesCustomInserter = 1;
+ let DisableEncoding = "$dst";
+}
+
def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
+def LDS_AND : R600_LDS_1A1D_NORET <0x9, "LDS_AND", [] >;
+def LDS_OR : R600_LDS_1A1D_NORET <0xa, "LDS_OR", [] >;
+def LDS_XOR : R600_LDS_1A1D_NORET <0xb, "LDS_XOR", [] >;
+def LDS_WRXCHG: R600_LDS_1A1D_NORET <0xd, "LDS_WRXCHG", [] >;
+def LDS_CMPST: R600_LDS_1A2D_NORET <0x10, "LDS_CMPST", [] >;
+def LDS_MIN_INT : R600_LDS_1A1D_NORET <0x5, "LDS_MIN_INT", [] >;
+def LDS_MAX_INT : R600_LDS_1A1D_NORET <0x6, "LDS_MAX_INT", [] >;
+def LDS_MIN_UINT : R600_LDS_1A1D_NORET <0x7, "LDS_MIN_UINT", [] >;
+def LDS_MAX_UINT : R600_LDS_1A1D_NORET <0x8, "LDS_MAX_UINT", [] >;
def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
[(local_store (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
>;
@@ -496,6 +530,33 @@ def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
[(set i32:$dst, (atomic_load_sub_local i32:$src0, i32:$src1))]
>;
+def LDS_AND_RET : R600_LDS_1A1D_RET <0x29, "LDS_AND",
+ [(set i32:$dst, (atomic_load_and_local i32:$src0, i32:$src1))]
+>;
+def LDS_OR_RET : R600_LDS_1A1D_RET <0x2a, "LDS_OR",
+ [(set i32:$dst, (atomic_load_or_local i32:$src0, i32:$src1))]
+>;
+def LDS_XOR_RET : R600_LDS_1A1D_RET <0x2b, "LDS_XOR",
+ [(set i32:$dst, (atomic_load_xor_local i32:$src0, i32:$src1))]
+>;
+def LDS_MIN_INT_RET : R600_LDS_1A1D_RET <0x25, "LDS_MIN_INT",
+ [(set i32:$dst, (atomic_load_min_local i32:$src0, i32:$src1))]
+>;
+def LDS_MAX_INT_RET : R600_LDS_1A1D_RET <0x26, "LDS_MAX_INT",
+ [(set i32:$dst, (atomic_load_max_local i32:$src0, i32:$src1))]
+>;
+def LDS_MIN_UINT_RET : R600_LDS_1A1D_RET <0x27, "LDS_MIN_UINT",
+ [(set i32:$dst, (atomic_load_umin_local i32:$src0, i32:$src1))]
+>;
+def LDS_MAX_UINT_RET : R600_LDS_1A1D_RET <0x28, "LDS_MAX_UINT",
+ [(set i32:$dst, (atomic_load_umax_local i32:$src0, i32:$src1))]
+>;
+def LDS_WRXCHG_RET : R600_LDS_1A1D_RET <0x2d, "LDS_WRXCHG",
+ [(set i32:$dst, (atomic_swap_local i32:$src0, i32:$src1))]
+>;
+def LDS_CMPST_RET : R600_LDS_1A2D_RET <0x30, "LDS_CMPST",
+ [(set i32:$dst, (atomic_cmp_swap_32_local i32:$src0, i32:$src1, i32:$src2))]
+>;
def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
[(set (i32 R600_Reg32:$dst), (local_load R600_Reg32:$src0))]
>;
@@ -529,7 +590,7 @@ def : Pat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
// SHA-256 Patterns
def : SHA256MaPattern <BFI_INT_eg, XOR_INT>;
-def : FROUNDPat <CNDGE_eg>;
+def : FROUNDPat <CNDGE_eg, CNDGT_eg>;
def EG_ExportSwz : ExportSwzInst {
let Word1{19-16} = 0; // BURST_COUNT
diff --git a/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp
index 0927040..8271c6f 100644
--- a/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.cpp
@@ -10,8 +10,10 @@
#include "AMDGPUInstPrinter.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "SIDefines.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/MathExtras.h"
@@ -40,6 +42,81 @@ void AMDGPUInstPrinter::printU32ImmOperand(const MCInst *MI, unsigned OpNo,
O << formatHex(MI->getOperand(OpNo).getImm() & 0xffffffff);
}
+void AMDGPUInstPrinter::printU8ImmDecOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << formatDec(MI->getOperand(OpNo).getImm() & 0xff);
+}
+
+void AMDGPUInstPrinter::printU16ImmDecOperand(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << formatDec(MI->getOperand(OpNo).getImm() & 0xffff);
+}
+
+void AMDGPUInstPrinter::printOffen(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " offen";
+}
+
+void AMDGPUInstPrinter::printIdxen(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " idxen";
+}
+
+void AMDGPUInstPrinter::printAddr64(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " addr64";
+}
+
+void AMDGPUInstPrinter::printMBUFOffset(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm()) {
+ O << " offset:";
+ printU16ImmDecOperand(MI, OpNo, O);
+ }
+}
+
+void AMDGPUInstPrinter::printDSOffset(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ uint16_t Imm = MI->getOperand(OpNo).getImm();
+ if (Imm != 0) {
+ O << " offset:";
+ printU16ImmDecOperand(MI, OpNo, O);
+ }
+}
+
+void AMDGPUInstPrinter::printDSOffset0(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << " offset0:";
+ printU8ImmDecOperand(MI, OpNo, O);
+}
+
+void AMDGPUInstPrinter::printDSOffset1(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ O << " offset1:";
+ printU8ImmDecOperand(MI, OpNo, O);
+}
+
+void AMDGPUInstPrinter::printGLC(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " glc";
+}
+
+void AMDGPUInstPrinter::printSLC(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " slc";
+}
+
+void AMDGPUInstPrinter::printTFE(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " tfe";
+}
+
void AMDGPUInstPrinter::printRegOperand(unsigned reg, raw_ostream &O) {
switch (reg) {
case AMDGPU::VCC:
@@ -54,6 +131,27 @@ void AMDGPUInstPrinter::printRegOperand(unsigned reg, raw_ostream &O) {
case AMDGPU::M0:
O << "m0";
return;
+ case AMDGPU::FLAT_SCR:
+ O << "flat_scratch";
+ return;
+ case AMDGPU::VCC_LO:
+ O << "vcc_lo";
+ return;
+ case AMDGPU::VCC_HI:
+ O << "vcc_hi";
+ return;
+ case AMDGPU::EXEC_LO:
+ O << "exec_lo";
+ return;
+ case AMDGPU::EXEC_HI:
+ O << "exec_hi";
+ return;
+ case AMDGPU::FLAT_SCR_LO:
+ O << "flat_scratch_lo";
+ return;
+ case AMDGPU::FLAT_SCR_HI:
+ O << "flat_scratch_hi";
+ return;
default:
break;
}
@@ -110,26 +208,62 @@ void AMDGPUInstPrinter::printRegOperand(unsigned reg, raw_ostream &O) {
O << Type << '[' << RegIdx << ':' << (RegIdx + NumRegs - 1) << ']';
}
-void AMDGPUInstPrinter::printImmediate(uint32_t Imm, raw_ostream &O) {
+void AMDGPUInstPrinter::printImmediate32(uint32_t Imm, raw_ostream &O) {
int32_t SImm = static_cast<int32_t>(Imm);
if (SImm >= -16 && SImm <= 64) {
O << SImm;
return;
}
- if (Imm == FloatToBits(1.0f) ||
- Imm == FloatToBits(-1.0f) ||
- Imm == FloatToBits(0.5f) ||
- Imm == FloatToBits(-0.5f) ||
- Imm == FloatToBits(2.0f) ||
- Imm == FloatToBits(-2.0f) ||
- Imm == FloatToBits(4.0f) ||
- Imm == FloatToBits(-4.0f)) {
- O << BitsToFloat(Imm);
+ if (Imm == FloatToBits(0.0f))
+ O << "0.0";
+ else if (Imm == FloatToBits(1.0f))
+ O << "1.0";
+ else if (Imm == FloatToBits(-1.0f))
+ O << "-1.0";
+ else if (Imm == FloatToBits(0.5f))
+ O << "0.5";
+ else if (Imm == FloatToBits(-0.5f))
+ O << "-0.5";
+ else if (Imm == FloatToBits(2.0f))
+ O << "2.0";
+ else if (Imm == FloatToBits(-2.0f))
+ O << "-2.0";
+ else if (Imm == FloatToBits(4.0f))
+ O << "4.0";
+ else if (Imm == FloatToBits(-4.0f))
+ O << "-4.0";
+ else
+ O << formatHex(static_cast<uint64_t>(Imm));
+}
+
+void AMDGPUInstPrinter::printImmediate64(uint64_t Imm, raw_ostream &O) {
+ int64_t SImm = static_cast<int64_t>(Imm);
+ if (SImm >= -16 && SImm <= 64) {
+ O << SImm;
return;
}
- O << formatHex(static_cast<uint64_t>(Imm));
+ if (Imm == DoubleToBits(0.0))
+ O << "0.0";
+ else if (Imm == DoubleToBits(1.0))
+ O << "1.0";
+ else if (Imm == DoubleToBits(-1.0))
+ O << "-1.0";
+ else if (Imm == DoubleToBits(0.5))
+ O << "0.5";
+ else if (Imm == DoubleToBits(-0.5))
+ O << "-0.5";
+ else if (Imm == DoubleToBits(2.0))
+ O << "2.0";
+ else if (Imm == DoubleToBits(-2.0))
+ O << "-2.0";
+ else if (Imm == DoubleToBits(4.0))
+ O << "4.0";
+ else if (Imm == DoubleToBits(-4.0))
+ O << "-4.0";
+ else
+ llvm_unreachable("64-bit literal constants not supported");
}
void AMDGPUInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
@@ -147,27 +281,55 @@ void AMDGPUInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
break;
}
} else if (Op.isImm()) {
- printImmediate(Op.getImm(), O);
+ const MCInstrDesc &Desc = MII.get(MI->getOpcode());
+ int RCID = Desc.OpInfo[OpNo].RegClass;
+ if (RCID != -1) {
+ const MCRegisterClass &ImmRC = MRI.getRegClass(RCID);
+ if (ImmRC.getSize() == 4)
+ printImmediate32(Op.getImm(), O);
+ else if (ImmRC.getSize() == 8)
+ printImmediate64(Op.getImm(), O);
+ else
+ llvm_unreachable("Invalid register class size");
+ } else {
+ // We hit this for the immediate instruction bits that don't yet have a
+ // custom printer.
+ // TODO: Eventually this should be unnecessary.
+ O << formatDec(Op.getImm());
+ }
} else if (Op.isFPImm()) {
- O << Op.getFPImm();
+ // We special case 0.0 because otherwise it will be printed as an integer.
+ if (Op.getFPImm() == 0.0)
+ O << "0.0";
+ else {
+ const MCInstrDesc &Desc = MII.get(MI->getOpcode());
+ const MCRegisterClass &ImmRC = MRI.getRegClass(Desc.OpInfo[OpNo].RegClass);
+
+ if (ImmRC.getSize() == 4)
+ printImmediate32(FloatToBits(Op.getFPImm()), O);
+ else if (ImmRC.getSize() == 8)
+ printImmediate64(DoubleToBits(Op.getFPImm()), O);
+ else
+ llvm_unreachable("Invalid register class size");
+ }
} else if (Op.isExpr()) {
const MCExpr *Exp = Op.getExpr();
Exp->print(O);
} else {
- assert(!"unknown operand type in printOperand");
+ llvm_unreachable("unknown operand type in printOperand");
}
}
void AMDGPUInstPrinter::printOperandAndMods(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
unsigned InputModifiers = MI->getOperand(OpNo).getImm();
- if (InputModifiers & 0x1)
- O << "-";
- if (InputModifiers & 0x2)
- O << "|";
+ if (InputModifiers & SISrcMods::NEG)
+ O << '-';
+ if (InputModifiers & SISrcMods::ABS)
+ O << '|';
printOperand(MI, OpNo + 1, O);
- if (InputModifiers & 0x2)
- O << "|";
+ if (InputModifiers & SISrcMods::ABS)
+ O << '|';
}
void AMDGPUInstPrinter::printInterpSlot(const MCInst *MI, unsigned OpNum,
@@ -181,7 +343,7 @@ void AMDGPUInstPrinter::printInterpSlot(const MCInst *MI, unsigned OpNum,
} else if (Imm == 0) {
O << "P10";
} else {
- assert(!"Invalid interpolation parameter slot");
+ llvm_unreachable("Invalid interpolation parameter slot");
}
}
@@ -214,6 +376,23 @@ void AMDGPUInstPrinter::printClamp(const MCInst *MI, unsigned OpNo,
printIfSet(MI, OpNo, O, "_SAT");
}
+void AMDGPUInstPrinter::printClampSI(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ if (MI->getOperand(OpNo).getImm())
+ O << " clamp";
+}
+
+void AMDGPUInstPrinter::printOModSI(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ int Imm = MI->getOperand(OpNo).getImm();
+ if (Imm == SIOutMods::MUL2)
+ O << " mul:2";
+ else if (Imm == SIOutMods::MUL4)
+ O << " mul:4";
+ else if (Imm == SIOutMods::DIV2)
+ O << " div:2";
+}
+
void AMDGPUInstPrinter::printLiteral(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
int32_t Imm = MI->getOperand(OpNo).getImm();
@@ -281,7 +460,7 @@ void AMDGPUInstPrinter::printSel(const MCInst *MI, unsigned OpNo,
sel -= 512;
int cb = sel >> 12;
sel &= 4095;
- O << cb << "[" << sel << "]";
+ O << cb << '[' << sel << ']';
} else if (sel >= 448) {
sel -= 448;
O << sel;
@@ -290,7 +469,7 @@ void AMDGPUInstPrinter::printSel(const MCInst *MI, unsigned OpNo,
}
if (sel >= 0)
- O << "." << chans[chan];
+ O << '.' << chans[chan];
}
void AMDGPUInstPrinter::printBankSwizzle(const MCInst *MI, unsigned OpNo,
@@ -323,25 +502,25 @@ void AMDGPUInstPrinter::printRSel(const MCInst *MI, unsigned OpNo,
unsigned Sel = MI->getOperand(OpNo).getImm();
switch (Sel) {
case 0:
- O << "X";
+ O << 'X';
break;
case 1:
- O << "Y";
+ O << 'Y';
break;
case 2:
- O << "Z";
+ O << 'Z';
break;
case 3:
- O << "W";
+ O << 'W';
break;
case 4:
- O << "0";
+ O << '0';
break;
case 5:
- O << "1";
+ O << '1';
break;
case 7:
- O << "_";
+ O << '_';
break;
default:
break;
@@ -353,10 +532,10 @@ void AMDGPUInstPrinter::printCT(const MCInst *MI, unsigned OpNo,
unsigned CT = MI->getOperand(OpNo).getImm();
switch (CT) {
case 0:
- O << "U";
+ O << 'U';
break;
case 1:
- O << "N";
+ O << 'N';
break;
default:
break;
@@ -368,10 +547,10 @@ void AMDGPUInstPrinter::printKCache(const MCInst *MI, unsigned OpNo,
int KCacheMode = MI->getOperand(OpNo).getImm();
if (KCacheMode > 0) {
int KCacheBank = MI->getOperand(OpNo - 2).getImm();
- O << "CB" << KCacheBank <<":";
+ O << "CB" << KCacheBank << ':';
int KCacheAddr = MI->getOperand(OpNo + 2).getImm();
- int LineSize = (KCacheMode == 1)?16:32;
- O << KCacheAddr * 16 << "-" << KCacheAddr * 16 + LineSize;
+ int LineSize = (KCacheMode == 1) ? 16 : 32;
+ O << KCacheAddr * 16 << '-' << KCacheAddr * 16 + LineSize;
}
}
@@ -415,12 +594,26 @@ void AMDGPUInstPrinter::printWaitFlag(const MCInst *MI, unsigned OpNo,
unsigned Vmcnt = SImm16 & 0xF;
unsigned Expcnt = (SImm16 >> 4) & 0xF;
unsigned Lgkmcnt = (SImm16 >> 8) & 0xF;
- if (Vmcnt != 0xF)
- O << "vmcnt(" << Vmcnt << ") ";
- if (Expcnt != 0x7)
- O << "expcnt(" << Expcnt << ") ";
- if (Lgkmcnt != 0x7)
- O << "lgkmcnt(" << Lgkmcnt << ")";
+
+ bool NeedSpace = false;
+
+ if (Vmcnt != 0xF) {
+ O << "vmcnt(" << Vmcnt << ')';
+ NeedSpace = true;
+ }
+
+ if (Expcnt != 0x7) {
+ if (NeedSpace)
+ O << ' ';
+ O << "expcnt(" << Expcnt << ')';
+ NeedSpace = true;
+ }
+
+ if (Lgkmcnt != 0x7) {
+ if (NeedSpace)
+ O << ' ';
+ O << "lgkmcnt(" << Lgkmcnt << ')';
+ }
}
#include "AMDGPUGenAsmWriter.inc"
diff --git a/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h
index 6ca7170..1d43c7a 100644
--- a/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h
+++ b/contrib/llvm/lib/Target/R600/InstPrinter/AMDGPUInstPrinter.h
@@ -10,8 +10,8 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUINSTPRINTER_H
-#define AMDGPUINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_R600_INSTPRINTER_AMDGPUINSTPRINTER_H
+#define LLVM_LIB_TARGET_R600_INSTPRINTER_AMDGPUINSTPRINTER_H
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCInstPrinter.h"
@@ -34,9 +34,22 @@ public:
private:
void printU8ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printU16ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU8ImmDecOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printU16ImmDecOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printU32ImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printOffen(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printIdxen(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printAddr64(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printMBUFOffset(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printDSOffset(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printDSOffset0(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printDSOffset1(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printGLC(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printSLC(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ void printTFE(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printRegOperand(unsigned RegNo, raw_ostream &O);
- void printImmediate(uint32_t Imm, raw_ostream &O);
+ void printImmediate32(uint32_t I, raw_ostream &O);
+ void printImmediate64(uint64_t I, raw_ostream &O);
void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printOperandAndMods(const MCInst *MI, unsigned OpNo, raw_ostream &O);
static void printInterpSlot(const MCInst *MI, unsigned OpNum, raw_ostream &O);
@@ -45,6 +58,8 @@ private:
StringRef Asm, StringRef Default = "");
static void printAbs(const MCInst *MI, unsigned OpNo, raw_ostream &O);
static void printClamp(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printClampSI(const MCInst *MI, unsigned OpNo, raw_ostream &O);
+ static void printOModSI(const MCInst *MI, unsigned OpNo, raw_ostream &O);
static void printLiteral(const MCInst *MI, unsigned OpNo, raw_ostream &O);
static void printLast(const MCInst *MI, unsigned OpNo, raw_ostream &O);
static void printNeg(const MCInst *MI, unsigned OpNo, raw_ostream &O);
@@ -65,4 +80,4 @@ private:
} // End namespace llvm
-#endif // AMDGPUINSTRPRINTER_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp
index d55f27b..5fb311b 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUAsmBackend.cpp
@@ -57,9 +57,7 @@ public:
assert(!"Not implemented");
}
bool mayNeedRelaxation(const MCInst &Inst) const override { return false; }
- bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override {
- return true;
- }
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
};
@@ -116,6 +114,13 @@ const MCFixupKindInfo &AMDGPUAsmBackend::getFixupKindInfo(
return Infos[Kind - FirstTargetFixupKind];
}
+bool AMDGPUAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
+ for (unsigned i = 0; i < Count; ++i)
+ OW->Write8(0);
+
+ return true;
+}
+
//===----------------------------------------------------------------------===//
// ELFAMDGPUAsmBackend class
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h
index 4b12e54..01021d6 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUFixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_AMDGPUFIXUPKINDS_H
-#define LLVM_AMDGPUFIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUFIXUPKINDS_H
+#define LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUFIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
@@ -31,4 +31,4 @@ enum Fixups {
}
}
-#endif // LLVM_AMDGPUFIXUPKINDS_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp
index 78bbe0a..19d89fb 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.cpp
@@ -11,21 +11,15 @@
#include "AMDGPUMCAsmInfo.h"
using namespace llvm;
-AMDGPUMCAsmInfo::AMDGPUMCAsmInfo(StringRef &TT) : MCAsmInfo() {
+AMDGPUMCAsmInfo::AMDGPUMCAsmInfo(StringRef &TT) : MCAsmInfoELF() {
HasSingleParameterDotFile = false;
//===------------------------------------------------------------------===//
- HasSubsectionsViaSymbols = true;
- HasMachoZeroFillDirective = false;
- HasMachoTBSSDirective = false;
- HasStaticCtorDtorReferenceInStaticMode = false;
- LinkerRequiresNonEmptyDwarfLines = true;
MaxInstLength = 16;
SeparatorString = "\n";
CommentString = ";";
- LabelSuffix = ":";
+ PrivateLabelPrefix = "";
InlineAsmStart = ";#ASMSTART";
InlineAsmEnd = ";#ASMEND";
- AssemblerDialect = 0;
//===--- Data Emission Directives -------------------------------------===//
ZeroDirective = ".zero";
@@ -35,28 +29,15 @@ AMDGPUMCAsmInfo::AMDGPUMCAsmInfo(StringRef &TT) : MCAsmInfo() {
Data16bitsDirective = ".short\t";
Data32bitsDirective = ".long\t";
Data64bitsDirective = ".quad\t";
- GPRel32Directive = nullptr;
SunStyleELFSectionSwitchSyntax = true;
UsesELFSectionDirectiveForBSS = true;
- //===--- Alignment Information ----------------------------------------===//
- AlignmentIsInBytes = true;
- TextAlignFillValue = 0;
-
//===--- Global Variable Emission Directives --------------------------===//
- GlobalDirective = ".global";
- HasSetDirective = false;
HasAggressiveSymbolFolding = true;
COMMDirectiveAlignmentIsInBytes = false;
HasDotTypeDotSizeDirective = false;
HasNoDeadStrip = true;
WeakRefDirective = ".weakref\t";
//===--- Dwarf Emission Directives -----------------------------------===//
- HasLEB128 = true;
SupportsDebugInformation = true;
}
-
-const MCSection*
-AMDGPUMCAsmInfo::getNonexecutableStackSection(MCContext &CTX) const {
- return nullptr;
-}
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h
index 59aebec..8f75c76 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCAsmInfo.h
@@ -1,4 +1,4 @@
-//===-- MCTargetDesc/AMDGPUMCAsmInfo.h - AMDGPU MCAsm Interface ----------===//
+//===-- MCTargetDesc/AMDGPUMCAsmInfo.h - AMDGPU MCAsm Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -11,18 +11,22 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUMCASMINFO_H
-#define AMDGPUMCASMINFO_H
+#ifndef LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUMCASMINFO_H
+#define LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUMCASMINFO_H
-#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
class StringRef;
-class AMDGPUMCAsmInfo : public MCAsmInfo {
+// If you need to create another MCAsmInfo class, which inherits from MCAsmInfo,
+// you will need to make sure your new class sets PrivateGlobalPrefix to
+// a prefix that won't appeary in a fuction name. The default value
+// for PrivateGlobalPrefix is 'L', so it will consider any function starting
+// with 'L' as a local symbol.
+class AMDGPUMCAsmInfo : public MCAsmInfoELF {
public:
explicit AMDGPUMCAsmInfo(StringRef &TT);
- const MCSection* getNonexecutableStackSection(MCContext &CTX) const override;
};
} // namespace llvm
-#endif // AMDGPUMCASMINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h
index d5e432d..c957427 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCCodeEmitter.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef AMDGPUCODEEMITTER_H
-#define AMDGPUCODEEMITTER_H
+#ifndef LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUMCCODEEMITTER_H
+#define LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUMCCODEEMITTER_H
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/Support/raw_ostream.h"
@@ -47,4 +47,4 @@ public:
} // End namespace llvm
-#endif // AMDGPUCODEEMITTER_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp
index 38a2956..83403ba 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.cpp
@@ -15,6 +15,7 @@
#include "AMDGPUMCTargetDesc.h"
#include "AMDGPUMCAsmInfo.h"
#include "InstPrinter/AMDGPUInstPrinter.h"
+#include "SIDefines.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
@@ -84,31 +85,37 @@ static MCCodeEmitter *createAMDGPUMCCodeEmitter(const MCInstrInfo &MCII,
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
- raw_ostream &_OS,
- MCCodeEmitter *_Emitter,
- const MCSubtargetInfo &STI,
- bool RelaxAll,
- bool NoExecStack) {
- return createELFStreamer(Ctx, MAB, _OS, _Emitter, false, false);
+ raw_ostream &_OS, MCCodeEmitter *_Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll) {
+ return createELFStreamer(Ctx, MAB, _OS, _Emitter, false);
}
extern "C" void LLVMInitializeR600TargetMC() {
RegisterMCAsmInfo<AMDGPUMCAsmInfo> Y(TheAMDGPUTarget);
+ RegisterMCAsmInfo<AMDGPUMCAsmInfo> Z(TheGCNTarget);
TargetRegistry::RegisterMCCodeGenInfo(TheAMDGPUTarget, createAMDGPUMCCodeGenInfo);
+ TargetRegistry::RegisterMCCodeGenInfo(TheGCNTarget, createAMDGPUMCCodeGenInfo);
TargetRegistry::RegisterMCInstrInfo(TheAMDGPUTarget, createAMDGPUMCInstrInfo);
+ TargetRegistry::RegisterMCInstrInfo(TheGCNTarget, createAMDGPUMCInstrInfo);
TargetRegistry::RegisterMCRegInfo(TheAMDGPUTarget, createAMDGPUMCRegisterInfo);
+ TargetRegistry::RegisterMCRegInfo(TheGCNTarget, createAMDGPUMCRegisterInfo);
TargetRegistry::RegisterMCSubtargetInfo(TheAMDGPUTarget, createAMDGPUMCSubtargetInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(TheGCNTarget, createAMDGPUMCSubtargetInfo);
TargetRegistry::RegisterMCInstPrinter(TheAMDGPUTarget, createAMDGPUMCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheGCNTarget, createAMDGPUMCInstPrinter);
TargetRegistry::RegisterMCCodeEmitter(TheAMDGPUTarget, createAMDGPUMCCodeEmitter);
+ TargetRegistry::RegisterMCCodeEmitter(TheGCNTarget, createAMDGPUMCCodeEmitter);
TargetRegistry::RegisterMCAsmBackend(TheAMDGPUTarget, createAMDGPUAsmBackend);
+ TargetRegistry::RegisterMCAsmBackend(TheGCNTarget, createAMDGPUAsmBackend);
TargetRegistry::RegisterMCObjectStreamer(TheAMDGPUTarget, createMCStreamer);
+ TargetRegistry::RegisterMCObjectStreamer(TheGCNTarget, createMCStreamer);
}
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h
index f6b3376..bc8cd53 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/AMDGPUMCTargetDesc.h
@@ -13,8 +13,8 @@
//===----------------------------------------------------------------------===//
//
-#ifndef AMDGPUMCTARGETDESC_H
-#define AMDGPUMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUMCTARGETDESC_H
+#define LLVM_LIB_TARGET_R600_MCTARGETDESC_AMDGPUMCTARGETDESC_H
#include "llvm/ADT/StringRef.h"
@@ -30,6 +30,7 @@ class Target;
class raw_ostream;
extern Target TheAMDGPUTarget;
+extern Target TheGCNTarget;
MCCodeEmitter *createR600MCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
@@ -55,4 +56,4 @@ MCObjectWriter *createAMDGPUELFObjectWriter(raw_ostream &OS);
#define GET_SUBTARGETINFO_ENUM
#include "AMDGPUGenSubtargetInfo.inc"
-#endif // AMDGPUMCTARGETDESC_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp b/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp
index 78776c1..640de3f 100644
--- a/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp
+++ b/contrib/llvm/lib/Target/R600/MCTargetDesc/SIMCCodeEmitter.cpp
@@ -14,9 +14,10 @@
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
-#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
-#include "MCTargetDesc/AMDGPUMCCodeEmitter.h"
#include "MCTargetDesc/AMDGPUFixupKinds.h"
+#include "MCTargetDesc/AMDGPUMCCodeEmitter.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "SIDefines.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCFixup.h"
@@ -84,12 +85,10 @@ MCCodeEmitter *llvm::createSIMCCodeEmitter(const MCInstrInfo &MCII,
bool SIMCCodeEmitter::isSrcOperand(const MCInstrDesc &Desc,
unsigned OpNo) const {
+ unsigned OpType = Desc.OpInfo[OpNo].OperandType;
- unsigned RegClass = Desc.OpInfo[OpNo].RegClass;
- return (AMDGPU::SSrc_32RegClassID == RegClass) ||
- (AMDGPU::SSrc_64RegClassID == RegClass) ||
- (AMDGPU::VSrc_32RegClassID == RegClass) ||
- (AMDGPU::VSrc_64RegClassID == RegClass);
+ return OpType == AMDGPU::OPERAND_REG_IMM32 ||
+ OpType == AMDGPU::OPERAND_REG_INLINE_C;
}
uint32_t SIMCCodeEmitter::getLitEncoding(const MCOperand &MO) const {
diff --git a/contrib/llvm/lib/Target/R600/Processors.td b/contrib/llvm/lib/Target/R600/Processors.td
index ce17d7c..cff97cd 100644
--- a/contrib/llvm/lib/Target/R600/Processors.td
+++ b/contrib/llvm/lib/Target/R600/Processors.td
@@ -83,28 +83,38 @@ def : Proc<"cayman", R600_VLIW4_Itin,
// Southern Islands
//===----------------------------------------------------------------------===//
-def : Proc<"SI", SI_Itin, [FeatureSouthernIslands]>;
+def : ProcessorModel<"SI", SIFullSpeedModel, [FeatureSouthernIslands]>;
-def : Proc<"tahiti", SI_Itin, [FeatureSouthernIslands]>;
+def : ProcessorModel<"tahiti", SIFullSpeedModel, [FeatureSouthernIslands]>;
-def : Proc<"pitcairn", SI_Itin, [FeatureSouthernIslands]>;
+def : ProcessorModel<"pitcairn", SIQuarterSpeedModel, [FeatureSouthernIslands]>;
-def : Proc<"verde", SI_Itin, [FeatureSouthernIslands]>;
+def : ProcessorModel<"verde", SIQuarterSpeedModel, [FeatureSouthernIslands]>;
-def : Proc<"oland", SI_Itin, [FeatureSouthernIslands]>;
+def : ProcessorModel<"oland", SIQuarterSpeedModel, [FeatureSouthernIslands]>;
-def : Proc<"hainan", SI_Itin, [FeatureSouthernIslands]>;
+def : ProcessorModel<"hainan", SIQuarterSpeedModel, [FeatureSouthernIslands]>;
//===----------------------------------------------------------------------===//
// Sea Islands
//===----------------------------------------------------------------------===//
-def : Proc<"bonaire", SI_Itin, [FeatureSeaIslands]>;
+def : ProcessorModel<"bonaire", SIQuarterSpeedModel, [FeatureSeaIslands]>;
-def : Proc<"kabini", SI_Itin, [FeatureSeaIslands]>;
+def : ProcessorModel<"kabini", SIQuarterSpeedModel, [FeatureSeaIslands]>;
-def : Proc<"kaveri", SI_Itin, [FeatureSeaIslands]>;
+def : ProcessorModel<"kaveri", SIQuarterSpeedModel, [FeatureSeaIslands]>;
-def : Proc<"hawaii", SI_Itin, [FeatureSeaIslands]>;
+def : ProcessorModel<"hawaii", SIFullSpeedModel, [FeatureSeaIslands]>;
-def : Proc<"mullins", SI_Itin, [FeatureSeaIslands]>;
+def : ProcessorModel<"mullins", SIQuarterSpeedModel, [FeatureSeaIslands]>;
+
+//===----------------------------------------------------------------------===//
+// Volcanic Islands
+//===----------------------------------------------------------------------===//
+
+def : ProcessorModel<"tonga", SIFullSpeedModel, [FeatureVolcanicIslands]>;
+
+def : ProcessorModel<"iceland", SIQuarterSpeedModel, [FeatureVolcanicIslands]>;
+
+def : ProcessorModel<"carrizo", SIQuarterSpeedModel, [FeatureVolcanicIslands]>;
diff --git a/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp b/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp
index 92bf0df..f07be00 100644
--- a/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp
+++ b/contrib/llvm/lib/Target/R600/R600ClauseMergePass.cpp
@@ -18,6 +18,7 @@
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
+#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -167,7 +168,7 @@ bool R600ClauseMergePass::mergeIfPossible(MachineInstr *RootCFAlu,
}
bool R600ClauseMergePass::runOnMachineFunction(MachineFunction &MF) {
- TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ TII = static_cast<const R600InstrInfo *>(MF.getSubtarget().getInstrInfo());
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
diff --git a/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp b/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp
index e37767a..edaf278 100644
--- a/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp
+++ b/contrib/llvm/lib/Target/R600/R600ControlFlowFinalizer.cpp
@@ -336,7 +336,7 @@ private:
getHWInstrDesc(IsTex?CF_TC:CF_VC))
.addImm(0) // ADDR
.addImm(AluInstCount - 1); // COUNT
- return ClauseFile(MIb, ClauseContent);
+ return ClauseFile(MIb, std::move(ClauseContent));
}
void getLiteral(MachineInstr *MI, std::vector<int64_t> &Lits) const {
@@ -426,7 +426,7 @@ private:
}
assert(ClauseContent.size() < 128 && "ALU clause is too big");
ClauseHead->getOperand(7).setImm(ClauseContent.size() - 1);
- return ClauseFile(ClauseHead, ClauseContent);
+ return ClauseFile(ClauseHead, std::move(ClauseContent));
}
void
@@ -459,11 +459,9 @@ private:
void CounterPropagateAddr(MachineInstr *MI, unsigned Addr) const {
MI->getOperand(0).setImm(Addr + MI->getOperand(0).getImm());
}
- void CounterPropagateAddr(std::set<MachineInstr *> MIs, unsigned Addr)
- const {
- for (std::set<MachineInstr *>::iterator It = MIs.begin(), E = MIs.end();
- It != E; ++It) {
- MachineInstr *MI = *It;
+ void CounterPropagateAddr(const std::set<MachineInstr *> &MIs,
+ unsigned Addr) const {
+ for (MachineInstr *MI : MIs) {
CounterPropagateAddr(MI, Addr);
}
}
@@ -477,8 +475,9 @@ public:
}
bool runOnMachineFunction(MachineFunction &MF) override {
- TII=static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
- TRI=static_cast<const R600RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ TII = static_cast<const R600InstrInfo *>(MF.getSubtarget().getInstrInfo());
+ TRI = static_cast<const R600RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
CFStack CFStack(ST, MFI->getShaderType());
@@ -542,7 +541,7 @@ public:
std::pair<unsigned, std::set<MachineInstr *> > Pair(CfCount,
std::set<MachineInstr *>());
Pair.second.insert(MIb);
- LoopStack.push_back(Pair);
+ LoopStack.push_back(std::move(Pair));
MI->eraseFromParent();
CfCount++;
break;
@@ -550,7 +549,7 @@ public:
case AMDGPU::ENDLOOP: {
CFStack.popLoop();
std::pair<unsigned, std::set<MachineInstr *> > Pair =
- LoopStack.back();
+ std::move(LoopStack.back());
LoopStack.pop_back();
CounterPropagateAddr(Pair.second, CfCount);
BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP))
diff --git a/contrib/llvm/lib/Target/R600/R600Defines.h b/contrib/llvm/lib/Target/R600/R600Defines.h
index f2f28fe..51d87eda 100644
--- a/contrib/llvm/lib/Target/R600/R600Defines.h
+++ b/contrib/llvm/lib/Target/R600/R600Defines.h
@@ -8,8 +8,8 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef R600DEFINES_H_
-#define R600DEFINES_H_
+#ifndef LLVM_LIB_TARGET_R600_R600DEFINES_H
+#define LLVM_LIB_TARGET_R600_R600DEFINES_H
#include "llvm/MC/MCRegisterInfo.h"
@@ -168,4 +168,4 @@ namespace OpName {
#define R_0288E8_SQ_LDS_ALLOC 0x0288E8
-#endif // R600DEFINES_H_
+#endif
diff --git a/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp b/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp
index 38afebe..fdc2030 100644
--- a/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp
+++ b/contrib/llvm/lib/Target/R600/R600EmitClauseMarkers.cpp
@@ -19,6 +19,7 @@
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
+#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -297,7 +298,7 @@ public:
}
bool runOnMachineFunction(MachineFunction &MF) override {
- TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ TII = static_cast<const R600InstrInfo *>(MF.getSubtarget().getInstrInfo());
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
diff --git a/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp b/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp
index 732b06d..211d392e 100644
--- a/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp
+++ b/contrib/llvm/lib/Target/R600/R600ExpandSpecialInstrs.cpp
@@ -19,6 +19,7 @@
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
+#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -65,7 +66,7 @@ void R600ExpandSpecialInstrsPass::SetFlagInNewMI(MachineInstr *NewMI,
}
bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) {
- TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
+ TII = static_cast<const R600InstrInfo *>(MF.getSubtarget().getInstrInfo());
const R600RegisterInfo &TRI = TII->getRegisterInfo();
diff --git a/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp b/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp
index 52315bf..595f698 100644
--- a/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp
+++ b/contrib/llvm/lib/Target/R600/R600ISelLowering.cpp
@@ -122,12 +122,19 @@ R600TargetLowering::R600TargetLowering(TargetMachine &TM) :
// EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
// spaces, so it is custom lowered to handle those where it isn't.
- setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
+
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
+
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
+ }
setOperationAction(ISD::STORE, MVT::i8, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
@@ -181,8 +188,6 @@ R600TargetLowering::R600TargetLowering(TargetMachine &TM) :
setOperationAction(ISD::SUBE, VT, Expand);
}
- setBooleanContents(ZeroOrNegativeOneBooleanContent);
- setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
setSchedulingPreference(Sched::Source);
}
@@ -192,7 +197,7 @@ MachineBasicBlock * R600TargetLowering::EmitInstrWithCustomInserter(
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineBasicBlock::iterator I = *MI;
const R600InstrInfo *TII =
- static_cast<const R600InstrInfo*>(MF->getTarget().getInstrInfo());
+ static_cast<const R600InstrInfo *>(MF->getSubtarget().getInstrInfo());
switch (MI->getOpcode()) {
default:
@@ -202,7 +207,10 @@ MachineBasicBlock * R600TargetLowering::EmitInstrWithCustomInserter(
int DstIdx = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
assert(DstIdx != -1);
MachineInstrBuilder NewMI;
- if (!MRI.use_empty(MI->getOperand(DstIdx).getReg()))
+ // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
+ // LDS_1A2D support and remove this special case.
+ if (!MRI.use_empty(MI->getOperand(DstIdx).getReg()) ||
+ MI->getOpcode() == AMDGPU::LDS_CMPST_RET)
return BB;
NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
@@ -645,8 +653,8 @@ SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const
MachineSDNode *interp;
if (ijb < 0) {
const MachineFunction &MF = DAG.getMachineFunction();
- const R600InstrInfo *TII =
- static_cast<const R600InstrInfo*>(MF.getTarget().getInstrInfo());
+ const R600InstrInfo *TII = static_cast<const R600InstrInfo *>(
+ MF.getSubtarget().getInstrInfo());
interp = DAG.getMachineNode(AMDGPU::INTERP_VEC_LOAD, DL,
MVT::v4f32, DAG.getTargetConstant(slot / 4 , MVT::i32));
return DAG.getTargetExtractSubreg(
@@ -806,6 +814,9 @@ SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const
case Intrinsic::r600_read_local_size_z:
return LowerImplicitParameter(DAG, VT, DL, 8);
+ case Intrinsic::AMDGPU_read_workdim:
+ return LowerImplicitParameter(DAG, VT, DL, MFI->ABIArgOffset / 4);
+
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_X, VT);
@@ -901,74 +912,7 @@ void R600TargetLowering::ReplaceNodeResults(SDNode *N,
}
case ISD::UDIVREM: {
SDValue Op = SDValue(N, 0);
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
-
- SDValue one = DAG.getConstant(1, HalfVT);
- SDValue zero = DAG.getConstant(0, HalfVT);
-
- //HiLo split
- SDValue LHS = N->getOperand(0);
- SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
- SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
-
- SDValue RHS = N->getOperand(1);
- SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
- SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
-
- // Get Speculative values
- SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
- SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
-
- SDValue REM_Hi = zero;
- SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
-
- SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
- SDValue DIV_Lo = zero;
-
- const unsigned halfBitWidth = HalfVT.getSizeInBits();
-
- for (unsigned i = 0; i < halfBitWidth; ++i) {
- SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
- // Get Value of high bit
- SDValue HBit;
- if (halfBitWidth == 32 && Subtarget->hasBFE()) {
- HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
- } else {
- HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
- HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
- }
-
- SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
- DAG.getConstant(halfBitWidth - 1, HalfVT));
- REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
- REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
-
- REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
- REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
-
-
- SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
-
- SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
- SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETGE);
-
- DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
-
- // Update REM
-
- SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
-
- REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETGE);
- REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
- REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
- }
-
- SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
- SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
- Results.push_back(DIV);
- Results.push_back(REM);
+ LowerUDIVREM64(Op, DAG, Results);
break;
}
}
@@ -1176,6 +1120,13 @@ SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
SDValue CC = Op.getOperand(4);
SDValue Temp;
+ if (VT == MVT::f32) {
+ DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
+ SDValue MinMax = CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
+ if (MinMax)
+ return MinMax;
+ }
+
// LHS and RHS are guaranteed to be the same value type
EVT CompareVT = LHS.getValueType();
@@ -1430,8 +1381,8 @@ SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
// Lowering for indirect addressing
const MachineFunction &MF = DAG.getMachineFunction();
- const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
- getTargetMachine().getFrameLowering());
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
+ getTargetMachine().getSubtargetImpl()->getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
@@ -1543,7 +1494,7 @@ SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const
if (LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && VT.isVector()) {
SDValue MergedValues[2] = {
- SplitVectorLoad(Op, DAG),
+ ScalarizeVectorLoad(Op, DAG),
Chain
};
return DAG.getMergeValues(MergedValues, DL);
@@ -1613,6 +1564,7 @@ SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const
LoadNode->getPointerInfo(), MemVT,
LoadNode->isVolatile(),
LoadNode->isNonTemporal(),
+ LoadNode->isInvariant(),
LoadNode->getAlignment());
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, NewLoad, ShiftAmount);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Shl, ShiftAmount);
@@ -1627,8 +1579,8 @@ SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const
// Lowering for indirect addressing
const MachineFunction &MF = DAG.getMachineFunction();
- const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
- getTargetMachine().getFrameLowering());
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
+ getTargetMachine().getSubtargetImpl()->getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
@@ -1691,10 +1643,10 @@ SDValue R600TargetLowering::LowerFormalArguments(
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
MachineFunction &MF = DAG.getMachineFunction();
- unsigned ShaderType = MF.getInfo<R600MachineFunctionInfo>()->getShaderType();
+ R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
SmallVector<ISD::InputArg, 8> LocalIns;
@@ -1704,10 +1656,15 @@ SDValue R600TargetLowering::LowerFormalArguments(
for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
CCValAssign &VA = ArgLocs[i];
- EVT VT = Ins[i].VT;
- EVT MemVT = LocalIns[i].VT;
+ const ISD::InputArg &In = Ins[i];
+ EVT VT = In.VT;
+ EVT MemVT = VA.getLocVT();
+ if (!VT.isVector() && MemVT.isVector()) {
+ // Get load source type if scalarized.
+ MemVT = MemVT.getVectorElementType();
+ }
- if (ShaderType != ShaderType::COMPUTE) {
+ if (MFI->getShaderType() != ShaderType::COMPUTE) {
unsigned Reg = MF.addLiveIn(VA.getLocReg(), &AMDGPU::R600_Reg128RegClass);
SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
InVals.push_back(Register);
@@ -1715,7 +1672,7 @@ SDValue R600TargetLowering::LowerFormalArguments(
}
PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
- AMDGPUAS::CONSTANT_BUFFER_0);
+ AMDGPUAS::CONSTANT_BUFFER_0);
// i64 isn't a legal type, so the register type used ends up as i32, which
// isn't expected here. It attempts to create this sextload, but it ends up
@@ -1724,18 +1681,33 @@ SDValue R600TargetLowering::LowerFormalArguments(
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
+ ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
+ if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
+ // FIXME: This should really check the extload type, but the handling of
+ // extload vector parameters seems to be broken.
+
+ // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
+ Ext = ISD::SEXTLOAD;
+ }
+
+ // Compute the offset from the value.
+ // XXX - I think PartOffset should give you this, but it seems to give the
+ // size of the register which isn't useful.
+
+ unsigned ValBase = ArgLocs[In.OrigArgIndex].getLocMemOffset();
+ unsigned PartOffset = VA.getLocMemOffset();
+ unsigned Offset = 36 + VA.getLocMemOffset();
- // FIXME: This should really check the extload type, but the handling of
- // extload vecto parameters seems to be broken.
- //ISD::LoadExtType Ext = Ins[i].Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
- ISD::LoadExtType Ext = ISD::SEXTLOAD;
- SDValue Arg = DAG.getExtLoad(Ext, DL, VT, Chain,
- DAG.getConstant(36 + VA.getLocMemOffset(), MVT::i32),
- MachinePointerInfo(UndefValue::get(PtrTy)),
- MemVT, false, false, 4);
+ MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
+ SDValue Arg = DAG.getLoad(ISD::UNINDEXED, Ext, VT, DL, Chain,
+ DAG.getConstant(Offset, MVT::i32),
+ DAG.getUNDEF(MVT::i32),
+ PtrInfo,
+ MemVT, false, true, true, 4);
// 4 is the preferred alignment for the CONSTANT memory space.
InVals.push_back(Arg);
+ MFI->ABIArgOffset = Offset + MemVT.getStoreSize();
}
return Chain;
}
@@ -2081,7 +2053,7 @@ static bool
FoldOperand(SDNode *ParentNode, unsigned SrcIdx, SDValue &Src, SDValue &Neg,
SDValue &Abs, SDValue &Sel, SDValue &Imm, SelectionDAG &DAG) {
const R600InstrInfo *TII =
- static_cast<const R600InstrInfo *>(DAG.getTarget().getInstrInfo());
+ static_cast<const R600InstrInfo *>(DAG.getSubtarget().getInstrInfo());
if (!Src.isMachineOpcode())
return false;
switch (Src.getMachineOpcode()) {
@@ -2206,7 +2178,7 @@ FoldOperand(SDNode *ParentNode, unsigned SrcIdx, SDValue &Src, SDValue &Neg,
SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const R600InstrInfo *TII =
- static_cast<const R600InstrInfo *>(DAG.getTarget().getInstrInfo());
+ static_cast<const R600InstrInfo *>(DAG.getSubtarget().getInstrInfo());
if (!Node->isMachineOpcode())
return Node;
unsigned Opcode = Node->getMachineOpcode();
diff --git a/contrib/llvm/lib/Target/R600/R600ISelLowering.h b/contrib/llvm/lib/Target/R600/R600ISelLowering.h
index d22c8c9..10ebc10 100644
--- a/contrib/llvm/lib/Target/R600/R600ISelLowering.h
+++ b/contrib/llvm/lib/Target/R600/R600ISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef R600ISELLOWERING_H
-#define R600ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_R600_R600ISELLOWERING_H
+#define LLVM_LIB_TARGET_R600_R600ISELLOWERING_H
#include "AMDGPUISelLowering.h"
@@ -74,4 +74,4 @@ private:
} // End namespace llvm;
-#endif // R600ISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/R600InstrFormats.td b/contrib/llvm/lib/Target/R600/R600InstrFormats.td
index 9428bab..0ffd485 100644
--- a/contrib/llvm/lib/Target/R600/R600InstrFormats.td
+++ b/contrib/llvm/lib/Target/R600/R600InstrFormats.td
@@ -38,6 +38,9 @@ class InstR600 <dag outs, dag ins, string asm, list<dag> pattern,
let Pattern = pattern;
let Itinerary = itin;
+ // No AsmMatcher support.
+ let isCodeGenOnly = 1;
+
let TSFlags{4} = Trig;
let TSFlags{5} = Op3;
diff --git a/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp b/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp
index 99920b7..653fd0d 100644
--- a/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/R600InstrInfo.cpp
@@ -571,7 +571,7 @@ R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
if (!isLastAluTrans)
return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
- TransOps = IGSrcs.back();
+ TransOps = std::move(IGSrcs.back());
IGSrcs.pop_back();
ValidSwizzle.pop_back();
@@ -654,10 +654,10 @@ R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
return fitsConstReadLimitations(Consts);
}
-DFAPacketizer *R600InstrInfo::CreateTargetScheduleState(const TargetMachine *TM,
- const ScheduleDAG *DAG) const {
- const InstrItineraryData *II = TM->getInstrItineraryData();
- return TM->getSubtarget<AMDGPUSubtarget>().createDFAPacketizer(II);
+DFAPacketizer *
+R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
+ const InstrItineraryData *II = STI.getInstrItineraryData();
+ return static_cast<const AMDGPUSubtarget &>(STI).createDFAPacketizer(II);
}
static bool
@@ -1082,9 +1082,8 @@ bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const {
- const AMDGPUFrameLowering *TFL =
- static_cast<const AMDGPUFrameLowering*>(
- MF.getTarget().getFrameLowering());
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
+ MF.getSubtarget().getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
int End = getIndirectIndexEnd(MF);
diff --git a/contrib/llvm/lib/Target/R600/R600InstrInfo.h b/contrib/llvm/lib/Target/R600/R600InstrInfo.h
index 1c3cb63..d3dc0e5 100644
--- a/contrib/llvm/lib/Target/R600/R600InstrInfo.h
+++ b/contrib/llvm/lib/Target/R600/R600InstrInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef R600INSTRUCTIONINFO_H_
-#define R600INSTRUCTIONINFO_H_
+#ifndef LLVM_LIB_TARGET_R600_R600INSTRINFO_H
+#define LLVM_LIB_TARGET_R600_R600INSTRINFO_H
#include "AMDGPUInstrInfo.h"
#include "R600Defines.h"
@@ -154,8 +154,8 @@ namespace llvm {
bool isMov(unsigned Opcode) const override;
- DFAPacketizer *CreateTargetScheduleState(const TargetMachine *TM,
- const ScheduleDAG *DAG) const override;
+ DFAPacketizer *
+ CreateTargetScheduleState(const TargetSubtargetInfo &) const override;
bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
@@ -206,7 +206,7 @@ namespace llvm {
int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const override { return 1;}
- virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
/// \brief Reserve the registers that may be accesed using indirect addressing.
void reserveIndirectRegisters(BitVector &Reserved,
@@ -298,4 +298,4 @@ int getLDSNoRetOp(uint16_t Opcode);
} // End llvm namespace
-#endif // R600INSTRINFO_H_
+#endif
diff --git a/contrib/llvm/lib/Target/R600/R600Instructions.td b/contrib/llvm/lib/Target/R600/R600Instructions.td
index 704507d..b1d3ce2 100644
--- a/contrib/llvm/lib/Target/R600/R600Instructions.td
+++ b/contrib/llvm/lib/Target/R600/R600Instructions.td
@@ -475,13 +475,13 @@ class ExportBufWord1 {
multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
(ExportInst
- (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), $reg, sub0),
0, 61, 0, 7, 7, 7, cf_inst, 0)
>;
def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
(ExportInst
- (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), $reg, sub0),
0, 61, 7, 0, 7, 7, cf_inst, 0)
>;
@@ -513,17 +513,17 @@ multiclass SteamOutputExportPattern<Instruction ExportInst,
// Stream1
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
- (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ (ExportInst $src, 0, imm:$arraybase,
4095, imm:$mask, buf1inst, 0)>;
// Stream2
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
- (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ (ExportInst $src, 0, imm:$arraybase,
4095, imm:$mask, buf2inst, 0)>;
// Stream3
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
- (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
+ (ExportInst $src, 0, imm:$arraybase,
4095, imm:$mask, buf3inst, 0)>;
}
@@ -674,8 +674,9 @@ def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
// Non-IEEE MUL: 0 * anything = 0
def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
-def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
-def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
+// TODO: Do these actually match the regular fmin/fmax behavior?
+def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax_legacy>;
+def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin_legacy>;
// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
// so some of the instruction names don't match the asm string.
@@ -697,7 +698,7 @@ def SGE : R600_2OP <
def SNE : R600_2OP <
0xB, "SETNE",
- [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE))]
+ [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE_NE))]
>;
def SETE_DX10 : R600_2OP <
@@ -715,9 +716,10 @@ def SETGE_DX10 : R600_2OP <
[(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))]
>;
+// FIXME: This should probably be COND_ONE
def SETNE_DX10 : R600_2OP <
0xF, "SETNE_DX10",
- [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE))]
+ [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE_NE))]
>;
def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
@@ -915,6 +917,11 @@ class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
[(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))]
>;
+class FMA_Common <bits<5> inst> : R600_3OP <
+ inst, "FMA",
+ [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))], VecALU
+>;
+
class CNDE_Common <bits<5> inst> : R600_3OP <
inst, "CNDE",
[(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))]
@@ -1068,7 +1075,7 @@ class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
}
class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
- inst, "RECIP_IEEE", [(set f32:$dst, (fdiv FP_ONE, f32:$src0))]
+ inst, "RECIP_IEEE", [(set f32:$dst, (AMDGPUrcp f32:$src0))]
> {
let Itinerary = TransALU;
}
@@ -1114,6 +1121,7 @@ def FNEG_R600 : FNEG<R600_Reg32>;
// Helper patterns for complex intrinsics
//===----------------------------------------------------------------------===//
+// FIXME: Should be predicated on unsafe fp math.
multiclass DIV_Common <InstR600 recip_ieee> {
def : Pat<
(int_AMDGPU_div f32:$src0, f32:$src1),
@@ -1124,6 +1132,8 @@ def : Pat<
(fdiv f32:$src0, f32:$src1),
(MUL_IEEE $src0, (recip_ieee $src1))
>;
+
+def : RcpPat<recip_ieee, f32>;
}
class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee>
@@ -1133,9 +1143,12 @@ class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ie
>;
// FROUND pattern
-class FROUNDPat<Instruction CNDGE> : Pat <
+class FROUNDPat<Instruction CNDGE, Instruction CNDGT> : Pat <
(AMDGPUround f32:$x),
- (CNDGE (ADD (FNEG_R600 (f32 HALF)), (FRACT $x)), (CEIL $x), (FLOOR $x))
+ (CNDGE $x,
+ (CNDGE (ADD (FNEG_R600 (f32 HALF)), (FRACT $x)), (CEIL $x), (FLOOR $x)),
+ (CNDGT (ADD (FNEG_R600 (f32 HALF)), (FRACT $x)), (CEIL $x), (FLOOR $x))
+ )
>;
@@ -1180,7 +1193,9 @@ let Predicates = [isR600] in {
def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>;
- def : FROUNDPat <CNDGE_r600>;
+ defm : RsqPat<RECIPSQRT_IEEE_r600, f32>;
+
+ def : FROUNDPat <CNDGE_r600, CNDGT_r600>;
def R600_ExportSwz : ExportSwzInst {
let Word1{20-17} = 0; // BURST_COUNT
@@ -1350,7 +1365,7 @@ def CONST_COPY : Instruction {
let Pattern =
[(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
let AsmString = "CONST_COPY";
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let isAsCheapAsAMove = 1;
let Itinerary = NullALU;
}
@@ -1482,6 +1497,7 @@ class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
+ let isCodeGenOnly = 1;
}
multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> {
diff --git a/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h b/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h
index b0ae22e..263561e 100644
--- a/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/R600/R600MachineFunctionInfo.h
@@ -10,8 +10,8 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef R600MACHINEFUNCTIONINFO_H
-#define R600MACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_R600_R600MACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_R600_R600MACHINEFUNCTIONINFO_H
#include "AMDGPUMachineFunction.h"
#include "llvm/ADT/BitVector.h"
@@ -31,4 +31,4 @@ public:
} // End llvm namespace
-#endif //R600MACHINEFUNCTIONINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp b/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp
index 7ea654c..d782713 100644
--- a/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp
+++ b/contrib/llvm/lib/Target/R600/R600MachineScheduler.cpp
@@ -14,7 +14,6 @@
#include "R600MachineScheduler.h"
#include "AMDGPUSubtarget.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
@@ -76,21 +75,25 @@ SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
float ALUFetchRationEstimate =
(AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
(FetchInstCount + Available[IDFetch].size());
- unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
- DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
- // We assume the local GPR requirements to be "dominated" by the requirement
- // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
- // after TEX are indeed likely to consume or generate values from/for the
- // TEX clause.
- // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
- // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
- // one GPR) or TmXYZW = TnXYZW (need 2 GPR).
- // (TODO : use RegisterPressure)
- // If we are going too use too many GPR, we flush Fetch instruction to lower
- // register pressure on 128 bits regs.
- unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
- if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
+ if (ALUFetchRationEstimate == 0) {
AllowSwitchFromAlu = true;
+ } else {
+ unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
+ DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
+ // We assume the local GPR requirements to be "dominated" by the requirement
+ // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
+ // after TEX are indeed likely to consume or generate values from/for the
+ // TEX clause.
+ // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
+ // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
+ // one GPR) or TmXYZW = TnXYZW (need 2 GPR).
+ // (TODO : use RegisterPressure)
+ // If we are going too use too many GPR, we flush Fetch instruction to lower
+ // register pressure on 128 bits regs.
+ unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
+ if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
+ AllowSwitchFromAlu = true;
+ }
}
if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
diff --git a/contrib/llvm/lib/Target/R600/R600MachineScheduler.h b/contrib/llvm/lib/Target/R600/R600MachineScheduler.h
index fd475af..fc5b95c 100644
--- a/contrib/llvm/lib/Target/R600/R600MachineScheduler.h
+++ b/contrib/llvm/lib/Target/R600/R600MachineScheduler.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef R600MACHINESCHEDULER_H_
-#define R600MACHINESCHEDULER_H_
+#ifndef LLVM_LIB_TARGET_R600_R600MACHINESCHEDULER_H
+#define LLVM_LIB_TARGET_R600_R600MACHINESCHEDULER_H
#include "R600InstrInfo.h"
#include "llvm/ADT/PriorityQueue.h"
diff --git a/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp b/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp
index 2314136..742c0e0 100644
--- a/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp
+++ b/contrib/llvm/lib/Target/R600/R600OptimizeVectorRegisters.cpp
@@ -30,6 +30,7 @@
#include "llvm/Support/Debug.h"
#include "AMDGPU.h"
#include "R600InstrInfo.h"
+#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
@@ -279,9 +280,8 @@ bool R600VectorRegMerger::tryMergeUsingCommonSlot(RegSeqInfo &RSI,
continue;
if (PreviousRegSeqByReg[MOp->getReg()].empty())
continue;
- std::vector<MachineInstr *> MIs = PreviousRegSeqByReg[MOp->getReg()];
- for (unsigned i = 0, e = MIs.size(); i < e; i++) {
- CompatibleRSI = PreviousRegSeq[MIs[i]];
+ for (MachineInstr *MI : PreviousRegSeqByReg[MOp->getReg()]) {
+ CompatibleRSI = PreviousRegSeq[MI];
if (RSI == CompatibleRSI)
continue;
if (tryMergeVector(&CompatibleRSI, &RSI, RemapChan))
@@ -314,7 +314,7 @@ void R600VectorRegMerger::trackRSI(const RegSeqInfo &RSI) {
}
bool R600VectorRegMerger::runOnMachineFunction(MachineFunction &Fn) {
- TII = static_cast<const R600InstrInfo *>(Fn.getTarget().getInstrInfo());
+ TII = static_cast<const R600InstrInfo *>(Fn.getSubtarget().getInstrInfo());
MRI = &(Fn.getRegInfo());
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
diff --git a/contrib/llvm/lib/Target/R600/R600Packetizer.cpp b/contrib/llvm/lib/Target/R600/R600Packetizer.cpp
index 74cf309..ddf68c9 100644
--- a/contrib/llvm/lib/Target/R600/R600Packetizer.cpp
+++ b/contrib/llvm/lib/Target/R600/R600Packetizer.cpp
@@ -148,11 +148,11 @@ private:
}
public:
// Ctor.
- R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
- MachineDominatorTree &MDT)
- : VLIWPacketizerList(MF, MLI, MDT, true),
- TII (static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo())),
- TRI(TII->getRegisterInfo()) {
+ R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI)
+ : VLIWPacketizerList(MF, MLI, true),
+ TII(static_cast<const R600InstrInfo *>(
+ MF.getSubtarget().getInstrInfo())),
+ TRI(TII->getRegisterInfo()) {
VLIW5 = !MF.getTarget().getSubtarget<AMDGPUSubtarget>().hasCaymanISA();
}
@@ -328,12 +328,11 @@ public:
};
bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
- const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
- MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
// Instantiate the packetizer.
- R600PacketizerList Packetizer(Fn, MLI, MDT);
+ R600PacketizerList Packetizer(Fn, MLI);
// DFA state table should not be empty.
assert(Packetizer.getResourceTracker() && "Empty DFA table!");
diff --git a/contrib/llvm/lib/Target/R600/R600RegisterInfo.h b/contrib/llvm/lib/Target/R600/R600RegisterInfo.h
index 247808b..f1a8a41 100644
--- a/contrib/llvm/lib/Target/R600/R600RegisterInfo.h
+++ b/contrib/llvm/lib/Target/R600/R600RegisterInfo.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef R600REGISTERINFO_H_
-#define R600REGISTERINFO_H_
+#ifndef LLVM_LIB_TARGET_R600_R600REGISTERINFO_H
+#define LLVM_LIB_TARGET_R600_R600REGISTERINFO_H
#include "AMDGPURegisterInfo.h"
@@ -46,4 +46,4 @@ struct R600RegisterInfo : public AMDGPURegisterInfo {
} // End namespace llvm
-#endif // AMDIDSAREGISTERINFO_H_
+#endif
diff --git a/contrib/llvm/lib/Target/R600/SIDefines.h b/contrib/llvm/lib/Target/R600/SIDefines.h
index b7e7a2d..7601794 100644
--- a/contrib/llvm/lib/Target/R600/SIDefines.h
+++ b/contrib/llvm/lib/Target/R600/SIDefines.h
@@ -8,21 +8,88 @@
/// \file
//===----------------------------------------------------------------------===//
-#ifndef SIDEFINES_H_
-#define SIDEFINES_H_
+#include "llvm/MC/MCInstrDesc.h"
+
+#ifndef LLVM_LIB_TARGET_R600_SIDEFINES_H
+#define LLVM_LIB_TARGET_R600_SIDEFINES_H
namespace SIInstrFlags {
+// This needs to be kept in sync with the field bits in InstSI.
enum {
- MIMG = 1 << 3,
- SMRD = 1 << 4,
- VOP1 = 1 << 5,
- VOP2 = 1 << 6,
- VOP3 = 1 << 7,
- VOPC = 1 << 8,
- SALU = 1 << 9
+ SALU = 1 << 3,
+ VALU = 1 << 4,
+
+ SOP1 = 1 << 5,
+ SOP2 = 1 << 6,
+ SOPC = 1 << 7,
+ SOPK = 1 << 8,
+ SOPP = 1 << 9,
+
+ VOP1 = 1 << 10,
+ VOP2 = 1 << 11,
+ VOP3 = 1 << 12,
+ VOPC = 1 << 13,
+
+ MUBUF = 1 << 14,
+ MTBUF = 1 << 15,
+ SMRD = 1 << 16,
+ DS = 1 << 17,
+ MIMG = 1 << 18,
+ FLAT = 1 << 19
};
}
+namespace llvm {
+namespace AMDGPU {
+ enum OperandType {
+ /// Operand with register or 32-bit immediate
+ OPERAND_REG_IMM32 = llvm::MCOI::OPERAND_FIRST_TARGET,
+ /// Operand with register or inline constant
+ OPERAND_REG_INLINE_C
+ };
+}
+}
+
+namespace SIInstrFlags {
+ enum Flags {
+ // First 4 bits are the instruction encoding
+ VM_CNT = 1 << 0,
+ EXP_CNT = 1 << 1,
+ LGKM_CNT = 1 << 2
+ };
+
+ // v_cmp_class_* etc. use a 10-bit mask for what operation is checked.
+ // The result is true if any of these tests are true.
+ enum ClassFlags {
+ S_NAN = 1 << 0, // Signaling NaN
+ Q_NAN = 1 << 1, // Quiet NaN
+ N_INFINITY = 1 << 2, // Negative infinity
+ N_NORMAL = 1 << 3, // Negative normal
+ N_SUBNORMAL = 1 << 4, // Negative subnormal
+ N_ZERO = 1 << 5, // Negative zero
+ P_ZERO = 1 << 6, // Positive zero
+ P_SUBNORMAL = 1 << 7, // Positive subnormal
+ P_NORMAL = 1 << 8, // Positive normal
+ P_INFINITY = 1 << 9 // Positive infinity
+ };
+}
+
+namespace SISrcMods {
+ enum {
+ NEG = 1 << 0,
+ ABS = 1 << 1
+ };
+}
+
+namespace SIOutMods {
+ enum {
+ NONE = 0,
+ MUL2 = 1,
+ MUL4 = 2,
+ DIV2 = 3
+ };
+}
+
#define R_00B028_SPI_SHADER_PGM_RSRC1_PS 0x00B028
#define R_00B02C_SPI_SHADER_PGM_RSRC2_PS 0x00B02C
#define S_00B02C_EXTRA_LDS_SIZE(x) (((x) & 0xFF) << 8)
@@ -32,7 +99,14 @@ enum {
#define S_00B028_VGPRS(x) (((x) & 0x3F) << 0)
#define S_00B028_SGPRS(x) (((x) & 0x0F) << 6)
#define R_00B84C_COMPUTE_PGM_RSRC2 0x00B84C
-#define S_00B02C_SCRATCH_EN(x) (((x) & 0x1) << 0)
+#define S_00B84C_SCRATCH_EN(x) (((x) & 0x1) << 0)
+#define S_00B84C_USER_SGPR(x) (((x) & 0x1F) << 1)
+#define S_00B84C_TGID_X_EN(x) (((x) & 0x1) << 7)
+#define S_00B84C_TGID_Y_EN(x) (((x) & 0x1) << 8)
+#define S_00B84C_TGID_Z_EN(x) (((x) & 0x1) << 9)
+#define S_00B84C_TG_SIZE_EN(x) (((x) & 0x1) << 10)
+#define S_00B84C_TIDIG_COMP_CNT(x) (((x) & 0x03) << 11)
+
#define S_00B84C_LDS_SIZE(x) (((x) & 0x1FF) << 15)
#define R_0286CC_SPI_PS_INPUT_ENA 0x0286CC
@@ -89,4 +163,8 @@ enum {
#define R_00B860_COMPUTE_TMPRING_SIZE 0x00B860
#define S_00B860_WAVESIZE(x) (((x) & 0x1FFF) << 12)
-#endif // SIDEFINES_H_
+#define R_0286E8_SPI_TMPRING_SIZE 0x0286E8
+#define S_0286E8_WAVESIZE(x) (((x) & 0x1FFF) << 12)
+
+
+#endif
diff --git a/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp b/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp
index 5f71453..cd1b3ac 100644
--- a/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp
+++ b/contrib/llvm/lib/Target/R600/SIFixSGPRCopies.cpp
@@ -66,6 +66,7 @@
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -135,12 +136,12 @@ const TargetRegisterClass *SIFixSGPRCopies::inferRegClassFromUses(
const MachineRegisterInfo &MRI,
unsigned Reg,
unsigned SubReg) const {
- // The Reg parameter to the function must always be defined by either a PHI
- // or a COPY, therefore it cannot be a physical register.
- assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
- "Reg cannot be a physical register");
- const TargetRegisterClass *RC = MRI.getRegClass(Reg);
+ const TargetRegisterClass *RC
+ = TargetRegisterInfo::isVirtualRegister(Reg) ?
+ MRI.getRegClass(Reg) :
+ TRI->getRegClass(Reg);
+
RC = TRI->getSubRegClass(RC, SubReg);
for (MachineRegisterInfo::use_instr_iterator
I = MRI.use_instr_begin(Reg), E = MRI.use_instr_end(); I != E; ++I) {
@@ -181,7 +182,12 @@ bool SIFixSGPRCopies::isVGPRToSGPRCopy(const MachineInstr &Copy,
unsigned DstReg = Copy.getOperand(0).getReg();
unsigned SrcReg = Copy.getOperand(1).getReg();
unsigned SrcSubReg = Copy.getOperand(1).getSubReg();
- const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg);
+
+ const TargetRegisterClass *DstRC
+ = TargetRegisterInfo::isVirtualRegister(DstReg) ?
+ MRI.getRegClass(DstReg) :
+ TRI->getRegClass(DstReg);
+
const TargetRegisterClass *SrcRC;
if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
@@ -195,10 +201,10 @@ bool SIFixSGPRCopies::isVGPRToSGPRCopy(const MachineInstr &Copy,
bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
- const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(
- MF.getTarget().getRegisterInfo());
- const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
- MF.getTarget().getInstrInfo());
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
@@ -216,20 +222,21 @@ bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
switch (MI.getOpcode()) {
default: continue;
case AMDGPU::PHI: {
- DEBUG(dbgs() << " Fixing PHI:\n");
- DEBUG(MI.print(dbgs()));
+ DEBUG(dbgs() << "Fixing PHI: " << MI);
- for (unsigned i = 1; i < MI.getNumOperands(); i+=2) {
- unsigned Reg = MI.getOperand(i).getReg();
- const TargetRegisterClass *RC = inferRegClassFromDef(TRI, MRI, Reg,
- MI.getOperand(0).getSubReg());
- MRI.constrainRegClass(Reg, RC);
+ for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
+ const MachineOperand &Op = MI.getOperand(i);
+ unsigned Reg = Op.getReg();
+ const TargetRegisterClass *RC
+ = inferRegClassFromDef(TRI, MRI, Reg, Op.getSubReg());
+
+ MRI.constrainRegClass(Op.getReg(), RC);
}
unsigned Reg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = inferRegClassFromUses(TRI, MRI, Reg,
MI.getOperand(0).getSubReg());
- if (TRI->getCommonSubClass(RC, &AMDGPU::VReg_32RegClass)) {
- MRI.constrainRegClass(Reg, &AMDGPU::VReg_32RegClass);
+ if (TRI->getCommonSubClass(RC, &AMDGPU::VGPR_32RegClass)) {
+ MRI.constrainRegClass(Reg, &AMDGPU::VGPR_32RegClass);
}
if (!TRI->isSGPRClass(MRI.getRegClass(Reg)))
@@ -237,14 +244,66 @@ bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
// If a PHI node defines an SGPR and any of its operands are VGPRs,
// then we need to move it to the VALU.
+ //
+ // Also, if a PHI node defines an SGPR and has all SGPR operands
+ // we must move it to the VALU, because the SGPR operands will
+ // all end up being assigned the same register, which means
+ // there is a potential for a conflict if different threads take
+ // different control flow paths.
+ //
+ // For Example:
+ //
+ // sgpr0 = def;
+ // ...
+ // sgpr1 = def;
+ // ...
+ // sgpr2 = PHI sgpr0, sgpr1
+ // use sgpr2;
+ //
+ // Will Become:
+ //
+ // sgpr2 = def;
+ // ...
+ // sgpr2 = def;
+ // ...
+ // use sgpr2
+ //
+ // FIXME: This is OK if the branching decision is made based on an
+ // SGPR value.
+ bool SGPRBranch = false;
+
+ // The one exception to this rule is when one of the operands
+ // is defined by a SI_BREAK, SI_IF_BREAK, or SI_ELSE_BREAK
+ // instruction. In this case, there we know the program will
+ // never enter the second block (the loop) without entering
+ // the first block (where the condition is computed), so there
+ // is no chance for values to be over-written.
+
+ bool HasBreakDef = false;
for (unsigned i = 1; i < MI.getNumOperands(); i+=2) {
unsigned Reg = MI.getOperand(i).getReg();
if (TRI->hasVGPRs(MRI.getRegClass(Reg))) {
TII->moveToVALU(MI);
break;
}
+ MachineInstr *DefInstr = MRI.getUniqueVRegDef(Reg);
+ assert(DefInstr);
+ switch(DefInstr->getOpcode()) {
+
+ case AMDGPU::SI_BREAK:
+ case AMDGPU::SI_IF_BREAK:
+ case AMDGPU::SI_ELSE_BREAK:
+ // If we see a PHI instruction that defines an SGPR, then that PHI
+ // instruction has already been considered and should have
+ // a *_BREAK as an operand.
+ case AMDGPU::PHI:
+ HasBreakDef = true;
+ break;
+ }
}
+ if (!SGPRBranch && !HasBreakDef)
+ TII->moveToVALU(MI);
break;
}
case AMDGPU::REG_SEQUENCE: {
@@ -252,8 +311,7 @@ bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
!hasVGPROperands(MI, TRI))
continue;
- DEBUG(dbgs() << "Fixing REG_SEQUENCE:\n");
- DEBUG(MI.print(dbgs()));
+ DEBUG(dbgs() << "Fixing REG_SEQUENCE: " << MI);
TII->moveToVALU(MI);
break;
@@ -265,8 +323,7 @@ bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
Src1RC = MRI.getRegClass(MI.getOperand(2).getReg());
if (TRI->isSGPRClass(DstRC) &&
(TRI->hasVGPRs(Src0RC) || TRI->hasVGPRs(Src1RC))) {
- DEBUG(dbgs() << " Fixing INSERT_SUBREG:\n");
- DEBUG(MI.print(dbgs()));
+ DEBUG(dbgs() << " Fixing INSERT_SUBREG: " << MI);
TII->moveToVALU(MI);
}
break;
@@ -274,5 +331,6 @@ bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
}
}
}
- return false;
+
+ return true;
}
diff --git a/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp b/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp
index 7d116ee..f34c375 100644
--- a/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp
+++ b/contrib/llvm/lib/Target/R600/SIFixSGPRLiveRanges.cpp
@@ -9,18 +9,49 @@
//
/// \file
/// SALU instructions ignore control flow, so we need to modify the live ranges
-/// of the registers they define.
+/// of the registers they define in some cases.
///
-/// The strategy is to view the entire program as if it were a single basic
-/// block and calculate the intervals accordingly. We implement this
-/// by walking this list of segments for each LiveRange and setting the
-/// end of each segment equal to the start of the segment that immediately
-/// follows it.
+/// The main case we need to handle is when a def is used in one side of a
+/// branch and not another. For example:
+///
+/// %def
+/// IF
+/// ...
+/// ...
+/// ELSE
+/// %use
+/// ...
+/// ENDIF
+///
+/// Here we need the register allocator to avoid assigning any of the defs
+/// inside of the IF to the same register as %def. In traditional live
+/// interval analysis %def is not live inside the IF branch, however, since
+/// SALU instructions inside of IF will be executed even if the branch is not
+/// taken, there is the chance that one of the instructions will overwrite the
+/// value of %def, so the use in ELSE will see the wrong value.
+///
+/// The strategy we use for solving this is to add an extra use after the ENDIF:
+///
+/// %def
+/// IF
+/// ...
+/// ...
+/// ELSE
+/// %use
+/// ...
+/// ENDIF
+/// %use
+///
+/// Adding this use will make the def live thoughout the IF branch, which is
+/// what we want.
#include "AMDGPU.h"
+#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
@@ -40,16 +71,15 @@ public:
initializeSIFixSGPRLiveRangesPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnMachineFunction(MachineFunction &MF) override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
- virtual const char *getPassName() const override {
+ const char *getPassName() const override {
return "SI Fix SGPR live ranges";
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachinePostDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -60,6 +90,7 @@ public:
INITIALIZE_PASS_BEGIN(SIFixSGPRLiveRanges, DEBUG_TYPE,
"SI Fix SGPR Live Ranges", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIFixSGPRLiveRanges, DEBUG_TYPE,
"SI Fix SGPR Live Ranges", false, false)
@@ -73,36 +104,86 @@ FunctionPass *llvm::createSIFixSGPRLiveRangesPass() {
bool SIFixSGPRLiveRanges::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(
- MF.getTarget().getRegisterInfo());
+ MF.getSubtarget().getRegisterInfo());
LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
+ MachinePostDominatorTree *PDT = &getAnalysis<MachinePostDominatorTree>();
+ std::vector<std::pair<unsigned, LiveRange *>> SGPRLiveRanges;
+
+ // First pass, collect all live intervals for SGPRs
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ for (const MachineOperand &MO : MI.defs()) {
+ if (MO.isImplicit())
+ continue;
+ unsigned Def = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Def)) {
+ if (TRI->isSGPRClass(MRI.getRegClass(Def)))
+ SGPRLiveRanges.push_back(
+ std::make_pair(Def, &LIS->getInterval(Def)));
+ } else if (TRI->isSGPRClass(TRI->getPhysRegClass(Def))) {
+ SGPRLiveRanges.push_back(
+ std::make_pair(Def, &LIS->getRegUnit(Def)));
+ }
+ }
+ }
+ }
+ // Second pass fix the intervals
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
-
MachineBasicBlock &MBB = *BI;
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
- I != E; ++I) {
- MachineInstr &MI = *I;
- MachineOperand *ExecUse = MI.findRegisterUseOperand(AMDGPU::EXEC);
- if (ExecUse)
+ if (MBB.succ_size() < 2)
+ continue;
+
+ // We have structured control flow, so number of succesors should be two.
+ assert(MBB.succ_size() == 2);
+ MachineBasicBlock *SuccA = *MBB.succ_begin();
+ MachineBasicBlock *SuccB = *(++MBB.succ_begin());
+ MachineBasicBlock *NCD = PDT->findNearestCommonDominator(SuccA, SuccB);
+
+ if (!NCD)
+ continue;
+
+ MachineBasicBlock::iterator NCDTerm = NCD->getFirstTerminator();
+
+ if (NCDTerm != NCD->end() && NCDTerm->getOpcode() == AMDGPU::SI_ELSE) {
+ assert(NCD->succ_size() == 2);
+ // We want to make sure we insert the Use after the ENDIF, not after
+ // the ELSE.
+ NCD = PDT->findNearestCommonDominator(*NCD->succ_begin(),
+ *(++NCD->succ_begin()));
+ }
+ assert(SuccA && SuccB);
+ for (std::pair<unsigned, LiveRange*> RegLR : SGPRLiveRanges) {
+ unsigned Reg = RegLR.first;
+ LiveRange *LR = RegLR.second;
+
+ // FIXME: We could be smarter here. If the register is Live-In to
+ // one block, but the other doesn't have any SGPR defs, then there
+ // won't be a conflict. Also, if the branch decision is based on
+ // a value in an SGPR, then there will be no conflict.
+ bool LiveInToA = LIS->isLiveInToMBB(*LR, SuccA);
+ bool LiveInToB = LIS->isLiveInToMBB(*LR, SuccB);
+
+ if ((!LiveInToA && !LiveInToB) ||
+ (LiveInToA && LiveInToB))
continue;
- for (const MachineOperand &Def : MI.operands()) {
- if (!Def.isReg() || !Def.isDef() ||!TargetRegisterInfo::isVirtualRegister(Def.getReg()))
- continue;
-
- const TargetRegisterClass *RC = MRI.getRegClass(Def.getReg());
-
- if (!TRI->isSGPRClass(RC))
- continue;
- LiveInterval &LI = LIS->getInterval(Def.getReg());
- for (unsigned i = 0, e = LI.size() - 1; i != e; ++i) {
- LiveRange::Segment &Seg = LI.segments[i];
- LiveRange::Segment &Next = LI.segments[i + 1];
- Seg.end = Next.start;
- }
- }
+ // This interval is live in to one successor, but not the other, so
+ // we need to update its range so it is live in to both.
+ DEBUG(dbgs() << "Possible SGPR conflict detected " << " in " << *LR <<
+ " BB#" << SuccA->getNumber() << ", BB#" <<
+ SuccB->getNumber() <<
+ " with NCD = " << NCD->getNumber() << '\n');
+
+ // FIXME: Need to figure out how to update LiveRange here so this pass
+ // will be able to preserve LiveInterval analysis.
+ BuildMI(*NCD, NCD->getFirstNonPHI(), DebugLoc(),
+ TII->get(AMDGPU::SGPR_USE))
+ .addReg(Reg, RegState::Implicit);
+ DEBUG(NCD->getFirstNonPHI()->dump());
}
}
diff --git a/contrib/llvm/lib/Target/R600/SIFoldOperands.cpp b/contrib/llvm/lib/Target/R600/SIFoldOperands.cpp
new file mode 100644
index 0000000..d8ffa4f
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIFoldOperands.cpp
@@ -0,0 +1,275 @@
+//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+/// \file
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "SIInstrInfo.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+
+#define DEBUG_TYPE "si-fold-operands"
+using namespace llvm;
+
+namespace {
+
+class SIFoldOperands : public MachineFunctionPass {
+public:
+ static char ID;
+
+public:
+ SIFoldOperands() : MachineFunctionPass(ID) {
+ initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "SI Fold Operands";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+struct FoldCandidate {
+ MachineInstr *UseMI;
+ unsigned UseOpNo;
+ MachineOperand *OpToFold;
+ uint64_t ImmToFold;
+
+ FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
+ UseMI(MI), UseOpNo(OpNo) {
+
+ if (FoldOp->isImm()) {
+ OpToFold = nullptr;
+ ImmToFold = FoldOp->getImm();
+ } else {
+ assert(FoldOp->isReg());
+ OpToFold = FoldOp;
+ }
+ }
+
+ bool isImm() const {
+ return !OpToFold;
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS_BEGIN(SIFoldOperands, DEBUG_TYPE,
+ "SI Fold Operands", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(SIFoldOperands, DEBUG_TYPE,
+ "SI Fold Operands", false, false)
+
+char SIFoldOperands::ID = 0;
+
+char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
+
+FunctionPass *llvm::createSIFoldOperandsPass() {
+ return new SIFoldOperands();
+}
+
+static bool isSafeToFold(unsigned Opcode) {
+ switch(Opcode) {
+ case AMDGPU::V_MOV_B32_e32:
+ case AMDGPU::V_MOV_B32_e64:
+ case AMDGPU::V_MOV_B64_PSEUDO:
+ case AMDGPU::S_MOV_B32:
+ case AMDGPU::S_MOV_B64:
+ case AMDGPU::COPY:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool updateOperand(FoldCandidate &Fold,
+ const TargetRegisterInfo &TRI) {
+ MachineInstr *MI = Fold.UseMI;
+ MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
+ assert(Old.isReg());
+
+ if (Fold.isImm()) {
+ Old.ChangeToImmediate(Fold.ImmToFold);
+ return true;
+ }
+
+ MachineOperand *New = Fold.OpToFold;
+ if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
+ TargetRegisterInfo::isVirtualRegister(New->getReg())) {
+ Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
+ return true;
+ }
+
+ // FIXME: Handle physical registers.
+
+ return false;
+}
+
+static bool tryAddToFoldList(std::vector<FoldCandidate> &FoldList,
+ MachineInstr *MI, unsigned OpNo,
+ MachineOperand *OpToFold,
+ const SIInstrInfo *TII) {
+ if (!TII->isOperandLegal(MI, OpNo, OpToFold)) {
+ // Operand is not legal, so try to commute the instruction to
+ // see if this makes it possible to fold.
+ unsigned CommuteIdx0;
+ unsigned CommuteIdx1;
+ bool CanCommute = TII->findCommutedOpIndices(MI, CommuteIdx0, CommuteIdx1);
+
+ if (CanCommute) {
+ if (CommuteIdx0 == OpNo)
+ OpNo = CommuteIdx1;
+ else if (CommuteIdx1 == OpNo)
+ OpNo = CommuteIdx0;
+ }
+
+ if (!CanCommute || !TII->commuteInstruction(MI))
+ return false;
+
+ if (!TII->isOperandLegal(MI, OpNo, OpToFold))
+ return false;
+ }
+
+ FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
+ return true;
+}
+
+bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ MachineBasicBlock::iterator I, Next;
+ for (I = MBB.begin(); I != MBB.end(); I = Next) {
+ Next = std::next(I);
+ MachineInstr &MI = *I;
+
+ if (!isSafeToFold(MI.getOpcode()))
+ continue;
+
+ MachineOperand &OpToFold = MI.getOperand(1);
+ bool FoldingImm = OpToFold.isImm();
+
+ // FIXME: We could also be folding things like FrameIndexes and
+ // TargetIndexes.
+ if (!FoldingImm && !OpToFold.isReg())
+ continue;
+
+ // Folding immediates with more than one use will increase program side.
+ // FIXME: This will also reduce register usage, which may be better
+ // in some cases. A better heuristic is needed.
+ if (FoldingImm && !TII->isInlineConstant(OpToFold) &&
+ !MRI.hasOneUse(MI.getOperand(0).getReg()))
+ continue;
+
+ // FIXME: Fold operands with subregs.
+ if (OpToFold.isReg() &&
+ (!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()) ||
+ OpToFold.getSubReg()))
+ continue;
+
+ std::vector<FoldCandidate> FoldList;
+ for (MachineRegisterInfo::use_iterator
+ Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
+ Use != E; ++Use) {
+
+ MachineInstr *UseMI = Use->getParent();
+ const MachineOperand &UseOp = UseMI->getOperand(Use.getOperandNo());
+
+ // FIXME: Fold operands with subregs.
+ if (UseOp.isReg() && UseOp.getSubReg() && OpToFold.isReg()) {
+ continue;
+ }
+
+ APInt Imm;
+
+ if (FoldingImm) {
+ const TargetRegisterClass *UseRC = MRI.getRegClass(UseOp.getReg());
+ Imm = APInt(64, OpToFold.getImm());
+
+ // Split 64-bit constants into 32-bits for folding.
+ if (UseOp.getSubReg()) {
+ if (UseRC->getSize() != 8)
+ continue;
+
+ if (UseOp.getSubReg() == AMDGPU::sub0) {
+ Imm = Imm.getLoBits(32);
+ } else {
+ assert(UseOp.getSubReg() == AMDGPU::sub1);
+ Imm = Imm.getHiBits(32);
+ }
+ }
+
+ // In order to fold immediates into copies, we need to change the
+ // copy to a MOV.
+ if (UseMI->getOpcode() == AMDGPU::COPY) {
+ unsigned MovOp = TII->getMovOpcode(
+ MRI.getRegClass(UseMI->getOperand(0).getReg()));
+ if (MovOp == AMDGPU::COPY)
+ continue;
+
+ UseMI->setDesc(TII->get(MovOp));
+ }
+ }
+
+ const MCInstrDesc &UseDesc = UseMI->getDesc();
+
+ // Don't fold into target independent nodes. Target independent opcodes
+ // don't have defined register classes.
+ if (UseDesc.isVariadic() ||
+ UseDesc.OpInfo[Use.getOperandNo()].RegClass == -1)
+ continue;
+
+ if (FoldingImm) {
+ MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
+ tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &ImmOp, TII);
+ continue;
+ }
+
+ tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &OpToFold, TII);
+
+ // FIXME: We could try to change the instruction from 64-bit to 32-bit
+ // to enable more folding opportunites. The shrink operands pass
+ // already does this.
+ }
+
+ for (FoldCandidate &Fold : FoldList) {
+ if (updateOperand(Fold, TRI)) {
+ // Clear kill flags.
+ if (!Fold.isImm()) {
+ assert(Fold.OpToFold && Fold.OpToFold->isReg());
+ Fold.OpToFold->setIsKill(false);
+ }
+ DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
+ Fold.UseOpNo << " of " << *Fold.UseMI << '\n');
+ }
+ }
+ }
+ }
+ return false;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIISelLowering.cpp b/contrib/llvm/lib/Target/R600/SIISelLowering.cpp
index 5a148a2..6b2ea06 100644
--- a/contrib/llvm/lib/Target/R600/SIISelLowering.cpp
+++ b/contrib/llvm/lib/Target/R600/SIISelLowering.cpp
@@ -25,6 +25,7 @@
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
+#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -43,7 +44,7 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
- addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass);
+ addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
@@ -52,29 +53,14 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
- addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
+ addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
- addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
+ addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties();
- // Condition Codes
- setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
- setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
- setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
- setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
- setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
-
- setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
- setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
- setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
- setCondCodeAction(ISD::SETULE, MVT::f64, Expand);
- setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
-
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
@@ -89,6 +75,11 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
+ setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
+
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
@@ -102,8 +93,6 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
- setOperationAction(ISD::SELECT, MVT::f32, Promote);
- AddPromotedToType(ISD::SELECT, MVT::f32, MVT::i32);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
@@ -116,6 +105,8 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Legal);
+
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
@@ -128,8 +119,7 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Custom);
-
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
@@ -140,23 +130,33 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand);
- setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ if (VT == MVT::i64)
+ continue;
+
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
+ }
+
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
+ }
+
+ for (MVT VT : MVT::fp_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setTruncStoreAction(MVT::i32, MVT::i8, Custom);
setTruncStoreAction(MVT::i32, MVT::i16, Custom);
@@ -167,9 +167,6 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::LOAD, MVT::i1, Custom);
- setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
- setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
-
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
@@ -196,10 +193,12 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
- case ISD::CONCAT_VECTORS:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
break;
+ case ISD::CONCAT_VECTORS:
+ setOperationAction(Op, VT, Custom);
+ break;
default:
setOperationAction(Op, VT, Expand);
break;
@@ -207,13 +206,6 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
}
}
- for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) {
- MVT::SimpleValueType VT = static_cast<MVT::SimpleValueType>(I);
- setOperationAction(ISD::FTRUNC, VT, Expand);
- setOperationAction(ISD::FCEIL, VT, Expand);
- setOperationAction(ISD::FFLOOR, VT, Expand);
- }
-
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
@@ -221,18 +213,38 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
- // FIXME: These should be removed and handled the same was as f32 fneg. Source
- // modifiers also work for the double instructions.
- setOperationAction(ISD::FNEG, MVT::f64, Expand);
- setOperationAction(ISD::FABS, MVT::f64, Expand);
-
setOperationAction(ISD::FDIV, MVT::f32, Custom);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FMINNUM);
+ setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
-
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::UINT_TO_FP);
+ // All memory operations. Some folding on the pointer operand is done to help
+ // matching the constant offsets in the addressing modes.
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD);
+ setTargetDAGCombine(ISD::ATOMIC_STORE);
+ setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
+ setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
+ setTargetDAGCombine(ISD::ATOMIC_SWAP);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
+
setSchedulingPreference(Sched::RegPressure);
}
@@ -240,15 +252,63 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
// TargetLowering queries
//===----------------------------------------------------------------------===//
-bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned AddrSpace,
- bool *IsFast) const {
+bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
+ EVT) const {
+ // SI has some legal vector types, but no legal vector operations. Say no
+ // shuffles are legal in order to prefer scalarizing some vector operations.
+ return false;
+}
+
+// FIXME: This really needs an address space argument. The immediate offset
+// size is different for different sets of memory instruction sets.
+
+// The single offset DS instructions have a 16-bit unsigned byte offset.
+//
+// MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
+// r + i with addr64. 32-bit has more addressing mode options. Depending on the
+// resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
+//
+// SMRD instructions have an 8-bit, dword offset.
+//
+bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // Allow a 16-bit unsigned immediate field, since this is what DS instructions
+ // use.
+ if (!isUInt<16>(AM.BaseOffs))
+ return false;
+
+ // Only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ default: // Don't allow n * r
+ return false;
+ }
+
+ return true;
+}
+
+bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned AddrSpace,
+ unsigned Align,
+ bool *IsFast) const {
if (IsFast)
*IsFast = false;
- // XXX: This depends on the address space and also we may want to revist
- // the alignment values we specify in the DataLayout.
-
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
if (!VT.isSimple() || VT == MVT::Other)
@@ -261,8 +321,12 @@ bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
// XXX - The only mention I see of this in the ISA manual is for LDS direct
// reads the "byte address and must be dword aligned". Is it also true for the
// normal loads and stores?
- if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS)
- return false;
+ if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
+ // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
+ // aligned, 8 byte access in a single operation using ds_read2/write2_b32
+ // with adjacent offsets.
+ return Align % 4 == 0;
+ }
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
@@ -272,6 +336,26 @@ bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
return VT.bitsGT(MVT::i32);
}
+EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign, bool IsMemset,
+ bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ // FIXME: Should account for address space here.
+
+ // The default fallback uses the private pointer size as a guess for a type to
+ // use. Make sure we switch these to 64-bit accesses.
+
+ if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
+ return MVT::v4i32;
+
+ if (Size >= 8 && DstAlign >= 4)
+ return MVT::v2i32;
+
+ // Use the default.
+ return MVT::Other;
+}
+
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
@@ -282,25 +366,37 @@ SITargetLowering::getPreferredVectorAction(EVT VT) const {
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
return TII->isInlineConstant(Imm);
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
- SDLoc DL, SDValue Chain,
+ SDLoc SL, SDValue Chain,
unsigned Offset, bool Signed) const {
+ const DataLayout *DL = getDataLayout();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
+ unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
+
+ Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
- PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
- AMDGPUAS::CONSTANT_ADDRESS);
- SDValue BasePtr = DAG.getCopyFromReg(Chain, DL,
- MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
- SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
+ PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
+ SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
+ MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
DAG.getConstant(Offset, MVT::i64));
- return DAG.getExtLoad(Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL, VT, Chain, Ptr,
- MachinePointerInfo(UndefValue::get(PtrTy)), MemVT,
- false, false, MemVT.getSizeInBits() >> 3);
-
+ SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
+ MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
+
+ return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
+ VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
+ false, // isVolatile
+ true, // isNonTemporal
+ true, // isInvariant
+ DL->getABITypeAlignment(Ty)); // Alignment
}
SDValue SITargetLowering::LowerFormalArguments(
@@ -311,7 +407,9 @@ SDValue SITargetLowering::LowerFormalArguments(
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetMachine &TM = getTargetMachine();
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo*>(TM.getSubtargetImpl()->getRegisterInfo());
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
@@ -320,7 +418,7 @@ SDValue SITargetLowering::LowerFormalArguments(
assert(CallConv == CallingConv::C);
SmallVector<ISD::InputArg, 16> Splits;
- uint32_t Skipped = 0;
+ BitVector Skipped(Ins.size());
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
@@ -333,7 +431,7 @@ SDValue SITargetLowering::LowerFormalArguments(
if (!Arg.Used) {
// We can savely skip PS inputs
- Skipped |= 1 << i;
+ Skipped.set(i);
++PSInputNum;
continue;
}
@@ -364,8 +462,8 @@ SDValue SITargetLowering::LowerFormalArguments(
}
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
if (Info->getShaderType() == ShaderType::PIXEL &&
@@ -378,13 +476,31 @@ SDValue SITargetLowering::LowerFormalArguments(
// The pointer to the list of arguments is stored in SGPR0, SGPR1
// The pointer to the scratch buffer is stored in SGPR2, SGPR3
if (Info->getShaderType() == ShaderType::COMPUTE) {
- Info->NumUserSGPRs = 4;
- CCInfo.AllocateReg(AMDGPU::SGPR0);
- CCInfo.AllocateReg(AMDGPU::SGPR1);
- CCInfo.AllocateReg(AMDGPU::SGPR2);
- CCInfo.AllocateReg(AMDGPU::SGPR3);
- MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
- MF.addLiveIn(AMDGPU::SGPR2_SGPR3, &AMDGPU::SReg_64RegClass);
+ if (Subtarget->isAmdHsaOS())
+ Info->NumUserSGPRs = 2; // FIXME: Need to support scratch buffers.
+ else
+ Info->NumUserSGPRs = 4;
+
+ unsigned InputPtrReg =
+ TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
+ unsigned InputPtrRegLo =
+ TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
+ unsigned InputPtrRegHi =
+ TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
+
+ unsigned ScratchPtrReg =
+ TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
+ unsigned ScratchPtrRegLo =
+ TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
+ unsigned ScratchPtrRegHi =
+ TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
+
+ CCInfo.AllocateReg(InputPtrRegLo);
+ CCInfo.AllocateReg(InputPtrRegHi);
+ CCInfo.AllocateReg(ScratchPtrRegLo);
+ CCInfo.AllocateReg(ScratchPtrRegHi);
+ MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
+ MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
}
if (Info->getShaderType() == ShaderType::COMPUTE) {
@@ -397,23 +513,36 @@ SDValue SITargetLowering::LowerFormalArguments(
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
- if (Skipped & (1 << i)) {
+ if (Skipped[i]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
- EVT VT = VA.getLocVT();
+ MVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
+ const unsigned Offset = 36 + VA.getLocMemOffset();
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
- 36 + VA.getLocMemOffset(),
- Ins[i].Flags.isSExt());
+ Offset, Ins[i].Flags.isSExt());
+
+ const PointerType *ParamTy =
+ dyn_cast<PointerType>(FType->getParamType(Ins[i].OrigArgIndex));
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
+ ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
+ // On SI local pointers are just offsets into LDS, so they are always
+ // less than 16-bits. On CI and newer they could potentially be
+ // real pointers, so we can't guarantee their size.
+ Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
+ DAG.getValueType(MVT::i16));
+ }
+
InVals.push_back(Arg);
+ Info->ABIArgOffset = Offset + MemVT.getStoreSize();
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
@@ -459,6 +588,12 @@ SDValue SITargetLowering::LowerFormalArguments(
InVals.push_back(Val);
}
+
+ if (Info->getShaderType() != ShaderType::COMPUTE) {
+ unsigned ScratchIdx = CCInfo.getFirstUnallocated(
+ AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs());
+ Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
+ }
return Chain;
}
@@ -466,69 +601,13 @@ MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
MachineBasicBlock::iterator I = *MI;
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
switch (MI->getOpcode()) {
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::BRANCH: return BB;
- case AMDGPU::SI_ADDR64_RSRC: {
- unsigned SuperReg = MI->getOperand(0).getReg();
- unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
- unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
- unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
- unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
- .addOperand(MI->getOperand(1));
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
- .addImm(0);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
- .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
- .addReg(SubRegHiLo)
- .addImm(AMDGPU::sub0)
- .addReg(SubRegHiHi)
- .addImm(AMDGPU::sub1);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
- .addReg(SubRegLo)
- .addImm(AMDGPU::sub0_sub1)
- .addReg(SubRegHi)
- .addImm(AMDGPU::sub2_sub3);
- MI->eraseFromParent();
- break;
- }
- case AMDGPU::SI_BUFFER_RSRC: {
- unsigned SuperReg = MI->getOperand(0).getReg();
- unsigned Args[4];
- for (unsigned i = 0, e = 4; i < e; ++i) {
- MachineOperand &Arg = MI->getOperand(i + 1);
-
- if (Arg.isReg()) {
- Args[i] = Arg.getReg();
- continue;
- }
-
- assert(Arg.isImm());
- unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), Reg)
- .addImm(Arg.getImm());
- Args[i] = Reg;
- }
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE),
- SuperReg)
- .addReg(Args[0])
- .addImm(AMDGPU::sub0)
- .addReg(Args[1])
- .addImm(AMDGPU::sub1)
- .addReg(Args[2])
- .addImm(AMDGPU::sub2)
- .addReg(Args[3])
- .addImm(AMDGPU::sub3);
- MI->eraseFromParent();
- break;
- }
case AMDGPU::V_SUB_F64: {
unsigned DestReg = MI->getOperand(0).getReg();
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
@@ -536,8 +615,6 @@ MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
.addReg(MI->getOperand(1).getReg())
.addImm(1) // SRC1 modifiers
.addReg(MI->getOperand(2).getReg())
- .addImm(0) // SRC2 modifiers
- .addImm(0) // src2
.addImm(0) // CLAMP
.addImm(0); // OMOD
MI->eraseFromParent();
@@ -555,58 +632,15 @@ MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MI->eraseFromParent();
break;
}
- case AMDGPU::FABS_SI: {
- MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
- Reg)
- .addImm(0x7fffffff);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_AND_B32_e32),
- MI->getOperand(0).getReg())
- .addReg(MI->getOperand(1).getReg())
- .addReg(Reg);
- MI->eraseFromParent();
- break;
- }
- case AMDGPU::FNEG_SI: {
- MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
- Reg)
- .addImm(0x80000000);
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_XOR_B32_e32),
- MI->getOperand(0).getReg())
- .addReg(MI->getOperand(1).getReg())
- .addReg(Reg);
- MI->eraseFromParent();
- break;
- }
- case AMDGPU::FCLAMP_SI: {
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F32_e64),
- MI->getOperand(0).getReg())
- .addImm(0) // SRC0 modifiers
- .addOperand(MI->getOperand(1))
- .addImm(0) // SRC1 modifiers
- .addImm(0) // SRC1
- .addImm(1) // CLAMP
- .addImm(0); // OMOD
- MI->eraseFromParent();
- }
}
return BB;
}
-EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
- return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
@@ -636,8 +670,6 @@ bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
@@ -656,114 +688,13 @@ SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
- case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
- case ISD::INTRINSIC_WO_CHAIN: {
- unsigned IntrinsicID =
- cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- switch (IntrinsicID) {
- default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
- case Intrinsic::r600_read_ngroups_x:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 0, false);
- case Intrinsic::r600_read_ngroups_y:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4, false);
- case Intrinsic::r600_read_ngroups_z:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8, false);
- case Intrinsic::r600_read_global_size_x:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 12, false);
- case Intrinsic::r600_read_global_size_y:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 16, false);
- case Intrinsic::r600_read_global_size_z:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 20, false);
- case Intrinsic::r600_read_local_size_x:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 24, false);
- case Intrinsic::r600_read_local_size_y:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 28, false);
- case Intrinsic::r600_read_local_size_z:
- return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 32, false);
- case Intrinsic::r600_read_tgid_x:
- return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
- AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 0), VT);
- case Intrinsic::r600_read_tgid_y:
- return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
- AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 1), VT);
- case Intrinsic::r600_read_tgid_z:
- return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
- AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2), VT);
- case Intrinsic::r600_read_tidig_x:
- return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
- AMDGPU::VGPR0, VT);
- case Intrinsic::r600_read_tidig_y:
- return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
- AMDGPU::VGPR1, VT);
- case Intrinsic::r600_read_tidig_z:
- return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
- AMDGPU::VGPR2, VT);
- case AMDGPUIntrinsic::SI_load_const: {
- SDValue Ops [] = {
- Op.getOperand(1),
- Op.getOperand(2)
- };
-
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo(),
- MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
- VT.getSizeInBits() / 8, 4);
- return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
- Op->getVTList(), Ops, VT, MMO);
- }
- case AMDGPUIntrinsic::SI_sample:
- return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
- case AMDGPUIntrinsic::SI_sampleb:
- return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
- case AMDGPUIntrinsic::SI_sampled:
- return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
- case AMDGPUIntrinsic::SI_samplel:
- return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
- case AMDGPUIntrinsic::SI_vs_load_input:
- return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
- Op.getOperand(1),
- Op.getOperand(2),
- Op.getOperand(3));
- }
+ case ISD::GlobalAddress: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ return LowerGlobalAddress(MFI, Op, DAG);
}
-
- case ISD::INTRINSIC_VOID:
- SDValue Chain = Op.getOperand(0);
- unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
-
- switch (IntrinsicID) {
- case AMDGPUIntrinsic::SI_tbuffer_store: {
- SDLoc DL(Op);
- SDValue Ops [] = {
- Chain,
- Op.getOperand(2),
- Op.getOperand(3),
- Op.getOperand(4),
- Op.getOperand(5),
- Op.getOperand(6),
- Op.getOperand(7),
- Op.getOperand(8),
- Op.getOperand(9),
- Op.getOperand(10),
- Op.getOperand(11),
- Op.getOperand(12),
- Op.getOperand(13),
- Op.getOperand(14)
- };
- EVT VT = Op.getOperand(3).getValueType();
-
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo(),
- MachineMemOperand::MOStore,
- VT.getSizeInBits() / 8, 4);
- return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
- Op->getVTList(), Ops, VT, MMO);
- }
- default:
- break;
- }
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
}
return SDValue();
}
@@ -786,16 +717,9 @@ static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- const SIRegisterInfo &TRI = TII->getRegisterInfo();
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FINode->getIndex();
- CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
- TRI.getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET), MVT::i32);
-
return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
}
@@ -849,7 +773,9 @@ SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
BR->getOperand(0),
BRCOND.getOperand(2)
};
- DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops);
+ SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
+ DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
+ BR = NewBR.getNode();
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
@@ -905,6 +831,139 @@ SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
}
+SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo*>(MF.getSubtarget().getRegisterInfo());
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ switch (IntrinsicID) {
+ case Intrinsic::r600_read_ngroups_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_X, false);
+ case Intrinsic::r600_read_ngroups_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_Y, false);
+ case Intrinsic::r600_read_ngroups_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_Z, false);
+ case Intrinsic::r600_read_global_size_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
+ case Intrinsic::r600_read_global_size_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
+ case Intrinsic::r600_read_global_size_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
+ case Intrinsic::r600_read_local_size_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::LOCAL_SIZE_X, false);
+ case Intrinsic::r600_read_local_size_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
+ case Intrinsic::r600_read_local_size_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
+
+ case Intrinsic::AMDGPU_read_workdim:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
+ false);
+
+ case Intrinsic::r600_read_tgid_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
+ case Intrinsic::r600_read_tgid_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
+ case Intrinsic::r600_read_tgid_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
+ case Intrinsic::r600_read_tidig_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
+ case Intrinsic::r600_read_tidig_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
+ case Intrinsic::r600_read_tidig_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
+ case AMDGPUIntrinsic::SI_load_const: {
+ SDValue Ops[] = {
+ Op.getOperand(1),
+ Op.getOperand(2)
+ };
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
+ VT.getStoreSize(), 4);
+ return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
+ Op->getVTList(), Ops, VT, MMO);
+ }
+ case AMDGPUIntrinsic::SI_sample:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
+ case AMDGPUIntrinsic::SI_sampleb:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
+ case AMDGPUIntrinsic::SI_sampled:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
+ case AMDGPUIntrinsic::SI_samplel:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
+ case AMDGPUIntrinsic::SI_vs_load_input:
+ return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+ default:
+ return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ }
+}
+
+SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+
+ switch (IntrinsicID) {
+ case AMDGPUIntrinsic::SI_tbuffer_store: {
+ SDLoc DL(Op);
+ SDValue Ops[] = {
+ Chain,
+ Op.getOperand(2),
+ Op.getOperand(3),
+ Op.getOperand(4),
+ Op.getOperand(5),
+ Op.getOperand(6),
+ Op.getOperand(7),
+ Op.getOperand(8),
+ Op.getOperand(9),
+ Op.getOperand(10),
+ Op.getOperand(11),
+ Op.getOperand(12),
+ Op.getOperand(13),
+ Op.getOperand(14)
+ };
+
+ EVT VT = Op.getOperand(3).getValueType();
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOStore,
+ VT.getStoreSize(), 4);
+ return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
+ Op->getVTList(), Ops, VT, MMO);
+ }
+ default:
+ return SDValue();
+ }
+}
+
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
@@ -923,7 +982,7 @@ SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
break;
// fall-through
case AMDGPUAS::LOCAL_ADDRESS:
- return SplitVectorLoad(Op, DAG);
+ return ScalarizeVectorLoad(Op, DAG);
}
}
@@ -1027,7 +1086,7 @@ SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
- const SDValue One = DAG.getTargetConstantFP(1.0, MVT::f32);
+ const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
@@ -1073,7 +1132,7 @@ SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
if (VT.isVector() && VT.getVectorNumElements() > 4)
- return SplitVectorStore(Op, DAG);
+ return ScalarizeVectorStore(Op, DAG);
return SDValue();
}
@@ -1082,7 +1141,7 @@ SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
return Ret;
if (VT.isVector() && VT.getVectorNumElements() >= 8)
- return SplitVectorStore(Op, DAG);
+ return ScalarizeVectorStore(Op, DAG);
if (VT == MVT::i1)
return DAG.getTruncStore(Store->getChain(), DL,
@@ -1114,7 +1173,7 @@ SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
- DAGCombinerInfo &DCI) {
+ DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
@@ -1162,8 +1221,21 @@ SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
-
LoadSDNode *Load = cast<LoadSDNode>(Src);
+
+ unsigned AS = Load->getAddressSpace();
+ unsigned Align = Load->getAlignment();
+ Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
+
+ // Don't try to replace the load if we have to expand it due to alignment
+ // problems. Otherwise we will end up scalarizing the load, and trying to
+ // repack into the vector for no real reason.
+ if (Align < ABIAlignment &&
+ !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
+ return SDValue();
+ }
+
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
Load->getChain(),
Load->getBasePtr(),
@@ -1203,33 +1275,259 @@ SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
return SDValue();
}
+// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
+
+// This is a variant of
+// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
+//
+// The normal DAG combiner will do this, but only if the add has one use since
+// that would increase the number of instructions.
+//
+// This prevents us from seeing a constant offset that can be folded into a
+// memory instruction's addressing mode. If we know the resulting add offset of
+// a pointer can be folded into an addressing offset, we can replace the pointer
+// operand with the add of new constant offset. This eliminates one of the uses,
+// and may allow the remaining use to also be simplified.
+//
+SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
+ unsigned AddrSpace,
+ DAGCombinerInfo &DCI) const {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ if (N0.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
+ if (!CN1)
+ return SDValue();
+
+ const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!CAdd)
+ return SDValue();
+
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
+
+ // If the resulting offset is too large, we can't fold it into the addressing
+ // mode offset.
+ APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
+ if (!TII->canFoldOffset(Offset.getZExtValue(), AddrSpace))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ EVT VT = N->getValueType(0);
+
+ SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
+ SDValue COffset = DAG.getConstant(Offset, MVT::i32);
+
+ return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
+}
+
+SDValue SITargetLowering::performAndCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isBeforeLegalize())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+
+ // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
+ // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ if (LHS.getOpcode() == ISD::SETCC &&
+ RHS.getOpcode() == ISD::SETCC) {
+ ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
+ ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
+
+ SDValue X = LHS.getOperand(0);
+ SDValue Y = RHS.getOperand(0);
+ if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
+ return SDValue();
+
+ if (LCC == ISD::SETO) {
+ if (X != LHS.getOperand(1))
+ return SDValue();
+
+ if (RCC == ISD::SETUNE) {
+ const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
+ if (!C1 || !C1->isInfinity() || C1->isNegative())
+ return SDValue();
+
+ const uint32_t Mask = SIInstrFlags::N_NORMAL |
+ SIInstrFlags::N_SUBNORMAL |
+ SIInstrFlags::N_ZERO |
+ SIInstrFlags::P_ZERO |
+ SIInstrFlags::P_SUBNORMAL |
+ SIInstrFlags::P_NORMAL;
+
+ static_assert(((~(SIInstrFlags::S_NAN |
+ SIInstrFlags::Q_NAN |
+ SIInstrFlags::N_INFINITY |
+ SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
+ "mask not equal");
+
+ return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
+ X, DAG.getConstant(Mask, MVT::i32));
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performOrCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
+ if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
+ RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
+ SDValue Src = LHS.getOperand(0);
+ if (Src != RHS.getOperand(0))
+ return SDValue();
+
+ const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
+ const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
+ if (!CLHS || !CRHS)
+ return SDValue();
+
+ // Only 10 bits are used.
+ static const uint32_t MaxMask = 0x3ff;
+
+ uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
+ return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
+ Src, DAG.getConstant(NewMask, MVT::i32));
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performClassCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Mask = N->getOperand(1);
+
+ // fp_class x, 0 -> false
+ if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
+ if (CMask->isNullValue())
+ return DAG.getConstant(0, MVT::i1);
+ }
+
+ return SDValue();
+}
+
+static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FMAXNUM:
+ return AMDGPUISD::FMAX3;
+ case AMDGPUISD::SMAX:
+ return AMDGPUISD::SMAX3;
+ case AMDGPUISD::UMAX:
+ return AMDGPUISD::UMAX3;
+ case ISD::FMINNUM:
+ return AMDGPUISD::FMIN3;
+ case AMDGPUISD::SMIN:
+ return AMDGPUISD::SMIN3;
+ case AMDGPUISD::UMIN:
+ return AMDGPUISD::UMIN3;
+ default:
+ llvm_unreachable("Not a min/max opcode");
+ }
+}
+
+SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ unsigned Opc = N->getOpcode();
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // Only do this if the inner op has one use since this will just increases
+ // register pressure for no benefit.
+
+ // max(max(a, b), c)
+ if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
+ SDLoc DL(N);
+ return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
+ DL,
+ N->getValueType(0),
+ Op0.getOperand(0),
+ Op0.getOperand(1),
+ Op1);
+ }
+
+ // max(a, max(b, c))
+ if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
+ SDLoc DL(N);
+ return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
+ DL,
+ N->getValueType(0),
+ Op0,
+ Op1.getOperand(0),
+ Op1.getOperand(1));
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performSetCCCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT VT = LHS.getValueType();
+
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return SDValue();
+
+ // Match isinf pattern
+ // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
+ const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
+ if (!CRHS)
+ return SDValue();
+
+ const APFloat &APF = CRHS->getValueAPF();
+ if (APF.isInfinity() && !APF.isNegative()) {
+ unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
+ return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
+ LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
+ }
+ }
+
+ return SDValue();
+}
+
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
- EVT VT = N->getValueType(0);
switch (N->getOpcode()) {
- default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
- case ISD::SETCC: {
- SDValue Arg0 = N->getOperand(0);
- SDValue Arg1 = N->getOperand(1);
- SDValue CC = N->getOperand(2);
- ConstantSDNode * C = nullptr;
- ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
-
- // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
- if (VT == MVT::i1
- && Arg0.getOpcode() == ISD::SIGN_EXTEND
- && Arg0.getOperand(0).getValueType() == MVT::i1
- && (C = dyn_cast<ConstantSDNode>(Arg1))
- && C->isNullValue()
- && CCOp == ISD::SETNE) {
- return SimplifySetCC(VT, Arg0.getOperand(0),
- DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
- }
- break;
- }
+ default:
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+ case ISD::SETCC:
+ return performSetCCCombine(N, DCI);
+ case ISD::FMAXNUM: // TODO: What about fmax_legacy?
+ case ISD::FMINNUM:
+ case AMDGPUISD::SMAX:
+ case AMDGPUISD::SMIN:
+ case AMDGPUISD::UMAX:
+ case AMDGPUISD::UMIN: {
+ if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
+ getTargetMachine().getOptLevel() > CodeGenOpt::None)
+ return performMin3Max3Combine(N, DCI);
+ break;
+ }
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
@@ -1254,22 +1552,155 @@ SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
+
+ case ISD::FADD: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::f32)
+ break;
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // These should really be instruction patterns, but writing patterns with
+ // source modiifiers is a pain.
+
+ // fadd (fadd (a, a), b) -> mad 2.0, a, b
+ if (LHS.getOpcode() == ISD::FADD) {
+ SDValue A = LHS.getOperand(0);
+ if (A == LHS.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
+ return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, RHS);
+ }
+ }
+
+ // fadd (b, fadd (a, a)) -> mad 2.0, a, b
+ if (RHS.getOpcode() == ISD::FADD) {
+ SDValue A = RHS.getOperand(0);
+ if (A == RHS.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
+ return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, LHS);
+ }
+ }
+
+ break;
+ }
+ case ISD::FSUB: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ EVT VT = N->getValueType(0);
+
+ // Try to get the fneg to fold into the source modifier. This undoes generic
+ // DAG combines and folds them into the mad.
+ if (VT == MVT::f32) {
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ if (LHS.getOpcode() == ISD::FMUL) {
+ // (fsub (fmul a, b), c) -> mad a, b, (fneg c)
+
+ SDValue A = LHS.getOperand(0);
+ SDValue B = LHS.getOperand(1);
+ SDValue C = DAG.getNode(ISD::FNEG, DL, VT, RHS);
+
+ return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
+ }
+
+ if (RHS.getOpcode() == ISD::FMUL) {
+ // (fsub c, (fmul a, b)) -> mad (fneg a), b, c
+
+ SDValue A = DAG.getNode(ISD::FNEG, DL, VT, RHS.getOperand(0));
+ SDValue B = RHS.getOperand(1);
+ SDValue C = LHS;
+
+ return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
+ }
+
+ if (LHS.getOpcode() == ISD::FADD) {
+ // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
+
+ SDValue A = LHS.getOperand(0);
+ if (A == LHS.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
+ SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
+
+ return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, NegRHS);
+ }
+ }
+
+ if (RHS.getOpcode() == ISD::FADD) {
+ // (fsub c, (fadd a, a)) -> mad -2.0, a, c
+
+ SDValue A = RHS.getOperand(0);
+ if (A == RHS.getOperand(1)) {
+ const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
+ return DAG.getNode(AMDGPUISD::MAD, DL, VT, NegTwo, A, LHS);
+ }
+ }
+ }
+
+ break;
}
}
+ case ISD::LOAD:
+ case ISD::STORE:
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE:
+ case ISD::ATOMIC_CMP_SWAP:
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
+ if (DCI.isBeforeLegalize())
+ break;
+ MemSDNode *MemNode = cast<MemSDNode>(N);
+ SDValue Ptr = MemNode->getBasePtr();
+
+ // TODO: We could also do this for multiplies.
+ unsigned AS = MemNode->getAddressSpace();
+ if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
+ SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
+ if (NewPtr) {
+ SmallVector<SDValue, 8> NewOps;
+ for (unsigned I = 0, E = MemNode->getNumOperands(); I != E; ++I)
+ NewOps.push_back(MemNode->getOperand(I));
+
+ NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
+ return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
+ }
+ }
+ break;
+ }
+ case ISD::AND:
+ return performAndCombine(N, DCI);
+ case ISD::OR:
+ return performOrCombine(N, DCI);
+ case AMDGPUISD::FP_CLASS:
+ return performClassCombine(N, DCI);
+ }
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// \brief Test if RegClass is one of the VSrc classes
static bool isVSrc(unsigned RegClass) {
- return AMDGPU::VSrc_32RegClassID == RegClass ||
- AMDGPU::VSrc_64RegClassID == RegClass;
-}
-
-/// \brief Test if RegClass is one of the SSrc classes
-static bool isSSrc(unsigned RegClass) {
- return AMDGPU::SSrc_32RegClassID == RegClass ||
- AMDGPU::SSrc_64RegClassID == RegClass;
+ switch(RegClass) {
+ default: return false;
+ case AMDGPU::VS_32RegClassID:
+ case AMDGPU::VS_64RegClassID:
+ return true;
+ }
}
/// \brief Analyze the possible immediate value Op
@@ -1278,75 +1709,36 @@ static bool isSSrc(unsigned RegClass) {
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
- union {
- int32_t I;
- float F;
- } Imm;
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
- if (Node->getZExtValue() >> 32) {
- return -1;
- }
- Imm.I = Node->getSExtValue();
- } else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
- if (N->getValueType(0) != MVT::f32)
+ if (Node->getZExtValue() >> 32)
return -1;
- Imm.F = Node->getValueAPF().convertToFloat();
- } else
- return -1; // It isn't an immediate
-
- if ((Imm.I >= -16 && Imm.I <= 64) ||
- Imm.F == 0.5f || Imm.F == -0.5f ||
- Imm.F == 1.0f || Imm.F == -1.0f ||
- Imm.F == 2.0f || Imm.F == -2.0f ||
- Imm.F == 4.0f || Imm.F == -4.0f)
- return 0; // It's an inline immediate
-
- return Imm.I; // It's a literal immediate
-}
-
-/// \brief Try to fold an immediate directly into an instruction
-bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
- bool &ScalarSlotUsed) const {
-
- MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- if (!Mov || !TII->isMov(Mov->getMachineOpcode()))
- return false;
- const SDValue &Op = Mov->getOperand(0);
- int32_t Value = analyzeImmediate(Op.getNode());
- if (Value == -1) {
- // Not an immediate at all
- return false;
+ if (TII->isInlineConstant(Node->getAPIntValue()))
+ return 0;
- } else if (Value == 0) {
- // Inline immediates can always be fold
- Operand = Op;
- return true;
+ return Node->getZExtValue();
+ }
- } else if (Value == Immediate) {
- // Already fold literal immediate
- Operand = Op;
- return true;
+ if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
+ if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
+ return 0;
- } else if (!ScalarSlotUsed && !Immediate) {
- // Fold this literal immediate
- ScalarSlotUsed = true;
- Immediate = Value;
- Operand = Op;
- return true;
+ if (Node->getValueType(0) == MVT::f32)
+ return FloatToBits(Node->getValueAPF().convertToFloat());
+ return -1;
}
- return false;
+ return -1;
}
const TargetRegisterClass *SITargetLowering::getRegClassForNode(
SelectionDAG &DAG, const SDValue &Op) const {
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
if (!Op->isMachineOpcode()) {
@@ -1375,10 +1767,9 @@ const TargetRegisterClass *SITargetLowering::getRegClassForNode(
// If the COPY_TO_REGCLASS instruction is copying to a VSrc register
// class, then the register class for the value could be either a
// VReg or and SReg. In order to get a more accurate
- if (OpClassID == AMDGPU::VSrc_32RegClassID ||
- OpClassID == AMDGPU::VSrc_64RegClassID) {
+ if (isVSrc(OpClassID))
return getRegClassForNode(DAG, Op.getOperand(0));
- }
+
return TRI.getRegClass(OpClassID);
case AMDGPU::EXTRACT_SUBREG: {
int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
@@ -1398,7 +1789,8 @@ const TargetRegisterClass *SITargetLowering::getRegClassForNode(
/// \brief Does "Op" fit into register class "RegClass" ?
bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
unsigned RegClass) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
if (!RC) {
return false;
@@ -1406,242 +1798,6 @@ bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
}
-/// \brief Make sure that we don't exeed the number of allowed scalars
-void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
- unsigned RegClass,
- bool &ScalarSlotUsed) const {
-
- // First map the operands register class to a destination class
- if (RegClass == AMDGPU::VSrc_32RegClassID)
- RegClass = AMDGPU::VReg_32RegClassID;
- else if (RegClass == AMDGPU::VSrc_64RegClassID)
- RegClass = AMDGPU::VReg_64RegClassID;
- else
- return;
-
- // Nothing to do if they fit naturally
- if (fitsRegClass(DAG, Operand, RegClass))
- return;
-
- // If the scalar slot isn't used yet use it now
- if (!ScalarSlotUsed) {
- ScalarSlotUsed = true;
- return;
- }
-
- // This is a conservative aproach. It is possible that we can't determine the
- // correct register class and copy too often, but better safe than sorry.
-
- SDNode *Node;
- // We can't use COPY_TO_REGCLASS with FrameIndex arguments.
- if (isa<FrameIndexSDNode>(Operand)) {
- unsigned Opcode = Operand.getValueType() == MVT::i32 ?
- AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
- Node = DAG.getMachineNode(Opcode, SDLoc(), Operand.getValueType(),
- Operand);
- } else {
- SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
- Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
- Operand.getValueType(), Operand, RC);
- }
- Operand = SDValue(Node, 0);
-}
-
-/// \returns true if \p Node's operands are different from the SDValue list
-/// \p Ops
-static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
- for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
- if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
- return true;
- }
- }
- return false;
-}
-
-/// \brief Try to fold the Nodes operands into the Node
-SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
- SelectionDAG &DAG) const {
-
- // Original encoding (either e32 or e64)
- int Opcode = Node->getMachineOpcode();
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- const MCInstrDesc *Desc = &TII->get(Opcode);
-
- unsigned NumDefs = Desc->getNumDefs();
- unsigned NumOps = Desc->getNumOperands();
-
- // Commuted opcode if available
- int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
- const MCInstrDesc *DescRev = OpcodeRev == -1 ? nullptr : &TII->get(OpcodeRev);
-
- assert(!DescRev || DescRev->getNumDefs() == NumDefs);
- assert(!DescRev || DescRev->getNumOperands() == NumOps);
-
- // e64 version if available, -1 otherwise
- int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
- const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? nullptr : &TII->get(OpcodeE64);
- int InputModifiers[3] = {0};
-
- assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
-
- int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
- bool HaveVSrc = false, HaveSSrc = false;
-
- // First figure out what we already have in this instruction.
- for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
- i != e && Op < NumOps; ++i, ++Op) {
-
- unsigned RegClass = Desc->OpInfo[Op].RegClass;
- if (isVSrc(RegClass))
- HaveVSrc = true;
- else if (isSSrc(RegClass))
- HaveSSrc = true;
- else
- continue;
-
- int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
- if (Imm != -1 && Imm != 0) {
- // Literal immediate
- Immediate = Imm;
- }
- }
-
- // If we neither have VSrc nor SSrc, it makes no sense to continue.
- if (!HaveVSrc && !HaveSSrc)
- return Node;
-
- // No scalar allowed when we have both VSrc and SSrc
- bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
-
- // Second go over the operands and try to fold them
- std::vector<SDValue> Ops;
- bool Promote2e64 = false;
- for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
- i != e && Op < NumOps; ++i, ++Op) {
-
- const SDValue &Operand = Node->getOperand(i);
- Ops.push_back(Operand);
-
- // Already folded immediate?
- if (isa<ConstantSDNode>(Operand.getNode()) ||
- isa<ConstantFPSDNode>(Operand.getNode()))
- continue;
-
- // Is this a VSrc or SSrc operand?
- unsigned RegClass = Desc->OpInfo[Op].RegClass;
- if (isVSrc(RegClass) || isSSrc(RegClass)) {
- // Try to fold the immediates
- if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
- // Folding didn't work, make sure we don't hit the SReg limit.
- ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
- }
- continue;
- } else {
- // If it's not a VSrc or SSrc operand check if we have a GlobalAddress.
- // These will be lowered to immediates, so we will need to insert a MOV.
- if (isa<GlobalAddressSDNode>(Ops[i])) {
- SDNode *Node = DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(),
- Operand.getValueType(), Operand);
- Ops[i] = SDValue(Node, 0);
- }
- }
-
- if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
-
- unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
- assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
-
- // Test if it makes sense to swap operands
- if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
- (!fitsRegClass(DAG, Ops[1], RegClass) &&
- fitsRegClass(DAG, Ops[1], OtherRegClass))) {
-
- // Swap commutable operands
- std::swap(Ops[0], Ops[1]);
-
- Desc = DescRev;
- DescRev = nullptr;
- continue;
- }
- }
-
- if (Immediate)
- continue;
-
- if (DescE64) {
- // Test if it makes sense to switch to e64 encoding
- unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
- if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
- continue;
-
- int32_t TmpImm = -1;
- if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
- (!fitsRegClass(DAG, Ops[i], RegClass) &&
- fitsRegClass(DAG, Ops[1], OtherRegClass))) {
-
- // Switch to e64 encoding
- Immediate = -1;
- Promote2e64 = true;
- Desc = DescE64;
- DescE64 = nullptr;
- }
- }
-
- if (!DescE64 && !Promote2e64)
- continue;
- if (!Operand.isMachineOpcode())
- continue;
- if (Operand.getMachineOpcode() == AMDGPU::FNEG_SI) {
- Ops.pop_back();
- Ops.push_back(Operand.getOperand(0));
- InputModifiers[i] = 1;
- Promote2e64 = true;
- if (!DescE64)
- continue;
- Desc = DescE64;
- DescE64 = nullptr;
- }
- else if (Operand.getMachineOpcode() == AMDGPU::FABS_SI) {
- Ops.pop_back();
- Ops.push_back(Operand.getOperand(0));
- InputModifiers[i] = 2;
- Promote2e64 = true;
- if (!DescE64)
- continue;
- Desc = DescE64;
- DescE64 = nullptr;
- }
- }
-
- if (Promote2e64) {
- std::vector<SDValue> OldOps(Ops);
- Ops.clear();
- for (unsigned i = 0; i < OldOps.size(); ++i) {
- // src_modifier
- Ops.push_back(DAG.getTargetConstant(InputModifiers[i], MVT::i32));
- Ops.push_back(OldOps[i]);
- }
- // Add the modifier flags while promoting
- for (unsigned i = 0; i < 2; ++i)
- Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
- }
-
- // Add optional chain and glue
- for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
- Ops.push_back(Node->getOperand(i));
-
- // Nodes that have a glue result are not CSE'd by getMachineNode(), so in
- // this case a brand new node is always be created, even if the operands
- // are the same as before. So, manually check if anything has been changed.
- if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
- return Node;
- }
-
- // Create a complete new instruction
- return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
-}
-
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
@@ -1706,7 +1862,7 @@ void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
- SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
+ SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
@@ -1733,46 +1889,185 @@ void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
}
}
+/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
+/// with frame index operands.
+/// LLVM assumes that inputs are to these instructions are registers.
+void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
+ SelectionDAG &DAG) const {
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
+ if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
+ Ops.push_back(Node->getOperand(i));
+ continue;
+ }
+
+ SDLoc DL(Node);
+ Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
+ Node->getOperand(i).getValueType(),
+ Node->getOperand(i)), 0));
+ }
+
+ DAG.UpdateNodeOperands(Node, Ops);
+}
+
/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
Node = AdjustRegClass(Node, DAG);
if (TII->isMIMG(Node->getMachineOpcode()))
adjustWritemask(Node, DAG);
- return foldOperands(Node, DAG);
+ if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
+ Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
+ legalizeTargetIndependentNode(Node, DAG);
+ return Node;
+ }
+ return Node;
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
- const SIInstrInfo *TII =
- static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
- if (!TII->isMIMG(MI->getOpcode()))
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
+
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ TII->legalizeOperands(MI);
+
+ if (TII->isMIMG(MI->getOpcode())) {
+ unsigned VReg = MI->getOperand(0).getReg();
+ unsigned Writemask = MI->getOperand(1).getImm();
+ unsigned BitsSet = 0;
+ for (unsigned i = 0; i < 4; ++i)
+ BitsSet += Writemask & (1 << i) ? 1 : 0;
+
+ const TargetRegisterClass *RC;
+ switch (BitsSet) {
+ default: return;
+ case 1: RC = &AMDGPU::VGPR_32RegClass; break;
+ case 2: RC = &AMDGPU::VReg_64RegClass; break;
+ case 3: RC = &AMDGPU::VReg_96RegClass; break;
+ }
+
+ unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
+ MI->setDesc(TII->get(NewOpcode));
+ MRI.setRegClass(VReg, RC);
return;
+ }
- unsigned VReg = MI->getOperand(0).getReg();
- unsigned Writemask = MI->getOperand(1).getImm();
- unsigned BitsSet = 0;
- for (unsigned i = 0; i < 4; ++i)
- BitsSet += Writemask & (1 << i) ? 1 : 0;
+ // Replace unused atomics with the no return version.
+ int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
+ if (NoRetAtomicOp != -1) {
+ if (!Node->hasAnyUseOfValue(0)) {
+ MI->setDesc(TII->get(NoRetAtomicOp));
+ MI->RemoveOperand(0);
+ }
- const TargetRegisterClass *RC;
- switch (BitsSet) {
- default: return;
- case 1: RC = &AMDGPU::VReg_32RegClass; break;
- case 2: RC = &AMDGPU::VReg_64RegClass; break;
- case 3: RC = &AMDGPU::VReg_96RegClass; break;
+ return;
}
+}
- unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
- MI->setDesc(TII->get(NewOpcode));
- MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
- MRI.setRegClass(VReg, RC);
+static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
+ SDValue K = DAG.getTargetConstant(Val, MVT::i32);
+ return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
+}
+
+MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr) const {
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
+#if 1
+ // XXX - Workaround for moveToVALU not handling different register class
+ // inserts for REG_SEQUENCE.
+
+ // Build the half of the subregister with the constants.
+ const SDValue Ops0[] = {
+ DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
+ buildSMovImm32(DAG, DL, 0),
+ DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
+ buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
+ DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
+ };
+
+ SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
+ MVT::v2i32, Ops0), 0);
+
+ // Combine the constants and the pointer.
+ const SDValue Ops1[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
+ Ptr,
+ DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
+ SubRegHi,
+ DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
+#else
+ const SDValue Ops[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
+ Ptr,
+ DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
+ buildSMovImm32(DAG, DL, 0),
+ DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
+ buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
+ DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
+
+#endif
+}
+
+/// \brief Return a resource descriptor with the 'Add TID' bit enabled
+/// The TID (Thread ID) is multipled by the stride value (bits [61:48]
+/// of the resource descriptor) to create an offset, which is added to the
+/// resource ponter.
+MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr,
+ uint32_t RsrcDword1,
+ uint64_t RsrcDword2And3) const {
+ SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
+ SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
+ if (RsrcDword1) {
+ PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
+ DAG.getConstant(RsrcDword1, MVT::i32)), 0);
+ }
+
+ SDValue DataLo = buildSMovImm32(DAG, DL,
+ RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
+ SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
+
+ const SDValue Ops[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
+ PtrLo,
+ DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
+ PtrHi,
+ DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
+ DataLo,
+ DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
+ DataHi,
+ DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
+}
+
+MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr) const {
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
+ getTargetMachine().getSubtargetImpl()->getInstrInfo());
+ uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
+ 0xffffffff; // Size
+
+ return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
}
MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
@@ -1800,12 +2095,26 @@ MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
return N;
}
ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
- SDValue Ops[] = {
- SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
- DAG.getConstant(0, MVT::i64)), 0),
- N->getOperand(0),
- DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
- };
+
+ const SDValue Zero64 = DAG.getTargetConstant(0, MVT::i64);
+ SDValue Ptr(DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, Zero64), 0);
+ MachineSDNode *RSrc = wrapAddr64Rsrc(DAG, DL, Ptr);
+
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(SDValue(RSrc, 0));
+ Ops.push_back(N->getOperand(0));
+
+ // The immediate offset is in dwords on SI and in bytes on VI.
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ Ops.push_back(DAG.getTargetConstant(Offset->getSExtValue(), MVT::i32));
+ else
+ Ops.push_back(DAG.getTargetConstant(Offset->getSExtValue() << 2, MVT::i32));
+
+ // Copy remaining operands so we keep any chain and glue nodes that follow
+ // the normal operands.
+ for (unsigned I = 2, E = N->getNumOperands(); I != E; ++I)
+ Ops.push_back(N->getOperand(I));
+
return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
}
}
diff --git a/contrib/llvm/lib/Target/R600/SIISelLowering.h b/contrib/llvm/lib/Target/R600/SIISelLowering.h
index d106d4a..876fd8c 100644
--- a/contrib/llvm/lib/Target/R600/SIISelLowering.h
+++ b/contrib/llvm/lib/Target/R600/SIISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SIISELLOWERING_H
-#define SIISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_R600_SIISELLOWERING_H
+#define LLVM_LIB_TARGET_R600_SIISELLOWERING_H
#include "AMDGPUISelLowering.h"
#include "SIInstrInfo.h"
@@ -27,6 +27,9 @@ class SITargetLowering : public AMDGPUTargetLowering {
SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op,
SelectionDAG &DAG) const override;
+
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
@@ -34,30 +37,49 @@ class SITargetLowering : public AMDGPUTargetLowering {
SDValue LowerFDIV32(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFDIV64(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFDIV(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, bool Signed) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerTrig(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
- bool foldImm(SDValue &Operand, int32_t &Immediate,
- bool &ScalarSlotUsed) const;
const TargetRegisterClass *getRegClassForNode(SelectionDAG &DAG,
const SDValue &Op) const;
bool fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
unsigned RegClass) const;
- void ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
- unsigned RegClass, bool &ScalarSlotUsed) const;
- SDNode *foldOperands(MachineSDNode *N, SelectionDAG &DAG) const;
void adjustWritemask(MachineSDNode *&N, SelectionDAG &DAG) const;
MachineSDNode *AdjustRegClass(MachineSDNode *N, SelectionDAG &DAG) const;
- static SDValue performUCharToFloatCombine(SDNode *N,
- DAGCombinerInfo &DCI);
+ SDValue performUCharToFloatCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const;
+ SDValue performSHLPtrCombine(SDNode *N,
+ unsigned AS,
+ DAGCombinerInfo &DCI) const;
+ SDValue performAndCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue performOrCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue performClassCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+
+ SDValue performMin3Max3Combine(SDNode *N, DAGCombinerInfo &DCI) const;
+ SDValue performSetCCCombine(SDNode *N, DAGCombinerInfo &DCI) const;
public:
SITargetLowering(TargetMachine &tm);
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
- bool *IsFast) const override;
+
+ bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
+ EVT /*VT*/) const override;
+
+ bool isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const override;
+
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
+ unsigned Align,
+ bool *IsFast) const override;
+
+ EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign, bool IsMemset,
+ bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const override;
TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const override;
@@ -85,8 +107,19 @@ public:
int32_t analyzeImmediate(const SDNode *N) const;
SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const override;
+ void legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const;
+
+ MachineSDNode *wrapAddr64Rsrc(SelectionDAG &DAG, SDLoc DL, SDValue Ptr) const;
+ MachineSDNode *buildRSRC(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr,
+ uint32_t RsrcDword1,
+ uint64_t RsrcDword2And3) const;
+ MachineSDNode *buildScratchRSRC(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr) const;
};
} // End namespace llvm
-#endif //SIISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp b/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp
index 7dfc31b..181b116 100644
--- a/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp
+++ b/contrib/llvm/lib/Target/R600/SIInsertWaits.cpp
@@ -17,6 +17,8 @@
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -39,6 +41,12 @@ typedef union {
} Counters;
+typedef enum {
+ OTHER,
+ SMEM,
+ VMEM
+} InstType;
+
typedef Counters RegCounters[512];
typedef std::pair<unsigned, unsigned> RegInterval;
@@ -71,6 +79,9 @@ private:
/// \brief Different export instruction types seen since last wait.
unsigned ExpInstrTypesSeen;
+ /// \brief Type of the last opcode.
+ InstType LastOpcodeType;
+
/// \brief Get increment/decrement amount for this instruction.
Counters getHwCounts(MachineInstr &MI);
@@ -81,7 +92,8 @@ private:
RegInterval getRegInterval(MachineOperand &Op);
/// \brief Handle instructions async components
- void pushInstruction(MachineInstr &MI);
+ void pushInstruction(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I);
/// \brief Insert the actual wait instruction
bool insertWait(MachineBasicBlock &MBB,
@@ -174,6 +186,29 @@ bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {
if (!MI.getDesc().mayStore())
return false;
+ // Check if this operand is the value being stored.
+ // Special case for DS instructions, since the address
+ // operand comes before the value operand and it may have
+ // multiple data operands.
+
+ if (TII->isDS(MI.getOpcode())) {
+ MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data);
+ if (Data && Op.isIdenticalTo(*Data))
+ return true;
+
+ MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
+ if (Data0 && Op.isIdenticalTo(*Data0))
+ return true;
+
+ MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1);
+ if (Data1 && Op.isIdenticalTo(*Data1))
+ return true;
+
+ return false;
+ }
+
+ // NOTE: This assumes that the value operand is before the
+ // address operand, and that there is only one value operand.
for (MachineInstr::mop_iterator I = MI.operands_begin(),
E = MI.operands_end(); I != E; ++I) {
@@ -201,10 +236,11 @@ RegInterval SIInsertWaits::getRegInterval(MachineOperand &Op) {
return Result;
}
-void SIInsertWaits::pushInstruction(MachineInstr &MI) {
+void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
// Get the hardware counter increments and sum them up
- Counters Increment = getHwCounts(MI);
+ Counters Increment = getHwCounts(*I);
unsigned Sum = 0;
for (unsigned i = 0; i < 3; ++i) {
@@ -213,17 +249,42 @@ void SIInsertWaits::pushInstruction(MachineInstr &MI) {
}
// If we don't increase anything then that's it
- if (Sum == 0)
+ if (Sum == 0) {
+ LastOpcodeType = OTHER;
return;
+ }
+
+ if (TRI->ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ // Any occurence of consecutive VMEM or SMEM instructions forms a VMEM
+ // or SMEM clause, respectively.
+ //
+ // The temporary workaround is to break the clauses with S_NOP.
+ //
+ // The proper solution would be to allocate registers such that all source
+ // and destination registers don't overlap, e.g. this is illegal:
+ // r0 = load r2
+ // r2 = load r0
+ if ((LastOpcodeType == SMEM && TII->isSMRD(I->getOpcode())) ||
+ (LastOpcodeType == VMEM && Increment.Named.VM)) {
+ // Insert a NOP to break the clause.
+ BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP))
+ .addImm(0);
+ }
+
+ if (TII->isSMRD(I->getOpcode()))
+ LastOpcodeType = SMEM;
+ else if (Increment.Named.VM)
+ LastOpcodeType = VMEM;
+ }
// Remember which export instructions we have seen
if (Increment.Named.EXP) {
- ExpInstrTypesSeen |= MI.getOpcode() == AMDGPU::EXP ? 1 : 2;
+ ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2;
}
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI.getOperand(i);
+ MachineOperand &Op = I->getOperand(i);
if (!isOpRelevant(Op))
continue;
@@ -300,6 +361,7 @@ bool SIInsertWaits::insertWait(MachineBasicBlock &MBB,
((Counts.Named.EXP & 0x7) << 4) |
((Counts.Named.LGKM & 0x7) << 8));
+ LastOpcodeType = OTHER;
return true;
}
@@ -346,13 +408,15 @@ Counters SIInsertWaits::handleOperands(MachineInstr &MI) {
bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
bool Changes = false;
- TII = static_cast<const SIInstrInfo*>(MF.getTarget().getInstrInfo());
- TRI = static_cast<const SIRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ TRI =
+ static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
MRI = &MF.getRegInfo();
WaitedOn = ZeroCounts;
LastIssued = ZeroCounts;
+ LastOpcodeType = OTHER;
memset(&UsedRegs, 0, sizeof(UsedRegs));
memset(&DefinedRegs, 0, sizeof(DefinedRegs));
@@ -364,8 +428,12 @@ bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
- Changes |= insertWait(MBB, I, handleOperands(*I));
- pushInstruction(*I);
+ // Wait for everything before a barrier.
+ if (I->getOpcode() == AMDGPU::S_BARRIER)
+ Changes |= insertWait(MBB, I, LastIssued);
+ else
+ Changes |= insertWait(MBB, I, handleOperands(*I));
+ pushInstruction(MBB, I);
}
// Wait for everything at the end of the MBB
diff --git a/contrib/llvm/lib/Target/R600/SIInstrFormats.td b/contrib/llvm/lib/Target/R600/SIInstrFormats.td
index 00e69dd..09c0cbe 100644
--- a/contrib/llvm/lib/Target/R600/SIInstrFormats.td
+++ b/contrib/llvm/lib/Target/R600/SIInstrFormats.td
@@ -17,24 +17,58 @@ class InstSI <dag outs, dag ins, string asm, list<dag> pattern> :
field bits<1> VM_CNT = 0;
field bits<1> EXP_CNT = 0;
field bits<1> LGKM_CNT = 0;
- field bits<1> MIMG = 0;
- field bits<1> SMRD = 0;
+
+ field bits<1> SALU = 0;
+ field bits<1> VALU = 0;
+
+ field bits<1> SOP1 = 0;
+ field bits<1> SOP2 = 0;
+ field bits<1> SOPC = 0;
+ field bits<1> SOPK = 0;
+ field bits<1> SOPP = 0;
+
field bits<1> VOP1 = 0;
field bits<1> VOP2 = 0;
field bits<1> VOP3 = 0;
field bits<1> VOPC = 0;
- field bits<1> SALU = 0;
+ field bits<1> MUBUF = 0;
+ field bits<1> MTBUF = 0;
+ field bits<1> SMRD = 0;
+ field bits<1> DS = 0;
+ field bits<1> MIMG = 0;
+ field bits<1> FLAT = 0;
+
+ // These need to be kept in sync with the enum in SIInstrFlags.
let TSFlags{0} = VM_CNT;
let TSFlags{1} = EXP_CNT;
let TSFlags{2} = LGKM_CNT;
- let TSFlags{3} = MIMG;
- let TSFlags{4} = SMRD;
- let TSFlags{5} = VOP1;
- let TSFlags{6} = VOP2;
- let TSFlags{7} = VOP3;
- let TSFlags{8} = VOPC;
- let TSFlags{9} = SALU;
+
+ let TSFlags{3} = SALU;
+ let TSFlags{4} = VALU;
+
+ let TSFlags{5} = SOP1;
+ let TSFlags{6} = SOP2;
+ let TSFlags{7} = SOPC;
+ let TSFlags{8} = SOPK;
+ let TSFlags{9} = SOPP;
+
+ let TSFlags{10} = VOP1;
+ let TSFlags{11} = VOP2;
+ let TSFlags{12} = VOP3;
+ let TSFlags{13} = VOPC;
+
+ let TSFlags{14} = MUBUF;
+ let TSFlags{15} = MTBUF;
+ let TSFlags{16} = SMRD;
+ let TSFlags{17} = DS;
+ let TSFlags{18} = MIMG;
+ let TSFlags{19} = FLAT;
+
+ // Most instructions require adjustments after selection to satisfy
+ // operand requirements.
+ let hasPostISelHook = 1;
+ let SchedRW = [Write32Bit];
}
class Enc32 {
@@ -49,18 +83,55 @@ class Enc64 {
int Size = 8;
}
-class VOP3Common <dag outs, dag ins, string asm, list<dag> pattern> :
+let Uses = [EXEC] in {
+
+class VOPAnyCommon <dag outs, dag ins, string asm, list<dag> pattern> :
InstSI <outs, ins, asm, pattern> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let UseNamedOperandTable = 1;
- let VOP3 = 1;
+ let VALU = 1;
+}
+
+class VOPCCommon <dag ins, string asm, list<dag> pattern> :
+ VOPAnyCommon <(outs VCCReg:$dst), ins, asm, pattern> {
+
+ let DisableEncoding = "$dst";
+ let VOPC = 1;
+ let Size = 4;
+}
+
+class VOP1Common <dag outs, dag ins, string asm, list<dag> pattern> :
+ VOPAnyCommon <outs, ins, asm, pattern> {
+
+ let VOP1 = 1;
+ let Size = 4;
+}
+
+class VOP2Common <dag outs, dag ins, string asm, list<dag> pattern> :
+ VOPAnyCommon <outs, ins, asm, pattern> {
+
+ let VOP2 = 1;
+ let Size = 4;
+}
+
+class VOP3Common <dag outs, dag ins, string asm, list<dag> pattern> :
+ VOPAnyCommon <outs, ins, asm, pattern> {
+ // Using complex patterns gives VOP3 patterns a very high complexity rating,
+ // but standalone patterns are almost always prefered, so we need to adjust the
+ // priority lower. The goal is to use a high number to reduce complexity to
+ // zero (or less than zero).
+ let AddedComplexity = -1000;
+
+ let VOP3 = 1;
int Size = 8;
}
+} // End Uses = [EXEC]
+
//===----------------------------------------------------------------------===//
// Scalar operations
//===----------------------------------------------------------------------===//
@@ -134,22 +205,26 @@ class SMRDe <bits<5> op, bits<1> imm> : Enc32 {
let Inst{31-27} = 0x18; //encoding
}
-class SOP1 <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI<outs, ins, asm, pattern>, SOP1e <op> {
-
+let SchedRW = [WriteSALU] in {
+class SOP1 <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SALU = 1;
+ let SOP1 = 1;
}
-class SOP2 <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI <outs, ins, asm, pattern>, SOP2e<op> {
+class SOP2 <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SALU = 1;
+ let SOP2 = 1;
+
+ let UseNamedOperandTable = 1;
}
class SOPC <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
@@ -160,31 +235,48 @@ class SOPC <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
let mayStore = 0;
let hasSideEffects = 0;
let SALU = 1;
+ let SOPC = 1;
+
+ let UseNamedOperandTable = 1;
}
-class SOPK <bits<5> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI <outs, ins , asm, pattern>, SOPKe<op> {
+class SOPK <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins , asm, pattern> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SALU = 1;
+ let SOPK = 1;
+
+ let UseNamedOperandTable = 1;
}
-class SOPP <bits<7> op, dag ins, string asm, list<dag> pattern> :
+class SOPP <bits<7> op, dag ins, string asm, list<dag> pattern = []> :
InstSI <(outs), ins, asm, pattern >, SOPPe <op> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
+ let isCodeGenOnly = 0;
let SALU = 1;
+ let SOPP = 1;
+
+ let UseNamedOperandTable = 1;
}
-class SMRD <bits<5> op, bits<1> imm, dag outs, dag ins, string asm,
- list<dag> pattern> : InstSI<outs, ins, asm, pattern>, SMRDe<op, imm> {
+} // let SchedRW = [WriteSALU]
+
+class SMRD <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern> {
let LGKM_CNT = 1;
let SMRD = 1;
+ let mayStore = 0;
+ let mayLoad = 1;
+ let hasSideEffects = 0;
+ let UseNamedOperandTable = 1;
+ let SchedRW = [WriteSMEM];
}
//===----------------------------------------------------------------------===//
@@ -410,8 +502,27 @@ class MIMGe <bits<7> op> : Enc64 {
let Inst{57-53} = SSAMP{6-2};
}
-class EXPe : Enc64 {
+class FLATe<bits<7> op> : Enc64 {
+ bits<8> addr;
+ bits<8> data;
+ bits<8> vdst;
+ bits<1> slc;
+ bits<1> glc;
+ bits<1> tfe;
+
+ // 15-0 is reserved.
+ let Inst{16} = glc;
+ let Inst{17} = slc;
+ let Inst{24-18} = op;
+ let Inst{31-26} = 0x37; // Encoding.
+ let Inst{39-32} = addr;
+ let Inst{47-40} = data;
+ // 54-48 is reserved.
+ let Inst{55} = tfe;
+ let Inst{63-56} = vdst;
+}
+class EXPe : Enc64 {
bits<4> EN;
bits<6> TGT;
bits<1> COMPR;
@@ -437,48 +548,23 @@ class EXPe : Enc64 {
let Uses = [EXEC] in {
class VOP1 <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI <outs, ins, asm, pattern>, VOP1e<op> {
-
- let mayLoad = 0;
- let mayStore = 0;
- let hasSideEffects = 0;
- let UseNamedOperandTable = 1;
- let VOP1 = 1;
-}
+ VOP1Common <outs, ins, asm, pattern>,
+ VOP1e<op>;
class VOP2 <bits<6> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI <outs, ins, asm, pattern>, VOP2e<op> {
-
- let mayLoad = 0;
- let mayStore = 0;
- let hasSideEffects = 0;
- let UseNamedOperandTable = 1;
- let VOP2 = 1;
-}
-
-class VOP3 <bits<9> op, dag outs, dag ins, string asm, list<dag> pattern> :
- VOP3Common <outs, ins, asm, pattern>, VOP3e<op>;
+ VOP2Common <outs, ins, asm, pattern>, VOP2e<op>;
class VOP3b <bits<9> op, dag outs, dag ins, string asm, list<dag> pattern> :
VOP3Common <outs, ins, asm, pattern>, VOP3be<op>;
class VOPC <bits<8> op, dag ins, string asm, list<dag> pattern> :
- InstSI <(outs VCCReg:$dst), ins, asm, pattern>, VOPCe <op> {
+ VOPCCommon <ins, asm, pattern>, VOPCe <op>;
- let DisableEncoding = "$dst";
- let mayLoad = 0;
- let mayStore = 0;
- let hasSideEffects = 0;
- let UseNamedOperandTable = 1;
- let VOPC = 1;
-}
-
-class VINTRP <bits <2> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI <outs, ins, asm, pattern>, VINTRPe<op> {
-
- let neverHasSideEffects = 1;
+class VINTRPCommon <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern> {
let mayLoad = 1;
let mayStore = 0;
+ let hasSideEffects = 0;
}
} // End Uses = [EXEC]
@@ -489,29 +575,56 @@ class VINTRP <bits <2> op, dag outs, dag ins, string asm, list<dag> pattern> :
let Uses = [EXEC] in {
-class DS <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI <outs, ins, asm, pattern> , DSe<op> {
+class DS <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI <outs, ins, asm, pattern> {
let LGKM_CNT = 1;
+ let DS = 1;
+ let UseNamedOperandTable = 1;
+ let DisableEncoding = "$m0";
+ let SchedRW = [WriteLDS];
}
-class MUBUF <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI<outs, ins, asm, pattern>, MUBUFe <op> {
+class DS_si <bits<8> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ DS <outs, ins, asm, pattern>, DSe<op>;
+
+class MUBUF <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern> {
let VM_CNT = 1;
let EXP_CNT = 1;
+ let MUBUF = 1;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
let UseNamedOperandTable = 1;
+ let SchedRW = [WriteVMEM];
}
-class MTBUF <bits<3> op, dag outs, dag ins, string asm, list<dag> pattern> :
- InstSI<outs, ins, asm, pattern>, MTBUFe <op> {
+class MTBUF <dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern> {
let VM_CNT = 1;
let EXP_CNT = 1;
+ let MTBUF = 1;
- let neverHasSideEffects = 1;
+ let hasSideEffects = 0;
+ let UseNamedOperandTable = 1;
+ let SchedRW = [WriteVMEM];
+}
+
+class FLAT <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ InstSI<outs, ins, asm, pattern>, FLATe <op> {
+ let FLAT = 1;
+ // Internally, FLAT instruction are executed as both an LDS and a
+ // Buffer instruction; so, they increment both VM_CNT and LGKM_CNT
+ // and are not considered done until both have been decremented.
+ let VM_CNT = 1;
+ let LGKM_CNT = 1;
+
+ let Uses = [EXEC, FLAT_SCR]; // M0
+
+ let UseNamedOperandTable = 1;
+ let hasSideEffects = 0;
}
class MIMG <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
@@ -520,16 +633,9 @@ class MIMG <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
let VM_CNT = 1;
let EXP_CNT = 1;
let MIMG = 1;
-}
-def EXP : InstSI<
- (outs),
- (ins i32imm:$en, i32imm:$tgt, i32imm:$compr, i32imm:$done, i32imm:$vm,
- VReg_32:$src0, VReg_32:$src1, VReg_32:$src2, VReg_32:$src3),
- "EXP $en, $tgt, $compr, $done, $vm, $src0, $src1, $src2, $src3",
- [] >, EXPe {
-
- let EXP_CNT = 1;
+ let hasSideEffects = 0; // XXX ????
}
+
} // End Uses = [EXEC]
diff --git a/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp b/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp
index 51f4532..80b560e 100644
--- a/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/SIInstrInfo.cpp
@@ -17,10 +17,13 @@
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/Debug.h"
using namespace llvm;
@@ -32,6 +35,259 @@ SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st)
// TargetInstrInfo callbacks
//===----------------------------------------------------------------------===//
+static unsigned getNumOperandsNoGlue(SDNode *Node) {
+ unsigned N = Node->getNumOperands();
+ while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
+ --N;
+ return N;
+}
+
+static SDValue findChainOperand(SDNode *Load) {
+ SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
+ assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
+ return LastOp;
+}
+
+/// \brief Returns true if both nodes have the same value for the given
+/// operand \p Op, or if both nodes do not have this operand.
+static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
+ unsigned Opc0 = N0->getMachineOpcode();
+ unsigned Opc1 = N1->getMachineOpcode();
+
+ int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
+ int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
+
+ if (Op0Idx == -1 && Op1Idx == -1)
+ return true;
+
+
+ if ((Op0Idx == -1 && Op1Idx != -1) ||
+ (Op1Idx == -1 && Op0Idx != -1))
+ return false;
+
+ // getNamedOperandIdx returns the index for the MachineInstr's operands,
+ // which includes the result as the first operand. We are indexing into the
+ // MachineSDNode's operands, so we need to skip the result operand to get
+ // the real index.
+ --Op0Idx;
+ --Op1Idx;
+
+ return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
+}
+
+bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
+ int64_t &Offset0,
+ int64_t &Offset1) const {
+ if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
+ return false;
+
+ unsigned Opc0 = Load0->getMachineOpcode();
+ unsigned Opc1 = Load1->getMachineOpcode();
+
+ // Make sure both are actually loads.
+ if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
+ return false;
+
+ if (isDS(Opc0) && isDS(Opc1)) {
+
+ // FIXME: Handle this case:
+ if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
+ return false;
+
+ // Check base reg.
+ if (Load0->getOperand(1) != Load1->getOperand(1))
+ return false;
+
+ // Check chain.
+ if (findChainOperand(Load0) != findChainOperand(Load1))
+ return false;
+
+ // Skip read2 / write2 variants for simplicity.
+ // TODO: We should report true if the used offsets are adjacent (excluded
+ // st64 versions).
+ if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
+ AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
+ return false;
+
+ Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
+ return true;
+ }
+
+ if (isSMRD(Opc0) && isSMRD(Opc1)) {
+ assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
+
+ // Check base reg.
+ if (Load0->getOperand(0) != Load1->getOperand(0))
+ return false;
+
+ // Check chain.
+ if (findChainOperand(Load0) != findChainOperand(Load1))
+ return false;
+
+ Offset0 = cast<ConstantSDNode>(Load0->getOperand(1))->getZExtValue();
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue();
+ return true;
+ }
+
+ // MUBUF and MTBUF can access the same addresses.
+ if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
+
+ // MUBUF and MTBUF have vaddr at different indices.
+ if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
+ findChainOperand(Load0) != findChainOperand(Load1) ||
+ !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
+ !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
+ return false;
+
+ int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
+ int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
+
+ if (OffIdx0 == -1 || OffIdx1 == -1)
+ return false;
+
+ // getNamedOperandIdx returns the index for MachineInstrs. Since they
+ // inlcude the output in the operand list, but SDNodes don't, we need to
+ // subtract the index by one.
+ --OffIdx0;
+ --OffIdx1;
+
+ SDValue Off0 = Load0->getOperand(OffIdx0);
+ SDValue Off1 = Load1->getOperand(OffIdx1);
+
+ // The offset might be a FrameIndexSDNode.
+ if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
+ return false;
+
+ Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
+ Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
+ return true;
+ }
+
+ return false;
+}
+
+static bool isStride64(unsigned Opc) {
+ switch (Opc) {
+ case AMDGPU::DS_READ2ST64_B32:
+ case AMDGPU::DS_READ2ST64_B64:
+ case AMDGPU::DS_WRITE2ST64_B32:
+ case AMDGPU::DS_WRITE2ST64_B64:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool SIInstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt,
+ unsigned &BaseReg, unsigned &Offset,
+ const TargetRegisterInfo *TRI) const {
+ unsigned Opc = LdSt->getOpcode();
+ if (isDS(Opc)) {
+ const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
+ AMDGPU::OpName::offset);
+ if (OffsetImm) {
+ // Normal, single offset LDS instruction.
+ const MachineOperand *AddrReg = getNamedOperand(*LdSt,
+ AMDGPU::OpName::addr);
+
+ BaseReg = AddrReg->getReg();
+ Offset = OffsetImm->getImm();
+ return true;
+ }
+
+ // The 2 offset instructions use offset0 and offset1 instead. We can treat
+ // these as a load with a single offset if the 2 offsets are consecutive. We
+ // will use this for some partially aligned loads.
+ const MachineOperand *Offset0Imm = getNamedOperand(*LdSt,
+ AMDGPU::OpName::offset0);
+ const MachineOperand *Offset1Imm = getNamedOperand(*LdSt,
+ AMDGPU::OpName::offset1);
+
+ uint8_t Offset0 = Offset0Imm->getImm();
+ uint8_t Offset1 = Offset1Imm->getImm();
+ assert(Offset1 > Offset0);
+
+ if (Offset1 - Offset0 == 1) {
+ // Each of these offsets is in element sized units, so we need to convert
+ // to bytes of the individual reads.
+
+ unsigned EltSize;
+ if (LdSt->mayLoad())
+ EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2;
+ else {
+ assert(LdSt->mayStore());
+ int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
+ EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize();
+ }
+
+ if (isStride64(Opc))
+ EltSize *= 64;
+
+ const MachineOperand *AddrReg = getNamedOperand(*LdSt,
+ AMDGPU::OpName::addr);
+ BaseReg = AddrReg->getReg();
+ Offset = EltSize * Offset0;
+ return true;
+ }
+
+ return false;
+ }
+
+ if (isMUBUF(Opc) || isMTBUF(Opc)) {
+ if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
+ return false;
+
+ const MachineOperand *AddrReg = getNamedOperand(*LdSt,
+ AMDGPU::OpName::vaddr);
+ if (!AddrReg)
+ return false;
+
+ const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
+ AMDGPU::OpName::offset);
+ BaseReg = AddrReg->getReg();
+ Offset = OffsetImm->getImm();
+ return true;
+ }
+
+ if (isSMRD(Opc)) {
+ const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
+ AMDGPU::OpName::offset);
+ if (!OffsetImm)
+ return false;
+
+ const MachineOperand *SBaseReg = getNamedOperand(*LdSt,
+ AMDGPU::OpName::sbase);
+ BaseReg = SBaseReg->getReg();
+ Offset = OffsetImm->getImm();
+ return true;
+ }
+
+ return false;
+}
+
+bool SIInstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
+ MachineInstr *SecondLdSt,
+ unsigned NumLoads) const {
+ unsigned Opc0 = FirstLdSt->getOpcode();
+ unsigned Opc1 = SecondLdSt->getOpcode();
+
+ // TODO: This needs finer tuning
+ if (NumLoads > 4)
+ return false;
+
+ if (isDS(Opc0) && isDS(Opc1))
+ return true;
+
+ if (isSMRD(Opc0) && isSMRD(Opc1))
+ return true;
+
+ if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1)))
+ return true;
+
+ return false;
+}
+
void
SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
@@ -70,26 +326,6 @@ SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
unsigned Opcode;
const int16_t *SubIndices;
- if (AMDGPU::M0 == DestReg) {
- // Check if M0 isn't already set to this value
- for (MachineBasicBlock::reverse_iterator E = MBB.rend(),
- I = MachineBasicBlock::reverse_iterator(MI); I != E; ++I) {
-
- if (!I->definesRegister(AMDGPU::M0))
- continue;
-
- unsigned Opc = I->getOpcode();
- if (Opc != TargetOpcode::COPY && Opc != AMDGPU::S_MOV_B32)
- break;
-
- if (!I->readsRegister(SrcReg))
- break;
-
- // The copy isn't necessary
- return;
- }
- }
-
if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
@@ -117,8 +353,8 @@ SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
Opcode = AMDGPU::S_MOV_B32;
SubIndices = Sub0_15;
- } else if (AMDGPU::VReg_32RegClass.contains(DestReg)) {
- assert(AMDGPU::VReg_32RegClass.contains(SrcReg) ||
+ } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
+ assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
@@ -182,6 +418,18 @@ unsigned SIInstrInfo::commuteOpcode(unsigned Opcode) const {
return Opcode;
}
+unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
+
+ if (DstRC->getSize() == 4) {
+ return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
+ } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
+ return AMDGPU::S_MOV_B64;
+ } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
+ return AMDGPU::V_MOV_B64_PSEUDO;
+ }
+ return AMDGPU::COPY;
+}
+
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
@@ -190,49 +438,49 @@ void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
- MachineRegisterInfo &MRI = MF->getRegInfo();
+ MachineFrameInfo *FrameInfo = MF->getFrameInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
- unsigned KillFlag = isKill ? RegState::Kill : 0;
+ int Opcode = -1;
- if (RI.hasVGPRs(RC)) {
- LLVMContext &Ctx = MF->getFunction()->getContext();
- Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Can't spill VGPR!");
- BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), AMDGPU::VGPR0)
- .addReg(SrcReg);
- } else if (TRI->getCommonSubClass(RC, &AMDGPU::SGPR_32RegClass)) {
- unsigned Lane = MFI->SpillTracker.reserveLanes(MRI, MF);
- unsigned TgtReg = MFI->SpillTracker.LaneVGPR;
-
- BuildMI(MBB, MI, DL, get(AMDGPU::V_WRITELANE_B32), TgtReg)
- .addReg(SrcReg, KillFlag)
- .addImm(Lane);
- MFI->SpillTracker.addSpilledReg(FrameIndex, TgtReg, Lane);
- } else if (RI.isSGPRClass(RC)) {
+ if (RI.isSGPRClass(RC)) {
// We are only allowed to create one new instruction when spilling
- // registers, so we need to use pseudo instruction for vector
- // registers.
- //
- // Reserve a spot in the spill tracker for each sub-register of
- // the vector register.
- unsigned NumSubRegs = RC->getSize() / 4;
- unsigned FirstLane = MFI->SpillTracker.reserveLanes(MRI, MF, NumSubRegs);
- MFI->SpillTracker.addSpilledReg(FrameIndex, MFI->SpillTracker.LaneVGPR,
- FirstLane);
-
- unsigned Opcode;
+ // registers, so we need to use pseudo instruction for spilling
+ // SGPRs.
switch (RC->getSize() * 8) {
- case 64: Opcode = AMDGPU::SI_SPILL_S64_SAVE; break;
- case 128: Opcode = AMDGPU::SI_SPILL_S128_SAVE; break;
- case 256: Opcode = AMDGPU::SI_SPILL_S256_SAVE; break;
- case 512: Opcode = AMDGPU::SI_SPILL_S512_SAVE; break;
- default: llvm_unreachable("Cannot spill register class");
+ case 32: Opcode = AMDGPU::SI_SPILL_S32_SAVE; break;
+ case 64: Opcode = AMDGPU::SI_SPILL_S64_SAVE; break;
+ case 128: Opcode = AMDGPU::SI_SPILL_S128_SAVE; break;
+ case 256: Opcode = AMDGPU::SI_SPILL_S256_SAVE; break;
+ case 512: Opcode = AMDGPU::SI_SPILL_S512_SAVE; break;
}
+ } else if(RI.hasVGPRs(RC) && ST.isVGPRSpillingEnabled(MFI)) {
+ MFI->setHasSpilledVGPRs();
+
+ switch(RC->getSize() * 8) {
+ case 32: Opcode = AMDGPU::SI_SPILL_V32_SAVE; break;
+ case 64: Opcode = AMDGPU::SI_SPILL_V64_SAVE; break;
+ case 96: Opcode = AMDGPU::SI_SPILL_V96_SAVE; break;
+ case 128: Opcode = AMDGPU::SI_SPILL_V128_SAVE; break;
+ case 256: Opcode = AMDGPU::SI_SPILL_V256_SAVE; break;
+ case 512: Opcode = AMDGPU::SI_SPILL_V512_SAVE; break;
+ }
+ }
- BuildMI(MBB, MI, DL, get(Opcode), MFI->SpillTracker.LaneVGPR)
+ if (Opcode != -1) {
+ FrameInfo->setObjectAlignment(FrameIndex, 4);
+ BuildMI(MBB, MI, DL, get(Opcode))
.addReg(SrcReg)
- .addImm(FrameIndex);
+ .addFrameIndex(FrameIndex)
+ // Place-holder registers, these will be filled in by
+ // SIPrepareScratchRegs.
+ .addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Undef)
+ .addReg(AMDGPU::SGPR0, RegState::Undef);
} else {
- llvm_unreachable("VGPR spilling not supported");
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
+ " spill register");
+ BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
+ .addReg(SrcReg);
}
}
@@ -242,55 +490,143 @@ void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
- SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+ const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+ MachineFrameInfo *FrameInfo = MF->getFrameInfo();
DebugLoc DL = MBB.findDebugLoc(MI);
+ int Opcode = -1;
- if (RI.hasVGPRs(RC)) {
- LLVMContext &Ctx = MF->getFunction()->getContext();
- Ctx.emitError("SIInstrInfo::loadRegToStackSlot - Can't retrieve spilled VGPR!");
- BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
- .addImm(0);
- } else if (RI.isSGPRClass(RC)){
- unsigned Opcode;
+ if (RI.isSGPRClass(RC)){
switch(RC->getSize() * 8) {
- case 32: Opcode = AMDGPU::SI_SPILL_S32_RESTORE; break;
- case 64: Opcode = AMDGPU::SI_SPILL_S64_RESTORE; break;
- case 128: Opcode = AMDGPU::SI_SPILL_S128_RESTORE; break;
- case 256: Opcode = AMDGPU::SI_SPILL_S256_RESTORE; break;
- case 512: Opcode = AMDGPU::SI_SPILL_S512_RESTORE; break;
- default: llvm_unreachable("Cannot spill register class");
+ case 32: Opcode = AMDGPU::SI_SPILL_S32_RESTORE; break;
+ case 64: Opcode = AMDGPU::SI_SPILL_S64_RESTORE; break;
+ case 128: Opcode = AMDGPU::SI_SPILL_S128_RESTORE; break;
+ case 256: Opcode = AMDGPU::SI_SPILL_S256_RESTORE; break;
+ case 512: Opcode = AMDGPU::SI_SPILL_S512_RESTORE; break;
}
+ } else if(RI.hasVGPRs(RC) && ST.isVGPRSpillingEnabled(MFI)) {
+ switch(RC->getSize() * 8) {
+ case 32: Opcode = AMDGPU::SI_SPILL_V32_RESTORE; break;
+ case 64: Opcode = AMDGPU::SI_SPILL_V64_RESTORE; break;
+ case 96: Opcode = AMDGPU::SI_SPILL_V96_RESTORE; break;
+ case 128: Opcode = AMDGPU::SI_SPILL_V128_RESTORE; break;
+ case 256: Opcode = AMDGPU::SI_SPILL_V256_RESTORE; break;
+ case 512: Opcode = AMDGPU::SI_SPILL_V512_RESTORE; break;
+ }
+ }
- SIMachineFunctionInfo::SpilledReg Spill =
- MFI->SpillTracker.getSpilledReg(FrameIndex);
-
+ if (Opcode != -1) {
+ FrameInfo->setObjectAlignment(FrameIndex, 4);
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
- .addReg(Spill.VGPR)
- .addImm(FrameIndex);
+ .addFrameIndex(FrameIndex)
+ // Place-holder registers, these will be filled in by
+ // SIPrepareScratchRegs.
+ .addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Undef)
+ .addReg(AMDGPU::SGPR0, RegState::Undef);
+
} else {
- llvm_unreachable("VGPR spilling not supported");
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
+ " restore register");
+ BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
}
}
-static unsigned getNumSubRegsForSpillOp(unsigned Op) {
-
- switch (Op) {
- case AMDGPU::SI_SPILL_S512_SAVE:
- case AMDGPU::SI_SPILL_S512_RESTORE:
- return 16;
- case AMDGPU::SI_SPILL_S256_SAVE:
- case AMDGPU::SI_SPILL_S256_RESTORE:
- return 8;
- case AMDGPU::SI_SPILL_S128_SAVE:
- case AMDGPU::SI_SPILL_S128_RESTORE:
- return 4;
- case AMDGPU::SI_SPILL_S64_SAVE:
- case AMDGPU::SI_SPILL_S64_RESTORE:
- return 2;
- case AMDGPU::SI_SPILL_S32_RESTORE:
- return 1;
- default: llvm_unreachable("Invalid spill opcode");
+/// \param @Offset Offset in bytes of the FrameIndex being spilled
+unsigned SIInstrInfo::calculateLDSSpillAddress(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ RegScavenger *RS, unsigned TmpReg,
+ unsigned FrameOffset,
+ unsigned Size) const {
+ MachineFunction *MF = MBB.getParent();
+ SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+ const AMDGPUSubtarget &ST = MF->getTarget().getSubtarget<AMDGPUSubtarget>();
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo*>(ST.getRegisterInfo());
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
+ unsigned WavefrontSize = ST.getWavefrontSize();
+
+ unsigned TIDReg = MFI->getTIDReg();
+ if (!MFI->hasCalculatedTID()) {
+ MachineBasicBlock &Entry = MBB.getParent()->front();
+ MachineBasicBlock::iterator Insert = Entry.front();
+ DebugLoc DL = Insert->getDebugLoc();
+
+ TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
+ if (TIDReg == AMDGPU::NoRegister)
+ return TIDReg;
+
+
+ if (MFI->getShaderType() == ShaderType::COMPUTE &&
+ WorkGroupSize > WavefrontSize) {
+
+ unsigned TIDIGXReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::TIDIG_X);
+ unsigned TIDIGYReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::TIDIG_Y);
+ unsigned TIDIGZReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::TIDIG_Z);
+ unsigned InputPtrReg =
+ TRI->getPreloadedValue(*MF, SIRegisterInfo::INPUT_PTR);
+ static const unsigned TIDIGRegs[3] = {
+ TIDIGXReg, TIDIGYReg, TIDIGZReg
+ };
+ for (unsigned Reg : TIDIGRegs) {
+ if (!Entry.isLiveIn(Reg))
+ Entry.addLiveIn(Reg);
+ }
+
+ RS->enterBasicBlock(&Entry);
+ unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
+ unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
+ BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
+ .addReg(InputPtrReg)
+ .addImm(SI::KernelInputOffsets::NGROUPS_Z);
+ BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
+ .addReg(InputPtrReg)
+ .addImm(SI::KernelInputOffsets::NGROUPS_Y);
+
+ // NGROUPS.X * NGROUPS.Y
+ BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
+ .addReg(STmp1)
+ .addReg(STmp0);
+ // (NGROUPS.X * NGROUPS.Y) * TIDIG.X
+ BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
+ .addReg(STmp1)
+ .addReg(TIDIGXReg);
+ // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
+ BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
+ .addReg(STmp0)
+ .addReg(TIDIGYReg)
+ .addReg(TIDReg);
+ // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
+ BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
+ .addReg(TIDReg)
+ .addReg(TIDIGZReg);
+ } else {
+ // Get the wave id
+ BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
+ TIDReg)
+ .addImm(-1)
+ .addImm(0);
+
+ BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
+ TIDReg)
+ .addImm(-1)
+ .addReg(TIDReg);
+ }
+
+ BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
+ TIDReg)
+ .addImm(2)
+ .addReg(TIDReg);
+ MFI->setTIDReg(TIDReg);
}
+
+ // Add FrameIndex to LDS offset
+ unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
+ .addImm(LDSOffset)
+ .addReg(TIDReg);
+
+ return TmpReg;
}
void SIInstrInfo::insertNOPs(MachineBasicBlock::iterator MI,
@@ -308,59 +644,11 @@ void SIInstrInfo::insertNOPs(MachineBasicBlock::iterator MI,
}
bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
- SIMachineFunctionInfo *MFI =
- MI->getParent()->getParent()->getInfo<SIMachineFunctionInfo>();
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MBB.findDebugLoc(MI);
switch (MI->getOpcode()) {
default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
- // SGPR register spill
- case AMDGPU::SI_SPILL_S512_SAVE:
- case AMDGPU::SI_SPILL_S256_SAVE:
- case AMDGPU::SI_SPILL_S128_SAVE:
- case AMDGPU::SI_SPILL_S64_SAVE: {
- unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
- unsigned FrameIndex = MI->getOperand(2).getImm();
-
- for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
- SIMachineFunctionInfo::SpilledReg Spill;
- unsigned SubReg = RI.getPhysRegSubReg(MI->getOperand(1).getReg(),
- &AMDGPU::SGPR_32RegClass, i);
- Spill = MFI->SpillTracker.getSpilledReg(FrameIndex);
-
- BuildMI(MBB, MI, DL, get(AMDGPU::V_WRITELANE_B32),
- MI->getOperand(0).getReg())
- .addReg(SubReg)
- .addImm(Spill.Lane + i);
- }
- MI->eraseFromParent();
- break;
- }
-
- // SGPR register restore
- case AMDGPU::SI_SPILL_S512_RESTORE:
- case AMDGPU::SI_SPILL_S256_RESTORE:
- case AMDGPU::SI_SPILL_S128_RESTORE:
- case AMDGPU::SI_SPILL_S64_RESTORE:
- case AMDGPU::SI_SPILL_S32_RESTORE: {
- unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
-
- for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
- SIMachineFunctionInfo::SpilledReg Spill;
- unsigned FrameIndex = MI->getOperand(2).getImm();
- unsigned SubReg = RI.getPhysRegSubReg(MI->getOperand(0).getReg(),
- &AMDGPU::SGPR_32RegClass, i);
- Spill = MFI->SpillTracker.getSpilledReg(FrameIndex);
-
- BuildMI(MBB, MI, DL, get(AMDGPU::V_READLANE_B32), SubReg)
- .addReg(MI->getOperand(1).getReg())
- .addImm(Spill.Lane + i);
- }
- insertNOPs(MI, 3);
- MI->eraseFromParent();
- break;
- }
case AMDGPU::SI_CONSTDATA_PTR: {
unsigned Reg = MI->getOperand(0).getReg();
unsigned RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
@@ -369,7 +657,7 @@ bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
BuildMI(MBB, MI, DL, get(AMDGPU::S_GETPC_B64), Reg);
// Add 32-bit offset from this instruction to the start of the constant data.
- BuildMI(MBB, MI, DL, get(AMDGPU::S_ADD_I32), RegLo)
+ BuildMI(MBB, MI, DL, get(AMDGPU::S_ADD_U32), RegLo)
.addReg(RegLo)
.addTargetIndex(AMDGPU::TI_CONSTDATA_START)
.addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit);
@@ -381,6 +669,39 @@ bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
MI->eraseFromParent();
break;
}
+ case AMDGPU::SGPR_USE:
+ // This is just a placeholder for register allocation.
+ MI->eraseFromParent();
+ break;
+
+ case AMDGPU::V_MOV_B64_PSEUDO: {
+ unsigned Dst = MI->getOperand(0).getReg();
+ unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
+ unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
+
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ // FIXME: Will this work for 64-bit floating point immediates?
+ assert(!SrcOp.isFPImm());
+ if (SrcOp.isImm()) {
+ APInt Imm(64, SrcOp.getImm());
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
+ .addImm(Imm.getLoBits(32).getZExtValue())
+ .addReg(Dst, RegState::Implicit);
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
+ .addImm(Imm.getHiBits(32).getZExtValue())
+ .addReg(Dst, RegState::Implicit);
+ } else {
+ assert(SrcOp.isReg());
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
+ .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
+ .addReg(Dst, RegState::Implicit);
+ BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
+ .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
+ .addReg(Dst, RegState::Implicit);
+ }
+ MI->eraseFromParent();
+ break;
+ }
}
return true;
}
@@ -388,35 +709,66 @@ bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
- MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
- if (MI->getNumOperands() < 3 || !MI->getOperand(1).isReg())
+ if (MI->getNumOperands() < 3)
+ return nullptr;
+
+ int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::src0);
+ assert(Src0Idx != -1 && "Should always have src0 operand");
+
+ MachineOperand &Src0 = MI->getOperand(Src0Idx);
+ if (!Src0.isReg())
return nullptr;
- // Cannot commute VOP2 if src0 is SGPR.
- if (isVOP2(MI->getOpcode()) && MI->getOperand(1).isReg() &&
- RI.isSGPRClass(MRI.getRegClass(MI->getOperand(1).getReg())))
- return nullptr;
+ int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
+ AMDGPU::OpName::src1);
+ if (Src1Idx == -1)
+ return nullptr;
- if (!MI->getOperand(2).isReg()) {
- // XXX: Commute instructions with FPImm operands
- if (NewMI || MI->getOperand(2).isFPImm() ||
+ MachineOperand &Src1 = MI->getOperand(Src1Idx);
+
+ // Make sure it's legal to commute operands for VOP2.
+ if (isVOP2(MI->getOpcode()) &&
+ (!isOperandLegal(MI, Src0Idx, &Src1) ||
+ !isOperandLegal(MI, Src1Idx, &Src0))) {
+ return nullptr;
+ }
+
+ if (!Src1.isReg()) {
+ // Allow commuting instructions with Imm operands.
+ if (NewMI || !Src1.isImm() ||
(!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))) {
return nullptr;
}
- // XXX: Commute VOP3 instructions with abs and neg set.
- if (isVOP3(MI->getOpcode()) &&
- (MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(),
- AMDGPU::OpName::abs)).getImm() ||
- MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(),
- AMDGPU::OpName::neg)).getImm()))
- return nullptr;
+ // Be sure to copy the source modifiers to the right place.
+ if (MachineOperand *Src0Mods
+ = getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) {
+ MachineOperand *Src1Mods
+ = getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers);
+
+ int Src0ModsVal = Src0Mods->getImm();
+ if (!Src1Mods && Src0ModsVal != 0)
+ return nullptr;
+
+ // XXX - This assert might be a lie. It might be useful to have a neg
+ // modifier with 0.0.
+ int Src1ModsVal = Src1Mods->getImm();
+ assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");
- unsigned Reg = MI->getOperand(1).getReg();
- unsigned SubReg = MI->getOperand(1).getSubReg();
- MI->getOperand(1).ChangeToImmediate(MI->getOperand(2).getImm());
- MI->getOperand(2).ChangeToRegister(Reg, false);
- MI->getOperand(2).setSubReg(SubReg);
+ Src1Mods->setImm(Src0ModsVal);
+ Src0Mods->setImm(Src1ModsVal);
+ }
+
+ unsigned Reg = Src0.getReg();
+ unsigned SubReg = Src0.getSubReg();
+ if (Src1.isImm())
+ Src0.ChangeToImmediate(Src1.getImm());
+ else
+ llvm_unreachable("Should only have immediates");
+
+ Src1.ChangeToRegister(Reg, false);
+ Src1.setSubReg(SubReg);
} else {
MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
}
@@ -427,6 +779,44 @@ MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
return MI;
}
+// This needs to be implemented because the source modifiers may be inserted
+// between the true commutable operands, and the base
+// TargetInstrInfo::commuteInstruction uses it.
+bool SIInstrInfo::findCommutedOpIndices(MachineInstr *MI,
+ unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isCommutable())
+ return false;
+
+ unsigned Opc = MI->getOpcode();
+ int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
+ if (Src0Idx == -1)
+ return false;
+
+ // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
+ // immediate.
+ if (!MI->getOperand(Src0Idx).isReg())
+ return false;
+
+ int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
+ if (Src1Idx == -1)
+ return false;
+
+ if (!MI->getOperand(Src1Idx).isReg())
+ return false;
+
+ // If any source modifiers are set, the generic instruction commuting won't
+ // understand how to copy the source modifiers.
+ if (hasModifiersSet(*MI, AMDGPU::OpName::src0_modifiers) ||
+ hasModifiersSet(*MI, AMDGPU::OpName::src1_modifiers))
+ return false;
+
+ SrcOpIdx1 = Src0Idx;
+ SrcOpIdx2 = Src1Idx;
+ return true;
+}
+
MachineInstr *SIInstrInfo::buildMovInstr(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned DstReg,
@@ -463,51 +853,106 @@ SIInstrInfo::isTriviallyReMaterializable(const MachineInstr *MI,
}
}
-namespace llvm {
-namespace AMDGPU {
-// Helper function generated by tablegen. We are wrapping this with
-// an SIInstrInfo function that reutrns bool rather than int.
-int isDS(uint16_t Opcode);
-}
+static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
+ int WidthB, int OffsetB) {
+ int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
+ int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
+ int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
+ return LowOffset + LowWidth <= HighOffset;
}
-bool SIInstrInfo::isDS(uint16_t Opcode) const {
- return ::AMDGPU::isDS(Opcode) != -1;
-}
+bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr *MIa,
+ MachineInstr *MIb) const {
+ unsigned BaseReg0, Offset0;
+ unsigned BaseReg1, Offset1;
+
+ if (getLdStBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
+ getLdStBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
+ assert(MIa->hasOneMemOperand() && MIb->hasOneMemOperand() &&
+ "read2 / write2 not expected here yet");
+ unsigned Width0 = (*MIa->memoperands_begin())->getSize();
+ unsigned Width1 = (*MIb->memoperands_begin())->getSize();
+ if (BaseReg0 == BaseReg1 &&
+ offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
+ return true;
+ }
+ }
-int SIInstrInfo::isMIMG(uint16_t Opcode) const {
- return get(Opcode).TSFlags & SIInstrFlags::MIMG;
+ return false;
}
-int SIInstrInfo::isSMRD(uint16_t Opcode) const {
- return get(Opcode).TSFlags & SIInstrFlags::SMRD;
-}
+bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
+ MachineInstr *MIb,
+ AliasAnalysis *AA) const {
+ unsigned Opc0 = MIa->getOpcode();
+ unsigned Opc1 = MIb->getOpcode();
-bool SIInstrInfo::isVOP1(uint16_t Opcode) const {
- return get(Opcode).TSFlags & SIInstrFlags::VOP1;
-}
+ assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
+ "MIa must load from or modify a memory location");
+ assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
+ "MIb must load from or modify a memory location");
-bool SIInstrInfo::isVOP2(uint16_t Opcode) const {
- return get(Opcode).TSFlags & SIInstrFlags::VOP2;
-}
+ if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects())
+ return false;
-bool SIInstrInfo::isVOP3(uint16_t Opcode) const {
- return get(Opcode).TSFlags & SIInstrFlags::VOP3;
-}
+ // XXX - Can we relax this between address spaces?
+ if (MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
+ return false;
-bool SIInstrInfo::isVOPC(uint16_t Opcode) const {
- return get(Opcode).TSFlags & SIInstrFlags::VOPC;
-}
+ // TODO: Should we check the address space from the MachineMemOperand? That
+ // would allow us to distinguish objects we know don't alias based on the
+ // underlying addres space, even if it was lowered to a different one,
+ // e.g. private accesses lowered to use MUBUF instructions on a scratch
+ // buffer.
+ if (isDS(Opc0)) {
+ if (isDS(Opc1))
+ return checkInstOffsetsDoNotOverlap(MIa, MIb);
+
+ return !isFLAT(Opc1);
+ }
+
+ if (isMUBUF(Opc0) || isMTBUF(Opc0)) {
+ if (isMUBUF(Opc1) || isMTBUF(Opc1))
+ return checkInstOffsetsDoNotOverlap(MIa, MIb);
-bool SIInstrInfo::isSALUInstr(const MachineInstr &MI) const {
- return get(MI.getOpcode()).TSFlags & SIInstrFlags::SALU;
+ return !isFLAT(Opc1) && !isSMRD(Opc1);
+ }
+
+ if (isSMRD(Opc0)) {
+ if (isSMRD(Opc1))
+ return checkInstOffsetsDoNotOverlap(MIa, MIb);
+
+ return !isFLAT(Opc1) && !isMUBUF(Opc0) && !isMTBUF(Opc0);
+ }
+
+ if (isFLAT(Opc0)) {
+ if (isFLAT(Opc1))
+ return checkInstOffsetsDoNotOverlap(MIa, MIb);
+
+ return false;
+ }
+
+ return false;
}
bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
- int32_t Val = Imm.getSExtValue();
- if (Val >= -16 && Val <= 64)
+ int64_t SVal = Imm.getSExtValue();
+ if (SVal >= -16 && SVal <= 64)
return true;
+ if (Imm.getBitWidth() == 64) {
+ uint64_t Val = Imm.getZExtValue();
+ return (DoubleToBits(0.0) == Val) ||
+ (DoubleToBits(1.0) == Val) ||
+ (DoubleToBits(-1.0) == Val) ||
+ (DoubleToBits(0.5) == Val) ||
+ (DoubleToBits(-0.5) == Val) ||
+ (DoubleToBits(2.0) == Val) ||
+ (DoubleToBits(-2.0) == Val) ||
+ (DoubleToBits(4.0) == Val) ||
+ (DoubleToBits(-4.0) == Val);
+ }
+
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
@@ -516,32 +961,28 @@ bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
-
- return (APInt::floatToBits(0.0f) == Imm) ||
- (APInt::floatToBits(1.0f) == Imm) ||
- (APInt::floatToBits(-1.0f) == Imm) ||
- (APInt::floatToBits(0.5f) == Imm) ||
- (APInt::floatToBits(-0.5f) == Imm) ||
- (APInt::floatToBits(2.0f) == Imm) ||
- (APInt::floatToBits(-2.0f) == Imm) ||
- (APInt::floatToBits(4.0f) == Imm) ||
- (APInt::floatToBits(-4.0f) == Imm);
+ uint32_t Val = Imm.getZExtValue();
+
+ return (FloatToBits(0.0f) == Val) ||
+ (FloatToBits(1.0f) == Val) ||
+ (FloatToBits(-1.0f) == Val) ||
+ (FloatToBits(0.5f) == Val) ||
+ (FloatToBits(-0.5f) == Val) ||
+ (FloatToBits(2.0f) == Val) ||
+ (FloatToBits(-2.0f) == Val) ||
+ (FloatToBits(4.0f) == Val) ||
+ (FloatToBits(-4.0f) == Val);
}
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO) const {
if (MO.isImm())
return isInlineConstant(APInt(32, MO.getImm(), true));
- if (MO.isFPImm()) {
- APFloat FpImm = MO.getFPImm()->getValueAPF();
- return isInlineConstant(FpImm.bitcastToAPInt());
- }
-
return false;
}
bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO) const {
- return (MO.isImm() || MO.isFPImm()) && !isInlineConstant(MO);
+ return MO.isImm() && !isInlineConstant(MO);
}
static bool compareMachineOp(const MachineOperand &Op0,
@@ -554,8 +995,6 @@ static bool compareMachineOp(const MachineOperand &Op0,
return Op0.getReg() == Op1.getReg();
case MachineOperand::MO_Immediate:
return Op0.getImm() == Op1.getImm();
- case MachineOperand::MO_FPImmediate:
- return Op0.getFPImm() == Op1.getFPImm();
default:
llvm_unreachable("Didn't expect to be comparing these operand types");
}
@@ -565,7 +1004,7 @@ bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
const MachineOperand &MO) const {
const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo];
- assert(MO.isImm() || MO.isFPImm());
+ assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
return true;
@@ -573,16 +1012,95 @@ bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
if (OpInfo.RegClass < 0)
return false;
- return RI.regClassCanUseImmediate(OpInfo.RegClass);
+ if (isLiteralConstant(MO))
+ return RI.opCanUseLiteralConstant(OpInfo.OperandType);
+
+ return RI.opCanUseInlineConstant(OpInfo.OperandType);
+}
+
+bool SIInstrInfo::canFoldOffset(unsigned OffsetSize, unsigned AS) const {
+ switch (AS) {
+ case AMDGPUAS::GLOBAL_ADDRESS: {
+ // MUBUF instructions a 12-bit offset in bytes.
+ return isUInt<12>(OffsetSize);
+ }
+ case AMDGPUAS::CONSTANT_ADDRESS: {
+ // SMRD instructions have an 8-bit offset in dwords on SI and
+ // a 20-bit offset in bytes on VI.
+ if (RI.ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return isUInt<20>(OffsetSize);
+ else
+ return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
+ }
+ case AMDGPUAS::LOCAL_ADDRESS:
+ case AMDGPUAS::REGION_ADDRESS: {
+ // The single offset versions have a 16-bit offset in bytes.
+ return isUInt<16>(OffsetSize);
+ }
+ case AMDGPUAS::PRIVATE_ADDRESS:
+ // Indirect register addressing does not use any offsets.
+ default:
+ return 0;
+ }
}
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
- return AMDGPU::getVOPe32(Opcode) != -1;
+ int Op32 = AMDGPU::getVOPe32(Opcode);
+ if (Op32 == -1)
+ return false;
+
+ return pseudoToMCOpcode(Op32) != -1;
+}
+
+bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
+ // The src0_modifier operand is present on all instructions
+ // that have modifiers.
+
+ return AMDGPU::getNamedOperandIdx(Opcode,
+ AMDGPU::OpName::src0_modifiers) != -1;
+}
+
+bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
+ unsigned OpName) const {
+ const MachineOperand *Mods = getNamedOperand(MI, OpName);
+ return Mods && Mods->getImm();
+}
+
+bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
+ const MachineOperand &MO) const {
+ // Literal constants use the constant bus.
+ if (isLiteralConstant(MO))
+ return true;
+
+ if (!MO.isReg() || !MO.isUse())
+ return false;
+
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
+
+ // FLAT_SCR is just an SGPR pair.
+ if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
+ return true;
+
+ // EXEC register uses the constant bus.
+ if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
+ return true;
+
+ // SGPRs use the constant bus
+ if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC ||
+ (!MO.isImplicit() &&
+ (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
+ AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) {
+ return true;
+ }
+
+ return false;
}
bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
StringRef &ErrInfo) const {
uint16_t Opcode = MI->getOpcode();
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
@@ -596,23 +1114,33 @@ bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
}
// Make sure the register classes are correct
- for (unsigned i = 0, e = Desc.getNumOperands(); i != e; ++i) {
+ for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
+ if (MI->getOperand(i).isFPImm()) {
+ ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
+ "all fp values to integers.";
+ return false;
+ }
+
switch (Desc.OpInfo[i].OperandType) {
- case MCOI::OPERAND_REGISTER: {
- int RegClass = Desc.OpInfo[i].RegClass;
- if (!RI.regClassCanUseImmediate(RegClass) &&
- (MI->getOperand(i).isImm() || MI->getOperand(i).isFPImm())) {
- ErrInfo = "Expected register, but got immediate";
+ case MCOI::OPERAND_REGISTER:
+ if (MI->getOperand(i).isImm() || MI->getOperand(i).isFPImm()) {
+ ErrInfo = "Illegal immediate value for operand.";
+ return false;
+ }
+ break;
+ case AMDGPU::OPERAND_REG_IMM32:
+ break;
+ case AMDGPU::OPERAND_REG_INLINE_C:
+ if (MI->getOperand(i).isImm() && !isInlineConstant(MI->getOperand(i))) {
+ ErrInfo = "Illegal immediate value for operand.";
return false;
}
- }
break;
case MCOI::OPERAND_IMMEDIATE:
// Check if this operand is an immediate.
// FrameIndex operands will be replaced by immediates, so they are
// allowed.
- if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFPImm() &&
- !MI->getOperand(i).isFI()) {
+ if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFI()) {
ErrInfo = "Expected immediate, but got non-immediate";
return false;
}
@@ -641,31 +1169,27 @@ bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
// Verify VOP*
if (isVOP1(Opcode) || isVOP2(Opcode) || isVOP3(Opcode) || isVOPC(Opcode)) {
+ // Only look at the true operands. Only a real operand can use the constant
+ // bus, and we don't want to check pseudo-operands like the source modifier
+ // flags.
+ const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
+
unsigned ConstantBusCount = 0;
unsigned SGPRUsed = AMDGPU::NoRegister;
- for (int i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.isUse() &&
- !TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
-
- // EXEC register uses the constant bus.
- if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
- ++ConstantBusCount;
+ for (int OpIdx : OpIndices) {
+ if (OpIdx == -1)
+ break;
- // SGPRs use the constant bus
- if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC ||
- (!MO.isImplicit() &&
- (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
- AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) {
- if (SGPRUsed != MO.getReg()) {
+ const MachineOperand &MO = MI->getOperand(OpIdx);
+ if (usesConstantBus(MRI, MO)) {
+ if (MO.isReg()) {
+ if (MO.getReg() != SGPRUsed)
++ConstantBusCount;
- SGPRUsed = MO.getReg();
- }
+ SGPRUsed = MO.getReg();
+ } else {
+ ++ConstantBusCount;
}
}
- // Literal constants use the constant bus.
- if (isLiteralConstant(MO))
- ++ConstantBusCount;
}
if (ConstantBusCount > 1) {
ErrInfo = "VOP* instruction uses the constant bus more than once";
@@ -676,7 +1200,7 @@ bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
// Verify SRC1 for VOP2 and VOPC
if (Src1Idx != -1 && (isVOP2(Opcode) || isVOPC(Opcode))) {
const MachineOperand &Src1 = MI->getOperand(Src1Idx);
- if (Src1.isImm() || Src1.isFPImm()) {
+ if (Src1.isImm()) {
ErrInfo = "VOP[2C] src1 cannot be an immediate.";
return false;
}
@@ -701,11 +1225,9 @@ bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
// Verify misc. restrictions on specific instructions.
if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
- MI->dump();
-
- const MachineOperand &Src0 = MI->getOperand(2);
- const MachineOperand &Src1 = MI->getOperand(3);
- const MachineOperand &Src2 = MI->getOperand(4);
+ const MachineOperand &Src0 = MI->getOperand(Src0Idx);
+ const MachineOperand &Src1 = MI->getOperand(Src1Idx);
+ const MachineOperand &Src2 = MI->getOperand(Src2Idx);
if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
if (!compareMachineOp(Src0, Src1) &&
!compareMachineOp(Src0, Src2)) {
@@ -728,10 +1250,13 @@ unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
case AMDGPU::S_MOV_B32:
return MI.getOperand(1).isReg() ?
AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
- case AMDGPU::S_ADD_I32: return AMDGPU::V_ADD_I32_e32;
+ case AMDGPU::S_ADD_I32:
+ case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
- case AMDGPU::S_SUB_I32: return AMDGPU::V_SUB_I32_e32;
+ case AMDGPU::S_SUB_I32:
+ case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
+ case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
@@ -764,7 +1289,7 @@ unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
case AMDGPU::S_LOAD_DWORDX2_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
case AMDGPU::S_LOAD_DWORDX4_IMM:
case AMDGPU::S_LOAD_DWORDX4_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
- case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e32;
+ case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
}
@@ -779,8 +1304,13 @@ const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
const MCInstrDesc &Desc = get(MI.getOpcode());
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
- Desc.OpInfo[OpNo].RegClass == -1)
- return MRI.getRegClass(MI.getOperand(OpNo).getReg());
+ Desc.OpInfo[OpNo].RegClass == -1) {
+ unsigned Reg = MI.getOperand(OpNo).getReg();
+
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ return MRI.getRegClass(Reg);
+ return RI.getRegClass(Reg);
+ }
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
return RI.getRegClass(RCID);
@@ -800,21 +1330,28 @@ bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
MachineBasicBlock::iterator I = MI;
+ MachineBasicBlock *MBB = MI->getParent();
MachineOperand &MO = MI->getOperand(OpIdx);
- MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
const TargetRegisterClass *RC = RI.getRegClass(RCID);
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
- if (MO.isReg()) {
+ if (MO.isReg())
Opcode = AMDGPU::COPY;
- } else if (RI.isSGPRClass(RC)) {
+ else if (RI.isSGPRClass(RC))
Opcode = AMDGPU::S_MOV_B32;
- }
+
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
+ if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
+ VRC = &AMDGPU::VReg_64RegClass;
+ else
+ VRC = &AMDGPU::VGPR_32RegClass;
+
unsigned Reg = MRI.createVirtualRegister(VRC);
- BuildMI(*MI->getParent(), I, MI->getParent()->findDebugLoc(I), get(Opcode),
- Reg).addOperand(MO);
+ DebugLoc DL = MBB->findDebugLoc(I);
+ BuildMI(*MI->getParent(), I, DL, get(Opcode), Reg)
+ .addOperand(MO);
MO.ChangeToRegister(Reg, false);
}
@@ -834,13 +1371,15 @@ unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
// value so we don't need to worry about merging its subreg index with the
// SubIdx passed to this function. The register coalescer should be able to
// eliminate this extra copy.
- BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
- NewSuperReg)
- .addOperand(SuperReg);
+ MachineBasicBlock *MBB = MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
+ .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
+
+ BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
+ .addReg(NewSuperReg, 0, SubIdx);
- BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(TargetOpcode::COPY),
- SubReg)
- .addReg(NewSuperReg, 0, SubIdx);
return SubReg;
}
@@ -896,8 +1435,68 @@ unsigned SIInstrInfo::split64BitImm(SmallVectorImpl<MachineInstr *> &Worklist,
return Dst;
}
+// Change the order of operands from (0, 1, 2) to (0, 2, 1)
+void SIInstrInfo::swapOperands(MachineBasicBlock::iterator Inst) const {
+ assert(Inst->getNumExplicitOperands() == 3);
+ MachineOperand Op1 = Inst->getOperand(1);
+ Inst->RemoveOperand(1);
+ Inst->addOperand(Op1);
+}
+
+bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx,
+ const MachineOperand *MO) const {
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ const MCInstrDesc &InstDesc = get(MI->getOpcode());
+ const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
+ const TargetRegisterClass *DefinedRC =
+ OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
+ if (!MO)
+ MO = &MI->getOperand(OpIdx);
+
+ if (isVALU(InstDesc.Opcode) && usesConstantBus(MRI, *MO)) {
+ unsigned SGPRUsed =
+ MO->isReg() ? MO->getReg() : (unsigned)AMDGPU::NoRegister;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ if (i == OpIdx)
+ continue;
+ if (usesConstantBus(MRI, MI->getOperand(i)) &&
+ MI->getOperand(i).isReg() && MI->getOperand(i).getReg() != SGPRUsed) {
+ return false;
+ }
+ }
+ }
+
+ if (MO->isReg()) {
+ assert(DefinedRC);
+ const TargetRegisterClass *RC = MRI.getRegClass(MO->getReg());
+
+ // In order to be legal, the common sub-class must be equal to the
+ // class of the current operand. For example:
+ //
+ // v_mov_b32 s0 ; Operand defined as vsrc_32
+ // ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
+ //
+ // s_sendmsg 0, s0 ; Operand defined as m0reg
+ // ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
+
+ return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
+ }
+
+
+ // Handle non-register types that are treated like immediates.
+ assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());
+
+ if (!DefinedRC) {
+ // This operand expects an immediate.
+ return true;
+ }
+
+ return isImmOperandLegal(MI, OpIdx, *MO);
+}
+
void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
@@ -907,45 +1506,40 @@ void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
// Legalize VOP2
if (isVOP2(MI->getOpcode()) && Src1Idx != -1) {
- MachineOperand &Src0 = MI->getOperand(Src0Idx);
- MachineOperand &Src1 = MI->getOperand(Src1Idx);
-
- // If the instruction implicitly reads VCC, we can't have any SGPR operands,
- // so move any.
- bool ReadsVCC = MI->readsRegister(AMDGPU::VCC, &RI);
- if (ReadsVCC && Src0.isReg() &&
- RI.isSGPRClass(MRI.getRegClass(Src0.getReg()))) {
+ // Legalize src0
+ if (!isOperandLegal(MI, Src0Idx))
legalizeOpWithMove(MI, Src0Idx);
- return;
- }
- if (ReadsVCC && Src1.isReg() &&
- RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) {
- legalizeOpWithMove(MI, Src1Idx);
+ // Legalize src1
+ if (isOperandLegal(MI, Src1Idx))
return;
- }
- // Legalize VOP2 instructions where src1 is not a VGPR. An SGPR input must
- // be the first operand, and there can only be one.
- if (Src1.isImm() || Src1.isFPImm() ||
- (Src1.isReg() && RI.isSGPRClass(MRI.getRegClass(Src1.getReg())))) {
- if (MI->isCommutable()) {
- if (commuteInstruction(MI))
- return;
- }
- legalizeOpWithMove(MI, Src1Idx);
+ // Usually src0 of VOP2 instructions allow more types of inputs
+ // than src1, so try to commute the instruction to decrease our
+ // chances of having to insert a MOV instruction to legalize src1.
+ if (MI->isCommutable()) {
+ if (commuteInstruction(MI))
+ // If we are successful in commuting, then we know MI is legal, so
+ // we are done.
+ return;
}
+
+ legalizeOpWithMove(MI, Src1Idx);
+ return;
}
// XXX - Do any VOP3 instructions read VCC?
// Legalize VOP3
if (isVOP3(MI->getOpcode())) {
- int VOP3Idx[3] = {Src0Idx, Src1Idx, Src2Idx};
- unsigned SGPRReg = AMDGPU::NoRegister;
+ int VOP3Idx[3] = { Src0Idx, Src1Idx, Src2Idx };
+
+ // Find the one SGPR operand we are allowed to use.
+ unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);
+
for (unsigned i = 0; i < 3; ++i) {
int Idx = VOP3Idx[i];
if (Idx == -1)
- continue;
+ break;
MachineOperand &MO = MI->getOperand(Idx);
if (MO.isReg()) {
@@ -1045,106 +1639,216 @@ void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
// Legalize MUBUF* instructions
// FIXME: If we start using the non-addr64 instructions for compute, we
// may need to legalize them here.
+ int SRsrcIdx =
+ AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
+ if (SRsrcIdx != -1) {
+ // We have an MUBUF instruction
+ MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx);
+ unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass;
+ if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
+ RI.getRegClass(SRsrcRC))) {
+ // The operands are legal.
+ // FIXME: We may need to legalize operands besided srsrc.
+ return;
+ }
- int SRsrcIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
- AMDGPU::OpName::srsrc);
- int VAddrIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
- AMDGPU::OpName::vaddr);
- if (SRsrcIdx != -1 && VAddrIdx != -1) {
- const TargetRegisterClass *VAddrRC =
- RI.getRegClass(get(MI->getOpcode()).OpInfo[VAddrIdx].RegClass);
-
- if(VAddrRC->getSize() == 8 &&
- MRI.getRegClass(MI->getOperand(SRsrcIdx).getReg()) != VAddrRC) {
- // We have a MUBUF instruction that uses a 64-bit vaddr register and
- // srsrc has the incorrect register class. In order to fix this, we
- // need to extract the pointer from the resource descriptor (srsrc),
- // add it to the value of vadd, then store the result in the vaddr
- // operand. Then, we need to set the pointer field of the resource
- // descriptor to zero.
+ MachineBasicBlock &MBB = *MI->getParent();
+ // Extract the the ptr from the resource descriptor.
- MachineBasicBlock &MBB = *MI->getParent();
- MachineOperand &SRsrcOp = MI->getOperand(SRsrcIdx);
- MachineOperand &VAddrOp = MI->getOperand(VAddrIdx);
- unsigned SRsrcPtrLo, SRsrcPtrHi, VAddrLo, VAddrHi;
- unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
- unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
- unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
- unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
- unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
- unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
- unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
-
- // SRsrcPtrLo = srsrc:sub0
- SRsrcPtrLo = buildExtractSubReg(MI, MRI, SRsrcOp,
- &AMDGPU::VReg_128RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
-
- // SRsrcPtrHi = srsrc:sub1
- SRsrcPtrHi = buildExtractSubReg(MI, MRI, SRsrcOp,
- &AMDGPU::VReg_128RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
-
- // VAddrLo = vaddr:sub0
- VAddrLo = buildExtractSubReg(MI, MRI, VAddrOp,
- &AMDGPU::VReg_64RegClass, AMDGPU::sub0, &AMDGPU::VReg_32RegClass);
-
- // VAddrHi = vaddr:sub1
- VAddrHi = buildExtractSubReg(MI, MRI, VAddrOp,
- &AMDGPU::VReg_64RegClass, AMDGPU::sub1, &AMDGPU::VReg_32RegClass);
-
- // NewVaddrLo = SRsrcPtrLo + VAddrLo
+ // SRsrcPtrLo = srsrc:sub0
+ unsigned SRsrcPtrLo = buildExtractSubReg(MI, MRI, *SRsrc,
+ &AMDGPU::VReg_128RegClass, AMDGPU::sub0, &AMDGPU::VGPR_32RegClass);
+
+ // SRsrcPtrHi = srsrc:sub1
+ unsigned SRsrcPtrHi = buildExtractSubReg(MI, MRI, *SRsrc,
+ &AMDGPU::VReg_128RegClass, AMDGPU::sub1, &AMDGPU::VGPR_32RegClass);
+
+ // Create an empty resource descriptor
+ unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
+ unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
+ uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
+
+ // Zero64 = 0
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
+ Zero64)
+ .addImm(0);
+
+ // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
+ SRsrcFormatLo)
+ .addImm(RsrcDataFormat & 0xFFFFFFFF);
+
+ // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
+ SRsrcFormatHi)
+ .addImm(RsrcDataFormat >> 32);
+
+ // NewSRsrc = {Zero64, SRsrcFormat}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
+ NewSRsrc)
+ .addReg(Zero64)
+ .addImm(AMDGPU::sub0_sub1)
+ .addReg(SRsrcFormatLo)
+ .addImm(AMDGPU::sub2)
+ .addReg(SRsrcFormatHi)
+ .addImm(AMDGPU::sub3);
+
+ MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
+ unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
+ unsigned NewVAddrLo;
+ unsigned NewVAddrHi;
+ if (VAddr) {
+ // This is already an ADDR64 instruction so we need to add the pointer
+ // extracted from the resource descriptor to the current value of VAddr.
+ NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+
+ // NewVaddrLo = SRsrcPtrLo + VAddr:sub0
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADD_I32_e32),
NewVAddrLo)
.addReg(SRsrcPtrLo)
- .addReg(VAddrLo)
- .addReg(AMDGPU::VCC, RegState::Define | RegState::Implicit);
+ .addReg(VAddr->getReg(), 0, AMDGPU::sub0)
+ .addReg(AMDGPU::VCC, RegState::ImplicitDefine);
- // NewVaddrHi = SRsrcPtrHi + VAddrHi
+ // NewVaddrHi = SRsrcPtrHi + VAddr:sub1
BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADDC_U32_e32),
NewVAddrHi)
.addReg(SRsrcPtrHi)
- .addReg(VAddrHi)
+ .addReg(VAddr->getReg(), 0, AMDGPU::sub1)
.addReg(AMDGPU::VCC, RegState::ImplicitDefine)
.addReg(AMDGPU::VCC, RegState::Implicit);
- // NewVaddr = {NewVaddrHi, NewVaddrLo}
- BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
- NewVAddr)
- .addReg(NewVAddrLo)
- .addImm(AMDGPU::sub0)
- .addReg(NewVAddrHi)
- .addImm(AMDGPU::sub1);
+ } else {
+ // This instructions is the _OFFSET variant, so we need to convert it to
+ // ADDR64.
+ MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata);
+ MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset);
+ MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset);
+ assert(SOffset->isImm() && SOffset->getImm() == 0 && "Legalizing MUBUF "
+ "with non-zero soffset is not implemented");
+ (void)SOffset;
+
+ // Create the new instruction.
+ unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode());
+ MachineInstr *Addr64 =
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
+ .addOperand(*VData)
+ .addOperand(*SRsrc)
+ .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
+ // This will be replaced later
+ // with the new value of vaddr.
+ .addOperand(*Offset);
+
+ MI->removeFromParent();
+ MI = Addr64;
+
+ NewVAddrLo = SRsrcPtrLo;
+ NewVAddrHi = SRsrcPtrHi;
+ VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
+ SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
+ }
- // Zero64 = 0
- BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
- Zero64)
- .addImm(0);
+ // NewVaddr = {NewVaddrHi, NewVaddrLo}
+ BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
+ NewVAddr)
+ .addReg(NewVAddrLo)
+ .addImm(AMDGPU::sub0)
+ .addReg(NewVAddrHi)
+ .addImm(AMDGPU::sub1);
- // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
- BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
- SRsrcFormatLo)
- .addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
-
- // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
- BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
- SRsrcFormatHi)
- .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
-
- // NewSRsrc = {Zero64, SRsrcFormat}
- BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
- NewSRsrc)
- .addReg(Zero64)
- .addImm(AMDGPU::sub0_sub1)
- .addReg(SRsrcFormatLo)
- .addImm(AMDGPU::sub2)
- .addReg(SRsrcFormatHi)
- .addImm(AMDGPU::sub3);
- // Update the instruction to use NewVaddr
- MI->getOperand(VAddrIdx).setReg(NewVAddr);
- // Update the instruction to use NewSRsrc
- MI->getOperand(SRsrcIdx).setReg(NewSRsrc);
+ // Update the instruction to use NewVaddr
+ VAddr->setReg(NewVAddr);
+ // Update the instruction to use NewSRsrc
+ SRsrc->setReg(NewSRsrc);
+ }
+}
+
+void SIInstrInfo::splitSMRD(MachineInstr *MI,
+ const TargetRegisterClass *HalfRC,
+ unsigned HalfImmOp, unsigned HalfSGPROp,
+ MachineInstr *&Lo, MachineInstr *&Hi) const {
+
+ DebugLoc DL = MI->getDebugLoc();
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ unsigned RegLo = MRI.createVirtualRegister(HalfRC);
+ unsigned RegHi = MRI.createVirtualRegister(HalfRC);
+ unsigned HalfSize = HalfRC->getSize();
+ const MachineOperand *OffOp =
+ getNamedOperand(*MI, AMDGPU::OpName::offset);
+ const MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase);
+
+ // The SMRD has an 8-bit offset in dwords on SI and a 20-bit offset in bytes
+ // on VI.
+ if (OffOp) {
+ bool isVI = RI.ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS;
+ unsigned OffScale = isVI ? 1 : 4;
+ // Handle the _IMM variant
+ unsigned LoOffset = OffOp->getImm() * OffScale;
+ unsigned HiOffset = LoOffset + HalfSize;
+ Lo = BuildMI(*MBB, MI, DL, get(HalfImmOp), RegLo)
+ .addOperand(*SBase)
+ .addImm(LoOffset / OffScale);
+
+ if (!isUInt<20>(HiOffset) || (!isVI && !isUInt<8>(HiOffset / OffScale))) {
+ unsigned OffsetSGPR =
+ MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
+ BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32), OffsetSGPR)
+ .addImm(HiOffset); // The offset in register is in bytes.
+ Hi = BuildMI(*MBB, MI, DL, get(HalfSGPROp), RegHi)
+ .addOperand(*SBase)
+ .addReg(OffsetSGPR);
+ } else {
+ Hi = BuildMI(*MBB, MI, DL, get(HalfImmOp), RegHi)
+ .addOperand(*SBase)
+ .addImm(HiOffset / OffScale);
}
+ } else {
+ // Handle the _SGPR variant
+ MachineOperand *SOff = getNamedOperand(*MI, AMDGPU::OpName::soff);
+ Lo = BuildMI(*MBB, MI, DL, get(HalfSGPROp), RegLo)
+ .addOperand(*SBase)
+ .addOperand(*SOff);
+ unsigned OffsetSGPR = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
+ BuildMI(*MBB, MI, DL, get(AMDGPU::S_ADD_I32), OffsetSGPR)
+ .addOperand(*SOff)
+ .addImm(HalfSize);
+ Hi = BuildMI(*MBB, MI, DL, get(HalfSGPROp))
+ .addOperand(*SBase)
+ .addReg(OffsetSGPR);
}
+
+ unsigned SubLo, SubHi;
+ switch (HalfSize) {
+ case 4:
+ SubLo = AMDGPU::sub0;
+ SubHi = AMDGPU::sub1;
+ break;
+ case 8:
+ SubLo = AMDGPU::sub0_sub1;
+ SubHi = AMDGPU::sub2_sub3;
+ break;
+ case 16:
+ SubLo = AMDGPU::sub0_sub1_sub2_sub3;
+ SubHi = AMDGPU::sub4_sub5_sub6_sub7;
+ break;
+ case 32:
+ SubLo = AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7;
+ SubHi = AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15;
+ break;
+ default:
+ llvm_unreachable("Unhandled HalfSize");
+ }
+
+ BuildMI(*MBB, MI, DL, get(AMDGPU::REG_SEQUENCE))
+ .addOperand(MI->getOperand(0))
+ .addReg(RegLo)
+ .addImm(SubLo)
+ .addReg(RegHi)
+ .addImm(SubHi);
}
void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const {
@@ -1155,7 +1859,7 @@ void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) con
case AMDGPU::S_LOAD_DWORDX2_IMM:
case AMDGPU::S_LOAD_DWORDX2_SGPR:
case AMDGPU::S_LOAD_DWORDX4_IMM:
- case AMDGPU::S_LOAD_DWORDX4_SGPR:
+ case AMDGPU::S_LOAD_DWORDX4_SGPR: {
unsigned NewOpcode = getVALUOp(*MI);
unsigned RegOffset;
unsigned ImmOffset;
@@ -1165,10 +1869,13 @@ void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) con
ImmOffset = 0;
} else {
assert(MI->getOperand(2).isImm());
- // SMRD instructions take a dword offsets and MUBUF instructions
- // take a byte offset.
- ImmOffset = MI->getOperand(2).getImm() << 2;
+ // SMRD instructions take a dword offsets on SI and byte offset on VI
+ // and MUBUF instructions always take a byte offset.
+ ImmOffset = MI->getOperand(2).getImm();
+ if (RI.ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
+ ImmOffset <<= 2;
RegOffset = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+
if (isUInt<12>(ImmOffset)) {
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
RegOffset)
@@ -1186,13 +1893,14 @@ void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) con
unsigned DWord1 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned DWord2 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned DWord3 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
+ uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord1)
.addImm(0);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord2)
- .addImm(AMDGPU::RSRC_DATA_FORMAT & 0xFFFFFFFF);
+ .addImm(RsrcDataFormat & 0xFFFFFFFF);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord3)
- .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
+ .addImm(RsrcDataFormat >> 32);
BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), SRsrc)
.addReg(DWord0)
.addImm(AMDGPU::sub0)
@@ -1202,14 +1910,44 @@ void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) con
.addImm(AMDGPU::sub2)
.addReg(DWord3)
.addImm(AMDGPU::sub3);
- MI->setDesc(get(NewOpcode));
- if (MI->getOperand(2).isReg()) {
- MI->getOperand(2).setReg(MI->getOperand(1).getReg());
- } else {
- MI->getOperand(2).ChangeToRegister(MI->getOperand(1).getReg(), false);
- }
- MI->getOperand(1).setReg(SRsrc);
- MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(ImmOffset));
+ MI->setDesc(get(NewOpcode));
+ if (MI->getOperand(2).isReg()) {
+ MI->getOperand(2).setReg(MI->getOperand(1).getReg());
+ } else {
+ MI->getOperand(2).ChangeToRegister(MI->getOperand(1).getReg(), false);
+ }
+ MI->getOperand(1).setReg(SRsrc);
+ MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(ImmOffset));
+
+ const TargetRegisterClass *NewDstRC =
+ RI.getRegClass(get(NewOpcode).OpInfo[0].RegClass);
+
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
+ MRI.replaceRegWith(DstReg, NewDstReg);
+ break;
+ }
+ case AMDGPU::S_LOAD_DWORDX8_IMM:
+ case AMDGPU::S_LOAD_DWORDX8_SGPR: {
+ MachineInstr *Lo, *Hi;
+ splitSMRD(MI, &AMDGPU::SReg_128RegClass, AMDGPU::S_LOAD_DWORDX4_IMM,
+ AMDGPU::S_LOAD_DWORDX4_SGPR, Lo, Hi);
+ MI->eraseFromParent();
+ moveSMRDToVALU(Lo, MRI);
+ moveSMRDToVALU(Hi, MRI);
+ break;
+ }
+
+ case AMDGPU::S_LOAD_DWORDX16_IMM:
+ case AMDGPU::S_LOAD_DWORDX16_SGPR: {
+ MachineInstr *Lo, *Hi;
+ splitSMRD(MI, &AMDGPU::SReg_256RegClass, AMDGPU::S_LOAD_DWORDX8_IMM,
+ AMDGPU::S_LOAD_DWORDX8_SGPR, Lo, Hi);
+ MI->eraseFromParent();
+ moveSMRDToVALU(Lo, MRI);
+ moveSMRDToVALU(Hi, MRI);
+ break;
+ }
}
}
@@ -1281,8 +2019,32 @@ void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
Inst->eraseFromParent();
continue;
+ case AMDGPU::S_BFE_I64: {
+ splitScalar64BitBFE(Worklist, Inst);
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ case AMDGPU::S_LSHL_B32:
+ if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
+ swapOperands(Inst);
+ }
+ break;
+ case AMDGPU::S_ASHR_I32:
+ if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
+ swapOperands(Inst);
+ }
+ break;
+ case AMDGPU::S_LSHR_B32:
+ if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
+ swapOperands(Inst);
+ }
+ break;
+
case AMDGPU::S_BFE_U64:
- case AMDGPU::S_BFE_I64:
case AMDGPU::S_BFM_B64:
llvm_unreachable("Moving this op to VALU not implemented");
}
@@ -1311,17 +2073,9 @@ void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
// We are converting these to a BFE, so we need to add the missing
// operands for the size and offset.
unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
- Inst->addOperand(Inst->getOperand(1));
- Inst->getOperand(1).ChangeToImmediate(0);
- Inst->addOperand(MachineOperand::CreateImm(0));
- Inst->addOperand(MachineOperand::CreateImm(0));
Inst->addOperand(MachineOperand::CreateImm(0));
Inst->addOperand(MachineOperand::CreateImm(Size));
- // XXX - Other pointless operands. There are 4, but it seems you only need
- // 3 to not hit an assertion later in MCInstLower.
- Inst->addOperand(MachineOperand::CreateImm(0));
- Inst->addOperand(MachineOperand::CreateImm(0));
} else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
// The VALU version adds the second operand to the result, so insert an
// extra 0 operand.
@@ -1340,16 +2094,9 @@ void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
-
Inst->RemoveOperand(2); // Remove old immediate.
- Inst->addOperand(Inst->getOperand(1));
- Inst->getOperand(1).ChangeToImmediate(0);
- Inst->addOperand(MachineOperand::CreateImm(0));
Inst->addOperand(MachineOperand::CreateImm(Offset));
- Inst->addOperand(MachineOperand::CreateImm(0));
Inst->addOperand(MachineOperand::CreateImm(BitWidth));
- Inst->addOperand(MachineOperand::CreateImm(0));
- Inst->addOperand(MachineOperand::CreateImm(0));
}
// Update the destination register class.
@@ -1403,7 +2150,7 @@ unsigned SIInstrInfo::calculateIndirectAddress(unsigned RegIndex,
}
const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
- return &AMDGPU::VReg_32RegClass;
+ return &AMDGPU::VGPR_32RegClass;
}
void SIInstrInfo::splitScalar64BitUnaryOp(
@@ -1533,7 +2280,7 @@ void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist
MachineOperand &Dest = Inst->getOperand(0);
MachineOperand &Src = Inst->getOperand(1);
- const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e32);
+ const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
const TargetRegisterClass *SrcRC = Src.isReg() ?
MRI.getRegClass(Src.getReg()) :
&AMDGPU::SGPR_32RegClass;
@@ -1562,6 +2309,67 @@ void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist
Worklist.push_back(Second);
}
+void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst) const {
+ MachineBasicBlock &MBB = *Inst->getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ MachineBasicBlock::iterator MII = Inst;
+ DebugLoc DL = Inst->getDebugLoc();
+
+ MachineOperand &Dest = Inst->getOperand(0);
+ uint32_t Imm = Inst->getOperand(2).getImm();
+ uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
+ uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
+
+ (void) Offset;
+
+ // Only sext_inreg cases handled.
+ assert(Inst->getOpcode() == AMDGPU::S_BFE_I64 &&
+ BitWidth <= 32 &&
+ Offset == 0 &&
+ "Not implemented");
+
+ if (BitWidth < 32) {
+ unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
+
+ BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
+ .addReg(Inst->getOperand(1).getReg(), 0, AMDGPU::sub0)
+ .addImm(0)
+ .addImm(BitWidth);
+
+ BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
+ .addImm(31)
+ .addReg(MidRegLo);
+
+ BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
+ .addReg(MidRegLo)
+ .addImm(AMDGPU::sub0)
+ .addReg(MidRegHi)
+ .addImm(AMDGPU::sub1);
+
+ MRI.replaceRegWith(Dest.getReg(), ResultReg);
+ return;
+ }
+
+ MachineOperand &Src = Inst->getOperand(1);
+ unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
+ unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
+
+ BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
+ .addImm(31)
+ .addReg(Src.getReg(), 0, AMDGPU::sub0);
+
+ BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
+ .addReg(Src.getReg(), 0, AMDGPU::sub0)
+ .addImm(AMDGPU::sub0)
+ .addReg(TmpReg)
+ .addImm(AMDGPU::sub1);
+
+ MRI.replaceRegWith(Dest.getReg(), ResultReg);
+}
+
void SIInstrInfo::addDescImplicitUseDef(const MCInstrDesc &NewDesc,
MachineInstr *Inst) const {
// Add the implict and explicit register definitions.
@@ -1580,13 +2388,81 @@ void SIInstrInfo::addDescImplicitUseDef(const MCInstrDesc &NewDesc,
}
}
+unsigned SIInstrInfo::findUsedSGPR(const MachineInstr *MI,
+ int OpIndices[3]) const {
+ const MCInstrDesc &Desc = get(MI->getOpcode());
+
+ // Find the one SGPR operand we are allowed to use.
+ unsigned SGPRReg = AMDGPU::NoRegister;
+
+ // First we need to consider the instruction's operand requirements before
+ // legalizing. Some operands are required to be SGPRs, such as implicit uses
+ // of VCC, but we are still bound by the constant bus requirement to only use
+ // one.
+ //
+ // If the operand's class is an SGPR, we can never move it.
+
+ for (const MachineOperand &MO : MI->implicit_operands()) {
+ // We only care about reads.
+ if (MO.isDef())
+ continue;
+
+ if (MO.getReg() == AMDGPU::VCC)
+ return AMDGPU::VCC;
+
+ if (MO.getReg() == AMDGPU::FLAT_SCR)
+ return AMDGPU::FLAT_SCR;
+ }
+
+ unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
+ for (unsigned i = 0; i < 3; ++i) {
+ int Idx = OpIndices[i];
+ if (Idx == -1)
+ break;
+
+ const MachineOperand &MO = MI->getOperand(Idx);
+ if (RI.isSGPRClassID(Desc.OpInfo[Idx].RegClass))
+ SGPRReg = MO.getReg();
+
+ if (MO.isReg() && RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
+ UsedSGPRs[i] = MO.getReg();
+ }
+
+ if (SGPRReg != AMDGPU::NoRegister)
+ return SGPRReg;
+
+ // We don't have a required SGPR operand, so we have a bit more freedom in
+ // selecting operands to move.
+
+ // Try to select the most used SGPR. If an SGPR is equal to one of the
+ // others, we choose that.
+ //
+ // e.g.
+ // V_FMA_F32 v0, s0, s0, s0 -> No moves
+ // V_FMA_F32 v0, s0, s1, s0 -> Move s1
+
+ if (UsedSGPRs[0] != AMDGPU::NoRegister) {
+ if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
+ SGPRReg = UsedSGPRs[0];
+ }
+
+ if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
+ if (UsedSGPRs[1] == UsedSGPRs[2])
+ SGPRReg = UsedSGPRs[1];
+ }
+
+ return SGPRReg;
+}
+
MachineInstrBuilder SIInstrInfo::buildIndirectWrite(
MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg,
unsigned Address, unsigned OffsetReg) const {
const DebugLoc &DL = MBB->findDebugLoc(I);
- unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
+ unsigned IndirectBaseReg = AMDGPU::VGPR_32RegClass.getRegister(
getIndirectIndexBegin(*MBB->getParent()));
return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_DST_V1))
@@ -1604,7 +2480,7 @@ MachineInstrBuilder SIInstrInfo::buildIndirectRead(
unsigned ValueReg,
unsigned Address, unsigned OffsetReg) const {
const DebugLoc &DL = MBB->findDebugLoc(I);
- unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister(
+ unsigned IndirectBaseReg = AMDGPU::VGPR_32RegClass.getRegister(
getIndirectIndexBegin(*MBB->getParent()));
return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_SRC))
@@ -1626,7 +2502,7 @@ void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
for (int Index = Begin; Index <= End; ++Index)
- Reserved.set(AMDGPU::VReg_32RegClass.getRegister(Index));
+ Reserved.set(AMDGPU::VGPR_32RegClass.getRegister(Index));
for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));
@@ -1644,11 +2520,19 @@ void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
}
-const MachineOperand *SIInstrInfo::getNamedOperand(const MachineInstr& MI,
- unsigned OperandName) const {
+MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
+ unsigned OperandName) const {
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
if (Idx == -1)
return nullptr;
return &MI.getOperand(Idx);
}
+
+uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
+ uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
+ if (ST.isAmdHsaOS())
+ RsrcDataFormat |= (1ULL << 56);
+
+ return RsrcDataFormat;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIInstrInfo.h b/contrib/llvm/lib/Target/R600/SIInstrInfo.h
index 4687539..28cd27d 100644
--- a/contrib/llvm/lib/Target/R600/SIInstrInfo.h
+++ b/contrib/llvm/lib/Target/R600/SIInstrInfo.h
@@ -13,10 +13,11 @@
//===----------------------------------------------------------------------===//
-#ifndef SIINSTRINFO_H
-#define SIINSTRINFO_H
+#ifndef LLVM_LIB_TARGET_R600_SIINSTRINFO_H
+#define LLVM_LIB_TARGET_R600_SIINSTRINFO_H
#include "AMDGPUInstrInfo.h"
+#include "SIDefines.h"
#include "SIRegisterInfo.h"
namespace llvm {
@@ -44,6 +45,8 @@ private:
const TargetRegisterClass *RC,
const MachineOperand &Op) const;
+ void swapOperands(MachineBasicBlock::iterator Inst) const;
+
void splitScalar64BitUnaryOp(SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst, unsigned Opcode) const;
@@ -52,9 +55,16 @@ private:
void splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
MachineInstr *Inst) const;
+ void splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
+ MachineInstr *Inst) const;
void addDescImplicitUseDef(const MCInstrDesc &Desc, MachineInstr *MI) const;
+ bool checkInstOffsetsDoNotOverlap(MachineInstr *MIa,
+ MachineInstr *MIb) const;
+
+ unsigned findUsedSGPR(const MachineInstr *MI, int OpIndices[3]) const;
+
public:
explicit SIInstrInfo(const AMDGPUSubtarget &st);
@@ -62,11 +72,30 @@ public:
return RI;
}
+ bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1,
+ int64_t &Offset2) const override;
+
+ bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
+ unsigned &BaseReg, unsigned &Offset,
+ const TargetRegisterInfo *TRI) const final;
+
+ bool shouldClusterLoads(MachineInstr *FirstLdSt,
+ MachineInstr *SecondLdSt,
+ unsigned NumLoads) const final;
+
void copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const override;
+ unsigned calculateLDSSpillAddress(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ RegScavenger *RS,
+ unsigned TmpReg,
+ unsigned Offset,
+ unsigned Size) const;
+
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIndex,
@@ -79,29 +108,102 @@ public:
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
- virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+ // \brief Returns an opcode that can be used to move a value to a \p DstRC
+ // register. If there is no hardware instruction that can store to \p
+ // DstRC, then AMDGPU::COPY is returned.
+ unsigned getMovOpcode(const TargetRegisterClass *DstRC) const;
unsigned commuteOpcode(unsigned Opcode) const;
MachineInstr *commuteInstruction(MachineInstr *MI,
- bool NewMI=false) const override;
+ bool NewMI = false) const override;
+ bool findCommutedOpIndices(MachineInstr *MI,
+ unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const override;
bool isTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA = nullptr) const;
+ bool areMemAccessesTriviallyDisjoint(
+ MachineInstr *MIa, MachineInstr *MIb,
+ AliasAnalysis *AA = nullptr) const override;
+
MachineInstr *buildMovInstr(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned DstReg, unsigned SrcReg) const override;
bool isMov(unsigned Opcode) const override;
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
- bool isDS(uint16_t Opcode) const;
- int isMIMG(uint16_t Opcode) const;
- int isSMRD(uint16_t Opcode) const;
- bool isVOP1(uint16_t Opcode) const;
- bool isVOP2(uint16_t Opcode) const;
- bool isVOP3(uint16_t Opcode) const;
- bool isVOPC(uint16_t Opcode) const;
+
+ bool isSALU(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SALU;
+ }
+
+ bool isVALU(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VALU;
+ }
+
+ bool isSOP1(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SOP1;
+ }
+
+ bool isSOP2(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SOP2;
+ }
+
+ bool isSOPC(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SOPC;
+ }
+
+ bool isSOPK(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SOPK;
+ }
+
+ bool isSOPP(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SOPP;
+ }
+
+ bool isVOP1(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOP1;
+ }
+
+ bool isVOP2(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOP2;
+ }
+
+ bool isVOP3(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOP3;
+ }
+
+ bool isVOPC(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::VOPC;
+ }
+
+ bool isMUBUF(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::MUBUF;
+ }
+
+ bool isMTBUF(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::MTBUF;
+ }
+
+ bool isSMRD(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::SMRD;
+ }
+
+ bool isDS(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::DS;
+ }
+
+ bool isMIMG(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::MIMG;
+ }
+
+ bool isFLAT(uint16_t Opcode) const {
+ return get(Opcode).TSFlags & SIInstrFlags::FLAT;
+ }
+
bool isInlineConstant(const APInt &Imm) const;
bool isInlineConstant(const MachineOperand &MO) const;
bool isLiteralConstant(const MachineOperand &MO) const;
@@ -109,14 +211,28 @@ public:
bool isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
const MachineOperand &MO) const;
+ /// \brief Return true if the given offset Size in bytes can be folded into
+ /// the immediate offsets of a memory instruction for the given address space.
+ bool canFoldOffset(unsigned OffsetSize, unsigned AS) const;
+
/// \brief Return true if this 64-bit VALU instruction has a 32-bit encoding.
/// This function will return false if you pass it a 32-bit instruction.
bool hasVALU32BitEncoding(unsigned Opcode) const;
+ /// \brief Returns true if this operand uses the constant bus.
+ bool usesConstantBus(const MachineRegisterInfo &MRI,
+ const MachineOperand &MO) const;
+
+ /// \brief Return true if this instruction has any modifiers.
+ /// e.g. src[012]_mod, omod, clamp.
+ bool hasModifiers(unsigned Opcode) const;
+
+ bool hasModifiersSet(const MachineInstr &MI,
+ unsigned OpName) const;
+
bool verifyInstruction(const MachineInstr *MI,
StringRef &ErrInfo) const override;
- bool isSALUInstr(const MachineInstr &MI) const;
static unsigned getVALUOp(const MachineInstr &MI);
bool isSALUOpSupportedOnVALU(const MachineInstr &MI) const;
@@ -144,10 +260,21 @@ public:
/// instead of MOV.
void legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const;
+ /// \brief Check if \p MO is a legal operand if it was the \p OpIdx Operand
+ /// for \p MI.
+ bool isOperandLegal(const MachineInstr *MI, unsigned OpIdx,
+ const MachineOperand *MO = nullptr) const;
+
/// \brief Legalize all operands in this instruction. This function may
/// create new instruction and insert them before \p MI.
void legalizeOperands(MachineInstr *MI) const;
+ /// \brief Split an SMRD instruction into two smaller loads of half the
+ // size storing the results in \p Lo and \p Hi.
+ void splitSMRD(MachineInstr *MI, const TargetRegisterClass *HalfRC,
+ unsigned HalfImmOp, unsigned HalfSGPROp,
+ MachineInstr *&Lo, MachineInstr *&Hi) const;
+
void moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const;
/// \brief Replace this instruction's opcode with the equivalent VALU
@@ -181,8 +308,15 @@ public:
/// \brief Returns the operand named \p Op. If \p MI does not have an
/// operand named \c Op, this function returns nullptr.
- const MachineOperand *getNamedOperand(const MachineInstr& MI,
- unsigned OperandName) const;
+ MachineOperand *getNamedOperand(MachineInstr &MI, unsigned OperandName) const;
+
+ const MachineOperand *getNamedOperand(const MachineInstr &MI,
+ unsigned OpName) const {
+ return getNamedOperand(const_cast<MachineInstr &>(MI), OpName);
+ }
+
+ uint64_t getDefaultRsrcDataFormat() const;
+
};
namespace AMDGPU {
@@ -191,22 +325,34 @@ namespace AMDGPU {
int getVOPe32(uint16_t Opcode);
int getCommuteRev(uint16_t Opcode);
int getCommuteOrig(uint16_t Opcode);
- int getMCOpcode(uint16_t Opcode, unsigned Gen);
+ int getAddr64Inst(uint16_t Opcode);
+ int getAtomicRetOp(uint16_t Opcode);
+ int getAtomicNoRetOp(uint16_t Opcode);
const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL;
const uint64_t RSRC_TID_ENABLE = 1LL << 55;
} // End namespace AMDGPU
-} // End namespace llvm
+namespace SI {
+namespace KernelInputOffsets {
+
+/// Offsets in bytes from the start of the input buffer
+enum Offsets {
+ NGROUPS_X = 0,
+ NGROUPS_Y = 4,
+ NGROUPS_Z = 8,
+ GLOBAL_SIZE_X = 12,
+ GLOBAL_SIZE_Y = 16,
+ GLOBAL_SIZE_Z = 20,
+ LOCAL_SIZE_X = 24,
+ LOCAL_SIZE_Y = 28,
+ LOCAL_SIZE_Z = 32
+};
+
+} // End namespace KernelInputOffsets
+} // End namespace SI
-namespace SIInstrFlags {
- enum Flags {
- // First 4 bits are the instruction encoding
- VM_CNT = 1 << 0,
- EXP_CNT = 1 << 1,
- LGKM_CNT = 1 << 2
- };
-}
+} // End namespace llvm
-#endif //SIINSTRINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/R600/SIInstrInfo.td b/contrib/llvm/lib/Target/R600/SIInstrInfo.td
index b0ac20f..175e11d 100644
--- a/contrib/llvm/lib/Target/R600/SIInstrInfo.td
+++ b/contrib/llvm/lib/Target/R600/SIInstrInfo.td
@@ -7,11 +7,67 @@
//
//===----------------------------------------------------------------------===//
+class vop {
+ field bits<9> SI3;
+ field bits<10> VI3;
+}
+
+class vopc <bits<8> si, bits<8> vi = !add(0x40, si)> : vop {
+ field bits<8> SI = si;
+ field bits<8> VI = vi;
+
+ field bits<9> SI3 = {0, si{7-0}};
+ field bits<10> VI3 = {0, 0, vi{7-0}};
+}
+
+class vop1 <bits<8> si, bits<8> vi = si> : vop {
+ field bits<8> SI = si;
+ field bits<8> VI = vi;
+
+ field bits<9> SI3 = {1, 1, si{6-0}};
+ field bits<10> VI3 = !add(0x140, vi);
+}
+
+class vop2 <bits<6> si, bits<6> vi = si> : vop {
+ field bits<6> SI = si;
+ field bits<6> VI = vi;
+
+ field bits<9> SI3 = {1, 0, 0, si{5-0}};
+ field bits<10> VI3 = {0, 1, 0, 0, vi{5-0}};
+}
+
+// Specify a VOP2 opcode for SI and VOP3 opcode for VI
+// that doesn't have VOP2 encoding on VI
+class vop23 <bits<6> si, bits<10> vi> : vop2 <si> {
+ let VI3 = vi;
+}
+
+class vop3 <bits<9> si, bits<10> vi = {0, si}> : vop {
+ let SI3 = si;
+ let VI3 = vi;
+}
+
+class sop1 <bits<8> si, bits<8> vi = si> {
+ field bits<8> SI = si;
+ field bits<8> VI = vi;
+}
+
+class sop2 <bits<7> si, bits<7> vi = si> {
+ field bits<7> SI = si;
+ field bits<7> VI = vi;
+}
+
+class sopk <bits<5> si, bits<5> vi = si> {
+ field bits<5> SI = si;
+ field bits<5> VI = vi;
+}
+
// Execpt for the NONE field, this must be kept in sync with the SISubtarget enum
-// in AMDGPUMCInstLower.h
+// in AMDGPUInstrInfo.cpp
def SISubtarget {
int NONE = -1;
int SI = 0;
+ int VI = 1;
}
//===----------------------------------------------------------------------===//
@@ -105,6 +161,22 @@ def as_i32imm: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
}]>;
+def as_i64imm: SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i64);
+}]>;
+
+// Copied from the AArch64 backend:
+def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
+return CurDAG->getTargetConstant(
+ N->getValueAPF().bitcastToAPInt().getZExtValue(), MVT::i32);
+}]>;
+
+// Copied from the AArch64 backend:
+def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
+return CurDAG->getTargetConstant(
+ N->getValueAPF().bitcastToAPInt().getZExtValue(), MVT::i64);
+}]>;
+
def IMM8bit : PatLeaf <(imm),
[{return isUInt<8>(N->getZExtValue());}]
>;
@@ -117,6 +189,10 @@ def IMM16bit : PatLeaf <(imm),
[{return isUInt<16>(N->getZExtValue());}]
>;
+def IMM20bit : PatLeaf <(imm),
+ [{return isUInt<20>(N->getZExtValue());}]
+>;
+
def IMM32bit : PatLeaf <(imm),
[{return isUInt<32>(N->getZExtValue());}]
>;
@@ -130,13 +206,17 @@ class InlineImm <ValueType vt> : PatLeaf <(vt imm), [{
return isInlineImmediate(N);
}]>;
+class InlineFPImm <ValueType vt> : PatLeaf <(vt fpimm), [{
+ return isInlineImmediate(N);
+}]>;
+
class SGPRImm <dag frag> : PatLeaf<frag, [{
if (TM.getSubtarget<AMDGPUSubtarget>().getGeneration() <
AMDGPUSubtarget::SOUTHERN_ISLANDS) {
return false;
}
const SIRegisterInfo *SIRI =
- static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
+ static_cast<const SIRegisterInfo*>(TM.getSubtargetImpl()->getRegisterInfo());
for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
U != E; ++U) {
if (SIRI->isSGPRClass(getOperandRegClass(*U, U.getOperandNo()))) {
@@ -159,13 +239,70 @@ def sopp_brtarget : Operand<OtherVT> {
let OperandType = "OPERAND_PCREL";
}
+include "SIInstrFormats.td"
+include "VIInstrFormats.td"
+
+let OperandType = "OPERAND_IMMEDIATE" in {
+
+def offen : Operand<i1> {
+ let PrintMethod = "printOffen";
+}
+def idxen : Operand<i1> {
+ let PrintMethod = "printIdxen";
+}
+def addr64 : Operand<i1> {
+ let PrintMethod = "printAddr64";
+}
+def mbuf_offset : Operand<i16> {
+ let PrintMethod = "printMBUFOffset";
+}
+def ds_offset : Operand<i16> {
+ let PrintMethod = "printDSOffset";
+}
+def ds_offset0 : Operand<i8> {
+ let PrintMethod = "printDSOffset0";
+}
+def ds_offset1 : Operand<i8> {
+ let PrintMethod = "printDSOffset1";
+}
+def glc : Operand <i1> {
+ let PrintMethod = "printGLC";
+}
+def slc : Operand <i1> {
+ let PrintMethod = "printSLC";
+}
+def tfe : Operand <i1> {
+ let PrintMethod = "printTFE";
+}
+
+def omod : Operand <i32> {
+ let PrintMethod = "printOModSI";
+}
+
+def ClampMod : Operand <i1> {
+ let PrintMethod = "printClampSI";
+}
+
+} // End OperandType = "OPERAND_IMMEDIATE"
+
//===----------------------------------------------------------------------===//
// Complex patterns
//===----------------------------------------------------------------------===//
+def DS1Addr1Offset : ComplexPattern<i32, 2, "SelectDS1Addr1Offset">;
+def DS64Bit4ByteAligned : ComplexPattern<i32, 3, "SelectDS64Bit4ByteAligned">;
+
def MUBUFAddr32 : ComplexPattern<i64, 9, "SelectMUBUFAddr32">;
def MUBUFAddr64 : ComplexPattern<i64, 3, "SelectMUBUFAddr64">;
+def MUBUFAddr64Atomic : ComplexPattern<i64, 4, "SelectMUBUFAddr64">;
def MUBUFScratch : ComplexPattern<i64, 4, "SelectMUBUFScratch">;
+def MUBUFOffset : ComplexPattern<i64, 6, "SelectMUBUFOffset">;
+def MUBUFOffsetAtomic : ComplexPattern<i64, 4, "SelectMUBUFOffset">;
+
+def VOP3Mods0 : ComplexPattern<untyped, 4, "SelectVOP3Mods0">;
+def VOP3Mods0Clamp : ComplexPattern<untyped, 3, "SelectVOP3Mods0Clamp">;
+def VOP3Mods0Clamp0OMod : ComplexPattern<untyped, 4, "SelectVOP3Mods0Clamp0OMod">;
+def VOP3Mods : ComplexPattern<untyped, 2, "SelectVOP3Mods">;
//===----------------------------------------------------------------------===//
// SI assembler operands
@@ -174,9 +311,20 @@ def MUBUFScratch : ComplexPattern<i64, 4, "SelectMUBUFScratch">;
def SIOperand {
int ZERO = 0x80;
int VCC = 0x6A;
+ int FLAT_SCR = 0x68;
}
-include "SIInstrFormats.td"
+def SRCMODS {
+ int NONE = 0;
+}
+
+def DSTCLAMP {
+ int NONE = 0;
+}
+
+def DSTOMOD {
+ int NONE = 0;
+}
//===----------------------------------------------------------------------===//
//
@@ -194,43 +342,175 @@ include "SIInstrFormats.td"
//
//===----------------------------------------------------------------------===//
+class SIMCInstr <string pseudo, int subtarget> {
+ string PseudoInstr = pseudo;
+ int Subtarget = subtarget;
+}
+
+//===----------------------------------------------------------------------===//
+// EXP classes
+//===----------------------------------------------------------------------===//
+
+class EXPCommon : InstSI<
+ (outs),
+ (ins i32imm:$en, i32imm:$tgt, i32imm:$compr, i32imm:$done, i32imm:$vm,
+ VGPR_32:$src0, VGPR_32:$src1, VGPR_32:$src2, VGPR_32:$src3),
+ "exp $en, $tgt, $compr, $done, $vm, $src0, $src1, $src2, $src3",
+ [] > {
+
+ let EXP_CNT = 1;
+ let Uses = [EXEC];
+}
+
+multiclass EXP_m {
+
+ let isPseudo = 1 in {
+ def "" : EXPCommon, SIMCInstr <"exp", SISubtarget.NONE> ;
+ }
+
+ def _si : EXPCommon, SIMCInstr <"exp", SISubtarget.SI>, EXPe;
+
+ def _vi : EXPCommon, SIMCInstr <"exp", SISubtarget.VI>, EXPe_vi;
+}
+
//===----------------------------------------------------------------------===//
// Scalar classes
//===----------------------------------------------------------------------===//
-class SOP1_32 <bits<8> op, string opName, list<dag> pattern> : SOP1 <
- op, (outs SReg_32:$dst), (ins SSrc_32:$src0),
- opName#" $dst, $src0", pattern
->;
+class SOP1_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
+ SOP1 <outs, ins, "", pattern>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
-class SOP1_64 <bits<8> op, string opName, list<dag> pattern> : SOP1 <
- op, (outs SReg_64:$dst), (ins SSrc_64:$src0),
- opName#" $dst, $src0", pattern
->;
+class SOP1_Real_si <sop1 op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ SOP1 <outs, ins, asm, pattern>,
+ SOP1e <op.SI>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+class SOP1_Real_vi <sop1 op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ SOP1 <outs, ins, asm, pattern>,
+ SOP1e <op.VI>,
+ SIMCInstr<opName, SISubtarget.VI>;
+
+multiclass SOP1_32 <sop1 op, string opName, list<dag> pattern> {
+ def "" : SOP1_Pseudo <opName, (outs SReg_32:$dst), (ins SSrc_32:$src0),
+ pattern>;
+
+ def _si : SOP1_Real_si <op, opName, (outs SReg_32:$dst), (ins SSrc_32:$src0),
+ opName#" $dst, $src0", pattern>;
+
+ def _vi : SOP1_Real_vi <op, opName, (outs SReg_32:$dst), (ins SSrc_32:$src0),
+ opName#" $dst, $src0", pattern>;
+}
+
+multiclass SOP1_64 <sop1 op, string opName, list<dag> pattern> {
+ def "" : SOP1_Pseudo <opName, (outs SReg_64:$dst), (ins SSrc_64:$src0),
+ pattern>;
+
+ def _si : SOP1_Real_si <op, opName, (outs SReg_64:$dst), (ins SSrc_64:$src0),
+ opName#" $dst, $src0", pattern>;
+
+ def _vi : SOP1_Real_vi <op, opName, (outs SReg_64:$dst), (ins SSrc_64:$src0),
+ opName#" $dst, $src0", pattern>;
+}
+
+// no input, 64-bit output.
+multiclass SOP1_64_0 <sop1 op, string opName, list<dag> pattern> {
+ def "" : SOP1_Pseudo <opName, (outs SReg_64:$dst), (ins), pattern>;
+
+ def _si : SOP1_Real_si <op, opName, (outs SReg_64:$dst), (ins),
+ opName#" $dst", pattern> {
+ let SSRC0 = 0;
+ }
+
+ def _vi : SOP1_Real_vi <op, opName, (outs SReg_64:$dst), (ins),
+ opName#" $dst", pattern> {
+ let SSRC0 = 0;
+ }
+}
// 64-bit input, 32-bit output.
-class SOP1_32_64 <bits<8> op, string opName, list<dag> pattern> : SOP1 <
- op, (outs SReg_32:$dst), (ins SSrc_64:$src0),
- opName#" $dst, $src0", pattern
->;
+multiclass SOP1_32_64 <sop1 op, string opName, list<dag> pattern> {
+ def "" : SOP1_Pseudo <opName, (outs SReg_32:$dst), (ins SSrc_64:$src0),
+ pattern>;
-class SOP2_32 <bits<7> op, string opName, list<dag> pattern> : SOP2 <
- op, (outs SReg_32:$dst), (ins SSrc_32:$src0, SSrc_32:$src1),
- opName#" $dst, $src0, $src1", pattern
->;
+ def _si : SOP1_Real_si <op, opName, (outs SReg_32:$dst), (ins SSrc_64:$src0),
+ opName#" $dst, $src0", pattern>;
-class SOP2_64 <bits<7> op, string opName, list<dag> pattern> : SOP2 <
- op, (outs SReg_64:$dst), (ins SSrc_64:$src0, SSrc_64:$src1),
- opName#" $dst, $src0, $src1", pattern
->;
+ def _vi : SOP1_Real_vi <op, opName, (outs SReg_32:$dst), (ins SSrc_64:$src0),
+ opName#" $dst, $src0", pattern>;
+}
-class SOP2_SHIFT_64 <bits<7> op, string opName, list<dag> pattern> : SOP2 <
- op, (outs SReg_64:$dst), (ins SSrc_64:$src0, SSrc_32:$src1),
- opName#" $dst, $src0, $src1", pattern
->;
+class SOP2_Pseudo<string opName, dag outs, dag ins, list<dag> pattern> :
+ SOP2<outs, ins, "", pattern>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+ let Size = 4;
+}
+
+class SOP2_Real_si<sop2 op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ SOP2<outs, ins, asm, pattern>,
+ SOP2e<op.SI>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+class SOP2_Real_vi<sop2 op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ SOP2<outs, ins, asm, pattern>,
+ SOP2e<op.VI>,
+ SIMCInstr<opName, SISubtarget.VI>;
+
+multiclass SOP2_SELECT_32 <sop2 op, string opName, list<dag> pattern> {
+ def "" : SOP2_Pseudo <opName, (outs SReg_32:$dst),
+ (ins SSrc_32:$src0, SSrc_32:$src1, SCCReg:$scc), pattern>;
+
+ def _si : SOP2_Real_si <op, opName, (outs SReg_32:$dst),
+ (ins SSrc_32:$src0, SSrc_32:$src1, SCCReg:$scc),
+ opName#" $dst, $src0, $src1 [$scc]", pattern>;
+
+ def _vi : SOP2_Real_vi <op, opName, (outs SReg_32:$dst),
+ (ins SSrc_32:$src0, SSrc_32:$src1, SCCReg:$scc),
+ opName#" $dst, $src0, $src1 [$scc]", pattern>;
+}
+
+multiclass SOP2_32 <sop2 op, string opName, list<dag> pattern> {
+ def "" : SOP2_Pseudo <opName, (outs SReg_32:$dst),
+ (ins SSrc_32:$src0, SSrc_32:$src1), pattern>;
+
+ def _si : SOP2_Real_si <op, opName, (outs SReg_32:$dst),
+ (ins SSrc_32:$src0, SSrc_32:$src1), opName#" $dst, $src0, $src1", pattern>;
+ def _vi : SOP2_Real_vi <op, opName, (outs SReg_32:$dst),
+ (ins SSrc_32:$src0, SSrc_32:$src1), opName#" $dst, $src0, $src1", pattern>;
+}
+
+multiclass SOP2_64 <sop2 op, string opName, list<dag> pattern> {
+ def "" : SOP2_Pseudo <opName, (outs SReg_64:$dst),
+ (ins SSrc_64:$src0, SSrc_64:$src1), pattern>;
+
+ def _si : SOP2_Real_si <op, opName, (outs SReg_64:$dst),
+ (ins SSrc_64:$src0, SSrc_64:$src1), opName#" $dst, $src0, $src1", pattern>;
+
+ def _vi : SOP2_Real_vi <op, opName, (outs SReg_64:$dst),
+ (ins SSrc_64:$src0, SSrc_64:$src1), opName#" $dst, $src0, $src1", pattern>;
+}
+
+multiclass SOP2_64_32 <sop2 op, string opName, list<dag> pattern> {
+ def "" : SOP2_Pseudo <opName, (outs SReg_64:$dst),
+ (ins SSrc_64:$src0, SSrc_32:$src1), pattern>;
-class SOPC_Helper <bits<7> op, RegisterClass rc, ValueType vt,
+ def _si : SOP2_Real_si <op, opName, (outs SReg_64:$dst),
+ (ins SSrc_64:$src0, SSrc_32:$src1), opName#" $dst, $src0, $src1", pattern>;
+
+ def _vi : SOP2_Real_vi <op, opName, (outs SReg_64:$dst),
+ (ins SSrc_64:$src0, SSrc_32:$src1), opName#" $dst, $src0, $src1", pattern>;
+}
+
+
+class SOPC_Helper <bits<7> op, RegisterOperand rc, ValueType vt,
string opName, PatLeaf cond> : SOPC <
op, (outs SCCReg:$dst), (ins rc:$src0, rc:$src1),
opName#" $dst, $src0, $src1", []>;
@@ -241,28 +521,90 @@ class SOPC_32<bits<7> op, string opName, PatLeaf cond = COND_NULL>
class SOPC_64<bits<7> op, string opName, PatLeaf cond = COND_NULL>
: SOPC_Helper<op, SSrc_64, i64, opName, cond>;
-class SOPK_32 <bits<5> op, string opName, list<dag> pattern> : SOPK <
- op, (outs SReg_32:$dst), (ins i16imm:$src0),
- opName#" $dst, $src0", pattern
->;
+class SOPK_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
+ SOPK <outs, ins, "", pattern>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
-class SOPK_64 <bits<5> op, string opName, list<dag> pattern> : SOPK <
- op, (outs SReg_64:$dst), (ins i16imm:$src0),
- opName#" $dst, $src0", pattern
->;
+class SOPK_Real_si <sopk op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ SOPK <outs, ins, asm, pattern>,
+ SOPKe <op.SI>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+class SOPK_Real_vi <sopk op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ SOPK <outs, ins, asm, pattern>,
+ SOPKe <op.VI>,
+ SIMCInstr<opName, SISubtarget.VI>;
+
+multiclass SOPK_32 <sopk op, string opName, list<dag> pattern> {
+ def "" : SOPK_Pseudo <opName, (outs SReg_32:$dst), (ins u16imm:$src0),
+ pattern>;
+
+ def _si : SOPK_Real_si <op, opName, (outs SReg_32:$dst), (ins u16imm:$src0),
+ opName#" $dst, $src0", pattern>;
+
+ def _vi : SOPK_Real_vi <op, opName, (outs SReg_32:$dst), (ins u16imm:$src0),
+ opName#" $dst, $src0", pattern>;
+}
+
+multiclass SOPK_SCC <sopk op, string opName, list<dag> pattern> {
+ def "" : SOPK_Pseudo <opName, (outs SCCReg:$dst),
+ (ins SReg_32:$src0, u16imm:$src1), pattern>;
+
+ def _si : SOPK_Real_si <op, opName, (outs SCCReg:$dst),
+ (ins SReg_32:$src0, u16imm:$src1), opName#" $dst, $src0", pattern>;
+
+ def _vi : SOPK_Real_vi <op, opName, (outs SCCReg:$dst),
+ (ins SReg_32:$src0, u16imm:$src1), opName#" $dst, $src0", pattern>;
+}
+
+//===----------------------------------------------------------------------===//
+// SMRD classes
+//===----------------------------------------------------------------------===//
+
+class SMRD_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
+ SMRD <outs, ins, "", pattern>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+class SMRD_Real_si <bits<5> op, string opName, bit imm, dag outs, dag ins,
+ string asm> :
+ SMRD <outs, ins, asm, []>,
+ SMRDe <op, imm>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+class SMRD_Real_vi <bits<8> op, string opName, bit imm, dag outs, dag ins,
+ string asm> :
+ SMRD <outs, ins, asm, []>,
+ SMEMe_vi <op, imm>,
+ SIMCInstr<opName, SISubtarget.VI>;
+
+multiclass SMRD_m <bits<5> op, string opName, bit imm, dag outs, dag ins,
+ string asm, list<dag> pattern> {
+
+ def "" : SMRD_Pseudo <opName, outs, ins, pattern>;
-multiclass SMRD_Helper <bits<5> op, string asm, RegisterClass baseClass,
+ def _si : SMRD_Real_si <op, opName, imm, outs, ins, asm>;
+
+ def _vi : SMRD_Real_vi <{0, 0, 0, op}, opName, imm, outs, ins, asm>;
+}
+
+multiclass SMRD_Helper <bits<5> op, string opName, RegisterClass baseClass,
RegisterClass dstClass> {
- def _IMM : SMRD <
- op, 1, (outs dstClass:$dst),
+ defm _IMM : SMRD_m <
+ op, opName#"_IMM", 1, (outs dstClass:$dst),
(ins baseClass:$sbase, u32imm:$offset),
- asm#" $dst, $sbase, $offset", []
+ opName#" $dst, $sbase, $offset", []
>;
- def _SGPR : SMRD <
- op, 0, (outs dstClass:$dst),
+ defm _SGPR : SMRD_m <
+ op, opName#"_SGPR", 0, (outs dstClass:$dst),
(ins baseClass:$sbase, SReg_32:$soff),
- asm#" $dst, $sbase, $soff", []
+ opName#" $dst, $sbase, $soff", []
>;
}
@@ -270,6 +612,210 @@ multiclass SMRD_Helper <bits<5> op, string asm, RegisterClass baseClass,
// Vector ALU classes
//===----------------------------------------------------------------------===//
+// This must always be right before the operand being input modified.
+def InputMods : OperandWithDefaultOps <i32, (ops (i32 0))> {
+ let PrintMethod = "printOperandAndMods";
+}
+def InputModsNoDefault : Operand <i32> {
+ let PrintMethod = "printOperandAndMods";
+}
+
+class getNumSrcArgs<ValueType Src1, ValueType Src2> {
+ int ret =
+ !if (!eq(Src1.Value, untyped.Value), 1, // VOP1
+ !if (!eq(Src2.Value, untyped.Value), 2, // VOP2
+ 3)); // VOP3
+}
+
+// Returns the register class to use for the destination of VOP[123C]
+// instructions for the given VT.
+class getVALUDstForVT<ValueType VT> {
+ RegisterClass ret = !if(!eq(VT.Size, 32), VGPR_32,
+ !if(!eq(VT.Size, 64), VReg_64,
+ SReg_64)); // else VT == i1
+}
+
+// Returns the register class to use for source 0 of VOP[12C]
+// instructions for the given VT.
+class getVOPSrc0ForVT<ValueType VT> {
+ RegisterOperand ret = !if(!eq(VT.Size, 32), VSrc_32, VSrc_64);
+}
+
+// Returns the register class to use for source 1 of VOP[12C] for the
+// given VT.
+class getVOPSrc1ForVT<ValueType VT> {
+ RegisterClass ret = !if(!eq(VT.Size, 32), VGPR_32, VReg_64);
+}
+
+// Returns the register classes for the source arguments of a VOP[12C]
+// instruction for the given SrcVTs.
+class getInRC32 <list<ValueType> SrcVT> {
+ list<DAGOperand> ret = [
+ getVOPSrc0ForVT<SrcVT[0]>.ret,
+ getVOPSrc1ForVT<SrcVT[1]>.ret
+ ];
+}
+
+// Returns the register class to use for sources of VOP3 instructions for the
+// given VT.
+class getVOP3SrcForVT<ValueType VT> {
+ RegisterOperand ret = !if(!eq(VT.Size, 32), VCSrc_32, VCSrc_64);
+}
+
+// Returns the register classes for the source arguments of a VOP3
+// instruction for the given SrcVTs.
+class getInRC64 <list<ValueType> SrcVT> {
+ list<DAGOperand> ret = [
+ getVOP3SrcForVT<SrcVT[0]>.ret,
+ getVOP3SrcForVT<SrcVT[1]>.ret,
+ getVOP3SrcForVT<SrcVT[2]>.ret
+ ];
+}
+
+// Returns 1 if the source arguments have modifiers, 0 if they do not.
+class hasModifiers<ValueType SrcVT> {
+ bit ret = !if(!eq(SrcVT.Value, f32.Value), 1,
+ !if(!eq(SrcVT.Value, f64.Value), 1, 0));
+}
+
+// Returns the input arguments for VOP[12C] instructions for the given SrcVT.
+class getIns32 <RegisterOperand Src0RC, RegisterClass Src1RC, int NumSrcArgs> {
+ dag ret = !if(!eq(NumSrcArgs, 1), (ins Src0RC:$src0), // VOP1
+ !if(!eq(NumSrcArgs, 2), (ins Src0RC:$src0, Src1RC:$src1), // VOP2
+ (ins)));
+}
+
+// Returns the input arguments for VOP3 instructions for the given SrcVT.
+class getIns64 <RegisterOperand Src0RC, RegisterOperand Src1RC,
+ RegisterOperand Src2RC, int NumSrcArgs,
+ bit HasModifiers> {
+
+ dag ret =
+ !if (!eq(NumSrcArgs, 1),
+ !if (!eq(HasModifiers, 1),
+ // VOP1 with modifiers
+ (ins InputModsNoDefault:$src0_modifiers, Src0RC:$src0,
+ ClampMod:$clamp, omod:$omod)
+ /* else */,
+ // VOP1 without modifiers
+ (ins Src0RC:$src0)
+ /* endif */ ),
+ !if (!eq(NumSrcArgs, 2),
+ !if (!eq(HasModifiers, 1),
+ // VOP 2 with modifiers
+ (ins InputModsNoDefault:$src0_modifiers, Src0RC:$src0,
+ InputModsNoDefault:$src1_modifiers, Src1RC:$src1,
+ ClampMod:$clamp, omod:$omod)
+ /* else */,
+ // VOP2 without modifiers
+ (ins Src0RC:$src0, Src1RC:$src1)
+ /* endif */ )
+ /* NumSrcArgs == 3 */,
+ !if (!eq(HasModifiers, 1),
+ // VOP3 with modifiers
+ (ins InputModsNoDefault:$src0_modifiers, Src0RC:$src0,
+ InputModsNoDefault:$src1_modifiers, Src1RC:$src1,
+ InputModsNoDefault:$src2_modifiers, Src2RC:$src2,
+ ClampMod:$clamp, omod:$omod)
+ /* else */,
+ // VOP3 without modifiers
+ (ins Src0RC:$src0, Src1RC:$src1, Src2RC:$src2)
+ /* endif */ )));
+}
+
+// Returns the assembly string for the inputs and outputs of a VOP[12C]
+// instruction. This does not add the _e32 suffix, so it can be reused
+// by getAsm64.
+class getAsm32 <int NumSrcArgs> {
+ string src1 = ", $src1";
+ string src2 = ", $src2";
+ string ret = " $dst, $src0"#
+ !if(!eq(NumSrcArgs, 1), "", src1)#
+ !if(!eq(NumSrcArgs, 3), src2, "");
+}
+
+// Returns the assembly string for the inputs and outputs of a VOP3
+// instruction.
+class getAsm64 <int NumSrcArgs, bit HasModifiers> {
+ string src0 = !if(!eq(NumSrcArgs, 1), "$src0_modifiers", "$src0_modifiers,");
+ string src1 = !if(!eq(NumSrcArgs, 1), "",
+ !if(!eq(NumSrcArgs, 2), " $src1_modifiers",
+ " $src1_modifiers,"));
+ string src2 = !if(!eq(NumSrcArgs, 3), " $src2_modifiers", "");
+ string ret =
+ !if(!eq(HasModifiers, 0),
+ getAsm32<NumSrcArgs>.ret,
+ " $dst, "#src0#src1#src2#"$clamp"#"$omod");
+}
+
+
+class VOPProfile <list<ValueType> _ArgVT> {
+
+ field list<ValueType> ArgVT = _ArgVT;
+
+ field ValueType DstVT = ArgVT[0];
+ field ValueType Src0VT = ArgVT[1];
+ field ValueType Src1VT = ArgVT[2];
+ field ValueType Src2VT = ArgVT[3];
+ field RegisterClass DstRC = getVALUDstForVT<DstVT>.ret;
+ field RegisterOperand Src0RC32 = getVOPSrc0ForVT<Src0VT>.ret;
+ field RegisterClass Src1RC32 = getVOPSrc1ForVT<Src1VT>.ret;
+ field RegisterOperand Src0RC64 = getVOP3SrcForVT<Src0VT>.ret;
+ field RegisterOperand Src1RC64 = getVOP3SrcForVT<Src1VT>.ret;
+ field RegisterOperand Src2RC64 = getVOP3SrcForVT<Src2VT>.ret;
+
+ field int NumSrcArgs = getNumSrcArgs<Src1VT, Src2VT>.ret;
+ field bit HasModifiers = hasModifiers<Src0VT>.ret;
+
+ field dag Outs = (outs DstRC:$dst);
+
+ field dag Ins32 = getIns32<Src0RC32, Src1RC32, NumSrcArgs>.ret;
+ field dag Ins64 = getIns64<Src0RC64, Src1RC64, Src2RC64, NumSrcArgs,
+ HasModifiers>.ret;
+
+ field string Asm32 = "_e32"#getAsm32<NumSrcArgs>.ret;
+ field string Asm64 = getAsm64<NumSrcArgs, HasModifiers>.ret;
+}
+
+def VOP_F32_F32 : VOPProfile <[f32, f32, untyped, untyped]>;
+def VOP_F32_F64 : VOPProfile <[f32, f64, untyped, untyped]>;
+def VOP_F32_I32 : VOPProfile <[f32, i32, untyped, untyped]>;
+def VOP_F64_F32 : VOPProfile <[f64, f32, untyped, untyped]>;
+def VOP_F64_F64 : VOPProfile <[f64, f64, untyped, untyped]>;
+def VOP_F64_I32 : VOPProfile <[f64, i32, untyped, untyped]>;
+def VOP_I32_F32 : VOPProfile <[i32, f32, untyped, untyped]>;
+def VOP_I32_F64 : VOPProfile <[i32, f64, untyped, untyped]>;
+def VOP_I32_I32 : VOPProfile <[i32, i32, untyped, untyped]>;
+
+def VOP_F32_F32_F32 : VOPProfile <[f32, f32, f32, untyped]>;
+def VOP_F32_F32_I32 : VOPProfile <[f32, f32, i32, untyped]>;
+def VOP_F64_F64_F64 : VOPProfile <[f64, f64, f64, untyped]>;
+def VOP_F64_F64_I32 : VOPProfile <[f64, f64, i32, untyped]>;
+def VOP_I32_F32_F32 : VOPProfile <[i32, f32, f32, untyped]>;
+def VOP_I32_I32_I32 : VOPProfile <[i32, i32, i32, untyped]>;
+def VOP_I32_I32_I32_VCC : VOPProfile <[i32, i32, i32, untyped]> {
+ let Src0RC32 = VCSrc_32;
+}
+
+def VOP_I1_F32_I32 : VOPProfile <[i1, f32, i32, untyped]> {
+ let Ins64 = (ins InputModsNoDefault:$src0_modifiers, Src0RC64:$src0, Src1RC64:$src1);
+ let Asm64 = " $dst, $src0_modifiers, $src1";
+}
+
+def VOP_I1_F64_I32 : VOPProfile <[i1, f64, i32, untyped]> {
+ let Ins64 = (ins InputModsNoDefault:$src0_modifiers, Src0RC64:$src0, Src1RC64:$src1);
+ let Asm64 = " $dst, $src0_modifiers, $src1";
+}
+
+def VOP_I64_I64_I32 : VOPProfile <[i64, i64, i32, untyped]>;
+def VOP_I64_I64_I64 : VOPProfile <[i64, i64, i64, untyped]>;
+
+def VOP_F32_F32_F32_F32 : VOPProfile <[f32, f32, f32, f32]>;
+def VOP_F64_F64_F64_F64 : VOPProfile <[f64, f64, f64, f64]>;
+def VOP_I32_I32_I32_I32 : VOPProfile <[i32, i32, i32, i32]>;
+def VOP_I64_I32_I32_I64 : VOPProfile <[i64, i32, i32, i64]>;
+
+
class VOP <string opName> {
string OpName = opName;
}
@@ -279,399 +825,959 @@ class VOP2_REV <string revOp, bit isOrig> {
bit IsOrig = isOrig;
}
-class SIMCInstr <string pseudo, int subtarget> {
- string PseudoInstr = pseudo;
- int Subtarget = subtarget;
+class AtomicNoRet <string noRetOp, bit isRet> {
+ string NoRetOp = noRetOp;
+ bit IsRet = isRet;
+}
+
+class VOP1_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
+ VOP1Common <outs, ins, "", pattern>,
+ VOP <opName>,
+ SIMCInstr <opName#"_e32", SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+multiclass VOP1_m <vop1 op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName> {
+ def "" : VOP1_Pseudo <outs, ins, pattern, opName>;
+
+ def _si : VOP1<op.SI, outs, ins, asm, []>,
+ SIMCInstr <opName#"_e32", SISubtarget.SI>;
+ def _vi : VOP1<op.VI, outs, ins, asm, []>,
+ SIMCInstr <opName#"_e32", SISubtarget.VI>;
+}
+
+class VOP2_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
+ VOP2Common <outs, ins, "", pattern>,
+ VOP <opName>,
+ SIMCInstr<opName#"_e32", SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+multiclass VOP2SI_m <vop2 op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName, string revOpSI> {
+ def "" : VOP2_Pseudo <outs, ins, pattern, opName>,
+ VOP2_REV<revOpSI#"_e32", !eq(revOpSI, opName)>;
+
+ def _si : VOP2 <op.SI, outs, ins, opName#asm, []>,
+ VOP2_REV<revOpSI#"_e32_si", !eq(revOpSI, opName)>,
+ SIMCInstr <opName#"_e32", SISubtarget.SI>;
+}
+
+multiclass VOP2_m <vop2 op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName, string revOpSI, string revOpVI> {
+ def "" : VOP2_Pseudo <outs, ins, pattern, opName>,
+ VOP2_REV<revOpSI#"_e32", !eq(revOpSI, opName)>;
+
+ def _si : VOP2 <op.SI, outs, ins, opName#asm, []>,
+ VOP2_REV<revOpSI#"_e32_si", !eq(revOpSI, opName)>,
+ SIMCInstr <opName#"_e32", SISubtarget.SI>;
+ def _vi : VOP2 <op.VI, outs, ins, opName#asm, []>,
+ VOP2_REV<revOpVI#"_e32_vi", !eq(revOpVI, opName)>,
+ SIMCInstr <opName#"_e32", SISubtarget.VI>;
+}
+
+class VOP3DisableFields <bit HasSrc1, bit HasSrc2, bit HasModifiers> {
+
+ bits<2> src0_modifiers = !if(HasModifiers, ?, 0);
+ bits<2> src1_modifiers = !if(HasModifiers, !if(HasSrc1, ?, 0), 0);
+ bits<2> src2_modifiers = !if(HasModifiers, !if(HasSrc2, ? ,0) ,0);
+ bits<2> omod = !if(HasModifiers, ?, 0);
+ bits<1> clamp = !if(HasModifiers, ?, 0);
+ bits<9> src1 = !if(HasSrc1, ?, 0);
+ bits<9> src2 = !if(HasSrc2, ?, 0);
}
class VOP3_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
VOP3Common <outs, ins, "", pattern>,
VOP <opName>,
- SIMCInstr<opName, SISubtarget.NONE> {
+ SIMCInstr<opName#"_e64", SISubtarget.NONE> {
let isPseudo = 1;
}
class VOP3_Real_si <bits<9> op, dag outs, dag ins, string asm, string opName> :
- VOP3 <op, outs, ins, asm, []>,
- SIMCInstr<opName, SISubtarget.SI>;
+ VOP3Common <outs, ins, asm, []>,
+ VOP3e <op>,
+ SIMCInstr<opName#"_e64", SISubtarget.SI>;
-multiclass VOP3_m <bits<9> op, dag outs, dag ins, string asm, list<dag> pattern,
- string opName> {
+class VOP3_Real_vi <bits<10> op, dag outs, dag ins, string asm, string opName> :
+ VOP3Common <outs, ins, asm, []>,
+ VOP3e_vi <op>,
+ SIMCInstr <opName#"_e64", SISubtarget.VI>;
- def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
+multiclass VOP3_m <vop op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName, int NumSrcArgs, bit HasMods = 1> {
- def _si : VOP3_Real_si <op, outs, ins, asm, opName>;
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
+ def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName>,
+ VOP3DisableFields<!if(!eq(NumSrcArgs, 1), 0, 1),
+ !if(!eq(NumSrcArgs, 2), 0, 1),
+ HasMods>;
+ def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName>,
+ VOP3DisableFields<!if(!eq(NumSrcArgs, 1), 0, 1),
+ !if(!eq(NumSrcArgs, 2), 0, 1),
+ HasMods>;
}
-multiclass VOP3_1_m <bits<8> op, dag outs, dag ins, string asm,
- list<dag> pattern, string opName> {
+// VOP3_m without source modifiers
+multiclass VOP3_m_nosrcmod <vop op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName, int NumSrcArgs, bit HasMods = 1> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
- let src1 = 0, src1_modifiers = 0, src2 = 0, src2_modifiers = 0 in {
-
- def _si : VOP3_Real_si <
- {1, 1, op{6}, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
- outs, ins, asm, opName
- >;
-
- } // src1 = 0, src1_modifiers = 0, src2 = 0, src2_modifiers = 0
+ let src0_modifiers = 0,
+ src1_modifiers = 0,
+ src2_modifiers = 0 in {
+ def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName>;
+ def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName>;
+ }
}
-multiclass VOP3_2_m <bits<6> op, dag outs, dag ins, string asm,
- list<dag> pattern, string opName, string revOp> {
+multiclass VOP3_1_m <vop op, dag outs, dag ins, string asm,
+ list<dag> pattern, string opName, bit HasMods = 1> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
- let src2 = 0, src2_modifiers = 0 in {
+ def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName>,
+ VOP3DisableFields<0, 0, HasMods>;
- def _si : VOP3_Real_si <
- {1, 0, 0, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
- outs, ins, asm, opName>,
- VOP2_REV<revOp#"_e64", !eq(revOp, opName)>;
-
- } // src2 = 0, src2_modifiers = 0
+ def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName>,
+ VOP3DisableFields<0, 0, HasMods>;
}
-// This must always be right before the operand being input modified.
-def InputMods : OperandWithDefaultOps <i32, (ops (i32 0))> {
- let PrintMethod = "printOperandAndMods";
+multiclass VOP3_2_m <vop op, dag outs, dag ins, string asm,
+ list<dag> pattern, string opName, string revOpSI, string revOpVI,
+ bit HasMods = 1, bit UseFullOp = 0> {
+
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>,
+ VOP2_REV<revOpSI#"_e64", !eq(revOpSI, opName)>;
+
+ def _si : VOP3_Real_si <op.SI3,
+ outs, ins, asm, opName>,
+ VOP2_REV<revOpSI#"_e64_si", !eq(revOpSI, opName)>,
+ VOP3DisableFields<1, 0, HasMods>;
+
+ def _vi : VOP3_Real_vi <op.VI3,
+ outs, ins, asm, opName>,
+ VOP2_REV<revOpVI#"_e64_vi", !eq(revOpVI, opName)>,
+ VOP3DisableFields<1, 0, HasMods>;
}
-multiclass VOP1_Helper <bits<8> op, RegisterClass drc, RegisterClass src,
- string opName, list<dag> pattern> {
-
- def _e32 : VOP1 <
- op, (outs drc:$dst), (ins src:$src0),
- opName#"_e32 $dst, $src0", pattern
- >, VOP <opName>;
-
- defm _e64 : VOP3_1_m <
- op,
- (outs drc:$dst),
- (ins InputMods:$src0_modifiers, src:$src0, i32imm:$clamp, i32imm:$omod),
- opName#"_e64 $dst, $src0_modifiers, $clamp, $omod", [], opName>;
-}
-
-multiclass VOP1_32 <bits<8> op, string opName, list<dag> pattern>
- : VOP1_Helper <op, VReg_32, VSrc_32, opName, pattern>;
-
-multiclass VOP1_64 <bits<8> op, string opName, list<dag> pattern>
- : VOP1_Helper <op, VReg_64, VSrc_64, opName, pattern>;
-
-multiclass VOP1_32_64 <bits<8> op, string opName, list<dag> pattern>
- : VOP1_Helper <op, VReg_32, VSrc_64, opName, pattern>;
-
-multiclass VOP1_64_32 <bits<8> op, string opName, list<dag> pattern>
- : VOP1_Helper <op, VReg_64, VSrc_32, opName, pattern>;
-
-multiclass VOP2_Helper <bits<6> op, RegisterClass vrc, RegisterClass arc,
- string opName, list<dag> pattern, string revOp> {
- def _e32 : VOP2 <
- op, (outs vrc:$dst), (ins arc:$src0, vrc:$src1),
- opName#"_e32 $dst, $src0, $src1", pattern
- >, VOP <opName>, VOP2_REV<revOp#"_e32", !eq(revOp, opName)>;
-
- defm _e64 : VOP3_2_m <
- op,
- (outs vrc:$dst),
- (ins InputMods:$src0_modifiers, arc:$src0,
- InputMods:$src1_modifiers, arc:$src1,
- i32imm:$clamp, i32imm:$omod),
- opName#"_e64 $dst, $src0_modifiers, $src1_modifiers, $clamp, $omod", [],
- opName, revOp>;
-}
-
-multiclass VOP2_32 <bits<6> op, string opName, list<dag> pattern,
- string revOp = opName>
- : VOP2_Helper <op, VReg_32, VSrc_32, opName, pattern, revOp>;
-
-multiclass VOP2_64 <bits<6> op, string opName, list<dag> pattern,
- string revOp = opName>
- : VOP2_Helper <op, VReg_64, VSrc_64, opName, pattern, revOp>;
-
-multiclass VOP2b_32 <bits<6> op, string opName, list<dag> pattern,
- RegisterClass src0_rc, string revOp = opName> {
-
- def _e32 : VOP2 <
- op, (outs VReg_32:$dst), (ins src0_rc:$src0, VReg_32:$src1),
- opName#"_e32 $dst, $src0, $src1", pattern
- >, VOP <opName>, VOP2_REV<revOp#"_e32", !eq(revOp, opName)>;
-
- def _e64 : VOP3b <
- {1, 0, 0, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
- (outs VReg_32:$dst),
- (ins InputMods: $src0_modifiers, VSrc_32:$src0,
- InputMods:$src1_modifiers, VSrc_32:$src1,
- i32imm:$clamp, i32imm:$omod),
- opName#"_e64 $dst, $src0_modifiers, $src1_modifiers, $clamp, $omod", []
- >, VOP <opName>, VOP2_REV<revOp#"_e64", !eq(revOp, opName)> {
- let src2 = 0;
- let src2_modifiers = 0;
- /* the VOP2 variant puts the carry out into VCC, the VOP3 variant
- can write it into any SGPR. We currently don't use the carry out,
- so for now hardcode it to VCC as well */
- let sdst = SIOperand.VCC;
- }
+multiclass VOP3b_2_m <vop op, dag outs, dag ins, string asm,
+ list<dag> pattern, string opName, string revOp,
+ bit HasMods = 1, bit UseFullOp = 0> {
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>,
+ VOP2_REV<revOp#"_e64", !eq(revOp, opName)>;
+
+ // The VOP2 variant puts the carry out into VCC, the VOP3 variant
+ // can write it into any SGPR. We currently don't use the carry out,
+ // so for now hardcode it to VCC as well.
+ let sdst = SIOperand.VCC, Defs = [VCC] in {
+ def _si : VOP3b <op.SI3, outs, ins, asm, pattern>,
+ VOP3DisableFields<1, 0, HasMods>,
+ SIMCInstr<opName#"_e64", SISubtarget.SI>,
+ VOP2_REV<revOp#"_e64_si", !eq(revOp, opName)>;
+
+ // TODO: Do we need this VI variant here?
+ /*def _vi : VOP3b_vi <op.VI3, outs, ins, asm, pattern>,
+ VOP3DisableFields<1, 0, HasMods>,
+ SIMCInstr<opName#"_e64", SISubtarget.VI>,
+ VOP2_REV<revOp#"_e64_vi", !eq(revOp, opName)>;*/
+ } // End sdst = SIOperand.VCC, Defs = [VCC]
}
-multiclass VOPC_Helper <bits<8> op, RegisterClass vrc, RegisterClass arc,
- string opName, ValueType vt, PatLeaf cond, bit defExec = 0> {
- def _e32 : VOPC <
- op, (ins arc:$src0, vrc:$src1),
- opName#"_e32 $dst, $src0, $src1", []
- >, VOP <opName> {
+multiclass VOP3_C_m <vop op, dag outs, dag ins, string asm,
+ list<dag> pattern, string opName,
+ bit HasMods, bit defExec> {
+
+ def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
+
+ def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName>,
+ VOP3DisableFields<1, 0, HasMods> {
let Defs = !if(defExec, [EXEC], []);
}
- def _e64 : VOP3 <
- {0, op{7}, op{6}, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}},
- (outs SReg_64:$dst),
- (ins InputMods:$src0_modifiers, arc:$src0,
- InputMods:$src1_modifiers, arc:$src1,
- InstFlag:$clamp, InstFlag:$omod),
- opName#"_e64 $dst, $src0_modifiers, $src1_modifiers, $clamp, $omod",
- !if(!eq(!cast<string>(cond), "COND_NULL"), []<dag>,
- [(set SReg_64:$dst, (i1 (setcc (vt arc:$src0), arc:$src1, cond)))]
- )
- >, VOP <opName> {
+ def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName>,
+ VOP3DisableFields<1, 0, HasMods> {
let Defs = !if(defExec, [EXEC], []);
- let src2 = 0;
- let src2_modifiers = 0;
}
}
-multiclass VOPC_32 <bits<8> op, string opName,
- ValueType vt = untyped, PatLeaf cond = COND_NULL>
- : VOPC_Helper <op, VReg_32, VSrc_32, opName, vt, cond>;
+// An instruction that is VOP2 on SI and VOP3 on VI, no modifiers.
+multiclass VOP2SI_3VI_m <vop3 op, string opName, dag outs, dag ins,
+ string asm, list<dag> pattern = []> {
+ let isPseudo = 1 in {
+ def "" : VOPAnyCommon <outs, ins, "", pattern>,
+ SIMCInstr<opName, SISubtarget.NONE>;
+ }
+
+ def _si : VOP2 <op.SI3{5-0}, outs, ins, asm, []>,
+ SIMCInstr <opName, SISubtarget.SI>;
+
+ def _vi : VOP3Common <outs, ins, asm, []>,
+ VOP3e_vi <op.VI3>,
+ VOP3DisableFields <1, 0, 0>,
+ SIMCInstr <opName, SISubtarget.VI>;
+}
+
+multiclass VOP1_Helper <vop1 op, string opName, dag outs,
+ dag ins32, string asm32, list<dag> pat32,
+ dag ins64, string asm64, list<dag> pat64,
+ bit HasMods> {
+
+ defm _e32 : VOP1_m <op, outs, ins32, opName#asm32, pat32, opName>;
+
+ defm _e64 : VOP3_1_m <op, outs, ins64, opName#"_e64"#asm64, pat64, opName, HasMods>;
+}
+
+multiclass VOP1Inst <vop1 op, string opName, VOPProfile P,
+ SDPatternOperator node = null_frag> : VOP1_Helper <
+ op, opName, P.Outs,
+ P.Ins32, P.Asm32, [],
+ P.Ins64, P.Asm64,
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0,
+ i32:$src0_modifiers, i1:$clamp, i32:$omod))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0))]),
+ P.HasModifiers
+>;
+
+multiclass VOP1InstSI <vop1 op, string opName, VOPProfile P,
+ SDPatternOperator node = null_frag> {
+
+ def _e32 : VOP1 <op.SI, P.Outs, P.Ins32, opName#P.Asm32, []>,
+ VOP <opName>;
+
+ def _e64 : VOP3Common <P.Outs, P.Ins64, opName#P.Asm64,
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0,
+ i32:$src0_modifiers, i1:$clamp, i32:$omod))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0))])>,
+ VOP <opName>,
+ VOP3e <op.SI3>,
+ VOP3DisableFields<0, 0, P.HasModifiers>;
+}
+
+multiclass VOP2_Helper <vop2 op, string opName, dag outs,
+ dag ins32, string asm32, list<dag> pat32,
+ dag ins64, string asm64, list<dag> pat64,
+ string revOpSI, string revOpVI, bit HasMods> {
+ defm _e32 : VOP2_m <op, outs, ins32, asm32, pat32, opName, revOpSI, revOpVI>;
+
+ defm _e64 : VOP3_2_m <op,
+ outs, ins64, opName#"_e64"#asm64, pat64, opName, revOpSI, revOpVI, HasMods
+ >;
+}
-multiclass VOPC_64 <bits<8> op, string opName,
- ValueType vt = untyped, PatLeaf cond = COND_NULL>
- : VOPC_Helper <op, VReg_64, VSrc_64, opName, vt, cond>;
+multiclass VOP2Inst <vop2 op, string opName, VOPProfile P,
+ SDPatternOperator node = null_frag,
+ string revOpSI = opName, string revOpVI = revOpSI> : VOP2_Helper <
+ op, opName, P.Outs,
+ P.Ins32, P.Asm32, [],
+ P.Ins64, P.Asm64,
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst,
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
+ revOpSI, revOpVI, P.HasModifiers
+>;
-multiclass VOPCX_32 <bits<8> op, string opName,
- ValueType vt = untyped, PatLeaf cond = COND_NULL>
- : VOPC_Helper <op, VReg_32, VSrc_32, opName, vt, cond, 1>;
+multiclass VOP2b_Helper <vop2 op, string opName, dag outs,
+ dag ins32, string asm32, list<dag> pat32,
+ dag ins64, string asm64, list<dag> pat64,
+ string revOp, bit HasMods> {
-multiclass VOPCX_64 <bits<8> op, string opName,
- ValueType vt = untyped, PatLeaf cond = COND_NULL>
- : VOPC_Helper <op, VReg_64, VSrc_64, opName, vt, cond, 1>;
+ defm _e32 : VOP2_m <op, outs, ins32, asm32, pat32, opName, revOp, revOp>;
-multiclass VOP3_32 <bits<9> op, string opName, list<dag> pattern> : VOP3_m <
- op, (outs VReg_32:$dst),
- (ins InputMods: $src0_modifiers, VSrc_32:$src0, InputMods:$src1_modifiers,
- VSrc_32:$src1, InputMods:$src2_modifiers, VSrc_32:$src2,
- InstFlag:$clamp, InstFlag:$omod),
- opName#" $dst, $src0_modifiers, $src1, $src2, $clamp, $omod", pattern, opName
+ defm _e64 : VOP3b_2_m <op,
+ outs, ins64, opName#"_e64"#asm64, pat64, opName, revOp, HasMods
+ >;
+}
+
+multiclass VOP2bInst <vop2 op, string opName, VOPProfile P,
+ SDPatternOperator node = null_frag,
+ string revOp = opName> : VOP2b_Helper <
+ op, opName, P.Outs,
+ P.Ins32, P.Asm32, [],
+ P.Ins64, P.Asm64,
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst,
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
+ revOp, P.HasModifiers
>;
-class VOP3_64_32 <bits <9> op, string opName, list<dag> pattern> : VOP3 <
- op, (outs VReg_64:$dst),
- (ins VSrc_64:$src0, VSrc_32:$src1),
- opName#" $dst, $src0, $src1", pattern
->, VOP <opName> {
+// A VOP2 instruction that is VOP3-only on VI.
+multiclass VOP2_VI3_Helper <vop23 op, string opName, dag outs,
+ dag ins32, string asm32, list<dag> pat32,
+ dag ins64, string asm64, list<dag> pat64,
+ string revOpSI, string revOpVI, bit HasMods> {
+ defm _e32 : VOP2SI_m <op, outs, ins32, asm32, pat32, opName, revOpSI>;
- let src2 = 0;
- let src2_modifiers = 0;
- let src0_modifiers = 0;
- let clamp = 0;
- let omod = 0;
+ defm _e64 : VOP3_2_m <op, outs, ins64, opName#"_e64"#asm64, pat64, opName,
+ revOpSI, revOpVI, HasMods>;
}
-class VOP3_64 <bits<9> op, string opName, list<dag> pattern> : VOP3 <
- op, (outs VReg_64:$dst),
- (ins InputMods:$src0_modifiers, VSrc_64:$src0,
- InputMods:$src1_modifiers, VSrc_64:$src1,
- InputMods:$src2_modifiers, VSrc_64:$src2,
- InstFlag:$clamp, InstFlag:$omod),
- opName#" $dst, $src0_modifiers, $src1_modifiers, $src2_modifiers, $clamp, $omod", pattern
->, VOP <opName>;
+multiclass VOP2_VI3_Inst <vop23 op, string opName, VOPProfile P,
+ SDPatternOperator node = null_frag,
+ string revOpSI = opName, string revOpVI = revOpSI>
+ : VOP2_VI3_Helper <
+ op, opName, P.Outs,
+ P.Ins32, P.Asm32, [],
+ P.Ins64, P.Asm64,
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst,
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
+ revOpSI, revOpVI, P.HasModifiers
+>;
+
+class VOPC_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
+ VOPCCommon <ins, "", pattern>,
+ VOP <opName>,
+ SIMCInstr<opName#"_e32", SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+multiclass VOPC_m <vopc op, dag outs, dag ins, string asm, list<dag> pattern,
+ string opName, bit DefExec> {
+ def "" : VOPC_Pseudo <outs, ins, pattern, opName>;
+
+ def _si : VOPC<op.SI, ins, asm, []>,
+ SIMCInstr <opName#"_e32", SISubtarget.SI> {
+ let Defs = !if(DefExec, [EXEC], []);
+ }
+
+ def _vi : VOPC<op.VI, ins, asm, []>,
+ SIMCInstr <opName#"_e32", SISubtarget.VI> {
+ let Defs = !if(DefExec, [EXEC], []);
+ }
+}
+
+multiclass VOPC_Helper <vopc op, string opName,
+ dag ins32, string asm32, list<dag> pat32,
+ dag out64, dag ins64, string asm64, list<dag> pat64,
+ bit HasMods, bit DefExec> {
+ defm _e32 : VOPC_m <op, (outs), ins32, opName#asm32, pat32, opName, DefExec>;
+
+ defm _e64 : VOP3_C_m <op, out64, ins64, opName#"_e64"#asm64, pat64,
+ opName, HasMods, DefExec>;
+}
+
+multiclass VOPCInst <vopc op, string opName,
+ VOPProfile P, PatLeaf cond = COND_NULL,
+ bit DefExec = 0> : VOPC_Helper <
+ op, opName,
+ P.Ins32, P.Asm32, [],
+ (outs SReg_64:$dst), P.Ins64, P.Asm64,
+ !if(P.HasModifiers,
+ [(set i1:$dst,
+ (setcc (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
+ cond))],
+ [(set i1:$dst, (setcc P.Src0VT:$src0, P.Src1VT:$src1, cond))]),
+ P.HasModifiers, DefExec
+>;
+
+multiclass VOPCClassInst <vopc op, string opName, VOPProfile P,
+ bit DefExec = 0> : VOPC_Helper <
+ op, opName,
+ P.Ins32, P.Asm32, [],
+ (outs SReg_64:$dst), P.Ins64, P.Asm64,
+ !if(P.HasModifiers,
+ [(set i1:$dst,
+ (AMDGPUfp_class (P.Src0VT (VOP3Mods0Clamp0OMod P.Src0VT:$src0, i32:$src0_modifiers)), P.Src1VT:$src1))],
+ [(set i1:$dst, (AMDGPUfp_class P.Src0VT:$src0, P.Src1VT:$src1))]),
+ P.HasModifiers, DefExec
+>;
+
+multiclass VOPC_F32 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCInst <op, opName, VOP_F32_F32_F32, cond>;
-class VOP3b_Helper <bits<9> op, RegisterClass vrc, RegisterClass arc,
- string opName, list<dag> pattern> : VOP3 <
- op, (outs vrc:$dst0, SReg_64:$dst1),
- (ins arc:$src0, arc:$src1, arc:$src2,
- InstFlag:$abs, InstFlag:$clamp, InstFlag:$omod, InstFlag:$neg),
- opName#" $dst0, $dst1, $src0, $src1, $src2, $abs, $clamp, $omod, $neg", pattern
->, VOP <opName>;
+multiclass VOPC_F64 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCInst <op, opName, VOP_F64_F64_F64, cond>;
+multiclass VOPC_I32 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCInst <op, opName, VOP_I32_I32_I32, cond>;
-class VOP3b_64 <bits<9> op, string opName, list<dag> pattern> :
+multiclass VOPC_I64 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCInst <op, opName, VOP_I64_I64_I64, cond>;
+
+
+multiclass VOPCX <vopc op, string opName, VOPProfile P,
+ PatLeaf cond = COND_NULL>
+ : VOPCInst <op, opName, P, cond, 1>;
+
+multiclass VOPCX_F32 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCX <op, opName, VOP_F32_F32_F32, cond>;
+
+multiclass VOPCX_F64 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCX <op, opName, VOP_F64_F64_F64, cond>;
+
+multiclass VOPCX_I32 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCX <op, opName, VOP_I32_I32_I32, cond>;
+
+multiclass VOPCX_I64 <vopc op, string opName, PatLeaf cond = COND_NULL> :
+ VOPCX <op, opName, VOP_I64_I64_I64, cond>;
+
+multiclass VOP3_Helper <vop3 op, string opName, dag outs, dag ins, string asm,
+ list<dag> pat, int NumSrcArgs, bit HasMods> : VOP3_m <
+ op, outs, ins, opName#asm, pat, opName, NumSrcArgs, HasMods
+>;
+
+multiclass VOPC_CLASS_F32 <vopc op, string opName> :
+ VOPCClassInst <op, opName, VOP_I1_F32_I32, 0>;
+
+multiclass VOPCX_CLASS_F32 <vopc op, string opName> :
+ VOPCClassInst <op, opName, VOP_I1_F32_I32, 1>;
+
+multiclass VOPC_CLASS_F64 <vopc op, string opName> :
+ VOPCClassInst <op, opName, VOP_I1_F64_I32, 0>;
+
+multiclass VOPCX_CLASS_F64 <vopc op, string opName> :
+ VOPCClassInst <op, opName, VOP_I1_F64_I32, 1>;
+
+multiclass VOP3Inst <vop3 op, string opName, VOPProfile P,
+ SDPatternOperator node = null_frag> : VOP3_Helper <
+ op, opName, P.Outs, P.Ins64, P.Asm64,
+ !if(!eq(P.NumSrcArgs, 3),
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst,
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
+ (P.Src2VT (VOP3Mods P.Src2VT:$src2, i32:$src2_modifiers))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0, P.Src1VT:$src1,
+ P.Src2VT:$src2))]),
+ !if(!eq(P.NumSrcArgs, 2),
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst,
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0, P.Src1VT:$src1))])
+ /* P.NumSrcArgs == 1 */,
+ !if(P.HasModifiers,
+ [(set P.DstVT:$dst,
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
+ i1:$clamp, i32:$omod))))],
+ [(set P.DstVT:$dst, (node P.Src0VT:$src0))]))),
+ P.NumSrcArgs, P.HasModifiers
+>;
+
+multiclass VOP3b_Helper <vop op, RegisterClass vrc, RegisterOperand arc,
+ string opName, list<dag> pattern> :
+ VOP3b_2_m <
+ op, (outs vrc:$vdst, SReg_64:$sdst),
+ (ins InputModsNoDefault:$src0_modifiers, arc:$src0,
+ InputModsNoDefault:$src1_modifiers, arc:$src1,
+ InputModsNoDefault:$src2_modifiers, arc:$src2,
+ ClampMod:$clamp, omod:$omod),
+ opName#" $vdst, $sdst, $src0_modifiers, $src1_modifiers, $src2_modifiers"#"$clamp"#"$omod", pattern,
+ opName, opName, 1, 1
+>;
+
+multiclass VOP3b_64 <vop3 op, string opName, list<dag> pattern> :
VOP3b_Helper <op, VReg_64, VSrc_64, opName, pattern>;
-class VOP3b_32 <bits<9> op, string opName, list<dag> pattern> :
- VOP3b_Helper <op, VReg_32, VSrc_32, opName, pattern>;
+multiclass VOP3b_32 <vop3 op, string opName, list<dag> pattern> :
+ VOP3b_Helper <op, VGPR_32, VSrc_32, opName, pattern>;
+
+
+class Vop3ModPat<Instruction Inst, VOPProfile P, SDPatternOperator node> : Pat<
+ (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)),
+ (P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
+ (P.Src2VT (VOP3Mods P.Src2VT:$src2, i32:$src2_modifiers))),
+ (Inst i32:$src0_modifiers, P.Src0VT:$src0,
+ i32:$src1_modifiers, P.Src1VT:$src1,
+ i32:$src2_modifiers, P.Src2VT:$src2,
+ i1:$clamp,
+ i32:$omod)>;
+
+//===----------------------------------------------------------------------===//
+// Interpolation opcodes
+//===----------------------------------------------------------------------===//
+
+class VINTRP_Pseudo <string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> :
+ VINTRPCommon <outs, ins, asm, pattern>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+class VINTRP_Real_si <bits <2> op, string opName, dag outs, dag ins,
+ string asm, list<dag> pattern> :
+ VINTRPCommon <outs, ins, asm, pattern>,
+ VINTRPe <op>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+class VINTRP_Real_vi <bits <2> op, string opName, dag outs, dag ins,
+ string asm, list<dag> pattern> :
+ VINTRPCommon <outs, ins, asm, pattern>,
+ VINTRPe_vi <op>,
+ SIMCInstr<opName, SISubtarget.VI>;
+
+multiclass VINTRP_m <bits <2> op, string opName, dag outs, dag ins, string asm,
+ string disableEncoding = "", string constraints = "",
+ list<dag> pattern = []> {
+ let DisableEncoding = disableEncoding,
+ Constraints = constraints in {
+ def "" : VINTRP_Pseudo <opName, outs, ins, asm, pattern>;
+
+ def _si : VINTRP_Real_si <op, opName, outs, ins, asm, pattern>;
+
+ def _vi : VINTRP_Real_vi <op, opName, outs, ins, asm, pattern>;
+ }
+}
//===----------------------------------------------------------------------===//
// Vector I/O classes
//===----------------------------------------------------------------------===//
-class DS_1A <bits<8> op, dag outs, dag ins, string asm, list<dag> pat> :
- DS <op, outs, ins, asm, pat> {
+class DS_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
+ DS <outs, ins, "", pattern>,
+ SIMCInstr <opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+class DS_Real_si <bits<8> op, string opName, dag outs, dag ins, string asm> :
+ DS <outs, ins, asm, []>,
+ DSe <op>,
+ SIMCInstr <opName, SISubtarget.SI>;
+
+class DS_Real_vi <bits<8> op, string opName, dag outs, dag ins, string asm> :
+ DS <outs, ins, asm, []>,
+ DSe_vi <op>,
+ SIMCInstr <opName, SISubtarget.VI>;
+
+class DS_1A_Real_si <bits<8> op, string opName, dag outs, dag ins, string asm> :
+ DS <outs, ins, asm, []>,
+ DSe <op>,
+ SIMCInstr <opName, SISubtarget.SI> {
+
+ // Single load interpret the 2 i8imm operands as a single i16 offset.
bits<16> offset;
+ let offset0 = offset{7-0};
+ let offset1 = offset{15-8};
+}
+
+class DS_1A_Real_vi <bits<8> op, string opName, dag outs, dag ins, string asm> :
+ DS <outs, ins, asm, []>,
+ DSe_vi <op>,
+ SIMCInstr <opName, SISubtarget.VI> {
// Single load interpret the 2 i8imm operands as a single i16 offset.
+ bits<16> offset;
let offset0 = offset{7-0};
let offset1 = offset{15-8};
}
-class DS_Load_Helper <bits<8> op, string asm, RegisterClass regClass> : DS_1A <
+multiclass DS_1A_Load_m <bits<8> op, string opName, dag outs, dag ins, string asm,
+ list<dag> pat> {
+ let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
+ def "" : DS_Pseudo <opName, outs, ins, pat>;
+
+ let data0 = 0, data1 = 0 in {
+ def _si : DS_1A_Real_si <op, opName, outs, ins, asm>;
+ def _vi : DS_1A_Real_vi <op, opName, outs, ins, asm>;
+ }
+ }
+}
+
+multiclass DS_Load_Helper <bits<8> op, string asm, RegisterClass regClass>
+ : DS_1A_Load_m <
op,
+ asm,
(outs regClass:$vdst),
- (ins i1imm:$gds, VReg_32:$addr, u16imm:$offset),
- asm#" $vdst, $addr, $offset, [M0]",
- []> {
- let data0 = 0;
- let data1 = 0;
- let mayLoad = 1;
- let mayStore = 0;
+ (ins i1imm:$gds, VGPR_32:$addr, ds_offset:$offset, M0Reg:$m0),
+ asm#" $vdst, $addr"#"$offset"#" [M0]",
+ []>;
+
+multiclass DS_Load2_m <bits<8> op, string opName, dag outs, dag ins, string asm,
+ list<dag> pat> {
+ let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
+ def "" : DS_Pseudo <opName, outs, ins, pat>;
+
+ let data0 = 0, data1 = 0 in {
+ def _si : DS_Real_si <op, opName, outs, ins, asm>;
+ def _vi : DS_Real_vi <op, opName, outs, ins, asm>;
+ }
+ }
}
-class DS_Load2_Helper <bits<8> op, string asm, RegisterClass regClass> : DS <
+multiclass DS_Load2_Helper <bits<8> op, string asm, RegisterClass regClass>
+ : DS_Load2_m <
op,
+ asm,
(outs regClass:$vdst),
- (ins i1imm:$gds, VReg_32:$addr, u8imm:$offset0, u8imm:$offset1),
- asm#" $gds, $vdst, $addr, $offset0, $offset1, [M0]",
- []> {
- let data0 = 0;
- let data1 = 0;
- let mayLoad = 1;
- let mayStore = 0;
+ (ins i1imm:$gds, VGPR_32:$addr, ds_offset0:$offset0, ds_offset1:$offset1,
+ M0Reg:$m0),
+ asm#" $vdst, $addr"#"$offset0"#"$offset1 [M0]",
+ []>;
+
+multiclass DS_1A_Store_m <bits<8> op, string opName, dag outs, dag ins,
+ string asm, list<dag> pat> {
+ let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
+ def "" : DS_Pseudo <opName, outs, ins, pat>;
+
+ let data1 = 0, vdst = 0 in {
+ def _si : DS_1A_Real_si <op, opName, outs, ins, asm>;
+ def _vi : DS_1A_Real_vi <op, opName, outs, ins, asm>;
+ }
+ }
}
-class DS_Store_Helper <bits<8> op, string asm, RegisterClass regClass> : DS_1A <
+multiclass DS_Store_Helper <bits<8> op, string asm, RegisterClass regClass>
+ : DS_1A_Store_m <
op,
+ asm,
(outs),
- (ins i1imm:$gds, VReg_32:$addr, regClass:$data0, u16imm:$offset),
- asm#" $addr, $data0, $offset [M0]",
- []> {
- let data1 = 0;
- let mayStore = 1;
- let mayLoad = 0;
- let vdst = 0;
+ (ins i1imm:$gds, VGPR_32:$addr, regClass:$data0, ds_offset:$offset, M0Reg:$m0),
+ asm#" $addr, $data0"#"$offset"#" [M0]",
+ []>;
+
+multiclass DS_Store_m <bits<8> op, string opName, dag outs, dag ins,
+ string asm, list<dag> pat> {
+ let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
+ def "" : DS_Pseudo <opName, outs, ins, pat>;
+
+ let vdst = 0 in {
+ def _si : DS_Real_si <op, opName, outs, ins, asm>;
+ def _vi : DS_Real_vi <op, opName, outs, ins, asm>;
+ }
+ }
}
-class DS_Store2_Helper <bits<8> op, string asm, RegisterClass regClass> : DS_1A <
+multiclass DS_Store2_Helper <bits<8> op, string asm, RegisterClass regClass>
+ : DS_Store_m <
op,
+ asm,
(outs),
- (ins i1imm:$gds, VReg_32:$addr, regClass:$data0, u8imm:$offset0, u8imm:$offset1),
- asm#" $addr, $data0, $data1, $offset0, $offset1 [M0]",
- []> {
- let mayStore = 1;
- let mayLoad = 0;
- let vdst = 0;
+ (ins i1imm:$gds, VGPR_32:$addr, regClass:$data0, regClass:$data1,
+ ds_offset0:$offset0, ds_offset1:$offset1, M0Reg:$m0),
+ asm#" $addr, $data0, $data1"#"$offset0"#"$offset1 [M0]",
+ []>;
+
+class DS_1A_si <bits<8> op, dag outs, dag ins, string asm, list<dag> pat> :
+ DS_si <op, outs, ins, asm, pat> {
+ bits<16> offset;
+
+ // Single load interpret the 2 i8imm operands as a single i16 offset.
+ let offset0 = offset{7-0};
+ let offset1 = offset{15-8};
+
+ let hasSideEffects = 0;
}
// 1 address, 1 data.
-class DS_1A1D_RET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+class DS_1A1D_RET <bits<8> op, string asm, RegisterClass rc, string noRetOp = ""> : DS_1A_si <
op,
(outs rc:$vdst),
- (ins i1imm:$gds, VReg_32:$addr, rc:$data0, u16imm:$offset),
- asm#" $vdst, $addr, $data0, $offset, [M0]",
- []> {
+ (ins i1imm:$gds, VGPR_32:$addr, rc:$data0, ds_offset:$offset, M0Reg:$m0),
+ asm#" $vdst, $addr, $data0"#"$offset"#" [M0]", []>,
+ AtomicNoRet<noRetOp, 1> {
let data1 = 0;
let mayStore = 1;
let mayLoad = 1;
+
+ let hasPostISelHook = 1; // Adjusted to no return version.
}
// 1 address, 2 data.
-class DS_1A2D_RET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+class DS_1A2D_RET <bits<8> op, string asm, RegisterClass rc, string noRetOp = ""> : DS_1A_si <
op,
(outs rc:$vdst),
- (ins i1imm:$gds, VReg_32:$addr, rc:$data0, rc:$data1, u16imm:$offset),
- asm#" $vdst, $addr, $data0, $data1, $offset, [M0]",
- []> {
+ (ins i1imm:$gds, VGPR_32:$addr, rc:$data0, rc:$data1, ds_offset:$offset, M0Reg:$m0),
+ asm#" $vdst, $addr, $data0, $data1"#"$offset"#" [M0]",
+ []>,
+ AtomicNoRet<noRetOp, 1> {
let mayStore = 1;
let mayLoad = 1;
+ let hasPostISelHook = 1; // Adjusted to no return version.
}
// 1 address, 2 data.
-class DS_1A2D_NORET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+class DS_1A2D_NORET <bits<8> op, string asm, RegisterClass rc, string noRetOp = asm> : DS_1A_si <
op,
(outs),
- (ins i1imm:$gds, VReg_32:$addr, rc:$data0, rc:$data1, u16imm:$offset),
- asm#" $addr, $data0, $data1, $offset, [M0]",
- []> {
+ (ins i1imm:$gds, VGPR_32:$addr, rc:$data0, rc:$data1, ds_offset:$offset, M0Reg:$m0),
+ asm#" $addr, $data0, $data1"#"$offset"#" [M0]",
+ []>,
+ AtomicNoRet<noRetOp, 0> {
let mayStore = 1;
let mayLoad = 1;
}
// 1 address, 1 data.
-class DS_1A1D_NORET <bits<8> op, string asm, RegisterClass rc> : DS_1A <
+class DS_1A1D_NORET <bits<8> op, string asm, RegisterClass rc, string noRetOp = asm> : DS_1A_si <
op,
(outs),
- (ins i1imm:$gds, VReg_32:$addr, rc:$data0, u16imm:$offset),
- asm#" $addr, $data0, $offset, [M0]",
- []> {
+ (ins i1imm:$gds, VGPR_32:$addr, rc:$data0, ds_offset:$offset, M0Reg:$m0),
+ asm#" $addr, $data0"#"$offset"#" [M0]",
+ []>,
+ AtomicNoRet<noRetOp, 0> {
let data1 = 0;
let mayStore = 1;
let mayLoad = 1;
}
-class MTBUF_Store_Helper <bits<3> op, string asm, RegisterClass regClass> : MTBUF <
- op,
- (outs),
+//===----------------------------------------------------------------------===//
+// MTBUF classes
+//===----------------------------------------------------------------------===//
+
+class MTBUF_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
+ MTBUF <outs, ins, "", pattern>,
+ SIMCInstr<opName, SISubtarget.NONE> {
+ let isPseudo = 1;
+}
+
+class MTBUF_Real_si <bits<3> op, string opName, dag outs, dag ins,
+ string asm> :
+ MTBUF <outs, ins, asm, []>,
+ MTBUFe <op>,
+ SIMCInstr<opName, SISubtarget.SI>;
+
+class MTBUF_Real_vi <bits<4> op, string opName, dag outs, dag ins, string asm> :
+ MTBUF <outs, ins, asm, []>,
+ MTBUFe_vi <op>,
+ SIMCInstr <opName, SISubtarget.VI>;
+
+multiclass MTBUF_m <bits<3> op, string opName, dag outs, dag ins, string asm,
+ list<dag> pattern> {
+
+ def "" : MTBUF_Pseudo <opName, outs, ins, pattern>;
+
+ def _si : MTBUF_Real_si <op, opName, outs, ins, asm>;
+
+ def _vi : MTBUF_Real_vi <{0, op{2}, op{1}, op{0}}, opName, outs, ins, asm>;
+
+}
+
+let mayStore = 1, mayLoad = 0 in {
+
+multiclass MTBUF_Store_Helper <bits<3> op, string opName,
+ RegisterClass regClass> : MTBUF_m <
+ op, opName, (outs),
(ins regClass:$vdata, u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc,
- i1imm:$addr64, i8imm:$dfmt, i8imm:$nfmt, VReg_32:$vaddr,
- SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset),
- asm#" $vdata, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
- #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset",
- []> {
- let mayStore = 1;
- let mayLoad = 0;
+ i1imm:$addr64, i8imm:$dfmt, i8imm:$nfmt, VGPR_32:$vaddr,
+ SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SCSrc_32:$soffset),
+ opName#" $vdata, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
+ #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset", []
+>;
+
+} // mayStore = 1, mayLoad = 0
+
+let mayLoad = 1, mayStore = 0 in {
+
+multiclass MTBUF_Load_Helper <bits<3> op, string opName,
+ RegisterClass regClass> : MTBUF_m <
+ op, opName, (outs regClass:$dst),
+ (ins u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64,
+ i8imm:$dfmt, i8imm:$nfmt, VGPR_32:$vaddr, SReg_128:$srsrc,
+ i1imm:$slc, i1imm:$tfe, SCSrc_32:$soffset),
+ opName#" $dst, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
+ #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset", []
+>;
+
+} // mayLoad = 1, mayStore = 0
+
+//===----------------------------------------------------------------------===//
+// MUBUF classes
+//===----------------------------------------------------------------------===//
+
+class MUBUF_si <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ MUBUF <outs, ins, asm, pattern>, MUBUFe <op> {
+ let lds = 0;
+}
+
+class MUBUF_vi <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
+ MUBUF <outs, ins, asm, pattern>, MUBUFe_vi <op> {
+ let lds = 0;
+}
+
+class MUBUFAddr64Table <bit is_addr64, string suffix = ""> {
+
+ bit IsAddr64 = is_addr64;
+ string OpName = NAME # suffix;
+}
+
+class MUBUFAtomicAddr64 <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern>
+ : MUBUF_si <op, outs, ins, asm, pattern> {
+
+ let offen = 0;
+ let idxen = 0;
+ let addr64 = 1;
+ let tfe = 0;
+ let lds = 0;
+ let soffset = 128;
+}
+
+class MUBUFAtomicOffset <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern>
+ : MUBUF_si <op, outs, ins, asm, pattern> {
+
+ let offen = 0;
+ let idxen = 0;
+ let addr64 = 0;
+ let tfe = 0;
+ let lds = 0;
+ let vaddr = 0;
+}
+
+multiclass MUBUF_Atomic <bits<7> op, string name, RegisterClass rc,
+ ValueType vt, SDPatternOperator atomic> {
+
+ let mayStore = 1, mayLoad = 1, hasPostISelHook = 1 in {
+
+ // No return variants
+ let glc = 0 in {
+
+ def _ADDR64 : MUBUFAtomicAddr64 <
+ op, (outs),
+ (ins rc:$vdata, SReg_128:$srsrc, VReg_64:$vaddr,
+ mbuf_offset:$offset, slc:$slc),
+ name#" $vdata, $vaddr, $srsrc, 0 addr64"#"$offset"#"$slc", []
+ >, MUBUFAddr64Table<1>, AtomicNoRet<NAME#"_ADDR64", 0>;
+
+ def _OFFSET : MUBUFAtomicOffset <
+ op, (outs),
+ (ins rc:$vdata, SReg_128:$srsrc, mbuf_offset:$offset,
+ SCSrc_32:$soffset, slc:$slc),
+ name#" $vdata, $srsrc, $soffset"#"$offset"#"$slc", []
+ >, MUBUFAddr64Table<0>, AtomicNoRet<NAME#"_OFFSET", 0>;
+ } // glc = 0
+
+ // Variant that return values
+ let glc = 1, Constraints = "$vdata = $vdata_in",
+ DisableEncoding = "$vdata_in" in {
+
+ def _RTN_ADDR64 : MUBUFAtomicAddr64 <
+ op, (outs rc:$vdata),
+ (ins rc:$vdata_in, SReg_128:$srsrc, VReg_64:$vaddr,
+ mbuf_offset:$offset, slc:$slc),
+ name#" $vdata, $vaddr, $srsrc, 0 addr64"#"$offset"#" glc"#"$slc",
+ [(set vt:$vdata,
+ (atomic (MUBUFAddr64Atomic v4i32:$srsrc, i64:$vaddr, i16:$offset,
+ i1:$slc), vt:$vdata_in))]
+ >, MUBUFAddr64Table<1, "_RTN">, AtomicNoRet<NAME#"_ADDR64", 1>;
+
+ def _RTN_OFFSET : MUBUFAtomicOffset <
+ op, (outs rc:$vdata),
+ (ins rc:$vdata_in, SReg_128:$srsrc, mbuf_offset:$offset,
+ SCSrc_32:$soffset, slc:$slc),
+ name#" $vdata, $srsrc, $soffset"#"$offset"#" glc $slc",
+ [(set vt:$vdata,
+ (atomic (MUBUFOffsetAtomic v4i32:$srsrc, i32:$soffset, i16:$offset,
+ i1:$slc), vt:$vdata_in))]
+ >, MUBUFAddr64Table<0, "_RTN">, AtomicNoRet<NAME#"_OFFSET", 1>;
+
+ } // glc = 1
+
+ } // mayStore = 1, mayLoad = 1, hasPostISelHook = 1
}
multiclass MUBUF_Load_Helper <bits<7> op, string asm, RegisterClass regClass,
ValueType load_vt = i32,
SDPatternOperator ld = null_frag> {
- let lds = 0, mayLoad = 1 in {
+ let mayLoad = 1, mayStore = 0 in {
let addr64 = 0 in {
let offen = 0, idxen = 0, vaddr = 0 in {
- def _OFFSET : MUBUF <op, (outs regClass:$vdata),
+ def _OFFSET : MUBUF_si <op, (outs regClass:$vdata),
(ins SReg_128:$srsrc,
- u16imm:$offset, SSrc_32:$soffset, i1imm:$glc,
- i1imm:$slc, i1imm:$tfe),
- asm#" $vdata, $srsrc + $offset + $soffset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ mbuf_offset:$offset, SCSrc_32:$soffset, glc:$glc,
+ slc:$slc, tfe:$tfe),
+ asm#" $vdata, $srsrc, $soffset"#"$offset"#"$glc"#"$slc"#"$tfe",
+ [(set load_vt:$vdata, (ld (MUBUFOffset v4i32:$srsrc,
+ i32:$soffset, i16:$offset,
+ i1:$glc, i1:$slc, i1:$tfe)))]>,
+ MUBUFAddr64Table<0>;
}
let offen = 1, idxen = 0 in {
- def _OFFEN : MUBUF <op, (outs regClass:$vdata),
- (ins SReg_128:$srsrc, VReg_32:$vaddr,
- SSrc_32:$soffset, u16imm:$offset, i1imm:$glc, i1imm:$slc,
- i1imm:$tfe),
- asm#" $vdata, $srsrc + $vaddr + $soffset + $offset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ def _OFFEN : MUBUF_si <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VGPR_32:$vaddr,
+ SCSrc_32:$soffset, mbuf_offset:$offset, glc:$glc, slc:$slc,
+ tfe:$tfe),
+ asm#" $vdata, $vaddr, $srsrc, $soffset offen"#"$offset"#"$glc"#"$slc"#"$tfe", []>;
}
let offen = 0, idxen = 1 in {
- def _IDXEN : MUBUF <op, (outs regClass:$vdata),
- (ins SReg_128:$srsrc, VReg_32:$vaddr,
- u16imm:$offset, SSrc_32:$soffset, i1imm:$glc,
- i1imm:$slc, i1imm:$tfe),
- asm#" $vdata, $srsrc[$vaddr] + $offset + $soffset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ def _IDXEN : MUBUF_si <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VGPR_32:$vaddr,
+ mbuf_offset:$offset, SCSrc_32:$soffset, glc:$glc,
+ slc:$slc, tfe:$tfe),
+ asm#" $vdata, $vaddr, $srsrc, $soffset idxen"#"$offset"#"$glc"#"$slc"#"$tfe", []>;
}
let offen = 1, idxen = 1 in {
- def _BOTHEN : MUBUF <op, (outs regClass:$vdata),
+ def _BOTHEN : MUBUF_si <op, (outs regClass:$vdata),
(ins SReg_128:$srsrc, VReg_64:$vaddr,
- SSrc_32:$soffset, i1imm:$glc,
- i1imm:$slc, i1imm:$tfe),
- asm#" $vdata, $srsrc[$vaddr[0]] + $vaddr[1] + $soffset, glc=$glc, slc=$slc, tfe=$tfe", []>;
+ SCSrc_32:$soffset, glc:$glc, slc:$slc, tfe:$tfe),
+ asm#" $vdata, $vaddr, $srsrc, $soffset, idxen offen"#"$glc"#"$slc"#"$tfe", []>;
}
}
let offen = 0, idxen = 0, addr64 = 1, glc = 0, slc = 0, tfe = 0, soffset = 128 /* ZERO */ in {
- def _ADDR64 : MUBUF <op, (outs regClass:$vdata),
- (ins SReg_128:$srsrc, VReg_64:$vaddr, u16imm:$offset),
- asm#" $vdata, $srsrc + $vaddr + $offset",
+ def _ADDR64 : MUBUF_si <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VReg_64:$vaddr, mbuf_offset:$offset),
+ asm#" $vdata, $vaddr, $srsrc, 0 addr64"#"$offset",
[(set load_vt:$vdata, (ld (MUBUFAddr64 v4i32:$srsrc,
- i64:$vaddr, u16imm:$offset)))]>;
+ i64:$vaddr, i16:$offset)))]>, MUBUFAddr64Table<1>;
+ }
+ }
+}
+
+multiclass MUBUF_Load_Helper_vi <bits<7> op, string asm, RegisterClass regClass,
+ ValueType load_vt = i32,
+ SDPatternOperator ld = null_frag> {
+
+ let lds = 0, mayLoad = 1 in {
+ let offen = 0, idxen = 0, vaddr = 0 in {
+ def _OFFSET : MUBUF_vi <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc,
+ mbuf_offset:$offset, SCSrc_32:$soffset, glc:$glc,
+ slc:$slc, tfe:$tfe),
+ asm#" $vdata, $srsrc, $soffset"#"$offset"#"$glc"#"$slc"#"$tfe",
+ [(set load_vt:$vdata, (ld (MUBUFOffset v4i32:$srsrc,
+ i32:$soffset, i16:$offset,
+ i1:$glc, i1:$slc, i1:$tfe)))]>,
+ MUBUFAddr64Table<0>;
+ }
+
+ let offen = 1, idxen = 0 in {
+ def _OFFEN : MUBUF_vi <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VGPR_32:$vaddr,
+ SCSrc_32:$soffset, mbuf_offset:$offset, glc:$glc, slc:$slc,
+ tfe:$tfe),
+ asm#" $vdata, $vaddr, $srsrc, $soffset offen"#"$offset"#"$glc"#"$slc"#"$tfe", []>;
+ }
+
+ let offen = 0, idxen = 1 in {
+ def _IDXEN : MUBUF_vi <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VGPR_32:$vaddr,
+ mbuf_offset:$offset, SCSrc_32:$soffset, glc:$glc,
+ slc:$slc, tfe:$tfe),
+ asm#" $vdata, $vaddr, $srsrc, $soffset idxen"#"$offset"#"$glc"#"$slc"#"$tfe", []>;
+ }
+
+ let offen = 1, idxen = 1 in {
+ def _BOTHEN : MUBUF_vi <op, (outs regClass:$vdata),
+ (ins SReg_128:$srsrc, VReg_64:$vaddr,
+ SCSrc_32:$soffset, glc:$glc, slc:$slc, tfe:$tfe),
+ asm#" $vdata, $vaddr, $srsrc, $soffset, idxen offen"#"$glc"#"$slc"#"$tfe", []>;
}
}
}
@@ -679,23 +1785,51 @@ multiclass MUBUF_Load_Helper <bits<7> op, string asm, RegisterClass regClass,
multiclass MUBUF_Store_Helper <bits<7> op, string name, RegisterClass vdataClass,
ValueType store_vt, SDPatternOperator st> {
- def "" : MUBUF <
- op, (outs),
- (ins vdataClass:$vdata, SReg_128:$srsrc, VReg_32:$vaddr, SSrc_32:$soffset,
- u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$slc,
- i1imm:$tfe),
- name#" $vdata, $srsrc, $vaddr, $soffset, $offset $offen $idxen $glc $slc $tfe",
- []
- > {
- let addr64 = 0;
- }
+ let mayLoad = 0, mayStore = 1 in {
+ let addr64 = 0 in {
+
+ def "" : MUBUF_si <
+ op, (outs),
+ (ins vdataClass:$vdata, SReg_128:$srsrc, VGPR_32:$vaddr, SCSrc_32:$soffset,
+ mbuf_offset:$offset, offen:$offen, idxen:$idxen, glc:$glc, slc:$slc,
+ tfe:$tfe),
+ name#" $vdata, $vaddr, $srsrc, $soffset"#"$offen"#"$idxen"#"$offset"#
+ "$glc"#"$slc"#"$tfe",
+ []
+ >;
- def _ADDR64 : MUBUF <
+ let offen = 0, idxen = 0, vaddr = 0 in {
+ def _OFFSET : MUBUF_si <
+ op, (outs),
+ (ins vdataClass:$vdata, SReg_128:$srsrc, mbuf_offset:$offset,
+ SCSrc_32:$soffset, glc:$glc, slc:$slc, tfe:$tfe),
+ name#" $vdata, $srsrc, $soffset"#"$offset"#"$glc"#"$slc"#"$tfe",
+ [(st store_vt:$vdata, (MUBUFOffset v4i32:$srsrc, i32:$soffset,
+ i16:$offset, i1:$glc, i1:$slc,
+ i1:$tfe))]
+ >, MUBUFAddr64Table<0>;
+ } // offen = 0, idxen = 0, vaddr = 0
+
+ let offen = 1, idxen = 0 in {
+ def _OFFEN : MUBUF_si <
+ op, (outs),
+ (ins vdataClass:$vdata, SReg_128:$srsrc, VGPR_32:$vaddr, SCSrc_32:$soffset,
+ mbuf_offset:$offset, glc:$glc, slc:$slc, tfe:$tfe),
+ name#" $vdata, $vaddr, $srsrc, $soffset offen"#"$offset"#
+ "$glc"#"$slc"#"$tfe",
+ []
+ >;
+ } // end offen = 1, idxen = 0
+
+ } // End addr64 = 0
+
+ def _ADDR64 : MUBUF_si <
op, (outs),
- (ins vdataClass:$vdata, SReg_128:$srsrc, VReg_64:$vaddr, u16imm:$offset),
- name#" $vdata, $srsrc + $vaddr + $offset",
+ (ins vdataClass:$vdata, SReg_128:$srsrc, VReg_64:$vaddr, mbuf_offset:$offset),
+ name#" $vdata, $vaddr, $srsrc, 0 addr64"#"$offset",
[(st store_vt:$vdata,
- (MUBUFAddr64 v4i32:$srsrc, i64:$vaddr, u16imm:$offset))]> {
+ (MUBUFAddr64 v4i32:$srsrc, i64:$vaddr, i16:$offset))]>, MUBUFAddr64Table<1>
+ {
let mayLoad = 0;
let mayStore = 1;
@@ -705,24 +1839,35 @@ multiclass MUBUF_Store_Helper <bits<7> op, string name, RegisterClass vdataClass
let idxen = 0;
let glc = 0;
let addr64 = 1;
- let lds = 0;
let slc = 0;
let tfe = 0;
let soffset = 128; // ZERO
}
+ } // End mayLoad = 0, mayStore = 1
}
-class MTBUF_Load_Helper <bits<3> op, string asm, RegisterClass regClass> : MTBUF <
- op,
- (outs regClass:$dst),
- (ins u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64,
- i8imm:$dfmt, i8imm:$nfmt, VReg_32:$vaddr, SReg_128:$srsrc,
- i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset),
- asm#" $dst, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
- #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset",
- []> {
+class FLAT_Load_Helper <bits<7> op, string asm, RegisterClass regClass> :
+ FLAT <op, (outs regClass:$data),
+ (ins VReg_64:$addr),
+ asm#" $data, $addr, [M0, FLAT_SCRATCH]", []> {
+ let glc = 0;
+ let slc = 0;
+ let tfe = 0;
let mayLoad = 1;
- let mayStore = 0;
+}
+
+class FLAT_Store_Helper <bits<7> op, string name, RegisterClass vdataClass> :
+ FLAT <op, (outs), (ins vdataClass:$data, VReg_64:$addr),
+ name#" $data, $addr, [M0, FLAT_SCRATCH]",
+ []> {
+
+ let mayLoad = 0;
+ let mayStore = 1;
+
+ // Encoding
+ let glc = 0;
+ let slc = 0;
+ let tfe = 0;
}
class MIMG_Mask <string op, int channels> {
@@ -750,7 +1895,7 @@ class MIMG_NoSampler_Helper <bits<7> op, string asm,
multiclass MIMG_NoSampler_Src_Helper <bits<7> op, string asm,
RegisterClass dst_rc,
int channels> {
- def _V1 : MIMG_NoSampler_Helper <op, asm, dst_rc, VReg_32>,
+ def _V1 : MIMG_NoSampler_Helper <op, asm, dst_rc, VGPR_32>,
MIMG_Mask<asm#"_V1", channels>;
def _V2 : MIMG_NoSampler_Helper <op, asm, dst_rc, VReg_64>,
MIMG_Mask<asm#"_V2", channels>;
@@ -759,7 +1904,7 @@ multiclass MIMG_NoSampler_Src_Helper <bits<7> op, string asm,
}
multiclass MIMG_NoSampler <bits<7> op, string asm> {
- defm _V1 : MIMG_NoSampler_Src_Helper <op, asm, VReg_32, 1>;
+ defm _V1 : MIMG_NoSampler_Src_Helper <op, asm, VGPR_32, 1>;
defm _V2 : MIMG_NoSampler_Src_Helper <op, asm, VReg_64, 2>;
defm _V3 : MIMG_NoSampler_Src_Helper <op, asm, VReg_96, 3>;
defm _V4 : MIMG_NoSampler_Src_Helper <op, asm, VReg_128, 4>;
@@ -784,7 +1929,7 @@ class MIMG_Sampler_Helper <bits<7> op, string asm,
multiclass MIMG_Sampler_Src_Helper <bits<7> op, string asm,
RegisterClass dst_rc,
int channels> {
- def _V1 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_32>,
+ def _V1 : MIMG_Sampler_Helper <op, asm, dst_rc, VGPR_32>,
MIMG_Mask<asm#"_V1", channels>;
def _V2 : MIMG_Sampler_Helper <op, asm, dst_rc, VReg_64>,
MIMG_Mask<asm#"_V2", channels>;
@@ -797,7 +1942,7 @@ multiclass MIMG_Sampler_Src_Helper <bits<7> op, string asm,
}
multiclass MIMG_Sampler <bits<7> op, string asm> {
- defm _V1 : MIMG_Sampler_Src_Helper<op, asm, VReg_32, 1>;
+ defm _V1 : MIMG_Sampler_Src_Helper<op, asm, VGPR_32, 1>;
defm _V2 : MIMG_Sampler_Src_Helper<op, asm, VReg_64, 2>;
defm _V3 : MIMG_Sampler_Src_Helper<op, asm, VReg_96, 3>;
defm _V4 : MIMG_Sampler_Src_Helper<op, asm, VReg_128, 4>;
@@ -831,7 +1976,7 @@ class MIMG_Gather_Helper <bits<7> op, string asm,
multiclass MIMG_Gather_Src_Helper <bits<7> op, string asm,
RegisterClass dst_rc,
int channels> {
- def _V1 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_32>,
+ def _V1 : MIMG_Gather_Helper <op, asm, dst_rc, VGPR_32>,
MIMG_Mask<asm#"_V1", channels>;
def _V2 : MIMG_Gather_Helper <op, asm, dst_rc, VReg_64>,
MIMG_Mask<asm#"_V2", channels>;
@@ -844,7 +1989,7 @@ multiclass MIMG_Gather_Src_Helper <bits<7> op, string asm,
}
multiclass MIMG_Gather <bits<7> op, string asm> {
- defm _V1 : MIMG_Gather_Src_Helper<op, asm, VReg_32, 1>;
+ defm _V1 : MIMG_Gather_Src_Helper<op, asm, VGPR_32, 1>;
defm _V2 : MIMG_Gather_Src_Helper<op, asm, VReg_64, 2>;
defm _V3 : MIMG_Gather_Src_Helper<op, asm, VReg_96, 3>;
defm _V4 : MIMG_Gather_Src_Helper<op, asm, VReg_128, 4>;
@@ -898,20 +2043,40 @@ def getCommuteOrig : InstrMapping {
let ValueCols = [["1"]];
}
-def isDS : InstrMapping {
- let FilterClass = "DS";
- let RowFields = ["Inst"];
- let ColFields = ["Size"];
- let KeyCol = ["8"];
- let ValueCols = [["8"]];
-}
-
-def getMCOpcode : InstrMapping {
+def getMCOpcodeGen : InstrMapping {
let FilterClass = "SIMCInstr";
let RowFields = ["PseudoInstr"];
let ColFields = ["Subtarget"];
let KeyCol = [!cast<string>(SISubtarget.NONE)];
- let ValueCols = [[!cast<string>(SISubtarget.SI)]];
+ let ValueCols = [[!cast<string>(SISubtarget.SI)],[!cast<string>(SISubtarget.VI)]];
+}
+
+def getAddr64Inst : InstrMapping {
+ let FilterClass = "MUBUFAddr64Table";
+ let RowFields = ["OpName"];
+ let ColFields = ["IsAddr64"];
+ let KeyCol = ["0"];
+ let ValueCols = [["1"]];
+}
+
+// Maps an atomic opcode to its version with a return value.
+def getAtomicRetOp : InstrMapping {
+ let FilterClass = "AtomicNoRet";
+ let RowFields = ["NoRetOp"];
+ let ColFields = ["IsRet"];
+ let KeyCol = ["0"];
+ let ValueCols = [["1"]];
+}
+
+// Maps an atomic opcode to its returnless version.
+def getAtomicNoRetOp : InstrMapping {
+ let FilterClass = "AtomicNoRet";
+ let RowFields = ["NoRetOp"];
+ let ColFields = ["IsRet"];
+ let KeyCol = ["1"];
+ let ValueCols = [["0"]];
}
include "SIInstructions.td"
+include "CIInstructions.td"
+include "VIInstructions.td"
diff --git a/contrib/llvm/lib/Target/R600/SIInstructions.td b/contrib/llvm/lib/Target/R600/SIInstructions.td
index aecd847..4b1a846 100644
--- a/contrib/llvm/lib/Target/R600/SIInstructions.td
+++ b/contrib/llvm/lib/Target/R600/SIInstructions.td
@@ -26,18 +26,37 @@ def SendMsgImm : Operand<i32> {
let PrintMethod = "printSendMsg";
}
-def isSI : Predicate<"Subtarget.getGeneration() "
+def isGCN : Predicate<"Subtarget.getGeneration() "
">= AMDGPUSubtarget::SOUTHERN_ISLANDS">;
-
+def isSICI : Predicate<
+ "Subtarget.getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS ||"
+ "Subtarget.getGeneration() == AMDGPUSubtarget::SEA_ISLANDS"
+>;
def isCI : Predicate<"Subtarget.getGeneration() "
">= AMDGPUSubtarget::SEA_ISLANDS">;
+def isVI : Predicate <
+ "Subtarget.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS"
+>;
-def isCFDepth0 : Predicate<"isCFDepth0()">;
+def HasFlatAddressSpace : Predicate<"Subtarget.hasFlatAddressSpace()">;
-def WAIT_FLAG : InstFlag<"printWaitFlag">;
+def SWaitMatchClass : AsmOperandClass {
+ let Name = "SWaitCnt";
+ let RenderMethod = "addImmOperands";
+ let ParserMethod = "parseSWaitCntOps";
+}
-let SubtargetPredicate = isSI in {
-let OtherPredicates = [isCFDepth0] in {
+def WAIT_FLAG : InstFlag<"printWaitFlag"> {
+ let ParserMatchClass = SWaitMatchClass;
+}
+
+let SubtargetPredicate = isGCN in {
+
+//===----------------------------------------------------------------------===//
+// EXP Instructions
+//===----------------------------------------------------------------------===//
+
+defm EXP : EXP_m;
//===----------------------------------------------------------------------===//
// SMRD Instructions
@@ -48,129 +67,135 @@ let mayLoad = 1 in {
// We are using the SGPR_32 and not the SReg_32 register class for 32-bit
// SMRD instructions, because the SGPR_32 register class does not include M0
// and writing to M0 from an SMRD instruction will hang the GPU.
-defm S_LOAD_DWORD : SMRD_Helper <0x00, "S_LOAD_DWORD", SReg_64, SGPR_32>;
-defm S_LOAD_DWORDX2 : SMRD_Helper <0x01, "S_LOAD_DWORDX2", SReg_64, SReg_64>;
-defm S_LOAD_DWORDX4 : SMRD_Helper <0x02, "S_LOAD_DWORDX4", SReg_64, SReg_128>;
-defm S_LOAD_DWORDX8 : SMRD_Helper <0x03, "S_LOAD_DWORDX8", SReg_64, SReg_256>;
-defm S_LOAD_DWORDX16 : SMRD_Helper <0x04, "S_LOAD_DWORDX16", SReg_64, SReg_512>;
+defm S_LOAD_DWORD : SMRD_Helper <0x00, "s_load_dword", SReg_64, SGPR_32>;
+defm S_LOAD_DWORDX2 : SMRD_Helper <0x01, "s_load_dwordx2", SReg_64, SReg_64>;
+defm S_LOAD_DWORDX4 : SMRD_Helper <0x02, "s_load_dwordx4", SReg_64, SReg_128>;
+defm S_LOAD_DWORDX8 : SMRD_Helper <0x03, "s_load_dwordx8", SReg_64, SReg_256>;
+defm S_LOAD_DWORDX16 : SMRD_Helper <0x04, "s_load_dwordx16", SReg_64, SReg_512>;
defm S_BUFFER_LOAD_DWORD : SMRD_Helper <
- 0x08, "S_BUFFER_LOAD_DWORD", SReg_128, SGPR_32
+ 0x08, "s_buffer_load_dword", SReg_128, SGPR_32
>;
defm S_BUFFER_LOAD_DWORDX2 : SMRD_Helper <
- 0x09, "S_BUFFER_LOAD_DWORDX2", SReg_128, SReg_64
+ 0x09, "s_buffer_load_dwordx2", SReg_128, SReg_64
>;
defm S_BUFFER_LOAD_DWORDX4 : SMRD_Helper <
- 0x0a, "S_BUFFER_LOAD_DWORDX4", SReg_128, SReg_128
+ 0x0a, "s_buffer_load_dwordx4", SReg_128, SReg_128
>;
defm S_BUFFER_LOAD_DWORDX8 : SMRD_Helper <
- 0x0b, "S_BUFFER_LOAD_DWORDX8", SReg_128, SReg_256
+ 0x0b, "s_buffer_load_dwordx8", SReg_128, SReg_256
>;
defm S_BUFFER_LOAD_DWORDX16 : SMRD_Helper <
- 0x0c, "S_BUFFER_LOAD_DWORDX16", SReg_128, SReg_512
+ 0x0c, "s_buffer_load_dwordx16", SReg_128, SReg_512
>;
} // mayLoad = 1
-//def S_MEMTIME : SMRD_ <0x0000001e, "S_MEMTIME", []>;
-//def S_DCACHE_INV : SMRD_ <0x0000001f, "S_DCACHE_INV", []>;
+//def S_MEMTIME : SMRD_ <0x0000001e, "s_memtime", []>;
+//def S_DCACHE_INV : SMRD_ <0x0000001f, "s_dcache_inv", []>;
//===----------------------------------------------------------------------===//
// SOP1 Instructions
//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1 in {
-
let isMoveImm = 1 in {
-def S_MOV_B32 : SOP1_32 <0x00000003, "S_MOV_B32", []>;
-def S_MOV_B64 : SOP1_64 <0x00000004, "S_MOV_B64", []>;
-def S_CMOV_B32 : SOP1_32 <0x00000005, "S_CMOV_B32", []>;
-def S_CMOV_B64 : SOP1_64 <0x00000006, "S_CMOV_B64", []>;
+ let isReMaterializable = 1 in {
+ defm S_MOV_B32 : SOP1_32 <sop1<0x03, 0x00>, "s_mov_b32", []>;
+ defm S_MOV_B64 : SOP1_64 <sop1<0x04, 0x01>, "s_mov_b64", []>;
+ } // let isRematerializeable = 1
+
+ let Uses = [SCC] in {
+ defm S_CMOV_B32 : SOP1_32 <sop1<0x05, 0x02>, "s_cmov_b32", []>;
+ defm S_CMOV_B64 : SOP1_64 <sop1<0x06, 0x03>, "s_cmov_b64", []>;
+ } // End Uses = [SCC]
} // End isMoveImm = 1
-def S_NOT_B32 : SOP1_32 <0x00000007, "S_NOT_B32",
- [(set i32:$dst, (not i32:$src0))]
->;
+let Defs = [SCC] in {
+ defm S_NOT_B32 : SOP1_32 <sop1<0x07, 0x04>, "s_not_b32",
+ [(set i32:$dst, (not i32:$src0))]
+ >;
-def S_NOT_B64 : SOP1_64 <0x00000008, "S_NOT_B64",
- [(set i64:$dst, (not i64:$src0))]
->;
-def S_WQM_B32 : SOP1_32 <0x00000009, "S_WQM_B32", []>;
-def S_WQM_B64 : SOP1_64 <0x0000000a, "S_WQM_B64", []>;
-def S_BREV_B32 : SOP1_32 <0x0000000b, "S_BREV_B32",
+ defm S_NOT_B64 : SOP1_64 <sop1<0x08, 0x05>, "s_not_b64",
+ [(set i64:$dst, (not i64:$src0))]
+ >;
+ defm S_WQM_B32 : SOP1_32 <sop1<0x09, 0x06>, "s_wqm_b32", []>;
+ defm S_WQM_B64 : SOP1_64 <sop1<0x0a, 0x07>, "s_wqm_b64", []>;
+} // End Defs = [SCC]
+
+
+defm S_BREV_B32 : SOP1_32 <sop1<0x0b, 0x08>, "s_brev_b32",
[(set i32:$dst, (AMDGPUbrev i32:$src0))]
>;
-def S_BREV_B64 : SOP1_64 <0x0000000c, "S_BREV_B64", []>;
-} // End neverHasSideEffects = 1
+defm S_BREV_B64 : SOP1_64 <sop1<0x0c, 0x09>, "s_brev_b64", []>;
-////def S_BCNT0_I32_B32 : SOP1_BCNT0 <0x0000000d, "S_BCNT0_I32_B32", []>;
-////def S_BCNT0_I32_B64 : SOP1_BCNT0 <0x0000000e, "S_BCNT0_I32_B64", []>;
-def S_BCNT1_I32_B32 : SOP1_32 <0x0000000f, "S_BCNT1_I32_B32",
- [(set i32:$dst, (ctpop i32:$src0))]
->;
-def S_BCNT1_I32_B64 : SOP1_32_64 <0x00000010, "S_BCNT1_I32_B64", []>;
+let Defs = [SCC] in {
+ //defm S_BCNT0_I32_B32 : SOP1_BCNT0 <sop1<0x0d, 0x0a>, "s_bcnt0_i32_b32", []>;
+ //defm S_BCNT0_I32_B64 : SOP1_BCNT0 <sop1<0x0e, 0x0b>, "s_bcnt0_i32_b64", []>;
+ defm S_BCNT1_I32_B32 : SOP1_32 <sop1<0x0f, 0x0c>, "s_bcnt1_i32_b32",
+ [(set i32:$dst, (ctpop i32:$src0))]
+ >;
+ defm S_BCNT1_I32_B64 : SOP1_32_64 <sop1<0x10, 0x0d>, "s_bcnt1_i32_b64", []>;
+} // End Defs = [SCC]
-////def S_FF0_I32_B32 : SOP1_32 <0x00000011, "S_FF0_I32_B32", []>;
-////def S_FF0_I32_B64 : SOP1_FF0 <0x00000012, "S_FF0_I32_B64", []>;
-def S_FF1_I32_B32 : SOP1_32 <0x00000013, "S_FF1_I32_B32",
+//defm S_FF0_I32_B32 : SOP1_32 <sop1<0x11, 0x0e>, "s_ff0_i32_b32", []>;
+//defm S_FF0_I32_B64 : SOP1_FF0 <sop1<0x12, 0x0f>, "s_ff0_i32_b64", []>;
+defm S_FF1_I32_B32 : SOP1_32 <sop1<0x13, 0x10>, "s_ff1_i32_b32",
[(set i32:$dst, (cttz_zero_undef i32:$src0))]
>;
-////def S_FF1_I32_B64 : SOP1_FF1 <0x00000014, "S_FF1_I32_B64", []>;
+////defm S_FF1_I32_B64 : SOP1_FF1 <sop1<0x14, 0x11>, "s_ff1_i32_b64", []>;
-def S_FLBIT_I32_B32 : SOP1_32 <0x00000015, "S_FLBIT_I32_B32",
+defm S_FLBIT_I32_B32 : SOP1_32 <sop1<0x15, 0x12>, "s_flbit_i32_b32",
[(set i32:$dst, (ctlz_zero_undef i32:$src0))]
>;
-//def S_FLBIT_I32_B64 : SOP1_32 <0x00000016, "S_FLBIT_I32_B64", []>;
-def S_FLBIT_I32 : SOP1_32 <0x00000017, "S_FLBIT_I32", []>;
-//def S_FLBIT_I32_I64 : SOP1_32 <0x00000018, "S_FLBIT_I32_I64", []>;
-def S_SEXT_I32_I8 : SOP1_32 <0x00000019, "S_SEXT_I32_I8",
+//defm S_FLBIT_I32_B64 : SOP1_32 <sop1<0x16, 0x13>, "s_flbit_i32_b64", []>;
+defm S_FLBIT_I32 : SOP1_32 <sop1<0x17, 0x14>, "s_flbit_i32", []>;
+//defm S_FLBIT_I32_I64 : SOP1_32 <sop1<0x18, 0x15>, "s_flbit_i32_i64", []>;
+defm S_SEXT_I32_I8 : SOP1_32 <sop1<0x19, 0x16>, "s_sext_i32_i8",
[(set i32:$dst, (sext_inreg i32:$src0, i8))]
>;
-def S_SEXT_I32_I16 : SOP1_32 <0x0000001a, "S_SEXT_I32_I16",
+defm S_SEXT_I32_I16 : SOP1_32 <sop1<0x1a, 0x17>, "s_sext_i32_i16",
[(set i32:$dst, (sext_inreg i32:$src0, i16))]
>;
-////def S_BITSET0_B32 : SOP1_BITSET0 <0x0000001b, "S_BITSET0_B32", []>;
-////def S_BITSET0_B64 : SOP1_BITSET0 <0x0000001c, "S_BITSET0_B64", []>;
-////def S_BITSET1_B32 : SOP1_BITSET1 <0x0000001d, "S_BITSET1_B32", []>;
-////def S_BITSET1_B64 : SOP1_BITSET1 <0x0000001e, "S_BITSET1_B64", []>;
-def S_GETPC_B64 : SOP1 <
- 0x0000001f, (outs SReg_64:$dst), (ins), "S_GETPC_B64 $dst", []
-> {
- let SSRC0 = 0;
-}
-def S_SETPC_B64 : SOP1_64 <0x00000020, "S_SETPC_B64", []>;
-def S_SWAPPC_B64 : SOP1_64 <0x00000021, "S_SWAPPC_B64", []>;
-def S_RFE_B64 : SOP1_64 <0x00000022, "S_RFE_B64", []>;
-
-let hasSideEffects = 1, Uses = [EXEC], Defs = [EXEC] in {
-
-def S_AND_SAVEEXEC_B64 : SOP1_64 <0x00000024, "S_AND_SAVEEXEC_B64", []>;
-def S_OR_SAVEEXEC_B64 : SOP1_64 <0x00000025, "S_OR_SAVEEXEC_B64", []>;
-def S_XOR_SAVEEXEC_B64 : SOP1_64 <0x00000026, "S_XOR_SAVEEXEC_B64", []>;
-def S_ANDN2_SAVEEXEC_B64 : SOP1_64 <0x00000027, "S_ANDN2_SAVEEXEC_B64", []>;
-def S_ORN2_SAVEEXEC_B64 : SOP1_64 <0x00000028, "S_ORN2_SAVEEXEC_B64", []>;
-def S_NAND_SAVEEXEC_B64 : SOP1_64 <0x00000029, "S_NAND_SAVEEXEC_B64", []>;
-def S_NOR_SAVEEXEC_B64 : SOP1_64 <0x0000002a, "S_NOR_SAVEEXEC_B64", []>;
-def S_XNOR_SAVEEXEC_B64 : SOP1_64 <0x0000002b, "S_XNOR_SAVEEXEC_B64", []>;
-
-} // End hasSideEffects = 1
-
-def S_QUADMASK_B32 : SOP1_32 <0x0000002c, "S_QUADMASK_B32", []>;
-def S_QUADMASK_B64 : SOP1_64 <0x0000002d, "S_QUADMASK_B64", []>;
-def S_MOVRELS_B32 : SOP1_32 <0x0000002e, "S_MOVRELS_B32", []>;
-def S_MOVRELS_B64 : SOP1_64 <0x0000002f, "S_MOVRELS_B64", []>;
-def S_MOVRELD_B32 : SOP1_32 <0x00000030, "S_MOVRELD_B32", []>;
-def S_MOVRELD_B64 : SOP1_64 <0x00000031, "S_MOVRELD_B64", []>;
-//def S_CBRANCH_JOIN : SOP1_ <0x00000032, "S_CBRANCH_JOIN", []>;
-def S_MOV_REGRD_B32 : SOP1_32 <0x00000033, "S_MOV_REGRD_B32", []>;
-def S_ABS_I32 : SOP1_32 <0x00000034, "S_ABS_I32", []>;
-def S_MOV_FED_B32 : SOP1_32 <0x00000035, "S_MOV_FED_B32", []>;
+////defm S_BITSET0_B32 : SOP1_BITSET0 <sop1<0x1b, 0x18>, "s_bitset0_b32", []>;
+////defm S_BITSET0_B64 : SOP1_BITSET0 <sop1<0x1c, 0x19>, "s_bitset0_b64", []>;
+////defm S_BITSET1_B32 : SOP1_BITSET1 <sop1<0x1d, 0x1a>, "s_bitset1_b32", []>;
+////defm S_BITSET1_B64 : SOP1_BITSET1 <sop1<0x1e, 0x1b>, "s_bitset1_b64", []>;
+defm S_GETPC_B64 : SOP1_64_0 <sop1<0x1f, 0x1c>, "s_getpc_b64", []>;
+defm S_SETPC_B64 : SOP1_64 <sop1<0x20, 0x1d>, "s_setpc_b64", []>;
+defm S_SWAPPC_B64 : SOP1_64 <sop1<0x21, 0x1e>, "s_swappc_b64", []>;
+defm S_RFE_B64 : SOP1_64 <sop1<0x22, 0x1f>, "s_rfe_b64", []>;
+
+let hasSideEffects = 1, Uses = [EXEC], Defs = [EXEC, SCC] in {
+
+defm S_AND_SAVEEXEC_B64 : SOP1_64 <sop1<0x24, 0x20>, "s_and_saveexec_b64", []>;
+defm S_OR_SAVEEXEC_B64 : SOP1_64 <sop1<0x25, 0x21>, "s_or_saveexec_b64", []>;
+defm S_XOR_SAVEEXEC_B64 : SOP1_64 <sop1<0x26, 0x22>, "s_xor_saveexec_b64", []>;
+defm S_ANDN2_SAVEEXEC_B64 : SOP1_64 <sop1<0x27, 0x23>, "s_andn2_saveexec_b64", []>;
+defm S_ORN2_SAVEEXEC_B64 : SOP1_64 <sop1<0x28, 0x24>, "s_orn2_saveexec_b64", []>;
+defm S_NAND_SAVEEXEC_B64 : SOP1_64 <sop1<0x29, 0x25>, "s_nand_saveexec_b64", []>;
+defm S_NOR_SAVEEXEC_B64 : SOP1_64 <sop1<0x2a, 0x26>, "s_nor_saveexec_b64", []>;
+defm S_XNOR_SAVEEXEC_B64 : SOP1_64 <sop1<0x2b, 0x27>, "s_xnor_saveexec_b64", []>;
+
+} // End hasSideEffects = 1, Uses = [EXEC], Defs = [EXEC, SCC]
+
+defm S_QUADMASK_B32 : SOP1_32 <sop1<0x2c, 0x28>, "s_quadmask_b32", []>;
+defm S_QUADMASK_B64 : SOP1_64 <sop1<0x2d, 0x29>, "s_quadmask_b64", []>;
+defm S_MOVRELS_B32 : SOP1_32 <sop1<0x2e, 0x2a>, "s_movrels_b32", []>;
+defm S_MOVRELS_B64 : SOP1_64 <sop1<0x2f, 0x2b>, "s_movrels_b64", []>;
+defm S_MOVRELD_B32 : SOP1_32 <sop1<0x30, 0x2c>, "s_movreld_b32", []>;
+defm S_MOVRELD_B64 : SOP1_64 <sop1<0x31, 0x2d>, "s_movreld_b64", []>;
+//defm S_CBRANCH_JOIN : SOP1_ <sop1<0x32, 0x2e>, "s_cbranch_join", []>;
+defm S_MOV_REGRD_B32 : SOP1_32 <sop1<0x33, 0x2f>, "s_mov_regrd_b32", []>;
+let Defs = [SCC] in {
+ defm S_ABS_I32 : SOP1_32 <sop1<0x34, 0x30>, "s_abs_i32", []>;
+} // End Defs = [SCC]
+defm S_MOV_FED_B32 : SOP1_32 <sop1<0x35, 0x31>, "s_mov_fed_b32", []>;
//===----------------------------------------------------------------------===//
// SOP2 Instructions
@@ -178,145 +203,161 @@ def S_MOV_FED_B32 : SOP1_32 <0x00000035, "S_MOV_FED_B32", []>;
let Defs = [SCC] in { // Carry out goes to SCC
let isCommutable = 1 in {
-def S_ADD_U32 : SOP2_32 <0x00000000, "S_ADD_U32", []>;
-def S_ADD_I32 : SOP2_32 <0x00000002, "S_ADD_I32",
+defm S_ADD_U32 : SOP2_32 <sop2<0x00>, "s_add_u32", []>;
+defm S_ADD_I32 : SOP2_32 <sop2<0x02>, "s_add_i32",
[(set i32:$dst, (add SSrc_32:$src0, SSrc_32:$src1))]
>;
} // End isCommutable = 1
-def S_SUB_U32 : SOP2_32 <0x00000001, "S_SUB_U32", []>;
-def S_SUB_I32 : SOP2_32 <0x00000003, "S_SUB_I32",
+defm S_SUB_U32 : SOP2_32 <sop2<0x01>, "s_sub_u32", []>;
+defm S_SUB_I32 : SOP2_32 <sop2<0x03>, "s_sub_i32",
[(set i32:$dst, (sub SSrc_32:$src0, SSrc_32:$src1))]
>;
let Uses = [SCC] in { // Carry in comes from SCC
let isCommutable = 1 in {
-def S_ADDC_U32 : SOP2_32 <0x00000004, "S_ADDC_U32",
+defm S_ADDC_U32 : SOP2_32 <sop2<0x04>, "s_addc_u32",
[(set i32:$dst, (adde (i32 SSrc_32:$src0), (i32 SSrc_32:$src1)))]>;
} // End isCommutable = 1
-def S_SUBB_U32 : SOP2_32 <0x00000005, "S_SUBB_U32",
+defm S_SUBB_U32 : SOP2_32 <sop2<0x05>, "s_subb_u32",
[(set i32:$dst, (sube (i32 SSrc_32:$src0), (i32 SSrc_32:$src1)))]>;
} // End Uses = [SCC]
-} // End Defs = [SCC]
-def S_MIN_I32 : SOP2_32 <0x00000006, "S_MIN_I32",
+defm S_MIN_I32 : SOP2_32 <sop2<0x06>, "s_min_i32",
[(set i32:$dst, (AMDGPUsmin i32:$src0, i32:$src1))]
>;
-def S_MIN_U32 : SOP2_32 <0x00000007, "S_MIN_U32",
+defm S_MIN_U32 : SOP2_32 <sop2<0x07>, "s_min_u32",
[(set i32:$dst, (AMDGPUumin i32:$src0, i32:$src1))]
>;
-def S_MAX_I32 : SOP2_32 <0x00000008, "S_MAX_I32",
+defm S_MAX_I32 : SOP2_32 <sop2<0x08>, "s_max_i32",
[(set i32:$dst, (AMDGPUsmax i32:$src0, i32:$src1))]
>;
-def S_MAX_U32 : SOP2_32 <0x00000009, "S_MAX_U32",
+defm S_MAX_U32 : SOP2_32 <sop2<0x09>, "s_max_u32",
[(set i32:$dst, (AMDGPUumax i32:$src0, i32:$src1))]
>;
+} // End Defs = [SCC]
-def S_CSELECT_B32 : SOP2 <
- 0x0000000a, (outs SReg_32:$dst),
- (ins SReg_32:$src0, SReg_32:$src1, SCCReg:$scc), "S_CSELECT_B32",
- []
->;
+defm S_CSELECT_B32 : SOP2_SELECT_32 <sop2<0x0a>, "s_cselect_b32", []>;
-def S_CSELECT_B64 : SOP2_64 <0x0000000b, "S_CSELECT_B64", []>;
+let Uses = [SCC] in {
+ defm S_CSELECT_B64 : SOP2_64 <sop2<0x0b>, "s_cselect_b64", []>;
+} // End Uses = [SCC]
-def S_AND_B32 : SOP2_32 <0x0000000e, "S_AND_B32",
+let Defs = [SCC] in {
+defm S_AND_B32 : SOP2_32 <sop2<0x0e, 0x0c>, "s_and_b32",
[(set i32:$dst, (and i32:$src0, i32:$src1))]
>;
-def S_AND_B64 : SOP2_64 <0x0000000f, "S_AND_B64",
+defm S_AND_B64 : SOP2_64 <sop2<0x0f, 0x0d>, "s_and_b64",
[(set i64:$dst, (and i64:$src0, i64:$src1))]
>;
-def S_OR_B32 : SOP2_32 <0x00000010, "S_OR_B32",
+defm S_OR_B32 : SOP2_32 <sop2<0x10, 0x0e>, "s_or_b32",
[(set i32:$dst, (or i32:$src0, i32:$src1))]
>;
-def S_OR_B64 : SOP2_64 <0x00000011, "S_OR_B64",
+defm S_OR_B64 : SOP2_64 <sop2<0x11, 0x0f>, "s_or_b64",
[(set i64:$dst, (or i64:$src0, i64:$src1))]
>;
-def S_XOR_B32 : SOP2_32 <0x00000012, "S_XOR_B32",
+defm S_XOR_B32 : SOP2_32 <sop2<0x12, 0x10>, "s_xor_b32",
[(set i32:$dst, (xor i32:$src0, i32:$src1))]
>;
-def S_XOR_B64 : SOP2_64 <0x00000013, "S_XOR_B64",
+defm S_XOR_B64 : SOP2_64 <sop2<0x13, 0x11>, "s_xor_b64",
[(set i64:$dst, (xor i64:$src0, i64:$src1))]
>;
-def S_ANDN2_B32 : SOP2_32 <0x00000014, "S_ANDN2_B32", []>;
-def S_ANDN2_B64 : SOP2_64 <0x00000015, "S_ANDN2_B64", []>;
-def S_ORN2_B32 : SOP2_32 <0x00000016, "S_ORN2_B32", []>;
-def S_ORN2_B64 : SOP2_64 <0x00000017, "S_ORN2_B64", []>;
-def S_NAND_B32 : SOP2_32 <0x00000018, "S_NAND_B32", []>;
-def S_NAND_B64 : SOP2_64 <0x00000019, "S_NAND_B64", []>;
-def S_NOR_B32 : SOP2_32 <0x0000001a, "S_NOR_B32", []>;
-def S_NOR_B64 : SOP2_64 <0x0000001b, "S_NOR_B64", []>;
-def S_XNOR_B32 : SOP2_32 <0x0000001c, "S_XNOR_B32", []>;
-def S_XNOR_B64 : SOP2_64 <0x0000001d, "S_XNOR_B64", []>;
+defm S_ANDN2_B32 : SOP2_32 <sop2<0x14, 0x12>, "s_andn2_b32", []>;
+defm S_ANDN2_B64 : SOP2_64 <sop2<0x15, 0x13>, "s_andn2_b64", []>;
+defm S_ORN2_B32 : SOP2_32 <sop2<0x16, 0x14>, "s_orn2_b32", []>;
+defm S_ORN2_B64 : SOP2_64 <sop2<0x17, 0x15>, "s_orn2_b64", []>;
+defm S_NAND_B32 : SOP2_32 <sop2<0x18, 0x16>, "s_nand_b32", []>;
+defm S_NAND_B64 : SOP2_64 <sop2<0x19, 0x17>, "s_nand_b64", []>;
+defm S_NOR_B32 : SOP2_32 <sop2<0x1a, 0x18>, "s_nor_b32", []>;
+defm S_NOR_B64 : SOP2_64 <sop2<0x1b, 0x19>, "s_nor_b64", []>;
+defm S_XNOR_B32 : SOP2_32 <sop2<0x1c, 0x1a>, "s_xnor_b32", []>;
+defm S_XNOR_B64 : SOP2_64 <sop2<0x1d, 0x1b>, "s_xnor_b64", []>;
+} // End Defs = [SCC]
// Use added complexity so these patterns are preferred to the VALU patterns.
let AddedComplexity = 1 in {
+let Defs = [SCC] in {
-def S_LSHL_B32 : SOP2_32 <0x0000001e, "S_LSHL_B32",
+defm S_LSHL_B32 : SOP2_32 <sop2<0x1e, 0x1c>, "s_lshl_b32",
[(set i32:$dst, (shl i32:$src0, i32:$src1))]
>;
-def S_LSHL_B64 : SOP2_SHIFT_64 <0x0000001f, "S_LSHL_B64",
+defm S_LSHL_B64 : SOP2_64_32 <sop2<0x1f, 0x1d>, "s_lshl_b64",
[(set i64:$dst, (shl i64:$src0, i32:$src1))]
>;
-def S_LSHR_B32 : SOP2_32 <0x00000020, "S_LSHR_B32",
+defm S_LSHR_B32 : SOP2_32 <sop2<0x20, 0x1e>, "s_lshr_b32",
[(set i32:$dst, (srl i32:$src0, i32:$src1))]
>;
-def S_LSHR_B64 : SOP2_SHIFT_64 <0x00000021, "S_LSHR_B64",
+defm S_LSHR_B64 : SOP2_64_32 <sop2<0x21, 0x1f>, "s_lshr_b64",
[(set i64:$dst, (srl i64:$src0, i32:$src1))]
>;
-def S_ASHR_I32 : SOP2_32 <0x00000022, "S_ASHR_I32",
+defm S_ASHR_I32 : SOP2_32 <sop2<0x22, 0x20>, "s_ashr_i32",
[(set i32:$dst, (sra i32:$src0, i32:$src1))]
>;
-def S_ASHR_I64 : SOP2_SHIFT_64 <0x00000023, "S_ASHR_I64",
+defm S_ASHR_I64 : SOP2_64_32 <sop2<0x23, 0x21>, "s_ashr_i64",
[(set i64:$dst, (sra i64:$src0, i32:$src1))]
>;
+} // End Defs = [SCC]
+
+defm S_BFM_B32 : SOP2_32 <sop2<0x24, 0x22>, "s_bfm_b32", []>;
+defm S_BFM_B64 : SOP2_64 <sop2<0x25, 0x23>, "s_bfm_b64", []>;
+defm S_MUL_I32 : SOP2_32 <sop2<0x26, 0x24>, "s_mul_i32",
+ [(set i32:$dst, (mul i32:$src0, i32:$src1))]
+>;
} // End AddedComplexity = 1
-def S_BFM_B32 : SOP2_32 <0x00000024, "S_BFM_B32", []>;
-def S_BFM_B64 : SOP2_64 <0x00000025, "S_BFM_B64", []>;
-def S_MUL_I32 : SOP2_32 <0x00000026, "S_MUL_I32", []>;
-def S_BFE_U32 : SOP2_32 <0x00000027, "S_BFE_U32", []>;
-def S_BFE_I32 : SOP2_32 <0x00000028, "S_BFE_I32", []>;
-def S_BFE_U64 : SOP2_64 <0x00000029, "S_BFE_U64", []>;
-def S_BFE_I64 : SOP2_64 <0x0000002a, "S_BFE_I64", []>;
-//def S_CBRANCH_G_FORK : SOP2_ <0x0000002b, "S_CBRANCH_G_FORK", []>;
-def S_ABSDIFF_I32 : SOP2_32 <0x0000002c, "S_ABSDIFF_I32", []>;
+let Defs = [SCC] in {
+defm S_BFE_U32 : SOP2_32 <sop2<0x27, 0x25>, "s_bfe_u32", []>;
+defm S_BFE_I32 : SOP2_32 <sop2<0x28, 0x26>, "s_bfe_i32", []>;
+defm S_BFE_U64 : SOP2_64 <sop2<0x29, 0x27>, "s_bfe_u64", []>;
+defm S_BFE_I64 : SOP2_64_32 <sop2<0x2a, 0x28>, "s_bfe_i64", []>;
+} // End Defs = [SCC]
+
+//defm S_CBRANCH_G_FORK : SOP2_ <sop2<0x2b, 0x29>, "s_cbranch_g_fork", []>;
+let Defs = [SCC] in {
+defm S_ABSDIFF_I32 : SOP2_32 <sop2<0x2c, 0x2a>, "s_absdiff_i32", []>;
+} // End Defs = [SCC]
//===----------------------------------------------------------------------===//
// SOPC Instructions
//===----------------------------------------------------------------------===//
-def S_CMP_EQ_I32 : SOPC_32 <0x00000000, "S_CMP_EQ_I32">;
-def S_CMP_LG_I32 : SOPC_32 <0x00000001, "S_CMP_LG_I32">;
-def S_CMP_GT_I32 : SOPC_32 <0x00000002, "S_CMP_GT_I32">;
-def S_CMP_GE_I32 : SOPC_32 <0x00000003, "S_CMP_GE_I32">;
-def S_CMP_LT_I32 : SOPC_32 <0x00000004, "S_CMP_LT_I32">;
-def S_CMP_LE_I32 : SOPC_32 <0x00000005, "S_CMP_LE_I32">;
-def S_CMP_EQ_U32 : SOPC_32 <0x00000006, "S_CMP_EQ_U32">;
-def S_CMP_LG_U32 : SOPC_32 <0x00000007, "S_CMP_LG_U32">;
-def S_CMP_GT_U32 : SOPC_32 <0x00000008, "S_CMP_GT_U32">;
-def S_CMP_GE_U32 : SOPC_32 <0x00000009, "S_CMP_GE_U32">;
-def S_CMP_LT_U32 : SOPC_32 <0x0000000a, "S_CMP_LT_U32">;
-def S_CMP_LE_U32 : SOPC_32 <0x0000000b, "S_CMP_LE_U32">;
-////def S_BITCMP0_B32 : SOPC_BITCMP0 <0x0000000c, "S_BITCMP0_B32", []>;
-////def S_BITCMP1_B32 : SOPC_BITCMP1 <0x0000000d, "S_BITCMP1_B32", []>;
-////def S_BITCMP0_B64 : SOPC_BITCMP0 <0x0000000e, "S_BITCMP0_B64", []>;
-////def S_BITCMP1_B64 : SOPC_BITCMP1 <0x0000000f, "S_BITCMP1_B64", []>;
-//def S_SETVSKIP : SOPC_ <0x00000010, "S_SETVSKIP", []>;
+def S_CMP_EQ_I32 : SOPC_32 <0x00000000, "s_cmp_eq_i32">;
+def S_CMP_LG_I32 : SOPC_32 <0x00000001, "s_cmp_lg_i32">;
+def S_CMP_GT_I32 : SOPC_32 <0x00000002, "s_cmp_gt_i32">;
+def S_CMP_GE_I32 : SOPC_32 <0x00000003, "s_cmp_ge_i32">;
+def S_CMP_LT_I32 : SOPC_32 <0x00000004, "s_cmp_lt_i32">;
+def S_CMP_LE_I32 : SOPC_32 <0x00000005, "s_cmp_le_i32">;
+def S_CMP_EQ_U32 : SOPC_32 <0x00000006, "s_cmp_eq_u32">;
+def S_CMP_LG_U32 : SOPC_32 <0x00000007, "s_cmp_lg_u32">;
+def S_CMP_GT_U32 : SOPC_32 <0x00000008, "s_cmp_gt_u32">;
+def S_CMP_GE_U32 : SOPC_32 <0x00000009, "s_cmp_ge_u32">;
+def S_CMP_LT_U32 : SOPC_32 <0x0000000a, "s_cmp_lt_u32">;
+def S_CMP_LE_U32 : SOPC_32 <0x0000000b, "s_cmp_le_u32">;
+////def S_BITCMP0_B32 : SOPC_BITCMP0 <0x0000000c, "s_bitcmp0_b32", []>;
+////def S_BITCMP1_B32 : SOPC_BITCMP1 <0x0000000d, "s_bitcmp1_b32", []>;
+////def S_BITCMP0_B64 : SOPC_BITCMP0 <0x0000000e, "s_bitcmp0_b64", []>;
+////def S_BITCMP1_B64 : SOPC_BITCMP1 <0x0000000f, "s_bitcmp1_b64", []>;
+//def S_SETVSKIP : SOPC_ <0x00000010, "s_setvskip", []>;
//===----------------------------------------------------------------------===//
// SOPK Instructions
//===----------------------------------------------------------------------===//
-def S_MOVK_I32 : SOPK_32 <0x00000000, "S_MOVK_I32", []>;
-def S_CMOVK_I32 : SOPK_32 <0x00000002, "S_CMOVK_I32", []>;
+let isReMaterializable = 1 in {
+defm S_MOVK_I32 : SOPK_32 <sopk<0x00>, "s_movk_i32", []>;
+} // End isReMaterializable = 1
+let Uses = [SCC] in {
+ defm S_CMOVK_I32 : SOPK_32 <sopk<0x02, 0x01>, "s_cmovk_i32", []>;
+}
+
+let isCompare = 1 in {
/*
This instruction is disabled for now until we can figure out how to teach
@@ -330,50 +371,46 @@ SCC = S_CMPK_EQ_I32 SGPR0, imm
VCC = COPY SCC
VGPR0 = V_CNDMASK VCC, VGPR0, VGPR1
-def S_CMPK_EQ_I32 : SOPK <
- 0x00000003, (outs SCCReg:$dst), (ins SReg_32:$src0, i32imm:$src1),
- "S_CMPK_EQ_I32",
+defm S_CMPK_EQ_I32 : SOPK_SCC <sopk<0x03, 0x02>, "s_cmpk_eq_i32",
[(set i1:$dst, (setcc i32:$src0, imm:$src1, SETEQ))]
>;
*/
-let isCompare = 1, Defs = [SCC] in {
-def S_CMPK_LG_I32 : SOPK_32 <0x00000004, "S_CMPK_LG_I32", []>;
-def S_CMPK_GT_I32 : SOPK_32 <0x00000005, "S_CMPK_GT_I32", []>;
-def S_CMPK_GE_I32 : SOPK_32 <0x00000006, "S_CMPK_GE_I32", []>;
-def S_CMPK_LT_I32 : SOPK_32 <0x00000007, "S_CMPK_LT_I32", []>;
-def S_CMPK_LE_I32 : SOPK_32 <0x00000008, "S_CMPK_LE_I32", []>;
-def S_CMPK_EQ_U32 : SOPK_32 <0x00000009, "S_CMPK_EQ_U32", []>;
-def S_CMPK_LG_U32 : SOPK_32 <0x0000000a, "S_CMPK_LG_U32", []>;
-def S_CMPK_GT_U32 : SOPK_32 <0x0000000b, "S_CMPK_GT_U32", []>;
-def S_CMPK_GE_U32 : SOPK_32 <0x0000000c, "S_CMPK_GE_U32", []>;
-def S_CMPK_LT_U32 : SOPK_32 <0x0000000d, "S_CMPK_LT_U32", []>;
-def S_CMPK_LE_U32 : SOPK_32 <0x0000000e, "S_CMPK_LE_U32", []>;
-} // End isCompare = 1, Defs = [SCC]
-
-let Defs = [SCC], isCommutable = 1 in {
- def S_ADDK_I32 : SOPK_32 <0x0000000f, "S_ADDK_I32", []>;
- def S_MULK_I32 : SOPK_32 <0x00000010, "S_MULK_I32", []>;
-}
+defm S_CMPK_LG_I32 : SOPK_SCC <sopk<0x04, 0x03>, "s_cmpk_lg_i32", []>;
+defm S_CMPK_GT_I32 : SOPK_SCC <sopk<0x05, 0x04>, "s_cmpk_gt_i32", []>;
+defm S_CMPK_GE_I32 : SOPK_SCC <sopk<0x06, 0x05>, "s_cmpk_ge_i32", []>;
+defm S_CMPK_LT_I32 : SOPK_SCC <sopk<0x07, 0x06>, "s_cmpk_lt_i32", []>;
+defm S_CMPK_LE_I32 : SOPK_SCC <sopk<0x08, 0x07>, "s_cmpk_le_i32", []>;
+defm S_CMPK_EQ_U32 : SOPK_SCC <sopk<0x09, 0x08>, "s_cmpk_eq_u32", []>;
+defm S_CMPK_LG_U32 : SOPK_SCC <sopk<0x0a, 0x09>, "s_cmpk_lg_u32", []>;
+defm S_CMPK_GT_U32 : SOPK_SCC <sopk<0x0b, 0x0a>, "s_cmpk_gt_u32", []>;
+defm S_CMPK_GE_U32 : SOPK_SCC <sopk<0x0c, 0x0b>, "s_cmpk_ge_u32", []>;
+defm S_CMPK_LT_U32 : SOPK_SCC <sopk<0x0d, 0x0c>, "s_cmpk_lt_u32", []>;
+defm S_CMPK_LE_U32 : SOPK_SCC <sopk<0x0e, 0x0d>, "s_cmpk_le_u32", []>;
+} // End isCompare = 1
-//def S_CBRANCH_I_FORK : SOPK_ <0x00000011, "S_CBRANCH_I_FORK", []>;
-def S_GETREG_B32 : SOPK_32 <0x00000012, "S_GETREG_B32", []>;
-def S_SETREG_B32 : SOPK_32 <0x00000013, "S_SETREG_B32", []>;
-def S_GETREG_REGRD_B32 : SOPK_32 <0x00000014, "S_GETREG_REGRD_B32", []>;
-//def S_SETREG_IMM32_B32 : SOPK_32 <0x00000015, "S_SETREG_IMM32_B32", []>;
-//def EXP : EXP_ <0x00000000, "EXP", []>;
+let isCommutable = 1 in {
+ let Defs = [SCC], isCommutable = 1 in {
+ defm S_ADDK_I32 : SOPK_32 <sopk<0x0f, 0x0e>, "s_addk_i32", []>;
+ }
+ defm S_MULK_I32 : SOPK_32 <sopk<0x10, 0x0f>, "s_mulk_i32", []>;
+}
-} // End let OtherPredicates = [isCFDepth0]
+//defm S_CBRANCH_I_FORK : SOPK_ <sopk<0x11, 0x10>, "s_cbranch_i_fork", []>;
+defm S_GETREG_B32 : SOPK_32 <sopk<0x12, 0x11>, "s_getreg_b32", []>;
+defm S_SETREG_B32 : SOPK_32 <sopk<0x13, 0x12>, "s_setreg_b32", []>;
+defm S_GETREG_REGRD_B32 : SOPK_32 <sopk<0x14, 0x13>, "s_getreg_regrd_b32", []>;
+//defm S_SETREG_IMM32_B32 : SOPK_32 <sopk<0x15, 0x14>, "s_setreg_imm32_b32", []>;
//===----------------------------------------------------------------------===//
// SOPP Instructions
//===----------------------------------------------------------------------===//
-def S_NOP : SOPP <0x00000000, (ins i16imm:$simm16), "S_NOP $simm16", []>;
+def S_NOP : SOPP <0x00000000, (ins i16imm:$simm16), "s_nop $simm16">;
let isTerminator = 1 in {
-def S_ENDPGM : SOPP <0x00000001, (ins), "S_ENDPGM",
+def S_ENDPGM : SOPP <0x00000001, (ins), "s_endpgm",
[(IL_retflag)]> {
let simm16 = 0;
let isBarrier = 1;
@@ -382,7 +419,7 @@ def S_ENDPGM : SOPP <0x00000001, (ins), "S_ENDPGM",
let isBranch = 1 in {
def S_BRANCH : SOPP <
- 0x00000002, (ins sopp_brtarget:$simm16), "S_BRANCH $simm16",
+ 0x00000002, (ins sopp_brtarget:$simm16), "s_branch $simm16",
[(br bb:$simm16)]> {
let isBarrier = 1;
}
@@ -390,36 +427,31 @@ def S_BRANCH : SOPP <
let DisableEncoding = "$scc" in {
def S_CBRANCH_SCC0 : SOPP <
0x00000004, (ins sopp_brtarget:$simm16, SCCReg:$scc),
- "S_CBRANCH_SCC0 $simm16", []
+ "s_cbranch_scc0 $simm16"
>;
def S_CBRANCH_SCC1 : SOPP <
0x00000005, (ins sopp_brtarget:$simm16, SCCReg:$scc),
- "S_CBRANCH_SCC1 $simm16",
- []
+ "s_cbranch_scc1 $simm16"
>;
} // End DisableEncoding = "$scc"
def S_CBRANCH_VCCZ : SOPP <
0x00000006, (ins sopp_brtarget:$simm16, VCCReg:$vcc),
- "S_CBRANCH_VCCZ $simm16",
- []
+ "s_cbranch_vccz $simm16"
>;
def S_CBRANCH_VCCNZ : SOPP <
0x00000007, (ins sopp_brtarget:$simm16, VCCReg:$vcc),
- "S_CBRANCH_VCCNZ $simm16",
- []
+ "s_cbranch_vccnz $simm16"
>;
let DisableEncoding = "$exec" in {
def S_CBRANCH_EXECZ : SOPP <
0x00000008, (ins sopp_brtarget:$simm16, EXECReg:$exec),
- "S_CBRANCH_EXECZ $simm16",
- []
+ "s_cbranch_execz $simm16"
>;
def S_CBRANCH_EXECNZ : SOPP <
0x00000009, (ins sopp_brtarget:$simm16, EXECReg:$exec),
- "S_CBRANCH_EXECNZ $simm16",
- []
+ "s_cbranch_execnz $simm16"
>;
} // End DisableEncoding = "$exec"
@@ -428,7 +460,7 @@ def S_CBRANCH_EXECNZ : SOPP <
} // End isTerminator = 1
let hasSideEffects = 1 in {
-def S_BARRIER : SOPP <0x0000000a, (ins), "S_BARRIER",
+def S_BARRIER : SOPP <0x0000000a, (ins), "s_barrier",
[(int_AMDGPU_barrier_local)]
> {
let simm16 = 0;
@@ -438,27 +470,29 @@ def S_BARRIER : SOPP <0x0000000a, (ins), "S_BARRIER",
let mayStore = 1;
}
-def S_WAITCNT : SOPP <0x0000000c, (ins WAIT_FLAG:$simm16), "S_WAITCNT $simm16",
- []
->;
-//def S_SETHALT : SOPP_ <0x0000000d, "S_SETHALT", []>;
-//def S_SLEEP : SOPP_ <0x0000000e, "S_SLEEP", []>;
-//def S_SETPRIO : SOPP_ <0x0000000f, "S_SETPRIO", []>;
+def S_WAITCNT : SOPP <0x0000000c, (ins WAIT_FLAG:$simm16), "s_waitcnt $simm16">;
+def S_SETHALT : SOPP <0x0000000d, (ins i16imm:$simm16), "s_sethalt $simm16">;
+def S_SLEEP : SOPP <0x0000000e, (ins i16imm:$simm16), "s_sleep $simm16">;
+def S_SETPRIO : SOPP <0x0000000f, (ins i16imm:$sim16), "s_setprio $sim16">;
let Uses = [EXEC] in {
- def S_SENDMSG : SOPP <0x00000010, (ins SendMsgImm:$simm16, M0Reg:$m0), "S_SENDMSG $simm16",
+ def S_SENDMSG : SOPP <0x00000010, (ins SendMsgImm:$simm16, M0Reg:$m0), "s_sendmsg $simm16",
[(int_SI_sendmsg imm:$simm16, M0Reg:$m0)]
> {
let DisableEncoding = "$m0";
}
} // End Uses = [EXEC]
-//def S_SENDMSGHALT : SOPP_ <0x00000011, "S_SENDMSGHALT", []>;
-//def S_TRAP : SOPP_ <0x00000012, "S_TRAP", []>;
-//def S_ICACHE_INV : SOPP_ <0x00000013, "S_ICACHE_INV", []>;
-//def S_INCPERFLEVEL : SOPP_ <0x00000014, "S_INCPERFLEVEL", []>;
-//def S_DECPERFLEVEL : SOPP_ <0x00000015, "S_DECPERFLEVEL", []>;
-//def S_TTRACEDATA : SOPP_ <0x00000016, "S_TTRACEDATA", []>;
+def S_SENDMSGHALT : SOPP <0x00000011, (ins i16imm:$simm16), "s_sendmsghalt $simm16">;
+def S_TRAP : SOPP <0x00000012, (ins i16imm:$simm16), "s_trap $simm16">;
+def S_ICACHE_INV : SOPP <0x00000013, (ins), "s_icache_inv"> {
+ let simm16 = 0;
+}
+def S_INCPERFLEVEL : SOPP <0x00000014, (ins i16imm:$simm16), "s_incperflevel $simm16">;
+def S_DECPERFLEVEL : SOPP <0x00000015, (ins i16imm:$simm16), "s_decperflevel $simm16">;
+def S_TTRACEDATA : SOPP <0x00000016, (ins), "s_ttracedata"> {
+ let simm16 = 0;
+}
} // End hasSideEffects
//===----------------------------------------------------------------------===//
@@ -467,256 +501,260 @@ let Uses = [EXEC] in {
let isCompare = 1 in {
-defm V_CMP_F_F32 : VOPC_32 <0x00000000, "V_CMP_F_F32">;
-defm V_CMP_LT_F32 : VOPC_32 <0x00000001, "V_CMP_LT_F32", f32, COND_OLT>;
-defm V_CMP_EQ_F32 : VOPC_32 <0x00000002, "V_CMP_EQ_F32", f32, COND_OEQ>;
-defm V_CMP_LE_F32 : VOPC_32 <0x00000003, "V_CMP_LE_F32", f32, COND_OLE>;
-defm V_CMP_GT_F32 : VOPC_32 <0x00000004, "V_CMP_GT_F32", f32, COND_OGT>;
-defm V_CMP_LG_F32 : VOPC_32 <0x00000005, "V_CMP_LG_F32">;
-defm V_CMP_GE_F32 : VOPC_32 <0x00000006, "V_CMP_GE_F32", f32, COND_OGE>;
-defm V_CMP_O_F32 : VOPC_32 <0x00000007, "V_CMP_O_F32", f32, COND_O>;
-defm V_CMP_U_F32 : VOPC_32 <0x00000008, "V_CMP_U_F32", f32, COND_UO>;
-defm V_CMP_NGE_F32 : VOPC_32 <0x00000009, "V_CMP_NGE_F32">;
-defm V_CMP_NLG_F32 : VOPC_32 <0x0000000a, "V_CMP_NLG_F32">;
-defm V_CMP_NGT_F32 : VOPC_32 <0x0000000b, "V_CMP_NGT_F32">;
-defm V_CMP_NLE_F32 : VOPC_32 <0x0000000c, "V_CMP_NLE_F32">;
-defm V_CMP_NEQ_F32 : VOPC_32 <0x0000000d, "V_CMP_NEQ_F32", f32, COND_UNE>;
-defm V_CMP_NLT_F32 : VOPC_32 <0x0000000e, "V_CMP_NLT_F32">;
-defm V_CMP_TRU_F32 : VOPC_32 <0x0000000f, "V_CMP_TRU_F32">;
+defm V_CMP_F_F32 : VOPC_F32 <vopc<0x0, 0x40>, "v_cmp_f_f32">;
+defm V_CMP_LT_F32 : VOPC_F32 <vopc<0x1, 0x41>, "v_cmp_lt_f32", COND_OLT>;
+defm V_CMP_EQ_F32 : VOPC_F32 <vopc<0x2, 0x42>, "v_cmp_eq_f32", COND_OEQ>;
+defm V_CMP_LE_F32 : VOPC_F32 <vopc<0x3, 0x43>, "v_cmp_le_f32", COND_OLE>;
+defm V_CMP_GT_F32 : VOPC_F32 <vopc<0x4, 0x44>, "v_cmp_gt_f32", COND_OGT>;
+defm V_CMP_LG_F32 : VOPC_F32 <vopc<0x5, 0x45>, "v_cmp_lg_f32", COND_ONE>;
+defm V_CMP_GE_F32 : VOPC_F32 <vopc<0x6, 0x46>, "v_cmp_ge_f32", COND_OGE>;
+defm V_CMP_O_F32 : VOPC_F32 <vopc<0x7, 0x47>, "v_cmp_o_f32", COND_O>;
+defm V_CMP_U_F32 : VOPC_F32 <vopc<0x8, 0x48>, "v_cmp_u_f32", COND_UO>;
+defm V_CMP_NGE_F32 : VOPC_F32 <vopc<0x9, 0x49>, "v_cmp_nge_f32", COND_ULT>;
+defm V_CMP_NLG_F32 : VOPC_F32 <vopc<0xa, 0x4a>, "v_cmp_nlg_f32", COND_UEQ>;
+defm V_CMP_NGT_F32 : VOPC_F32 <vopc<0xb, 0x4b>, "v_cmp_ngt_f32", COND_ULE>;
+defm V_CMP_NLE_F32 : VOPC_F32 <vopc<0xc, 0x4c>, "v_cmp_nle_f32", COND_UGT>;
+defm V_CMP_NEQ_F32 : VOPC_F32 <vopc<0xd, 0x4d>, "v_cmp_neq_f32", COND_UNE>;
+defm V_CMP_NLT_F32 : VOPC_F32 <vopc<0xe, 0x4e>, "v_cmp_nlt_f32", COND_UGE>;
+defm V_CMP_TRU_F32 : VOPC_F32 <vopc<0xf, 0x4f>, "v_cmp_tru_f32">;
let hasSideEffects = 1 in {
-defm V_CMPX_F_F32 : VOPCX_32 <0x00000010, "V_CMPX_F_F32">;
-defm V_CMPX_LT_F32 : VOPCX_32 <0x00000011, "V_CMPX_LT_F32">;
-defm V_CMPX_EQ_F32 : VOPCX_32 <0x00000012, "V_CMPX_EQ_F32">;
-defm V_CMPX_LE_F32 : VOPCX_32 <0x00000013, "V_CMPX_LE_F32">;
-defm V_CMPX_GT_F32 : VOPCX_32 <0x00000014, "V_CMPX_GT_F32">;
-defm V_CMPX_LG_F32 : VOPCX_32 <0x00000015, "V_CMPX_LG_F32">;
-defm V_CMPX_GE_F32 : VOPCX_32 <0x00000016, "V_CMPX_GE_F32">;
-defm V_CMPX_O_F32 : VOPCX_32 <0x00000017, "V_CMPX_O_F32">;
-defm V_CMPX_U_F32 : VOPCX_32 <0x00000018, "V_CMPX_U_F32">;
-defm V_CMPX_NGE_F32 : VOPCX_32 <0x00000019, "V_CMPX_NGE_F32">;
-defm V_CMPX_NLG_F32 : VOPCX_32 <0x0000001a, "V_CMPX_NLG_F32">;
-defm V_CMPX_NGT_F32 : VOPCX_32 <0x0000001b, "V_CMPX_NGT_F32">;
-defm V_CMPX_NLE_F32 : VOPCX_32 <0x0000001c, "V_CMPX_NLE_F32">;
-defm V_CMPX_NEQ_F32 : VOPCX_32 <0x0000001d, "V_CMPX_NEQ_F32">;
-defm V_CMPX_NLT_F32 : VOPCX_32 <0x0000001e, "V_CMPX_NLT_F32">;
-defm V_CMPX_TRU_F32 : VOPCX_32 <0x0000001f, "V_CMPX_TRU_F32">;
+defm V_CMPX_F_F32 : VOPCX_F32 <vopc<0x10, 0x50>, "v_cmpx_f_f32">;
+defm V_CMPX_LT_F32 : VOPCX_F32 <vopc<0x11, 0x51>, "v_cmpx_lt_f32">;
+defm V_CMPX_EQ_F32 : VOPCX_F32 <vopc<0x12, 0x52>, "v_cmpx_eq_f32">;
+defm V_CMPX_LE_F32 : VOPCX_F32 <vopc<0x13, 0x53>, "v_cmpx_le_f32">;
+defm V_CMPX_GT_F32 : VOPCX_F32 <vopc<0x14, 0x54>, "v_cmpx_gt_f32">;
+defm V_CMPX_LG_F32 : VOPCX_F32 <vopc<0x15, 0x55>, "v_cmpx_lg_f32">;
+defm V_CMPX_GE_F32 : VOPCX_F32 <vopc<0x16, 0x56>, "v_cmpx_ge_f32">;
+defm V_CMPX_O_F32 : VOPCX_F32 <vopc<0x17, 0x57>, "v_cmpx_o_f32">;
+defm V_CMPX_U_F32 : VOPCX_F32 <vopc<0x18, 0x58>, "v_cmpx_u_f32">;
+defm V_CMPX_NGE_F32 : VOPCX_F32 <vopc<0x19, 0x59>, "v_cmpx_nge_f32">;
+defm V_CMPX_NLG_F32 : VOPCX_F32 <vopc<0x1a, 0x5a>, "v_cmpx_nlg_f32">;
+defm V_CMPX_NGT_F32 : VOPCX_F32 <vopc<0x1b, 0x5b>, "v_cmpx_ngt_f32">;
+defm V_CMPX_NLE_F32 : VOPCX_F32 <vopc<0x1c, 0x5c>, "v_cmpx_nle_f32">;
+defm V_CMPX_NEQ_F32 : VOPCX_F32 <vopc<0x1d, 0x5d>, "v_cmpx_neq_f32">;
+defm V_CMPX_NLT_F32 : VOPCX_F32 <vopc<0x1e, 0x5e>, "v_cmpx_nlt_f32">;
+defm V_CMPX_TRU_F32 : VOPCX_F32 <vopc<0x1f, 0x5f>, "v_cmpx_tru_f32">;
} // End hasSideEffects = 1
-defm V_CMP_F_F64 : VOPC_64 <0x00000020, "V_CMP_F_F64">;
-defm V_CMP_LT_F64 : VOPC_64 <0x00000021, "V_CMP_LT_F64", f64, COND_OLT>;
-defm V_CMP_EQ_F64 : VOPC_64 <0x00000022, "V_CMP_EQ_F64", f64, COND_OEQ>;
-defm V_CMP_LE_F64 : VOPC_64 <0x00000023, "V_CMP_LE_F64", f64, COND_OLE>;
-defm V_CMP_GT_F64 : VOPC_64 <0x00000024, "V_CMP_GT_F64", f64, COND_OGT>;
-defm V_CMP_LG_F64 : VOPC_64 <0x00000025, "V_CMP_LG_F64">;
-defm V_CMP_GE_F64 : VOPC_64 <0x00000026, "V_CMP_GE_F64", f64, COND_OGE>;
-defm V_CMP_O_F64 : VOPC_64 <0x00000027, "V_CMP_O_F64", f64, COND_O>;
-defm V_CMP_U_F64 : VOPC_64 <0x00000028, "V_CMP_U_F64", f64, COND_UO>;
-defm V_CMP_NGE_F64 : VOPC_64 <0x00000029, "V_CMP_NGE_F64">;
-defm V_CMP_NLG_F64 : VOPC_64 <0x0000002a, "V_CMP_NLG_F64">;
-defm V_CMP_NGT_F64 : VOPC_64 <0x0000002b, "V_CMP_NGT_F64">;
-defm V_CMP_NLE_F64 : VOPC_64 <0x0000002c, "V_CMP_NLE_F64">;
-defm V_CMP_NEQ_F64 : VOPC_64 <0x0000002d, "V_CMP_NEQ_F64", f64, COND_UNE>;
-defm V_CMP_NLT_F64 : VOPC_64 <0x0000002e, "V_CMP_NLT_F64">;
-defm V_CMP_TRU_F64 : VOPC_64 <0x0000002f, "V_CMP_TRU_F64">;
+defm V_CMP_F_F64 : VOPC_F64 <vopc<0x20, 0x60>, "v_cmp_f_f64">;
+defm V_CMP_LT_F64 : VOPC_F64 <vopc<0x21, 0x61>, "v_cmp_lt_f64", COND_OLT>;
+defm V_CMP_EQ_F64 : VOPC_F64 <vopc<0x22, 0x62>, "v_cmp_eq_f64", COND_OEQ>;
+defm V_CMP_LE_F64 : VOPC_F64 <vopc<0x23, 0x63>, "v_cmp_le_f64", COND_OLE>;
+defm V_CMP_GT_F64 : VOPC_F64 <vopc<0x24, 0x64>, "v_cmp_gt_f64", COND_OGT>;
+defm V_CMP_LG_F64 : VOPC_F64 <vopc<0x25, 0x65>, "v_cmp_lg_f64", COND_ONE>;
+defm V_CMP_GE_F64 : VOPC_F64 <vopc<0x26, 0x66>, "v_cmp_ge_f64", COND_OGE>;
+defm V_CMP_O_F64 : VOPC_F64 <vopc<0x27, 0x67>, "v_cmp_o_f64", COND_O>;
+defm V_CMP_U_F64 : VOPC_F64 <vopc<0x28, 0x68>, "v_cmp_u_f64", COND_UO>;
+defm V_CMP_NGE_F64 : VOPC_F64 <vopc<0x29, 0x69>, "v_cmp_nge_f64", COND_ULT>;
+defm V_CMP_NLG_F64 : VOPC_F64 <vopc<0x2a, 0x6a>, "v_cmp_nlg_f64", COND_UEQ>;
+defm V_CMP_NGT_F64 : VOPC_F64 <vopc<0x2b, 0x6b>, "v_cmp_ngt_f64", COND_ULE>;
+defm V_CMP_NLE_F64 : VOPC_F64 <vopc<0x2c, 0x6c>, "v_cmp_nle_f64", COND_UGT>;
+defm V_CMP_NEQ_F64 : VOPC_F64 <vopc<0x2d, 0x6d>, "v_cmp_neq_f64", COND_UNE>;
+defm V_CMP_NLT_F64 : VOPC_F64 <vopc<0x2e, 0x6e>, "v_cmp_nlt_f64", COND_UGE>;
+defm V_CMP_TRU_F64 : VOPC_F64 <vopc<0x2f, 0x6f>, "v_cmp_tru_f64">;
let hasSideEffects = 1 in {
-defm V_CMPX_F_F64 : VOPCX_64 <0x00000030, "V_CMPX_F_F64">;
-defm V_CMPX_LT_F64 : VOPCX_64 <0x00000031, "V_CMPX_LT_F64">;
-defm V_CMPX_EQ_F64 : VOPCX_64 <0x00000032, "V_CMPX_EQ_F64">;
-defm V_CMPX_LE_F64 : VOPCX_64 <0x00000033, "V_CMPX_LE_F64">;
-defm V_CMPX_GT_F64 : VOPCX_64 <0x00000034, "V_CMPX_GT_F64">;
-defm V_CMPX_LG_F64 : VOPCX_64 <0x00000035, "V_CMPX_LG_F64">;
-defm V_CMPX_GE_F64 : VOPCX_64 <0x00000036, "V_CMPX_GE_F64">;
-defm V_CMPX_O_F64 : VOPCX_64 <0x00000037, "V_CMPX_O_F64">;
-defm V_CMPX_U_F64 : VOPCX_64 <0x00000038, "V_CMPX_U_F64">;
-defm V_CMPX_NGE_F64 : VOPCX_64 <0x00000039, "V_CMPX_NGE_F64">;
-defm V_CMPX_NLG_F64 : VOPCX_64 <0x0000003a, "V_CMPX_NLG_F64">;
-defm V_CMPX_NGT_F64 : VOPCX_64 <0x0000003b, "V_CMPX_NGT_F64">;
-defm V_CMPX_NLE_F64 : VOPCX_64 <0x0000003c, "V_CMPX_NLE_F64">;
-defm V_CMPX_NEQ_F64 : VOPCX_64 <0x0000003d, "V_CMPX_NEQ_F64">;
-defm V_CMPX_NLT_F64 : VOPCX_64 <0x0000003e, "V_CMPX_NLT_F64">;
-defm V_CMPX_TRU_F64 : VOPCX_64 <0x0000003f, "V_CMPX_TRU_F64">;
+defm V_CMPX_F_F64 : VOPCX_F64 <vopc<0x30, 0x70>, "v_cmpx_f_f64">;
+defm V_CMPX_LT_F64 : VOPCX_F64 <vopc<0x31, 0x71>, "v_cmpx_lt_f64">;
+defm V_CMPX_EQ_F64 : VOPCX_F64 <vopc<0x32, 0x72>, "v_cmpx_eq_f64">;
+defm V_CMPX_LE_F64 : VOPCX_F64 <vopc<0x33, 0x73>, "v_cmpx_le_f64">;
+defm V_CMPX_GT_F64 : VOPCX_F64 <vopc<0x34, 0x74>, "v_cmpx_gt_f64">;
+defm V_CMPX_LG_F64 : VOPCX_F64 <vopc<0x35, 0x75>, "v_cmpx_lg_f64">;
+defm V_CMPX_GE_F64 : VOPCX_F64 <vopc<0x36, 0x76>, "v_cmpx_ge_f64">;
+defm V_CMPX_O_F64 : VOPCX_F64 <vopc<0x37, 0x77>, "v_cmpx_o_f64">;
+defm V_CMPX_U_F64 : VOPCX_F64 <vopc<0x38, 0x78>, "v_cmpx_u_f64">;
+defm V_CMPX_NGE_F64 : VOPCX_F64 <vopc<0x39, 0x79>, "v_cmpx_nge_f64">;
+defm V_CMPX_NLG_F64 : VOPCX_F64 <vopc<0x3a, 0x7a>, "v_cmpx_nlg_f64">;
+defm V_CMPX_NGT_F64 : VOPCX_F64 <vopc<0x3b, 0x7b>, "v_cmpx_ngt_f64">;
+defm V_CMPX_NLE_F64 : VOPCX_F64 <vopc<0x3c, 0x7c>, "v_cmpx_nle_f64">;
+defm V_CMPX_NEQ_F64 : VOPCX_F64 <vopc<0x3d, 0x7d>, "v_cmpx_neq_f64">;
+defm V_CMPX_NLT_F64 : VOPCX_F64 <vopc<0x3e, 0x7e>, "v_cmpx_nlt_f64">;
+defm V_CMPX_TRU_F64 : VOPCX_F64 <vopc<0x3f, 0x7f>, "v_cmpx_tru_f64">;
} // End hasSideEffects = 1
-defm V_CMPS_F_F32 : VOPC_32 <0x00000040, "V_CMPS_F_F32">;
-defm V_CMPS_LT_F32 : VOPC_32 <0x00000041, "V_CMPS_LT_F32">;
-defm V_CMPS_EQ_F32 : VOPC_32 <0x00000042, "V_CMPS_EQ_F32">;
-defm V_CMPS_LE_F32 : VOPC_32 <0x00000043, "V_CMPS_LE_F32">;
-defm V_CMPS_GT_F32 : VOPC_32 <0x00000044, "V_CMPS_GT_F32">;
-defm V_CMPS_LG_F32 : VOPC_32 <0x00000045, "V_CMPS_LG_F32">;
-defm V_CMPS_GE_F32 : VOPC_32 <0x00000046, "V_CMPS_GE_F32">;
-defm V_CMPS_O_F32 : VOPC_32 <0x00000047, "V_CMPS_O_F32">;
-defm V_CMPS_U_F32 : VOPC_32 <0x00000048, "V_CMPS_U_F32">;
-defm V_CMPS_NGE_F32 : VOPC_32 <0x00000049, "V_CMPS_NGE_F32">;
-defm V_CMPS_NLG_F32 : VOPC_32 <0x0000004a, "V_CMPS_NLG_F32">;
-defm V_CMPS_NGT_F32 : VOPC_32 <0x0000004b, "V_CMPS_NGT_F32">;
-defm V_CMPS_NLE_F32 : VOPC_32 <0x0000004c, "V_CMPS_NLE_F32">;
-defm V_CMPS_NEQ_F32 : VOPC_32 <0x0000004d, "V_CMPS_NEQ_F32">;
-defm V_CMPS_NLT_F32 : VOPC_32 <0x0000004e, "V_CMPS_NLT_F32">;
-defm V_CMPS_TRU_F32 : VOPC_32 <0x0000004f, "V_CMPS_TRU_F32">;
+let SubtargetPredicate = isSICI in {
+
+defm V_CMPS_F_F32 : VOPC_F32 <vopc<0x40>, "v_cmps_f_f32">;
+defm V_CMPS_LT_F32 : VOPC_F32 <vopc<0x41>, "v_cmps_lt_f32">;
+defm V_CMPS_EQ_F32 : VOPC_F32 <vopc<0x42>, "v_cmps_eq_f32">;
+defm V_CMPS_LE_F32 : VOPC_F32 <vopc<0x43>, "v_cmps_le_f32">;
+defm V_CMPS_GT_F32 : VOPC_F32 <vopc<0x44>, "v_cmps_gt_f32">;
+defm V_CMPS_LG_F32 : VOPC_F32 <vopc<0x45>, "v_cmps_lg_f32">;
+defm V_CMPS_GE_F32 : VOPC_F32 <vopc<0x46>, "v_cmps_ge_f32">;
+defm V_CMPS_O_F32 : VOPC_F32 <vopc<0x47>, "v_cmps_o_f32">;
+defm V_CMPS_U_F32 : VOPC_F32 <vopc<0x48>, "v_cmps_u_f32">;
+defm V_CMPS_NGE_F32 : VOPC_F32 <vopc<0x49>, "v_cmps_nge_f32">;
+defm V_CMPS_NLG_F32 : VOPC_F32 <vopc<0x4a>, "v_cmps_nlg_f32">;
+defm V_CMPS_NGT_F32 : VOPC_F32 <vopc<0x4b>, "v_cmps_ngt_f32">;
+defm V_CMPS_NLE_F32 : VOPC_F32 <vopc<0x4c>, "v_cmps_nle_f32">;
+defm V_CMPS_NEQ_F32 : VOPC_F32 <vopc<0x4d>, "v_cmps_neq_f32">;
+defm V_CMPS_NLT_F32 : VOPC_F32 <vopc<0x4e>, "v_cmps_nlt_f32">;
+defm V_CMPS_TRU_F32 : VOPC_F32 <vopc<0x4f>, "v_cmps_tru_f32">;
let hasSideEffects = 1 in {
-defm V_CMPSX_F_F32 : VOPCX_32 <0x00000050, "V_CMPSX_F_F32">;
-defm V_CMPSX_LT_F32 : VOPCX_32 <0x00000051, "V_CMPSX_LT_F32">;
-defm V_CMPSX_EQ_F32 : VOPCX_32 <0x00000052, "V_CMPSX_EQ_F32">;
-defm V_CMPSX_LE_F32 : VOPCX_32 <0x00000053, "V_CMPSX_LE_F32">;
-defm V_CMPSX_GT_F32 : VOPCX_32 <0x00000054, "V_CMPSX_GT_F32">;
-defm V_CMPSX_LG_F32 : VOPCX_32 <0x00000055, "V_CMPSX_LG_F32">;
-defm V_CMPSX_GE_F32 : VOPCX_32 <0x00000056, "V_CMPSX_GE_F32">;
-defm V_CMPSX_O_F32 : VOPCX_32 <0x00000057, "V_CMPSX_O_F32">;
-defm V_CMPSX_U_F32 : VOPCX_32 <0x00000058, "V_CMPSX_U_F32">;
-defm V_CMPSX_NGE_F32 : VOPCX_32 <0x00000059, "V_CMPSX_NGE_F32">;
-defm V_CMPSX_NLG_F32 : VOPCX_32 <0x0000005a, "V_CMPSX_NLG_F32">;
-defm V_CMPSX_NGT_F32 : VOPCX_32 <0x0000005b, "V_CMPSX_NGT_F32">;
-defm V_CMPSX_NLE_F32 : VOPCX_32 <0x0000005c, "V_CMPSX_NLE_F32">;
-defm V_CMPSX_NEQ_F32 : VOPCX_32 <0x0000005d, "V_CMPSX_NEQ_F32">;
-defm V_CMPSX_NLT_F32 : VOPCX_32 <0x0000005e, "V_CMPSX_NLT_F32">;
-defm V_CMPSX_TRU_F32 : VOPCX_32 <0x0000005f, "V_CMPSX_TRU_F32">;
+defm V_CMPSX_F_F32 : VOPCX_F32 <vopc<0x50>, "v_cmpsx_f_f32">;
+defm V_CMPSX_LT_F32 : VOPCX_F32 <vopc<0x51>, "v_cmpsx_lt_f32">;
+defm V_CMPSX_EQ_F32 : VOPCX_F32 <vopc<0x52>, "v_cmpsx_eq_f32">;
+defm V_CMPSX_LE_F32 : VOPCX_F32 <vopc<0x53>, "v_cmpsx_le_f32">;
+defm V_CMPSX_GT_F32 : VOPCX_F32 <vopc<0x54>, "v_cmpsx_gt_f32">;
+defm V_CMPSX_LG_F32 : VOPCX_F32 <vopc<0x55>, "v_cmpsx_lg_f32">;
+defm V_CMPSX_GE_F32 : VOPCX_F32 <vopc<0x56>, "v_cmpsx_ge_f32">;
+defm V_CMPSX_O_F32 : VOPCX_F32 <vopc<0x57>, "v_cmpsx_o_f32">;
+defm V_CMPSX_U_F32 : VOPCX_F32 <vopc<0x58>, "v_cmpsx_u_f32">;
+defm V_CMPSX_NGE_F32 : VOPCX_F32 <vopc<0x59>, "v_cmpsx_nge_f32">;
+defm V_CMPSX_NLG_F32 : VOPCX_F32 <vopc<0x5a>, "v_cmpsx_nlg_f32">;
+defm V_CMPSX_NGT_F32 : VOPCX_F32 <vopc<0x5b>, "v_cmpsx_ngt_f32">;
+defm V_CMPSX_NLE_F32 : VOPCX_F32 <vopc<0x5c>, "v_cmpsx_nle_f32">;
+defm V_CMPSX_NEQ_F32 : VOPCX_F32 <vopc<0x5d>, "v_cmpsx_neq_f32">;
+defm V_CMPSX_NLT_F32 : VOPCX_F32 <vopc<0x5e>, "v_cmpsx_nlt_f32">;
+defm V_CMPSX_TRU_F32 : VOPCX_F32 <vopc<0x5f>, "v_cmpsx_tru_f32">;
} // End hasSideEffects = 1
-defm V_CMPS_F_F64 : VOPC_64 <0x00000060, "V_CMPS_F_F64">;
-defm V_CMPS_LT_F64 : VOPC_64 <0x00000061, "V_CMPS_LT_F64">;
-defm V_CMPS_EQ_F64 : VOPC_64 <0x00000062, "V_CMPS_EQ_F64">;
-defm V_CMPS_LE_F64 : VOPC_64 <0x00000063, "V_CMPS_LE_F64">;
-defm V_CMPS_GT_F64 : VOPC_64 <0x00000064, "V_CMPS_GT_F64">;
-defm V_CMPS_LG_F64 : VOPC_64 <0x00000065, "V_CMPS_LG_F64">;
-defm V_CMPS_GE_F64 : VOPC_64 <0x00000066, "V_CMPS_GE_F64">;
-defm V_CMPS_O_F64 : VOPC_64 <0x00000067, "V_CMPS_O_F64">;
-defm V_CMPS_U_F64 : VOPC_64 <0x00000068, "V_CMPS_U_F64">;
-defm V_CMPS_NGE_F64 : VOPC_64 <0x00000069, "V_CMPS_NGE_F64">;
-defm V_CMPS_NLG_F64 : VOPC_64 <0x0000006a, "V_CMPS_NLG_F64">;
-defm V_CMPS_NGT_F64 : VOPC_64 <0x0000006b, "V_CMPS_NGT_F64">;
-defm V_CMPS_NLE_F64 : VOPC_64 <0x0000006c, "V_CMPS_NLE_F64">;
-defm V_CMPS_NEQ_F64 : VOPC_64 <0x0000006d, "V_CMPS_NEQ_F64">;
-defm V_CMPS_NLT_F64 : VOPC_64 <0x0000006e, "V_CMPS_NLT_F64">;
-defm V_CMPS_TRU_F64 : VOPC_64 <0x0000006f, "V_CMPS_TRU_F64">;
+defm V_CMPS_F_F64 : VOPC_F64 <vopc<0x60>, "v_cmps_f_f64">;
+defm V_CMPS_LT_F64 : VOPC_F64 <vopc<0x61>, "v_cmps_lt_f64">;
+defm V_CMPS_EQ_F64 : VOPC_F64 <vopc<0x62>, "v_cmps_eq_f64">;
+defm V_CMPS_LE_F64 : VOPC_F64 <vopc<0x63>, "v_cmps_le_f64">;
+defm V_CMPS_GT_F64 : VOPC_F64 <vopc<0x64>, "v_cmps_gt_f64">;
+defm V_CMPS_LG_F64 : VOPC_F64 <vopc<0x65>, "v_cmps_lg_f64">;
+defm V_CMPS_GE_F64 : VOPC_F64 <vopc<0x66>, "v_cmps_ge_f64">;
+defm V_CMPS_O_F64 : VOPC_F64 <vopc<0x67>, "v_cmps_o_f64">;
+defm V_CMPS_U_F64 : VOPC_F64 <vopc<0x68>, "v_cmps_u_f64">;
+defm V_CMPS_NGE_F64 : VOPC_F64 <vopc<0x69>, "v_cmps_nge_f64">;
+defm V_CMPS_NLG_F64 : VOPC_F64 <vopc<0x6a>, "v_cmps_nlg_f64">;
+defm V_CMPS_NGT_F64 : VOPC_F64 <vopc<0x6b>, "v_cmps_ngt_f64">;
+defm V_CMPS_NLE_F64 : VOPC_F64 <vopc<0x6c>, "v_cmps_nle_f64">;
+defm V_CMPS_NEQ_F64 : VOPC_F64 <vopc<0x6d>, "v_cmps_neq_f64">;
+defm V_CMPS_NLT_F64 : VOPC_F64 <vopc<0x6e>, "v_cmps_nlt_f64">;
+defm V_CMPS_TRU_F64 : VOPC_F64 <vopc<0x6f>, "v_cmps_tru_f64">;
let hasSideEffects = 1, Defs = [EXEC] in {
-defm V_CMPSX_F_F64 : VOPC_64 <0x00000070, "V_CMPSX_F_F64">;
-defm V_CMPSX_LT_F64 : VOPC_64 <0x00000071, "V_CMPSX_LT_F64">;
-defm V_CMPSX_EQ_F64 : VOPC_64 <0x00000072, "V_CMPSX_EQ_F64">;
-defm V_CMPSX_LE_F64 : VOPC_64 <0x00000073, "V_CMPSX_LE_F64">;
-defm V_CMPSX_GT_F64 : VOPC_64 <0x00000074, "V_CMPSX_GT_F64">;
-defm V_CMPSX_LG_F64 : VOPC_64 <0x00000075, "V_CMPSX_LG_F64">;
-defm V_CMPSX_GE_F64 : VOPC_64 <0x00000076, "V_CMPSX_GE_F64">;
-defm V_CMPSX_O_F64 : VOPC_64 <0x00000077, "V_CMPSX_O_F64">;
-defm V_CMPSX_U_F64 : VOPC_64 <0x00000078, "V_CMPSX_U_F64">;
-defm V_CMPSX_NGE_F64 : VOPC_64 <0x00000079, "V_CMPSX_NGE_F64">;
-defm V_CMPSX_NLG_F64 : VOPC_64 <0x0000007a, "V_CMPSX_NLG_F64">;
-defm V_CMPSX_NGT_F64 : VOPC_64 <0x0000007b, "V_CMPSX_NGT_F64">;
-defm V_CMPSX_NLE_F64 : VOPC_64 <0x0000007c, "V_CMPSX_NLE_F64">;
-defm V_CMPSX_NEQ_F64 : VOPC_64 <0x0000007d, "V_CMPSX_NEQ_F64">;
-defm V_CMPSX_NLT_F64 : VOPC_64 <0x0000007e, "V_CMPSX_NLT_F64">;
-defm V_CMPSX_TRU_F64 : VOPC_64 <0x0000007f, "V_CMPSX_TRU_F64">;
+defm V_CMPSX_F_F64 : VOPC_F64 <vopc<0x70>, "v_cmpsx_f_f64">;
+defm V_CMPSX_LT_F64 : VOPC_F64 <vopc<0x71>, "v_cmpsx_lt_f64">;
+defm V_CMPSX_EQ_F64 : VOPC_F64 <vopc<0x72>, "v_cmpsx_eq_f64">;
+defm V_CMPSX_LE_F64 : VOPC_F64 <vopc<0x73>, "v_cmpsx_le_f64">;
+defm V_CMPSX_GT_F64 : VOPC_F64 <vopc<0x74>, "v_cmpsx_gt_f64">;
+defm V_CMPSX_LG_F64 : VOPC_F64 <vopc<0x75>, "v_cmpsx_lg_f64">;
+defm V_CMPSX_GE_F64 : VOPC_F64 <vopc<0x76>, "v_cmpsx_ge_f64">;
+defm V_CMPSX_O_F64 : VOPC_F64 <vopc<0x77>, "v_cmpsx_o_f64">;
+defm V_CMPSX_U_F64 : VOPC_F64 <vopc<0x78>, "v_cmpsx_u_f64">;
+defm V_CMPSX_NGE_F64 : VOPC_F64 <vopc<0x79>, "v_cmpsx_nge_f64">;
+defm V_CMPSX_NLG_F64 : VOPC_F64 <vopc<0x7a>, "v_cmpsx_nlg_f64">;
+defm V_CMPSX_NGT_F64 : VOPC_F64 <vopc<0x7b>, "v_cmpsx_ngt_f64">;
+defm V_CMPSX_NLE_F64 : VOPC_F64 <vopc<0x7c>, "v_cmpsx_nle_f64">;
+defm V_CMPSX_NEQ_F64 : VOPC_F64 <vopc<0x7d>, "v_cmpsx_neq_f64">;
+defm V_CMPSX_NLT_F64 : VOPC_F64 <vopc<0x7e>, "v_cmpsx_nlt_f64">;
+defm V_CMPSX_TRU_F64 : VOPC_F64 <vopc<0x7f>, "v_cmpsx_tru_f64">;
} // End hasSideEffects = 1, Defs = [EXEC]
-defm V_CMP_F_I32 : VOPC_32 <0x00000080, "V_CMP_F_I32">;
-defm V_CMP_LT_I32 : VOPC_32 <0x00000081, "V_CMP_LT_I32", i32, COND_SLT>;
-defm V_CMP_EQ_I32 : VOPC_32 <0x00000082, "V_CMP_EQ_I32", i32, COND_EQ>;
-defm V_CMP_LE_I32 : VOPC_32 <0x00000083, "V_CMP_LE_I32", i32, COND_SLE>;
-defm V_CMP_GT_I32 : VOPC_32 <0x00000084, "V_CMP_GT_I32", i32, COND_SGT>;
-defm V_CMP_NE_I32 : VOPC_32 <0x00000085, "V_CMP_NE_I32", i32, COND_NE>;
-defm V_CMP_GE_I32 : VOPC_32 <0x00000086, "V_CMP_GE_I32", i32, COND_SGE>;
-defm V_CMP_T_I32 : VOPC_32 <0x00000087, "V_CMP_T_I32">;
+} // End SubtargetPredicate = isSICI
+
+defm V_CMP_F_I32 : VOPC_I32 <vopc<0x80, 0xc0>, "v_cmp_f_i32">;
+defm V_CMP_LT_I32 : VOPC_I32 <vopc<0x81, 0xc1>, "v_cmp_lt_i32", COND_SLT>;
+defm V_CMP_EQ_I32 : VOPC_I32 <vopc<0x82, 0xc2>, "v_cmp_eq_i32", COND_EQ>;
+defm V_CMP_LE_I32 : VOPC_I32 <vopc<0x83, 0xc3>, "v_cmp_le_i32", COND_SLE>;
+defm V_CMP_GT_I32 : VOPC_I32 <vopc<0x84, 0xc4>, "v_cmp_gt_i32", COND_SGT>;
+defm V_CMP_NE_I32 : VOPC_I32 <vopc<0x85, 0xc5>, "v_cmp_ne_i32", COND_NE>;
+defm V_CMP_GE_I32 : VOPC_I32 <vopc<0x86, 0xc6>, "v_cmp_ge_i32", COND_SGE>;
+defm V_CMP_T_I32 : VOPC_I32 <vopc<0x87, 0xc7>, "v_cmp_t_i32">;
let hasSideEffects = 1 in {
-defm V_CMPX_F_I32 : VOPCX_32 <0x00000090, "V_CMPX_F_I32">;
-defm V_CMPX_LT_I32 : VOPCX_32 <0x00000091, "V_CMPX_LT_I32">;
-defm V_CMPX_EQ_I32 : VOPCX_32 <0x00000092, "V_CMPX_EQ_I32">;
-defm V_CMPX_LE_I32 : VOPCX_32 <0x00000093, "V_CMPX_LE_I32">;
-defm V_CMPX_GT_I32 : VOPCX_32 <0x00000094, "V_CMPX_GT_I32">;
-defm V_CMPX_NE_I32 : VOPCX_32 <0x00000095, "V_CMPX_NE_I32">;
-defm V_CMPX_GE_I32 : VOPCX_32 <0x00000096, "V_CMPX_GE_I32">;
-defm V_CMPX_T_I32 : VOPCX_32 <0x00000097, "V_CMPX_T_I32">;
+defm V_CMPX_F_I32 : VOPCX_I32 <vopc<0x90, 0xd0>, "v_cmpx_f_i32">;
+defm V_CMPX_LT_I32 : VOPCX_I32 <vopc<0x91, 0xd1>, "v_cmpx_lt_i32">;
+defm V_CMPX_EQ_I32 : VOPCX_I32 <vopc<0x92, 0xd2>, "v_cmpx_eq_i32">;
+defm V_CMPX_LE_I32 : VOPCX_I32 <vopc<0x93, 0xd3>, "v_cmpx_le_i32">;
+defm V_CMPX_GT_I32 : VOPCX_I32 <vopc<0x94, 0xd4>, "v_cmpx_gt_i32">;
+defm V_CMPX_NE_I32 : VOPCX_I32 <vopc<0x95, 0xd5>, "v_cmpx_ne_i32">;
+defm V_CMPX_GE_I32 : VOPCX_I32 <vopc<0x96, 0xd6>, "v_cmpx_ge_i32">;
+defm V_CMPX_T_I32 : VOPCX_I32 <vopc<0x97, 0xd7>, "v_cmpx_t_i32">;
} // End hasSideEffects = 1
-defm V_CMP_F_I64 : VOPC_64 <0x000000a0, "V_CMP_F_I64">;
-defm V_CMP_LT_I64 : VOPC_64 <0x000000a1, "V_CMP_LT_I64", i64, COND_SLT>;
-defm V_CMP_EQ_I64 : VOPC_64 <0x000000a2, "V_CMP_EQ_I64", i64, COND_EQ>;
-defm V_CMP_LE_I64 : VOPC_64 <0x000000a3, "V_CMP_LE_I64", i64, COND_SLE>;
-defm V_CMP_GT_I64 : VOPC_64 <0x000000a4, "V_CMP_GT_I64", i64, COND_SGT>;
-defm V_CMP_NE_I64 : VOPC_64 <0x000000a5, "V_CMP_NE_I64", i64, COND_NE>;
-defm V_CMP_GE_I64 : VOPC_64 <0x000000a6, "V_CMP_GE_I64", i64, COND_SGE>;
-defm V_CMP_T_I64 : VOPC_64 <0x000000a7, "V_CMP_T_I64">;
+defm V_CMP_F_I64 : VOPC_I64 <vopc<0xa0, 0xe0>, "v_cmp_f_i64">;
+defm V_CMP_LT_I64 : VOPC_I64 <vopc<0xa1, 0xe1>, "v_cmp_lt_i64", COND_SLT>;
+defm V_CMP_EQ_I64 : VOPC_I64 <vopc<0xa2, 0xe2>, "v_cmp_eq_i64", COND_EQ>;
+defm V_CMP_LE_I64 : VOPC_I64 <vopc<0xa3, 0xe3>, "v_cmp_le_i64", COND_SLE>;
+defm V_CMP_GT_I64 : VOPC_I64 <vopc<0xa4, 0xe4>, "v_cmp_gt_i64", COND_SGT>;
+defm V_CMP_NE_I64 : VOPC_I64 <vopc<0xa5, 0xe5>, "v_cmp_ne_i64", COND_NE>;
+defm V_CMP_GE_I64 : VOPC_I64 <vopc<0xa6, 0xe6>, "v_cmp_ge_i64", COND_SGE>;
+defm V_CMP_T_I64 : VOPC_I64 <vopc<0xa7, 0xe7>, "v_cmp_t_i64">;
let hasSideEffects = 1 in {
-defm V_CMPX_F_I64 : VOPCX_64 <0x000000b0, "V_CMPX_F_I64">;
-defm V_CMPX_LT_I64 : VOPCX_64 <0x000000b1, "V_CMPX_LT_I64">;
-defm V_CMPX_EQ_I64 : VOPCX_64 <0x000000b2, "V_CMPX_EQ_I64">;
-defm V_CMPX_LE_I64 : VOPCX_64 <0x000000b3, "V_CMPX_LE_I64">;
-defm V_CMPX_GT_I64 : VOPCX_64 <0x000000b4, "V_CMPX_GT_I64">;
-defm V_CMPX_NE_I64 : VOPCX_64 <0x000000b5, "V_CMPX_NE_I64">;
-defm V_CMPX_GE_I64 : VOPCX_64 <0x000000b6, "V_CMPX_GE_I64">;
-defm V_CMPX_T_I64 : VOPCX_64 <0x000000b7, "V_CMPX_T_I64">;
+defm V_CMPX_F_I64 : VOPCX_I64 <vopc<0xb0, 0xf0>, "v_cmpx_f_i64">;
+defm V_CMPX_LT_I64 : VOPCX_I64 <vopc<0xb1, 0xf1>, "v_cmpx_lt_i64">;
+defm V_CMPX_EQ_I64 : VOPCX_I64 <vopc<0xb2, 0xf2>, "v_cmpx_eq_i64">;
+defm V_CMPX_LE_I64 : VOPCX_I64 <vopc<0xb3, 0xf3>, "v_cmpx_le_i64">;
+defm V_CMPX_GT_I64 : VOPCX_I64 <vopc<0xb4, 0xf4>, "v_cmpx_gt_i64">;
+defm V_CMPX_NE_I64 : VOPCX_I64 <vopc<0xb5, 0xf5>, "v_cmpx_ne_i64">;
+defm V_CMPX_GE_I64 : VOPCX_I64 <vopc<0xb6, 0xf6>, "v_cmpx_ge_i64">;
+defm V_CMPX_T_I64 : VOPCX_I64 <vopc<0xb7, 0xf7>, "v_cmpx_t_i64">;
} // End hasSideEffects = 1
-defm V_CMP_F_U32 : VOPC_32 <0x000000c0, "V_CMP_F_U32">;
-defm V_CMP_LT_U32 : VOPC_32 <0x000000c1, "V_CMP_LT_U32", i32, COND_ULT>;
-defm V_CMP_EQ_U32 : VOPC_32 <0x000000c2, "V_CMP_EQ_U32", i32, COND_EQ>;
-defm V_CMP_LE_U32 : VOPC_32 <0x000000c3, "V_CMP_LE_U32", i32, COND_ULE>;
-defm V_CMP_GT_U32 : VOPC_32 <0x000000c4, "V_CMP_GT_U32", i32, COND_UGT>;
-defm V_CMP_NE_U32 : VOPC_32 <0x000000c5, "V_CMP_NE_U32", i32, COND_NE>;
-defm V_CMP_GE_U32 : VOPC_32 <0x000000c6, "V_CMP_GE_U32", i32, COND_UGE>;
-defm V_CMP_T_U32 : VOPC_32 <0x000000c7, "V_CMP_T_U32">;
+defm V_CMP_F_U32 : VOPC_I32 <vopc<0xc0, 0xc8>, "v_cmp_f_u32">;
+defm V_CMP_LT_U32 : VOPC_I32 <vopc<0xc1, 0xc9>, "v_cmp_lt_u32", COND_ULT>;
+defm V_CMP_EQ_U32 : VOPC_I32 <vopc<0xc2, 0xca>, "v_cmp_eq_u32", COND_EQ>;
+defm V_CMP_LE_U32 : VOPC_I32 <vopc<0xc3, 0xcb>, "v_cmp_le_u32", COND_ULE>;
+defm V_CMP_GT_U32 : VOPC_I32 <vopc<0xc4, 0xcc>, "v_cmp_gt_u32", COND_UGT>;
+defm V_CMP_NE_U32 : VOPC_I32 <vopc<0xc5, 0xcd>, "v_cmp_ne_u32", COND_NE>;
+defm V_CMP_GE_U32 : VOPC_I32 <vopc<0xc6, 0xce>, "v_cmp_ge_u32", COND_UGE>;
+defm V_CMP_T_U32 : VOPC_I32 <vopc<0xc7, 0xcf>, "v_cmp_t_u32">;
let hasSideEffects = 1 in {
-defm V_CMPX_F_U32 : VOPCX_32 <0x000000d0, "V_CMPX_F_U32">;
-defm V_CMPX_LT_U32 : VOPCX_32 <0x000000d1, "V_CMPX_LT_U32">;
-defm V_CMPX_EQ_U32 : VOPCX_32 <0x000000d2, "V_CMPX_EQ_U32">;
-defm V_CMPX_LE_U32 : VOPCX_32 <0x000000d3, "V_CMPX_LE_U32">;
-defm V_CMPX_GT_U32 : VOPCX_32 <0x000000d4, "V_CMPX_GT_U32">;
-defm V_CMPX_NE_U32 : VOPCX_32 <0x000000d5, "V_CMPX_NE_U32">;
-defm V_CMPX_GE_U32 : VOPCX_32 <0x000000d6, "V_CMPX_GE_U32">;
-defm V_CMPX_T_U32 : VOPCX_32 <0x000000d7, "V_CMPX_T_U32">;
+defm V_CMPX_F_U32 : VOPCX_I32 <vopc<0xd0, 0xd8>, "v_cmpx_f_u32">;
+defm V_CMPX_LT_U32 : VOPCX_I32 <vopc<0xd1, 0xd9>, "v_cmpx_lt_u32">;
+defm V_CMPX_EQ_U32 : VOPCX_I32 <vopc<0xd2, 0xda>, "v_cmpx_eq_u32">;
+defm V_CMPX_LE_U32 : VOPCX_I32 <vopc<0xd3, 0xdb>, "v_cmpx_le_u32">;
+defm V_CMPX_GT_U32 : VOPCX_I32 <vopc<0xd4, 0xdc>, "v_cmpx_gt_u32">;
+defm V_CMPX_NE_U32 : VOPCX_I32 <vopc<0xd5, 0xdd>, "v_cmpx_ne_u32">;
+defm V_CMPX_GE_U32 : VOPCX_I32 <vopc<0xd6, 0xde>, "v_cmpx_ge_u32">;
+defm V_CMPX_T_U32 : VOPCX_I32 <vopc<0xd7, 0xdf>, "v_cmpx_t_u32">;
} // End hasSideEffects = 1
-defm V_CMP_F_U64 : VOPC_64 <0x000000e0, "V_CMP_F_U64">;
-defm V_CMP_LT_U64 : VOPC_64 <0x000000e1, "V_CMP_LT_U64", i64, COND_ULT>;
-defm V_CMP_EQ_U64 : VOPC_64 <0x000000e2, "V_CMP_EQ_U64", i64, COND_EQ>;
-defm V_CMP_LE_U64 : VOPC_64 <0x000000e3, "V_CMP_LE_U64", i64, COND_ULE>;
-defm V_CMP_GT_U64 : VOPC_64 <0x000000e4, "V_CMP_GT_U64", i64, COND_UGT>;
-defm V_CMP_NE_U64 : VOPC_64 <0x000000e5, "V_CMP_NE_U64", i64, COND_NE>;
-defm V_CMP_GE_U64 : VOPC_64 <0x000000e6, "V_CMP_GE_U64", i64, COND_UGE>;
-defm V_CMP_T_U64 : VOPC_64 <0x000000e7, "V_CMP_T_U64">;
+defm V_CMP_F_U64 : VOPC_I64 <vopc<0xe0, 0xe8>, "v_cmp_f_u64">;
+defm V_CMP_LT_U64 : VOPC_I64 <vopc<0xe1, 0xe9>, "v_cmp_lt_u64", COND_ULT>;
+defm V_CMP_EQ_U64 : VOPC_I64 <vopc<0xe2, 0xea>, "v_cmp_eq_u64", COND_EQ>;
+defm V_CMP_LE_U64 : VOPC_I64 <vopc<0xe3, 0xeb>, "v_cmp_le_u64", COND_ULE>;
+defm V_CMP_GT_U64 : VOPC_I64 <vopc<0xe4, 0xec>, "v_cmp_gt_u64", COND_UGT>;
+defm V_CMP_NE_U64 : VOPC_I64 <vopc<0xe5, 0xed>, "v_cmp_ne_u64", COND_NE>;
+defm V_CMP_GE_U64 : VOPC_I64 <vopc<0xe6, 0xee>, "v_cmp_ge_u64", COND_UGE>;
+defm V_CMP_T_U64 : VOPC_I64 <vopc<0xe7, 0xef>, "v_cmp_t_u64">;
let hasSideEffects = 1 in {
-defm V_CMPX_F_U64 : VOPCX_64 <0x000000f0, "V_CMPX_F_U64">;
-defm V_CMPX_LT_U64 : VOPCX_64 <0x000000f1, "V_CMPX_LT_U64">;
-defm V_CMPX_EQ_U64 : VOPCX_64 <0x000000f2, "V_CMPX_EQ_U64">;
-defm V_CMPX_LE_U64 : VOPCX_64 <0x000000f3, "V_CMPX_LE_U64">;
-defm V_CMPX_GT_U64 : VOPCX_64 <0x000000f4, "V_CMPX_GT_U64">;
-defm V_CMPX_NE_U64 : VOPCX_64 <0x000000f5, "V_CMPX_NE_U64">;
-defm V_CMPX_GE_U64 : VOPCX_64 <0x000000f6, "V_CMPX_GE_U64">;
-defm V_CMPX_T_U64 : VOPCX_64 <0x000000f7, "V_CMPX_T_U64">;
+defm V_CMPX_F_U64 : VOPCX_I64 <vopc<0xf0, 0xf8>, "v_cmpx_f_u64">;
+defm V_CMPX_LT_U64 : VOPCX_I64 <vopc<0xf1, 0xf9>, "v_cmpx_lt_u64">;
+defm V_CMPX_EQ_U64 : VOPCX_I64 <vopc<0xf2, 0xfa>, "v_cmpx_eq_u64">;
+defm V_CMPX_LE_U64 : VOPCX_I64 <vopc<0xf3, 0xfb>, "v_cmpx_le_u64">;
+defm V_CMPX_GT_U64 : VOPCX_I64 <vopc<0xf4, 0xfc>, "v_cmpx_gt_u64">;
+defm V_CMPX_NE_U64 : VOPCX_I64 <vopc<0xf5, 0xfd>, "v_cmpx_ne_u64">;
+defm V_CMPX_GE_U64 : VOPCX_I64 <vopc<0xf6, 0xfe>, "v_cmpx_ge_u64">;
+defm V_CMPX_T_U64 : VOPCX_I64 <vopc<0xf7, 0xff>, "v_cmpx_t_u64">;
} // End hasSideEffects = 1
-defm V_CMP_CLASS_F32 : VOPC_32 <0x00000088, "V_CMP_CLASS_F32">;
+defm V_CMP_CLASS_F32 : VOPC_CLASS_F32 <vopc<0x88, 0x10>, "v_cmp_class_f32">;
let hasSideEffects = 1 in {
-defm V_CMPX_CLASS_F32 : VOPCX_32 <0x00000098, "V_CMPX_CLASS_F32">;
+defm V_CMPX_CLASS_F32 : VOPCX_CLASS_F32 <vopc<0x98, 0x11>, "v_cmpx_class_f32">;
} // End hasSideEffects = 1
-defm V_CMP_CLASS_F64 : VOPC_64 <0x000000a8, "V_CMP_CLASS_F64">;
+defm V_CMP_CLASS_F64 : VOPC_CLASS_F64 <vopc<0xa8, 0x12>, "v_cmp_class_f64">;
let hasSideEffects = 1 in {
-defm V_CMPX_CLASS_F64 : VOPCX_64 <0x000000b8, "V_CMPX_CLASS_F64">;
+defm V_CMPX_CLASS_F64 : VOPCX_CLASS_F64 <vopc<0xb8, 0x13>, "v_cmpx_class_f64">;
} // End hasSideEffects = 1
} // End isCompare = 1
@@ -726,88 +764,88 @@ defm V_CMPX_CLASS_F64 : VOPCX_64 <0x000000b8, "V_CMPX_CLASS_F64">;
//===----------------------------------------------------------------------===//
-def DS_ADD_U32 : DS_1A1D_NORET <0x0, "DS_ADD_U32", VReg_32>;
-def DS_SUB_U32 : DS_1A1D_NORET <0x1, "DS_SUB_U32", VReg_32>;
-def DS_RSUB_U32 : DS_1A1D_NORET <0x2, "DS_RSUB_U32", VReg_32>;
-def DS_INC_U32 : DS_1A1D_NORET <0x3, "DS_INC_U32", VReg_32>;
-def DS_DEC_U32 : DS_1A1D_NORET <0x4, "DS_DEC_U32", VReg_32>;
-def DS_MIN_I32 : DS_1A1D_NORET <0x5, "DS_MIN_I32", VReg_32>;
-def DS_MAX_I32 : DS_1A1D_NORET <0x6, "DS_MAX_I32", VReg_32>;
-def DS_MIN_U32 : DS_1A1D_NORET <0x7, "DS_MIN_U32", VReg_32>;
-def DS_MAX_U32 : DS_1A1D_NORET <0x8, "DS_MAX_U32", VReg_32>;
-def DS_AND_B32 : DS_1A1D_NORET <0x9, "DS_AND_B32", VReg_32>;
-def DS_OR_B32 : DS_1A1D_NORET <0xa, "DS_OR_B32", VReg_32>;
-def DS_XOR_B32 : DS_1A1D_NORET <0xb, "DS_XOR_B32", VReg_32>;
-def DS_MSKOR_B32 : DS_1A1D_NORET <0xc, "DS_MSKOR_B32", VReg_32>;
-def DS_CMPST_B32 : DS_1A2D_NORET <0x10, "DS_CMPST_B32", VReg_32>;
-def DS_CMPST_F32 : DS_1A2D_NORET <0x11, "DS_CMPST_F32", VReg_32>;
-def DS_MIN_F32 : DS_1A1D_NORET <0x12, "DS_MIN_F32", VReg_32>;
-def DS_MAX_F32 : DS_1A1D_NORET <0x13, "DS_MAX_F32", VReg_32>;
-
-def DS_ADD_RTN_U32 : DS_1A1D_RET <0x20, "DS_ADD_RTN_U32", VReg_32>;
-def DS_SUB_RTN_U32 : DS_1A1D_RET <0x21, "DS_SUB_RTN_U32", VReg_32>;
-def DS_RSUB_RTN_U32 : DS_1A1D_RET <0x22, "DS_RSUB_RTN_U32", VReg_32>;
-def DS_INC_RTN_U32 : DS_1A1D_RET <0x23, "DS_INC_RTN_U32", VReg_32>;
-def DS_DEC_RTN_U32 : DS_1A1D_RET <0x24, "DS_DEC_RTN_U32", VReg_32>;
-def DS_MIN_RTN_I32 : DS_1A1D_RET <0x25, "DS_MIN_RTN_I32", VReg_32>;
-def DS_MAX_RTN_I32 : DS_1A1D_RET <0x26, "DS_MAX_RTN_I32", VReg_32>;
-def DS_MIN_RTN_U32 : DS_1A1D_RET <0x27, "DS_MIN_RTN_U32", VReg_32>;
-def DS_MAX_RTN_U32 : DS_1A1D_RET <0x28, "DS_MAX_RTN_U32", VReg_32>;
-def DS_AND_RTN_B32 : DS_1A1D_RET <0x29, "DS_AND_RTN_B32", VReg_32>;
-def DS_OR_RTN_B32 : DS_1A1D_RET <0x2a, "DS_OR_RTN_B32", VReg_32>;
-def DS_XOR_RTN_B32 : DS_1A1D_RET <0x2b, "DS_XOR_RTN_B32", VReg_32>;
-def DS_MSKOR_RTN_B32 : DS_1A1D_RET <0x2c, "DS_MSKOR_RTN_B32", VReg_32>;
-def DS_WRXCHG_RTN_B32 : DS_1A1D_RET <0x2d, "DS_WRXCHG_RTN_B32", VReg_32>;
-//def DS_WRXCHG2_RTN_B32 : DS_2A0D_RET <0x2e, "DS_WRXCHG2_RTN_B32", VReg_32>;
-//def DS_WRXCHG2ST64_RTN_B32 : DS_2A0D_RET <0x2f, "DS_WRXCHG2_RTN_B32", VReg_32>;
-def DS_CMPST_RTN_B32 : DS_1A2D_RET <0x30, "DS_CMPST_RTN_B32", VReg_32>;
-def DS_CMPST_RTN_F32 : DS_1A2D_RET <0x31, "DS_CMPST_RTN_F32", VReg_32>;
-def DS_MIN_RTN_F32 : DS_1A1D_RET <0x32, "DS_MIN_RTN_F32", VReg_32>;
-def DS_MAX_RTN_F32 : DS_1A1D_RET <0x33, "DS_MAX_RTN_F32", VReg_32>;
+def DS_ADD_U32 : DS_1A1D_NORET <0x0, "ds_add_u32", VGPR_32>;
+def DS_SUB_U32 : DS_1A1D_NORET <0x1, "ds_sub_u32", VGPR_32>;
+def DS_RSUB_U32 : DS_1A1D_NORET <0x2, "ds_rsub_u32", VGPR_32>;
+def DS_INC_U32 : DS_1A1D_NORET <0x3, "ds_inc_u32", VGPR_32>;
+def DS_DEC_U32 : DS_1A1D_NORET <0x4, "ds_dec_u32", VGPR_32>;
+def DS_MIN_I32 : DS_1A1D_NORET <0x5, "ds_min_i32", VGPR_32>;
+def DS_MAX_I32 : DS_1A1D_NORET <0x6, "ds_max_i32", VGPR_32>;
+def DS_MIN_U32 : DS_1A1D_NORET <0x7, "ds_min_u32", VGPR_32>;
+def DS_MAX_U32 : DS_1A1D_NORET <0x8, "ds_max_u32", VGPR_32>;
+def DS_AND_B32 : DS_1A1D_NORET <0x9, "ds_and_b32", VGPR_32>;
+def DS_OR_B32 : DS_1A1D_NORET <0xa, "ds_or_b32", VGPR_32>;
+def DS_XOR_B32 : DS_1A1D_NORET <0xb, "ds_xor_b32", VGPR_32>;
+def DS_MSKOR_B32 : DS_1A1D_NORET <0xc, "ds_mskor_b32", VGPR_32>;
+def DS_CMPST_B32 : DS_1A2D_NORET <0x10, "ds_cmpst_b32", VGPR_32>;
+def DS_CMPST_F32 : DS_1A2D_NORET <0x11, "ds_cmpst_f32", VGPR_32>;
+def DS_MIN_F32 : DS_1A1D_NORET <0x12, "ds_min_f32", VGPR_32>;
+def DS_MAX_F32 : DS_1A1D_NORET <0x13, "ds_max_f32", VGPR_32>;
+
+def DS_ADD_RTN_U32 : DS_1A1D_RET <0x20, "ds_add_rtn_u32", VGPR_32, "ds_add_u32">;
+def DS_SUB_RTN_U32 : DS_1A1D_RET <0x21, "ds_sub_rtn_u32", VGPR_32, "ds_sub_u32">;
+def DS_RSUB_RTN_U32 : DS_1A1D_RET <0x22, "ds_rsub_rtn_u32", VGPR_32, "ds_rsub_u32">;
+def DS_INC_RTN_U32 : DS_1A1D_RET <0x23, "ds_inc_rtn_u32", VGPR_32, "ds_inc_u32">;
+def DS_DEC_RTN_U32 : DS_1A1D_RET <0x24, "ds_dec_rtn_u32", VGPR_32, "ds_dec_u32">;
+def DS_MIN_RTN_I32 : DS_1A1D_RET <0x25, "ds_min_rtn_i32", VGPR_32, "ds_min_i32">;
+def DS_MAX_RTN_I32 : DS_1A1D_RET <0x26, "ds_max_rtn_i32", VGPR_32, "ds_max_i32">;
+def DS_MIN_RTN_U32 : DS_1A1D_RET <0x27, "ds_min_rtn_u32", VGPR_32, "ds_min_u32">;
+def DS_MAX_RTN_U32 : DS_1A1D_RET <0x28, "ds_max_rtn_u32", VGPR_32, "ds_max_u32">;
+def DS_AND_RTN_B32 : DS_1A1D_RET <0x29, "ds_and_rtn_b32", VGPR_32, "ds_and_b32">;
+def DS_OR_RTN_B32 : DS_1A1D_RET <0x2a, "ds_or_rtn_b32", VGPR_32, "ds_or_b32">;
+def DS_XOR_RTN_B32 : DS_1A1D_RET <0x2b, "ds_xor_rtn_b32", VGPR_32, "ds_xor_b32">;
+def DS_MSKOR_RTN_B32 : DS_1A1D_RET <0x2c, "ds_mskor_rtn_b32", VGPR_32, "ds_mskor_b32">;
+def DS_WRXCHG_RTN_B32 : DS_1A1D_RET <0x2d, "ds_wrxchg_rtn_b32", VGPR_32>;
+//def DS_WRXCHG2_RTN_B32 : DS_2A0D_RET <0x2e, "ds_wrxchg2_rtn_b32", VGPR_32, "ds_wrxchg2_b32">;
+//def DS_WRXCHG2ST64_RTN_B32 : DS_2A0D_RET <0x2f, "ds_wrxchg2_rtn_b32", VGPR_32, "ds_wrxchg2st64_b32">;
+def DS_CMPST_RTN_B32 : DS_1A2D_RET <0x30, "ds_cmpst_rtn_b32", VGPR_32, "ds_cmpst_b32">;
+def DS_CMPST_RTN_F32 : DS_1A2D_RET <0x31, "ds_cmpst_rtn_f32", VGPR_32, "ds_cmpst_f32">;
+def DS_MIN_RTN_F32 : DS_1A1D_RET <0x32, "ds_min_rtn_f32", VGPR_32, "ds_min_f32">;
+def DS_MAX_RTN_F32 : DS_1A1D_RET <0x33, "ds_max_rtn_f32", VGPR_32, "ds_max_f32">;
let SubtargetPredicate = isCI in {
-def DS_WRAP_RTN_F32 : DS_1A1D_RET <0x34, "DS_WRAP_RTN_F32", VReg_32>;
+def DS_WRAP_RTN_F32 : DS_1A1D_RET <0x34, "ds_wrap_rtn_f32", VGPR_32, "ds_wrap_f32">;
} // End isCI
-def DS_ADD_U64 : DS_1A1D_NORET <0x40, "DS_ADD_U64", VReg_32>;
-def DS_SUB_U64 : DS_1A1D_NORET <0x41, "DS_SUB_U64", VReg_32>;
-def DS_RSUB_U64 : DS_1A1D_NORET <0x42, "DS_RSUB_U64", VReg_32>;
-def DS_INC_U64 : DS_1A1D_NORET <0x43, "DS_INC_U64", VReg_32>;
-def DS_DEC_U64 : DS_1A1D_NORET <0x44, "DS_DEC_U64", VReg_32>;
-def DS_MIN_I64 : DS_1A1D_NORET <0x45, "DS_MIN_I64", VReg_64>;
-def DS_MAX_I64 : DS_1A1D_NORET <0x46, "DS_MAX_I64", VReg_64>;
-def DS_MIN_U64 : DS_1A1D_NORET <0x47, "DS_MIN_U64", VReg_64>;
-def DS_MAX_U64 : DS_1A1D_NORET <0x48, "DS_MAX_U64", VReg_64>;
-def DS_AND_B64 : DS_1A1D_NORET <0x49, "DS_AND_B64", VReg_64>;
-def DS_OR_B64 : DS_1A1D_NORET <0x4a, "DS_OR_B64", VReg_64>;
-def DS_XOR_B64 : DS_1A1D_NORET <0x4b, "DS_XOR_B64", VReg_64>;
-def DS_MSKOR_B64 : DS_1A1D_NORET <0x4c, "DS_MSKOR_B64", VReg_64>;
-def DS_CMPST_B64 : DS_1A2D_NORET <0x50, "DS_CMPST_B64", VReg_64>;
-def DS_CMPST_F64 : DS_1A2D_NORET <0x51, "DS_CMPST_F64", VReg_64>;
-def DS_MIN_F64 : DS_1A1D_NORET <0x52, "DS_MIN_F64", VReg_64>;
-def DS_MAX_F64 : DS_1A1D_NORET <0x53, "DS_MAX_F64", VReg_64>;
-
-def DS_ADD_RTN_U64 : DS_1A1D_RET <0x60, "DS_ADD_RTN_U64", VReg_64>;
-def DS_SUB_RTN_U64 : DS_1A1D_RET <0x61, "DS_SUB_RTN_U64", VReg_64>;
-def DS_RSUB_RTN_U64 : DS_1A1D_RET <0x62, "DS_RSUB_RTN_U64", VReg_64>;
-def DS_INC_RTN_U64 : DS_1A1D_RET <0x63, "DS_INC_RTN_U64", VReg_64>;
-def DS_DEC_RTN_U64 : DS_1A1D_RET <0x64, "DS_DEC_RTN_U64", VReg_64>;
-def DS_MIN_RTN_I64 : DS_1A1D_RET <0x65, "DS_MIN_RTN_I64", VReg_64>;
-def DS_MAX_RTN_I64 : DS_1A1D_RET <0x66, "DS_MAX_RTN_I64", VReg_64>;
-def DS_MIN_RTN_U64 : DS_1A1D_RET <0x67, "DS_MIN_RTN_U64", VReg_64>;
-def DS_MAX_RTN_U64 : DS_1A1D_RET <0x68, "DS_MAX_RTN_U64", VReg_64>;
-def DS_AND_RTN_B64 : DS_1A1D_RET <0x69, "DS_AND_RTN_B64", VReg_64>;
-def DS_OR_RTN_B64 : DS_1A1D_RET <0x6a, "DS_OR_RTN_B64", VReg_64>;
-def DS_XOR_RTN_B64 : DS_1A1D_RET <0x6b, "DS_XOR_RTN_B64", VReg_64>;
-def DS_MSKOR_RTN_B64 : DS_1A1D_RET <0x6c, "DS_MSKOR_RTN_B64", VReg_64>;
-def DS_WRXCHG_RTN_B64 : DS_1A1D_RET <0x6d, "DS_WRXCHG_RTN_B64", VReg_64>;
-//def DS_WRXCHG2_RTN_B64 : DS_2A0D_RET <0x6e, "DS_WRXCHG2_RTN_B64", VReg_64>;
-//def DS_WRXCHG2ST64_RTN_B64 : DS_2A0D_RET <0x6f, "DS_WRXCHG2_RTN_B64", VReg_64>;
-def DS_CMPST_RTN_B64 : DS_1A2D_RET <0x70, "DS_CMPST_RTN_B64", VReg_64>;
-def DS_CMPST_RTN_F64 : DS_1A2D_RET <0x71, "DS_CMPST_RTN_F64", VReg_64>;
-def DS_MIN_RTN_F64 : DS_1A1D_RET <0x72, "DS_MIN_F64", VReg_64>;
-def DS_MAX_RTN_F64 : DS_1A1D_RET <0x73, "DS_MAX_F64", VReg_64>;
+def DS_ADD_U64 : DS_1A1D_NORET <0x40, "ds_add_u64", VReg_64>;
+def DS_SUB_U64 : DS_1A1D_NORET <0x41, "ds_sub_u64", VReg_64>;
+def DS_RSUB_U64 : DS_1A1D_NORET <0x42, "ds_rsub_u64", VReg_64>;
+def DS_INC_U64 : DS_1A1D_NORET <0x43, "ds_inc_u64", VReg_64>;
+def DS_DEC_U64 : DS_1A1D_NORET <0x44, "ds_dec_u64", VReg_64>;
+def DS_MIN_I64 : DS_1A1D_NORET <0x45, "ds_min_i64", VReg_64>;
+def DS_MAX_I64 : DS_1A1D_NORET <0x46, "ds_max_i64", VReg_64>;
+def DS_MIN_U64 : DS_1A1D_NORET <0x47, "ds_min_u64", VReg_64>;
+def DS_MAX_U64 : DS_1A1D_NORET <0x48, "ds_max_u64", VReg_64>;
+def DS_AND_B64 : DS_1A1D_NORET <0x49, "ds_and_b64", VReg_64>;
+def DS_OR_B64 : DS_1A1D_NORET <0x4a, "ds_or_b64", VReg_64>;
+def DS_XOR_B64 : DS_1A1D_NORET <0x4b, "ds_xor_b64", VReg_64>;
+def DS_MSKOR_B64 : DS_1A1D_NORET <0x4c, "ds_mskor_b64", VReg_64>;
+def DS_CMPST_B64 : DS_1A2D_NORET <0x50, "ds_cmpst_b64", VReg_64>;
+def DS_CMPST_F64 : DS_1A2D_NORET <0x51, "ds_cmpst_f64", VReg_64>;
+def DS_MIN_F64 : DS_1A1D_NORET <0x52, "ds_min_f64", VReg_64>;
+def DS_MAX_F64 : DS_1A1D_NORET <0x53, "ds_max_f64", VReg_64>;
+
+def DS_ADD_RTN_U64 : DS_1A1D_RET <0x60, "ds_add_rtn_u64", VReg_64, "ds_add_u64">;
+def DS_SUB_RTN_U64 : DS_1A1D_RET <0x61, "ds_sub_rtn_u64", VReg_64, "ds_sub_u64">;
+def DS_RSUB_RTN_U64 : DS_1A1D_RET <0x62, "ds_rsub_rtn_u64", VReg_64, "ds_rsub_u64">;
+def DS_INC_RTN_U64 : DS_1A1D_RET <0x63, "ds_inc_rtn_u64", VReg_64, "ds_inc_u64">;
+def DS_DEC_RTN_U64 : DS_1A1D_RET <0x64, "ds_dec_rtn_u64", VReg_64, "ds_dec_u64">;
+def DS_MIN_RTN_I64 : DS_1A1D_RET <0x65, "ds_min_rtn_i64", VReg_64, "ds_min_i64">;
+def DS_MAX_RTN_I64 : DS_1A1D_RET <0x66, "ds_max_rtn_i64", VReg_64, "ds_max_i64">;
+def DS_MIN_RTN_U64 : DS_1A1D_RET <0x67, "ds_min_rtn_u64", VReg_64, "ds_min_u64">;
+def DS_MAX_RTN_U64 : DS_1A1D_RET <0x68, "ds_max_rtn_u64", VReg_64, "ds_max_u64">;
+def DS_AND_RTN_B64 : DS_1A1D_RET <0x69, "ds_and_rtn_b64", VReg_64, "ds_and_b64">;
+def DS_OR_RTN_B64 : DS_1A1D_RET <0x6a, "ds_or_rtn_b64", VReg_64, "ds_or_b64">;
+def DS_XOR_RTN_B64 : DS_1A1D_RET <0x6b, "ds_xor_rtn_b64", VReg_64, "ds_xor_b64">;
+def DS_MSKOR_RTN_B64 : DS_1A1D_RET <0x6c, "ds_mskor_rtn_b64", VReg_64, "ds_mskor_b64">;
+def DS_WRXCHG_RTN_B64 : DS_1A1D_RET <0x6d, "ds_wrxchg_rtn_b64", VReg_64, "ds_wrxchg_b64">;
+//def DS_WRXCHG2_RTN_B64 : DS_2A0D_RET <0x6e, "ds_wrxchg2_rtn_b64", VReg_64, "ds_wrxchg2_b64">;
+//def DS_WRXCHG2ST64_RTN_B64 : DS_2A0D_RET <0x6f, "ds_wrxchg2_rtn_b64", VReg_64, "ds_wrxchg2st64_b64">;
+def DS_CMPST_RTN_B64 : DS_1A2D_RET <0x70, "ds_cmpst_rtn_b64", VReg_64, "ds_cmpst_b64">;
+def DS_CMPST_RTN_F64 : DS_1A2D_RET <0x71, "ds_cmpst_rtn_f64", VReg_64, "ds_cmpst_f64">;
+def DS_MIN_RTN_F64 : DS_1A1D_RET <0x72, "ds_min_f64", VReg_64, "ds_min_f64">;
+def DS_MAX_RTN_F64 : DS_1A1D_RET <0x73, "ds_max_f64", VReg_64, "ds_max_f64">;
//let SubtargetPredicate = isCI in {
// DS_CONDXCHG32_RTN_B64
@@ -816,720 +854,958 @@ def DS_MAX_RTN_F64 : DS_1A1D_RET <0x73, "DS_MAX_F64", VReg_64>;
// TODO: _SRC2_* forms
-def DS_WRITE_B32 : DS_Store_Helper <0x0000000d, "DS_WRITE_B32", VReg_32>;
-def DS_WRITE_B8 : DS_Store_Helper <0x00000001e, "DS_WRITE_B8", VReg_32>;
-def DS_WRITE_B16 : DS_Store_Helper <0x00000001f, "DS_WRITE_B16", VReg_32>;
-def DS_WRITE_B64 : DS_Store_Helper <0x00000004d, "DS_WRITE_B64", VReg_64>;
+defm DS_WRITE_B32 : DS_Store_Helper <0x0000000d, "ds_write_b32", VGPR_32>;
+defm DS_WRITE_B8 : DS_Store_Helper <0x00000001e, "ds_write_b8", VGPR_32>;
+defm DS_WRITE_B16 : DS_Store_Helper <0x00000001f, "ds_write_b16", VGPR_32>;
+defm DS_WRITE_B64 : DS_Store_Helper <0x00000004d, "ds_write_b64", VReg_64>;
-def DS_READ_B32 : DS_Load_Helper <0x00000036, "DS_READ_B32", VReg_32>;
-def DS_READ_I8 : DS_Load_Helper <0x00000039, "DS_READ_I8", VReg_32>;
-def DS_READ_U8 : DS_Load_Helper <0x0000003a, "DS_READ_U8", VReg_32>;
-def DS_READ_I16 : DS_Load_Helper <0x0000003b, "DS_READ_I16", VReg_32>;
-def DS_READ_U16 : DS_Load_Helper <0x0000003c, "DS_READ_U16", VReg_32>;
-def DS_READ_B64 : DS_Load_Helper <0x00000076, "DS_READ_B64", VReg_64>;
+defm DS_READ_B32 : DS_Load_Helper <0x00000036, "ds_read_b32", VGPR_32>;
+defm DS_READ_I8 : DS_Load_Helper <0x00000039, "ds_read_i8", VGPR_32>;
+defm DS_READ_U8 : DS_Load_Helper <0x0000003a, "ds_read_u8", VGPR_32>;
+defm DS_READ_I16 : DS_Load_Helper <0x0000003b, "ds_read_i16", VGPR_32>;
+defm DS_READ_U16 : DS_Load_Helper <0x0000003c, "ds_read_u16", VGPR_32>;
+defm DS_READ_B64 : DS_Load_Helper <0x00000076, "ds_read_b64", VReg_64>;
// 2 forms.
-def DS_WRITE2_B32 : DS_Load2_Helper <0x0000000E, "DS_WRITE2_B32", VReg_64>;
-def DS_WRITE2_B64 : DS_Load2_Helper <0x0000004E, "DS_WRITE2_B64", VReg_128>;
-
-def DS_READ2_B32 : DS_Load2_Helper <0x00000037, "DS_READ2_B32", VReg_64>;
-def DS_READ2_B64 : DS_Load2_Helper <0x00000075, "DS_READ2_B64", VReg_128>;
+defm DS_WRITE2_B32 : DS_Store2_Helper <0x0000000E, "ds_write2_b32", VGPR_32>;
+defm DS_WRITE2ST64_B32 : DS_Store2_Helper <0x0000000F, "ds_write2st64_b32", VGPR_32>;
+defm DS_WRITE2_B64 : DS_Store2_Helper <0x0000004E, "ds_write2_b64", VReg_64>;
+defm DS_WRITE2ST64_B64 : DS_Store2_Helper <0x0000004F, "ds_write2st64_b64", VReg_64>;
-// TODO: DS_READ2ST64_B32, DS_READ2ST64_B64,
-// DS_WRITE2ST64_B32, DS_WRITE2ST64_B64
+defm DS_READ2_B32 : DS_Load2_Helper <0x00000037, "ds_read2_b32", VReg_64>;
+defm DS_READ2ST64_B32 : DS_Load2_Helper <0x00000038, "ds_read2st64_b32", VReg_64>;
+defm DS_READ2_B64 : DS_Load2_Helper <0x00000075, "ds_read2_b64", VReg_128>;
+defm DS_READ2ST64_B64 : DS_Load2_Helper <0x00000076, "ds_read2st64_b64", VReg_128>;
//===----------------------------------------------------------------------===//
// MUBUF Instructions
//===----------------------------------------------------------------------===//
-//def BUFFER_LOAD_FORMAT_X : MUBUF_ <0x00000000, "BUFFER_LOAD_FORMAT_X", []>;
-//def BUFFER_LOAD_FORMAT_XY : MUBUF_ <0x00000001, "BUFFER_LOAD_FORMAT_XY", []>;
-//def BUFFER_LOAD_FORMAT_XYZ : MUBUF_ <0x00000002, "BUFFER_LOAD_FORMAT_XYZ", []>;
-defm BUFFER_LOAD_FORMAT_XYZW : MUBUF_Load_Helper <0x00000003, "BUFFER_LOAD_FORMAT_XYZW", VReg_128>;
-//def BUFFER_STORE_FORMAT_X : MUBUF_ <0x00000004, "BUFFER_STORE_FORMAT_X", []>;
-//def BUFFER_STORE_FORMAT_XY : MUBUF_ <0x00000005, "BUFFER_STORE_FORMAT_XY", []>;
-//def BUFFER_STORE_FORMAT_XYZ : MUBUF_ <0x00000006, "BUFFER_STORE_FORMAT_XYZ", []>;
-//def BUFFER_STORE_FORMAT_XYZW : MUBUF_ <0x00000007, "BUFFER_STORE_FORMAT_XYZW", []>;
+let SubtargetPredicate = isSICI in {
+
+//def BUFFER_LOAD_FORMAT_X : MUBUF_ <0x00000000, "buffer_load_format_x", []>;
+//def BUFFER_LOAD_FORMAT_XY : MUBUF_ <0x00000001, "buffer_load_format_xy", []>;
+//def BUFFER_LOAD_FORMAT_XYZ : MUBUF_ <0x00000002, "buffer_load_format_xyz", []>;
+defm BUFFER_LOAD_FORMAT_XYZW : MUBUF_Load_Helper <0x00000003, "buffer_load_format_xyzw", VReg_128>;
+//def BUFFER_STORE_FORMAT_X : MUBUF_ <0x00000004, "buffer_store_format_x", []>;
+//def BUFFER_STORE_FORMAT_XY : MUBUF_ <0x00000005, "buffer_store_format_xy", []>;
+//def BUFFER_STORE_FORMAT_XYZ : MUBUF_ <0x00000006, "buffer_store_format_xyz", []>;
+//def BUFFER_STORE_FORMAT_XYZW : MUBUF_ <0x00000007, "buffer_store_format_xyzw", []>;
defm BUFFER_LOAD_UBYTE : MUBUF_Load_Helper <
- 0x00000008, "BUFFER_LOAD_UBYTE", VReg_32, i32, az_extloadi8_global
+ 0x00000008, "buffer_load_ubyte", VGPR_32, i32, az_extloadi8_global
>;
defm BUFFER_LOAD_SBYTE : MUBUF_Load_Helper <
- 0x00000009, "BUFFER_LOAD_SBYTE", VReg_32, i32, sextloadi8_global
+ 0x00000009, "buffer_load_sbyte", VGPR_32, i32, sextloadi8_global
>;
defm BUFFER_LOAD_USHORT : MUBUF_Load_Helper <
- 0x0000000a, "BUFFER_LOAD_USHORT", VReg_32, i32, az_extloadi16_global
+ 0x0000000a, "buffer_load_ushort", VGPR_32, i32, az_extloadi16_global
>;
defm BUFFER_LOAD_SSHORT : MUBUF_Load_Helper <
- 0x0000000b, "BUFFER_LOAD_SSHORT", VReg_32, i32, sextloadi16_global
+ 0x0000000b, "buffer_load_sshort", VGPR_32, i32, sextloadi16_global
>;
defm BUFFER_LOAD_DWORD : MUBUF_Load_Helper <
- 0x0000000c, "BUFFER_LOAD_DWORD", VReg_32, i32, global_load
+ 0x0000000c, "buffer_load_dword", VGPR_32, i32, global_load
>;
defm BUFFER_LOAD_DWORDX2 : MUBUF_Load_Helper <
- 0x0000000d, "BUFFER_LOAD_DWORDX2", VReg_64, v2i32, global_load
+ 0x0000000d, "buffer_load_dwordx2", VReg_64, v2i32, global_load
>;
defm BUFFER_LOAD_DWORDX4 : MUBUF_Load_Helper <
- 0x0000000e, "BUFFER_LOAD_DWORDX4", VReg_128, v4i32, global_load
+ 0x0000000e, "buffer_load_dwordx4", VReg_128, v4i32, global_load
>;
defm BUFFER_STORE_BYTE : MUBUF_Store_Helper <
- 0x00000018, "BUFFER_STORE_BYTE", VReg_32, i32, truncstorei8_global
+ 0x00000018, "buffer_store_byte", VGPR_32, i32, truncstorei8_global
>;
defm BUFFER_STORE_SHORT : MUBUF_Store_Helper <
- 0x0000001a, "BUFFER_STORE_SHORT", VReg_32, i32, truncstorei16_global
+ 0x0000001a, "buffer_store_short", VGPR_32, i32, truncstorei16_global
>;
defm BUFFER_STORE_DWORD : MUBUF_Store_Helper <
- 0x0000001c, "BUFFER_STORE_DWORD", VReg_32, i32, global_store
+ 0x0000001c, "buffer_store_dword", VGPR_32, i32, global_store
>;
defm BUFFER_STORE_DWORDX2 : MUBUF_Store_Helper <
- 0x0000001d, "BUFFER_STORE_DWORDX2", VReg_64, v2i32, global_store
+ 0x0000001d, "buffer_store_dwordx2", VReg_64, v2i32, global_store
>;
defm BUFFER_STORE_DWORDX4 : MUBUF_Store_Helper <
- 0x0000001e, "BUFFER_STORE_DWORDX4", VReg_128, v4i32, global_store
->;
-//def BUFFER_ATOMIC_SWAP : MUBUF_ <0x00000030, "BUFFER_ATOMIC_SWAP", []>;
-//def BUFFER_ATOMIC_CMPSWAP : MUBUF_ <0x00000031, "BUFFER_ATOMIC_CMPSWAP", []>;
-//def BUFFER_ATOMIC_ADD : MUBUF_ <0x00000032, "BUFFER_ATOMIC_ADD", []>;
-//def BUFFER_ATOMIC_SUB : MUBUF_ <0x00000033, "BUFFER_ATOMIC_SUB", []>;
-//def BUFFER_ATOMIC_RSUB : MUBUF_ <0x00000034, "BUFFER_ATOMIC_RSUB", []>;
-//def BUFFER_ATOMIC_SMIN : MUBUF_ <0x00000035, "BUFFER_ATOMIC_SMIN", []>;
-//def BUFFER_ATOMIC_UMIN : MUBUF_ <0x00000036, "BUFFER_ATOMIC_UMIN", []>;
-//def BUFFER_ATOMIC_SMAX : MUBUF_ <0x00000037, "BUFFER_ATOMIC_SMAX", []>;
-//def BUFFER_ATOMIC_UMAX : MUBUF_ <0x00000038, "BUFFER_ATOMIC_UMAX", []>;
-//def BUFFER_ATOMIC_AND : MUBUF_ <0x00000039, "BUFFER_ATOMIC_AND", []>;
-//def BUFFER_ATOMIC_OR : MUBUF_ <0x0000003a, "BUFFER_ATOMIC_OR", []>;
-//def BUFFER_ATOMIC_XOR : MUBUF_ <0x0000003b, "BUFFER_ATOMIC_XOR", []>;
-//def BUFFER_ATOMIC_INC : MUBUF_ <0x0000003c, "BUFFER_ATOMIC_INC", []>;
-//def BUFFER_ATOMIC_DEC : MUBUF_ <0x0000003d, "BUFFER_ATOMIC_DEC", []>;
-//def BUFFER_ATOMIC_FCMPSWAP : MUBUF_ <0x0000003e, "BUFFER_ATOMIC_FCMPSWAP", []>;
-//def BUFFER_ATOMIC_FMIN : MUBUF_ <0x0000003f, "BUFFER_ATOMIC_FMIN", []>;
-//def BUFFER_ATOMIC_FMAX : MUBUF_ <0x00000040, "BUFFER_ATOMIC_FMAX", []>;
-//def BUFFER_ATOMIC_SWAP_X2 : MUBUF_X2 <0x00000050, "BUFFER_ATOMIC_SWAP_X2", []>;
-//def BUFFER_ATOMIC_CMPSWAP_X2 : MUBUF_X2 <0x00000051, "BUFFER_ATOMIC_CMPSWAP_X2", []>;
-//def BUFFER_ATOMIC_ADD_X2 : MUBUF_X2 <0x00000052, "BUFFER_ATOMIC_ADD_X2", []>;
-//def BUFFER_ATOMIC_SUB_X2 : MUBUF_X2 <0x00000053, "BUFFER_ATOMIC_SUB_X2", []>;
-//def BUFFER_ATOMIC_RSUB_X2 : MUBUF_X2 <0x00000054, "BUFFER_ATOMIC_RSUB_X2", []>;
-//def BUFFER_ATOMIC_SMIN_X2 : MUBUF_X2 <0x00000055, "BUFFER_ATOMIC_SMIN_X2", []>;
-//def BUFFER_ATOMIC_UMIN_X2 : MUBUF_X2 <0x00000056, "BUFFER_ATOMIC_UMIN_X2", []>;
-//def BUFFER_ATOMIC_SMAX_X2 : MUBUF_X2 <0x00000057, "BUFFER_ATOMIC_SMAX_X2", []>;
-//def BUFFER_ATOMIC_UMAX_X2 : MUBUF_X2 <0x00000058, "BUFFER_ATOMIC_UMAX_X2", []>;
-//def BUFFER_ATOMIC_AND_X2 : MUBUF_X2 <0x00000059, "BUFFER_ATOMIC_AND_X2", []>;
-//def BUFFER_ATOMIC_OR_X2 : MUBUF_X2 <0x0000005a, "BUFFER_ATOMIC_OR_X2", []>;
-//def BUFFER_ATOMIC_XOR_X2 : MUBUF_X2 <0x0000005b, "BUFFER_ATOMIC_XOR_X2", []>;
-//def BUFFER_ATOMIC_INC_X2 : MUBUF_X2 <0x0000005c, "BUFFER_ATOMIC_INC_X2", []>;
-//def BUFFER_ATOMIC_DEC_X2 : MUBUF_X2 <0x0000005d, "BUFFER_ATOMIC_DEC_X2", []>;
-//def BUFFER_ATOMIC_FCMPSWAP_X2 : MUBUF_X2 <0x0000005e, "BUFFER_ATOMIC_FCMPSWAP_X2", []>;
-//def BUFFER_ATOMIC_FMIN_X2 : MUBUF_X2 <0x0000005f, "BUFFER_ATOMIC_FMIN_X2", []>;
-//def BUFFER_ATOMIC_FMAX_X2 : MUBUF_X2 <0x00000060, "BUFFER_ATOMIC_FMAX_X2", []>;
-//def BUFFER_WBINVL1_SC : MUBUF_WBINVL1 <0x00000070, "BUFFER_WBINVL1_SC", []>;
-//def BUFFER_WBINVL1 : MUBUF_WBINVL1 <0x00000071, "BUFFER_WBINVL1", []>;
+ 0x0000001e, "buffer_store_dwordx4", VReg_128, v4i32, global_store
+>;
+//def BUFFER_ATOMIC_SWAP : MUBUF_ <0x00000030, "buffer_atomic_swap", []>;
+defm BUFFER_ATOMIC_SWAP : MUBUF_Atomic <
+ 0x00000030, "buffer_atomic_swap", VGPR_32, i32, atomic_swap_global
+>;
+//def BUFFER_ATOMIC_CMPSWAP : MUBUF_ <0x00000031, "buffer_atomic_cmpswap", []>;
+defm BUFFER_ATOMIC_ADD : MUBUF_Atomic <
+ 0x00000032, "buffer_atomic_add", VGPR_32, i32, atomic_add_global
+>;
+defm BUFFER_ATOMIC_SUB : MUBUF_Atomic <
+ 0x00000033, "buffer_atomic_sub", VGPR_32, i32, atomic_sub_global
+>;
+//def BUFFER_ATOMIC_RSUB : MUBUF_ <0x00000034, "buffer_atomic_rsub", []>;
+defm BUFFER_ATOMIC_SMIN : MUBUF_Atomic <
+ 0x00000035, "buffer_atomic_smin", VGPR_32, i32, atomic_min_global
+>;
+defm BUFFER_ATOMIC_UMIN : MUBUF_Atomic <
+ 0x00000036, "buffer_atomic_umin", VGPR_32, i32, atomic_umin_global
+>;
+defm BUFFER_ATOMIC_SMAX : MUBUF_Atomic <
+ 0x00000037, "buffer_atomic_smax", VGPR_32, i32, atomic_max_global
+>;
+defm BUFFER_ATOMIC_UMAX : MUBUF_Atomic <
+ 0x00000038, "buffer_atomic_umax", VGPR_32, i32, atomic_umax_global
+>;
+defm BUFFER_ATOMIC_AND : MUBUF_Atomic <
+ 0x00000039, "buffer_atomic_and", VGPR_32, i32, atomic_and_global
+>;
+defm BUFFER_ATOMIC_OR : MUBUF_Atomic <
+ 0x0000003a, "buffer_atomic_or", VGPR_32, i32, atomic_or_global
+>;
+defm BUFFER_ATOMIC_XOR : MUBUF_Atomic <
+ 0x0000003b, "buffer_atomic_xor", VGPR_32, i32, atomic_xor_global
+>;
+//def BUFFER_ATOMIC_INC : MUBUF_ <0x0000003c, "buffer_atomic_inc", []>;
+//def BUFFER_ATOMIC_DEC : MUBUF_ <0x0000003d, "buffer_atomic_dec", []>;
+//def BUFFER_ATOMIC_FCMPSWAP : MUBUF_ <0x0000003e, "buffer_atomic_fcmpswap", []>;
+//def BUFFER_ATOMIC_FMIN : MUBUF_ <0x0000003f, "buffer_atomic_fmin", []>;
+//def BUFFER_ATOMIC_FMAX : MUBUF_ <0x00000040, "buffer_atomic_fmax", []>;
+//def BUFFER_ATOMIC_SWAP_X2 : MUBUF_X2 <0x00000050, "buffer_atomic_swap_x2", []>;
+//def BUFFER_ATOMIC_CMPSWAP_X2 : MUBUF_X2 <0x00000051, "buffer_atomic_cmpswap_x2", []>;
+//def BUFFER_ATOMIC_ADD_X2 : MUBUF_X2 <0x00000052, "buffer_atomic_add_x2", []>;
+//def BUFFER_ATOMIC_SUB_X2 : MUBUF_X2 <0x00000053, "buffer_atomic_sub_x2", []>;
+//def BUFFER_ATOMIC_RSUB_X2 : MUBUF_X2 <0x00000054, "buffer_atomic_rsub_x2", []>;
+//def BUFFER_ATOMIC_SMIN_X2 : MUBUF_X2 <0x00000055, "buffer_atomic_smin_x2", []>;
+//def BUFFER_ATOMIC_UMIN_X2 : MUBUF_X2 <0x00000056, "buffer_atomic_umin_x2", []>;
+//def BUFFER_ATOMIC_SMAX_X2 : MUBUF_X2 <0x00000057, "buffer_atomic_smax_x2", []>;
+//def BUFFER_ATOMIC_UMAX_X2 : MUBUF_X2 <0x00000058, "buffer_atomic_umax_x2", []>;
+//def BUFFER_ATOMIC_AND_X2 : MUBUF_X2 <0x00000059, "buffer_atomic_and_x2", []>;
+//def BUFFER_ATOMIC_OR_X2 : MUBUF_X2 <0x0000005a, "buffer_atomic_or_x2", []>;
+//def BUFFER_ATOMIC_XOR_X2 : MUBUF_X2 <0x0000005b, "buffer_atomic_xor_x2", []>;
+//def BUFFER_ATOMIC_INC_X2 : MUBUF_X2 <0x0000005c, "buffer_atomic_inc_x2", []>;
+//def BUFFER_ATOMIC_DEC_X2 : MUBUF_X2 <0x0000005d, "buffer_atomic_dec_x2", []>;
+//def BUFFER_ATOMIC_FCMPSWAP_X2 : MUBUF_X2 <0x0000005e, "buffer_atomic_fcmpswap_x2", []>;
+//def BUFFER_ATOMIC_FMIN_X2 : MUBUF_X2 <0x0000005f, "buffer_atomic_fmin_x2", []>;
+//def BUFFER_ATOMIC_FMAX_X2 : MUBUF_X2 <0x00000060, "buffer_atomic_fmax_x2", []>;
+//def BUFFER_WBINVL1_SC : MUBUF_WBINVL1 <0x00000070, "buffer_wbinvl1_sc", []>;
+//def BUFFER_WBINVL1 : MUBUF_WBINVL1 <0x00000071, "buffer_wbinvl1", []>;
+
+} // End SubtargetPredicate = isSICI
//===----------------------------------------------------------------------===//
// MTBUF Instructions
//===----------------------------------------------------------------------===//
-//def TBUFFER_LOAD_FORMAT_X : MTBUF_ <0x00000000, "TBUFFER_LOAD_FORMAT_X", []>;
-//def TBUFFER_LOAD_FORMAT_XY : MTBUF_ <0x00000001, "TBUFFER_LOAD_FORMAT_XY", []>;
-//def TBUFFER_LOAD_FORMAT_XYZ : MTBUF_ <0x00000002, "TBUFFER_LOAD_FORMAT_XYZ", []>;
-def TBUFFER_LOAD_FORMAT_XYZW : MTBUF_Load_Helper <0x00000003, "TBUFFER_LOAD_FORMAT_XYZW", VReg_128>;
-def TBUFFER_STORE_FORMAT_X : MTBUF_Store_Helper <0x00000004, "TBUFFER_STORE_FORMAT_X", VReg_32>;
-def TBUFFER_STORE_FORMAT_XY : MTBUF_Store_Helper <0x00000005, "TBUFFER_STORE_FORMAT_XY", VReg_64>;
-def TBUFFER_STORE_FORMAT_XYZ : MTBUF_Store_Helper <0x00000006, "TBUFFER_STORE_FORMAT_XYZ", VReg_128>;
-def TBUFFER_STORE_FORMAT_XYZW : MTBUF_Store_Helper <0x00000007, "TBUFFER_STORE_FORMAT_XYZW", VReg_128>;
+//def TBUFFER_LOAD_FORMAT_X : MTBUF_ <0x00000000, "tbuffer_load_format_x", []>;
+//def TBUFFER_LOAD_FORMAT_XY : MTBUF_ <0x00000001, "tbuffer_load_format_xy", []>;
+//def TBUFFER_LOAD_FORMAT_XYZ : MTBUF_ <0x00000002, "tbuffer_load_format_xyz", []>;
+defm TBUFFER_LOAD_FORMAT_XYZW : MTBUF_Load_Helper <0x00000003, "tbuffer_load_format_xyzw", VReg_128>;
+defm TBUFFER_STORE_FORMAT_X : MTBUF_Store_Helper <0x00000004, "tbuffer_store_format_x", VGPR_32>;
+defm TBUFFER_STORE_FORMAT_XY : MTBUF_Store_Helper <0x00000005, "tbuffer_store_format_xy", VReg_64>;
+defm TBUFFER_STORE_FORMAT_XYZ : MTBUF_Store_Helper <0x00000006, "tbuffer_store_format_xyz", VReg_128>;
+defm TBUFFER_STORE_FORMAT_XYZW : MTBUF_Store_Helper <0x00000007, "tbuffer_store_format_xyzw", VReg_128>;
//===----------------------------------------------------------------------===//
// MIMG Instructions
//===----------------------------------------------------------------------===//
-defm IMAGE_LOAD : MIMG_NoSampler <0x00000000, "IMAGE_LOAD">;
-defm IMAGE_LOAD_MIP : MIMG_NoSampler <0x00000001, "IMAGE_LOAD_MIP">;
-//def IMAGE_LOAD_PCK : MIMG_NoPattern_ <"IMAGE_LOAD_PCK", 0x00000002>;
-//def IMAGE_LOAD_PCK_SGN : MIMG_NoPattern_ <"IMAGE_LOAD_PCK_SGN", 0x00000003>;
-//def IMAGE_LOAD_MIP_PCK : MIMG_NoPattern_ <"IMAGE_LOAD_MIP_PCK", 0x00000004>;
-//def IMAGE_LOAD_MIP_PCK_SGN : MIMG_NoPattern_ <"IMAGE_LOAD_MIP_PCK_SGN", 0x00000005>;
-//def IMAGE_STORE : MIMG_NoPattern_ <"IMAGE_STORE", 0x00000008>;
-//def IMAGE_STORE_MIP : MIMG_NoPattern_ <"IMAGE_STORE_MIP", 0x00000009>;
-//def IMAGE_STORE_PCK : MIMG_NoPattern_ <"IMAGE_STORE_PCK", 0x0000000a>;
-//def IMAGE_STORE_MIP_PCK : MIMG_NoPattern_ <"IMAGE_STORE_MIP_PCK", 0x0000000b>;
-defm IMAGE_GET_RESINFO : MIMG_NoSampler <0x0000000e, "IMAGE_GET_RESINFO">;
-//def IMAGE_ATOMIC_SWAP : MIMG_NoPattern_ <"IMAGE_ATOMIC_SWAP", 0x0000000f>;
-//def IMAGE_ATOMIC_CMPSWAP : MIMG_NoPattern_ <"IMAGE_ATOMIC_CMPSWAP", 0x00000010>;
-//def IMAGE_ATOMIC_ADD : MIMG_NoPattern_ <"IMAGE_ATOMIC_ADD", 0x00000011>;
-//def IMAGE_ATOMIC_SUB : MIMG_NoPattern_ <"IMAGE_ATOMIC_SUB", 0x00000012>;
-//def IMAGE_ATOMIC_RSUB : MIMG_NoPattern_ <"IMAGE_ATOMIC_RSUB", 0x00000013>;
-//def IMAGE_ATOMIC_SMIN : MIMG_NoPattern_ <"IMAGE_ATOMIC_SMIN", 0x00000014>;
-//def IMAGE_ATOMIC_UMIN : MIMG_NoPattern_ <"IMAGE_ATOMIC_UMIN", 0x00000015>;
-//def IMAGE_ATOMIC_SMAX : MIMG_NoPattern_ <"IMAGE_ATOMIC_SMAX", 0x00000016>;
-//def IMAGE_ATOMIC_UMAX : MIMG_NoPattern_ <"IMAGE_ATOMIC_UMAX", 0x00000017>;
-//def IMAGE_ATOMIC_AND : MIMG_NoPattern_ <"IMAGE_ATOMIC_AND", 0x00000018>;
-//def IMAGE_ATOMIC_OR : MIMG_NoPattern_ <"IMAGE_ATOMIC_OR", 0x00000019>;
-//def IMAGE_ATOMIC_XOR : MIMG_NoPattern_ <"IMAGE_ATOMIC_XOR", 0x0000001a>;
-//def IMAGE_ATOMIC_INC : MIMG_NoPattern_ <"IMAGE_ATOMIC_INC", 0x0000001b>;
-//def IMAGE_ATOMIC_DEC : MIMG_NoPattern_ <"IMAGE_ATOMIC_DEC", 0x0000001c>;
-//def IMAGE_ATOMIC_FCMPSWAP : MIMG_NoPattern_ <"IMAGE_ATOMIC_FCMPSWAP", 0x0000001d>;
-//def IMAGE_ATOMIC_FMIN : MIMG_NoPattern_ <"IMAGE_ATOMIC_FMIN", 0x0000001e>;
-//def IMAGE_ATOMIC_FMAX : MIMG_NoPattern_ <"IMAGE_ATOMIC_FMAX", 0x0000001f>;
-defm IMAGE_SAMPLE : MIMG_Sampler <0x00000020, "IMAGE_SAMPLE">;
-defm IMAGE_SAMPLE_CL : MIMG_Sampler <0x00000021, "IMAGE_SAMPLE_CL">;
-defm IMAGE_SAMPLE_D : MIMG_Sampler <0x00000022, "IMAGE_SAMPLE_D">;
-defm IMAGE_SAMPLE_D_CL : MIMG_Sampler <0x00000023, "IMAGE_SAMPLE_D_CL">;
-defm IMAGE_SAMPLE_L : MIMG_Sampler <0x00000024, "IMAGE_SAMPLE_L">;
-defm IMAGE_SAMPLE_B : MIMG_Sampler <0x00000025, "IMAGE_SAMPLE_B">;
-defm IMAGE_SAMPLE_B_CL : MIMG_Sampler <0x00000026, "IMAGE_SAMPLE_B_CL">;
-defm IMAGE_SAMPLE_LZ : MIMG_Sampler <0x00000027, "IMAGE_SAMPLE_LZ">;
-defm IMAGE_SAMPLE_C : MIMG_Sampler <0x00000028, "IMAGE_SAMPLE_C">;
-defm IMAGE_SAMPLE_C_CL : MIMG_Sampler <0x00000029, "IMAGE_SAMPLE_C_CL">;
-defm IMAGE_SAMPLE_C_D : MIMG_Sampler <0x0000002a, "IMAGE_SAMPLE_C_D">;
-defm IMAGE_SAMPLE_C_D_CL : MIMG_Sampler <0x0000002b, "IMAGE_SAMPLE_C_D_CL">;
-defm IMAGE_SAMPLE_C_L : MIMG_Sampler <0x0000002c, "IMAGE_SAMPLE_C_L">;
-defm IMAGE_SAMPLE_C_B : MIMG_Sampler <0x0000002d, "IMAGE_SAMPLE_C_B">;
-defm IMAGE_SAMPLE_C_B_CL : MIMG_Sampler <0x0000002e, "IMAGE_SAMPLE_C_B_CL">;
-defm IMAGE_SAMPLE_C_LZ : MIMG_Sampler <0x0000002f, "IMAGE_SAMPLE_C_LZ">;
-defm IMAGE_SAMPLE_O : MIMG_Sampler <0x00000030, "IMAGE_SAMPLE_O">;
-defm IMAGE_SAMPLE_CL_O : MIMG_Sampler <0x00000031, "IMAGE_SAMPLE_CL_O">;
-defm IMAGE_SAMPLE_D_O : MIMG_Sampler <0x00000032, "IMAGE_SAMPLE_D_O">;
-defm IMAGE_SAMPLE_D_CL_O : MIMG_Sampler <0x00000033, "IMAGE_SAMPLE_D_CL_O">;
-defm IMAGE_SAMPLE_L_O : MIMG_Sampler <0x00000034, "IMAGE_SAMPLE_L_O">;
-defm IMAGE_SAMPLE_B_O : MIMG_Sampler <0x00000035, "IMAGE_SAMPLE_B_O">;
-defm IMAGE_SAMPLE_B_CL_O : MIMG_Sampler <0x00000036, "IMAGE_SAMPLE_B_CL_O">;
-defm IMAGE_SAMPLE_LZ_O : MIMG_Sampler <0x00000037, "IMAGE_SAMPLE_LZ_O">;
-defm IMAGE_SAMPLE_C_O : MIMG_Sampler <0x00000038, "IMAGE_SAMPLE_C_O">;
-defm IMAGE_SAMPLE_C_CL_O : MIMG_Sampler <0x00000039, "IMAGE_SAMPLE_C_CL_O">;
-defm IMAGE_SAMPLE_C_D_O : MIMG_Sampler <0x0000003a, "IMAGE_SAMPLE_C_D_O">;
-defm IMAGE_SAMPLE_C_D_CL_O : MIMG_Sampler <0x0000003b, "IMAGE_SAMPLE_C_D_CL_O">;
-defm IMAGE_SAMPLE_C_L_O : MIMG_Sampler <0x0000003c, "IMAGE_SAMPLE_C_L_O">;
-defm IMAGE_SAMPLE_C_B_O : MIMG_Sampler <0x0000003d, "IMAGE_SAMPLE_C_B_O">;
-defm IMAGE_SAMPLE_C_B_CL_O : MIMG_Sampler <0x0000003e, "IMAGE_SAMPLE_C_B_CL_O">;
-defm IMAGE_SAMPLE_C_LZ_O : MIMG_Sampler <0x0000003f, "IMAGE_SAMPLE_C_LZ_O">;
-defm IMAGE_GATHER4 : MIMG_Gather <0x00000040, "IMAGE_GATHER4">;
-defm IMAGE_GATHER4_CL : MIMG_Gather <0x00000041, "IMAGE_GATHER4_CL">;
-defm IMAGE_GATHER4_L : MIMG_Gather <0x00000044, "IMAGE_GATHER4_L">;
-defm IMAGE_GATHER4_B : MIMG_Gather <0x00000045, "IMAGE_GATHER4_B">;
-defm IMAGE_GATHER4_B_CL : MIMG_Gather <0x00000046, "IMAGE_GATHER4_B_CL">;
-defm IMAGE_GATHER4_LZ : MIMG_Gather <0x00000047, "IMAGE_GATHER4_LZ">;
-defm IMAGE_GATHER4_C : MIMG_Gather <0x00000048, "IMAGE_GATHER4_C">;
-defm IMAGE_GATHER4_C_CL : MIMG_Gather <0x00000049, "IMAGE_GATHER4_C_CL">;
-defm IMAGE_GATHER4_C_L : MIMG_Gather <0x0000004c, "IMAGE_GATHER4_C_L">;
-defm IMAGE_GATHER4_C_B : MIMG_Gather <0x0000004d, "IMAGE_GATHER4_C_B">;
-defm IMAGE_GATHER4_C_B_CL : MIMG_Gather <0x0000004e, "IMAGE_GATHER4_C_B_CL">;
-defm IMAGE_GATHER4_C_LZ : MIMG_Gather <0x0000004f, "IMAGE_GATHER4_C_LZ">;
-defm IMAGE_GATHER4_O : MIMG_Gather <0x00000050, "IMAGE_GATHER4_O">;
-defm IMAGE_GATHER4_CL_O : MIMG_Gather <0x00000051, "IMAGE_GATHER4_CL_O">;
-defm IMAGE_GATHER4_L_O : MIMG_Gather <0x00000054, "IMAGE_GATHER4_L_O">;
-defm IMAGE_GATHER4_B_O : MIMG_Gather <0x00000055, "IMAGE_GATHER4_B_O">;
-defm IMAGE_GATHER4_B_CL_O : MIMG_Gather <0x00000056, "IMAGE_GATHER4_B_CL_O">;
-defm IMAGE_GATHER4_LZ_O : MIMG_Gather <0x00000057, "IMAGE_GATHER4_LZ_O">;
-defm IMAGE_GATHER4_C_O : MIMG_Gather <0x00000058, "IMAGE_GATHER4_C_O">;
-defm IMAGE_GATHER4_C_CL_O : MIMG_Gather <0x00000059, "IMAGE_GATHER4_C_CL_O">;
-defm IMAGE_GATHER4_C_L_O : MIMG_Gather <0x0000005c, "IMAGE_GATHER4_C_L_O">;
-defm IMAGE_GATHER4_C_B_O : MIMG_Gather <0x0000005d, "IMAGE_GATHER4_C_B_O">;
-defm IMAGE_GATHER4_C_B_CL_O : MIMG_Gather <0x0000005e, "IMAGE_GATHER4_C_B_CL_O">;
-defm IMAGE_GATHER4_C_LZ_O : MIMG_Gather <0x0000005f, "IMAGE_GATHER4_C_LZ_O">;
-defm IMAGE_GET_LOD : MIMG_Sampler <0x00000060, "IMAGE_GET_LOD">;
-defm IMAGE_SAMPLE_CD : MIMG_Sampler <0x00000068, "IMAGE_SAMPLE_CD">;
-defm IMAGE_SAMPLE_CD_CL : MIMG_Sampler <0x00000069, "IMAGE_SAMPLE_CD_CL">;
-defm IMAGE_SAMPLE_C_CD : MIMG_Sampler <0x0000006a, "IMAGE_SAMPLE_C_CD">;
-defm IMAGE_SAMPLE_C_CD_CL : MIMG_Sampler <0x0000006b, "IMAGE_SAMPLE_C_CD_CL">;
-defm IMAGE_SAMPLE_CD_O : MIMG_Sampler <0x0000006c, "IMAGE_SAMPLE_CD_O">;
-defm IMAGE_SAMPLE_CD_CL_O : MIMG_Sampler <0x0000006d, "IMAGE_SAMPLE_CD_CL_O">;
-defm IMAGE_SAMPLE_C_CD_O : MIMG_Sampler <0x0000006e, "IMAGE_SAMPLE_C_CD_O">;
-defm IMAGE_SAMPLE_C_CD_CL_O : MIMG_Sampler <0x0000006f, "IMAGE_SAMPLE_C_CD_CL_O">;
-//def IMAGE_RSRC256 : MIMG_NoPattern_RSRC256 <"IMAGE_RSRC256", 0x0000007e>;
-//def IMAGE_SAMPLER : MIMG_NoPattern_ <"IMAGE_SAMPLER", 0x0000007f>;
+defm IMAGE_LOAD : MIMG_NoSampler <0x00000000, "image_load">;
+defm IMAGE_LOAD_MIP : MIMG_NoSampler <0x00000001, "image_load_mip">;
+//def IMAGE_LOAD_PCK : MIMG_NoPattern_ <"image_load_pck", 0x00000002>;
+//def IMAGE_LOAD_PCK_SGN : MIMG_NoPattern_ <"image_load_pck_sgn", 0x00000003>;
+//def IMAGE_LOAD_MIP_PCK : MIMG_NoPattern_ <"image_load_mip_pck", 0x00000004>;
+//def IMAGE_LOAD_MIP_PCK_SGN : MIMG_NoPattern_ <"image_load_mip_pck_sgn", 0x00000005>;
+//def IMAGE_STORE : MIMG_NoPattern_ <"image_store", 0x00000008>;
+//def IMAGE_STORE_MIP : MIMG_NoPattern_ <"image_store_mip", 0x00000009>;
+//def IMAGE_STORE_PCK : MIMG_NoPattern_ <"image_store_pck", 0x0000000a>;
+//def IMAGE_STORE_MIP_PCK : MIMG_NoPattern_ <"image_store_mip_pck", 0x0000000b>;
+defm IMAGE_GET_RESINFO : MIMG_NoSampler <0x0000000e, "image_get_resinfo">;
+//def IMAGE_ATOMIC_SWAP : MIMG_NoPattern_ <"image_atomic_swap", 0x0000000f>;
+//def IMAGE_ATOMIC_CMPSWAP : MIMG_NoPattern_ <"image_atomic_cmpswap", 0x00000010>;
+//def IMAGE_ATOMIC_ADD : MIMG_NoPattern_ <"image_atomic_add", 0x00000011>;
+//def IMAGE_ATOMIC_SUB : MIMG_NoPattern_ <"image_atomic_sub", 0x00000012>;
+//def IMAGE_ATOMIC_RSUB : MIMG_NoPattern_ <"image_atomic_rsub", 0x00000013>;
+//def IMAGE_ATOMIC_SMIN : MIMG_NoPattern_ <"image_atomic_smin", 0x00000014>;
+//def IMAGE_ATOMIC_UMIN : MIMG_NoPattern_ <"image_atomic_umin", 0x00000015>;
+//def IMAGE_ATOMIC_SMAX : MIMG_NoPattern_ <"image_atomic_smax", 0x00000016>;
+//def IMAGE_ATOMIC_UMAX : MIMG_NoPattern_ <"image_atomic_umax", 0x00000017>;
+//def IMAGE_ATOMIC_AND : MIMG_NoPattern_ <"image_atomic_and", 0x00000018>;
+//def IMAGE_ATOMIC_OR : MIMG_NoPattern_ <"image_atomic_or", 0x00000019>;
+//def IMAGE_ATOMIC_XOR : MIMG_NoPattern_ <"image_atomic_xor", 0x0000001a>;
+//def IMAGE_ATOMIC_INC : MIMG_NoPattern_ <"image_atomic_inc", 0x0000001b>;
+//def IMAGE_ATOMIC_DEC : MIMG_NoPattern_ <"image_atomic_dec", 0x0000001c>;
+//def IMAGE_ATOMIC_FCMPSWAP : MIMG_NoPattern_ <"image_atomic_fcmpswap", 0x0000001d>;
+//def IMAGE_ATOMIC_FMIN : MIMG_NoPattern_ <"image_atomic_fmin", 0x0000001e>;
+//def IMAGE_ATOMIC_FMAX : MIMG_NoPattern_ <"image_atomic_fmax", 0x0000001f>;
+defm IMAGE_SAMPLE : MIMG_Sampler <0x00000020, "image_sample">;
+defm IMAGE_SAMPLE_CL : MIMG_Sampler <0x00000021, "image_sample_cl">;
+defm IMAGE_SAMPLE_D : MIMG_Sampler <0x00000022, "image_sample_d">;
+defm IMAGE_SAMPLE_D_CL : MIMG_Sampler <0x00000023, "image_sample_d_cl">;
+defm IMAGE_SAMPLE_L : MIMG_Sampler <0x00000024, "image_sample_l">;
+defm IMAGE_SAMPLE_B : MIMG_Sampler <0x00000025, "image_sample_b">;
+defm IMAGE_SAMPLE_B_CL : MIMG_Sampler <0x00000026, "image_sample_b_cl">;
+defm IMAGE_SAMPLE_LZ : MIMG_Sampler <0x00000027, "image_sample_lz">;
+defm IMAGE_SAMPLE_C : MIMG_Sampler <0x00000028, "image_sample_c">;
+defm IMAGE_SAMPLE_C_CL : MIMG_Sampler <0x00000029, "image_sample_c_cl">;
+defm IMAGE_SAMPLE_C_D : MIMG_Sampler <0x0000002a, "image_sample_c_d">;
+defm IMAGE_SAMPLE_C_D_CL : MIMG_Sampler <0x0000002b, "image_sample_c_d_cl">;
+defm IMAGE_SAMPLE_C_L : MIMG_Sampler <0x0000002c, "image_sample_c_l">;
+defm IMAGE_SAMPLE_C_B : MIMG_Sampler <0x0000002d, "image_sample_c_b">;
+defm IMAGE_SAMPLE_C_B_CL : MIMG_Sampler <0x0000002e, "image_sample_c_b_cl">;
+defm IMAGE_SAMPLE_C_LZ : MIMG_Sampler <0x0000002f, "image_sample_c_lz">;
+defm IMAGE_SAMPLE_O : MIMG_Sampler <0x00000030, "image_sample_o">;
+defm IMAGE_SAMPLE_CL_O : MIMG_Sampler <0x00000031, "image_sample_cl_o">;
+defm IMAGE_SAMPLE_D_O : MIMG_Sampler <0x00000032, "image_sample_d_o">;
+defm IMAGE_SAMPLE_D_CL_O : MIMG_Sampler <0x00000033, "image_sample_d_cl_o">;
+defm IMAGE_SAMPLE_L_O : MIMG_Sampler <0x00000034, "image_sample_l_o">;
+defm IMAGE_SAMPLE_B_O : MIMG_Sampler <0x00000035, "image_sample_b_o">;
+defm IMAGE_SAMPLE_B_CL_O : MIMG_Sampler <0x00000036, "image_sample_b_cl_o">;
+defm IMAGE_SAMPLE_LZ_O : MIMG_Sampler <0x00000037, "image_sample_lz_o">;
+defm IMAGE_SAMPLE_C_O : MIMG_Sampler <0x00000038, "image_sample_c_o">;
+defm IMAGE_SAMPLE_C_CL_O : MIMG_Sampler <0x00000039, "image_sample_c_cl_o">;
+defm IMAGE_SAMPLE_C_D_O : MIMG_Sampler <0x0000003a, "image_sample_c_d_o">;
+defm IMAGE_SAMPLE_C_D_CL_O : MIMG_Sampler <0x0000003b, "image_sample_c_d_cl_o">;
+defm IMAGE_SAMPLE_C_L_O : MIMG_Sampler <0x0000003c, "image_sample_c_l_o">;
+defm IMAGE_SAMPLE_C_B_O : MIMG_Sampler <0x0000003d, "image_sample_c_b_o">;
+defm IMAGE_SAMPLE_C_B_CL_O : MIMG_Sampler <0x0000003e, "image_sample_c_b_cl_o">;
+defm IMAGE_SAMPLE_C_LZ_O : MIMG_Sampler <0x0000003f, "image_sample_c_lz_o">;
+defm IMAGE_GATHER4 : MIMG_Gather <0x00000040, "image_gather4">;
+defm IMAGE_GATHER4_CL : MIMG_Gather <0x00000041, "image_gather4_cl">;
+defm IMAGE_GATHER4_L : MIMG_Gather <0x00000044, "image_gather4_l">;
+defm IMAGE_GATHER4_B : MIMG_Gather <0x00000045, "image_gather4_b">;
+defm IMAGE_GATHER4_B_CL : MIMG_Gather <0x00000046, "image_gather4_b_cl">;
+defm IMAGE_GATHER4_LZ : MIMG_Gather <0x00000047, "image_gather4_lz">;
+defm IMAGE_GATHER4_C : MIMG_Gather <0x00000048, "image_gather4_c">;
+defm IMAGE_GATHER4_C_CL : MIMG_Gather <0x00000049, "image_gather4_c_cl">;
+defm IMAGE_GATHER4_C_L : MIMG_Gather <0x0000004c, "image_gather4_c_l">;
+defm IMAGE_GATHER4_C_B : MIMG_Gather <0x0000004d, "image_gather4_c_b">;
+defm IMAGE_GATHER4_C_B_CL : MIMG_Gather <0x0000004e, "image_gather4_c_b_cl">;
+defm IMAGE_GATHER4_C_LZ : MIMG_Gather <0x0000004f, "image_gather4_c_lz">;
+defm IMAGE_GATHER4_O : MIMG_Gather <0x00000050, "image_gather4_o">;
+defm IMAGE_GATHER4_CL_O : MIMG_Gather <0x00000051, "image_gather4_cl_o">;
+defm IMAGE_GATHER4_L_O : MIMG_Gather <0x00000054, "image_gather4_l_o">;
+defm IMAGE_GATHER4_B_O : MIMG_Gather <0x00000055, "image_gather4_b_o">;
+defm IMAGE_GATHER4_B_CL_O : MIMG_Gather <0x00000056, "image_gather4_b_cl_o">;
+defm IMAGE_GATHER4_LZ_O : MIMG_Gather <0x00000057, "image_gather4_lz_o">;
+defm IMAGE_GATHER4_C_O : MIMG_Gather <0x00000058, "image_gather4_c_o">;
+defm IMAGE_GATHER4_C_CL_O : MIMG_Gather <0x00000059, "image_gather4_c_cl_o">;
+defm IMAGE_GATHER4_C_L_O : MIMG_Gather <0x0000005c, "image_gather4_c_l_o">;
+defm IMAGE_GATHER4_C_B_O : MIMG_Gather <0x0000005d, "image_gather4_c_b_o">;
+defm IMAGE_GATHER4_C_B_CL_O : MIMG_Gather <0x0000005e, "image_gather4_c_b_cl_o">;
+defm IMAGE_GATHER4_C_LZ_O : MIMG_Gather <0x0000005f, "image_gather4_c_lz_o">;
+defm IMAGE_GET_LOD : MIMG_Sampler <0x00000060, "image_get_lod">;
+defm IMAGE_SAMPLE_CD : MIMG_Sampler <0x00000068, "image_sample_cd">;
+defm IMAGE_SAMPLE_CD_CL : MIMG_Sampler <0x00000069, "image_sample_cd_cl">;
+defm IMAGE_SAMPLE_C_CD : MIMG_Sampler <0x0000006a, "image_sample_c_cd">;
+defm IMAGE_SAMPLE_C_CD_CL : MIMG_Sampler <0x0000006b, "image_sample_c_cd_cl">;
+defm IMAGE_SAMPLE_CD_O : MIMG_Sampler <0x0000006c, "image_sample_cd_o">;
+defm IMAGE_SAMPLE_CD_CL_O : MIMG_Sampler <0x0000006d, "image_sample_cd_cl_o">;
+defm IMAGE_SAMPLE_C_CD_O : MIMG_Sampler <0x0000006e, "image_sample_c_cd_o">;
+defm IMAGE_SAMPLE_C_CD_CL_O : MIMG_Sampler <0x0000006f, "image_sample_c_cd_cl_o">;
+//def IMAGE_RSRC256 : MIMG_NoPattern_RSRC256 <"image_rsrc256", 0x0000007e>;
+//def IMAGE_SAMPLER : MIMG_NoPattern_ <"image_sampler", 0x0000007f>;
//===----------------------------------------------------------------------===//
+// Flat Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [HasFlatAddressSpace] in {
+def FLAT_LOAD_UBYTE : FLAT_Load_Helper <0x00000008, "flat_load_ubyte", VGPR_32>;
+def FLAT_LOAD_SBYTE : FLAT_Load_Helper <0x00000009, "flat_load_sbyte", VGPR_32>;
+def FLAT_LOAD_USHORT : FLAT_Load_Helper <0x0000000a, "flat_load_ushort", VGPR_32>;
+def FLAT_LOAD_SSHORT : FLAT_Load_Helper <0x0000000b, "flat_load_sshort", VGPR_32>;
+def FLAT_LOAD_DWORD : FLAT_Load_Helper <0x0000000c, "flat_load_dword", VGPR_32>;
+def FLAT_LOAD_DWORDX2 : FLAT_Load_Helper <0x0000000d, "flat_load_dwordx2", VReg_64>;
+def FLAT_LOAD_DWORDX4 : FLAT_Load_Helper <0x0000000e, "flat_load_dwordx4", VReg_128>;
+def FLAT_LOAD_DWORDX3 : FLAT_Load_Helper <0x00000010, "flat_load_dwordx3", VReg_96>;
+
+def FLAT_STORE_BYTE : FLAT_Store_Helper <
+ 0x00000018, "flat_store_byte", VGPR_32
+>;
+
+def FLAT_STORE_SHORT : FLAT_Store_Helper <
+ 0x0000001a, "flat_store_short", VGPR_32
+>;
+
+def FLAT_STORE_DWORD : FLAT_Store_Helper <
+ 0x0000001c, "flat_store_dword", VGPR_32
+>;
+
+def FLAT_STORE_DWORDX2 : FLAT_Store_Helper <
+ 0x0000001d, "flat_store_dwordx2", VReg_64
+>;
+
+def FLAT_STORE_DWORDX4 : FLAT_Store_Helper <
+ 0x0000001e, "flat_store_dwordx4", VReg_128
+>;
+
+def FLAT_STORE_DWORDX3 : FLAT_Store_Helper <
+ 0x0000001e, "flat_store_dwordx3", VReg_96
+>;
+
+//def FLAT_ATOMIC_SWAP : FLAT_ <0x00000030, "flat_atomic_swap", []>;
+//def FLAT_ATOMIC_CMPSWAP : FLAT_ <0x00000031, "flat_atomic_cmpswap", []>;
+//def FLAT_ATOMIC_ADD : FLAT_ <0x00000032, "flat_atomic_add", []>;
+//def FLAT_ATOMIC_SUB : FLAT_ <0x00000033, "flat_atomic_sub", []>;
+//def FLAT_ATOMIC_RSUB : FLAT_ <0x00000034, "flat_atomic_rsub", []>;
+//def FLAT_ATOMIC_SMIN : FLAT_ <0x00000035, "flat_atomic_smin", []>;
+//def FLAT_ATOMIC_UMIN : FLAT_ <0x00000036, "flat_atomic_umin", []>;
+//def FLAT_ATOMIC_SMAX : FLAT_ <0x00000037, "flat_atomic_smax", []>;
+//def FLAT_ATOMIC_UMAX : FLAT_ <0x00000038, "flat_atomic_umax", []>;
+//def FLAT_ATOMIC_AND : FLAT_ <0x00000039, "flat_atomic_and", []>;
+//def FLAT_ATOMIC_OR : FLAT_ <0x0000003a, "flat_atomic_or", []>;
+//def FLAT_ATOMIC_XOR : FLAT_ <0x0000003b, "flat_atomic_xor", []>;
+//def FLAT_ATOMIC_INC : FLAT_ <0x0000003c, "flat_atomic_inc", []>;
+//def FLAT_ATOMIC_DEC : FLAT_ <0x0000003d, "flat_atomic_dec", []>;
+//def FLAT_ATOMIC_FCMPSWAP : FLAT_ <0x0000003e, "flat_atomic_fcmpswap", []>;
+//def FLAT_ATOMIC_FMIN : FLAT_ <0x0000003f, "flat_atomic_fmin", []>;
+//def FLAT_ATOMIC_FMAX : FLAT_ <0x00000040, "flat_atomic_fmax", []>;
+//def FLAT_ATOMIC_SWAP_X2 : FLAT_X2 <0x00000050, "flat_atomic_swap_x2", []>;
+//def FLAT_ATOMIC_CMPSWAP_X2 : FLAT_X2 <0x00000051, "flat_atomic_cmpswap_x2", []>;
+//def FLAT_ATOMIC_ADD_X2 : FLAT_X2 <0x00000052, "flat_atomic_add_x2", []>;
+//def FLAT_ATOMIC_SUB_X2 : FLAT_X2 <0x00000053, "flat_atomic_sub_x2", []>;
+//def FLAT_ATOMIC_RSUB_X2 : FLAT_X2 <0x00000054, "flat_atomic_rsub_x2", []>;
+//def FLAT_ATOMIC_SMIN_X2 : FLAT_X2 <0x00000055, "flat_atomic_smin_x2", []>;
+//def FLAT_ATOMIC_UMIN_X2 : FLAT_X2 <0x00000056, "flat_atomic_umin_x2", []>;
+//def FLAT_ATOMIC_SMAX_X2 : FLAT_X2 <0x00000057, "flat_atomic_smax_x2", []>;
+//def FLAT_ATOMIC_UMAX_X2 : FLAT_X2 <0x00000058, "flat_atomic_umax_x2", []>;
+//def FLAT_ATOMIC_AND_X2 : FLAT_X2 <0x00000059, "flat_atomic_and_x2", []>;
+//def FLAT_ATOMIC_OR_X2 : FLAT_X2 <0x0000005a, "flat_atomic_or_x2", []>;
+//def FLAT_ATOMIC_XOR_X2 : FLAT_X2 <0x0000005b, "flat_atomic_xor_x2", []>;
+//def FLAT_ATOMIC_INC_X2 : FLAT_X2 <0x0000005c, "flat_atomic_inc_x2", []>;
+//def FLAT_ATOMIC_DEC_X2 : FLAT_X2 <0x0000005d, "flat_atomic_dec_x2", []>;
+//def FLAT_ATOMIC_FCMPSWAP_X2 : FLAT_X2 <0x0000005e, "flat_atomic_fcmpswap_x2", []>;
+//def FLAT_ATOMIC_FMIN_X2 : FLAT_X2 <0x0000005f, "flat_atomic_fmin_x2", []>;
+//def FLAT_ATOMIC_FMAX_X2 : FLAT_X2 <0x00000060, "flat_atomic_fmax_x2", []>;
+
+} // End HasFlatAddressSpace predicate
+//===----------------------------------------------------------------------===//
// VOP1 Instructions
//===----------------------------------------------------------------------===//
-//def V_NOP : VOP1_ <0x00000000, "V_NOP", []>;
+//def V_NOP : VOP1_ <0x00000000, "v_nop", []>;
-let neverHasSideEffects = 1, isMoveImm = 1 in {
-defm V_MOV_B32 : VOP1_32 <0x00000001, "V_MOV_B32", []>;
-} // End neverHasSideEffects = 1, isMoveImm = 1
+let isMoveImm = 1 in {
+defm V_MOV_B32 : VOP1Inst <vop1<0x1>, "v_mov_b32", VOP_I32_I32>;
+} // End isMoveImm = 1
let Uses = [EXEC] in {
+// FIXME: Specify SchedRW for READFIRSTLANE_B32
+
def V_READFIRSTLANE_B32 : VOP1 <
0x00000002,
(outs SReg_32:$vdst),
- (ins VReg_32:$src0),
- "V_READFIRSTLANE_B32 $vdst, $src0",
+ (ins VGPR_32:$src0),
+ "v_readfirstlane_b32 $vdst, $src0",
[]
>;
}
-defm V_CVT_I32_F64 : VOP1_32_64 <0x00000003, "V_CVT_I32_F64",
- [(set i32:$dst, (fp_to_sint f64:$src0))]
+let SchedRW = [WriteQuarterRate32] in {
+
+defm V_CVT_I32_F64 : VOP1Inst <vop1<0x3>, "v_cvt_i32_f64",
+ VOP_I32_F64, fp_to_sint
>;
-defm V_CVT_F64_I32 : VOP1_64_32 <0x00000004, "V_CVT_F64_I32",
- [(set f64:$dst, (sint_to_fp i32:$src0))]
+defm V_CVT_F64_I32 : VOP1Inst <vop1<0x4>, "v_cvt_f64_i32",
+ VOP_F64_I32, sint_to_fp
>;
-defm V_CVT_F32_I32 : VOP1_32 <0x00000005, "V_CVT_F32_I32",
- [(set f32:$dst, (sint_to_fp i32:$src0))]
+defm V_CVT_F32_I32 : VOP1Inst <vop1<0x5>, "v_cvt_f32_i32",
+ VOP_F32_I32, sint_to_fp
>;
-defm V_CVT_F32_U32 : VOP1_32 <0x00000006, "V_CVT_F32_U32",
- [(set f32:$dst, (uint_to_fp i32:$src0))]
+defm V_CVT_F32_U32 : VOP1Inst <vop1<0x6>, "v_cvt_f32_u32",
+ VOP_F32_I32, uint_to_fp
>;
-defm V_CVT_U32_F32 : VOP1_32 <0x00000007, "V_CVT_U32_F32",
- [(set i32:$dst, (fp_to_uint f32:$src0))]
+defm V_CVT_U32_F32 : VOP1Inst <vop1<0x7>, "v_cvt_u32_f32",
+ VOP_I32_F32, fp_to_uint
>;
-defm V_CVT_I32_F32 : VOP1_32 <0x00000008, "V_CVT_I32_F32",
- [(set i32:$dst, (fp_to_sint f32:$src0))]
+defm V_CVT_I32_F32 : VOP1Inst <vop1<0x8>, "v_cvt_i32_f32",
+ VOP_I32_F32, fp_to_sint
>;
-defm V_MOV_FED_B32 : VOP1_32 <0x00000009, "V_MOV_FED_B32", []>;
-defm V_CVT_F16_F32 : VOP1_32 <0x0000000a, "V_CVT_F16_F32",
- [(set i32:$dst, (fp_to_f16 f32:$src0))]
+defm V_MOV_FED_B32 : VOP1Inst <vop1<0x9>, "v_mov_fed_b32", VOP_I32_I32>;
+defm V_CVT_F16_F32 : VOP1Inst <vop1<0xa>, "v_cvt_f16_f32",
+ VOP_I32_F32, fp_to_f16
>;
-defm V_CVT_F32_F16 : VOP1_32 <0x0000000b, "V_CVT_F32_F16",
- [(set f32:$dst, (f16_to_fp i32:$src0))]
+defm V_CVT_F32_F16 : VOP1Inst <vop1<0xb>, "v_cvt_f32_f16",
+ VOP_F32_I32, f16_to_fp
>;
-//defm V_CVT_RPI_I32_F32 : VOP1_32 <0x0000000c, "V_CVT_RPI_I32_F32", []>;
-//defm V_CVT_FLR_I32_F32 : VOP1_32 <0x0000000d, "V_CVT_FLR_I32_F32", []>;
-//defm V_CVT_OFF_F32_I4 : VOP1_32 <0x0000000e, "V_CVT_OFF_F32_I4", []>;
-defm V_CVT_F32_F64 : VOP1_32_64 <0x0000000f, "V_CVT_F32_F64",
- [(set f32:$dst, (fround f64:$src0))]
+//defm V_CVT_RPI_I32_F32 : VOP1_32 <0x0000000c, "v_cvt_rpi_i32_f32", []>;
+//defm V_CVT_FLR_I32_F32 : VOP1_32 <0x0000000d, "v_cvt_flr_i32_f32", []>;
+//defm V_CVT_OFF_F32_I4 : VOP1_32 <0x0000000e, "v_cvt_off_f32_i4", []>;
+defm V_CVT_F32_F64 : VOP1Inst <vop1<0xf>, "v_cvt_f32_f64",
+ VOP_F32_F64, fround
>;
-defm V_CVT_F64_F32 : VOP1_64_32 <0x00000010, "V_CVT_F64_F32",
- [(set f64:$dst, (fextend f32:$src0))]
+defm V_CVT_F64_F32 : VOP1Inst <vop1<0x10>, "v_cvt_f64_f32",
+ VOP_F64_F32, fextend
>;
-defm V_CVT_F32_UBYTE0 : VOP1_32 <0x00000011, "V_CVT_F32_UBYTE0",
- [(set f32:$dst, (AMDGPUcvt_f32_ubyte0 i32:$src0))]
+defm V_CVT_F32_UBYTE0 : VOP1Inst <vop1<0x11>, "v_cvt_f32_ubyte0",
+ VOP_F32_I32, AMDGPUcvt_f32_ubyte0
>;
-defm V_CVT_F32_UBYTE1 : VOP1_32 <0x00000012, "V_CVT_F32_UBYTE1",
- [(set f32:$dst, (AMDGPUcvt_f32_ubyte1 i32:$src0))]
+defm V_CVT_F32_UBYTE1 : VOP1Inst <vop1<0x12>, "v_cvt_f32_ubyte1",
+ VOP_F32_I32, AMDGPUcvt_f32_ubyte1
>;
-defm V_CVT_F32_UBYTE2 : VOP1_32 <0x00000013, "V_CVT_F32_UBYTE2",
- [(set f32:$dst, (AMDGPUcvt_f32_ubyte2 i32:$src0))]
+defm V_CVT_F32_UBYTE2 : VOP1Inst <vop1<0x13>, "v_cvt_f32_ubyte2",
+ VOP_F32_I32, AMDGPUcvt_f32_ubyte2
>;
-defm V_CVT_F32_UBYTE3 : VOP1_32 <0x00000014, "V_CVT_F32_UBYTE3",
- [(set f32:$dst, (AMDGPUcvt_f32_ubyte3 i32:$src0))]
+defm V_CVT_F32_UBYTE3 : VOP1Inst <vop1<0x14>, "v_cvt_f32_ubyte3",
+ VOP_F32_I32, AMDGPUcvt_f32_ubyte3
>;
-defm V_CVT_U32_F64 : VOP1_32_64 <0x00000015, "V_CVT_U32_F64",
- [(set i32:$dst, (fp_to_uint f64:$src0))]
+defm V_CVT_U32_F64 : VOP1Inst <vop1<0x15>, "v_cvt_u32_f64",
+ VOP_I32_F64, fp_to_uint
>;
-defm V_CVT_F64_U32 : VOP1_64_32 <0x00000016, "V_CVT_F64_U32",
- [(set f64:$dst, (uint_to_fp i32:$src0))]
+defm V_CVT_F64_U32 : VOP1Inst <vop1<0x16>, "v_cvt_f64_u32",
+ VOP_F64_I32, uint_to_fp
>;
-defm V_FRACT_F32 : VOP1_32 <0x00000020, "V_FRACT_F32",
- [(set f32:$dst, (AMDGPUfract f32:$src0))]
->;
-defm V_TRUNC_F32 : VOP1_32 <0x00000021, "V_TRUNC_F32",
- [(set f32:$dst, (ftrunc f32:$src0))]
+} // let SchedRW = [WriteQuarterRate32]
+
+defm V_FRACT_F32 : VOP1Inst <vop1<0x20, 0x1b>, "v_fract_f32",
+ VOP_F32_F32, AMDGPUfract
>;
-defm V_CEIL_F32 : VOP1_32 <0x00000022, "V_CEIL_F32",
- [(set f32:$dst, (fceil f32:$src0))]
+defm V_TRUNC_F32 : VOP1Inst <vop1<0x21, 0x1c>, "v_trunc_f32",
+ VOP_F32_F32, ftrunc
>;
-defm V_RNDNE_F32 : VOP1_32 <0x00000023, "V_RNDNE_F32",
- [(set f32:$dst, (frint f32:$src0))]
+defm V_CEIL_F32 : VOP1Inst <vop1<0x22, 0x1d>, "v_ceil_f32",
+ VOP_F32_F32, fceil
>;
-defm V_FLOOR_F32 : VOP1_32 <0x00000024, "V_FLOOR_F32",
- [(set f32:$dst, (ffloor f32:$src0))]
+defm V_RNDNE_F32 : VOP1Inst <vop1<0x23, 0x1e>, "v_rndne_f32",
+ VOP_F32_F32, frint
>;
-defm V_EXP_F32 : VOP1_32 <0x00000025, "V_EXP_F32",
- [(set f32:$dst, (fexp2 f32:$src0))]
+defm V_FLOOR_F32 : VOP1Inst <vop1<0x24, 0x1f>, "v_floor_f32",
+ VOP_F32_F32, ffloor
>;
-defm V_LOG_CLAMP_F32 : VOP1_32 <0x00000026, "V_LOG_CLAMP_F32", []>;
-defm V_LOG_F32 : VOP1_32 <0x00000027, "V_LOG_F32",
- [(set f32:$dst, (flog2 f32:$src0))]
+defm V_EXP_F32 : VOP1Inst <vop1<0x25, 0x20>, "v_exp_f32",
+ VOP_F32_F32, fexp2
>;
-defm V_RCP_CLAMP_F32 : VOP1_32 <0x00000028, "V_RCP_CLAMP_F32", []>;
-defm V_RCP_LEGACY_F32 : VOP1_32 <0x00000029, "V_RCP_LEGACY_F32", []>;
-defm V_RCP_F32 : VOP1_32 <0x0000002a, "V_RCP_F32",
- [(set f32:$dst, (AMDGPUrcp f32:$src0))]
+let SchedRW = [WriteQuarterRate32] in {
+
+defm V_LOG_F32 : VOP1Inst <vop1<0x27, 0x21>, "v_log_f32",
+ VOP_F32_F32, flog2
>;
-defm V_RCP_IFLAG_F32 : VOP1_32 <0x0000002b, "V_RCP_IFLAG_F32", []>;
-defm V_RSQ_CLAMP_F32 : VOP1_32 <0x0000002c, "V_RSQ_CLAMP_F32",
- [(set f32:$dst, (AMDGPUrsq_clamped f32:$src0))]
+defm V_RCP_F32 : VOP1Inst <vop1<0x2a, 0x22>, "v_rcp_f32",
+ VOP_F32_F32, AMDGPUrcp
>;
-defm V_RSQ_LEGACY_F32 : VOP1_32 <
- 0x0000002d, "V_RSQ_LEGACY_F32",
- [(set f32:$dst, (AMDGPUrsq_legacy f32:$src0))]
+defm V_RCP_IFLAG_F32 : VOP1Inst <vop1<0x2b, 0x23>, "v_rcp_iflag_f32",
+ VOP_F32_F32
>;
-defm V_RSQ_F32 : VOP1_32 <0x0000002e, "V_RSQ_F32",
- [(set f32:$dst, (AMDGPUrsq f32:$src0))]
+defm V_RSQ_F32 : VOP1Inst <vop1<0x2e, 0x24>, "v_rsq_f32",
+ VOP_F32_F32, AMDGPUrsq
>;
-defm V_RCP_F64 : VOP1_64 <0x0000002f, "V_RCP_F64",
- [(set f64:$dst, (AMDGPUrcp f64:$src0))]
+
+} //let SchedRW = [WriteQuarterRate32]
+
+let SchedRW = [WriteDouble] in {
+
+defm V_RCP_F64 : VOP1Inst <vop1<0x2f, 0x25>, "v_rcp_f64",
+ VOP_F64_F64, AMDGPUrcp
>;
-defm V_RCP_CLAMP_F64 : VOP1_64 <0x00000030, "V_RCP_CLAMP_F64", []>;
-defm V_RSQ_F64 : VOP1_64 <0x00000031, "V_RSQ_F64",
- [(set f64:$dst, (AMDGPUrsq f64:$src0))]
+defm V_RSQ_F64 : VOP1Inst <vop1<0x31, 0x26>, "v_rsq_f64",
+ VOP_F64_F64, AMDGPUrsq
>;
-defm V_RSQ_CLAMP_F64 : VOP1_64 <0x00000032, "V_RSQ_CLAMP_F64",
- [(set f64:$dst, (AMDGPUrsq_clamped f64:$src0))]
+
+} // let SchedRW = [WriteDouble];
+
+defm V_SQRT_F32 : VOP1Inst <vop1<0x33, 0x27>, "v_sqrt_f32",
+ VOP_F32_F32, fsqrt
>;
-defm V_SQRT_F32 : VOP1_32 <0x00000033, "V_SQRT_F32",
- [(set f32:$dst, (fsqrt f32:$src0))]
+
+let SchedRW = [WriteDouble] in {
+
+defm V_SQRT_F64 : VOP1Inst <vop1<0x34, 0x28>, "v_sqrt_f64",
+ VOP_F64_F64, fsqrt
+>;
+
+} // let SchedRW = [WriteDouble]
+
+defm V_SIN_F32 : VOP1Inst <vop1<0x35, 0x29>, "v_sin_f32",
+ VOP_F32_F32, AMDGPUsin
>;
-defm V_SQRT_F64 : VOP1_64 <0x00000034, "V_SQRT_F64",
- [(set f64:$dst, (fsqrt f64:$src0))]
+defm V_COS_F32 : VOP1Inst <vop1<0x36, 0x2a>, "v_cos_f32",
+ VOP_F32_F32, AMDGPUcos
>;
-defm V_SIN_F32 : VOP1_32 <0x00000035, "V_SIN_F32",
- [(set f32:$dst, (AMDGPUsin f32:$src0))]
+defm V_NOT_B32 : VOP1Inst <vop1<0x37, 0x2b>, "v_not_b32", VOP_I32_I32>;
+defm V_BFREV_B32 : VOP1Inst <vop1<0x38, 0x2c>, "v_bfrev_b32", VOP_I32_I32>;
+defm V_FFBH_U32 : VOP1Inst <vop1<0x39, 0x2d>, "v_ffbh_u32", VOP_I32_I32>;
+defm V_FFBL_B32 : VOP1Inst <vop1<0x3a, 0x2e>, "v_ffbl_b32", VOP_I32_I32>;
+defm V_FFBH_I32 : VOP1Inst <vop1<0x3b, 0x2f>, "v_ffbh_i32", VOP_I32_I32>;
+//defm V_FREXP_EXP_I32_F64 : VOPInst <0x0000003c, "v_frexp_exp_i32_f64", VOP_I32_F32>;
+defm V_FREXP_MANT_F64 : VOP1Inst <vop1<0x3d, 0x31>, "v_frexp_mant_f64",
+ VOP_F64_F64
>;
-defm V_COS_F32 : VOP1_32 <0x00000036, "V_COS_F32",
- [(set f32:$dst, (AMDGPUcos f32:$src0))]
+defm V_FRACT_F64 : VOP1Inst <vop1<0x3e, 0x32>, "v_fract_f64", VOP_F64_F64>;
+//defm V_FREXP_EXP_I32_F32 : VOPInst <0x0000003f, "v_frexp_exp_i32_f32", VOP_I32_F32>;
+defm V_FREXP_MANT_F32 : VOP1Inst <vop1<0x40, 0x34>, "v_frexp_mant_f32",
+ VOP_F32_F32
>;
-defm V_NOT_B32 : VOP1_32 <0x00000037, "V_NOT_B32", []>;
-defm V_BFREV_B32 : VOP1_32 <0x00000038, "V_BFREV_B32", []>;
-defm V_FFBH_U32 : VOP1_32 <0x00000039, "V_FFBH_U32", []>;
-defm V_FFBL_B32 : VOP1_32 <0x0000003a, "V_FFBL_B32", []>;
-defm V_FFBH_I32 : VOP1_32 <0x0000003b, "V_FFBH_I32", []>;
-//defm V_FREXP_EXP_I32_F64 : VOP1_32 <0x0000003c, "V_FREXP_EXP_I32_F64", []>;
-defm V_FREXP_MANT_F64 : VOP1_64 <0x0000003d, "V_FREXP_MANT_F64", []>;
-defm V_FRACT_F64 : VOP1_64 <0x0000003e, "V_FRACT_F64", []>;
-//defm V_FREXP_EXP_I32_F32 : VOP1_32 <0x0000003f, "V_FREXP_EXP_I32_F32", []>;
-defm V_FREXP_MANT_F32 : VOP1_32 <0x00000040, "V_FREXP_MANT_F32", []>;
-//def V_CLREXCP : VOP1_ <0x00000041, "V_CLREXCP", []>;
-defm V_MOVRELD_B32 : VOP1_32 <0x00000042, "V_MOVRELD_B32", []>;
-defm V_MOVRELS_B32 : VOP1_32 <0x00000043, "V_MOVRELS_B32", []>;
-defm V_MOVRELSD_B32 : VOP1_32 <0x00000044, "V_MOVRELSD_B32", []>;
+//def V_CLREXCP : VOP1_ <0x00000041, "v_clrexcp", []>;
+defm V_MOVRELD_B32 : VOP1Inst <vop1<0x42, 0x36>, "v_movreld_b32", VOP_I32_I32>;
+defm V_MOVRELS_B32 : VOP1Inst <vop1<0x43, 0x37>, "v_movrels_b32", VOP_I32_I32>;
+defm V_MOVRELSD_B32 : VOP1Inst <vop1<0x44, 0x38>, "v_movrelsd_b32", VOP_I32_I32>;
+// These instruction only exist on SI and CI
+let SubtargetPredicate = isSICI in {
-//===----------------------------------------------------------------------===//
-// VINTRP Instructions
-//===----------------------------------------------------------------------===//
+let SchedRW = [WriteQuarterRate32] in {
-def V_INTERP_P1_F32 : VINTRP <
- 0x00000000,
- (outs VReg_32:$dst),
- (ins VReg_32:$i, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
- "V_INTERP_P1_F32 $dst, $i, $attr_chan, $attr, [$m0]",
- []> {
- let DisableEncoding = "$m0";
-}
+defm V_LOG_CLAMP_F32 : VOP1InstSI <vop1<0x26>, "v_log_clamp_f32", VOP_F32_F32>;
+defm V_RCP_CLAMP_F32 : VOP1InstSI <vop1<0x28>, "v_rcp_clamp_f32", VOP_F32_F32>;
+defm V_RCP_LEGACY_F32 : VOP1InstSI <vop1<0x29>, "v_rcp_legacy_f32", VOP_F32_F32>;
+defm V_RSQ_CLAMP_F32 : VOP1InstSI <vop1<0x2c>, "v_rsq_clamp_f32",
+ VOP_F32_F32, AMDGPUrsq_clamped
+>;
+defm V_RSQ_LEGACY_F32 : VOP1InstSI <vop1<0x2d>, "v_rsq_legacy_f32",
+ VOP_F32_F32, AMDGPUrsq_legacy
+>;
-def V_INTERP_P2_F32 : VINTRP <
- 0x00000001,
- (outs VReg_32:$dst),
- (ins VReg_32:$src0, VReg_32:$j, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
- "V_INTERP_P2_F32 $dst, [$src0], $j, $attr_chan, $attr, [$m0]",
- []> {
+} // End let SchedRW = [WriteQuarterRate32]
- let Constraints = "$src0 = $dst";
- let DisableEncoding = "$src0,$m0";
+let SchedRW = [WriteDouble] in {
-}
+defm V_RCP_CLAMP_F64 : VOP1InstSI <vop1<0x30>, "v_rcp_clamp_f64", VOP_F64_F64>;
+defm V_RSQ_CLAMP_F64 : VOP1InstSI <vop1<0x32>, "v_rsq_clamp_f64",
+ VOP_F64_F64, AMDGPUrsq_clamped
+>;
-def V_INTERP_MOV_F32 : VINTRP <
- 0x00000002,
- (outs VReg_32:$dst),
- (ins InterpSlot:$src0, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
- "V_INTERP_MOV_F32 $dst, $src0, $attr_chan, $attr, [$m0]",
- []> {
- let DisableEncoding = "$m0";
-}
+} // End SchedRW = [WriteDouble]
+
+} // End SubtargetPredicate = isSICI
//===----------------------------------------------------------------------===//
-// VOP2 Instructions
+// VINTRP Instructions
//===----------------------------------------------------------------------===//
-def V_CNDMASK_B32_e32 : VOP2 <0x00000000, (outs VReg_32:$dst),
- (ins VSrc_32:$src0, VReg_32:$src1, VCCReg:$vcc),
- "V_CNDMASK_B32_e32 $dst, $src0, $src1, [$vcc]",
- []
->{
- let DisableEncoding = "$vcc";
-}
+// FIXME: Specify SchedRW for VINTRP insturctions.
+defm V_INTERP_P1_F32 : VINTRP_m <
+ 0x00000000, "v_interp_p1_f32",
+ (outs VGPR_32:$dst),
+ (ins VGPR_32:$i, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
+ "v_interp_p1_f32 $dst, $i, $attr_chan, $attr, [$m0]",
+ "$m0">;
+
+defm V_INTERP_P2_F32 : VINTRP_m <
+ 0x00000001, "v_interp_p2_f32",
+ (outs VGPR_32:$dst),
+ (ins VGPR_32:$src0, VGPR_32:$j, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
+ "v_interp_p2_f32 $dst, [$src0], $j, $attr_chan, $attr, [$m0]",
+ "$src0,$m0",
+ "$src0 = $dst">;
+
+defm V_INTERP_MOV_F32 : VINTRP_m <
+ 0x00000002, "v_interp_mov_f32",
+ (outs VGPR_32:$dst),
+ (ins InterpSlot:$src0, i32imm:$attr_chan, i32imm:$attr, M0Reg:$m0),
+ "v_interp_mov_f32 $dst, $src0, $attr_chan, $attr, [$m0]",
+ "$m0">;
-def V_CNDMASK_B32_e64 : VOP3 <0x00000100, (outs VReg_32:$dst),
- (ins VSrc_32:$src0, VSrc_32:$src1, SSrc_64:$src2,
- InstFlag:$abs, InstFlag:$clamp, InstFlag:$omod, InstFlag:$neg),
- "V_CNDMASK_B32_e64 $dst, $src0, $src1, $src2, $abs, $clamp, $omod, $neg",
- [(set i32:$dst, (select i1:$src2, i32:$src1, i32:$src0))]
-> {
- let src0_modifiers = 0;
- let src1_modifiers = 0;
- let src2_modifiers = 0;
-}
+//===----------------------------------------------------------------------===//
+// VOP2 Instructions
+//===----------------------------------------------------------------------===//
-def V_READLANE_B32 : VOP2 <
- 0x00000001,
- (outs SReg_32:$vdst),
- (ins VReg_32:$src0, SSrc_32:$vsrc1),
- "V_READLANE_B32 $vdst, $src0, $vsrc1",
- []
+defm V_CNDMASK_B32_e64 : VOP3_m_nosrcmod <vop3<0x100>, (outs VGPR_32:$dst),
+ (ins VSrc_32:$src0, VSrc_32:$src1, SSrc_64:$src2),
+ "v_cndmask_b32_e64 $dst, $src0, $src1, $src2",
+ [(set i32:$dst, (select i1:$src2, i32:$src1, i32:$src0))],
+ "v_cndmask_b32_e64", 3
>;
-def V_WRITELANE_B32 : VOP2 <
- 0x00000002,
- (outs VReg_32:$vdst),
- (ins SReg_32:$src0, SSrc_32:$vsrc1),
- "V_WRITELANE_B32 $vdst, $src0, $vsrc1",
- []
->;
let isCommutable = 1 in {
-defm V_ADD_F32 : VOP2_32 <0x00000003, "V_ADD_F32",
- [(set f32:$dst, (fadd f32:$src0, f32:$src1))]
+defm V_ADD_F32 : VOP2Inst <vop2<0x3, 0x1>, "v_add_f32",
+ VOP_F32_F32_F32, fadd
>;
-defm V_SUB_F32 : VOP2_32 <0x00000004, "V_SUB_F32",
- [(set f32:$dst, (fsub f32:$src0, f32:$src1))]
+defm V_SUB_F32 : VOP2Inst <vop2<0x4, 0x2>, "v_sub_f32", VOP_F32_F32_F32, fsub>;
+defm V_SUBREV_F32 : VOP2Inst <vop2<0x5, 0x3>, "v_subrev_f32",
+ VOP_F32_F32_F32, null_frag, "v_sub_f32"
>;
-defm V_SUBREV_F32 : VOP2_32 <0x00000005, "V_SUBREV_F32", [], "V_SUB_F32">;
} // End isCommutable = 1
-defm V_MAC_LEGACY_F32 : VOP2_32 <0x00000006, "V_MAC_LEGACY_F32", []>;
-
let isCommutable = 1 in {
-defm V_MUL_LEGACY_F32 : VOP2_32 <
- 0x00000007, "V_MUL_LEGACY_F32",
- [(set f32:$dst, (int_AMDGPU_mul f32:$src0, f32:$src1))]
+defm V_MUL_LEGACY_F32 : VOP2Inst <vop2<0x7, 0x4>, "v_mul_legacy_f32",
+ VOP_F32_F32_F32, int_AMDGPU_mul
>;
-defm V_MUL_F32 : VOP2_32 <0x00000008, "V_MUL_F32",
- [(set f32:$dst, (fmul f32:$src0, f32:$src1))]
+defm V_MUL_F32 : VOP2Inst <vop2<0x8, 0x5>, "v_mul_f32",
+ VOP_F32_F32_F32, fmul
>;
-
-defm V_MUL_I32_I24 : VOP2_32 <0x00000009, "V_MUL_I32_I24",
- [(set i32:$dst, (AMDGPUmul_i24 i32:$src0, i32:$src1))]
+defm V_MUL_I32_I24 : VOP2Inst <vop2<0x9, 0x6>, "v_mul_i32_i24",
+ VOP_I32_I32_I32, AMDGPUmul_i24
>;
-//defm V_MUL_HI_I32_I24 : VOP2_32 <0x0000000a, "V_MUL_HI_I32_I24", []>;
-defm V_MUL_U32_U24 : VOP2_32 <0x0000000b, "V_MUL_U32_U24",
- [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))]
+//defm V_MUL_HI_I32_I24 : VOP2_32 <0x0000000a, "v_mul_hi_i32_i24", []>;
+defm V_MUL_U32_U24 : VOP2Inst <vop2<0xb, 0x8>, "v_mul_u32_u24",
+ VOP_I32_I32_I32, AMDGPUmul_u24
>;
-//defm V_MUL_HI_U32_U24 : VOP2_32 <0x0000000c, "V_MUL_HI_U32_U24", []>;
+//defm V_MUL_HI_U32_U24 : VOP2_32 <0x0000000c, "v_mul_hi_u32_u24", []>;
-
-defm V_MIN_LEGACY_F32 : VOP2_32 <0x0000000d, "V_MIN_LEGACY_F32",
- [(set f32:$dst, (AMDGPUfmin f32:$src0, f32:$src1))]
+defm V_MIN_F32 : VOP2Inst <vop2<0xf, 0xa>, "v_min_f32", VOP_F32_F32_F32,
+ fminnum>;
+defm V_MAX_F32 : VOP2Inst <vop2<0x10, 0xb>, "v_max_f32", VOP_F32_F32_F32,
+ fmaxnum>;
+defm V_MIN_I32 : VOP2Inst <vop2<0x11, 0xc>, "v_min_i32", VOP_I32_I32_I32,
+ AMDGPUsmin
>;
-
-defm V_MAX_LEGACY_F32 : VOP2_32 <0x0000000e, "V_MAX_LEGACY_F32",
- [(set f32:$dst, (AMDGPUfmax f32:$src0, f32:$src1))]
+defm V_MAX_I32 : VOP2Inst <vop2<0x12, 0xd>, "v_max_i32", VOP_I32_I32_I32,
+ AMDGPUsmax
>;
-
-defm V_MIN_F32 : VOP2_32 <0x0000000f, "V_MIN_F32", []>;
-defm V_MAX_F32 : VOP2_32 <0x00000010, "V_MAX_F32", []>;
-defm V_MIN_I32 : VOP2_32 <0x00000011, "V_MIN_I32",
- [(set i32:$dst, (AMDGPUsmin i32:$src0, i32:$src1))]>;
-defm V_MAX_I32 : VOP2_32 <0x00000012, "V_MAX_I32",
- [(set i32:$dst, (AMDGPUsmax i32:$src0, i32:$src1))]>;
-defm V_MIN_U32 : VOP2_32 <0x00000013, "V_MIN_U32",
- [(set i32:$dst, (AMDGPUumin i32:$src0, i32:$src1))]>;
-defm V_MAX_U32 : VOP2_32 <0x00000014, "V_MAX_U32",
- [(set i32:$dst, (AMDGPUumax i32:$src0, i32:$src1))]>;
-
-defm V_LSHR_B32 : VOP2_32 <0x00000015, "V_LSHR_B32",
- [(set i32:$dst, (srl i32:$src0, i32:$src1))]
+defm V_MIN_U32 : VOP2Inst <vop2<0x13, 0xe>, "v_min_u32", VOP_I32_I32_I32,
+ AMDGPUumin
>;
-
-defm V_LSHRREV_B32 : VOP2_32 <0x00000016, "V_LSHRREV_B32", [], "V_LSHR_B32">;
-
-defm V_ASHR_I32 : VOP2_32 <0x00000017, "V_ASHR_I32",
- [(set i32:$dst, (sra i32:$src0, i32:$src1))]
+defm V_MAX_U32 : VOP2Inst <vop2<0x14, 0xf>, "v_max_u32", VOP_I32_I32_I32,
+ AMDGPUumax
>;
-defm V_ASHRREV_I32 : VOP2_32 <0x00000018, "V_ASHRREV_I32", [], "V_ASHR_I32">;
-let hasPostISelHook = 1 in {
+// No non-Rev Op on VI
+defm V_LSHRREV_B32 : VOP2Inst <
+ vop2<0x16, 0x10>, "v_lshrrev_b32", VOP_I32_I32_I32, null_frag,
+ "v_lshr_b32", "v_lshrrev_b32"
+>;
-defm V_LSHL_B32 : VOP2_32 <0x00000019, "V_LSHL_B32",
- [(set i32:$dst, (shl i32:$src0, i32:$src1))]
+// No non-Rev OP on VI
+defm V_ASHRREV_I32 : VOP2Inst <
+ vop2<0x18, 0x11>, "v_ashrrev_i32", VOP_I32_I32_I32, null_frag,
+ "v_ashr_i32", "v_ashrrev_i32"
>;
-}
-defm V_LSHLREV_B32 : VOP2_32 <0x0000001a, "V_LSHLREV_B32", [], "V_LSHL_B32">;
+// No non-Rev OP on VI
+defm V_LSHLREV_B32 : VOP2Inst <
+ vop2<0x1a, 0x12>, "v_lshlrev_b32", VOP_I32_I32_I32, null_frag,
+ "v_lshl_b32", "v_lshlrev_b32"
+>;
-defm V_AND_B32 : VOP2_32 <0x0000001b, "V_AND_B32",
- [(set i32:$dst, (and i32:$src0, i32:$src1))]>;
-defm V_OR_B32 : VOP2_32 <0x0000001c, "V_OR_B32",
- [(set i32:$dst, (or i32:$src0, i32:$src1))]
+defm V_AND_B32 : VOP2Inst <vop2<0x1b, 0x13>, "v_and_b32",
+ VOP_I32_I32_I32, and>;
+defm V_OR_B32 : VOP2Inst <vop2<0x1c, 0x14>, "v_or_b32",
+ VOP_I32_I32_I32, or
>;
-defm V_XOR_B32 : VOP2_32 <0x0000001d, "V_XOR_B32",
- [(set i32:$dst, (xor i32:$src0, i32:$src1))]
+defm V_XOR_B32 : VOP2Inst <vop2<0x1d, 0x15>, "v_xor_b32",
+ VOP_I32_I32_I32, xor
>;
+defm V_MAC_F32 : VOP2Inst <vop2<0x1f, 0x16>, "v_mac_f32", VOP_F32_F32_F32>;
} // End isCommutable = 1
-defm V_BFM_B32 : VOP2_32 <0x0000001e, "V_BFM_B32",
- [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))]>;
-defm V_MAC_F32 : VOP2_32 <0x0000001f, "V_MAC_F32", []>;
-defm V_MADMK_F32 : VOP2_32 <0x00000020, "V_MADMK_F32", []>;
-defm V_MADAK_F32 : VOP2_32 <0x00000021, "V_MADAK_F32", []>;
-defm V_BCNT_U32_B32 : VOP2_32 <0x00000022, "V_BCNT_U32_B32", []>;
-defm V_MBCNT_LO_U32_B32 : VOP2_32 <0x00000023, "V_MBCNT_LO_U32_B32", []>;
-defm V_MBCNT_HI_U32_B32 : VOP2_32 <0x00000024, "V_MBCNT_HI_U32_B32", []>;
+defm V_MADMK_F32 : VOP2Inst <vop2<0x20, 0x17>, "v_madmk_f32", VOP_F32_F32_F32>;
+
+let isCommutable = 1 in {
+defm V_MADAK_F32 : VOP2Inst <vop2<0x21, 0x18>, "v_madak_f32", VOP_F32_F32_F32>;
+} // End isCommutable = 1
let isCommutable = 1, Defs = [VCC] in { // Carry-out goes to VCC
// No patterns so that the scalar instructions are always selected.
// The scalar versions will be replaced with vector when needed later.
-defm V_ADD_I32 : VOP2b_32 <0x00000025, "V_ADD_I32",
- [(set i32:$dst, (add i32:$src0, i32:$src1))], VSrc_32>;
-defm V_SUB_I32 : VOP2b_32 <0x00000026, "V_SUB_I32",
- [(set i32:$dst, (sub i32:$src0, i32:$src1))], VSrc_32>;
-defm V_SUBREV_I32 : VOP2b_32 <0x00000027, "V_SUBREV_I32", [], VSrc_32,
- "V_SUB_I32">;
+
+// V_ADD_I32, V_SUB_I32, and V_SUBREV_I32 where renamed to *_U32 in VI,
+// but the VI instructions behave the same as the SI versions.
+defm V_ADD_I32 : VOP2bInst <vop2<0x25, 0x19>, "v_add_i32",
+ VOP_I32_I32_I32, add
+>;
+defm V_SUB_I32 : VOP2bInst <vop2<0x26, 0x1a>, "v_sub_i32",
+ VOP_I32_I32_I32, sub
+>;
+
+defm V_SUBREV_I32 : VOP2bInst <vop2<0x27, 0x1b>, "v_subrev_i32",
+ VOP_I32_I32_I32, null_frag, "v_sub_i32"
+>;
let Uses = [VCC] in { // Carry-in comes from VCC
-defm V_ADDC_U32 : VOP2b_32 <0x00000028, "V_ADDC_U32",
- [(set i32:$dst, (adde i32:$src0, i32:$src1))], VReg_32>;
-defm V_SUBB_U32 : VOP2b_32 <0x00000029, "V_SUBB_U32",
- [(set i32:$dst, (sube i32:$src0, i32:$src1))], VReg_32>;
-defm V_SUBBREV_U32 : VOP2b_32 <0x0000002a, "V_SUBBREV_U32", [], VReg_32,
- "V_SUBB_U32">;
+defm V_ADDC_U32 : VOP2bInst <vop2<0x28, 0x1c>, "v_addc_u32",
+ VOP_I32_I32_I32_VCC, adde
+>;
+defm V_SUBB_U32 : VOP2bInst <vop2<0x29, 0x1d>, "v_subb_u32",
+ VOP_I32_I32_I32_VCC, sube
+>;
+defm V_SUBBREV_U32 : VOP2bInst <vop2<0x2a, 0x1e>, "v_subbrev_u32",
+ VOP_I32_I32_I32_VCC, null_frag, "v_subb_u32"
+>;
+
} // End Uses = [VCC]
} // End isCommutable = 1, Defs = [VCC]
-defm V_LDEXP_F32 : VOP2_32 <0x0000002b, "V_LDEXP_F32", []>;
-////def V_CVT_PKACCUM_U8_F32 : VOP2_U8 <0x0000002c, "V_CVT_PKACCUM_U8_F32", []>;
-////def V_CVT_PKNORM_I16_F32 : VOP2_I16 <0x0000002d, "V_CVT_PKNORM_I16_F32", []>;
-////def V_CVT_PKNORM_U16_F32 : VOP2_U16 <0x0000002e, "V_CVT_PKNORM_U16_F32", []>;
-defm V_CVT_PKRTZ_F16_F32 : VOP2_32 <0x0000002f, "V_CVT_PKRTZ_F16_F32",
- [(set i32:$dst, (int_SI_packf16 f32:$src0, f32:$src1))]
+defm V_READLANE_B32 : VOP2SI_3VI_m <
+ vop3 <0x001, 0x289>,
+ "v_readlane_b32",
+ (outs SReg_32:$vdst),
+ (ins VGPR_32:$src0, SSrc_32:$vsrc1),
+ "v_readlane_b32 $vdst, $src0, $vsrc1"
+>;
+
+defm V_WRITELANE_B32 : VOP2SI_3VI_m <
+ vop3 <0x002, 0x28a>,
+ "v_writelane_b32",
+ (outs VGPR_32:$vdst),
+ (ins SReg_32:$src0, SSrc_32:$vsrc1),
+ "v_writelane_b32 $vdst, $src0, $vsrc1"
>;
-////def V_CVT_PK_U16_U32 : VOP2_U16 <0x00000030, "V_CVT_PK_U16_U32", []>;
-////def V_CVT_PK_I16_I32 : VOP2_I16 <0x00000031, "V_CVT_PK_I16_I32", []>;
+
+// These instructions only exist on SI and CI
+let SubtargetPredicate = isSICI in {
+
+let isCommutable = 1 in {
+defm V_MAC_LEGACY_F32 : VOP2Inst <vop2<0x6>, "v_mac_legacy_f32",
+ VOP_F32_F32_F32
+>;
+} // End isCommutable = 1
+
+defm V_MIN_LEGACY_F32 : VOP2Inst <vop2<0xd>, "v_min_legacy_f32",
+ VOP_F32_F32_F32, AMDGPUfmin_legacy
+>;
+defm V_MAX_LEGACY_F32 : VOP2Inst <vop2<0xe>, "v_max_legacy_f32",
+ VOP_F32_F32_F32, AMDGPUfmax_legacy
+>;
+
+let isCommutable = 1 in {
+defm V_LSHR_B32 : VOP2Inst <vop2<0x15>, "v_lshr_b32", VOP_I32_I32_I32, srl>;
+defm V_ASHR_I32 : VOP2Inst <vop2<0x17>, "v_ashr_i32",
+ VOP_I32_I32_I32, sra
+>;
+
+let hasPostISelHook = 1 in {
+defm V_LSHL_B32 : VOP2Inst <vop2<0x19>, "v_lshl_b32", VOP_I32_I32_I32, shl>;
+}
+
+} // End isCommutable = 1
+} // End let SubtargetPredicate = SICI
+
+defm V_BFM_B32 : VOP2_VI3_Inst <vop23<0x1e, 0x293>, "v_bfm_b32", VOP_I32_I32_I32,
+ AMDGPUbfm
+>;
+defm V_BCNT_U32_B32 : VOP2_VI3_Inst <vop23<0x22, 0x28b>, "v_bcnt_u32_b32",
+ VOP_I32_I32_I32
+>;
+defm V_MBCNT_LO_U32_B32 : VOP2_VI3_Inst <vop23<0x23, 0x28c>, "v_mbcnt_lo_u32_b32",
+ VOP_I32_I32_I32
+>;
+defm V_MBCNT_HI_U32_B32 : VOP2_VI3_Inst <vop23<0x24, 0x28d>, "v_mbcnt_hi_u32_b32",
+ VOP_I32_I32_I32
+>;
+defm V_LDEXP_F32 : VOP2_VI3_Inst <vop23<0x2b, 0x288>, "v_ldexp_f32",
+ VOP_F32_F32_I32, AMDGPUldexp
+>;
+
+////def V_CVT_PKACCUM_U8_F32 : VOP2_U8 <0x0000002c, "v_cvt_pkaccum_u8_f32", []>;
+////def V_CVT_PKNORM_I16_F32 : VOP2_I16 <0x0000002d, "v_cvt_pknorm_i16_f32", []>;
+////def V_CVT_PKNORM_U16_F32 : VOP2_U16 <0x0000002e, "v_cvt_pknorm_u16_f32", []>;
+defm V_CVT_PKRTZ_F16_F32 : VOP2_VI3_Inst <vop23<0x2f, 0x296>, "v_cvt_pkrtz_f16_f32",
+ VOP_I32_F32_F32, int_SI_packf16
+>;
+////def V_CVT_PK_U16_U32 : VOP2_U16 <0x00000030, "v_cvt_pk_u16_u32", []>;
+////def V_CVT_PK_I16_I32 : VOP2_I16 <0x00000031, "v_cvt_pk_i16_i32", []>;
//===----------------------------------------------------------------------===//
// VOP3 Instructions
//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1 in {
+let isCommutable = 1 in {
+defm V_MAD_LEGACY_F32 : VOP3Inst <vop3<0x140, 0x1c0>, "v_mad_legacy_f32",
+ VOP_F32_F32_F32_F32
+>;
-defm V_MAD_LEGACY_F32 : VOP3_32 <0x00000140, "V_MAD_LEGACY_F32", []>;
-defm V_MAD_F32 : VOP3_32 <0x00000141, "V_MAD_F32",
- [(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))]
+defm V_MAD_F32 : VOP3Inst <vop3<0x141, 0x1c1>, "v_mad_f32",
+ VOP_F32_F32_F32_F32, fmad
>;
-defm V_MAD_I32_I24 : VOP3_32 <0x00000142, "V_MAD_I32_I24",
- [(set i32:$dst, (AMDGPUmad_i24 i32:$src0, i32:$src1, i32:$src2))]
+
+defm V_MAD_I32_I24 : VOP3Inst <vop3<0x142, 0x1c2>, "v_mad_i32_i24",
+ VOP_I32_I32_I32_I32, AMDGPUmad_i24
>;
-defm V_MAD_U32_U24 : VOP3_32 <0x00000143, "V_MAD_U32_U24",
- [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))]
+defm V_MAD_U32_U24 : VOP3Inst <vop3<0x143, 0x1c3>, "v_mad_u32_u24",
+ VOP_I32_I32_I32_I32, AMDGPUmad_u24
>;
+} // End isCommutable = 1
-} // End neverHasSideEffects
-
-defm V_CUBEID_F32 : VOP3_32 <0x00000144, "V_CUBEID_F32", []>;
-defm V_CUBESC_F32 : VOP3_32 <0x00000145, "V_CUBESC_F32", []>;
-defm V_CUBETC_F32 : VOP3_32 <0x00000146, "V_CUBETC_F32", []>;
-defm V_CUBEMA_F32 : VOP3_32 <0x00000147, "V_CUBEMA_F32", []>;
+defm V_CUBEID_F32 : VOP3Inst <vop3<0x144, 0x1c4>, "v_cubeid_f32",
+ VOP_F32_F32_F32_F32
+>;
+defm V_CUBESC_F32 : VOP3Inst <vop3<0x145, 0x1c5>, "v_cubesc_f32",
+ VOP_F32_F32_F32_F32
+>;
+defm V_CUBETC_F32 : VOP3Inst <vop3<0x146, 0x1c6>, "v_cubetc_f32",
+ VOP_F32_F32_F32_F32
+>;
+defm V_CUBEMA_F32 : VOP3Inst <vop3<0x147, 0x1c7>, "v_cubema_f32",
+ VOP_F32_F32_F32_F32
+>;
-let neverHasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
-defm V_BFE_U32 : VOP3_32 <0x00000148, "V_BFE_U32",
- [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))]>;
-defm V_BFE_I32 : VOP3_32 <0x00000149, "V_BFE_I32",
- [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))]>;
+let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
+defm V_BFE_U32 : VOP3Inst <vop3<0x148, 0x1c8>, "v_bfe_u32",
+ VOP_I32_I32_I32_I32, AMDGPUbfe_u32
+>;
+defm V_BFE_I32 : VOP3Inst <vop3<0x149, 0x1c9>, "v_bfe_i32",
+ VOP_I32_I32_I32_I32, AMDGPUbfe_i32
+>;
}
-defm V_BFI_B32 : VOP3_32 <0x0000014a, "V_BFI_B32",
- [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))]>;
-defm V_FMA_F32 : VOP3_32 <0x0000014b, "V_FMA_F32",
- [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))]
->;
-def V_FMA_F64 : VOP3_64 <0x0000014c, "V_FMA_F64",
- [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
->;
-//def V_LERP_U8 : VOP3_U8 <0x0000014d, "V_LERP_U8", []>;
-defm V_ALIGNBIT_B32 : VOP3_32 <0x0000014e, "V_ALIGNBIT_B32", []>;
-
-defm V_ALIGNBYTE_B32 : VOP3_32 <0x0000014f, "V_ALIGNBYTE_B32", []>;
-defm V_MULLIT_F32 : VOP3_32 <0x00000150, "V_MULLIT_F32", []>;
-////def V_MIN3_F32 : VOP3_MIN3 <0x00000151, "V_MIN3_F32", []>;
-////def V_MIN3_I32 : VOP3_MIN3 <0x00000152, "V_MIN3_I32", []>;
-////def V_MIN3_U32 : VOP3_MIN3 <0x00000153, "V_MIN3_U32", []>;
-////def V_MAX3_F32 : VOP3_MAX3 <0x00000154, "V_MAX3_F32", []>;
-////def V_MAX3_I32 : VOP3_MAX3 <0x00000155, "V_MAX3_I32", []>;
-////def V_MAX3_U32 : VOP3_MAX3 <0x00000156, "V_MAX3_U32", []>;
-////def V_MED3_F32 : VOP3_MED3 <0x00000157, "V_MED3_F32", []>;
-////def V_MED3_I32 : VOP3_MED3 <0x00000158, "V_MED3_I32", []>;
-////def V_MED3_U32 : VOP3_MED3 <0x00000159, "V_MED3_U32", []>;
-//def V_SAD_U8 : VOP3_U8 <0x0000015a, "V_SAD_U8", []>;
-//def V_SAD_HI_U8 : VOP3_U8 <0x0000015b, "V_SAD_HI_U8", []>;
-//def V_SAD_U16 : VOP3_U16 <0x0000015c, "V_SAD_U16", []>;
-defm V_SAD_U32 : VOP3_32 <0x0000015d, "V_SAD_U32", []>;
-////def V_CVT_PK_U8_F32 : VOP3_U8 <0x0000015e, "V_CVT_PK_U8_F32", []>;
-defm V_DIV_FIXUP_F32 : VOP3_32 <0x0000015f, "V_DIV_FIXUP_F32",
- [(set f32:$dst, (AMDGPUdiv_fixup f32:$src0, f32:$src1, f32:$src2))]
->;
-def V_DIV_FIXUP_F64 : VOP3_64 <0x00000160, "V_DIV_FIXUP_F64",
- [(set f64:$dst, (AMDGPUdiv_fixup f64:$src0, f64:$src1, f64:$src2))]
->;
-
-def V_LSHL_B64 : VOP3_64_32 <0x00000161, "V_LSHL_B64",
- [(set i64:$dst, (shl i64:$src0, i32:$src1))]
+defm V_BFI_B32 : VOP3Inst <vop3<0x14a, 0x1ca>, "v_bfi_b32",
+ VOP_I32_I32_I32_I32, AMDGPUbfi
>;
-def V_LSHR_B64 : VOP3_64_32 <0x00000162, "V_LSHR_B64",
- [(set i64:$dst, (srl i64:$src0, i32:$src1))]
+
+let isCommutable = 1 in {
+defm V_FMA_F32 : VOP3Inst <vop3<0x14b, 0x1cb>, "v_fma_f32",
+ VOP_F32_F32_F32_F32, fma
>;
-def V_ASHR_I64 : VOP3_64_32 <0x00000163, "V_ASHR_I64",
- [(set i64:$dst, (sra i64:$src0, i32:$src1))]
+defm V_FMA_F64 : VOP3Inst <vop3<0x14c, 0x1cc>, "v_fma_f64",
+ VOP_F64_F64_F64_F64, fma
>;
+} // End isCommutable = 1
-let isCommutable = 1 in {
+//def V_LERP_U8 : VOP3_U8 <0x0000014d, "v_lerp_u8", []>;
+defm V_ALIGNBIT_B32 : VOP3Inst <vop3<0x14e, 0x1ce>, "v_alignbit_b32",
+ VOP_I32_I32_I32_I32
+>;
+defm V_ALIGNBYTE_B32 : VOP3Inst <vop3<0x14f, 0x1cf>, "v_alignbyte_b32",
+ VOP_I32_I32_I32_I32
+>;
-def V_ADD_F64 : VOP3_64 <0x00000164, "V_ADD_F64", []>;
-def V_MUL_F64 : VOP3_64 <0x00000165, "V_MUL_F64", []>;
-def V_MIN_F64 : VOP3_64 <0x00000166, "V_MIN_F64", []>;
-def V_MAX_F64 : VOP3_64 <0x00000167, "V_MAX_F64", []>;
+defm V_MIN3_F32 : VOP3Inst <vop3<0x151>, "v_min3_f32",
+ VOP_F32_F32_F32_F32, AMDGPUfmin3>;
-} // isCommutable = 1
+defm V_MIN3_I32 : VOP3Inst <vop3<0x152>, "v_min3_i32",
+ VOP_I32_I32_I32_I32, AMDGPUsmin3
+>;
+defm V_MIN3_U32 : VOP3Inst <vop3<0x153>, "v_min3_u32",
+ VOP_I32_I32_I32_I32, AMDGPUumin3
+>;
+defm V_MAX3_F32 : VOP3Inst <vop3<0x154>, "v_max3_f32",
+ VOP_F32_F32_F32_F32, AMDGPUfmax3
+>;
+defm V_MAX3_I32 : VOP3Inst <vop3<0x155>, "v_max3_i32",
+ VOP_I32_I32_I32_I32, AMDGPUsmax3
+>;
+defm V_MAX3_U32 : VOP3Inst <vop3<0x156>, "v_max3_u32",
+ VOP_I32_I32_I32_I32, AMDGPUumax3
+>;
+//def V_MED3_F32 : VOP3_MED3 <0x00000157, "v_med3_f32", []>;
+//def V_MED3_I32 : VOP3_MED3 <0x00000158, "v_med3_i32", []>;
+//def V_MED3_U32 : VOP3_MED3 <0x00000159, "v_med3_u32", []>;
+//def V_SAD_U8 : VOP3_U8 <0x0000015a, "v_sad_u8", []>;
+//def V_SAD_HI_U8 : VOP3_U8 <0x0000015b, "v_sad_hi_u8", []>;
+//def V_SAD_U16 : VOP3_U16 <0x0000015c, "v_sad_u16", []>;
+defm V_SAD_U32 : VOP3Inst <vop3<0x15d, 0x1dc>, "v_sad_u32",
+ VOP_I32_I32_I32_I32
+>;
+////def V_CVT_PK_U8_F32 : VOP3_U8 <0x0000015e, "v_cvt_pk_u8_f32", []>;
+defm V_DIV_FIXUP_F32 : VOP3Inst <
+ vop3<0x15f, 0x1de>, "v_div_fixup_f32", VOP_F32_F32_F32_F32, AMDGPUdiv_fixup
+>;
+
+let SchedRW = [WriteDouble] in {
-def V_LDEXP_F64 : VOP3_64 <0x00000168, "V_LDEXP_F64", []>;
+defm V_DIV_FIXUP_F64 : VOP3Inst <
+ vop3<0x160, 0x1df>, "v_div_fixup_f64", VOP_F64_F64_F64_F64, AMDGPUdiv_fixup
+>;
+
+} // let SchedRW = [WriteDouble]
+let SchedRW = [WriteDouble] in {
let isCommutable = 1 in {
-defm V_MUL_LO_U32 : VOP3_32 <0x00000169, "V_MUL_LO_U32", []>;
-defm V_MUL_HI_U32 : VOP3_32 <0x0000016a, "V_MUL_HI_U32", []>;
-defm V_MUL_LO_I32 : VOP3_32 <0x0000016b, "V_MUL_LO_I32", []>;
-defm V_MUL_HI_I32 : VOP3_32 <0x0000016c, "V_MUL_HI_I32", []>;
+defm V_ADD_F64 : VOP3Inst <vop3<0x164, 0x280>, "v_add_f64",
+ VOP_F64_F64_F64, fadd
+>;
+defm V_MUL_F64 : VOP3Inst <vop3<0x165, 0x281>, "v_mul_f64",
+ VOP_F64_F64_F64, fmul
+>;
+
+defm V_MIN_F64 : VOP3Inst <vop3<0x166, 0x282>, "v_min_f64",
+ VOP_F64_F64_F64, fminnum
+>;
+defm V_MAX_F64 : VOP3Inst <vop3<0x167, 0x283>, "v_max_f64",
+ VOP_F64_F64_F64, fmaxnum
+>;
} // isCommutable = 1
-def V_DIV_SCALE_F32 : VOP3b_32 <0x0000016d, "V_DIV_SCALE_F32", []>;
+defm V_LDEXP_F64 : VOP3Inst <vop3<0x168, 0x284>, "v_ldexp_f64",
+ VOP_F64_F64_I32, AMDGPUldexp
+>;
-// Double precision division pre-scale.
-def V_DIV_SCALE_F64 : VOP3b_64 <0x0000016e, "V_DIV_SCALE_F64", []>;
+} // let SchedRW = [WriteDouble]
+
+let isCommutable = 1, SchedRW = [WriteQuarterRate32] in {
-defm V_DIV_FMAS_F32 : VOP3_32 <0x0000016f, "V_DIV_FMAS_F32",
- [(set f32:$dst, (AMDGPUdiv_fmas f32:$src0, f32:$src1, f32:$src2))]
+defm V_MUL_LO_U32 : VOP3Inst <vop3<0x169, 0x285>, "v_mul_lo_u32",
+ VOP_I32_I32_I32
>;
-def V_DIV_FMAS_F64 : VOP3_64 <0x00000170, "V_DIV_FMAS_F64",
- [(set f64:$dst, (AMDGPUdiv_fmas f64:$src0, f64:$src1, f64:$src2))]
+defm V_MUL_HI_U32 : VOP3Inst <vop3<0x16a, 0x286>, "v_mul_hi_u32",
+ VOP_I32_I32_I32
>;
-//def V_MSAD_U8 : VOP3_U8 <0x00000171, "V_MSAD_U8", []>;
-//def V_QSAD_U8 : VOP3_U8 <0x00000172, "V_QSAD_U8", []>;
-//def V_MQSAD_U8 : VOP3_U8 <0x00000173, "V_MQSAD_U8", []>;
-def V_TRIG_PREOP_F64 : VOP3_64_32 <0x00000174, "V_TRIG_PREOP_F64",
- [(set f64:$dst, (AMDGPUtrig_preop f64:$src0, i32:$src1))]
+
+defm V_MUL_LO_I32 : VOP3Inst <vop3<0x16b, 0x285>, "v_mul_lo_i32",
+ VOP_I32_I32_I32
+>;
+defm V_MUL_HI_I32 : VOP3Inst <vop3<0x16c, 0x287>, "v_mul_hi_i32",
+ VOP_I32_I32_I32
>;
-//===----------------------------------------------------------------------===//
-// Pseudo Instructions
-//===----------------------------------------------------------------------===//
+} // isCommutable = 1, SchedRW = [WriteQuarterRate32]
-let isCodeGenOnly = 1, isPseudo = 1 in {
+defm V_DIV_SCALE_F32 : VOP3b_32 <vop3<0x16d, 0x1e0>, "v_div_scale_f32", []>;
-def V_MOV_I1 : InstSI <
- (outs VReg_1:$dst),
- (ins i1imm:$src),
- "", [(set i1:$dst, (imm:$src))]
+let SchedRW = [WriteDouble] in {
+// Double precision division pre-scale.
+defm V_DIV_SCALE_F64 : VOP3b_64 <vop3<0x16e, 0x1e1>, "v_div_scale_f64", []>;
+} // let SchedRW = [WriteDouble]
+
+let isCommutable = 1 in {
+defm V_DIV_FMAS_F32 : VOP3Inst <vop3<0x16f, 0x1e2>, "v_div_fmas_f32",
+ VOP_F32_F32_F32_F32, AMDGPUdiv_fmas
+>;
+let SchedRW = [WriteDouble] in {
+defm V_DIV_FMAS_F64 : VOP3Inst <vop3<0x170, 0x1e3>, "v_div_fmas_f64",
+ VOP_F64_F64_F64_F64, AMDGPUdiv_fmas
>;
+} // End SchedRW = [WriteDouble]
+} // End isCommutable = 1
+
+//def V_MSAD_U8 : VOP3_U8 <0x00000171, "v_msad_u8", []>;
+//def V_QSAD_U8 : VOP3_U8 <0x00000172, "v_qsad_u8", []>;
+//def V_MQSAD_U8 : VOP3_U8 <0x00000173, "v_mqsad_u8", []>;
+
+let SchedRW = [WriteDouble] in {
+defm V_TRIG_PREOP_F64 : VOP3Inst <
+ vop3<0x174, 0x292>, "v_trig_preop_f64", VOP_F64_F64_I32, AMDGPUtrig_preop
+>;
+
+} // let SchedRW = [WriteDouble]
+
+// These instructions only exist on SI and CI
+let SubtargetPredicate = isSICI in {
-def V_AND_I1 : InstSI <
- (outs VReg_1:$dst), (ins VReg_1:$src0, VReg_1:$src1), "",
- [(set i1:$dst, (and i1:$src0, i1:$src1))]
+defm V_LSHL_B64 : VOP3Inst <vop3<0x161>, "v_lshl_b64",
+ VOP_I64_I64_I32, shl
>;
-def V_OR_I1 : InstSI <
- (outs VReg_1:$dst), (ins VReg_1:$src0, VReg_1:$src1), "",
- [(set i1:$dst, (or i1:$src0, i1:$src1))]
+defm V_LSHR_B64 : VOP3Inst <vop3<0x162>, "v_lshr_b64",
+ VOP_I64_I64_I32, srl
>;
-def V_XOR_I1 : InstSI <
- (outs VReg_1:$dst), (ins VReg_1:$src0, VReg_1:$src1), "",
- [(set i1:$dst, (xor i1:$src0, i1:$src1))]
+defm V_ASHR_I64 : VOP3Inst <vop3<0x163>, "v_ashr_i64",
+ VOP_I64_I64_I32, sra
>;
+defm V_MULLIT_F32 : VOP3Inst <vop3<0x150>, "v_mullit_f32",
+ VOP_F32_F32_F32_F32>;
+
+} // End SubtargetPredicate = isSICI
+
+//===----------------------------------------------------------------------===//
+// Pseudo Instructions
+//===----------------------------------------------------------------------===//
+let isCodeGenOnly = 1, isPseudo = 1 in {
+
+let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
+// 64-bit vector move instruction. This is mainly used by the SIFoldOperands
+// pass to enable folding of inline immediates.
+def V_MOV_B64_PSEUDO : InstSI <(outs VReg_64:$dst), (ins VSrc_64:$src0), "", []>;
+} // end let hasSideEffects = 0, mayLoad = 0, mayStore = 0
+
+let hasSideEffects = 1 in {
+def SGPR_USE : InstSI <(outs),(ins), "", []>;
+}
+
// SI pseudo instructions. These are used by the CFG structurizer pass
// and should be lowered to ISA instructions prior to codegen.
@@ -1557,7 +1833,7 @@ def SI_ELSE : InstSI <
def SI_LOOP : InstSI <
(outs),
(ins SReg_64:$saved, brtarget:$target),
- "SI_LOOP $saved, $target",
+ "si_loop $saved, $target",
[(int_SI_loop i64:$saved, bb:$target)]
>;
@@ -1566,35 +1842,35 @@ def SI_LOOP : InstSI <
def SI_BREAK : InstSI <
(outs SReg_64:$dst),
(ins SReg_64:$src),
- "SI_ELSE $dst, $src",
+ "si_else $dst, $src",
[(set i64:$dst, (int_SI_break i64:$src))]
>;
def SI_IF_BREAK : InstSI <
(outs SReg_64:$dst),
(ins SReg_64:$vcc, SReg_64:$src),
- "SI_IF_BREAK $dst, $vcc, $src",
+ "si_if_break $dst, $vcc, $src",
[(set i64:$dst, (int_SI_if_break i1:$vcc, i64:$src))]
>;
def SI_ELSE_BREAK : InstSI <
(outs SReg_64:$dst),
(ins SReg_64:$src0, SReg_64:$src1),
- "SI_ELSE_BREAK $dst, $src0, $src1",
+ "si_else_break $dst, $src0, $src1",
[(set i64:$dst, (int_SI_else_break i64:$src0, i64:$src1))]
>;
def SI_END_CF : InstSI <
(outs),
(ins SReg_64:$saved),
- "SI_END_CF $saved",
+ "si_end_cf $saved",
[(int_SI_end_cf i64:$saved)]
>;
def SI_KILL : InstSI <
(outs),
(ins VSrc_32:$src),
- "SI_KILL $src",
+ "si_kill $src",
[(int_AMDGPU_kill f32:$src)]
>;
@@ -1603,12 +1879,12 @@ def SI_KILL : InstSI <
let Uses = [EXEC], Defs = [EXEC,VCC,M0] in {
-//defm SI_ : RegisterLoadStore <VReg_32, FRAMEri, ADDRIndirect>;
+//defm SI_ : RegisterLoadStore <VGPR_32, FRAMEri, ADDRIndirect>;
let UseNamedOperandTable = 1 in {
def SI_RegisterLoad : InstSI <
- (outs VReg_32:$dst, SReg_64:$temp),
+ (outs VGPR_32:$dst, SReg_64:$temp),
(ins FRAMEri32:$addr, i32imm:$chan),
"", []
> {
@@ -1618,7 +1894,7 @@ def SI_RegisterLoad : InstSI <
class SIRegStore<dag outs> : InstSI <
outs,
- (ins VReg_32:$val, FRAMEri32:$addr, i32imm:$chan),
+ (ins VGPR_32:$val, FRAMEri32:$addr, i32imm:$chan),
"", []
> {
let isRegisterStore = 1;
@@ -1634,22 +1910,22 @@ def SI_RegisterStore : SIRegStore<(outs SReg_64:$temp)>;
} // End UseNamedOperandTable = 1
def SI_INDIRECT_SRC : InstSI <
- (outs VReg_32:$dst, SReg_64:$temp),
+ (outs VGPR_32:$dst, SReg_64:$temp),
(ins unknown:$src, VSrc_32:$idx, i32imm:$off),
- "SI_INDIRECT_SRC $dst, $temp, $src, $idx, $off",
+ "si_indirect_src $dst, $temp, $src, $idx, $off",
[]
>;
class SI_INDIRECT_DST<RegisterClass rc> : InstSI <
(outs rc:$dst, SReg_64:$temp),
- (ins unknown:$src, VSrc_32:$idx, i32imm:$off, VReg_32:$val),
- "SI_INDIRECT_DST $dst, $temp, $src, $idx, $off, $val",
+ (ins unknown:$src, VSrc_32:$idx, i32imm:$off, VGPR_32:$val),
+ "si_indirect_dst $dst, $temp, $src, $idx, $off, $val",
[]
> {
let Constraints = "$src = $dst";
}
-def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VReg_32>;
+def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
@@ -1659,24 +1935,10 @@ def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
let usesCustomInserter = 1 in {
-// This pseudo instruction takes a pointer as input and outputs a resource
-// constant that can be used with the ADDR64 MUBUF instructions.
-def SI_ADDR64_RSRC : InstSI <
- (outs SReg_128:$srsrc),
- (ins SSrc_64:$ptr),
- "", []
->;
-
-def SI_BUFFER_RSRC : InstSI <
- (outs SReg_128:$srsrc),
- (ins SReg_32:$ptr_lo, SReg_32:$ptr_hi, SSrc_32:$data_lo, SSrc_32:$data_hi),
- "", []
->;
-
def V_SUB_F64 : InstSI <
(outs VReg_64:$dst),
(ins VReg_64:$src0, VReg_64:$src1),
- "V_SUB_F64 $dst, $src0, $src1",
+ "v_sub_f64 $dst, $src0, $src1",
[(set f64:$dst, (fsub f64:$src0, f64:$src1))]
>;
@@ -1684,18 +1946,20 @@ def V_SUB_F64 : InstSI <
multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
- def _SAVE : InstSI <
- (outs VReg_32:$dst),
- (ins sgpr_class:$src, i32imm:$frame_idx),
- "", []
- >;
-
- def _RESTORE : InstSI <
- (outs sgpr_class:$dst),
- (ins VReg_32:$src, i32imm:$frame_idx),
- "", []
- >;
-
+ let UseNamedOperandTable = 1 in {
+ def _SAVE : InstSI <
+ (outs),
+ (ins sgpr_class:$src, i32imm:$frame_idx, SReg_128:$scratch_rsrc,
+ SReg_32:$scratch_offset),
+ "", []
+ >;
+
+ def _RESTORE : InstSI <
+ (outs sgpr_class:$dst),
+ (ins i32imm:$frame_idx, SReg_128:$scratch_rsrc, SReg_32:$scratch_offset),
+ "", []
+ >;
+ } // End UseNamedOperandTable = 1
}
defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>;
@@ -1704,6 +1968,30 @@ defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
+multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> {
+ let UseNamedOperandTable = 1 in {
+ def _SAVE : InstSI <
+ (outs),
+ (ins vgpr_class:$src, i32imm:$frame_idx, SReg_128:$scratch_rsrc,
+ SReg_32:$scratch_offset),
+ "", []
+ >;
+
+ def _RESTORE : InstSI <
+ (outs vgpr_class:$dst),
+ (ins i32imm:$frame_idx, SReg_128:$scratch_rsrc, SReg_32:$scratch_offset),
+ "", []
+ >;
+ } // End UseNamedOperandTable = 1
+}
+
+defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>;
+defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>;
+defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>;
+defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
+defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
+defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
+
let Defs = [SCC] in {
def SI_CONSTDATA_PTR : InstSI <
@@ -1716,13 +2004,15 @@ def SI_CONSTDATA_PTR : InstSI <
} // end IsCodeGenOnly, isPseudo
-} // end SubtargetPredicate = SI
+} // end SubtargetPredicate = isGCN
-let Predicates = [isSI] in {
+let Predicates = [isGCN] in {
def : Pat<
(int_AMDGPU_cndlt f32:$src0, f32:$src1, f32:$src2),
- (V_CNDMASK_B32_e64 $src2, $src1, (V_CMP_GT_F32_e64 0, $src0))
+ (V_CNDMASK_B32_e64 $src2, $src1,
+ (V_CMP_GT_F32_e64 SRCMODS.NONE, 0, SRCMODS.NONE, $src0,
+ DSTCLAMP.NONE, DSTOMOD.NONE))
>;
def : Pat <
@@ -1730,12 +2020,16 @@ def : Pat <
(SI_KILL 0xbf800000)
>;
+let Predicates = [isSICI] in {
+
/* int_SI_vs_load_input */
def : Pat<
(SIload_input v4i32:$tlst, imm:$attr_offset, i32:$buf_idx_vgpr),
(BUFFER_LOAD_FORMAT_XYZW_IDXEN $tlst, $buf_idx_vgpr, imm:$attr_offset, 0, 0, 0, 0)
>;
+} // End Predicates = [isSICI]
+
/* int_SI_export */
def : Pat <
(int_SI_export imm:$en, imm:$vm, imm:$done, imm:$tgt, imm:$compr,
@@ -1750,7 +2044,7 @@ def : Pat <
multiclass SMRD_Pattern <SMRD Instr_IMM, SMRD Instr_SGPR, ValueType vt> {
- // 1. Offset as 8bit DWORD immediate
+ // 1. SI-CI: Offset as 8bit DWORD immediate
def : Pat <
(constant_load (add i64:$sbase, (i64 IMM8bitDWORD:$offset))),
(vt (Instr_IMM $sbase, (as_dword_i32imm $offset)))
@@ -1769,6 +2063,28 @@ multiclass SMRD_Pattern <SMRD Instr_IMM, SMRD Instr_SGPR, ValueType vt> {
>;
}
+multiclass SMRD_Pattern_vi <SMRD Instr_IMM, SMRD Instr_SGPR, ValueType vt> {
+
+ // 1. VI: Offset as 20bit immediate in bytes
+ def : Pat <
+ (constant_load (add i64:$sbase, (i64 IMM20bit:$offset))),
+ (vt (Instr_IMM $sbase, (as_i32imm $offset)))
+ >;
+
+ // 2. Offset loaded in an 32bit SGPR
+ def : Pat <
+ (constant_load (add i64:$sbase, (i64 IMM32bit:$offset))),
+ (vt (Instr_SGPR $sbase, (S_MOV_B32 (i32 (as_i32imm $offset)))))
+ >;
+
+ // 3. No offset at all
+ def : Pat <
+ (constant_load i64:$sbase),
+ (vt (Instr_IMM $sbase, 0))
+ >;
+}
+
+let Predicates = [isSICI] in {
defm : SMRD_Pattern <S_LOAD_DWORD_IMM, S_LOAD_DWORD_SGPR, f32>;
defm : SMRD_Pattern <S_LOAD_DWORD_IMM, S_LOAD_DWORD_SGPR, i32>;
defm : SMRD_Pattern <S_LOAD_DWORDX2_IMM, S_LOAD_DWORDX2_SGPR, v2i32>;
@@ -1776,6 +2092,19 @@ defm : SMRD_Pattern <S_LOAD_DWORDX4_IMM, S_LOAD_DWORDX4_SGPR, v4i32>;
defm : SMRD_Pattern <S_LOAD_DWORDX8_IMM, S_LOAD_DWORDX8_SGPR, v32i8>;
defm : SMRD_Pattern <S_LOAD_DWORDX8_IMM, S_LOAD_DWORDX8_SGPR, v8i32>;
defm : SMRD_Pattern <S_LOAD_DWORDX16_IMM, S_LOAD_DWORDX16_SGPR, v16i32>;
+} // End Predicates = [isSICI]
+
+let Predicates = [isVI] in {
+defm : SMRD_Pattern_vi <S_LOAD_DWORD_IMM, S_LOAD_DWORD_SGPR, f32>;
+defm : SMRD_Pattern_vi <S_LOAD_DWORD_IMM, S_LOAD_DWORD_SGPR, i32>;
+defm : SMRD_Pattern_vi <S_LOAD_DWORDX2_IMM, S_LOAD_DWORDX2_SGPR, v2i32>;
+defm : SMRD_Pattern_vi <S_LOAD_DWORDX4_IMM, S_LOAD_DWORDX4_SGPR, v4i32>;
+defm : SMRD_Pattern_vi <S_LOAD_DWORDX8_IMM, S_LOAD_DWORDX8_SGPR, v32i8>;
+defm : SMRD_Pattern_vi <S_LOAD_DWORDX8_IMM, S_LOAD_DWORDX8_SGPR, v8i32>;
+defm : SMRD_Pattern_vi <S_LOAD_DWORDX16_IMM, S_LOAD_DWORDX16_SGPR, v16i32>;
+} // End Predicates = [isVI]
+
+let Predicates = [isSICI] in {
// 1. Offset as 8bit DWORD immediate
def : Pat <
@@ -1783,42 +2112,36 @@ def : Pat <
(S_BUFFER_LOAD_DWORD_IMM $sbase, (as_dword_i32imm $offset))
>;
+} // End Predicates = [isSICI]
+
// 2. Offset loaded in an 32bit SGPR
def : Pat <
(SIload_constant v4i32:$sbase, imm:$offset),
(S_BUFFER_LOAD_DWORD_SGPR $sbase, (S_MOV_B32 imm:$offset))
>;
-} // Predicates = [isSI] in {
-
//===----------------------------------------------------------------------===//
// SOP1 Patterns
//===----------------------------------------------------------------------===//
-let Predicates = [isSI, isCFDepth0] in {
-
def : Pat <
(i64 (ctpop i64:$src)),
- (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (S_BCNT1_I32_B64 $src), sub0),
- (S_MOV_B32 0), sub1)
+ (i64 (REG_SEQUENCE SReg_64,
+ (S_BCNT1_I32_B64 $src), sub0,
+ (S_MOV_B32 0), sub1))
>;
//===----------------------------------------------------------------------===//
// SOP2 Patterns
//===----------------------------------------------------------------------===//
-// V_ADD_I32_e32/S_ADD_I32 produces carry in VCC/SCC. For the vector
+// V_ADD_I32_e32/S_ADD_U32 produces carry in VCC/SCC. For the vector
// case, the sgpr-copies pass will fix this to use the vector version.
def : Pat <
(i32 (addc i32:$src0, i32:$src1)),
- (S_ADD_I32 $src0, $src1)
+ (S_ADD_U32 $src0, $src1)
>;
-} // Predicates = [isSI, isCFDepth0]
-
-let Predicates = [isSI] in {
-
//===----------------------------------------------------------------------===//
// SOPP Patterns
//===----------------------------------------------------------------------===//
@@ -1842,49 +2165,9 @@ defm : RsqPat<V_RSQ_F32_e32, f32>;
// VOP2 Patterns
//===----------------------------------------------------------------------===//
-class BinOp64Pat <SDNode node, Instruction inst> : Pat <
- (node i64:$src0, i64:$src1),
- (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (inst (EXTRACT_SUBREG i64:$src0, sub0),
- (EXTRACT_SUBREG i64:$src1, sub0)), sub0),
- (inst (EXTRACT_SUBREG i64:$src0, sub1),
- (EXTRACT_SUBREG i64:$src1, sub1)), sub1)
->;
-
-def : BinOp64Pat <or, V_OR_B32_e32>;
-def : BinOp64Pat <xor, V_XOR_B32_e32>;
-
-class SextInReg <ValueType vt, int ShiftAmt> : Pat <
- (sext_inreg i32:$src0, vt),
- (V_ASHRREV_I32_e32 ShiftAmt, (V_LSHLREV_B32_e32 ShiftAmt, $src0))
->;
-
-def : SextInReg <i8, 24>;
-def : SextInReg <i16, 16>;
-
def : Pat <
(i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)),
- (V_BCNT_U32_B32_e32 $popcnt, $val)
->;
-
-def : Pat <
- (i32 (ctpop i32:$popcnt)),
- (V_BCNT_U32_B32_e64 $popcnt, 0, 0, 0)
->;
-
-def : Pat <
- (i64 (ctpop i64:$src)),
- (INSERT_SUBREG
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (V_BCNT_U32_B32_e32 (EXTRACT_SUBREG $src, sub1),
- (V_BCNT_U32_B32_e64 (EXTRACT_SUBREG $src, sub0), 0, 0, 0)),
- sub0),
- (V_MOV_B32_e32 0), sub1)
->;
-
-def : Pat <
- (addc i32:$src0, i32:$src1),
- (V_ADD_I32_e32 $src0, $src1)
+ (V_BCNT_U32_B32_e64 $popcnt, $val)
>;
/********** ======================= **********/
@@ -2222,10 +2505,10 @@ foreach Index = 0-15 in {
}
def : BitConvert <i32, f32, SReg_32>;
-def : BitConvert <i32, f32, VReg_32>;
+def : BitConvert <i32, f32, VGPR_32>;
def : BitConvert <f32, i32, SReg_32>;
-def : BitConvert <f32, i32, VReg_32>;
+def : BitConvert <f32, i32, VGPR_32>;
def : BitConvert <i64, f64, VReg_64>;
@@ -2258,62 +2541,63 @@ def : BitConvert <v16f32, v16i32, VReg_512>;
/********** Src & Dst modifiers **********/
/********** =================== **********/
-def FCLAMP_SI : AMDGPUShaderInst <
- (outs VReg_32:$dst),
- (ins VSrc_32:$src0),
- "FCLAMP_SI $dst, $src0",
- []
-> {
- let usesCustomInserter = 1;
-}
-
def : Pat <
- (AMDGPUclamp f32:$src, (f32 FP_ZERO), (f32 FP_ONE)),
- (FCLAMP_SI f32:$src)
+ (AMDGPUclamp (VOP3Mods0Clamp f32:$src0, i32:$src0_modifiers, i32:$omod),
+ (f32 FP_ZERO), (f32 FP_ONE)),
+ (V_ADD_F32_e64 $src0_modifiers, $src0, 0, 0, 1, $omod)
>;
/********** ================================ **********/
/********** Floating point absolute/negative **********/
/********** ================================ **********/
-// Manipulate the sign bit directly, as e.g. using the source negation modifier
-// in V_ADD_F32_e64 $src, 0, [...] does not result in -0.0 for $src == +0.0,
-// breaking the piglit *s-floatBitsToInt-neg* tests
-
-// TODO: Look into not implementing isFNegFree/isFAbsFree for SI, and possibly
-// removing these patterns
+// Prevent expanding both fneg and fabs.
+// FIXME: Should use S_OR_B32
def : Pat <
(fneg (fabs f32:$src)),
(V_OR_B32_e32 $src, (V_MOV_B32_e32 0x80000000)) /* Set sign bit */
>;
-def FABS_SI : AMDGPUShaderInst <
- (outs VReg_32:$dst),
- (ins VSrc_32:$src0),
- "FABS_SI $dst, $src0",
- []
-> {
- let usesCustomInserter = 1;
-}
+// FIXME: Should use S_OR_B32
+def : Pat <
+ (fneg (fabs f64:$src)),
+ (REG_SEQUENCE VReg_64,
+ (i32 (EXTRACT_SUBREG f64:$src, sub0)),
+ sub0,
+ (V_OR_B32_e32 (EXTRACT_SUBREG f64:$src, sub1),
+ (V_MOV_B32_e32 0x80000000)), // Set sign bit.
+ sub1)
+>;
def : Pat <
(fabs f32:$src),
- (FABS_SI f32:$src)
+ (V_AND_B32_e32 $src, (V_MOV_B32_e32 0x7fffffff))
>;
-def FNEG_SI : AMDGPUShaderInst <
- (outs VReg_32:$dst),
- (ins VSrc_32:$src0),
- "FNEG_SI $dst, $src0",
- []
-> {
- let usesCustomInserter = 1;
-}
-
def : Pat <
(fneg f32:$src),
- (FNEG_SI f32:$src)
+ (V_XOR_B32_e32 $src, (V_MOV_B32_e32 0x80000000))
+>;
+
+def : Pat <
+ (fabs f64:$src),
+ (REG_SEQUENCE VReg_64,
+ (i32 (EXTRACT_SUBREG f64:$src, sub0)),
+ sub0,
+ (V_AND_B32_e32 (EXTRACT_SUBREG f64:$src, sub1),
+ (V_MOV_B32_e32 0x7fffffff)), // Set sign bit.
+ sub1)
+>;
+
+def : Pat <
+ (fneg f64:$src),
+ (REG_SEQUENCE VReg_64,
+ (i32 (EXTRACT_SUBREG f64:$src, sub0)),
+ sub0,
+ (V_XOR_B32_e32 (EXTRACT_SUBREG f64:$src, sub1),
+ (V_MOV_B32_e32 0x80000000)),
+ sub1)
>;
/********** ================== **********/
@@ -2327,7 +2611,7 @@ def : Pat <
def : Pat <
(SGPRImm<(f32 fpimm)>:$imm),
- (S_MOV_B32 fpimm:$imm)
+ (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
def : Pat <
@@ -2337,7 +2621,7 @@ def : Pat <
def : Pat <
(f32 fpimm:$imm),
- (V_MOV_B32_e32 fpimm:$imm)
+ (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;
def : Pat <
@@ -2345,21 +2629,38 @@ def : Pat <
(S_MOV_B64 InlineImm<i64>:$imm)
>;
+// XXX - Should this use a s_cmp to set SCC?
+
+// Set to sign-extended 64-bit value (true = -1, false = 0)
+def : Pat <
+ (i1 imm:$imm),
+ (S_MOV_B64 (i64 (as_i64imm $imm)))
+>;
+
+def : Pat <
+ (f64 InlineFPImm<f64>:$imm),
+ (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm<f64>:$imm)))
+>;
+
/********** ===================== **********/
/********** Interpolation Paterns **********/
/********** ===================== **********/
+// The value of $params is constant through out the entire kernel.
+// We need to use S_MOV_B32 $params, because CSE ignores copies, so
+// without it we end up with a lot of redundant moves.
+
def : Pat <
(int_SI_fs_constant imm:$attr_chan, imm:$attr, i32:$params),
- (V_INTERP_MOV_F32 INTERP.P0, imm:$attr_chan, imm:$attr, $params)
+ (V_INTERP_MOV_F32 INTERP.P0, imm:$attr_chan, imm:$attr, (S_MOV_B32 $params))
>;
def : Pat <
- (int_SI_fs_interp imm:$attr_chan, imm:$attr, M0Reg:$params, v2i32:$ij),
+ (int_SI_fs_interp imm:$attr_chan, imm:$attr, i32:$params, v2i32:$ij),
(V_INTERP_P2_F32 (V_INTERP_P1_F32 (EXTRACT_SUBREG v2i32:$ij, sub0),
- imm:$attr_chan, imm:$attr, i32:$params),
+ imm:$attr_chan, imm:$attr, (S_MOV_B32 $params)),
(EXTRACT_SUBREG $ij, sub1),
- imm:$attr_chan, imm:$attr, $params)
+ imm:$attr_chan, imm:$attr, (S_MOV_B32 $params))
>;
/********** ================== **********/
@@ -2376,28 +2677,30 @@ def : Pat <
def : Pat<
(fdiv f64:$src0, f64:$src1),
- (V_MUL_F64 $src0, (V_RCP_F64_e32 $src1), (i64 0))
+ (V_MUL_F64 0 /* src0_modifiers */, $src0,
+ 0 /* src1_modifiers */, (V_RCP_F64_e32 $src1),
+ 0 /* clamp */, 0 /* omod */)
>;
def : Pat <
(int_AMDGPU_cube v4f32:$src),
- (INSERT_SUBREG (INSERT_SUBREG (INSERT_SUBREG (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)),
- (V_CUBETC_F32 (EXTRACT_SUBREG $src, sub0),
- (EXTRACT_SUBREG $src, sub1),
- (EXTRACT_SUBREG $src, sub2)),
- sub0),
- (V_CUBESC_F32 (EXTRACT_SUBREG $src, sub0),
- (EXTRACT_SUBREG $src, sub1),
- (EXTRACT_SUBREG $src, sub2)),
- sub1),
- (V_CUBEMA_F32 (EXTRACT_SUBREG $src, sub0),
- (EXTRACT_SUBREG $src, sub1),
- (EXTRACT_SUBREG $src, sub2)),
- sub2),
- (V_CUBEID_F32 (EXTRACT_SUBREG $src, sub0),
- (EXTRACT_SUBREG $src, sub1),
- (EXTRACT_SUBREG $src, sub2)),
- sub3)
+ (REG_SEQUENCE VReg_128,
+ (V_CUBETC_F32 0 /* src0_modifiers */, (EXTRACT_SUBREG $src, sub0),
+ 0 /* src1_modifiers */, (EXTRACT_SUBREG $src, sub1),
+ 0 /* src2_modifiers */, (EXTRACT_SUBREG $src, sub2),
+ 0 /* clamp */, 0 /* omod */), sub0,
+ (V_CUBESC_F32 0 /* src0_modifiers */, (EXTRACT_SUBREG $src, sub0),
+ 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub1),
+ 0 /* src2_modifiers */,(EXTRACT_SUBREG $src, sub2),
+ 0 /* clamp */, 0 /* omod */), sub1,
+ (V_CUBEMA_F32 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub0),
+ 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub1),
+ 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub2),
+ 0 /* clamp */, 0 /* omod */), sub2,
+ (V_CUBEID_F32 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub0),
+ 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub1),
+ 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub2),
+ 0 /* clamp */, 0 /* omod */), sub3)
>;
def : Pat <
@@ -2413,12 +2716,16 @@ class Ext32Pat <SDNode ext> : Pat <
def : Ext32Pat <zext>;
def : Ext32Pat <anyext>;
+let Predicates = [isSICI] in {
+
// Offset in an 32Bit VGPR
def : Pat <
(SIload_constant v4i32:$sbase, i32:$voff),
(BUFFER_LOAD_DWORD_OFFEN $sbase, $voff, 0, 0, 0, 0, 0)
>;
+} // End Predicates = [isSICI]
+
// The multiplication scales from [0,1] to the unsigned integer range
def : Pat <
(AMDGPUurecip i32:$src0),
@@ -2429,8 +2736,8 @@ def : Pat <
def : Pat <
(int_SI_tid),
- (V_MBCNT_HI_U32_B32_e32 0xffffffff,
- (V_MBCNT_LO_U32_B32_e64 0xffffffff, 0, 0, 0))
+ (V_MBCNT_HI_U32_B32_e64 0xffffffff,
+ (V_MBCNT_LO_U32_B32_e64 0xffffffff, 0))
>;
//===----------------------------------------------------------------------===//
@@ -2441,84 +2748,74 @@ def : IMad24Pat<V_MAD_I32_I24>;
def : UMad24Pat<V_MAD_U32_U24>;
def : Pat <
- (fadd f64:$src0, f64:$src1),
- (V_ADD_F64 $src0, $src1, (i64 0))
->;
-
-def : Pat <
- (fmul f64:$src0, f64:$src1),
- (V_MUL_F64 $src0, $src1, (i64 0))
->;
-
-def : Pat <
- (mul i32:$src0, i32:$src1),
- (V_MUL_LO_I32 $src0, $src1, (i32 0))
->;
-
-def : Pat <
(mulhu i32:$src0, i32:$src1),
- (V_MUL_HI_U32 $src0, $src1, (i32 0))
+ (V_MUL_HI_U32 $src0, $src1)
>;
def : Pat <
(mulhs i32:$src0, i32:$src1),
- (V_MUL_HI_I32 $src0, $src1, (i32 0))
+ (V_MUL_HI_I32 $src0, $src1)
>;
-defm : BFIPatterns <V_BFI_B32, S_MOV_B32>;
+def : Vop3ModPat<V_MAD_F32, VOP_F32_F32_F32_F32, AMDGPUmad>;
+
+
+defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>;
def : ROTRPattern <V_ALIGNBIT_B32>;
/********** ======================= **********/
/********** Load/Store Patterns **********/
/********** ======================= **********/
-multiclass DSReadPat <DS inst, ValueType vt, PatFrag frag> {
- def : Pat <
- (vt (frag (add i32:$ptr, (i32 IMM16bit:$offset)))),
- (inst (i1 0), $ptr, (as_i16imm $offset))
- >;
+class DSReadPat <DS inst, ValueType vt, PatFrag frag> : Pat <
+ (vt (frag (DS1Addr1Offset i32:$ptr, i32:$offset))),
+ (inst (i1 0), $ptr, (as_i16imm $offset), (S_MOV_B32 -1))
+>;
- def : Pat <
- (frag i32:$src0),
- (vt (inst 0, $src0, 0))
- >;
-}
+def : DSReadPat <DS_READ_I8, i32, sextloadi8_local>;
+def : DSReadPat <DS_READ_U8, i32, az_extloadi8_local>;
+def : DSReadPat <DS_READ_I16, i32, sextloadi16_local>;
+def : DSReadPat <DS_READ_U16, i32, az_extloadi16_local>;
+def : DSReadPat <DS_READ_B32, i32, local_load>;
-defm : DSReadPat <DS_READ_I8, i32, sextloadi8_local>;
-defm : DSReadPat <DS_READ_U8, i32, az_extloadi8_local>;
-defm : DSReadPat <DS_READ_I16, i32, sextloadi16_local>;
-defm : DSReadPat <DS_READ_U16, i32, az_extloadi16_local>;
-defm : DSReadPat <DS_READ_B32, i32, local_load>;
-defm : DSReadPat <DS_READ_B64, v2i32, local_load>;
+let AddedComplexity = 100 in {
-multiclass DSWritePat <DS inst, ValueType vt, PatFrag frag> {
- def : Pat <
- (frag vt:$value, (add i32:$ptr, (i32 IMM16bit:$offset))),
- (inst (i1 0), $ptr, $value, (as_i16imm $offset))
- >;
+def : DSReadPat <DS_READ_B64, v2i32, local_load_aligned8bytes>;
- def : Pat <
- (frag vt:$val, i32:$ptr),
- (inst 0, $ptr, $val, 0)
- >;
-}
+} // End AddedComplexity = 100
-defm : DSWritePat <DS_WRITE_B8, i32, truncstorei8_local>;
-defm : DSWritePat <DS_WRITE_B16, i32, truncstorei16_local>;
-defm : DSWritePat <DS_WRITE_B32, i32, local_store>;
-defm : DSWritePat <DS_WRITE_B64, v2i32, local_store>;
+def : Pat <
+ (v2i32 (local_load (DS64Bit4ByteAligned i32:$ptr, i8:$offset0,
+ i8:$offset1))),
+ (DS_READ2_B32 (i1 0), $ptr, $offset0, $offset1, (S_MOV_B32 -1))
+>;
-multiclass DSAtomicRetPat<DS inst, ValueType vt, PatFrag frag> {
- def : Pat <
- (frag (add i32:$ptr, (i32 IMM16bit:$offset)), vt:$value),
- (inst (i1 0), $ptr, $value, (as_i16imm $offset))
- >;
+class DSWritePat <DS inst, ValueType vt, PatFrag frag> : Pat <
+ (frag vt:$value, (DS1Addr1Offset i32:$ptr, i32:$offset)),
+ (inst (i1 0), $ptr, $value, (as_i16imm $offset), (S_MOV_B32 -1))
+>;
- def : Pat <
- (frag i32:$ptr, vt:$val),
- (inst 0, $ptr, $val, 0)
- >;
-}
+def : DSWritePat <DS_WRITE_B8, i32, truncstorei8_local>;
+def : DSWritePat <DS_WRITE_B16, i32, truncstorei16_local>;
+def : DSWritePat <DS_WRITE_B32, i32, local_store>;
+
+let AddedComplexity = 100 in {
+
+def : DSWritePat <DS_WRITE_B64, v2i32, local_store_aligned8bytes>;
+} // End AddedComplexity = 100
+
+def : Pat <
+ (local_store v2i32:$value, (DS64Bit4ByteAligned i32:$ptr, i8:$offset0,
+ i8:$offset1)),
+ (DS_WRITE2_B32 (i1 0), $ptr, (EXTRACT_SUBREG $value, sub0),
+ (EXTRACT_SUBREG $value, sub1), $offset0, $offset1,
+ (S_MOV_B32 -1))
+>;
+
+class DSAtomicRetPat<DS inst, ValueType vt, PatFrag frag> : Pat <
+ (frag (DS1Addr1Offset i32:$ptr, i32:$offset), vt:$value),
+ (inst (i1 0), $ptr, $value, (as_i16imm $offset), (S_MOV_B32 -1))
+>;
// Special case of DSAtomicRetPat for add / sub 1 -> inc / dec
//
@@ -2530,69 +2827,56 @@ multiclass DSAtomicRetPat<DS inst, ValueType vt, PatFrag frag> {
// We also load this -1 with s_mov_b32 / s_mov_b64 even though this
// needs to be a VGPR. The SGPR copy pass will fix this, and it's
// easier since there is no v_mov_b64.
-multiclass DSAtomicIncRetPat<DS inst, ValueType vt,
- Instruction LoadImm, PatFrag frag> {
- def : Pat <
- (frag (add i32:$ptr, (i32 IMM16bit:$offset)), (vt 1)),
- (inst (i1 0), $ptr, (LoadImm (vt -1)), (as_i16imm $offset))
- >;
+class DSAtomicIncRetPat<DS inst, ValueType vt,
+ Instruction LoadImm, PatFrag frag> : Pat <
+ (frag (DS1Addr1Offset i32:$ptr, i32:$offset), (vt 1)),
+ (inst (i1 0), $ptr, (LoadImm (vt -1)), (as_i16imm $offset), (S_MOV_B32 -1))
+>;
- def : Pat <
- (frag i32:$ptr, (vt 1)),
- (inst 0, $ptr, (LoadImm (vt -1)), 0)
- >;
-}
-multiclass DSAtomicCmpXChg <DS inst, ValueType vt, PatFrag frag> {
- def : Pat <
- (frag (add i32:$ptr, (i32 IMM16bit:$offset)), vt:$cmp, vt:$swap),
- (inst (i1 0), $ptr, $cmp, $swap, (as_i16imm $offset))
- >;
-
- def : Pat <
- (frag i32:$ptr, vt:$cmp, vt:$swap),
- (inst 0, $ptr, $cmp, $swap, 0)
- >;
-}
+class DSAtomicCmpXChg <DS inst, ValueType vt, PatFrag frag> : Pat <
+ (frag (DS1Addr1Offset i32:$ptr, i32:$offset), vt:$cmp, vt:$swap),
+ (inst (i1 0), $ptr, $cmp, $swap, (as_i16imm $offset), (S_MOV_B32 -1))
+>;
// 32-bit atomics.
-defm : DSAtomicIncRetPat<DS_INC_RTN_U32, i32,
- S_MOV_B32, atomic_load_add_local>;
-defm : DSAtomicIncRetPat<DS_DEC_RTN_U32, i32,
- S_MOV_B32, atomic_load_sub_local>;
-
-defm : DSAtomicRetPat<DS_WRXCHG_RTN_B32, i32, atomic_swap_local>;
-defm : DSAtomicRetPat<DS_ADD_RTN_U32, i32, atomic_load_add_local>;
-defm : DSAtomicRetPat<DS_SUB_RTN_U32, i32, atomic_load_sub_local>;
-defm : DSAtomicRetPat<DS_AND_RTN_B32, i32, atomic_load_and_local>;
-defm : DSAtomicRetPat<DS_OR_RTN_B32, i32, atomic_load_or_local>;
-defm : DSAtomicRetPat<DS_XOR_RTN_B32, i32, atomic_load_xor_local>;
-defm : DSAtomicRetPat<DS_MIN_RTN_I32, i32, atomic_load_min_local>;
-defm : DSAtomicRetPat<DS_MAX_RTN_I32, i32, atomic_load_max_local>;
-defm : DSAtomicRetPat<DS_MIN_RTN_U32, i32, atomic_load_umin_local>;
-defm : DSAtomicRetPat<DS_MAX_RTN_U32, i32, atomic_load_umax_local>;
-
-defm : DSAtomicCmpXChg<DS_CMPST_RTN_B32, i32, atomic_cmp_swap_32_local>;
+def : DSAtomicIncRetPat<DS_INC_RTN_U32, i32,
+ S_MOV_B32, atomic_load_add_local>;
+def : DSAtomicIncRetPat<DS_DEC_RTN_U32, i32,
+ S_MOV_B32, atomic_load_sub_local>;
+
+def : DSAtomicRetPat<DS_WRXCHG_RTN_B32, i32, atomic_swap_local>;
+def : DSAtomicRetPat<DS_ADD_RTN_U32, i32, atomic_load_add_local>;
+def : DSAtomicRetPat<DS_SUB_RTN_U32, i32, atomic_load_sub_local>;
+def : DSAtomicRetPat<DS_AND_RTN_B32, i32, atomic_load_and_local>;
+def : DSAtomicRetPat<DS_OR_RTN_B32, i32, atomic_load_or_local>;
+def : DSAtomicRetPat<DS_XOR_RTN_B32, i32, atomic_load_xor_local>;
+def : DSAtomicRetPat<DS_MIN_RTN_I32, i32, atomic_load_min_local>;
+def : DSAtomicRetPat<DS_MAX_RTN_I32, i32, atomic_load_max_local>;
+def : DSAtomicRetPat<DS_MIN_RTN_U32, i32, atomic_load_umin_local>;
+def : DSAtomicRetPat<DS_MAX_RTN_U32, i32, atomic_load_umax_local>;
+
+def : DSAtomicCmpXChg<DS_CMPST_RTN_B32, i32, atomic_cmp_swap_32_local>;
// 64-bit atomics.
-defm : DSAtomicIncRetPat<DS_INC_RTN_U64, i64,
- S_MOV_B64, atomic_load_add_local>;
-defm : DSAtomicIncRetPat<DS_DEC_RTN_U64, i64,
- S_MOV_B64, atomic_load_sub_local>;
+def : DSAtomicIncRetPat<DS_INC_RTN_U64, i64,
+ S_MOV_B64, atomic_load_add_local>;
+def : DSAtomicIncRetPat<DS_DEC_RTN_U64, i64,
+ S_MOV_B64, atomic_load_sub_local>;
-defm : DSAtomicRetPat<DS_WRXCHG_RTN_B64, i64, atomic_swap_local>;
-defm : DSAtomicRetPat<DS_ADD_RTN_U64, i64, atomic_load_add_local>;
-defm : DSAtomicRetPat<DS_SUB_RTN_U64, i64, atomic_load_sub_local>;
-defm : DSAtomicRetPat<DS_AND_RTN_B64, i64, atomic_load_and_local>;
-defm : DSAtomicRetPat<DS_OR_RTN_B64, i64, atomic_load_or_local>;
-defm : DSAtomicRetPat<DS_XOR_RTN_B64, i64, atomic_load_xor_local>;
-defm : DSAtomicRetPat<DS_MIN_RTN_I64, i64, atomic_load_min_local>;
-defm : DSAtomicRetPat<DS_MAX_RTN_I64, i64, atomic_load_max_local>;
-defm : DSAtomicRetPat<DS_MIN_RTN_U64, i64, atomic_load_umin_local>;
-defm : DSAtomicRetPat<DS_MAX_RTN_U64, i64, atomic_load_umax_local>;
+def : DSAtomicRetPat<DS_WRXCHG_RTN_B64, i64, atomic_swap_local>;
+def : DSAtomicRetPat<DS_ADD_RTN_U64, i64, atomic_load_add_local>;
+def : DSAtomicRetPat<DS_SUB_RTN_U64, i64, atomic_load_sub_local>;
+def : DSAtomicRetPat<DS_AND_RTN_B64, i64, atomic_load_and_local>;
+def : DSAtomicRetPat<DS_OR_RTN_B64, i64, atomic_load_or_local>;
+def : DSAtomicRetPat<DS_XOR_RTN_B64, i64, atomic_load_xor_local>;
+def : DSAtomicRetPat<DS_MIN_RTN_I64, i64, atomic_load_min_local>;
+def : DSAtomicRetPat<DS_MAX_RTN_I64, i64, atomic_load_max_local>;
+def : DSAtomicRetPat<DS_MIN_RTN_U64, i64, atomic_load_umin_local>;
+def : DSAtomicRetPat<DS_MAX_RTN_U64, i64, atomic_load_umax_local>;
-defm : DSAtomicCmpXChg<DS_CMPST_RTN_B64, i64, atomic_cmp_swap_64_local>;
+def : DSAtomicCmpXChg<DS_CMPST_RTN_B64, i64, atomic_cmp_swap_64_local>;
//===----------------------------------------------------------------------===//
@@ -2602,12 +2886,12 @@ defm : DSAtomicCmpXChg<DS_CMPST_RTN_B64, i64, atomic_cmp_swap_64_local>;
multiclass MUBUFLoad_Pattern <MUBUF Instr_ADDR64, ValueType vt,
PatFrag constant_ld> {
def : Pat <
- (vt (constant_ld (add i64:$ptr, i64:$offset))),
- (Instr_ADDR64 (SI_ADDR64_RSRC $ptr), $offset, 0)
+ (vt (constant_ld (MUBUFAddr64 v4i32:$srsrc, i64:$vaddr, i16:$offset))),
+ (Instr_ADDR64 $srsrc, $vaddr, $offset)
>;
-
}
+let Predicates = [isSICI] in {
defm : MUBUFLoad_Pattern <BUFFER_LOAD_SBYTE_ADDR64, i32, sextloadi8_constant>;
defm : MUBUFLoad_Pattern <BUFFER_LOAD_UBYTE_ADDR64, i32, az_extloadi8_constant>;
defm : MUBUFLoad_Pattern <BUFFER_LOAD_SSHORT_ADDR64, i32, sextloadi16_constant>;
@@ -2615,6 +2899,7 @@ defm : MUBUFLoad_Pattern <BUFFER_LOAD_USHORT_ADDR64, i32, az_extloadi16_constant
defm : MUBUFLoad_Pattern <BUFFER_LOAD_DWORD_ADDR64, i32, constant_load>;
defm : MUBUFLoad_Pattern <BUFFER_LOAD_DWORDX2_ADDR64, v2i32, constant_load>;
defm : MUBUFLoad_Pattern <BUFFER_LOAD_DWORDX4_ADDR64, v4i32, constant_load>;
+} // End Predicates = [isSICI]
class MUBUFScratchLoadPat <MUBUF Instr, ValueType vt, PatFrag ld> : Pat <
(vt (ld (MUBUFScratch v4i32:$srsrc, i32:$vaddr,
@@ -2622,6 +2907,7 @@ class MUBUFScratchLoadPat <MUBUF Instr, ValueType vt, PatFrag ld> : Pat <
(Instr $srsrc, $vaddr, $soffset, $offset, 0, 0, 0)
>;
+let Predicates = [isSICI] in {
def : MUBUFScratchLoadPat <BUFFER_LOAD_SBYTE_OFFEN, i32, sextloadi8_private>;
def : MUBUFScratchLoadPat <BUFFER_LOAD_UBYTE_OFFEN, i32, extloadi8_private>;
def : MUBUFScratchLoadPat <BUFFER_LOAD_SSHORT_OFFEN, i32, sextloadi16_private>;
@@ -2629,6 +2915,7 @@ def : MUBUFScratchLoadPat <BUFFER_LOAD_USHORT_OFFEN, i32, extloadi16_private>;
def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORD_OFFEN, i32, load_private>;
def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORDX2_OFFEN, v2i32, load_private>;
def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORDX4_OFFEN, v4i32, load_private>;
+} // End Predicates = [isSICI]
// BUFFER_LOAD_DWORD*, addr64=0
multiclass MUBUF_Load_Dword <ValueType vt, MUBUF offset, MUBUF offen, MUBUF idxen,
@@ -2667,26 +2954,28 @@ multiclass MUBUF_Load_Dword <ValueType vt, MUBUF offset, MUBUF offen, MUBUF idxe
>;
}
+let Predicates = [isSICI] in {
defm : MUBUF_Load_Dword <i32, BUFFER_LOAD_DWORD_OFFSET, BUFFER_LOAD_DWORD_OFFEN,
BUFFER_LOAD_DWORD_IDXEN, BUFFER_LOAD_DWORD_BOTHEN>;
defm : MUBUF_Load_Dword <v2i32, BUFFER_LOAD_DWORDX2_OFFSET, BUFFER_LOAD_DWORDX2_OFFEN,
BUFFER_LOAD_DWORDX2_IDXEN, BUFFER_LOAD_DWORDX2_BOTHEN>;
defm : MUBUF_Load_Dword <v4i32, BUFFER_LOAD_DWORDX4_OFFSET, BUFFER_LOAD_DWORDX4_OFFEN,
BUFFER_LOAD_DWORDX4_IDXEN, BUFFER_LOAD_DWORDX4_BOTHEN>;
+} // End Predicates = [isSICI]
class MUBUFScratchStorePat <MUBUF Instr, ValueType vt, PatFrag st> : Pat <
- (st vt:$value, (MUBUFAddr32 v4i32:$srsrc, i32:$vaddr, i32:$soffset,
- u16imm:$offset, i1imm:$offen, i1imm:$idxen,
- i1imm:$glc, i1imm:$slc, i1imm:$tfe)),
- (Instr $value, $srsrc, $vaddr, $soffset, $offset, $offen, $idxen,
- $glc, $slc, $tfe)
+ (st vt:$value, (MUBUFScratch v4i32:$srsrc, i32:$vaddr, i32:$soffset,
+ u16imm:$offset)),
+ (Instr $value, $srsrc, $vaddr, $soffset, $offset, 0, 0, 0)
>;
-def : MUBUFScratchStorePat <BUFFER_STORE_BYTE, i32, truncstorei8_private>;
-def : MUBUFScratchStorePat <BUFFER_STORE_SHORT, i32, truncstorei16_private>;
-def : MUBUFScratchStorePat <BUFFER_STORE_DWORD, i32, store_private>;
-def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX2, v2i32, store_private>;
-def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX4, v4i32, store_private>;
+let Predicates = [isSICI] in {
+def : MUBUFScratchStorePat <BUFFER_STORE_BYTE_OFFEN, i32, truncstorei8_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_SHORT_OFFEN, i32, truncstorei16_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_DWORD_OFFEN, i32, store_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX2_OFFEN, v2i32, store_private>;
+def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX4_OFFEN, v4i32, store_private>;
+} // End Predicates = [isSICI]
/*
class MUBUFStore_Pattern <MUBUF Instr, ValueType vt, PatFrag st> : Pat <
@@ -2694,11 +2983,13 @@ class MUBUFStore_Pattern <MUBUF Instr, ValueType vt, PatFrag st> : Pat <
(Instr $value, $srsrc, $vaddr, $offset)
>;
+let Predicates = [isSICI] in {
def : MUBUFStore_Pattern <BUFFER_STORE_BYTE_ADDR64, i32, truncstorei8_private>;
def : MUBUFStore_Pattern <BUFFER_STORE_SHORT_ADDR64, i32, truncstorei16_private>;
def : MUBUFStore_Pattern <BUFFER_STORE_DWORD_ADDR64, i32, store_private>;
def : MUBUFStore_Pattern <BUFFER_STORE_DWORDX2_ADDR64, v2i32, store_private>;
def : MUBUFStore_Pattern <BUFFER_STORE_DWORDX4_ADDR64, v4i32, store_private>;
+} // End Predicates = [isSICI]
*/
@@ -2725,29 +3016,26 @@ def : MTBUF_StoreResource <v4i32, 4, TBUFFER_STORE_FORMAT_XYZW>;
let SubtargetPredicate = isCI in {
-// Sea island new arithmetic instructinos
-let neverHasSideEffects = 1 in {
-defm V_TRUNC_F64 : VOP1_64 <0x00000017, "V_TRUNC_F64",
- [(set f64:$dst, (ftrunc f64:$src0))]
->;
-defm V_CEIL_F64 : VOP1_64 <0x00000018, "V_CEIL_F64",
- [(set f64:$dst, (fceil f64:$src0))]
+defm V_QSAD_PK_U16_U8 : VOP3Inst <vop3<0x173>, "v_qsad_pk_u16_u8",
+ VOP_I32_I32_I32
>;
-defm V_FLOOR_F64 : VOP1_64 <0x0000001A, "V_FLOOR_F64",
- [(set f64:$dst, (ffloor f64:$src0))]
+defm V_MQSAD_U16_U8 : VOP3Inst <vop3<0x172>, "v_mqsad_u16_u8",
+ VOP_I32_I32_I32
>;
-defm V_RNDNE_F64 : VOP1_64 <0x00000019, "V_RNDNE_F64",
- [(set f64:$dst, (frint f64:$src0))]
+defm V_MQSAD_U32_U8 : VOP3Inst <vop3<0x175>, "v_mqsad_u32_u8",
+ VOP_I32_I32_I32
>;
-defm V_QSAD_PK_U16_U8 : VOP3_32 <0x00000173, "V_QSAD_PK_U16_U8", []>;
-defm V_MQSAD_U16_U8 : VOP3_32 <0x000000172, "V_MQSAD_U16_U8", []>;
-defm V_MQSAD_U32_U8 : VOP3_32 <0x00000175, "V_MQSAD_U32_U8", []>;
-def V_MAD_U64_U32 : VOP3_64 <0x00000176, "V_MAD_U64_U32", []>;
+let isCommutable = 1 in {
+defm V_MAD_U64_U32 : VOP3Inst <vop3<0x176>, "v_mad_u64_u32",
+ VOP_I64_I32_I32_I64
+>;
// XXX - Does this set VCC?
-def V_MAD_I64_I32 : VOP3_64 <0x00000177, "V_MAD_I64_I32", []>;
-} // End neverHasSideEffects = 1
+defm V_MAD_I64_I32 : VOP3Inst <vop3<0x177>, "v_mad_i64_i32",
+ VOP_I64_I32_I32_I64
+>;
+} // End isCommutable = 1
// Remaining instructions:
// FLAT_*
@@ -2756,8 +3044,6 @@ def V_MAD_I64_I32 : VOP3_64 <0x00000177, "V_MAD_I64_I32", []>;
// S_CBRANCH_CDBGSYS_OR_USER
// S_CBRANCH_CDBGSYS_AND_USER
// S_DCACHE_INV_VOL
-// V_EXP_LEGACY_F32
-// V_LOG_LEGACY_F32
// DS_NOP
// DS_GWS_SEMA_RELEASE_ALL
// DS_WRAP_RTN_B32
@@ -2770,8 +3056,39 @@ def V_MAD_I64_I32 : VOP3_64 <0x00000177, "V_MAD_I64_I32", []>;
// BUFFER_LOAD_DWORDX3
// BUFFER_STORE_DWORDX3
-} // End iSCI
+} // End isCI
+//===----------------------------------------------------------------------===//
+// Flat Patterns
+//===----------------------------------------------------------------------===//
+
+class FLATLoad_Pattern <FLAT Instr_ADDR64, ValueType vt,
+ PatFrag flat_ld> :
+ Pat <(vt (flat_ld i64:$ptr)),
+ (Instr_ADDR64 $ptr)
+>;
+
+def : FLATLoad_Pattern <FLAT_LOAD_SBYTE, i32, sextloadi8_flat>;
+def : FLATLoad_Pattern <FLAT_LOAD_UBYTE, i32, az_extloadi8_flat>;
+def : FLATLoad_Pattern <FLAT_LOAD_SSHORT, i32, sextloadi16_flat>;
+def : FLATLoad_Pattern <FLAT_LOAD_USHORT, i32, az_extloadi16_flat>;
+def : FLATLoad_Pattern <FLAT_LOAD_DWORD, i32, flat_load>;
+def : FLATLoad_Pattern <FLAT_LOAD_DWORDX2, i64, flat_load>;
+def : FLATLoad_Pattern <FLAT_LOAD_DWORDX2, i64, az_extloadi32_flat>;
+def : FLATLoad_Pattern <FLAT_LOAD_DWORDX2, v2i32, flat_load>;
+def : FLATLoad_Pattern <FLAT_LOAD_DWORDX4, v4i32, flat_load>;
+
+class FLATStore_Pattern <FLAT Instr, ValueType vt, PatFrag st> :
+ Pat <(st vt:$value, i64:$ptr),
+ (Instr $value, $ptr)
+ >;
+
+def : FLATStore_Pattern <FLAT_STORE_BYTE, i32, truncstorei8_flat>;
+def : FLATStore_Pattern <FLAT_STORE_SHORT, i32, truncstorei16_flat>;
+def : FLATStore_Pattern <FLAT_STORE_DWORD, i32, flat_store>;
+def : FLATStore_Pattern <FLAT_STORE_DWORDX2, i64, flat_store>;
+def : FLATStore_Pattern <FLAT_STORE_DWORDX2, v2i32, flat_store>;
+def : FLATStore_Pattern <FLAT_STORE_DWORDX4, v4i32, flat_store>;
/********** ====================== **********/
/********** Indirect adressing **********/
@@ -2821,44 +3138,37 @@ defm : SI_INDIRECT_Pattern <v16i32, i32, SI_INDIRECT_DST_V16>;
def : Pat<(i32 (sext_inreg i32:$src, i1)),
(S_BFE_I32 i32:$src, 65536)>; // 0 | 1 << 16
-// TODO: Match 64-bit BFE. SI has a 64-bit BFE, but it's scalar only so it
-// might not be worth the effort, and will need to expand to shifts when
-// fixing SGPR copies.
-
// Handle sext_inreg in i64
def : Pat <
(i64 (sext_inreg i64:$src, i1)),
- (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (S_BFE_I32 (EXTRACT_SUBREG i64:$src, sub0), 65536), sub0), // 0 | 1 << 16
- (S_MOV_B32 -1), sub1)
+ (S_BFE_I64 i64:$src, 0x10000) // 0 | 1 << 16
>;
def : Pat <
(i64 (sext_inreg i64:$src, i8)),
- (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (S_SEXT_I32_I8 (EXTRACT_SUBREG i64:$src, sub0)), sub0),
- (S_MOV_B32 -1), sub1)
+ (S_BFE_I64 i64:$src, 0x80000) // 0 | 8 << 16
>;
def : Pat <
(i64 (sext_inreg i64:$src, i16)),
- (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (S_SEXT_I32_I16 (EXTRACT_SUBREG i64:$src, sub0)), sub0),
- (S_MOV_B32 -1), sub1)
+ (S_BFE_I64 i64:$src, 0x100000) // 0 | 16 << 16
+>;
+
+def : Pat <
+ (i64 (sext_inreg i64:$src, i32)),
+ (S_BFE_I64 i64:$src, 0x200000) // 0 | 32 << 16
>;
class ZExt_i64_i32_Pat <SDNode ext> : Pat <
(i64 (ext i32:$src)),
- (INSERT_SUBREG (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub0),
- (S_MOV_B32 0), sub1)
+ (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 0), sub1)
>;
class ZExt_i64_i1_Pat <SDNode ext> : Pat <
(i64 (ext i1:$src)),
- (INSERT_SUBREG
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
- (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0),
- (S_MOV_B32 0), sub1)
+ (REG_SEQUENCE VReg_64,
+ (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0,
+ (S_MOV_B32 0), sub1)
>;
@@ -2869,20 +3179,38 @@ def : ZExt_i64_i1_Pat<anyext>;
def : Pat <
(i64 (sext i32:$src)),
- (INSERT_SUBREG
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub0),
- (S_ASHR_I32 $src, 31), sub1)
+ (REG_SEQUENCE SReg_64, $src, sub0,
+ (S_ASHR_I32 $src, 31), sub1)
>;
def : Pat <
(i64 (sext i1:$src)),
- (INSERT_SUBREG
- (INSERT_SUBREG
- (i64 (IMPLICIT_DEF)),
- (V_CNDMASK_B32_e64 0, -1, $src), sub0),
+ (REG_SEQUENCE VReg_64,
+ (V_CNDMASK_B32_e64 0, -1, $src), sub0,
(V_CNDMASK_B32_e64 0, -1, $src), sub1)
>;
+// If we need to perform a logical operation on i1 values, we need to
+// use vector comparisons since there is only one SCC register. Vector
+// comparisions still write to a pair of SGPRs, so treat these as
+// 64-bit comparisons. When legalizing SGPR copies, instructions
+// resulting in the copies from SCC to these instructions will be
+// moved to the VALU.
+def : Pat <
+ (i1 (and i1:$src0, i1:$src1)),
+ (S_AND_B64 $src0, $src1)
+>;
+
+def : Pat <
+ (i1 (or i1:$src0, i1:$src1)),
+ (S_OR_B64 $src0, $src1)
+>;
+
+def : Pat <
+ (i1 (xor i1:$src0, i1:$src1)),
+ (S_XOR_B64 $src0, $src1)
+>;
+
def : Pat <
(f32 (sint_to_fp i1:$src)),
(V_CNDMASK_B32_e64 (i32 0), CONST.FP32_NEG_ONE, $src)
@@ -2895,7 +3223,7 @@ def : Pat <
def : Pat <
(f64 (sint_to_fp i1:$src)),
- (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src))
+ (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src))
>;
def : Pat <
@@ -2914,13 +3242,25 @@ def : Pat <
def : Pat <
(i1 (trunc i32:$a)),
- (V_CMP_EQ_I32_e64 (V_AND_B32_e32 (i32 1), $a), 1)
+ (V_CMP_EQ_I32_e64 (V_AND_B32_e64 (i32 1), $a), 1)
+>;
+
+def : Pat <
+ (i32 (bswap i32:$a)),
+ (V_BFI_B32 (S_MOV_B32 0x00ff00ff),
+ (V_ALIGNBIT_B32 $a, $a, 24),
+ (V_ALIGNBIT_B32 $a, $a, 8))
+>;
+
+def : Pat <
+ (f32 (select i1:$src2, f32:$src1, f32:$src0)),
+ (V_CNDMASK_B32_e64 $src0, $src1, $src2)
>;
//============================================================================//
// Miscellaneous Optimization Patterns
//============================================================================//
-def : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e32>;
+def : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64>;
-} // End isSI predicate
+} // End isGCN predicate
diff --git a/contrib/llvm/lib/Target/R600/SILoadStoreOptimizer.cpp b/contrib/llvm/lib/Target/R600/SILoadStoreOptimizer.cpp
new file mode 100644
index 0000000..0cb6746
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SILoadStoreOptimizer.cpp
@@ -0,0 +1,434 @@
+//===-- SILoadStoreOptimizer.cpp ------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass tries to fuse DS instructions with close by immediate offsets.
+// This will fuse operations such as
+// ds_read_b32 v0, v2 offset:16
+// ds_read_b32 v1, v2 offset:32
+// ==>
+// ds_read2_b32 v[0:1], v2, offset0:4 offset1:8
+//
+//
+// Future improvements:
+//
+// - This currently relies on the scheduler to place loads and stores next to
+// each other, and then only merges adjacent pairs of instructions. It would
+// be good to be more flexible with interleaved instructions, and possibly run
+// before scheduling. It currently missing stores of constants because loading
+// the constant into the data register is placed between the stores, although
+// this is arguably a scheduling problem.
+//
+// - Live interval recomputing seems inefficient. This currently only matches
+// one pair, and recomputes live intervals and moves on to the next pair. It
+// would be better to compute a list of all merges that need to occur
+//
+// - With a list of instructions to process, we can also merge more. If a
+// cluster of loads have offsets that are too large to fit in the 8-bit
+// offsets, but are close enough to fit in the 8 bits, we can add to the base
+// pointer and use the new reduced offsets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "SIInstrInfo.h"
+#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "si-load-store-opt"
+
+namespace {
+
+class SILoadStoreOptimizer : public MachineFunctionPass {
+private:
+ const TargetMachine *TM;
+ const SIInstrInfo *TII;
+ const SIRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+ LiveIntervals *LIS;
+
+
+ static bool offsetsCanBeCombined(unsigned Offset0,
+ unsigned Offset1,
+ unsigned EltSize);
+
+ MachineBasicBlock::iterator findMatchingDSInst(MachineBasicBlock::iterator I,
+ unsigned EltSize);
+
+ void updateRegDefsUses(unsigned SrcReg,
+ unsigned DstReg,
+ unsigned SubIdx);
+
+ MachineBasicBlock::iterator mergeRead2Pair(
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Paired,
+ unsigned EltSize);
+
+ MachineBasicBlock::iterator mergeWrite2Pair(
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Paired,
+ unsigned EltSize);
+
+public:
+ static char ID;
+
+ SILoadStoreOptimizer() :
+ MachineFunctionPass(ID),
+ TM(nullptr),
+ TII(nullptr),
+ TRI(nullptr),
+ MRI(nullptr),
+ LIS(nullptr) {
+
+ }
+
+ SILoadStoreOptimizer(const TargetMachine &TM_) :
+ MachineFunctionPass(ID),
+ TM(&TM_),
+ TII(static_cast<const SIInstrInfo*>(TM->getSubtargetImpl()->getInstrInfo())) {
+ initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool optimizeBlock(MachineBasicBlock &MBB);
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "SI Load / Store Optimizer";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addPreserved<SlotIndexes>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<LiveVariables>();
+ AU.addRequired<LiveIntervals>();
+
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS_BEGIN(SILoadStoreOptimizer, DEBUG_TYPE,
+ "SI Load / Store Optimizer", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(SILoadStoreOptimizer, DEBUG_TYPE,
+ "SI Load / Store Optimizer", false, false)
+
+char SILoadStoreOptimizer::ID = 0;
+
+char &llvm::SILoadStoreOptimizerID = SILoadStoreOptimizer::ID;
+
+FunctionPass *llvm::createSILoadStoreOptimizerPass(TargetMachine &TM) {
+ return new SILoadStoreOptimizer(TM);
+}
+
+bool SILoadStoreOptimizer::offsetsCanBeCombined(unsigned Offset0,
+ unsigned Offset1,
+ unsigned Size) {
+ // XXX - Would the same offset be OK? Is there any reason this would happen or
+ // be useful?
+ if (Offset0 == Offset1)
+ return false;
+
+ // This won't be valid if the offset isn't aligned.
+ if ((Offset0 % Size != 0) || (Offset1 % Size != 0))
+ return false;
+
+ unsigned EltOffset0 = Offset0 / Size;
+ unsigned EltOffset1 = Offset1 / Size;
+
+ // Check if the new offsets fit in the reduced 8-bit range.
+ if (isUInt<8>(EltOffset0) && isUInt<8>(EltOffset1))
+ return true;
+
+ // If the offset in elements doesn't fit in 8-bits, we might be able to use
+ // the stride 64 versions.
+ if ((EltOffset0 % 64 != 0) || (EltOffset1 % 64) != 0)
+ return false;
+
+ return isUInt<8>(EltOffset0 / 64) && isUInt<8>(EltOffset1 / 64);
+}
+
+MachineBasicBlock::iterator
+SILoadStoreOptimizer::findMatchingDSInst(MachineBasicBlock::iterator I,
+ unsigned EltSize){
+ MachineBasicBlock::iterator E = I->getParent()->end();
+ MachineBasicBlock::iterator MBBI = I;
+ ++MBBI;
+
+ if (MBBI->getOpcode() != I->getOpcode())
+ return E;
+
+ // Don't merge volatiles.
+ if (MBBI->hasOrderedMemoryRef())
+ return E;
+
+ int AddrIdx = AMDGPU::getNamedOperandIdx(I->getOpcode(), AMDGPU::OpName::addr);
+ const MachineOperand &AddrReg0 = I->getOperand(AddrIdx);
+ const MachineOperand &AddrReg1 = MBBI->getOperand(AddrIdx);
+
+ // Check same base pointer. Be careful of subregisters, which can occur with
+ // vectors of pointers.
+ if (AddrReg0.getReg() == AddrReg1.getReg() &&
+ AddrReg0.getSubReg() == AddrReg1.getSubReg()) {
+ int OffsetIdx = AMDGPU::getNamedOperandIdx(I->getOpcode(),
+ AMDGPU::OpName::offset);
+ unsigned Offset0 = I->getOperand(OffsetIdx).getImm() & 0xffff;
+ unsigned Offset1 = MBBI->getOperand(OffsetIdx).getImm() & 0xffff;
+
+ // Check both offsets fit in the reduced range.
+ if (offsetsCanBeCombined(Offset0, Offset1, EltSize))
+ return MBBI;
+ }
+
+ return E;
+}
+
+void SILoadStoreOptimizer::updateRegDefsUses(unsigned SrcReg,
+ unsigned DstReg,
+ unsigned SubIdx) {
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg),
+ E = MRI->reg_end(); I != E; ) {
+ MachineOperand &O = *I;
+ ++I;
+ O.substVirtReg(DstReg, SubIdx, *TRI);
+ }
+}
+
+MachineBasicBlock::iterator SILoadStoreOptimizer::mergeRead2Pair(
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Paired,
+ unsigned EltSize) {
+ MachineBasicBlock *MBB = I->getParent();
+
+ // Be careful, since the addresses could be subregisters themselves in weird
+ // cases, like vectors of pointers.
+ const MachineOperand *AddrReg = TII->getNamedOperand(*I, AMDGPU::OpName::addr);
+ const MachineOperand *M0Reg = TII->getNamedOperand(*I, AMDGPU::OpName::m0);
+
+ unsigned DestReg0 = TII->getNamedOperand(*I, AMDGPU::OpName::vdst)->getReg();
+ unsigned DestReg1
+ = TII->getNamedOperand(*Paired, AMDGPU::OpName::vdst)->getReg();
+
+ unsigned Offset0
+ = TII->getNamedOperand(*I, AMDGPU::OpName::offset)->getImm() & 0xffff;
+ unsigned Offset1
+ = TII->getNamedOperand(*Paired, AMDGPU::OpName::offset)->getImm() & 0xffff;
+
+ unsigned NewOffset0 = Offset0 / EltSize;
+ unsigned NewOffset1 = Offset1 / EltSize;
+ unsigned Opc = (EltSize == 4) ? AMDGPU::DS_READ2_B32 : AMDGPU::DS_READ2_B64;
+
+ // Prefer the st64 form if we can use it, even if we can fit the offset in the
+ // non st64 version. I'm not sure if there's any real reason to do this.
+ bool UseST64 = (NewOffset0 % 64 == 0) && (NewOffset1 % 64 == 0);
+ if (UseST64) {
+ NewOffset0 /= 64;
+ NewOffset1 /= 64;
+ Opc = (EltSize == 4) ? AMDGPU::DS_READ2ST64_B32 : AMDGPU::DS_READ2ST64_B64;
+ }
+
+ assert((isUInt<8>(NewOffset0) && isUInt<8>(NewOffset1)) &&
+ (NewOffset0 != NewOffset1) &&
+ "Computed offset doesn't fit");
+
+ const MCInstrDesc &Read2Desc = TII->get(Opc);
+
+ const TargetRegisterClass *SuperRC
+ = (EltSize == 4) ? &AMDGPU::VReg_64RegClass : &AMDGPU::VReg_128RegClass;
+ unsigned DestReg = MRI->createVirtualRegister(SuperRC);
+
+ DebugLoc DL = I->getDebugLoc();
+ MachineInstrBuilder Read2
+ = BuildMI(*MBB, I, DL, Read2Desc, DestReg)
+ .addImm(0) // gds
+ .addOperand(*AddrReg) // addr
+ .addImm(NewOffset0) // offset0
+ .addImm(NewOffset1) // offset1
+ .addOperand(*M0Reg) // M0
+ .addMemOperand(*I->memoperands_begin())
+ .addMemOperand(*Paired->memoperands_begin());
+
+ LIS->InsertMachineInstrInMaps(Read2);
+
+ unsigned SubRegIdx0 = (EltSize == 4) ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
+ unsigned SubRegIdx1 = (EltSize == 4) ? AMDGPU::sub1 : AMDGPU::sub2_sub3;
+ updateRegDefsUses(DestReg0, DestReg, SubRegIdx0);
+ updateRegDefsUses(DestReg1, DestReg, SubRegIdx1);
+
+ LIS->RemoveMachineInstrFromMaps(I);
+ LIS->RemoveMachineInstrFromMaps(Paired);
+ I->eraseFromParent();
+ Paired->eraseFromParent();
+
+ LiveInterval &AddrRegLI = LIS->getInterval(AddrReg->getReg());
+ LIS->shrinkToUses(&AddrRegLI);
+
+ LiveInterval &M0RegLI = LIS->getInterval(M0Reg->getReg());
+ LIS->shrinkToUses(&M0RegLI);
+
+ // Currently m0 is treated as a register class with one member instead of an
+ // implicit physical register. We are using the virtual register for the first
+ // one, but we still need to update the live range of the now unused second m0
+ // virtual register to avoid verifier errors.
+ const MachineOperand *PairedM0Reg
+ = TII->getNamedOperand(*Paired, AMDGPU::OpName::m0);
+ LiveInterval &PairedM0RegLI = LIS->getInterval(PairedM0Reg->getReg());
+ LIS->shrinkToUses(&PairedM0RegLI);
+
+ LIS->getInterval(DestReg); // Create new LI
+
+ DEBUG(dbgs() << "Inserted read2: " << *Read2 << '\n');
+ return Read2.getInstr();
+}
+
+MachineBasicBlock::iterator SILoadStoreOptimizer::mergeWrite2Pair(
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator Paired,
+ unsigned EltSize) {
+ MachineBasicBlock *MBB = I->getParent();
+
+ // Be sure to use .addOperand(), and not .addReg() with these. We want to be
+ // sure we preserve the subregister index and any register flags set on them.
+ const MachineOperand *Addr = TII->getNamedOperand(*I, AMDGPU::OpName::addr);
+ const MachineOperand *M0Reg = TII->getNamedOperand(*I, AMDGPU::OpName::m0);
+ const MachineOperand *Data0 = TII->getNamedOperand(*I, AMDGPU::OpName::data0);
+ const MachineOperand *Data1
+ = TII->getNamedOperand(*Paired, AMDGPU::OpName::data0);
+
+
+ unsigned Offset0
+ = TII->getNamedOperand(*I, AMDGPU::OpName::offset)->getImm() & 0xffff;
+ unsigned Offset1
+ = TII->getNamedOperand(*Paired, AMDGPU::OpName::offset)->getImm() & 0xffff;
+
+ unsigned NewOffset0 = Offset0 / EltSize;
+ unsigned NewOffset1 = Offset1 / EltSize;
+ unsigned Opc = (EltSize == 4) ? AMDGPU::DS_WRITE2_B32 : AMDGPU::DS_WRITE2_B64;
+
+ // Prefer the st64 form if we can use it, even if we can fit the offset in the
+ // non st64 version. I'm not sure if there's any real reason to do this.
+ bool UseST64 = (NewOffset0 % 64 == 0) && (NewOffset1 % 64 == 0);
+ if (UseST64) {
+ NewOffset0 /= 64;
+ NewOffset1 /= 64;
+ Opc = (EltSize == 4) ? AMDGPU::DS_WRITE2ST64_B32 : AMDGPU::DS_WRITE2ST64_B64;
+ }
+
+ assert((isUInt<8>(NewOffset0) && isUInt<8>(NewOffset1)) &&
+ (NewOffset0 != NewOffset1) &&
+ "Computed offset doesn't fit");
+
+ const MCInstrDesc &Write2Desc = TII->get(Opc);
+ DebugLoc DL = I->getDebugLoc();
+
+ MachineInstrBuilder Write2
+ = BuildMI(*MBB, I, DL, Write2Desc)
+ .addImm(0) // gds
+ .addOperand(*Addr) // addr
+ .addOperand(*Data0) // data0
+ .addOperand(*Data1) // data1
+ .addImm(NewOffset0) // offset0
+ .addImm(NewOffset1) // offset1
+ .addOperand(*M0Reg) // m0
+ .addMemOperand(*I->memoperands_begin())
+ .addMemOperand(*Paired->memoperands_begin());
+
+ // XXX - How do we express subregisters here?
+ unsigned OrigRegs[] = { Data0->getReg(), Data1->getReg(), Addr->getReg(),
+ M0Reg->getReg()};
+
+ LIS->RemoveMachineInstrFromMaps(I);
+ LIS->RemoveMachineInstrFromMaps(Paired);
+ I->eraseFromParent();
+ Paired->eraseFromParent();
+
+ LIS->repairIntervalsInRange(MBB, Write2, Write2, OrigRegs);
+
+ DEBUG(dbgs() << "Inserted write2 inst: " << *Write2 << '\n');
+ return Write2.getInstr();
+}
+
+// Scan through looking for adjacent LDS operations with constant offsets from
+// the same base register. We rely on the scheduler to do the hard work of
+// clustering nearby loads, and assume these are all adjacent.
+bool SILoadStoreOptimizer::optimizeBlock(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;) {
+ MachineInstr &MI = *I;
+
+ // Don't combine if volatile.
+ if (MI.hasOrderedMemoryRef()) {
+ ++I;
+ continue;
+ }
+
+ unsigned Opc = MI.getOpcode();
+ if (Opc == AMDGPU::DS_READ_B32 || Opc == AMDGPU::DS_READ_B64) {
+ unsigned Size = (Opc == AMDGPU::DS_READ_B64) ? 8 : 4;
+ MachineBasicBlock::iterator Match = findMatchingDSInst(I, Size);
+ if (Match != E) {
+ Modified = true;
+ I = mergeRead2Pair(I, Match, Size);
+ } else {
+ ++I;
+ }
+
+ continue;
+ } else if (Opc == AMDGPU::DS_WRITE_B32 || Opc == AMDGPU::DS_WRITE_B64) {
+ unsigned Size = (Opc == AMDGPU::DS_WRITE_B64) ? 8 : 4;
+ MachineBasicBlock::iterator Match = findMatchingDSInst(I, Size);
+ if (Match != E) {
+ Modified = true;
+ I = mergeWrite2Pair(I, Match, Size);
+ } else {
+ ++I;
+ }
+
+ continue;
+ }
+
+ ++I;
+ }
+
+ return Modified;
+}
+
+bool SILoadStoreOptimizer::runOnMachineFunction(MachineFunction &MF) {
+ const TargetSubtargetInfo *STM = MF.getTarget().getSubtargetImpl();
+ TRI = static_cast<const SIRegisterInfo*>(STM->getRegisterInfo());
+ TII = static_cast<const SIInstrInfo*>(STM->getInstrInfo());
+ MRI = &MF.getRegInfo();
+
+ LIS = &getAnalysis<LiveIntervals>();
+
+ DEBUG(dbgs() << "Running SILoadStoreOptimizer\n");
+
+ assert(!MRI->isSSA());
+
+ bool Modified = false;
+
+ for (MachineBasicBlock &MBB : MF)
+ Modified |= optimizeBlock(MBB);
+
+ return Modified;
+}
diff --git a/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp b/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp
index 75b5a5e..068b22f 100644
--- a/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp
+++ b/contrib/llvm/lib/Target/R600/SILowerControlFlow.cpp
@@ -49,8 +49,10 @@
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -86,7 +88,6 @@ private:
void Kill(MachineInstr &MI);
void Branch(MachineInstr &MI);
- void InitM0ForLDS(MachineBasicBlock::iterator MI);
void LoadM0(MachineInstr &MI, MachineInstr *MovRel);
void IndirectSrc(MachineInstr &MI);
void IndirectDst(MachineInstr &MI);
@@ -307,10 +308,9 @@ void SILowerControlFlowPass::Kill(MachineInstr &MI) {
#endif
// Clear this thread from the exec mask if the operand is negative
- if ((Op.isImm() || Op.isFPImm())) {
+ if ((Op.isImm())) {
// Constant operand: Set exec mask to 0 or do nothing
- if (Op.isImm() ? (Op.getImm() & 0x80000000) :
- Op.getFPImm()->isNegative()) {
+ if (Op.getImm() & 0x80000000) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addImm(0);
}
@@ -323,14 +323,6 @@ void SILowerControlFlowPass::Kill(MachineInstr &MI) {
MI.eraseFromParent();
}
-/// The m0 register stores the maximum allowable address for LDS reads and
-/// writes. Its value must be at least the size in bytes of LDS allocated by
-/// the shader. For simplicity, we set it to the maximum possible value.
-void SILowerControlFlowPass::InitM0ForLDS(MachineBasicBlock::iterator MI) {
- BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
- AMDGPU::M0).addImm(0xffffffff);
-}
-
void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel) {
MachineBasicBlock &MBB = *MI.getParent();
@@ -347,7 +339,7 @@ void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel) {
} else {
assert(AMDGPU::SReg_64RegClass.contains(Save));
- assert(AMDGPU::VReg_32RegClass.contains(Idx));
+ assert(AMDGPU::VGPR_32RegClass.contains(Idx));
// Save the EXEC mask
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), Save)
@@ -389,12 +381,6 @@ void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel) {
.addReg(Save);
}
- // FIXME: Are there any values other than the LDS address clamp that need to
- // be stored in the m0 register and may be live for more than a few
- // instructions? If so, we should save the m0 register at the beginning
- // of this function and restore it here.
- // FIXME: Add support for LDS direct loads.
- InitM0ForLDS(&MI);
MI.eraseFromParent();
}
@@ -442,13 +428,14 @@ void SILowerControlFlowPass::IndirectDst(MachineInstr &MI) {
}
bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
- TII = static_cast<const SIInstrInfo*>(MF.getTarget().getInstrInfo());
- TRI = static_cast<const SIRegisterInfo*>(MF.getTarget().getRegisterInfo());
+ TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ TRI =
+ static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
bool HaveKill = false;
- bool NeedM0 = false;
bool NeedWQM = false;
+ bool NeedFlat = false;
unsigned Depth = 0;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
@@ -460,10 +447,12 @@ bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
Next = std::next(I);
MachineInstr &MI = *I;
- if (TII->isDS(MI.getOpcode())) {
- NeedM0 = true;
+ if (TII->isDS(MI.getOpcode()))
NeedWQM = true;
- }
+
+ // Flat uses m0 in case it needs to access LDS.
+ if (TII->isFLAT(MI.getOpcode()))
+ NeedFlat = true;
switch (MI.getOpcode()) {
default: break;
@@ -530,23 +519,54 @@ bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
case AMDGPU::V_INTERP_MOV_F32:
NeedWQM = true;
break;
-
}
}
}
- if (NeedM0) {
- MachineBasicBlock &MBB = MF.front();
- // Initialize M0 to a value that won't cause LDS access to be discarded
- // due to offset clamping
- InitM0ForLDS(MBB.getFirstNonPHI());
- }
-
if (NeedWQM && MFI->getShaderType() == ShaderType::PIXEL) {
MachineBasicBlock &MBB = MF.front();
BuildMI(MBB, MBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC).addReg(AMDGPU::EXEC);
}
+ // FIXME: This seems inappropriate to do here.
+ if (NeedFlat && MFI->IsKernel) {
+ // Insert the prologue initializing the SGPRs pointing to the scratch space
+ // for flat accesses.
+ const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
+
+ // TODO: What to use with function calls?
+
+ // FIXME: This is reporting stack size that is used in a scratch buffer
+ // rather than registers as well.
+ uint64_t StackSizeBytes = FrameInfo->getStackSize();
+
+ int IndirectBegin
+ = static_cast<const AMDGPUInstrInfo*>(TII)->getIndirectIndexBegin(MF);
+ // Convert register index to 256-byte unit.
+ uint64_t StackOffset = IndirectBegin < 0 ? 0 : (4 * IndirectBegin / 256);
+
+ assert((StackSizeBytes < 0xffff) && StackOffset < 0xffff &&
+ "Stack limits should be smaller than 16-bits");
+
+ // Initialize the flat scratch register pair.
+ // TODO: Can we use one s_mov_b64 here?
+
+ // Offset is in units of 256-bytes.
+ MachineBasicBlock &MBB = MF.front();
+ DebugLoc NoDL;
+ MachineBasicBlock::iterator Start = MBB.getFirstNonPHI();
+ const MCInstrDesc &SMovK = TII->get(AMDGPU::S_MOVK_I32);
+
+ assert(isInt<16>(StackOffset) && isInt<16>(StackSizeBytes));
+
+ BuildMI(MBB, Start, NoDL, SMovK, AMDGPU::FLAT_SCR_LO)
+ .addImm(StackOffset);
+
+ // Documentation says size is "per-thread scratch size in bytes"
+ BuildMI(MBB, Start, NoDL, SMovK, AMDGPU::FLAT_SCR_HI)
+ .addImm(StackSizeBytes);
+ }
+
return true;
}
diff --git a/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp b/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp
index db19235..67421e2 100644
--- a/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp
+++ b/contrib/llvm/lib/Target/R600/SILowerI1Copies.cpp
@@ -15,6 +15,7 @@
#define DEBUG_TYPE "si-i1-copies"
#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
@@ -39,14 +40,14 @@ public:
initializeSILowerI1CopiesPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnMachineFunction(MachineFunction &MF) override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
- virtual const char *getPassName() const override {
- return "SI Lower il Copies";
+ const char *getPassName() const override {
+ return "SI Lower i1 Copies";
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineDominatorTree>();
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -55,10 +56,10 @@ public:
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SILowerI1Copies, DEBUG_TYPE,
- "SI Lower il Copies", false, false)
+ "SI Lower i1 Copies", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SILowerI1Copies, DEBUG_TYPE,
- "SI Lower il Copies", false, false)
+ "SI Lower i1 Copies", false, false)
char SILowerI1Copies::ID = 0;
@@ -70,9 +71,9 @@ FunctionPass *llvm::createSILowerI1CopiesPass() {
bool SILowerI1Copies::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
- const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
- MF.getTarget().getInstrInfo());
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
std::vector<unsigned> I1Defs;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
@@ -84,71 +85,67 @@ bool SILowerI1Copies::runOnMachineFunction(MachineFunction &MF) {
Next = std::next(I);
MachineInstr &MI = *I;
- if (MI.getOpcode() == AMDGPU::V_MOV_I1) {
- I1Defs.push_back(MI.getOperand(0).getReg());
- MI.setDesc(TII->get(AMDGPU::V_MOV_B32_e32));
+ if (MI.getOpcode() == AMDGPU::IMPLICIT_DEF) {
+ unsigned Reg = MI.getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(Reg);
+ if (RC == &AMDGPU::VReg_1RegClass)
+ MRI.setRegClass(Reg, &AMDGPU::SReg_64RegClass);
continue;
}
- if (MI.getOpcode() == AMDGPU::V_AND_I1) {
- I1Defs.push_back(MI.getOperand(0).getReg());
- MI.setDesc(TII->get(AMDGPU::V_AND_B32_e32));
+ if (MI.getOpcode() != AMDGPU::COPY)
continue;
- }
- if (MI.getOpcode() == AMDGPU::V_OR_I1) {
- I1Defs.push_back(MI.getOperand(0).getReg());
- MI.setDesc(TII->get(AMDGPU::V_OR_B32_e32));
- continue;
- }
+ const MachineOperand &Dst = MI.getOperand(0);
+ const MachineOperand &Src = MI.getOperand(1);
- if (MI.getOpcode() == AMDGPU::V_XOR_I1) {
- I1Defs.push_back(MI.getOperand(0).getReg());
- MI.setDesc(TII->get(AMDGPU::V_XOR_B32_e32));
+ if (!TargetRegisterInfo::isVirtualRegister(Src.getReg()) ||
+ !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
continue;
- }
-
- if (MI.getOpcode() != AMDGPU::COPY ||
- !TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg()) ||
- !TargetRegisterInfo::isVirtualRegister(MI.getOperand(1).getReg()))
- continue;
-
- const TargetRegisterClass *DstRC =
- MRI.getRegClass(MI.getOperand(0).getReg());
- const TargetRegisterClass *SrcRC =
- MRI.getRegClass(MI.getOperand(1).getReg());
+ const TargetRegisterClass *DstRC = MRI.getRegClass(Dst.getReg());
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(Src.getReg());
if (DstRC == &AMDGPU::VReg_1RegClass &&
TRI->getCommonSubClass(SrcRC, &AMDGPU::SGPR_64RegClass)) {
- I1Defs.push_back(MI.getOperand(0).getReg());
- BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(AMDGPU::V_CNDMASK_B32_e64))
- .addOperand(MI.getOperand(0))
- .addImm(0)
- .addImm(-1)
- .addOperand(MI.getOperand(1))
- .addImm(0)
- .addImm(0)
- .addImm(0)
- .addImm(0);
+ I1Defs.push_back(Dst.getReg());
+ DebugLoc DL = MI.getDebugLoc();
+
+ MachineInstr *DefInst = MRI.getUniqueVRegDef(Src.getReg());
+ if (DefInst->getOpcode() == AMDGPU::S_MOV_B64) {
+ if (DefInst->getOperand(1).isImm()) {
+ I1Defs.push_back(Dst.getReg());
+
+ int64_t Val = DefInst->getOperand(1).getImm();
+ assert(Val == 0 || Val == -1);
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_MOV_B32_e32))
+ .addOperand(Dst)
+ .addImm(Val);
+ MI.eraseFromParent();
+ continue;
+ }
+ }
+
+ BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64))
+ .addOperand(Dst)
+ .addImm(0)
+ .addImm(-1)
+ .addOperand(Src);
MI.eraseFromParent();
} else if (TRI->getCommonSubClass(DstRC, &AMDGPU::SGPR_64RegClass) &&
SrcRC == &AMDGPU::VReg_1RegClass) {
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(AMDGPU::V_CMP_NE_I32_e64))
- .addOperand(MI.getOperand(0))
- .addImm(0)
- .addOperand(MI.getOperand(1))
- .addImm(0)
- .addImm(0)
- .addImm(0)
- .addImm(0);
+ .addOperand(Dst)
+ .addOperand(Src)
+ .addImm(0);
MI.eraseFromParent();
}
}
}
for (unsigned Reg : I1Defs)
- MRI.setRegClass(Reg, &AMDGPU::VReg_32RegClass);
+ MRI.setRegClass(Reg, &AMDGPU::VGPR_32RegClass);
return false;
}
diff --git a/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp
index c53a7e1..198dd56 100644
--- a/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.cpp
@@ -10,8 +10,10 @@
#include "SIMachineFunctionInfo.h"
+#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
-#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
@@ -26,72 +28,50 @@ void SIMachineFunctionInfo::anchor() {}
SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
: AMDGPUMachineFunction(MF),
+ TIDReg(AMDGPU::NoRegister),
+ HasSpilledVGPRs(false),
PSInputAddr(0),
- SpillTracker(),
- NumUserSGPRs(0) { }
+ NumUserSGPRs(0),
+ LDSWaveSpillSize(0) { }
-static unsigned createLaneVGPR(MachineRegisterInfo &MRI, MachineFunction *MF) {
- unsigned VGPR = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
+SIMachineFunctionInfo::SpilledReg SIMachineFunctionInfo::getSpilledReg(
+ MachineFunction *MF,
+ unsigned FrameIndex,
+ unsigned SubIdx) {
+ const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
+ const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo*>(
+ MF->getTarget().getSubtarget<AMDGPUSubtarget>().getRegisterInfo());
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ int64_t Offset = FrameInfo->getObjectOffset(FrameIndex);
+ Offset += SubIdx * 4;
- // We need to add this register as live out for the function, in order to
- // have the live range calculated directly.
- //
- // When register spilling begins, we have already calculated the live
- // live intervals for all the registers. Since we are spilling SGPRs to
- // VGPRs, we need to update the Lane VGPR's live interval every time we
- // spill or restore a register.
- //
- // Unfortunately, there is no good way to update the live interval as
- // the TargetInstrInfo callbacks for spilling and restoring don't give
- // us access to the live interval information.
- //
- // We are lucky, though, because the InlineSpiller calls
- // LiveRangeEdit::calculateRegClassAndHint() which iterates through
- // all the new register that have been created when restoring a register
- // and calls LiveIntervals::getInterval(), which creates and computes
- // the live interval for the newly created register. However, once this
- // live intervals is created, it doesn't change and since we usually reuse
- // the Lane VGPR multiple times, this means any uses after the first aren't
- // added to the live interval.
- //
- // To work around this, we add Lane VGPRs to the functions live out list,
- // so that we can guarantee its live range will cover all of its uses.
+ unsigned LaneVGPRIdx = Offset / (64 * 4);
+ unsigned Lane = (Offset / 4) % 64;
- for (MachineBasicBlock &MBB : *MF) {
- if (MBB.back().getOpcode() == AMDGPU::S_ENDPGM) {
- MBB.back().addOperand(*MF, MachineOperand::CreateReg(VGPR, false, true));
- return VGPR;
- }
- }
+ struct SpilledReg Spill;
- LLVMContext &Ctx = MF->getFunction()->getContext();
- Ctx.emitError("Could not find S_ENDPGM instruction.");
+ if (!LaneVGPRs.count(LaneVGPRIdx)) {
+ unsigned LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass);
+ LaneVGPRs[LaneVGPRIdx] = LaneVGPR;
+ MRI.setPhysRegUsed(LaneVGPR);
- return VGPR;
-}
-
-unsigned SIMachineFunctionInfo::RegSpillTracker::reserveLanes(
- MachineRegisterInfo &MRI, MachineFunction *MF, unsigned NumRegs) {
- unsigned StartLane = CurrentLane;
- CurrentLane += NumRegs;
- if (!LaneVGPR) {
- LaneVGPR = createLaneVGPR(MRI, MF);
- } else {
- if (CurrentLane >= MAX_LANES) {
- StartLane = CurrentLane = 0;
- LaneVGPR = createLaneVGPR(MRI, MF);
+ // Add this register as live-in to all blocks to avoid machine verifer
+ // complaining about use of an undefined physical register.
+ for (MachineFunction::iterator BI = MF->begin(), BE = MF->end();
+ BI != BE; ++BI) {
+ BI->addLiveIn(LaneVGPR);
}
}
- return StartLane;
-}
-void SIMachineFunctionInfo::RegSpillTracker::addSpilledReg(unsigned FrameIndex,
- unsigned Reg,
- int Lane) {
- SpilledRegisters[FrameIndex] = SpilledReg(Reg, Lane);
+ Spill.VGPR = LaneVGPRs[LaneVGPRIdx];
+ Spill.Lane = Lane;
+ return Spill;
}
-const SIMachineFunctionInfo::SpilledReg&
-SIMachineFunctionInfo::RegSpillTracker::getSpilledReg(unsigned FrameIndex) {
- return SpilledRegisters[FrameIndex];
+unsigned SIMachineFunctionInfo::getMaximumWorkGroupSize(
+ const MachineFunction &MF) const {
+ const AMDGPUSubtarget &ST = MF.getTarget().getSubtarget<AMDGPUSubtarget>();
+ // FIXME: We should get this information from kernel attributes if it
+ // is available.
+ return getShaderType() == ShaderType::COMPUTE ? 256 : ST.getWavefrontSize();
}
diff --git a/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h
index 9684d28..667da4c 100644
--- a/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/R600/SIMachineFunctionInfo.h
@@ -12,10 +12,11 @@
//===----------------------------------------------------------------------===//
-#ifndef SIMACHINEFUNCTIONINFO_H_
-#define SIMACHINEFUNCTIONINFO_H_
+#ifndef LLVM_LIB_TARGET_R600_SIMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_R600_SIMACHINEFUNCTIONINFO_H
#include "AMDGPUMachineFunction.h"
+#include "SIRegisterInfo.h"
#include <map>
namespace llvm {
@@ -26,6 +27,10 @@ class MachineRegisterInfo;
/// tells the hardware which interpolation parameters to load.
class SIMachineFunctionInfo : public AMDGPUMachineFunction {
void anchor() override;
+
+ unsigned TIDReg;
+ bool HasSpilledVGPRs;
+
public:
struct SpilledReg {
@@ -36,33 +41,26 @@ public:
bool hasLane() { return Lane != -1;}
};
- struct RegSpillTracker {
- private:
- unsigned CurrentLane;
- std::map<unsigned, SpilledReg> SpilledRegisters;
- public:
- unsigned LaneVGPR;
- RegSpillTracker() : CurrentLane(0), SpilledRegisters(), LaneVGPR(0) { }
- /// \p NumRegs The number of consecutive registers what need to be spilled.
- /// This function will ensure that all registers are stored in
- /// the same VGPR.
- /// \returns The lane to be used for storing the first register.
- unsigned reserveLanes(MachineRegisterInfo &MRI, MachineFunction *MF,
- unsigned NumRegs = 1);
- void addSpilledReg(unsigned FrameIndex, unsigned Reg, int Lane = -1);
- const SpilledReg& getSpilledReg(unsigned FrameIndex);
- bool programSpillsRegisters() { return !SpilledRegisters.empty(); }
- };
-
// SIMachineFunctionInfo definition
SIMachineFunctionInfo(const MachineFunction &MF);
+ SpilledReg getSpilledReg(MachineFunction *MF, unsigned FrameIndex,
+ unsigned SubIdx);
unsigned PSInputAddr;
- struct RegSpillTracker SpillTracker;
unsigned NumUserSGPRs;
+ std::map<unsigned, unsigned> LaneVGPRs;
+ unsigned LDSWaveSpillSize;
+ unsigned ScratchOffsetReg;
+ bool hasCalculatedTID() const { return TIDReg != AMDGPU::NoRegister; };
+ unsigned getTIDReg() const { return TIDReg; };
+ void setTIDReg(unsigned Reg) { TIDReg = Reg; }
+ bool hasSpilledVGPRs() const { return HasSpilledVGPRs; }
+ void setHasSpilledVGPRs(bool Spill = true) { HasSpilledVGPRs = Spill; }
+
+ unsigned getMaximumWorkGroupSize(const MachineFunction &MF) const;
};
} // End namespace llvm
-#endif //_SIMACHINEFUNCTIONINFO_H_
+#endif
diff --git a/contrib/llvm/lib/Target/R600/SIPrepareScratchRegs.cpp b/contrib/llvm/lib/Target/R600/SIPrepareScratchRegs.cpp
new file mode 100644
index 0000000..0a57a5b
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/SIPrepareScratchRegs.cpp
@@ -0,0 +1,208 @@
+//===-- SIPrepareScratchRegs.cpp - Use predicates for control flow --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// This pass loads scratch pointer and scratch offset into a register or a
+/// frame index which can be used anywhere in the program. These values will
+/// be used for spilling VGPRs.
+///
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "SIDefines.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+
+using namespace llvm;
+
+namespace {
+
+class SIPrepareScratchRegs : public MachineFunctionPass {
+
+private:
+ static char ID;
+
+public:
+ SIPrepareScratchRegs() : MachineFunctionPass(ID) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "SI prepare scratch registers";
+ }
+
+};
+
+} // End anonymous namespace
+
+char SIPrepareScratchRegs::ID = 0;
+
+FunctionPass *llvm::createSIPrepareScratchRegs() {
+ return new SIPrepareScratchRegs();
+}
+
+bool SIPrepareScratchRegs::runOnMachineFunction(MachineFunction &MF) {
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const SIRegisterInfo *TRI = &TII->getRegisterInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ MachineFrameInfo *FrameInfo = MF.getFrameInfo();
+ MachineBasicBlock *Entry = MF.begin();
+ MachineBasicBlock::iterator I = Entry->begin();
+ DebugLoc DL = I->getDebugLoc();
+
+ // FIXME: If we don't have enough VGPRs for SGPR spilling we will need to
+ // run this pass.
+ if (!MFI->hasSpilledVGPRs())
+ return false;
+
+ unsigned ScratchPtrPreloadReg =
+ TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
+ unsigned ScratchOffsetPreloadReg =
+ TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET);
+
+ if (!Entry->isLiveIn(ScratchPtrPreloadReg))
+ Entry->addLiveIn(ScratchPtrPreloadReg);
+
+ if (!Entry->isLiveIn(ScratchOffsetPreloadReg))
+ Entry->addLiveIn(ScratchOffsetPreloadReg);
+
+ // Load the scratch offset.
+ unsigned ScratchOffsetReg =
+ TRI->findUnusedRegister(MRI, &AMDGPU::SGPR_32RegClass);
+ int ScratchOffsetFI = -1;
+
+ if (ScratchOffsetReg != AMDGPU::NoRegister) {
+ // Found an SGPR to use
+ MRI.setPhysRegUsed(ScratchOffsetReg);
+ BuildMI(*Entry, I, DL, TII->get(AMDGPU::S_MOV_B32), ScratchOffsetReg)
+ .addReg(ScratchOffsetPreloadReg);
+ } else {
+ // No SGPR is available, we must spill.
+ ScratchOffsetFI = FrameInfo->CreateSpillStackObject(4,4);
+ BuildMI(*Entry, I, DL, TII->get(AMDGPU::SI_SPILL_S32_SAVE))
+ .addReg(ScratchOffsetPreloadReg)
+ .addFrameIndex(ScratchOffsetFI)
+ .addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Undef)
+ .addReg(AMDGPU::SGPR0, RegState::Undef);
+ }
+
+
+ // Now that we have the scratch pointer and offset values, we need to
+ // add them to all the SI_SPILL_V* instructions.
+
+ RegScavenger RS;
+ unsigned ScratchRsrcFI = FrameInfo->CreateSpillStackObject(16, 4);
+ RS.addScavengingFrameIndex(ScratchRsrcFI);
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI) {
+
+ MachineBasicBlock &MBB = *BI;
+ // Add the scratch offset reg as a live-in so that the register scavenger
+ // doesn't re-use it.
+ if (!MBB.isLiveIn(ScratchOffsetReg) &&
+ ScratchOffsetReg != AMDGPU::NoRegister)
+ MBB.addLiveIn(ScratchOffsetReg);
+ RS.enterBasicBlock(&MBB);
+
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ MachineInstr &MI = *I;
+ RS.forward(I);
+ DebugLoc DL = MI.getDebugLoc();
+ switch(MI.getOpcode()) {
+ default: break;
+ case AMDGPU::SI_SPILL_V512_SAVE:
+ case AMDGPU::SI_SPILL_V256_SAVE:
+ case AMDGPU::SI_SPILL_V128_SAVE:
+ case AMDGPU::SI_SPILL_V96_SAVE:
+ case AMDGPU::SI_SPILL_V64_SAVE:
+ case AMDGPU::SI_SPILL_V32_SAVE:
+ case AMDGPU::SI_SPILL_V32_RESTORE:
+ case AMDGPU::SI_SPILL_V64_RESTORE:
+ case AMDGPU::SI_SPILL_V128_RESTORE:
+ case AMDGPU::SI_SPILL_V256_RESTORE:
+ case AMDGPU::SI_SPILL_V512_RESTORE:
+
+ // Scratch resource
+ unsigned ScratchRsrcReg =
+ RS.scavengeRegister(&AMDGPU::SReg_128RegClass, 0);
+
+ uint64_t Rsrc = AMDGPU::RSRC_DATA_FORMAT | AMDGPU::RSRC_TID_ENABLE |
+ 0xffffffff; // Size
+
+ unsigned Rsrc0 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub0);
+ unsigned Rsrc1 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub1);
+ unsigned Rsrc2 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub2);
+ unsigned Rsrc3 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub3);
+
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), Rsrc0)
+ .addExternalSymbol("SCRATCH_RSRC_DWORD0")
+ .addReg(ScratchRsrcReg, RegState::ImplicitDefine);
+
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), Rsrc1)
+ .addExternalSymbol("SCRATCH_RSRC_DWORD1")
+ .addReg(ScratchRsrcReg, RegState::ImplicitDefine);
+
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), Rsrc2)
+ .addImm(Rsrc & 0xffffffff)
+ .addReg(ScratchRsrcReg, RegState::ImplicitDefine);
+
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), Rsrc3)
+ .addImm(Rsrc >> 32)
+ .addReg(ScratchRsrcReg, RegState::ImplicitDefine);
+
+ // Scratch Offset
+ if (ScratchOffsetReg == AMDGPU::NoRegister) {
+ ScratchOffsetReg = RS.scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
+ BuildMI(MBB, I, DL, TII->get(AMDGPU::SI_SPILL_S32_RESTORE),
+ ScratchOffsetReg)
+ .addFrameIndex(ScratchOffsetFI)
+ .addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Undef)
+ .addReg(AMDGPU::SGPR0, RegState::Undef);
+ } else if (!MBB.isLiveIn(ScratchOffsetReg)) {
+ MBB.addLiveIn(ScratchOffsetReg);
+ }
+
+ if (ScratchRsrcReg == AMDGPU::NoRegister ||
+ ScratchOffsetReg == AMDGPU::NoRegister) {
+ LLVMContext &Ctx = MF.getFunction()->getContext();
+ Ctx.emitError("ran out of SGPRs for spilling VGPRs");
+ ScratchRsrcReg = AMDGPU::SGPR0;
+ ScratchOffsetReg = AMDGPU::SGPR0;
+ }
+ MI.getOperand(2).setReg(ScratchRsrcReg);
+ MI.getOperand(2).setIsKill(true);
+ MI.getOperand(2).setIsUndef(false);
+ MI.getOperand(3).setReg(ScratchOffsetReg);
+ MI.getOperand(3).setIsUndef(false);
+ MI.getOperand(3).setIsKill(false);
+ MI.addOperand(MachineOperand::CreateReg(Rsrc0, false, true, true));
+ MI.addOperand(MachineOperand::CreateReg(Rsrc1, false, true, true));
+ MI.addOperand(MachineOperand::CreateReg(Rsrc2, false, true, true));
+ MI.addOperand(MachineOperand::CreateReg(Rsrc3, false, true, true));
+
+ break;
+ }
+ }
+ }
+ return true;
+}
diff --git a/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp b/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp
index 2a9a2ac..0396bf3 100644
--- a/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/SIRegisterInfo.cpp
@@ -20,6 +20,8 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
using namespace llvm;
@@ -30,36 +32,263 @@ SIRegisterInfo::SIRegisterInfo(const AMDGPUSubtarget &st)
BitVector SIRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
Reserved.set(AMDGPU::EXEC);
+
+ // EXEC_LO and EXEC_HI could be allocated and used as regular register,
+ // but this seems likely to result in bugs, so I'm marking them as reserved.
+ Reserved.set(AMDGPU::EXEC_LO);
+ Reserved.set(AMDGPU::EXEC_HI);
+
Reserved.set(AMDGPU::INDIRECT_BASE_ADDR);
+ Reserved.set(AMDGPU::FLAT_SCR);
+ Reserved.set(AMDGPU::FLAT_SCR_LO);
+ Reserved.set(AMDGPU::FLAT_SCR_HI);
+
+ // Reserve some VGPRs to use as temp registers in case we have to spill VGPRs
+ Reserved.set(AMDGPU::VGPR255);
+ Reserved.set(AMDGPU::VGPR254);
+
return Reserved;
}
-unsigned SIRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
- MachineFunction &MF) const {
- return RC->getNumRegs();
+unsigned SIRegisterInfo::getRegPressureSetLimit(unsigned Idx) const {
+
+ // FIXME: We should adjust the max number of waves based on LDS size.
+ unsigned SGPRLimit = getNumSGPRsAllowed(ST.getMaxWavesPerCU());
+ unsigned VGPRLimit = getNumVGPRsAllowed(ST.getMaxWavesPerCU());
+
+ for (regclass_iterator I = regclass_begin(), E = regclass_end();
+ I != E; ++I) {
+
+ unsigned NumSubRegs = std::max((int)(*I)->getSize() / 4, 1);
+ unsigned Limit;
+
+ if (isSGPRClass(*I)) {
+ Limit = SGPRLimit / NumSubRegs;
+ } else {
+ Limit = VGPRLimit / NumSubRegs;
+ }
+
+ const int *Sets = getRegClassPressureSets(*I);
+ assert(Sets);
+ for (unsigned i = 0; Sets[i] != -1; ++i) {
+ if (Sets[i] == (int)Idx)
+ return Limit;
+ }
+ }
+ return 256;
}
bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
return Fn.getFrameInfo()->hasStackObjects();
}
+static unsigned getNumSubRegsForSpillOp(unsigned Op) {
+
+ switch (Op) {
+ case AMDGPU::SI_SPILL_S512_SAVE:
+ case AMDGPU::SI_SPILL_S512_RESTORE:
+ case AMDGPU::SI_SPILL_V512_SAVE:
+ case AMDGPU::SI_SPILL_V512_RESTORE:
+ return 16;
+ case AMDGPU::SI_SPILL_S256_SAVE:
+ case AMDGPU::SI_SPILL_S256_RESTORE:
+ case AMDGPU::SI_SPILL_V256_SAVE:
+ case AMDGPU::SI_SPILL_V256_RESTORE:
+ return 8;
+ case AMDGPU::SI_SPILL_S128_SAVE:
+ case AMDGPU::SI_SPILL_S128_RESTORE:
+ case AMDGPU::SI_SPILL_V128_SAVE:
+ case AMDGPU::SI_SPILL_V128_RESTORE:
+ return 4;
+ case AMDGPU::SI_SPILL_V96_SAVE:
+ case AMDGPU::SI_SPILL_V96_RESTORE:
+ return 3;
+ case AMDGPU::SI_SPILL_S64_SAVE:
+ case AMDGPU::SI_SPILL_S64_RESTORE:
+ case AMDGPU::SI_SPILL_V64_SAVE:
+ case AMDGPU::SI_SPILL_V64_RESTORE:
+ return 2;
+ case AMDGPU::SI_SPILL_S32_SAVE:
+ case AMDGPU::SI_SPILL_S32_RESTORE:
+ case AMDGPU::SI_SPILL_V32_SAVE:
+ case AMDGPU::SI_SPILL_V32_RESTORE:
+ return 1;
+ default: llvm_unreachable("Invalid spill opcode");
+ }
+}
+
+void SIRegisterInfo::buildScratchLoadStore(MachineBasicBlock::iterator MI,
+ unsigned LoadStoreOp,
+ unsigned Value,
+ unsigned ScratchRsrcReg,
+ unsigned ScratchOffset,
+ int64_t Offset,
+ RegScavenger *RS) const {
+
+ const SIInstrInfo *TII = static_cast<const SIInstrInfo*>(ST.getInstrInfo());
+ MachineBasicBlock *MBB = MI->getParent();
+ const MachineFunction *MF = MI->getParent()->getParent();
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ DebugLoc DL = MI->getDebugLoc();
+ bool IsLoad = TII->get(LoadStoreOp).mayLoad();
+
+ bool RanOutOfSGPRs = false;
+ unsigned SOffset = ScratchOffset;
+
+ unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
+ unsigned Size = NumSubRegs * 4;
+
+ if (!isUInt<12>(Offset + Size)) {
+ SOffset = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, MI, 0);
+ if (SOffset == AMDGPU::NoRegister) {
+ RanOutOfSGPRs = true;
+ SOffset = AMDGPU::SGPR0;
+ }
+ BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), SOffset)
+ .addReg(ScratchOffset)
+ .addImm(Offset);
+ Offset = 0;
+ }
+
+ if (RanOutOfSGPRs)
+ Ctx.emitError("Ran out of SGPRs for spilling VGPRS");
+
+ for (unsigned i = 0, e = NumSubRegs; i != e; ++i, Offset += 4) {
+ unsigned SubReg = NumSubRegs > 1 ?
+ getPhysRegSubReg(Value, &AMDGPU::VGPR_32RegClass, i) :
+ Value;
+ bool IsKill = (i == e - 1);
+
+ BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
+ .addReg(SubReg, getDefRegState(IsLoad))
+ .addReg(ScratchRsrcReg, getKillRegState(IsKill))
+ .addImm(Offset)
+ .addReg(SOffset)
+ .addImm(0) // glc
+ .addImm(0) // slc
+ .addImm(0) // tfe
+ .addReg(Value, RegState::Implicit | getDefRegState(IsLoad));
+ }
+}
+
void SIRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
MachineFunction *MF = MI->getParent()->getParent();
+ MachineBasicBlock *MBB = MI->getParent();
+ SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
const SIInstrInfo *TII = static_cast<const SIInstrInfo*>(ST.getInstrInfo());
+ DebugLoc DL = MI->getDebugLoc();
+
MachineOperand &FIOp = MI->getOperand(FIOperandNum);
int Index = MI->getOperand(FIOperandNum).getIndex();
- int64_t Offset = FrameInfo->getObjectOffset(Index);
- FIOp.ChangeToImmediate(Offset);
- if (!TII->isImmOperandLegal(MI, FIOperandNum, FIOp)) {
- unsigned TmpReg = RS->scavengeRegister(&AMDGPU::VReg_32RegClass, MI, SPAdj);
- BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
- TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
- .addImm(Offset);
- FIOp.ChangeToRegister(TmpReg, false);
+ switch (MI->getOpcode()) {
+ // SGPR register spill
+ case AMDGPU::SI_SPILL_S512_SAVE:
+ case AMDGPU::SI_SPILL_S256_SAVE:
+ case AMDGPU::SI_SPILL_S128_SAVE:
+ case AMDGPU::SI_SPILL_S64_SAVE:
+ case AMDGPU::SI_SPILL_S32_SAVE: {
+ unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
+
+ for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
+ unsigned SubReg = getPhysRegSubReg(MI->getOperand(0).getReg(),
+ &AMDGPU::SGPR_32RegClass, i);
+ struct SIMachineFunctionInfo::SpilledReg Spill =
+ MFI->getSpilledReg(MF, Index, i);
+
+ if (Spill.VGPR == AMDGPU::NoRegister) {
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("Ran out of VGPRs for spilling SGPR");
+ }
+
+ BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_WRITELANE_B32), Spill.VGPR)
+ .addReg(SubReg)
+ .addImm(Spill.Lane);
+
+ }
+ MI->eraseFromParent();
+ break;
+ }
+
+ // SGPR register restore
+ case AMDGPU::SI_SPILL_S512_RESTORE:
+ case AMDGPU::SI_SPILL_S256_RESTORE:
+ case AMDGPU::SI_SPILL_S128_RESTORE:
+ case AMDGPU::SI_SPILL_S64_RESTORE:
+ case AMDGPU::SI_SPILL_S32_RESTORE: {
+ unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
+
+ for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
+ unsigned SubReg = getPhysRegSubReg(MI->getOperand(0).getReg(),
+ &AMDGPU::SGPR_32RegClass, i);
+ bool isM0 = SubReg == AMDGPU::M0;
+ struct SIMachineFunctionInfo::SpilledReg Spill =
+ MFI->getSpilledReg(MF, Index, i);
+
+ if (Spill.VGPR == AMDGPU::NoRegister) {
+ LLVMContext &Ctx = MF->getFunction()->getContext();
+ Ctx.emitError("Ran out of VGPRs for spilling SGPR");
+ }
+
+ if (isM0)
+ SubReg = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, MI, 0);
+
+ BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_READLANE_B32), SubReg)
+ .addReg(Spill.VGPR)
+ .addImm(Spill.Lane)
+ .addReg(MI->getOperand(0).getReg(), RegState::ImplicitDefine);
+ if (isM0) {
+ BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
+ .addReg(SubReg);
+ }
+ }
+ TII->insertNOPs(MI, 3);
+ MI->eraseFromParent();
+ break;
+ }
+
+ // VGPR register spill
+ case AMDGPU::SI_SPILL_V512_SAVE:
+ case AMDGPU::SI_SPILL_V256_SAVE:
+ case AMDGPU::SI_SPILL_V128_SAVE:
+ case AMDGPU::SI_SPILL_V96_SAVE:
+ case AMDGPU::SI_SPILL_V64_SAVE:
+ case AMDGPU::SI_SPILL_V32_SAVE:
+ buildScratchLoadStore(MI, AMDGPU::BUFFER_STORE_DWORD_OFFSET,
+ TII->getNamedOperand(*MI, AMDGPU::OpName::src)->getReg(),
+ TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_rsrc)->getReg(),
+ TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_offset)->getReg(),
+ FrameInfo->getObjectOffset(Index), RS);
+ MI->eraseFromParent();
+ break;
+ case AMDGPU::SI_SPILL_V32_RESTORE:
+ case AMDGPU::SI_SPILL_V64_RESTORE:
+ case AMDGPU::SI_SPILL_V128_RESTORE:
+ case AMDGPU::SI_SPILL_V256_RESTORE:
+ case AMDGPU::SI_SPILL_V512_RESTORE: {
+ buildScratchLoadStore(MI, AMDGPU::BUFFER_LOAD_DWORD_OFFSET,
+ TII->getNamedOperand(*MI, AMDGPU::OpName::dst)->getReg(),
+ TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_rsrc)->getReg(),
+ TII->getNamedOperand(*MI, AMDGPU::OpName::scratch_offset)->getReg(),
+ FrameInfo->getObjectOffset(Index), RS);
+ MI->eraseFromParent();
+ break;
+ }
+
+ default: {
+ int64_t Offset = FrameInfo->getObjectOffset(Index);
+ FIOp.ChangeToImmediate(Offset);
+ if (!TII->isImmOperandLegal(MI, FIOperandNum, FIOp)) {
+ unsigned TmpReg = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, SPAdj);
+ BuildMI(*MBB, MI, MI->getDebugLoc(),
+ TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
+ .addImm(Offset);
+ FIOp.ChangeToRegister(TmpReg, false, false, true);
+ }
+ }
}
}
@@ -67,7 +296,7 @@ const TargetRegisterClass * SIRegisterInfo::getCFGStructurizerRegClass(
MVT VT) const {
switch(VT.SimpleTy) {
default:
- case MVT::i32: return &AMDGPU::VReg_32RegClass;
+ case MVT::i32: return &AMDGPU::VGPR_32RegClass;
}
}
@@ -78,13 +307,17 @@ unsigned SIRegisterInfo::getHWRegIndex(unsigned Reg) const {
const TargetRegisterClass *SIRegisterInfo::getPhysRegClass(unsigned Reg) const {
assert(!TargetRegisterInfo::isVirtualRegister(Reg));
- const TargetRegisterClass *BaseClasses[] = {
- &AMDGPU::VReg_32RegClass,
+ static const TargetRegisterClass *BaseClasses[] = {
+ &AMDGPU::VGPR_32RegClass,
&AMDGPU::SReg_32RegClass,
&AMDGPU::VReg_64RegClass,
&AMDGPU::SReg_64RegClass,
+ &AMDGPU::VReg_96RegClass,
+ &AMDGPU::VReg_128RegClass,
&AMDGPU::SReg_128RegClass,
- &AMDGPU::SReg_256RegClass
+ &AMDGPU::VReg_256RegClass,
+ &AMDGPU::SReg_256RegClass,
+ &AMDGPU::VReg_512RegClass
};
for (const TargetRegisterClass *BaseClass : BaseClasses) {
@@ -95,15 +328,8 @@ const TargetRegisterClass *SIRegisterInfo::getPhysRegClass(unsigned Reg) const {
return nullptr;
}
-bool SIRegisterInfo::isSGPRClass(const TargetRegisterClass *RC) const {
- if (!RC) {
- return false;
- }
- return !hasVGPRs(RC);
-}
-
bool SIRegisterInfo::hasVGPRs(const TargetRegisterClass *RC) const {
- return getCommonSubClass(&AMDGPU::VReg_32RegClass, RC) ||
+ return getCommonSubClass(&AMDGPU::VGPR_32RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_64RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_96RegClass, RC) ||
getCommonSubClass(&AMDGPU::VReg_128RegClass, RC) ||
@@ -118,7 +344,7 @@ const TargetRegisterClass *SIRegisterInfo::getEquivalentVGPRClass(
} else if (SRC == &AMDGPU::SCCRegRegClass) {
return &AMDGPU::VCCRegRegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SGPR_32RegClass)) {
- return &AMDGPU::VReg_32RegClass;
+ return &AMDGPU::VGPR_32RegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SGPR_64RegClass)) {
return &AMDGPU::VReg_64RegClass;
} else if (getCommonSubClass(SRC, &AMDGPU::SReg_128RegClass)) {
@@ -148,24 +374,61 @@ const TargetRegisterClass *SIRegisterInfo::getSubRegClass(
unsigned SIRegisterInfo::getPhysRegSubReg(unsigned Reg,
const TargetRegisterClass *SubRC,
unsigned Channel) const {
+
+ switch (Reg) {
+ case AMDGPU::VCC:
+ switch(Channel) {
+ case 0: return AMDGPU::VCC_LO;
+ case 1: return AMDGPU::VCC_HI;
+ default: llvm_unreachable("Invalid SubIdx for VCC");
+ }
+
+ case AMDGPU::FLAT_SCR:
+ switch (Channel) {
+ case 0:
+ return AMDGPU::FLAT_SCR_LO;
+ case 1:
+ return AMDGPU::FLAT_SCR_HI;
+ default:
+ llvm_unreachable("Invalid SubIdx for FLAT_SCR");
+ }
+ break;
+
+ case AMDGPU::EXEC:
+ switch (Channel) {
+ case 0:
+ return AMDGPU::EXEC_LO;
+ case 1:
+ return AMDGPU::EXEC_HI;
+ default:
+ llvm_unreachable("Invalid SubIdx for EXEC");
+ }
+ break;
+ }
+
+ const TargetRegisterClass *RC = getPhysRegClass(Reg);
+ // 32-bit registers don't have sub-registers, so we can just return the
+ // Reg. We need to have this check here, because the calculation below
+ // using getHWRegIndex() will fail with special 32-bit registers like
+ // VCC_LO, VCC_HI, EXEC_LO, EXEC_HI and M0.
+ if (RC->getSize() == 4) {
+ assert(Channel == 0);
+ return Reg;
+ }
+
unsigned Index = getHWRegIndex(Reg);
return SubRC->getRegister(Index + Channel);
}
-bool SIRegisterInfo::regClassCanUseImmediate(int RCID) const {
- switch (RCID) {
- default: return false;
- case AMDGPU::SSrc_32RegClassID:
- case AMDGPU::SSrc_64RegClassID:
- case AMDGPU::VSrc_32RegClassID:
- case AMDGPU::VSrc_64RegClassID:
- return true;
- }
+bool SIRegisterInfo::opCanUseLiteralConstant(unsigned OpType) const {
+ return OpType == AMDGPU::OPERAND_REG_IMM32;
}
-bool SIRegisterInfo::regClassCanUseImmediate(
- const TargetRegisterClass *RC) const {
- return regClassCanUseImmediate(RC->getID());
+bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
+ if (opCanUseLiteralConstant(OpType))
+ return true;
+
+ return OpType == AMDGPU::OPERAND_REG_INLINE_C;
}
unsigned SIRegisterInfo::getPreloadedValue(const MachineFunction &MF,
@@ -180,9 +443,60 @@ unsigned SIRegisterInfo::getPreloadedValue(const MachineFunction &MF,
case SIRegisterInfo::TGID_Z:
return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2);
case SIRegisterInfo::SCRATCH_WAVE_OFFSET:
+ if (MFI->getShaderType() != ShaderType::COMPUTE)
+ return MFI->ScratchOffsetReg;
return AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 4);
case SIRegisterInfo::SCRATCH_PTR:
return AMDGPU::SGPR2_SGPR3;
+ case SIRegisterInfo::INPUT_PTR:
+ return AMDGPU::SGPR0_SGPR1;
+ case SIRegisterInfo::TIDIG_X:
+ return AMDGPU::VGPR0;
+ case SIRegisterInfo::TIDIG_Y:
+ return AMDGPU::VGPR1;
+ case SIRegisterInfo::TIDIG_Z:
+ return AMDGPU::VGPR2;
}
llvm_unreachable("unexpected preloaded value type");
}
+
+/// \brief Returns a register that is not used at any point in the function.
+/// If all registers are used, then this function will return
+// AMDGPU::NoRegister.
+unsigned SIRegisterInfo::findUnusedRegister(const MachineRegisterInfo &MRI,
+ const TargetRegisterClass *RC) const {
+
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I) {
+ if (!MRI.isPhysRegUsed(*I))
+ return *I;
+ }
+ return AMDGPU::NoRegister;
+}
+
+unsigned SIRegisterInfo::getNumVGPRsAllowed(unsigned WaveCount) const {
+ switch(WaveCount) {
+ case 10: return 24;
+ case 9: return 28;
+ case 8: return 32;
+ case 7: return 36;
+ case 6: return 40;
+ case 5: return 48;
+ case 4: return 64;
+ case 3: return 84;
+ case 2: return 128;
+ default: return 256;
+ }
+}
+
+unsigned SIRegisterInfo::getNumSGPRsAllowed(unsigned WaveCount) const {
+ switch(WaveCount) {
+ case 10: return 48;
+ case 9: return 56;
+ case 8: return 64;
+ case 7: return 72;
+ case 6: return 80;
+ case 5: return 96;
+ default: return 103;
+ }
+}
diff --git a/contrib/llvm/lib/Target/R600/SIRegisterInfo.h b/contrib/llvm/lib/Target/R600/SIRegisterInfo.h
index 5d0235c..d908ffd 100644
--- a/contrib/llvm/lib/Target/R600/SIRegisterInfo.h
+++ b/contrib/llvm/lib/Target/R600/SIRegisterInfo.h
@@ -13,10 +13,11 @@
//===----------------------------------------------------------------------===//
-#ifndef SIREGISTERINFO_H_
-#define SIREGISTERINFO_H_
+#ifndef LLVM_LIB_TARGET_R600_SIREGISTERINFO_H
+#define LLVM_LIB_TARGET_R600_SIREGISTERINFO_H
#include "AMDGPURegisterInfo.h"
+#include "llvm/Support/Debug.h"
namespace llvm {
@@ -26,8 +27,7 @@ struct SIRegisterInfo : public AMDGPURegisterInfo {
BitVector getReservedRegs(const MachineFunction &MF) const override;
- unsigned getRegPressureLimit(const TargetRegisterClass *RC,
- MachineFunction &MF) const override;
+ unsigned getRegPressureSetLimit(unsigned Idx) const override;
bool requiresRegisterScavenging(const MachineFunction &Fn) const override;
@@ -42,11 +42,24 @@ struct SIRegisterInfo : public AMDGPURegisterInfo {
unsigned getHWRegIndex(unsigned Reg) const override;
/// \brief Return the 'base' register class for this register.
- /// e.g. SGPR0 => SReg_32, VGPR => VReg_32 SGPR0_SGPR1 -> SReg_32, etc.
+ /// e.g. SGPR0 => SReg_32, VGPR => VGPR_32 SGPR0_SGPR1 -> SReg_32, etc.
const TargetRegisterClass *getPhysRegClass(unsigned Reg) const;
/// \returns true if this class contains only SGPR registers
- bool isSGPRClass(const TargetRegisterClass *RC) const;
+ bool isSGPRClass(const TargetRegisterClass *RC) const {
+ if (!RC)
+ return false;
+
+ return !hasVGPRs(RC);
+ }
+
+ /// \returns true if this class ID contains only SGPR registers
+ bool isSGPRClassID(unsigned RCID) const {
+ if (static_cast<int>(RCID) == -1)
+ return false;
+
+ return isSGPRClass(getRegClass(RCID));
+ }
/// \returns true if this class contains VGPR registers.
bool hasVGPRs(const TargetRegisterClass *RC) const;
@@ -67,28 +80,49 @@ struct SIRegisterInfo : public AMDGPURegisterInfo {
unsigned getPhysRegSubReg(unsigned Reg, const TargetRegisterClass *SubRC,
unsigned Channel) const;
- /// \returns True if operands defined with this register class can accept
- /// inline immediates.
- bool regClassCanUseImmediate(int RCID) const;
+ /// \returns True if operands defined with this operand type can accept
+ /// a literal constant (i.e. any 32-bit immediate).
+ bool opCanUseLiteralConstant(unsigned OpType) const;
- /// \returns True if operands defined with this register class can accept
- /// inline immediates.
- bool regClassCanUseImmediate(const TargetRegisterClass *RC) const;
+ /// \returns True if operands defined with this operand type can accept
+ /// an inline constant. i.e. An integer value in the range (-16, 64) or
+ /// -4.0f, -2.0f, -1.0f, -0.5f, 0.0f, 0.5f, 1.0f, 2.0f, 4.0f.
+ bool opCanUseInlineConstant(unsigned OpType) const;
enum PreloadedValue {
TGID_X,
TGID_Y,
TGID_Z,
SCRATCH_WAVE_OFFSET,
- SCRATCH_PTR
+ SCRATCH_PTR,
+ INPUT_PTR,
+ TIDIG_X,
+ TIDIG_Y,
+ TIDIG_Z
};
/// \brief Returns the physical register that \p Value is stored in.
unsigned getPreloadedValue(const MachineFunction &MF,
enum PreloadedValue Value) const;
+ /// \brief Give the maximum number of VGPRs that can be used by \p WaveCount
+ /// concurrent waves.
+ unsigned getNumVGPRsAllowed(unsigned WaveCount) const;
+
+ /// \brief Give the maximum number of SGPRs that can be used by \p WaveCount
+ /// concurrent waves.
+ unsigned getNumSGPRsAllowed(unsigned WaveCount) const;
+
+ unsigned findUnusedRegister(const MachineRegisterInfo &MRI,
+ const TargetRegisterClass *RC) const;
+
+private:
+ void buildScratchLoadStore(MachineBasicBlock::iterator MI,
+ unsigned LoadStoreOp, unsigned Value,
+ unsigned ScratchRsrcReg, unsigned ScratchOffset,
+ int64_t Offset, RegScavenger *RS) const;
};
} // End namespace llvm
-#endif // SIREGISTERINFO_H_
+#endif
diff --git a/contrib/llvm/lib/Target/R600/SIRegisterInfo.td b/contrib/llvm/lib/Target/R600/SIRegisterInfo.td
index 8974b63..1a1efb0 100644
--- a/contrib/llvm/lib/Target/R600/SIRegisterInfo.td
+++ b/contrib/llvm/lib/Target/R600/SIRegisterInfo.td
@@ -27,10 +27,28 @@ def VCC : RegisterWithSubRegs<"VCC", [VCC_LO, VCC_HI]> {
let HWEncoding = 106;
}
-def EXEC : SIReg<"EXEC", 126>;
+def EXEC_LO : SIReg<"exec_lo", 126>;
+def EXEC_HI : SIReg<"exec_hi", 127>;
+
+def EXEC : RegisterWithSubRegs<"EXEC", [EXEC_LO, EXEC_HI]> {
+ let Namespace = "AMDGPU";
+ let SubRegIndices = [sub0, sub1];
+ let HWEncoding = 126;
+}
+
def SCC : SIReg<"SCC", 253>;
def M0 : SIReg <"M0", 124>;
+def FLAT_SCR_LO : SIReg<"flat_scr_lo", 104>; // Offset in units of 256-bytes.
+def FLAT_SCR_HI : SIReg<"flat_scr_hi", 105>; // Size is the per-thread scratch size, in bytes.
+
+// Pair to indicate location of scratch space for flat accesses.
+def FLAT_SCR : RegisterWithSubRegs <"FLAT_SCR", [FLAT_SCR_LO, FLAT_SCR_HI]> {
+ let Namespace = "AMDGPU";
+ let SubRegIndices = [sub0, sub1];
+ let HWEncoding = 104;
+}
+
// SGPR registers
foreach Index = 0-101 in {
def SGPR#Index : SIReg <"SGPR"#Index, Index>;
@@ -152,20 +170,24 @@ def VGPR_512 : RegisterTuples<[sub0, sub1, sub2, sub3, sub4, sub5, sub6, sub7,
//===----------------------------------------------------------------------===//
// Special register classes for predicates and the M0 register
-def SCCReg : RegisterClass<"AMDGPU", [i32, i1], 32, (add SCC)>;
+def SCCReg : RegisterClass<"AMDGPU", [i32, i1], 32, (add SCC)> {
+ let CopyCost = -1; // Theoretically it is possible to read from SCC,
+ // but it should never be necessary.
+}
+
def VCCReg : RegisterClass<"AMDGPU", [i64, i1], 64, (add VCC)>;
def EXECReg : RegisterClass<"AMDGPU", [i64, i1], 64, (add EXEC)>;
def M0Reg : RegisterClass<"AMDGPU", [i32], 32, (add M0)>;
// Register class for all scalar registers (SGPRs + Special Registers)
def SReg_32 : RegisterClass<"AMDGPU", [f32, i32], 32,
- (add SGPR_32, M0Reg, VCC_LO)
+ (add SGPR_32, M0Reg, VCC_LO, VCC_HI, EXEC_LO, EXEC_HI, FLAT_SCR_LO, FLAT_SCR_HI)
>;
-def SGPR_64 : RegisterClass<"AMDGPU", [v2i32, i64], 64, (add SGPR_64Regs)>;
+def SGPR_64 : RegisterClass<"AMDGPU", [v2i32, i64, f64], 64, (add SGPR_64Regs)>;
-def SReg_64 : RegisterClass<"AMDGPU", [v2i32, i64, i1], 64,
- (add SGPR_64Regs, VCCReg, EXECReg)
+def SReg_64 : RegisterClass<"AMDGPU", [v2i32, i64, f64, i1], 64,
+ (add SGPR_64, VCCReg, EXECReg, FLAT_SCR)
>;
def SReg_128 : RegisterClass<"AMDGPU", [v4i32, v16i8], 128, (add SGPR_128)>;
@@ -175,8 +197,6 @@ def SReg_256 : RegisterClass<"AMDGPU", [v32i8, v8i32, v8f32], 256, (add SGPR_256
def SReg_512 : RegisterClass<"AMDGPU", [v64i8, v16i32], 512, (add SGPR_512)>;
// Register class for all vector registers (VGPRs + Interploation Registers)
-def VReg_32 : RegisterClass<"AMDGPU", [i32, f32, v1i32], 32, (add VGPR_32)>;
-
def VReg_64 : RegisterClass<"AMDGPU", [i64, f64, v2i32, v2f32], 64, (add VGPR_64)>;
def VReg_96 : RegisterClass<"AMDGPU", [untyped], 96, (add VGPR_96)> {
@@ -191,17 +211,49 @@ def VReg_512 : RegisterClass<"AMDGPU", [v16i32, v16f32], 512, (add VGPR_512)>;
def VReg_1 : RegisterClass<"AMDGPU", [i1], 32, (add VGPR_32)>;
+class RegImmOperand <RegisterClass rc> : RegisterOperand<rc> {
+ let OperandNamespace = "AMDGPU";
+ let OperandType = "OPERAND_REG_IMM32";
+}
+
+class RegInlineOperand <RegisterClass rc> : RegisterOperand<rc> {
+ let OperandNamespace = "AMDGPU";
+ let OperandType = "OPERAND_REG_INLINE_C";
+}
+
+//===----------------------------------------------------------------------===//
+// SSrc_* Operands with an SGPR or a 32-bit immediate
+//===----------------------------------------------------------------------===//
+
+def SSrc_32 : RegImmOperand<SReg_32>;
+
+def SSrc_64 : RegImmOperand<SReg_64>;
+
//===----------------------------------------------------------------------===//
-// [SV]Src_(32|64) register classes, can have either an immediate or an register
+// SCSrc_* Operands with an SGPR or a inline constant
//===----------------------------------------------------------------------===//
-def SSrc_32 : RegisterClass<"AMDGPU", [i32, f32], 32, (add SReg_32)>;
+def SCSrc_32 : RegInlineOperand<SReg_32>;
-def SSrc_64 : RegisterClass<"AMDGPU", [i64, f64, i1], 64, (add SReg_64)>;
+//===----------------------------------------------------------------------===//
+// VSrc_* Operands with an SGPR, VGPR or a 32-bit immediate
+//===----------------------------------------------------------------------===//
+
+def VS_32 : RegisterClass<"AMDGPU", [i32, f32], 32, (add VGPR_32, SReg_32)>;
+
+def VS_64 : RegisterClass<"AMDGPU", [i64, f64], 64, (add VReg_64, SReg_64)>;
+
+def VSrc_32 : RegImmOperand<VS_32>;
+
+def VSrc_64 : RegImmOperand<VS_64>;
+
+//===----------------------------------------------------------------------===//
+// VCSrc_* Operands with an SGPR, VGPR or an inline constant
+//===----------------------------------------------------------------------===//
-def VSrc_32 : RegisterClass<"AMDGPU", [i32, f32], 32, (add VReg_32, SReg_32)>;
+def VCSrc_32 : RegInlineOperand<VS_32>;
-def VSrc_64 : RegisterClass<"AMDGPU", [i64, f64], 64, (add VReg_64, SReg_64)>;
+def VCSrc_64 : RegInlineOperand<VS_64>;
//===----------------------------------------------------------------------===//
// SGPR and VGPR register classes
diff --git a/contrib/llvm/lib/Target/R600/SISchedule.td b/contrib/llvm/lib/Target/R600/SISchedule.td
index 28b65b8..9b1f676 100644
--- a/contrib/llvm/lib/Target/R600/SISchedule.td
+++ b/contrib/llvm/lib/Target/R600/SISchedule.td
@@ -7,9 +7,85 @@
//
//===----------------------------------------------------------------------===//
//
-// TODO: This is just a place holder for now.
+// MachineModel definitions for Southern Islands (SI)
//
//===----------------------------------------------------------------------===//
+def WriteBranch : SchedWrite;
+def WriteExport : SchedWrite;
+def WriteLDS : SchedWrite;
+def WriteSALU : SchedWrite;
+def WriteSMEM : SchedWrite;
+def WriteVMEM : SchedWrite;
-def SI_Itin : ProcessorItineraries <[], [], []>;
+// Vector ALU instructions
+def Write32Bit : SchedWrite;
+def WriteQuarterRate32 : SchedWrite;
+
+def WriteFloatFMA : SchedWrite;
+
+def WriteDouble : SchedWrite;
+def WriteDoubleAdd : SchedWrite;
+
+def SIFullSpeedModel : SchedMachineModel;
+def SIQuarterSpeedModel : SchedMachineModel;
+
+// BufferSize = 0 means the processors are in-order.
+let BufferSize = 0 in {
+
+// XXX: Are the resource counts correct?
+def HWBranch : ProcResource<1>;
+def HWExport : ProcResource<7>; // Taken from S_WAITCNT
+def HWLGKM : ProcResource<31>; // Taken from S_WAITCNT
+def HWSALU : ProcResource<1>;
+def HWVMEM : ProcResource<15>; // Taken from S_WAITCNT
+def HWVALU : ProcResource<1>;
+
+}
+
+class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources,
+ int latency> : WriteRes<write, resources> {
+ let Latency = latency;
+}
+
+class HWVALUWriteRes<SchedWrite write, int latency> :
+ HWWriteRes<write, [HWVALU], latency>;
+
+
+// The latency numbers are taken from AMD Accelerated Parallel Processing
+// guide. They may not be acurate.
+
+// The latency values are 1 / (operations / cycle) / 4.
+multiclass SICommonWriteRes {
+
+ def : HWWriteRes<WriteBranch, [HWBranch], 100>; // XXX: Guessed ???
+ def : HWWriteRes<WriteExport, [HWExport], 100>; // XXX: Guessed ???
+ def : HWWriteRes<WriteLDS, [HWLGKM], 32>; // 2 - 64
+ def : HWWriteRes<WriteSALU, [HWSALU], 1>;
+ def : HWWriteRes<WriteSMEM, [HWLGKM], 10>; // XXX: Guessed ???
+ def : HWWriteRes<WriteVMEM, [HWVMEM], 450>; // 300 - 600
+
+ def : HWVALUWriteRes<Write32Bit, 1>;
+ def : HWVALUWriteRes<WriteQuarterRate32, 4>;
+}
+
+
+let SchedModel = SIFullSpeedModel in {
+
+defm : SICommonWriteRes;
+
+def : HWVALUWriteRes<WriteFloatFMA, 1>;
+def : HWVALUWriteRes<WriteDouble, 4>;
+def : HWVALUWriteRes<WriteDoubleAdd, 2>;
+
+} // End SchedModel = SIFullSpeedModel
+
+let SchedModel = SIQuarterSpeedModel in {
+
+defm : SICommonWriteRes;
+
+def : HWVALUWriteRes<WriteFloatFMA, 16>;
+def : HWVALUWriteRes<WriteDouble, 16>;
+def : HWVALUWriteRes<WriteDoubleAdd, 8>;
+
+} // End SchedModel = SIQuarterSpeedModel
diff --git a/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp b/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp
index 745c4b6..6a34106 100644
--- a/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp
+++ b/contrib/llvm/lib/Target/R600/SIShrinkInstructions.cpp
@@ -10,11 +10,14 @@
//
#include "AMDGPU.h"
+#include "AMDGPUMCInstLower.h"
+#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
@@ -24,6 +27,8 @@
STATISTIC(NumInstructionsShrunk,
"Number of 64-bit instruction reduced to 32-bit.");
+STATISTIC(NumLiteralConstantsFolded,
+ "Number of literal constants folded into 32-bit instructions.");
namespace llvm {
void initializeSIShrinkInstructionsPass(PassRegistry&);
@@ -41,13 +46,13 @@ public:
SIShrinkInstructions() : MachineFunctionPass(ID) {
}
- virtual bool runOnMachineFunction(MachineFunction &MF) override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
- virtual const char *getPassName() const override {
+ const char *getPassName() const override {
return "SI Shrink Instructions";
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -90,29 +95,83 @@ static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
const MachineOperand *Src1Mod =
TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
- if (Src1 && (!isVGPR(Src1, TRI, MRI) || Src1Mod->getImm() != 0))
+ if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0)))
return false;
- // We don't need to check src0, all input types are legal, so just make
- // sure src0 isn't using any modifiers.
- const MachineOperand *Src0Mod =
- TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
- if (Src0Mod && Src0Mod->getImm() != 0)
+ // We don't need to check src0, all input types are legal, so just make sure
+ // src0 isn't using any modifiers.
+ if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
return false;
// Check output modifiers
- const MachineOperand *Omod = TII->getNamedOperand(MI, AMDGPU::OpName::omod);
- if (Omod && Omod->getImm() != 0)
+ if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
return false;
- const MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp);
- return !Clamp || Clamp->getImm() == 0;
+ if (TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
+ return false;
+
+ return true;
+}
+
+/// \brief This function checks \p MI for operands defined by a move immediate
+/// instruction and then folds the literal constant into the instruction if it
+/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction
+/// and will only fold literal constants if we are still in SSA.
+static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
+ MachineRegisterInfo &MRI, bool TryToCommute = true) {
+
+ if (!MRI.isSSA())
+ return;
+
+ assert(TII->isVOP1(MI.getOpcode()) || TII->isVOP2(MI.getOpcode()) ||
+ TII->isVOPC(MI.getOpcode()));
+
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
+
+ // Only one literal constant is allowed per instruction, so if src0 is a
+ // literal constant then we can't do any folding.
+ if (Src0->isImm() && TII->isLiteralConstant(*Src0))
+ return;
+
+
+ // Literal constants and SGPRs can only be used in Src0, so if Src0 is an
+ // SGPR, we cannot commute the instruction, so we can't fold any literal
+ // constants.
+ if (Src0->isReg() && !isVGPR(Src0, TRI, MRI))
+ return;
+
+ // Try to fold Src0
+ if (Src0->isReg()) {
+ unsigned Reg = Src0->getReg();
+ MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
+ if (Def && Def->isMoveImmediate()) {
+ MachineOperand &MovSrc = Def->getOperand(1);
+ bool ConstantFolded = false;
+
+ if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) {
+ Src0->ChangeToImmediate(MovSrc.getImm());
+ ConstantFolded = true;
+ }
+ if (ConstantFolded) {
+ if (MRI.use_empty(Reg))
+ Def->eraseFromParent();
+ ++NumLiteralConstantsFolded;
+ return;
+ }
+ }
+ }
+
+ // We have failed to fold src0, so commute the instruction and try again.
+ if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(&MI))
+ foldImmediates(MI, TII, MRI, false);
+
}
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
- const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
- MF.getTarget().getInstrInfo());
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
std::vector<unsigned> I1Defs;
@@ -125,40 +184,51 @@ bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
Next = std::next(I);
MachineInstr &MI = *I;
+ // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
+ if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
+ const MachineOperand &Src = MI.getOperand(1);
+
+ if (Src.isImm()) {
+ if (isInt<16>(Src.getImm()) && !TII->isInlineConstant(Src))
+ MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
+ }
+
+ continue;
+ }
+
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
continue;
if (!canShrink(MI, TII, TRI, MRI)) {
- // Try commtuing the instruction and see if that enables us to shrink
+ // Try commuting the instruction and see if that enables us to shrink
// it.
if (!MI.isCommutable() || !TII->commuteInstruction(&MI) ||
!canShrink(MI, TII, TRI, MRI))
continue;
}
- int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
-
- // Op32 could be -1 here if we started with an instruction that had a
+ // getVOPe32 could be -1 here if we started with an instruction that had
// a 32-bit encoding and then commuted it to an instruction that did not.
- if (Op32 == -1)
+ if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
continue;
+ int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
+
if (TII->isVOPC(Op32)) {
unsigned DstReg = MI.getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
// VOPC instructions can only write to the VCC register. We can't
- // force them to use VCC here, because the register allocator
- // has trouble with sequences like this, which cause the allocator
- // to run out of registes if vreg0 and vreg1 belong to the VCCReg
- // register class:
+ // force them to use VCC here, because the register allocator has
+ // trouble with sequences like this, which cause the allocator to run
+ // out of registers if vreg0 and vreg1 belong to the VCCReg register
+ // class:
// vreg0 = VOPC;
// vreg1 = VOPC;
// S_AND_B64 vreg0, vreg1
//
- // So, instead of forcing the instruction to write to VCC, we provide a
- // hint to the register allocator to use VCC and then we
- // we will run this pass again after RA and shrink it if it outpus to
- // VCC.
+ // So, instead of forcing the instruction to write to VCC, we provide
+ // a hint to the register allocator to use VCC and then we we will run
+ // this pass again after RA and shrink it if it outputs to VCC.
MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
continue;
}
@@ -167,27 +237,28 @@ bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
}
// We can shrink this instruction
- DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << "\n";);
+ DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << '\n';);
- MachineInstrBuilder MIB =
+ MachineInstrBuilder Inst32 =
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
// dst
- MIB.addOperand(MI.getOperand(0));
+ Inst32.addOperand(MI.getOperand(0));
- MIB.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
+ Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
const MachineOperand *Src1 =
TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1)
- MIB.addOperand(*Src1);
-
- for (const MachineOperand &MO : MI.implicit_operands())
- MIB.addOperand(MO);
+ Inst32.addOperand(*Src1);
- DEBUG(dbgs() << "e32 MI = "; MI.dump(); dbgs() << "\n";);
++NumInstructionsShrunk;
MI.eraseFromParent();
+
+ foldImmediates(*Inst32, TII, MRI);
+ DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
+
+
}
}
return false;
diff --git a/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp b/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp
index 367963a..9318dc1 100644
--- a/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp
+++ b/contrib/llvm/lib/Target/R600/SITypeRewriter.cpp
@@ -87,7 +87,7 @@ void SITypeRewriter::visitLoadInst(LoadInst &I) {
Value *BitCast = Builder.CreateBitCast(Ptr,
PointerType::get(v4i32,PtrTy->getPointerAddressSpace()));
LoadInst *Load = Builder.CreateLoad(BitCast);
- SmallVector <std::pair<unsigned, MDNode*>, 8> MD;
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
I.getAllMetadataOtherThanDebugLoc(MD);
for (unsigned i = 0, e = MD.size(); i != e; ++i) {
Load->setMetadata(MD[i].first, MD[i].second);
diff --git a/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp b/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp
index f437564..d723d6e 100644
--- a/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp
+++ b/contrib/llvm/lib/Target/R600/TargetInfo/AMDGPUTargetInfo.cpp
@@ -16,11 +16,15 @@
using namespace llvm;
-/// \brief The target for the AMDGPU backend
+/// \brief The target which suports all AMD GPUs. This will eventually
+/// be deprecated and there will be a R600 target and a GCN target.
Target llvm::TheAMDGPUTarget;
+/// \brief The target for GCN GPUs
+Target llvm::TheGCNTarget;
/// \brief Extern function to initialize the targets for the AMDGPU backend
extern "C" void LLVMInitializeR600TargetInfo() {
RegisterTarget<Triple::r600, false>
R600(TheAMDGPUTarget, "r600", "AMD GPUs HD2XXX-HD6XXX");
+ RegisterTarget<Triple::amdgcn, false> GCN(TheGCNTarget, "amdgcn", "AMD GCN GPUs");
}
diff --git a/contrib/llvm/lib/Target/R600/VIInstrFormats.td b/contrib/llvm/lib/Target/R600/VIInstrFormats.td
new file mode 100644
index 0000000..5285d18
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/VIInstrFormats.td
@@ -0,0 +1,145 @@
+//===-- VIInstrFormats.td - VI Instruction Encodings ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// VI Instruction format definitions.
+//
+//===----------------------------------------------------------------------===//
+
+class DSe_vi <bits<8> op> : Enc64 {
+
+ bits<8> vdst;
+ bits<1> gds;
+ bits<8> addr;
+ bits<8> data0;
+ bits<8> data1;
+ bits<8> offset0;
+ bits<8> offset1;
+
+ let Inst{7-0} = offset0;
+ let Inst{15-8} = offset1;
+ let Inst{16} = gds;
+ let Inst{24-17} = op;
+ let Inst{31-26} = 0x36; //encoding
+ let Inst{39-32} = addr;
+ let Inst{47-40} = data0;
+ let Inst{55-48} = data1;
+ let Inst{63-56} = vdst;
+}
+
+class MUBUFe_vi <bits<7> op> : Enc64 {
+
+ bits<12> offset;
+ bits<1> offen;
+ bits<1> idxen;
+ bits<1> glc;
+ bits<1> lds;
+ bits<8> vaddr;
+ bits<8> vdata;
+ bits<7> srsrc;
+ bits<1> slc;
+ bits<1> tfe;
+ bits<8> soffset;
+
+ let Inst{11-0} = offset;
+ let Inst{12} = offen;
+ let Inst{13} = idxen;
+ let Inst{14} = glc;
+ let Inst{16} = lds;
+ let Inst{17} = slc;
+ let Inst{24-18} = op;
+ let Inst{31-26} = 0x38; //encoding
+ let Inst{39-32} = vaddr;
+ let Inst{47-40} = vdata;
+ let Inst{52-48} = srsrc{6-2};
+ let Inst{55} = tfe;
+ let Inst{63-56} = soffset;
+}
+
+class MTBUFe_vi <bits<4> op> : Enc64 {
+
+ bits<12> offset;
+ bits<1> offen;
+ bits<1> idxen;
+ bits<1> glc;
+ bits<4> dfmt;
+ bits<3> nfmt;
+ bits<8> vaddr;
+ bits<8> vdata;
+ bits<7> srsrc;
+ bits<1> slc;
+ bits<1> tfe;
+ bits<8> soffset;
+
+ let Inst{11-0} = offset;
+ let Inst{12} = offen;
+ let Inst{13} = idxen;
+ let Inst{14} = glc;
+ let Inst{18-15} = op;
+ let Inst{22-19} = dfmt;
+ let Inst{25-23} = nfmt;
+ let Inst{31-26} = 0x3a; //encoding
+ let Inst{39-32} = vaddr;
+ let Inst{47-40} = vdata;
+ let Inst{52-48} = srsrc{6-2};
+ let Inst{54} = slc;
+ let Inst{55} = tfe;
+ let Inst{63-56} = soffset;
+}
+
+class SMEMe_vi <bits<8> op, bit imm> : Enc64 {
+
+ bits<7> sbase;
+ bits<7> sdata;
+ bits<1> glc;
+ bits<20> offset;
+
+ let Inst{5-0} = sbase{6-1};
+ let Inst{12-6} = sdata;
+ let Inst{16} = glc;
+ let Inst{17} = imm;
+ let Inst{25-18} = op;
+ let Inst{31-26} = 0x30; //encoding
+ let Inst{51-32} = offset;
+}
+
+class VOP3e_vi <bits<10> op> : Enc64 {
+
+ bits<8> dst;
+ bits<2> src0_modifiers;
+ bits<9> src0;
+ bits<2> src1_modifiers;
+ bits<9> src1;
+ bits<2> src2_modifiers;
+ bits<9> src2;
+ bits<1> clamp;
+ bits<2> omod;
+
+ let Inst{7-0} = dst;
+ let Inst{8} = src0_modifiers{1};
+ let Inst{9} = src1_modifiers{1};
+ let Inst{10} = src2_modifiers{1};
+ let Inst{15} = clamp;
+ let Inst{25-16} = op;
+ let Inst{31-26} = 0x34; //encoding
+ let Inst{40-32} = src0;
+ let Inst{49-41} = src1;
+ let Inst{58-50} = src2;
+ let Inst{60-59} = omod;
+ let Inst{61} = src0_modifiers{0};
+ let Inst{62} = src1_modifiers{0};
+ let Inst{63} = src2_modifiers{0};
+}
+
+class EXPe_vi : EXPe {
+ let Inst{31-26} = 0x31; //encoding
+}
+
+class VINTRPe_vi <bits<2> op> : VINTRPe <op> {
+ let Inst{31-26} = 0x35; // encoding
+}
diff --git a/contrib/llvm/lib/Target/R600/VIInstructions.td b/contrib/llvm/lib/Target/R600/VIInstructions.td
new file mode 100644
index 0000000..24e66ce
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/VIInstructions.td
@@ -0,0 +1,64 @@
+//===-- VIInstructions.td - VI Instruction Defintions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// Instruction definitions for VI and newer.
+//===----------------------------------------------------------------------===//
+
+let SubtargetPredicate = isVI in {
+
+defm BUFFER_LOAD_DWORD_VI : MUBUF_Load_Helper_vi <
+ 0x14, "buffer_load_dword", VGPR_32, i32, global_load
+>;
+
+defm BUFFER_LOAD_FORMAT_XYZW_VI : MUBUF_Load_Helper_vi <
+ 0x03, "buffer_load_format_xyzw", VReg_128
+>;
+
+} // End SubtargetPredicate = isVI
+
+
+//===----------------------------------------------------------------------===//
+// SMEM Patterns
+//===----------------------------------------------------------------------===//
+
+let Predicates = [isVI] in {
+
+// 1. Offset as 8bit DWORD immediate
+def : Pat <
+ (SIload_constant v4i32:$sbase, IMM20bit:$offset),
+ (S_BUFFER_LOAD_DWORD_IMM $sbase, (as_i32imm $offset))
+>;
+
+//===----------------------------------------------------------------------===//
+// MUBUF Patterns
+//===----------------------------------------------------------------------===//
+
+// Offset in an 32Bit VGPR
+def : Pat <
+ (SIload_constant v4i32:$sbase, i32:$voff),
+ (BUFFER_LOAD_DWORD_VI_OFFEN $sbase, $voff, 0, 0, 0, 0, 0)
+>;
+
+// Offset in an 32Bit VGPR
+def : Pat <
+ (SIload_constant v4i32:$sbase, i32:$voff),
+ (BUFFER_LOAD_DWORD_VI_OFFEN $sbase, $voff, 0, 0, 0, 0, 0)
+>;
+
+/* int_SI_vs_load_input */
+def : Pat<
+ (SIload_input v4i32:$tlst, imm:$attr_offset, i32:$buf_idx_vgpr),
+ (BUFFER_LOAD_FORMAT_XYZW_VI_IDXEN $tlst, $buf_idx_vgpr, imm:$attr_offset, 0, 0, 0, 0)
+>;
+
+defm : MUBUF_Load_Dword <i32, BUFFER_LOAD_DWORD_VI_OFFSET,
+ BUFFER_LOAD_DWORD_VI_OFFEN,
+ BUFFER_LOAD_DWORD_VI_IDXEN,
+ BUFFER_LOAD_DWORD_VI_BOTHEN>;
+
+} // End Predicates = [isVI]
diff --git a/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp b/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp
index 9df0054..551189c 100644
--- a/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp
+++ b/contrib/llvm/lib/Target/Sparc/AsmParser/SparcAsmParser.cpp
@@ -48,7 +48,7 @@ class SparcAsmParser : public MCTargetAsmParser {
// public interface of the MCTargetAsmParser.
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
@@ -386,16 +386,13 @@ public:
bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
- default:
- break;
-
case Match_Success: {
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, STI);
@@ -408,7 +405,7 @@ bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
@@ -422,7 +419,7 @@ bool SparcAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction mnemonic");
}
- return true;
+ llvm_unreachable("Implement any new match types added!");
}
bool SparcAsmParser::
@@ -444,7 +441,7 @@ ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc)
return Error(StartLoc, "invalid register name");
}
-static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
+static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
unsigned VariantID);
bool SparcAsmParser::ParseInstruction(ParseInstructionInfo &Info,
diff --git a/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp b/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp
index f3441ff..28369fd 100644
--- a/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp
+++ b/contrib/llvm/lib/Target/Sparc/DelaySlotFiller.cpp
@@ -110,7 +110,7 @@ FunctionPass *llvm::createSparcDelaySlotFillerPass(TargetMachine &tm) {
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Changed = false;
- const TargetInstrInfo *TII = TM.getInstrInfo();
+ const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) {
MachineBasicBlock::iterator MI = I;
@@ -187,7 +187,7 @@ Filler::findDelayInstr(MachineBasicBlock &MBB,
if (J->getOpcode() == SP::RESTORErr
|| J->getOpcode() == SP::RESTOREri) {
// change retl to ret.
- slot->setDesc(TM.getInstrInfo()->get(SP::RET));
+ slot->setDesc(TM.getSubtargetImpl()->getInstrInfo()->get(SP::RET));
return J;
}
}
@@ -329,7 +329,8 @@ void Filler::insertDefsUses(MachineBasicBlock::iterator MI,
bool Filler::IsRegInSet(SmallSet<unsigned, 32>& RegSet, unsigned Reg)
{
// Check Reg and all aliased Registers.
- for (MCRegAliasIterator AI(Reg, TM.getRegisterInfo(), true);
+ for (MCRegAliasIterator AI(Reg, TM.getSubtargetImpl()->getRegisterInfo(),
+ true);
AI.isValid(); ++AI)
if (RegSet.count(*AI))
return true;
@@ -482,7 +483,7 @@ bool Filler::tryCombineRestoreWithPrevInst(MachineBasicBlock &MBB,
if (PrevInst->isBundledWithSucc())
return false;
- const TargetInstrInfo *TII = TM.getInstrInfo();
+ const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
switch (PrevInst->getOpcode()) {
default: break;
diff --git a/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp b/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp
index 4df0990..8bc4ca9 100644
--- a/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp
+++ b/contrib/llvm/lib/Target/Sparc/Disassembler/SparcDisassembler.cpp
@@ -16,7 +16,6 @@
#include "SparcSubtarget.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -27,23 +26,17 @@ typedef MCDisassembler::DecodeStatus DecodeStatus;
namespace {
-/// SparcDisassembler - a disassembler class for Sparc.
+/// A disassembler class for Sparc.
class SparcDisassembler : public MCDisassembler {
public:
- /// Constructor - Initializes the disassembler.
- ///
- SparcDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
- MCDisassembler(STI, Ctx)
- {}
+ SparcDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx)
+ : MCDisassembler(STI, Ctx) {}
virtual ~SparcDisassembler() {}
- /// getInstruction - See MCDisassembler.
- DecodeStatus getInstruction(MCInst &instr,
- uint64_t &size,
- const MemoryObject &region,
- uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
}
@@ -213,47 +206,37 @@ static DecodeStatus DecodeSWAP(MCInst &Inst, unsigned insn, uint64_t Address,
#include "SparcGenDisassemblerTables.inc"
-/// readInstruction - read four bytes from the MemoryObject
-/// and return 32 bit word.
-static DecodeStatus readInstruction32(const MemoryObject &region,
- uint64_t address,
- uint64_t &size,
- uint32_t &insn) {
- uint8_t Bytes[4];
-
+/// Read four bytes from the ArrayRef and return 32 bit word.
+static DecodeStatus readInstruction32(ArrayRef<uint8_t> Bytes, uint64_t Address,
+ uint64_t &Size, uint32_t &Insn) {
// We want to read exactly 4 Bytes of data.
- if (region.readBytes(address, 4, Bytes) == -1) {
- size = 0;
+ if (Bytes.size() < 4) {
+ Size = 0;
return MCDisassembler::Fail;
}
// Encoded as a big-endian 32-bit word in the stream.
- insn = (Bytes[3] << 0) |
- (Bytes[2] << 8) |
- (Bytes[1] << 16) |
- (Bytes[0] << 24);
+ Insn =
+ (Bytes[3] << 0) | (Bytes[2] << 8) | (Bytes[1] << 16) | (Bytes[0] << 24);
return MCDisassembler::Success;
}
-
-DecodeStatus
-SparcDisassembler::getInstruction(MCInst &instr,
- uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &vStream,
- raw_ostream &cStream) const {
+DecodeStatus SparcDisassembler::getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes,
+ uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const {
uint32_t Insn;
- DecodeStatus Result = readInstruction32(Region, Address, Size, Insn);
+ DecodeStatus Result = readInstruction32(Bytes, Address, Size, Insn);
if (Result == MCDisassembler::Fail)
return MCDisassembler::Fail;
// Calling the auto-generated decoder function.
- Result = decodeInstruction(DecoderTableSparc32, instr, Insn, Address,
- this, STI);
+ Result =
+ decodeInstruction(DecoderTableSparc32, Instr, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
Size = 4;
diff --git a/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h b/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h
index 8fe4075..c96d5ad 100644
--- a/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h
+++ b/contrib/llvm/lib/Target/Sparc/InstPrinter/SparcInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SparcINSTPRINTER_H
-#define SparcINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_SPARC_INSTPRINTER_SPARCINSTPRINTER_H
+#define LLVM_LIB_TARGET_SPARC_INSTPRINTER_SPARCINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCSubtargetInfo.h"
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h
index d42bcee..8d79396 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcFixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SPARC_FIXUPKINDS_H
-#define LLVM_SPARC_FIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCFIXUPKINDS_H
+#define LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCFIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp
index df66ca9..4269020 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.cpp
@@ -35,7 +35,6 @@ SparcELFMCAsmInfo::SparcELFMCAsmInfo(StringRef TT) {
Data64bitsDirective = (isV9) ? "\t.xword\t" : nullptr;
ZeroDirective = "\t.skip\t";
CommentString = "!";
- HasLEB128 = true;
SupportsDebugInformation = true;
ExceptionsType = ExceptionHandling::DwarfCFI;
@@ -43,8 +42,7 @@ SparcELFMCAsmInfo::SparcELFMCAsmInfo(StringRef TT) {
SunStyleELFSectionSwitchSyntax = true;
UsesELFSectionDirectiveForBSS = true;
- if (TheTriple.getOS() == llvm::Triple::Solaris ||
- TheTriple.getOS() == llvm::Triple::OpenBSD)
+ if (TheTriple.isOSSolaris() || TheTriple.isOSOpenBSD())
UseIntegratedAssembler = true;
}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h
index e126b68..84de551 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCTARGETASMINFO_H
-#define SPARCTARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCMCASMINFO_H
+#define LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCMCASMINFO_H
#include "llvm/MC/MCAsmInfoELF.h"
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp
index 7f01ab0..d97e3a2 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.cpp
@@ -161,8 +161,9 @@ Sparc::Fixups SparcMCExpr::getFixupKind(SparcMCExpr::VariantKind Kind) {
bool
SparcMCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const {
- return getSubExpr()->EvaluateAsRelocatable(Res, Layout);
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const {
+ return getSubExpr()->EvaluateAsRelocatable(Res, Layout, Fixup);
}
static void fixELFSymbolsInTLSFixupsImpl(const MCExpr *Expr, MCAssembler &Asm) {
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h
index f0d0ef3..f72c6c4 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCExpr.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SPARCMCEXPR_H
-#define LLVM_SPARCMCEXPR_H
+#ifndef LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCMCEXPR_H
+#define LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCMCEXPR_H
#include "SparcFixupKinds.h"
#include "llvm/MC/MCExpr.h"
@@ -87,7 +87,8 @@ public:
/// @}
void PrintImpl(raw_ostream &OS) const override;
bool EvaluateAsRelocatableImpl(MCValue &Res,
- const MCAsmLayout *Layout) const override;
+ const MCAsmLayout *Layout,
+ const MCFixup *Fixup) const override;
void visitUsedExpr(MCStreamer &Streamer) const override;
const MCSection *FindAssociatedSection() const override {
return getSubExpr()->FindAssociatedSection();
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp
index 571017d..3cc4314 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.cpp
@@ -125,10 +125,8 @@ static MCCodeGenInfo *createSparcV9MCCodeGenInfo(StringRef TT, Reloc::Model RM,
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Context, MCAsmBackend &MAB,
raw_ostream &OS, MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI, bool RelaxAll,
- bool NoExecStack) {
- MCStreamer *S =
- createELFStreamer(Context, MAB, OS, Emitter, RelaxAll, NoExecStack);
+ const MCSubtargetInfo &STI, bool RelaxAll) {
+ MCStreamer *S = createELFStreamer(Context, MAB, OS, Emitter, RelaxAll);
new SparcTargetELFStreamer(*S);
return S;
}
diff --git a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h
index c8029a8..c31943d 100644
--- a/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/Sparc/MCTargetDesc/SparcMCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCMCTARGETDESC_H
-#define SPARCMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCMCTARGETDESC_H
+#define LLVM_LIB_TARGET_SPARC_MCTARGETDESC_SPARCMCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
diff --git a/contrib/llvm/lib/Target/Sparc/Sparc.h b/contrib/llvm/lib/Target/Sparc/Sparc.h
index de20aaa..96378d5 100644
--- a/contrib/llvm/lib/Target/Sparc/Sparc.h
+++ b/contrib/llvm/lib/Target/Sparc/Sparc.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_SPARC_H
-#define TARGET_SPARC_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARC_H
+#define LLVM_LIB_TARGET_SPARC_SPARC_H
#include "MCTargetDesc/SparcMCTargetDesc.h"
#include "llvm/Support/ErrorHandling.h"
@@ -29,8 +29,6 @@ namespace llvm {
FunctionPass *createSparcISelDag(SparcTargetMachine &TM);
FunctionPass *createSparcDelaySlotFillerPass(TargetMachine &TM);
- FunctionPass *createSparcJITCodeEmitterPass(SparcTargetMachine &TM,
- JITCodeEmitter &JCE);
void LowerSparcMachineInstrToMCInst(const MachineInstr *MI,
MCInst &OutMI,
diff --git a/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp b/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp
index 1b7330e..6432003 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/Sparc/SparcAsmPrinter.cpp
@@ -296,7 +296,7 @@ void SparcAsmPrinter::EmitFunctionBodyStart() {
void SparcAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O) {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
const MachineOperand &MO = MI->getOperand (opNum);
SparcMCExpr::VariantKind TF = (SparcMCExpr::VariantKind) MO.getTargetFlags();
@@ -450,7 +450,8 @@ void SparcAsmPrinter::EmitEndOfAsmFile(Module &M) {
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataSection());
- unsigned PtrSize = TM.getDataLayout()->getPointerSize(0);
+ unsigned PtrSize =
+ TM.getSubtargetImpl()->getDataLayout()->getPointerSize(0);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
OutStreamer.EmitLabel(Stubs[i].first);
OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(), PtrSize);
diff --git a/contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp b/contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp
deleted file mode 100644
index 247da2a..0000000
--- a/contrib/llvm/lib/Target/Sparc/SparcCodeEmitter.cpp
+++ /dev/null
@@ -1,280 +0,0 @@
-//===-- Sparc/SparcCodeEmitter.cpp - Convert Sparc Code to Machine Code ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===---------------------------------------------------------------------===//
-//
-// This file contains the pass that transforms the Sparc machine instructions
-// into relocatable machine code.
-//
-//===---------------------------------------------------------------------===//
-
-#include "Sparc.h"
-#include "MCTargetDesc/SparcMCExpr.h"
-#include "SparcRelocations.h"
-#include "SparcTargetMachine.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/Support/Debug.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-STATISTIC(NumEmitted, "Number of machine instructions emitted");
-
-namespace {
-
-class SparcCodeEmitter : public MachineFunctionPass {
- SparcJITInfo *JTI;
- const SparcInstrInfo *II;
- const DataLayout *TD;
- const SparcSubtarget *Subtarget;
- TargetMachine &TM;
- JITCodeEmitter &MCE;
- const std::vector<MachineConstantPoolEntry> *MCPEs;
- bool IsPIC;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineModuleInfo> ();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- static char ID;
-
-public:
- SparcCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
- : MachineFunctionPass(ID), JTI(nullptr), II(nullptr), TD(nullptr),
- TM(tm), MCE(mce), MCPEs(nullptr),
- IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
-
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- const char *getPassName() const override {
- return "Sparc Machine Code Emitter";
- }
-
- /// getBinaryCodeForInstr - This function, generated by the
- /// CodeEmitterGenerator using TableGen, produces the binary encoding for
- /// machine instructions.
- uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
-
- void emitInstruction(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB);
-
-private:
- /// getMachineOpValue - Return binary encoding of operand. If the machine
- /// operand requires relocation, record the relocation and return zero.
- unsigned getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const;
-
- unsigned getCallTargetOpValue(const MachineInstr &MI,
- unsigned) const;
- unsigned getBranchTargetOpValue(const MachineInstr &MI,
- unsigned) const;
- unsigned getBranchPredTargetOpValue(const MachineInstr &MI,
- unsigned) const;
- unsigned getBranchOnRegTargetOpValue(const MachineInstr &MI,
- unsigned) const;
-
- void emitWord(unsigned Word);
-
- unsigned getRelocation(const MachineInstr &MI,
- const MachineOperand &MO) const;
-
- void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc) const;
- void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
- void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
- void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc) const;
-};
-} // end anonymous namespace.
-
-char SparcCodeEmitter::ID = 0;
-
-bool SparcCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
- SparcTargetMachine &Target = static_cast<SparcTargetMachine &>(
- const_cast<TargetMachine &>(MF.getTarget()));
-
- JTI = Target.getJITInfo();
- II = Target.getInstrInfo();
- TD = Target.getDataLayout();
- Subtarget = &TM.getSubtarget<SparcSubtarget> ();
- MCPEs = &MF.getConstantPool()->getConstants();
- JTI->Initialize(MF, IsPIC);
- MCE.setModuleInfo(&getAnalysis<MachineModuleInfo> ());
-
- do {
- DEBUG(errs() << "JITTing function '"
- << MF.getName() << "'\n");
- MCE.startFunction(MF);
-
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
- MBB != E; ++MBB){
- MCE.StartMachineBasicBlock(MBB);
- for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(),
- E = MBB->instr_end(); I != E;)
- emitInstruction(*I++, *MBB);
- }
- } while (MCE.finishFunction(MF));
-
- return false;
-}
-
-void SparcCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI,
- MachineBasicBlock &MBB) {
- DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI);
-
- MCE.processDebugLoc(MI->getDebugLoc(), true);
-
- ++NumEmitted;
-
- switch (MI->getOpcode()) {
- default: {
- emitWord(getBinaryCodeForInstr(*MI));
- break;
- }
- case TargetOpcode::INLINEASM: {
- // We allow inline assembler nodes with empty bodies - they can
- // implicitly define registers, which is ok for JIT.
- if (MI->getOperand(0).getSymbolName()[0]) {
- report_fatal_error("JIT does not support inline asm!");
- }
- break;
- }
- case TargetOpcode::CFI_INSTRUCTION:
- break;
- case TargetOpcode::EH_LABEL: {
- MCE.emitLabel(MI->getOperand(0).getMCSymbol());
- break;
- }
- case TargetOpcode::IMPLICIT_DEF:
- case TargetOpcode::KILL: {
- // Do nothing.
- break;
- }
- case SP::GETPCX: {
- report_fatal_error("JIT does not support pseudo instruction GETPCX yet!");
- break;
- }
- }
-
- MCE.processDebugLoc(MI->getDebugLoc(), false);
-}
-
-void SparcCodeEmitter::emitWord(unsigned Word) {
- DEBUG(errs() << " 0x";
- errs().write_hex(Word) << "\n");
- MCE.emitWordBE(Word);
-}
-
-/// getMachineOpValue - Return binary encoding of operand. If the machine
-/// operand requires relocation, record the relocation and return zero.
-unsigned SparcCodeEmitter::getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) const {
- if (MO.isReg())
- return TM.getRegisterInfo()->getEncodingValue(MO.getReg());
- else if (MO.isImm())
- return static_cast<unsigned>(MO.getImm());
- else if (MO.isGlobal())
- emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO));
- else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO));
- else if (MO.isCPI())
- emitConstPoolAddress(MO.getIndex(), getRelocation(MI, MO));
- else if (MO.isMBB())
- emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO));
- else
- llvm_unreachable("Unable to encode MachineOperand!");
- return 0;
-}
-unsigned SparcCodeEmitter::getCallTargetOpValue(const MachineInstr &MI,
- unsigned opIdx) const {
- const MachineOperand MO = MI.getOperand(opIdx);
- return getMachineOpValue(MI, MO);
-}
-
-unsigned SparcCodeEmitter::getBranchTargetOpValue(const MachineInstr &MI,
- unsigned opIdx) const {
- const MachineOperand MO = MI.getOperand(opIdx);
- return getMachineOpValue(MI, MO);
-}
-
-unsigned SparcCodeEmitter::getBranchPredTargetOpValue(const MachineInstr &MI,
- unsigned opIdx) const {
- const MachineOperand MO = MI.getOperand(opIdx);
- return getMachineOpValue(MI, MO);
-}
-
-unsigned SparcCodeEmitter::getBranchOnRegTargetOpValue(const MachineInstr &MI,
- unsigned opIdx) const {
- const MachineOperand MO = MI.getOperand(opIdx);
- return getMachineOpValue(MI, MO);
-}
-
-unsigned SparcCodeEmitter::getRelocation(const MachineInstr &MI,
- const MachineOperand &MO) const {
-
- unsigned TF = MO.getTargetFlags();
- switch (TF) {
- default:
- case SparcMCExpr::VK_Sparc_None: break;
- case SparcMCExpr::VK_Sparc_LO: return SP::reloc_sparc_lo;
- case SparcMCExpr::VK_Sparc_HI: return SP::reloc_sparc_hi;
- case SparcMCExpr::VK_Sparc_H44: return SP::reloc_sparc_h44;
- case SparcMCExpr::VK_Sparc_M44: return SP::reloc_sparc_m44;
- case SparcMCExpr::VK_Sparc_L44: return SP::reloc_sparc_l44;
- case SparcMCExpr::VK_Sparc_HH: return SP::reloc_sparc_hh;
- case SparcMCExpr::VK_Sparc_HM: return SP::reloc_sparc_hm;
- }
-
- unsigned Opc = MI.getOpcode();
- switch (Opc) {
- default: break;
- case SP::CALL: return SP::reloc_sparc_pc30;
- case SP::BA:
- case SP::BCOND:
- case SP::FBCOND: return SP::reloc_sparc_pc22;
- case SP::BPXCC: return SP::reloc_sparc_pc19;
- }
- llvm_unreachable("unknown reloc!");
-}
-
-void SparcCodeEmitter::emitGlobalAddress(const GlobalValue *GV,
- unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV), 0,
- true));
-}
-
-void SparcCodeEmitter::
-emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
- Reloc, ES, 0, 0));
-}
-
-void SparcCodeEmitter::
-emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
- Reloc, CPI, 0, false));
-}
-
-void SparcCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
- unsigned Reloc) const {
- MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
- Reloc, BB));
-}
-
-
-/// createSparcJITCodeEmitterPass - Return a pass that emits the collected Sparc
-/// code to the specified MCE object.
-FunctionPass *llvm::createSparcJITCodeEmitterPass(SparcTargetMachine &TM,
- JITCodeEmitter &JCE) {
- return new SparcCodeEmitter(TM, JCE);
-}
-
-#include "SparcGenCodeEmitter.inc"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp
index 3cdfda3..1b67b4b 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.cpp
@@ -46,7 +46,7 @@ void SparcFrameLowering::emitSPAdjustment(MachineFunction &MF,
DebugLoc dl = (MBBI != MBB.end()) ? MBBI->getDebugLoc() : DebugLoc();
const SparcInstrInfo &TII =
- *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const SparcInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (NumBytes >= -4096 && NumBytes < 4096) {
BuildMI(MBB, MBBI, dl, TII.get(ADDri), SP::O6)
@@ -88,7 +88,7 @@ void SparcFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineFrameInfo *MFI = MF.getFrameInfo();
const SparcInstrInfo &TII =
- *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const SparcInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineBasicBlock::iterator MBBI = MBB.begin();
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
@@ -153,7 +153,7 @@ void SparcFrameLowering::emitEpilogue(MachineFunction &MF,
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
const SparcInstrInfo &TII =
- *static_cast<const SparcInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const SparcInstrInfo *>(MF.getSubtarget().getInstrInfo());
DebugLoc dl = MBBI->getDebugLoc();
assert(MBBI->getOpcode() == SP::RETL &&
"Can only put epilog before 'retl' instruction!");
diff --git a/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h
index a7d1b89..9e53994 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcFrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARC_FRAMEINFO_H
-#define SPARC_FRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCFRAMELOWERING_H
+#define LLVM_LIB_TARGET_SPARC_SPARCFRAMELOWERING_H
#include "Sparc.h"
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp
index 2fade27..b3b029e 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelDAGToDAG.cpp
@@ -66,16 +66,15 @@ private:
} // end anonymous namespace
SDNode* SparcDAGToDAGISel::getGlobalBaseReg() {
- unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
- return CurDAG->getRegister(GlobalBaseReg,
- getTargetLowering()->getPointerTy()).getNode();
+ unsigned GlobalBaseReg =
+ TM.getSubtargetImpl()->getInstrInfo()->getGlobalBaseReg(MF);
+ return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy()).getNode();
}
bool SparcDAGToDAGISel::SelectADDRri(SDValue Addr,
SDValue &Base, SDValue &Offset) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
- Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
- getTargetLowering()->getPointerTy());
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), TLI->getPointerTy());
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
@@ -90,8 +89,8 @@ bool SparcDAGToDAGISel::SelectADDRri(SDValue Addr,
if (FrameIndexSDNode *FIN =
dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
// Constant offset from frame ref.
- Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
- getTargetLowering()->getPointerTy());
+ Base =
+ CurDAG->getTargetFrameIndex(FIN->getIndex(), TLI->getPointerTy());
} else {
Base = Addr.getOperand(0);
}
@@ -135,7 +134,7 @@ bool SparcDAGToDAGISel::SelectADDRrr(SDValue Addr, SDValue &R1, SDValue &R2) {
}
R1 = Addr;
- R2 = CurDAG->getRegister(SP::G0, getTargetLowering()->getPointerTy());
+ R2 = CurDAG->getRegister(SP::G0, TLI->getPointerTy());
return true;
}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
index 990f52a..0a3607e 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.cpp
@@ -190,8 +190,8 @@ SparcTargetLowering::LowerReturn_32(SDValue Chain,
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
@@ -250,8 +250,8 @@ SparcTargetLowering::LowerReturn_64(SDValue Chain,
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
@@ -349,8 +349,8 @@ LowerFormalArguments_32(SDValue Chain,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
const unsigned StackOffset = 92;
@@ -474,7 +474,7 @@ LowerFormalArguments_32(SDValue Chain,
DAG.getConstant(Offset, MVT::i32));
Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
MachinePointerInfo(),
- VA.getValVT(), false, false,0);
+ VA.getValVT(), false, false, false,0);
Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load);
}
InVals.push_back(Load);
@@ -549,8 +549,8 @@ LowerFormalArguments_64(SDValue Chain,
// Analyze arguments according to CC_Sparc64.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
// The argument array begins at %fp+BIAS+128, after the register save area.
@@ -698,8 +698,8 @@ SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
// Get the size of the outgoing arguments stack space requirement.
@@ -915,7 +915,7 @@ SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI =
- ((const SparcTargetMachine&)getTargetMachine()).getRegisterInfo();
+ getTargetMachine().getSubtarget<SparcSubtarget>().getRegisterInfo();
const uint32_t *Mask = ((hasReturnsTwice)
? TRI->getRTCallPreservedMask(CallConv)
: TRI->getCallPreservedMask(CallConv));
@@ -934,8 +934,8 @@ SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
@@ -1061,8 +1061,8 @@ SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
// Get the size of the outgoing arguments stack space requirement.
@@ -1228,10 +1228,10 @@ SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI =
- ((const SparcTargetMachine&)getTargetMachine()).getRegisterInfo();
- const uint32_t *Mask = ((hasReturnsTwice)
- ? TRI->getRTCallPreservedMask(CLI.CallConv)
- : TRI->getCallPreservedMask(CLI.CallConv));
+ getTargetMachine().getSubtarget<SparcSubtarget>().getRegisterInfo();
+ const uint32_t *Mask =
+ ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
+ : TRI->getCallPreservedMask(CLI.CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
@@ -1255,8 +1255,8 @@ SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
// Set inreg flag manually for codegen generated library calls that
// return float.
@@ -1366,7 +1366,7 @@ static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
}
SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
- : TargetLowering(TM, new SparcELFTargetObjectFile()) {
+ : TargetLowering(TM) {
Subtarget = &TM.getSubtarget<SparcSubtarget>();
// Set up the register classes.
@@ -1378,11 +1378,14 @@ SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
// Turn FP extload into load/fextend
- setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
+ }
// Sparc doesn't have i1 sign extending load
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
@@ -1905,7 +1908,9 @@ SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
Ops.push_back(Symbol);
Ops.push_back(DAG.getRegister(SP::O0, PtrVT));
const uint32_t *Mask = getTargetMachine()
- .getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+ .getSubtargetImpl()
+ ->getRegisterInfo()
+ ->getCallPreservedMask(CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
Ops.push_back(InFlag);
@@ -2754,9 +2759,10 @@ static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
ISD::SETNE);
}
// MulResult is a node with an illegal type. Because such things are not
- // generally permitted during this phase of legalization, delete the
- // node. The above EXTRACT_ELEMENT nodes should have been folded.
- DAG.DeleteNode(MulResult.getNode());
+ // generally permitted during this phase of legalization, ensure that
+ // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
+ // been folded.
+ assert(MulResult->use_empty() && "Illegally typed node still in use!");
SDValue Ops[2] = { BottomHalf, TopHalf } ;
return DAG.getMergeValues(Ops, dl);
@@ -2900,7 +2906,8 @@ MachineBasicBlock*
SparcTargetLowering::expandSelectCC(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned BROpcode) const {
- const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ const TargetInstrInfo &TII =
+ *getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned CC = (SPCC::CondCodes)MI->getOperand(3).getImm();
@@ -2961,7 +2968,8 @@ SparcTargetLowering::expandAtomicRMW(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode,
unsigned CondCode) const {
- const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ const TargetInstrInfo &TII =
+ *getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
diff --git a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h
index a24cc82..a62d569 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARC_ISELLOWERING_H
-#define SPARC_ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCISELLOWERING_H
+#define LLVM_LIB_TARGET_SPARC_SPARCISELLOWERING_H
#include "Sparc.h"
#include "llvm/Target/TargetLowering.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h
index 3a1472e..fe93ed7 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCINSTRUCTIONINFO_H
-#define SPARCINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCINSTRINFO_H
+#define LLVM_LIB_TARGET_SPARC_SPARCINSTRINFO_H
#include "SparcRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
index 960261c..c320239 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
@@ -331,7 +331,7 @@ let hasSideEffects = 1, mayStore = 1 in {
[(flushw)]>;
}
-let isBarrier = 1, isTerminator = 1, rd = 0b1000, rs1 = 0, simm13 = 5 in
+let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
let rd = 0 in
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td b/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td
index 3e2b49d..d9adf3e 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrVIS.td
@@ -71,13 +71,13 @@ def FPACKFIX : VISInst2<0b000111101, "fpackfix">;
def FEXPAND : VISInst2<0b001001101, "fexpand">;
def FPMERGE : VISInst <0b001001011, "fpmerge">;
-def FMUL8X16 : VISInst<0b00110001, "fmul8x16">;
-def FMUL8X16AU : VISInst<0b00110011, "fmul8x16au">;
-def FMUL8X16AL : VISInst<0b00110101, "fmul8x16al">;
-def FMUL8SUX16 : VISInst<0b00110110, "fmul8sux16">;
-def FMUL8ULX16 : VISInst<0b00110111, "fmul8ulx16">;
-def FMULD8SUX16 : VISInst<0b00111000, "fmuld8sux16">;
-def FMULD8ULX16 : VISInst<0b00111001, "fmuld8ulx16">;
+def FMUL8X16 : VISInst<0b000110001, "fmul8x16">;
+def FMUL8X16AU : VISInst<0b000110011, "fmul8x16au">;
+def FMUL8X16AL : VISInst<0b000110101, "fmul8x16al">;
+def FMUL8SUX16 : VISInst<0b000110110, "fmul8sux16">;
+def FMUL8ULX16 : VISInst<0b000110111, "fmul8ulx16">;
+def FMULD8SUX16 : VISInst<0b000111000, "fmuld8sux16">;
+def FMULD8ULX16 : VISInst<0b000111001, "fmuld8ulx16">;
def ALIGNADDR : VISInst<0b000011000, "alignaddr", I64Regs>;
def ALIGNADDRL : VISInst<0b000011010, "alignaddrl", I64Regs>;
@@ -134,7 +134,7 @@ def EDGE16L : VISInst<0b000000110, "edge16l", I64Regs>;
def EDGE32 : VISInst<0b000001000, "edge32", I64Regs>;
def EDGE32L : VISInst<0b000001010, "edge32l", I64Regs>;
-def PDIST : VISInst<0b00111110, "pdist">;
+def PDIST : VISInst<0b000111110, "pdist">;
def ARRAY8 : VISInst<0b000010000, "array8", I64Regs>;
def ARRAY16 : VISInst<0b000010010, "array16", I64Regs>;
@@ -181,7 +181,7 @@ def CMASK32 : VISInstFormat<0b000011111, (outs), (ins I64Regs:$rs2),
}
-def FCHKSM16 : VISInst<0b01000100, "fchksm16">;
+def FCHKSM16 : VISInst<0b001000100, "fchksm16">;
def FHADDS : F3_3<0b10, 0b110100, 0b001100001,
(outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
@@ -229,14 +229,14 @@ def FNSMULD : F3_3<0b10, 0b110100, 0b001111001,
def FPADD64 : VISInst<0b001000010, "fpadd64">;
-def FSLL16 : VISInst<0b00100001, "fsll16">;
-def FSRL16 : VISInst<0b00100011, "fsrl16">;
-def FSLL32 : VISInst<0b00100101, "fsll32">;
-def FSRL32 : VISInst<0b00100111, "fsrl32">;
-def FSLAS16 : VISInst<0b00101001, "fslas16">;
-def FSRA16 : VISInst<0b00101011, "fsra16">;
-def FSLAS32 : VISInst<0b00101101, "fslas32">;
-def FSRA32 : VISInst<0b00101111, "fsra32">;
+def FSLL16 : VISInst<0b000100001, "fsll16">;
+def FSRL16 : VISInst<0b000100011, "fsrl16">;
+def FSLL32 : VISInst<0b000100101, "fsll32">;
+def FSRL32 : VISInst<0b000100111, "fsrl32">;
+def FSLAS16 : VISInst<0b000101001, "fslas16">;
+def FSRA16 : VISInst<0b000101011, "fsra16">;
+def FSLAS32 : VISInst<0b000101101, "fslas32">;
+def FSRA32 : VISInst<0b000101111, "fsra32">;
let rs1 = 0 in
def LZCNT : VISInstFormat<0b000010111, (outs I64Regs:$rd),
diff --git a/contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp
deleted file mode 100644
index d0eec98..0000000
--- a/contrib/llvm/lib/Target/Sparc/SparcJITInfo.cpp
+++ /dev/null
@@ -1,326 +0,0 @@
-//===-- SparcJITInfo.cpp - Implement the Sparc JIT Interface --------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the JIT interfaces for the Sparc target.
-//
-//===----------------------------------------------------------------------===//
-#include "SparcJITInfo.h"
-#include "Sparc.h"
-#include "SparcRelocations.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/Support/Memory.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-/// JITCompilerFunction - This contains the address of the JIT function used to
-/// compile a function lazily.
-static TargetJITInfo::JITCompilerFn JITCompilerFunction;
-
-extern "C" void SparcCompilationCallback();
-
-extern "C" {
-#if defined (__sparc__)
-
-#if defined(__arch64__)
-#define FRAME_PTR(X) #X "+2047"
-#else
-#define FRAME_PTR(X) #X
-#endif
-
- asm(
- ".text\n"
- "\t.align 4\n"
- "\t.global SparcCompilationCallback\n"
- "\t.type SparcCompilationCallback, #function\n"
- "SparcCompilationCallback:\n"
- // Save current register window and create stack.
- // 128 (save area) + 6*8 (for arguments) + 16*8 (for float regfile) = 304
- "\tsave %sp, -304, %sp\n"
- // save float regfile to the stack.
- "\tstd %f0, [" FRAME_PTR(%fp) "-0]\n"
- "\tstd %f2, [" FRAME_PTR(%fp) "-8]\n"
- "\tstd %f4, [" FRAME_PTR(%fp) "-16]\n"
- "\tstd %f6, [" FRAME_PTR(%fp) "-24]\n"
- "\tstd %f8, [" FRAME_PTR(%fp) "-32]\n"
- "\tstd %f10, [" FRAME_PTR(%fp) "-40]\n"
- "\tstd %f12, [" FRAME_PTR(%fp) "-48]\n"
- "\tstd %f14, [" FRAME_PTR(%fp) "-56]\n"
- "\tstd %f16, [" FRAME_PTR(%fp) "-64]\n"
- "\tstd %f18, [" FRAME_PTR(%fp) "-72]\n"
- "\tstd %f20, [" FRAME_PTR(%fp) "-80]\n"
- "\tstd %f22, [" FRAME_PTR(%fp) "-88]\n"
- "\tstd %f24, [" FRAME_PTR(%fp) "-96]\n"
- "\tstd %f26, [" FRAME_PTR(%fp) "-104]\n"
- "\tstd %f28, [" FRAME_PTR(%fp) "-112]\n"
- "\tstd %f30, [" FRAME_PTR(%fp) "-120]\n"
- // stubaddr is in %g1.
- "\tcall SparcCompilationCallbackC\n"
- "\t mov %g1, %o0\n"
- // restore float regfile from the stack.
- "\tldd [" FRAME_PTR(%fp) "-0], %f0\n"
- "\tldd [" FRAME_PTR(%fp) "-8], %f2\n"
- "\tldd [" FRAME_PTR(%fp) "-16], %f4\n"
- "\tldd [" FRAME_PTR(%fp) "-24], %f6\n"
- "\tldd [" FRAME_PTR(%fp) "-32], %f8\n"
- "\tldd [" FRAME_PTR(%fp) "-40], %f10\n"
- "\tldd [" FRAME_PTR(%fp) "-48], %f12\n"
- "\tldd [" FRAME_PTR(%fp) "-56], %f14\n"
- "\tldd [" FRAME_PTR(%fp) "-64], %f16\n"
- "\tldd [" FRAME_PTR(%fp) "-72], %f18\n"
- "\tldd [" FRAME_PTR(%fp) "-80], %f20\n"
- "\tldd [" FRAME_PTR(%fp) "-88], %f22\n"
- "\tldd [" FRAME_PTR(%fp) "-96], %f24\n"
- "\tldd [" FRAME_PTR(%fp) "-104], %f26\n"
- "\tldd [" FRAME_PTR(%fp) "-112], %f28\n"
- "\tldd [" FRAME_PTR(%fp) "-120], %f30\n"
- // restore original register window and
- // copy %o0 to %g1
- "\trestore %o0, 0, %g1\n"
- // call the new stub
- "\tjmp %g1\n"
- "\t nop\n"
- "\t.size SparcCompilationCallback, .-SparcCompilationCallback"
- );
-#else
- void SparcCompilationCallback() {
- llvm_unreachable(
- "Cannot call SparcCompilationCallback() on a non-sparc arch!");
- }
-#endif
-}
-
-
-#define SETHI_INST(imm, rd) (0x01000000 | ((rd) << 25) | ((imm) & 0x3FFFFF))
-#define JMP_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x38 << 19) \
- | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
-#define NOP_INST SETHI_INST(0, 0)
-#define OR_INST_I(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x02 << 19) \
- | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
-#define OR_INST_R(rs1, rs2, rd) (0x80000000 | ((rd) << 25) | (0x02 << 19) \
- | ((rs1) << 14) | (0 << 13) | ((rs2) & 0x1F))
-#define RDPC_INST(rd) (0x80000000 | ((rd) << 25) | (0x28 << 19) \
- | (5 << 14))
-#define LDX_INST(rs1, imm, rd) (0xC0000000 | ((rd) << 25) | (0x0B << 19) \
- | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
-#define SLLX_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x25 << 19) \
- | ((rs1) << 14) | (3 << 12) | ((imm) & 0x3F))
-#define SUB_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x04 << 19) \
- | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
-#define XOR_INST(rs1, imm, rd) (0x80000000 | ((rd) << 25) | (0x03 << 19) \
- | ((rs1) << 14) | (1 << 13) | ((imm) & 0x1FFF))
-#define BA_INST(tgt) (0x10800000 | ((tgt) & 0x3FFFFF))
-
-// Emit instructions to jump to Addr and store the starting address of
-// the instructions emitted in the scratch register.
-static void emitInstrForIndirectJump(intptr_t Addr,
- unsigned scratch,
- SmallVectorImpl<uint32_t> &Insts) {
-
- if (isInt<13>(Addr)) {
- // Emit: jmpl %g0+Addr, <scratch>
- // nop
- Insts.push_back(JMP_INST(0, LO10(Addr), scratch));
- Insts.push_back(NOP_INST);
- return;
- }
-
- if (isUInt<32>(Addr)) {
- // Emit: sethi %hi(Addr), scratch
- // jmpl scratch+%lo(Addr), scratch
- // sub scratch, 4, scratch
- Insts.push_back(SETHI_INST(HI22(Addr), scratch));
- Insts.push_back(JMP_INST(scratch, LO10(Addr), scratch));
- Insts.push_back(SUB_INST(scratch, 4, scratch));
- return;
- }
-
- if (Addr < 0 && isInt<33>(Addr)) {
- // Emit: sethi %hix(Addr), scratch)
- // xor scratch, %lox(Addr), scratch
- // jmpl scratch+0, scratch
- // sub scratch, 8, scratch
- Insts.push_back(SETHI_INST(HIX22(Addr), scratch));
- Insts.push_back(XOR_INST(scratch, LOX10(Addr), scratch));
- Insts.push_back(JMP_INST(scratch, 0, scratch));
- Insts.push_back(SUB_INST(scratch, 8, scratch));
- return;
- }
-
- // Emit: rd %pc, scratch
- // ldx [scratch+16], scratch
- // jmpl scratch+0, scratch
- // sub scratch, 8, scratch
- // <Addr: 8 byte>
- Insts.push_back(RDPC_INST(scratch));
- Insts.push_back(LDX_INST(scratch, 16, scratch));
- Insts.push_back(JMP_INST(scratch, 0, scratch));
- Insts.push_back(SUB_INST(scratch, 8, scratch));
- Insts.push_back((uint32_t)(((int64_t)Addr) >> 32) & 0xffffffff);
- Insts.push_back((uint32_t)(Addr & 0xffffffff));
-
- // Instruction sequence without rdpc instruction
- // 7 instruction and 2 scratch register
- // Emit: sethi %hh(Addr), scratch
- // or scratch, %hm(Addr), scratch
- // sllx scratch, 32, scratch
- // sethi %hi(Addr), scratch2
- // or scratch, scratch2, scratch
- // jmpl scratch+%lo(Addr), scratch
- // sub scratch, 20, scratch
- // Insts.push_back(SETHI_INST(HH22(Addr), scratch));
- // Insts.push_back(OR_INST_I(scratch, HM10(Addr), scratch));
- // Insts.push_back(SLLX_INST(scratch, 32, scratch));
- // Insts.push_back(SETHI_INST(HI22(Addr), scratch2));
- // Insts.push_back(OR_INST_R(scratch, scratch2, scratch));
- // Insts.push_back(JMP_INST(scratch, LO10(Addr), scratch));
- // Insts.push_back(SUB_INST(scratch, 20, scratch));
-}
-
-extern "C" void *SparcCompilationCallbackC(intptr_t StubAddr) {
- // Get the address of the compiled code for this function.
- intptr_t NewVal = (intptr_t) JITCompilerFunction((void*) StubAddr);
-
- // Rewrite the function stub so that we don't end up here every time we
- // execute the call. We're replacing the stub instructions with code
- // that jumps to the compiled function:
-
- SmallVector<uint32_t, 8> Insts;
- intptr_t diff = (NewVal - StubAddr) >> 2;
- if (isInt<22>(diff)) {
- // Use branch instruction to jump
- Insts.push_back(BA_INST(diff));
- Insts.push_back(NOP_INST);
- } else {
- // Otherwise, use indirect jump to the compiled function
- emitInstrForIndirectJump(NewVal, 1, Insts);
- }
-
- for (unsigned i = 0, e = Insts.size(); i != e; ++i)
- *(uint32_t *)(StubAddr + i*4) = Insts[i];
-
- sys::Memory::InvalidateInstructionCache((void*) StubAddr, Insts.size() * 4);
- return (void*)StubAddr;
-}
-
-
-void SparcJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- llvm_unreachable("FIXME: Implement SparcJITInfo::"
- "replaceMachineCodeForFunction");
-}
-
-
-TargetJITInfo::StubLayout SparcJITInfo::getStubLayout() {
- // The stub contains maximum of 4 4-byte instructions and 8 bytes for address,
- // aligned at 32 bytes.
- // See emitFunctionStub and emitInstrForIndirectJump for details.
- StubLayout Result = { 4*4 + 8, 32 };
- return Result;
-}
-
-void *SparcJITInfo::emitFunctionStub(const Function *F, void *Fn,
- JITCodeEmitter &JCE)
-{
- JCE.emitAlignment(32);
- void *Addr = (void*) (JCE.getCurrentPCValue());
-
- intptr_t CurrentAddr = (intptr_t)Addr;
- intptr_t EmittedAddr;
- SmallVector<uint32_t, 8> Insts;
- if (Fn != (void*)(intptr_t)SparcCompilationCallback) {
- EmittedAddr = (intptr_t)Fn;
- intptr_t diff = (EmittedAddr - CurrentAddr) >> 2;
- if (isInt<22>(diff)) {
- Insts.push_back(BA_INST(diff));
- Insts.push_back(NOP_INST);
- }
- } else {
- EmittedAddr = (intptr_t)SparcCompilationCallback;
- }
-
- if (Insts.size() == 0)
- emitInstrForIndirectJump(EmittedAddr, 1, Insts);
-
-
- if (!sys::Memory::setRangeWritable(Addr, 4 * Insts.size()))
- llvm_unreachable("ERROR: Unable to mark stub writable.");
-
- for (unsigned i = 0, e = Insts.size(); i != e; ++i)
- JCE.emitWordBE(Insts[i]);
-
- sys::Memory::InvalidateInstructionCache(Addr, 4 * Insts.size());
- if (!sys::Memory::setRangeExecutable(Addr, 4 * Insts.size()))
- llvm_unreachable("ERROR: Unable to mark stub executable.");
-
- return Addr;
-}
-
-
-TargetJITInfo::LazyResolverFn
-SparcJITInfo::getLazyResolverFunction(JITCompilerFn F) {
- JITCompilerFunction = F;
- return SparcCompilationCallback;
-}
-
-/// relocate - Before the JIT can run a block of code that has been emitted,
-/// it must rewrite the code to contain the actual addresses of any
-/// referenced global symbols.
-void SparcJITInfo::relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char *GOTBase) {
- for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
- void *RelocPos = (char*) Function + MR->getMachineCodeOffset();
- intptr_t ResultPtr = (intptr_t) MR->getResultPointer();
-
- switch ((SP::RelocationType) MR->getRelocationType()) {
- case SP::reloc_sparc_hi:
- ResultPtr = (ResultPtr >> 10) & 0x3fffff;
- break;
-
- case SP::reloc_sparc_lo:
- ResultPtr = (ResultPtr & 0x3ff);
- break;
-
- case SP::reloc_sparc_pc30:
- ResultPtr = ((ResultPtr - (intptr_t)RelocPos) >> 2) & 0x3fffffff;
- break;
-
- case SP::reloc_sparc_pc22:
- ResultPtr = ((ResultPtr - (intptr_t)RelocPos) >> 2) & 0x3fffff;
- break;
-
- case SP::reloc_sparc_pc19:
- ResultPtr = ((ResultPtr - (intptr_t)RelocPos) >> 2) & 0x7ffff;
- break;
-
- case SP::reloc_sparc_h44:
- ResultPtr = (ResultPtr >> 22) & 0x3fffff;
- break;
-
- case SP::reloc_sparc_m44:
- ResultPtr = (ResultPtr >> 12) & 0x3ff;
- break;
-
- case SP::reloc_sparc_l44:
- ResultPtr = (ResultPtr & 0xfff);
- break;
-
- case SP::reloc_sparc_hh:
- ResultPtr = (((int64_t)ResultPtr) >> 42) & 0x3fffff;
- break;
-
- case SP::reloc_sparc_hm:
- ResultPtr = (((int64_t)ResultPtr) >> 32) & 0x3ff;
- break;
-
- }
- *((unsigned*) RelocPos) |= (unsigned) ResultPtr;
- }
-}
diff --git a/contrib/llvm/lib/Target/Sparc/SparcJITInfo.h b/contrib/llvm/lib/Target/Sparc/SparcJITInfo.h
deleted file mode 100644
index ff1b43a..0000000
--- a/contrib/llvm/lib/Target/Sparc/SparcJITInfo.h
+++ /dev/null
@@ -1,67 +0,0 @@
-//==- SparcJITInfo.h - Sparc Implementation of the JIT Interface -*- C++ -*-==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the declaration of the SparcJITInfo class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef SPARCJITINFO_H
-#define SPARCJITINFO_H
-
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/Target/TargetJITInfo.h"
-
-namespace llvm {
-class SparcTargetMachine;
-
-class SparcJITInfo : public TargetJITInfo {
-
- bool IsPIC;
-
- public:
- explicit SparcJITInfo()
- : IsPIC(false) {}
-
- /// replaceMachineCodeForFunction - Make it so that calling the function
- /// whose machine code is at OLD turns into a call to NEW, perhaps by
- /// overwriting OLD with a branch to NEW. This is used for self-modifying
- /// code.
- ///
- void replaceMachineCodeForFunction(void *Old, void *New) override;
-
- // getStubLayout - Returns the size and alignment of the largest call stub
- // on Sparc.
- StubLayout getStubLayout() override;
-
-
- /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
- /// small native function that simply calls the function at the specified
- /// address.
- void *emitFunctionStub(const Function *F, void *Fn,
- JITCodeEmitter &JCE) override;
-
- /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
- LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
-
- /// relocate - Before the JIT can run a block of code that has been emitted,
- /// it must rewrite the code to contain the actual addresses of any
- /// referenced global symbols.
- void relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char *GOTBase) override;
-
- /// Initialize - Initialize internal stage for the function being JITted.
- void Initialize(const MachineFunction &MF, bool isPIC) {
- IsPIC = isPIC;
- }
-
-};
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h b/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h
index 3783c16..1047442 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcMachineFunctionInfo.h
@@ -10,8 +10,8 @@
// This file declares Sparc specific per-machine-function information.
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCMACHINEFUNCTIONINFO_H
-#define SPARCMACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_SPARC_SPARCMACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFunction.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp
index dc1ec7c..3cca98f 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp
@@ -108,7 +108,7 @@ static void replaceFI(MachineFunction &MF,
return;
}
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// FIXME: it would be better to scavenge a register here instead of
// reserving G1 all of the time.
@@ -174,7 +174,7 @@ SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
if (!Subtarget.isV9() || !Subtarget.hasHardQuad()) {
if (MI.getOpcode() == SP::STQFri) {
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned SrcReg = MI.getOperand(2).getReg();
unsigned SrcEvenReg = getSubReg(SrcReg, SP::sub_even64);
unsigned SrcOddReg = getSubReg(SrcReg, SP::sub_odd64);
@@ -186,7 +186,7 @@ SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MI.getOperand(2).setReg(SrcOddReg);
Offset += 8;
} else if (MI.getOpcode() == SP::LDQFri) {
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned DestReg = MI.getOperand(0).getReg();
unsigned DestEvenReg = getSubReg(DestReg, SP::sub_even64);
unsigned DestOddReg = getSubReg(DestReg, SP::sub_odd64);
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h
index 77f879a..63567b0 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcRegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCREGISTERINFO_H
-#define SPARCREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCREGISTERINFO_H
+#define LLVM_LIB_TARGET_SPARC_SPARCREGISTERINFO_H
#include "llvm/Target/TargetRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcRelocations.h b/contrib/llvm/lib/Target/Sparc/SparcRelocations.h
deleted file mode 100644
index c1ff78d..0000000
--- a/contrib/llvm/lib/Target/Sparc/SparcRelocations.h
+++ /dev/null
@@ -1,56 +0,0 @@
-//===-- SparcRelocations.h - Sparc Code Relocations -------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the Sparc target-specific relocation types
-// (for relocation-model=static).
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef SPARC_RELOCATIONS_H
-#define SPARC_RELOCATIONS_H
-
-#include "llvm/CodeGen/MachineRelocation.h"
-
-namespace llvm {
- namespace SP {
- enum RelocationType {
- // reloc_sparc_hi - upper 22 bits
- reloc_sparc_hi = 1,
-
- // reloc_sparc_lo - lower 10 bits
- reloc_sparc_lo = 2,
-
- // reloc_sparc_pc30 - pc rel. 30 bits for call
- reloc_sparc_pc30 = 3,
-
- // reloc_sparc_pc22 - pc rel. 22 bits for branch
- reloc_sparc_pc22 = 4,
-
- // reloc_sparc_pc22 - pc rel. 19 bits for branch with icc/xcc
- reloc_sparc_pc19 = 5,
-
- // reloc_sparc_h44 - 43-22 bits
- reloc_sparc_h44 = 6,
-
- // reloc_sparc_m44 - 21-12 bits
- reloc_sparc_m44 = 7,
-
- // reloc_sparc_l44 - lower 12 bits
- reloc_sparc_l44 = 8,
-
- // reloc_sparc_hh - 63-42 bits
- reloc_sparc_hh = 9,
-
- // reloc_sparc_hm - 41-32 bits
- reloc_sparc_hm = 10
- };
- }
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h b/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h
index 2346f41..a3a21d6 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCSELECTIONDAGINFO_H
-#define SPARCSELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCSELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_SPARC_SPARCSELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h b/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h
index a335778..d503b2b 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcSubtarget.h
@@ -11,13 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARC_SUBTARGET_H
-#define SPARC_SUBTARGET_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCSUBTARGET_H
+#define LLVM_LIB_TARGET_SPARC_SPARCSUBTARGET_H
#include "SparcFrameLowering.h"
#include "SparcInstrInfo.h"
#include "SparcISelLowering.h"
-#include "SparcJITInfo.h"
#include "SparcSelectionDAGInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetFrameLowering.h"
@@ -43,21 +42,25 @@ class SparcSubtarget : public SparcGenSubtargetInfo {
SparcTargetLowering TLInfo;
SparcSelectionDAGInfo TSInfo;
SparcFrameLowering FrameLowering;
- SparcJITInfo JITInfo;
public:
SparcSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, TargetMachine &TM, bool is64bit);
- const SparcInstrInfo *getInstrInfo() const { return &InstrInfo; }
- const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
- const SparcRegisterInfo *getRegisterInfo() const {
+ const SparcInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const TargetFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const SparcRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
- const SparcTargetLowering *getTargetLowering() const { return &TLInfo; }
- const SparcSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- SparcJITInfo *getJITInfo() { return &JITInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
+ const SparcTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const SparcSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const DataLayout *getDataLayout() const override { return &DL; }
bool isV9() const { return IsV9; }
bool isVIS() const { return IsVIS; }
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp
index 0130fac..6dccddc 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.cpp
@@ -11,6 +11,7 @@
//===----------------------------------------------------------------------===//
#include "SparcTargetMachine.h"
+#include "SparcTargetObjectFile.h"
#include "Sparc.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/PassManager.h"
@@ -32,10 +33,13 @@ SparcTargetMachine::SparcTargetMachine(const Target &T, StringRef TT,
CodeGenOpt::Level OL,
bool is64bit)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(make_unique<SparcELFTargetObjectFile>()),
Subtarget(TT, CPU, FS, *this, is64bit) {
initAsmInfo();
}
+SparcTargetMachine::~SparcTargetMachine() {}
+
namespace {
/// Sparc Code Generator Pass Configuration Options.
class SparcPassConfig : public TargetPassConfig {
@@ -47,8 +51,9 @@ public:
return getTM<SparcTargetMachine>();
}
+ void addIRPasses() override;
bool addInstSelector() override;
- bool addPreEmitPass() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -56,24 +61,19 @@ TargetPassConfig *SparcTargetMachine::createPassConfig(PassManagerBase &PM) {
return new SparcPassConfig(this, PM);
}
-bool SparcPassConfig::addInstSelector() {
- addPass(createSparcISelDag(getSparcTargetMachine()));
- return false;
+void SparcPassConfig::addIRPasses() {
+ addPass(createAtomicExpandPass(&getSparcTargetMachine()));
+
+ TargetPassConfig::addIRPasses();
}
-bool SparcTargetMachine::addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) {
- // Machine code emitter pass for Sparc.
- PM.add(createSparcJITCodeEmitterPass(*this, JCE));
+bool SparcPassConfig::addInstSelector() {
+ addPass(createSparcISelDag(getSparcTargetMachine()));
return false;
}
-/// addPreEmitPass - This pass may be implemented by targets that want to run
-/// passes immediately before machine code is emitted. This should return
-/// true if -print-machineinstrs should print out the code after the passes.
-bool SparcPassConfig::addPreEmitPass(){
+void SparcPassConfig::addPreEmitPass(){
addPass(createSparcDelaySlotFillerPass(getSparcTargetMachine()));
- return true;
}
void SparcV8TargetMachine::anchor() { }
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h
index 03b5137..096e7c8 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCTARGETMACHINE_H
-#define SPARCTARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCTARGETMACHINE_H
+#define LLVM_LIB_TARGET_SPARC_SPARCTARGETMACHINE_H
#include "SparcInstrInfo.h"
#include "SparcSubtarget.h"
@@ -21,37 +21,22 @@
namespace llvm {
class SparcTargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
SparcSubtarget Subtarget;
public:
SparcTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool is64bit);
+ ~SparcTargetMachine() override;
- const SparcInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const TargetFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
const SparcSubtarget *getSubtargetImpl() const override { return &Subtarget; }
- const SparcRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const SparcTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const SparcSelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
- SparcJITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
- bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
/// SparcV8TargetMachine - Sparc 32-bit target machine
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h b/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h
index c60675b..76c8cca 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_SPARC_TARGETOBJECTFILE_H
-#define LLVM_TARGET_SPARC_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCTARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_SPARC_SPARCTARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
diff --git a/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h b/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h
index 3767d8e..3b50350 100644
--- a/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h
+++ b/contrib/llvm/lib/Target/Sparc/SparcTargetStreamer.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SPARCTARGETSTREAMER_H
-#define SPARCTARGETSTREAMER_H
+#ifndef LLVM_LIB_TARGET_SPARC_SPARCTARGETSTREAMER_H
+#define LLVM_LIB_TARGET_SPARC_SPARCTARGETSTREAMER_H
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCStreamer.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp b/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
index 758be41..cb528db 100644
--- a/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
@@ -345,7 +345,7 @@ public:
SMLoc NameLoc, OperandVector &Operands) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
// Used by the TableGen code to parse particular operand types.
@@ -677,7 +677,7 @@ bool SystemZAsmParser::parseOperand(OperandVector &Operands,
bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
@@ -685,7 +685,6 @@ bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
- default: break;
case Match_Success:
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, STI);
@@ -696,7 +695,7 @@ bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
// Special case the error message for the very common case where only
// a single subtarget feature is missing
std::string Msg = "instruction requires:";
- unsigned Mask = 1;
+ uint64_t Mask = 1;
for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
if (ErrorInfo & Mask) {
Msg += " ";
@@ -709,7 +708,7 @@ bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
diff --git a/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp b/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp
index 2350776..23173bf 100644
--- a/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/Disassembler/SystemZDisassembler.cpp
@@ -12,7 +12,6 @@
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -28,11 +27,10 @@ public:
: MCDisassembler(STI, Ctx) {}
virtual ~SystemZDisassembler() {}
- // Override MCDisassembler.
- DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
- const MemoryObject &region, uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
+ DecodeStatus getInstruction(MCInst &instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
} // end anonymous namespace
@@ -288,14 +286,13 @@ static DecodeStatus decodeBDLAddr64Disp12Len8Operand(MCInst &Inst,
#include "SystemZGenDisassemblerTables.inc"
DecodeStatus SystemZDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
- const MemoryObject &Region,
+ ArrayRef<uint8_t> Bytes,
uint64_t Address,
- raw_ostream &os,
- raw_ostream &cs) const {
+ raw_ostream &OS,
+ raw_ostream &CS) const {
// Get the first two bytes of the instruction.
- uint8_t Bytes[6];
Size = 0;
- if (Region.readBytes(Address, 2, Bytes) == -1)
+ if (Bytes.size() < 2)
return MCDisassembler::Fail;
// The top 2 bits of the first byte specify the size.
@@ -312,7 +309,7 @@ DecodeStatus SystemZDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
}
// Read any remaining bytes.
- if (Size > 2 && Region.readBytes(Address + 2, Size - 2, Bytes + 2) == -1)
+ if (Bytes.size() < Size)
return MCDisassembler::Fail;
// Construct the instruction.
diff --git a/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h b/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
index dce482b..753903c 100644
--- a/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
+++ b/contrib/llvm/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SYSTEMZINSTPRINTER_H
-#define LLVM_SYSTEMZINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_INSTPRINTER_SYSTEMZINSTPRINTER_H
+#define LLVM_LIB_TARGET_SYSTEMZ_INSTPRINTER_SYSTEMZINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/Support/Compiler.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
index c46a36b..0161d62 100644
--- a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
@@ -23,12 +23,7 @@ SystemZMCAsmInfo::SystemZMCAsmInfo(StringRef TT) {
Data64bitsDirective = "\t.quad\t";
UsesELFSectionDirectiveForBSS = true;
SupportsDebugInformation = true;
- HasLEB128 = true;
ExceptionsType = ExceptionHandling::DwarfCFI;
-}
-const MCSection *
-SystemZMCAsmInfo::getNonexecutableStackSection(MCContext &Ctx) const {
- return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
- 0, SectionKind::getMetadata());
+ UseIntegratedAssembler = true;
}
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
index 1de97af..19b5b4b 100644
--- a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SystemZTARGETASMINFO_H
-#define SystemZTARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_MCTARGETDESC_SYSTEMZMCASMINFO_H
+#define LLVM_LIB_TARGET_SYSTEMZ_MCTARGETDESC_SYSTEMZMCASMINFO_H
#include "llvm/MC/MCAsmInfoELF.h"
#include "llvm/Support/Compiler.h"
@@ -19,9 +19,6 @@ class StringRef;
class SystemZMCAsmInfo : public MCAsmInfoELF {
public:
explicit SystemZMCAsmInfo(StringRef TT);
-
- // Override MCAsmInfo;
- const MCSection *getNonexecutableStackSection(MCContext &Ctx) const override;
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
index a3aab71..52a8d1d 100644
--- a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SYSTEMZMCFIXUPS_H
-#define LLVM_SYSTEMZMCFIXUPS_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_MCTARGETDESC_SYSTEMZMCFIXUPS_H
+#define LLVM_LIB_TARGET_SYSTEMZ_MCTARGETDESC_SYSTEMZMCFIXUPS_H
#include "llvm/MC/MCFixup.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
index cc94869..6e82b6d 100644
--- a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
@@ -181,15 +181,12 @@ static MCInstPrinter *createSystemZMCInstPrinter(const Target &T,
return new SystemZInstPrinter(MAI, MII, MRI);
}
-static MCStreamer *createSystemZMCObjectStreamer(const Target &T, StringRef TT,
- MCContext &Ctx,
- MCAsmBackend &MAB,
- raw_ostream &OS,
- MCCodeEmitter *Emitter,
- const MCSubtargetInfo &STI,
- bool RelaxAll,
- bool NoExecStack) {
- return createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack);
+static MCStreamer *
+createSystemZMCObjectStreamer(const Target &T, StringRef TT, MCContext &Ctx,
+ MCAsmBackend &MAB, raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll) {
+ return createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll);
}
extern "C" void LLVMInitializeSystemZTargetMC() {
diff --git a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
index cbaf9a8..5eb6526 100644
--- a/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZMCTARGETDESC_H
-#define SYSTEMZMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_MCTARGETDESC_SYSTEMZMCTARGETDESC_H
+#define LLVM_LIB_TARGET_SYSTEMZ_MCTARGETDESC_SYSTEMZMCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZ.h b/contrib/llvm/lib/Target/SystemZ/SystemZ.h
index 15792494..c8b95b2 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZ.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZ.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZ_H
-#define SYSTEMZ_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZ_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZ_H
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "llvm/Support/CodeGen.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp
index 8b18bc1..f4f3ec7 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp
@@ -185,7 +185,8 @@ EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
MCSymbolRefExpr::Create(getSymbol(ZCPV->getGlobalValue()),
getModifierVariantKind(ZCPV->getModifier()),
OutContext);
- uint64_t Size = TM.getDataLayout()->getTypeAllocSize(ZCPV->getType());
+ uint64_t Size =
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(ZCPV->getType());
OutStreamer.EmitValue(Expr, Size);
}
@@ -229,7 +230,7 @@ void SystemZAsmPrinter::EmitEndOfAsmFile(Module &M) {
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
OutStreamer.EmitLabel(Stubs[i].first);
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h
index 20093bc..6467279 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZAsmPrinter.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZASMPRINTER_H
-#define SYSTEMZASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZASMPRINTER_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZASMPRINTER_H
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/AsmPrinter.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h
index 4b1569d..71605ac 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZCallingConv.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZCALLINGCONV_H
-#define SYSTEMZCALLINGCONV_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
namespace llvm {
namespace SystemZ {
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h b/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h
index 699718f..0bd8c20 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZConstantPoolValue.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZCONSTANTPOOLVALUE_H
-#define SYSTEMZCONSTANTPOOLVALUE_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCONSTANTPOOLVALUE_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCONSTANTPOOLVALUE_H
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/Support/ErrorHandling.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp
index dc210d60..ce99ee5 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZElimCompare.cpp
@@ -47,7 +47,7 @@ struct Reference {
return *this;
}
- operator bool() const { return Def || Use; }
+ LLVM_EXPLICIT operator bool() const { return Def || Use; }
// True if the register is defined or used in some form, either directly or
// via a sub- or super-register.
@@ -458,7 +458,7 @@ bool SystemZElimCompare::processBlock(MachineBasicBlock &MBB) {
}
bool SystemZElimCompare::runOnMachineFunction(MachineFunction &F) {
- TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
+ TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
TRI = &TII->getRegisterInfo();
bool Changed = false;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp
index 055dbe9..eff4ae3 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.cpp
@@ -13,6 +13,7 @@
#include "SystemZInstrInfo.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZRegisterInfo.h"
+#include "SystemZSubtarget.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
@@ -65,7 +66,7 @@ processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
MachineFrameInfo *MFFrame = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
bool HasFP = hasFP(MF);
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
bool IsVarArg = MF.getFunction()->isVarArg();
@@ -108,7 +109,8 @@ processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
// and end registers.
static void addSavedGPR(MachineBasicBlock &MBB, MachineInstrBuilder &MIB,
unsigned GPR64, bool IsImplicit) {
- const TargetRegisterInfo *RI = MBB.getParent()->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RI =
+ MBB.getParent()->getSubtarget().getRegisterInfo();
unsigned GPR32 = RI->getSubReg(GPR64, SystemZ::subreg_l32);
bool IsLive = MBB.isLiveIn(GPR64) || MBB.isLiveIn(GPR32);
if (!IsLive || !IsImplicit) {
@@ -127,7 +129,7 @@ spillCalleeSavedRegisters(MachineBasicBlock &MBB,
return false;
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
bool IsVarArg = MF.getFunction()->isVarArg();
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
@@ -216,7 +218,7 @@ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
return false;
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
bool HasFP = hasFP(MF);
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
@@ -292,7 +294,7 @@ static void emitIncrement(MachineBasicBlock &MBB,
else {
Opcode = SystemZ::AGFI;
// Make sure we maintain 8-byte stack alignment.
- int64_t MinVal = -int64_t(1) << 31;
+ int64_t MinVal = -uint64_t(1) << 31;
int64_t MaxVal = (int64_t(1) << 31) - 8;
if (ThisVal < MinVal)
ThisVal = MinVal;
@@ -311,7 +313,7 @@ void SystemZFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineFrameInfo *MFFrame = MF.getFrameInfo();
auto *ZII =
- static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineModuleInfo &MMI = MF.getMMI();
@@ -408,7 +410,7 @@ void SystemZFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
auto *ZII =
- static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
// Skip the return instruction.
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h
index 4d5fe6d..cefa56f 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZFrameLowering.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZFRAMELOWERING_H
-#define SYSTEMZFRAMELOWERING_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZFRAMELOWERING_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZFRAMELOWERING_H
#include "llvm/ADT/IndexedMap.h"
#include "llvm/Target/TargetFrameLowering.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
index 24f7584..5f84624 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -140,7 +140,7 @@ class SystemZDAGToDAGISel : public SelectionDAGISel {
}
const SystemZInstrInfo *getInstrInfo() const {
- return getTargetMachine().getInstrInfo();
+ return getTargetMachine().getSubtargetImpl()->getInstrInfo();
}
// Try to fold more of the base or index of AM into AM, where IsBase
@@ -315,9 +315,9 @@ class SystemZDAGToDAGISel : public SelectionDAGISel {
public:
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
- : SelectionDAGISel(TM, OptLevel),
- Lowering(*TM.getTargetLowering()),
- Subtarget(*TM.getSubtargetImpl()) { }
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getSubtargetImpl()->getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) {}
// Override MachineFunctionPass.
const char *getPassName() const override {
@@ -1000,8 +1000,8 @@ bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
if (V1 == V2 && End1 == End2)
return false;
- return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
- AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
+ return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getAAInfo()),
+ AliasAnalysis::Location(V2, End2, Store->getAAInfo()));
}
bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
index 00c65f5..f7ac1ca 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
@@ -81,7 +81,7 @@ static MachineOperand earlyUseOperand(MachineOperand Op) {
}
SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
- : TargetLowering(tm, new TargetLoweringObjectFileELF()),
+ : TargetLowering(tm),
Subtarget(tm.getSubtarget<SystemZSubtarget>()) {
MVT PtrVT = getPointerTy();
@@ -218,10 +218,12 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
// We have native instructions for i8, i16 and i32 extensions, but not i1.
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ }
// Handle the various types of symbolic address.
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
@@ -275,7 +277,8 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
// Needed so that we don't try to implement f128 constant loads using
// a load-and-extend of a f80 constant (in cases where the constant
// would fit in an f80).
- setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
+ for (MVT VT : MVT::fp_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
// Floating-point truncation and stores need to be done separately.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
@@ -339,9 +342,10 @@ bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
return Imm.isZero() || Imm.isNegZero();
}
-bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned,
- bool *Fast) const {
+bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
// Unaligned accesses should never be slower than the expanded version.
// We check specifically for aligned accesses in the few cases where
// they are required.
@@ -674,12 +678,11 @@ LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
auto *TFL = static_cast<const SystemZFrameLowering *>(
- DAG.getTarget().getFrameLowering());
+ DAG.getSubtarget().getFrameLowering());
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
- *DAG.getContext());
+ CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
unsigned NumFixedGPRs = 0;
@@ -782,7 +785,7 @@ LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
return Chain;
}
-static bool canUseSiblingCall(CCState ArgCCInfo,
+static bool canUseSiblingCall(const CCState &ArgCCInfo,
SmallVectorImpl<CCValAssign> &ArgLocs) {
// Punt if there are any indirect or stack arguments, or if the call
// needs the call-saved argument register R6.
@@ -817,8 +820,7 @@ SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState ArgCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), ArgLocs,
- *DAG.getContext());
+ CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
// We don't support GuaranteedTailCallOpt, only automatically-detected
@@ -915,7 +917,8 @@ SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
RegsToPass[I].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
@@ -940,8 +943,7 @@ SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RetLocs;
- CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
- *DAG.getContext());
+ CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
// Copy all of the result registers out of their specified physreg.
@@ -972,8 +974,7 @@ SystemZTargetLowering::LowerReturn(SDValue Chain,
// Assign locations to each returned value.
SmallVector<CCValAssign, 16> RetLocs;
- CCState RetCCInfo(CallConv, IsVarArg, MF, DAG.getTarget(), RetLocs,
- *DAG.getContext());
+ CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
// Quick exit for void returns
@@ -1191,7 +1192,7 @@ static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
Load->getChain(), Load->getBasePtr(),
Load->getPointerInfo(), Load->getMemoryVT(),
Load->isVolatile(), Load->isNonTemporal(),
- Load->getAlignment());
+ Load->isInvariant(), Load->getAlignment());
// Make sure that the second operand is an i32 with the right value.
if (C.Op1.getValueType() != MVT::i32 ||
@@ -2614,7 +2615,7 @@ MachineBasicBlock *
SystemZTargetLowering::emitSelect(MachineInstr *MI,
MachineBasicBlock *MBB) const {
const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
- MBB->getParent()->getTarget().getInstrInfo());
+ MBB->getParent()->getSubtarget().getInstrInfo());
unsigned DestReg = MI->getOperand(0).getReg();
unsigned TrueReg = MI->getOperand(1).getReg();
@@ -2663,7 +2664,7 @@ SystemZTargetLowering::emitCondStore(MachineInstr *MI,
unsigned StoreOpcode, unsigned STOCOpcode,
bool Invert) const {
const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
- MBB->getParent()->getTarget().getInstrInfo());
+ MBB->getParent()->getSubtarget().getInstrInfo());
unsigned SrcReg = MI->getOperand(0).getReg();
MachineOperand Base = MI->getOperand(1);
@@ -2732,7 +2733,7 @@ SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
bool Invert) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
@@ -2802,14 +2803,10 @@ SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
unsigned Tmp = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
.addReg(RotatedOldVal).addOperand(Src2);
- if (BitSize < 32)
+ if (BitSize <= 32)
// XILF with the upper BitSize bits set.
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
- .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
- else if (BitSize == 32)
- // XILF with every bit set.
- BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
- .addReg(Tmp).addImm(~uint32_t(0));
+ .addReg(Tmp).addImm(-1U << (32 - BitSize));
else {
// Use LCGR and add -1 to the result, which is more compact than
// an XILF, XILH pair.
@@ -2856,7 +2853,7 @@ SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
unsigned BitSize) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
@@ -2968,7 +2965,7 @@ SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
MachineBasicBlock *MBB) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
// Extract the operands. Base can be a register or a frame index.
@@ -3085,7 +3082,7 @@ SystemZTargetLowering::emitExt128(MachineInstr *MI,
bool ClearEven, unsigned SubReg) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
@@ -3117,7 +3114,7 @@ SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
@@ -3287,7 +3284,7 @@ SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h
index e21b050..887c236 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H
-#define LLVM_TARGET_SystemZ_ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
#include "SystemZ.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
@@ -208,8 +208,9 @@ public:
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
- bool *Fast) const override;
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
+ unsigned Align,
+ bool *Fast) const override;
bool isTruncateFree(Type *, Type *) const override;
bool isTruncateFree(EVT, EVT) const override;
const char *getTargetNodeName(unsigned Opcode) const override;
@@ -321,4 +322,4 @@ private:
};
} // end namespace llvm
-#endif // LLVM_TARGET_SystemZ_ISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h b/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h
index 84196e9..464f79a 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrBuilder.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZINSTRBUILDER_H
-#define SYSTEMZINSTRBUILDER_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRBUILDER_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRBUILDER_H
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td
index e8841e1..4a5582f 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td
@@ -26,14 +26,14 @@ defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
//===----------------------------------------------------------------------===//
// Load zero.
-let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>;
def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>;
def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
}
// Moves between two floating-point registers.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def LER : UnaryRR <"le", 0x38, null_frag, FP32, FP32>;
def LDR : UnaryRR <"ld", 0x28, null_frag, FP64, FP64>;
def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>;
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
index f58ab47..8ff9553 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
@@ -633,7 +633,7 @@ struct LogicOp {
LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
: RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
- operator bool() const { return RegSize; }
+ LLVM_EXPLICIT operator bool() const { return RegSize; }
unsigned RegSize, ImmLSB, ImmSize;
};
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h
index 83009cb..d2e3f54 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_SYSTEMZINSTRINFO_H
-#define LLVM_TARGET_SYSTEMZINSTRINFO_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H
#include "SystemZ.h"
#include "SystemZRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td
index f4951ad..902d74d 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.td
@@ -16,7 +16,7 @@ def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
// Takes as input the value of the stack pointer after a dynamic allocation
// has been made. Sets the output to the address of the dynamically-
// allocated area itself, skipping the outgoing arguments.
@@ -263,7 +263,7 @@ def BASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
//===----------------------------------------------------------------------===//
// Register moves.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
// Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
@@ -286,7 +286,7 @@ let Uses = [CC] in {
}
// Immediate moves.
-let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
+let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
// 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF,
// deopending on the choice of register.
@@ -402,13 +402,13 @@ let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>;
def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
}
// 64-bit extensions from registers.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>;
def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
@@ -452,7 +452,7 @@ let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
@@ -464,7 +464,7 @@ let neverHasSideEffects = 1 in {
}
// 64-bit extensions from registers.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>;
def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
@@ -546,7 +546,7 @@ def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
//===----------------------------------------------------------------------===//
// Byte-swapping register moves.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>;
def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
}
@@ -566,7 +566,7 @@ def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
//===----------------------------------------------------------------------===//
// Load BDX-style addresses.
-let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
+let hasSideEffects = 0, isAsCheapAsAMove = 1, isReMaterializable = 1,
DispKey = "la" in {
let DispSize = "12" in
def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
@@ -580,7 +580,7 @@ let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
// Load a PC-relative address. There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
-let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
+let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
"larl\t$R1, $I2",
@@ -1012,13 +1012,13 @@ def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>;
//===----------------------------------------------------------------------===//
// Shift left.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
}
// Logical shift right.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
}
@@ -1030,7 +1030,7 @@ let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
}
// Rotate left.
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def RLL : BinaryRSY<"rll", 0xEB1D, rotl, GR32>;
def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
index 8081334..8dab44e 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
@@ -448,7 +448,7 @@ void SystemZLongBranch::relaxBranches() {
}
bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
- TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
+ TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
MF = &F;
uint64_t Size = initMBBInfo();
if (Size <= MaxForwardRange || !mustRelaxABranch())
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h b/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h
index 90447ff..7173cfa 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZMCInstLower.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_SYSTEMZMCINSTLOWER_H
-#define LLVM_SYSTEMZMCINSTLOWER_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZMCINSTLOWER_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZMCINSTLOWER_H
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/Compiler.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
index 50865f13..92c2ce7 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZMACHINEFUNCTIONINFO_H
-#define SYSTEMZMACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZMACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFunction.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp
index f03bcc4..64f5eeb 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp
@@ -35,7 +35,7 @@ SystemZRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
BitVector
SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (TFI->hasFP(MF)) {
// R11D is the frame pointer. Reserve all aliases.
@@ -62,8 +62,8 @@ SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
MachineBasicBlock &MBB = *MI->getParent();
MachineFunction &MF = *MBB.getParent();
auto *TII =
- static_cast<const SystemZInstrInfo *>(MF.getTarget().getInstrInfo());
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
DebugLoc DL = MI->getDebugLoc();
// Decompose the frame index into a base and offset.
@@ -134,6 +134,6 @@ SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
unsigned
SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D;
}
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h
index 9bffa46..212fe91 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SystemZREGISTERINFO_H
-#define SystemZREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZREGISTERINFO_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZREGISTERINFO_H
#include "SystemZ.h"
#include "llvm/Target/TargetRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h b/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h
index e9de146..a257d6b 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZSELECTIONDAGINFO_H
-#define SYSTEMZSELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZSELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZSELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp
index aad899c..ec7a8c4 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZShortenInst.cpp
@@ -150,7 +150,7 @@ bool SystemZShortenInst::processBlock(MachineBasicBlock &MBB) {
}
bool SystemZShortenInst::runOnMachineFunction(MachineFunction &F) {
- TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
+ TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
bool Changed = false;
for (auto &MBB : F)
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h b/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h
index 4e8c710..f881552 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZSubtarget.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZSUBTARGET_H
-#define SYSTEMZSUBTARGET_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZSUBTARGET_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZSUBTARGET_H
#include "SystemZFrameLowering.h"
#include "SystemZISelLowering.h"
@@ -55,14 +55,20 @@ public:
SystemZSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM);
- const TargetFrameLowering *getFrameLowering() const { return &FrameLowering; }
- const SystemZInstrInfo *getInstrInfo() const { return &InstrInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
- const SystemZRegisterInfo *getRegisterInfo() const {
+ const TargetFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const SystemZInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const SystemZRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
- const SystemZTargetLowering *getTargetLowering() const { return &TLInfo; }
- const TargetSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
+ const SystemZTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const TargetSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
// This is important for reducing register pressure in vector code.
bool useAA() const override { return true; }
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
index 0122e99..a210074 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
@@ -11,6 +11,7 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
using namespace llvm;
@@ -25,10 +26,13 @@ SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(make_unique<TargetLoweringObjectFileELF>()),
Subtarget(TT, CPU, FS, *this) {
initAsmInfo();
}
+SystemZTargetMachine::~SystemZTargetMachine() {}
+
namespace {
/// SystemZ Code Generator Pass Configuration Options.
class SystemZPassConfig : public TargetPassConfig {
@@ -42,14 +46,13 @@ public:
void addIRPasses() override;
bool addInstSelector() override;
- bool addPreSched2() override;
- bool addPreEmitPass() override;
+ void addPreSched2() override;
+ void addPreEmitPass() override;
};
} // end anonymous namespace
void SystemZPassConfig::addIRPasses() {
TargetPassConfig::addIRPasses();
- addPass(createPartiallyInlineLibCallsPass());
}
bool SystemZPassConfig::addInstSelector() {
@@ -57,14 +60,13 @@ bool SystemZPassConfig::addInstSelector() {
return false;
}
-bool SystemZPassConfig::addPreSched2() {
+void SystemZPassConfig::addPreSched2() {
if (getOptLevel() != CodeGenOpt::None &&
getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond())
addPass(&IfConverterID);
- return true;
}
-bool SystemZPassConfig::addPreEmitPass() {
+void SystemZPassConfig::addPreEmitPass() {
// We eliminate comparisons here rather than earlier because some
// transformations can change the set of available CC values and we
// generally want those transformations to have priority. This is
@@ -89,11 +91,10 @@ bool SystemZPassConfig::addPreEmitPass() {
// between the comparison and the branch, but it isn't clear whether
// preventing that would be a win or not.
if (getOptLevel() != CodeGenOpt::None)
- addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
+ addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
if (getOptLevel() != CodeGenOpt::None)
- addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
+ addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
- return true;
}
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h
index ded07e9..9fae5e4 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZTargetMachine.h
@@ -12,8 +12,8 @@
//===----------------------------------------------------------------------===//
-#ifndef SYSTEMZTARGETMACHINE_H
-#define SYSTEMZTARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZTARGETMACHINE_H
+#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZTARGETMACHINE_H
#include "SystemZSubtarget.h"
#include "llvm/Target/TargetMachine.h"
@@ -23,6 +23,7 @@ namespace llvm {
class TargetFrameLowering;
class SystemZTargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
SystemZSubtarget Subtarget;
public:
@@ -30,32 +31,17 @@ public:
StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
+ ~SystemZTargetMachine() override;
// Override TargetMachine.
- const TargetFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- const SystemZInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
const SystemZSubtarget *getSubtargetImpl() const override {
return &Subtarget;
}
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- const SystemZRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const SystemZTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const TargetSelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
-
// Override LLVMTargetMachine
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/Target.cpp b/contrib/llvm/lib/Target/Target.cpp
index d277f82..4b51b3f 100644
--- a/contrib/llvm/lib/Target/Target.cpp
+++ b/contrib/llvm/lib/Target/Target.cpp
@@ -49,7 +49,7 @@ LLVMTargetDataRef LLVMCreateTargetData(const char *StringRep) {
void LLVMAddTargetData(LLVMTargetDataRef TD, LLVMPassManagerRef PM) {
// The DataLayoutPass must now be in sync with the module. Unfortunatelly we
// cannot enforce that from the C api.
- unwrap(PM)->add(new DataLayoutPass(*unwrap(TD)));
+ unwrap(PM)->add(new DataLayoutPass());
}
void LLVMAddTargetLibraryInfo(LLVMTargetLibraryInfoRef TLI,
diff --git a/contrib/llvm/lib/Target/TargetJITInfo.cpp b/contrib/llvm/lib/Target/TargetJITInfo.cpp
deleted file mode 100644
index aafedf8..0000000
--- a/contrib/llvm/lib/Target/TargetJITInfo.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-//===- Target/TargetJITInfo.h - Target Information for JIT ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Target/TargetJITInfo.h"
-
-using namespace llvm;
-
-void TargetJITInfo::anchor() { }
diff --git a/contrib/llvm/lib/Target/TargetLibraryInfo.cpp b/contrib/llvm/lib/Target/TargetLibraryInfo.cpp
index 616ff90..c0abdbd 100644
--- a/contrib/llvm/lib/Target/TargetLibraryInfo.cpp
+++ b/contrib/llvm/lib/Target/TargetLibraryInfo.cpp
@@ -28,8 +28,12 @@ const char* TargetLibraryInfo::StandardNames[LibFunc::NumLibFuncs] =
"_IO_putc",
"_ZdaPv",
"_ZdaPvRKSt9nothrow_t",
+ "_ZdaPvj",
+ "_ZdaPvm",
"_ZdlPv",
"_ZdlPvRKSt9nothrow_t",
+ "_ZdlPvj",
+ "_ZdlPvm",
"_Znaj",
"_ZnajRKSt9nothrow_t",
"_Znam",
@@ -47,6 +51,8 @@ const char* TargetLibraryInfo::StandardNames[LibFunc::NumLibFuncs] =
"__isoc99_scanf",
"__isoc99_sscanf",
"__memcpy_chk",
+ "__memmove_chk",
+ "__memset_chk",
"__sincospi_stret",
"__sincospif_stret",
"__sinpi",
@@ -54,7 +60,11 @@ const char* TargetLibraryInfo::StandardNames[LibFunc::NumLibFuncs] =
"__sqrt_finite",
"__sqrtf_finite",
"__sqrtl_finite",
+ "__stpcpy_chk",
+ "__stpncpy_chk",
+ "__strcpy_chk",
"__strdup",
+ "__strncpy_chk",
"__strndup",
"__strtok_r",
"abs",
@@ -348,7 +358,7 @@ const char* TargetLibraryInfo::StandardNames[LibFunc::NumLibFuncs] =
static bool hasSinCosPiStret(const Triple &T) {
// Only Darwin variants have _stret versions of combined trig functions.
- if (!T.isMacOSX() && T.getOS() != Triple::IOS)
+ if (!T.isOSDarwin())
return false;
// The ABI is rather complicated on x86, so don't do anything special there.
@@ -358,7 +368,7 @@ static bool hasSinCosPiStret(const Triple &T) {
if (T.isMacOSX() && T.isMacOSXVersionLT(10, 9))
return false;
- if (T.getOS() == Triple::IOS && T.isOSVersionLT(7, 0))
+ if (T.isiOS() && T.isOSVersionLT(7, 0))
return false;
return true;
@@ -379,9 +389,10 @@ static void initialize(TargetLibraryInfo &TLI, const Triple &T,
}
#endif // !NDEBUG
- // There are no library implementations of mempcy and memset for r600 and
+ // There are no library implementations of mempcy and memset for AMD gpus and
// these can be difficult to lower in the backend.
- if (T.getArch() == Triple::r600) {
+ if (T.getArch() == Triple::r600 ||
+ T.getArch() == Triple::amdgcn) {
TLI.setUnavailable(LibFunc::memcpy);
TLI.setUnavailable(LibFunc::memset);
TLI.setUnavailable(LibFunc::memset_pattern16);
diff --git a/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp b/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp
index 2569e92..f343473 100644
--- a/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp
+++ b/contrib/llvm/lib/Target/TargetLoweringObjectFile.cpp
@@ -30,6 +30,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -42,7 +43,7 @@ using namespace llvm;
void TargetLoweringObjectFile::Initialize(MCContext &ctx,
const TargetMachine &TM) {
Ctx = &ctx;
- DL = TM.getDataLayout();
+ DL = TM.getSubtargetImpl()->getDataLayout();
InitMCObjectFileInfo(TM.getTargetTriple(),
TM.getRelocationModel(), TM.getCodeModel(), *Ctx);
}
@@ -199,7 +200,8 @@ SectionKind TargetLoweringObjectFile::getKindForGlobal(const GlobalValue *GV,
// Otherwise, just drop it into a mergable constant section. If we have
// a section for this size, use it, otherwise use the arbitrary sized
// mergable section.
- switch (TM.getDataLayout()->getTypeAllocSize(C->getType())) {
+ switch (TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
+ C->getType())) {
case 4: return SectionKind::getMergeableConst4();
case 8: return SectionKind::getMergeableConst8();
case 16: return SectionKind::getMergeableConst16();
@@ -268,31 +270,6 @@ SectionForGlobal(const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
return SelectSectionForGlobal(GV, Kind, Mang, TM);
}
-bool TargetLoweringObjectFile::isSectionAtomizableBySymbols(
- const MCSection &Section) const {
- return false;
-}
-
-// Lame default implementation. Calculate the section name for global.
-const MCSection *
-TargetLoweringObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
- SectionKind Kind,
- Mangler &Mang,
- const TargetMachine &TM) const{
- assert(!Kind.isThreadLocal() && "Doesn't support TLS");
-
- if (Kind.isText())
- return getTextSection();
-
- if (Kind.isBSS() && BSSSection != nullptr)
- return BSSSection;
-
- if (Kind.isReadOnly() && ReadOnlySection != nullptr)
- return ReadOnlySection;
-
- return getDataSection();
-}
-
/// getSectionForConstant - Given a mergable constant with the
/// specified size and relocation information, return a section that it
/// should be placed in.
diff --git a/contrib/llvm/lib/Target/TargetMachine.cpp b/contrib/llvm/lib/Target/TargetMachine.cpp
index 95c8cb6..b3ff001 100644
--- a/contrib/llvm/lib/Target/TargetMachine.cpp
+++ b/contrib/llvm/lib/Target/TargetMachine.cpp
@@ -21,11 +21,13 @@
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
//---------------------------------------------------------------------------
@@ -47,17 +49,13 @@ TargetMachine::~TargetMachine() {
}
/// \brief Reset the target options based on the function's attributes.
-void TargetMachine::resetTargetOptions(const MachineFunction *MF) const {
- const Function *F = MF->getFunction();
- TargetOptions &TO = MF->getTarget().Options;
-
-#define RESET_OPTION(X, Y) \
- do { \
- if (F->hasFnAttribute(Y)) \
- TO.X = \
- (F->getAttributes(). \
- getAttribute(AttributeSet::FunctionIndex, \
- Y).getValueAsString() == "true"); \
+void TargetMachine::resetTargetOptions(const Function &F) const {
+#define RESET_OPTION(X, Y) \
+ do { \
+ if (F.hasFnAttribute(Y)) \
+ Options.X = (F.getAttributes() \
+ .getAttribute(AttributeSet::FunctionIndex, Y) \
+ .getValueAsString() == "true"); \
} while (0)
RESET_OPTION(NoFramePointerElim, "no-frame-pointer-elim");
@@ -68,7 +66,7 @@ void TargetMachine::resetTargetOptions(const MachineFunction *MF) const {
RESET_OPTION(UseSoftFloat, "use-soft-float");
RESET_OPTION(DisableTailCalls, "disable-tail-calls");
- TO.MCOptions.SanitizeAddress = F->hasFnAttribute(Attribute::SanitizeAddress);
+ Options.MCOptions.SanitizeAddress = F.hasFnAttribute(Attribute::SanitizeAddress);
}
/// getRelocationModel - Returns the code generation relocation model. The
@@ -172,6 +170,19 @@ void TargetMachine::setDataSections(bool V) {
Options.DataSections = V;
}
+static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
+ const MCSection &Section) {
+ if (!AsmInfo.isSectionAtomizableBySymbols(Section))
+ return true;
+
+ // If it is not dead stripped, it is safe to use private labels.
+ const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
+ if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
+ return true;
+
+ return false;
+}
+
void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
const GlobalValue *GV, Mangler &Mang,
bool MayAlwaysUsePrivate) const {
@@ -183,9 +194,9 @@ void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
}
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, *this);
const TargetLoweringObjectFile &TLOF =
- getTargetLowering()->getObjFileLowering();
+ getSubtargetImpl()->getTargetLowering()->getObjFileLowering();
const MCSection *TheSection = TLOF.SectionForGlobal(GV, GVKind, Mang, *this);
- bool CannotUsePrivateLabel = TLOF.isSectionAtomizableBySymbols(*TheSection);
+ bool CannotUsePrivateLabel = !canUsePrivateLabel(*AsmInfo, *TheSection);
Mang.getNameWithPrefix(Name, GV, CannotUsePrivateLabel);
}
@@ -193,6 +204,6 @@ MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV, Mangler &Mang) const {
SmallString<60> NameStr;
getNameWithPrefix(NameStr, GV, Mang);
const TargetLoweringObjectFile &TLOF =
- getTargetLowering()->getObjFileLowering();
+ getSubtargetImpl()->getTargetLowering()->getObjFileLowering();
return TLOF.getContext().GetOrCreateSymbol(NameStr.str());
}
diff --git a/contrib/llvm/lib/Target/TargetMachineC.cpp b/contrib/llvm/lib/Target/TargetMachineC.cpp
index 20923c9..b3e07df 100644
--- a/contrib/llvm/lib/Target/TargetMachineC.cpp
+++ b/contrib/llvm/lib/Target/TargetMachineC.cpp
@@ -24,6 +24,7 @@
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
@@ -172,7 +173,7 @@ char* LLVMGetTargetMachineFeatureString(LLVMTargetMachineRef T) {
}
LLVMTargetDataRef LLVMGetTargetMachineData(LLVMTargetMachineRef T) {
- return wrap(unwrap(T)->getDataLayout());
+ return wrap(unwrap(T)->getSubtargetImpl()->getDataLayout());
}
void LLVMSetTargetMachineAsmVerbosity(LLVMTargetMachineRef T,
@@ -189,7 +190,7 @@ static LLVMBool LLVMTargetMachineEmit(LLVMTargetMachineRef T, LLVMModuleRef M,
std::string error;
- const DataLayout* td = TM->getDataLayout();
+ const DataLayout *td = TM->getSubtargetImpl()->getDataLayout();
if (!td) {
error = "No DataLayout in TargetMachine";
@@ -197,7 +198,7 @@ static LLVMBool LLVMTargetMachineEmit(LLVMTargetMachineRef T, LLVMModuleRef M,
return true;
}
Mod->setDataLayout(td);
- pass.add(new DataLayoutPass(Mod));
+ pass.add(new DataLayoutPass());
TargetMachine::CodeGenFileType ft;
switch (codegen) {
@@ -222,10 +223,10 @@ static LLVMBool LLVMTargetMachineEmit(LLVMTargetMachineRef T, LLVMModuleRef M,
LLVMBool LLVMTargetMachineEmitToFile(LLVMTargetMachineRef T, LLVMModuleRef M,
char* Filename, LLVMCodeGenFileType codegen, char** ErrorMessage) {
- std::string error;
- raw_fd_ostream dest(Filename, error, sys::fs::F_None);
- if (!error.empty()) {
- *ErrorMessage = strdup(error.c_str());
+ std::error_code EC;
+ raw_fd_ostream dest(Filename, EC, sys::fs::F_None);
+ if (EC) {
+ *ErrorMessage = strdup(EC.message().c_str());
return true;
}
formatted_raw_ostream destf(dest);
diff --git a/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp b/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp
index 386a813..10597a8 100644
--- a/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp
+++ b/contrib/llvm/lib/Target/TargetSubtargetInfo.cpp
@@ -39,7 +39,7 @@ bool TargetSubtargetInfo::useMachineScheduler() const {
return enableMachineScheduler();
}
-bool TargetSubtargetInfo::enableAtomicExpandLoadLinked() const {
+bool TargetSubtargetInfo::enableAtomicExpand() const {
return true;
}
@@ -53,7 +53,7 @@ bool TargetSubtargetInfo::enableRALocalReassignment(
}
bool TargetSubtargetInfo::enablePostMachineScheduler() const {
- return getSchedModel()->PostRAScheduler;
+ return getSchedModel().PostRAScheduler;
}
bool TargetSubtargetInfo::useAA() const {
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp
index a365f62..543af8e 100644
--- a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.cpp
@@ -10,9 +10,12 @@
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86AsmInstrumentation.h"
#include "X86Operand.h"
+#include "X86RegisterInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
@@ -23,6 +26,73 @@
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/CommandLine.h"
+#include <algorithm>
+#include <cassert>
+#include <vector>
+
+// Following comment describes how assembly instrumentation works.
+// Currently we have only AddressSanitizer instrumentation, but we're
+// planning to implement MemorySanitizer for inline assembly too. If
+// you're not familiar with AddressSanitizer algorithm, please, read
+// https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm.
+//
+// When inline assembly is parsed by an instance of X86AsmParser, all
+// instructions are emitted via EmitInstruction method. That's the
+// place where X86AsmInstrumentation analyzes an instruction and
+// decides, whether the instruction should be emitted as is or
+// instrumentation is required. The latter case happens when an
+// instruction reads from or writes to memory. Now instruction opcode
+// is explicitly checked, and if an instruction has a memory operand
+// (for instance, movq (%rsi, %rcx, 8), %rax) - it should be
+// instrumented. There're also exist instructions that modify
+// memory but don't have an explicit memory operands, for instance,
+// movs.
+//
+// Let's consider at first 8-byte memory accesses when an instruction
+// has an explicit memory operand. In this case we need two registers -
+// AddressReg to compute address of a memory cells which are accessed
+// and ShadowReg to compute corresponding shadow address. So, we need
+// to spill both registers before instrumentation code and restore them
+// after instrumentation. Thus, in general, instrumentation code will
+// look like this:
+// PUSHF # Store flags, otherwise they will be overwritten
+// PUSH AddressReg # spill AddressReg
+// PUSH ShadowReg # spill ShadowReg
+// LEA MemOp, AddressReg # compute address of the memory operand
+// MOV AddressReg, ShadowReg
+// SHR ShadowReg, 3
+// # ShadowOffset(AddressReg >> 3) contains address of a shadow
+// # corresponding to MemOp.
+// CMP ShadowOffset(ShadowReg), 0 # test shadow value
+// JZ .Done # when shadow equals to zero, everything is fine
+// MOV AddressReg, RDI
+// # Call __asan_report function with AddressReg as an argument
+// CALL __asan_report
+// .Done:
+// POP ShadowReg # Restore ShadowReg
+// POP AddressReg # Restore AddressReg
+// POPF # Restore flags
+//
+// Memory accesses with different size (1-, 2-, 4- and 16-byte) are
+// handled in a similar manner, but small memory accesses (less than 8
+// byte) require an additional ScratchReg, which is used for shadow value.
+//
+// If, suppose, we're instrumenting an instruction like movs, only
+// contents of RDI, RDI + AccessSize * RCX, RSI, RSI + AccessSize *
+// RCX are checked. In this case there're no need to spill and restore
+// AddressReg , ShadowReg or flags four times, they're saved on stack
+// just once, before instrumentation of these four addresses, and restored
+// at the end of the instrumentation.
+//
+// There exist several things which complicate this simple algorithm.
+// * Instrumented memory operand can have RSP as a base or an index
+// register. So we need to add a constant offset before computation
+// of memory address, since flags, AddressReg, ShadowReg, etc. were
+// already stored on stack and RSP was modified.
+// * Debug info (usually, DWARF) should be adjusted, because sometimes
+// RSP is used as a frame register. So, we need to select some
+// register as a frame register and temprorary override current CFA
+// register.
namespace llvm {
namespace {
@@ -32,10 +102,23 @@ static cl::opt<bool> ClAsanInstrumentAssembly(
cl::desc("instrument assembly with AddressSanitizer checks"), cl::Hidden,
cl::init(false));
-bool IsStackReg(unsigned Reg) {
- return Reg == X86::RSP || Reg == X86::ESP || Reg == X86::SP;
+const int64_t MinAllowedDisplacement = std::numeric_limits<int32_t>::min();
+const int64_t MaxAllowedDisplacement = std::numeric_limits<int32_t>::max();
+
+int64_t ApplyDisplacementBounds(int64_t Displacement) {
+ return std::max(std::min(MaxAllowedDisplacement, Displacement),
+ MinAllowedDisplacement);
+}
+
+void CheckDisplacementBounds(int64_t Displacement) {
+ assert(Displacement >= MinAllowedDisplacement &&
+ Displacement <= MaxAllowedDisplacement);
}
+bool IsStackReg(unsigned Reg) { return Reg == X86::RSP || Reg == X86::ESP; }
+
+bool IsSmallMemAccess(unsigned AccessSize) { return AccessSize < 8; }
+
std::string FuncName(unsigned AccessSize, bool IsWrite) {
return std::string("__asan_report_") + (IsWrite ? "store" : "load") +
utostr(AccessSize);
@@ -43,60 +126,264 @@ std::string FuncName(unsigned AccessSize, bool IsWrite) {
class X86AddressSanitizer : public X86AsmInstrumentation {
public:
- X86AddressSanitizer(const MCSubtargetInfo &STI) : STI(STI) {}
+ struct RegisterContext {
+ private:
+ enum RegOffset {
+ REG_OFFSET_ADDRESS = 0,
+ REG_OFFSET_SHADOW,
+ REG_OFFSET_SCRATCH
+ };
+
+ public:
+ RegisterContext(unsigned AddressReg, unsigned ShadowReg,
+ unsigned ScratchReg) {
+ BusyRegs.push_back(convReg(AddressReg, MVT::i64));
+ BusyRegs.push_back(convReg(ShadowReg, MVT::i64));
+ BusyRegs.push_back(convReg(ScratchReg, MVT::i64));
+ }
+
+ unsigned AddressReg(MVT::SimpleValueType VT) const {
+ return convReg(BusyRegs[REG_OFFSET_ADDRESS], VT);
+ }
+
+ unsigned ShadowReg(MVT::SimpleValueType VT) const {
+ return convReg(BusyRegs[REG_OFFSET_SHADOW], VT);
+ }
+
+ unsigned ScratchReg(MVT::SimpleValueType VT) const {
+ return convReg(BusyRegs[REG_OFFSET_SCRATCH], VT);
+ }
+
+ void AddBusyReg(unsigned Reg) {
+ if (Reg != X86::NoRegister)
+ BusyRegs.push_back(convReg(Reg, MVT::i64));
+ }
+
+ void AddBusyRegs(const X86Operand &Op) {
+ AddBusyReg(Op.getMemBaseReg());
+ AddBusyReg(Op.getMemIndexReg());
+ }
+
+ unsigned ChooseFrameReg(MVT::SimpleValueType VT) const {
+ static const MCPhysReg Candidates[] = { X86::RBP, X86::RAX, X86::RBX,
+ X86::RCX, X86::RDX, X86::RDI,
+ X86::RSI };
+ for (unsigned Reg : Candidates) {
+ if (!std::count(BusyRegs.begin(), BusyRegs.end(), Reg))
+ return convReg(Reg, VT);
+ }
+ return X86::NoRegister;
+ }
+
+ private:
+ unsigned convReg(unsigned Reg, MVT::SimpleValueType VT) const {
+ return Reg == X86::NoRegister ? Reg : getX86SubSuperRegister(Reg, VT);
+ }
+
+ std::vector<unsigned> BusyRegs;
+ };
+
+ X86AddressSanitizer(const MCSubtargetInfo &STI)
+ : X86AsmInstrumentation(STI), RepPrefix(false), OrigSPOffset(0) {}
+
virtual ~X86AddressSanitizer() {}
// X86AsmInstrumentation implementation:
- virtual void InstrumentInstruction(
- const MCInst &Inst, OperandVector &Operands, MCContext &Ctx,
- const MCInstrInfo &MII, MCStreamer &Out) override {
+ virtual void InstrumentAndEmitInstruction(const MCInst &Inst,
+ OperandVector &Operands,
+ MCContext &Ctx,
+ const MCInstrInfo &MII,
+ MCStreamer &Out) override {
+ InstrumentMOVS(Inst, Operands, Ctx, MII, Out);
+ if (RepPrefix)
+ EmitInstruction(Out, MCInstBuilder(X86::REP_PREFIX));
+
InstrumentMOV(Inst, Operands, Ctx, MII, Out);
- }
- // Should be implemented differently in x86_32 and x86_64 subclasses.
- virtual void InstrumentMemOperandSmallImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) = 0;
- virtual void InstrumentMemOperandLargeImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) = 0;
+ RepPrefix = (Inst.getOpcode() == X86::REP_PREFIX);
+ if (!RepPrefix)
+ EmitInstruction(Out, Inst);
+ }
- void InstrumentMemOperand(MCParsedAsmOperand &Op, unsigned AccessSize,
- bool IsWrite, MCContext &Ctx, MCStreamer &Out);
+ // Adjusts up stack and saves all registers used in instrumentation.
+ virtual void InstrumentMemOperandPrologue(const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) = 0;
+
+ // Restores all registers used in instrumentation and adjusts stack.
+ virtual void InstrumentMemOperandEpilogue(const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) = 0;
+
+ virtual void InstrumentMemOperandSmall(X86Operand &Op, unsigned AccessSize,
+ bool IsWrite,
+ const RegisterContext &RegCtx,
+ MCContext &Ctx, MCStreamer &Out) = 0;
+ virtual void InstrumentMemOperandLarge(X86Operand &Op, unsigned AccessSize,
+ bool IsWrite,
+ const RegisterContext &RegCtx,
+ MCContext &Ctx, MCStreamer &Out) = 0;
+
+ virtual void InstrumentMOVSImpl(unsigned AccessSize, MCContext &Ctx,
+ MCStreamer &Out) = 0;
+
+ void InstrumentMemOperand(X86Operand &Op, unsigned AccessSize, bool IsWrite,
+ const RegisterContext &RegCtx, MCContext &Ctx,
+ MCStreamer &Out);
+ void InstrumentMOVSBase(unsigned DstReg, unsigned SrcReg, unsigned CntReg,
+ unsigned AccessSize, MCContext &Ctx, MCStreamer &Out);
+
+ void InstrumentMOVS(const MCInst &Inst, OperandVector &Operands,
+ MCContext &Ctx, const MCInstrInfo &MII, MCStreamer &Out);
void InstrumentMOV(const MCInst &Inst, OperandVector &Operands,
MCContext &Ctx, const MCInstrInfo &MII, MCStreamer &Out);
- void EmitInstruction(MCStreamer &Out, const MCInst &Inst) {
- Out.EmitInstruction(Inst, STI);
- }
+protected:
void EmitLabel(MCStreamer &Out, MCSymbol *Label) { Out.EmitLabel(Label); }
-protected:
- const MCSubtargetInfo &STI;
+ void EmitLEA(X86Operand &Op, MVT::SimpleValueType VT, unsigned Reg,
+ MCStreamer &Out) {
+ assert(VT == MVT::i32 || VT == MVT::i64);
+ MCInst Inst;
+ Inst.setOpcode(VT == MVT::i32 ? X86::LEA32r : X86::LEA64r);
+ Inst.addOperand(MCOperand::CreateReg(getX86SubSuperRegister(Reg, VT)));
+ Op.addMemOperands(Inst, 5);
+ EmitInstruction(Out, Inst);
+ }
+
+ void ComputeMemOperandAddress(X86Operand &Op, MVT::SimpleValueType VT,
+ unsigned Reg, MCContext &Ctx, MCStreamer &Out);
+
+ // Creates new memory operand with Displacement added to an original
+ // displacement. Residue will contain a residue which could happen when the
+ // total displacement exceeds 32-bit limitation.
+ std::unique_ptr<X86Operand> AddDisplacement(X86Operand &Op,
+ int64_t Displacement,
+ MCContext &Ctx, int64_t *Residue);
+
+ bool is64BitMode() const {
+ return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
+ }
+ bool is32BitMode() const {
+ return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
+ }
+ bool is16BitMode() const {
+ return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
+ }
+
+ unsigned getPointerWidth() {
+ if (is16BitMode()) return 16;
+ if (is32BitMode()) return 32;
+ if (is64BitMode()) return 64;
+ llvm_unreachable("invalid mode");
+ }
+
+ // True when previous instruction was actually REP prefix.
+ bool RepPrefix;
+
+ // Offset from the original SP register.
+ int64_t OrigSPOffset;
};
void X86AddressSanitizer::InstrumentMemOperand(
- MCParsedAsmOperand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) {
+ X86Operand &Op, unsigned AccessSize, bool IsWrite,
+ const RegisterContext &RegCtx, MCContext &Ctx, MCStreamer &Out) {
assert(Op.isMem() && "Op should be a memory operand.");
assert((AccessSize & (AccessSize - 1)) == 0 && AccessSize <= 16 &&
"AccessSize should be a power of two, less or equal than 16.");
+ // FIXME: take into account load/store alignment.
+ if (IsSmallMemAccess(AccessSize))
+ InstrumentMemOperandSmall(Op, AccessSize, IsWrite, RegCtx, Ctx, Out);
+ else
+ InstrumentMemOperandLarge(Op, AccessSize, IsWrite, RegCtx, Ctx, Out);
+}
+
+void X86AddressSanitizer::InstrumentMOVSBase(unsigned DstReg, unsigned SrcReg,
+ unsigned CntReg,
+ unsigned AccessSize,
+ MCContext &Ctx, MCStreamer &Out) {
+ // FIXME: check whole ranges [DstReg .. DstReg + AccessSize * (CntReg - 1)]
+ // and [SrcReg .. SrcReg + AccessSize * (CntReg - 1)].
+ RegisterContext RegCtx(X86::RDX /* AddressReg */, X86::RAX /* ShadowReg */,
+ IsSmallMemAccess(AccessSize)
+ ? X86::RBX
+ : X86::NoRegister /* ScratchReg */);
+ RegCtx.AddBusyReg(DstReg);
+ RegCtx.AddBusyReg(SrcReg);
+ RegCtx.AddBusyReg(CntReg);
+
+ InstrumentMemOperandPrologue(RegCtx, Ctx, Out);
+
+ // Test (%SrcReg)
+ {
+ const MCExpr *Disp = MCConstantExpr::Create(0, Ctx);
+ std::unique_ptr<X86Operand> Op(X86Operand::CreateMem(
+ getPointerWidth(), 0, Disp, SrcReg, 0, AccessSize, SMLoc(), SMLoc()));
+ InstrumentMemOperand(*Op, AccessSize, false /* IsWrite */, RegCtx, Ctx,
+ Out);
+ }
- X86Operand &MemOp = static_cast<X86Operand &>(Op);
- // FIXME: get rid of this limitation.
- if (IsStackReg(MemOp.getMemBaseReg()) || IsStackReg(MemOp.getMemIndexReg()))
+ // Test -1(%SrcReg, %CntReg, AccessSize)
+ {
+ const MCExpr *Disp = MCConstantExpr::Create(-1, Ctx);
+ std::unique_ptr<X86Operand> Op(X86Operand::CreateMem(
+ getPointerWidth(), 0, Disp, SrcReg, CntReg, AccessSize, SMLoc(),
+ SMLoc()));
+ InstrumentMemOperand(*Op, AccessSize, false /* IsWrite */, RegCtx, Ctx,
+ Out);
+ }
+
+ // Test (%DstReg)
+ {
+ const MCExpr *Disp = MCConstantExpr::Create(0, Ctx);
+ std::unique_ptr<X86Operand> Op(X86Operand::CreateMem(
+ getPointerWidth(), 0, Disp, DstReg, 0, AccessSize, SMLoc(), SMLoc()));
+ InstrumentMemOperand(*Op, AccessSize, true /* IsWrite */, RegCtx, Ctx, Out);
+ }
+
+ // Test -1(%DstReg, %CntReg, AccessSize)
+ {
+ const MCExpr *Disp = MCConstantExpr::Create(-1, Ctx);
+ std::unique_ptr<X86Operand> Op(X86Operand::CreateMem(
+ getPointerWidth(), 0, Disp, DstReg, CntReg, AccessSize, SMLoc(),
+ SMLoc()));
+ InstrumentMemOperand(*Op, AccessSize, true /* IsWrite */, RegCtx, Ctx, Out);
+ }
+
+ InstrumentMemOperandEpilogue(RegCtx, Ctx, Out);
+}
+
+void X86AddressSanitizer::InstrumentMOVS(const MCInst &Inst,
+ OperandVector &Operands,
+ MCContext &Ctx, const MCInstrInfo &MII,
+ MCStreamer &Out) {
+ // Access size in bytes.
+ unsigned AccessSize = 0;
+
+ switch (Inst.getOpcode()) {
+ case X86::MOVSB:
+ AccessSize = 1;
+ break;
+ case X86::MOVSW:
+ AccessSize = 2;
+ break;
+ case X86::MOVSL:
+ AccessSize = 4;
+ break;
+ case X86::MOVSQ:
+ AccessSize = 8;
+ break;
+ default:
return;
+ }
- // FIXME: take into account load/store alignment.
- if (AccessSize < 8)
- InstrumentMemOperandSmallImpl(MemOp, AccessSize, IsWrite, Ctx, Out);
- else
- InstrumentMemOperandLargeImpl(MemOp, AccessSize, IsWrite, Ctx, Out);
+ InstrumentMOVSImpl(AccessSize, Ctx, Out);
}
-void X86AddressSanitizer::InstrumentMOV(
- const MCInst &Inst, OperandVector &Operands, MCContext &Ctx,
- const MCInstrInfo &MII, MCStreamer &Out) {
+void X86AddressSanitizer::InstrumentMOV(const MCInst &Inst,
+ OperandVector &Operands, MCContext &Ctx,
+ const MCInstrInfo &MII,
+ MCStreamer &Out) {
// Access size in bytes.
unsigned AccessSize = 0;
@@ -132,41 +419,201 @@ void X86AddressSanitizer::InstrumentMOV(
}
const bool IsWrite = MII.get(Inst.getOpcode()).mayStore();
+
for (unsigned Ix = 0; Ix < Operands.size(); ++Ix) {
assert(Operands[Ix]);
MCParsedAsmOperand &Op = *Operands[Ix];
- if (Op.isMem())
- InstrumentMemOperand(Op, AccessSize, IsWrite, Ctx, Out);
+ if (Op.isMem()) {
+ X86Operand &MemOp = static_cast<X86Operand &>(Op);
+ RegisterContext RegCtx(
+ X86::RDI /* AddressReg */, X86::RAX /* ShadowReg */,
+ IsSmallMemAccess(AccessSize) ? X86::RCX
+ : X86::NoRegister /* ScratchReg */);
+ RegCtx.AddBusyRegs(MemOp);
+ InstrumentMemOperandPrologue(RegCtx, Ctx, Out);
+ InstrumentMemOperand(MemOp, AccessSize, IsWrite, RegCtx, Ctx, Out);
+ InstrumentMemOperandEpilogue(RegCtx, Ctx, Out);
+ }
+ }
+}
+
+void X86AddressSanitizer::ComputeMemOperandAddress(X86Operand &Op,
+ MVT::SimpleValueType VT,
+ unsigned Reg, MCContext &Ctx,
+ MCStreamer &Out) {
+ int64_t Displacement = 0;
+ if (IsStackReg(Op.getMemBaseReg()))
+ Displacement -= OrigSPOffset;
+ if (IsStackReg(Op.getMemIndexReg()))
+ Displacement -= OrigSPOffset * Op.getMemScale();
+
+ assert(Displacement >= 0);
+
+ // Emit Op as is.
+ if (Displacement == 0) {
+ EmitLEA(Op, VT, Reg, Out);
+ return;
+ }
+
+ int64_t Residue;
+ std::unique_ptr<X86Operand> NewOp =
+ AddDisplacement(Op, Displacement, Ctx, &Residue);
+ EmitLEA(*NewOp, VT, Reg, Out);
+
+ while (Residue != 0) {
+ const MCConstantExpr *Disp =
+ MCConstantExpr::Create(ApplyDisplacementBounds(Residue), Ctx);
+ std::unique_ptr<X86Operand> DispOp =
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, Reg, 0, 1, SMLoc(),
+ SMLoc());
+ EmitLEA(*DispOp, VT, Reg, Out);
+ Residue -= Disp->getValue();
}
}
+std::unique_ptr<X86Operand>
+X86AddressSanitizer::AddDisplacement(X86Operand &Op, int64_t Displacement,
+ MCContext &Ctx, int64_t *Residue) {
+ assert(Displacement >= 0);
+
+ if (Displacement == 0 ||
+ (Op.getMemDisp() && Op.getMemDisp()->getKind() != MCExpr::Constant)) {
+ *Residue = Displacement;
+ return X86Operand::CreateMem(Op.getMemModeSize(), Op.getMemSegReg(),
+ Op.getMemDisp(), Op.getMemBaseReg(),
+ Op.getMemIndexReg(), Op.getMemScale(),
+ SMLoc(), SMLoc());
+ }
+
+ int64_t OrigDisplacement =
+ static_cast<const MCConstantExpr *>(Op.getMemDisp())->getValue();
+ CheckDisplacementBounds(OrigDisplacement);
+ Displacement += OrigDisplacement;
+
+ int64_t NewDisplacement = ApplyDisplacementBounds(Displacement);
+ CheckDisplacementBounds(NewDisplacement);
+
+ *Residue = Displacement - NewDisplacement;
+ const MCExpr *Disp = MCConstantExpr::Create(NewDisplacement, Ctx);
+ return X86Operand::CreateMem(Op.getMemModeSize(), Op.getMemSegReg(), Disp,
+ Op.getMemBaseReg(), Op.getMemIndexReg(),
+ Op.getMemScale(), SMLoc(), SMLoc());
+}
+
class X86AddressSanitizer32 : public X86AddressSanitizer {
public:
static const long kShadowOffset = 0x20000000;
X86AddressSanitizer32(const MCSubtargetInfo &STI)
: X86AddressSanitizer(STI) {}
+
virtual ~X86AddressSanitizer32() {}
- virtual void InstrumentMemOperandSmallImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) override;
- virtual void InstrumentMemOperandLargeImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) override;
+ unsigned GetFrameReg(const MCContext &Ctx, MCStreamer &Out) {
+ unsigned FrameReg = GetFrameRegGeneric(Ctx, Out);
+ if (FrameReg == X86::NoRegister)
+ return FrameReg;
+ return getX86SubSuperRegister(FrameReg, MVT::i32);
+ }
+
+ void SpillReg(MCStreamer &Out, unsigned Reg) {
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(Reg));
+ OrigSPOffset -= 4;
+ }
+
+ void RestoreReg(MCStreamer &Out, unsigned Reg) {
+ EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(Reg));
+ OrigSPOffset += 4;
+ }
+
+ void StoreFlags(MCStreamer &Out) {
+ EmitInstruction(Out, MCInstBuilder(X86::PUSHF32));
+ OrigSPOffset -= 4;
+ }
+
+ void RestoreFlags(MCStreamer &Out) {
+ EmitInstruction(Out, MCInstBuilder(X86::POPF32));
+ OrigSPOffset += 4;
+ }
+
+ virtual void InstrumentMemOperandPrologue(const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override {
+ unsigned LocalFrameReg = RegCtx.ChooseFrameReg(MVT::i32);
+ assert(LocalFrameReg != X86::NoRegister);
+
+ const MCRegisterInfo *MRI = Ctx.getRegisterInfo();
+ unsigned FrameReg = GetFrameReg(Ctx, Out);
+ if (MRI && FrameReg != X86::NoRegister) {
+ SpillReg(Out, LocalFrameReg);
+ if (FrameReg == X86::ESP) {
+ Out.EmitCFIAdjustCfaOffset(4 /* byte size of the LocalFrameReg */);
+ Out.EmitCFIRelOffset(
+ MRI->getDwarfRegNum(LocalFrameReg, true /* IsEH */), 0);
+ }
+ EmitInstruction(
+ Out,
+ MCInstBuilder(X86::MOV32rr).addReg(LocalFrameReg).addReg(FrameReg));
+ Out.EmitCFIRememberState();
+ Out.EmitCFIDefCfaRegister(
+ MRI->getDwarfRegNum(LocalFrameReg, true /* IsEH */));
+ }
+
+ SpillReg(Out, RegCtx.AddressReg(MVT::i32));
+ SpillReg(Out, RegCtx.ShadowReg(MVT::i32));
+ if (RegCtx.ScratchReg(MVT::i32) != X86::NoRegister)
+ SpillReg(Out, RegCtx.ScratchReg(MVT::i32));
+ StoreFlags(Out);
+ }
- private:
- void EmitCallAsanReport(MCContext &Ctx, MCStreamer &Out, unsigned AccessSize,
- bool IsWrite, unsigned AddressReg) {
+ virtual void InstrumentMemOperandEpilogue(const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override {
+ unsigned LocalFrameReg = RegCtx.ChooseFrameReg(MVT::i32);
+ assert(LocalFrameReg != X86::NoRegister);
+
+ RestoreFlags(Out);
+ if (RegCtx.ScratchReg(MVT::i32) != X86::NoRegister)
+ RestoreReg(Out, RegCtx.ScratchReg(MVT::i32));
+ RestoreReg(Out, RegCtx.ShadowReg(MVT::i32));
+ RestoreReg(Out, RegCtx.AddressReg(MVT::i32));
+
+ unsigned FrameReg = GetFrameReg(Ctx, Out);
+ if (Ctx.getRegisterInfo() && FrameReg != X86::NoRegister) {
+ RestoreReg(Out, LocalFrameReg);
+ Out.EmitCFIRestoreState();
+ if (FrameReg == X86::ESP)
+ Out.EmitCFIAdjustCfaOffset(-4 /* byte size of the LocalFrameReg */);
+ }
+ }
+
+ virtual void InstrumentMemOperandSmall(X86Operand &Op, unsigned AccessSize,
+ bool IsWrite,
+ const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override;
+ virtual void InstrumentMemOperandLarge(X86Operand &Op, unsigned AccessSize,
+ bool IsWrite,
+ const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override;
+ virtual void InstrumentMOVSImpl(unsigned AccessSize, MCContext &Ctx,
+ MCStreamer &Out) override;
+
+private:
+ void EmitCallAsanReport(unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out, const RegisterContext &RegCtx) {
EmitInstruction(Out, MCInstBuilder(X86::CLD));
EmitInstruction(Out, MCInstBuilder(X86::MMX_EMMS));
- EmitInstruction(Out, MCInstBuilder(X86::AND64ri8).addReg(X86::ESP)
- .addReg(X86::ESP).addImm(-16));
- EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(AddressReg));
+ EmitInstruction(Out, MCInstBuilder(X86::AND64ri8)
+ .addReg(X86::ESP)
+ .addReg(X86::ESP)
+ .addImm(-16));
+ EmitInstruction(
+ Out, MCInstBuilder(X86::PUSH32r).addReg(RegCtx.AddressReg(MVT::i32)));
-
- const std::string& Fn = FuncName(AccessSize, IsWrite);
+ const std::string &Fn = FuncName(AccessSize, IsWrite);
MCSymbol *FnSym = Ctx.GetOrCreateSymbol(StringRef(Fn));
const MCSymbolRefExpr *FnExpr =
MCSymbolRefExpr::Create(FnSym, MCSymbolRefExpr::VK_PLT, Ctx);
@@ -174,136 +621,140 @@ public:
}
};
-void X86AddressSanitizer32::InstrumentMemOperandSmallImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) {
- EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::EAX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::ECX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::EDX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSHF32));
+void X86AddressSanitizer32::InstrumentMemOperandSmall(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite,
+ const RegisterContext &RegCtx, MCContext &Ctx, MCStreamer &Out) {
+ unsigned AddressRegI32 = RegCtx.AddressReg(MVT::i32);
+ unsigned ShadowRegI32 = RegCtx.ShadowReg(MVT::i32);
+ unsigned ShadowRegI8 = RegCtx.ShadowReg(MVT::i8);
- {
- MCInst Inst;
- Inst.setOpcode(X86::LEA32r);
- Inst.addOperand(MCOperand::CreateReg(X86::EAX));
- Op.addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
- }
+ assert(RegCtx.ScratchReg(MVT::i32) != X86::NoRegister);
+ unsigned ScratchRegI32 = RegCtx.ScratchReg(MVT::i32);
- EmitInstruction(
- Out, MCInstBuilder(X86::MOV32rr).addReg(X86::ECX).addReg(X86::EAX));
- EmitInstruction(Out, MCInstBuilder(X86::SHR32ri).addReg(X86::ECX)
- .addReg(X86::ECX).addImm(3));
+ ComputeMemOperandAddress(Op, MVT::i32, AddressRegI32, Ctx, Out);
+
+ EmitInstruction(Out, MCInstBuilder(X86::MOV32rr).addReg(ShadowRegI32).addReg(
+ AddressRegI32));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR32ri)
+ .addReg(ShadowRegI32)
+ .addReg(ShadowRegI32)
+ .addImm(3));
{
MCInst Inst;
Inst.setOpcode(X86::MOV8rm);
- Inst.addOperand(MCOperand::CreateReg(X86::CL));
+ Inst.addOperand(MCOperand::CreateReg(ShadowRegI8));
const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::ECX, 0, 1, SMLoc(), SMLoc()));
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, ShadowRegI32, 0, 1,
+ SMLoc(), SMLoc()));
Op->addMemOperands(Inst, 5);
EmitInstruction(Out, Inst);
}
- EmitInstruction(Out,
- MCInstBuilder(X86::TEST8rr).addReg(X86::CL).addReg(X86::CL));
+ EmitInstruction(
+ Out, MCInstBuilder(X86::TEST8rr).addReg(ShadowRegI8).addReg(ShadowRegI8));
MCSymbol *DoneSym = Ctx.CreateTempSymbol();
const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
- EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+ EmitInstruction(Out, MCInstBuilder(X86::JE_1).addExpr(DoneExpr));
- EmitInstruction(
- Out, MCInstBuilder(X86::MOV32rr).addReg(X86::EDX).addReg(X86::EAX));
- EmitInstruction(Out, MCInstBuilder(X86::AND32ri).addReg(X86::EDX)
- .addReg(X86::EDX).addImm(7));
+ EmitInstruction(Out, MCInstBuilder(X86::MOV32rr).addReg(ScratchRegI32).addReg(
+ AddressRegI32));
+ EmitInstruction(Out, MCInstBuilder(X86::AND32ri)
+ .addReg(ScratchRegI32)
+ .addReg(ScratchRegI32)
+ .addImm(7));
switch (AccessSize) {
+ default: llvm_unreachable("Incorrect access size");
case 1:
break;
case 2: {
- MCInst Inst;
- Inst.setOpcode(X86::LEA32r);
- Inst.addOperand(MCOperand::CreateReg(X86::EDX));
-
const MCExpr *Disp = MCConstantExpr::Create(1, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::EDX, 0, 1, SMLoc(), SMLoc()));
- Op->addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, ScratchRegI32, 0, 1,
+ SMLoc(), SMLoc()));
+ EmitLEA(*Op, MVT::i32, ScratchRegI32, Out);
break;
}
case 4:
- EmitInstruction(Out, MCInstBuilder(X86::ADD32ri8).addReg(X86::EDX)
- .addReg(X86::EDX).addImm(3));
- break;
- default:
- assert(false && "Incorrect access size");
+ EmitInstruction(Out, MCInstBuilder(X86::ADD32ri8)
+ .addReg(ScratchRegI32)
+ .addReg(ScratchRegI32)
+ .addImm(3));
break;
}
EmitInstruction(
- Out, MCInstBuilder(X86::MOVSX32rr8).addReg(X86::ECX).addReg(X86::CL));
- EmitInstruction(
- Out, MCInstBuilder(X86::CMP32rr).addReg(X86::EDX).addReg(X86::ECX));
- EmitInstruction(Out, MCInstBuilder(X86::JL_4).addExpr(DoneExpr));
+ Out,
+ MCInstBuilder(X86::MOVSX32rr8).addReg(ShadowRegI32).addReg(ShadowRegI8));
+ EmitInstruction(Out, MCInstBuilder(X86::CMP32rr).addReg(ScratchRegI32).addReg(
+ ShadowRegI32));
+ EmitInstruction(Out, MCInstBuilder(X86::JL_1).addExpr(DoneExpr));
- EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite, X86::EAX);
+ EmitCallAsanReport(AccessSize, IsWrite, Ctx, Out, RegCtx);
EmitLabel(Out, DoneSym);
-
- EmitInstruction(Out, MCInstBuilder(X86::POPF32));
- EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::EDX));
- EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::ECX));
- EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::EAX));
}
-void X86AddressSanitizer32::InstrumentMemOperandLargeImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) {
- EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::EAX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSH32r).addReg(X86::ECX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSHF32));
+void X86AddressSanitizer32::InstrumentMemOperandLarge(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite,
+ const RegisterContext &RegCtx, MCContext &Ctx, MCStreamer &Out) {
+ unsigned AddressRegI32 = RegCtx.AddressReg(MVT::i32);
+ unsigned ShadowRegI32 = RegCtx.ShadowReg(MVT::i32);
- {
- MCInst Inst;
- Inst.setOpcode(X86::LEA32r);
- Inst.addOperand(MCOperand::CreateReg(X86::EAX));
- Op.addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
- }
- EmitInstruction(
- Out, MCInstBuilder(X86::MOV32rr).addReg(X86::ECX).addReg(X86::EAX));
- EmitInstruction(Out, MCInstBuilder(X86::SHR32ri).addReg(X86::ECX)
- .addReg(X86::ECX).addImm(3));
+ ComputeMemOperandAddress(Op, MVT::i32, AddressRegI32, Ctx, Out);
+
+ EmitInstruction(Out, MCInstBuilder(X86::MOV32rr).addReg(ShadowRegI32).addReg(
+ AddressRegI32));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR32ri)
+ .addReg(ShadowRegI32)
+ .addReg(ShadowRegI32)
+ .addImm(3));
{
MCInst Inst;
switch (AccessSize) {
- case 8:
- Inst.setOpcode(X86::CMP8mi);
- break;
- case 16:
- Inst.setOpcode(X86::CMP16mi);
- break;
- default:
- assert(false && "Incorrect access size");
- break;
+ default: llvm_unreachable("Incorrect access size");
+ case 8:
+ Inst.setOpcode(X86::CMP8mi);
+ break;
+ case 16:
+ Inst.setOpcode(X86::CMP16mi);
+ break;
}
const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::ECX, 0, 1, SMLoc(), SMLoc()));
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, ShadowRegI32, 0, 1,
+ SMLoc(), SMLoc()));
Op->addMemOperands(Inst, 5);
Inst.addOperand(MCOperand::CreateImm(0));
EmitInstruction(Out, Inst);
}
MCSymbol *DoneSym = Ctx.CreateTempSymbol();
const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
- EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+ EmitInstruction(Out, MCInstBuilder(X86::JE_1).addExpr(DoneExpr));
- EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite, X86::EAX);
+ EmitCallAsanReport(AccessSize, IsWrite, Ctx, Out, RegCtx);
EmitLabel(Out, DoneSym);
+}
- EmitInstruction(Out, MCInstBuilder(X86::POPF32));
- EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::ECX));
- EmitInstruction(Out, MCInstBuilder(X86::POP32r).addReg(X86::EAX));
+void X86AddressSanitizer32::InstrumentMOVSImpl(unsigned AccessSize,
+ MCContext &Ctx,
+ MCStreamer &Out) {
+ StoreFlags(Out);
+
+ // No need to test when ECX is equals to zero.
+ MCSymbol *DoneSym = Ctx.CreateTempSymbol();
+ const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
+ EmitInstruction(
+ Out, MCInstBuilder(X86::TEST32rr).addReg(X86::ECX).addReg(X86::ECX));
+ EmitInstruction(Out, MCInstBuilder(X86::JE_1).addExpr(DoneExpr));
+
+ // Instrument first and last elements in src and dst range.
+ InstrumentMOVSBase(X86::EDI /* DstReg */, X86::ESI /* SrcReg */,
+ X86::ECX /* CntReg */, AccessSize, Ctx, Out);
+
+ EmitLabel(Out, DoneSym);
+ RestoreFlags(Out);
}
class X86AddressSanitizer64 : public X86AddressSanitizer {
@@ -312,37 +763,127 @@ public:
X86AddressSanitizer64(const MCSubtargetInfo &STI)
: X86AddressSanitizer(STI) {}
+
virtual ~X86AddressSanitizer64() {}
- virtual void InstrumentMemOperandSmallImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) override;
- virtual void InstrumentMemOperandLargeImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) override;
+ unsigned GetFrameReg(const MCContext &Ctx, MCStreamer &Out) {
+ unsigned FrameReg = GetFrameRegGeneric(Ctx, Out);
+ if (FrameReg == X86::NoRegister)
+ return FrameReg;
+ return getX86SubSuperRegister(FrameReg, MVT::i64);
+ }
+
+ void SpillReg(MCStreamer &Out, unsigned Reg) {
+ EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(Reg));
+ OrigSPOffset -= 8;
+ }
+
+ void RestoreReg(MCStreamer &Out, unsigned Reg) {
+ EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(Reg));
+ OrigSPOffset += 8;
+ }
+
+ void StoreFlags(MCStreamer &Out) {
+ EmitInstruction(Out, MCInstBuilder(X86::PUSHF64));
+ OrigSPOffset -= 8;
+ }
+
+ void RestoreFlags(MCStreamer &Out) {
+ EmitInstruction(Out, MCInstBuilder(X86::POPF64));
+ OrigSPOffset += 8;
+ }
+
+ virtual void InstrumentMemOperandPrologue(const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override {
+ unsigned LocalFrameReg = RegCtx.ChooseFrameReg(MVT::i64);
+ assert(LocalFrameReg != X86::NoRegister);
+
+ const MCRegisterInfo *MRI = Ctx.getRegisterInfo();
+ unsigned FrameReg = GetFrameReg(Ctx, Out);
+ if (MRI && FrameReg != X86::NoRegister) {
+ SpillReg(Out, X86::RBP);
+ if (FrameReg == X86::RSP) {
+ Out.EmitCFIAdjustCfaOffset(8 /* byte size of the LocalFrameReg */);
+ Out.EmitCFIRelOffset(
+ MRI->getDwarfRegNum(LocalFrameReg, true /* IsEH */), 0);
+ }
+ EmitInstruction(
+ Out,
+ MCInstBuilder(X86::MOV64rr).addReg(LocalFrameReg).addReg(FrameReg));
+ Out.EmitCFIRememberState();
+ Out.EmitCFIDefCfaRegister(
+ MRI->getDwarfRegNum(LocalFrameReg, true /* IsEH */));
+ }
+
+ EmitAdjustRSP(Ctx, Out, -128);
+ SpillReg(Out, RegCtx.ShadowReg(MVT::i64));
+ SpillReg(Out, RegCtx.AddressReg(MVT::i64));
+ if (RegCtx.ScratchReg(MVT::i64) != X86::NoRegister)
+ SpillReg(Out, RegCtx.ScratchReg(MVT::i64));
+ StoreFlags(Out);
+ }
+
+ virtual void InstrumentMemOperandEpilogue(const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override {
+ unsigned LocalFrameReg = RegCtx.ChooseFrameReg(MVT::i64);
+ assert(LocalFrameReg != X86::NoRegister);
+
+ RestoreFlags(Out);
+ if (RegCtx.ScratchReg(MVT::i64) != X86::NoRegister)
+ RestoreReg(Out, RegCtx.ScratchReg(MVT::i64));
+ RestoreReg(Out, RegCtx.AddressReg(MVT::i64));
+ RestoreReg(Out, RegCtx.ShadowReg(MVT::i64));
+ EmitAdjustRSP(Ctx, Out, 128);
+
+ unsigned FrameReg = GetFrameReg(Ctx, Out);
+ if (Ctx.getRegisterInfo() && FrameReg != X86::NoRegister) {
+ RestoreReg(Out, LocalFrameReg);
+ Out.EmitCFIRestoreState();
+ if (FrameReg == X86::RSP)
+ Out.EmitCFIAdjustCfaOffset(-8 /* byte size of the LocalFrameReg */);
+ }
+ }
+
+ virtual void InstrumentMemOperandSmall(X86Operand &Op, unsigned AccessSize,
+ bool IsWrite,
+ const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override;
+ virtual void InstrumentMemOperandLarge(X86Operand &Op, unsigned AccessSize,
+ bool IsWrite,
+ const RegisterContext &RegCtx,
+ MCContext &Ctx,
+ MCStreamer &Out) override;
+ virtual void InstrumentMOVSImpl(unsigned AccessSize, MCContext &Ctx,
+ MCStreamer &Out) override;
private:
void EmitAdjustRSP(MCContext &Ctx, MCStreamer &Out, long Offset) {
- MCInst Inst;
- Inst.setOpcode(X86::LEA64r);
- Inst.addOperand(MCOperand::CreateReg(X86::RSP));
-
const MCExpr *Disp = MCConstantExpr::Create(Offset, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::RSP, 0, 1, SMLoc(), SMLoc()));
- Op->addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, X86::RSP, 0, 1,
+ SMLoc(), SMLoc()));
+ EmitLEA(*Op, MVT::i64, X86::RSP, Out);
+ OrigSPOffset += Offset;
}
- void EmitCallAsanReport(MCContext &Ctx, MCStreamer &Out, unsigned AccessSize,
- bool IsWrite) {
+ void EmitCallAsanReport(unsigned AccessSize, bool IsWrite, MCContext &Ctx,
+ MCStreamer &Out, const RegisterContext &RegCtx) {
EmitInstruction(Out, MCInstBuilder(X86::CLD));
EmitInstruction(Out, MCInstBuilder(X86::MMX_EMMS));
- EmitInstruction(Out, MCInstBuilder(X86::AND64ri8).addReg(X86::RSP)
- .addReg(X86::RSP).addImm(-16));
+ EmitInstruction(Out, MCInstBuilder(X86::AND64ri8)
+ .addReg(X86::RSP)
+ .addReg(X86::RSP)
+ .addImm(-16));
- const std::string& Fn = FuncName(AccessSize, IsWrite);
+ if (RegCtx.AddressReg(MVT::i64) != X86::RDI) {
+ EmitInstruction(Out, MCInstBuilder(X86::MOV64rr).addReg(X86::RDI).addReg(
+ RegCtx.AddressReg(MVT::i64)));
+ }
+ const std::string &Fn = FuncName(AccessSize, IsWrite);
MCSymbol *FnSym = Ctx.GetOrCreateSymbol(StringRef(Fn));
const MCSymbolRefExpr *FnExpr =
MCSymbolRefExpr::Create(FnSym, MCSymbolRefExpr::VK_PLT, Ctx);
@@ -350,119 +891,111 @@ private:
}
};
-void X86AddressSanitizer64::InstrumentMemOperandSmallImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) {
- EmitAdjustRSP(Ctx, Out, -128);
- EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RAX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RCX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RDI));
- EmitInstruction(Out, MCInstBuilder(X86::PUSHF64));
- {
- MCInst Inst;
- Inst.setOpcode(X86::LEA64r);
- Inst.addOperand(MCOperand::CreateReg(X86::RDI));
- Op.addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
- }
- EmitInstruction(
- Out, MCInstBuilder(X86::MOV64rr).addReg(X86::RAX).addReg(X86::RDI));
- EmitInstruction(Out, MCInstBuilder(X86::SHR64ri).addReg(X86::RAX)
- .addReg(X86::RAX).addImm(3));
+void X86AddressSanitizer64::InstrumentMemOperandSmall(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite,
+ const RegisterContext &RegCtx, MCContext &Ctx, MCStreamer &Out) {
+ unsigned AddressRegI64 = RegCtx.AddressReg(MVT::i64);
+ unsigned AddressRegI32 = RegCtx.AddressReg(MVT::i32);
+ unsigned ShadowRegI64 = RegCtx.ShadowReg(MVT::i64);
+ unsigned ShadowRegI32 = RegCtx.ShadowReg(MVT::i32);
+ unsigned ShadowRegI8 = RegCtx.ShadowReg(MVT::i8);
+
+ assert(RegCtx.ScratchReg(MVT::i32) != X86::NoRegister);
+ unsigned ScratchRegI32 = RegCtx.ScratchReg(MVT::i32);
+
+ ComputeMemOperandAddress(Op, MVT::i64, AddressRegI64, Ctx, Out);
+
+ EmitInstruction(Out, MCInstBuilder(X86::MOV64rr).addReg(ShadowRegI64).addReg(
+ AddressRegI64));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR64ri)
+ .addReg(ShadowRegI64)
+ .addReg(ShadowRegI64)
+ .addImm(3));
{
MCInst Inst;
Inst.setOpcode(X86::MOV8rm);
- Inst.addOperand(MCOperand::CreateReg(X86::AL));
+ Inst.addOperand(MCOperand::CreateReg(ShadowRegI8));
const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::RAX, 0, 1, SMLoc(), SMLoc()));
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, ShadowRegI64, 0, 1,
+ SMLoc(), SMLoc()));
Op->addMemOperands(Inst, 5);
EmitInstruction(Out, Inst);
}
- EmitInstruction(Out,
- MCInstBuilder(X86::TEST8rr).addReg(X86::AL).addReg(X86::AL));
+ EmitInstruction(
+ Out, MCInstBuilder(X86::TEST8rr).addReg(ShadowRegI8).addReg(ShadowRegI8));
MCSymbol *DoneSym = Ctx.CreateTempSymbol();
const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
- EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+ EmitInstruction(Out, MCInstBuilder(X86::JE_1).addExpr(DoneExpr));
- EmitInstruction(
- Out, MCInstBuilder(X86::MOV32rr).addReg(X86::ECX).addReg(X86::EDI));
- EmitInstruction(Out, MCInstBuilder(X86::AND32ri).addReg(X86::ECX)
- .addReg(X86::ECX).addImm(7));
+ EmitInstruction(Out, MCInstBuilder(X86::MOV32rr).addReg(ScratchRegI32).addReg(
+ AddressRegI32));
+ EmitInstruction(Out, MCInstBuilder(X86::AND32ri)
+ .addReg(ScratchRegI32)
+ .addReg(ScratchRegI32)
+ .addImm(7));
switch (AccessSize) {
+ default: llvm_unreachable("Incorrect access size");
case 1:
break;
case 2: {
- MCInst Inst;
- Inst.setOpcode(X86::LEA32r);
- Inst.addOperand(MCOperand::CreateReg(X86::ECX));
-
const MCExpr *Disp = MCConstantExpr::Create(1, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::ECX, 0, 1, SMLoc(), SMLoc()));
- Op->addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, ScratchRegI32, 0, 1,
+ SMLoc(), SMLoc()));
+ EmitLEA(*Op, MVT::i32, ScratchRegI32, Out);
break;
}
case 4:
- EmitInstruction(Out, MCInstBuilder(X86::ADD32ri8).addReg(X86::ECX)
- .addReg(X86::ECX).addImm(3));
- break;
- default:
- assert(false && "Incorrect access size");
+ EmitInstruction(Out, MCInstBuilder(X86::ADD32ri8)
+ .addReg(ScratchRegI32)
+ .addReg(ScratchRegI32)
+ .addImm(3));
break;
}
EmitInstruction(
- Out, MCInstBuilder(X86::MOVSX32rr8).addReg(X86::EAX).addReg(X86::AL));
- EmitInstruction(
- Out, MCInstBuilder(X86::CMP32rr).addReg(X86::ECX).addReg(X86::EAX));
- EmitInstruction(Out, MCInstBuilder(X86::JL_4).addExpr(DoneExpr));
+ Out,
+ MCInstBuilder(X86::MOVSX32rr8).addReg(ShadowRegI32).addReg(ShadowRegI8));
+ EmitInstruction(Out, MCInstBuilder(X86::CMP32rr).addReg(ScratchRegI32).addReg(
+ ShadowRegI32));
+ EmitInstruction(Out, MCInstBuilder(X86::JL_1).addExpr(DoneExpr));
- EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite);
+ EmitCallAsanReport(AccessSize, IsWrite, Ctx, Out, RegCtx);
EmitLabel(Out, DoneSym);
-
- EmitInstruction(Out, MCInstBuilder(X86::POPF64));
- EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RDI));
- EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RCX));
- EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RAX));
- EmitAdjustRSP(Ctx, Out, 128);
}
-void X86AddressSanitizer64::InstrumentMemOperandLargeImpl(
- X86Operand &Op, unsigned AccessSize, bool IsWrite, MCContext &Ctx,
- MCStreamer &Out) {
- EmitAdjustRSP(Ctx, Out, -128);
- EmitInstruction(Out, MCInstBuilder(X86::PUSH64r).addReg(X86::RAX));
- EmitInstruction(Out, MCInstBuilder(X86::PUSHF64));
+void X86AddressSanitizer64::InstrumentMemOperandLarge(
+ X86Operand &Op, unsigned AccessSize, bool IsWrite,
+ const RegisterContext &RegCtx, MCContext &Ctx, MCStreamer &Out) {
+ unsigned AddressRegI64 = RegCtx.AddressReg(MVT::i64);
+ unsigned ShadowRegI64 = RegCtx.ShadowReg(MVT::i64);
- {
- MCInst Inst;
- Inst.setOpcode(X86::LEA64r);
- Inst.addOperand(MCOperand::CreateReg(X86::RAX));
- Op.addMemOperands(Inst, 5);
- EmitInstruction(Out, Inst);
- }
- EmitInstruction(Out, MCInstBuilder(X86::SHR64ri).addReg(X86::RAX)
- .addReg(X86::RAX).addImm(3));
+ ComputeMemOperandAddress(Op, MVT::i64, AddressRegI64, Ctx, Out);
+
+ EmitInstruction(Out, MCInstBuilder(X86::MOV64rr).addReg(ShadowRegI64).addReg(
+ AddressRegI64));
+ EmitInstruction(Out, MCInstBuilder(X86::SHR64ri)
+ .addReg(ShadowRegI64)
+ .addReg(ShadowRegI64)
+ .addImm(3));
{
MCInst Inst;
switch (AccessSize) {
+ default: llvm_unreachable("Incorrect access size");
case 8:
Inst.setOpcode(X86::CMP8mi);
break;
case 16:
Inst.setOpcode(X86::CMP16mi);
break;
- default:
- assert(false && "Incorrect access size");
- break;
}
const MCExpr *Disp = MCConstantExpr::Create(kShadowOffset, Ctx);
std::unique_ptr<X86Operand> Op(
- X86Operand::CreateMem(0, Disp, X86::RAX, 0, 1, SMLoc(), SMLoc()));
+ X86Operand::CreateMem(getPointerWidth(), 0, Disp, ShadowRegI64, 0, 1,
+ SMLoc(), SMLoc()));
Op->addMemOperands(Inst, 5);
Inst.addOperand(MCOperand::CreateImm(0));
EmitInstruction(Out, Inst);
@@ -470,24 +1003,68 @@ void X86AddressSanitizer64::InstrumentMemOperandLargeImpl(
MCSymbol *DoneSym = Ctx.CreateTempSymbol();
const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
- EmitInstruction(Out, MCInstBuilder(X86::JE_4).addExpr(DoneExpr));
+ EmitInstruction(Out, MCInstBuilder(X86::JE_1).addExpr(DoneExpr));
- EmitCallAsanReport(Ctx, Out, AccessSize, IsWrite);
+ EmitCallAsanReport(AccessSize, IsWrite, Ctx, Out, RegCtx);
EmitLabel(Out, DoneSym);
+}
- EmitInstruction(Out, MCInstBuilder(X86::POPF64));
- EmitInstruction(Out, MCInstBuilder(X86::POP64r).addReg(X86::RAX));
- EmitAdjustRSP(Ctx, Out, 128);
+void X86AddressSanitizer64::InstrumentMOVSImpl(unsigned AccessSize,
+ MCContext &Ctx,
+ MCStreamer &Out) {
+ StoreFlags(Out);
+
+ // No need to test when RCX is equals to zero.
+ MCSymbol *DoneSym = Ctx.CreateTempSymbol();
+ const MCExpr *DoneExpr = MCSymbolRefExpr::Create(DoneSym, Ctx);
+ EmitInstruction(
+ Out, MCInstBuilder(X86::TEST64rr).addReg(X86::RCX).addReg(X86::RCX));
+ EmitInstruction(Out, MCInstBuilder(X86::JE_1).addExpr(DoneExpr));
+
+ // Instrument first and last elements in src and dst range.
+ InstrumentMOVSBase(X86::RDI /* DstReg */, X86::RSI /* SrcReg */,
+ X86::RCX /* CntReg */, AccessSize, Ctx, Out);
+
+ EmitLabel(Out, DoneSym);
+ RestoreFlags(Out);
}
} // End anonymous namespace
-X86AsmInstrumentation::X86AsmInstrumentation() {}
+X86AsmInstrumentation::X86AsmInstrumentation(const MCSubtargetInfo &STI)
+ : STI(STI), InitialFrameReg(0) {}
+
X86AsmInstrumentation::~X86AsmInstrumentation() {}
-void X86AsmInstrumentation::InstrumentInstruction(
+void X86AsmInstrumentation::InstrumentAndEmitInstruction(
const MCInst &Inst, OperandVector &Operands, MCContext &Ctx,
- const MCInstrInfo &MII, MCStreamer &Out) {}
+ const MCInstrInfo &MII, MCStreamer &Out) {
+ EmitInstruction(Out, Inst);
+}
+
+void X86AsmInstrumentation::EmitInstruction(MCStreamer &Out,
+ const MCInst &Inst) {
+ Out.EmitInstruction(Inst, STI);
+}
+
+unsigned X86AsmInstrumentation::GetFrameRegGeneric(const MCContext &Ctx,
+ MCStreamer &Out) {
+ if (!Out.getNumFrameInfos()) // No active dwarf frame
+ return X86::NoRegister;
+ const MCDwarfFrameInfo &Frame = Out.getDwarfFrameInfos().back();
+ if (Frame.End) // Active dwarf frame is closed
+ return X86::NoRegister;
+ const MCRegisterInfo *MRI = Ctx.getRegisterInfo();
+ if (!MRI) // No register info
+ return X86::NoRegister;
+
+ if (InitialFrameReg) {
+ // FrameReg is set explicitly, we're instrumenting a MachineFunction.
+ return InitialFrameReg;
+ }
+
+ return MRI->getLLVMRegNum(Frame.CurrentCfaRegister, true /* IsEH */);
+}
X86AsmInstrumentation *
CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
@@ -501,7 +1078,7 @@ CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
if ((STI.getFeatureBits() & X86::Mode64Bit) != 0)
return new X86AddressSanitizer64(STI);
}
- return new X86AsmInstrumentation();
+ return new X86AsmInstrumentation(STI);
}
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h
index 1bc3c09..19ebcc4 100644
--- a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmInstrumentation.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_ASM_INSTRUMENTATION_H
-#define X86_ASM_INSTRUMENTATION_H
+#ifndef LLVM_LIB_TARGET_X86_ASMPARSER_X86ASMINSTRUMENTATION_H
+#define LLVM_LIB_TARGET_X86_ASMPARSER_X86ASMINSTRUMENTATION_H
#include "llvm/ADT/SmallVector.h"
@@ -34,11 +34,15 @@ class X86AsmInstrumentation {
public:
virtual ~X86AsmInstrumentation();
- // Instruments Inst. Should be called just before the original
- // instruction is sent to Out.
- virtual void InstrumentInstruction(
+ // Sets frame register corresponding to a current frame.
+ void SetInitialFrameRegister(unsigned RegNo) {
+ InitialFrameReg = RegNo;
+ }
+
+ // Tries to instrument and emit instruction.
+ virtual void InstrumentAndEmitInstruction(
const MCInst &Inst,
- SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>> &Operands,
+ SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand> > &Operands,
MCContext &Ctx, const MCInstrInfo &MII, MCStreamer &Out);
protected:
@@ -46,9 +50,17 @@ protected:
CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
const MCContext &Ctx, const MCSubtargetInfo &STI);
- X86AsmInstrumentation();
+ X86AsmInstrumentation(const MCSubtargetInfo &STI);
+
+ unsigned GetFrameRegGeneric(const MCContext &Ctx, MCStreamer &Out);
+
+ void EmitInstruction(MCStreamer &Out, const MCInst &Inst);
+
+ const MCSubtargetInfo &STI;
+
+ unsigned InitialFrameReg;
};
} // End llvm namespace
-#endif // X86_ASM_INSTRUMENTATION_H
+#endif
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
index a11a238..d743aa6 100644
--- a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
@@ -32,6 +32,7 @@
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
#include <memory>
using namespace llvm;
@@ -55,12 +56,12 @@ static const char OpPrecedence[] = {
class X86AsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
- MCAsmParser &Parser;
const MCInstrInfo &MII;
ParseInstructionInfo *InstInfo;
std::unique_ptr<X86AsmInstrumentation> Instrumentation;
private:
SMLoc consumeToken() {
+ MCAsmParser &Parser = getParser();
SMLoc Result = Parser.getTok().getLoc();
Parser.Lex();
return Result;
@@ -85,7 +86,7 @@ private:
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
SmallVector<ICToken, 4> PostfixStack;
-
+
public:
int64_t popOperand() {
assert (!PostfixStack.empty() && "Poped an empty stack!");
@@ -99,7 +100,7 @@ private:
"Unexpected operand!");
PostfixStack.push_back(std::make_pair(Op, Val));
}
-
+
void popOperator() { InfixOperatorStack.pop_back(); }
void pushOperator(InfixCalculatorTok Op) {
// Push the new operator if the stack is empty.
@@ -107,7 +108,7 @@ private:
InfixOperatorStack.push_back(Op);
return;
}
-
+
// Push the new operator if it has a higher precedence than the operator
// on the top of the stack or the operator on the top of the stack is a
// left parentheses.
@@ -117,7 +118,7 @@ private:
InfixOperatorStack.push_back(Op);
return;
}
-
+
// The operator on the top of the stack has higher precedence than the
// new operator.
unsigned ParenCount = 0;
@@ -125,17 +126,17 @@ private:
// Nothing to process.
if (InfixOperatorStack.empty())
break;
-
+
Idx = InfixOperatorStack.size() - 1;
StackOp = InfixOperatorStack[Idx];
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
break;
-
+
// If we have an even parentheses count and we see a left parentheses,
// then stop processing.
if (!ParenCount && StackOp == IC_LPAREN)
break;
-
+
if (StackOp == IC_RPAREN) {
++ParenCount;
InfixOperatorStack.pop_back();
@@ -157,10 +158,10 @@ private:
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
-
+
if (PostfixStack.empty())
return 0;
-
+
SmallVector<ICToken, 16> OperandStack;
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
ICToken Op = PostfixStack[i];
@@ -262,7 +263,7 @@ private:
State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
AddImmPrefix(addimmprefix) { Info.clear(); }
-
+
unsigned getBaseReg() { return BaseReg; }
unsigned getIndexReg() { return IndexReg; }
unsigned getScale() { return Scale; }
@@ -630,13 +631,10 @@ private:
}
};
- MCAsmParser &getParser() const { return Parser; }
-
- MCAsmLexer &getLexer() const { return Parser.getLexer(); }
-
bool Error(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
bool MatchingInlineAsm = false) {
+ MCAsmParser &Parser = getParser();
if (MatchingInlineAsm) return true;
return Parser.Error(L, Msg, Ranges);
}
@@ -644,8 +642,9 @@ private:
bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
bool MatchingInlineAsm = false) {
- Parser.eatToEndOfStatement();
- return Error(L, Msg, Ranges, MatchingInlineAsm);
+ MCAsmParser &Parser = getParser();
+ Parser.eatToEndOfStatement();
+ return Error(L, Msg, Ranges, MatchingInlineAsm);
}
std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
@@ -685,6 +684,7 @@ private:
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
+ bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
bool processInstruction(MCInst &Inst, const OperandVector &Ops);
/// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
@@ -693,10 +693,26 @@ private:
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
- unsigned &ErrorInfo,
+ uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
- virtual bool OmitRegisterFromClobberLists(unsigned RegNo) override;
+ void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
+ MCStreamer &Out, bool MatchingInlineAsm);
+
+ bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool OmitRegisterFromClobberLists(unsigned RegNo) override;
/// doSrcDstMatch - Returns true if operands are matching in their
/// word size (%si and %di, %esi and %edi, etc.). Order depends on
@@ -730,6 +746,13 @@ private:
(X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit)));
}
+ unsigned getPointerWidth() {
+ if (is16BitMode()) return 16;
+ if (is32BitMode()) return 32;
+ if (is64BitMode()) return 64;
+ llvm_unreachable("invalid mode");
+ }
+
bool isParsingIntelSyntax() {
return getParser().getAssemblerDialect();
}
@@ -743,11 +766,9 @@ private:
/// }
public:
- X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
- const MCInstrInfo &mii,
- const MCTargetOptions &Options)
- : MCTargetAsmParser(), STI(sti), Parser(parser), MII(mii),
- InstInfo(nullptr) {
+ X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &Parser,
+ const MCInstrInfo &mii, const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(sti), MII(mii), InstInfo(nullptr) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
@@ -757,6 +778,8 @@ public:
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+ void SetFrameRegister(unsigned RegNo) override;
+
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
@@ -832,6 +855,7 @@ bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
bool X86AsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
RegNo = 0;
const AsmToken &PercentTok = Parser.getTok();
StartLoc = PercentTok.getLoc();
@@ -939,20 +963,26 @@ bool X86AsmParser::ParseRegister(unsigned &RegNo,
return false;
}
+void X86AsmParser::SetFrameRegister(unsigned RegNo) {
+ Instrumentation->SetInitialFrameRegister(RegNo);
+}
+
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
unsigned basereg =
is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
- return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
- /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
+ Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
unsigned basereg =
is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
- return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
- /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
+ Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
@@ -981,15 +1011,20 @@ std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
InlineAsmIdentifierInfo &Info) {
- // If this is not a VarDecl then assume it is a FuncDecl or some other label
- // reference. We need an 'r' constraint here, so we need to create register
- // operand to ensure proper matching. Just pick a GPR based on the size of
- // a pointer.
- if (isa<MCSymbolRefExpr>(Disp) && !Info.IsVarDecl) {
- unsigned RegNo =
- is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
- return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
- SMLoc(), Identifier, Info.OpDecl);
+ // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
+ // some other label reference.
+ if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) {
+ // Insert an explicit size if the user didn't have one.
+ if (!Size) {
+ Size = getPointerWidth();
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
+ /*Len=*/0, Size));
+ }
+
+ // Create an absolute memory reference in order to match against
+ // instructions taking a PC relative operand.
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
+ Identifier, Info.OpDecl);
}
// We either have a direct symbol reference, or an offset from a symbol. The
@@ -1011,8 +1046,9 @@ std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
// if we don't know the actual value at this time. This is necessary to
// get the matching correct in some cases.
BaseReg = BaseReg ? BaseReg : 1;
- return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
- End, Size, Identifier, Info.OpDecl);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, Start, End, Size, Identifier,
+ Info.OpDecl);
}
static void
@@ -1064,7 +1100,7 @@ RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
(*I).Kind = AOK_Delete;
}
const char *SymLocPtr = SymName.data();
- // Skip everything before the symbol.
+ // Skip everything before the symbol.
if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
assert(Len > 0 && "Expected a non-negative length.");
AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
@@ -1078,6 +1114,7 @@ RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
}
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
bool Done = false;
@@ -1088,7 +1125,7 @@ bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
// identifier. Don't try an parse it as a register.
if (Tok.getString().startswith("."))
break;
-
+
// If we're parsing an immediate expression, we don't expect a '['.
if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
break;
@@ -1154,7 +1191,7 @@ bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
MCSymbol *Sym =
getContext().GetDirectionalLocalSymbol(IntVal, IDVal == "b");
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
- const MCExpr *Val =
+ const MCExpr *Val =
MCSymbolRefExpr::Create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined())
return Error(Loc, "invalid reference to undefined symbol");
@@ -1199,6 +1236,7 @@ bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
int64_t ImmDisp, unsigned Size) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
if (getLexer().isNot(AsmToken::LBrac))
@@ -1238,7 +1276,7 @@ X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
const MCExpr *NewDisp;
if (ParseIntelDotOperator(Disp, NewDisp))
return nullptr;
-
+
End = Tok.getEndLoc();
Parser.Lex(); // Eat the field.
Disp = NewDisp;
@@ -1251,17 +1289,17 @@ X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
// handle [-42]
if (!BaseReg && !IndexReg) {
if (!SegReg)
- return X86Operand::CreateMem(Disp, Start, End, Size);
- else
- return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ Start, End, Size);
}
StringRef ErrMsg;
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
Error(StartInBrac, ErrMsg);
return nullptr;
}
- return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
- End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, Start, End, Size);
}
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
@@ -1274,13 +1312,16 @@ bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End) {
+ MCAsmParser &Parser = getParser();
assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
Val = nullptr;
StringRef LineBuf(Identifier.data());
- SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
+ void *Result =
+ SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
const AsmToken &Tok = Parser.getTok();
+ SMLoc Loc = Tok.getLoc();
// Advance the token stream until the end of the current token is
// after the end of what the frontend claimed.
@@ -1292,9 +1333,22 @@ bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
if (End.getPointer() == EndPtr) break;
}
+ Identifier = LineBuf;
+
+ // If the identifier lookup was unsuccessful, assume that we are dealing with
+ // a label.
+ if (!Result) {
+ StringRef InternalName =
+ SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
+ Loc, false);
+ assert(InternalName.size() && "We should have an internal name here.");
+ // Push a rewrite for replacing the identifier name with the internal name.
+ InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Label, Loc,
+ Identifier.size(),
+ InternalName));
+ }
// Create the symbol reference.
- Identifier = LineBuf;
MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
@@ -1305,6 +1359,7 @@ bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
unsigned Size) {
+ MCAsmParser &Parser = getParser();
assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
const AsmToken &Tok = Parser.getTok(); // Eat colon.
if (Tok.isNot(AsmToken::Colon))
@@ -1325,9 +1380,9 @@ X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
// be followed by a bracketed expression. If it isn't we know we have our
// final segment override.
const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
- return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
- /*Scale=*/1, Start, ImmDispToken.getEndLoc(),
- Size);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
+ /*BaseReg=*/0, /*IndexReg=*/0, /*Scale=*/1,
+ Start, ImmDispToken.getEndLoc(), Size);
}
}
@@ -1340,7 +1395,7 @@ X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
if (getParser().parsePrimaryExpr(Val, End))
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
- return X86Operand::CreateMem(Val, Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
}
InlineAsmIdentifierInfo Info;
@@ -1356,6 +1411,7 @@ X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
SMLoc Start,
unsigned Size) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc End;
@@ -1369,7 +1425,7 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
if (getParser().parsePrimaryExpr(Val, End))
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
- return X86Operand::CreateMem(Val, Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
}
InlineAsmIdentifierInfo Info;
@@ -1407,14 +1463,15 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
// BaseReg is non-zero to avoid assertions. In the context of inline asm,
// we're pointing to a local variable in memory, so the base register is
// really the frame or stack pointer.
- return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/1, /*IndexReg=*/0,
- /*Scale=*/1, Start, End, Size, Identifier,
- Info.OpDecl);
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/1, /*IndexReg=*/0, /*Scale=*/1,
+ Start, End, Size, Identifier, Info.OpDecl);
}
/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
const MCExpr *&NewDisp) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
int64_t OrigDispVal, DotDispVal;
@@ -1459,6 +1516,7 @@ bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
/// Parse the 'offset' operator. This operator is used to specify the
/// location rather then the content of a variable.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc OffsetOfLoc = Tok.getLoc();
Parser.Lex(); // Eat offset.
@@ -1496,6 +1554,7 @@ enum IntelOperatorKind {
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc TypeLoc = Tok.getLoc();
Parser.Lex(); // Eat operator.
@@ -1529,6 +1588,7 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
}
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
+ MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc Start, End;
@@ -1549,7 +1609,7 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
if (Size) {
Parser.Lex(); // Eat operand size (e.g., byte, word).
if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
- return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
+ return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
Parser.Lex(); // Eat ptr.
}
Start = Tok.getLoc();
@@ -1580,7 +1640,8 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
// to the MCExpr with the directional local symbol and this is a
// memory operand not an immediate operand.
if (SM.getSym())
- return X86Operand::CreateMem(SM.getSym(), Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), SM.getSym(), Start, End,
+ Size);
const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
return X86Operand::CreateImm(ImmExpr, Start, End);
@@ -1611,6 +1672,7 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
}
std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
+ MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
// Parse a memory operand with no segment register.
@@ -1631,6 +1693,9 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
+ if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
+ return ErrorOperand(Start, "invalid segment register");
+
getParser().Lex(); // Eat the colon.
return ParseMemOperand(RegNo, Start);
}
@@ -1648,6 +1713,7 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
const MCParsedAsmOperand &Op) {
+ MCAsmParser &Parser = getParser();
if(STI.getFeatureBits() & X86::FeatureAVX512) {
if (getLexer().is(AsmToken::LCurly)) {
// Eat "{" and mark the current place.
@@ -1719,6 +1785,7 @@ bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
SMLoc MemStart) {
+ MCAsmParser &Parser = getParser();
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the '(' and see what is
@@ -1733,8 +1800,9 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
- return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
- return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
+ return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ MemStart, ExprEnd);
}
// Eat the '('.
@@ -1760,8 +1828,10 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
- return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
- return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
+ return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc,
+ ExprEnd);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ MemStart, ExprEnd);
}
// Eat the '('.
@@ -1876,12 +1946,15 @@ std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
return nullptr;
}
- return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
- MemStart, MemEnd);
+ if (SegReg || BaseReg || IndexReg)
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, MemStart, MemEnd);
+ return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd);
}
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
InstInfo = &Info;
StringRef PatchedName = Name;
@@ -2200,6 +2273,22 @@ static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
}
+bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
+ switch (Inst.getOpcode()) {
+ default: return true;
+ case X86::INT:
+ X86Operand &Op = static_cast<X86Operand &>(*Ops[1]);
+ assert(Op.isImm() && "expected immediate");
+ int64_t Res;
+ if (!Op.getImm()->EvaluateAsAbsolute(Res) || Res > 255) {
+ Error(Op.getStartLoc(), "interrupt vector must be in range [0-255]");
+ return false;
+ }
+ return true;
+ }
+ llvm_unreachable("handle the instruction appropriately");
+}
+
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
switch (Inst.getOpcode()) {
default: return false;
@@ -2279,51 +2368,79 @@ bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
}
}
-static const char *getSubtargetFeatureName(unsigned Val);
+static const char *getSubtargetFeatureName(uint64_t Val);
void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
MCStreamer &Out) {
- Instrumentation->InstrumentInstruction(Inst, Operands, getContext(), MII,
- Out);
- Out.EmitInstruction(Inst, STI);
+ Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(),
+ MII, Out);
}
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
- MCStreamer &Out, unsigned &ErrorInfo,
+ MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
- assert(!Operands.empty() && "Unexpect empty operand list!");
- X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
- assert(Op.isToken() && "Leading operand should always be a mnemonic!");
- ArrayRef<SMRange> EmptyRanges = None;
+ if (isParsingIntelSyntax())
+ return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
+ MatchingInlineAsm);
+ return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
+ MatchingInlineAsm);
+}
- // First, handle aliases that expand to multiple instructions.
+void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
+ OperandVector &Operands, MCStreamer &Out,
+ bool MatchingInlineAsm) {
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
// call.
- if (Op.getToken() == "fstsw" || Op.getToken() == "fstcw" ||
- Op.getToken() == "fstsww" || Op.getToken() == "fstcww" ||
- Op.getToken() == "finit" || Op.getToken() == "fsave" ||
- Op.getToken() == "fstenv" || Op.getToken() == "fclex") {
+ const char *Repl = StringSwitch<const char *>(Op.getToken())
+ .Case("finit", "fninit")
+ .Case("fsave", "fnsave")
+ .Case("fstcw", "fnstcw")
+ .Case("fstcww", "fnstcw")
+ .Case("fstenv", "fnstenv")
+ .Case("fstsw", "fnstsw")
+ .Case("fstsww", "fnstsw")
+ .Case("fclex", "fnclex")
+ .Default(nullptr);
+ if (Repl) {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
-
- const char *Repl = StringSwitch<const char *>(Op.getToken())
- .Case("finit", "fninit")
- .Case("fsave", "fnsave")
- .Case("fstcw", "fnstcw")
- .Case("fstcww", "fnstcw")
- .Case("fstenv", "fnstenv")
- .Case("fstsw", "fnstsw")
- .Case("fstsww", "fnstsw")
- .Case("fclex", "fnclex")
- .Default(nullptr);
- assert(Repl && "Unknown wait-prefixed instruction");
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
+}
+
+bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(ErrorInfo && "Unknown missing feature!");
+ ArrayRef<SMRange> EmptyRanges = None;
+ SmallString<126> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "instruction requires:";
+ uint64_t Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
+ if (ErrorInfo & Mask)
+ OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
+ Mask <<= 1;
+ }
+ return Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
+}
+
+bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+ ArrayRef<SMRange> EmptyRanges = None;
+
+ // First, handle aliases that expand to multiple instructions.
+ MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
bool WasOriginallyInvalidOperand = false;
MCInst Inst;
@@ -2332,8 +2449,11 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
switch (MatchInstructionImpl(Operands, Inst,
ErrorInfo, MatchingInlineAsm,
isParsingIntelSyntax())) {
- default: break;
+ default: llvm_unreachable("Unexpected match result!");
case Match_Success:
+ if (!validateInstruction(Inst, Operands))
+ return true;
+
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
@@ -2346,21 +2466,8 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
- case Match_MissingFeature: {
- assert(ErrorInfo && "Unknown missing feature!");
- // Special case the error message for the very common case where only
- // a single subtarget feature is missing.
- std::string Msg = "instruction requires:";
- unsigned Mask = 1;
- for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
- if (ErrorInfo & Mask) {
- Msg += " ";
- Msg += getSubtargetFeatureName(ErrorInfo & Mask);
- }
- Mask <<= 1;
- }
- return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
- }
+ case Match_MissingFeature:
+ return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
case Match_InvalidOperand:
WasOriginallyInvalidOperand = true;
break;
@@ -2389,34 +2496,18 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// Check for the various suffix matches.
- Tmp[Base.size()] = Suffixes[0];
- unsigned ErrorInfoIgnore;
- unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
- unsigned Match1, Match2, Match3, Match4;
-
- Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
- MatchingInlineAsm, isParsingIntelSyntax());
- // If this returned as a missing feature failure, remember that.
- if (Match1 == Match_MissingFeature)
- ErrorInfoMissingFeature = ErrorInfoIgnore;
- Tmp[Base.size()] = Suffixes[1];
- Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
- MatchingInlineAsm, isParsingIntelSyntax());
- // If this returned as a missing feature failure, remember that.
- if (Match2 == Match_MissingFeature)
- ErrorInfoMissingFeature = ErrorInfoIgnore;
- Tmp[Base.size()] = Suffixes[2];
- Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
- MatchingInlineAsm, isParsingIntelSyntax());
- // If this returned as a missing feature failure, remember that.
- if (Match3 == Match_MissingFeature)
- ErrorInfoMissingFeature = ErrorInfoIgnore;
- Tmp[Base.size()] = Suffixes[3];
- Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
- MatchingInlineAsm, isParsingIntelSyntax());
- // If this returned as a missing feature failure, remember that.
- if (Match4 == Match_MissingFeature)
- ErrorInfoMissingFeature = ErrorInfoIgnore;
+ uint64_t ErrorInfoIgnore;
+ uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
+ unsigned Match[4];
+
+ for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
+ Tmp.back() = Suffixes[I];
+ Match[I] = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match[I] == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ }
// Restore the old token.
Op.setTokenValue(Base);
@@ -2425,8 +2516,7 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
- (Match1 == Match_Success) + (Match2 == Match_Success) +
- (Match3 == Match_Success) + (Match4 == Match_Success);
+ std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
@@ -2442,10 +2532,9 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
- if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
- if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
- if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
- if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
+ for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
+ if (Match[I] == Match_Success)
+ MatchChars[NumMatches++] = Suffixes[I];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
@@ -2466,8 +2555,7 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
- if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
- (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
+ if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
if (!WasOriginallyInvalidOperand) {
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
@@ -2476,7 +2564,7 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
}
// Recover location info for the operand if we know which was the problem.
- if (ErrorInfo != ~0U) {
+ if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction",
EmptyRanges, MatchingInlineAsm);
@@ -2495,27 +2583,19 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
// If one instruction matched with a missing feature, report this as a
// missing feature.
- if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
- (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
- std::string Msg = "instruction requires:";
- unsigned Mask = 1;
- for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
- if (ErrorInfoMissingFeature & Mask) {
- Msg += " ";
- Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
- }
- Mask <<= 1;
- }
- return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_MissingFeature) == 1) {
+ ErrorInfo = ErrorInfoMissingFeature;
+ return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
+ MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
- if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
- (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
- Error(IDLoc, "invalid operand for instruction", EmptyRanges,
- MatchingInlineAsm);
- return true;
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_InvalidOperand) == 1) {
+ return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
@@ -2524,25 +2604,176 @@ bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
return true;
}
+bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+ StringRef Mnemonic = Op.getToken();
+ ArrayRef<SMRange> EmptyRanges = None;
+
+ // First, handle aliases that expand to multiple instructions.
+ MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
+
+ MCInst Inst;
+
+ // Find one unsized memory operand, if present.
+ X86Operand *UnsizedMemOp = nullptr;
+ for (const auto &Op : Operands) {
+ X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
+ if (X86Op->isMemUnsized())
+ UnsizedMemOp = X86Op;
+ }
+
+ // Allow some instructions to have implicitly pointer-sized operands. This is
+ // compatible with gas.
+ if (UnsizedMemOp) {
+ static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
+ for (const char *Instr : PtrSizedInstrs) {
+ if (Mnemonic == Instr) {
+ UnsizedMemOp->Mem.Size = getPointerWidth();
+ break;
+ }
+ }
+ }
+
+ // If an unsized memory operand is present, try to match with each memory
+ // operand size. In Intel assembly, the size is not part of the instruction
+ // mnemonic.
+ SmallVector<unsigned, 8> Match;
+ uint64_t ErrorInfoMissingFeature = 0;
+ if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
+ static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
+ for (unsigned Size : MopSizes) {
+ UnsizedMemOp->Mem.Size = Size;
+ uint64_t ErrorInfoIgnore;
+ unsigned LastOpcode = Inst.getOpcode();
+ unsigned M =
+ MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ if (Match.empty() || LastOpcode != Inst.getOpcode())
+ Match.push_back(M);
+
+ // If this returned as a missing feature failure, remember that.
+ if (Match.back() == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ }
+
+ // Restore the size of the unsized memory operand if we modified it.
+ if (UnsizedMemOp)
+ UnsizedMemOp->Mem.Size = 0;
+ }
+
+ // If we haven't matched anything yet, this is not a basic integer or FPU
+ // operation. There shouldn't be any ambiguity in our mneumonic table, so try
+ // matching with the unsized operand.
+ if (Match.empty()) {
+ Match.push_back(MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm,
+ isParsingIntelSyntax()));
+ // If this returned as a missing feature failure, remember that.
+ if (Match.back() == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfo;
+ }
+
+ // Restore the size of the unsized memory operand if we modified it.
+ if (UnsizedMemOp)
+ UnsizedMemOp->Mem.Size = 0;
+
+ // If it's a bad mnemonic, all results will be the same.
+ if (Match.back() == Match_MnemonicFail) {
+ ArrayRef<SMRange> Ranges =
+ MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
+ return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
+ Ranges, MatchingInlineAsm);
+ }
+
+ // If exactly one matched, then we treat that as a successful match (and the
+ // instruction will already have been filled in correctly, since the failing
+ // matches won't have modified it).
+ unsigned NumSuccessfulMatches =
+ std::count(std::begin(Match), std::end(Match), Match_Success);
+ if (NumSuccessfulMatches == 1) {
+ if (!validateInstruction(Inst, Operands))
+ return true;
+
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the individual
+ // transformations can chain off each other.
+ if (!MatchingInlineAsm)
+ while (processInstruction(Inst, Operands))
+ ;
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ } else if (NumSuccessfulMatches > 1) {
+ assert(UnsizedMemOp &&
+ "multiple matches only possible with unsized memory operands");
+ ArrayRef<SMRange> Ranges =
+ MatchingInlineAsm ? EmptyRanges : UnsizedMemOp->getLocRange();
+ return Error(UnsizedMemOp->getStartLoc(),
+ "ambiguous operand size for instruction '" + Mnemonic + "\'",
+ Ranges, MatchingInlineAsm);
+ }
+
+ // If one instruction matched with a missing feature, report this as a
+ // missing feature.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_MissingFeature) == 1) {
+ ErrorInfo = ErrorInfoMissingFeature;
+ return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with an invalid operand, report this as an
+ // operand failure.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_InvalidOperand) == 1) {
+ return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
+ }
+
+ // If all of these were an outright failure, report it in a useless way.
+ return Error(IDLoc, "unknown instruction mnemonic", EmptyRanges,
+ MatchingInlineAsm);
+}
+
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
}
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
+ MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
else if (IDVal.startswith(".code"))
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
else if (IDVal.startswith(".att_syntax")) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (Parser.getTok().getString() == "prefix")
+ Parser.Lex();
+ else if (Parser.getTok().getString() == "noprefix")
+ return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
+ "supported: registers must have a "
+ "'%' prefix in .att_syntax");
+ }
getParser().setAssemblerDialect(0);
return false;
} else if (IDVal.startswith(".intel_syntax")) {
getParser().setAssemblerDialect(1);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
- // FIXME: Handle noprefix
if (Parser.getTok().getString() == "noprefix")
Parser.Lex();
+ else if (Parser.getTok().getString() == "prefix")
+ return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
+ "supported: registers must not have "
+ "a '%' prefix in .intel_syntax");
}
return false;
}
@@ -2552,6 +2783,7 @@ bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
@@ -2579,6 +2811,7 @@ bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
/// ParseDirectiveCode
/// ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
+ MCAsmParser &Parser = getParser();
if (IDVal == ".code16") {
Parser.Lex();
if (!is16BitMode()) {
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h
index ef1565f..72aeeaa 100644
--- a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParserCommon.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_ASM_PARSER_COMMON_H
-#define X86_ASM_PARSER_COMMON_H
+#ifndef LLVM_LIB_TARGET_X86_ASMPARSER_X86ASMPARSERCOMMON_H
+#define LLVM_LIB_TARGET_X86_ASMPARSER_X86ASMPARSERCOMMON_H
namespace llvm {
@@ -24,10 +24,6 @@ inline bool isImmSExti32i8Value(uint64_t Value) {
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
-inline bool isImmZExtu32u8Value(uint64_t Value) {
- return (Value <= 0x00000000000000FFULL);
-}
-
inline bool isImmSExti64i8Value(uint64_t Value) {
return (( Value <= 0x000000000000007FULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
@@ -40,4 +36,4 @@ inline bool isImmSExti64i32Value(uint64_t Value) {
} // End of namespace llvm
-#endif // X86_ASM_PARSER_COMMON_H
+#endif
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h b/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h
index 1bbfc11..6675d4d 100644
--- a/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86Operand.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_OPERAND_H
-#define X86_OPERAND_H
+#ifndef LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
+#define LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H
#include "X86AsmParserCommon.h"
#include "llvm/MC/MCExpr.h"
@@ -53,6 +53,7 @@ struct X86Operand : public MCParsedAsmOperand {
unsigned IndexReg;
unsigned Scale;
unsigned Size;
+ unsigned ModeSize;
};
union {
@@ -120,6 +121,10 @@ struct X86Operand : public MCParsedAsmOperand {
assert(Kind == Memory && "Invalid access!");
return Mem.Scale;
}
+ unsigned getMemModeSize() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.ModeSize;
+ }
bool isToken() const override {return Kind == Token; }
@@ -153,20 +158,6 @@ struct X86Operand : public MCParsedAsmOperand {
// extension.
return isImmSExti32i8Value(CE->getValue());
}
- bool isImmZExtu32u8() const {
- if (!isImm())
- return false;
-
- // If this isn't a constant expr, just assume it fits and let relaxation
- // handle it.
- const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
- if (!CE)
- return true;
-
- // Otherwise, check the value is in a range that makes sense for this
- // extension.
- return isImmZExtu32u8Value(CE->getValue());
- }
bool isImmSExti64i8() const {
if (!isImm())
return false;
@@ -205,6 +196,9 @@ struct X86Operand : public MCParsedAsmOperand {
}
bool isMem() const override { return Kind == Memory; }
+ bool isMemUnsized() const {
+ return Kind == Memory && Mem.Size == 0;
+ }
bool isMem8() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 8);
}
@@ -260,6 +254,14 @@ struct X86Operand : public MCParsedAsmOperand {
!getMemIndexReg() && getMemScale() == 1;
}
+ bool isAbsMem16() const {
+ return isAbsMem() && Mem.ModeSize == 16;
+ }
+
+ bool isAbsMem32() const {
+ return isAbsMem() && Mem.ModeSize != 16;
+ }
+
bool isSrcIdx() const {
return !getMemIndexReg() && getMemScale() == 1 &&
(getMemBaseReg() == X86::RSI || getMemBaseReg() == X86::ESI ||
@@ -299,21 +301,43 @@ struct X86Operand : public MCParsedAsmOperand {
return isMem64() && isDstIdx();
}
- bool isMemOffs8() const {
- return Kind == Memory && !getMemBaseReg() &&
- !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 8);
+ bool isMemOffs() const {
+ return Kind == Memory && !getMemBaseReg() && !getMemIndexReg() &&
+ getMemScale() == 1;
+ }
+
+ bool isMemOffs16_8() const {
+ return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 8);
+ }
+ bool isMemOffs16_16() const {
+ return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 16);
+ }
+ bool isMemOffs16_32() const {
+ return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 32);
+ }
+ bool isMemOffs32_8() const {
+ return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 8);
}
- bool isMemOffs16() const {
- return Kind == Memory && !getMemBaseReg() &&
- !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 16);
+ bool isMemOffs32_16() const {
+ return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 16);
}
- bool isMemOffs32() const {
- return Kind == Memory && !getMemBaseReg() &&
- !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 32);
+ bool isMemOffs32_32() const {
+ return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 32);
}
- bool isMemOffs64() const {
- return Kind == Memory && !getMemBaseReg() &&
- !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 64);
+ bool isMemOffs32_64() const {
+ return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 64);
+ }
+ bool isMemOffs64_8() const {
+ return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 8);
+ }
+ bool isMemOffs64_16() const {
+ return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 16);
+ }
+ bool isMemOffs64_32() const {
+ return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 32);
+ }
+ bool isMemOffs64_64() const {
+ return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 64);
}
bool isReg() const override { return Kind == Register; }
@@ -441,8 +465,9 @@ struct X86Operand : public MCParsedAsmOperand {
/// Create an absolute memory operand.
static std::unique_ptr<X86Operand>
- CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, unsigned Size = 0,
- StringRef SymName = StringRef(), void *OpDecl = nullptr) {
+ CreateMem(unsigned ModeSize, const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
+ unsigned Size = 0, StringRef SymName = StringRef(),
+ void *OpDecl = nullptr) {
auto Res = llvm::make_unique<X86Operand>(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = 0;
Res->Mem.Disp = Disp;
@@ -450,6 +475,7 @@ struct X86Operand : public MCParsedAsmOperand {
Res->Mem.IndexReg = 0;
Res->Mem.Scale = 1;
Res->Mem.Size = Size;
+ Res->Mem.ModeSize = ModeSize;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = false;
@@ -458,9 +484,9 @@ struct X86Operand : public MCParsedAsmOperand {
/// Create a generalized memory operand.
static std::unique_ptr<X86Operand>
- CreateMem(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
- unsigned IndexReg, unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
- unsigned Size = 0, StringRef SymName = StringRef(),
+ CreateMem(unsigned ModeSize, unsigned SegReg, const MCExpr *Disp,
+ unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc,
+ SMLoc EndLoc, unsigned Size = 0, StringRef SymName = StringRef(),
void *OpDecl = nullptr) {
// We should never just have a displacement, that should be parsed as an
// absolute memory operand.
@@ -476,6 +502,7 @@ struct X86Operand : public MCParsedAsmOperand {
Res->Mem.IndexReg = IndexReg;
Res->Mem.Scale = Scale;
Res->Mem.Size = Size;
+ Res->Mem.ModeSize = ModeSize;
Res->SymName = SymName;
Res->OpDecl = OpDecl;
Res->AddressOf = false;
@@ -485,4 +512,4 @@ struct X86Operand : public MCParsedAsmOperand {
} // End of namespace llvm
-#endif // X86_OPERAND
+#endif
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
index 521bd21..1c56182 100644
--- a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
@@ -23,7 +23,6 @@
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
@@ -52,8 +51,8 @@ const char *llvm::X86Disassembler::GetInstrName(unsigned Opcode,
#define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
-namespace llvm {
-
+namespace llvm {
+
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
@@ -97,16 +96,26 @@ X86GenericDisassembler::X86GenericDisassembler(
}
}
-/// regionReader - a callback function that wraps the readByte method from
-/// MemoryObject.
+struct Region {
+ ArrayRef<uint8_t> Bytes;
+ uint64_t Base;
+ Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
+};
+
+/// A callback function that wraps the readByte method from Region.
///
-/// @param arg - The generic callback parameter. In this case, this should
-/// be a pointer to a MemoryObject.
-/// @param byte - A pointer to the byte to be read.
-/// @param address - The address to be read.
-static int regionReader(const void* arg, uint8_t* byte, uint64_t address) {
- const MemoryObject* region = static_cast<const MemoryObject*>(arg);
- return region->readByte(address, byte);
+/// @param Arg - The generic callback parameter. In this case, this should
+/// be a pointer to a Region.
+/// @param Byte - A pointer to the byte to be read.
+/// @param Address - The address to be read.
+static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
+ auto *R = static_cast<const Region *>(Arg);
+ ArrayRef<uint8_t> Bytes = R->Bytes;
+ unsigned Index = Address - R->Base;
+ if (Bytes.size() <= Index)
+ return -1;
+ *Byte = Bytes[Index];
+ return 0;
}
/// logger - a callback function that wraps the operator<< method from
@@ -118,47 +127,38 @@ static int regionReader(const void* arg, uint8_t* byte, uint64_t address) {
static void logger(void* arg, const char* log) {
if (!arg)
return;
-
+
raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
vStream << log << "\n";
-}
-
+}
+
//
// Public interface for the disassembler
//
-MCDisassembler::DecodeStatus
-X86GenericDisassembler::getInstruction(MCInst &instr,
- uint64_t &size,
- const MemoryObject &region,
- uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const {
- CommentStream = &cStream;
-
- InternalInstruction internalInstr;
-
- dlog_t loggerFn = logger;
- if (&vStream == &nulls())
- loggerFn = nullptr; // Disable logging completely if it's going to nulls().
-
- int ret = decodeInstruction(&internalInstr,
- regionReader,
- (const void*)&region,
- loggerFn,
- (void*)&vStream,
- (const void*)MII.get(),
- address,
- fMode);
-
- if (ret) {
- size = internalInstr.readerCursor - address;
+MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
+ MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream, raw_ostream &CStream) const {
+ CommentStream = &CStream;
+
+ InternalInstruction InternalInstr;
+
+ dlog_t LoggerFn = logger;
+ if (&VStream == &nulls())
+ LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
+
+ Region R(Bytes, Address);
+
+ int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
+ LoggerFn, (void *)&VStream,
+ (const void *)MII.get(), Address, fMode);
+
+ if (Ret) {
+ Size = InternalInstr.readerCursor - Address;
return Fail;
- }
- else {
- size = internalInstr.length;
- return (!translateInstruction(instr, internalInstr, this)) ?
- Success : Fail;
+ } else {
+ Size = InternalInstr.length;
+ return (!translateInstruction(Instr, InternalInstr, this)) ? Success : Fail;
}
}
@@ -184,7 +184,7 @@ static void translateRegister(MCInst &mcInst, Reg reg) {
}
/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
-/// immediate Value in the MCInst.
+/// immediate Value in the MCInst.
///
/// @param Value - The immediate Value, has had any PC adjustment made by
/// the caller.
@@ -196,7 +196,7 @@ static void translateRegister(MCInst &mcInst, Reg reg) {
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
/// called then that function is called to get any symbolic information for the
/// immediate in the instruction using the Address, Offset and Width. If that
-/// returns non-zero then the symbolic information it returns is used to create
+/// returns non-zero then the symbolic information it returns is used to create
/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
/// returns zero and isBranch is true then a symbol look up for immediate Value
/// is done and if a symbol is found an MCExpr is created with that, else
@@ -204,8 +204,8 @@ static void translateRegister(MCInst &mcInst, Reg reg) {
/// if it adds an operand to the MCInst and false otherwise.
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
uint64_t Address, uint64_t Offset,
- uint64_t Width, MCInst &MI,
- const MCDisassembler *Dis) {
+ uint64_t Width, MCInst &MI,
+ const MCDisassembler *Dis) {
return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
Offset, Width);
}
@@ -215,7 +215,7 @@ static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
/// These can often be addresses in a literal pool. The Address of the
/// instruction and its immediate Value are used to determine the address
/// being referenced in the literal pool entry. The SymbolLookUp call back will
-/// return a pointer to a literal 'C' string if the referenced address is an
+/// return a pointer to a literal 'C' string if the referenced address is an
/// address into a section with 'C' string literals.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
const void *Decoder) {
@@ -287,7 +287,7 @@ static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
const OperandSpecifier &operand,
InternalInstruction &insn,
- const MCDisassembler *Dis) {
+ const MCDisassembler *Dis) {
// Sign-extend the immediate if necessary.
OperandType type = (OperandType)operand.type;
@@ -350,6 +350,54 @@ static void translateImmediate(MCInst &mcInst, uint64_t immediate,
case ENCODING_IO:
break;
}
+ } else if (type == TYPE_IMM3) {
+ // Check for immediates that printSSECC can't handle.
+ if (immediate >= 8) {
+ unsigned NewOpc;
+ switch (mcInst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
+ case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
+ case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
+ case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
+ case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
+ case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
+ case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
+ case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
+ }
+ // Switch opcode to the one that doesn't get special printing.
+ mcInst.setOpcode(NewOpc);
+ }
+ } else if (type == TYPE_IMM5) {
+ // Check for immediates that printAVXCC can't handle.
+ if (immediate >= 32) {
+ unsigned NewOpc;
+ switch (mcInst.getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
+ case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
+ case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
+ case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
+ case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
+ case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
+ case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
+ case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
+ case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
+ case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
+ case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
+ case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
+ case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
+ case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
+ case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
+ case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
+ case X86::VCMPSDZrm: NewOpc = X86::VCMPSDZrmi_alt; break;
+ case X86::VCMPSDZrr: NewOpc = X86::VCMPSDZrri_alt; break;
+ case X86::VCMPSSZrm: NewOpc = X86::VCMPSSZrmi_alt; break;
+ case X86::VCMPSSZrr: NewOpc = X86::VCMPSSZrri_alt; break;
+ }
+ // Switch opcode to the one that doesn't get special printing.
+ mcInst.setOpcode(NewOpc);
+ }
}
switch (type) {
@@ -407,7 +455,7 @@ static bool translateRMRegister(MCInst &mcInst,
debug("A R/M register operand may not have a SIB byte");
return true;
}
-
+
switch (insn.eaBase) {
default:
debug("Unexpected EA base register");
@@ -427,7 +475,7 @@ static bool translateRMRegister(MCInst &mcInst,
ALL_REGS
#undef ENTRY
}
-
+
return false;
}
@@ -440,26 +488,26 @@ static bool translateRMRegister(MCInst &mcInst,
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
- const MCDisassembler *Dis) {
+ const MCDisassembler *Dis) {
// Addresses in an MCInst are represented as five operands:
- // 1. basereg (register) The R/M base, or (if there is a SIB) the
+ // 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
- // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
+ // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
- // the index (which is multiplied by the
+ // the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
-
+
MCOperand baseReg;
MCOperand scaleAmount;
MCOperand indexReg;
MCOperand displacement;
MCOperand segmentReg;
uint64_t pcrel = 0;
-
+
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
if (insn.sibBase != SIB_BASE_NONE) {
switch (insn.sibBase) {
@@ -512,7 +560,7 @@ static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
(insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 :
IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
- insn.sibIndex = (SIBIndex)(IndexBase +
+ insn.sibIndex = (SIBIndex)(IndexBase +
(insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
}
@@ -534,7 +582,7 @@ static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
} else {
indexReg = MCOperand::CreateReg(0);
}
-
+
scaleAmount = MCOperand::CreateImm(insn.sibScale);
} else {
switch (insn.eaBase) {
@@ -553,7 +601,7 @@ static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
}
else
baseReg = MCOperand::CreateReg(0);
-
+
indexReg = MCOperand::CreateReg(0);
break;
case EA_BASE_BX_SI:
@@ -584,7 +632,7 @@ static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
- baseReg = MCOperand::CreateReg(X86::x); break;
+ baseReg = MCOperand::CreateReg(X86::x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
@@ -595,14 +643,14 @@ static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
return true;
}
}
-
+
scaleAmount = MCOperand::CreateImm(1);
}
-
+
displacement = MCOperand::CreateImm(insn.displacement);
segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
-
+
mcInst.addOperand(baseReg);
mcInst.addOperand(scaleAmount);
mcInst.addOperand(indexReg);
@@ -623,7 +671,7 @@ static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
- InternalInstruction &insn, const MCDisassembler *Dis) {
+ InternalInstruction &insn, const MCDisassembler *Dis) {
switch (operand.type) {
default:
debug("Unexpected type for a R/M operand");
@@ -633,8 +681,6 @@ static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
- case TYPE_MM:
- case TYPE_MM32:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_XMM32:
@@ -660,9 +706,6 @@ static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
case TYPE_M32FP:
case TYPE_M64FP:
case TYPE_M80FP:
- case TYPE_M16INT:
- case TYPE_M32INT:
- case TYPE_M64INT:
case TYPE_M1616:
case TYPE_M1632:
case TYPE_M1664:
@@ -670,7 +713,7 @@ static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
return translateRMMemory(mcInst, insn, Dis);
}
}
-
+
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
@@ -698,7 +741,7 @@ static bool translateMaskRegister(MCInst &mcInst,
return false;
}
-/// translateOperand - Translates an operand stored in an internal instruction
+/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
@@ -707,7 +750,7 @@ static bool translateMaskRegister(MCInst &mcInst,
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn,
- const MCDisassembler *Dis) {
+ const MCDisassembler *Dis) {
switch (operand.encoding) {
default:
debug("Unhandled operand encoding during translation");
@@ -761,7 +804,7 @@ static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
insn, Dis);
}
}
-
+
/// translateInstruction - Translates an internal instruction and all its
/// operands to an MCInst.
///
@@ -770,12 +813,12 @@ static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
/// @return - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
InternalInstruction &insn,
- const MCDisassembler *Dis) {
+ const MCDisassembler *Dis) {
if (!insn.spec) {
debug("Instruction has no specification");
return true;
}
-
+
mcInst.setOpcode(insn.instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
@@ -786,9 +829,9 @@ static bool translateInstruction(MCInst &mcInst,
else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
mcInst.setOpcode(X86::XACQUIRE_PREFIX);
}
-
+
insn.numImmediatesTranslated = 0;
-
+
for (const auto &Op : insn.operands) {
if (Op.encoding != ENCODING_NONE) {
if (translateOperand(mcInst, Op, insn, Dis)) {
@@ -796,7 +839,7 @@ static bool translateInstruction(MCInst &mcInst,
}
}
}
-
+
return false;
}
@@ -807,9 +850,9 @@ static MCDisassembler *createX86Disassembler(const Target &T,
return new X86Disassembler::X86GenericDisassembler(STI, Ctx, std::move(MII));
}
-extern "C" void LLVMInitializeX86Disassembler() {
+extern "C" void LLVMInitializeX86Disassembler() {
// Register the disassembler.
- TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
+ TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
createX86Disassembler);
TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
createX86Disassembler);
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h
index 4dc7c29..d7f426b 100644
--- a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h
@@ -71,8 +71,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86DISASSEMBLER_H
-#define X86DISASSEMBLER_H
+#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLER_H
+#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLER_H
#include "X86DisassemblerDecoderCommon.h"
#include "llvm/MC/MCDisassembler.h"
@@ -87,21 +87,17 @@ class raw_ostream;
namespace X86Disassembler {
-/// X86GenericDisassembler - Generic disassembler for all X86 platforms.
-/// All each platform class should have to do is subclass the constructor, and
-/// provide a different disassemblerMode value.
+/// Generic disassembler for all X86 platforms. All each platform class should
+/// have to do is subclass the constructor, and provide a different
+/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
std::unique_ptr<const MCInstrInfo> MII;
public:
- /// Constructor - Initializes the disassembler.
- ///
X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII);
public:
-
- /// getInstruction - See MCDisassembler.
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
- const MemoryObject &region, uint64_t address,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &vStream,
raw_ostream &cStream) const override;
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
index ab3d1f7..619a0d4 100644
--- a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp
@@ -1,4 +1,4 @@
-//===-- X86DisassemblerDecoder.c - Disassembler decoder -------------------===//
+//===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -13,10 +13,10 @@
//
//===----------------------------------------------------------------------===//
-#include <stdarg.h> /* for va_*() */
-#include <stdio.h> /* for vsnprintf() */
-#include <stdlib.h> /* for exit() */
-#include <string.h> /* for memset() */
+#include <cstdarg> /* for va_*() */
+#include <cstdio> /* for vsnprintf() */
+#include <cstdlib> /* for exit() */
+#include <cstring> /* for memset() */
#include "X86DisassemblerDecoder.h"
@@ -472,8 +472,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
insn->vectorExtensionType = TYPE_EVEX;
- }
- else {
+ } else {
unconsumeByte(insn); /* unconsume byte1 */
unconsumeByte(insn); /* unconsume byte */
insn->necessaryPrefixLocation = insn->readerCursor - 2;
@@ -504,8 +503,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
}
- }
- else if (byte == 0xc4) {
+ } else if (byte == 0xc4) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
@@ -516,8 +514,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
insn->vectorExtensionType = TYPE_VEX_3B;
insn->necessaryPrefixLocation = insn->readerCursor - 1;
- }
- else {
+ } else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
@@ -541,8 +538,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
insn->vectorExtensionPrefix[2]);
}
- }
- else if (byte == 0xc5) {
+ } else if (byte == 0xc5) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
@@ -552,8 +548,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
insn->vectorExtensionType = TYPE_VEX_2B;
- }
- else {
+ } else {
unconsumeByte(insn);
}
@@ -566,8 +561,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
| (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
}
- switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1]))
- {
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
default:
break;
case VEX_PREFIX_66:
@@ -579,8 +573,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
insn->vectorExtensionPrefix[0],
insn->vectorExtensionPrefix[1]);
}
- }
- else if (byte == 0x8f) {
+ } else if (byte == 0x8f) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
@@ -591,8 +584,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
insn->vectorExtensionType = TYPE_XOP;
insn->necessaryPrefixLocation = insn->readerCursor - 1;
- }
- else {
+ } else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
@@ -612,8 +604,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
| (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
}
- switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2]))
- {
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
default:
break;
case VEX_PREFIX_66:
@@ -625,8 +616,7 @@ static int readPrefixes(struct InternalInstruction* insn) {
insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
insn->vectorExtensionPrefix[2]);
}
- }
- else {
+ } else {
if (insn->mode == MODE_64BIT) {
if ((byte & 0xf0) == 0x40) {
uint8_t opcodeByte;
@@ -698,8 +688,7 @@ static int readOpcode(struct InternalInstruction* insn) {
insn->opcodeType = ONEBYTE;
- if (insn->vectorExtensionType == TYPE_EVEX)
- {
+ if (insn->vectorExtensionType == TYPE_EVEX) {
switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
default:
dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
@@ -715,8 +704,7 @@ static int readOpcode(struct InternalInstruction* insn) {
insn->opcodeType = THREEBYTE_3A;
return consumeByte(insn, &insn->opcode);
}
- }
- else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
default:
dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
@@ -732,12 +720,10 @@ static int readOpcode(struct InternalInstruction* insn) {
insn->opcodeType = THREEBYTE_3A;
return consumeByte(insn, &insn->opcode);
}
- }
- else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
insn->opcodeType = TWOBYTE;
return consumeByte(insn, &insn->opcode);
- }
- else if (insn->vectorExtensionType == TYPE_XOP) {
+ } else if (insn->vectorExtensionType == TYPE_XOP) {
switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
default:
dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
@@ -866,6 +852,22 @@ static bool is16BitEquivalent(const char* orig, const char* equiv) {
}
/*
+ * is64Bit - Determines whether this instruction is a 64-bit instruction.
+ *
+ * @param name - The instruction that is not 16-bit
+ */
+static bool is64Bit(const char* name) {
+ off_t i;
+
+ for (i = 0;; ++i) {
+ if (name[i] == '\0')
+ return false;
+ if (name[i] == '6' && name[i+1] == '4')
+ return true;
+ }
+}
+
+/*
* getID - Determines the ID of an instruction, consuming the ModR/M byte as
* appropriate for extended and escape opcodes. Determines the attributes and
* context for the instruction before doing so.
@@ -911,8 +913,7 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) {
attrMask |= ATTR_EVEXL;
if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXL2;
- }
- else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
@@ -927,8 +928,7 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) {
if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
attrMask |= ATTR_VEXL;
- }
- else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
@@ -943,8 +943,7 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) {
if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
attrMask |= ATTR_VEXL;
- }
- else if (insn->vectorExtensionType == TYPE_XOP) {
+ } else if (insn->vectorExtensionType == TYPE_XOP) {
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
@@ -959,12 +958,10 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) {
if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
attrMask |= ATTR_VEXL;
- }
- else {
+ } else {
return -1;
}
- }
- else {
+ } else {
if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
attrMask |= ATTR_OPSIZE;
else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
@@ -978,29 +975,75 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) {
if (insn->rexPrefix & 0x08)
attrMask |= ATTR_REXW;
- if (getIDWithAttrMask(&instructionID, insn, attrMask))
- return -1;
-
/*
* JCXZ/JECXZ need special handling for 16-bit mode because the meaning
* of the AdSize prefix is inverted w.r.t. 32-bit mode.
*/
- if (insn->mode == MODE_16BIT && insn->opcode == 0xE3) {
- const struct InstructionSpecifier *spec;
- spec = specifierForUID(instructionID);
+ if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
+ insn->opcode == 0xE3)
+ attrMask ^= ATTR_ADSIZE;
+ if (getIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+
+ /* The following clauses compensate for limitations of the tables. */
+
+ if (insn->mode != MODE_64BIT &&
+ insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
/*
- * Check for Ii8PCRel instructions. We could alternatively do a
- * string-compare on the names, but this is probably cheaper.
+ * The tables can't distinquish between cases where the W-bit is used to
+ * select register size and cases where its a required part of the opcode.
*/
- if (x86OperandSets[spec->operands][0].type == TYPE_REL8) {
- attrMask ^= ATTR_ADSIZE;
- if (getIDWithAttrMask(&instructionID, insn, attrMask))
- return -1;
+ if ((insn->vectorExtensionType == TYPE_EVEX &&
+ wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
+ (insn->vectorExtensionType == TYPE_VEX_3B &&
+ wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
+ (insn->vectorExtensionType == TYPE_XOP &&
+ wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
+
+ uint16_t instructionIDWithREXW;
+ if (getIDWithAttrMask(&instructionIDWithREXW,
+ insn, attrMask | ATTR_REXW)) {
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(instructionID);
+ return 0;
+ }
+
+ const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
+ // If not a 64-bit instruction. Switch the opcode.
+ if (!is64Bit(SpecName)) {
+ insn->instructionID = instructionIDWithREXW;
+ insn->spec = specifierForUID(instructionIDWithREXW);
+ return 0;
+ }
}
}
- /* The following clauses compensate for limitations of the tables. */
+ /*
+ * Absolute moves need special handling.
+ * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
+ * inverted w.r.t.
+ * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
+ * any position.
+ */
+ if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
+ /* Make sure we observed the prefixes in any position. */
+ if (insn->prefixPresent[0x67])
+ attrMask |= ATTR_ADSIZE;
+ if (insn->prefixPresent[0x66])
+ attrMask |= ATTR_OPSIZE;
+
+ /* In 16-bit, invert the attributes. */
+ if (insn->mode == MODE_16BIT)
+ attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
+
+ if (getIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(instructionID);
+ return 0;
+ }
if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
!(attrMask & ATTR_OPSIZE)) {
@@ -1417,22 +1460,14 @@ static int readModRM(struct InternalInstruction* insn) {
case TYPE_VK16: \
return prefix##_K0 + index; \
case TYPE_MM64: \
- case TYPE_MM32: \
- case TYPE_MM: \
- if (index > 7) \
- *valid = 0; \
- return prefix##_MM0 + index; \
+ return prefix##_MM0 + (index & 0x7); \
case TYPE_SEGMENTREG: \
if (index > 5) \
*valid = 0; \
return prefix##_ES + index; \
case TYPE_DEBUGREG: \
- if (index > 7) \
- *valid = 0; \
return prefix##_DR0 + index; \
case TYPE_CONTROLREG: \
- if (index > 8) \
- *valid = 0; \
return prefix##_CR0 + index; \
} \
}
@@ -1709,12 +1744,6 @@ static int readOperands(struct InternalInstruction* insn) {
}
if (readImmediate(insn, 1))
return -1;
- if (Op.type == TYPE_IMM3 &&
- insn->immediates[insn->numImmediatesConsumed - 1] > 7)
- return -1;
- if (Op.type == TYPE_IMM5 &&
- insn->immediates[insn->numImmediatesConsumed - 1] > 31)
- return -1;
if (Op.type == TYPE_XMM128 ||
Op.type == TYPE_XMM256)
sawRegImm = 1;
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h
index 8c45402..a79a923 100644
--- a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h
@@ -13,8 +13,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86DISASSEMBLERDECODER_H
-#define X86DISASSEMBLERDECODER_H
+#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
+#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
#include "X86DisassemblerDecoderCommon.h"
#include "llvm/ADT/ArrayRef.h"
@@ -341,7 +341,15 @@ namespace X86Disassembler {
ENTRY(DR4) \
ENTRY(DR5) \
ENTRY(DR6) \
- ENTRY(DR7)
+ ENTRY(DR7) \
+ ENTRY(DR8) \
+ ENTRY(DR9) \
+ ENTRY(DR10) \
+ ENTRY(DR11) \
+ ENTRY(DR12) \
+ ENTRY(DR13) \
+ ENTRY(DR14) \
+ ENTRY(DR15)
#define REGS_CONTROL \
ENTRY(CR0) \
@@ -352,7 +360,14 @@ namespace X86Disassembler {
ENTRY(CR5) \
ENTRY(CR6) \
ENTRY(CR7) \
- ENTRY(CR8)
+ ENTRY(CR8) \
+ ENTRY(CR9) \
+ ENTRY(CR10) \
+ ENTRY(CR11) \
+ ENTRY(CR12) \
+ ENTRY(CR13) \
+ ENTRY(CR14) \
+ ENTRY(CR15)
#define ALL_EA_BASES \
EA_BASES_16BIT \
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
index 13a7b55..1f8f9da 100644
--- a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
+++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86DISASSEMBLERDECODERCOMMON_H
-#define X86DISASSEMBLERDECODERCOMMON_H
+#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H
+#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H
#include "llvm/Support/DataTypes.h"
@@ -82,6 +82,7 @@ enum attributeBits {
"operands change width") \
ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \
"operands change width") \
+ ENUM_ENTRY(IC_OPSIZE_ADSIZE, 4, "requires ADSIZE and OPSIZE prefixes") \
ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \
"but not the operands") \
ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \
@@ -90,20 +91,24 @@ enum attributeBits {
"operands change width") \
ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
- ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\
+ ENUM_ENTRY(IC_64BIT_REXW, 5, "requires a REX.W prefix, so operands "\
"change width; overrides IC_OPSIZE") \
+ ENUM_ENTRY(IC_64BIT_REXW_ADSIZE, 6, "requires a REX.W prefix and 0x67 " \
+ "prefix") \
ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \
ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \
- ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \
+ ENUM_ENTRY(IC_64BIT_OPSIZE_ADSIZE, 4, "Just as meaningful as IC_OPSIZE/" \
+ "IC_ADSIZE") \
+ ENUM_ENTRY(IC_64BIT_XD, 6, "XD instructions are SSE; REX.W is " \
"secondary") \
- ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \
+ ENUM_ENTRY(IC_64BIT_XS, 6, "Just as meaningful as IC_64BIT_XD") \
ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \
ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \
- ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \
+ ENUM_ENTRY(IC_64BIT_REXW_XS, 7, "OPSIZE could mean a different " \
"opcode") \
- ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \
+ ENUM_ENTRY(IC_64BIT_REXW_XD, 7, "Just as meaningful as " \
"IC_64BIT_REXW_XS") \
- ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \
+ ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 8, "The Dynamic Duo! Prefer over all " \
"else because this changes most " \
"operands' meaning") \
ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \
@@ -416,10 +421,6 @@ enum OperandEncoding {
ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \
ENUM_ENTRY(TYPE_M1632, "2+4-byte") \
ENUM_ENTRY(TYPE_M1664, "2+8-byte") \
- ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \
- ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \
- ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \
- ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \
ENUM_ENTRY(TYPE_SRCIDX8, "1-byte memory at source index") \
ENUM_ENTRY(TYPE_SRCIDX16, "2-byte memory at source index") \
ENUM_ENTRY(TYPE_SRCIDX32, "4-byte memory at source index") \
@@ -438,14 +439,8 @@ enum OperandEncoding {
ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \
ENUM_ENTRY(TYPE_M64FP, "64-bit") \
ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \
- ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \
- "floating-point instructions") \
- ENUM_ENTRY(TYPE_M32INT, "4-byte") \
- ENUM_ENTRY(TYPE_M64INT, "8-byte") \
ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \
- ENUM_ENTRY(TYPE_MM, "MMX register operand") \
- ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \
- ENUM_ENTRY(TYPE_MM64, "8-byte") \
+ ENUM_ENTRY(TYPE_MM64, "8-byte MMX register") \
ENUM_ENTRY(TYPE_XMM, "XMM register operand") \
ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \
ENUM_ENTRY(TYPE_XMM64, "8-byte") \
@@ -500,7 +495,7 @@ enum ModifierType {
};
#undef ENUM_ENTRY
-static const unsigned X86_MAX_OPERANDS = 5;
+static const unsigned X86_MAX_OPERANDS = 6;
/// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode
/// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp
index b45b118..db69485 100644
--- a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp
@@ -45,50 +45,36 @@ void X86ATTInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
uint64_t TSFlags = Desc.TSFlags;
+ // If verbose assembly is enabled, we can print some informative comments.
+ if (CommentStream)
+ HasCustomInstComment =
+ EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
+
if (TSFlags & X86II::LOCK)
OS << "\tlock\n";
+ // Output CALLpcrel32 as "callq" in 64-bit mode.
+ // In Intel annotation it's always emitted as "call".
+ //
+ // TODO: Probably this hack should be redesigned via InstAlias in
+ // InstrInfo.td as soon as Requires clause is supported properly
+ // for InstAlias.
+ if (MI->getOpcode() == X86::CALLpcrel32 &&
+ (getAvailableFeatures() & X86::Mode64Bit) != 0) {
+ OS << "\tcallq\t";
+ printPCRelImm(MI, 0, OS);
+ }
// Try to print any aliases first.
- if (!printAliasInstr(MI, OS))
+ else if (!printAliasInstr(MI, OS))
printInstruction(MI, OS);
// Next always print the annotation.
printAnnotation(OS, Annot);
-
- // If verbose assembly is enabled, we can print some informative comments.
- if (CommentStream)
- EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
-}
-
-void X86ATTInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
- raw_ostream &O) {
- int64_t Imm = MI->getOperand(Op).getImm() & 0xf;
- switch (Imm) {
- default: llvm_unreachable("Invalid ssecc argument!");
- case 0: O << "eq"; break;
- case 1: O << "lt"; break;
- case 2: O << "le"; break;
- case 3: O << "unord"; break;
- case 4: O << "neq"; break;
- case 5: O << "nlt"; break;
- case 6: O << "nle"; break;
- case 7: O << "ord"; break;
- case 8: O << "eq_uq"; break;
- case 9: O << "nge"; break;
- case 0xa: O << "ngt"; break;
- case 0xb: O << "false"; break;
- case 0xc: O << "neq_oq"; break;
- case 0xd: O << "ge"; break;
- case 0xe: O << "gt"; break;
- case 0xf: O << "true"; break;
- }
}
-void X86ATTInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
- raw_ostream &O) {
- int64_t Imm = MI->getOperand(Op).getImm() & 0x1f;
+static void printSSEAVXCC(int64_t Imm, raw_ostream &O) {
switch (Imm) {
- default: llvm_unreachable("Invalid avxcc argument!");
+ default: llvm_unreachable("Invalid ssecc/avxcc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
@@ -124,6 +110,20 @@ void X86ATTInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
}
}
+void X86ATTInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm();
+ assert((Imm & 0x7) == Imm); // Ensure valid immediate.
+ printSSEAVXCC(Imm, O);
+}
+
+void X86ATTInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm();
+ assert((Imm & 0x1f) == Imm); // Ensure valid immediate.
+ printSSEAVXCC(Imm, O);
+}
+
void X86ATTInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
@@ -151,8 +151,7 @@ void X86ATTInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
int64_t Address;
if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
O << formatHex((uint64_t)Address);
- }
- else {
+ } else {
// Otherwise, just print the expression.
O << *Op.getExpr();
}
@@ -170,7 +169,11 @@ void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
<< '$' << formatImm((int64_t)Op.getImm())
<< markup(">");
- if (CommentStream && (Op.getImm() > 255 || Op.getImm() < -256))
+ // If there are no instruction-specific comments, add a comment clarifying
+ // the hex value of the immediate operand when it isn't in the range
+ // [-256,255].
+ if (CommentStream && !HasCustomInstComment &&
+ (Op.getImm() > 255 || Op.getImm() < -256))
*CommentStream << format("imm = 0x%" PRIX64 "\n", (uint64_t)Op.getImm());
} else {
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h
index 531183b..649dc84 100644
--- a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h
@@ -11,10 +11,11 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_ATT_INST_PRINTER_H
-#define X86_ATT_INST_PRINTER_H
+#ifndef LLVM_LIB_TARGET_X86_INSTPRINTER_X86ATTINSTPRINTER_H
+#define LLVM_LIB_TARGET_X86_INSTPRINTER_X86ATTINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCSubtargetInfo.h"
namespace llvm {
@@ -23,8 +24,11 @@ class MCOperand;
class X86ATTInstPrinter final : public MCInstPrinter {
public:
X86ATTInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
- const MCRegisterInfo &MRI)
- : MCInstPrinter(MAI, MII, MRI) {}
+ const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
+ : MCInstPrinter(MAI, MII, MRI) {
+ // Initialize the set of available features.
+ setAvailableFeatures(STI.getFeatureBits());
+ }
void printRegName(raw_ostream &OS, unsigned RegNo) const override;
void printInst(const MCInst *MI, raw_ostream &OS, StringRef Annot) override;
@@ -49,10 +53,14 @@ public:
void printMemOffset(const MCInst *MI, unsigned OpNo, raw_ostream &OS);
void printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &OS);
+ void printanymem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+
void printopaquemem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
printMemReference(MI, OpNo, O);
}
-
+
void printi8mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
printMemReference(MI, OpNo, O);
}
@@ -129,8 +137,11 @@ public:
void printMemOffs64(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
printMemOffset(MI, OpNo, O);
}
+
+private:
+ bool HasCustomInstComment;
};
-
+
}
#endif
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp
index baf6507..a4c0ca8 100644
--- a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp
@@ -28,20 +28,127 @@ using namespace llvm;
/// EmitAnyX86InstComments - This function decodes x86 instructions and prints
/// newline terminated strings to the specified string if desired. This
/// information is shown in disassembly dumps when verbose assembly is enabled.
-void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
+bool llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
const char *(*getRegName)(unsigned)) {
// If this is a shuffle operation, the switch should fill in this state.
SmallVector<int, 8> ShuffleMask;
const char *DestName = nullptr, *Src1Name = nullptr, *Src2Name = nullptr;
switch (MI->getOpcode()) {
+ default:
+ // Not an instruction for which we can decode comments.
+ return false;
+
+ case X86::BLENDPDrri:
+ case X86::VBLENDPDrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::BLENDPDrmi:
+ case X86::VBLENDPDrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v2f64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VBLENDPDYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VBLENDPDYrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v4f64,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
+ case X86::BLENDPSrri:
+ case X86::VBLENDPSrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::BLENDPSrmi:
+ case X86::VBLENDPSrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v4f32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VBLENDPSYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VBLENDPSYrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v8f32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
+ case X86::PBLENDWrri:
+ case X86::VPBLENDWrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::PBLENDWrmi:
+ case X86::VPBLENDWrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v8i16,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+ case X86::VPBLENDWYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPBLENDWYrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v16i16,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
+ case X86::VPBLENDDrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPBLENDDrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v4i32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
+ case X86::VPBLENDDYrri:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPBLENDDYrmi:
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeBLENDMask(MVT::v8i32,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
+
case X86::INSERTPSrr:
case X86::VINSERTPSrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::INSERTPSrm:
+ case X86::VINSERTPSrm:
DestName = getRegName(MI->getOperand(0).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
- Src2Name = getRegName(MI->getOperand(2).getReg());
- if(MI->getOperand(3).isImm())
- DecodeINSERTPSMask(MI->getOperand(3).getImm(), ShuffleMask);
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodeINSERTPSMask(MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
break;
case X86::MOVLHPSrr:
@@ -60,6 +167,80 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
DecodeMOVHLPSMask(2, ShuffleMask);
break;
+ case X86::MOVSLDUPrr:
+ case X86::VMOVSLDUPrr:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::MOVSLDUPrm:
+ case X86::VMOVSLDUPrm:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeMOVSLDUPMask(MVT::v4f32, ShuffleMask);
+ break;
+
+ case X86::VMOVSHDUPYrr:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VMOVSHDUPYrm:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeMOVSHDUPMask(MVT::v8f32, ShuffleMask);
+ break;
+
+ case X86::VMOVSLDUPYrr:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::VMOVSLDUPYrm:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeMOVSLDUPMask(MVT::v8f32, ShuffleMask);
+ break;
+
+ case X86::MOVSHDUPrr:
+ case X86::VMOVSHDUPrr:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ // FALL THROUGH.
+ case X86::MOVSHDUPrm:
+ case X86::VMOVSHDUPrm:
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeMOVSHDUPMask(MVT::v4f32, ShuffleMask);
+ break;
+
+ case X86::PSLLDQri:
+ case X86::VPSLLDQri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSLLDQMask(MVT::v16i8,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
+ case X86::VPSLLDQYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSLLDQMask(MVT::v32i8,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
+ case X86::PSRLDQri:
+ case X86::VPSRLDQri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSRLDQMask(MVT::v16i8,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
+ case X86::VPSRLDQYri:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ if(MI->getOperand(MI->getNumOperands()-1).isImm())
+ DecodePSRLDQMask(MVT::v32i8,
+ MI->getOperand(MI->getNumOperands()-1).getImm(),
+ ShuffleMask);
+ break;
+
case X86::PALIGNR128rr:
case X86::VPALIGNR128rr:
Src1Name = getRegName(MI->getOperand(2).getReg());
@@ -208,6 +389,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKHMask(MVT::v8i32, ShuffleMask);
break;
+ case X86::VPUNPCKHDQZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHDQZrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v16i32, ShuffleMask);
+ break;
case X86::PUNPCKHQDQrr:
case X86::VPUNPCKHQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
@@ -226,6 +415,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKHMask(MVT::v4i64, ShuffleMask);
break;
+ case X86::VPUNPCKHQDQZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKHQDQZrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKHMask(MVT::v8i64, ShuffleMask);
+ break;
case X86::PUNPCKLBWrr:
case X86::VPUNPCKLBWrr:
@@ -281,6 +478,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKLMask(MVT::v8i32, ShuffleMask);
break;
+ case X86::VPUNPCKLDQZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLDQZrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v16i32, ShuffleMask);
+ break;
case X86::PUNPCKLQDQrr:
case X86::VPUNPCKLQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
@@ -299,6 +504,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKLMask(MVT::v4i64, ShuffleMask);
break;
+ case X86::VPUNPCKLQDQZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VPUNPCKLQDQZrm:
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ DecodeUNPCKLMask(MVT::v8i64, ShuffleMask);
+ break;
case X86::SHUFPDrri:
case X86::VSHUFPDrri:
@@ -368,6 +581,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
+ case X86::VUNPCKLPDZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKLPDZrm:
+ DecodeUNPCKLMask(MVT::v8f64, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
case X86::UNPCKLPSrr:
case X86::VUNPCKLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
@@ -386,6 +607,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
+ case X86::VUNPCKLPSZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKLPSZrm:
+ DecodeUNPCKLMask(MVT::v16f32, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
case X86::UNPCKHPDrr:
case X86::VUNPCKHPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
@@ -404,6 +633,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
+ case X86::VUNPCKHPDZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKHPDZrm:
+ DecodeUNPCKHMask(MVT::v8f64, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
case X86::UNPCKHPSrr:
case X86::VUNPCKHPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
@@ -422,6 +659,14 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
+ case X86::VUNPCKHPSZrr:
+ Src2Name = getRegName(MI->getOperand(2).getReg());
+ // FALL THROUGH.
+ case X86::VUNPCKHPSZrm:
+ DecodeUNPCKHMask(MVT::v16f32, ShuffleMask);
+ Src1Name = getRegName(MI->getOperand(1).getReg());
+ DestName = getRegName(MI->getOperand(0).getReg());
+ break;
case X86::VPERMILPSri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
@@ -489,54 +734,59 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
break;
}
+ // The only comments we decode are shuffles, so give up if we were unable to
+ // decode a shuffle mask.
+ if (ShuffleMask.empty())
+ return false;
- // If this was a shuffle operation, print the shuffle mask.
- if (!ShuffleMask.empty()) {
- if (!DestName) DestName = Src1Name;
- OS << (DestName ? DestName : "mem") << " = ";
+ if (!DestName) DestName = Src1Name;
+ OS << (DestName ? DestName : "mem") << " = ";
- // If the two sources are the same, canonicalize the input elements to be
- // from the first src so that we get larger element spans.
- if (Src1Name == Src2Name) {
- for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
- if ((int)ShuffleMask[i] >= 0 && // Not sentinel.
- ShuffleMask[i] >= (int)e) // From second mask.
- ShuffleMask[i] -= e;
- }
+ // If the two sources are the same, canonicalize the input elements to be
+ // from the first src so that we get larger element spans.
+ if (Src1Name == Src2Name) {
+ for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
+ if ((int)ShuffleMask[i] >= 0 && // Not sentinel.
+ ShuffleMask[i] >= (int)e) // From second mask.
+ ShuffleMask[i] -= e;
}
+ }
- // The shuffle mask specifies which elements of the src1/src2 fill in the
- // destination, with a few sentinel values. Loop through and print them
- // out.
- for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
- if (i != 0)
+ // The shuffle mask specifies which elements of the src1/src2 fill in the
+ // destination, with a few sentinel values. Loop through and print them
+ // out.
+ for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
+ if (i != 0)
+ OS << ',';
+ if (ShuffleMask[i] == SM_SentinelZero) {
+ OS << "zero";
+ continue;
+ }
+
+ // Otherwise, it must come from src1 or src2. Print the span of elements
+ // that comes from this src.
+ bool isSrc1 = ShuffleMask[i] < (int)ShuffleMask.size();
+ const char *SrcName = isSrc1 ? Src1Name : Src2Name;
+ OS << (SrcName ? SrcName : "mem") << '[';
+ bool IsFirst = true;
+ while (i != e && (int)ShuffleMask[i] != SM_SentinelZero &&
+ (ShuffleMask[i] < (int)ShuffleMask.size()) == isSrc1) {
+ if (!IsFirst)
OS << ',';
- if (ShuffleMask[i] == SM_SentinelZero) {
- OS << "zero";
- continue;
- }
-
- // Otherwise, it must come from src1 or src2. Print the span of elements
- // that comes from this src.
- bool isSrc1 = ShuffleMask[i] < (int)ShuffleMask.size();
- const char *SrcName = isSrc1 ? Src1Name : Src2Name;
- OS << (SrcName ? SrcName : "mem") << '[';
- bool IsFirst = true;
- while (i != e &&
- (int)ShuffleMask[i] >= 0 &&
- (ShuffleMask[i] < (int)ShuffleMask.size()) == isSrc1) {
- if (!IsFirst)
- OS << ',';
- else
- IsFirst = false;
+ else
+ IsFirst = false;
+ if (ShuffleMask[i] == SM_SentinelUndef)
+ OS << "u";
+ else
OS << ShuffleMask[i] % ShuffleMask.size();
- ++i;
- }
- OS << ']';
- --i; // For loop increments element #.
+ ++i;
}
- //MI->print(OS, 0);
- OS << "\n";
+ OS << ']';
+ --i; // For loop increments element #.
}
+ //MI->print(OS, 0);
+ OS << "\n";
+ // We successfully added a comment to this instruction.
+ return true;
}
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h
index 13fdf9a..687581b 100644
--- a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.h
@@ -12,13 +12,13 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_INST_COMMENTS_H
-#define X86_INST_COMMENTS_H
+#ifndef LLVM_LIB_TARGET_X86_INSTPRINTER_X86INSTCOMMENTS_H
+#define LLVM_LIB_TARGET_X86_INSTPRINTER_X86INSTCOMMENTS_H
namespace llvm {
class MCInst;
class raw_ostream;
- void EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
+ bool EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
const char *(*getRegName)(unsigned));
}
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp
index 1c8466b..449445d 100644
--- a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp
@@ -50,33 +50,7 @@ void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
}
-void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
- raw_ostream &O) {
- int64_t Imm = MI->getOperand(Op).getImm() & 0xf;
- switch (Imm) {
- default: llvm_unreachable("Invalid ssecc argument!");
- case 0: O << "eq"; break;
- case 1: O << "lt"; break;
- case 2: O << "le"; break;
- case 3: O << "unord"; break;
- case 4: O << "neq"; break;
- case 5: O << "nlt"; break;
- case 6: O << "nle"; break;
- case 7: O << "ord"; break;
- case 8: O << "eq_uq"; break;
- case 9: O << "nge"; break;
- case 0xa: O << "ngt"; break;
- case 0xb: O << "false"; break;
- case 0xc: O << "neq_oq"; break;
- case 0xd: O << "ge"; break;
- case 0xe: O << "gt"; break;
- case 0xf: O << "true"; break;
- }
-}
-
-void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
- raw_ostream &O) {
- int64_t Imm = MI->getOperand(Op).getImm() & 0x1f;
+static void printSSEAVXCC(int64_t Imm, raw_ostream &O) {
switch (Imm) {
default: llvm_unreachable("Invalid avxcc argument!");
case 0: O << "eq"; break;
@@ -114,6 +88,20 @@ void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
}
}
+void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm();
+ assert((Imm & 0x7) == Imm); // Ensure valid immediate.
+ printSSEAVXCC(Imm, O);
+}
+
+void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
+ raw_ostream &O) {
+ int64_t Imm = MI->getOperand(Op).getImm();
+ assert((Imm & 0x1f) == Imm); // Ensure valid immediate.
+ printSSEAVXCC(Imm, O);
+}
+
void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
@@ -168,21 +156,21 @@ void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
const MCOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
-
+
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+X86::AddrSegmentReg, O);
O << ':';
}
-
+
O << '[';
-
+
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOperand(MI, Op+X86::AddrBaseReg, O);
NeedPlus = true;
}
-
+
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
@@ -209,7 +197,7 @@ void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
O << formatImm(DispVal);
}
}
-
+
O << ']';
}
diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h
index 4d9b481..641423d 100644
--- a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h
+++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_INTEL_INST_PRINTER_H
-#define X86_INTEL_INST_PRINTER_H
+#ifndef LLVM_LIB_TARGET_X86_INSTPRINTER_X86INTELINSTPRINTER_H
+#define LLVM_LIB_TARGET_X86_INSTPRINTER_X86INTELINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/Support/raw_ostream.h"
@@ -44,11 +44,15 @@ public:
void printDstIdx(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &OS);
+ void printanymem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
+ printMemReference(MI, OpNo, O);
+ }
+
void printopaquemem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
O << "opaque ptr ";
printMemReference(MI, OpNo, O);
}
-
+
void printi8mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) {
O << "byte ptr ";
printMemReference(MI, OpNo, O);
@@ -152,7 +156,7 @@ public:
printMemOffset(MI, OpNo, O);
}
};
-
+
}
#endif
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
index 23bca0d..164b419 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
@@ -11,7 +11,6 @@
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmBackend.h"
-#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
@@ -437,10 +436,30 @@ class DarwinX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
unsigned OffsetSize; ///< Offset of a "push" instruction.
- unsigned PushInstrSize; ///< Size of a "push" instruction.
unsigned MoveInstrSize; ///< Size of a "move" instruction.
- unsigned StackDivide; ///< Amount to adjust stack stize by.
+ unsigned StackDivide; ///< Amount to adjust stack size by.
protected:
+ /// \brief Size of a "push" instruction for the given register.
+ unsigned PushInstrSize(unsigned Reg) const {
+ switch (Reg) {
+ case X86::EBX:
+ case X86::ECX:
+ case X86::EDX:
+ case X86::EDI:
+ case X86::ESI:
+ case X86::EBP:
+ case X86::RBX:
+ case X86::RBP:
+ return 1;
+ case X86::R12:
+ case X86::R13:
+ case X86::R14:
+ case X86::R15:
+ return 2;
+ }
+ return 1;
+ }
+
/// \brief Implementation of algorithm to generate the compact unwind encoding
/// for the CFI instructions.
uint32_t
@@ -493,7 +512,7 @@ protected:
// Defines a new offset for the CFA. E.g.
//
// With frame:
- //
+ //
// pushq %rbp
// L0:
// .cfi_def_cfa_offset 16
@@ -530,7 +549,7 @@ protected:
unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
SavedRegs[SavedRegIdx++] = Reg;
StackAdjust += OffsetSize;
- InstrOffset += PushInstrSize;
+ InstrOffset += PushInstrSize(Reg);
break;
}
}
@@ -663,7 +682,7 @@ private:
// 4 3
// 5 3
//
- for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
+ for (unsigned i = 0; i < RegCount; ++i) {
int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
if (CUReg == -1) return ~0U;
SavedRegs[i] = CUReg;
@@ -724,7 +743,6 @@ public:
OffsetSize = Is64Bit ? 8 : 4;
MoveInstrSize = Is64Bit ? 3 : 2;
StackDivide = Is64Bit ? 8 : 4;
- PushInstrSize = 1;
}
};
@@ -772,26 +790,6 @@ public:
return SMO.getType() == MachO::S_CSTRING_LITERALS;
}
- bool isSectionAtomizable(const MCSection &Section) const override {
- const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
- // Fixed sized data sections are uniqued, they cannot be diced into atoms.
- switch (SMO.getType()) {
- default:
- return true;
-
- case MachO::S_4BYTE_LITERALS:
- case MachO::S_8BYTE_LITERALS:
- case MachO::S_16BYTE_LITERALS:
- case MachO::S_LITERAL_POINTERS:
- case MachO::S_NON_LAZY_SYMBOL_POINTERS:
- case MachO::S_LAZY_SYMBOL_POINTERS:
- case MachO::S_MOD_INIT_FUNC_POINTERS:
- case MachO::S_MOD_TERM_FUNC_POINTERS:
- case MachO::S_INTERPOSING:
- return false;
- }
- }
-
/// \brief Generate the compact unwind encoding for the CFI instructions.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index 026e4c4..28be15b 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -14,8 +14,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86BASEINFO_H
-#define X86BASEINFO_H
+#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
+#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#include "X86MCTargetDesc.h"
#include "llvm/MC/MCInstrDesc.h"
@@ -216,7 +216,7 @@ namespace X86II {
MO_SECREL
};
- enum {
+ enum : uint64_t {
//===------------------------------------------------------------------===//
// Instruction encodings. These are the standard/most common forms for X86
// instructions.
@@ -303,17 +303,18 @@ namespace X86II {
//// MRM_XX - A mod/rm byte of exactly 0xXX.
MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
- MRM_CB = 40, MRM_D0 = 41, MRM_D1 = 42, MRM_D4 = 43,
- MRM_D5 = 44, MRM_D6 = 45, MRM_D8 = 46, MRM_D9 = 47,
- MRM_DA = 48, MRM_DB = 49, MRM_DC = 50, MRM_DD = 51,
- MRM_DE = 52, MRM_DF = 53, MRM_E0 = 54, MRM_E1 = 55,
- MRM_E2 = 56, MRM_E3 = 57, MRM_E4 = 58, MRM_E5 = 59,
- MRM_E8 = 60, MRM_E9 = 61, MRM_EA = 62, MRM_EB = 63,
- MRM_EC = 64, MRM_ED = 65, MRM_EE = 66, MRM_F0 = 67,
- MRM_F1 = 68, MRM_F2 = 69, MRM_F3 = 70, MRM_F4 = 71,
- MRM_F5 = 72, MRM_F6 = 73, MRM_F7 = 74, MRM_F8 = 75,
- MRM_F9 = 76, MRM_FA = 77, MRM_FB = 78, MRM_FC = 79,
- MRM_FD = 80, MRM_FE = 81, MRM_FF = 82,
+ MRM_CB = 40, MRM_CF = 41, MRM_D0 = 42, MRM_D1 = 43,
+ MRM_D4 = 44, MRM_D5 = 45, MRM_D6 = 46, MRM_D7 = 47,
+ MRM_D8 = 48, MRM_D9 = 49, MRM_DA = 50, MRM_DB = 51,
+ MRM_DC = 52, MRM_DD = 53, MRM_DE = 54, MRM_DF = 55,
+ MRM_E0 = 56, MRM_E1 = 57, MRM_E2 = 58, MRM_E3 = 59,
+ MRM_E4 = 60, MRM_E5 = 61, MRM_E8 = 62, MRM_E9 = 63,
+ MRM_EA = 64, MRM_EB = 65, MRM_EC = 66, MRM_ED = 67,
+ MRM_EE = 68, MRM_F0 = 69, MRM_F1 = 70, MRM_F2 = 71,
+ MRM_F3 = 72, MRM_F4 = 73, MRM_F5 = 74, MRM_F6 = 75,
+ MRM_F7 = 76, MRM_F8 = 77, MRM_F9 = 78, MRM_FA = 79,
+ MRM_FB = 80, MRM_FC = 81, MRM_FD = 82, MRM_FE = 83,
+ MRM_FF = 84,
FormMask = 127,
@@ -327,21 +328,28 @@ namespace X86II {
OpSizeShift = 7,
OpSizeMask = 0x3 << OpSizeShift,
- OpSize16 = 1,
- OpSize32 = 2,
+ OpSizeFixed = 0 << OpSizeShift,
+ OpSize16 = 1 << OpSizeShift,
+ OpSize32 = 2 << OpSizeShift,
- // AsSize - Set if this instruction requires an operand size prefix (0x67),
- // which most often indicates that the instruction address 16 bit address
- // instead of 32 bit address (or 32 bit address in 64 bit mode).
+ // AsSize - AdSizeX implies this instruction determines its need of 0x67
+ // prefix from a normal ModRM memory operand. The other types indicate that
+ // an operand is encoded with a specific width and a prefix is needed if
+ // it differs from the current mode.
AdSizeShift = OpSizeShift + 2,
- AdSize = 1 << AdSizeShift,
+ AdSizeMask = 0x3 << AdSizeShift,
+
+ AdSizeX = 1 << AdSizeShift,
+ AdSize16 = 1 << AdSizeShift,
+ AdSize32 = 2 << AdSizeShift,
+ AdSize64 = 3 << AdSizeShift,
//===------------------------------------------------------------------===//
// OpPrefix - There are several prefix bytes that are used as opcode
// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
// no prefix.
//
- OpPrefixShift = AdSizeShift + 1,
+ OpPrefixShift = AdSizeShift + 2,
OpPrefixMask = 0x7 << OpPrefixShift,
// PS, PD - Prefix code for packed single and double precision vector
@@ -454,51 +462,53 @@ namespace X86II {
EncodingMask = 0x3 << EncodingShift,
// VEX - encoding using 0xC4/0xC5
- VEX = 1,
+ VEX = 1 << EncodingShift,
/// XOP - Opcode prefix used by XOP instructions.
- XOP = 2,
+ XOP = 2 << EncodingShift,
// VEX_EVEX - Specifies that this instruction use EVEX form which provides
// syntax support up to 32 512-bit register operands and up to 7 16-bit
// mask operands as well as source operand data swizzling/memory operand
// conversion, eviction hint, and rounding mode.
- EVEX = 3,
+ EVEX = 3 << EncodingShift,
// Opcode
OpcodeShift = EncodingShift + 2,
- //===------------------------------------------------------------------===//
- /// VEX - The opcode prefix used by AVX instructions
- VEXShift = OpcodeShift + 8,
-
/// VEX_W - Has a opcode specific functionality, but is used in the same
/// way as REX_W is for regular SSE instructions.
- VEX_W = 1U << 0,
+ VEX_WShift = OpcodeShift + 8,
+ VEX_W = 1ULL << VEX_WShift,
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
/// and the additional register is encoded in VEX_VVVV prefix.
- VEX_4V = 1U << 1,
+ VEX_4VShift = VEX_WShift + 1,
+ VEX_4V = 1ULL << VEX_4VShift,
/// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
/// operand 3 with VEX.vvvv.
- VEX_4VOp3 = 1U << 2,
+ VEX_4VOp3Shift = VEX_4VShift + 1,
+ VEX_4VOp3 = 1ULL << VEX_4VOp3Shift,
/// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
/// must be encoded in the i8 immediate field. This usually happens in
/// instructions with 4 operands.
- VEX_I8IMM = 1U << 3,
+ VEX_I8IMMShift = VEX_4VOp3Shift + 1,
+ VEX_I8IMM = 1ULL << VEX_I8IMMShift,
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
/// instruction uses 256-bit wide registers. This is usually auto detected
/// if a VR256 register is used, but some AVX instructions also have this
/// field marked when using a f256 memory references.
- VEX_L = 1U << 4,
+ VEX_LShift = VEX_I8IMMShift + 1,
+ VEX_L = 1ULL << VEX_LShift,
// VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
// prefix. Usually used for scalar instructions. Needed by disassembler.
- VEX_LIG = 1U << 5,
+ VEX_LIGShift = VEX_LShift + 1,
+ VEX_LIG = 1ULL << VEX_LIGShift,
// TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
// with following encoding:
@@ -509,20 +519,24 @@ namespace X86II {
// this will save 1 tsflag bit
// EVEX_K - Set if this instruction requires masking
- EVEX_K = 1U << 6,
+ EVEX_KShift = VEX_LIGShift + 1,
+ EVEX_K = 1ULL << EVEX_KShift,
// EVEX_Z - Set if this instruction has EVEX.Z field set.
- EVEX_Z = 1U << 7,
+ EVEX_ZShift = EVEX_KShift + 1,
+ EVEX_Z = 1ULL << EVEX_ZShift,
// EVEX_L2 - Set if this instruction has EVEX.L' field set.
- EVEX_L2 = 1U << 8,
+ EVEX_L2Shift = EVEX_ZShift + 1,
+ EVEX_L2 = 1ULL << EVEX_L2Shift,
// EVEX_B - Set if this instruction has EVEX.B field set.
- EVEX_B = 1U << 9,
+ EVEX_BShift = EVEX_L2Shift + 1,
+ EVEX_B = 1ULL << EVEX_BShift,
// The scaling factor for the AVX512's 8-bit compressed displacement.
- CD8_Scale_Shift = VEXShift + 10,
- CD8_Scale_Mask = 127,
+ CD8_Scale_Shift = EVEX_BShift + 1,
+ CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
/// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
/// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
@@ -531,16 +545,16 @@ namespace X86II {
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
- Has3DNow0F0FOpcode = 1U << (Has3DNow0F0FOpcodeShift - VEXShift),
+ Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
/// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
/// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
- MemOp4 = 1U << (MemOp4Shift - VEXShift),
+ MemOp4 = 1ULL << MemOp4Shift,
/// Explicitly specified rounding control
EVEX_RCShift = MemOp4Shift + 1,
- EVEX_RC = 1U << (EVEX_RCShift - VEXShift)
+ EVEX_RC = 1ULL << EVEX_RCShift
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
@@ -642,10 +656,10 @@ namespace X86II {
/// counted as one operand.
///
inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
- bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
-
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasMemOp4 = TSFlags & X86II::MemOp4;
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+
switch (TSFlags & X86II::FormMask) {
default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
case X86II::Pseudo:
@@ -662,19 +676,10 @@ namespace X86II {
return -1;
case X86II::MRMDestMem:
return 0;
- case X86II::MRMSrcMem: {
- unsigned FirstMemOp = 1;
- if (HasVEX_4V)
- ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
- if (HasMemOp4)
- ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
- if (HasEVEX_K)
- ++FirstMemOp;// Skip the mask register
- // FIXME: Maybe lea should have its own form? This is a horrible hack.
- //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
- // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
- return FirstMemOp;
- }
+ case X86II::MRMSrcMem:
+ // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
+ // mask register.
+ return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
case X86II::MRMXr:
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
@@ -685,32 +690,27 @@ namespace X86II {
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m: {
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- unsigned FirstMemOp = 0;
- if (HasVEX_4V)
- ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
- if (HasEVEX_K)
- ++FirstMemOp;// Skip the mask register
- return FirstMemOp;
- }
+ case X86II::MRM6m: case X86II::MRM7m:
+ // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
+ return 0 + HasVEX_4V + HasEVEX_K;
case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
- case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
- case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
- case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
- case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
- case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
- case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
- case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
- case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
- case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
- case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
- case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
- case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
- case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
- case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
+ case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
+ case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
+ case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
+ case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
+ case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
+ case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
+ case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
+ case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
+ case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
+ case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
+ case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
+ case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
+ case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
+ case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
+ case X86II::MRM_FE: case X86II::MRM_FF:
return -1;
}
}
@@ -751,7 +751,7 @@ namespace X86II {
(RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
}
-
+
inline bool isX86_64NonExtLowByteReg(unsigned reg) {
return (reg == X86::SPL || reg == X86::BPL ||
reg == X86::SIL || reg == X86::DIL);
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
index 3fdec87..e8b0b4c 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
@@ -77,7 +77,7 @@ unsigned X86ELFObjectWriter::GetRelocType(const MCValue &Target,
break;
case MCSymbolRefExpr::VK_GOTTPOFF:
Type = ELF::R_X86_64_GOTTPOFF;
- break;
+ break;
case MCSymbolRefExpr::VK_TLSGD:
Type = ELF::R_X86_64_TLSGD;
break;
@@ -222,6 +222,9 @@ unsigned X86ELFObjectWriter::GetRelocType(const MCValue &Target,
case MCSymbolRefExpr::VK_GOT:
Type = ELF::R_386_GOT32;
break;
+ case MCSymbolRefExpr::VK_PLT:
+ Type = ELF::R_386_PLT32;
+ break;
case MCSymbolRefExpr::VK_GOTOFF:
Type = ELF::R_386_GOTOFF;
break;
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
index 09396b7..4899900 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_X86_X86FIXUPKINDS_H
-#define LLVM_X86_X86FIXUPKINDS_H
+#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86FIXUPKINDS_H
+#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86FIXUPKINDS_H
#include "llvm/MC/MCFixup.h"
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
index b1411bc..5795514 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
@@ -102,21 +102,12 @@ X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) {
TextAlignFillValue = 0x90;
- // Set up DWARF directives
- HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
-
// Debug Information
SupportsDebugInformation = true;
// Exceptions handling
ExceptionsType = ExceptionHandling::DwarfCFI;
- // OpenBSD and Bitrig have buggy support for .quad in 32-bit mode, just split
- // into two .words.
- if ((T.getOS() == Triple::OpenBSD || T.getOS() == Triple::Bitrig) &&
- T.getArch() == Triple::x86)
- Data64bitsDirective = nullptr;
-
// Always enable the integrated assembler by default.
// Clang also enabled it when the OS is Solaris but that is redundant here.
UseIntegratedAssembler = true;
@@ -133,19 +124,17 @@ X86_64MCAsmInfoDarwin::getExprForPersonalitySymbol(const MCSymbol *Sym,
return MCBinaryExpr::CreateAdd(Res, Four, Context);
}
-const MCSection *X86ELFMCAsmInfo::
-getNonexecutableStackSection(MCContext &Ctx) const {
- return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
- 0, SectionKind::getMetadata());
-}
-
void X86MCAsmInfoMicrosoft::anchor() { }
X86MCAsmInfoMicrosoft::X86MCAsmInfoMicrosoft(const Triple &Triple) {
if (Triple.getArch() == Triple::x86_64) {
PrivateGlobalPrefix = ".L";
+ PrivateLabelPrefix = ".L";
PointerSize = 8;
- ExceptionsType = ExceptionHandling::WinEH;
+ WinEHEncodingType = WinEH::EncodingType::Itanium;
+
+ // Use MSVC-compatible EH data.
+ ExceptionsType = ExceptionHandling::MSVC;
}
AssemblerDialect = AsmWriterFlavor;
@@ -163,8 +152,10 @@ X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const Triple &Triple) {
assert(Triple.isOSWindows() && "Windows is the only supported COFF target");
if (Triple.getArch() == Triple::x86_64) {
PrivateGlobalPrefix = ".L";
+ PrivateLabelPrefix = ".L";
PointerSize = 8;
- ExceptionsType = ExceptionHandling::WinEH;
+ WinEHEncodingType = WinEH::EncodingType::Itanium;
+ ExceptionsType = ExceptionHandling::ItaniumWinEH;
} else {
ExceptionsType = ExceptionHandling::DwarfCFI;
}
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
index a7509b0..deaad2a 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86TARGETASMINFO_H
-#define X86TARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86MCASMINFO_H
+#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86MCASMINFO_H
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmInfoCOFF.h"
@@ -23,7 +23,8 @@ namespace llvm {
class Triple;
class X86MCAsmInfoDarwin : public MCAsmInfoDarwin {
- void anchor() override;
+ virtual void anchor();
+
public:
explicit X86MCAsmInfoDarwin(const Triple &Triple);
};
@@ -39,8 +40,6 @@ namespace llvm {
void anchor() override;
public:
explicit X86ELFMCAsmInfo(const Triple &Triple);
- const MCSection *
- getNonexecutableStackSection(MCContext &Ctx) const override;
};
class X86MCAsmInfoMicrosoft : public MCAsmInfoMicrosoft {
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
index 075db11..5d92524 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
@@ -185,12 +185,11 @@ static bool isDisp8(int Value) {
/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
/// compressed dispacement field.
static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
- assert(((TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift == X86II::EVEX) &&
+ assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
"Compressed 8-bit displacement is only valid for EVEX inst.");
unsigned CD8_Scale =
- (TSFlags >> X86II::CD8_Scale_Shift) & X86II::CD8_Scale_Mask;
+ (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
if (CD8_Scale == 0) {
CValue = Value;
return isDisp8(Value);
@@ -373,9 +372,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
unsigned BaseReg = Base.getReg();
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
- bool HasEVEX = (Encoding == X86II::EVEX);
+ bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
// Handle %rip relative addressing.
if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
@@ -593,13 +590,14 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
int MemOperand, const MCInst &MI,
const MCInstrDesc &Desc,
raw_ostream &OS) const {
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
- bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
- bool HasEVEX_RC = (TSFlags >> X86II::VEXShift) & X86II::EVEX_RC;
+ assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
+
+ uint64_t Encoding = TSFlags & X86II::EncodingMask;
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
+ bool HasMemOp4 = TSFlags & X86II::MemOp4;
+ bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
// VEX_R: opcode externsion equivalent to REX.R in
// 1's complement (inverted) form
@@ -680,18 +678,18 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
bool EncodeRC = false;
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
+ if (TSFlags & X86II::VEX_W)
VEX_W = 1;
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
+ if (TSFlags & X86II::VEX_L)
VEX_L = 1;
- if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
+ if (TSFlags & X86II::EVEX_L2)
EVEX_L2 = 1;
- if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
+ if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
EVEX_z = 1;
- if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
+ if ((TSFlags & X86II::EVEX_B))
EVEX_b = 1;
switch (TSFlags & X86II::OpPrefixMask) {
@@ -725,7 +723,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// MemAddr, src1(VEX_4V), src2(ModR/M)
// MemAddr, src1(ModR/M), imm8
//
- if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
X86::AddrBaseReg).getReg()))
VEX_B = 0x0;
if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
@@ -867,7 +865,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
}
EncodeRC = true;
- }
+ }
break;
case X86II::MRMDestReg:
// MRMDestReg instructions forms:
@@ -1109,10 +1107,14 @@ void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
raw_ostream &OS) const {
// Emit the operand size opcode prefix as needed.
- unsigned char OpSize = (TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift;
- if (OpSize == (is16BitMode(STI) ? X86II::OpSize32 : X86II::OpSize16))
+ if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
+ : X86II::OpSize16))
EmitByte(0x66, CurByte, OS);
+ // Emit the LOCK opcode prefix.
+ if (TSFlags & X86II::LOCK)
+ EmitByte(0xF0, CurByte, OS);
+
switch (TSFlags & X86II::OpPrefixMask) {
case X86II::PD: // 66
EmitByte(0x66, CurByte, OS);
@@ -1170,27 +1172,22 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
unsigned CurByte = 0;
// Encoding type for this instruction.
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
+ uint64_t Encoding = TSFlags & X86II::EncodingMask;
// It uses the VEX.VVVV field?
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
+ bool HasMemOp4 = TSFlags & X86II::MemOp4;
const unsigned MemOp4_I8IMMOperand = 2;
// It uses the EVEX.aaa field?
- bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
- bool HasEVEX_RC = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
-
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+ bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
+
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
if (MemoryOperand != -1) MemoryOperand += CurOp;
- // Emit the lock opcode prefix as needed.
- if (TSFlags & X86II::LOCK)
- EmitByte(0xF0, CurByte, OS);
-
// Emit segment override opcode prefix as needed.
if (MemoryOperand >= 0)
EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
@@ -1202,16 +1199,10 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// Emit the address size opcode prefix as needed.
bool need_address_override;
- // The AdSize prefix is only for 32-bit and 64-bit modes. Hm, perhaps we
- // should introduce an AdSize16 bit instead of having seven special cases?
- if ((!is16BitMode(STI) && TSFlags & X86II::AdSize) ||
- (is16BitMode(STI) && (MI.getOpcode() == X86::JECXZ_32 ||
- MI.getOpcode() == X86::MOV8o8a ||
- MI.getOpcode() == X86::MOV16o16a ||
- MI.getOpcode() == X86::MOV32o32a ||
- MI.getOpcode() == X86::MOV8ao8 ||
- MI.getOpcode() == X86::MOV16ao16 ||
- MI.getOpcode() == X86::MOV32ao32))) {
+ uint64_t AdSize = TSFlags & X86II::AdSizeMask;
+ if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
+ (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
+ (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
need_address_override = true;
} else if (MemoryOperand < 0) {
need_address_override = false;
@@ -1237,7 +1228,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
- if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
+ if (TSFlags & X86II::Has3DNow0F0FOpcode)
BaseOpcode = 0x0F; // Weird 3DNow! encoding.
unsigned SrcRegNum = 0;
@@ -1437,20 +1428,21 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
- case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
- case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
- case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
- case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
- case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
- case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
- case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
- case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
- case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
- case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
- case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
- case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
- case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
- case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
+ case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
+ case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
+ case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
+ case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
+ case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
+ case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
+ case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
+ case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
+ case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
+ case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
+ case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
+ case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
+ case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
+ case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
+ case X86II::MRM_FE: case X86II::MRM_FF:
EmitByte(BaseOpcode, CurByte, OS);
unsigned char MRM;
@@ -1465,11 +1457,13 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
case X86II::MRM_C9: MRM = 0xC9; break;
case X86II::MRM_CA: MRM = 0xCA; break;
case X86II::MRM_CB: MRM = 0xCB; break;
+ case X86II::MRM_CF: MRM = 0xCF; break;
case X86II::MRM_D0: MRM = 0xD0; break;
case X86II::MRM_D1: MRM = 0xD1; break;
case X86II::MRM_D4: MRM = 0xD4; break;
case X86II::MRM_D5: MRM = 0xD5; break;
case X86II::MRM_D6: MRM = 0xD6; break;
+ case X86II::MRM_D7: MRM = 0xD7; break;
case X86II::MRM_D8: MRM = 0xD8; break;
case X86II::MRM_D9: MRM = 0xD9; break;
case X86II::MRM_DA: MRM = 0xDA; break;
@@ -1518,7 +1512,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
while (CurOp != NumOps && NumOps - CurOp <= 2) {
// The last source register of a 4 operand instruction in AVX is encoded
// in bits[7:4] of a immediate byte.
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
+ if (TSFlags & X86II::VEX_I8IMM) {
const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
: CurOp);
++CurOp;
@@ -1544,7 +1538,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
}
}
- if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
+ if (TSFlags & X86II::Has3DNow0F0FOpcode)
EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
#ifndef NDEBUG
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
index 3bfad6c..5a9181d 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
@@ -351,11 +351,8 @@ static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
- raw_ostream &_OS,
- MCCodeEmitter *_Emitter,
- const MCSubtargetInfo &STI,
- bool RelaxAll,
- bool NoExecStack) {
+ raw_ostream &_OS, MCCodeEmitter *_Emitter,
+ const MCSubtargetInfo &STI, bool RelaxAll) {
Triple TheTriple(TT);
switch (TheTriple.getObjectFormat()) {
@@ -366,7 +363,7 @@ static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
assert(TheTriple.isOSWindows() && "only Windows COFF is supported");
return createX86WinCOFFStreamer(Ctx, MAB, _Emitter, _OS, RelaxAll);
case Triple::ELF:
- return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
+ return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
}
}
@@ -377,7 +374,7 @@ static MCInstPrinter *createX86MCInstPrinter(const Target &T,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI) {
if (SyntaxVariant == 0)
- return new X86ATTInstPrinter(MAI, MII, MRI);
+ return new X86ATTInstPrinter(MAI, MII, MRI, STI);
if (SyntaxVariant == 1)
return new X86IntelInstPrinter(MAI, MII, MRI);
return nullptr;
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
index ebe74cf..d8320b9 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86MCTARGETDESC_H
-#define X86MCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86MCTARGETDESC_H
+#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86MCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
#include <string>
@@ -40,8 +40,8 @@ namespace DWARFFlavour {
enum {
X86_64 = 0, X86_32_DarwinEH = 1, X86_32_Generic = 2
};
-}
-
+}
+
/// N86 namespace - Native X86 register numbers
///
namespace N86 {
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
index ead3338..67b0c89 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
@@ -179,11 +179,14 @@ void X86MachObjectWriter::RecordX86_64Relocation(MachObjectWriter *Writer,
if (A_Base == B_Base && A_Base)
report_fatal_error("unsupported relocation with identical base", false);
- // A subtraction expression where both symbols are undefined is a
+ // A subtraction expression where either symbol is undefined is a
// non-relocatable expression.
- if (A->isUndefined() && B->isUndefined())
- report_fatal_error("unsupported relocation with subtraction expression",
- false);
+ if (A->isUndefined() || B->isUndefined()) {
+ StringRef Name = A->isUndefined() ? A->getName() : B->getName();
+ Asm.getContext().FatalError(Fixup.getLoc(),
+ "unsupported relocation with subtraction expression, symbol '" +
+ Name + "' can not be undefined in a subtraction expression");
+ }
Value += Writer->getSymbolAddress(&A_SD, Layout) -
(!A_Base ? 0 : Writer->getSymbolAddress(A_Base, Layout));
@@ -193,8 +196,7 @@ void X86MachObjectWriter::RecordX86_64Relocation(MachObjectWriter *Writer,
if (A_Base) {
Index = A_Base->getIndex();
IsExtern = 1;
- }
- else {
+ } else {
Index = A_SD.getFragment()->getParent()->getOrdinal() + 1;
IsExtern = 0;
}
@@ -212,8 +214,7 @@ void X86MachObjectWriter::RecordX86_64Relocation(MachObjectWriter *Writer,
if (B_Base) {
Index = B_Base->getIndex();
IsExtern = 1;
- }
- else {
+ } else {
Index = B_SD.getFragment()->getParent()->getOrdinal() + 1;
IsExtern = 0;
}
@@ -572,7 +573,7 @@ void X86MachObjectWriter::RecordX86Relocation(MachObjectWriter *Writer,
// For external relocations, make sure to offset the fixup value to
// compensate for the addend of the symbol address, if it was
// undefined. This occurs with weak definitions, for example.
- if (!SD->Symbol->isUndefined())
+ if (!SD->getSymbol().isUndefined())
FixedValue -= Layout.getSymbolOffset(SD);
} else {
// The index is the section ordinal (1-based).
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp
index 6727f5e..5f1596c 100644
--- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86WinCOFFStreamer.cpp
@@ -8,18 +8,21 @@
//===----------------------------------------------------------------------===//
#include "X86MCTargetDesc.h"
+#include "llvm/MC/MCWin64EH.h"
#include "llvm/MC/MCWinCOFFStreamer.h"
using namespace llvm;
namespace {
class X86WinCOFFStreamer : public MCWinCOFFStreamer {
+ Win64EH::UnwindEmitter EHStreamer;
public:
X86WinCOFFStreamer(MCContext &C, MCAsmBackend &AB, MCCodeEmitter *CE,
raw_ostream &OS)
: MCWinCOFFStreamer(C, AB, *CE, OS) { }
void EmitWinEHHandlerData() override;
+ void EmitWindowsUnwindTables() override;
void FinishImpl() override;
};
@@ -28,7 +31,13 @@ void X86WinCOFFStreamer::EmitWinEHHandlerData() {
// We have to emit the unwind info now, because this directive
// actually switches to the .xdata section!
- MCWin64EHUnwindEmitter::EmitUnwindInfo(*this, getCurrentWinFrameInfo());
+ EHStreamer.EmitUnwindInfo(*this, getCurrentWinFrameInfo());
+}
+
+void X86WinCOFFStreamer::EmitWindowsUnwindTables() {
+ if (!getNumWinFrameInfos())
+ return;
+ EHStreamer.Emit(*this);
}
void X86WinCOFFStreamer::FinishImpl() {
diff --git a/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp b/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
index 1ea8798..fceb083 100644
--- a/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
@@ -13,7 +13,7 @@ using namespace llvm;
Target llvm::TheX86_32Target, llvm::TheX86_64Target;
-extern "C" void LLVMInitializeX86TargetInfo() {
+extern "C" void LLVMInitializeX86TargetInfo() {
RegisterTarget<Triple::x86, /*HasJIT=*/true>
X(TheX86_32Target, "x86", "32-bit X86: Pentium-Pro and above");
diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp
index 5f2441c..e4c58d4 100644
--- a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp
+++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "X86ShuffleDecode.h"
+#include "llvm/IR/Constants.h"
#include "llvm/CodeGen/MachineValueType.h"
//===----------------------------------------------------------------------===//
@@ -62,6 +63,51 @@ void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
ShuffleMask.push_back(NElts+i);
}
+void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+ for (int i = 0, e = NumElts / 2; i < e; ++i) {
+ ShuffleMask.push_back(2 * i);
+ ShuffleMask.push_back(2 * i);
+ }
+}
+
+void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned NumElts = VT.getVectorNumElements();
+ for (int i = 0, e = NumElts / 2; i < e; ++i) {
+ ShuffleMask.push_back(2 * i + 1);
+ ShuffleMask.push_back(2 * i + 1);
+ }
+}
+
+void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned VectorSizeInBits = VT.getSizeInBits();
+ unsigned NumElts = VectorSizeInBits / 8;
+ unsigned NumLanes = VectorSizeInBits / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ for (unsigned l = 0; l < NumElts; l += NumLaneElts)
+ for (unsigned i = 0; i < NumLaneElts; ++i) {
+ int M = SM_SentinelZero;
+ if (i >= Imm) M = i - Imm + l;
+ ShuffleMask.push_back(M);
+ }
+}
+
+void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ unsigned VectorSizeInBits = VT.getSizeInBits();
+ unsigned NumElts = VectorSizeInBits / 8;
+ unsigned NumLanes = VectorSizeInBits / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ for (unsigned l = 0; l < NumElts; l += NumLaneElts)
+ for (unsigned i = 0; i < NumLaneElts; ++i) {
+ unsigned Base = i + Imm;
+ int M = Base + l;
+ if (Base >= NumLaneElts) M = SM_SentinelZero;
+ ShuffleMask.push_back(M);
+ }
+}
+
void DecodePALIGNRMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
@@ -207,6 +253,90 @@ void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
}
}
+void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
+ Type *MaskTy = C->getType();
+ // It is not an error for the PSHUFB mask to not be a vector of i8 because the
+ // constant pool uniques constants by their bit representation.
+ // e.g. the following take up the same space in the constant pool:
+ // i128 -170141183420855150465331762880109871104
+ //
+ // <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
+ //
+ // <4 x i32> <i32 -2147483648, i32 -2147483648,
+ // i32 -2147483648, i32 -2147483648>
+
+ unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
+
+ if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
+ return;
+
+ // This is a straightforward byte vector.
+ if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) {
+ int NumElements = MaskTy->getVectorNumElements();
+ ShuffleMask.reserve(NumElements);
+
+ for (int i = 0; i < NumElements; ++i) {
+ // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
+ // lane of the vector we're inside.
+ int Base = i < 16 ? 0 : 16;
+ Constant *COp = C->getAggregateElement(i);
+ if (!COp) {
+ ShuffleMask.clear();
+ return;
+ } else if (isa<UndefValue>(COp)) {
+ ShuffleMask.push_back(SM_SentinelUndef);
+ continue;
+ }
+ uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
+ // If the high bit (7) of the byte is set, the element is zeroed.
+ if (Element & (1 << 7))
+ ShuffleMask.push_back(SM_SentinelZero);
+ else {
+ // Only the least significant 4 bits of the byte are used.
+ int Index = Base + (Element & 0xf);
+ ShuffleMask.push_back(Index);
+ }
+ }
+ }
+ // TODO: Handle funny-looking vectors too.
+}
+
+void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
+ SmallVectorImpl<int> &ShuffleMask) {
+ for (int i = 0, e = RawMask.size(); i < e; ++i) {
+ uint64_t M = RawMask[i];
+ if (M == (uint64_t)SM_SentinelUndef) {
+ ShuffleMask.push_back(M);
+ continue;
+ }
+ // For AVX vectors with 32 bytes the base of the shuffle is the half of
+ // the vector we're inside.
+ int Base = i < 16 ? 0 : 16;
+ // If the high bit (7) of the byte is set, the element is zeroed.
+ if (M & (1 << 7))
+ ShuffleMask.push_back(SM_SentinelZero);
+ else {
+ // Only the least significant 4 bits of the byte are used.
+ int Index = Base + (M & 0xf);
+ ShuffleMask.push_back(Index);
+ }
+ }
+}
+
+void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
+ int ElementBits = VT.getScalarSizeInBits();
+ int NumElements = VT.getVectorNumElements();
+ for (int i = 0; i < NumElements; ++i) {
+ // If there are more than 8 elements in the vector, then any immediate blend
+ // mask applies to each 128-bit lane. There can never be more than
+ // 8 elements in a 128-bit lane with an immediate blend.
+ int Bit = NumElements > 8 ? i % (128 / ElementBits) : i;
+ assert(Bit < 8 &&
+ "Immediate blends only operate over 8 elements at a time!");
+ ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i);
+ }
+}
+
/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
/// No VT provided since it only works on 256-bit, 4 element vectors.
void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
@@ -215,4 +345,44 @@ void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
}
}
+void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
+ Type *MaskTy = C->getType();
+ assert(MaskTy->isVectorTy() && "Expected a vector constant mask!");
+ assert(MaskTy->getVectorElementType()->isIntegerTy() &&
+ "Expected integer constant mask elements!");
+ int ElementBits = MaskTy->getScalarSizeInBits();
+ int NumElements = MaskTy->getVectorNumElements();
+ assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
+ "Unexpected number of vector elements.");
+ ShuffleMask.reserve(NumElements);
+ if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
+ assert((unsigned)NumElements == CDS->getNumElements() &&
+ "Constant mask has a different number of elements!");
+
+ for (int i = 0; i < NumElements; ++i) {
+ int Base = (i * ElementBits / 128) * (128 / ElementBits);
+ uint64_t Element = CDS->getElementAsInteger(i);
+ // Only the least significant 2 bits of the integer are used.
+ int Index = Base + (Element & 0x3);
+ ShuffleMask.push_back(Index);
+ }
+ } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
+ assert((unsigned)NumElements == C->getNumOperands() &&
+ "Constant mask has a different number of elements!");
+
+ for (int i = 0; i < NumElements; ++i) {
+ int Base = (i * ElementBits / 128) * (128 / ElementBits);
+ Constant *COp = CV->getOperand(i);
+ if (isa<UndefValue>(COp)) {
+ ShuffleMask.push_back(SM_SentinelUndef);
+ continue;
+ }
+ uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
+ // Only the least significant 2 bits of the integer are used.
+ int Index = Base + (Element & 0x3);
+ ShuffleMask.push_back(Index);
+ }
+ }
+}
+
} // llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h
index 9e75b6b..6ba3c64 100644
--- a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h
+++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h
@@ -12,21 +12,21 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_SHUFFLE_DECODE_H
-#define X86_SHUFFLE_DECODE_H
+#ifndef LLVM_LIB_TARGET_X86_UTILS_X86SHUFFLEDECODE_H
+#define LLVM_LIB_TARGET_X86_UTILS_X86SHUFFLEDECODE_H
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/ArrayRef.h"
//===----------------------------------------------------------------------===//
// Vector Mask Decoding
//===----------------------------------------------------------------------===//
namespace llvm {
+class Constant;
class MVT;
-enum {
- SM_SentinelZero = -1
-};
+enum { SM_SentinelUndef = -1, SM_SentinelZero = -2 };
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
@@ -36,6 +36,14 @@ void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask);
// <0,2> or <0,1,4,5>
void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask);
+void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
+void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+
void DecodePALIGNRMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
@@ -59,6 +67,16 @@ void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask);
/// different datatypes and vector widths.
void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask);
+/// \brief Decode a PSHUFB mask from an IR-level vector constant.
+void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask);
+
+/// \brief Decode a PSHUFB mask from a raw array of constants such as from
+/// BUILD_VECTOR.
+void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
+ SmallVectorImpl<int> &ShuffleMask);
+
+/// \brief Decode a BLEND immediate mask into a shuffle mask.
+void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask);
@@ -67,6 +85,9 @@ void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
/// No VT provided since it only works on 256-bit, 4 element vectors.
void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask);
+/// \brief Decode a VPERMILP variable mask from an IR-level vector constant.
+void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask);
+
} // llvm namespace
#endif
diff --git a/contrib/llvm/lib/Target/X86/X86.h b/contrib/llvm/lib/Target/X86/X86.h
index d5522ed..8bd5817 100644
--- a/contrib/llvm/lib/Target/X86/X86.h
+++ b/contrib/llvm/lib/Target/X86/X86.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_X86_H
-#define TARGET_X86_H
+#ifndef LLVM_LIB_TARGET_X86_X86_H
+#define LLVM_LIB_TARGET_X86_X86_H
#include "llvm/Support/CodeGen.h"
@@ -21,13 +21,8 @@ namespace llvm {
class FunctionPass;
class ImmutablePass;
-class JITCodeEmitter;
class X86TargetMachine;
-/// createX86AtomicExpandPass - This pass expands atomic operations that cannot
-/// be handled natively in terms of a loop using cmpxchg.
-FunctionPass *createX86AtomicExpandPass(const X86TargetMachine *TM);
-
/// createX86ISelDag - This pass converts a legalized DAG into a
/// X86-specific DAG, ready for instruction scheduling.
///
@@ -54,11 +49,6 @@ FunctionPass *createX86FloatingPointStackifierPass();
/// AVX and SSE.
FunctionPass *createX86IssueVZeroUpperPass();
-/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
-/// to the specified MCE object.
-FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
- JITCodeEmitter &JCE);
-
/// createX86EmitCodeToMemory - Returns a pass that converts a register
/// allocated function into raw machine code in a dynamically
/// allocated chunk of memory.
diff --git a/contrib/llvm/lib/Target/X86/X86.td b/contrib/llvm/lib/Target/X86/X86.td
index cd32a0f..ab3319a 100644
--- a/contrib/llvm/lib/Target/X86/X86.td
+++ b/contrib/llvm/lib/Target/X86/X86.td
@@ -79,9 +79,16 @@ def FeatureSlowBTMem : SubtargetFeature<"slow-bt-mem", "IsBTMemSlow", "true",
"Bit testing of memory is slow">;
def FeatureSlowSHLD : SubtargetFeature<"slow-shld", "IsSHLDSlow", "true",
"SHLD instruction is slow">;
+// FIXME: This is a 16-byte (SSE/AVX) feature; we should rename it to make that
+// explicit. Also, it seems this would be the default state for most chips
+// going forward, so it would probably be better to negate the logic and
+// match the 32-byte "slow mem" feature below.
def FeatureFastUAMem : SubtargetFeature<"fast-unaligned-mem",
"IsUAMemFast", "true",
"Fast unaligned memory access">;
+def FeatureSlowUAMem32 : SubtargetFeature<"slow-unaligned-mem-32",
+ "IsUAMem32Slow", "true",
+ "Slow unaligned 32-byte memory access">;
def FeatureSSE4A : SubtargetFeature<"sse4a", "HasSSE4A", "true",
"Support SSE 4a instructions",
[FeatureSSE3]>;
@@ -157,15 +164,22 @@ def FeatureADX : SubtargetFeature<"adx", "HasADX", "true",
def FeatureSHA : SubtargetFeature<"sha", "HasSHA", "true",
"Enable SHA instructions",
[FeatureSSE2]>;
+def FeatureSGX : SubtargetFeature<"sgx", "HasSGX", "true",
+ "Support SGX instructions">;
def FeaturePRFCHW : SubtargetFeature<"prfchw", "HasPRFCHW", "true",
"Support PRFCHW instructions">;
def FeatureRDSEED : SubtargetFeature<"rdseed", "HasRDSEED", "true",
"Support RDSEED instruction">;
+def FeatureSMAP : SubtargetFeature<"smap", "HasSMAP", "true",
+ "Support SMAP instructions">;
def FeatureLeaForSP : SubtargetFeature<"lea-sp", "UseLeaForSP", "true",
"Use LEA for adjusting the stack pointer">;
-def FeatureSlowDivide : SubtargetFeature<"idiv-to-divb",
- "HasSlowDivide", "true",
- "Use small divide for positive values less than 256">;
+def FeatureSlowDivide32 : SubtargetFeature<"idivl-to-divb",
+ "HasSlowDivide32", "true",
+ "Use 8-bit divide for positive values less than 256">;
+def FeatureSlowDivide64 : SubtargetFeature<"idivq-to-divw",
+ "HasSlowDivide64", "true",
+ "Use 16-bit divide for positive values less than 65536">;
def FeaturePadShortFunctions : SubtargetFeature<"pad-short-functions",
"PadShortFunctions", "true",
"Pad short functions">;
@@ -178,6 +192,10 @@ def FeatureSlowLEA : SubtargetFeature<"slow-lea", "SlowLEA", "true",
"LEA instruction with certain arguments is slow">;
def FeatureSlowIncDec : SubtargetFeature<"slow-incdec", "SlowIncDec", "true",
"INC and DEC instructions are slower than ADD and SUB">;
+def FeatureUseSqrtEst : SubtargetFeature<"use-sqrt-est", "UseSqrtEst", "true",
+ "Use RSQRT* to optimize square root calculations">;
+def FeatureUseRecipEst : SubtargetFeature<"use-recip-est", "UseReciprocalEst",
+ "true", "Use RCP* to optimize division calculations">;
//===----------------------------------------------------------------------===//
// X86 processors supported.
@@ -222,78 +240,171 @@ def : ProcessorModel<"core2", SandyBridgeModel,
def : ProcessorModel<"penryn", SandyBridgeModel,
[FeatureSSE41, FeatureCMPXCHG16B, FeatureSlowBTMem]>;
-// Atom.
-def : ProcessorModel<"atom", AtomModel,
- [ProcIntelAtom, FeatureSSSE3, FeatureCMPXCHG16B,
- FeatureMOVBE, FeatureSlowBTMem, FeatureLeaForSP,
- FeatureSlowDivide,
- FeatureCallRegIndirect,
- FeatureLEAUsesAG,
- FeaturePadShortFunctions]>;
-
-// Atom Silvermont.
-def : ProcessorModel<"slm", SLMModel, [ProcIntelSLM,
- FeatureSSE42, FeatureCMPXCHG16B,
- FeatureMOVBE, FeaturePOPCNT,
- FeaturePCLMUL, FeatureAES,
- FeatureCallRegIndirect,
- FeaturePRFCHW,
- FeatureSlowLEA, FeatureSlowIncDec,
- FeatureSlowBTMem, FeatureFastUAMem]>;
+// Atom CPUs.
+class BonnellProc<string Name> : ProcessorModel<Name, AtomModel, [
+ ProcIntelAtom,
+ FeatureSSSE3,
+ FeatureCMPXCHG16B,
+ FeatureMOVBE,
+ FeatureSlowBTMem,
+ FeatureLeaForSP,
+ FeatureSlowDivide32,
+ FeatureSlowDivide64,
+ FeatureCallRegIndirect,
+ FeatureLEAUsesAG,
+ FeaturePadShortFunctions
+ ]>;
+def : BonnellProc<"bonnell">;
+def : BonnellProc<"atom">; // Pin the generic name to the baseline.
+
+class SilvermontProc<string Name> : ProcessorModel<Name, SLMModel, [
+ ProcIntelSLM,
+ FeatureSSE42,
+ FeatureCMPXCHG16B,
+ FeatureMOVBE,
+ FeaturePOPCNT,
+ FeaturePCLMUL,
+ FeatureAES,
+ FeatureSlowDivide64,
+ FeatureCallRegIndirect,
+ FeaturePRFCHW,
+ FeatureSlowLEA,
+ FeatureSlowIncDec,
+ FeatureSlowBTMem,
+ FeatureFastUAMem
+ ]>;
+def : SilvermontProc<"silvermont">;
+def : SilvermontProc<"slm">; // Legacy alias.
+
// "Arrandale" along with corei3 and corei5
-def : ProcessorModel<"corei7", SandyBridgeModel,
- [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem,
- FeatureFastUAMem, FeaturePOPCNT, FeatureAES]>;
+class NehalemProc<string Name, list<SubtargetFeature> AdditionalFeatures>
+ : ProcessorModel<Name, SandyBridgeModel, !listconcat([
+ FeatureSSE42,
+ FeatureCMPXCHG16B,
+ FeatureSlowBTMem,
+ FeatureFastUAMem,
+ FeaturePOPCNT
+ ],
+ AdditionalFeatures)>;
+def : NehalemProc<"nehalem", []>;
+def : NehalemProc<"corei7", [FeatureAES]>;
-def : ProcessorModel<"nehalem", SandyBridgeModel,
- [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem,
- FeatureFastUAMem, FeaturePOPCNT]>;
// Westmere is a similar machine to nehalem with some additional features.
// Westmere is the corei3/i5/i7 path from nehalem to sandybridge
-def : ProcessorModel<"westmere", SandyBridgeModel,
- [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem,
- FeatureFastUAMem, FeaturePOPCNT, FeatureAES,
- FeaturePCLMUL]>;
-// Sandy Bridge
+class WestmereProc<string Name> : ProcessorModel<Name, SandyBridgeModel, [
+ FeatureSSE42,
+ FeatureCMPXCHG16B,
+ FeatureSlowBTMem,
+ FeatureFastUAMem,
+ FeaturePOPCNT,
+ FeatureAES,
+ FeaturePCLMUL
+ ]>;
+def : WestmereProc<"westmere">;
+
// SSE is not listed here since llvm treats AVX as a reimplementation of SSE,
// rather than a superset.
-def : ProcessorModel<"corei7-avx", SandyBridgeModel,
- [FeatureAVX, FeatureCMPXCHG16B, FeatureFastUAMem,
- FeaturePOPCNT, FeatureAES, FeaturePCLMUL]>;
-// Ivy Bridge
-def : ProcessorModel<"core-avx-i", SandyBridgeModel,
- [FeatureAVX, FeatureCMPXCHG16B, FeatureFastUAMem,
- FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND,
- FeatureF16C, FeatureFSGSBase]>;
-
-// Haswell
-def : ProcessorModel<"core-avx2", HaswellModel,
- [FeatureAVX2, FeatureCMPXCHG16B, FeatureFastUAMem,
- FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND,
- FeatureF16C, FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT,
- FeatureBMI, FeatureBMI2, FeatureFMA, FeatureRTM,
- FeatureHLE]>;
-
-// KNL
+class SandyBridgeProc<string Name> : ProcessorModel<Name, SandyBridgeModel, [
+ FeatureAVX,
+ FeatureCMPXCHG16B,
+ FeatureFastUAMem,
+ FeatureSlowUAMem32,
+ FeatureVectorUAMem,
+ FeaturePOPCNT,
+ FeatureAES,
+ FeaturePCLMUL
+ ]>;
+def : SandyBridgeProc<"sandybridge">;
+def : SandyBridgeProc<"corei7-avx">; // Legacy alias.
+
+class IvyBridgeProc<string Name> : ProcessorModel<Name, SandyBridgeModel, [
+ FeatureAVX,
+ FeatureCMPXCHG16B,
+ FeatureFastUAMem,
+ FeatureSlowUAMem32,
+ FeatureVectorUAMem,
+ FeaturePOPCNT,
+ FeatureAES,
+ FeaturePCLMUL,
+ FeatureRDRAND,
+ FeatureF16C,
+ FeatureFSGSBase
+ ]>;
+def : IvyBridgeProc<"ivybridge">;
+def : IvyBridgeProc<"core-avx-i">; // Legacy alias.
+
+class HaswellProc<string Name> : ProcessorModel<Name, HaswellModel, [
+ FeatureAVX2,
+ FeatureCMPXCHG16B,
+ FeatureFastUAMem,
+ FeatureVectorUAMem,
+ FeaturePOPCNT,
+ FeatureAES,
+ FeaturePCLMUL,
+ FeatureRDRAND,
+ FeatureF16C,
+ FeatureFSGSBase,
+ FeatureMOVBE,
+ FeatureLZCNT,
+ FeatureBMI,
+ FeatureBMI2,
+ FeatureFMA,
+ FeatureRTM,
+ FeatureHLE,
+ FeatureSlowIncDec
+ ]>;
+def : HaswellProc<"haswell">;
+def : HaswellProc<"core-avx2">; // Legacy alias.
+
+class BroadwellProc<string Name> : ProcessorModel<Name, HaswellModel, [
+ FeatureAVX2,
+ FeatureCMPXCHG16B,
+ FeatureFastUAMem,
+ FeatureVectorUAMem,
+ FeaturePOPCNT,
+ FeatureAES,
+ FeaturePCLMUL,
+ FeatureRDRAND,
+ FeatureF16C,
+ FeatureFSGSBase,
+ FeatureMOVBE,
+ FeatureLZCNT,
+ FeatureBMI,
+ FeatureBMI2,
+ FeatureFMA,
+ FeatureRTM,
+ FeatureHLE,
+ FeatureADX,
+ FeatureRDSEED,
+ FeatureSMAP,
+ FeatureSlowIncDec
+ ]>;
+def : BroadwellProc<"broadwell">;
+
// FIXME: define KNL model
-def : ProcessorModel<"knl", HaswellModel,
+class KnightsLandingProc<string Name> : ProcessorModel<Name, HaswellModel,
[FeatureAVX512, FeatureERI, FeatureCDI, FeaturePFI,
FeatureCMPXCHG16B, FeatureFastUAMem, FeaturePOPCNT,
FeatureAES, FeaturePCLMUL, FeatureRDRAND, FeatureF16C,
FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT, FeatureBMI,
FeatureBMI2, FeatureFMA, FeatureRTM, FeatureHLE,
- FeatureSlowIncDec]>;
+ FeatureSlowIncDec, FeatureVectorUAMem]>;
+def : KnightsLandingProc<"knl">;
-// SKX
// FIXME: define SKX model
-def : ProcessorModel<"skx", HaswellModel,
+class SkylakeProc<string Name> : ProcessorModel<Name, HaswellModel,
[FeatureAVX512, FeatureCDI,
FeatureDQI, FeatureBWI, FeatureVLX,
FeatureCMPXCHG16B, FeatureFastUAMem, FeaturePOPCNT,
FeatureAES, FeaturePCLMUL, FeatureRDRAND, FeatureF16C,
FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT, FeatureBMI,
FeatureBMI2, FeatureFMA, FeatureRTM, FeatureHLE,
- FeatureSlowIncDec]>;
+ FeatureSlowIncDec, FeatureSGX, FeatureVectorUAMem]>;
+def : SkylakeProc<"skylake">;
+def : SkylakeProc<"skx">; // Legacy alias.
+
+
+// AMD CPUs.
def : Proc<"k6", [FeatureMMX]>;
def : Proc<"k6-2", [Feature3DNow]>;
@@ -302,7 +413,7 @@ def : Proc<"athlon", [Feature3DNowA, FeatureSlowBTMem,
FeatureSlowSHLD]>;
def : Proc<"athlon-tbird", [Feature3DNowA, FeatureSlowBTMem,
FeatureSlowSHLD]>;
-def : Proc<"athlon-4", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+def : Proc<"athlon-4", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
FeatureSlowSHLD]>;
def : Proc<"athlon-xp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
FeatureSlowSHLD]>;
@@ -326,39 +437,52 @@ def : Proc<"amdfam10", [FeatureSSE4A,
Feature3DNowA, FeatureCMPXCHG16B, FeatureLZCNT,
FeaturePOPCNT, FeatureSlowBTMem,
FeatureSlowSHLD]>;
+def : Proc<"barcelona", [FeatureSSE4A,
+ Feature3DNowA, FeatureCMPXCHG16B, FeatureLZCNT,
+ FeaturePOPCNT, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
// Bobcat
def : Proc<"btver1", [FeatureSSSE3, FeatureSSE4A, FeatureCMPXCHG16B,
FeaturePRFCHW, FeatureLZCNT, FeaturePOPCNT,
FeatureSlowSHLD]>;
+
// Jaguar
-def : Proc<"btver2", [FeatureAVX, FeatureSSE4A, FeatureCMPXCHG16B,
- FeaturePRFCHW, FeatureAES, FeaturePCLMUL,
- FeatureBMI, FeatureF16C, FeatureMOVBE,
- FeatureLZCNT, FeaturePOPCNT, FeatureSlowSHLD]>;
+def : ProcessorModel<"btver2", BtVer2Model,
+ [FeatureAVX, FeatureSSE4A, FeatureCMPXCHG16B,
+ FeaturePRFCHW, FeatureAES, FeaturePCLMUL,
+ FeatureBMI, FeatureF16C, FeatureMOVBE,
+ FeatureLZCNT, FeaturePOPCNT, FeatureFastUAMem,
+ FeatureSlowSHLD, FeatureUseSqrtEst, FeatureUseRecipEst]>;
+
+// TODO: We should probably add 'FeatureFastUAMem' to all of the AMD chips.
+
// Bulldozer
def : Proc<"bdver1", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
- FeatureLZCNT, FeaturePOPCNT, FeatureSlowSHLD]>;
+ FeatureAVX, FeatureSSE4A, FeatureLZCNT,
+ FeaturePOPCNT, FeatureSlowSHLD]>;
// Piledriver
def : Proc<"bdver2", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
- FeatureF16C, FeatureLZCNT,
- FeaturePOPCNT, FeatureBMI, FeatureTBM,
- FeatureFMA, FeatureSlowSHLD]>;
+ FeatureAVX, FeatureSSE4A, FeatureF16C,
+ FeatureLZCNT, FeaturePOPCNT, FeatureBMI,
+ FeatureTBM, FeatureFMA, FeatureSlowSHLD]>;
// Steamroller
def : Proc<"bdver3", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
- FeatureF16C, FeatureLZCNT,
- FeaturePOPCNT, FeatureBMI, FeatureTBM,
- FeatureFMA, FeatureFSGSBase]>;
+ FeatureAVX, FeatureSSE4A, FeatureF16C,
+ FeatureLZCNT, FeaturePOPCNT, FeatureBMI,
+ FeatureTBM, FeatureFMA, FeatureSlowSHLD,
+ FeatureFSGSBase]>;
// Excavator
def : Proc<"bdver4", [FeatureAVX2, FeatureXOP, FeatureFMA4,
FeatureCMPXCHG16B, FeatureAES, FeaturePRFCHW,
FeaturePCLMUL, FeatureF16C, FeatureLZCNT,
FeaturePOPCNT, FeatureBMI, FeatureBMI2,
- FeatureTBM, FeatureFMA, FeatureFSGSBase]>;
+ FeatureTBM, FeatureFMA, FeatureSSE4A,
+ FeatureFSGSBase]>;
def : Proc<"geode", [Feature3DNowA]>;
@@ -371,7 +495,7 @@ def : Proc<"c3-2", [FeatureSSE1]>;
// be good for modern chips without enabling instruction set encodings past the
// basic SSE2 and 64-bit ones. It disables slow things from any mainstream and
// modern 64-bit x86 chip, and enables features that are generally beneficial.
-//
+//
// We currently use the Sandy Bridge model as the default scheduling model as
// we use it across Nehalem, Westmere, Sandy Bridge, and Ivy Bridge which
// covers a huge swath of x86 processors. If there are specific scheduling
diff --git a/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp b/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp
index 57c7a62..14a0f38 100644
--- a/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp
@@ -47,6 +47,8 @@ using namespace llvm;
/// runOnMachineFunction - Emit the function body.
///
bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ SMShadowTracker.startFunction(MF);
+
SetupMachineFunction(MF);
if (Subtarget->isTargetCOFF()) {
@@ -503,7 +505,7 @@ bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
}
void X86AsmPrinter::EmitStartOfAsmFile(Module &M) {
- if (Subtarget->isTargetMacho())
+ if (Subtarget->isTargetMachO())
OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
if (Subtarget->isTargetCOFF()) {
@@ -556,14 +558,16 @@ MCSymbol *X86AsmPrinter::GetCPISymbol(unsigned CPID) const {
const MachineConstantPoolEntry &CPE =
MF->getConstantPool()->getConstants()[CPID];
if (!CPE.isMachineConstantPoolEntry()) {
- SectionKind Kind = CPE.getSectionKind(TM.getDataLayout());
+ SectionKind Kind =
+ CPE.getSectionKind(TM.getSubtargetImpl()->getDataLayout());
const Constant *C = CPE.Val.ConstVal;
- const MCSectionCOFF *S = cast<MCSectionCOFF>(
- getObjFileLowering().getSectionForConstant(Kind, C));
- if (MCSymbol *Sym = S->getCOMDATSymbol()) {
- if (Sym->isUndefined())
- OutStreamer.EmitSymbolAttribute(Sym, MCSA_Global);
- return Sym;
+ if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
+ getObjFileLowering().getSectionForConstant(Kind, C))) {
+ if (MCSymbol *Sym = S->getCOMDATSymbol()) {
+ if (Sym->isUndefined())
+ OutStreamer.EmitSymbolAttribute(Sym, MCSA_Global);
+ return Sym;
+ }
}
}
}
@@ -599,10 +603,10 @@ void X86AsmPrinter::GenerateExportDirective(const MCSymbol *Sym, bool IsData) {
}
void X86AsmPrinter::EmitEndOfAsmFile(Module &M) {
- if (Subtarget->isTargetMacho()) {
+ if (Subtarget->isTargetMachO()) {
// All darwin targets use mach-o.
MachineModuleInfoMachO &MMIMacho =
- MMI->getObjFileInfo<MachineModuleInfoMachO>();
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output stubs for dynamically-linked functions.
MachineModuleInfoMachO::SymbolListTy Stubs;
@@ -725,7 +729,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) {
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
for (const auto &Stub : Stubs) {
OutStreamer.EmitLabel(Stub.first);
@@ -734,6 +738,8 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) {
}
Stubs.clear();
}
+
+ SM.serializeToStackMapSection();
}
}
diff --git a/contrib/llvm/lib/Target/X86/X86AsmPrinter.h b/contrib/llvm/lib/Target/X86/X86AsmPrinter.h
index b1bbe8e..748b948 100644
--- a/contrib/llvm/lib/Target/X86/X86AsmPrinter.h
+++ b/contrib/llvm/lib/Target/X86/X86AsmPrinter.h
@@ -7,14 +7,19 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86ASMPRINTER_H
-#define X86ASMPRINTER_H
+#ifndef LLVM_LIB_TARGET_X86_X86ASMPRINTER_H
+#define LLVM_LIB_TARGET_X86_X86ASMPRINTER_H
#include "X86Subtarget.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/Target/TargetMachine.h"
+// Implemented in X86MCInstLower.cpp
+namespace {
+ class X86MCInstLower;
+}
+
namespace llvm {
class MCStreamer;
class MCSymbol;
@@ -25,9 +30,63 @@ class LLVM_LIBRARY_VISIBILITY X86AsmPrinter : public AsmPrinter {
void GenerateExportDirective(const MCSymbol *Sym, bool IsData);
+ // This utility class tracks the length of a stackmap instruction's 'shadow'.
+ // It is used by the X86AsmPrinter to ensure that the stackmap shadow
+ // invariants (i.e. no other stackmaps, patchpoints, or control flow within
+ // the shadow) are met, while outputting a minimal number of NOPs for padding.
+ //
+ // To minimise the number of NOPs used, the shadow tracker counts the number
+ // of instruction bytes output since the last stackmap. Only if there are too
+ // few instruction bytes to cover the shadow are NOPs used for padding.
+ class StackMapShadowTracker {
+ public:
+ StackMapShadowTracker(TargetMachine &TM);
+ ~StackMapShadowTracker();
+ void startFunction(MachineFunction &MF);
+ void count(MCInst &Inst, const MCSubtargetInfo &STI);
+
+ // Called to signal the start of a shadow of RequiredSize bytes.
+ void reset(unsigned RequiredSize) {
+ RequiredShadowSize = RequiredSize;
+ CurrentShadowSize = 0;
+ InShadow = true;
+ }
+
+ // Called before every stackmap/patchpoint, and at the end of basic blocks,
+ // to emit any necessary padding-NOPs.
+ void emitShadowPadding(MCStreamer &OutStreamer, const MCSubtargetInfo &STI);
+ private:
+ TargetMachine &TM;
+ std::unique_ptr<MCCodeEmitter> CodeEmitter;
+ bool InShadow;
+
+ // RequiredShadowSize holds the length of the shadow specified in the most
+ // recently encountered STACKMAP instruction.
+ // CurrentShadowSize counts the number of bytes encoded since the most
+ // recently encountered STACKMAP, stopping when that number is greater than
+ // or equal to RequiredShadowSize.
+ unsigned RequiredShadowSize, CurrentShadowSize;
+ };
+
+ StackMapShadowTracker SMShadowTracker;
+
+ // All instructions emitted by the X86AsmPrinter should use this helper
+ // method.
+ //
+ // This helper function invokes the SMShadowTracker on each instruction before
+ // outputting it to the OutStream. This allows the shadow tracker to minimise
+ // the number of NOPs used for stackmap padding.
+ void EmitAndCountInstruction(MCInst &Inst);
+
+ void InsertStackMapShadows(MachineFunction &MF);
+ void LowerSTACKMAP(const MachineInstr &MI);
+ void LowerPATCHPOINT(const MachineInstr &MI);
+
+ void LowerTlsAddr(X86MCInstLower &MCInstLowering, const MachineInstr &MI);
+
public:
explicit X86AsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
- : AsmPrinter(TM, Streamer), SM(*this) {
+ : AsmPrinter(TM, Streamer), SM(*this), SMShadowTracker(TM) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
}
@@ -43,6 +102,10 @@ class LLVM_LIBRARY_VISIBILITY X86AsmPrinter : public AsmPrinter {
void EmitInstruction(const MachineInstr *MI) override;
+ void EmitBasicBlockEnd(const MachineBasicBlock &MBB) override {
+ SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
+ }
+
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &OS) override;
@@ -53,6 +116,12 @@ class LLVM_LIBRARY_VISIBILITY X86AsmPrinter : public AsmPrinter {
/// \brief Return the symbol for the specified constant pool entry.
MCSymbol *GetCPISymbol(unsigned CPID) const override;
+ bool doInitialization(Module &M) override {
+ SMShadowTracker.reset(0);
+ SM.reset();
+ return AsmPrinter::doInitialization(M);
+ }
+
bool runOnMachineFunction(MachineFunction &F) override;
};
diff --git a/contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp b/contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp
deleted file mode 100644
index 3dcadb1..0000000
--- a/contrib/llvm/lib/Target/X86/X86AtomicExpandPass.cpp
+++ /dev/null
@@ -1,283 +0,0 @@
-//===-- X86AtomicExpandPass.cpp - Expand illegal atomic instructions --0---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains a pass (at IR level) to replace atomic instructions which
-// cannot be implemented as a single instruction with cmpxchg-based loops.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86TargetMachine.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "x86-atomic-expand"
-
-namespace {
- class X86AtomicExpandPass : public FunctionPass {
- const X86TargetMachine *TM;
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit X86AtomicExpandPass(const X86TargetMachine *TM)
- : FunctionPass(ID), TM(TM) {}
-
- bool runOnFunction(Function &F) override;
- bool expandAtomicInsts(Function &F);
-
- bool needsCmpXchgNb(Type *MemType);
-
- /// There are four kinds of atomic operations. Two never need expanding:
- /// cmpxchg is what we expand the others *to*, and loads are easily handled
- /// by ISelLowering. Atomicrmw and store can need expanding in some
- /// circumstances.
- bool shouldExpand(Instruction *Inst);
-
- /// 128-bit atomic stores (64-bit on i686) need to be implemented in terms
- /// of trivial cmpxchg16b loops. A simple store isn't necessarily atomic.
- bool shouldExpandStore(StoreInst *SI);
-
- /// Only some atomicrmw instructions need expanding -- some operations
- /// (e.g. max) have absolutely no architectural support; some (e.g. or) have
- /// limited support but can't return the previous value; some (e.g. add)
- /// have complete support in the instruction set.
- ///
- /// Also, naturally, 128-bit operations always need to be expanded.
- bool shouldExpandAtomicRMW(AtomicRMWInst *AI);
-
- bool expandAtomicRMW(AtomicRMWInst *AI);
- bool expandAtomicStore(StoreInst *SI);
- };
-}
-
-char X86AtomicExpandPass::ID = 0;
-
-FunctionPass *llvm::createX86AtomicExpandPass(const X86TargetMachine *TM) {
- return new X86AtomicExpandPass(TM);
-}
-
-bool X86AtomicExpandPass::runOnFunction(Function &F) {
- SmallVector<Instruction *, 1> AtomicInsts;
-
- // Changing control-flow while iterating through it is a bad idea, so gather a
- // list of all atomic instructions before we start.
- for (BasicBlock &BB : F)
- for (Instruction &Inst : BB) {
- if (isa<AtomicRMWInst>(&Inst) ||
- (isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
- AtomicInsts.push_back(&Inst);
- }
-
- bool MadeChange = false;
- for (Instruction *Inst : AtomicInsts) {
- if (!shouldExpand(Inst))
- continue;
-
- if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
- MadeChange |= expandAtomicRMW(AI);
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- MadeChange |= expandAtomicStore(SI);
-
- assert(MadeChange && "Atomic inst not expanded when it should be?");
- Inst->eraseFromParent();
- }
-
- return MadeChange;
-}
-
-/// Returns true if the operand type is 1 step up from the native width, and
-/// the corresponding cmpxchg8b or cmpxchg16b instruction is available
-/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
-bool X86AtomicExpandPass::needsCmpXchgNb(llvm::Type *MemType) {
- const X86Subtarget &Subtarget = TM->getSubtarget<X86Subtarget>();
- unsigned OpWidth = MemType->getPrimitiveSizeInBits();
-
- if (OpWidth == 64)
- return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
- if (OpWidth == 128)
- return Subtarget.hasCmpxchg16b();
-
- return false;
-}
-
-bool X86AtomicExpandPass::shouldExpandAtomicRMW(AtomicRMWInst *AI) {
- const X86Subtarget &Subtarget = TM->getSubtarget<X86Subtarget>();
- unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
-
- if (needsCmpXchgNb(AI->getType()))
- return true;
-
- if (AI->getType()->getPrimitiveSizeInBits() > NativeWidth)
- return false;
-
- AtomicRMWInst::BinOp Op = AI->getOperation();
- switch (Op) {
- default:
- llvm_unreachable("Unknown atomic operation");
- case AtomicRMWInst::Xchg:
- case AtomicRMWInst::Add:
- case AtomicRMWInst::Sub:
- // It's better to use xadd, xsub or xchg for these in all cases.
- return false;
- case AtomicRMWInst::Or:
- case AtomicRMWInst::And:
- case AtomicRMWInst::Xor:
- // If the atomicrmw's result isn't actually used, we can just add a "lock"
- // prefix to a normal instruction for these operations.
- return !AI->use_empty();
- case AtomicRMWInst::Nand:
- case AtomicRMWInst::Max:
- case AtomicRMWInst::Min:
- case AtomicRMWInst::UMax:
- case AtomicRMWInst::UMin:
- // These always require a non-trivial set of data operations on x86. We must
- // use a cmpxchg loop.
- return true;
- }
-}
-
-bool X86AtomicExpandPass::shouldExpandStore(StoreInst *SI) {
- if (needsCmpXchgNb(SI->getValueOperand()->getType()))
- return true;
-
- return false;
-}
-
-bool X86AtomicExpandPass::shouldExpand(Instruction *Inst) {
- if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
- return shouldExpandAtomicRMW(AI);
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- return shouldExpandStore(SI);
- return false;
-}
-
-/// Emit IR to implement the given atomicrmw operation on values in registers,
-/// returning the new value.
-static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
- Value *Loaded, Value *Inc) {
- Value *NewVal;
- switch (Op) {
- case AtomicRMWInst::Xchg:
- return Inc;
- case AtomicRMWInst::Add:
- return Builder.CreateAdd(Loaded, Inc, "new");
- case AtomicRMWInst::Sub:
- return Builder.CreateSub(Loaded, Inc, "new");
- case AtomicRMWInst::And:
- return Builder.CreateAnd(Loaded, Inc, "new");
- case AtomicRMWInst::Nand:
- return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
- case AtomicRMWInst::Or:
- return Builder.CreateOr(Loaded, Inc, "new");
- case AtomicRMWInst::Xor:
- return Builder.CreateXor(Loaded, Inc, "new");
- case AtomicRMWInst::Max:
- NewVal = Builder.CreateICmpSGT(Loaded, Inc);
- return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
- case AtomicRMWInst::Min:
- NewVal = Builder.CreateICmpSLE(Loaded, Inc);
- return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
- case AtomicRMWInst::UMax:
- NewVal = Builder.CreateICmpUGT(Loaded, Inc);
- return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
- case AtomicRMWInst::UMin:
- NewVal = Builder.CreateICmpULE(Loaded, Inc);
- return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
- default:
- break;
- }
- llvm_unreachable("Unknown atomic op");
-}
-
-bool X86AtomicExpandPass::expandAtomicRMW(AtomicRMWInst *AI) {
- AtomicOrdering Order =
- AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
- Value *Addr = AI->getPointerOperand();
- BasicBlock *BB = AI->getParent();
- Function *F = BB->getParent();
- LLVMContext &Ctx = F->getContext();
-
- // Given: atomicrmw some_op iN* %addr, iN %incr ordering
- //
- // The standard expansion we produce is:
- // [...]
- // %init_loaded = load atomic iN* %addr
- // br label %loop
- // loop:
- // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
- // %new = some_op iN %loaded, %incr
- // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
- // %new_loaded = extractvalue { iN, i1 } %pair, 0
- // %success = extractvalue { iN, i1 } %pair, 1
- // br i1 %success, label %atomicrmw.end, label %loop
- // atomicrmw.end:
- // [...]
- BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
- BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
-
- // This grabs the DebugLoc from AI.
- IRBuilder<> Builder(AI);
-
- // The split call above "helpfully" added a branch at the end of BB (to the
- // wrong place), but we want a load. It's easiest to just remove
- // the branch entirely.
- std::prev(BB->end())->eraseFromParent();
- Builder.SetInsertPoint(BB);
- LoadInst *InitLoaded = Builder.CreateLoad(Addr);
- InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
- Builder.CreateBr(LoopBB);
-
- // Start the main loop block now that we've taken care of the preliminaries.
- Builder.SetInsertPoint(LoopBB);
- PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
- Loaded->addIncoming(InitLoaded, BB);
-
- Value *NewVal =
- performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
-
- Value *Pair = Builder.CreateAtomicCmpXchg(
- Addr, Loaded, NewVal, Order,
- AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
- Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
- Loaded->addIncoming(NewLoaded, LoopBB);
-
- Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
- Builder.CreateCondBr(Success, ExitBB, LoopBB);
-
- AI->replaceAllUsesWith(NewLoaded);
-
- return true;
-}
-
-bool X86AtomicExpandPass::expandAtomicStore(StoreInst *SI) {
- // An atomic store might need cmpxchg16b (or 8b on x86) to execute. Express
- // this in terms of the usual expansion to "atomicrmw xchg".
- IRBuilder<> Builder(SI);
- AtomicOrdering Order =
- SI->getOrdering() == Unordered ? Monotonic : SI->getOrdering();
- AtomicRMWInst *AI =
- Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
- SI->getValueOperand(), Order);
-
- // Now we have an appropriate swap instruction, lower it as usual.
- if (shouldExpandAtomicRMW(AI)) {
- expandAtomicRMW(AI);
- AI->eraseFromParent();
- return true;
- }
-
- return AI;
-}
diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.h b/contrib/llvm/lib/Target/X86/X86CallingConv.h
index e76f9fd..0eb2494 100644
--- a/contrib/llvm/lib/Target/X86/X86CallingConv.h
+++ b/contrib/llvm/lib/Target/X86/X86CallingConv.h
@@ -12,14 +12,27 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86CALLINGCONV_H
-#define X86CALLINGCONV_H
+#ifndef LLVM_LIB_TARGET_X86_X86CALLINGCONV_H
+#define LLVM_LIB_TARGET_X86_X86CALLINGCONV_H
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/IR/CallingConv.h"
namespace llvm {
+inline bool CC_X86_32_VectorCallIndirect(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ // Similar to CCPassIndirect, with the addition of inreg.
+ LocVT = MVT::i32;
+ LocInfo = CCValAssign::Indirect;
+ ArgFlags.setInReg();
+ return false; // Continue the search, but now for i32.
+}
+
+
inline bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &,
CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
CCState &) {
diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.td b/contrib/llvm/lib/Target/X86/X86CallingConv.td
index 86c01bd..75a2ec0 100644
--- a/contrib/llvm/lib/Target/X86/X86CallingConv.td
+++ b/contrib/llvm/lib/Target/X86/X86CallingConv.td
@@ -14,7 +14,9 @@
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
- : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
+ : CCIf<!strconcat("static_cast<const X86Subtarget&>"
+ "(State.getMachineFunction().getSubtarget()).", F),
+ A>;
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
@@ -59,20 +61,20 @@ def RetCC_X86Common : CallingConv<[
// MM0, it doesn't support these vector types.
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
- // Long double types are always returned in ST0 (even with SSE).
- CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
+ // Long double types are always returned in FP0 (even with SSE).
+ CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
]>;
// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
- // The X86-32 calling convention returns FP values in ST0, unless marked
+ // The X86-32 calling convention returns FP values in FP0, unless marked
// with "inreg" (used here to distinguish one kind of reg from another,
// weirdly; this is really the sse-regparm calling convention) in which
// case they use XMM0, otherwise it is the same as the common X86 calling
// conv.
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
- CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
+ CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
@@ -122,6 +124,24 @@ def RetCC_X86_32_HiPE : CallingConv<[
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
]>;
+// X86-32 HiPE return-value convention.
+def RetCC_X86_32_VectorCall : CallingConv<[
+ // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // 256-bit FP vectors
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
+
+ // 512-bit FP vectors
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
+
+ // Return integers in the standard way.
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
@@ -177,6 +197,7 @@ def RetCC_X86_32 : CallingConv<[
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
// If HiPE, use RetCC_X86_32_HiPE.
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
// Otherwise, use RetCC_X86_32_C.
CCDelegateTo<RetCC_X86_32_C>
@@ -224,6 +245,7 @@ def CC_X86_64_C : CallingConv<[
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
CCIfNest<CCAssignToReg<[R10]>>,
// The first 6 integer arguments are passed in integer registers.
@@ -327,6 +349,25 @@ def CC_X86_Win64_C : CallingConv<[
CCIfType<[f80], CCAssignToStack<0, 0>>
]>;
+def CC_X86_Win64_VectorCall : CallingConv<[
+ // The first 6 floating point and vector types of 128 bits or less use
+ // XMM0-XMM5.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
+
+ // 256-bit vectors use YMM registers.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
+
+ // 512-bit vectors use ZMM registers.
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
+
+ // Delegate to fastcall to handle integer types.
+ CCDelegateTo<CC_X86_Win64_C>
+]>;
+
+
def CC_X86_64_GHC : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
@@ -460,6 +501,30 @@ def CC_X86_32_FastCall : CallingConv<[
CCDelegateTo<CC_X86_32_Common>
]>;
+def CC_X86_32_VectorCall : CallingConv<[
+ // The first 6 floating point and vector types of 128 bits or less use
+ // XMM0-XMM5.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
+
+ // 256-bit vectors use YMM registers.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
+
+ // 512-bit vectors use ZMM registers.
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
+
+ // Otherwise, pass it indirectly.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64,
+ v32i8, v16i16, v8i32, v4i64, v8f32, v4f64,
+ v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCCustom<"CC_X86_32_VectorCallIndirect">>,
+
+ // Delegate to fastcall to handle integer types.
+ CCDelegateTo<CC_X86_32_FastCall>
+]>;
+
def CC_X86_32_ThisCall_Common : CallingConv<[
// The first integer argument is passed in ECX
CCIfType<[i32], CCAssignToReg<[ECX]>>,
@@ -573,6 +638,7 @@ def CC_Intel_OCL_BI : CallingConv<[
// This is the root argument convention for the X86-32 backend.
def CC_X86_32 : CallingConv<[
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_32_VectorCall>>,
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
@@ -590,6 +656,7 @@ def CC_X86_64 : CallingConv<[
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
diff --git a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp
deleted file mode 100644
index a3ae7ee..0000000
--- a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp
+++ /dev/null
@@ -1,1498 +0,0 @@
-//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the pass that transforms the X86 machine instructions into
-// relocatable machine code.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86JITInfo.h"
-#include "X86Relocations.h"
-#include "X86Subtarget.h"
-#include "X86TargetMachine.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/MC/MCCodeEmitter.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/MC/MCInst.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetOptions.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "x86-emitter"
-
-STATISTIC(NumEmitted, "Number of machine instructions emitted");
-
-namespace {
- template<class CodeEmitter>
- class Emitter : public MachineFunctionPass {
- const X86InstrInfo *II;
- const DataLayout *TD;
- X86TargetMachine &TM;
- CodeEmitter &MCE;
- MachineModuleInfo *MMI;
- intptr_t PICBaseOffset;
- bool Is64BitMode;
- bool IsPIC;
- public:
- static char ID;
- explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
- : MachineFunctionPass(ID), II(nullptr), TD(nullptr), TM(tm),
- MCE(mce), PICBaseOffset(0), Is64BitMode(false),
- IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
-
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- const char *getPassName() const override {
- return "X86 Machine Code Emitter";
- }
-
- void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const;
-
- void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const;
-
- void emitSegmentOverridePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI) const;
-
- void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<MachineModuleInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- private:
- void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
- void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
- intptr_t Disp = 0, intptr_t PCAdj = 0,
- bool Indirect = false);
- void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
- void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
- intptr_t PCAdj = 0);
- void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
- intptr_t PCAdj = 0);
-
- void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
- intptr_t Adj = 0, bool IsPCRel = true);
-
- void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
- void emitRegModRMByte(unsigned RegOpcodeField);
- void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
- void emitConstant(uint64_t Val, unsigned Size);
-
- void emitMemModRMByte(const MachineInstr &MI,
- unsigned Op, unsigned RegOpcodeField,
- intptr_t PCAdj = 0);
-
- unsigned getX86RegNum(unsigned RegNo) const {
- const TargetRegisterInfo *TRI = TM.getRegisterInfo();
- return TRI->getEncodingValue(RegNo) & 0x7;
- }
-
- unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
- unsigned OpNum) const;
- };
-
-template<class CodeEmitter>
- char Emitter<CodeEmitter>::ID = 0;
-} // end anonymous namespace.
-
-/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
-/// to the specified JITCodeEmitter object.
-FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
- JITCodeEmitter &JCE) {
- return new Emitter<JITCodeEmitter>(TM, JCE);
-}
-
-template<class CodeEmitter>
-bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
- MMI = &getAnalysis<MachineModuleInfo>();
- MCE.setModuleInfo(MMI);
-
- II = TM.getInstrInfo();
- TD = TM.getDataLayout();
- Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
- IsPIC = TM.getRelocationModel() == Reloc::PIC_;
-
- do {
- DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
- MCE.startFunction(MF);
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
- MBB != E; ++MBB) {
- MCE.StartMachineBasicBlock(MBB);
- for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
- I != E; ++I) {
- const MCInstrDesc &Desc = I->getDesc();
- emitInstruction(*I, &Desc);
- // MOVPC32r is basically a call plus a pop instruction.
- if (Desc.getOpcode() == X86::MOVPC32r)
- emitInstruction(*I, &II->get(X86::POP32r));
- ++NumEmitted; // Keep track of the # of mi's emitted
- }
- }
- } while (MCE.finishFunction(MF));
-
- return false;
-}
-
-/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
-/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
-/// size, and 3) use of X86-64 extended registers.
-static unsigned determineREX(const MachineInstr &MI) {
- unsigned REX = 0;
- const MCInstrDesc &Desc = MI.getDesc();
-
- // Pseudo instructions do not need REX prefix byte.
- if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
- return 0;
- if (Desc.TSFlags & X86II::REX_W)
- REX |= 1 << 3;
-
- unsigned NumOps = Desc.getNumOperands();
- if (NumOps) {
- bool isTwoAddr = NumOps > 1 &&
- Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
-
- // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
- unsigned i = isTwoAddr ? 1 : 0;
- for (unsigned e = NumOps; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (MO.isReg()) {
- unsigned Reg = MO.getReg();
- if (X86II::isX86_64NonExtLowByteReg(Reg))
- REX |= 0x40;
- }
- }
-
- switch (Desc.TSFlags & X86II::FormMask) {
- case X86II::MRMSrcReg: {
- if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
- REX |= 1 << 2;
- i = isTwoAddr ? 2 : 1;
- for (unsigned e = NumOps; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << 0;
- }
- break;
- }
- case X86II::MRMSrcMem: {
- if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
- REX |= 1 << 2;
- unsigned Bit = 0;
- i = isTwoAddr ? 2 : 1;
- for (; i != NumOps; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << Bit;
- Bit++;
- }
- }
- break;
- }
- case X86II::MRMXm:
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- case X86II::MRMDestMem: {
- unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
- i = isTwoAddr ? 1 : 0;
- if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
- REX |= 1 << 2;
- unsigned Bit = 0;
- for (; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << Bit;
- Bit++;
- }
- }
- break;
- }
- default: {
- if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
- REX |= 1 << 0;
- i = isTwoAddr ? 2 : 1;
- for (unsigned e = NumOps; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << 2;
- }
- break;
- }
- }
- }
- return REX;
-}
-
-
-/// emitPCRelativeBlockAddress - This method keeps track of the information
-/// necessary to resolve the address of this block later and emits a dummy
-/// value.
-///
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
- // Remember where this reference was and where it is to so we can
- // deal with it later.
- MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
- X86::reloc_pcrel_word, MBB));
- MCE.emitWordLE(0);
-}
-
-/// emitGlobalAddress - Emit the specified address to the code stream assuming
-/// this is part of a "take the address of a global" instruction.
-///
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
- unsigned Reloc,
- intptr_t Disp /* = 0 */,
- intptr_t PCAdj /* = 0 */,
- bool Indirect /* = false */) {
- intptr_t RelocCST = Disp;
- if (Reloc == X86::reloc_picrel_word)
- RelocCST = PICBaseOffset;
- else if (Reloc == X86::reloc_pcrel_word)
- RelocCST = PCAdj;
- MachineRelocation MR = Indirect
- ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV),
- RelocCST, false)
- : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV), RelocCST, false);
- MCE.addRelocation(MR);
- // The relocated value will be added to the displacement
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(Disp);
- else
- MCE.emitWordLE((int32_t)Disp);
-}
-
-/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
-/// be emitted to the current location in the function, and allow it to be PC
-/// relative.
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
- unsigned Reloc) {
- intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
-
- // X86 never needs stubs because instruction selection will always pick
- // an instruction sequence that is large enough to hold any address
- // to a symbol.
- // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
- bool NeedStub = false;
- MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
- Reloc, ES, RelocCST,
- 0, NeedStub));
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(0);
- else
- MCE.emitWordLE(0);
-}
-
-/// emitConstPoolAddress - Arrange for the address of an constant pool
-/// to be emitted to the current location in the function, and allow it to be PC
-/// relative.
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
- intptr_t Disp /* = 0 */,
- intptr_t PCAdj /* = 0 */) {
- intptr_t RelocCST = 0;
- if (Reloc == X86::reloc_picrel_word)
- RelocCST = PICBaseOffset;
- else if (Reloc == X86::reloc_pcrel_word)
- RelocCST = PCAdj;
- MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
- Reloc, CPI, RelocCST));
- // The relocated value will be added to the displacement
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(Disp);
- else
- MCE.emitWordLE((int32_t)Disp);
-}
-
-/// emitJumpTableAddress - Arrange for the address of a jump table to
-/// be emitted to the current location in the function, and allow it to be PC
-/// relative.
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
- intptr_t PCAdj /* = 0 */) {
- intptr_t RelocCST = 0;
- if (Reloc == X86::reloc_picrel_word)
- RelocCST = PICBaseOffset;
- else if (Reloc == X86::reloc_pcrel_word)
- RelocCST = PCAdj;
- MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
- Reloc, JTI, RelocCST));
- // The relocated value will be added to the displacement
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(0);
- else
- MCE.emitWordLE(0);
-}
-
-inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
- unsigned RM) {
- assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
- return RM | (RegOpcode << 3) | (Mod << 6);
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
- unsigned RegOpcodeFld){
- MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
- MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
- unsigned Index,
- unsigned Base) {
- // SIB byte is in the same format as the ModRMByte...
- MCE.emitByte(ModRMByte(SS, Index, Base));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
- // Output the constant in little endian byte order...
- for (unsigned i = 0; i != Size; ++i) {
- MCE.emitByte(Val & 255);
- Val >>= 8;
- }
-}
-
-/// isDisp8 - Return true if this signed displacement fits in a 8-bit
-/// sign-extended field.
-static bool isDisp8(int Value) {
- return Value == (signed char)Value;
-}
-
-static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
- const TargetMachine &TM) {
- // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
- // mechanism as 32-bit mode.
- if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
- !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
- return false;
-
- // Return true if this is a reference to a stub containing the address of the
- // global, not the global itself.
- return isGlobalStubReference(GVOp.getTargetFlags());
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
- int DispVal,
- intptr_t Adj /* = 0 */,
- bool IsPCRel /* = true */) {
- // If this is a simple integer displacement that doesn't require a relocation,
- // emit it now.
- if (!RelocOp) {
- emitConstant(DispVal, 4);
- return;
- }
-
- // Otherwise, this is something that requires a relocation. Emit it as such
- // now.
- unsigned RelocType = Is64BitMode ?
- (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (RelocOp->isGlobal()) {
- // In 64-bit static small code model, we could potentially emit absolute.
- // But it's probably not beneficial. If the MCE supports using RIP directly
- // do it, otherwise fallback to absolute (this is determined by IsPCRel).
- // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
- // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
- bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
- emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
- Adj, Indirect);
- } else if (RelocOp->isSymbol()) {
- emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
- } else if (RelocOp->isCPI()) {
- emitConstPoolAddress(RelocOp->getIndex(), RelocType,
- RelocOp->getOffset(), Adj);
- } else {
- assert(RelocOp->isJTI() && "Unexpected machine operand!");
- emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
- }
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
- unsigned Op,unsigned RegOpcodeField,
- intptr_t PCAdj) {
- const MachineOperand &Op3 = MI.getOperand(Op+3);
- int DispVal = 0;
- const MachineOperand *DispForReloc = nullptr;
-
- // Figure out what sort of displacement we have to handle here.
- if (Op3.isGlobal()) {
- DispForReloc = &Op3;
- } else if (Op3.isSymbol()) {
- DispForReloc = &Op3;
- } else if (Op3.isCPI()) {
- if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
- DispForReloc = &Op3;
- } else {
- DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
- DispVal += Op3.getOffset();
- }
- } else if (Op3.isJTI()) {
- if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
- DispForReloc = &Op3;
- } else {
- DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
- }
- } else {
- DispVal = Op3.getImm();
- }
-
- const MachineOperand &Base = MI.getOperand(Op);
- const MachineOperand &Scale = MI.getOperand(Op+1);
- const MachineOperand &IndexReg = MI.getOperand(Op+2);
-
- unsigned BaseReg = Base.getReg();
-
- // Handle %rip relative addressing.
- if (BaseReg == X86::RIP ||
- (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
- assert(IndexReg.getReg() == 0 && Is64BitMode &&
- "Invalid rip-relative address");
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
- emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
- return;
- }
-
- // Indicate that the displacement will use an pcrel or absolute reference
- // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
- // while others, unless explicit asked to use RIP, use absolute references.
- bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
-
- // Is a SIB byte needed?
- // If no BaseReg, issue a RIP relative instruction only if the MCE can
- // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
- // 2-7) and absolute references.
- unsigned BaseRegNo = -1U;
- if (BaseReg != 0 && BaseReg != X86::RIP)
- BaseRegNo = getX86RegNum(BaseReg);
-
- if (// The SIB byte must be used if there is an index register.
- IndexReg.getReg() == 0 &&
- // The SIB byte must be used if the base is ESP/RSP/R12, all of which
- // encode to an R/M value of 4, which indicates that a SIB byte is
- // present.
- BaseRegNo != N86::ESP &&
- // If there is no base register and we're in 64-bit mode, we need a SIB
- // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
- (!Is64BitMode || BaseReg != 0)) {
- if (BaseReg == 0 || // [disp32] in X86-32 mode
- BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
- emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
- return;
- }
-
- // If the base is not EBP/ESP and there is no displacement, use simple
- // indirect register encoding, this handles addresses like [EAX]. The
- // encoding for [EBP] with no displacement means [disp32] so we handle it
- // by emitting a displacement of 0 below.
- if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
- MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
- return;
- }
-
- // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
- if (!DispForReloc && isDisp8(DispVal)) {
- MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
- emitConstant(DispVal, 1);
- return;
- }
-
- // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
- MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
- emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
- return;
- }
-
- // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
- assert(IndexReg.getReg() != X86::ESP &&
- IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
-
- bool ForceDisp32 = false;
- bool ForceDisp8 = false;
- if (BaseReg == 0) {
- // If there is no base register, we emit the special case SIB byte with
- // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
- ForceDisp32 = true;
- } else if (DispForReloc) {
- // Emit the normal disp32 encoding.
- MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
- ForceDisp32 = true;
- } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
- // Emit no displacement ModR/M byte
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
- } else if (isDisp8(DispVal)) {
- // Emit the disp8 encoding...
- MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
- ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
- } else {
- // Emit the normal disp32 encoding...
- MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
- }
-
- // Calculate what the SS field value should be...
- static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
- unsigned SS = SSTable[Scale.getImm()];
-
- if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base, see Intel
- // Manual 2A, table 2-7. The displacement has already been output.
- unsigned IndexRegNo;
- if (IndexReg.getReg())
- IndexRegNo = getX86RegNum(IndexReg.getReg());
- else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
- IndexRegNo = 4;
- emitSIBByte(SS, IndexRegNo, 5);
- } else {
- unsigned BaseRegNo = getX86RegNum(BaseReg);
- unsigned IndexRegNo;
- if (IndexReg.getReg())
- IndexRegNo = getX86RegNum(IndexReg.getReg());
- else
- IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
- emitSIBByte(SS, IndexRegNo, BaseRegNo);
- }
-
- // Do we need to output a displacement?
- if (ForceDisp8) {
- emitConstant(DispVal, 1);
- } else if (DispVal != 0 || ForceDisp32) {
- emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
- }
-}
-
-static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
- unsigned Opcode) {
- const MCInstrDesc *Desc = &II->get(Opcode);
- MI.setDesc(*Desc);
- return Desc;
-}
-
-/// Is16BitMemOperand - Return true if the specified instruction has
-/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
-static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
- const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-
-/// Is32BitMemOperand - Return true if the specified instruction has
-/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
-static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
- const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-
-/// Is64BitMemOperand - Return true if the specified instruction has
-/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
-#ifndef NDEBUG
-static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
- const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-#endif
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const {
- // Emit the operand size opcode prefix as needed.
- if (((TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift) == X86II::OpSize16)
- MCE.emitByte(0x66);
-
- switch (Desc->TSFlags & X86II::OpPrefixMask) {
- case X86II::PD: // 66
- MCE.emitByte(0x66);
- break;
- case X86II::XS: // F3
- MCE.emitByte(0xF3);
- break;
- case X86II::XD: // F2
- MCE.emitByte(0xF2);
- break;
- }
-
- // Handle REX prefix.
- if (Is64BitMode) {
- if (unsigned REX = determineREX(MI))
- MCE.emitByte(0x40 | REX);
- }
-
- // 0x0F escape code must be emitted just before the opcode.
- switch (Desc->TSFlags & X86II::OpMapMask) {
- case X86II::TB: // Two-byte opcode map
- case X86II::T8: // 0F 38
- case X86II::TA: // 0F 3A
- MCE.emitByte(0x0F);
- break;
- }
-
- switch (Desc->TSFlags & X86II::OpMapMask) {
- case X86II::T8: // 0F 38
- MCE.emitByte(0x38);
- break;
- case X86II::TA: // 0F 3A
- MCE.emitByte(0x3A);
- break;
- }
-}
-
-// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
-// 0-7 and the difference between the 2 groups is given by the REX prefix.
-// In the VEX prefix, registers are seen sequencially from 0-15 and encoded
-// in 1's complement form, example:
-//
-// ModRM field => XMM9 => 1
-// VEX.VVVV => XMM9 => ~9
-//
-// See table 4-35 of Intel AVX Programming Reference for details.
-template<class CodeEmitter>
-unsigned char
-Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
- unsigned OpNum) const {
- unsigned SrcReg = MI.getOperand(OpNum).getReg();
- unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
- if (X86II::isX86_64ExtendedReg(SrcReg))
- SrcRegNum |= 8;
-
- // The registers represented through VEX_VVVV should
- // be encoded in 1's complement form.
- return (~SrcRegNum) & 0xf;
-}
-
-/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI) const {
- if (MemOperand < 0)
- return; // No memory operand
-
- // Check for explicit segment override on memory operand.
- switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
- default: llvm_unreachable("Unknown segment register!");
- case 0: break;
- case X86::CS: MCE.emitByte(0x2E); break;
- case X86::SS: MCE.emitByte(0x36); break;
- case X86::DS: MCE.emitByte(0x3E); break;
- case X86::ES: MCE.emitByte(0x26); break;
- case X86::FS: MCE.emitByte(0x64); break;
- case X86::GS: MCE.emitByte(0x65); break;
- }
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const {
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
-
- // VEX_R: opcode externsion equivalent to REX.R in
- // 1's complement (inverted) form
- //
- // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
- // 0: Same as REX_R=1 (64 bit mode only)
- //
- unsigned char VEX_R = 0x1;
-
- // VEX_X: equivalent to REX.X, only used when a
- // register is used for index in SIB Byte.
- //
- // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
- // 0: Same as REX.X=1 (64-bit mode only)
- unsigned char VEX_X = 0x1;
-
- // VEX_B:
- //
- // 1: Same as REX_B=0 (ignored in 32-bit mode)
- // 0: Same as REX_B=1 (64 bit mode only)
- //
- unsigned char VEX_B = 0x1;
-
- // VEX_W: opcode specific (use like REX.W, or used for
- // opcode extension, or ignored, depending on the opcode byte)
- unsigned char VEX_W = 0;
-
- // VEX_5M (VEX m-mmmmm field):
- //
- // 0b00000: Reserved for future use
- // 0b00001: implied 0F leading opcode
- // 0b00010: implied 0F 38 leading opcode bytes
- // 0b00011: implied 0F 3A leading opcode bytes
- // 0b00100-0b11111: Reserved for future use
- // 0b01000: XOP map select - 08h instructions with imm byte
- // 0b01001: XOP map select - 09h instructions with no imm byte
- // 0b01010: XOP map select - 0Ah instructions with imm dword
- unsigned char VEX_5M = 0;
-
- // VEX_4V (VEX vvvv field): a register specifier
- // (in 1's complement form) or 1111 if unused.
- unsigned char VEX_4V = 0xf;
-
- // VEX_L (Vector Length):
- //
- // 0: scalar or 128-bit vector
- // 1: 256-bit vector
- //
- unsigned char VEX_L = 0;
-
- // VEX_PP: opcode extension providing equivalent
- // functionality of a SIMD prefix
- //
- // 0b00: None
- // 0b01: 66
- // 0b10: F3
- // 0b11: F2
- //
- unsigned char VEX_PP = 0;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
- VEX_W = 1;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
- VEX_L = 1;
-
- switch (TSFlags & X86II::OpPrefixMask) {
- default: break; // VEX_PP already correct
- case X86II::PD: VEX_PP = 0x1; break; // 66
- case X86II::XS: VEX_PP = 0x2; break; // F3
- case X86II::XD: VEX_PP = 0x3; break; // F2
- }
-
- switch (TSFlags & X86II::OpMapMask) {
- default: llvm_unreachable("Invalid prefix!");
- case X86II::TB: VEX_5M = 0x1; break; // 0F
- case X86II::T8: VEX_5M = 0x2; break; // 0F 38
- case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
- case X86II::XOP8: VEX_5M = 0x8; break;
- case X86II::XOP9: VEX_5M = 0x9; break;
- case X86II::XOPA: VEX_5M = 0xA; break;
- }
-
- // Classify VEX_B, VEX_4V, VEX_R, VEX_X
- unsigned NumOps = Desc->getNumOperands();
- unsigned CurOp = 0;
- if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
- ++CurOp;
- else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
- assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
- // Special case for GATHER with 2 TIED_TO operands
- // Skip the first 2 operands: dst, mask_wb
- CurOp += 2;
- }
-
- switch (TSFlags & X86II::FormMask) {
- default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
- case X86II::RawFrm:
- break;
- case X86II::MRMDestMem: {
- // MRMDestMem instructions forms:
- // MemAddr, src1(ModR/M)
- // MemAddr, src1(VEX_4V), src2(ModR/M)
- // MemAddr, src1(ModR/M), imm8
- //
- if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
- VEX_B = 0x0;
- if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
- VEX_X = 0x0;
-
- CurOp = X86::AddrNumOperands;
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- const MachineOperand &MO = MI.getOperand(CurOp);
- if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
- VEX_R = 0x0;
- break;
- }
- case X86II::MRMSrcMem:
- // MRMSrcMem instructions forms:
- // src1(ModR/M), MemAddr
- // src1(ModR/M), src2(VEX_4V), MemAddr
- // src1(ModR/M), MemAddr, imm8
- // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
- //
- // FMA4:
- // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
- // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- CurOp++;
-
- if (HasVEX_4V) {
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- CurOp++;
- }
-
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
- VEX_B = 0x0;
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
- VEX_X = 0x0;
-
- if (HasVEX_4VOp3)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
- break;
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m: {
- // MRM[0-9]m instructions forms:
- // MemAddr
- // src1(VEX_4V), MemAddr
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
- VEX_B = 0x0;
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
- VEX_X = 0x0;
- break;
- }
- case X86II::MRMSrcReg:
- // MRMSrcReg instructions forms:
- // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
- // dst(ModR/M), src1(ModR/M)
- // dst(ModR/M), src1(ModR/M), imm8
- //
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- CurOp++;
-
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- if (HasMemOp4) // Skip second register source (encoded in I8IMM)
- CurOp++;
-
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0x0;
- CurOp++;
- if (HasVEX_4VOp3)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- break;
- case X86II::MRMDestReg:
- // MRMDestReg instructions forms:
- // dst(ModR/M), src(ModR/M)
- // dst(ModR/M), src(ModR/M), imm8
- // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0x0;
- CurOp++;
-
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- break;
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- // MRM0r-MRM7r instructions forms:
- // dst(VEX_4V), src(ModR/M), imm8
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- CurOp++;
-
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0x0;
- break;
- }
-
- // Emit segment override opcode prefix as needed.
- emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
-
- // VEX opcode prefix can have 2 or 3 bytes
- //
- // 3 bytes:
- // +-----+ +--------------+ +-------------------+
- // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
- // +-----+ +--------------+ +-------------------+
- // 2 bytes:
- // +-----+ +-------------------+
- // | C5h | | R | vvvv | L | pp |
- // +-----+ +-------------------+
- //
- // XOP uses a similar prefix:
- // +-----+ +--------------+ +-------------------+
- // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
- // +-----+ +--------------+ +-------------------+
- unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
-
- // Can this use the 2 byte VEX prefix?
- if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
- MCE.emitByte(0xC5);
- MCE.emitByte(LastByte | (VEX_R << 7));
- return;
- }
-
- // 3 byte VEX prefix
- MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4);
- MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
- MCE.emitByte(LastByte | (VEX_W << 7));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
- const MCInstrDesc *Desc) {
- DEBUG(dbgs() << MI);
-
- // If this is a pseudo instruction, lower it.
- switch (Desc->getOpcode()) {
- case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
- case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
- case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
- case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
- case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
- case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
- case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
- case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
- case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
- case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
- case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
- case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
- case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
- case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
- case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
- case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
- case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
- }
-
-
- MCE.processDebugLoc(MI.getDebugLoc(), true);
-
- unsigned Opcode = Desc->Opcode;
-
- // If this is a two-address instruction, skip one of the register operands.
- unsigned NumOps = Desc->getNumOperands();
- unsigned CurOp = 0;
- if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
- ++CurOp;
- else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
- assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
- // Special case for GATHER with 2 TIED_TO operands
- // Skip the first 2 operands: dst, mask_wb
- CurOp += 2;
- }
-
- uint64_t TSFlags = Desc->TSFlags;
-
- // Encoding type for this instruction.
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
-
- // It uses the VEX.VVVV field?
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
- const unsigned MemOp4_I8IMMOperand = 2;
-
- // Determine where the memory operand starts, if present.
- int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
- if (MemoryOperand != -1) MemoryOperand += CurOp;
-
- // Emit the lock opcode prefix as needed.
- if (Desc->TSFlags & X86II::LOCK)
- MCE.emitByte(0xF0);
-
- // Emit segment override opcode prefix as needed.
- emitSegmentOverridePrefix(TSFlags, MemoryOperand, MI);
-
- // Emit the repeat opcode prefix as needed.
- if (Desc->TSFlags & X86II::REP)
- MCE.emitByte(0xF3);
-
- // Emit the address size opcode prefix as needed.
- bool need_address_override;
- if (TSFlags & X86II::AdSize) {
- need_address_override = true;
- } else if (MemoryOperand < 0) {
- need_address_override = false;
- } else if (Is64BitMode) {
- assert(!Is16BitMemOperand(MI, MemoryOperand));
- need_address_override = Is32BitMemOperand(MI, MemoryOperand);
- } else {
- assert(!Is64BitMemOperand(MI, MemoryOperand));
- need_address_override = Is16BitMemOperand(MI, MemoryOperand);
- }
-
- if (need_address_override)
- MCE.emitByte(0x67);
-
- if (Encoding == 0)
- emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
- else
- emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
-
- unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
- switch (TSFlags & X86II::FormMask) {
- default:
- llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
- case X86II::Pseudo:
- // Remember the current PC offset, this is the PIC relocation
- // base address.
- switch (Opcode) {
- default:
- llvm_unreachable("pseudo instructions should be removed before code"
- " emission");
- // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
- // to make it slightly easier to see.
- case X86::Int_MemBarrier:
- DEBUG(dbgs() << "#MEMBARRIER\n");
- break;
-
- case TargetOpcode::INLINEASM:
- // We allow inline assembler nodes with empty bodies - they can
- // implicitly define registers, which is ok for JIT.
- if (MI.getOperand(0).getSymbolName()[0]) {
- DebugLoc DL = MI.getDebugLoc();
- DL.print(MI.getParent()->getParent()->getFunction()->getContext(),
- llvm::errs());
- report_fatal_error("JIT does not support inline asm!");
- }
- break;
- case TargetOpcode::DBG_VALUE:
- case TargetOpcode::CFI_INSTRUCTION:
- break;
- case TargetOpcode::GC_LABEL:
- case TargetOpcode::EH_LABEL:
- MCE.emitLabel(MI.getOperand(0).getMCSymbol());
- break;
-
- case TargetOpcode::IMPLICIT_DEF:
- case TargetOpcode::KILL:
- break;
-
- case X86::SEH_PushReg:
- case X86::SEH_SaveReg:
- case X86::SEH_SaveXMM:
- case X86::SEH_StackAlloc:
- case X86::SEH_SetFrame:
- case X86::SEH_PushFrame:
- case X86::SEH_EndPrologue:
- break;
-
- case X86::MOVPC32r: {
- // This emits the "call" portion of this pseudo instruction.
- MCE.emitByte(BaseOpcode);
- emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
- // Remember PIC base.
- PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
- X86JITInfo *JTI = TM.getJITInfo();
- JTI->setPICBase(MCE.getCurrentPCValue());
- break;
- }
- }
- CurOp = NumOps;
- break;
- case X86II::RawFrm: {
- MCE.emitByte(BaseOpcode);
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO = MI.getOperand(CurOp++);
-
- DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
- DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
- DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
- DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
- DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
-
- if (MO.isMBB()) {
- emitPCRelativeBlockAddress(MO.getMBB());
- break;
- }
-
- if (MO.isGlobal()) {
- emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
- MO.getOffset(), 0);
- break;
- }
-
- if (MO.isSymbol()) {
- emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
- break;
- }
-
- // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
- if (MO.isJTI()) {
- emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
- break;
- }
-
- assert(MO.isImm() && "Unknown RawFrm operand!");
- if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
- // Fix up immediate operand for pc relative calls.
- intptr_t Imm = (intptr_t)MO.getImm();
- Imm = Imm - MCE.getCurrentPCValue() - 4;
- emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
- } else
- emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
- break;
- }
-
- case X86II::AddRegFrm: {
- MCE.emitByte(BaseOpcode +
- getX86RegNum(MI.getOperand(CurOp++).getReg()));
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
- if (MO1.isImm()) {
- emitConstant(MO1.getImm(), Size);
- break;
- }
-
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV32ri64)
- rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
- // This should not occur on Darwin for relocatable objects.
- if (Opcode == X86::MOV64ri)
- rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
- if (MO1.isGlobal()) {
- bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- Indirect);
- } else if (MO1.isSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isCPI())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJTI())
- emitJumpTableAddress(MO1.getIndex(), rt);
- break;
- }
-
- case X86II::MRMDestReg: {
- MCE.emitByte(BaseOpcode);
-
- unsigned SrcRegNum = CurOp+1;
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- SrcRegNum++;
-
- emitRegModRMByte(MI.getOperand(CurOp).getReg(),
- getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
- CurOp = SrcRegNum + 1;
- break;
- }
- case X86II::MRMDestMem: {
- MCE.emitByte(BaseOpcode);
-
- unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- SrcRegNum++;
- emitMemModRMByte(MI, CurOp,
- getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
- CurOp = SrcRegNum + 1;
- break;
- }
-
- case X86II::MRMSrcReg: {
- MCE.emitByte(BaseOpcode);
-
- unsigned SrcRegNum = CurOp+1;
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- ++SrcRegNum;
-
- if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
- ++SrcRegNum;
-
- emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
- getX86RegNum(MI.getOperand(CurOp).getReg()));
- // 2 operands skipped with HasMemOp4, compensate accordingly
- CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
- if (HasVEX_4VOp3)
- ++CurOp;
- break;
- }
- case X86II::MRMSrcMem: {
- int AddrOperands = X86::AddrNumOperands;
- unsigned FirstMemOp = CurOp+1;
- if (HasVEX_4V) {
- ++AddrOperands;
- ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
- }
- if (HasMemOp4) // Skip second register source (encoded in I8IMM)
- ++FirstMemOp;
-
- MCE.emitByte(BaseOpcode);
-
- intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
- X86II::getSizeOfImm(Desc->TSFlags) : 0;
- emitMemModRMByte(MI, FirstMemOp,
- getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
- CurOp += AddrOperands + 1;
- if (HasVEX_4VOp3)
- ++CurOp;
- break;
- }
-
- case X86II::MRMXr:
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r: {
- if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
- ++CurOp;
- MCE.emitByte(BaseOpcode);
- uint64_t Form = (Desc->TSFlags & X86II::FormMask);
- emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
- (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r);
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
- if (MO1.isImm()) {
- emitConstant(MO1.getImm(), Size);
- break;
- }
-
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64ri32)
- rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
- if (MO1.isGlobal()) {
- bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- Indirect);
- } else if (MO1.isSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isCPI())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJTI())
- emitJumpTableAddress(MO1.getIndex(), rt);
- break;
- }
-
- case X86II::MRMXm:
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m: {
- if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
- ++CurOp;
- intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
- (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
- X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
-
- MCE.emitByte(BaseOpcode);
- uint64_t Form = (Desc->TSFlags & X86II::FormMask);
- emitMemModRMByte(MI, CurOp, (Form==X86II::MRMXm) ? 0 : Form - X86II::MRM0m,
- PCAdj);
- CurOp += X86::AddrNumOperands;
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO = MI.getOperand(CurOp++);
- unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
- if (MO.isImm()) {
- emitConstant(MO.getImm(), Size);
- break;
- }
-
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64mi32)
- rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
- if (MO.isGlobal()) {
- bool Indirect = gvNeedsNonLazyPtr(MO, TM);
- emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
- Indirect);
- } else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), rt);
- else if (MO.isCPI())
- emitConstPoolAddress(MO.getIndex(), rt);
- else if (MO.isJTI())
- emitJumpTableAddress(MO.getIndex(), rt);
- break;
- }
-
- case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
- case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
- case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
- case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
- case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
- case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
- case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
- case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
- case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
- case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
- case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
- case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
- case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
- case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
- case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
- case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
- case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
- MCE.emitByte(BaseOpcode);
-
- unsigned char MRM;
- switch (TSFlags & X86II::FormMask) {
- default: llvm_unreachable("Invalid Form");
- case X86II::MRM_C0: MRM = 0xC0; break;
- case X86II::MRM_C1: MRM = 0xC1; break;
- case X86II::MRM_C2: MRM = 0xC2; break;
- case X86II::MRM_C3: MRM = 0xC3; break;
- case X86II::MRM_C4: MRM = 0xC4; break;
- case X86II::MRM_C8: MRM = 0xC8; break;
- case X86II::MRM_C9: MRM = 0xC9; break;
- case X86II::MRM_CA: MRM = 0xCA; break;
- case X86II::MRM_CB: MRM = 0xCB; break;
- case X86II::MRM_D0: MRM = 0xD0; break;
- case X86II::MRM_D1: MRM = 0xD1; break;
- case X86II::MRM_D4: MRM = 0xD4; break;
- case X86II::MRM_D5: MRM = 0xD5; break;
- case X86II::MRM_D6: MRM = 0xD6; break;
- case X86II::MRM_D8: MRM = 0xD8; break;
- case X86II::MRM_D9: MRM = 0xD9; break;
- case X86II::MRM_DA: MRM = 0xDA; break;
- case X86II::MRM_DB: MRM = 0xDB; break;
- case X86II::MRM_DC: MRM = 0xDC; break;
- case X86II::MRM_DD: MRM = 0xDD; break;
- case X86II::MRM_DE: MRM = 0xDE; break;
- case X86II::MRM_DF: MRM = 0xDF; break;
- case X86II::MRM_E0: MRM = 0xE0; break;
- case X86II::MRM_E1: MRM = 0xE1; break;
- case X86II::MRM_E2: MRM = 0xE2; break;
- case X86II::MRM_E3: MRM = 0xE3; break;
- case X86II::MRM_E4: MRM = 0xE4; break;
- case X86II::MRM_E5: MRM = 0xE5; break;
- case X86II::MRM_E8: MRM = 0xE8; break;
- case X86II::MRM_E9: MRM = 0xE9; break;
- case X86II::MRM_EA: MRM = 0xEA; break;
- case X86II::MRM_EB: MRM = 0xEB; break;
- case X86II::MRM_EC: MRM = 0xEC; break;
- case X86II::MRM_ED: MRM = 0xED; break;
- case X86II::MRM_EE: MRM = 0xEE; break;
- case X86II::MRM_F0: MRM = 0xF0; break;
- case X86II::MRM_F1: MRM = 0xF1; break;
- case X86II::MRM_F2: MRM = 0xF2; break;
- case X86II::MRM_F3: MRM = 0xF3; break;
- case X86II::MRM_F4: MRM = 0xF4; break;
- case X86II::MRM_F5: MRM = 0xF5; break;
- case X86II::MRM_F6: MRM = 0xF6; break;
- case X86II::MRM_F7: MRM = 0xF7; break;
- case X86II::MRM_F8: MRM = 0xF8; break;
- case X86II::MRM_F9: MRM = 0xF9; break;
- case X86II::MRM_FA: MRM = 0xFA; break;
- case X86II::MRM_FB: MRM = 0xFB; break;
- case X86II::MRM_FC: MRM = 0xFC; break;
- case X86II::MRM_FD: MRM = 0xFD; break;
- case X86II::MRM_FE: MRM = 0xFE; break;
- case X86II::MRM_FF: MRM = 0xFF; break;
- }
- MCE.emitByte(MRM);
- break;
- }
-
- while (CurOp != NumOps && NumOps - CurOp <= 2) {
- // The last source register of a 4 operand instruction in AVX is encoded
- // in bits[7:4] of a immediate byte.
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
- const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
- : CurOp);
- ++CurOp;
- unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
- if (X86II::isX86_64ExtendedReg(MO.getReg()))
- RegNum |= 1 << 7;
- // If there is an additional 5th operand it must be an immediate, which
- // is encoded in bits[3:0]
- if (CurOp != NumOps) {
- const MachineOperand &MIMM = MI.getOperand(CurOp++);
- if (MIMM.isImm()) {
- unsigned Val = MIMM.getImm();
- assert(Val < 16 && "Immediate operand value out of range");
- RegNum |= Val;
- }
- }
- emitConstant(RegNum, 1);
- } else {
- emitConstant(MI.getOperand(CurOp++).getImm(),
- X86II::getSizeOfImm(Desc->TSFlags));
- }
- }
-
- if (!MI.isVariadic() && CurOp != NumOps) {
-#ifndef NDEBUG
- dbgs() << "Cannot encode all operands of: " << MI << "\n";
-#endif
- llvm_unreachable(nullptr);
- }
-
- MCE.processDebugLoc(MI.getDebugLoc(), false);
-}
diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp
index ae3eea4..5d71eac 100644
--- a/contrib/llvm/lib/Target/X86/X86FastISel.cpp
+++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp
@@ -64,7 +64,7 @@ public:
X86ScalarSSEf32 = Subtarget->hasSSE1();
}
- bool TargetSelectInstruction(const Instruction *I) override;
+ bool fastSelectInstruction(const Instruction *I) override;
/// \brief The specified machine instr operand is a vreg, and that
/// vreg is being provided by the specified load instruction. If possible,
@@ -73,9 +73,9 @@ public:
bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI) override;
- bool FastLowerArguments() override;
- bool FastLowerCall(CallLoweringInfo &CLI) override;
- bool FastLowerIntrinsicCall(const IntrinsicInst *II) override;
+ bool fastLowerArguments() override;
+ bool fastLowerCall(CallLoweringInfo &CLI) override;
+ bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
#include "X86GenFastISel.inc"
@@ -127,7 +127,7 @@ private:
bool X86SelectFPTrunc(const Instruction *I);
const X86InstrInfo *getInstrInfo() const {
- return getTargetMachine()->getInstrInfo();
+ return getTargetMachine()->getSubtargetImpl()->getInstrInfo();
}
const X86TargetMachine *getTargetMachine() const {
return static_cast<const X86TargetMachine *>(&TM);
@@ -135,11 +135,14 @@ private:
bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
- unsigned TargetMaterializeConstant(const Constant *C) override;
+ unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
+ unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
+ unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
+ unsigned fastMaterializeConstant(const Constant *C) override;
- unsigned TargetMaterializeAlloca(const AllocaInst *C) override;
+ unsigned fastMaterializeAlloca(const AllocaInst *C) override;
- unsigned TargetMaterializeFloatZero(const ConstantFP *CF) override;
+ unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
@@ -161,46 +164,6 @@ private:
} // end anonymous namespace.
-static CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) {
- // If both operands are the same, then try to optimize or fold the cmp.
- CmpInst::Predicate Predicate = CI->getPredicate();
- if (CI->getOperand(0) != CI->getOperand(1))
- return Predicate;
-
- switch (Predicate) {
- default: llvm_unreachable("Invalid predicate!");
- case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
- case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
- case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
- case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
- case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
- case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
- case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
- case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
- case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
-
- case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
- case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
- case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
- }
-
- return Predicate;
-}
-
static std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate) {
X86::CondCode CC = X86::COND_INVALID;
@@ -529,7 +492,7 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
unsigned Src, EVT SrcVT,
unsigned &ResultReg) {
- unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
+ unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
Src, /*TODO: Kill=*/false);
if (RR == 0)
return false;
@@ -581,7 +544,7 @@ bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
// Ok, we need to do a load from a stub. If we've already loaded from
// this stub, reuse the loaded pointer, otherwise emit the load now.
- DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
+ DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
unsigned LoadReg;
if (I != LocalValueMap.end() && I->second != 0) {
LoadReg = I->second;
@@ -692,7 +655,7 @@ redo_gep:
case Instruction::Alloca: {
// Do static allocas.
const AllocaInst *A = cast<AllocaInst>(V);
- DenseMap<const AllocaInst*, int>::iterator SI =
+ DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(A);
if (SI != FuncInfo.StaticAllocaMap.end()) {
AM.BaseType = X86AddressMode::FrameIndexBase;
@@ -940,7 +903,7 @@ bool X86FastISel::X86SelectStore(const Instruction *I) {
unsigned Alignment = S->getAlignment();
unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = ABIAlignment;
bool Aligned = Alignment >= ABIAlignment;
@@ -993,8 +956,7 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
- CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
- I->getContext());
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
const Value *RV = Ret->getOperand(0);
@@ -1017,7 +979,7 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
// The calling-convention tables for x87 returns don't tell
// the whole story.
- if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
+ if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
return false;
unsigned SrcReg = Reg + VA.getValNo();
@@ -1036,23 +998,23 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
if (SrcVT == MVT::i1) {
if (Outs[0].Flags.isSExt())
return false;
- SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
+ SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
SrcVT = MVT::i8;
}
unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
ISD::SIGN_EXTEND;
- SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
+ SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
SrcReg, /*TODO: Kill=*/false);
}
// Make the copy.
unsigned DstReg = VA.getLocReg();
- const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
// Avoid a cross-class copy. This is very unlikely.
if (!SrcRC->contains(DstReg))
return false;
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
- DstReg).addReg(SrcReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
// Add register to return instruction.
RetRegs.push_back(VA.getLocReg());
@@ -1068,14 +1030,15 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
assert(Reg &&
"SRetReturnReg should have been set in LowerFormalArguments()!");
unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
- RetReg).addReg(Reg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
RetRegs.push_back(RetReg);
}
// Now emit the RET.
MachineInstrBuilder MIB =
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
MIB.addReg(RetRegs[i], RegState::Implicit);
return true;
@@ -1104,7 +1067,7 @@ bool X86FastISel::X86SelectLoad(const Instruction *I) {
if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg))
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1194,7 +1157,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
ResultReg = createResultReg(&X86::GR32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
ResultReg);
- ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
+ ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
X86::sub_8bit);
if (!ResultReg)
return false;
@@ -1209,7 +1172,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
}
if (ResultReg) {
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1250,7 +1213,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
FlagReg2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
ResultReg).addReg(FlagReg1).addReg(FlagReg2);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1268,7 +1231,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1285,7 +1248,7 @@ bool X86FastISel::X86SelectZExt(const Instruction *I) {
MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
if (SrcVT.SimpleTy == MVT::i1) {
// Set the high bits to zero.
- ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
+ ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
SrcVT = MVT::i8;
if (ResultReg == 0)
@@ -1312,17 +1275,16 @@ bool X86FastISel::X86SelectZExt(const Instruction *I) {
ResultReg)
.addImm(0).addReg(Result32).addImm(X86::sub_32bit);
} else if (DstVT != MVT::i8) {
- ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
+ ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
ResultReg, /*Kill=*/true);
if (ResultReg == 0)
return false;
}
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
-
bool X86FastISel::X86SelectBranch(const Instruction *I) {
// Unconditional branches are selected by tablegen-generated code.
// Handle a conditional branch.
@@ -1342,8 +1304,8 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
switch (Predicate) {
default: break;
- case CmpInst::FCMP_FALSE: FastEmitBranch(FalseMBB, DbgLoc); return true;
- case CmpInst::FCMP_TRUE: FastEmitBranch(TrueMBB, DbgLoc); return true;
+ case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
+ case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
}
const Value *CmpLHS = CI->getOperand(0);
@@ -1400,7 +1362,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
// X86 requires a second branch to handle UNE (and OEQ, which is mapped
// to UNE above).
if (NeedExtraBranch) {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_4))
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
.addMBB(TrueMBB);
}
@@ -1413,7 +1375,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
// Emits an unconditional branch to the FalseBB, obtains the branch
// weight, and adds it to the successor list.
- FastEmitBranch(FalseMBB, DbgLoc);
+ fastEmitBranch(FalseMBB, DbgLoc);
return true;
}
@@ -1437,15 +1399,15 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
.addReg(OpReg).addImm(1);
- unsigned JmpOpc = X86::JNE_4;
+ unsigned JmpOpc = X86::JNE_1;
if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
std::swap(TrueMBB, FalseMBB);
- JmpOpc = X86::JE_4;
+ JmpOpc = X86::JE_1;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
.addMBB(TrueMBB);
- FastEmitBranch(FalseMBB, DbgLoc);
+ fastEmitBranch(FalseMBB, DbgLoc);
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
@@ -1465,7 +1427,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
.addMBB(TrueMBB);
- FastEmitBranch(FalseMBB, DbgLoc);
+ fastEmitBranch(FalseMBB, DbgLoc);
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
@@ -1482,9 +1444,9 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
.addReg(OpReg).addImm(1);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_4))
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
.addMBB(TrueMBB);
- FastEmitBranch(FalseMBB, DbgLoc);
+ fastEmitBranch(FalseMBB, DbgLoc);
uint32_t BranchWeight = 0;
if (FuncInfo.BPI)
BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
@@ -1558,7 +1520,7 @@ bool X86FastISel::X86SelectShift(const Instruction *I) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
.addReg(Op0Reg);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1670,8 +1632,8 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) {
TII.get(X86::MOV32r0), Zero32);
// Copy the zero into the appropriate sub/super/identical physical
- // register. Unfortunately the operations needed are not uniform enough to
- // fit neatly into the table above.
+ // register. Unfortunately the operations needed are not uniform enough
+ // to fit neatly into the table above.
if (VT.SimpleTy == MVT::i16) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Copy), TypeEntry.HighInReg)
@@ -1712,7 +1674,7 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) {
ResultSuperReg).addReg(SourceSuperReg).addImm(8);
// Now reference the 8-bit subreg of the result.
- ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
+ ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
/*Kill=*/true, X86::sub_8bit);
}
// Copy the result out of the physreg if we haven't already.
@@ -1721,7 +1683,7 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
.addReg(OpEntry.DivRemResultReg);
}
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1779,7 +1741,7 @@ bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
EVT CmpVT = TLI.getValueType(CmpLHS->getType());
// Emit a compare of the LHS and RHS, setting the flags.
if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT))
- return false;
+ return false;
if (SETFOpc) {
unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
@@ -1837,9 +1799,9 @@ bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
return false;
unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
- unsigned ResultReg = FastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
+ unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
LHSReg, LHSIsKill);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1858,7 +1820,7 @@ bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
if (I->getType() != CI->getOperand(0)->getType() ||
!((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
- (Subtarget->hasSSE2() && RetVT == MVT::f64) ))
+ (Subtarget->hasSSE2() && RetVT == MVT::f64)))
return false;
const Value *CmpLHS = CI->getOperand(0);
@@ -1917,15 +1879,15 @@ bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
return false;
const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
- unsigned CmpReg = FastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
+ unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
CmpRHSReg, CmpRHSIsKill, CC);
- unsigned AndReg = FastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
+ unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
LHSReg, LHSIsKill);
- unsigned AndNReg = FastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
+ unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
RHSReg, RHSIsKill);
- unsigned ResultReg = FastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
+ unsigned ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
AndReg, /*IsKill=*/true);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -1988,8 +1950,8 @@ bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
unsigned ResultReg =
- FastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
- UpdateValueMap(I, ResultReg);
+ fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -2018,7 +1980,7 @@ bool X86FastISel::X86SelectSelect(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(OpReg, getKillRegState(OpIsKill));
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
}
@@ -2051,7 +2013,7 @@ bool X86FastISel::X86SelectFPExt(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(X86::CVTSS2SDrr), ResultReg)
.addReg(OpReg);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
}
@@ -2070,7 +2032,7 @@ bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(X86::CVTSD2SSrr), ResultReg)
.addReg(OpReg);
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
}
@@ -2096,30 +2058,29 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) {
if (SrcVT == MVT::i8) {
// Truncate from i8 to i1; no code needed.
- UpdateValueMap(I, InputReg);
+ updateValueMap(I, InputReg);
return true;
}
if (!Subtarget->is64Bit()) {
// If we're on x86-32; we can't extract an i8 from a general register.
// First issue a copy to GR16_ABCD or GR32_ABCD.
- const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
- (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
- (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
+ const TargetRegisterClass *CopyRC =
+ (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
unsigned CopyReg = createResultReg(CopyRC);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
- CopyReg).addReg(InputReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
InputReg = CopyReg;
}
// Issue an extract_subreg.
- unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
+ unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
InputReg, /*Kill=*/true,
X86::sub_8bit);
if (!ResultReg)
return false;
- UpdateValueMap(I, ResultReg);
+ updateValueMap(I, ResultReg);
return true;
}
@@ -2145,9 +2106,8 @@ bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
VT = MVT::i32;
else if (Len >= 2)
VT = MVT::i16;
- else {
+ else
VT = MVT::i8;
- }
unsigned Reg;
bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
@@ -2163,19 +2123,7 @@ bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
return true;
}
-static bool isCommutativeIntrinsic(IntrinsicInst const *II) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- return true;
- default:
- return false;
- }
-}
-
-bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
+bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
// FIXME: Handle more intrinsics.
switch (II->getIntrinsicID()) {
default: return false;
@@ -2195,14 +2143,14 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
}
- // This needs to be set before we call getFrameRegister, otherwise we get
- // the wrong frame register.
+ // This needs to be set before we call getPtrSizedFrameRegister, otherwise
+ // we get the wrong frame register.
MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
MFI->setFrameAddressIsTaken(true);
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
- unsigned FrameReg = RegInfo->getFrameRegister(*(FuncInfo.MF));
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*(FuncInfo.MF));
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
(FrameReg == X86::EBP && VT == MVT::i32)) &&
"Invalid Frame Register!");
@@ -2228,7 +2176,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
SrcReg = DestReg;
}
- UpdateValueMap(II, SrcReg);
+ updateValueMap(II, SrcReg);
return true;
}
case Intrinsic::memcpy: {
@@ -2258,7 +2206,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
return false;
- return LowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
+ return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
}
case Intrinsic::memset: {
const MemSetInst *MSI = cast<MemSetInst>(II);
@@ -2273,7 +2221,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
if (MSI->getDestAddressSpace() > 255)
return false;
- return LowerCallTo(II, "memset", II->getNumArgOperands() - 2);
+ return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
}
case Intrinsic::stackprotector: {
// Emit code to store the stack guard onto the stack.
@@ -2299,8 +2247,10 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
// FIXME may need to add RegState::Debug to any registers produced,
// although ESP/EBP should be the only ones at the moment.
- addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM).
- addImm(0).addMetadata(DI->getVariable());
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
+ .addImm(0)
+ .addMetadata(DI->getVariable())
+ .addMetadata(DI->getExpression());
return true;
}
case Intrinsic::trap: {
@@ -2317,7 +2267,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
if (!isTypeLegal(RetTy, VT))
return false;
- // Unfortunately we can't use FastEmit_r, because the AVX version of FSQRT
+ // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
// is not generated by FastISel yet.
// FIXME: Update this code once tablegen can handle it.
static const unsigned SqrtOpc[2][2] = {
@@ -2356,7 +2306,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
MIB.addReg(SrcReg);
- UpdateValueMap(II, ResultReg);
+ updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::sadd_with_overflow:
@@ -2387,15 +2337,23 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
isCommutativeIntrinsic(II))
std::swap(LHS, RHS);
+ bool UseIncDec = false;
+ if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
+ UseIncDec = true;
+
unsigned BaseOpc, CondOpc;
switch (II->getIntrinsicID()) {
default: llvm_unreachable("Unexpected intrinsic!");
case Intrinsic::sadd_with_overflow:
- BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
+ BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
+ CondOpc = X86::SETOr;
+ break;
case Intrinsic::uadd_with_overflow:
BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
case Intrinsic::ssub_with_overflow:
- BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break;
+ BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
+ CondOpc = X86::SETOr;
+ break;
case Intrinsic::usub_with_overflow:
BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
case Intrinsic::smul_with_overflow:
@@ -2411,9 +2369,21 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
unsigned ResultReg = 0;
// Check if we have an immediate version.
- if (auto const *C = dyn_cast<ConstantInt>(RHS)) {
- ResultReg = FastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
- C->getZExtValue());
+ if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
+ static const unsigned Opc[2][4] = {
+ { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
+ { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
+ };
+
+ if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
+ ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ bool IsDec = BaseOpc == X86ISD::DEC;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
+ .addReg(LHSReg, getKillRegState(LHSIsKill));
+ } else
+ ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
+ CI->getZExtValue());
}
unsigned RHSReg;
@@ -2423,7 +2393,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
if (RHSReg == 0)
return false;
RHSIsKill = hasTrivialKill(RHS);
- ResultReg = FastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
+ ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
RHSIsKill);
}
@@ -2438,7 +2408,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
.addReg(LHSReg, getKillRegState(LHSIsKill));
- ResultReg = FastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
+ ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
} else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
static const unsigned MULOpc[] =
@@ -2449,10 +2419,10 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), X86::AL)
.addReg(LHSReg, getKillRegState(LHSIsKill));
- ResultReg = FastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
+ ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
RHSIsKill);
} else
- ResultReg = FastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
+ ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
RHSReg, RHSIsKill);
}
@@ -2465,7 +2435,7 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
ResultReg2);
- UpdateValueMap(II, ResultReg, 2);
+ updateValueMap(II, ResultReg, 2);
return true;
}
case Intrinsic::x86_sse_cvttss2si:
@@ -2531,13 +2501,13 @@ bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addReg(Reg);
- UpdateValueMap(II, ResultReg);
+ updateValueMap(II, ResultReg);
return true;
}
}
}
-bool X86FastISel::FastLowerArguments() {
+bool X86FastISel::fastLowerArguments() {
if (!FuncInfo.CanLowerReturn)
return false;
@@ -2554,7 +2524,7 @@ bool X86FastISel::FastLowerArguments() {
if (!Subtarget->is64Bit())
return false;
-
+
// Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
unsigned GPRCnt = 0;
unsigned FPRCnt = 0;
@@ -2627,7 +2597,7 @@ bool X86FastISel::FastLowerArguments() {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(DstReg, getKillRegState(true));
- UpdateValueMap(&Arg, ResultReg);
+ updateValueMap(&Arg, ResultReg);
}
return true;
}
@@ -2649,7 +2619,7 @@ static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
return 4;
}
-bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
+bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
auto &OutVals = CLI.OutVals;
auto &OutFlags = CLI.OutFlags;
auto &OutRegs = CLI.OutRegs;
@@ -2699,6 +2669,9 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
TM.Options.GuaranteedTailCallOpt))
return false;
+ SmallVector<MVT, 16> OutVTs;
+ SmallVector<unsigned, 16> ArgRegs;
+
// If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
// instruction. This is safe because it is common to all FastISel supported
// calling conventions on x86.
@@ -2716,46 +2689,44 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
// Passing bools around ends up doing a trunc to i1 and passing it.
// Codegen this as an argument + "and 1".
- if (auto *TI = dyn_cast<TruncInst>(Val)) {
- if (TI->getType()->isIntegerTy(1) && CLI.CS &&
- (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
- TI->hasOneUse()) {
- Val = cast<TruncInst>(Val)->getOperand(0);
- unsigned ResultReg = getRegForValue(Val);
-
- if (!ResultReg)
- return false;
-
- MVT ArgVT;
- if (!isTypeLegal(Val->getType(), ArgVT))
- return false;
+ MVT VT;
+ auto *TI = dyn_cast<TruncInst>(Val);
+ unsigned ResultReg;
+ if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
+ (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
+ TI->hasOneUse()) {
+ Value *PrevVal = TI->getOperand(0);
+ ResultReg = getRegForValue(PrevVal);
+
+ if (!ResultReg)
+ return false;
- ResultReg =
- FastEmit_ri(ArgVT, ArgVT, ISD::AND, ResultReg, Val->hasOneUse(), 1);
+ if (!isTypeLegal(PrevVal->getType(), VT))
+ return false;
- if (!ResultReg)
- return false;
- UpdateValueMap(Val, ResultReg);
- }
+ ResultReg =
+ fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
+ } else {
+ if (!isTypeLegal(Val->getType(), VT))
+ return false;
+ ResultReg = getRegForValue(Val);
}
+
+ if (!ResultReg)
+ return false;
+
+ ArgRegs.push_back(ResultReg);
+ OutVTs.push_back(VT);
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs,
- CLI.RetTy->getContext());
+ CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
// Allocate shadow area for Win64
if (IsWin64)
CCInfo.AllocateStack(32, 8);
- SmallVector<MVT, 16> OutVTs;
- for (auto *Val : OutVals) {
- MVT VT;
- if (!isTypeLegal(Val->getType(), VT))
- return false;
- OutVTs.push_back(VT);
- }
CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
// Get a count of how many bytes are to be pushed on the stack.
@@ -2767,8 +2738,8 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
.addImm(NumBytes);
// Walk the register/memloc assignments, inserting copies/loads.
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign const &VA = ArgLocs[i];
const Value *ArgVal = OutVals[VA.getValNo()];
@@ -2777,9 +2748,7 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
if (ArgVT == MVT::x86mmx)
return false;
- unsigned ArgReg = getRegForValue(ArgVal);
- if (!ArgReg)
- return false;
+ unsigned ArgReg = ArgRegs[VA.getValNo()];
// Promote the value if needed.
switch (VA.getLocInfo()) {
@@ -2819,7 +2788,7 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
break;
}
case CCValAssign::BCvt: {
- ArgReg = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
+ ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
/*TODO: Kill=*/false);
assert(ArgReg && "Failed to emit a bitcast!");
ArgVT = VA.getLocVT();
@@ -2846,6 +2815,11 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
OutRegs.push_back(VA.getLocReg());
} else {
assert(VA.isMemLoc());
+
+ // Don't emit stores for undef values.
+ if (isa<UndefValue>(ArgVal))
+ continue;
+
unsigned LocMemOffset = VA.getLocMemOffset();
X86AddressMode AM;
AM.Base.Reg = RegInfo->getStackRegister();
@@ -2982,7 +2956,7 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
// Now handle call return values.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs,
+ CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
CLI.RetTy->getContext());
CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
@@ -2999,39 +2973,33 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
report_fatal_error("SSE register return with SSE disabled");
}
- // If this is a call to a function that returns an fp value on the floating
- // point stack, we must guarantee the value is popped from the stack, so
- // a COPY is not good enough - the copy instruction may be eliminated if the
- // return value is not used. We use the FpPOP_RETVAL instruction instead.
- if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
- // If we prefer to use the value in xmm registers, copy it out as f80 and
- // use a truncate to move it from fp stack reg to xmm reg.
- if (isScalarFPTypeInSSEReg(VA.getValVT())) {
- CopyVT = MVT::f80;
- CopyReg = createResultReg(&X86::RFP80RegClass);
- }
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(X86::FpPOP_RETVAL), CopyReg);
-
- // Round the f80 to the right size, which also moves it to the appropriate
- // xmm register. This is accomplished by storing the f80 value in memory
- // and then loading it back.
- if (CopyVT != VA.getValVT()) {
- EVT ResVT = VA.getValVT();
- unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
- unsigned MemSize = ResVT.getSizeInBits()/8;
- int FI = MFI.CreateStackObject(MemSize, MemSize, false);
- addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(Opc)), FI)
- .addReg(CopyReg);
- Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
- addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(Opc), ResultReg + i), FI);
- }
- } else {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
- InRegs.push_back(VA.getLocReg());
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
+ isScalarFPTypeInSSEReg(VA.getValVT())) {
+ CopyVT = MVT::f80;
+ CopyReg = createResultReg(&X86::RFP80RegClass);
+ }
+
+ // Copy out the result.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
+ InRegs.push_back(VA.getLocReg());
+
+ // Round the f80 to the right size, which also moves it to the appropriate
+ // xmm register. This is accomplished by storing the f80 value in memory
+ // and then loading it back.
+ if (CopyVT != VA.getValVT()) {
+ EVT ResVT = VA.getValVT();
+ unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
+ unsigned MemSize = ResVT.getSizeInBits()/8;
+ int FI = MFI.CreateStackObject(MemSize, MemSize, false);
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc)), FI)
+ .addReg(CopyReg);
+ Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg + i), FI);
}
}
@@ -3043,7 +3011,7 @@ bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
}
bool
-X86FastISel::TargetSelectInstruction(const Instruction *I) {
+X86FastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
@@ -3086,7 +3054,7 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
return X86SelectTrunc(I);
unsigned Reg = getRegForValue(I->getOperand(0));
if (Reg == 0) return false;
- UpdateValueMap(I, Reg);
+ updateValueMap(I, Reg);
return true;
}
}
@@ -3094,13 +3062,69 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
return false;
}
-unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
- MVT VT;
- if (!isTypeLegal(C->getType(), VT))
+unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
+ if (VT > MVT::i64)
return 0;
+ uint64_t Imm = CI->getZExtValue();
+ if (Imm == 0) {
+ unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type");
+ case MVT::i1:
+ case MVT::i8:
+ return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
+ X86::sub_8bit);
+ case MVT::i16:
+ return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
+ X86::sub_16bit);
+ case MVT::i32:
+ return SrcReg;
+ case MVT::i64: {
+ unsigned ResultReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
+ .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
+ return ResultReg;
+ }
+ }
+ }
+
+ unsigned Opc = 0;
+ switch (VT.SimpleTy) {
+ default: llvm_unreachable("Unexpected value type");
+ case MVT::i1: VT = MVT::i8; // fall-through
+ case MVT::i8: Opc = X86::MOV8ri; break;
+ case MVT::i16: Opc = X86::MOV16ri; break;
+ case MVT::i32: Opc = X86::MOV32ri; break;
+ case MVT::i64: {
+ if (isUInt<32>(Imm))
+ Opc = X86::MOV32ri;
+ else if (isInt<32>(Imm))
+ Opc = X86::MOV64ri32;
+ else
+ Opc = X86::MOV64ri;
+ break;
+ }
+ }
+ if (VT == MVT::i64 && Opc == X86::MOV32ri) {
+ unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
+ unsigned ResultReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
+ .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
+ return ResultReg;
+ }
+ return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
+}
+
+unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
+ if (CFP->isNullValue())
+ return fastMaterializeFloatZero(CFP);
+
// Can't handle alternate code models yet.
- if (TM.getCodeModel() != CodeModel::Small)
+ CodeModel::Model CM = TM.getCodeModel();
+ if (CM != CodeModel::Small && CM != CodeModel::Large)
return 0;
// Get opcode and regclass of the output for the given load instruction.
@@ -3108,23 +3132,6 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
const TargetRegisterClass *RC = nullptr;
switch (VT.SimpleTy) {
default: return 0;
- case MVT::i8:
- Opc = X86::MOV8rm;
- RC = &X86::GR8RegClass;
- break;
- case MVT::i16:
- Opc = X86::MOV16rm;
- RC = &X86::GR16RegClass;
- break;
- case MVT::i32:
- Opc = X86::MOV32rm;
- RC = &X86::GR32RegClass;
- break;
- case MVT::i64:
- // Must be in x86-64 mode.
- Opc = X86::MOV64rm;
- RC = &X86::GR64RegClass;
- break;
case MVT::f32:
if (X86ScalarSSEf32) {
Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
@@ -3148,39 +3155,11 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
return 0;
}
- // Materialize addresses with LEA/MOV instructions.
- if (isa<GlobalValue>(C)) {
- X86AddressMode AM;
- if (X86SelectAddress(C, AM)) {
- // If the expression is just a basereg, then we're done, otherwise we need
- // to emit an LEA.
- if (AM.BaseType == X86AddressMode::RegBase &&
- AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
- return AM.Base.Reg;
-
- unsigned ResultReg = createResultReg(RC);
- if (TM.getRelocationModel() == Reloc::Static &&
- TLI.getPointerTy() == MVT::i64) {
- // The displacement code be more than 32 bits away so we need to use
- // an instruction with a 64 bit immediate
- Opc = X86::MOV64ri;
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(Opc), ResultReg).addGlobalAddress(cast<GlobalValue>(C));
- } else {
- Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
- addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
- TII.get(Opc), ResultReg), AM);
- }
- return ResultReg;
- }
- return 0;
- }
-
// MachineConstantPool wants an explicit alignment.
- unsigned Align = DL.getPrefTypeAlignment(C->getType());
+ unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
if (Align == 0) {
- // Alignment of vector types. FIXME!
- Align = DL.getTypeAllocSize(C->getType());
+ // Alignment of vector types. FIXME!
+ Align = DL.getTypeAllocSize(CFP->getType());
}
// x86-32 PIC requires a PIC base register for constant pools.
@@ -3198,23 +3177,88 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
}
// Create the load from the constant pool.
- unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
+ unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
unsigned ResultReg = createResultReg(RC);
+
+ if (CM == CodeModel::Large) {
+ unsigned AddrReg = createResultReg(&X86::GR64RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
+ AddrReg)
+ .addConstantPoolIndex(CPI, 0, OpFlag);
+ MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg);
+ addDirectMem(MIB, AddrReg);
+ MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+ MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
+ TM.getSubtargetImpl()->getDataLayout()->getPointerSize(), Align);
+ MIB->addMemOperand(*FuncInfo.MF, MMO);
+ return ResultReg;
+ }
+
addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg),
- MCPOffset, PICBase, OpFlag);
-
+ CPI, PICBase, OpFlag);
return ResultReg;
}
-unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
+unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return 0;
+
+ // Materialize addresses with LEA/MOV instructions.
+ X86AddressMode AM;
+ if (X86SelectAddress(GV, AM)) {
+ // If the expression is just a basereg, then we're done, otherwise we need
+ // to emit an LEA.
+ if (AM.BaseType == X86AddressMode::RegBase &&
+ AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
+ return AM.Base.Reg;
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ if (TM.getRelocationModel() == Reloc::Static &&
+ TLI.getPointerTy() == MVT::i64) {
+ // The displacement code could be more than 32 bits away so we need to use
+ // an instruction with a 64 bit immediate
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
+ ResultReg)
+ .addGlobalAddress(GV);
+ } else {
+ unsigned Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+ TII.get(Opc), ResultReg), AM);
+ }
+ return ResultReg;
+ }
+ return 0;
+}
+
+unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
+ EVT CEVT = TLI.getValueType(C->getType(), true);
+
+ // Only handle simple types.
+ if (!CEVT.isSimple())
+ return 0;
+ MVT VT = CEVT.getSimpleVT();
+
+ if (const auto *CI = dyn_cast<ConstantInt>(C))
+ return X86MaterializeInt(CI, VT);
+ else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return X86MaterializeFP(CFP, VT);
+ else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return X86MaterializeGV(GV, VT);
+
+ return 0;
+}
+
+unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
// Fail on dynamic allocas. At this point, getRegForValue has already
// checked its CSE maps, so if we're here trying to handle a dynamic
// alloca, we're not going to succeed. X86SelectAddress has a
// check for dynamic allocas, because it's called directly from
- // various places, but TargetMaterializeAlloca also needs a check
+ // various places, but targetMaterializeAlloca also needs a check
// in order to avoid recursion between getRegForValue,
- // X86SelectAddrss, and TargetMaterializeAlloca.
+ // X86SelectAddrss, and targetMaterializeAlloca.
if (!FuncInfo.StaticAllocaMap.count(C))
return 0;
assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
@@ -3222,7 +3266,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
X86AddressMode AM;
if (!X86SelectAddress(C, AM))
return 0;
- unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
+ unsigned Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
unsigned ResultReg = createResultReg(RC);
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
@@ -3230,7 +3274,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
return ResultReg;
}
-unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
+unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
MVT VT;
if (!isTypeLegal(CF->getType(), VT))
return 0;
@@ -3276,7 +3320,7 @@ bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
if (!X86SelectAddress(Ptr, AM))
return false;
- const X86InstrInfo &XII = (const X86InstrInfo&)TII;
+ const X86InstrInfo &XII = (const X86InstrInfo &)TII;
unsigned Size = DL.getTypeAllocSize(LI->getType());
unsigned Alignment = LI->getAlignment();
@@ -3288,7 +3332,8 @@ bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
AM.getFullAddress(AddrOps);
MachineInstr *Result =
- XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
+ XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps,
+ Size, Alignment, /*AllowCommute=*/true);
if (!Result)
return false;
diff --git a/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp b/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp
index eb9f743..8e033a0 100644
--- a/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp
+++ b/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp
@@ -155,7 +155,8 @@ bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
if (!ST.LEAusesAG() && !ST.slowLEA())
return false;
- TII = static_cast<const X86InstrInfo *>(TM->getInstrInfo());
+ TII =
+ static_cast<const X86InstrInfo *>(TM->getSubtargetImpl()->getInstrInfo());
DEBUG(dbgs() << "Start X86FixupLEAs\n";);
// Process all basic blocks.
@@ -217,7 +218,8 @@ FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
if (usesRegister(p, CurInst) == RU_Write) {
return CurInst;
}
- InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
+ InstrDistance += TII->getInstrLatency(
+ TM->getSubtargetImpl()->getInstrItineraryData(), CurInst);
Found = getPreviousInstr(CurInst, MFI);
}
return nullptr;
@@ -281,6 +283,7 @@ void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
return;
int addrr_opcode, addri_opcode;
switch (opcode) {
+ default: llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
addrr_opcode = X86::ADD16rr;
addri_opcode = X86::ADD16ri;
@@ -294,8 +297,6 @@ void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
addrr_opcode = X86::ADD64rr;
addri_opcode = X86::ADD64ri32;
break;
- default:
- assert(false && "Unexpected LEA instruction");
}
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
DEBUG(dbgs() << "FixLEA: Replaced by: ";);
diff --git a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp
index c8a3ab3..6189109 100644
--- a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp
+++ b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp
@@ -28,12 +28,14 @@
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/Debug.h"
@@ -41,7 +43,9 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
+#include <bitset>
using namespace llvm;
#define DEBUG_TYPE "x86-codegen"
@@ -50,6 +54,8 @@ STATISTIC(NumFXCH, "Number of fxch instructions inserted");
STATISTIC(NumFP , "Number of floating point instructions");
namespace {
+ const unsigned ScratchFPReg = 7;
+
struct FPS : public MachineFunctionPass {
static char ID;
FPS() : MachineFunctionPass(ID) {
@@ -137,7 +143,7 @@ namespace {
unsigned StackTop; // The current top of the FP stack.
enum {
- NumFPRegs = 16 // Including scratch pseudo-registers.
+ NumFPRegs = 8 // Including scratch pseudo-registers.
};
// For each live FP<n> register, point to its Stack[] entry.
@@ -146,27 +152,6 @@ namespace {
// register allocator thinks.
unsigned RegMap[NumFPRegs];
- // Pending fixed registers - Inline assembly needs FP registers to appear
- // in fixed stack slot positions. This is handled by copying FP registers
- // to ST registers before the instruction, and copying back after the
- // instruction.
- //
- // This is modeled with pending ST registers. NumPendingSTs is the number
- // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
- // register that holds the ST value. The ST registers are not moved into
- // place until immediately before the instruction that needs them.
- //
- // It can happen that we need an ST register to be live when no FP register
- // holds the value:
- //
- // %ST0 = COPY %FP4<kill>
- //
- // When that happens, we allocate a scratch FP register to hold the ST
- // value. That means every register in PendingST must be live.
-
- unsigned NumPendingSTs;
- unsigned char PendingST[8];
-
// Set up our stack model to match the incoming registers to MBB.
void setupBlockStack();
@@ -180,9 +165,6 @@ namespace {
dbgs() << " FP" << Stack[i];
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
}
- for (unsigned i = 0; i != NumPendingSTs; ++i)
- dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
- dbgs() << "\n";
}
#endif
@@ -199,19 +181,6 @@ namespace {
return Slot < StackTop && Stack[Slot] == RegNo;
}
- /// getScratchReg - Return an FP register that is not currently in use.
- unsigned getScratchReg() const {
- for (int i = NumFPRegs - 1; i >= 8; --i)
- if (!isLive(i))
- return i;
- llvm_unreachable("Ran out of scratch FP registers");
- }
-
- /// isScratchReg - Returns trus if RegNo is a scratch FP register.
- static bool isScratchReg(unsigned RegNo) {
- return RegNo > 8 && RegNo < NumFPRegs;
- }
-
/// getStackEntry - Return the X86::FP<n> register in register ST(i).
unsigned getStackEntry(unsigned STi) const {
if (STi >= StackTop)
@@ -263,21 +232,6 @@ namespace {
BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
}
- /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
- /// RegNo. If any PendingST registers still need the RegNo value, duplicate
- /// them to new scratch registers.
- void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
- for (unsigned i = 0; i != NumPendingSTs; ++i) {
- if (PendingST[i] != RegNo)
- continue;
- unsigned SR = getScratchReg();
- DEBUG(dbgs() << "Duplicating pending ST" << i
- << " in FP" << RegNo << " to FP" << SR << '\n');
- duplicateToTop(RegNo, SR, I);
- PendingST[i] = SR;
- }
- }
-
/// popStackAfter - Pop the current value off of the top of the FP stack
/// after the specified instruction.
void popStackAfter(MachineBasicBlock::iterator &I);
@@ -304,6 +258,7 @@ namespace {
bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
+ void handleCall(MachineBasicBlock::iterator &I);
void handleZeroArgFP(MachineBasicBlock::iterator &I);
void handleOneArgFP(MachineBasicBlock::iterator &I);
void handleOneArgFPRW(MachineBasicBlock::iterator &I);
@@ -320,6 +275,8 @@ namespace {
return X86::RFP80RegClass.contains(DstReg) ||
X86::RFP80RegClass.contains(SrcReg);
}
+
+ void setKillFlags(MachineBasicBlock &MBB) const;
};
char FPS::ID = 0;
}
@@ -354,7 +311,7 @@ bool FPS::runOnMachineFunction(MachineFunction &MF) {
if (!FPIsUsed) return false;
Bundles = &getAnalysis<EdgeBundles>();
- TII = MF.getTarget().getInstrInfo();
+ TII = MF.getSubtarget().getInstrInfo();
// Prepare cross-MBB liveness.
bundleCFG(MF);
@@ -367,15 +324,13 @@ bool FPS::runOnMachineFunction(MachineFunction &MF) {
MachineBasicBlock *Entry = MF.begin();
bool Changed = false;
- for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
- I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
- I != E; ++I)
- Changed |= processBasicBlock(MF, **I);
+ for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
+ Changed |= processBasicBlock(MF, *BB);
// Process any unreachable blocks in arbitrary order now.
if (MF.size() != Processed.size())
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
- if (Processed.insert(BB))
+ if (Processed.insert(BB).second)
Changed |= processBasicBlock(MF, *BB);
LiveBundles.clear();
@@ -409,8 +364,8 @@ void FPS::bundleCFG(MachineFunction &MF) {
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
bool Changed = false;
MBB = &BB;
- NumPendingSTs = 0;
+ setKillFlags(BB);
setupBlockStack();
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
@@ -428,6 +383,9 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
FPInstClass = X86II::SpecialFP;
+ if (MI->isCall())
+ FPInstClass = X86II::SpecialFP;
+
if (FPInstClass == X86II::NotFP)
continue; // Efficiently ignore non-fp insts!
@@ -462,7 +420,9 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
// after definition. If so, pop them.
for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
unsigned Reg = DeadRegs[i];
- if (Reg >= X86::FP0 && Reg <= X86::FP6) {
+ // Check if Reg is live on the stack. An inline-asm register operand that
+ // is in the clobber list and marked dead might not be live on the stack.
+ if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
freeStackSlotAfter(I, Reg-X86::FP0);
}
@@ -874,7 +834,9 @@ FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
RegMap[TopReg] = OldSlot;
RegMap[FPRegNo] = ~0;
Stack[--StackTop] = ~0;
- return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
+ return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
+ .addReg(STReg)
+ .getInstr();
}
/// adjustLiveRegs - Kill and revive registers such that exactly the FP
@@ -966,6 +928,31 @@ void FPS::shuffleStackTop(const unsigned char *FixStack,
// Instruction transformation implementation
//===----------------------------------------------------------------------===//
+void FPS::handleCall(MachineBasicBlock::iterator &I) {
+ unsigned STReturns = 0;
+
+ for (const auto &MO : I->operands()) {
+ if (!MO.isReg())
+ continue;
+
+ unsigned R = MO.getReg() - X86::FP0;
+
+ if (R < 8) {
+ assert(MO.isDef() && MO.isImplicit());
+ STReturns |= 1 << R;
+ }
+ }
+
+ unsigned N = CountTrailingOnes_32(STReturns);
+
+ // FP registers used for function return must be consecutive starting at
+ // FP0.
+ assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
+
+ for (unsigned I = 0; I < N; ++I)
+ pushReg(N - I - 1);
+}
+
/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
///
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
@@ -992,9 +979,6 @@ void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
- if (KillsSrc)
- duplicatePendingSTBeforeKill(Reg, I);
-
// FISTP64m is strange because there isn't a non-popping versions.
// If we have one _and_ we don't want to pop the operand, duplicate the value
// on the stack instead of moving it. This ensure that popping the value is
@@ -1015,7 +999,7 @@ void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
MI->getOpcode() == X86::ISTT_Fp32m80 ||
MI->getOpcode() == X86::ISTT_Fp64m80 ||
MI->getOpcode() == X86::ST_FpP80m)) {
- duplicateToTop(Reg, getScratchReg(), I);
+ duplicateToTop(Reg, ScratchFPReg, I);
} else {
moveToTop(Reg, I); // Move to the top of the stack...
}
@@ -1058,7 +1042,6 @@ void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
if (KillsSrc) {
- duplicatePendingSTBeforeKill(Reg, I);
// If this is the last use of the source register, just make sure it's on
// the top of the stack.
moveToTop(Reg, I);
@@ -1314,71 +1297,22 @@ void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
/// floating point instructions. This is primarily intended for use by pseudo
/// instructions.
///
-void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
+void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
+ MachineInstr *MI = Inst;
+
+ if (MI->isCall()) {
+ handleCall(Inst);
+ return;
+ }
+
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown SpecialFP instruction!");
case TargetOpcode::COPY: {
// We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
const MachineOperand &MO1 = MI->getOperand(1);
const MachineOperand &MO0 = MI->getOperand(0);
- unsigned DstST = MO0.getReg() - X86::ST0;
- unsigned SrcST = MO1.getReg() - X86::ST0;
bool KillsSrc = MI->killsRegister(MO1.getReg());
- // ST = COPY FP. Set up a pending ST register.
- if (DstST < 8) {
- unsigned SrcFP = getFPReg(MO1);
- assert(isLive(SrcFP) && "Cannot copy dead register");
- assert(!MO0.isDead() && "Cannot copy to dead ST register");
-
- // Unallocated STs are marked as the nonexistent FP255.
- while (NumPendingSTs <= DstST)
- PendingST[NumPendingSTs++] = NumFPRegs;
-
- // STi could still be live from a previous inline asm.
- if (isScratchReg(PendingST[DstST])) {
- DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
- << '\n');
- freeStackSlotBefore(MI, PendingST[DstST]);
- }
-
- // When the source is killed, allocate a scratch FP register.
- if (KillsSrc) {
- duplicatePendingSTBeforeKill(SrcFP, I);
- unsigned Slot = getSlot(SrcFP);
- unsigned SR = getScratchReg();
- PendingST[DstST] = SR;
- Stack[Slot] = SR;
- RegMap[SR] = Slot;
- } else
- PendingST[DstST] = SrcFP;
- break;
- }
-
- // FP = COPY ST. Extract fixed stack value.
- // Any instruction defining ST registers must have assigned them to a
- // scratch register.
- if (SrcST < 8) {
- unsigned DstFP = getFPReg(MO0);
- assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
- assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
- unsigned SrcFP = PendingST[SrcST];
- assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
- assert(isLive(SrcFP) && "Scratch holding ST is dead");
-
- // DstFP steals the stack slot from SrcFP.
- unsigned Slot = getSlot(SrcFP);
- Stack[Slot] = DstFP;
- RegMap[DstFP] = Slot;
-
- // Always treat the ST as killed.
- PendingST[SrcST] = NumFPRegs;
- while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
- --NumPendingSTs;
- break;
- }
-
// FP <- FP copy.
unsigned DstFP = getFPReg(MO0);
unsigned SrcFP = getFPReg(MO1);
@@ -1392,7 +1326,7 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
} else {
// For COPY we just duplicate the specified value to a new stack slot.
// This could be made better, but would require substantial changes.
- duplicateToTop(SrcFP, DstFP, I);
+ duplicateToTop(SrcFP, DstFP, Inst);
}
break;
}
@@ -1401,41 +1335,11 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
// All FP registers must be explicitly defined, so load a 0 instead.
unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
- BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
+ BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
pushReg(Reg);
break;
}
- case X86::FpPOP_RETVAL: {
- // The FpPOP_RETVAL instruction is used after calls that return a value on
- // the floating point stack. We cannot model this with ST defs since CALL
- // instructions have fixed clobber lists. This instruction is interpreted
- // to mean that there is one more live register on the stack than we
- // thought.
- //
- // This means that StackTop does not match the hardware stack between a
- // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
- // between CALL and FpPOP_RETVAL as long as they don't overflow the
- // hardware stack.
- unsigned DstFP = getFPReg(MI->getOperand(0));
-
- // Move existing stack elements up to reflect reality.
- assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
- if (StackTop) {
- std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
- for (unsigned i = 0; i != NumFPRegs; ++i)
- ++RegMap[i];
- }
- ++StackTop;
-
- // DstFP is the new bottom of the stack.
- Stack[0] = DstFP;
- RegMap[DstFP] = 0;
-
- // DstFP will be killed by processBasicBlock if this was a dead def.
- break;
- }
-
case TargetOpcode::INLINEASM: {
// The inline asm MachineInstr currently only *uses* FP registers for the
// 'f' constraint. These should be turned into the current ST(x) register
@@ -1472,19 +1376,30 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
// only tell clobbers from defs by looking at the asm descriptor.
unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
unsigned NumOps = 0;
+ SmallSet<unsigned, 1> FRegIdx;
+ unsigned RCID;
+
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
unsigned Flags = MI->getOperand(i).getImm();
+
NumOps = InlineAsm::getNumOperandRegisters(Flags);
if (NumOps != 1)
continue;
const MachineOperand &MO = MI->getOperand(i + 1);
if (!MO.isReg())
continue;
- unsigned STReg = MO.getReg() - X86::ST0;
+ unsigned STReg = MO.getReg() - X86::FP0;
if (STReg >= 8)
continue;
+ // If the flag has a register class constraint, this must be an operand
+ // with constraint "f". Record its index and continue.
+ if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
+ FRegIdx.insert(i + 1);
+ continue;
+ }
+
switch (InlineAsm::getKind(Flags)) {
case InlineAsm::Kind_RegUse:
STUses |= (1u << STReg);
@@ -1527,71 +1442,42 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
<< NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
- // Scan the instruction for FP uses corresponding to "f" constraints.
- // Collect FP registers to kill afer the instruction.
- // Always kill all the scratch regs.
+#ifndef NDEBUG
+ // If any input operand uses constraint "f", all output register
+ // constraints must be early-clobber defs.
+ for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
+ if (FRegIdx.count(I)) {
+ assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
+ "Operands with constraint \"f\" cannot overlap with defs");
+ }
+#endif
+
+ // Collect all FP registers (register operands with constraints "t", "u",
+ // and "f") to kill afer the instruction.
unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
- unsigned FPUsed = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
continue;
- if (!Op.isUse())
- MI->emitError("illegal \"f\" output constraint");
unsigned FPReg = getFPReg(Op);
- FPUsed |= 1U << FPReg;
// If we kill this operand, make sure to pop it from the stack after the
// asm. We just remember it for now, and pop them all off at the end in
// a batch.
- if (Op.isKill())
+ if (Op.isUse() && Op.isKill())
FPKills |= 1U << FPReg;
}
- // The popped inputs will be killed by the instruction, so duplicate them
- // if the FP register needs to be live after the instruction, or if it is
- // used in the instruction itself. We effectively treat the popped inputs
- // as early clobbers.
- for (unsigned i = 0; i < NumSTPopped; ++i) {
- if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
- continue;
- unsigned SR = getScratchReg();
- duplicateToTop(PendingST[i], SR, I);
- DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
- << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
- PendingST[i] = SR;
- }
-
- // Make sure we have a unique live register for every fixed use. Some of
- // them could be undef uses, and we need to emit LD_F0 instructions.
- for (unsigned i = 0; i < NumSTUses; ++i) {
- if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
- // Check for shared assignments.
- for (unsigned j = 0; j < i; ++j) {
- if (PendingST[j] != PendingST[i])
- continue;
- // STi and STj are inn the same register, create a copy.
- unsigned SR = getScratchReg();
- duplicateToTop(PendingST[i], SR, I);
- DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
- << unsigned(PendingST[i])
- << " to avoid collision with ST" << j << '\n');
- PendingST[i] = SR;
- }
- continue;
- }
- unsigned SR = getScratchReg();
- DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
- BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
- pushReg(SR);
- PendingST[i] = SR;
- if (NumPendingSTs == i)
- ++NumPendingSTs;
- }
- assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
+ // Do not include registers that are implicitly popped by defs/clobbers.
+ FPKills &= ~(STDefs | STClobbers);
// Now we can rearrange the live registers to match what was requested.
- shuffleStackTop(PendingST, NumPendingSTs, I);
+ unsigned char STUsesArray[8];
+
+ for (unsigned I = 0; I < NumSTUses; ++I)
+ STUsesArray[I] = I;
+
+ shuffleStackTop(STUsesArray, NumSTUses, Inst);
DEBUG({dbgs() << "Before asm: "; dumpStack();});
// With the stack layout fixed, rewrite the FP registers.
@@ -1599,36 +1485,22 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
continue;
+
unsigned FPReg = getFPReg(Op);
- Op.setReg(getSTReg(FPReg));
+
+ if (FRegIdx.count(i))
+ // Operand with constraint "f".
+ Op.setReg(getSTReg(FPReg));
+ else
+ // Operand with a single register class constraint ("t" or "u").
+ Op.setReg(X86::ST0 + FPReg);
}
// Simulate the inline asm popping its inputs and pushing its outputs.
StackTop -= NumSTPopped;
- // Hold the fixed output registers in scratch FP registers. They will be
- // transferred to real FP registers by copies.
- NumPendingSTs = 0;
- for (unsigned i = 0; i < NumSTDefs; ++i) {
- unsigned SR = getScratchReg();
- pushReg(SR);
- FPKills &= ~(1u << SR);
- }
for (unsigned i = 0; i < NumSTDefs; ++i)
- PendingST[NumPendingSTs++] = getStackEntry(i);
- DEBUG({dbgs() << "After asm: "; dumpStack();});
-
- // If any of the ST defs were dead, pop them immediately. Our caller only
- // handles dead FP defs.
- MachineBasicBlock::iterator InsertPt = MI;
- for (unsigned i = 0; STDefs & (1u << i); ++i) {
- if (!(STDeadDefs & (1u << i)))
- continue;
- freeStackSlotAfter(InsertPt, PendingST[i]);
- PendingST[i] = NumFPRegs;
- }
- while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
- --NumPendingSTs;
+ pushReg(NumSTDefs - i - 1);
// If this asm kills any FP registers (is the last use of them) we must
// explicitly emit pop instructions for them. Do this now after the asm has
@@ -1640,9 +1512,10 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
while (FPKills) {
unsigned FPReg = countTrailingZeros(FPKills);
if (isLive(FPReg))
- freeStackSlotAfter(InsertPt, FPReg);
+ freeStackSlotAfter(Inst, FPReg);
FPKills &= ~(1U << FPReg);
}
+
// Don't delete the inline asm!
return;
}
@@ -1655,12 +1528,12 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
unsigned FPReg = getFPReg(Op);
if (Op.isKill())
- moveToTop(FPReg, I);
+ moveToTop(FPReg, Inst);
else
- duplicateToTop(FPReg, FPReg, I);
+ duplicateToTop(FPReg, FPReg, Inst);
// Emit the call. This will pop the operand.
- BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
+ BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
.addExternalSymbol("_ftol2")
.addReg(X86::ST0, RegState::ImplicitKill)
.addReg(X86::ECX, RegState::ImplicitDefine)
@@ -1738,7 +1611,7 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
// Duplicate the TOS so that we return it twice. Just pick some other FPx
// register to hold it.
- unsigned NewReg = getScratchReg();
+ unsigned NewReg = ScratchFPReg;
duplicateToTop(FirstFPRegOp, NewReg, MI);
FirstFPRegOp = NewReg;
}
@@ -1761,13 +1634,54 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
return;
}
- I = MBB->erase(I); // Remove the pseudo instruction
+ Inst = MBB->erase(Inst); // Remove the pseudo instruction
// We want to leave I pointing to the previous instruction, but what if we
// just erased the first instruction?
- if (I == MBB->begin()) {
+ if (Inst == MBB->begin()) {
DEBUG(dbgs() << "Inserting dummy KILL\n");
- I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
+ Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
} else
- --I;
+ --Inst;
+}
+
+void FPS::setKillFlags(MachineBasicBlock &MBB) const {
+ const TargetRegisterInfo *TRI =
+ MBB.getParent()->getSubtarget().getRegisterInfo();
+ LivePhysRegs LPR(TRI);
+
+ LPR.addLiveOuts(&MBB);
+
+ for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
+ I != E; ++I) {
+ if (I->isDebugValue())
+ continue;
+
+ std::bitset<8> Defs;
+ SmallVector<MachineOperand *, 2> Uses;
+ MachineInstr &MI = *I;
+
+ for (auto &MO : I->operands()) {
+ if (!MO.isReg())
+ continue;
+
+ unsigned Reg = MO.getReg() - X86::FP0;
+
+ if (Reg >= 8)
+ continue;
+
+ if (MO.isDef()) {
+ Defs.set(Reg);
+ if (!LPR.contains(MO.getReg()))
+ MO.setIsDead();
+ } else
+ Uses.push_back(&MO);
+ }
+
+ for (auto *MO : Uses)
+ if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
+ MO->setIsKill();
+
+ LPR.stepBackward(MI);
+ }
}
diff --git a/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp b/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp
index 8c029a8..16aab16 100644
--- a/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp
+++ b/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp
@@ -30,6 +30,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
+#include <cstdlib>
using namespace llvm;
@@ -46,14 +47,15 @@ bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineModuleInfo &MMI = MF.getMMI();
- const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->needsStackRealignment(MF) ||
MFI->hasVarSizedObjects() ||
MFI->isFrameAddressTaken() || MFI->hasInlineAsmWithSPAdjust() ||
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
- MMI.callsUnwindInit() || MMI.callsEHReturn());
+ MMI.callsUnwindInit() || MMI.callsEHReturn() ||
+ MFI->hasStackMap() || MFI->hasPatchPoint());
}
static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
@@ -80,6 +82,27 @@ static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
}
}
+static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::AND64ri8;
+ return X86::AND64ri32;
+ }
+ if (isInt<8>(Imm))
+ return X86::AND32ri8;
+ return X86::AND32ri;
+}
+
+static unsigned getPUSHiOpcode(bool IsLP64, MachineOperand MO) {
+ // We don't support LP64 for now.
+ assert(!IsLP64);
+
+ if (MO.isImm() && isInt<8>(MO.getImm()))
+ return X86::PUSH32i8;
+
+ return X86::PUSHi32;;
+}
+
static unsigned getLEArOpcode(unsigned IsLP64) {
return IsLP64 ? X86::LEA64r : X86::LEA32r;
}
@@ -148,32 +171,32 @@ static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, int64_t NumBytes,
- bool Is64Bit, bool IsLP64, bool UseLEA,
+ bool Is64BitTarget, bool Is64BitStackPtr, bool UseLEA,
const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
bool isSub = NumBytes < 0;
uint64_t Offset = isSub ? -NumBytes : NumBytes;
unsigned Opc;
if (UseLEA)
- Opc = getLEArOpcode(IsLP64);
+ Opc = getLEArOpcode(Is64BitStackPtr);
else
Opc = isSub
- ? getSUBriOpcode(IsLP64, Offset)
- : getADDriOpcode(IsLP64, Offset);
+ ? getSUBriOpcode(Is64BitStackPtr, Offset)
+ : getADDriOpcode(Is64BitStackPtr, Offset);
uint64_t Chunk = (1LL << 31) - 1;
DebugLoc DL = MBB.findDebugLoc(MBBI);
while (Offset) {
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
- if (ThisVal == (Is64Bit ? 8 : 4)) {
+ if (ThisVal == (Is64BitTarget ? 8 : 4)) {
// Use push / pop instead.
unsigned Reg = isSub
- ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
- : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
+ ? (unsigned)(Is64BitTarget ? X86::RAX : X86::EAX)
+ : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64BitTarget);
if (Reg) {
Opc = isSub
- ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
- : (Is64Bit ? X86::POP64r : X86::POP32r);
+ ? (Is64BitTarget ? X86::PUSH64r : X86::PUSH32r)
+ : (Is64BitTarget ? X86::POP64r : X86::POP32r);
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
.addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
if (isSub)
@@ -314,7 +337,7 @@ X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Add callee saved registers to move list.
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
@@ -352,6 +375,23 @@ static bool usesTheStack(const MachineFunction &MF) {
return false;
}
+void X86FrameLowering::getStackProbeFunction(const X86Subtarget &STI,
+ unsigned &CallOp,
+ const char *&Symbol) {
+ CallOp = STI.is64Bit() ? X86::W64ALLOCA : X86::CALLpcrel32;
+
+ if (STI.is64Bit()) {
+ if (STI.isTargetCygMing()) {
+ Symbol = "___chkstk_ms";
+ } else {
+ Symbol = "__chkstk";
+ }
+ } else if (STI.isTargetCygMing())
+ Symbol = "_alloca";
+ else
+ Symbol = "_chkstk";
+}
+
/// emitPrologue - Push callee-saved registers onto the stack, which
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
/// space for local variables. Also emit labels used by the exception handler to
@@ -418,6 +458,8 @@ static bool usesTheStack(const MachineFunction &MF) {
[if needs base pointer]
mov %rsp, %rbx
+ [if needs to restore base pointer]
+ mov %rsp, -MMM(%rbp)
; Emit CFI info
[if needs FP]
@@ -440,8 +482,8 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *Fn = MF.getFunction();
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineModuleInfo &MMI = MF.getMMI();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
@@ -449,11 +491,11 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
bool HasFP = hasFP(MF);
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
bool Is64Bit = STI.is64Bit();
- bool IsLP64 = STI.isTarget64BitLP64();
+ // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
+ const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
bool IsWin64 = STI.isTargetWin64();
- bool IsWinEH =
- MF.getTarget().getMCAsmInfo()->getExceptionHandlingType() ==
- ExceptionHandling::WinEH; // Not necessarily synonymous with IsWin64.
+ // Not necessarily synonymous with IsWin64.
+ bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
bool NeedsWinEH = IsWinEH && Fn->needsUnwindTableEntry();
bool NeedsDwarfCFI =
!IsWinEH && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
@@ -461,6 +503,8 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
unsigned StackAlign = getStackAlignment();
unsigned SlotSize = RegInfo->getSlotSize();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ const unsigned MachineFramePtr = STI.isTarget64BitILP32() ?
+ getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr;
unsigned StackPtr = RegInfo->getStackRegister();
unsigned BasePtr = RegInfo->getBaseRegister();
DebugLoc DL;
@@ -482,6 +526,16 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
X86FI->setCalleeSavedFrameSize(
X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
+ bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
+
+ // The default stack probe size is 4096 if the function has no stackprobesize
+ // attribute.
+ unsigned StackProbeSize = 4096;
+ if (Fn->hasFnAttribute("stack-probe-size"))
+ Fn->getFnAttribute("stack-probe-size")
+ .getValueAsString()
+ .getAsInteger(0, StackProbeSize);
+
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
// function, and use up to 128 bytes of stack space, don't have a frame
// pointer, calls, or dynamic alloca then we do not need to adjust the
@@ -507,7 +561,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
if (TailCallReturnAddrDelta < 0) {
MachineInstr *MI =
BuildMI(MBB, MBBI, DL,
- TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
+ TII.get(getSUBriOpcode(Uses64BitFramePtr, -TailCallReturnAddrDelta)),
StackPtr)
.addReg(StackPtr)
.addImm(-TailCallReturnAddrDelta)
@@ -535,6 +589,9 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
if (HasFP) {
// Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
+ // If required, include space for extra hidden slot for stashing base pointer.
+ if (X86FI->getRestoreBasePointer())
+ FrameSize += SlotSize;
if (RegInfo->needsStackRealignment(MF)) {
// Callee-saved registers are pushed on stack before the stack
// is realigned.
@@ -551,7 +608,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// Save EBP/RBP into the appropriate stack slot.
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
- .addReg(FramePtr, RegState::Kill)
+ .addReg(MachineFramePtr, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
if (NeedsDwarfCFI) {
@@ -564,7 +621,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
.addCFIIndex(CFIIndex);
// Change the rule for the FramePtr to be an "offset" rule.
- unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
+ unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true);
CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createOffset(nullptr,
DwarfFramePtr, 2 * stackGrowth));
@@ -580,14 +637,14 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// Update EBP with the new base value.
BuildMI(MBB, MBBI, DL,
- TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
+ TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), FramePtr)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
if (NeedsDwarfCFI) {
// Mark effective beginning of when frame pointer becomes valid.
// Define the current CFA to use the EBP/RBP register.
- unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
+ unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(MachineFramePtr, true);
unsigned CFIIndex = MMI.addFrameInst(
MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr));
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
@@ -596,7 +653,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// Mark the FramePtr as live-in in every block.
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
- I->addLiveIn(FramePtr);
+ I->addLiveIn(MachineFramePtr);
} else {
NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
}
@@ -633,11 +690,12 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// able to calculate their offsets from the frame pointer).
if (RegInfo->needsStackRealignment(MF)) {
assert(HasFP && "There should be a frame pointer if stack is realigned.");
+ uint64_t Val = -MaxAlign;
MachineInstr *MI =
BuildMI(MBB, MBBI, DL,
- TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
+ TII.get(getANDriOpcode(Uses64BitFramePtr, Val)), StackPtr)
.addReg(StackPtr)
- .addImm(-MaxAlign)
+ .addImm(Val)
.setMIFlag(MachineInstr::FrameSetup);
// The EFLAGS implicit def is dead.
@@ -663,19 +721,11 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// responsible for adjusting the stack pointer. Touching the stack at 4K
// increments is necessary to ensure that the guard pages used by the OS
// virtual memory manager are allocated in correct sequence.
- if (NumBytes >= 4096 && STI.isOSWindows() && !STI.isTargetMacho()) {
+ if (NumBytes >= StackProbeSize && UseStackProbe) {
const char *StackProbeSymbol;
+ unsigned CallOp;
- if (Is64Bit) {
- if (STI.isTargetCygMing()) {
- StackProbeSymbol = "___chkstk_ms";
- } else {
- StackProbeSymbol = "__chkstk";
- }
- } else if (STI.isTargetCygMing())
- StackProbeSymbol = "_alloca";
- else
- StackProbeSymbol = "_chkstk";
+ getStackProbeFunction(STI, CallOp, StackProbeSymbol);
// Check whether EAX is livein for this function.
bool isEAXAlive = isEAXLiveIn(MF);
@@ -706,7 +756,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
}
BuildMI(MBB, MBBI, DL,
- TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
+ TII.get(CallOp))
.addExternalSymbol(StackProbeSymbol)
.addReg(StackPtr, RegState::Define | RegState::Implicit)
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
@@ -722,15 +772,15 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
.setMIFlag(MachineInstr::FrameSetup);
}
if (isEAXAlive) {
- // Restore EAX
- MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
- X86::EAX),
- StackPtr, false, NumBytes - 4);
- MI->setFlag(MachineInstr::FrameSetup);
- MBB.insert(MBBI, MI);
+ // Restore EAX
+ MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
+ X86::EAX),
+ StackPtr, false, NumBytes - 4);
+ MI->setFlag(MachineInstr::FrameSetup);
+ MBB.insert(MBBI, MI);
}
} else if (NumBytes) {
- emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
+ emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, Uses64BitFramePtr,
UseLEA, TII, *RegInfo);
}
@@ -746,7 +796,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// will restore SP to (BP - SEHFrameOffset)
for (const CalleeSavedInfo &Info : MFI->getCalleeSavedInfo()) {
int offset = MFI->getObjectOffset(Info.getFrameIdx());
- SEHFrameOffset = std::max(SEHFrameOffset, abs(offset));
+ SEHFrameOffset = std::max(SEHFrameOffset, std::abs(offset));
}
SEHFrameOffset += SEHFrameOffset % 16; // ensure alignmant
@@ -804,10 +854,18 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
// to reference locals.
if (RegInfo->hasBasePointer(MF)) {
// Update the base pointer with the current stack pointer.
- unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
+ unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
+ if (X86FI->getRestoreBasePointer()) {
+ // Stash value of base pointer. Saving RSP instead of EBP shortens dependence chain.
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
+ FramePtr, true, X86FI->getRestoreBasePointerOffset())
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
}
if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
@@ -834,21 +892,28 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
const MachineFrameInfo *MFI = MF.getFrameInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI != MBB.end() && "Returning block has no instructions");
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc DL = MBBI->getDebugLoc();
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
bool Is64Bit = STI.is64Bit();
- bool IsLP64 = STI.isTarget64BitLP64();
+ // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
+ const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
+ const bool Is64BitILP32 = STI.isTarget64BitILP32();
bool UseLEA = STI.useLeaForSP();
unsigned StackAlign = getStackAlignment();
unsigned SlotSize = RegInfo->getSlotSize();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
+ unsigned MachineFramePtr = Is64BitILP32 ?
+ getX86SubSuperRegister(FramePtr, MVT::i64, false) : FramePtr;
unsigned StackPtr = RegInfo->getStackRegister();
+ bool IsWinEH = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ bool NeedsWinEH = IsWinEH && MF.getFunction()->needsUnwindTableEntry();
+
switch (RetOpcode) {
default:
llvm_unreachable("Can only insert epilog into returning blocks");
@@ -898,7 +963,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
// Pop EBP.
BuildMI(MBB, MBBI, DL,
- TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
+ TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr);
} else {
NumBytes = StackSize - CSSize;
}
@@ -930,27 +995,39 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
if (RegInfo->needsStackRealignment(MF))
MBBI = FirstCSPop;
if (CSSize != 0) {
- unsigned Opc = getLEArOpcode(IsLP64);
+ unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
FramePtr, false, -CSSize);
+ --MBBI;
} else {
- unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
+ unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
.addReg(FramePtr);
+ --MBBI;
}
} else if (NumBytes) {
// Adjust stack pointer back: ESP += numbytes.
- emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
+ emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, Uses64BitFramePtr, UseLEA,
TII, *RegInfo);
+ --MBBI;
}
+ // Windows unwinder will not invoke function's exception handler if IP is
+ // either in prologue or in epilogue. This behavior causes a problem when a
+ // call immediately precedes an epilogue, because the return address points
+ // into the epilogue. To cope with that, we insert an epilogue marker here,
+ // then replace it with a 'nop' if it ends up immediately after a CALL in the
+ // final emitted code.
+ if (NeedsWinEH)
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
+
// We're returning from function via eh_return.
if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &DestAddr = MBBI->getOperand(0);
assert(DestAddr.isReg() && "Offset should be in register!");
BuildMI(MBB, MBBI, DL,
- TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
+ TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
StackPtr).addReg(DestAddr.getReg());
} else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
RetOpcode == X86::TCRETURNmi ||
@@ -976,7 +1053,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
if (Offset) {
// Check for possible merge with preceding ADD instruction.
Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
- emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
+ emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, Uses64BitFramePtr,
UseLEA, TII, *RegInfo);
}
@@ -1021,7 +1098,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
// Check for possible merge with preceding ADD instruction.
delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
- emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
+ emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, Uses64BitFramePtr, UseLEA, TII,
*RegInfo);
}
}
@@ -1029,7 +1106,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF,
int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int FI) const {
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
const MachineFrameInfo *MFI = MF.getFrameInfo();
int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
uint64_t StackSize = MFI->getStackSize();
@@ -1072,7 +1149,7 @@ int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
unsigned &FrameReg) const {
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
// We can't calculate offset from frame pointer if the stack is realigned,
// so enforce usage of stack/base pointer. The base pointer is used when we
// have dynamic allocas in addition to dynamic realignment.
@@ -1085,12 +1162,85 @@ int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
return getFrameIndexOffset(MF, FI);
}
+// Simplified from getFrameIndexOffset keeping only StackPointer cases
+int X86FrameLowering::getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ // Does not include any dynamic realign.
+ const uint64_t StackSize = MFI->getStackSize();
+ {
+#ifndef NDEBUG
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo());
+ // Note: LLVM arranges the stack as:
+ // Args > Saved RetPC (<--FP) > CSRs > dynamic alignment (<--BP)
+ // > "Stack Slots" (<--SP)
+ // We can always address StackSlots from RSP. We can usually (unless
+ // needsStackRealignment) address CSRs from RSP, but sometimes need to
+ // address them from RBP. FixedObjects can be placed anywhere in the stack
+ // frame depending on their specific requirements (i.e. we can actually
+ // refer to arguments to the function which are stored in the *callers*
+ // frame). As a result, THE RESULT OF THIS CALL IS MEANINGLESS FOR CSRs
+ // AND FixedObjects IFF needsStackRealignment or hasVarSizedObject.
+
+ assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case");
+
+ // We don't handle tail calls, and shouldn't be seeing them
+ // either.
+ int TailCallReturnAddrDelta =
+ MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
+ assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
+#endif
+ }
+
+ // This is how the math works out:
+ //
+ // %rsp grows (i.e. gets lower) left to right. Each box below is
+ // one word (eight bytes). Obj0 is the stack slot we're trying to
+ // get to.
+ //
+ // ----------------------------------
+ // | BP | Obj0 | Obj1 | ... | ObjN |
+ // ----------------------------------
+ // ^ ^ ^ ^
+ // A B C E
+ //
+ // A is the incoming stack pointer.
+ // (B - A) is the local area offset (-8 for x86-64) [1]
+ // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
+ //
+ // |(E - B)| is the StackSize (absolute value, positive). For a
+ // stack that grown down, this works out to be (B - E). [3]
+ //
+ // E is also the value of %rsp after stack has been set up, and we
+ // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
+ // (C - E) == (C - A) - (B - A) + (B - E)
+ // { Using [1], [2] and [3] above }
+ // == getObjectOffset - LocalAreaOffset + StackSize
+ //
+
+ // Get the Offset from the StackPointer
+ int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
+
+ return Offset + StackSize;
+}
+// Simplified from getFrameIndexReference keeping only StackPointer cases
+int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(MF.getSubtarget().getRegisterInfo());
+
+ assert(!RegInfo->hasBasePointer(MF) && "we don't handle this case");
+
+ FrameReg = RegInfo->getStackRegister();
+ return getFrameIndexOffsetFromSP(MF, FI);
+}
+
bool X86FrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
unsigned SlotSize = RegInfo->getSlotSize();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
@@ -1107,7 +1257,7 @@ bool X86FrameLowering::assignCalleeSavedSpillSlots(
// about avoiding it later.
unsigned FPReg = RegInfo->getFrameRegister(MF);
for (unsigned i = 0; i < CSI.size(); ++i) {
- if (CSI[i].getReg() == FPReg) {
+ if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
CSI.erase(CSI.begin() + i);
break;
}
@@ -1138,7 +1288,7 @@ bool X86FrameLowering::assignCalleeSavedSpillSlots(
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
// ensure alignment
- SpillSlotOffset -= abs(SpillSlotOffset) % RC->getAlignment();
+ SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
// spill into slot
SpillSlotOffset -= RC->getSize();
int SlotIndex =
@@ -1157,7 +1307,7 @@ bool X86FrameLowering::spillCalleeSavedRegisters(
DebugLoc DL = MBB.findDebugLoc(MI);
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
// Push GPRs. It increases frame size.
@@ -1205,7 +1355,7 @@ bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
DebugLoc DL = MBB.findDebugLoc(MI);
MachineFunction &MF = *MBB.getParent();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
// Reload XMMs from stack frame.
@@ -1237,7 +1387,7 @@ X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo());
unsigned SlotSize = RegInfo->getSlotSize();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
@@ -1278,7 +1428,7 @@ HasNestArgument(const MachineFunction *MF) {
/// and the properties of the function either one or two registers will be
/// needed. Set primary to true for the first register, false for the second.
static unsigned
-GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
+GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
// Erlang stuff.
@@ -1289,8 +1439,12 @@ GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
return Primary ? X86::EBX : X86::EDI;
}
- if (Is64Bit)
- return Primary ? X86::R11 : X86::R12;
+ if (Is64Bit) {
+ if (IsLP64)
+ return Primary ? X86::R11 : X86::R12;
+ else
+ return Primary ? X86::R11D : X86::R12D;
+ }
bool IsNested = HasNestArgument(&MF);
@@ -1314,21 +1468,23 @@ void
X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
MachineBasicBlock &prologueMBB = MF.front();
MachineFrameInfo *MFI = MF.getFrameInfo();
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
uint64_t StackSize;
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
bool Is64Bit = STI.is64Bit();
+ const bool IsLP64 = STI.isTarget64BitLP64();
unsigned TlsReg, TlsOffset;
DebugLoc DL;
- unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
+ unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
"Scratch register is live-in");
if (MF.getFunction()->isVarArg())
report_fatal_error("Segmented stacks do not support vararg functions.");
- if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
- !STI.isTargetWin32() && !STI.isTargetWin64() && !STI.isTargetFreeBSD())
+ if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
+ !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
+ !STI.isTargetDragonFly())
report_fatal_error("Segmented stacks not supported on this platform.");
// Eventually StackSize will be calculated by a link-time pass; which will
@@ -1359,7 +1515,7 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
}
if (IsNested)
- allocMBB->addLiveIn(X86::R10);
+ allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
MF.push_front(allocMBB);
MF.push_front(checkMBB);
@@ -1372,7 +1528,7 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
if (Is64Bit) {
if (STI.isTargetLinux()) {
TlsReg = X86::FS;
- TlsOffset = 0x70;
+ TlsOffset = IsLP64 ? 0x70 : 0x40;
} else if (STI.isTargetDarwin()) {
TlsReg = X86::GS;
TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
@@ -1382,17 +1538,20 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
} else if (STI.isTargetFreeBSD()) {
TlsReg = X86::FS;
TlsOffset = 0x18;
+ } else if (STI.isTargetDragonFly()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x20; // use tls_tcb.tcb_segstack
} else {
report_fatal_error("Segmented stacks not supported on this platform.");
}
if (CompareStackPointer)
- ScratchReg = X86::RSP;
+ ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
else
- BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
+ BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
- BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
+ BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
} else {
if (STI.isTargetLinux()) {
@@ -1404,6 +1563,9 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
} else if (STI.isTargetWin32()) {
TlsReg = X86::FS;
TlsOffset = 0x14; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetDragonFly()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x10; // use tls_tcb.tcb_segstack
} else if (STI.isTargetFreeBSD()) {
report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
} else {
@@ -1416,7 +1578,8 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
- if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64()) {
+ if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
+ STI.isTargetDragonFly()) {
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
} else if (STI.isTargetDarwin()) {
@@ -1426,11 +1589,11 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
bool SaveScratch2;
if (CompareStackPointer) {
// The primary scratch register is available for holding the TLS offset.
- ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
+ ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
SaveScratch2 = false;
} else {
// Need to use a second register to hold the TLS offset
- ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
+ ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
// Unfortunately, with fastcc the second scratch register may hold an
// argument.
@@ -1460,7 +1623,7 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
// This jump is taken if SP >= (Stacklet Limit + Stack Space required).
// It jumps to normal execution of the function body.
- BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
+ BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&prologueMBB);
// On 32 bit we first push the arguments size and then the frame size. On 64
// bit, we pass the stack frame size in r10 and the argument size in r11.
@@ -1468,15 +1631,21 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
// Functions with nested arguments use R10, so it needs to be saved across
// the call to _morestack
+ const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
+ const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
+ const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
+ const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
+ const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
+
if (IsNested)
- BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
+ BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
- BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
+ BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
.addImm(StackSize);
- BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
+ BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
.addImm(X86FI->getArgumentStackSize());
- MF.getRegInfo().setPhysRegUsed(X86::R10);
- MF.getRegInfo().setPhysRegUsed(X86::R11);
+ MF.getRegInfo().setPhysRegUsed(Reg10);
+ MF.getRegInfo().setPhysRegUsed(Reg11);
} else {
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
.addImm(X86FI->getArgumentStackSize());
@@ -1485,12 +1654,36 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
}
// __morestack is in libgcc
- if (Is64Bit)
- BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
- .addExternalSymbol("__morestack");
- else
- BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
- .addExternalSymbol("__morestack");
+ if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
+ // Under the large code model, we cannot assume that __morestack lives
+ // within 2^31 bytes of the call site, so we cannot use pc-relative
+ // addressing. We cannot perform the call via a temporary register,
+ // as the rax register may be used to store the static chain, and all
+ // other suitable registers may be either callee-save or used for
+ // parameter passing. We cannot use the stack at this point either
+ // because __morestack manipulates the stack directly.
+ //
+ // To avoid these issues, perform an indirect call via a read-only memory
+ // location containing the address.
+ //
+ // This solution is not perfect, as it assumes that the .rodata section
+ // is laid out within 2^31 bytes of each function body, but this seems
+ // to be sufficient for JIT.
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addExternalSymbol("__morestack_addr")
+ .addReg(0);
+ MF.getMMI().setUsesMorestackAddr(true);
+ } else {
+ if (Is64Bit)
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack");
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack");
+ }
if (IsNested)
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
@@ -1523,13 +1716,14 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
/// temp0 = sp - MaxStack
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineFrameInfo *MFI = MF.getFrameInfo();
const unsigned SlotSize =
- static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo())
+ static_cast<const X86RegisterInfo *>(MF.getSubtarget().getRegisterInfo())
->getSlotSize();
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
const bool Is64Bit = STI.is64Bit();
+ const bool IsLP64 = STI.isTarget64BitLP64();
DebugLoc DL;
// HiPE-specific values
const unsigned HipeLeafWords = 24;
@@ -1623,7 +1817,7 @@ void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
SPLimitOffset = 0x4c;
}
- ScratchReg = GetScratchRegister(Is64Bit, MF, true);
+ ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
"HiPE prologue scratch register is live-in");
@@ -1633,7 +1827,7 @@ void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
// SPLimitOffset is in a fixed heap location (pointed by BP).
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
.addReg(ScratchReg), PReg, false, SPLimitOffset);
- BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
+ BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&prologueMBB);
// Create new MBB for IncStack:
BuildMI(incStackMBB, DL, TII.get(CALLop)).
@@ -1642,7 +1836,7 @@ void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
SPReg, false, -MaxStack);
addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
.addReg(ScratchReg), PReg, false, SPLimitOffset);
- BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
+ BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
stackCheckMBB->addSuccessor(&prologueMBB, 99);
stackCheckMBB->addSuccessor(incStackMBB, 1);
@@ -1654,40 +1848,141 @@ void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
#endif
}
+bool X86FrameLowering::
+convertArgMovsToPushes(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, uint64_t Amount) const {
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
+ unsigned StackPtr = RegInfo.getStackRegister();
+
+ // Scan the call setup sequence for the pattern we're looking for.
+ // We only handle a simple case now - a sequence of MOV32mi or MOV32mr
+ // instructions, that push a sequence of 32-bit values onto the stack, with
+ // no gaps.
+ std::map<int64_t, MachineBasicBlock::iterator> MovMap;
+ do {
+ int Opcode = I->getOpcode();
+ if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
+ break;
+
+ // We only want movs of the form:
+ // movl imm/r32, k(%ecx)
+ // If we run into something else, bail
+ // Note that AddrBaseReg may, counterintuitively, not be a register...
+ if (!I->getOperand(X86::AddrBaseReg).isReg() ||
+ (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
+ !I->getOperand(X86::AddrScaleAmt).isImm() ||
+ (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
+ (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
+ (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
+ !I->getOperand(X86::AddrDisp).isImm())
+ return false;
+
+ int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
+
+ // We don't want to consider the unaligned case.
+ if (StackDisp % 4)
+ return false;
+
+ // If the same stack slot is being filled twice, something's fishy.
+ if (!MovMap.insert(std::pair<int64_t, MachineInstr*>(StackDisp, I)).second)
+ return false;
+
+ ++I;
+ } while (I != MBB.end());
+
+ // We now expect the end of the sequence - a call and a stack adjust.
+ if (I == MBB.end())
+ return false;
+ if (!I->isCall())
+ return false;
+ MachineBasicBlock::iterator Call = I;
+ if ((++I)->getOpcode() != TII.getCallFrameDestroyOpcode())
+ return false;
+
+ // Now, go through the map, and see that we don't have any gaps,
+ // but only a series of 32-bit MOVs.
+ // Since std::map provides ordered iteration, the original order
+ // of the MOVs doesn't matter.
+ int64_t ExpectedDist = 0;
+ for (auto MMI = MovMap.begin(), MME = MovMap.end(); MMI != MME;
+ ++MMI, ExpectedDist += 4)
+ if (MMI->first != ExpectedDist)
+ return false;
+
+ // Ok, everything looks fine. Do the transformation.
+ DebugLoc DL = I->getDebugLoc();
+
+ // It's possible the original stack adjustment amount was larger than
+ // that done by the pushes. If so, we still need a SUB.
+ Amount -= ExpectedDist;
+ if (Amount) {
+ MachineInstr* Sub = BuildMI(MBB, Call, DL,
+ TII.get(getSUBriOpcode(false, Amount)), StackPtr)
+ .addReg(StackPtr).addImm(Amount);
+ Sub->getOperand(3).setIsDead();
+ }
+
+ // Now, iterate through the map in reverse order, and replace the movs
+ // with pushes. MOVmi/MOVmr doesn't have any defs, so need to replace uses.
+ for (auto MMI = MovMap.rbegin(), MME = MovMap.rend(); MMI != MME; ++MMI) {
+ MachineBasicBlock::iterator MOV = MMI->second;
+ MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
+
+ // Replace MOVmr with PUSH32r, and MOVmi with PUSHi of appropriate size
+ int PushOpcode = X86::PUSH32r;
+ if (MOV->getOpcode() == X86::MOV32mi)
+ PushOpcode = getPUSHiOpcode(false, PushOp);
+
+ BuildMI(MBB, Call, DL, TII.get(PushOpcode)).addOperand(PushOp);
+ MBB.erase(MOV);
+ }
+
+ return true;
+}
+
void X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
- const X86RegisterInfo &RegInfo =
- *static_cast<const X86RegisterInfo *>(MF.getTarget().getRegisterInfo());
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
unsigned StackPtr = RegInfo.getStackRegister();
- bool reseveCallFrame = hasReservedCallFrame(MF);
+ bool reserveCallFrame = hasReservedCallFrame(MF);
int Opcode = I->getOpcode();
bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
bool IsLP64 = STI.isTarget64BitLP64();
DebugLoc DL = I->getDebugLoc();
- uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
+ uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
I = MBB.erase(I);
- if (!reseveCallFrame) {
+ if (!reserveCallFrame) {
// If the stack pointer can be changed after prologue, turn the
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
// adjcallstackdown instruction into 'add ESP, <amt>'
- // TODO: consider using push / pop instead of sub + store / add
if (Amount == 0)
return;
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
- unsigned StackAlign =
- MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned StackAlign = MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment();
Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
MachineInstr *New = nullptr;
if (Opcode == TII.getCallFrameSetupOpcode()) {
+ // Try to convert movs to the stack into pushes.
+ // We currently only look for a pattern that appears in 32-bit
+ // calling conventions.
+ if (!IsLP64 && convertArgMovsToPushes(MF, MBB, I, Amount))
+ return;
+
New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
StackPtr)
.addReg(StackPtr)
diff --git a/contrib/llvm/lib/Target/X86/X86FrameLowering.h b/contrib/llvm/lib/Target/X86/X86FrameLowering.h
index 5ad3d4d..ee0ee22 100644
--- a/contrib/llvm/lib/Target/X86/X86FrameLowering.h
+++ b/contrib/llvm/lib/Target/X86/X86FrameLowering.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86_FRAMELOWERING_H
-#define X86_FRAMELOWERING_H
+#ifndef LLVM_LIB_TARGET_X86_X86FRAMELOWERING_H
+#define LLVM_LIB_TARGET_X86_X86FRAMELOWERING_H
#include "llvm/Target/TargetFrameLowering.h"
@@ -20,12 +20,17 @@ namespace llvm {
class MCSymbol;
class X86TargetMachine;
+class X86Subtarget;
class X86FrameLowering : public TargetFrameLowering {
public:
explicit X86FrameLowering(StackDirection D, unsigned StackAl, int LAO)
: TargetFrameLowering(StackGrowsDown, StackAl, LAO) {}
+ static void getStackProbeFunction(const X86Subtarget &STI,
+ unsigned &CallOp,
+ const char *&Symbol);
+
void emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
DebugLoc DL) const;
@@ -64,9 +69,23 @@ public:
int getFrameIndexReference(const MachineFunction &MF, int FI,
unsigned &FrameReg) const override;
+ int getFrameIndexOffsetFromSP(const MachineFunction &MF, int FI) const;
+ int getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const override;
+
void eliminateCallFramePseudoInstr(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const override;
+
+private:
+ /// convertArgMovsToPushes - This method tries to convert a call sequence
+ /// that uses sub and mov instructions to put the argument onto the stack
+ /// into a series of pushes.
+ /// Returns true if the transformation succeeded, false if not.
+ bool convertArgMovsToPushes(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ uint64_t Amount) const;
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
index ba2f5f6..7fe8e8b 100644
--- a/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
+++ b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -24,6 +24,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
@@ -33,6 +34,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
+#include <stdint.h>
using namespace llvm;
#define DEBUG_TYPE "x86-isel"
@@ -192,7 +194,6 @@ namespace {
private:
SDNode *Select(SDNode *N) override;
SDNode *SelectGather(SDNode *N, unsigned Opc);
- SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
@@ -237,10 +238,10 @@ namespace {
inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
- Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
- CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
- getTargetLowering()->getPointerTy()) :
- AM.Base_Reg;
+ Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
+ ? CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
+ TLI->getPointerTy())
+ : AM.Base_Reg;
Scale = getI8Imm(AM.Scale);
Index = AM.IndexReg;
// These are 32-bit even in 64-bit mode since RIP relative offset
@@ -297,7 +298,14 @@ namespace {
/// getInstrInfo - Return a reference to the TargetInstrInfo, casted
/// to the target-specific type.
const X86InstrInfo *getInstrInfo() const {
- return getTargetMachine().getInstrInfo();
+ return getTargetMachine().getSubtargetImpl()->getInstrInfo();
+ }
+
+ /// \brief Address-mode matching performs shift-of-and to and-of-shift
+ /// reassociation in order to expose more scaled addressing
+ /// opportunities.
+ bool ComplexPatternFuncMutatesDAG() const override {
+ return true;
}
};
}
@@ -510,7 +518,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
// If the source and destination are SSE registers, then this is a legal
// conversion that should not be lowered.
const X86TargetLowering *X86Lowering =
- static_cast<const X86TargetLowering *>(getTargetLowering());
+ static_cast<const X86TargetLowering *>(TLI);
bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
if (SrcIsSSE && DstIsSSE)
@@ -544,7 +552,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
false, false, 0);
SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
MachinePointerInfo(),
- MemVT, false, false, 0);
+ MemVT, false, false, false, 0);
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
// extload we created. This will cause general havok on the dag because
@@ -565,7 +573,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() {
/// the main function.
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
MachineFrameInfo *MFI) {
- const TargetInstrInfo *TII = TM.getInstrInfo();
+ const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
if (Subtarget->isTargetCygMing()) {
unsigned CallOp =
Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
@@ -775,9 +783,10 @@ static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
}
}
-// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
-// allows us to convert the shift and and into an h-register extract and
-// a scaled index. Returns false if the simplification is performed.
+// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
+// safe. This allows us to convert the shift and and into an h-register
+// extract and a scaled index. Returns false if the simplification is
+// performed.
static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
uint64_t Mask,
SDValue Shift, SDValue X,
@@ -1429,7 +1438,7 @@ bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
if (RN && RN->getReg() == 0)
Base = CurDAG->getRegister(0, MVT::i64);
- else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
+ else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
// Base could already be %rip, particularly in the x32 ABI.
Base = SDValue(CurDAG->getMachineNode(
TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
@@ -1563,26 +1572,7 @@ bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
///
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
- return CurDAG->getRegister(GlobalBaseReg,
- getTargetLowering()->getPointerTy()).getNode();
-}
-
-SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
- SDValue Chain = Node->getOperand(0);
- SDValue In1 = Node->getOperand(1);
- SDValue In2L = Node->getOperand(2);
- SDValue In2H = Node->getOperand(3);
-
- SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
- return nullptr;
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
- const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
- SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
- MVT::i32, MVT::i32, MVT::Other, Ops);
- cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
- return ResNode;
+ return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy()).getNode();
}
/// Atomic opcode table
@@ -1716,16 +1706,23 @@ static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
SDLoc dl,
enum AtomicOpc &Op, MVT NVT,
- SDValue Val) {
+ SDValue Val,
+ const X86Subtarget *Subtarget) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
int64_t CNVal = CN->getSExtValue();
// Quit if not 32-bit imm.
if ((int32_t)CNVal != CNVal)
return Val;
+ // Quit if INT32_MIN: it would be negated as it is negative and overflow,
+ // producing an immediate that does not fit in the 32 bits available for
+ // an immediate operand to sub. However, it still fits in 32 bits for the
+ // add (since it is not negated) so we can return target-constant.
+ if (CNVal == INT32_MIN)
+ return CurDAG->getTargetConstant(CNVal, NVT);
// For atomic-load-add, we could do some optimizations.
if (Op == ADD) {
// Translate to INC/DEC if ADD by 1 or -1.
- if ((CNVal == 1) || (CNVal == -1)) {
+ if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) {
Op = (CNVal == 1) ? INC : DEC;
// No more constant operand after being translated into INC/DEC.
return SDValue();
@@ -1774,8 +1771,8 @@ SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
SDValue Chain = Node->getOperand(0);
SDValue Ptr = Node->getOperand(1);
SDValue Val = Node->getOperand(2);
- SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
+ SDValue Base, Scale, Index, Disp, Segment;
+ if (!SelectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment))
return nullptr;
// Which index into the table.
@@ -1797,7 +1794,7 @@ SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
break;
}
- Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
+ Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget);
bool isUnOp = !Val.getNode();
bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
@@ -1829,31 +1826,40 @@ SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
Opc = AtomicOpcTbl[Op][I32];
break;
case MVT::i64:
- Opc = AtomicOpcTbl[Op][I64];
if (isCN) {
if (immSext8(Val.getNode()))
Opc = AtomicOpcTbl[Op][SextConstantI64];
else if (i64immSExt32(Val.getNode()))
Opc = AtomicOpcTbl[Op][ConstantI64];
- }
+ else
+ llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith");
+ } else
+ Opc = AtomicOpcTbl[Op][I64];
break;
}
assert(Opc != 0 && "Invalid arith lock transform!");
+ // Building the new node.
SDValue Ret;
- SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
- dl, NVT), 0);
- MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
- MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
if (isUnOp) {
- SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
+ SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain };
Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
} else {
- SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
+ SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain };
Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
}
+
+ // Copying the MachineMemOperand.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+
+ // We need to have two outputs as that is what the original instruction had.
+ // So we add a dummy, undefined output. This is safe as we checked first
+ // that no-one uses our output anyway.
+ SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, NVT), 0);
SDValue RetVals[] = { Undef, Ret };
return CurDAG->getMergeValues(RetVals, dl).getNode();
}
@@ -1885,8 +1891,8 @@ static bool HasNoSignedComparisonUses(SDNode *N) {
case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
- case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
- case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
+ case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
+ case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
case X86::CMOVA16rr: case X86::CMOVA16rm:
case X86::CMOVA32rr: case X86::CMOVA32rm:
case X86::CMOVA64rr: case X86::CMOVA64rm:
@@ -2125,6 +2131,16 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
case X86ISD::GlobalBaseReg:
return getGlobalBaseReg();
+ case X86ISD::SHRUNKBLEND: {
+ // SHRUNKBLEND selects like a regular VSELECT.
+ SDValue VSelect = CurDAG->getNode(
+ ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
+ Node->getOperand(1), Node->getOperand(2));
+ ReplaceUses(SDValue(Node, 0), VSelect);
+ SelectCode(VSelect.getNode());
+ // We already called ReplaceUses.
+ return nullptr;
+ }
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_AND:
@@ -2212,6 +2228,25 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
getI8Imm(ShlVal));
}
+ case X86ISD::UMUL8:
+ case X86ISD::SMUL8: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
+
+ SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
+ N0, SDValue()).getValue(1);
+
+ SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
+ SDValue Ops[] = {N1, InFlag};
+ SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
+
+ ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
+ ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
+ return nullptr;
+ }
+
case X86ISD::UMUL: {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
@@ -2387,11 +2422,14 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
}
case ISD::SDIVREM:
- case ISD::UDIVREM: {
+ case ISD::UDIVREM:
+ case X86ISD::SDIVREM8_SEXT_HREG:
+ case X86ISD::UDIVREM8_ZEXT_HREG: {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
- bool isSigned = Opcode == ISD::SDIVREM;
+ bool isSigned = (Opcode == ISD::SDIVREM ||
+ Opcode == X86ISD::SDIVREM8_SEXT_HREG);
if (!isSigned) {
switch (NVT.SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
@@ -2466,7 +2504,7 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
} else {
// Zero out the high part, effectively zero extending the input.
- SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
+ SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
switch (NVT.SimpleTy) {
case MVT::i16:
ClrNode =
@@ -2507,33 +2545,43 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
}
- // Prevent use of AH in a REX instruction by referencing AX instead.
- // Shift it down 8 bits.
+ // Prevent use of AH in a REX instruction by explicitly copying it to
+ // an ABCD_L register.
//
// The current assumption of the register allocator is that isel
- // won't generate explicit references to the GPR8_NOREX registers. If
+ // won't generate explicit references to the GR8_ABCD_H registers. If
// the allocator and/or the backend get enhanced to be more robust in
// that regard, this can be, and should be, removed.
- if (HiReg == X86::AH && Subtarget->is64Bit() &&
- !SDValue(Node, 1).use_empty()) {
- SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- X86::AX, MVT::i16, InFlag);
- InFlag = Result.getValue(2);
-
- // If we also need AL (the quotient), get it by extracting a subreg from
- // Result. The fast register allocator does not like multiple CopyFromReg
- // nodes using aliasing registers.
- if (!SDValue(Node, 0).use_empty())
- ReplaceUses(SDValue(Node, 0),
- CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
-
- // Shift AX right by 8 bits instead of using AH.
- Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
- Result,
- CurDAG->getTargetConstant(8, MVT::i8)),
- 0);
- ReplaceUses(SDValue(Node, 1),
- CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
+ if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
+ SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
+ unsigned AHExtOpcode =
+ isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
+
+ SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
+ MVT::Glue, AHCopy, InFlag);
+ SDValue Result(RNode, 0);
+ InFlag = SDValue(RNode, 1);
+
+ if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
+ Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
+ if (Node->getValueType(1) == MVT::i64) {
+ // It's not possible to directly movsx AH to a 64bit register, because
+ // the latter needs the REX prefix, but the former can't have it.
+ assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
+ "Unexpected i64 sext of h-register");
+ Result =
+ SDValue(CurDAG->getMachineNode(
+ TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
+ CurDAG->getTargetConstant(0, MVT::i64), Result,
+ CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
+ 0);
+ }
+ } else {
+ Result =
+ CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
+ }
+ ReplaceUses(SDValue(Node, 1), Result);
+ DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
}
// Copy the division (low) result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
@@ -2563,12 +2611,30 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
- // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
- // use a smaller encoding.
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
- HasNoSignedComparisonUses(Node))
- // Look past the truncate if CMP is the only use of it.
+ HasNoSignedComparisonUses(Node)) {
+ // Look for (X86cmp (truncate $op, i1), 0) and try to convert to a
+ // smaller encoding
+ if (Opcode == X86ISD::CMP && N0.getValueType() == MVT::i1 &&
+ X86::isZeroNode(N1)) {
+ SDValue Reg = N0.getOperand(0);
+ SDValue Imm = CurDAG->getTargetConstant(1, MVT::i8);
+
+ // Emit testb
+ if (Reg.getScalarValueSizeInBits() > 8)
+ Reg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Reg);
+ // Emit a testb.
+ SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
+ Reg, Imm);
+ ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
+ return nullptr;
+ }
+
N0 = N0.getOperand(0);
+ }
+ // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
+ // use a smaller encoding.
+ // Look past the truncate if CMP is the only use of it.
if ((N0.getNode()->getOpcode() == ISD::AND ||
(N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
N0.getNode()->hasOneUse() &&
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
index 6fc4c84..a1fd34e 100644
--- a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -19,6 +19,7 @@
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
+#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
@@ -49,6 +50,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
+#include "X86IntrinsicsInfo.h"
#include <bitset>
#include <numeric>
#include <cctype>
@@ -65,10 +67,23 @@ static cl::opt<bool> ExperimentalVectorWideningLegalization(
cl::Hidden);
static cl::opt<bool> ExperimentalVectorShuffleLowering(
- "x86-experimental-vector-shuffle-lowering", cl::init(false),
+ "x86-experimental-vector-shuffle-lowering", cl::init(true),
cl::desc("Enable an experimental vector shuffle lowering code path."),
cl::Hidden);
+static cl::opt<bool> ExperimentalVectorShuffleLegality(
+ "x86-experimental-vector-shuffle-legality", cl::init(false),
+ cl::desc("Enable experimental shuffle legality based on the experimental "
+ "shuffle lowering. Should only be used with the experimental "
+ "shuffle lowering."),
+ cl::Hidden);
+
+static cl::opt<int> ReciprocalEstimateRefinementSteps(
+ "x86-recip-refinement-steps", cl::init(1),
+ cl::desc("Specify the number of Newton-Raphson iterations applied to the "
+ "result of the hardware reciprocal estimate instruction."),
+ cl::NotHidden);
+
// Forward declarations.
static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
SDValue V2);
@@ -99,21 +114,18 @@ static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
// If the input is a buildvector just emit a smaller one.
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
- makeArrayRef(Vec->op_begin()+NormalizedIdxVal,
+ makeArrayRef(Vec->op_begin() + NormalizedIdxVal,
ElemsPerChunk));
SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
- SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
- VecIdx);
-
- return Result;
-
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
}
+
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
/// instructions or a simple subregister reference. Idx is an index in the
-/// 128 bits we want. It need not be aligned to a 128-bit bounday. That makes
+/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering EXTRACT_VECTOR_ELT operations easier.
static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, SDLoc dl) {
@@ -150,25 +162,23 @@ static SDValue InsertSubVector(SDValue Result, SDValue Vec,
* ElemsPerChunk);
SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
- return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
- VecIdx);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
}
+
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
/// simple superregister reference. Idx is an index in the 128 bits
-/// we want. It need not be aligned to a 128-bit bounday. That makes
+/// we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering INSERT_VECTOR_ELT operations easier.
-static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
- unsigned IdxVal, SelectionDAG &DAG,
- SDLoc dl) {
+static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG,SDLoc dl) {
assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
}
-static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
- unsigned IdxVal, SelectionDAG &DAG,
- SDLoc dl) {
+static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
}
@@ -191,28 +201,10 @@ static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
}
-static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
- if (TT.isOSBinFormatMachO()) {
- if (TT.getArch() == Triple::x86_64)
- return new X86_64MachoTargetObjectFile();
- return new TargetLoweringObjectFileMachO();
- }
-
- if (TT.isOSLinux())
- return new X86LinuxTargetObjectFile();
- if (TT.isOSBinFormatELF())
- return new TargetLoweringObjectFileELF();
- if (TT.isKnownWindowsMSVCEnvironment())
- return new X86WindowsTargetObjectFile();
- if (TT.isOSBinFormatCOFF())
- return new TargetLoweringObjectFileCOFF();
- llvm_unreachable("unknown subtarget type");
-}
-
// FIXME: This should stop caching the target machine as soon as
// we can remove resetOperationActions et al.
-X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
- : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
+X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM)
+ : TargetLowering(TM) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
X86ScalarSSEf64 = Subtarget->hasSSE2();
X86ScalarSSEf32 = Subtarget->hasSSE1();
@@ -240,13 +232,13 @@ void X86TargetLowering::resetOperationActions() {
// Set up the TargetLowering object.
static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
- // X86 is weird, it always uses i8 for shift amounts and setcc results.
+ // X86 is weird. It always uses i8 for shift amounts and setcc results.
setBooleanContents(ZeroOrOneBooleanContent);
// X86-SSE is even stranger. It uses -1 or 0 for vector masks.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
- // For 64-bit since we have so many registers use the ILP scheduler, for
- // 32-bit code use the register pressure specific scheduling.
+ // For 64-bit, since we have so many registers, use the ILP scheduler.
+ // For 32-bit, use the register pressure specific scheduling.
// For Atom, always use ILP scheduling.
if (Subtarget->isAtom())
setSchedulingPreference(Sched::ILP);
@@ -255,13 +247,14 @@ void X86TargetLowering::resetOperationActions() {
else
setSchedulingPreference(Sched::RegPressure);
const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
+ TM.getSubtarget<X86Subtarget>().getRegisterInfo();
setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
- // Bypass expensive divides on Atom when compiling with O2
- if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
- addBypassSlowDiv(32, 8);
- if (Subtarget->is64Bit())
+ // Bypass expensive divides on Atom when compiling with O2.
+ if (TM.getOptLevel() >= CodeGenOpt::Default) {
+ if (Subtarget->hasSlowDivide32())
+ addBypassSlowDiv(32, 8);
+ if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit())
addBypassSlowDiv(64, 16);
}
@@ -306,7 +299,8 @@ void X86TargetLowering::resetOperationActions() {
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, &X86::GR64RegClass);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
@@ -531,7 +525,9 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
- setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f80, MVT::f16, Expand);
@@ -661,8 +657,7 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
- setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
- MVT::i64 : MVT::i32, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom);
if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
// f32 and f64 use SSE.
@@ -810,13 +805,13 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
setOperationAction(ISD::FEXP, MVT::f80, Expand);
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
// First set operation action for all vector types to either promote
// (for widening) or expand (for scalarization). Then we will selectively
// turn on ones that can be effectively codegen'd.
- for (int i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
+ for (MVT VT : MVT::vector_valuetypes()) {
setOperationAction(ISD::ADD , VT, Expand);
setOperationAction(ISD::SUB , VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
@@ -885,18 +880,19 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::ANY_EXTEND, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
- for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
- InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
- setTruncStoreAction(VT,
- (MVT::SimpleValueType)InnerVT, Expand);
- setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
+ setTruncStoreAction(InnerVT, VT, Expand);
+
+ setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
- // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like types,
- // we have to deal with them whether we ask for Expansion or not. Setting
- // Expand causes its own optimisation problems though, so leave them legal.
- if (VT.getVectorElementType() == MVT::i1)
- setLoadExtAction(ISD::EXTLOAD, VT, Expand);
+ // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
+ // types, we have to deal with them whether we ask for Expansion or not.
+ // Setting Expand causes its own optimisation problems though, so leave
+ // them legal.
+ if (VT.getVectorElementType() == MVT::i1)
+ setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
+ }
}
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
@@ -953,12 +949,13 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
}
if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
- // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
+ // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
// registers cannot be used even for integer operations.
addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
@@ -999,6 +996,14 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+ // Only provide customized ctpop vector bit twiddling for vector types we
+ // know to perform better than using the popcnt instructions on each vector
+ // element. If popcnt isn't supported, always provide the custom version.
+ if (!Subtarget->hasPOPCNT()) {
+ setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
+ }
+
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
MVT VT = (MVT::SimpleValueType)i;
@@ -1013,6 +1018,22 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
+ // We support custom legalizing of sext and anyext loads for specific
+ // memory vector types which we can load as a scalar (or sequence of
+ // scalars) and extend in-register to a legal 128-bit vector type. For sext
+ // loads these must work with a single scalar load.
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
+ }
+
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
@@ -1064,7 +1085,8 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal);
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
@@ -1106,7 +1128,15 @@ void X86TargetLowering::resetOperationActions() {
// some vselects for now.
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
- // i8 and i16 vectors are custom , because the source register and source
+ // SSE41 brings specific instructions for doing vector sign extend even in
+ // cases where we don't have SRA.
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
+ }
+
+ // i8 and i16 vectors are custom because the source register and source
// source memory operand types are not the same width. f32 vectors are
// custom since the immediate controlling the insert encodes additional
// information.
@@ -1120,7 +1150,7 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
- // FIXME: these should be Legal but thats only for the case where
+ // FIXME: these should be Legal, but that's only for the case where
// the index is constant. For now custom expand to deal with that.
if (Subtarget->is64Bit()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
@@ -1200,7 +1230,8 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, Legal);
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
setOperationAction(ISD::SRL, MVT::v16i16, Custom);
setOperationAction(ISD::SRL, MVT::v32i8, Custom);
@@ -1270,6 +1301,20 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::VSELECT, MVT::v16i16, Custom);
setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
+
+ // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
+ // when we have a 256bit-wide blend with immediate.
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
+
+ // Only provide customized ctpop vector bit twiddling for vector types we
+ // know to perform better than using the popcnt instructions on each
+ // vector element. If popcnt isn't supported, always provide the custom
+ // version.
+ if (!Subtarget->hasPOPCNT())
+ setOperationAction(ISD::CTPOP, MVT::v4i64, Custom);
+
+ // Custom CTPOP always performs better on natively supported v8i32
+ setOperationAction(ISD::CTPOP, MVT::v8i32, Custom);
} else {
setOperationAction(ISD::ADD, MVT::v4i64, Custom);
setOperationAction(ISD::ADD, MVT::v8i32, Custom);
@@ -1298,15 +1343,16 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::SRA, MVT::v8i32, Custom);
// Custom lower several nodes for 256-bit types.
- for (int i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
-
+ for (MVT VT : MVT::vector_valuetypes()) {
+ if (VT.getScalarSizeInBits() >= 32) {
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
+ }
// Extract subvector is special because the value type
// (result) is 128-bit but the source is 256-bit wide.
- if (VT.is128BitVector())
+ if (VT.is128BitVector()) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
-
+ }
// Do not attempt to custom lower other non-256-bit vectors
if (!VT.is256BitVector())
continue;
@@ -1351,12 +1397,14 @@ void X86TargetLowering::resetOperationActions() {
addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
+
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Custom);
setOperationAction(ISD::XOR, MVT::i1, Legal);
setOperationAction(ISD::OR, MVT::i1, Legal);
setOperationAction(ISD::AND, MVT::i1, Legal);
- setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, Legal);
setOperationAction(ISD::LOAD, MVT::v16f32, Legal);
setOperationAction(ISD::LOAD, MVT::v8f64, Legal);
setOperationAction(ISD::LOAD, MVT::v8i64, Legal);
@@ -1394,6 +1442,10 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
@@ -1466,16 +1518,13 @@ void X86TargetLowering::resetOperationActions() {
}
// Custom lower several nodes.
- for (int i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
-
+ for (MVT VT : MVT::vector_valuetypes()) {
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
// Extract subvector is special because the value type
// (result) is 256/128-bit but the source is 512-bit wide.
- if (VT.is128BitVector() || VT.is256BitVector())
+ if (VT.is128BitVector() || VT.is256BitVector()) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
-
+ }
if (VT.getVectorElementType() == MVT::i1)
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
@@ -1491,12 +1540,14 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
}
}
for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
MVT VT = (MVT::SimpleValueType)i;
- // Do not attempt to promote non-256-bit vectors
+ // Do not attempt to promote non-512-bit vectors.
if (!VT.is512BitVector())
continue;
@@ -1505,13 +1556,59 @@ void X86TargetLowering::resetOperationActions() {
}
}// has AVX-512
+ if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) {
+ addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
+ addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
+ addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
+
+ setOperationAction(ISD::LOAD, MVT::v32i16, Legal);
+ setOperationAction(ISD::LOAD, MVT::v64i8, Legal);
+ setOperationAction(ISD::SETCC, MVT::v32i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v64i1, Custom);
+ setOperationAction(ISD::ADD, MVT::v32i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v64i8, Legal);
+ setOperationAction(ISD::SUB, MVT::v32i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v64i8, Legal);
+ setOperationAction(ISD::MUL, MVT::v32i16, Legal);
+
+ for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
+ const MVT VT = (MVT::SimpleValueType)i;
+
+ const unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+
+ // Do not attempt to promote non-512-bit vectors.
+ if (!VT.is512BitVector())
+ continue;
+
+ if (EltSize < 32) {
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Legal);
+ }
+ }
+ }
+
+ if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) {
+ addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
+ addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
+
+ setOperationAction(ISD::SETCC, MVT::v4i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v2i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Legal);
+
+ setOperationAction(ISD::AND, MVT::v8i32, Legal);
+ setOperationAction(ISD::OR, MVT::v8i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v8i32, Legal);
+ setOperationAction(ISD::AND, MVT::v4i32, Legal);
+ setOperationAction(ISD::OR, MVT::v4i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v4i32, Legal);
+ }
+
// SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
// of this type with custom code.
- for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
- VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
- setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
- Custom);
- }
+ for (MVT VT : MVT::vector_valuetypes())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
@@ -1537,9 +1634,6 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::UMULO, VT, Custom);
}
- // There are no 8-bit 3-address imul/mul instructions
- setOperationAction(ISD::SMULO, MVT::i8, Expand);
- setOperationAction(ISD::UMULO, MVT::i8, Expand);
if (!Subtarget->is64Bit()) {
// These libcalls are not available in 32-bit.
@@ -1553,9 +1647,8 @@ void X86TargetLowering::resetOperationActions() {
setLibcallName(RTLIB::SINCOS_F32, "sincosf");
setLibcallName(RTLIB::SINCOS_F64, "sincos");
if (Subtarget->isTargetDarwin()) {
- // For MacOSX, we don't want to the normal expansion of a libcall to
- // sincos. We want to issue a libcall to __sincos_stret to avoid memory
- // traffic.
+ // For MacOSX, we don't want the normal expansion of a libcall to sincos.
+ // We want to issue a libcall to __sincos_stret to avoid memory traffic.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
@@ -1614,8 +1707,15 @@ void X86TargetLowering::resetOperationActions() {
// Predictable cmov don't hurt on atom because it's in-order.
PredictableSelectIsExpensive = !Subtarget->isAtom();
-
+ EnableExtLdPromotion = true;
setPrefFunctionAlignment(4); // 2^4 bytes.
+
+ verifyIntrinsicTables();
+}
+
+// This has so far only been implemented for 64-bit MachO.
+bool X86TargetLowering::useLoadStackGuardNode() const {
+ return Subtarget->isTargetMachO() && Subtarget->is64Bit();
}
TargetLoweringBase::LegalizeTypeAction
@@ -1632,16 +1732,46 @@ EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
- if (Subtarget->hasAVX512())
- switch(VT.getVectorNumElements()) {
- case 8: return MVT::v8i1;
- case 16: return MVT::v16i1;
+ const unsigned NumElts = VT.getVectorNumElements();
+ const EVT EltVT = VT.getVectorElementType();
+ if (VT.is512BitVector()) {
+ if (Subtarget->hasAVX512())
+ if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
+ EltVT == MVT::f32 || EltVT == MVT::f64)
+ switch(NumElts) {
+ case 8: return MVT::v8i1;
+ case 16: return MVT::v16i1;
+ }
+ if (Subtarget->hasBWI())
+ if (EltVT == MVT::i8 || EltVT == MVT::i16)
+ switch(NumElts) {
+ case 32: return MVT::v32i1;
+ case 64: return MVT::v64i1;
+ }
+ }
+
+ if (VT.is256BitVector() || VT.is128BitVector()) {
+ if (Subtarget->hasVLX())
+ if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
+ EltVT == MVT::f32 || EltVT == MVT::f64)
+ switch(NumElts) {
+ case 2: return MVT::v2i1;
+ case 4: return MVT::v4i1;
+ case 8: return MVT::v8i1;
+ }
+ if (Subtarget->hasBWI() && Subtarget->hasVLX())
+ if (EltVT == MVT::i8 || EltVT == MVT::i16)
+ switch(NumElts) {
+ case 8: return MVT::v8i1;
+ case 16: return MVT::v16i1;
+ case 32: return MVT::v32i1;
+ }
}
return VT.changeVectorElementTypeToInteger();
}
-/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
+/// Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
if (MaxAlign == 16)
@@ -1666,7 +1796,7 @@ static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
}
}
-/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
@@ -1685,7 +1815,7 @@ unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
return Align;
}
-/// getOptimalMemOpType - Returns the target specific optimal type for load
+/// Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
@@ -1742,15 +1872,16 @@ bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
}
bool
-X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
- unsigned,
- bool *Fast) const {
+X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
if (Fast)
*Fast = Subtarget->isUnalignedMemAccessFast();
return true;
}
-/// getJumpTableEncoding - Return the entry encoding for a jump table in the
+/// Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned X86TargetLowering::getJumpTableEncoding() const {
@@ -1776,8 +1907,7 @@ X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
MCSymbolRefExpr::VK_GOTOFF, Ctx);
}
-/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
-/// jumptable.
+/// Returns relocation base for the given PIC jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget->is64Bit())
@@ -1787,9 +1917,8 @@ SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
return Table;
}
-/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
-/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
-/// MCExpr.
+/// This returns the relocation base for the given PIC jumptable,
+/// the same as getPICJumpTableRelocBase, but as an MCExpr.
const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
MCContext &Ctx) const {
@@ -1810,9 +1939,7 @@ X86TargetLowering::findRepresentativeClass(MVT VT) const{
default:
return TargetLowering::findRepresentativeClass(VT);
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
- RRC = Subtarget->is64Bit() ?
- (const TargetRegisterClass*)&X86::GR64RegClass :
- (const TargetRegisterClass*)&X86::GR32RegClass;
+ RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
break;
case MVT::x86mmx:
RRC = &X86::VR64RegClass;
@@ -1867,8 +1994,7 @@ X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, MF.getTarget(),
- RVLocs, Context);
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_X86);
}
@@ -1887,8 +2013,7 @@ X86TargetLowering::LowerReturn(SDValue Chain,
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, DAG.getTarget(),
- RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
SDValue Flag;
@@ -1905,7 +2030,7 @@ X86TargetLowering::LowerReturn(SDValue Chain,
SDValue ValToCopy = OutVals[i];
EVT ValVT = ValToCopy.getValueType();
- // Promote values to the appropriate types
+ // Promote values to the appropriate types.
if (VA.getLocInfo() == CCValAssign::SExt)
ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::ZExt)
@@ -1916,7 +2041,7 @@ X86TargetLowering::LowerReturn(SDValue Chain,
ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
assert(VA.getLocInfo() != CCValAssign::FPExt &&
- "Unexpected FP-extend for return value.");
+ "Unexpected FP-extend for return value.");
// If this is x86-64, and we disabled SSE, we can't return FP values,
// or SSE or MMX vectors.
@@ -1934,8 +2059,8 @@ X86TargetLowering::LowerReturn(SDValue Chain,
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
- if (VA.getLocReg() == X86::ST0 ||
- VA.getLocReg() == X86::ST1) {
+ if (VA.getLocReg() == X86::FP0 ||
+ VA.getLocReg() == X86::FP1) {
// If this is a copy from an xmm register to ST(0), use an FPExtend to
// change the value to the FP stack register class.
if (isScalarFPTypeInSSEReg(VA.getValVT()))
@@ -2021,6 +2146,13 @@ bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
UI != UE; ++UI) {
if (UI->getOpcode() != X86ISD::RET_FLAG)
return false;
+ // If we are returning more than one value, we can definitely
+ // not make a tail call see PR19530
+ if (UI->getNumOperands() > 4)
+ return false;
+ if (UI->getNumOperands() == 4 &&
+ UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
+ return false;
HasRet = true;
}
@@ -2031,8 +2163,8 @@ bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
return true;
}
-MVT
-X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
+EVT
+X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const {
MVT ReturnMVT;
// TODO: Is this also valid on 32-bit?
@@ -2041,11 +2173,11 @@ X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
else
ReturnMVT = MVT::i32;
- MVT MinVT = getRegisterType(ReturnMVT);
+ EVT MinVT = getRegisterType(Context, ReturnMVT);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
-/// LowerCallResult - Lower the result values of a call into the
+/// Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue
@@ -2058,8 +2190,8 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool Is64Bit = Subtarget->is64Bit();
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
@@ -2073,33 +2205,21 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
report_fatal_error("SSE register return with SSE disabled");
}
- SDValue Val;
-
- // If this is a call to a function that returns an fp value on the floating
- // point stack, we must guarantee the value is popped from the stack, so
- // a CopyFromReg is not good enough - the copy instruction may be eliminated
- // if the return value is not used. We use the FpPOP_RETVAL instruction
- // instead.
- if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
- // If we prefer to use the value in xmm registers, copy it out as f80 and
- // use a truncate to move it from fp stack reg to xmm reg.
- if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
- SDValue Ops[] = { Chain, InFlag };
- Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
- MVT::Other, MVT::Glue, Ops), 1);
- Val = Chain.getValue(0);
-
- // Round the f80 to the right size, which also moves it to the appropriate
- // xmm register.
- if (CopyVT != VA.getValVT())
- Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
- // This truncation won't change the value.
- DAG.getIntPtrConstant(1));
- } else {
- Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
- CopyVT, InFlag).getValue(1);
- Val = Chain.getValue(0);
- }
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
+ isScalarFPTypeInSSEReg(VA.getValVT()))
+ CopyVT = MVT::f80;
+
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ CopyVT, InFlag).getValue(1);
+ SDValue Val = Chain.getValue(0);
+
+ if (CopyVT != VA.getValVT())
+ Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
+ // This truncation won't change the value.
+ DAG.getIntPtrConstant(1));
+
InFlag = Chain.getValue(2);
InVals.push_back(Val);
}
@@ -2137,8 +2257,7 @@ callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
return StackStructReturn;
}
-/// ArgsAreStructReturn - Determines whether a function uses struct
-/// return semantics.
+/// Determines whether a function uses struct return semantics.
static StructReturnType
argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
if (Ins.empty())
@@ -2152,10 +2271,9 @@ argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
return StackStructReturn;
}
-/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
-/// by "Src" to address "Dst" with size and alignment information specified by
-/// the specific parameter attribute. The copy will be passed as a byval
-/// function parameter.
+/// Make a copy of an aggregate at address specified by "Src" to address
+/// "Dst" with size and alignment information specified by the specific
+/// parameter attribute. The copy will be passed as a byval function parameter.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
@@ -2167,7 +2285,7 @@ CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
MachinePointerInfo(), MachinePointerInfo());
}
-/// IsTailCallConvention - Return true if the calling convention is one that
+/// Return true if the calling convention is one that
/// supports tail call optimization.
static bool IsTailCallConvention(CallingConv::ID CC) {
return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
@@ -2192,7 +2310,7 @@ bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
return true;
}
-/// FuncIsMadeTailCallSafe - Return true if the function is being made into
+/// Return true if the function is being made into
/// a tailcall target by changing its ABI.
static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
bool GuaranteedTailCallOpt) {
@@ -2240,6 +2358,55 @@ X86TargetLowering::LowerMemArgument(SDValue Chain,
}
}
+// FIXME: Get this from tablegen.
+static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
+ const X86Subtarget *Subtarget) {
+ assert(Subtarget->is64Bit());
+
+ if (Subtarget->isCallingConvWin64(CallConv)) {
+ static const MCPhysReg GPR64ArgRegsWin64[] = {
+ X86::RCX, X86::RDX, X86::R8, X86::R9
+ };
+ return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
+ }
+
+ static const MCPhysReg GPR64ArgRegs64Bit[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
+ };
+ return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
+}
+
+// FIXME: Get this from tablegen.
+static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
+ CallingConv::ID CallConv,
+ const X86Subtarget *Subtarget) {
+ assert(Subtarget->is64Bit());
+ if (Subtarget->isCallingConvWin64(CallConv)) {
+ // The XMM registers which might contain var arg parameters are shadowed
+ // in their paired GPR. So we only need to save the GPR to their home
+ // slots.
+ // TODO: __vectorcall will change this.
+ return None;
+ }
+
+ const Function *Fn = MF.getFunction();
+ bool NoImplicitFloatOps = Fn->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
+ assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) &&
+ "SSE register cannot be used when SSE is disabled!");
+ if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
+ !Subtarget->hasSSE1())
+ // Kernel mode asks for SSE to be disabled, so there are no XMM argument
+ // registers.
+ return None;
+
+ static const MCPhysReg XMMArgRegs64Bit[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
+}
+
SDValue
X86TargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
@@ -2267,8 +2434,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, MF, DAG.getTarget(),
- ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (IsWin64)
@@ -2312,6 +2478,10 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
RC = &X86::VK8RegClass;
else if (RegVT == MVT::v16i1)
RC = &X86::VK16RegClass;
+ else if (RegVT == MVT::v32i1)
+ RC = &X86::VK32RegClass;
+ else if (RegVT == MVT::v64i1)
+ RC = &X86::VK64RegClass;
else
llvm_unreachable("Unknown argument type!");
@@ -2378,125 +2548,146 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
- // the start of the first vararg value... for expansion of llvm.va_start.
- if (isVarArg) {
- if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
- CallConv != CallingConv::X86_ThisCall)) {
- FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
+ // the start of the first vararg value... for expansion of llvm.va_start. We
+ // can skip this if there are no va_start calls.
+ if (MFI->hasVAStart() &&
+ (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
+ CallConv != CallingConv::X86_ThisCall))) {
+ FuncInfo->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(1, StackSize, true));
+ }
+
+ // Figure out if XMM registers are in use.
+ assert(!(MF.getTarget().Options.UseSoftFloat &&
+ Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat)) &&
+ "SSE register cannot be used when SSE is disabled!");
+
+ // 64-bit calling conventions support varargs and register parameters, so we
+ // have to do extra work to spill them in the prologue.
+ if (Is64Bit && isVarArg && MFI->hasVAStart()) {
+ // Find the first unallocated argument registers.
+ ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
+ ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
+ unsigned NumIntRegs =
+ CCInfo.getFirstUnallocated(ArgGPRs.data(), ArgGPRs.size());
+ unsigned NumXMMRegs =
+ CCInfo.getFirstUnallocated(ArgXMMs.data(), ArgXMMs.size());
+ assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
+ "SSE register cannot be used when SSE is disabled!");
+
+ // Gather all the live in physical registers.
+ SmallVector<SDValue, 6> LiveGPRs;
+ SmallVector<SDValue, 8> LiveXMMRegs;
+ SDValue ALVal;
+ for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
+ unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
+ LiveGPRs.push_back(
+ DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
+ }
+ if (!ArgXMMs.empty()) {
+ unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
+ for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
+ unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
+ LiveXMMRegs.push_back(
+ DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
+ }
}
- if (Is64Bit) {
- unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
-
- // FIXME: We should really autogenerate these arrays
- static const MCPhysReg GPR64ArgRegsWin64[] = {
- X86::RCX, X86::RDX, X86::R8, X86::R9
- };
- static const MCPhysReg GPR64ArgRegs64Bit[] = {
- X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
- };
- static const MCPhysReg XMMArgRegs64Bit[] = {
- X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
- X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
- };
- const MCPhysReg *GPR64ArgRegs;
- unsigned NumXMMRegs = 0;
-
- if (IsWin64) {
- // The XMM registers which might contain var arg parameters are shadowed
- // in their paired GPR. So we only need to save the GPR to their home
- // slots.
- TotalNumIntRegs = 4;
- GPR64ArgRegs = GPR64ArgRegsWin64;
- } else {
- TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
- GPR64ArgRegs = GPR64ArgRegs64Bit;
- NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
- TotalNumXMMRegs);
- }
- unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
- TotalNumIntRegs);
-
- bool NoImplicitFloatOps = Fn->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
- assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
- "SSE register cannot be used when SSE is disabled!");
- assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
- NoImplicitFloatOps) &&
- "SSE register cannot be used when SSE is disabled!");
- if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
- !Subtarget->hasSSE1())
- // Kernel mode asks for SSE to be disabled, so don't push them
- // on the stack.
- TotalNumXMMRegs = 0;
-
- if (IsWin64) {
- const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
- // Get to the caller-allocated home save location. Add 8 to account
- // for the return address.
- int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
- FuncInfo->setRegSaveFrameIndex(
+ if (IsWin64) {
+ const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
+ // Get to the caller-allocated home save location. Add 8 to account
+ // for the return address.
+ int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
+ FuncInfo->setRegSaveFrameIndex(
MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
- // Fixup to set vararg frame on shadow area (4 x i64).
- if (NumIntRegs < 4)
- FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
- } else {
- // For X86-64, if there are vararg parameters that are passed via
- // registers, then we must store them to their spots on the stack so
- // they may be loaded by deferencing the result of va_next.
- FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
- FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
- FuncInfo->setRegSaveFrameIndex(
- MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
- false));
- }
-
- // Store the integer parameter registers.
- SmallVector<SDValue, 8> MemOps;
- SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
- getPointerTy());
- unsigned Offset = FuncInfo->getVarArgsGPOffset();
- for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
- SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
- DAG.getIntPtrConstant(Offset));
- unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
- &X86::GR64RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
- SDValue Store =
- DAG.getStore(Val.getValue(1), dl, Val, FIN,
- MachinePointerInfo::getFixedStack(
- FuncInfo->getRegSaveFrameIndex(), Offset),
- false, false, 0);
- MemOps.push_back(Store);
- Offset += 8;
- }
-
- if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
- // Now store the XMM (fp + vector) parameter registers.
- SmallVector<SDValue, 11> SaveXMMOps;
- SaveXMMOps.push_back(Chain);
-
- unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
- SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
- SaveXMMOps.push_back(ALVal);
-
- SaveXMMOps.push_back(DAG.getIntPtrConstant(
- FuncInfo->getRegSaveFrameIndex()));
- SaveXMMOps.push_back(DAG.getIntPtrConstant(
- FuncInfo->getVarArgsFPOffset()));
-
- for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
- unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
- &X86::VR128RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
- SaveXMMOps.push_back(Val);
- }
- MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
- MVT::Other, SaveXMMOps));
- }
-
- if (!MemOps.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ // Fixup to set vararg frame on shadow area (4 x i64).
+ if (NumIntRegs < 4)
+ FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
+ } else {
+ // For X86-64, if there are vararg parameters that are passed via
+ // registers, then we must store them to their spots on the stack so
+ // they may be loaded by deferencing the result of va_next.
+ FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
+ FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
+ FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
+ ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
+ }
+
+ // Store the integer parameter registers.
+ SmallVector<SDValue, 8> MemOps;
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy());
+ unsigned Offset = FuncInfo->getVarArgsGPOffset();
+ for (SDValue Val : LiveGPRs) {
+ SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
+ DAG.getIntPtrConstant(Offset));
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo::getFixedStack(
+ FuncInfo->getRegSaveFrameIndex(), Offset),
+ false, false, 0);
+ MemOps.push_back(Store);
+ Offset += 8;
+ }
+
+ if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
+ // Now store the XMM (fp + vector) parameter registers.
+ SmallVector<SDValue, 12> SaveXMMOps;
+ SaveXMMOps.push_back(Chain);
+ SaveXMMOps.push_back(ALVal);
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getRegSaveFrameIndex()));
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getVarArgsFPOffset()));
+ SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
+ LiveXMMRegs.end());
+ MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
+ MVT::Other, SaveXMMOps));
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ }
+
+ if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
+ // Find the largest legal vector type.
+ MVT VecVT = MVT::Other;
+ // FIXME: Only some x86_32 calling conventions support AVX512.
+ if (Subtarget->hasAVX512() &&
+ (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
+ CallConv == CallingConv::Intel_OCL_BI)))
+ VecVT = MVT::v16f32;
+ else if (Subtarget->hasAVX())
+ VecVT = MVT::v8f32;
+ else if (Subtarget->hasSSE2())
+ VecVT = MVT::v4f32;
+
+ // We forward some GPRs and some vector types.
+ SmallVector<MVT, 2> RegParmTypes;
+ MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
+ RegParmTypes.push_back(IntVT);
+ if (VecVT != MVT::Other)
+ RegParmTypes.push_back(VecVT);
+
+ // Compute the set of forwarded registers. The rest are scratch.
+ SmallVectorImpl<ForwardedRegister> &Forwards =
+ FuncInfo->getForwardedMustTailRegParms();
+ CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
+
+ // Conservatively forward AL on x86_64, since it might be used for varargs.
+ if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
+ unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
+ }
+
+ // Copy all forwards from physical to virtual registers.
+ for (ForwardedRegister &F : Forwards) {
+ // FIXME: Can we use a less constrained schedule?
+ SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
+ F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
+ Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
}
}
@@ -2544,7 +2735,7 @@ X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
false, false, 0);
}
-/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
+/// Emit a load of return address if tail call
/// optimization is performed and it is required.
SDValue
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
@@ -2561,7 +2752,7 @@ X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
return SDValue(OutRetAddr.getNode(), 1);
}
-/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
+/// Emit a store of the return address if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
@@ -2599,6 +2790,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
StructReturnType SR = callIsStructReturn(Outs);
bool IsSibcall = false;
+ X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
if (MF.getTarget().Options.DisableTailCalls)
isTailCall = false;
@@ -2630,8 +2822,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, MF, MF.getTarget(),
- ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (IsWin64)
@@ -2652,7 +2843,6 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
int FPDiff = 0;
if (isTailCall && !IsSibcall && !IsMustTail) {
// Lower arguments at fp - stackoffset + fpdiff.
- X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
@@ -2671,8 +2861,12 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// arguments passed in memory when using inalloca.
if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
NumBytesToPush = 0;
- assert(ArgLocs.back().getLocMemOffset() == 0 &&
- "an inalloca argument must be the only memory argument");
+ if (!ArgLocs.back().isMemLoc())
+ report_fatal_error("cannot use inalloca attribute on a register "
+ "parameter");
+ if (ArgLocs.back().getLocMemOffset() != 0)
+ report_fatal_error("any parameter with the inalloca attribute must be "
+ "the only memory argument");
}
if (!IsSibcall)
@@ -2691,8 +2885,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
// Skip inalloca arguments, they have already been written.
ISD::ArgFlagsTy Flags = Outs[i].Flags;
@@ -2791,7 +2985,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
}
}
- if (Is64Bit && isVarArg && !IsWin64) {
+ if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
@@ -2813,6 +3007,14 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
DAG.getConstant(NumXMMRegs, MVT::i8)));
}
+ if (isVarArg && IsMustTail) {
+ const auto &Forwards = X86Info->getForwardedMustTailRegParms();
+ for (const auto &F : Forwards) {
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
+ RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
+ }
+ }
+
// For tail calls lower the arguments to the 'real' stack slots. Sibcalls
// don't need this because the eligibility check rejects calls that require
// shuffling arguments passed in memory.
@@ -2889,10 +3091,11 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// through a register, since the call instruction's 32-bit
// pc-relative offset may not be large enough to hold the whole
// address.
- } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ } else if (Callee->getOpcode() == ISD::GlobalAddress) {
// If the callee is a GlobalAddress node (quite common, every direct call
// is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
// it.
+ GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
// We should use extra load for direct calls to dllimported functions in
// non-JIT mode.
@@ -2962,6 +3165,9 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
OpFlags);
+ } else if (Subtarget->isTarget64BitILP32() && Callee->getValueType(0) == MVT::i32) {
+ // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
+ Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
}
// Returns a chain & a flag for retval copy to use.
@@ -2988,7 +3194,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
@@ -3079,9 +3285,9 @@ X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
- const TargetFrameLowering &TFI = *TM.getFrameLowering();
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
+ const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
uint64_t AlignMask = StackAlignment - 1;
int64_t Offset = StackSize;
@@ -3194,8 +3400,8 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
// emit a special epilogue.
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
if (RegInfo->needsStackRealignment(MF))
return false;
@@ -3223,8 +3429,8 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
return false;
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
@@ -3244,12 +3450,12 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
}
if (Unused) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
- if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
+ if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
return false;
}
}
@@ -3258,13 +3464,13 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// results are returned in the same way as what the caller expects.
if (!CCMatch) {
SmallVector<CCValAssign, 16> RVLocs1;
- CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs1, *DAG.getContext());
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
+ *DAG.getContext());
CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
SmallVector<CCValAssign, 16> RVLocs2;
- CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
- DAG.getTarget(), RVLocs2, *DAG.getContext());
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
+ *DAG.getContext());
CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
if (RVLocs1.size() != RVLocs2.size())
@@ -3290,8 +3496,8 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
- DAG.getTarget(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
// Allocate shadow area for Win64
if (IsCalleeWin64)
@@ -3308,7 +3514,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const X86InstrInfo *TII =
- static_cast<const X86InstrInfo *>(DAG.getTarget().getInstrInfo());
+ static_cast<const X86InstrInfo *>(DAG.getSubtarget().getInstrInfo());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
@@ -3336,7 +3542,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// In PIC we need an extra register to formulate the address computation
// for the callee.
unsigned MaxInRegs =
- (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
+ (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
@@ -3378,6 +3584,8 @@ static bool MayFoldIntoStore(SDValue Op) {
static bool isTargetShuffle(unsigned Opcode) {
switch(Opcode) {
default: return false;
+ case X86ISD::BLENDI:
+ case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
@@ -3395,7 +3603,7 @@ static bool isTargetShuffle(unsigned Opcode) {
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
- case X86ISD::VPERMILP:
+ case X86ISD::VPERMILPI:
case X86ISD::VPERM2X128:
case X86ISD::VPERMI:
return true;
@@ -3421,7 +3629,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
- case X86ISD::VPERMILP:
+ case X86ISD::VPERMILPI:
case X86ISD::VPERMI:
return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
}
@@ -3433,6 +3641,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::PALIGNR:
+ case X86ISD::VALIGN:
case X86ISD::SHUFP:
case X86ISD::VPERM2X128:
return DAG.getNode(Opc, dl, VT, V1, V2,
@@ -3459,8 +3668,8 @@ static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
@@ -3500,7 +3709,7 @@ bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
// For kernel code model we know that all object resist in the negative half
// of 32bits address space. We may not accept negative offsets, since they may
// be just off and we may accept pretty large positive ones.
- if (M == CodeModel::Kernel && Offset > 0)
+ if (M == CodeModel::Kernel && Offset >= 0)
return true;
return false;
@@ -3510,23 +3719,18 @@ bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
/// own arguments. Callee pop is necessary to support tail calls.
bool X86::isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool TailCallOpt) {
- if (IsVarArg)
- return false;
-
switch (CallingConv) {
default:
return false;
case CallingConv::X86_StdCall:
- return !is64Bit;
case CallingConv::X86_FastCall:
- return !is64Bit;
case CallingConv::X86_ThisCall:
return !is64Bit;
case CallingConv::Fast:
- return TailCallOpt;
case CallingConv::GHC:
- return TailCallOpt;
case CallingConv::HiPE:
+ if (IsVarArg)
+ return false;
return TailCallOpt;
}
}
@@ -3667,6 +3871,18 @@ bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
return false;
}
+bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
+ ISD::LoadExtType ExtTy,
+ EVT NewVT) const {
+ // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
+ // relocation target a movq or addq instruction: don't let the load shrink.
+ SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
+ if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
+ if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
+ return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
+ return true;
+}
+
/// \brief Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
@@ -3679,6 +3895,24 @@ bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
return true;
}
+bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
+ unsigned Index) const {
+ if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
+ return false;
+
+ return (Index == 0 || Index == ResVT.getVectorNumElements());
+}
+
+bool X86TargetLowering::isCheapToSpeculateCttz() const {
+ // Speculate cttz only if we can directly use TZCNT.
+ return Subtarget->hasBMI();
+}
+
+bool X86TargetLowering::isCheapToSpeculateCtlz() const {
+ // Speculate ctlz only if we can directly use LZCNT.
+ return Subtarget->hasLZCNT();
+}
+
/// isUndefOrInRange - Return true if Val is undef or if its value falls within
/// the specified range (L, H].
static bool isUndefOrInRange(int Val, int Low, int Hi) {
@@ -3693,7 +3927,7 @@ static bool isUndefOrEqual(int Val, int CmpVal) {
/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size, falls within the specified
-/// sequential range (L, L+Pos]. or is undef.
+/// sequential range (Low, Low+Size]. or is undef.
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
unsigned Pos, unsigned Size, int Low) {
for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
@@ -3703,14 +3937,23 @@ static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
}
/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
-/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
-/// the second operand.
-static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
- if (VT == MVT::v4f32 || VT == MVT::v4i32 )
- return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
- if (VT == MVT::v2f64 || VT == MVT::v2i64)
- return (Mask[0] < 2 && Mask[1] < 2);
- return false;
+/// is suitable for input to PSHUFD. That is, it doesn't reference the other
+/// operand - by default will match for first operand.
+static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT,
+ bool TestSecondOperand = false) {
+ if (VT != MVT::v4f32 && VT != MVT::v4i32 &&
+ VT != MVT::v2f64 && VT != MVT::v2i64)
+ return false;
+
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned Lo = TestSecondOperand ? NumElems : 0;
+ unsigned Hi = Lo + NumElems;
+
+ for (unsigned i = 0; i < NumElems; ++i)
+ if (!isUndefOrInRange(Mask[i], (int)Lo, (int)Hi))
+ return false;
+
+ return true;
}
/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
@@ -3771,16 +4014,12 @@ static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
return true;
}
-/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
-/// is suitable for input to PALIGNR.
-static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
- const X86Subtarget *Subtarget) {
- if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
- (VT.is256BitVector() && !Subtarget->hasInt256()))
- return false;
-
+/// \brief Return true if the mask specifies a shuffle of elements that is
+/// suitable for input to intralane (palignr) or interlane (valign) vector
+/// right-shift.
+static bool isAlignrMask(ArrayRef<int> Mask, MVT VT, bool InterLane) {
unsigned NumElts = VT.getVectorNumElements();
- unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
+ unsigned NumLanes = InterLane ? 1: VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
// Do not handle 64-bit element shuffles with palignr.
@@ -3844,6 +4083,29 @@ static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
return true;
}
+/// \brief Return true if the node specifies a shuffle of elements that is
+/// suitable for input to PALIGNR.
+static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
+ const X86Subtarget *Subtarget) {
+ if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
+ (VT.is256BitVector() && !Subtarget->hasInt256()) ||
+ VT.is512BitVector())
+ // FIXME: Add AVX512BW.
+ return false;
+
+ return isAlignrMask(Mask, VT, false);
+}
+
+/// \brief Return true if the node specifies a shuffle of elements that is
+/// suitable for input to VALIGN.
+static bool isVALIGNMask(ArrayRef<int> Mask, MVT VT,
+ const X86Subtarget *Subtarget) {
+ // FIXME: Add AVX512VL.
+ if (!VT.is512BitVector() || !Subtarget->hasAVX512())
+ return false;
+ return isAlignrMask(Mask, VT, true);
+}
+
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
@@ -4086,43 +4348,34 @@ static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
assert(VT.getSizeInBits() >= 128 &&
"Unsupported vector type for unpckl");
- // AVX defines UNPCK* to operate independently on 128-bit lanes.
- unsigned NumLanes;
- unsigned NumOf256BitLanes;
unsigned NumElts = VT.getVectorNumElements();
- if (VT.is256BitVector()) {
- if (NumElts != 4 && NumElts != 8 &&
- (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
return false;
- NumLanes = 2;
- NumOf256BitLanes = 1;
- } else if (VT.is512BitVector()) {
- assert(VT.getScalarType().getSizeInBits() >= 32 &&
- "Unsupported vector type for unpckh");
- NumLanes = 2;
- NumOf256BitLanes = 2;
- } else {
- NumLanes = 1;
- NumOf256BitLanes = 1;
- }
- unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
- unsigned NumLaneElts = NumEltsInStride/NumLanes;
+ assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) &&
+ "Unsupported vector type for unpckh");
- for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
- for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
- for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
- int BitI = Mask[l256*NumEltsInStride+l+i];
- int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
- if (!isUndefOrEqual(BitI, j+l256*NumElts))
- return false;
- if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
+ // AVX defines UNPCK* to operate independently on 128-bit lanes.
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l+i];
+ int BitI1 = Mask[l+i+1];
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (V2IsSplat) {
+ if (!isUndefOrEqual(BitI1, NumElts))
return false;
- if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
+ } else {
+ if (!isUndefOrEqual(BitI1, j + NumElts))
return false;
}
}
}
+
return true;
}
@@ -4133,39 +4386,29 @@ static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
assert(VT.getSizeInBits() >= 128 &&
"Unsupported vector type for unpckh");
- // AVX defines UNPCK* to operate independently on 128-bit lanes.
- unsigned NumLanes;
- unsigned NumOf256BitLanes;
unsigned NumElts = VT.getVectorNumElements();
- if (VT.is256BitVector()) {
- if (NumElts != 4 && NumElts != 8 &&
- (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
return false;
- NumLanes = 2;
- NumOf256BitLanes = 1;
- } else if (VT.is512BitVector()) {
- assert(VT.getScalarType().getSizeInBits() >= 32 &&
- "Unsupported vector type for unpckh");
- NumLanes = 2;
- NumOf256BitLanes = 2;
- } else {
- NumLanes = 1;
- NumOf256BitLanes = 1;
- }
- unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
- unsigned NumLaneElts = NumEltsInStride/NumLanes;
+ assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) &&
+ "Unsupported vector type for unpckh");
- for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
- for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
- for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
- int BitI = Mask[l256*NumEltsInStride+l+i];
- int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
- if (!isUndefOrEqual(BitI, j+l256*NumElts))
- return false;
- if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
+ // AVX defines UNPCK* to operate independently on 128-bit lanes.
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts/NumLanes;
+
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l+i];
+ int BitI1 = Mask[l+i+1];
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (V2IsSplat) {
+ if (isUndefOrEqual(BitI1, NumElts))
return false;
- if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
+ } else {
+ if (!isUndefOrEqual(BitI1, j+NumElts))
return false;
}
}
@@ -4668,11 +4911,13 @@ static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
return Mask;
}
-/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
-static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
+/// \brief Return the appropriate immediate to shuffle the specified
+/// VECTOR_SHUFFLE mask with the PALIGNR (if InterLane is false) or with
+/// VALIGN (if Interlane is true) instructions.
+static unsigned getShuffleAlignrImmediate(ShuffleVectorSDNode *SVOp,
+ bool InterLane) {
MVT VT = SVOp->getSimpleValueType(0);
- unsigned EltSize = VT.is512BitVector() ? 1 :
+ unsigned EltSize = InterLane ? 1 :
VT.getVectorElementType().getSizeInBits() >> 3;
unsigned NumElts = VT.getVectorNumElements();
@@ -4693,6 +4938,19 @@ static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
return (Val - i) * EltSize;
}
+/// \brief Return the appropriate immediate to shuffle the specified
+/// VECTOR_SHUFFLE mask with the PALIGNR instruction.
+static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
+ return getShuffleAlignrImmediate(SVOp, false);
+}
+
+/// \brief Return the appropriate immediate to shuffle the specified
+/// VECTOR_SHUFFLE mask with the VALIGN instruction.
+static unsigned getShuffleVALIGNImmediate(ShuffleVectorSDNode *SVOp) {
+ return getShuffleAlignrImmediate(SVOp, true);
+}
+
+
static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
@@ -4891,32 +5149,32 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
SDValue Vec;
if (VT.is128BitVector()) { // SSE
if (Subtarget->hasSSE2()) { // SSE2
- SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Cst = DAG.getConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
} else { // SSE1
- SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
+ SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
}
} else if (VT.is256BitVector()) { // AVX
if (Subtarget->hasInt256()) { // AVX2
- SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Cst = DAG.getConstant(0, MVT::i32);
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
} else {
// 256-bit logic and arithmetic instructions in AVX are all
// floating-point, no support for integer ops. Emit fp zeroed vectors.
- SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
+ SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
}
} else if (VT.is512BitVector()) { // AVX-512
- SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Cst = DAG.getConstant(0, MVT::i32);
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
} else if (VT.getScalarType() == MVT::i1) {
assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
- SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
+ SDValue Cst = DAG.getConstant(0, MVT::i1);
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
} else
@@ -4933,7 +5191,7 @@ static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
SDLoc dl) {
assert(VT.isVector() && "Expected a vector type");
- SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
+ SDValue Cst = DAG.getConstant(~0U, MVT::i32);
SDValue Vec;
if (VT.is256BitVector()) {
if (HasInt256) { // AVX2
@@ -5103,37 +5361,49 @@ static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
}
/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
-/// target specific opcode. Returns true if the Mask could be calculated.
-/// Sets IsUnary to true if only uses one source.
+/// target specific opcode. Returns true if the Mask could be calculated. Sets
+/// IsUnary to true if only uses one source. Note that this will set IsUnary for
+/// shuffles which use a single input multiple times, and in those cases it will
+/// adjust the mask to only have indices within that single input.
static bool getTargetShuffleMask(SDNode *N, MVT VT,
SmallVectorImpl<int> &Mask, bool &IsUnary) {
unsigned NumElems = VT.getVectorNumElements();
SDValue ImmN;
IsUnary = false;
+ bool IsFakeUnary = false;
switch(N->getOpcode()) {
+ case X86ISD::BLENDI:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ break;
case X86ISD::SHUFP:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::UNPCKH:
DecodeUNPCKHMask(VT, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::UNPCKL:
DecodeUNPCKLMask(VT, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVHLPS:
DecodeMOVHLPSMask(NumElems, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVLHPS:
DecodeMOVLHPSMask(NumElems, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::PALIGNR:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
break;
case X86ISD::PSHUFD:
- case X86ISD::VPERMILP:
+ case X86ISD::VPERMILPI:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
@@ -5148,6 +5418,66 @@ static bool getTargetShuffleMask(SDNode *N, MVT VT,
DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
+ case X86ISD::PSHUFB: {
+ IsUnary = true;
+ SDValue MaskNode = N->getOperand(1);
+ while (MaskNode->getOpcode() == ISD::BITCAST)
+ MaskNode = MaskNode->getOperand(0);
+
+ if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
+ // If we have a build-vector, then things are easy.
+ EVT VT = MaskNode.getValueType();
+ assert(VT.isVector() &&
+ "Can't produce a non-vector with a build_vector!");
+ if (!VT.isInteger())
+ return false;
+
+ int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
+
+ SmallVector<uint64_t, 32> RawMask;
+ for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
+ SDValue Op = MaskNode->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF) {
+ RawMask.push_back((uint64_t)SM_SentinelUndef);
+ continue;
+ }
+ auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
+ if (!CN)
+ return false;
+ APInt MaskElement = CN->getAPIntValue();
+
+ // We now have to decode the element which could be any integer size and
+ // extract each byte of it.
+ for (int j = 0; j < NumBytesPerElement; ++j) {
+ // Note that this is x86 and so always little endian: the low byte is
+ // the first byte of the mask.
+ RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
+ MaskElement = MaskElement.lshr(8);
+ }
+ }
+ DecodePSHUFBMask(RawMask, Mask);
+ break;
+ }
+
+ auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
+ if (!MaskLoad)
+ return false;
+
+ SDValue Ptr = MaskLoad->getBasePtr();
+ if (Ptr->getOpcode() == X86ISD::Wrapper)
+ Ptr = Ptr->getOperand(0);
+
+ auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
+ if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
+ return false;
+
+ if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
+ DecodePSHUFBMask(C, Mask);
+ break;
+ }
+
+ return false;
+ }
case X86ISD::VPERMI:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
@@ -5169,17 +5499,29 @@ static bool getTargetShuffleMask(SDNode *N, MVT VT,
DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
if (Mask.empty()) return false;
break;
+ case X86ISD::MOVSLDUP:
+ DecodeMOVSLDUPMask(VT, Mask);
+ break;
+ case X86ISD::MOVSHDUP:
+ DecodeMOVSHDUPMask(VT, Mask);
+ break;
case X86ISD::MOVDDUP:
case X86ISD::MOVLHPD:
case X86ISD::MOVLPD:
case X86ISD::MOVLPS:
- case X86ISD::MOVSHDUP:
- case X86ISD::MOVSLDUP:
// Not yet implemented
return false;
default: llvm_unreachable("unknown target shuffle node");
}
+ // If we have a fake unary shuffle, the shuffle mask is spread across two
+ // inputs that are actually the same node. Re-map the mask to always point
+ // into the first input.
+ if (IsFakeUnary)
+ for (int &M : Mask)
+ if (M >= (int)Mask.size())
+ M -= Mask.size();
+
return true;
}
@@ -5470,76 +5812,112 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
}
/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
-static SDValue LowerBuildVectorv4x32(SDValue Op, unsigned NumElems,
- unsigned NonZeros, unsigned NumNonZero,
- unsigned NumZero, SelectionDAG &DAG,
+static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget *Subtarget,
const TargetLowering &TLI) {
- // We know there's at least one non-zero element
- unsigned FirstNonZeroIdx = 0;
- SDValue FirstNonZero = Op->getOperand(FirstNonZeroIdx);
- while (FirstNonZero.getOpcode() == ISD::UNDEF ||
- X86::isZeroNode(FirstNonZero)) {
- ++FirstNonZeroIdx;
- FirstNonZero = Op->getOperand(FirstNonZeroIdx);
+ // Find all zeroable elements.
+ bool Zeroable[4];
+ for (int i=0; i < 4; ++i) {
+ SDValue Elt = Op->getOperand(i);
+ Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt));
+ }
+ assert(std::count_if(&Zeroable[0], &Zeroable[4],
+ [](bool M) { return !M; }) > 1 &&
+ "We expect at least two non-zero elements!");
+
+ // We only know how to deal with build_vector nodes where elements are either
+ // zeroable or extract_vector_elt with constant index.
+ SDValue FirstNonZero;
+ unsigned FirstNonZeroIdx;
+ for (unsigned i=0; i < 4; ++i) {
+ if (Zeroable[i])
+ continue;
+ SDValue Elt = Op->getOperand(i);
+ if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Elt.getOperand(1)))
+ return SDValue();
+ // Make sure that this node is extracting from a 128-bit vector.
+ MVT VT = Elt.getOperand(0).getSimpleValueType();
+ if (!VT.is128BitVector())
+ return SDValue();
+ if (!FirstNonZero.getNode()) {
+ FirstNonZero = Elt;
+ FirstNonZeroIdx = i;
+ }
}
- if (FirstNonZero.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(FirstNonZero.getOperand(1)))
- return SDValue();
+ assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
+ SDValue V1 = FirstNonZero.getOperand(0);
+ MVT VT = V1.getSimpleValueType();
- SDValue V = FirstNonZero.getOperand(0);
- MVT VVT = V.getSimpleValueType();
- if (!Subtarget->hasSSE41() || (VVT != MVT::v4f32 && VVT != MVT::v4i32))
- return SDValue();
+ // See if this build_vector can be lowered as a blend with zero.
+ SDValue Elt;
+ unsigned EltMaskIdx, EltIdx;
+ int Mask[4];
+ for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
+ if (Zeroable[EltIdx]) {
+ // The zero vector will be on the right hand side.
+ Mask[EltIdx] = EltIdx+4;
+ continue;
+ }
- unsigned FirstNonZeroDst =
- cast<ConstantSDNode>(FirstNonZero.getOperand(1))->getZExtValue();
- unsigned CorrectIdx = FirstNonZeroDst == FirstNonZeroIdx;
- unsigned IncorrectIdx = CorrectIdx ? -1U : FirstNonZeroIdx;
- unsigned IncorrectDst = CorrectIdx ? -1U : FirstNonZeroDst;
+ Elt = Op->getOperand(EltIdx);
+ // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
+ EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
+ if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
+ break;
+ Mask[EltIdx] = EltIdx;
+ }
- for (unsigned Idx = FirstNonZeroIdx + 1; Idx < NumElems; ++Idx) {
- SDValue Elem = Op.getOperand(Idx);
- if (Elem.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elem))
- continue;
+ if (EltIdx == 4) {
+ // Let the shuffle legalizer deal with blend operations.
+ SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
+ if (V1.getSimpleValueType() != VT)
+ V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1);
+ return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
+ }
- // TODO: What else can be here? Deal with it.
- if (Elem.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
- return SDValue();
+ // See if we can lower this build_vector to a INSERTPS.
+ if (!Subtarget->hasSSE41())
+ return SDValue();
- // TODO: Some optimizations are still possible here
- // ex: Getting one element from a vector, and the rest from another.
- if (Elem.getOperand(0) != V)
- return SDValue();
+ SDValue V2 = Elt.getOperand(0);
+ if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
+ V1 = SDValue();
- unsigned Dst = cast<ConstantSDNode>(Elem.getOperand(1))->getZExtValue();
- if (Dst == Idx)
- ++CorrectIdx;
- else if (IncorrectIdx == -1U) {
- IncorrectIdx = Idx;
- IncorrectDst = Dst;
- } else
- // There was already one element with an incorrect index.
- // We can't optimize this case to an insertps.
- return SDValue();
+ bool CanFold = true;
+ for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
+ if (Zeroable[i])
+ continue;
+
+ SDValue Current = Op->getOperand(i);
+ SDValue SrcVector = Current->getOperand(0);
+ if (!V1.getNode())
+ V1 = SrcVector;
+ CanFold = SrcVector == V1 &&
+ cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
}
- if (NumNonZero == CorrectIdx || NumNonZero == CorrectIdx + 1) {
- SDLoc dl(Op);
- EVT VT = Op.getSimpleValueType();
- unsigned ElementMoveMask = 0;
- if (IncorrectIdx == -1U)
- ElementMoveMask = FirstNonZeroIdx << 6 | FirstNonZeroIdx << 4;
- else
- ElementMoveMask = IncorrectDst << 6 | IncorrectIdx << 4;
+ if (!CanFold)
+ return SDValue();
- SDValue InsertpsMask =
- DAG.getIntPtrConstant(ElementMoveMask | (~NonZeros & 0xf));
- return DAG.getNode(X86ISD::INSERTPS, dl, VT, V, V, InsertpsMask);
- }
+ assert(V1.getNode() && "Expected at least two non-zero elements!");
+ if (V1.getSimpleValueType() != MVT::v4f32)
+ V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1);
+ if (V2.getSimpleValueType() != MVT::v4f32)
+ V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2);
- return SDValue();
+ // Ok, we can emit an INSERTPS instruction.
+ unsigned ZMask = 0;
+ for (int i = 0; i < 4; ++i)
+ if (Zeroable[i])
+ ZMask |= 1 << i;
+
+ unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
+ assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
+ SDValue Result = DAG.getNode(X86ISD::INSERTPS, SDLoc(Op), MVT::v4f32, V1, V2,
+ DAG.getIntPtrConstant(InsertPSMask));
+ return DAG.getNode(ISD::BITCAST, SDLoc(Op), VT, Result);
}
/// getVShift - Return a vector logical shift node.
@@ -5685,15 +6063,10 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
SDValue NewLd = SDValue();
- if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
- NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
- LDBase->getPointerInfo(),
- LDBase->isVolatile(), LDBase->isNonTemporal(),
- LDBase->isInvariant(), 0);
NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
- LDBase->getPointerInfo(),
- LDBase->isVolatile(), LDBase->isNonTemporal(),
- LDBase->isInvariant(), LDBase->getAlignment());
+ LDBase->getPointerInfo(), LDBase->isVolatile(),
+ LDBase->isNonTemporal(), LDBase->isInvariant(),
+ LDBase->getAlignment());
if (LDBase->hasAnyUseOfValue(1)) {
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
@@ -5706,7 +6079,10 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
return NewLd;
}
- if (NumElems == 4 && LastLoadedElt == 1 &&
+
+ //TODO: The code below fires only for for loading the low v2i32 / v2f32
+ //of a v4i32 / v4f32. It's probably worth generalizing.
+ if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) &&
DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
@@ -5742,7 +6118,10 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
/// or SDValue() otherwise.
static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
SelectionDAG &DAG) {
- if (!Subtarget->hasFp256())
+ // VBROADCAST requires AVX.
+ // TODO: Splats could be generated for non-AVX CPUs using SSE
+ // instructions, but there's less potential gain for only 128-bit vectors.
+ if (!Subtarget->hasAVX())
return SDValue();
MVT VT = Op.getSimpleValueType();
@@ -5819,17 +6198,34 @@ static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
}
}
+ unsigned ScalarSize = Ld.getValueType().getSizeInBits();
bool IsGE256 = (VT.getSizeInBits() >= 256);
- // Handle the broadcasting a single constant scalar from the constant pool
- // into a vector. On Sandybridge it is still better to load a constant vector
+ // When optimizing for size, generate up to 5 extra bytes for a broadcast
+ // instruction to save 8 or more bytes of constant pool data.
+ // TODO: If multiple splats are generated to load the same constant,
+ // it may be detrimental to overall size. There needs to be a way to detect
+ // that condition to know if this is truly a size win.
+ const Function *F = DAG.getMachineFunction().getFunction();
+ bool OptForSize = F->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
+
+ // Handle broadcasting a single constant scalar from the constant pool
+ // into a vector.
+ // On Sandybridge (no AVX2), it is still better to load a constant vector
// from the constant pool and not to broadcast it from a scalar.
- if (ConstSplatVal && Subtarget->hasInt256()) {
+ // But override that restriction when optimizing for size.
+ // TODO: Check if splatting is recommended for other AVX-capable CPUs.
+ if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
EVT CVT = Ld.getValueType();
assert(!CVT.isVector() && "Must not broadcast a vector type");
- unsigned ScalarSize = CVT.getSizeInBits();
- if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
+ // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
+ // For size optimization, also splat v2f64 and v2i64, and for size opt
+ // with AVX2, also splat i8 and i16.
+ // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
+ (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
const Constant *C = nullptr;
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
C = CI->getConstantIntValue();
@@ -5850,7 +6246,6 @@ static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
}
bool IsLoad = ISD::isNormalLoad(Ld.getNode());
- unsigned ScalarSize = Ld.getValueType().getSizeInBits();
// Handle AVX2 in-register broadcasts.
if (!IsLoad && Subtarget->hasInt256() &&
@@ -5861,7 +6256,8 @@ static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
if (!IsLoad)
return SDValue();
- if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
+ (Subtarget->hasVLX() && ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
@@ -6017,8 +6413,7 @@ X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
AllContants = false;
NonConstIdx = idx;
NumNonConsts++;
- }
- else {
+ } else {
NumConsts++;
if (cast<ConstantSDNode>(In)->getZExtValue())
Immediate |= (1ULL << idx);
@@ -6041,7 +6436,7 @@ X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
MVT::getIntegerVT(VT.getSizeInBits()));
DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
}
- else
+ else
DstVec = DAG.getUNDEF(VT);
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
Op.getOperand(NonConstIdx),
@@ -6064,7 +6459,7 @@ X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
/// \brief Return true if \p N implements a horizontal binop and return the
/// operands for the horizontal binop into V0 and V1.
-///
+///
/// This is a helper function of PerformBUILD_VECTORCombine.
/// This function checks that the build_vector \p N in input implements a
/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
@@ -6085,7 +6480,7 @@ static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
"Invalid Vector in input!");
-
+
bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
bool CanFold = true;
unsigned ExpectedVExtractIdx = BaseIdx;
@@ -6154,13 +6549,13 @@ static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
}
/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
-/// a concat_vector.
+/// a concat_vector.
///
/// This is a helper function of PerformBUILD_VECTORCombine.
/// This function expects two 256-bit vectors called V0 and V1.
/// At first, each vector is split into two separate 128-bit vectors.
/// Then, the resulting 128-bit vectors are used to implement two
-/// horizontal binary operations.
+/// horizontal binary operations.
///
/// The kind of horizontal binary operation is defined by \p X86Opcode.
///
@@ -6235,11 +6630,6 @@ static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
VT == MVT::v2f64) && "build_vector with an invalid type found!");
- // Don't try to emit a VSELECT that cannot be lowered into a blend.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
- return SDValue();
-
// Odd-numbered elements in the input build vector are obtained from
// adding two integer/float elements.
// Even-numbered elements in the input build vector are obtained from
@@ -6251,14 +6641,14 @@ static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
for (unsigned i = 0, e = NumElts; i != e; i++) {
SDValue Op = BV->getOperand(i);
-
+
// Skip 'undef' values.
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::UNDEF) {
std::swap(ExpectedOpcode, NextExpectedOpcode);
continue;
}
-
+
// Early exit if we found an unexpected opcode.
if (Opcode != ExpectedOpcode)
return SDValue();
@@ -6312,34 +6702,11 @@ static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
std::swap(ExpectedOpcode, NextExpectedOpcode);
}
- // Don't try to fold this build_vector into a VSELECT if it has
- // too many UNDEF operands.
+ // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
- InVec1.getOpcode() != ISD::UNDEF) {
- // Emit a sequence of vector add and sub followed by a VSELECT.
- // The new VSELECT will be lowered into a BLENDI.
- // At ISel stage, we pattern-match the sequence 'add + sub + BLENDI'
- // and emit a single ADDSUB instruction.
- SDValue Sub = DAG.getNode(ExpectedOpcode, DL, VT, InVec0, InVec1);
- SDValue Add = DAG.getNode(NextExpectedOpcode, DL, VT, InVec0, InVec1);
-
- // Construct the VSELECT mask.
- EVT MaskVT = VT.changeVectorElementTypeToInteger();
- EVT SVT = MaskVT.getVectorElementType();
- unsigned SVTBits = SVT.getSizeInBits();
- SmallVector<SDValue, 8> Ops;
+ InVec1.getOpcode() != ISD::UNDEF)
+ return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
- for (unsigned i = 0, e = NumElts; i != e; ++i) {
- APInt Value = i & 1 ? APInt::getNullValue(SVTBits) :
- APInt::getAllOnesValue(SVTBits);
- SDValue Constant = DAG.getConstant(Value, SVT);
- Ops.push_back(Constant);
- }
-
- SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVT, Ops);
- return DAG.getSelect(DL, VT, Mask, Sub, Add);
- }
-
return SDValue();
}
@@ -6382,18 +6749,18 @@ static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
// Try to match an SSE3 float HADD/HSUB.
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
-
+
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
} else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
// Try to match an SSSE3 integer HADD/HSUB.
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
-
+
if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
}
-
+
if (!Subtarget->hasAVX())
return SDValue();
@@ -6444,7 +6811,7 @@ static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
// Do this only if the target has AVX2.
if (Subtarget->hasAVX2())
return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
-
+
// Do not try to expand this build_vector into a pair of horizontal
// add/sub if we can emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
@@ -6575,6 +6942,13 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
+
+ // If using the new shuffle lowering, just directly insert this.
+ if (ExperimentalVectorShuffleLowering)
+ return DAG.getNode(
+ ISD::BITCAST, dl, VT,
+ getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
+
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
// Now we have our 32-bit value zero extended in the low element of
@@ -6648,6 +7022,10 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ // If using the new shuffle lowering, just directly insert this.
+ if (ExperimentalVectorShuffleLowering)
+ return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
+
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
SmallVector<int, 8> MaskVec;
@@ -6677,13 +7055,18 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
if (IsAllConstants)
return SDValue();
- // For AVX-length vectors, build the individual 128-bit pieces and use
+ // For AVX-length vectors, see if we can use a vector load to get all of the
+ // elements, otherwise build the individual 128-bit pieces and use
// shuffles to put them in place.
if (VT.is256BitVector() || VT.is512BitVector()) {
SmallVector<SDValue, 64> V;
for (unsigned i = 0; i != NumElems; ++i)
V.push_back(Op.getOperand(i));
+ // Check for a build vector of consecutive loads.
+ if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
+ return LD;
+
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
// Build both the lower and upper subvector.
@@ -6725,8 +7108,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
// If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
if (EVTBits == 32 && NumElems == 4) {
- SDValue V = LowerBuildVectorv4x32(Op, NumElems, NonZeros, NumNonZero,
- NumZero, DAG, Subtarget, *this);
+ SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this);
if (V.getNode())
return V;
}
@@ -6917,6 +7299,89 @@ static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
return true;
}
+/// \brief Test whether there are elements crossing 128-bit lanes in this
+/// shuffle mask.
+///
+/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
+/// and we routinely test for these.
+static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
+ return true;
+ return false;
+}
+
+/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
+///
+/// This checks a shuffle mask to see if it is performing the same
+/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
+/// that it is also not lane-crossing. It may however involve a blend from the
+/// same lane of a second vector.
+///
+/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
+/// non-trivial to compute in the face of undef lanes. The representation is
+/// *not* suitable for use with existing 128-bit shuffles as it will contain
+/// entries from both V1 and V2 inputs to the wider mask.
+static bool
+is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ RepeatedMask.resize(LaneSize, -1);
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ if ((Mask[i] % Size) / LaneSize != i / LaneSize)
+ // This entry crosses lanes, so there is no way to model this shuffle.
+ return false;
+
+ // Ok, handle the in-lane shuffles by detecting if and when they repeat.
+ if (RepeatedMask[i % LaneSize] == -1)
+ // This is the first non-undef entry in this slot of a 128-bit lane.
+ RepeatedMask[i % LaneSize] =
+ Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
+ else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
+ // Found a mismatch with the repeated mask.
+ return false;
+ }
+ return true;
+}
+
+// Hide this symbol with an anonymous namespace instead of 'static' so that MSVC
+// 2013 will allow us to use it as a non-type template parameter.
+namespace {
+
+/// \brief Implementation of the \c isShuffleEquivalent variadic functor.
+///
+/// See its documentation for details.
+bool isShuffleEquivalentImpl(ArrayRef<int> Mask, ArrayRef<const int *> Args) {
+ if (Mask.size() != Args.size())
+ return false;
+ for (int i = 0, e = Mask.size(); i < e; ++i) {
+ assert(*Args[i] >= 0 && "Arguments must be positive integers!");
+ if (Mask[i] != -1 && Mask[i] != *Args[i])
+ return false;
+ }
+ return true;
+}
+
+} // namespace
+
+/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
+/// arguments.
+///
+/// This is a fast way to test a shuffle mask against a fixed pattern:
+///
+/// if (isShuffleEquivalent(Mask, 3, 2, 1, 0)) { ... }
+///
+/// It returns true if the mask is exactly as wide as the argument list, and
+/// each element of the mask is either -1 (signifying undef) or the value given
+/// in the argument.
+static const VariadicFunction1<
+ bool, ArrayRef<int>, int, isShuffleEquivalentImpl> isShuffleEquivalent = {};
+
/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
///
/// This helper function produces an 8-bit shuffle immediate corresponding to
@@ -6941,6 +7406,835 @@ static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
return DAG.getConstant(Imm, MVT::i8);
}
+/// \brief Try to emit a blend instruction for a shuffle.
+///
+/// This doesn't do any checks for the availability of instructions for blending
+/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
+/// be matched in the backend with the type given. What it does check for is
+/// that the shuffle mask is in fact a blend.
+static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+
+ unsigned BlendMask = 0;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] >= Size) {
+ if (Mask[i] != i + Size)
+ return SDValue(); // Shuffled V2 input!
+ BlendMask |= 1u << i;
+ continue;
+ }
+ if (Mask[i] >= 0 && Mask[i] != i)
+ return SDValue(); // Shuffled V1 input!
+ }
+ switch (VT.SimpleTy) {
+ case MVT::v2f64:
+ case MVT::v4f32:
+ case MVT::v4f64:
+ case MVT::v8f32:
+ return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
+ DAG.getConstant(BlendMask, MVT::i8));
+
+ case MVT::v4i64:
+ case MVT::v8i32:
+ assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
+ // FALLTHROUGH
+ case MVT::v2i64:
+ case MVT::v4i32:
+ // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
+ // that instruction.
+ if (Subtarget->hasAVX2()) {
+ // Scale the blend by the number of 32-bit dwords per element.
+ int Scale = VT.getScalarSizeInBits() / 32;
+ BlendMask = 0;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= Size)
+ for (int j = 0; j < Scale; ++j)
+ BlendMask |= 1u << (i * Scale + j);
+
+ MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
+ V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
+ DAG.getConstant(BlendMask, MVT::i8)));
+ }
+ // FALLTHROUGH
+ case MVT::v8i16: {
+ // For integer shuffles we need to expand the mask and cast the inputs to
+ // v8i16s prior to blending.
+ int Scale = 8 / VT.getVectorNumElements();
+ BlendMask = 0;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= Size)
+ for (int j = 0; j < Scale; ++j)
+ BlendMask |= 1u << (i * Scale + j);
+
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
+ V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
+ DAG.getConstant(BlendMask, MVT::i8)));
+ }
+
+ case MVT::v16i16: {
+ assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
+ SmallVector<int, 8> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
+ // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
+ assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
+ BlendMask = 0;
+ for (int i = 0; i < 8; ++i)
+ if (RepeatedMask[i] >= 16)
+ BlendMask |= 1u << i;
+ return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
+ DAG.getConstant(BlendMask, MVT::i8));
+ }
+ }
+ // FALLTHROUGH
+ case MVT::v32i8: {
+ assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
+ // Scale the blend by the number of bytes per element.
+ int Scale = VT.getScalarSizeInBits() / 8;
+ assert(Mask.size() * Scale == 32 && "Not a 256-bit vector!");
+
+ // Compute the VSELECT mask. Note that VSELECT is really confusing in the
+ // mix of LLVM's code generator and the x86 backend. We tell the code
+ // generator that boolean values in the elements of an x86 vector register
+ // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
+ // mapping a select to operand #1, and 'false' mapping to operand #2. The
+ // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
+ // of the element (the remaining are ignored) and 0 in that high bit would
+ // mean operand #1 while 1 in the high bit would mean operand #2. So while
+ // the LLVM model for boolean values in vector elements gets the relevant
+ // bit set, it is set backwards and over constrained relative to x86's
+ // actual model.
+ SDValue VSELECTMask[32];
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ for (int j = 0; j < Scale; ++j)
+ VSELECTMask[Scale * i + j] =
+ Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
+ : DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8);
+
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1);
+ V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V2);
+ return DAG.getNode(
+ ISD::BITCAST, DL, VT,
+ DAG.getNode(ISD::VSELECT, DL, MVT::v32i8,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, VSELECTMask),
+ V1, V2));
+ }
+
+ default:
+ llvm_unreachable("Not a supported integer vector type!");
+ }
+}
+
+/// \brief Generic routine to lower a shuffle and blend as a decomposed set of
+/// unblended shuffles followed by an unshuffled blend.
+///
+/// This matches the extremely common pattern for handling combined
+/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
+/// operations.
+static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
+ SDValue V1,
+ SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // Shuffle the input elements into the desired positions in V1 and V2 and
+ // blend them together.
+ SmallVector<int, 32> V1Mask(Mask.size(), -1);
+ SmallVector<int, 32> V2Mask(Mask.size(), -1);
+ SmallVector<int, 32> BlendMask(Mask.size(), -1);
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= 0 && Mask[i] < Size) {
+ V1Mask[i] = Mask[i];
+ BlendMask[i] = i;
+ } else if (Mask[i] >= Size) {
+ V2Mask[i] = Mask[i] - Size;
+ BlendMask[i] = i + Size;
+ }
+
+ V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
+ return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
+}
+
+/// \brief Try to lower a vector shuffle as a byte rotation.
+///
+/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
+/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
+/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
+/// try to generically lower a vector shuffle through such an pattern. It
+/// does not check for the profitability of lowering either as PALIGNR or
+/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
+/// This matches shuffle vectors that look like:
+///
+/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
+///
+/// Essentially it concatenates V1 and V2, shifts right by some number of
+/// elements, and takes the low elements as the result. Note that while this is
+/// specified as a *right shift* because x86 is little-endian, it is a *left
+/// rotate* of the vector lanes.
+///
+/// Note that this only handles 128-bit vector widths currently.
+static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2,
+ ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
+
+ // We need to detect various ways of spelling a rotation:
+ // [11, 12, 13, 14, 15, 0, 1, 2]
+ // [-1, 12, 13, 14, -1, -1, 1, -1]
+ // [-1, -1, -1, -1, -1, -1, 1, 2]
+ // [ 3, 4, 5, 6, 7, 8, 9, 10]
+ // [-1, 4, 5, 6, -1, -1, 9, -1]
+ // [-1, 4, 5, 6, -1, -1, -1, -1]
+ int Rotation = 0;
+ SDValue Lo, Hi;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] == -1)
+ continue;
+ assert(Mask[i] >= 0 && "Only -1 is a valid negative mask element!");
+
+ // Based on the mod-Size value of this mask element determine where
+ // a rotated vector would have started.
+ int StartIdx = i - (Mask[i] % Size);
+ if (StartIdx == 0)
+ // The identity rotation isn't interesting, stop.
+ return SDValue();
+
+ // If we found the tail of a vector the rotation must be the missing
+ // front. If we found the head of a vector, it must be how much of the head.
+ int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
+
+ if (Rotation == 0)
+ Rotation = CandidateRotation;
+ else if (Rotation != CandidateRotation)
+ // The rotations don't match, so we can't match this mask.
+ return SDValue();
+
+ // Compute which value this mask is pointing at.
+ SDValue MaskV = Mask[i] < Size ? V1 : V2;
+
+ // Compute which of the two target values this index should be assigned to.
+ // This reflects whether the high elements are remaining or the low elements
+ // are remaining.
+ SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
+
+ // Either set up this value if we've not encountered it before, or check
+ // that it remains consistent.
+ if (!TargetV)
+ TargetV = MaskV;
+ else if (TargetV != MaskV)
+ // This may be a rotation, but it pulls from the inputs in some
+ // unsupported interleaving.
+ return SDValue();
+ }
+
+ // Check that we successfully analyzed the mask, and normalize the results.
+ assert(Rotation != 0 && "Failed to locate a viable rotation!");
+ assert((Lo || Hi) && "Failed to find a rotated input vector!");
+ if (!Lo)
+ Lo = Hi;
+ else if (!Hi)
+ Hi = Lo;
+
+ assert(VT.getSizeInBits() == 128 &&
+ "Rotate-based lowering only supports 128-bit lowering!");
+ assert(Mask.size() <= 16 &&
+ "Can shuffle at most 16 bytes in a 128-bit vector!");
+
+ // The actual rotate instruction rotates bytes, so we need to scale the
+ // rotation based on how many bytes are in the vector.
+ int Scale = 16 / Mask.size();
+
+ // SSSE3 targets can use the palignr instruction
+ if (Subtarget->hasSSSE3()) {
+ // Cast the inputs to v16i8 to match PALIGNR.
+ Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Lo);
+ Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Hi);
+
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::PALIGNR, DL, MVT::v16i8, Hi, Lo,
+ DAG.getConstant(Rotation * Scale, MVT::i8)));
+ }
+
+ // Default SSE2 implementation
+ int LoByteShift = 16 - Rotation * Scale;
+ int HiByteShift = Rotation * Scale;
+
+ // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
+ Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo);
+ Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi);
+
+ SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
+ DAG.getConstant(8 * LoByteShift, MVT::i8));
+ SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
+ DAG.getConstant(8 * HiByteShift, MVT::i8));
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
+}
+
+/// \brief Compute whether each element of a shuffle is zeroable.
+///
+/// A "zeroable" vector shuffle element is one which can be lowered to zero.
+/// Either it is an undef element in the shuffle mask, the element of the input
+/// referenced is undef, or the element of the input referenced is known to be
+/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
+/// as many lanes with this technique as possible to simplify the remaining
+/// shuffle.
+static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
+ SDValue V1, SDValue V2) {
+ SmallBitVector Zeroable(Mask.size(), false);
+
+ bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ int M = Mask[i];
+ // Handle the easy cases.
+ if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
+ Zeroable[i] = true;
+ continue;
+ }
+
+ // If this is an index into a build_vector node, dig out the input value and
+ // use it.
+ SDValue V = M < Size ? V1 : V2;
+ if (V.getOpcode() != ISD::BUILD_VECTOR)
+ continue;
+
+ SDValue Input = V.getOperand(M % Size);
+ // The UNDEF opcode check really should be dead code here, but not quite
+ // worth asserting on (it isn't invalid, just unexpected).
+ if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
+ Zeroable[i] = true;
+ }
+
+ return Zeroable;
+}
+
+/// \brief Try to lower a vector shuffle as a byte shift (shifts in zeros).
+///
+/// Attempts to match a shuffle mask against the PSRLDQ and PSLLDQ SSE2
+/// byte-shift instructions. The mask must consist of a shifted sequential
+/// shuffle from one of the input vectors and zeroable elements for the
+/// remaining 'shifted in' elements.
+///
+/// Note that this only handles 128-bit vector widths currently.
+static SDValue lowerVectorShuffleAsByteShift(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
+
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ int Size = Mask.size();
+ int Scale = 16 / Size;
+
+ for (int Shift = 1; Shift < Size; Shift++) {
+ int ByteShift = Shift * Scale;
+
+ // PSRLDQ : (little-endian) right byte shift
+ // [ 5, 6, 7, zz, zz, zz, zz, zz]
+ // [ -1, 5, 6, 7, zz, zz, zz, zz]
+ // [ 1, 2, -1, -1, -1, -1, zz, zz]
+ bool ZeroableRight = true;
+ for (int i = Size - Shift; i < Size; i++) {
+ ZeroableRight &= Zeroable[i];
+ }
+
+ if (ZeroableRight) {
+ bool ValidShiftRight1 =
+ isSequentialOrUndefInRange(Mask, 0, Size - Shift, Shift);
+ bool ValidShiftRight2 =
+ isSequentialOrUndefInRange(Mask, 0, Size - Shift, Size + Shift);
+
+ if (ValidShiftRight1 || ValidShiftRight2) {
+ // Cast the inputs to v2i64 to match PSRLDQ.
+ SDValue &TargetV = ValidShiftRight1 ? V1 : V2;
+ SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TargetV);
+ SDValue Shifted = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, V,
+ DAG.getConstant(ByteShift * 8, MVT::i8));
+ return DAG.getNode(ISD::BITCAST, DL, VT, Shifted);
+ }
+ }
+
+ // PSLLDQ : (little-endian) left byte shift
+ // [ zz, 0, 1, 2, 3, 4, 5, 6]
+ // [ zz, zz, -1, -1, 2, 3, 4, -1]
+ // [ zz, zz, zz, zz, zz, zz, -1, 1]
+ bool ZeroableLeft = true;
+ for (int i = 0; i < Shift; i++) {
+ ZeroableLeft &= Zeroable[i];
+ }
+
+ if (ZeroableLeft) {
+ bool ValidShiftLeft1 =
+ isSequentialOrUndefInRange(Mask, Shift, Size - Shift, 0);
+ bool ValidShiftLeft2 =
+ isSequentialOrUndefInRange(Mask, Shift, Size - Shift, Size);
+
+ if (ValidShiftLeft1 || ValidShiftLeft2) {
+ // Cast the inputs to v2i64 to match PSLLDQ.
+ SDValue &TargetV = ValidShiftLeft1 ? V1 : V2;
+ SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TargetV);
+ SDValue Shifted = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, V,
+ DAG.getConstant(ByteShift * 8, MVT::i8));
+ return DAG.getNode(ISD::BITCAST, DL, VT, Shifted);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+/// \brief Lower a vector shuffle as a zero or any extension.
+///
+/// Given a specific number of elements, element bit width, and extension
+/// stride, produce either a zero or any extension based on the available
+/// features of the subtarget.
+static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
+ SDLoc DL, MVT VT, int NumElements, int Scale, bool AnyExt, SDValue InputV,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ assert(Scale > 1 && "Need a scale to extend.");
+ int EltBits = VT.getSizeInBits() / NumElements;
+ assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
+ "Only 8, 16, and 32 bit elements can be extended.");
+ assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
+
+ // Found a valid zext mask! Try various lowering strategies based on the
+ // input type and available ISA extensions.
+ if (Subtarget->hasSSE41()) {
+ MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
+ MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
+ NumElements / Scale);
+ InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
+ }
+
+ // For any extends we can cheat for larger element sizes and use shuffle
+ // instructions that can fold with a load and/or copy.
+ if (AnyExt && EltBits == 32) {
+ int PSHUFDMask[4] = {0, -1, 1, -1};
+ return DAG.getNode(
+ ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+ }
+ if (AnyExt && EltBits == 16 && Scale > 2) {
+ int PSHUFDMask[4] = {0, -1, 0, -1};
+ InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG));
+ int PSHUFHWMask[4] = {1, -1, -1, -1};
+ return DAG.getNode(
+ ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG)));
+ }
+
+ // If this would require more than 2 unpack instructions to expand, use
+ // pshufb when available. We can only use more than 2 unpack instructions
+ // when zero extending i8 elements which also makes it easier to use pshufb.
+ if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
+ assert(NumElements == 16 && "Unexpected byte vector width!");
+ SDValue PSHUFBMask[16];
+ for (int i = 0; i < 16; ++i)
+ PSHUFBMask[i] =
+ DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8);
+ InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ MVT::v16i8, PSHUFBMask)));
+ }
+
+ // Otherwise emit a sequence of unpacks.
+ do {
+ MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
+ SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
+ : getZeroVector(InputVT, Subtarget, DAG, DL);
+ InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
+ InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
+ Scale /= 2;
+ EltBits *= 2;
+ NumElements /= 2;
+ } while (Scale > 1);
+ return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
+}
+
+/// \brief Try to lower a vector shuffle as a zero extension on any micrarch.
+///
+/// This routine will try to do everything in its power to cleverly lower
+/// a shuffle which happens to match the pattern of a zero extend. It doesn't
+/// check for the profitability of this lowering, it tries to aggressively
+/// match this pattern. It will use all of the micro-architectural details it
+/// can to emit an efficient lowering. It handles both blends with all-zero
+/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
+/// masking out later).
+///
+/// The reason we have dedicated lowering for zext-style shuffles is that they
+/// are both incredibly common and often quite performance sensitive.
+static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
+ SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ int Bits = VT.getSizeInBits();
+ int NumElements = Mask.size();
+
+ // Define a helper function to check a particular ext-scale and lower to it if
+ // valid.
+ auto Lower = [&](int Scale) -> SDValue {
+ SDValue InputV;
+ bool AnyExt = true;
+ for (int i = 0; i < NumElements; ++i) {
+ if (Mask[i] == -1)
+ continue; // Valid anywhere but doesn't tell us anything.
+ if (i % Scale != 0) {
+ // Each of the extend elements needs to be zeroable.
+ if (!Zeroable[i])
+ return SDValue();
+
+ // We no lorger are in the anyext case.
+ AnyExt = false;
+ continue;
+ }
+
+ // Each of the base elements needs to be consecutive indices into the
+ // same input vector.
+ SDValue V = Mask[i] < NumElements ? V1 : V2;
+ if (!InputV)
+ InputV = V;
+ else if (InputV != V)
+ return SDValue(); // Flip-flopping inputs.
+
+ if (Mask[i] % NumElements != i / Scale)
+ return SDValue(); // Non-consecutive strided elemenst.
+ }
+
+ // If we fail to find an input, we have a zero-shuffle which should always
+ // have already been handled.
+ // FIXME: Maybe handle this here in case during blending we end up with one?
+ if (!InputV)
+ return SDValue();
+
+ return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
+ DL, VT, NumElements, Scale, AnyExt, InputV, Subtarget, DAG);
+ };
+
+ // The widest scale possible for extending is to a 64-bit integer.
+ assert(Bits % 64 == 0 &&
+ "The number of bits in a vector must be divisible by 64 on x86!");
+ int NumExtElements = Bits / 64;
+
+ // Each iteration, try extending the elements half as much, but into twice as
+ // many elements.
+ for (; NumExtElements < NumElements; NumExtElements *= 2) {
+ assert(NumElements % NumExtElements == 0 &&
+ "The input vector size must be divisble by the extended size.");
+ if (SDValue V = Lower(NumElements / NumExtElements))
+ return V;
+ }
+
+ // No viable ext lowering found.
+ return SDValue();
+}
+
+/// \brief Try to get a scalar value for a specific element of a vector.
+///
+/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
+static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
+ SelectionDAG &DAG) {
+ MVT VT = V.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+ // If the bitcasts shift the element size, we can't extract an equivalent
+ // element from it.
+ MVT NewVT = V.getSimpleValueType();
+ if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
+ return SDValue();
+
+ if (V.getOpcode() == ISD::BUILD_VECTOR ||
+ (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR))
+ return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, V.getOperand(Idx));
+
+ return SDValue();
+}
+
+/// \brief Helper to test for a load that can be folded with x86 shuffles.
+///
+/// This is particularly important because the set of instructions varies
+/// significantly based on whether the operand is a load or not.
+static bool isShuffleFoldableLoad(SDValue V) {
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+
+ return ISD::isNON_EXTLoad(V.getNode());
+}
+
+/// \brief Try to lower insertion of a single element into a zero vector.
+///
+/// This is a common pattern that we have especially efficient patterns to lower
+/// across all subtarget feature sets.
+static SDValue lowerVectorShuffleAsElementInsertion(
+ MVT VT, SDLoc DL, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ MVT ExtVT = VT;
+ MVT EltVT = VT.getVectorElementType();
+
+ int V2Index = std::find_if(Mask.begin(), Mask.end(),
+ [&Mask](int M) { return M >= (int)Mask.size(); }) -
+ Mask.begin();
+ bool IsV1Zeroable = true;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (i != V2Index && !Zeroable[i]) {
+ IsV1Zeroable = false;
+ break;
+ }
+
+ // Check for a single input from a SCALAR_TO_VECTOR node.
+ // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
+ // all the smarts here sunk into that routine. However, the current
+ // lowering of BUILD_VECTOR makes that nearly impossible until the old
+ // vector shuffle lowering is dead.
+ if (SDValue V2S = getScalarValueForVectorElement(
+ V2, Mask[V2Index] - Mask.size(), DAG)) {
+ // We need to zext the scalar if it is smaller than an i32.
+ V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
+ if (EltVT == MVT::i8 || EltVT == MVT::i16) {
+ // Using zext to expand a narrow element won't work for non-zero
+ // insertions.
+ if (!IsV1Zeroable)
+ return SDValue();
+
+ // Zero-extend directly to i32.
+ ExtVT = MVT::v4i32;
+ V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
+ }
+ V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
+ } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
+ EltVT == MVT::i16) {
+ // Either not inserting from the low element of the input or the input
+ // element size is too small to use VZEXT_MOVL to clear the high bits.
+ return SDValue();
+ }
+
+ if (!IsV1Zeroable) {
+ // If V1 can't be treated as a zero vector we have fewer options to lower
+ // this. We can't support integer vectors or non-zero targets cheaply, and
+ // the V1 elements can't be permuted in any way.
+ assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
+ if (!VT.isFloatingPoint() || V2Index != 0)
+ return SDValue();
+ SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
+ V1Mask[V2Index] = -1;
+ if (!isNoopShuffleMask(V1Mask))
+ return SDValue();
+ // This is essentially a special case blend operation, but if we have
+ // general purpose blend operations, they are always faster. Bail and let
+ // the rest of the lowering handle these as blends.
+ if (Subtarget->hasSSE41())
+ return SDValue();
+
+ // Otherwise, use MOVSD or MOVSS.
+ assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
+ "Only two types of floating point element types to handle!");
+ return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
+ ExtVT, V1, V2);
+ }
+
+ V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
+ if (ExtVT != VT)
+ V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
+
+ if (V2Index != 0) {
+ // If we have 4 or fewer lanes we can cheaply shuffle the element into
+ // the desired position. Otherwise it is more efficient to do a vector
+ // shift left. We know that we can do a vector shift left because all
+ // the inputs are zero.
+ if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
+ SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
+ V2Shuffle[V2Index] = 0;
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
+ } else {
+ V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
+ V2 = DAG.getNode(
+ X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
+ DAG.getConstant(
+ V2Index * EltVT.getSizeInBits(),
+ DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
+ V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
+ }
+ }
+ return V2;
+}
+
+/// \brief Try to lower broadcast of a single element.
+///
+/// For convenience, this code also bundles all of the subtarget feature set
+/// filtering. While a little annoying to re-dispatch on type here, there isn't
+/// a convenient way to factor it out.
+static SDValue lowerVectorShuffleAsBroadcast(MVT VT, SDLoc DL, SDValue V,
+ ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (!Subtarget->hasAVX())
+ return SDValue();
+ if (VT.isInteger() && !Subtarget->hasAVX2())
+ return SDValue();
+
+ // Check that the mask is a broadcast.
+ int BroadcastIdx = -1;
+ for (int M : Mask)
+ if (M >= 0 && BroadcastIdx == -1)
+ BroadcastIdx = M;
+ else if (M >= 0 && M != BroadcastIdx)
+ return SDValue();
+
+ assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
+ "a sorted mask where the broadcast "
+ "comes from V1.");
+
+ // Go up the chain of (vector) values to try and find a scalar load that
+ // we can combine with the broadcast.
+ for (;;) {
+ switch (V.getOpcode()) {
+ case ISD::CONCAT_VECTORS: {
+ int OperandSize = Mask.size() / V.getNumOperands();
+ V = V.getOperand(BroadcastIdx / OperandSize);
+ BroadcastIdx %= OperandSize;
+ continue;
+ }
+
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
+ auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
+ if (!ConstantIdx)
+ break;
+
+ int BeginIdx = (int)ConstantIdx->getZExtValue();
+ int EndIdx =
+ BeginIdx + (int)VInner.getValueType().getVectorNumElements();
+ if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
+ BroadcastIdx -= BeginIdx;
+ V = VInner;
+ } else {
+ V = VOuter;
+ }
+ continue;
+ }
+ }
+ break;
+ }
+
+ // Check if this is a broadcast of a scalar. We special case lowering
+ // for scalars so that we can more effectively fold with loads.
+ if (V.getOpcode() == ISD::BUILD_VECTOR ||
+ (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
+ V = V.getOperand(BroadcastIdx);
+
+ // If the scalar isn't a load we can't broadcast from it in AVX1, only with
+ // AVX2.
+ if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
+ return SDValue();
+ } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
+ // We can't broadcast from a vector register w/o AVX2, and we can only
+ // broadcast from the zero-element of a vector register.
+ return SDValue();
+ }
+
+ return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V);
+}
+
+// Check for whether we can use INSERTPS to perform the shuffle. We only use
+// INSERTPS when the V1 elements are already in the correct locations
+// because otherwise we can just always use two SHUFPS instructions which
+// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
+// perform INSERTPS if a single V1 element is out of place and all V2
+// elements are zeroable.
+static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ unsigned ZMask = 0;
+ int V1DstIndex = -1;
+ int V2DstIndex = -1;
+ bool V1UsedInPlace = false;
+
+ for (int i = 0; i < 4; i++) {
+ // Synthesize a zero mask from the zeroable elements (includes undefs).
+ if (Zeroable[i]) {
+ ZMask |= 1 << i;
+ continue;
+ }
+
+ // Flag if we use any V1 inputs in place.
+ if (i == Mask[i]) {
+ V1UsedInPlace = true;
+ continue;
+ }
+
+ // We can only insert a single non-zeroable element.
+ if (V1DstIndex != -1 || V2DstIndex != -1)
+ return SDValue();
+
+ if (Mask[i] < 4) {
+ // V1 input out of place for insertion.
+ V1DstIndex = i;
+ } else {
+ // V2 input for insertion.
+ V2DstIndex = i;
+ }
+ }
+
+ // Don't bother if we have no (non-zeroable) element for insertion.
+ if (V1DstIndex == -1 && V2DstIndex == -1)
+ return SDValue();
+
+ // Determine element insertion src/dst indices. The src index is from the
+ // start of the inserted vector, not the start of the concatenated vector.
+ unsigned V2SrcIndex = 0;
+ if (V1DstIndex != -1) {
+ // If we have a V1 input out of place, we use V1 as the V2 element insertion
+ // and don't use the original V2 at all.
+ V2SrcIndex = Mask[V1DstIndex];
+ V2DstIndex = V1DstIndex;
+ V2 = V1;
+ } else {
+ V2SrcIndex = Mask[V2DstIndex] - 4;
+ }
+
+ // If no V1 inputs are used in place, then the result is created only from
+ // the zero mask and the V2 insertion - so remove V1 dependency.
+ if (!V1UsedInPlace)
+ V1 = DAG.getUNDEF(MVT::v4f32);
+
+ unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask;
+ assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
+
+ // Insert the V2 element into the desired position.
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
+ DAG.getConstant(InsertPSMask, MVT::i8));
+}
+
/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
///
/// This is the basis function for the 2-lane 64-bit shuffles as we have full
@@ -6963,12 +8257,56 @@ static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// Straight shuffle of a single input vector. Simulate this by using the
// single input as both of the "inputs" to this instruction..
unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
+
+ if (Subtarget->hasAVX()) {
+ // If we have AVX, we can use VPERMILPS which will allow folding a load
+ // into the shuffle.
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
+ DAG.getConstant(SHUFPDMask, MVT::i8));
+ }
+
return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
DAG.getConstant(SHUFPDMask, MVT::i8));
}
assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
assert(Mask[1] >= 2 && "Non-canonicalized blend!");
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 2))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2);
+ if (isShuffleEquivalent(Mask, 1, 3))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2);
+
+ // If we have a single input, insert that into V1 if we can do so cheaply.
+ if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ MVT::v2f64, DL, V1, V2, Mask, Subtarget, DAG))
+ return Insertion;
+ // Try inverting the insertion since for v2 masks it is easy to do and we
+ // can't reliably sort the mask one way or the other.
+ int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
+ Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ MVT::v2f64, DL, V2, V1, InverseMask, Subtarget, DAG))
+ return Insertion;
+ }
+
+ // Try to use one of the special instruction patterns to handle two common
+ // blend patterns if a zero-blend above didn't work.
+ if (isShuffleEquivalent(Mask, 0, 3) || isShuffleEquivalent(Mask, 1, 3))
+ if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
+ // We can either use a special instruction to load over the low double or
+ // to move just the low double.
+ return DAG.getNode(
+ isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
+ DL, MVT::v2f64, V2,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
+
+ if (Subtarget->hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
DAG.getConstant(SHUFPDMask, MVT::i8));
@@ -6992,6 +8330,11 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (isSingleInputShuffleMask(Mask)) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v2i64, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We have to map the mask as it is actually a v4i32 shuffle instruction.
@@ -7005,6 +8348,44 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
}
+ // Try to use byte shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsByteShift(
+ DL, MVT::v2i64, V1, V2, Mask, DAG))
+ return Shift;
+
+ // If we have a single input from V2 insert that into V1 if we can do so
+ // cheaply.
+ if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ MVT::v2i64, DL, V1, V2, Mask, Subtarget, DAG))
+ return Insertion;
+ // Try inverting the insertion since for v2 masks it is easy to do and we
+ // can't reliably sort the mask one way or the other.
+ int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
+ Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ MVT::v2i64, DL, V2, V1, InverseMask, Subtarget, DAG))
+ return Insertion;
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 2))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2);
+ if (isShuffleEquivalent(Mask, 1, 3))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2);
+
+ if (Subtarget->hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Try to use byte rotation instructions.
+ // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
+ if (Subtarget->hasSSSE3())
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
// We implement this with SHUFPD which is pretty lame because it will likely
// incur 2 cycles of stall for integer vectors on Nehalem and older chips.
// However, all the alternatives are still more cycles and newer chips don't
@@ -7015,38 +8396,25 @@ static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
}
-/// \brief Lower 4-lane 32-bit floating point shuffles.
+/// \brief Lower a vector shuffle using the SHUFPS instruction.
///
-/// Uses instructions exclusively from the floating point unit to minimize
-/// domain crossing penalties, as these are sufficient to implement all v4f32
-/// shuffles.
-static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
- const X86Subtarget *Subtarget,
- SelectionDAG &DAG) {
- SDLoc DL(Op);
- assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
- assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
- assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- ArrayRef<int> Mask = SVOp->getMask();
- assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
-
+/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
+/// It makes no assumptions about whether this is the *best* lowering, it simply
+/// uses it.
+static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
SDValue LowV = V1, HighV = V2;
int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
int NumV2Elements =
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
- if (NumV2Elements == 0)
- // Straight shuffle of a single input vector. We pass the input vector to
- // both operands to simulate this with a SHUFPS.
- return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
- getV4X86ShuffleImm8ForMask(Mask, DAG));
-
if (NumV2Elements == 1) {
int V2Index =
std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
Mask.begin();
+
// Compute the index adjacent to V2Index and in the same half by toggling
// the low bit.
int V2AdjIndex = V2Index ^ 1;
@@ -7063,7 +8431,7 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// To make this work, blend them together as the first step.
int V1Index = V2AdjIndex;
int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
- V2 = DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V2, V1,
+ V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
getV4X86ShuffleImm8ForMask(BlendMask, DAG));
// Now proceed to reconstruct the final blend as we have the necessary
@@ -7080,9 +8448,17 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
} else if (NumV2Elements == 2) {
if (Mask[0] < 4 && Mask[1] < 4) {
// Handle the easy case where we have V1 in the low lanes and V2 in the
- // high lanes. We never see this reversed because we sort the shuffle.
+ // high lanes.
NewMask[2] -= 4;
NewMask[3] -= 4;
+ } else if (Mask[2] < 4 && Mask[3] < 4) {
+ // We also handle the reversed case because this utility may get called
+ // when we detect a SHUFPS pattern but can't easily commute the shuffle to
+ // arrange things in the right direction.
+ NewMask[0] -= 4;
+ NewMask[1] -= 4;
+ HighV = V1;
+ LowV = V2;
} else {
// We have a mixture of V1 and V2 in both low and high lanes. Rather than
// trying to place elements directly, just blend them and set up the final
@@ -7094,7 +8470,7 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
Mask[2] < 4 ? Mask[2] : Mask[3],
(Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
(Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
- V1 = DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V2,
+ V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
getV4X86ShuffleImm8ForMask(BlendMask, DAG));
// Now we do a normal shuffle of V1 by giving V1 as both operands to
@@ -7106,10 +8482,78 @@ static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
NewMask[3] = Mask[2] < 4 ? 3 : 1;
}
}
- return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, LowV, HighV,
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
getV4X86ShuffleImm8ForMask(NewMask, DAG));
}
+/// \brief Lower 4-lane 32-bit floating point shuffles.
+///
+/// Uses instructions exclusively from the floating point unit to minimize
+/// domain crossing penalties, as these are sufficient to implement all v4f32
+/// shuffles.
+static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f32, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (Subtarget->hasAVX()) {
+ // If we have AVX, we can use VPERMILPS which will allow folding a load
+ // into the shuffle.
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+ }
+
+ // Otherwise, use a straight shuffle of a single input vector. We pass the
+ // input vector to both operands to simulate this with a SHUFPS.
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 4, 1, 5))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2);
+ if (isShuffleEquivalent(Mask, 2, 6, 3, 7))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2);
+
+ // There are special ways we can lower some single-element blends. However, we
+ // have custom ways we can lower more complex single-element blends below that
+ // we defer to if both this and BLENDPS fail to match, so restrict this to
+ // when the V2 input is targeting element 0 of the mask -- that is the fast
+ // case here.
+ if (NumV2Elements == 1 && Mask[0] >= 4)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4f32, DL, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ if (Subtarget->hasSSE41()) {
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use INSERTPS if we can complete the shuffle efficiently.
+ if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG))
+ return V;
+ }
+
+ // Otherwise fall back to a SHUFPS lowering strategy.
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
+}
+
/// \brief Lower 4-lane i32 vector shuffles.
///
/// We try to handle these with integer-domain shuffles where we can, but for
@@ -7125,11 +8569,66 @@ static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
- if (isSingleInputShuffleMask(Mask))
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return ZExt;
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i32, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
+ // We coerce the shuffle pattern to be compatible with UNPCK instructions
+ // but we aren't actually going to use the UNPCK instruction because doing
+ // so prevents folding a load into this instruction or making a copy.
+ const int UnpackLoMask[] = {0, 0, 1, 1};
+ const int UnpackHiMask[] = {2, 2, 3, 3};
+ if (isShuffleEquivalent(Mask, 0, 0, 1, 1))
+ Mask = UnpackLoMask;
+ else if (isShuffleEquivalent(Mask, 2, 2, 3, 3))
+ Mask = UnpackHiMask;
+
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(Mask, DAG));
+ }
+
+ // Try to use byte shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsByteShift(
+ DL, MVT::v4i32, V1, V2, Mask, DAG))
+ return Shift;
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Elements == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4i32, DL, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 4, 1, 5))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2);
+ if (isShuffleEquivalent(Mask, 2, 6, 3, 7))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2);
+
+ if (Subtarget->hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Try to use byte rotation instructions.
+ // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
+ if (Subtarget->hasSSSE3())
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
// We implement this with SHUFPS because it can blend from two vectors.
// Because we're going to eventually use SHUFPS, we use SHUFPS even to build
@@ -7182,6 +8681,27 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i16, DL, V,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Try to use byte shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsByteShift(
+ DL, MVT::v8i16, V, V, Mask, DAG))
+ return Shift;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 0, 1, 1, 2, 2, 3, 3))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V, V);
+ if (isShuffleEquivalent(Mask, 4, 4, 5, 5, 6, 6, 7, 7))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V, V);
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v8i16, V, V, Mask, Subtarget, DAG))
+ return Rotate;
+
// Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
// such inputs we can swap two of the dwords across the half mark and end up
// with <=2 inputs to each half in each half. Once there, we can fall through
@@ -7190,22 +8710,126 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
//
- // Before we had 3-1 in the low half and 3-1 in the high half. Afterward, 2-2
- // and 2-2.
- auto balanceSides = [&](ArrayRef<int> ThreeInputs, int OneInput,
- int ThreeInputHalfSum, int OneInputHalfOffset) {
+ // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
+ // and an existing 2-into-2 on the other half. In this case we may have to
+ // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
+ // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
+ // Fortunately, we don't have to handle anything but a 2-into-2 pattern
+ // because any other situation (including a 3-into-1 or 1-into-3 in the other
+ // half than the one we target for fixing) will be fixed when we re-enter this
+ // path. We will also combine away any sequence of PSHUFD instructions that
+ // result into a single instruction. Here is an example of the tricky case:
+ //
+ // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
+ //
+ // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
+ //
+ // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
+ //
+ // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
+ //
+ // The result is fine to be handled by the generic logic.
+ auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
+ ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
+ int AOffset, int BOffset) {
+ assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
+ "Must call this with A having 3 or 1 inputs from the A half.");
+ assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
+ "Must call this with B having 1 or 3 inputs from the B half.");
+ assert(AToAInputs.size() + BToAInputs.size() == 4 &&
+ "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
+
// Compute the index of dword with only one word among the three inputs in
// a half by taking the sum of the half with three inputs and subtracting
// the sum of the actual three inputs. The difference is the remaining
// slot.
- int DWordA = (ThreeInputHalfSum -
- std::accumulate(ThreeInputs.begin(), ThreeInputs.end(), 0)) /
- 2;
- int DWordB = OneInputHalfOffset / 2 + (OneInput / 2 + 1) % 2;
+ int ADWord, BDWord;
+ int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord;
+ int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord;
+ int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset;
+ ArrayRef<int> TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs;
+ int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0];
+ int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
+ int TripleNonInputIdx =
+ TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
+ TripleDWord = TripleNonInputIdx / 2;
+
+ // We use xor with one to compute the adjacent DWord to whichever one the
+ // OneInput is in.
+ OneInputDWord = (OneInput / 2) ^ 1;
+
+ // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
+ // and BToA inputs. If there is also such a problem with the BToB and AToB
+ // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
+ // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
+ // is essential that we don't *create* a 3<-1 as then we might oscillate.
+ if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
+ // Compute how many inputs will be flipped by swapping these DWords. We
+ // need
+ // to balance this to ensure we don't form a 3-1 shuffle in the other
+ // half.
+ int NumFlippedAToBInputs =
+ std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
+ std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
+ int NumFlippedBToBInputs =
+ std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
+ std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
+ if ((NumFlippedAToBInputs == 1 &&
+ (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
+ (NumFlippedBToBInputs == 1 &&
+ (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
+ // We choose whether to fix the A half or B half based on whether that
+ // half has zero flipped inputs. At zero, we may not be able to fix it
+ // with that half. We also bias towards fixing the B half because that
+ // will more commonly be the high half, and we have to bias one way.
+ auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
+ ArrayRef<int> Inputs) {
+ int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
+ bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
+ PinnedIdx ^ 1) != Inputs.end();
+ // Determine whether the free index is in the flipped dword or the
+ // unflipped dword based on where the pinned index is. We use this bit
+ // in an xor to conditionally select the adjacent dword.
+ int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
+ bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
+ FixFreeIdx) != Inputs.end();
+ if (IsFixIdxInput == IsFixFreeIdxInput)
+ FixFreeIdx += 1;
+ IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
+ FixFreeIdx) != Inputs.end();
+ assert(IsFixIdxInput != IsFixFreeIdxInput &&
+ "We need to be changing the number of flipped inputs!");
+ int PSHUFHalfMask[] = {0, 1, 2, 3};
+ std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
+ V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
+ MVT::v8i16, V,
+ getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG));
+
+ for (int &M : Mask)
+ if (M != -1 && M == FixIdx)
+ M = FixFreeIdx;
+ else if (M != -1 && M == FixFreeIdx)
+ M = FixIdx;
+ };
+ if (NumFlippedBToBInputs != 0) {
+ int BPinnedIdx =
+ BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
+ FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
+ } else {
+ assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
+ int APinnedIdx =
+ AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
+ FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
+ }
+ }
+ }
int PSHUFDMask[] = {0, 1, 2, 3};
- PSHUFDMask[DWordA] = DWordB;
- PSHUFDMask[DWordB] = DWordA;
+ PSHUFDMask[ADWord] = BDWord;
+ PSHUFDMask[BDWord] = ADWord;
V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
@@ -7213,24 +8837,20 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
// Adjust the mask to match the new locations of A and B.
for (int &M : Mask)
- if (M != -1 && M/2 == DWordA)
- M = 2 * DWordB + M % 2;
- else if (M != -1 && M/2 == DWordB)
- M = 2 * DWordA + M % 2;
+ if (M != -1 && M/2 == ADWord)
+ M = 2 * BDWord + M % 2;
+ else if (M != -1 && M/2 == BDWord)
+ M = 2 * ADWord + M % 2;
// Recurse back into this routine to re-compute state now that this isn't
// a 3 and 1 problem.
return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
Mask);
};
- if (NumLToL == 3 && NumHToL == 1)
- return balanceSides(LToLInputs, HToLInputs[0], 0 + 1 + 2 + 3, 4);
- else if (NumLToL == 1 && NumHToL == 3)
- return balanceSides(HToLInputs, LToLInputs[0], 4 + 5 + 6 + 7, 0);
- else if (NumLToH == 1 && NumHToH == 3)
- return balanceSides(HToHInputs, LToHInputs[0], 4 + 5 + 6 + 7, 0);
- else if (NumLToH == 3 && NumHToH == 1)
- return balanceSides(LToHInputs, HToHInputs[0], 0 + 1 + 2 + 3, 4);
+ if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
+ return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
+ else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
+ return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
// At this point there are at most two inputs to the low and high halves from
// each half. That means the inputs can always be grouped into dwords and
@@ -7244,9 +8864,10 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
// First fix the masks for all the inputs that are staying in their
// original halves. This will then dictate the targets of the cross-half
// shuffles.
- auto fixInPlaceInputs = [&PSHUFDMask](
- ArrayRef<int> InPlaceInputs, MutableArrayRef<int> SourceHalfMask,
- MutableArrayRef<int> HalfMask, int HalfOffset) {
+ auto fixInPlaceInputs =
+ [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
+ MutableArrayRef<int> SourceHalfMask,
+ MutableArrayRef<int> HalfMask, int HalfOffset) {
if (InPlaceInputs.empty())
return;
if (InPlaceInputs.size() == 1) {
@@ -7255,6 +8876,14 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
return;
}
+ if (IncomingInputs.empty()) {
+ // Just fix all of the in place inputs.
+ for (int Input : InPlaceInputs) {
+ SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
+ PSHUFDMask[Input / 2] = Input / 2;
+ }
+ return;
+ }
assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
@@ -7266,10 +8895,8 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
};
- if (!HToLInputs.empty())
- fixInPlaceInputs(LToLInputs, PSHUFLMask, LoMask, 0);
- if (!LToHInputs.empty())
- fixInPlaceInputs(HToHInputs, PSHUFHMask, HiMask, 4);
+ fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
+ fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
// Now gather the cross-half inputs and place them into a free dword of
// their target half.
@@ -7278,7 +8905,8 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
auto moveInputsToRightHalf = [&PSHUFDMask](
MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
- int SourceOffset, int DestOffset) {
+ MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
+ int DestOffset) {
auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
};
@@ -7304,7 +8932,7 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
Input - SourceOffset;
// We have to swap the uses in our half mask in one sweep.
for (int &M : HalfMask)
- if (M == SourceHalfMask[Input - SourceOffset])
+ if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
M = Input;
else if (M == Input)
M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
@@ -7356,18 +8984,68 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
} else if (IncomingInputs.size() == 2) {
if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
- int SourceDWordBase = !isDWordClobbered(SourceHalfMask, 0) ? 0 : 2;
- assert(!isDWordClobbered(SourceHalfMask, SourceDWordBase) &&
- "Not all dwords can be clobbered!");
- SourceHalfMask[SourceDWordBase] = IncomingInputs[0] - SourceOffset;
- SourceHalfMask[SourceDWordBase + 1] = IncomingInputs[1] - SourceOffset;
+ // We have two non-adjacent or clobbered inputs we need to extract from
+ // the source half. To do this, we need to map them into some adjacent
+ // dword slot in the source mask.
+ int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
+ IncomingInputs[1] - SourceOffset};
+
+ // If there is a free slot in the source half mask adjacent to one of
+ // the inputs, place the other input in it. We use (Index XOR 1) to
+ // compute an adjacent index.
+ if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
+ SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
+ SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
+ SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
+ InputsFixed[1] = InputsFixed[0] ^ 1;
+ } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
+ SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
+ SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
+ SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
+ InputsFixed[0] = InputsFixed[1] ^ 1;
+ } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
+ // The two inputs are in the same DWord but it is clobbered and the
+ // adjacent DWord isn't used at all. Move both inputs to the free
+ // slot.
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
+ InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
+ InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
+ } else {
+ // The only way we hit this point is if there is no clobbering
+ // (because there are no off-half inputs to this half) and there is no
+ // free slot adjacent to one of the inputs. In this case, we have to
+ // swap an input with a non-input.
+ for (int i = 0; i < 4; ++i)
+ assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
+ "We can't handle any clobbers here!");
+ assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
+ "Cannot have adjacent inputs here!");
+
+ SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
+ SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
+
+ // We also have to update the final source mask in this case because
+ // it may need to undo the above swap.
+ for (int &M : FinalSourceHalfMask)
+ if (M == (InputsFixed[0] ^ 1) + SourceOffset)
+ M = InputsFixed[1] + SourceOffset;
+ else if (M == InputsFixed[1] + SourceOffset)
+ M = (InputsFixed[0] ^ 1) + SourceOffset;
+
+ InputsFixed[1] = InputsFixed[0] ^ 1;
+ }
+
+ // Point everything at the fixed inputs.
for (int &M : HalfMask)
if (M == IncomingInputs[0])
- M = SourceDWordBase + SourceOffset;
+ M = InputsFixed[0] + SourceOffset;
else if (M == IncomingInputs[1])
- M = SourceDWordBase + 1 + SourceOffset;
- IncomingInputs[0] = SourceDWordBase + SourceOffset;
- IncomingInputs[1] = SourceDWordBase + 1 + SourceOffset;
+ M = InputsFixed[1] + SourceOffset;
+
+ IncomingInputs[0] = InputsFixed[0] + SourceOffset;
+ IncomingInputs[1] = InputsFixed[1] + SourceOffset;
}
} else {
llvm_unreachable("Unhandled input size!");
@@ -7377,13 +9055,14 @@ static SDValue lowerV8I16SingleInputVectorShuffle(
int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
- for (int Input : IncomingInputs)
- std::replace(HalfMask.begin(), HalfMask.end(), Input,
- FreeDWord * 2 + Input % 2);
+ for (int &M : HalfMask)
+ for (int Input : IncomingInputs)
+ if (M == Input)
+ M = FreeDWord * 2 + Input % 2;
};
- moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask,
+ moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
/*SourceOffset*/ 4, /*DestOffset*/ 0);
- moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask,
+ moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
/*SourceOffset*/ 0, /*DestOffset*/ 4);
// Now enact all the shuffles we've computed to move the inputs into their
@@ -7520,34 +9199,37 @@ static SDValue lowerV8I16BasicBlendVectorShuffle(SDLoc DL, SDValue V1,
if (GoodInputs.size() == 2) {
// If the low inputs are spread across two dwords, pack them into
// a single dword.
- MoveMask[Mask[GoodInputs[0]] % 2 + MoveOffset] =
- Mask[GoodInputs[0]] - MaskOffset;
- MoveMask[Mask[GoodInputs[1]] % 2 + MoveOffset] =
- Mask[GoodInputs[1]] - MaskOffset;
- Mask[GoodInputs[0]] = Mask[GoodInputs[0]] % 2 + MoveOffset + MaskOffset;
- Mask[GoodInputs[1]] = Mask[GoodInputs[0]] % 2 + MoveOffset + MaskOffset;
+ MoveMask[MoveOffset] = Mask[GoodInputs[0]] - MaskOffset;
+ MoveMask[MoveOffset + 1] = Mask[GoodInputs[1]] - MaskOffset;
+ Mask[GoodInputs[0]] = MoveOffset + MaskOffset;
+ Mask[GoodInputs[1]] = MoveOffset + 1 + MaskOffset;
} else {
- // Otherwise pin the low inputs.
+ // Otherwise pin the good inputs.
for (int GoodInput : GoodInputs)
MoveMask[Mask[GoodInput] - MaskOffset] = Mask[GoodInput] - MaskOffset;
}
- int MoveMaskIdx =
- std::find(std::begin(MoveMask) + MoveOffset, std::end(MoveMask), -1) -
- std::begin(MoveMask);
- assert(MoveMaskIdx >= MoveOffset && "Established above");
-
if (BadInputs.size() == 2) {
+ // If we have two bad inputs then there may be either one or two good
+ // inputs fixed in place. Find a fixed input, and then find the *other*
+ // two adjacent indices by using modular arithmetic.
+ int GoodMaskIdx =
+ std::find_if(std::begin(MoveMask) + MoveOffset, std::end(MoveMask),
+ [](int M) { return M >= 0; }) -
+ std::begin(MoveMask);
+ int MoveMaskIdx =
+ ((((GoodMaskIdx - MoveOffset) & ~1) + 2) % 4) + MoveOffset;
assert(MoveMask[MoveMaskIdx] == -1 && "Expected empty slot");
assert(MoveMask[MoveMaskIdx + 1] == -1 && "Expected empty slot");
- MoveMask[MoveMaskIdx + Mask[BadInputs[0]] % 2] =
- Mask[BadInputs[0]] - MaskOffset;
- MoveMask[MoveMaskIdx + Mask[BadInputs[1]] % 2] =
- Mask[BadInputs[1]] - MaskOffset;
- Mask[BadInputs[0]] = MoveMaskIdx + Mask[BadInputs[0]] % 2 + MaskOffset;
- Mask[BadInputs[1]] = MoveMaskIdx + Mask[BadInputs[1]] % 2 + MaskOffset;
+ MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
+ MoveMask[MoveMaskIdx + 1] = Mask[BadInputs[1]] - MaskOffset;
+ Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
+ Mask[BadInputs[1]] = MoveMaskIdx + 1 + MaskOffset;
} else {
assert(BadInputs.size() == 1 && "All sizes handled");
+ int MoveMaskIdx = std::find(std::begin(MoveMask) + MoveOffset,
+ std::end(MoveMask), -1) -
+ std::begin(MoveMask);
MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
}
@@ -7603,6 +9285,12 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
+ return ZExt;
+
auto isV1 = [](int M) { return M >= 0 && M < 8; };
auto isV2 = [](int M) { return M >= 8; };
@@ -7615,6 +9303,33 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized "
"to be V1-input shuffles.");
+ // Try to use byte shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsByteShift(
+ DL, MVT::v8i16, V1, V2, Mask, DAG))
+ return Shift;
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Inputs == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v8i16, DL, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 2, 10, 3, 11))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2);
+ if (isShuffleEquivalent(Mask, 4, 12, 5, 13, 6, 14, 7, 15))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2);
+
+ if (Subtarget->hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
if (NumV1Inputs + NumV2Inputs <= 4)
return lowerV8I16BasicBlendVectorShuffle(DL, V1, V2, Mask, Subtarget, DAG);
@@ -7658,6 +9373,74 @@ static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, LoV, HiV));
}
+/// \brief Check whether a compaction lowering can be done by dropping even
+/// elements and compute how many times even elements must be dropped.
+///
+/// This handles shuffles which take every Nth element where N is a power of
+/// two. Example shuffle masks:
+///
+/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
+/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
+/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
+/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
+/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
+/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
+///
+/// Any of these lanes can of course be undef.
+///
+/// This routine only supports N <= 3.
+/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
+/// for larger N.
+///
+/// \returns N above, or the number of times even elements must be dropped if
+/// there is such a number. Otherwise returns zero.
+static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
+ // Figure out whether we're looping over two inputs or just one.
+ bool IsSingleInput = isSingleInputShuffleMask(Mask);
+
+ // The modulus for the shuffle vector entries is based on whether this is
+ // a single input or not.
+ int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
+ assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
+ "We should only be called with masks with a power-of-2 size!");
+
+ uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
+
+ // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
+ // and 2^3 simultaneously. This is because we may have ambiguity with
+ // partially undef inputs.
+ bool ViableForN[3] = {true, true, true};
+
+ for (int i = 0, e = Mask.size(); i < e; ++i) {
+ // Ignore undef lanes, we'll optimistically collapse them to the pattern we
+ // want.
+ if (Mask[i] == -1)
+ continue;
+
+ bool IsAnyViable = false;
+ for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
+ if (ViableForN[j]) {
+ uint64_t N = j + 1;
+
+ // The shuffle mask must be equal to (i * 2^N) % M.
+ if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
+ IsAnyViable = true;
+ else
+ ViableForN[j] = false;
+ }
+ // Early exit if we exhaust the possible powers of two.
+ if (!IsAnyViable)
+ break;
+ }
+
+ for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
+ if (ViableForN[j])
+ return j + 1;
+
+ // Return 0 as there is no viable power of two.
+ return 0;
+}
+
/// \brief Generic lowering of v16i8 shuffles.
///
/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
@@ -7675,6 +9458,22 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> OrigMask = SVOp->getMask();
assert(OrigMask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // Try to use byte shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsByteShift(
+ DL, MVT::v16i8, V1, V2, OrigMask, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to use a zext lowering.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG))
+ return ZExt;
+
int MaskStorage[16] = {
OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7],
@@ -7684,8 +9483,16 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MutableArrayRef<int> LoMask = Mask.slice(0, 8);
MutableArrayRef<int> HiMask = Mask.slice(8, 8);
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
+
// For single-input shuffles, there are some nicer lowering tricks we can use.
- if (isSingleInputShuffleMask(Mask)) {
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i8, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
// Check whether we can widen this to an i16 shuffle by duplicating bytes.
// Notably, this handles splat and partial-splat shuffles more efficiently.
// However, it only makes sense if the pre-duplication shuffle simplifies
@@ -7695,10 +9502,10 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
// FIXME: We should check for other patterns which can be widened into an
// i16 shuffle as well.
auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
- for (int i = 0; i < 16; i += 2) {
- if (Mask[i] != Mask[i + 1])
+ for (int i = 0; i < 16; i += 2)
+ if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
return false;
- }
+
return true;
};
auto tryToWidenViaDuplication = [&]() -> SDValue {
@@ -7759,11 +9566,16 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MVT::v16i8, V1, V1);
int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
- for (int i = 0; i < 16; i += 2) {
- if (Mask[i] != -1)
- PostDupI16Shuffle[i / 2] = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
- assert(PostDupI16Shuffle[i / 2] < 8 && "Invalid v8 shuffle mask!");
- }
+ for (int i = 0; i < 16; ++i)
+ if (Mask[i] != -1) {
+ int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
+ assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
+ if (PostDupI16Shuffle[i / 2] == -1)
+ PostDupI16Shuffle[i / 2] = MappedMask;
+ else
+ assert(PostDupI16Shuffle[i / 2] == MappedMask &&
+ "Conflicting entrties in the original shuffle!");
+ }
return DAG.getNode(
ISD::BITCAST, DL, MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL,
@@ -7780,21 +9592,127 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
//
// FIXME: We need to handle other interleaving widths (i16, i32, ...).
if (shouldLowerAsInterleaving(Mask)) {
- // FIXME: Figure out whether we should pack these into the low or high
- // halves.
-
- int EMask[16], OMask[16];
+ int NumLoHalf = std::count_if(Mask.begin(), Mask.end(), [](int M) {
+ return (M >= 0 && M < 8) || (M >= 16 && M < 24);
+ });
+ int NumHiHalf = std::count_if(Mask.begin(), Mask.end(), [](int M) {
+ return (M >= 8 && M < 16) || M >= 24;
+ });
+ int EMask[16] = {-1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+ int OMask[16] = {-1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+ bool UnpackLo = NumLoHalf >= NumHiHalf;
+ MutableArrayRef<int> TargetEMask(UnpackLo ? EMask : EMask + 8, 8);
+ MutableArrayRef<int> TargetOMask(UnpackLo ? OMask : OMask + 8, 8);
for (int i = 0; i < 8; ++i) {
- EMask[i] = Mask[2*i];
- OMask[i] = Mask[2*i + 1];
- EMask[i + 8] = -1;
- OMask[i + 8] = -1;
+ TargetEMask[i] = Mask[2 * i];
+ TargetOMask[i] = Mask[2 * i + 1];
}
SDValue Evens = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, EMask);
SDValue Odds = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, OMask);
- return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, Evens, Odds);
+ return DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ MVT::v16i8, Evens, Odds);
+ }
+
+ // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
+ // with PSHUFB. It is important to do this before we attempt to generate any
+ // blends but after all of the single-input lowerings. If the single input
+ // lowerings can find an instruction sequence that is faster than a PSHUFB, we
+ // want to preserve that and we can DAG combine any longer sequences into
+ // a PSHUFB in the end. But once we start blending from multiple inputs,
+ // the complexity of DAG combining bad patterns back into PSHUFB is too high,
+ // and there are *very* few patterns that would actually be faster than the
+ // PSHUFB approach because of its ability to zero lanes.
+ //
+ // FIXME: The only exceptions to the above are blends which are exact
+ // interleavings with direct instructions supporting them. We currently don't
+ // handle those well here.
+ if (Subtarget->hasSSSE3()) {
+ SDValue V1Mask[16];
+ SDValue V2Mask[16];
+ bool V1InUse = false;
+ bool V2InUse = false;
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ for (int i = 0; i < 16; ++i) {
+ if (Mask[i] == -1) {
+ V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
+ } else {
+ const int ZeroMask = 0x80;
+ int V1Idx = (Mask[i] < 16 ? Mask[i] : ZeroMask);
+ int V2Idx = (Mask[i] < 16 ? ZeroMask : Mask[i] - 16);
+ if (Zeroable[i])
+ V1Idx = V2Idx = ZeroMask;
+ V1Mask[i] = DAG.getConstant(V1Idx, MVT::i8);
+ V2Mask[i] = DAG.getConstant(V2Idx, MVT::i8);
+ V1InUse |= (ZeroMask != V1Idx);
+ V2InUse |= (ZeroMask != V2Idx);
+ }
+ }
+
+ if (V1InUse)
+ V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
+ if (V2InUse)
+ V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
+
+ // If we need shuffled inputs from both, blend the two.
+ if (V1InUse && V2InUse)
+ return DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
+ if (V1InUse)
+ return V1; // Single inputs are easy.
+ if (V2InUse)
+ return V2; // Single inputs are easy.
+ // Shuffling to a zeroable vector.
+ return getZeroVector(MVT::v16i8, Subtarget, DAG, DL);
+ }
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Elements == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v16i8, DL, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ // Check whether a compaction lowering can be done. This handles shuffles
+ // which take every Nth element for some even N. See the helper function for
+ // details.
+ //
+ // We special case these as they can be particularly efficiently handled with
+ // the PACKUSB instruction on x86 and they show up in common patterns of
+ // rearranging bytes to truncate wide elements.
+ if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
+ // NumEvenDrops is the power of two stride of the elements. Another way of
+ // thinking about it is that we need to drop the even elements this many
+ // times to get the original input.
+ bool IsSingleInput = isSingleInputShuffleMask(Mask);
+
+ // First we need to zero all the dropped bytes.
+ assert(NumEvenDrops <= 3 &&
+ "No support for dropping even elements more than 3 times.");
+ // We use the mask type to pick which bytes are preserved based on how many
+ // elements are dropped.
+ MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
+ SDValue ByteClearMask =
+ DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
+ DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1]));
+ V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
+ if (!IsSingleInput)
+ V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
+
+ // Now pack things back together.
+ V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
+ V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
+ SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
+ for (int i = 1; i < NumEvenDrops; ++i) {
+ Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
+ Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
+ }
+
+ return Result;
}
int V1LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
@@ -7893,15 +9811,1109 @@ static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
}
}
-/// \brief Tiny helper function to test whether adjacent masks are sequential.
-static bool areAdjacentMasksSequential(ArrayRef<int> Mask) {
- for (int i = 0, Size = Mask.size(); i < Size; i += 2)
- if (Mask[i] + 1 != Mask[i+1])
+/// \brief Helper function to test whether a shuffle mask could be
+/// simplified by widening the elements being shuffled.
+///
+/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
+/// leaves it in an unspecified state.
+///
+/// NOTE: This must handle normal vector shuffle masks and *target* vector
+/// shuffle masks. The latter have the special property of a '-2' representing
+/// a zero-ed lane of a vector.
+static bool canWidenShuffleElements(ArrayRef<int> Mask,
+ SmallVectorImpl<int> &WidenedMask) {
+ for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
+ // If both elements are undef, its trivial.
+ if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
+ WidenedMask.push_back(SM_SentinelUndef);
+ continue;
+ }
+
+ // Check for an undef mask and a mask value properly aligned to fit with
+ // a pair of values. If we find such a case, use the non-undef mask's value.
+ if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
+ WidenedMask.push_back(Mask[i + 1] / 2);
+ continue;
+ }
+ if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
+ WidenedMask.push_back(Mask[i] / 2);
+ continue;
+ }
+
+ // When zeroing, we need to spread the zeroing across both lanes to widen.
+ if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
+ if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
+ (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
+ WidenedMask.push_back(SM_SentinelZero);
+ continue;
+ }
return false;
+ }
+
+ // Finally check if the two mask values are adjacent and aligned with
+ // a pair.
+ if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
+ WidenedMask.push_back(Mask[i] / 2);
+ continue;
+ }
+
+ // Otherwise we can't safely widen the elements used in this shuffle.
+ return false;
+ }
+ assert(WidenedMask.size() == Mask.size() / 2 &&
+ "Incorrect size of mask after widening the elements!");
return true;
}
+/// \brief Generic routine to split ector shuffle into half-sized shuffles.
+///
+/// This routine just extracts two subvectors, shuffles them independently, and
+/// then concatenates them back together. This should work effectively with all
+/// AVX vector shuffle types.
+static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(VT.getSizeInBits() >= 256 &&
+ "Only for 256-bit or wider vector shuffles!");
+ assert(V1.getSimpleValueType() == VT && "Bad operand type!");
+ assert(V2.getSimpleValueType() == VT && "Bad operand type!");
+
+ ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
+ ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
+
+ int NumElements = VT.getVectorNumElements();
+ int SplitNumElements = NumElements / 2;
+ MVT ScalarVT = VT.getScalarType();
+ MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
+
+ SDValue LoV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1,
+ DAG.getIntPtrConstant(0));
+ SDValue HiV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1,
+ DAG.getIntPtrConstant(SplitNumElements));
+ SDValue LoV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2,
+ DAG.getIntPtrConstant(0));
+ SDValue HiV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2,
+ DAG.getIntPtrConstant(SplitNumElements));
+
+ // Now create two 4-way blends of these half-width vectors.
+ auto HalfBlend = [&](ArrayRef<int> HalfMask) {
+ bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
+ SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
+ for (int i = 0; i < SplitNumElements; ++i) {
+ int M = HalfMask[i];
+ if (M >= NumElements) {
+ if (M >= NumElements + SplitNumElements)
+ UseHiV2 = true;
+ else
+ UseLoV2 = true;
+ V2BlendMask.push_back(M - NumElements);
+ V1BlendMask.push_back(-1);
+ BlendMask.push_back(SplitNumElements + i);
+ } else if (M >= 0) {
+ if (M >= SplitNumElements)
+ UseHiV1 = true;
+ else
+ UseLoV1 = true;
+ V2BlendMask.push_back(-1);
+ V1BlendMask.push_back(M);
+ BlendMask.push_back(i);
+ } else {
+ V2BlendMask.push_back(-1);
+ V1BlendMask.push_back(-1);
+ BlendMask.push_back(-1);
+ }
+ }
+
+ // Because the lowering happens after all combining takes place, we need to
+ // manually combine these blend masks as much as possible so that we create
+ // a minimal number of high-level vector shuffle nodes.
+
+ // First try just blending the halves of V1 or V2.
+ if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
+ return DAG.getUNDEF(SplitVT);
+ if (!UseLoV2 && !UseHiV2)
+ return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
+ if (!UseLoV1 && !UseHiV1)
+ return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
+
+ SDValue V1Blend, V2Blend;
+ if (UseLoV1 && UseHiV1) {
+ V1Blend =
+ DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
+ } else {
+ // We only use half of V1 so map the usage down into the final blend mask.
+ V1Blend = UseLoV1 ? LoV1 : HiV1;
+ for (int i = 0; i < SplitNumElements; ++i)
+ if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
+ BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
+ }
+ if (UseLoV2 && UseHiV2) {
+ V2Blend =
+ DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
+ } else {
+ // We only use half of V2 so map the usage down into the final blend mask.
+ V2Blend = UseLoV2 ? LoV2 : HiV2;
+ for (int i = 0; i < SplitNumElements; ++i)
+ if (BlendMask[i] >= SplitNumElements)
+ BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
+ }
+ return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
+ };
+ SDValue Lo = HalfBlend(LoMask);
+ SDValue Hi = HalfBlend(HiMask);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+}
+
+/// \brief Either split a vector in halves or decompose the shuffles and the
+/// blend.
+///
+/// This is provided as a good fallback for many lowerings of non-single-input
+/// shuffles with more than one 128-bit lane. In those cases, we want to select
+/// between splitting the shuffle into 128-bit components and stitching those
+/// back together vs. extracting the single-input shuffles and blending those
+/// results.
+static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
+ "lower single-input shuffles as it "
+ "could then recurse on itself.");
+ int Size = Mask.size();
+
+ // If this can be modeled as a broadcast of two elements followed by a blend,
+ // prefer that lowering. This is especially important because broadcasts can
+ // often fold with memory operands.
+ auto DoBothBroadcast = [&] {
+ int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
+ for (int M : Mask)
+ if (M >= Size) {
+ if (V2BroadcastIdx == -1)
+ V2BroadcastIdx = M - Size;
+ else if (M - Size != V2BroadcastIdx)
+ return false;
+ } else if (M >= 0) {
+ if (V1BroadcastIdx == -1)
+ V1BroadcastIdx = M;
+ else if (M != V1BroadcastIdx)
+ return false;
+ }
+ return true;
+ };
+ if (DoBothBroadcast())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
+ DAG);
+
+ // If the inputs all stem from a single 128-bit lane of each input, then we
+ // split them rather than blending because the split will decompose to
+ // unusually few instructions.
+ int LaneCount = VT.getSizeInBits() / 128;
+ int LaneSize = Size / LaneCount;
+ SmallBitVector LaneInputs[2];
+ LaneInputs[0].resize(LaneCount, false);
+ LaneInputs[1].resize(LaneCount, false);
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
+ if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ // Otherwise, just fall back to decomposed shuffles and a blend. This requires
+ // that the decomposed single-input shuffles don't end up here.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
+}
+
+/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
+/// a permutation and blend of those lanes.
+///
+/// This essentially blends the out-of-lane inputs to each lane into the lane
+/// from a permuted copy of the vector. This lowering strategy results in four
+/// instructions in the worst case for a single-input cross lane shuffle which
+/// is lower than any other fully general cross-lane shuffle strategy I'm aware
+/// of. Special cases for each particular shuffle pattern should be handled
+/// prior to trying this lowering.
+static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // FIXME: This should probably be generalized for 512-bit vectors as well.
+ assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!");
+ int LaneSize = Mask.size() / 2;
+
+ // If there are only inputs from one 128-bit lane, splitting will in fact be
+ // less expensive. The flags track wether the given lane contains an element
+ // that crosses to another lane.
+ bool LaneCrossing[2] = {false, false};
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
+ LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
+ if (!LaneCrossing[0] || !LaneCrossing[1])
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ if (isSingleInputShuffleMask(Mask)) {
+ SmallVector<int, 32> FlippedBlendMask;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ FlippedBlendMask.push_back(
+ Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
+ ? Mask[i]
+ : Mask[i] % LaneSize +
+ (i / LaneSize) * LaneSize + Size));
+
+ // Flip the vector, and blend the results which should now be in-lane. The
+ // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
+ // 5 for the high source. The value 3 selects the high half of source 2 and
+ // the value 2 selects the low half of source 2. We only use source 2 to
+ // allow folding it into a memory operand.
+ unsigned PERMMask = 3 | 2 << 4;
+ SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
+ V1, DAG.getConstant(PERMMask, MVT::i8));
+ return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
+ }
+
+ // This now reduces to two single-input shuffles of V1 and V2 which at worst
+ // will be handled by the above logic and a blend of the results, much like
+ // other patterns in AVX.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering 2-lane 128-bit shuffles.
+static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ // Blends are faster and handle all the non-lane-crossing cases.
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+ // Check for patterns which can be matched with a single insert of a 128-bit
+ // subvector.
+ if (isShuffleEquivalent(Mask, 0, 1, 0, 1) ||
+ isShuffleEquivalent(Mask, 0, 1, 4, 5)) {
+ SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+ DAG.getIntPtrConstant(0));
+ SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
+ Mask[2] < 4 ? V1 : V2, DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ }
+ if (isShuffleEquivalent(Mask, 0, 1, 6, 7)) {
+ SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+ DAG.getIntPtrConstant(0));
+ SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
+ DAG.getIntPtrConstant(2));
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ }
+
+ // Otherwise form a 128-bit permutation.
+ // FIXME: Detect zero-vector inputs and use the VPERM2X128 to zero that half.
+ unsigned PermMask = Mask[0] / 2 | (Mask[2] / 2) << 4;
+ return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
+ DAG.getConstant(PermMask, MVT::i8));
+}
+
+/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
+/// shuffling each lane.
+///
+/// This will only succeed when the result of fixing the 128-bit lanes results
+/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
+/// each 128-bit lanes. This handles many cases where we can quickly blend away
+/// the lane crosses early and then use simpler shuffles within each lane.
+///
+/// FIXME: It might be worthwhile at some point to support this without
+/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
+/// in x86 only floating point has interesting non-repeating shuffles, and even
+/// those are still *marginally* more expensive.
+static SDValue lowerVectorShuffleByMerging128BitLanes(
+ SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ assert(!isSingleInputShuffleMask(Mask) &&
+ "This is only useful with multiple inputs.");
+
+ int Size = Mask.size();
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ int NumLanes = Size / LaneSize;
+ assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
+
+ // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
+ // check whether the in-128-bit lane shuffles share a repeating pattern.
+ SmallVector<int, 4> Lanes;
+ Lanes.resize(NumLanes, -1);
+ SmallVector<int, 4> InLaneMask;
+ InLaneMask.resize(LaneSize, -1);
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ int j = i / LaneSize;
+
+ if (Lanes[j] < 0) {
+ // First entry we've seen for this lane.
+ Lanes[j] = Mask[i] / LaneSize;
+ } else if (Lanes[j] != Mask[i] / LaneSize) {
+ // This doesn't match the lane selected previously!
+ return SDValue();
+ }
+
+ // Check that within each lane we have a consistent shuffle mask.
+ int k = i % LaneSize;
+ if (InLaneMask[k] < 0) {
+ InLaneMask[k] = Mask[i] % LaneSize;
+ } else if (InLaneMask[k] != Mask[i] % LaneSize) {
+ // This doesn't fit a repeating in-lane mask.
+ return SDValue();
+ }
+ }
+
+ // First shuffle the lanes into place.
+ MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
+ VT.getSizeInBits() / 64);
+ SmallVector<int, 8> LaneMask;
+ LaneMask.resize(NumLanes * 2, -1);
+ for (int i = 0; i < NumLanes; ++i)
+ if (Lanes[i] >= 0) {
+ LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
+ LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
+ }
+
+ V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2);
+ SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
+
+ // Cast it back to the type we actually want.
+ LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle);
+
+ // Now do a simple shuffle that isn't lane crossing.
+ SmallVector<int, 8> NewMask;
+ NewMask.resize(Size, -1);
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
+ assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
+ "Must not introduce lane crosses at this point!");
+
+ return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
+}
+
+/// \brief Test whether the specified input (0 or 1) is in-place blended by the
+/// given mask.
+///
+/// This returns true if the elements from a particular input are already in the
+/// slot required by the given mask and require no permutation.
+static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
+ assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
+ return false;
+
+ return true;
+}
+
+/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
+///
+/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
+/// isn't available.
+static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ SmallVector<int, 4> WidenedMask;
+ if (canWidenShuffleElements(Mask, WidenedMask))
+ return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget,
+ DAG);
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f64, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
+ // Non-half-crossing single input shuffles can be lowerid with an
+ // interleaved permutation.
+ unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
+ ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
+ DAG.getConstant(VPERMILPMask, MVT::i8));
+ }
+
+ // With AVX2 we have direct support for this permutation.
+ if (Subtarget->hasAVX2())
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+
+ // Otherwise, fall back.
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
+ DAG);
+ }
+
+ // X86 has dedicated unpack instructions that can handle specific blend
+ // operations: UNPCKH and UNPCKL.
+ if (isShuffleEquivalent(Mask, 0, 4, 2, 6))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2);
+ if (isShuffleEquivalent(Mask, 1, 5, 3, 7))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2);
+
+ // If we have a single input to the zero element, insert that into V1 if we
+ // can do so cheaply.
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+ if (NumV2Elements == 1 && Mask[0] >= 4)
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ MVT::v4f64, DL, V1, V2, Mask, Subtarget, DAG))
+ return Insertion;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check if the blend happens to exactly fit that of SHUFPD.
+ if ((Mask[0] == -1 || Mask[0] < 2) &&
+ (Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
+ (Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
+ (Mask[3] == -1 || Mask[3] >= 6)) {
+ unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
+ ((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
+ DAG.getConstant(SHUFPDMask, MVT::i8));
+ }
+ if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
+ (Mask[1] == -1 || Mask[1] < 2) &&
+ (Mask[2] == -1 || Mask[2] >= 6) &&
+ (Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
+ unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
+ ((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
+ DAG.getConstant(SHUFPDMask, MVT::i8));
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle. However, if we have AVX2 and either inputs are already in place,
+ // we will be able to shuffle even across lanes the other input in a single
+ // instruction so skip this pattern.
+ if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
+ isShuffleMaskInputInPlace(1, Mask))))
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // If we have AVX2 then we always want to lower with a blend because an v4 we
+ // can fully permute the elements.
+ if (Subtarget->hasAVX2())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
+ Mask, DAG);
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v4i64 shuffling..
+static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
+
+ SmallVector<int, 4> WidenedMask;
+ if (canWidenShuffleElements(Mask, WidenedMask))
+ return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget,
+ DAG);
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i64, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // When the shuffle is mirrored between the 128-bit lanes of the unit, we can
+ // use lower latency instructions that will operate on both 128-bit lanes.
+ SmallVector<int, 2> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
+ if (isSingleInputShuffleMask(Mask)) {
+ int PSHUFDMask[] = {-1, -1, -1, -1};
+ for (int i = 0; i < 2; ++i)
+ if (RepeatedMask[i] >= 0) {
+ PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
+ PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
+ }
+ return DAG.getNode(
+ ISD::BITCAST, DL, MVT::v4i64,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 4, 2, 6))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2);
+ if (isShuffleEquivalent(Mask, 1, 5, 3, 7))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2);
+ }
+
+ // AVX2 provides a direct instruction for permuting a single input across
+ // lanes.
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DAG));
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle. However, if we have AVX2 and either inputs are already in place,
+ // we will be able to shuffle even across lanes the other input in a single
+ // instruction so skip this pattern.
+ if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
+ isShuffleMaskInputInPlace(1, Mask))))
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic blend lowering.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
+///
+/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
+/// isn't available.
+static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8f32, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // If the shuffle mask is repeated in each 128-bit lane, we have many more
+ // options to efficiently lower the shuffle.
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
+ assert(RepeatedMask.size() == 4 &&
+ "Repeated masks must be half the mask width!");
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2);
+ if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2);
+
+ // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
+ // have already handled any direct blends. We also need to squash the
+ // repeated mask into a simulated v4f32 mask.
+ for (int i = 0; i < 4; ++i)
+ if (RepeatedMask[i] >= 8)
+ RepeatedMask[i] -= 4;
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
+ }
+
+ // If we have a single input shuffle with different shuffle patterns in the
+ // two 128-bit lanes use the variable mask to VPERMILPS.
+ if (isSingleInputShuffleMask(Mask)) {
+ SDValue VPermMask[8];
+ for (int i = 0; i < 8; ++i)
+ VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
+ : DAG.getConstant(Mask[i], MVT::i32);
+ if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
+ return DAG.getNode(
+ X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
+
+ if (Subtarget->hasAVX2())
+ return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ MVT::v8i32, VPermMask)),
+ V1);
+
+ // Otherwise, fall back.
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
+ DAG);
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // If we have AVX2 then we always want to lower with a blend because at v8 we
+ // can fully permute the elements.
+ if (Subtarget->hasAVX2())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
+ Mask, DAG);
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v8i32 shuffling..
+static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i32, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // If the shuffle mask is repeated in each 128-bit lane we can use more
+ // efficient instructions that mirror the shuffles across the two 128-bit
+ // lanes.
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
+ assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2);
+ if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2);
+ }
+
+ // If the shuffle patterns aren't repeated but it is a single input, directly
+ // generate a cross-lane VPERMD instruction.
+ if (isSingleInputShuffleMask(Mask)) {
+ SDValue VPermMask[8];
+ for (int i = 0; i < 8; ++i)
+ VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
+ : DAG.getConstant(Mask[i], MVT::i32);
+ return DAG.getNode(
+ X86ISD::VPERMV, DL, MVT::v8i32,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic blend lowering.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v16i16 shuffling..
+static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i16, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask,
+ // First 128-bit lane:
+ 0, 16, 1, 17, 2, 18, 3, 19,
+ // Second 128-bit lane:
+ 8, 24, 9, 25, 10, 26, 11, 27))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2);
+ if (isShuffleEquivalent(Mask,
+ // First 128-bit lane:
+ 4, 20, 5, 21, 6, 22, 7, 23,
+ // Second 128-bit lane:
+ 12, 28, 13, 29, 14, 30, 15, 31))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2);
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // There are no generalized cross-lane shuffle operations available on i16
+ // element types.
+ if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
+ Mask, DAG);
+
+ SDValue PSHUFBMask[32];
+ for (int i = 0; i < 16; ++i) {
+ if (Mask[i] == -1) {
+ PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
+ continue;
+ }
+
+ int M = i < 8 ? Mask[i] : Mask[i] - 8;
+ assert(M >= 0 && M < 8 && "Invalid single-input mask!");
+ PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8);
+ PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8);
+ }
+ return DAG.getNode(
+ ISD::BITCAST, DL, MVT::v16i16,
+ DAG.getNode(
+ X86ISD::PSHUFB, DL, MVT::v32i8,
+ DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v32i8 shuffling..
+static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v32i8, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ // Note that these are repeated 128-bit lane unpacks, not unpacks across all
+ // 256-bit lanes.
+ if (isShuffleEquivalent(
+ Mask,
+ // First 128-bit lane:
+ 0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
+ // Second 128-bit lane:
+ 16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2);
+ if (isShuffleEquivalent(
+ Mask,
+ // First 128-bit lane:
+ 8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
+ // Second 128-bit lane:
+ 24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2);
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // There are no generalized cross-lane shuffle operations available on i8
+ // element types.
+ if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
+ Mask, DAG);
+
+ SDValue PSHUFBMask[32];
+ for (int i = 0; i < 32; ++i)
+ PSHUFBMask[i] =
+ Mask[i] < 0
+ ? DAG.getUNDEF(MVT::i8)
+ : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8);
+
+ return DAG.getNode(
+ X86ISD::PSHUFB, DL, MVT::v32i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
+}
+
+/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
+///
+/// This routine either breaks down the specific type of a 256-bit x86 vector
+/// shuffle or splits it into two 128-bit shuffles and fuses the results back
+/// together based on the available instructions.
+static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+
+ // There is a really nice hard cut-over between AVX1 and AVX2 that means we can
+ // check for those subtargets here and avoid much of the subtarget querying in
+ // the per-vector-type lowering routines. With AVX1 we have essentially *zero*
+ // ability to manipulate a 256-bit vector with integer types. Since we'll use
+ // floating point types there eventually, just immediately cast everything to
+ // a float and operate entirely in that domain.
+ if (VT.isInteger() && !Subtarget->hasAVX2()) {
+ int ElementBits = VT.getScalarSizeInBits();
+ if (ElementBits < 32)
+ // No floating point type available, decompose into 128-bit vectors.
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
+ VT.getVectorNumElements());
+ V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
+ }
+
+ switch (VT.SimpleTy) {
+ case MVT::v4f64:
+ return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v4i64:
+ return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8f32:
+ return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8i32:
+ return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16i16:
+ return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v32i8:
+ return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Not a valid 256-bit x86 vector type!");
+ }
+}
+
+/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
+static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ // X86 has dedicated unpack instructions that can handle specific blend
+ // operations: UNPCKH and UNPCKL.
+ if (isShuffleEquivalent(Mask, 0, 8, 2, 10, 4, 12, 6, 14))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2);
+ if (isShuffleEquivalent(Mask, 1, 9, 3, 11, 5, 13, 7, 15))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2);
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
+static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask,
+ 0, 16, 1, 17, 4, 20, 5, 21,
+ 8, 24, 9, 25, 12, 28, 13, 29))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2);
+ if (isShuffleEquivalent(Mask,
+ 2, 18, 3, 19, 6, 22, 7, 23,
+ 10, 26, 11, 27, 14, 30, 15, 31))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2);
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
+static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ // X86 has dedicated unpack instructions that can handle specific blend
+ // operations: UNPCKH and UNPCKL.
+ if (isShuffleEquivalent(Mask, 0, 8, 2, 10, 4, 12, 6, 14))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2);
+ if (isShuffleEquivalent(Mask, 1, 9, 3, 11, 5, 13, 7, 15))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2);
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
+static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (isShuffleEquivalent(Mask,
+ 0, 16, 1, 17, 4, 20, 5, 21,
+ 8, 24, 9, 25, 12, 28, 13, 29))
+ return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2);
+ if (isShuffleEquivalent(Mask,
+ 2, 18, 3, 19, 6, 22, 7, 23,
+ 10, 26, 11, 27, 14, 30, 15, 31))
+ return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2);
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
+static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
+ assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v32i16, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
+static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
+ assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
+}
+
+/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
+///
+/// This routine either breaks down the specific type of a 512-bit x86 vector
+/// shuffle or splits it into two 256-bit shuffles and fuses the results back
+/// together based on the available instructions.
+static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Subtarget->hasAVX512() &&
+ "Cannot lower 512-bit vectors w/ basic ISA!");
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(VT.SimpleTy, DL, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Dispatch to each element type for lowering. If we don't have supprot for
+ // specific element type shuffles at 512 bits, immediately split them and
+ // lower them. Each lowering routine of a given type is allowed to assume that
+ // the requisite ISA extensions for that element type are available.
+ switch (VT.SimpleTy) {
+ case MVT::v8f64:
+ return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16f32:
+ return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8i64:
+ return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16i32:
+ return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v32i16:
+ if (Subtarget->hasBWI())
+ return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ break;
+ case MVT::v64i8:
+ if (Subtarget->hasBWI())
+ return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ break;
+
+ default:
+ llvm_unreachable("Not a valid 512-bit x86 vector type!");
+ }
+
+ // Otherwise fall back on splitting.
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+}
+
/// \brief Top-level lowering for x86 vector shuffles.
///
/// This handles decomposition, canonicalization, and lowering of all x86
@@ -7945,22 +10957,25 @@ static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
}
- // For integer vector shuffles, try to collapse them into a shuffle of fewer
- // lanes but wider integers. We cap this to not form integers larger than i64
- // but it might be interesting to form i128 integers to handle flipping the
- // low and high halves of AVX 256-bit vectors.
- if (VT.isInteger() && VT.getScalarSizeInBits() < 64 &&
- areAdjacentMasksSequential(Mask)) {
- SmallVector<int, 8> NewMask;
- for (int i = 0, Size = Mask.size(); i < Size; i += 2)
- NewMask.push_back(Mask[i] / 2);
- MVT NewVT =
- MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() * 2),
- VT.getVectorNumElements() / 2);
- V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
- V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getVectorShuffle(NewVT, dl, V1, V2, NewMask));
+ // Try to collapse shuffles into using a vector type with fewer elements but
+ // wider element types. We cap this to not form integers or floating point
+ // elements wider than 64 bits, but it might be interesting to form i128
+ // integers to handle flipping the low and high halves of AVX 256-bit vectors.
+ SmallVector<int, 16> WidenedMask;
+ if (VT.getScalarSizeInBits() < 64 &&
+ canWidenShuffleElements(Mask, WidenedMask)) {
+ MVT NewEltVT = VT.isFloatingPoint()
+ ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
+ : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
+ MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
+ // Make sure that the new vector type is legal. For example, v2f64 isn't
+ // legal on SSE1.
+ if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
+ V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
+ }
}
int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
@@ -7979,7 +10994,10 @@ static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
return DAG.getCommutedVectorShuffle(*SVOp);
// When the number of V1 and V2 elements are the same, try to minimize the
- // number of uses of V2 in the low half of the vector.
+ // number of uses of V2 in the low half of the vector. When that is tied,
+ // ensure that the sum of indices for V1 is equal to or lower than the sum
+ // indices for V2. When those are equal, try to ensure that the number of odd
+ // indices for V1 is lower than the number of odd indices for V2.
if (NumV1Elements == NumV2Elements) {
int LowV1Elements = 0, LowV2Elements = 0;
for (int M : SVOp->getMask().slice(0, NumElements / 2))
@@ -7987,14 +11005,42 @@ static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
++LowV2Elements;
else if (M >= 0)
++LowV1Elements;
- if (LowV2Elements > LowV1Elements)
+ if (LowV2Elements > LowV1Elements) {
return DAG.getCommutedVectorShuffle(*SVOp);
+ } else if (LowV2Elements == LowV1Elements) {
+ int SumV1Indices = 0, SumV2Indices = 0;
+ for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
+ if (SVOp->getMask()[i] >= NumElements)
+ SumV2Indices += i;
+ else if (SVOp->getMask()[i] >= 0)
+ SumV1Indices += i;
+ if (SumV2Indices < SumV1Indices) {
+ return DAG.getCommutedVectorShuffle(*SVOp);
+ } else if (SumV2Indices == SumV1Indices) {
+ int NumV1OddIndices = 0, NumV2OddIndices = 0;
+ for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
+ if (SVOp->getMask()[i] >= NumElements)
+ NumV2OddIndices += i % 2;
+ else if (SVOp->getMask()[i] >= 0)
+ NumV1OddIndices += i % 2;
+ if (NumV2OddIndices < NumV1OddIndices)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+ }
+ }
}
// For each vector width, delegate to a specialized lowering routine.
if (VT.getSizeInBits() == 128)
return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+ if (VT.getSizeInBits() == 256)
+ return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+
+ // Force AVX-512 vectors to be scalarized for now.
+ // FIXME: Implement AVX-512 support!
+ if (VT.getSizeInBits() == 512)
+ return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+
llvm_unreachable("Unimplemented!");
}
@@ -9060,7 +12106,9 @@ static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl,
// should assume we're changing V2's element's place and behave
// accordingly.
int FromV2 = std::count_if(Mask.begin(), Mask.end(), FromV2Predicate);
- if (FromV1 == FromV2 && DestIndex == Mask[DestIndex] % 4) {
+ assert(DestIndex <= INT32_MAX && "truncated destination index");
+ if (FromV1 == FromV2 &&
+ static_cast<int>(DestIndex) == Mask[DestIndex] % 4) {
From = V2;
To = V1;
DestIndex =
@@ -9163,37 +12211,6 @@ static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
return SDValue();
- // Simplify the operand as it's prepared to be fed into shuffle.
- unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
- if (V1.getOpcode() == ISD::BITCAST &&
- V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
- V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- V1.getOperand(0).getOperand(0)
- .getSimpleValueType().getSizeInBits() == SignificantBits) {
- // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
- SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
- ConstantSDNode *CIdx =
- dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
- // If it's foldable, i.e. normal load with single use, we will let code
- // selection to fold it. Otherwise, we will short the conversion sequence.
- if (CIdx && CIdx->getZExtValue() == 0 &&
- (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
- MVT FullVT = V.getSimpleValueType();
- MVT V1VT = V1.getSimpleValueType();
- if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
- // The "ext_vec_elt" node is wider than the result node.
- // In this case we should extract subvector from V.
- // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
- unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
- MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
- FullVT.getVectorNumElements()/Ratio);
- V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
- DAG.getIntPtrConstant(0));
- }
- V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
- }
- }
-
return DAG.getNode(ISD::BITCAST, DL, VT,
DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
}
@@ -9343,7 +12360,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
- return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
+ return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1, TargetMask,
DAG);
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
@@ -9355,6 +12372,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
getShufflePALIGNRImmediate(SVOp),
DAG);
+ if (isVALIGNMask(M, VT, Subtarget))
+ return getTargetShuffleNode(X86ISD::VALIGN, dl, VT, V1, V2,
+ getShuffleVALIGNImmediate(SVOp),
+ DAG);
+
// Check if this can be converted into a logical shift.
bool isLeft = false;
unsigned ShAmt = 0;
@@ -9520,7 +12542,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
getShuffleSHUFImmediate(SVOp), DAG);
- return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
+ return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1,
getShuffleSHUFImmediate(SVOp), DAG);
}
@@ -9639,9 +12661,10 @@ static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
return true;
}
-// Try to lower a vselect node into a simple blend instruction.
-static SDValue LowerVSELECTtoBlend(SDValue Op, const X86Subtarget *Subtarget,
- SelectionDAG &DAG) {
+/// \brief Try to lower a VSELECT instruction to an immediate-controlled blend
+/// instruction.
+static SDValue lowerVSELECTtoBLENDI(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
SDValue Cond = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
@@ -9683,7 +12706,14 @@ static SDValue LowerVSELECTtoBlend(SDValue Op, const X86Subtarget *Subtarget,
}
SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
- SDValue BlendOp = LowerVSELECTtoBlend(Op, Subtarget, DAG);
+ // A vselect where all conditions and data are constants can be optimized into
+ // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
+ return SDValue();
+
+ SDValue BlendOp = lowerVSELECTtoBLENDI(Op, Subtarget, DAG);
if (BlendOp.getNode())
return BlendOp;
@@ -9696,6 +12726,8 @@ SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
break;
case MVT::v8i16:
case MVT::v16i16:
+ if (Subtarget->hasBWI() && Subtarget->hasVLX())
+ break;
return SDValue();
}
@@ -9914,62 +12946,9 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
return SDValue();
}
-static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getSimpleValueType();
- MVT EltVT = VT.getVectorElementType();
- SDLoc dl(Op);
-
- SDValue N0 = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- SDValue N2 = Op.getOperand(2);
-
- if (!VT.is128BitVector())
- return SDValue();
-
- if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
- isa<ConstantSDNode>(N2)) {
- unsigned Opc;
- if (VT == MVT::v8i16)
- Opc = X86ISD::PINSRW;
- else if (VT == MVT::v16i8)
- Opc = X86ISD::PINSRB;
- else
- Opc = X86ISD::PINSRB;
-
- // Transform it so it match pinsr{b,w} which expects a GR32 as its second
- // argument.
- if (N1.getValueType() != MVT::i32)
- N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
- if (N2.getValueType() != MVT::i32)
- N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
- return DAG.getNode(Opc, dl, VT, N0, N1, N2);
- }
-
- if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
- // Bits [7:6] of the constant are the source select. This will always be
- // zero here. The DAG Combiner may combine an extract_elt index into these
- // bits. For example (insert (extract, 3), 2) could be matched by putting
- // the '3' into bits [7:6] of X86ISD::INSERTPS.
- // Bits [5:4] of the constant are the destination select. This is the
- // value of the incoming immediate.
- // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
- // combine either bitwise AND or insert of float 0.0 to set these bits.
- N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
- // Create this as a scalar to vector..
- N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
- return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
- }
-
- if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
- // PINSR* works with constant index.
- return Op;
- }
- return SDValue();
-}
-
/// Insert one bit to mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
-SDValue
+SDValue
X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
@@ -9982,7 +12961,7 @@ X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
// insert element and then truncate the result.
MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32);
- SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
+ SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
@@ -10001,11 +12980,12 @@ X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
DAG.getConstant(MaxSift - IdxVal, MVT::i8));
return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
}
-SDValue
-X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
+
+SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
-
+
if (EltVT == MVT::i1)
return InsertBitToMaskVector(Op, DAG);
@@ -10013,20 +12993,20 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
+ if (!isa<ConstantSDNode>(N2))
+ return SDValue();
+ auto *N2C = cast<ConstantSDNode>(N2);
+ unsigned IdxVal = N2C->getZExtValue();
- // If this is a 256-bit vector result, first extract the 128-bit vector,
- // insert the element into the extracted half and then place it back.
+ // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
+ // into that, and then insert the subvector back into the result.
if (VT.is256BitVector() || VT.is512BitVector()) {
- if (!isa<ConstantSDNode>(N2))
- return SDValue();
-
// Get the desired 128-bit vector half.
- unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
// Insert the element into the desired half.
- unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
- unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
+ unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
+ unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128;
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
DAG.getConstant(IdxIn128, MVT::i32));
@@ -10034,20 +13014,60 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
// Insert the changed part back to the 256-bit vector
return Insert128BitVector(N0, V, IdxVal, DAG, dl);
}
+ assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
- if (Subtarget->hasSSE41())
- return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
+ if (Subtarget->hasSSE41()) {
+ if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
+ unsigned Opc;
+ if (VT == MVT::v8i16) {
+ Opc = X86ISD::PINSRW;
+ } else {
+ assert(VT == MVT::v16i8);
+ Opc = X86ISD::PINSRB;
+ }
+
+ // Transform it so it match pinsr{b,w} which expects a GR32 as its second
+ // argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(IdxVal);
+ return DAG.getNode(Opc, dl, VT, N0, N1, N2);
+ }
+
+ if (EltVT == MVT::f32) {
+ // Bits [7:6] of the constant are the source select. This will always be
+ // zero here. The DAG Combiner may combine an extract_elt index into
+ // these
+ // bits. For example (insert (extract, 3), 2) could be matched by
+ // putting
+ // the '3' into bits [7:6] of X86ISD::INSERTPS.
+ // Bits [5:4] of the constant are the destination select. This is the
+ // value of the incoming immediate.
+ // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
+ // combine either bitwise AND or insert of float 0.0 to set these bits.
+ N2 = DAG.getIntPtrConstant(IdxVal << 4);
+ // Create this as a scalar to vector..
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
+ }
+
+ if (EltVT == MVT::i32 || EltVT == MVT::i64) {
+ // PINSR* works with constant index.
+ return Op;
+ }
+ }
if (EltVT == MVT::i8)
return SDValue();
- if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
+ if (EltVT.getSizeInBits() == 16) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
- N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
+ N2 = DAG.getIntPtrConstant(IdxVal);
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
}
return SDValue();
@@ -10360,6 +13380,7 @@ GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
MFI->setAdjustsStack(true);
+ MFI->setHasCalls(true);
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
@@ -10593,7 +13614,7 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->is64Bit())
IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
IDX, MachinePointerInfo(), MVT::i32,
- false, false, 0);
+ false, false, false, 0);
else
IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
false, false, false, 0);
@@ -10677,9 +13698,17 @@ static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+ SDLoc dl(Op);
- if (SrcVT.isVector())
+ if (SrcVT.isVector()) {
+ if (SrcVT.getVectorElementType() == MVT::i1) {
+ MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT,
+ Op.getOperand(0)));
+ }
return SDValue();
+ }
assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
@@ -10693,7 +13722,6 @@ SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
return Op;
}
- SDLoc dl(Op);
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
@@ -10880,19 +13908,135 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
return Sub;
}
+static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // The algorithm is the following:
+ // #ifdef __SSE4_1__
+ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
+ // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
+ // (uint4) 0x53000000, 0xaa);
+ // #else
+ // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
+ // uint4 hi = (v >> 16) | (uint4) 0x53000000;
+ // #endif
+ // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
+ // return (float4) lo + fhi;
+
+ SDLoc DL(Op);
+ SDValue V = Op->getOperand(0);
+ EVT VecIntVT = V.getValueType();
+ bool Is128 = VecIntVT == MVT::v4i32;
+ EVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
+ // If we convert to something else than the supported type, e.g., to v4f64,
+ // abort early.
+ if (VecFloatVT != Op->getValueType(0))
+ return SDValue();
+
+ unsigned NumElts = VecIntVT.getVectorNumElements();
+ assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
+ "Unsupported custom type");
+ assert(NumElts <= 8 && "The size of the constant array must be fixed");
+
+ // In the #idef/#else code, we have in common:
+ // - The vector of constants:
+ // -- 0x4b000000
+ // -- 0x53000000
+ // - A shift:
+ // -- v >> 16
+
+ // Create the splat vector for 0x4b000000.
+ SDValue CstLow = DAG.getConstant(0x4b000000, MVT::i32);
+ SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
+ CstLow, CstLow, CstLow, CstLow};
+ SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
+ makeArrayRef(&CstLowArray[0], NumElts));
+ // Create the splat vector for 0x53000000.
+ SDValue CstHigh = DAG.getConstant(0x53000000, MVT::i32);
+ SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
+ CstHigh, CstHigh, CstHigh, CstHigh};
+ SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
+ makeArrayRef(&CstHighArray[0], NumElts));
+
+ // Create the right shift.
+ SDValue CstShift = DAG.getConstant(16, MVT::i32);
+ SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
+ CstShift, CstShift, CstShift, CstShift};
+ SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
+ makeArrayRef(&CstShiftArray[0], NumElts));
+ SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
+
+ SDValue Low, High;
+ if (Subtarget.hasSSE41()) {
+ EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
+ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
+ SDValue VecCstLowBitcast =
+ DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow);
+ SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V);
+ // Low will be bitcasted right away, so do not bother bitcasting back to its
+ // original type.
+ Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
+ VecCstLowBitcast, DAG.getConstant(0xaa, MVT::i32));
+ // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
+ // (uint4) 0x53000000, 0xaa);
+ SDValue VecCstHighBitcast =
+ DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh);
+ SDValue VecShiftBitcast =
+ DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift);
+ // High will be bitcasted right away, so do not bother bitcasting back to
+ // its original type.
+ High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
+ VecCstHighBitcast, DAG.getConstant(0xaa, MVT::i32));
+ } else {
+ SDValue CstMask = DAG.getConstant(0xffff, MVT::i32);
+ SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
+ CstMask, CstMask, CstMask);
+ // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
+ SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
+ Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
+
+ // uint4 hi = (v >> 16) | (uint4) 0x53000000;
+ High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
+ }
+
+ // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
+ SDValue CstFAdd = DAG.getConstantFP(
+ APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), MVT::f32);
+ SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
+ CstFAdd, CstFAdd, CstFAdd, CstFAdd};
+ SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
+ makeArrayRef(&CstFAddArray[0], NumElts));
+
+ // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
+ SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High);
+ SDValue FHigh =
+ DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
+ // return (float4) lo + fhi;
+ SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low);
+ return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
+}
+
SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
MVT SVT = N0.getSimpleValueType();
SDLoc dl(Op);
- assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
- SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
- "Custom UINT_TO_FP is not supported!");
-
- MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
- return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
- DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
+ switch (SVT.SimpleTy) {
+ default:
+ llvm_unreachable("Custom UINT_TO_FP is not supported!");
+ case MVT::v4i8:
+ case MVT::v4i16:
+ case MVT::v8i8:
+ case MVT::v8i16: {
+ MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
+ }
+ case MVT::v4i32:
+ case MVT::v8i32:
+ return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
+ }
+ llvm_unreachable(nullptr);
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
@@ -10978,7 +14122,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
// FIXME: Avoid the extend by constructing the right constant pool?
SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
FudgePtr, MachinePointerInfo::getConstantPool(),
- MVT::f32, false, false, 4);
+ MVT::f32, false, false, false, 4);
// Extend everything to 80 bits to force it to be done on x87.
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
@@ -11192,12 +14336,9 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
if (VT == MVT::i1) {
assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
"Invalid scalar TRUNCATE operation");
- if (InVT == MVT::i32)
+ if (InVT.getSizeInBits() >= 32)
return SDValue();
- if (InVT.getSizeInBits() == 64)
- In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::i32, In);
- else if (InVT.getSizeInBits() < 32)
- In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
+ In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
}
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
@@ -11215,7 +14356,7 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
InVT = ExtVT;
}
-
+
SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
SDValue CP = DAG.getConstantPool(C, getPointerTy());
@@ -11375,58 +14516,47 @@ static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
In, DAG.getUNDEF(SVT)));
}
-static SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) {
- LLVMContext *Context = DAG.getContext();
+/// The only differences between FABS and FNEG are the mask and the logic op.
+/// FNEG also has a folding opportunity for FNEG(FABS(x)).
+static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
+ assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
+ "Wrong opcode for lowering FABS or FNEG.");
+
+ bool IsFABS = (Op.getOpcode() == ISD::FABS);
+
+ // If this is a FABS and it has an FNEG user, bail out to fold the combination
+ // into an FNABS. We'll lower the FABS after that if it is still in use.
+ if (IsFABS)
+ for (SDNode *User : Op->uses())
+ if (User->getOpcode() == ISD::FNEG)
+ return Op;
+
+ SDValue Op0 = Op.getOperand(0);
+ bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
+
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
+ // Assume scalar op for initialization; update for vector if needed.
+ // Note that there are no scalar bitwise logical SSE/AVX instructions, so we
+ // generate a 16-byte vector constant and logic op even for the scalar case.
+ // Using a 16-byte mask allows folding the load of the mask with
+ // the logic op, so it can save (~4 bytes) on code size.
MVT EltVT = VT;
unsigned NumElts = VT == MVT::f64 ? 2 : 4;
+ // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
+ // decide if we should generate a 16-byte constant mask when we only need 4 or
+ // 8 bytes for the scalar case.
if (VT.isVector()) {
EltVT = VT.getVectorElementType();
NumElts = VT.getVectorNumElements();
}
- Constant *C;
- if (EltVT == MVT::f64)
- C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
- APInt(64, ~(1ULL << 63))));
- else
- C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
- APInt(32, ~(1U << 31))));
- C = ConstantVector::getSplat(NumElts, C);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
- unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
- SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
- MachinePointerInfo::getConstantPool(),
- false, false, false, Alignment);
- if (VT.isVector()) {
- MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(ISD::AND, dl, ANDVT,
- DAG.getNode(ISD::BITCAST, dl, ANDVT,
- Op.getOperand(0)),
- DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
- }
- return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
-}
-static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) {
+ unsigned EltBits = EltVT.getSizeInBits();
LLVMContext *Context = DAG.getContext();
- SDLoc dl(Op);
- MVT VT = Op.getSimpleValueType();
- MVT EltVT = VT;
- unsigned NumElts = VT == MVT::f64 ? 2 : 4;
- if (VT.isVector()) {
- EltVT = VT.getVectorElementType();
- NumElts = VT.getVectorNumElements();
- }
- Constant *C;
- if (EltVT == MVT::f64)
- C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
- APInt(64, 1ULL << 63)));
- else
- C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
- APInt(32, 1U << 31)));
+ // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
+ APInt MaskElt =
+ IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
+ Constant *C = ConstantInt::get(*Context, MaskElt);
C = ConstantVector::getSplat(NumElts, C);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
@@ -11434,16 +14564,24 @@ static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) {
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, Alignment);
+
if (VT.isVector()) {
- MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
+ // For a vector, cast operands to a vector type, perform the logic op,
+ // and cast the result back to the original value type.
+ MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
+ SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
+ SDValue Operand = IsFNABS ?
+ DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) :
+ DAG.getNode(ISD::BITCAST, dl, VecVT, Op0);
+ unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getNode(ISD::XOR, dl, XORVT,
- DAG.getNode(ISD::BITCAST, dl, XORVT,
- Op.getOperand(0)),
- DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
+ DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
}
- return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
+ // If not vector, then scalar.
+ unsigned BitOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
+ SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
+ return DAG.getNode(BitOp, dl, VT, Operand, Mask);
}
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
@@ -11469,19 +14607,17 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
- // First get the sign bit of second operand.
- SmallVector<Constant*,4> CV;
- if (SrcVT == MVT::f64) {
- const fltSemantics &Sem = APFloat::IEEEdouble;
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
- } else {
- const fltSemantics &Sem = APFloat::IEEEsingle;
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
- }
+ const fltSemantics &Sem =
+ VT == MVT::f64 ? APFloat::IEEEdouble : APFloat::IEEEsingle;
+ const unsigned SizeInBits = VT.getSizeInBits();
+
+ SmallVector<Constant *, 4> CV(
+ VT == MVT::f64 ? 2 : 4,
+ ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0))));
+
+ // First, clear all bits but the sign bit from the second operand (sign).
+ CV[0] = ConstantFP::get(*Context,
+ APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1)));
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
@@ -11489,40 +14625,30 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
false, false, false, 16);
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
- // Shift sign bit right or left if the two operands have different types.
- if (SrcVT.bitsGT(VT)) {
- // Op0 is MVT::f32, Op1 is MVT::f64.
- SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
- SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
- DAG.getConstant(32, MVT::i32));
- SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
- SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
- DAG.getIntPtrConstant(0));
- }
-
- // Clear first operand sign bit.
- CV.clear();
- if (VT == MVT::f64) {
- const fltSemantics &Sem = APFloat::IEEEdouble;
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
- APInt(64, ~(1ULL << 63)))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
+ // Next, clear the sign bit from the first operand (magnitude).
+ // If it's a constant, we can clear it here.
+ if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) {
+ APFloat APF = Op0CN->getValueAPF();
+ // If the magnitude is a positive zero, the sign bit alone is enough.
+ if (APF.isPosZero())
+ return SignBit;
+ APF.clearSign();
+ CV[0] = ConstantFP::get(*Context, APF);
} else {
- const fltSemantics &Sem = APFloat::IEEEsingle;
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
- APInt(32, ~(1U << 31)))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV[0] = ConstantFP::get(
+ *Context,
+ APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1)));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
- SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
- MachinePointerInfo::getConstantPool(),
- false, false, false, 16);
- SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
-
- // Or the value with the sign bit.
+ SDValue Val = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, 16);
+ // If the magnitude operand wasn't a constant, we need to AND out the sign.
+ if (!isa<ConstantFPSDNode>(Op0))
+ Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Val);
+
+ // OR the magnitude value with the sign bit.
return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
}
@@ -11537,8 +14663,7 @@ static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
}
-// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
-//
+// Check whether an OR'd tree is PTEST-able.
static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
@@ -11897,12 +15022,12 @@ SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
if (Op0.getValueType() == MVT::i1)
llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
}
-
+
if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
- // Do the comparison at i32 if it's smaller, besides the Atom case.
- // This avoids subregister aliasing issues. Keep the smaller reference
- // if we're optimizing for size, however, as that'll allow better folding
+ // Do the comparison at i32 if it's smaller, besides the Atom case.
+ // This avoids subregister aliasing issues. Keep the smaller reference
+ // if we're optimizing for size, however, as that'll allow better folding
// of memory operations.
if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
!DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
@@ -11946,6 +15071,66 @@ SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
}
+/// The minimum architected relative accuracy is 2^-12. We need one
+/// Newton-Raphson step to have a good float result (24 bits of precision).
+SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const {
+ // FIXME: We should use instruction latency models to calculate the cost of
+ // each potential sequence, but this is very hard to do reliably because
+ // at least Intel's Core* chips have variable timing based on the number of
+ // significant digits in the divisor and/or sqrt operand.
+ if (!Subtarget->useSqrtEst())
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+
+ // SSE1 has rsqrtss and rsqrtps.
+ // TODO: Add support for AVX512 (v16f32).
+ // It is likely not profitable to do this for f64 because a double-precision
+ // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
+ // instructions: convert to single, rsqrtss, convert back to double, refine
+ // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
+ // along with FMA, this could be a throughput win.
+ if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
+ (Subtarget->hasAVX() && VT == MVT::v8f32)) {
+ RefinementSteps = 1;
+ UseOneConstNR = false;
+ return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
+ }
+ return SDValue();
+}
+
+/// The minimum architected relative accuracy is 2^-12. We need one
+/// Newton-Raphson step to have a good float result (24 bits of precision).
+SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const {
+ // FIXME: We should use instruction latency models to calculate the cost of
+ // each potential sequence, but this is very hard to do reliably because
+ // at least Intel's Core* chips have variable timing based on the number of
+ // significant digits in the divisor.
+ if (!Subtarget->useReciprocalEst())
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+
+ // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
+ // TODO: Add support for AVX512 (v16f32).
+ // It is likely not profitable to do this for f64 because a double-precision
+ // reciprocal estimate with refinement on x86 prior to FMA requires
+ // 15 instructions: convert to single, rcpss, convert back to double, refine
+ // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
+ // along with FMA, this could be a throughput win.
+ if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
+ (Subtarget->hasAVX() && VT == MVT::v8f32)) {
+ RefinementSteps = ReciprocalEstimateRefinementSteps;
+ return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
+ }
+ return SDValue();
+}
+
static bool isAllOnes(SDValue V) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
return C && C->isAllOnesValue();
@@ -12105,7 +15290,7 @@ static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
- assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
+ assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 &&
Op.getValueType().getScalarType() == MVT::i1 &&
"Cannot set masked compare for this operation");
@@ -12219,11 +15404,12 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
EVT OpVT = Op1.getValueType();
if (Subtarget->hasAVX512()) {
if (Op1.getValueType().is512BitVector() ||
+ (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
(MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
// In AVX-512 architecture setcc returns mask with i1 elements,
- // But there is no compare instruction for i8 and i16 elements.
+ // But there is no compare instruction for i8 and i16 elements in KNL.
// We are not talking about 512-bit operands in this case, these
// types are illegal.
if (MaskResult &&
@@ -12426,8 +15612,11 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
cast<ConstantSDNode>(Op1)->isNullValue() &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
- if (NewSetCC.getNode())
+ if (NewSetCC.getNode()) {
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
return NewSetCC;
+ }
}
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
@@ -12729,18 +15918,40 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
}
-static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
+static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
+ MVT VTElt = VT.getVectorElementType();
+ MVT InVTElt = InVT.getVectorElementType();
SDLoc dl(Op);
+ // SKX processor
+ if ((InVTElt == MVT::i1) &&
+ (((Subtarget->hasBWI() && Subtarget->hasVLX() &&
+ VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
+
+ ((Subtarget->hasBWI() && VT.is512BitVector() &&
+ VTElt.getSizeInBits() <= 16)) ||
+
+ ((Subtarget->hasDQI() && Subtarget->hasVLX() &&
+ VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
+
+ ((Subtarget->hasDQI() && VT.is512BitVector() &&
+ VTElt.getSizeInBits() >= 32))))
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
unsigned int NumElts = VT.getVectorNumElements();
+
if (NumElts != 8 && NumElts != 16)
return SDValue();
- if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
+ if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
+ return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+ }
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
@@ -12768,7 +15979,7 @@ static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
SDLoc dl(Op);
if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
- return LowerSIGN_EXTEND_AVX512(Op, DAG);
+ return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
(VT != MVT::v8i32 || InVT != MVT::v8i16) &&
@@ -12811,6 +16022,208 @@ static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
+// Lower vector extended loads using a shuffle. If SSSE3 is not available we
+// may emit an illegal shuffle but the expansion is still better than scalar
+// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
+// we'll emit a shuffle and a arithmetic shift.
+// TODO: It is possible to support ZExt by zeroing the undef values during
+// the shuffle phase or after the shuffle.
+static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT RegVT = Op.getSimpleValueType();
+ assert(RegVT.isVector() && "We only custom lower vector sext loads.");
+ assert(RegVT.isInteger() &&
+ "We only custom lower integer vector sext loads.");
+
+ // Nothing useful we can do without SSE2 shuffles.
+ assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
+
+ LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
+ SDLoc dl(Ld);
+ EVT MemVT = Ld->getMemoryVT();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned RegSz = RegVT.getSizeInBits();
+
+ ISD::LoadExtType Ext = Ld->getExtensionType();
+
+ assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
+ && "Only anyext and sext are currently implemented.");
+ assert(MemVT != RegVT && "Cannot extend to the same type");
+ assert(MemVT.isVector() && "Must load a vector from memory");
+
+ unsigned NumElems = RegVT.getVectorNumElements();
+ unsigned MemSz = MemVT.getSizeInBits();
+ assert(RegSz > MemSz && "Register size must be greater than the mem size");
+
+ if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
+ // The only way in which we have a legal 256-bit vector result but not the
+ // integer 256-bit operations needed to directly lower a sextload is if we
+ // have AVX1 but not AVX2. In that case, we can always emit a sextload to
+ // a 128-bit vector and a normal sign_extend to 256-bits that should get
+ // correctly legalized. We do this late to allow the canonical form of
+ // sextload to persist throughout the rest of the DAG combiner -- it wants
+ // to fold together any extensions it can, and so will fuse a sign_extend
+ // of an sextload into a sextload targeting a wider value.
+ SDValue Load;
+ if (MemSz == 128) {
+ // Just switch this to a normal load.
+ assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
+ "it must be a legal 128-bit vector "
+ "type!");
+ Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+ } else {
+ assert(MemSz < 128 &&
+ "Can't extend a type wider than 128 bits to a 256 bit vector!");
+ // Do an sext load to a 128-bit vector type. We want to use the same
+ // number of elements, but elements half as wide. This will end up being
+ // recursively lowered by this routine, but will succeed as we definitely
+ // have all the necessary features if we're using AVX1.
+ EVT HalfEltVT =
+ EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
+ EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
+ Load =
+ DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ Ld->getAlignment());
+ }
+
+ // Replace chain users with the new chain.
+ assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
+
+ // Finally, do a normal sign-extend to the desired register.
+ return DAG.getSExtOrTrunc(Load, dl, RegVT);
+ }
+
+ // All sizes must be a power of two.
+ assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
+ "Non-power-of-two elements are not custom lowered!");
+
+ // Attempt to load the original value using scalar loads.
+ // Find the largest scalar type that divides the total loaded size.
+ MVT SclrLoadTy = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
+ SclrLoadTy = Tp;
+ }
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
+ (64 <= MemSz))
+ SclrLoadTy = MVT::f64;
+
+ // Calculate the number of scalar loads that we need to perform
+ // in order to load our vector from memory.
+ unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
+
+ assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
+ "Can only lower sext loads with a single scalar load!");
+
+ unsigned loadRegZize = RegSz;
+ if (Ext == ISD::SEXTLOAD && RegSz == 256)
+ loadRegZize /= 2;
+
+ // Represent our vector as a sequence of elements which are the
+ // largest scalar that we can load.
+ EVT LoadUnitVecVT = EVT::getVectorVT(
+ *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
+
+ // Represent the data using the same element type that is stored in
+ // memory. In practice, we ''widen'' MemVT.
+ EVT WideVecVT =
+ EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ loadRegZize / MemVT.getScalarType().getSizeInBits());
+
+ assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
+ "Invalid vector type");
+
+ // We can't shuffle using an illegal type.
+ assert(TLI.isTypeLegal(WideVecVT) &&
+ "We only lower types that form legal widened vector types");
+
+ SmallVector<SDValue, 8> Chains;
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue Increment =
+ DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy());
+ SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
+
+ for (unsigned i = 0; i < NumLoads; ++i) {
+ // Perform a single load.
+ SDValue ScalarLoad =
+ DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
+ Ld->getAlignment());
+ Chains.push_back(ScalarLoad.getValue(1));
+ // Create the first element type using SCALAR_TO_VECTOR in order to avoid
+ // another round of DAGCombining.
+ if (i == 0)
+ Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
+ else
+ Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
+ ScalarLoad, DAG.getIntPtrConstant(i));
+
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ }
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+
+ // Bitcast the loaded value to a vector of the original element type, in
+ // the size of the target vector type.
+ SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
+ unsigned SizeRatio = RegSz / MemSz;
+
+ if (Ext == ISD::SEXTLOAD) {
+ // If we have SSE4.1, we can directly emit a VSEXT node.
+ if (Subtarget->hasSSE41()) {
+ SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Sext;
+ }
+
+ // Otherwise we'll shuffle the small elements in the high bits of the
+ // larger type and perform an arithmetic shift. If the shift is not legal
+ // it's better to scalarize.
+ assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) &&
+ "We can't implement a sext load without an arithmetic right shift!");
+
+ // Redistribute the loaded elements into the different locations.
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i * SizeRatio + SizeRatio - 1] = i;
+
+ SDValue Shuff = DAG.getVectorShuffle(
+ WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
+
+ Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+
+ // Build the arithmetic shift.
+ unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
+ MemVT.getVectorElementType().getSizeInBits();
+ Shuff =
+ DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT));
+
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Shuff;
+ }
+
+ // Redistribute the loaded elements into the different locations.
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i * SizeRatio] = i;
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
+ DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
+
+ // Bitcast to the requested type.
+ Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Shuff;
+}
+
// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
// from the AND / OR.
@@ -13116,7 +16529,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
}
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
-// Calls to _alloca is needed to probe the stack when allocating more than 4k
+// Calls to _alloca are needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
@@ -13125,7 +16538,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool SplitStack = MF.shouldSplitStack();
- bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) ||
+ bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) ||
SplitStack;
SDLoc dl(Op);
@@ -13151,7 +16564,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
- const TargetFrameLowering &TFI = *DAG.getTarget().getFrameLowering();
+ const TargetFrameLowering &TFI = *DAG.getSubtarget().getFrameLowering();
unsigned StackAlign = TFI.getStackAlignment();
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
if (Align > StackAlign)
@@ -13174,7 +16587,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
EVT VT = Op.getNode()->getValueType(0);
bool Is64Bit = Subtarget->is64Bit();
- EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
+ EVT SPTy = getPointerTy();
if (SplitStack) {
MachineRegisterInfo &MRI = MF.getRegInfo();
@@ -13192,7 +16605,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
}
const TargetRegisterClass *AddrRegClass =
- getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
+ getRegClassFor(getPointerTy());
unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
@@ -13201,7 +16614,7 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
return DAG.getMergeValues(Ops1, dl);
} else {
SDValue Flag;
- unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
+ const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
Flag = Chain.getValue(1);
@@ -13209,8 +16622,8 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
unsigned SPReg = RegInfo->getStackRegister();
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
Chain = SP.getValue(1);
@@ -13451,7 +16864,8 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
SDValue SrcOp, SDValue ShAmt,
SelectionDAG &DAG) {
- assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
+ MVT SVT = ShAmt.getSimpleValueType();
+ assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
// Catch shift-by-constant.
if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
@@ -13466,13 +16880,28 @@ static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
}
- // Need to build a vector containing shift amount
- // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
- SDValue ShOps[4];
- ShOps[0] = ShAmt;
- ShOps[1] = DAG.getConstant(0, MVT::i32);
- ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
- ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, ShOps);
+ const X86Subtarget &Subtarget =
+ DAG.getTarget().getSubtarget<X86Subtarget>();
+ if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
+ ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
+ // Let the shuffle legalizer expand this shift amount node.
+ SDValue Op0 = ShAmt.getOperand(0);
+ Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
+ ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG);
+ } else {
+ // Need to build a vector containing shift amount.
+ // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
+ SmallVector<SDValue, 4> ShOps;
+ ShOps.push_back(ShAmt);
+ if (SVT == MVT::i32) {
+ ShOps.push_back(DAG.getConstant(0, SVT));
+ ShOps.push_back(DAG.getUNDEF(SVT));
+ }
+ ShOps.push_back(DAG.getUNDEF(SVT));
+
+ MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64;
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps);
+ }
// The return type has to be a 128-bit type with the same element
// type as the input type.
@@ -13483,382 +16912,271 @@ static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
-static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
- SDLoc dl(Op);
- unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- switch (IntNo) {
- default: return SDValue(); // Don't custom lower most intrinsics.
- // Comparison intrinsics.
- case Intrinsic::x86_sse_comieq_ss:
- case Intrinsic::x86_sse_comilt_ss:
- case Intrinsic::x86_sse_comile_ss:
- case Intrinsic::x86_sse_comigt_ss:
- case Intrinsic::x86_sse_comige_ss:
- case Intrinsic::x86_sse_comineq_ss:
- case Intrinsic::x86_sse_ucomieq_ss:
- case Intrinsic::x86_sse_ucomilt_ss:
- case Intrinsic::x86_sse_ucomile_ss:
- case Intrinsic::x86_sse_ucomigt_ss:
- case Intrinsic::x86_sse_ucomige_ss:
- case Intrinsic::x86_sse_ucomineq_ss:
- case Intrinsic::x86_sse2_comieq_sd:
- case Intrinsic::x86_sse2_comilt_sd:
- case Intrinsic::x86_sse2_comile_sd:
- case Intrinsic::x86_sse2_comigt_sd:
- case Intrinsic::x86_sse2_comige_sd:
- case Intrinsic::x86_sse2_comineq_sd:
- case Intrinsic::x86_sse2_ucomieq_sd:
- case Intrinsic::x86_sse2_ucomilt_sd:
- case Intrinsic::x86_sse2_ucomile_sd:
- case Intrinsic::x86_sse2_ucomigt_sd:
- case Intrinsic::x86_sse2_ucomige_sd:
- case Intrinsic::x86_sse2_ucomineq_sd: {
- unsigned Opc;
- ISD::CondCode CC;
+/// \brief Return (and \p Op, \p Mask) for compare instructions or
+/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
+/// necessary casting for \p Mask when lowering masking intrinsics.
+static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
+ MVT::i1, VT.getVectorNumElements());
+ EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ Mask.getValueType().getSizeInBits());
+ SDLoc dl(Op);
+
+ assert(MaskVT.isSimple() && "invalid mask type");
+
+ if (isAllOnes(Mask))
+ return Op;
+
+ // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+ // are extracted by EXTRACT_SUBVECTOR.
+ SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getIntPtrConstant(0));
+
+ switch (Op.getOpcode()) {
+ default: break;
+ case X86ISD::PCMPEQM:
+ case X86ISD::PCMPGTM:
+ case X86ISD::CMPM:
+ case X86ISD::CMPMU:
+ return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
+ }
+ if (PreservedSrc.getOpcode() == ISD::UNDEF)
+ PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(ISD::VSELECT, dl, VT, VMask, Op, PreservedSrc);
+}
+
+/// \brief Creates an SDNode for a predicated scalar operation.
+/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
+/// The mask is comming as MVT::i8 and it should be truncated
+/// to MVT::i1 while lowering masking intrinsics.
+/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
+/// "X86select" instead of "vselect". We just can't create the "vselect" node for
+/// a scalar instruction.
+static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (isAllOnes(Mask))
+ return Op;
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ // The mask should be of type MVT::i1
+ SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
+
+ if (PreservedSrc.getOpcode() == ISD::UNDEF)
+ PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
+}
+
+static unsigned getOpcodeForFMAIntrinsic(unsigned IntNo) {
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_sse_comieq_ss:
- case Intrinsic::x86_sse2_comieq_sd:
- Opc = X86ISD::COMI;
- CC = ISD::SETEQ;
- break;
- case Intrinsic::x86_sse_comilt_ss:
- case Intrinsic::x86_sse2_comilt_sd:
- Opc = X86ISD::COMI;
- CC = ISD::SETLT;
- break;
- case Intrinsic::x86_sse_comile_ss:
- case Intrinsic::x86_sse2_comile_sd:
- Opc = X86ISD::COMI;
- CC = ISD::SETLE;
- break;
- case Intrinsic::x86_sse_comigt_ss:
- case Intrinsic::x86_sse2_comigt_sd:
- Opc = X86ISD::COMI;
- CC = ISD::SETGT;
- break;
- case Intrinsic::x86_sse_comige_ss:
- case Intrinsic::x86_sse2_comige_sd:
- Opc = X86ISD::COMI;
- CC = ISD::SETGE;
- break;
- case Intrinsic::x86_sse_comineq_ss:
- case Intrinsic::x86_sse2_comineq_sd:
- Opc = X86ISD::COMI;
- CC = ISD::SETNE;
- break;
- case Intrinsic::x86_sse_ucomieq_ss:
- case Intrinsic::x86_sse2_ucomieq_sd:
- Opc = X86ISD::UCOMI;
- CC = ISD::SETEQ;
- break;
- case Intrinsic::x86_sse_ucomilt_ss:
- case Intrinsic::x86_sse2_ucomilt_sd:
- Opc = X86ISD::UCOMI;
- CC = ISD::SETLT;
- break;
- case Intrinsic::x86_sse_ucomile_ss:
- case Intrinsic::x86_sse2_ucomile_sd:
- Opc = X86ISD::UCOMI;
- CC = ISD::SETLE;
- break;
- case Intrinsic::x86_sse_ucomigt_ss:
- case Intrinsic::x86_sse2_ucomigt_sd:
- Opc = X86ISD::UCOMI;
- CC = ISD::SETGT;
- break;
- case Intrinsic::x86_sse_ucomige_ss:
- case Intrinsic::x86_sse2_ucomige_sd:
- Opc = X86ISD::UCOMI;
- CC = ISD::SETGE;
- break;
- case Intrinsic::x86_sse_ucomineq_ss:
- case Intrinsic::x86_sse2_ucomineq_sd:
- Opc = X86ISD::UCOMI;
- CC = ISD::SETNE;
- break;
+ case Intrinsic::x86_fma_vfmadd_ps:
+ case Intrinsic::x86_fma_vfmadd_pd:
+ case Intrinsic::x86_fma_vfmadd_ps_256:
+ case Intrinsic::x86_fma_vfmadd_pd_256:
+ case Intrinsic::x86_fma_mask_vfmadd_ps_512:
+ case Intrinsic::x86_fma_mask_vfmadd_pd_512:
+ return X86ISD::FMADD;
+ case Intrinsic::x86_fma_vfmsub_ps:
+ case Intrinsic::x86_fma_vfmsub_pd:
+ case Intrinsic::x86_fma_vfmsub_ps_256:
+ case Intrinsic::x86_fma_vfmsub_pd_256:
+ case Intrinsic::x86_fma_mask_vfmsub_ps_512:
+ case Intrinsic::x86_fma_mask_vfmsub_pd_512:
+ return X86ISD::FMSUB;
+ case Intrinsic::x86_fma_vfnmadd_ps:
+ case Intrinsic::x86_fma_vfnmadd_pd:
+ case Intrinsic::x86_fma_vfnmadd_ps_256:
+ case Intrinsic::x86_fma_vfnmadd_pd_256:
+ case Intrinsic::x86_fma_mask_vfnmadd_ps_512:
+ case Intrinsic::x86_fma_mask_vfnmadd_pd_512:
+ return X86ISD::FNMADD;
+ case Intrinsic::x86_fma_vfnmsub_ps:
+ case Intrinsic::x86_fma_vfnmsub_pd:
+ case Intrinsic::x86_fma_vfnmsub_ps_256:
+ case Intrinsic::x86_fma_vfnmsub_pd_256:
+ case Intrinsic::x86_fma_mask_vfnmsub_ps_512:
+ case Intrinsic::x86_fma_mask_vfnmsub_pd_512:
+ return X86ISD::FNMSUB;
+ case Intrinsic::x86_fma_vfmaddsub_ps:
+ case Intrinsic::x86_fma_vfmaddsub_pd:
+ case Intrinsic::x86_fma_vfmaddsub_ps_256:
+ case Intrinsic::x86_fma_vfmaddsub_pd_256:
+ case Intrinsic::x86_fma_mask_vfmaddsub_ps_512:
+ case Intrinsic::x86_fma_mask_vfmaddsub_pd_512:
+ return X86ISD::FMADDSUB;
+ case Intrinsic::x86_fma_vfmsubadd_ps:
+ case Intrinsic::x86_fma_vfmsubadd_pd:
+ case Intrinsic::x86_fma_vfmsubadd_ps_256:
+ case Intrinsic::x86_fma_vfmsubadd_pd_256:
+ case Intrinsic::x86_fma_mask_vfmsubadd_ps_512:
+ case Intrinsic::x86_fma_mask_vfmsubadd_pd_512:
+ return X86ISD::FMSUBADD;
}
+}
- SDValue LHS = Op.getOperand(1);
- SDValue RHS = Op.getOperand(2);
- unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
- assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
- SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
- SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
- DAG.getConstant(X86CC, MVT::i8), Cond);
- return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
- }
+static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ EVT VT = Op.getValueType();
+ const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
+ if (IntrData) {
+ switch(IntrData->Type) {
+ case INTR_TYPE_1OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
+ case INTR_TYPE_2OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2));
+ case INTR_TYPE_3OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3));
+ case INTR_TYPE_1OP_MASK_RM: {
+ SDValue Src = Op.getOperand(1);
+ SDValue Src0 = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue RoundingMode = Op.getOperand(4);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
+ RoundingMode),
+ Mask, Src0, Subtarget, DAG);
+ }
+ case INTR_TYPE_SCALAR_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src0 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ SDValue RoundingMode = Op.getOperand(5);
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
+ RoundingMode),
+ Mask, Src0, Subtarget, DAG);
+ }
+ case INTR_TYPE_2OP_MASK: {
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1),
+ Op.getOperand(2)),
+ Op.getOperand(4), Op.getOperand(3), Subtarget, DAG);
+ }
+ case CMP_MASK:
+ case CMP_MASK_CC: {
+ // Comparison intrinsics with masks.
+ // Example of transformation:
+ // (i8 (int_x86_avx512_mask_pcmpeq_q_128
+ // (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
+ // (i8 (bitcast
+ // (v8i1 (insert_subvector undef,
+ // (v2i1 (and (PCMPEQM %a, %b),
+ // (extract_subvector
+ // (v8i1 (bitcast %mask)), 0))), 0))))
+ EVT VT = Op.getOperand(1).getValueType();
+ EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ VT.getVectorNumElements());
+ SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
+ EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ Mask.getValueType().getSizeInBits());
+ SDValue Cmp;
+ if (IntrData->Type == CMP_MASK_CC) {
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3));
+ } else {
+ assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2));
+ }
+ SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
+ DAG.getTargetConstant(0, MaskVT),
+ Subtarget, DAG);
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), CmpMask,
+ DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
+ }
+ case COMI: { // Comparison intrinsics
+ ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
+ assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
+ SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8), Cond);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case VSHIFT:
+ return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
+ Op.getOperand(1), Op.getOperand(2), DAG);
+ case VSHIFT_MASK:
+ return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl,
+ Op.getSimpleValueType(),
+ Op.getOperand(1),
+ Op.getOperand(2), DAG),
+ Op.getOperand(4), Op.getOperand(3), Subtarget,
+ DAG);
+ case COMPRESS_EXPAND_IN_REG: {
+ SDValue Mask = Op.getOperand(3);
+ SDValue DataToCompress = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ if (isAllOnes(Mask)) // return data as is
+ return Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ VT.getVectorNumElements());
+ EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ Mask.getValueType().getSizeInBits());
+ SDLoc dl(Op);
+ SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getIntPtrConstant(0));
- // Arithmetic intrinsics.
- case Intrinsic::x86_sse2_pmulu_dq:
- case Intrinsic::x86_avx2_pmulu_dq:
- return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse41_pmuldq:
- case Intrinsic::x86_avx2_pmul_dq:
- return DAG.getNode(X86ISD::PMULDQ, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse2_pmulhu_w:
- case Intrinsic::x86_avx2_pmulhu_w:
- return DAG.getNode(ISD::MULHU, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse2_pmulh_w:
- case Intrinsic::x86_avx2_pmulh_w:
- return DAG.getNode(ISD::MULHS, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- // SSE2/AVX2 sub with unsigned saturation intrinsics
- case Intrinsic::x86_sse2_psubus_b:
- case Intrinsic::x86_sse2_psubus_w:
- case Intrinsic::x86_avx2_psubus_b:
- case Intrinsic::x86_avx2_psubus_w:
- return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- // SSE3/AVX horizontal add/sub intrinsics
- case Intrinsic::x86_sse3_hadd_ps:
- case Intrinsic::x86_sse3_hadd_pd:
- case Intrinsic::x86_avx_hadd_ps_256:
- case Intrinsic::x86_avx_hadd_pd_256:
- case Intrinsic::x86_sse3_hsub_ps:
- case Intrinsic::x86_sse3_hsub_pd:
- case Intrinsic::x86_avx_hsub_ps_256:
- case Intrinsic::x86_avx_hsub_pd_256:
- case Intrinsic::x86_ssse3_phadd_w_128:
- case Intrinsic::x86_ssse3_phadd_d_128:
- case Intrinsic::x86_avx2_phadd_w:
- case Intrinsic::x86_avx2_phadd_d:
- case Intrinsic::x86_ssse3_phsub_w_128:
- case Intrinsic::x86_ssse3_phsub_d_128:
- case Intrinsic::x86_avx2_phsub_w:
- case Intrinsic::x86_avx2_phsub_d: {
- unsigned Opcode;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_sse3_hadd_ps:
- case Intrinsic::x86_sse3_hadd_pd:
- case Intrinsic::x86_avx_hadd_ps_256:
- case Intrinsic::x86_avx_hadd_pd_256:
- Opcode = X86ISD::FHADD;
- break;
- case Intrinsic::x86_sse3_hsub_ps:
- case Intrinsic::x86_sse3_hsub_pd:
- case Intrinsic::x86_avx_hsub_ps_256:
- case Intrinsic::x86_avx_hsub_pd_256:
- Opcode = X86ISD::FHSUB;
- break;
- case Intrinsic::x86_ssse3_phadd_w_128:
- case Intrinsic::x86_ssse3_phadd_d_128:
- case Intrinsic::x86_avx2_phadd_w:
- case Intrinsic::x86_avx2_phadd_d:
- Opcode = X86ISD::HADD;
- break;
- case Intrinsic::x86_ssse3_phsub_w_128:
- case Intrinsic::x86_ssse3_phsub_d_128:
- case Intrinsic::x86_avx2_phsub_w:
- case Intrinsic::x86_avx2_phsub_d:
- Opcode = X86ISD::HSUB;
- break;
+ return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress,
+ PassThru);
}
- return DAG.getNode(Opcode, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
- }
-
- // SSE2/SSE41/AVX2 integer max/min intrinsics.
- case Intrinsic::x86_sse2_pmaxu_b:
- case Intrinsic::x86_sse41_pmaxuw:
- case Intrinsic::x86_sse41_pmaxud:
- case Intrinsic::x86_avx2_pmaxu_b:
- case Intrinsic::x86_avx2_pmaxu_w:
- case Intrinsic::x86_avx2_pmaxu_d:
- case Intrinsic::x86_sse2_pminu_b:
- case Intrinsic::x86_sse41_pminuw:
- case Intrinsic::x86_sse41_pminud:
- case Intrinsic::x86_avx2_pminu_b:
- case Intrinsic::x86_avx2_pminu_w:
- case Intrinsic::x86_avx2_pminu_d:
- case Intrinsic::x86_sse41_pmaxsb:
- case Intrinsic::x86_sse2_pmaxs_w:
- case Intrinsic::x86_sse41_pmaxsd:
- case Intrinsic::x86_avx2_pmaxs_b:
- case Intrinsic::x86_avx2_pmaxs_w:
- case Intrinsic::x86_avx2_pmaxs_d:
- case Intrinsic::x86_sse41_pminsb:
- case Intrinsic::x86_sse2_pmins_w:
- case Intrinsic::x86_sse41_pminsd:
- case Intrinsic::x86_avx2_pmins_b:
- case Intrinsic::x86_avx2_pmins_w:
- case Intrinsic::x86_avx2_pmins_d: {
- unsigned Opcode;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_sse2_pmaxu_b:
- case Intrinsic::x86_sse41_pmaxuw:
- case Intrinsic::x86_sse41_pmaxud:
- case Intrinsic::x86_avx2_pmaxu_b:
- case Intrinsic::x86_avx2_pmaxu_w:
- case Intrinsic::x86_avx2_pmaxu_d:
- Opcode = X86ISD::UMAX;
- break;
- case Intrinsic::x86_sse2_pminu_b:
- case Intrinsic::x86_sse41_pminuw:
- case Intrinsic::x86_sse41_pminud:
- case Intrinsic::x86_avx2_pminu_b:
- case Intrinsic::x86_avx2_pminu_w:
- case Intrinsic::x86_avx2_pminu_d:
- Opcode = X86ISD::UMIN;
- break;
- case Intrinsic::x86_sse41_pmaxsb:
- case Intrinsic::x86_sse2_pmaxs_w:
- case Intrinsic::x86_sse41_pmaxsd:
- case Intrinsic::x86_avx2_pmaxs_b:
- case Intrinsic::x86_avx2_pmaxs_w:
- case Intrinsic::x86_avx2_pmaxs_d:
- Opcode = X86ISD::SMAX;
- break;
- case Intrinsic::x86_sse41_pminsb:
- case Intrinsic::x86_sse2_pmins_w:
- case Intrinsic::x86_sse41_pminsd:
- case Intrinsic::x86_avx2_pmins_b:
- case Intrinsic::x86_avx2_pmins_w:
- case Intrinsic::x86_avx2_pmins_d:
- Opcode = X86ISD::SMIN;
- break;
+ case BLEND: {
+ SDValue Mask = Op.getOperand(3);
+ EVT VT = Op.getValueType();
+ EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ VT.getVectorNumElements());
+ EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ Mask.getValueType().getSizeInBits());
+ SDLoc dl(Op);
+ SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getIntPtrConstant(0));
+ return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
+ Op.getOperand(2));
}
- return DAG.getNode(Opcode, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
- }
-
- // SSE/SSE2/AVX floating point max/min intrinsics.
- case Intrinsic::x86_sse_max_ps:
- case Intrinsic::x86_sse2_max_pd:
- case Intrinsic::x86_avx_max_ps_256:
- case Intrinsic::x86_avx_max_pd_256:
- case Intrinsic::x86_sse_min_ps:
- case Intrinsic::x86_sse2_min_pd:
- case Intrinsic::x86_avx_min_ps_256:
- case Intrinsic::x86_avx_min_pd_256: {
- unsigned Opcode;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_sse_max_ps:
- case Intrinsic::x86_sse2_max_pd:
- case Intrinsic::x86_avx_max_ps_256:
- case Intrinsic::x86_avx_max_pd_256:
- Opcode = X86ISD::FMAX;
- break;
- case Intrinsic::x86_sse_min_ps:
- case Intrinsic::x86_sse2_min_pd:
- case Intrinsic::x86_avx_min_ps_256:
- case Intrinsic::x86_avx_min_pd_256:
- Opcode = X86ISD::FMIN;
- break;
+ case FMA_OP_MASK:
+ {
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
+ dl, Op.getValueType(),
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3)),
+ Op.getOperand(4), Op.getOperand(1),
+ Subtarget, DAG);
}
- return DAG.getNode(Opcode, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
- }
-
- // AVX2 variable shift intrinsics
- case Intrinsic::x86_avx2_psllv_d:
- case Intrinsic::x86_avx2_psllv_q:
- case Intrinsic::x86_avx2_psllv_d_256:
- case Intrinsic::x86_avx2_psllv_q_256:
- case Intrinsic::x86_avx2_psrlv_d:
- case Intrinsic::x86_avx2_psrlv_q:
- case Intrinsic::x86_avx2_psrlv_d_256:
- case Intrinsic::x86_avx2_psrlv_q_256:
- case Intrinsic::x86_avx2_psrav_d:
- case Intrinsic::x86_avx2_psrav_d_256: {
- unsigned Opcode;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_avx2_psllv_d:
- case Intrinsic::x86_avx2_psllv_q:
- case Intrinsic::x86_avx2_psllv_d_256:
- case Intrinsic::x86_avx2_psllv_q_256:
- Opcode = ISD::SHL;
- break;
- case Intrinsic::x86_avx2_psrlv_d:
- case Intrinsic::x86_avx2_psrlv_q:
- case Intrinsic::x86_avx2_psrlv_d_256:
- case Intrinsic::x86_avx2_psrlv_q_256:
- Opcode = ISD::SRL;
- break;
- case Intrinsic::x86_avx2_psrav_d:
- case Intrinsic::x86_avx2_psrav_d_256:
- Opcode = ISD::SRA;
+ default:
break;
}
- return DAG.getNode(Opcode, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
- }
-
- case Intrinsic::x86_sse2_packssdw_128:
- case Intrinsic::x86_sse2_packsswb_128:
- case Intrinsic::x86_avx2_packssdw:
- case Intrinsic::x86_avx2_packsswb:
- return DAG.getNode(X86ISD::PACKSS, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse2_packuswb_128:
- case Intrinsic::x86_sse41_packusdw:
- case Intrinsic::x86_avx2_packuswb:
- case Intrinsic::x86_avx2_packusdw:
- return DAG.getNode(X86ISD::PACKUS, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_ssse3_pshuf_b_128:
- case Intrinsic::x86_avx2_pshuf_b:
- return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse2_pshuf_d:
- return DAG.getNode(X86ISD::PSHUFD, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse2_pshufl_w:
- return DAG.getNode(X86ISD::PSHUFLW, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse2_pshufh_w:
- return DAG.getNode(X86ISD::PSHUFHW, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_ssse3_psign_b_128:
- case Intrinsic::x86_ssse3_psign_w_128:
- case Intrinsic::x86_ssse3_psign_d_128:
- case Intrinsic::x86_avx2_psign_b:
- case Intrinsic::x86_avx2_psign_w:
- case Intrinsic::x86_avx2_psign_d:
- return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
-
- case Intrinsic::x86_sse41_insertps:
- return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
-
- case Intrinsic::x86_avx_vperm2f128_ps_256:
- case Intrinsic::x86_avx_vperm2f128_pd_256:
- case Intrinsic::x86_avx_vperm2f128_si_256:
- case Intrinsic::x86_avx2_vperm2i128:
- return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+ }
- case Intrinsic::x86_avx2_permd:
- case Intrinsic::x86_avx2_permps:
- // Operands intentionally swapped. Mask is last operand to intrinsic,
- // but second operand for node/instruction.
- return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
- Op.getOperand(2), Op.getOperand(1));
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
- case Intrinsic::x86_sse_sqrt_ps:
- case Intrinsic::x86_sse2_sqrt_pd:
- case Intrinsic::x86_avx_sqrt_ps_256:
- case Intrinsic::x86_avx_sqrt_pd_256:
- return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
+ case Intrinsic::x86_avx512_mask_valign_q_512:
+ case Intrinsic::x86_avx512_mask_valign_d_512:
+ // Vector source operands are swapped.
+ return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
+ Op.getValueType(), Op.getOperand(2),
+ Op.getOperand(1),
+ Op.getOperand(3)),
+ Op.getOperand(5), Op.getOperand(4),
+ Subtarget, DAG);
// ptest and testp intrinsics. The intrinsic these come from are designed to
// return an integer value, not just an instruction so lower it to the ptest
@@ -13936,100 +17254,6 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
- // SSE/AVX shift intrinsics
- case Intrinsic::x86_sse2_psll_w:
- case Intrinsic::x86_sse2_psll_d:
- case Intrinsic::x86_sse2_psll_q:
- case Intrinsic::x86_avx2_psll_w:
- case Intrinsic::x86_avx2_psll_d:
- case Intrinsic::x86_avx2_psll_q:
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- case Intrinsic::x86_sse2_psra_w:
- case Intrinsic::x86_sse2_psra_d:
- case Intrinsic::x86_avx2_psra_w:
- case Intrinsic::x86_avx2_psra_d: {
- unsigned Opcode;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_sse2_psll_w:
- case Intrinsic::x86_sse2_psll_d:
- case Intrinsic::x86_sse2_psll_q:
- case Intrinsic::x86_avx2_psll_w:
- case Intrinsic::x86_avx2_psll_d:
- case Intrinsic::x86_avx2_psll_q:
- Opcode = X86ISD::VSHL;
- break;
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- Opcode = X86ISD::VSRL;
- break;
- case Intrinsic::x86_sse2_psra_w:
- case Intrinsic::x86_sse2_psra_d:
- case Intrinsic::x86_avx2_psra_w:
- case Intrinsic::x86_avx2_psra_d:
- Opcode = X86ISD::VSRA;
- break;
- }
- return DAG.getNode(Opcode, dl, Op.getValueType(),
- Op.getOperand(1), Op.getOperand(2));
- }
-
- // SSE/AVX immediate shift intrinsics
- case Intrinsic::x86_sse2_pslli_w:
- case Intrinsic::x86_sse2_pslli_d:
- case Intrinsic::x86_sse2_pslli_q:
- case Intrinsic::x86_avx2_pslli_w:
- case Intrinsic::x86_avx2_pslli_d:
- case Intrinsic::x86_avx2_pslli_q:
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_avx2_psrli_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- case Intrinsic::x86_sse2_psrai_w:
- case Intrinsic::x86_sse2_psrai_d:
- case Intrinsic::x86_avx2_psrai_w:
- case Intrinsic::x86_avx2_psrai_d: {
- unsigned Opcode;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_sse2_pslli_w:
- case Intrinsic::x86_sse2_pslli_d:
- case Intrinsic::x86_sse2_pslli_q:
- case Intrinsic::x86_avx2_pslli_w:
- case Intrinsic::x86_avx2_pslli_d:
- case Intrinsic::x86_avx2_pslli_q:
- Opcode = X86ISD::VSHLI;
- break;
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_avx2_psrli_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- Opcode = X86ISD::VSRLI;
- break;
- case Intrinsic::x86_sse2_psrai_w:
- case Intrinsic::x86_sse2_psrai_d:
- case Intrinsic::x86_avx2_psrai_w:
- case Intrinsic::x86_avx2_psrai_d:
- Opcode = X86ISD::VSRAI;
- break;
- }
- return getTargetVShiftNode(Opcode, dl, Op.getSimpleValueType(),
- Op.getOperand(1), Op.getOperand(2), DAG);
- }
-
case Intrinsic::x86_sse42_pcmpistria128:
case Intrinsic::x86_sse42_pcmpestria128:
case Intrinsic::x86_sse42_pcmpistric128:
@@ -14106,6 +17330,32 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps);
}
+
+ case Intrinsic::x86_fma_mask_vfmadd_ps_512:
+ case Intrinsic::x86_fma_mask_vfmadd_pd_512:
+ case Intrinsic::x86_fma_mask_vfmsub_ps_512:
+ case Intrinsic::x86_fma_mask_vfmsub_pd_512:
+ case Intrinsic::x86_fma_mask_vfnmadd_ps_512:
+ case Intrinsic::x86_fma_mask_vfnmadd_pd_512:
+ case Intrinsic::x86_fma_mask_vfnmsub_ps_512:
+ case Intrinsic::x86_fma_mask_vfnmsub_pd_512:
+ case Intrinsic::x86_fma_mask_vfmaddsub_ps_512:
+ case Intrinsic::x86_fma_mask_vfmaddsub_pd_512:
+ case Intrinsic::x86_fma_mask_vfmsubadd_ps_512:
+ case Intrinsic::x86_fma_mask_vfmsubadd_pd_512: {
+ auto *SAE = cast<ConstantSDNode>(Op.getOperand(5));
+ if (SAE->getZExtValue() == X86::STATIC_ROUNDING::CUR_DIRECTION)
+ return getVectorMaskingNode(DAG.getNode(getOpcodeForFMAIntrinsic(IntNo),
+ dl, Op.getValueType(),
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3)),
+ Op.getOperand(4), Op.getOperand(1),
+ Subtarget, DAG);
+ else
+ return SDValue();
+ }
+
case Intrinsic::x86_fma_vfmadd_ps:
case Intrinsic::x86_fma_vfmadd_pd:
case Intrinsic::x86_fma_vfmsub_ps:
@@ -14130,74 +17380,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_fma_vfmaddsub_pd_256:
case Intrinsic::x86_fma_vfmsubadd_ps_256:
case Intrinsic::x86_fma_vfmsubadd_pd_256:
- case Intrinsic::x86_fma_vfmadd_ps_512:
- case Intrinsic::x86_fma_vfmadd_pd_512:
- case Intrinsic::x86_fma_vfmsub_ps_512:
- case Intrinsic::x86_fma_vfmsub_pd_512:
- case Intrinsic::x86_fma_vfnmadd_ps_512:
- case Intrinsic::x86_fma_vfnmadd_pd_512:
- case Intrinsic::x86_fma_vfnmsub_ps_512:
- case Intrinsic::x86_fma_vfnmsub_pd_512:
- case Intrinsic::x86_fma_vfmaddsub_ps_512:
- case Intrinsic::x86_fma_vfmaddsub_pd_512:
- case Intrinsic::x86_fma_vfmsubadd_ps_512:
- case Intrinsic::x86_fma_vfmsubadd_pd_512: {
- unsigned Opc;
- switch (IntNo) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::x86_fma_vfmadd_ps:
- case Intrinsic::x86_fma_vfmadd_pd:
- case Intrinsic::x86_fma_vfmadd_ps_256:
- case Intrinsic::x86_fma_vfmadd_pd_256:
- case Intrinsic::x86_fma_vfmadd_ps_512:
- case Intrinsic::x86_fma_vfmadd_pd_512:
- Opc = X86ISD::FMADD;
- break;
- case Intrinsic::x86_fma_vfmsub_ps:
- case Intrinsic::x86_fma_vfmsub_pd:
- case Intrinsic::x86_fma_vfmsub_ps_256:
- case Intrinsic::x86_fma_vfmsub_pd_256:
- case Intrinsic::x86_fma_vfmsub_ps_512:
- case Intrinsic::x86_fma_vfmsub_pd_512:
- Opc = X86ISD::FMSUB;
- break;
- case Intrinsic::x86_fma_vfnmadd_ps:
- case Intrinsic::x86_fma_vfnmadd_pd:
- case Intrinsic::x86_fma_vfnmadd_ps_256:
- case Intrinsic::x86_fma_vfnmadd_pd_256:
- case Intrinsic::x86_fma_vfnmadd_ps_512:
- case Intrinsic::x86_fma_vfnmadd_pd_512:
- Opc = X86ISD::FNMADD;
- break;
- case Intrinsic::x86_fma_vfnmsub_ps:
- case Intrinsic::x86_fma_vfnmsub_pd:
- case Intrinsic::x86_fma_vfnmsub_ps_256:
- case Intrinsic::x86_fma_vfnmsub_pd_256:
- case Intrinsic::x86_fma_vfnmsub_ps_512:
- case Intrinsic::x86_fma_vfnmsub_pd_512:
- Opc = X86ISD::FNMSUB;
- break;
- case Intrinsic::x86_fma_vfmaddsub_ps:
- case Intrinsic::x86_fma_vfmaddsub_pd:
- case Intrinsic::x86_fma_vfmaddsub_ps_256:
- case Intrinsic::x86_fma_vfmaddsub_pd_256:
- case Intrinsic::x86_fma_vfmaddsub_ps_512:
- case Intrinsic::x86_fma_vfmaddsub_pd_512:
- Opc = X86ISD::FMADDSUB;
- break;
- case Intrinsic::x86_fma_vfmsubadd_ps:
- case Intrinsic::x86_fma_vfmsubadd_pd:
- case Intrinsic::x86_fma_vfmsubadd_ps_256:
- case Intrinsic::x86_fma_vfmsubadd_pd_256:
- case Intrinsic::x86_fma_vfmsubadd_ps_512:
- case Intrinsic::x86_fma_vfmsubadd_pd_512:
- Opc = X86ISD::FMSUBADD;
- break;
- }
-
- return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
- Op.getOperand(2), Op.getOperand(3));
- }
+ return DAG.getNode(getOpcodeForFMAIntrinsic(IntNo), dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
}
}
@@ -14382,122 +17566,25 @@ static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
return DAG.getMergeValues(Results, DL);
}
-enum IntrinsicType {
- GATHER, SCATTER, PREFETCH, RDSEED, RDRAND, RDPMC, RDTSC, XTEST
-};
-
-struct IntrinsicData {
- IntrinsicData(IntrinsicType IType, unsigned IOpc0, unsigned IOpc1)
- :Type(IType), Opc0(IOpc0), Opc1(IOpc1) {}
- IntrinsicType Type;
- unsigned Opc0;
- unsigned Opc1;
-};
-
-std::map < unsigned, IntrinsicData> IntrMap;
-static void InitIntinsicsMap() {
- static bool Initialized = false;
- if (Initialized)
- return;
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
- IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
- IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpd_512,
- IntrinsicData(GATHER, X86::VGATHERQPDZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpd_512,
- IntrinsicData(GATHER, X86::VGATHERDPDZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dps_512,
- IntrinsicData(GATHER, X86::VGATHERDPSZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpi_512,
- IntrinsicData(GATHER, X86::VPGATHERQDZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpq_512,
- IntrinsicData(GATHER, X86::VPGATHERQQZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpi_512,
- IntrinsicData(GATHER, X86::VPGATHERDDZrm, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpq_512,
- IntrinsicData(GATHER, X86::VPGATHERDQZrm, 0)));
-
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qps_512,
- IntrinsicData(SCATTER, X86::VSCATTERQPSZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpd_512,
- IntrinsicData(SCATTER, X86::VSCATTERQPDZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpd_512,
- IntrinsicData(SCATTER, X86::VSCATTERDPDZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dps_512,
- IntrinsicData(SCATTER, X86::VSCATTERDPSZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpi_512,
- IntrinsicData(SCATTER, X86::VPSCATTERQDZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpq_512,
- IntrinsicData(SCATTER, X86::VPSCATTERQQZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpi_512,
- IntrinsicData(SCATTER, X86::VPSCATTERDDZmr, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpq_512,
- IntrinsicData(SCATTER, X86::VPSCATTERDQZmr, 0)));
-
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qps_512,
- IntrinsicData(PREFETCH, X86::VGATHERPF0QPSm,
- X86::VGATHERPF1QPSm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qpd_512,
- IntrinsicData(PREFETCH, X86::VGATHERPF0QPDm,
- X86::VGATHERPF1QPDm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dpd_512,
- IntrinsicData(PREFETCH, X86::VGATHERPF0DPDm,
- X86::VGATHERPF1DPDm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dps_512,
- IntrinsicData(PREFETCH, X86::VGATHERPF0DPSm,
- X86::VGATHERPF1DPSm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qps_512,
- IntrinsicData(PREFETCH, X86::VSCATTERPF0QPSm,
- X86::VSCATTERPF1QPSm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qpd_512,
- IntrinsicData(PREFETCH, X86::VSCATTERPF0QPDm,
- X86::VSCATTERPF1QPDm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dpd_512,
- IntrinsicData(PREFETCH, X86::VSCATTERPF0DPDm,
- X86::VSCATTERPF1DPDm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dps_512,
- IntrinsicData(PREFETCH, X86::VSCATTERPF0DPSm,
- X86::VSCATTERPF1DPSm)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_16,
- IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_32,
- IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_64,
- IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_16,
- IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_32,
- IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_64,
- IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_xtest,
- IntrinsicData(XTEST, X86ISD::XTEST, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdtsc,
- IntrinsicData(RDTSC, X86ISD::RDTSC_DAG, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdtscp,
- IntrinsicData(RDTSC, X86ISD::RDTSCP_DAG, 0)));
- IntrMap.insert(std::make_pair(Intrinsic::x86_rdpmc,
- IntrinsicData(RDPMC, X86ISD::RDPMC_DAG, 0)));
- Initialized = true;
-}
static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- InitIntinsicsMap();
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- std::map < unsigned, IntrinsicData>::const_iterator itr = IntrMap.find(IntNo);
- if (itr == IntrMap.end())
+
+ const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
+ if (!IntrData)
return SDValue();
SDLoc dl(Op);
- IntrinsicData Intr = itr->second;
- switch(Intr.Type) {
+ switch(IntrData->Type) {
+ default:
+ llvm_unreachable("Unknown Intrinsic Type");
+ break;
case RDSEED:
case RDRAND: {
// Emit the node with the right value type.
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
- SDValue Result = DAG.getNode(Intr.Opc0, dl, VTs, Op.getOperand(0));
+ SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
// If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
// Otherwise return the value from Rand, which is always 0, casted to i32.
@@ -14521,7 +17608,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
SDValue Index = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
- return getGatherNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
+ return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
Subtarget);
}
case SCATTER: {
@@ -14532,7 +17619,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
SDValue Index = Op.getOperand(4);
SDValue Src = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
- return getScatterNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
+ return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
}
case PREFETCH: {
SDValue Hint = Op.getOperand(6);
@@ -14540,7 +17627,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
(HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
- unsigned Opcode = (HintVal ? Intr.Opc1 : Intr.Opc0);
+ unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
SDValue Chain = Op.getOperand(0);
SDValue Mask = Op.getOperand(2);
SDValue Index = Op.getOperand(3);
@@ -14551,7 +17638,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
// Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
case RDTSC: {
SmallVector<SDValue, 2> Results;
- getReadTimeStampCounter(Op.getNode(), dl, Intr.Opc0, DAG, Subtarget, Results);
+ getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results);
return DAG.getMergeValues(Results, dl);
}
// Read Performance Monitoring Counters.
@@ -14563,7 +17650,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
// XTEST intrinsics.
case XTEST: {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
- SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
+ SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_NE, MVT::i8),
InTrans);
@@ -14571,8 +17658,79 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
Ret, SDValue(InTrans.getNode(), 1));
}
+ // ADC/ADCX/SBB
+ case ADX: {
+ SmallVector<SDValue, 2> Results;
+ SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
+ SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
+ SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
+ DAG.getConstant(-1, MVT::i8));
+ SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
+ Op.getOperand(4), GenCF.getValue(1));
+ SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
+ Op.getOperand(5), MachinePointerInfo(),
+ false, false, 0);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86::COND_B, MVT::i8),
+ Res.getValue(1));
+ Results.push_back(SetCC);
+ Results.push_back(Store);
+ return DAG.getMergeValues(Results, dl);
+ }
+ case COMPRESS_TO_MEM: {
+ SDLoc dl(Op);
+ SDValue Mask = Op.getOperand(4);
+ SDValue DataToCompress = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+
+ if (isAllOnes(Mask)) // return just a store
+ return DAG.getStore(Chain, dl, DataToCompress, Addr,
+ MachinePointerInfo(), false, false, 0);
+
+ EVT VT = DataToCompress.getValueType();
+ EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ VT.getVectorNumElements());
+ EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ Mask.getValueType().getSizeInBits());
+ SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getIntPtrConstant(0));
+
+ SDValue Compressed = DAG.getNode(IntrData->Opc0, dl, VT, VMask,
+ DataToCompress, DAG.getUNDEF(VT));
+ return DAG.getStore(Chain, dl, Compressed, Addr,
+ MachinePointerInfo(), false, false, 0);
+ }
+ case EXPAND_FROM_MEM: {
+ SDLoc dl(Op);
+ SDValue Mask = Op.getOperand(4);
+ SDValue PathThru = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+ EVT VT = Op.getValueType();
+
+ if (isAllOnes(Mask)) // return just a load
+ return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
+ false, 0);
+ EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ VT.getVectorNumElements());
+ EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ Mask.getValueType().getSizeInBits());
+ SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
+ DAG.getIntPtrConstant(0));
+
+ SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ SmallVector<SDValue, 2> Results;
+ Results.push_back(DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand,
+ PathThru));
+ Results.push_back(Chain);
+ return DAG.getMergeValues(Results, dl);
+ }
}
- llvm_unreachable("Unknown Intrinsic Type");
}
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
@@ -14589,8 +17747,8 @@ SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT,
@@ -14611,9 +17769,10 @@ SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
- unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
+ unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(
+ DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
(FrameReg == X86::EBP && VT == MVT::i32)) &&
"Invalid Frame Register!");
@@ -14640,8 +17799,8 @@ unsigned X86TargetLowering::getRegisterByName(const char* RegName,
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
}
@@ -14652,8 +17811,8 @@ SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl (Op);
EVT PtrVT = getPointerTy();
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(DAG.getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
(FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
@@ -14700,7 +17859,7 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SDLoc dl (Op);
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
- const TargetRegisterInfo* TRI = DAG.getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
if (Subtarget->is64Bit()) {
SDValue OutChains[6];
@@ -14864,7 +18023,7 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
- const TargetFrameLowering &TFI = *TM.getFrameLowering();
+ const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
@@ -15198,29 +18357,16 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
// Shuffle it back into the right order.
- // The internal representation is big endian.
- // In other words, a i64 bitcasted to 2 x i32 has its high part at index 0
- // and its low part at index 1.
- // Moreover, we have: Mul1 = <ae|cg> ; Mul2 = <bf|dh>
- // Vector index 0 1 ; 2 3
- // We want <ae|bf|cg|dh>
- // Vector index 0 2 1 3
- // Since each element is seen as 2 x i32, we get:
- // high_mask[i] = 2 x vector_index[i]
- // low_mask[i] = 2 x vector_index[i] + 1
- // where vector_index = {0, Size/2, 1, Size/2 + 1, ...,
- // Size/2 - 1, Size/2 + Size/2 - 1}
- // where Size is the number of element of the final vector.
SDValue Highs, Lows;
if (VT == MVT::v8i32) {
- const int HighMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
+ const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
- const int LowMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
+ const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
} else {
- const int HighMask[] = {0, 4, 2, 6};
+ const int HighMask[] = {1, 5, 3, 7};
Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
- const int LowMask[] = {1, 5, 3, 7};
+ const int LowMask[] = {0, 4, 2, 6};
Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
}
@@ -15238,9 +18384,10 @@ static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
}
- // The low part of a MUL_LOHI is supposed to be the first value and the
- // high part the second value.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getValueType(), Lows, Highs);
+ // The first result of MUL_LOHI is actually the low value, followed by the
+ // high value.
+ SDValue Ops[] = {Lows, Highs};
+ return DAG.getMergeValues(Ops, dl);
}
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
@@ -15430,55 +18577,43 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
SDValue BaseShAmt;
EVT EltVT = VT.getVectorElementType();
- if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
- unsigned NumElts = VT.getVectorNumElements();
- unsigned i, j;
- for (i = 0; i != NumElts; ++i) {
- if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
- continue;
- break;
- }
- for (j = i; j != NumElts; ++j) {
- SDValue Arg = Amt.getOperand(j);
- if (Arg.getOpcode() == ISD::UNDEF) continue;
- if (Arg != Amt.getOperand(i))
- break;
- }
- if (i != NumElts && j == NumElts)
- BaseShAmt = Amt.getOperand(i);
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
+ // Check if this build_vector node is doing a splat.
+ // If so, then set BaseShAmt equal to the splat value.
+ BaseShAmt = BV->getSplatValue();
+ if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF)
+ BaseShAmt = SDValue();
} else {
if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
Amt = Amt.getOperand(0);
- if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
- cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
+
+ ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
+ if (SVN && SVN->isSplat()) {
+ unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
SDValue InVec = Amt.getOperand(0);
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
- unsigned NumElts = InVec.getValueType().getVectorNumElements();
- unsigned i = 0;
- for (; i != NumElts; ++i) {
- SDValue Arg = InVec.getOperand(i);
- if (Arg.getOpcode() == ISD::UNDEF) continue;
- BaseShAmt = Arg;
- break;
- }
+ assert((SplatIdx < InVec.getValueType().getVectorNumElements()) &&
+ "Unexpected shuffle index found!");
+ BaseShAmt = InVec.getOperand(SplatIdx);
} else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
- unsigned SplatIdx =
- cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
if (C->getZExtValue() == SplatIdx)
BaseShAmt = InVec.getOperand(1);
}
}
- if (!BaseShAmt.getNode())
- BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
- DAG.getIntPtrConstant(0));
+
+ if (!BaseShAmt)
+ // Avoid introducing an extract element from a shuffle.
+ BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
+ DAG.getIntPtrConstant(SplatIdx));
}
}
if (BaseShAmt.getNode()) {
- if (EltVT.bitsGT(MVT::i32))
- BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
+ assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
+ if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
else if (EltVT.bitsLT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
@@ -15596,7 +18731,7 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
// If possible, lower this packed shift into a vector multiply instead of
// expanding it into a sequence of scalar shifts.
// Do this only if the vector shift count is a constant build_vector.
- if (Op.getOpcode() == ISD::SHL &&
+ if (Op.getOpcode() == ISD::SHL &&
(VT == MVT::v8i16 || VT == MVT::v4i32 ||
(Subtarget->hasInt256() && VT == MVT::v16i16)) &&
ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
@@ -15688,15 +18823,15 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
CanBeSimplified = Amt2 == Amt->getOperand(j);
}
}
-
+
if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
isa<ConstantSDNode>(Amt2)) {
// Replace this node with two shifts followed by a MOVSS/MOVSD.
EVT CastVT = MVT::v4i32;
- SDValue Splat1 =
+ SDValue Splat1 =
DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
- SDValue Splat2 =
+ SDValue Splat2 =
DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
if (TargetOpcode == X86ISD::MOVSD)
@@ -15851,10 +18986,15 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
Cond = X86::COND_B;
break;
case ISD::SMULO:
- BaseOp = X86ISD::SMUL;
+ BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
Cond = X86::COND_O;
break;
case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
+ if (N->getValueType(0) == MVT::i8) {
+ BaseOp = X86ISD::UMUL8;
+ Cond = X86::COND_O;
+ break;
+ }
SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
MVT::i32);
SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
@@ -15880,6 +19020,11 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
+// Sign extension of the low part of vector elements. This may be used either
+// when sign extend instructions are not available or if the vector element
+// sizes already match the sign-extended size. If the vector elements are in
+// their pre-extended size and sign extend instructions are available, that will
+// be handled by LowerSIGN_EXTEND.
SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
@@ -15925,37 +19070,151 @@ SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
case MVT::v4i32:
case MVT::v8i16: {
SDValue Op0 = Op.getOperand(0);
- SDValue Op00 = Op0.getOperand(0);
- SDValue Tmp1;
- // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
- if (Op0.getOpcode() == ISD::BITCAST &&
- Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
- // (sext (vzext x)) -> (vsext x)
- Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
- if (Tmp1.getNode()) {
- EVT ExtraEltVT = ExtraVT.getVectorElementType();
- // This folding is only valid when the in-reg type is a vector of i8,
- // i16, or i32.
- if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
- ExtraEltVT == MVT::i32) {
- SDValue Tmp1Op0 = Tmp1.getOperand(0);
- assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
- "This optimization is invalid without a VZEXT.");
- return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
- }
- Op0 = Tmp1;
- }
- }
- // If the above didn't work, then just use Shift-Left + Shift-Right.
- Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
- DAG);
- return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
+ // This is a sign extension of some low part of vector elements without
+ // changing the size of the vector elements themselves:
+ // Shift-Left + Shift-Right-Algebraic.
+ SDValue Shl = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0,
+ BitsDiff, DAG);
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Shl, BitsDiff,
DAG);
}
}
}
+/// Returns true if the operand type is exactly twice the native width, and
+/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
+/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
+/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
+bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const {
+ const X86Subtarget &Subtarget =
+ getTargetMachine().getSubtarget<X86Subtarget>();
+ unsigned OpWidth = MemType->getPrimitiveSizeInBits();
+
+ if (OpWidth == 64)
+ return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
+ else if (OpWidth == 128)
+ return Subtarget.hasCmpxchg16b();
+ else
+ return false;
+}
+
+bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ return needsCmpXchgNb(SI->getValueOperand()->getType());
+}
+
+// Note: this turns large loads into lock cmpxchg8b/16b.
+// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
+bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
+ return needsCmpXchgNb(PTy->getElementType());
+}
+
+bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ const X86Subtarget &Subtarget =
+ getTargetMachine().getSubtarget<X86Subtarget>();
+ unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
+ const Type *MemType = AI->getType();
+
+ // If the operand is too big, we must see if cmpxchg8/16b is available
+ // and default to library calls otherwise.
+ if (MemType->getPrimitiveSizeInBits() > NativeWidth)
+ return needsCmpXchgNb(MemType);
+
+ AtomicRMWInst::BinOp Op = AI->getOperation();
+ switch (Op) {
+ default:
+ llvm_unreachable("Unknown atomic operation");
+ case AtomicRMWInst::Xchg:
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ // It's better to use xadd, xsub or xchg for these in all cases.
+ return false;
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Xor:
+ // If the atomicrmw's result isn't actually used, we can just add a "lock"
+ // prefix to a normal instruction for these operations.
+ return !AI->use_empty();
+ case AtomicRMWInst::Nand:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ // These always require a non-trivial set of data operations on x86. We must
+ // use a cmpxchg loop.
+ return true;
+ }
+}
+
+static bool hasMFENCE(const X86Subtarget& Subtarget) {
+ // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
+ // no-sse2). There isn't any reason to disable it if the target processor
+ // supports it.
+ return Subtarget.hasSSE2() || Subtarget.is64Bit();
+}
+
+LoadInst *
+X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
+ const X86Subtarget &Subtarget =
+ getTargetMachine().getSubtarget<X86Subtarget>();
+ unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
+ const Type *MemType = AI->getType();
+ // Accesses larger than the native width are turned into cmpxchg/libcalls, so
+ // there is no benefit in turning such RMWs into loads, and it is actually
+ // harmful as it introduces a mfence.
+ if (MemType->getPrimitiveSizeInBits() > NativeWidth)
+ return nullptr;
+
+ auto Builder = IRBuilder<>(AI);
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ auto SynchScope = AI->getSynchScope();
+ // We must restrict the ordering to avoid generating loads with Release or
+ // ReleaseAcquire orderings.
+ auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
+ auto Ptr = AI->getPointerOperand();
+
+ // Before the load we need a fence. Here is an example lifted from
+ // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
+ // is required:
+ // Thread 0:
+ // x.store(1, relaxed);
+ // r1 = y.fetch_add(0, release);
+ // Thread 1:
+ // y.fetch_add(42, acquire);
+ // r2 = x.load(relaxed);
+ // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
+ // lowered to just a load without a fence. A mfence flushes the store buffer,
+ // making the optimization clearly correct.
+ // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
+ // otherwise, we might be able to be more agressive on relaxed idempotent
+ // rmw. In practice, they do not look useful, so we don't try to be
+ // especially clever.
+ if (SynchScope == SingleThread) {
+ // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
+ // the IR level, so we must wrap it in an intrinsic.
+ return nullptr;
+ } else if (hasMFENCE(Subtarget)) {
+ Function *MFence = llvm::Intrinsic::getDeclaration(M,
+ Intrinsic::x86_sse2_mfence);
+ Builder.CreateCall(MFence);
+ } else {
+ // FIXME: it might make sense to use a locked operation here but on a
+ // different cache-line to prevent cache-line bouncing. In practice it
+ // is probably a small win, and x86 processors without mfence are rare
+ // enough that we do not bother.
+ return nullptr;
+ }
+
+ // Finally we can emit the atomic load.
+ LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
+ AI->getType()->getPrimitiveSizeInBits());
+ Loaded->setAtomic(Order, SynchScope);
+ AI->replaceAllUsesWith(Loaded);
+ AI->eraseFromParent();
+ return Loaded;
+}
+
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
@@ -15967,10 +19226,7 @@ static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
// The only fence that needs an instruction is a sequentially-consistent
// cross-thread fence.
if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
- // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
- // no-sse2). There isn't any reason to disable it if the target processor
- // supports it.
- if (Subtarget->hasSSE2() || Subtarget->is64Bit())
+ if (hasMFENCE(*Subtarget))
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
SDValue Chain = Op.getOperand(0);
@@ -16085,6 +19341,139 @@ static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
return SDValue();
}
+static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+
+ Op = Op.getOperand(0);
+ EVT VT = Op.getValueType();
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "CTPOP lowering only implemented for 128/256-bit wide vector types");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ EVT EltVT = VT.getVectorElementType();
+ unsigned Len = EltVT.getSizeInBits();
+
+ // This is the vectorized version of the "best" algorithm from
+ // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ // with a minor tweak to use a series of adds + shifts instead of vector
+ // multiplications. Implemented for the v2i64, v4i64, v4i32, v8i32 types:
+ //
+ // v2i64, v4i64, v4i32 => Only profitable w/ popcnt disabled
+ // v8i32 => Always profitable
+ //
+ // FIXME: There a couple of possible improvements:
+ //
+ // 1) Support for i8 and i16 vectors (needs measurements if popcnt enabled).
+ // 2) Use strategies from http://wm.ite.pl/articles/sse-popcount.html
+ //
+ assert(EltVT.isInteger() && (Len == 32 || Len == 64) && Len % 8 == 0 &&
+ "CTPOP not implemented for this vector element type.");
+
+ // X86 canonicalize ANDs to vXi64, generate the appropriate bitcasts to avoid
+ // extra legalization.
+ bool NeedsBitcast = EltVT == MVT::i32;
+ MVT BitcastVT = VT.is256BitVector() ? MVT::v4i64 : MVT::v2i64;
+
+ SDValue Cst55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), EltVT);
+ SDValue Cst33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), EltVT);
+ SDValue Cst0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), EltVT);
+
+ // v = v - ((v >> 1) & 0x55555555...)
+ SmallVector<SDValue, 8> Ones(NumElts, DAG.getConstant(1, EltVT));
+ SDValue OnesV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ones);
+ SDValue Srl = DAG.getNode(ISD::SRL, dl, VT, Op, OnesV);
+ if (NeedsBitcast)
+ Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
+
+ SmallVector<SDValue, 8> Mask55(NumElts, Cst55);
+ SDValue M55 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask55);
+ if (NeedsBitcast)
+ M55 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M55);
+
+ SDValue And = DAG.getNode(ISD::AND, dl, Srl.getValueType(), Srl, M55);
+ if (VT != And.getValueType())
+ And = DAG.getNode(ISD::BITCAST, dl, VT, And);
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op, And);
+
+ // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
+ SmallVector<SDValue, 8> Mask33(NumElts, Cst33);
+ SDValue M33 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask33);
+ SmallVector<SDValue, 8> Twos(NumElts, DAG.getConstant(2, EltVT));
+ SDValue TwosV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Twos);
+
+ Srl = DAG.getNode(ISD::SRL, dl, VT, Sub, TwosV);
+ if (NeedsBitcast) {
+ Srl = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Srl);
+ M33 = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M33);
+ Sub = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Sub);
+ }
+
+ SDValue AndRHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Srl, M33);
+ SDValue AndLHS = DAG.getNode(ISD::AND, dl, M33.getValueType(), Sub, M33);
+ if (VT != AndRHS.getValueType()) {
+ AndRHS = DAG.getNode(ISD::BITCAST, dl, VT, AndRHS);
+ AndLHS = DAG.getNode(ISD::BITCAST, dl, VT, AndLHS);
+ }
+ SDValue Add = DAG.getNode(ISD::ADD, dl, VT, AndLHS, AndRHS);
+
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ SmallVector<SDValue, 8> Fours(NumElts, DAG.getConstant(4, EltVT));
+ SDValue FoursV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Fours);
+ Srl = DAG.getNode(ISD::SRL, dl, VT, Add, FoursV);
+ Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
+
+ SmallVector<SDValue, 8> Mask0F(NumElts, Cst0F);
+ SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Mask0F);
+ if (NeedsBitcast) {
+ Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
+ M0F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M0F);
+ }
+ And = DAG.getNode(ISD::AND, dl, M0F.getValueType(), Add, M0F);
+ if (VT != And.getValueType())
+ And = DAG.getNode(ISD::BITCAST, dl, VT, And);
+
+ // The algorithm mentioned above uses:
+ // v = (v * 0x01010101...) >> (Len - 8)
+ //
+ // Change it to use vector adds + vector shifts which yield faster results on
+ // Haswell than using vector integer multiplication.
+ //
+ // For i32 elements:
+ // v = v + (v >> 8)
+ // v = v + (v >> 16)
+ //
+ // For i64 elements:
+ // v = v + (v >> 8)
+ // v = v + (v >> 16)
+ // v = v + (v >> 32)
+ //
+ Add = And;
+ SmallVector<SDValue, 8> Csts;
+ for (unsigned i = 8; i <= Len/2; i *= 2) {
+ Csts.assign(NumElts, DAG.getConstant(i, EltVT));
+ SDValue CstsV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Csts);
+ Srl = DAG.getNode(ISD::SRL, dl, VT, Add, CstsV);
+ Add = DAG.getNode(ISD::ADD, dl, VT, Add, Srl);
+ Csts.clear();
+ }
+
+ // The result is on the least significant 6-bits on i32 and 7-bits on i64.
+ SDValue Cst3F = DAG.getConstant(APInt(Len, Len == 32 ? 0x3F : 0x7F), EltVT);
+ SmallVector<SDValue, 8> Cst3FV(NumElts, Cst3F);
+ SDValue M3F = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Cst3FV);
+ if (NeedsBitcast) {
+ Add = DAG.getNode(ISD::BITCAST, dl, BitcastVT, Add);
+ M3F = DAG.getNode(ISD::BITCAST, dl, BitcastVT, M3F);
+ }
+ And = DAG.getNode(ISD::AND, dl, M3F.getValueType(), Add, M3F);
+ if (VT != And.getValueType())
+ And = DAG.getNode(ISD::BITCAST, dl, VT, And);
+
+ return And;
+}
+
static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
@@ -16181,7 +19570,7 @@ static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
Type *RetTy = isF64
- ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
+ ? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
: (Type*)VectorType::get(ArgTy, 4);
TargetLowering::CallLoweringInfo CLI(DAG);
@@ -16212,6 +19601,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
return LowerCMP_SWAP(Op, Subtarget, DAG);
+ case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG);
case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
@@ -16240,8 +19630,9 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
- case ISD::FABS: return LowerFABS(Op, DAG);
- case ISD::FNEG: return LowerFNEG(Op, DAG);
+ case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG);
+ case ISD::FABS:
+ case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
@@ -16251,7 +19642,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
- case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
@@ -16292,29 +19683,6 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
}
}
-static void ReplaceATOMIC_LOAD(SDNode *Node,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) {
- SDLoc dl(Node);
- EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
-
- // Convert wide load -> cmpxchg8b/cmpxchg16b
- // FIXME: On 32-bit, load -> fild or movq would be more efficient
- // (The only way to get a 16-byte load is cmpxchg16b)
- // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
- SDValue Zero = DAG.getConstant(0, VT);
- SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
- SDValue Swap =
- DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, VT, VTs,
- Node->getOperand(0), Node->getOperand(1), Zero, Zero,
- cast<AtomicSDNode>(Node)->getMemOperand(),
- cast<AtomicSDNode>(Node)->getOrdering(),
- cast<AtomicSDNode>(Node)->getOrdering(),
- cast<AtomicSDNode>(Node)->getSynchScope());
- Results.push_back(Swap.getValue(0));
- Results.push_back(Swap.getValue(2));
-}
-
/// ReplaceNodeResults - Replace a node with an illegal result type
/// with a new node built out of custom code.
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
@@ -16325,6 +19693,22 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
+ // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
+ case X86ISD::FMINC:
+ case X86ISD::FMIN:
+ case X86ISD::FMAXC:
+ case X86ISD::FMAX: {
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::v2f32)
+ llvm_unreachable("Unexpected type (!= v2f32) on FMIN/FMAX.");
+ SDValue UNDEF = DAG.getUNDEF(VT);
+ SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ N->getOperand(0), UNDEF);
+ SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ N->getOperand(1), UNDEF);
+ Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
+ return;
+ }
case ISD::SIGN_EXTEND_INREG:
case ISD::ADDC:
case ISD::ADDE:
@@ -16473,12 +19857,10 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
+ case ISD::ATOMIC_LOAD: {
// Delegate to generic TypeLegalization. Situations we can really handle
- // should have already been dealt with by X86AtomicExpand.cpp.
+ // should have already been dealt with by AtomicExpandPass.cpp.
break;
- case ISD::ATOMIC_LOAD: {
- ReplaceATOMIC_LOAD(N, Results, DAG);
- return;
}
case ISD::BITCAST: {
assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
@@ -16561,8 +19943,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
case X86ISD::ANDNP: return "X86ISD::ANDNP";
case X86ISD::PSIGN: return "X86ISD::PSIGN";
- case X86ISD::BLENDV: return "X86ISD::BLENDV";
case X86ISD::BLENDI: return "X86ISD::BLENDI";
+ case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND";
case X86ISD::SUBUS: return "X86ISD::SUBUS";
case X86ISD::HADD: return "X86ISD::HADD";
case X86ISD::HSUB: return "X86ISD::HSUB";
@@ -16618,6 +20000,10 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::SBB: return "X86ISD::SBB";
case X86ISD::SMUL: return "X86ISD::SMUL";
case X86ISD::UMUL: return "X86ISD::UMUL";
+ case X86ISD::SMUL8: return "X86ISD::SMUL8";
+ case X86ISD::UMUL8: return "X86ISD::UMUL8";
+ case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
+ case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
case X86ISD::INC: return "X86ISD::INC";
case X86ISD::DEC: return "X86ISD::DEC";
case X86ISD::OR: return "X86ISD::OR";
@@ -16633,6 +20019,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::PACKSS: return "X86ISD::PACKSS";
case X86ISD::PACKUS: return "X86ISD::PACKUS";
case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
+ case X86ISD::VALIGN: return "X86ISD::VALIGN";
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
@@ -16652,7 +20039,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT";
- case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
+ case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VPERMV: return "X86ISD::VPERMV";
case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
@@ -16678,6 +20065,9 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
case X86ISD::XTEST: return "X86ISD::XTEST";
+ case X86ISD::COMPRESS: return "X86ISD::COMPRESS";
+ case X86ISD::EXPAND: return "X86ISD::EXPAND";
+ case X86ISD::SELECT: return "X86ISD::SELECT";
}
}
@@ -16868,6 +20258,14 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
if (VT.getSizeInBits() == 64)
return false;
+ // This is an experimental legality test that is tailored to match the
+ // legality test of the experimental lowering more closely. They are gated
+ // separately to ease testing of performance differences.
+ if (ExperimentalVectorShuffleLegality)
+ // We only care that the types being shuffled are legal. The lowering can
+ // handle any possible shuffle mask that results.
+ return isTypeLegal(SVT);
+
// If this is a single-input shuffle with no 128 bit lane crossings we can
// lower it into pshufb.
if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) ||
@@ -16888,9 +20286,12 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
return (SVT.getVectorNumElements() == 2 ||
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
isMOVLMask(M, SVT) ||
+ isCommutedMOVLMask(M, SVT) ||
isMOVHLPSMask(M, SVT) ||
isSHUFPMask(M, SVT) ||
+ isSHUFPMask(M, SVT, /* Commuted */ true) ||
isPSHUFDMask(M, SVT) ||
+ isPSHUFDMask(M, SVT, /* SecondOperand */ true) ||
isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
isPALIGNRMask(M, SVT, Subtarget) ||
@@ -16898,7 +20299,8 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
- isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()));
+ isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()) ||
+ (Subtarget->hasSSE41() && isINSERTPSMask(M, SVT)));
}
bool
@@ -16908,6 +20310,14 @@ X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
return false;
MVT SVT = VT.getSimpleVT();
+
+ // This is an experimental legality test that is tailored to match the
+ // legality test of the experimental lowering more closely. They are gated
+ // separately to ease testing of performance differences.
+ if (ExperimentalVectorShuffleLegality)
+ // The new vector shuffle lowering is very good at managing zero-inputs.
+ return isShuffleMaskLegal(Mask, VT);
+
unsigned NumElts = SVT.getVectorNumElements();
// FIXME: This collection of masks seems suspect.
if (NumElts == 2)
@@ -16916,7 +20326,9 @@ X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
return (isMOVLMask(Mask, SVT) ||
isCommutedMOVLMask(Mask, SVT, true) ||
isSHUFPMask(Mask, SVT) ||
- isSHUFPMask(Mask, SVT, /* Commuted */ true));
+ isSHUFPMask(Mask, SVT, /* Commuted */ true) ||
+ isBlendMask(Mask, SVT, Subtarget->hasSSE41(),
+ Subtarget->hasInt256()));
}
return false;
}
@@ -17114,7 +20526,7 @@ X86TargetLowering::EmitVAARG64WithCustomInserter(
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
// Machine Information
- const TargetInstrInfo *TII = MBB->getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
@@ -17266,7 +20678,7 @@ X86TargetLowering::EmitVAARG64WithCustomInserter(
.setMemRefs(MMOBegin, MMOEnd);
// Jump to endMBB
- BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
+ BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
.addMBB(endMBB);
}
@@ -17370,7 +20782,7 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
XMMSaveMBB->addSuccessor(EndMBB);
// Now add the instructions.
- const TargetInstrInfo *TII = MBB->getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned CountReg = MI->getOperand(0).getReg();
@@ -17380,7 +20792,7 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
if (!Subtarget->isTargetWin64()) {
// If %al is 0, branch around the XMM save block.
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
- BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
+ BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
}
@@ -17453,7 +20865,7 @@ static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock *
X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = BB->getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
@@ -17479,7 +20891,8 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
- const TargetRegisterInfo* TRI = BB->getParent()->getTarget().getRegisterInfo();
+ const TargetRegisterInfo *TRI =
+ BB->getParent()->getSubtarget().getRegisterInfo();
if (!MI->killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
copy0MBB->addLiveIn(X86::EFLAGS);
@@ -17518,17 +20931,20 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
}
MachineBasicBlock *
-X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
- bool Is64Bit) const {
+X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
assert(MF->shouldSplitStack());
- unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
- unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
+ const bool Is64Bit = Subtarget->is64Bit();
+ const bool IsLP64 = Subtarget->isTarget64BitLP64();
+
+ const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
+ const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
// BB:
// ... [Till the alloca]
@@ -17552,14 +20968,14 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *AddrRegClass =
- getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
+ getRegClassFor(getPointerTy());
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
sizeVReg = MI->getOperand(1).getReg(),
- physSPReg = Is64Bit ? X86::RSP : X86::ESP;
+ physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
MachineFunction::iterator MBBIter = BB;
++MBBIter;
@@ -17575,12 +20991,12 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
// Add code to the main basic block to check if the stack limit has been hit,
// and if so, jump to mallocMBB otherwise to bumpMBB.
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
- BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
+ BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
.addReg(tmpSPVReg).addReg(sizeVReg);
- BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
+ BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
.addReg(SPLimitVReg);
- BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
+ BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
// bumpMBB simply decreases the stack pointer, since we know the current
// stacklet has enough space.
@@ -17588,12 +21004,14 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
.addReg(SPLimitVReg);
- BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
+ BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Calls into a routine in libgcc to allocate more space from the heap.
- const uint32_t *RegMask =
- MF->getTarget().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
- if (Is64Bit) {
+ const uint32_t *RegMask = MF->getTarget()
+ .getSubtargetImpl()
+ ->getRegisterInfo()
+ ->getCallPreservedMask(CallingConv::C);
+ if (IsLP64) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
@@ -17601,6 +21019,14 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
.addRegMask(RegMask)
.addReg(X86::RDI, RegState::Implicit)
.addReg(X86::RAX, RegState::ImplicitDefine);
+ } else if (Is64Bit) {
+ BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
+ .addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::EDI, RegState::Implicit)
+ .addReg(X86::EAX, RegState::ImplicitDefine);
} else {
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
.addImm(12);
@@ -17616,8 +21042,8 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
.addImm(16);
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
- .addReg(Is64Bit ? X86::RAX : X86::EAX);
- BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
+ .addReg(IsLP64 ? X86::RAX : X86::EAX);
+ BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Set up the CFG correctly.
BB->addSuccessor(bumpMBB);
@@ -17641,10 +21067,10 @@ X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
MachineBasicBlock *
X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo *TII = BB->getParent()->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
- assert(!Subtarget->isTargetMacho());
+ assert(!Subtarget->isTargetMachO());
// The lowering is pretty easy: we're just emitting the call to _alloca. The
// non-trivial part is impdef of ESP.
@@ -17674,8 +21100,10 @@ X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
.addReg(X86::RAX);
}
} else {
- const char *StackProbeSymbol =
- Subtarget->isTargetKnownWindowsMSVC() ? "_chkstk" : "_alloca";
+ const char *StackProbeSymbol = (Subtarget->isTargetKnownWindowsMSVC() ||
+ Subtarget->isTargetWindowsItanium())
+ ? "_chkstk"
+ : "_alloca";
BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol(StackProbeSymbol)
@@ -17698,8 +21126,8 @@ X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
// or EAX and doing an indirect call. The return value will then
// be in the normal return register.
MachineFunction *F = BB->getParent();
- const X86InstrInfo *TII
- = static_cast<const X86InstrInfo*>(F->getTarget().getInstrInfo());
+ const X86InstrInfo *TII =
+ static_cast<const X86InstrInfo *>(F->getSubtarget().getInstrInfo());
DebugLoc DL = MI->getDebugLoc();
assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
@@ -17708,8 +21136,10 @@ X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
// Get a register mask for the lowered call.
// FIXME: The 32-bit calls have non-standard calling conventions. Use a
// proper register mask.
- const uint32_t *RegMask =
- F->getTarget().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
+ const uint32_t *RegMask = F->getTarget()
+ .getSubtargetImpl()
+ ->getRegisterInfo()
+ ->getCallPreservedMask(CallingConv::C);
if (Subtarget->is64Bit()) {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV64rm), X86::RDI)
@@ -17754,7 +21184,7 @@ X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
@@ -17795,6 +21225,7 @@ X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
// v = phi(main, restore)
//
// restoreMBB:
+ // if base pointer being used, load it from frame
// v_restore = 1
MachineBasicBlock *thisMBB = MBB;
@@ -17860,8 +21291,8 @@ X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
.addMBB(restoreMBB);
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(MF->getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ MF->getSubtarget().getRegisterInfo());
MIB.addRegMask(RegInfo->getNoPreservedMask());
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(restoreMBB);
@@ -17878,8 +21309,20 @@ X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
.addReg(restoreDstReg).addMBB(restoreMBB);
// restoreMBB:
+ if (RegInfo->hasBasePointer(*MF)) {
+ const X86Subtarget &STI = MF->getTarget().getSubtarget<X86Subtarget>();
+ const bool Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
+ X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
+ X86FI->setRestoreBasePointer(MF);
+ unsigned FramePtr = RegInfo->getFrameRegister(*MF);
+ unsigned BasePtr = RegInfo->getBaseRegister();
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
+ addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
+ FramePtr, true, X86FI->getRestoreBasePointerOffset())
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
- BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
+ BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
restoreMBB->addSuccessor(sinkMBB);
MI->eraseFromParent();
@@ -17891,7 +21334,7 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
@@ -17906,8 +21349,8 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
unsigned Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
- const X86RegisterInfo *RegInfo =
- static_cast<const X86RegisterInfo*>(MF->getTarget().getRegisterInfo());
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ MF->getSubtarget().getRegisterInfo());
unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
unsigned SP = RegInfo->getStackRegister();
@@ -17951,7 +21394,7 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
// Replace 213-type (isel default) FMA3 instructions with 231-type for
// accumulator loops. Writing back to the accumulator allows the coalescer
-// to remove extra copies in the loop.
+// to remove extra copies in the loop.
MachineBasicBlock *
X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
MachineBasicBlock *MBB) const {
@@ -18006,6 +21449,11 @@ X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
+ case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
+ case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
+ case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
+ case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
+
case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
@@ -18014,10 +21462,14 @@ X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
+ case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
+ case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
+ case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
+ case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
default: llvm_unreachable("Unrecognized FMA variant.");
}
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineInstrBuilder MIB =
BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
.addOperand(MI->getOperand(0))
@@ -18048,9 +21500,8 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::WIN_ALLOCA:
return EmitLoweredWinAlloca(MI, BB);
case X86::SEG_ALLOCA_32:
- return EmitLoweredSegAlloca(MI, BB, false);
case X86::SEG_ALLOCA_64:
- return EmitLoweredSegAlloca(MI, BB, true);
+ return EmitLoweredSegAlloca(MI, BB);
case X86::TLSCall_32:
case X86::TLSCall_64:
return EmitLoweredTLSCall(MI, BB);
@@ -18083,7 +21534,7 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
MachineFunction *F = BB->getParent();
- const TargetInstrInfo *TII = F->getTarget().getInstrInfo();
+ const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// Change the floating point control register to use "round towards zero"
@@ -18167,7 +21618,7 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::VPCMPESTRM128MEM:
assert(Subtarget->hasSSE42() &&
"Target must have SSE4.2 or AVX features enabled");
- return EmitPCMPSTRM(MI, BB, BB->getParent()->getTarget().getInstrInfo());
+ return EmitPCMPSTRM(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
// String/text processing lowering.
case X86::PCMPISTRIREG:
@@ -18180,15 +21631,16 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::VPCMPESTRIMEM:
assert(Subtarget->hasSSE42() &&
"Target must have SSE4.2 or AVX features enabled");
- return EmitPCMPSTRI(MI, BB, BB->getParent()->getTarget().getInstrInfo());
+ return EmitPCMPSTRI(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
// Thread synchronization.
case X86::MONITOR:
- return EmitMonitor(MI, BB, BB->getParent()->getTarget().getInstrInfo(), Subtarget);
+ return EmitMonitor(MI, BB, BB->getParent()->getSubtarget().getInstrInfo(),
+ Subtarget);
// xbegin
case X86::XBEGIN:
- return EmitXBegin(MI, BB, BB->getParent()->getTarget().getInstrInfo());
+ return EmitXBegin(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
case X86::VASTART_SAVE_XMM_REGS:
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
@@ -18204,6 +21656,11 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::EH_SjLj_LongJmp64:
return emitEHSjLjLongJmp(MI, BB);
+ case TargetOpcode::STATEPOINT:
+ // As an implementation detail, STATEPOINT shares the STACKMAP format at
+ // this point in the process. We diverge later.
+ return emitPatchPoint(MI, BB);
+
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
@@ -18224,6 +21681,10 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::VFNMSUBPSr213r:
case X86::VFNMSUBSDr213r:
case X86::VFNMSUBSSr213r:
+ case X86::VFMADDSUBPDr213r:
+ case X86::VFMADDSUBPSr213r:
+ case X86::VFMSUBADDPDr213r:
+ case X86::VFMSUBADDPSr213r:
case X86::VFMADDPDr213rY:
case X86::VFMADDPSr213rY:
case X86::VFMSUBPDr213rY:
@@ -18232,6 +21693,10 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::VFNMADDPSr213rY:
case X86::VFNMSUBPDr213rY:
case X86::VFNMSUBPSr213rY:
+ case X86::VFMADDSUBPDr213rY:
+ case X86::VFMADDSUBPSr213rY:
+ case X86::VFMSUBADDPDr213rY:
+ case X86::VFMSUBADDPSr213rY:
return emitFMA3Instr(MI, BB);
}
}
@@ -18461,6 +21926,329 @@ static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
return SDValue();
}
+/// \brief Combine an arbitrary chain of shuffles into a single instruction if
+/// possible.
+///
+/// This is the leaf of the recursive combinine below. When we have found some
+/// chain of single-use x86 shuffle instructions and accumulated the combined
+/// shuffle mask represented by them, this will try to pattern match that mask
+/// into either a single instruction if there is a special purpose instruction
+/// for this operation, or into a PSHUFB instruction which is a fully general
+/// instruction but should only be used to replace chains over a certain depth.
+static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
+ int Depth, bool HasPSHUFB, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
+
+ // Find the operand that enters the chain. Note that multiple uses are OK
+ // here, we're not going to remove the operand we find.
+ SDValue Input = Op.getOperand(0);
+ while (Input.getOpcode() == ISD::BITCAST)
+ Input = Input.getOperand(0);
+
+ MVT VT = Input.getSimpleValueType();
+ MVT RootVT = Root.getSimpleValueType();
+ SDLoc DL(Root);
+
+ // Just remove no-op shuffle masks.
+ if (Mask.size() == 1) {
+ DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
+ /*AddTo*/ true);
+ return true;
+ }
+
+ // Use the float domain if the operand type is a floating point type.
+ bool FloatDomain = VT.isFloatingPoint();
+
+ // For floating point shuffles, we don't have free copies in the shuffle
+ // instructions or the ability to load as part of the instruction, so
+ // canonicalize their shuffles to UNPCK or MOV variants.
+ //
+ // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
+ // vectors because it can have a load folded into it that UNPCK cannot. This
+ // doesn't preclude something switching to the shorter encoding post-RA.
+ if (FloatDomain) {
+ if (Mask.equals(0, 0) || Mask.equals(1, 1)) {
+ bool Lo = Mask.equals(0, 0);
+ unsigned Shuffle;
+ MVT ShuffleVT;
+ // Check if we have SSE3 which will let us use MOVDDUP. That instruction
+ // is no slower than UNPCKLPD but has the option to fold the input operand
+ // into even an unaligned memory load.
+ if (Lo && Subtarget->hasSSE3()) {
+ Shuffle = X86ISD::MOVDDUP;
+ ShuffleVT = MVT::v2f64;
+ } else {
+ // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
+ // than the UNPCK variants.
+ Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
+ ShuffleVT = MVT::v4f32;
+ }
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ if (Shuffle == X86ISD::MOVDDUP)
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
+ else
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+ if (Subtarget->hasSSE3() &&
+ (Mask.equals(0, 0, 2, 2) || Mask.equals(1, 1, 3, 3))) {
+ bool Lo = Mask.equals(0, 0, 2, 2);
+ unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
+ MVT ShuffleVT = MVT::v4f32;
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+ if (Mask.equals(0, 0, 1, 1) || Mask.equals(2, 2, 3, 3)) {
+ bool Lo = Mask.equals(0, 0, 1, 1);
+ unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
+ MVT ShuffleVT = MVT::v4f32;
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+ }
+
+ // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
+ // variants as none of these have single-instruction variants that are
+ // superior to the UNPCK formulation.
+ if (!FloatDomain &&
+ (Mask.equals(0, 0, 1, 1, 2, 2, 3, 3) ||
+ Mask.equals(4, 4, 5, 5, 6, 6, 7, 7) ||
+ Mask.equals(0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7) ||
+ Mask.equals(8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
+ 15))) {
+ bool Lo = Mask[0] == 0;
+ unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ MVT ShuffleVT;
+ switch (Mask.size()) {
+ case 8:
+ ShuffleVT = MVT::v8i16;
+ break;
+ case 16:
+ ShuffleVT = MVT::v16i8;
+ break;
+ default:
+ llvm_unreachable("Impossible mask size!");
+ };
+ Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+
+ // Don't try to re-form single instruction chains under any circumstances now
+ // that we've done encoding canonicalization for them.
+ if (Depth < 2)
+ return false;
+
+ // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
+ // can replace them with a single PSHUFB instruction profitably. Intel's
+ // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
+ // in practice PSHUFB tends to be *very* fast so we're more aggressive.
+ if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
+ SmallVector<SDValue, 16> PSHUFBMask;
+ assert(Mask.size() <= 16 && "Can't shuffle elements smaller than bytes!");
+ int Ratio = 16 / Mask.size();
+ for (unsigned i = 0; i < 16; ++i) {
+ if (Mask[i / Ratio] == SM_SentinelUndef) {
+ PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
+ continue;
+ }
+ int M = Mask[i / Ratio] != SM_SentinelZero
+ ? Ratio * Mask[i / Ratio] + i % Ratio
+ : 255;
+ PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
+ }
+ Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Input);
+ DCI.AddToWorklist(Op.getNode());
+ SDValue PSHUFBMaskOp =
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask);
+ DCI.AddToWorklist(PSHUFBMaskOp.getNode());
+ Op = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, Op, PSHUFBMaskOp);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+
+ // Failed to find any combines.
+ return false;
+}
+
+/// \brief Fully generic combining of x86 shuffle instructions.
+///
+/// This should be the last combine run over the x86 shuffle instructions. Once
+/// they have been fully optimized, this will recursively consider all chains
+/// of single-use shuffle instructions, build a generic model of the cumulative
+/// shuffle operation, and check for simpler instructions which implement this
+/// operation. We use this primarily for two purposes:
+///
+/// 1) Collapse generic shuffles to specialized single instructions when
+/// equivalent. In most cases, this is just an encoding size win, but
+/// sometimes we will collapse multiple generic shuffles into a single
+/// special-purpose shuffle.
+/// 2) Look for sequences of shuffle instructions with 3 or more total
+/// instructions, and replace them with the slightly more expensive SSSE3
+/// PSHUFB instruction if available. We do this as the last combining step
+/// to ensure we avoid using PSHUFB if we can implement the shuffle with
+/// a suitable short sequence of other instructions. The PHUFB will either
+/// use a register or have to read from memory and so is slightly (but only
+/// slightly) more expensive than the other shuffle instructions.
+///
+/// Because this is inherently a quadratic operation (for each shuffle in
+/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
+/// This should never be an issue in practice as the shuffle lowering doesn't
+/// produce sequences of more than 8 instructions.
+///
+/// FIXME: We will currently miss some cases where the redundant shuffling
+/// would simplify under the threshold for PSHUFB formation because of
+/// combine-ordering. To fix this, we should do the redundant instruction
+/// combining in this recursive walk.
+static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
+ ArrayRef<int> RootMask,
+ int Depth, bool HasPSHUFB,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ // Bound the depth of our recursive combine because this is ultimately
+ // quadratic in nature.
+ if (Depth > 8)
+ return false;
+
+ // Directly rip through bitcasts to find the underlying operand.
+ while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
+ Op = Op.getOperand(0);
+
+ MVT VT = Op.getSimpleValueType();
+ if (!VT.isVector())
+ return false; // Bail if we hit a non-vector.
+ // FIXME: This routine should be taught about 256-bit shuffles, or a 256-bit
+ // version should be added.
+ if (VT.getSizeInBits() != 128)
+ return false;
+
+ assert(Root.getSimpleValueType().isVector() &&
+ "Shuffles operate on vector types!");
+ assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
+ "Can only combine shuffles of the same vector register size.");
+
+ if (!isTargetShuffle(Op.getOpcode()))
+ return false;
+ SmallVector<int, 16> OpMask;
+ bool IsUnary;
+ bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
+ // We only can combine unary shuffles which we can decode the mask for.
+ if (!HaveMask || !IsUnary)
+ return false;
+
+ assert(VT.getVectorNumElements() == OpMask.size() &&
+ "Different mask size from vector size!");
+ assert(((RootMask.size() > OpMask.size() &&
+ RootMask.size() % OpMask.size() == 0) ||
+ (OpMask.size() > RootMask.size() &&
+ OpMask.size() % RootMask.size() == 0) ||
+ OpMask.size() == RootMask.size()) &&
+ "The smaller number of elements must divide the larger.");
+ int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
+ int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
+ assert(((RootRatio == 1 && OpRatio == 1) ||
+ (RootRatio == 1) != (OpRatio == 1)) &&
+ "Must not have a ratio for both incoming and op masks!");
+
+ SmallVector<int, 16> Mask;
+ Mask.reserve(std::max(OpMask.size(), RootMask.size()));
+
+ // Merge this shuffle operation's mask into our accumulated mask. Note that
+ // this shuffle's mask will be the first applied to the input, followed by the
+ // root mask to get us all the way to the root value arrangement. The reason
+ // for this order is that we are recursing up the operation chain.
+ for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
+ int RootIdx = i / RootRatio;
+ if (RootMask[RootIdx] < 0) {
+ // This is a zero or undef lane, we're done.
+ Mask.push_back(RootMask[RootIdx]);
+ continue;
+ }
+
+ int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
+ int OpIdx = RootMaskedIdx / OpRatio;
+ if (OpMask[OpIdx] < 0) {
+ // The incoming lanes are zero or undef, it doesn't matter which ones we
+ // are using.
+ Mask.push_back(OpMask[OpIdx]);
+ continue;
+ }
+
+ // Ok, we have non-zero lanes, map them through.
+ Mask.push_back(OpMask[OpIdx] * OpRatio +
+ RootMaskedIdx % OpRatio);
+ }
+
+ // See if we can recurse into the operand to combine more things.
+ switch (Op.getOpcode()) {
+ case X86ISD::PSHUFB:
+ HasPSHUFB = true;
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ if (Op.getOperand(0).hasOneUse() &&
+ combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
+ HasPSHUFB, DAG, DCI, Subtarget))
+ return true;
+ break;
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!");
+ // We can't check for single use, we have to check that this shuffle is the only user.
+ if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
+ combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
+ HasPSHUFB, DAG, DCI, Subtarget))
+ return true;
+ break;
+ }
+
+ // Minor canonicalization of the accumulated shuffle mask to make it easier
+ // to match below. All this does is detect masks with squential pairs of
+ // elements, and shrink them to the half-width mask. It does this in a loop
+ // so it will reduce the size of the mask to the minimal width mask which
+ // performs an equivalent shuffle.
+ SmallVector<int, 16> WidenedMask;
+ while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
+ Mask = std::move(WidenedMask);
+ WidenedMask.clear();
+ }
+
+ return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
+ Subtarget);
+}
+
/// \brief Get the PSHUF-style mask from PSHUF node.
///
/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
@@ -18493,19 +22281,23 @@ static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
/// We walk up the chain and look for a combinable shuffle, skipping over
/// shuffles that we could hoist this shuffle's transformation past without
/// altering anything.
-static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
- SelectionDAG &DAG,
- TargetLowering::DAGCombinerInfo &DCI) {
+static SDValue
+combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
assert(N.getOpcode() == X86ISD::PSHUFD &&
"Called with something other than an x86 128-bit half shuffle!");
SDLoc DL(N);
- // Walk up a single-use chain looking for a combinable shuffle.
+ // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
+ // of the shuffles in the chain so that we can form a fresh chain to replace
+ // this one.
+ SmallVector<SDValue, 8> Chain;
SDValue V = N.getOperand(0);
for (; V.hasOneUse(); V = V.getOperand(0)) {
switch (V.getOpcode()) {
default:
- return false; // Nothing combined!
+ return SDValue(); // Nothing combined!
case ISD::BITCAST:
// Skip bitcasts as we always know the type for the target specific
@@ -18521,8 +22313,9 @@ static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
// dword shuffle, and the high words are self-contained.
if (Mask[0] != 0 || Mask[1] != 1 ||
!(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
- return false;
+ return SDValue();
+ Chain.push_back(V);
continue;
case X86ISD::PSHUFHW:
@@ -18530,8 +22323,9 @@ static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
// dword shuffle, and the low words are self-contained.
if (Mask[2] != 2 || Mask[3] != 3 ||
!(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
- return false;
+ return SDValue();
+ Chain.push_back(V);
continue;
case X86ISD::UNPCKL:
@@ -18539,25 +22333,28 @@ static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
// For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
// shuffle into a preceding word shuffle.
if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16)
- return false;
+ return SDValue();
// Search for a half-shuffle which we can combine with.
unsigned CombineOp =
V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
if (V.getOperand(0) != V.getOperand(1) ||
!V->isOnlyUserOf(V.getOperand(0).getNode()))
- return false;
+ return SDValue();
+ Chain.push_back(V);
V = V.getOperand(0);
do {
switch (V.getOpcode()) {
default:
- return false; // Nothing to combine.
+ return SDValue(); // Nothing to combine.
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
if (V.getOpcode() == CombineOp)
break;
+ Chain.push_back(V);
+
// Fallthrough!
case ISD::BITCAST:
V = V.getOperand(0);
@@ -18573,10 +22370,7 @@ static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
if (!V.hasOneUse())
// We fell out of the loop without finding a viable combining instruction.
- return false;
-
- // Record the old value to use in RAUW-ing.
- SDValue Old = V;
+ return SDValue();
// Merge this node's mask and our incoming mask.
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
@@ -18585,20 +22379,34 @@ static bool combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DAG));
- // It is possible that one of the combinable shuffles was completely absorbed
- // by the other, just replace it and revisit all users in that case.
- if (Old.getNode() == V.getNode()) {
- DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo=*/true);
- return true;
- }
+ // Rebuild the chain around this new shuffle.
+ while (!Chain.empty()) {
+ SDValue W = Chain.pop_back_val();
- // Replace N with its operand as we're going to combine that shuffle away.
- DAG.ReplaceAllUsesWith(N, N.getOperand(0));
+ if (V.getValueType() != W.getOperand(0).getValueType())
+ V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
- // Replace the combinable shuffle with the combined one, updating all users
- // so that we re-evaluate the chain here.
- DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
- return true;
+ switch (W.getOpcode()) {
+ default:
+ llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
+ break;
+
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
+ break;
+ }
+ }
+ if (V.getValueType() != N.getValueType())
+ V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
+
+ // Return the new chain to replace N.
+ return V;
}
/// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
@@ -18634,26 +22442,6 @@ static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
// Other-half shuffles are no-ops.
continue;
-
- case X86ISD::PSHUFD: {
- // We can only handle pshufd if the half we are combining either stays in
- // its half, or switches to the other half. Bail if one of these isn't
- // true.
- SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
- int DOffset = CombineOpcode == X86ISD::PSHUFLW ? 0 : 2;
- if (!((VMask[DOffset + 0] < 2 && VMask[DOffset + 1] < 2) ||
- (VMask[DOffset + 0] >= 2 && VMask[DOffset + 1] >= 2)))
- return false;
-
- // Map the mask through the pshufd and keep walking up the chain.
- for (int i = 0; i < 4; ++i)
- Mask[i] = 2 * (VMask[DOffset + Mask[i] / 2] % 2) + Mask[i] % 2;
-
- // Switch halves if the pshufd does.
- CombineOpcode =
- VMask[DOffset + Mask[0] / 2] < 2 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
- continue;
- }
}
// Break out of the loop if we break out of the switch.
break;
@@ -18663,7 +22451,11 @@ static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
// We fell out of the loop without finding a viable combining instruction.
return false;
- // Record the old value to use in RAUW-ing.
+ // Combine away the bottom node as its shuffle will be accumulated into
+ // a preceding shuffle.
+ DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
+
+ // Record the old value.
SDValue Old = V;
// Merge this node's mask and our incoming mask (adjusted to account for all
@@ -18674,12 +22466,13 @@ static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DAG));
- // Replace N with its operand as we're going to combine that shuffle away.
- DAG.ReplaceAllUsesWith(N, N.getOperand(0));
+ // Check that the shuffles didn't cancel each other out. If not, we need to
+ // combine to the new one.
+ if (Old != V)
+ // Replace the combinable shuffle with the combined one, updating all users
+ // so that we re-evaluate the chain here.
+ DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
- // Replace the combinable shuffle with the combined one, updating all users
- // so that we re-evaluate the chain here.
- DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
return true;
}
@@ -18720,13 +22513,13 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
return SDValue(); // We combined away this shuffle, so we're done.
// See if this reduces to a PSHUFD which is no more expensive and can
- // combine with more operations.
- if (Mask[0] % 2 == 0 && Mask[2] % 2 == 0 &&
- areAdjacentMasksSequential(Mask)) {
- int DMask[] = {-1, -1, -1, -1};
+ // combine with more operations. Note that it has to at least flip the
+ // dwords as otherwise it would have been removed as a no-op.
+ if (Mask[0] == 2 && Mask[1] == 3 && Mask[2] == 0 && Mask[3] == 1) {
+ int DMask[] = {0, 1, 2, 3};
int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
- DMask[DOffset + 0] = DOffset + Mask[0] / 2;
- DMask[DOffset + 1] = DOffset + Mask[2] / 2;
+ DMask[DOffset + 0] = DOffset + 1;
+ DMask[DOffset + 1] = DOffset + 0;
V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V);
DCI.AddToWorklist(V.getNode());
V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V,
@@ -18779,8 +22572,8 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
break;
case X86ISD::PSHUFD:
- if (combineRedundantDWordShuffle(N, Mask, DAG, DCI))
- return SDValue(); // We combined away this shuffle.
+ if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
+ return NewN;
break;
}
@@ -18788,6 +22581,61 @@ static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
return SDValue();
}
+/// \brief Try to combine a shuffle into a target-specific add-sub node.
+///
+/// We combine this directly on the abstract vector shuffle nodes so it is
+/// easier to generically match. We also insert dummy vector shuffle nodes for
+/// the operands which explicitly discard the lanes which are unused by this
+/// operation to try to flow through the rest of the combiner the fact that
+/// they're unused.
+static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ // We only handle target-independent shuffles.
+ // FIXME: It would be easy and harmless to use the target shuffle mask
+ // extraction tool to support more.
+ if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
+ return SDValue();
+
+ auto *SVN = cast<ShuffleVectorSDNode>(N);
+ ArrayRef<int> Mask = SVN->getMask();
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+
+ // We require the first shuffle operand to be the SUB node, and the second to
+ // be the ADD node.
+ // FIXME: We should support the commuted patterns.
+ if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD)
+ return SDValue();
+
+ // If there are other uses of these operations we can't fold them.
+ if (!V1->hasOneUse() || !V2->hasOneUse())
+ return SDValue();
+
+ // Ensure that both operations have the same operands. Note that we can
+ // commute the FADD operands.
+ SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
+ if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
+ (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
+ return SDValue();
+
+ // We're looking for blends between FADD and FSUB nodes. We insist on these
+ // nodes being lined up in a specific expected pattern.
+ if (!(isShuffleEquivalent(Mask, 0, 3) ||
+ isShuffleEquivalent(Mask, 0, 5, 2, 7) ||
+ isShuffleEquivalent(Mask, 0, 9, 2, 11, 4, 13, 6, 15)))
+ return SDValue();
+
+ // Only specific types are legal at this point, assert so we notice if and
+ // when these change.
+ assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
+ VT == MVT::v4f64) &&
+ "Unknown vector type encountered!");
+
+ return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
+}
+
/// PerformShuffleCombine - Performs several different shuffle combines.
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
@@ -18797,54 +22645,17 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
- // Canonicalize shuffles that perform 'addsub' on packed float vectors
- // according to the rule:
- // (shuffle (FADD A, B), (FSUB A, B), Mask) ->
- // (shuffle (FSUB A, -B), (FADD A, -B), Mask)
- //
- // Where 'Mask' is:
- // <0,5,2,7> -- for v4f32 and v4f64 shuffles;
- // <0,3> -- for v2f64 shuffles;
- // <0,9,2,11,4,13,6,15> -- for v8f32 shuffles.
- //
- // This helps pattern-matching more SSE3/AVX ADDSUB instructions
- // during ISel stage.
- if (N->getOpcode() == ISD::VECTOR_SHUFFLE &&
- ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
- (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
- N0->getOpcode() == ISD::FADD && N1->getOpcode() == ISD::FSUB &&
- // Operands to the FADD and FSUB must be the same.
- ((N0->getOperand(0) == N1->getOperand(0) &&
- N0->getOperand(1) == N1->getOperand(1)) ||
- // FADD is commutable. See if by commuting the operands of the FADD
- // we would still be able to match the operands of the FSUB dag node.
- (N0->getOperand(1) == N1->getOperand(0) &&
- N0->getOperand(0) == N1->getOperand(1))) &&
- N0->getOperand(0)->getOpcode() != ISD::UNDEF &&
- N0->getOperand(1)->getOpcode() != ISD::UNDEF) {
-
- ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
- unsigned NumElts = VT.getVectorNumElements();
- ArrayRef<int> Mask = SV->getMask();
- bool CanFold = true;
-
- for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i)
- CanFold = Mask[i] == (int)((i & 1) ? i + NumElts : i);
-
- if (CanFold) {
- SDValue Op0 = N1->getOperand(0);
- SDValue Op1 = DAG.getNode(ISD::FNEG, dl, VT, N1->getOperand(1));
- SDValue Sub = DAG.getNode(ISD::FSUB, dl, VT, Op0, Op1);
- SDValue Add = DAG.getNode(ISD::FADD, dl, VT, Op0, Op1);
- return DAG.getVectorShuffle(VT, dl, Sub, Add, Mask);
- }
- }
-
// Don't create instructions with illegal types after legalize types has run.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
return SDValue();
+ // If we have legalized the vector types, look for blends of FADD and FSUB
+ // nodes that we can fuse into an ADDSUB node.
+ if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
+ if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
+ return AddSub;
+
// Combine 256-bit vector shuffles. This is only profitable when in AVX mode
if (Subtarget->hasFp256() && VT.is256BitVector() &&
N->getOpcode() == ISD::VECTOR_SHUFFLE)
@@ -18869,7 +22680,7 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
EVT SVT = BC0.getValueType();
unsigned Opcode = BC0.getOpcode();
unsigned NumElts = VT.getVectorNumElements();
-
+
if (BC0.hasOneUse() && SVT.isVector() &&
SVT.getVectorNumElements() * 2 == NumElts &&
TLI.isOperationLegal(Opcode, VT)) {
@@ -18921,6 +22732,18 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
if (Shuffle.getNode())
return Shuffle;
+
+ // Try recursively combining arbitrary sequences of x86 shuffle
+ // instructions into higher-order shuffles. We do this after combining
+ // specific PSHUF instruction sequences into their minimal form so that we
+ // can evaluate how many specialized shuffle instructions are involved in
+ // a particular chain.
+ SmallVector<int, 1> NonceMask; // Just a placeholder.
+ NonceMask.push_back(0);
+ if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
+ /*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
+ DCI, Subtarget))
+ return SDValue(); // This routine will use CombineTo to replace N.
}
return SDValue();
@@ -18938,7 +22761,7 @@ static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
/// specific shuffle of a load can be folded into a single element load.
/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
-/// shuffles have been customed lowered so we need to handle those here.
+/// shuffles have been custom lowered so we need to handle those here.
static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalizeOps())
@@ -18950,20 +22773,20 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
if (!isa<ConstantSDNode>(EltNo))
return SDValue();
- EVT VT = InVec.getValueType();
+ EVT OriginalVT = InVec.getValueType();
- bool HasShuffleIntoBitcast = false;
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
EVT BCVT = InVec.getOperand(0).getValueType();
- if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
+ if (BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
return SDValue();
InVec = InVec.getOperand(0);
- HasShuffleIntoBitcast = true;
}
+ EVT CurrentVT = InVec.getValueType();
+
if (!isTargetShuffle(InVec.getOpcode()))
return SDValue();
@@ -18973,12 +22796,12 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
SmallVector<int, 16> ShuffleMask;
bool UnaryShuffle;
- if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
- UnaryShuffle))
+ if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(),
+ ShuffleMask, UnaryShuffle))
return SDValue();
// Select the input vector, guarding against out of range extract vector.
- unsigned NumElems = VT.getVectorNumElements();
+ unsigned NumElems = CurrentVT.getVectorNumElements();
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
@@ -19004,35 +22827,37 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
return SDValue();
- if (HasShuffleIntoBitcast) {
- // If there's a bitcast before the shuffle, check if the load type and
- // alignment is valid.
- unsigned Align = LN0->getAlignment();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned NewAlign = TLI.getDataLayout()->
- getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
+ EVT EltVT = N->getValueType(0);
+ // If there's a bitcast before the shuffle, check if the load type and
+ // alignment is valid.
+ unsigned Align = LN0->getAlignment();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
+ EltVT.getTypeForEVT(*DAG.getContext()));
- if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
- return SDValue();
- }
+ if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
+ return SDValue();
// All checks match so transform back to vector_shuffle so that DAG combiner
// can finish the job
SDLoc dl(N);
// Create shuffle node taking into account the case that its a unary shuffle
- SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
- Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
+ SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT)
+ : InVec.getOperand(1);
+ Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
InVec.getOperand(0), Shuffle,
&ShuffleMask[0]);
- Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
+ Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
EltNo);
}
/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
/// generation and convert it from being a bunch of shuffles and extracts
-/// to a simple store and scalar loads to extract the elements.
+/// into a somewhat faster sequence. For i686, the best sequence is apparently
+/// storing the value and loading scalars back, while for x64 we should
+/// use 64-bit extracts and shifts.
static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
@@ -19091,36 +22916,61 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
return SDValue();
// Ok, we've now decided to do the transformation.
+ // If 64-bit shifts are legal, use the extract-shift sequence,
+ // otherwise bounce the vector off the cache.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Vals[4];
SDLoc dl(InputVector);
- // Store the value to a temporary stack slot.
- SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
- SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
- MachinePointerInfo(), false, false, 0);
+ if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
+ SDValue Cst = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, InputVector);
+ EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy();
+ SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
+ DAG.getConstant(0, VecIdxTy));
+ SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
+ DAG.getConstant(1, VecIdxTy));
+
+ SDValue ShAmt = DAG.getConstant(32,
+ DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64));
+ Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
+ Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
+ DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
+ Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
+ Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
+ DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
+ } else {
+ // Store the value to a temporary stack slot.
+ SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
+ MachinePointerInfo(), false, false, 0);
- // Replace each use (extract) with a load of the appropriate element.
- for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
- UE = Uses.end(); UI != UE; ++UI) {
- SDNode *Extract = *UI;
+ EVT ElementType = InputVector.getValueType().getVectorElementType();
+ unsigned EltSize = ElementType.getSizeInBits() / 8;
- // cOMpute the element's address.
- SDValue Idx = Extract->getOperand(1);
- unsigned EltSize =
- InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
- uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
+ // Replace each use (extract) with a load of the appropriate element.
+ for (unsigned i = 0; i < 4; ++i) {
+ uint64_t Offset = EltSize * i;
+ SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
- SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
- StackPtr, OffsetVal);
+ SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
+ StackPtr, OffsetVal);
+
+ // Load the scalar.
+ Vals[i] = DAG.getLoad(ElementType, dl, Ch,
+ ScalarAddr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ }
+ }
- // Load the scalar.
- SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
- ScalarAddr, MachinePointerInfo(),
- false, false, false, 0);
+ // Replace the extracts
+ for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
+ UE = Uses.end(); UI != UE; ++UI) {
+ SDNode *Extract = *UI;
- // Replace the exact with the load.
- DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
+ SDValue Idx = Extract->getOperand(1);
+ uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
}
// The replacement was made in place; don't return anything.
@@ -19137,6 +22987,21 @@ matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
bool NeedSplit = false;
switch (VT.getSimpleVT().SimpleTy) {
default: return std::make_pair(0, false);
+ case MVT::v4i64:
+ case MVT::v2i64:
+ if (!Subtarget->hasVLX())
+ return std::make_pair(0, false);
+ break;
+ case MVT::v64i8:
+ case MVT::v32i16:
+ if (!Subtarget->hasBWI())
+ return std::make_pair(0, false);
+ break;
+ case MVT::v16i32:
+ case MVT::v8i64:
+ if (!Subtarget->hasAVX512())
+ return std::make_pair(0, false);
+ break;
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
@@ -19203,7 +23068,7 @@ matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
}
static SDValue
-TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
+transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
SDLoc dl(N);
SDValue Cond = N->getOperand(0);
@@ -19216,25 +23081,21 @@ TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
Cond = CondSrc->getOperand(0);
}
- MVT VT = N->getSimpleValueType(0);
- MVT EltVT = VT.getVectorElementType();
- unsigned NumElems = VT.getVectorNumElements();
- // There is no blend with immediate in AVX-512.
- if (VT.is512BitVector())
- return SDValue();
-
- if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
- return SDValue();
- if (!Subtarget->hasInt256() && VT == MVT::v16i16)
+ if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
return SDValue();
- if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
+ // A vselect where all conditions and data are constants can be optimized into
+ // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
+ if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
return SDValue();
unsigned MaskValue = 0;
if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
return SDValue();
+ MVT VT = N->getSimpleValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> ShuffleMask(NumElems, -1);
for (unsigned i = 0; i < NumElems; ++i) {
// Be sure we emit undef where we can.
@@ -19244,6 +23105,9 @@ TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
}
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isShuffleMaskLegal(ShuffleMask, VT))
+ return SDValue();
return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
}
@@ -19264,8 +23128,9 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// instructions match the semantics of the common C idiom x<y?x:y but not
// x<=y?x:y, because of how they handle negative zero (which can be
// ignored in unsafe-math mode).
+ // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
- VT != MVT::f80 && TLI.isTypeLegal(VT) &&
+ VT != MVT::f80 && (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
(Subtarget->hasSSE2() ||
(Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
@@ -19408,13 +23273,15 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
CondVT.getVectorElementType() == MVT::i1) {
// v16i8 (select v16i1, v16i8, v16i8) does not have a proper
- // lowering on AVX-512. In this case we convert it to
+ // lowering on KNL. In this case we convert it to
// v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
- // The same situation for all 128 and 256-bit vectors of i8 and i16
+ // The same situation for all 128 and 256-bit vectors of i8 and i16.
+ // Since SKX these selects have a proper lowering.
EVT OpVT = LHS.getValueType();
if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
(OpVT.getVectorElementType() == MVT::i8 ||
- OpVT.getVectorElementType() == MVT::i16)) {
+ OpVT.getVectorElementType() == MVT::i16) &&
+ !(Subtarget->hasBWI() && Subtarget->hasVLX())) {
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
DCI.AddToWorklist(Cond.getNode());
return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
@@ -19634,22 +23501,22 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
return DAG.getNode(Opc, DL, VT, LHS, RHS);
}
- // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
- if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
- // Check if SETCC has already been promoted
- TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT &&
- // Check that condition value type matches vselect operand type
- CondVT == VT) {
-
+ // Simplify vector selection if condition value type matches vselect
+ // operand type
+ if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
assert(Cond.getValueType().isVector() &&
"vector select expects a vector selector!");
bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
- if (!TValIsAllOnes && !FValIsAllZeros) {
- // Try invert the condition if true value is not all 1s and false value
- // is not all 0s.
+ // Try invert the condition if true value is not all 1s and false value
+ // is not all 0s.
+ if (!TValIsAllOnes && !FValIsAllZeros &&
+ // Check if the selector will be produced by CMPP*/PCMP*
+ Cond.getOpcode() == ISD::SETCC &&
+ // Check if SETCC has already been promoted
+ TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT) {
bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
@@ -19681,81 +23548,6 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
}
}
- // Try to fold this VSELECT into a MOVSS/MOVSD
- if (N->getOpcode() == ISD::VSELECT &&
- Cond.getOpcode() == ISD::BUILD_VECTOR && !DCI.isBeforeLegalize()) {
- if (VT == MVT::v4i32 || VT == MVT::v4f32 ||
- (Subtarget->hasSSE2() && (VT == MVT::v2i64 || VT == MVT::v2f64))) {
- bool CanFold = false;
- unsigned NumElems = Cond.getNumOperands();
- SDValue A = LHS;
- SDValue B = RHS;
-
- if (isZero(Cond.getOperand(0))) {
- CanFold = true;
-
- // fold (vselect <0,-1,-1,-1>, A, B) -> (movss A, B)
- // fold (vselect <0,-1> -> (movsd A, B)
- for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
- CanFold = isAllOnes(Cond.getOperand(i));
- } else if (isAllOnes(Cond.getOperand(0))) {
- CanFold = true;
- std::swap(A, B);
-
- // fold (vselect <-1,0,0,0>, A, B) -> (movss B, A)
- // fold (vselect <-1,0> -> (movsd B, A)
- for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
- CanFold = isZero(Cond.getOperand(i));
- }
-
- if (CanFold) {
- if (VT == MVT::v4i32 || VT == MVT::v4f32)
- return getTargetShuffleNode(X86ISD::MOVSS, DL, VT, A, B, DAG);
- return getTargetShuffleNode(X86ISD::MOVSD, DL, VT, A, B, DAG);
- }
-
- if (Subtarget->hasSSE2() && (VT == MVT::v4i32 || VT == MVT::v4f32)) {
- // fold (v4i32: vselect <0,0,-1,-1>, A, B) ->
- // (v4i32 (bitcast (movsd (v2i64 (bitcast A)),
- // (v2i64 (bitcast B)))))
- //
- // fold (v4f32: vselect <0,0,-1,-1>, A, B) ->
- // (v4f32 (bitcast (movsd (v2f64 (bitcast A)),
- // (v2f64 (bitcast B)))))
- //
- // fold (v4i32: vselect <-1,-1,0,0>, A, B) ->
- // (v4i32 (bitcast (movsd (v2i64 (bitcast B)),
- // (v2i64 (bitcast A)))))
- //
- // fold (v4f32: vselect <-1,-1,0,0>, A, B) ->
- // (v4f32 (bitcast (movsd (v2f64 (bitcast B)),
- // (v2f64 (bitcast A)))))
-
- CanFold = (isZero(Cond.getOperand(0)) &&
- isZero(Cond.getOperand(1)) &&
- isAllOnes(Cond.getOperand(2)) &&
- isAllOnes(Cond.getOperand(3)));
-
- if (!CanFold && isAllOnes(Cond.getOperand(0)) &&
- isAllOnes(Cond.getOperand(1)) &&
- isZero(Cond.getOperand(2)) &&
- isZero(Cond.getOperand(3))) {
- CanFold = true;
- std::swap(LHS, RHS);
- }
-
- if (CanFold) {
- EVT NVT = (VT == MVT::v4i32) ? MVT::v2i64 : MVT::v2f64;
- SDValue NewA = DAG.getNode(ISD::BITCAST, DL, NVT, LHS);
- SDValue NewB = DAG.getNode(ISD::BITCAST, DL, NVT, RHS);
- SDValue Select = getTargetShuffleNode(X86ISD::MOVSD, DL, NVT, NewA,
- NewB, DAG);
- return DAG.getNode(ISD::BITCAST, DL, VT, Select);
- }
- }
- }
- }
-
// If we know that this node is legal then we know that it is going to be
// matched by one of the SSE/AVX BLEND instructions. These instructions only
// depend on the highest bit in each word. Try to use SimplifyDemandedBits
@@ -19767,22 +23559,17 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// build_vector of constants. This will be taken care in a later
// condition.
(TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 &&
- VT != MVT::v8i16)) {
+ VT != MVT::v8i16) &&
+ // Don't optimize vector of constants. Those are handled by
+ // the generic code and all the bits must be properly set for
+ // the generic optimizer.
+ !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
// Don't optimize vector selects that map to mask-registers.
if (BitWidth == 1)
return SDValue();
- // Check all uses of that condition operand to check whether it will be
- // consumed by non-BLEND instructions, which may depend on all bits are set
- // properly.
- for (SDNode::use_iterator I = Cond->use_begin(),
- E = Cond->use_end(); I != E; ++I)
- if (I->getOpcode() != ISD::VSELECT)
- // TODO: Add other opcodes eventually lowered into BLEND.
- return SDValue();
-
assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
@@ -19790,8 +23577,45 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
DCI.isBeforeLegalizeOps());
if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
- TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
- DCI.CommitTargetLoweringOpt(TLO);
+ TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
+ TLO)) {
+ // If we changed the computation somewhere in the DAG, this change
+ // will affect all users of Cond.
+ // Make sure it is fine and update all the nodes so that we do not
+ // use the generic VSELECT anymore. Otherwise, we may perform
+ // wrong optimizations as we messed up with the actual expectation
+ // for the vector boolean values.
+ if (Cond != TLO.Old) {
+ // Check all uses of that condition operand to check whether it will be
+ // consumed by non-BLEND instructions, which may depend on all bits are
+ // set properly.
+ for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
+ I != E; ++I)
+ if (I->getOpcode() != ISD::VSELECT)
+ // TODO: Add other opcodes eventually lowered into BLEND.
+ return SDValue();
+
+ // Update all the users of the condition, before committing the change,
+ // so that the VSELECT optimizations that expect the correct vector
+ // boolean value will not be triggered.
+ for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
+ I != E; ++I)
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(*I, 0),
+ DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
+ Cond, I->getOperand(1), I->getOperand(2)));
+ DCI.CommitTargetLoweringOpt(TLO);
+ return SDValue();
+ }
+ // At this point, only Cond is changed. Change the condition
+ // just for N to keep the opportunity to optimize all other
+ // users their own way.
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(N, 0),
+ DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
+ TLO.New, N->getOperand(1), N->getOperand(2)));
+ return SDValue();
+ }
}
// We should generate an X86ISD::BLENDI from a vselect if its argument
@@ -19805,8 +23629,10 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// Iff we find this pattern and the build_vectors are built from
// constants, we translate the vselect into a shuffle_vector that we
// know will be matched by LowerVECTOR_SHUFFLEtoBlend.
- if (N->getOpcode() == ISD::VSELECT && !DCI.isBeforeLegalize()) {
- SDValue Shuffle = TransformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
+ if ((N->getOpcode() == ISD::VSELECT ||
+ N->getOpcode() == X86ISD::SHRUNKBLEND) &&
+ !DCI.isBeforeLegalize()) {
+ SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
if (Shuffle.getNode())
return Shuffle;
}
@@ -20163,7 +23989,7 @@ static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
// fold (blend A, B, allOnes) -> B
if (ISD::isBuildVectorAllOnes(Mask.getNode()))
return Op1;
-
+
// Simplify the case where the mask is a constant i32 value.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
if (C->isNullValue())
@@ -20871,13 +24697,13 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
EVT MemVT = Ld->getMemoryVT();
SDLoc dl(Ld);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned RegSz = RegVT.getSizeInBits();
- // On Sandybridge unaligned 256bit loads are inefficient.
+ // For chips with slow 32-byte unaligned loads, break the 32-byte operation
+ // into two 16-byte operations.
ISD::LoadExtType Ext = Ld->getExtensionType();
unsigned Alignment = Ld->getAlignment();
bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
- if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
+ if (RegVT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
!DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
unsigned NumElems = RegVT.getVectorNumElements();
if (NumElems < 2)
@@ -20907,153 +24733,6 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
return DCI.CombineTo(N, NewVec, TF, true);
}
- // If this is a vector EXT Load then attempt to optimize it using a
- // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
- // expansion is still better than scalar code.
- // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
- // emit a shuffle and a arithmetic shift.
- // TODO: It is possible to support ZExt by zeroing the undef values
- // during the shuffle phase or after the shuffle.
- if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
- (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
- assert(MemVT != RegVT && "Cannot extend to the same type");
- assert(MemVT.isVector() && "Must load a vector from memory");
-
- unsigned NumElems = RegVT.getVectorNumElements();
- unsigned MemSz = MemVT.getSizeInBits();
- assert(RegSz > MemSz && "Register size must be greater than the mem size");
-
- if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
- return SDValue();
-
- // All sizes must be a power of two.
- if (!isPowerOf2_32(RegSz * MemSz * NumElems))
- return SDValue();
-
- // Attempt to load the original value using scalar loads.
- // Find the largest scalar type that divides the total loaded size.
- MVT SclrLoadTy = MVT::i8;
- for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
- tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
- MVT Tp = (MVT::SimpleValueType)tp;
- if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
- SclrLoadTy = Tp;
- }
- }
-
- // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
- if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
- (64 <= MemSz))
- SclrLoadTy = MVT::f64;
-
- // Calculate the number of scalar loads that we need to perform
- // in order to load our vector from memory.
- unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
- if (Ext == ISD::SEXTLOAD && NumLoads > 1)
- return SDValue();
-
- unsigned loadRegZize = RegSz;
- if (Ext == ISD::SEXTLOAD && RegSz == 256)
- loadRegZize /= 2;
-
- // Represent our vector as a sequence of elements which are the
- // largest scalar that we can load.
- EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
- loadRegZize/SclrLoadTy.getSizeInBits());
-
- // Represent the data using the same element type that is stored in
- // memory. In practice, we ''widen'' MemVT.
- EVT WideVecVT =
- EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
- loadRegZize/MemVT.getScalarType().getSizeInBits());
-
- assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
- "Invalid vector type");
-
- // We can't shuffle using an illegal type.
- if (!TLI.isTypeLegal(WideVecVT))
- return SDValue();
-
- SmallVector<SDValue, 8> Chains;
- SDValue Ptr = Ld->getBasePtr();
- SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
- TLI.getPointerTy());
- SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
-
- for (unsigned i = 0; i < NumLoads; ++i) {
- // Perform a single load.
- SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
- Ptr, Ld->getPointerInfo(),
- Ld->isVolatile(), Ld->isNonTemporal(),
- Ld->isInvariant(), Ld->getAlignment());
- Chains.push_back(ScalarLoad.getValue(1));
- // Create the first element type using SCALAR_TO_VECTOR in order to avoid
- // another round of DAGCombining.
- if (i == 0)
- Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
- else
- Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
- ScalarLoad, DAG.getIntPtrConstant(i));
-
- Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
- }
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
-
- // Bitcast the loaded value to a vector of the original element type, in
- // the size of the target vector type.
- SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
- unsigned SizeRatio = RegSz/MemSz;
-
- if (Ext == ISD::SEXTLOAD) {
- // If we have SSE4.1 we can directly emit a VSEXT node.
- if (Subtarget->hasSSE41()) {
- SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
- return DCI.CombineTo(N, Sext, TF, true);
- }
-
- // Otherwise we'll shuffle the small elements in the high bits of the
- // larger type and perform an arithmetic shift. If the shift is not legal
- // it's better to scalarize.
- if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
- return SDValue();
-
- // Redistribute the loaded elements into the different locations.
- SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
- for (unsigned i = 0; i != NumElems; ++i)
- ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
-
- SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
- DAG.getUNDEF(WideVecVT),
- &ShuffleVec[0]);
-
- Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
-
- // Build the arithmetic shift.
- unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
- MemVT.getVectorElementType().getSizeInBits();
- Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
- DAG.getConstant(Amt, RegVT));
-
- return DCI.CombineTo(N, Shuff, TF, true);
- }
-
- // Redistribute the loaded elements into the different locations.
- SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
- for (unsigned i = 0; i != NumElems; ++i)
- ShuffleVec[i*SizeRatio] = i;
-
- SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
- DAG.getUNDEF(WideVecVT),
- &ShuffleVec[0]);
-
- // Bitcast to the requested type.
- Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
- // Replace the original load with the new sequence
- // and return the new chain.
- return DCI.CombineTo(N, Shuff, TF, true);
- }
-
return SDValue();
}
@@ -21067,13 +24746,11 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
SDValue StoredVal = St->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // If we are saving a concatenation of two XMM registers, perform two stores.
- // On Sandy Bridge, 256-bit memory operations are executed by two
- // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
- // memory operation.
+ // If we are saving a concatenation of two XMM registers and 32-byte stores
+ // are slow, such as on Sandy Bridge, perform two 16-byte stores.
unsigned Alignment = St->getAlignment();
bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
- if (VT.is256BitVector() && !Subtarget->hasInt256() &&
+ if (VT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
StVT == VT && !IsAligned) {
unsigned NumElems = VT.getVectorNumElements();
if (NumElems < 2)
@@ -21139,9 +24816,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
// Find the largest store unit
MVT StoreType = MVT::i8;
- for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
- tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
- MVT Tp = (MVT::SimpleValueType)tp;
+ for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
StoreType = Tp;
}
@@ -21287,7 +24962,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
return SDValue();
}
-/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
+/// Return 'true' if this vector operation is "horizontal"
/// and return the operands for the horizontal operation in LHS and RHS. A
/// horizontal operation performs the binary operation on successive elements
/// of its first operand, then on successive elements of its second operand,
@@ -21413,7 +25088,7 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
return true;
}
-/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
+/// Do target-specific dag combines on floating point adds.
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
@@ -21428,7 +25103,7 @@ static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
return SDValue();
}
-/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
+/// Do target-specific dag combines on floating point subs.
static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
@@ -21443,8 +25118,7 @@ static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
return SDValue();
}
-/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
-/// X86ISD::FXOR nodes.
+/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
@@ -21458,8 +25132,7 @@ static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
return SDValue();
}
-/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
-/// X86ISD::FMAX nodes.
+/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
@@ -21480,7 +25153,7 @@ static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
N->getOperand(0), N->getOperand(1));
}
-/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
+/// Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
// FAND(0.0, x) -> 0.0
// FAND(x, 0.0) -> 0.0
@@ -21493,7 +25166,7 @@ static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
return SDValue();
}
-/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
+/// Do target-specific dag combines on X86ISD::FANDN nodes
static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
// FANDN(x, 0.0) -> 0.0
// FANDN(0.0, x) -> x
@@ -21576,13 +25249,29 @@ static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
+ // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
+ // This exposes the sext to the sdivrem lowering, so that it directly extends
+ // from AH (which we otherwise need to do contortions to access).
+ if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
+ N0.getValueType() == MVT::i8 && VT == MVT::i32) {
+ SDLoc dl(N);
+ SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
+ SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, dl, NodeTys,
+ N0.getOperand(0), N0.getOperand(1));
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
+ return R.getValue(1);
+ }
+
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget->hasFp256())
return SDValue();
- EVT VT = N->getValueType(0);
if (VT.isVector() && VT.getSizeInBits() == 256) {
SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
if (R.getNode())
@@ -21675,6 +25364,20 @@ static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
return R;
}
+ // (i8,i32 zext (udivrem (i8 x, i8 y)) ->
+ // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
+ // This exposes the zext to the udivrem lowering, so that it directly extends
+ // from AH (which we otherwise need to do contortions to access).
+ if (N0.getOpcode() == ISD::UDIVREM &&
+ N0.getResNo() == 1 && N0.getValueType() == MVT::i8 &&
+ (VT == MVT::i32 || VT == MVT::i64)) {
+ SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
+ SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys,
+ N0.getOperand(0), N0.getOperand(1));
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
+ return R.getValue(1);
+ }
+
return SDValue();
}
@@ -21863,14 +25566,14 @@ static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
return SDValue();
- // Now check that the other operand of the AND is a constant splat. We could
+ // Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (BuildVectorSDNode *BV =
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
- // Bail out if the vector isn't a constant splat.
- if (!BV->getConstantSplatNode())
+ // Bail out if the vector isn't a constant.
+ if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
@@ -22044,18 +25747,68 @@ static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
/// performVZEXTCombine - Performs build vector combines
static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
- TargetLowering::DAGCombinerInfo &DCI,
- const X86Subtarget *Subtarget) {
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ MVT VT = N->getSimpleValueType(0);
+ SDValue Op = N->getOperand(0);
+ MVT OpVT = Op.getSimpleValueType();
+ MVT OpEltVT = OpVT.getVectorElementType();
+ unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
+
// (vzext (bitcast (vzext (x)) -> (vzext x)
- SDValue In = N->getOperand(0);
- while (In.getOpcode() == ISD::BITCAST)
- In = In.getOperand(0);
+ SDValue V = Op;
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
- if (In.getOpcode() != X86ISD::VZEXT)
- return SDValue();
+ if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
+ MVT InnerVT = V.getSimpleValueType();
+ MVT InnerEltVT = InnerVT.getVectorElementType();
- return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
- In.getOperand(0));
+ // If the element sizes match exactly, we can just do one larger vzext. This
+ // is always an exact type match as vzext operates on integer types.
+ if (OpEltVT == InnerEltVT) {
+ assert(OpVT == InnerVT && "Types must match for vzext!");
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
+ }
+
+ // The only other way we can combine them is if only a single element of the
+ // inner vzext is used in the input to the outer vzext.
+ if (InnerEltVT.getSizeInBits() < InputBits)
+ return SDValue();
+
+ // In this case, the inner vzext is completely dead because we're going to
+ // only look at bits inside of the low element. Just do the outer vzext on
+ // a bitcast of the input to the inner.
+ return DAG.getNode(X86ISD::VZEXT, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, OpVT, V));
+ }
+
+ // Check if we can bypass extracting and re-inserting an element of an input
+ // vector. Essentialy:
+ // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
+ if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
+ SDValue ExtractedV = V.getOperand(0);
+ SDValue OrigV = ExtractedV.getOperand(0);
+ if (auto *ExtractIdx = dyn_cast<ConstantSDNode>(ExtractedV.getOperand(1)))
+ if (ExtractIdx->getZExtValue() == 0) {
+ MVT OrigVT = OrigV.getSimpleValueType();
+ // Extract a subvector if necessary...
+ if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
+ int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
+ OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
+ OrigVT.getVectorNumElements() / Ratio);
+ OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
+ DAG.getIntPtrConstant(0));
+ }
+ Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV);
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
+ }
+ }
+
+ return SDValue();
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
@@ -22066,7 +25819,9 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
case ISD::EXTRACT_VECTOR_ELT:
return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
case ISD::VSELECT:
- case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
+ case ISD::SELECT:
+ case X86ISD::SHRUNKBLEND:
+ return PerformSELECTCombine(N, DAG, DCI, Subtarget);
case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget);
case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
@@ -22107,12 +25862,13 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
case X86ISD::UNPCKL:
case X86ISD::MOVHLPS:
case X86ISD::MOVLHPS:
+ case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
- case X86ISD::VPERMILP:
+ case X86ISD::VPERMILPI:
case X86ISD::VPERM2X128:
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget);
@@ -22545,6 +26301,23 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
}
}
return;
+ case 'L':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
+ (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) {
+ Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'M':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 3) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
@@ -22553,6 +26326,14 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
}
}
return;
+ case 'O':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 127) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
case 'e': {
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
@@ -22762,14 +26543,14 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
Constraint[5] == ')' &&
Constraint[6] == '}') {
- Res.first = X86::ST0+Constraint[4]-'0';
+ Res.first = X86::FP0+Constraint[4]-'0';
Res.second = &X86::RFP80RegClass;
return Res;
}
// GCC allows "st(0)" to be called just plain "st".
if (StringRef("{st}").equals_lower(Constraint)) {
- Res.first = X86::ST0;
+ Res.first = X86::FP0;
Res.second = &X86::RFP80RegClass;
return Res;
}
@@ -22897,7 +26678,7 @@ int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
// "load" ports instead of the dedicated "store" port.
// E.g., on Haswell:
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
- // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
+ // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
if (isLegalAddressingMode(AM, Ty))
// Scale represents reg2 * scale, thus account for 1
// as soon as we use a second register.
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.h b/contrib/llvm/lib/Target/X86/X86ISelLowering.h
index c8cdce7..ba077a8 100644
--- a/contrib/llvm/lib/Target/X86/X86ISelLowering.h
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86ISELLOWERING_H
-#define X86ISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
+#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -187,12 +187,17 @@ namespace llvm {
/// PSIGN - Copy integer sign.
PSIGN,
- /// BLENDV - Blend where the selector is a register.
- BLENDV,
-
/// BLENDI - Blend where the selector is an immediate.
BLENDI,
+ /// SHRUNKBLEND - Blend where the condition has been shrunk.
+ /// This is used to emphasize that the condition mask is
+ /// no more valid for generic VSELECT optimizations.
+ SHRUNKBLEND,
+
+ /// ADDSUB - Combined add and sub on an FP vector.
+ ADDSUB,
+
// SUBUS - Integer sub with unsigned saturation.
SUBUS,
@@ -301,6 +306,13 @@ namespace llvm {
UMUL, // LOW, HI, FLAGS = umul LHS, RHS
+ // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS
+ SMUL8, UMUL8,
+
+ // 8-bit divrem that zero-extend the high result (AH).
+ UDIVREM8_ZEXT_HREG,
+ SDIVREM8_SEXT_HREG,
+
// MUL_IMM - X86 specific multiply by immediate.
MUL_IMM,
@@ -320,7 +332,10 @@ namespace llvm {
// Several flavors of instructions with vector shuffle behaviors.
PACKSS,
PACKUS,
+ // Intra-lane alignr
PALIGNR,
+ // AVX512 inter-lane alignr
+ VALIGN,
PSHUFD,
PSHUFHW,
PSHUFLW,
@@ -337,7 +352,8 @@ namespace llvm {
MOVSS,
UNPCKL,
UNPCKH,
- VPERMILP,
+ VPERMILPV,
+ VPERMILPI,
VPERMV,
VPERMV3,
VPERMIV3,
@@ -350,9 +366,9 @@ namespace llvm {
VINSERT,
VEXTRACT,
- // PMULUDQ - Vector multiply packed unsigned doubleword integers
+ // Vector multiply packed unsigned doubleword integers
PMULUDQ,
- // PMULUDQ - Vector multiply packed signed doubleword integers
+ // Vector multiply packed signed doubleword integers
PMULDQ,
// FMA nodes
@@ -363,20 +379,23 @@ namespace llvm {
FMADDSUB,
FMSUBADD,
- // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
- // according to %al. An operator is needed so that this can be expanded
- // with control flow.
+ // Compress and expand
+ COMPRESS,
+ EXPAND,
+
+ // Save xmm argument registers to the stack, according to %al. An operator
+ // is needed so that this can be expanded with control flow.
VASTART_SAVE_XMM_REGS,
- // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
+ // Windows's _chkstk call to do stack probing.
WIN_ALLOCA,
- // SEG_ALLOCA - For allocating variable amounts of stack space when using
+ // For allocating variable amounts of stack space when using
// segmented stacks. Check if the current stacklet has enough space, and
// falls back to heap allocation if not.
SEG_ALLOCA,
- // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
+ // Windows's _ftol2 runtime routine to do fptoui.
WIN_FTOL,
// Memory barrier
@@ -385,38 +404,40 @@ namespace llvm {
SFENCE,
LFENCE,
- // FNSTSW16r - Store FP status word into i16 register.
+ // Store FP status word into i16 register.
FNSTSW16r,
- // SAHF - Store contents of %ah into %eflags.
+ // Store contents of %ah into %eflags.
SAHF,
- // RDRAND - Get a random integer and indicate whether it is valid in CF.
+ // Get a random integer and indicate whether it is valid in CF.
RDRAND,
- // RDSEED - Get a NIST SP800-90B & C compliant random integer and
+ // Get a NIST SP800-90B & C compliant random integer and
// indicate whether it is valid in CF.
RDSEED,
- // PCMP*STRI
PCMPISTRI,
PCMPESTRI,
- // XTEST - Test if in transactional execution.
+ // Test if in transactional execution.
XTEST,
- // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
+ // ERI instructions
+ RSQRT28, RCP28, EXP2,
+
+ // Compare and swap.
LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
LCMPXCHG8_DAG,
LCMPXCHG16_DAG,
- // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
+ // Load, scalar_to_vector, and zero extend.
VZEXT_LOAD,
- // FNSTCW16m - Store FP control world into i16 memory.
+ // Store FP control world into i16 memory.
FNSTCW16m,
- /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
+ /// This instruction implements FP_TO_SINT with the
/// integer destination in memory and a FP reg source. This corresponds
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
/// has two inputs (token chain and address) and two outputs (int value
@@ -425,7 +446,7 @@ namespace llvm {
FP_TO_INT32_IN_MEM,
FP_TO_INT64_IN_MEM,
- /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
+ /// This instruction implements SINT_TO_FP with the
/// integer source in memory and FP reg result. This corresponds to the
/// X86::FILD*m instructions. It has three inputs (token chain, address,
/// and source type) and two outputs (FP value and token chain). FILD_FLAG
@@ -433,19 +454,19 @@ namespace llvm {
FILD,
FILD_FLAG,
- /// FLD - This instruction implements an extending load to FP stack slots.
+ /// This instruction implements an extending load to FP stack slots.
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
/// operand, ptr to load from, and a ValueType node indicating the type
/// to load to.
FLD,
- /// FST - This instruction implements a truncating store to FP stack
+ /// This instruction implements a truncating store to FP stack
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
/// chain operand, value to store, address, and a ValueType to store it
/// as.
FST,
- /// VAARG_64 - This instruction grabs the address of the next argument
+ /// This instruction grabs the address of the next argument
/// from a va_list. (reads and modifies the va_list in memory)
VAARG_64
@@ -457,67 +478,76 @@ namespace llvm {
/// Define some predicates that are used for node matching.
namespace X86 {
- /// isVEXTRACT128Index - Return true if the specified
+ /// Return true if the specified
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
/// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
bool isVEXTRACT128Index(SDNode *N);
- /// isVINSERT128Index - Return true if the specified
+ /// Return true if the specified
/// INSERT_SUBVECTOR operand specifies a subvector insert that is
/// suitable for input to VINSERTF128, VINSERTI128 instructions.
bool isVINSERT128Index(SDNode *N);
- /// isVEXTRACT256Index - Return true if the specified
+ /// Return true if the specified
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
/// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
bool isVEXTRACT256Index(SDNode *N);
- /// isVINSERT256Index - Return true if the specified
+ /// Return true if the specified
/// INSERT_SUBVECTOR operand specifies a subvector insert that is
/// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
bool isVINSERT256Index(SDNode *N);
- /// getExtractVEXTRACT128Immediate - Return the appropriate
+ /// Return the appropriate
/// immediate to extract the specified EXTRACT_SUBVECTOR index
/// with VEXTRACTF128, VEXTRACTI128 instructions.
unsigned getExtractVEXTRACT128Immediate(SDNode *N);
- /// getInsertVINSERT128Immediate - Return the appropriate
+ /// Return the appropriate
/// immediate to insert at the specified INSERT_SUBVECTOR index
/// with VINSERTF128, VINSERT128 instructions.
unsigned getInsertVINSERT128Immediate(SDNode *N);
- /// getExtractVEXTRACT256Immediate - Return the appropriate
+ /// Return the appropriate
/// immediate to extract the specified EXTRACT_SUBVECTOR index
/// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
unsigned getExtractVEXTRACT256Immediate(SDNode *N);
- /// getInsertVINSERT256Immediate - Return the appropriate
+ /// Return the appropriate
/// immediate to insert at the specified INSERT_SUBVECTOR index
/// with VINSERTF64x4, VINSERTI64x4 instructions.
unsigned getInsertVINSERT256Immediate(SDNode *N);
- /// isZeroNode - Returns true if Elt is a constant zero or a floating point
- /// constant +0.0.
+ /// Returns true if Elt is a constant zero or floating point constant +0.0.
bool isZeroNode(SDValue Elt);
- /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
+ /// Returns true of the given offset can be
/// fit into displacement field of the instruction.
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement = true);
- /// isCalleePop - Determines whether the callee is required to pop its
+ /// Determines whether the callee is required to pop its
/// own arguments. Callee pop is necessary to support tail calls.
bool isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool TailCallOpt);
+
+ /// AVX512 static rounding constants. These need to match the values in
+ /// avx512fintrin.h.
+ enum STATIC_ROUNDING {
+ TO_NEAREST_INT = 0,
+ TO_NEG_INF = 1,
+ TO_POS_INF = 2,
+ TO_ZERO = 3,
+ CUR_DIRECTION = 4
+ };
}
//===--------------------------------------------------------------------===//
- // X86TargetLowering - X86 Implementation of the TargetLowering interface
+ // X86 Implementation of the TargetLowering interface
class X86TargetLowering final : public TargetLowering {
public:
- explicit X86TargetLowering(X86TargetMachine &TM);
+ explicit X86TargetLowering(const X86TargetMachine &TM);
unsigned getJumpTableEncoding() const override;
@@ -528,21 +558,20 @@ namespace llvm {
const MachineBasicBlock *MBB, unsigned uid,
MCContext &Ctx) const override;
- /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
- /// jumptable.
+ /// Returns relocation base for the given PIC jumptable.
SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const override;
const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI, MCContext &Ctx) const override;
- /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+ /// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contains are placed at 16-byte boundaries while the rest are at
/// 4-byte boundaries.
unsigned getByValTypeAlignment(Type *Ty) const override;
- /// getOptimalMemOpType - Returns the target specific optimal type for load
+ /// Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
@@ -557,7 +586,7 @@ namespace llvm {
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
MachineFunction &MF) const override;
- /// isSafeMemOpType - Returns true if it's safe to use load / store of the
+ /// Returns true if it's safe to use load / store of the
/// specified type to expand memcpy / memset inline. This is mostly true
/// for all types except for some special cases. For example, on X86
/// targets without SSE2 f64 load / store are done with fldl / fstpl which
@@ -565,17 +594,17 @@ namespace llvm {
/// legal as the hook is used before type legalization.
bool isSafeMemOpType(MVT VT) const override;
- /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// Returns true if the target allows
/// unaligned memory accesses. of the specified type. Returns whether it
/// is "fast" by reference in the second argument.
- bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
+ bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
bool *Fast) const override;
- /// LowerOperation - Provide custom lowering hooks for some operations.
+ /// Provide custom lowering hooks for some operations.
///
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
- /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
@@ -584,13 +613,13 @@ namespace llvm {
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
- /// isTypeDesirableForOp - Return true if the target has native support for
+ /// Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
/// instruction encodings are longer and some i16 instructions are slow.
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
- /// isTypeDesirable - Return true if the target has native support for the
+ /// Return true if the target has native support for the
/// specified value type and it is 'desirable' to use the type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer
/// and some i16 instructions are slow.
@@ -601,24 +630,25 @@ namespace llvm {
MachineBasicBlock *MBB) const override;
- /// getTargetNodeName - This method returns the name of a target specific
- /// DAG node.
+ /// This method returns the name of a target specific DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
- /// getSetCCResultType - Return the value type to use for ISD::SETCC.
+ bool isCheapToSpeculateCttz() const override;
+
+ bool isCheapToSpeculateCtlz() const override;
+
+ /// Return the value type to use for ISD::SETCC.
EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
- /// computeKnownBitsForTargetNode - Determine which of the bits specified
- /// in Mask are known to be either zero or one and return them in the
- /// KnownZero/KnownOne bitsets.
+ /// Determine which of the bits specified in Mask are known to be either
+ /// zero or one and return them in the KnownZero/KnownOne bitsets.
void computeKnownBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
- // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
- // operation that are sign bits.
+ /// Determine the number of bits in the operation that are sign bits.
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const SelectionDAG &DAG,
unsigned Depth) const override;
@@ -641,16 +671,15 @@ namespace llvm {
const char *LowerXConstraint(EVT ConstraintVT) const override;
- /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
- /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
- /// true it means one of the asm constraint of the inline asm instruction
- /// being processed is 'm'.
+ /// Lower the specified operand into the Ops vector. If it is invalid, don't
+ /// add anything to Ops. If hasMemory is true it means one of the asm
+ /// constraint of the inline asm instruction being processed is 'm'.
void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
- /// getRegForInlineAsmConstraint - Given a physical register constraint
+ /// Given a physical register constraint
/// (e.g. {edx}), return the register number and the register class for the
/// register. This should only be used for C_Register constraints. On
/// error, this returns a register number of 0.
@@ -658,17 +687,17 @@ namespace llvm {
getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const override;
- /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
- /// isLegalICmpImmediate - Return true if the specified immediate is legal
+ /// Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can
/// compare a register against the immediate without having to materialize
/// the immediate into a register.
bool isLegalICmpImmediate(int64_t Imm) const override;
- /// isLegalAddImmediate - Return true if the specified immediate is legal
+ /// Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can
/// add a register and the immediate without having to materialize
/// the immediate into a register.
@@ -683,7 +712,7 @@ namespace llvm {
bool isVectorShiftByScalarCheap(Type *Ty) const override;
- /// isTruncateFree - Return true if it's free to truncate a value of
+ /// Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
@@ -691,7 +720,7 @@ namespace llvm {
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
- /// isZExtFree - Return true if any actual instruction that defines a
+ /// Return true if any actual instruction that defines a
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
/// register. This does not necessarily include registers defined in
/// unknown ways, such as incoming arguments, or copies from unknown
@@ -703,37 +732,35 @@ namespace llvm {
bool isZExtFree(EVT VT1, EVT VT2) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
- /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
- /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
- /// expanded to FMAs when this method returns true, otherwise fmuladd is
- /// expanded to fmul + fadd.
+ /// Return true if an FMA operation is faster than a pair of fmul and fadd
+ /// instructions. fmuladd intrinsics will be expanded to FMAs when this
+ /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
- /// isNarrowingProfitable - Return true if it's profitable to narrow
+ /// Return true if it's profitable to narrow
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
/// from i32 to i8 but not from i32 to i16.
bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
- /// isFPImmLegal - Returns true if the target can instruction select the
+ /// Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
- /// isShuffleMaskLegal - Targets can use this to indicate that they only
- /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
- /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
- /// values are assumed to be legal.
+ /// Targets can use this to indicate that they only support *some*
+ /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
+ /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
+ /// be legal.
bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const override;
- /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
- /// used by Targets can use this to indicate if there is a suitable
- /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
- /// pool entry.
+ /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
+ /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
+ /// replace a VAND with a constant pool entry.
bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const override;
- /// ShouldShrinkFPConstant - If true, then instruction selection should
+ /// If true, then instruction selection should
/// seek to shrink the FP constant of the specified type to a smaller type
/// in order to save space and / or reduce runtime.
bool ShouldShrinkFPConstant(EVT VT) const override {
@@ -743,23 +770,27 @@ namespace llvm {
return !X86ScalarSSEf64 || VT == MVT::f80;
}
+ /// Return true if we believe it is correct and profitable to reduce the
+ /// load node to a smaller type.
+ bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
+ EVT NewVT) const override;
+
const X86Subtarget* getSubtarget() const {
return Subtarget;
}
- /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
- /// computed in an SSE register, not on the X87 floating point stack.
+ /// Return true if the specified scalar FP type is computed in an SSE
+ /// register, not on the X87 floating point stack.
bool isScalarFPTypeInSSEReg(EVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
- /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
- /// for fptoui.
+ /// Return true if the target uses the MSVC _ftol2 routine for fptoui.
bool isTargetFTOL() const;
- /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
- /// used for fptoui to the given type.
+ /// Return true if the MSVC _ftol2 routine should be used for fptoui to the
+ /// given type.
bool isIntegerTypeFTOL(EVT VT) const {
return isTargetFTOL() && VT == MVT::i64;
}
@@ -769,6 +800,10 @@ namespace llvm {
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
+ /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
+ /// with this index.
+ bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;
+
/// Intel processors have a unified instruction and data cache
const char * getClearCacheBuiltinName() const override {
return nullptr; // nothing to do, move along.
@@ -776,15 +811,14 @@ namespace llvm {
unsigned getRegisterByName(const char* RegName, EVT VT) const override;
- /// createFastISel - This method returns a target specific FastISel object,
+ /// This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
- /// getStackCookieLocation - Return true if the target stores stack
- /// protector cookies at a fixed offset in some non-standard address
- /// space, and populates the address space and offset as
- /// appropriate.
+ /// Return true if the target stores stack protector cookies at a fixed
+ /// offset in some non-standard address space, and populates the address
+ /// space and offset as appropriate.
bool getStackCookieLocation(unsigned &AddressSpace,
unsigned &Offset) const override;
@@ -796,6 +830,7 @@ namespace llvm {
/// \brief Reset the operation actions based on target options.
void resetOperationActions() override;
+ bool useLoadStackGuardNode() const override;
/// \brief Customize the preferred legalization strategy for certain types.
LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
@@ -804,7 +839,7 @@ namespace llvm {
findRepresentativeClass(MVT VT) const override;
private:
- /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
const DataLayout *TD;
@@ -813,17 +848,16 @@ namespace llvm {
/// the operation actions unless we have to.
TargetOptions TO;
- /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
- /// floating point ops.
+ /// Select between SSE or x87 floating point ops.
/// When SSE is available, use it for f32 operations.
/// When SSE2 is available, use it for f64 operations.
bool X86ScalarSSEf32;
bool X86ScalarSSEf64;
- /// LegalFPImmediates - A list of legal fp immediates.
+ /// A list of legal FP immediates.
std::vector<APFloat> LegalFPImmediates;
- /// addLegalFPImmediate - Indicate that this x86 target can instruction
+ /// Indicate that this x86 target can instruction
/// select the specified FP immediate natively.
void addLegalFPImmediate(const APFloat& Imm) {
LegalFPImmediates.push_back(Imm);
@@ -847,9 +881,8 @@ namespace llvm {
// Call lowering helpers.
- /// IsEligibleForTailCallOptimization - Check whether the call is eligible
- /// for tail call optimization. Targets which want to do tail call
- /// optimization should implement this function.
+ /// Check whether the call is eligible for tail call optimization. Targets
+ /// that want to do tail call optimization should implement this function.
bool IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
@@ -936,7 +969,7 @@ namespace llvm {
bool mayBeEmittedAsTailCall(CallInst *CI) const override;
- MVT getTypeForExtArgOrReturn(MVT VT,
+ EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
@@ -946,6 +979,15 @@ namespace llvm {
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
+ bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
+ bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
+ bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
+
+ LoadInst *
+ lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
+
+ bool needsCmpXchgNb(const Type *MemType) const;
+
/// Utility function to emit atomic-load-arith operations (and, or, xor,
/// nand, max, min, umax, umin). It takes the corresponding instruction to
/// expand, the associated machine basic block, and the associated X86
@@ -975,8 +1017,7 @@ namespace llvm {
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
- MachineBasicBlock *BB,
- bool Is64Bit) const;
+ MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
MachineBasicBlock *BB) const;
@@ -1005,6 +1046,15 @@ namespace llvm {
/// Convert a comparison if required by the subtarget.
SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
+
+ /// Use rsqrt* to speed up sqrt calculations.
+ SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const override;
+
+ /// Use rcp* to speed up fdiv calculations.
+ SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const override;
};
namespace X86 {
diff --git a/contrib/llvm/lib/Target/X86/X86InstrAVX512.td b/contrib/llvm/lib/Target/X86/X86InstrAVX512.td
index d289408..c4ec3df 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrAVX512.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrAVX512.td
@@ -1,3 +1,273 @@
+// Group template arguments that can be derived from the vector type (EltNum x
+// EltVT). These are things like the register class for the writemask, etc.
+// The idea is to pass one of these as the template argument rather than the
+// individual arguments.
+// The template is also used for scalar types, in this case numelts is 1.
+class X86VectorVTInfo<int numelts, ValueType eltvt, RegisterClass rc,
+ string suffix = ""> {
+ RegisterClass RC = rc;
+ ValueType EltVT = eltvt;
+ int NumElts = numelts;
+
+ // Corresponding mask register class.
+ RegisterClass KRC = !cast<RegisterClass>("VK" # NumElts);
+
+ // Corresponding write-mask register class.
+ RegisterClass KRCWM = !cast<RegisterClass>("VK" # NumElts # "WM");
+
+ // The GPR register class that can hold the write mask. Use GR8 for fewer
+ // than 8 elements. Use shift-right and equal to work around the lack of
+ // !lt in tablegen.
+ RegisterClass MRC =
+ !cast<RegisterClass>("GR" #
+ !if (!eq (!srl(NumElts, 3), 0), 8, NumElts));
+
+ // Suffix used in the instruction mnemonic.
+ string Suffix = suffix;
+
+ // VTName is a string name for vector VT. For vector types it will be
+ // v # NumElts # EltVT, so for vector of 8 elements of i32 it will be v8i32
+ // It is a little bit complex for scalar types, where NumElts = 1.
+ // In this case we build v4f32 or v2f64
+ string VTName = "v" # !if (!eq (NumElts, 1),
+ !if (!eq (EltVT.Size, 32), 4,
+ !if (!eq (EltVT.Size, 64), 2, NumElts)), NumElts) # EltVT;
+
+ // The vector VT.
+ ValueType VT = !cast<ValueType>(VTName);
+
+ string EltTypeName = !cast<string>(EltVT);
+ // Size of the element type in bits, e.g. 32 for v16i32.
+ string EltSizeName = !subst("i", "", !subst("f", "", EltTypeName));
+ int EltSize = EltVT.Size;
+
+ // "i" for integer types and "f" for floating-point types
+ string TypeVariantName = !subst(EltSizeName, "", EltTypeName);
+
+ // Size of RC in bits, e.g. 512 for VR512.
+ int Size = VT.Size;
+
+ // The corresponding memory operand, e.g. i512mem for VR512.
+ X86MemOperand MemOp = !cast<X86MemOperand>(TypeVariantName # Size # "mem");
+ X86MemOperand ScalarMemOp = !cast<X86MemOperand>(EltVT # "mem");
+
+ // Load patterns
+ // Note: For 128/256-bit integer VT we choose loadv2i64/loadv4i64
+ // due to load promotion during legalization
+ PatFrag LdFrag = !cast<PatFrag>("load" #
+ !if (!eq (TypeVariantName, "i"),
+ !if (!eq (Size, 128), "v2i64",
+ !if (!eq (Size, 256), "v4i64",
+ VTName)), VTName));
+ PatFrag ScalarLdFrag = !cast<PatFrag>("load" # EltVT);
+
+ // Load patterns used for memory operands. We only have this defined in
+ // case of i64 element types for sub-512 integer vectors. For now, keep
+ // MemOpFrag undefined in these cases.
+ PatFrag MemOpFrag =
+ !if (!eq (NumElts#EltTypeName, "1f32"), !cast<PatFrag>("memopfsf32"),
+ !if (!eq (NumElts#EltTypeName, "1f64"), !cast<PatFrag>("memopfsf64"),
+ !if (!eq (TypeVariantName, "f"), !cast<PatFrag>("memop" # VTName),
+ !if (!eq (EltTypeName, "i64"), !cast<PatFrag>("memop" # VTName),
+ !if (!eq (VTName, "v16i32"), !cast<PatFrag>("memop" # VTName), ?)))));
+
+ // The corresponding float type, e.g. v16f32 for v16i32
+ // Note: For EltSize < 32, FloatVT is illegal and TableGen
+ // fails to compile, so we choose FloatVT = VT
+ ValueType FloatVT = !cast<ValueType>(
+ !if (!eq (!srl(EltSize,5),0),
+ VTName,
+ !if (!eq(TypeVariantName, "i"),
+ "v" # NumElts # "f" # EltSize,
+ VTName)));
+
+ // The string to specify embedded broadcast in assembly.
+ string BroadcastStr = "{1to" # NumElts # "}";
+
+ // 8-bit compressed displacement tuple/subvector format. This is only
+ // defined for NumElts <= 8.
+ CD8VForm CD8TupleForm = !if (!eq (!srl(NumElts, 4), 0),
+ !cast<CD8VForm>("CD8VT" # NumElts), ?);
+
+ SubRegIndex SubRegIdx = !if (!eq (Size, 128), sub_xmm,
+ !if (!eq (Size, 256), sub_ymm, ?));
+
+ Domain ExeDomain = !if (!eq (EltTypeName, "f32"), SSEPackedSingle,
+ !if (!eq (EltTypeName, "f64"), SSEPackedDouble,
+ SSEPackedInt));
+
+ // A vector type of the same width with element type i32. This is used to
+ // create the canonical constant zero node ImmAllZerosV.
+ ValueType i32VT = !cast<ValueType>("v" # !srl(Size, 5) # "i32");
+ dag ImmAllZerosV = (VT (bitconvert (i32VT immAllZerosV)));
+}
+
+def v64i8_info : X86VectorVTInfo<64, i8, VR512, "b">;
+def v32i16_info : X86VectorVTInfo<32, i16, VR512, "w">;
+def v16i32_info : X86VectorVTInfo<16, i32, VR512, "d">;
+def v8i64_info : X86VectorVTInfo<8, i64, VR512, "q">;
+def v16f32_info : X86VectorVTInfo<16, f32, VR512, "ps">;
+def v8f64_info : X86VectorVTInfo<8, f64, VR512, "pd">;
+
+// "x" in v32i8x_info means RC = VR256X
+def v32i8x_info : X86VectorVTInfo<32, i8, VR256X, "b">;
+def v16i16x_info : X86VectorVTInfo<16, i16, VR256X, "w">;
+def v8i32x_info : X86VectorVTInfo<8, i32, VR256X, "d">;
+def v4i64x_info : X86VectorVTInfo<4, i64, VR256X, "q">;
+def v8f32x_info : X86VectorVTInfo<8, f32, VR256X, "ps">;
+def v4f64x_info : X86VectorVTInfo<4, f64, VR256X, "pd">;
+
+def v16i8x_info : X86VectorVTInfo<16, i8, VR128X, "b">;
+def v8i16x_info : X86VectorVTInfo<8, i16, VR128X, "w">;
+def v4i32x_info : X86VectorVTInfo<4, i32, VR128X, "d">;
+def v2i64x_info : X86VectorVTInfo<2, i64, VR128X, "q">;
+def v4f32x_info : X86VectorVTInfo<4, f32, VR128X, "ps">;
+def v2f64x_info : X86VectorVTInfo<2, f64, VR128X, "pd">;
+
+// We map scalar types to the smallest (128-bit) vector type
+// with the appropriate element type. This allows to use the same masking logic.
+def f32x_info : X86VectorVTInfo<1, f32, VR128X, "ss">;
+def f64x_info : X86VectorVTInfo<1, f64, VR128X, "sd">;
+
+class AVX512VLVectorVTInfo<X86VectorVTInfo i512, X86VectorVTInfo i256,
+ X86VectorVTInfo i128> {
+ X86VectorVTInfo info512 = i512;
+ X86VectorVTInfo info256 = i256;
+ X86VectorVTInfo info128 = i128;
+}
+
+def avx512vl_i8_info : AVX512VLVectorVTInfo<v64i8_info, v32i8x_info,
+ v16i8x_info>;
+def avx512vl_i16_info : AVX512VLVectorVTInfo<v32i16_info, v16i16x_info,
+ v8i16x_info>;
+def avx512vl_i32_info : AVX512VLVectorVTInfo<v16i32_info, v8i32x_info,
+ v4i32x_info>;
+def avx512vl_i64_info : AVX512VLVectorVTInfo<v8i64_info, v4i64x_info,
+ v2i64x_info>;
+def avx512vl_f32_info : AVX512VLVectorVTInfo<v16f32_info, v8f32x_info,
+ v4f32x_info>;
+def avx512vl_f64_info : AVX512VLVectorVTInfo<v8f64_info, v4f64x_info,
+ v2f64x_info>;
+
+// This multiclass generates the masking variants from the non-masking
+// variant. It only provides the assembly pieces for the masking variants.
+// It assumes custom ISel patterns for masking which can be provided as
+// template arguments.
+multiclass AVX512_maskable_custom<bits<8> O, Format F,
+ dag Outs,
+ dag Ins, dag MaskingIns, dag ZeroMaskingIns,
+ string OpcodeStr,
+ string AttSrcAsm, string IntelSrcAsm,
+ list<dag> Pattern,
+ list<dag> MaskingPattern,
+ list<dag> ZeroMaskingPattern,
+ string Round = "",
+ string MaskingConstraint = "",
+ InstrItinClass itin = NoItinerary,
+ bit IsCommutable = 0> {
+ let isCommutable = IsCommutable in
+ def NAME: AVX512<O, F, Outs, Ins,
+ OpcodeStr#"\t{"#AttSrcAsm#", $dst "#Round#"|"#
+ "$dst "#Round#", "#IntelSrcAsm#"}",
+ Pattern, itin>;
+
+ // Prefer over VMOV*rrk Pat<>
+ let AddedComplexity = 20 in
+ def NAME#k: AVX512<O, F, Outs, MaskingIns,
+ OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}}"#Round#"|"#
+ "$dst {${mask}}"#Round#", "#IntelSrcAsm#"}",
+ MaskingPattern, itin>,
+ EVEX_K {
+ // In case of the 3src subclass this is overridden with a let.
+ string Constraints = MaskingConstraint;
+ }
+ let AddedComplexity = 30 in // Prefer over VMOV*rrkz Pat<>
+ def NAME#kz: AVX512<O, F, Outs, ZeroMaskingIns,
+ OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}} {z}"#Round#"|"#
+ "$dst {${mask}} {z}"#Round#", "#IntelSrcAsm#"}",
+ ZeroMaskingPattern,
+ itin>,
+ EVEX_KZ;
+}
+
+
+// Common base class of AVX512_maskable and AVX512_maskable_3src.
+multiclass AVX512_maskable_common<bits<8> O, Format F, X86VectorVTInfo _,
+ dag Outs,
+ dag Ins, dag MaskingIns, dag ZeroMaskingIns,
+ string OpcodeStr,
+ string AttSrcAsm, string IntelSrcAsm,
+ dag RHS, dag MaskingRHS,
+ SDNode Select = vselect, string Round = "",
+ string MaskingConstraint = "",
+ InstrItinClass itin = NoItinerary,
+ bit IsCommutable = 0> :
+ AVX512_maskable_custom<O, F, Outs, Ins, MaskingIns, ZeroMaskingIns, OpcodeStr,
+ AttSrcAsm, IntelSrcAsm,
+ [(set _.RC:$dst, RHS)],
+ [(set _.RC:$dst, MaskingRHS)],
+ [(set _.RC:$dst,
+ (Select _.KRCWM:$mask, RHS, _.ImmAllZerosV))],
+ Round, MaskingConstraint, NoItinerary, IsCommutable>;
+
+// This multiclass generates the unconditional/non-masking, the masking and
+// the zero-masking variant of the vector instruction. In the masking case, the
+// perserved vector elements come from a new dummy input operand tied to $dst.
+multiclass AVX512_maskable<bits<8> O, Format F, X86VectorVTInfo _,
+ dag Outs, dag Ins, string OpcodeStr,
+ string AttSrcAsm, string IntelSrcAsm,
+ dag RHS, string Round = "",
+ InstrItinClass itin = NoItinerary,
+ bit IsCommutable = 0> :
+ AVX512_maskable_common<O, F, _, Outs, Ins,
+ !con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
+ !con((ins _.KRCWM:$mask), Ins),
+ OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS,
+ (vselect _.KRCWM:$mask, RHS, _.RC:$src0), vselect,
+ Round, "$src0 = $dst", itin, IsCommutable>;
+
+// This multiclass generates the unconditional/non-masking, the masking and
+// the zero-masking variant of the scalar instruction.
+multiclass AVX512_maskable_scalar<bits<8> O, Format F, X86VectorVTInfo _,
+ dag Outs, dag Ins, string OpcodeStr,
+ string AttSrcAsm, string IntelSrcAsm,
+ dag RHS, string Round = "",
+ InstrItinClass itin = NoItinerary,
+ bit IsCommutable = 0> :
+ AVX512_maskable_common<O, F, _, Outs, Ins,
+ !con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
+ !con((ins _.KRCWM:$mask), Ins),
+ OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS,
+ (X86select _.KRCWM:$mask, RHS, _.RC:$src0), X86select,
+ Round, "$src0 = $dst", itin, IsCommutable>;
+
+// Similar to AVX512_maskable but in this case one of the source operands
+// ($src1) is already tied to $dst so we just use that for the preserved
+// vector elements. NOTE that the NonTiedIns (the ins dag) should exclude
+// $src1.
+multiclass AVX512_maskable_3src<bits<8> O, Format F, X86VectorVTInfo _,
+ dag Outs, dag NonTiedIns, string OpcodeStr,
+ string AttSrcAsm, string IntelSrcAsm,
+ dag RHS> :
+ AVX512_maskable_common<O, F, _, Outs,
+ !con((ins _.RC:$src1), NonTiedIns),
+ !con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns),
+ !con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns),
+ OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS,
+ (vselect _.KRCWM:$mask, RHS, _.RC:$src1)>;
+
+
+multiclass AVX512_maskable_in_asm<bits<8> O, Format F, X86VectorVTInfo _,
+ dag Outs, dag Ins,
+ string OpcodeStr,
+ string AttSrcAsm, string IntelSrcAsm,
+ list<dag> Pattern> :
+ AVX512_maskable_custom<O, F, Outs, Ins,
+ !con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
+ !con((ins _.KRCWM:$mask), Ins),
+ OpcodeStr, AttSrcAsm, IntelSrcAsm, Pattern, [], [], "",
+ "$src0 = $dst">;
+
// Bitcasts between 512-bit vector types. Return the original type since
// no instruction is needed for the conversion
let Predicates = [HasAVX512] in {
@@ -17,6 +287,7 @@ let Predicates = [HasAVX512] in {
def : Pat<(v8i64 (bitconvert (v8f64 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v8i64 (bitconvert (v16f32 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v8i64 VR512:$src))), (v16i32 VR512:$src)>;
+ def : Pat<(v16i32 (bitconvert (v16f32 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v64i8 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v8f64 VR512:$src))), (v16i32 VR512:$src)>;
@@ -116,119 +387,92 @@ def : Pat<(v8f64 immAllZerosV), (AVX512_512_SET0)>;
//===----------------------------------------------------------------------===//
// AVX-512 - VECTOR INSERT
//
-// -- 32x8 form --
-let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
-def VINSERTF32x4rr : AVX512AIi8<0x18, MRMSrcReg, (outs VR512:$dst),
- (ins VR512:$src1, VR128X:$src2, i8imm:$src3),
- "vinsertf32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512;
-let mayLoad = 1 in
-def VINSERTF32x4rm : AVX512AIi8<0x18, MRMSrcMem, (outs VR512:$dst),
- (ins VR512:$src1, f128mem:$src2, i8imm:$src3),
- "vinsertf32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512, EVEX_CD8<32, CD8VT4>;
-}
-
-// -- 64x4 fp form --
-let hasSideEffects = 0, ExeDomain = SSEPackedDouble in {
-def VINSERTF64x4rr : AVX512AIi8<0x1a, MRMSrcReg, (outs VR512:$dst),
- (ins VR512:$src1, VR256X:$src2, i8imm:$src3),
- "vinsertf64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512, VEX_W;
-let mayLoad = 1 in
-def VINSERTF64x4rm : AVX512AIi8<0x1a, MRMSrcMem, (outs VR512:$dst),
- (ins VR512:$src1, i256mem:$src2, i8imm:$src3),
- "vinsertf64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
+
+multiclass vinsert_for_size_no_alt<int Opcode,
+ X86VectorVTInfo From, X86VectorVTInfo To,
+ PatFrag vinsert_insert,
+ SDNodeXForm INSERT_get_vinsert_imm> {
+ let hasSideEffects = 0, ExeDomain = To.ExeDomain in {
+ def rr : AVX512AIi8<Opcode, MRMSrcReg, (outs VR512:$dst),
+ (ins VR512:$src1, From.RC:$src2, i8imm:$src3),
+ "vinsert" # From.EltTypeName # "x" # From.NumElts #
+ "\t{$src3, $src2, $src1, $dst|"
+ "$dst, $src1, $src2, $src3}",
+ [(set To.RC:$dst, (vinsert_insert:$src3 (To.VT VR512:$src1),
+ (From.VT From.RC:$src2),
+ (iPTR imm)))]>,
+ EVEX_4V, EVEX_V512;
+
+ let mayLoad = 1 in
+ def rm : AVX512AIi8<Opcode, MRMSrcMem, (outs VR512:$dst),
+ (ins VR512:$src1, From.MemOp:$src2, i8imm:$src3),
+ "vinsert" # From.EltTypeName # "x" # From.NumElts #
+ "\t{$src3, $src2, $src1, $dst|"
+ "$dst, $src1, $src2, $src3}",
+ []>,
+ EVEX_4V, EVEX_V512, EVEX_CD8<From.EltSize, From.CD8TupleForm>;
+ }
}
-// -- 32x4 integer form --
-let hasSideEffects = 0 in {
-def VINSERTI32x4rr : AVX512AIi8<0x38, MRMSrcReg, (outs VR512:$dst),
- (ins VR512:$src1, VR128X:$src2, i8imm:$src3),
- "vinserti32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512;
-let mayLoad = 1 in
-def VINSERTI32x4rm : AVX512AIi8<0x38, MRMSrcMem, (outs VR512:$dst),
- (ins VR512:$src1, i128mem:$src2, i8imm:$src3),
- "vinserti32x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512, EVEX_CD8<32, CD8VT4>;
+
+multiclass vinsert_for_size<int Opcode,
+ X86VectorVTInfo From, X86VectorVTInfo To,
+ X86VectorVTInfo AltFrom, X86VectorVTInfo AltTo,
+ PatFrag vinsert_insert,
+ SDNodeXForm INSERT_get_vinsert_imm> :
+ vinsert_for_size_no_alt<Opcode, From, To,
+ vinsert_insert, INSERT_get_vinsert_imm> {
+ // Codegen pattern with the alternative types, e.g. v2i64 -> v8i64 for
+ // vinserti32x4. Only add this if 64x2 and friends are not supported
+ // natively via AVX512DQ.
+ let Predicates = [NoDQI] in
+ def : Pat<(vinsert_insert:$ins
+ (AltTo.VT VR512:$src1), (AltFrom.VT From.RC:$src2), (iPTR imm)),
+ (AltTo.VT (!cast<Instruction>(NAME # From.EltSize # "x4rr")
+ VR512:$src1, From.RC:$src2,
+ (INSERT_get_vinsert_imm VR512:$ins)))>;
}
-let hasSideEffects = 0 in {
-// -- 64x4 form --
-def VINSERTI64x4rr : AVX512AIi8<0x3a, MRMSrcReg, (outs VR512:$dst),
- (ins VR512:$src1, VR256X:$src2, i8imm:$src3),
- "vinserti64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512, VEX_W;
-let mayLoad = 1 in
-def VINSERTI64x4rm : AVX512AIi8<0x3a, MRMSrcMem, (outs VR512:$dst),
- (ins VR512:$src1, i256mem:$src2, i8imm:$src3),
- "vinserti64x4\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
- []>, EVEX_4V, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
-}
-
-def : Pat<(vinsert128_insert:$ins (v16f32 VR512:$src1), (v4f32 VR128X:$src2),
- (iPTR imm)), (VINSERTF32x4rr VR512:$src1, VR128X:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v8f64 VR512:$src1), (v2f64 VR128X:$src2),
- (iPTR imm)), (VINSERTF32x4rr VR512:$src1, VR128X:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v8i64 VR512:$src1), (v2i64 VR128X:$src2),
- (iPTR imm)), (VINSERTI32x4rr VR512:$src1, VR128X:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v16i32 VR512:$src1), (v4i32 VR128X:$src2),
- (iPTR imm)), (VINSERTI32x4rr VR512:$src1, VR128X:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-
-def : Pat<(vinsert128_insert:$ins (v16f32 VR512:$src1), (loadv4f32 addr:$src2),
- (iPTR imm)), (VINSERTF32x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v16i32 VR512:$src1),
- (bc_v4i32 (loadv2i64 addr:$src2)),
- (iPTR imm)), (VINSERTI32x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v8f64 VR512:$src1), (loadv2f64 addr:$src2),
- (iPTR imm)), (VINSERTF32x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v8i64 VR512:$src1), (loadv2i64 addr:$src2),
- (iPTR imm)), (VINSERTI32x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert128_imm VR512:$ins))>;
-
-def : Pat<(vinsert256_insert:$ins (v16f32 VR512:$src1), (v8f32 VR256X:$src2),
- (iPTR imm)), (VINSERTF64x4rr VR512:$src1, VR256X:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-def : Pat<(vinsert256_insert:$ins (v8f64 VR512:$src1), (v4f64 VR256X:$src2),
- (iPTR imm)), (VINSERTF64x4rr VR512:$src1, VR256X:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v8i64 VR512:$src1), (v4i64 VR256X:$src2),
- (iPTR imm)), (VINSERTI64x4rr VR512:$src1, VR256X:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-def : Pat<(vinsert128_insert:$ins (v16i32 VR512:$src1), (v8i32 VR256X:$src2),
- (iPTR imm)), (VINSERTI64x4rr VR512:$src1, VR256X:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-
-def : Pat<(vinsert256_insert:$ins (v16f32 VR512:$src1), (loadv8f32 addr:$src2),
- (iPTR imm)), (VINSERTF64x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-def : Pat<(vinsert256_insert:$ins (v8f64 VR512:$src1), (loadv4f64 addr:$src2),
- (iPTR imm)), (VINSERTF64x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-def : Pat<(vinsert256_insert:$ins (v8i64 VR512:$src1), (loadv4i64 addr:$src2),
- (iPTR imm)), (VINSERTI64x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
-def : Pat<(vinsert256_insert:$ins (v16i32 VR512:$src1),
- (bc_v8i32 (loadv4i64 addr:$src2)),
- (iPTR imm)), (VINSERTI64x4rm VR512:$src1, addr:$src2,
- (INSERT_get_vinsert256_imm VR512:$ins))>;
+multiclass vinsert_for_type<ValueType EltVT32, int Opcode128,
+ ValueType EltVT64, int Opcode256> {
+ defm NAME # "32x4" : vinsert_for_size<Opcode128,
+ X86VectorVTInfo< 4, EltVT32, VR128X>,
+ X86VectorVTInfo<16, EltVT32, VR512>,
+ X86VectorVTInfo< 2, EltVT64, VR128X>,
+ X86VectorVTInfo< 8, EltVT64, VR512>,
+ vinsert128_insert,
+ INSERT_get_vinsert128_imm>;
+ let Predicates = [HasDQI] in
+ defm NAME # "64x2" : vinsert_for_size_no_alt<Opcode128,
+ X86VectorVTInfo< 2, EltVT64, VR128X>,
+ X86VectorVTInfo< 8, EltVT64, VR512>,
+ vinsert128_insert,
+ INSERT_get_vinsert128_imm>, VEX_W;
+ defm NAME # "64x4" : vinsert_for_size<Opcode256,
+ X86VectorVTInfo< 4, EltVT64, VR256X>,
+ X86VectorVTInfo< 8, EltVT64, VR512>,
+ X86VectorVTInfo< 8, EltVT32, VR256>,
+ X86VectorVTInfo<16, EltVT32, VR512>,
+ vinsert256_insert,
+ INSERT_get_vinsert256_imm>, VEX_W;
+ let Predicates = [HasDQI] in
+ defm NAME # "32x8" : vinsert_for_size_no_alt<Opcode256,
+ X86VectorVTInfo< 8, EltVT32, VR256X>,
+ X86VectorVTInfo<16, EltVT32, VR512>,
+ vinsert256_insert,
+ INSERT_get_vinsert256_imm>;
+}
+
+defm VINSERTF : vinsert_for_type<f32, 0x18, f64, 0x1a>;
+defm VINSERTI : vinsert_for_type<i32, 0x38, i64, 0x3a>;
// vinsertps - insert f32 to XMM
def VINSERTPSzrr : AVX512AIi8<0x21, MRMSrcReg, (outs VR128X:$dst),
- (ins VR128X:$src1, VR128X:$src2, u32u8imm:$src3),
+ (ins VR128X:$src1, VR128X:$src2, i8imm:$src3),
"vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR128X:$dst, (X86insertps VR128X:$src1, VR128X:$src2, imm:$src3))]>,
EVEX_4V;
def VINSERTPSzrm: AVX512AIi8<0x21, MRMSrcMem, (outs VR128X:$dst),
- (ins VR128X:$src1, f32mem:$src2, u32u8imm:$src3),
+ (ins VR128X:$src1, f32mem:$src2, i8imm:$src3),
"vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR128X:$dst, (X86insertps VR128X:$src1,
(v4f32 (scalar_to_vector (loadf32 addr:$src2))),
@@ -237,106 +481,90 @@ def VINSERTPSzrm: AVX512AIi8<0x21, MRMSrcMem, (outs VR128X:$dst),
//===----------------------------------------------------------------------===//
// AVX-512 VECTOR EXTRACT
//---
-let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
-// -- 32x4 form --
-def VEXTRACTF32x4rr : AVX512AIi8<0x19, MRMDestReg, (outs VR128X:$dst),
- (ins VR512:$src1, i8imm:$src2),
- "vextractf32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512;
-def VEXTRACTF32x4mr : AVX512AIi8<0x19, MRMDestMem, (outs),
- (ins f128mem:$dst, VR512:$src1, i8imm:$src2),
- "vextractf32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VT4>;
-
-// -- 64x4 form --
-def VEXTRACTF64x4rr : AVX512AIi8<0x1b, MRMDestReg, (outs VR256X:$dst),
- (ins VR512:$src1, i8imm:$src2),
- "vextractf64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512, VEX_W;
-let mayStore = 1 in
-def VEXTRACTF64x4mr : AVX512AIi8<0x1b, MRMDestMem, (outs),
- (ins f256mem:$dst, VR512:$src1, i8imm:$src2),
- "vextractf64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
+
+multiclass vextract_for_size<int Opcode,
+ X86VectorVTInfo From, X86VectorVTInfo To,
+ X86VectorVTInfo AltFrom, X86VectorVTInfo AltTo,
+ PatFrag vextract_extract,
+ SDNodeXForm EXTRACT_get_vextract_imm> {
+ let hasSideEffects = 0, ExeDomain = To.ExeDomain in {
+ defm rr : AVX512_maskable_in_asm<Opcode, MRMDestReg, To, (outs To.RC:$dst),
+ (ins VR512:$src1, i8imm:$idx),
+ "vextract" # To.EltTypeName # "x4",
+ "$idx, $src1", "$src1, $idx",
+ [(set To.RC:$dst, (vextract_extract:$idx (From.VT VR512:$src1),
+ (iPTR imm)))]>,
+ AVX512AIi8Base, EVEX, EVEX_V512;
+ let mayStore = 1 in
+ def rm : AVX512AIi8<Opcode, MRMDestMem, (outs),
+ (ins To.MemOp:$dst, VR512:$src1, i8imm:$src2),
+ "vextract" # To.EltTypeName # "x4\t{$src2, $src1, $dst|"
+ "$dst, $src1, $src2}",
+ []>, EVEX, EVEX_V512, EVEX_CD8<To.EltSize, CD8VT4>;
+ }
+
+ // Codegen pattern with the alternative types, e.g. v8i64 -> v2i64 for
+ // vextracti32x4
+ def : Pat<(vextract_extract:$ext (AltFrom.VT VR512:$src1), (iPTR imm)),
+ (AltTo.VT (!cast<Instruction>(NAME # To.EltSize # "x4rr")
+ VR512:$src1,
+ (EXTRACT_get_vextract_imm To.RC:$ext)))>;
+
+ // A 128/256-bit subvector extract from the first 512-bit vector position is
+ // a subregister copy that needs no instruction.
+ def : Pat<(To.VT (extract_subvector (From.VT VR512:$src), (iPTR 0))),
+ (To.VT
+ (EXTRACT_SUBREG (From.VT VR512:$src), To.SubRegIdx))>;
+
+ // And for the alternative types.
+ def : Pat<(AltTo.VT (extract_subvector (AltFrom.VT VR512:$src), (iPTR 0))),
+ (AltTo.VT
+ (EXTRACT_SUBREG (AltFrom.VT VR512:$src), AltTo.SubRegIdx))>;
+
+ // Intrinsic call with masking.
+ def : Pat<(!cast<Intrinsic>("int_x86_avx512_mask_vextract" # To.EltTypeName #
+ "x4_512")
+ VR512:$src1, (iPTR imm:$idx), To.RC:$src0, GR8:$mask),
+ (!cast<Instruction>(NAME # To.EltSize # "x4rrk") To.RC:$src0,
+ (v4i1 (COPY_TO_REGCLASS GR8:$mask, VK4WM)),
+ VR512:$src1, imm:$idx)>;
+
+ // Intrinsic call with zero-masking.
+ def : Pat<(!cast<Intrinsic>("int_x86_avx512_mask_vextract" # To.EltTypeName #
+ "x4_512")
+ VR512:$src1, (iPTR imm:$idx), To.ImmAllZerosV, GR8:$mask),
+ (!cast<Instruction>(NAME # To.EltSize # "x4rrkz")
+ (v4i1 (COPY_TO_REGCLASS GR8:$mask, VK4WM)),
+ VR512:$src1, imm:$idx)>;
+
+ // Intrinsic call without masking.
+ def : Pat<(!cast<Intrinsic>("int_x86_avx512_mask_vextract" # To.EltTypeName #
+ "x4_512")
+ VR512:$src1, (iPTR imm:$idx), To.ImmAllZerosV, (i8 -1)),
+ (!cast<Instruction>(NAME # To.EltSize # "x4rr")
+ VR512:$src1, imm:$idx)>;
}
-let hasSideEffects = 0 in {
-// -- 32x4 form --
-def VEXTRACTI32x4rr : AVX512AIi8<0x39, MRMDestReg, (outs VR128X:$dst),
- (ins VR512:$src1, i8imm:$src2),
- "vextracti32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512;
-def VEXTRACTI32x4mr : AVX512AIi8<0x39, MRMDestMem, (outs),
- (ins i128mem:$dst, VR512:$src1, i8imm:$src2),
- "vextracti32x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VT4>;
-
-// -- 64x4 form --
-def VEXTRACTI64x4rr : AVX512AIi8<0x3b, MRMDestReg, (outs VR256X:$dst),
- (ins VR512:$src1, i8imm:$src2),
- "vextracti64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512, VEX_W;
-let mayStore = 1 in
-def VEXTRACTI64x4mr : AVX512AIi8<0x3b, MRMDestMem, (outs),
- (ins i256mem:$dst, VR512:$src1, i8imm:$src2),
- "vextracti64x4\t{$src2, $src1, $dst|$dst, $src1, $src2}",
- []>, EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT4>;
-}
-
-def : Pat<(vextract128_extract:$ext (v16f32 VR512:$src1), (iPTR imm)),
- (v4f32 (VEXTRACTF32x4rr VR512:$src1,
- (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
-
-def : Pat<(vextract128_extract:$ext VR512:$src1, (iPTR imm)),
- (v4i32 (VEXTRACTF32x4rr VR512:$src1,
- (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
-
-def : Pat<(vextract128_extract:$ext (v8f64 VR512:$src1), (iPTR imm)),
- (v2f64 (VEXTRACTF32x4rr VR512:$src1,
- (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
-
-def : Pat<(vextract128_extract:$ext (v8i64 VR512:$src1), (iPTR imm)),
- (v2i64 (VEXTRACTI32x4rr VR512:$src1,
- (EXTRACT_get_vextract128_imm VR128X:$ext)))>;
-
-
-def : Pat<(vextract256_extract:$ext (v16f32 VR512:$src1), (iPTR imm)),
- (v8f32 (VEXTRACTF64x4rr VR512:$src1,
- (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
-
-def : Pat<(vextract256_extract:$ext (v16i32 VR512:$src1), (iPTR imm)),
- (v8i32 (VEXTRACTI64x4rr VR512:$src1,
- (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
-
-def : Pat<(vextract256_extract:$ext (v8f64 VR512:$src1), (iPTR imm)),
- (v4f64 (VEXTRACTF64x4rr VR512:$src1,
- (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
-
-def : Pat<(vextract256_extract:$ext (v8i64 VR512:$src1), (iPTR imm)),
- (v4i64 (VEXTRACTI64x4rr VR512:$src1,
- (EXTRACT_get_vextract256_imm VR256X:$ext)))>;
-
-// A 256-bit subvector extract from the first 512-bit vector position
-// is a subregister copy that needs no instruction.
-def : Pat<(v8i32 (extract_subvector (v16i32 VR512:$src), (iPTR 0))),
- (v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm))>;
-def : Pat<(v8f32 (extract_subvector (v16f32 VR512:$src), (iPTR 0))),
- (v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm))>;
-def : Pat<(v4i64 (extract_subvector (v8i64 VR512:$src), (iPTR 0))),
- (v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm))>;
-def : Pat<(v4f64 (extract_subvector (v8f64 VR512:$src), (iPTR 0))),
- (v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm))>;
-
-// zmm -> xmm
-def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 0))),
- (v4i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm))>;
-def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 0))),
- (v2i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm))>;
-def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 0))),
- (v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm))>;
-def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 0))),
- (v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm))>;
+multiclass vextract_for_type<ValueType EltVT32, int Opcode32,
+ ValueType EltVT64, int Opcode64> {
+ defm NAME # "32x4" : vextract_for_size<Opcode32,
+ X86VectorVTInfo<16, EltVT32, VR512>,
+ X86VectorVTInfo< 4, EltVT32, VR128X>,
+ X86VectorVTInfo< 8, EltVT64, VR512>,
+ X86VectorVTInfo< 2, EltVT64, VR128X>,
+ vextract128_extract,
+ EXTRACT_get_vextract128_imm>;
+ defm NAME # "64x4" : vextract_for_size<Opcode64,
+ X86VectorVTInfo< 8, EltVT64, VR512>,
+ X86VectorVTInfo< 4, EltVT64, VR256X>,
+ X86VectorVTInfo<16, EltVT32, VR512>,
+ X86VectorVTInfo< 8, EltVT32, VR256>,
+ vextract256_extract,
+ EXTRACT_get_vextract256_imm>, VEX_W;
+}
+defm VEXTRACTF : vextract_for_type<f32, 0x19, f64, 0x1b>;
+defm VEXTRACTI : vextract_for_type<i32, 0x39, i64, 0x3b>;
// A 128-bit subvector insert to the first 512-bit vector position
// is a subregister copy that needs no instruction.
@@ -368,13 +596,13 @@ def : Pat<(insert_subvector undef, (v8f32 VR256X:$src), (iPTR 0)),
// vextractps - extract 32 bits from XMM
def VEXTRACTPSzrr : AVX512AIi8<0x17, MRMDestReg, (outs GR32:$dst),
- (ins VR128X:$src1, u32u8imm:$src2),
+ (ins VR128X:$src1, i32i8imm:$src2),
"vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2))]>,
EVEX;
def VEXTRACTPSzmr : AVX512AIi8<0x17, MRMDestMem, (outs),
- (ins f32mem:$dst, VR128X:$src1, u32u8imm:$src2),
+ (ins f32mem:$dst, VR128X:$src1, i32i8imm:$src2),
"vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(store (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2),
addr:$dst)]>, EVEX, EVEX_CD8<32, CD8VT1>;
@@ -382,105 +610,175 @@ def VEXTRACTPSzmr : AVX512AIi8<0x17, MRMDestMem, (outs),
//===---------------------------------------------------------------------===//
// AVX-512 BROADCAST
//---
-multiclass avx512_fp_broadcast<bits<8> opc, string OpcodeStr,
- RegisterClass DestRC,
- RegisterClass SrcRC, X86MemOperand x86memop> {
- def rr : AVX5128I<opc, MRMSrcReg, (outs DestRC:$dst), (ins SrcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- []>, EVEX;
- def rm : AVX5128I<opc, MRMSrcMem, (outs DestRC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),[]>, EVEX;
+multiclass avx512_fp_broadcast<bits<8> opc, SDNode OpNode, RegisterClass SrcRC,
+ ValueType svt, X86VectorVTInfo _> {
+ defm r : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins SrcRC:$src), "vbroadcast"## !subst("p", "s", _.Suffix),
+ "$src", "$src", (_.VT (OpNode (svt SrcRC:$src)))>,
+ T8PD, EVEX;
+
+ let mayLoad = 1 in {
+ defm m : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.ScalarMemOp:$src),
+ "vbroadcast"##!subst("p", "s", _.Suffix), "$src", "$src",
+ (_.VT (OpNode (_.ScalarLdFrag addr:$src)))>,
+ T8PD, EVEX;
+ }
+}
+
+multiclass avx512_fp_broadcast_vl<bits<8> opc, SDNode OpNode,
+ AVX512VLVectorVTInfo _> {
+ defm Z : avx512_fp_broadcast<opc, OpNode, VR128X, _.info128.VT, _.info512>,
+ EVEX_V512;
+
+ let Predicates = [HasVLX] in {
+ defm Z256 : avx512_fp_broadcast<opc, OpNode, VR128X, _.info128.VT, _.info256>,
+ EVEX_V256;
+ }
}
+
let ExeDomain = SSEPackedSingle in {
- defm VBROADCASTSSZ : avx512_fp_broadcast<0x18, "vbroadcastss", VR512,
- VR128X, f32mem>,
- EVEX_V512, EVEX_CD8<32, CD8VT1>;
+ defm VBROADCASTSS : avx512_fp_broadcast_vl<0x18, X86VBroadcast,
+ avx512vl_f32_info>, EVEX_CD8<32, CD8VT1>;
+ let Predicates = [HasVLX] in {
+ defm VBROADCASTSSZ128 : avx512_fp_broadcast<0x18, X86VBroadcast, VR128X,
+ v4f32, v4f32x_info>, EVEX_V128,
+ EVEX_CD8<32, CD8VT1>;
+ }
}
let ExeDomain = SSEPackedDouble in {
- defm VBROADCASTSDZ : avx512_fp_broadcast<0x19, "vbroadcastsd", VR512,
- VR128X, f64mem>,
- EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
+ defm VBROADCASTSD : avx512_fp_broadcast_vl<0x19, X86VBroadcast,
+ avx512vl_f64_info>, VEX_W, EVEX_CD8<64, CD8VT1>;
+}
+
+// avx512_broadcast_pat introduces patterns for broadcast with a scalar argument.
+// Later, we can canonize broadcast instructions before ISel phase and
+// eliminate additional patterns on ISel.
+// SrcRC_v and SrcRC_s are RegisterClasses for vector and scalar
+// representations of source
+multiclass avx512_broadcast_pat<string InstName, SDNode OpNode,
+ X86VectorVTInfo _, RegisterClass SrcRC_v,
+ RegisterClass SrcRC_s> {
+ def : Pat<(_.VT (OpNode (_.EltVT SrcRC_s:$src))),
+ (!cast<Instruction>(InstName##"r")
+ (COPY_TO_REGCLASS SrcRC_s:$src, SrcRC_v))>;
+
+ let AddedComplexity = 30 in {
+ def : Pat<(_.VT (vselect _.KRCWM:$mask,
+ (OpNode (_.EltVT SrcRC_s:$src)), _.RC:$src0)),
+ (!cast<Instruction>(InstName##"rk") _.RC:$src0, _.KRCWM:$mask,
+ (COPY_TO_REGCLASS SrcRC_s:$src, SrcRC_v))>;
+
+ def : Pat<(_.VT(vselect _.KRCWM:$mask,
+ (OpNode (_.EltVT SrcRC_s:$src)), _.ImmAllZerosV)),
+ (!cast<Instruction>(InstName##"rkz") _.KRCWM:$mask,
+ (COPY_TO_REGCLASS SrcRC_s:$src, SrcRC_v))>;
+ }
+}
+
+defm : avx512_broadcast_pat<"VBROADCASTSSZ", X86VBroadcast, v16f32_info,
+ VR128X, FR32X>;
+defm : avx512_broadcast_pat<"VBROADCASTSDZ", X86VBroadcast, v8f64_info,
+ VR128X, FR64X>;
+
+let Predicates = [HasVLX] in {
+ defm : avx512_broadcast_pat<"VBROADCASTSSZ256", X86VBroadcast,
+ v8f32x_info, VR128X, FR32X>;
+ defm : avx512_broadcast_pat<"VBROADCASTSSZ128", X86VBroadcast,
+ v4f32x_info, VR128X, FR32X>;
+ defm : avx512_broadcast_pat<"VBROADCASTSDZ256", X86VBroadcast,
+ v4f64x_info, VR128X, FR64X>;
}
def : Pat<(v16f32 (X86VBroadcast (loadf32 addr:$src))),
- (VBROADCASTSSZrm addr:$src)>;
+ (VBROADCASTSSZm addr:$src)>;
def : Pat<(v8f64 (X86VBroadcast (loadf64 addr:$src))),
- (VBROADCASTSDZrm addr:$src)>;
+ (VBROADCASTSDZm addr:$src)>;
def : Pat<(int_x86_avx512_vbroadcast_ss_512 addr:$src),
- (VBROADCASTSSZrm addr:$src)>;
+ (VBROADCASTSSZm addr:$src)>;
def : Pat<(int_x86_avx512_vbroadcast_sd_512 addr:$src),
- (VBROADCASTSDZrm addr:$src)>;
-
-multiclass avx512_int_broadcast_reg<bits<8> opc, string OpcodeStr,
- RegisterClass SrcRC, RegisterClass KRC> {
- def Zrr : AVX5128I<opc, MRMSrcReg, (outs VR512:$dst), (ins SrcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- []>, EVEX, EVEX_V512;
- def Zkrr : AVX5128I<opc, MRMSrcReg, (outs VR512:$dst),
- (ins KRC:$mask, SrcRC:$src),
- !strconcat(OpcodeStr,
- " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
- []>, EVEX, EVEX_V512, EVEX_KZ;
-}
-
-defm VPBROADCASTDr : avx512_int_broadcast_reg<0x7C, "vpbroadcastd", GR32, VK16WM>;
-defm VPBROADCASTQr : avx512_int_broadcast_reg<0x7C, "vpbroadcastq", GR64, VK8WM>,
- VEX_W;
-
+ (VBROADCASTSDZm addr:$src)>;
+
+multiclass avx512_int_broadcast_reg<bits<8> opc, X86VectorVTInfo _,
+ RegisterClass SrcRC> {
+ defm r : AVX512_maskable_in_asm<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins SrcRC:$src), "vpbroadcast"##_.Suffix,
+ "$src", "$src", []>, T8PD, EVEX;
+}
+
+multiclass avx512_int_broadcast_reg_vl<bits<8> opc, AVX512VLVectorVTInfo _,
+ RegisterClass SrcRC, Predicate prd> {
+ let Predicates = [prd] in
+ defm Z : avx512_int_broadcast_reg<opc, _.info512, SrcRC>, EVEX_V512;
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_int_broadcast_reg<opc, _.info256, SrcRC>, EVEX_V256;
+ defm Z128 : avx512_int_broadcast_reg<opc, _.info128, SrcRC>, EVEX_V128;
+ }
+}
+
+defm VPBROADCASTBr : avx512_int_broadcast_reg_vl<0x7A, avx512vl_i8_info, GR32,
+ HasBWI>;
+defm VPBROADCASTWr : avx512_int_broadcast_reg_vl<0x7B, avx512vl_i16_info, GR32,
+ HasBWI>;
+defm VPBROADCASTDr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i32_info, GR32,
+ HasAVX512>;
+defm VPBROADCASTQr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i64_info, GR64,
+ HasAVX512>, VEX_W;
+
def : Pat <(v16i32 (X86vzext VK16WM:$mask)),
- (VPBROADCASTDrZkrr VK16WM:$mask, (i32 (MOV32ri 0x1)))>;
+ (VPBROADCASTDrZrkz VK16WM:$mask, (i32 (MOV32ri 0x1)))>;
def : Pat <(v8i64 (X86vzext VK8WM:$mask)),
- (VPBROADCASTQrZkrr VK8WM:$mask, (i64 (MOV64ri 0x1)))>;
+ (VPBROADCASTQrZrkz VK8WM:$mask, (i64 (MOV64ri 0x1)))>;
def : Pat<(v16i32 (X86VBroadcast (i32 GR32:$src))),
- (VPBROADCASTDrZrr GR32:$src)>;
+ (VPBROADCASTDrZr GR32:$src)>;
def : Pat<(v16i32 (X86VBroadcastm VK16WM:$mask, (i32 GR32:$src))),
- (VPBROADCASTDrZkrr VK16WM:$mask, GR32:$src)>;
+ (VPBROADCASTDrZrkz VK16WM:$mask, GR32:$src)>;
def : Pat<(v8i64 (X86VBroadcast (i64 GR64:$src))),
- (VPBROADCASTQrZrr GR64:$src)>;
+ (VPBROADCASTQrZr GR64:$src)>;
def : Pat<(v8i64 (X86VBroadcastm VK8WM:$mask, (i64 GR64:$src))),
- (VPBROADCASTQrZkrr VK8WM:$mask, GR64:$src)>;
+ (VPBROADCASTQrZrkz VK8WM:$mask, GR64:$src)>;
def : Pat<(v16i32 (int_x86_avx512_pbroadcastd_i32_512 (i32 GR32:$src))),
- (VPBROADCASTDrZrr GR32:$src)>;
+ (VPBROADCASTDrZr GR32:$src)>;
def : Pat<(v8i64 (int_x86_avx512_pbroadcastq_i64_512 (i64 GR64:$src))),
- (VPBROADCASTQrZrr GR64:$src)>;
+ (VPBROADCASTQrZr GR64:$src)>;
def : Pat<(v16i32 (int_x86_avx512_mask_pbroadcast_d_gpr_512 (i32 GR32:$src),
(v16i32 immAllZerosV), (i16 GR16:$mask))),
- (VPBROADCASTDrZkrr (COPY_TO_REGCLASS GR16:$mask, VK16WM), GR32:$src)>;
+ (VPBROADCASTDrZrkz (COPY_TO_REGCLASS GR16:$mask, VK16WM), GR32:$src)>;
def : Pat<(v8i64 (int_x86_avx512_mask_pbroadcast_q_gpr_512 (i64 GR64:$src),
(bc_v8i64 (v16i32 immAllZerosV)), (i8 GR8:$mask))),
- (VPBROADCASTQrZkrr (COPY_TO_REGCLASS GR8:$mask, VK8WM), GR64:$src)>;
+ (VPBROADCASTQrZrkz (COPY_TO_REGCLASS GR8:$mask, VK8WM), GR64:$src)>;
multiclass avx512_int_broadcast_rm<bits<8> opc, string OpcodeStr,
X86MemOperand x86memop, PatFrag ld_frag,
RegisterClass DstRC, ValueType OpVT, ValueType SrcVT,
RegisterClass KRC> {
def rr : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst), (ins VR128X:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst,
(OpVT (X86VBroadcast (SrcVT VR128X:$src))))]>, EVEX;
def krr : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst), (ins KRC:$mask,
VR128X:$src),
- !strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ !strconcat(OpcodeStr,
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
[(set DstRC:$dst,
(OpVT (X86VBroadcastm KRC:$mask, (SrcVT VR128X:$src))))]>,
EVEX, EVEX_KZ;
let mayLoad = 1 in {
def rm : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- [(set DstRC:$dst,
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst,
(OpVT (X86VBroadcast (ld_frag addr:$src))))]>, EVEX;
def krm : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst), (ins KRC:$mask,
x86memop:$src),
- !strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
- [(set DstRC:$dst, (OpVT (X86VBroadcastm KRC:$mask,
+ !strconcat(OpcodeStr,
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ [(set DstRC:$dst, (OpVT (X86VBroadcastm KRC:$mask,
(ld_frag addr:$src))))]>, EVEX, EVEX_KZ;
}
}
@@ -497,12 +795,12 @@ multiclass avx512_int_subvec_broadcast_rm<bits<8> opc, string OpcodeStr,
RegisterClass KRC> {
let mayLoad = 1 in {
def rm : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[]>, EVEX;
def krm : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst), (ins KRC:$mask,
x86memop:$src),
!strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
}
}
@@ -519,27 +817,32 @@ def : Pat<(v16i32 (int_x86_avx512_pbroadcastd_512 (v4i32 VR128X:$src))),
def : Pat<(v8i64 (int_x86_avx512_pbroadcastq_512 (v2i64 VR128X:$src))),
(VPBROADCASTQZrr VR128X:$src)>;
-def : Pat<(v16f32 (X86VBroadcast (v4f32 VR128X:$src))),
- (VBROADCASTSSZrr VR128X:$src)>;
-def : Pat<(v8f64 (X86VBroadcast (v2f64 VR128X:$src))),
- (VBROADCASTSDZrr VR128X:$src)>;
+def : Pat<(v16f32 (X86VBroadcast (v16f32 VR512:$src))),
+ (VBROADCASTSSZr (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm))>;
+def : Pat<(v8f64 (X86VBroadcast (v8f64 VR512:$src))),
+ (VBROADCASTSDZr (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm))>;
+
+def : Pat<(v16i32 (X86VBroadcast (v16i32 VR512:$src))),
+ (VPBROADCASTDZrr (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm))>;
+def : Pat<(v8i64 (X86VBroadcast (v8i64 VR512:$src))),
+ (VPBROADCASTQZrr (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm))>;
def : Pat<(v16f32 (int_x86_avx512_vbroadcast_ss_ps_512 (v4f32 VR128X:$src))),
- (VBROADCASTSSZrr VR128X:$src)>;
+ (VBROADCASTSSZr VR128X:$src)>;
def : Pat<(v8f64 (int_x86_avx512_vbroadcast_sd_pd_512 (v2f64 VR128X:$src))),
- (VBROADCASTSDZrr VR128X:$src)>;
-
+ (VBROADCASTSDZr VR128X:$src)>;
+
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
def : Pat<(v16f32 (X86VBroadcast FR32X:$src)),
- (VBROADCASTSSZrr (COPY_TO_REGCLASS FR32X:$src, VR128X))>;
+ (VBROADCASTSSZr (COPY_TO_REGCLASS FR32X:$src, VR128X))>;
def : Pat<(v8f64 (X86VBroadcast FR64X:$src)),
- (VBROADCASTSDZrr (COPY_TO_REGCLASS FR64X:$src, VR128X))>;
+ (VBROADCASTSDZr (COPY_TO_REGCLASS FR64X:$src, VR128X))>;
let Predicates = [HasAVX512] in {
def : Pat<(v8i32 (X86VBroadcastm (v8i1 VK8WM:$mask), (loadi32 addr:$src))),
- (EXTRACT_SUBREG
+ (EXTRACT_SUBREG
(v16i32 (VPBROADCASTDZkrm (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
addr:$src)), sub_ymm)>;
}
@@ -548,64 +851,107 @@ def : Pat<(v8i32 (X86VBroadcastm (v8i1 VK8WM:$mask), (loadi32 addr:$src))),
//---
multiclass avx512_mask_broadcast<bits<8> opc, string OpcodeStr,
- RegisterClass DstRC, RegisterClass KRC,
- ValueType OpVT, ValueType SrcVT> {
-def rr : AVX512XS8I<opc, MRMDestReg, (outs DstRC:$dst), (ins KRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- []>, EVEX;
+ RegisterClass KRC> {
+let Predicates = [HasCDI] in
+def Zrr : AVX512XS8I<opc, MRMSrcReg, (outs VR512:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, EVEX, EVEX_V512;
+
+let Predicates = [HasCDI, HasVLX] in {
+def Z128rr : AVX512XS8I<opc, MRMSrcReg, (outs VR128:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, EVEX, EVEX_V128;
+def Z256rr : AVX512XS8I<opc, MRMSrcReg, (outs VR256:$dst), (ins KRC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ []>, EVEX, EVEX_V256;
+}
}
let Predicates = [HasCDI] in {
-defm VPBROADCASTMW2D : avx512_mask_broadcast<0x3A, "vpbroadcastmw2d", VR512,
- VK16, v16i32, v16i1>, EVEX_V512;
-defm VPBROADCASTMB2Q : avx512_mask_broadcast<0x2A, "vpbroadcastmb2q", VR512,
- VK8, v8i64, v8i1>, EVEX_V512, VEX_W;
+defm VPBROADCASTMW2D : avx512_mask_broadcast<0x3A, "vpbroadcastmw2d",
+ VK16>;
+defm VPBROADCASTMB2Q : avx512_mask_broadcast<0x2A, "vpbroadcastmb2q",
+ VK8>, VEX_W;
}
//===----------------------------------------------------------------------===//
// AVX-512 - VPERM
//
// -- immediate form --
-multiclass avx512_perm_imm<bits<8> opc, string OpcodeStr, RegisterClass RC,
- SDNode OpNode, PatFrag mem_frag,
- X86MemOperand x86memop, ValueType OpVT> {
- def ri : AVX512AIi8<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, i8imm:$src2),
+multiclass avx512_perm_imm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86VectorVTInfo _> {
+ let ExeDomain = _.ExeDomain in {
+ def ri : AVX512AIi8<opc, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.RC:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst,
- (OpVT (OpNode RC:$src1, (i8 imm:$src2))))]>,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set _.RC:$dst,
+ (_.VT (OpNode _.RC:$src1, (i8 imm:$src2))))]>,
EVEX;
- def mi : AVX512AIi8<opc, MRMSrcMem, (outs RC:$dst),
- (ins x86memop:$src1, i8imm:$src2),
+ def mi : AVX512AIi8<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.MemOp:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst,
- (OpVT (OpNode (mem_frag addr:$src1),
- (i8 imm:$src2))))]>, EVEX;
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set _.RC:$dst,
+ (_.VT (OpNode (_.MemOpFrag addr:$src1),
+ (i8 imm:$src2))))]>,
+ EVEX, EVEX_CD8<_.EltSize, CD8VF>;
+}
}
-defm VPERMQZ : avx512_perm_imm<0x00, "vpermq", VR512, X86VPermi, memopv8i64,
- i512mem, v8i64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-let ExeDomain = SSEPackedDouble in
-defm VPERMPDZ : avx512_perm_imm<0x01, "vpermpd", VR512, X86VPermi, memopv8f64,
- f512mem, v8f64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+multiclass avx512_permil<bits<8> OpcImm, bits<8> OpcVar, X86VectorVTInfo _,
+ X86VectorVTInfo Ctrl> :
+ avx512_perm_imm<OpcImm, "vpermil" # _.Suffix, X86VPermilpi, _> {
+ let ExeDomain = _.ExeDomain in {
+ def rr : AVX5128I<OpcVar, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2),
+ !strconcat("vpermil" # _.Suffix,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set _.RC:$dst,
+ (_.VT (X86VPermilpv _.RC:$src1,
+ (Ctrl.VT Ctrl.RC:$src2))))]>,
+ EVEX_4V;
+ def rm : AVX5128I<OpcVar, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src1, Ctrl.MemOp:$src2),
+ !strconcat("vpermil" # _.Suffix,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set _.RC:$dst,
+ (_.VT (X86VPermilpv _.RC:$src1,
+ (Ctrl.VT (Ctrl.MemOpFrag addr:$src2)))))]>,
+ EVEX_4V;
+ }
+}
+
+defm VPERMQZ : avx512_perm_imm<0x00, "vpermq", X86VPermi, v8i64_info>,
+ EVEX_V512, VEX_W;
+defm VPERMPDZ : avx512_perm_imm<0x01, "vpermpd", X86VPermi, v8f64_info>,
+ EVEX_V512, VEX_W;
+
+defm VPERMILPSZ : avx512_permil<0x04, 0x0C, v16f32_info, v16i32_info>,
+ EVEX_V512;
+defm VPERMILPDZ : avx512_permil<0x05, 0x0D, v8f64_info, v8i64_info>,
+ EVEX_V512, VEX_W;
+
+def : Pat<(v16i32 (X86VPermilpi VR512:$src1, (i8 imm:$imm))),
+ (VPERMILPSZri VR512:$src1, imm:$imm)>;
+def : Pat<(v8i64 (X86VPermilpi VR512:$src1, (i8 imm:$imm))),
+ (VPERMILPDZri VR512:$src1, imm:$imm)>;
// -- VPERM - register form --
-multiclass avx512_perm<bits<8> opc, string OpcodeStr, RegisterClass RC,
+multiclass avx512_perm<bits<8> opc, string OpcodeStr, RegisterClass RC,
PatFrag mem_frag, X86MemOperand x86memop, ValueType OpVT> {
def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(OpVT (X86VPermv RC:$src1, RC:$src2)))]>, EVEX_4V;
def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(OpVT (X86VPermv RC:$src1, (mem_frag addr:$src2))))]>,
EVEX_4V;
@@ -613,13 +959,13 @@ multiclass avx512_perm<bits<8> opc, string OpcodeStr, RegisterClass RC,
defm VPERMDZ : avx512_perm<0x36, "vpermd", VR512, memopv16i32, i512mem,
v16i32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPERMQZ : avx512_perm<0x36, "vpermq", VR512, memopv8i64, i512mem,
+defm VPERMQZ : avx512_perm<0x36, "vpermq", VR512, memopv8i64, i512mem,
v8i64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
let ExeDomain = SSEPackedSingle in
defm VPERMPSZ : avx512_perm<0x16, "vpermps", VR512, memopv16f32, f512mem,
v16f32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
let ExeDomain = SSEPackedDouble in
-defm VPERMPDZ : avx512_perm<0x16, "vpermpd", VR512, memopv8f64, f512mem,
+defm VPERMPDZ : avx512_perm<0x16, "vpermpd", VR512, memopv8f64, f512mem,
v8f64>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
// -- VPERM2I - 3 source operands form --
@@ -630,7 +976,7 @@ let Constraints = "$src1 = $dst" in {
def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>,
EVEX_4V;
@@ -638,7 +984,7 @@ let Constraints = "$src1 = $dst" in {
def rrk : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst {${mask}}|"
+ "\t{$src3, $src2, $dst {${mask}}|"
"$dst {${mask}}, $src2, $src3}"),
[(set RC:$dst, (OpVT (vselect KRC:$mask,
(OpNode RC:$src1, RC:$src2,
@@ -650,7 +996,7 @@ let Constraints = "$src1 = $dst" in {
def rrkz : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst {${mask}} {z} |",
+ "\t{$src3, $src2, $dst {${mask}} {z} |",
"$dst {${mask}} {z}, $src2, $src3}"),
[(set RC:$dst, (OpVT (vselect KRC:$mask,
(OpNode RC:$src1, RC:$src2,
@@ -662,7 +1008,7 @@ let Constraints = "$src1 = $dst" in {
def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, RC:$src2,
(mem_frag addr:$src3))))]>, EVEX_4V;
@@ -670,7 +1016,7 @@ let Constraints = "$src1 = $dst" in {
def rmk : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst {${mask}}|"
+ "\t{$src3, $src2, $dst {${mask}}|"
"$dst {${mask}}, $src2, $src3}"),
[(set RC:$dst,
(OpVT (vselect KRC:$mask,
@@ -683,7 +1029,7 @@ let Constraints = "$src1 = $dst" in {
def rmkz : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst {${mask}} {z}|"
+ "\t{$src3, $src2, $dst {${mask}} {z}|"
"$dst {${mask}} {z}, $src2, $src3}"),
[(set RC:$dst,
(OpVT (vselect KRC:$mask,
@@ -739,77 +1085,110 @@ defm VPERMT2PD : avx512_perm_table_3src<0x7F, "pd", VR512, memopv8f64, i512mem,
//===----------------------------------------------------------------------===//
// AVX-512 - BLEND using mask
//
-multiclass avx512_blendmask<bits<8> opc, string OpcodeStr,
- RegisterClass KRC, RegisterClass RC,
- X86MemOperand x86memop, PatFrag mem_frag,
- SDNode OpNode, ValueType vt> {
- def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, RC:$src2),
+multiclass avx512_blendmask<bits<8> opc, string OpcodeStr, X86VectorVTInfo _> {
+ let ExeDomain = _.ExeDomain in {
+ def rr : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
- [(set RC:$dst, (OpNode KRC:$mask, (vt RC:$src2),
- (vt RC:$src1)))]>, EVEX_4V, EVEX_K;
- let mayLoad = 1 in
- def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86memop:$src2),
+ "\t{$src2, $src1, ${dst} |${dst}, $src1, $src2}"),
+ []>, EVEX_4V;
+ def rrk : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
+ [(set _.RC:$dst, (X86select _.KRCWM:$mask, (_.VT _.RC:$src1),
+ (_.VT _.RC:$src2)))]>, EVEX_4V, EVEX_K;
+ def rrkz : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src1, $src2}"),
+ []>, EVEX_4V, EVEX_KZ;
+ let mayLoad = 1 in {
+ def rm : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.MemOp:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
- []>, EVEX_4V, EVEX_K;
+ "\t{$src2, $src1, ${dst} |${dst}, $src1, $src2}"),
+ []>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>;
+ def rmk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
+ [(set _.RC:$dst, (X86select _.KRCWM:$mask, (_.VT _.RC:$src1),
+ (_.VT (bitconvert (_.LdFrag addr:$src2)))))]>,
+ EVEX_4V, EVEX_K, EVEX_CD8<_.EltSize, CD8VF>;
+ def rmkz : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src1, $src2}"),
+ []>, EVEX_4V, EVEX_KZ, EVEX_CD8<_.EltSize, CD8VF>;
+ }
+ }
}
+multiclass avx512_blendmask_rmb<bits<8> opc, string OpcodeStr, X86VectorVTInfo _> {
+
+ def rmbk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2),
+ !strconcat(OpcodeStr,
+ "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"),
+ [(set _.RC:$dst,(X86select _.KRCWM:$mask, (_.VT _.RC:$src1),
+ (X86VBroadcast (_.ScalarLdFrag addr:$src2))))]>,
+ EVEX_4V, EVEX_K, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>;
+
+ def rmb : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.ScalarMemOp:$src2),
+ !strconcat(OpcodeStr,
+ "\t{${src2}", _.BroadcastStr, ", $src1, $dst|",
+ "$dst, $src1, ${src2}", _.BroadcastStr, "}"),
+ []>, EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>;
+
+}
+
+multiclass blendmask_dq <bits<8> opc, string OpcodeStr,
+ AVX512VLVectorVTInfo VTInfo> {
+ defm Z : avx512_blendmask <opc, OpcodeStr, VTInfo.info512>,
+ avx512_blendmask_rmb <opc, OpcodeStr, VTInfo.info512>, EVEX_V512;
+
+ let Predicates = [HasVLX] in {
+ defm Z256 : avx512_blendmask<opc, OpcodeStr, VTInfo.info256>,
+ avx512_blendmask_rmb <opc, OpcodeStr, VTInfo.info256>, EVEX_V256;
+ defm Z128 : avx512_blendmask<opc, OpcodeStr, VTInfo.info128>,
+ avx512_blendmask_rmb <opc, OpcodeStr, VTInfo.info128>, EVEX_V128;
+ }
+}
+
+multiclass blendmask_bw <bits<8> opc, string OpcodeStr,
+ AVX512VLVectorVTInfo VTInfo> {
+ let Predicates = [HasBWI] in
+ defm Z : avx512_blendmask <opc, OpcodeStr, VTInfo.info512>, EVEX_V512;
+
+ let Predicates = [HasBWI, HasVLX] in {
+ defm Z256 : avx512_blendmask <opc, OpcodeStr, VTInfo.info256>, EVEX_V256;
+ defm Z128 : avx512_blendmask <opc, OpcodeStr, VTInfo.info128>, EVEX_V128;
+ }
+}
+
+
+defm VBLENDMPS : blendmask_dq <0x65, "vblendmps", avx512vl_f32_info>;
+defm VBLENDMPD : blendmask_dq <0x65, "vblendmpd", avx512vl_f64_info>, VEX_W;
+defm VPBLENDMD : blendmask_dq <0x64, "vpblendmd", avx512vl_i32_info>;
+defm VPBLENDMQ : blendmask_dq <0x64, "vpblendmq", avx512vl_i64_info>, VEX_W;
+defm VPBLENDMB : blendmask_bw <0x66, "vpblendmb", avx512vl_i8_info>;
+defm VPBLENDMW : blendmask_bw <0x66, "vpblendmw", avx512vl_i16_info>, VEX_W;
-let ExeDomain = SSEPackedSingle in
-defm VBLENDMPSZ : avx512_blendmask<0x65, "vblendmps",
- VK16WM, VR512, f512mem,
- memopv16f32, vselect, v16f32>,
- EVEX_CD8<32, CD8VF>, EVEX_V512;
-let ExeDomain = SSEPackedDouble in
-defm VBLENDMPDZ : avx512_blendmask<0x65, "vblendmpd",
- VK8WM, VR512, f512mem,
- memopv8f64, vselect, v8f64>,
- VEX_W, EVEX_CD8<64, CD8VF>, EVEX_V512;
-
-def : Pat<(v16f32 (int_x86_avx512_mask_blend_ps_512 (v16f32 VR512:$src1),
- (v16f32 VR512:$src2), (i16 GR16:$mask))),
- (VBLENDMPSZrr (COPY_TO_REGCLASS GR16:$mask, VK16WM),
- VR512:$src1, VR512:$src2)>;
-
-def : Pat<(v8f64 (int_x86_avx512_mask_blend_pd_512 (v8f64 VR512:$src1),
- (v8f64 VR512:$src2), (i8 GR8:$mask))),
- (VBLENDMPDZrr (COPY_TO_REGCLASS GR8:$mask, VK8WM),
- VR512:$src1, VR512:$src2)>;
-
-defm VPBLENDMDZ : avx512_blendmask<0x64, "vpblendmd",
- VK16WM, VR512, f512mem,
- memopv16i32, vselect, v16i32>,
- EVEX_CD8<32, CD8VF>, EVEX_V512;
-
-defm VPBLENDMQZ : avx512_blendmask<0x64, "vpblendmq",
- VK8WM, VR512, f512mem,
- memopv8i64, vselect, v8i64>,
- VEX_W, EVEX_CD8<64, CD8VF>, EVEX_V512;
-
-def : Pat<(v16i32 (int_x86_avx512_mask_blend_d_512 (v16i32 VR512:$src1),
- (v16i32 VR512:$src2), (i16 GR16:$mask))),
- (VPBLENDMDZrr (COPY_TO_REGCLASS GR16:$mask, VK16),
- VR512:$src1, VR512:$src2)>;
-
-def : Pat<(v8i64 (int_x86_avx512_mask_blend_q_512 (v8i64 VR512:$src1),
- (v8i64 VR512:$src2), (i8 GR8:$mask))),
- (VPBLENDMQZrr (COPY_TO_REGCLASS GR8:$mask, VK8),
- VR512:$src1, VR512:$src2)>;
let Predicates = [HasAVX512] in {
def : Pat<(v8f32 (vselect (v8i1 VK8WM:$mask), (v8f32 VR256X:$src1),
(v8f32 VR256X:$src2))),
- (EXTRACT_SUBREG
- (v16f32 (VBLENDMPSZrr (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
+ (EXTRACT_SUBREG
+ (v16f32 (VBLENDMPSZrrk (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
(v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
(v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
def : Pat<(v8i32 (vselect (v8i1 VK8WM:$mask), (v8i32 VR256X:$src1),
(v8i32 VR256X:$src2))),
- (EXTRACT_SUBREG
- (v16i32 (VPBLENDMDZrr (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
+ (EXTRACT_SUBREG
+ (v16i32 (VPBLENDMDZrrk (COPY_TO_REGCLASS VK8WM:$mask, VK16WM),
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm)),
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
}
@@ -850,98 +1229,295 @@ defm VCMPSDZ : avx512_cmp_scalar<FR64X, f64mem, AVXCC, X86cmpms, f64, loadf64,
XD, VEX_W;
}
-multiclass avx512_icmp_packed<bits<8> opc, string OpcodeStr, RegisterClass KRC,
- RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
- SDNode OpNode, ValueType vt> {
+multiclass avx512_icmp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86VectorVTInfo _> {
def rr : AVX512BI<opc, MRMSrcReg,
- (outs KRC:$dst), (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set KRC:$dst, (OpNode (vt RC:$src1), (vt RC:$src2)))],
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2)))],
IIC_SSE_ALU_F32P_RR>, EVEX_4V;
+ let mayLoad = 1 in
def rm : AVX512BI<opc, MRMSrcMem,
- (outs KRC:$dst), (ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set KRC:$dst, (OpNode (vt RC:$src1), (memop_frag addr:$src2)))],
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1),
+ (_.VT (bitconvert (_.LdFrag addr:$src2)))))],
IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ def rrk : AVX512BI<opc, MRMSrcReg,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, $src2}"),
+ [(set _.KRC:$dst, (and _.KRCWM:$mask,
+ (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2))))],
+ IIC_SSE_ALU_F32P_RR>, EVEX_4V, EVEX_K;
+ let mayLoad = 1 in
+ def rmk : AVX512BI<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, $src2}"),
+ [(set _.KRC:$dst, (and _.KRCWM:$mask,
+ (OpNode (_.VT _.RC:$src1),
+ (_.VT (bitconvert
+ (_.LdFrag addr:$src2))))))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K;
}
-defm VPCMPEQDZ : avx512_icmp_packed<0x76, "vpcmpeqd", VK16, VR512, i512mem,
- memopv16i32, X86pcmpeqm, v16i32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-defm VPCMPEQQZ : avx512_icmp_packed<0x29, "vpcmpeqq", VK8, VR512, i512mem,
- memopv8i64, X86pcmpeqm, v8i64>, T8PD, EVEX_V512,
- VEX_W, EVEX_CD8<64, CD8VF>;
+multiclass avx512_icmp_packed_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86VectorVTInfo _> :
+ avx512_icmp_packed<opc, OpcodeStr, OpNode, _> {
+ let mayLoad = 1 in {
+ def rmb : AVX512BI<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2),
+ !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst",
+ "|$dst, $src1, ${src2}", _.BroadcastStr, "}"),
+ [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1),
+ (X86VBroadcast (_.ScalarLdFrag addr:$src2))))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_B;
+ def rmbk : AVX512BI<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1,
+ _.ScalarMemOp:$src2),
+ !strconcat(OpcodeStr,
+ "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"),
+ [(set _.KRC:$dst, (and _.KRCWM:$mask,
+ (OpNode (_.VT _.RC:$src1),
+ (X86VBroadcast
+ (_.ScalarLdFrag addr:$src2)))))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K, EVEX_B;
+ }
+}
-defm VPCMPGTDZ : avx512_icmp_packed<0x66, "vpcmpgtd", VK16, VR512, i512mem,
- memopv16i32, X86pcmpgtm, v16i32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-defm VPCMPGTQZ : avx512_icmp_packed<0x37, "vpcmpgtq", VK8, VR512, i512mem,
- memopv8i64, X86pcmpgtm, v8i64>, T8PD, EVEX_V512,
- VEX_W, EVEX_CD8<64, CD8VF>;
+multiclass avx512_icmp_packed_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ AVX512VLVectorVTInfo VTInfo, Predicate prd> {
+ let Predicates = [prd] in
+ defm Z : avx512_icmp_packed<opc, OpcodeStr, OpNode, VTInfo.info512>,
+ EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_icmp_packed<opc, OpcodeStr, OpNode, VTInfo.info256>,
+ EVEX_V256;
+ defm Z128 : avx512_icmp_packed<opc, OpcodeStr, OpNode, VTInfo.info128>,
+ EVEX_V128;
+ }
+}
+
+multiclass avx512_icmp_packed_rmb_vl<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, AVX512VLVectorVTInfo VTInfo,
+ Predicate prd> {
+ let Predicates = [prd] in
+ defm Z : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, VTInfo.info512>,
+ EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, VTInfo.info256>,
+ EVEX_V256;
+ defm Z128 : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, VTInfo.info128>,
+ EVEX_V128;
+ }
+}
+
+defm VPCMPEQB : avx512_icmp_packed_vl<0x74, "vpcmpeqb", X86pcmpeqm,
+ avx512vl_i8_info, HasBWI>,
+ EVEX_CD8<8, CD8VF>;
+
+defm VPCMPEQW : avx512_icmp_packed_vl<0x75, "vpcmpeqw", X86pcmpeqm,
+ avx512vl_i16_info, HasBWI>,
+ EVEX_CD8<16, CD8VF>;
+
+defm VPCMPEQD : avx512_icmp_packed_rmb_vl<0x76, "vpcmpeqd", X86pcmpeqm,
+ avx512vl_i32_info, HasAVX512>,
+ EVEX_CD8<32, CD8VF>;
+
+defm VPCMPEQQ : avx512_icmp_packed_rmb_vl<0x29, "vpcmpeqq", X86pcmpeqm,
+ avx512vl_i64_info, HasAVX512>,
+ T8PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VPCMPGTB : avx512_icmp_packed_vl<0x64, "vpcmpgtb", X86pcmpgtm,
+ avx512vl_i8_info, HasBWI>,
+ EVEX_CD8<8, CD8VF>;
+
+defm VPCMPGTW : avx512_icmp_packed_vl<0x65, "vpcmpgtw", X86pcmpgtm,
+ avx512vl_i16_info, HasBWI>,
+ EVEX_CD8<16, CD8VF>;
+
+defm VPCMPGTD : avx512_icmp_packed_rmb_vl<0x66, "vpcmpgtd", X86pcmpgtm,
+ avx512vl_i32_info, HasAVX512>,
+ EVEX_CD8<32, CD8VF>;
+
+defm VPCMPGTQ : avx512_icmp_packed_rmb_vl<0x37, "vpcmpgtq", X86pcmpgtm,
+ avx512vl_i64_info, HasAVX512>,
+ T8PD, VEX_W, EVEX_CD8<64, CD8VF>;
def : Pat<(v8i1 (X86pcmpgtm (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))),
- (COPY_TO_REGCLASS (VPCMPGTDZrr
+ (COPY_TO_REGCLASS (VPCMPGTDZrr
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm))), VK8)>;
def : Pat<(v8i1 (X86pcmpeqm (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))),
- (COPY_TO_REGCLASS (VPCMPEQDZrr
+ (COPY_TO_REGCLASS (VPCMPEQDZrr
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)),
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src2, sub_ymm))), VK8)>;
-multiclass avx512_icmp_cc<bits<8> opc, RegisterClass WMRC, RegisterClass KRC,
- RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
- SDNode OpNode, ValueType vt, Operand CC, string Suffix> {
+multiclass avx512_icmp_cc<bits<8> opc, string Suffix, SDNode OpNode,
+ X86VectorVTInfo _> {
def rri : AVX512AIi8<opc, MRMSrcReg,
- (outs KRC:$dst), (ins RC:$src1, RC:$src2, CC:$cc),
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVXCC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set KRC:$dst, (OpNode (vt RC:$src1), (vt RC:$src2), imm:$cc))],
+ [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
+ imm:$cc))],
IIC_SSE_ALU_F32P_RR>, EVEX_4V;
+ let mayLoad = 1 in
def rmi : AVX512AIi8<opc, MRMSrcMem,
- (outs KRC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc),
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, AVXCC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set KRC:$dst, (OpNode (vt RC:$src1), (memop_frag addr:$src2),
- imm:$cc))], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1),
+ (_.VT (bitconvert (_.LdFrag addr:$src2))),
+ imm:$cc))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V;
+ def rrik : AVX512AIi8<opc, MRMSrcReg,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2,
+ AVXCC:$cc),
+ !strconcat("vpcmp${cc}", Suffix,
+ "\t{$src2, $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, $src2}"),
+ [(set _.KRC:$dst, (and _.KRCWM:$mask,
+ (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
+ imm:$cc)))],
+ IIC_SSE_ALU_F32P_RR>, EVEX_4V, EVEX_K;
+ let mayLoad = 1 in
+ def rmik : AVX512AIi8<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2,
+ AVXCC:$cc),
+ !strconcat("vpcmp${cc}", Suffix,
+ "\t{$src2, $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, $src2}"),
+ [(set _.KRC:$dst, (and _.KRCWM:$mask,
+ (OpNode (_.VT _.RC:$src1),
+ (_.VT (bitconvert (_.LdFrag addr:$src2))),
+ imm:$cc)))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K;
+
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rri_alt : AVX512AIi8<opc, MRMSrcReg,
- (outs KRC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
- !strconcat("vpcmp", Suffix,
- "\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst|",
+ "$dst, $src1, $src2, $cc}"),
[], IIC_SSE_ALU_F32P_RR>, EVEX_4V;
+ def rmi_alt : AVX512AIi8<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst|",
+ "$dst, $src1, $src2, $cc}"),
+ [], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
def rrik_alt : AVX512AIi8<opc, MRMSrcReg,
- (outs KRC:$dst), (ins WMRC:$mask, RC:$src1, RC:$src2, i8imm:$cc),
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2,
+ i8imm:$cc),
!strconcat("vpcmp", Suffix,
- "\t{$cc, $src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2, $cc}"),
+ "\t{$cc, $src2, $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, $src2, $cc}"),
[], IIC_SSE_ALU_F32P_RR>, EVEX_4V, EVEX_K;
- def rmi_alt : AVX512AIi8<opc, MRMSrcMem,
- (outs KRC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
- !strconcat("vpcmp", Suffix,
- "\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
- [], IIC_SSE_ALU_F32P_RM>, EVEX_4V;
def rmik_alt : AVX512AIi8<opc, MRMSrcMem,
- (outs KRC:$dst), (ins WMRC:$mask, RC:$src1, x86memop:$src2, i8imm:$cc),
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2,
+ i8imm:$cc),
!strconcat("vpcmp", Suffix,
- "\t{$cc, $src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2, $cc}"),
+ "\t{$cc, $src2, $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, $src2, $cc}"),
[], IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K;
}
}
-defm VPCMPDZ : avx512_icmp_cc<0x1F, VK16WM, VK16, VR512, i512mem, memopv16i32,
- X86cmpm, v16i32, AVXCC, "d">,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPCMPUDZ : avx512_icmp_cc<0x1E, VK16WM, VK16, VR512, i512mem, memopv16i32,
- X86cmpmu, v16i32, AVXCC, "ud">,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
+multiclass avx512_icmp_cc_rmb<bits<8> opc, string Suffix, SDNode OpNode,
+ X86VectorVTInfo _> :
+ avx512_icmp_cc<opc, Suffix, OpNode, _> {
+ let mayLoad = 1 in {
+ def rmib : AVX512AIi8<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2,
+ AVXCC:$cc),
+ !strconcat("vpcmp${cc}", Suffix,
+ "\t{${src2}", _.BroadcastStr, ", $src1, $dst|",
+ "$dst, $src1, ${src2}", _.BroadcastStr, "}"),
+ [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1),
+ (X86VBroadcast (_.ScalarLdFrag addr:$src2)),
+ imm:$cc))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_B;
+ def rmibk : AVX512AIi8<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1,
+ _.ScalarMemOp:$src2, AVXCC:$cc),
+ !strconcat("vpcmp${cc}", Suffix,
+ "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"),
+ [(set _.KRC:$dst, (and _.KRCWM:$mask,
+ (OpNode (_.VT _.RC:$src1),
+ (X86VBroadcast (_.ScalarLdFrag addr:$src2)),
+ imm:$cc)))],
+ IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K, EVEX_B;
+ }
+
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rmib_alt : AVX512AIi8<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2,
+ i8imm:$cc),
+ !strconcat("vpcmp", Suffix,
+ "\t{$cc, ${src2}", _.BroadcastStr, ", $src1, $dst|",
+ "$dst, $src1, ${src2}", _.BroadcastStr, ", $cc}"),
+ [], IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_B;
+ def rmibk_alt : AVX512AIi8<opc, MRMSrcMem,
+ (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1,
+ _.ScalarMemOp:$src2, i8imm:$cc),
+ !strconcat("vpcmp", Suffix,
+ "\t{$cc, ${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
+ "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, ", $cc}"),
+ [], IIC_SSE_ALU_F32P_RM>, EVEX_4V, EVEX_K, EVEX_B;
+ }
+}
+
+multiclass avx512_icmp_cc_vl<bits<8> opc, string Suffix, SDNode OpNode,
+ AVX512VLVectorVTInfo VTInfo, Predicate prd> {
+ let Predicates = [prd] in
+ defm Z : avx512_icmp_cc<opc, Suffix, OpNode, VTInfo.info512>, EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_icmp_cc<opc, Suffix, OpNode, VTInfo.info256>, EVEX_V256;
+ defm Z128 : avx512_icmp_cc<opc, Suffix, OpNode, VTInfo.info128>, EVEX_V128;
+ }
+}
-defm VPCMPQZ : avx512_icmp_cc<0x1F, VK8WM, VK8, VR512, i512mem, memopv8i64,
- X86cmpm, v8i64, AVXCC, "q">,
- VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
-defm VPCMPUQZ : avx512_icmp_cc<0x1E, VK8WM, VK8, VR512, i512mem, memopv8i64,
- X86cmpmu, v8i64, AVXCC, "uq">,
- VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+multiclass avx512_icmp_cc_rmb_vl<bits<8> opc, string Suffix, SDNode OpNode,
+ AVX512VLVectorVTInfo VTInfo, Predicate prd> {
+ let Predicates = [prd] in
+ defm Z : avx512_icmp_cc_rmb<opc, Suffix, OpNode, VTInfo.info512>,
+ EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_icmp_cc_rmb<opc, Suffix, OpNode, VTInfo.info256>,
+ EVEX_V256;
+ defm Z128 : avx512_icmp_cc_rmb<opc, Suffix, OpNode, VTInfo.info128>,
+ EVEX_V128;
+ }
+}
+
+defm VPCMPB : avx512_icmp_cc_vl<0x3F, "b", X86cmpm, avx512vl_i8_info,
+ HasBWI>, EVEX_CD8<8, CD8VF>;
+defm VPCMPUB : avx512_icmp_cc_vl<0x3E, "ub", X86cmpmu, avx512vl_i8_info,
+ HasBWI>, EVEX_CD8<8, CD8VF>;
+
+defm VPCMPW : avx512_icmp_cc_vl<0x3F, "w", X86cmpm, avx512vl_i16_info,
+ HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>;
+defm VPCMPUW : avx512_icmp_cc_vl<0x3E, "uw", X86cmpmu, avx512vl_i16_info,
+ HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>;
+
+defm VPCMPD : avx512_icmp_cc_rmb_vl<0x1F, "d", X86cmpm, avx512vl_i32_info,
+ HasAVX512>, EVEX_CD8<32, CD8VF>;
+defm VPCMPUD : avx512_icmp_cc_rmb_vl<0x1E, "ud", X86cmpmu, avx512vl_i32_info,
+ HasAVX512>, EVEX_CD8<32, CD8VF>;
+
+defm VPCMPQ : avx512_icmp_cc_rmb_vl<0x1F, "q", X86cmpm, avx512vl_i64_info,
+ HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPCMPUQ : avx512_icmp_cc_rmb_vl<0x1E, "uq", X86cmpmu, avx512vl_i64_info,
+ HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>;
// avx512_cmp_packed - compare packed instructions
multiclass avx512_cmp_packed<RegisterClass KRC, RegisterClass RC,
@@ -950,17 +1526,17 @@ multiclass avx512_cmp_packed<RegisterClass KRC, RegisterClass RC,
def rri : AVX512PIi8<0xC2, MRMSrcReg,
(outs KRC:$dst), (ins RC:$src1, RC:$src2, AVXCC:$cc),
!strconcat("vcmp${cc}", suffix,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set KRC:$dst, (X86cmpm (vt RC:$src1), (vt RC:$src2), imm:$cc))], d>;
def rrib: AVX512PIi8<0xC2, MRMSrcReg,
(outs KRC:$dst), (ins RC:$src1, RC:$src2, AVXCC:$cc),
!strconcat("vcmp${cc}", suffix,
- " \t{{sae}, $src2, $src1, $dst|$dst, $src1, $src2, {sae}}"),
+ "\t{{sae}, $src2, $src1, $dst|$dst, $src1, $src2, {sae}}"),
[], d>, EVEX_B;
def rmi : AVX512PIi8<0xC2, MRMSrcMem,
(outs KRC:$dst), (ins RC:$src1, x86memop:$src2, AVXCC:$cc),
!strconcat("vcmp${cc}", suffix,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2, $cc}"),
[(set KRC:$dst,
(X86cmpm (vt RC:$src1), (memop addr:$src2), imm:$cc))], d>;
@@ -969,11 +1545,11 @@ multiclass avx512_cmp_packed<RegisterClass KRC, RegisterClass RC,
def rri_alt : AVX512PIi8<0xC2, MRMSrcReg,
(outs KRC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
!strconcat("vcmp", suffix,
- " \t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"), [], d>;
+ "\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"), [], d>;
def rmi_alt : AVX512PIi8<0xC2, MRMSrcMem,
(outs KRC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
!strconcat("vcmp", suffix,
- " \t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"), [], d>;
+ "\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}"), [], d>;
}
}
@@ -1001,25 +1577,25 @@ def : Pat<(v8i1 (X86cmpmu (v8i32 VR256X:$src1), (v8i32 VR256X:$src2), imm:$cc)),
imm:$cc), VK8)>;
def : Pat<(i16 (int_x86_avx512_mask_cmp_ps_512 (v16f32 VR512:$src1),
- (v16f32 VR512:$src2), imm:$cc, (i16 -1),
+ (v16f32 VR512:$src2), i32immZExt5:$cc, (i16 -1),
FROUND_NO_EXC)),
(COPY_TO_REGCLASS (VCMPPSZrrib VR512:$src1, VR512:$src2,
(I8Imm imm:$cc)), GR16)>;
-
+
def : Pat<(i8 (int_x86_avx512_mask_cmp_pd_512 (v8f64 VR512:$src1),
- (v8f64 VR512:$src2), imm:$cc, (i8 -1),
+ (v8f64 VR512:$src2), i32immZExt5:$cc, (i8 -1),
FROUND_NO_EXC)),
(COPY_TO_REGCLASS (VCMPPDZrrib VR512:$src1, VR512:$src2,
(I8Imm imm:$cc)), GR8)>;
def : Pat<(i16 (int_x86_avx512_mask_cmp_ps_512 (v16f32 VR512:$src1),
- (v16f32 VR512:$src2), imm:$cc, (i16 -1),
+ (v16f32 VR512:$src2), i32immZExt5:$cc, (i16 -1),
FROUND_CURRENT)),
(COPY_TO_REGCLASS (VCMPPSZrri VR512:$src1, VR512:$src2,
(I8Imm imm:$cc)), GR16)>;
def : Pat<(i8 (int_x86_avx512_mask_cmp_pd_512 (v8f64 VR512:$src1),
- (v8f64 VR512:$src2), imm:$cc, (i8 -1),
+ (v8f64 VR512:$src2), i32immZExt5:$cc, (i8 -1),
FROUND_CURRENT)),
(COPY_TO_REGCLASS (VCMPPDZrri VR512:$src1, VR512:$src2,
(I8Imm imm:$cc)), GR8)>;
@@ -1031,17 +1607,17 @@ def : Pat<(i8 (int_x86_avx512_mask_cmp_pd_512 (v8f64 VR512:$src1),
//
multiclass avx512_mask_mov<bits<8> opc_kk, bits<8> opc_km, bits<8> opc_mk,
string OpcodeStr, RegisterClass KRC,
- ValueType vt, X86MemOperand x86memop> {
+ ValueType vvt, ValueType ivt, X86MemOperand x86memop> {
let hasSideEffects = 0 in {
def kk : I<opc_kk, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>;
let mayLoad = 1 in
def km : I<opc_km, MRMSrcMem, (outs KRC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- [(set KRC:$dst, (vt (load addr:$src)))]>;
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set KRC:$dst, (vvt (bitconvert (ivt (load addr:$src)))))]>;
let mayStore = 1 in
def mk : I<opc_mk, MRMDestMem, (outs), (ins x86memop:$dst, KRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>;
}
}
@@ -1050,38 +1626,88 @@ multiclass avx512_mask_mov_gpr<bits<8> opc_kr, bits<8> opc_rk,
RegisterClass KRC, RegisterClass GRC> {
let hasSideEffects = 0 in {
def kr : I<opc_kr, MRMSrcReg, (outs KRC:$dst), (ins GRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>;
def rk : I<opc_rk, MRMSrcReg, (outs GRC:$dst), (ins KRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"), []>;
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>;
}
}
-let Predicates = [HasAVX512] in {
- defm KMOVW : avx512_mask_mov<0x90, 0x90, 0x91, "kmovw", VK16, v16i1, i16mem>,
- VEX, PS;
- defm KMOVW : avx512_mask_mov_gpr<0x92, 0x93, "kmovw", VK16, GR32>,
+let Predicates = [HasDQI] in
+ defm KMOVB : avx512_mask_mov<0x90, 0x90, 0x91, "kmovb", VK8, v8i1, i8,
+ i8mem>,
+ avx512_mask_mov_gpr<0x92, 0x93, "kmovb", VK8, GR32>,
+ VEX, PD;
+
+let Predicates = [HasAVX512] in
+ defm KMOVW : avx512_mask_mov<0x90, 0x90, 0x91, "kmovw", VK16, v16i1, i16,
+ i16mem>,
+ avx512_mask_mov_gpr<0x92, 0x93, "kmovw", VK16, GR32>,
VEX, PS;
+
+let Predicates = [HasBWI] in {
+ defm KMOVD : avx512_mask_mov<0x90, 0x90, 0x91, "kmovd", VK32, v32i1, i32,
+ i32mem>, VEX, PD, VEX_W;
+ defm KMOVD : avx512_mask_mov_gpr<0x92, 0x93, "kmovd", VK32, GR32>,
+ VEX, XD;
+}
+
+let Predicates = [HasBWI] in {
+ defm KMOVQ : avx512_mask_mov<0x90, 0x90, 0x91, "kmovq", VK64, v64i1, i64,
+ i64mem>, VEX, PS, VEX_W;
+ defm KMOVQ : avx512_mask_mov_gpr<0x92, 0x93, "kmovq", VK64, GR64>,
+ VEX, XD, VEX_W;
}
+// GR from/to mask register
+let Predicates = [HasDQI] in {
+ def : Pat<(v8i1 (bitconvert (i8 GR8:$src))),
+ (KMOVBkr (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit))>;
+ def : Pat<(i8 (bitconvert (v8i1 VK8:$src))),
+ (EXTRACT_SUBREG (KMOVBrk VK8:$src), sub_8bit)>;
+}
let Predicates = [HasAVX512] in {
- // GR16 from/to 16-bit mask
def : Pat<(v16i1 (bitconvert (i16 GR16:$src))),
(KMOVWkr (SUBREG_TO_REG (i32 0), GR16:$src, sub_16bit))>;
def : Pat<(i16 (bitconvert (v16i1 VK16:$src))),
(EXTRACT_SUBREG (KMOVWrk VK16:$src), sub_16bit)>;
+}
+let Predicates = [HasBWI] in {
+ def : Pat<(v32i1 (bitconvert (i32 GR32:$src))), (KMOVDkr GR32:$src)>;
+ def : Pat<(i32 (bitconvert (v32i1 VK32:$src))), (KMOVDrk VK32:$src)>;
+}
+let Predicates = [HasBWI] in {
+ def : Pat<(v64i1 (bitconvert (i64 GR64:$src))), (KMOVQkr GR64:$src)>;
+ def : Pat<(i64 (bitconvert (v64i1 VK64:$src))), (KMOVQrk VK64:$src)>;
+}
- // Store kreg in memory
- def : Pat<(store (v16i1 VK16:$src), addr:$dst),
+// Load/store kreg
+let Predicates = [HasDQI] in {
+ def : Pat<(store (i8 (bitconvert (v8i1 VK8:$src))), addr:$dst),
+ (KMOVBmk addr:$dst, VK8:$src)>;
+}
+let Predicates = [HasAVX512] in {
+ def : Pat<(store (i16 (bitconvert (v16i1 VK16:$src))), addr:$dst),
(KMOVWmk addr:$dst, VK16:$src)>;
-
- def : Pat<(store VK8:$src, addr:$dst),
+ def : Pat<(store (i8 (bitconvert (v8i1 VK8:$src))), addr:$dst),
(KMOVWmk addr:$dst, (COPY_TO_REGCLASS VK8:$src, VK16))>;
-
def : Pat<(i1 (load addr:$src)),
(COPY_TO_REGCLASS (KMOVWkm addr:$src), VK1)>;
-
- def : Pat<(v8i1 (load addr:$src)),
+ def : Pat<(v8i1 (bitconvert (i8 (load addr:$src)))),
(COPY_TO_REGCLASS (KMOVWkm addr:$src), VK8)>;
+}
+let Predicates = [HasBWI] in {
+ def : Pat<(store (i32 (bitconvert (v32i1 VK32:$src))), addr:$dst),
+ (KMOVDmk addr:$dst, VK32:$src)>;
+}
+let Predicates = [HasBWI] in {
+ def : Pat<(store (i64 (bitconvert (v64i1 VK64:$src))), addr:$dst),
+ (KMOVQmk addr:$dst, VK64:$src)>;
+}
+
+let Predicates = [HasAVX512] in {
+ def : Pat<(i1 (trunc (i64 GR64:$src))),
+ (COPY_TO_REGCLASS (KMOVWkr (AND32ri (EXTRACT_SUBREG $src, sub_32bit),
+ (i32 1))), VK1)>;
def : Pat<(i1 (trunc (i32 GR32:$src))),
(COPY_TO_REGCLASS (KMOVWkr (AND32ri $src, (i32 1))), VK1)>;
@@ -1094,7 +1720,7 @@ let Predicates = [HasAVX512] in {
(COPY_TO_REGCLASS
(KMOVWkr (AND32ri (SUBREG_TO_REG (i32 0), $src, sub_16bit), (i32 1))),
VK1)>;
-
+
def : Pat<(i32 (zext VK1:$src)),
(AND32ri (KMOVWrk (COPY_TO_REGCLASS VK1:$src, VK16)), (i32 1))>;
def : Pat<(i8 (zext VK1:$src)),
@@ -1113,6 +1739,14 @@ let Predicates = [HasAVX512] in {
def : Pat<(v8i1 (scalar_to_vector VK1:$src)),
(COPY_TO_REGCLASS VK1:$src, VK8)>;
}
+let Predicates = [HasBWI] in {
+ def : Pat<(v32i1 (scalar_to_vector VK1:$src)),
+ (COPY_TO_REGCLASS VK1:$src, VK32)>;
+ def : Pat<(v64i1 (scalar_to_vector VK1:$src)),
+ (COPY_TO_REGCLASS VK1:$src, VK64)>;
+}
+
+
// With AVX-512 only, 8-bit mask is promoted to 16-bit mask.
let Predicates = [HasAVX512] in {
// GR from/to 8-bit mask without native support
@@ -1129,26 +1763,38 @@ let Predicates = [HasAVX512] in {
(COPY_TO_REGCLASS VK16:$src, VK1)>;
def : Pat<(i1 (X86Vextract VK8:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK8:$src, VK1)>;
-
+}
+let Predicates = [HasBWI] in {
+ def : Pat<(i1 (X86Vextract VK32:$src, (iPTR 0))),
+ (COPY_TO_REGCLASS VK32:$src, VK1)>;
+ def : Pat<(i1 (X86Vextract VK64:$src, (iPTR 0))),
+ (COPY_TO_REGCLASS VK64:$src, VK1)>;
}
// Mask unary operation
// - KNOT
multiclass avx512_mask_unop<bits<8> opc, string OpcodeStr,
- RegisterClass KRC, SDPatternOperator OpNode> {
- let Predicates = [HasAVX512] in
+ RegisterClass KRC, SDPatternOperator OpNode,
+ Predicate prd> {
+ let Predicates = [prd] in
def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set KRC:$dst, (OpNode KRC:$src))]>;
}
-multiclass avx512_mask_unop_w<bits<8> opc, string OpcodeStr,
- SDPatternOperator OpNode> {
- defm W : avx512_mask_unop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode>,
- VEX, PS;
+multiclass avx512_mask_unop_all<bits<8> opc, string OpcodeStr,
+ SDPatternOperator OpNode> {
+ defm B : avx512_mask_unop<opc, !strconcat(OpcodeStr, "b"), VK8, OpNode,
+ HasDQI>, VEX, PD;
+ defm W : avx512_mask_unop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode,
+ HasAVX512>, VEX, PS;
+ defm D : avx512_mask_unop<opc, !strconcat(OpcodeStr, "d"), VK32, OpNode,
+ HasBWI>, VEX, PD, VEX_W;
+ defm Q : avx512_mask_unop<opc, !strconcat(OpcodeStr, "q"), VK64, OpNode,
+ HasBWI>, VEX, PS, VEX_W;
}
-defm KNOT : avx512_mask_unop_w<0x44, "knot", not>;
+defm KNOT : avx512_mask_unop_all<0x44, "knot", not>;
multiclass avx512_mask_unop_int<string IntName, string InstName> {
let Predicates = [HasAVX512] in
@@ -1159,43 +1805,60 @@ multiclass avx512_mask_unop_int<string IntName, string InstName> {
}
defm : avx512_mask_unop_int<"knot", "KNOT">;
+let Predicates = [HasDQI] in
+def : Pat<(xor VK8:$src1, (v8i1 immAllOnesV)), (KNOTBrr VK8:$src1)>;
+let Predicates = [HasAVX512] in
def : Pat<(xor VK16:$src1, (v16i1 immAllOnesV)), (KNOTWrr VK16:$src1)>;
+let Predicates = [HasBWI] in
+def : Pat<(xor VK32:$src1, (v32i1 immAllOnesV)), (KNOTDrr VK32:$src1)>;
+let Predicates = [HasBWI] in
+def : Pat<(xor VK64:$src1, (v64i1 immAllOnesV)), (KNOTQrr VK64:$src1)>;
+
+// KNL does not support KMOVB, 8-bit mask is promoted to 16-bit
+let Predicates = [HasAVX512] in {
def : Pat<(xor VK8:$src1, (v8i1 immAllOnesV)),
(COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$src1, VK16)), VK8)>;
-// With AVX-512, 8-bit mask is promoted to 16-bit mask.
def : Pat<(not VK8:$src),
(COPY_TO_REGCLASS
(KNOTWrr (COPY_TO_REGCLASS VK8:$src, VK16)), VK8)>;
+}
// Mask binary operation
// - KAND, KANDN, KOR, KXNOR, KXOR
multiclass avx512_mask_binop<bits<8> opc, string OpcodeStr,
- RegisterClass KRC, SDPatternOperator OpNode> {
- let Predicates = [HasAVX512] in
+ RegisterClass KRC, SDPatternOperator OpNode,
+ Predicate prd> {
+ let Predicates = [prd] in
def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set KRC:$dst, (OpNode KRC:$src1, KRC:$src2))]>;
}
-multiclass avx512_mask_binop_w<bits<8> opc, string OpcodeStr,
- SDPatternOperator OpNode> {
- defm W : avx512_mask_binop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode>,
- VEX_4V, VEX_L, PS;
+multiclass avx512_mask_binop_all<bits<8> opc, string OpcodeStr,
+ SDPatternOperator OpNode> {
+ defm B : avx512_mask_binop<opc, !strconcat(OpcodeStr, "b"), VK8, OpNode,
+ HasDQI>, VEX_4V, VEX_L, PD;
+ defm W : avx512_mask_binop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode,
+ HasAVX512>, VEX_4V, VEX_L, PS;
+ defm D : avx512_mask_binop<opc, !strconcat(OpcodeStr, "d"), VK32, OpNode,
+ HasBWI>, VEX_4V, VEX_L, VEX_W, PD;
+ defm Q : avx512_mask_binop<opc, !strconcat(OpcodeStr, "q"), VK64, OpNode,
+ HasBWI>, VEX_4V, VEX_L, VEX_W, PS;
}
def andn : PatFrag<(ops node:$i0, node:$i1), (and (not node:$i0), node:$i1)>;
def xnor : PatFrag<(ops node:$i0, node:$i1), (not (xor node:$i0, node:$i1))>;
let isCommutable = 1 in {
- defm KAND : avx512_mask_binop_w<0x41, "kand", and>;
- let isCommutable = 0 in
- defm KANDN : avx512_mask_binop_w<0x42, "kandn", andn>;
- defm KOR : avx512_mask_binop_w<0x45, "kor", or>;
- defm KXNOR : avx512_mask_binop_w<0x46, "kxnor", xnor>;
- defm KXOR : avx512_mask_binop_w<0x47, "kxor", xor>;
+ defm KAND : avx512_mask_binop_all<0x41, "kand", and>;
+ defm KOR : avx512_mask_binop_all<0x45, "kor", or>;
+ defm KXNOR : avx512_mask_binop_all<0x46, "kxnor", xnor>;
+ defm KXOR : avx512_mask_binop_all<0x47, "kxor", xor>;
}
+let isCommutable = 0 in
+ defm KANDN : avx512_mask_binop_all<0x42, "kandn", andn>;
def : Pat<(xor VK1:$src1, VK1:$src2),
(COPY_TO_REGCLASS (KXORWrr (COPY_TO_REGCLASS VK1:$src1, VK16),
@@ -1245,7 +1908,7 @@ multiclass avx512_mask_unpck<bits<8> opc, string OpcodeStr,
let Predicates = [HasAVX512] in
def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
}
multiclass avx512_mask_unpck_bw<bits<8> opc, string OpcodeStr> {
@@ -1274,7 +1937,7 @@ multiclass avx512_mask_testop<bits<8> opc, string OpcodeStr, RegisterClass KRC,
SDNode OpNode> {
let Predicates = [HasAVX512], Defs = [EFLAGS] in
def rr : I<opc, MRMSrcReg, (outs), (ins KRC:$src1, KRC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1|$src1, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode KRC:$src1, KRC:$src2))]>;
}
@@ -1295,7 +1958,7 @@ multiclass avx512_mask_shiftop<bits<8> opc, string OpcodeStr, RegisterClass KRC,
let Predicates = [HasAVX512] in
def ri : Ii8<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src, i8imm:$imm),
!strconcat(OpcodeStr,
- " \t{$imm, $src, $dst|$dst, $src, $imm}"),
+ "\t{$imm, $src, $dst|$dst, $src, $imm}"),
[(set KRC:$dst, (OpNode KRC:$src, (i8 imm:$imm)))]>;
}
@@ -1341,6 +2004,17 @@ def : Pat<(v16i1 (insert_subvector undef, (v8i1 VK8:$src), (iPTR 0))),
def : Pat<(v8i1 (extract_subvector (v16i1 VK16:$src), (iPTR 8))),
(v8i1 (COPY_TO_REGCLASS (KSHIFTRWri VK16:$src, (i8 8)), VK8))>;
+let Predicates = [HasVLX] in {
+ def : Pat<(v8i1 (insert_subvector undef, (v4i1 VK4:$src), (iPTR 0))),
+ (v8i1 (COPY_TO_REGCLASS VK4:$src, VK8))>;
+ def : Pat<(v8i1 (insert_subvector undef, (v2i1 VK2:$src), (iPTR 0))),
+ (v8i1 (COPY_TO_REGCLASS VK2:$src, VK8))>;
+ def : Pat<(v4i1 (extract_subvector (v8i1 VK8:$src), (iPTR 0))),
+ (v4i1 (COPY_TO_REGCLASS VK8:$src, VK4))>;
+ def : Pat<(v2i1 (extract_subvector (v8i1 VK8:$src), (iPTR 0))),
+ (v2i1 (COPY_TO_REGCLASS VK8:$src, VK2))>;
+}
+
def : Pat<(v8i1 (X86vshli VK8:$src, (i8 imm:$imm))),
(v8i1 (COPY_TO_REGCLASS (KSHIFTLWri (COPY_TO_REGCLASS VK8:$src, VK16), (I8Imm $imm)), VK8))>;
@@ -1350,104 +2024,176 @@ def : Pat<(v8i1 (X86vsrli VK8:$src, (i8 imm:$imm))),
// AVX-512 - Aligned and unaligned load and store
//
-multiclass avx512_load<bits<8> opc, RegisterClass RC, RegisterClass KRC,
- X86MemOperand x86memop, PatFrag ld_frag,
- string asm, Domain d,
- ValueType vt, bit IsReMaterializable = 1> {
+multiclass avx512_load<bits<8> opc, string OpcodeStr, PatFrag ld_frag,
+ RegisterClass KRC, RegisterClass RC,
+ ValueType vt, ValueType zvt, X86MemOperand memop,
+ Domain d, bit IsReMaterializable = 1> {
let hasSideEffects = 0 in {
def rr : AVX512PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(asm, " \t{$src, $dst|$dst, $src}"), [], d>,
- EVEX;
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [],
+ d>, EVEX;
def rrkz : AVX512PI<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src),
- !strconcat(asm,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
- [], d>, EVEX, EVEX_KZ;
+ !strconcat(OpcodeStr, "\t{$src, ${dst} {${mask}} {z}|",
+ "${dst} {${mask}} {z}, $src}"), [], d>, EVEX, EVEX_KZ;
}
- let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
- def rm : AVX512PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
- !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
- [(set (vt RC:$dst), (ld_frag addr:$src))], d>, EVEX;
- let Constraints = "$src1 = $dst", hasSideEffects = 0 in {
- def rrk : AVX512PI<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, KRC:$mask, RC:$src2),
- !strconcat(asm,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"), [], d>,
- EVEX, EVEX_K;
- let mayLoad = 1 in
- def rmk : AVX512PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, KRC:$mask, x86memop:$src2),
- !strconcat(asm,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
- [], d>, EVEX, EVEX_K;
+ let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable,
+ SchedRW = [WriteLoad] in
+ def rm : AVX512PI<opc, MRMSrcMem, (outs RC:$dst), (ins memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (vt (bitconvert (ld_frag addr:$src))))],
+ d>, EVEX;
+
+ let AddedComplexity = 20 in {
+ let Constraints = "$src0 = $dst", hasSideEffects = 0 in {
+ let hasSideEffects = 0 in
+ def rrk : AVX512PI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src0, KRC:$mask, RC:$src1),
+ !strconcat(OpcodeStr, "\t{$src1, ${dst} {${mask}}|",
+ "${dst} {${mask}}, $src1}"),
+ [(set RC:$dst, (vt (vselect KRC:$mask,
+ (vt RC:$src1),
+ (vt RC:$src0))))],
+ d>, EVEX, EVEX_K;
+ let mayLoad = 1, SchedRW = [WriteLoad] in
+ def rmk : AVX512PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src0, KRC:$mask, memop:$src1),
+ !strconcat(OpcodeStr, "\t{$src1, ${dst} {${mask}}|",
+ "${dst} {${mask}}, $src1}"),
+ [(set RC:$dst, (vt
+ (vselect KRC:$mask,
+ (vt (bitconvert (ld_frag addr:$src1))),
+ (vt RC:$src0))))],
+ d>, EVEX, EVEX_K;
+ }
+ let mayLoad = 1, SchedRW = [WriteLoad] in
+ def rmkz : AVX512PI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins KRC:$mask, memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, ${dst} {${mask}} {z}|",
+ "${dst} {${mask}} {z}, $src}"),
+ [(set RC:$dst, (vt
+ (vselect KRC:$mask,
+ (vt (bitconvert (ld_frag addr:$src))),
+ (vt (bitconvert (zvt immAllZerosV))))))],
+ d>, EVEX, EVEX_KZ;
+ }
+}
+
+multiclass avx512_load_vl<bits<8> opc, string OpcodeStr, string ld_pat,
+ string elty, string elsz, string vsz512,
+ string vsz256, string vsz128, Domain d,
+ Predicate prd, bit IsReMaterializable = 1> {
+ let Predicates = [prd] in
+ defm Z : avx512_load<opc, OpcodeStr,
+ !cast<PatFrag>(ld_pat##"v"##vsz512##elty##elsz),
+ !cast<RegisterClass>("VK"##vsz512##"WM"), VR512,
+ !cast<ValueType>("v"##vsz512##elty##elsz), v16i32,
+ !cast<X86MemOperand>(elty##"512mem"), d,
+ IsReMaterializable>, EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_load<opc, OpcodeStr,
+ !cast<PatFrag>(ld_pat##!if(!eq(elty,"f"),
+ "v"##vsz256##elty##elsz, "v4i64")),
+ !cast<RegisterClass>("VK"##vsz256##"WM"), VR256X,
+ !cast<ValueType>("v"##vsz256##elty##elsz), v8i32,
+ !cast<X86MemOperand>(elty##"256mem"), d,
+ IsReMaterializable>, EVEX_V256;
+
+ defm Z128 : avx512_load<opc, OpcodeStr,
+ !cast<PatFrag>(ld_pat##!if(!eq(elty,"f"),
+ "v"##vsz128##elty##elsz, "v2i64")),
+ !cast<RegisterClass>("VK"##vsz128##"WM"), VR128X,
+ !cast<ValueType>("v"##vsz128##elty##elsz), v4i32,
+ !cast<X86MemOperand>(elty##"128mem"), d,
+ IsReMaterializable>, EVEX_V128;
}
- let mayLoad = 1 in
- def rmkz : AVX512PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, x86memop:$src2),
- !strconcat(asm,
- " \t{$src2, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src2}"),
- [], d>, EVEX, EVEX_KZ;
}
-multiclass avx512_store<bits<8> opc, RegisterClass RC, RegisterClass KRC,
- X86MemOperand x86memop, PatFrag store_frag,
- string asm, Domain d, ValueType vt> {
+
+multiclass avx512_store<bits<8> opc, string OpcodeStr, PatFrag st_frag,
+ ValueType OpVT, RegisterClass KRC, RegisterClass RC,
+ X86MemOperand memop, Domain d> {
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rr_alt : AVX512PI<opc, MRMDestReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(asm, " \t{$src, $dst|$dst, $src}"), [], d>,
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [], d>,
EVEX;
let Constraints = "$src1 = $dst" in
- def alt_rrk : AVX512PI<opc, MRMDestReg, (outs RC:$dst),
- (ins RC:$src1, KRC:$mask, RC:$src2),
- !strconcat(asm,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"), [], d>,
+ def rrk_alt : AVX512PI<opc, MRMDestReg, (outs RC:$dst),
+ (ins RC:$src1, KRC:$mask, RC:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"), [], d>,
EVEX, EVEX_K;
- def alt_rrkz : AVX512PI<opc, MRMDestReg, (outs RC:$dst),
+ def rrkz_alt : AVX512PI<opc, MRMDestReg, (outs RC:$dst),
(ins KRC:$mask, RC:$src),
- !strconcat(asm,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ !strconcat(OpcodeStr,
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
[], d>, EVEX, EVEX_KZ;
}
let mayStore = 1 in {
- def mr : AVX512PI<opc, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
- !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
- [(store_frag (vt RC:$src), addr:$dst)], d>, EVEX;
+ def mr : AVX512PI<opc, MRMDestMem, (outs), (ins memop:$dst, RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(st_frag (OpVT RC:$src), addr:$dst)], d>, EVEX;
def mrk : AVX512PI<opc, MRMDestMem, (outs),
- (ins x86memop:$dst, KRC:$mask, RC:$src),
- !strconcat(asm,
- " \t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
+ (ins memop:$dst, KRC:$mask, RC:$src),
+ !strconcat(OpcodeStr,
+ "\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
[], d>, EVEX, EVEX_K;
- def mrkz : AVX512PI<opc, MRMDestMem, (outs),
- (ins x86memop:$dst, KRC:$mask, RC:$src),
- !strconcat(asm,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
- [], d>, EVEX, EVEX_KZ;
}
}
-defm VMOVAPSZ : avx512_load<0x28, VR512, VK16WM, f512mem, alignedloadv16f32,
- "vmovaps", SSEPackedSingle, v16f32>,
- avx512_store<0x29, VR512, VK16WM, f512mem, alignedstore512,
- "vmovaps", SSEPackedSingle, v16f32>,
- PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VMOVAPDZ : avx512_load<0x28, VR512, VK8WM, f512mem, alignedloadv8f64,
- "vmovapd", SSEPackedDouble, v8f64>,
- avx512_store<0x29, VR512, VK8WM, f512mem, alignedstore512,
- "vmovapd", SSEPackedDouble, v8f64>,
- PD, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
-defm VMOVUPSZ : avx512_load<0x10, VR512, VK16WM, f512mem, loadv16f32,
- "vmovups", SSEPackedSingle, v16f32>,
- avx512_store<0x11, VR512, VK16WM, f512mem, store,
- "vmovups", SSEPackedSingle, v16f32>,
- PS, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VMOVUPDZ : avx512_load<0x10, VR512, VK8WM, f512mem, loadv8f64,
- "vmovupd", SSEPackedDouble, v8f64, 0>,
- avx512_store<0x11, VR512, VK8WM, f512mem, store,
- "vmovupd", SSEPackedDouble, v8f64>,
- PD, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
+
+multiclass avx512_store_vl<bits<8> opc, string OpcodeStr, string st_pat,
+ string st_suff_512, string st_suff_256,
+ string st_suff_128, string elty, string elsz,
+ string vsz512, string vsz256, string vsz128,
+ Domain d, Predicate prd> {
+ let Predicates = [prd] in
+ defm Z : avx512_store<opc, OpcodeStr, !cast<PatFrag>(st_pat##st_suff_512),
+ !cast<ValueType>("v"##vsz512##elty##elsz),
+ !cast<RegisterClass>("VK"##vsz512##"WM"), VR512,
+ !cast<X86MemOperand>(elty##"512mem"), d>, EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_store<opc, OpcodeStr, !cast<PatFrag>(st_pat##st_suff_256),
+ !cast<ValueType>("v"##vsz256##elty##elsz),
+ !cast<RegisterClass>("VK"##vsz256##"WM"), VR256X,
+ !cast<X86MemOperand>(elty##"256mem"), d>, EVEX_V256;
+
+ defm Z128 : avx512_store<opc, OpcodeStr, !cast<PatFrag>(st_pat##st_suff_128),
+ !cast<ValueType>("v"##vsz128##elty##elsz),
+ !cast<RegisterClass>("VK"##vsz128##"WM"), VR128X,
+ !cast<X86MemOperand>(elty##"128mem"), d>, EVEX_V128;
+ }
+}
+
+defm VMOVAPS : avx512_load_vl<0x28, "vmovaps", "alignedload", "f", "32",
+ "16", "8", "4", SSEPackedSingle, HasAVX512>,
+ avx512_store_vl<0x29, "vmovaps", "alignedstore",
+ "512", "256", "", "f", "32", "16", "8", "4",
+ SSEPackedSingle, HasAVX512>,
+ PS, EVEX_CD8<32, CD8VF>;
+
+defm VMOVAPD : avx512_load_vl<0x28, "vmovapd", "alignedload", "f", "64",
+ "8", "4", "2", SSEPackedDouble, HasAVX512>,
+ avx512_store_vl<0x29, "vmovapd", "alignedstore",
+ "512", "256", "", "f", "64", "8", "4", "2",
+ SSEPackedDouble, HasAVX512>,
+ PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VMOVUPS : avx512_load_vl<0x10, "vmovups", "load", "f", "32",
+ "16", "8", "4", SSEPackedSingle, HasAVX512>,
+ avx512_store_vl<0x11, "vmovups", "store", "", "", "", "f", "32",
+ "16", "8", "4", SSEPackedSingle, HasAVX512>,
+ PS, EVEX_CD8<32, CD8VF>;
+
+defm VMOVUPD : avx512_load_vl<0x10, "vmovupd", "load", "f", "64",
+ "8", "4", "2", SSEPackedDouble, HasAVX512, 0>,
+ avx512_store_vl<0x11, "vmovupd", "store", "", "", "", "f", "64",
+ "8", "4", "2", SSEPackedDouble, HasAVX512>,
+ PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
def: Pat<(v8f64 (int_x86_avx512_mask_loadu_pd_512 addr:$ptr,
- (bc_v8f64 (v16i32 immAllZerosV)), GR8:$mask)),
+ (bc_v8f64 (v16i32 immAllZerosV)), GR8:$mask)),
(VMOVUPDZrmkz (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), addr:$ptr)>;
def: Pat<(v16f32 (int_x86_avx512_mask_loadu_ps_512 addr:$ptr,
@@ -1463,75 +2209,160 @@ def: Pat<(int_x86_avx512_mask_storeu_pd_512 addr:$ptr, (v8f64 VR512:$src),
(VMOVUPDZmrk addr:$ptr, (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)),
VR512:$src)>;
-defm VMOVDQA32: avx512_load<0x6F, VR512, VK16WM, i512mem, alignedloadv16i32,
- "vmovdqa32", SSEPackedInt, v16i32>,
- avx512_store<0x7F, VR512, VK16WM, i512mem, alignedstore512,
- "vmovdqa32", SSEPackedInt, v16i32>,
- PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VMOVDQA64: avx512_load<0x6F, VR512, VK8WM, i512mem, alignedloadv8i64,
- "vmovdqa64", SSEPackedInt, v8i64>,
- avx512_store<0x7F, VR512, VK8WM, i512mem, alignedstore512,
- "vmovdqa64", SSEPackedInt, v8i64>,
- PD, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
-defm VMOVDQU32: avx512_load<0x6F, VR512, VK16WM, i512mem, load,
- "vmovdqu32", SSEPackedInt, v16i32>,
- avx512_store<0x7F, VR512, VK16WM, i512mem, store,
- "vmovdqu32", SSEPackedInt, v16i32>,
- XS, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VMOVDQU64: avx512_load<0x6F, VR512, VK8WM, i512mem, load,
- "vmovdqu64", SSEPackedInt, v8i64>,
- avx512_store<0x7F, VR512, VK8WM, i512mem, store,
- "vmovdqu64", SSEPackedInt, v8i64>,
- XS, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8f32 VR256:$src)),
+ (VMOVUPSZmrk addr:$ptr,
+ (v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)),
+ (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256:$src, sub_ymm))>;
+
+def: Pat<(v8f32 (masked_load addr:$ptr, VK8WM:$mask, undef)),
+ (v8f32 (EXTRACT_SUBREG (v16f32 (VMOVUPSZrmkz
+ (v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)), addr:$ptr)), sub_ymm))>;
+
+def: Pat<(masked_store addr:$ptr, VK16WM:$mask, (v16f32 VR512:$src)),
+ (VMOVUPSZmrk addr:$ptr, VK16WM:$mask, VR512:$src)>;
+
+def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8f64 VR512:$src)),
+ (VMOVUPDZmrk addr:$ptr, VK8WM:$mask, VR512:$src)>;
+
+def: Pat<(v16f32 (masked_load addr:$ptr, VK16WM:$mask, undef)),
+ (VMOVUPSZrmkz VK16WM:$mask, addr:$ptr)>;
+
+def: Pat<(v16f32 (masked_load addr:$ptr, VK16WM:$mask,
+ (bc_v16f32 (v16i32 immAllZerosV)))),
+ (VMOVUPSZrmkz VK16WM:$mask, addr:$ptr)>;
+
+def: Pat<(v16f32 (masked_load addr:$ptr, VK16WM:$mask, (v16f32 VR512:$src0))),
+ (VMOVUPSZrmk VR512:$src0, VK16WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8f64 (masked_load addr:$ptr, VK8WM:$mask, undef)),
+ (VMOVUPDZrmkz VK8WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8f64 (masked_load addr:$ptr, VK8WM:$mask,
+ (bc_v8f64 (v16i32 immAllZerosV)))),
+ (VMOVUPDZrmkz VK8WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8f64 (masked_load addr:$ptr, VK8WM:$mask, (v8f64 VR512:$src0))),
+ (VMOVUPDZrmk VR512:$src0, VK8WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8f32 (masked_load addr:$ptr, VK8WM:$mask, (v8f32 VR256:$src0))),
+ (v8f32 (EXTRACT_SUBREG (v16f32 (VMOVUPSZrmk
+ (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256:$src0, sub_ymm),
+ (v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)), addr:$ptr)), sub_ymm))>;
+
+defm VMOVDQA32 : avx512_load_vl<0x6F, "vmovdqa32", "alignedload", "i", "32",
+ "16", "8", "4", SSEPackedInt, HasAVX512>,
+ avx512_store_vl<0x7F, "vmovdqa32", "alignedstore",
+ "512", "256", "", "i", "32", "16", "8", "4",
+ SSEPackedInt, HasAVX512>,
+ PD, EVEX_CD8<32, CD8VF>;
+
+defm VMOVDQA64 : avx512_load_vl<0x6F, "vmovdqa64", "alignedload", "i", "64",
+ "8", "4", "2", SSEPackedInt, HasAVX512>,
+ avx512_store_vl<0x7F, "vmovdqa64", "alignedstore",
+ "512", "256", "", "i", "64", "8", "4", "2",
+ SSEPackedInt, HasAVX512>,
+ PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VMOVDQU8 : avx512_load_vl<0x6F, "vmovdqu8", "load", "i", "8",
+ "64", "32", "16", SSEPackedInt, HasBWI>,
+ avx512_store_vl<0x7F, "vmovdqu8", "store", "", "", "",
+ "i", "8", "64", "32", "16", SSEPackedInt,
+ HasBWI>, XD, EVEX_CD8<8, CD8VF>;
+
+defm VMOVDQU16 : avx512_load_vl<0x6F, "vmovdqu16", "load", "i", "16",
+ "32", "16", "8", SSEPackedInt, HasBWI>,
+ avx512_store_vl<0x7F, "vmovdqu16", "store", "", "", "",
+ "i", "16", "32", "16", "8", SSEPackedInt,
+ HasBWI>, XD, VEX_W, EVEX_CD8<16, CD8VF>;
+
+defm VMOVDQU32 : avx512_load_vl<0x6F, "vmovdqu32", "load", "i", "32",
+ "16", "8", "4", SSEPackedInt, HasAVX512>,
+ avx512_store_vl<0x7F, "vmovdqu32", "store", "", "", "",
+ "i", "32", "16", "8", "4", SSEPackedInt,
+ HasAVX512>, XS, EVEX_CD8<32, CD8VF>;
+
+defm VMOVDQU64 : avx512_load_vl<0x6F, "vmovdqu64", "load", "i", "64",
+ "8", "4", "2", SSEPackedInt, HasAVX512>,
+ avx512_store_vl<0x7F, "vmovdqu64", "store", "", "", "",
+ "i", "64", "8", "4", "2", SSEPackedInt,
+ HasAVX512>, XS, VEX_W, EVEX_CD8<64, CD8VF>;
def: Pat<(v16i32 (int_x86_avx512_mask_loadu_d_512 addr:$ptr,
(v16i32 immAllZerosV), GR16:$mask)),
- (VMOVDQU32rmkz (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)), addr:$ptr)>;
+ (VMOVDQU32Zrmkz (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)), addr:$ptr)>;
def: Pat<(v8i64 (int_x86_avx512_mask_loadu_q_512 addr:$ptr,
- (bc_v8i64 (v16i32 immAllZerosV)), GR8:$mask)),
- (VMOVDQU64rmkz (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), addr:$ptr)>;
+ (bc_v8i64 (v16i32 immAllZerosV)), GR8:$mask)),
+ (VMOVDQU64Zrmkz (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)), addr:$ptr)>;
def: Pat<(int_x86_avx512_mask_storeu_d_512 addr:$ptr, (v16i32 VR512:$src),
- GR16:$mask),
- (VMOVDQU32mrk addr:$ptr, (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)),
+ GR16:$mask),
+ (VMOVDQU32Zmrk addr:$ptr, (v16i1 (COPY_TO_REGCLASS GR16:$mask, VK16WM)),
VR512:$src)>;
def: Pat<(int_x86_avx512_mask_storeu_q_512 addr:$ptr, (v8i64 VR512:$src),
- GR8:$mask),
- (VMOVDQU64mrk addr:$ptr, (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)),
+ GR8:$mask),
+ (VMOVDQU64Zmrk addr:$ptr, (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)),
VR512:$src)>;
let AddedComplexity = 20 in {
def : Pat<(v8i64 (vselect VK8WM:$mask, (v8i64 VR512:$src),
- (bc_v8i64 (v16i32 immAllZerosV)))),
- (VMOVDQU64rrkz VK8WM:$mask, VR512:$src)>;
+ (bc_v8i64 (v16i32 immAllZerosV)))),
+ (VMOVDQU64Zrrkz VK8WM:$mask, VR512:$src)>;
def : Pat<(v8i64 (vselect VK8WM:$mask, (bc_v8i64 (v16i32 immAllZerosV)),
- (v8i64 VR512:$src))),
- (VMOVDQU64rrkz (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$mask, VK16)),
+ (v8i64 VR512:$src))),
+ (VMOVDQU64Zrrkz (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$mask, VK16)),
VK8), VR512:$src)>;
def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 VR512:$src),
(v16i32 immAllZerosV))),
- (VMOVDQU32rrkz VK16WM:$mask, VR512:$src)>;
+ (VMOVDQU32Zrrkz VK16WM:$mask, VR512:$src)>;
def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 immAllZerosV),
- (v16i32 VR512:$src))),
- (VMOVDQU32rrkz (KNOTWrr VK16WM:$mask), VR512:$src)>;
-
-def : Pat<(v16f32 (vselect VK16WM:$mask, (v16f32 VR512:$src1),
- (v16f32 VR512:$src2))),
- (VMOVUPSZrrk VR512:$src2, VK16WM:$mask, VR512:$src1)>;
-def : Pat<(v8f64 (vselect VK8WM:$mask, (v8f64 VR512:$src1),
- (v8f64 VR512:$src2))),
- (VMOVUPDZrrk VR512:$src2, VK8WM:$mask, VR512:$src1)>;
-def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 VR512:$src1),
- (v16i32 VR512:$src2))),
- (VMOVDQU32rrk VR512:$src2, VK16WM:$mask, VR512:$src1)>;
-def : Pat<(v8i64 (vselect VK8WM:$mask, (v8i64 VR512:$src1),
- (v8i64 VR512:$src2))),
- (VMOVDQU64rrk VR512:$src2, VK8WM:$mask, VR512:$src1)>;
+ (v16i32 VR512:$src))),
+ (VMOVDQU32Zrrkz (KNOTWrr VK16WM:$mask), VR512:$src)>;
}
+
+def: Pat<(v16i32 (masked_load addr:$ptr, VK16WM:$mask, (v16i32 immAllZerosV))),
+ (VMOVDQU32Zrmkz VK16WM:$mask, addr:$ptr)>;
+
+def: Pat<(v16i32 (masked_load addr:$ptr, VK16WM:$mask, undef)),
+ (VMOVDQU32Zrmkz VK16WM:$mask, addr:$ptr)>;
+
+def: Pat<(v16i32 (masked_load addr:$ptr, VK16WM:$mask, (v16i32 VR512:$src0))),
+ (VMOVDQU32Zrmk VR512:$src0, VK16WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8i64 (masked_load addr:$ptr, VK8WM:$mask,
+ (bc_v8i64 (v16i32 immAllZerosV)))),
+ (VMOVDQU64Zrmkz VK8WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8i64 (masked_load addr:$ptr, VK8WM:$mask, undef)),
+ (VMOVDQU64Zrmkz VK8WM:$mask, addr:$ptr)>;
+
+def: Pat<(v8i64 (masked_load addr:$ptr, VK8WM:$mask, (v8i64 VR512:$src0))),
+ (VMOVDQU64Zrmk VR512:$src0, VK8WM:$mask, addr:$ptr)>;
+
+def: Pat<(masked_store addr:$ptr, VK16WM:$mask, (v16i32 VR512:$src)),
+ (VMOVDQU32Zmrk addr:$ptr, VK16WM:$mask, VR512:$src)>;
+
+def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8i64 VR512:$src)),
+ (VMOVDQU64Zmrk addr:$ptr, VK8WM:$mask, VR512:$src)>;
+
+// SKX replacement
+def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8i32 VR256:$src)),
+ (VMOVDQU32Z256mrk addr:$ptr, VK8WM:$mask, VR256:$src)>;
+
+// KNL replacement
+def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8i32 VR256:$src)),
+ (VMOVDQU32Zmrk addr:$ptr,
+ (v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)),
+ (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR256:$src, sub_ymm))>;
+
+def: Pat<(v8i32 (masked_load addr:$ptr, VK8WM:$mask, undef)),
+ (v8i32 (EXTRACT_SUBREG (v16i32 (VMOVDQU32Zrmkz
+ (v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)), addr:$ptr)), sub_ymm))>;
+
+
// Move Int Doubleword to Packed Double Int
//
def VMOVDI2PDIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR32:$src),
@@ -1638,12 +2469,12 @@ def VMOVQI2PQIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst),
// AVX-512 MOVSS, MOVSD
//===----------------------------------------------------------------------===//
-multiclass avx512_move_scalar <string asm, RegisterClass RC,
+multiclass avx512_move_scalar <string asm, RegisterClass RC,
SDNode OpNode, ValueType vt,
X86MemOperand x86memop, PatFrag mem_pat> {
let hasSideEffects = 0 in {
- def rr : SI<0x10, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, RC:$src2),
- !strconcat(asm, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ def rr : SI<0x10, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, RC:$src2),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128X:$dst, (vt (OpNode VR128X:$src1,
(scalar_to_vector RC:$src2))))],
IIC_SSE_MOV_S_RR>, EVEX_4V, VEX_LIG;
@@ -1651,16 +2482,22 @@ multiclass avx512_move_scalar <string asm, RegisterClass RC,
def rrk : SI<0x10, MRMSrcReg, (outs VR128X:$dst),
(ins VR128X:$src1, VK1WM:$mask, RC:$src2, RC:$src3),
!strconcat(asm,
- " \t{$src3, $src2, $dst {${mask}}|$dst {${mask}}, $src2, $src3}"),
+ "\t{$src3, $src2, $dst {${mask}}|$dst {${mask}}, $src2, $src3}"),
[], IIC_SSE_MOV_S_RR>, EVEX_4V, VEX_LIG, EVEX_K;
def rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
- !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (mem_pat addr:$src))], IIC_SSE_MOV_S_RM>,
EVEX, VEX_LIG;
+ let mayStore = 1 in {
def mr: SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
- !strconcat(asm, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>,
EVEX, VEX_LIG;
+ def mrk: SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, VK1WM:$mask, RC:$src),
+ !strconcat(asm, "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
+ [], IIC_SSE_MOV_S_MR>,
+ EVEX, VEX_LIG, EVEX_K;
+ } // mayStore
} //hasSideEffects = 0
}
@@ -1680,6 +2517,10 @@ def : Pat<(f64 (X86select VK1WM:$mask, (f64 FR64X:$src1), (f64 FR64X:$src2))),
(COPY_TO_REGCLASS (VMOVSDZrrk (COPY_TO_REGCLASS FR64X:$src2, VR128X),
VK1WM:$mask, (f64 (IMPLICIT_DEF)), FR64X:$src1), FR64X)>;
+def : Pat<(int_x86_avx512_mask_store_ss addr:$dst, VR128X:$src, GR8:$mask),
+ (VMOVSSZmrk addr:$dst, (i1 (COPY_TO_REGCLASS GR8:$mask, VK1WM)),
+ (COPY_TO_REGCLASS VR128X:$src, FR32X))>;
+
// For the disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def VMOVSSZrr_REV : SI<0x11, MRMDestReg, (outs VR128X:$dst),
@@ -1710,7 +2551,7 @@ let Predicates = [HasAVX512] in {
// Move low f32 and clear high bits.
def : Pat<(v8f32 (X86vzmovl (v8f32 VR256X:$src))),
(SUBREG_TO_REG (i32 0),
- (VMOVSSZrr (v4f32 (V_SET0)),
+ (VMOVSSZrr (v4f32 (V_SET0)),
(EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)), sub_xmm)>;
def : Pat<(v8i32 (X86vzmovl (v8i32 VR256X:$src))),
(SUBREG_TO_REG (i32 0),
@@ -1839,7 +2680,7 @@ let AddedComplexity = 15 in
def VMOVZPQILo2PQIZrr : AVX512XSI<0x7E, MRMSrcReg, (outs VR128X:$dst),
(ins VR128X:$src),
"vmovq\t{$src, $dst|$dst, $src}",
- [(set VR128X:$dst, (v2i64 (X86vzmovl
+ [(set VR128X:$dst, (v2i64 (X86vzmovl
(v2i64 VR128X:$src))))],
IIC_SSE_MOVQ_RR>, EVEX, VEX_W;
@@ -1861,7 +2702,7 @@ let Predicates = [HasAVX512] in {
(VMOV64toPQIZrr GR64:$src)>;
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
(VMOVDI2PDIZrr GR32:$src)>;
-
+
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(VMOVDI2PDIZrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
@@ -1898,136 +2739,201 @@ def : Pat<(v8i64 (X86Vinsert undef, GR64:$src2, (iPTR 0))),
//===----------------------------------------------------------------------===//
// AVX-512 - Non-temporals
//===----------------------------------------------------------------------===//
+let SchedRW = [WriteLoad] in {
+ def VMOVNTDQAZrm : AVX512PI<0x2A, MRMSrcMem, (outs VR512:$dst),
+ (ins i512mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}",
+ [(set VR512:$dst, (int_x86_avx512_movntdqa addr:$src))],
+ SSEPackedInt>, EVEX, T8PD, EVEX_V512,
+ EVEX_CD8<64, CD8VF>;
+
+ let Predicates = [HasAVX512, HasVLX] in {
+ def VMOVNTDQAZ256rm : AVX512PI<0x2A, MRMSrcMem, (outs VR256X:$dst),
+ (ins i256mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}", [],
+ SSEPackedInt>, EVEX, T8PD, EVEX_V256,
+ EVEX_CD8<64, CD8VF>;
+
+ def VMOVNTDQAZ128rm : AVX512PI<0x2A, MRMSrcMem, (outs VR128X:$dst),
+ (ins i128mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}", [],
+ SSEPackedInt>, EVEX, T8PD, EVEX_V128,
+ EVEX_CD8<64, CD8VF>;
+ }
+}
-def VMOVNTDQAZrm : AVX5128I<0x2A, MRMSrcMem, (outs VR512:$dst),
- (ins i512mem:$src),
- "vmovntdqa\t{$src, $dst|$dst, $src}",
- [(set VR512:$dst,
- (int_x86_avx512_movntdqa addr:$src))]>,
- EVEX, EVEX_V512, EVEX_CD8<64, CD8VF>;
-
-// Prefer non-temporal over temporal versions
-let AddedComplexity = 400, SchedRW = [WriteStore] in {
-
-def VMOVNTPSZmr : AVX512PSI<0x2B, MRMDestMem, (outs),
- (ins f512mem:$dst, VR512:$src),
- "vmovntps\t{$src, $dst|$dst, $src}",
- [(alignednontemporalstore (v16f32 VR512:$src),
- addr:$dst)],
- IIC_SSE_MOVNT>,
- EVEX, EVEX_V512, EVEX_CD8<32, CD8VF>;
-
-def VMOVNTPDZmr : AVX512PDI<0x2B, MRMDestMem, (outs),
- (ins f512mem:$dst, VR512:$src),
- "vmovntpd\t{$src, $dst|$dst, $src}",
- [(alignednontemporalstore (v8f64 VR512:$src),
- addr:$dst)],
- IIC_SSE_MOVNT>,
- EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-
-
-def VMOVNTDQZmr : AVX512BI<0xE7, MRMDestMem, (outs),
- (ins i512mem:$dst, VR512:$src),
- "vmovntdq\t{$src, $dst|$dst, $src}",
- [(alignednontemporalstore (v8i64 VR512:$src),
- addr:$dst)],
- IIC_SSE_MOVNT>,
- EVEX, EVEX_V512, EVEX_CD8<64, CD8VF>;
+multiclass avx512_movnt<bits<8> opc, string OpcodeStr, PatFrag st_frag,
+ ValueType OpVT, RegisterClass RC, X86MemOperand memop,
+ Domain d, InstrItinClass itin = IIC_SSE_MOVNT> {
+ let SchedRW = [WriteStore], mayStore = 1,
+ AddedComplexity = 400 in
+ def mr : AVX512PI<opc, MRMDestMem, (outs), (ins memop:$dst, RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(st_frag (OpVT RC:$src), addr:$dst)], d, itin>, EVEX;
}
+multiclass avx512_movnt_vl<bits<8> opc, string OpcodeStr, PatFrag st_frag,
+ string elty, string elsz, string vsz512,
+ string vsz256, string vsz128, Domain d,
+ Predicate prd, InstrItinClass itin = IIC_SSE_MOVNT> {
+ let Predicates = [prd] in
+ defm Z : avx512_movnt<opc, OpcodeStr, st_frag,
+ !cast<ValueType>("v"##vsz512##elty##elsz), VR512,
+ !cast<X86MemOperand>(elty##"512mem"), d, itin>,
+ EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_movnt<opc, OpcodeStr, st_frag,
+ !cast<ValueType>("v"##vsz256##elty##elsz), VR256X,
+ !cast<X86MemOperand>(elty##"256mem"), d, itin>,
+ EVEX_V256;
+
+ defm Z128 : avx512_movnt<opc, OpcodeStr, st_frag,
+ !cast<ValueType>("v"##vsz128##elty##elsz), VR128X,
+ !cast<X86MemOperand>(elty##"128mem"), d, itin>,
+ EVEX_V128;
+ }
+}
+
+defm VMOVNTDQ : avx512_movnt_vl<0xE7, "vmovntdq", alignednontemporalstore,
+ "i", "64", "8", "4", "2", SSEPackedInt,
+ HasAVX512>, PD, EVEX_CD8<64, CD8VF>;
+
+defm VMOVNTPD : avx512_movnt_vl<0x2B, "vmovntpd", alignednontemporalstore,
+ "f", "64", "8", "4", "2", SSEPackedDouble,
+ HasAVX512>, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+
+defm VMOVNTPS : avx512_movnt_vl<0x2B, "vmovntps", alignednontemporalstore,
+ "f", "32", "16", "8", "4", SSEPackedSingle,
+ HasAVX512>, PS, EVEX_CD8<32, CD8VF>;
+
//===----------------------------------------------------------------------===//
// AVX-512 - Integer arithmetic
//
multiclass avx512_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
- ValueType OpVT, RegisterClass KRC,
- RegisterClass RC, PatFrag memop_frag,
- X86MemOperand x86memop, PatFrag scalar_mfrag,
- X86MemOperand x86scalar_mop, string BrdcstStr,
- OpndItins itins, bit IsCommutable = 0> {
- let isCommutable = IsCommutable in
- def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (OpVT RC:$src2))))],
- itins.rr>, EVEX_4V;
- let AddedComplexity = 30 in {
- let Constraints = "$src0 = $dst" in
- def rrk : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src0, KRC:$mask, RC:$src1, RC:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [(set RC:$dst, (OpVT (vselect KRC:$mask,
- (OpNode (OpVT RC:$src1), (OpVT RC:$src2)),
- RC:$src0)))],
- itins.rr>, EVEX_4V, EVEX_K;
- def rrkz : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst {${mask}} {z}" ,
- "|$dst {${mask}} {z}, $src1, $src2}"),
- [(set RC:$dst, (OpVT (vselect KRC:$mask,
- (OpNode (OpVT RC:$src1), (OpVT RC:$src2)),
- (OpVT immAllZerosV))))],
- itins.rr>, EVEX_4V, EVEX_KZ;
+ X86VectorVTInfo _, OpndItins itins,
+ bit IsCommutable = 0> {
+ defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, _.RC:$src2)),
+ "", itins.rr, IsCommutable>,
+ AVX512BIBase, EVEX_4V;
+
+ let mayLoad = 1 in
+ defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr##_.Suffix,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1,
+ (bitconvert (_.LdFrag addr:$src2)))),
+ "", itins.rm>,
+ AVX512BIBase, EVEX_4V;
+}
+
+multiclass avx512_binop_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86VectorVTInfo _, OpndItins itins,
+ bit IsCommutable = 0> :
+ avx512_binop_rm<opc, OpcodeStr, OpNode, _, itins, IsCommutable> {
+ let mayLoad = 1 in
+ defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr##_.Suffix,
+ "${src2}"##_.BroadcastStr##", $src1",
+ "$src1, ${src2}"##_.BroadcastStr,
+ (_.VT (OpNode _.RC:$src1,
+ (X86VBroadcast
+ (_.ScalarLdFrag addr:$src2)))),
+ "", itins.rm>,
+ AVX512BIBase, EVEX_4V, EVEX_B;
+}
+
+multiclass avx512_binop_rm_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ AVX512VLVectorVTInfo VTInfo, OpndItins itins,
+ Predicate prd, bit IsCommutable = 0> {
+ let Predicates = [prd] in
+ defm Z : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info512, itins,
+ IsCommutable>, EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info256, itins,
+ IsCommutable>, EVEX_V256;
+ defm Z128 : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info128, itins,
+ IsCommutable>, EVEX_V128;
}
+}
- let mayLoad = 1 in {
- def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (memop_frag addr:$src2))))],
- itins.rm>, EVEX_4V;
- let AddedComplexity = 30 in {
- let Constraints = "$src0 = $dst" in
- def rmk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src0, KRC:$mask, RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [(set RC:$dst, (OpVT (vselect KRC:$mask,
- (OpNode (OpVT RC:$src1), (memop_frag addr:$src2)),
- RC:$src0)))],
- itins.rm>, EVEX_4V, EVEX_K;
- def rmkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
- [(set RC:$dst, (OpVT (vselect KRC:$mask,
- (OpNode (OpVT RC:$src1), (memop_frag addr:$src2)),
- (OpVT immAllZerosV))))],
- itins.rm>, EVEX_4V, EVEX_KZ;
- }
- def rmb : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
- ", $src1, $dst|$dst, $src1, ${src2}", BrdcstStr, "}"),
- [(set RC:$dst, (OpNode RC:$src1,
- (OpVT (X86VBroadcast (scalar_mfrag addr:$src2)))))],
- itins.rm>, EVEX_4V, EVEX_B;
- let AddedComplexity = 30 in {
- let Constraints = "$src0 = $dst" in
- def rmbk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src0, KRC:$mask, RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
- ", $src1, $dst {${mask}}|$dst {${mask}}, $src1, ${src2}",
- BrdcstStr, "}"),
- [(set RC:$dst, (OpVT (vselect KRC:$mask,
- (OpNode (OpVT RC:$src1),
- (OpVT (X86VBroadcast (scalar_mfrag addr:$src2)))),
- RC:$src0)))],
- itins.rm>, EVEX_4V, EVEX_B, EVEX_K;
- def rmbkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
- ", $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, ${src2}",
- BrdcstStr, "}"),
- [(set RC:$dst, (OpVT (vselect KRC:$mask,
- (OpNode (OpVT RC:$src1),
- (OpVT (X86VBroadcast (scalar_mfrag addr:$src2)))),
- (OpVT immAllZerosV))))],
- itins.rm>, EVEX_4V, EVEX_B, EVEX_KZ;
- }
+multiclass avx512_binop_rmb_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ AVX512VLVectorVTInfo VTInfo, OpndItins itins,
+ Predicate prd, bit IsCommutable = 0> {
+ let Predicates = [prd] in
+ defm Z : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info512, itins,
+ IsCommutable>, EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info256, itins,
+ IsCommutable>, EVEX_V256;
+ defm Z128 : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info128, itins,
+ IsCommutable>, EVEX_V128;
}
}
+multiclass avx512_binop_rm_vl_q<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins, Predicate prd,
+ bit IsCommutable = 0> {
+ defm NAME : avx512_binop_rmb_vl<opc, OpcodeStr, OpNode, avx512vl_i64_info,
+ itins, prd, IsCommutable>,
+ VEX_W, EVEX_CD8<64, CD8VF>;
+}
+
+multiclass avx512_binop_rm_vl_d<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins, Predicate prd,
+ bit IsCommutable = 0> {
+ defm NAME : avx512_binop_rmb_vl<opc, OpcodeStr, OpNode, avx512vl_i32_info,
+ itins, prd, IsCommutable>, EVEX_CD8<32, CD8VF>;
+}
+
+multiclass avx512_binop_rm_vl_w<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins, Predicate prd,
+ bit IsCommutable = 0> {
+ defm NAME : avx512_binop_rm_vl<opc, OpcodeStr, OpNode, avx512vl_i16_info,
+ itins, prd, IsCommutable>, EVEX_CD8<16, CD8VF>;
+}
+
+multiclass avx512_binop_rm_vl_b<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins, Predicate prd,
+ bit IsCommutable = 0> {
+ defm NAME : avx512_binop_rm_vl<opc, OpcodeStr, OpNode, avx512vl_i8_info,
+ itins, prd, IsCommutable>, EVEX_CD8<8, CD8VF>;
+}
+
+multiclass avx512_binop_rm_vl_dq<bits<8> opc_d, bits<8> opc_q, string OpcodeStr,
+ SDNode OpNode, OpndItins itins, Predicate prd,
+ bit IsCommutable = 0> {
+ defm Q : avx512_binop_rm_vl_q<opc_q, OpcodeStr, OpNode, itins, prd,
+ IsCommutable>;
+
+ defm D : avx512_binop_rm_vl_d<opc_d, OpcodeStr, OpNode, itins, prd,
+ IsCommutable>;
+}
+
+multiclass avx512_binop_rm_vl_bw<bits<8> opc_b, bits<8> opc_w, string OpcodeStr,
+ SDNode OpNode, OpndItins itins, Predicate prd,
+ bit IsCommutable = 0> {
+ defm W : avx512_binop_rm_vl_w<opc_w, OpcodeStr, OpNode, itins, prd,
+ IsCommutable>;
+
+ defm B : avx512_binop_rm_vl_b<opc_b, OpcodeStr, OpNode, itins, prd,
+ IsCommutable>;
+}
+
+multiclass avx512_binop_rm_vl_all<bits<8> opc_b, bits<8> opc_w,
+ bits<8> opc_d, bits<8> opc_q,
+ string OpcodeStr, SDNode OpNode,
+ OpndItins itins, bit IsCommutable = 0> {
+ defm NAME : avx512_binop_rm_vl_dq<opc_d, opc_q, OpcodeStr, OpNode,
+ itins, HasAVX512, IsCommutable>,
+ avx512_binop_rm_vl_bw<opc_b, opc_w, OpcodeStr, OpNode,
+ itins, HasBWI, IsCommutable>;
+}
+
multiclass avx512_binop_rm2<bits<8> opc, string OpcodeStr, ValueType DstVT,
ValueType SrcVT, RegisterClass KRC, RegisterClass RC,
PatFrag memop_frag, X86MemOperand x86memop,
@@ -2037,73 +2943,64 @@ multiclass avx512_binop_rm2<bits<8> opc, string OpcodeStr, ValueType DstVT,
{
def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, EVEX_4V;
def rrk : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
(ins KRC:$mask, RC:$src1, RC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
[], itins.rr>, EVEX_4V, EVEX_K;
def rrkz : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
(ins KRC:$mask, RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst {${mask}} {z}" ,
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}} {z}" ,
"|$dst {${mask}} {z}, $src1, $src2}"),
[], itins.rr>, EVEX_4V, EVEX_KZ;
}
let mayLoad = 1 in {
def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, EVEX_4V;
def rmk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins KRC:$mask, RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
+ "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
[], itins.rm>, EVEX_4V, EVEX_K;
def rmkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins KRC:$mask, RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
+ "\t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
[], itins.rm>, EVEX_4V, EVEX_KZ;
def rmb : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src2}", BrdcstStr,
", $src1, $dst|$dst, $src1, ${src2}", BrdcstStr, "}"),
[], itins.rm>, EVEX_4V, EVEX_B;
def rmbk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins KRC:$mask, RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src2}", BrdcstStr,
", $src1, $dst {${mask}}|$dst {${mask}}, $src1, ${src2}",
BrdcstStr, "}"),
[], itins.rm>, EVEX_4V, EVEX_B, EVEX_K;
def rmbkz : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins KRC:$mask, RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src2}", BrdcstStr,
", $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, ${src2}",
BrdcstStr, "}"),
[], itins.rm>, EVEX_4V, EVEX_B, EVEX_KZ;
}
}
-defm VPADDDZ : avx512_binop_rm<0xFE, "vpaddd", add, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 1>, EVEX_V512, EVEX_CD8<32, CD8VF>;
-
-defm VPSUBDZ : avx512_binop_rm<0xFA, "vpsubd", sub, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 0>, EVEX_V512, EVEX_CD8<32, CD8VF>;
-
-defm VPMULLDZ : avx512_binop_rm<0x40, "vpmulld", mul, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 1>, T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-
-defm VPADDQZ : avx512_binop_rm<0xD4, "vpaddq", add, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_INTALU_ITINS_P, 1>, EVEX_CD8<64, CD8VF>, EVEX_V512, VEX_W;
-
-defm VPSUBQZ : avx512_binop_rm<0xFB, "vpsubq", sub, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_INTALU_ITINS_P, 0>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPADD : avx512_binop_rm_vl_all<0xFC, 0xFD, 0xFE, 0xD4, "vpadd", add,
+ SSE_INTALU_ITINS_P, 1>;
+defm VPSUB : avx512_binop_rm_vl_all<0xF8, 0xF9, 0xFA, 0xFB, "vpsub", sub,
+ SSE_INTALU_ITINS_P, 0>;
+defm VPMULLD : avx512_binop_rm_vl_d<0x40, "vpmull", mul,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD;
+defm VPMULLW : avx512_binop_rm_vl_w<0xD5, "vpmull", mul,
+ SSE_INTALU_ITINS_P, HasBWI, 1>;
+defm VPMULLQ : avx512_binop_rm_vl_q<0x40, "vpmull", mul,
+ SSE_INTALU_ITINS_P, HasDQI, 1>, T8PD;
defm VPMULDQZ : avx512_binop_rm2<0x28, "vpmuldq", v8i64, v16i32, VK8WM, VR512,
memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
@@ -2124,41 +3021,33 @@ def : Pat<(v8i64 (int_x86_avx512_mask_pmul_dq_512 (v16i32 VR512:$src1),
(v16i32 VR512:$src2), (bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
(VPMULDQZrr VR512:$src1, VR512:$src2)>;
-defm VPMAXUDZ : avx512_binop_rm<0x3F, "vpmaxud", X86umax, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 1>,
- T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPMAXUQZ : avx512_binop_rm<0x3F, "vpmaxuq", X86umax, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_INTALU_ITINS_P, 0>,
- T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-
-defm VPMAXSDZ : avx512_binop_rm<0x3D, "vpmaxsd", X86smax, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 1>,
- T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPMAXSQZ : avx512_binop_rm<0x3D, "vpmaxsq", X86smax, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_INTALU_ITINS_P, 0>,
- T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-
-defm VPMINUDZ : avx512_binop_rm<0x3B, "vpminud", X86umin, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 1>,
- T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPMINUQZ : avx512_binop_rm<0x3B, "vpminuq", X86umin, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_INTALU_ITINS_P, 0>,
- T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-
-defm VPMINSDZ : avx512_binop_rm<0x39, "vpminsd", X86smin, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_INTALU_ITINS_P, 1>,
- T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPMINSQZ : avx512_binop_rm<0x39, "vpminsq", X86smin, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_INTALU_ITINS_P, 0>,
- T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPMAXSB : avx512_binop_rm_vl_b<0x3C, "vpmaxs", X86smax,
+ SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD;
+defm VPMAXSW : avx512_binop_rm_vl_w<0xEE, "vpmaxs", X86smax,
+ SSE_INTALU_ITINS_P, HasBWI, 1>;
+defm VPMAXS : avx512_binop_rm_vl_dq<0x3D, 0x3D, "vpmaxs", X86smax,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD;
+
+defm VPMAXUB : avx512_binop_rm_vl_b<0xDE, "vpmaxu", X86umax,
+ SSE_INTALU_ITINS_P, HasBWI, 1>;
+defm VPMAXUW : avx512_binop_rm_vl_w<0x3E, "vpmaxu", X86umax,
+ SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD;
+defm VPMAXU : avx512_binop_rm_vl_dq<0x3F, 0x3F, "vpmaxu", X86umax,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD;
+
+defm VPMINSB : avx512_binop_rm_vl_b<0x38, "vpmins", X86smin,
+ SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD;
+defm VPMINSW : avx512_binop_rm_vl_w<0xEA, "vpmins", X86smin,
+ SSE_INTALU_ITINS_P, HasBWI, 1>;
+defm VPMINS : avx512_binop_rm_vl_dq<0x39, 0x39, "vpmins", X86smin,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD;
+
+defm VPMINUB : avx512_binop_rm_vl_b<0xDA, "vpminu", X86umin,
+ SSE_INTALU_ITINS_P, HasBWI, 1>;
+defm VPMINUW : avx512_binop_rm_vl_w<0x3A, "vpminu", X86umin,
+ SSE_INTALU_ITINS_P, HasBWI, 1>, T8PD;
+defm VPMINU : avx512_binop_rm_vl_dq<0x3B, 0x3B, "vpminu", X86umin,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>, T8PD;
def : Pat <(v16i32 (int_x86_avx512_mask_pmaxs_d_512 (v16i32 VR512:$src1),
(v16i32 VR512:$src2), (v16i32 immAllZerosV), (i16 -1))),
@@ -2223,12 +3112,12 @@ multiclass avx512_unpack_int<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86MemOperand x86memop> {
def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (OpVT RC:$src2))))],
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1), (OpVT RC:$src2))))],
IIC_SSE_UNPCK>, EVEX_4V;
def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (OpVT (OpNode (OpVT RC:$src1),
(bitconvert (memop_frag addr:$src2)))))],
IIC_SSE_UNPCK>, EVEX_4V;
@@ -2250,19 +3139,19 @@ defm VPUNPCKHQDQZ : avx512_unpack_int<0x6D, "vpunpckhqdq", X86Unpckh, v8i64,
//
multiclass avx512_pshuf_imm<bits<8> opc, string OpcodeStr, RegisterClass RC,
- SDNode OpNode, PatFrag mem_frag,
+ SDNode OpNode, PatFrag mem_frag,
X86MemOperand x86memop, ValueType OpVT> {
def ri : AVX512Ii8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, (i8 imm:$src2))))]>,
EVEX;
def mi : AVX512Ii8<opc, MRMSrcMem, (outs RC:$dst),
(ins x86memop:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(OpVT (OpNode (mem_frag addr:$src1),
(i8 imm:$src2))))]>, EVEX;
@@ -2271,48 +3160,18 @@ multiclass avx512_pshuf_imm<bits<8> opc, string OpcodeStr, RegisterClass RC,
defm VPSHUFDZ : avx512_pshuf_imm<0x70, "vpshufd", VR512, X86PShufd, memopv16i32,
i512mem, v16i32>, PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
-let ExeDomain = SSEPackedSingle in
-defm VPERMILPSZ : avx512_pshuf_imm<0x04, "vpermilps", VR512, X86VPermilp,
- memopv16f32, i512mem, v16f32>, TAPD, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-let ExeDomain = SSEPackedDouble in
-defm VPERMILPDZ : avx512_pshuf_imm<0x05, "vpermilpd", VR512, X86VPermilp,
- memopv8f64, i512mem, v8f64>, TAPD, EVEX_V512,
- VEX_W, EVEX_CD8<32, CD8VF>;
-
-def : Pat<(v16i32 (X86VPermilp VR512:$src1, (i8 imm:$imm))),
- (VPERMILPSZri VR512:$src1, imm:$imm)>;
-def : Pat<(v8i64 (X86VPermilp VR512:$src1, (i8 imm:$imm))),
- (VPERMILPDZri VR512:$src1, imm:$imm)>;
-
//===----------------------------------------------------------------------===//
// AVX-512 Logical Instructions
//===----------------------------------------------------------------------===//
-defm VPANDDZ : avx512_binop_rm<0xDB, "vpandd", and, v16i32, VK16WM, VR512, memopv16i32,
- i512mem, loadi32, i32mem, "{1to16}", SSE_BIT_ITINS_P, 1>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPANDQZ : avx512_binop_rm<0xDB, "vpandq", and, v8i64, VK8WM, VR512, memopv8i64,
- i512mem, loadi64, i64mem, "{1to8}", SSE_BIT_ITINS_P, 1>,
- EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-defm VPORDZ : avx512_binop_rm<0xEB, "vpord", or, v16i32, VK16WM, VR512, memopv16i32,
- i512mem, loadi32, i32mem, "{1to16}", SSE_BIT_ITINS_P, 1>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPORQZ : avx512_binop_rm<0xEB, "vporq", or, v8i64, VK8WM, VR512, memopv8i64,
- i512mem, loadi64, i64mem, "{1to8}", SSE_BIT_ITINS_P, 1>,
- EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-defm VPXORDZ : avx512_binop_rm<0xEF, "vpxord", xor, v16i32, VK16WM, VR512, memopv16i32,
- i512mem, loadi32, i32mem, "{1to16}", SSE_BIT_ITINS_P, 1>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPXORQZ : avx512_binop_rm<0xEF, "vpxorq", xor, v8i64, VK8WM, VR512, memopv8i64,
- i512mem, loadi64, i64mem, "{1to8}", SSE_BIT_ITINS_P, 1>,
- EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-defm VPANDNDZ : avx512_binop_rm<0xDF, "vpandnd", X86andnp, v16i32, VK16WM, VR512,
- memopv16i32, i512mem, loadi32, i32mem, "{1to16}",
- SSE_BIT_ITINS_P, 0>, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPANDNQZ : avx512_binop_rm<0xDF, "vpandnq", X86andnp, v8i64, VK8WM, VR512,
- memopv8i64, i512mem, loadi64, i64mem, "{1to8}",
- SSE_BIT_ITINS_P, 0>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VPAND : avx512_binop_rm_vl_dq<0xDB, 0xDB, "vpand", and,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>;
+defm VPOR : avx512_binop_rm_vl_dq<0xEB, 0xEB, "vpor", or,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>;
+defm VPXOR : avx512_binop_rm_vl_dq<0xEF, 0xEF, "vpxor", xor,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>;
+defm VPANDN : avx512_binop_rm_vl_dq<0xDF, 0xDF, "vpandn", X86andnp,
+ SSE_INTALU_ITINS_P, HasAVX512, 1>;
//===----------------------------------------------------------------------===//
// AVX-512 FP arithmetic
@@ -2340,118 +3199,58 @@ defm VDIV : avx512_binop_s<0x5E, "div", fdiv, SSE_ALU_ITINS_S>;
}
multiclass avx512_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
- RegisterClass KRC,
- RegisterClass RC, ValueType vt,
- X86MemOperand x86memop, PatFrag mem_frag,
- X86MemOperand x86scalar_mop, PatFrag scalar_mfrag,
- string BrdcstStr,
- Domain d, OpndItins itins, bit commutable> {
- let isCommutable = commutable in {
- def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>,
- EVEX_4V;
-
- def rrk: PI<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src1, RC:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}} |$dst {${mask}}, $src1, $src2}"),
- [], itins.rr, d>, EVEX_4V, EVEX_K;
+ X86VectorVTInfo _, bit IsCommutable> {
+ defm rr: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, _.RC:$src2))>, EVEX_4V;
+ let mayLoad = 1 in {
+ defm rm: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr##_.Suffix,
+ "$src2, $src1", "$src1, $src2",
+ (OpNode _.RC:$src1, (_.LdFrag addr:$src2))>, EVEX_4V;
+ defm rmb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr##_.Suffix,
+ "${src2}"##_.BroadcastStr##", $src1",
+ "$src1, ${src2}"##_.BroadcastStr,
+ (OpNode _.RC:$src1, (_.VT (X86VBroadcast
+ (_.ScalarLdFrag addr:$src2))))>,
+ EVEX_4V, EVEX_B;
+ }//let mayLoad = 1
+}
- def rrkz: PI<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src1, RC:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
- [], itins.rr, d>, EVEX_4V, EVEX_KZ;
- }
+multiclass avx512_fp_binop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ bit IsCommutable = 0> {
+ defm PSZ : avx512_fp_packed<opc, OpcodeStr, OpNode, v16f32_info,
+ IsCommutable>, EVEX_V512, PS,
+ EVEX_CD8<32, CD8VF>;
+ defm PDZ : avx512_fp_packed<opc, OpcodeStr, OpNode, v8f64_info,
+ IsCommutable>, EVEX_V512, PD, VEX_W,
+ EVEX_CD8<64, CD8VF>;
- let mayLoad = 1 in {
- def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
- itins.rm, d>, EVEX_4V;
-
- def rmb : PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
- ", $src1, $dst|$dst, $src1, ${src2}", BrdcstStr, "}"),
- [(set RC:$dst, (OpNode RC:$src1,
- (vt (X86VBroadcast (scalar_mfrag addr:$src2)))))],
- itins.rm, d>, EVEX_4V, EVEX_B;
-
- def rmk : PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86memop:$src2), !strconcat(OpcodeStr,
- "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [], itins.rm, d>, EVEX_4V, EVEX_K;
-
- def rmkz : PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86memop:$src2), !strconcat(OpcodeStr,
- "\t{$src2, $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, $src2}"),
- [], itins.rm, d>, EVEX_4V, EVEX_KZ;
-
- def rmbk : PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2), !strconcat(OpcodeStr,
- " \t{${src2}", BrdcstStr,
- ", $src1, $dst {${mask}}|$dst {${mask}}, $src1, ${src2}", BrdcstStr, "}"),
- [], itins.rm, d>, EVEX_4V, EVEX_B, EVEX_K;
-
- def rmbkz : PI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, x86scalar_mop:$src2), !strconcat(OpcodeStr,
- " \t{${src2}", BrdcstStr,
- ", $src1, $dst {${mask}} {z}|$dst {${mask}} {z}, $src1, ${src2}",
- BrdcstStr, "}"),
- [], itins.rm, d>, EVEX_4V, EVEX_B, EVEX_KZ;
+ // Define only if AVX512VL feature is present.
+ let Predicates = [HasVLX] in {
+ defm PSZ128 : avx512_fp_packed<opc, OpcodeStr, OpNode, v4f32x_info,
+ IsCommutable>, EVEX_V128, PS,
+ EVEX_CD8<32, CD8VF>;
+ defm PSZ256 : avx512_fp_packed<opc, OpcodeStr, OpNode, v8f32x_info,
+ IsCommutable>, EVEX_V256, PS,
+ EVEX_CD8<32, CD8VF>;
+ defm PDZ128 : avx512_fp_packed<opc, OpcodeStr, OpNode, v2f64x_info,
+ IsCommutable>, EVEX_V128, PD, VEX_W,
+ EVEX_CD8<64, CD8VF>;
+ defm PDZ256 : avx512_fp_packed<opc, OpcodeStr, OpNode, v4f64x_info,
+ IsCommutable>, EVEX_V256, PD, VEX_W,
+ EVEX_CD8<64, CD8VF>;
}
}
-defm VADDPSZ : avx512_fp_packed<0x58, "addps", fadd, VK16WM, VR512, v16f32, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
- SSE_ALU_ITINS_P.s, 1>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
-
-defm VADDPDZ : avx512_fp_packed<0x58, "addpd", fadd, VK8WM, VR512, v8f64, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
- SSE_ALU_ITINS_P.d, 1>,
- EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
-
-defm VMULPSZ : avx512_fp_packed<0x59, "mulps", fmul, VK16WM, VR512, v16f32, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
- SSE_ALU_ITINS_P.s, 1>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
-defm VMULPDZ : avx512_fp_packed<0x59, "mulpd", fmul, VK8WM, VR512, v8f64, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
- SSE_ALU_ITINS_P.d, 1>,
- EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
-
-defm VMINPSZ : avx512_fp_packed<0x5D, "minps", X86fmin, VK16WM, VR512, v16f32, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
- SSE_ALU_ITINS_P.s, 1>,
- EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
-defm VMAXPSZ : avx512_fp_packed<0x5F, "maxps", X86fmax, VK16WM, VR512, v16f32, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
- SSE_ALU_ITINS_P.s, 1>,
- EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
-
-defm VMINPDZ : avx512_fp_packed<0x5D, "minpd", X86fmin, VK8WM, VR512, v8f64, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
- SSE_ALU_ITINS_P.d, 1>,
- EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
-defm VMAXPDZ : avx512_fp_packed<0x5F, "maxpd", X86fmax, VK8WM, VR512, v8f64, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
- SSE_ALU_ITINS_P.d, 1>,
- EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
-
-defm VSUBPSZ : avx512_fp_packed<0x5C, "subps", fsub, VK16WM, VR512, v16f32, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
- SSE_ALU_ITINS_P.s, 0>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
-defm VDIVPSZ : avx512_fp_packed<0x5E, "divps", fdiv, VK16WM, VR512, v16f32, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}", SSEPackedSingle,
- SSE_ALU_ITINS_P.s, 0>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
-
-defm VSUBPDZ : avx512_fp_packed<0x5C, "subpd", fsub, VK8WM, VR512, v8f64, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
- SSE_ALU_ITINS_P.d, 0>,
- EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
-defm VDIVPDZ : avx512_fp_packed<0x5E, "divpd", fdiv, VK8WM, VR512, v8f64, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}", SSEPackedDouble,
- SSE_ALU_ITINS_P.d, 0>,
- EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>;
+defm VADD : avx512_fp_binop_p<0x58, "vadd", fadd, 1>;
+defm VMUL : avx512_fp_binop_p<0x59, "vmul", fmul, 1>;
+defm VMIN : avx512_fp_binop_p<0x5D, "vmin", X86fmin, 1>;
+defm VMAX : avx512_fp_binop_p<0x5F, "vmax", X86fmax, 1>;
+defm VSUB : avx512_fp_binop_p<0x5C, "vsub", fsub>;
+defm VDIV : avx512_fp_binop_p<0x5E, "vdiv", fdiv>;
def : Pat<(v16f32 (int_x86_avx512_mask_max_ps_512 (v16f32 VR512:$src1),
(v16f32 VR512:$src2), (bc_v16f32 (v16i32 immAllZerosV)),
@@ -2476,18 +3275,18 @@ def : Pat<(v8f64 (int_x86_avx512_mask_min_pd_512 (v8f64 VR512:$src1),
// AVX-512 VPTESTM instructions
//===----------------------------------------------------------------------===//
-multiclass avx512_vptest<bits<8> opc, string OpcodeStr, RegisterClass KRC,
- RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
+multiclass avx512_vptest<bits<8> opc, string OpcodeStr, RegisterClass KRC,
+ RegisterClass RC, X86MemOperand x86memop, PatFrag memop_frag,
SDNode OpNode, ValueType vt> {
def rr : AVX512PI<opc, MRMSrcReg,
- (outs KRC:$dst), (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ (outs KRC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set KRC:$dst, (OpNode (vt RC:$src1), (vt RC:$src2)))],
SSEPackedInt>, EVEX_4V;
def rm : AVX512PI<opc, MRMSrcMem,
- (outs KRC:$dst), (ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set KRC:$dst, (OpNode (vt RC:$src1),
+ (outs KRC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set KRC:$dst, (OpNode (vt RC:$src1),
(bitconvert (memop_frag addr:$src2))))], SSEPackedInt>, EVEX_4V;
}
@@ -2514,154 +3313,122 @@ def : Pat <(i16 (int_x86_avx512_mask_ptestm_d_512 (v16i32 VR512:$src1),
def : Pat <(i8 (int_x86_avx512_mask_ptestm_q_512 (v8i64 VR512:$src1),
(v8i64 VR512:$src2), (i8 -1))),
(COPY_TO_REGCLASS (VPTESTMQZrr VR512:$src1, VR512:$src2), GR8)>;
+
//===----------------------------------------------------------------------===//
// AVX-512 Shift instructions
//===----------------------------------------------------------------------===//
multiclass avx512_shift_rmi<bits<8> opc, Format ImmFormR, Format ImmFormM,
- string OpcodeStr, SDNode OpNode, RegisterClass RC,
- ValueType vt, X86MemOperand x86memop, PatFrag mem_frag,
- RegisterClass KRC> {
- def ri : AVX512BIi8<opc, ImmFormR, (outs RC:$dst),
- (ins RC:$src1, i8imm:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (vt (OpNode RC:$src1, (i8 imm:$src2))))],
- SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V;
- def rik : AVX512BIi8<opc, ImmFormR, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, i8imm:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [], SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V, EVEX_K;
- def mi: AVX512BIi8<opc, ImmFormM, (outs RC:$dst),
- (ins x86memop:$src1, i8imm:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (OpNode (mem_frag addr:$src1),
- (i8 imm:$src2)))], SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V;
- def mik: AVX512BIi8<opc, ImmFormM, (outs RC:$dst),
- (ins KRC:$mask, x86memop:$src1, i8imm:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [], SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V, EVEX_K;
+ string OpcodeStr, SDNode OpNode, X86VectorVTInfo _> {
+ defm ri : AVX512_maskable<opc, ImmFormR, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, i8imm:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, (i8 imm:$src2))),
+ " ", SSE_INTSHIFT_ITINS_P.rr>, AVX512BIi8Base, EVEX_4V;
+ defm mi : AVX512_maskable<opc, ImmFormM, _, (outs _.RC:$dst),
+ (ins _.MemOp:$src1, i8imm:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode (_.MemOpFrag addr:$src1), (i8 imm:$src2))),
+ " ", SSE_INTSHIFT_ITINS_P.rm>, AVX512BIi8Base, EVEX_4V;
}
multiclass avx512_shift_rrm<bits<8> opc, string OpcodeStr, SDNode OpNode,
- RegisterClass RC, ValueType vt, ValueType SrcVT,
- PatFrag bc_frag, RegisterClass KRC> {
- // src2 is always 128-bit
- def rr : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, VR128X:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (vt (OpNode RC:$src1, (SrcVT VR128X:$src2))))],
- SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V;
- def rrk : AVX512BI<opc, MRMSrcReg, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, VR128X:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [], SSE_INTSHIFT_ITINS_P.rr>, EVEX_4V, EVEX_K;
- def rm : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, i128mem:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (vt (OpNode RC:$src1,
- (bc_frag (memopv2i64 addr:$src2)))))],
- SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V;
- def rmk : AVX512BI<opc, MRMSrcMem, (outs RC:$dst),
- (ins KRC:$mask, RC:$src1, i128mem:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}"),
- [], SSE_INTSHIFT_ITINS_P.rm>, EVEX_4V, EVEX_K;
+ ValueType SrcVT, PatFrag bc_frag, X86VectorVTInfo _> {
+ // src2 is always 128-bit
+ defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, VR128X:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, (SrcVT VR128X:$src2))),
+ " ", SSE_INTSHIFT_ITINS_P.rr>, AVX512BIBase, EVEX_4V;
+ defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, i128mem:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, (bc_frag (memopv2i64 addr:$src2)))),
+ " ", SSE_INTSHIFT_ITINS_P.rm>, AVX512BIBase, EVEX_4V;
+}
+
+multiclass avx512_shift_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType SrcVT, PatFrag bc_frag, X86VectorVTInfo _> {
+ defm Z : avx512_shift_rrm<opc, OpcodeStr, OpNode, SrcVT, bc_frag, _>, EVEX_V512;
+}
+
+multiclass avx512_shift_types<bits<8> opcd, bits<8> opcq, string OpcodeStr,
+ SDNode OpNode> {
+ defm D : avx512_shift_sizes<opcd, OpcodeStr#"d", OpNode, v4i32, bc_v4i32,
+ v16i32_info>, EVEX_CD8<32, CD8VQ>;
+ defm Q : avx512_shift_sizes<opcq, OpcodeStr#"q", OpNode, v2i64, bc_v2i64,
+ v8i64_info>, EVEX_CD8<64, CD8VQ>, VEX_W;
}
defm VPSRLDZ : avx512_shift_rmi<0x72, MRM2r, MRM2m, "vpsrld", X86vsrli,
- VR512, v16i32, i512mem, memopv16i32, VK16WM>,
+ v16i32_info>,
EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPSRLDZ : avx512_shift_rrm<0xD2, "vpsrld", X86vsrl,
- VR512, v16i32, v4i32, bc_v4i32, VK16WM>, EVEX_V512,
- EVEX_CD8<32, CD8VQ>;
-
defm VPSRLQZ : avx512_shift_rmi<0x73, MRM2r, MRM2m, "vpsrlq", X86vsrli,
- VR512, v8i64, i512mem, memopv8i64, VK8WM>, EVEX_V512,
+ v8i64_info>, EVEX_V512,
EVEX_CD8<64, CD8VF>, VEX_W;
-defm VPSRLQZ : avx512_shift_rrm<0xD3, "vpsrlq", X86vsrl,
- VR512, v8i64, v2i64, bc_v2i64, VK8WM>, EVEX_V512,
- EVEX_CD8<64, CD8VQ>, VEX_W;
defm VPSLLDZ : avx512_shift_rmi<0x72, MRM6r, MRM6m, "vpslld", X86vshli,
- VR512, v16i32, i512mem, memopv16i32, VK16WM>, EVEX_V512,
+ v16i32_info>, EVEX_V512,
EVEX_CD8<32, CD8VF>;
-defm VPSLLDZ : avx512_shift_rrm<0xF2, "vpslld", X86vshl,
- VR512, v16i32, v4i32, bc_v4i32, VK16WM>, EVEX_V512,
- EVEX_CD8<32, CD8VQ>;
-
defm VPSLLQZ : avx512_shift_rmi<0x73, MRM6r, MRM6m, "vpsllq", X86vshli,
- VR512, v8i64, i512mem, memopv8i64, VK8WM>, EVEX_V512,
+ v8i64_info>, EVEX_V512,
EVEX_CD8<64, CD8VF>, VEX_W;
-defm VPSLLQZ : avx512_shift_rrm<0xF3, "vpsllq", X86vshl,
- VR512, v8i64, v2i64, bc_v2i64, VK8WM>, EVEX_V512,
- EVEX_CD8<64, CD8VQ>, VEX_W;
defm VPSRADZ : avx512_shift_rmi<0x72, MRM4r, MRM4m, "vpsrad", X86vsrai,
- VR512, v16i32, i512mem, memopv16i32, VK16WM>,
+ v16i32_info>,
EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VPSRADZ : avx512_shift_rrm<0xE2, "vpsrad", X86vsra,
- VR512, v16i32, v4i32, bc_v4i32, VK16WM>, EVEX_V512,
- EVEX_CD8<32, CD8VQ>;
-
defm VPSRAQZ : avx512_shift_rmi<0x72, MRM4r, MRM4m, "vpsraq", X86vsrai,
- VR512, v8i64, i512mem, memopv8i64, VK8WM>, EVEX_V512,
+ v8i64_info>, EVEX_V512,
EVEX_CD8<64, CD8VF>, VEX_W;
-defm VPSRAQZ : avx512_shift_rrm<0xE2, "vpsraq", X86vsra,
- VR512, v8i64, v2i64, bc_v2i64, VK8WM>, EVEX_V512,
- EVEX_CD8<64, CD8VQ>, VEX_W;
+
+defm VPSLL : avx512_shift_types<0xF2, 0xF3, "vpsll", X86vshl>;
+defm VPSRA : avx512_shift_types<0xE2, 0xE2, "vpsra", X86vsra>;
+defm VPSRL : avx512_shift_types<0xD2, 0xD3, "vpsrl", X86vsrl>;
//===-------------------------------------------------------------------===//
// Variable Bit Shifts
//===-------------------------------------------------------------------===//
multiclass avx512_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
- RegisterClass RC, ValueType vt,
- X86MemOperand x86memop, PatFrag mem_frag> {
- def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst,
- (vt (OpNode RC:$src1, (vt RC:$src2))))]>,
- EVEX_4V;
- def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst,
- (vt (OpNode RC:$src1, (mem_frag addr:$src2))))]>,
- EVEX_4V;
+ X86VectorVTInfo _> {
+ defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, (_.VT _.RC:$src2))),
+ " ", SSE_INTSHIFT_ITINS_P.rr>, AVX5128IBase, EVEX_4V;
+ defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (_.VT (OpNode _.RC:$src1, (_.MemOpFrag addr:$src2))),
+ " ", SSE_INTSHIFT_ITINS_P.rm>, AVX5128IBase, EVEX_4V;
}
-defm VPSLLVDZ : avx512_var_shift<0x47, "vpsllvd", shl, VR512, v16i32,
- i512mem, memopv16i32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-defm VPSLLVQZ : avx512_var_shift<0x47, "vpsllvq", shl, VR512, v8i64,
- i512mem, memopv8i64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
-defm VPSRLVDZ : avx512_var_shift<0x45, "vpsrlvd", srl, VR512, v16i32,
- i512mem, memopv16i32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-defm VPSRLVQZ : avx512_var_shift<0x45, "vpsrlvq", srl, VR512, v8i64,
- i512mem, memopv8i64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
-defm VPSRAVDZ : avx512_var_shift<0x46, "vpsravd", sra, VR512, v16i32,
- i512mem, memopv16i32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-defm VPSRAVQZ : avx512_var_shift<0x46, "vpsravq", sra, VR512, v8i64,
- i512mem, memopv8i64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
+multiclass avx512_var_shift_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ AVX512VLVectorVTInfo _> {
+ defm Z : avx512_var_shift<opc, OpcodeStr, OpNode, _.info512>, EVEX_V512;
+}
+
+multiclass avx512_var_shift_types<bits<8> opc, string OpcodeStr,
+ SDNode OpNode> {
+ defm D : avx512_var_shift_sizes<opc, OpcodeStr#"d", OpNode,
+ avx512vl_i32_info>, EVEX_CD8<32, CD8VQ>;
+ defm Q : avx512_var_shift_sizes<opc, OpcodeStr#"q", OpNode,
+ avx512vl_i64_info>, EVEX_CD8<64, CD8VQ>, VEX_W;
+}
+
+defm VPSLLV : avx512_var_shift_types<0x47, "vpsllv", shl>;
+defm VPSRAV : avx512_var_shift_types<0x46, "vpsrav", sra>;
+defm VPSRLV : avx512_var_shift_types<0x45, "vpsrlv", srl>;
//===----------------------------------------------------------------------===//
// AVX-512 - MOVDDUP
//===----------------------------------------------------------------------===//
-multiclass avx512_movddup<string OpcodeStr, RegisterClass RC, ValueType VT,
+multiclass avx512_movddup<string OpcodeStr, RegisterClass RC, ValueType VT,
X86MemOperand x86memop, PatFrag memop_frag> {
def rr : AVX512PDI<0x12, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (VT (X86Movddup RC:$src)))]>, EVEX;
def rm : AVX512PDI<0x12, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst,
(VT (X86Movddup (memop_frag addr:$src))))]>, EVEX;
}
@@ -2678,11 +3445,11 @@ multiclass avx512_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr,
ValueType vt, RegisterClass RC, PatFrag mem_frag,
X86MemOperand x86memop> {
def rr : AVX512XSI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (vt (OpNode RC:$src)))]>, EVEX;
let mayLoad = 1 in
def rm : AVX512XSI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (OpNode (mem_frag addr:$src)))]>, EVEX;
}
@@ -2729,175 +3496,139 @@ let Predicates = [HasAVX512] in {
//===----------------------------------------------------------------------===//
// FMA - Fused Multiply Operations
//
+
let Constraints = "$src1 = $dst" in {
-multiclass avx512_fma3p_rm<bits<8> opc, string OpcodeStr,
- RegisterClass RC, X86MemOperand x86memop,
- PatFrag mem_frag, X86MemOperand x86scalar_mop, PatFrag scalar_mfrag,
- string BrdcstStr, SDNode OpNode, ValueType OpVT> {
- def r: AVX512FMA3<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, RC:$src3),
- !strconcat(OpcodeStr," \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set RC:$dst, (OpVT(OpNode RC:$src1, RC:$src2, RC:$src3)))]>;
+// Omitting the parameter OpNode (= null_frag) disables ISel pattern matching.
+multiclass avx512_fma3p_rm<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
+ SDPatternOperator OpNode = null_frag> {
+ defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src2, _.RC:$src3),
+ OpcodeStr, "$src3, $src2", "$src2, $src3",
+ (_.VT (OpNode _.RC:$src1, _.RC:$src2, _.RC:$src3))>,
+ AVX512FMA3Base;
let mayLoad = 1 in
- def m: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, x86memop:$src3),
- !strconcat(OpcodeStr, " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2,
- (mem_frag addr:$src3))))]>;
- def mb: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, x86scalar_mop:$src3),
- !strconcat(OpcodeStr, " \t{${src3}", BrdcstStr,
- ", $src2, $dst|$dst, $src2, ${src3}", BrdcstStr, "}"),
- [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
- (OpVT (X86VBroadcast (scalar_mfrag addr:$src3)))))]>, EVEX_B;
-}
+ defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src2, _.MemOp:$src3),
+ OpcodeStr, "$src3, $src2", "$src2, $src3",
+ (_.VT (OpNode _.RC:$src1, _.RC:$src2, (_.LdFrag addr:$src3)))>,
+ AVX512FMA3Base;
+
+ defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src2, _.ScalarMemOp:$src3),
+ OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"), !strconcat("$src2, ${src3}", _.BroadcastStr ),
+ (OpNode _.RC:$src1, _.RC:$src2,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))))>,
+ AVX512FMA3Base, EVEX_B;
+ }
} // Constraints = "$src1 = $dst"
-let ExeDomain = SSEPackedSingle in {
- defm VFMADD213PSZ : avx512_fma3p_rm<0xA8, "vfmadd213ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmadd, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
- defm VFMSUB213PSZ : avx512_fma3p_rm<0xAA, "vfmsub213ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmsub, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
- defm VFMADDSUB213PSZ : avx512_fma3p_rm<0xA6, "vfmaddsub213ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmaddsub, v16f32>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
- defm VFMSUBADD213PSZ : avx512_fma3p_rm<0xA7, "vfmsubadd213ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmsubadd, v16f32>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
- defm VFNMADD213PSZ : avx512_fma3p_rm<0xAC, "vfnmadd213ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fnmadd, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
- defm VFNMSUB213PSZ : avx512_fma3p_rm<0xAE, "vfnmsub213ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fnmsub, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
+multiclass avx512_fma3p_forms<bits<8> opc213, bits<8> opc231,
+ string OpcodeStr, X86VectorVTInfo VTI,
+ SDPatternOperator OpNode> {
+ defm v213r : avx512_fma3p_rm<opc213, !strconcat(OpcodeStr, "213", VTI.Suffix),
+ VTI, OpNode>, EVEX_CD8<VTI.EltSize, CD8VF>;
+
+ defm v231r : avx512_fma3p_rm<opc231, !strconcat(OpcodeStr, "231", VTI.Suffix),
+ VTI>, EVEX_CD8<VTI.EltSize, CD8VF>;
}
+
+multiclass avx512_fma3p<bits<8> opc213, bits<8> opc231,
+ string OpcodeStr,
+ SDPatternOperator OpNode> {
+let ExeDomain = SSEPackedSingle in {
+ defm NAME##PSZ : avx512_fma3p_forms<opc213, opc231, OpcodeStr,
+ v16f32_info, OpNode>, EVEX_V512;
+ defm NAME##PSZ256 : avx512_fma3p_forms<opc213, opc231, OpcodeStr,
+ v8f32x_info, OpNode>, EVEX_V256;
+ defm NAME##PSZ128 : avx512_fma3p_forms<opc213, opc231, OpcodeStr,
+ v4f32x_info, OpNode>, EVEX_V128;
+ }
let ExeDomain = SSEPackedDouble in {
- defm VFMADD213PDZ : avx512_fma3p_rm<0xA8, "vfmadd213pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmadd, v8f64>, EVEX_V512,
- VEX_W, EVEX_CD8<64, CD8VF>;
- defm VFMSUB213PDZ : avx512_fma3p_rm<0xAA, "vfmsub213pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmsub, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFMADDSUB213PDZ : avx512_fma3p_rm<0xA6, "vfmaddsub213pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmaddsub, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFMSUBADD213PDZ : avx512_fma3p_rm<0xA7, "vfmsubadd213pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmsubadd, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFNMADD213PDZ : avx512_fma3p_rm<0xAC, "vfnmadd213pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fnmadd, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFNMSUB213PDZ : avx512_fma3p_rm<0xAE, "vfnmsub213pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fnmsub, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
+ defm NAME##PDZ : avx512_fma3p_forms<opc213, opc231, OpcodeStr,
+ v8f64_info, OpNode>, EVEX_V512, VEX_W;
+ defm NAME##PDZ256 : avx512_fma3p_forms<opc213, opc231, OpcodeStr,
+ v4f64x_info, OpNode>, EVEX_V256, VEX_W;
+ defm NAME##PDZ128 : avx512_fma3p_forms<opc213, opc231, OpcodeStr,
+ v2f64x_info, OpNode>, EVEX_V128, VEX_W;
+ }
}
+defm VFMADD : avx512_fma3p<0xA8, 0xB8, "vfmadd", X86Fmadd>;
+defm VFMSUB : avx512_fma3p<0xAA, 0xBA, "vfmsub", X86Fmsub>;
+defm VFMADDSUB : avx512_fma3p<0xA6, 0xB6, "vfmaddsub", X86Fmaddsub>;
+defm VFMSUBADD : avx512_fma3p<0xA7, 0xB7, "vfmsubadd", X86Fmsubadd>;
+defm VFNMADD : avx512_fma3p<0xAC, 0xBC, "vfnmadd", X86Fnmadd>;
+defm VFNMSUB : avx512_fma3p<0xAE, 0xBE, "vfnmsub", X86Fnmsub>;
+
let Constraints = "$src1 = $dst" in {
-multiclass avx512_fma3p_m132<bits<8> opc, string OpcodeStr,
- RegisterClass RC, X86MemOperand x86memop,
- PatFrag mem_frag, X86MemOperand x86scalar_mop, PatFrag scalar_mfrag,
- string BrdcstStr, SDNode OpNode, ValueType OpVT> {
+multiclass avx512_fma3p_m132<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86VectorVTInfo _> {
let mayLoad = 1 in
- def m: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, RC:$src3, x86memop:$src2),
- !strconcat(OpcodeStr, " \t{$src2, $src3, $dst|$dst, $src3, $src2}"),
- [(set RC:$dst, (OpVT (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3)))]>;
- def mb: AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, RC:$src3, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
- ", $src3, $dst|$dst, $src3, ${src2}", BrdcstStr, "}"),
- [(set RC:$dst, (OpNode RC:$src1,
- (OpVT (X86VBroadcast (scalar_mfrag addr:$src2))), RC:$src3))]>, EVEX_B;
+ def m: AVX512FMA3<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src3, _.MemOp:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src3, $dst|$dst, $src3, $src2}"),
+ [(set _.RC:$dst, (_.VT (OpNode _.RC:$src1, (_.MemOpFrag addr:$src2),
+ _.RC:$src3)))]>;
+ def mb: AVX512FMA3<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src3, _.ScalarMemOp:$src2),
+ !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr,
+ ", $src3, $dst|$dst, $src3, ${src2}", _.BroadcastStr, "}"),
+ [(set _.RC:$dst,
+ (OpNode _.RC:$src1, (_.VT (X86VBroadcast
+ (_.ScalarLdFrag addr:$src2))),
+ _.RC:$src3))]>, EVEX_B;
}
} // Constraints = "$src1 = $dst"
+multiclass avx512_fma3p_m132_f<bits<8> opc,
+ string OpcodeStr,
+ SDNode OpNode> {
+
let ExeDomain = SSEPackedSingle in {
- defm VFMADD132PSZ : avx512_fma3p_m132<0x98, "vfmadd132ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmadd, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
- defm VFMSUB132PSZ : avx512_fma3p_m132<0x9A, "vfmsub132ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmsub, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
- defm VFMADDSUB132PSZ : avx512_fma3p_m132<0x96, "vfmaddsub132ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmaddsub, v16f32>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
- defm VFMSUBADD132PSZ : avx512_fma3p_m132<0x97, "vfmsubadd132ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fmsubadd, v16f32>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
- defm VFNMADD132PSZ : avx512_fma3p_m132<0x9C, "vfnmadd132ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fnmadd, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
- defm VFNMSUB132PSZ : avx512_fma3p_m132<0x9E, "vfnmsub132ps", VR512, f512mem,
- memopv16f32, f32mem, loadf32, "{1to16}",
- X86Fnmsub, v16f32>, EVEX_V512,
- EVEX_CD8<32, CD8VF>;
-}
+ defm NAME##PSZ : avx512_fma3p_m132<opc, OpcodeStr##ps,
+ OpNode,v16f32_info>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+ defm NAME##PSZ256 : avx512_fma3p_m132<opc, OpcodeStr##ps,
+ OpNode, v8f32x_info>, EVEX_V256, EVEX_CD8<32, CD8VF>;
+ defm NAME##PSZ128 : avx512_fma3p_m132<opc, OpcodeStr##ps,
+ OpNode, v4f32x_info>, EVEX_V128, EVEX_CD8<32, CD8VF>;
+ }
let ExeDomain = SSEPackedDouble in {
- defm VFMADD132PDZ : avx512_fma3p_m132<0x98, "vfmadd132pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmadd, v8f64>, EVEX_V512,
- VEX_W, EVEX_CD8<64, CD8VF>;
- defm VFMSUB132PDZ : avx512_fma3p_m132<0x9A, "vfmsub132pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmsub, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFMADDSUB132PDZ : avx512_fma3p_m132<0x96, "vfmaddsub132pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmaddsub, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFMSUBADD132PDZ : avx512_fma3p_m132<0x97, "vfmsubadd132pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fmsubadd, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFNMADD132PDZ : avx512_fma3p_m132<0x9C, "vfnmadd132pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fnmadd, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
- defm VFNMSUB132PDZ : avx512_fma3p_m132<0x9E, "vfnmsub132pd", VR512, f512mem,
- memopv8f64, f64mem, loadf64, "{1to8}",
- X86Fnmsub, v8f64>, EVEX_V512, VEX_W,
- EVEX_CD8<64, CD8VF>;
+ defm NAME##PDZ : avx512_fma3p_m132<opc, OpcodeStr##pd,
+ OpNode, v8f64_info>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VF>;
+ defm NAME##PDZ256 : avx512_fma3p_m132<opc, OpcodeStr##pd,
+ OpNode, v4f64x_info>, EVEX_V256, VEX_W, EVEX_CD8<32, CD8VF>;
+ defm NAME##PDZ128 : avx512_fma3p_m132<opc, OpcodeStr##pd,
+ OpNode, v2f64x_info>, EVEX_V128, VEX_W, EVEX_CD8<32, CD8VF>;
+ }
}
+defm VFMADD132 : avx512_fma3p_m132_f<0x98, "vfmadd132", X86Fmadd>;
+defm VFMSUB132 : avx512_fma3p_m132_f<0x9A, "vfmsub132", X86Fmsub>;
+defm VFMADDSUB132 : avx512_fma3p_m132_f<0x96, "vfmaddsub132", X86Fmaddsub>;
+defm VFMSUBADD132 : avx512_fma3p_m132_f<0x97, "vfmsubadd132", X86Fmsubadd>;
+defm VFNMADD132 : avx512_fma3p_m132_f<0x9C, "vfnmadd132", X86Fnmadd>;
+defm VFNMSUB132 : avx512_fma3p_m132_f<0x9E, "vfnmsub132", X86Fnmsub>;
+
+
// Scalar FMA
let Constraints = "$src1 = $dst" in {
-multiclass avx512_fma3s_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
- RegisterClass RC, ValueType OpVT,
- X86MemOperand x86memop, Operand memop,
+multiclass avx512_fma3s_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, ValueType OpVT,
+ X86MemOperand x86memop, Operand memop,
PatFrag mem_frag> {
let isCommutable = 1 in
def r : AVX512FMA3<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src2, RC:$src1, RC:$src3)))]>;
let mayLoad = 1 in
def m : AVX512FMA3<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, RC:$src2, f128mem:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src2, RC:$src1,
(mem_frag addr:$src3))))]>;
@@ -2930,12 +3661,12 @@ multiclass avx512_vcvtsi<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm> {
let hasSideEffects = 0 in {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
- !strconcat(asm," \t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
EVEX_4V;
let mayLoad = 1 in
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src),
- !strconcat(asm," \t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
EVEX_4V;
} // hasSideEffects = 0
}
@@ -3003,12 +3734,12 @@ multiclass avx512_cvt_s_int<bits<8> opc, RegisterClass SrcRC, RegisterClass DstR
string asm> {
let hasSideEffects = 0 in {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int SrcRC:$src))]>, EVEX, VEX_LIG,
Requires<[HasAVX512]>;
let mayLoad = 1 in
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"), []>, EVEX, VEX_LIG,
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"), []>, EVEX, VEX_LIG,
Requires<[HasAVX512]>;
} // hasSideEffects = 0
}
@@ -3106,10 +3837,10 @@ multiclass avx512_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
string asm> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (OpNode SrcRC:$src))]>, EVEX;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>, EVEX;
}
@@ -3182,21 +3913,21 @@ def : Pat<(extloadf32 addr:$src),
def : Pat<(f32 (fround FR64X:$src)), (VCVTSD2SSZrr FR64X:$src, FR64X:$src)>,
Requires<[HasAVX512]>;
-multiclass avx512_vcvt_fp_with_rc<bits<8> opc, string asm, RegisterClass SrcRC,
- RegisterClass DstRC, SDNode OpNode, PatFrag mem_frag,
+multiclass avx512_vcvt_fp_with_rc<bits<8> opc, string asm, RegisterClass SrcRC,
+ RegisterClass DstRC, SDNode OpNode, PatFrag mem_frag,
X86MemOperand x86memop, ValueType OpVT, ValueType InVT,
Domain d> {
let hasSideEffects = 0 in {
def rr : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst,
(OpVT (OpNode (InVT SrcRC:$src))))], d>, EVEX;
def rrb : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src, AVX512RC:$rc),
- !strconcat(asm," \t{$rc, $src, $dst|$dst, $src, $rc}"),
+ !strconcat(asm,"\t{$rc, $src, $dst|$dst, $src, $rc}"),
[], d>, EVEX, EVEX_B, EVEX_RC;
let mayLoad = 1 in
def rm : AVX512PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst,
(OpVT (OpNode (InVT (bitconvert (mem_frag addr:$src))))))], d>, EVEX;
} // hasSideEffects = 0
@@ -3208,12 +3939,12 @@ multiclass avx512_vcvt_fp<bits<8> opc, string asm, RegisterClass SrcRC,
Domain d> {
let hasSideEffects = 0 in {
def rr : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst,
(OpVT (OpNode (InVT SrcRC:$src))))], d>, EVEX;
let mayLoad = 1 in
def rm : AVX512PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst,
(OpVT (OpNode (InVT (bitconvert (mem_frag addr:$src))))))], d>, EVEX;
} // hasSideEffects = 0
@@ -3230,7 +3961,7 @@ defm VCVTPS2PDZ : avx512_vcvt_fp<0x5A, "vcvtps2pd", VR256X, VR512, fextend,
EVEX_CD8<32, CD8VH>;
def : Pat<(v8f64 (extloadv8f32 addr:$src)),
(VCVTPS2PDZrm addr:$src)>;
-
+
def : Pat<(v8f32 (int_x86_avx512_mask_cvtpd2ps_512 (v8f64 VR512:$src),
(bc_v8f32(v8i32 immAllZerosV)), (i8 -1), (i32 FROUND_CURRENT))),
(VCVTPD2PSZrr VR512:$src)>;
@@ -3259,7 +3990,7 @@ defm VCVTTPS2DQZ : avx512_vcvt_fp<0x5B, "vcvttps2dq", VR512, VR512, fp_to_sint,
EVEX_CD8<32, CD8VF>;
defm VCVTTPD2DQZ : avx512_vcvt_fp<0xE6, "vcvttpd2dq", VR512, VR256X, fp_to_sint,
- memopv8f64, f512mem, v8i32, v8f64,
+ memopv8f64, f512mem, v8i32, v8f64,
SSEPackedDouble>, EVEX_V512, PD, VEX_W,
EVEX_CD8<64, CD8VF>;
@@ -3277,7 +4008,7 @@ defm VCVTTPD2UDQZ : avx512_vcvt_fp<0x78, "vcvttpd2udq", VR512, VR256X, fp_to_uin
memopv8f64, f512mem, v8i32, v8f64,
SSEPackedDouble>, EVEX_V512, PS, VEX_W,
EVEX_CD8<64, CD8VF>;
-
+
// cvttpd2udq (src, 0, mask-all-ones, sae-current)
def : Pat<(v8i32 (int_x86_avx512_mask_cvttpd2udq_512 (v8f64 VR512:$src),
(v8i32 immAllZerosV), (i8 -1), FROUND_CURRENT)),
@@ -3287,16 +4018,16 @@ defm VCVTUDQ2PDZ : avx512_vcvt_fp<0x7A, "vcvtudq2pd", VR256X, VR512, uint_to_fp,
memopv4i64, f256mem, v8f64, v8i32,
SSEPackedDouble>, EVEX_V512, XS,
EVEX_CD8<32, CD8VH>;
-
+
defm VCVTUDQ2PSZ : avx512_vcvt_fp_with_rc<0x7A, "vcvtudq2ps", VR512, VR512, uint_to_fp,
memopv16i32, f512mem, v16f32, v16i32,
SSEPackedSingle>, EVEX_V512, XD,
EVEX_CD8<32, CD8VF>;
def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src1))),
- (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
+ (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
(v16f32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
-
+
def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src1))),
(EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
(v16f32 (SUBREG_TO_REG (i32 0), VR128X:$src1, sub_xmm)))), sub_xmm)>;
@@ -3304,7 +4035,7 @@ def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src1))),
def : Pat<(v8f32 (uint_to_fp (v8i32 VR256X:$src1))),
(EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr
(v16i32 (SUBREG_TO_REG (i32 0), VR256X:$src1, sub_ymm)))), sub_ymm)>;
-
+
def : Pat<(v4f32 (uint_to_fp (v4i32 VR128X:$src1))),
(EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr
(v16i32 (SUBREG_TO_REG (i32 0), VR128X:$src1, sub_xmm)))), sub_xmm)>;
@@ -3331,14 +4062,14 @@ multiclass avx512_vcvt_fp2int<bits<8> opc, string asm, RegisterClass SrcRC,
X86MemOperand x86memop, Domain d> {
let hasSideEffects = 0 in {
def rr : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[], d>, EVEX;
def rrb : AVX512PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src, AVX512RC:$rc),
- !strconcat(asm," \t{$rc, $src, $dst|$dst, $src, $rc}"),
+ !strconcat(asm,"\t{$rc, $src, $dst|$dst, $src, $rc}"),
[], d>, EVEX, EVEX_B, EVEX_RC;
let mayLoad = 1 in
def rm : AVX512PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
- !strconcat(asm," \t{$src, $dst|$dst, $src}"),
+ !strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[], d>, EVEX;
} // hasSideEffects = 0
}
@@ -3397,12 +4128,12 @@ multiclass avx512_cvtps2ph<RegisterClass destRC, RegisterClass srcRC,
X86MemOperand x86memop> {
def rr : AVX512AIi8<0x1D, MRMDestReg, (outs destRC:$dst),
(ins srcRC:$src1, i32i8imm:$src2),
- "vcvtps2ph \t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, EVEX;
let hasSideEffects = 0, mayStore = 1 in
def mr : AVX512AIi8<0x1D, MRMDestMem, (outs),
(ins x86memop:$dst, srcRC:$src1, i32i8imm:$src2),
- "vcvtps2ph \t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, EVEX;
+ "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, EVEX;
}
defm VCVTPH2PSZ : avx512_cvtph2ps<VR512, VR256X, f256mem>, EVEX_V512,
@@ -3449,7 +4180,7 @@ let Defs = [EFLAGS], Predicates = [HasAVX512] in {
VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
}
}
-
+
/// avx512_fp14_s rcp14ss, rcp14sd, rsqrt14ss, rsqrt14sd
multiclass avx512_fp14_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop> {
@@ -3457,12 +4188,12 @@ multiclass avx512_fp14_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
let mayLoad = 1 in {
def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
}
}
}
@@ -3498,26 +4229,49 @@ def : Pat <(v2f64 (int_x86_avx512_rsqrt14_sd (v2f64 VR128X:$src1),
/// avx512_fp14_p rcp14ps, rcp14pd, rsqrt14ps, rsqrt14pd
multiclass avx512_fp14_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
- RegisterClass RC, X86MemOperand x86memop,
- PatFrag mem_frag, ValueType OpVt> {
- def r : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(OpcodeStr,
- " \t{$src, $dst|$dst, $src}"),
- [(set RC:$dst, (OpVt (OpNode RC:$src)))]>,
- EVEX;
- def m : AVX5128I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- [(set RC:$dst, (OpVt (OpNode (mem_frag addr:$src))))]>,
- EVEX;
-}
-defm VRSQRT14PSZ : avx512_fp14_p<0x4E, "vrsqrt14ps", X86frsqrt, VR512, f512mem,
- memopv16f32, v16f32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VRSQRT14PDZ : avx512_fp14_p<0x4E, "vrsqrt14pd", X86frsqrt, VR512, f512mem,
- memopv8f64, v8f64>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
-defm VRCP14PSZ : avx512_fp14_p<0x4C, "vrcp14ps", X86frcp, VR512, f512mem,
- memopv16f32, v16f32>, EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VRCP14PDZ : avx512_fp14_p<0x4C, "vrcp14pd", X86frcp, VR512, f512mem,
- memopv8f64, v8f64>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
+ X86VectorVTInfo _> {
+ defm r: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src), OpcodeStr, "$src", "$src",
+ (_.FloatVT (OpNode _.RC:$src))>, EVEX, T8PD;
+ let mayLoad = 1 in {
+ defm m: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.MemOp:$src), OpcodeStr, "$src", "$src",
+ (OpNode (_.FloatVT
+ (bitconvert (_.LdFrag addr:$src))))>, EVEX, T8PD;
+ defm mb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.ScalarMemOp:$src), OpcodeStr,
+ "${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr,
+ (OpNode (_.FloatVT
+ (X86VBroadcast (_.ScalarLdFrag addr:$src))))>,
+ EVEX, T8PD, EVEX_B;
+ }
+}
+
+multiclass avx512_fp14_p_vl_all<bits<8> opc, string OpcodeStr, SDNode OpNode> {
+ defm PSZ : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"), OpNode, v16f32_info>,
+ EVEX_V512, EVEX_CD8<32, CD8VF>;
+ defm PDZ : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"), OpNode, v8f64_info>,
+ EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
+
+ // Define only if AVX512VL feature is present.
+ let Predicates = [HasVLX] in {
+ defm PSZ128 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"),
+ OpNode, v4f32x_info>,
+ EVEX_V128, EVEX_CD8<32, CD8VF>;
+ defm PSZ256 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"),
+ OpNode, v8f32x_info>,
+ EVEX_V256, EVEX_CD8<32, CD8VF>;
+ defm PDZ128 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"),
+ OpNode, v2f64x_info>,
+ EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>;
+ defm PDZ256 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"),
+ OpNode, v4f64x_info>,
+ EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>;
+ }
+}
+
+defm VRSQRT14 : avx512_fp14_p_vl_all<0x4E, "vrsqrt14", X86frsqrt>;
+defm VRCP14 : avx512_fp14_p_vl_all<0x4C, "vrcp14", X86frcp>;
def : Pat <(v16f32 (int_x86_avx512_rsqrt14_ps_512 (v16f32 VR512:$src),
(bc_v16f32 (v16i32 immAllZerosV)), (i16 -1))),
@@ -3534,148 +4288,100 @@ def : Pat <(v8f64 (int_x86_avx512_rcp14_pd_512 (v8f64 VR512:$src),
(VRCP14PDZr VR512:$src)>;
/// avx512_fp28_s rcp28ss, rcp28sd, rsqrt28ss, rsqrt28sd
-multiclass avx512_fp28_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
- X86MemOperand x86memop> {
- let hasSideEffects = 0, Predicates = [HasERI] in {
- def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
- def rrb : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2),
- !strconcat(OpcodeStr,
- " \t{{sae}, $src2, $src1, $dst|$dst, $src1, $src2, {sae}}"),
- []>, EVEX_4V, EVEX_B;
- let mayLoad = 1 in {
- def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86memop:$src2),
- !strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, EVEX_4V;
- }
-}
+multiclass avx512_fp28_s<bits<8> opc, string OpcodeStr,X86VectorVTInfo _,
+ SDNode OpNode> {
+
+ defm r : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
+ (i32 FROUND_CURRENT))>;
+
+ defm rb : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
+ (i32 FROUND_NO_EXC)), "{sae}">, EVEX_B;
+
+ defm m : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr,
+ "$src2, $src1", "$src1, $src2",
+ (OpNode (_.VT _.RC:$src1),
+ (_.VT (scalar_to_vector (_.ScalarLdFrag addr:$src2))),
+ (i32 FROUND_CURRENT))>;
}
-defm VRCP28SS : avx512_fp28_s<0xCB, "vrcp28ss", FR32X, f32mem>,
- EVEX_CD8<32, CD8VT1>;
-defm VRCP28SD : avx512_fp28_s<0xCB, "vrcp28sd", FR64X, f64mem>,
- VEX_W, EVEX_CD8<64, CD8VT1>;
-defm VRSQRT28SS : avx512_fp28_s<0xCD, "vrsqrt28ss", FR32X, f32mem>,
- EVEX_CD8<32, CD8VT1>;
-defm VRSQRT28SD : avx512_fp28_s<0xCD, "vrsqrt28sd", FR64X, f64mem>,
- VEX_W, EVEX_CD8<64, CD8VT1>;
-
-def : Pat <(v4f32 (int_x86_avx512_rcp28_ss (v4f32 VR128X:$src1),
- (v4f32 VR128X:$src2), (bc_v4f32 (v4i32 immAllZerosV)), (i8 -1),
- FROUND_NO_EXC)),
- (COPY_TO_REGCLASS (VRCP28SSrrb (COPY_TO_REGCLASS VR128X:$src1, FR32X),
- (COPY_TO_REGCLASS VR128X:$src2, FR32X)), VR128X)>;
-
-def : Pat <(v2f64 (int_x86_avx512_rcp28_sd (v2f64 VR128X:$src1),
- (v2f64 VR128X:$src2), (bc_v2f64 (v4i32 immAllZerosV)), (i8 -1),
- FROUND_NO_EXC)),
- (COPY_TO_REGCLASS (VRCP28SDrrb (COPY_TO_REGCLASS VR128X:$src1, FR64X),
- (COPY_TO_REGCLASS VR128X:$src2, FR64X)), VR128X)>;
-
-def : Pat <(v4f32 (int_x86_avx512_rsqrt28_ss (v4f32 VR128X:$src1),
- (v4f32 VR128X:$src2), (bc_v4f32 (v4i32 immAllZerosV)), (i8 -1),
- FROUND_NO_EXC)),
- (COPY_TO_REGCLASS (VRSQRT28SSrrb (COPY_TO_REGCLASS VR128X:$src1, FR32X),
- (COPY_TO_REGCLASS VR128X:$src2, FR32X)), VR128X)>;
-
-def : Pat <(v2f64 (int_x86_avx512_rsqrt28_sd (v2f64 VR128X:$src1),
- (v2f64 VR128X:$src2), (bc_v2f64 (v4i32 immAllZerosV)), (i8 -1),
- FROUND_NO_EXC)),
- (COPY_TO_REGCLASS (VRSQRT28SDrrb (COPY_TO_REGCLASS VR128X:$src1, FR64X),
- (COPY_TO_REGCLASS VR128X:$src2, FR64X)), VR128X)>;
+multiclass avx512_eri_s<bits<8> opc, string OpcodeStr, SDNode OpNode> {
+ defm SS : avx512_fp28_s<opc, OpcodeStr#"ss", f32x_info, OpNode>,
+ EVEX_CD8<32, CD8VT1>;
+ defm SD : avx512_fp28_s<opc, OpcodeStr#"sd", f64x_info, OpNode>,
+ EVEX_CD8<64, CD8VT1>, VEX_W;
+}
+let hasSideEffects = 0, Predicates = [HasERI] in {
+ defm VRCP28 : avx512_eri_s<0xCB, "vrcp28", X86rcp28s>, T8PD, EVEX_4V;
+ defm VRSQRT28 : avx512_eri_s<0xCD, "vrsqrt28", X86rsqrt28s>, T8PD, EVEX_4V;
+}
/// avx512_fp28_p rcp28ps, rcp28pd, rsqrt28ps, rsqrt28pd
-multiclass avx512_fp28_p<bits<8> opc, string OpcodeStr,
- RegisterClass RC, X86MemOperand x86memop> {
- let hasSideEffects = 0, Predicates = [HasERI] in {
- def r : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(OpcodeStr,
- " \t{$src, $dst|$dst, $src}"),
- []>, EVEX;
- def rb : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(OpcodeStr,
- " \t{{sae}, $src, $dst|$dst, $src, {sae}}"),
- []>, EVEX, EVEX_B;
- def m : AVX5128I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
- []>, EVEX;
- }
+
+multiclass avx512_fp28_p<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
+ SDNode OpNode> {
+
+ defm r : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src), OpcodeStr, "$src", "$src",
+ (OpNode (_.VT _.RC:$src), (i32 FROUND_CURRENT))>;
+
+ defm rb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src), OpcodeStr,
+ "$src", "$src",
+ (OpNode (_.VT _.RC:$src), (i32 FROUND_NO_EXC)),
+ "{sae}">, EVEX_B;
+
+ defm m : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.MemOp:$src), OpcodeStr, "$src", "$src",
+ (OpNode (_.FloatVT
+ (bitconvert (_.LdFrag addr:$src))),
+ (i32 FROUND_CURRENT))>;
+
+ defm mb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.MemOp:$src), OpcodeStr, "$src", "$src",
+ (OpNode (_.FloatVT
+ (X86VBroadcast (_.ScalarLdFrag addr:$src))),
+ (i32 FROUND_CURRENT))>, EVEX_B;
}
-defm VRSQRT28PSZ : avx512_fp28_p<0xCC, "vrsqrt28ps", VR512, f512mem>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VRSQRT28PDZ : avx512_fp28_p<0xCC, "vrsqrt28pd", VR512, f512mem>,
- VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
-defm VRCP28PSZ : avx512_fp28_p<0xCA, "vrcp28ps", VR512, f512mem>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VRCP28PDZ : avx512_fp28_p<0xCA, "vrcp28pd", VR512, f512mem>,
- VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
-
-def : Pat <(v16f32 (int_x86_avx512_rsqrt28_ps (v16f32 VR512:$src),
- (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), FROUND_NO_EXC)),
- (VRSQRT28PSZrb VR512:$src)>;
-def : Pat <(v8f64 (int_x86_avx512_rsqrt28_pd (v8f64 VR512:$src),
- (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1), FROUND_NO_EXC)),
- (VRSQRT28PDZrb VR512:$src)>;
-
-def : Pat <(v16f32 (int_x86_avx512_rcp28_ps (v16f32 VR512:$src),
- (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), FROUND_NO_EXC)),
- (VRCP28PSZrb VR512:$src)>;
-def : Pat <(v8f64 (int_x86_avx512_rcp28_pd (v8f64 VR512:$src),
- (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1), FROUND_NO_EXC)),
- (VRCP28PDZrb VR512:$src)>;
-
-multiclass avx512_sqrt_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
- Intrinsic V16F32Int, Intrinsic V8F64Int,
- OpndItins itins_s, OpndItins itins_d> {
- def PSZrr :AVX512PSI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
- !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst, (v16f32 (OpNode VR512:$src)))], itins_s.rr>,
- EVEX, EVEX_V512;
- let mayLoad = 1 in
- def PSZrm : AVX512PSI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
- !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst,
- (OpNode (v16f32 (bitconvert (memopv16f32 addr:$src)))))],
- itins_s.rm>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VF>;
+multiclass avx512_eri<bits<8> opc, string OpcodeStr, SDNode OpNode> {
+ defm PS : avx512_fp28_p<opc, OpcodeStr#"ps", v16f32_info, OpNode>,
+ EVEX_CD8<32, CD8VF>;
+ defm PD : avx512_fp28_p<opc, OpcodeStr#"pd", v8f64_info, OpNode>,
+ VEX_W, EVEX_CD8<32, CD8VF>;
+}
- def PDZrr : AVX512PDI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
- !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst, (v8f64 (OpNode VR512:$src)))], itins_d.rr>,
- EVEX, EVEX_V512;
+let Predicates = [HasERI], hasSideEffects = 0 in {
- let mayLoad = 1 in
- def PDZrm : AVX512PDI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
- !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst, (OpNode
- (v8f64 (bitconvert (memopv16f32 addr:$src)))))],
- itins_d.rm>, EVEX, EVEX_V512, EVEX_CD8<64, CD8VF>;
+ defm VRSQRT28 : avx512_eri<0xCC, "vrsqrt28", X86rsqrt28>, EVEX, EVEX_V512, T8PD;
+ defm VRCP28 : avx512_eri<0xCA, "vrcp28", X86rcp28>, EVEX, EVEX_V512, T8PD;
+ defm VEXP2 : avx512_eri<0xC8, "vexp2", X86exp2>, EVEX, EVEX_V512, T8PD;
+}
-let isCodeGenOnly = 1 in {
- def PSZr_Int : AVX512PSI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
- !strconcat(OpcodeStr,
- "ps\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst, (V16F32Int VR512:$src))]>,
- EVEX, EVEX_V512;
- def PSZm_Int : AVX512PSI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
- !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst,
- (V16F32Int (memopv16f32 addr:$src)))]>, EVEX,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
- def PDZr_Int : AVX512PDI<opc, MRMSrcReg, (outs VR512:$dst), (ins VR512:$src),
- !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst, (V8F64Int VR512:$src))]>,
- EVEX, EVEX_V512, VEX_W;
- def PDZm_Int : AVX512PDI<opc, MRMSrcMem, (outs VR512:$dst), (ins f512mem:$src),
- !strconcat(OpcodeStr,
- "pd\t{$src, $dst|$dst, $src}"),
- [(set VR512:$dst, (V8F64Int (memopv8f64 addr:$src)))]>,
- EVEX, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
-} // isCodeGenOnly = 1
+multiclass avx512_sqrt_packed<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, X86VectorVTInfo _>{
+ defm r: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src), OpcodeStr, "$src", "$src",
+ (_.FloatVT (OpNode _.RC:$src))>, EVEX;
+ let mayLoad = 1 in {
+ defm m: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.MemOp:$src), OpcodeStr, "$src", "$src",
+ (OpNode (_.FloatVT
+ (bitconvert (_.LdFrag addr:$src))))>, EVEX;
+
+ defm mb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
+ (ins _.ScalarMemOp:$src), OpcodeStr,
+ "${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr,
+ (OpNode (_.FloatVT
+ (X86VBroadcast (_.ScalarLdFrag addr:$src))))>,
+ EVEX, EVEX_B;
+ }
}
multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr,
@@ -3691,7 +4397,7 @@ multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr,
(ins VR128X:$src1, VR128X:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set VR128X:$dst,
+ [(set VR128X:$dst,
(F32Int VR128X:$src1, VR128X:$src2))],
itins_s.rr>, XS, EVEX_4V;
let mayLoad = 1 in {
@@ -3705,7 +4411,7 @@ multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr,
(ins VR128X:$src1, ssmem:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set VR128X:$dst,
+ [(set VR128X:$dst,
(F32Int VR128X:$src1, sse_load_f32:$src2))],
itins_s.rm>, XS, EVEX_4V, EVEX_CD8<32, CD8VT1>;
}
@@ -3719,7 +4425,7 @@ multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr,
(ins VR128X:$src1, VR128X:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set VR128X:$dst,
+ [(set VR128X:$dst,
(F64Int VR128X:$src1, VR128X:$src2))],
itins_s.rr>, XD, EVEX_4V, VEX_W;
let mayLoad = 1 in {
@@ -3733,21 +4439,51 @@ multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr,
(ins VR128X:$src1, sdmem:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set VR128X:$dst,
- (F64Int VR128X:$src1, sse_load_f64:$src2))]>,
+ [(set VR128X:$dst,
+ (F64Int VR128X:$src1, sse_load_f64:$src2))]>,
XD, EVEX_4V, VEX_W, EVEX_CD8<64, CD8VT1>;
}
}
+multiclass avx512_sqrt_packed_all<bits<8> opc, string OpcodeStr,
+ SDNode OpNode> {
+ defm PSZ : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
+ v16f32_info>,
+ EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
+ defm PDZ : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
+ v8f64_info>,
+ EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>;
+ // Define only if AVX512VL feature is present.
+ let Predicates = [HasVLX] in {
+ defm PSZ128 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"),
+ OpNode, v4f32x_info>,
+ EVEX_V128, PS, EVEX_CD8<32, CD8VF>;
+ defm PSZ256 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"),
+ OpNode, v8f32x_info>,
+ EVEX_V256, PS, EVEX_CD8<32, CD8VF>;
+ defm PDZ128 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"),
+ OpNode, v2f64x_info>,
+ EVEX_V128, VEX_W, PD, EVEX_CD8<64, CD8VF>;
+ defm PDZ256 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"),
+ OpNode, v4f64x_info>,
+ EVEX_V256, VEX_W, PD, EVEX_CD8<64, CD8VF>;
+ }
+}
+
+defm VSQRT : avx512_sqrt_packed_all<0x51, "vsqrt", fsqrt>;
-defm VSQRT : avx512_sqrt_scalar<0x51, "sqrt",
- int_x86_avx512_sqrt_ss, int_x86_avx512_sqrt_sd,
- SSE_SQRTSS, SSE_SQRTSD>,
- avx512_sqrt_packed<0x51, "vsqrt", fsqrt,
- int_x86_avx512_sqrt_ps_512, int_x86_avx512_sqrt_pd_512,
- SSE_SQRTPS, SSE_SQRTPD>;
+defm VSQRT : avx512_sqrt_scalar<0x51, "sqrt",
+ int_x86_avx512_sqrt_ss, int_x86_avx512_sqrt_sd,
+ SSE_SQRTSS, SSE_SQRTSD>;
let Predicates = [HasAVX512] in {
+ def : Pat<(v16f32 (int_x86_avx512_sqrt_ps_512 (v16f32 VR512:$src1),
+ (bc_v16f32 (v16i32 immAllZerosV)), (i16 -1), FROUND_CURRENT)),
+ (VSQRTPSZr VR512:$src1)>;
+ def : Pat<(v8f64 (int_x86_avx512_sqrt_pd_512 (v8f64 VR512:$src1),
+ (bc_v8f64 (v16i32 immAllZerosV)), (i8 -1), FROUND_CURRENT)),
+ (VSQRTPDZr VR512:$src1)>;
+
def : Pat<(f32 (fsqrt FR32X:$src)),
(VSQRTSSZr (f32 (IMPLICIT_DEF)), FR32X:$src)>;
def : Pat<(f32 (fsqrt (load addr:$src))),
@@ -3856,7 +4592,7 @@ let ExeDomain = GenericDomain in {
(ins VR128X:$src1, ssmem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
- [(set VR128X:$dst, (F32Int VR128X:$src1,
+ [(set VR128X:$dst, (F32Int VR128X:$src1,
sse_load_f32:$src2, imm:$src3))]>,
EVEX_CD8<32, CD8VT1>;
@@ -3897,14 +4633,14 @@ let ExeDomain = d in {
def r : AVX512AIi8<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, EVEX;
// Vector intrinsic operation, mem
def m : AVX512AIi8<opc, MRMSrcMem,
(outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, EVEX;
} // ExeDomain
}
@@ -3935,20 +4671,20 @@ let ExeDomain = d in {
def r : AVX512AIi8<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, EVEX_4V;
def m : AVX512AIi8<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
- " \t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, EVEX_4V;
} // ExeDomain
}
defm VRNDSCALESS : avx512_rndscale_scalar<0x0A, "vrndscaless", ssmem, FR32X,
SSEPackedSingle>, EVEX_CD8<32, CD8VT1>;
-
+
defm VRNDSCALESD : avx512_rndscale_scalar<0x0B, "vrndscalesd", sdmem, FR64X,
SSEPackedDouble>, EVEX_CD8<64, CD8VT1>;
@@ -4004,32 +4740,32 @@ multiclass avx512_trunc_sat<bits<8> opc, string OpcodeStr,
RegisterClass KRC, X86MemOperand x86memop> {
def rr : AVX512XS8I<opc, MRMDestReg, (outs dstRC:$dst),
(ins srcRC:$src),
- !strconcat(OpcodeStr," \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr,"\t{$src, $dst|$dst, $src}"),
[]>, EVEX;
def rrk : AVX512XS8I<opc, MRMDestReg, (outs dstRC:$dst),
(ins KRC:$mask, srcRC:$src),
!strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
+ "\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
[]>, EVEX, EVEX_K;
def rrkz : AVX512XS8I<opc, MRMDestReg, (outs dstRC:$dst),
(ins KRC:$mask, srcRC:$src),
!strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
def mr : AVX512XS8I<opc, MRMDestMem, (outs), (ins x86memop:$dst, srcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[]>, EVEX;
def mrk : AVX512XS8I<opc, MRMDestMem, (outs),
(ins x86memop:$dst, KRC:$mask, srcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst {${mask}}|${dst} {${mask}}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst {${mask}}|${dst} {${mask}}, $src}"),
[]>, EVEX, EVEX_K;
}
-defm VPMOVQB : avx512_trunc_sat<0x32, "vpmovqb", VR128X, VR512, VK8WM,
+defm VPMOVQB : avx512_trunc_sat<0x32, "vpmovqb", VR128X, VR512, VK8WM,
i128mem>, EVEX_V512, EVEX_CD8<8, CD8VO>;
defm VPMOVSQB : avx512_trunc_sat<0x22, "vpmovsqb", VR128X, VR512, VK8WM,
i128mem>, EVEX_V512, EVEX_CD8<8, CD8VO>;
@@ -4083,36 +4819,36 @@ multiclass avx512_extend<bits<8> opc, string OpcodeStr, RegisterClass KRC,
def rr : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst),
(ins SrcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (OpVT (OpNode (InVT SrcRC:$src))))]>, EVEX;
def rrk : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst),
(ins KRC:$mask, SrcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst {${mask}} |$dst {${mask}}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst {${mask}} |$dst {${mask}}, $src}"),
[]>, EVEX, EVEX_K;
def rrkz : AVX5128I<opc, MRMSrcReg, (outs DstRC:$dst),
(ins KRC:$mask, SrcRC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
let mayLoad = 1 in {
def rm : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst),
(ins x86memop:$src),
- !strconcat(OpcodeStr," \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr,"\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst,
(OpVT (OpNode (InVT (bitconvert (mem_frag addr:$src))))))]>,
EVEX;
def rmk : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst),
(ins KRC:$mask, x86memop:$src),
- !strconcat(OpcodeStr," \t{$src, $dst {${mask}} |$dst {${mask}}, $src}"),
+ !strconcat(OpcodeStr,"\t{$src, $dst {${mask}} |$dst {${mask}}, $src}"),
[]>,
EVEX, EVEX_K;
def rmkz : AVX5128I<opc, MRMSrcMem, (outs DstRC:$dst),
(ins KRC:$mask, x86memop:$src),
- !strconcat(OpcodeStr," \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ !strconcat(OpcodeStr,"\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
[]>,
EVEX, EVEX_KZ;
}
@@ -4160,7 +4896,7 @@ let mayLoad = 1,
def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst, KRC:$mask_wb),
(ins RC:$src1, KRC:$mask, memop:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ "\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
[]>, EVEX, EVEX_K;
}
@@ -4177,7 +4913,7 @@ defm VGATHERDPSZ : avx512_gather<0x92, "vgatherdps", VK16WM, VR512, vz32mem>,
defm VGATHERQPSZ : avx512_gather<0x93, "vgatherqps", VK8WM, VR256X, vz64mem>,
EVEX_V512, EVEX_CD8<32, CD8VT1>;
}
-
+
defm VPGATHERDQZ : avx512_gather<0x90, "vpgatherdq", VK8WM, VR512, vy64xmem>,
EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VPGATHERDDZ : avx512_gather<0x90, "vpgatherdd", VK16WM, VR512, vz32mem>,
@@ -4194,7 +4930,7 @@ let mayStore = 1, Constraints = "$mask = $mask_wb" in
def mr : AVX5128I<opc, MRMDestMem, (outs KRC:$mask_wb),
(ins memop:$dst, KRC:$mask, RC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ "\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
[]>, EVEX, EVEX_K;
}
@@ -4227,7 +4963,7 @@ multiclass avx512_gather_scatter_prefetch<bits<8> opc, Format F, string OpcodeSt
RegisterClass KRC, X86MemOperand memop> {
let Predicates = [HasPFI], hasSideEffects = 1 in
def m : AVX5128I<opc, F, (outs), (ins KRC:$mask, memop:$src),
- !strconcat(OpcodeStr, " \t{$src {${mask}}|{${mask}}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src {${mask}}|{${mask}}, $src}"),
[]>, EVEX, EVEX_K;
}
@@ -4242,7 +4978,7 @@ defm VGATHERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dpd",
defm VGATHERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qpd",
VK8WM, vz64mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
-
+
defm VGATHERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dps",
VK16WM, vz32mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
@@ -4287,14 +5023,14 @@ multiclass avx512_shufp<RegisterClass RC, X86MemOperand x86memop,
def rmi : AVX512PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
(i8 imm:$src3))))], d, IIC_SSE_SHUFP>,
EVEX_4V, Sched<[WriteShuffleLd, ReadAfterLd]>;
def rri : AVX512PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
- " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
(i8 imm:$src3))))], d, IIC_SSE_SHUFP>,
EVEX_4V, Sched<[WriteShuffle]>;
@@ -4317,33 +5053,29 @@ def : Pat<(v8i64 (X86Shufp VR512:$src1,
(memopv8i64 addr:$src2), (i8 imm:$imm))),
(VSHUFPDZrmi VR512:$src1, addr:$src2, imm:$imm)>;
-multiclass avx512_alignr<string OpcodeStr, RegisterClass RC,
- X86MemOperand x86memop> {
- def rri : AVX512AIi8<0x03, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, i8imm:$src3),
- !strconcat(OpcodeStr,
- " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
- []>, EVEX_4V;
+multiclass avx512_valign<X86VectorVTInfo _> {
+ defm rri : AVX512_maskable<0x03, MRMSrcReg, _, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.RC:$src2, i8imm:$src3),
+ "valign"##_.Suffix,
+ "$src3, $src2, $src1", "$src1, $src2, $src3",
+ (_.VT (X86VAlign _.RC:$src2, _.RC:$src1,
+ (i8 imm:$src3)))>,
+ AVX512AIi8Base, EVEX_4V;
+
+ // Also match valign of packed floats.
+ def : Pat<(_.FloatVT (X86VAlign _.RC:$src1, _.RC:$src2, (i8 imm:$imm))),
+ (!cast<Instruction>(NAME##rri) _.RC:$src2, _.RC:$src1, imm:$imm)>;
+
let mayLoad = 1 in
- def rmi : AVX512AIi8<0x03, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86memop:$src2, i8imm:$src3),
- !strconcat(OpcodeStr,
- " \t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ def rmi : AVX512AIi8<0x03, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src1, _.MemOp:$src2, i8imm:$src3),
+ !strconcat("valign"##_.Suffix,
+ "\t{$src3, $src2, $src1, $dst|"
+ "$dst, $src1, $src2, $src3}"),
[]>, EVEX_4V;
}
-defm VALIGND : avx512_alignr<"valignd", VR512, i512mem>,
- EVEX_V512, EVEX_CD8<32, CD8VF>;
-defm VALIGNQ : avx512_alignr<"valignq", VR512, i512mem>,
- VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
-
-def : Pat<(v16f32 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
- (VALIGNDrri VR512:$src2, VR512:$src1, imm:$imm)>;
-def : Pat<(v8f64 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
- (VALIGNQrri VR512:$src2, VR512:$src1, imm:$imm)>;
-def : Pat<(v16i32 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
- (VALIGNDrri VR512:$src2, VR512:$src1, imm:$imm)>;
-def : Pat<(v8i64 (X86PAlignr VR512:$src1, VR512:$src2, (i8 imm:$imm))),
- (VALIGNQrri VR512:$src2, VR512:$src1, imm:$imm)>;
+defm VALIGND : avx512_valign<v16i32_info>, EVEX_V512, EVEX_CD8<32, CD8VF>;
+defm VALIGNQ : avx512_valign<v8i64_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VF>;
// Helper fragments to match sext vXi1 to vXiY.
def v16i1sextv16i32 : PatLeaf<(v16i32 (X86vsrai VR512:$src, (i8 31)))>;
@@ -4354,43 +5086,43 @@ multiclass avx512_vpabs<bits<8> opc, string OpcodeStr, ValueType OpVT,
X86MemOperand x86memop, X86MemOperand x86scalar_mop,
string BrdcstStr> {
def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[]>, EVEX;
def rrk : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
[]>, EVEX, EVEX_K;
def rrkz : AVX5128I<opc, MRMSrcReg, (outs RC:$dst), (ins KRC:$mask, RC:$src),
!strconcat(OpcodeStr,
- " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ "\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
let mayLoad = 1 in {
def rm : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
(ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, $dst|$dst, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[]>, EVEX;
def rmk : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
(ins KRC:$mask, x86memop:$src),
!strconcat(OpcodeStr,
- " \t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
+ "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
[]>, EVEX, EVEX_K;
def rmkz : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
(ins KRC:$mask, x86memop:$src),
!strconcat(OpcodeStr,
- " \t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
+ "\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
def rmb : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
(ins x86scalar_mop:$src),
- !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src}", BrdcstStr,
", $dst|$dst, ${src}", BrdcstStr, "}"),
[]>, EVEX, EVEX_B;
def rmbk : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
(ins KRC:$mask, x86scalar_mop:$src),
- !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src}", BrdcstStr,
", $dst {${mask}}|$dst {${mask}}, ${src}", BrdcstStr, "}"),
[]>, EVEX, EVEX_B, EVEX_K;
def rmbkz : AVX5128I<opc, MRMSrcMem, (outs VR512:$dst),
(ins KRC:$mask, x86scalar_mop:$src),
- !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src}", BrdcstStr,
", $dst {${mask}} {z}|$dst {${mask}} {z}, ${src}",
BrdcstStr, "}"),
[]>, EVEX, EVEX_B, EVEX_KZ;
@@ -4420,54 +5152,54 @@ def : Pat<(v8i64 (int_x86_avx512_mask_pabs_q_512 (v8i64 VR512:$src),
(bc_v8i64 (v16i32 immAllZerosV)), (i8 -1))),
(VPABSQZrr VR512:$src)>;
-multiclass avx512_conflict<bits<8> opc, string OpcodeStr,
+multiclass avx512_conflict<bits<8> opc, string OpcodeStr,
RegisterClass RC, RegisterClass KRC,
X86MemOperand x86memop,
X86MemOperand x86scalar_mop, string BrdcstStr> {
def rr : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src),
- !strconcat(OpcodeStr, " \t{$src, ${dst} |${dst}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, ${dst} |${dst}, $src}"),
[]>, EVEX;
def rm : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins x86memop:$src),
- !strconcat(OpcodeStr, " \t{$src, ${dst}|${dst}, $src}"),
+ !strconcat(OpcodeStr, "\t{$src, ${dst}|${dst}, $src}"),
[]>, EVEX;
def rmb : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins x86scalar_mop:$src),
- !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src}", BrdcstStr,
", ${dst}|${dst}, ${src}", BrdcstStr, "}"),
[]>, EVEX, EVEX_B;
def rrkz : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins KRC:$mask, RC:$src),
!strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
def rmkz : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins KRC:$mask, x86memop:$src),
!strconcat(OpcodeStr,
- " \t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
+ "\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}"),
[]>, EVEX, EVEX_KZ;
def rmbkz : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins KRC:$mask, x86scalar_mop:$src),
- !strconcat(OpcodeStr, " \t{${src}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src}", BrdcstStr,
", ${dst} {${mask}} {z}|${dst} {${mask}} {z}, ${src}",
BrdcstStr, "}"),
[]>, EVEX, EVEX_KZ, EVEX_B;
-
+
let Constraints = "$src1 = $dst" in {
def rrk : AVX5128I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, RC:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ "\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
[]>, EVEX, EVEX_K;
def rmk : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, x86memop:$src2),
!strconcat(OpcodeStr,
- " \t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
+ "\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
[]>, EVEX, EVEX_K;
def rmbk : AVX5128I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, KRC:$mask, x86scalar_mop:$src2),
- !strconcat(OpcodeStr, " \t{${src2}", BrdcstStr,
+ !strconcat(OpcodeStr, "\t{${src2}", BrdcstStr,
", ${dst} {${mask}}|${dst} {${mask}}, ${src2}", BrdcstStr, "}"),
[]>, EVEX, EVEX_K, EVEX_B;
}
@@ -4541,3 +5273,135 @@ def truncstorei1 : PatFrag<(ops node:$val, node:$ptr),
def : Pat<(truncstorei1 GR8:$src, addr:$dst),
(MOV8mr addr:$dst, GR8:$src)>;
+multiclass cvt_by_vec_width<bits<8> opc, X86VectorVTInfo Vec, string OpcodeStr > {
+def rr : AVX512XS8I<opc, MRMDestReg, (outs Vec.RC:$dst), (ins Vec.KRC:$src),
+ !strconcat(OpcodeStr##Vec.Suffix, "\t{$src, $dst|$dst, $src}"),
+ [(set Vec.RC:$dst, (Vec.VT (X86vsext Vec.KRC:$src)))]>, EVEX;
+}
+
+multiclass cvt_mask_by_elt_width<bits<8> opc, AVX512VLVectorVTInfo VTInfo,
+ string OpcodeStr, Predicate prd> {
+let Predicates = [prd] in
+ defm Z : cvt_by_vec_width<opc, VTInfo.info512, OpcodeStr>, EVEX_V512;
+
+ let Predicates = [prd, HasVLX] in {
+ defm Z256 : cvt_by_vec_width<opc, VTInfo.info256, OpcodeStr>, EVEX_V256;
+ defm Z128 : cvt_by_vec_width<opc, VTInfo.info128, OpcodeStr>, EVEX_V128;
+ }
+}
+
+multiclass avx512_convert_mask_to_vector<string OpcodeStr> {
+ defm NAME##B : cvt_mask_by_elt_width<0x28, avx512vl_i8_info, OpcodeStr,
+ HasBWI>;
+ defm NAME##W : cvt_mask_by_elt_width<0x28, avx512vl_i16_info, OpcodeStr,
+ HasBWI>, VEX_W;
+ defm NAME##D : cvt_mask_by_elt_width<0x38, avx512vl_i32_info, OpcodeStr,
+ HasDQI>;
+ defm NAME##Q : cvt_mask_by_elt_width<0x38, avx512vl_i64_info, OpcodeStr,
+ HasDQI>, VEX_W;
+}
+
+defm VPMOVM2 : avx512_convert_mask_to_vector<"vpmovm2">;
+
+//===----------------------------------------------------------------------===//
+// AVX-512 - COMPRESS and EXPAND
+//
+multiclass compress_by_vec_width<bits<8> opc, X86VectorVTInfo _,
+ string OpcodeStr> {
+ def rrkz : AVX5128I<opc, MRMDestReg, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}",
+ [(set _.RC:$dst, (_.VT (X86compress _.KRCWM:$mask, _.RC:$src,
+ _.ImmAllZerosV)))]>, EVEX_KZ;
+
+ let Constraints = "$src0 = $dst" in
+ def rrk : AVX5128I<opc, MRMDestReg, (outs _.RC:$dst),
+ (ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} |$dst {${mask}}, $src}",
+ [(set _.RC:$dst, (_.VT (X86compress _.KRCWM:$mask, _.RC:$src,
+ _.RC:$src0)))]>, EVEX_K;
+
+ let mayStore = 1 in {
+ def mrk : AVX5128I<opc, MRMDestMem, (outs),
+ (ins _.MemOp:$dst, _.KRCWM:$mask, _.RC:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} |$dst {${mask}}, $src}",
+ [(store (_.VT (X86compress _.KRCWM:$mask, _.RC:$src, undef)),
+ addr:$dst)]>,
+ EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>;
+ }
+}
+
+multiclass compress_by_elt_width<bits<8> opc, string OpcodeStr,
+ AVX512VLVectorVTInfo VTInfo> {
+ defm Z : compress_by_vec_width<opc, VTInfo.info512, OpcodeStr>, EVEX_V512;
+
+ let Predicates = [HasVLX] in {
+ defm Z256 : compress_by_vec_width<opc, VTInfo.info256, OpcodeStr>, EVEX_V256;
+ defm Z128 : compress_by_vec_width<opc, VTInfo.info128, OpcodeStr>, EVEX_V128;
+ }
+}
+
+defm VPCOMPRESSD : compress_by_elt_width <0x8B, "vpcompressd", avx512vl_i32_info>,
+ EVEX;
+defm VPCOMPRESSQ : compress_by_elt_width <0x8B, "vpcompressq", avx512vl_i64_info>,
+ EVEX, VEX_W;
+defm VCOMPRESSPS : compress_by_elt_width <0x8A, "vcompressps", avx512vl_f32_info>,
+ EVEX;
+defm VCOMPRESSPD : compress_by_elt_width <0x8A, "vcompresspd", avx512vl_f64_info>,
+ EVEX, VEX_W;
+
+// expand
+multiclass expand_by_vec_width<bits<8> opc, X86VectorVTInfo _,
+ string OpcodeStr> {
+ def rrkz : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.RC:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}",
+ [(set _.RC:$dst, (_.VT (X86expand _.KRCWM:$mask, (_.VT _.RC:$src),
+ _.ImmAllZerosV)))]>, EVEX_KZ;
+
+ let Constraints = "$src0 = $dst" in
+ def rrk : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
+ (ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} |$dst {${mask}}, $src}",
+ [(set _.RC:$dst, (_.VT (X86expand _.KRCWM:$mask,
+ (_.VT _.RC:$src), _.RC:$src0)))]>, EVEX_K;
+
+ let mayLoad = 1, Constraints = "$src0 = $dst" in
+ def rmk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.RC:$src0, _.KRCWM:$mask, _.MemOp:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} |$dst {${mask}}, $src}",
+ [(set _.RC:$dst, (_.VT (X86expand _.KRCWM:$mask,
+ (_.VT (bitconvert
+ (_.LdFrag addr:$src))),
+ _.RC:$src0)))]>,
+ EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>;
+
+ let mayLoad = 1 in
+ def rmkz : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
+ (ins _.KRCWM:$mask, _.MemOp:$src),
+ OpcodeStr # "\t{$src, $dst {${mask}} {z}|$dst {${mask}} {z}, $src}",
+ [(set _.RC:$dst, (_.VT (X86expand _.KRCWM:$mask,
+ (_.VT (bitconvert (_.LdFrag addr:$src))),
+ _.ImmAllZerosV)))]>,
+ EVEX_KZ, EVEX_CD8<_.EltSize, CD8VT1>;
+
+}
+
+multiclass expand_by_elt_width<bits<8> opc, string OpcodeStr,
+ AVX512VLVectorVTInfo VTInfo> {
+ defm Z : expand_by_vec_width<opc, VTInfo.info512, OpcodeStr>, EVEX_V512;
+
+ let Predicates = [HasVLX] in {
+ defm Z256 : expand_by_vec_width<opc, VTInfo.info256, OpcodeStr>, EVEX_V256;
+ defm Z128 : expand_by_vec_width<opc, VTInfo.info128, OpcodeStr>, EVEX_V128;
+ }
+}
+
+defm VPEXPANDD : expand_by_elt_width <0x89, "vpexpandd", avx512vl_i32_info>,
+ EVEX;
+defm VPEXPANDQ : expand_by_elt_width <0x89, "vpexpandq", avx512vl_i64_info>,
+ EVEX, VEX_W;
+defm VEXPANDPS : expand_by_elt_width <0x88, "vexpandps", avx512vl_f32_info>,
+ EVEX;
+defm VEXPANDPD : expand_by_elt_width <0x88, "vexpandpd", avx512vl_f64_info>,
+ EVEX, VEX_W;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td b/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td
index f2574cc..78efc4d 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td
@@ -15,13 +15,13 @@
//===----------------------------------------------------------------------===//
// LEA - Load Effective Address
let SchedRW = [WriteLEA] in {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def LEA16r : I<0x8D, MRMSrcMem,
- (outs GR16:$dst), (ins i32mem:$src),
+ (outs GR16:$dst), (ins anymem:$src),
"lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize16;
let isReMaterializable = 1 in
def LEA32r : I<0x8D, MRMSrcMem,
- (outs GR32:$dst), (ins i32mem:$src),
+ (outs GR32:$dst), (ins anymem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)], IIC_LEA>,
OpSize32, Requires<[Not64BitMode]>;
@@ -65,18 +65,18 @@ def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
[(set AL, (mul AL, GR8:$src)),
(implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>;
// AX,DX = AX*GR16
-let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
+let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in
def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
"mul{w}\t$src",
[], IIC_MUL16_REG>, OpSize16, Sched<[WriteIMul]>;
// EAX,EDX = EAX*GR32
-let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in
def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
"mul{l}\t$src",
[/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/],
IIC_MUL32_REG>, OpSize32, Sched<[WriteIMul]>;
// RAX,RDX = RAX*GR64
-let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in
def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
"mul{q}\t$src",
[/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/],
@@ -91,7 +91,7 @@ def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
[(set AL, (mul AL, (loadi8 addr:$src))),
(implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>;
// AX,DX = AX*[mem16]
-let mayLoad = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, hasSideEffects = 0 in {
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
"mul{w}\t$src",
@@ -107,7 +107,7 @@ def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
"mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>;
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [],
@@ -145,7 +145,7 @@ let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
"imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>;
}
-} // neverHasSideEffects
+} // hasSideEffects
let Defs = [EFLAGS] in {
@@ -456,64 +456,29 @@ def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
"inc{b}\t$dst",
[(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))],
IIC_UNARY_REG>;
-
-let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
-def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
+def INC16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
"inc{w}\t$dst",
- [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>,
- OpSize16, Requires<[Not64BitMode]>;
-def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
+ IIC_UNARY_REG>, OpSize16;
+def INC32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
"inc{l}\t$dst",
[(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
- IIC_UNARY_REG>,
- OpSize32, Requires<[Not64BitMode]>;
+ IIC_UNARY_REG>, OpSize32;
def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
[(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))],
IIC_UNARY_REG>;
-} // isConvertibleToThreeAddress = 1, CodeSize = 1
-
-
-// In 64-bit mode, single byte INC and DEC cannot be encoded.
-let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
-// Can transform into LEA.
-def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
- "inc{w}\t$dst",
- [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
- IIC_UNARY_REG>,
- OpSize16, Requires<[In64BitMode]>;
-def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
- "inc{l}\t$dst",
- [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
- IIC_UNARY_REG>,
- OpSize32, Requires<[In64BitMode]>;
-def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
- "dec{w}\t$dst",
- [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
- IIC_UNARY_REG>,
- OpSize16, Requires<[In64BitMode]>;
-def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
- "dec{l}\t$dst",
- [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
- IIC_UNARY_REG>,
- OpSize32, Requires<[In64BitMode]>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
-let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
- CodeSize = 2 in {
-def INC32_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
- "inc{w}\t$dst", [], IIC_UNARY_REG>,
- OpSize16, Requires<[Not64BitMode]>;
-def INC32_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
- "inc{l}\t$dst", [], IIC_UNARY_REG>,
- OpSize32, Requires<[Not64BitMode]>;
-def DEC32_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
- "dec{w}\t$dst", [], IIC_UNARY_REG>,
- OpSize16, Requires<[Not64BitMode]>;
-def DEC32_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
- "dec{l}\t$dst", [], IIC_UNARY_REG>,
- OpSize32, Requires<[Not64BitMode]>;
-} // isCodeGenOnly = 1, ForceDisassemble = 1, HasSideEffects = 0, CodeSize = 2
-
+// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
+let CodeSize = 1, hasSideEffects = 0 in {
+def INC16r_alt : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+ "inc{w}\t$dst", [], IIC_UNARY_REG>,
+ OpSize16, Requires<[Not64BitMode]>;
+def INC32r_alt : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ "inc{l}\t$dst", [], IIC_UNARY_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+} // CodeSize = 1, hasSideEffects = 0
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
@@ -522,35 +487,13 @@ let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
(implicit EFLAGS)], IIC_UNARY_MEM>;
def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
[(store (add (loadi16 addr:$dst), 1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize16, Requires<[Not64BitMode]>;
+ (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize16;
def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
[(store (add (loadi32 addr:$dst), 1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize32, Requires<[Not64BitMode]>;
+ (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize32;
def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
[(store (add (loadi64 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
-
-// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
-// how to unfold them.
-// FIXME: What is this for??
-def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
- [(store (add (loadi16 addr:$dst), 1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize16, Requires<[In64BitMode]>;
-def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
- [(store (add (loadi32 addr:$dst), 1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize32, Requires<[In64BitMode]>;
-def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
- [(store (add (loadi16 addr:$dst), -1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize16, Requires<[In64BitMode]>;
-def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
- [(store (add (loadi32 addr:$dst), -1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize32, Requires<[In64BitMode]>;
} // CodeSize = 2, SchedRW
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
@@ -559,21 +502,29 @@ def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
"dec{b}\t$dst",
[(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))],
IIC_UNARY_REG>;
-let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
-def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
+def DEC16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
"dec{w}\t$dst",
[(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
- IIC_UNARY_REG>,
- OpSize16, Requires<[Not64BitMode]>;
-def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ IIC_UNARY_REG>, OpSize16;
+def DEC32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
"dec{l}\t$dst",
[(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
- IIC_UNARY_REG>,
- OpSize32, Requires<[Not64BitMode]>;
+ IIC_UNARY_REG>, OpSize32;
def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
[(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))],
IIC_UNARY_REG>;
-} // CodeSize = 2
+} // isConvertibleToThreeAddress = 1, CodeSize = 2
+
+// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
+let CodeSize = 1, hasSideEffects = 0 in {
+def DEC16r_alt : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+ "dec{w}\t$dst", [], IIC_UNARY_REG>,
+ OpSize16, Requires<[Not64BitMode]>;
+def DEC32r_alt : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ "dec{l}\t$dst", [], IIC_UNARY_REG>,
+ OpSize32, Requires<[Not64BitMode]>;
+} // CodeSize = 1, hasSideEffects = 0
} // Constraints = "$src1 = $dst", SchedRW
@@ -583,12 +534,10 @@ let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
(implicit EFLAGS)], IIC_UNARY_MEM>;
def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
[(store (add (loadi16 addr:$dst), -1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize16, Requires<[Not64BitMode]>;
+ (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize16;
def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
[(store (add (loadi32 addr:$dst), -1), addr:$dst),
- (implicit EFLAGS)], IIC_UNARY_MEM>,
- OpSize32, Requires<[Not64BitMode]>;
+ (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize32;
def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
[(store (add (loadi64 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
@@ -710,15 +659,6 @@ class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
Sched<[WriteALU]>;
-// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
-// just a regclass (no eflags) as a result.
-class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode>
- : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
- [(set typeinfo.RegClass:$dst,
- (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
- IIC_BIN_NONMEM>;
-
// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
// just a EFLAGS as a result.
class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
@@ -825,13 +765,6 @@ class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
let ImmT = typeinfo.ImmEncoding;
}
-// BinOpRI_R - Instructions like "add reg, reg, imm".
-class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
- : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
- [(set typeinfo.RegClass:$dst,
- (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
-
// BinOpRI_F - Instructions like "cmp reg, imm".
class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
@@ -864,30 +797,23 @@ class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
let ImmT = Imm8; // Always 8-bit immediate.
}
-// BinOpRI8_R - Instructions like "add reg, reg, imm8".
-class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
- : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
- [(set typeinfo.RegClass:$dst,
- (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
-
// BinOpRI8_F - Instructions like "cmp reg, imm8".
class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
+ SDPatternOperator opnode, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
+ SDPatternOperator opnode, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
+ SDPatternOperator opnode, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
@@ -923,8 +849,8 @@ class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
[(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
// BinOpMI - Instructions like "add [mem], imm".
-class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
- Format f, list<dag> pattern, bits<8> opcode = 0x80,
+class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Format f, list<dag> pattern,
InstrItinClass itin = IIC_BIN_MEM>
: ITy<opcode, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
@@ -934,27 +860,26 @@ class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
}
// BinOpMI_RMW - Instructions like "add [mem], imm".
-class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
+class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
- : BinOpMI<mnemonic, typeinfo, f,
+ : BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src), addr:$dst),
(implicit EFLAGS)]>;
// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
-class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
- : BinOpMI<mnemonic, typeinfo, f,
+class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
- (implicit EFLAGS)], 0x80, IIC_BIN_CARRY_MEM>;
+ (implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
// BinOpMI_F - Instructions like "cmp [mem], imm".
-class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
- SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
- : BinOpMI<mnemonic, typeinfo, f,
+class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f>
+ : BinOpMI<opcode, mnemonic, typeinfo, f,
[(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
- typeinfo.ImmOperator:$src))],
- opcode>;
+ typeinfo.ImmOperator:$src))]>;
// BinOpMI8 - Instructions like "add [mem], imm8".
class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
@@ -969,7 +894,7 @@ class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
// BinOpMI8_RMW - Instructions like "add [mem], imm8".
class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
+ SDPatternOperator opnode, Format f>
: BinOpMI8<mnemonic, typeinfo, f,
[(store (opnode (load addr:$dst),
typeinfo.Imm8Operator:$src), addr:$dst),
@@ -977,7 +902,7 @@ class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
+ SDPatternOperator opnode, Format f>
: BinOpMI8<mnemonic, typeinfo, f,
[(store (opnode (load addr:$dst),
typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
@@ -985,7 +910,7 @@ class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
// BinOpMI8_F - Instructions like "cmp [mem], imm8".
class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
- SDNode opnode, Format f>
+ SDPatternOperator opnode, Format f>
: BinOpMI8<mnemonic, typeinfo, f,
[(set EFLAGS, (opnode (load addr:$dst),
typeinfo.Imm8Operator:$src))]>;
@@ -1023,12 +948,13 @@ multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
bit CommutableRR, bit ConvertibleToThreeAddress> {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
- let isCommutable = CommutableRR,
- isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
- def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
- def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
- def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
+ def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
+ def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
+ } // isConvertibleToThreeAddress
} // isCommutable
def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
@@ -1041,6 +967,8 @@ multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
+ def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
+
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
@@ -1048,7 +976,6 @@ multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
- def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
@@ -1066,10 +993,20 @@ multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
- def NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
- def NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
- def NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
- def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
+ def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>;
+ def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>;
+
+ // These are for the disassembler since 0x82 opcode behaves like 0x80, but
+ // not in 64-bit mode.
+ let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
+ hasSideEffects = 0 in {
+ let Constraints = "$src1 = $dst" in
+ def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
+ let mayLoad = 1, mayStore = 1 in
+ def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, null_frag, MemMRM>;
+ }
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
@@ -1094,12 +1031,13 @@ multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
bit ConvertibleToThreeAddress> {
let Uses = [EFLAGS], Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
- let isCommutable = CommutableRR,
- isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
- def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
- def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
- def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
+ } // isConvertibleToThreeAddress
} // isCommutable
def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>;
@@ -1112,6 +1050,8 @@ multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
+ def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
+
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
@@ -1119,7 +1059,6 @@ multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
- def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
@@ -1137,10 +1076,20 @@ multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
- def NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
- def NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
- def NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
- def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
+ def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
+ def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>;
+
+ // These are for the disassembler since 0x82 opcode behaves like 0x80, but
+ // not in 64-bit mode.
+ let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
+ hasSideEffects = 0 in {
+ let Constraints = "$src1 = $dst" in
+ def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
+ let mayLoad = 1, mayStore = 1 in
+ def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, null_frag, MemMRM>;
+ }
} // Uses = [EFLAGS], Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_FF<BaseOpc4, mnemonic, Xi8 , AL,
@@ -1162,12 +1111,13 @@ multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress> {
let Defs = [EFLAGS] in {
- let isCommutable = CommutableRR,
- isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
- def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
- def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
- def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
+ def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
+ def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
+ }
} // isCommutable
def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
@@ -1180,6 +1130,8 @@ multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
+ def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
+
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
@@ -1187,7 +1139,6 @@ multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
- def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
@@ -1204,10 +1155,19 @@ multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
- def NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
- def NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
- def NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
- def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
+ def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
+ def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>;
+ def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>;
+ def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>;
+
+ // These are for the disassembler since 0x82 opcode behaves like 0x80, but
+ // not in 64-bit mode.
+ let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
+ hasSideEffects = 0 in {
+ def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, null_frag, RegMRM>;
+ let mayLoad = 1 in
+ def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, null_frag, MemMRM>;
+ }
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
@@ -1272,15 +1232,15 @@ let isCompare = 1 in {
def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
- def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
- def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
- def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
- def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
+ def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
+ def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>;
+ def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>;
+ def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>;
// When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
// register class is constrained to GR8_NOREX. This pseudo is explicitly
// marked side-effect free, since it doesn't have an isel pattern like
- // other test instructions.
+ // other test instructions.
let isPseudo = 1, hasSideEffects = 0 in
def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
"", [], IIC_BIN_NONMEM>, Sched<[WriteALU]>;
@@ -1332,7 +1292,7 @@ let Predicates = [HasBMI] in {
// MULX Instruction
//
multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let isCommutable = 1 in
def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
@@ -1355,49 +1315,54 @@ let Predicates = [HasBMI2] in {
//===----------------------------------------------------------------------===//
// ADCX Instruction
//
-let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
+let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS],
+ Constraints = "$src0 = $dst", AddedComplexity = 10 in {
let SchedRW = [WriteALU] in {
- def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
- "adcx{l}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_NONMEM>, T8PD;
-
- def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
- "adcx{q}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_NONMEM>, T8PD, Requires<[In64BitMode]>;
+ def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst),
+ (ins GR32:$src0, GR32:$src), "adcx{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, EFLAGS,
+ (X86adc_flag GR32:$src0, GR32:$src, EFLAGS))],
+ IIC_BIN_CARRY_NONMEM>, T8PD;
+ def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst),
+ (ins GR64:$src0, GR64:$src), "adcx{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, EFLAGS,
+ (X86adc_flag GR64:$src0, GR64:$src, EFLAGS))],
+ IIC_BIN_CARRY_NONMEM>, T8PD;
} // SchedRW
let mayLoad = 1, SchedRW = [WriteALULd] in {
- def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
- "adcx{l}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_MEM>, T8PD;
-
- def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
- "adcx{q}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_MEM>, T8PD, Requires<[In64BitMode]>;
+ def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$src0, i32mem:$src), "adcx{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, EFLAGS,
+ (X86adc_flag GR32:$src0, (loadi32 addr:$src), EFLAGS))],
+ IIC_BIN_CARRY_MEM>, T8PD;
+
+ def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$src0, i64mem:$src), "adcx{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, EFLAGS,
+ (X86adc_flag GR64:$src0, (loadi64 addr:$src), EFLAGS))],
+ IIC_BIN_CARRY_MEM>, T8PD;
}
}
//===----------------------------------------------------------------------===//
// ADOX Instruction
//
-let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
+let Predicates = [HasADX], hasSideEffects = 0, Defs = [EFLAGS],
+ Uses = [EFLAGS] in {
let SchedRW = [WriteALU] in {
def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
- "adox{l}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_NONMEM>, T8XS;
+ "adox{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8XS;
def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
- "adox{q}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_NONMEM>, T8XS, Requires<[In64BitMode]>;
+ "adox{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8XS;
} // SchedRW
let mayLoad = 1, SchedRW = [WriteALULd] in {
def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
- "adox{l}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_MEM>, T8XS;
+ "adox{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8XS;
def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
- "adox{q}\t{$src, $dst|$dst, $src}",
- [], IIC_BIN_MEM>, T8XS, Requires<[In64BitMode]>;
+ "adox{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8XS;
}
}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrBuilder.h b/contrib/llvm/lib/Target/X86/X86InstrBuilder.h
index e421f8c..2056056 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrBuilder.h
+++ b/contrib/llvm/lib/Target/X86/X86InstrBuilder.h
@@ -21,8 +21,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86INSTRBUILDER_H
-#define X86INSTRBUILDER_H
+#ifndef LLVM_LIB_TARGET_X86_X86INSTRBUILDER_H
+#define LLVM_LIB_TARGET_X86_X86INSTRBUILDER_H
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
diff --git a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
index ca4f608..ed0a634 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td
@@ -32,7 +32,7 @@ def GetLo8XForm : SDNodeXForm<imm, [{
// PIC base construction. This expands to code that looks like this:
// call $next_inst
// popl %destreg"
-let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
+let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
"", []>;
@@ -46,11 +46,11 @@ let Defs = [ESP, EFLAGS], Uses = [ESP] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
- Requires<[Not64BitMode]>;
+ Requires<[NotLP64]>;
def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
- Requires<[Not64BitMode]>;
+ Requires<[NotLP64]>;
}
// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
@@ -62,11 +62,11 @@ let Defs = [RSP, EFLAGS], Uses = [RSP] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
- Requires<[In64BitMode]>;
+ Requires<[IsLP64]>;
def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
- Requires<[In64BitMode]>;
+ Requires<[IsLP64]>;
}
@@ -118,7 +118,7 @@ def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
"# variable sized alloca for segmented stacks",
[(set GR32:$dst,
(X86SegAlloca GR32:$size))]>,
- Requires<[Not64BitMode]>;
+ Requires<[NotLP64]>;
let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
@@ -214,6 +214,8 @@ let isPseudo = 1 in {
"#SEH_PushFrame $mode", []>;
def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
"#SEH_EndPrologue", []>;
+ def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
+ "#SEH_Epilogue", []>;
}
//===----------------------------------------------------------------------===//
@@ -257,7 +259,7 @@ def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
- isCodeGenOnly = 1, neverHasSideEffects = 1 in
+ isCodeGenOnly = 1, hasSideEffects = 0 in
def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
"", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
@@ -407,7 +409,8 @@ let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
-let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
+let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
+ ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
@@ -426,7 +429,8 @@ def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
- FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
+ FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
+ ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
@@ -596,12 +600,12 @@ def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, OpSize32, LOCK;
-def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
- ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
- ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
- !strconcat(mnemonic, "{q}\t",
- "{$src2, $dst|$dst, $src2}"),
- [], IIC_ALU_MEM>, LOCK;
+def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [], IIC_ALU_MEM>, LOCK;
def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
@@ -747,18 +751,88 @@ defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
TB, LOCK;
-def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
- "#ACQUIRE_MOV PSEUDO!",
- [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
-def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
- "#ACQUIRE_MOV PSEUDO!",
- [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
-def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
- "#ACQUIRE_MOV PSEUDO!",
- [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
-def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
- "#ACQUIRE_MOV PSEUDO!",
- [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
+/* The following multiclass tries to make sure that in code like
+ * x.store (immediate op x.load(acquire), release)
+ * an operation directly on memory is generated instead of wasting a register.
+ * It is not automatic as atomic_store/load are only lowered to MOV instructions
+ * extremely late to prevent them from being accidentally reordered in the backend
+ * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
+ */
+multiclass RELEASE_BINOP_MI<string op> {
+ def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
+ "#RELEASE_BINOP PSEUDO!",
+ [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
+ (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
+ // NAME#16 is not generated as 16-bit arithmetic instructions are considered
+ // costly and avoided as far as possible by this backend anyway
+ def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
+ "#RELEASE_BINOP PSEUDO!",
+ [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
+ (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
+ def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "#RELEASE_BINOP PSEUDO!",
+ [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
+ (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
+}
+defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
+defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
+defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
+defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
+// Note: we don't deal with sub, because substractions of constants are
+// optimized into additions before this code can run
+
+multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
+ def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_8 addr:$dst, dag8)]>;
+ def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_16 addr:$dst, dag16)]>;
+ def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_32 addr:$dst, dag32)]>;
+ def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
+ "#RELEASE_UNOP PSEUDO!",
+ [(atomic_store_64 addr:$dst, dag64)]>;
+}
+
+defm RELEASE_INC : RELEASE_UNOP<
+ (add (atomic_load_8 addr:$dst), (i8 1)),
+ (add (atomic_load_16 addr:$dst), (i16 1)),
+ (add (atomic_load_32 addr:$dst), (i32 1)),
+ (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
+defm RELEASE_DEC : RELEASE_UNOP<
+ (add (atomic_load_8 addr:$dst), (i8 -1)),
+ (add (atomic_load_16 addr:$dst), (i16 -1)),
+ (add (atomic_load_32 addr:$dst), (i32 -1)),
+ (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
+/*
+TODO: These don't work because the type inference of TableGen fails.
+TODO: find a way to fix it.
+defm RELEASE_NEG : RELEASE_UNOP<
+ (ineg (atomic_load_8 addr:$dst)),
+ (ineg (atomic_load_16 addr:$dst)),
+ (ineg (atomic_load_32 addr:$dst)),
+ (ineg (atomic_load_64 addr:$dst))>;
+defm RELEASE_NOT : RELEASE_UNOP<
+ (not (atomic_load_8 addr:$dst)),
+ (not (atomic_load_16 addr:$dst)),
+ (not (atomic_load_32 addr:$dst)),
+ (not (atomic_load_64 addr:$dst))>;
+*/
+
+def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
+def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
+def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
+def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "#RELEASE_MOV PSEUDO !",
+ [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
"#RELEASE_MOV PSEUDO!",
@@ -773,11 +847,22 @@ def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
"#RELEASE_MOV PSEUDO!",
[(atomic_store_64 addr:$dst, GR64:$src)]>;
+def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
+def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
+def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
+def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
+ "#ACQUIRE_MOV PSEUDO!",
+ [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions.
//===----------------------------------------------------------------------===//
-
// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
// instruction selection into a branch sequence.
let Uses = [EFLAGS], usesCustomInserter = 1 in {
@@ -925,6 +1010,9 @@ def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tblockaddress:$src)>,
Requires<[NearData, IsStatic]>;
+def : Pat<(i32 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
+def : Pat<(i64 (X86RecoverFrameAlloc texternalsym:$dst)), (MOV64ri texternalsym:$dst)>;
+
// Calls
// tls has some funny stuff here...
@@ -1106,6 +1194,7 @@ def def32 : PatLeaf<(i32 GR32:$src), [{
return N->getOpcode() != ISD::TRUNCATE &&
N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
N->getOpcode() != ISD::CopyFromReg &&
+ N->getOpcode() != ISD::AssertSext &&
N->getOpcode() != X86ISD::CMOV;
}]>;
@@ -1638,35 +1727,18 @@ def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
(IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
-// Increment reg.
-// Do not make INC if it is slow
-def : Pat<(add GR8:$src, 1),
- (INC8r GR8:$src)>, Requires<[NotSlowIncDec]>;
-def : Pat<(add GR16:$src, 1),
- (INC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
-def : Pat<(add GR16:$src, 1),
- (INC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
-def : Pat<(add GR32:$src, 1),
- (INC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
-def : Pat<(add GR32:$src, 1),
- (INC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
-def : Pat<(add GR64:$src, 1),
- (INC64r GR64:$src)>, Requires<[NotSlowIncDec]>;
-
-// Decrement reg.
-// Do not make DEC if it is slow
-def : Pat<(add GR8:$src, -1),
- (DEC8r GR8:$src)>, Requires<[NotSlowIncDec]>;
-def : Pat<(add GR16:$src, -1),
- (DEC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
-def : Pat<(add GR16:$src, -1),
- (DEC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
-def : Pat<(add GR32:$src, -1),
- (DEC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
-def : Pat<(add GR32:$src, -1),
- (DEC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
-def : Pat<(add GR64:$src, -1),
- (DEC64r GR64:$src)>, Requires<[NotSlowIncDec]>;
+// Increment/Decrement reg.
+// Do not make INC/DEC if it is slow
+let Predicates = [NotSlowIncDec] in {
+ def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
+ def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
+ def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
+ def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
+ def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
+ def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
+ def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
+ def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
+}
// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrControl.td b/contrib/llvm/lib/Target/X86/X86InstrControl.td
index 39ad395..71415c6 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrControl.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrControl.td
@@ -57,33 +57,32 @@ let isTerminator = 1, isReturn = 1, isBarrier = 1,
// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
- def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
- "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>, OpSize32;
- def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
- "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>, OpSize16,
- Requires<[In16BitMode]>;
- let hasSideEffects = 0 in
def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
- "jmp\t$dst", [], IIC_JMP_REL>;
+ "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>;
+ let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
+ def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
+ "jmp\t$dst", [], IIC_JMP_REL>, OpSize16;
+ def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
+ "jmp\t$dst", [], IIC_JMP_REL>, OpSize32;
+ }
}
// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
- let hasSideEffects = 0 in
- def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, [],
- IIC_Jcc>;
- def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
- [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>, OpSize16,
- TB, Requires<[In16BitMode]>;
- def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
- [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>, TB,
- OpSize32;
+ def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm,
+ [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>;
+ let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
+ def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm,
+ [], IIC_Jcc>, OpSize16, TB;
+ def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm,
+ [], IIC_Jcc>, TB, OpSize32;
+ }
}
}
defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
-defm JNO : ICBr<0x71, 0x81, "jno\t$dst" , X86_COND_NO>;
+defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>;
defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
@@ -106,20 +105,14 @@ let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in
// jecxz.
let Uses = [CX] in
def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
- "jcxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[Not64BitMode]>;
+ "jcxz\t$dst", [], IIC_JCXZ>, AdSize16;
let Uses = [ECX] in
- def JECXZ_32 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
- "jecxz\t$dst", [], IIC_JCXZ>, Requires<[Not64BitMode]>;
+ def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
+ "jecxz\t$dst", [], IIC_JCXZ>, AdSize32;
- // J*CXZ instruction: 64-bit versions of this instruction for the asmparser.
- // In 64-bit mode, the address size prefix is jecxz and the unprefixed version
- // is jrcxz.
- let Uses = [ECX] in
- def JECXZ_64 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
- "jecxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[In64BitMode]>;
let Uses = [RCX] in
def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
- "jrcxz\t$dst", [], IIC_JCXZ>, Requires<[In64BitMode]>;
+ "jrcxz\t$dst", [], IIC_JCXZ>, AdSize64;
}
// Indirect branches
@@ -145,14 +138,16 @@ let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
[(brind (loadi64 addr:$dst))], IIC_JMP_MEM>,
Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
- def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
- (ins i16imm:$off, i16imm:$seg),
- "ljmp{w}\t{$seg, $off|$off, $seg}", [],
- IIC_JMP_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
- def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
- (ins i32imm:$off, i16imm:$seg),
- "ljmp{l}\t{$seg, $off|$off, $seg}", [],
- IIC_JMP_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ let Predicates = [Not64BitMode] in {
+ def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
+ (ins i16imm:$off, i16imm:$seg),
+ "ljmp{w}\t$seg, $off", [],
+ IIC_JMP_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
+ def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
+ (ins i32imm:$off, i16imm:$seg),
+ "ljmp{l}\t$seg, $off", [],
+ IIC_JMP_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ }
def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
"ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
Sched<[WriteJump]>;
@@ -186,10 +181,11 @@ let isCall = 1 in
(outs), (ins i32imm_pcrel:$dst),
"call{l}\t$dst", [], IIC_CALL_RI>, OpSize32,
Requires<[Not64BitMode]>, Sched<[WriteJump]>;
- def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
- (outs), (ins i16imm_pcrel:$dst),
- "call{w}\t$dst", [], IIC_CALL_RI>, OpSize16,
- Sched<[WriteJump]>;
+ let hasSideEffects = 0 in
+ def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
+ (outs), (ins i16imm_pcrel:$dst),
+ "call{w}\t$dst", [], IIC_CALL_RI>, OpSize16,
+ Sched<[WriteJump]>;
def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
"call{w}\t{*}$dst", [(X86call GR16:$dst)], IIC_CALL_RI>,
OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
@@ -207,14 +203,16 @@ let isCall = 1 in
Requires<[Not64BitMode,FavorMemIndirectCall]>,
Sched<[WriteJumpLd]>;
- def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
- (ins i16imm:$off, i16imm:$seg),
- "lcall{w}\t{$seg, $off|$off, $seg}", [],
- IIC_CALL_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
- def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
- (ins i32imm:$off, i16imm:$seg),
- "lcall{l}\t{$seg, $off|$off, $seg}", [],
- IIC_CALL_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ let Predicates = [Not64BitMode] in {
+ def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
+ (ins i16imm:$off, i16imm:$seg),
+ "lcall{w}\t$seg, $off", [],
+ IIC_CALL_FAR_PTR>, OpSize16, Sched<[WriteJump]>;
+ def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
+ (ins i32imm:$off, i16imm:$seg),
+ "lcall{l}\t$seg, $off", [],
+ IIC_CALL_FAR_PTR>, OpSize32, Sched<[WriteJump]>;
+ }
def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
"lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize16,
diff --git a/contrib/llvm/lib/Target/X86/X86InstrExtension.td b/contrib/llvm/lib/Target/X86/X86InstrExtension.td
index 6be6a1f..eea4f17 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrExtension.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrExtension.td
@@ -11,7 +11,7 @@
//
//===----------------------------------------------------------------------===//
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
let Defs = [AX], Uses = [AL] in
def CBW : I<0x98, RawFrm, (outs), (ins),
"{cbtw|cbw}", [], IIC_CBW>, OpSize16; // AX = signext(AL)
@@ -39,7 +39,7 @@ let neverHasSideEffects = 1 in {
// Sign/Zero extenders
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVSX_R16_R8>,
TB, OpSize16, Sched<[WriteALU]>;
@@ -47,7 +47,7 @@ let mayLoad = 1 in
def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVSX_R16_M8>,
TB, OpSize16, Sched<[WriteALULd]>;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR8:$src))], IIC_MOVSX>, TB,
@@ -65,7 +65,7 @@ def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
[(set GR32:$dst, (sextloadi32i16 addr:$src))], IIC_MOVSX>,
OpSize32, TB, Sched<[WriteALULd]>;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX_R16_R8>,
TB, OpSize16, Sched<[WriteALU]>;
@@ -73,7 +73,7 @@ let mayLoad = 1 in
def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX_R16_M8>,
TB, OpSize16, Sched<[WriteALULd]>;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR8:$src))], IIC_MOVZX>, TB,
@@ -94,16 +94,26 @@ def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
// These are the same as the regular MOVZX32rr8 and MOVZX32rm8
// except that they use GR32_NOREX for the output operand register class
// instead of GR32. This allows them to operate on h registers on x86-64.
-let neverHasSideEffects = 1, isCodeGenOnly = 1 in {
+let hasSideEffects = 0, isCodeGenOnly = 1 in {
def MOVZX32_NOREXrr8 : I<0xB6, MRMSrcReg,
(outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
- "movz{bl|x}\t{$src, $dst|$dst, $src}",
+ "movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX",
[], IIC_MOVZX>, TB, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem,
(outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
- "movz{bl|x}\t{$src, $dst|$dst, $src}",
+ "movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX",
[], IIC_MOVZX>, TB, Sched<[WriteALULd]>;
+
+def MOVSX32_NOREXrr8 : I<0xBE, MRMSrcReg,
+ (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
+ "movs{bl|x}\t{$src, $dst|$dst, $src} # NOREX",
+ [], IIC_MOVSX>, TB, Sched<[WriteALU]>;
+let mayLoad = 1 in
+def MOVSX32_NOREXrm8 : I<0xBE, MRMSrcMem,
+ (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
+ "movs{bl|x}\t{$src, $dst|$dst, $src} # NOREX",
+ [], IIC_MOVSX>, TB, Sched<[WriteALULd]>;
}
// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFMA.td b/contrib/llvm/lib/Target/X86/X86InstrFMA.td
index c0a6864..2993e42 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrFMA.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrFMA.td
@@ -69,7 +69,7 @@ multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
/* IsRVariantCommutable */ 1,
/* IsMVariantCommutable */ 1,
Op>;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm r132 : fma3p_rm<opc132,
!strconcat(OpcodeStr, "132", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256>;
@@ -81,7 +81,7 @@ let neverHasSideEffects = 1 in {
MemFrag128, MemFrag256, OpTy128, OpTy256,
/* IsRVariantCommutable */ 1,
/* IsMVariantCommutable */ 0>;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
}
// Fused Multiply-Add
@@ -155,7 +155,7 @@ multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
SDNode OpNode, RegisterClass RC, ValueType OpVT,
X86MemOperand x86memop, Operand memop, PatFrag mem_frag,
ComplexPattern mem_cpat> {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm r132 : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy),
x86memop, RC, OpVT, mem_frag>;
// See the other defm of r231 for the explanation regarding the
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFPStack.td b/contrib/llvm/lib/Target/X86/X86InstrFPStack.td
index 4ad7b7e..e1abf26 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrFPStack.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrFPStack.td
@@ -17,13 +17,13 @@
// FPStack specific DAG Nodes.
//===----------------------------------------------------------------------===//
-def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
+def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
SDTCisVT<1, f80>]>;
def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>,
- SDTCisPtrTy<1>,
+ SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>,
- SDTCisPtrTy<1>,
+ SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
@@ -98,7 +98,7 @@ let usesCustomInserter = 1 in { // Expanded after instruction selection.
// All FP Stack operations are represented with four instructions here. The
// first three instructions, generated by the instruction selector, use "RFP32"
// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
-// 64-bit or 80-bit floating point values. These sizes apply to the values,
+// 64-bit or 80-bit floating point values. These sizes apply to the values,
// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
// copied to each other without losing information. These instructions are all
// pseudo instructions and use the "_Fp" suffix.
@@ -107,16 +107,13 @@ let usesCustomInserter = 1 in { // Expanded after instruction selection.
// The second instruction is defined with FPI, which is the actual instruction
// emitted by the assembler. These use "RST" registers, although frequently
// the actual register(s) used are implicit. These are always 80 bits.
-// The FP stackifier pass converts one to the other after register allocation
+// The FP stackifier pass converts one to the other after register allocation
// occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
-// Pseudo Instruction for FP stack return values.
-def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
-
// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
@@ -142,66 +139,66 @@ def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
// These instructions cannot address 80-bit memory.
multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
// ST(0) = ST(0) + [mem]
-def _Fp32m : FpIf32<(outs RFP32:$dst),
+def _Fp32m : FpIf32<(outs RFP32:$dst),
(ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
- [(set RFP32:$dst,
+ [(set RFP32:$dst,
(OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
-def _Fp64m : FpIf64<(outs RFP64:$dst),
+def _Fp64m : FpIf64<(outs RFP64:$dst),
(ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
- [(set RFP64:$dst,
+ [(set RFP64:$dst,
(OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
-def _Fp64m32: FpIf64<(outs RFP64:$dst),
+def _Fp64m32: FpIf64<(outs RFP64:$dst),
(ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
- [(set RFP64:$dst,
+ [(set RFP64:$dst,
(OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
-def _Fp80m32: FpI_<(outs RFP80:$dst),
+def _Fp80m32: FpI_<(outs RFP80:$dst),
(ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
- [(set RFP80:$dst,
+ [(set RFP80:$dst,
(OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
-def _Fp80m64: FpI_<(outs RFP80:$dst),
+def _Fp80m64: FpI_<(outs RFP80:$dst),
(ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
- [(set RFP80:$dst,
+ [(set RFP80:$dst,
(OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
-def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
- !strconcat("f", asmstring, "{s}\t$src")> {
- let mayLoad = 1;
+def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
+ !strconcat("f", asmstring, "{s}\t$src")> {
+ let mayLoad = 1;
}
-def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
- !strconcat("f", asmstring, "{l}\t$src")> {
- let mayLoad = 1;
+def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
+ !strconcat("f", asmstring, "{l}\t$src")> {
+ let mayLoad = 1;
}
// ST(0) = ST(0) + [memint]
-def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
+def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
OneArgFPRW,
[(set RFP32:$dst, (OpNode RFP32:$src1,
(X86fild addr:$src2, i16)))]>;
-def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
+def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
OneArgFPRW,
[(set RFP32:$dst, (OpNode RFP32:$src1,
(X86fild addr:$src2, i32)))]>;
-def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
+def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
OneArgFPRW,
[(set RFP64:$dst, (OpNode RFP64:$src1,
(X86fild addr:$src2, i16)))]>;
-def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
+def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
OneArgFPRW,
[(set RFP64:$dst, (OpNode RFP64:$src1,
(X86fild addr:$src2, i32)))]>;
-def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
+def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
OneArgFPRW,
[(set RFP80:$dst, (OpNode RFP80:$src1,
(X86fild addr:$src2, i16)))]>;
-def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
+def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
OneArgFPRW,
[(set RFP80:$dst, (OpNode RFP80:$src1,
(X86fild addr:$src2, i32)))]>;
-def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
- !strconcat("fi", asmstring, "{s}\t$src")> {
- let mayLoad = 1;
+def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
+ !strconcat("fi", asmstring, "{s}\t$src")> {
+ let mayLoad = 1;
}
-def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
- !strconcat("fi", asmstring, "{l}\t$src")> {
- let mayLoad = 1;
+def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
+ !strconcat("fi", asmstring, "{l}\t$src")> {
+ let mayLoad = 1;
}
}
@@ -285,7 +282,7 @@ defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
defm COS : FPUnary<fcos, MRM_FF, "fcos">;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
@@ -418,7 +415,7 @@ def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
[(truncstoref64 RFP80:$src, addr:$op)]>;
// FST does not support 80-bit memory target; FSTP must be used.
-let mayStore = 1, neverHasSideEffects = 1 in {
+let mayStore = 1, hasSideEffects = 0 in {
def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
@@ -427,7 +424,7 @@ def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
}
def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
[(store RFP80:$src, addr:$op)]>;
-let mayStore = 1, neverHasSideEffects = 1 in {
+let mayStore = 1, hasSideEffects = 0 in {
def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
@@ -503,7 +500,7 @@ def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
IIC_FST>;
def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
IIC_FST>;
-def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
+def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
"fisttp{ll}\t$dst", IIC_FST>;
}
@@ -639,7 +636,7 @@ def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
"fxsave\t$dst", [], IIC_FXSAVE>, TB;
def FXSAVE64 : RI<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
- "fxsave{q|64}\t$dst", [], IIC_FXSAVE>, TB,
+ "fxsave{q|64}\t$dst", [], IIC_FXSAVE>, TB,
Requires<[In64BitMode]>;
def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
"fxrstor\t$src", [], IIC_FXRSTOR>, TB;
@@ -659,12 +656,12 @@ def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
// Required for CALL which return f32 / f64 / f80 values.
def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
-def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
+def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
RFP64:$src)>;
def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
-def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
+def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
RFP80:$src)>;
-def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
+def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
RFP80:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
RFP80:$src)>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFormats.td b/contrib/llvm/lib/Target/X86/X86InstrFormats.td
index 8ef5f90..ba23878 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrFormats.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrFormats.td
@@ -36,20 +36,21 @@ def MRM6m : Format<30>; def MRM7m : Format<31>;
def MRM_C0 : Format<32>; def MRM_C1 : Format<33>; def MRM_C2 : Format<34>;
def MRM_C3 : Format<35>; def MRM_C4 : Format<36>; def MRM_C8 : Format<37>;
def MRM_C9 : Format<38>; def MRM_CA : Format<39>; def MRM_CB : Format<40>;
-def MRM_D0 : Format<41>; def MRM_D1 : Format<42>; def MRM_D4 : Format<43>;
-def MRM_D5 : Format<44>; def MRM_D6 : Format<45>; def MRM_D8 : Format<46>;
-def MRM_D9 : Format<47>; def MRM_DA : Format<48>; def MRM_DB : Format<49>;
-def MRM_DC : Format<50>; def MRM_DD : Format<51>; def MRM_DE : Format<52>;
-def MRM_DF : Format<53>; def MRM_E0 : Format<54>; def MRM_E1 : Format<55>;
-def MRM_E2 : Format<56>; def MRM_E3 : Format<57>; def MRM_E4 : Format<58>;
-def MRM_E5 : Format<59>; def MRM_E8 : Format<60>; def MRM_E9 : Format<61>;
-def MRM_EA : Format<62>; def MRM_EB : Format<63>; def MRM_EC : Format<64>;
-def MRM_ED : Format<65>; def MRM_EE : Format<66>; def MRM_F0 : Format<67>;
-def MRM_F1 : Format<68>; def MRM_F2 : Format<69>; def MRM_F3 : Format<70>;
-def MRM_F4 : Format<71>; def MRM_F5 : Format<72>; def MRM_F6 : Format<73>;
-def MRM_F7 : Format<74>; def MRM_F8 : Format<75>; def MRM_F9 : Format<76>;
-def MRM_FA : Format<77>; def MRM_FB : Format<78>; def MRM_FC : Format<79>;
-def MRM_FD : Format<80>; def MRM_FE : Format<81>; def MRM_FF : Format<82>;
+def MRM_CF : Format<41>; def MRM_D0 : Format<42>; def MRM_D1 : Format<43>;
+def MRM_D4 : Format<44>; def MRM_D5 : Format<45>; def MRM_D6 : Format<46>;
+def MRM_D7 : Format<47>; def MRM_D8 : Format<48>; def MRM_D9 : Format<49>;
+def MRM_DA : Format<50>; def MRM_DB : Format<51>; def MRM_DC : Format<52>;
+def MRM_DD : Format<53>; def MRM_DE : Format<54>; def MRM_DF : Format<55>;
+def MRM_E0 : Format<56>; def MRM_E1 : Format<57>; def MRM_E2 : Format<58>;
+def MRM_E3 : Format<59>; def MRM_E4 : Format<60>; def MRM_E5 : Format<61>;
+def MRM_E8 : Format<62>; def MRM_E9 : Format<63>; def MRM_EA : Format<64>;
+def MRM_EB : Format<65>; def MRM_EC : Format<66>; def MRM_ED : Format<67>;
+def MRM_EE : Format<68>; def MRM_F0 : Format<69>; def MRM_F1 : Format<70>;
+def MRM_F2 : Format<71>; def MRM_F3 : Format<72>; def MRM_F4 : Format<73>;
+def MRM_F5 : Format<74>; def MRM_F6 : Format<75>; def MRM_F7 : Format<76>;
+def MRM_F8 : Format<77>; def MRM_F9 : Format<78>; def MRM_FA : Format<79>;
+def MRM_FB : Format<80>; def MRM_FC : Format<81>; def MRM_FD : Format<82>;
+def MRM_FE : Format<83>; def MRM_FF : Format<84>;
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
@@ -100,6 +101,7 @@ def CD8VF : CD8VForm<0>; // v := VL
def CD8VH : CD8VForm<1>; // v := VL/2
def CD8VQ : CD8VForm<2>; // v := VL/4
def CD8VO : CD8VForm<3>; // v := VL/8
+// The tuple (subvector) forms.
def CD8VT1 : CD8VForm<4>; // v := 1
def CD8VT2 : CD8VForm<5>; // v := 2
def CD8VT4 : CD8VForm<6>; // v := 4
@@ -144,11 +146,22 @@ def OpSizeFixed : OperandSize<0>; // Never needs a 0x66 prefix.
def OpSize16 : OperandSize<1>; // Needs 0x66 prefix in 32-bit mode.
def OpSize32 : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode.
+// Address size for encodings that change based on mode.
+class AddressSize<bits<2> val> {
+ bits<2> Value = val;
+}
+def AdSizeX : AddressSize<0>; // Address size determined using addr operand.
+def AdSize16 : AddressSize<1>; // Encodes a 16-bit address.
+def AdSize32 : AddressSize<2>; // Encodes a 32-bit address.
+def AdSize64 : AddressSize<3>; // Encodes a 64-bit address.
+
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize16 { OperandSize OpSize = OpSize16; }
class OpSize32 { OperandSize OpSize = OpSize32; }
-class AdSize { bit hasAdSizePrefix = 1; }
+class AdSize16 { AddressSize AdSize = AdSize16; }
+class AdSize32 { AddressSize AdSize = AdSize32; }
+class AdSize64 { AddressSize AdSize = AdSize64; }
class REX_W { bit hasREX_WPrefix = 1; }
class LOCK { bit hasLockPrefix = 1; }
class REP { bit hasREPPrefix = 1; }
@@ -229,9 +242,11 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
// AsmString from the parser, but still disassemble.
OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change
- // based on operand size of the mode
+ // based on operand size of the mode?
bits<2> OpSizeBits = OpSize.Value;
- bit hasAdSizePrefix = 0; // Does this inst have a 0x67 prefix?
+ AddressSize AdSize = AdSizeX; // Does this instruction's encoding change
+ // based on address size of the mode?
+ bits<2> AdSizeBits = AdSize.Value;
Prefix OpPrefix = NoPrfx; // Which prefix byte does this inst have?
bits<3> OpPrefixBits = OpPrefix.Value;
@@ -282,35 +297,35 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
CD8_EltSize,
!srl(VectSize, CD8_Form{1-0}))), 0);
- // TSFlags layout should be kept in sync with X86InstrInfo.h.
+ // TSFlags layout should be kept in sync with X86BaseInfo.h.
let TSFlags{6-0} = FormBits;
let TSFlags{8-7} = OpSizeBits;
- let TSFlags{9} = hasAdSizePrefix;
- let TSFlags{12-10} = OpPrefixBits;
- let TSFlags{15-13} = OpMapBits;
- let TSFlags{16} = hasREX_WPrefix;
- let TSFlags{20-17} = ImmT.Value;
- let TSFlags{23-21} = FPForm.Value;
- let TSFlags{24} = hasLockPrefix;
- let TSFlags{25} = hasREPPrefix;
- let TSFlags{27-26} = ExeDomain.Value;
- let TSFlags{29-28} = OpEncBits;
- let TSFlags{37-30} = Opcode;
- let TSFlags{38} = hasVEX_WPrefix;
- let TSFlags{39} = hasVEX_4V;
- let TSFlags{40} = hasVEX_4VOp3;
- let TSFlags{41} = hasVEX_i8ImmReg;
- let TSFlags{42} = hasVEX_L;
- let TSFlags{43} = ignoresVEX_L;
- let TSFlags{44} = hasEVEX_K;
- let TSFlags{45} = hasEVEX_Z;
- let TSFlags{46} = hasEVEX_L2;
- let TSFlags{47} = hasEVEX_B;
+ let TSFlags{10-9} = AdSizeBits;
+ let TSFlags{13-11} = OpPrefixBits;
+ let TSFlags{16-14} = OpMapBits;
+ let TSFlags{17} = hasREX_WPrefix;
+ let TSFlags{21-18} = ImmT.Value;
+ let TSFlags{24-22} = FPForm.Value;
+ let TSFlags{25} = hasLockPrefix;
+ let TSFlags{26} = hasREPPrefix;
+ let TSFlags{28-27} = ExeDomain.Value;
+ let TSFlags{30-29} = OpEncBits;
+ let TSFlags{38-31} = Opcode;
+ let TSFlags{39} = hasVEX_WPrefix;
+ let TSFlags{40} = hasVEX_4V;
+ let TSFlags{41} = hasVEX_4VOp3;
+ let TSFlags{42} = hasVEX_i8ImmReg;
+ let TSFlags{43} = hasVEX_L;
+ let TSFlags{44} = ignoresVEX_L;
+ let TSFlags{45} = hasEVEX_K;
+ let TSFlags{46} = hasEVEX_Z;
+ let TSFlags{47} = hasEVEX_L2;
+ let TSFlags{48} = hasEVEX_B;
// If we run out of TSFlags bits, it's possible to encode this in 3 bits.
- let TSFlags{54-48} = CD8_Scale;
- let TSFlags{55} = has3DNow0F0FOpcode;
- let TSFlags{56} = hasMemOp4Prefix;
- let TSFlags{57} = hasEVEX_RC;
+ let TSFlags{55-49} = CD8_Scale;
+ let TSFlags{56} = has3DNow0F0FOpcode;
+ let TSFlags{57} = hasMemOp4Prefix;
+ let TSFlags{58} = hasEVEX_RC;
}
class PseudoI<dag oops, dag iops, list<dag> pattern>
@@ -325,26 +340,26 @@ class I<bits<8> o, Format f, dag outs, dag ins, string asm,
let Pattern = pattern;
let CodeSize = 3;
}
-class Ii8 <bits<8> o, Format f, dag outs, dag ins, string asm,
+class Ii8 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary,
Domain d = GenericDomain>
: X86Inst<o, f, Imm8, outs, ins, asm, itin, d> {
let Pattern = pattern;
let CodeSize = 3;
}
-class Ii8PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
+class Ii8PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm8PCRel, outs, ins, asm, itin> {
let Pattern = pattern;
let CodeSize = 3;
}
-class Ii16<bits<8> o, Format f, dag outs, dag ins, string asm,
+class Ii16<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm16, outs, ins, asm, itin> {
let Pattern = pattern;
let CodeSize = 3;
}
-class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm,
+class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm32, outs, ins, asm, itin> {
let Pattern = pattern;
@@ -357,14 +372,14 @@ class Ii32S<bits<8> o, Format f, dag outs, dag ins, string asm,
let CodeSize = 3;
}
-class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
+class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm16PCRel, outs, ins, asm, itin> {
let Pattern = pattern;
let CodeSize = 3;
}
-class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
+class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm32PCRel, outs, ins, asm, itin> {
let Pattern = pattern;
@@ -391,14 +406,14 @@ class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern,
// Iseg16 - 16-bit segment selector, 16-bit offset
// Iseg32 - 16-bit segment selector, 32-bit offset
-class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm,
+class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm16, outs, ins, asm, itin> {
let Pattern = pattern;
let CodeSize = 3;
}
-class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
+class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: X86Inst<o, f, Imm32, outs, ins, asm, itin> {
let Pattern = pattern;
@@ -476,7 +491,7 @@ class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
}
// SSE1 Instruction Templates:
-//
+//
// SSI - SSE1 instructions with XS prefix.
// PSI - SSE1 instructions with PS prefix.
// PSIi8 - SSE1 instructions with ImmT == Imm8 and PS prefix.
@@ -507,7 +522,7 @@ class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm,
Requires<[HasAVX]>;
// SSE2 Instruction Templates:
-//
+//
// SDI - SSE2 instructions with XD prefix.
// SDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix.
// S2SI - SSE2 instructions with XS prefix.
@@ -571,16 +586,16 @@ class MMXS2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
: Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[HasSSE2]>;
// SSE3 Instruction Templates:
-//
+//
// S3I - SSE3 instructions with PD prefixes.
// S3SI - SSE3 instructions with XS prefix.
// S3DI - SSE3 instructions with XD prefix.
-class S3SI<bits<8> o, Format F, dag outs, dag ins, string asm,
+class S3SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, XS,
Requires<[UseSSE3]>;
-class S3DI<bits<8> o, Format F, dag outs, dag ins, string asm,
+class S3DI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, XD,
Requires<[UseSSE3]>;
@@ -591,7 +606,7 @@ class S3I<bits<8> o, Format F, dag outs, dag ins, string asm,
// SSSE3 Instruction Templates:
-//
+//
// SS38I - SSSE3 instructions with T8 prefix.
// SS3AI - SSSE3 instructions with TA prefix.
// MMXSS38I - SSSE3 instructions with T8 prefix and MMX operands.
@@ -619,7 +634,7 @@ class MMXSS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
Requires<[HasSSSE3]>;
// SSE4.1 Instruction Templates:
-//
+//
// SS48I - SSE 4.1 instructions with T8 prefix.
// SS41AIi8 - SSE 4.1 instructions with TA prefix and ImmT == Imm8.
//
@@ -633,7 +648,7 @@ class SS4AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
Requires<[UseSSE41]>;
// SSE4.2 Instruction Templates:
-//
+//
// SS428I - SSE 4.2 instructions with T8 prefix.
class SS428I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
@@ -697,6 +712,9 @@ class AVX5128I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8PD,
Requires<[HasAVX512]>;
+class AVX5128IBase : T8PD {
+ Domain ExeDomain = SSEPackedInt;
+}
class AVX512XS8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8XS,
@@ -713,14 +731,25 @@ class AVX512BI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, PD,
Requires<[HasAVX512]>;
+class AVX512BIBase : PD {
+ Domain ExeDomain = SSEPackedInt;
+}
class AVX512BIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, PD,
Requires<[HasAVX512]>;
+class AVX512BIi8Base : PD {
+ Domain ExeDomain = SSEPackedInt;
+ ImmType ImmT = Imm8;
+}
class AVX512AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TAPD,
Requires<[HasAVX512]>;
+class AVX512AIi8Base : TAPD {
+ Domain ExeDomain = SSEPackedInt;
+ ImmType ImmT = Imm8;
+}
class AVX512Ii8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>,
@@ -743,6 +772,11 @@ class AVX512FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin>, T8PD,
EVEX_4V, Requires<[HasAVX512]>;
+class AVX512FMA3Base : T8PD, EVEX_4V;
+
+class AVX512<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag>pattern, InstrItinClass itin = NoItinerary>
+ : I<o, F, outs, ins, asm, pattern, itin>, Requires<[HasAVX512]>;
// AES Instruction Templates:
//
@@ -850,27 +884,27 @@ class VRS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
// MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix.
// MMXID - MMX instructions with XD prefix.
// MMXIS - MMX instructions with XS prefix.
-class MMXI<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX]>;
-class MMXI32<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXI32<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX,Not64BitMode]>;
-class MMXI64<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXI64<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX,In64BitMode]>;
-class MMXRI<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXRI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin>, PS, REX_W, Requires<[HasMMX]>;
-class MMX2I<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMX2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin>, PD, Requires<[HasMMX]>;
-class MMXIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin>, PS, Requires<[HasMMX]>;
-class MMXID<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXID<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[HasMMX]>;
-class MMXIS<bits<8> o, Format F, dag outs, dag ins, string asm,
+class MMXIS<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[HasMMX]>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td b/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
index 6f0fa94..76e8fad 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
@@ -83,7 +83,7 @@ def X86pinsrw : SDNode<"X86ISD::PINSRW",
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86insertps : SDNode<"X86ISD::INSERTPS",
SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>,
- SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>;
+ SDTCisVT<2, v4f32>, SDTCisVT<3, i8>]>>;
def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL",
SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>;
@@ -188,6 +188,8 @@ def SDTShuff2Op : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
def SDTShuff3Op : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>, SDTCisSameAs<0,3>]>;
+def SDTShuff2OpM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
+ SDTCisVec<2>]>;
def SDTShuff2OpI : SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisSameAs<0,1>, SDTCisInt<2>]>;
def SDTShuff3OpI : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
@@ -197,12 +199,17 @@ def SDTVBroadcast : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
def SDTVBroadcastm : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>]>;
def SDTBlend : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
- SDTCisSameAs<1,2>, SDTCisVT<3, i32>]>;
+ SDTCisSameAs<1,2>, SDTCisVT<3, i8>]>;
def SDTFma : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>,
SDTCisSameAs<1,2>, SDTCisSameAs<1,3>]>;
+def STDFp1SrcRm : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>,
+ SDTCisVec<0>, SDTCisInt<2>]>;
+def STDFp2SrcRm : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>,
+ SDTCisVec<0>, SDTCisInt<3>]>;
def X86PAlignr : SDNode<"X86ISD::PALIGNR", SDTShuff3OpI>;
+def X86VAlign : SDNode<"X86ISD::VALIGN", SDTShuff3OpI>;
def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>;
def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>;
@@ -231,10 +238,11 @@ def X86Packus : SDNode<"X86ISD::PACKUS", SDTPack>;
def X86Unpckl : SDNode<"X86ISD::UNPCKL", SDTShuff2Op>;
def X86Unpckh : SDNode<"X86ISD::UNPCKH", SDTShuff2Op>;
-def X86VPermilp : SDNode<"X86ISD::VPERMILP", SDTShuff2OpI>;
-def X86VPermv : SDNode<"X86ISD::VPERMV", SDTShuff2Op>;
-def X86VPermi : SDNode<"X86ISD::VPERMI", SDTShuff2OpI>;
-def X86VPermv3 : SDNode<"X86ISD::VPERMV3", SDTShuff3Op>;
+def X86VPermilpv : SDNode<"X86ISD::VPERMILPV", SDTShuff2OpM>;
+def X86VPermilpi : SDNode<"X86ISD::VPERMILPI", SDTShuff2OpI>;
+def X86VPermv : SDNode<"X86ISD::VPERMV", SDTShuff2Op>;
+def X86VPermi : SDNode<"X86ISD::VPERMI", SDTShuff2OpI>;
+def X86VPermv3 : SDNode<"X86ISD::VPERMV3", SDTShuff3Op>;
def X86VPermiv3 : SDNode<"X86ISD::VPERMIV3", SDTShuff3Op>;
def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>;
@@ -247,6 +255,9 @@ def X86Vextract : SDNode<"X86ISD::VEXTRACT", SDTypeProfile<1, 2,
[SDTCisVec<1>, SDTCisPtrTy<2>]>, []>;
def X86Blendi : SDNode<"X86ISD::BLENDI", SDTBlend>;
+
+def X86Addsub : SDNode<"X86ISD::ADDSUB", SDTFPBinOp>;
+
def X86Fmadd : SDNode<"X86ISD::FMADD", SDTFma>;
def X86Fnmadd : SDNode<"X86ISD::FNMADD", SDTFma>;
def X86Fmsub : SDNode<"X86ISD::FMSUB", SDTFma>;
@@ -254,6 +265,13 @@ def X86Fnmsub : SDNode<"X86ISD::FNMSUB", SDTFma>;
def X86Fmaddsub : SDNode<"X86ISD::FMADDSUB", SDTFma>;
def X86Fmsubadd : SDNode<"X86ISD::FMSUBADD", SDTFma>;
+def X86rsqrt28 : SDNode<"X86ISD::RSQRT28", STDFp1SrcRm>;
+def X86rcp28 : SDNode<"X86ISD::RCP28", STDFp1SrcRm>;
+def X86exp2 : SDNode<"X86ISD::EXP2", STDFp1SrcRm>;
+
+def X86rsqrt28s : SDNode<"X86ISD::RSQRT28", STDFp2SrcRm>;
+def X86rcp28s : SDNode<"X86ISD::RCP28", STDFp2SrcRm>;
+
def SDT_PCMPISTRI : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, v16i8>, SDTCisVT<3, v16i8>,
SDTCisVT<4, i8>]>;
@@ -265,6 +283,13 @@ def SDT_PCMPESTRI : SDTypeProfile<2, 5, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
def X86pcmpistri : SDNode<"X86ISD::PCMPISTRI", SDT_PCMPISTRI>;
def X86pcmpestri : SDNode<"X86ISD::PCMPESTRI", SDT_PCMPESTRI>;
+def X86compress: SDNode<"X86ISD::COMPRESS", SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,
+ SDTCisVec<3>, SDTCisVec<1>, SDTCisInt<1>]>, []>;
+def X86expand : SDNode<"X86ISD::EXPAND", SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 3>,
+ SDTCisVec<3>, SDTCisVec<1>, SDTCisInt<1>]>, []>;
+
//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//
@@ -311,6 +336,8 @@ def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>;
// 512-bit load pattern fragments
def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>;
def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>;
+def loadv64i8 : PatFrag<(ops node:$ptr), (v64i8 (load node:$ptr))>;
+def loadv32i16 : PatFrag<(ops node:$ptr), (v32i16 (load node:$ptr))>;
def loadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (load node:$ptr))>;
def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>;
@@ -401,16 +428,6 @@ def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
|| cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
-def memop4 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
- return Subtarget->hasVectorUAMem()
- || cast<LoadSDNode>(N)->getAlignment() >= 4;
-}]>;
-
-def memop8 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
- return Subtarget->hasVectorUAMem()
- || cast<LoadSDNode>(N)->getAlignment() >= 8;
-}]>;
-
def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>;
def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>;
@@ -427,10 +444,10 @@ def memopv4f64 : PatFrag<(ops node:$ptr), (v4f64 (memop node:$ptr))>;
def memopv4i64 : PatFrag<(ops node:$ptr), (v4i64 (memop node:$ptr))>;
// 512-bit memop pattern fragments
-def memopv16f32 : PatFrag<(ops node:$ptr), (v16f32 (memop4 node:$ptr))>;
-def memopv8f64 : PatFrag<(ops node:$ptr), (v8f64 (memop8 node:$ptr))>;
-def memopv16i32 : PatFrag<(ops node:$ptr), (v16i32 (memop4 node:$ptr))>;
-def memopv8i64 : PatFrag<(ops node:$ptr), (v8i64 (memop8 node:$ptr))>;
+def memopv16f32 : PatFrag<(ops node:$ptr), (v16f32 (memop node:$ptr))>;
+def memopv8f64 : PatFrag<(ops node:$ptr), (v8f64 (memop node:$ptr))>;
+def memopv16i32 : PatFrag<(ops node:$ptr), (v16i32 (memop node:$ptr))>;
+def memopv8i64 : PatFrag<(ops node:$ptr), (v8i64 (memop node:$ptr))>;
// SSSE3 uses MMX registers for some instructions. They aren't aligned on a
// 16-byte boundary.
@@ -509,7 +526,9 @@ def I8Imm : SDNodeXForm<imm, [{
}]>;
def FROUND_NO_EXC : ImmLeaf<i32, [{ return Imm == 8; }]>;
-def FROUND_CURRENT : ImmLeaf<i32, [{ return Imm == 4; }]>;
+def FROUND_CURRENT : ImmLeaf<i32, [{
+ return Imm == X86::STATIC_ROUNDING::CUR_DIRECTION;
+}]>;
// BYTE_imm - Transform bit immediates into byte immediates.
def BYTE_imm : SDNodeXForm<imm, [{
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
index 0d3afc4..4615693 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
@@ -26,6 +26,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
@@ -64,6 +65,7 @@ enum {
TB_INDEX_1 = 1,
TB_INDEX_2 = 2,
TB_INDEX_3 = 3,
+ TB_INDEX_4 = 4,
TB_INDEX_MASK = 0xf,
// Do not insert the reverse map (MemOp -> RegOp) into the table.
@@ -100,8 +102,8 @@ void X86InstrInfo::anchor() {}
X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
: X86GenInstrInfo(
- (STI.is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
- (STI.is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
+ (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
+ (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
Subtarget(STI), RI(STI) {
static const X86OpTblEntry OpTbl2Addr[] = {
@@ -144,14 +146,10 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::AND8rr, X86::AND8mr, 0 },
{ X86::DEC16r, X86::DEC16m, 0 },
{ X86::DEC32r, X86::DEC32m, 0 },
- { X86::DEC64_16r, X86::DEC64_16m, 0 },
- { X86::DEC64_32r, X86::DEC64_32m, 0 },
{ X86::DEC64r, X86::DEC64m, 0 },
{ X86::DEC8r, X86::DEC8m, 0 },
{ X86::INC16r, X86::INC16m, 0 },
{ X86::INC32r, X86::INC32m, 0 },
- { X86::INC64_16r, X86::INC64_16m, 0 },
- { X86::INC64_32r, X86::INC64_32m, 0 },
{ X86::INC64r, X86::INC64m, 0 },
{ X86::INC8r, X86::INC8m, 0 },
{ X86::NEG16r, X86::NEG16m, 0 },
@@ -377,7 +375,39 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
{ X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
// AVX-512 foldable instructions
- { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }
+ { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
+ { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
+ { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
+ { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
+ { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
+ // AVX-512 foldable instructions (256-bit versions)
+ { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
+ { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
+ { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
+ // AVX-512 foldable instructions (128-bit versions)
+ { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
+ { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
+ { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
+ { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE }
};
for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
@@ -415,6 +445,10 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
{ X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
{ X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
+ { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
+ { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
+ { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
+ { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
{ X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
{ X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
@@ -493,6 +527,12 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
{ X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
{ X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
+ { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
+ { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
+ { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
+ { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
+ { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
+ { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
{ X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
{ X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
{ X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
@@ -526,6 +566,12 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
// AVX 256-bit foldable instructions
+ { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
+ { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
+ { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
+ { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
+ { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
+ { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
{ X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
{ X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
{ X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
@@ -533,6 +579,13 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
{ X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
{ X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
+ { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
+ { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
+ { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
+ { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
+ { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
+ { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
+ { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
// AVX2 foldable instructions
{ X86::VPABSBrr256, X86::VPABSBrm256, 0 },
@@ -541,13 +594,6 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
{ X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
{ X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
- { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
- { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
- { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
- { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
- { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
- { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
- { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
// BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
{ X86::BEXTR32rr, X86::BEXTR32rm, 0 },
@@ -601,18 +647,51 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
// AVX-512 foldable instructions
{ X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
{ X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
- { X86::VMOVDQA32rr, X86::VMOVDQA32rm, TB_ALIGN_64 },
- { X86::VMOVDQA64rr, X86::VMOVDQA64rm, TB_ALIGN_64 },
- { X86::VMOVDQU32rr, X86::VMOVDQU32rm, 0 },
- { X86::VMOVDQU64rr, X86::VMOVDQU64rm, 0 },
+ { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
+ { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
+ { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
+ { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
+ { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
+ { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
+ { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
+ { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
+ { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
+ { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
{ X86::VPABSDZrr, X86::VPABSDZrm, 0 },
{ X86::VPABSQZrr, X86::VPABSQZrm, 0 },
+ { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
+ // AVX-512 foldable instructions (256-bit versions)
+ { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
+ { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
+ { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
+ { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
+ { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
+ { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
+ { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
+ { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
+ { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
+ { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
+ { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
+ // AVX-512 foldable instructions (256-bit versions)
+ { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
+ { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
+ { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
+ { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
+ { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
+ { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
+ { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
+ { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
+ { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
+ { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
+ { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
// AES foldable instructions
{ X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
{ X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
{ X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 },
- { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
+ { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
@@ -869,8 +948,6 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
{ X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
{ X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
- { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
- { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
{ X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
{ X86::VSQRTSDr, X86::VSQRTSDm, 0 },
{ X86::VSQRTSSr, X86::VSQRTSSm, 0 },
@@ -1249,6 +1326,19 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
{ X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
{ X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
+ { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
+
+ // AVX-512{F,VL} foldable instructions
+ { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
+ { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
+
+ // AVX-512{F,VL} foldable instructions
+ { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
+ { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
+ { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
+ { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
// AES foldable instructions
{ X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
@@ -1429,7 +1519,51 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
{ X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
{ X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
- { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 }
+ { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
+ { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
+ { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
+ { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
+ { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
+ // AVX-512 arithmetic instructions
+ { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
+ { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
+ { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
+ { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
+ { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
+ { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
+ { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
+ { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
+ { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
+ { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
+ { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
+ { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
+ // AVX-512{F,VL} arithmetic instructions 256-bit
+ { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
+ { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
+ { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
+ { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
+ { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
+ { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
+ { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
+ { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
+ { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
+ { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
+ { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
+ { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
+ // AVX-512{F,VL} arithmetic instructions 128-bit
+ { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
+ { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
+ { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
+ { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
+ { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
+ { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
+ { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
+ { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
+ { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
+ { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
+ { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
+ { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
@@ -1442,6 +1576,57 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
}
+ static const X86OpTblEntry OpTbl4[] = {
+ // AVX-512 foldable instructions
+ { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
+ { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
+ { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
+ { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
+ { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
+ { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
+ { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
+ { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
+ { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
+ { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
+ { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
+ { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
+ // AVX-512{F,VL} foldable instructions 256-bit
+ { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
+ { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
+ { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
+ { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
+ { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
+ { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
+ { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
+ { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
+ { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
+ { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
+ { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
+ { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
+ // AVX-512{F,VL} foldable instructions 128-bit
+ { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
+ { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
+ { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
+ { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
+ { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
+ { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
+ { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
+ { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
+ { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
+ { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
+ { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
+ { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl4); i != e; ++i) {
+ unsigned RegOp = OpTbl4[i].RegOp;
+ unsigned MemOp = OpTbl4[i].MemOp;
+ unsigned Flags = OpTbl4[i].Flags;
+ AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
+ RegOp, MemOp,
+ // Index 4, folded load
+ Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
+ }
}
void
@@ -1543,8 +1728,11 @@ static bool isFrameLoadOpcode(int Opcode) {
case X86::VMOVAPSrm:
case X86::VMOVAPDrm:
case X86::VMOVDQArm:
+ case X86::VMOVUPSYrm:
case X86::VMOVAPSYrm:
+ case X86::VMOVUPDYrm:
case X86::VMOVAPDYrm:
+ case X86::VMOVDQUYrm:
case X86::VMOVDQAYrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
@@ -1572,8 +1760,11 @@ static bool isFrameStoreOpcode(int Opcode) {
case X86::VMOVAPSmr:
case X86::VMOVAPDmr:
case X86::VMOVDQAmr:
+ case X86::VMOVUPSYmr:
case X86::VMOVAPSYmr:
+ case X86::VMOVUPDYmr:
case X86::VMOVAPDYmr:
+ case X86::VMOVDQUYmr:
case X86::VMOVDQAYmr:
case X86::VMOVUPSZmr:
case X86::VMOVAPSZmr:
@@ -1980,11 +2171,9 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
break;
}
case X86::INC16r:
- case X86::INC64_16r:
addRegOffset(MIB, leaInReg, true, 1);
break;
case X86::DEC16r:
- case X86::DEC64_16r:
addRegOffset(MIB, leaInReg, true, -1);
break;
case X86::ADD16ri:
@@ -2078,34 +2267,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
unsigned MIOpc = MI->getOpcode();
switch (MIOpc) {
- case X86::SHUFPSrri: {
- assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
- if (!Subtarget.hasSSE2()) return nullptr;
-
- unsigned B = MI->getOperand(1).getReg();
- unsigned C = MI->getOperand(2).getReg();
- if (B != C) return nullptr;
- unsigned M = MI->getOperand(3).getImm();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
- .addOperand(Dest).addOperand(Src).addImm(M);
- break;
- }
- case X86::SHUFPDrri: {
- assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
- if (!Subtarget.hasSSE2()) return nullptr;
-
- unsigned B = MI->getOperand(1).getReg();
- unsigned C = MI->getOperand(2).getReg();
- if (B != C) return nullptr;
- unsigned M = MI->getOperand(3).getImm();
-
- // Convert to PSHUFD mask.
- M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
-
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
- .addOperand(Dest).addOperand(Src).addImm(M);
- break;
- }
+ default: return nullptr;
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
unsigned ShAmt = getTruncatedShiftCount(MI, 2);
@@ -2160,185 +2322,175 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
.addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
break;
}
- default: {
+ case X86::INC64r:
+ case X86::INC32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
- switch (MIOpc) {
- default: return nullptr;
- case X86::INC64r:
- case X86::INC32r:
- case X86::INC64_32r: {
- assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
- unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
- : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
- bool isKill, isUndef;
- unsigned SrcReg;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
- SrcReg, isKill, isUndef, ImplicitOp))
- return nullptr;
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
- MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
- .addOperand(Dest)
- .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
- if (ImplicitOp.getReg() != 0)
- MIB.addOperand(ImplicitOp);
+ NewMI = addOffset(MIB, 1);
+ break;
+ }
+ case X86::INC16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src), 1);
+ break;
+ case X86::DEC64r:
+ case X86::DEC32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
- NewMI = addOffset(MIB, 1);
- break;
- }
- case X86::INC16r:
- case X86::INC64_16r:
- if (DisableLEA16)
- return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
- : nullptr;
- assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
- NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
- .addOperand(Dest).addOperand(Src), 1);
- break;
- case X86::DEC64r:
- case X86::DEC32r:
- case X86::DEC64_32r: {
- assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
- unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
- : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
-
- bool isKill, isUndef;
- unsigned SrcReg;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
- SrcReg, isKill, isUndef, ImplicitOp))
- return nullptr;
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
- MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
- .addOperand(Dest)
- .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
- if (ImplicitOp.getReg() != 0)
- MIB.addOperand(ImplicitOp);
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
- NewMI = addOffset(MIB, -1);
+ NewMI = addOffset(MIB, -1);
- break;
- }
- case X86::DEC16r:
- case X86::DEC64_16r:
- if (DisableLEA16)
- return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
- : nullptr;
- assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
- NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
- .addOperand(Dest).addOperand(Src), -1);
- break;
- case X86::ADD64rr:
- case X86::ADD64rr_DB:
- case X86::ADD32rr:
- case X86::ADD32rr_DB: {
- assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
- unsigned Opc;
- if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
- Opc = X86::LEA64r;
- else
- Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+ break;
+ }
+ case X86::DEC16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src), -1);
+ break;
+ case X86::ADD64rr:
+ case X86::ADD64rr_DB:
+ case X86::ADD32rr:
+ case X86::ADD32rr_DB: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc;
+ if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
+ Opc = X86::LEA64r;
+ else
+ Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
- bool isKill, isUndef;
- unsigned SrcReg;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
- SrcReg, isKill, isUndef, ImplicitOp))
- return nullptr;
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
- const MachineOperand &Src2 = MI->getOperand(2);
- bool isKill2, isUndef2;
- unsigned SrcReg2;
- MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
- SrcReg2, isKill2, isUndef2, ImplicitOp2))
- return nullptr;
+ const MachineOperand &Src2 = MI->getOperand(2);
+ bool isKill2, isUndef2;
+ unsigned SrcReg2;
+ MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
+ SrcReg2, isKill2, isUndef2, ImplicitOp2))
+ return nullptr;
- MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
- .addOperand(Dest);
- if (ImplicitOp.getReg() != 0)
- MIB.addOperand(ImplicitOp);
- if (ImplicitOp2.getReg() != 0)
- MIB.addOperand(ImplicitOp2);
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest);
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
+ if (ImplicitOp2.getReg() != 0)
+ MIB.addOperand(ImplicitOp2);
- NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
+ NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
- // Preserve undefness of the operands.
- NewMI->getOperand(1).setIsUndef(isUndef);
- NewMI->getOperand(3).setIsUndef(isUndef2);
+ // Preserve undefness of the operands.
+ NewMI->getOperand(1).setIsUndef(isUndef);
+ NewMI->getOperand(3).setIsUndef(isUndef2);
- if (LV && Src2.isKill())
- LV->replaceKillInstruction(SrcReg2, MI, NewMI);
- break;
- }
- case X86::ADD16rr:
- case X86::ADD16rr_DB: {
- if (DisableLEA16)
- return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
- : nullptr;
- assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
- unsigned Src2 = MI->getOperand(2).getReg();
- bool isKill2 = MI->getOperand(2).isKill();
- NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
- .addOperand(Dest),
- Src.getReg(), Src.isKill(), Src2, isKill2);
-
- // Preserve undefness of the operands.
- bool isUndef = MI->getOperand(1).isUndef();
- bool isUndef2 = MI->getOperand(2).isUndef();
- NewMI->getOperand(1).setIsUndef(isUndef);
- NewMI->getOperand(3).setIsUndef(isUndef2);
-
- if (LV && isKill2)
- LV->replaceKillInstruction(Src2, MI, NewMI);
- break;
- }
- case X86::ADD64ri32:
- case X86::ADD64ri8:
- case X86::ADD64ri32_DB:
- case X86::ADD64ri8_DB:
- assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
- NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
- .addOperand(Dest).addOperand(Src),
- MI->getOperand(2).getImm());
- break;
- case X86::ADD32ri:
- case X86::ADD32ri8:
- case X86::ADD32ri_DB:
- case X86::ADD32ri8_DB: {
- assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
- unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
-
- bool isKill, isUndef;
- unsigned SrcReg;
- MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
- if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
- SrcReg, isKill, isUndef, ImplicitOp))
- return nullptr;
+ if (LV && Src2.isKill())
+ LV->replaceKillInstruction(SrcReg2, MI, NewMI);
+ break;
+ }
+ case X86::ADD16rr:
+ case X86::ADD16rr_DB: {
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest),
+ Src.getReg(), Src.isKill(), Src2, isKill2);
+
+ // Preserve undefness of the operands.
+ bool isUndef = MI->getOperand(1).isUndef();
+ bool isUndef2 = MI->getOperand(2).isUndef();
+ NewMI->getOperand(1).setIsUndef(isUndef);
+ NewMI->getOperand(3).setIsUndef(isUndef2);
+
+ if (LV && isKill2)
+ LV->replaceKillInstruction(Src2, MI, NewMI);
+ break;
+ }
+ case X86::ADD64ri32:
+ case X86::ADD64ri8:
+ case X86::ADD64ri32_DB:
+ case X86::ADD64ri8_DB:
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addOperand(Dest).addOperand(Src),
+ MI->getOperand(2).getImm());
+ break;
+ case X86::ADD32ri:
+ case X86::ADD32ri8:
+ case X86::ADD32ri_DB:
+ case X86::ADD32ri8_DB: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+
+ bool isKill, isUndef;
+ unsigned SrcReg;
+ MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+ if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+ SrcReg, isKill, isUndef, ImplicitOp))
+ return nullptr;
- MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
- .addOperand(Dest)
- .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
- if (ImplicitOp.getReg() != 0)
- MIB.addOperand(ImplicitOp);
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addOperand(Dest)
+ .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+ if (ImplicitOp.getReg() != 0)
+ MIB.addOperand(ImplicitOp);
- NewMI = addOffset(MIB, MI->getOperand(2).getImm());
- break;
- }
- case X86::ADD16ri:
- case X86::ADD16ri8:
- case X86::ADD16ri_DB:
- case X86::ADD16ri8_DB:
- if (DisableLEA16)
- return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
- : nullptr;
- assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
- NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
- .addOperand(Dest).addOperand(Src),
- MI->getOperand(2).getImm());
- break;
- }
+ NewMI = addOffset(MIB, MI->getOperand(2).getImm());
+ break;
}
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ case X86::ADD16ri_DB:
+ case X86::ADD16ri8_DB:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+ : nullptr;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addOperand(Dest).addOperand(Src),
+ MI->getOperand(2).getImm());
+ break;
}
if (!NewMI) return nullptr;
@@ -2387,6 +2539,42 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
MI->getOperand(3).setImm(Size-Amt);
return TargetInstrInfo::commuteInstruction(MI, NewMI);
}
+ case X86::BLENDPDrri:
+ case X86::BLENDPSrri:
+ case X86::PBLENDWrri:
+ case X86::VBLENDPDrri:
+ case X86::VBLENDPSrri:
+ case X86::VBLENDPDYrri:
+ case X86::VBLENDPSYrri:
+ case X86::VPBLENDDrri:
+ case X86::VPBLENDWrri:
+ case X86::VPBLENDDYrri:
+ case X86::VPBLENDWYrri:{
+ unsigned Mask;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::BLENDPDrri: Mask = 0x03; break;
+ case X86::BLENDPSrri: Mask = 0x0F; break;
+ case X86::PBLENDWrri: Mask = 0xFF; break;
+ case X86::VBLENDPDrri: Mask = 0x03; break;
+ case X86::VBLENDPSrri: Mask = 0x0F; break;
+ case X86::VBLENDPDYrri: Mask = 0x0F; break;
+ case X86::VBLENDPSYrri: Mask = 0xFF; break;
+ case X86::VPBLENDDrri: Mask = 0x0F; break;
+ case X86::VPBLENDWrri: Mask = 0xFF; break;
+ case X86::VPBLENDDYrri: Mask = 0xFF; break;
+ case X86::VPBLENDWYrri: Mask = 0xFF; break;
+ }
+ // Only the least significant bits of Imm are used.
+ unsigned Imm = MI->getOperand(3).getImm() & Mask;
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->getOperand(3).setImm(Mask ^ Imm);
+ return TargetInstrInfo::commuteInstruction(MI, NewMI);
+ }
case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
@@ -2471,6 +2659,20 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
switch (MI->getOpcode()) {
+ case X86::BLENDPDrri:
+ case X86::BLENDPSrri:
+ case X86::PBLENDWrri:
+ case X86::VBLENDPDrri:
+ case X86::VBLENDPSrri:
+ case X86::VBLENDPDYrri:
+ case X86::VBLENDPSYrri:
+ case X86::VPBLENDDrri:
+ case X86::VPBLENDDYrri:
+ case X86::VPBLENDWrri:
+ case X86::VPBLENDWYrri:
+ SrcOpIdx1 = 1;
+ SrcOpIdx2 = 2;
+ return true;
case X86::VFMADDPDr231r:
case X86::VFMADDPSr231r:
case X86::VFMADDSDr231r:
@@ -2506,22 +2708,22 @@ bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
- case X86::JE_4: return X86::COND_E;
- case X86::JNE_4: return X86::COND_NE;
- case X86::JL_4: return X86::COND_L;
- case X86::JLE_4: return X86::COND_LE;
- case X86::JG_4: return X86::COND_G;
- case X86::JGE_4: return X86::COND_GE;
- case X86::JB_4: return X86::COND_B;
- case X86::JBE_4: return X86::COND_BE;
- case X86::JA_4: return X86::COND_A;
- case X86::JAE_4: return X86::COND_AE;
- case X86::JS_4: return X86::COND_S;
- case X86::JNS_4: return X86::COND_NS;
- case X86::JP_4: return X86::COND_P;
- case X86::JNP_4: return X86::COND_NP;
- case X86::JO_4: return X86::COND_O;
- case X86::JNO_4: return X86::COND_NO;
+ case X86::JE_1: return X86::COND_E;
+ case X86::JNE_1: return X86::COND_NE;
+ case X86::JL_1: return X86::COND_L;
+ case X86::JLE_1: return X86::COND_LE;
+ case X86::JG_1: return X86::COND_G;
+ case X86::JGE_1: return X86::COND_GE;
+ case X86::JB_1: return X86::COND_B;
+ case X86::JBE_1: return X86::COND_BE;
+ case X86::JA_1: return X86::COND_A;
+ case X86::JAE_1: return X86::COND_AE;
+ case X86::JS_1: return X86::COND_S;
+ case X86::JNS_1: return X86::COND_NS;
+ case X86::JP_1: return X86::COND_P;
+ case X86::JNP_1: return X86::COND_NP;
+ case X86::JO_1: return X86::COND_O;
+ case X86::JNO_1: return X86::COND_NO;
}
}
@@ -2606,22 +2808,22 @@ X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
- case X86::COND_E: return X86::JE_4;
- case X86::COND_NE: return X86::JNE_4;
- case X86::COND_L: return X86::JL_4;
- case X86::COND_LE: return X86::JLE_4;
- case X86::COND_G: return X86::JG_4;
- case X86::COND_GE: return X86::JGE_4;
- case X86::COND_B: return X86::JB_4;
- case X86::COND_BE: return X86::JBE_4;
- case X86::COND_A: return X86::JA_4;
- case X86::COND_AE: return X86::JAE_4;
- case X86::COND_S: return X86::JS_4;
- case X86::COND_NS: return X86::JNS_4;
- case X86::COND_P: return X86::JP_4;
- case X86::COND_NP: return X86::JNP_4;
- case X86::COND_O: return X86::JO_4;
- case X86::COND_NO: return X86::JNO_4;
+ case X86::COND_E: return X86::JE_1;
+ case X86::COND_NE: return X86::JNE_1;
+ case X86::COND_L: return X86::JL_1;
+ case X86::COND_LE: return X86::JLE_1;
+ case X86::COND_G: return X86::JG_1;
+ case X86::COND_GE: return X86::JGE_1;
+ case X86::COND_B: return X86::JB_1;
+ case X86::COND_BE: return X86::JBE_1;
+ case X86::COND_A: return X86::JA_1;
+ case X86::COND_AE: return X86::JAE_1;
+ case X86::COND_S: return X86::JS_1;
+ case X86::COND_NS: return X86::JNS_1;
+ case X86::COND_P: return X86::JP_1;
+ case X86::COND_NP: return X86::JNP_1;
+ case X86::COND_O: return X86::JO_1;
+ case X86::COND_NO: return X86::JNO_1;
}
}
@@ -2779,7 +2981,7 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
return true;
// Handle unconditional branches.
- if (I->getOpcode() == X86::JMP_4) {
+ if (I->getOpcode() == X86::JMP_1) {
UnCondBrIter = I;
if (!AllowModify) {
@@ -2841,7 +3043,7 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
.addMBB(UnCondBrIter->getOperand(0).getMBB());
- BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
.addMBB(TargetBB);
OldInst->eraseFromParent();
@@ -2906,7 +3108,7 @@ unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
--I;
if (I->isDebugValue())
continue;
- if (I->getOpcode() != X86::JMP_4 &&
+ if (I->getOpcode() != X86::JMP_1 &&
getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
break;
// Remove the branch.
@@ -2931,7 +3133,7 @@ X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
- BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
+ BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
return 1;
}
@@ -2941,16 +3143,16 @@ X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
switch (CC) {
case X86::COND_NP_OR_E:
// Synthesize NP_OR_E with two branches.
- BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
+ BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
++Count;
- BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
+ BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
++Count;
break;
case X86::COND_NE_OR_P:
// Synthesize NE_OR_P with two branches.
- BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
+ BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
++Count;
- BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
+ BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
++Count;
break;
default: {
@@ -2961,7 +3163,7 @@ X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
}
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
- BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
+ BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
++Count;
}
return Count;
@@ -3067,6 +3269,8 @@ static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
inline static bool MaskRegClassContains(unsigned Reg) {
return X86::VK8RegClass.contains(Reg) ||
X86::VK16RegClass.contains(Reg) ||
+ X86::VK32RegClass.contains(Reg) ||
+ X86::VK64RegClass.contains(Reg) ||
X86::VK1RegClass.contains(Reg);
}
static
@@ -3143,7 +3347,7 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
// Moving EFLAGS to / from another register requires a push and a pop.
// Notice that we have to adjust the stack if we don't want to clobber the
- // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
+ // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
if (SrcReg == X86::EFLAGS) {
if (X86::GR64RegClass.contains(DestReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSHF64));
@@ -3287,9 +3491,11 @@ void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
"Stack slot too small for store");
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
- bool isAligned =
- (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
- RI.canRealignStack(MF);
+ bool isAligned = (MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment() >= Alignment) ||
+ RI.canRealignStack(MF);
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
@@ -3324,9 +3530,11 @@ void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
- bool isAligned =
- (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
- RI.canRealignStack(MF);
+ bool isAligned = (MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment() >= Alignment) ||
+ RI.canRealignStack(MF);
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
@@ -3495,14 +3703,12 @@ inline static bool isDefConvertible(MachineInstr *MI) {
case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
- case X86::DEC64_32r: case X86::DEC64_16r:
case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
- case X86::INC64_32r: case X86::INC64_16r:
case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
@@ -3868,10 +4074,10 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
/// operand at the use. We fold the load instructions if load defines a virtual
/// register, the virtual register is used once in the same BB, and the
/// instructions in-between do not load or store, and have no side effects.
-MachineInstr* X86InstrInfo::
-optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
- unsigned &FoldAsLoadDefReg,
- MachineInstr *&DefMI) const {
+MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
+ const MachineRegisterInfo *MRI,
+ unsigned &FoldAsLoadDefReg,
+ MachineInstr *&DefMI) const {
if (FoldAsLoadDefReg == 0)
return nullptr;
// To be conservative, if there exists another load, clear the load candidate.
@@ -3887,55 +4093,35 @@ optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
if (!DefMI->isSafeToMove(this, nullptr, SawStore))
return nullptr;
- // We try to commute MI if possible.
- unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
- for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
- // Collect information about virtual register operands of MI.
- unsigned SrcOperandId = 0;
- bool FoundSrcOperand = false;
- for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg();
- if (Reg != FoldAsLoadDefReg)
- continue;
- // Do not fold if we have a subreg use or a def or multiple uses.
- if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
- return nullptr;
-
- SrcOperandId = i;
- FoundSrcOperand = true;
- }
- if (!FoundSrcOperand) return nullptr;
-
- // Check whether we can fold the def into SrcOperandId.
- SmallVector<unsigned, 8> Ops;
- Ops.push_back(SrcOperandId);
- MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
- if (FoldMI) {
- FoldAsLoadDefReg = 0;
- return FoldMI;
- }
-
- if (Idx == 1) {
- // MI was changed but it didn't help, commute it back!
- commuteInstruction(MI, false);
+ // Collect information about virtual register operands of MI.
+ unsigned SrcOperandId = 0;
+ bool FoundSrcOperand = false;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg != FoldAsLoadDefReg)
+ continue;
+ // Do not fold if we have a subreg use or a def or multiple uses.
+ if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
return nullptr;
- }
- // Check whether we can commute MI and enable folding.
- if (MI->isCommutable()) {
- MachineInstr *NewMI = commuteInstruction(MI, false);
- // Unable to commute.
- if (!NewMI) return nullptr;
- if (NewMI != MI) {
- // New instruction. It doesn't need to be kept.
- NewMI->eraseFromParent();
- return nullptr;
- }
- }
+ SrcOperandId = i;
+ FoundSrcOperand = true;
}
+ if (!FoundSrcOperand)
+ return nullptr;
+
+ // Check whether we can fold the def into SrcOperandId.
+ SmallVector<unsigned, 8> Ops;
+ Ops.push_back(SrcOperandId);
+ MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
+ if (FoldMI) {
+ FoldAsLoadDefReg = 0;
+ return FoldMI;
+ }
+
return nullptr;
}
@@ -3961,6 +4147,28 @@ static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
return true;
}
+// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
+// code sequence is needed for other targets.
+static void expandLoadStackGuard(MachineInstrBuilder &MIB,
+ const TargetInstrInfo &TII) {
+ MachineBasicBlock &MBB = *MIB->getParent();
+ DebugLoc DL = MIB->getDebugLoc();
+ unsigned Reg = MIB->getOperand(0).getReg();
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
+ unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+ MachineMemOperand *MMO = MBB.getParent()->
+ getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
+ MachineBasicBlock::iterator I = MIB.getInstr();
+
+ BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
+ .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
+ .addMemOperand(MMO);
+ MIB->setDebugLoc(DL);
+ MIB->setDesc(TII.get(X86::MOV64rm));
+ MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
+}
+
bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
bool HasAVX = Subtarget.hasAVX();
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
@@ -3991,10 +4199,13 @@ bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
case X86::TEST8ri_NOREX:
MI->setDesc(get(X86::TEST8ri));
return true;
- case X86::KSET0B:
+ case X86::KSET0B:
case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
case X86::KSET1B:
case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
+ case TargetOpcode::LOAD_STACK_GUARD:
+ expandLoadStackGuard(MIB, *this);
+ return true;
}
return false;
}
@@ -4070,7 +4281,8 @@ MachineInstr*
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI, unsigned i,
const SmallVectorImpl<MachineOperand> &MOs,
- unsigned Size, unsigned Align) const {
+ unsigned Size, unsigned Align,
+ bool AllowCommute) const {
const DenseMap<unsigned,
std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
bool isCallRegIndirect = Subtarget.callRegIndirect();
@@ -4117,6 +4329,8 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
OpcodeTablePtr = &RegOp2MemOpTable2;
} else if (i == 3) {
OpcodeTablePtr = &RegOp2MemOpTable3;
+ } else if (i == 4) {
+ OpcodeTablePtr = &RegOp2MemOpTable4;
}
// If table selected...
@@ -4138,8 +4352,8 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
return nullptr;
// If this is a 64-bit load, but the spill slot is 32, then we can do
- // a 32-bit load which is implicitly zero-extended. This likely is due
- // to liveintervalanalysis remat'ing a load from stack slot.
+ // a 32-bit load which is implicitly zero-extended. This likely is
+ // due to live interval analysis remat'ing a load from stack slot.
if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
return nullptr;
Opcode = X86::MOV32rm;
@@ -4158,8 +4372,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
// to a 32-bit one.
unsigned DstReg = NewMI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
- NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
- X86::sub_32bit));
+ NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
else
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
}
@@ -4167,6 +4380,65 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
}
}
+ // If the instruction and target operand are commutable, commute the
+ // instruction and try again.
+ if (AllowCommute) {
+ unsigned OriginalOpIdx = i, CommuteOpIdx1, CommuteOpIdx2;
+ if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
+ bool HasDef = MI->getDesc().getNumDefs();
+ unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
+ unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
+ unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
+ bool Tied0 =
+ 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
+ bool Tied1 =
+ 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
+
+ // If either of the commutable operands are tied to the destination
+ // then we can not commute + fold.
+ if ((HasDef && Reg0 == Reg1 && Tied0) ||
+ (HasDef && Reg0 == Reg2 && Tied1))
+ return nullptr;
+
+ if ((CommuteOpIdx1 == OriginalOpIdx) ||
+ (CommuteOpIdx2 == OriginalOpIdx)) {
+ MachineInstr *CommutedMI = commuteInstruction(MI, false);
+ if (!CommutedMI) {
+ // Unable to commute.
+ return nullptr;
+ }
+ if (CommutedMI != MI) {
+ // New instruction. We can't fold from this.
+ CommutedMI->eraseFromParent();
+ return nullptr;
+ }
+
+ // Attempt to fold with the commuted version of the instruction.
+ unsigned CommuteOp =
+ (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
+ NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
+ /*AllowCommute=*/false);
+ if (NewMI)
+ return NewMI;
+
+ // Folding failed again - undo the commute before returning.
+ MachineInstr *UncommutedMI = commuteInstruction(MI, false);
+ if (!UncommutedMI) {
+ // Unable to commute.
+ return nullptr;
+ }
+ if (UncommutedMI != MI) {
+ // New instruction. It doesn't need to be kept.
+ UncommutedMI->eraseFromParent();
+ return nullptr;
+ }
+
+ // Return here to prevent duplicate fuse failure report.
+ return nullptr;
+ }
+ }
+ }
+
// No fusion
if (PrintFailedFusing && !MI->isCopy())
dbgs() << "We failed to fuse operand " << i << " in " << *MI;
@@ -4192,23 +4464,43 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
static bool hasPartialRegUpdate(unsigned Opcode) {
switch (Opcode) {
case X86::CVTSI2SSrr:
+ case X86::CVTSI2SSrm:
case X86::CVTSI2SS64rr:
+ case X86::CVTSI2SS64rm:
case X86::CVTSI2SDrr:
+ case X86::CVTSI2SDrm:
case X86::CVTSI2SD64rr:
+ case X86::CVTSI2SD64rm:
case X86::CVTSD2SSrr:
+ case X86::CVTSD2SSrm:
case X86::Int_CVTSD2SSrr:
+ case X86::Int_CVTSD2SSrm:
case X86::CVTSS2SDrr:
+ case X86::CVTSS2SDrm:
case X86::Int_CVTSS2SDrr:
+ case X86::Int_CVTSS2SDrm:
case X86::RCPSSr:
+ case X86::RCPSSm:
case X86::RCPSSr_Int:
+ case X86::RCPSSm_Int:
case X86::ROUNDSDr:
+ case X86::ROUNDSDm:
case X86::ROUNDSDr_Int:
case X86::ROUNDSSr:
+ case X86::ROUNDSSm:
case X86::ROUNDSSr_Int:
case X86::RSQRTSSr:
+ case X86::RSQRTSSm:
case X86::RSQRTSSr_Int:
+ case X86::RSQRTSSm_Int:
case X86::SQRTSSr:
+ case X86::SQRTSSm:
case X86::SQRTSSr_Int:
+ case X86::SQRTSSm_Int:
+ case X86::SQRTSDr:
+ case X86::SQRTSDm:
+ case X86::SQRTSDr_Int:
+ case X86::SQRTSDm_Int:
return true;
}
@@ -4245,28 +4537,52 @@ getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
static bool hasUndefRegUpdate(unsigned Opcode) {
switch (Opcode) {
case X86::VCVTSI2SSrr:
+ case X86::VCVTSI2SSrm:
case X86::Int_VCVTSI2SSrr:
+ case X86::Int_VCVTSI2SSrm:
case X86::VCVTSI2SS64rr:
+ case X86::VCVTSI2SS64rm:
case X86::Int_VCVTSI2SS64rr:
+ case X86::Int_VCVTSI2SS64rm:
case X86::VCVTSI2SDrr:
+ case X86::VCVTSI2SDrm:
case X86::Int_VCVTSI2SDrr:
+ case X86::Int_VCVTSI2SDrm:
case X86::VCVTSI2SD64rr:
+ case X86::VCVTSI2SD64rm:
case X86::Int_VCVTSI2SD64rr:
+ case X86::Int_VCVTSI2SD64rm:
case X86::VCVTSD2SSrr:
+ case X86::VCVTSD2SSrm:
case X86::Int_VCVTSD2SSrr:
+ case X86::Int_VCVTSD2SSrm:
case X86::VCVTSS2SDrr:
+ case X86::VCVTSS2SDrm:
case X86::Int_VCVTSS2SDrr:
+ case X86::Int_VCVTSS2SDrm:
case X86::VRCPSSr:
+ case X86::VRCPSSm:
+ case X86::VRCPSSm_Int:
case X86::VROUNDSDr:
+ case X86::VROUNDSDm:
case X86::VROUNDSDr_Int:
case X86::VROUNDSSr:
+ case X86::VROUNDSSm:
case X86::VROUNDSSr_Int:
case X86::VRSQRTSSr:
+ case X86::VRSQRTSSm:
+ case X86::VRSQRTSSm_Int:
case X86::VSQRTSSr:
-
- // AVX-512
+ case X86::VSQRTSSm:
+ case X86::VSQRTSSm_Int:
+ case X86::VSQRTSDr:
+ case X86::VSQRTSDm:
+ case X86::VSQRTSDm_Int:
+ // AVX-512
case X86::VCVTSD2SSZrr:
+ case X86::VCVTSD2SSZrm:
case X86::VCVTSS2SDZrr:
+ case X86::VCVTSS2SDZrm:
return true;
}
@@ -4350,8 +4666,10 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
// If the function stack isn't realigned we don't want to fold instructions
// that need increased alignment.
if (!RI.needsStackRealignment(MF))
- Alignment = std::min(
- Alignment, MF.getTarget().getFrameLowering()->getStackAlignment());
+ Alignment = std::min(Alignment, MF.getTarget()
+ .getSubtargetImpl()
+ ->getFrameLowering()
+ ->getStackAlignment());
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
unsigned RCSize = 0;
@@ -4374,7 +4692,27 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
SmallVector<MachineOperand,4> MOs;
MOs.push_back(MachineOperand::CreateFI(FrameIndex));
- return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
+ Size, Alignment, /*AllowCommute=*/true);
+}
+
+static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
+ const MachineFunction &MF) {
+ unsigned Opc = LoadMI.getOpcode();
+ unsigned RegSize =
+ MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
+
+ if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
+ // These instructions only load 32 bits, we can't fold them if the
+ // destination register is wider than 32 bits (4 bytes).
+ return true;
+
+ if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
+ // These instructions only load 64 bits, we can't fold them if the
+ // destination register is wider than 64 bits (8 bytes).
+ return true;
+
+ return false;
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
@@ -4384,8 +4722,11 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
// If loading from a FrameIndex, fold directly from the FrameIndex.
unsigned NumOps = LoadMI->getDesc().getNumOperands();
int FrameIndex;
- if (isLoadFromStackSlot(LoadMI, FrameIndex))
+ if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
+ if (isPartialRegisterLoad(*LoadMI, MF))
+ return nullptr;
return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
+ }
// Check switch flag
if (NoFusing) return nullptr;
@@ -4496,19 +4837,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
break;
}
default: {
- if ((LoadMI->getOpcode() == X86::MOVSSrm ||
- LoadMI->getOpcode() == X86::VMOVSSrm) &&
- MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
- > 4)
- // These instructions only load 32 bits, we can't fold them if the
- // destination register is wider than 32 bits (4 bytes).
- return nullptr;
- if ((LoadMI->getOpcode() == X86::MOVSDrm ||
- LoadMI->getOpcode() == X86::VMOVSDrm) &&
- MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
- > 8)
- // These instructions only load 64 bits, we can't fold them if the
- // destination register is wider than 64 bits (8 bytes).
+ if (isPartialRegisterLoad(*LoadMI, MF))
return nullptr;
// Folding a normal load. Just copy the load's address operands.
@@ -4517,7 +4846,8 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
break;
}
}
- return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
+ /*Size=*/0, Alignment, /*AllowCommute=*/true);
}
@@ -4997,26 +5327,26 @@ bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
switch(Second->getOpcode()) {
default:
return false;
- case X86::JE_4:
- case X86::JNE_4:
- case X86::JL_4:
- case X86::JLE_4:
- case X86::JG_4:
- case X86::JGE_4:
+ case X86::JE_1:
+ case X86::JNE_1:
+ case X86::JL_1:
+ case X86::JLE_1:
+ case X86::JG_1:
+ case X86::JGE_1:
FuseKind = FuseInc;
break;
- case X86::JB_4:
- case X86::JBE_4:
- case X86::JA_4:
- case X86::JAE_4:
+ case X86::JB_1:
+ case X86::JBE_1:
+ case X86::JA_1:
+ case X86::JAE_1:
FuseKind = FuseCmp;
break;
- case X86::JS_4:
- case X86::JNS_4:
- case X86::JP_4:
- case X86::JNP_4:
- case X86::JO_4:
- case X86::JNO_4:
+ case X86::JS_1:
+ case X86::JNS_1:
+ case X86::JP_1:
+ case X86::JNP_1:
+ case X86::JO_1:
+ case X86::JNO_1:
FuseKind = FuseTest;
break;
}
@@ -5129,14 +5459,10 @@ bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
return FuseKind == FuseCmp || FuseKind == FuseInc;
case X86::INC16r:
case X86::INC32r:
- case X86::INC64_16r:
- case X86::INC64_32r:
case X86::INC64r:
case X86::INC8r:
case X86::DEC16r:
case X86::DEC32r:
- case X86::DEC64_16r:
- case X86::DEC64_32r:
case X86::DEC64r:
case X86::DEC8r:
return FuseKind == FuseInc;
@@ -5299,16 +5625,32 @@ void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(X86::NOOP);
}
+// This code must remain in sync with getJumpInstrTableEntryBound in this class!
+// In particular, getJumpInstrTableEntryBound must always return an upper bound
+// on the encoding lengths of the instructions generated by
+// getUnconditionalBranch and getTrap.
void X86InstrInfo::getUnconditionalBranch(
MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
- Branch.setOpcode(X86::JMP_4);
+ Branch.setOpcode(X86::JMP_1);
Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
}
+// This code must remain in sync with getJumpInstrTableEntryBound in this class!
+// In particular, getJumpInstrTableEntryBound must always return an upper bound
+// on the encoding lengths of the instructions generated by
+// getUnconditionalBranch and getTrap.
void X86InstrInfo::getTrap(MCInst &MI) const {
MI.setOpcode(X86::TRAP);
}
+// See getTrap and getUnconditionalBranch for conditions on the value returned
+// by this function.
+unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
+ // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
+ // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
+ return 5;
+}
+
bool X86InstrInfo::isHighLatencyDef(int opc) const {
switch (opc) {
default: return false;
@@ -5351,10 +5693,10 @@ bool X86InstrInfo::isHighLatencyDef(int opc) const {
case X86::VSQRTSSm:
case X86::VSQRTSSm_Int:
case X86::VSQRTSSr:
- case X86::VSQRTPDZrm:
- case X86::VSQRTPDZrr:
- case X86::VSQRTPSZrm:
- case X86::VSQRTPSZrr:
+ case X86::VSQRTPDZm:
+ case X86::VSQRTPDZr:
+ case X86::VSQRTPSZm:
+ case X86::VSQRTPSZr:
case X86::VSQRTSDZm:
case X86::VSQRTSDZm_Int:
case X86::VSQRTSDZr:
@@ -5426,7 +5768,7 @@ namespace {
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- const X86InstrInfo *TII = TM->getInstrInfo();
+ const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
unsigned PC;
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
@@ -5524,7 +5866,7 @@ namespace {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF->getTarget());
const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
- const X86InstrInfo *TII = TM->getInstrInfo();
+ const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to RAX/EAX.
MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
@@ -5545,7 +5887,7 @@ namespace {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF->getTarget());
const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
- const X86InstrInfo *TII = TM->getInstrInfo();
+ const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.h b/contrib/llvm/lib/Target/X86/X86InstrInfo.h
index c177e3a..5662e86 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrInfo.h
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86INSTRUCTIONINFO_H
-#define X86INSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
+#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86RegisterInfo.h"
@@ -152,6 +152,7 @@ class X86InstrInfo final : public X86GenInstrInfo {
RegOp2MemOpTableType RegOp2MemOpTable1;
RegOp2MemOpTableType RegOp2MemOpTable2;
RegOp2MemOpTableType RegOp2MemOpTable3;
+ RegOp2MemOpTableType RegOp2MemOpTable4;
/// MemOp2RegOpTable - Load / store unfolding opcode map.
///
@@ -404,7 +405,8 @@ public:
MachineInstr* MI,
unsigned OpNum,
const SmallVectorImpl<MachineOperand> &MOs,
- unsigned Size, unsigned Alignment) const;
+ unsigned Size, unsigned Alignment,
+ bool AllowCommute) const;
void
getUnconditionalBranch(MCInst &Branch,
@@ -412,6 +414,8 @@ public:
void getTrap(MCInst &MI) const override;
+ unsigned getJumpInstrTableEntryBound() const override;
+
bool isHighLatencyDef(int opc) const override;
bool hasHighOperandLatency(const InstrItineraryData *ItinData,
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.td b/contrib/llvm/lib/Target/X86/X86InstrInfo.td
index 0f872a6..53715dc 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrInfo.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.td
@@ -32,7 +32,8 @@ def SDTX86Cmov : SDTypeProfile<1, 4,
// Unary and binary operator instructions that set EFLAGS as a side-effect.
def SDTUnaryArithWithFlags : SDTypeProfile<2, 1,
- [SDTCisInt<0>, SDTCisVT<1, i32>]>;
+ [SDTCisSameAs<0, 2>,
+ SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
@@ -188,11 +189,15 @@ def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void,
def X86rdtscp : SDNode<"X86ISD::RDTSCP_DAG", SDTX86Void,
[SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
def X86rdpmc : SDNode<"X86ISD::RDPMC_DAG", SDTX86Void,
- [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
+ [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>;
def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>;
+def X86RecoverFrameAlloc : SDNode<"ISD::FRAME_ALLOC_RECOVER",
+ SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
+ SDTCisInt<1>]>>;
+
def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
@@ -261,121 +266,75 @@ def ptr_rc_nosp : PointerLikeRegClass<1>;
def X86MemAsmOperand : AsmOperandClass {
let Name = "Mem";
}
-def X86Mem8AsmOperand : AsmOperandClass {
- let Name = "Mem8"; let RenderMethod = "addMemOperands";
-}
-def X86Mem16AsmOperand : AsmOperandClass {
- let Name = "Mem16"; let RenderMethod = "addMemOperands";
-}
-def X86Mem32AsmOperand : AsmOperandClass {
- let Name = "Mem32"; let RenderMethod = "addMemOperands";
-}
-def X86Mem64AsmOperand : AsmOperandClass {
- let Name = "Mem64"; let RenderMethod = "addMemOperands";
-}
-def X86Mem80AsmOperand : AsmOperandClass {
- let Name = "Mem80"; let RenderMethod = "addMemOperands";
-}
-def X86Mem128AsmOperand : AsmOperandClass {
- let Name = "Mem128"; let RenderMethod = "addMemOperands";
-}
-def X86Mem256AsmOperand : AsmOperandClass {
- let Name = "Mem256"; let RenderMethod = "addMemOperands";
-}
-def X86Mem512AsmOperand : AsmOperandClass {
- let Name = "Mem512"; let RenderMethod = "addMemOperands";
-}
-
-// Gather mem operands
-def X86MemVX32Operand : AsmOperandClass {
- let Name = "MemVX32"; let RenderMethod = "addMemOperands";
-}
-def X86MemVY32Operand : AsmOperandClass {
- let Name = "MemVY32"; let RenderMethod = "addMemOperands";
-}
-def X86MemVZ32Operand : AsmOperandClass {
- let Name = "MemVZ32"; let RenderMethod = "addMemOperands";
-}
-def X86MemVX64Operand : AsmOperandClass {
- let Name = "MemVX64"; let RenderMethod = "addMemOperands";
-}
-def X86MemVY64Operand : AsmOperandClass {
- let Name = "MemVY64"; let RenderMethod = "addMemOperands";
-}
-def X86MemVZ64Operand : AsmOperandClass {
- let Name = "MemVZ64"; let RenderMethod = "addMemOperands";
+let RenderMethod = "addMemOperands" in {
+ def X86Mem8AsmOperand : AsmOperandClass { let Name = "Mem8"; }
+ def X86Mem16AsmOperand : AsmOperandClass { let Name = "Mem16"; }
+ def X86Mem32AsmOperand : AsmOperandClass { let Name = "Mem32"; }
+ def X86Mem64AsmOperand : AsmOperandClass { let Name = "Mem64"; }
+ def X86Mem80AsmOperand : AsmOperandClass { let Name = "Mem80"; }
+ def X86Mem128AsmOperand : AsmOperandClass { let Name = "Mem128"; }
+ def X86Mem256AsmOperand : AsmOperandClass { let Name = "Mem256"; }
+ def X86Mem512AsmOperand : AsmOperandClass { let Name = "Mem512"; }
+ // Gather mem operands
+ def X86MemVX32Operand : AsmOperandClass { let Name = "MemVX32"; }
+ def X86MemVY32Operand : AsmOperandClass { let Name = "MemVY32"; }
+ def X86MemVZ32Operand : AsmOperandClass { let Name = "MemVZ32"; }
+ def X86MemVX64Operand : AsmOperandClass { let Name = "MemVX64"; }
+ def X86MemVY64Operand : AsmOperandClass { let Name = "MemVY64"; }
+ def X86MemVZ64Operand : AsmOperandClass { let Name = "MemVZ64"; }
}
def X86AbsMemAsmOperand : AsmOperandClass {
let Name = "AbsMem";
let SuperClasses = [X86MemAsmOperand];
}
-class X86MemOperand<string printMethod> : Operand<iPTR> {
+
+class X86MemOperand<string printMethod,
+ AsmOperandClass parserMatchClass = X86MemAsmOperand> : Operand<iPTR> {
let PrintMethod = printMethod;
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
- let ParserMatchClass = X86MemAsmOperand;
+ let ParserMatchClass = parserMatchClass;
+ let OperandType = "OPERAND_MEMORY";
}
-let OperandType = "OPERAND_MEMORY" in {
+// Gather mem operands
+class X86VMemOperand<RegisterClass RC, string printMethod,
+ AsmOperandClass parserMatchClass>
+ : X86MemOperand<printMethod, parserMatchClass> {
+ let MIOperandInfo = (ops ptr_rc, i8imm, RC, i32imm, i8imm);
+}
+
+def anymem : X86MemOperand<"printanymem">;
+
def opaque32mem : X86MemOperand<"printopaquemem">;
def opaque48mem : X86MemOperand<"printopaquemem">;
def opaque80mem : X86MemOperand<"printopaquemem">;
def opaque512mem : X86MemOperand<"printopaquemem">;
-def i8mem : X86MemOperand<"printi8mem"> {
- let ParserMatchClass = X86Mem8AsmOperand; }
-def i16mem : X86MemOperand<"printi16mem"> {
- let ParserMatchClass = X86Mem16AsmOperand; }
-def i32mem : X86MemOperand<"printi32mem"> {
- let ParserMatchClass = X86Mem32AsmOperand; }
-def i64mem : X86MemOperand<"printi64mem"> {
- let ParserMatchClass = X86Mem64AsmOperand; }
-def i128mem : X86MemOperand<"printi128mem"> {
- let ParserMatchClass = X86Mem128AsmOperand; }
-def i256mem : X86MemOperand<"printi256mem"> {
- let ParserMatchClass = X86Mem256AsmOperand; }
-def i512mem : X86MemOperand<"printi512mem"> {
- let ParserMatchClass = X86Mem512AsmOperand; }
-def f32mem : X86MemOperand<"printf32mem"> {
- let ParserMatchClass = X86Mem32AsmOperand; }
-def f64mem : X86MemOperand<"printf64mem"> {
- let ParserMatchClass = X86Mem64AsmOperand; }
-def f80mem : X86MemOperand<"printf80mem"> {
- let ParserMatchClass = X86Mem80AsmOperand; }
-def f128mem : X86MemOperand<"printf128mem"> {
- let ParserMatchClass = X86Mem128AsmOperand; }
-def f256mem : X86MemOperand<"printf256mem">{
- let ParserMatchClass = X86Mem256AsmOperand; }
-def f512mem : X86MemOperand<"printf512mem">{
- let ParserMatchClass = X86Mem512AsmOperand; }
-def v512mem : Operand<iPTR> {
- let PrintMethod = "printf512mem";
- let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm);
- let ParserMatchClass = X86Mem512AsmOperand; }
+def i8mem : X86MemOperand<"printi8mem", X86Mem8AsmOperand>;
+def i16mem : X86MemOperand<"printi16mem", X86Mem16AsmOperand>;
+def i32mem : X86MemOperand<"printi32mem", X86Mem32AsmOperand>;
+def i64mem : X86MemOperand<"printi64mem", X86Mem64AsmOperand>;
+def i128mem : X86MemOperand<"printi128mem", X86Mem128AsmOperand>;
+def i256mem : X86MemOperand<"printi256mem", X86Mem256AsmOperand>;
+def i512mem : X86MemOperand<"printi512mem", X86Mem512AsmOperand>;
+def f32mem : X86MemOperand<"printf32mem", X86Mem32AsmOperand>;
+def f64mem : X86MemOperand<"printf64mem", X86Mem64AsmOperand>;
+def f80mem : X86MemOperand<"printf80mem", X86Mem80AsmOperand>;
+def f128mem : X86MemOperand<"printf128mem", X86Mem128AsmOperand>;
+def f256mem : X86MemOperand<"printf256mem", X86Mem256AsmOperand>;
+def f512mem : X86MemOperand<"printf512mem", X86Mem512AsmOperand>;
+
+def v512mem : X86VMemOperand<VR512, "printf512mem", X86Mem512AsmOperand>;
// Gather mem operands
-def vx32mem : X86MemOperand<"printi32mem">{
- let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm);
- let ParserMatchClass = X86MemVX32Operand; }
-def vy32mem : X86MemOperand<"printi32mem">{
- let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm);
- let ParserMatchClass = X86MemVY32Operand; }
-def vx64mem : X86MemOperand<"printi64mem">{
- let MIOperandInfo = (ops ptr_rc, i8imm, VR128, i32imm, i8imm);
- let ParserMatchClass = X86MemVX64Operand; }
-def vy64mem : X86MemOperand<"printi64mem">{
- let MIOperandInfo = (ops ptr_rc, i8imm, VR256, i32imm, i8imm);
- let ParserMatchClass = X86MemVY64Operand; }
-def vy64xmem : X86MemOperand<"printi64mem">{
- let MIOperandInfo = (ops ptr_rc, i8imm, VR256X, i32imm, i8imm);
- let ParserMatchClass = X86MemVY64Operand; }
-def vz32mem : X86MemOperand<"printi32mem">{
- let MIOperandInfo = (ops ptr_rc, i16imm, VR512, i32imm, i8imm);
- let ParserMatchClass = X86MemVZ32Operand; }
-def vz64mem : X86MemOperand<"printi64mem">{
- let MIOperandInfo = (ops ptr_rc, i8imm, VR512, i32imm, i8imm);
- let ParserMatchClass = X86MemVZ64Operand; }
-}
+def vx32mem : X86VMemOperand<VR128, "printi32mem", X86MemVX32Operand>;
+def vy32mem : X86VMemOperand<VR256, "printi32mem", X86MemVY32Operand>;
+def vx64mem : X86VMemOperand<VR128, "printi64mem", X86MemVX64Operand>;
+def vy64mem : X86VMemOperand<VR256, "printi64mem", X86MemVY64Operand>;
+def vy64xmem : X86VMemOperand<VR256X, "printi64mem", X86MemVY64Operand>;
+def vz32mem : X86VMemOperand<VR512, "printi32mem", X86MemVZ32Operand>;
+def vz64mem : X86VMemOperand<VR512, "printi64mem", X86MemVZ64Operand>;
// A version of i8mem for use on x86-64 that uses GR64_NOREX instead of
// plain GR64, so that it doesn't potentially require a REX prefix.
@@ -424,134 +383,184 @@ def brtarget8 : Operand<OtherVT>;
}
-def X86SrcIdx8Operand : AsmOperandClass {
- let Name = "SrcIdx8";
- let RenderMethod = "addSrcIdxOperands";
- let SuperClasses = [X86Mem8AsmOperand];
-}
-def X86SrcIdx16Operand : AsmOperandClass {
- let Name = "SrcIdx16";
- let RenderMethod = "addSrcIdxOperands";
- let SuperClasses = [X86Mem16AsmOperand];
-}
-def X86SrcIdx32Operand : AsmOperandClass {
- let Name = "SrcIdx32";
- let RenderMethod = "addSrcIdxOperands";
- let SuperClasses = [X86Mem32AsmOperand];
-}
-def X86SrcIdx64Operand : AsmOperandClass {
- let Name = "SrcIdx64";
- let RenderMethod = "addSrcIdxOperands";
- let SuperClasses = [X86Mem64AsmOperand];
-}
-def X86DstIdx8Operand : AsmOperandClass {
- let Name = "DstIdx8";
- let RenderMethod = "addDstIdxOperands";
- let SuperClasses = [X86Mem8AsmOperand];
-}
-def X86DstIdx16Operand : AsmOperandClass {
- let Name = "DstIdx16";
- let RenderMethod = "addDstIdxOperands";
- let SuperClasses = [X86Mem16AsmOperand];
-}
-def X86DstIdx32Operand : AsmOperandClass {
- let Name = "DstIdx32";
- let RenderMethod = "addDstIdxOperands";
- let SuperClasses = [X86Mem32AsmOperand];
-}
-def X86DstIdx64Operand : AsmOperandClass {
- let Name = "DstIdx64";
- let RenderMethod = "addDstIdxOperands";
- let SuperClasses = [X86Mem64AsmOperand];
-}
-def X86MemOffs8AsmOperand : AsmOperandClass {
- let Name = "MemOffs8";
- let RenderMethod = "addMemOffsOperands";
- let SuperClasses = [X86Mem8AsmOperand];
-}
-def X86MemOffs16AsmOperand : AsmOperandClass {
- let Name = "MemOffs16";
- let RenderMethod = "addMemOffsOperands";
- let SuperClasses = [X86Mem16AsmOperand];
-}
-def X86MemOffs32AsmOperand : AsmOperandClass {
- let Name = "MemOffs32";
- let RenderMethod = "addMemOffsOperands";
- let SuperClasses = [X86Mem32AsmOperand];
-}
-def X86MemOffs64AsmOperand : AsmOperandClass {
- let Name = "MemOffs64";
- let RenderMethod = "addMemOffsOperands";
- let SuperClasses = [X86Mem64AsmOperand];
-}
-let OperandType = "OPERAND_MEMORY" in {
-def srcidx8 : Operand<iPTR> {
- let ParserMatchClass = X86SrcIdx8Operand;
- let MIOperandInfo = (ops ptr_rc, i8imm);
- let PrintMethod = "printSrcIdx8"; }
-def srcidx16 : Operand<iPTR> {
- let ParserMatchClass = X86SrcIdx16Operand;
- let MIOperandInfo = (ops ptr_rc, i8imm);
- let PrintMethod = "printSrcIdx16"; }
-def srcidx32 : Operand<iPTR> {
- let ParserMatchClass = X86SrcIdx32Operand;
- let MIOperandInfo = (ops ptr_rc, i8imm);
- let PrintMethod = "printSrcIdx32"; }
-def srcidx64 : Operand<iPTR> {
- let ParserMatchClass = X86SrcIdx64Operand;
+// Special parsers to detect mode to disambiguate.
+def X86AbsMem16AsmOperand : AsmOperandClass {
+ let Name = "AbsMem16";
+ let RenderMethod = "addAbsMemOperands";
+ let SuperClasses = [X86AbsMemAsmOperand];
+}
+
+def X86AbsMem32AsmOperand : AsmOperandClass {
+ let Name = "AbsMem32";
+ let RenderMethod = "addAbsMemOperands";
+ let SuperClasses = [X86AbsMemAsmOperand];
+}
+
+// Branch targets have OtherVT type and print as pc-relative values.
+let OperandType = "OPERAND_PCREL",
+ PrintMethod = "printPCRelImm" in {
+let ParserMatchClass = X86AbsMem16AsmOperand in
+ def brtarget16 : Operand<OtherVT>;
+let ParserMatchClass = X86AbsMem32AsmOperand in
+ def brtarget32 : Operand<OtherVT>;
+}
+
+let RenderMethod = "addSrcIdxOperands" in {
+ def X86SrcIdx8Operand : AsmOperandClass {
+ let Name = "SrcIdx8";
+ let SuperClasses = [X86Mem8AsmOperand];
+ }
+ def X86SrcIdx16Operand : AsmOperandClass {
+ let Name = "SrcIdx16";
+ let SuperClasses = [X86Mem16AsmOperand];
+ }
+ def X86SrcIdx32Operand : AsmOperandClass {
+ let Name = "SrcIdx32";
+ let SuperClasses = [X86Mem32AsmOperand];
+ }
+ def X86SrcIdx64Operand : AsmOperandClass {
+ let Name = "SrcIdx64";
+ let SuperClasses = [X86Mem64AsmOperand];
+ }
+} // RenderMethod = "addSrcIdxOperands"
+
+let RenderMethod = "addDstIdxOperands" in {
+ def X86DstIdx8Operand : AsmOperandClass {
+ let Name = "DstIdx8";
+ let SuperClasses = [X86Mem8AsmOperand];
+ }
+ def X86DstIdx16Operand : AsmOperandClass {
+ let Name = "DstIdx16";
+ let SuperClasses = [X86Mem16AsmOperand];
+ }
+ def X86DstIdx32Operand : AsmOperandClass {
+ let Name = "DstIdx32";
+ let SuperClasses = [X86Mem32AsmOperand];
+ }
+ def X86DstIdx64Operand : AsmOperandClass {
+ let Name = "DstIdx64";
+ let SuperClasses = [X86Mem64AsmOperand];
+ }
+} // RenderMethod = "addDstIdxOperands"
+
+let RenderMethod = "addMemOffsOperands" in {
+ def X86MemOffs16_8AsmOperand : AsmOperandClass {
+ let Name = "MemOffs16_8";
+ let SuperClasses = [X86Mem8AsmOperand];
+ }
+ def X86MemOffs16_16AsmOperand : AsmOperandClass {
+ let Name = "MemOffs16_16";
+ let SuperClasses = [X86Mem16AsmOperand];
+ }
+ def X86MemOffs16_32AsmOperand : AsmOperandClass {
+ let Name = "MemOffs16_32";
+ let SuperClasses = [X86Mem32AsmOperand];
+ }
+ def X86MemOffs32_8AsmOperand : AsmOperandClass {
+ let Name = "MemOffs32_8";
+ let SuperClasses = [X86Mem8AsmOperand];
+ }
+ def X86MemOffs32_16AsmOperand : AsmOperandClass {
+ let Name = "MemOffs32_16";
+ let SuperClasses = [X86Mem16AsmOperand];
+ }
+ def X86MemOffs32_32AsmOperand : AsmOperandClass {
+ let Name = "MemOffs32_32";
+ let SuperClasses = [X86Mem32AsmOperand];
+ }
+ def X86MemOffs32_64AsmOperand : AsmOperandClass {
+ let Name = "MemOffs32_64";
+ let SuperClasses = [X86Mem64AsmOperand];
+ }
+ def X86MemOffs64_8AsmOperand : AsmOperandClass {
+ let Name = "MemOffs64_8";
+ let SuperClasses = [X86Mem8AsmOperand];
+ }
+ def X86MemOffs64_16AsmOperand : AsmOperandClass {
+ let Name = "MemOffs64_16";
+ let SuperClasses = [X86Mem16AsmOperand];
+ }
+ def X86MemOffs64_32AsmOperand : AsmOperandClass {
+ let Name = "MemOffs64_32";
+ let SuperClasses = [X86Mem32AsmOperand];
+ }
+ def X86MemOffs64_64AsmOperand : AsmOperandClass {
+ let Name = "MemOffs64_64";
+ let SuperClasses = [X86Mem64AsmOperand];
+ }
+} // RenderMethod = "addMemOffsOperands"
+
+class X86SrcIdxOperand<string printMethod, AsmOperandClass parserMatchClass>
+ : X86MemOperand<printMethod, parserMatchClass> {
let MIOperandInfo = (ops ptr_rc, i8imm);
- let PrintMethod = "printSrcIdx64"; }
-def dstidx8 : Operand<iPTR> {
- let ParserMatchClass = X86DstIdx8Operand;
- let MIOperandInfo = (ops ptr_rc);
- let PrintMethod = "printDstIdx8"; }
-def dstidx16 : Operand<iPTR> {
- let ParserMatchClass = X86DstIdx16Operand;
- let MIOperandInfo = (ops ptr_rc);
- let PrintMethod = "printDstIdx16"; }
-def dstidx32 : Operand<iPTR> {
- let ParserMatchClass = X86DstIdx32Operand;
- let MIOperandInfo = (ops ptr_rc);
- let PrintMethod = "printDstIdx32"; }
-def dstidx64 : Operand<iPTR> {
- let ParserMatchClass = X86DstIdx64Operand;
+}
+
+class X86DstIdxOperand<string printMethod, AsmOperandClass parserMatchClass>
+ : X86MemOperand<printMethod, parserMatchClass> {
let MIOperandInfo = (ops ptr_rc);
- let PrintMethod = "printDstIdx64"; }
-def offset8 : Operand<iPTR> {
- let ParserMatchClass = X86MemOffs8AsmOperand;
- let MIOperandInfo = (ops i64imm, i8imm);
- let PrintMethod = "printMemOffs8"; }
-def offset16 : Operand<iPTR> {
- let ParserMatchClass = X86MemOffs16AsmOperand;
- let MIOperandInfo = (ops i64imm, i8imm);
- let PrintMethod = "printMemOffs16"; }
-def offset32 : Operand<iPTR> {
- let ParserMatchClass = X86MemOffs32AsmOperand;
- let MIOperandInfo = (ops i64imm, i8imm);
- let PrintMethod = "printMemOffs32"; }
-def offset64 : Operand<iPTR> {
- let ParserMatchClass = X86MemOffs64AsmOperand;
- let MIOperandInfo = (ops i64imm, i8imm);
- let PrintMethod = "printMemOffs64"; }
}
+def srcidx8 : X86SrcIdxOperand<"printSrcIdx8", X86SrcIdx8Operand>;
+def srcidx16 : X86SrcIdxOperand<"printSrcIdx16", X86SrcIdx16Operand>;
+def srcidx32 : X86SrcIdxOperand<"printSrcIdx32", X86SrcIdx32Operand>;
+def srcidx64 : X86SrcIdxOperand<"printSrcIdx64", X86SrcIdx64Operand>;
+def dstidx8 : X86DstIdxOperand<"printDstIdx8", X86DstIdx8Operand>;
+def dstidx16 : X86DstIdxOperand<"printDstIdx16", X86DstIdx16Operand>;
+def dstidx32 : X86DstIdxOperand<"printDstIdx32", X86DstIdx32Operand>;
+def dstidx64 : X86DstIdxOperand<"printDstIdx64", X86DstIdx64Operand>;
+
+class X86MemOffsOperand<Operand immOperand, string printMethod,
+ AsmOperandClass parserMatchClass>
+ : X86MemOperand<printMethod, parserMatchClass> {
+ let MIOperandInfo = (ops immOperand, i8imm);
+}
+
+def offset16_8 : X86MemOffsOperand<i16imm, "printMemOffs8",
+ X86MemOffs16_8AsmOperand>;
+def offset16_16 : X86MemOffsOperand<i16imm, "printMemOffs16",
+ X86MemOffs16_16AsmOperand>;
+def offset16_32 : X86MemOffsOperand<i16imm, "printMemOffs32",
+ X86MemOffs16_32AsmOperand>;
+def offset32_8 : X86MemOffsOperand<i32imm, "printMemOffs8",
+ X86MemOffs32_8AsmOperand>;
+def offset32_16 : X86MemOffsOperand<i32imm, "printMemOffs16",
+ X86MemOffs32_16AsmOperand>;
+def offset32_32 : X86MemOffsOperand<i32imm, "printMemOffs32",
+ X86MemOffs32_32AsmOperand>;
+def offset32_64 : X86MemOffsOperand<i32imm, "printMemOffs64",
+ X86MemOffs32_64AsmOperand>;
+def offset64_8 : X86MemOffsOperand<i64imm, "printMemOffs8",
+ X86MemOffs64_8AsmOperand>;
+def offset64_16 : X86MemOffsOperand<i64imm, "printMemOffs16",
+ X86MemOffs64_16AsmOperand>;
+def offset64_32 : X86MemOffsOperand<i64imm, "printMemOffs32",
+ X86MemOffs64_32AsmOperand>;
+def offset64_64 : X86MemOffsOperand<i64imm, "printMemOffs64",
+ X86MemOffs64_64AsmOperand>;
def SSECC : Operand<i8> {
let PrintMethod = "printSSECC";
let OperandType = "OPERAND_IMMEDIATE";
}
+def i8immZExt3 : ImmLeaf<i8, [{
+ return Imm >= 0 && Imm < 8;
+}]>;
+
def AVXCC : Operand<i8> {
let PrintMethod = "printAVXCC";
let OperandType = "OPERAND_IMMEDIATE";
}
-class ImmSExtAsmOperandClass : AsmOperandClass {
- let SuperClasses = [ImmAsmOperand];
- let RenderMethod = "addImmOperands";
-}
+def i8immZExt5 : ImmLeaf<i8, [{
+ return Imm >= 0 && Imm < 32;
+}]>;
+// AVX-512 uses a 32-bit immediate in their intrinsics
+def i32immZExt5 : ImmLeaf<i32, [{
+ return Imm >= 0 && Imm < 32;
+}]>;
-class ImmZExtAsmOperandClass : AsmOperandClass {
+class ImmSExtAsmOperandClass : AsmOperandClass {
let SuperClasses = [ImmAsmOperand];
let RenderMethod = "addImmOperands";
}
@@ -568,6 +577,7 @@ def AVX512RC : Operand<i32> {
let PrintMethod = "printRoundingControl";
let OperandType = "OPERAND_IMMEDIATE";
}
+
// Sign-extended immediate classes. We don't need to define the full lattice
// here because there is no instruction with an ambiguity between ImmSExti64i32
// and ImmSExti32i8.
@@ -595,12 +605,6 @@ def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti32i8";
}
-// [0, 0x000000FF]
-def ImmZExtu32u8AsmOperand : ImmZExtAsmOperandClass {
- let Name = "ImmZExtu32u8";
-}
-
-
// [0, 0x0000007F] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass {
@@ -620,11 +624,6 @@ def i32i8imm : Operand<i32> {
let ParserMatchClass = ImmSExti32i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
-// 32-bits but only 8 bits are significant, and those 8 bits are unsigned.
-def u32u8imm : Operand<i32> {
- let ParserMatchClass = ImmZExtu32u8AsmOperand;
- let OperandType = "OPERAND_IMMEDIATE";
-}
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64> {
@@ -647,14 +646,14 @@ def i64i8imm : Operand<i64> {
}
def lea64_32mem : Operand<i32> {
- let PrintMethod = "printi32mem";
+ let PrintMethod = "printanymem";
let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
// Memory operands that use 64-bit pointers in both ILP32 and LP64.
def lea64mem : Operand<i64> {
- let PrintMethod = "printi64mem";
+ let PrintMethod = "printanymem";
let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
@@ -708,6 +707,7 @@ def UseSSE3 : Predicate<"Subtarget->hasSSE3() && !Subtarget->hasAVX()">;
def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">;
def UseSSSE3 : Predicate<"Subtarget->hasSSSE3() && !Subtarget->hasAVX()">;
def HasSSE41 : Predicate<"Subtarget->hasSSE41()">;
+def NoSSE41 : Predicate<"!Subtarget->hasSSE41()">;
def UseSSE41 : Predicate<"Subtarget->hasSSE41() && !Subtarget->hasAVX()">;
def HasSSE42 : Predicate<"Subtarget->hasSSE42()">;
def UseSSE42 : Predicate<"Subtarget->hasSSE42() && !Subtarget->hasAVX()">;
@@ -724,9 +724,11 @@ def HasCDI : Predicate<"Subtarget->hasCDI()">;
def HasPFI : Predicate<"Subtarget->hasPFI()">;
def HasERI : Predicate<"Subtarget->hasERI()">;
def HasDQI : Predicate<"Subtarget->hasDQI()">;
+def NoDQI : Predicate<"!Subtarget->hasDQI()">;
def HasBWI : Predicate<"Subtarget->hasBWI()">;
def HasVLX : Predicate<"Subtarget->hasVLX()">,
AssemblerPredicate<"FeatureVLX", "AVX-512 VLX ISA">;
+def NoVLX : Predicate<"!Subtarget->hasVLX()">;
def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">;
def HasAES : Predicate<"Subtarget->hasAES()">;
@@ -748,8 +750,10 @@ def HasHLE : Predicate<"Subtarget->hasHLE()">;
def HasTSX : Predicate<"Subtarget->hasRTM() || Subtarget->hasHLE()">;
def HasADX : Predicate<"Subtarget->hasADX()">;
def HasSHA : Predicate<"Subtarget->hasSHA()">;
+def HasSGX : Predicate<"Subtarget->hasSGX()">;
def HasPRFCHW : Predicate<"Subtarget->hasPRFCHW()">;
def HasRDSEED : Predicate<"Subtarget->hasRDSEED()">;
+def HasSMAP : Predicate<"Subtarget->hasSMAP()">;
def HasPrefetchW : Predicate<"Subtarget->hasPRFCHW()">;
def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">;
def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">;
@@ -758,6 +762,8 @@ def Not64BitMode : Predicate<"!Subtarget->is64Bit()">,
AssemblerPredicate<"!Mode64Bit", "Not 64-bit mode">;
def In64BitMode : Predicate<"Subtarget->is64Bit()">,
AssemblerPredicate<"Mode64Bit", "64-bit mode">;
+def IsLP64 : Predicate<"Subtarget->isTarget64BitLP64()">;
+def NotLP64 : Predicate<"!Subtarget->isTarget64BitLP64()">;
def In16BitMode : Predicate<"Subtarget->is16Bit()">,
AssemblerPredicate<"Mode16Bit", "16-bit mode">;
def Not16BitMode : Predicate<"!Subtarget->is16Bit()">,
@@ -781,6 +787,7 @@ def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">;
def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">;
def FavorMemIndirectCall : Predicate<"!Subtarget->callRegIndirect()">;
def NotSlowIncDec : Predicate<"!Subtarget->slowIncDec()">;
+def HasFastMem32 : Predicate<"!Subtarget->isUnalignedMem32Slow()">;
//===----------------------------------------------------------------------===//
// X86 Instruction Format Definitions.
@@ -811,6 +818,11 @@ def X86_COND_O : PatLeaf<(i8 13)>;
def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE
def X86_COND_S : PatLeaf<(i8 15)>;
+// Predicate used to help when pattern matching LZCNT/TZCNT.
+def X86_COND_E_OR_NE : ImmLeaf<i8, [{
+ return (Imm == X86::COND_E) || (Imm == X86::COND_NE);
+}]>;
+
let FastIselShouldIgnore = 1 in { // FastIsel should ignore all simm8 instrs.
def i16immSExt8 : ImmLeaf<i16, [{ return Imm == (int8_t)Imm; }]>;
def i32immSExt8 : ImmLeaf<i32, [{ return Imm == (int8_t)Imm; }]>;
@@ -913,7 +925,7 @@ def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
//
// Nop
-let neverHasSideEffects = 1, SchedRW = [WriteZero] in {
+let hasSideEffects = 0, SchedRW = [WriteZero] in {
def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", [], IIC_NOP>;
def NOOPW : I<0x1f, MRMXm, (outs), (ins i16mem:$zero),
"nop{w}\t$zero", [], IIC_NOP>, TB, OpSize16;
@@ -927,12 +939,12 @@ def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl),
"enter\t$len, $lvl", [], IIC_ENTER>, Sched<[WriteMicrocoded]>;
let SchedRW = [WriteALU] in {
-let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in
+let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, hasSideEffects=0 in
def LEAVE : I<0xC9, RawFrm,
(outs), (ins), "leave", [], IIC_LEAVE>,
Requires<[Not64BitMode]>;
-let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
+let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, hasSideEffects = 0 in
def LEAVE64 : I<0xC9, RawFrm,
(outs), (ins), "leave", [], IIC_LEAVE>,
Requires<[In64BitMode]>;
@@ -942,7 +954,7 @@ def LEAVE64 : I<0xC9, RawFrm,
// Miscellaneous Instructions.
//
-let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in {
+let Defs = [ESP], Uses = [ESP], hasSideEffects=0 in {
let mayLoad = 1, SchedRW = [WriteLoad] in {
def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", [],
IIC_POP_REG16>, OpSize16;
@@ -956,11 +968,6 @@ def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", [],
IIC_POP_REG>, OpSize32, Requires<[Not64BitMode]>;
def POP32rmm: I<0x8F, MRM0m, (outs), (ins i32mem:$dst), "pop{l}\t$dst", [],
IIC_POP_MEM>, OpSize32, Requires<[Not64BitMode]>;
-
-def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>,
- OpSize16;
-def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>,
- OpSize32, Requires<[Not64BitMode]>;
} // mayLoad, SchedRW
let mayStore = 1, SchedRW = [WriteStore] in {
@@ -989,16 +996,26 @@ def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm),
"push{l}\t$imm", [], IIC_PUSH_IMM>, OpSize32,
Requires<[Not64BitMode]>;
+} // mayStore, SchedRW
+}
+let Defs = [ESP, EFLAGS], Uses = [ESP], mayLoad = 1, hasSideEffects=0,
+ SchedRW = [WriteLoad] in {
+def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>,
+ OpSize16;
+def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>,
+ OpSize32, Requires<[Not64BitMode]>;
+}
+
+let Defs = [ESP], Uses = [ESP, EFLAGS], mayStore = 1, hasSideEffects=0,
+ SchedRW = [WriteStore] in {
def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>,
OpSize16;
def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", [], IIC_PUSH_F>,
OpSize32, Requires<[Not64BitMode]>;
-
-} // mayStore, SchedRW
}
-let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
+let Defs = [RSP], Uses = [RSP], hasSideEffects=0 in {
let mayLoad = 1, SchedRW = [WriteLoad] in {
def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", [],
IIC_POP_REG>, OpSize32, Requires<[In64BitMode]>;
@@ -1017,7 +1034,7 @@ def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", [],
} // mayStore, SchedRW
}
-let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1,
+let Defs = [RSP], Uses = [RSP], hasSideEffects = 0, mayStore = 1,
SchedRW = [WriteStore] in {
def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm),
"push{q}\t$imm", [], IIC_PUSH_IMM>, Requires<[In64BitMode]>;
@@ -1029,22 +1046,22 @@ def PUSH64i32 : Ii32S<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
Requires<[In64BitMode]>;
}
-let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in
+let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, hasSideEffects=0 in
def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>,
OpSize32, Requires<[In64BitMode]>, Sched<[WriteLoad]>;
-let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in
+let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, hasSideEffects=0 in
def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>,
OpSize32, Requires<[In64BitMode]>, Sched<[WriteStore]>;
let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP],
- mayLoad = 1, neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
+ mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteLoad] in {
def POPA32 : I<0x61, RawFrm, (outs), (ins), "popal", [], IIC_POP_A>,
OpSize32, Requires<[Not64BitMode]>;
def POPA16 : I<0x61, RawFrm, (outs), (ins), "popaw", [], IIC_POP_A>,
OpSize16, Requires<[Not64BitMode]>;
}
let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP],
- mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
+ mayStore = 1, hasSideEffects = 0, SchedRW = [WriteStore] in {
def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pushal", [], IIC_PUSH_A>,
OpSize32, Requires<[Not64BitMode]>;
def PUSHA16 : I<0x60, RawFrm, (outs), (ins), "pushaw", [], IIC_PUSH_A>,
@@ -1174,7 +1191,7 @@ def CMPSQ : RI<0xA7, RawFrmDstSrc, (outs), (ins dstidx64:$dst, srcidx64:$src),
// Move Instructions.
//
let SchedRW = [WriteMove] in {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>;
def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
@@ -1233,62 +1250,67 @@ def MOV64mi32 : RIi32S<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
let hasSideEffects = 0 in {
-/// moffs8, moffs16 and moffs32 versions of moves. The immediate is a
-/// 32-bit offset from the segment base. These are only valid in x86-32 mode.
+/// Memory offset versions of moves. The immediate is an address mode sized
+/// offset from the segment base.
let SchedRW = [WriteALU] in {
let mayLoad = 1 in {
let Defs = [AL] in
-def MOV8o8a : Ii32 <0xA0, RawFrmMemOffs, (outs), (ins offset8:$src),
- "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>,
- Requires<[In32BitMode]>;
+def MOV8ao32 : Ii32<0xA0, RawFrmMemOffs, (outs), (ins offset32_8:$src),
+ "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>,
+ AdSize32;
let Defs = [AX] in
-def MOV16o16a : Ii32 <0xA1, RawFrmMemOffs, (outs), (ins offset16:$src),
- "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>,
- OpSize16, Requires<[In32BitMode]>;
+def MOV16ao32 : Ii32<0xA1, RawFrmMemOffs, (outs), (ins offset32_16:$src),
+ "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>,
+ OpSize16, AdSize32;
let Defs = [EAX] in
-def MOV32o32a : Ii32 <0xA1, RawFrmMemOffs, (outs), (ins offset32:$src),
- "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
- OpSize32, Requires<[In32BitMode]>;
+def MOV32ao32 : Ii32<0xA1, RawFrmMemOffs, (outs), (ins offset32_32:$src),
+ "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
+ OpSize32, AdSize32;
+let Defs = [RAX] in
+def MOV64ao32 : RIi32<0xA1, RawFrmMemOffs, (outs), (ins offset32_64:$src),
+ "mov{q}\t{$src, %rax|rax, $src}", [], IIC_MOV_MEM>,
+ AdSize32;
let Defs = [AL] in
-def MOV8o8a_16 : Ii16 <0xA0, RawFrmMemOffs, (outs), (ins offset8:$src),
- "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>,
- AdSize, Requires<[In16BitMode]>;
+def MOV8ao16 : Ii16<0xA0, RawFrmMemOffs, (outs), (ins offset16_8:$src),
+ "mov{b}\t{$src, %al|al, $src}", [], IIC_MOV_MEM>, AdSize16;
let Defs = [AX] in
-def MOV16o16a_16 : Ii16 <0xA1, RawFrmMemOffs, (outs), (ins offset16:$src),
- "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>,
- OpSize16, AdSize, Requires<[In16BitMode]>;
+def MOV16ao16 : Ii16<0xA1, RawFrmMemOffs, (outs), (ins offset16_16:$src),
+ "mov{w}\t{$src, %ax|ax, $src}", [], IIC_MOV_MEM>,
+ OpSize16, AdSize16;
let Defs = [EAX] in
-def MOV32o32a_16 : Ii16 <0xA1, RawFrmMemOffs, (outs), (ins offset32:$src),
- "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
- AdSize, OpSize32, Requires<[In16BitMode]>;
+def MOV32ao16 : Ii16<0xA1, RawFrmMemOffs, (outs), (ins offset16_32:$src),
+ "mov{l}\t{$src, %eax|eax, $src}", [], IIC_MOV_MEM>,
+ AdSize16, OpSize32;
}
let mayStore = 1 in {
let Uses = [AL] in
-def MOV8ao8 : Ii32 <0xA2, RawFrmMemOffs, (outs offset8:$dst), (ins),
- "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>,
- Requires<[In32BitMode]>;
+def MOV8o32a : Ii32<0xA2, RawFrmMemOffs, (outs offset32_8:$dst), (ins),
+ "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>, AdSize32;
let Uses = [AX] in
-def MOV16ao16 : Ii32 <0xA3, RawFrmMemOffs, (outs offset16:$dst), (ins),
- "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>,
- OpSize16, Requires<[In32BitMode]>;
+def MOV16o32a : Ii32<0xA3, RawFrmMemOffs, (outs offset32_16:$dst), (ins),
+ "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>,
+ OpSize16, AdSize32;
let Uses = [EAX] in
-def MOV32ao32 : Ii32 <0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
- "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
- OpSize32, Requires<[In32BitMode]>;
+def MOV32o32a : Ii32<0xA3, RawFrmMemOffs, (outs offset32_32:$dst), (ins),
+ "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
+ OpSize32, AdSize32;
+let Uses = [RAX] in
+def MOV64o32a : RIi32<0xA3, RawFrmMemOffs, (outs offset32_64:$dst), (ins),
+ "mov{q}\t{%rax, $dst|$dst, rax}", [], IIC_MOV_MEM>,
+ AdSize32;
let Uses = [AL] in
-def MOV8ao8_16 : Ii16 <0xA2, RawFrmMemOffs, (outs offset8:$dst), (ins),
- "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>,
- AdSize, Requires<[In16BitMode]>;
+def MOV8o16a : Ii16<0xA2, RawFrmMemOffs, (outs offset16_8:$dst), (ins),
+ "mov{b}\t{%al, $dst|$dst, al}", [], IIC_MOV_MEM>, AdSize16;
let Uses = [AX] in
-def MOV16ao16_16 : Ii16 <0xA3, RawFrmMemOffs, (outs offset16:$dst), (ins),
- "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>,
- OpSize16, AdSize, Requires<[In16BitMode]>;
+def MOV16o16a : Ii16<0xA3, RawFrmMemOffs, (outs offset16_16:$dst), (ins),
+ "mov{w}\t{%ax, $dst|$dst, ax}", [], IIC_MOV_MEM>,
+ OpSize16, AdSize16;
let Uses = [EAX] in
-def MOV32ao32_16 : Ii16 <0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
- "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
- OpSize32, AdSize, Requires<[In16BitMode]>;
+def MOV32o16a : Ii16<0xA3, RawFrmMemOffs, (outs offset16_32:$dst), (ins),
+ "mov{l}\t{%eax, $dst|$dst, eax}", [], IIC_MOV_MEM>,
+ OpSize32, AdSize16;
}
}
@@ -1296,40 +1318,34 @@ def MOV32ao32_16 : Ii16 <0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
// and use the movabs mnemonic to indicate this specific form.
let mayLoad = 1 in {
let Defs = [AL] in
-def MOV64o8a : RIi64_NOREX<0xA0, RawFrmMemOffs, (outs), (ins offset8:$src),
- "movabs{b}\t{$src, %al|al, $src}", []>,
- Requires<[In64BitMode]>;
+def MOV8ao64 : RIi64_NOREX<0xA0, RawFrmMemOffs, (outs), (ins offset64_8:$src),
+ "movabs{b}\t{$src, %al|al, $src}", []>, AdSize64;
let Defs = [AX] in
-def MOV64o16a : RIi64_NOREX<0xA1, RawFrmMemOffs, (outs), (ins offset16:$src),
- "movabs{w}\t{$src, %ax|ax, $src}", []>, OpSize16,
- Requires<[In64BitMode]>;
+def MOV16ao64 : RIi64_NOREX<0xA1, RawFrmMemOffs, (outs), (ins offset64_16:$src),
+ "movabs{w}\t{$src, %ax|ax, $src}", []>, OpSize16, AdSize64;
let Defs = [EAX] in
-def MOV64o32a : RIi64_NOREX<0xA1, RawFrmMemOffs, (outs), (ins offset32:$src),
+def MOV32ao64 : RIi64_NOREX<0xA1, RawFrmMemOffs, (outs), (ins offset64_32:$src),
"movabs{l}\t{$src, %eax|eax, $src}", []>, OpSize32,
- Requires<[In64BitMode]>;
+ AdSize64;
let Defs = [RAX] in
-def MOV64o64a : RIi64<0xA1, RawFrmMemOffs, (outs), (ins offset64:$src),
- "movabs{q}\t{$src, %rax|rax, $src}", []>,
- Requires<[In64BitMode]>;
+def MOV64ao64 : RIi64<0xA1, RawFrmMemOffs, (outs), (ins offset64_64:$src),
+ "movabs{q}\t{$src, %rax|rax, $src}", []>, AdSize64;
}
let mayStore = 1 in {
let Uses = [AL] in
-def MOV64ao8 : RIi64_NOREX<0xA2, RawFrmMemOffs, (outs offset8:$dst), (ins),
- "movabs{b}\t{%al, $dst|$dst, al}", []>,
- Requires<[In64BitMode]>;
+def MOV8o64a : RIi64_NOREX<0xA2, RawFrmMemOffs, (outs offset64_8:$dst), (ins),
+ "movabs{b}\t{%al, $dst|$dst, al}", []>, AdSize64;
let Uses = [AX] in
-def MOV64ao16 : RIi64_NOREX<0xA3, RawFrmMemOffs, (outs offset16:$dst), (ins),
- "movabs{w}\t{%ax, $dst|$dst, ax}", []>, OpSize16,
- Requires<[In64BitMode]>;
+def MOV16o64a : RIi64_NOREX<0xA3, RawFrmMemOffs, (outs offset64_16:$dst), (ins),
+ "movabs{w}\t{%ax, $dst|$dst, ax}", []>, OpSize16, AdSize64;
let Uses = [EAX] in
-def MOV64ao32 : RIi64_NOREX<0xA3, RawFrmMemOffs, (outs offset32:$dst), (ins),
+def MOV32o64a : RIi64_NOREX<0xA3, RawFrmMemOffs, (outs offset64_32:$dst), (ins),
"movabs{l}\t{%eax, $dst|$dst, eax}", []>, OpSize32,
- Requires<[In64BitMode]>;
+ AdSize64;
let Uses = [RAX] in
-def MOV64ao64 : RIi64<0xA3, RawFrmMemOffs, (outs offset64:$dst), (ins),
- "movabs{q}\t{%rax, $dst|$dst, rax}", []>,
- Requires<[In64BitMode]>;
+def MOV64o64a : RIi64<0xA3, RawFrmMemOffs, (outs offset64_64:$dst), (ins),
+ "movabs{q}\t{%rax, $dst|$dst, rax}", []>, AdSize64;
}
} // hasSideEffects = 0
@@ -1379,17 +1395,17 @@ def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
// that they can be used for copying and storing h registers, which can't be
// encoded when a REX prefix is present.
let isCodeGenOnly = 1 in {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def MOV8rr_NOREX : I<0x88, MRMDestReg,
(outs GR8_NOREX:$dst), (ins GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV>,
Sched<[WriteMove]>;
-let mayStore = 1, neverHasSideEffects = 1 in
+let mayStore = 1, hasSideEffects = 0 in
def MOV8mr_NOREX : I<0x88, MRMDestMem,
(outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", [],
IIC_MOV_MEM>, Sched<[WriteStore]>;
-let mayLoad = 1, neverHasSideEffects = 1,
+let mayLoad = 1, hasSideEffects = 0,
canFoldAsLoad = 1, isReMaterializable = 1 in
def MOV8rm_NOREX : I<0x8A, MRMSrcMem,
(outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src),
@@ -1403,7 +1419,7 @@ let SchedRW = [WriteALU] in {
let Defs = [EFLAGS], Uses = [AH] in
def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf",
[(set EFLAGS, (X86sahf AH))], IIC_AHF>;
-let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in
+let Defs = [AH], Uses = [EFLAGS], hasSideEffects = 0 in
def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", [],
IIC_AHF>; // AH = flags
} // SchedRW
@@ -1989,42 +2005,42 @@ let Predicates = [HasLZCNT], Defs = [EFLAGS] in {
}
let Predicates = [HasLZCNT] in {
- def : Pat<(X86cmov (ctlz GR16:$src), (i16 16), (X86_COND_E),
- (X86cmp GR16:$src, (i16 0))),
+ def : Pat<(X86cmov (ctlz GR16:$src), (i16 16), (X86_COND_E_OR_NE),
+ (X86cmp GR16:$src, (i16 0))),
(LZCNT16rr GR16:$src)>;
- def : Pat<(X86cmov (ctlz GR32:$src), (i32 32), (X86_COND_E),
+ def : Pat<(X86cmov (ctlz GR32:$src), (i32 32), (X86_COND_E_OR_NE),
(X86cmp GR32:$src, (i32 0))),
(LZCNT32rr GR32:$src)>;
- def : Pat<(X86cmov (ctlz GR64:$src), (i64 64), (X86_COND_E),
+ def : Pat<(X86cmov (ctlz GR64:$src), (i64 64), (X86_COND_E_OR_NE),
(X86cmp GR64:$src, (i64 0))),
(LZCNT64rr GR64:$src)>;
- def : Pat<(X86cmov (i16 16), (ctlz GR16:$src), (X86_COND_E),
+ def : Pat<(X86cmov (i16 16), (ctlz GR16:$src), (X86_COND_E_OR_NE),
(X86cmp GR16:$src, (i16 0))),
(LZCNT16rr GR16:$src)>;
- def : Pat<(X86cmov (i32 32), (ctlz GR32:$src), (X86_COND_E),
+ def : Pat<(X86cmov (i32 32), (ctlz GR32:$src), (X86_COND_E_OR_NE),
(X86cmp GR32:$src, (i32 0))),
(LZCNT32rr GR32:$src)>;
- def : Pat<(X86cmov (i64 64), (ctlz GR64:$src), (X86_COND_E),
+ def : Pat<(X86cmov (i64 64), (ctlz GR64:$src), (X86_COND_E_OR_NE),
(X86cmp GR64:$src, (i64 0))),
(LZCNT64rr GR64:$src)>;
- def : Pat<(X86cmov (ctlz (loadi16 addr:$src)), (i16 16), (X86_COND_E),
- (X86cmp (loadi16 addr:$src), (i16 0))),
+ def : Pat<(X86cmov (ctlz (loadi16 addr:$src)), (i16 16), (X86_COND_E_OR_NE),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
(LZCNT16rm addr:$src)>;
- def : Pat<(X86cmov (ctlz (loadi32 addr:$src)), (i32 32), (X86_COND_E),
- (X86cmp (loadi32 addr:$src), (i32 0))),
+ def : Pat<(X86cmov (ctlz (loadi32 addr:$src)), (i32 32), (X86_COND_E_OR_NE),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
(LZCNT32rm addr:$src)>;
- def : Pat<(X86cmov (ctlz (loadi64 addr:$src)), (i64 64), (X86_COND_E),
- (X86cmp (loadi64 addr:$src), (i64 0))),
+ def : Pat<(X86cmov (ctlz (loadi64 addr:$src)), (i64 64), (X86_COND_E_OR_NE),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
(LZCNT64rm addr:$src)>;
- def : Pat<(X86cmov (i16 16), (ctlz (loadi16 addr:$src)), (X86_COND_E),
- (X86cmp (loadi16 addr:$src), (i16 0))),
+ def : Pat<(X86cmov (i16 16), (ctlz (loadi16 addr:$src)), (X86_COND_E_OR_NE),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
(LZCNT16rm addr:$src)>;
- def : Pat<(X86cmov (i32 32), (ctlz (loadi32 addr:$src)), (X86_COND_E),
- (X86cmp (loadi32 addr:$src), (i32 0))),
+ def : Pat<(X86cmov (i32 32), (ctlz (loadi32 addr:$src)), (X86_COND_E_OR_NE),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
(LZCNT32rm addr:$src)>;
- def : Pat<(X86cmov (i64 64), (ctlz (loadi64 addr:$src)), (X86_COND_E),
- (X86cmp (loadi64 addr:$src), (i64 0))),
+ def : Pat<(X86cmov (i64 64), (ctlz (loadi64 addr:$src)), (X86_COND_E_OR_NE),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
(LZCNT64rm addr:$src)>;
}
@@ -2105,42 +2121,42 @@ let Predicates = [HasBMI] in {
}
let Predicates = [HasBMI] in {
- def : Pat<(X86cmov (cttz GR16:$src), (i16 16), (X86_COND_E),
+ def : Pat<(X86cmov (cttz GR16:$src), (i16 16), (X86_COND_E_OR_NE),
(X86cmp GR16:$src, (i16 0))),
(TZCNT16rr GR16:$src)>;
- def : Pat<(X86cmov (cttz GR32:$src), (i32 32), (X86_COND_E),
+ def : Pat<(X86cmov (cttz GR32:$src), (i32 32), (X86_COND_E_OR_NE),
(X86cmp GR32:$src, (i32 0))),
(TZCNT32rr GR32:$src)>;
- def : Pat<(X86cmov (cttz GR64:$src), (i64 64), (X86_COND_E),
+ def : Pat<(X86cmov (cttz GR64:$src), (i64 64), (X86_COND_E_OR_NE),
(X86cmp GR64:$src, (i64 0))),
(TZCNT64rr GR64:$src)>;
- def : Pat<(X86cmov (i16 16), (cttz GR16:$src), (X86_COND_E),
+ def : Pat<(X86cmov (i16 16), (cttz GR16:$src), (X86_COND_E_OR_NE),
(X86cmp GR16:$src, (i16 0))),
(TZCNT16rr GR16:$src)>;
- def : Pat<(X86cmov (i32 32), (cttz GR32:$src), (X86_COND_E),
+ def : Pat<(X86cmov (i32 32), (cttz GR32:$src), (X86_COND_E_OR_NE),
(X86cmp GR32:$src, (i32 0))),
(TZCNT32rr GR32:$src)>;
- def : Pat<(X86cmov (i64 64), (cttz GR64:$src), (X86_COND_E),
+ def : Pat<(X86cmov (i64 64), (cttz GR64:$src), (X86_COND_E_OR_NE),
(X86cmp GR64:$src, (i64 0))),
(TZCNT64rr GR64:$src)>;
- def : Pat<(X86cmov (cttz (loadi16 addr:$src)), (i16 16), (X86_COND_E),
- (X86cmp (loadi16 addr:$src), (i16 0))),
+ def : Pat<(X86cmov (cttz (loadi16 addr:$src)), (i16 16), (X86_COND_E_OR_NE),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
(TZCNT16rm addr:$src)>;
- def : Pat<(X86cmov (cttz (loadi32 addr:$src)), (i32 32), (X86_COND_E),
- (X86cmp (loadi32 addr:$src), (i32 0))),
+ def : Pat<(X86cmov (cttz (loadi32 addr:$src)), (i32 32), (X86_COND_E_OR_NE),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
(TZCNT32rm addr:$src)>;
- def : Pat<(X86cmov (cttz (loadi64 addr:$src)), (i64 64), (X86_COND_E),
- (X86cmp (loadi64 addr:$src), (i64 0))),
+ def : Pat<(X86cmov (cttz (loadi64 addr:$src)), (i64 64), (X86_COND_E_OR_NE),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
(TZCNT64rm addr:$src)>;
- def : Pat<(X86cmov (i16 16), (cttz (loadi16 addr:$src)), (X86_COND_E),
- (X86cmp (loadi16 addr:$src), (i16 0))),
+ def : Pat<(X86cmov (i16 16), (cttz (loadi16 addr:$src)), (X86_COND_E_OR_NE),
+ (X86cmp (loadi16 addr:$src), (i16 0))),
(TZCNT16rm addr:$src)>;
- def : Pat<(X86cmov (i32 32), (cttz (loadi32 addr:$src)), (X86_COND_E),
- (X86cmp (loadi32 addr:$src), (i32 0))),
+ def : Pat<(X86cmov (i32 32), (cttz (loadi32 addr:$src)), (X86_COND_E_OR_NE),
+ (X86cmp (loadi32 addr:$src), (i32 0))),
(TZCNT32rm addr:$src)>;
- def : Pat<(X86cmov (i64 64), (cttz (loadi64 addr:$src)), (X86_COND_E),
- (X86cmp (loadi64 addr:$src), (i64 0))),
+ def : Pat<(X86cmov (i64 64), (cttz (loadi64 addr:$src)), (X86_COND_E_OR_NE),
+ (X86cmp (loadi64 addr:$src), (i64 0))),
(TZCNT64rm addr:$src)>;
}
@@ -2400,6 +2416,7 @@ include "X86InstrVMX.td"
include "X86InstrSVM.td"
include "X86InstrTSX.td"
+include "X86InstrSGX.td"
// System instructions.
include "X86InstrSystem.td"
@@ -2518,7 +2535,7 @@ def : MnemonicAlias<"fldcww", "fldcw", "att">;
def : MnemonicAlias<"fnstcww", "fnstcw", "att">;
def : MnemonicAlias<"fnstsww", "fnstsw", "att">;
def : MnemonicAlias<"fucomip", "fucompi", "att">;
-def : MnemonicAlias<"fwait", "wait", "att">;
+def : MnemonicAlias<"fwait", "wait">;
class CondCodeAlias<string Prefix,string Suffix, string OldCond, string NewCond,
@@ -2707,28 +2724,28 @@ def : InstAlias<"fnstsw" , (FNSTSW16r)>;
// this is compatible with what GAS does.
def : InstAlias<"lcall $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg), 0>, Requires<[Not16BitMode]>;
def : InstAlias<"ljmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg), 0>, Requires<[Not16BitMode]>;
-def : InstAlias<"lcall *$dst", (FARCALL32m opaque48mem:$dst), 0>, Requires<[Not16BitMode]>;
-def : InstAlias<"ljmp *$dst", (FARJMP32m opaque48mem:$dst), 0>, Requires<[Not16BitMode]>;
+def : InstAlias<"lcall {*}$dst", (FARCALL32m opaque48mem:$dst), 0>, Requires<[Not16BitMode]>;
+def : InstAlias<"ljmp {*}$dst", (FARJMP32m opaque48mem:$dst), 0>, Requires<[Not16BitMode]>;
def : InstAlias<"lcall $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg), 0>, Requires<[In16BitMode]>;
def : InstAlias<"ljmp $seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg), 0>, Requires<[In16BitMode]>;
-def : InstAlias<"lcall *$dst", (FARCALL16m opaque32mem:$dst), 0>, Requires<[In16BitMode]>;
-def : InstAlias<"ljmp *$dst", (FARJMP16m opaque32mem:$dst), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"lcall {*}$dst", (FARCALL16m opaque32mem:$dst), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"ljmp {*}$dst", (FARJMP16m opaque32mem:$dst), 0>, Requires<[In16BitMode]>;
-def : InstAlias<"call *$dst", (CALL64m i16mem:$dst), 0>, Requires<[In64BitMode]>;
-def : InstAlias<"jmp *$dst", (JMP64m i16mem:$dst), 0>, Requires<[In64BitMode]>;
-def : InstAlias<"call *$dst", (CALL32m i16mem:$dst), 0>, Requires<[In32BitMode]>;
-def : InstAlias<"jmp *$dst", (JMP32m i16mem:$dst), 0>, Requires<[In32BitMode]>;
-def : InstAlias<"call *$dst", (CALL16m i16mem:$dst), 0>, Requires<[In16BitMode]>;
-def : InstAlias<"jmp *$dst", (JMP16m i16mem:$dst), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"call {*}$dst", (CALL64m i64mem:$dst), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"jmp {*}$dst", (JMP64m i64mem:$dst), 0>, Requires<[In64BitMode]>;
+def : InstAlias<"call {*}$dst", (CALL32m i32mem:$dst), 0>, Requires<[In32BitMode]>;
+def : InstAlias<"jmp {*}$dst", (JMP32m i32mem:$dst), 0>, Requires<[In32BitMode]>;
+def : InstAlias<"call {*}$dst", (CALL16m i16mem:$dst), 0>, Requires<[In16BitMode]>;
+def : InstAlias<"jmp {*}$dst", (JMP16m i16mem:$dst), 0>, Requires<[In16BitMode]>;
// "imul <imm>, B" is an alias for "imul <imm>, B, B".
-def : InstAlias<"imulw $imm, $r", (IMUL16rri GR16:$r, GR16:$r, i16imm:$imm)>;
-def : InstAlias<"imulw $imm, $r", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm)>;
-def : InstAlias<"imull $imm, $r", (IMUL32rri GR32:$r, GR32:$r, i32imm:$imm)>;
-def : InstAlias<"imull $imm, $r", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm)>;
-def : InstAlias<"imulq $imm, $r",(IMUL64rri32 GR64:$r, GR64:$r,i64i32imm:$imm)>;
-def : InstAlias<"imulq $imm, $r", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm)>;
+def : InstAlias<"imulw {$imm, $r|$r, $imm}", (IMUL16rri GR16:$r, GR16:$r, i16imm:$imm), 0>;
+def : InstAlias<"imulw {$imm, $r|$r, $imm}", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm), 0>;
+def : InstAlias<"imull {$imm, $r|$r, $imm}", (IMUL32rri GR32:$r, GR32:$r, i32imm:$imm), 0>;
+def : InstAlias<"imull {$imm, $r|$r, $imm}", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm), 0>;
+def : InstAlias<"imulq {$imm, $r|$r, $imm}", (IMUL64rri32 GR64:$r, GR64:$r, i64i32imm:$imm), 0>;
+def : InstAlias<"imulq {$imm, $r|$r, $imm}", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm), 0>;
// inb %dx -> inb %al, %dx
def : InstAlias<"inb\t{%dx|dx}", (IN8rr), 0>;
@@ -2752,34 +2769,34 @@ def : InstAlias<"jmpl $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>;
// Force mov without a suffix with a segment and mem to prefer the 'l' form of
// the move. All segment/mem forms are equivalent, this has the shortest
// encoding.
-def : InstAlias<"mov $mem, $seg", (MOV32sm SEGMENT_REG:$seg, i32mem:$mem), 0>;
-def : InstAlias<"mov $seg, $mem", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg), 0>;
+def : InstAlias<"mov {$mem, $seg|$seg, $mem}", (MOV32sm SEGMENT_REG:$seg, i32mem:$mem), 0>;
+def : InstAlias<"mov {$seg, $mem|$mem, $seg}", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg), 0>;
// Match 'movq <largeimm>, <reg>' as an alias for movabsq.
-def : InstAlias<"movq $imm, $reg", (MOV64ri GR64:$reg, i64imm:$imm), 0>;
+def : InstAlias<"movq {$imm, $reg|$reg, $imm}", (MOV64ri GR64:$reg, i64imm:$imm), 0>;
// Match 'movq GR64, MMX' as an alias for movd.
-def : InstAlias<"movq $src, $dst",
+def : InstAlias<"movq {$src, $dst|$dst, $src}",
(MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>;
-def : InstAlias<"movq $src, $dst",
+def : InstAlias<"movq {$src, $dst|$dst, $src}",
(MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>;
// movsx aliases
-def : InstAlias<"movsx $src, $dst", (MOVSX16rr8 GR16:$dst, GR8:$src), 0>;
-def : InstAlias<"movsx $src, $dst", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0>;
-def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>;
-def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>;
-def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>;
-def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>;
-def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX16rr8 GR16:$dst, GR8:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>;
+def : InstAlias<"movsx {$src, $dst|$dst, $src}", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>;
// movzx aliases
-def : InstAlias<"movzx $src, $dst", (MOVZX16rr8 GR16:$dst, GR8:$src), 0>;
-def : InstAlias<"movzx $src, $dst", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0>;
-def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>;
-def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>;
-def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>;
-def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>;
+def : InstAlias<"movzx {$src, $dst|$dst, $src}", (MOVZX16rr8 GR16:$dst, GR8:$src), 0>;
+def : InstAlias<"movzx {$src, $dst|$dst, $src}", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0>;
+def : InstAlias<"movzx {$src, $dst|$dst, $src}", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>;
+def : InstAlias<"movzx {$src, $dst|$dst, $src}", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>;
+def : InstAlias<"movzx {$src, $dst|$dst, $src}", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>;
+def : InstAlias<"movzx {$src, $dst|$dst, $src}", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>;
// Note: No GR32->GR64 movzx form.
// outb %dx -> outb %al, %dx
diff --git a/contrib/llvm/lib/Target/X86/X86InstrMMX.td b/contrib/llvm/lib/Target/X86/X86InstrMMX.td
index ecf80a1..5b36427 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrMMX.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrMMX.td
@@ -38,12 +38,17 @@ def MMX_PHADDSUBD : OpndItins<
>;
}
+let Sched = WriteVecLogic in
+def MMX_INTALU_ITINS_VECLOGICSCHED : OpndItins<
+ IIC_MMX_ALU_RR, IIC_MMX_ALU_RM
+>;
+
let Sched = WriteVecIMul in
def MMX_PMUL_ITINS : OpndItins<
IIC_MMX_PMUL, IIC_MMX_PMUL
>;
-let Sched = WriteVecALU in {
+let Sched = WriteVecIMul in {
def MMX_PSADBW_ITINS : OpndItins<
IIC_MMX_PSADBW, IIC_MMX_PSADBW
>;
@@ -166,13 +171,15 @@ multiclass SS3I_binop_rm_int_mm<bits<8> opc, string OpcodeStr,
multiclass ssse3_palign_mm<string asm, Intrinsic IntId> {
def R64irr : MMXSS3AI<0x0F, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src1, VR64:$src2, i8imm:$src3),
- !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2, (i8 imm:$src3)))]>;
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2, (i8 imm:$src3)))]>,
+ Sched<[WriteShuffle]>;
def R64irm : MMXSS3AI<0x0F, MRMSrcMem, (outs VR64:$dst),
(ins VR64:$src1, i64mem:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR64:$dst, (IntId VR64:$src1,
- (bitconvert (load_mmx addr:$src2)), (i8 imm:$src3)))]>;
+ (bitconvert (load_mmx addr:$src2)), (i8 imm:$src3)))]>,
+ Sched<[WriteShuffleLd, ReadAfterLd]>;
}
multiclass sse12_cvt_pint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
@@ -192,11 +199,11 @@ multiclass sse12_cvt_pint_3addr<bits<8> opc, RegisterClass SrcRC,
def irr : MMXPI<opc, MRMSrcReg, (outs DstRC:$dst),
(ins DstRC:$src1, SrcRC:$src2), asm,
[(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))],
- NoItinerary, d>;
+ NoItinerary, d>, Sched<[WriteCvtI2F]>;
def irm : MMXPI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src2), asm,
[(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))],
- NoItinerary, d>;
+ NoItinerary, d>, Sched<[WriteCvtI2FLd]>;
}
//===----------------------------------------------------------------------===//
@@ -213,7 +220,7 @@ def MMX_EMMS : MMXI<0x77, RawFrm, (outs), (ins), "emms",
// Data Transfer Instructions
def MMX_MOVD64rr : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst,
+ [(set VR64:$dst,
(x86mmx (scalar_to_vector GR32:$src)))],
IIC_MMX_MOV_MM_RM>, Sched<[WriteMove]>;
let canFoldAsLoad = 1 in
@@ -247,10 +254,10 @@ def MMX_MOVD64to64rr : MMXRI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR64:$src),
let SchedRW = [WriteMove] in {
def MMX_MOVD64from64rr : MMXRI<0x7E, MRMDestReg,
(outs GR64:$dst), (ins VR64:$src),
- "movd\t{$src, $dst|$dst, $src}",
+ "movd\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(bitconvert VR64:$src))], IIC_MMX_MOV_REG_MM>;
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def MMX_MOVQ64rr : MMXI<0x6F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src),
"movq\t{$src, $dst|$dst, $src}", [],
IIC_MMX_MOVQ_RR>;
@@ -427,13 +434,13 @@ let Constraints = "$src1 = $dst" in
// Logical Instructions
defm MMX_PAND : MMXI_binop_rm_int<0xDB, "pand", int_x86_mmx_pand,
- MMX_INTALU_ITINS, 1>;
+ MMX_INTALU_ITINS_VECLOGICSCHED, 1>;
defm MMX_POR : MMXI_binop_rm_int<0xEB, "por" , int_x86_mmx_por,
- MMX_INTALU_ITINS, 1>;
+ MMX_INTALU_ITINS_VECLOGICSCHED, 1>;
defm MMX_PXOR : MMXI_binop_rm_int<0xEF, "pxor", int_x86_mmx_pxor,
- MMX_INTALU_ITINS, 1>;
+ MMX_INTALU_ITINS_VECLOGICSCHED, 1>;
defm MMX_PANDN : MMXI_binop_rm_int<0xDF, "pandn", int_x86_mmx_pandn,
- MMX_INTALU_ITINS>;
+ MMX_INTALU_ITINS_VECLOGICSCHED>;
// Shift Instructions
defm MMX_PSRLW : MMXI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw",
@@ -479,19 +486,19 @@ defm MMX_PCMPGTD : MMXI_binop_rm_int<0x66, "pcmpgtd", int_x86_mmx_pcmpgt_d,
MMX_INTALU_ITINS>;
// -- Unpack Instructions
-defm MMX_PUNPCKHBW : MMXI_binop_rm_int<0x68, "punpckhbw",
+defm MMX_PUNPCKHBW : MMXI_binop_rm_int<0x68, "punpckhbw",
int_x86_mmx_punpckhbw,
MMX_UNPCK_H_ITINS>;
-defm MMX_PUNPCKHWD : MMXI_binop_rm_int<0x69, "punpckhwd",
+defm MMX_PUNPCKHWD : MMXI_binop_rm_int<0x69, "punpckhwd",
int_x86_mmx_punpckhwd,
MMX_UNPCK_H_ITINS>;
-defm MMX_PUNPCKHDQ : MMXI_binop_rm_int<0x6A, "punpckhdq",
+defm MMX_PUNPCKHDQ : MMXI_binop_rm_int<0x6A, "punpckhdq",
int_x86_mmx_punpckhdq,
MMX_UNPCK_H_ITINS>;
-defm MMX_PUNPCKLBW : MMXI_binop_rm_int<0x60, "punpcklbw",
+defm MMX_PUNPCKLBW : MMXI_binop_rm_int<0x60, "punpcklbw",
int_x86_mmx_punpcklbw,
MMX_UNPCK_L_ITINS>;
-defm MMX_PUNPCKLWD : MMXI_binop_rm_int<0x61, "punpcklwd",
+defm MMX_PUNPCKLWD : MMXI_binop_rm_int<0x61, "punpcklwd",
int_x86_mmx_punpcklwd,
MMX_UNPCK_L_ITINS>;
defm MMX_PUNPCKLDQ : MMXI_binop_rm_int<0x62, "punpckldq",
@@ -559,7 +566,7 @@ def MMX_PEXTRWirri: MMXIi8<0xC5, MRMSrcReg,
IIC_MMX_PEXTR>, Sched<[WriteShuffle]>;
let Constraints = "$src1 = $dst" in {
def MMX_PINSRWirri : MMXIi8<0xC4, MRMSrcReg,
- (outs VR64:$dst),
+ (outs VR64:$dst),
(ins VR64:$src1, GR32orGR64:$src2, i32i8imm:$src3),
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR64:$dst, (int_x86_mmx_pinsr_w VR64:$src1,
diff --git a/contrib/llvm/lib/Target/X86/X86InstrSGX.td b/contrib/llvm/lib/Target/X86/X86InstrSGX.td
new file mode 100644
index 0000000..47c5dc5
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrSGX.td
@@ -0,0 +1,24 @@
+//===-- X86InstrSGX.td - SGX Instruction Set Extension -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the instructions that make up the Intel SGX instruction
+// set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SGX instructions
+
+// ENCLS - Execute an Enclave System Function of Specified Leaf Number
+def ENCLS : I<0x01, MRM_CF, (outs), (ins),
+ "encls", []>, TB, Requires<[HasSGX]>;
+
+// ENCLU - Execute an Enclave User Function of Specified Leaf Number
+def ENCLU : I<0x01, MRM_D7, (outs), (ins),
+ "enclu", []>, TB, Requires<[HasSGX]>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrSSE.td b/contrib/llvm/lib/Target/X86/X86InstrSSE.td
index 2bb898e..fca0c44 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrSSE.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrSSE.td
@@ -181,6 +181,7 @@ def SSE_MPSADBW_ITINS : OpndItins<
IIC_SSE_MPSADBW_RR, IIC_SSE_MPSADBW_RM
>;
+let Sched = WriteVecIMul in
def SSE_PMULLD_ITINS : OpndItins<
IIC_SSE_PMULLD_RR, IIC_SSE_PMULLD_RM
>;
@@ -218,11 +219,21 @@ def DEFAULT_ITINS_BLENDSCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
+let Sched = WriteVarBlend in
+def DEFAULT_ITINS_VARBLENDSCHED : OpndItins<
+ IIC_ALU_NONMEM, IIC_ALU_MEM
+>;
+
let Sched = WriteFBlend in
def SSE_INTALU_ITINS_FBLEND_P : OpndItins<
IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
>;
+let Sched = WriteBlend in
+def SSE_INTALU_ITINS_BLEND_P : OpndItins<
+ IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
+>;
+
//===----------------------------------------------------------------------===//
// SSE 1 & 2 Instructions Classes
//===----------------------------------------------------------------------===//
@@ -601,29 +612,6 @@ let canFoldAsLoad = 1, isReMaterializable = 1 in {
// Patterns
let Predicates = [UseAVX] in {
- let AddedComplexity = 15 in {
- // Move scalar to XMM zero-extended, zeroing a VR128 then do a
- // MOVS{S,D} to the lower bits.
- def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
- (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
- def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
- (VMOVSSrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
- def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
- (VMOVSSrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
- def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
- (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
-
- // Move low f32 and clear high bits.
- def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
- (SUBREG_TO_REG (i32 0),
- (VMOVSSrr (v4f32 (V_SET0)),
- (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)), sub_xmm)>;
- def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
- (SUBREG_TO_REG (i32 0),
- (VMOVSSrr (v4i32 (V_SET0)),
- (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)), sub_xmm)>;
- }
-
let AddedComplexity = 20 in {
// MOVSSrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
@@ -659,31 +647,10 @@ let Predicates = [UseAVX] in {
(v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
}
- def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
- (v4f32 (scalar_to_vector FR32:$src)), (iPTR 0)))),
- (SUBREG_TO_REG (i32 0),
- (v4f32 (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)),
- sub_xmm)>;
- def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
- (v2f64 (scalar_to_vector FR64:$src)), (iPTR 0)))),
- (SUBREG_TO_REG (i64 0),
- (v2f64 (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)),
- sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i64 0), (VMOVSDrm addr:$src), sub_xmm)>;
- // Move low f64 and clear high bits.
- def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
- (SUBREG_TO_REG (i32 0),
- (VMOVSDrr (v2f64 (V_SET0)),
- (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)), sub_xmm)>;
-
- def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
- (SUBREG_TO_REG (i32 0),
- (VMOVSDrr (v2i64 (V_SET0)),
- (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)), sub_xmm)>;
-
// Extract and store.
def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
addr:$dst),
@@ -734,7 +701,6 @@ let Predicates = [UseAVX] in {
(EXTRACT_SUBREG (v4f64 VR256:$src2), sub_xmm)),
sub_xmm)>;
-
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
@@ -750,7 +716,7 @@ let Predicates = [UseAVX] in {
}
let Predicates = [UseSSE1] in {
- let AddedComplexity = 15 in {
+ let Predicates = [NoSSE41], AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVSS to the lower bits.
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
@@ -784,7 +750,7 @@ let Predicates = [UseSSE1] in {
}
let Predicates = [UseSSE2] in {
- let AddedComplexity = 15 in {
+ let Predicates = [NoSSE41], AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVSD to the lower bits.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
@@ -843,7 +809,7 @@ multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
string asm, Domain d,
OpndItins itins,
bit IsReMaterializable = 1> {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], itins.rr, d>,
Sched<[WriteFShuffle]>;
@@ -854,6 +820,7 @@ let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
Sched<[WriteLoad]>;
}
+let Predicates = [HasAVX, NoVLX] in {
defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
PS, VEX;
@@ -879,20 +846,26 @@ defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32,
defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64,
"movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
PD, VEX, VEX_L;
+}
+
+let Predicates = [UseSSE1] in {
defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
PS;
-defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
- "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
- PD;
defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle, SSE_MOVU_ITINS>,
PS;
+}
+let Predicates = [UseSSE2] in {
+defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
+ "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
+ PD;
defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
PD;
+}
-let SchedRW = [WriteStore] in {
+let SchedRW = [WriteStore], Predicates = [HasAVX, NoVLX] in {
def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)],
@@ -1006,7 +979,7 @@ def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
- SchedRW = [WriteMove] in {
+ SchedRW = [WriteFShuffle] in {
def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>;
@@ -1036,7 +1009,7 @@ let Predicates = [UseSSE2] in
(MOVUPDmr addr:$dst, VR128:$src)>;
// Use vmovaps/vmovups for AVX integer load/store.
-let Predicates = [HasAVX] in {
+let Predicates = [HasAVX, NoVLX] in {
// 128-bit load/store
def : Pat<(alignedloadv2i64 addr:$src),
(VMOVAPSrm addr:$src)>;
@@ -1251,6 +1224,9 @@ let Predicates = [HasAVX] in {
(VMOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(VMOVLPDrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v2f64 (X86Movsd VR128:$src1,
+ (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
+ (VMOVLPDrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
@@ -1298,6 +1274,9 @@ let Predicates = [UseSSE2] in {
(MOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v2f64 (X86Movsd VR128:$src1,
+ (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
+ (MOVLPDrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
@@ -1353,6 +1332,8 @@ let Predicates = [HasAVX] in {
(bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
+ // VMOVHPD patterns
+
// FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold
// cause it has two uses through a bitcast. One use disappears at isel time
@@ -1360,6 +1341,16 @@ let Predicates = [HasAVX] in {
def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(VMOVHPDrm VR128:$src1, addr:$src2)>;
+ // Also handle an i64 load because that may get selected as a faster way to
+ // load the data.
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
+ (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
+ (VMOVHPDrm VR128:$src1, addr:$src2)>;
+
+ def : Pat<(store (f64 (vector_extract
+ (v2f64 (X86VPermilpi VR128:$src, (i8 1))),
+ (iPTR 0))), addr:$dst),
+ (VMOVHPDmr addr:$dst, VR128:$src)>;
}
let Predicates = [UseSSE1] in {
@@ -1373,6 +1364,8 @@ let Predicates = [UseSSE1] in {
}
let Predicates = [UseSSE2] in {
+ // MOVHPD patterns
+
// FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold
// cause it has two uses through a bitcast. One use disappears at isel time
@@ -1380,6 +1373,16 @@ let Predicates = [UseSSE2] in {
def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(MOVHPDrm VR128:$src1, addr:$src2)>;
+ // Also handle an i64 load because that may get selected as a faster way to
+ // load the data.
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
+ (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
+ (MOVHPDrm VR128:$src1, addr:$src2)>;
+
+ def : Pat<(store (f64 (vector_extract
+ (v2f64 (X86Shufp VR128:$src, VR128:$src, (i8 1))),
+ (iPTR 0))), addr:$dst),
+ (MOVHPDmr addr:$dst, VR128:$src)>;
}
//===----------------------------------------------------------------------===//
@@ -1488,7 +1491,7 @@ multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm, Domain d,
OpndItins itins> {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def rr : I<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[], itins.rr, d>, Sched<[itins.Sched]>;
let mayLoad = 1 in
@@ -1499,7 +1502,7 @@ let neverHasSideEffects = 1 in {
multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm> {
-let neverHasSideEffects = 1, Predicates = [UseAVX] in {
+let hasSideEffects = 0, Predicates = [UseAVX] in {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
Sched<[WriteCvtI2F]>;
@@ -1508,7 +1511,7 @@ let neverHasSideEffects = 1, Predicates = [UseAVX] in {
(ins DstRC:$src1, x86memop:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
Sched<[WriteCvtI2FLd, ReadAfterLd]>;
-} // neverHasSideEffects = 1
+} // hasSideEffects = 0
}
let Predicates = [UseAVX] in {
@@ -1815,7 +1818,7 @@ def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
/// SSE 2 Only
// Convert scalar double to scalar single
-let neverHasSideEffects = 1, Predicates = [UseAVX] in {
+let hasSideEffects = 0, Predicates = [UseAVX] in {
def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
(ins FR64:$src1, FR64:$src2),
"cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [],
@@ -1880,7 +1883,7 @@ def Int_CVTSD2SSrm: I<0x5A, MRMSrcReg,
// Convert scalar single to scalar double
// SSE2 instructions with XS prefix
-let neverHasSideEffects = 1, Predicates = [UseAVX] in {
+let hasSideEffects = 0, Predicates = [UseAVX] in {
def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
(ins FR32:$src1, FR32:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
@@ -2202,7 +2205,7 @@ def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
// Convert Packed DW Integers to Packed Double FP
let Predicates = [HasAVX] in {
-let neverHasSideEffects = 1, mayLoad = 1 in
+let hasSideEffects = 0, mayLoad = 1 in
def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[]>, VEX, Sched<[WriteCvtI2FLd]>;
@@ -2224,7 +2227,7 @@ def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
Sched<[WriteCvtI2F]>;
}
-let neverHasSideEffects = 1, mayLoad = 1 in
+let hasSideEffects = 0, mayLoad = 1 in
def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtI2FLd]>;
@@ -2330,15 +2333,15 @@ let Predicates = [UseSSE2] in {
multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
Operand CC, SDNode OpNode, ValueType VT,
PatFrag ld_frag, string asm, string asm_alt,
- OpndItins itins> {
+ OpndItins itins, ImmLeaf immLeaf> {
def rr : SIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
- [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))],
+ [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, immLeaf:$cc))],
itins.rr>, Sched<[itins.Sched]>;
def rm : SIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
[(set RC:$dst, (OpNode (VT RC:$src1),
- (ld_frag addr:$src2), imm:$cc))],
+ (ld_frag addr:$src2), immLeaf:$cc))],
itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
@@ -2358,38 +2361,37 @@ multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32,
"cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
- SSE_ALU_F32S>,
- XS, VEX_4V, VEX_LIG;
+ SSE_ALU_F32S, i8immZExt5>, XS, VEX_4V, VEX_LIG;
defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64,
"cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
- SSE_ALU_F32S>, // same latency as 32 bit compare
+ SSE_ALU_F32S, i8immZExt5>, // same latency as 32 bit compare
XD, VEX_4V, VEX_LIG;
let Constraints = "$src1 = $dst" in {
defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32,
"cmp${cc}ss\t{$src2, $dst|$dst, $src2}",
- "cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}", SSE_ALU_F32S>,
- XS;
+ "cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}", SSE_ALU_F32S,
+ i8immZExt3>, XS;
defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64,
"cmp${cc}sd\t{$src2, $dst|$dst, $src2}",
"cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
- SSE_ALU_F64S>,
- XD;
+ SSE_ALU_F64S, i8immZExt3>, XD;
}
multiclass sse12_cmp_scalar_int<X86MemOperand x86memop, Operand CC,
- Intrinsic Int, string asm, OpndItins itins> {
+ Intrinsic Int, string asm, OpndItins itins,
+ ImmLeaf immLeaf> {
def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src, CC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
- VR128:$src, imm:$cc))],
+ VR128:$src, immLeaf:$cc))],
itins.rr>,
Sched<[itins.Sched]>;
def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, x86memop:$src, CC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
- (load addr:$src), imm:$cc))],
+ (load addr:$src), immLeaf:$cc))],
itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
@@ -2398,19 +2400,19 @@ let isCodeGenOnly = 1 in {
// Aliases to match intrinsics which expect XMM operand(s).
defm Int_VCMPSS : sse12_cmp_scalar_int<f32mem, AVXCC, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
- SSE_ALU_F32S>,
+ SSE_ALU_F32S, i8immZExt5>,
XS, VEX_4V;
defm Int_VCMPSD : sse12_cmp_scalar_int<f64mem, AVXCC, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
- SSE_ALU_F32S>, // same latency as f32
+ SSE_ALU_F32S, i8immZExt5>, // same latency as f32
XD, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm Int_CMPSS : sse12_cmp_scalar_int<f32mem, SSECC, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
- SSE_ALU_F32S>, XS;
+ SSE_ALU_F32S, i8immZExt3>, XS;
defm Int_CMPSD : sse12_cmp_scalar_int<f64mem, SSECC, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
- SSE_ALU_F64S>,
+ SSE_ALU_F64S, i8immZExt3>,
XD;
}
}
@@ -2484,16 +2486,16 @@ let Defs = [EFLAGS] in {
// sse12_cmp_packed - sse 1 & 2 compare packed instructions
multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
Operand CC, Intrinsic Int, string asm,
- string asm_alt, Domain d,
+ string asm_alt, Domain d, ImmLeaf immLeaf,
OpndItins itins = SSE_ALU_F32P> {
def rri : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
- [(set RC:$dst, (Int RC:$src1, RC:$src2, imm:$cc))],
+ [(set RC:$dst, (Int RC:$src1, RC:$src2, immLeaf:$cc))],
itins.rr, d>,
Sched<[WriteFAdd]>;
def rmi : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
- [(set RC:$dst, (Int RC:$src1, (memop addr:$src2), imm:$cc))],
+ [(set RC:$dst, (Int RC:$src1, (memop addr:$src2), immLeaf:$cc))],
itins.rm, d>,
Sched<[WriteFAddLd, ReadAfterLd]>;
@@ -2512,28 +2514,28 @@ multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse_cmp_ps,
"cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
- SSEPackedSingle>, PS, VEX_4V;
+ SSEPackedSingle, i8immZExt5>, PS, VEX_4V;
defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse2_cmp_pd,
"cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
- SSEPackedDouble>, PD, VEX_4V;
+ SSEPackedDouble, i8immZExt5>, PD, VEX_4V;
defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_ps_256,
"cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
- SSEPackedSingle>, PS, VEX_4V, VEX_L;
+ SSEPackedSingle, i8immZExt5>, PS, VEX_4V, VEX_L;
defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_pd_256,
"cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
- SSEPackedDouble>, PD, VEX_4V, VEX_L;
+ SSEPackedDouble, i8immZExt5>, PD, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in {
defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse_cmp_ps,
"cmp${cc}ps\t{$src2, $dst|$dst, $src2}",
"cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}",
- SSEPackedSingle, SSE_ALU_F32P>, PS;
+ SSEPackedSingle, i8immZExt5, SSE_ALU_F32P>, PS;
defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse2_cmp_pd,
"cmp${cc}pd\t{$src2, $dst|$dst, $src2}",
"cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
- SSEPackedDouble, SSE_ALU_F64P>, PD;
+ SSEPackedDouble, i8immZExt5, SSE_ALU_F64P>, PD;
}
let Predicates = [HasAVX] in {
@@ -2577,18 +2579,17 @@ def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
/// sse12_shuffle - sse 1 & 2 fp shuffle instructions
multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
ValueType vt, string asm, PatFrag mem_frag,
- Domain d, bit IsConvertibleToThreeAddress = 0> {
+ Domain d> {
def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i8imm:$src3), asm,
[(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
(i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
- let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in
- def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, i8imm:$src3), asm,
- [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
- (i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
- Sched<[WriteFShuffle]>;
+ def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, i8imm:$src3), asm,
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
+ (i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
+ Sched<[WriteFShuffle]>;
}
defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
@@ -2607,10 +2608,10 @@ defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
let Constraints = "$src1 = $dst" in {
defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
- memopv4f32, SSEPackedSingle, 1 /* cvt to pshufd */>, PS;
+ memopv4f32, SSEPackedSingle>, PS;
defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
- memopv2f64, SSEPackedDouble, 1 /* cvt to pshufd */>, PD;
+ memopv2f64, SSEPackedDouble>, PD;
}
let Predicates = [HasAVX] in {
@@ -2850,7 +2851,7 @@ multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode,
ValueType OpVT128, ValueType OpVT256,
OpndItins itins, bit IsCommutable = 0> {
-let Predicates = [HasAVX] in
+let Predicates = [HasAVX, NoVLX] in
defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128,
VR128, loadv2i64, i128mem, itins, IsCommutable, 0>, VEX_4V;
@@ -2858,7 +2859,7 @@ let Constraints = "$src1 = $dst" in
defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128,
memopv2i64, i128mem, itins, IsCommutable, 1>;
-let Predicates = [HasAVX2] in
+let Predicates = [HasAVX2, NoVLX] in
defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode,
OpVT256, VR256, loadv4i64, i256mem, itins,
IsCommutable, 0>, VEX_4V, VEX_L;
@@ -2920,6 +2921,7 @@ let isCodeGenOnly = 1 in {
///
multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
+ let Predicates = [HasAVX, NoVLX] in {
defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f256mem,
[(set VR256:$dst, (v4i64 (OpNode VR256:$src1, VR256:$src2)))],
@@ -2950,6 +2952,7 @@ multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(loadv2i64 addr:$src2)))], 0>,
PD, VEX_4V;
+ }
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
@@ -3005,6 +3008,7 @@ let Predicates = [HasAVX1Only] in {
/// classes below
multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode, SizeItins itins> {
+ let Predicates = [HasAVX, NoVLX] in {
defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
VR128, v4f32, f128mem, loadv4f32,
SSEPackedSingle, itins.s, 0>, PS, VEX_4V;
@@ -3018,6 +3022,7 @@ multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"),
OpNode, VR256, v4f64, f256mem, loadv4f64,
SSEPackedDouble, itins.d, 0>, PD, VEX_4V, VEX_L;
+ }
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
@@ -3111,7 +3116,7 @@ let isCodeGenOnly = 1 in {
// previously we generated:
// addss %xmm0, %xmm1
// movss %xmm1, %xmm0
-//
+//
// we now generate:
// addss %xmm1, %xmm0
@@ -3136,7 +3141,6 @@ let Predicates = [UseSSE1] in {
let Predicates = [UseSSE2] in {
// SSE2 patterns to select scalar double-precision fp arithmetic instructions
-
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
@@ -3156,10 +3160,10 @@ let Predicates = [UseSSE2] in {
}
let Predicates = [UseSSE41] in {
- // If the subtarget has SSE4.1 but not AVX, the vector insert
- // instruction is lowered into a X86insertps rather than a X86Movss.
- // When selecting SSE scalar single-precision fp arithmetic instructions,
- // make sure that we correctly match the X86insertps.
+ // If the subtarget has SSE4.1 but not AVX, the vector insert instruction is
+ // lowered into a X86insertps or a X86Blendi rather than a X86Movss. When
+ // selecting SSE scalar single-precision fp arithmetic instructions, make
+ // sure that we correctly match them.
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fadd (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
@@ -3177,6 +3181,57 @@ let Predicates = [UseSSE41] in {
(fdiv (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(DIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fadd
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (ADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fsub
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (SUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fmul
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (MULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fdiv
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (DIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (ADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fsub
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (SUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fmul
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (MULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fdiv
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (DIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fadd
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (ADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fsub
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (SUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fmul
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (MULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fdiv
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (DIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
}
let Predicates = [HasAVX] in {
@@ -3215,6 +3270,57 @@ let Predicates = [HasAVX] in {
(fdiv (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(VDIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fadd
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (VADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fsub
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (VSUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fmul
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (VMULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fdiv
+ (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
+ FR32:$src))), (i8 1))),
+ (VDIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (VADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fsub
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (VSUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fmul
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (VMULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fdiv
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (i8 1))),
+ (VDIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fadd
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (VADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fsub
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (VSUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fmul
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (VMULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 (scalar_to_vector (fdiv
+ (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
+ FR64:$src))), (v2f64 VR128:$dst), (i8 2))),
+ (VDIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
}
// Patterns used to select SSE scalar fp arithmetic instructions from
@@ -3232,7 +3338,7 @@ let Predicates = [HasAVX] in {
// previously we generated:
// addps %xmm0, %xmm1
// movss %xmm1, %xmm0
-//
+//
// we now generate:
// addss %xmm1, %xmm0
@@ -3240,13 +3346,13 @@ let Predicates = [UseSSE1] in {
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(ADDSSrr_Int v4f32:$dst, v4f32:$src)>;
- def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(SUBSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(MULSSrr_Int v4f32:$dst, v4f32:$src)>;
- def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
+ def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(DIVSSrr_Int v4f32:$dst, v4f32:$src)>;
}
@@ -3269,6 +3375,49 @@ let Predicates = [UseSSE2] in {
(DIVSDrr_Int v2f64:$dst, v2f64:$src)>;
}
+let Predicates = [UseSSE41] in {
+ // With SSE4.1 we may see these operations using X86Blendi rather than
+ // X86Movs{s,d}.
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (ADDSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (SUBSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (MULSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (DIVSSrr_Int v4f32:$dst, v4f32:$src)>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (ADDSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (SUBSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (MULSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (DIVSDrr_Int v2f64:$dst, v2f64:$src)>;
+
+ def : Pat<(v2f64 (X86Blendi (fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (ADDSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (SUBSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (MULSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (DIVSDrr_Int v2f64:$dst, v2f64:$src)>;
+}
+
let Predicates = [HasAVX] in {
// The following patterns select AVX Scalar single/double precision fp
// arithmetic instructions from a packed single precision fp instruction
@@ -3298,6 +3447,46 @@ let Predicates = [HasAVX] in {
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(VDIVSDrr_Int v2f64:$dst, v2f64:$src)>;
+
+ // Also handle X86Blendi-based patterns.
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (VADDSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (VSUBSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (VMULSSrr_Int v4f32:$dst, v4f32:$src)>;
+ def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
+ (fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
+ (VDIVSSrr_Int v4f32:$dst, v4f32:$src)>;
+
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (VADDSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (VSUBSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (VMULSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
+ (fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
+ (VDIVSDrr_Int v2f64:$dst, v2f64:$src)>;
+
+ def : Pat<(v2f64 (X86Blendi (fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (VADDSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (VSUBSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (VMULSDrr_Int v2f64:$dst, v2f64:$src)>;
+ def : Pat<(v2f64 (X86Blendi (fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)),
+ (v2f64 VR128:$dst), (i8 2))),
+ (VDIVSDrr_Int v2f64:$dst, v2f64:$src)>;
}
/// Unop Arithmetic
@@ -3326,6 +3515,16 @@ def SSE_SQRTSD : OpndItins<
>;
}
+let Sched = WriteFRsqrt in {
+def SSE_RSQRTPS : OpndItins<
+ IIC_SSE_RSQRTPS_RR, IIC_SSE_RSQRTPS_RM
+>;
+
+def SSE_RSQRTSS : OpndItins<
+ IIC_SSE_RSQRTSS_RR, IIC_SSE_RSQRTSS_RM
+>;
+}
+
let Sched = WriteFRcp in {
def SSE_RCPP : OpndItins<
IIC_SSE_RCPP_RR, IIC_SSE_RCPP_RM
@@ -3336,57 +3535,10 @@ def SSE_RCPS : OpndItins<
>;
}
-/// sse1_fp_unop_s - SSE1 unops in scalar form.
-multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr,
- SDNode OpNode, Intrinsic F32Int, OpndItins itins> {
-let Predicates = [HasAVX], hasSideEffects = 0 in {
- def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
- (ins FR32:$src1, FR32:$src2),
- !strconcat("v", OpcodeStr,
- "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
- let mayLoad = 1 in {
- def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
- (ins FR32:$src1,f32mem:$src2),
- !strconcat("v", OpcodeStr,
- "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- []>, VEX_4V, VEX_LIG,
- Sched<[itins.Sched.Folded, ReadAfterLd]>;
- let isCodeGenOnly = 1 in
- def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
- (ins VR128:$src1, ssmem:$src2),
- !strconcat("v", OpcodeStr,
- "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- []>, VEX_4V, VEX_LIG,
- Sched<[itins.Sched.Folded, ReadAfterLd]>;
- }
-}
-
- def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
- !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
- [(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>;
- // For scalar unary operations, fold a load into the operation
- // only in OptForSize mode. It eliminates an instruction, but it also
- // eliminates a whole-register clobber (the load), so it introduces a
- // partial register update condition.
- def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
- !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
- [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
- Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>;
-let isCodeGenOnly = 1 in {
- def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
- !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst, (F32Int VR128:$src))], itins.rr>,
- Sched<[itins.Sched]>;
- def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
- !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst, (F32Int sse_load_f32:$src))], itins.rm>,
- Sched<[itins.Sched.Folded]>;
-}
-}
-
-/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand.
-multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode,
+/// sse1_fp_unop_s - SSE1 unops in scalar form
+/// For the non-AVX defs, we need $src1 to be tied to $dst because
+/// the HW instructions are 2 operand / destructive.
+multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
OpndItins itins> {
let Predicates = [HasAVX], hasSideEffects = 0 in {
def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
@@ -3595,20 +3747,19 @@ let Predicates = [HasAVX] in {
}
// Square root.
-defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss,
- SSE_SQRTSS>,
+defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, SSE_SQRTSS>,
sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPS>,
- sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd,
+ sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd,
SSE_SQRTSD>,
sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPD>;
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
-defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, SSE_SQRTSS>,
- sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTPS>,
+defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, SSE_RSQRTSS>,
+ sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_RSQRTPS>,
sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps,
- int_x86_avx_rsqrt_ps_256, SSE_SQRTPS>;
-defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, SSE_RCPS>,
+ int_x86_avx_rsqrt_ps_256, SSE_RSQRTPS>;
+defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SSE_RCPS>,
sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>,
sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps,
int_x86_avx_rcp_ps_256, SSE_RCPP>;
@@ -3669,13 +3820,15 @@ let Predicates = [HasAVX] in {
(VRCPSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
}
-// Reciprocal approximations. Note that these typically require refinement
-// in order to obtain suitable precision.
+// These are unary operations, but they are modeled as having 2 source operands
+// because the high elements of the destination are unchanged in SSE.
let Predicates = [UseSSE1] in {
def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
(RSQRTSSr_Int VR128:$src, VR128:$src)>;
def : Pat<(int_x86_sse_rcp_ss VR128:$src),
(RCPSSr_Int VR128:$src, VR128:$src)>;
+ def : Pat<(int_x86_sse_sqrt_ss VR128:$src),
+ (SQRTSSr_Int VR128:$src, VR128:$src)>;
}
// There is no f64 version of the reciprocal approximation instructions.
@@ -3686,6 +3839,7 @@ let Predicates = [UseSSE1] in {
let AddedComplexity = 400 in { // Prefer non-temporal versions
let SchedRW = [WriteStore] in {
+let Predicates = [HasAVX, NoVLX] in {
def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
@@ -3726,6 +3880,7 @@ def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs),
[(alignednontemporalstore (v4i64 VR256:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX, VEX_L;
+}
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
@@ -3755,6 +3910,14 @@ def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
PS, Requires<[HasSSE2]>;
} // SchedRW = [WriteStore]
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst),
+ (VMOVNTPSmr addr:$dst, VR128:$src)>;
+}
+
+def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst),
+ (MOVNTPSmr addr:$dst, VR128:$src)>;
+
} // AddedComplexity
//===----------------------------------------------------------------------===//
@@ -3788,8 +3951,8 @@ def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
let SchedRW = [WriteNop] in {
// Pause. This "instruction" is encoded as "rep; nop", so even though it
// was introduced with SSE2, it's backward compatible.
-def PAUSE : I<0x90, RawFrm, (outs), (ins),
- "pause", [(int_x86_sse2_pause)], IIC_SSE_PAUSE>,
+def PAUSE : I<0x90, RawFrm, (outs), (ins),
+ "pause", [(int_x86_sse2_pause)], IIC_SSE_PAUSE>,
OBXS, Requires<[HasSSE2]>;
}
@@ -3821,12 +3984,14 @@ def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
IIC_SSE_STMXCSR>, VEX, Sched<[WriteStore]>;
-def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
- "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)],
- IIC_SSE_LDMXCSR>, Sched<[WriteLoad]>;
-def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
- "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
- IIC_SSE_STMXCSR>, Sched<[WriteStore]>;
+let Predicates = [UseSSE1] in {
+def LDMXCSR : I<0xAE, MRM2m, (outs), (ins i32mem:$src),
+ "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)],
+ IIC_SSE_LDMXCSR>, TB, Sched<[WriteLoad]>;
+def STMXCSR : I<0xAE, MRM3m, (outs), (ins i32mem:$dst),
+ "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
+ IIC_SSE_STMXCSR>, TB, Sched<[WriteStore]>;
+}
//===---------------------------------------------------------------------===//
// SSE2 - Move Aligned/Unaligned Packed Integer Instructions
@@ -3834,7 +3999,7 @@ def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
let ExeDomain = SSEPackedInt in { // SSE integer instructions
-let neverHasSideEffects = 1, SchedRW = [WriteMove] in {
+let hasSideEffects = 0, SchedRW = [WriteMove] in {
def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>,
VEX;
@@ -3869,7 +4034,7 @@ def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
}
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
- neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
+ hasSideEffects = 0, SchedRW = [WriteLoad] in {
def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RM>,
VEX;
@@ -3886,7 +4051,7 @@ let Predicates = [HasAVX] in {
}
}
-let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
+let mayStore = 1, hasSideEffects = 0, SchedRW = [WriteStore] in {
def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_MR>,
@@ -3906,7 +4071,7 @@ def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src),
}
let SchedRW = [WriteMove] in {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>;
@@ -3927,7 +4092,7 @@ def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
} // SchedRW
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
- neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
+ hasSideEffects = 0, SchedRW = [WriteLoad] in {
def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/],
@@ -3939,7 +4104,7 @@ def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
XS, Requires<[UseSSE2]>;
}
-let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
+let mayStore = 1, hasSideEffects = 0, SchedRW = [WriteStore] in {
def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/],
@@ -5222,7 +5387,7 @@ let Predicates = [UseSSE3] in {
//===---------------------------------------------------------------------===//
multiclass sse3_replicate_dfp<string OpcodeStr> {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[], IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
@@ -5277,6 +5442,13 @@ let Predicates = [HasAVX] in {
(VMOVDDUPYrr VR256:$src)>;
}
+let Predicates = [UseAVX, OptForSize] in {
+ def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))),
+ (VMOVDDUPrm addr:$src)>;
+ def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))),
+ (VMOVDDUPrm addr:$src)>;
+}
+
let Predicates = [UseSSE3] in {
def : Pat<(X86Movddup (memopv2f64 addr:$src)),
(MOVDDUPrm addr:$src)>;
@@ -5357,56 +5529,34 @@ let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in {
// Patterns used to select 'addsub' instructions.
let Predicates = [HasAVX] in {
- // Constant 170 corresponds to the binary mask '10101010'.
- // When used as a blend mask, it allows selecting eight elements from two
- // input vectors as follow:
- // - Even-numbered values in the destination are copied from
- // the corresponding elements in the first input vector;
- // - Odd-numbered values in the destination are copied from
- // the corresponding elements in the second input vector.
-
- def : Pat<(v8f32 (X86Blendi (v8f32 (fsub VR256:$lhs, VR256:$rhs)),
- (v8f32 (fadd VR256:$lhs, VR256:$rhs)), (i32 170))),
- (VADDSUBPSYrr VR256:$lhs, VR256:$rhs)>;
-
- // Constant 10 corresponds to the binary mask '1010'.
- // In the two pattens below, constant 10 is used as a blend mask to select
- // - the 1st and 3rd element from the first input vector (the 'fsub' node);
- // - the 2nd and 4th element from the second input vector (the 'fadd' node).
-
- def : Pat<(v4f64 (X86Blendi (v4f64 (fsub VR256:$lhs, VR256:$rhs)),
- (v4f64 (fadd VR256:$lhs, VR256:$rhs)), (i32 10))),
- (VADDSUBPDYrr VR256:$lhs, VR256:$rhs)>;
- def : Pat<(v4f64 (X86Blendi (v4f64 (fsub VR256:$lhs, VR256:$rhs)),
- (v4f64 (fadd VR256:$lhs, VR256:$rhs)), (i32 10))),
- (VADDSUBPDYrr VR256:$lhs, VR256:$rhs)>;
- def : Pat<(v4f32 (X86Blendi (v4f32 (fsub VR128:$lhs, VR128:$rhs)),
- (v4f32 (fadd VR128:$lhs, VR128:$rhs)), (i32 10))),
+ def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 VR128:$rhs))),
(VADDSUBPSrr VR128:$lhs, VR128:$rhs)>;
- def : Pat<(v2f64 (X86Blendi (v2f64 (fsub VR128:$lhs, VR128:$rhs)),
- (v2f64 (fadd VR128:$lhs, VR128:$rhs)), (i32 2))),
- (VADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
- def : Pat<(v2f64 (X86Movsd (v2f64 (fadd VR128:$lhs, VR128:$rhs)),
- (v2f64 (fsub VR128:$lhs, VR128:$rhs)))),
+ def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 (memop addr:$rhs)))),
+ (VADDSUBPSrm VR128:$lhs, f128mem:$rhs)>;
+ def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 VR128:$rhs))),
(VADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
+ def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 (memop addr:$rhs)))),
+ (VADDSUBPDrm VR128:$lhs, f128mem:$rhs)>;
+
+ def : Pat<(v8f32 (X86Addsub (v8f32 VR256:$lhs), (v8f32 VR256:$rhs))),
+ (VADDSUBPSYrr VR256:$lhs, VR256:$rhs)>;
+ def : Pat<(v8f32 (X86Addsub (v8f32 VR256:$lhs), (v8f32 (memop addr:$rhs)))),
+ (VADDSUBPSYrm VR256:$lhs, f256mem:$rhs)>;
+ def : Pat<(v4f64 (X86Addsub (v4f64 VR256:$lhs), (v4f64 VR256:$rhs))),
+ (VADDSUBPDYrr VR256:$lhs, VR256:$rhs)>;
+ def : Pat<(v4f64 (X86Addsub (v4f64 VR256:$lhs), (v4f64 (memop addr:$rhs)))),
+ (VADDSUBPDYrm VR256:$lhs, f256mem:$rhs)>;
}
let Predicates = [UseSSE3] in {
- // Constant 10 corresponds to the binary mask '1010'.
- // In the pattern below, it is used as a blend mask to select:
- // - the 1st and 3rd element from the first input vector (the fsub node);
- // - the 2nd and 4th element from the second input vector (the fadd node).
-
- def : Pat<(v4f32 (X86Blendi (v4f32 (fsub VR128:$lhs, VR128:$rhs)),
- (v4f32 (fadd VR128:$lhs, VR128:$rhs)), (i32 10))),
+ def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 VR128:$rhs))),
(ADDSUBPSrr VR128:$lhs, VR128:$rhs)>;
-
- def : Pat<(v2f64 (X86Blendi (v2f64 (fsub VR128:$lhs, VR128:$rhs)),
- (v2f64 (fadd VR128:$lhs, VR128:$rhs)), (i32 2))),
- (ADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
- def : Pat<(v2f64 (X86Movsd (v2f64 (fadd VR128:$lhs, VR128:$rhs)),
- (v2f64 (fsub VR128:$lhs, VR128:$rhs)))),
+ def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 (memop addr:$rhs)))),
+ (ADDSUBPSrm VR128:$lhs, f128mem:$rhs)>;
+ def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 VR128:$rhs))),
(ADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
+ def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 (memop addr:$rhs)))),
+ (ADDSUBPDrm VR128:$lhs, f128mem:$rhs)>;
}
//===---------------------------------------------------------------------===//
@@ -5810,7 +5960,7 @@ defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw",
//===---------------------------------------------------------------------===//
multiclass ssse3_palignr<string asm, bit Is2Addr = 1> {
- let neverHasSideEffects = 1 in {
+ let hasSideEffects = 0 in {
def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!if(Is2Addr,
@@ -5830,7 +5980,7 @@ multiclass ssse3_palignr<string asm, bit Is2Addr = 1> {
}
multiclass ssse3_palignr_y<string asm, bit Is2Addr = 1> {
- let neverHasSideEffects = 1 in {
+ let hasSideEffects = 0 in {
def R256rr : SS3AI<0x0F, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
!strconcat(asm,
@@ -5917,552 +6067,240 @@ def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORrrr)>,
// SSE4.1 - Packed Move with Sign/Zero Extend
//===----------------------------------------------------------------------===//
-multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId,
- OpndItins itins = DEFAULT_ITINS> {
- def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst, (IntId VR128:$src))], itins.rr>,
- Sched<[itins.Sched]>;
-
- def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst,
- (IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))],
- itins.rm>, Sched<[itins.Sched.Folded]>;
-}
-
-multiclass SS41I_binop_rm_int16_y<bits<8> opc, string OpcodeStr,
- Intrinsic IntId, X86FoldableSchedWrite Sched> {
- def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
-
- def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR256:$dst, (IntId (load addr:$src)))]>,
- Sched<[Sched.Folded]>;
-}
-
-let Predicates = [HasAVX] in {
-defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw",
- int_x86_sse41_pmovsxbw,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd",
- int_x86_sse41_pmovsxwd,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVSXDQ : SS41I_binop_rm_int8<0x25, "vpmovsxdq",
- int_x86_sse41_pmovsxdq,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVZXBW : SS41I_binop_rm_int8<0x30, "vpmovzxbw",
- int_x86_sse41_pmovzxbw,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVZXWD : SS41I_binop_rm_int8<0x33, "vpmovzxwd",
- int_x86_sse41_pmovzxwd,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVZXDQ : SS41I_binop_rm_int8<0x35, "vpmovzxdq",
- int_x86_sse41_pmovzxdq,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-}
-
-let Predicates = [HasAVX2] in {
-defm VPMOVSXBW : SS41I_binop_rm_int16_y<0x20, "vpmovsxbw",
- int_x86_avx2_pmovsxbw,
- WriteShuffle>, VEX, VEX_L;
-defm VPMOVSXWD : SS41I_binop_rm_int16_y<0x23, "vpmovsxwd",
- int_x86_avx2_pmovsxwd,
- WriteShuffle>, VEX, VEX_L;
-defm VPMOVSXDQ : SS41I_binop_rm_int16_y<0x25, "vpmovsxdq",
- int_x86_avx2_pmovsxdq,
- WriteShuffle>, VEX, VEX_L;
-defm VPMOVZXBW : SS41I_binop_rm_int16_y<0x30, "vpmovzxbw",
- int_x86_avx2_pmovzxbw,
- WriteShuffle>, VEX, VEX_L;
-defm VPMOVZXWD : SS41I_binop_rm_int16_y<0x33, "vpmovzxwd",
- int_x86_avx2_pmovzxwd,
- WriteShuffle>, VEX, VEX_L;
-defm VPMOVZXDQ : SS41I_binop_rm_int16_y<0x35, "vpmovzxdq",
- int_x86_avx2_pmovzxdq,
- WriteShuffle>, VEX, VEX_L;
-}
-
-defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq,
- SSE_INTALU_ITINS_SHUFF_P>;
-
-let Predicates = [HasAVX] in {
- // Common patterns involving scalar load.
- def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
- (VPMOVSXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
- (VPMOVSXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxbw (bc_v16i8 (loadv2i64 addr:$src))),
- (VPMOVSXBWrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
- (VPMOVSXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
- (VPMOVSXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxwd (bc_v8i16 (loadv2i64 addr:$src))),
- (VPMOVSXWDrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
- (VPMOVSXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
- (VPMOVSXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxdq (bc_v4i32 (loadv2i64 addr:$src))),
- (VPMOVSXDQrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
- (VPMOVZXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
- (VPMOVZXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxbw (bc_v16i8 (loadv2i64 addr:$src))),
- (VPMOVZXBWrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
- (VPMOVZXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
- (VPMOVZXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxwd (bc_v8i16 (loadv2i64 addr:$src))),
- (VPMOVZXWDrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
- (VPMOVZXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
- (VPMOVZXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxdq (bc_v4i32 (loadv2i64 addr:$src))),
- (VPMOVZXDQrm addr:$src)>;
-}
-
-let Predicates = [UseSSE41] in {
- // Common patterns involving scalar load.
- def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
- (PMOVSXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
- (PMOVSXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxbw (bc_v16i8 (loadv2i64 addr:$src))),
- (PMOVSXBWrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
- (PMOVSXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
- (PMOVSXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxwd (bc_v8i16 (loadv2i64 addr:$src))),
- (PMOVSXWDrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
- (PMOVSXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
- (PMOVSXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxdq (bc_v4i32 (loadv2i64 addr:$src))),
- (PMOVSXDQrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
- (PMOVZXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
- (PMOVZXBWrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxbw (bc_v16i8 (loadv2i64 addr:$src))),
- (PMOVZXBWrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
- (PMOVZXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
- (PMOVZXWDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxwd (bc_v8i16 (loadv2i64 addr:$src))),
- (PMOVZXWDrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
- (PMOVZXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
- (PMOVZXDQrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxdq (bc_v4i32 (loadv2i64 addr:$src))),
- (PMOVZXDQrm addr:$src)>;
-}
-
-multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId,
- OpndItins itins = DEFAULT_ITINS> {
- def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+multiclass SS41I_pmovx_rrrm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp,
+ RegisterClass OutRC, RegisterClass InRC,
+ OpndItins itins> {
+ def rr : SS48I<opc, MRMSrcReg, (outs OutRC:$dst), (ins InRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst, (IntId VR128:$src))], itins.rr>,
+ [], itins.rr>,
Sched<[itins.Sched]>;
- def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst,
- (IntId (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))],
- itins.rm>, Sched<[itins.Sched.Folded]>;
-}
-
-multiclass SS41I_binop_rm_int8_y<bits<8> opc, string OpcodeStr,
- Intrinsic IntId, X86FoldableSchedWrite Sched> {
- def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
-
- def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i32mem:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR256:$dst,
- (IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>,
- Sched<[Sched.Folded]>;
-}
-
-let Predicates = [HasAVX] in {
-defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVZXBD : SS41I_binop_rm_int4<0x31, "vpmovzxbd", int_x86_sse41_pmovzxbd,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-defm VPMOVZXWQ : SS41I_binop_rm_int4<0x34, "vpmovzxwq", int_x86_sse41_pmovzxwq,
- DEFAULT_ITINS_SHUFFLESCHED>, VEX;
-}
-
-let Predicates = [HasAVX2] in {
-defm VPMOVSXBD : SS41I_binop_rm_int8_y<0x21, "vpmovsxbd",
- int_x86_avx2_pmovsxbd, WriteShuffle>,
- VEX, VEX_L;
-defm VPMOVSXWQ : SS41I_binop_rm_int8_y<0x24, "vpmovsxwq",
- int_x86_avx2_pmovsxwq, WriteShuffle>,
- VEX, VEX_L;
-defm VPMOVZXBD : SS41I_binop_rm_int8_y<0x31, "vpmovzxbd",
- int_x86_avx2_pmovzxbd, WriteShuffle>,
- VEX, VEX_L;
-defm VPMOVZXWQ : SS41I_binop_rm_int8_y<0x34, "vpmovzxwq",
- int_x86_avx2_pmovzxwq, WriteShuffle>,
- VEX, VEX_L;
-}
-
-defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd,
- SSE_INTALU_ITINS_SHUFF_P>;
-defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq,
- SSE_INTALU_ITINS_SHUFF_P>;
-
-let Predicates = [HasAVX] in {
- // Common patterns involving scalar load
- def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
- (VPMOVSXBDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
- (VPMOVSXWQrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
- (VPMOVZXBDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
- (VPMOVZXWQrm addr:$src)>;
-}
-
-let Predicates = [UseSSE41] in {
- // Common patterns involving scalar load
- def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
- (PMOVSXBDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
- (PMOVSXWQrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
- (PMOVZXBDrm addr:$src)>;
- def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
- (PMOVZXWQrm addr:$src)>;
-}
-
-multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId,
- X86FoldableSchedWrite Sched> {
- def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ def rm : SS48I<opc, MRMSrcMem, (outs OutRC:$dst), (ins MemOp:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
-
- // Expecting a i16 load any extended to i32 value.
- def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i16mem:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR128:$dst, (IntId (bitconvert
- (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))]>,
- Sched<[Sched.Folded]>;
-}
-
-multiclass SS41I_binop_rm_int4_y<bits<8> opc, string OpcodeStr,
- Intrinsic IntId, X86FoldableSchedWrite Sched> {
- def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
-
- // Expecting a i16 load any extended to i32 value.
- def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i16mem:$src),
- !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
- [(set VR256:$dst, (IntId (bitconvert
- (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>,
- Sched<[Sched.Folded]>;
+ [],
+ itins.rm>, Sched<[itins.Sched.Folded]>;
}
-let Predicates = [HasAVX] in {
-defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq,
- WriteShuffle>, VEX;
-defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq,
- WriteShuffle>, VEX;
-}
-let Predicates = [HasAVX2] in {
-defm VPMOVSXBQ : SS41I_binop_rm_int4_y<0x22, "vpmovsxbq", int_x86_avx2_pmovsxbq,
- WriteShuffle>, VEX, VEX_L;
-defm VPMOVZXBQ : SS41I_binop_rm_int4_y<0x32, "vpmovzxbq", int_x86_avx2_pmovzxbq,
- WriteShuffle>, VEX, VEX_L;
-}
-defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq,
- WriteShuffle>;
-defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq,
- WriteShuffle>;
-
-let Predicates = [HasAVX2] in {
- def : Pat<(v16i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWYrr VR128:$src)>;
- def : Pat<(v8i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDYrr VR128:$src)>;
- def : Pat<(v4i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQYrr VR128:$src)>;
-
- def : Pat<(v8i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDYrr VR128:$src)>;
- def : Pat<(v4i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQYrr VR128:$src)>;
-
- def : Pat<(v4i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQYrr VR128:$src)>;
-
- def : Pat<(v16i16 (X86vsext (v32i8 VR256:$src))),
- (VPMOVSXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
- def : Pat<(v8i32 (X86vsext (v32i8 VR256:$src))),
- (VPMOVSXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
- def : Pat<(v4i64 (X86vsext (v32i8 VR256:$src))),
- (VPMOVSXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
-
- def : Pat<(v8i32 (X86vsext (v16i16 VR256:$src))),
- (VPMOVSXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
- def : Pat<(v4i64 (X86vsext (v16i16 VR256:$src))),
- (VPMOVSXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
-
- def : Pat<(v4i64 (X86vsext (v8i32 VR256:$src))),
- (VPMOVSXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
-
- def : Pat<(v8i32 (X86vsext (v8i16 (bitconvert (v2i64 (load addr:$src)))))),
- (VPMOVSXWDYrm addr:$src)>;
- def : Pat<(v4i64 (X86vsext (v4i32 (bitconvert (v2i64 (load addr:$src)))))),
- (VPMOVSXDQYrm addr:$src)>;
-
- def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVSXBDYrm addr:$src)>;
- def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVSXBDYrm addr:$src)>;
-
- def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVSXWQYrm addr:$src)>;
- def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVSXWQYrm addr:$src)>;
-
- def : Pat<(v4i64 (X86vsext (v16i8 (bitconvert (v4i32
- (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVSXBQYrm addr:$src)>;
-}
-
-let Predicates = [HasAVX] in {
- // Common patterns involving scalar load
- def : Pat<(int_x86_sse41_pmovsxbq
- (bitconvert (v4i32 (X86vzmovl
- (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVSXBQrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxbq
- (bitconvert (v4i32 (X86vzmovl
- (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVZXBQrm addr:$src)>;
-}
-
-let Predicates = [UseSSE41] in {
- def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (PMOVSXBWrr VR128:$src)>;
- def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (PMOVSXBDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (PMOVSXBQrr VR128:$src)>;
-
- def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (PMOVSXWDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (PMOVSXWQrr VR128:$src)>;
-
- def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (PMOVSXDQrr VR128:$src)>;
-
- // Common patterns involving scalar load
- def : Pat<(int_x86_sse41_pmovsxbq
- (bitconvert (v4i32 (X86vzmovl
- (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (PMOVSXBQrm addr:$src)>;
-
- def : Pat<(int_x86_sse41_pmovzxbq
- (bitconvert (v4i32 (X86vzmovl
- (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (PMOVZXBQrm addr:$src)>;
-
- def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (PMOVSXWDrm addr:$src)>;
- def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (PMOVSXWDrm addr:$src)>;
- def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32
- (scalar_to_vector (loadi32 addr:$src))))))),
- (PMOVSXBDrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32
- (scalar_to_vector (loadi32 addr:$src))))))),
- (PMOVSXWQrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32
- (scalar_to_vector (extloadi32i16 addr:$src))))))),
- (PMOVSXBQrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (PMOVSXDQrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (PMOVSXDQrm addr:$src)>;
- def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (PMOVSXBWrm addr:$src)>;
- def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (PMOVSXBWrm addr:$src)>;
+multiclass SS41I_pmovx_rm_all<bits<8> opc, string OpcodeStr,
+ X86MemOperand MemOp, X86MemOperand MemYOp,
+ OpndItins SSEItins, OpndItins AVXItins,
+ OpndItins AVX2Itins> {
+ defm NAME : SS41I_pmovx_rrrm<opc, OpcodeStr, MemOp, VR128, VR128, SSEItins>;
+ let Predicates = [HasAVX] in
+ defm V#NAME : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemOp,
+ VR128, VR128, AVXItins>, VEX;
+ let Predicates = [HasAVX2] in
+ defm V#NAME#Y : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemYOp,
+ VR256, VR128, AVX2Itins>, VEX, VEX_L;
+}
+
+multiclass SS41I_pmovx_rm<bits<8> opc, string OpcodeStr,
+ X86MemOperand MemOp, X86MemOperand MemYOp> {
+ defm PMOVSX#NAME : SS41I_pmovx_rm_all<opc, !strconcat("pmovsx", OpcodeStr),
+ MemOp, MemYOp,
+ SSE_INTALU_ITINS_SHUFF_P,
+ DEFAULT_ITINS_SHUFFLESCHED,
+ DEFAULT_ITINS_SHUFFLESCHED>;
+ defm PMOVZX#NAME : SS41I_pmovx_rm_all<!add(opc, 0x10),
+ !strconcat("pmovzx", OpcodeStr),
+ MemOp, MemYOp,
+ SSE_INTALU_ITINS_SHUFF_P,
+ DEFAULT_ITINS_SHUFFLESCHED,
+ DEFAULT_ITINS_SHUFFLESCHED>;
+}
+
+defm BW : SS41I_pmovx_rm<0x20, "bw", i64mem, i128mem>;
+defm WD : SS41I_pmovx_rm<0x23, "wd", i64mem, i128mem>;
+defm DQ : SS41I_pmovx_rm<0x25, "dq", i64mem, i128mem>;
+
+defm BD : SS41I_pmovx_rm<0x21, "bd", i32mem, i64mem>;
+defm WQ : SS41I_pmovx_rm<0x24, "wq", i32mem, i64mem>;
+
+defm BQ : SS41I_pmovx_rm<0x22, "bq", i16mem, i32mem>;
+
+// AVX2 Patterns
+multiclass SS41I_pmovx_avx2_patterns<string OpcPrefix, SDNode ExtOp> {
+ // Register-Register patterns
+ def : Pat<(v16i16 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BWYrr) VR128:$src)>;
+ def : Pat<(v8i32 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BDYrr) VR128:$src)>;
+ def : Pat<(v4i64 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BQYrr) VR128:$src)>;
+
+ def : Pat<(v8i32 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WDYrr) VR128:$src)>;
+ def : Pat<(v4i64 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WQYrr) VR128:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (v4i32 VR128:$src))),
+ (!cast<I>(OpcPrefix#DQYrr) VR128:$src)>;
+
+ // On AVX2, we also support 256bit inputs.
+ // FIXME: remove these patterns when the old shuffle lowering goes away.
+ def : Pat<(v16i16 (ExtOp (v32i8 VR256:$src))),
+ (!cast<I>(OpcPrefix#BWYrr) (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v8i32 (ExtOp (v32i8 VR256:$src))),
+ (!cast<I>(OpcPrefix#BDYrr) (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v4i64 (ExtOp (v32i8 VR256:$src))),
+ (!cast<I>(OpcPrefix#BQYrr) (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v8i32 (ExtOp (v16i16 VR256:$src))),
+ (!cast<I>(OpcPrefix#WDYrr) (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ def : Pat<(v4i64 (ExtOp (v16i16 VR256:$src))),
+ (!cast<I>(OpcPrefix#WQYrr) (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ def : Pat<(v4i64 (ExtOp (v8i32 VR256:$src))),
+ (!cast<I>(OpcPrefix#DQYrr) (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+
+ // AVX2 Register-Memory patterns
+ def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+
+ def : Pat<(v8i32 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+
+ def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
}
let Predicates = [HasAVX2] in {
- def : Pat<(v16i16 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBWYrr VR128:$src)>;
- def : Pat<(v8i32 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBDYrr VR128:$src)>;
- def : Pat<(v4i64 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBQYrr VR128:$src)>;
-
- def : Pat<(v8i32 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWDYrr VR128:$src)>;
- def : Pat<(v4i64 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWQYrr VR128:$src)>;
-
- def : Pat<(v4i64 (X86vzext (v4i32 VR128:$src))), (VPMOVZXDQYrr VR128:$src)>;
-
- def : Pat<(v16i16 (X86vzext (v32i8 VR256:$src))),
- (VPMOVZXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
- def : Pat<(v8i32 (X86vzext (v32i8 VR256:$src))),
- (VPMOVZXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
- def : Pat<(v4i64 (X86vzext (v32i8 VR256:$src))),
- (VPMOVZXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
-
- def : Pat<(v8i32 (X86vzext (v16i16 VR256:$src))),
- (VPMOVZXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
- def : Pat<(v4i64 (X86vzext (v16i16 VR256:$src))),
- (VPMOVZXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
-
- def : Pat<(v4i64 (X86vzext (v8i32 VR256:$src))),
- (VPMOVZXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
+ defm : SS41I_pmovx_avx2_patterns<"VPMOVSX", X86vsext>;
+ defm : SS41I_pmovx_avx2_patterns<"VPMOVZX", X86vzext>;
+}
+
+// SSE4.1/AVX patterns.
+multiclass SS41I_pmovx_patterns<string OpcPrefix, SDNode ExtOp,
+ PatFrag ExtLoad16> {
+ def : Pat<(v8i16 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BWrr) VR128:$src)>;
+ def : Pat<(v4i32 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BDrr) VR128:$src)>;
+ def : Pat<(v2i64 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BQrr) VR128:$src)>;
+
+ def : Pat<(v4i32 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WDrr) VR128:$src)>;
+ def : Pat<(v2i64 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WQrr) VR128:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (v4i32 VR128:$src))),
+ (!cast<I>(OpcPrefix#DQrr) VR128:$src)>;
+
+ def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+
+ def : Pat<(v4i32 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (ExtLoad16 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+
+ def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v8i16 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
}
let Predicates = [HasAVX] in {
- def : Pat<(v8i16 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBWrr VR128:$src)>;
- def : Pat<(v4i32 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBQrr VR128:$src)>;
-
- def : Pat<(v4i32 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWQrr VR128:$src)>;
-
- def : Pat<(v2i64 (X86vzext (v4i32 VR128:$src))), (VPMOVZXDQrr VR128:$src)>;
-
- def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVZXBWrm addr:$src)>;
- def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVZXBWrm addr:$src)>;
- def : Pat<(v4i32 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVZXBDrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))),
- (VPMOVZXBQrm addr:$src)>;
-
- def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVZXWDrm addr:$src)>;
- def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVZXWDrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v8i16 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVZXWQrm addr:$src)>;
-
- def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVZXDQrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVZXDQrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))),
- (VPMOVZXDQrm addr:$src)>;
-
- def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWrr VR128:$src)>;
- def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQrr VR128:$src)>;
-
- def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQrr VR128:$src)>;
-
- def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQrr VR128:$src)>;
-
- def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVSXWDrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVSXDQrm addr:$src)>;
- def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVSXWDrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVSXDQrm addr:$src)>;
- def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64
- (scalar_to_vector (loadi64 addr:$src))))))),
- (VPMOVSXBWrm addr:$src)>;
- def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64
- (scalar_to_vector (loadf64 addr:$src))))))),
- (VPMOVSXBWrm addr:$src)>;
-
- def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32
- (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVSXBDrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32
- (scalar_to_vector (loadi32 addr:$src))))))),
- (VPMOVSXWQrm addr:$src)>;
- def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32
- (scalar_to_vector (extloadi32i16 addr:$src))))))),
- (VPMOVSXBQrm addr:$src)>;
+ defm : SS41I_pmovx_patterns<"VPMOVSX", X86vsext, extloadi32i16>;
+ defm : SS41I_pmovx_patterns<"VPMOVZX", X86vzext, loadi16_anyext>;
}
let Predicates = [UseSSE41] in {
- def : Pat<(v8i16 (X86vzext (v16i8 VR128:$src))), (PMOVZXBWrr VR128:$src)>;
- def : Pat<(v4i32 (X86vzext (v16i8 VR128:$src))), (PMOVZXBDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vzext (v16i8 VR128:$src))), (PMOVZXBQrr VR128:$src)>;
-
- def : Pat<(v4i32 (X86vzext (v8i16 VR128:$src))), (PMOVZXWDrr VR128:$src)>;
- def : Pat<(v2i64 (X86vzext (v8i16 VR128:$src))), (PMOVZXWQrr VR128:$src)>;
-
- def : Pat<(v2i64 (X86vzext (v4i32 VR128:$src))), (PMOVZXDQrr VR128:$src)>;
-
- def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
- (PMOVZXBWrm addr:$src)>;
- def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
- (PMOVZXBWrm addr:$src)>;
- def : Pat<(v4i32 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (PMOVZXBDrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))),
- (PMOVZXBQrm addr:$src)>;
-
- def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
- (PMOVZXWDrm addr:$src)>;
- def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
- (PMOVZXWDrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v8i16 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
- (PMOVZXWQrm addr:$src)>;
-
- def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
- (PMOVZXDQrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
- (PMOVZXDQrm addr:$src)>;
- def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))),
- (PMOVZXDQrm addr:$src)>;
+ defm : SS41I_pmovx_patterns<"PMOVSX", X86vsext, extloadi32i16>;
+ defm : SS41I_pmovx_patterns<"PMOVZX", X86vzext, loadi16_anyext>;
}
//===----------------------------------------------------------------------===//
@@ -6478,7 +6316,7 @@ multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
[(set GR32orGR64:$dst, (X86pextrb (v16i8 VR128:$src1),
imm:$src2))]>,
Sched<[WriteShuffle]>;
- let neverHasSideEffects = 1, mayStore = 1,
+ let hasSideEffects = 0, mayStore = 1,
SchedRW = [WriteShuffleLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i8mem:$dst, VR128:$src1, i32i8imm:$src2),
@@ -6503,7 +6341,7 @@ multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[WriteShuffle]>;
- let neverHasSideEffects = 1, mayStore = 1,
+ let hasSideEffects = 0, mayStore = 1,
SchedRW = [WriteShuffleLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i16mem:$dst, VR128:$src1, i32i8imm:$src2),
@@ -6692,7 +6530,7 @@ let Constraints = "$src1 = $dst" in
multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1,
OpndItins itins = DEFAULT_ITINS> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
- (ins VR128:$src1, VR128:$src2, u32u8imm:$src3),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
@@ -6701,7 +6539,7 @@ multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1,
(X86insertps VR128:$src1, VR128:$src2, imm:$src3))], itins.rr>,
Sched<[WriteFShuffle]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
- (ins VR128:$src1, f32mem:$src2, u32u8imm:$src3),
+ (ins VR128:$src1, f32mem:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
@@ -7221,7 +7059,7 @@ multiclass SS48I_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
-let Predicates = [HasAVX] in {
+let Predicates = [HasAVX, NoVLX] in {
let isCommutable = 0 in
defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", X86smin, v16i8, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
@@ -7252,7 +7090,7 @@ let Predicates = [HasAVX] in {
SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V;
}
-let Predicates = [HasAVX2] in {
+let Predicates = [HasAVX2, NoVLX] in {
let isCommutable = 0 in
defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", X86smin, v32i8, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
@@ -7306,9 +7144,9 @@ let Constraints = "$src1 = $dst" in {
SSE_INTMUL_ITINS_P, 1>;
}
-let Predicates = [HasAVX] in {
+let Predicates = [HasAVX, NoVLX] in {
defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128,
- memopv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
+ memopv2i64, i128mem, 0, SSE_PMULLD_ITINS>,
VEX_4V;
defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128,
memopv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
@@ -7316,7 +7154,7 @@ let Predicates = [HasAVX] in {
}
let Predicates = [HasAVX2] in {
defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256,
- memopv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
+ memopv4i64, i256mem, 0, SSE_PMULLD_ITINS>,
VEX_4V, VEX_L;
defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256,
memopv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
@@ -7337,7 +7175,7 @@ multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
OpndItins itins = DEFAULT_ITINS> {
let isCommutable = 1 in
def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, u32u8imm:$src3),
+ (ins RC:$src1, RC:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
@@ -7346,7 +7184,7 @@ multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
[(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))], itins.rr>,
Sched<[itins.Sched]>;
def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86memop:$src2, u32u8imm:$src3),
+ (ins RC:$src1, x86memop:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
@@ -7360,31 +7198,33 @@ multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
let Predicates = [HasAVX] in {
let isCommutable = 0 in {
- let ExeDomain = SSEPackedSingle in {
- defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps,
- VR128, loadv4f32, f128mem, 0,
- DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
- defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps",
- int_x86_avx_blend_ps_256, VR256, loadv8f32,
- f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
- VEX_4V, VEX_L;
- }
- let ExeDomain = SSEPackedDouble in {
- defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd,
- VR128, loadv2f64, f128mem, 0,
- DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
- defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd",
- int_x86_avx_blend_pd_256,VR256, loadv4f64,
- f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
- VEX_4V, VEX_L;
- }
+ defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
+ VR128, loadv2i64, i128mem, 0,
+ DEFAULT_ITINS_MPSADSCHED>, VEX_4V;
+ }
+
+ let ExeDomain = SSEPackedSingle in {
+ defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps,
+ VR128, loadv4f32, f128mem, 0,
+ DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
+ defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps",
+ int_x86_avx_blend_ps_256, VR256, loadv8f32,
+ f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
+ VEX_4V, VEX_L;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd,
+ VR128, loadv2f64, f128mem, 0,
+ DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
+ defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd",
+ int_x86_avx_blend_pd_256,VR256, loadv4f64,
+ f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
+ VEX_4V, VEX_L;
+ }
defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw,
VR128, loadv2i64, i128mem, 0,
DEFAULT_ITINS_BLENDSCHED>, VEX_4V;
- defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
- VR128, loadv2i64, i128mem, 0,
- DEFAULT_ITINS_MPSADSCHED>, VEX_4V;
- }
+
let ExeDomain = SSEPackedSingle in
defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
VR128, loadv4f32, f128mem, 0,
@@ -7401,17 +7241,21 @@ let Predicates = [HasAVX] in {
let Predicates = [HasAVX2] in {
let isCommutable = 0 in {
- defm VPBLENDWY : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_avx2_pblendw,
- VR256, loadv4i64, i256mem, 0,
- DEFAULT_ITINS_BLENDSCHED>, VEX_4V, VEX_L;
defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw,
VR256, loadv4i64, i256mem, 0,
DEFAULT_ITINS_MPSADSCHED>, VEX_4V, VEX_L;
}
+ defm VPBLENDWY : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_avx2_pblendw,
+ VR256, loadv4i64, i256mem, 0,
+ DEFAULT_ITINS_BLENDSCHED>, VEX_4V, VEX_L;
}
let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
+ defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
+ VR128, memopv2i64, i128mem,
+ 1, SSE_MPSADBW_ITINS>;
+ }
let ExeDomain = SSEPackedSingle in
defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps,
VR128, memopv4f32, f128mem,
@@ -7422,11 +7266,7 @@ let Constraints = "$src1 = $dst" in {
1, SSE_INTALU_ITINS_FBLEND_P>;
defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw,
VR128, memopv2i64, i128mem,
- 1, SSE_INTALU_ITINS_FBLEND_P>;
- defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
- VR128, memopv2i64, i128mem,
- 1, SSE_MPSADBW_ITINS>;
- }
+ 1, SSE_INTALU_ITINS_BLEND_P>;
let ExeDomain = SSEPackedSingle in
defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
VR128, memopv4f32, f128mem, 1,
@@ -7545,6 +7385,57 @@ let Predicates = [HasAVX2] in {
(VPBLENDWYrri VR256:$src1, VR256:$src2, imm:$mask)>;
}
+// Patterns
+let Predicates = [UseAVX] in {
+ let AddedComplexity = 15 in {
+ // Move scalar to XMM zero-extended, zeroing a VR128 then do a
+ // MOVS{S,D} to the lower bits.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
+ (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (VBLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (VPBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>;
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
+ (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
+
+ // Move low f32 and clear high bits.
+ def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
+ (VBLENDPSYrri (v8f32 (AVX_SET0)), VR256:$src, (i8 1))>;
+ def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
+ (VBLENDPSYrri (v8i32 (AVX_SET0)), VR256:$src, (i8 1))>;
+ }
+
+ def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
+ (v4f32 (scalar_to_vector FR32:$src)), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0),
+ (v4f32 (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)),
+ sub_xmm)>;
+ def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
+ (v2f64 (scalar_to_vector FR64:$src)), (iPTR 0)))),
+ (SUBREG_TO_REG (i64 0),
+ (v2f64 (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)),
+ sub_xmm)>;
+
+ // Move low f64 and clear high bits.
+ def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
+ (VBLENDPDYrri (v4f64 (AVX_SET0)), VR256:$src, (i8 1))>;
+
+ def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
+ (VBLENDPDYrri (v4i64 (AVX_SET0)), VR256:$src, (i8 1))>;
+}
+
+let Predicates = [UseSSE41] in {
+ // With SSE41 we can use blends for these patterns.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (BLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (PBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>;
+ def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
+ (BLENDPDrri (v2f64 (V_SET0)), VR128:$src, (i8 1))>;
+}
+
+
/// SS41I_ternary_int - SSE 4.1 ternary operator
let Uses = [XMM0], Constraints = "$src1 = $dst" in {
multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
@@ -7555,7 +7446,7 @@ let Uses = [XMM0], Constraints = "$src1 = $dst" in {
!strconcat(OpcodeStr,
"\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))],
- itins.rr>;
+ itins.rr>, Sched<[itins.Sched]>;
def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, x86memop:$src2),
@@ -7564,18 +7455,21 @@ let Uses = [XMM0], Constraints = "$src1 = $dst" in {
[(set VR128:$dst,
(IntId VR128:$src1,
(bitconvert (mem_frag addr:$src2)), XMM0))],
- itins.rm>;
+ itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
let ExeDomain = SSEPackedDouble in
defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64, f128mem,
- int_x86_sse41_blendvpd>;
+ int_x86_sse41_blendvpd,
+ DEFAULT_ITINS_FBLENDSCHED>;
let ExeDomain = SSEPackedSingle in
defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32, f128mem,
- int_x86_sse41_blendvps>;
+ int_x86_sse41_blendvps,
+ DEFAULT_ITINS_FBLENDSCHED>;
defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64, i128mem,
- int_x86_sse41_pblendvb>;
+ int_x86_sse41_pblendvb,
+ DEFAULT_ITINS_VARBLENDSCHED>;
// Aliases with the implicit xmm0 argument
def : InstAlias<"blendvpd\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
@@ -7704,7 +7598,7 @@ multiclass pcmpistrm_SS42AI<string asm> {
[]>, Sched<[WritePCmpIStrMLd, ReadAfterLd]>;
}
-let Defs = [XMM0, EFLAGS], neverHasSideEffects = 1 in {
+let Defs = [XMM0, EFLAGS], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPISTRM128 : pcmpistrm_SS42AI<"vpcmpistrm">, VEX;
defm PCMPISTRM128 : pcmpistrm_SS42AI<"pcmpistrm"> ;
@@ -7739,7 +7633,7 @@ multiclass SS42AI_pcmpestrm<string asm> {
[]>, Sched<[WritePCmpEStrMLd, ReadAfterLd]>;
}
-let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], neverHasSideEffects = 1 in {
+let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPESTRM128 : SS42AI_pcmpestrm<"vpcmpestrm">, VEX;
defm PCMPESTRM128 : SS42AI_pcmpestrm<"pcmpestrm">;
@@ -7774,7 +7668,7 @@ multiclass SS42AI_pcmpistri<string asm> {
[]>, Sched<[WritePCmpIStrILd, ReadAfterLd]>;
}
-let Defs = [ECX, EFLAGS], neverHasSideEffects = 1 in {
+let Defs = [ECX, EFLAGS], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX;
defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">;
@@ -7810,7 +7704,7 @@ multiclass SS42AI_pcmpestri<string asm> {
[]>, Sched<[WritePCmpEStrILd, ReadAfterLd]>;
}
-let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], neverHasSideEffects = 1 in {
+let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX;
defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">;
@@ -8189,7 +8083,7 @@ def : Pat<(int_x86_avx_vbroadcastf128_ps_256 addr:$src),
//===----------------------------------------------------------------------===//
// VINSERTF128 - Insert packed floating-point values
//
-let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
+let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, i8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
@@ -8221,6 +8115,49 @@ def : Pat<(vinsert128_insert:$ins (v4f64 VR256:$src1), (loadv2f64 addr:$src2),
(INSERT_get_vinsert128_imm VR256:$ins))>;
}
+// Combine two consecutive 16-byte loads with a common destination register into
+// one 32-byte load to that register.
+let Predicates = [HasAVX, HasFastMem32] in {
+ def : Pat<(insert_subvector
+ (v8f32 (insert_subvector undef, (loadv4f32 addr:$src), (iPTR 0))),
+ (loadv4f32 (add addr:$src, (iPTR 16))),
+ (iPTR 4)),
+ (VMOVUPSYrm addr:$src)>;
+
+ def : Pat<(insert_subvector
+ (v4f64 (insert_subvector undef, (loadv2f64 addr:$src), (iPTR 0))),
+ (loadv2f64 (add addr:$src, (iPTR 16))),
+ (iPTR 2)),
+ (VMOVUPDYrm addr:$src)>;
+
+ def : Pat<(insert_subvector
+ (v32i8 (insert_subvector
+ undef, (bc_v16i8 (loadv2i64 addr:$src)), (iPTR 0))),
+ (bc_v16i8 (loadv2i64 (add addr:$src, (iPTR 16)))),
+ (iPTR 16)),
+ (VMOVDQUYrm addr:$src)>;
+
+ def : Pat<(insert_subvector
+ (v16i16 (insert_subvector
+ undef, (bc_v8i16 (loadv2i64 addr:$src)), (iPTR 0))),
+ (bc_v8i16 (loadv2i64 (add addr:$src, (iPTR 16)))),
+ (iPTR 8)),
+ (VMOVDQUYrm addr:$src)>;
+
+ def : Pat<(insert_subvector
+ (v8i32 (insert_subvector
+ undef, (bc_v4i32 (loadv2i64 addr:$src)), (iPTR 0))),
+ (bc_v4i32 (loadv2i64 (add addr:$src, (iPTR 16)))),
+ (iPTR 4)),
+ (VMOVDQUYrm addr:$src)>;
+
+ def : Pat<(insert_subvector
+ (v4i64 (insert_subvector undef, (loadv2i64 addr:$src), (iPTR 0))),
+ (loadv2i64 (add addr:$src, (iPTR 16))),
+ (iPTR 2)),
+ (VMOVDQUYrm addr:$src)>;
+}
+
let Predicates = [HasAVX1Only] in {
def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
(iPTR imm)),
@@ -8263,7 +8200,7 @@ def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1),
//===----------------------------------------------------------------------===//
// VEXTRACTF128 - Extract packed floating-point values
//
-let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
+let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, i8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
@@ -8393,13 +8330,13 @@ multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- [(set RC:$dst, (vt (X86VPermilp RC:$src1, (i8 imm:$src2))))]>, VEX,
+ [(set RC:$dst, (vt (X86VPermilpi RC:$src1, (i8 imm:$src2))))]>, VEX,
Sched<[WriteFShuffle]>;
def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst),
(ins x86memop_f:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
- (vt (X86VPermilp (memop addr:$src1), (i8 imm:$src2))))]>, VEX,
+ (vt (X86VPermilpi (memop addr:$src1), (i8 imm:$src2))))]>, VEX,
Sched<[WriteFShuffleLd]>;
}
@@ -8417,19 +8354,37 @@ let ExeDomain = SSEPackedDouble in {
}
let Predicates = [HasAVX] in {
-def : Pat<(v8i32 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
+def : Pat<(v8f32 (X86VPermilpv VR256:$src1, (v8i32 VR256:$src2))),
+ (VPERMILPSYrr VR256:$src1, VR256:$src2)>;
+def : Pat<(v8f32 (X86VPermilpv VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
+ (VPERMILPSYrm VR256:$src1, addr:$src2)>;
+def : Pat<(v4f64 (X86VPermilpv VR256:$src1, (v4i64 VR256:$src2))),
+ (VPERMILPDYrr VR256:$src1, VR256:$src2)>;
+def : Pat<(v4f64 (X86VPermilpv VR256:$src1, (loadv4i64 addr:$src2))),
+ (VPERMILPDYrm VR256:$src1, addr:$src2)>;
+
+def : Pat<(v8i32 (X86VPermilpi VR256:$src1, (i8 imm:$imm))),
(VPERMILPSYri VR256:$src1, imm:$imm)>;
-def : Pat<(v4i64 (X86VPermilp VR256:$src1, (i8 imm:$imm))),
+def : Pat<(v4i64 (X86VPermilpi VR256:$src1, (i8 imm:$imm))),
(VPERMILPDYri VR256:$src1, imm:$imm)>;
-def : Pat<(v8i32 (X86VPermilp (bc_v8i32 (loadv4i64 addr:$src1)),
+def : Pat<(v8i32 (X86VPermilpi (bc_v8i32 (loadv4i64 addr:$src1)),
(i8 imm:$imm))),
(VPERMILPSYmi addr:$src1, imm:$imm)>;
-def : Pat<(v4i64 (X86VPermilp (loadv4i64 addr:$src1), (i8 imm:$imm))),
+def : Pat<(v4i64 (X86VPermilpi (loadv4i64 addr:$src1), (i8 imm:$imm))),
(VPERMILPDYmi addr:$src1, imm:$imm)>;
-def : Pat<(v2i64 (X86VPermilp VR128:$src1, (i8 imm:$imm))),
+def : Pat<(v4f32 (X86VPermilpv VR128:$src1, (v4i32 VR128:$src2))),
+ (VPERMILPSrr VR128:$src1, VR128:$src2)>;
+def : Pat<(v4f32 (X86VPermilpv VR128:$src1, (bc_v4i32 (loadv2i64 addr:$src2)))),
+ (VPERMILPSrm VR128:$src1, addr:$src2)>;
+def : Pat<(v2f64 (X86VPermilpv VR128:$src1, (v2i64 VR128:$src2))),
+ (VPERMILPDrr VR128:$src1, VR128:$src2)>;
+def : Pat<(v2f64 (X86VPermilpv VR128:$src1, (loadv2i64 addr:$src2))),
+ (VPERMILPDrm VR128:$src1, addr:$src2)>;
+
+def : Pat<(v2i64 (X86VPermilpi VR128:$src1, (i8 imm:$imm))),
(VPERMILPDri VR128:$src1, imm:$imm)>;
-def : Pat<(v2i64 (X86VPermilp (loadv2i64 addr:$src1), (i8 imm:$imm))),
+def : Pat<(v2i64 (X86VPermilpi (loadv2i64 addr:$src1), (i8 imm:$imm))),
(VPERMILPDmi addr:$src1, imm:$imm)>;
}
@@ -8505,7 +8460,7 @@ multiclass f16c_ph2ps<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> {
"vcvtph2ps\t{$src, $dst|$dst, $src}",
[(set RC:$dst, (Int VR128:$src))]>,
T8PD, VEX, Sched<[WriteCvtF2F]>;
- let neverHasSideEffects = 1, mayLoad = 1 in
+ let hasSideEffects = 0, mayLoad = 1 in
def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
"vcvtph2ps\t{$src, $dst|$dst, $src}", []>, T8PD, VEX,
Sched<[WriteCvtF2FLd]>;
@@ -8517,7 +8472,7 @@ multiclass f16c_ps2ph<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> {
"vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (Int RC:$src1, imm:$src2))]>,
TAPD, VEX, Sched<[WriteCvtF2F]>;
- let neverHasSideEffects = 1, mayStore = 1,
+ let hasSideEffects = 0, mayStore = 1,
SchedRW = [WriteCvtF2FLd, WriteRMW] in
def mr : Ii8<0x1D, MRMDestMem, (outs),
(ins x86memop:$dst, RC:$src1, i32i8imm:$src2),
@@ -8563,13 +8518,13 @@ multiclass AVX2_binop_rmi_int<bits<8> opc, string OpcodeStr,
X86MemOperand x86memop> {
let isCommutable = 1 in
def rri : AVX2AIi8<opc, MRMSrcReg, (outs RC:$dst),
- (ins RC:$src1, RC:$src2, u32u8imm:$src3),
+ (ins RC:$src1, RC:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>,
Sched<[WriteBlend]>, VEX_4V;
def rmi : AVX2AIi8<opc, MRMSrcMem, (outs RC:$dst),
- (ins RC:$src1, x86memop:$src2, u32u8imm:$src3),
+ (ins RC:$src1, x86memop:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
@@ -8578,12 +8533,10 @@ multiclass AVX2_binop_rmi_int<bits<8> opc, string OpcodeStr,
Sched<[WriteBlendLd, ReadAfterLd]>, VEX_4V;
}
-let isCommutable = 0 in {
defm VPBLENDD : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_128,
VR128, loadv2i64, i128mem>;
defm VPBLENDDY : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_256,
VR256, loadv4i64, i256mem>, VEX_L;
-}
def : Pat<(v4i32 (X86Blendi (v4i32 VR128:$src1), (v4i32 VR128:$src2),
imm:$mask)),
@@ -8675,6 +8628,27 @@ let Predicates = [HasAVX2] in {
def : Pat<(v4f64 (X86VBroadcast (v2f64 VR128:$src))),
(VBROADCASTSDYrr VR128:$src)>;
+ // Provide aliases for broadcast from the same regitser class that
+ // automatically does the extract.
+ def : Pat<(v32i8 (X86VBroadcast (v32i8 VR256:$src))),
+ (VPBROADCASTBYrr (v16i8 (EXTRACT_SUBREG (v32i8 VR256:$src),
+ sub_xmm)))>;
+ def : Pat<(v16i16 (X86VBroadcast (v16i16 VR256:$src))),
+ (VPBROADCASTWYrr (v8i16 (EXTRACT_SUBREG (v16i16 VR256:$src),
+ sub_xmm)))>;
+ def : Pat<(v8i32 (X86VBroadcast (v8i32 VR256:$src))),
+ (VPBROADCASTDYrr (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src),
+ sub_xmm)))>;
+ def : Pat<(v4i64 (X86VBroadcast (v4i64 VR256:$src))),
+ (VPBROADCASTQYrr (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src),
+ sub_xmm)))>;
+ def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256:$src))),
+ (VBROADCASTSSYrr (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src),
+ sub_xmm)))>;
+ def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256:$src))),
+ (VBROADCASTSDYrr (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src),
+ sub_xmm)))>;
+
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
let AddedComplexity = 20 in {
@@ -8756,6 +8730,9 @@ let Predicates = [HasAVX] in {
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), 1)>;
}
+
+ def : Pat<(v2f64 (X86VBroadcast f64:$src)),
+ (VMOVDDUPrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
}
//===----------------------------------------------------------------------===//
@@ -8763,14 +8740,14 @@ let Predicates = [HasAVX] in {
//
multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
- ValueType OpVT> {
+ ValueType OpVT, X86FoldableSchedWrite Sched> {
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermv VR256:$src1, VR256:$src2)))]>,
- Sched<[WriteFShuffle256]>, VEX_4V, VEX_L;
+ Sched<[Sched]>, VEX_4V, VEX_L;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr,
@@ -8778,22 +8755,22 @@ multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
[(set VR256:$dst,
(OpVT (X86VPermv VR256:$src1,
(bitconvert (mem_frag addr:$src2)))))]>,
- Sched<[WriteFShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+ Sched<[Sched.Folded, ReadAfterLd]>, VEX_4V, VEX_L;
}
-defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32>;
+defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32, WriteShuffle256>;
let ExeDomain = SSEPackedSingle in
-defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32>;
+defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32, WriteFShuffle256>;
multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
- ValueType OpVT> {
+ ValueType OpVT, X86FoldableSchedWrite Sched> {
def Yri : AVX2AIi8<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermi VR256:$src1, (i8 imm:$src2))))]>,
- Sched<[WriteShuffle256]>, VEX, VEX_L;
+ Sched<[Sched]>, VEX, VEX_L;
def Ymi : AVX2AIi8<opc, MRMSrcMem, (outs VR256:$dst),
(ins i256mem:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
@@ -8801,12 +8778,14 @@ multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
[(set VR256:$dst,
(OpVT (X86VPermi (mem_frag addr:$src1),
(i8 imm:$src2))))]>,
- Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX, VEX_L;
+ Sched<[Sched.Folded, ReadAfterLd]>, VEX, VEX_L;
}
-defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64>, VEX_W;
+defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64,
+ WriteShuffle256>, VEX_W;
let ExeDomain = SSEPackedDouble in
-defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64>, VEX_W;
+defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64,
+ WriteFShuffle256>, VEX_W;
//===----------------------------------------------------------------------===//
// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks
@@ -8847,7 +8826,7 @@ def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)),
//===----------------------------------------------------------------------===//
// VINSERTI128 - Insert packed integer values
//
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, i8imm:$src3),
"vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
@@ -8907,7 +8886,7 @@ def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst),
[(set VR128:$dst,
(int_x86_avx2_vextracti128 VR256:$src1, imm:$src2))]>,
Sched<[WriteShuffle256]>, VEX, VEX_L;
-let neverHasSideEffects = 1, mayStore = 1 in
+let hasSideEffects = 0, mayStore = 1 in
def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs),
(ins i128mem:$dst, VR256:$src1, i8imm:$src2),
"vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
@@ -8985,6 +8964,115 @@ defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq",
int_x86_avx2_maskstore_q,
int_x86_avx2_maskstore_q_256>, VEX_W;
+def: Pat<(masked_store addr:$ptr, (v8i32 VR256:$mask), (v8f32 VR256:$src)),
+ (VMASKMOVPSYmr addr:$ptr, VR256:$mask, VR256:$src)>;
+
+def: Pat<(masked_store addr:$ptr, (v8i32 VR256:$mask), (v8i32 VR256:$src)),
+ (VPMASKMOVDYmr addr:$ptr, VR256:$mask, VR256:$src)>;
+
+def: Pat<(masked_store addr:$ptr, (v4i32 VR128:$mask), (v4f32 VR128:$src)),
+ (VMASKMOVPSmr addr:$ptr, VR128:$mask, VR128:$src)>;
+
+def: Pat<(masked_store addr:$ptr, (v4i32 VR128:$mask), (v4i32 VR128:$src)),
+ (VPMASKMOVDmr addr:$ptr, VR128:$mask, VR128:$src)>;
+
+def: Pat<(v8f32 (masked_load addr:$ptr, (v8i32 VR256:$mask), undef)),
+ (VMASKMOVPSYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v8f32 (masked_load addr:$ptr, (v8i32 VR256:$mask),
+ (bc_v8f32 (v8i32 immAllZerosV)))),
+ (VMASKMOVPSYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v8f32 (masked_load addr:$ptr, (v8i32 VR256:$mask), (v8f32 VR256:$src0))),
+ (VBLENDVPSYrr VR256:$src0, (VMASKMOVPSYrm VR256:$mask, addr:$ptr),
+ VR256:$mask)>;
+
+def: Pat<(v8i32 (masked_load addr:$ptr, (v8i32 VR256:$mask), undef)),
+ (VPMASKMOVDYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v8i32 (masked_load addr:$ptr, (v8i32 VR256:$mask), (v8i32 immAllZerosV))),
+ (VPMASKMOVDYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v8i32 (masked_load addr:$ptr, (v8i32 VR256:$mask), (v8i32 VR256:$src0))),
+ (VBLENDVPSYrr VR256:$src0, (VPMASKMOVDYrm VR256:$mask, addr:$ptr),
+ VR256:$mask)>;
+
+def: Pat<(v4f32 (masked_load addr:$ptr, (v4i32 VR128:$mask), undef)),
+ (VMASKMOVPSrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v4f32 (masked_load addr:$ptr, (v4i32 VR128:$mask),
+ (bc_v4f32 (v4i32 immAllZerosV)))),
+ (VMASKMOVPSrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v4f32 (masked_load addr:$ptr, (v4i32 VR128:$mask), (v4f32 VR128:$src0))),
+ (VBLENDVPSrr VR128:$src0, (VMASKMOVPSrm VR128:$mask, addr:$ptr),
+ VR128:$mask)>;
+
+def: Pat<(v4i32 (masked_load addr:$ptr, (v4i32 VR128:$mask), undef)),
+ (VPMASKMOVDrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v4i32 (masked_load addr:$ptr, (v4i32 VR128:$mask), (v4i32 immAllZerosV))),
+ (VPMASKMOVDrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v4i32 (masked_load addr:$ptr, (v4i32 VR128:$mask), (v4i32 VR128:$src0))),
+ (VBLENDVPSrr VR128:$src0, (VPMASKMOVDrm VR128:$mask, addr:$ptr),
+ VR128:$mask)>;
+
+def: Pat<(masked_store addr:$ptr, (v4i64 VR256:$mask), (v4f64 VR256:$src)),
+ (VMASKMOVPDYmr addr:$ptr, VR256:$mask, VR256:$src)>;
+
+def: Pat<(masked_store addr:$ptr, (v4i64 VR256:$mask), (v4i64 VR256:$src)),
+ (VPMASKMOVQYmr addr:$ptr, VR256:$mask, VR256:$src)>;
+
+def: Pat<(v4f64 (masked_load addr:$ptr, (v4i64 VR256:$mask), undef)),
+ (VMASKMOVPDYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v4f64 (masked_load addr:$ptr, (v4i64 VR256:$mask),
+ (v4f64 immAllZerosV))),
+ (VMASKMOVPDYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v4f64 (masked_load addr:$ptr, (v4i64 VR256:$mask), (v4f64 VR256:$src0))),
+ (VBLENDVPDYrr VR256:$src0, (VMASKMOVPDYrm VR256:$mask, addr:$ptr),
+ VR256:$mask)>;
+
+def: Pat<(v4i64 (masked_load addr:$ptr, (v4i64 VR256:$mask), undef)),
+ (VPMASKMOVQYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v4i64 (masked_load addr:$ptr, (v4i64 VR256:$mask),
+ (bc_v4i64 (v8i32 immAllZerosV)))),
+ (VPMASKMOVQYrm VR256:$mask, addr:$ptr)>;
+
+def: Pat<(v4i64 (masked_load addr:$ptr, (v4i64 VR256:$mask), (v4i64 VR256:$src0))),
+ (VBLENDVPDYrr VR256:$src0, (VPMASKMOVQYrm VR256:$mask, addr:$ptr),
+ VR256:$mask)>;
+
+def: Pat<(masked_store addr:$ptr, (v2i64 VR128:$mask), (v2f64 VR128:$src)),
+ (VMASKMOVPDmr addr:$ptr, VR128:$mask, VR128:$src)>;
+
+def: Pat<(masked_store addr:$ptr, (v2i64 VR128:$mask), (v2i64 VR128:$src)),
+ (VPMASKMOVQmr addr:$ptr, VR128:$mask, VR128:$src)>;
+
+def: Pat<(v2f64 (masked_load addr:$ptr, (v2i64 VR128:$mask), undef)),
+ (VMASKMOVPDrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v2f64 (masked_load addr:$ptr, (v2i64 VR128:$mask),
+ (v2f64 immAllZerosV))),
+ (VMASKMOVPDrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v2f64 (masked_load addr:$ptr, (v2i64 VR128:$mask), (v2f64 VR128:$src0))),
+ (VBLENDVPDrr VR128:$src0, (VMASKMOVPDrm VR128:$mask, addr:$ptr),
+ VR128:$mask)>;
+
+def: Pat<(v2i64 (masked_load addr:$ptr, (v2i64 VR128:$mask), undef)),
+ (VPMASKMOVQrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v2i64 (masked_load addr:$ptr, (v2i64 VR128:$mask),
+ (bc_v2i64 (v4i32 immAllZerosV)))),
+ (VPMASKMOVQrm VR128:$mask, addr:$ptr)>;
+
+def: Pat<(v2i64 (masked_load addr:$ptr, (v2i64 VR128:$mask), (v2i64 VR128:$src0))),
+ (VBLENDVPDrr VR128:$src0, (VPMASKMOVQrm VR128:$mask, addr:$ptr),
+ VR128:$mask)>;
//===----------------------------------------------------------------------===//
// Variable Bit Shifts
diff --git a/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td b/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td
index d0bb523..c706d43 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td
@@ -49,6 +49,7 @@ def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst),
"shl{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))],
IIC_SR>;
+} // isConvertibleToThreeAddress = 1
// NOTE: We don't include patterns for shifts of a register by one, because
// 'add reg,reg' is cheaper (and we have a Pat pattern for shift-by-one).
@@ -62,7 +63,6 @@ def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1),
def SHL64r1 : RI<0xD1, MRM4r, (outs GR64:$dst), (ins GR64:$src1),
"shl{q}\t$dst", [], IIC_SR>;
} // hasSideEffects = 0
-} // isConvertibleToThreeAddress = 1
} // Constraints = "$src = $dst", SchedRW
@@ -289,11 +289,11 @@ def SAR16mCL : I<0xD3, MRM7m, (outs), (ins i16mem:$dst),
"sar{w}\t{%cl, $dst|$dst, cl}",
[(store (sra (loadi16 addr:$dst), CL), addr:$dst)],
IIC_SR>, OpSize16;
-def SAR32mCL : I<0xD3, MRM7m, (outs), (ins i32mem:$dst),
+def SAR32mCL : I<0xD3, MRM7m, (outs), (ins i32mem:$dst),
"sar{l}\t{%cl, $dst|$dst, cl}",
[(store (sra (loadi32 addr:$dst), CL), addr:$dst)],
IIC_SR>, OpSize32;
-def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst),
+def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst),
"sar{q}\t{%cl, $dst|$dst, cl}",
[(store (sra (loadi64 addr:$dst), CL), addr:$dst)],
IIC_SR>;
@@ -347,7 +347,7 @@ def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt),
let Uses = [CL] in
def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src1),
"rcl{b}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
-
+
def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
"rcl{w}\t$dst", [], IIC_SR>, OpSize16;
def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$cnt),
@@ -381,7 +381,7 @@ def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt),
let Uses = [CL] in
def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src1),
"rcr{b}\t{%cl, $dst|$dst, cl}", [], IIC_SR>;
-
+
def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
"rcr{w}\t$dst", [], IIC_SR>, OpSize16;
def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$cnt),
@@ -397,7 +397,7 @@ def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$cnt),
let Uses = [CL] in
def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
"rcr{l}\t{%cl, $dst|$dst, cl}", [], IIC_SR>, OpSize32;
-
+
def RCR64r1 : RI<0xD1, MRM3r, (outs GR64:$dst), (ins GR64:$src1),
"rcr{q}\t$dst", [], IIC_SR>;
def RCR64ri : RIi8<0xC1, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$cnt),
@@ -493,7 +493,7 @@ def ROL32ri : Ii8<0xC1, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"rol{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$src2)))],
IIC_SR>, OpSize32;
-def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst),
+def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst),
(ins GR64:$src1, i8imm:$src2),
"rol{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))],
@@ -600,7 +600,7 @@ def ROR32ri : Ii8<0xC1, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"ror{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$src2)))],
IIC_SR>, OpSize32;
-def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst),
+def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst),
(ins GR64:$src1, i8imm:$src2),
"ror{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))],
@@ -635,11 +635,11 @@ def ROR16mCL : I<0xD3, MRM1m, (outs), (ins i16mem:$dst),
"ror{w}\t{%cl, $dst|$dst, cl}",
[(store (rotr (loadi16 addr:$dst), CL), addr:$dst)],
IIC_SR>, OpSize16;
-def ROR32mCL : I<0xD3, MRM1m, (outs), (ins i32mem:$dst),
+def ROR32mCL : I<0xD3, MRM1m, (outs), (ins i32mem:$dst),
"ror{l}\t{%cl, $dst|$dst, cl}",
[(store (rotr (loadi32 addr:$dst), CL), addr:$dst)],
IIC_SR>, OpSize32;
-def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst),
+def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst),
"ror{q}\t{%cl, $dst|$dst, cl}",
[(store (rotr (loadi64 addr:$dst), CL), addr:$dst)],
IIC_SR>;
@@ -688,19 +688,19 @@ def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst),
let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in {
let Uses = [CL] in {
-def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst),
+def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"shld{w}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, CL))],
IIC_SHD16_REG_CL>,
TB, OpSize16;
-def SHRD16rrCL : I<0xAD, MRMDestReg, (outs GR16:$dst),
+def SHRD16rrCL : I<0xAD, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"shrd{w}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, CL))],
IIC_SHD16_REG_CL>,
TB, OpSize16;
-def SHLD32rrCL : I<0xA5, MRMDestReg, (outs GR32:$dst),
+def SHLD32rrCL : I<0xA5, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"shld{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, CL))],
@@ -710,58 +710,58 @@ def SHRD32rrCL : I<0xAD, MRMDestReg, (outs GR32:$dst),
"shrd{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, CL))],
IIC_SHD32_REG_CL>, TB, OpSize32;
-def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst),
+def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2),
"shld{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))],
- IIC_SHD64_REG_CL>,
+ IIC_SHD64_REG_CL>,
TB;
-def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst),
+def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2),
"shrd{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))],
- IIC_SHD64_REG_CL>,
+ IIC_SHD64_REG_CL>,
TB;
}
let isCommutable = 1 in { // These instructions commute to each other.
def SHLD16rri8 : Ii8<0xA4, MRMDestReg,
- (outs GR16:$dst),
+ (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2, i8imm:$src3),
"shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2,
(i8 imm:$src3)))], IIC_SHD16_REG_IM>,
TB, OpSize16;
def SHRD16rri8 : Ii8<0xAC, MRMDestReg,
- (outs GR16:$dst),
+ (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2, i8imm:$src3),
"shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2,
(i8 imm:$src3)))], IIC_SHD16_REG_IM>,
TB, OpSize16;
def SHLD32rri8 : Ii8<0xA4, MRMDestReg,
- (outs GR32:$dst),
+ (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2, i8imm:$src3),
"shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2,
(i8 imm:$src3)))], IIC_SHD32_REG_IM>,
TB, OpSize32;
def SHRD32rri8 : Ii8<0xAC, MRMDestReg,
- (outs GR32:$dst),
+ (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2, i8imm:$src3),
"shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2,
(i8 imm:$src3)))], IIC_SHD32_REG_IM>,
TB, OpSize32;
def SHLD64rri8 : RIi8<0xA4, MRMDestReg,
- (outs GR64:$dst),
+ (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2, i8imm:$src3),
"shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2,
(i8 imm:$src3)))], IIC_SHD64_REG_IM>,
TB;
def SHRD64rri8 : RIi8<0xAC, MRMDestReg,
- (outs GR64:$dst),
+ (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2, i8imm:$src3),
"shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2,
@@ -789,7 +789,7 @@ def SHRD32mrCL : I<0xAD, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"shrd{l}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(store (X86shrd (loadi32 addr:$dst), GR32:$src2, CL),
addr:$dst)], IIC_SHD32_MEM_CL>, TB, OpSize32;
-
+
def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"shld{q}\t{%cl, $src2, $dst|$dst, $src2, cl}",
[(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL),
@@ -807,7 +807,7 @@ def SHLD16mri8 : Ii8<0xA4, MRMDestMem,
(i8 imm:$src3)), addr:$dst)],
IIC_SHD16_MEM_IM>,
TB, OpSize16;
-def SHRD16mri8 : Ii8<0xAC, MRMDestMem,
+def SHRD16mri8 : Ii8<0xAC, MRMDestMem,
(outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3),
"shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi16 addr:$dst), GR16:$src2,
@@ -822,7 +822,7 @@ def SHLD32mri8 : Ii8<0xA4, MRMDestMem,
(i8 imm:$src3)), addr:$dst)],
IIC_SHD32_MEM_IM>,
TB, OpSize32;
-def SHRD32mri8 : Ii8<0xAC, MRMDestMem,
+def SHRD32mri8 : Ii8<0xAC, MRMDestMem,
(outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3),
"shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi32 addr:$dst), GR32:$src2,
@@ -837,7 +837,7 @@ def SHLD64mri8 : RIi8<0xA4, MRMDestMem,
(i8 imm:$src3)), addr:$dst)],
IIC_SHD64_MEM_IM>,
TB;
-def SHRD64mri8 : RIi8<0xAC, MRMDestMem,
+def SHRD64mri8 : RIi8<0xAC, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
"shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi64 addr:$dst), GR64:$src2,
@@ -859,7 +859,7 @@ def ROT64L2R_imm8 : SDNodeXForm<imm, [{
}]>;
multiclass bmi_rotate<string asm, RegisterClass RC, X86MemOperand x86memop> {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def ri : Ii8<0xF0, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, i8imm:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, TAXD, VEX, Sched<[WriteShift]>;
@@ -872,7 +872,7 @@ let neverHasSideEffects = 1 in {
}
multiclass bmi_shift<string asm, RegisterClass RC, X86MemOperand x86memop> {
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def rr : I<0xF7, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
VEX_4VOp3, Sched<[WriteShift]>;
diff --git a/contrib/llvm/lib/Target/X86/X86InstrSystem.td b/contrib/llvm/lib/Target/X86/X86InstrSystem.td
index 5402780..848eeeb 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrSystem.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrSystem.td
@@ -207,7 +207,7 @@ def MOV64sm : RI<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i64mem:$src),
let SchedRW = [WriteSystem] in {
def SWAPGS : I<0x01, MRM_F8, (outs), (ins), "swapgs", [], IIC_SWAPGS>, TB;
-def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"lar{w}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RM>, TB,
OpSize16;
def LAR16rr : I<0x02, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
@@ -215,14 +215,14 @@ def LAR16rr : I<0x02, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
OpSize16;
// i16mem operand in LAR32rm and GR32 operand in LAR32rr is not a typo.
-def LAR32rm : I<0x02, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
+def LAR32rm : I<0x02, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"lar{l}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RM>, TB,
OpSize32;
def LAR32rr : I<0x02, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"lar{l}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RR>, TB,
OpSize32;
// i16mem operand in LAR64rm and GR32 operand in LAR32rr is not a typo.
-def LAR64rm : RI<0x02, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
+def LAR64rm : RI<0x02, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"lar{q}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RM>, TB;
def LAR64rr : RI<0x02, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
"lar{q}\t{$src, $dst|$dst, $src}", [], IIC_LAR_RR>, TB;
@@ -240,7 +240,7 @@ def LSL32rr : I<0x03, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"lsl{l}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RR>, TB,
OpSize32;
def LSL64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
- "lsl{q}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RM>, TB;
+ "lsl{q}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RM>, TB;
def LSL64rr : RI<0x03, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"lsl{q}\t{$src, $dst|$dst, $src}", [], IIC_LSL_RR>, TB;
@@ -260,7 +260,7 @@ def LTRr : I<0x00, MRM3r, (outs), (ins GR16:$src),
"ltr{w}\t$src", [], IIC_LTR>, TB;
def LTRm : I<0x00, MRM3m, (outs), (ins i16mem:$src),
"ltr{w}\t$src", [], IIC_LTR>, TB;
-
+
def PUSHCS16 : I<0x0E, RawFrm, (outs), (ins),
"push{w}\t{%cs|cs}", [], IIC_PUSH_SR>,
OpSize16, Requires<[Not64BitMode]>;
@@ -347,31 +347,31 @@ def LDS16rm : I<0xc5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lds{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize16;
def LDS32rm : I<0xc5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lds{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize32;
-
+
def LSS16rm : I<0xb2, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lss{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize16;
def LSS32rm : I<0xb2, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lss{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize32;
def LSS64rm : RI<0xb2, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
"lss{q}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB;
-
+
def LES16rm : I<0xc4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"les{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize16;
def LES32rm : I<0xc4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"les{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, OpSize32;
-
+
def LFS16rm : I<0xb4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lfs{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize16;
def LFS32rm : I<0xb4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lfs{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize32;
def LFS64rm : RI<0xb4, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
"lfs{q}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB;
-
+
def LGS16rm : I<0xb5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lgs{w}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize16;
def LGS32rm : I<0xb5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lgs{l}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB, OpSize32;
-
+
def LGS64rm : RI<0xb5, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
"lgs{q}\t{$src, $dst|$dst, $src}", [], IIC_LXS>, TB;
@@ -408,7 +408,7 @@ def SLDT16m : I<0x00, MRM0m, (outs i16mem:$dst), (ins),
"sldt{w}\t$dst", [], IIC_SLDT>, TB;
def SLDT32r : I<0x00, MRM0r, (outs GR32:$dst), (ins),
"sldt{l}\t$dst", [], IIC_SLDT>, OpSize32, TB;
-
+
// LLDT is not interpreted specially in 64-bit mode because there is no sign
// extension.
def SLDT64r : RI<0x00, MRM0r, (outs GR64:$dst), (ins),
@@ -444,12 +444,12 @@ let Defs = [RAX, RDX], Uses = [ECX] in
def RDPMC : I<0x33, RawFrm, (outs), (ins), "rdpmc", [(X86rdpmc)], IIC_RDPMC>,
TB;
-def SMSW16r : I<0x01, MRM4r, (outs GR16:$dst), (ins),
+def SMSW16r : I<0x01, MRM4r, (outs GR16:$dst), (ins),
"smsw{w}\t$dst", [], IIC_SMSW>, OpSize16, TB;
-def SMSW32r : I<0x01, MRM4r, (outs GR32:$dst), (ins),
+def SMSW32r : I<0x01, MRM4r, (outs GR32:$dst), (ins),
"smsw{l}\t$dst", [], IIC_SMSW>, OpSize32, TB;
// no m form encodable; use SMSW16m
-def SMSW64r : RI<0x01, MRM4r, (outs GR64:$dst), (ins),
+def SMSW64r : RI<0x01, MRM4r, (outs GR64:$dst), (ins),
"smsw{q}\t$dst", [], IIC_SMSW>, TB;
// For memory operands, there is only a 16-bit form
@@ -462,11 +462,7 @@ def LMSW16m : I<0x01, MRM6m, (outs), (ins i16mem:$src),
"lmsw{w}\t$src", [], IIC_LMSW_REG>, TB;
let Defs = [EAX, EBX, ECX, EDX], Uses = [EAX, ECX] in
- def CPUID32 : I<0xA2, RawFrm, (outs), (ins), "cpuid", [], IIC_CPUID>, TB,
- Requires<[Not64BitMode]>;
-let Defs = [RAX, RBX, RCX, RDX], Uses = [RAX, RCX] in
- def CPUID64 : I<0xA2, RawFrm, (outs), (ins), "cpuid", [], IIC_CPUID>, TB,
- Requires<[In64BitMode]>;
+ def CPUID : I<0xA2, RawFrm, (outs), (ins), "cpuid", [], IIC_CPUID>, TB;
} // SchedRW
//===----------------------------------------------------------------------===//
@@ -479,10 +475,10 @@ def WBINVD : I<0x09, RawFrm, (outs), (ins), "wbinvd", [], IIC_INVD>, TB;
//===----------------------------------------------------------------------===//
// XSAVE instructions
let SchedRW = [WriteSystem] in {
-let Defs = [RDX, RAX], Uses = [RCX] in
+let Defs = [EDX, EAX], Uses = [ECX] in
def XGETBV : I<0x01, MRM_D0, (outs), (ins), "xgetbv", []>, TB;
-let Uses = [RDX, RAX, RCX] in
+let Uses = [EDX, EAX, ECX] in
def XSETBV : I<0x01, MRM_D1, (outs), (ins), "xsetbv", []>, TB;
let Uses = [RDX, RAX] in {
@@ -563,7 +559,7 @@ def INVPCID64 : I<0x82, MRMSrcMem, (outs), (ins GR64:$src1, i128mem:$src2),
//===----------------------------------------------------------------------===//
// SMAP Instruction
-let Defs = [EFLAGS], Uses = [EFLAGS] in {
+let Predicates = [HasSMAP], Defs = [EFLAGS] in {
def CLAC : I<0x01, MRM_CA, (outs), (ins), "clac", []>, TB;
def STAC : I<0x01, MRM_CB, (outs), (ins), "stac", []>, TB;
}
diff --git a/contrib/llvm/lib/Target/X86/X86InstrTSX.td b/contrib/llvm/lib/Target/X86/X86InstrTSX.td
index 4940efc..7267d75 100644
--- a/contrib/llvm/lib/Target/X86/X86InstrTSX.td
+++ b/contrib/llvm/lib/Target/X86/X86InstrTSX.td
@@ -23,9 +23,12 @@ def XBEGIN : I<0, Pseudo, (outs GR32:$dst), (ins),
"# XBEGIN", [(set GR32:$dst, (int_x86_xbegin))]>,
Requires<[HasRTM]>;
-let isBranch = 1, isTerminator = 1, Defs = [EAX] in
-def XBEGIN_4 : Ii32PCRel<0xc7, MRM_F8, (outs), (ins brtarget:$dst),
- "xbegin\t$dst", []>, Requires<[HasRTM]>;
+let isBranch = 1, isTerminator = 1, Defs = [EAX] in {
+def XBEGIN_2 : Ii16PCRel<0xc7, MRM_F8, (outs), (ins brtarget16:$dst),
+ "xbegin\t$dst", []>, OpSize16, Requires<[HasRTM]>;
+def XBEGIN_4 : Ii32PCRel<0xc7, MRM_F8, (outs), (ins brtarget32:$dst),
+ "xbegin\t$dst", []>, OpSize32, Requires<[HasRTM]>;
+}
def XEND : I<0x01, MRM_D5, (outs), (ins),
"xend", [(int_x86_xend)]>, TB, Requires<[HasRTM]>;
diff --git a/contrib/llvm/lib/Target/X86/X86IntrinsicsInfo.h b/contrib/llvm/lib/Target/X86/X86IntrinsicsInfo.h
new file mode 100644
index 0000000..7130ae2
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86IntrinsicsInfo.h
@@ -0,0 +1,547 @@
+//===-- X86IntinsicsInfo.h - X86 Instrinsics ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the details for lowering X86 intrinsics
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_X86_X86INTRINSICSINFO_H
+#define LLVM_LIB_TARGET_X86_X86INTRINSICSINFO_H
+
+namespace llvm {
+
+enum IntrinsicType {
+ INTR_NO_TYPE,
+ GATHER, SCATTER, PREFETCH, RDSEED, RDRAND, RDPMC, RDTSC, XTEST, ADX,
+ INTR_TYPE_1OP, INTR_TYPE_2OP, INTR_TYPE_3OP,
+ CMP_MASK, CMP_MASK_CC, VSHIFT, VSHIFT_MASK, COMI,
+ INTR_TYPE_1OP_MASK_RM, INTR_TYPE_2OP_MASK, FMA_OP_MASK, INTR_TYPE_SCALAR_MASK_RM,
+ COMPRESS_EXPAND_IN_REG, COMPRESS_TO_MEM, EXPAND_FROM_MEM, BLEND
+};
+
+struct IntrinsicData {
+
+ unsigned Id;
+ IntrinsicType Type;
+ unsigned Opc0;
+ unsigned Opc1;
+
+ bool operator<(const IntrinsicData &RHS) const {
+ return Id < RHS.Id;
+ }
+ bool operator==(const IntrinsicData &RHS) const {
+ return RHS.Id == Id;
+ }
+};
+
+#define X86_INTRINSIC_DATA(id, type, op0, op1) \
+ { Intrinsic::x86_##id, type, op0, op1 }
+
+/*
+ * IntrinsicsWithChain - the table should be sorted by Intrinsic ID - in
+ * the alphabetical order.
+ */
+static const IntrinsicData IntrinsicsWithChain[] = {
+ X86_INTRINSIC_DATA(addcarry_u32, ADX, X86ISD::ADC, 0),
+ X86_INTRINSIC_DATA(addcarry_u64, ADX, X86ISD::ADC, 0),
+ X86_INTRINSIC_DATA(addcarryx_u32, ADX, X86ISD::ADC, 0),
+ X86_INTRINSIC_DATA(addcarryx_u64, ADX, X86ISD::ADC, 0),
+
+ X86_INTRINSIC_DATA(avx512_gather_dpd_512, GATHER, X86::VGATHERDPDZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_dpi_512, GATHER, X86::VPGATHERDDZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_dpq_512, GATHER, X86::VPGATHERDQZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_dps_512, GATHER, X86::VGATHERDPSZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_qpd_512, GATHER, X86::VGATHERQPDZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_qpi_512, GATHER, X86::VPGATHERQDZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_qpq_512, GATHER, X86::VPGATHERQQZrm, 0),
+ X86_INTRINSIC_DATA(avx512_gather_qps_512, GATHER, X86::VGATHERQPSZrm, 0),
+
+ X86_INTRINSIC_DATA(avx512_gatherpf_dpd_512, PREFETCH,
+ X86::VGATHERPF0DPDm, X86::VGATHERPF1DPDm),
+ X86_INTRINSIC_DATA(avx512_gatherpf_dps_512, PREFETCH,
+ X86::VGATHERPF0DPSm, X86::VGATHERPF1DPSm),
+ X86_INTRINSIC_DATA(avx512_gatherpf_qpd_512, PREFETCH,
+ X86::VGATHERPF0QPDm, X86::VGATHERPF1QPDm),
+ X86_INTRINSIC_DATA(avx512_gatherpf_qps_512, PREFETCH,
+ X86::VGATHERPF0QPSm, X86::VGATHERPF1QPSm),
+
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_d_128,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_d_256,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_d_512,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_pd_128,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_pd_256,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_pd_512,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_ps_128,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_ps_256,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_ps_512,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_q_128,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_q_256,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_store_q_512,
+ COMPRESS_TO_MEM, X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_d_128,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_d_256,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_d_512,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_pd_128,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_pd_256,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_pd_512,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_ps_128,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_ps_256,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_ps_512,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_q_128,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_q_256,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_load_q_512,
+ EXPAND_FROM_MEM, X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_dpd_512, SCATTER, X86::VSCATTERDPDZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_dpi_512, SCATTER, X86::VPSCATTERDDZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_dpq_512, SCATTER, X86::VPSCATTERDQZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_dps_512, SCATTER, X86::VSCATTERDPSZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_qpd_512, SCATTER, X86::VSCATTERQPDZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_qpi_512, SCATTER, X86::VPSCATTERQDZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_qpq_512, SCATTER, X86::VPSCATTERQQZmr, 0),
+ X86_INTRINSIC_DATA(avx512_scatter_qps_512, SCATTER, X86::VSCATTERQPSZmr, 0),
+
+ X86_INTRINSIC_DATA(avx512_scatterpf_dpd_512, PREFETCH,
+ X86::VSCATTERPF0DPDm, X86::VSCATTERPF1DPDm),
+ X86_INTRINSIC_DATA(avx512_scatterpf_dps_512, PREFETCH,
+ X86::VSCATTERPF0DPSm, X86::VSCATTERPF1DPSm),
+ X86_INTRINSIC_DATA(avx512_scatterpf_qpd_512, PREFETCH,
+ X86::VSCATTERPF0QPDm, X86::VSCATTERPF1QPDm),
+ X86_INTRINSIC_DATA(avx512_scatterpf_qps_512, PREFETCH,
+ X86::VSCATTERPF0QPSm, X86::VSCATTERPF1QPSm),
+
+ X86_INTRINSIC_DATA(rdpmc, RDPMC, X86ISD::RDPMC_DAG, 0),
+ X86_INTRINSIC_DATA(rdrand_16, RDRAND, X86ISD::RDRAND, 0),
+ X86_INTRINSIC_DATA(rdrand_32, RDRAND, X86ISD::RDRAND, 0),
+ X86_INTRINSIC_DATA(rdrand_64, RDRAND, X86ISD::RDRAND, 0),
+ X86_INTRINSIC_DATA(rdseed_16, RDSEED, X86ISD::RDSEED, 0),
+ X86_INTRINSIC_DATA(rdseed_32, RDSEED, X86ISD::RDSEED, 0),
+ X86_INTRINSIC_DATA(rdseed_64, RDSEED, X86ISD::RDSEED, 0),
+ X86_INTRINSIC_DATA(rdtsc, RDTSC, X86ISD::RDTSC_DAG, 0),
+ X86_INTRINSIC_DATA(rdtscp, RDTSC, X86ISD::RDTSCP_DAG, 0),
+
+ X86_INTRINSIC_DATA(subborrow_u32, ADX, X86ISD::SBB, 0),
+ X86_INTRINSIC_DATA(subborrow_u64, ADX, X86ISD::SBB, 0),
+ X86_INTRINSIC_DATA(xtest, XTEST, X86ISD::XTEST, 0),
+};
+
+/*
+ * Find Intrinsic data by intrinsic ID
+ */
+static const IntrinsicData* getIntrinsicWithChain(unsigned IntNo) {
+
+ IntrinsicData IntrinsicToFind = {IntNo, INTR_NO_TYPE, 0, 0 };
+ const IntrinsicData *Data = std::lower_bound(std::begin(IntrinsicsWithChain),
+ std::end(IntrinsicsWithChain),
+ IntrinsicToFind);
+ if (Data != std::end(IntrinsicsWithChain) && *Data == IntrinsicToFind)
+ return Data;
+ return nullptr;
+}
+
+/*
+ * IntrinsicsWithoutChain - the table should be sorted by Intrinsic ID - in
+ * the alphabetical order.
+ */
+static const IntrinsicData IntrinsicsWithoutChain[] = {
+ X86_INTRINSIC_DATA(avx2_packssdw, INTR_TYPE_2OP, X86ISD::PACKSS, 0),
+ X86_INTRINSIC_DATA(avx2_packsswb, INTR_TYPE_2OP, X86ISD::PACKSS, 0),
+ X86_INTRINSIC_DATA(avx2_packusdw, INTR_TYPE_2OP, X86ISD::PACKUS, 0),
+ X86_INTRINSIC_DATA(avx2_packuswb, INTR_TYPE_2OP, X86ISD::PACKUS, 0),
+ X86_INTRINSIC_DATA(avx2_permd, INTR_TYPE_2OP, X86ISD::VPERMV, 0),
+ X86_INTRINSIC_DATA(avx2_permps, INTR_TYPE_2OP, X86ISD::VPERMV, 0),
+ X86_INTRINSIC_DATA(avx2_phadd_d, INTR_TYPE_2OP, X86ISD::HADD, 0),
+ X86_INTRINSIC_DATA(avx2_phadd_w, INTR_TYPE_2OP, X86ISD::HADD, 0),
+ X86_INTRINSIC_DATA(avx2_phsub_d, INTR_TYPE_2OP, X86ISD::HSUB, 0),
+ X86_INTRINSIC_DATA(avx2_phsub_w, INTR_TYPE_2OP, X86ISD::HSUB, 0),
+ X86_INTRINSIC_DATA(avx2_pmaxs_b, INTR_TYPE_2OP, X86ISD::SMAX, 0),
+ X86_INTRINSIC_DATA(avx2_pmaxs_d, INTR_TYPE_2OP, X86ISD::SMAX, 0),
+ X86_INTRINSIC_DATA(avx2_pmaxs_w, INTR_TYPE_2OP, X86ISD::SMAX, 0),
+ X86_INTRINSIC_DATA(avx2_pmaxu_b, INTR_TYPE_2OP, X86ISD::UMAX, 0),
+ X86_INTRINSIC_DATA(avx2_pmaxu_d, INTR_TYPE_2OP, X86ISD::UMAX, 0),
+ X86_INTRINSIC_DATA(avx2_pmaxu_w, INTR_TYPE_2OP, X86ISD::UMAX, 0),
+ X86_INTRINSIC_DATA(avx2_pmins_b, INTR_TYPE_2OP, X86ISD::SMIN, 0),
+ X86_INTRINSIC_DATA(avx2_pmins_d, INTR_TYPE_2OP, X86ISD::SMIN, 0),
+ X86_INTRINSIC_DATA(avx2_pmins_w, INTR_TYPE_2OP, X86ISD::SMIN, 0),
+ X86_INTRINSIC_DATA(avx2_pminu_b, INTR_TYPE_2OP, X86ISD::UMIN, 0),
+ X86_INTRINSIC_DATA(avx2_pminu_d, INTR_TYPE_2OP, X86ISD::UMIN, 0),
+ X86_INTRINSIC_DATA(avx2_pminu_w, INTR_TYPE_2OP, X86ISD::UMIN, 0),
+ X86_INTRINSIC_DATA(avx2_pmovsxbd, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovsxbq, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovsxbw, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovsxdq, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovsxwd, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovsxwq, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovzxbd, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovzxbq, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovzxbw, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovzxdq, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovzxwd, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmovzxwq, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(avx2_pmul_dq, INTR_TYPE_2OP, X86ISD::PMULDQ, 0),
+ X86_INTRINSIC_DATA(avx2_pmulh_w, INTR_TYPE_2OP, ISD::MULHS, 0),
+ X86_INTRINSIC_DATA(avx2_pmulhu_w, INTR_TYPE_2OP, ISD::MULHU, 0),
+ X86_INTRINSIC_DATA(avx2_pmulu_dq, INTR_TYPE_2OP, X86ISD::PMULUDQ, 0),
+ X86_INTRINSIC_DATA(avx2_pshuf_b, INTR_TYPE_2OP, X86ISD::PSHUFB, 0),
+ X86_INTRINSIC_DATA(avx2_psign_b, INTR_TYPE_2OP, X86ISD::PSIGN, 0),
+ X86_INTRINSIC_DATA(avx2_psign_d, INTR_TYPE_2OP, X86ISD::PSIGN, 0),
+ X86_INTRINSIC_DATA(avx2_psign_w, INTR_TYPE_2OP, X86ISD::PSIGN, 0),
+ X86_INTRINSIC_DATA(avx2_psll_d, INTR_TYPE_2OP, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(avx2_psll_q, INTR_TYPE_2OP, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(avx2_psll_w, INTR_TYPE_2OP, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(avx2_pslli_d, VSHIFT, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(avx2_pslli_q, VSHIFT, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(avx2_pslli_w, VSHIFT, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(avx2_psllv_d, INTR_TYPE_2OP, ISD::SHL, 0),
+ X86_INTRINSIC_DATA(avx2_psllv_d_256, INTR_TYPE_2OP, ISD::SHL, 0),
+ X86_INTRINSIC_DATA(avx2_psllv_q, INTR_TYPE_2OP, ISD::SHL, 0),
+ X86_INTRINSIC_DATA(avx2_psllv_q_256, INTR_TYPE_2OP, ISD::SHL, 0),
+ X86_INTRINSIC_DATA(avx2_psra_d, INTR_TYPE_2OP, X86ISD::VSRA, 0),
+ X86_INTRINSIC_DATA(avx2_psra_w, INTR_TYPE_2OP, X86ISD::VSRA, 0),
+ X86_INTRINSIC_DATA(avx2_psrai_d, VSHIFT, X86ISD::VSRAI, 0),
+ X86_INTRINSIC_DATA(avx2_psrai_w, VSHIFT, X86ISD::VSRAI, 0),
+ X86_INTRINSIC_DATA(avx2_psrav_d, INTR_TYPE_2OP, ISD::SRA, 0),
+ X86_INTRINSIC_DATA(avx2_psrav_d_256, INTR_TYPE_2OP, ISD::SRA, 0),
+ X86_INTRINSIC_DATA(avx2_psrl_d, INTR_TYPE_2OP, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(avx2_psrl_q, INTR_TYPE_2OP, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(avx2_psrl_w, INTR_TYPE_2OP, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(avx2_psrli_d, VSHIFT, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(avx2_psrli_q, VSHIFT, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(avx2_psrli_w, VSHIFT, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(avx2_psrlv_d, INTR_TYPE_2OP, ISD::SRL, 0),
+ X86_INTRINSIC_DATA(avx2_psrlv_d_256, INTR_TYPE_2OP, ISD::SRL, 0),
+ X86_INTRINSIC_DATA(avx2_psrlv_q, INTR_TYPE_2OP, ISD::SRL, 0),
+ X86_INTRINSIC_DATA(avx2_psrlv_q_256, INTR_TYPE_2OP, ISD::SRL, 0),
+ X86_INTRINSIC_DATA(avx2_psubus_b, INTR_TYPE_2OP, X86ISD::SUBUS, 0),
+ X86_INTRINSIC_DATA(avx2_psubus_w, INTR_TYPE_2OP, X86ISD::SUBUS, 0),
+ X86_INTRINSIC_DATA(avx2_vperm2i128, INTR_TYPE_3OP, X86ISD::VPERM2X128, 0),
+ X86_INTRINSIC_DATA(avx512_exp2_pd, INTR_TYPE_1OP_MASK_RM,X86ISD::EXP2, 0),
+ X86_INTRINSIC_DATA(avx512_exp2_ps, INTR_TYPE_1OP_MASK_RM,X86ISD::EXP2, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_b_128, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_b_256, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_b_512, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_d_128, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_d_256, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_d_512, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_pd_128, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_pd_256, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_pd_512, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_ps_128, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_ps_256, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_ps_512, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_q_128, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_q_256, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_q_512, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_w_128, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_w_256, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_blend_w_512, BLEND, X86ISD::SELECT, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_b_128, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_b_256, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_b_512, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_d_128, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_d_256, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_d_512, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_q_128, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_q_256, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_q_512, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_w_128, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_w_256, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_cmp_w_512, CMP_MASK_CC, X86ISD::CMPM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_d_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_d_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_d_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_pd_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_pd_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_pd_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_ps_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_ps_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_ps_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_q_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_q_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+ X86_INTRINSIC_DATA(avx512_mask_compress_q_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::COMPRESS, 0),
+
+ X86_INTRINSIC_DATA(avx512_mask_expand_d_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_d_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_d_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_pd_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_pd_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_pd_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_ps_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_ps_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_ps_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_q_128, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_q_256, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_expand_q_512, COMPRESS_EXPAND_IN_REG,
+ X86ISD::EXPAND, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_b_128, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_b_256, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_b_512, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_d_128, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_d_256, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_d_512, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_q_128, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_q_256, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_q_512, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_w_128, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_w_256, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpeq_w_512, CMP_MASK, X86ISD::PCMPEQM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_b_128, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_b_256, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_b_512, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_d_128, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_d_256, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_d_512, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_q_128, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_q_256, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_q_512, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_w_128, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_w_256, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pcmpgt_w_512, CMP_MASK, X86ISD::PCMPGTM, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psll_d, INTR_TYPE_2OP_MASK, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psll_q, INTR_TYPE_2OP_MASK, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pslli_d, VSHIFT_MASK, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(avx512_mask_pslli_q, VSHIFT_MASK, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psllv_d, INTR_TYPE_2OP_MASK, ISD::SHL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psllv_q, INTR_TYPE_2OP_MASK, ISD::SHL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psra_d, INTR_TYPE_2OP_MASK, X86ISD::VSRA, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psra_q, INTR_TYPE_2OP_MASK, X86ISD::VSRA, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrai_d, VSHIFT_MASK, X86ISD::VSRAI, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrai_q, VSHIFT_MASK, X86ISD::VSRAI, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrav_d, INTR_TYPE_2OP_MASK, ISD::SRA, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrav_q, INTR_TYPE_2OP_MASK, ISD::SRA, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrl_d, INTR_TYPE_2OP_MASK, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrl_q, INTR_TYPE_2OP_MASK, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrli_d, VSHIFT_MASK, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrli_q, VSHIFT_MASK, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrlv_d, INTR_TYPE_2OP_MASK, ISD::SRL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_psrlv_q, INTR_TYPE_2OP_MASK, ISD::SRL, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_b_128, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_b_256, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_b_512, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_d_128, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_d_256, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_d_512, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_q_128, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_q_256, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_q_512, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_w_128, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_w_256, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_mask_ucmp_w_512, CMP_MASK_CC, X86ISD::CMPMU, 0),
+ X86_INTRINSIC_DATA(avx512_rcp28_pd, INTR_TYPE_1OP_MASK_RM,X86ISD::RCP28, 0),
+ X86_INTRINSIC_DATA(avx512_rcp28_ps, INTR_TYPE_1OP_MASK_RM,X86ISD::RCP28, 0),
+ X86_INTRINSIC_DATA(avx512_rcp28_sd, INTR_TYPE_SCALAR_MASK_RM,X86ISD::RCP28, 0),
+ X86_INTRINSIC_DATA(avx512_rcp28_ss, INTR_TYPE_SCALAR_MASK_RM,X86ISD::RCP28, 0),
+ X86_INTRINSIC_DATA(avx512_rsqrt28_pd, INTR_TYPE_1OP_MASK_RM,X86ISD::RSQRT28, 0),
+ X86_INTRINSIC_DATA(avx512_rsqrt28_ps, INTR_TYPE_1OP_MASK_RM,X86ISD::RSQRT28, 0),
+ X86_INTRINSIC_DATA(avx512_rsqrt28_sd, INTR_TYPE_SCALAR_MASK_RM,X86ISD::RSQRT28, 0),
+ X86_INTRINSIC_DATA(avx512_rsqrt28_ss, INTR_TYPE_SCALAR_MASK_RM,X86ISD::RSQRT28, 0),
+ X86_INTRINSIC_DATA(avx_hadd_pd_256, INTR_TYPE_2OP, X86ISD::FHADD, 0),
+ X86_INTRINSIC_DATA(avx_hadd_ps_256, INTR_TYPE_2OP, X86ISD::FHADD, 0),
+ X86_INTRINSIC_DATA(avx_hsub_pd_256, INTR_TYPE_2OP, X86ISD::FHSUB, 0),
+ X86_INTRINSIC_DATA(avx_hsub_ps_256, INTR_TYPE_2OP, X86ISD::FHSUB, 0),
+ X86_INTRINSIC_DATA(avx_max_pd_256, INTR_TYPE_2OP, X86ISD::FMAX, 0),
+ X86_INTRINSIC_DATA(avx_max_ps_256, INTR_TYPE_2OP, X86ISD::FMAX, 0),
+ X86_INTRINSIC_DATA(avx_min_pd_256, INTR_TYPE_2OP, X86ISD::FMIN, 0),
+ X86_INTRINSIC_DATA(avx_min_ps_256, INTR_TYPE_2OP, X86ISD::FMIN, 0),
+ X86_INTRINSIC_DATA(avx_sqrt_pd_256, INTR_TYPE_1OP, ISD::FSQRT, 0),
+ X86_INTRINSIC_DATA(avx_sqrt_ps_256, INTR_TYPE_1OP, ISD::FSQRT, 0),
+ X86_INTRINSIC_DATA(avx_vperm2f128_pd_256, INTR_TYPE_3OP, X86ISD::VPERM2X128, 0),
+ X86_INTRINSIC_DATA(avx_vperm2f128_ps_256, INTR_TYPE_3OP, X86ISD::VPERM2X128, 0),
+ X86_INTRINSIC_DATA(avx_vperm2f128_si_256, INTR_TYPE_3OP, X86ISD::VPERM2X128, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmadd_pd_128, FMA_OP_MASK, X86ISD::FMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmadd_pd_256, FMA_OP_MASK, X86ISD::FMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmadd_ps_128, FMA_OP_MASK, X86ISD::FMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmadd_ps_256, FMA_OP_MASK, X86ISD::FMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmaddsub_pd_128, FMA_OP_MASK, X86ISD::FMADDSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmaddsub_pd_256, FMA_OP_MASK, X86ISD::FMADDSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmaddsub_ps_128, FMA_OP_MASK, X86ISD::FMADDSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmaddsub_ps_256, FMA_OP_MASK, X86ISD::FMADDSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsub_pd_128, FMA_OP_MASK, X86ISD::FMSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsub_pd_256, FMA_OP_MASK, X86ISD::FMSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsub_ps_128, FMA_OP_MASK, X86ISD::FMSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsub_ps_256, FMA_OP_MASK, X86ISD::FMSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsubadd_pd_128, FMA_OP_MASK, X86ISD::FMSUBADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsubadd_pd_256, FMA_OP_MASK, X86ISD::FMSUBADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsubadd_ps_128, FMA_OP_MASK, X86ISD::FMSUBADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfmsubadd_ps_256, FMA_OP_MASK, X86ISD::FMSUBADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmadd_pd_128, FMA_OP_MASK, X86ISD::FNMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmadd_pd_256, FMA_OP_MASK, X86ISD::FNMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmadd_ps_128, FMA_OP_MASK, X86ISD::FNMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmadd_ps_256, FMA_OP_MASK, X86ISD::FNMADD, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmsub_pd_128, FMA_OP_MASK, X86ISD::FNMSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmsub_pd_256, FMA_OP_MASK, X86ISD::FNMSUB, 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmsub_ps_128, FMA_OP_MASK, X86ISD::FNMSUB , 0),
+ X86_INTRINSIC_DATA(fma_mask_vfnmsub_ps_256, FMA_OP_MASK, X86ISD::FNMSUB, 0),
+ X86_INTRINSIC_DATA(sse2_comieq_sd, COMI, X86ISD::COMI, ISD::SETEQ),
+ X86_INTRINSIC_DATA(sse2_comige_sd, COMI, X86ISD::COMI, ISD::SETGE),
+ X86_INTRINSIC_DATA(sse2_comigt_sd, COMI, X86ISD::COMI, ISD::SETGT),
+ X86_INTRINSIC_DATA(sse2_comile_sd, COMI, X86ISD::COMI, ISD::SETLE),
+ X86_INTRINSIC_DATA(sse2_comilt_sd, COMI, X86ISD::COMI, ISD::SETLT),
+ X86_INTRINSIC_DATA(sse2_comineq_sd, COMI, X86ISD::COMI, ISD::SETNE),
+ X86_INTRINSIC_DATA(sse2_max_pd, INTR_TYPE_2OP, X86ISD::FMAX, 0),
+ X86_INTRINSIC_DATA(sse2_min_pd, INTR_TYPE_2OP, X86ISD::FMIN, 0),
+ X86_INTRINSIC_DATA(sse2_packssdw_128, INTR_TYPE_2OP, X86ISD::PACKSS, 0),
+ X86_INTRINSIC_DATA(sse2_packsswb_128, INTR_TYPE_2OP, X86ISD::PACKSS, 0),
+ X86_INTRINSIC_DATA(sse2_packuswb_128, INTR_TYPE_2OP, X86ISD::PACKUS, 0),
+ X86_INTRINSIC_DATA(sse2_pmaxs_w, INTR_TYPE_2OP, X86ISD::SMAX, 0),
+ X86_INTRINSIC_DATA(sse2_pmaxu_b, INTR_TYPE_2OP, X86ISD::UMAX, 0),
+ X86_INTRINSIC_DATA(sse2_pmins_w, INTR_TYPE_2OP, X86ISD::SMIN, 0),
+ X86_INTRINSIC_DATA(sse2_pminu_b, INTR_TYPE_2OP, X86ISD::UMIN, 0),
+ X86_INTRINSIC_DATA(sse2_pmulh_w, INTR_TYPE_2OP, ISD::MULHS, 0),
+ X86_INTRINSIC_DATA(sse2_pmulhu_w, INTR_TYPE_2OP, ISD::MULHU, 0),
+ X86_INTRINSIC_DATA(sse2_pmulu_dq, INTR_TYPE_2OP, X86ISD::PMULUDQ, 0),
+ X86_INTRINSIC_DATA(sse2_pshuf_d, INTR_TYPE_2OP, X86ISD::PSHUFD, 0),
+ X86_INTRINSIC_DATA(sse2_pshufh_w, INTR_TYPE_2OP, X86ISD::PSHUFHW, 0),
+ X86_INTRINSIC_DATA(sse2_pshufl_w, INTR_TYPE_2OP, X86ISD::PSHUFLW, 0),
+ X86_INTRINSIC_DATA(sse2_psll_d, INTR_TYPE_2OP, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(sse2_psll_q, INTR_TYPE_2OP, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(sse2_psll_w, INTR_TYPE_2OP, X86ISD::VSHL, 0),
+ X86_INTRINSIC_DATA(sse2_pslli_d, VSHIFT, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(sse2_pslli_q, VSHIFT, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(sse2_pslli_w, VSHIFT, X86ISD::VSHLI, 0),
+ X86_INTRINSIC_DATA(sse2_psra_d, INTR_TYPE_2OP, X86ISD::VSRA, 0),
+ X86_INTRINSIC_DATA(sse2_psra_w, INTR_TYPE_2OP, X86ISD::VSRA, 0),
+ X86_INTRINSIC_DATA(sse2_psrai_d, VSHIFT, X86ISD::VSRAI, 0),
+ X86_INTRINSIC_DATA(sse2_psrai_w, VSHIFT, X86ISD::VSRAI, 0),
+ X86_INTRINSIC_DATA(sse2_psrl_d, INTR_TYPE_2OP, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(sse2_psrl_q, INTR_TYPE_2OP, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(sse2_psrl_w, INTR_TYPE_2OP, X86ISD::VSRL, 0),
+ X86_INTRINSIC_DATA(sse2_psrli_d, VSHIFT, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(sse2_psrli_q, VSHIFT, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(sse2_psrli_w, VSHIFT, X86ISD::VSRLI, 0),
+ X86_INTRINSIC_DATA(sse2_psubus_b, INTR_TYPE_2OP, X86ISD::SUBUS, 0),
+ X86_INTRINSIC_DATA(sse2_psubus_w, INTR_TYPE_2OP, X86ISD::SUBUS, 0),
+ X86_INTRINSIC_DATA(sse2_sqrt_pd, INTR_TYPE_1OP, ISD::FSQRT, 0),
+ X86_INTRINSIC_DATA(sse2_ucomieq_sd, COMI, X86ISD::UCOMI, ISD::SETEQ),
+ X86_INTRINSIC_DATA(sse2_ucomige_sd, COMI, X86ISD::UCOMI, ISD::SETGE),
+ X86_INTRINSIC_DATA(sse2_ucomigt_sd, COMI, X86ISD::UCOMI, ISD::SETGT),
+ X86_INTRINSIC_DATA(sse2_ucomile_sd, COMI, X86ISD::UCOMI, ISD::SETLE),
+ X86_INTRINSIC_DATA(sse2_ucomilt_sd, COMI, X86ISD::UCOMI, ISD::SETLT),
+ X86_INTRINSIC_DATA(sse2_ucomineq_sd, COMI, X86ISD::UCOMI, ISD::SETNE),
+ X86_INTRINSIC_DATA(sse3_hadd_pd, INTR_TYPE_2OP, X86ISD::FHADD, 0),
+ X86_INTRINSIC_DATA(sse3_hadd_ps, INTR_TYPE_2OP, X86ISD::FHADD, 0),
+ X86_INTRINSIC_DATA(sse3_hsub_pd, INTR_TYPE_2OP, X86ISD::FHSUB, 0),
+ X86_INTRINSIC_DATA(sse3_hsub_ps, INTR_TYPE_2OP, X86ISD::FHSUB, 0),
+ X86_INTRINSIC_DATA(sse41_insertps, INTR_TYPE_3OP, X86ISD::INSERTPS, 0),
+ X86_INTRINSIC_DATA(sse41_packusdw, INTR_TYPE_2OP, X86ISD::PACKUS, 0),
+ X86_INTRINSIC_DATA(sse41_pmaxsb, INTR_TYPE_2OP, X86ISD::SMAX, 0),
+ X86_INTRINSIC_DATA(sse41_pmaxsd, INTR_TYPE_2OP, X86ISD::SMAX, 0),
+ X86_INTRINSIC_DATA(sse41_pmaxud, INTR_TYPE_2OP, X86ISD::UMAX, 0),
+ X86_INTRINSIC_DATA(sse41_pmaxuw, INTR_TYPE_2OP, X86ISD::UMAX, 0),
+ X86_INTRINSIC_DATA(sse41_pminsb, INTR_TYPE_2OP, X86ISD::SMIN, 0),
+ X86_INTRINSIC_DATA(sse41_pminsd, INTR_TYPE_2OP, X86ISD::SMIN, 0),
+ X86_INTRINSIC_DATA(sse41_pminud, INTR_TYPE_2OP, X86ISD::UMIN, 0),
+ X86_INTRINSIC_DATA(sse41_pminuw, INTR_TYPE_2OP, X86ISD::UMIN, 0),
+ X86_INTRINSIC_DATA(sse41_pmovsxbd, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovsxbq, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovsxbw, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovsxdq, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovsxwd, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovsxwq, INTR_TYPE_1OP, X86ISD::VSEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovzxbd, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovzxbq, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovzxbw, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovzxdq, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovzxwd, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmovzxwq, INTR_TYPE_1OP, X86ISD::VZEXT, 0),
+ X86_INTRINSIC_DATA(sse41_pmuldq, INTR_TYPE_2OP, X86ISD::PMULDQ, 0),
+ X86_INTRINSIC_DATA(sse_comieq_ss, COMI, X86ISD::COMI, ISD::SETEQ),
+ X86_INTRINSIC_DATA(sse_comige_ss, COMI, X86ISD::COMI, ISD::SETGE),
+ X86_INTRINSIC_DATA(sse_comigt_ss, COMI, X86ISD::COMI, ISD::SETGT),
+ X86_INTRINSIC_DATA(sse_comile_ss, COMI, X86ISD::COMI, ISD::SETLE),
+ X86_INTRINSIC_DATA(sse_comilt_ss, COMI, X86ISD::COMI, ISD::SETLT),
+ X86_INTRINSIC_DATA(sse_comineq_ss, COMI, X86ISD::COMI, ISD::SETNE),
+ X86_INTRINSIC_DATA(sse_max_ps, INTR_TYPE_2OP, X86ISD::FMAX, 0),
+ X86_INTRINSIC_DATA(sse_min_ps, INTR_TYPE_2OP, X86ISD::FMIN, 0),
+ X86_INTRINSIC_DATA(sse_sqrt_ps, INTR_TYPE_1OP, ISD::FSQRT, 0),
+ X86_INTRINSIC_DATA(sse_ucomieq_ss, COMI, X86ISD::UCOMI, ISD::SETEQ),
+ X86_INTRINSIC_DATA(sse_ucomige_ss, COMI, X86ISD::UCOMI, ISD::SETGE),
+ X86_INTRINSIC_DATA(sse_ucomigt_ss, COMI, X86ISD::UCOMI, ISD::SETGT),
+ X86_INTRINSIC_DATA(sse_ucomile_ss, COMI, X86ISD::UCOMI, ISD::SETLE),
+ X86_INTRINSIC_DATA(sse_ucomilt_ss, COMI, X86ISD::UCOMI, ISD::SETLT),
+ X86_INTRINSIC_DATA(sse_ucomineq_ss, COMI, X86ISD::UCOMI, ISD::SETNE),
+ X86_INTRINSIC_DATA(ssse3_phadd_d_128, INTR_TYPE_2OP, X86ISD::HADD, 0),
+ X86_INTRINSIC_DATA(ssse3_phadd_w_128, INTR_TYPE_2OP, X86ISD::HADD, 0),
+ X86_INTRINSIC_DATA(ssse3_phsub_d_128, INTR_TYPE_2OP, X86ISD::HSUB, 0),
+ X86_INTRINSIC_DATA(ssse3_phsub_w_128, INTR_TYPE_2OP, X86ISD::HSUB, 0),
+ X86_INTRINSIC_DATA(ssse3_pshuf_b_128, INTR_TYPE_2OP, X86ISD::PSHUFB, 0),
+ X86_INTRINSIC_DATA(ssse3_psign_b_128, INTR_TYPE_2OP, X86ISD::PSIGN, 0),
+ X86_INTRINSIC_DATA(ssse3_psign_d_128, INTR_TYPE_2OP, X86ISD::PSIGN, 0),
+ X86_INTRINSIC_DATA(ssse3_psign_w_128, INTR_TYPE_2OP, X86ISD::PSIGN, 0)
+};
+
+/*
+ * Retrieve data for Intrinsic without chain.
+ * Return nullptr if intrinsic is not defined in the table.
+ */
+static const IntrinsicData* getIntrinsicWithoutChain(unsigned IntNo) {
+ IntrinsicData IntrinsicToFind = { IntNo, INTR_NO_TYPE, 0, 0 };
+ const IntrinsicData *Data = std::lower_bound(std::begin(IntrinsicsWithoutChain),
+ std::end(IntrinsicsWithoutChain),
+ IntrinsicToFind);
+ if (Data != std::end(IntrinsicsWithoutChain) && *Data == IntrinsicToFind)
+ return Data;
+ return nullptr;
+}
+
+static void verifyIntrinsicTables() {
+ assert(std::is_sorted(std::begin(IntrinsicsWithoutChain),
+ std::end(IntrinsicsWithoutChain)) &&
+ std::is_sorted(std::begin(IntrinsicsWithChain),
+ std::end(IntrinsicsWithChain)) &&
+ "Intrinsic data tables should be sorted by Intrinsic ID");
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/Target/X86/X86JITInfo.cpp b/contrib/llvm/lib/Target/X86/X86JITInfo.cpp
deleted file mode 100644
index a082c4f..0000000
--- a/contrib/llvm/lib/Target/X86/X86JITInfo.cpp
+++ /dev/null
@@ -1,588 +0,0 @@
-//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the JIT interfaces for the X86 target.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86JITInfo.h"
-#include "X86Relocations.h"
-#include "X86Subtarget.h"
-#include "X86TargetMachine.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Valgrind.h"
-#include <cstdlib>
-#include <cstring>
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-// Determine the platform we're running on
-#if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)
-# define X86_64_JIT
-#elif defined(__i386__) || defined(i386) || defined(_M_IX86)
-# define X86_32_JIT
-#endif
-
-void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- unsigned char *OldByte = (unsigned char *)Old;
- *OldByte++ = 0xE9; // Emit JMP opcode.
- unsigned *OldWord = (unsigned *)OldByte;
- unsigned NewAddr = (intptr_t)New;
- unsigned OldAddr = (intptr_t)OldWord;
- *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
-
- // X86 doesn't need to invalidate the processor cache, so just invalidate
- // Valgrind's cache directly.
- sys::ValgrindDiscardTranslations(Old, 5);
-}
-
-
-/// JITCompilerFunction - This contains the address of the JIT function used to
-/// compile a function lazily.
-static TargetJITInfo::JITCompilerFn JITCompilerFunction;
-
-// Get the ASMPREFIX for the current host. This is often '_'.
-#ifndef __USER_LABEL_PREFIX__
-#define __USER_LABEL_PREFIX__
-#endif
-#define GETASMPREFIX2(X) #X
-#define GETASMPREFIX(X) GETASMPREFIX2(X)
-#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
-
-// For ELF targets, use a .size and .type directive, to let tools
-// know the extent of functions defined in assembler.
-#if defined(__ELF__)
-# define SIZE(sym) ".size " #sym ", . - " #sym "\n"
-# define TYPE_FUNCTION(sym) ".type " #sym ", @function\n"
-#else
-# define SIZE(sym)
-# define TYPE_FUNCTION(sym)
-#endif
-
-// Provide a convenient way for disabling usage of CFI directives.
-// This is needed for old/broken assemblers (for example, gas on
-// Darwin is pretty old and doesn't support these directives)
-#if defined(__APPLE__)
-# define CFI(x)
-#else
-// FIXME: Disable this until we really want to use it. Also, we will
-// need to add some workarounds for compilers, which support
-// only subset of these directives.
-# define CFI(x)
-#endif
-
-// Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional
-// callee saved registers, for the fastcc calling convention.
-extern "C" {
-#if defined(X86_64_JIT)
-# ifndef _MSC_VER
- // No need to save EAX/EDX for X86-64.
- void X86CompilationCallback(void);
- asm(
- ".text\n"
- ".align 8\n"
- ".globl " ASMPREFIX "X86CompilationCallback\n"
- TYPE_FUNCTION(X86CompilationCallback)
- ASMPREFIX "X86CompilationCallback:\n"
- CFI(".cfi_startproc\n")
- // Save RBP
- "pushq %rbp\n"
- CFI(".cfi_def_cfa_offset 16\n")
- CFI(".cfi_offset %rbp, -16\n")
- // Save RSP
- "movq %rsp, %rbp\n"
- CFI(".cfi_def_cfa_register %rbp\n")
- // Save all int arg registers
- "pushq %rdi\n"
- CFI(".cfi_rel_offset %rdi, 0\n")
- "pushq %rsi\n"
- CFI(".cfi_rel_offset %rsi, 8\n")
- "pushq %rdx\n"
- CFI(".cfi_rel_offset %rdx, 16\n")
- "pushq %rcx\n"
- CFI(".cfi_rel_offset %rcx, 24\n")
- "pushq %r8\n"
- CFI(".cfi_rel_offset %r8, 32\n")
- "pushq %r9\n"
- CFI(".cfi_rel_offset %r9, 40\n")
- // Align stack on 16-byte boundary. ESP might not be properly aligned
- // (8 byte) if this is called from an indirect stub.
- "andq $-16, %rsp\n"
- // Save all XMM arg registers
- "subq $128, %rsp\n"
- "movaps %xmm0, (%rsp)\n"
- "movaps %xmm1, 16(%rsp)\n"
- "movaps %xmm2, 32(%rsp)\n"
- "movaps %xmm3, 48(%rsp)\n"
- "movaps %xmm4, 64(%rsp)\n"
- "movaps %xmm5, 80(%rsp)\n"
- "movaps %xmm6, 96(%rsp)\n"
- "movaps %xmm7, 112(%rsp)\n"
- // JIT callee
-#if defined(_WIN64) || defined(__CYGWIN__)
- "subq $32, %rsp\n"
- "movq %rbp, %rcx\n" // Pass prev frame and return address
- "movq 8(%rbp), %rdx\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
- "addq $32, %rsp\n"
-#else
- "movq %rbp, %rdi\n" // Pass prev frame and return address
- "movq 8(%rbp), %rsi\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
-#endif
- // Restore all XMM arg registers
- "movaps 112(%rsp), %xmm7\n"
- "movaps 96(%rsp), %xmm6\n"
- "movaps 80(%rsp), %xmm5\n"
- "movaps 64(%rsp), %xmm4\n"
- "movaps 48(%rsp), %xmm3\n"
- "movaps 32(%rsp), %xmm2\n"
- "movaps 16(%rsp), %xmm1\n"
- "movaps (%rsp), %xmm0\n"
- // Restore RSP
- "movq %rbp, %rsp\n"
- CFI(".cfi_def_cfa_register %rsp\n")
- // Restore all int arg registers
- "subq $48, %rsp\n"
- CFI(".cfi_adjust_cfa_offset 48\n")
- "popq %r9\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %r9\n")
- "popq %r8\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %r8\n")
- "popq %rcx\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rcx\n")
- "popq %rdx\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rdx\n")
- "popq %rsi\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rsi\n")
- "popq %rdi\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rdi\n")
- // Restore RBP
- "popq %rbp\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rbp\n")
- "ret\n"
- CFI(".cfi_endproc\n")
- SIZE(X86CompilationCallback)
- );
-# else
- // No inline assembler support on this platform. The routine is in external
- // file.
- void X86CompilationCallback();
-
-# endif
-#elif defined (X86_32_JIT)
-# ifndef _MSC_VER
- void X86CompilationCallback(void);
- asm(
- ".text\n"
- ".align 8\n"
- ".globl " ASMPREFIX "X86CompilationCallback\n"
- TYPE_FUNCTION(X86CompilationCallback)
- ASMPREFIX "X86CompilationCallback:\n"
- CFI(".cfi_startproc\n")
- "pushl %ebp\n"
- CFI(".cfi_def_cfa_offset 8\n")
- CFI(".cfi_offset %ebp, -8\n")
- "movl %esp, %ebp\n" // Standard prologue
- CFI(".cfi_def_cfa_register %ebp\n")
- "pushl %eax\n"
- CFI(".cfi_rel_offset %eax, 0\n")
- "pushl %edx\n" // Save EAX/EDX/ECX
- CFI(".cfi_rel_offset %edx, 4\n")
- "pushl %ecx\n"
- CFI(".cfi_rel_offset %ecx, 8\n")
-# if defined(__APPLE__)
- "andl $-16, %esp\n" // Align ESP on 16-byte boundary
-# endif
- "subl $16, %esp\n"
- "movl 4(%ebp), %eax\n" // Pass prev frame and return address
- "movl %eax, 4(%esp)\n"
- "movl %ebp, (%esp)\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
- "movl %ebp, %esp\n" // Restore ESP
- CFI(".cfi_def_cfa_register %esp\n")
- "subl $12, %esp\n"
- CFI(".cfi_adjust_cfa_offset 12\n")
- "popl %ecx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ecx\n")
- "popl %edx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %edx\n")
- "popl %eax\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %eax\n")
- "popl %ebp\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ebp\n")
- "ret\n"
- CFI(".cfi_endproc\n")
- SIZE(X86CompilationCallback)
- );
-
- // Same as X86CompilationCallback but also saves XMM argument registers.
- void X86CompilationCallback_SSE(void);
- asm(
- ".text\n"
- ".align 8\n"
- ".globl " ASMPREFIX "X86CompilationCallback_SSE\n"
- TYPE_FUNCTION(X86CompilationCallback_SSE)
- ASMPREFIX "X86CompilationCallback_SSE:\n"
- CFI(".cfi_startproc\n")
- "pushl %ebp\n"
- CFI(".cfi_def_cfa_offset 8\n")
- CFI(".cfi_offset %ebp, -8\n")
- "movl %esp, %ebp\n" // Standard prologue
- CFI(".cfi_def_cfa_register %ebp\n")
- "pushl %eax\n"
- CFI(".cfi_rel_offset %eax, 0\n")
- "pushl %edx\n" // Save EAX/EDX/ECX
- CFI(".cfi_rel_offset %edx, 4\n")
- "pushl %ecx\n"
- CFI(".cfi_rel_offset %ecx, 8\n")
- "andl $-16, %esp\n" // Align ESP on 16-byte boundary
- // Save all XMM arg registers
- "subl $64, %esp\n"
- // FIXME: provide frame move information for xmm registers.
- // This can be tricky, because CFA register is ebp (unaligned)
- // and we need to produce offsets relative to it.
- "movaps %xmm0, (%esp)\n"
- "movaps %xmm1, 16(%esp)\n"
- "movaps %xmm2, 32(%esp)\n"
- "movaps %xmm3, 48(%esp)\n"
- "subl $16, %esp\n"
- "movl 4(%ebp), %eax\n" // Pass prev frame and return address
- "movl %eax, 4(%esp)\n"
- "movl %ebp, (%esp)\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
- "addl $16, %esp\n"
- "movaps 48(%esp), %xmm3\n"
- CFI(".cfi_restore %xmm3\n")
- "movaps 32(%esp), %xmm2\n"
- CFI(".cfi_restore %xmm2\n")
- "movaps 16(%esp), %xmm1\n"
- CFI(".cfi_restore %xmm1\n")
- "movaps (%esp), %xmm0\n"
- CFI(".cfi_restore %xmm0\n")
- "movl %ebp, %esp\n" // Restore ESP
- CFI(".cfi_def_cfa_register esp\n")
- "subl $12, %esp\n"
- CFI(".cfi_adjust_cfa_offset 12\n")
- "popl %ecx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ecx\n")
- "popl %edx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %edx\n")
- "popl %eax\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %eax\n")
- "popl %ebp\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ebp\n")
- "ret\n"
- CFI(".cfi_endproc\n")
- SIZE(X86CompilationCallback_SSE)
- );
-# else
- void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr);
-
- _declspec(naked) void X86CompilationCallback(void) {
- __asm {
- push ebp
- mov ebp, esp
- push eax
- push edx
- push ecx
- and esp, -16
- sub esp, 16
- mov eax, dword ptr [ebp+4]
- mov dword ptr [esp+4], eax
- mov dword ptr [esp], ebp
- call LLVMX86CompilationCallback2
- mov esp, ebp
- sub esp, 12
- pop ecx
- pop edx
- pop eax
- pop ebp
- ret
- }
- }
-
-# endif // _MSC_VER
-
-#else // Not an i386 host
- void X86CompilationCallback() {
- llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!");
- }
-#endif
-}
-
-/// This is the target-specific function invoked by the
-/// function stub when we did not know the real target of a call. This function
-/// must locate the start of the stub or call site and pass it into the JIT
-/// compiler function.
-extern "C" {
-LLVM_ATTRIBUTE_USED // Referenced from inline asm.
-LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
- intptr_t RetAddr) {
- intptr_t *RetAddrLoc = &StackPtr[1];
- // We are reading raw stack data here. Tell MemorySanitizer that it is
- // sufficiently initialized.
- __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc));
- assert(*RetAddrLoc == RetAddr &&
- "Could not find return address on the stack!");
-
- // It's a stub if there is an interrupt marker after the call.
- bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE;
-
- // The call instruction should have pushed the return value onto the stack...
-#if defined (X86_64_JIT)
- RetAddr--; // Backtrack to the reference itself...
-#else
- RetAddr -= 4; // Backtrack to the reference itself...
-#endif
-
-#if 0
- DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr
- << " ESP=" << (void*)StackPtr
- << ": Resolving call to function: "
- << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
-#endif
-
- // Sanity check to make sure this really is a call instruction.
-#if defined (X86_64_JIT)
- assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!");
- assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!");
-#else
- assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
-#endif
-
- intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr);
-
- // Rewrite the call target... so that we don't end up here every time we
- // execute the call.
-#if defined (X86_64_JIT)
- assert(isStub &&
- "X86-64 doesn't support rewriting non-stub lazy compilation calls:"
- " the call instruction varies too much.");
-#else
- *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4);
-#endif
-
- if (isStub) {
- // If this is a stub, rewrite the call into an unconditional branch
- // instruction so that two return addresses are not pushed onto the stack
- // when the requested function finally gets called. This also makes the
- // 0xCE byte (interrupt) dead, so the marker doesn't effect anything.
-#if defined (X86_64_JIT)
- // If the target address is within 32-bit range of the stub, use a
- // PC-relative branch instead of loading the actual address. (This is
- // considerably shorter than the 64-bit immediate load already there.)
- // We assume here intptr_t is 64 bits.
- intptr_t diff = NewVal-RetAddr+7;
- if (diff >= -2147483648LL && diff <= 2147483647LL) {
- *(unsigned char*)(RetAddr-0xc) = 0xE9;
- *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff;
- } else {
- *(intptr_t *)(RetAddr - 0xa) = NewVal;
- ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6));
- }
- sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd);
-#else
- ((unsigned char*)RetAddr)[-1] = 0xE9;
- sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5);
-#endif
- }
-
- // Change the return address to reexecute the call instruction...
-#if defined (X86_64_JIT)
- *RetAddrLoc -= 0xd;
-#else
- *RetAddrLoc -= 5;
-#endif
-}
-}
-
-TargetJITInfo::LazyResolverFn
-X86JITInfo::getLazyResolverFunction(JITCompilerFn F) {
- TsanIgnoreWritesBegin();
- JITCompilerFunction = F;
- TsanIgnoreWritesEnd();
-
-#if defined (X86_32_JIT) && !defined (_MSC_VER)
-#if defined(__SSE__)
- // SSE Callback should be called for SSE-enabled LLVM.
- return X86CompilationCallback_SSE;
-#else
- if (useSSE)
- return X86CompilationCallback_SSE;
-#endif
-#endif
-
- return X86CompilationCallback;
-}
-
-X86JITInfo::X86JITInfo(bool UseSSE) {
- useSSE = UseSSE;
- useGOT = 0;
- TLSOffset = nullptr;
-}
-
-void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
- JITCodeEmitter &JCE) {
-#if defined (X86_64_JIT)
- const unsigned Alignment = 8;
- uint8_t Buffer[8];
- uint8_t *Cur = Buffer;
- MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr);
- MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32));
-#else
- const unsigned Alignment = 4;
- uint8_t Buffer[4];
- uint8_t *Cur = Buffer;
- MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr);
-#endif
- return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment);
-}
-
-TargetJITInfo::StubLayout X86JITInfo::getStubLayout() {
- // The 64-bit stub contains:
- // movabs r10 <- 8-byte-target-address # 10 bytes
- // call|jmp *r10 # 3 bytes
- // The 32-bit stub contains a 5-byte call|jmp.
- // If the stub is a call to the compilation callback, an extra byte is added
- // to mark it as a stub.
- StubLayout Result = {14, 4};
- return Result;
-}
-
-void *X86JITInfo::emitFunctionStub(const Function* F, void *Target,
- JITCodeEmitter &JCE) {
- // Note, we cast to intptr_t here to silence a -pedantic warning that
- // complains about casting a function pointer to a normal pointer.
-#if defined (X86_32_JIT) && !defined (_MSC_VER)
- bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback &&
- Target != (void*)(intptr_t)X86CompilationCallback_SSE);
-#else
- bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback;
-#endif
- JCE.emitAlignment(4);
- void *Result = (void*)JCE.getCurrentPCValue();
- if (NotCC) {
-#if defined (X86_64_JIT)
- JCE.emitByte(0x49); // REX prefix
- JCE.emitByte(0xB8+2); // movabsq r10
- JCE.emitWordLE((unsigned)(intptr_t)Target);
- JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
- JCE.emitByte(0x41); // REX prefix
- JCE.emitByte(0xFF); // jmpq *r10
- JCE.emitByte(2 | (4 << 3) | (3 << 6));
-#else
- JCE.emitByte(0xE9);
- JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
-#endif
- return Result;
- }
-
-#if defined (X86_64_JIT)
- JCE.emitByte(0x49); // REX prefix
- JCE.emitByte(0xB8+2); // movabsq r10
- JCE.emitWordLE((unsigned)(intptr_t)Target);
- JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
- JCE.emitByte(0x41); // REX prefix
- JCE.emitByte(0xFF); // callq *r10
- JCE.emitByte(2 | (2 << 3) | (3 << 6));
-#else
- JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
-
- JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
-#endif
-
- // This used to use 0xCD, but that value is used by JITMemoryManager to
- // initialize the buffer with garbage, which means it may follow a
- // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929.
- JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub!
- return Result;
-}
-
-/// getPICJumpTableEntry - Returns the value of the jumptable entry for the
-/// specific basic block.
-uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) {
-#if defined(X86_64_JIT)
- return BB - Entry;
-#else
- return BB - PICBase;
-#endif
-}
-
-template<typename T> static void addUnaligned(void *Pos, T Delta) {
- T Value;
- std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos),
- sizeof(T));
- Value += Delta;
- std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value),
- sizeof(T));
-}
-
-/// relocate - Before the JIT can run a block of code that has been emitted,
-/// it must rewrite the code to contain the actual addresses of any
-/// referenced global symbols.
-void X86JITInfo::relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) {
- for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
- void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
- intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
- switch ((X86::RelocationType)MR->getRelocationType()) {
- case X86::reloc_pcrel_word: {
- // PC relative relocation, add the relocated value to the value already in
- // memory, after we adjust it for where the PC is.
- ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal();
- addUnaligned<unsigned>(RelocPos, ResultPtr);
- break;
- }
- case X86::reloc_picrel_word: {
- // PIC base relative relocation, add the relocated value to the value
- // already in memory, after we adjust it for where the PIC base is.
- ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal());
- addUnaligned<unsigned>(RelocPos, ResultPtr);
- break;
- }
- case X86::reloc_absolute_word:
- case X86::reloc_absolute_word_sext:
- // Absolute relocation, just add the relocated value to the value already
- // in memory.
- addUnaligned<unsigned>(RelocPos, ResultPtr);
- break;
- case X86::reloc_absolute_dword:
- addUnaligned<intptr_t>(RelocPos, ResultPtr);
- break;
- }
- }
-}
-
-char* X86JITInfo::allocateThreadLocalMemory(size_t size) {
-#if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER)
- TLSOffset -= size;
- return TLSOffset;
-#else
- llvm_unreachable("Cannot allocate thread local storage on this arch!");
-#endif
-}
diff --git a/contrib/llvm/lib/Target/X86/X86JITInfo.h b/contrib/llvm/lib/Target/X86/X86JITInfo.h
deleted file mode 100644
index 564343f..0000000
--- a/contrib/llvm/lib/Target/X86/X86JITInfo.h
+++ /dev/null
@@ -1,79 +0,0 @@
-//===-- X86JITInfo.h - X86 implementation of the JIT interface --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the X86 implementation of the TargetJITInfo class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef X86JITINFO_H
-#define X86JITINFO_H
-
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Target/TargetJITInfo.h"
-
-namespace llvm {
- class X86Subtarget;
-
- class X86JITInfo : public TargetJITInfo {
- uintptr_t PICBase;
- char *TLSOffset;
- bool useSSE;
- public:
- explicit X86JITInfo(bool UseSSE);
-
- /// replaceMachineCodeForFunction - Make it so that calling the function
- /// whose machine code is at OLD turns into a call to NEW, perhaps by
- /// overwriting OLD with a branch to NEW. This is used for self-modifying
- /// code.
- ///
- void replaceMachineCodeForFunction(void *Old, void *New) override;
-
- /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object
- /// to emit an indirect symbol which contains the address of the specified
- /// ptr.
- void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
- JITCodeEmitter &JCE) override;
-
- // getStubLayout - Returns the size and alignment of the largest call stub
- // on X86.
- StubLayout getStubLayout() override;
-
- /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
- /// small native function that simply calls the function at the specified
- /// address.
- void *emitFunctionStub(const Function* F, void *Target,
- JITCodeEmitter &JCE) override;
-
- /// getPICJumpTableEntry - Returns the value of the jumptable entry for the
- /// specific basic block.
- uintptr_t getPICJumpTableEntry(uintptr_t BB, uintptr_t JTBase) override;
-
- /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
- LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
-
- /// relocate - Before the JIT can run a block of code that has been emitted,
- /// it must rewrite the code to contain the actual addresses of any
- /// referenced global symbols.
- void relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) override;
-
- /// allocateThreadLocalMemory - Each target has its own way of
- /// handling thread local variables. This method returns a value only
- /// meaningful to the target.
- char* allocateThreadLocalMemory(size_t size) override;
-
- /// setPICBase / getPICBase - Getter / setter of PICBase, used to compute
- /// PIC jumptable entry.
- void setPICBase(uintptr_t Base) { PICBase = Base; }
- uintptr_t getPICBase() const { return PICBase; }
- };
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
index 2bd70a9..63ccded 100644
--- a/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
+++ b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
@@ -16,20 +16,25 @@
#include "X86RegisterInfo.h"
#include "InstPrinter/X86ATTInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
+#include "Utils/X86ShuffleDecode.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace {
@@ -58,6 +63,53 @@ private:
} // end anonymous namespace
+// Emit a minimal sequence of nops spanning NumBytes bytes.
+static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
+ const MCSubtargetInfo &STI);
+
+namespace llvm {
+ X86AsmPrinter::StackMapShadowTracker::StackMapShadowTracker(TargetMachine &TM)
+ : TM(TM), InShadow(false), RequiredShadowSize(0), CurrentShadowSize(0) {}
+
+ X86AsmPrinter::StackMapShadowTracker::~StackMapShadowTracker() {}
+
+ void
+ X86AsmPrinter::StackMapShadowTracker::startFunction(MachineFunction &MF) {
+ CodeEmitter.reset(TM.getTarget().createMCCodeEmitter(
+ *TM.getSubtargetImpl()->getInstrInfo(),
+ *TM.getSubtargetImpl()->getRegisterInfo(), *TM.getSubtargetImpl(),
+ MF.getContext()));
+ }
+
+ void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
+ const MCSubtargetInfo &STI) {
+ if (InShadow) {
+ SmallString<256> Code;
+ SmallVector<MCFixup, 4> Fixups;
+ raw_svector_ostream VecOS(Code);
+ CodeEmitter->EncodeInstruction(Inst, VecOS, Fixups, STI);
+ VecOS.flush();
+ CurrentShadowSize += Code.size();
+ if (CurrentShadowSize >= RequiredShadowSize)
+ InShadow = false; // The shadow is big enough. Stop counting.
+ }
+ }
+
+ void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
+ MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
+ if (InShadow && CurrentShadowSize < RequiredShadowSize) {
+ InShadow = false;
+ EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
+ TM.getSubtarget<X86Subtarget>().is64Bit(), STI);
+ }
+ }
+
+ void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
+ OutStreamer.EmitInstruction(Inst, getSubtargetInfo());
+ SMShadowTracker.count(Inst, getSubtargetInfo());
+ }
+} // end llvm namespace
+
X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
X86AsmPrinter &asmprinter)
: Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()),
@@ -72,7 +124,7 @@ MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
/// operand to an MCSymbol.
MCSymbol *X86MCInstLower::
GetSymbolFromOperand(const MachineOperand &MO) const {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
SmallString<128> Name;
@@ -212,7 +264,8 @@ MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
Expr = MCBinaryExpr::CreateSub(Expr,
MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
Ctx);
- if (MO.isJTI() && MAI.hasSetDirective()) {
+ if (MO.isJTI()) {
+ assert(MAI.doesSetDirectiveSuppressesReloc());
// If .set directive is supported, use it to reduce the number of
// relocations the assembler will generate for differences between
// local labels. This is only safe when the symbols are in the same
@@ -337,9 +390,8 @@ static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
Inst.addOperand(Seg);
}
-static unsigned getRetOpcode(const X86Subtarget &Subtarget)
-{
- return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
+static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
+ return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
@@ -493,6 +545,24 @@ ReSimplify:
break;
}
+ case X86::DEC16r:
+ case X86::DEC32r:
+ case X86::INC16r:
+ case X86::INC32r:
+ // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
+ if (!AsmPrinter.getSubtarget().is64Bit()) {
+ unsigned Opcode;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
+ case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
+ case X86::INC16r: Opcode = X86::INC16r_alt; break;
+ case X86::INC32r: Opcode = X86::INC32r_alt; break;
+ }
+ OutMI.setOpcode(Opcode);
+ }
+ break;
+
// These are pseudo-ops for OR to help with the OR->ADD transformation. We do
// this with an ugly goto in case the resultant OR uses EAX and needs the
// short form.
@@ -506,39 +576,41 @@ ReSimplify:
case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
- // The assembler backend wants to see branches in their small form and relax
- // them to their large form. The JIT can only handle the large form because
- // it does not do relaxation. For now, translate the large form to the
- // small one here.
- case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
- case X86::JO_4: OutMI.setOpcode(X86::JO_1); break;
- case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
- case X86::JB_4: OutMI.setOpcode(X86::JB_1); break;
- case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
- case X86::JE_4: OutMI.setOpcode(X86::JE_1); break;
- case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
- case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
- case X86::JA_4: OutMI.setOpcode(X86::JA_1); break;
- case X86::JS_4: OutMI.setOpcode(X86::JS_1); break;
- case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
- case X86::JP_4: OutMI.setOpcode(X86::JP_1); break;
- case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
- case X86::JL_4: OutMI.setOpcode(X86::JL_1); break;
- case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
- case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
- case X86::JG_4: OutMI.setOpcode(X86::JG_1); break;
-
// Atomic load and store require a separate pseudo-inst because Acquire
// implies mayStore and Release implies mayLoad; fix these to regular MOV
// instructions here
- case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
- case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
- case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
- case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
- case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
- case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
- case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
- case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
+ case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
+ case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
+ case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
+ case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
+ case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
+ case X86::RELEASE_MOV8mi: OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
+ case X86::RELEASE_MOV16mi: OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
+ case X86::RELEASE_MOV32mi: OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
+ case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
+ case X86::RELEASE_ADD8mi: OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
+ case X86::RELEASE_ADD32mi: OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
+ case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
+ case X86::RELEASE_AND8mi: OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
+ case X86::RELEASE_AND32mi: OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
+ case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
+ case X86::RELEASE_OR8mi: OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
+ case X86::RELEASE_OR32mi: OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
+ case X86::RELEASE_OR64mi32: OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
+ case X86::RELEASE_XOR8mi: OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
+ case X86::RELEASE_XOR32mi: OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
+ case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
+ case X86::RELEASE_INC8m: OutMI.setOpcode(X86::INC8m); goto ReSimplify;
+ case X86::RELEASE_INC16m: OutMI.setOpcode(X86::INC16m); goto ReSimplify;
+ case X86::RELEASE_INC32m: OutMI.setOpcode(X86::INC32m); goto ReSimplify;
+ case X86::RELEASE_INC64m: OutMI.setOpcode(X86::INC64m); goto ReSimplify;
+ case X86::RELEASE_DEC8m: OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
+ case X86::RELEASE_DEC16m: OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
+ case X86::RELEASE_DEC32m: OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
+ case X86::RELEASE_DEC64m: OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
// We don't currently select the correct instruction form for instructions
// which have a short %eax, etc. form. Handle this by custom lowering, for
@@ -548,13 +620,13 @@ ReSimplify:
// MOV64ao8, MOV64o8a
// XCHG16ar, XCHG32ar, XCHG64ar
case X86::MOV8mr_NOREX:
- case X86::MOV8mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
+ case X86::MOV8mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o32a); break;
case X86::MOV8rm_NOREX:
- case X86::MOV8rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
- case X86::MOV16mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
- case X86::MOV16rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
- case X86::MOV32mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
- case X86::MOV32rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
+ case X86::MOV8rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao32); break;
+ case X86::MOV16mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o32a); break;
+ case X86::MOV16rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao32); break;
+ case X86::MOV32mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
+ case X86::MOV32rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
case X86::ADC8ri: SimplifyShortImmForm(OutMI, X86::ADC8i8); break;
case X86::ADC16ri: SimplifyShortImmForm(OutMI, X86::ADC16i16); break;
@@ -602,10 +674,8 @@ ReSimplify:
}
}
-static void LowerTlsAddr(MCStreamer &OutStreamer,
- X86MCInstLower &MCInstLowering,
- const MachineInstr &MI,
- const MCSubtargetInfo& STI) {
+void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
+ const MachineInstr &MI) {
bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
MI.getOpcode() == X86::TLS_base_addr64;
@@ -615,7 +685,7 @@ static void LowerTlsAddr(MCStreamer &OutStreamer,
MCContext &context = OutStreamer.getContext();
if (needsPadding)
- OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
+ EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
MCSymbolRefExpr::VariantKind SRVK;
switch (MI.getOpcode()) {
@@ -662,12 +732,12 @@ static void LowerTlsAddr(MCStreamer &OutStreamer,
LEA.addOperand(MCOperand::CreateExpr(symRef)); // disp
LEA.addOperand(MCOperand::CreateReg(0)); // seg
}
- OutStreamer.EmitInstruction(LEA, STI);
+ EmitAndCountInstruction(LEA);
if (needsPadding) {
- OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
- OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
- OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX), STI);
+ EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
+ EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
+ EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
}
StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
@@ -677,9 +747,9 @@ static void LowerTlsAddr(MCStreamer &OutStreamer,
MCSymbolRefExpr::VK_PLT,
context);
- OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
- : X86::CALLpcrel32)
- .addExpr(tlsRef), STI);
+ EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
+ : X86::CALLpcrel32)
+ .addExpr(tlsRef));
}
/// \brief Emit the optimal amount of multi-byte nops on X86.
@@ -725,33 +795,82 @@ static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSu
break;
case X86::NOOPL:
case X86::NOOPW:
- OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg).addImm(ScaleVal)
- .addReg(IndexReg)
- .addImm(Displacement)
- .addReg(SegmentReg), STI);
+ OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg)
+ .addImm(ScaleVal).addReg(IndexReg)
+ .addImm(Displacement).addReg(SegmentReg), STI);
break;
}
} // while (NumBytes)
}
+static void LowerSTATEPOINT(MCStreamer &OS, StackMaps &SM,
+ const MachineInstr &MI, bool Is64Bit,
+ const TargetMachine& TM,
+ const MCSubtargetInfo& STI,
+ X86MCInstLower &MCInstLowering) {
+ assert(Is64Bit && "Statepoint currently only supports X86-64");
+
+ // Lower call target and choose correct opcode
+ const MachineOperand &call_target = StatepointOpers(&MI).getCallTarget();
+ MCOperand call_target_mcop;
+ unsigned call_opcode;
+ switch (call_target.getType()) {
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ call_target_mcop = MCInstLowering.LowerSymbolOperand(
+ call_target,
+ MCInstLowering.GetSymbolFromOperand(call_target));
+ call_opcode = X86::CALL64pcrel32;
+ // Currently, we only support relative addressing with statepoints.
+ // Otherwise, we'll need a scratch register to hold the target
+ // address. You'll fail asserts during load & relocation if this
+ // symbol is to far away. (TODO: support non-relative addressing)
+ break;
+ case MachineOperand::MO_Immediate:
+ call_target_mcop = MCOperand::CreateImm(call_target.getImm());
+ call_opcode = X86::CALL64pcrel32;
+ // Currently, we only support relative addressing with statepoints.
+ // Otherwise, we'll need a scratch register to hold the target
+ // immediate. You'll fail asserts during load & relocation if this
+ // address is to far away. (TODO: support non-relative addressing)
+ break;
+ case MachineOperand::MO_Register:
+ call_target_mcop = MCOperand::CreateReg(call_target.getReg());
+ call_opcode = X86::CALL64r;
+ break;
+ default:
+ llvm_unreachable("Unsupported operand type in statepoint call target");
+ break;
+ }
+
+ // Emit call
+ MCInst call_inst;
+ call_inst.setOpcode(call_opcode);
+ call_inst.addOperand(call_target_mcop);
+ OS.EmitInstruction(call_inst, STI);
+
+ // Record our statepoint node in the same section used by STACKMAP
+ // and PATCHPOINT
+ SM.recordStatepoint(MI);
+}
+
+
// Lower a stackmap of the form:
// <id>, <shadowBytes>, ...
-static void LowerSTACKMAP(MCStreamer &OS, StackMaps &SM,
- const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) {
- unsigned NumBytes = MI.getOperand(1).getImm();
+void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
+ SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
SM.recordStackMap(MI);
- // Emit padding.
- // FIXME: These nops ensure that the stackmap's shadow is covered by
- // instructions from the same basic block, but the nops should not be
- // necessary if instructions from the same block follow the stackmap.
- EmitNops(OS, NumBytes, Is64Bit, STI);
+ unsigned NumShadowBytes = MI.getOperand(1).getImm();
+ SMShadowTracker.reset(NumShadowBytes);
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
-static void LowerPATCHPOINT(MCStreamer &OS, StackMaps &SM,
- const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) {
- assert(Is64Bit && "Patchpoint currently only supports X86-64");
+void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI) {
+ assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
+
+ SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
+
SM.recordPatchPoint(MI);
PatchPointOpers opers(&MI);
@@ -766,22 +885,111 @@ static void LowerPATCHPOINT(MCStreamer &OS, StackMaps &SM,
EncodedBytes = 13;
else
EncodedBytes = 12;
- OS.EmitInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg)
- .addImm(CallTarget), STI);
- OS.EmitInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg), STI);
+ EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg)
+ .addImm(CallTarget));
+ EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
}
// Emit padding.
unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
- EmitNops(OS, NumBytes - EncodedBytes, Is64Bit, STI);
+ EmitNops(OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
+ getSubtargetInfo());
+}
+
+// Returns instruction preceding MBBI in MachineFunction.
+// If MBBI is the first instruction of the first basic block, returns null.
+static MachineBasicBlock::const_iterator
+PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
+ const MachineBasicBlock *MBB = MBBI->getParent();
+ while (MBBI == MBB->begin()) {
+ if (MBB == MBB->getParent()->begin())
+ return nullptr;
+ MBB = MBB->getPrevNode();
+ MBBI = MBB->end();
+ }
+ return --MBBI;
+}
+
+static const Constant *getConstantFromPool(const MachineInstr &MI,
+ const MachineOperand &Op) {
+ if (!Op.isCPI())
+ return nullptr;
+
+ ArrayRef<MachineConstantPoolEntry> Constants =
+ MI.getParent()->getParent()->getConstantPool()->getConstants();
+ const MachineConstantPoolEntry &ConstantEntry =
+ Constants[Op.getIndex()];
+
+ // Bail if this is a machine constant pool entry, we won't be able to dig out
+ // anything useful.
+ if (ConstantEntry.isMachineConstantPoolEntry())
+ return nullptr;
+
+ auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
+ assert((!C || ConstantEntry.getType() == C->getType()) &&
+ "Expected a constant of the same type!");
+ return C;
+}
+
+static std::string getShuffleComment(const MachineOperand &DstOp,
+ const MachineOperand &SrcOp,
+ ArrayRef<int> Mask) {
+ std::string Comment;
+
+ // Compute the name for a register. This is really goofy because we have
+ // multiple instruction printers that could (in theory) use different
+ // names. Fortunately most people use the ATT style (outside of Windows)
+ // and they actually agree on register naming here. Ultimately, this is
+ // a comment, and so its OK if it isn't perfect.
+ auto GetRegisterName = [](unsigned RegNum) -> StringRef {
+ return X86ATTInstPrinter::getRegisterName(RegNum);
+ };
+
+ StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
+ StringRef SrcName = SrcOp.isReg() ? GetRegisterName(SrcOp.getReg()) : "mem";
+
+ raw_string_ostream CS(Comment);
+ CS << DstName << " = ";
+ bool NeedComma = false;
+ bool InSrc = false;
+ for (int M : Mask) {
+ // Wrap up any prior entry...
+ if (M == SM_SentinelZero && InSrc) {
+ InSrc = false;
+ CS << "]";
+ }
+ if (NeedComma)
+ CS << ",";
+ else
+ NeedComma = true;
+
+ // Print this shuffle...
+ if (M == SM_SentinelZero) {
+ CS << "zero";
+ } else {
+ if (!InSrc) {
+ InSrc = true;
+ CS << SrcName << "[";
+ }
+ if (M == SM_SentinelUndef)
+ CS << "u";
+ else
+ CS << M;
+ }
+ }
+ if (InSrc)
+ CS << "]";
+ CS.flush();
+
+ return Comment;
}
void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
X86MCInstLower MCInstLowering(*MF, *this);
- const X86RegisterInfo *RI =
- static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
+ const X86RegisterInfo *RI = static_cast<const X86RegisterInfo *>(
+ TM.getSubtargetImpl()->getRegisterInfo());
switch (MI->getOpcode()) {
case TargetOpcode::DBG_VALUE:
@@ -812,7 +1020,7 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
case X86::TLS_addr64:
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
- return LowerTlsAddr(OutStreamer, MCInstLowering, *MI, getSubtargetInfo());
+ return LowerTlsAddr(MCInstLowering, *MI);
case X86::MOVPC32r: {
// This is a pseudo op for a two instruction sequence with a label, which
@@ -825,15 +1033,15 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
MCSymbol *PICBase = MF->getPICBaseSymbol();
// FIXME: We would like an efficient form for this, so we don't have to do a
// lot of extra uniquing.
- EmitToStreamer(OutStreamer, MCInstBuilder(X86::CALLpcrel32)
+ EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32)
.addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
// Emit the label.
OutStreamer.EmitLabel(PICBase);
// popl $reg
- EmitToStreamer(OutStreamer, MCInstBuilder(X86::POP32r)
- .addReg(MI->getOperand(0).getReg()));
+ EmitAndCountInstruction(MCInstBuilder(X86::POP32r)
+ .addReg(MI->getOperand(0).getReg()));
return;
}
@@ -863,29 +1071,32 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
DotExpr, OutContext);
- EmitToStreamer(OutStreamer, MCInstBuilder(X86::ADD32ri)
+ EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(DotExpr));
return;
}
+ case TargetOpcode::STATEPOINT:
+ return LowerSTATEPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), TM,
+ getSubtargetInfo(), MCInstLowering);
case TargetOpcode::STACKMAP:
- return LowerSTACKMAP(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo());
+ return LowerSTACKMAP(*MI);
case TargetOpcode::PATCHPOINT:
- return LowerPATCHPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo());
+ return LowerPATCHPOINT(*MI);
case X86::MORESTACK_RET:
- EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget)));
+ EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
return;
case X86::MORESTACK_RET_RESTORE_R10:
// Return, then restore R10.
- EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget)));
- EmitToStreamer(OutStreamer, MCInstBuilder(X86::MOV64rr)
- .addReg(X86::R10)
- .addReg(X86::RAX));
+ EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
+ EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr)
+ .addReg(X86::R10)
+ .addReg(X86::RAX));
return;
case X86::SEH_PushReg:
@@ -918,9 +1129,151 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
case X86::SEH_EndPrologue:
OutStreamer.EmitWinCFIEndProlog();
return;
+
+ case X86::SEH_Epilogue: {
+ MachineBasicBlock::const_iterator MBBI(MI);
+ // Check if preceded by a call and emit nop if so.
+ for (MBBI = PrevCrossBBInst(MBBI); MBBI; MBBI = PrevCrossBBInst(MBBI)) {
+ // Conservatively assume that pseudo instructions don't emit code and keep
+ // looking for a call. We may emit an unnecessary nop in some cases.
+ if (!MBBI->isPseudo()) {
+ if (MBBI->isCall())
+ EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
+ break;
+ }
+ }
+ return;
+ }
+
+ // Lower PSHUFB and VPERMILP normally but add a comment if we can find
+ // a constant shuffle mask. We won't be able to do this at the MC layer
+ // because the mask isn't an immediate.
+ case X86::PSHUFBrm:
+ case X86::VPSHUFBrm:
+ case X86::VPSHUFBYrm: {
+ if (!OutStreamer.isVerboseAsm())
+ break;
+ assert(MI->getNumOperands() > 5 &&
+ "We should always have at least 5 operands!");
+ const MachineOperand &DstOp = MI->getOperand(0);
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ const MachineOperand &MaskOp = MI->getOperand(5);
+
+ if (auto *C = getConstantFromPool(*MI, MaskOp)) {
+ SmallVector<int, 16> Mask;
+ DecodePSHUFBMask(C, Mask);
+ if (!Mask.empty())
+ OutStreamer.AddComment(getShuffleComment(DstOp, SrcOp, Mask));
+ }
+ break;
+ }
+ case X86::VPERMILPSrm:
+ case X86::VPERMILPDrm:
+ case X86::VPERMILPSYrm:
+ case X86::VPERMILPDYrm: {
+ if (!OutStreamer.isVerboseAsm())
+ break;
+ assert(MI->getNumOperands() > 5 &&
+ "We should always have at least 5 operands!");
+ const MachineOperand &DstOp = MI->getOperand(0);
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ const MachineOperand &MaskOp = MI->getOperand(5);
+
+ if (auto *C = getConstantFromPool(*MI, MaskOp)) {
+ SmallVector<int, 16> Mask;
+ DecodeVPERMILPMask(C, Mask);
+ if (!Mask.empty())
+ OutStreamer.AddComment(getShuffleComment(DstOp, SrcOp, Mask));
+ }
+ break;
+ }
+
+ // For loads from a constant pool to a vector register, print the constant
+ // loaded.
+ case X86::MOVAPDrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVAPDYrm:
+ case X86::MOVUPDrm:
+ case X86::VMOVUPDrm:
+ case X86::VMOVUPDYrm:
+ case X86::MOVAPSrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVAPSYrm:
+ case X86::MOVUPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVUPSYrm:
+ case X86::MOVDQArm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQAYrm:
+ case X86::MOVDQUrm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVDQUYrm:
+ if (!OutStreamer.isVerboseAsm())
+ break;
+ if (MI->getNumOperands() > 4)
+ if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
+ std::string Comment;
+ raw_string_ostream CS(Comment);
+ const MachineOperand &DstOp = MI->getOperand(0);
+ CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
+ if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
+ CS << "[";
+ for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) {
+ if (i != 0)
+ CS << ",";
+ if (CDS->getElementType()->isIntegerTy())
+ CS << CDS->getElementAsInteger(i);
+ else if (CDS->getElementType()->isFloatTy())
+ CS << CDS->getElementAsFloat(i);
+ else if (CDS->getElementType()->isDoubleTy())
+ CS << CDS->getElementAsDouble(i);
+ else
+ CS << "?";
+ }
+ CS << "]";
+ OutStreamer.AddComment(CS.str());
+ } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
+ CS << "<";
+ for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) {
+ if (i != 0)
+ CS << ",";
+ Constant *COp = CV->getOperand(i);
+ if (isa<UndefValue>(COp)) {
+ CS << "u";
+ } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
+ CS << CI->getZExtValue();
+ } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
+ SmallString<32> Str;
+ CF->getValueAPF().toString(Str);
+ CS << Str;
+ } else {
+ CS << "?";
+ }
+ }
+ CS << ">";
+ OutStreamer.AddComment(CS.str());
+ }
+ }
+ break;
}
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
- EmitToStreamer(OutStreamer, TmpInst);
+
+ // Stackmap shadows cannot include branch targets, so we can count the bytes
+ // in a call towards the shadow, but must ensure that the no thread returns
+ // in to the stackmap shadow. The only way to achieve this is if the call
+ // is at the end of the shadow.
+ if (MI->isCall()) {
+ // Count then size of the call towards the shadow
+ SMShadowTracker.count(TmpInst, getSubtargetInfo());
+ // Then flush the shadow so that we fill with nops before the call, not
+ // after it.
+ SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
+ // Then emit the call
+ OutStreamer.EmitInstruction(TmpInst, getSubtargetInfo());
+ return;
+ }
+
+ EmitAndCountInstruction(TmpInst);
}
diff --git a/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp
index 568dc22..ac2cdc8c 100644
--- a/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.cpp
@@ -8,7 +8,26 @@
//===----------------------------------------------------------------------===//
#include "X86MachineFunctionInfo.h"
+#include "X86RegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
void X86MachineFunctionInfo::anchor() { }
+
+void X86MachineFunctionInfo::setRestoreBasePointer(const MachineFunction *MF) {
+ if (!RestoreBasePointerOffset) {
+ const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
+ MF->getSubtarget().getRegisterInfo());
+ unsigned SlotSize = RegInfo->getSlotSize();
+ for (const MCPhysReg *CSR =
+ RegInfo->X86RegisterInfo::getCalleeSavedRegs(MF);
+ unsigned Reg = *CSR;
+ ++CSR)
+ {
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ RestoreBasePointerOffset -= SlotSize;
+ }
+ }
+}
+
diff --git a/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h
index 78d20ce..b23a744 100644
--- a/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/X86/X86MachineFunctionInfo.h
@@ -11,10 +11,13 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86MACHINEFUNCTIONINFO_H
-#define X86MACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_X86_X86MACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_X86_X86MACHINEFUNCTIONINFO_H
+#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include <vector>
namespace llvm {
@@ -29,6 +32,12 @@ class X86MachineFunctionInfo : public MachineFunctionInfo {
/// contains stack pointer re-alignment code which requires FP.
bool ForceFramePointer;
+ /// RestoreBasePointerOffset - Non-zero if the function has base pointer
+ /// and makes call to llvm.eh.sjlj.setjmp. When non-zero, the value is a
+ /// displacement from the frame pointer to a slot where the base pointer
+ /// is stashed.
+ signed char RestoreBasePointerOffset;
+
/// CalleeSavedFrameSize - Size of the callee-saved register portion of the
/// stack frame in bytes.
unsigned CalleeSavedFrameSize;
@@ -69,8 +78,14 @@ class X86MachineFunctionInfo : public MachineFunctionInfo {
/// NumLocalDynamics - Number of local-dynamic TLS accesses.
unsigned NumLocalDynamics;
+private:
+ /// ForwardedMustTailRegParms - A list of virtual and physical registers
+ /// that must be forwarded to every musttail call.
+ SmallVector<ForwardedRegister, 1> ForwardedMustTailRegParms;
+
public:
X86MachineFunctionInfo() : ForceFramePointer(false),
+ RestoreBasePointerOffset(0),
CalleeSavedFrameSize(0),
BytesToPopOnReturn(0),
ReturnAddrIndex(0),
@@ -86,6 +101,7 @@ public:
explicit X86MachineFunctionInfo(MachineFunction &MF)
: ForceFramePointer(false),
+ RestoreBasePointerOffset(0),
CalleeSavedFrameSize(0),
BytesToPopOnReturn(0),
ReturnAddrIndex(0),
@@ -102,6 +118,10 @@ public:
bool getForceFramePointer() const { return ForceFramePointer;}
void setForceFramePointer(bool forceFP) { ForceFramePointer = forceFP; }
+ bool getRestoreBasePointer() const { return RestoreBasePointerOffset!=0; }
+ void setRestoreBasePointer(const MachineFunction *MF);
+ int getRestoreBasePointerOffset() const {return RestoreBasePointerOffset; }
+
unsigned getCalleeSavedFrameSize() const { return CalleeSavedFrameSize; }
void setCalleeSavedFrameSize(unsigned bytes) { CalleeSavedFrameSize = bytes; }
@@ -138,6 +158,9 @@ public:
unsigned getNumLocalDynamicTLSAccesses() const { return NumLocalDynamics; }
void incNumLocalDynamicTLSAccesses() { ++NumLocalDynamics; }
+ SmallVectorImpl<ForwardedRegister> &getForwardedMustTailRegParms() {
+ return ForwardedMustTailRegParms;
+ }
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp b/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp
index 6639875..adc05b2 100644
--- a/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp
+++ b/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp
@@ -105,7 +105,7 @@ bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) {
if (!TM->getSubtarget<X86Subtarget>().padShortFunctions())
return false;
- TII = TM->getInstrInfo();
+ TII = TM->getSubtargetImpl()->getInstrInfo();
// Search through basic blocks and mark the ones that have early returns
ReturnBBs.clear();
@@ -195,7 +195,8 @@ bool PadShortFunc::cyclesUntilReturn(MachineBasicBlock *MBB,
return true;
}
- CyclesToEnd += TII->getInstrLatency(TM->getInstrItineraryData(), MI);
+ CyclesToEnd += TII->getInstrLatency(
+ TM->getSubtargetImpl()->getInstrItineraryData(), MI);
}
VisitedBBs[MBB] = VisitedBBInfo(false, CyclesToEnd);
diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp b/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp
index e8a7e84..09e651c 100644
--- a/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp
@@ -68,8 +68,10 @@ X86RegisterInfo::X86RegisterInfo(const X86Subtarget &STI)
if (Is64Bit) {
SlotSize = 8;
- StackPtr = X86::RSP;
- FramePtr = X86::RBP;
+ StackPtr = (Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64()) ?
+ X86::RSP : X86::ESP;
+ FramePtr = (Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64()) ?
+ X86::RBP : X86::EBP;
} else {
SlotSize = 4;
StackPtr = X86::ESP;
@@ -120,7 +122,7 @@ X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass*
X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{
// Don't allow super-classes of GR8_NOREX. This class is only used after
- // extrating sub_8bit_hi sub-registers. The H sub-registers cannot be copied
+ // extracting sub_8bit_hi sub-registers. The H sub-registers cannot be copied
// to the full GR8 register class in 64-bit mode, so we cannot allow the
// reigster class inflation.
//
@@ -196,7 +198,7 @@ X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
unsigned
X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
switch (RC->getID()) {
@@ -324,7 +326,7 @@ X86RegisterInfo::getNoPreservedMask() const {
BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
// Set the stack-pointer register and its aliases as reserved.
for (MCSubRegIterator I(X86::RSP, this, /*IncludeSelf=*/true); I.isValid();
@@ -441,7 +443,8 @@ bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
- unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
+ unsigned StackAlign =
+ MF.getSubtarget().getFrameLowering()->getStackAlignment();
bool requiresRealignment =
((MFI->getMaxAlignment() > StackAlign) ||
F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
@@ -456,13 +459,9 @@ bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
unsigned Reg, int &FrameIdx) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
-
- if (Reg == FramePtr && TFI->hasFP(MF)) {
- FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
- return true;
- }
- return false;
+ // Since X86 defines assignCalleeSavedSpillSlots which always return true
+ // this function neither used nor tested.
+ llvm_unreachable("Unused function on X86. Otherwise need a test case.");
}
void
@@ -473,7 +472,7 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
unsigned BasePtr;
@@ -488,6 +487,12 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
else
BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
+ // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
+ // register as source operand, semantic is the same and destination is
+ // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
+ if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
+ BasePtr = getX86SubSuperRegister(BasePtr, MVT::i64, false);
+
// This must be part of a four operand memory reference. Replace the
// FrameIndex with base register with EBP. Add an offset to the offset.
MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
@@ -526,10 +531,18 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
}
unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
return TFI->hasFP(MF) ? FramePtr : StackPtr;
}
+unsigned X86RegisterInfo::getPtrSizedFrameRegister(
+ const MachineFunction &MF) const {
+ unsigned FrameReg = getFrameRegister(MF);
+ if (Subtarget.isTarget64BitILP32())
+ FrameReg = getX86SubSuperRegister(FrameReg, MVT::i32, false);
+ return FrameReg;
+}
+
namespace llvm {
unsigned getX86SubSuperRegister(unsigned Reg, MVT::SimpleValueType VT,
bool High) {
diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.h b/contrib/llvm/lib/Target/X86/X86RegisterInfo.h
index 74efd1f..406b1fc 100644
--- a/contrib/llvm/lib/Target/X86/X86RegisterInfo.h
+++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86REGISTERINFO_H
-#define X86REGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_X86_X86REGISTERINFO_H
+#define LLVM_LIB_TARGET_X86_X86REGISTERINFO_H
#include "llvm/Target/TargetRegisterInfo.h"
@@ -122,6 +122,7 @@ public:
// Debug information queries.
unsigned getFrameRegister(const MachineFunction &MF) const override;
+ unsigned getPtrSizedFrameRegister(const MachineFunction &MF) const;
unsigned getStackRegister() const { return StackPtr; }
unsigned getBaseRegister() const { return BasePtr; }
// FIXME: Move to FrameInfok
diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.td b/contrib/llvm/lib/Target/X86/X86RegisterInfo.td
index 0da9863..30cd09a 100644
--- a/contrib/llvm/lib/Target/X86/X86RegisterInfo.td
+++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.td
@@ -166,6 +166,7 @@ def FP3 : X86Reg<"fp3", 0>;
def FP4 : X86Reg<"fp4", 0>;
def FP5 : X86Reg<"fp5", 0>;
def FP6 : X86Reg<"fp6", 0>;
+def FP7 : X86Reg<"fp7", 0>;
// XMM Registers, used by the various SSE instruction set extensions.
def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
@@ -234,22 +235,18 @@ let SubRegIndices = [sub_ymm] in {
def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124, -2, -2]>;
def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, -2, -2]>;
-class STRegister<string n, bits<16> Enc, list<Register> A> : X86Reg<n, Enc> {
- let Aliases = A;
-}
-
// Floating point stack registers. These don't map one-to-one to the FP
// pseudo registers, but we still mark them as aliasing FP registers. That
// way both kinds can be live without exceeding the stack depth. ST registers
// are only live around inline assembly.
-def ST0 : STRegister<"st(0)", 0, []>, DwarfRegNum<[33, 12, 11]>;
-def ST1 : STRegister<"st(1)", 1, [FP6]>, DwarfRegNum<[34, 13, 12]>;
-def ST2 : STRegister<"st(2)", 2, [FP5]>, DwarfRegNum<[35, 14, 13]>;
-def ST3 : STRegister<"st(3)", 3, [FP4]>, DwarfRegNum<[36, 15, 14]>;
-def ST4 : STRegister<"st(4)", 4, [FP3]>, DwarfRegNum<[37, 16, 15]>;
-def ST5 : STRegister<"st(5)", 5, [FP2]>, DwarfRegNum<[38, 17, 16]>;
-def ST6 : STRegister<"st(6)", 6, [FP1]>, DwarfRegNum<[39, 18, 17]>;
-def ST7 : STRegister<"st(7)", 7, [FP0]>, DwarfRegNum<[40, 19, 18]>;
+def ST0 : X86Reg<"st(0)", 0>, DwarfRegNum<[33, 12, 11]>;
+def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
+def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
+def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
+def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
+def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
+def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
+def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
// Floating-point status word
def FPSW : X86Reg<"fpsw", 0>;
@@ -266,14 +263,22 @@ def FS : X86Reg<"fs", 4>;
def GS : X86Reg<"gs", 5>;
// Debug registers
-def DR0 : X86Reg<"dr0", 0>;
-def DR1 : X86Reg<"dr1", 1>;
-def DR2 : X86Reg<"dr2", 2>;
-def DR3 : X86Reg<"dr3", 3>;
-def DR4 : X86Reg<"dr4", 4>;
-def DR5 : X86Reg<"dr5", 5>;
-def DR6 : X86Reg<"dr6", 6>;
-def DR7 : X86Reg<"dr7", 7>;
+def DR0 : X86Reg<"dr0", 0>;
+def DR1 : X86Reg<"dr1", 1>;
+def DR2 : X86Reg<"dr2", 2>;
+def DR3 : X86Reg<"dr3", 3>;
+def DR4 : X86Reg<"dr4", 4>;
+def DR5 : X86Reg<"dr5", 5>;
+def DR6 : X86Reg<"dr6", 6>;
+def DR7 : X86Reg<"dr7", 7>;
+def DR8 : X86Reg<"dr8", 8>;
+def DR9 : X86Reg<"dr9", 9>;
+def DR10 : X86Reg<"dr10", 10>;
+def DR11 : X86Reg<"dr11", 11>;
+def DR12 : X86Reg<"dr12", 12>;
+def DR13 : X86Reg<"dr13", 13>;
+def DR14 : X86Reg<"dr14", 14>;
+def DR15 : X86Reg<"dr15", 15>;
// Control registers
def CR0 : X86Reg<"cr0", 0>;
diff --git a/contrib/llvm/lib/Target/X86/X86Relocations.h b/contrib/llvm/lib/Target/X86/X86Relocations.h
deleted file mode 100644
index 0333056..0000000
--- a/contrib/llvm/lib/Target/X86/X86Relocations.h
+++ /dev/null
@@ -1,52 +0,0 @@
-//===-- X86Relocations.h - X86 Code Relocations -----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the X86 target-specific relocation types.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef X86RELOCATIONS_H
-#define X86RELOCATIONS_H
-
-#include "llvm/CodeGen/MachineRelocation.h"
-
-namespace llvm {
- namespace X86 {
- /// RelocationType - An enum for the x86 relocation codes. Note that
- /// the terminology here doesn't follow x86 convention - word means
- /// 32-bit and dword means 64-bit. The relocations will be treated
- /// by JIT or ObjectCode emitters, this is transparent to the x86 code
- /// emitter but JIT and ObjectCode will treat them differently
- enum RelocationType {
- /// reloc_pcrel_word - PC relative relocation, add the relocated value to
- /// the value already in memory, after we adjust it for where the PC is.
- reloc_pcrel_word = 0,
-
- /// reloc_picrel_word - PIC base relative relocation, add the relocated
- /// value to the value already in memory, after we adjust it for where the
- /// PIC base is.
- reloc_picrel_word = 1,
-
- /// reloc_absolute_word - absolute relocation, just add the relocated
- /// value to the value already in memory.
- reloc_absolute_word = 2,
-
- /// reloc_absolute_word_sext - absolute relocation, just add the relocated
- /// value to the value already in memory. In object files, it represents a
- /// value which must be sign-extended when resolving the relocation.
- reloc_absolute_word_sext = 3,
-
- /// reloc_absolute_dword - absolute relocation, just add the relocated
- /// value to the value already in memory.
- reloc_absolute_dword = 4
- };
- }
-}
-
-#endif
diff --git a/contrib/llvm/lib/Target/X86/X86SchedHaswell.td b/contrib/llvm/lib/Target/X86/X86SchedHaswell.td
index 6966d61..73a3230 100644
--- a/contrib/llvm/lib/Target/X86/X86SchedHaswell.td
+++ b/contrib/llvm/lib/Target/X86/X86SchedHaswell.td
@@ -48,13 +48,17 @@ def HWPort6 : ProcResource<1>;
def HWPort7 : ProcResource<1>;
// Many micro-ops are capable of issuing on multiple ports.
+def HWPort01 : ProcResGroup<[HWPort0, HWPort1]>;
def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
+def HWPort04 : ProcResGroup<[HWPort0, HWPort4]>;
def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
-def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
+def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
def HWPort16 : ProcResGroup<[HWPort1, HWPort6]>;
+def HWPort56 : ProcResGroup<[HWPort5, HWPort6]>;
def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
+def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
// 60 Entry Unified Scheduler
@@ -125,6 +129,7 @@ defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
+defm : HWWriteResPair<WriteFRsqrt, HWPort0, 5>;
defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
@@ -261,4 +266,1882 @@ def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteFence, [HWPort23, HWPort4]>;
def : WriteRes<WriteNop, []>;
+
+//================ Exceptions ================//
+
+//-- Specific Scheduling Models --//
+
+// Starting with P0.
+def WriteP0 : SchedWriteRes<[HWPort0]>;
+
+def WriteP0_P1_Lat4 : SchedWriteRes<[HWPort0, HWPort1]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+
+def WriteP0_P1_Lat4Ld : SchedWriteRes<[HWPort0, HWPort1, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+
+def WriteP01 : SchedWriteRes<[HWPort01]>;
+
+def Write2P01 : SchedWriteRes<[HWPort01]> {
+ let NumMicroOps = 2;
+}
+def Write3P01 : SchedWriteRes<[HWPort01]> {
+ let NumMicroOps = 3;
+}
+
+def WriteP015 : SchedWriteRes<[HWPort015]>;
+
+def WriteP01_P5 : SchedWriteRes<[HWPort01, HWPort5]> {
+ let NumMicroOps = 2;
+}
+def WriteP06 : SchedWriteRes<[HWPort06]>;
+
+def Write2P06 : SchedWriteRes<[HWPort06]> {
+ let Latency = 1;
+ let NumMicroOps = 2;
+ let ResourceCycles = [2];
+}
+
+def Write3P06_Lat2 : SchedWriteRes<[HWPort06]> {
+ let Latency = 2;
+ let NumMicroOps = 3;
+ let ResourceCycles = [3];
+}
+
+def WriteP0156_P23 : SchedWriteRes<[HWPort0156, HWPort23]> {
+ let NumMicroOps = 2;
+}
+
+def Write2P0156_P23 : SchedWriteRes<[HWPort0156, HWPort23]> {
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+
+def Write2P0156_Lat2 : SchedWriteRes<[HWPort0156]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+def Write2P0156_Lat2Ld : SchedWriteRes<[HWPort0156, HWPort23]> {
+ let Latency = 6;
+ let ResourceCycles = [2, 1];
+}
+
+def Write5P0156 : SchedWriteRes<[HWPort0156]> {
+ let NumMicroOps = 5;
+ let ResourceCycles = [5];
+}
+
+def WriteP0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
+ let Latency = 1;
+ let ResourceCycles = [1, 2, 1];
+}
+
+def Write2P0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
+ let Latency = 1;
+ let ResourceCycles = [2, 2, 1];
+}
+
+def Write3P0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
+ let Latency = 1;
+ let ResourceCycles = [3, 2, 1];
+}
+
+// Starting with P1.
+def WriteP1 : SchedWriteRes<[HWPort1]>;
+
+def WriteP1_P23 : SchedWriteRes<[HWPort1, HWPort23]> {
+ let NumMicroOps = 2;
+}
+def WriteP1_Lat3 : SchedWriteRes<[HWPort1]> {
+ let Latency = 3;
+}
+def WriteP1_Lat3Ld : SchedWriteRes<[HWPort1, HWPort23]> {
+ let Latency = 7;
+}
+
+def Write2P1 : SchedWriteRes<[HWPort1]> {
+ let NumMicroOps = 2;
+ let ResourceCycles = [2];
+}
+def Write2P1_P23 : SchedWriteRes<[HWPort1, HWPort23]> {
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def WriteP15 : SchedWriteRes<[HWPort15]>;
+def WriteP15Ld : SchedWriteRes<[HWPort15, HWPort23]> {
+ let Latency = 4;
+}
+
+def WriteP1_P5_Lat4 : SchedWriteRes<[HWPort1, HWPort5]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+
+def WriteP1_P5_Lat4Ld : SchedWriteRes<[HWPort1, HWPort5, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+
+def WriteP1_P5_Lat6 : SchedWriteRes<[HWPort1, HWPort5]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+
+def WriteP1_P5_Lat6Ld : SchedWriteRes<[HWPort1, HWPort5, HWPort23]> {
+ let Latency = 10;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+
+// Starting with P2.
+def Write2P237_P4 : SchedWriteRes<[HWPort237, HWPort4]> {
+ let Latency = 1;
+ let ResourceCycles = [2, 1];
+}
+
+// Starting with P5.
+def WriteP5 : SchedWriteRes<[HWPort5]>;
+def WriteP5Ld : SchedWriteRes<[HWPort5, HWPort23]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+
+// Notation:
+// - r: register.
+// - mm: 64 bit mmx register.
+// - x = 128 bit xmm register.
+// - (x)mm = mmx or xmm register.
+// - y = 256 bit ymm register.
+// - v = any vector register.
+// - m = memory.
+
+//=== Integer Instructions ===//
+//-- Move instructions --//
+
+// MOV.
+// r16,m.
+def : InstRW<[WriteALULd], (instregex "MOV16rm")>;
+
+// MOVSX, MOVZX.
+// r,m.
+def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;
+
+// CMOVcc.
+// r,r.
+def : InstRW<[Write2P0156_Lat2],
+ (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rr")>;
+// r,m.
+def : InstRW<[Write2P0156_Lat2Ld, ReadAfterLd],
+ (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rm")>;
+
+// XCHG.
+// r,r.
+def WriteXCHG : SchedWriteRes<[HWPort0156]> {
+ let Latency = 2;
+ let ResourceCycles = [3];
+}
+
+def : InstRW<[WriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>;
+
+// r,m.
+def WriteXCHGrm : SchedWriteRes<[]> {
+ let Latency = 21;
+ let NumMicroOps = 8;
+}
+def : InstRW<[WriteXCHGrm], (instregex "XCHG(8|16|32|64)rm")>;
+
+// XLAT.
+def WriteXLAT : SchedWriteRes<[]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteXLAT], (instregex "XLAT")>;
+
+// PUSH.
+// m.
+def : InstRW<[Write2P237_P4], (instregex "PUSH(16|32)rmm")>;
+
+// PUSHF.
+def WritePushF : SchedWriteRes<[HWPort1, HWPort4, HWPort237, HWPort06]> {
+ let NumMicroOps = 4;
+}
+def : InstRW<[WritePushF], (instregex "PUSHF(16|32)")>;
+
+// PUSHA.
+def WritePushA : SchedWriteRes<[]> {
+ let NumMicroOps = 19;
+}
+def : InstRW<[WritePushA], (instregex "PUSHA(16|32)")>;
+
+// POP.
+// m.
+def : InstRW<[Write2P237_P4], (instregex "POP(16|32)rmm")>;
+
+// POPF.
+def WritePopF : SchedWriteRes<[]> {
+ let NumMicroOps = 9;
+}
+def : InstRW<[WritePopF], (instregex "POPF(16|32)")>;
+
+// POPA.
+def WritePopA : SchedWriteRes<[]> {
+ let NumMicroOps = 18;
+}
+def : InstRW<[WritePopA], (instregex "POPA(16|32)")>;
+
+// LAHF SAHF.
+def : InstRW<[WriteP06], (instregex "(S|L)AHF")>;
+
+// BSWAP.
+// r32.
+def WriteBSwap32 : SchedWriteRes<[HWPort15]>;
+def : InstRW<[WriteBSwap32], (instregex "BSWAP32r")>;
+
+// r64.
+def WriteBSwap64 : SchedWriteRes<[HWPort06, HWPort15]> {
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteBSwap64], (instregex "BSWAP64r")>;
+
+// MOVBE.
+// r16,m16 / r64,m64.
+def : InstRW<[Write2P0156_Lat2Ld], (instregex "MOVBE(16|64)rm")>;
+
+// r32, m32.
+def WriteMoveBE32rm : SchedWriteRes<[HWPort15, HWPort23]> {
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteMoveBE32rm], (instregex "MOVBE32rm")>;
+
+// m16,r16.
+def WriteMoveBE16mr : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteMoveBE16mr], (instregex "MOVBE16mr")>;
+
+// m32,r32.
+def WriteMoveBE32mr : SchedWriteRes<[HWPort15, HWPort237, HWPort4]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteMoveBE32mr], (instregex "MOVBE32mr")>;
+
+// m64,r64.
+def WriteMoveBE64mr : SchedWriteRes<[HWPort06, HWPort15, HWPort237, HWPort4]> {
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteMoveBE64mr], (instregex "MOVBE64mr")>;
+
+//-- Arithmetic instructions --//
+
+// ADD SUB.
+// m,r/i.
+def : InstRW<[Write2P0156_2P237_P4],
+ (instregex "(ADD|SUB)(8|16|32|64)m(r|i)",
+ "(ADD|SUB)(8|16|32|64)mi8", "(ADD|SUB)64mi32")>;
+
+// ADC SBB.
+// r,r/i.
+def : InstRW<[Write2P0156_Lat2], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)",
+ "(ADC|SBB)(16|32|64)ri8",
+ "(ADC|SBB)64ri32",
+ "(ADC|SBB)(8|16|32|64)rr_REV")>;
+
+// r,m.
+def : InstRW<[Write2P0156_Lat2Ld, ReadAfterLd], (instregex "(ADC|SBB)(8|16|32|64)rm")>;
+
+// m,r/i.
+def : InstRW<[Write3P0156_2P237_P4],
+ (instregex "(ADC|SBB)(8|16|32|64)m(r|i)",
+ "(ADC|SBB)(16|32|64)mi8",
+ "(ADC|SBB)64mi32")>;
+
+// INC DEC NOT NEG.
+// m.
+def : InstRW<[WriteP0156_2P237_P4],
+ (instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m",
+ "(INC|DEC)64(16|32)m")>;
+
+// MUL IMUL.
+// r16.
+def WriteMul16 : SchedWriteRes<[HWPort1, HWPort0156]> {
+ let Latency = 4;
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteMul16], (instregex "IMUL16r", "MUL16r")>;
+
+// m16.
+def WriteMul16Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 5;
+}
+def : InstRW<[WriteMul16Ld], (instregex "IMUL16m", "MUL16m")>;
+
+// r32.
+def WriteMul32 : SchedWriteRes<[HWPort1, HWPort0156]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteMul32], (instregex "IMUL32r", "MUL32r")>;
+
+// m32.
+def WriteMul32Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteMul32Ld], (instregex "IMUL32m", "MUL32m")>;
+
+// r64.
+def WriteMul64 : SchedWriteRes<[HWPort1, HWPort6]> {
+ let Latency = 3;
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteMul64], (instregex "IMUL64r", "MUL64r")>;
+
+// m64.
+def WriteMul64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteMul64Ld], (instregex "IMUL64m", "MUL64m")>;
+
+// r16,r16.
+def WriteMul16rri : SchedWriteRes<[HWPort1, HWPort0156]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteMul16rri], (instregex "IMUL16rri", "IMUL16rri8")>;
+
+// r16,m16.
+def WriteMul16rmi : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteMul16rmi], (instregex "IMUL16rmi", "IMUL16rmi8")>;
+
+// MULX.
+// r32,r32,r32.
+def WriteMulX32 : SchedWriteRes<[HWPort1, HWPort056]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 2];
+}
+def : InstRW<[WriteMulX32], (instregex "MULX32rr")>;
+
+// r32,r32,m32.
+def WriteMulX32Ld : SchedWriteRes<[HWPort1, HWPort056, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 2, 1];
+}
+def : InstRW<[WriteMulX32Ld], (instregex "MULX32rm")>;
+
+// r64,r64,r64.
+def WriteMulX64 : SchedWriteRes<[HWPort1, HWPort6]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteMulX64], (instregex "MULX64rr")>;
+
+// r64,r64,m64.
+def WriteMulX64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> {
+ let Latency = 8;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteMulX64Ld], (instregex "MULX64rm")>;
+
+// DIV.
+// r8.
+def WriteDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 22;
+ let NumMicroOps = 9;
+}
+def : InstRW<[WriteDiv8], (instregex "DIV8r")>;
+
+// r16.
+def WriteDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 23;
+ let NumMicroOps = 10;
+}
+def : InstRW<[WriteDiv16], (instregex "DIV16r")>;
+
+// r32.
+def WriteDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 22;
+ let NumMicroOps = 10;
+}
+def : InstRW<[WriteDiv32], (instregex "DIV32r")>;
+
+// r64.
+def WriteDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 32;
+ let NumMicroOps = 36;
+}
+def : InstRW<[WriteDiv64], (instregex "DIV64r")>;
+
+// IDIV.
+// r8.
+def WriteIDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 23;
+ let NumMicroOps = 9;
+}
+def : InstRW<[WriteIDiv8], (instregex "IDIV8r")>;
+
+// r16.
+def WriteIDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 23;
+ let NumMicroOps = 10;
+}
+def : InstRW<[WriteIDiv16], (instregex "IDIV16r")>;
+
+// r32.
+def WriteIDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 22;
+ let NumMicroOps = 9;
+}
+def : InstRW<[WriteIDiv32], (instregex "IDIV32r")>;
+
+// r64.
+def WriteIDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
+ let Latency = 39;
+ let NumMicroOps = 59;
+}
+def : InstRW<[WriteIDiv64], (instregex "IDIV64r")>;
+
+//-- Logic instructions --//
+
+// AND OR XOR.
+// m,r/i.
+def : InstRW<[Write2P0156_2P237_P4],
+ (instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)",
+ "(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>;
+
+// SHR SHL SAR.
+// m,i.
+def WriteShiftRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteShiftRMW], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>;
+
+// r,cl.
+def : InstRW<[Write3P06_Lat2], (instregex "S(A|H)(R|L)(8|16|32|64)rCL")>;
+
+// m,cl.
+def WriteShiftClLdRMW : SchedWriteRes<[HWPort06, HWPort23, HWPort4]> {
+ let NumMicroOps = 6;
+ let ResourceCycles = [3, 2, 1];
+}
+def : InstRW<[WriteShiftClLdRMW], (instregex "S(A|H)(R|L)(8|16|32|64)mCL")>;
+
+// ROR ROL.
+// r,1.
+def : InstRW<[Write2P06], (instregex "RO(R|L)(8|16|32|64)r1")>;
+
+// m,i.
+def WriteRotateRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
+ let NumMicroOps = 5;
+ let ResourceCycles = [2, 2, 1];
+}
+def : InstRW<[WriteRotateRMW], (instregex "RO(R|L)(8|16|32|64)mi")>;
+
+// r,cl.
+def : InstRW<[Write3P06_Lat2], (instregex "RO(R|L)(8|16|32|64)rCL")>;
+
+// m,cl.
+def WriteRotateRMWCL : SchedWriteRes<[]> {
+ let NumMicroOps = 6;
+}
+def : InstRW<[WriteRotateRMWCL], (instregex "RO(R|L)(8|16|32|64)mCL")>;
+
+// RCR RCL.
+// r,1.
+def WriteRCr1 : SchedWriteRes<[HWPort06, HWPort0156]> {
+ let Latency = 2;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteRCr1], (instregex "RC(R|L)(8|16|32|64)r1")>;
+
+// m,1.
+def WriteRCm1 : SchedWriteRes<[]> {
+ let NumMicroOps = 6;
+}
+def : InstRW<[WriteRCm1], (instregex "RC(R|L)(8|16|32|64)m1")>;
+
+// r,i.
+def WriteRCri : SchedWriteRes<[HWPort0156]> {
+ let Latency = 6;
+ let NumMicroOps = 8;
+}
+def : InstRW<[WriteRCri], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>;
+
+// m,i.
+def WriteRCmi : SchedWriteRes<[]> {
+ let NumMicroOps = 11;
+}
+def : InstRW<[WriteRCmi], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>;
+
+// SHRD SHLD.
+// r,r,i.
+def WriteShDrr : SchedWriteRes<[HWPort1]> {
+ let Latency = 3;
+}
+def : InstRW<[WriteShDrr], (instregex "SH(R|L)D(16|32|64)rri8")>;
+
+// m,r,i.
+def WriteShDmr : SchedWriteRes<[]> {
+ let NumMicroOps = 5;
+}
+def : InstRW<[WriteShDmr], (instregex "SH(R|L)D(16|32|64)mri8")>;
+
+// r,r,cl.
+def WriteShlDCL : SchedWriteRes<[HWPort0156]> {
+ let Latency = 3;
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteShlDCL], (instregex "SHLD(16|32|64)rrCL")>;
+
+// r,r,cl.
+def WriteShrDCL : SchedWriteRes<[HWPort0156]> {
+ let Latency = 4;
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteShrDCL], (instregex "SHRD(16|32|64)rrCL")>;
+
+// m,r,cl.
+def WriteShDmrCL : SchedWriteRes<[]> {
+ let NumMicroOps = 7;
+}
+def : InstRW<[WriteShDmrCL], (instregex "SH(R|L)D(16|32|64)mrCL")>;
+
+// BT.
+// r,r/i.
+def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>;
+
+// m,r.
+def WriteBTmr : SchedWriteRes<[]> {
+ let NumMicroOps = 10;
+}
+def : InstRW<[WriteBTmr], (instregex "BT(16|32|64)mr")>;
+
+// m,i.
+def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>;
+
+// BTR BTS BTC.
+// r,r,i.
+def : InstRW<[WriteShift], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>;
+
+// m,r.
+def WriteBTRSCmr : SchedWriteRes<[]> {
+ let NumMicroOps = 11;
+}
+def : InstRW<[WriteBTRSCmr], (instregex "BT(R|S|C)(16|32|64)mr")>;
+
+// m,i.
+def : InstRW<[WriteShiftLd], (instregex "BT(R|S|C)(16|32|64)mi8")>;
+
+// BSF BSR.
+// r,r.
+def : InstRW<[WriteP1_Lat3], (instregex "BS(R|F)(16|32|64)rr")>;
+// r,m.
+def : InstRW<[WriteP1_Lat3Ld], (instregex "BS(R|F)(16|32|64)rm")>;
+
+// SETcc.
+// r.
+def : InstRW<[WriteShift],
+ (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)r")>;
+// m.
+def WriteSetCCm : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteSetCCm],
+ (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)m")>;
+
+// CLD STD.
+def WriteCldStd : SchedWriteRes<[HWPort15, HWPort6]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteCldStd], (instregex "STD", "CLD")>;
+
+// LZCNT TZCNT.
+// r,r.
+def : InstRW<[WriteP1_Lat3], (instregex "(L|TZCNT)(16|32|64)rr")>;
+// r,m.
+def : InstRW<[WriteP1_Lat3Ld], (instregex "(L|TZCNT)(16|32|64)rm")>;
+
+// ANDN.
+// r,r.
+def : InstRW<[WriteP15], (instregex "ANDN(32|64)rr")>;
+// r,m.
+def : InstRW<[WriteP15Ld], (instregex "ANDN(32|64)rm")>;
+
+// BLSI BLSMSK BLSR.
+// r,r.
+def : InstRW<[WriteP15], (instregex "BLS(I|MSK|R)(32|64)rr")>;
+// r,m.
+def : InstRW<[WriteP15Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>;
+
+// BEXTR.
+// r,r,r.
+def : InstRW<[Write2P0156_Lat2], (instregex "BEXTR(32|64)rr")>;
+// r,m,r.
+def : InstRW<[Write2P0156_Lat2Ld], (instregex "BEXTR(32|64)rm")>;
+
+// BZHI.
+// r,r,r.
+def : InstRW<[WriteP15], (instregex "BZHI(32|64)rr")>;
+// r,m,r.
+def : InstRW<[WriteP15Ld], (instregex "BZHI(32|64)rm")>;
+
+// PDEP PEXT.
+// r,r,r.
+def : InstRW<[WriteP1_Lat3], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>;
+// r,m,r.
+def : InstRW<[WriteP1_Lat3Ld], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>;
+
+//-- Control transfer instructions --//
+
+// J(E|R)CXZ.
+def WriteJCXZ : SchedWriteRes<[HWPort0156, HWPort6]> {
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteJCXZ], (instregex "JCXZ", "JECXZ_(32|64)", "JRCXZ")>;
+
+// LOOP.
+def WriteLOOP : SchedWriteRes<[]> {
+ let NumMicroOps = 7;
+}
+def : InstRW<[WriteLOOP], (instregex "LOOP")>;
+
+// LOOP(N)E
+def WriteLOOPE : SchedWriteRes<[]> {
+ let NumMicroOps = 11;
+}
+def : InstRW<[WriteLOOPE], (instregex "LOOPE", "LOOPNE")>;
+
+// CALL.
+// r.
+def WriteCALLr : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteCALLr], (instregex "CALL(16|32)r")>;
+
+// m.
+def WriteCALLm : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> {
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteCALLm], (instregex "CALL(16|32)m")>;
+
+// RET.
+def WriteRET : SchedWriteRes<[HWPort237, HWPort6]> {
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)")>;
+
+// i.
+def WriteRETI : SchedWriteRes<[HWPort23, HWPort6, HWPort015]> {
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 2, 1];
+}
+def : InstRW<[WriteRETI], (instregex "RETI(L|Q|W)", "LRETI(L|Q|W)")>;
+
+// BOUND.
+// r,m.
+def WriteBOUND : SchedWriteRes<[]> {
+ let NumMicroOps = 15;
+}
+def : InstRW<[WriteBOUND], (instregex "BOUNDS(16|32)rm")>;
+
+// INTO.
+def WriteINTO : SchedWriteRes<[]> {
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteINTO], (instregex "INTO")>;
+
+//-- String instructions --//
+
+// LODSB/W.
+def : InstRW<[Write2P0156_P23], (instregex "LODS(B|W)")>;
+
+// LODSD/Q.
+def : InstRW<[WriteP0156_P23], (instregex "LODS(L|Q)")>;
+
+// STOS.
+def WriteSTOS : SchedWriteRes<[HWPort23, HWPort0156, HWPort4]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteSTOS], (instregex "STOS(B|L|Q|W)")>;
+
+// MOVS.
+def WriteMOVS : SchedWriteRes<[HWPort23, HWPort4, HWPort0156]> {
+ let Latency = 4;
+ let NumMicroOps = 5;
+ let ResourceCycles = [2, 1, 2];
+}
+def : InstRW<[WriteMOVS], (instregex "MOVS(B|L|Q|W)")>;
+
+// SCAS.
+def : InstRW<[Write2P0156_P23], (instregex "SCAS(B|W|L|Q)")>;
+
+// CMPS.
+def WriteCMPS : SchedWriteRes<[HWPort23, HWPort0156]> {
+ let Latency = 4;
+ let NumMicroOps = 5;
+ let ResourceCycles = [2, 3];
+}
+def : InstRW<[WriteCMPS], (instregex "CMPS(B|L|Q|W)")>;
+
+//-- Synchronization instructions --//
+
+// XADD.
+def WriteXADD : SchedWriteRes<[]> {
+ let NumMicroOps = 5;
+}
+def : InstRW<[WriteXADD], (instregex "XADD(8|16|32|64)rm")>;
+
+// CMPXCHG.
+def WriteCMPXCHG : SchedWriteRes<[]> {
+ let NumMicroOps = 6;
+}
+def : InstRW<[WriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>;
+
+// CMPXCHG8B.
+def WriteCMPXCHG8B : SchedWriteRes<[]> {
+ let NumMicroOps = 15;
+}
+def : InstRW<[WriteCMPXCHG8B], (instregex "CMPXCHG8B")>;
+
+// CMPXCHG16B.
+def WriteCMPXCHG16B : SchedWriteRes<[]> {
+ let NumMicroOps = 22;
+}
+def : InstRW<[WriteCMPXCHG16B], (instregex "CMPXCHG16B")>;
+
+//-- Other --//
+
+// PAUSE.
+def WritePAUSE : SchedWriteRes<[HWPort05, HWPort6]> {
+ let NumMicroOps = 5;
+ let ResourceCycles = [1, 3];
+}
+def : InstRW<[WritePAUSE], (instregex "PAUSE")>;
+
+// LEAVE.
+def : InstRW<[Write2P0156_P23], (instregex "LEAVE")>;
+
+// XGETBV.
+def WriteXGETBV : SchedWriteRes<[]> {
+ let NumMicroOps = 8;
+}
+def : InstRW<[WriteXGETBV], (instregex "XGETBV")>;
+
+// RDTSC.
+def WriteRDTSC : SchedWriteRes<[]> {
+ let NumMicroOps = 15;
+}
+def : InstRW<[WriteRDTSC], (instregex "RDTSC")>;
+
+// RDPMC.
+def WriteRDPMC : SchedWriteRes<[]> {
+ let NumMicroOps = 34;
+}
+def : InstRW<[WriteRDPMC], (instregex "RDPMC")>;
+
+// RDRAND.
+def WriteRDRAND : SchedWriteRes<[HWPort23, HWPort015]> {
+ let NumMicroOps = 17;
+ let ResourceCycles = [1, 16];
+}
+def : InstRW<[WriteRDRAND], (instregex "RDRAND(16|32|64)r")>;
+
+//=== Floating Point x87 Instructions ===//
+//-- Move instructions --//
+
+// FLD.
+// m80.
+def : InstRW<[WriteP01], (instregex "LD_Frr")>;
+
+def WriteLD_F80m : SchedWriteRes<[HWPort01, HWPort23]> {
+ let Latency = 4;
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 2];
+}
+def : InstRW<[WriteLD_F80m], (instregex "LD_F80m")>;
+
+// FBLD.
+// m80.
+def WriteFBLD : SchedWriteRes<[]> {
+ let Latency = 47;
+ let NumMicroOps = 43;
+}
+def : InstRW<[WriteFBLD], (instregex "FBLDm")>;
+
+// FST(P).
+// r.
+def : InstRW<[WriteP01], (instregex "ST_(F|FP)rr")>;
+
+// m80.
+def WriteST_FP80m : SchedWriteRes<[HWPort0156, HWPort23, HWPort4]> {
+ let NumMicroOps = 7;
+ let ResourceCycles = [3, 2, 2];
+}
+def : InstRW<[WriteST_FP80m], (instregex "ST_FP80m")>;
+
+// FBSTP.
+// m80.
+def WriteFBSTP : SchedWriteRes<[]> {
+ let NumMicroOps = 226;
+}
+def : InstRW<[WriteFBSTP], (instregex "FBSTPm")>;
+
+// FXCHG.
+def : InstRW<[WriteNop], (instregex "XCH_F")>;
+
+// FILD.
+def WriteFILD : SchedWriteRes<[HWPort01, HWPort23]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteFILD], (instregex "ILD_F(16|32|64)m")>;
+
+// FIST(P) FISTTP.
+def WriteFIST : SchedWriteRes<[HWPort1, HWPort23, HWPort4]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteFIST], (instregex "IST_(F|FP)(16|32)m")>;
+
+// FLDZ.
+def : InstRW<[WriteP01], (instregex "LD_F0")>;
+
+// FLD1.
+def : InstRW<[Write2P01], (instregex "LD_F1")>;
+
+// FLDPI FLDL2E etc.
+def : InstRW<[Write2P01], (instregex "FLDPI", "FLDL2(T|E)" "FLDL(G|N)2")>;
+
+// FCMOVcc.
+def WriteFCMOVcc : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteFCMOVcc], (instregex "CMOV(B|BE|P|NB|NBE|NE|NP)_F")>;
+
+// FNSTSW.
+// AX.
+def WriteFNSTSW : SchedWriteRes<[HWPort0, HWPort0156]> {
+ let NumMicroOps = 2;
+}
+def : InstRW<[WriteFNSTSW], (instregex "FNSTSW16r")>;
+
+// m16.
+def WriteFNSTSWm : SchedWriteRes<[HWPort0, HWPort4, HWPort237]> {
+ let Latency = 6;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteFNSTSWm], (instregex "FNSTSWm")>;
+
+// FLDCW.
+def WriteFLDCW : SchedWriteRes<[HWPort01, HWPort23, HWPort6]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteFLDCW], (instregex "FLDCW16m")>;
+
+// FNSTCW.
+def WriteFNSTCW : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> {
+ let NumMicroOps = 3;
+}
+def : InstRW<[WriteFNSTCW], (instregex "FNSTCW16m")>;
+
+// FINCSTP FDECSTP.
+def : InstRW<[WriteP01], (instregex "FINCSTP", "FDECSTP")>;
+
+// FFREE.
+def : InstRW<[WriteP01], (instregex "FFREE")>;
+
+// FNSAVE.
+def WriteFNSAVE : SchedWriteRes<[]> {
+ let NumMicroOps = 147;
+}
+def : InstRW<[WriteFNSAVE], (instregex "FSAVEm")>;
+
+// FRSTOR.
+def WriteFRSTOR : SchedWriteRes<[]> {
+ let NumMicroOps = 90;
+}
+def : InstRW<[WriteFRSTOR], (instregex "FRSTORm")>;
+
+//-- Arithmetic instructions --//
+
+// FABS.
+def : InstRW<[WriteP0], (instregex "ABS_F")>;
+
+// FCHS.
+def : InstRW<[WriteP0], (instregex "CHS_F")>;
+
+// FCOM(P) FUCOM(P).
+// r.
+def : InstRW<[WriteP1], (instregex "COM_FST0r", "COMP_FST0r", "UCOM_Fr",
+ "UCOM_FPr")>;
+// m.
+def : InstRW<[WriteP1_P23], (instregex "FCOM(32|64)m", "FCOMP(32|64)m")>;
+
+// FCOMPP FUCOMPP.
+// r.
+def : InstRW<[Write2P01], (instregex "FCOMPP", "UCOM_FPPr")>;
+
+// FCOMI(P) FUCOMI(P).
+// m.
+def : InstRW<[Write3P01], (instregex "COM_FIr", "COM_FIPr", "UCOM_FIr",
+ "UCOM_FIPr")>;
+
+// FICOM(P).
+def : InstRW<[Write2P1_P23], (instregex "FICOM(16|32)m", "FICOMP(16|32)m")>;
+
+// FTST.
+def : InstRW<[WriteP1], (instregex "TST_F")>;
+
+// FXAM.
+def : InstRW<[Write2P1], (instregex "FXAM")>;
+
+// FPREM.
+def WriteFPREM : SchedWriteRes<[]> {
+ let Latency = 19;
+ let NumMicroOps = 28;
+}
+def : InstRW<[WriteFPREM], (instregex "FPREM")>;
+
+// FPREM1.
+def WriteFPREM1 : SchedWriteRes<[]> {
+ let Latency = 27;
+ let NumMicroOps = 41;
+}
+def : InstRW<[WriteFPREM1], (instregex "FPREM1")>;
+
+// FRNDINT.
+def WriteFRNDINT : SchedWriteRes<[]> {
+ let Latency = 11;
+ let NumMicroOps = 17;
+}
+def : InstRW<[WriteFRNDINT], (instregex "FRNDINT")>;
+
+//-- Math instructions --//
+
+// FSCALE.
+def WriteFSCALE : SchedWriteRes<[]> {
+ let Latency = 75; // 49-125
+ let NumMicroOps = 50; // 25-75
+}
+def : InstRW<[WriteFSCALE], (instregex "FSCALE")>;
+
+// FXTRACT.
+def WriteFXTRACT : SchedWriteRes<[]> {
+ let Latency = 15;
+ let NumMicroOps = 17;
+}
+def : InstRW<[WriteFXTRACT], (instregex "FXTRACT")>;
+
+//-- Other instructions --//
+
+// FNOP.
+def : InstRW<[WriteP01], (instregex "FNOP")>;
+
+// WAIT.
+def : InstRW<[Write2P01], (instregex "WAIT")>;
+
+// FNCLEX.
+def : InstRW<[Write5P0156], (instregex "FNCLEX")>;
+
+// FNINIT.
+def WriteFNINIT : SchedWriteRes<[]> {
+ let NumMicroOps = 26;
+}
+def : InstRW<[WriteFNINIT], (instregex "FNINIT")>;
+
+//=== Integer MMX and XMM Instructions ===//
+//-- Move instructions --//
+
+// MOVD.
+// r32/64 <- (x)mm.
+def : InstRW<[WriteP0], (instregex "MMX_MOVD64grr", "MMX_MOVD64from64rr",
+ "VMOVPDI2DIrr", "MOVPDI2DIrr")>;
+
+// (x)mm <- r32/64.
+def : InstRW<[WriteP5], (instregex "MMX_MOVD64rr", "MMX_MOVD64to64rr",
+ "VMOVDI2PDIrr", "MOVDI2PDIrr")>;
+
+// MOVQ.
+// r64 <- (x)mm.
+def : InstRW<[WriteP0], (instregex "VMOVPQIto64rr")>;
+
+// (x)mm <- r64.
+def : InstRW<[WriteP5], (instregex "VMOV64toPQIrr", "VMOVZQI2PQIrr")>;
+
+// (x)mm <- (x)mm.
+def : InstRW<[WriteP015], (instregex "MMX_MOVQ64rr")>;
+
+// (V)MOVDQA/U.
+// x <- x.
+def : InstRW<[WriteP015], (instregex "MOVDQ(A|U)rr", "VMOVDQ(A|U)rr",
+ "MOVDQ(A|U)rr_REV", "VMOVDQ(A|U)rr_REV",
+ "VMOVDQ(A|U)Yrr", "VMOVDQ(A|U)Yrr_REV")>;
+
+// MOVDQ2Q.
+def : InstRW<[WriteP01_P5], (instregex "MMX_MOVDQ2Qrr")>;
+
+// MOVQ2DQ.
+def : InstRW<[WriteP015], (instregex "MMX_MOVQ2DQrr")>;
+
+
+// PACKSSWB/DW.
+// mm <- mm.
+def WriteMMXPACKSSrr : SchedWriteRes<[HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 3;
+ let ResourceCycles = [3];
+}
+def : InstRW<[WriteMMXPACKSSrr], (instregex "MMX_PACKSSDWirr",
+ "MMX_PACKSSWBirr", "MMX_PACKUSWBirr")>;
+
+// mm <- m64.
+def WriteMMXPACKSSrm : SchedWriteRes<[HWPort23, HWPort5]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 3];
+}
+def : InstRW<[WriteMMXPACKSSrm], (instregex "MMX_PACKSSDWirm",
+ "MMX_PACKSSWBirm", "MMX_PACKUSWBirm")>;
+
+// VPMOVSX/ZX BW BD BQ DW DQ.
+// y <- x.
+def WriteVPMOVSX : SchedWriteRes<[HWPort5]> {
+ let Latency = 3;
+ let NumMicroOps = 1;
+}
+def : InstRW<[WriteVPMOVSX], (instregex "VPMOV(SX|ZX)(BW|BQ|DW|DQ)Yrr")>;
+
+// PBLENDW.
+// x,x,i / v,v,v,i
+def WritePBLENDWr : SchedWriteRes<[HWPort5]>;
+def : InstRW<[WritePBLENDWr], (instregex "(V?)PBLENDW(Y?)rri")>;
+
+// x,m,i / v,v,m,i
+def WritePBLENDWm : SchedWriteRes<[HWPort5, HWPort23]> {
+ let NumMicroOps = 2;
+ let Latency = 4;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WritePBLENDWm, ReadAfterLd], (instregex "(V?)PBLENDW(Y?)rmi")>;
+
+// VPBLENDD.
+// v,v,v,i.
+def WriteVPBLENDDr : SchedWriteRes<[HWPort015]>;
+def : InstRW<[WriteVPBLENDDr], (instregex "VPBLENDD(Y?)rri")>;
+
+// v,v,m,i
+def WriteVPBLENDDm : SchedWriteRes<[HWPort015, HWPort23]> {
+ let NumMicroOps = 2;
+ let Latency = 4;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteVPBLENDDm, ReadAfterLd], (instregex "VPBLENDD(Y?)rmi")>;
+
+// MASKMOVQ.
+def WriteMASKMOVQ : SchedWriteRes<[HWPort0, HWPort4, HWPort23]> {
+ let Latency = 13;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 1, 2];
+}
+def : InstRW<[WriteMASKMOVQ], (instregex "MMX_MASKMOVQ(64)?")>;
+
+// MASKMOVDQU.
+def WriteMASKMOVDQU : SchedWriteRes<[HWPort04, HWPort56, HWPort23]> {
+ let Latency = 14;
+ let NumMicroOps = 10;
+ let ResourceCycles = [4, 2, 4];
+}
+def : InstRW<[WriteMASKMOVDQU], (instregex "(V?)MASKMOVDQU(64)?")>;
+
+// VPMASKMOV D/Q.
+// v,v,m.
+def WriteVPMASKMOVr : SchedWriteRes<[HWPort5, HWPort23]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVPMASKMOVr, ReadAfterLd],
+ (instregex "VPMASKMOV(D|Q)(Y?)rm")>;
+
+// m, v,v.
+def WriteVPMASKMOVm : SchedWriteRes<[HWPort0, HWPort1, HWPort4, HWPort23]> {
+ let Latency = 13;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 1, 1, 1];
+}
+def : InstRW<[WriteVPMASKMOVm], (instregex "VPMASKMOV(D|Q)(Y?)mr")>;
+
+// PMOVMSKB.
+def WritePMOVMSKB : SchedWriteRes<[HWPort0]> {
+ let Latency = 3;
+}
+def : InstRW<[WritePMOVMSKB], (instregex "(V|MMX_)?PMOVMSKB(Y?)rr")>;
+
+// PEXTR B/W/D/Q.
+// r32,x,i.
+def WritePEXTRr : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WritePEXTRr], (instregex "PEXTR(B|W|D|Q)rr", "MMX_PEXTRWirri")>;
+
+// m8,x,i.
+def WritePEXTRm : SchedWriteRes<[HWPort23, HWPort4, HWPort5]> {
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WritePEXTRm], (instregex "PEXTR(B|W|D|Q)mr")>;
+
+// VPBROADCAST B/W.
+// x, m8/16.
+def WriteVPBROADCAST128Ld : SchedWriteRes<[HWPort01, HWPort23, HWPort5]> {
+ let Latency = 5;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WriteVPBROADCAST128Ld, ReadAfterLd],
+ (instregex "VPBROADCAST(B|W)rm")>;
+
+// y, m8/16
+def WriteVPBROADCAST256Ld : SchedWriteRes<[HWPort01, HWPort23, HWPort5]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WriteVPBROADCAST256Ld, ReadAfterLd],
+ (instregex "VPBROADCAST(B|W)Yrm")>;
+
+// VPGATHERDD.
+// x.
+def WriteVPGATHERDD128 : SchedWriteRes<[]> {
+ let NumMicroOps = 20;
+}
+def : InstRW<[WriteVPGATHERDD128, ReadAfterLd], (instregex "VPGATHERDDrm")>;
+
+// y.
+def WriteVPGATHERDD256 : SchedWriteRes<[]> {
+ let NumMicroOps = 34;
+}
+def : InstRW<[WriteVPGATHERDD256, ReadAfterLd], (instregex "VPGATHERDDYrm")>;
+
+// VPGATHERQD.
+// x.
+def WriteVPGATHERQD128 : SchedWriteRes<[]> {
+ let NumMicroOps = 15;
+}
+def : InstRW<[WriteVPGATHERQD128, ReadAfterLd], (instregex "VPGATHERQDrm")>;
+
+// y.
+def WriteVPGATHERQD256 : SchedWriteRes<[]> {
+ let NumMicroOps = 22;
+}
+def : InstRW<[WriteVPGATHERQD256, ReadAfterLd], (instregex "VPGATHERQDYrm")>;
+
+// VPGATHERDQ.
+// x.
+def WriteVPGATHERDQ128 : SchedWriteRes<[]> {
+ let NumMicroOps = 12;
+}
+def : InstRW<[WriteVPGATHERDQ128, ReadAfterLd], (instregex "VPGATHERDQrm")>;
+
+// y.
+def WriteVPGATHERDQ256 : SchedWriteRes<[]> {
+ let NumMicroOps = 20;
+}
+def : InstRW<[WriteVPGATHERDQ256, ReadAfterLd], (instregex "VPGATHERDQYrm")>;
+
+// VPGATHERQQ.
+// x.
+def WriteVPGATHERQQ128 : SchedWriteRes<[]> {
+ let NumMicroOps = 14;
+}
+def : InstRW<[WriteVPGATHERQQ128, ReadAfterLd], (instregex "VPGATHERQQrm")>;
+
+// y.
+def WriteVPGATHERQQ256 : SchedWriteRes<[]> {
+ let NumMicroOps = 22;
+}
+def : InstRW<[WriteVPGATHERQQ256, ReadAfterLd], (instregex "VPGATHERQQYrm")>;
+
+//-- Arithmetic instructions --//
+
+// PHADD|PHSUB (S) W/D.
+// v <- v,v.
+def WritePHADDSUBr : SchedWriteRes<[HWPort1, HWPort5]> {
+ let Latency = 3;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 2];
+}
+def : InstRW<[WritePHADDSUBr], (instregex "MMX_PHADD(W?)rr64",
+ "MMX_PHADDSWrr64",
+ "MMX_PHSUB(W|D)rr64",
+ "MMX_PHSUBSWrr64",
+ "(V?)PH(ADD|SUB)(W|D)(Y?)rr",
+ "(V?)PH(ADD|SUB)SWrr(256)?")>;
+
+// v <- v,m.
+def WritePHADDSUBm : SchedWriteRes<[HWPort1, HWPort5, HWPort23]> {
+ let Latency = 6;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 2, 1];
+}
+def : InstRW<[WritePHADDSUBm, ReadAfterLd],
+ (instregex "MMX_PHADD(W?)rm64",
+ "MMX_PHADDSWrm64",
+ "MMX_PHSUB(W|D)rm64",
+ "MMX_PHSUBSWrm64",
+ "(V?)PH(ADD|SUB)(W|D)(Y?)rm",
+ "(V?)PH(ADD|SUB)SWrm(128|256)?")>;
+
+// PCMPGTQ.
+// v <- v,v.
+def WritePCMPGTQr : SchedWriteRes<[HWPort0]> {
+ let Latency = 5;
+ let NumMicroOps = 1;
+}
+def : InstRW<[WritePCMPGTQr], (instregex "(V?)PCMPGTQ(Y?)rr")>;
+
+// v <- v,m.
+def WritePCMPGTQm : SchedWriteRes<[HWPort0, HWPort23]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WritePCMPGTQm, ReadAfterLd], (instregex "(V?)PCMPGTQ(Y?)rm")>;
+
+// PMULLD.
+// x,x / y,y,y.
+def WritePMULLDr : SchedWriteRes<[HWPort0]> {
+ let Latency = 10;
+ let NumMicroOps = 2;
+ let ResourceCycles = [2];
+}
+def : InstRW<[WritePMULLDr], (instregex "(V?)PMULLD(Y?)rr")>;
+
+// x,m / y,y,m.
+def WritePMULLDm : SchedWriteRes<[HWPort0, HWPort23]> {
+ let Latency = 10;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WritePMULLDm, ReadAfterLd], (instregex "(V?)PMULLD(Y?)rm")>;
+
+//-- Logic instructions --//
+
+// PTEST.
+// v,v.
+def WritePTESTr : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WritePTESTr], (instregex "(V?)PTEST(Y?)rr")>;
+
+// v,m.
+def WritePTESTm : SchedWriteRes<[HWPort0, HWPort5, HWPort23]> {
+ let Latency = 6;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WritePTESTr], (instregex "(V?)PTEST(Y?)rm")>;
+
+// PSLL,PSRL,PSRA W/D/Q.
+// x,x / v,v,x.
+def WritePShift : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WritePShift], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)(Y?)rr")>;
+
+// PSLL,PSRL DQ.
+def : InstRW<[WriteP5], (instregex "(V?)PS(R|L)LDQ(Y?)ri")>;
+
+//-- Other --//
+
+// EMMS.
+def WriteEMMS : SchedWriteRes<[]> {
+ let Latency = 13;
+ let NumMicroOps = 31;
+}
+def : InstRW<[WriteEMMS], (instregex "MMX_EMMS")>;
+
+//=== Floating Point XMM and YMM Instructions ===//
+//-- Move instructions --//
+
+// MOVMSKP S/D.
+// r32 <- x.
+def WriteMOVMSKPr : SchedWriteRes<[HWPort0]> {
+ let Latency = 3;
+}
+def : InstRW<[WriteMOVMSKPr], (instregex "(V?)MOVMSKP(S|D)rr")>;
+
+// r32 <- y.
+def WriteVMOVMSKPYr : SchedWriteRes<[HWPort0]> {
+ let Latency = 2;
+}
+def : InstRW<[WriteVMOVMSKPYr], (instregex "VMOVMSKP(S|D)Yrr")>;
+
+// VPERM2F128.
+def : InstRW<[WriteFShuffle256], (instregex "VPERM2F128rr")>;
+def : InstRW<[WriteFShuffle256Ld, ReadAfterLd], (instregex "VPERM2F128rm")>;
+
+// BLENDVP S/D.
+def : InstRW<[WriteFVarBlend], (instregex "BLENDVP(S|D)rr0")>;
+def : InstRW<[WriteFVarBlendLd, ReadAfterLd], (instregex "BLENDVP(S|D)rm0")>;
+
+// VBROADCASTF128.
+def : InstRW<[WriteLoad], (instregex "VBROADCASTF128")>;
+
+// EXTRACTPS.
+// r32,x,i.
+def WriteEXTRACTPSr : SchedWriteRes<[HWPort0, HWPort5]> {
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteEXTRACTPSr], (instregex "(V?)EXTRACTPSrr")>;
+
+// m32,x,i.
+def WriteEXTRACTPSm : SchedWriteRes<[HWPort0, HWPort5, HWPort23]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WriteEXTRACTPSm], (instregex "(V?)EXTRACTPSmr")>;
+
+// VEXTRACTF128.
+// x,y,i.
+def : InstRW<[WriteFShuffle256], (instregex "VEXTRACTF128rr")>;
+
+// m128,y,i.
+def WriteVEXTRACTF128m : SchedWriteRes<[HWPort23, HWPort4]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteVEXTRACTF128m], (instregex "VEXTRACTF128mr")>;
+
+// VINSERTF128.
+// y,y,x,i.
+def : InstRW<[WriteFShuffle256], (instregex "VINSERTF128rr")>;
+
+// y,y,m128,i.
+def WriteVINSERTF128m : SchedWriteRes<[HWPort015, HWPort23]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteFShuffle256, ReadAfterLd], (instregex "VINSERTF128rm")>;
+
+// VMASKMOVP S/D.
+// v,v,m.
+def WriteVMASKMOVPrm : SchedWriteRes<[HWPort5, HWPort23]> {
+ let Latency = 4;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVMASKMOVPrm], (instregex "VMASKMOVP(S|D)(Y?)rm")>;
+
+// m128,x,x.
+def WriteVMASKMOVPmr : SchedWriteRes<[HWPort0, HWPort1, HWPort4, HWPort23]> {
+ let Latency = 13;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 1, 1, 1];
+}
+def : InstRW<[WriteVMASKMOVPmr], (instregex "VMASKMOVP(S|D)mr")>;
+
+// m256,y,y.
+def WriteVMASKMOVPYmr : SchedWriteRes<[HWPort0, HWPort1, HWPort4, HWPort23]> {
+ let Latency = 14;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 1, 1, 1];
+}
+def : InstRW<[WriteVMASKMOVPYmr], (instregex "VMASKMOVP(S|D)Ymr")>;
+
+// VGATHERDPS.
+// x.
+def WriteVGATHERDPS128 : SchedWriteRes<[]> {
+ let NumMicroOps = 20;
+}
+def : InstRW<[WriteVGATHERDPS128, ReadAfterLd], (instregex "VGATHERDPSrm")>;
+
+// y.
+def WriteVGATHERDPS256 : SchedWriteRes<[]> {
+ let NumMicroOps = 34;
+}
+def : InstRW<[WriteVGATHERDPS256, ReadAfterLd], (instregex "VGATHERDPSYrm")>;
+
+// VGATHERQPS.
+// x.
+def WriteVGATHERQPS128 : SchedWriteRes<[]> {
+ let NumMicroOps = 15;
+}
+def : InstRW<[WriteVGATHERQPS128, ReadAfterLd], (instregex "VGATHERQPSrm")>;
+
+// y.
+def WriteVGATHERQPS256 : SchedWriteRes<[]> {
+ let NumMicroOps = 22;
+}
+def : InstRW<[WriteVGATHERQPS256, ReadAfterLd], (instregex "VGATHERQPSYrm")>;
+
+// VGATHERDPD.
+// x.
+def WriteVGATHERDPD128 : SchedWriteRes<[]> {
+ let NumMicroOps = 12;
+}
+def : InstRW<[WriteVGATHERDPD128, ReadAfterLd], (instregex "VGATHERDPDrm")>;
+
+// y.
+def WriteVGATHERDPD256 : SchedWriteRes<[]> {
+ let NumMicroOps = 20;
+}
+def : InstRW<[WriteVGATHERDPD256, ReadAfterLd], (instregex "VGATHERDPDYrm")>;
+
+// VGATHERQPD.
+// x.
+def WriteVGATHERQPD128 : SchedWriteRes<[]> {
+ let NumMicroOps = 14;
+}
+def : InstRW<[WriteVGATHERQPD128, ReadAfterLd], (instregex "VGATHERQPDrm")>;
+
+// y.
+def WriteVGATHERQPD256 : SchedWriteRes<[]> {
+ let NumMicroOps = 22;
+}
+def : InstRW<[WriteVGATHERQPD256, ReadAfterLd], (instregex "VGATHERQPDYrm")>;
+
+//-- Conversion instructions --//
+
+// CVTPD2PS.
+// x,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "(V?)CVTPD2PSrr")>;
+
+// x,m128.
+def : InstRW<[WriteP1_P5_Lat4Ld], (instregex "(V?)CVTPD2PS(X?)rm")>;
+
+// x,y.
+def WriteCVTPD2PSYrr : SchedWriteRes<[HWPort1, HWPort5]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteCVTPD2PSYrr], (instregex "(V?)CVTPD2PSYrr")>;
+
+// x,m256.
+def WriteCVTPD2PSYrm : SchedWriteRes<[HWPort1, HWPort5, HWPort23]> {
+ let Latency = 9;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WriteCVTPD2PSYrm], (instregex "(V?)CVTPD2PSYrm")>;
+
+// CVTSD2SS.
+// x,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "(Int_)?(V)?CVTSD2SSrr")>;
+
+// x,m64.
+def : InstRW<[WriteP1_P5_Lat4Ld], (instregex "(Int_)?(V)?CVTSD2SSrm")>;
+
+// CVTPS2PD.
+// x,x.
+def WriteCVTPS2PDrr : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteCVTPS2PDrr], (instregex "(V?)CVTPS2PDrr")>;
+
+// x,m64.
+// y,m128.
+def WriteCVTPS2PDrm : SchedWriteRes<[HWPort0, HWPort23]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteCVTPS2PDrm], (instregex "(V?)CVTPS2PD(Y?)rm")>;
+
+// y,x.
+def WriteVCVTPS2PDYrr : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteVCVTPS2PDYrr], (instregex "VCVTPS2PDYrr")>;
+
+// CVTSS2SD.
+// x,x.
+def WriteCVTSS2SDrr : SchedWriteRes<[HWPort0, HWPort5]> {
+ let Latency = 2;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteCVTSS2SDrr], (instregex "(Int_)?(V?)CVTSS2SDrr")>;
+
+// x,m32.
+def WriteCVTSS2SDrm : SchedWriteRes<[HWPort0, HWPort23]> {
+ let Latency = 5;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteCVTSS2SDrm], (instregex "(Int_)?(V?)CVTSS2SDrm")>;
+
+// CVTDQ2PD.
+// x,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "(V)?CVTDQ2PDrr")>;
+
+// y,x.
+def : InstRW<[WriteP1_P5_Lat6], (instregex "VCVTDQ2PDYrr")>;
+
+// CVT(T)PD2DQ.
+// x,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "(V?)CVT(T?)PD2DQrr")>;
+// x,m128.
+def : InstRW<[WriteP1_P5_Lat4Ld], (instregex "(V?)CVT(T?)PD2DQrm")>;
+// x,y.
+def : InstRW<[WriteP1_P5_Lat6], (instregex "VCVT(T?)PD2DQYrr")>;
+// x,m256.
+def : InstRW<[WriteP1_P5_Lat6Ld], (instregex "VCVT(T?)PD2DQYrm")>;
+
+// CVT(T)PS2PI.
+// mm,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "MMX_CVT(T?)PS2PIirr")>;
+
+// CVTPI2PD.
+// x,mm.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "MMX_CVT(T?)PI2PDirr")>;
+
+// CVT(T)PD2PI.
+// mm,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "MMX_CVT(T?)PD2PIirr")>;
+
+// CVSTSI2SS.
+// x,r32.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "(Int_)?(V?)CVT(T?)SI2SS(64)?rr")>;
+
+// CVT(T)SS2SI.
+// r32,x.
+def : InstRW<[WriteP0_P1_Lat4], (instregex "(Int_)?(V?)CVT(T?)SS2SI(64)?rr")>;
+// r32,m32.
+def : InstRW<[WriteP0_P1_Lat4Ld], (instregex "(Int_)?(V?)CVT(T?)SS2SI(64)?rm")>;
+
+// CVTSI2SD.
+// x,r32/64.
+def : InstRW<[WriteP0_P1_Lat4], (instregex "(Int_)?(V?)CVTSI2SS(64)?rr")>;
+
+// CVTSD2SI.
+// r32/64
+def : InstRW<[WriteP0_P1_Lat4], (instregex "(Int_)?(V?)CVT(T?)SD2SI(64)?rr")>;
+// r32,m32.
+def : InstRW<[WriteP0_P1_Lat4Ld], (instregex "(Int_)?(V?)CVT(T?)SD2SI(64)?rm")>;
+
+// VCVTPS2PH.
+// x,v,i.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "VCVTPS2PH(Y?)rr")>;
+// m,v,i.
+def : InstRW<[WriteP1_P5_Lat4Ld, WriteRMW], (instregex "VCVTPS2PH(Y?)mr")>;
+
+// VCVTPH2PS.
+// v,x.
+def : InstRW<[WriteP1_P5_Lat4], (instregex "VCVTPH2PS(Y?)rr")>;
+
+//-- Arithmetic instructions --//
+
+// HADD, HSUB PS/PD
+// x,x / v,v,v.
+def WriteHADDSUBPr : SchedWriteRes<[HWPort1, HWPort5]> {
+ let Latency = 5;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 2];
+}
+def : InstRW<[WriteHADDSUBPr], (instregex "(V?)H(ADD|SUB)P(S|D)(Y?)rr")>;
+
+// x,m / v,v,m.
+def WriteHADDSUBPm : SchedWriteRes<[HWPort1, HWPort5, HWPort23]> {
+ let Latency = 9;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 2, 1];
+}
+def : InstRW<[WriteHADDSUBPm], (instregex "(V?)H(ADD|SUB)P(S|D)(Y?)rm")>;
+
+// MULL SS/SD PS/PD.
+// x,x / v,v,v.
+def WriteMULr : SchedWriteRes<[HWPort01]> {
+ let Latency = 5;
+}
+def : InstRW<[WriteMULr], (instregex "(V?)MUL(P|S)(S|D)rr")>;
+
+// x,m / v,v,m.
+def WriteMULm : SchedWriteRes<[HWPort01, HWPort23]> {
+ let Latency = 4;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteMULm], (instregex "(V?)MUL(P|S)(S|D)rm")>;
+
+// VDIVPS.
+// y,y,y.
+def WriteVDIVPSYrr : SchedWriteRes<[HWPort0, HWPort15]> {
+ let Latency = 19; // 18-21 cycles.
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVDIVPSYrr], (instregex "VDIVPSYrr")>;
+
+// y,y,m256.
+def WriteVDIVPSYrm : SchedWriteRes<[HWPort0, HWPort15, HWPort23]> {
+ let Latency = 23; // 18-21 + 4 cycles.
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteVDIVPSYrm, ReadAfterLd], (instregex "VDIVPSYrm")>;
+
+// VDIVPD.
+// y,y,y.
+def WriteVDIVPDYrr : SchedWriteRes<[HWPort0, HWPort15]> {
+ let Latency = 27; // 19-35 cycles.
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVDIVPDYrr], (instregex "VDIVPDYrr")>;
+
+// y,y,m256.
+def WriteVDIVPDYrm : SchedWriteRes<[HWPort0, HWPort15, HWPort23]> {
+ let Latency = 31; // 19-35 + 4 cycles.
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteVDIVPDYrm, ReadAfterLd], (instregex "VDIVPDYrm")>;
+
+// VRCPPS.
+// y,y.
+def WriteVRCPPSr : SchedWriteRes<[HWPort0, HWPort15]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVRCPPSr], (instregex "VRCPPSYr(_Int)?")>;
+
+// y,m256.
+def WriteVRCPPSm : SchedWriteRes<[HWPort0, HWPort15, HWPort23]> {
+ let Latency = 11;
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteVRCPPSm], (instregex "VRCPPSYm(_Int)?")>;
+
+// ROUND SS/SD PS/PD.
+// v,v,i.
+def WriteROUNDr : SchedWriteRes<[HWPort1]> {
+ let Latency = 6;
+ let NumMicroOps = 2;
+ let ResourceCycles = [2];
+}
+def : InstRW<[WriteROUNDr], (instregex "(V?)ROUND(Y?)(S|P)(S|D)r(_Int)?")>;
+
+// v,m,i.
+def WriteROUNDm : SchedWriteRes<[HWPort1, HWPort23]> {
+ let Latency = 10;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteROUNDm], (instregex "(V?)ROUND(Y?)(S|P)(S|D)m(_Int)?")>;
+
+// DPPS.
+// x,x,i / v,v,v,i.
+def WriteDPPSr : SchedWriteRes<[HWPort0, HWPort1, HWPort5]> {
+ let Latency = 14;
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteDPPSr], (instregex "(V?)DPPS(Y?)rri")>;
+
+// x,m,i / v,v,m,i.
+def WriteDPPSm : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort23, HWPort6]> {
+ let Latency = 18;
+ let NumMicroOps = 6;
+ let ResourceCycles = [2, 1, 1, 1, 1];
+}
+def : InstRW<[WriteDPPSm, ReadAfterLd], (instregex "(V?)DPPS(Y?)rmi")>;
+
+// DPPD.
+// x,x,i.
+def WriteDPPDr : SchedWriteRes<[HWPort0, HWPort1, HWPort5]> {
+ let Latency = 9;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WriteDPPDr], (instregex "(V?)DPPDrri")>;
+
+// x,m,i.
+def WriteDPPDm : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort23]> {
+ let Latency = 13;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 1, 1, 1];
+}
+def : InstRW<[WriteDPPDm], (instregex "(V?)DPPDrmi")>;
+
+// VFMADD.
+// v,v,v.
+def WriteFMADDr : SchedWriteRes<[HWPort01]> {
+ let Latency = 5;
+ let NumMicroOps = 1;
+}
+def : InstRW<[WriteFMADDr],
+ (instregex
+ // 3p forms.
+ "VF(N?)M(ADD|SUB|ADDSUB|SUBADD)P(S|D)(r213|r132|r231)r(Y)?",
+ // 3s forms.
+ "VF(N?)M(ADD|SUB)S(S|D)(r132|231|213)r",
+ // 4s/4s_int forms.
+ "VF(N?)M(ADD|SUB)S(S|D)4rr(_REV|_Int)?",
+ // 4p forms.
+ "VF(N?)M(ADD|SUB)P(S|D)4rr(Y)?(_REV)?")>;
+
+// v,v,m.
+def WriteFMADDm : SchedWriteRes<[HWPort01, HWPort23]> {
+ let Latency = 9;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteFMADDm],
+ (instregex
+ // 3p forms.
+ "VF(N?)M(ADD|SUB|ADDSUB|SUBADD)P(S|D)(r213|r132|r231)m(Y)?",
+ // 3s forms.
+ "VF(N?)M(ADD|SUB)S(S|D)(r132|231|213)m",
+ // 4s/4s_int forms.
+ "VF(N?)M(ADD|SUB)S(S|D)4(rm|mr)(_Int)?",
+ // 4p forms.
+ "VF(N?)M(ADD|SUB)P(S|D)4(rm|mr)(Y)?")>;
+
+//-- Math instructions --//
+
+// VSQRTPS.
+// y,y.
+def WriteVSQRTPSYr : SchedWriteRes<[HWPort0, HWPort15]> {
+ let Latency = 19;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVSQRTPSYr], (instregex "VSQRTPSYr")>;
+
+// y,m256.
+def WriteVSQRTPSYm : SchedWriteRes<[HWPort0, HWPort15, HWPort23]> {
+ let Latency = 23;
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteVSQRTPSYm], (instregex "VSQRTPSYm")>;
+
+// VSQRTPD.
+// y,y.
+def WriteVSQRTPDYr : SchedWriteRes<[HWPort0, HWPort15]> {
+ let Latency = 28;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteVSQRTPDYr], (instregex "VSQRTPDYr")>;
+
+// y,m256.
+def WriteVSQRTPDYm : SchedWriteRes<[HWPort0, HWPort15, HWPort23]> {
+ let Latency = 32;
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteVSQRTPDYm], (instregex "VSQRTPDYm")>;
+
+// RSQRT SS/PS.
+// x,x.
+def WriteRSQRTr : SchedWriteRes<[HWPort0]> {
+ let Latency = 5;
+}
+def : InstRW<[WriteRSQRTr], (instregex "(V?)RSQRT(SS|PS)r(_Int)?")>;
+
+// x,m128.
+def WriteRSQRTm : SchedWriteRes<[HWPort0, HWPort23]> {
+ let Latency = 9;
+ let NumMicroOps = 2;
+ let ResourceCycles = [1, 1];
+}
+def : InstRW<[WriteRSQRTm], (instregex "(V?)RSQRT(SS|PS)m(_Int)?")>;
+
+// RSQRTPS 256.
+// y,y.
+def WriteRSQRTPSYr : SchedWriteRes<[HWPort0, HWPort15]> {
+ let Latency = 7;
+ let NumMicroOps = 3;
+ let ResourceCycles = [2, 1];
+}
+def : InstRW<[WriteRSQRTPSYr], (instregex "VRSQRTPSYr(_Int)?")>;
+
+// y,m256.
+def WriteRSQRTPSYm : SchedWriteRes<[HWPort0, HWPort15, HWPort23]> {
+ let Latency = 11;
+ let NumMicroOps = 4;
+ let ResourceCycles = [2, 1, 1];
+}
+def : InstRW<[WriteRSQRTPSYm], (instregex "VRSQRTPSYm(_Int)?")>;
+
+//-- Logic instructions --//
+
+// AND, ANDN, OR, XOR PS/PD.
+// x,x / v,v,v.
+def : InstRW<[WriteP5], (instregex "(V?)(AND|ANDN|OR|XOR)P(S|D)(Y?)rr")>;
+// x,m / v,v,m.
+def : InstRW<[WriteP5Ld, ReadAfterLd],
+ (instregex "(V?)(AND|ANDN|OR|XOR)P(S|D)(Y?)rm")>;
+
+//-- Other instructions --//
+
+// VZEROUPPER.
+def WriteVZEROUPPER : SchedWriteRes<[]> {
+ let NumMicroOps = 4;
+}
+def : InstRW<[WriteVZEROUPPER], (instregex "VZEROUPPER")>;
+
+// VZEROALL.
+def WriteVZEROALL : SchedWriteRes<[]> {
+ let NumMicroOps = 12;
+}
+def : InstRW<[WriteVZEROALL], (instregex "VZEROALL")>;
+
+// LDMXCSR.
+def WriteLDMXCSR : SchedWriteRes<[HWPort0, HWPort6, HWPort23]> {
+ let Latency = 6;
+ let NumMicroOps = 3;
+ let ResourceCycles = [1, 1, 1];
+}
+def : InstRW<[WriteLDMXCSR], (instregex "(V)?LDMXCSR")>;
+
+// STMXCSR.
+def WriteSTMXCSR : SchedWriteRes<[HWPort0, HWPort4, HWPort6, HWPort237]> {
+ let Latency = 7;
+ let NumMicroOps = 4;
+ let ResourceCycles = [1, 1, 1, 1];
+}
+def : InstRW<[WriteSTMXCSR], (instregex "(V)?STMXCSR")>;
+
} // SchedModel
diff --git a/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td b/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td
index 83f0534..eca65c2 100644
--- a/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td
+++ b/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td
@@ -117,6 +117,7 @@ defm : SBWriteResPair<WriteFAdd, SBPort1, 3>;
defm : SBWriteResPair<WriteFMul, SBPort0, 5>;
defm : SBWriteResPair<WriteFDiv, SBPort0, 12>; // 10-14 cycles.
defm : SBWriteResPair<WriteFRcp, SBPort0, 5>;
+defm : SBWriteResPair<WriteFRsqrt, SBPort0, 5>;
defm : SBWriteResPair<WriteFSqrt, SBPort0, 15>;
defm : SBWriteResPair<WriteCvtF2I, SBPort1, 3>;
defm : SBWriteResPair<WriteCvtI2F, SBPort1, 4>;
diff --git a/contrib/llvm/lib/Target/X86/X86Schedule.td b/contrib/llvm/lib/Target/X86/X86Schedule.td
index b76850a..a261356 100644
--- a/contrib/llvm/lib/Target/X86/X86Schedule.td
+++ b/contrib/llvm/lib/Target/X86/X86Schedule.td
@@ -63,12 +63,13 @@ def WriteZero : SchedWrite;
defm WriteJump : X86SchedWritePair;
// Floating point. This covers both scalar and vector operations.
-defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
-defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
-defm WriteFDiv : X86SchedWritePair; // Floating point division.
-defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
-defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal.
-defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
+defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
+defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
+defm WriteFDiv : X86SchedWritePair; // Floating point division.
+defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
+defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate.
+defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.
+defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles.
defm WriteFBlend : X86SchedWritePair; // Floating point vector blends.
defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends.
@@ -314,6 +315,11 @@ def IIC_SSE_SQRTPD_RM : InstrItinClass;
def IIC_SSE_SQRTSD_RR : InstrItinClass;
def IIC_SSE_SQRTSD_RM : InstrItinClass;
+def IIC_SSE_RSQRTPS_RR : InstrItinClass;
+def IIC_SSE_RSQRTPS_RM : InstrItinClass;
+def IIC_SSE_RSQRTSS_RR : InstrItinClass;
+def IIC_SSE_RSQRTSS_RM : InstrItinClass;
+
def IIC_SSE_RCPP_RR : InstrItinClass;
def IIC_SSE_RCPP_RM : InstrItinClass;
def IIC_SSE_RCPS_RR : InstrItinClass;
@@ -640,3 +646,5 @@ include "X86ScheduleAtom.td"
include "X86SchedSandyBridge.td"
include "X86SchedHaswell.td"
include "X86ScheduleSLM.td"
+include "X86ScheduleBtVer2.td"
+
diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td b/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td
index c8820aa..4c559c9 100644
--- a/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td
+++ b/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td
@@ -224,6 +224,11 @@ def AtomItineraries : ProcessorItineraries<
InstrItinData<IIC_SSE_SQRTSD_RR, [InstrStage<62, [Port0, Port1]>] >,
InstrItinData<IIC_SSE_SQRTSD_RM, [InstrStage<62, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_RSQRTPS_RR, [InstrStage<9, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_RSQRTPS_RM, [InstrStage<10, [Port0, Port1]>] >,
+ InstrItinData<IIC_SSE_RSQRTSS_RR, [InstrStage<4, [Port0]>] >,
+ InstrItinData<IIC_SSE_RSQRTSS_RM, [InstrStage<4, [Port0]>] >,
+
InstrItinData<IIC_SSE_RCPP_RR, [InstrStage<9, [Port0, Port1]>] >,
InstrItinData<IIC_SSE_RCPP_RM, [InstrStage<10, [Port0, Port1]>] >,
InstrItinData<IIC_SSE_RCPS_RR, [InstrStage<4, [Port0]>] >,
diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleBtVer2.td b/contrib/llvm/lib/Target/X86/X86ScheduleBtVer2.td
new file mode 100644
index 0000000..ce1ece3
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ScheduleBtVer2.td
@@ -0,0 +1,341 @@
+//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the machine model for AMD btver2 (Jaguar) to support
+// instruction scheduling and other instruction cost heuristics. Based off AMD Software
+// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
+//
+//===----------------------------------------------------------------------===//
+
+def BtVer2Model : SchedMachineModel {
+ // All x86 instructions are modeled as a single micro-op, and btver2 can
+ // decode 2 instructions per cycle.
+ let IssueWidth = 2;
+ let MicroOpBufferSize = 64; // Retire Control Unit
+ let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
+ let HighLatency = 25;
+ let MispredictPenalty = 14; // Minimum branch misdirection penalty
+ let PostRAScheduler = 1;
+
+ // FIXME: SSE4/AVX is unimplemented. This flag is set to allow
+ // the scheduler to assign a default model to unrecognized opcodes.
+ let CompleteModel = 0;
+}
+
+let SchedModel = BtVer2Model in {
+
+// Jaguar can issue up to 6 micro-ops in one cycle
+def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
+def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
+def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
+def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
+def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
+def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
+
+// Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly
+def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>;
+
+// Integer Pipe Scheduler
+def JALU01 : ProcResGroup<[JALU0, JALU1]> {
+ let BufferSize=20;
+}
+
+// AGU Pipe Scheduler
+def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
+ let BufferSize=12;
+}
+
+// Fpu Pipe Scheduler
+def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
+ let BufferSize=18;
+}
+
+def JDiv : ProcResource<1>; // integer division
+def JMul : ProcResource<1>; // integer multiplication
+def JVALU0 : ProcResource<1>; // vector integer
+def JVALU1 : ProcResource<1>; // vector integer
+def JVIMUL : ProcResource<1>; // vector integer multiplication
+def JSTC : ProcResource<1>; // vector store/convert
+def JFPM : ProcResource<1>; // FP multiplication
+def JFPA : ProcResource<1>; // FP addition
+
+// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
+// cycles after the memory operand.
+def : ReadAdvance<ReadAfterLd, 3>;
+
+// Many SchedWrites are defined in pairs with and without a folded load.
+// Instructions with folded loads are usually micro-fused, so they only appear
+// as two micro-ops when dispatched by the schedulers.
+// This multiclass defines the resource usage for variants with and without
+// folded loads.
+multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
+ ProcResourceKind ExePort,
+ int Lat> {
+ // Register variant is using a single cycle on ExePort.
+ def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+ // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
+ // latency.
+ def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> {
+ let Latency = !add(Lat, 3);
+ }
+}
+
+multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
+ ProcResourceKind ExePort,
+ int Lat> {
+ // Register variant is using a single cycle on ExePort.
+ def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
+
+ // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
+ // latency.
+ def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> {
+ let Latency = !add(Lat, 5);
+ }
+}
+
+// A folded store needs a cycle on the SAGU for the store data.
+def : WriteRes<WriteRMW, [JSAGU]>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Arithmetic.
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResIntPair<WriteALU, JALU01, 1>;
+defm : JWriteResIntPair<WriteIMul, JALU1, 3>;
+
+def : WriteRes<WriteIMulH, [JALU1]> {
+ let Latency = 6;
+ let ResourceCycles = [4];
+}
+
+// FIXME 8/16 bit divisions
+def : WriteRes<WriteIDiv, [JALU1, JDiv]> {
+ let Latency = 25;
+ let ResourceCycles = [1, 25];
+}
+def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> {
+ let Latency = 41;
+ let ResourceCycles = [1, 1, 25];
+}
+
+// This is for simple LEAs with one or two input operands.
+// FIXME: SAGU 3-operand LEA
+def : WriteRes<WriteLEA, [JALU01]>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Integer shifts and rotates.
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResIntPair<WriteShift, JALU01, 1>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Loads, stores, and moves, not folded with other operations.
+// FIXME: Split x86 and SSE load/store/moves
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; }
+def : WriteRes<WriteStore, [JSAGU]>;
+def : WriteRes<WriteMove, [JAny]>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Idioms that clear a register, like xorps %xmm0, %xmm0.
+// These can often bypass execution ports completely.
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteZero, []>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Branches don't produce values, so they have no latency, but they still
+// consume resources. Indirect branches can fold loads.
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResIntPair<WriteJump, JALU01, 1>;
+
+////////////////////////////////////////////////////////////////////////////////
+// Floating point. This covers both scalar and vector operations.
+// FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions?
+// FIXME: Double precision latencies
+// FIXME: SS vs PS latencies
+// FIXME: ymm latencies
+////////////////////////////////////////////////////////////////////////////////
+
+defm : JWriteResFpuPair<WriteFAdd, JFPU0, 3>;
+defm : JWriteResFpuPair<WriteFMul, JFPU1, 2>;
+defm : JWriteResFpuPair<WriteFRcp, JFPU1, 2>;
+defm : JWriteResFpuPair<WriteFRsqrt, JFPU1, 2>;
+defm : JWriteResFpuPair<WriteFShuffle, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteFBlend, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>;
+
+def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> {
+ let Latency = 21;
+ let ResourceCycles = [1, 1, 21];
+}
+def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> {
+ let Latency = 26;
+ let ResourceCycles = [1, 1, 21];
+}
+
+def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> {
+ let Latency = 19;
+ let ResourceCycles = [1, 1, 19];
+}
+def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> {
+ let Latency = 24;
+ let ResourceCycles = [1, 1, 19];
+}
+
+// FIXME: integer pipes
+defm : JWriteResFpuPair<WriteCvtF2I, JFPU1, 3>; // Float -> Integer.
+defm : JWriteResFpuPair<WriteCvtI2F, JFPU1, 3>; // Integer -> Float.
+defm : JWriteResFpuPair<WriteCvtF2F, JFPU1, 3>; // Float -> Float size conversion.
+
+def : WriteRes<WriteFVarBlend, [JFPU01]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> {
+ let Latency = 7;
+ let ResourceCycles = [1, 2];
+}
+
+// Vector integer operations.
+defm : JWriteResFpuPair<WriteVecALU, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteVecShift, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteVecIMul, JFPU0, 2>;
+defm : JWriteResFpuPair<WriteShuffle, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteBlend, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteVecLogic, JFPU01, 1>;
+defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>;
+
+def : WriteRes<WriteVarBlend, [JFPU01]> {
+ let Latency = 2;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> {
+ let Latency = 7;
+ let ResourceCycles = [1, 2];
+}
+
+// FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2?
+def : WriteRes<WriteVarVecShift, [JFPU01]> {
+ let Latency = 1;
+ let ResourceCycles = [1];
+}
+def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> {
+ let Latency = 6;
+ let ResourceCycles = [1, 1];
+}
+
+def : WriteRes<WriteMPSAD, [JFPU0]> {
+ let Latency = 3;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> {
+ let Latency = 8;
+ let ResourceCycles = [1, 2];
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// String instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+// FIXME: approximate latencies + pipe dependencies
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WritePCmpIStrM, [JFPU01]> {
+ let Latency = 7;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> {
+ let Latency = 12;
+ let ResourceCycles = [1, 2];
+}
+
+// Packed Compare Explicit Length Strings, Return Mask
+def : WriteRes<WritePCmpEStrM, [JFPU01]> {
+ let Latency = 13;
+ let ResourceCycles = [5];
+}
+def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> {
+ let Latency = 18;
+ let ResourceCycles = [1, 5];
+}
+
+// Packed Compare Implicit Length Strings, Return Index
+def : WriteRes<WritePCmpIStrI, [JFPU01]> {
+ let Latency = 6;
+ let ResourceCycles = [2];
+}
+def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> {
+ let Latency = 11;
+ let ResourceCycles = [1, 2];
+}
+
+// Packed Compare Explicit Length Strings, Return Index
+def : WriteRes<WritePCmpEStrI, [JFPU01]> {
+ let Latency = 13;
+ let ResourceCycles = [5];
+}
+def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> {
+ let Latency = 18;
+ let ResourceCycles = [1, 5];
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// AES Instructions.
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> {
+ let Latency = 3;
+ let ResourceCycles = [1, 1];
+}
+def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> {
+ let Latency = 8;
+ let ResourceCycles = [1, 1, 1];
+}
+
+def : WriteRes<WriteAESIMC, [JVIMUL]> {
+ let Latency = 2;
+ let ResourceCycles = [1];
+}
+def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> {
+ let Latency = 7;
+ let ResourceCycles = [1, 1];
+}
+
+def : WriteRes<WriteAESKeyGen, [JVIMUL]> {
+ let Latency = 2;
+ let ResourceCycles = [1];
+}
+def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> {
+ let Latency = 7;
+ let ResourceCycles = [1, 1];
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Carry-less multiplication instructions.
+////////////////////////////////////////////////////////////////////////////////
+
+def : WriteRes<WriteCLMul, [JVIMUL]> {
+ let Latency = 2;
+ let ResourceCycles = [1];
+}
+def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> {
+ let Latency = 7;
+ let ResourceCycles = [1, 1];
+}
+
+// FIXME: pipe for system/microcode?
+def : WriteRes<WriteSystem, [JAny]> { let Latency = 100; }
+def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; }
+def : WriteRes<WriteFence, [JSAGU]>;
+def : WriteRes<WriteNop, []>;
+} // SchedModel
+
diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td b/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td
index 90d8587..f95d4fa 100644
--- a/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td
+++ b/contrib/llvm/lib/Target/X86/X86ScheduleSLM.td
@@ -101,6 +101,7 @@ def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
// Scalar and vector floating point.
defm : SMWriteResPair<WriteFAdd, FPC_RSV1, 3>;
defm : SMWriteResPair<WriteFRcp, FPC_RSV0, 5>;
+defm : SMWriteResPair<WriteFRsqrt, FPC_RSV0, 5>;
defm : SMWriteResPair<WriteFSqrt, FPC_RSV0, 15>;
defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
diff --git a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
index a83dd9b..821044f 100644
--- a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
@@ -29,6 +29,26 @@ X86SelectionDAGInfo::X86SelectionDAGInfo(const DataLayout &DL)
X86SelectionDAGInfo::~X86SelectionDAGInfo() {}
+bool X86SelectionDAGInfo::isBaseRegConflictPossible(
+ SelectionDAG &DAG, ArrayRef<unsigned> ClobberSet) const {
+ // We cannot use TRI->hasBasePointer() until *after* we select all basic
+ // blocks. Legalization may introduce new stack temporaries with large
+ // alignment requirements. Fall back to generic code if there are any
+ // dynamic stack adjustments (hopefully rare) and the base pointer would
+ // conflict if we had to use it.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ if (!MFI->hasVarSizedObjects() && !MFI->hasInlineAsmWithSPAdjust())
+ return false;
+
+ const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
+ unsigned BaseReg = TRI->getBaseRegister();
+ for (unsigned R : ClobberSet)
+ if (BaseReg == R)
+ return true;
+ return false;
+}
+
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
@@ -39,6 +59,13 @@ X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget = DAG.getTarget().getSubtarget<X86Subtarget>();
+#ifndef NDEBUG
+ // If the base register might conflict with our physical registers, bail out.
+ unsigned ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
+ X86::ECX, X86::EAX, X86::EDI};
+ assert(!isBaseRegConflictPossible(DAG, ClobberSet));
+#endif
+
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
@@ -201,12 +228,10 @@ X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
- // ESI might be used as a base pointer, in that case we can't simply overwrite
- // the register. Fall back to generic code.
- const X86RegisterInfo *TRI =
- static_cast<const X86RegisterInfo *>(DAG.getTarget().getRegisterInfo());
- if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
- TRI->getBaseRegister() == X86::ESI)
+ // If the base register might conflict with our physical registers, bail out.
+ unsigned ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
+ X86::ECX, X86::ESI, X86::EDI};
+ if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
MVT AVT;
diff --git a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h
index c12555a..eb7e0ed 100644
--- a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86SELECTIONDAGINFO_H
-#define X86SELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_X86_X86SELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_X86_X86SELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
@@ -23,6 +23,11 @@ class X86TargetMachine;
class X86Subtarget;
class X86SelectionDAGInfo : public TargetSelectionDAGInfo {
+ /// Returns true if it is possible for the base register to conflict with the
+ /// given set of clobbers for a memory intrinsic.
+ bool isBaseRegConflictPossible(SelectionDAG &DAG,
+ ArrayRef<unsigned> ClobberSet) const;
+
public:
explicit X86SelectionDAGInfo(const DataLayout &DL);
~X86SelectionDAGInfo();
diff --git a/contrib/llvm/lib/Target/X86/X86Subtarget.cpp b/contrib/llvm/lib/Target/X86/X86Subtarget.cpp
index 41551a1..e59395c 100644
--- a/contrib/llvm/lib/Target/X86/X86Subtarget.cpp
+++ b/contrib/llvm/lib/Target/X86/X86Subtarget.cpp
@@ -13,6 +13,7 @@
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
+#include "X86TargetMachine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
@@ -67,12 +68,7 @@ ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
if (GV->hasDLLImportStorageClass())
return X86II::MO_DLLIMPORT;
- // Determine whether this is a reference to a definition or a declaration.
- // Materializable GVs (in JIT lazy compilation mode) do not require an extra
- // load from stub.
- bool isDecl = GV->hasAvailableExternallyLinkage();
- if (GV->isDeclaration() && !GV->isMaterializable())
- isDecl = true;
+ bool isDecl = GV->isDeclarationForLinker();
// X86-64 in PIC mode.
if (isPICStyleRIPRel()) {
@@ -182,23 +178,7 @@ bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
-void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) {
- AttributeSet FnAttrs = MF->getFunction()->getAttributes();
- Attribute CPUAttr =
- FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
- Attribute FSAttr =
- FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
- std::string CPU =
- !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : "";
- std::string FS =
- !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
- if (!FS.empty()) {
- initializeEnvironment();
- resetSubtargetFeatures(CPU, FS);
- }
-}
-
-void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
+void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
std::string CPUName = CPU;
if (CPUName.empty())
CPUName = "generic";
@@ -277,56 +257,64 @@ void X86Subtarget::initializeEnvironment() {
HasVLX = false;
HasADX = false;
HasSHA = false;
+ HasSGX = false;
HasPRFCHW = false;
HasRDSEED = false;
+ HasSMAP = false;
IsBTMemSlow = false;
IsSHLDSlow = false;
IsUAMemFast = false;
+ IsUAMem32Slow = false;
HasVectorUAMem = false;
HasCmpxchg16b = false;
UseLeaForSP = false;
- HasSlowDivide = false;
+ HasSlowDivide32 = false;
+ HasSlowDivide64 = false;
PadShortFunctions = false;
CallRegIndirect = false;
LEAUsesAG = false;
SlowLEA = false;
SlowIncDec = false;
+ UseSqrtEst = false;
+ UseReciprocalEst = false;
stackAlignment = 4;
// FIXME: this is a known good value for Yonah. How about others?
MaxInlineSizeThreshold = 128;
}
-static std::string computeDataLayout(const X86Subtarget &ST) {
+static std::string computeDataLayout(const Triple &TT) {
// X86 is little endian
std::string Ret = "e";
- Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
+ Ret += DataLayout::getManglingComponent(TT);
// X86 and x32 have 32 bit pointers.
- if (ST.isTarget64BitILP32() || !ST.is64Bit())
+ if ((TT.isArch64Bit() &&
+ (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
+ !TT.isArch64Bit())
Ret += "-p:32:32";
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
- if (ST.is64Bit() || ST.isOSWindows() || ST.isTargetNaCl())
+ if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
Ret += "-i64:64";
else
Ret += "-f64:32:64";
// Some ABIs align long double to 128 bits, others to 32.
- if (ST.isTargetNaCl())
+ if (TT.isOSNaCl())
; // No f80
- else if (ST.is64Bit() || ST.isTargetDarwin())
+ else if (TT.isArch64Bit() || TT.isOSDarwin())
Ret += "-f80:128";
else
Ret += "-f80:32";
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
- if (ST.is64Bit())
+ if (TT.isArch64Bit())
Ret += "-n8:16:32:64";
else
Ret += "-n8:16:32";
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
- if (!ST.is64Bit() && ST.isOSWindows())
+ if (!TT.isArch64Bit() && TT.isOSWindows())
Ret += "-S32";
else
Ret += "-S128";
@@ -337,26 +325,45 @@ static std::string computeDataLayout(const X86Subtarget &ST) {
X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
- resetSubtargetFeatures(CPU, FS);
+ initSubtargetFeatures(CPU, FS);
return *this;
}
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, X86TargetMachine &TM,
+ const std::string &FS, const X86TargetMachine &TM,
unsigned StackAlignOverride)
: X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
PICStyle(PICStyles::None), TargetTriple(TT),
+ DL(computeDataLayout(TargetTriple)),
StackAlignOverride(StackAlignOverride),
In64BitMode(TargetTriple.getArch() == Triple::x86_64),
In32BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() != Triple::CODE16),
In16BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() == Triple::CODE16),
- DL(computeDataLayout(*this)), TSInfo(DL),
- InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
- FrameLowering(TargetFrameLowering::StackGrowsDown, getStackAlignment(),
- is64Bit() ? -8 : -4),
- JITInfo(hasSSE1()) {}
+ TSInfo(DL), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
+ TLInfo(TM), FrameLowering(TargetFrameLowering::StackGrowsDown,
+ getStackAlignment(), is64Bit() ? -8 : -4) {
+ // Determine the PICStyle based on the target selected.
+ if (TM.getRelocationModel() == Reloc::Static) {
+ // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
+ setPICStyle(PICStyles::None);
+ } else if (is64Bit()) {
+ // PIC in 64 bit mode is always rip-rel.
+ setPICStyle(PICStyles::RIPRel);
+ } else if (isTargetCOFF()) {
+ setPICStyle(PICStyles::None);
+ } else if (isTargetDarwin()) {
+ if (TM.getRelocationModel() == Reloc::PIC_)
+ setPICStyle(PICStyles::StubPIC);
+ else {
+ assert(TM.getRelocationModel() == Reloc::DynamicNoPIC);
+ setPICStyle(PICStyles::StubDynamicNoPIC);
+ }
+ } else if (isTargetELF()) {
+ setPICStyle(PICStyles::GOT);
+ }
+}
bool X86Subtarget::enableEarlyIfConversion() const {
return hasCMov() && X86EarlyIfConv;
diff --git a/contrib/llvm/lib/Target/X86/X86Subtarget.h b/contrib/llvm/lib/Target/X86/X86Subtarget.h
index 5f5df5e..754b5b9 100644
--- a/contrib/llvm/lib/Target/X86/X86Subtarget.h
+++ b/contrib/llvm/lib/Target/X86/X86Subtarget.h
@@ -11,13 +11,12 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86SUBTARGET_H
-#define X86SUBTARGET_H
+#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
+#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
#include "X86FrameLowering.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
-#include "X86JITInfo.h"
#include "X86SelectionDAGInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/CallingConv.h"
@@ -139,12 +138,18 @@ protected:
/// HasSHA - Processor has SHA instructions.
bool HasSHA;
+ /// HasSGX - Processor has SGX instructions.
+ bool HasSGX;
+
/// HasPRFCHW - Processor has PRFCHW instructions.
bool HasPRFCHW;
/// HasRDSEED - Processor has RDSEED instructions.
bool HasRDSEED;
+ /// HasSMAP - Processor has SMAP instructions.
+ bool HasSMAP;
+
/// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
bool IsBTMemSlow;
@@ -154,6 +159,9 @@ protected:
/// IsUAMemFast - True if unaligned memory access is fast.
bool IsUAMemFast;
+ /// True if unaligned 32-byte memory accesses are slow.
+ bool IsUAMem32Slow;
+
/// HasVectorUAMem - True if SIMD operations can have unaligned memory
/// operands. This may require setting a feature bit in the processor.
bool HasVectorUAMem;
@@ -166,9 +174,13 @@ protected:
/// the stack pointer. This is an optimization for Intel Atom processors.
bool UseLeaForSP;
- /// HasSlowDivide - True if smaller divides are significantly faster than
- /// full divides and should be used when possible.
- bool HasSlowDivide;
+ /// HasSlowDivide32 - True if 8-bit divisions are significantly faster than
+ /// 32-bit divisions and should be used when possible.
+ bool HasSlowDivide32;
+
+ /// HasSlowDivide64 - True if 16-bit divides are significantly faster than
+ /// 64-bit divisions and should be used when possible.
+ bool HasSlowDivide64;
/// PadShortFunctions - True if the short functions should be padded to prevent
/// a stall when returning too early.
@@ -187,6 +199,16 @@ protected:
/// SlowIncDec - True if INC and DEC instructions are slow when writing to flags
bool SlowIncDec;
+ /// Use the RSQRT* instructions to optimize square root calculations.
+ /// For this to be profitable, the cost of FSQRT and FDIV must be
+ /// substantially higher than normal FP ops like FADD and FMUL.
+ bool UseSqrtEst;
+
+ /// Use the RCP* instructions to optimize FP division calculations.
+ /// For this to be profitable, the cost of FDIV must be
+ /// substantially higher than normal FP ops like FADD and FMUL.
+ bool UseReciprocalEst;
+
/// Processor has AVX-512 PreFetch Instructions
bool HasPFI;
@@ -220,6 +242,9 @@ protected:
InstrItineraryData InstrItins;
private:
+ // Calculates type size & alignment
+ const DataLayout DL;
+
/// StackAlignOverride - Override the stack alignment.
unsigned StackAlignOverride;
@@ -232,30 +257,35 @@ private:
/// In16BitMode - True if compiling for 16-bit, false for 32-bit or 64-bit.
bool In16BitMode;
- // Calculates type size & alignment
- const DataLayout DL;
X86SelectionDAGInfo TSInfo;
// Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
// X86TargetLowering needs.
X86InstrInfo InstrInfo;
X86TargetLowering TLInfo;
X86FrameLowering FrameLowering;
- X86JITInfo JITInfo;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
X86Subtarget(const std::string &TT, const std::string &CPU,
- const std::string &FS, X86TargetMachine &TM,
+ const std::string &FS, const X86TargetMachine &TM,
unsigned StackAlignOverride);
- const X86TargetLowering *getTargetLowering() const { return &TLInfo; }
- const X86InstrInfo *getInstrInfo() const { return &InstrInfo; }
- const DataLayout *getDataLayout() const { return &DL; }
- const X86FrameLowering *getFrameLowering() const { return &FrameLowering; }
- const X86SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- X86JITInfo *getJITInfo() { return &JITInfo; }
+ const X86TargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const DataLayout *getDataLayout() const override { return &DL; }
+ const X86FrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const X86RegisterInfo *getRegisterInfo() const override {
+ return &getInstrInfo()->getRegisterInfo();
+ }
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
@@ -270,14 +300,12 @@ public:
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
- /// \brief Reset the features for the X86 target.
- void resetSubtargetFeatures(const MachineFunction *MF) override;
private:
/// \brief Initialize the full set of dependencies so we can use an initializer
/// list for X86Subtarget.
X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
void initializeEnvironment();
- void resetSubtargetFeatures(StringRef CPU, StringRef FS);
+ void initSubtargetFeatures(StringRef CPU, StringRef FS);
public:
/// Is this x86_64? (disregarding specific ABI / programming model)
bool is64Bit() const {
@@ -295,12 +323,13 @@ public:
/// Is this x86_64 with the ILP32 programming model (x32 ABI)?
bool isTarget64BitILP32() const {
return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
- TargetTriple.getOS() == Triple::NaCl);
+ TargetTriple.isOSNaCl());
}
/// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
bool isTarget64BitLP64() const {
- return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32);
+ return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
+ !TargetTriple.isOSNaCl());
}
PICStyles::Style getPICStyle() const { return PICStyle; }
@@ -341,20 +370,26 @@ public:
bool hasHLE() const { return HasHLE; }
bool hasADX() const { return HasADX; }
bool hasSHA() const { return HasSHA; }
+ bool hasSGX() const { return HasSGX; }
bool hasPRFCHW() const { return HasPRFCHW; }
bool hasRDSEED() const { return HasRDSEED; }
+ bool hasSMAP() const { return HasSMAP; }
bool isBTMemSlow() const { return IsBTMemSlow; }
bool isSHLDSlow() const { return IsSHLDSlow; }
bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
+ bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
bool hasVectorUAMem() const { return HasVectorUAMem; }
bool hasCmpxchg16b() const { return HasCmpxchg16b; }
bool useLeaForSP() const { return UseLeaForSP; }
- bool hasSlowDivide() const { return HasSlowDivide; }
+ bool hasSlowDivide32() const { return HasSlowDivide32; }
+ bool hasSlowDivide64() const { return HasSlowDivide64; }
bool padShortFunctions() const { return PadShortFunctions; }
bool callRegIndirect() const { return CallRegIndirect; }
bool LEAusesAG() const { return LEAUsesAG; }
bool slowLEA() const { return SlowLEA; }
bool slowIncDec() const { return SlowIncDec; }
+ bool useSqrtEst() const { return UseSqrtEst; }
+ bool useReciprocalEst() const { return UseReciprocalEst; }
bool hasCDI() const { return HasCDI; }
bool hasPFI() const { return HasPFI; }
bool hasERI() const { return HasERI; }
@@ -368,16 +403,13 @@ public:
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
- bool isTargetFreeBSD() const {
- return TargetTriple.getOS() == Triple::FreeBSD;
- }
- bool isTargetSolaris() const {
- return TargetTriple.getOS() == Triple::Solaris;
- }
+ bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
+ bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
+ bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
- bool isTargetMacho() const { return TargetTriple.isOSBinFormatMachO(); }
+ bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
@@ -400,6 +432,10 @@ public:
return TargetTriple.isWindowsGNUEnvironment();
}
+ bool isTargetWindowsItanium() const {
+ return TargetTriple.isWindowsItaniumEnvironment();
+ }
+
bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
bool isOSWindows() const { return TargetTriple.isOSWindows(); }
@@ -466,7 +502,9 @@ public:
/// getInstrItins = Return the instruction itineraries based on the
/// subtarget selection.
- const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
+ const InstrItineraryData *getInstrItineraryData() const override {
+ return &InstrItins;
+ }
AntiDepBreakMode getAntiDepBreakMode() const override {
return TargetSubtargetInfo::ANTIDEP_CRITICAL;
diff --git a/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp b/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp
index f12140f..5e6aa7d 100644
--- a/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp
+++ b/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp
@@ -13,7 +13,9 @@
#include "X86TargetMachine.h"
#include "X86.h"
+#include "X86TargetObjectFile.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
@@ -27,7 +29,23 @@ extern "C" void LLVMInitializeX86Target() {
RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
}
-void X86TargetMachine::anchor() { }
+static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
+ if (TT.isOSBinFormatMachO()) {
+ if (TT.getArch() == Triple::x86_64)
+ return make_unique<X86_64MachoTargetObjectFile>();
+ return make_unique<TargetLoweringObjectFileMachO>();
+ }
+
+ if (TT.isOSLinux())
+ return make_unique<X86LinuxTargetObjectFile>();
+ if (TT.isOSBinFormatELF())
+ return make_unique<TargetLoweringObjectFileELF>();
+ if (TT.isKnownWindowsMSVCEnvironment())
+ return make_unique<X86WindowsTargetObjectFile>();
+ if (TT.isOSBinFormatCOFF())
+ return make_unique<TargetLoweringObjectFileCOFF>();
+ llvm_unreachable("unknown subtarget type");
+}
/// X86TargetMachine ctor - Create an X86 target.
///
@@ -36,27 +54,8 @@ X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(createTLOF(Triple(getTargetTriple()))),
Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
- // Determine the PICStyle based on the target selected.
- if (getRelocationModel() == Reloc::Static) {
- // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
- Subtarget.setPICStyle(PICStyles::None);
- } else if (Subtarget.is64Bit()) {
- // PIC in 64 bit mode is always rip-rel.
- Subtarget.setPICStyle(PICStyles::RIPRel);
- } else if (Subtarget.isTargetCOFF()) {
- Subtarget.setPICStyle(PICStyles::None);
- } else if (Subtarget.isTargetDarwin()) {
- if (getRelocationModel() == Reloc::PIC_)
- Subtarget.setPICStyle(PICStyles::StubPIC);
- else {
- assert(getRelocationModel() == Reloc::DynamicNoPIC);
- Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
- }
- } else if (Subtarget.isTargetELF()) {
- Subtarget.setPICStyle(PICStyles::GOT);
- }
-
// default to hard float ABI
if (Options.FloatABIType == FloatABI::Default)
this->Options.FloatABIType = FloatABI::Hard;
@@ -71,6 +70,47 @@ X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
initAsmInfo();
}
+X86TargetMachine::~X86TargetMachine() {}
+
+const X86Subtarget *
+X86TargetMachine::getSubtargetImpl(const Function &F) const {
+ AttributeSet FnAttrs = F.getAttributes();
+ Attribute CPUAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
+ Attribute FSAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
+
+ std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
+ ? CPUAttr.getValueAsString().str()
+ : TargetCPU;
+ std::string FS = !FSAttr.hasAttribute(Attribute::None)
+ ? FSAttr.getValueAsString().str()
+ : TargetFS;
+
+ // FIXME: This is related to the code below to reset the target options,
+ // we need to know whether or not the soft float flag is set on the
+ // function before we can generate a subtarget. We also need to use
+ // it as a key for the subtarget since that can be the only difference
+ // between two functions.
+ Attribute SFAttr =
+ FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
+ bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
+ ? SFAttr.getValueAsString() == "true"
+ : Options.UseSoftFloat;
+
+ auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
+ : "use-soft-float=false")];
+ if (!I) {
+ // This needs to be done before we create a new subtarget since any
+ // creation will depend on the TM and the code generation flags on the
+ // function that reside in TargetOptions.
+ resetTargetOptions(F);
+ I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
+ Options.StackAlignmentOverride);
+ }
+ return I.get();
+}
+
//===----------------------------------------------------------------------===//
// Command line options for x86
//===----------------------------------------------------------------------===//
@@ -114,9 +154,8 @@ public:
void addIRPasses() override;
bool addInstSelector() override;
bool addILPOpts() override;
- bool addPreRegAlloc() override;
- bool addPostRegAlloc() override;
- bool addPreEmitPass() override;
+ void addPostRegAlloc() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -125,7 +164,7 @@ TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
}
void X86PassConfig::addIRPasses() {
- addPass(createX86AtomicExpandPass(&getX86TargetMachine()));
+ addPass(createAtomicExpandPass(&getX86TargetMachine()));
TargetPassConfig::addIRPasses();
}
@@ -148,39 +187,19 @@ bool X86PassConfig::addILPOpts() {
return true;
}
-bool X86PassConfig::addPreRegAlloc() {
- return false; // -print-machineinstr shouldn't print after this.
-}
-
-bool X86PassConfig::addPostRegAlloc() {
+void X86PassConfig::addPostRegAlloc() {
addPass(createX86FloatingPointStackifierPass());
- return true; // -print-machineinstr should print after this.
}
-bool X86PassConfig::addPreEmitPass() {
- bool ShouldPrint = false;
- if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2()) {
+void X86PassConfig::addPreEmitPass() {
+ if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2())
addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
- ShouldPrint = true;
- }
- if (UseVZeroUpper) {
+ if (UseVZeroUpper)
addPass(createX86IssueVZeroUpperPass());
- ShouldPrint = true;
- }
if (getOptLevel() != CodeGenOpt::None) {
addPass(createX86PadShortFunctions());
addPass(createX86FixupLEAs());
- ShouldPrint = true;
}
-
- return ShouldPrint;
-}
-
-bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) {
- PM.add(createX86JITCodeEmitterPass(*this, JCE));
-
- return false;
}
diff --git a/contrib/llvm/lib/Target/X86/X86TargetMachine.h b/contrib/llvm/lib/Target/X86/X86TargetMachine.h
index 41d5157..916278c 100644
--- a/contrib/llvm/lib/Target/X86/X86TargetMachine.h
+++ b/contrib/llvm/lib/Target/X86/X86TargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef X86TARGETMACHINE_H
-#define X86TARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_X86_X86TARGETMACHINE_H
+#define LLVM_LIB_TARGET_X86_X86TARGETMACHINE_H
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/IR/DataLayout.h"
@@ -23,46 +23,29 @@ namespace llvm {
class StringRef;
class X86TargetMachine final : public LLVMTargetMachine {
- virtual void anchor();
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
X86Subtarget Subtarget;
+ mutable StringMap<std::unique_ptr<X86Subtarget>> SubtargetMap;
+
public:
X86TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
+ ~X86TargetMachine() override;
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
- const X86InstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const TargetFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
- X86JITInfo *getJITInfo() override { return Subtarget.getJITInfo(); }
const X86Subtarget *getSubtargetImpl() const override { return &Subtarget; }
- const X86TargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
- const X86RegisterInfo *getRegisterInfo() const override {
- return &getInstrInfo()->getRegisterInfo();
- }
- const InstrItineraryData *getInstrItineraryData() const override {
- return &getSubtargetImpl()->getInstrItineraryData();
- }
+ const X86Subtarget *getSubtargetImpl(const Function &F) const override;
/// \brief Register X86 analysis passes with a pass manager.
void addAnalysisPasses(PassManagerBase &PM) override;
// Set up the pass pipeline.
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
-
- bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h
index 4a10b7e..6a6988a 100644
--- a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h
+++ b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_X86_TARGETOBJECTFILE_H
-#define LLVM_TARGET_X86_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_X86_X86TARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_X86_X86TARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
index c961e2f..67488f7 100644
--- a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
@@ -48,8 +48,8 @@ public:
}
X86TTI(const X86TargetMachine *TM)
- : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
- TLI(TM->getTargetLowering()) {
+ : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
+ TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializeX86TTIPass(*PassRegistry::getPassRegistry());
}
@@ -82,9 +82,10 @@ public:
unsigned getNumberOfRegisters(bool Vector) const override;
unsigned getRegisterBitWidth(bool Vector) const override;
- unsigned getMaximumUnrollFactor() const override;
+ unsigned getMaxInterleaveFactor() const override;
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
- OperandValueKind) const override;
+ OperandValueKind, OperandValueProperties,
+ OperandValueProperties) const override;
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const override;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
@@ -110,6 +111,8 @@ public:
Type *Ty) const override;
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
+ bool isLegalMaskedLoad (Type *DataType, int Consecutive) const override;
+ bool isLegalMaskedStore(Type *DataType, int Consecutive) const override;
/// @}
};
@@ -166,7 +169,7 @@ unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
}
-unsigned X86TTI::getMaximumUnrollFactor() const {
+unsigned X86TTI::getMaxInterleaveFactor() const {
if (ST->isAtom())
return 1;
@@ -178,15 +181,37 @@ unsigned X86TTI::getMaximumUnrollFactor() const {
return 2;
}
-unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind Op1Info,
- OperandValueKind Op2Info) const {
+unsigned X86TTI::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
+ OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo) const {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
+ if (ISD == ISD::SDIV &&
+ Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ // On X86, vector signed division by constants power-of-two are
+ // normally expanded to the sequence SRA + SRL + ADD + SRA.
+ // The OperandValue properties many not be same as that of previous
+ // operation;conservatively assume OP_None.
+ unsigned Cost =
+ 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+
+ return Cost;
+ }
+
static const CostTblEntry<MVT::SimpleValueType>
AVX2UniformConstCostTable[] = {
{ ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
@@ -202,6 +227,15 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
return LT.first * AVX2UniformConstCostTable[Idx].Cost;
}
+ static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
+ { ISD::SHL, MVT::v16i32, 1 },
+ { ISD::SRL, MVT::v16i32, 1 },
+ { ISD::SRA, MVT::v16i32, 1 },
+ { ISD::SHL, MVT::v8i64, 1 },
+ { ISD::SRL, MVT::v8i64, 1 },
+ { ISD::SRA, MVT::v8i64, 1 },
+ };
+
static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
// Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
// customize them to detect the cases where shift amount is a scalar one.
@@ -237,6 +271,11 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
{ ISD::UDIV, MVT::v4i64, 4*20 },
};
+ if (ST->hasAVX512()) {
+ int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * AVX512CostTable[Idx].Cost;
+ }
// Look for AVX2 lowering tricks.
if (ST->hasAVX2()) {
if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
@@ -315,7 +354,7 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
{ ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
{ ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
{ ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
- { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
+ { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
{ ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
{ ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
@@ -488,7 +527,7 @@ unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
};
-
+
if (ST->hasSSSE3()) {
int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
if (Idx != -1)
@@ -501,7 +540,7 @@ unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
-
+
// This is expanded into a long sequence of four extract + four insert.
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
@@ -509,7 +548,7 @@ unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
};
- // Fall-back (SSE3 and SSE2).
+ // Fall-back (SSE3 and SSE2).
int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
if (Idx != -1)
return LT.first * SSEAltShuffleTbl[Idx].Cost;
@@ -541,7 +580,7 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
// There are faster sequences for float conversions.
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
@@ -557,6 +596,45 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
return LTSrc.first * SSE2ConvTbl[Idx].Cost;
}
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVX512ConversionTbl[] = {
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
+ { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
+ { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 },
+
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
+ { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 },
+
+ // v16i1 -> v16i32 - load + broadcast
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
+
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
+
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
+ };
+
+ if (ST->hasAVX512()) {
+ int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
+ LTSrc.second);
+ if (Idx != -1)
+ return AVX512ConversionTbl[Idx].Cost;
+ }
EVT SrcTy = TLI->getValueType(Src);
EVT DstTy = TLI->getValueType(Dst);
@@ -589,6 +667,11 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
+
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
+ { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
+
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
};
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
@@ -715,6 +798,19 @@ unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
{ ISD::SETCC, MVT::v32i8, 1 },
};
+ static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
+ { ISD::SETCC, MVT::v8i64, 1 },
+ { ISD::SETCC, MVT::v16i32, 1 },
+ { ISD::SETCC, MVT::v8f64, 1 },
+ { ISD::SETCC, MVT::v16f32, 1 },
+ };
+
+ if (ST->hasAVX512()) {
+ int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX512CostTbl[Idx].Cost;
+ }
+
if (ST->hasAVX2()) {
int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
if (Idx != -1)
@@ -836,17 +932,17 @@ unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
bool IsPairwise) const {
-
+
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
-
+
MVT MTy = LT.second;
-
+
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
-
- // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
- // and make it as the cost.
-
+
+ // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
+ // and make it as the cost.
+
static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
{ ISD::FADD, MVT::v2f64, 2 },
{ ISD::FADD, MVT::v4f32, 4 },
@@ -854,7 +950,7 @@ unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
{ ISD::ADD, MVT::v8i16, 5 },
};
-
+
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
{ ISD::FADD, MVT::v4f32, 4 },
{ ISD::FADD, MVT::v4f64, 5 },
@@ -873,7 +969,7 @@ unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
{ ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
};
-
+
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
{ ISD::FADD, MVT::v4f32, 3 },
{ ISD::FADD, MVT::v4f64, 3 },
@@ -884,14 +980,14 @@ unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
{ ISD::ADD, MVT::v8i16, 4 },
{ ISD::ADD, MVT::v8i32, 5 },
};
-
+
if (IsPairwise) {
if (ST->hasAVX()) {
int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
if (Idx != -1)
return LT.first * AVX1CostTblPairWise[Idx].Cost;
}
-
+
if (ST->hasSSE42()) {
int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
if (Idx != -1)
@@ -903,7 +999,7 @@ unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
if (Idx != -1)
return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
}
-
+
if (ST->hasSSE42()) {
int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
if (Idx != -1)
@@ -1062,3 +1158,19 @@ unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
}
return X86TTI::getIntImmCost(Imm, Ty);
}
+
+bool X86TTI::isLegalMaskedLoad(Type *DataTy, int Consecutive) const {
+ int DataWidth = DataTy->getPrimitiveSizeInBits();
+
+ // Todo: AVX512 allows gather/scatter, works with strided and random as well
+ if ((DataWidth < 32) || (Consecutive == 0))
+ return false;
+ if (ST->hasAVX512() || ST->hasAVX2())
+ return true;
+ return false;
+}
+
+bool X86TTI::isLegalMaskedStore(Type *DataType, int Consecutive) const {
+ return isLegalMaskedLoad(DataType, Consecutive);
+}
+
diff --git a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
index 0bb5f99..5c01f3e1 100644
--- a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
+++ b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
@@ -250,20 +250,24 @@ bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
if (!ST.hasAVX() || ST.hasAVX512())
return false;
- TII = MF.getTarget().getInstrInfo();
+ TII = MF.getSubtarget().getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
EverMadeChange = false;
+ bool FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
+
// Fast check: if the function doesn't use any ymm registers, we don't need
// to insert any VZEROUPPER instructions. This is constant-time, so it is
// cheap in the common case of no ymm use.
- bool YMMUsed = false;
- const TargetRegisterClass *RC = &X86::VR256RegClass;
- for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
- i != e; i++) {
- if (!MRI.reg_nodbg_empty(*i)) {
- YMMUsed = true;
- break;
+ bool YMMUsed = FnHasLiveInYmm;
+ if (!YMMUsed) {
+ const TargetRegisterClass *RC = &X86::VR256RegClass;
+ for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
+ i++) {
+ if (!MRI.reg_nodbg_empty(*i)) {
+ YMMUsed = true;
+ break;
+ }
}
}
if (!YMMUsed) {
@@ -282,7 +286,7 @@ bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
// If any YMM regs are live in to this function, add the entry block to the
// DirtySuccessors list
- if (checkFnHasLiveInYmm(MRI))
+ if (FnHasLiveInYmm)
addDirtySuccessor(MF.front());
// Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
diff --git a/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp b/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp
index 7fef796..640e6b0 100644
--- a/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp
+++ b/contrib/llvm/lib/Target/XCore/Disassembler/XCoreDisassembler.cpp
@@ -19,7 +19,6 @@
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
@@ -36,47 +35,35 @@ public:
XCoreDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
MCDisassembler(STI, Ctx) {}
- /// \brief See MCDisassembler.
- virtual DecodeStatus getInstruction(MCInst &instr,
- uint64_t &size,
- const MemoryObject &region,
- uint64_t address,
- raw_ostream &vStream,
- raw_ostream &cStream) const override;
-
+ DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &VStream,
+ raw_ostream &CStream) const override;
};
}
-static bool readInstruction16(const MemoryObject &region,
- uint64_t address,
- uint64_t &size,
- uint16_t &insn) {
- uint8_t Bytes[4];
-
+static bool readInstruction16(ArrayRef<uint8_t> Bytes, uint64_t Address,
+ uint64_t &Size, uint16_t &Insn) {
// We want to read exactly 2 Bytes of data.
- if (region.readBytes(address, 2, Bytes) == -1) {
- size = 0;
+ if (Bytes.size() < 2) {
+ Size = 0;
return false;
}
// Encoded as a little-endian 16-bit word in the stream.
- insn = (Bytes[0] << 0) | (Bytes[1] << 8);
+ Insn = (Bytes[0] << 0) | (Bytes[1] << 8);
return true;
}
-static bool readInstruction32(const MemoryObject &region,
- uint64_t address,
- uint64_t &size,
- uint32_t &insn) {
- uint8_t Bytes[4];
-
+static bool readInstruction32(ArrayRef<uint8_t> Bytes, uint64_t Address,
+ uint64_t &Size, uint32_t &Insn) {
// We want to read exactly 4 Bytes of data.
- if (region.readBytes(address, 4, Bytes) == -1) {
- size = 0;
+ if (Bytes.size() < 4) {
+ Size = 0;
return false;
}
// Encoded as a little-endian 32-bit word in the stream.
- insn = (Bytes[0] << 0) | (Bytes[1] << 8) | (Bytes[2] << 16) |
- (Bytes[3] << 24);
+ Insn =
+ (Bytes[0] << 0) | (Bytes[1] << 8) | (Bytes[2] << 16) | (Bytes[3] << 24);
return true;
}
@@ -748,16 +735,12 @@ DecodeL4RSrcDstSrcDstInstruction(MCInst &Inst, unsigned Insn, uint64_t Address,
return S;
}
-MCDisassembler::DecodeStatus
-XCoreDisassembler::getInstruction(MCInst &instr,
- uint64_t &Size,
- const MemoryObject &Region,
- uint64_t Address,
- raw_ostream &vStream,
- raw_ostream &cStream) const {
+MCDisassembler::DecodeStatus XCoreDisassembler::getInstruction(
+ MCInst &instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &vStream, raw_ostream &cStream) const {
uint16_t insn16;
- if (!readInstruction16(Region, Address, Size, insn16)) {
+ if (!readInstruction16(Bytes, Address, Size, insn16)) {
return Fail;
}
@@ -771,7 +754,7 @@ XCoreDisassembler::getInstruction(MCInst &instr,
uint32_t insn32;
- if (!readInstruction32(Region, Address, Size, insn32)) {
+ if (!readInstruction32(Bytes, Address, Size, insn32)) {
return Fail;
}
diff --git a/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h b/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h
index 98e7c98..78521fd 100644
--- a/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h
+++ b/contrib/llvm/lib/Target/XCore/InstPrinter/XCoreInstPrinter.h
@@ -13,8 +13,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef XCOREINSTPRINTER_H
-#define XCOREINSTPRINTER_H
+#ifndef LLVM_LIB_TARGET_XCORE_INSTPRINTER_XCOREINSTPRINTER_H
+#define LLVM_LIB_TARGET_XCORE_INSTPRINTER_XCOREINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
namespace llvm {
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp
index 5665911..f2d2b37 100644
--- a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.cpp
@@ -28,7 +28,6 @@ XCoreMCAsmInfo::XCoreMCAsmInfo(StringRef TT) {
ProtectedVisibilityAttr = MCSA_Invalid;
// Debug
- HasLEB128 = true;
ExceptionsType = ExceptionHandling::DwarfCFI;
DwarfRegNumForCFI = true;
}
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h
index da2689a..26df211 100644
--- a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCAsmInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCORETARGETASMINFO_H
-#define XCORETARGETASMINFO_H
+#ifndef LLVM_LIB_TARGET_XCORE_MCTARGETDESC_XCOREMCASMINFO_H
+#define LLVM_LIB_TARGET_XCORE_MCTARGETDESC_XCOREMCASMINFO_H
#include "llvm/MC/MCAsmInfoELF.h"
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp
index d54e94f..4073549 100644
--- a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.cpp
@@ -99,10 +99,10 @@ class XCoreTargetAsmStreamer : public XCoreTargetStreamer {
formatted_raw_ostream &OS;
public:
XCoreTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS);
- virtual void emitCCTopData(StringRef Name) override;
- virtual void emitCCTopFunction(StringRef Name) override;
- virtual void emitCCBottomData(StringRef Name) override;
- virtual void emitCCBottomFunction(StringRef Name) override;
+ void emitCCTopData(StringRef Name) override;
+ void emitCCTopFunction(StringRef Name) override;
+ void emitCCBottomData(StringRef Name) override;
+ void emitCCBottomFunction(StringRef Name) override;
};
XCoreTargetAsmStreamer::XCoreTargetAsmStreamer(MCStreamer &S,
diff --git a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h
index a255adb..0ff5961 100644
--- a/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h
+++ b/contrib/llvm/lib/Target/XCore/MCTargetDesc/XCoreMCTargetDesc.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREMCTARGETDESC_H
-#define XCOREMCTARGETDESC_H
+#ifndef LLVM_LIB_TARGET_XCORE_MCTARGETDESC_XCOREMCTARGETDESC_H
+#define LLVM_LIB_TARGET_XCORE_MCTARGETDESC_XCOREMCTARGETDESC_H
namespace llvm {
class Target;
diff --git a/contrib/llvm/lib/Target/XCore/XCore.h b/contrib/llvm/lib/Target/XCore/XCore.h
index d707edc..140ba2a 100644
--- a/contrib/llvm/lib/Target/XCore/XCore.h
+++ b/contrib/llvm/lib/Target/XCore/XCore.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef TARGET_XCORE_H
-#define TARGET_XCORE_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCORE_H
+#define LLVM_LIB_TARGET_XCORE_XCORE_H
#include "MCTargetDesc/XCoreMCTargetDesc.h"
#include "llvm/Target/TargetMachine.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp b/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp
index e98d4f9..82e4e36 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreAsmPrinter.cpp
@@ -117,7 +117,7 @@ void XCoreAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
EmitSpecialLLVMGlobal(GV))
return;
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
OutStreamer.SwitchSection(
getObjFileLowering().SectionForGlobal(GV, *Mang, TM));
@@ -210,7 +210,7 @@ printInlineJT(const MachineInstr *MI, int opNum, raw_ostream &O,
void XCoreAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O) {
- const DataLayout *DL = TM.getDataLayout();
+ const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
diff --git a/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp
index e694736..7c74340 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.cpp
@@ -16,6 +16,7 @@
#include "XCore.h"
#include "XCoreInstrInfo.h"
#include "XCoreMachineFunctionInfo.h"
+#include "XCoreSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -226,7 +227,7 @@ void XCoreFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineModuleInfo *MMI = &MF.getMMI();
const MCRegisterInfo *MRI = MMI->getContext().getRegisterInfo();
const XCoreInstrInfo &TII =
- *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const XCoreInstrInfo *>(MF.getSubtarget().getInstrInfo());
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
@@ -262,7 +263,8 @@ void XCoreFrameLowering::emitPrologue(MachineFunction &MF) const {
MBB.addLiveIn(XCore::LR);
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opcode));
MIB.addImm(Adjusted);
- MIB->addRegisterKilled(XCore::LR, MF.getTarget().getRegisterInfo(), true);
+ MIB->addRegisterKilled(XCore::LR, MF.getSubtarget().getRegisterInfo(),
+ true);
if (emitFrameMoves) {
EmitDefCfaOffset(MBB, MBBI, dl, TII, MMI, Adjusted*4);
unsigned DRegNum = MRI->getDwarfRegNum(XCore::LR, true);
@@ -310,11 +312,10 @@ void XCoreFrameLowering::emitPrologue(MachineFunction &MF) const {
if (emitFrameMoves) {
// Frame moves for callee saved.
- auto SpillLabels = XFI->getSpillLabels();
- for (unsigned I = 0, E = SpillLabels.size(); I != E; ++I) {
- MachineBasicBlock::iterator Pos = SpillLabels[I].first;
+ for (const auto &SpillLabel : XFI->getSpillLabels()) {
+ MachineBasicBlock::iterator Pos = SpillLabel.first;
++Pos;
- CalleeSavedInfo &CSI = SpillLabels[I].second;
+ const CalleeSavedInfo &CSI = SpillLabel.second;
int Offset = MFI->getObjectOffset(CSI.getFrameIdx());
unsigned DRegNum = MRI->getDwarfRegNum(CSI.getReg(), true);
EmitCfiOffset(MBB, Pos, dl, TII, MMI, DRegNum, Offset);
@@ -323,7 +324,8 @@ void XCoreFrameLowering::emitPrologue(MachineFunction &MF) const {
// The unwinder requires stack slot & CFI offsets for the exception info.
// We do not save/spill these registers.
SmallVector<StackSlotInfo,2> SpillList;
- GetEHSpillList(SpillList, MFI, XFI, MF.getTarget().getTargetLowering());
+ GetEHSpillList(SpillList, MFI, XFI,
+ MF.getSubtarget().getTargetLowering());
assert(SpillList.size()==2 && "Unexpected SpillList size");
EmitCfiOffset(MBB, MBBI, dl, TII, MMI,
MRI->getDwarfRegNum(SpillList[0].Reg, true),
@@ -340,7 +342,7 @@ void XCoreFrameLowering::emitEpilogue(MachineFunction &MF,
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
const XCoreInstrInfo &TII =
- *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const XCoreInstrInfo *>(MF.getSubtarget().getInstrInfo());
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
DebugLoc dl = MBBI->getDebugLoc();
unsigned RetOpcode = MBBI->getOpcode();
@@ -355,7 +357,7 @@ void XCoreFrameLowering::emitEpilogue(MachineFunction &MF,
// 'Restore' the exception info the unwinder has placed into the stack
// slots.
SmallVector<StackSlotInfo,2> SpillList;
- GetEHSpillList(SpillList, MFI, XFI, MF.getTarget().getTargetLowering());
+ GetEHSpillList(SpillList, MFI, XFI, MF.getSubtarget().getTargetLowering());
RestoreSpillList(MBB, MBBI, dl, TII, RemainingAdj, SpillList);
// Return to the landing pad.
@@ -413,7 +415,7 @@ spillCalleeSavedRegisters(MachineBasicBlock &MBB,
return true;
MachineFunction *MF = MBB.getParent();
- const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
XCoreFunctionInfo *XFI = MF->getInfo<XCoreFunctionInfo>();
bool emitFrameMoves = XCoreRegisterInfo::needsFrameMoves(*MF);
@@ -446,7 +448,7 @@ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const{
MachineFunction *MF = MBB.getParent();
- const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
bool AtStart = MI == MBB.begin();
MachineBasicBlock::iterator BeforeI = MI;
if (!AtStart)
@@ -479,7 +481,7 @@ void XCoreFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const XCoreInstrInfo &TII =
- *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const XCoreInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (!hasReservedCallFrame(MF)) {
// Turn the adjcallstackdown instruction into 'extsp <amt>' and the
// adjcallstackup instruction into 'ldaw sp, sp[<amt>]'
diff --git a/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h
index e4f806a..7b169c2 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreFrameLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREFRAMEINFO_H
-#define XCOREFRAMEINFO_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCOREFRAMELOWERING_H
+#define LLVM_LIB_TARGET_XCORE_XCOREFRAMELOWERING_H
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
@@ -59,4 +59,4 @@ namespace llvm {
};
}
-#endif // XCOREFRAMEINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp b/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp
index 30c7b59..77292c4 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreFrameToArgsOffsetElim.cpp
@@ -13,6 +13,7 @@
#include "XCore.h"
#include "XCoreInstrInfo.h"
+#include "XCoreSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -43,7 +44,7 @@ FunctionPass *llvm::createXCoreFrameToArgsOffsetEliminationPass() {
bool XCoreFTAOElim::runOnMachineFunction(MachineFunction &MF) {
const XCoreInstrInfo &TII =
- *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const XCoreInstrInfo *>(MF.getSubtarget().getInstrInfo());
unsigned StackSize = MF.getFrameInfo()->getStackSize();
for (MachineFunction::iterator MFI = MF.begin(), E = MF.end(); MFI != E;
++MFI) {
diff --git a/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp
index be7ef64..51e4d03 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.cpp
@@ -69,7 +69,7 @@ getTargetNodeName(unsigned Opcode) const
}
XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM)
- : TargetLowering(TM, new XCoreTargetObjectFile()), TM(TM),
+ : TargetLowering(TM), TM(TM),
Subtarget(TM.getSubtarget<XCoreSubtarget>()) {
// Set up the register classes.
@@ -127,12 +127,14 @@ XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM)
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
// Loads
- setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
+ }
// Custom expand misaligned loads / stores.
setOperationAction(ISD::LOAD, MVT::i32, Custom);
@@ -426,7 +428,9 @@ LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
"Unexpected extension type");
assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
- if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
+ if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
+ LD->getAddressSpace(),
+ LD->getAlignment()))
return SDValue();
unsigned ABIAlignment = getDataLayout()->
@@ -461,14 +465,15 @@ LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (LD->getAlignment() == 2) {
SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
BasePtr, LD->getPointerInfo(), MVT::i16,
- LD->isVolatile(), LD->isNonTemporal(), 2);
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), 2);
SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(2, MVT::i32));
SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
HighAddr,
LD->getPointerInfo().getWithOffset(2),
MVT::i16, LD->isVolatile(),
- LD->isNonTemporal(), 2);
+ LD->isNonTemporal(), LD->isInvariant(), 2);
SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
DAG.getConstant(16, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
@@ -504,7 +509,9 @@ LowerSTORE(SDValue Op, SelectionDAG &DAG) const
StoreSDNode *ST = cast<StoreSDNode>(Op);
assert(!ST->isTruncatingStore() && "Unexpected store type");
assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
- if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
+ if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
+ ST->getAddressSpace(),
+ ST->getAlignment())) {
return SDValue();
}
unsigned ABIAlignment = getDataLayout()->
@@ -800,7 +807,8 @@ SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
- const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
RegInfo->getFrameRegister(MF), MVT::i32);
}
@@ -846,7 +854,8 @@ LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
// Absolute SP = (FP + FrameToArgs) + Offset
- const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
+ const TargetRegisterInfo *RegInfo =
+ getTargetMachine().getSubtargetImpl()->getRegisterInfo();
SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
RegInfo->getFrameRegister(MF), MVT::i32);
SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
@@ -969,7 +978,7 @@ LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
N->getBasePtr(), N->getPointerInfo(),
N->isVolatile(), N->isNonTemporal(),
N->isInvariant(), N->getAlignment(),
- N->getTBAAInfo(), N->getRanges());
+ N->getAAInfo(), N->getRanges());
}
if (N->getMemoryVT() == MVT::i16) {
if (N->getAlignment() < 2)
@@ -977,13 +986,13 @@ LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
N->getBasePtr(), N->getPointerInfo(), MVT::i16,
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment(), N->getTBAAInfo());
+ N->isInvariant(), N->getAlignment(), N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i8)
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
N->getBasePtr(), N->getPointerInfo(), MVT::i8,
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment(), N->getTBAAInfo());
+ N->isInvariant(), N->getAlignment(), N->getAAInfo());
return SDValue();
}
@@ -999,7 +1008,7 @@ LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(),
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment(), N->getTBAAInfo());
+ N->getAlignment(), N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i16) {
if (N->getAlignment() < 2)
@@ -1007,13 +1016,13 @@ LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(), MVT::i16,
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment(), N->getTBAAInfo());
+ N->getAlignment(), N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i8)
return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(), MVT::i8,
N->isVolatile(), N->isNonTemporal(),
- N->getAlignment(), N->getTBAAInfo());
+ N->getAlignment(), N->getAAInfo());
return SDValue();
}
@@ -1118,8 +1127,8 @@ XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
// The ABI dictates there should be one stack slot available to the callee
// on function entry (for saving lr).
@@ -1129,8 +1138,8 @@ XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
SmallVector<CCValAssign, 16> RVLocs;
// Analyze return values to determine the number of bytes of stack required.
- CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
@@ -1284,8 +1293,8 @@ XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
@@ -1443,7 +1452,7 @@ CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
return false;
if (CCInfo.getNextStackOffset() != 0 && isVarArg)
@@ -1467,8 +1476,8 @@ XCoreTargetLowering::LowerReturn(SDValue Chain,
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- getTargetMachine(), RVLocs, *DAG.getContext());
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
// Analyze return values.
if (!isVarArg)
@@ -1541,7 +1550,8 @@ XCoreTargetLowering::LowerReturn(SDValue Chain,
MachineBasicBlock *
XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
- const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
+ const TargetInstrInfo &TII =
+ *getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((MI->getOpcode() == XCore::SELECT_CC) &&
"Unexpected instr type to insert");
@@ -1803,7 +1813,9 @@ SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
// Replace unaligned store of unaligned load with memmove.
StoreSDNode *ST = cast<StoreSDNode>(N);
if (!DCI.isBeforeLegalize() ||
- allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
+ allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
+ ST->getAddressSpace(),
+ ST->getAlignment()) ||
ST->isVolatile() || ST->isIndexed()) {
break;
}
@@ -1912,7 +1924,7 @@ XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
if (Ty->getTypeID() == Type::VoidTyID)
return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
- const DataLayout *TD = TM.getDataLayout();
+ const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
unsigned Size = TD->getTypeAllocSize(Ty);
if (AM.BaseGV) {
return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
diff --git a/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h
index 62b89c3..13154c6 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreISelLowering.h
@@ -12,8 +12,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREISELLOWERING_H
-#define XCOREISELLOWERING_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCOREISELLOWERING_H
+#define LLVM_LIB_TARGET_XCORE_XCOREISELLOWERING_H
#include "XCore.h"
#include "llvm/CodeGen/SelectionDAG.h"
@@ -215,4 +215,4 @@ namespace llvm {
};
}
-#endif // XCOREISELLOWERING_H
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp
index 36ea9a0..c310aa3 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.cpp
@@ -446,16 +446,19 @@ MachineBasicBlock::iterator XCoreInstrInfo::loadImmediate(
dl = MI->getDebugLoc();
if (isImmMskBitp(Value)) {
int N = Log2_32(Value) + 1;
- return BuildMI(MBB, MI, dl, get(XCore::MKMSK_rus), Reg).addImm(N);
+ return BuildMI(MBB, MI, dl, get(XCore::MKMSK_rus), Reg)
+ .addImm(N)
+ .getInstr();
}
if (isImmU16(Value)) {
int Opcode = isImmU6(Value) ? XCore::LDC_ru6 : XCore::LDC_lru6;
- return BuildMI(MBB, MI, dl, get(Opcode), Reg).addImm(Value);
+ return BuildMI(MBB, MI, dl, get(Opcode), Reg).addImm(Value).getInstr();
}
MachineConstantPool *ConstantPool = MBB.getParent()->getConstantPool();
const Constant *C = ConstantInt::get(
Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Value);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
return BuildMI(MBB, MI, dl, get(XCore::LDWCP_lru6), Reg)
- .addConstantPoolIndex(Idx);
+ .addConstantPoolIndex(Idx)
+ .getInstr();
}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h
index e0be96b..60bb3f8 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREINSTRUCTIONINFO_H
-#define XCOREINSTRUCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCOREINSTRINFO_H
+#define LLVM_LIB_TARGET_XCORE_XCOREINSTRINFO_H
#include "XCoreRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td
index 00cb705..8e9bb45 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td
+++ b/contrib/llvm/lib/Target/XCore/XCoreInstrInfo.td
@@ -381,7 +381,7 @@ def Int_MemBarrier : PseudoInstXCore<(outs), (ins), "#MEMBARRIER",
// Three operand short
defm ADD : F3R_2RUS<0b00010, 0b10010, "add", add>;
defm SUB : F3R_2RUS<0b00011, 0b10011, "sub", sub>;
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
defm EQ : F3R_2RUS_np<0b00110, 0b10110, "eq">;
def LSS_3r : F3R_np<0b11000, "lss">;
def LSU_3r : F3R_np<0b11001, "lsu">;
@@ -412,7 +412,7 @@ def STW_l3r : _FL3R<0b000001100, (outs),
(ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
"stw $val, $addr[$offset]", []>;
-def STW_2rus : _F2RUS<0b0000, (outs),
+def STW_2rus : _F2RUS<0b00000, (outs),
(ins GRRegs:$val, GRRegs:$addr, i32imm:$offset),
"stw $val, $addr[$offset]", []>;
}
@@ -432,7 +432,7 @@ def LDAWF_l3r : _FL3R<0b000111100, (outs GRRegs:$dst),
[(set GRRegs:$dst,
(ldawf GRRegs:$addr, GRRegs:$offset))]>;
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def LDAWF_l2rus : _FL2RUS<0b100111100, (outs GRRegs:$dst),
(ins GRRegs:$addr, i32imm:$offset),
"ldaw $dst, $addr[$offset]", []>;
@@ -443,7 +443,7 @@ def LDAWB_l3r : _FL3R<0b001001100, (outs GRRegs:$dst),
[(set GRRegs:$dst,
(ldawb GRRegs:$addr, GRRegs:$offset))]>;
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def LDAWB_l2rus : _FL2RUS<0b101001100, (outs GRRegs:$dst),
(ins GRRegs:$addr, i32imm:$offset),
"ldaw $dst, $addr[-$offset]", []>;
@@ -538,7 +538,7 @@ def LMUL_l6r : _FL6R<
// Register - U6
//let Uses = [DP] in ...
-let neverHasSideEffects = 1, isReMaterializable = 1 in
+let hasSideEffects = 0, isReMaterializable = 1 in
def LDAWDP_ru6: _FRU6<0b011000, (outs RRegs:$a), (ins i32imm:$b),
"ldaw $a, dp[$b]", []>;
@@ -564,7 +564,7 @@ def STWDP_lru6 : _FLRU6<0b010100, (outs), (ins RRegs:$a, i32imm:$b),
[(store RRegs:$a, (dprelwrapper tglobaladdr:$b))]>;
//let Uses = [CP] in ..
-let mayLoad = 1, isReMaterializable = 1, neverHasSideEffects = 1 in {
+let mayLoad = 1, isReMaterializable = 1, hasSideEffects = 0 in {
def LDWCP_ru6 : _FRU6<0b011011, (outs RRegs:$a), (ins i32imm:$b),
"ldw $a, cp[$b]", []>;
def LDWCP_lru6: _FLRU6<0b011011, (outs RRegs:$a), (ins i32imm:$b),
@@ -593,7 +593,7 @@ def LDWSP_lru6 : _FLRU6<0b010111, (outs RRegs:$a), (ins i32imm:$b),
[(set RRegs:$a, (XCoreLdwsp immU16:$b))]>;
}
-let neverHasSideEffects = 1 in {
+let hasSideEffects = 0 in {
def LDAWSP_ru6 : _FRU6<0b011001, (outs RRegs:$a), (ins i32imm:$b),
"ldaw $a, sp[$b]", []>;
@@ -628,7 +628,7 @@ defm BRBF: FRU6_LRU6_backwards_branch<0b011111, "bf">;
// U6
let Defs = [SP], Uses = [SP] in {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
defm EXTSP : FU6_LU6_np<0b0111011110, "extsp">;
let mayStore = 1 in
@@ -639,7 +639,7 @@ defm RETSP : FU6_LU6<0b0111011111, "retsp", XCoreRetsp>;
}
}
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
defm EXTDP : FU6_LU6_np<0b0111001110, "extdp">;
let Uses = [R11], isCall=1 in
@@ -656,7 +656,7 @@ def BRFU_lu6 : _FLU6<0b0111001100, (outs), (ins brtarget:$a), "bu $a", []>;
}
//let Uses = [CP] in ...
-let Defs = [R11], neverHasSideEffects = 1, isReMaterializable = 1 in
+let Defs = [R11], hasSideEffects = 0, isReMaterializable = 1 in
def LDAWCP_u6: _FU6<0b0111111101, (outs), (ins i32imm:$a), "ldaw r11, cp[$a]",
[]>;
@@ -690,17 +690,17 @@ defm KRESTSP : FU6_LU6_np<0b0111101111, "krestsp">;
// U10
let Defs = [R11], isReMaterializable = 1 in {
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def LDAPF_u10 : _FU10<0b110110, (outs), (ins pcrel_imm:$a), "ldap r11, $a", []>;
def LDAPF_lu10 : _FLU10<0b110110, (outs), (ins pcrel_imm:$a), "ldap r11, $a",
[(set R11, (pcrelwrapper tglobaladdr:$a))]>;
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def LDAPB_u10 : _FU10<0b110111, (outs), (ins pcrel_imm_neg:$a), "ldap r11, $a",
[]>;
-let neverHasSideEffects = 1 in
+let hasSideEffects = 0 in
def LDAPB_lu10 : _FLU10<0b110111, (outs), (ins pcrel_imm_neg:$a),
"ldap r11, $a",
[(set R11, (pcrelwrapper tglobaladdr:$a))]>;
@@ -729,7 +729,7 @@ def BLRB_lu10 : _FLU10<0b110101, (outs), (ins pcrel_imm_neg:$a), "bl $a", []>;
}
let Defs = [R11], mayLoad = 1, isReMaterializable = 1,
- neverHasSideEffects = 1 in {
+ hasSideEffects = 0 in {
def LDWCP_u10 : _FU10<0b111001, (outs), (ins i32imm:$a), "ldw r11, cp[$a]", []>;
def LDWCP_lu10 : _FLU10<0b111001, (outs), (ins i32imm:$a), "ldw r11, cp[$a]",
@@ -772,7 +772,7 @@ def ANDNOT_2r :
[(set GRRegs:$dst, (and GRRegs:$src1, (not GRRegs:$src2)))]>;
}
-let isReMaterializable = 1, neverHasSideEffects = 1 in
+let isReMaterializable = 1, hasSideEffects = 0 in
def MKMSK_rus : _FRUSBitp<0b101001, (outs GRRegs:$dst), (ins i32imm:$size),
"mkmsk $dst, $size", []>;
@@ -902,7 +902,7 @@ def BYTEREV_l2r : _FL2R<0b0000011001, (outs GRRegs:$dst), (ins GRRegs:$src),
"byterev $dst, $src",
[(set GRRegs:$dst, (bswap GRRegs:$src))]>;
-def CLZ_l2r : _FL2R<0b000111000, (outs GRRegs:$dst), (ins GRRegs:$src),
+def CLZ_l2r : _FL2R<0b0000111000, (outs GRRegs:$dst), (ins GRRegs:$src),
"clz $dst, $src",
[(set GRRegs:$dst, (ctlz GRRegs:$src))]>;
@@ -972,13 +972,13 @@ def BR_JT32 : PseudoInstXCore<(outs), (ins InlineJT32:$t, GRRegs:$i),
let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in
def BRU_1r : _F1R<0b001010, (outs), (ins GRRegs:$a), "bru $a", []>;
-let Defs=[SP], neverHasSideEffects=1 in
+let Defs=[SP], hasSideEffects=0 in
def SETSP_1r : _F1R<0b001011, (outs), (ins GRRegs:$a), "set sp, $a", []>;
-let neverHasSideEffects=1 in
+let hasSideEffects=0 in
def SETDP_1r : _F1R<0b001100, (outs), (ins GRRegs:$a), "set dp, $a", []>;
-let neverHasSideEffects=1 in
+let hasSideEffects=0 in
def SETCP_1r : _F1R<0b001101, (outs), (ins GRRegs:$a), "set cp, $a", []>;
let hasCtrlDep = 1 in
diff --git a/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h b/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h
index 28e702b..5691478 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreMCInstLower.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREMCINSTLOWER_H
-#define XCOREMCINSTLOWER_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCOREMCINSTLOWER_H
+#define LLVM_LIB_TARGET_XCORE_XCOREMCINSTLOWER_H
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/Support/Compiler.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h b/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h
index 212a5cf..078ffde 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreMachineFunctionInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREMACHINEFUNCTIONINFO_H
-#define XCOREMACHINEFUNCTIONINFO_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCOREMACHINEFUNCTIONINFO_H
+#define LLVM_LIB_TARGET_XCORE_XCOREMACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -103,4 +103,4 @@ public:
};
} // End llvm namespace
-#endif // XCOREMACHINEFUNCTIONINFO_H
+#endif
diff --git a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp
index 316c82c..5c666ae 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.cpp
@@ -15,6 +15,7 @@
#include "XCore.h"
#include "XCoreInstrInfo.h"
#include "XCoreMachineFunctionInfo.h"
+#include "XCoreSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -98,7 +99,7 @@ static void InsertFPConstInst(MachineBasicBlock::iterator II,
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc dl = MI.getDebugLoc();
unsigned ScratchOffset = RS->scavengeRegister(&XCore::GRRegsRegClass, II, 0);
- RS->setUsed(ScratchOffset);
+ RS->setRegUsed(ScratchOffset);
TII.loadImmediate(MBB, II, ScratchOffset, Offset);
switch (MI.getOpcode()) {
@@ -170,12 +171,12 @@ static void InsertSPConstInst(MachineBasicBlock::iterator II,
unsigned ScratchBase;
if (OpCode==XCore::STWFI) {
ScratchBase = RS->scavengeRegister(&XCore::GRRegsRegClass, II, 0);
- RS->setUsed(ScratchBase);
+ RS->setRegUsed(ScratchBase);
} else
ScratchBase = Reg;
BuildMI(MBB, II, dl, TII.get(XCore::LDAWSP_ru6), ScratchBase).addImm(0);
unsigned ScratchOffset = RS->scavengeRegister(&XCore::GRRegsRegClass, II, 0);
- RS->setUsed(ScratchOffset);
+ RS->setRegUsed(ScratchOffset);
TII.loadImmediate(MBB, II, ScratchOffset, Offset);
switch (OpCode) {
@@ -221,7 +222,7 @@ const MCPhysReg* XCoreRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF
XCore::R8, XCore::R9,
0
};
- const TargetFrameLowering *TFI = MF->getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
if (TFI->hasFP(*MF))
return CalleeSavedRegsFP;
return CalleeSavedRegs;
@@ -229,7 +230,7 @@ const MCPhysReg* XCoreRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF
BitVector XCoreRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
Reserved.set(XCore::CP);
Reserved.set(XCore::DP);
@@ -267,9 +268,9 @@ XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MachineFunction &MF = *MI.getParent()->getParent();
const XCoreInstrInfo &TII =
- *static_cast<const XCoreInstrInfo*>(MF.getTarget().getInstrInfo());
+ *static_cast<const XCoreInstrInfo *>(MF.getSubtarget().getInstrInfo());
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
int StackSize = MF.getFrameInfo()->getStackSize();
@@ -323,7 +324,7 @@ XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
unsigned XCoreRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
- const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
return TFI->hasFP(MF) ? XCore::R10 : XCore::SP;
}
diff --git a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h
index aa617a0..5d7721c 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreRegisterInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCOREREGISTERINFO_H
-#define XCOREREGISTERINFO_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCOREREGISTERINFO_H
+#define LLVM_LIB_TARGET_XCORE_XCOREREGISTERINFO_H
#include "llvm/Target/TargetRegisterInfo.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp
index 91b33fd..a348844 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.cpp
@@ -33,7 +33,7 @@ EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl, SDValue Chain,
// Call __memcpy_4 if the src, dst and size are all 4 byte aligned.
if (!AlwaysInline && (Align & 3) == 0 &&
DAG.MaskedValueIsZero(Size, APInt(SizeBitWidth, 3))) {
- const TargetLowering &TLI = *DAG.getTarget().getTargetLowering();
+ const TargetLowering &TLI = *DAG.getSubtarget().getTargetLowering();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = TLI.getDataLayout()->getIntPtrType(*DAG.getContext());
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h
index 0079de1..cfd80b3 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreSelectionDAGInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCORESELECTIONDAGINFO_H
-#define XCORESELECTIONDAGINFO_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCORESELECTIONDAGINFO_H
+#define LLVM_LIB_TARGET_XCORE_XCORESELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h b/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h
index 1e9810b..695578d 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreSubtarget.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCORESUBTARGET_H
-#define XCORESUBTARGET_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCORESUBTARGET_H
+#define LLVM_LIB_TARGET_XCORE_XCORESUBTARGET_H
#include "XCoreFrameLowering.h"
#include "XCoreISelLowering.h"
@@ -48,14 +48,20 @@ public:
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
- const XCoreInstrInfo *getInstrInfo() const { return &InstrInfo; }
- const XCoreFrameLowering *getFrameLowering() const { return &FrameLowering; }
- const XCoreTargetLowering *getTargetLowering() const { return &TLInfo; }
- const XCoreSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
- const TargetRegisterInfo *getRegisterInfo() const {
+ const XCoreInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+ const XCoreFrameLowering *getFrameLowering() const override {
+ return &FrameLowering;
+ }
+ const XCoreTargetLowering *getTargetLowering() const override {
+ return &TLInfo;
+ }
+ const XCoreSelectionDAGInfo *getSelectionDAGInfo() const override {
+ return &TSInfo;
+ }
+ const TargetRegisterInfo *getRegisterInfo() const override {
return &InstrInfo.getRegisterInfo();
}
- const DataLayout *getDataLayout() const { return &DL; }
+ const DataLayout *getDataLayout() const override { return &DL; }
};
} // End llvm namespace
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp
index 8d8bb38..21ebf45 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.cpp
@@ -11,6 +11,7 @@
//===----------------------------------------------------------------------===//
#include "XCoreTargetMachine.h"
+#include "XCoreTargetObjectFile.h"
#include "XCore.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Module.h"
@@ -26,10 +27,13 @@ XCoreTargetMachine::XCoreTargetMachine(const Target &T, StringRef TT,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ TLOF(make_unique<XCoreTargetObjectFile>()),
Subtarget(TT, CPU, FS, *this) {
initAsmInfo();
}
+XCoreTargetMachine::~XCoreTargetMachine() {}
+
namespace {
/// XCore Code Generator Pass Configuration Options.
class XCorePassConfig : public TargetPassConfig {
@@ -41,9 +45,10 @@ public:
return getTM<XCoreTargetMachine>();
}
+ void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
- bool addPreEmitPass() override;
+ void addPreEmitPass() override;
};
} // namespace
@@ -51,6 +56,12 @@ TargetPassConfig *XCoreTargetMachine::createPassConfig(PassManagerBase &PM) {
return new XCorePassConfig(this, PM);
}
+void XCorePassConfig::addIRPasses() {
+ addPass(createAtomicExpandPass(&getXCoreTargetMachine()));
+
+ TargetPassConfig::addIRPasses();
+}
+
bool XCorePassConfig::addPreISel() {
addPass(createXCoreLowerThreadLocalPass());
return false;
@@ -61,9 +72,8 @@ bool XCorePassConfig::addInstSelector() {
return false;
}
-bool XCorePassConfig::addPreEmitPass() {
- addPass(createXCoreFrameToArgsOffsetEliminationPass());
- return false;
+void XCorePassConfig::addPreEmitPass() {
+ addPass(createXCoreFrameToArgsOffsetEliminationPass(), false);
}
// Force static initialization.
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h
index 14c43bf..8ff9269 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCORETARGETMACHINE_H
-#define XCORETARGETMACHINE_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCORETARGETMACHINE_H
+#define LLVM_LIB_TARGET_XCORE_XCORETARGETMACHINE_H
#include "XCoreSubtarget.h"
#include "llvm/Target/TargetMachine.h"
@@ -20,37 +20,24 @@
namespace llvm {
class XCoreTargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
XCoreSubtarget Subtarget;
public:
XCoreTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
+ ~XCoreTargetMachine() override;
- const XCoreInstrInfo *getInstrInfo() const override {
- return getSubtargetImpl()->getInstrInfo();
- }
- const XCoreFrameLowering *getFrameLowering() const override {
- return getSubtargetImpl()->getFrameLowering();
- }
const XCoreSubtarget *getSubtargetImpl() const override { return &Subtarget; }
- const XCoreTargetLowering *getTargetLowering() const override {
- return getSubtargetImpl()->getTargetLowering();
- }
- const XCoreSelectionDAGInfo* getSelectionDAGInfo() const override {
- return getSubtargetImpl()->getSelectionDAGInfo();
- }
- const TargetRegisterInfo *getRegisterInfo() const override {
- return getSubtargetImpl()->getRegisterInfo();
- }
- const DataLayout *getDataLayout() const override {
- return getSubtargetImpl()->getDataLayout();
- }
// Pass Pipeline Configuration
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
void addAnalysisPasses(PassManagerBase &PM) override;
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp
index cfd3302..86d0de6 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.cpp
@@ -145,9 +145,9 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
if (Kind.isMergeableConst16()) return MergeableConst16Section;
}
Type *ObjType = GV->getType()->getPointerElementType();
- if (TM.getCodeModel() == CodeModel::Small ||
- !ObjType->isSized() ||
- TM.getDataLayout()->getTypeAllocSize(ObjType) < CodeModelLargeSize) {
+ if (TM.getCodeModel() == CodeModel::Small || !ObjType->isSized() ||
+ TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(ObjType) <
+ CodeModelLargeSize) {
if (Kind.isReadOnly()) return UseCPRel? ReadOnlySection
: DataRelROSection;
if (Kind.isBSS() || Kind.isCommon())return BSSSection;
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h
index d389e55..7d3f49d 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetObjectFile.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TARGET_XCORE_TARGETOBJECTFILE_H
-#define LLVM_TARGET_XCORE_TARGETOBJECTFILE_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCORETARGETOBJECTFILE_H
+#define LLVM_LIB_TARGET_XCORE_XCORETARGETOBJECTFILE_H
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h b/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h
index 0a394da..48bf0fa 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetStreamer.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef XCORETARGETSTREAMER_H
-#define XCORETARGETSTREAMER_H
+#ifndef LLVM_LIB_TARGET_XCORE_XCORETARGETSTREAMER_H
+#define LLVM_LIB_TARGET_XCORE_XCORETARGETSTREAMER_H
#include "llvm/MC/MCStreamer.h"
diff --git a/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp b/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp
index 80d193d..da232da 100644
--- a/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/XCore/XCoreTargetTransformInfo.cpp
@@ -43,17 +43,17 @@ public:
initializeXCoreTTIPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() override {
+ void initializePass() override {
pushTTIStack(this);
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
static char ID;
- virtual void *getAdjustedAnalysisPointer(const void *ID) override {
+ void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
diff --git a/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
index f9de54a..3282022 100644
--- a/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -78,11 +78,15 @@ namespace {
const DataLayout *DL;
private:
+ bool isDenselyPacked(Type *type);
+ bool canPaddingBeAccessed(Argument *Arg);
CallGraphNode *PromoteArguments(CallGraphNode *CGN);
bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
CallGraphNode *DoPromotion(Function *F,
- SmallPtrSet<Argument*, 8> &ArgsToPromote,
- SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
+ SmallPtrSetImpl<Argument*> &ArgsToPromote,
+ SmallPtrSetImpl<Argument*> &ByValArgsToTransform);
+
+ using llvm::Pass::doInitialization;
bool doInitialization(CallGraph &CG) override;
/// The maximum number of elements to expand, or 0 for unlimited.
unsigned maxElements;
@@ -123,6 +127,78 @@ bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
return Changed;
}
+/// \brief Checks if a type could have padding bytes.
+bool ArgPromotion::isDenselyPacked(Type *type) {
+
+ // There is no size information, so be conservative.
+ if (!type->isSized())
+ return false;
+
+ // If the alloc size is not equal to the storage size, then there are padding
+ // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
+ if (!DL || DL->getTypeSizeInBits(type) != DL->getTypeAllocSizeInBits(type))
+ return false;
+
+ if (!isa<CompositeType>(type))
+ return true;
+
+ // For homogenous sequential types, check for padding within members.
+ if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
+ return isa<PointerType>(seqTy) || isDenselyPacked(seqTy->getElementType());
+
+ // Check for padding within and between elements of a struct.
+ StructType *StructTy = cast<StructType>(type);
+ const StructLayout *Layout = DL->getStructLayout(StructTy);
+ uint64_t StartPos = 0;
+ for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
+ Type *ElTy = StructTy->getElementType(i);
+ if (!isDenselyPacked(ElTy))
+ return false;
+ if (StartPos != Layout->getElementOffsetInBits(i))
+ return false;
+ StartPos += DL->getTypeAllocSizeInBits(ElTy);
+ }
+
+ return true;
+}
+
+/// \brief Checks if the padding bytes of an argument could be accessed.
+bool ArgPromotion::canPaddingBeAccessed(Argument *arg) {
+
+ assert(arg->hasByValAttr());
+
+ // Track all the pointers to the argument to make sure they are not captured.
+ SmallPtrSet<Value *, 16> PtrValues;
+ PtrValues.insert(arg);
+
+ // Track all of the stores.
+ SmallVector<StoreInst *, 16> Stores;
+
+ // Scan through the uses recursively to make sure the pointer is always used
+ // sanely.
+ SmallVector<Value *, 16> WorkList;
+ WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
+ while (!WorkList.empty()) {
+ Value *V = WorkList.back();
+ WorkList.pop_back();
+ if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
+ if (PtrValues.insert(V).second)
+ WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
+ } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
+ Stores.push_back(Store);
+ } else if (!isa<LoadInst>(V)) {
+ return true;
+ }
+ }
+
+// Check to make sure the pointers aren't captured
+ for (StoreInst *Store : Stores)
+ if (PtrValues.count(Store->getValueOperand()))
+ return true;
+
+ return false;
+}
+
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
@@ -154,6 +230,13 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
isSelfRecursive = true;
}
+ // Don't promote arguments for variadic functions. Adding, removing, or
+ // changing non-pack parameters can change the classification of pack
+ // parameters. Frontends encode that classification at the call site in the
+ // IR, while in the callee the classification is determined dynamically based
+ // on the number of registers consumed so far.
+ if (F->isVarArg()) return nullptr;
+
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
SmallPtrSet<Argument*, 8> ArgsToPromote;
@@ -163,9 +246,13 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
// If this is a byval argument, and if the aggregate type is small, just
- // pass the elements, which is always safe. This does not apply to
- // inalloca.
- if (PtrArg->hasByValAttr()) {
+ // pass the elements, which is always safe, if the passed value is densely
+ // packed or if we can prove the padding bytes are never accessed. This does
+ // not apply to inalloca.
+ bool isSafeToPromote =
+ PtrArg->hasByValAttr() &&
+ (isDenselyPacked(AgTy) || !canPaddingBeAccessed(PtrArg));
+ if (isSafeToPromote) {
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
DEBUG(dbgs() << "argpromotion disable promoting argument '"
@@ -443,7 +530,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
// of elements of the aggregate.
return false;
}
- ToPromote.insert(Operands);
+ ToPromote.insert(std::move(Operands));
}
}
@@ -467,7 +554,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
BasicBlock *BB = Load->getParent();
AliasAnalysis::Location Loc = AA.getLocation(Load);
- if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
+ if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc,
+ AliasAnalysis::Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
@@ -475,10 +563,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
// loading block.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
- for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
- I = idf_ext_begin(P, TranspBlocks),
- E = idf_ext_end(P, TranspBlocks); I != E; ++I)
- if (AA.canBasicBlockModify(**I, Loc))
+ for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
+ if (AA.canBasicBlockModify(*TranspBB, Loc))
return false;
}
}
@@ -493,8 +579,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
CallGraphNode *ArgPromotion::DoPromotion(Function *F,
- SmallPtrSet<Argument*, 8> &ArgsToPromote,
- SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
+ SmallPtrSetImpl<Argument*> &ArgsToPromote,
+ SmallPtrSetImpl<Argument*> &ByValArgsToTransform) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
@@ -615,9 +701,15 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// Patch the pointer to LLVM function in debug info descriptor.
auto DI = FunctionDIs.find(F);
- if (DI != FunctionDIs.end())
- DI->second.replaceFunction(NF);
-
+ if (DI != FunctionDIs.end()) {
+ DISubprogram SP = DI->second;
+ SP.replaceFunction(NF);
+ // Ensure the map is updated so it can be reused on subsequent argument
+ // promotions of the same function.
+ FunctionDIs.erase(DI);
+ FunctionDIs[NF] = SP;
+ }
+
DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
@@ -716,9 +808,11 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// of the previous load.
LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
newLoad->setAlignment(OrigLoad->getAlignment());
- // Transfer the TBAA info too.
- newLoad->setMetadata(LLVMContext::MD_tbaa,
- OrigLoad->getMetadata(LLVMContext::MD_tbaa));
+ // Transfer the AA info too.
+ AAMDNodes AAInfo;
+ OrigLoad->getAAMetadata(AAInfo);
+ newLoad->setAAMetadata(AAInfo);
+
Args.push_back(newLoad);
AA.copyValue(OrigLoad, Args.back());
}
diff --git a/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp b/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp
index 23be081..0b6ade9 100644
--- a/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/ConstantMerge.cpp
@@ -66,7 +66,7 @@ ModulePass *llvm::createConstantMergePass() { return new ConstantMerge(); }
/// Find values that are marked as llvm.used.
static void FindUsedValues(GlobalVariable *LLVMUsed,
- SmallPtrSet<const GlobalValue*, 8> &UsedValues) {
+ SmallPtrSetImpl<const GlobalValue*> &UsedValues) {
if (!LLVMUsed) return;
ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer());
diff --git a/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp b/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
index ac3853d..4045c09 100644
--- a/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -199,10 +199,15 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
return false;
// Okay, we know we can transform this function if safe. Scan its body
- // looking for calls to llvm.vastart.
+ // looking for calls marked musttail or calls to llvm.vastart.
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI)
+ continue;
+ if (CI->isMustTailCall())
+ return false;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
return false;
}
@@ -297,8 +302,14 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
// Patch the pointer to LLVM function in debug info descriptor.
auto DI = FunctionDIs.find(&Fn);
- if (DI != FunctionDIs.end())
- DI->second.replaceFunction(NF);
+ if (DI != FunctionDIs.end()) {
+ DISubprogram SP = DI->second;
+ SP.replaceFunction(NF);
+ // Ensure the map is updated so it can be reused on non-varargs argument
+ // eliminations of the same function.
+ FunctionDIs.erase(DI);
+ FunctionDIs[NF] = SP;
+ }
// Fix up any BlockAddresses that refer to the function.
Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
@@ -1088,8 +1099,8 @@ bool DAE::runOnModule(Module &M) {
// determine that dead arguments passed into recursive functions are dead).
//
DEBUG(dbgs() << "DAE - Determining liveness\n");
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- SurveyFunction(*I);
+ for (auto &F : M)
+ SurveyFunction(F);
// Now, remove all dead arguments and return values from each function in
// turn.
@@ -1102,11 +1113,8 @@ bool DAE::runOnModule(Module &M) {
// Finally, look for any unused parameters in functions with non-local
// linkage and replace the passed in parameters with undef.
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- Function& F = *I;
-
+ for (auto &F : M)
Changed |= RemoveDeadArgumentsFromCallers(F);
- }
return Changed;
}
diff --git a/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp b/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp
index 40ec9fa..2f8c7d9 100644
--- a/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/ExtractGV.cpp
@@ -91,7 +91,7 @@ namespace {
continue;
}
- makeVisible(*I, Delete);
+ makeVisible(*I, Delete);
if (Delete)
I->setInitializer(nullptr);
@@ -106,7 +106,7 @@ namespace {
continue;
}
- makeVisible(*I, Delete);
+ makeVisible(*I, Delete);
if (Delete)
I->deleteBody();
@@ -118,8 +118,8 @@ namespace {
Module::alias_iterator CurI = I;
++I;
- bool Delete = deleteStuff == (bool)Named.count(CurI);
- makeVisible(*CurI, Delete);
+ bool Delete = deleteStuff == (bool)Named.count(CurI);
+ makeVisible(*CurI, Delete);
if (Delete) {
Type *Ty = CurI->getType()->getElementType();
@@ -148,7 +148,7 @@ namespace {
char GVExtractorPass::ID = 0;
}
-ModulePass *llvm::createGVExtractionPass(std::vector<GlobalValue*>& GVs,
+ModulePass *llvm::createGVExtractionPass(std::vector<GlobalValue *> &GVs,
bool deleteFn) {
return new GVExtractorPass(GVs, deleteFn);
}
diff --git a/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
index 8174df9..823ae53 100644
--- a/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -161,8 +161,9 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
- if (!F)
- // External node - may write memory. Just give up.
+ if (!F || F->hasFnAttribute(Attribute::OptimizeNone))
+ // External node or node we don't want to optimize - assume it may write
+ // memory and give up.
return false;
AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
@@ -204,9 +205,11 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
CI != CE; ++CI) {
Value *Arg = *CI;
if (Arg->getType()->isPointerTy()) {
+ AAMDNodes AAInfo;
+ I->getAAMetadata(AAInfo);
+
AliasAnalysis::Location Loc(Arg,
- AliasAnalysis::UnknownSize,
- I->getMetadata(LLVMContext::MD_tbaa));
+ AliasAnalysis::UnknownSize, AAInfo);
if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
if (MRB & AliasAnalysis::Mod)
// Writes non-local memory. Give up.
@@ -443,7 +446,7 @@ determinePointerReadAttrs(Argument *A,
case Instruction::AddrSpaceCast:
// The original value is not read/written via this if the new value isn't.
for (Use &UU : I->uses())
- if (Visited.insert(&UU))
+ if (Visited.insert(&UU).second)
Worklist.push_back(&UU);
break;
@@ -457,7 +460,7 @@ determinePointerReadAttrs(Argument *A,
auto AddUsersToWorklistIfCapturing = [&] {
if (Captures)
for (Use &UU : I->uses())
- if (Visited.insert(&UU))
+ if (Visited.insert(&UU).second)
Worklist.push_back(&UU);
};
@@ -525,7 +528,8 @@ bool FunctionAttrs::AddArgumentAttrs(const CallGraphSCC &SCC) {
// looking up whether a given CallGraphNode is in this SCC.
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
- if (F && !F->isDeclaration() && !F->mayBeOverridden())
+ if (F && !F->isDeclaration() && !F->mayBeOverridden() &&
+ !F->hasFnAttribute(Attribute::OptimizeNone))
SCCNodes.insert(F);
}
@@ -539,8 +543,9 @@ bool FunctionAttrs::AddArgumentAttrs(const CallGraphSCC &SCC) {
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
- if (!F)
- // External node - only a problem for arguments that we pass to it.
+ if (!F || F->hasFnAttribute(Attribute::OptimizeNone))
+ // External node or function we're trying not to optimize - only a problem
+ // for arguments that we pass to it.
continue;
// Definitions with weak linkage may be overridden at linktime with
@@ -792,8 +797,8 @@ bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
- if (!F)
- // External node - skip it;
+ if (!F || F->hasFnAttribute(Attribute::OptimizeNone))
+ // External node or node we don't want to optimize - skip it;
return false;
// Already noalias.
@@ -832,6 +837,9 @@ bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
/// given function and set any applicable attributes. Returns true
/// if any attributes were set and false otherwise.
bool FunctionAttrs::inferPrototypeAttributes(Function &F) {
+ if (F.hasFnAttribute(Attribute::OptimizeNone))
+ return false;
+
FunctionType *FTy = F.getFunctionType();
LibFunc::Func TheLibFunc;
if (!(TLI->getLibFunc(F.getName(), TheLibFunc) && TLI->has(TheLibFunc)))
diff --git a/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp b/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp
index 7e7a4c0..0c844fe 100644
--- a/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/GlobalDCE.cpp
@@ -22,6 +22,7 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
+#include "llvm/Transforms/Utils/GlobalStatus.h"
#include "llvm/Pass.h"
using namespace llvm;
@@ -77,9 +78,6 @@ bool GlobalDCE::runOnModule(Module &M) {
// Remove empty functions from the global ctors list.
Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
- typedef std::multimap<const Comdat *, GlobalValue *> ComdatGVPairsTy;
- ComdatGVPairsTy ComdatGVPairs;
-
// Loop over the module, adding globals which are obviously necessary.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Changed |= RemoveUnusedGlobalValue(*I);
@@ -87,8 +85,6 @@ bool GlobalDCE::runOnModule(Module &M) {
if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) {
if (!I->isDiscardableIfUnused())
GlobalIsNeeded(I);
- else if (const Comdat *C = I->getComdat())
- ComdatGVPairs.insert(std::make_pair(C, I));
}
}
@@ -100,8 +96,6 @@ bool GlobalDCE::runOnModule(Module &M) {
if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) {
if (!I->isDiscardableIfUnused())
GlobalIsNeeded(I);
- else if (const Comdat *C = I->getComdat())
- ComdatGVPairs.insert(std::make_pair(C, I));
}
}
@@ -111,24 +105,7 @@ bool GlobalDCE::runOnModule(Module &M) {
// Externally visible aliases are needed.
if (!I->isDiscardableIfUnused()) {
GlobalIsNeeded(I);
- } else if (const Comdat *C = I->getComdat()) {
- ComdatGVPairs.insert(std::make_pair(C, I));
- }
- }
-
- for (ComdatGVPairsTy::iterator I = ComdatGVPairs.begin(),
- E = ComdatGVPairs.end();
- I != E;) {
- ComdatGVPairsTy::iterator UB = ComdatGVPairs.upper_bound(I->first);
- bool CanDiscard = std::all_of(I, UB, [](ComdatGVPairsTy::value_type Pair) {
- return Pair.second->isDiscardableIfUnused();
- });
- if (!CanDiscard) {
- std::for_each(I, UB, [this](ComdatGVPairsTy::value_type Pair) {
- GlobalIsNeeded(Pair.second);
- });
}
- I = UB;
}
// Now that all globals which are needed are in the AliveGlobals set, we loop
@@ -141,7 +118,12 @@ bool GlobalDCE::runOnModule(Module &M) {
I != E; ++I)
if (!AliveGlobals.count(I)) {
DeadGlobalVars.push_back(I); // Keep track of dead globals
- I->setInitializer(nullptr);
+ if (I->hasInitializer()) {
+ Constant *Init = I->getInitializer();
+ I->setInitializer(nullptr);
+ if (isSafeToDestroyConstant(Init))
+ Init->destroyConstant();
+ }
}
// The second pass drops the bodies of functions which are dead...
@@ -203,9 +185,22 @@ bool GlobalDCE::runOnModule(Module &M) {
/// recursively mark anything that it uses as also needed.
void GlobalDCE::GlobalIsNeeded(GlobalValue *G) {
// If the global is already in the set, no need to reprocess it.
- if (!AliveGlobals.insert(G))
+ if (!AliveGlobals.insert(G).second)
return;
-
+
+ Module *M = G->getParent();
+ if (Comdat *C = G->getComdat()) {
+ for (Function &F : *M)
+ if (F.getComdat() == C)
+ GlobalIsNeeded(&F);
+ for (GlobalVariable &GV : M->globals())
+ if (GV.getComdat() == C)
+ GlobalIsNeeded(&GV);
+ for (GlobalAlias &GA : M->aliases())
+ if (GA.getComdat() == C)
+ GlobalIsNeeded(&GA);
+ }
+
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G)) {
// If this is a global variable, we must make sure to add any global values
// referenced by the initializer to the alive set.
@@ -224,6 +219,9 @@ void GlobalDCE::GlobalIsNeeded(GlobalValue *G) {
if (F->hasPrefixData())
MarkUsedGlobalsAsNeeded(F->getPrefixData());
+ if (F->hasPrologueData())
+ MarkUsedGlobalsAsNeeded(F->getPrologueData());
+
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
for (User::op_iterator U = I->op_begin(), E = I->op_end(); U != E; ++U)
@@ -243,7 +241,7 @@ void GlobalDCE::MarkUsedGlobalsAsNeeded(Constant *C) {
for (User::op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) {
// If we've already processed this constant there's no need to do it again.
Constant *Op = dyn_cast<Constant>(*I);
- if (Op && SeenConstants.insert(Op))
+ if (Op && SeenConstants.insert(Op).second)
MarkUsedGlobalsAsNeeded(Op);
}
}
diff --git a/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
index c1d0d3bc..6e0ae83 100644
--- a/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/GlobalOpt.cpp
@@ -88,6 +88,7 @@ namespace {
const DataLayout *DL;
TargetLibraryInfo *TLI;
+ SmallSet<const Comdat *, 8> NotDiscardableComdats;
};
}
@@ -612,7 +613,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
/// value will trap if the value is dynamically null. PHIs keeps track of any
/// phi nodes we've seen to avoid reprocessing them.
static bool AllUsesOfValueWillTrapIfNull(const Value *V,
- SmallPtrSet<const PHINode*, 8> &PHIs) {
+ SmallPtrSetImpl<const PHINode*> &PHIs) {
for (const User *U : V->users())
if (isa<LoadInst>(U)) {
// Will trap.
@@ -638,7 +639,7 @@ static bool AllUsesOfValueWillTrapIfNull(const Value *V,
} else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
// If we've already seen this phi node, ignore it, it has already been
// checked.
- if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
+ if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
return false;
} else if (isa<ICmpInst>(U) &&
isa<ConstantPointerNull>(U->getOperand(1))) {
@@ -957,7 +958,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
/// it is to the specified global.
static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
const GlobalVariable *GV,
- SmallPtrSet<const PHINode*, 8> &PHIs) {
+ SmallPtrSetImpl<const PHINode*> &PHIs) {
for (const User *U : V->users()) {
const Instruction *Inst = cast<Instruction>(U);
@@ -981,7 +982,7 @@ static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
// PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
// cycles.
- if (PHIs.insert(PN))
+ if (PHIs.insert(PN).second)
if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
return false;
continue;
@@ -1047,8 +1048,8 @@ static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
/// of a load) are simple enough to perform heap SRA on. This permits GEP's
/// that index through the array and struct field, icmps of null, and PHIs.
static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
- SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
- SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
+ SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
+ SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
// We permit two users of the load: setcc comparing against the null
// pointer, and a getelementptr of a specific form.
for (const User *U : V->users()) {
@@ -1072,11 +1073,11 @@ static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
}
if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- if (!LoadUsingPHIsPerLoad.insert(PN))
+ if (!LoadUsingPHIsPerLoad.insert(PN).second)
// This means some phi nodes are dependent on each other.
// Avoid infinite looping!
return false;
- if (!LoadUsingPHIs.insert(PN))
+ if (!LoadUsingPHIs.insert(PN).second)
// If we have already analyzed this PHI, then it is safe.
continue;
@@ -1115,9 +1116,7 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
// that all inputs the to the PHI nodes are in the same equivalence sets.
// Check to verify that all operands of the PHIs are either PHIS that can be
// transformed, loads from GV, or MI itself.
- for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
- , E = LoadUsingPHIs.end(); I != E; ++I) {
- const PHINode *PN = *I;
+ for (const PHINode *PN : LoadUsingPHIs) {
for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
Value *InVal = PN->getIncomingValue(op);
@@ -1910,8 +1909,11 @@ bool GlobalOpt::OptimizeFunctions(Module &M) {
// Functions without names cannot be referenced outside this module.
if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
F->setLinkage(GlobalValue::InternalLinkage);
+
+ const Comdat *C = F->getComdat();
+ bool inComdat = C && NotDiscardableComdats.count(C);
F->removeDeadConstantUsers();
- if (F->isDefTriviallyDead()) {
+ if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
F->eraseFromParent();
Changed = true;
++NumFnDeleted;
@@ -1943,12 +1945,6 @@ bool GlobalOpt::OptimizeFunctions(Module &M) {
bool GlobalOpt::OptimizeGlobalVars(Module &M) {
bool Changed = false;
- SmallSet<const Comdat *, 8> NotDiscardableComdats;
- for (const GlobalVariable &GV : M.globals())
- if (const Comdat *C = GV.getComdat())
- if (!GV.isDiscardableIfUnused())
- NotDiscardableComdats.insert(C);
-
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
@@ -1965,7 +1961,7 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
if (GV->isDiscardableIfUnused()) {
if (const Comdat *C = GV->getComdat())
- if (NotDiscardableComdats.count(C))
+ if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
continue;
Changed |= ProcessGlobal(GV, GVI);
}
@@ -1975,7 +1971,7 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
static inline bool
isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSet<Constant*, 8> &SimpleConstants,
+ SmallPtrSetImpl<Constant*> &SimpleConstants,
const DataLayout *DL);
@@ -1988,7 +1984,7 @@ isSimpleEnoughValueToCommit(Constant *C,
/// in SimpleConstants to avoid having to rescan the same constants all the
/// time.
static bool isSimpleEnoughValueToCommitHelper(Constant *C,
- SmallPtrSet<Constant*, 8> &SimpleConstants,
+ SmallPtrSetImpl<Constant*> &SimpleConstants,
const DataLayout *DL) {
// Simple global addresses are supported, do not allow dllimport or
// thread-local globals.
@@ -2046,10 +2042,11 @@ static bool isSimpleEnoughValueToCommitHelper(Constant *C,
static inline bool
isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSet<Constant*, 8> &SimpleConstants,
+ SmallPtrSetImpl<Constant*> &SimpleConstants,
const DataLayout *DL) {
// If we already checked this constant, we win.
- if (!SimpleConstants.insert(C)) return true;
+ if (!SimpleConstants.insert(C).second)
+ return true;
// Check the constant.
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
}
@@ -2217,7 +2214,7 @@ public:
return MutatedMemory;
}
- const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
+ const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
return Invariants;
}
@@ -2394,6 +2391,17 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
getVal(SI->getOperand(2)));
DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
<< "\n");
+ } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
+ InstResult = ConstantExpr::getExtractValue(
+ getVal(EVI->getAggregateOperand()), EVI->getIndices());
+ DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
+ << "\n");
+ } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
+ InstResult = ConstantExpr::getInsertValue(
+ getVal(IVI->getAggregateOperand()),
+ getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
+ DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
+ << "\n");
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
Constant *P = getVal(GEP->getOperand(0));
SmallVector<Constant*, 8> GEPOps;
@@ -2663,7 +2671,7 @@ bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
// Okay, we succeeded in evaluating this control flow. See if we have
// executed the new block before. If so, we have a looping function,
// which we cannot evaluate in reasonable time.
- if (!ExecutedBlocks.insert(NextBB))
+ if (!ExecutedBlocks.insert(NextBB).second)
return false; // looped!
// Okay, we have never been in this block before. Check to see if there
@@ -2700,10 +2708,8 @@ static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL,
Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
I != E; ++I)
CommitValueTo(I->second, I->first);
- for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
- Eval.getInvariants().begin(), E = Eval.getInvariants().end();
- I != E; ++I)
- (*I)->setConstant(true);
+ for (GlobalVariable *GV : Eval.getInvariants())
+ GV->setConstant(true);
}
return EvalSuccess;
@@ -2714,7 +2720,7 @@ static int compareNames(Constant *const *A, Constant *const *B) {
}
static void setUsedInitializer(GlobalVariable &V,
- SmallPtrSet<GlobalValue *, 8> Init) {
+ const SmallPtrSet<GlobalValue *, 8> &Init) {
if (Init.empty()) {
V.eraseFromParent();
return;
@@ -2724,10 +2730,9 @@ static void setUsedInitializer(GlobalVariable &V,
PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
SmallVector<llvm::Constant *, 8> UsedArray;
- for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end();
- I != E; ++I) {
+ for (GlobalValue *GV : Init) {
Constant *Cast
- = ConstantExpr::getPointerBitCastOrAddrSpaceCast(*I, Int8PtrTy);
+ = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
UsedArray.push_back(Cast);
}
// Sort to get deterministic order.
@@ -2758,18 +2763,27 @@ public:
CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
}
typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
+ typedef iterator_range<iterator> used_iterator_range;
iterator usedBegin() { return Used.begin(); }
iterator usedEnd() { return Used.end(); }
+ used_iterator_range used() {
+ return used_iterator_range(usedBegin(), usedEnd());
+ }
iterator compilerUsedBegin() { return CompilerUsed.begin(); }
iterator compilerUsedEnd() { return CompilerUsed.end(); }
+ used_iterator_range compilerUsed() {
+ return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
+ }
bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
bool compilerUsedCount(GlobalValue *GV) const {
return CompilerUsed.count(GV);
}
bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
- bool usedInsert(GlobalValue *GV) { return Used.insert(GV); }
- bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); }
+ bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
+ bool compilerUsedInsert(GlobalValue *GV) {
+ return CompilerUsed.insert(GV).second;
+ }
void syncVariablesAndSets() {
if (UsedV)
@@ -2814,7 +2828,8 @@ static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
return U.usedCount(&GA) || U.compilerUsedCount(&GA);
}
-static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) {
+static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
+ bool &RenameTarget) {
RenameTarget = false;
bool Ret = false;
if (hasUseOtherThanLLVMUsed(GA, U))
@@ -2849,10 +2864,8 @@ bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
bool Changed = false;
LLVMUsed Used(M);
- for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(),
- E = Used.usedEnd();
- I != E; ++I)
- Used.compilerUsedErase(*I);
+ for (GlobalValue *GV : Used.used())
+ Used.compilerUsedErase(GV);
for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E;) {
@@ -2963,7 +2976,7 @@ static bool cxxDtorIsEmpty(const Function &Fn,
SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
// Don't treat recursive functions as empty.
- if (!NewCalledFunctions.insert(CalledFn))
+ if (!NewCalledFunctions.insert(CalledFn).second)
return false;
if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
@@ -3035,6 +3048,20 @@ bool GlobalOpt::runOnModule(Module &M) {
while (LocalChange) {
LocalChange = false;
+ NotDiscardableComdats.clear();
+ for (const GlobalVariable &GV : M.globals())
+ if (const Comdat *C = GV.getComdat())
+ if (!GV.isDiscardableIfUnused() || !GV.use_empty())
+ NotDiscardableComdats.insert(C);
+ for (Function &F : M)
+ if (const Comdat *C = F.getComdat())
+ if (!F.isDefTriviallyDead())
+ NotDiscardableComdats.insert(C);
+ for (GlobalAlias &GA : M.aliases())
+ if (const Comdat *C = GA.getComdat())
+ if (!GA.isDiscardableIfUnused() || !GA.use_empty())
+ NotDiscardableComdats.insert(C);
+
// Delete functions that are trivially dead, ccc -> fastcc
LocalChange |= OptimizeFunctions(M);
diff --git a/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp b/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp
index 624cb90..dc56a02 100644
--- a/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/InlineAlways.cpp
@@ -14,6 +14,8 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/IR/CallSite.h"
@@ -65,6 +67,8 @@ public:
char AlwaysInliner::ID = 0;
INITIALIZE_PASS_BEGIN(AlwaysInliner, "always-inline",
"Inliner for always_inline functions", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InlineCostAnalysis)
INITIALIZE_PASS_END(AlwaysInliner, "always-inline",
diff --git a/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp b/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp
index d189756..9b01d81 100644
--- a/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/InlineSimple.cpp
@@ -12,6 +12,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/IR/CallSite.h"
@@ -73,6 +75,8 @@ static int computeThresholdFromOptLevels(unsigned OptLevel,
char SimpleInliner::ID = 0;
INITIALIZE_PASS_BEGIN(SimpleInliner, "inline",
"Function Integration/Inlining", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InlineCostAnalysis)
INITIALIZE_PASS_END(SimpleInliner, "inline",
diff --git a/contrib/llvm/lib/Transforms/IPO/Inliner.cpp b/contrib/llvm/lib/Transforms/IPO/Inliner.cpp
index 9087ab2..6686743 100644
--- a/contrib/llvm/lib/Transforms/IPO/Inliner.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/Inliner.cpp
@@ -16,6 +16,8 @@
#include "llvm/Transforms/IPO/InlinerPass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/IR/CallSite.h"
@@ -74,6 +76,8 @@ Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<AssumptionCacheTracker>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
@@ -215,7 +219,7 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
// If the inlined function already uses this alloca then we can't reuse
// it.
- if (!UsedAllocas.insert(AvailableAlloca))
+ if (!UsedAllocas.insert(AvailableAlloca).second)
continue;
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
@@ -357,8 +361,7 @@ bool Inliner::shouldInline(CallSite CS) {
// FIXME: All of this logic should be sunk into getInlineCost. It relies on
// the internal implementation of the inline cost metrics rather than
// treating them as truly abstract units etc.
- if (Caller->hasLocalLinkage() ||
- Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
+ if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) {
int TotalSecondaryCost = 0;
// The candidate cost to be imposed upon the current function.
int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
@@ -440,9 +443,11 @@ static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
bool Inliner::runOnSCC(CallGraphSCC &SCC) {
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
+ AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
+ AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
SmallPtrSet<Function*, 8> SCCFunctions;
DEBUG(dbgs() << "Inliner visiting SCC:");
@@ -501,8 +506,8 @@ bool Inliner::runOnSCC(CallGraphSCC &SCC) {
InlinedArrayAllocasTy InlinedArrayAllocas;
- InlineFunctionInfo InlineInfo(&CG, DL);
-
+ InlineFunctionInfo InlineInfo(&CG, DL, AA, ACT);
+
// Now that we have all of the call sites, loop over them and inline them if
// it looks profitable to do so.
bool Changed = false;
@@ -664,6 +669,13 @@ bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
if (!F->isDefTriviallyDead())
continue;
+
+ // It is unsafe to drop a function with discardable linkage from a COMDAT
+ // without also dropping the other members of the COMDAT.
+ // The inliner doesn't visit non-function entities which are in COMDAT
+ // groups so it is unsafe to do so *unless* the linkage is local.
+ if (!F->hasLocalLinkage() && F->hasComdat())
+ continue;
// Remove any call graph edges from the function to its callees.
CGN->removeAllCalledFunctions();
diff --git a/contrib/llvm/lib/Transforms/IPO/Internalize.cpp b/contrib/llvm/lib/Transforms/IPO/Internalize.cpp
index c970a1a..7950163 100644
--- a/contrib/llvm/lib/Transforms/IPO/Internalize.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/Internalize.cpp
@@ -148,9 +148,7 @@ bool InternalizePass::runOnModule(Module &M) {
// we don't see references from function local inline assembly. To be
// conservative, we internalize symbols in llvm.compiler.used, but we
// keep llvm.compiler.used so that the symbol is not deleted by llvm.
- for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.begin(), E = Used.end();
- I != E; ++I) {
- GlobalValue *V = *I;
+ for (GlobalValue *V : Used) {
ExternalNames.insert(V->getName());
}
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
index 2fb0ddb..b91ebf2 100644
--- a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
@@ -286,7 +286,7 @@ private:
/// 6.4.Load: range metadata (as integer numbers)
/// On this stage its better to see the code, since its not more than 10-15
/// strings for particular instruction, and could change sometimes.
- int cmpOperation(const Instruction *L, const Instruction *R) const;
+ int cmpOperations(const Instruction *L, const Instruction *R) const;
/// Compare two GEPs for equivalent pointer arithmetic.
/// Parts to be compared for each comparison stage,
@@ -297,9 +297,9 @@ private:
/// 3. Pointer operand type (using cmpType method).
/// 4. Number of operands.
/// 5. Compare operands, using cmpValues method.
- int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
- int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
- return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
+ int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
+ int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
+ return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
}
/// cmpType - compares two types,
@@ -342,12 +342,12 @@ private:
/// be checked with the same way. If we get Res != 0 on some stage, return it.
/// Otherwise return 0.
/// 6. For all other cases put llvm_unreachable.
- int cmpType(Type *TyL, Type *TyR) const;
+ int cmpTypes(Type *TyL, Type *TyR) const;
int cmpNumbers(uint64_t L, uint64_t R) const;
- int cmpAPInt(const APInt &L, const APInt &R) const;
- int cmpAPFloat(const APFloat &L, const APFloat &R) const;
+ int cmpAPInts(const APInt &L, const APInt &R) const;
+ int cmpAPFloats(const APFloat &L, const APFloat &R) const;
int cmpStrings(StringRef L, StringRef R) const;
int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
@@ -392,15 +392,15 @@ private:
DenseMap<const Value*, int> sn_mapL, sn_mapR;
};
-class FunctionPtr {
+class FunctionNode {
AssertingVH<Function> F;
const DataLayout *DL;
public:
- FunctionPtr(Function *F, const DataLayout *DL) : F(F), DL(DL) {}
+ FunctionNode(Function *F, const DataLayout *DL) : F(F), DL(DL) {}
Function *getFunc() const { return F; }
void release() { F = 0; }
- bool operator<(const FunctionPtr &RHS) const {
+ bool operator<(const FunctionNode &RHS) const {
return (FunctionComparator(DL, F, RHS.getFunc()).compare()) == -1;
}
};
@@ -412,7 +412,7 @@ int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
return 0;
}
-int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
+int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
return Res;
if (L.ugt(R)) return 1;
@@ -420,11 +420,11 @@ int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
return 0;
}
-int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
+int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
(uint64_t)&R.getSemantics()))
return Res;
- return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
+ return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
}
int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
@@ -474,7 +474,7 @@ int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
// Check whether types are bitcastable. This part is just re-factored
// Type::canLosslesslyBitCastTo method, but instead of returning true/false,
// we also pack into result which type is "less" for us.
- int TypesRes = cmpType(TyL, TyR);
+ int TypesRes = cmpTypes(TyL, TyR);
if (TypesRes != 0) {
// Types are different, but check whether we can bitcast them.
if (!TyL->isFirstClassType()) {
@@ -541,12 +541,12 @@ int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
case Value::ConstantIntVal: {
const APInt &LInt = cast<ConstantInt>(L)->getValue();
const APInt &RInt = cast<ConstantInt>(R)->getValue();
- return cmpAPInt(LInt, RInt);
+ return cmpAPInts(LInt, RInt);
}
case Value::ConstantFPVal: {
const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
- return cmpAPFloat(LAPF, RAPF);
+ return cmpAPFloats(LAPF, RAPF);
}
case Value::ConstantArrayVal: {
const ConstantArray *LA = cast<ConstantArray>(L);
@@ -615,7 +615,7 @@ int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
/// cmpType - compares two types,
/// defines total ordering among the types set.
/// See method declaration comments for more details.
-int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
+int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
PointerType *PTyL = dyn_cast<PointerType>(TyL);
PointerType *PTyR = dyn_cast<PointerType>(TyR);
@@ -665,8 +665,7 @@ int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
return cmpNumbers(STyL->isPacked(), STyR->isPacked());
for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
- if (int Res = cmpType(STyL->getElementType(i),
- STyR->getElementType(i)))
+ if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
return Res;
}
return 0;
@@ -681,11 +680,11 @@ int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
if (FTyL->isVarArg() != FTyR->isVarArg())
return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
- if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
+ if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
return Res;
for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
- if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
+ if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
return Res;
}
return 0;
@@ -696,7 +695,7 @@ int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
ArrayType *ATyR = cast<ArrayType>(TyR);
if (ATyL->getNumElements() != ATyR->getNumElements())
return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
- return cmpType(ATyL->getElementType(), ATyR->getElementType());
+ return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
}
}
}
@@ -705,8 +704,8 @@ int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
// and pointer-to-B are equivalent. This should be kept in sync with
// Instruction::isSameOperationAs.
// Read method declaration comments for more details.
-int FunctionComparator::cmpOperation(const Instruction *L,
- const Instruction *R) const {
+int FunctionComparator::cmpOperations(const Instruction *L,
+ const Instruction *R) const {
// Differences from Instruction::isSameOperationAs:
// * replace type comparison with calls to isEquivalentType.
// * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
@@ -717,7 +716,7 @@ int FunctionComparator::cmpOperation(const Instruction *L,
if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
return Res;
- if (int Res = cmpType(L->getType(), R->getType()))
+ if (int Res = cmpTypes(L->getType(), R->getType()))
return Res;
if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
@@ -728,7 +727,7 @@ int FunctionComparator::cmpOperation(const Instruction *L,
// if all operands are the same type
for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
if (int Res =
- cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
+ cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
return Res;
}
@@ -845,7 +844,7 @@ int FunctionComparator::cmpOperation(const Instruction *L,
// Determine whether two GEP operations perform the same underlying arithmetic.
// Read method declaration comments for more details.
-int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
+int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
const GEPOperator *GEPR) {
unsigned int ASL = GEPL->getPointerAddressSpace();
@@ -861,7 +860,7 @@ int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
GEPR->accumulateConstantOffset(*DL, OffsetR))
- return cmpAPInt(OffsetL, OffsetR);
+ return cmpAPInts(OffsetL, OffsetR);
}
if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
@@ -945,10 +944,10 @@ int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
if (int Res =
cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
return Res;
- if (int Res = cmpGEP(GEPL, GEPR))
+ if (int Res = cmpGEPs(GEPL, GEPR))
return Res;
} else {
- if (int Res = cmpOperation(InstL, InstR))
+ if (int Res = cmpOperations(InstL, InstR))
return Res;
assert(InstL->getNumOperands() == InstR->getNumOperands());
@@ -960,7 +959,7 @@ int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
return Res;
// TODO: Already checked in cmpOperation
- if (int Res = cmpType(OpL->getType(), OpR->getType()))
+ if (int Res = cmpTypes(OpL->getType(), OpR->getType()))
return Res;
}
}
@@ -1008,7 +1007,7 @@ int FunctionComparator::compare() {
if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
return Res;
- if (int Res = cmpType(FnL->getFunctionType(), FnR->getFunctionType()))
+ if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
return Res;
assert(FnL->arg_size() == FnR->arg_size() &&
@@ -1050,7 +1049,7 @@ int FunctionComparator::compare() {
assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
- if (!VisitedBBs.insert(TermL->getSuccessor(i)))
+ if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
continue;
FnLBBs.push_back(TermL->getSuccessor(i));
@@ -1078,7 +1077,7 @@ public:
bool runOnModule(Module &M) override;
private:
- typedef std::set<FunctionPtr> FnTreeType;
+ typedef std::set<FunctionNode> FnTreeType;
/// A work queue of functions that may have been modified and should be
/// analyzed again.
@@ -1301,11 +1300,11 @@ static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
Value *Result = UndefValue::get(DestTy);
for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
Value *Element = createCast(
- Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
+ Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
DestTy->getStructElementType(I));
Result =
- Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
+ Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
}
return Result;
}
@@ -1421,14 +1420,14 @@ void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
// that was already inserted.
bool MergeFunctions::insert(Function *NewFunction) {
std::pair<FnTreeType::iterator, bool> Result =
- FnTree.insert(FunctionPtr(NewFunction, DL));
+ FnTree.insert(FunctionNode(NewFunction, DL));
if (Result.second) {
DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
return false;
}
- const FunctionPtr &OldF = *Result.first;
+ const FunctionNode &OldF = *Result.first;
// Don't merge tiny functions, since it can just end up making the function
// larger.
@@ -1458,7 +1457,7 @@ bool MergeFunctions::insert(Function *NewFunction) {
void MergeFunctions::remove(Function *F) {
// We need to make sure we remove F, not a function "equal" to F per the
// function equality comparator.
- FnTreeType::iterator found = FnTree.find(FunctionPtr(F, DL));
+ FnTreeType::iterator found = FnTree.find(FunctionNode(F, DL));
size_t Erased = 0;
if (found != FnTree.end() && found->getFunc() == F) {
Erased = 1;
diff --git a/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index 6d9d8be..fb673dc 100644
--- a/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -17,11 +17,14 @@
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Verifier.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Vectorize.h"
@@ -45,6 +48,10 @@ UseGVNAfterVectorization("use-gvn-after-vectorization",
cl::init(false), cl::Hidden,
cl::desc("Run GVN instead of Early CSE after vectorization passes"));
+static cl::opt<bool> ExtraVectorizerPasses(
+ "extra-vectorizer-passes", cl::init(false), cl::Hidden,
+ cl::desc("Run cleanup optimization passes after vectorization."));
+
static cl::opt<bool> UseNewSROA("use-new-sroa",
cl::init(true), cl::Hidden,
cl::desc("Enable the new, experimental SROA pass"));
@@ -57,9 +64,23 @@ static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
cl::Hidden,
cl::desc("Run the load combining pass"));
-static cl::opt<bool> RunGVN("enable-gvn", cl::init(true),
- cl::Hidden,
- cl::desc("Run the global value numbering pass"));
+static cl::opt<bool>
+RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
+ cl::init(true), cl::Hidden,
+ cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
+ "vectorizer instead of before"));
+
+static cl::opt<bool> UseCFLAA("use-cfl-aa",
+ cl::init(false), cl::Hidden,
+ cl::desc("Enable the new, experimental CFL alias analysis"));
+
+static cl::opt<bool>
+EnableMLSM("mlsm", cl::init(true), cl::Hidden,
+ cl::desc("Enable motion of merged load and store"));
+
+static cl::opt<bool> EnableGVN("enable-gvn",
+ cl::init(true), cl::Hidden,
+ cl::desc("Run the global value numbering pass"));
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
@@ -74,6 +95,11 @@ PassManagerBuilder::PassManagerBuilder() {
LoopVectorize = RunLoopVectorization;
RerollLoops = RunLoopRerolling;
LoadCombine = RunLoadCombine;
+ DisableGVNLoadPRE = false;
+ VerifyInput = false;
+ VerifyOutput = false;
+ StripDebug = false;
+ MergeFunctions = false;
}
PassManagerBuilder::~PassManagerBuilder() {
@@ -110,7 +136,10 @@ PassManagerBuilder::addInitialAliasAnalysisPasses(PassManagerBase &PM) const {
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
+ if (UseCFLAA)
+ PM.add(createCFLAliasAnalysisPass());
PM.add(createTypeBasedAliasAnalysisPass());
+ PM.add(createScopedNoAliasAAPass());
PM.add(createBasicAliasAnalysisPass());
}
@@ -134,18 +163,22 @@ void PassManagerBuilder::populateFunctionPassManager(FunctionPassManager &FPM) {
}
void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
- // If all optimizations are disabled, just run the always-inline pass.
+ // If all optimizations are disabled, just run the always-inline pass and,
+ // if enabled, the function merging pass.
if (OptLevel == 0) {
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
- // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
- // pass manager, but we don't want to add extensions into that pass manager.
- // To prevent this we must insert a no-op module pass to reset the pass
- // manager to get the same behavior as EP_OptimizerLast in non-O0 builds.
- if (!GlobalExtensions->empty() || !Extensions.empty())
+ // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
+ // creates a CGSCC pass manager, but we don't want to add extensions into
+ // that pass manager. To prevent this we insert a no-op module pass to reset
+ // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
+ // builds. The function merging pass is
+ if (MergeFunctions)
+ MPM.add(createMergeFunctionsPass());
+ else if (!GlobalExtensions->empty() || !Extensions.empty())
MPM.add(createBarrierNoopPass());
addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
@@ -213,9 +246,10 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
if (OptLevel > 1) {
- MPM.add(createMergedLoadStoreMotionPass()); // Merge load/stores in diamond
- if (RunGVN)
- MPM.add(createGVNPass()); // Remove redundancies
+ if (EnableMLSM)
+ MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
+ if (EnableGVN)
+ MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
}
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
MPM.add(createSCCPPass()); // Constant prop with SCCP
@@ -232,21 +266,23 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
if (RerollLoops)
MPM.add(createLoopRerollPass());
- if (SLPVectorize)
- MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
-
- if (BBVectorize) {
- MPM.add(createBBVectorizePass());
- MPM.add(createInstructionCombiningPass());
- addExtensionsToPM(EP_Peephole, MPM);
- if (OptLevel > 1 && UseGVNAfterVectorization)
- MPM.add(createGVNPass()); // Remove redundancies
- else
- MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
-
- // BBVectorize may have significantly shortened a loop body; unroll again.
- if (!DisableUnrollLoops)
- MPM.add(createLoopUnrollPass());
+ if (!RunSLPAfterLoopVectorization) {
+ if (SLPVectorize)
+ MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
+
+ if (BBVectorize) {
+ MPM.add(createBBVectorizePass());
+ MPM.add(createInstructionCombiningPass());
+ addExtensionsToPM(EP_Peephole, MPM);
+ if (OptLevel > 1 && UseGVNAfterVectorization)
+ MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
+ else
+ MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
+
+ // BBVectorize may have significantly shortened a loop body; unroll again.
+ if (!DisableUnrollLoops)
+ MPM.add(createLoopUnrollPass());
+ }
}
if (LoadCombine)
@@ -261,6 +297,13 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
// pass manager that we are specifically trying to avoid. To prevent this
// we must insert a no-op module pass to reset the pass manager.
MPM.add(createBarrierNoopPass());
+
+ // Re-rotate loops in all our loop nests. These may have fallout out of
+ // rotated form due to GVN or other transformations, and the vectorizer relies
+ // on the rotated form.
+ if (ExtraVectorizerPasses)
+ MPM.add(createLoopRotatePass());
+
MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
// FIXME: Because of #pragma vectorize enable, the passes below are always
// inserted in the pipeline, even when the vectorizer doesn't run (ex. when
@@ -268,12 +311,56 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
// as function calls, so that we can only pass them when the vectorizer
// changed the code.
MPM.add(createInstructionCombiningPass());
+ if (OptLevel > 1 && ExtraVectorizerPasses) {
+ // At higher optimization levels, try to clean up any runtime overlap and
+ // alignment checks inserted by the vectorizer. We want to track correllated
+ // runtime checks for two inner loops in the same outer loop, fold any
+ // common computations, hoist loop-invariant aspects out of any outer loop,
+ // and unswitch the runtime checks if possible. Once hoisted, we may have
+ // dead (or speculatable) control flows or more combining opportunities.
+ MPM.add(createEarlyCSEPass());
+ MPM.add(createCorrelatedValuePropagationPass());
+ MPM.add(createInstructionCombiningPass());
+ MPM.add(createLICMPass());
+ MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
+ MPM.add(createCFGSimplificationPass());
+ MPM.add(createInstructionCombiningPass());
+ }
+
+ if (RunSLPAfterLoopVectorization) {
+ if (SLPVectorize) {
+ MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
+ if (OptLevel > 1 && ExtraVectorizerPasses) {
+ MPM.add(createEarlyCSEPass());
+ }
+ }
+
+ if (BBVectorize) {
+ MPM.add(createBBVectorizePass());
+ MPM.add(createInstructionCombiningPass());
+ addExtensionsToPM(EP_Peephole, MPM);
+ if (OptLevel > 1 && UseGVNAfterVectorization)
+ MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
+ else
+ MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
+
+ // BBVectorize may have significantly shortened a loop body; unroll again.
+ if (!DisableUnrollLoops)
+ MPM.add(createLoopUnrollPass());
+ }
+ }
+
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createCFGSimplificationPass());
+ MPM.add(createInstructionCombiningPass());
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass()); // Unroll small loops
+ // After vectorization and unrolling, assume intrinsics may tell us more
+ // about pointer alignments.
+ MPM.add(createAlignmentFromAssumptionsPass());
+
if (!DisableUnitAtATime) {
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
@@ -285,22 +372,17 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
MPM.add(createConstantMergePass()); // Merge dup global constants
}
}
+
+ if (MergeFunctions)
+ MPM.add(createMergeFunctionsPass());
+
addExtensionsToPM(EP_OptimizerLast, MPM);
}
-void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
- bool Internalize,
- bool RunInliner,
- bool DisableGVNLoadPRE) {
+void PassManagerBuilder::addLTOOptimizationPasses(PassManagerBase &PM) {
// Provide AliasAnalysis services for optimizations.
addInitialAliasAnalysisPasses(PM);
- // Now that composite has been compiled, scan through the module, looking
- // for a main function. If main is defined, mark all other functions
- // internal.
- if (Internalize)
- PM.add(createInternalizePass("main"));
-
// Propagate constants at call sites into the functions they call. This
// opens opportunities for globalopt (and inlining) by substituting function
// pointers passed as arguments to direct uses of functions.
@@ -324,8 +406,11 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
addExtensionsToPM(EP_Peephole, PM);
// Inline small functions
- if (RunInliner)
- PM.add(createFunctionInliningPass());
+ bool RunInliner = Inliner;
+ if (RunInliner) {
+ PM.add(Inliner);
+ Inliner = nullptr;
+ }
PM.add(createPruneEHPass()); // Remove dead EH info.
@@ -354,7 +439,8 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
PM.add(createGlobalsModRefPass()); // IP alias analysis.
PM.add(createLICMPass()); // Hoist loop invariants.
- PM.add(createMergedLoadStoreMotionPass()); // Merge load/stores in diamonds
+ if (EnableMLSM)
+ PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
PM.add(createMemCpyOptPass()); // Remove dead memcpys.
@@ -364,10 +450,16 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
// More loops are countable; try to optimize them.
PM.add(createIndVarSimplifyPass());
PM.add(createLoopDeletionPass());
- PM.add(createLoopVectorizePass(true, true));
+ PM.add(createLoopVectorizePass(true, LoopVectorize));
// More scalar chains could be vectorized due to more alias information
- PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
+ if (RunSLPAfterLoopVectorization)
+ if (SLPVectorize)
+ PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
+
+ // After vectorization, assume intrinsics may tell us more about pointer
+ // alignments.
+ PM.add(createAlignmentFromAssumptionsPass());
if (LoadCombine)
PM.add(createLoadCombinePass());
@@ -383,6 +475,39 @@ void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
// Now that we have optimized the program, discard unreachable functions.
PM.add(createGlobalDCEPass());
+
+ // FIXME: this is profitable (for compiler time) to do at -O0 too, but
+ // currently it damages debug info.
+ if (MergeFunctions)
+ PM.add(createMergeFunctionsPass());
+}
+
+void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM,
+ TargetMachine *TM) {
+ if (TM) {
+ PM.add(new DataLayoutPass());
+ TM->addAnalysisPasses(PM);
+ }
+
+ if (LibraryInfo)
+ PM.add(new TargetLibraryInfo(*LibraryInfo));
+
+ if (VerifyInput)
+ PM.add(createVerifierPass());
+
+ if (StripDebug)
+ PM.add(createStripSymbolsPass(true));
+
+ if (VerifyInput)
+ PM.add(createDebugInfoVerifierPass());
+
+ if (OptLevel != 0)
+ addLTOOptimizationPasses(PM);
+
+ if (VerifyOutput) {
+ PM.add(createVerifierPass());
+ PM.add(createDebugInfoVerifierPass());
+ }
}
inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
@@ -466,5 +591,11 @@ void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
LLVMBool RunInliner) {
PassManagerBuilder *Builder = unwrap(PMB);
PassManagerBase *LPM = unwrap(PM);
- Builder->populateLTOPassManager(*LPM, Internalize != 0, RunInliner != 0);
+
+ // A small backwards compatibility hack. populateLTOPassManager used to take
+ // an RunInliner option.
+ if (RunInliner && !Builder->Inliner)
+ Builder->Inliner = createFunctionInliningPass();
+
+ Builder->populateLTOPassManager(*LPM);
}
diff --git a/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp b/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp
index b2c4a09..7bd4ce1 100644
--- a/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/PruneEH.cpp
@@ -200,7 +200,7 @@ bool PruneEH::SimplifyFunction(Function *F) {
BB->getInstList().pop_back();
// If the unwind block is now dead, nuke it.
- if (pred_begin(UnwindBlock) == pred_end(UnwindBlock))
+ if (pred_empty(UnwindBlock))
DeleteBasicBlock(UnwindBlock); // Delete the new BB.
++NumRemoved;
@@ -234,7 +234,7 @@ bool PruneEH::SimplifyFunction(Function *F) {
/// updating the callgraph to reflect any now-obsolete edges due to calls that
/// exist in the BB.
void PruneEH::DeleteBasicBlock(BasicBlock *BB) {
- assert(pred_begin(BB) == pred_end(BB) && "BB is not dead!");
+ assert(pred_empty(BB) && "BB is not dead!");
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
CallGraphNode *CGN = CG[BB->getParent()];
diff --git a/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp b/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp
index 1abbccc..816978e 100644
--- a/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/StripSymbols.cpp
@@ -154,9 +154,8 @@ static void RemoveDeadConstant(Constant *C) {
C->destroyConstant();
// If the constant referenced anything, see if we can delete it as well.
- for (SmallPtrSet<Constant*, 4>::iterator OI = Operands.begin(),
- OE = Operands.end(); OI != OE; ++OI)
- RemoveDeadConstant(*OI);
+ for (Constant *O : Operands)
+ RemoveDeadConstant(O);
}
// Strip the symbol table of its names.
@@ -191,7 +190,7 @@ static void StripTypeNames(Module &M, bool PreserveDbgInfo) {
/// Find values that are marked as llvm.used.
static void findUsedValues(GlobalVariable *LLVMUsed,
- SmallPtrSet<const GlobalValue*, 8> &UsedValues) {
+ SmallPtrSetImpl<const GlobalValue*> &UsedValues) {
if (!LLVMUsed) return;
UsedValues.insert(LLVMUsed);
@@ -302,8 +301,8 @@ bool StripDeadDebugInfo::runOnModule(Module &M) {
// For each compile unit, find the live set of global variables/functions and
// replace the current list of potentially dead global variables/functions
// with the live list.
- SmallVector<Value *, 64> LiveGlobalVariables;
- SmallVector<Value *, 64> LiveSubprograms;
+ SmallVector<Metadata *, 64> LiveGlobalVariables;
+ SmallVector<Metadata *, 64> LiveSubprograms;
DenseSet<const MDNode *> VisitedSet;
for (DICompileUnit DIC : F.compile_units()) {
@@ -350,28 +349,12 @@ bool StripDeadDebugInfo::runOnModule(Module &M) {
// subprogram list/global variable list with our new live subprogram/global
// variable list.
if (SubprogramChange) {
- // Make sure that 9 is still the index of the subprograms. This is to make
- // sure that an assert is hit if the location of the subprogram array
- // changes. This is just to make sure that this is updated if such an
- // event occurs.
- assert(DIC->getNumOperands() >= 10 &&
- SPs == DIC->getOperand(9) &&
- "DICompileUnits is expected to store Subprograms in operand "
- "9.");
- DIC->replaceOperandWith(9, MDNode::get(C, LiveSubprograms));
+ DIC.replaceSubprograms(DIArray(MDNode::get(C, LiveSubprograms)));
Changed = true;
}
if (GlobalVariableChange) {
- // Make sure that 10 is still the index of global variables. This is to
- // make sure that an assert is hit if the location of the subprogram array
- // changes. This is just to make sure that this index is updated if such
- // an event occurs.
- assert(DIC->getNumOperands() >= 11 &&
- GVs == DIC->getOperand(10) &&
- "DICompileUnits is expected to store Global Variables in operand "
- "10.");
- DIC->replaceOperandWith(10, MDNode::get(C, LiveGlobalVariables));
+ DIC.replaceGlobalVariables(DIArray(MDNode::get(C, LiveGlobalVariables)));
Changed = true;
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
index ab4dc1c..3c3c135 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
@@ -7,16 +7,19 @@
//
//===----------------------------------------------------------------------===//
-#ifndef INSTCOMBINE_INSTCOMBINE_H
-#define INSTCOMBINE_INSTCOMBINE_H
+#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINE_H
+#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINE_H
#include "InstCombineWorklist.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
@@ -25,6 +28,7 @@
namespace llvm {
class CallSite;
class DataLayout;
+class DominatorTree;
class TargetLibraryInfo;
class DbgDeclareInst;
class MemIntrinsic;
@@ -71,14 +75,20 @@ static inline Constant *SubOne(Constant *C) {
class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
: public IRBuilderDefaultInserter<true> {
InstCombineWorklist &Worklist;
+ AssumptionCache *AC;
public:
- InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
+ InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
+ : Worklist(WL), AC(AC) {}
void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
BasicBlock::iterator InsertPt) const {
IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
Worklist.Add(I);
+
+ using namespace llvm::PatternMatch;
+ if (match(I, m_Intrinsic<Intrinsic::assume>()))
+ AC->registerAssumption(cast<CallInst>(I));
}
};
@@ -86,8 +96,10 @@ public:
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public FunctionPass,
public InstVisitor<InstCombiner, Instruction *> {
+ AssumptionCache *AC;
const DataLayout *DL;
TargetLibraryInfo *TLI;
+ DominatorTree *DT;
bool MadeIRChange;
LibCallSimplifier *Simplifier;
bool MinimizeSize;
@@ -102,7 +114,8 @@ public:
BuilderTy *Builder;
static char ID; // Pass identification, replacement for typeid
- InstCombiner() : FunctionPass(ID), DL(nullptr), Builder(nullptr) {
+ InstCombiner()
+ : FunctionPass(ID), DL(nullptr), DT(nullptr), Builder(nullptr) {
MinimizeSize = false;
initializeInstCombinerPass(*PassRegistry::getPassRegistry());
}
@@ -114,7 +127,11 @@ public:
void getAnalysisUsage(AnalysisUsage &AU) const override;
+ AssumptionCache *getAssumptionCache() const { return AC; }
+
const DataLayout *getDataLayout() const { return DL; }
+
+ DominatorTree *getDominatorTree() const { return DT; }
TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
@@ -145,13 +162,16 @@ public:
Instruction *visitUDiv(BinaryOperator &I);
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
+ Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
- Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
+ Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
Value *B, Value *C);
+ Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
+ Value *B, Value *C);
Instruction *visitOr(BinaryOperator &I);
Instruction *visitXor(BinaryOperator &I);
Instruction *visitShl(BinaryOperator &I);
@@ -172,6 +192,10 @@ public:
ConstantInt *DivRHS);
Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
+ Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1, ConstantInt *CI2);
+ Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1, ConstantInt *CI2);
Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred);
Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
@@ -213,6 +237,7 @@ public:
Instruction *visitStoreInst(StoreInst &SI);
Instruction *visitBranchInst(BranchInst &BI);
Instruction *visitSwitchInst(SwitchInst &SI);
+ Instruction *visitReturnInst(ReturnInst &RI);
Instruction *visitInsertValueInst(InsertValueInst &IV);
Instruction *visitInsertElementInst(InsertElementInst &IE);
Instruction *visitExtractElementInst(ExtractElementInst &EI);
@@ -223,6 +248,16 @@ public:
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction &I) { return nullptr; }
+ // True when DB dominates all uses of DI execpt UI.
+ // UI must be in the same block as DI.
+ // The routine checks that the DI parent and DB are different.
+ bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
+ const BasicBlock *DB) const;
+
+ // Replace select with select operand SIOpd in SI-ICmp sequence when possible
+ bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
+ const unsigned SIOpd);
+
private:
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
@@ -246,8 +281,10 @@ private:
Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform = true);
Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
- bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
- bool WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS);
+ bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
@@ -294,6 +331,20 @@ public:
return &I;
}
+ /// Creates a result tuple for an overflow intrinsic \p II with a given
+ /// \p Result and a constant \p Overflow value. If \p ReUseName is true the
+ /// \p Result's name is taken from \p II.
+ Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
+ bool Overflow, bool ReUseName = true) {
+ if (ReUseName)
+ Result->takeName(II);
+ Constant *V[] = { UndefValue::get(Result->getType()),
+ Overflow ? Builder->getTrue() : Builder->getFalse() };
+ StructType *ST = cast<StructType>(II->getType());
+ Constant *Struct = ConstantStruct::get(ST, V);
+ return InsertValueInst::Create(Struct, Result, 0);
+ }
+
// EraseInstFromFunction - When dealing with an instruction that has side
// effects or produces a void value, we can't rely on DCE to delete the
// instruction. Instead, visit methods should return the value returned by
@@ -316,16 +367,32 @@ public:
}
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- unsigned Depth = 0) const {
- return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth);
+ unsigned Depth = 0, Instruction *CxtI = nullptr) const {
+ return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
+ DT);
}
bool MaskedValueIsZero(Value *V, const APInt &Mask,
- unsigned Depth = 0) const {
- return llvm::MaskedValueIsZero(V, Mask, DL, Depth);
+ unsigned Depth = 0,
+ Instruction *CxtI = nullptr) const {
+ return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
+ }
+ unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
+ Instruction *CxtI = nullptr) const {
+ return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
+ }
+ void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
+ unsigned Depth = 0, Instruction *CxtI = nullptr) const {
+ return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
+ DT);
+ }
+ OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
+ const Instruction *CxtI) {
+ return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
}
- unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
- return llvm::ComputeNumSignBits(Op, DL, Depth);
+ OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
+ const Instruction *CxtI) {
+ return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
}
private:
@@ -343,7 +410,8 @@ private:
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth);
+ APInt &KnownOne, unsigned Depth,
+ Instruction *CxtI = nullptr);
bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0);
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
@@ -361,6 +429,7 @@ private:
APInt &UndefElts, unsigned Depth = 0);
Value *SimplifyVectorOp(BinaryOperator &Inst);
+ Value *SimplifyBSwap(BinaryOperator &Inst);
// FoldOpIntoPhi - Given a binary operator, cast instruction, or select
// which has a PHI node as operand #0, see if we can fold the instruction
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index e80d6a9..6d20384 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -751,8 +751,7 @@ Value *FAddCombine::createNaryFAdd
return LastVal;
}
-Value *FAddCombine::createFSub
- (Value *Opnd0, Value *Opnd1) {
+Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
Value *V = Builder->CreateFSub(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
@@ -760,15 +759,14 @@ Value *FAddCombine::createFSub
}
Value *FAddCombine::createFNeg(Value *V) {
- Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
+ Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
Value *NewV = createFSub(Zero, V);
if (Instruction *I = dyn_cast<Instruction>(NewV))
createInstPostProc(I, true); // fneg's don't receive instruction numbers.
return NewV;
}
-Value *FAddCombine::createFAdd
- (Value *Opnd0, Value *Opnd1) {
+Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
@@ -789,8 +787,7 @@ Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
return V;
}
-void FAddCombine::createInstPostProc(Instruction *NewInstr,
- bool NoNumber) {
+void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
NewInstr->setDebugLoc(Instr->getDebugLoc());
// Keep track of the number of instruction created.
@@ -840,8 +837,7 @@ unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
// <C, V> "fmul V, C" false
//
// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
-Value *FAddCombine::createAddendVal
- (const FAddend &Opnd, bool &NeedNeg) {
+Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
const FAddendCoef &Coeff = Opnd.getCoef();
if (Opnd.isConstant()) {
@@ -894,8 +890,8 @@ static bool checkRippleForAdd(const APInt &Op0KnownZero,
/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
-/// TODO: Handle this for Vectors.
-bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
+bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
+ Instruction *CxtI) {
// There are different heuristics we can use for this. Here are some simple
// ones.
@@ -913,44 +909,76 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
//
// Since the carry into the most significant position is always equal to
// the carry out of the addition, there is no signed overflow.
- if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
+ if (ComputeNumSignBits(LHS, 0, CxtI) > 1 &&
+ ComputeNumSignBits(RHS, 0, CxtI) > 1)
return true;
- if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
- int BitWidth = IT->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
-
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
-
- // Addition of two 2's compliment numbers having opposite signs will never
- // overflow.
- if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
- (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
- return true;
-
- // Check if carry bit of addition will not cause overflow.
- if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
- return true;
- if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
- return true;
- }
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
+
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
+
+ // Addition of two 2's compliment numbers having opposite signs will never
+ // overflow.
+ if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
+ (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
+ return true;
+
+ // Check if carry bit of addition will not cause overflow.
+ if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
+ return true;
+ if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
+ return true;
+
+ return false;
+}
+
+/// \brief Return true if we can prove that:
+/// (sub LHS, RHS) === (sub nsw LHS, RHS)
+/// This basically requires proving that the add in the original type would not
+/// overflow to change the sign bit or have a carry out.
+/// TODO: Handle this for Vectors.
+bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
+ Instruction *CxtI) {
+ // If LHS and RHS each have at least two sign bits, the subtraction
+ // cannot overflow.
+ if (ComputeNumSignBits(LHS, 0, CxtI) > 1 &&
+ ComputeNumSignBits(RHS, 0, CxtI) > 1)
+ return true;
+
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
+
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
+
+ // Subtraction of two 2's compliment numbers having identical signs will
+ // never overflow.
+ if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
+ (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
+ return true;
+
+ // TODO: implement logic similar to checkRippleForAdd
return false;
}
-/// WillNotOverflowUnsignedAdd - Return true if we can prove that:
-/// (zext (add LHS, RHS)) === (add (zext LHS), (zext RHS))
-bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS) {
- // There are different heuristics we can use for this. Here is a simple one.
- // If the sign bit of LHS and that of RHS are both zero, no unsigned wrap.
+/// \brief Return true if we can prove that:
+/// (sub LHS, RHS) === (sub nuw LHS, RHS)
+bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
+ Instruction *CxtI) {
+ // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
bool LHSKnownNonNegative, LHSKnownNegative;
bool RHSKnownNonNegative, RHSKnownNegative;
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0);
- ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0);
- if (LHSKnownNonNegative && RHSKnownNonNegative)
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, CxtI);
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, CxtI);
+ if (LHSKnownNegative && RHSKnownNonNegative)
return true;
return false;
@@ -1025,7 +1053,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), DL))
+ I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A*B)+(A*C) -> A*(B+C) etc
@@ -1064,7 +1092,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ExtendAmt) {
APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
- if (!MaskedValueIsZero(XorLHS, Mask))
+ if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
ExtendAmt = 0;
}
@@ -1080,7 +1108,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
IntegerType *IT = cast<IntegerType>(I.getType());
APInt LHSKnownOne(IT->getBitWidth(), 0);
APInt LHSKnownZero(IT->getBitWidth(), 0);
- computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne);
+ computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
XorLHS);
@@ -1133,11 +1161,11 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
APInt LHSKnownOne(IT->getBitWidth(), 0);
APInt LHSKnownZero(IT->getBitWidth(), 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &I);
if (LHSKnownZero != 0) {
APInt RHSKnownOne(IT->getBitWidth(), 0);
APInt RHSKnownZero(IT->getBitWidth(), 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &I);
// No bits in common -> bitwise or.
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
@@ -1215,7 +1243,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) {
// Insert the new, smaller add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
@@ -1231,7 +1259,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0))) {
+ RHSConv->getOperand(0), &I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
@@ -1240,7 +1268,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
}
- // Check for (x & y) + (x ^ y)
+ // (add (xor A, B) (and A, B)) --> (or A, B)
{
Value *A = nullptr, *B = nullptr;
if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
@@ -1254,14 +1282,38 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
return BinaryOperator::CreateOr(A, B);
}
+ // (add (or A, B) (and A, B)) --> (add A, B)
+ {
+ Value *A = nullptr, *B = nullptr;
+ if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
+ (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
+ match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
+ auto *New = BinaryOperator::CreateAdd(A, B);
+ New->setHasNoSignedWrap(I.hasNoSignedWrap());
+ New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+ return New;
+ }
+
+ if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
+ (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
+ match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
+ auto *New = BinaryOperator::CreateAdd(A, B);
+ New->setHasNoSignedWrap(I.hasNoSignedWrap());
+ New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+ return New;
+ }
+ }
+
// TODO(jingyue): Consider WillNotOverflowSignedAdd and
// WillNotOverflowUnsignedAdd to reduce the number of invocations of
// computeKnownBits.
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS)) {
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, &I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
- if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedAdd(LHS, RHS)) {
+ if (!I.hasNoUnsignedWrap() &&
+ computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
+ OverflowResult::NeverOverflows) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
@@ -1276,7 +1328,8 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL))
+ if (Value *V =
+ SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (isa<Constant>(RHS)) {
@@ -1318,7 +1371,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
@@ -1334,7 +1387,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0))) {
+ RHSConv->getOperand(0), &I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0),"addconv");
@@ -1356,11 +1409,11 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
Z2 = dyn_cast<Constant>(B2); B = B1;
} else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
Z1 = dyn_cast<Constant>(B1); B = B2;
- Z2 = dyn_cast<Constant>(A2); A = A1;
+ Z2 = dyn_cast<Constant>(A2); A = A1;
}
-
- if (Z1 && Z2 &&
- (I.hasNoSignedZeros() ||
+
+ if (Z1 && Z2 &&
+ (I.hasNoSignedZeros() ||
(Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
return SelectInst::Create(C, A, B);
}
@@ -1447,7 +1500,6 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
return Builder->CreateIntCast(Result, Ty, true);
}
-
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -1455,18 +1507,27 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), DL))
+ I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A*B)-(A*C) -> A*(B-C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
+ // If this is a 'B = x-(-A)', change to B = x+A.
if (Value *V = dyn_castNegVal(Op1)) {
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
- Res->setHasNoSignedWrap(I.hasNoSignedWrap());
- Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+
+ if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
+ assert(BO->getOpcode() == Instruction::Sub &&
+ "Expected a subtraction operator!");
+ if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
+ Res->setHasNoSignedWrap(true);
+ } else {
+ if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
+ Res->setHasNoSignedWrap(true);
+ }
+
return Res;
}
@@ -1511,21 +1572,23 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
if (C->isZero()) {
- Value *X; ConstantInt *CI;
+ Value *X;
+ ConstantInt *CI;
if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
// Verify we are shifting out everything but the sign bit.
- CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
+ CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
return BinaryOperator::CreateAShr(X, CI);
if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
// Verify we are shifting out everything but the sign bit.
- CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
+ CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
return BinaryOperator::CreateLShr(X, CI);
}
}
- { Value *Y;
+ {
+ Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
@@ -1536,6 +1599,24 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return BinaryOperator::CreateNeg(Y);
}
+ // (sub (or A, B) (xor A, B)) --> (and A, B)
+ {
+ Value *A = nullptr, *B = nullptr;
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
+ (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
+ match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
+ return BinaryOperator::CreateAnd(A, B);
+ }
+
+ if (Op0->hasOneUse()) {
+ Value *Y = nullptr;
+ // ((X | Y) - X) --> (~X & Y)
+ if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
+ match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateAnd(
+ Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
+ }
+
if (Op1->hasOneUse()) {
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
Constant *C = nullptr;
@@ -1555,7 +1636,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
- !C->isMinSignedValue())
+ C->isNotMinSignedValue() && !C->isOneValue())
return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
// 0 - (X << Y) -> (-X << Y) when X is freely negatable.
@@ -1595,7 +1676,17 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return ReplaceInstUsesWith(I, Res);
}
- return nullptr;
+ bool Changed = false;
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, &I)) {
+ Changed = true;
+ I.setHasNoSignedWrap(true);
+ }
+ if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, &I)) {
+ Changed = true;
+ I.setHasNoUnsignedWrap(true);
+ }
+
+ return Changed ? &I : nullptr;
}
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
@@ -1604,9 +1695,18 @@ Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL))
+ if (Value *V =
+ SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
+ // fsub nsz 0, X ==> fsub nsz -0.0, X
+ if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
+ // Subtraction from -0.0 is the canonical form of fneg.
+ Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
+ NewI->copyFastMathFlags(&I);
+ return NewI;
+ }
+
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *NV = FoldOpIntoSelect(I, SI))
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index b23a606..74b6970 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -117,6 +117,61 @@ static Value *getFCmpValue(bool isordered, unsigned code,
return Builder->CreateFCmp(Pred, LHS, RHS);
}
+/// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
+/// \param I Binary operator to transform.
+/// \return Pointer to node that must replace the original binary operator, or
+/// null pointer if no transformation was made.
+Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
+ IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
+
+ // Can't do vectors.
+ if (I.getType()->isVectorTy()) return nullptr;
+
+ // Can only do bitwise ops.
+ unsigned Op = I.getOpcode();
+ if (Op != Instruction::And && Op != Instruction::Or &&
+ Op != Instruction::Xor)
+ return nullptr;
+
+ Value *OldLHS = I.getOperand(0);
+ Value *OldRHS = I.getOperand(1);
+ ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
+ ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
+ IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
+ IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
+ bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
+ bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
+
+ if (!IsBswapLHS && !IsBswapRHS)
+ return nullptr;
+
+ if (!IsBswapLHS && !ConstLHS)
+ return nullptr;
+
+ if (!IsBswapRHS && !ConstRHS)
+ return nullptr;
+
+ /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
+ /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
+ Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
+ Builder->getInt(ConstLHS->getValue().byteSwap());
+
+ Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
+ Builder->getInt(ConstRHS->getValue().byteSwap());
+
+ Value *BinOp = nullptr;
+ if (Op == Instruction::And)
+ BinOp = Builder->CreateAnd(NewLHS, NewRHS);
+ else if (Op == Instruction::Or)
+ BinOp = Builder->CreateOr(NewLHS, NewRHS);
+ else //if (Op == Instruction::Xor)
+ BinOp = Builder->CreateXor(NewLHS, NewRHS);
+
+ Module *M = I.getParent()->getParent()->getParent();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
+ return Builder->CreateCall(F, BinOp);
+}
+
// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
// guaranteed to be a binary operator.
@@ -355,7 +410,7 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
- if (MaskedValueIsZero(RHS, Mask))
+ if (MaskedValueIsZero(RHS, Mask, 0, &I))
break;
}
}
@@ -614,7 +669,7 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
} else if (R1->getType()->isIntegerTy()) {
if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
// As before, model no mask as a trivial mask if it'll let us do an
- // optimisation.
+ // optimization.
R11 = R1;
R12 = Constant::getAllOnesValue(R1->getType());
}
@@ -665,8 +720,8 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
/// foldLogOpOfMaskedICmps:
/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// into a single (icmp(A & X) ==/!= Y)
-static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
- llvm::InstCombiner::BuilderTy* Builder) {
+static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
+ llvm::InstCombiner::BuilderTy *Builder) {
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
@@ -697,26 +752,26 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
if (mask & FoldMskICmp_Mask_AllZeroes) {
// (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
// -> (icmp eq (A & (B|D)), 0)
- Value* newOr = Builder->CreateOr(B, D);
- Value* newAnd = Builder->CreateAnd(A, newOr);
+ Value *newOr = Builder->CreateOr(B, D);
+ Value *newAnd = Builder->CreateAnd(A, newOr);
// we can't use C as zero, because we might actually handle
// (icmp ne (A & B), B) & (icmp ne (A & D), D)
// with B and D, having a single bit set
- Value* zero = Constant::getNullValue(A->getType());
+ Value *zero = Constant::getNullValue(A->getType());
return Builder->CreateICmp(NEWCC, newAnd, zero);
}
if (mask & FoldMskICmp_BMask_AllOnes) {
// (icmp eq (A & B), B) & (icmp eq (A & D), D)
// -> (icmp eq (A & (B|D)), (B|D))
- Value* newOr = Builder->CreateOr(B, D);
- Value* newAnd = Builder->CreateAnd(A, newOr);
+ Value *newOr = Builder->CreateOr(B, D);
+ Value *newAnd = Builder->CreateAnd(A, newOr);
return Builder->CreateICmp(NEWCC, newAnd, newOr);
}
if (mask & FoldMskICmp_AMask_AllOnes) {
// (icmp eq (A & B), A) & (icmp eq (A & D), A)
// -> (icmp eq (A & (B&D)), A)
- Value* newAnd1 = Builder->CreateAnd(B, D);
- Value* newAnd = Builder->CreateAnd(A, newAnd1);
+ Value *newAnd1 = Builder->CreateAnd(B, D);
+ Value *newAnd = Builder->CreateAnd(A, newAnd1);
return Builder->CreateICmp(NEWCC, newAnd, A);
}
@@ -766,19 +821,17 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
// with B and D, having a single bit set
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
if (!CCst) return nullptr;
- if (LHSCC != NEWCC)
- CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
ConstantInt *ECst = dyn_cast<ConstantInt>(E);
if (!ECst) return nullptr;
+ if (LHSCC != NEWCC)
+ CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
if (RHSCC != NEWCC)
- ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
- ConstantInt* MCst = dyn_cast<ConstantInt>(
- ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
- ConstantExpr::getXor(CCst, ECst)) );
+ ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
// if there is a conflict we should actually return a false for the
// whole construct
- if (!MCst->isZero())
- return nullptr;
+ if (((BCst->getValue() & DCst->getValue()) &
+ (CCst->getValue() ^ ECst->getValue())) != 0)
+ return ConstantInt::get(LHS->getType(), !IsAnd);
Value *newOr1 = Builder->CreateOr(B, D);
Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
Value *newAnd = Builder->CreateAnd(A, newOr1);
@@ -787,6 +840,62 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
return nullptr;
}
+/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
+/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
+/// If \p Inverted is true then the check is for the inverted range, e.g.
+/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
+Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
+ bool Inverted) {
+ // Check the lower range comparison, e.g. x >= 0
+ // InstCombine already ensured that if there is a constant it's on the RHS.
+ ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
+ if (!RangeStart)
+ return nullptr;
+
+ ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
+ Cmp0->getPredicate());
+
+ // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
+ if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
+ (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
+ return nullptr;
+
+ ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
+ Cmp1->getPredicate());
+
+ Value *Input = Cmp0->getOperand(0);
+ Value *RangeEnd;
+ if (Cmp1->getOperand(0) == Input) {
+ // For the upper range compare we have: icmp x, n
+ RangeEnd = Cmp1->getOperand(1);
+ } else if (Cmp1->getOperand(1) == Input) {
+ // For the upper range compare we have: icmp n, x
+ RangeEnd = Cmp1->getOperand(0);
+ Pred1 = ICmpInst::getSwappedPredicate(Pred1);
+ } else {
+ return nullptr;
+ }
+
+ // Check the upper range comparison, e.g. x < n
+ ICmpInst::Predicate NewPred;
+ switch (Pred1) {
+ case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
+ case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
+ default: return nullptr;
+ }
+
+ // This simplification is only valid if the upper range is not negative.
+ bool IsNegative, IsNotNegative;
+ ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
+ if (!IsNotNegative)
+ return nullptr;
+
+ if (Inverted)
+ NewPred = ICmpInst::getInversePredicate(NewPred);
+
+ return Builder->CreateICmp(NewPred, Input, RangeEnd);
+}
+
/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
@@ -809,6 +918,14 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
return V;
+ // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
+ if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
+ return V;
+
+ // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
+ if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
+ return V;
+
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
@@ -930,6 +1047,8 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
case ICmpInst::ICMP_ULT:
if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
return Builder->CreateICmpULT(Val, LHSCst);
+ if (LHSCst->isNullValue()) // (X != 0 & X u< 14) -> X-1 u< 13
+ return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
break; // (X != 13 & X u< 15) -> no change
case ICmpInst::ICMP_SLT:
if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
@@ -1101,7 +1220,6 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
return nullptr;
}
-
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -1109,7 +1227,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyAndInst(Op0, Op1, DL))
+ if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A|B)&(A|C) -> A|(B&C) etc
@@ -1121,6 +1239,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
+ if (Value *V = SimplifyBSwap(I))
+ return ReplaceInstUsesWith(I, V);
+
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
const APInt &AndRHSMask = AndRHS->getValue();
@@ -1136,14 +1257,14 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (!Op0I->hasOneUse()) break;
APInt NotAndRHS(~AndRHSMask);
- if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
+ if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
// Not masking anything out for the LHS, move to RHS.
Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
Op0RHS->getName()+".masked");
return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
}
if (!isa<Constant>(Op0RHS) &&
- MaskedValueIsZero(Op0RHS, NotAndRHS)) {
+ MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
// Not masking anything out for the RHS, move to LHS.
Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
Op0LHS->getName()+".masked");
@@ -1176,7 +1297,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
uint32_t Zeros = AndRHSMask.countLeadingZeros();
APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
- if (MaskedValueIsZero(Op0LHS, Mask)) {
+ if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
Value *NewNeg = Builder->CreateNeg(Op0RHS);
return BinaryOperator::CreateAnd(NewNeg, AndRHS);
}
@@ -1283,13 +1404,58 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
return BinaryOperator::CreateAnd(A, Op0);
+
+ // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
+ if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
+ if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
+ return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
+
+ // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
+ if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
+ if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
+ if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
+ return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
+
+ // (A | B) & ((~A) ^ B) -> (A & B)
+ if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
+ return BinaryOperator::CreateAnd(A, B);
+
+ // ((~A) ^ B) & (A | B) -> (A & B)
+ if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1, m_Or(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateAnd(A, B);
}
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
+ {
+ ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
+ ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
+ if (LHS && RHS)
if (Value *Res = FoldAndOfICmps(LHS, RHS))
return ReplaceInstUsesWith(I, Res);
+ // TODO: Make this recursive; it's a little tricky because an arbitrary
+ // number of 'and' instructions might have to be created.
+ Value *X, *Y;
+ if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = FoldAndOfICmps(LHS, Cmp))
+ return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = FoldAndOfICmps(LHS, Cmp))
+ return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
+ }
+ if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = FoldAndOfICmps(Cmp, RHS))
+ return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = FoldAndOfICmps(Cmp, RHS))
+ return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
+ }
+ }
+
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
@@ -1329,20 +1495,6 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
}
- // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
- if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
- if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
- SI0->getOperand(1) == SI1->getOperand(1) &&
- (SI0->hasOneUse() || SI1->hasOneUse())) {
- Value *NewOp =
- Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
- SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
- SI1->getOperand(1));
- }
- }
-
{
Value *X = nullptr;
bool OpsSwapped = false;
@@ -1554,7 +1706,8 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
}
/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
-Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
+Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
+ Instruction *CxtI) {
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
@@ -1574,13 +1727,15 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Value *Mask = nullptr;
Value *Masked = nullptr;
if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(1)) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(1))) {
+ isKnownToBeAPowerOfTwo(LAnd->getOperand(1), false, 0, AC, CxtI, DT) &&
+ isKnownToBeAPowerOfTwo(RAnd->getOperand(1), false, 0, AC, CxtI, DT)) {
Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
} else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(0)) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(0))) {
+ isKnownToBeAPowerOfTwo(LAnd->getOperand(0), false, 0, AC, CxtI,
+ DT) &&
+ isKnownToBeAPowerOfTwo(RAnd->getOperand(0), false, 0, AC, CxtI,
+ DT)) {
Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
}
@@ -1590,6 +1745,61 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
}
}
+ // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
+ // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
+ // The original condition actually refers to the following two ranges:
+ // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
+ // We can fold these two ranges if:
+ // 1) C1 and C2 is unsigned greater than C3.
+ // 2) The two ranges are separated.
+ // 3) C1 ^ C2 is one-bit mask.
+ // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
+ // This implies all values in the two ranges differ by exactly one bit.
+
+ if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
+ LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
+ RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
+ LHSCst->getValue() == (RHSCst->getValue())) {
+
+ Value *LAdd = LHS->getOperand(0);
+ Value *RAdd = RHS->getOperand(0);
+
+ Value *LAddOpnd, *RAddOpnd;
+ ConstantInt *LAddCst, *RAddCst;
+ if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
+ match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
+ LAddCst->getValue().ugt(LHSCst->getValue()) &&
+ RAddCst->getValue().ugt(LHSCst->getValue())) {
+
+ APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
+ if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
+ ConstantInt *MaxAddCst = nullptr;
+ if (LAddCst->getValue().ult(RAddCst->getValue()))
+ MaxAddCst = RAddCst;
+ else
+ MaxAddCst = LAddCst;
+
+ APInt RRangeLow = -RAddCst->getValue();
+ APInt RRangeHigh = RRangeLow + LHSCst->getValue();
+ APInt LRangeLow = -LAddCst->getValue();
+ APInt LRangeHigh = LRangeLow + LHSCst->getValue();
+ APInt LowRangeDiff = RRangeLow ^ LRangeLow;
+ APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
+ APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
+ : RRangeLow - LRangeLow;
+
+ if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
+ RangeDiff.ugt(LHSCst->getValue())) {
+ Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
+
+ Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
+ Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
+ return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
+ }
+ }
+ }
+ }
+
// (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
if (PredicatesFoldable(LHSCC, RHSCC)) {
if (LHS->getOperand(0) == RHS->getOperand(1) &&
@@ -1636,6 +1846,14 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
}
+ // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
+ if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
+ return V;
+
+ // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
+ if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
+ return V;
+
// This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
if (!LHSCst || !RHSCst) return nullptr;
@@ -1906,6 +2124,38 @@ Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
return nullptr;
}
+/// \brief This helper function folds:
+///
+/// ((A | B) & C1) ^ (B & C2)
+///
+/// into:
+///
+/// (A & C1) ^ B
+///
+/// when the XOR of the two constants is "all ones" (-1).
+Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
+ Value *A, Value *B, Value *C) {
+ ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
+ if (!CI1)
+ return nullptr;
+
+ Value *V1 = nullptr;
+ ConstantInt *CI2 = nullptr;
+ if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
+ return nullptr;
+
+ APInt Xor = CI1->getValue() ^ CI2->getValue();
+ if (!Xor.isAllOnesValue())
+ return nullptr;
+
+ if (V1 == A || V1 == B) {
+ Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
+ return BinaryOperator::CreateXor(NewOp, V1);
+ }
+
+ return nullptr;
+}
+
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -1913,7 +2163,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyOrInst(Op0, Op1, DL))
+ if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A&B)|(A&C) -> A&(B|C) etc
@@ -1925,6 +2175,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
+ if (Value *V = SimplifyBSwap(I))
+ return ReplaceInstUsesWith(I, V);
+
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
ConstantInt *C1 = nullptr; Value *X = nullptr;
// (X & C1) | C2 --> (X | C2) & (C1|C2)
@@ -1973,7 +2226,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
if (Op0->hasOneUse() &&
match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op1, C1->getValue())) {
+ MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
Value *NOr = Builder->CreateOr(A, Op1);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr, C1);
@@ -1982,12 +2235,32 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// Y|(X^C) -> (X|Y)^C iff Y&C == 0
if (Op1->hasOneUse() &&
match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op0, C1->getValue())) {
+ MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
Value *NOr = Builder->CreateOr(A, Op0);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr, C1);
}
+ // ((~A & B) | A) -> (A | B)
+ if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1, m_Specific(A)))
+ return BinaryOperator::CreateOr(A, B);
+
+ // ((A & B) | ~A) -> (~A | B)
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_Specific(A))))
+ return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
+
+ // (A & (~B)) | (A ^ B) -> (A ^ B)
+ if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateXor(A, B);
+
+ // (A ^ B) | ( A & (~B)) -> (A ^ B)
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
+ match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
+ return BinaryOperator::CreateXor(A, B);
+
// (A & C)|(B & D)
Value *C = nullptr, *D = nullptr;
if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
@@ -2000,14 +2273,18 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
// iff (C1&C2) == 0 and (N&~C1) == 0
if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
- ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
- (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
+ ((V1 == B &&
+ MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
+ (V2 == B &&
+ MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
return BinaryOperator::CreateAnd(A,
Builder->getInt(C1->getValue()|C2->getValue()));
// Or commutes, try both ways.
if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
- ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
- (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
+ ((V1 == A &&
+ MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
+ (V2 == A &&
+ MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
return BinaryOperator::CreateAnd(B,
Builder->getInt(C1->getValue()|C2->getValue()));
@@ -2068,20 +2345,35 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
if (Ret) return Ret;
}
+ // ((A^B)&1)|(B&-2) -> (A&1) ^ B
+ if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
+ match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
+ Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
+ if (Ret) return Ret;
+ }
+ // (B&-2)|((A^B)&1) -> (A&1) ^ B
+ if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
+ match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
+ Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
+ if (Ret) return Ret;
+ }
}
- // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
- if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
- if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
- SI0->getOperand(1) == SI1->getOperand(1) &&
- (SI0->hasOneUse() || SI1->hasOneUse())) {
- Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
- SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
- SI1->getOperand(1));
- }
- }
+ // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
+ if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
+ if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
+ return BinaryOperator::CreateOr(Op0, C);
+
+ // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
+ if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
+ if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
+ if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
+ return BinaryOperator::CreateOr(Op1, C);
+
+ // ((B | C) & A) | B -> B | (A & C)
+ if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
+ return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
// (~A | ~B) == (~(A & B)) - De Morgan's Law
if (Value *Op0NotVal = dyn_castNotVal(Op0))
@@ -2133,14 +2425,47 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return BinaryOperator::CreateOr(Not, Op0);
}
+ // (A & B) | ((~A) ^ B) -> (~A ^ B)
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
+ return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
+
+ // ((~A) ^ B) | (A & B) -> (~A ^ B)
+ if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1, m_And(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
+
if (SwappedForXor)
std::swap(Op0, Op1);
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
- if (Value *Res = FoldOrOfICmps(LHS, RHS))
+ {
+ ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
+ ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
+ if (LHS && RHS)
+ if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
return ReplaceInstUsesWith(I, Res);
+ // TODO: Make this recursive; it's a little tricky because an arbitrary
+ // number of 'or' instructions might have to be created.
+ Value *X, *Y;
+ if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
+ return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
+ return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
+ }
+ if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
+ return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
+ return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
+ }
+ }
+
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
@@ -2169,7 +2494,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// cast is otherwise not optimizable. This happens for vector sexts.
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
- if (Value *Res = FoldOrOfICmps(LHS, RHS))
+ if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
// If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
@@ -2225,7 +2550,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyXorInst(Op0, Op1, DL))
+ if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A&B)^(A&C) -> A&(B^C) etc
@@ -2237,6 +2562,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
+ if (Value *V = SimplifyBSwap(I))
+ return ReplaceInstUsesWith(I, V);
+
// Is this a ~ operation?
if (Value *NotOp = dyn_castNotVal(&I)) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
@@ -2327,7 +2655,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
} else if (Op0I->getOpcode() == Instruction::Or) {
// (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
- if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
+ if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
+ 0, &I)) {
Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
@@ -2418,18 +2747,6 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
- // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- if (Op0I && Op1I && Op0I->isShift() &&
- Op0I->getOpcode() == Op1I->getOpcode() &&
- Op0I->getOperand(1) == Op1I->getOperand(1) &&
- (Op0I->hasOneUse() || Op1I->hasOneUse())) {
- Value *NewOp =
- Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
- Op0I->getName());
- return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
- Op1I->getOperand(1));
- }
-
if (Op0I && Op1I) {
Value *A, *B, *C, *D;
// (A & B)^(A | B) -> A ^ B
@@ -2444,8 +2761,62 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
+ // (A | ~B) ^ (~A | B) -> A ^ B
+ if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
+ return BinaryOperator::CreateXor(A, B);
+ }
+ // (~A | B) ^ (A | ~B) -> A ^ B
+ if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
+ return BinaryOperator::CreateXor(A, B);
+ }
+ // (A & ~B) ^ (~A & B) -> A ^ B
+ if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
+ return BinaryOperator::CreateXor(A, B);
+ }
+ // (~A & B) ^ (A & ~B) -> A ^ B
+ if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
+ return BinaryOperator::CreateXor(A, B);
+ }
+ // (A ^ C)^(A | B) -> ((~A) & B) ^ C
+ if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
+ match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
+ if (D == A)
+ return BinaryOperator::CreateXor(
+ Builder->CreateAnd(Builder->CreateNot(A), B), C);
+ if (D == B)
+ return BinaryOperator::CreateXor(
+ Builder->CreateAnd(Builder->CreateNot(B), A), C);
+ }
+ // (A | B)^(A ^ C) -> ((~A) & B) ^ C
+ if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
+ if (D == A)
+ return BinaryOperator::CreateXor(
+ Builder->CreateAnd(Builder->CreateNot(A), B), C);
+ if (D == B)
+ return BinaryOperator::CreateXor(
+ Builder->CreateAnd(Builder->CreateNot(B), A), C);
+ }
+ // (A & B) ^ (A ^ B) -> (A | B)
+ if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateOr(A, B);
+ // (A ^ B) ^ (A & B) -> (A | B)
+ if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
+ match(Op1I, m_And(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateOr(A, B);
}
+ Value *A = nullptr, *B = nullptr;
+ // (A & ~B) ^ (~A) -> ~(A & B)
+ if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_Not(m_Specific(A))))
+ return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
+
// (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 658178d..83b4b82 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -16,7 +16,9 @@
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Statepoint.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -58,8 +60,8 @@ static Type *reduceToSingleValueType(Type *T) {
}
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
- unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL);
- unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL);
+ unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, AC, MI, DT);
+ unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, AC, MI, DT);
unsigned MinAlign = std::min(DstAlign, SrcAlign);
unsigned CopyAlign = MI->getAlignment();
@@ -117,15 +119,14 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// If the memcpy has metadata describing the members, see if we can
// get the TBAA tag describing our copy.
if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
- if (M->getNumOperands() == 3 &&
- M->getOperand(0) &&
- isa<ConstantInt>(M->getOperand(0)) &&
- cast<ConstantInt>(M->getOperand(0))->isNullValue() &&
+ if (M->getNumOperands() == 3 && M->getOperand(0) &&
+ mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
+ mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
M->getOperand(1) &&
- isa<ConstantInt>(M->getOperand(1)) &&
- cast<ConstantInt>(M->getOperand(1))->getValue() == Size &&
- M->getOperand(2) &&
- isa<MDNode>(M->getOperand(2)))
+ mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
+ mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
+ Size &&
+ M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
CopyMD = cast<MDNode>(M->getOperand(2));
}
}
@@ -154,7 +155,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
- unsigned Alignment = getKnownAlignment(MI->getDest(), DL);
+ unsigned Alignment = getKnownAlignment(MI->getDest(), DL, AC, MI, DT);
if (MI->getAlignment() < Alignment) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Alignment, false));
@@ -322,7 +323,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne);
+ computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
unsigned TrailingZeros = KnownOne.countTrailingZeros();
APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
if ((Mask & KnownZero) == Mask)
@@ -340,7 +341,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne);
+ computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
unsigned LeadingZeros = KnownOne.countLeadingZeros();
APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
if ((Mask & KnownZero) == Mask)
@@ -351,48 +352,11 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
break;
case Intrinsic::uadd_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
- uint32_t BitWidth = IT->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
- bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
- bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
-
- if (LHSKnownNegative || LHSKnownPositive) {
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
- bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
- bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
- if (LHSKnownNegative && RHSKnownNegative) {
- // The sign bit is set in both cases: this MUST overflow.
- // Create a simple add instruction, and insert it into the struct.
- Value *Add = Builder->CreateAdd(LHS, RHS);
- Add->takeName(&CI);
- Constant *V[] = {
- UndefValue::get(LHS->getType()),
- ConstantInt::getTrue(II->getContext())
- };
- StructType *ST = cast<StructType>(II->getType());
- Constant *Struct = ConstantStruct::get(ST, V);
- return InsertValueInst::Create(Struct, Add, 0);
- }
-
- if (LHSKnownPositive && RHSKnownPositive) {
- // The sign bit is clear in both cases: this CANNOT overflow.
- // Create a simple add instruction, and insert it into the struct.
- Value *Add = Builder->CreateNUWAdd(LHS, RHS);
- Add->takeName(&CI);
- Constant *V[] = {
- UndefValue::get(LHS->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- StructType *ST = cast<StructType>(II->getType());
- Constant *Struct = ConstantStruct::get(ST, V);
- return InsertValueInst::Create(Struct, Add, 0);
- }
- }
+ OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, II);
+ if (OR == OverflowResult::NeverOverflows)
+ return CreateOverflowTuple(II, Builder->CreateNUWAdd(LHS, RHS), false);
+ if (OR == OverflowResult::AlwaysOverflows)
+ return CreateOverflowTuple(II, Builder->CreateAdd(LHS, RHS), true);
}
// FALL THROUGH uadd into sadd
case Intrinsic::sadd_with_overflow:
@@ -412,13 +376,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// X + 0 -> {X, false}
if (RHS->isZero()) {
- Constant *V[] = {
- UndefValue::get(II->getArgOperand(0)->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct =
- ConstantStruct::get(cast<StructType>(II->getType()), V);
- return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
+ return CreateOverflowTuple(II, II->getArgOperand(0), false,
+ /*ReUseName*/false);
}
}
@@ -426,66 +385,44 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// can prove that it will never overflow.
if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow) {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- if (WillNotOverflowSignedAdd(LHS, RHS)) {
- Value *Add = Builder->CreateNSWAdd(LHS, RHS);
- Add->takeName(&CI);
- Constant *V[] = {UndefValue::get(Add->getType()), Builder->getFalse()};
- StructType *ST = cast<StructType>(II->getType());
- Constant *Struct = ConstantStruct::get(ST, V);
- return InsertValueInst::Create(Struct, Add, 0);
+ if (WillNotOverflowSignedAdd(LHS, RHS, II)) {
+ return CreateOverflowTuple(II, Builder->CreateNSWAdd(LHS, RHS), false);
}
}
break;
case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
+ case Intrinsic::ssub_with_overflow: {
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
// undef - X -> undef
// X - undef -> undef
- if (isa<UndefValue>(II->getArgOperand(0)) ||
- isa<UndefValue>(II->getArgOperand(1)))
+ if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
// X - 0 -> {X, false}
- if (RHS->isZero()) {
- Constant *V[] = {
- UndefValue::get(II->getArgOperand(0)->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct =
- ConstantStruct::get(cast<StructType>(II->getType()), V);
- return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
+ if (ConstRHS->isZero()) {
+ return CreateOverflowTuple(II, LHS, false, /*ReUseName*/false);
+ }
+ }
+ if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
+ if (WillNotOverflowSignedSub(LHS, RHS, II)) {
+ return CreateOverflowTuple(II, Builder->CreateNSWSub(LHS, RHS), false);
+ }
+ } else {
+ if (WillNotOverflowUnsignedSub(LHS, RHS, II)) {
+ return CreateOverflowTuple(II, Builder->CreateNUWSub(LHS, RHS), false);
}
}
break;
+ }
case Intrinsic::umul_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
-
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
-
- // Get the largest possible values for each operand.
- APInt LHSMax = ~LHSKnownZero;
- APInt RHSMax = ~RHSKnownZero;
-
- // If multiplying the maximum values does not overflow then we can turn
- // this into a plain NUW mul.
- bool Overflow;
- LHSMax.umul_ov(RHSMax, Overflow);
- if (!Overflow) {
- Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
- Constant *V[] = {
- UndefValue::get(LHS->getType()),
- Builder->getFalse()
- };
- Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
- return InsertValueInst::Create(Struct, Mul, 0);
- }
+ OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, II);
+ if (OR == OverflowResult::NeverOverflows)
+ return CreateOverflowTuple(II, Builder->CreateNUWMul(LHS, RHS), false);
+ if (OR == OverflowResult::AlwaysOverflows)
+ return CreateOverflowTuple(II, Builder->CreateMul(LHS, RHS), true);
} // FALL THROUGH
case Intrinsic::smul_with_overflow:
// Canonicalize constants into the RHS.
@@ -508,40 +445,142 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// X * 1 -> {X, false}
if (RHSI->equalsInt(1)) {
- Constant *V[] = {
- UndefValue::get(II->getArgOperand(0)->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct =
- ConstantStruct::get(cast<StructType>(II->getType()), V);
- return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
+ return CreateOverflowTuple(II, II->getArgOperand(0), false,
+ /*ReUseName*/false);
+ }
+ }
+ if (II->getIntrinsicID() == Intrinsic::smul_with_overflow) {
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ if (WillNotOverflowSignedMul(LHS, RHS, II)) {
+ return CreateOverflowTuple(II, Builder->CreateNSWMul(LHS, RHS), false);
}
}
break;
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum: {
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+
+ // fmin(x, x) -> x
+ if (Arg0 == Arg1)
+ return ReplaceInstUsesWith(CI, Arg0);
+
+ const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
+ const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
+
+ // Canonicalize constants into the RHS.
+ if (C0 && !C1) {
+ II->setArgOperand(0, Arg1);
+ II->setArgOperand(1, Arg0);
+ return II;
+ }
+
+ // fmin(x, nan) -> x
+ if (C1 && C1->isNaN())
+ return ReplaceInstUsesWith(CI, Arg0);
+
+ // This is the value because if undef were NaN, we would return the other
+ // value and cannot return a NaN unless both operands are.
+ //
+ // fmin(undef, x) -> x
+ if (isa<UndefValue>(Arg0))
+ return ReplaceInstUsesWith(CI, Arg1);
+
+ // fmin(x, undef) -> x
+ if (isa<UndefValue>(Arg1))
+ return ReplaceInstUsesWith(CI, Arg0);
+
+ Value *X = nullptr;
+ Value *Y = nullptr;
+ if (II->getIntrinsicID() == Intrinsic::minnum) {
+ // fmin(x, fmin(x, y)) -> fmin(x, y)
+ // fmin(y, fmin(x, y)) -> fmin(x, y)
+ if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
+ if (Arg0 == X || Arg0 == Y)
+ return ReplaceInstUsesWith(CI, Arg1);
+ }
+
+ // fmin(fmin(x, y), x) -> fmin(x, y)
+ // fmin(fmin(x, y), y) -> fmin(x, y)
+ if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
+ if (Arg1 == X || Arg1 == Y)
+ return ReplaceInstUsesWith(CI, Arg0);
+ }
+
+ // TODO: fmin(nnan x, inf) -> x
+ // TODO: fmin(nnan ninf x, flt_max) -> x
+ if (C1 && C1->isInfinity()) {
+ // fmin(x, -inf) -> -inf
+ if (C1->isNegative())
+ return ReplaceInstUsesWith(CI, Arg1);
+ }
+ } else {
+ assert(II->getIntrinsicID() == Intrinsic::maxnum);
+ // fmax(x, fmax(x, y)) -> fmax(x, y)
+ // fmax(y, fmax(x, y)) -> fmax(x, y)
+ if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
+ if (Arg0 == X || Arg0 == Y)
+ return ReplaceInstUsesWith(CI, Arg1);
+ }
+
+ // fmax(fmax(x, y), x) -> fmax(x, y)
+ // fmax(fmax(x, y), y) -> fmax(x, y)
+ if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
+ if (Arg1 == X || Arg1 == Y)
+ return ReplaceInstUsesWith(CI, Arg0);
+ }
+
+ // TODO: fmax(nnan x, -inf) -> x
+ // TODO: fmax(nnan ninf x, -flt_max) -> x
+ if (C1 && C1->isInfinity()) {
+ // fmax(x, inf) -> inf
+ if (!C1->isNegative())
+ return ReplaceInstUsesWith(CI, Arg1);
+ }
+ }
+ break;
+ }
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
// Turn PPC lvx -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL) >= 16) {
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
+ 16) {
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr);
}
break;
+ case Intrinsic::ppc_vsx_lxvw4x:
+ case Intrinsic::ppc_vsx_lxvd2x: {
+ // Turn PPC VSX loads into normal loads.
+ Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(Ptr, Twine(""), false, 1);
+ }
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL) >= 16) {
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, AC, II, DT) >=
+ 16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
return new StoreInst(II->getArgOperand(0), Ptr);
}
break;
+ case Intrinsic::ppc_vsx_stxvw4x:
+ case Intrinsic::ppc_vsx_stxvd2x: {
+ // Turn PPC VSX stores into normal stores.
+ Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
+ return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
+ }
case Intrinsic::x86_sse_storeu_ps:
case Intrinsic::x86_sse2_storeu_pd:
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL) >= 16) {
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
+ 16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
@@ -672,7 +711,22 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// TODO: eventually we should lower this intrinsic to IR
if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
- if (CIWidth->equalsInt(64) && CIStart->isZero()) {
+ unsigned Index = CIStart->getZExtValue();
+ // From AMD documentation: "a value of zero in the field length is
+ // defined as length of 64".
+ unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
+
+ // From AMD documentation: "If the sum of the bit index + length field
+ // is greater than 64, the results are undefined".
+
+ // Note that both field index and field length are 8-bit quantities.
+ // Since variables 'Index' and 'Length' are unsigned values
+ // obtained from zero-extending field index and field length
+ // respectively, their sum should never wrap around.
+ if ((Index + Length) > 64)
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (Length == 64 && Index == 0) {
Value *Vec = II->getArgOperand(1);
Value *Undef = UndefValue::get(Vec->getType());
const uint32_t Mask[] = { 0, 2 };
@@ -680,7 +734,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
CI,
Builder->CreateShuffleVector(
Vec, Undef, ConstantDataVector::get(
- II->getContext(), ArrayRef<uint32_t>(Mask))));
+ II->getContext(), makeArrayRef(Mask))));
} else if (auto Source =
dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
@@ -886,7 +940,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
- unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL);
+ unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, AC, II, DT);
unsigned AlignArg = II->getNumArgOperands() - 1;
ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
@@ -994,6 +1048,91 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return EraseInstFromFunction(CI);
break;
}
+ case Intrinsic::assume: {
+ // Canonicalize assume(a && b) -> assume(a); assume(b);
+ // Note: New assumption intrinsics created here are registered by
+ // the InstCombineIRInserter object.
+ Value *IIOperand = II->getArgOperand(0), *A, *B,
+ *AssumeIntrinsic = II->getCalledValue();
+ if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
+ Builder->CreateCall(AssumeIntrinsic, A, II->getName());
+ Builder->CreateCall(AssumeIntrinsic, B, II->getName());
+ return EraseInstFromFunction(*II);
+ }
+ // assume(!(a || b)) -> assume(!a); assume(!b);
+ if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
+ Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
+ II->getName());
+ Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
+ II->getName());
+ return EraseInstFromFunction(*II);
+ }
+
+ // assume( (load addr) != null ) -> add 'nonnull' metadata to load
+ // (if assume is valid at the load)
+ if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
+ Value *LHS = ICmp->getOperand(0);
+ Value *RHS = ICmp->getOperand(1);
+ if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
+ isa<LoadInst>(LHS) &&
+ isa<Constant>(RHS) &&
+ RHS->getType()->isPointerTy() &&
+ cast<Constant>(RHS)->isNullValue()) {
+ LoadInst* LI = cast<LoadInst>(LHS);
+ if (isValidAssumeForContext(II, LI, DL, DT)) {
+ MDNode *MD = MDNode::get(II->getContext(), None);
+ LI->setMetadata(LLVMContext::MD_nonnull, MD);
+ return EraseInstFromFunction(*II);
+ }
+ }
+ // TODO: apply nonnull return attributes to calls and invokes
+ // TODO: apply range metadata for range check patterns?
+ }
+ // If there is a dominating assume with the same condition as this one,
+ // then this one is redundant, and should be removed.
+ APInt KnownZero(1, 0), KnownOne(1, 0);
+ computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
+ if (KnownOne.isAllOnesValue())
+ return EraseInstFromFunction(*II);
+
+ break;
+ }
+ case Intrinsic::experimental_gc_relocate: {
+ // Translate facts known about a pointer before relocating into
+ // facts about the relocate value, while being careful to
+ // preserve relocation semantics.
+ GCRelocateOperands Operands(II);
+ Value *DerivedPtr = Operands.derivedPtr();
+
+ // Remove the relocation if unused, note that this check is required
+ // to prevent the cases below from looping forever.
+ if (II->use_empty())
+ return EraseInstFromFunction(*II);
+
+ // Undef is undef, even after relocation.
+ // TODO: provide a hook for this in GCStrategy. This is clearly legal for
+ // most practical collectors, but there was discussion in the review thread
+ // about whether it was legal for all possible collectors.
+ if (isa<UndefValue>(DerivedPtr))
+ return ReplaceInstUsesWith(*II, DerivedPtr);
+
+ // The relocation of null will be null for most any collector.
+ // TODO: provide a hook for this in GCStrategy. There might be some weird
+ // collector this property does not hold for.
+ if (isa<ConstantPointerNull>(DerivedPtr))
+ return ReplaceInstUsesWith(*II, DerivedPtr);
+
+ // isKnownNonNull -> nonnull attribute
+ if (isKnownNonNull(DerivedPtr))
+ II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
+
+ // TODO: dereferenceable -> deref attribute
+
+ // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
+ // Canonicalize on the type from the uses to the defs
+
+ // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
+ }
}
return visitCallSite(II);
@@ -1014,6 +1153,14 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
if (!CI->isLosslessCast())
return false;
+ // If this is a GC intrinsic, avoid munging types. We need types for
+ // statepoint reconstruction in SelectionDAG.
+ // TODO: This is probably something which should be expanded to all
+ // intrinsics since the entire point of intrinsics is that
+ // they are understandable by the optimizer.
+ if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
+ return false;
+
// The size of ByVal or InAlloca arguments is derived from the type, so we
// can't change to a type with a different size. If the size were
// passed explicitly we could avoid this check.
@@ -1229,6 +1376,10 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
if (!Callee)
return false;
+ // The prototype of thunks are a lie, don't try to directly call such
+ // functions.
+ if (Callee->hasFnAttribute("thunk"))
+ return false;
Instruction *Caller = CS.getInstruction();
const AttributeSet &CallerPAL = CS.getAttributes();
@@ -1246,14 +1397,14 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (NewRetTy->isStructTy())
return false; // TODO: Handle multiple return values.
- if (!CastInst::isBitCastable(NewRetTy, OldRetTy)) {
+ if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
if (Callee->isDeclaration())
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
// void -> non-void is handled specially
!NewRetTy->isVoidTy())
- return false; // Cannot transform this return value.
+ return false; // Cannot transform this return value.
}
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
@@ -1281,12 +1432,21 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
unsigned NumActualArgs = CS.arg_size();
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
+ // Prevent us turning:
+ // declare void @takes_i32_inalloca(i32* inalloca)
+ // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
+ //
+ // into:
+ // call void @takes_i32_inalloca(i32* null)
+ if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
+ return false;
+
CallSite::arg_iterator AI = CS.arg_begin();
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
Type *ActTy = (*AI)->getType();
- if (!CastInst::isBitCastable(ActTy, ParamTy))
+ if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
return false; // Cannot transform this parameter value.
if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
@@ -1381,7 +1541,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if ((*AI)->getType() == ParamTy) {
Args.push_back(*AI);
} else {
- Args.push_back(Builder->CreateBitCast(*AI, ParamTy));
+ Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
}
// Add any parameter attributes.
@@ -1452,7 +1612,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
- NV = NC = CastInst::Create(CastInst::BitCast, NC, OldRetTy);
+ NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
NC->setDebugLoc(Caller->getDebugLoc());
// If this is an invoke instruction, we should insert it after the first
@@ -1472,8 +1632,14 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!Caller->use_empty())
ReplaceInstUsesWith(*Caller, NV);
- else if (Caller->hasValueHandle())
- ValueHandleBase::ValueIsRAUWd(Caller, NV);
+ else if (Caller->hasValueHandle()) {
+ if (OldRetTy == NV->getType())
+ ValueHandleBase::ValueIsRAUWd(Caller, NV);
+ else
+ // We cannot call ValueIsRAUWd with a different type, and the
+ // actual tracked value will disappear.
+ ValueHandleBase::ValueIsDeleted(Caller);
+ }
EraseInstFromFunction(*Caller);
return true;
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index b9c3d0f..5415726 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -335,7 +335,8 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
///
/// This function works on both vectors and scalars.
///
-static bool CanEvaluateTruncated(Value *V, Type *Ty) {
+static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
+ Instruction *CxtI) {
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
@@ -364,8 +365,8 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
case Instruction::Or:
case Instruction::Xor:
// These operators can all arbitrarily be extended or truncated.
- return CanEvaluateTruncated(I->getOperand(0), Ty) &&
- CanEvaluateTruncated(I->getOperand(1), Ty);
+ return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
case Instruction::UDiv:
case Instruction::URem: {
@@ -374,10 +375,10 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigBitWidth) {
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
- if (MaskedValueIsZero(I->getOperand(0), Mask) &&
- MaskedValueIsZero(I->getOperand(1), Mask)) {
- return CanEvaluateTruncated(I->getOperand(0), Ty) &&
- CanEvaluateTruncated(I->getOperand(1), Ty);
+ if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
+ IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
+ return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
}
}
break;
@@ -388,7 +389,7 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (CI->getLimitedValue(BitWidth) < BitWidth)
- return CanEvaluateTruncated(I->getOperand(0), Ty);
+ return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
}
break;
case Instruction::LShr:
@@ -398,10 +399,10 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (MaskedValueIsZero(I->getOperand(0),
- APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
+ if (IC.MaskedValueIsZero(I->getOperand(0),
+ APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
CI->getLimitedValue(BitWidth) < BitWidth) {
- return CanEvaluateTruncated(I->getOperand(0), Ty);
+ return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
}
}
break;
@@ -415,8 +416,8 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
return true;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
- return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
- CanEvaluateTruncated(SI->getFalseValue(), Ty);
+ return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
+ CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
@@ -424,7 +425,7 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
+ if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty, IC, CxtI))
return false;
return true;
}
@@ -453,7 +454,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// expression tree to something weird like i93 unless the source is also
// strange.
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateTruncated(Src, DestTy)) {
+ CanEvaluateTruncated(Src, DestTy, *this, &CI)) {
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win.
@@ -553,7 +554,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne);
+ computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
@@ -601,8 +602,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
- computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS);
- computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS);
+ computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
+ computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
@@ -651,7 +652,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
/// clear the top bits anyway, doing this has no extra cost.
///
/// This function works on both vectors and scalars.
-static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
+static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
+ InstCombiner &IC, Instruction *CxtI) {
BitsToClear = 0;
if (isa<Constant>(V))
return true;
@@ -680,8 +682,8 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
- if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
- !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
+ !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
return false;
// These can all be promoted if neither operand has 'bits to clear'.
if (BitsToClear == 0 && Tmp == 0)
@@ -695,8 +697,9 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// We use MaskedValueIsZero here for generality, but the case we care
// about the most is constant RHS.
unsigned VSize = V->getType()->getScalarSizeInBits();
- if (MaskedValueIsZero(I->getOperand(1),
- APInt::getHighBitsSet(VSize, BitsToClear)))
+ if (IC.MaskedValueIsZero(I->getOperand(1),
+ APInt::getHighBitsSet(VSize, BitsToClear),
+ 0, CxtI))
return true;
}
@@ -707,7 +710,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// We can promote shl(x, cst) if we can promote x. Since shl overwrites the
// upper bits we can reduce BitsToClear by the shift amount.
if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
return false;
uint64_t ShiftAmt = Amt->getZExtValue();
BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
@@ -718,7 +721,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// We can promote lshr(x, cst) if we can promote x. This requires the
// ultimate 'and' to clear out the high zero bits we're clearing out though.
if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
return false;
BitsToClear += Amt->getZExtValue();
if (BitsToClear > V->getType()->getScalarSizeInBits())
@@ -728,8 +731,8 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// Cannot promote variable LSHR.
return false;
case Instruction::Select:
- if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
- !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
+ if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
+ !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
// TODO: If important, we could handle the case when the BitsToClear are
// known zero in the disagreeing side.
Tmp != BitsToClear)
@@ -741,10 +744,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
- if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
+ if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
return false;
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
+ if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
// TODO: If important, we could handle the case when the BitsToClear
// are known zero in the disagreeing input.
Tmp != BitsToClear)
@@ -781,7 +784,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// strange.
unsigned BitsToClear;
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
+ CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
@@ -796,8 +799,10 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// If the high bits are already filled with zeros, just replace this
// cast with the result.
- if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
- DestBitSize-SrcBitsKept)))
+ if (MaskedValueIsZero(Res,
+ APInt::getHighBitsSet(DestBitSize,
+ DestBitSize-SrcBitsKept),
+ 0, &CI))
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
@@ -895,6 +900,10 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
ICmpInst::Predicate Pred = ICI->getPredicate();
+ // Don't bother if Op1 isn't of vector or integer type.
+ if (!Op1->getType()->isIntOrIntVectorTy())
+ return nullptr;
+
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
// (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
@@ -921,7 +930,7 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
unsigned BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Op0, KnownZero, KnownOne);
+ computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) {
@@ -1072,7 +1081,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// If the high bits are already filled with sign bit, just replace this
// cast with the result.
- if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
+ if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
return ReplaceInstUsesWith(CI, Res);
// We need to emit a shl + ashr to do the sign extend.
@@ -1260,14 +1269,18 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// type of OpI doesn't enter into things at all. We simply evaluate
// in whichever source type is larger, then convert to the
// destination type.
+ if (SrcWidth == OpWidth)
+ break;
if (LHSWidth < SrcWidth)
LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
else if (RHSWidth <= SrcWidth)
RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
- Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
- if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
- RI->copyFastMathFlags(OpI);
- return CastInst::CreateFPCast(ExactResult, CI.getType());
+ if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
+ Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
+ if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
+ RI->copyFastMathFlags(OpI);
+ return CastInst::CreateFPCast(ExactResult, CI.getType());
+ }
}
// (fptrunc (fneg x)) -> (fneg (fptrunc x))
@@ -1312,42 +1325,6 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
}
}
- // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
- // Note that we restrict this transformation based on
- // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
- // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
- // single-precision intrinsic can be expanded in the backend.
- CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
- if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
- (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
- Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
- Call->getNumArgOperands() == 1 &&
- Call->hasOneUse()) {
- CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
- if (Arg && Arg->getOpcode() == Instruction::FPExt &&
- CI.getType()->isFloatTy() &&
- Call->getType()->isDoubleTy() &&
- Arg->getType()->isDoubleTy() &&
- Arg->getOperand(0)->getType()->isFloatTy()) {
- Function *Callee = Call->getCalledFunction();
- Module *M = CI.getParent()->getParent()->getParent();
- Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
- Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
- M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
- Builder->getFloatTy(), Builder->getFloatTy(),
- NULL);
- CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
- "sqrtfcall");
- ret->setAttributes(Callee->getAttributes());
-
-
- // Remove the old Call. With -fmath-errno, it won't get marked readnone.
- ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
- EraseInstFromFunction(*Call);
- return ret;
- }
- }
-
return nullptr;
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index 5e71c5c..c07c96d 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -12,6 +12,8 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
@@ -20,12 +22,20 @@
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
+
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
+// How many times is a select replaced by one of its operands?
+STATISTIC(NumSel, "Number of select opts");
+
+// Initialization Routines
+
static ConstantInt *getOne(Constant *C) {
return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
}
@@ -740,21 +750,6 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred) {
- // If we have X+0, exit early (simplifying logic below) and let it get folded
- // elsewhere. icmp X+0, X -> icmp X, X
- if (CI->isZero()) {
- bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
- return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
- }
-
- // (X+4) == X -> false.
- if (Pred == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
-
- // (X+4) != X -> true.
- if (Pred == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
-
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
// so the values can never be equal. Similarly for all other "or equals"
// operators.
@@ -1044,6 +1039,111 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
return nullptr;
}
+/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
+/// (icmp eq/ne A, Log2(const2/const1)) ->
+/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
+Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1,
+ ConstantInt *CI2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getConstant = [&I, this](bool IsTrue) {
+ if (I.getPredicate() == I.ICMP_NE)
+ IsTrue = !IsTrue;
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
+ };
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ APInt AP1 = CI1->getValue();
+ APInt AP2 = CI2->getValue();
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2 == 0)
+ return nullptr;
+ bool IsAShr = isa<AShrOperator>(Op);
+ if (IsAShr) {
+ if (AP2.isAllOnesValue())
+ return nullptr;
+ if (AP2.isNegative() != AP1.isNegative())
+ return nullptr;
+ if (AP2.sgt(AP1))
+ return nullptr;
+ }
+
+ if (!AP1)
+ // 'A' must be large enough to shift out the highest set bit.
+ return getICmp(I.ICMP_UGT, A,
+ ConstantInt::get(A->getType(), AP2.logBase2()));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ // Get the distance between the highest bit that's set.
+ int Shift;
+ // Both the constants are negative, take their positive to calculate log.
+ if (IsAShr && AP1.isNegative())
+ // Get the ones' complement of AP2 and AP1 when computing the distance.
+ Shift = (~AP2).logBase2() - (~AP1).logBase2();
+ else
+ Shift = AP2.logBase2() - AP1.logBase2();
+
+ if (Shift > 0) {
+ if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ }
+ // Shifting const2 will never be equal to const1.
+ return getConstant(false);
+}
+
+/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
+/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
+Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1,
+ ConstantInt *CI2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getConstant = [&I, this](bool IsTrue) {
+ if (I.getPredicate() == I.ICMP_NE)
+ IsTrue = !IsTrue;
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
+ };
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ APInt AP1 = CI1->getValue();
+ APInt AP2 = CI2->getValue();
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2 == 0)
+ return nullptr;
+
+ unsigned AP2TrailingZeros = AP2.countTrailingZeros();
+
+ if (!AP1 && AP2TrailingZeros != 0)
+ return getICmp(I.ICMP_UGE, A,
+ ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ // Get the distance between the lowest bits that are set.
+ int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
+
+ if (Shift > 0 && AP2.shl(Shift) == AP1)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+
+ // Shifting const2 will never be equal to const1.
+ return getConstant(false);
+}
/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
///
@@ -1060,7 +1160,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
- computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne);
+ computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
// If all the high bits are known, we can do this xform.
if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
@@ -1282,6 +1382,48 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return &ICI;
}
+ // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
+ // (icmp pred (and X, (or (shl 1, Y), 1), 0))
+ //
+ // iff pred isn't signed
+ {
+ Value *X, *Y, *LShr;
+ if (!ICI.isSigned() && RHSV == 0) {
+ if (match(LHSI->getOperand(1), m_One())) {
+ Constant *One = cast<Constant>(LHSI->getOperand(1));
+ Value *Or = LHSI->getOperand(0);
+ if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
+ match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
+ unsigned UsesRemoved = 0;
+ if (LHSI->hasOneUse())
+ ++UsesRemoved;
+ if (Or->hasOneUse())
+ ++UsesRemoved;
+ if (LShr->hasOneUse())
+ ++UsesRemoved;
+ Value *NewOr = nullptr;
+ // Compute X & ((1 << Y) | 1)
+ if (auto *C = dyn_cast<Constant>(Y)) {
+ if (UsesRemoved >= 1)
+ NewOr =
+ ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
+ } else {
+ if (UsesRemoved >= 3)
+ NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
+ LShr->getName(),
+ /*HasNUW=*/true),
+ One, Or->getName());
+ }
+ if (NewOr) {
+ Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
+ ICI.setOperand(0, NewAnd);
+ return &ICI;
+ }
+ }
+ }
+ }
+ }
+
// Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
// bit set in (X & AndCst) will produce a result greater than RHSV.
if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
@@ -1377,16 +1519,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
unsigned RHSLog2 = RHSV.logBase2();
// (1 << X) >= 2147483648 -> X >= 31 -> X == 31
- // (1 << X) > 2147483648 -> X > 31 -> false
- // (1 << X) <= 2147483648 -> X <= 31 -> true
// (1 << X) < 2147483648 -> X < 31 -> X != 31
if (RHSLog2 == TypeBits-1) {
if (Pred == ICmpInst::ICMP_UGE)
Pred = ICmpInst::ICMP_EQ;
- else if (Pred == ICmpInst::ICMP_UGT)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
- else if (Pred == ICmpInst::ICMP_ULE)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
else if (Pred == ICmpInst::ICMP_ULT)
Pred = ICmpInst::ICMP_NE;
}
@@ -1421,10 +1557,6 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (RHSVIsPowerOf2)
return new ICmpInst(
Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
-
- return ReplaceInstUsesWith(
- ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
- : Builder->getTrue());
}
}
break;
@@ -1932,8 +2064,8 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
// sign-extended; check for that condition. For example, if CI2 is 2^31 and
// the operands of the add are 64 bits wide, we need at least 33 sign bits.
unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
- if (IC.ComputeNumSignBits(A) < NeededSignBits ||
- IC.ComputeNumSignBits(B) < NeededSignBits)
+ if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
+ IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
return nullptr;
// In order to replace the original add with a narrower
@@ -2038,8 +2170,8 @@ static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
Instruction *MulInstr = cast<Instruction>(MulVal);
assert(MulInstr->getOpcode() == Instruction::Mul);
- Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)),
- *RHS = cast<Instruction>(MulInstr->getOperand(1));
+ auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
+ *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
assert(LHS->getOpcode() == Instruction::ZExt);
assert(RHS->getOpcode() == Instruction::ZExt);
Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
@@ -2324,6 +2456,122 @@ static bool swapMayExposeCSEOpportunities(const Value * Op0,
return GlobalSwapBenefits > 0;
}
+/// \brief Check that one use is in the same block as the definition and all
+/// other uses are in blocks dominated by a given block
+///
+/// \param DI Definition
+/// \param UI Use
+/// \param DB Block that must dominate all uses of \p DI outside
+/// the parent block
+/// \return true when \p UI is the only use of \p DI in the parent block
+/// and all other uses of \p DI are in blocks dominated by \p DB.
+///
+bool InstCombiner::dominatesAllUses(const Instruction *DI,
+ const Instruction *UI,
+ const BasicBlock *DB) const {
+ assert(DI && UI && "Instruction not defined\n");
+ // ignore incomplete definitions
+ if (!DI->getParent())
+ return false;
+ // DI and UI must be in the same block
+ if (DI->getParent() != UI->getParent())
+ return false;
+ // Protect from self-referencing blocks
+ if (DI->getParent() == DB)
+ return false;
+ // DominatorTree available?
+ if (!DT)
+ return false;
+ for (const User *U : DI->users()) {
+ auto *Usr = cast<Instruction>(U);
+ if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
+ return false;
+ }
+ return true;
+}
+
+///
+/// true when the instruction sequence within a block is select-cmp-br.
+///
+static bool isChainSelectCmpBranch(const SelectInst *SI) {
+ const BasicBlock *BB = SI->getParent();
+ if (!BB)
+ return false;
+ auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
+ if (!BI || BI->getNumSuccessors() != 2)
+ return false;
+ auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
+ return false;
+ return true;
+}
+
+///
+/// \brief True when a select result is replaced by one of its operands
+/// in select-icmp sequence. This will eventually result in the elimination
+/// of the select.
+///
+/// \param SI Select instruction
+/// \param Icmp Compare instruction
+/// \param SIOpd Operand that replaces the select
+///
+/// Notes:
+/// - The replacement is global and requires dominator information
+/// - The caller is responsible for the actual replacement
+///
+/// Example:
+///
+/// entry:
+/// %4 = select i1 %3, %C* %0, %C* null
+/// %5 = icmp eq %C* %4, null
+/// br i1 %5, label %9, label %7
+/// ...
+/// ; <label>:7 ; preds = %entry
+/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
+/// ...
+///
+/// can be transformed to
+///
+/// %5 = icmp eq %C* %0, null
+/// %6 = select i1 %3, i1 %5, i1 true
+/// br i1 %6, label %9, label %7
+/// ...
+/// ; <label>:7 ; preds = %entry
+/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
+///
+/// Similar when the first operand of the select is a constant or/and
+/// the compare is for not equal rather than equal.
+///
+/// NOTE: The function is only called when the select and compare constants
+/// are equal, the optimization can work only for EQ predicates. This is not a
+/// major restriction since a NE compare should be 'normalized' to an equal
+/// compare, which usually happens in the combiner and test case
+/// select-cmp-br.ll
+/// checks for it.
+bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
+ const ICmpInst *Icmp,
+ const unsigned SIOpd) {
+ assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
+ if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
+ BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
+ // The check for the unique predecessor is not the best that can be
+ // done. But it protects efficiently against cases like when SI's
+ // home block has two successors, Succ and Succ1, and Succ1 predecessor
+ // of Succ. Then SI can't be replaced by SIOpd because the use that gets
+ // replaced can be reached on either path. So the uniqueness check
+ // guarantees that the path all uses of SI (outside SI's parent) are on
+ // is disjoint from all other paths out of SI. But that information
+ // is more expensive to compute, and the trade-off here is in favor
+ // of compile-time.
+ if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
+ NumSel++;
+ SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
+ return true;
+ }
+ }
+ return false;
+}
+
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
bool Changed = false;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -2341,7 +2589,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Changed = true;
}
- if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL))
+ if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// comparing -val or val with non-zero is the same as just comparing val
@@ -2438,11 +2686,33 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
return Res;
}
- // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
- if (I.isEquality() && CI->isZero() &&
- match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
- // (icmp cond A B) if cond is equality
- return new ICmpInst(I.getPredicate(), A, B);
+ // The following transforms are only 'worth it' if the only user of the
+ // subtraction is the icmp.
+ if (Op0->hasOneUse()) {
+ // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
+ if (I.isEquality() && CI->isZero() &&
+ match(Op0, m_Sub(m_Value(A), m_Value(B))))
+ return new ICmpInst(I.getPredicate(), A, B);
+
+ // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
+
+ // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
+
+ // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
+
+ // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
}
// If we have an icmp le or icmp ge instruction, turn it into the
@@ -2469,6 +2739,21 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Builder->getInt(CI->getValue()-1));
}
+ if (I.isEquality()) {
+ ConstantInt *CI2;
+ if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
+ match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
+ // (icmp eq/ne (ashr/lshr const2, A), const1)
+ if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
+ return Inst;
+ }
+ if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
+ // (icmp eq/ne (shl const2, A), const1)
+ if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
+ return Inst;
+ }
+ }
+
// If this comparison is a normal comparison, it demands all
// bits, if it is a sign bit comparison, it only demands the sign bit.
bool UnusedBit;
@@ -2761,18 +3046,39 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = nullptr, *Op2 = nullptr;
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
+ ConstantInt *CI = 0;
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
+ CI = dyn_cast<ConstantInt>(Op1);
+ }
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op2);
+ }
// We only want to perform this transformation if it will not lead to
// additional code. This is true if either both sides of the select
// fold to a constant (in which case the icmp is replaced with a select
// which will usually simplify) or this is the only user of the
// select (in which case we are trading a select+icmp for a simpler
- // select+icmp).
- if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
+ // select+icmp) or all uses of the select can be replaced based on
+ // dominance information ("Global cases").
+ bool Transform = false;
+ if (Op1 && Op2)
+ Transform = true;
+ else if (Op1 || Op2) {
+ // Local case
+ if (LHSI->hasOneUse())
+ Transform = true;
+ // Global cases
+ else if (CI && !CI->isZero())
+ // When Op1 is constant try replacing select with second operand.
+ // Otherwise Op2 is constant and try replacing select with first
+ // operand.
+ Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
+ Op1 ? 2 : 1);
+ }
+ if (Transform) {
if (!Op1)
Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
RHSC, I.getName());
@@ -2878,6 +3184,12 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (BO1 && BO1->getOpcode() == Instruction::Add)
C = BO1->getOperand(0), D = BO1->getOperand(1);
+ // icmp (X+cst) < 0 --> X < -cst
+ if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
+ if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
+ if (!RHSC->isMinValue(/*isSigned=*/true))
+ return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
+
// icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
return new ICmpInst(Pred, A == Op1 ? B : A,
@@ -3112,7 +3424,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// and (A & ~B) != 0 --> (A & B) == 0
// if A is a power of 2.
if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
+ match(Op1, m_Zero()) &&
+ isKnownToBeAPowerOfTwo(A, false, 0, AC, &I, DT) && I.isEquality())
return new ICmpInst(I.getInversePredicate(),
Builder->CreateAnd(A, B),
Op1);
@@ -3273,6 +3586,22 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
}
+ // The 'cmpxchg' instruction returns an aggregate containing the old value and
+ // an i1 which indicates whether or not we successfully did the swap.
+ //
+ // Replace comparisons between the old value and the expected value with the
+ // indicator that 'cmpxchg' returns.
+ //
+ // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
+ // spuriously fail. In those cases, the old value may equal the expected
+ // value but it is possible for the swap to not occur.
+ if (I.getPredicate() == ICmpInst::ICMP_EQ)
+ if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
+ if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
+ if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
+ !ACXI->isWeak())
+ return ExtractValueInst::Create(ACXI, 1);
+
{
Value *X; ConstantInt *Cst;
// icmp X+Cst, X
@@ -3287,7 +3616,6 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
-///
Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Instruction *LHSI,
Constant *RHSC) {
@@ -3299,18 +3627,49 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
if (MantissaWidth == -1) return nullptr; // Unknown.
+ IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+
// Check to see that the input is converted from an integer type that is small
// enough that preserves all bits. TODO: check here for "known" sign bits.
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
- unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
+ unsigned InputSize = IntTy->getScalarSizeInBits();
// If this is a uitofp instruction, we need an extra bit to hold the sign.
bool LHSUnsigned = isa<UIToFPInst>(LHSI);
if (LHSUnsigned)
++InputSize;
+ if (I.isEquality()) {
+ FCmpInst::Predicate P = I.getPredicate();
+ bool IsExact = false;
+ APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
+ RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
+
+ // If the floating point constant isn't an integer value, we know if we will
+ // ever compare equal / not equal to it.
+ if (!IsExact) {
+ // TODO: Can never be -0.0 and other non-representable values
+ APFloat RHSRoundInt(RHS);
+ RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
+ if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
+ if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+
+ assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ }
+ }
+
+ // TODO: If the constant is exactly representable, is it always OK to do
+ // equality compares as integer?
+ }
+
+ // Comparisons with zero are a special case where we know we won't lose
+ // information.
+ bool IsCmpZero = RHS.isPosZero();
+
// If the conversion would lose info, don't hack on this.
- if ((int)InputSize > MantissaWidth)
+ if ((int)InputSize > MantissaWidth && !IsCmpZero)
return nullptr;
// Otherwise, we can potentially simplify the comparison. We know that it
@@ -3351,8 +3710,6 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
return ReplaceInstUsesWith(I, Builder->getFalse());
}
- IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
-
// Now we know that the APFloat is a normal number, zero or inf.
// See if the FP constant is too large for the integer. For example,
@@ -3502,7 +3859,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL))
+ if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// Simplify 'fcmp pred X, X'
@@ -3605,40 +3962,42 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
}
break;
case Instruction::Call: {
+ if (!RHSC->isNullValue())
+ break;
+
CallInst *CI = cast<CallInst>(LHSI);
- LibFunc::Func Func;
+ const Function *F = CI->getCalledFunction();
+ if (!F)
+ break;
+
// Various optimization for fabs compared with zero.
- if (RHSC->isNullValue() && CI->getCalledFunction() &&
- TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
- TLI->has(Func)) {
- if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
- Func == LibFunc::fabsl) {
- switch (I.getPredicate()) {
- default: break;
+ LibFunc::Func Func;
+ if (F->getIntrinsicID() == Intrinsic::fabs ||
+ (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
+ (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
+ Func == LibFunc::fabsl))) {
+ switch (I.getPredicate()) {
+ default:
+ break;
// fabs(x) < 0 --> false
- case FCmpInst::FCMP_OLT:
- return ReplaceInstUsesWith(I, Builder->getFalse());
+ case FCmpInst::FCMP_OLT:
+ return ReplaceInstUsesWith(I, Builder->getFalse());
// fabs(x) > 0 --> x != 0
- case FCmpInst::FCMP_OGT:
- return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
- RHSC);
+ case FCmpInst::FCMP_OGT:
+ return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
// fabs(x) <= 0 --> x == 0
- case FCmpInst::FCMP_OLE:
- return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
- RHSC);
+ case FCmpInst::FCMP_OLE:
+ return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
// fabs(x) >= 0 --> !isnan(x)
- case FCmpInst::FCMP_OGE:
- return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
- RHSC);
+ case FCmpInst::FCMP_OGE:
+ return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
// fabs(x) == 0 --> x == 0
// fabs(x) != 0 --> x != 0
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_ONE:
- case FCmpInst::FCMP_UNE:
- return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
- RHSC);
- }
+ case FCmpInst::FCMP_OEQ:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_ONE:
+ case FCmpInst::FCMP_UNE:
+ return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
}
}
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index e9c25d3..af1694d 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -15,6 +15,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
@@ -267,8 +268,8 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// is only subsequently read.
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
- unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
- AI.getAlignment(), DL);
+ unsigned SourceAlign = getOrEnforceKnownAlignment(
+ Copy->getSource(), AI.getAlignment(), DL, AC, &AI, DT);
if (AI.getAlignment() <= SourceAlign) {
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
@@ -290,80 +291,111 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
return visitAllocSite(AI);
}
+/// \brief Helper to combine a load to a new type.
+///
+/// This just does the work of combining a load to a new type. It handles
+/// metadata, etc., and returns the new instruction. The \c NewTy should be the
+/// loaded *value* type. This will convert it to a pointer, cast the operand to
+/// that pointer type, load it, etc.
+///
+/// Note that this will create all of the instructions with whatever insert
+/// point the \c InstCombiner currently is using.
+static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy) {
+ Value *Ptr = LI.getPointerOperand();
+ unsigned AS = LI.getPointerAddressSpace();
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
+ LI.getAllMetadata(MD);
+
+ LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
+ IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
+ LI.getAlignment(), LI.getName());
+ for (const auto &MDPair : MD) {
+ unsigned ID = MDPair.first;
+ MDNode *N = MDPair.second;
+ // Note, essentially every kind of metadata should be preserved here! This
+ // routine is supposed to clone a load instruction changing *only its type*.
+ // The only metadata it makes sense to drop is metadata which is invalidated
+ // when the pointer type changes. This should essentially never be the case
+ // in LLVM, but we explicitly switch over only known metadata to be
+ // conservatively correct. If you are adding metadata to LLVM which pertains
+ // to loads, you almost certainly want to add it here.
+ switch (ID) {
+ case LLVMContext::MD_dbg:
+ case LLVMContext::MD_tbaa:
+ case LLVMContext::MD_prof:
+ case LLVMContext::MD_fpmath:
+ case LLVMContext::MD_tbaa_struct:
+ case LLVMContext::MD_invariant_load:
+ case LLVMContext::MD_alias_scope:
+ case LLVMContext::MD_noalias:
+ case LLVMContext::MD_nontemporal:
+ case LLVMContext::MD_mem_parallel_loop_access:
+ case LLVMContext::MD_nonnull:
+ // All of these directly apply.
+ NewLoad->setMetadata(ID, N);
+ break;
-/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
-static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
- const DataLayout *DL) {
- User *CI = cast<User>(LI.getOperand(0));
- Value *CastOp = CI->getOperand(0);
-
- PointerType *DestTy = cast<PointerType>(CI->getType());
- Type *DestPTy = DestTy->getElementType();
- if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
-
- // If the address spaces don't match, don't eliminate the cast.
- if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
- return nullptr;
-
- Type *SrcPTy = SrcTy->getElementType();
-
- if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
- DestPTy->isVectorTy()) {
- // If the source is an array, the code below will not succeed. Check to
- // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
- // constants.
- if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
- if (Constant *CSrc = dyn_cast<Constant>(CastOp))
- if (ASrcTy->getNumElements() != 0) {
- Type *IdxTy = DL
- ? DL->getIntPtrType(SrcTy)
- : Type::getInt64Ty(SrcTy->getContext());
- Value *Idx = Constant::getNullValue(IdxTy);
- Value *Idxs[2] = { Idx, Idx };
- CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
- SrcTy = cast<PointerType>(CastOp->getType());
- SrcPTy = SrcTy->getElementType();
- }
-
- if (IC.getDataLayout() &&
- (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
- SrcPTy->isVectorTy()) &&
- // Do not allow turning this into a load of an integer, which is then
- // casted to a pointer, this pessimizes pointer analysis a lot.
- (SrcPTy->isPtrOrPtrVectorTy() ==
- LI.getType()->isPtrOrPtrVectorTy()) &&
- IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
- IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
-
- // Okay, we are casting from one integer or pointer type to another of
- // the same size. Instead of casting the pointer before the load, cast
- // the result of the loaded value.
- LoadInst *NewLoad =
- IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
- NewLoad->setAlignment(LI.getAlignment());
- NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
- // Now cast the result of the load.
- PointerType *OldTy = dyn_cast<PointerType>(NewLoad->getType());
- PointerType *NewTy = dyn_cast<PointerType>(LI.getType());
- if (OldTy && NewTy &&
- OldTy->getAddressSpace() != NewTy->getAddressSpace()) {
- return new AddrSpaceCastInst(NewLoad, LI.getType());
- }
-
- return new BitCastInst(NewLoad, LI.getType());
- }
+ case LLVMContext::MD_range:
+ // FIXME: It would be nice to propagate this in some way, but the type
+ // conversions make it hard.
+ break;
}
}
+ return NewLoad;
+}
+
+/// \brief Combine loads to match the type of value their uses after looking
+/// through intervening bitcasts.
+///
+/// The core idea here is that if the result of a load is used in an operation,
+/// we should load the type most conducive to that operation. For example, when
+/// loading an integer and converting that immediately to a pointer, we should
+/// instead directly load a pointer.
+///
+/// However, this routine must never change the width of a load or the number of
+/// loads as that would introduce a semantic change. This combine is expected to
+/// be a semantic no-op which just allows loads to more closely model the types
+/// of their consuming operations.
+///
+/// Currently, we also refuse to change the precise type used for an atomic load
+/// or a volatile load. This is debatable, and might be reasonable to change
+/// later. However, it is risky in case some backend or other part of LLVM is
+/// relying on the exact type loaded to select appropriate atomic operations.
+static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
+ // FIXME: We could probably with some care handle both volatile and atomic
+ // loads here but it isn't clear that this is important.
+ if (!LI.isSimple())
+ return nullptr;
+
+ if (LI.use_empty())
+ return nullptr;
+
+
+ // Fold away bit casts of the loaded value by loading the desired type.
+ if (LI.hasOneUse())
+ if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
+ LoadInst *NewLoad = combineLoadToNewType(IC, LI, BC->getDestTy());
+ BC->replaceAllUsesWith(NewLoad);
+ IC.EraseInstFromFunction(*BC);
+ return &LI;
+ }
+
+ // FIXME: We should also canonicalize loads of vectors when their elements are
+ // cast to other types.
return nullptr;
}
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
+ // Try to canonicalize the loaded type.
+ if (Instruction *Res = combineLoadToOperationType(*this, LI))
+ return Res;
+
// Attempt to improve the alignment.
if (DL) {
- unsigned KnownAlign =
- getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()),DL);
+ unsigned KnownAlign = getOrEnforceKnownAlignment(
+ Op, DL->getPrefTypeAlignment(LI.getType()), DL, AC, &LI, DT);
unsigned LoadAlign = LI.getAlignment();
unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
DL->getABITypeAlignment(LI.getType());
@@ -374,11 +406,6 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
LI.setAlignment(EffectiveLoadAlign);
}
- // load (cast X) --> cast (load X) iff safe.
- if (isa<CastInst>(Op))
- if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
- return Res;
-
// None of the following transforms are legal for volatile/atomic loads.
// FIXME: Some of it is okay for atomic loads; needs refactoring.
if (!LI.isSimple()) return nullptr;
@@ -388,7 +415,9 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// separated by a few arithmetic operations.
BasicBlock::iterator BBI = &LI;
if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
- return ReplaceInstUsesWith(LI, AvailableVal);
+ return ReplaceInstUsesWith(
+ LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
+ LI.getName() + ".cast"));
// load(gep null, ...) -> unreachable
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
@@ -417,12 +446,6 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
- // Instcombine load (constantexpr_cast global) -> cast (load global)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
- if (CE->isCast())
- if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
- return Res;
-
if (Op->hasOneUse()) {
// Change select and PHI nodes to select values instead of addresses: this
// helps alias analysis out a lot, allows many others simplifications, and
@@ -449,119 +472,98 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
}
// load (select (cond, null, P)) -> load P
- if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
- if (C->isNullValue()) {
- LI.setOperand(0, SI->getOperand(2));
- return &LI;
- }
+ if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
+ LI.getPointerAddressSpace() == 0) {
+ LI.setOperand(0, SI->getOperand(2));
+ return &LI;
+ }
// load (select (cond, P, null)) -> load P
- if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
- if (C->isNullValue()) {
- LI.setOperand(0, SI->getOperand(1));
- return &LI;
- }
+ if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
+ LI.getPointerAddressSpace() == 0) {
+ LI.setOperand(0, SI->getOperand(1));
+ return &LI;
+ }
}
}
return nullptr;
}
-/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
-/// when possible. This makes it generally easy to do alias analysis and/or
-/// SROA/mem2reg of the memory object.
-static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
- User *CI = cast<User>(SI.getOperand(1));
- Value *CastOp = CI->getOperand(0);
-
- Type *DestPTy = CI->getType()->getPointerElementType();
- PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
- if (!SrcTy) return nullptr;
-
- Type *SrcPTy = SrcTy->getElementType();
+/// \brief Combine stores to match the type of value being stored.
+///
+/// The core idea here is that the memory does not have any intrinsic type and
+/// where we can we should match the type of a store to the type of value being
+/// stored.
+///
+/// However, this routine must never change the width of a store or the number of
+/// stores as that would introduce a semantic change. This combine is expected to
+/// be a semantic no-op which just allows stores to more closely model the types
+/// of their incoming values.
+///
+/// Currently, we also refuse to change the precise type used for an atomic or
+/// volatile store. This is debatable, and might be reasonable to change later.
+/// However, it is risky in case some backend or other part of LLVM is relying
+/// on the exact type stored to select appropriate atomic operations.
+///
+/// \returns true if the store was successfully combined away. This indicates
+/// the caller must erase the store instruction. We have to let the caller erase
+/// the store instruction sas otherwise there is no way to signal whether it was
+/// combined or not: IC.EraseInstFromFunction returns a null pointer.
+static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
+ // FIXME: We could probably with some care handle both volatile and atomic
+ // stores here but it isn't clear that this is important.
+ if (!SI.isSimple())
+ return false;
- if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
- return nullptr;
+ Value *Ptr = SI.getPointerOperand();
+ Value *V = SI.getValueOperand();
+ unsigned AS = SI.getPointerAddressSpace();
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
+ SI.getAllMetadata(MD);
+
+ // Fold away bit casts of the stored value by storing the original type.
+ if (auto *BC = dyn_cast<BitCastInst>(V)) {
+ V = BC->getOperand(0);
+ StoreInst *NewStore = IC.Builder->CreateAlignedStore(
+ V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
+ SI.getAlignment());
+ for (const auto &MDPair : MD) {
+ unsigned ID = MDPair.first;
+ MDNode *N = MDPair.second;
+ // Note, essentially every kind of metadata should be preserved here! This
+ // routine is supposed to clone a store instruction changing *only its
+ // type*. The only metadata it makes sense to drop is metadata which is
+ // invalidated when the pointer type changes. This should essentially
+ // never be the case in LLVM, but we explicitly switch over only known
+ // metadata to be conservatively correct. If you are adding metadata to
+ // LLVM which pertains to stores, you almost certainly want to add it
+ // here.
+ switch (ID) {
+ case LLVMContext::MD_dbg:
+ case LLVMContext::MD_tbaa:
+ case LLVMContext::MD_prof:
+ case LLVMContext::MD_fpmath:
+ case LLVMContext::MD_tbaa_struct:
+ case LLVMContext::MD_alias_scope:
+ case LLVMContext::MD_noalias:
+ case LLVMContext::MD_nontemporal:
+ case LLVMContext::MD_mem_parallel_loop_access:
+ case LLVMContext::MD_nonnull:
+ // All of these directly apply.
+ NewStore->setMetadata(ID, N);
+ break;
- /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
- /// to its first element. This allows us to handle things like:
- /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
- /// on 32-bit hosts.
- SmallVector<Value*, 4> NewGEPIndices;
-
- // If the source is an array, the code below will not succeed. Check to
- // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
- // constants.
- if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
- // Index through pointer.
- Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
- NewGEPIndices.push_back(Zero);
-
- while (1) {
- if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
- if (!STy->getNumElements()) /* Struct can be empty {} */
- break;
- NewGEPIndices.push_back(Zero);
- SrcPTy = STy->getElementType(0);
- } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
- NewGEPIndices.push_back(Zero);
- SrcPTy = ATy->getElementType();
- } else {
+ case LLVMContext::MD_invariant_load:
+ case LLVMContext::MD_range:
break;
}
}
-
- SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
- }
-
- if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
- return nullptr;
-
- // If the pointers point into different address spaces don't do the
- // transformation.
- if (SrcTy->getAddressSpace() != CI->getType()->getPointerAddressSpace())
- return nullptr;
-
- // If the pointers point to values of different sizes don't do the
- // transformation.
- if (!IC.getDataLayout() ||
- IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
- IC.getDataLayout()->getTypeSizeInBits(DestPTy))
- return nullptr;
-
- // If the pointers point to pointers to different address spaces don't do the
- // transformation. It is not safe to introduce an addrspacecast instruction in
- // this case since, depending on the target, addrspacecast may not be a no-op
- // cast.
- if (SrcPTy->isPointerTy() && DestPTy->isPointerTy() &&
- SrcPTy->getPointerAddressSpace() != DestPTy->getPointerAddressSpace())
- return nullptr;
-
- // Okay, we are casting from one integer or pointer type to another of
- // the same size. Instead of casting the pointer before
- // the store, cast the value to be stored.
- Value *NewCast;
- Instruction::CastOps opcode = Instruction::BitCast;
- Type* CastSrcTy = DestPTy;
- Type* CastDstTy = SrcPTy;
- if (CastDstTy->isPointerTy()) {
- if (CastSrcTy->isIntegerTy())
- opcode = Instruction::IntToPtr;
- } else if (CastDstTy->isIntegerTy()) {
- if (CastSrcTy->isPointerTy())
- opcode = Instruction::PtrToInt;
+ return true;
}
- // SIOp0 is a pointer to aggregate and this is a store to the first field,
- // emit a GEP to index into its first field.
- if (!NewGEPIndices.empty())
- CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
-
- Value *SIOp0 = SI.getOperand(0);
- NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
- SIOp0->getName()+".c");
- SI.setOperand(0, NewCast);
- SI.setOperand(1, CastOp);
- return &SI;
+ // FIXME: We should also canonicalize loads of vectors when their elements are
+ // cast to other types.
+ return false;
}
/// equivalentAddressValues - Test if A and B will obviously have the same
@@ -597,11 +599,14 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
+ // Try to canonicalize the stored type.
+ if (combineStoreToValueType(*this, SI))
+ return EraseInstFromFunction(SI);
+
// Attempt to improve the alignment.
if (DL) {
- unsigned KnownAlign =
- getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()),
- DL);
+ unsigned KnownAlign = getOrEnforceKnownAlignment(
+ Ptr, DL->getPrefTypeAlignment(Val->getType()), DL, AC, &SI, DT);
unsigned StoreAlign = SI.getAlignment();
unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
DL->getABITypeAlignment(Val->getType());
@@ -688,17 +693,6 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (isa<UndefValue>(Val))
return EraseInstFromFunction(SI);
- // If the pointer destination is a cast, see if we can fold the cast into the
- // source instead.
- if (isa<CastInst>(Ptr))
- if (Instruction *Res = InstCombineStoreToCast(*this, SI))
- return Res;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- if (CE->isCast())
- if (Instruction *Res = InstCombineStoreToCast(*this, SI))
- return Res;
-
-
// If this store is the last instruction in the basic block (possibly
// excepting debug info instructions), and if the block ends with an
// unconditional branch, try to move it to the successor block.
@@ -836,12 +830,13 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(OtherStore->getDebugLoc());
- // If the two stores had the same TBAA tag, preserve it.
- if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
- if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
- OtherStore->getMetadata(LLVMContext::MD_tbaa))))
- NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
-
+ // If the two stores had AA tags, merge them.
+ AAMDNodes AATags;
+ SI.getAAMetadata(AATags);
+ if (AATags) {
+ OtherStore->getAAMetadata(AATags, /* Merge = */ true);
+ NewSI->setAAMetadata(AATags);
+ }
// Nuke the old stores.
EraseInstFromFunction(SI);
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 6c6e7d8..b2ff96f 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -25,7 +25,8 @@ using namespace PatternMatch;
/// simplifyValueKnownNonZero - The specific integer value is used in a context
/// where it is known to be non-zero. If this allows us to simplify the
/// computation, do so and return the new operand, otherwise return null.
-static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
+static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
+ Instruction *CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
@@ -35,22 +36,23 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
// ((1 << A) >>u B) --> (1 << (A-B))
// Because V cannot be zero, we know that B is less than A.
- Value *A = nullptr, *B = nullptr, *PowerOf2 = nullptr;
- if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
- m_Value(B))) &&
- // The "1" can be any value known to be a power of 2.
- isKnownToBeAPowerOfTwo(PowerOf2)) {
+ Value *A = nullptr, *B = nullptr, *One = nullptr;
+ if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
+ match(One, m_One())) {
A = IC.Builder->CreateSub(A, B);
- return IC.Builder->CreateShl(PowerOf2, A);
+ return IC.Builder->CreateShl(One, A);
}
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
- if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
+ if (I->isLogicalShift() &&
+ isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0,
+ IC.getAssumptionCache(), CxtI,
+ IC.getDominatorTree())) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
- if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
+ if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
I->setOperand(0, V2);
MadeChange = true;
}
@@ -76,25 +78,30 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
/// MultiplyOverflows - True if the multiply can not be expressed in an int
/// this size.
-static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
- uint32_t W = C1->getBitWidth();
- APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
- if (sign) {
- LHSExt = LHSExt.sext(W * 2);
- RHSExt = RHSExt.sext(W * 2);
- } else {
- LHSExt = LHSExt.zext(W * 2);
- RHSExt = RHSExt.zext(W * 2);
- }
+static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
+ bool IsSigned) {
+ bool Overflow;
+ if (IsSigned)
+ Product = C1.smul_ov(C2, Overflow);
+ else
+ Product = C1.umul_ov(C2, Overflow);
+
+ return Overflow;
+}
- APInt MulExt = LHSExt * RHSExt;
+/// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
+static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
+ bool IsSigned) {
+ assert(C1.getBitWidth() == C2.getBitWidth() &&
+ "Inconsistent width of constants!");
- if (!sign)
- return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
+ APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
+ if (IsSigned)
+ APInt::sdivrem(C1, C2, Quotient, Remainder);
+ else
+ APInt::udivrem(C1, C2, Quotient, Remainder);
- APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
- APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
- return MulExt.slt(Min) || MulExt.sgt(Max);
+ return Remainder.isMinValue();
}
/// \brief A helper routine of InstCombiner::visitMul().
@@ -116,6 +123,48 @@ static Constant *getLogBase2Vector(ConstantDataVector *CV) {
return ConstantVector::get(Elts);
}
+/// \brief Return true if we can prove that:
+/// (mul LHS, RHS) === (mul nsw LHS, RHS)
+bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
+ Instruction *CxtI) {
+ // Multiplying n * m significant bits yields a result of n + m significant
+ // bits. If the total number of significant bits does not exceed the
+ // result bit width (minus 1), there is no overflow.
+ // This means if we have enough leading sign bits in the operands
+ // we can guarantee that the result does not overflow.
+ // Ref: "Hacker's Delight" by Henry Warren
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+
+ // Note that underestimating the number of sign bits gives a more
+ // conservative answer.
+ unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) +
+ ComputeNumSignBits(RHS, 0, CxtI);
+
+ // First handle the easy case: if we have enough sign bits there's
+ // definitely no overflow.
+ if (SignBits > BitWidth + 1)
+ return true;
+
+ // There are two ambiguous cases where there can be no overflow:
+ // SignBits == BitWidth + 1 and
+ // SignBits == BitWidth
+ // The second case is difficult to check, therefore we only handle the
+ // first case.
+ if (SignBits == BitWidth + 1) {
+ // It overflows only when both arguments are negative and the true
+ // product is exactly the minimum negative number.
+ // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
+ // For simplicity we just check if at least one side is not negative.
+ bool LHSNonNegative, LHSNegative;
+ bool RHSNonNegative, RHSNegative;
+ ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, CxtI);
+ ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, CxtI);
+ if (LHSNonNegative || RHSNonNegative)
+ return true;
+ }
+ return false;
+}
+
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -123,14 +172,19 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyMulInst(Op0, Op1, DL))
+ if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
- if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
- return BinaryOperator::CreateNeg(Op0, I.getName());
+ // X * -1 == 0 - X
+ if (match(Op1, m_AllOnes())) {
+ BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
+ if (I.hasNoSignedWrap())
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
// Also allow combining multiply instructions on vectors.
{
@@ -139,9 +193,18 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
const APInt *IVal;
if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
m_Constant(C1))) &&
- match(C1, m_APInt(IVal)))
- // ((X << C1)*C2) == (X * (C2 << C1))
- return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
+ match(C1, m_APInt(IVal))) {
+ // ((X << C2)*C1) == (X * (C1 << C2))
+ Constant *Shl = ConstantExpr::getShl(C1, C2);
+ BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
+ if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
+ Shl->isNotMinSignedValue())
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
Constant *NewCst = nullptr;
@@ -155,8 +218,12 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
if (NewCst) {
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
- if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
- if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
+
+ if (I.hasNoUnsignedWrap())
+ Shl->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && NewCst->isNotMinSignedValue())
+ Shl->setHasNoSignedWrap();
+
return Shl;
}
}
@@ -212,9 +279,16 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
- if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castNegVal(Op1))
- return BinaryOperator::CreateMul(Op0v, Op1v);
+ if (Value *Op0v = dyn_castNegVal(Op0)) { // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castNegVal(Op1)) {
+ BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
+ if (I.hasNoSignedWrap() &&
+ match(Op0, m_NSWSub(m_Value(), m_Value())) &&
+ match(Op1, m_NSWSub(m_Value(), m_Value())))
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+ }
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
@@ -263,10 +337,22 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
// (1 << Y)*X --> X << Y
{
Value *Y;
- if (match(Op0, m_Shl(m_One(), m_Value(Y))))
- return BinaryOperator::CreateShl(Op1, Y);
- if (match(Op1, m_Shl(m_One(), m_Value(Y))))
- return BinaryOperator::CreateShl(Op0, Y);
+ BinaryOperator *BO = nullptr;
+ bool ShlNSW = false;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
+ BO = BinaryOperator::CreateShl(Op1, Y);
+ ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
+ } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
+ BO = BinaryOperator::CreateShl(Op0, Y);
+ ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
+ }
+ if (BO) {
+ if (I.hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && ShlNSW)
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
}
// If one of the operands of the multiply is a cast from a boolean value, then
@@ -277,9 +363,9 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
Value *BoolCast = nullptr, *OtherOp = nullptr;
- if (MaskedValueIsZero(Op0, Negative2))
+ if (MaskedValueIsZero(Op0, Negative2, 0, &I))
BoolCast = Op0, OtherOp = Op1;
- else if (MaskedValueIsZero(Op1, Negative2))
+ else if (MaskedValueIsZero(Op1, Negative2, 0, &I))
BoolCast = Op1, OtherOp = Op0;
if (BoolCast) {
@@ -289,43 +375,47 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, &I)) {
+ Changed = true;
+ I.setHasNoSignedWrap(true);
+ }
+
+ if (!I.hasNoUnsignedWrap() &&
+ computeOverflowForUnsignedMul(Op0, Op1, &I) ==
+ OverflowResult::NeverOverflows) {
+ Changed = true;
+ I.setHasNoUnsignedWrap(true);
+ }
+
return Changed ? &I : nullptr;
}
-//
-// Detect pattern:
-//
-// log2(Y*0.5)
-//
-// And check for corresponding fast math flags
-//
-
+/// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
-
- if (!Op->hasOneUse())
- return;
-
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
- if (!II)
- return;
- if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
- return;
- Log2 = II;
-
- Value *OpLog2Of = II->getArgOperand(0);
- if (!OpLog2Of->hasOneUse())
- return;
-
- Instruction *I = dyn_cast<Instruction>(OpLog2Of);
- if (!I)
- return;
- if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
- return;
-
- if (match(I->getOperand(0), m_SpecificFP(0.5)))
- Y = I->getOperand(1);
- else if (match(I->getOperand(1), m_SpecificFP(0.5)))
- Y = I->getOperand(0);
+ if (!Op->hasOneUse())
+ return;
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
+ if (!II)
+ return;
+ if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
+ return;
+ Log2 = II;
+
+ Value *OpLog2Of = II->getArgOperand(0);
+ if (!OpLog2Of->hasOneUse())
+ return;
+
+ Instruction *I = dyn_cast<Instruction>(OpLog2Of);
+ if (!I)
+ return;
+ if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return;
+
+ if (match(I->getOperand(0), m_SpecificFP(0.5)))
+ Y = I->getOperand(1);
+ else if (match(I->getOperand(1), m_SpecificFP(0.5)))
+ Y = I->getOperand(0);
}
static bool isFiniteNonZeroFp(Constant *C) {
@@ -440,7 +530,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
if (isa<Constant>(Op0))
std::swap(Op0, Op1);
- if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL))
+ if (Value *V =
+ SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
bool AllowReassociate = I.hasUnsafeAlgebra();
@@ -510,10 +601,15 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
}
}
+ // sqrt(X) * sqrt(X) -> X
+ if (AllowReassociate && (Op0 == Op1))
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0))
+ if (II->getIntrinsicID() == Intrinsic::sqrt)
+ return ReplaceInstUsesWith(I, II->getOperand(0));
// Under unsafe algebra do:
// X * log2(0.5*Y) = X*log2(Y) - X
- if (I.hasUnsafeAlgebra()) {
+ if (AllowReassociate) {
Value *OpX = nullptr;
Value *OpY = nullptr;
IntrinsicInst *Log2;
@@ -596,36 +692,6 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
}
}
- // B * (uitofp i1 C) -> select C, B, 0
- if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
- Value *LHS = Op0, *RHS = Op1;
- Value *B, *C;
- if (!match(RHS, m_UIToFP(m_Value(C))))
- std::swap(LHS, RHS);
-
- if (match(RHS, m_UIToFP(m_Value(C))) &&
- C->getType()->getScalarType()->isIntegerTy(1)) {
- B = LHS;
- Value *Zero = ConstantFP::getNegativeZero(B->getType());
- return SelectInst::Create(C, B, Zero);
- }
- }
-
- // A * (1 - uitofp i1 C) -> select C, 0, A
- if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
- Value *LHS = Op0, *RHS = Op1;
- Value *A, *C;
- if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
- std::swap(LHS, RHS);
-
- if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
- C->getType()->getScalarType()->isIntegerTy(1)) {
- A = LHS;
- Value *Zero = ConstantFP::getNegativeZero(A->getType());
- return SelectInst::Create(C, Zero, A);
- }
- }
-
if (!isa<Constant>(Op1))
std::swap(Opnd0, Opnd1);
else
@@ -714,7 +780,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
I.setOperand(1, V);
return &I;
}
@@ -724,25 +790,83 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // (X / C1) / C2 -> X / (C1*C2)
- if (Instruction *LHS = dyn_cast<Instruction>(Op0))
- if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
- if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
- if (MultiplyOverflows(RHS, LHSRHS,
- I.getOpcode() == Instruction::SDiv))
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
- ConstantExpr::getMul(RHS, LHSRHS));
+ if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
+ const APInt *C2;
+ if (match(Op1, m_APInt(C2))) {
+ Value *X;
+ const APInt *C1;
+ bool IsSigned = I.getOpcode() == Instruction::SDiv;
+
+ // (X / C1) / C2 -> X / (C1*C2)
+ if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
+ APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
+ if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
+ return BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(I.getType(), Product));
+ }
+
+ if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
+
+ // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
+ if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
+ BinaryOperator *BO = BinaryOperator::Create(
+ I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
+ BO->setIsExact(I.isExact());
+ return BO;
}
- if (!RHS->isZero()) { // avoid X udiv 0
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
+ // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
+ if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
+ BinaryOperator *BO = BinaryOperator::Create(
+ Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
+ BO->setHasNoUnsignedWrap(
+ !IsSigned &&
+ cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
+ BO->setHasNoSignedWrap(
+ cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
+ return BO;
+ }
+ }
+
+ if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
+ *C1 != C1->getBitWidth() - 1) ||
+ (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
+ APInt C1Shifted = APInt::getOneBitSet(
+ C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
+
+ // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
+ if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
+ BinaryOperator *BO = BinaryOperator::Create(
+ I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+
+ // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
+ if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
+ BinaryOperator *BO = BinaryOperator::Create(
+ Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
+ BO->setHasNoUnsignedWrap(
+ !IsSigned &&
+ cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
+ BO->setHasNoSignedWrap(
+ cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
+ return BO;
+ }
+ }
+
+ if (*C2 != 0) { // avoid X udiv 0
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
}
}
@@ -828,7 +952,8 @@ static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
BinaryOperator *LShr = BinaryOperator::CreateLShr(
Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
- if (I.isExact()) LShr->setIsExact();
+ if (I.isExact())
+ LShr->setIsExact();
return LShr;
}
@@ -856,7 +981,8 @@ static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
N = IC.Builder->CreateZExt(N, Z->getDestTy());
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
- if (I.isExact()) LShr->setIsExact();
+ if (I.isExact())
+ LShr->setIsExact();
return LShr;
}
@@ -893,10 +1019,10 @@ static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
return 0;
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
- if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
- Actions.push_back(UDivFoldAction((FoldUDivOperandCb)nullptr, Op1,
- LHSIdx-1));
+ if (size_t LHSIdx =
+ visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
+ if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
+ Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
return Actions.size();
}
@@ -909,7 +1035,7 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyUDivInst(Op0, Op1, DL))
+ if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// Handle the integer div common cases
@@ -917,19 +1043,30 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
return Common;
// (x lshr C1) udiv C2 --> x udiv (C2 << C1)
- if (Constant *C2 = dyn_cast<Constant>(Op1)) {
+ {
Value *X;
- Constant *C1;
- if (match(Op0, m_LShr(m_Value(X), m_Constant(C1))))
- return BinaryOperator::CreateUDiv(X, ConstantExpr::getShl(C2, C1));
+ const APInt *C1, *C2;
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
+ match(Op1, m_APInt(C2))) {
+ bool Overflow;
+ APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
+ if (!Overflow) {
+ bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
+ BinaryOperator *BO = BinaryOperator::CreateUDiv(
+ X, ConstantInt::get(X->getType(), C2ShlC1));
+ if (IsExact)
+ BO->setIsExact();
+ return BO;
+ }
+ }
}
// (zext A) udiv (zext B) --> zext (A udiv B)
if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
- return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
- I.isExact()),
- I.getType());
+ return new ZExtInst(
+ Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
+ I.getType());
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
SmallVector<UDivFoldAction, 6> UDivActions;
@@ -971,7 +1108,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifySDivInst(Op0, Op1, DL))
+ if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// Handle the integer div common cases
@@ -998,28 +1135,34 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
// -X/C --> X/-C provided the negation doesn't overflow.
- if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
- if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
- return BinaryOperator::CreateSDiv(Sub->getOperand(1),
- ConstantExpr::getNeg(RHS));
+ Value *X;
+ if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
+ auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
if (I.getType()->isIntegerTy()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op0, Mask)) {
- if (MaskedValueIsZero(Op1, Mask)) {
+ if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
// X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
}
- if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
// the sign bit set.
- return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
}
}
}
@@ -1034,8 +1177,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
/// If the conversion was successful, the simplified expression "X * 1/C" is
/// returned; otherwise, NULL is returned.
///
-static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
- Constant *Divisor,
+static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
bool AllowReciprocal) {
if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
return nullptr;
@@ -1064,7 +1206,7 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyFDivInst(Op0, Op1, DL))
+ if (Value *V = SimplifyFDivInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (isa<Constant>(Op0))
@@ -1195,7 +1337,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
I.setOperand(1, V);
return &I;
}
@@ -1229,7 +1371,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyURemInst(Op0, Op1, DL))
+ if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (Instruction *common = commonIRemTransforms(I))
@@ -1242,7 +1384,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
I.getType());
// X urem Y -> X and Y-1, where Y is a power of 2,
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
Constant *N1 = Constant::getAllOnesValue(I.getType());
Value *Add = Builder->CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
@@ -1264,28 +1406,29 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifySRemInst(Op0, Op1, DL))
+ if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
- if (Value *RHSNeg = dyn_castNegVal(Op1))
- if (!isa<Constant>(RHSNeg) ||
- (isa<ConstantInt>(RHSNeg) &&
- cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
- // X % -Y -> X % Y
+ {
+ const APInt *Y;
+ // X % -Y -> X % Y
+ if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
Worklist.AddValue(I.getOperand(1));
- I.setOperand(1, RHSNeg);
+ I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
return &I;
}
+ }
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
if (I.getType()->isIntegerTy()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+ if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
+ MaskedValueIsZero(Op0, Mask, 0, &I)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
@@ -1338,7 +1481,7 @@ Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyFRemInst(Op0, Op1, DL))
+ if (Value *V = SimplifyFRemInst(Op0, Op1, DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// Handle cases involving: rem X, (select Cond, Y, Z)
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
index 46f7b8a..53831c8 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -506,12 +506,12 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
/// that is dead.
static bool DeadPHICycle(PHINode *PN,
- SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
+ SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
if (PN->use_empty()) return true;
if (!PN->hasOneUse()) return false;
// Remember this node, and if we find the cycle, return.
- if (!PotentiallyDeadPHIs.insert(PN))
+ if (!PotentiallyDeadPHIs.insert(PN).second)
return true;
// Don't scan crazily complex things.
@@ -528,9 +528,9 @@ static bool DeadPHICycle(PHINode *PN,
/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
/// z = some value; x = phi (y, z); y = phi (x, z)
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
- SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
+ SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
// See if we already saw this PHI node.
- if (!ValueEqualPHIs.insert(PN))
+ if (!ValueEqualPHIs.insert(PN).second)
return true;
// Don't scan crazily complex things.
@@ -654,7 +654,7 @@ Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
// If the user is a PHI, inspect its uses recursively.
if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
- if (PHIsInspected.insert(UserPN))
+ if (PHIsInspected.insert(UserPN).second)
PHIsToSlice.push_back(UserPN);
continue;
}
@@ -788,7 +788,7 @@ Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
- if (Value *V = SimplifyInstruction(&PN, DL, TLI))
+ if (Value *V = SimplifyInstruction(&PN, DL, TLI, DT, AC))
return ReplaceInstUsesWith(PN, V);
// If all PHI operands are the same operation, pull them through the PHI,
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
index a36cbe6..bf3c33e 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -313,7 +313,8 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
/// replaced with RepOp.
static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI,
+ DominatorTree *DT, AssumptionCache *AC) {
// Trivial replacement.
if (V == Op)
return RepOp;
@@ -334,10 +335,10 @@ static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
if (CmpInst *C = dyn_cast<CmpInst>(I)) {
if (C->getOperand(0) == Op)
return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
- TLI);
+ TLI, DT, AC);
if (C->getOperand(1) == Op)
return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
- TLI);
+ TLI, DT, AC);
}
// TODO: We could hand off more cases to instsimplify here.
@@ -578,18 +579,26 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
// arms of the select. See if substituting this value into the arm and
// simplifying the result yields the same value as the other arm.
if (Pred == ICmpInst::ICMP_EQ) {
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
+ if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ TrueVal ||
+ SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ TrueVal)
return ReplaceInstUsesWith(SI, FalseVal);
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
+ if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ FalseVal ||
+ SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ FalseVal)
return ReplaceInstUsesWith(SI, FalseVal);
} else if (Pred == ICmpInst::ICMP_NE) {
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
+ if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ FalseVal ||
+ SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ FalseVal)
return ReplaceInstUsesWith(SI, TrueVal);
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
+ if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ TrueVal ||
+ SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ TrueVal)
return ReplaceInstUsesWith(SI, TrueVal);
}
@@ -607,6 +616,52 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
}
}
+ if (unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits()) {
+ APInt MinSignedValue = APInt::getSignBit(BitWidth);
+ Value *X;
+ const APInt *Y, *C;
+ bool TrueWhenUnset;
+ bool IsBitTest = false;
+ if (ICmpInst::isEquality(Pred) &&
+ match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
+ match(CmpRHS, m_Zero())) {
+ IsBitTest = true;
+ TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
+ } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
+ X = CmpLHS;
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = false;
+ } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
+ X = CmpLHS;
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = true;
+ }
+ if (IsBitTest) {
+ Value *V = nullptr;
+ // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
+ if (TrueWhenUnset && TrueVal == X &&
+ match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder->CreateAnd(X, ~(*Y));
+ // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
+ else if (!TrueWhenUnset && FalseVal == X &&
+ match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder->CreateAnd(X, ~(*Y));
+ // (X & Y) == 0 ? X ^ Y : X --> X | Y
+ else if (TrueWhenUnset && FalseVal == X &&
+ match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder->CreateOr(X, *Y);
+ // (X & Y) != 0 ? X : X ^ Y --> X | Y
+ else if (!TrueWhenUnset && TrueVal == X &&
+ match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder->CreateOr(X, *Y);
+
+ if (V)
+ return ReplaceInstUsesWith(SI, V);
+ }
+ }
+
if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
return ReplaceInstUsesWith(SI, V);
@@ -798,7 +853,8 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *TrueVal = SI.getTrueValue();
Value *FalseVal = SI.getFalseValue();
- if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, DL))
+ if (Value *V =
+ SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
return ReplaceInstUsesWith(SI, V);
if (SI.getType()->isIntegerTy(1)) {
@@ -890,8 +946,22 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
!CFPf->getValueAPF().isZero()))
return ReplaceInstUsesWith(SI, TrueVal);
}
- // NOTE: if we wanted to, this is where to detect MIN/MAX
+ // Canonicalize to use ordered comparisons by swapping the select
+ // operands.
+ //
+ // e.g.
+ // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
+ if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
+ FCmpInst::Predicate InvPred = FCI->getInversePredicate();
+ Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
+ FCI->getName() + ".inv");
+
+ return SelectInst::Create(NewCond, FalseVal, TrueVal,
+ SI.getName() + ".p");
+ }
+
+ // NOTE: if we wanted to, this is where to detect MIN/MAX
} else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
// Transform (X == Y) ? Y : X -> X
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
@@ -917,6 +987,21 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
!CFPf->getValueAPF().isZero()))
return ReplaceInstUsesWith(SI, TrueVal);
}
+
+ // Canonicalize to use ordered comparisons by swapping the select
+ // operands.
+ //
+ // e.g.
+ // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
+ if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
+ FCmpInst::Predicate InvPred = FCI->getInversePredicate();
+ Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
+ FCI->getName() + ".inv");
+
+ return SelectInst::Create(NewCond, FalseVal, TrueVal,
+ SI.getName() + ".p");
+ }
+
// NOTE: if we wanted to, this is where to detect MIN/MAX
}
// NOTE: if we wanted to, this is where to detect ABS
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 2f91c20..0a16e25 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -68,7 +68,7 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
/// this succeeds, the GetShiftedValue function will be called to produce the
/// value.
static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombiner &IC) {
+ InstCombiner &IC, Instruction *CxtI) {
// We can always evaluate constants shifted.
if (isa<Constant>(V))
return true;
@@ -111,8 +111,8 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
case Instruction::Or:
case Instruction::Xor:
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
- CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
+ return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC, I) &&
+ CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC, I);
case Instruction::Shl: {
// We can often fold the shift into shifts-by-a-constant.
@@ -131,8 +131,9 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// profitable unless we know the and'd out bits are already zero.
if (CI->getZExtValue() > NumBits) {
unsigned LowBits = TypeWidth - CI->getZExtValue();
- if (MaskedValueIsZero(I->getOperand(0),
- APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
+ if (IC.MaskedValueIsZero(I->getOperand(0),
+ APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
+ 0, CxtI))
return true;
}
@@ -155,8 +156,9 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// profitable unless we know the and'd out bits are already zero.
if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
unsigned LowBits = CI->getZExtValue() - NumBits;
- if (MaskedValueIsZero(I->getOperand(0),
- APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
+ if (IC.MaskedValueIsZero(I->getOperand(0),
+ APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
+ 0, CxtI))
return true;
}
@@ -164,8 +166,9 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
- return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
- CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
+ return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift,
+ IC, SI) &&
+ CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC, SI);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
@@ -173,7 +176,8 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
+ if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,
+ IC, PN))
return false;
return true;
}
@@ -329,7 +333,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
// See if we can propagate this shift into the input, this covers the trivial
// cast of lshr(shl(x,c1),c2) as well as other more complex cases.
if (I.getOpcode() != Instruction::AShr &&
- CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this)) {
+ CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this, &I)) {
DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
@@ -488,7 +492,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
}
- // If the operand is an bitwise operator with a constant RHS, and the
+ // If the operand is a bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
bool isValid = true; // Valid only for And, Or, Xor
@@ -689,9 +693,9 @@ Instruction *InstCombiner::visitShl(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- DL))
+ if (Value *V =
+ SimplifyShlInst(I.getOperand(0), I.getOperand(1), I.hasNoSignedWrap(),
+ I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (Instruction *V = commonShiftTransforms(I))
@@ -703,14 +707,15 @@ Instruction *InstCombiner::visitShl(BinaryOperator &I) {
// If the shifted-out value is known-zero, then this is a NUW shift.
if (!I.hasNoUnsignedWrap() &&
MaskedValueIsZero(I.getOperand(0),
- APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
+ APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt),
+ 0, &I)) {
I.setHasNoUnsignedWrap();
return &I;
}
// If the shifted out value is all signbits, this is a NSW shift.
if (!I.hasNoSignedWrap() &&
- ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
+ ComputeNumSignBits(I.getOperand(0), 0, &I) > ShAmt) {
I.setHasNoSignedWrap();
return &I;
}
@@ -730,8 +735,8 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
- I.isExact(), DL))
+ if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
+ DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (Instruction *R = commonShiftTransforms(I))
@@ -760,7 +765,8 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
// If the shifted-out value is known-zero, then this is an exact shift.
if (!I.isExact() &&
- MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
+ MaskedValueIsZero(Op0, APInt::getLowBitsSet(Op1C->getBitWidth(), ShAmt),
+ 0, &I)){
I.setIsExact();
return &I;
}
@@ -773,8 +779,8 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
- I.isExact(), DL))
+ if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
+ DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (Instruction *R = commonShiftTransforms(I))
@@ -804,7 +810,8 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
// If the shifted-out value is known-zero, then this is an exact shift.
if (!I.isExact() &&
- MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
+ MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt),
+ 0, &I)){
I.setIsExact();
return &I;
}
@@ -812,7 +819,8 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
// See if we can turn a signed shr into an unsigned shr.
if (MaskedValueIsZero(Op0,
- APInt::getSignBit(I.getType()->getScalarSizeInBits())))
+ APInt::getSignBit(I.getType()->getScalarSizeInBits()),
+ 0, &I))
return BinaryOperator::CreateLShr(Op0, Op1);
return nullptr;
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index 1b42d3d..ad6983a 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -43,6 +43,20 @@ static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
// This instruction is producing bits that are not demanded. Shrink the RHS.
Demanded &= OpC->getValue();
I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
+
+ // If either 'nsw' or 'nuw' is set and the constant is negative,
+ // removing *any* bits from the constant could make overflow occur.
+ // Remove 'nsw' and 'nuw' from the instruction in this case.
+ if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
+ assert(OBO->getOpcode() == Instruction::Add);
+ if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) {
+ if (OpC->getValue().isNegative()) {
+ cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false);
+ cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false);
+ }
+ }
+ }
+
return true;
}
@@ -57,7 +71,7 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
- KnownZero, KnownOne, 0);
+ KnownZero, KnownOne, 0, &Inst);
if (!V) return false;
if (V == &Inst) return true;
ReplaceInstUsesWith(Inst, V);
@@ -71,7 +85,8 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt &KnownZero, APInt &KnownOne,
unsigned Depth) {
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
- KnownZero, KnownOne, Depth);
+ KnownZero, KnownOne, Depth,
+ dyn_cast<Instruction>(U.getUser()));
if (!NewVal) return false;
U = NewVal;
return true;
@@ -101,7 +116,8 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
/// in the context where the specified bits are demanded, but not for all users.
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt &KnownZero, APInt &KnownOne,
- unsigned Depth) {
+ unsigned Depth,
+ Instruction *CxtI) {
assert(V != nullptr && "Null pointer of Value???");
assert(Depth <= 6 && "Limit Search Depth");
uint32_t BitWidth = DemandedMask.getBitWidth();
@@ -144,7 +160,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
- computeKnownBits(V, KnownZero, KnownOne, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
return nullptr; // Only analyze instructions.
}
@@ -158,8 +174,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// this instruction has a simpler value in that context.
if (I->getOpcode() == Instruction::And) {
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
+ computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
+ CxtI);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ CxtI);
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and' in this
@@ -180,8 +198,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// only bits from X or Y are demanded.
// If either the LHS or the RHS are One, the result is One.
- computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
+ computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
+ CxtI);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ CxtI);
// If all of the demanded bits are known zero on one side, return the
// other. These bits cannot contribute to the result of the 'or' in this
@@ -205,8 +225,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// We can simplify (X^Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
- computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
+ computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
+ CxtI);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ CxtI);
// If all of the demanded bits are known zero on one side, return the
// other.
@@ -217,7 +239,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
}
// Compute the KnownZero/KnownOne bits to simplify things downstream.
- computeKnownBits(I, KnownZero, KnownOne, Depth);
+ computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
return nullptr;
}
@@ -230,7 +252,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
switch (I->getOpcode()) {
default:
- computeKnownBits(I, KnownZero, KnownOne, Depth);
+ computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
break;
case Instruction::And:
// If either the LHS or the RHS are Zero, the result is zero.
@@ -242,6 +264,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
+ (RHSKnownOne & LHSKnownOne))) == DemandedMask)
+ return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
+
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
@@ -274,6 +302,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
+ (RHSKnownOne | LHSKnownOne))) == DemandedMask)
+ return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
@@ -310,6 +344,18 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
+ (RHSKnownOne & LHSKnownOne);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
+ (RHSKnownOne & LHSKnownZero);
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
+ return Constant::getIntegerValue(VTy, IKnownOne);
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((DemandedMask & RHSKnownZero) == DemandedMask)
@@ -581,7 +627,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// Otherwise just hand the sub off to computeKnownBits to fill in
// the known zeros and ones.
- computeKnownBits(V, KnownZero, KnownOne, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
// Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
// zero.
@@ -752,7 +798,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// remainder is zero.
if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ CxtI);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(KnownZero.getBitWidth() - 1);
@@ -814,7 +861,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return nullptr;
}
}
- computeKnownBits(V, KnownZero, KnownOne, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
break;
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h
index 1ab7db3..8d857d0 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineWorklist.h
@@ -7,8 +7,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef INSTCOMBINE_WORKLIST_H
-#define INSTCOMBINE_WORKLIST_H
+#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEWORKLIST_H
+#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEWORKLIST_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
index d3648e2..a0c239a 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -39,12 +39,16 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
@@ -68,11 +72,6 @@ STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
-static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
- cl::init(false),
- cl::desc("Enable unsafe double to float "
- "shrinking for math lib calls"));
-
// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
initializeInstCombinerPass(Registry);
@@ -85,13 +84,18 @@ void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
char InstCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
"Combine redundant instructions", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(InstCombiner, "instcombine",
"Combine redundant instructions", false, false)
void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
}
@@ -390,6 +394,25 @@ static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
if (Instruction::isCommutative(ROp))
return LeftDistributesOverRight(ROp, LOp);
+
+ switch (LOp) {
+ default:
+ return false;
+ // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
+ // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
+ // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return true;
+ }
+ }
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
// but this requires knowing that the addition does not overflow and other
// such subtleties.
@@ -411,26 +434,37 @@ static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
}
/// This function factors binary ops which can be combined using distributive
-/// laws. This also factor SHL as MUL e.g. SHL(X, 2) ==> MUL(X, 4).
+/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
+/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
+/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
+/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
+/// RHS to 4.
static Instruction::BinaryOps
-getBinOpsForFactorization(BinaryOperator *Op, Value *&LHS, Value *&RHS) {
+getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
+ BinaryOperator *Op, Value *&LHS, Value *&RHS) {
if (!Op)
return Instruction::BinaryOpsEnd;
- if (Op->getOpcode() == Instruction::Shl) {
- if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
- // The multiplier is really 1 << CST.
- RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
- LHS = Op->getOperand(0);
- return Instruction::Mul;
+ LHS = Op->getOperand(0);
+ RHS = Op->getOperand(1);
+
+ switch (TopLevelOpcode) {
+ default:
+ return Op->getOpcode();
+
+ case Instruction::Add:
+ case Instruction::Sub:
+ if (Op->getOpcode() == Instruction::Shl) {
+ if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
+ // The multiplier is really 1 << CST.
+ RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
+ return Instruction::Mul;
+ }
}
+ return Op->getOpcode();
}
// TODO: We can add other conversions e.g. shr => div etc.
-
- LHS = Op->getOperand(0);
- RHS = Op->getOperand(1);
- return Op->getOpcode();
}
/// This tries to simplify binary operations by factorizing out common terms
@@ -529,8 +563,9 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
// Factorization.
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- Instruction::BinaryOps LHSOpcode = getBinOpsForFactorization(Op0, A, B);
- Instruction::BinaryOps RHSOpcode = getBinOpsForFactorization(Op1, C, D);
+ auto TopLevelOpcode = I.getOpcode();
+ auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
+ auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
// a common term.
@@ -552,7 +587,6 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
return V;
// Expansion.
- Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
// The instruction has the form "(A op' B) op C". See if expanding it out
// to "(A op C) op' (B op C)" results in simplifications.
@@ -765,13 +799,14 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
// If the incoming non-constant value is in I's block, we will remove one
// instruction, but insert another equivalent one, leading to infinite
// instcombine.
- if (NonConstBB == I.getParent())
+ if (isPotentiallyReachable(I.getParent(), NonConstBB, DT,
+ getAnalysisIfAvailable<LoopInfo>()))
return nullptr;
}
// If there is exactly one non-constant value, we can insert a copy of the
// operation in that block. However, if this is a critical edge, we would be
- // inserting the computation one some other paths (e.g. inside a loop). Only
+ // inserting the computation on some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
if (NonConstBB != nullptr) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
@@ -1284,7 +1319,7 @@ Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
- if (Value *V = SimplifyGEPInst(Ops, DL))
+ if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
return ReplaceInstUsesWith(GEP, V);
Value *PtrOp = GEP.getOperand(0);
@@ -1478,19 +1513,50 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
}
- // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
- // The GEP pattern is emitted by the SCEV expander for certain kinds of
- // pointer arithmetic.
- if (DL && GEP.getNumIndices() == 1 &&
- match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
+ if (DL && GEP.getNumIndices() == 1) {
unsigned AS = GEP.getPointerAddressSpace();
- if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
- GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
+ if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
DL->getPointerSizeInBits(AS)) {
- Operator *Index = cast<Operator>(GEP.getOperand(1));
- Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
- Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
- return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
+ Type *PtrTy = GEP.getPointerOperandType();
+ Type *Ty = PtrTy->getPointerElementType();
+ uint64_t TyAllocSize = DL->getTypeAllocSize(Ty);
+
+ bool Matched = false;
+ uint64_t C;
+ Value *V = nullptr;
+ if (TyAllocSize == 1) {
+ V = GEP.getOperand(1);
+ Matched = true;
+ } else if (match(GEP.getOperand(1),
+ m_AShr(m_Value(V), m_ConstantInt(C)))) {
+ if (TyAllocSize == 1ULL << C)
+ Matched = true;
+ } else if (match(GEP.getOperand(1),
+ m_SDiv(m_Value(V), m_ConstantInt(C)))) {
+ if (TyAllocSize == C)
+ Matched = true;
+ }
+
+ if (Matched) {
+ // Canonicalize (gep i8* X, -(ptrtoint Y))
+ // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
+ // The GEP pattern is emitted by the SCEV expander for certain kinds of
+ // pointer arithmetic.
+ if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
+ Operator *Index = cast<Operator>(V);
+ Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
+ Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
+ return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
+ }
+ // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
+ // to (bitcast Y)
+ Value *Y;
+ if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
+ m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
+ GEP.getType());
+ }
+ }
}
}
@@ -1667,6 +1733,18 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (!DL)
return nullptr;
+ // addrspacecast between types is canonicalized as a bitcast, then an
+ // addrspacecast. To take advantage of the below bitcast + struct GEP, look
+ // through the addrspacecast.
+ if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
+ // X = bitcast A addrspace(1)* to B addrspace(1)*
+ // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
+ // Z = gep Y, <...constant indices...>
+ // Into an addrspacecasted GEP of the struct.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
+ PtrOp = BC;
+ }
+
/// See if we can simplify:
/// X = bitcast A* to B*
/// Y = gep X, <...constant indices...>
@@ -1675,11 +1753,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Value *Operand = BCI->getOperand(0);
PointerType *OpType = cast<PointerType>(Operand->getType());
- unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
+ unsigned OffsetBits = DL->getPointerTypeSizeInBits(GEP.getType());
APInt Offset(OffsetBits, 0);
if (!isa<BitCastInst>(Operand) &&
- GEP.accumulateConstantOffset(*DL, Offset) &&
- StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
+ GEP.accumulateConstantOffset(*DL, Offset)) {
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
@@ -1697,6 +1774,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
return &GEP;
}
}
+
+ if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(Operand, GEP.getType());
return new BitCastInst(Operand, GEP.getType());
}
@@ -1712,6 +1792,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (NGEP->getType() == GEP.getType())
return ReplaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
+
+ if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(NGEP, GEP.getType());
return new BitCastInst(NGEP, GEP.getType());
}
}
@@ -1922,7 +2005,25 @@ Instruction *InstCombiner::visitFree(CallInst &FI) {
return nullptr;
}
+Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
+ if (RI.getNumOperands() == 0) // ret void
+ return nullptr;
+
+ Value *ResultOp = RI.getOperand(0);
+ Type *VTy = ResultOp->getType();
+ if (!VTy->isIntegerTy())
+ return nullptr;
+
+ // There might be assume intrinsics dominating this return that completely
+ // determine the value. If so, constant fold it.
+ unsigned BitWidth = VTy->getPrimitiveSizeInBits();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
+ if ((KnownZero|KnownOne).isAllOnesValue())
+ RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
+ return nullptr;
+}
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
// Change br (not X), label True, label False to: br X, label False, True
@@ -1974,6 +2075,40 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
Value *Cond = SI.getCondition();
+ unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ computeKnownBits(Cond, KnownZero, KnownOne);
+ unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
+ unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
+
+ // Compute the number of leading bits we can ignore.
+ for (auto &C : SI.cases()) {
+ LeadingKnownZeros = std::min(
+ LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
+ LeadingKnownOnes = std::min(
+ LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
+ }
+
+ unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
+
+ // Truncate the condition operand if the new type is equal to or larger than
+ // the largest legal integer type. We need to be conservative here since
+ // x86 generates redundant zero-extenstion instructions if the operand is
+ // truncated to i8 or i16.
+ bool TruncCond = false;
+ if (DL && BitWidth > NewWidth &&
+ NewWidth >= DL->getLargestLegalIntTypeSize()) {
+ TruncCond = true;
+ IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
+ Builder->SetInsertPoint(&SI);
+ Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
+ SI.setCondition(NewCond);
+
+ for (auto &C : SI.cases())
+ static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
+ SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
+ }
+
if (Instruction *I = dyn_cast<Instruction>(Cond)) {
if (I->getOpcode() == Instruction::Add)
if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
@@ -1982,8 +2117,12 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
i != e; ++i) {
ConstantInt* CaseVal = i.getCaseValue();
- Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
- AddRHS);
+ Constant *LHS = CaseVal;
+ if (TruncCond)
+ LHS = LeadingKnownZeros
+ ? ConstantExpr::getZExt(CaseVal, Cond->getType())
+ : ConstantExpr::getSExt(CaseVal, Cond->getType());
+ Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
assert(isa<ConstantInt>(NewCaseVal) &&
"Result of expression should be constant");
i.setValue(cast<ConstantInt>(NewCaseVal));
@@ -1993,7 +2132,8 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
return &SI;
}
}
- return nullptr;
+
+ return TruncCond ? &SI : nullptr;
}
Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
@@ -2212,7 +2352,7 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
// If we already saw this clause, there is no point in having a second
// copy of it.
- if (AlreadyCaught.insert(TypeInfo)) {
+ if (AlreadyCaught.insert(TypeInfo).second) {
// This catch clause was not already seen.
NewClauses.push_back(CatchClause);
} else {
@@ -2294,7 +2434,7 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
continue;
// There is no point in having multiple copies of the same typeinfo in
// a filter, so only add it if we didn't already.
- if (SeenInFilter.insert(TypeInfo))
+ if (SeenInFilter.insert(TypeInfo).second)
NewFilterElts.push_back(cast<Constant>(Elt));
}
// A filter containing a catch-all cannot match anything by definition.
@@ -2531,7 +2671,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
/// whose condition is a known constant, we only visit the reachable successors.
///
static bool AddReachableCodeToWorklist(BasicBlock *BB,
- SmallPtrSet<BasicBlock*, 64> &Visited,
+ SmallPtrSetImpl<BasicBlock*> &Visited,
InstCombiner &IC,
const DataLayout *DL,
const TargetLibraryInfo *TLI) {
@@ -2546,7 +2686,8 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
BB = Worklist.pop_back_val();
// We have now visited this block! If we've already been here, ignore it.
- if (!Visited.insert(BB)) continue;
+ if (!Visited.insert(BB).second)
+ continue;
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *Inst = BBI++;
@@ -2807,13 +2948,13 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
}
namespace {
-class InstCombinerLibCallSimplifier : public LibCallSimplifier {
+class InstCombinerLibCallSimplifier final : public LibCallSimplifier {
InstCombiner *IC;
public:
InstCombinerLibCallSimplifier(const DataLayout *DL,
const TargetLibraryInfo *TLI,
InstCombiner *IC)
- : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
+ : LibCallSimplifier(DL, TLI) {
this->IC = IC;
}
@@ -2829,18 +2970,20 @@ bool InstCombiner::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
TLI = &getAnalysis<TargetLibraryInfo>();
+
// Minimizing size?
MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::MinSize);
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
- IRBuilder<true, TargetFolder, InstCombineIRInserter>
- TheBuilder(F.getContext(), TargetFolder(DL),
- InstCombineIRInserter(Worklist));
+ IRBuilder<true, TargetFolder, InstCombineIRInserter> TheBuilder(
+ F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, AC));
Builder = &TheBuilder;
InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
index 124ffe2..745c85a 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -27,6 +27,7 @@
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
@@ -36,10 +37,13 @@
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
+#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
@@ -59,9 +63,11 @@ static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G.
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
-static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000;
+static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
+static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 36;
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
+static const uint64_t kWindowsShadowOffset32 = 1ULL << 30;
static const size_t kMinStackMallocSize = 1 << 6; // 64B
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
@@ -70,7 +76,7 @@ static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
static const char *const kAsanModuleCtorName = "asan.module_ctor";
static const char *const kAsanModuleDtorName = "asan.module_dtor";
-static const int kAsanCtorAndDtorPriority = 1;
+static const uint64_t kAsanCtorAndDtorPriority = 1;
static const char *const kAsanReportErrorTemplate = "__asan_report_";
static const char *const kAsanReportLoadN = "__asan_report_load_n";
static const char *const kAsanReportStoreN = "__asan_report_store_n";
@@ -79,9 +85,7 @@ static const char *const kAsanUnregisterGlobalsName =
"__asan_unregister_globals";
static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
-static const char *const kAsanInitName = "__asan_init_v4";
-static const char *const kAsanCovModuleInitName = "__sanitizer_cov_module_init";
-static const char *const kAsanCovName = "__sanitizer_cov";
+static const char *const kAsanInitName = "__asan_init_v5";
static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
@@ -89,6 +93,7 @@ static const int kMaxAsanStackMallocSizeClass = 10;
static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
static const char *const kAsanGenPrefix = "__asan_gen_";
+static const char *const kSanCovGenPrefix = "__sancov_gen_";
static const char *const kAsanPoisonStackMemoryName =
"__asan_poison_stack_memory";
static const char *const kAsanUnpoisonStackMemoryName =
@@ -104,6 +109,12 @@ static const int kAsanStackAfterReturnMagic = 0xf5;
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
+static const unsigned kAllocaRzSize = 32;
+static const unsigned kAsanAllocaLeftMagic = 0xcacacacaU;
+static const unsigned kAsanAllocaRightMagic = 0xcbcbcbcbU;
+static const unsigned kAsanAllocaPartialVal1 = 0xcbcbcb00U;
+static const unsigned kAsanAllocaPartialVal2 = 0x000000cbU;
+
// Command-line flags.
// This flag may need to be replaced with -f[no-]asan-reads.
@@ -133,13 +144,6 @@ static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
-static cl::opt<int> ClCoverage("asan-coverage",
- cl::desc("ASan coverage. 0: none, 1: entry block, 2: all blocks"),
- cl::Hidden, cl::init(false));
-static cl::opt<int> ClCoverageBlockThreshold("asan-coverage-block-threshold",
- cl::desc("Add coverage instrumentation only to the entry block if there "
- "are more than this number of blocks."),
- cl::Hidden, cl::init(1500));
static cl::opt<bool> ClInitializers("asan-initialization-order",
cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInvalidPointerPairs("asan-detect-invalid-pointer-pair",
@@ -158,19 +162,8 @@ static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
"asan-memory-access-callback-prefix",
cl::desc("Prefix for memory access callbacks"), cl::Hidden,
cl::init("__asan_"));
-
-// This is an experimental feature that will allow to choose between
-// instrumented and non-instrumented code at link-time.
-// If this option is on, just before instrumenting a function we create its
-// clone; if the function is not changed by asan the clone is deleted.
-// If we end up with a clone, we put the instrumented function into a section
-// called "ASAN" and the uninstrumented function into a section called "NOASAN".
-//
-// This is still a prototype, we need to figure out a way to keep two copies of
-// a function so that the linker can easily choose one of them.
-static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions",
- cl::desc("Keep uninstrumented copies of functions"),
- cl::Hidden, cl::init(false));
+static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
+ cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(false));
// These flags allow to change the shadow mapping.
// The shadow mapping looks like
@@ -192,6 +185,11 @@ static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
cl::Hidden, cl::init(false));
+static cl::opt<bool> ClDynamicAllocaStack(
+ "asan-stack-dynamic-alloca",
+ cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
+ cl::init(false));
+
// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
@@ -206,21 +204,44 @@ static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
+STATISTIC(NumInstrumentedDynamicAllocas,
+ "Number of instrumented dynamic allocas");
STATISTIC(NumOptimizedAccessesToGlobalArray,
"Number of optimized accesses to global arrays");
STATISTIC(NumOptimizedAccessesToGlobalVar,
"Number of optimized accesses to global vars");
namespace {
+/// Frontend-provided metadata for source location.
+struct LocationMetadata {
+ StringRef Filename;
+ int LineNo;
+ int ColumnNo;
+
+ LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
+
+ bool empty() const { return Filename.empty(); }
+
+ void parse(MDNode *MDN) {
+ assert(MDN->getNumOperands() == 3);
+ MDString *MDFilename = cast<MDString>(MDN->getOperand(0));
+ Filename = MDFilename->getString();
+ LineNo =
+ mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
+ ColumnNo =
+ mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
+ }
+};
+
/// Frontend-provided metadata for global variables.
class GlobalsMetadata {
public:
struct Entry {
Entry()
- : SourceLoc(nullptr), Name(nullptr), IsDynInit(false),
+ : SourceLoc(), Name(), IsDynInit(false),
IsBlacklisted(false) {}
- GlobalVariable *SourceLoc;
- GlobalVariable *Name;
+ LocationMetadata SourceLoc;
+ StringRef Name;
bool IsDynInit;
bool IsBlacklisted;
};
@@ -236,27 +257,22 @@ class GlobalsMetadata {
for (auto MDN : Globals->operands()) {
// Metadata node contains the global and the fields of "Entry".
assert(MDN->getNumOperands() == 5);
- Value *V = MDN->getOperand(0);
+ auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
// The optimizer may optimize away a global entirely.
- if (!V)
+ if (!GV)
continue;
- GlobalVariable *GV = cast<GlobalVariable>(V);
// We can already have an entry for GV if it was merged with another
// global.
Entry &E = Entries[GV];
- if (Value *Loc = MDN->getOperand(1)) {
- GlobalVariable *GVLoc = cast<GlobalVariable>(Loc);
- E.SourceLoc = GVLoc;
- addSourceLocationGlobal(GVLoc);
- }
- if (Value *Name = MDN->getOperand(2)) {
- GlobalVariable *GVName = cast<GlobalVariable>(Name);
- E.Name = GVName;
- InstrumentationGlobals.insert(GVName);
- }
- ConstantInt *IsDynInit = cast<ConstantInt>(MDN->getOperand(3));
+ if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
+ E.SourceLoc.parse(Loc);
+ if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
+ E.Name = Name->getString();
+ ConstantInt *IsDynInit =
+ mdconst::extract<ConstantInt>(MDN->getOperand(3));
E.IsDynInit |= IsDynInit->isOne();
- ConstantInt *IsBlacklisted = cast<ConstantInt>(MDN->getOperand(4));
+ ConstantInt *IsBlacklisted =
+ mdconst::extract<ConstantInt>(MDN->getOperand(4));
E.IsBlacklisted |= IsBlacklisted->isOne();
}
}
@@ -267,31 +283,9 @@ class GlobalsMetadata {
return (Pos != Entries.end()) ? Pos->second : Entry();
}
- /// Check if the global was generated by the instrumentation
- /// (we don't want to instrument it again in this case).
- bool isInstrumentationGlobal(GlobalVariable *G) const {
- return InstrumentationGlobals.count(G);
- }
-
private:
bool inited_;
DenseMap<GlobalVariable*, Entry> Entries;
- // Globals generated by the frontend instrumentation.
- DenseSet<GlobalVariable*> InstrumentationGlobals;
-
- void addSourceLocationGlobal(GlobalVariable *SourceLocGV) {
- // Source location global is a struct with layout:
- // {
- // filename,
- // i32 line_number,
- // i32 column_number,
- // }
- InstrumentationGlobals.insert(SourceLocGV);
- ConstantStruct *Contents =
- cast<ConstantStruct>(SourceLocGV->getInitializer());
- GlobalVariable *FilenameGV = cast<GlobalVariable>(Contents->getOperand(0));
- InstrumentationGlobals.insert(FilenameGV);
- }
};
/// This struct defines the shadow mapping using the rule:
@@ -302,17 +296,19 @@ struct ShadowMapping {
bool OrShadowOffset;
};
-static ShadowMapping getShadowMapping(const Module &M, int LongSize) {
- llvm::Triple TargetTriple(M.getTargetTriple());
+static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize) {
bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
- bool IsIOS = TargetTriple.getOS() == llvm::Triple::IOS;
- bool IsFreeBSD = TargetTriple.getOS() == llvm::Triple::FreeBSD;
- bool IsLinux = TargetTriple.getOS() == llvm::Triple::Linux;
+ bool IsIOS = TargetTriple.isiOS();
+ bool IsFreeBSD = TargetTriple.isOSFreeBSD();
+ bool IsLinux = TargetTriple.isOSLinux();
bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
TargetTriple.getArch() == llvm::Triple::ppc64le;
bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
TargetTriple.getArch() == llvm::Triple::mipsel;
+ bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
+ TargetTriple.getArch() == llvm::Triple::mips64el;
+ bool IsWindows = TargetTriple.isOSWindows();
ShadowMapping Mapping;
@@ -325,6 +321,8 @@ static ShadowMapping getShadowMapping(const Module &M, int LongSize) {
Mapping.Offset = kFreeBSD_ShadowOffset32;
else if (IsIOS)
Mapping.Offset = kIOSShadowOffset32;
+ else if (IsWindows)
+ Mapping.Offset = kWindowsShadowOffset32;
else
Mapping.Offset = kDefaultShadowOffset32;
} else { // LongSize == 64
@@ -334,6 +332,8 @@ static ShadowMapping getShadowMapping(const Module &M, int LongSize) {
Mapping.Offset = kFreeBSD_ShadowOffset64;
else if (IsLinux && IsX86_64)
Mapping.Offset = kSmallX86_64ShadowOffset;
+ else if (IsMIPS64)
+ Mapping.Offset = kMIPS64_ShadowOffset64;
else
Mapping.Offset = kDefaultShadowOffset64;
}
@@ -359,10 +359,15 @@ static size_t RedzoneSizeForScale(int MappingScale) {
/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer : public FunctionPass {
- AddressSanitizer() : FunctionPass(ID) {}
+ AddressSanitizer() : FunctionPass(ID) {
+ initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
+ }
const char *getPassName() const override {
return "AddressSanitizerFunctionPass";
}
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ }
void instrumentMop(Instruction *I, bool UseCalls);
void instrumentPointerComparisonOrSubtraction(Instruction *I);
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
@@ -380,23 +385,24 @@ struct AddressSanitizer : public FunctionPass {
bool doInitialization(Module &M) override;
static char ID; // Pass identification, replacement for typeid
+ DominatorTree &getDominatorTree() const { return *DT; }
+
private:
void initializeCallbacks(Module &M);
bool LooksLikeCodeInBug11395(Instruction *I);
bool GlobalIsLinkerInitialized(GlobalVariable *G);
- bool InjectCoverage(Function &F, const ArrayRef<BasicBlock*> AllBlocks);
- void InjectCoverageAtBlock(Function &F, BasicBlock &BB);
LLVMContext *C;
const DataLayout *DL;
+ Triple TargetTriple;
int LongSize;
Type *IntptrTy;
ShadowMapping Mapping;
+ DominatorTree *DT;
Function *AsanCtorFunction;
Function *AsanInitFunction;
Function *AsanHandleNoReturnFunc;
- Function *AsanCovFunction;
Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
// This array is indexed by AccessIsWrite and log2(AccessSize).
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
@@ -435,12 +441,12 @@ class AddressSanitizerModule : public ModulePass {
Type *IntptrTy;
LLVMContext *C;
const DataLayout *DL;
+ Triple TargetTriple;
ShadowMapping Mapping;
Function *AsanPoisonGlobals;
Function *AsanUnpoisonGlobals;
Function *AsanRegisterGlobals;
Function *AsanUnregisterGlobals;
- Function *AsanCovModuleInit;
};
// Stack poisoning does not play well with exception handling.
@@ -478,15 +484,36 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
};
SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
+ // Stores left and right redzone shadow addresses for dynamic alloca
+ // and pointer to alloca instruction itself.
+ // LeftRzAddr is a shadow address for alloca left redzone.
+ // RightRzAddr is a shadow address for alloca right redzone.
+ struct DynamicAllocaCall {
+ AllocaInst *AI;
+ Value *LeftRzAddr;
+ Value *RightRzAddr;
+ bool Poison;
+ explicit DynamicAllocaCall(AllocaInst *AI,
+ Value *LeftRzAddr = nullptr,
+ Value *RightRzAddr = nullptr)
+ : AI(AI), LeftRzAddr(LeftRzAddr), RightRzAddr(RightRzAddr), Poison(true)
+ {}
+ };
+ SmallVector<DynamicAllocaCall, 1> DynamicAllocaVec;
+
// Maps Value to an AllocaInst from which the Value is originated.
typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
AllocaForValueMapTy AllocaForValue;
+ bool HasNonEmptyInlineAsm;
+ std::unique_ptr<CallInst> EmptyInlineAsm;
+
FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
- : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
- IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
- Mapping(ASan.Mapping),
- StackAlignment(1 << Mapping.Scale) {}
+ : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
+ C(ASan.C), IntptrTy(ASan.IntptrTy),
+ IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
+ StackAlignment(1 << Mapping.Scale), HasNonEmptyInlineAsm(false),
+ EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
bool runOnFunction() {
if (!ClStack) return false;
@@ -494,7 +521,7 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
visit(*BB);
- if (AllocaVec.empty()) return false;
+ if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
initializeCallbacks(*F.getParent());
@@ -506,7 +533,7 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
return true;
}
- // Finds all static Alloca instructions and puts
+ // Finds all Alloca instructions and puts
// poisoned red zones around all of them.
// Then unpoison everything back before the function returns.
void poisonStack();
@@ -517,12 +544,64 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
RetVec.push_back(&RI);
}
+ // Unpoison dynamic allocas redzones.
+ void unpoisonDynamicAlloca(DynamicAllocaCall &AllocaCall) {
+ if (!AllocaCall.Poison)
+ return;
+ for (auto Ret : RetVec) {
+ IRBuilder<> IRBRet(Ret);
+ PointerType *Int32PtrTy = PointerType::getUnqual(IRBRet.getInt32Ty());
+ Value *Zero = Constant::getNullValue(IRBRet.getInt32Ty());
+ Value *PartialRzAddr = IRBRet.CreateSub(AllocaCall.RightRzAddr,
+ ConstantInt::get(IntptrTy, 4));
+ IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.LeftRzAddr,
+ Int32PtrTy));
+ IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(PartialRzAddr,
+ Int32PtrTy));
+ IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.RightRzAddr,
+ Int32PtrTy));
+ }
+ }
+
+ // Right shift for BigEndian and left shift for LittleEndian.
+ Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) {
+ return ASan.DL->isLittleEndian() ? IRB.CreateShl(Val, Shift)
+ : IRB.CreateLShr(Val, Shift);
+ }
+
+ // Compute PartialRzMagic for dynamic alloca call. Since we don't know the
+ // size of requested memory until runtime, we should compute it dynamically.
+ // If PartialSize is 0, PartialRzMagic would contain kAsanAllocaRightMagic,
+ // otherwise it would contain the value that we will use to poison the
+ // partial redzone for alloca call.
+ Value *computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB);
+
+ // Deploy and poison redzones around dynamic alloca call. To do this, we
+ // should replace this call with another one with changed parameters and
+ // replace all its uses with new address, so
+ // addr = alloca type, old_size, align
+ // is replaced by
+ // new_size = (old_size + additional_size) * sizeof(type)
+ // tmp = alloca i8, new_size, max(align, 32)
+ // addr = tmp + 32 (first 32 bytes are for the left redzone).
+ // Additional_size is added to make new memory allocation contain not only
+ // requested memory, but also left, partial and right redzones.
+ // After that, we should poison redzones:
+ // (1) Left redzone with kAsanAllocaLeftMagic.
+ // (2) Partial redzone with the value, computed in runtime by
+ // computePartialRzMagic function.
+ // (3) Right redzone with kAsanAllocaRightMagic.
+ void handleDynamicAllocaCall(DynamicAllocaCall &AllocaCall);
+
/// \brief Collect Alloca instructions we want (and can) handle.
void visitAllocaInst(AllocaInst &AI) {
if (!isInterestingAlloca(AI)) return;
StackAlignment = std::max(StackAlignment, AI.getAlignment());
- AllocaVec.push_back(&AI);
+ if (isDynamicAlloca(AI))
+ DynamicAllocaVec.push_back(DynamicAllocaCall(&AI));
+ else
+ AllocaVec.push_back(&AI);
}
/// \brief Collect lifetime intrinsic calls to check for use-after-scope
@@ -551,13 +630,29 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
AllocaPoisonCallVec.push_back(APC);
}
+ void visitCallInst(CallInst &CI) {
+ HasNonEmptyInlineAsm |=
+ CI.isInlineAsm() && !CI.isIdenticalTo(EmptyInlineAsm.get());
+ }
+
// ---------------------- Helpers.
void initializeCallbacks(Module &M);
+ bool doesDominateAllExits(const Instruction *I) const {
+ for (auto Ret : RetVec) {
+ if (!ASan.getDominatorTree().dominates(I, Ret))
+ return false;
+ }
+ return true;
+ }
+
+ bool isDynamicAlloca(AllocaInst &AI) const {
+ return AI.isArrayAllocation() || !AI.isStaticAlloca();
+ }
+
// Check if we want (and can) handle this alloca.
bool isInterestingAlloca(AllocaInst &AI) const {
- return (!AI.isArrayAllocation() && AI.isStaticAlloca() &&
- AI.getAllocatedType()->isSized() &&
+ return (AI.getAllocatedType()->isSized() &&
// alloca() may be called with 0 size, ignore it.
getAllocaSizeInBytes(&AI) > 0);
}
@@ -569,18 +664,26 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
}
/// Finds alloca where the value comes from.
AllocaInst *findAllocaForValue(Value *V);
- void poisonRedZones(const ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
+ void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
Value *ShadowBase, bool DoPoison);
void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
int Size);
+ Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
+ bool Dynamic);
+ PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
+ Instruction *ThenTerm, Value *ValueIfFalse);
};
} // namespace
char AddressSanitizer::ID = 0;
-INITIALIZE_PASS(AddressSanitizer, "asan",
+INITIALIZE_PASS_BEGIN(AddressSanitizer, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(AddressSanitizer, "asan",
"AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
false, false)
FunctionPass *llvm::createAddressSanitizerFunctionPass() {
@@ -616,8 +719,25 @@ static GlobalVariable *createPrivateGlobalForString(
return GV;
}
+/// \brief Create a global describing a source location.
+static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
+ LocationMetadata MD) {
+ Constant *LocData[] = {
+ createPrivateGlobalForString(M, MD.Filename, true),
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
+ };
+ auto LocStruct = ConstantStruct::getAnon(LocData);
+ auto GV = new GlobalVariable(M, LocStruct->getType(), true,
+ GlobalValue::PrivateLinkage, LocStruct,
+ kAsanGenPrefix);
+ GV->setUnnamedAddr(true);
+ return GV;
+}
+
static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
- return G->getName().find(kAsanGenPrefix) == 0;
+ return G->getName().find(kAsanGenPrefix) == 0 ||
+ G->getName().find(kSanCovGenPrefix) == 0;
}
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
@@ -652,7 +772,7 @@ void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
}
// If I is an interesting memory access, return the PointerOperand
-// and set IsWrite/Alignment. Otherwise return NULL.
+// and set IsWrite/Alignment. Otherwise return nullptr.
static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
unsigned *Alignment) {
// Skip memory accesses inserted by another instrumentation.
@@ -861,8 +981,11 @@ void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
TerminatorInst *CrashTerm = nullptr;
if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
+ // We use branch weights for the slow path check, to indicate that the slow
+ // path is rarely taken. This seems to be the case for SPEC benchmarks.
TerminatorInst *CheckTerm =
- SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
+ SplitBlockAndInsertIfThen(Cmp, InsertBefore, false,
+ MDBuilder(*C).createBranchWeights(1, 100000));
assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
IRB.SetInsertPoint(CheckTerm);
@@ -907,10 +1030,12 @@ void AddressSanitizerModule::createInitializerPoisonCalls(
ConstantStruct *CS = cast<ConstantStruct>(OP);
// Must have a function or null ptr.
- // (CS->getOperand(0) is the init priority.)
if (Function* F = dyn_cast<Function>(CS->getOperand(1))) {
- if (F->getName() != kAsanModuleCtorName)
- poisonOneInitializer(*F, ModuleName);
+ if (F->getName() == kAsanModuleCtorName) continue;
+ ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
+ // Don't instrument CTORs that will run before asan.module_ctor.
+ if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
+ poisonOneInitializer(*F, ModuleName);
}
}
}
@@ -920,7 +1045,6 @@ bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
if (GlobalsMD.get(G).IsBlacklisted) return false;
- if (GlobalsMD.isInstrumentationGlobal(G)) return false;
if (!Ty->isSized()) return false;
if (!G->hasInitializer()) return false;
if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
@@ -941,43 +1065,48 @@ bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
// For now, just ignore this Global if the alignment is large.
if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
- // Ignore all the globals with the names starting with "\01L_OBJC_".
- // Many of those are put into the .cstring section. The linker compresses
- // that section by removing the spare \0s after the string terminator, so
- // our redzones get broken.
- if ((G->getName().find("\01L_OBJC_") == 0) ||
- (G->getName().find("\01l_OBJC_") == 0)) {
- DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G << "\n");
- return false;
- }
-
if (G->hasSection()) {
StringRef Section(G->getSection());
- // Ignore the globals from the __OBJC section. The ObjC runtime assumes
- // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
- // them.
- if (Section.startswith("__OBJC,") ||
- Section.startswith("__DATA, __objc_")) {
- DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
- return false;
- }
- // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
- // Constant CFString instances are compiled in the following way:
- // -- the string buffer is emitted into
- // __TEXT,__cstring,cstring_literals
- // -- the constant NSConstantString structure referencing that buffer
- // is placed into __DATA,__cfstring
- // Therefore there's no point in placing redzones into __DATA,__cfstring.
- // Moreover, it causes the linker to crash on OS X 10.7
- if (Section.startswith("__DATA,__cfstring")) {
- DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
- return false;
- }
- // The linker merges the contents of cstring_literals and removes the
- // trailing zeroes.
- if (Section.startswith("__TEXT,__cstring,cstring_literals")) {
- DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
- return false;
+
+ if (TargetTriple.isOSBinFormatMachO()) {
+ StringRef ParsedSegment, ParsedSection;
+ unsigned TAA = 0, StubSize = 0;
+ bool TAAParsed;
+ std::string ErrorCode =
+ MCSectionMachO::ParseSectionSpecifier(Section, ParsedSegment,
+ ParsedSection, TAA, TAAParsed,
+ StubSize);
+ if (!ErrorCode.empty()) {
+ report_fatal_error("Invalid section specifier '" + ParsedSection +
+ "': " + ErrorCode + ".");
+ }
+
+ // Ignore the globals from the __OBJC section. The ObjC runtime assumes
+ // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
+ // them.
+ if (ParsedSegment == "__OBJC" ||
+ (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
+ DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
+ return false;
+ }
+ // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
+ // Constant CFString instances are compiled in the following way:
+ // -- the string buffer is emitted into
+ // __TEXT,__cstring,cstring_literals
+ // -- the constant NSConstantString structure referencing that buffer
+ // is placed into __DATA,__cfstring
+ // Therefore there's no point in placing redzones into __DATA,__cfstring.
+ // Moreover, it causes the linker to crash on OS X 10.7
+ if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
+ DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
+ return false;
+ }
+ // The linker merges the contents of cstring_literals and removes the
+ // trailing zeroes.
+ if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
+ DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
+ return false;
+ }
}
// Callbacks put into the CRT initializer/terminator sections
@@ -1000,24 +1129,20 @@ void AddressSanitizerModule::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
// Declare our poisoning and unpoisoning functions.
AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
+ kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
+ kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
// Declare functions that register/unregister globals.
AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanRegisterGlobalsName, IRB.getVoidTy(),
- IntptrTy, IntptrTy, NULL));
+ IntptrTy, IntptrTy, nullptr));
AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanUnregisterGlobalsName,
- IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
- AsanCovModuleInit = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanCovModuleInitName,
- IRB.getVoidTy(), IntptrTy, NULL));
- AsanCovModuleInit->setLinkage(Function::ExternalLinkage);
}
// This function replaces all global variables with new variables that have
@@ -1047,7 +1172,7 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
// We initialize an array of such structures and pass it to a run-time call.
StructType *GlobalStructTy =
StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
- IntptrTy, IntptrTy, NULL);
+ IntptrTy, IntptrTy, nullptr);
SmallVector<Constant *, 16> Initializers(n);
bool HasDynamicallyInitializedGlobals = false;
@@ -1062,11 +1187,11 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
GlobalVariable *G = GlobalsToChange[i];
auto MD = GlobalsMD.get(G);
- // Create string holding the global name unless it was provided by
- // the metadata.
- GlobalVariable *Name =
- MD.Name ? MD.Name : createPrivateGlobalForString(M, G->getName(),
- /*AllowMerging*/ true);
+ // Create string holding the global name (use global name from metadata
+ // if it's available, otherwise just write the name of global variable).
+ GlobalVariable *Name = createPrivateGlobalForString(
+ M, MD.Name.empty() ? G->getName() : MD.Name,
+ /*AllowMerging*/ true);
PointerType *PtrTy = cast<PointerType>(G->getType());
Type *Ty = PtrTy->getElementType();
@@ -1084,10 +1209,10 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
- StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
+ StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
Constant *NewInitializer = ConstantStruct::get(
NewTy, G->getInitializer(),
- Constant::getNullValue(RightRedZoneTy), NULL);
+ Constant::getNullValue(RightRedZoneTy), nullptr);
// Create a new global variable with enough space for a redzone.
GlobalValue::LinkageTypes Linkage = G->getLinkage();
@@ -1108,16 +1233,21 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
NewGlobal->takeName(G);
G->eraseFromParent();
+ Constant *SourceLoc;
+ if (!MD.SourceLoc.empty()) {
+ auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
+ SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
+ } else {
+ SourceLoc = ConstantInt::get(IntptrTy, 0);
+ }
+
Initializers[i] = ConstantStruct::get(
GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
ConstantInt::get(IntptrTy, SizeInBytes),
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
ConstantExpr::getPointerCast(Name, IntptrTy),
ConstantExpr::getPointerCast(ModuleName, IntptrTy),
- ConstantInt::get(IntptrTy, MD.IsDynInit),
- MD.SourceLoc ? ConstantExpr::getPointerCast(MD.SourceLoc, IntptrTy)
- : ConstantInt::get(IntptrTy, 0),
- NULL);
+ ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);
if (ClInitializers && MD.IsDynInit)
HasDynamicallyInitializedGlobals = true;
@@ -1161,7 +1291,8 @@ bool AddressSanitizerModule::runOnModule(Module &M) {
C = &(M.getContext());
int LongSize = DL->getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
- Mapping = getShadowMapping(M, LongSize);
+ TargetTriple = Triple(M.getTargetTriple());
+ Mapping = getShadowMapping(TargetTriple, LongSize);
initializeCallbacks(M);
bool Changed = false;
@@ -1170,13 +1301,6 @@ bool AddressSanitizerModule::runOnModule(Module &M) {
assert(CtorFunc);
IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
- if (ClCoverage > 0) {
- Function *CovFunc = M.getFunction(kAsanCovName);
- int nCov = CovFunc ? CovFunc->getNumUses() : 0;
- IRB.CreateCall(AsanCovModuleInit, ConstantInt::get(IntptrTy, nCov));
- Changed = true;
- }
-
if (ClGlobals)
Changed |= InstrumentGlobals(IRB, M);
@@ -1195,43 +1319,42 @@ void AddressSanitizer::initializeCallbacks(Module &M) {
AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
checkInterfaceFunction(
M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix,
- IRB.getVoidTy(), IntptrTy, NULL));
+ IRB.getVoidTy(), IntptrTy, nullptr));
AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
checkInterfaceFunction(
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix,
- IRB.getVoidTy(), IntptrTy, NULL));
+ IRB.getVoidTy(), IntptrTy, nullptr));
}
}
AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction(
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN",
- IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction(
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN",
- IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, NULL));
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, NULL));
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
AsanMemset = checkInterfaceFunction(M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, NULL));
+ IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
AsanHandleNoReturnFunc = checkInterfaceFunction(
- M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
- AsanCovFunction = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanCovName, IRB.getVoidTy(), NULL));
+ M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
+
AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
// We insert an empty inline asm after __asan_report* to avoid callback merge.
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
@@ -1251,6 +1374,7 @@ bool AddressSanitizer::doInitialization(Module &M) {
C = &(M.getContext());
LongSize = DL->getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
+ TargetTriple = Triple(M.getTargetTriple());
AsanCtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
@@ -1259,11 +1383,11 @@ bool AddressSanitizer::doInitialization(Module &M) {
// call __asan_init in the module ctor.
IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
AsanInitFunction = checkInterfaceFunction(
- M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
+ M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), nullptr));
AsanInitFunction->setLinkage(Function::ExternalLinkage);
IRB.CreateCall(AsanInitFunction);
- Mapping = getShadowMapping(M, LongSize);
+ Mapping = getShadowMapping(TargetTriple, LongSize);
appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
return true;
@@ -1285,80 +1409,14 @@ bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
return false;
}
-void AddressSanitizer::InjectCoverageAtBlock(Function &F, BasicBlock &BB) {
- BasicBlock::iterator IP = BB.getFirstInsertionPt(), BE = BB.end();
- // Skip static allocas at the top of the entry block so they don't become
- // dynamic when we split the block. If we used our optimized stack layout,
- // then there will only be one alloca and it will come first.
- for (; IP != BE; ++IP) {
- AllocaInst *AI = dyn_cast<AllocaInst>(IP);
- if (!AI || !AI->isStaticAlloca())
- break;
- }
-
- DebugLoc EntryLoc = IP->getDebugLoc().getFnDebugLoc(*C);
- IRBuilder<> IRB(IP);
- IRB.SetCurrentDebugLocation(EntryLoc);
- Type *Int8Ty = IRB.getInt8Ty();
- GlobalVariable *Guard = new GlobalVariable(
- *F.getParent(), Int8Ty, false, GlobalValue::PrivateLinkage,
- Constant::getNullValue(Int8Ty), "__asan_gen_cov_" + F.getName());
- LoadInst *Load = IRB.CreateLoad(Guard);
- Load->setAtomic(Monotonic);
- Load->setAlignment(1);
- Value *Cmp = IRB.CreateICmpEQ(Constant::getNullValue(Int8Ty), Load);
- Instruction *Ins = SplitBlockAndInsertIfThen(
- Cmp, IP, false, MDBuilder(*C).createBranchWeights(1, 100000));
- IRB.SetInsertPoint(Ins);
- IRB.SetCurrentDebugLocation(EntryLoc);
- // We pass &F to __sanitizer_cov. We could avoid this and rely on
- // GET_CALLER_PC, but having the PC of the first instruction is just nice.
- IRB.CreateCall(AsanCovFunction);
- StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int8Ty, 1), Guard);
- Store->setAtomic(Monotonic);
- Store->setAlignment(1);
-}
-
-// Poor man's coverage that works with ASan.
-// We create a Guard boolean variable with the same linkage
-// as the function and inject this code into the entry block (-asan-coverage=1)
-// or all blocks (-asan-coverage=2):
-// if (*Guard) {
-// __sanitizer_cov(&F);
-// *Guard = 1;
-// }
-// The accesses to Guard are atomic. The rest of the logic is
-// in __sanitizer_cov (it's fine to call it more than once).
-//
-// This coverage implementation provides very limited data:
-// it only tells if a given function (block) was ever executed.
-// No counters, no per-edge data.
-// But for many use cases this is what we need and the added slowdown
-// is negligible. This simple implementation will probably be obsoleted
-// by the upcoming Clang-based coverage implementation.
-// By having it here and now we hope to
-// a) get the functionality to users earlier and
-// b) collect usage statistics to help improve Clang coverage design.
-bool AddressSanitizer::InjectCoverage(Function &F,
- const ArrayRef<BasicBlock *> AllBlocks) {
- if (!ClCoverage) return false;
-
- if (ClCoverage == 1 ||
- (unsigned)ClCoverageBlockThreshold < AllBlocks.size()) {
- InjectCoverageAtBlock(F, F.getEntryBlock());
- } else {
- for (auto BB : AllBlocks)
- InjectCoverageAtBlock(F, *BB);
- }
- return true;
-}
-
bool AddressSanitizer::runOnFunction(Function &F) {
if (&F == AsanCtorFunction) return false;
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
initializeCallbacks(*F.getParent());
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
// If needed, insert __asan_init before checking for SanitizeAddress attr.
maybeInsertAsanInitAtFunctionEntry(F);
@@ -1389,7 +1447,7 @@ bool AddressSanitizer::runOnFunction(Function &F) {
if (Value *Addr =
isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) {
if (ClOpt && ClOptSameTemp) {
- if (!TempsToInstrument.insert(Addr))
+ if (!TempsToInstrument.insert(Addr).second)
continue; // We've seen this temp in the current BB.
}
} else if (ClInvalidPointerPairs &&
@@ -1417,17 +1475,6 @@ bool AddressSanitizer::runOnFunction(Function &F) {
}
}
- Function *UninstrumentedDuplicate = nullptr;
- bool LikelyToInstrument =
- !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0);
- if (ClKeepUninstrumented && LikelyToInstrument) {
- ValueToValueMapTy VMap;
- UninstrumentedDuplicate = CloneFunction(&F, VMap, false);
- UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress);
- UninstrumentedDuplicate->setName("NOASAN_" + F.getName());
- F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate);
- }
-
bool UseCalls = false;
if (ClInstrumentationWithCallsThreshold >= 0 &&
ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold)
@@ -1463,25 +1510,8 @@ bool AddressSanitizer::runOnFunction(Function &F) {
bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
- if (InjectCoverage(F, AllBlocks))
- res = true;
-
DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
- if (ClKeepUninstrumented) {
- if (!res) {
- // No instrumentation is done, no need for the duplicate.
- if (UninstrumentedDuplicate)
- UninstrumentedDuplicate->eraseFromParent();
- } else {
- // The function was instrumented. We must have the duplicate.
- assert(UninstrumentedDuplicate);
- UninstrumentedDuplicate->setSection("NOASAN");
- assert(!F.hasSection());
- F.setSection("ASAN");
- }
- }
-
return res;
}
@@ -1501,21 +1531,22 @@ void FunctionStackPoisoner::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
std::string Suffix = itostr(i);
- AsanStackMallocFunc[i] = checkInterfaceFunction(
- M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
- IntptrTy, IntptrTy, NULL));
- AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy,
- IntptrTy, IntptrTy, NULL));
+ AsanStackMallocFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy, nullptr));
+ AsanStackFreeFunc[i] = checkInterfaceFunction(
+ M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
}
- AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
- AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
- kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanPoisonStackMemoryFunc = checkInterfaceFunction(
+ M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, nullptr));
+ AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(
+ M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, nullptr));
}
void
-FunctionStackPoisoner::poisonRedZones(const ArrayRef<uint8_t> ShadowBytes,
+FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
IRBuilder<> &IRB, Value *ShadowBase,
bool DoPoison) {
size_t n = ShadowBytes.size();
@@ -1576,11 +1607,49 @@ static DebugLoc getFunctionEntryDebugLocation(Function &F) {
return DebugLoc();
}
+PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
+ Value *ValueIfTrue,
+ Instruction *ThenTerm,
+ Value *ValueIfFalse) {
+ PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
+ BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
+ PHI->addIncoming(ValueIfFalse, CondBlock);
+ BasicBlock *ThenBlock = ThenTerm->getParent();
+ PHI->addIncoming(ValueIfTrue, ThenBlock);
+ return PHI;
+}
+
+Value *FunctionStackPoisoner::createAllocaForLayout(
+ IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
+ AllocaInst *Alloca;
+ if (Dynamic) {
+ Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
+ ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
+ "MyAlloca");
+ } else {
+ Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
+ nullptr, "MyAlloca");
+ assert(Alloca->isStaticAlloca());
+ }
+ assert((ClRealignStack & (ClRealignStack - 1)) == 0);
+ size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
+ Alloca->setAlignment(FrameAlignment);
+ return IRB.CreatePointerCast(Alloca, IntptrTy);
+}
+
void FunctionStackPoisoner::poisonStack() {
+ assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
+
+ if (ClInstrumentAllocas)
+ // Handle dynamic allocas.
+ for (auto &AllocaCall : DynamicAllocaVec)
+ handleDynamicAllocaCall(AllocaCall);
+
+ if (AllocaVec.size() == 0) return;
+
int StackMallocIdx = -1;
DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F);
- assert(AllocaVec.size() > 0);
Instruction *InsBefore = AllocaVec[0];
IRBuilder<> IRB(InsBefore);
IRB.SetCurrentDebugLocation(EntryDebugLocation);
@@ -1602,42 +1671,56 @@ void FunctionStackPoisoner::poisonStack() {
uint64_t LocalStackSize = L.FrameSize;
bool DoStackMalloc =
ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize;
+ // Don't do dynamic alloca in presence of inline asm: too often it
+ // makes assumptions on which registers are available.
+ bool DoDynamicAlloca = ClDynamicAllocaStack && !HasNonEmptyInlineAsm;
- Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
- AllocaInst *MyAlloca =
- new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
- MyAlloca->setDebugLoc(EntryDebugLocation);
- assert((ClRealignStack & (ClRealignStack - 1)) == 0);
- size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
- MyAlloca->setAlignment(FrameAlignment);
- assert(MyAlloca->isStaticAlloca());
- Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
- Value *LocalStackBase = OrigStackBase;
+ Value *StaticAlloca =
+ DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
+
+ Value *FakeStack;
+ Value *LocalStackBase;
if (DoStackMalloc) {
- // LocalStackBase = OrigStackBase
- // if (__asan_option_detect_stack_use_after_return)
- // LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase);
- StackMallocIdx = StackMallocSizeClass(LocalStackSize);
- assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
+ // void *FakeStack = __asan_option_detect_stack_use_after_return
+ // ? __asan_stack_malloc_N(LocalStackSize)
+ // : nullptr;
+ // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
kAsanOptionDetectUAR, IRB.getInt32Ty());
- Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
- Constant::getNullValue(IRB.getInt32Ty()));
- Instruction *Term = SplitBlockAndInsertIfThen(Cmp, InsBefore, false);
- BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent();
+ Value *UARIsEnabled =
+ IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
+ Constant::getNullValue(IRB.getInt32Ty()));
+ Instruction *Term =
+ SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
IRBuilder<> IRBIf(Term);
IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
- LocalStackBase = IRBIf.CreateCall2(
- AsanStackMallocFunc[StackMallocIdx],
- ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
- BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent();
+ StackMallocIdx = StackMallocSizeClass(LocalStackSize);
+ assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
+ Value *FakeStackValue =
+ IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
+ ConstantInt::get(IntptrTy, LocalStackSize));
+ IRB.SetInsertPoint(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+ FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
+ ConstantInt::get(IntptrTy, 0));
+
+ Value *NoFakeStack =
+ IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
+ Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
+ IRBIf.SetInsertPoint(Term);
+ IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
+ Value *AllocaValue =
+ DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
IRB.SetInsertPoint(InsBefore);
IRB.SetCurrentDebugLocation(EntryDebugLocation);
- PHINode *Phi = IRB.CreatePHI(IntptrTy, 2);
- Phi->addIncoming(OrigStackBase, CmpBlock);
- Phi->addIncoming(LocalStackBase, SetBlock);
- LocalStackBase = Phi;
+ LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
+ } else {
+ // void *FakeStack = nullptr;
+ // void *LocalStackBase = alloca(LocalStackSize);
+ FakeStack = ConstantInt::get(IntptrTy, 0);
+ LocalStackBase =
+ DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
}
// Insert poison calls for lifetime intrinsics for alloca.
@@ -1694,17 +1777,18 @@ void FunctionStackPoisoner::poisonStack() {
BasePlus0);
if (DoStackMalloc) {
assert(StackMallocIdx >= 0);
- // if LocalStackBase != OrigStackBase:
+ // if FakeStack != 0 // LocalStackBase == FakeStack
// // In use-after-return mode, poison the whole stack frame.
// if StackMallocIdx <= 4
// // For small sizes inline the whole thing:
// memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
- // **SavedFlagPtr(LocalStackBase) = 0
+ // **SavedFlagPtr(FakeStack) = 0
// else
- // __asan_stack_free_N(LocalStackBase, OrigStackBase)
+ // __asan_stack_free_N(FakeStack, LocalStackSize)
// else
// <This is not a fake stack; unpoison the redzones>
- Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase);
+ Value *Cmp =
+ IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
TerminatorInst *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
@@ -1714,7 +1798,7 @@ void FunctionStackPoisoner::poisonStack() {
SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
ClassSize >> Mapping.Scale);
Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
- LocalStackBase,
+ FakeStack,
ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
Value *SavedFlagPtr = IRBPoison.CreateLoad(
IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
@@ -1723,9 +1807,8 @@ void FunctionStackPoisoner::poisonStack() {
IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
} else {
// For larger frames call __asan_stack_free_*.
- IRBPoison.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase,
- ConstantInt::get(IntptrTy, LocalStackSize),
- OrigStackBase);
+ IRBPoison.CreateCall2(AsanStackFreeFunc[StackMallocIdx], FakeStack,
+ ConstantInt::get(IntptrTy, LocalStackSize));
}
IRBuilder<> IRBElse(ElseTerm);
@@ -1733,13 +1816,17 @@ void FunctionStackPoisoner::poisonStack() {
} else if (HavePoisonedAllocas) {
// If we poisoned some allocas in llvm.lifetime analysis,
// unpoison whole stack frame now.
- assert(LocalStackBase == OrigStackBase);
poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
} else {
poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
}
}
+ if (ClInstrumentAllocas)
+ // Unpoison dynamic allocas.
+ for (auto &AllocaCall : DynamicAllocaVec)
+ unpoisonDynamicAlloca(AllocaCall);
+
// We are done. Remove the old unused alloca instructions.
for (auto AI : AllocaVec)
AI->eraseFromParent();
@@ -1795,3 +1882,140 @@ AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
AllocaForValue[V] = Res;
return Res;
}
+
+// Compute PartialRzMagic for dynamic alloca call. PartialRzMagic is
+// constructed from two separate 32-bit numbers: PartialRzMagic = Val1 | Val2.
+// (1) Val1 is resposible for forming base value for PartialRzMagic, containing
+// only 00 for fully addressable and 0xcb for fully poisoned bytes for each
+// 8-byte chunk of user memory respectively.
+// (2) Val2 forms the value for marking first poisoned byte in shadow memory
+// with appropriate value (0x01 - 0x07 or 0xcb if Padding % 8 == 0).
+
+// Shift = Padding & ~7; // the number of bits we need to shift to access first
+// chunk in shadow memory, containing nonzero bytes.
+// Example:
+// Padding = 21 Padding = 16
+// Shadow: |00|00|05|cb| Shadow: |00|00|cb|cb|
+// ^ ^
+// | |
+// Shift = 21 & ~7 = 16 Shift = 16 & ~7 = 16
+//
+// Val1 = 0xcbcbcbcb << Shift;
+// PartialBits = Padding ? Padding & 7 : 0xcb;
+// Val2 = PartialBits << Shift;
+// Result = Val1 | Val2;
+Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize,
+ IRBuilder<> &IRB) {
+ PartialSize = IRB.CreateIntCast(PartialSize, IRB.getInt32Ty(), false);
+ Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7));
+ unsigned Val1Int = kAsanAllocaPartialVal1;
+ unsigned Val2Int = kAsanAllocaPartialVal2;
+ if (!ASan.DL->isLittleEndian()) {
+ Val1Int = sys::getSwappedBytes(Val1Int);
+ Val2Int = sys::getSwappedBytes(Val2Int);
+ }
+ Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift);
+ Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7));
+ // For BigEndian get 0x000000YZ -> 0xYZ000000.
+ if (ASan.DL->isBigEndian())
+ PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24));
+ Value *Val2 = IRB.getInt32(Val2Int);
+ Value *Cond =
+ IRB.CreateICmpNE(PartialBits, Constant::getNullValue(IRB.getInt32Ty()));
+ Val2 = IRB.CreateSelect(Cond, shiftAllocaMagic(PartialBits, IRB, Shift),
+ shiftAllocaMagic(Val2, IRB, Shift));
+ return IRB.CreateOr(Val1, Val2);
+}
+
+void FunctionStackPoisoner::handleDynamicAllocaCall(
+ DynamicAllocaCall &AllocaCall) {
+ AllocaInst *AI = AllocaCall.AI;
+ if (!doesDominateAllExits(AI)) {
+ // We do not yet handle complex allocas
+ AllocaCall.Poison = false;
+ return;
+ }
+
+ IRBuilder<> IRB(AI);
+
+ PointerType *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
+ const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
+ const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
+
+ Value *Zero = Constant::getNullValue(IntptrTy);
+ Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
+ Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
+ Value *NotAllocaRzMask = ConstantInt::get(IntptrTy, ~AllocaRedzoneMask);
+
+ // Since we need to extend alloca with additional memory to locate
+ // redzones, and OldSize is number of allocated blocks with
+ // ElementSize size, get allocated memory size in bytes by
+ // OldSize * ElementSize.
+ unsigned ElementSize = ASan.DL->getTypeAllocSize(AI->getAllocatedType());
+ Value *OldSize = IRB.CreateMul(AI->getArraySize(),
+ ConstantInt::get(IntptrTy, ElementSize));
+
+ // PartialSize = OldSize % 32
+ Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
+
+ // Misalign = kAllocaRzSize - PartialSize;
+ Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
+
+ // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
+ Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
+ Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
+
+ // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
+ // Align is added to locate left redzone, PartialPadding for possible
+ // partial redzone and kAllocaRzSize for right redzone respectively.
+ Value *AdditionalChunkSize = IRB.CreateAdd(
+ ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
+
+ Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
+
+ // Insert new alloca with new NewSize and Align params.
+ AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
+ NewAlloca->setAlignment(Align);
+
+ // NewAddress = Address + Align
+ Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
+ ConstantInt::get(IntptrTy, Align));
+
+ Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
+
+ // LeftRzAddress = NewAddress - kAllocaRzSize
+ Value *LeftRzAddress = IRB.CreateSub(NewAddress, AllocaRzSize);
+
+ // Poisoning left redzone.
+ AllocaCall.LeftRzAddr = ASan.memToShadow(LeftRzAddress, IRB);
+ IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaLeftMagic),
+ IRB.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy));
+
+ // PartialRzAligned = PartialRzAddr & ~AllocaRzMask
+ Value *PartialRzAddr = IRB.CreateAdd(NewAddress, OldSize);
+ Value *PartialRzAligned = IRB.CreateAnd(PartialRzAddr, NotAllocaRzMask);
+
+ // Poisoning partial redzone.
+ Value *PartialRzMagic = computePartialRzMagic(PartialSize, IRB);
+ Value *PartialRzShadowAddr = ASan.memToShadow(PartialRzAligned, IRB);
+ IRB.CreateStore(PartialRzMagic,
+ IRB.CreateIntToPtr(PartialRzShadowAddr, Int32PtrTy));
+
+ // RightRzAddress
+ // = (PartialRzAddr + AllocaRzMask) & ~AllocaRzMask
+ Value *RightRzAddress = IRB.CreateAnd(
+ IRB.CreateAdd(PartialRzAddr, AllocaRzMask), NotAllocaRzMask);
+
+ // Poisoning right redzone.
+ AllocaCall.RightRzAddr = ASan.memToShadow(RightRzAddress, IRB);
+ IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaRightMagic),
+ IRB.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy));
+
+ // Replace all uses of AddessReturnedByAlloca with NewAddress.
+ AI->replaceAllUsesWith(NewAddressPtr);
+
+ // We are done. Erase old alloca and store left, partial and right redzones
+ // shadow addresses for future unpoisoning.
+ AI->eraseFromParent();
+ NumInstrumentedDynamicAllocas++;
+}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
index 35057cd..8f24476 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
@@ -49,8 +49,10 @@
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
+#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
@@ -139,11 +141,11 @@ class DFSanABIList {
std::unique_ptr<SpecialCaseList> SCL;
public:
- DFSanABIList(SpecialCaseList *SCL) : SCL(SCL) {}
+ DFSanABIList(std::unique_ptr<SpecialCaseList> SCL) : SCL(std::move(SCL)) {}
/// Returns whether either this function or its source file are listed in the
/// given category.
- bool isIn(const Function &F, const StringRef Category) const {
+ bool isIn(const Function &F, StringRef Category) const {
return isIn(*F.getParent(), Category) ||
SCL->inSection("fun", F.getName(), Category);
}
@@ -152,7 +154,7 @@ class DFSanABIList {
///
/// If GA aliases a function, the alias's name is matched as a function name
/// would be. Similarly, aliases of globals are matched like globals.
- bool isIn(const GlobalAlias &GA, const StringRef Category) const {
+ bool isIn(const GlobalAlias &GA, StringRef Category) const {
if (isIn(*GA.getParent(), Category))
return true;
@@ -164,7 +166,7 @@ class DFSanABIList {
}
/// Returns whether this module is listed in the given category.
- bool isIn(const Module &M, const StringRef Category) const {
+ bool isIn(const Module &M, StringRef Category) const {
return SCL->inSection("src", M.getModuleIdentifier(), Category);
}
};
@@ -233,15 +235,19 @@ class DataFlowSanitizer : public ModulePass {
FunctionType *DFSanUnimplementedFnTy;
FunctionType *DFSanSetLabelFnTy;
FunctionType *DFSanNonzeroLabelFnTy;
+ FunctionType *DFSanVarargWrapperFnTy;
Constant *DFSanUnionFn;
+ Constant *DFSanCheckedUnionFn;
Constant *DFSanUnionLoadFn;
Constant *DFSanUnimplementedFn;
Constant *DFSanSetLabelFn;
Constant *DFSanNonzeroLabelFn;
+ Constant *DFSanVarargWrapperFn;
MDNode *ColdCallWeights;
DFSanABIList ABIList;
DenseMap<Value *, Function *> UnwrappedFnMap;
AttributeSet ReadOnlyNoneAttrs;
+ DenseMap<const Function *, DISubprogram> FunctionDIs;
Value *getShadowAddress(Value *Addr, Instruction *Pos);
bool isInstrumented(const Function *F);
@@ -279,7 +285,8 @@ struct DFSanFunction {
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
DenseSet<Instruction *> SkipInsts;
- DenseSet<Value *> NonZeroChecks;
+ std::vector<Value *> NonZeroChecks;
+ bool AvoidNewBlocks;
struct CachedCombinedShadow {
BasicBlock *Block;
@@ -294,6 +301,9 @@ struct DFSanFunction {
IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
LabelReturnAlloca(nullptr) {
DT.recalculate(*F);
+ // FIXME: Need to track down the register allocator issue which causes poor
+ // performance in pathological cases with large numbers of basic blocks.
+ AvoidNewBlocks = F->size() > 1000;
}
Value *getArgTLSPtr();
Value *getArgTLS(unsigned Index, Instruction *Pos);
@@ -382,7 +392,6 @@ FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
}
FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
- assert(!T->isVarArg());
llvm::SmallVector<Type *, 4> ArgTypes;
for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
i != e; ++i) {
@@ -397,13 +406,20 @@ FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
}
for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
ArgTypes.push_back(ShadowTy);
+ if (T->isVarArg())
+ ArgTypes.push_back(ShadowPtrTy);
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
ArgTypes.push_back(ShadowPtrTy);
- return FunctionType::get(T->getReturnType(), ArgTypes, false);
+ return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg());
}
bool DataFlowSanitizer::doInitialization(Module &M) {
+ llvm::Triple TargetTriple(M.getTargetTriple());
+ bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
+ bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
+ TargetTriple.getArch() == llvm::Triple::mips64el;
+
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
if (!DLP)
report_fatal_error("data layout missing");
@@ -415,8 +431,13 @@ bool DataFlowSanitizer::doInitialization(Module &M) {
ShadowPtrTy = PointerType::getUnqual(ShadowTy);
IntptrTy = DL->getIntPtrType(*Ctx);
ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
- ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
+ if (IsX86_64)
+ ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
+ else if (IsMIPS64)
+ ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
+ else
+ report_fatal_error("unsupported triple");
Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
DFSanUnionFnTy =
@@ -430,7 +451,9 @@ bool DataFlowSanitizer::doInitialization(Module &M) {
DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
DFSanSetLabelArgs, /*isVarArg=*/false);
DFSanNonzeroLabelFnTy = FunctionType::get(
- Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false);
+ Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
+ DFSanVarargWrapperFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
if (GetArgTLSPtr) {
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
@@ -510,15 +533,26 @@ DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
AttributeSet::ReturnIndex));
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
- std::vector<Value *> Args;
- unsigned n = FT->getNumParams();
- for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
- Args.push_back(&*ai);
- CallInst *CI = CallInst::Create(F, Args, "", BB);
- if (FT->getReturnType()->isVoidTy())
- ReturnInst::Create(*Ctx, BB);
- else
- ReturnInst::Create(*Ctx, CI, BB);
+ if (F->isVarArg()) {
+ NewF->removeAttributes(
+ AttributeSet::FunctionIndex,
+ AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex,
+ "split-stack"));
+ CallInst::Create(DFSanVarargWrapperFn,
+ IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
+ BB);
+ new UnreachableInst(*Ctx, BB);
+ } else {
+ std::vector<Value *> Args;
+ unsigned n = FT->getNumParams();
+ for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
+ Args.push_back(&*ai);
+ CallInst *CI = CallInst::Create(F, Args, "", BB);
+ if (FT->getReturnType()->isVoidTy())
+ ReturnInst::Create(*Ctx, BB);
+ else
+ ReturnInst::Create(*Ctx, CI, BB);
+ }
return NewF;
}
@@ -563,6 +597,8 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
if (ABIList.isIn(M, "skip"))
return false;
+ FunctionDIs = makeSubprogramMap(M);
+
if (!GetArgTLSPtr) {
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
@@ -577,6 +613,15 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
+ F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
+ F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
+ F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
+ F->addAttribute(1, Attribute::ZExt);
+ F->addAttribute(2, Attribute::ZExt);
+ }
+ DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
+ if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
+ F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
F->addAttribute(1, Attribute::ZExt);
@@ -585,6 +630,7 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
DFSanUnionLoadFn =
Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
+ F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
}
@@ -597,16 +643,20 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
}
DFSanNonzeroLabelFn =
Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
+ DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
+ DFSanVarargWrapperFnTy);
std::vector<Function *> FnsToInstrument;
llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
if (!i->isIntrinsic() &&
i != DFSanUnionFn &&
+ i != DFSanCheckedUnionFn &&
i != DFSanUnionLoadFn &&
i != DFSanUnimplementedFn &&
i != DFSanSetLabelFn &&
- i != DFSanNonzeroLabelFn)
+ i != DFSanNonzeroLabelFn &&
+ i != DFSanVarargWrapperFn)
FnsToInstrument.push_back(&*i);
}
@@ -688,11 +738,6 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
} else {
addGlobalNamePrefix(&F);
}
- // Hopefully, nobody will try to indirectly call a vararg
- // function... yet.
- } else if (FT->isVarArg()) {
- UnwrappedFnMap[&F] = &F;
- *i = nullptr;
} else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
// Build a wrapper function for F. The wrapper simply calls F, and is
// added to FnsToInstrument so that any instrumentation according to its
@@ -709,6 +754,12 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
Value *WrappedFnCst =
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
F.replaceAllUsesWith(WrappedFnCst);
+
+ // Patch the pointer to LLVM function in debug info descriptor.
+ auto DI = FunctionDIs.find(&F);
+ if (DI != FunctionDIs.end())
+ DI->second.replaceFunction(&F);
+
UnwrappedFnMap[WrappedFnCst] = &F;
*i = NewF;
@@ -728,6 +779,11 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
i = FnsToInstrument.begin() + N;
e = FnsToInstrument.begin() + Count;
}
+ // Hopefully, nobody will try to indirectly call a vararg
+ // function... yet.
+ } else if (FT->isVarArg()) {
+ UnwrappedFnMap[&F] = &F;
+ *i = nullptr;
}
}
@@ -786,18 +842,16 @@ bool DataFlowSanitizer::runOnModule(Module &M) {
// yet). To make our life easier, do this work in a pass after the main
// instrumentation.
if (ClDebugNonzeroLabels) {
- for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(),
- e = DFSF.NonZeroChecks.end();
- i != e; ++i) {
+ for (Value *V : DFSF.NonZeroChecks) {
Instruction *Pos;
- if (Instruction *I = dyn_cast<Instruction>(*i))
+ if (Instruction *I = dyn_cast<Instruction>(V))
Pos = I->getNextNode();
else
Pos = DFSF.F->getEntryBlock().begin();
while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
Pos = Pos->getNextNode();
IRBuilder<> IRB(Pos);
- Value *Ne = IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow);
+ Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
IRBuilder<> ThenIRB(BI);
@@ -862,7 +916,7 @@ Value *DFSanFunction::getShadow(Value *V) {
break;
}
}
- NonZeroChecks.insert(Shadow);
+ NonZeroChecks.push_back(Shadow);
} else {
Shadow = DFS.ZeroShadow;
}
@@ -922,23 +976,33 @@ Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
return CCS.Shadow;
IRBuilder<> IRB(Pos);
- BasicBlock *Head = Pos->getParent();
- Value *Ne = IRB.CreateICmpNE(V1, V2);
- BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
- Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
- IRBuilder<> ThenIRB(BI);
- CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2);
- Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
- Call->addAttribute(1, Attribute::ZExt);
- Call->addAttribute(2, Attribute::ZExt);
-
- BasicBlock *Tail = BI->getSuccessor(0);
- PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin());
- Phi->addIncoming(Call, Call->getParent());
- Phi->addIncoming(V1, Head);
-
- CCS.Block = Tail;
- CCS.Shadow = Phi;
+ if (AvoidNewBlocks) {
+ CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2);
+ Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
+ Call->addAttribute(1, Attribute::ZExt);
+ Call->addAttribute(2, Attribute::ZExt);
+
+ CCS.Block = Pos->getParent();
+ CCS.Shadow = Call;
+ } else {
+ BasicBlock *Head = Pos->getParent();
+ Value *Ne = IRB.CreateICmpNE(V1, V2);
+ BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
+ Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
+ IRBuilder<> ThenIRB(BI);
+ CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2);
+ Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
+ Call->addAttribute(1, Attribute::ZExt);
+ Call->addAttribute(2, Attribute::ZExt);
+
+ BasicBlock *Tail = BI->getSuccessor(0);
+ PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin());
+ Phi->addIncoming(Call, Call->getParent());
+ Phi->addIncoming(V1, Head);
+
+ CCS.Block = Tail;
+ CCS.Shadow = Phi;
+ }
std::set<Value *> UnionElems;
if (V1Elems != ShadowElements.end()) {
@@ -951,9 +1015,9 @@ Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
} else {
UnionElems.insert(V2);
}
- ShadowElements[Phi] = std::move(UnionElems);
+ ShadowElements[CCS.Shadow] = std::move(UnionElems);
- return Phi;
+ return CCS.Shadow;
}
// A convenience function which folds the shadows of each of the operands
@@ -1022,7 +1086,7 @@ Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
}
}
- if (Size % (64 / DFS.ShadowWidth) == 0) {
+ if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
// Fast path for the common case where each byte has identical shadow: load
// shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
// shadow is non-equal.
@@ -1092,6 +1156,11 @@ Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType());
+ if (Size == 0) {
+ DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
+ return;
+ }
+
uint64_t Align;
if (ClPreserveAlignment) {
Align = LI.getAlignment();
@@ -1107,7 +1176,7 @@ void DFSanVisitor::visitLoadInst(LoadInst &LI) {
Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
}
if (Shadow != DFSF.DFS.ZeroShadow)
- DFSF.NonZeroChecks.insert(Shadow);
+ DFSF.NonZeroChecks.push_back(Shadow);
DFSF.setShadow(&LI, Shadow);
}
@@ -1166,6 +1235,9 @@ void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
void DFSanVisitor::visitStoreInst(StoreInst &SI) {
uint64_t Size =
DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType());
+ if (Size == 0)
+ return;
+
uint64_t Align;
if (ClPreserveAlignment) {
Align = SI.getAlignment();
@@ -1320,6 +1392,15 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
return;
}
+ // Calls to this function are synthesized in wrappers, and we shouldn't
+ // instrument them.
+ if (F == DFSF.DFS.DFSanVarargWrapperFn)
+ return;
+
+ assert(!(cast<FunctionType>(
+ CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() &&
+ dyn_cast<InvokeInst>(CS.getInstruction())));
+
IRBuilder<> IRB(CS.getInstruction());
DenseMap<Value *, Function *>::iterator i =
@@ -1391,6 +1472,20 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
Args.push_back(DFSF.getShadow(*i));
+ if (FT->isVarArg()) {
+ auto LabelVAAlloca =
+ new AllocaInst(ArrayType::get(DFSF.DFS.ShadowTy,
+ CS.arg_size() - FT->getNumParams()),
+ "labelva", DFSF.F->getEntryBlock().begin());
+
+ for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
+ auto LabelVAPtr = IRB.CreateStructGEP(LabelVAAlloca, n);
+ IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
+ }
+
+ Args.push_back(IRB.CreateStructGEP(LabelVAAlloca, 0));
+ }
+
if (!FT->getReturnType()->isVoidTy()) {
if (!DFSF.LabelReturnAlloca) {
DFSF.LabelReturnAlloca =
@@ -1400,6 +1495,9 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
Args.push_back(DFSF.LabelReturnAlloca);
}
+ for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
+ Args.push_back(*i);
+
CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
CustomCI->setCallingConv(CI->getCallingConv());
CustomCI->setAttributes(CI->getAttributes());
@@ -1446,7 +1544,7 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
DFSF.SkipInsts.insert(LI);
DFSF.setShadow(CS.getInstruction(), LI);
- DFSF.NonZeroChecks.insert(LI);
+ DFSF.NonZeroChecks.push_back(LI);
}
}
@@ -1500,7 +1598,7 @@ void DFSanVisitor::visitCallSite(CallSite CS) {
ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
DFSF.SkipInsts.insert(ExShadow);
DFSF.setShadow(ExVal, ExShadow);
- DFSF.NonZeroChecks.insert(ExShadow);
+ DFSF.NonZeroChecks.push_back(ExShadow);
CS.getInstruction()->replaceAllUsesWith(ExVal);
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/DebugIR.cpp b/contrib/llvm/lib/Transforms/Instrumentation/DebugIR.cpp
deleted file mode 100644
index f2f1738..0000000
--- a/contrib/llvm/lib/Transforms/Instrumentation/DebugIR.cpp
+++ /dev/null
@@ -1,617 +0,0 @@
-//===--- DebugIR.cpp - Transform debug metadata to allow debugging IR -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// A Module transform pass that emits a succinct version of the IR and replaces
-// the source file metadata to allow debuggers to step through the IR.
-//
-// FIXME: instead of replacing debug metadata, this pass should allow for
-// additional metadata to be used to point capable debuggers to the IR file
-// without destroying the mapping to the original source file.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/IR/ValueMap.h"
-#include "DebugIR.h"
-#include "llvm/IR/AssemblyAnnotationWriter.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfo.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/Path.h"
-#include "llvm/Support/ToolOutputFile.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include <string>
-
-#define STR_HELPER(x) #x
-#define STR(x) STR_HELPER(x)
-
-using namespace llvm;
-
-#define DEBUG_TYPE "debug-ir"
-
-namespace {
-
-/// Builds a map of Value* to line numbers on which the Value appears in a
-/// textual representation of the IR by plugging into the AssemblyWriter by
-/// masquerading as an AssemblyAnnotationWriter.
-class ValueToLineMap : public AssemblyAnnotationWriter {
- ValueMap<const Value *, unsigned int> Lines;
- typedef ValueMap<const Value *, unsigned int>::const_iterator LineIter;
-
- void addEntry(const Value *V, formatted_raw_ostream &Out) {
- Out.flush();
- Lines.insert(std::make_pair(V, Out.getLine() + 1));
- }
-
-public:
-
- /// Prints Module to a null buffer in order to build the map of Value pointers
- /// to line numbers.
- ValueToLineMap(const Module *M) {
- raw_null_ostream ThrowAway;
- M->print(ThrowAway, this);
- }
-
- // This function is called after an Instruction, GlobalValue, or GlobalAlias
- // is printed.
- void printInfoComment(const Value &V, formatted_raw_ostream &Out) override {
- addEntry(&V, Out);
- }
-
- void emitFunctionAnnot(const Function *F,
- formatted_raw_ostream &Out) override {
- addEntry(F, Out);
- }
-
- /// If V appears on a line in the textual IR representation, sets Line to the
- /// line number and returns true, otherwise returns false.
- bool getLine(const Value *V, unsigned int &Line) const {
- LineIter i = Lines.find(V);
- if (i != Lines.end()) {
- Line = i->second;
- return true;
- }
- return false;
- }
-};
-
-/// Removes debug intrisncs like llvm.dbg.declare and llvm.dbg.value.
-class DebugIntrinsicsRemover : public InstVisitor<DebugIntrinsicsRemover> {
- void remove(Instruction &I) { I.eraseFromParent(); }
-
-public:
- static void process(Module &M) {
- DebugIntrinsicsRemover Remover;
- Remover.visit(&M);
- }
- void visitDbgDeclareInst(DbgDeclareInst &I) { remove(I); }
- void visitDbgValueInst(DbgValueInst &I) { remove(I); }
- void visitDbgInfoIntrinsic(DbgInfoIntrinsic &I) { remove(I); }
-};
-
-/// Removes debug metadata (!dbg) nodes from all instructions, and optionally
-/// metadata named "llvm.dbg.cu" if RemoveNamedInfo is true.
-class DebugMetadataRemover : public InstVisitor<DebugMetadataRemover> {
- bool RemoveNamedInfo;
-
-public:
- static void process(Module &M, bool RemoveNamedInfo = true) {
- DebugMetadataRemover Remover(RemoveNamedInfo);
- Remover.run(&M);
- }
-
- DebugMetadataRemover(bool RemoveNamedInfo)
- : RemoveNamedInfo(RemoveNamedInfo) {}
-
- void visitInstruction(Instruction &I) {
- if (I.getMetadata(LLVMContext::MD_dbg))
- I.setMetadata(LLVMContext::MD_dbg, nullptr);
- }
-
- void run(Module *M) {
- // Remove debug metadata attached to instructions
- visit(M);
-
- if (RemoveNamedInfo) {
- // Remove CU named metadata (and all children nodes)
- NamedMDNode *Node = M->getNamedMetadata("llvm.dbg.cu");
- if (Node)
- M->eraseNamedMetadata(Node);
- }
- }
-};
-
-/// Updates debug metadata in a Module:
-/// - changes Filename/Directory to values provided on construction
-/// - adds/updates line number (DebugLoc) entries associated with each
-/// instruction to reflect the instruction's location in an LLVM IR file
-class DIUpdater : public InstVisitor<DIUpdater> {
- /// Builder of debug information
- DIBuilder Builder;
-
- /// Helper for type attributes/sizes/etc
- DataLayout Layout;
-
- /// Map of Value* to line numbers
- const ValueToLineMap LineTable;
-
- /// Map of Value* (in original Module) to Value* (in optional cloned Module)
- const ValueToValueMapTy *VMap;
-
- /// Directory of debug metadata
- DebugInfoFinder Finder;
-
- /// Source filename and directory
- StringRef Filename;
- StringRef Directory;
-
- // CU nodes needed when creating DI subprograms
- MDNode *FileNode;
- MDNode *LexicalBlockFileNode;
- const MDNode *CUNode;
-
- ValueMap<const Function *, MDNode *> SubprogramDescriptors;
- DenseMap<const Type *, MDNode *> TypeDescriptors;
-
-public:
- DIUpdater(Module &M, StringRef Filename = StringRef(),
- StringRef Directory = StringRef(), const Module *DisplayM = nullptr,
- const ValueToValueMapTy *VMap = nullptr)
- : Builder(M), Layout(&M), LineTable(DisplayM ? DisplayM : &M), VMap(VMap),
- Finder(), Filename(Filename), Directory(Directory), FileNode(nullptr),
- LexicalBlockFileNode(nullptr), CUNode(nullptr) {
- Finder.processModule(M);
- visit(&M);
- }
-
- ~DIUpdater() { Builder.finalize(); }
-
- void visitModule(Module &M) {
- if (Finder.compile_unit_count() > 1)
- report_fatal_error("DebugIR pass supports only a signle compile unit per "
- "Module.");
- createCompileUnit(Finder.compile_unit_count() == 1 ?
- (MDNode*)*Finder.compile_units().begin() : nullptr);
- }
-
- void visitFunction(Function &F) {
- if (F.isDeclaration() || findDISubprogram(&F))
- return;
-
- StringRef MangledName = F.getName();
- DICompositeType Sig = createFunctionSignature(&F);
-
- // find line of function declaration
- unsigned Line = 0;
- if (!findLine(&F, Line)) {
- DEBUG(dbgs() << "WARNING: No line for Function " << F.getName().str()
- << "\n");
- return;
- }
-
- Instruction *FirstInst = F.begin()->begin();
- unsigned ScopeLine = 0;
- if (!findLine(FirstInst, ScopeLine)) {
- DEBUG(dbgs() << "WARNING: No line for 1st Instruction in Function "
- << F.getName().str() << "\n");
- return;
- }
-
- bool Local = F.hasInternalLinkage();
- bool IsDefinition = !F.isDeclaration();
- bool IsOptimized = false;
-
- int FuncFlags = llvm::DIDescriptor::FlagPrototyped;
- assert(CUNode && FileNode);
- DISubprogram Sub = Builder.createFunction(
- DICompileUnit(CUNode), F.getName(), MangledName, DIFile(FileNode), Line,
- Sig, Local, IsDefinition, ScopeLine, FuncFlags, IsOptimized, &F);
- assert(Sub.isSubprogram());
- DEBUG(dbgs() << "create subprogram mdnode " << *Sub << ": "
- << "\n");
-
- SubprogramDescriptors.insert(std::make_pair(&F, Sub));
- }
-
- void visitInstruction(Instruction &I) {
- DebugLoc Loc(I.getDebugLoc());
-
- /// If a ValueToValueMap is provided, use it to get the real instruction as
- /// the line table was generated on a clone of the module on which we are
- /// operating.
- Value *RealInst = nullptr;
- if (VMap)
- RealInst = VMap->lookup(&I);
-
- if (!RealInst)
- RealInst = &I;
-
- unsigned Col = 0; // FIXME: support columns
- unsigned Line;
- if (!LineTable.getLine(RealInst, Line)) {
- // Instruction has no line, it may have been removed (in the module that
- // will be passed to the debugger) so there is nothing to do here.
- DEBUG(dbgs() << "WARNING: no LineTable entry for instruction " << RealInst
- << "\n");
- DEBUG(RealInst->dump());
- return;
- }
-
- DebugLoc NewLoc;
- if (!Loc.isUnknown())
- // I had a previous debug location: re-use the DebugLoc
- NewLoc = DebugLoc::get(Line, Col, Loc.getScope(RealInst->getContext()),
- Loc.getInlinedAt(RealInst->getContext()));
- else if (MDNode *scope = findScope(&I))
- NewLoc = DebugLoc::get(Line, Col, scope, nullptr);
- else {
- DEBUG(dbgs() << "WARNING: no valid scope for instruction " << &I
- << ". no DebugLoc will be present."
- << "\n");
- return;
- }
-
- addDebugLocation(I, NewLoc);
- }
-
-private:
-
- void createCompileUnit(MDNode *CUToReplace) {
- std::string Flags;
- bool IsOptimized = false;
- StringRef Producer;
- unsigned RuntimeVersion(0);
- StringRef SplitName;
-
- if (CUToReplace) {
- // save fields from existing CU to re-use in the new CU
- DICompileUnit ExistingCU(CUToReplace);
- Producer = ExistingCU.getProducer();
- IsOptimized = ExistingCU.isOptimized();
- Flags = ExistingCU.getFlags();
- RuntimeVersion = ExistingCU.getRunTimeVersion();
- SplitName = ExistingCU.getSplitDebugFilename();
- } else {
- Producer =
- "LLVM Version " STR(LLVM_VERSION_MAJOR) "." STR(LLVM_VERSION_MINOR);
- }
-
- CUNode =
- Builder.createCompileUnit(dwarf::DW_LANG_C99, Filename, Directory,
- Producer, IsOptimized, Flags, RuntimeVersion);
-
- if (CUToReplace)
- CUToReplace->replaceAllUsesWith(const_cast<MDNode *>(CUNode));
-
- DICompileUnit CU(CUNode);
- FileNode = Builder.createFile(Filename, Directory);
- LexicalBlockFileNode = Builder.createLexicalBlockFile(CU, DIFile(FileNode));
- }
-
- /// Returns the MDNode* that represents the DI scope to associate with I
- MDNode *findScope(const Instruction *I) {
- const Function *F = I->getParent()->getParent();
- if (MDNode *ret = findDISubprogram(F))
- return ret;
-
- DEBUG(dbgs() << "WARNING: Using fallback lexical block file scope "
- << LexicalBlockFileNode << " as scope for instruction " << I
- << "\n");
- return LexicalBlockFileNode;
- }
-
- /// Returns the MDNode* that is the descriptor for F
- MDNode *findDISubprogram(const Function *F) {
- typedef ValueMap<const Function *, MDNode *>::const_iterator FuncNodeIter;
- FuncNodeIter i = SubprogramDescriptors.find(F);
- if (i != SubprogramDescriptors.end())
- return i->second;
-
- DEBUG(dbgs() << "searching for DI scope node for Function " << F
- << " in a list of " << Finder.subprogram_count()
- << " subprogram nodes"
- << "\n");
-
- for (DISubprogram S : Finder.subprograms()) {
- if (S.getFunction() == F) {
- DEBUG(dbgs() << "Found DISubprogram " << S << " for function "
- << S.getFunction() << "\n");
- return S;
- }
- }
- DEBUG(dbgs() << "unable to find DISubprogram node for function "
- << F->getName().str() << "\n");
- return nullptr;
- }
-
- /// Sets Line to the line number on which V appears and returns true. If a
- /// line location for V is not found, returns false.
- bool findLine(const Value *V, unsigned &Line) {
- if (LineTable.getLine(V, Line))
- return true;
-
- if (VMap) {
- Value *mapped = VMap->lookup(V);
- if (mapped && LineTable.getLine(mapped, Line))
- return true;
- }
- return false;
- }
-
- std::string getTypeName(Type *T) {
- std::string TypeName;
- raw_string_ostream TypeStream(TypeName);
- if (T)
- T->print(TypeStream);
- else
- TypeStream << "Printing <null> Type";
- TypeStream.flush();
- return TypeName;
- }
-
- /// Returns the MDNode that represents type T if it is already created, or 0
- /// if it is not.
- MDNode *getType(const Type *T) {
- typedef DenseMap<const Type *, MDNode *>::const_iterator TypeNodeIter;
- TypeNodeIter i = TypeDescriptors.find(T);
- if (i != TypeDescriptors.end())
- return i->second;
- return nullptr;
- }
-
- /// Returns a DebugInfo type from an LLVM type T.
- DIDerivedType getOrCreateType(Type *T) {
- MDNode *N = getType(T);
- if (N)
- return DIDerivedType(N);
- else if (T->isVoidTy())
- return DIDerivedType(nullptr);
- else if (T->isStructTy()) {
- N = Builder.createStructType(
- DIScope(LexicalBlockFileNode), T->getStructName(), DIFile(FileNode),
- 0, Layout.getTypeSizeInBits(T), Layout.getABITypeAlignment(T), 0,
- DIType(nullptr), DIArray(nullptr)); // filled in later
-
- // N is added to the map (early) so that element search below can find it,
- // so as to avoid infinite recursion for structs that contain pointers to
- // their own type.
- TypeDescriptors[T] = N;
- DICompositeType StructDescriptor(N);
-
- SmallVector<Value *, 4> Elements;
- for (unsigned i = 0; i < T->getStructNumElements(); ++i)
- Elements.push_back(getOrCreateType(T->getStructElementType(i)));
-
- // set struct elements
- StructDescriptor.setTypeArray(Builder.getOrCreateArray(Elements));
- } else if (T->isPointerTy()) {
- Type *PointeeTy = T->getPointerElementType();
- if (!(N = getType(PointeeTy)))
- N = Builder.createPointerType(
- getOrCreateType(PointeeTy), Layout.getPointerTypeSizeInBits(T),
- Layout.getPrefTypeAlignment(T), getTypeName(T));
- } else if (T->isArrayTy()) {
- SmallVector<Value *, 1> Subrange;
- Subrange.push_back(
- Builder.getOrCreateSubrange(0, T->getArrayNumElements() - 1));
-
- N = Builder.createArrayType(Layout.getTypeSizeInBits(T),
- Layout.getPrefTypeAlignment(T),
- getOrCreateType(T->getArrayElementType()),
- Builder.getOrCreateArray(Subrange));
- } else {
- int encoding = llvm::dwarf::DW_ATE_signed;
- if (T->isIntegerTy())
- encoding = llvm::dwarf::DW_ATE_unsigned;
- else if (T->isFloatingPointTy())
- encoding = llvm::dwarf::DW_ATE_float;
-
- N = Builder.createBasicType(getTypeName(T), T->getPrimitiveSizeInBits(),
- 0, encoding);
- }
- TypeDescriptors[T] = N;
- return DIDerivedType(N);
- }
-
- /// Returns a DebugInfo type that represents a function signature for Func.
- DICompositeType createFunctionSignature(const Function *Func) {
- SmallVector<Value *, 4> Params;
- DIDerivedType ReturnType(getOrCreateType(Func->getReturnType()));
- Params.push_back(ReturnType);
-
- const Function::ArgumentListType &Args(Func->getArgumentList());
- for (Function::ArgumentListType::const_iterator i = Args.begin(),
- e = Args.end();
- i != e; ++i) {
- Type *T(i->getType());
- Params.push_back(getOrCreateType(T));
- }
-
- DIArray ParamArray = Builder.getOrCreateArray(Params);
- return Builder.createSubroutineType(DIFile(FileNode), ParamArray);
- }
-
- /// Associates Instruction I with debug location Loc.
- void addDebugLocation(Instruction &I, DebugLoc Loc) {
- MDNode *MD = Loc.getAsMDNode(I.getContext());
- I.setMetadata(LLVMContext::MD_dbg, MD);
- }
-};
-
-/// Sets Filename/Directory from the Module identifier and returns true, or
-/// false if source information is not present.
-bool getSourceInfoFromModule(const Module &M, std::string &Directory,
- std::string &Filename) {
- std::string PathStr(M.getModuleIdentifier());
- if (PathStr.length() == 0 || PathStr == "<stdin>")
- return false;
-
- Filename = sys::path::filename(PathStr);
- SmallVector<char, 16> Path(PathStr.begin(), PathStr.end());
- sys::path::remove_filename(Path);
- Directory = StringRef(Path.data(), Path.size());
- return true;
-}
-
-// Sets Filename/Directory from debug information in M and returns true, or
-// false if no debug information available, or cannot be parsed.
-bool getSourceInfoFromDI(const Module &M, std::string &Directory,
- std::string &Filename) {
- NamedMDNode *CUNode = M.getNamedMetadata("llvm.dbg.cu");
- if (!CUNode || CUNode->getNumOperands() == 0)
- return false;
-
- DICompileUnit CU(CUNode->getOperand(0));
- if (!CU.Verify())
- return false;
-
- Filename = CU.getFilename();
- Directory = CU.getDirectory();
- return true;
-}
-
-} // anonymous namespace
-
-namespace llvm {
-
-bool DebugIR::getSourceInfo(const Module &M) {
- ParsedPath = getSourceInfoFromDI(M, Directory, Filename) ||
- getSourceInfoFromModule(M, Directory, Filename);
- return ParsedPath;
-}
-
-bool DebugIR::updateExtension(StringRef NewExtension) {
- size_t dot = Filename.find_last_of(".");
- if (dot == std::string::npos)
- return false;
-
- Filename.erase(dot);
- Filename += NewExtension.str();
- return true;
-}
-
-void DebugIR::generateFilename(std::unique_ptr<int> &fd) {
- SmallVector<char, 16> PathVec;
- fd.reset(new int);
- sys::fs::createTemporaryFile("debug-ir", "ll", *fd, PathVec);
- StringRef Path(PathVec.data(), PathVec.size());
- Filename = sys::path::filename(Path);
- sys::path::remove_filename(PathVec);
- Directory = StringRef(PathVec.data(), PathVec.size());
-
- GeneratedPath = true;
-}
-
-std::string DebugIR::getPath() {
- SmallVector<char, 16> Path;
- sys::path::append(Path, Directory, Filename);
- Path.resize(Filename.size() + Directory.size() + 2);
- Path[Filename.size() + Directory.size() + 1] = '\0';
- return std::string(Path.data());
-}
-
-void DebugIR::writeDebugBitcode(const Module *M, int *fd) {
- std::unique_ptr<raw_fd_ostream> Out;
- std::string error;
-
- if (!fd) {
- std::string Path = getPath();
- Out.reset(new raw_fd_ostream(Path.c_str(), error, sys::fs::F_Text));
- DEBUG(dbgs() << "WRITING debug bitcode from Module " << M << " to file "
- << Path << "\n");
- } else {
- DEBUG(dbgs() << "WRITING debug bitcode from Module " << M << " to fd "
- << *fd << "\n");
- Out.reset(new raw_fd_ostream(*fd, true));
- }
-
- M->print(*Out, nullptr);
- Out->close();
-}
-
-void DebugIR::createDebugInfo(Module &M, std::unique_ptr<Module> &DisplayM) {
- if (M.getFunctionList().size() == 0)
- // no functions -- no debug info needed
- return;
-
- std::unique_ptr<ValueToValueMapTy> VMap;
-
- if (WriteSourceToDisk && (HideDebugIntrinsics || HideDebugMetadata)) {
- VMap.reset(new ValueToValueMapTy);
- DisplayM.reset(CloneModule(&M, *VMap));
-
- if (HideDebugIntrinsics)
- DebugIntrinsicsRemover::process(*DisplayM);
-
- if (HideDebugMetadata)
- DebugMetadataRemover::process(*DisplayM);
- }
-
- DIUpdater R(M, Filename, Directory, DisplayM.get(), VMap.get());
-}
-
-bool DebugIR::isMissingPath() { return Filename.empty() || Directory.empty(); }
-
-bool DebugIR::runOnModule(Module &M) {
- std::unique_ptr<int> fd;
-
- if (isMissingPath() && !getSourceInfo(M)) {
- if (!WriteSourceToDisk)
- report_fatal_error("DebugIR unable to determine file name in input. "
- "Ensure Module contains an identifier, a valid "
- "DICompileUnit, or construct DebugIR with "
- "non-empty Filename/Directory parameters.");
- else
- generateFilename(fd);
- }
-
- if (!GeneratedPath && WriteSourceToDisk)
- updateExtension(".debug-ll");
-
- // Clear line numbers. Keep debug info (if any) if we were able to read the
- // file name from the DICompileUnit descriptor.
- DebugMetadataRemover::process(M, !ParsedPath);
-
- std::unique_ptr<Module> DisplayM;
- createDebugInfo(M, DisplayM);
- if (WriteSourceToDisk) {
- Module *OutputM = DisplayM.get() ? DisplayM.get() : &M;
- writeDebugBitcode(OutputM, fd.get());
- }
-
- DEBUG(M.dump());
- return true;
-}
-
-bool DebugIR::runOnModule(Module &M, std::string &Path) {
- bool result = runOnModule(M);
- Path = getPath();
- return result;
-}
-
-} // llvm namespace
-
-char DebugIR::ID = 0;
-INITIALIZE_PASS(DebugIR, "debug-ir", "Enable debugging IR", false, false)
-
-ModulePass *llvm::createDebugIRPass(bool HideDebugIntrinsics,
- bool HideDebugMetadata, StringRef Directory,
- StringRef Filename) {
- return new DebugIR(HideDebugIntrinsics, HideDebugMetadata, Directory,
- Filename);
-}
-
-ModulePass *llvm::createDebugIRPass() { return new DebugIR(); }
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/DebugIR.h b/contrib/llvm/lib/Transforms/Instrumentation/DebugIR.h
deleted file mode 100644
index 02831ed..0000000
--- a/contrib/llvm/lib/Transforms/Instrumentation/DebugIR.h
+++ /dev/null
@@ -1,98 +0,0 @@
-//===- llvm/Transforms/Instrumentation/DebugIR.h - Interface ----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the interface of the DebugIR pass. For most users,
-// including Instrumentation.h and calling createDebugIRPass() is sufficient and
-// there is no need to include this file.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_INSTRUMENTATION_DEBUGIR_H
-#define LLVM_TRANSFORMS_INSTRUMENTATION_DEBUGIR_H
-
-#include "llvm/Pass.h"
-
-namespace llvm {
-
-class DebugIR : public llvm::ModulePass {
- /// If true, write a source file to disk.
- bool WriteSourceToDisk;
-
- /// Hide certain (non-essential) debug information (only relevant if
- /// createSource is true.
- bool HideDebugIntrinsics;
- bool HideDebugMetadata;
-
- /// The location of the source file.
- std::string Directory;
- std::string Filename;
-
- /// True if a temporary file name was generated.
- bool GeneratedPath;
-
- /// True if the file name was read from the Module.
- bool ParsedPath;
-
-public:
- static char ID;
-
- const char *getPassName() const override { return "DebugIR"; }
-
- /// Generate a file on disk to be displayed in a debugger. If Filename and
- /// Directory are empty, a temporary path will be generated.
- DebugIR(bool HideDebugIntrinsics, bool HideDebugMetadata,
- llvm::StringRef Directory, llvm::StringRef Filename)
- : ModulePass(ID), WriteSourceToDisk(true),
- HideDebugIntrinsics(HideDebugIntrinsics),
- HideDebugMetadata(HideDebugMetadata), Directory(Directory),
- Filename(Filename), GeneratedPath(false), ParsedPath(false) {}
-
- /// Modify input in-place; do not generate additional files, and do not hide
- /// any debug intrinsics/metadata that might be present.
- DebugIR()
- : ModulePass(ID), WriteSourceToDisk(false), HideDebugIntrinsics(false),
- HideDebugMetadata(false), GeneratedPath(false), ParsedPath(false) {}
-
- /// Run pass on M and set Path to the source file path in the output module.
- bool runOnModule(llvm::Module &M, std::string &Path);
- bool runOnModule(llvm::Module &M) override;
-
-private:
-
- /// Returns the concatenated Directory + Filename, without error checking
- std::string getPath();
-
- /// Attempts to read source information from debug information in M, and if
- /// that fails, from M's identifier. Returns true on success, false otherwise.
- bool getSourceInfo(const llvm::Module &M);
-
- /// Replace the extension of Filename with NewExtension, and return true if
- /// successful. Return false if extension could not be found or Filename is
- /// empty.
- bool updateExtension(llvm::StringRef NewExtension);
-
- /// Generate a temporary filename and open an fd
- void generateFilename(std::unique_ptr<int> &fd);
-
- /// Creates DWARF CU/Subroutine metadata
- void createDebugInfo(llvm::Module &M,
- std::unique_ptr<llvm::Module> &DisplayM);
-
- /// Returns true if either Directory or Filename is missing, false otherwise.
- bool isMissingPath();
-
- /// Write M to disk, optionally passing in an fd to an open file which is
- /// closed by this function after writing. If no fd is specified, a new file
- /// is opened, written, and closed.
- void writeDebugBitcode(const llvm::Module *M, int *fd = nullptr);
-};
-
-} // llvm namespace
-
-#endif // LLVM_TRANSFORMS_INSTRUMENTATION_DEBUGIR_H
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp b/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp
index cfeb62e..cb965fb 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/GCOVProfiling.cpp
@@ -285,6 +285,14 @@ namespace {
DeleteContainerSeconds(LinesByFile);
}
+ GCOVBlock(const GCOVBlock &RHS) : GCOVRecord(RHS), Number(RHS.Number) {
+ // Only allow copy before edges and lines have been added. After that,
+ // there are inter-block pointers (eg: edges) that won't take kindly to
+ // blocks being copied or moved around.
+ assert(LinesByFile.empty());
+ assert(OutEdges.empty());
+ }
+
private:
friend class GCOVFunction;
@@ -303,18 +311,22 @@ namespace {
// object users can construct, the blocks and lines will be rooted here.
class GCOVFunction : public GCOVRecord {
public:
- GCOVFunction(DISubprogram SP, raw_ostream *os, uint32_t Ident,
- bool UseCfgChecksum) :
- SP(SP), Ident(Ident), UseCfgChecksum(UseCfgChecksum), CfgChecksum(0) {
+ GCOVFunction(DISubprogram SP, raw_ostream *os, uint32_t Ident,
+ bool UseCfgChecksum)
+ : SP(SP), Ident(Ident), UseCfgChecksum(UseCfgChecksum), CfgChecksum(0),
+ ReturnBlock(1, os) {
this->os = os;
Function *F = SP.getFunction();
DEBUG(dbgs() << "Function: " << getFunctionName(SP) << "\n");
+
uint32_t i = 0;
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
- Blocks[BB] = new GCOVBlock(i++, os);
+ for (auto &BB : *F) {
+ // Skip index 1 (0, 2, 3, 4, ...) because that's assigned to the
+ // ReturnBlock.
+ bool first = i == 0;
+ Blocks.insert(std::make_pair(&BB, GCOVBlock(i++ + !first, os)));
}
- ReturnBlock = new GCOVBlock(i++, os);
std::string FunctionNameAndLine;
raw_string_ostream FNLOS(FunctionNameAndLine);
@@ -323,17 +335,12 @@ namespace {
FuncChecksum = hash_value(FunctionNameAndLine);
}
- ~GCOVFunction() {
- DeleteContainerSeconds(Blocks);
- delete ReturnBlock;
- }
-
GCOVBlock &getBlock(BasicBlock *BB) {
- return *Blocks[BB];
+ return Blocks.find(BB)->second;
}
GCOVBlock &getReturnBlock() {
- return *ReturnBlock;
+ return ReturnBlock;
}
std::string getEdgeDestinations() {
@@ -341,7 +348,7 @@ namespace {
raw_string_ostream EDOS(EdgeDestinations);
Function *F = Blocks.begin()->first->getParent();
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- GCOVBlock &Block = *Blocks[I];
+ GCOVBlock &Block = getBlock(I);
for (int i = 0, e = Block.OutEdges.size(); i != e; ++i)
EDOS << Block.OutEdges[i]->Number;
}
@@ -383,7 +390,7 @@ namespace {
if (Blocks.empty()) return;
Function *F = Blocks.begin()->first->getParent();
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- GCOVBlock &Block = *Blocks[I];
+ GCOVBlock &Block = getBlock(I);
if (Block.OutEdges.empty()) continue;
writeBytes(EdgeTag, 4);
@@ -399,7 +406,7 @@ namespace {
// Emit lines for each block.
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- Blocks[I]->writeOut();
+ getBlock(I).writeOut();
}
}
@@ -409,8 +416,8 @@ namespace {
uint32_t FuncChecksum;
bool UseCfgChecksum;
uint32_t CfgChecksum;
- DenseMap<BasicBlock *, GCOVBlock *> Blocks;
- GCOVBlock *ReturnBlock;
+ DenseMap<BasicBlock *, GCOVBlock> Blocks;
+ GCOVBlock ReturnBlock;
};
}
@@ -480,12 +487,12 @@ void GCOVProfiler::emitProfileNotes() {
// LTO, we'll generate the same .gcno files.
DICompileUnit CU(CU_Nodes->getOperand(i));
- std::string ErrorInfo;
- raw_fd_ostream out(mangleName(CU, "gcno").c_str(), ErrorInfo,
- sys::fs::F_None);
+ std::error_code EC;
+ raw_fd_ostream out(mangleName(CU, "gcno"), EC, sys::fs::F_None);
std::string EdgeDestinations;
DIArray SPs = CU.getSubprograms();
+ unsigned FunctionIdent = 0;
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) {
DISubprogram SP(SPs.getElement(i));
assert((!SP || SP.isSubprogram()) &&
@@ -505,8 +512,8 @@ void GCOVProfiler::emitProfileNotes() {
++It;
EntryBlock.splitBasicBlock(It);
- Funcs.push_back(
- make_unique<GCOVFunction>(SP, &out, i, Options.UseCfgChecksum));
+ Funcs.push_back(make_unique<GCOVFunction>(SP, &out, FunctionIdent++,
+ Options.UseCfgChecksum));
GCOVFunction &Func = *Funcs.back();
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
@@ -738,11 +745,11 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
Edge += Successors;
}
- ArrayRef<Constant*> V(&EdgeTable[0], TableSize);
GlobalVariable *EdgeTableGV =
new GlobalVariable(
*M, EdgeTableTy, true, GlobalValue::InternalLinkage,
- ConstantArray::get(EdgeTableTy, V),
+ ConstantArray::get(EdgeTableTy,
+ makeArrayRef(&EdgeTable[0],TableSize)),
"__llvm_gcda_edge_table");
EdgeTableGV->setUnnamedAddr(true);
return EdgeTableGV;
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp b/contrib/llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp
new file mode 100644
index 0000000..5f73b89
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Instrumentation/InstrProfiling.cpp
@@ -0,0 +1,309 @@
+//===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass lowers instrprof_increment intrinsics emitted by a frontend for
+// profiling. It also builds the data structures and initialization code needed
+// for updating execution counts and emitting the profile at runtime.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation.h"
+
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "instrprof"
+
+namespace {
+
+class InstrProfiling : public ModulePass {
+public:
+ static char ID;
+
+ InstrProfiling() : ModulePass(ID) {}
+
+ InstrProfiling(const InstrProfOptions &Options)
+ : ModulePass(ID), Options(Options) {}
+
+ const char *getPassName() const override {
+ return "Frontend instrumentation-based coverage lowering";
+ }
+
+ bool runOnModule(Module &M) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ }
+
+private:
+ InstrProfOptions Options;
+ Module *M;
+ DenseMap<GlobalVariable *, GlobalVariable *> RegionCounters;
+ std::vector<Value *> UsedVars;
+
+ bool isMachO() const {
+ return Triple(M->getTargetTriple()).isOSBinFormatMachO();
+ }
+
+ /// Get the section name for the counter variables.
+ StringRef getCountersSection() const {
+ return isMachO() ? "__DATA,__llvm_prf_cnts" : "__llvm_prf_cnts";
+ }
+
+ /// Get the section name for the name variables.
+ StringRef getNameSection() const {
+ return isMachO() ? "__DATA,__llvm_prf_names" : "__llvm_prf_names";
+ }
+
+ /// Get the section name for the profile data variables.
+ StringRef getDataSection() const {
+ return isMachO() ? "__DATA,__llvm_prf_data" : "__llvm_prf_data";
+ }
+
+ /// Replace instrprof_increment with an increment of the appropriate value.
+ void lowerIncrement(InstrProfIncrementInst *Inc);
+
+ /// Get the region counters for an increment, creating them if necessary.
+ ///
+ /// If the counter array doesn't yet exist, the profile data variables
+ /// referring to them will also be created.
+ GlobalVariable *getOrCreateRegionCounters(InstrProfIncrementInst *Inc);
+
+ /// Emit runtime registration functions for each profile data variable.
+ void emitRegistration();
+
+ /// Emit the necessary plumbing to pull in the runtime initialization.
+ void emitRuntimeHook();
+
+ /// Add uses of our data variables and runtime hook.
+ void emitUses();
+
+ /// Create a static initializer for our data, on platforms that need it.
+ void emitInitialization();
+};
+
+} // anonymous namespace
+
+char InstrProfiling::ID = 0;
+INITIALIZE_PASS(InstrProfiling, "instrprof",
+ "Frontend instrumentation-based coverage lowering.", false,
+ false)
+
+ModulePass *llvm::createInstrProfilingPass(const InstrProfOptions &Options) {
+ return new InstrProfiling(Options);
+}
+
+bool InstrProfiling::runOnModule(Module &M) {
+ bool MadeChange = false;
+
+ this->M = &M;
+ RegionCounters.clear();
+ UsedVars.clear();
+
+ for (Function &F : M)
+ for (BasicBlock &BB : F)
+ for (auto I = BB.begin(), E = BB.end(); I != E;)
+ if (auto *Inc = dyn_cast<InstrProfIncrementInst>(I++)) {
+ lowerIncrement(Inc);
+ MadeChange = true;
+ }
+ if (!MadeChange)
+ return false;
+
+ emitRegistration();
+ emitRuntimeHook();
+ emitUses();
+ emitInitialization();
+ return true;
+}
+
+void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) {
+ GlobalVariable *Counters = getOrCreateRegionCounters(Inc);
+
+ IRBuilder<> Builder(Inc->getParent(), *Inc);
+ uint64_t Index = Inc->getIndex()->getZExtValue();
+ llvm::Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters, 0, Index);
+ llvm::Value *Count = Builder.CreateLoad(Addr, "pgocount");
+ Count = Builder.CreateAdd(Count, Builder.getInt64(1));
+ Inc->replaceAllUsesWith(Builder.CreateStore(Count, Addr));
+ Inc->eraseFromParent();
+}
+
+/// Get the name of a profiling variable for a particular function.
+static std::string getVarName(InstrProfIncrementInst *Inc, StringRef VarName) {
+ auto *Arr = cast<ConstantDataArray>(Inc->getName()->getInitializer());
+ StringRef Name = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
+ return ("__llvm_profile_" + VarName + "_" + Name).str();
+}
+
+GlobalVariable *
+InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) {
+ GlobalVariable *Name = Inc->getName();
+ auto It = RegionCounters.find(Name);
+ if (It != RegionCounters.end())
+ return It->second;
+
+ // Move the name variable to the right section.
+ Name->setSection(getNameSection());
+ Name->setAlignment(1);
+
+ uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
+ LLVMContext &Ctx = M->getContext();
+ ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);
+
+ // Create the counters variable.
+ auto *Counters = new GlobalVariable(*M, CounterTy, false, Name->getLinkage(),
+ Constant::getNullValue(CounterTy),
+ getVarName(Inc, "counters"));
+ Counters->setVisibility(Name->getVisibility());
+ Counters->setSection(getCountersSection());
+ Counters->setAlignment(8);
+
+ RegionCounters[Inc->getName()] = Counters;
+
+ // Create data variable.
+ auto *NameArrayTy = Name->getType()->getPointerElementType();
+ auto *Int32Ty = Type::getInt32Ty(Ctx);
+ auto *Int64Ty = Type::getInt64Ty(Ctx);
+ auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
+ auto *Int64PtrTy = Type::getInt64PtrTy(Ctx);
+
+ Type *DataTypes[] = {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int64PtrTy};
+ auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes));
+ Constant *DataVals[] = {
+ ConstantInt::get(Int32Ty, NameArrayTy->getArrayNumElements()),
+ ConstantInt::get(Int32Ty, NumCounters),
+ ConstantInt::get(Int64Ty, Inc->getHash()->getZExtValue()),
+ ConstantExpr::getBitCast(Name, Int8PtrTy),
+ ConstantExpr::getBitCast(Counters, Int64PtrTy)};
+ auto *Data = new GlobalVariable(*M, DataTy, true, Name->getLinkage(),
+ ConstantStruct::get(DataTy, DataVals),
+ getVarName(Inc, "data"));
+ Data->setVisibility(Name->getVisibility());
+ Data->setSection(getDataSection());
+ Data->setAlignment(8);
+
+ // Mark the data variable as used so that it isn't stripped out.
+ UsedVars.push_back(Data);
+
+ return Counters;
+}
+
+void InstrProfiling::emitRegistration() {
+ // Don't do this for Darwin. compiler-rt uses linker magic.
+ if (Triple(M->getTargetTriple()).isOSDarwin())
+ return;
+
+ // Construct the function.
+ auto *VoidTy = Type::getVoidTy(M->getContext());
+ auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext());
+ auto *RegisterFTy = FunctionType::get(VoidTy, false);
+ auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage,
+ "__llvm_profile_register_functions", M);
+ RegisterF->setUnnamedAddr(true);
+ if (Options.NoRedZone)
+ RegisterF->addFnAttr(Attribute::NoRedZone);
+
+ auto *RuntimeRegisterTy = llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
+ auto *RuntimeRegisterF =
+ Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage,
+ "__llvm_profile_register_function", M);
+
+ IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF));
+ for (Value *Data : UsedVars)
+ IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy));
+ IRB.CreateRetVoid();
+}
+
+void InstrProfiling::emitRuntimeHook() {
+ const char *const RuntimeVarName = "__llvm_profile_runtime";
+ const char *const RuntimeUserName = "__llvm_profile_runtime_user";
+
+ // If the module's provided its own runtime, we don't need to do anything.
+ if (M->getGlobalVariable(RuntimeVarName))
+ return;
+
+ // Declare an external variable that will pull in the runtime initialization.
+ auto *Int32Ty = Type::getInt32Ty(M->getContext());
+ auto *Var =
+ new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage,
+ nullptr, RuntimeVarName);
+
+ // Make a function that uses it.
+ auto *User =
+ Function::Create(FunctionType::get(Int32Ty, false),
+ GlobalValue::LinkOnceODRLinkage, RuntimeUserName, M);
+ User->addFnAttr(Attribute::NoInline);
+ if (Options.NoRedZone)
+ User->addFnAttr(Attribute::NoRedZone);
+
+ IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User));
+ auto *Load = IRB.CreateLoad(Var);
+ IRB.CreateRet(Load);
+
+ // Mark the user variable as used so that it isn't stripped out.
+ UsedVars.push_back(User);
+}
+
+void InstrProfiling::emitUses() {
+ if (UsedVars.empty())
+ return;
+
+ GlobalVariable *LLVMUsed = M->getGlobalVariable("llvm.used");
+ std::vector<Constant*> MergedVars;
+ if (LLVMUsed) {
+ // Collect the existing members of llvm.used.
+ ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer());
+ for (unsigned I = 0, E = Inits->getNumOperands(); I != E; ++I)
+ MergedVars.push_back(Inits->getOperand(I));
+ LLVMUsed->eraseFromParent();
+ }
+
+ Type *i8PTy = Type::getInt8PtrTy(M->getContext());
+ // Add uses for our data.
+ for (auto *Value : UsedVars)
+ MergedVars.push_back(
+ ConstantExpr::getBitCast(cast<llvm::Constant>(Value), i8PTy));
+
+ // Recreate llvm.used.
+ ArrayType *ATy = ArrayType::get(i8PTy, MergedVars.size());
+ LLVMUsed = new llvm::GlobalVariable(
+ *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
+ llvm::ConstantArray::get(ATy, MergedVars), "llvm.used");
+
+ LLVMUsed->setSection("llvm.metadata");
+}
+
+void InstrProfiling::emitInitialization() {
+ Constant *RegisterF = M->getFunction("__llvm_profile_register_functions");
+ if (!RegisterF)
+ return;
+
+ // Create the initialization function.
+ auto *VoidTy = Type::getVoidTy(M->getContext());
+ auto *F =
+ Function::Create(FunctionType::get(VoidTy, false),
+ GlobalValue::InternalLinkage, "__llvm_profile_init", M);
+ F->setUnnamedAddr(true);
+ F->addFnAttr(Attribute::NoInline);
+ if (Options.NoRedZone)
+ F->addFnAttr(Attribute::NoRedZone);
+
+ // Add the basic block and the necessary calls.
+ IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F));
+ IRB.CreateCall(RegisterF);
+ IRB.CreateRetVoid();
+
+ appendToGlobalCtors(*M, F, 0);
+}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp b/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp
index ac1dd43..a91fc0e 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/Instrumentation.cpp
@@ -25,8 +25,10 @@ void llvm::initializeInstrumentation(PassRegistry &Registry) {
initializeAddressSanitizerModulePass(Registry);
initializeBoundsCheckingPass(Registry);
initializeGCOVProfilerPass(Registry);
+ initializeInstrProfilingPass(Registry);
initializeMemorySanitizerPass(Registry);
initializeThreadSanitizerPass(Registry);
+ initializeSanitizerCoverageModulePass(Registry);
initializeDataFlowSanitizerPass(Registry);
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index 57e308c..9f00d3d 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -120,13 +120,13 @@ using namespace llvm;
#define DEBUG_TYPE "msan"
-static const uint64_t kShadowMask32 = 1ULL << 31;
-static const uint64_t kShadowMask64 = 1ULL << 46;
-static const uint64_t kOriginOffset32 = 1ULL << 30;
-static const uint64_t kOriginOffset64 = 1ULL << 45;
static const unsigned kMinOriginAlignment = 4;
static const unsigned kShadowTLSAlignment = 8;
+// These constants must be kept in sync with the ones in msan.h.
+static const unsigned kParamTLSSize = 800;
+static const unsigned kRetvalTLSSize = 800;
+
// Accesses sizes are powers of two: 1, 2, 4, 8.
static const size_t kNumberOfAccessSizes = 4;
@@ -183,20 +183,73 @@ static cl::opt<int> ClInstrumentationWithCallThreshold(
"inline checks (-1 means never use callbacks)."),
cl::Hidden, cl::init(3500));
-// Experimental. Wraps all indirect calls in the instrumented code with
-// a call to the given function. This is needed to assist the dynamic
-// helper tool (MSanDR) to regain control on transition between instrumented and
-// non-instrumented code.
-static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
- cl::desc("Wrap indirect calls with a given function"),
- cl::Hidden);
-
-static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
- cl::desc("Do not wrap indirect calls with target in the same module"),
- cl::Hidden, cl::init(true));
+// This is an experiment to enable handling of cases where shadow is a non-zero
+// compile-time constant. For some unexplainable reason they were silently
+// ignored in the instrumentation.
+static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
+ cl::desc("Insert checks for constant shadow values"),
+ cl::Hidden, cl::init(false));
namespace {
+// Memory map parameters used in application-to-shadow address calculation.
+// Offset = (Addr & ~AndMask) ^ XorMask
+// Shadow = ShadowBase + Offset
+// Origin = OriginBase + Offset
+struct MemoryMapParams {
+ uint64_t AndMask;
+ uint64_t XorMask;
+ uint64_t ShadowBase;
+ uint64_t OriginBase;
+};
+
+struct PlatformMemoryMapParams {
+ const MemoryMapParams *bits32;
+ const MemoryMapParams *bits64;
+};
+
+// i386 Linux
+static const MemoryMapParams LinuxMemoryMapParams32 = {
+ 0x000080000000, // AndMask
+ 0, // XorMask (not used)
+ 0, // ShadowBase (not used)
+ 0x000040000000, // OriginBase
+};
+
+// x86_64 Linux
+static const MemoryMapParams LinuxMemoryMapParams64 = {
+ 0x400000000000, // AndMask
+ 0, // XorMask (not used)
+ 0, // ShadowBase (not used)
+ 0x200000000000, // OriginBase
+};
+
+// i386 FreeBSD
+static const MemoryMapParams FreeBSDMemoryMapParams32 = {
+ 0x000180000000, // AndMask
+ 0x000040000000, // XorMask
+ 0x000020000000, // ShadowBase
+ 0x000700000000, // OriginBase
+};
+
+// x86_64 FreeBSD
+static const MemoryMapParams FreeBSDMemoryMapParams64 = {
+ 0xc00000000000, // AndMask
+ 0x200000000000, // XorMask
+ 0x100000000000, // ShadowBase
+ 0x380000000000, // OriginBase
+};
+
+static const PlatformMemoryMapParams LinuxMemoryMapParams = {
+ &LinuxMemoryMapParams32,
+ &LinuxMemoryMapParams64,
+};
+
+static const PlatformMemoryMapParams FreeBSDMemoryMapParams = {
+ &FreeBSDMemoryMapParams32,
+ &FreeBSDMemoryMapParams64,
+};
+
/// \brief An instrumentation pass implementing detection of uninitialized
/// reads.
///
@@ -208,8 +261,7 @@ class MemorySanitizer : public FunctionPass {
: FunctionPass(ID),
TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
DL(nullptr),
- WarningFn(nullptr),
- WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
+ WarningFn(nullptr) {}
const char *getPassName() const override { return "MemorySanitizer"; }
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
@@ -243,9 +295,6 @@ class MemorySanitizer : public FunctionPass {
/// function.
GlobalVariable *OriginTLS;
- GlobalVariable *MsandrModuleStart;
- GlobalVariable *MsandrModuleEnd;
-
/// \brief The run-time callback to print a warning.
Value *WarningFn;
// These arrays are indexed by log2(AccessSize).
@@ -263,25 +312,15 @@ class MemorySanitizer : public FunctionPass {
/// \brief MSan runtime replacements for memmove, memcpy and memset.
Value *MemmoveFn, *MemcpyFn, *MemsetFn;
- /// \brief Address mask used in application-to-shadow address calculation.
- /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
- uint64_t ShadowMask;
- /// \brief Offset of the origin shadow from the "normal" shadow.
- /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
- uint64_t OriginOffset;
- /// \brief Branch weights for error reporting.
+ /// \brief Memory map parameters used in application-to-shadow calculation.
+ const MemoryMapParams *MapParams;
+
MDNode *ColdCallWeights;
/// \brief Branch weights for origin store.
MDNode *OriginStoreWeights;
/// \brief An empty volatile inline asm that prevents callback merge.
InlineAsm *EmptyAsm;
- bool WrapIndirectCalls;
- /// \brief Run-time wrapper for indirect calls.
- Value *IndirectCallWrapperFn;
- // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
- Type *AnyFunctionPtrTy;
-
friend struct MemorySanitizerVisitor;
friend struct VarArgAMD64Helper;
};
@@ -321,7 +360,7 @@ void MemorySanitizer::initializeCallbacks(Module &M) {
// which is not yet implemented.
StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
: "__msan_warning_noreturn";
- WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
+ WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
@@ -329,34 +368,35 @@ void MemorySanitizer::initializeCallbacks(Module &M) {
std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
- IRB.getInt32Ty(), NULL);
+ IRB.getInt32Ty(), nullptr);
FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
- IRB.getInt8PtrTy(), IRB.getInt32Ty(), NULL);
+ IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
}
MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
"__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
- IRB.getInt8PtrTy(), IntptrTy, NULL);
- MsanPoisonStackFn = M.getOrInsertFunction(
- "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
+ IRB.getInt8PtrTy(), IntptrTy, nullptr);
+ MsanPoisonStackFn =
+ M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
+ IRB.getInt8PtrTy(), IntptrTy, nullptr);
MsanChainOriginFn = M.getOrInsertFunction(
- "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
+ "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
MemmoveFn = M.getOrInsertFunction(
"__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IntptrTy, NULL);
+ IRB.getInt8PtrTy(), IntptrTy, nullptr);
MemcpyFn = M.getOrInsertFunction(
"__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IntptrTy, NULL);
+ IntptrTy, nullptr);
MemsetFn = M.getOrInsertFunction(
"__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
- IntptrTy, NULL);
+ IntptrTy, nullptr);
// Create globals.
RetvalTLS = new GlobalVariable(
- M, ArrayType::get(IRB.getInt64Ty(), 8), false,
+ M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
RetvalOriginTLS = new GlobalVariable(
@@ -364,16 +404,16 @@ void MemorySanitizer::initializeCallbacks(Module &M) {
"__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
ParamTLS = new GlobalVariable(
- M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
ParamOriginTLS = new GlobalVariable(
- M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
- nullptr, "__msan_param_origin_tls", nullptr,
- GlobalVariable::InitialExecTLSModel);
+ M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
+ GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
+ nullptr, GlobalVariable::InitialExecTLSModel);
VAArgTLS = new GlobalVariable(
- M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
+ M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
VAArgOverflowSizeTLS = new GlobalVariable(
@@ -388,24 +428,6 @@ void MemorySanitizer::initializeCallbacks(Module &M) {
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
/*hasSideEffects=*/true);
-
- if (WrapIndirectCalls) {
- AnyFunctionPtrTy =
- PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
- IndirectCallWrapperFn = M.getOrInsertFunction(
- ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
- }
-
- if (WrapIndirectCalls && ClWrapIndirectCallsFast) {
- MsandrModuleStart = new GlobalVariable(
- M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
- nullptr, "__executable_start");
- MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
- MsandrModuleEnd = new GlobalVariable(
- M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
- nullptr, "_end");
- MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
- }
}
/// \brief Module-level initialization.
@@ -417,16 +439,21 @@ bool MemorySanitizer::doInitialization(Module &M) {
report_fatal_error("data layout missing");
DL = &DLP->getDataLayout();
+ Triple TargetTriple(M.getTargetTriple());
+ const PlatformMemoryMapParams *PlatformMapParams;
+ if (TargetTriple.getOS() == Triple::FreeBSD)
+ PlatformMapParams = &FreeBSDMemoryMapParams;
+ else
+ PlatformMapParams = &LinuxMemoryMapParams;
+
C = &(M.getContext());
unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
switch (PtrSize) {
case 64:
- ShadowMask = kShadowMask64;
- OriginOffset = kOriginOffset64;
+ MapParams = PlatformMapParams->bits64;
break;
case 32:
- ShadowMask = kShadowMask32;
- OriginOffset = kOriginOffset32;
+ MapParams = PlatformMapParams->bits32;
break;
default:
report_fatal_error("unsupported pointer size");
@@ -442,7 +469,7 @@ bool MemorySanitizer::doInitialization(Module &M) {
// Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
- "__msan_init", IRB.getVoidTy(), NULL)), 0);
+ "__msan_init", IRB.getVoidTy(), nullptr)), 0);
if (TrackOrigins)
new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
@@ -525,7 +552,6 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
};
SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
SmallVector<Instruction*, 16> StoreList;
- SmallVector<CallSite, 16> IndirectCallList;
MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
: F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
@@ -551,15 +577,18 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
unsigned Alignment, bool AsCall) {
+ unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
if (isa<StructType>(Shadow->getType())) {
- IRB.CreateAlignedStore(updateOrigin(Origin, IRB), getOriginPtr(Addr, IRB),
- Alignment);
+ IRB.CreateAlignedStore(updateOrigin(Origin, IRB),
+ getOriginPtr(Addr, IRB, Alignment),
+ OriginAlignment);
} else {
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
// TODO(eugenis): handle non-zero constant shadow by inserting an
// unconditional check (can not simply fail compilation as this could
// be in the dead code).
- if (isa<Constant>(ConvertedShadow)) return;
+ if (!ClCheckConstantShadow)
+ if (isa<Constant>(ConvertedShadow)) return;
unsigned TypeSizeInBits =
MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
@@ -577,7 +606,8 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
IRBuilder<> IRBNew(CheckTerm);
IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
- getOriginPtr(Addr, IRBNew), Alignment);
+ getOriginPtr(Addr, IRBNew, Alignment),
+ OriginAlignment);
}
}
}
@@ -601,11 +631,9 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
- if (MS.TrackOrigins) {
- unsigned Alignment = std::max(kMinOriginAlignment, SI.getAlignment());
- storeOrigin(IRB, Addr, Shadow, getOrigin(Val), Alignment,
+ if (MS.TrackOrigins)
+ storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
InstrumentWithCalls);
- }
}
}
@@ -615,8 +643,9 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
- // See the comment in materializeStores().
- if (isa<Constant>(ConvertedShadow)) return;
+ // See the comment in storeOrigin().
+ if (!ClCheckConstantShadow)
+ if (isa<Constant>(ConvertedShadow)) return;
unsigned TypeSizeInBits =
MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
@@ -655,47 +684,6 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
DEBUG(dbgs() << "DONE:\n" << F);
}
- void materializeIndirectCalls() {
- for (auto &CS : IndirectCallList) {
- Instruction *I = CS.getInstruction();
- BasicBlock *B = I->getParent();
- IRBuilder<> IRB(I);
- Value *Fn0 = CS.getCalledValue();
- Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
-
- if (ClWrapIndirectCallsFast) {
- // Check that call target is inside this module limits.
- Value *Start =
- IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
- Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
-
- Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
- IRB.CreateICmpUGE(Fn, End));
-
- PHINode *NewFnPhi =
- IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
-
- Instruction *CheckTerm = SplitBlockAndInsertIfThen(
- NotInThisModule, NewFnPhi,
- /* Unreachable */ false, MS.ColdCallWeights);
-
- IRB.SetInsertPoint(CheckTerm);
- // Slow path: call wrapper function to possibly transform the call
- // target.
- Value *NewFn = IRB.CreateBitCast(
- IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
-
- NewFnPhi->addIncoming(Fn0, B);
- NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
- CS.setCalledFunction(NewFnPhi);
- } else {
- Value *NewFn = IRB.CreateBitCast(
- IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
- CS.setCalledFunction(NewFn);
- }
- }
- }
-
/// \brief Add MemorySanitizer instrumentation to a function.
bool runOnFunction() {
MS.initializeCallbacks(*F.getParent());
@@ -738,9 +726,6 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
// Insert shadow value checks.
materializeChecks(InstrumentWithCalls);
- // Wrap indirect calls.
- materializeIndirectCalls();
-
return true;
}
@@ -763,6 +748,10 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
return VectorType::get(IntegerType::get(*MS.C, EltSize),
VT->getNumElements());
}
+ if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
+ return ArrayType::get(getShadowTy(AT->getElementType()),
+ AT->getNumElements());
+ }
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
SmallVector<Type*, 4> Elements;
for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
@@ -790,32 +779,57 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
return IRB.CreateBitCast(V, NoVecTy);
}
+ /// \brief Compute the integer shadow offset that corresponds to a given
+ /// application address.
+ ///
+ /// Offset = (Addr & ~AndMask) ^ XorMask
+ Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
+ uint64_t AndMask = MS.MapParams->AndMask;
+ assert(AndMask != 0 && "AndMask shall be specified");
+ Value *OffsetLong =
+ IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, ~AndMask));
+
+ uint64_t XorMask = MS.MapParams->XorMask;
+ if (XorMask != 0)
+ OffsetLong = IRB.CreateXor(OffsetLong,
+ ConstantInt::get(MS.IntptrTy, XorMask));
+ return OffsetLong;
+ }
+
/// \brief Compute the shadow address that corresponds to a given application
/// address.
///
- /// Shadow = Addr & ~ShadowMask.
+ /// Shadow = ShadowBase + Offset
Value *getShadowPtr(Value *Addr, Type *ShadowTy,
IRBuilder<> &IRB) {
- Value *ShadowLong =
- IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
+ Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
+ uint64_t ShadowBase = MS.MapParams->ShadowBase;
+ if (ShadowBase != 0)
+ ShadowLong =
+ IRB.CreateAdd(ShadowLong,
+ ConstantInt::get(MS.IntptrTy, ShadowBase));
return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
}
/// \brief Compute the origin address that corresponds to a given application
/// address.
///
- /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
- Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
- Value *ShadowLong =
- IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
- Value *Add =
- IRB.CreateAdd(ShadowLong,
- ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
- Value *SecondAnd =
- IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
- return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
+ /// OriginAddr = (OriginBase + Offset) & ~3ULL
+ Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
+ Value *OriginLong = getShadowPtrOffset(Addr, IRB);
+ uint64_t OriginBase = MS.MapParams->OriginBase;
+ if (OriginBase != 0)
+ OriginLong =
+ IRB.CreateAdd(OriginLong,
+ ConstantInt::get(MS.IntptrTy, OriginBase));
+ if (Alignment < kMinOriginAlignment) {
+ uint64_t Mask = kMinOriginAlignment - 1;
+ OriginLong = IRB.CreateAnd(OriginLong,
+ ConstantInt::get(MS.IntptrTy, ~Mask));
+ }
+ return IRB.CreateIntToPtr(OriginLong,
+ PointerType::get(IRB.getInt32Ty(), 0));
}
/// \brief Compute the shadow address for a given function argument.
@@ -882,11 +896,18 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
assert(ShadowTy);
if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
return Constant::getAllOnesValue(ShadowTy);
- StructType *ST = cast<StructType>(ShadowTy);
- SmallVector<Constant *, 4> Vals;
- for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
- Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
- return ConstantStruct::get(ST, Vals);
+ if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
+ SmallVector<Constant *, 4> Vals(AT->getNumElements(),
+ getPoisonedShadow(AT->getElementType()));
+ return ConstantArray::get(AT, Vals);
+ }
+ if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
+ SmallVector<Constant *, 4> Vals;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
+ return ConstantStruct::get(ST, Vals);
+ }
+ llvm_unreachable("Unexpected shadow type");
}
/// \brief Create a dirty shadow for a given value.
@@ -941,6 +962,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
: MS.DL->getTypeAllocSize(FArg.getType());
if (A == &FArg) {
+ bool Overflow = ArgOffset + Size > kParamTLSSize;
Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
if (FArg.hasByValAttr()) {
// ByVal pointer itself has clean shadow. We copy the actual
@@ -951,25 +973,40 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Type *EltType = A->getType()->getPointerElementType();
ArgAlign = MS.DL->getABITypeAlignment(EltType);
}
- unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
- Value *Cpy = EntryIRB.CreateMemCpy(
- getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
- CopyAlign);
- DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
- (void)Cpy;
+ if (Overflow) {
+ // ParamTLS overflow.
+ EntryIRB.CreateMemSet(
+ getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
+ Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
+ } else {
+ unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
+ Value *Cpy = EntryIRB.CreateMemCpy(
+ getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
+ CopyAlign);
+ DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
+ (void)Cpy;
+ }
*ShadowPtr = getCleanShadow(V);
} else {
- *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
+ if (Overflow) {
+ // ParamTLS overflow.
+ *ShadowPtr = getCleanShadow(V);
+ } else {
+ *ShadowPtr =
+ EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
+ }
}
DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
**ShadowPtr << "\n");
- if (MS.TrackOrigins) {
+ if (MS.TrackOrigins && !Overflow) {
Value *OriginPtr =
getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
+ } else {
+ setOrigin(A, getCleanOrigin());
}
}
- ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
+ ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
}
assert(*ShadowPtr && "Could not find shadow for an argument");
return *ShadowPtr;
@@ -986,15 +1023,13 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// \brief Get the origin for a value.
Value *getOrigin(Value *V) {
if (!MS.TrackOrigins) return nullptr;
- if (isa<Instruction>(V) || isa<Argument>(V)) {
- Value *Origin = OriginMap[V];
- if (!Origin) {
- DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
- Origin = getCleanOrigin();
- }
- return Origin;
- }
- return getCleanOrigin();
+ if (!PropagateShadow) return getCleanOrigin();
+ if (isa<Constant>(V)) return getCleanOrigin();
+ assert((isa<Instruction>(V) || isa<Argument>(V)) &&
+ "Unexpected value type in getOrigin()");
+ Value *Origin = OriginMap[V];
+ assert(Origin && "Missing origin");
+ return Origin;
}
/// \brief Get the origin for i-th argument of the instruction I.
@@ -1024,9 +1059,16 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// UMR warning in runtime if the value is not fully defined.
void insertShadowCheck(Value *Val, Instruction *OrigIns) {
assert(Val);
- Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
- if (!Shadow) return;
- Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
+ Value *Shadow, *Origin;
+ if (ClCheckConstantShadow) {
+ Shadow = getShadow(Val);
+ if (!Shadow) return;
+ Origin = getOrigin(Val);
+ } else {
+ Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
+ if (!Shadow) return;
+ Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
+ }
insertShadowCheck(Shadow, Origin, OrigIns);
}
@@ -1075,7 +1117,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
IRBuilder<> IRB(I.getNextNode());
Type *ShadowTy = getShadowTy(&I);
Value *Addr = I.getPointerOperand();
- if (PropagateShadow) {
+ if (PropagateShadow && !I.getMetadata("nosanitize")) {
Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
setShadow(&I,
IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
@@ -1091,9 +1133,10 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
if (MS.TrackOrigins) {
if (PropagateShadow) {
- unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
- setOrigin(&I,
- IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
+ unsigned Alignment = I.getAlignment();
+ unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
+ setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
+ OriginAlignment));
} else {
setOrigin(&I, getCleanOrigin());
}
@@ -1127,6 +1170,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
}
void visitAtomicRMWInst(AtomicRMWInst &I) {
@@ -1744,7 +1788,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
// FIXME: use ClStoreCleanOrigin
// FIXME: factor out common code from materializeStores
if (MS.TrackOrigins)
- IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
+ IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
return true;
}
@@ -1771,7 +1815,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
if (MS.TrackOrigins) {
if (PropagateShadow)
- setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
+ setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
else
setOrigin(&I, getCleanOrigin());
}
@@ -1859,7 +1903,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Value *Op = I.getArgOperand(0);
Type *OpType = Op->getType();
Function *BswapFunc = Intrinsic::getDeclaration(
- F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
+ F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
setOrigin(&I, getOrigin(Op));
}
@@ -1935,6 +1979,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
setOrigin(&I, getOrigin(CopyOp));
} else {
setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
}
}
@@ -2291,9 +2336,6 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
}
IRBuilder<> IRB(&I);
- if (MS.WrapIndirectCalls && !CS.getCalledFunction())
- IndirectCallList.push_back(CS);
-
unsigned ArgOffset = 0;
DEBUG(dbgs() << " CallSite: " << I << "\n");
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
@@ -2318,12 +2360,15 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
assert(A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!");
Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
- unsigned Alignment = CS.getParamAlignment(i + 1);
+ if (ArgOffset + Size > kParamTLSSize) break;
+ unsigned ParamAlignment = CS.getParamAlignment(i + 1);
+ unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
Store = IRB.CreateMemCpy(ArgShadowBase,
getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
Size, Alignment);
} else {
Size = MS.DL->getTypeAllocSize(A->getType());
+ if (ArgOffset + Size > kParamTLSSize) break;
Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
kShadowTLSAlignment);
Constant *Cst = dyn_cast<Constant>(ArgShadow);
@@ -2335,7 +2380,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
(void)Store;
assert(Size != 0 && Store != nullptr);
DEBUG(dbgs() << " Param:" << *Store << "\n");
- ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
+ ArgOffset += RoundUpToAlignment(Size, 8);
}
DEBUG(dbgs() << " done with call args\n");
@@ -2399,6 +2444,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
IRBuilder<> IRB(&I);
if (!PropagateShadow) {
setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
return;
}
@@ -2412,6 +2458,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
void visitAllocaInst(AllocaInst &I) {
setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
IRBuilder<> IRB(I.getNextNode());
uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
if (PoisonStack && ClPoisonStackWithCall) {
@@ -2425,7 +2472,6 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
}
if (PoisonStack && MS.TrackOrigins) {
- setOrigin(&I, getCleanOrigin());
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
// We create a string with a description of the stack allocation and
@@ -2491,9 +2537,10 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
}
// a = select b, c, d
// Oa = Sb ? Ob : (b ? Oc : Od)
- setOrigin(&I, IRB.CreateSelect(
- Sb, getOrigin(I.getCondition()),
- IRB.CreateSelect(B, getOrigin(C), getOrigin(D))));
+ setOrigin(
+ &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
+ IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
+ getOrigin(I.getFalseValue()))));
}
}
@@ -2616,7 +2663,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
Type *RealTy = A->getType()->getPointerElementType();
uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
- OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
+ OverflowOffset += RoundUpToAlignment(ArgSize, 8);
IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
ArgSize, kShadowTLSAlignment);
} else {
@@ -2638,7 +2685,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
case AK_Memory:
uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
- OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
+ OverflowOffset += RoundUpToAlignment(ArgSize, 8);
}
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/SanitizerCoverage.cpp b/contrib/llvm/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
new file mode 100644
index 0000000..c048a99
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
@@ -0,0 +1,314 @@
+//===-- SanitizerCoverage.cpp - coverage instrumentation for sanitizers ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Coverage instrumentation that works with AddressSanitizer
+// and potentially with other Sanitizers.
+//
+// We create a Guard variable with the same linkage
+// as the function and inject this code into the entry block (CoverageLevel=1)
+// or all blocks (CoverageLevel>=2):
+// if (Guard < 0) {
+// __sanitizer_cov(&Guard);
+// }
+// The accesses to Guard are atomic. The rest of the logic is
+// in __sanitizer_cov (it's fine to call it more than once).
+//
+// With CoverageLevel>=3 we also split critical edges this effectively
+// instrumenting all edges.
+//
+// CoverageLevel>=4 add indirect call profiling implented as a function call.
+//
+// This coverage implementation provides very limited data:
+// it only tells if a given function (block) was ever executed. No counters.
+// But for many use cases this is what we need and the added slowdown small.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sancov"
+
+static const char *const kSanCovModuleInitName = "__sanitizer_cov_module_init";
+static const char *const kSanCovName = "__sanitizer_cov";
+static const char *const kSanCovIndirCallName = "__sanitizer_cov_indir_call16";
+static const char *const kSanCovTraceEnter = "__sanitizer_cov_trace_func_enter";
+static const char *const kSanCovTraceBB = "__sanitizer_cov_trace_basic_block";
+static const char *const kSanCovModuleCtorName = "sancov.module_ctor";
+static const uint64_t kSanCtorAndDtorPriority = 1;
+
+static cl::opt<int> ClCoverageLevel("sanitizer-coverage-level",
+ cl::desc("Sanitizer Coverage. 0: none, 1: entry block, 2: all blocks, "
+ "3: all blocks and critical edges, "
+ "4: above plus indirect calls"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<int> ClCoverageBlockThreshold(
+ "sanitizer-coverage-block-threshold",
+ cl::desc("Add coverage instrumentation only to the entry block if there "
+ "are more than this number of blocks."),
+ cl::Hidden, cl::init(1500));
+
+static cl::opt<bool>
+ ClExperimentalTracing("sanitizer-coverage-experimental-tracing",
+ cl::desc("Experimental basic-block tracing: insert "
+ "callbacks at every basic block"),
+ cl::Hidden, cl::init(false));
+
+namespace {
+
+class SanitizerCoverageModule : public ModulePass {
+ public:
+ SanitizerCoverageModule(int CoverageLevel = 0)
+ : ModulePass(ID),
+ CoverageLevel(std::max(CoverageLevel, (int)ClCoverageLevel)) {}
+ bool runOnModule(Module &M) override;
+ bool runOnFunction(Function &F);
+ static char ID; // Pass identification, replacement for typeid
+ const char *getPassName() const override {
+ return "SanitizerCoverageModule";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DataLayoutPass>();
+ }
+
+ private:
+ void InjectCoverageForIndirectCalls(Function &F,
+ ArrayRef<Instruction *> IndirCalls);
+ bool InjectCoverage(Function &F, ArrayRef<BasicBlock *> AllBlocks,
+ ArrayRef<Instruction *> IndirCalls);
+ void InjectCoverageAtBlock(Function &F, BasicBlock &BB);
+ Function *SanCovFunction;
+ Function *SanCovIndirCallFunction;
+ Function *SanCovModuleInit;
+ Function *SanCovTraceEnter, *SanCovTraceBB;
+ InlineAsm *EmptyAsm;
+ Type *IntptrTy;
+ LLVMContext *C;
+
+ GlobalVariable *GuardArray;
+
+ int CoverageLevel;
+};
+
+} // namespace
+
+static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
+ if (Function *F = dyn_cast<Function>(FuncOrBitcast))
+ return F;
+ std::string Err;
+ raw_string_ostream Stream(Err);
+ Stream << "SanitizerCoverage interface function redefined: "
+ << *FuncOrBitcast;
+ report_fatal_error(Err);
+}
+
+bool SanitizerCoverageModule::runOnModule(Module &M) {
+ if (!CoverageLevel) return false;
+ C = &(M.getContext());
+ DataLayoutPass *DLP = &getAnalysis<DataLayoutPass>();
+ IntptrTy = Type::getIntNTy(*C, DLP->getDataLayout().getPointerSizeInBits());
+ Type *VoidTy = Type::getVoidTy(*C);
+ IRBuilder<> IRB(*C);
+ Type *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
+
+ Function *CtorFunc =
+ Function::Create(FunctionType::get(VoidTy, false),
+ GlobalValue::InternalLinkage, kSanCovModuleCtorName, &M);
+ ReturnInst::Create(*C, BasicBlock::Create(*C, "", CtorFunc));
+ appendToGlobalCtors(M, CtorFunc, kSanCtorAndDtorPriority);
+
+ SanCovFunction = checkInterfaceFunction(
+ M.getOrInsertFunction(kSanCovName, VoidTy, Int32PtrTy, nullptr));
+ SanCovIndirCallFunction = checkInterfaceFunction(M.getOrInsertFunction(
+ kSanCovIndirCallName, VoidTy, IntptrTy, IntptrTy, nullptr));
+ SanCovModuleInit = checkInterfaceFunction(
+ M.getOrInsertFunction(kSanCovModuleInitName, Type::getVoidTy(*C),
+ Int32PtrTy, IntptrTy, nullptr));
+ SanCovModuleInit->setLinkage(Function::ExternalLinkage);
+ // We insert an empty inline asm after cov callbacks to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+
+ if (ClExperimentalTracing) {
+ SanCovTraceEnter = checkInterfaceFunction(
+ M.getOrInsertFunction(kSanCovTraceEnter, VoidTy, Int32PtrTy, nullptr));
+ SanCovTraceBB = checkInterfaceFunction(
+ M.getOrInsertFunction(kSanCovTraceBB, VoidTy, Int32PtrTy, nullptr));
+ }
+
+ // At this point we create a dummy array of guards because we don't
+ // know how many elements we will need.
+ Type *Int32Ty = IRB.getInt32Ty();
+ GuardArray =
+ new GlobalVariable(M, Int32Ty, false, GlobalValue::ExternalLinkage,
+ nullptr, "__sancov_gen_cov_tmp");
+
+ for (auto &F : M)
+ runOnFunction(F);
+
+ // Now we know how many elements we need. Create an array of guards
+ // with one extra element at the beginning for the size.
+ Type *Int32ArrayNTy =
+ ArrayType::get(Int32Ty, SanCovFunction->getNumUses() + 1);
+ GlobalVariable *RealGuardArray = new GlobalVariable(
+ M, Int32ArrayNTy, false, GlobalValue::PrivateLinkage,
+ Constant::getNullValue(Int32ArrayNTy), "__sancov_gen_cov");
+
+ // Replace the dummy array with the real one.
+ GuardArray->replaceAllUsesWith(
+ IRB.CreatePointerCast(RealGuardArray, Int32PtrTy));
+ GuardArray->eraseFromParent();
+
+ // Call __sanitizer_cov_module_init
+ IRB.SetInsertPoint(CtorFunc->getEntryBlock().getTerminator());
+ IRB.CreateCall2(SanCovModuleInit,
+ IRB.CreatePointerCast(RealGuardArray, Int32PtrTy),
+ ConstantInt::get(IntptrTy, SanCovFunction->getNumUses()));
+ return true;
+}
+
+bool SanitizerCoverageModule::runOnFunction(Function &F) {
+ if (F.empty()) return false;
+ if (F.getName().find(".module_ctor") != std::string::npos)
+ return false; // Should not instrument sanitizer init functions.
+ if (CoverageLevel >= 3)
+ SplitAllCriticalEdges(F, this);
+ SmallVector<Instruction*, 8> IndirCalls;
+ SmallVector<BasicBlock*, 16> AllBlocks;
+ for (auto &BB : F) {
+ AllBlocks.push_back(&BB);
+ if (CoverageLevel >= 4)
+ for (auto &Inst : BB) {
+ CallSite CS(&Inst);
+ if (CS && !CS.getCalledFunction())
+ IndirCalls.push_back(&Inst);
+ }
+ }
+ InjectCoverage(F, AllBlocks, IndirCalls);
+ return true;
+}
+
+bool
+SanitizerCoverageModule::InjectCoverage(Function &F,
+ ArrayRef<BasicBlock *> AllBlocks,
+ ArrayRef<Instruction *> IndirCalls) {
+ if (!CoverageLevel) return false;
+
+ if (CoverageLevel == 1 ||
+ (unsigned)ClCoverageBlockThreshold < AllBlocks.size()) {
+ InjectCoverageAtBlock(F, F.getEntryBlock());
+ } else {
+ for (auto BB : AllBlocks)
+ InjectCoverageAtBlock(F, *BB);
+ }
+ InjectCoverageForIndirectCalls(F, IndirCalls);
+ return true;
+}
+
+// On every indirect call we call a run-time function
+// __sanitizer_cov_indir_call* with two parameters:
+// - callee address,
+// - global cache array that contains kCacheSize pointers (zero-initialized).
+// The cache is used to speed up recording the caller-callee pairs.
+// The address of the caller is passed implicitly via caller PC.
+// kCacheSize is encoded in the name of the run-time function.
+void SanitizerCoverageModule::InjectCoverageForIndirectCalls(
+ Function &F, ArrayRef<Instruction *> IndirCalls) {
+ if (IndirCalls.empty()) return;
+ const int kCacheSize = 16;
+ const int kCacheAlignment = 64; // Align for better performance.
+ Type *Ty = ArrayType::get(IntptrTy, kCacheSize);
+ for (auto I : IndirCalls) {
+ IRBuilder<> IRB(I);
+ CallSite CS(I);
+ Value *Callee = CS.getCalledValue();
+ if (dyn_cast<InlineAsm>(Callee)) continue;
+ GlobalVariable *CalleeCache = new GlobalVariable(
+ *F.getParent(), Ty, false, GlobalValue::PrivateLinkage,
+ Constant::getNullValue(Ty), "__sancov_gen_callee_cache");
+ CalleeCache->setAlignment(kCacheAlignment);
+ IRB.CreateCall2(SanCovIndirCallFunction,
+ IRB.CreatePointerCast(Callee, IntptrTy),
+ IRB.CreatePointerCast(CalleeCache, IntptrTy));
+ }
+}
+
+void SanitizerCoverageModule::InjectCoverageAtBlock(Function &F,
+ BasicBlock &BB) {
+ BasicBlock::iterator IP = BB.getFirstInsertionPt(), BE = BB.end();
+ // Skip static allocas at the top of the entry block so they don't become
+ // dynamic when we split the block. If we used our optimized stack layout,
+ // then there will only be one alloca and it will come first.
+ for (; IP != BE; ++IP) {
+ AllocaInst *AI = dyn_cast<AllocaInst>(IP);
+ if (!AI || !AI->isStaticAlloca())
+ break;
+ }
+
+ bool IsEntryBB = &BB == &F.getEntryBlock();
+ DebugLoc EntryLoc =
+ IsEntryBB ? IP->getDebugLoc().getFnDebugLoc(*C) : IP->getDebugLoc();
+ IRBuilder<> IRB(IP);
+ IRB.SetCurrentDebugLocation(EntryLoc);
+ SmallVector<Value *, 1> Indices;
+ Value *GuardP = IRB.CreateAdd(
+ IRB.CreatePointerCast(GuardArray, IntptrTy),
+ ConstantInt::get(IntptrTy, (1 + SanCovFunction->getNumUses()) * 4));
+ Type *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
+ GuardP = IRB.CreateIntToPtr(GuardP, Int32PtrTy);
+ LoadInst *Load = IRB.CreateLoad(GuardP);
+ Load->setAtomic(Monotonic);
+ Load->setAlignment(4);
+ Load->setMetadata(F.getParent()->getMDKindID("nosanitize"),
+ MDNode::get(*C, None));
+ Value *Cmp = IRB.CreateICmpSGE(Constant::getNullValue(Load->getType()), Load);
+ Instruction *Ins = SplitBlockAndInsertIfThen(
+ Cmp, IP, false, MDBuilder(*C).createBranchWeights(1, 100000));
+ IRB.SetInsertPoint(Ins);
+ IRB.SetCurrentDebugLocation(EntryLoc);
+ // __sanitizer_cov gets the PC of the instruction using GET_CALLER_PC.
+ IRB.CreateCall(SanCovFunction, GuardP);
+ IRB.CreateCall(EmptyAsm); // Avoids callback merge.
+
+ if (ClExperimentalTracing) {
+ // Experimental support for tracing.
+ // Insert a callback with the same guard variable as used for coverage.
+ IRB.SetInsertPoint(IP);
+ IRB.CreateCall(IsEntryBB ? SanCovTraceEnter : SanCovTraceBB, GuardP);
+ }
+}
+
+char SanitizerCoverageModule::ID = 0;
+INITIALIZE_PASS(SanitizerCoverageModule, "sancov",
+ "SanitizerCoverage: TODO."
+ "ModulePass", false, false)
+ModulePass *llvm::createSanitizerCoverageModulePass(int CoverageLevel) {
+ return new SanitizerCoverageModule(CoverageLevel);
+}
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
index 89386a6..1b86ae5 100644
--- a/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ b/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
@@ -135,33 +135,33 @@ void ThreadSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(M.getContext());
// Initialize the callbacks.
TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
- "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+ "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
- "__tsan_func_exit", IRB.getVoidTy(), NULL));
+ "__tsan_func_exit", IRB.getVoidTy(), nullptr));
OrdTy = IRB.getInt32Ty();
for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
const size_t ByteSize = 1 << i;
const size_t BitSize = ByteSize * 8;
SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
- ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+ ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
- WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+ WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
"_load");
TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
- AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
+ AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
"_store");
TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
- NULL));
+ nullptr));
for (int op = AtomicRMWInst::FIRST_BINOP;
op <= AtomicRMWInst::LAST_BINOP; ++op) {
@@ -185,33 +185,33 @@ void ThreadSanitizer::initializeCallbacks(Module &M) {
continue;
SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
- RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
+ RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
}
SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
"_compare_exchange_val");
TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
- AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
+ AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
}
TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), NULL));
+ IRB.getInt8PtrTy(), nullptr));
TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
- "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
+ "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
- "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
+ "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
- "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
+ "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
"memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IntptrTy, NULL));
+ IRB.getInt8PtrTy(), IntptrTy, nullptr));
MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
"memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IntptrTy, NULL));
+ IntptrTy, nullptr));
MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
"memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
- IntptrTy, NULL));
+ IntptrTy, nullptr));
}
bool ThreadSanitizer::doInitialization(Module &M) {
@@ -224,7 +224,7 @@ bool ThreadSanitizer::doInitialization(Module &M) {
IRBuilder<> IRB(M.getContext());
IntptrTy = IRB.getIntPtrTy(DL);
Value *TsanInit = M.getOrInsertFunction("__tsan_init",
- IRB.getVoidTy(), NULL);
+ IRB.getVoidTy(), nullptr);
appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
return true;
@@ -422,7 +422,7 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
uint32_t v = 0;
switch (ord) {
- case NotAtomic: assert(false);
+ case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
case Unordered: // Fall-through.
case Monotonic: v = 0; break;
// case Consume: v = 1; break; // Not specified yet.
@@ -481,8 +481,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
createOrdering(&IRB, LI->getOrdering())};
- CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
- ArrayRef<Value*>(Args));
+ CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
ReplaceInstWithInst(I, C);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
@@ -497,8 +496,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
createOrdering(&IRB, SI->getOrdering())};
- CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
- ArrayRef<Value*>(Args));
+ CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
ReplaceInstWithInst(I, C);
} else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
Value *Addr = RMWI->getPointerOperand();
@@ -515,7 +513,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
createOrdering(&IRB, RMWI->getOrdering())};
- CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+ CallInst *C = CallInst::Create(F, Args);
ReplaceInstWithInst(I, C);
} else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
Value *Addr = CASI->getPointerOperand();
@@ -543,7 +541,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
Function *F = FI->getSynchScope() == SingleThread ?
TsanAtomicSignalFence : TsanAtomicThreadFence;
- CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
+ CallInst *C = CallInst::Create(F, Args);
ReplaceInstWithInst(I, C);
}
return true;
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ARCRuntimeEntryPoints.h b/contrib/llvm/lib/Transforms/ObjCARC/ARCRuntimeEntryPoints.h
index 4098428..e286dbc 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ARCRuntimeEntryPoints.h
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ARCRuntimeEntryPoints.h
@@ -19,8 +19,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORMS_SCALAR_ARCRUNTIMEENTRYPOINTS_H
-#define LLVM_TRANSFORMS_SCALAR_ARCRUNTIMEENTRYPOINTS_H
+#ifndef LLVM_LIB_TRANSFORMS_OBJCARC_ARCRUNTIMEENTRYPOINTS_H
+#define LLVM_LIB_TRANSFORMS_OBJCARC_ARCRUNTIMEENTRYPOINTS_H
#include "ObjCARC.h"
@@ -183,4 +183,4 @@ private:
} // namespace objcarc
} // namespace llvm
-#endif // LLVM_TRANSFORMS_SCALAR_ARCRUNTIMEENTRYPOINTS_H
+#endif
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
index 08c8842..f6c236c 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
+++ b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
@@ -206,8 +206,8 @@ void
llvm::objcarc::FindDependencies(DependenceKind Flavor,
const Value *Arg,
BasicBlock *StartBB, Instruction *StartInst,
- SmallPtrSet<Instruction *, 4> &DependingInsts,
- SmallPtrSet<const BasicBlock *, 4> &Visited,
+ SmallPtrSetImpl<Instruction *> &DependingInsts,
+ SmallPtrSetImpl<const BasicBlock *> &Visited,
ProvenanceAnalysis &PA) {
BasicBlock::iterator StartPos = StartInst;
@@ -229,7 +229,7 @@ llvm::objcarc::FindDependencies(DependenceKind Flavor,
// Add the predecessors to the worklist.
do {
BasicBlock *PredBB = *PI;
- if (Visited.insert(PredBB))
+ if (Visited.insert(PredBB).second)
Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
} while (++PI != PE);
break;
@@ -246,9 +246,7 @@ llvm::objcarc::FindDependencies(DependenceKind Flavor,
// Determine whether the original StartBB post-dominates all of the blocks we
// visited. If not, insert a sentinal indicating that most optimizations are
// not safe.
- for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
- E = Visited.end(); I != E; ++I) {
- const BasicBlock *BB = *I;
+ for (const BasicBlock *BB : Visited) {
if (BB == StartBB)
continue;
const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h
index 617cdf3..7b5601a 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h
+++ b/contrib/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.h
@@ -20,8 +20,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORMS_OBJCARC_DEPEDENCYANALYSIS_H
-#define LLVM_TRANSFORMS_OBJCARC_DEPEDENCYANALYSIS_H
+#ifndef LLVM_LIB_TRANSFORMS_OBJCARC_DEPENDENCYANALYSIS_H
+#define LLVM_LIB_TRANSFORMS_OBJCARC_DEPENDENCYANALYSIS_H
#include "llvm/ADT/SmallPtrSet.h"
@@ -53,8 +53,8 @@ enum DependenceKind {
void FindDependencies(DependenceKind Flavor,
const Value *Arg,
BasicBlock *StartBB, Instruction *StartInst,
- SmallPtrSet<Instruction *, 4> &DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4> &Visited,
+ SmallPtrSetImpl<Instruction *> &DependingInstructions,
+ SmallPtrSetImpl<const BasicBlock *> &Visited,
ProvenanceAnalysis &PA);
bool
@@ -76,4 +76,4 @@ CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
} // namespace objcarc
} // namespace llvm
-#endif // LLVM_TRANSFORMS_OBJCARC_DEPEDENCYANALYSIS_H
+#endif
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp
index 373168e..6ea038b 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp
@@ -42,6 +42,7 @@ void llvm::initializeObjCARCOpts(PassRegistry &Registry) {
initializeObjCARCExpandPass(Registry);
initializeObjCARCContractPass(Registry);
initializeObjCARCOptPass(Registry);
+ initializePAEvalPass(Registry);
}
void LLVMInitializeObjCARCOpts(LLVMPassRegistryRef R) {
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h
index f71cf2b..7a7eae8 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARC.h
@@ -20,8 +20,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
-#define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
+#ifndef LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H
+#define LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/AliasAnalysis.h"
@@ -380,11 +380,15 @@ static inline bool IsObjCIdentifiedObject(const Value *V) {
StringRef Name = GV->getName();
// These special variables are known to hold values which are not
// reference-counted pointers.
- if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
- Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
- Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
- Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
- Name.startswith("\01l_objc_msgSend_fixup_"))
+ if (Name.startswith("\01l_objc_msgSend_fixup_"))
+ return true;
+
+ StringRef Section = GV->getSection();
+ if (Section.find("__message_refs") != StringRef::npos ||
+ Section.find("__objc_classrefs") != StringRef::npos ||
+ Section.find("__objc_superrefs") != StringRef::npos ||
+ Section.find("__objc_methname") != StringRef::npos ||
+ Section.find("__cstring") != StringRef::npos)
return true;
}
}
@@ -395,4 +399,4 @@ static inline bool IsObjCIdentifiedObject(const Value *V) {
} // end namespace objcarc
} // end namespace llvm
-#endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H
+#endif
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
index 2c09e70..c61b6b0 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
@@ -62,8 +62,8 @@ ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
AliasResult Result =
- AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
- Location(SB, LocB.Size, LocB.TBAATag));
+ AliasAnalysis::alias(Location(SA, LocA.Size, LocA.AATags),
+ Location(SB, LocB.Size, LocB.AATags));
if (Result != MayAlias)
return Result;
@@ -93,7 +93,7 @@ ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
// First, strip off no-ops, including ObjC-specific no-ops, and try making
// a precise alias query.
const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
- if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
+ if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.AATags),
OrLocal))
return true;
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h
index 97b565b..3fcea4e 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.h
@@ -20,8 +20,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
-#define LLVM_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
+#ifndef LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
+#define LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Pass.h"
@@ -71,4 +71,4 @@ namespace objcarc {
} // namespace objcarc
} // namespace llvm
-#endif // LLVM_TRANSFORMS_OBJCARC_OBJCARCALIASANALYSIS_H
+#endif
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp
index f48d53d..eb325eb 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCContract.cpp
@@ -72,9 +72,9 @@ namespace {
bool ContractAutorelease(Function &F, Instruction *Autorelease,
InstructionClass Class,
- SmallPtrSet<Instruction *, 4>
+ SmallPtrSetImpl<Instruction *>
&DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4>
+ SmallPtrSetImpl<const BasicBlock *>
&Visited);
void ContractRelease(Instruction *Release,
@@ -150,9 +150,9 @@ ObjCARCContract::OptimizeRetainCall(Function &F, Instruction *Retain) {
bool
ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
InstructionClass Class,
- SmallPtrSet<Instruction *, 4>
+ SmallPtrSetImpl<Instruction *>
&DependingInstructions,
- SmallPtrSet<const BasicBlock *, 4>
+ SmallPtrSetImpl<const BasicBlock *>
&Visited) {
const Value *Arg = GetObjCArg(Autorelease);
@@ -508,9 +508,8 @@ bool ObjCARCContract::runOnFunction(Function &F) {
// If this function has no escaping allocas or suspicious vararg usage,
// objc_storeStrong calls can be marked with the "tail" keyword.
if (TailOkForStoreStrongs)
- for (SmallPtrSet<CallInst *, 8>::iterator I = StoreStrongCalls.begin(),
- E = StoreStrongCalls.end(); I != E; ++I)
- (*I)->setTailCall();
+ for (CallInst *CI : StoreStrongCalls)
+ CI->setTailCall();
StoreStrongCalls.clear();
return Changed;
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
index dd4dd50..76932e6 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
@@ -188,7 +188,7 @@ static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) {
if (isa<AllocaInst>(P))
return true;
- if (!Visited.insert(P))
+ if (!Visited.insert(P).second)
continue;
if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
@@ -411,10 +411,8 @@ bool RRInfo::Merge(const RRInfo &Other) {
// Merge the insert point sets. If there are any differences,
// that makes this a partial merge.
bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size();
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- I = Other.ReverseInsertPts.begin(),
- E = Other.ReverseInsertPts.end(); I != E; ++I)
- Partial |= ReverseInsertPts.insert(*I);
+ for (Instruction *Inst : Other.ReverseInsertPts)
+ Partial |= ReverseInsertPts.insert(Inst).second;
return Partial;
}
@@ -882,13 +880,10 @@ static void AppendMDNodeToInstForPtr(unsigned NodeId,
Sequence OldSeq,
Sequence NewSeq) {
MDNode *Node = nullptr;
- Value *tmp[3] = {PtrSourceMDNodeID,
- SequenceToMDString(Inst->getContext(),
- OldSeq),
- SequenceToMDString(Inst->getContext(),
- NewSeq)};
- Node = MDNode::get(Inst->getContext(),
- ArrayRef<Value*>(tmp, 3));
+ Metadata *tmp[3] = {PtrSourceMDNodeID,
+ SequenceToMDString(Inst->getContext(), OldSeq),
+ SequenceToMDString(Inst->getContext(), NewSeq)};
+ Node = MDNode::get(Inst->getContext(), tmp);
Inst->setMetadata(NodeId, Node);
}
@@ -908,8 +903,7 @@ static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB,
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *I8XX = PointerType::getUnqual(I8X);
Type *Params[] = {I8XX, I8XX};
- FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
- ArrayRef<Type*>(Params, 2),
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), Params,
/*isVarArg=*/false);
Constant *Callee = M->getOrInsertFunction(Name, FTy);
@@ -951,8 +945,7 @@ static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB,
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
Type *I8XX = PointerType::getUnqual(I8X);
Type *Params[] = {I8XX, I8XX};
- FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
- ArrayRef<Type*>(Params, 2),
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), Params,
/*isVarArg=*/false);
Constant *Callee = M->getOrInsertFunction(Name, FTy);
@@ -2199,7 +2192,7 @@ ComputePostOrders(Function &F,
while (SuccStack.back().second != SE) {
BasicBlock *SuccBB = *SuccStack.back().second++;
- if (Visited.insert(SuccBB)) {
+ if (Visited.insert(SuccBB).second) {
TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
BBStates[CurrBB].addSucc(SuccBB);
@@ -2240,7 +2233,7 @@ ComputePostOrders(Function &F,
BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
while (PredStack.back().second != PE) {
BasicBlock *BB = *PredStack.back().second++;
- if (Visited.insert(BB)) {
+ if (Visited.insert(BB).second) {
PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
goto reverse_dfs_next_succ;
}
@@ -2299,10 +2292,7 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
// Insert the new retain and release calls.
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- PI = ReleasesToMove.ReverseInsertPts.begin(),
- PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
- Instruction *InsertPt = *PI;
+ for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
Value *MyArg = ArgTy == ParamTy ? Arg :
new BitCastInst(Arg, ParamTy, "", InsertPt);
Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
@@ -2313,10 +2303,7 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
"At insertion point: " << *InsertPt << "\n");
}
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- PI = RetainsToMove.ReverseInsertPts.begin(),
- PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
- Instruction *InsertPt = *PI;
+ for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
Value *MyArg = ArgTy == ParamTy ? Arg :
new BitCastInst(Arg, ParamTy, "", InsertPt);
Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
@@ -2333,18 +2320,12 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
}
// Delete the original retain and release calls.
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- AI = RetainsToMove.Calls.begin(),
- AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
- Instruction *OrigRetain = *AI;
+ for (Instruction *OrigRetain : RetainsToMove.Calls) {
Retains.blot(OrigRetain);
DeadInsts.push_back(OrigRetain);
DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
}
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- AI = ReleasesToMove.Calls.begin(),
- AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
- Instruction *OrigRelease = *AI;
+ for (Instruction *OrigRelease : ReleasesToMove.Calls) {
Releases.erase(OrigRelease);
DeadInsts.push_back(OrigRelease);
DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
@@ -2392,10 +2373,7 @@ ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
KnownSafeTD &= NewRetainRRI.KnownSafe;
MultipleOwners =
MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain));
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- LI = NewRetainRRI.Calls.begin(),
- LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
- Instruction *NewRetainRelease = *LI;
+ for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
DenseMap<Value *, RRInfo>::const_iterator Jt =
Releases.find(NewRetainRelease);
if (Jt == Releases.end())
@@ -2410,7 +2388,7 @@ ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
if (!NewRetainReleaseRRI.Calls.count(NewRetain))
return false;
- if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
+ if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
// If we overflow when we compute the path count, don't remove/move
// anything.
@@ -2441,12 +2419,8 @@ ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
// Collect the optimal insertion points.
if (!KnownSafe)
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
- RE = NewRetainReleaseRRI.ReverseInsertPts.end();
- RI != RE; ++RI) {
- Instruction *RIP = *RI;
- if (ReleasesToMove.ReverseInsertPts.insert(RIP)) {
+ for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
+ if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
// If we overflow when we compute the path count, don't
// remove/move anything.
const BBState &RIPBBState = BBStates[RIP->getParent()];
@@ -2476,10 +2450,7 @@ ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
const RRInfo &NewReleaseRRI = It->second;
KnownSafeBU &= NewReleaseRRI.KnownSafe;
CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- LI = NewReleaseRRI.Calls.begin(),
- LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
- Instruction *NewReleaseRetain = *LI;
+ for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
MapVector<Value *, RRInfo>::const_iterator Jt =
Retains.find(NewReleaseRetain);
if (Jt == Retains.end())
@@ -2494,7 +2465,7 @@ ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
if (!NewReleaseRetainRRI.Calls.count(NewRelease))
return false;
- if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
+ if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
// If we overflow when we compute the path count, don't remove/move
// anything.
const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
@@ -2509,12 +2480,8 @@ ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
// Collect the optimal insertion points.
if (!KnownSafe)
- for (SmallPtrSet<Instruction *, 2>::const_iterator
- RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
- RE = NewReleaseRetainRRI.ReverseInsertPts.end();
- RI != RE; ++RI) {
- Instruction *RIP = *RI;
- if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
+ for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
+ if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
// If we overflow when we compute the path count, don't
// remove/move anything.
const BBState &RIPBBState = BBStates[RIP->getParent()];
@@ -2850,8 +2817,8 @@ bool ObjCARCOpt::OptimizeSequences(Function &F) {
/// shared pointer argument. Note that Retain need not be in BB.
static bool
HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
- SmallPtrSet<Instruction *, 4> &DepInsts,
- SmallPtrSet<const BasicBlock *, 4> &Visited,
+ SmallPtrSetImpl<Instruction *> &DepInsts,
+ SmallPtrSetImpl<const BasicBlock *> &Visited,
ProvenanceAnalysis &PA) {
FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
DepInsts, Visited, PA);
@@ -2879,8 +2846,8 @@ HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
static CallInst *
FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
Instruction *Autorelease,
- SmallPtrSet<Instruction *, 4> &DepInsts,
- SmallPtrSet<const BasicBlock *, 4> &Visited,
+ SmallPtrSetImpl<Instruction *> &DepInsts,
+ SmallPtrSetImpl<const BasicBlock *> &Visited,
ProvenanceAnalysis &PA) {
FindDependencies(CanChangeRetainCount, Arg,
BB, Autorelease, DepInsts, Visited, PA);
@@ -2906,8 +2873,8 @@ FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
static CallInst *
FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
ReturnInst *Ret,
- SmallPtrSet<Instruction *, 4> &DepInsts,
- SmallPtrSet<const BasicBlock *, 4> &V,
+ SmallPtrSetImpl<Instruction *> &DepInsts,
+ SmallPtrSetImpl<const BasicBlock *> &V,
ProvenanceAnalysis &PA) {
FindDependencies(NeedsPositiveRetainCount, Arg,
BB, Ret, DepInsts, V, PA);
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
index 22be6fd..410abfc 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
@@ -62,7 +62,7 @@ bool ProvenanceAnalysis::relatedPHI(const PHINode *A,
SmallPtrSet<const Value *, 4> UniqueSrc;
for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
const Value *PV1 = A->getIncomingValue(i);
- if (UniqueSrc.insert(PV1) && related(PV1, B))
+ if (UniqueSrc.insert(PV1).second && related(PV1, B))
return true;
}
@@ -94,7 +94,7 @@ static bool IsStoredObjCPointer(const Value *P) {
if (isa<PtrToIntInst>(P))
// Assume the worst.
return true;
- if (Visited.insert(Ur))
+ if (Visited.insert(Ur).second)
Worklist.push_back(Ur);
}
} while (!Worklist.empty());
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
index a13fb9e..7820468 100644
--- a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
@@ -22,8 +22,8 @@
///
//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
-#define LLVM_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
+#ifndef LLVM_LIB_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
+#define LLVM_LIB_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
#include "llvm/ADT/DenseMap.h"
@@ -77,4 +77,4 @@ public:
} // end namespace objcarc
} // end namespace llvm
-#endif // LLVM_TRANSFORMS_OBJCARC_PROVENANCEANALYSIS_H
+#endif
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp
new file mode 100644
index 0000000..d836632
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp
@@ -0,0 +1,92 @@
+//===- ProvenanceAnalysisEvaluator.cpp - ObjC ARC Optimization ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ProvenanceAnalysis.h"
+#include "llvm/Pass.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+namespace {
+class PAEval : public FunctionPass {
+
+public:
+ static char ID;
+ PAEval();
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnFunction(Function &F) override;
+};
+}
+
+char PAEval::ID = 0;
+PAEval::PAEval() : FunctionPass(ID) {}
+
+void PAEval::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AliasAnalysis>();
+}
+
+static StringRef getName(Value *V) {
+ StringRef Name = V->getName();
+ if (Name.startswith("\1"))
+ return Name.substr(1);
+ return Name;
+}
+
+static void insertIfNamed(SetVector<Value *> &Values, Value *V) {
+ if (!V->hasName())
+ return;
+ Values.insert(V);
+}
+
+bool PAEval::runOnFunction(Function &F) {
+ SetVector<Value *> Values;
+
+ for (auto &Arg : F.args())
+ insertIfNamed(Values, &Arg);
+
+ for (auto I = inst_begin(F), E = inst_end(F); I != E; ++I) {
+ insertIfNamed(Values, &*I);
+
+ for (auto &Op : I->operands())
+ insertIfNamed(Values, Op);
+ }
+
+ ProvenanceAnalysis PA;
+ PA.setAA(&getAnalysis<AliasAnalysis>());
+
+ for (Value *V1 : Values) {
+ StringRef NameV1 = getName(V1);
+ for (Value *V2 : Values) {
+ StringRef NameV2 = getName(V2);
+ if (NameV1 >= NameV2)
+ continue;
+ errs() << NameV1 << " and " << NameV2;
+ if (PA.related(V1, V2))
+ errs() << " are related.\n";
+ else
+ errs() << " are not related.\n";
+ }
+ }
+
+ return false;
+}
+
+FunctionPass *llvm::createPAEvalPass() { return new PAEval(); }
+
+INITIALIZE_PASS_BEGIN(PAEval, "pa-eval",
+ "Evaluate ProvenanceAnalysis on all pairs", false, true)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(PAEval, "pa-eval",
+ "Evaluate ProvenanceAnalysis on all pairs", false, true)
diff --git a/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp b/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp
index 1a3a4aa..3d91984 100644
--- a/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/ADCE.cpp
@@ -73,7 +73,7 @@ bool ADCE::runOnFunction(Function& F) {
for (Instruction::op_iterator OI = curr->op_begin(), OE = curr->op_end();
OI != OE; ++OI)
if (Instruction* Inst = dyn_cast<Instruction>(OI))
- if (alive.insert(Inst))
+ if (alive.insert(Inst).second)
worklist.push_back(Inst);
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp b/contrib/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
new file mode 100644
index 0000000..f48cefa
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
@@ -0,0 +1,428 @@
+//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
+// Set Load/Store Alignments From Assumptions
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a ScalarEvolution-based transformation to set
+// the alignments of load, stores and memory intrinsics based on the truth
+// expressions of assume intrinsics. The primary motivation is to handle
+// complex alignment assumptions that apply to vector loads and stores that
+// appear after vectorization and unrolling.
+//
+//===----------------------------------------------------------------------===//
+
+#define AA_NAME "alignment-from-assumptions"
+#define DEBUG_TYPE AA_NAME
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+STATISTIC(NumLoadAlignChanged,
+ "Number of loads changed by alignment assumptions");
+STATISTIC(NumStoreAlignChanged,
+ "Number of stores changed by alignment assumptions");
+STATISTIC(NumMemIntAlignChanged,
+ "Number of memory intrinsics changed by alignment assumptions");
+
+namespace {
+struct AlignmentFromAssumptions : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ AlignmentFromAssumptions() : FunctionPass(ID) {
+ initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+
+ AU.setPreservesCFG();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<ScalarEvolution>();
+ }
+
+ // For memory transfers, we need a common alignment for both the source and
+ // destination. If we have a new alignment for only one operand of a transfer
+ // instruction, save it in these maps. If we reach the other operand through
+ // another assumption later, then we may change the alignment at that point.
+ DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
+
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ const DataLayout *DL;
+
+ bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
+ const SCEV *&OffSCEV);
+ bool processAssumption(CallInst *I);
+};
+}
+
+char AlignmentFromAssumptions::ID = 0;
+static const char aip_name[] = "Alignment from assumptions";
+INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
+ aip_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
+ aip_name, false, false)
+
+FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
+ return new AlignmentFromAssumptions();
+}
+
+// Given an expression for the (constant) alignment, AlignSCEV, and an
+// expression for the displacement between a pointer and the aligned address,
+// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
+// to a constant. Using SCEV to compute alignment handles the case where
+// DiffSCEV is a recurrence with constant start such that the aligned offset
+// is constant. e.g. {16,+,32} % 32 -> 16.
+static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
+ const SCEV *AlignSCEV,
+ ScalarEvolution *SE) {
+ // DiffUnits = Diff % int64_t(Alignment)
+ const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
+ const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
+ const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
+
+ DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
+ *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
+
+ if (const SCEVConstant *ConstDUSCEV =
+ dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
+ int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
+
+ // If the displacement is an exact multiple of the alignment, then the
+ // displaced pointer has the same alignment as the aligned pointer, so
+ // return the alignment value.
+ if (!DiffUnits)
+ return (unsigned)
+ cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
+
+ // If the displacement is not an exact multiple, but the remainder is a
+ // constant, then return this remainder (but only if it is a power of 2).
+ uint64_t DiffUnitsAbs = abs64(DiffUnits);
+ if (isPowerOf2_64(DiffUnitsAbs))
+ return (unsigned) DiffUnitsAbs;
+ }
+
+ return 0;
+}
+
+// There is an address given by an offset OffSCEV from AASCEV which has an
+// alignment AlignSCEV. Use that information, if possible, to compute a new
+// alignment for Ptr.
+static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
+ const SCEV *OffSCEV, Value *Ptr,
+ ScalarEvolution *SE) {
+ const SCEV *PtrSCEV = SE->getSCEV(Ptr);
+ const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
+
+ // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
+ // sign-extended OffSCEV to i64, so make sure they agree again.
+ DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
+
+ // What we really want to know is the overall offset to the aligned
+ // address. This address is displaced by the provided offset.
+ DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
+
+ DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
+ *AlignSCEV << " and offset " << *OffSCEV <<
+ " using diff " << *DiffSCEV << "\n");
+
+ unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
+ DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
+
+ if (NewAlignment) {
+ return NewAlignment;
+ } else if (const SCEVAddRecExpr *DiffARSCEV =
+ dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
+ // The relative offset to the alignment assumption did not yield a constant,
+ // but we should try harder: if we assume that a is 32-byte aligned, then in
+ // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
+ // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
+ // As a result, the new alignment will not be a constant, but can still
+ // be improved over the default (of 4) to 16.
+
+ const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
+ const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
+
+ DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
+ *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
+
+ // Now compute the new alignment using the displacement to the value in the
+ // first iteration, and also the alignment using the per-iteration delta.
+ // If these are the same, then use that answer. Otherwise, use the smaller
+ // one, but only if it divides the larger one.
+ NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
+ unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
+
+ DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
+ DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
+
+ if (!NewAlignment || !NewIncAlignment) {
+ return 0;
+ } else if (NewAlignment > NewIncAlignment) {
+ if (NewAlignment % NewIncAlignment == 0) {
+ DEBUG(dbgs() << "\tnew start/inc alignment: " <<
+ NewIncAlignment << "\n");
+ return NewIncAlignment;
+ }
+ } else if (NewIncAlignment > NewAlignment) {
+ if (NewIncAlignment % NewAlignment == 0) {
+ DEBUG(dbgs() << "\tnew start/inc alignment: " <<
+ NewAlignment << "\n");
+ return NewAlignment;
+ }
+ } else if (NewIncAlignment == NewAlignment) {
+ DEBUG(dbgs() << "\tnew start/inc alignment: " <<
+ NewAlignment << "\n");
+ return NewAlignment;
+ }
+ }
+
+ return 0;
+}
+
+bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
+ Value *&AAPtr, const SCEV *&AlignSCEV,
+ const SCEV *&OffSCEV) {
+ // An alignment assume must be a statement about the least-significant
+ // bits of the pointer being zero, possibly with some offset.
+ ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
+ if (!ICI)
+ return false;
+
+ // This must be an expression of the form: x & m == 0.
+ if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
+ return false;
+
+ // Swap things around so that the RHS is 0.
+ Value *CmpLHS = ICI->getOperand(0);
+ Value *CmpRHS = ICI->getOperand(1);
+ const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
+ const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
+ if (CmpLHSSCEV->isZero())
+ std::swap(CmpLHS, CmpRHS);
+ else if (!CmpRHSSCEV->isZero())
+ return false;
+
+ BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
+ if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
+ return false;
+
+ // Swap things around so that the right operand of the and is a constant
+ // (the mask); we cannot deal with variable masks.
+ Value *AndLHS = CmpBO->getOperand(0);
+ Value *AndRHS = CmpBO->getOperand(1);
+ const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
+ const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
+ if (isa<SCEVConstant>(AndLHSSCEV)) {
+ std::swap(AndLHS, AndRHS);
+ std::swap(AndLHSSCEV, AndRHSSCEV);
+ }
+
+ const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
+ if (!MaskSCEV)
+ return false;
+
+ // The mask must have some trailing ones (otherwise the condition is
+ // trivial and tells us nothing about the alignment of the left operand).
+ unsigned TrailingOnes =
+ MaskSCEV->getValue()->getValue().countTrailingOnes();
+ if (!TrailingOnes)
+ return false;
+
+ // Cap the alignment at the maximum with which LLVM can deal (and make sure
+ // we don't overflow the shift).
+ uint64_t Alignment;
+ TrailingOnes = std::min(TrailingOnes,
+ unsigned(sizeof(unsigned) * CHAR_BIT - 1));
+ Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
+
+ Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
+ AlignSCEV = SE->getConstant(Int64Ty, Alignment);
+
+ // The LHS might be a ptrtoint instruction, or it might be the pointer
+ // with an offset.
+ AAPtr = nullptr;
+ OffSCEV = nullptr;
+ if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
+ AAPtr = PToI->getPointerOperand();
+ OffSCEV = SE->getConstant(Int64Ty, 0);
+ } else if (const SCEVAddExpr* AndLHSAddSCEV =
+ dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
+ // Try to find the ptrtoint; subtract it and the rest is the offset.
+ for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
+ JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
+ if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
+ if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
+ AAPtr = PToI->getPointerOperand();
+ OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
+ break;
+ }
+ }
+
+ if (!AAPtr)
+ return false;
+
+ // Sign extend the offset to 64 bits (so that it is like all of the other
+ // expressions).
+ unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
+ if (OffSCEVBits < 64)
+ OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
+ else if (OffSCEVBits > 64)
+ return false;
+
+ AAPtr = AAPtr->stripPointerCasts();
+ return true;
+}
+
+bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
+ Value *AAPtr;
+ const SCEV *AlignSCEV, *OffSCEV;
+ if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
+ return false;
+
+ const SCEV *AASCEV = SE->getSCEV(AAPtr);
+
+ // Apply the assumption to all other users of the specified pointer.
+ SmallPtrSet<Instruction *, 32> Visited;
+ SmallVector<Instruction*, 16> WorkList;
+ for (User *J : AAPtr->users()) {
+ if (J == ACall)
+ continue;
+
+ if (Instruction *K = dyn_cast<Instruction>(J))
+ if (isValidAssumeForContext(ACall, K, DL, DT))
+ WorkList.push_back(K);
+ }
+
+ while (!WorkList.empty()) {
+ Instruction *J = WorkList.pop_back_val();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
+ unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ LI->getPointerOperand(), SE);
+
+ if (NewAlignment > LI->getAlignment()) {
+ LI->setAlignment(NewAlignment);
+ ++NumLoadAlignChanged;
+ }
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
+ unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ SI->getPointerOperand(), SE);
+
+ if (NewAlignment > SI->getAlignment()) {
+ SI->setAlignment(NewAlignment);
+ ++NumStoreAlignChanged;
+ }
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
+ unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ MI->getDest(), SE);
+
+ // For memory transfers, we need a common alignment for both the
+ // source and destination. If we have a new alignment for this
+ // instruction, but only for one operand, save it. If we reach the
+ // other operand through another assumption later, then we may
+ // change the alignment at that point.
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
+ unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
+ MTI->getSource(), SE);
+
+ DenseMap<MemTransferInst *, unsigned>::iterator DI =
+ NewDestAlignments.find(MTI);
+ unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
+ 0 : DI->second;
+
+ DenseMap<MemTransferInst *, unsigned>::iterator SI =
+ NewSrcAlignments.find(MTI);
+ unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
+ 0 : SI->second;
+
+ DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
+ AltDestAlignment << " " << NewSrcAlignment <<
+ " " << AltSrcAlignment << "\n");
+
+ // Of these four alignments, pick the largest possible...
+ unsigned NewAlignment = 0;
+ if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
+ NewAlignment = std::max(NewAlignment, NewDestAlignment);
+ if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
+ NewAlignment = std::max(NewAlignment, AltDestAlignment);
+ if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
+ NewAlignment = std::max(NewAlignment, NewSrcAlignment);
+ if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
+ NewAlignment = std::max(NewAlignment, AltSrcAlignment);
+
+ if (NewAlignment > MI->getAlignment()) {
+ MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
+ MI->getParent()->getContext()), NewAlignment));
+ ++NumMemIntAlignChanged;
+ }
+
+ NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
+ NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
+ } else if (NewDestAlignment > MI->getAlignment()) {
+ assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
+ "Unknown memory intrinsic");
+
+ MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
+ MI->getParent()->getContext()), NewDestAlignment));
+ ++NumMemIntAlignChanged;
+ }
+ }
+
+ // Now that we've updated that use of the pointer, look for other uses of
+ // the pointer to update.
+ Visited.insert(J);
+ for (User *UJ : J->users()) {
+ Instruction *K = cast<Instruction>(UJ);
+ if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT))
+ WorkList.push_back(K);
+ }
+ }
+
+ return true;
+}
+
+bool AlignmentFromAssumptions::runOnFunction(Function &F) {
+ bool Changed = false;
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ SE = &getAnalysis<ScalarEvolution>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
+
+ NewDestAlignments.clear();
+ NewSrcAlignments.clear();
+
+ for (auto &AssumeVH : AC.assumptions())
+ if (AssumeVH)
+ Changed |= processAssumption(cast<CallInst>(AssumeVH));
+
+ return Changed;
+}
+
diff --git a/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp b/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
index 763d02b..27c177a 100644
--- a/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
@@ -91,7 +91,7 @@ struct RebasedConstantInfo {
Constant *Offset;
RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
- : Uses(Uses), Offset(Offset) { }
+ : Uses(std::move(Uses)), Offset(Offset) { }
};
/// \brief A base constant and all its rebased constants.
@@ -395,7 +395,7 @@ void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
ConstInfo.RebasedConstants.push_back(
RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
}
- ConstantVec.push_back(ConstInfo);
+ ConstantVec.push_back(std::move(ConstInfo));
}
/// \brief Finds and combines constant candidates that can be easily
diff --git a/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index 0829462..5a3b5cf 100644
--- a/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -73,7 +73,7 @@ bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
if (S->getType()->isVectorTy()) return false;
if (isa<Constant>(S->getOperand(0))) return false;
- Constant *C = LVI->getConstant(S->getOperand(0), S->getParent());
+ Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S);
if (!C) return false;
ConstantInt *CI = dyn_cast<ConstantInt>(C);
@@ -100,7 +100,7 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
Value *Incoming = P->getIncomingValue(i);
if (isa<Constant>(Incoming)) continue;
- Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB);
+ Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
// Look if the incoming value is a select with a constant but LVI tells us
// that the incoming value can never be that constant. In that case replace
@@ -114,7 +114,7 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
if (!C) continue;
if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
- P->getIncomingBlock(i), BB) !=
+ P->getIncomingBlock(i), BB, P) !=
LazyValueInfo::False)
continue;
@@ -126,6 +126,7 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
Changed = true;
}
+ // FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction.
if (Value *V = SimplifyInstruction(P)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
@@ -147,7 +148,7 @@ bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
if (isa<Constant>(Pointer)) return false;
- Constant *C = LVI->getConstant(Pointer, I->getParent());
+ Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
if (!C) return false;
++NumMemAccess;
@@ -173,13 +174,15 @@ bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
if (PI == PE) return false;
LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(),
- C->getOperand(0), Op1, *PI, C->getParent());
+ C->getOperand(0), Op1, *PI,
+ C->getParent(), C);
if (Result == LazyValueInfo::Unknown) return false;
++PI;
while (PI != PE) {
LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(),
- C->getOperand(0), Op1, *PI, C->getParent());
+ C->getOperand(0), Op1, *PI,
+ C->getParent(), C);
if (Res != Result) return false;
++PI;
}
@@ -229,7 +232,8 @@ bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
for (pred_iterator PI = PB; PI != PE; ++PI) {
// Is the switch condition equal to the case value?
LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
- Cond, Case, *PI, BB);
+ Cond, Case, *PI,
+ BB, SI);
// Give up on this case if nothing is known.
if (Value == LazyValueInfo::Unknown) {
State = LazyValueInfo::Unknown;
diff --git a/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
index 3af8ee7..a1ddc00 100644
--- a/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -356,15 +356,8 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// If we don't know the sizes of either access, then we can't do a
// comparison.
if (Later.Size == AliasAnalysis::UnknownSize ||
- Earlier.Size == AliasAnalysis::UnknownSize) {
- // If we have no DataLayout information around, then the size of the store
- // is inferrable from the pointee type. If they are the same type, then
- // we know that the store is safe.
- if (DL == nullptr && Later.Ptr->getType() == Earlier.Ptr->getType())
- return OverwriteComplete;
-
+ Earlier.Size == AliasAnalysis::UnknownSize)
return OverwriteUnknown;
- }
// Make sure that the Later size is >= the Earlier size.
if (Later.Size >= Earlier.Size)
diff --git a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
index 735f5c1..394b0d3d 100644
--- a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -16,17 +16,21 @@
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
-#include <vector>
+#include <deque>
using namespace llvm;
+using namespace llvm::PatternMatch;
#define DEBUG_TYPE "early-cse"
@@ -266,6 +270,7 @@ public:
const DataLayout *DL;
const TargetLibraryInfo *TLI;
DominatorTree *DT;
+ AssumptionCache *AC;
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
@@ -378,6 +383,7 @@ private:
// This transformation requires dominator postdominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfo>();
AU.setPreservesCFG();
@@ -393,6 +399,7 @@ FunctionPass *llvm::createEarlyCSEPass() {
}
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
@@ -431,9 +438,18 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
continue;
}
+ // Skip assume intrinsics, they don't really have side effects (although
+ // they're marked as such to ensure preservation of control dependencies),
+ // and this pass will not disturb any of the assumption's control
+ // dependencies.
+ if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
+ DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
+ continue;
+ }
+
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
- if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT)) {
+ if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT, AC)) {
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
@@ -530,7 +546,7 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
Changed = true;
++NumDSE;
LastStore = nullptr;
- continue;
+ // fallthrough - we can exploit information about this store
}
// Okay, we just invalidated anything we knew about loaded values. Try
@@ -556,12 +572,17 @@ bool EarlyCSE::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- std::vector<StackNode *> nodesToProcess;
+ // Note, deque is being used here because there is significant performance gains
+ // over vector when the container becomes very large due to the specific access
+ // patterns. For more information see the mailing list discussion on this:
+ // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
+ std::deque<StackNode *> nodesToProcess;
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable;
diff --git a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
index 106eba0..ac13eeb 100644
--- a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -20,10 +20,12 @@
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
@@ -45,6 +47,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <vector>
using namespace llvm;
@@ -590,6 +593,7 @@ namespace {
DominatorTree *DT;
const DataLayout *DL;
const TargetLibraryInfo *TLI;
+ AssumptionCache *AC;
SetVector<BasicBlock *> DeadBlocks;
ValueTable VN;
@@ -679,6 +683,7 @@ namespace {
// This transformation requires dominator postdominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfo>();
if (!NoLoads)
@@ -705,6 +710,7 @@ namespace {
void dump(DenseMap<uint32_t, Value*> &d);
bool iterateOnFunction(Function &F);
bool performPRE(Function &F);
+ bool performScalarPRE(Instruction *I);
Value *findLeader(const BasicBlock *BB, uint32_t num);
void cleanupGlobalSets();
void verifyRemoved(const Instruction *I) const;
@@ -727,6 +733,7 @@ FunctionPass *llvm::createGVNPass(bool NoLoads) {
}
INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
@@ -1616,7 +1623,7 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
// If all preds have a single successor, then we know it is safe to insert
// the load on the pred (?!?), so we can insert code to materialize the
// pointer if it is not available.
- PHITransAddr Address(LI->getPointerOperand(), DL);
+ PHITransAddr Address(LI->getPointerOperand(), DL, AC);
Value *LoadPtr = nullptr;
LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
*DT, NewInsts);
@@ -1669,9 +1676,11 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
LI->getAlignment(),
UnavailablePred->getTerminator());
- // Transfer the old load's TBAA tag to the new load.
- if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
- NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
+ // Transfer the old load's AA tags to the new load.
+ AAMDNodes Tags;
+ LI->getAAMetadata(Tags);
+ if (Tags)
+ NewLoad->setAAMetadata(Tags);
// Transfer DebugLoc.
NewLoad->setDebugLoc(LI->getDebugLoc());
@@ -1700,8 +1709,7 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
bool GVN::processNonLocalLoad(LoadInst *LI) {
// Step 1: Find the non-local dependencies of the load.
LoadDepVect Deps;
- AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
- MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
+ MD->getNonLocalPointerDependency(LI, Deps);
// If we had to process more than one hundred blocks to find the
// dependencies, this load isn't worth worrying about. Optimizing
@@ -1722,6 +1730,15 @@ bool GVN::processNonLocalLoad(LoadInst *LI) {
return false;
}
+ // If this load follows a GEP, see if we can PRE the indices before analyzing.
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
+ for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
+ OE = GEP->idx_end();
+ OI != OE; ++OI)
+ if (Instruction *I = dyn_cast<Instruction>(OI->get()))
+ performScalarPRE(I);
+ }
+
// Step 2: Analyze the availability of the load
AvailValInBlkVect ValuesPerBlock;
UnavailBlkVect UnavailableBlocks;
@@ -1774,36 +1791,24 @@ static void patchReplacementInstruction(Instruction *I, Value *Repl) {
ReplOp->setHasNoUnsignedWrap(false);
}
if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
- SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
- ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
- for (int i = 0, n = Metadata.size(); i < n; ++i) {
- unsigned Kind = Metadata[i].first;
- MDNode *IMD = I->getMetadata(Kind);
- MDNode *ReplMD = Metadata[i].second;
- switch(Kind) {
- default:
- ReplInst->setMetadata(Kind, nullptr); // Remove unknown metadata
- break;
- case LLVMContext::MD_dbg:
- llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
- case LLVMContext::MD_tbaa:
- ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
- break;
- case LLVMContext::MD_range:
- ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
- break;
- case LLVMContext::MD_prof:
- llvm_unreachable("MD_prof in a non-terminator instruction");
- break;
- case LLVMContext::MD_fpmath:
- ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
- break;
- case LLVMContext::MD_invariant_load:
- // Only set the !invariant.load if it is present in both instructions.
- ReplInst->setMetadata(Kind, IMD);
- break;
- }
- }
+ // FIXME: If both the original and replacement value are part of the
+ // same control-flow region (meaning that the execution of one
+ // guarentees the executation of the other), then we can combine the
+ // noalias scopes here and do better than the general conservative
+ // answer used in combineMetadata().
+
+ // In general, GVN unifies expressions over different control-flow
+ // regions, and so we need a conservative combination of the noalias
+ // scopes.
+ unsigned KnownIDs[] = {
+ LLVMContext::MD_tbaa,
+ LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias,
+ LLVMContext::MD_range,
+ LLVMContext::MD_fpmath,
+ LLVMContext::MD_invariant_load,
+ };
+ combineMetadata(ReplInst, I, KnownIDs);
}
}
@@ -2101,15 +2106,15 @@ bool GVN::propagateEquality(Value *LHS, Value *RHS,
std::swap(LHS, RHS);
assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
- // If there is no obvious reason to prefer the left-hand side over the right-
- // hand side, ensure the longest lived term is on the right-hand side, so the
- // shortest lived term will be replaced by the longest lived. This tends to
- // expose more simplifications.
+ // If there is no obvious reason to prefer the left-hand side over the
+ // right-hand side, ensure the longest lived term is on the right-hand side,
+ // so the shortest lived term will be replaced by the longest lived.
+ // This tends to expose more simplifications.
uint32_t LVN = VN.lookup_or_add(LHS);
if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
(isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
- // Move the 'oldest' value to the right-hand side, using the value number as
- // a proxy for age.
+ // Move the 'oldest' value to the right-hand side, using the value number
+ // as a proxy for age.
uint32_t RVN = VN.lookup_or_add(RHS);
if (LVN < RVN) {
std::swap(LHS, RHS);
@@ -2138,10 +2143,10 @@ bool GVN::propagateEquality(Value *LHS, Value *RHS,
NumGVNEqProp += NumReplacements;
}
- // Now try to deduce additional equalities from this one. For example, if the
- // known equality was "(A != B)" == "false" then it follows that A and B are
- // equal in the scope. Only boolean equalities with an explicit true or false
- // RHS are currently supported.
+ // Now try to deduce additional equalities from this one. For example, if
+ // the known equality was "(A != B)" == "false" then it follows that A and B
+ // are equal in the scope. Only boolean equalities with an explicit true or
+ // false RHS are currently supported.
if (!RHS->getType()->isIntegerTy(1))
// Not a boolean equality - bail out.
continue;
@@ -2166,7 +2171,7 @@ bool GVN::propagateEquality(Value *LHS, Value *RHS,
// If we are propagating an equality like "(A == B)" == "true" then also
// propagate the equality A == B. When propagating a comparison such as
// "(A >= B)" == "true", replace all instances of "A < B" with "false".
- if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
// If "A == B" is known true, or "A != B" is known false, then replace
@@ -2175,12 +2180,24 @@ bool GVN::propagateEquality(Value *LHS, Value *RHS,
(isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
Worklist.push_back(std::make_pair(Op0, Op1));
+ // Handle the floating point versions of equality comparisons too.
+ if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
+ (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
+ // Floating point -0.0 and 0.0 compare equal, so we can't
+ // propagate a constant based on that comparison.
+ // FIXME: We should do this optimization if 'no signed zeros' is
+ // applicable via an instruction-level fast-math-flag or some other
+ // indicator that relaxed FP semantics are being used.
+ if (!isa<ConstantFP>(Op1) || !cast<ConstantFP>(Op1)->isZero())
+ Worklist.push_back(std::make_pair(Op0, Op1));
+ }
+
// If "A >= B" is known true, replace "A < B" with false everywhere.
CmpInst::Predicate NotPred = Cmp->getInversePredicate();
Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
- // Since we don't have the instruction "A < B" immediately to hand, work out
- // the value number that it would have and use that to find an appropriate
- // instruction (if any).
+ // Since we don't have the instruction "A < B" immediately to hand, work
+ // out the value number that it would have and use that to find an
+ // appropriate instruction (if any).
uint32_t NextNum = VN.getNextUnusedValueNumber();
uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
// If the number we were assigned was brand new then there is no point in
@@ -2219,7 +2236,7 @@ bool GVN::processInstruction(Instruction *I) {
// to value numbering it. Value numbering often exposes redundancies, for
// example if it determines that %y is equal to %x then the instruction
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
- if (Value *V = SimplifyInstruction(I, DL, TLI, DT)) {
+ if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
I->replaceAllUsesWith(V);
if (MD && V->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
@@ -2339,6 +2356,7 @@ bool GVN::runOnFunction(Function& F) {
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
TLI = &getAnalysis<TargetLibraryInfo>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
@@ -2435,175 +2453,182 @@ bool GVN::processBlock(BasicBlock *BB) {
return ChangedFunction;
}
-/// performPRE - Perform a purely local form of PRE that looks for diamond
-/// control flow patterns and attempts to perform simple PRE at the join point.
-bool GVN::performPRE(Function &F) {
- bool Changed = false;
+bool GVN::performScalarPRE(Instruction *CurInst) {
SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
- for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
- // Nothing to PRE in the entry block.
- if (CurrentBlock == &F.getEntryBlock()) continue;
- // Don't perform PRE on a landing pad.
- if (CurrentBlock->isLandingPad()) continue;
+ if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
+ isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
+ CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
+ isa<DbgInfoIntrinsic>(CurInst))
+ return false;
- for (BasicBlock::iterator BI = CurrentBlock->begin(),
- BE = CurrentBlock->end(); BI != BE; ) {
- Instruction *CurInst = BI++;
+ // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
+ // sinking the compare again, and it would force the code generator to
+ // move the i1 from processor flags or predicate registers into a general
+ // purpose register.
+ if (isa<CmpInst>(CurInst))
+ return false;
- if (isa<AllocaInst>(CurInst) ||
- isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
- CurInst->getType()->isVoidTy() ||
- CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
- isa<DbgInfoIntrinsic>(CurInst))
- continue;
+ // We don't currently value number ANY inline asm calls.
+ if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
+ if (CallI->isInlineAsm())
+ return false;
- // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
- // sinking the compare again, and it would force the code generator to
- // move the i1 from processor flags or predicate registers into a general
- // purpose register.
- if (isa<CmpInst>(CurInst))
- continue;
+ uint32_t ValNo = VN.lookup(CurInst);
+
+ // Look for the predecessors for PRE opportunities. We're
+ // only trying to solve the basic diamond case, where
+ // a value is computed in the successor and one predecessor,
+ // but not the other. We also explicitly disallow cases
+ // where the successor is its own predecessor, because they're
+ // more complicated to get right.
+ unsigned NumWith = 0;
+ unsigned NumWithout = 0;
+ BasicBlock *PREPred = nullptr;
+ BasicBlock *CurrentBlock = CurInst->getParent();
+ predMap.clear();
+
+ for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
+ PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ // We're not interested in PRE where the block is its
+ // own predecessor, or in blocks with predecessors
+ // that are not reachable.
+ if (P == CurrentBlock) {
+ NumWithout = 2;
+ break;
+ } else if (!DT->isReachableFromEntry(P)) {
+ NumWithout = 2;
+ break;
+ }
- // We don't currently value number ANY inline asm calls.
- if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
- if (CallI->isInlineAsm())
- continue;
+ Value *predV = findLeader(P, ValNo);
+ if (!predV) {
+ predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
+ PREPred = P;
+ ++NumWithout;
+ } else if (predV == CurInst) {
+ /* CurInst dominates this predecessor. */
+ NumWithout = 2;
+ break;
+ } else {
+ predMap.push_back(std::make_pair(predV, P));
+ ++NumWith;
+ }
+ }
- uint32_t ValNo = VN.lookup(CurInst);
-
- // Look for the predecessors for PRE opportunities. We're
- // only trying to solve the basic diamond case, where
- // a value is computed in the successor and one predecessor,
- // but not the other. We also explicitly disallow cases
- // where the successor is its own predecessor, because they're
- // more complicated to get right.
- unsigned NumWith = 0;
- unsigned NumWithout = 0;
- BasicBlock *PREPred = nullptr;
- predMap.clear();
-
- for (pred_iterator PI = pred_begin(CurrentBlock),
- PE = pred_end(CurrentBlock); PI != PE; ++PI) {
- BasicBlock *P = *PI;
- // We're not interested in PRE where the block is its
- // own predecessor, or in blocks with predecessors
- // that are not reachable.
- if (P == CurrentBlock) {
- NumWithout = 2;
- break;
- } else if (!DT->isReachableFromEntry(P)) {
- NumWithout = 2;
- break;
- }
+ // Don't do PRE when it might increase code size, i.e. when
+ // we would need to insert instructions in more than one pred.
+ if (NumWithout != 1 || NumWith == 0)
+ return false;
- Value* predV = findLeader(P, ValNo);
- if (!predV) {
- predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
- PREPred = P;
- ++NumWithout;
- } else if (predV == CurInst) {
- /* CurInst dominates this predecessor. */
- NumWithout = 2;
- break;
- } else {
- predMap.push_back(std::make_pair(predV, P));
- ++NumWith;
- }
- }
+ // Don't do PRE across indirect branch.
+ if (isa<IndirectBrInst>(PREPred->getTerminator()))
+ return false;
- // Don't do PRE when it might increase code size, i.e. when
- // we would need to insert instructions in more than one pred.
- if (NumWithout != 1 || NumWith == 0)
- continue;
+ // We can't do PRE safely on a critical edge, so instead we schedule
+ // the edge to be split and perform the PRE the next time we iterate
+ // on the function.
+ unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
+ if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
+ toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
+ return false;
+ }
- // Don't do PRE across indirect branch.
- if (isa<IndirectBrInst>(PREPred->getTerminator()))
- continue;
+ // Instantiate the expression in the predecessor that lacked it.
+ // Because we are going top-down through the block, all value numbers
+ // will be available in the predecessor by the time we need them. Any
+ // that weren't originally present will have been instantiated earlier
+ // in this loop.
+ Instruction *PREInstr = CurInst->clone();
+ bool success = true;
+ for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
+ Value *Op = PREInstr->getOperand(i);
+ if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
+ continue;
- // We can't do PRE safely on a critical edge, so instead we schedule
- // the edge to be split and perform the PRE the next time we iterate
- // on the function.
- unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
- if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
- toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
- continue;
- }
+ if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
+ PREInstr->setOperand(i, V);
+ } else {
+ success = false;
+ break;
+ }
+ }
- // Instantiate the expression in the predecessor that lacked it.
- // Because we are going top-down through the block, all value numbers
- // will be available in the predecessor by the time we need them. Any
- // that weren't originally present will have been instantiated earlier
- // in this loop.
- Instruction *PREInstr = CurInst->clone();
- bool success = true;
- for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
- Value *Op = PREInstr->getOperand(i);
- if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
- continue;
+ // Fail out if we encounter an operand that is not available in
+ // the PRE predecessor. This is typically because of loads which
+ // are not value numbered precisely.
+ if (!success) {
+ DEBUG(verifyRemoved(PREInstr));
+ delete PREInstr;
+ return false;
+ }
- if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
- PREInstr->setOperand(i, V);
- } else {
- success = false;
- break;
- }
- }
+ PREInstr->insertBefore(PREPred->getTerminator());
+ PREInstr->setName(CurInst->getName() + ".pre");
+ PREInstr->setDebugLoc(CurInst->getDebugLoc());
+ VN.add(PREInstr, ValNo);
+ ++NumGVNPRE;
- // Fail out if we encounter an operand that is not available in
- // the PRE predecessor. This is typically because of loads which
- // are not value numbered precisely.
- if (!success) {
- DEBUG(verifyRemoved(PREInstr));
- delete PREInstr;
- continue;
- }
+ // Update the availability map to include the new instruction.
+ addToLeaderTable(ValNo, PREInstr, PREPred);
- PREInstr->insertBefore(PREPred->getTerminator());
- PREInstr->setName(CurInst->getName() + ".pre");
- PREInstr->setDebugLoc(CurInst->getDebugLoc());
- VN.add(PREInstr, ValNo);
- ++NumGVNPRE;
-
- // Update the availability map to include the new instruction.
- addToLeaderTable(ValNo, PREInstr, PREPred);
-
- // Create a PHI to make the value available in this block.
- PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
- CurInst->getName() + ".pre-phi",
- CurrentBlock->begin());
- for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
- if (Value *V = predMap[i].first)
- Phi->addIncoming(V, predMap[i].second);
- else
- Phi->addIncoming(PREInstr, PREPred);
- }
+ // Create a PHI to make the value available in this block.
+ PHINode *Phi =
+ PHINode::Create(CurInst->getType(), predMap.size(),
+ CurInst->getName() + ".pre-phi", CurrentBlock->begin());
+ for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
+ if (Value *V = predMap[i].first)
+ Phi->addIncoming(V, predMap[i].second);
+ else
+ Phi->addIncoming(PREInstr, PREPred);
+ }
- VN.add(Phi, ValNo);
- addToLeaderTable(ValNo, Phi, CurrentBlock);
- Phi->setDebugLoc(CurInst->getDebugLoc());
- CurInst->replaceAllUsesWith(Phi);
- if (Phi->getType()->getScalarType()->isPointerTy()) {
- // Because we have added a PHI-use of the pointer value, it has now
- // "escaped" from alias analysis' perspective. We need to inform
- // AA of this.
- for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
- ++ii) {
- unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
- VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
- }
+ VN.add(Phi, ValNo);
+ addToLeaderTable(ValNo, Phi, CurrentBlock);
+ Phi->setDebugLoc(CurInst->getDebugLoc());
+ CurInst->replaceAllUsesWith(Phi);
+ if (Phi->getType()->getScalarType()->isPointerTy()) {
+ // Because we have added a PHI-use of the pointer value, it has now
+ // "escaped" from alias analysis' perspective. We need to inform
+ // AA of this.
+ for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii) {
+ unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
+ VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
+ }
- if (MD)
- MD->invalidateCachedPointerInfo(Phi);
- }
- VN.erase(CurInst);
- removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
+ if (MD)
+ MD->invalidateCachedPointerInfo(Phi);
+ }
+ VN.erase(CurInst);
+ removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
+
+ DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
+ if (MD)
+ MD->removeInstruction(CurInst);
+ DEBUG(verifyRemoved(CurInst));
+ CurInst->eraseFromParent();
+ return true;
+}
+
+/// performPRE - Perform a purely local form of PRE that looks for diamond
+/// control flow patterns and attempts to perform simple PRE at the join point.
+bool GVN::performPRE(Function &F) {
+ bool Changed = false;
+ for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
+ // Nothing to PRE in the entry block.
+ if (CurrentBlock == &F.getEntryBlock())
+ continue;
+
+ // Don't perform PRE on a landing pad.
+ if (CurrentBlock->isLandingPad())
+ continue;
- DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
- if (MD) MD->removeInstruction(CurInst);
- DEBUG(verifyRemoved(CurInst));
- CurInst->eraseFromParent();
- Changed = true;
+ for (BasicBlock::iterator BI = CurrentBlock->begin(),
+ BE = CurrentBlock->end();
+ BI != BE;) {
+ Instruction *CurInst = BI++;
+ Changed = performScalarPRE(CurInst);
}
}
@@ -2641,25 +2666,21 @@ bool GVN::iterateOnFunction(Function &F) {
// Top-down walk of the dominator tree
bool Changed = false;
-#if 0
- // Needed for value numbering with phi construction to work.
- ReversePostOrderTraversal<Function*> RPOT(&F);
- for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
- RE = RPOT.end(); RI != RE; ++RI)
- Changed |= processBlock(*RI);
-#else
// Save the blocks this function have before transformation begins. GVN may
// split critical edge, and hence may invalidate the RPO/DT iterator.
//
std::vector<BasicBlock *> BBVect;
BBVect.reserve(256);
- for (DomTreeNode *x : depth_first(DT->getRootNode()))
- BBVect.push_back(x->getBlock());
+ // Needed for value numbering with phi construction to work.
+ ReversePostOrderTraversal<Function *> RPOT(&F);
+ for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
+ RE = RPOT.end();
+ RI != RE; ++RI)
+ BBVect.push_back(*RI);
for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
I != E; I++)
Changed |= processBlock(*I);
-#endif
return Changed;
}
@@ -2802,7 +2823,7 @@ bool GVN::processFoldableCondBr(BranchInst *BI) {
return true;
}
-// performPRE() will trigger assert if it come across an instruciton without
+// performPRE() will trigger assert if it comes across an instruction without
// associated val-num. As it normally has far more live instructions than dead
// instructions, it makes more sense just to "fabricate" a val-number for the
// dead code than checking if instruction involved is dead or not.
diff --git a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
index 9cf0ca0..c01f57f 100644
--- a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -31,6 +31,7 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
@@ -69,11 +70,12 @@ static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
namespace {
class IndVarSimplify : public LoopPass {
- LoopInfo *LI;
- ScalarEvolution *SE;
- DominatorTree *DT;
- const DataLayout *DL;
- TargetLibraryInfo *TLI;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ const DataLayout *DL;
+ TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
SmallVector<WeakVH, 16> DeadInsts;
bool Changed;
@@ -650,7 +652,7 @@ namespace {
struct WideIVInfo {
PHINode *NarrowIV;
Type *WidestNativeType; // Widest integer type created [sz]ext
- bool IsSigned; // Was an sext user seen before a zext?
+ bool IsSigned; // Was a sext user seen before a zext?
WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
IsSigned(false) {}
@@ -661,7 +663,7 @@ namespace {
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
- const DataLayout *DL) {
+ const DataLayout *DL, const TargetTransformInfo *TTI) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
return;
@@ -671,6 +673,19 @@ static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
if (DL && !DL->isLegalInteger(Width))
return;
+ // Cast is either an sext or zext up to this point.
+ // We should not widen an indvar if arithmetics on the wider indvar are more
+ // expensive than those on the narrower indvar. We check only the cost of ADD
+ // because at least an ADD is required to increment the induction variable. We
+ // could compute more comprehensively the cost of all instructions on the
+ // induction variable when necessary.
+ if (TTI &&
+ TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
+ TTI->getArithmeticInstrCost(Instruction::Add,
+ Cast->getOperand(0)->getType())) {
+ return;
+ }
+
if (!WI.WidestNativeType) {
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
WI.IsSigned = IsSigned;
@@ -757,8 +772,13 @@ protected:
const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
+ const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+ unsigned OpCode) const;
+
Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
+ bool WidenLoopCompare(NarrowIVDefUse DU);
+
void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
};
} // anonymous namespace
@@ -833,18 +853,35 @@ Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
}
}
+const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+ unsigned OpCode) const {
+ if (OpCode == Instruction::Add)
+ return SE->getAddExpr(LHS, RHS);
+ if (OpCode == Instruction::Sub)
+ return SE->getMinusSCEV(LHS, RHS);
+ if (OpCode == Instruction::Mul)
+ return SE->getMulExpr(LHS, RHS);
+
+ llvm_unreachable("Unsupported opcode.");
+}
+
/// No-wrap operations can transfer sign extension of their result to their
/// operands. Generate the SCEV value for the widened operation without
/// actually modifying the IR yet. If the expression after extending the
/// operands is an AddRec for this loop, return it.
const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
+
// Handle the common case of add<nsw/nuw>
- if (DU.NarrowUse->getOpcode() != Instruction::Add)
+ const unsigned OpCode = DU.NarrowUse->getOpcode();
+ // Only Add/Sub/Mul instructions supported yet.
+ if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
+ OpCode != Instruction::Mul)
return nullptr;
// One operand (NarrowDef) has already been extended to WideDef. Now determine
// if extending the other will lead to a recurrence.
- unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
+ const unsigned ExtendOperIdx =
+ DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
const SCEV *ExtendOperExpr = nullptr;
@@ -859,13 +896,20 @@ const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
else
return nullptr;
- // When creating this AddExpr, don't apply the current operations NSW or NUW
+ // When creating this SCEV expr, don't apply the current operations NSW or NUW
// flags. This instruction may be guarded by control flow that the no-wrap
// behavior depends on. Non-control-equivalent instructions can be mapped to
// the same SCEV expression, and it would be incorrect to transfer NSW/NUW
// semantics to those operations.
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
- SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
+ const SCEV *lhs = SE->getSCEV(DU.WideDef);
+ const SCEV *rhs = ExtendOperExpr;
+
+ // Let's swap operands to the initial order for the case of non-commutative
+ // operations, like SUB. See PR21014.
+ if (ExtendOperIdx == 0)
+ std::swap(lhs, rhs);
+ const SCEVAddRecExpr *AddRec =
+ dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
if (!AddRec || AddRec->getLoop() != L)
return nullptr;
@@ -908,6 +952,35 @@ static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
}
+/// If the narrow use is a compare instruction, then widen the compare
+// (and possibly the other operand). The extend operation is hoisted into the
+// loop preheader as far as possible.
+bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
+ if (!Cmp)
+ return false;
+
+ // Sign of IV user and compare must match.
+ if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
+ return false;
+
+ Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
+ unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
+ unsigned IVWidth = SE->getTypeSizeInBits(WideType);
+ assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
+
+ // Widen the compare instruction.
+ IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
+ DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
+
+ // Widen the other operand of the compare, if necessary.
+ if (CastWidth < IVWidth) {
+ Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
+ DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
+ }
+ return true;
+}
+
/// WidenIVUse - Determine whether an individual user of the narrow IV can be
/// widened. If so, return the wide clone of the user.
Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
@@ -975,10 +1048,15 @@ Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
// Does this user itself evaluate to a recurrence after widening?
const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
+ if (!WideAddRec)
+ WideAddRec = GetExtendedOperandRecurrence(DU);
+
if (!WideAddRec) {
- WideAddRec = GetExtendedOperandRecurrence(DU);
- }
- if (!WideAddRec) {
+ // If use is a loop condition, try to promote the condition instead of
+ // truncating the IV first.
+ if (WidenLoopCompare(DU))
+ return nullptr;
+
// This user does not evaluate to a recurence after widening, so don't
// follow it. Instead insert a Trunc to kill off the original use,
// eventually isolating the original narrow IV so it can be removed.
@@ -1024,7 +1102,7 @@ void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
Instruction *NarrowUser = cast<Instruction>(U);
// Handle data flow merges and bizarre phi cycles.
- if (!Widened.insert(NarrowUser))
+ if (!Widened.insert(NarrowUser).second)
continue;
NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
@@ -1124,14 +1202,16 @@ namespace {
class IndVarSimplifyVisitor : public IVVisitor {
ScalarEvolution *SE;
const DataLayout *DL;
+ const TargetTransformInfo *TTI;
PHINode *IVPhi;
public:
WideIVInfo WI;
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const DataLayout *DL, const DominatorTree *DTree):
- SE(SCEV), DL(DL), IVPhi(IV) {
+ const DataLayout *DL, const TargetTransformInfo *TTI,
+ const DominatorTree *DTree)
+ : SE(SCEV), DL(DL), TTI(TTI), IVPhi(IV) {
DT = DTree;
WI.NarrowIV = IVPhi;
if (ReduceLiveIVs)
@@ -1139,7 +1219,9 @@ namespace {
}
// Implement the interface used by simplifyUsersOfIV.
- void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); }
+ void visitCast(CastInst *Cast) override {
+ visitIVCast(Cast, WI, SE, DL, TTI);
+ }
};
}
@@ -1173,7 +1255,7 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
- IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
+ IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, TTI, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
@@ -1200,9 +1282,9 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
/// BackedgeTakenInfo. If these expressions have not been reduced, then
/// expanding them may incur additional cost (albeit in the loop preheader).
static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
- SmallPtrSet<const SCEV*, 8> &Processed,
+ SmallPtrSetImpl<const SCEV*> &Processed,
ScalarEvolution *SE) {
- if (!Processed.insert(S))
+ if (!Processed.insert(S).second)
return false;
// If the backedge-taken count is a UDiv, it's very likely a UDiv that
@@ -1373,7 +1455,7 @@ static bool needsLFTR(Loop *L, DominatorTree *DT) {
/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
/// down to checking that all operands are constant and listing instructions
/// that may hide undef.
-static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
+static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
unsigned Depth) {
if (isa<Constant>(V))
return !isa<UndefValue>(V);
@@ -1393,7 +1475,7 @@ static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
// Optimistically handle other instructions.
for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
- if (!Visited.insert(*OI))
+ if (!Visited.insert(*OI).second)
continue;
if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
return false;
@@ -1637,8 +1719,29 @@ LinearFunctionTestReplace(Loop *L,
// FIXME: In theory, SCEV could drop flags even though they exist in IR.
// A more robust solution would involve getting a new expression for
// CmpIndVar by applying non-NSW/NUW AddExprs.
+ auto WrappingFlags =
+ ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW);
+ const SCEV *IVInit = IncrementedIndvarSCEV->getStart();
+ if (SE->getTypeSizeInBits(IVInit->getType()) >
+ SE->getTypeSizeInBits(IVCount->getType()))
+ IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
+ unsigned BitWidth = SE->getTypeSizeInBits(IVCount->getType());
+ Type *WideTy = IntegerType::get(SE->getContext(), BitWidth + 1);
+ // Check if InitIV + BECount+1 requires sign/zero extension.
+ // If not, clear the corresponding flag from WrappingFlags because it is not
+ // necessary for those flags in the IncrementedIndvarSCEV expression.
+ if (SE->getSignExtendExpr(SE->getAddExpr(IVInit, BackedgeTakenCount),
+ WideTy) ==
+ SE->getAddExpr(SE->getSignExtendExpr(IVInit, WideTy),
+ SE->getSignExtendExpr(BackedgeTakenCount, WideTy)))
+ WrappingFlags = ScalarEvolution::clearFlags(WrappingFlags, SCEV::FlagNSW);
+ if (SE->getZeroExtendExpr(SE->getAddExpr(IVInit, BackedgeTakenCount),
+ WideTy) ==
+ SE->getAddExpr(SE->getZeroExtendExpr(IVInit, WideTy),
+ SE->getZeroExtendExpr(BackedgeTakenCount, WideTy)))
+ WrappingFlags = ScalarEvolution::clearFlags(WrappingFlags, SCEV::FlagNUW);
if (!ScalarEvolution::maskFlags(IncrementedIndvarSCEV->getNoWrapFlags(),
- SCEV::FlagNUW | SCEV::FlagNSW)) {
+ WrappingFlags)) {
// Add one to the "backedge-taken" count to get the trip count.
// This addition may overflow, which is valid as long as the comparison is
// truncated to BackedgeTakenCount->getType().
@@ -1832,6 +1935,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
+ TTI = getAnalysisIfAvailable<TargetTransformInfo>();
DeadInsts.clear();
Changed = false;
diff --git a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
index 21f80385..78beb3f 100644
--- a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
@@ -26,6 +26,7 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
@@ -44,7 +45,7 @@ STATISTIC(NumFolds, "Number of terminators folded");
STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
static cl::opt<unsigned>
-Threshold("jump-threading-threshold",
+BBDuplicateThreshold("jump-threading-threshold",
cl::desc("Max block size to duplicate for jump threading"),
cl::init(6), cl::Hidden);
@@ -87,6 +88,8 @@ namespace {
#endif
DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
+ unsigned BBDupThreshold;
+
// RAII helper for updating the recursion stack.
struct RecursionSetRemover {
DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
@@ -102,7 +105,8 @@ namespace {
};
public:
static char ID; // Pass identification
- JumpThreading() : FunctionPass(ID) {
+ JumpThreading(int T = -1) : FunctionPass(ID) {
+ BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
}
@@ -123,9 +127,11 @@ namespace {
bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
PredValueInfo &Result,
- ConstantPreference Preference);
+ ConstantPreference Preference,
+ Instruction *CxtI = nullptr);
bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
- ConstantPreference Preference);
+ ConstantPreference Preference,
+ Instruction *CxtI = nullptr);
bool ProcessBranchOnPHI(PHINode *PN);
bool ProcessBranchOnXOR(BinaryOperator *BO);
@@ -144,7 +150,7 @@ INITIALIZE_PASS_END(JumpThreading, "jump-threading",
"Jump Threading", false, false)
// Public interface to the Jump Threading pass
-FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
+FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
/// runOnFunction - Top level algorithm.
///
@@ -182,7 +188,7 @@ bool JumpThreading::runOnFunction(Function &F) {
// If the block is trivially dead, zap it. This eliminates the successor
// edges which simplifies the CFG.
- if (pred_begin(BB) == pred_end(BB) &&
+ if (pred_empty(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
<< "' with terminator: " << *BB->getTerminator() << '\n');
@@ -339,7 +345,8 @@ static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
///
bool JumpThreading::
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
- ConstantPreference Preference) {
+ ConstantPreference Preference,
+ Instruction *CxtI) {
// This method walks up use-def chains recursively. Because of this, we could
// get into an infinite loop going around loops in the use-def chain. To
// prevent this, keep track of what (value, block) pairs we've already visited
@@ -381,7 +388,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
BasicBlock *P = *PI;
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
- Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
+ Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
if (Constant *KC = getKnownConstant(PredCst, Preference))
Result.push_back(std::make_pair(KC, P));
}
@@ -397,7 +404,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
} else {
Constant *CI = LVI->getConstantOnEdge(InVal,
- PN->getIncomingBlock(i), BB);
+ PN->getIncomingBlock(i),
+ BB, CxtI);
if (Constant *KC = getKnownConstant(CI, Preference))
Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
}
@@ -416,9 +424,9 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
if (I->getOpcode() == Instruction::Or ||
I->getOpcode() == Instruction::And) {
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
- WantInteger);
+ WantInteger, CxtI);
ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
- WantInteger);
+ WantInteger, CxtI);
if (LHSVals.empty() && RHSVals.empty())
return false;
@@ -459,7 +467,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
isa<ConstantInt>(I->getOperand(1)) &&
cast<ConstantInt>(I->getOperand(1))->isOne()) {
ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
- WantInteger);
+ WantInteger, CxtI);
if (Result.empty())
return false;
@@ -477,7 +485,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
PredValueInfoTy LHSVals;
ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
- WantInteger);
+ WantInteger, CxtI);
// Try to use constant folding to simplify the binary operator.
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
@@ -511,7 +519,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
LazyValueInfo::Tristate
ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
- cast<Constant>(RHS), PredBB, BB);
+ cast<Constant>(RHS), PredBB, BB,
+ CxtI ? CxtI : Cmp);
if (ResT == LazyValueInfo::Unknown)
continue;
Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
@@ -524,7 +533,6 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
return !Result.empty();
}
-
// If comparing a live-in value against a constant, see if we know the
// live-in value on any predecessors.
if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
@@ -538,7 +546,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// predecessor, use that information to try to thread this block.
LazyValueInfo::Tristate Res =
LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
- RHSCst, P, BB);
+ RHSCst, P, BB, CxtI ? CxtI : Cmp);
if (Res == LazyValueInfo::Unknown)
continue;
@@ -554,7 +562,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
PredValueInfoTy LHSVals;
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
- WantInteger);
+ WantInteger, CxtI);
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
Constant *V = LHSVals[i].first;
@@ -577,7 +585,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
PredValueInfoTy Conds;
if ((TrueVal || FalseVal) &&
ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
- WantInteger)) {
+ WantInteger, CxtI)) {
for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
Constant *Cond = Conds[i].first;
@@ -604,7 +612,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
}
// If all else fails, see if LVI can figure out a constant value for us.
- Constant *CI = LVI->getConstant(V, BB);
+ Constant *CI = LVI->getConstant(V, BB, CxtI);
if (Constant *KC = getKnownConstant(CI, Preference)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Result.push_back(std::make_pair(KC, *PI));
@@ -654,7 +662,7 @@ static bool hasAddressTakenAndUsed(BasicBlock *BB) {
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// If the block is trivially dead, just return and let the caller nuke it.
// This simplifies other transformations.
- if (pred_begin(BB) == pred_end(BB) &&
+ if (pred_empty(BB) &&
BB != &BB->getParent()->getEntryBlock())
return false;
@@ -744,7 +752,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// All the rest of our checks depend on the condition being an instruction.
if (!CondInst) {
// FIXME: Unify this with code below.
- if (ProcessThreadableEdges(Condition, BB, Preference))
+ if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
return true;
return false;
}
@@ -766,13 +774,14 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// FIXME: We could handle mixed true/false by duplicating code.
LazyValueInfo::Tristate Baseline =
LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
- CondConst, *PI, BB);
+ CondConst, *PI, BB, CondCmp);
if (Baseline != LazyValueInfo::Unknown) {
// Check that all remaining incoming values match the first one.
while (++PI != PE) {
LazyValueInfo::Tristate Ret =
LVI->getPredicateOnEdge(CondCmp->getPredicate(),
- CondCmp->getOperand(0), CondConst, *PI, BB);
+ CondCmp->getOperand(0), CondConst, *PI, BB,
+ CondCmp);
if (Ret != Baseline) break;
}
@@ -787,6 +796,21 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
}
}
+ } else if (CondBr && CondConst && CondBr->isConditional()) {
+ // There might be an invariant in the same block with the conditional
+ // that can determine the predicate.
+
+ LazyValueInfo::Tristate Ret =
+ LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
+ CondConst, CondCmp);
+ if (Ret != LazyValueInfo::Unknown) {
+ unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
+ unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
+ CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
+ BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
+ CondBr->eraseFromParent();
+ return true;
+ }
}
if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
@@ -814,7 +838,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// a PHI node in the current block. If we can prove that any predecessors
// compute a predictable value based on a PHI node, thread those predecessors.
//
- if (ProcessThreadableEdges(CondInst, BB, Preference))
+ if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
return true;
// If this is an otherwise-unfoldable branch on a phi node in the current
@@ -877,6 +901,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
+ if (AvailableVal->getType() != LI->getType())
+ AvailableVal =
+ CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
@@ -888,9 +915,10 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
if (BBIt != LoadBB->begin())
return false;
- // If all of the loads and stores that feed the value have the same TBAA tag,
- // then we can propagate it onto any newly inserted loads.
- MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
+ // If all of the loads and stores that feed the value have the same AA tags,
+ // then we can propagate them onto any newly inserted loads.
+ AAMDNodes AATags;
+ LI->getAAMetadata(AATags);
SmallPtrSet<BasicBlock*, 8> PredsScanned;
typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
@@ -904,21 +932,21 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
BasicBlock *PredBB = *PI;
// If we already scanned this predecessor, skip it.
- if (!PredsScanned.insert(PredBB))
+ if (!PredsScanned.insert(PredBB).second)
continue;
// Scan the predecessor to see if the value is available in the pred.
BBIt = PredBB->end();
- MDNode *ThisTBAATag = nullptr;
+ AAMDNodes ThisAATags;
Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
- nullptr, &ThisTBAATag);
+ nullptr, &ThisAATags);
if (!PredAvailable) {
OneUnavailablePred = PredBB;
continue;
}
- // If tbaa tags disagree or are not present, forget about them.
- if (TBAATag != ThisTBAATag) TBAATag = nullptr;
+ // If AA tags disagree or are not present, forget about them.
+ if (AATags != ThisAATags) AATags = AAMDNodes();
// If so, this load is partially redundant. Remember this info so that we
// can create a PHI node.
@@ -978,8 +1006,8 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
LI->getAlignment(),
UnavailablePred->getTerminator());
NewVal->setDebugLoc(LI->getDebugLoc());
- if (TBAATag)
- NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ if (AATags)
+ NewVal->setAAMetadata(AATags);
AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
}
@@ -1006,7 +1034,16 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
assert(I != AvailablePreds.end() && I->first == P &&
"Didn't find entry for predecessor!");
- PN->addIncoming(I->second, I->first);
+ // If we have an available predecessor but it requires casting, insert the
+ // cast in the predecessor and use the cast. Note that we have to update the
+ // AvailablePreds vector as we go so that all of the PHI entries for this
+ // predecessor use the same bitcast.
+ Value *&PredV = I->second;
+ if (PredV->getType() != LI->getType())
+ PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
+ P->getTerminator());
+
+ PN->addIncoming(PredV, I->first);
}
//cerr << "PRE: " << *LI << *PN << "\n";
@@ -1081,14 +1118,15 @@ FindMostPopularDest(BasicBlock *BB,
}
bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
- ConstantPreference Preference) {
+ ConstantPreference Preference,
+ Instruction *CxtI) {
// If threading this would thread across a loop header, don't even try to
// thread the edge.
if (LoopHeaders.count(BB))
return false;
PredValueInfoTy PredValues;
- if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
+ if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
return false;
assert(!PredValues.empty() &&
@@ -1113,7 +1151,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
BasicBlock *Pred = PredValues[i].second;
- if (!SeenPreds.insert(Pred))
+ if (!SeenPreds.insert(Pred).second)
continue; // Duplicate predecessor entry.
// If the predecessor ends with an indirect goto, we can't change its
@@ -1253,10 +1291,10 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
PredValueInfoTy XorOpValues;
bool isLHS = true;
if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
- WantInteger)) {
+ WantInteger, BO)) {
assert(XorOpValues.empty());
if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
- WantInteger))
+ WantInteger, BO))
return false;
isLHS = false;
}
@@ -1366,8 +1404,8 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
return false;
}
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
- if (JumpThreadCost > Threshold) {
+ unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
+ if (JumpThreadCost > BBDupThreshold) {
DEBUG(dbgs() << " Not threading BB '" << BB->getName()
<< "' - Cost is too high: " << JumpThreadCost << "\n");
return false;
@@ -1509,8 +1547,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
return false;
}
- unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
- if (DuplicationCost > Threshold) {
+ unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
+ if (DuplicationCost > BBDupThreshold) {
DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
<< "' - Cost is too high: " << DuplicationCost << "\n");
return false;
@@ -1672,10 +1710,10 @@ bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
// cases will be threaded in any case.
LazyValueInfo::Tristate LHSFolds =
LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
- CondRHS, Pred, BB);
+ CondRHS, Pred, BB, CondCmp);
LazyValueInfo::Tristate RHSFolds =
LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
- CondRHS, Pred, BB);
+ CondRHS, Pred, BB, CondCmp);
if ((LHSFolds != LazyValueInfo::Unknown ||
RHSFolds != LazyValueInfo::Unknown) &&
LHSFolds != RHSFolds) {
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
index abcceb2..e145981 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -120,6 +120,7 @@ namespace {
bool MayThrow; // The current loop contains an instruction which
// may throw, thus preventing code motion of
// instructions with side effects.
+ bool HeaderMayThrow; // Same as previous, but specific to loop header
DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
@@ -130,6 +131,9 @@ namespace {
/// set.
void deleteAnalysisValue(Value *V, Loop *L) override;
+ /// Simple Analysis hook. Delete loop L from alias set map.
+ void deleteAnalysisLoop(Loop *L) override;
+
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to
@@ -180,9 +184,9 @@ namespace {
/// store into the memory location pointed to by V.
///
bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
- const MDNode *TBAAInfo) {
+ const AAMDNodes &AAInfo) {
// Check to see if any of the basic blocks in CurLoop invalidate *V.
- return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
+ return CurAST->getAliasSetForPointer(V, Size, AAInfo).isMod();
}
bool canSinkOrHoistInst(Instruction &I);
@@ -270,7 +274,12 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
CurAST->add(*BB); // Incorporate the specified basic block
}
- MayThrow = false;
+ HeaderMayThrow = false;
+ BasicBlock *Header = L->getHeader();
+ for (BasicBlock::iterator I = Header->begin(), E = Header->end();
+ (I != E) && !HeaderMayThrow; ++I)
+ HeaderMayThrow |= I->mayThrow();
+ MayThrow = HeaderMayThrow;
// TODO: We've already searched for instructions which may throw in subloops.
// We may want to reuse this information.
for (Loop::block_iterator BB = L->block_begin(), BBE = L->block_end();
@@ -313,7 +322,8 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
// SSAUpdater strategy during promotion that was LCSSA aware and reformed
// it as it went.
if (Changed)
- formLCSSARecursively(*L, *DT, getAnalysisIfAvailable<ScalarEvolution>());
+ formLCSSARecursively(*L, *DT, LI,
+ getAnalysisIfAvailable<ScalarEvolution>());
}
// Check that neither this loop nor its parent have had LCSSA broken. LICM is
@@ -441,15 +451,18 @@ bool LICM::canSinkOrHoistInst(Instruction &I) {
// in the same alias set as something that ends up being modified.
if (AA->pointsToConstantMemory(LI->getOperand(0)))
return true;
- if (LI->getMetadata("invariant.load"))
+ if (LI->getMetadata(LLVMContext::MD_invariant_load))
return true;
// Don't hoist loads which have may-aliased stores in loop.
uint64_t Size = 0;
if (LI->getType()->isSized())
Size = AA->getTypeStoreSize(LI->getType());
- return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
- LI->getMetadata(LLVMContext::MD_tbaa));
+
+ AAMDNodes AAInfo;
+ LI->getAAMetadata(AAInfo);
+
+ return !pointerInvalidatedByLoop(LI->getOperand(0), Size, AAInfo);
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
// Don't sink or hoist dbg info; it's legal, but not useful.
if (isa<DbgInfoIntrinsic>(I))
@@ -594,8 +607,13 @@ void LICM::sink(Instruction &I) {
// PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
// the instruction.
while (!I.use_empty()) {
+ Instruction *User = I.user_back();
+ if (!DT->isReachableFromEntry(User->getParent())) {
+ User->replaceUsesOfWith(&I, UndefValue::get(I.getType()));
+ continue;
+ }
// The user must be a PHI node.
- PHINode *PN = cast<PHINode>(I.user_back());
+ PHINode *PN = cast<PHINode>(User);
BasicBlock *ExitBlock = PN->getParent();
assert(ExitBlockSet.count(ExitBlock) &&
@@ -647,12 +665,7 @@ bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
bool LICM::isGuaranteedToExecute(Instruction &Inst) {
- // Somewhere in this loop there is an instruction which may throw and make us
- // exit the loop.
- if (MayThrow)
- return false;
-
- // Otherwise we have to check to make sure that the instruction dominates all
+ // We have to check to make sure that the instruction dominates all
// of the exit blocks. If it doesn't, then there is a path out of the loop
// which does not execute this instruction, so we can't hoist it.
@@ -660,7 +673,14 @@ bool LICM::isGuaranteedToExecute(Instruction &Inst) {
// common), it is always guaranteed to dominate the exit blocks. Since this
// is a common case, and can save some work, check it now.
if (Inst.getParent() == CurLoop->getHeader())
- return true;
+ // If there's a throw in the header block, we can't guarantee we'll reach
+ // Inst.
+ return !HeaderMayThrow;
+
+ // Somewhere in this loop there is an instruction which may throw and make us
+ // exit the loop.
+ if (MayThrow)
+ return false;
// Get the exit blocks for the current loop.
SmallVector<BasicBlock*, 8> ExitBlocks;
@@ -682,7 +702,7 @@ bool LICM::isGuaranteedToExecute(Instruction &Inst) {
namespace {
class LoopPromoter : public LoadAndStorePromoter {
Value *SomePtr; // Designated pointer to store to.
- SmallPtrSet<Value*, 4> &PointerMustAliases;
+ SmallPtrSetImpl<Value*> &PointerMustAliases;
SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
SmallVectorImpl<Instruction*> &LoopInsertPts;
PredIteratorCache &PredCache;
@@ -690,7 +710,7 @@ namespace {
LoopInfo &LI;
DebugLoc DL;
int Alignment;
- MDNode *TBAATag;
+ AAMDNodes AATags;
Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
if (Instruction *I = dyn_cast<Instruction>(V))
@@ -710,14 +730,14 @@ namespace {
public:
LoopPromoter(Value *SP, const SmallVectorImpl<Instruction *> &Insts,
- SSAUpdater &S, SmallPtrSet<Value *, 4> &PMA,
+ SSAUpdater &S, SmallPtrSetImpl<Value *> &PMA,
SmallVectorImpl<BasicBlock *> &LEB,
SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC,
AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment,
- MDNode *TBAATag)
+ const AAMDNodes &AATags)
: LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast),
- LI(li), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
+ LI(li), DL(dl), Alignment(alignment), AATags(AATags) {}
bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &) const override {
@@ -743,7 +763,7 @@ namespace {
StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
NewSI->setAlignment(Alignment);
NewSI->setDebugLoc(DL);
- if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ if (AATags) NewSI->setAAMetadata(AATags);
}
}
@@ -798,11 +818,12 @@ void LICM::PromoteAliasSet(AliasSet &AS,
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
- MDNode *TBAATag = nullptr;
+ AAMDNodes AATags;
+ bool HasDedicatedExits = CurLoop->hasDedicatedExits();
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
- // different sizes. While we are at it, collect alignment and TBAA info.
+ // different sizes. While we are at it, collect alignment and AA info.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
@@ -833,6 +854,13 @@ void LICM::PromoteAliasSet(AliasSet &AS,
assert(!store->isVolatile() && "AST broken");
if (!store->isSimple())
return;
+ // Don't sink stores from loops without dedicated block exits. Exits
+ // containing indirect branches are not transformed by loop simplify,
+ // make sure we catch that. An additional load may be generated in the
+ // preheader for SSA updater, so also avoid sinking when no preheader
+ // is available.
+ if (!HasDedicatedExits || !Preheader)
+ return;
// Note that we only check GuaranteedToExecute inside the store case
// so that we do not introduce stores where they did not exist before
@@ -855,13 +883,12 @@ void LICM::PromoteAliasSet(AliasSet &AS,
} else
return; // Not a load or store.
- // Merge the TBAA tags.
+ // Merge the AA tags.
if (LoopUses.empty()) {
- // On the first load/store, just take its TBAA tag.
- TBAATag = UI->getMetadata(LLVMContext::MD_tbaa);
- } else if (TBAATag) {
- TBAATag = MDNode::getMostGenericTBAA(TBAATag,
- UI->getMetadata(LLVMContext::MD_tbaa));
+ // On the first load/store, just take its AA tags.
+ UI->getAAMetadata(AATags);
+ } else if (AATags) {
+ UI->getAAMetadata(AATags, /* Merge = */ true);
}
LoopUses.push_back(UI);
@@ -896,7 +923,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, PIC, *CurAST, *LI, DL, Alignment, TBAATag);
+ InsertPts, PIC, *CurAST, *LI, DL, Alignment, AATags);
// Set up the preheader to have a definition of the value. It is the live-out
// value from the preheader that uses in the loop will use.
@@ -905,7 +932,7 @@ void LICM::PromoteAliasSet(AliasSet &AS,
Preheader->getTerminator());
PreheaderLoad->setAlignment(Alignment);
PreheaderLoad->setDebugLoc(DL);
- if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ if (AATags) PreheaderLoad->setAAMetadata(AATags);
SSA.AddAvailableValue(Preheader, PreheaderLoad);
// Rewrite all the loads in the loop and remember all the definitions from
@@ -936,3 +963,13 @@ void LICM::deleteAnalysisValue(Value *V, Loop *L) {
AST->deleteValue(V);
}
+
+/// Simple Analysis hook. Delete value L from alias set map.
+void LICM::deleteAnalysisLoop(Loop *L) {
+ AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
+ if (!AST)
+ return;
+
+ delete AST;
+ LoopToAliasSetMap.erase(L);
+}
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoadCombine.cpp b/contrib/llvm/lib/Transforms/Scalar/LoadCombine.cpp
index 846aa70..11e4d76 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoadCombine.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoadCombine.cpp
@@ -15,6 +15,8 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Pass.h"
#include "llvm/IR/DataLayout.h"
@@ -51,13 +53,16 @@ struct LoadPOPPair {
class LoadCombine : public BasicBlockPass {
LLVMContext *C;
const DataLayout *DL;
+ AliasAnalysis *AA;
public:
LoadCombine()
: BasicBlockPass(ID),
- C(nullptr), DL(nullptr) {
+ C(nullptr), DL(nullptr), AA(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
+
+ using llvm::Pass::doInitialization;
bool doInitialization(Function &) override;
bool runOnBasicBlock(BasicBlock &BB) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
@@ -223,19 +228,23 @@ bool LoadCombine::runOnBasicBlock(BasicBlock &BB) {
if (skipOptnoneFunction(BB) || !DL)
return false;
+ AA = &getAnalysis<AliasAnalysis>();
+
IRBuilder<true, TargetFolder>
TheBuilder(BB.getContext(), TargetFolder(DL));
Builder = &TheBuilder;
DenseMap<const Value *, SmallVector<LoadPOPPair, 8>> LoadMap;
+ AliasSetTracker AST(*AA);
bool Combined = false;
unsigned Index = 0;
for (auto &I : BB) {
- if (I.mayWriteToMemory() || I.mayThrow()) {
+ if (I.mayThrow() || (I.mayWriteToMemory() && AST.containsUnknown(&I))) {
if (combineLoads(LoadMap))
Combined = true;
LoadMap.clear();
+ AST.clear();
continue;
}
LoadInst *LI = dyn_cast<LoadInst>(&I);
@@ -248,6 +257,7 @@ bool LoadCombine::runOnBasicBlock(BasicBlock &BB) {
if (!POP.Pointer)
continue;
LoadMap[POP.Pointer].push_back(LoadPOPPair(LI, POP, Index++));
+ AST.add(LI);
}
if (combineLoads(LoadMap))
Combined = true;
@@ -256,6 +266,9 @@ bool LoadCombine::runOnBasicBlock(BasicBlock &BB) {
void LoadCombine::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
+
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
}
char LoadCombine::ID = 0;
@@ -264,5 +277,9 @@ BasicBlockPass *llvm::createLoadCombinePass() {
return new LoadCombine();
}
-INITIALIZE_PASS(LoadCombine, "load-combine", "Combine Adjacent Loads", false,
- false)
+INITIALIZE_PASS_BEGIN(LoadCombine, "load-combine", "Combine Adjacent Loads",
+ false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(LoadCombine, "load-combine", "Combine Adjacent Loads",
+ false, false)
+
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp
index 5ab686a..1d1f33a 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopDeletion.cpp
@@ -239,9 +239,8 @@ bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
LoopInfo &loopInfo = getAnalysis<LoopInfo>();
SmallPtrSet<BasicBlock*, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
- for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
- E = blocks.end(); I != E; ++I)
- loopInfo.removeBlock(*I);
+ for (BasicBlock *BB : blocks)
+ loopInfo.removeBlock(BB);
// The last step is to inform the loop pass manager that we've
// eliminated this loop.
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
index ab1a939..d664f85 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -14,9 +14,11 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
@@ -41,11 +43,12 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
- AU.addPreserved("scalar-evolution");
+ AU.addPreserved<ScalarEvolution>();
AU.addRequired<TargetLibraryInfo>();
}
};
@@ -54,6 +57,7 @@ namespace {
char LoopInstSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInstSimplify, "loop-instsimplify",
"Simplify instructions in loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
@@ -76,6 +80,8 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
+ *L->getHeader()->getParent());
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
@@ -116,7 +122,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// Don't bother simplifying unused instructions.
if (!I->use_empty()) {
- Value *V = SimplifyInstruction(I, DL, TLI, DT);
+ Value *V = SimplifyInstruction(I, DL, TLI, DT, &AC);
if (V && LI->replacementPreservesLCSSAForm(I, V)) {
// Mark all uses for resimplification next time round the loop.
for (User *U : I->users())
@@ -148,7 +154,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
++SI) {
BasicBlock *SuccBB = *SI;
- if (!Visited.insert(SuccBB))
+ if (!Visited.insert(SuccBB).second)
continue;
const Loop *SuccLoop = LI->getLoopFor(SuccBB);
@@ -161,7 +167,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
for (unsigned i = 0; i < SubLoopExitBlocks.size(); ++i) {
BasicBlock *ExitBB = SubLoopExitBlocks[i];
- if (LI->getLoopFor(ExitBB) == L && Visited.insert(ExitBB))
+ if (LI->getLoopFor(ExitBB) == L && Visited.insert(ExitBB).second)
VisitStack.push_back(WorklistItem(ExitBB, false));
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
index b6fbb16..8f12204 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
@@ -215,9 +215,7 @@ protected:
typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
// Add a new possible reduction.
- void addSLR(SimpleLoopReduction &SLR) {
- PossibleReds.push_back(SLR);
- }
+ void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
// Setup to track possible reductions corresponding to the provided
// rerolling scale. Only reductions with a number of non-PHI instructions
@@ -225,7 +223,8 @@ protected:
// are filled in:
// - A set of all possible instructions in eligible reductions.
// - A set of all PHIs in eligible reductions
- // - A set of all reduced values (last instructions) in eligible reductions.
+ // - A set of all reduced values (last instructions) in eligible
+ // reductions.
void restrictToScale(uint64_t Scale,
SmallInstructionSet &PossibleRedSet,
SmallInstructionSet &PossibleRedPHISet,
@@ -238,13 +237,12 @@ protected:
if (PossibleReds[i].size() % Scale == 0) {
PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
PossibleRedPHISet.insert(PossibleReds[i].getPHI());
-
+
PossibleRedSet.insert(PossibleReds[i].getPHI());
PossibleRedIdx[PossibleReds[i].getPHI()] = i;
- for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
- JE = PossibleReds[i].end(); J != JE; ++J) {
- PossibleRedSet.insert(*J);
- PossibleRedIdx[*J] = i;
+ for (Instruction *J : PossibleReds[i]) {
+ PossibleRedSet.insert(J);
+ PossibleRedIdx[J] = i;
}
}
}
@@ -487,7 +485,7 @@ void LoopReroll::collectInLoopUserSet(Loop *L,
if (PN->getIncomingBlock(U) == L->getHeader())
continue;
}
-
+
if (L->contains(User) && !Exclude.count(User)) {
Queue.push_back(User);
}
@@ -659,16 +657,15 @@ bool LoopReroll::ReductionTracker::validateSelected() {
RI != RIE; ++RI) {
int i = *RI;
int PrevIter = 0, BaseCount = 0, Count = 0;
- for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
- JE = PossibleReds[i].end(); J != JE; ++J) {
- // Note that all instructions in the chain must have been found because
- // all instructions in the function must have been assigned to some
- // iteration.
- int Iter = PossibleRedIter[*J];
+ for (Instruction *J : PossibleReds[i]) {
+ // Note that all instructions in the chain must have been found because
+ // all instructions in the function must have been assigned to some
+ // iteration.
+ int Iter = PossibleRedIter[J];
if (Iter != PrevIter && Iter != PrevIter + 1 &&
!PossibleReds[i].getReducedValue()->isAssociative()) {
DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
- *J << "\n");
+ J << "\n");
return false;
}
@@ -881,7 +878,7 @@ bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
// needed because otherwise isSafeToSpeculativelyExecute returns
// false on PHI nodes.
if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
- FutureSideEffects = true;
+ FutureSideEffects = true;
}
++J2;
@@ -952,9 +949,9 @@ bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
Value *Op2 = J2->getOperand(j);
- // If this is part of a reduction (and the operation is not
- // associatve), then we match all operands, but not those that are
- // part of the reduction.
+ // If this is part of a reduction (and the operation is not
+ // associatve), then we match all operands, but not those that are
+ // part of the reduction.
if (InReduction)
if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
if (Reductions.isPairInSame(J2, Op2I))
@@ -968,11 +965,11 @@ bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
Op2 = IV;
if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
- // If we've not already decided to swap the matched operands, and
- // we've not already matched our first operand (note that we could
- // have skipped matching the first operand because it is part of a
- // reduction above), and the instruction is commutative, then try
- // the swapped match.
+ // If we've not already decided to swap the matched operands, and
+ // we've not already matched our first operand (note that we could
+ // have skipped matching the first operand because it is part of a
+ // reduction above), and the instruction is commutative, then try
+ // the swapped match.
if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
J1->getOperand(!j) == Op2) {
Swapped = true;
@@ -1069,7 +1066,7 @@ bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
continue;
}
- ++J;
+ ++J;
}
// Insert the new induction variable.
@@ -1110,9 +1107,9 @@ bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
Preheader->getTerminator());
}
-
- Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
- "exitcond");
+
+ Value *Cond =
+ new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
BI->setCondition(Cond);
if (BI->getSuccessor(1) != Header)
@@ -1182,4 +1179,3 @@ bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
return Changed;
}
-
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp
index 2ce5831..9164be2 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp
@@ -13,6 +13,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
@@ -53,6 +54,7 @@ namespace {
// LCSSA form makes instruction renaming easier.
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
@@ -72,12 +74,14 @@ namespace {
unsigned MaxHeaderSize;
LoopInfo *LI;
const TargetTransformInfo *TTI;
+ AssumptionCache *AC;
};
}
char LoopRotate::ID = 0;
INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -98,6 +102,8 @@ bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfo>();
TTI = &getAnalysis<TargetTransformInfo>();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
+ *L->getHeader()->getParent());
// Simplify the loop latch before attempting to rotate the header
// upward. Rotation may not be needed if the loop tail can be folded into the
@@ -184,13 +190,18 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
}
}
-/// Determine whether the instructions in this range my be safely and cheaply
+/// Determine whether the instructions in this range may be safely and cheaply
/// speculated. This is not an important enough situation to develop complex
/// heuristics. We handle a single arithmetic instruction along with any type
/// conversions.
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
- BasicBlock::iterator End) {
+ BasicBlock::iterator End, Loop *L) {
bool seenIncrement = false;
+ bool MultiExitLoop = false;
+
+ if (!L->getExitingBlock())
+ MultiExitLoop = true;
+
for (BasicBlock::iterator I = Begin; I != End; ++I) {
if (!isSafeToSpeculativelyExecute(I))
@@ -214,11 +225,33 @@ static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
- case Instruction::AShr:
+ case Instruction::AShr: {
+ Value *IVOpnd = nullptr;
+ if (isa<ConstantInt>(I->getOperand(0)))
+ IVOpnd = I->getOperand(1);
+
+ if (isa<ConstantInt>(I->getOperand(1))) {
+ if (IVOpnd)
+ return false;
+
+ IVOpnd = I->getOperand(0);
+ }
+
+ // If increment operand is used outside of the loop, this speculation
+ // could cause extra live range interference.
+ if (MultiExitLoop && IVOpnd) {
+ for (User *UseI : IVOpnd->users()) {
+ auto *UserInst = cast<Instruction>(UseI);
+ if (!L->contains(UserInst))
+ return false;
+ }
+ }
+
if (seenIncrement)
return false;
seenIncrement = true;
break;
+ }
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
@@ -232,7 +265,7 @@ static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
/// Fold the loop tail into the loop exit by speculating the loop tail
/// instructions. Typically, this is a single post-increment. In the case of a
/// simple 2-block loop, hoisting the increment can be much better than
-/// duplicating the entire loop header. In the cast of loops with early exits,
+/// duplicating the entire loop header. In the case of loops with early exits,
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
/// canonical form so downstream passes can handle it.
///
@@ -254,7 +287,7 @@ bool LoopRotate::simplifyLoopLatch(Loop *L) {
if (!BI)
return false;
- if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
+ if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L))
return false;
DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
@@ -323,8 +356,11 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
// Check size of original header and reject loop if it is very big or we can't
// duplicate blocks inside it.
{
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
CodeMetrics Metrics;
- Metrics.analyzeBasicBlock(OrigHeader, *TTI);
+ Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
if (Metrics.notDuplicatable) {
DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
<< " instructions: "; L->dump());
@@ -406,6 +442,7 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
// With the operands remapped, see if the instruction constant folds or is
// otherwise simplifyable. This commonly occurs because the entry from PHI
// nodes allows icmps and other instructions to fold.
+ // FIXME: Provide DL, TLI, DT, AC to SimplifyInstruction.
Value *V = SimplifyInstruction(C);
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
// If so, then delete the temporary instruction and stick the folded value
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 914b56a..7b60373 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -744,7 +744,7 @@ static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
/// obvious multiple of the UDivExpr.
static bool isHighCostExpansion(const SCEV *S,
- SmallPtrSet<const SCEV*, 8> &Processed,
+ SmallPtrSetImpl<const SCEV*> &Processed,
ScalarEvolution &SE) {
// Zero/One operand expressions
switch (S->getSCEVType()) {
@@ -762,7 +762,7 @@ static bool isHighCostExpansion(const SCEV *S,
Processed, SE);
}
- if (!Processed.insert(S))
+ if (!Processed.insert(S).second)
return false;
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
@@ -892,34 +892,34 @@ public:
void RateFormula(const TargetTransformInfo &TTI,
const Formula &F,
- SmallPtrSet<const SCEV *, 16> &Regs,
+ SmallPtrSetImpl<const SCEV *> &Regs,
const DenseSet<const SCEV *> &VisitedRegs,
const Loop *L,
const SmallVectorImpl<int64_t> &Offsets,
ScalarEvolution &SE, DominatorTree &DT,
const LSRUse &LU,
- SmallPtrSet<const SCEV *, 16> *LoserRegs = nullptr);
+ SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
void print(raw_ostream &OS) const;
void dump() const;
private:
void RateRegister(const SCEV *Reg,
- SmallPtrSet<const SCEV *, 16> &Regs,
+ SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
ScalarEvolution &SE, DominatorTree &DT);
void RatePrimaryRegister(const SCEV *Reg,
- SmallPtrSet<const SCEV *, 16> &Regs,
+ SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
ScalarEvolution &SE, DominatorTree &DT,
- SmallPtrSet<const SCEV *, 16> *LoserRegs);
+ SmallPtrSetImpl<const SCEV *> *LoserRegs);
};
}
/// RateRegister - Tally up interesting quantities from the given register.
void Cost::RateRegister(const SCEV *Reg,
- SmallPtrSet<const SCEV *, 16> &Regs,
+ SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
ScalarEvolution &SE, DominatorTree &DT) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
@@ -967,15 +967,15 @@ void Cost::RateRegister(const SCEV *Reg,
/// before, rate it. Optional LoserRegs provides a way to declare any formula
/// that refers to one of those regs an instant loser.
void Cost::RatePrimaryRegister(const SCEV *Reg,
- SmallPtrSet<const SCEV *, 16> &Regs,
+ SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
ScalarEvolution &SE, DominatorTree &DT,
- SmallPtrSet<const SCEV *, 16> *LoserRegs) {
+ SmallPtrSetImpl<const SCEV *> *LoserRegs) {
if (LoserRegs && LoserRegs->count(Reg)) {
Lose();
return;
}
- if (Regs.insert(Reg)) {
+ if (Regs.insert(Reg).second) {
RateRegister(Reg, Regs, L, SE, DT);
if (LoserRegs && isLoser())
LoserRegs->insert(Reg);
@@ -984,13 +984,13 @@ void Cost::RatePrimaryRegister(const SCEV *Reg,
void Cost::RateFormula(const TargetTransformInfo &TTI,
const Formula &F,
- SmallPtrSet<const SCEV *, 16> &Regs,
+ SmallPtrSetImpl<const SCEV *> &Regs,
const DenseSet<const SCEV *> &VisitedRegs,
const Loop *L,
const SmallVectorImpl<int64_t> &Offsets,
ScalarEvolution &SE, DominatorTree &DT,
const LSRUse &LU,
- SmallPtrSet<const SCEV *, 16> *LoserRegs) {
+ SmallPtrSetImpl<const SCEV *> *LoserRegs) {
assert(F.isCanonical() && "Cost is accurate only for canonical formula");
// Tally up the registers.
if (const SCEV *ScaledReg = F.ScaledReg) {
@@ -1337,10 +1337,9 @@ void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
}
// Update the RegTracker.
- for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
- E = OldRegs.end(); I != E; ++I)
- if (!Regs.count(*I))
- RegUses.DropRegister(*I, LUIdx);
+ for (const SCEV *S : OldRegs)
+ if (!Regs.count(S))
+ RegUses.DropRegister(S, LUIdx);
}
void LSRUse::print(raw_ostream &OS) const {
@@ -2226,13 +2225,12 @@ LSRInstance::OptimizeLoopTermCond() {
// must dominate all the post-inc comparisons we just set up, and it must
// dominate the loop latch edge.
IVIncInsertPos = L->getLoopLatch()->getTerminator();
- for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
- E = PostIncs.end(); I != E; ++I) {
+ for (Instruction *Inst : PostIncs) {
BasicBlock *BB =
DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
- (*I)->getParent());
- if (BB == (*I)->getParent())
- IVIncInsertPos = *I;
+ Inst->getParent());
+ if (BB == Inst->getParent())
+ IVIncInsertPos = Inst;
else if (BB != IVIncInsertPos->getParent())
IVIncInsertPos = BB->getTerminator();
}
@@ -2557,7 +2555,7 @@ bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
///
/// TODO: Consider IVInc free if it's already used in another chains.
static bool
-isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
+isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
ScalarEvolution &SE, const TargetTransformInfo &TTI) {
if (StressIVChain)
return true;
@@ -2567,9 +2565,8 @@ isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
if (!Users.empty()) {
DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
- for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
- E = Users.end(); I != E; ++I) {
- dbgs() << " " << **I << "\n";
+ for (Instruction *Inst : Users) {
+ dbgs() << " " << *Inst << "\n";
});
return false;
}
@@ -2805,7 +2802,7 @@ void LSRInstance::CollectChains() {
User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
while (IVOpIter != IVOpEnd) {
Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
- if (UniqueOperands.insert(IVOpInst))
+ if (UniqueOperands.insert(IVOpInst).second)
ChainInstruction(I, IVOpInst, ChainUsersVec);
IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
}
@@ -3119,11 +3116,15 @@ bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
void
LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
- SmallPtrSet<const SCEV *, 8> Inserted;
+ SmallPtrSet<const SCEV *, 32> Visited;
while (!Worklist.empty()) {
const SCEV *S = Worklist.pop_back_val();
+ // Don't process the same SCEV twice
+ if (!Visited.insert(S).second)
+ continue;
+
if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Worklist.append(N->op_begin(), N->op_end());
else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
@@ -3132,7 +3133,6 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
Worklist.push_back(D->getLHS());
Worklist.push_back(D->getRHS());
} else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
- if (!Inserted.insert(US)) continue;
const Value *V = US->getValue();
if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
// Look for instructions defined outside the loop.
@@ -3774,7 +3774,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
LUIdx = UsedByIndices.find_next(LUIdx))
// Make a memo of this use, offset, and register tuple.
- if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
+ if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
}
}
@@ -4302,10 +4302,9 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
// reference that register in order to be considered. This prunes out
// unprofitable searching.
SmallSetVector<const SCEV *, 4> ReqRegs;
- for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
- E = CurRegs.end(); I != E; ++I)
- if (LU.Regs.count(*I))
- ReqRegs.insert(*I);
+ for (const SCEV *S : CurRegs)
+ if (LU.Regs.count(S))
+ ReqRegs.insert(S);
SmallPtrSet<const SCEV *, 16> NewRegs;
Cost NewCost;
@@ -4350,9 +4349,8 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
} else {
DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
dbgs() << ".\n Regs:";
- for (SmallPtrSet<const SCEV *, 16>::const_iterator
- I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
- dbgs() << ' ' << **I;
+ for (const SCEV *S : NewRegs)
+ dbgs() << ' ' << *S;
dbgs() << '\n');
SolutionCost = NewCost;
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 935f289..fef5210 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -13,7 +13,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/FunctionTargetTransformInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
@@ -52,7 +54,7 @@ UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
static cl::opt<unsigned>
PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
- cl::desc("Unrolled size limit for loops with an unroll(enable) or "
+ cl::desc("Unrolled size limit for loops with an unroll(full) or "
"unroll_count pragma."));
namespace {
@@ -102,6 +104,7 @@ namespace {
/// loop preheaders be inserted into the CFG...
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
@@ -111,6 +114,7 @@ namespace {
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addRequired<TargetTransformInfo>();
+ AU.addRequired<FunctionTargetTransformInfo>();
// FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
// If loop unroll does not preserve dom info then LCSSA pass on next
// loop will receive invalid dom info.
@@ -120,7 +124,7 @@ namespace {
// Fill in the UnrollingPreferences parameter with values from the
// TargetTransformationInfo.
- void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
+ void getUnrollingPreferences(Loop *L, const FunctionTargetTransformInfo &FTTI,
TargetTransformInfo::UnrollingPreferences &UP) {
UP.Threshold = CurrentThreshold;
UP.OptSizeThreshold = OptSizeUnrollThreshold;
@@ -130,7 +134,7 @@ namespace {
UP.MaxCount = UINT_MAX;
UP.Partial = CurrentAllowPartial;
UP.Runtime = CurrentRuntime;
- TTI.getUnrollingPreferences(L, UP);
+ FTTI.getUnrollingPreferences(L, UP);
}
// Select and return an unroll count based on parameters from
@@ -138,12 +142,11 @@ namespace {
// SetExplicitly is set to true if the unroll count is is set by
// the user or a pragma rather than selected heuristically.
unsigned
- selectUnrollCount(const Loop *L, unsigned TripCount, bool HasEnablePragma,
+ selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
unsigned PragmaCount,
const TargetTransformInfo::UnrollingPreferences &UP,
bool &SetExplicitly);
-
// Select threshold values used to limit unrolling based on a
// total unrolled size. Parameters Threshold and PartialThreshold
// are set to the maximum unrolled size for fully and partially
@@ -183,6 +186,8 @@ namespace {
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(FunctionTargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -201,11 +206,15 @@ Pass *llvm::createSimpleLoopUnrollPass() {
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
bool &NotDuplicatable,
- const TargetTransformInfo &TTI) {
+ const TargetTransformInfo &TTI,
+ AssumptionCache *AC) {
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
- Metrics.analyzeBasicBlock(*I, TTI);
+ Metrics.analyzeBasicBlock(*I, TTI, EphValues);
NumCalls = Metrics.NumInlineCandidates;
NotDuplicatable = Metrics.notDuplicatable;
@@ -213,19 +222,22 @@ static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
// Don't allow an estimate of size zero. This would allows unrolling of loops
// with huge iteration counts, which is a compile time problem even if it's
- // not a problem for code quality.
- if (LoopSize == 0) LoopSize = 1;
+ // not a problem for code quality. Also, the code using this size may assume
+ // that each loop has at least three instructions (likely a conditional
+ // branch, a comparison feeding that branch, and some kind of loop increment
+ // feeding that comparison instruction).
+ LoopSize = std::max(LoopSize, 3u);
return LoopSize;
}
-// Returns the value associated with the given metadata node name (for
-// example, "llvm.loop.unroll.count"). If no such named metadata node
-// exists, then nullptr is returned.
-static const ConstantInt *GetUnrollMetadataValue(const Loop *L,
- StringRef Name) {
+// Returns the loop hint metadata node with the given name (for example,
+// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
+// returned.
+static const MDNode *GetUnrollMetadata(const Loop *L, StringRef Name) {
MDNode *LoopID = L->getLoopID();
- if (!LoopID) return nullptr;
+ if (!LoopID)
+ return nullptr;
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
@@ -233,41 +245,38 @@ static const ConstantInt *GetUnrollMetadataValue(const Loop *L,
for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD) continue;
+ if (!MD)
+ continue;
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S) continue;
+ if (!S)
+ continue;
- if (Name.equals(S->getString())) {
- assert(MD->getNumOperands() == 2 &&
- "Unroll hint metadata should have two operands.");
- return cast<ConstantInt>(MD->getOperand(1));
- }
+ if (Name.equals(S->getString()))
+ return MD;
}
return nullptr;
}
-// Returns true if the loop has an unroll(enable) pragma.
-static bool HasUnrollEnablePragma(const Loop *L) {
- const ConstantInt *EnableValue =
- GetUnrollMetadataValue(L, "llvm.loop.unroll.enable");
- return (EnableValue && EnableValue->getZExtValue());
+// Returns true if the loop has an unroll(full) pragma.
+static bool HasUnrollFullPragma(const Loop *L) {
+ return GetUnrollMetadata(L, "llvm.loop.unroll.full");
}
// Returns true if the loop has an unroll(disable) pragma.
static bool HasUnrollDisablePragma(const Loop *L) {
- const ConstantInt *EnableValue =
- GetUnrollMetadataValue(L, "llvm.loop.unroll.enable");
- return (EnableValue && !EnableValue->getZExtValue());
+ return GetUnrollMetadata(L, "llvm.loop.unroll.disable");
}
// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma. Otherwise return 0.
static unsigned UnrollCountPragmaValue(const Loop *L) {
- const ConstantInt *CountValue =
- GetUnrollMetadataValue(L, "llvm.loop.unroll.count");
- if (CountValue) {
- unsigned Count = CountValue->getZExtValue();
+ const MDNode *MD = GetUnrollMetadata(L, "llvm.loop.unroll.count");
+ if (MD) {
+ assert(MD->getNumOperands() == 2 &&
+ "Unroll count hint metadata should have two operands.");
+ unsigned Count =
+ mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
assert(Count >= 1 && "Unroll count must be positive.");
return Count;
}
@@ -283,9 +292,9 @@ static void SetLoopAlreadyUnrolled(Loop *L) {
if (!LoopID) return;
// First remove any existing loop unrolling metadata.
- SmallVector<Value *, 4> Vals;
+ SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
- Vals.push_back(nullptr);
+ MDs.push_back(nullptr);
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
bool IsUnrollMetadata = false;
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
@@ -293,26 +302,25 @@ static void SetLoopAlreadyUnrolled(Loop *L) {
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
}
- if (!IsUnrollMetadata) Vals.push_back(LoopID->getOperand(i));
+ if (!IsUnrollMetadata)
+ MDs.push_back(LoopID->getOperand(i));
}
// Add unroll(disable) metadata to disable future unrolling.
LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Value *, 2> DisableOperands;
- DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.enable"));
- DisableOperands.push_back(ConstantInt::get(Type::getInt1Ty(Context), 0));
+ SmallVector<Metadata *, 1> DisableOperands;
+ DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- Vals.push_back(DisableNode);
+ MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, Vals);
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
- LoopID->replaceAllUsesWith(NewLoopID);
}
unsigned LoopUnroll::selectUnrollCount(
- const Loop *L, unsigned TripCount, bool HasEnablePragma,
+ const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
bool &SetExplicitly) {
SetExplicitly = true;
@@ -326,9 +334,7 @@ unsigned LoopUnroll::selectUnrollCount(
if (Count == 0) {
if (PragmaCount) {
Count = PragmaCount;
- } else if (HasEnablePragma) {
- // unroll(enable) pragma without an unroll_count pragma
- // indicates to unroll loop fully.
+ } else if (PragmaFullUnroll) {
Count = TripCount;
}
}
@@ -360,6 +366,10 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LoopInfo *LI = &getAnalysis<LoopInfo>();
ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
+ const FunctionTargetTransformInfo &FTTI =
+ getAnalysis<FunctionTargetTransformInfo>();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
+ *L->getHeader()->getParent());
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
@@ -368,37 +378,43 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
if (HasUnrollDisablePragma(L)) {
return false;
}
- bool HasEnablePragma = HasUnrollEnablePragma(L);
+ bool PragmaFullUnroll = HasUnrollFullPragma(L);
unsigned PragmaCount = UnrollCountPragmaValue(L);
- bool HasPragma = HasEnablePragma || PragmaCount > 0;
+ bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
TargetTransformInfo::UnrollingPreferences UP;
- getUnrollingPreferences(L, TTI, UP);
+ getUnrollingPreferences(L, FTTI, UP);
// Find trip count and trip multiple if count is not available
unsigned TripCount = 0;
unsigned TripMultiple = 1;
- // Find "latch trip count". UnrollLoop assumes that control cannot exit
- // via the loop latch on any iteration prior to TripCount. The loop may exit
- // early via an earlier branch.
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (LatchBlock) {
- TripCount = SE->getSmallConstantTripCount(L, LatchBlock);
- TripMultiple = SE->getSmallConstantTripMultiple(L, LatchBlock);
+ // If there are multiple exiting blocks but one of them is the latch, use the
+ // latch for the trip count estimation. Otherwise insist on a single exiting
+ // block for the trip count estimation.
+ BasicBlock *ExitingBlock = L->getLoopLatch();
+ if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
+ ExitingBlock = L->getExitingBlock();
+ if (ExitingBlock) {
+ TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+ TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
}
// Select an initial unroll count. This may be reduced later based
// on size thresholds.
bool CountSetExplicitly;
- unsigned Count = selectUnrollCount(L, TripCount, HasEnablePragma, PragmaCount,
- UP, CountSetExplicitly);
+ unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
+ PragmaCount, UP, CountSetExplicitly);
unsigned NumInlineCandidates;
bool notDuplicatable;
unsigned LoopSize =
- ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI);
+ ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
- uint64_t UnrolledSize = (uint64_t)LoopSize * Count;
+
+ // When computing the unrolled size, note that the conditional branch on the
+ // backedge and the comparison feeding it are not replicated like the rest of
+ // the loop body (which is why 2 is subtracted).
+ uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
if (notDuplicatable) {
DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
<< " instructions.\n");
@@ -443,7 +459,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
// Reduce unroll count to be modulo of TripCount for partial unrolling.
- Count = PartialThreshold / LoopSize;
+ Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
while (Count != 0 && TripCount % Count != 0)
Count--;
}
@@ -457,7 +473,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// the original count which satisfies the threshold limit.
while (Count != 0 && UnrolledSize > PartialThreshold) {
Count >>= 1;
- UnrolledSize = LoopSize * Count;
+ UnrolledSize = (LoopSize-2) * Count + 2;
}
if (Count > UP.MaxCount)
Count = UP.MaxCount;
@@ -465,25 +481,26 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
if (HasPragma) {
- // Mark loop as unrolled to prevent unrolling beyond that
- // requested by the pragma.
- SetLoopAlreadyUnrolled(L);
+ if (PragmaCount != 0)
+ // If loop has an unroll count pragma mark loop as unrolled to prevent
+ // unrolling beyond that requested by the pragma.
+ SetLoopAlreadyUnrolled(L);
// Emit optimization remarks if we are unable to unroll the loop
// as directed by a pragma.
DebugLoc LoopLoc = L->getStartLoc();
Function *F = Header->getParent();
LLVMContext &Ctx = F->getContext();
- if (HasEnablePragma && PragmaCount == 0) {
+ if (PragmaFullUnroll && PragmaCount == 0) {
if (TripCount && Count != TripCount) {
emitOptimizationRemarkMissed(
Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to fully unroll loop as directed by unroll(enable) pragma "
+ "Unable to fully unroll loop as directed by unroll(full) pragma "
"because unrolled size is too large.");
} else if (!TripCount) {
emitOptimizationRemarkMissed(
Ctx, DEBUG_TYPE, *F, LoopLoc,
- "Unable to fully unroll loop as directed by unroll(enable) pragma "
+ "Unable to fully unroll loop as directed by unroll(full) pragma "
"because loop has a runtime trip count.");
}
} else if (PragmaCount > 0 && Count != OriginalCount) {
@@ -501,7 +518,8 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
// Unroll the loop.
- if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this, &LPM))
+ if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this,
+ &LPM, &AC))
return false;
return true;
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
index 977c53a..9f4c122 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -30,6 +30,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
@@ -103,7 +104,8 @@ namespace {
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
- bool countLoop(const Loop *L, const TargetTransformInfo &TTI);
+ bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
+ AssumptionCache *AC);
// Clean all data related to given loop.
void forgetLoop(const Loop *L);
@@ -126,6 +128,7 @@ namespace {
class LoopUnswitch : public LoopPass {
LoopInfo *LI; // Loop information
LPPassManager *LPM;
+ AssumptionCache *AC;
// LoopProcessWorklist - Used to check if second loop needs processing
// after RewriteLoopBodyWithConditionConstant rewrites first loop.
@@ -164,6 +167,7 @@ namespace {
/// loop preheaders be inserted into the CFG.
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
@@ -212,7 +216,8 @@ namespace {
// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
-bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
+bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
+ AssumptionCache *AC) {
LoopPropsMapIt PropsIt;
bool Inserted;
@@ -229,13 +234,16 @@ bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
// large numbers of branches which cause loop unswitching to go crazy.
// This is a very ad-hoc heuristic.
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
// FIXME: This is overly conservative because it does not take into
// consideration code simplification opportunities and code that can
// be shared by the resultant unswitched loops.
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
- Metrics.analyzeBasicBlock(*I, TTI);
+ Metrics.analyzeBasicBlock(*I, TTI, EphValues);
Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
@@ -326,6 +334,7 @@ char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
@@ -376,6 +385,8 @@ bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
if (skipOptnoneFunction(L))
return false;
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
+ *L->getHeader()->getParent());
LI = &getAnalysis<LoopInfo>();
LPM = &LPM_Ref;
DominatorTreeWrapperPass *DTWP =
@@ -421,7 +432,8 @@ bool LoopUnswitch::processCurrentLoop() {
// Probably we reach the quota of branches for this loop. If so
// stop unswitching.
- if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
+ if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>(),
+ AC))
return false;
// Loop over all of the basic blocks in the loop. If we find an interior
@@ -823,6 +835,10 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
NewBlocks[0], F->end());
+ // FIXME: We could register any cloned assumptions instead of clearing the
+ // whole function's cache.
+ AC->clear();
+
// Now we create the new Loop object for the versioned loop.
Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
diff --git a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 7c184a4..33b5f9d 100644
--- a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -16,6 +16,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
@@ -329,6 +330,7 @@ namespace {
// This transformation requires dominator postdominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
@@ -361,6 +363,7 @@ FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
@@ -631,22 +634,24 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (destSize < srcSize)
return false;
} else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
- // If the destination is an sret parameter then only accesses that are
- // outside of the returned struct type can trap.
- if (!A->hasStructRetAttr())
- return false;
+ if (A->getDereferenceableBytes() < srcSize) {
+ // If the destination is an sret parameter then only accesses that are
+ // outside of the returned struct type can trap.
+ if (!A->hasStructRetAttr())
+ return false;
- Type *StructTy = cast<PointerType>(A->getType())->getElementType();
- if (!StructTy->isSized()) {
- // The call may never return and hence the copy-instruction may never
- // be executed, and therefore it's not safe to say "the destination
- // has at least <cpyLen> bytes, as implied by the copy-instruction",
- return false;
- }
+ Type *StructTy = cast<PointerType>(A->getType())->getElementType();
+ if (!StructTy->isSized()) {
+ // The call may never return and hence the copy-instruction may never
+ // be executed, and therefore it's not safe to say "the destination
+ // has at least <cpyLen> bytes, as implied by the copy-instruction",
+ return false;
+ }
- uint64_t destSize = DL->getTypeAllocSize(StructTy);
- if (destSize < srcSize)
- return false;
+ uint64_t destSize = DL->getTypeAllocSize(StructTy);
+ if (destSize < srcSize)
+ return false;
+ }
} else {
return false;
}
@@ -673,15 +678,23 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
for (User *UU : U->users())
srcUseList.push_back(UU);
- } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
- if (G->hasAllZeroIndices())
- for (User *UU : U->users())
- srcUseList.push_back(UU);
- else
+ continue;
+ }
+ if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
+ if (!G->hasAllZeroIndices())
return false;
- } else if (U != C && U != cpy) {
- return false;
+
+ for (User *UU : U->users())
+ srcUseList.push_back(UU);
+ continue;
}
+ if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
+ if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
+ IT->getIntrinsicID() == Intrinsic::lifetime_end)
+ continue;
+
+ if (U != C && U != cpy)
+ return false;
}
// Check that src isn't captured by the called function since the
@@ -969,8 +982,13 @@ bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
// If it is greater than the memcpy, then we check to see if we can force the
// source of the memcpy to the alignment we need. If we fail, we bail out.
+ AssumptionCache &AC =
+ getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
+ *CS->getParent()->getParent());
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
if (MDep->getAlignment() < ByValAlign &&
- getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, DL) < ByValAlign)
+ getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &AC,
+ CS.getInstruction(), &DT) < ByValAlign)
return false;
// Verify that the copied-from memory doesn't change in between the memcpy and
diff --git a/contrib/llvm/lib/Transforms/Scalar/MergedLoadStoreMotion.cpp b/contrib/llvm/lib/Transforms/Scalar/MergedLoadStoreMotion.cpp
index c2467fe..8509713 100644
--- a/contrib/llvm/lib/Transforms/Scalar/MergedLoadStoreMotion.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/MergedLoadStoreMotion.cpp
@@ -97,9 +97,6 @@ using namespace llvm;
//===----------------------------------------------------------------------===//
// MergedLoadStoreMotion Pass
//===----------------------------------------------------------------------===//
-static cl::opt<bool>
-EnableMLSM("mlsm", cl::desc("Enable motion of merged load and store"),
- cl::init(true));
namespace {
class MergedLoadStoreMotion : public FunctionPass {
@@ -134,7 +131,9 @@ private:
BasicBlock *getDiamondTail(BasicBlock *BB);
bool isDiamondHead(BasicBlock *BB);
// Routines for hoisting loads
- bool isLoadHoistBarrier(Instruction *Inst);
+ bool isLoadHoistBarrierInRange(const Instruction& Start,
+ const Instruction& End,
+ LoadInst* LI);
LoadInst *canHoistFromBlock(BasicBlock *BB, LoadInst *LI);
void hoistInstruction(BasicBlock *BB, Instruction *HoistCand,
Instruction *ElseInst);
@@ -144,7 +143,9 @@ private:
// Routines for sinking stores
StoreInst *canSinkFromBlock(BasicBlock *BB, StoreInst *SI);
PHINode *getPHIOperand(BasicBlock *BB, StoreInst *S0, StoreInst *S1);
- bool isStoreSinkBarrier(Instruction *Inst);
+ bool isStoreSinkBarrierInRange(const Instruction& Start,
+ const Instruction& End,
+ AliasAnalysis::Location Loc);
bool sinkStore(BasicBlock *BB, StoreInst *SinkCand, StoreInst *ElseInst);
bool mergeStores(BasicBlock *BB);
// The mergeLoad/Store algorithms could have Size0 * Size1 complexity,
@@ -235,27 +236,12 @@ bool MergedLoadStoreMotion::isDiamondHead(BasicBlock *BB) {
/// being loaded or protect against the load from happening
/// it is considered a hoist barrier.
///
-bool MergedLoadStoreMotion::isLoadHoistBarrier(Instruction *Inst) {
- // FIXME: A call with no side effects should not be a barrier.
- // Aren't all such calls covered by mayHaveSideEffects() below?
- // Then this check can be removed.
- if (isa<CallInst>(Inst))
- return true;
- if (isa<TerminatorInst>(Inst))
- return true;
- // FIXME: Conservatively let a store instruction block the load.
- // Use alias analysis instead.
- if (isa<StoreInst>(Inst))
- return true;
- // Note: mayHaveSideEffects covers all instructions that could
- // trigger a change to state. Eg. in-flight stores have to be executed
- // before ordered loads or fences, calls could invoke functions that store
- // data to memory etc.
- if (Inst->mayHaveSideEffects()) {
- return true;
- }
- DEBUG(dbgs() << "No Hoist Barrier\n");
- return false;
+
+bool MergedLoadStoreMotion::isLoadHoistBarrierInRange(const Instruction& Start,
+ const Instruction& End,
+ LoadInst* LI) {
+ AliasAnalysis::Location Loc = AA->getLocation(LI);
+ return AA->canInstructionRangeModRef(Start, End, Loc, AliasAnalysis::Mod);
}
///
@@ -265,33 +251,29 @@ bool MergedLoadStoreMotion::isLoadHoistBarrier(Instruction *Inst) {
/// and it can be hoisted from \p BB, return that load.
/// Otherwise return Null.
///
-LoadInst *MergedLoadStoreMotion::canHoistFromBlock(BasicBlock *BB,
- LoadInst *LI) {
- LoadInst *I = nullptr;
- assert(isa<LoadInst>(LI));
- if (LI->isUsedOutsideOfBlock(LI->getParent()))
- return nullptr;
+LoadInst *MergedLoadStoreMotion::canHoistFromBlock(BasicBlock *BB1,
+ LoadInst *Load0) {
- for (BasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); BBI != BBE;
+ for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); BBI != BBE;
++BBI) {
Instruction *Inst = BBI;
// Only merge and hoist loads when their result in used only in BB
- if (isLoadHoistBarrier(Inst))
- break;
- if (!isa<LoadInst>(Inst))
- continue;
- if (Inst->isUsedOutsideOfBlock(Inst->getParent()))
+ if (!isa<LoadInst>(Inst) || Inst->isUsedOutsideOfBlock(BB1))
continue;
- AliasAnalysis::Location LocLI = AA->getLocation(LI);
- AliasAnalysis::Location LocInst = AA->getLocation((LoadInst *)Inst);
- if (AA->isMustAlias(LocLI, LocInst) && LI->getType() == Inst->getType()) {
- I = (LoadInst *)Inst;
- break;
+ LoadInst *Load1 = dyn_cast<LoadInst>(Inst);
+ BasicBlock *BB0 = Load0->getParent();
+
+ AliasAnalysis::Location Loc0 = AA->getLocation(Load0);
+ AliasAnalysis::Location Loc1 = AA->getLocation(Load1);
+ if (AA->isMustAlias(Loc0, Loc1) && Load0->isSameOperationAs(Load1) &&
+ !isLoadHoistBarrierInRange(BB1->front(), *Load1, Load1) &&
+ !isLoadHoistBarrierInRange(BB0->front(), *Load0, Load0)) {
+ return Load1;
}
}
- return I;
+ return nullptr;
}
///
@@ -388,15 +370,10 @@ bool MergedLoadStoreMotion::mergeLoads(BasicBlock *BB) {
Instruction *I = BBI;
++BBI;
- if (isLoadHoistBarrier(I))
- break;
// Only move non-simple (atomic, volatile) loads.
- if (!isa<LoadInst>(I))
- continue;
-
- LoadInst *L0 = (LoadInst *)I;
- if (!L0->isSimple())
+ LoadInst *L0 = dyn_cast<LoadInst>(I);
+ if (!L0 || !L0->isSimple() || L0->isUsedOutsideOfBlock(Succ0))
continue;
++NLoads;
@@ -414,26 +391,19 @@ bool MergedLoadStoreMotion::mergeLoads(BasicBlock *BB) {
}
///
-/// \brief True when instruction is sink barrier for a store
-///
-bool MergedLoadStoreMotion::isStoreSinkBarrier(Instruction *Inst) {
- // FIXME: Conservatively let a load instruction block the store.
- // Use alias analysis instead.
- if (isa<LoadInst>(Inst))
- return true;
- if (isa<CallInst>(Inst))
- return true;
- if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst))
- return true;
- // Note: mayHaveSideEffects covers all instructions that could
- // trigger a change to state. Eg. in-flight stores have to be executed
- // before ordered loads or fences, calls could invoke functions that store
- // data to memory etc.
- if (!isa<StoreInst>(Inst) && Inst->mayHaveSideEffects()) {
- return true;
- }
- DEBUG(dbgs() << "No Sink Barrier\n");
- return false;
+/// \brief True when instruction is a sink barrier for a store
+/// located in Loc
+///
+/// Whenever an instruction could possibly read or modify the
+/// value being stored or protect against the store from
+/// happening it is considered a sink barrier.
+///
+
+bool MergedLoadStoreMotion::isStoreSinkBarrierInRange(const Instruction& Start,
+ const Instruction& End,
+ AliasAnalysis::Location
+ Loc) {
+ return AA->canInstructionRangeModRef(Start, End, Loc, AliasAnalysis::Ref);
}
///
@@ -441,27 +411,28 @@ bool MergedLoadStoreMotion::isStoreSinkBarrier(Instruction *Inst) {
///
/// \return The store in \p when it is safe to sink. Otherwise return Null.
///
-StoreInst *MergedLoadStoreMotion::canSinkFromBlock(BasicBlock *BB,
- StoreInst *SI) {
- StoreInst *I = 0;
- DEBUG(dbgs() << "can Sink? : "; SI->dump(); dbgs() << "\n");
- for (BasicBlock::reverse_iterator RBI = BB->rbegin(), RBE = BB->rend();
+StoreInst *MergedLoadStoreMotion::canSinkFromBlock(BasicBlock *BB1,
+ StoreInst *Store0) {
+ DEBUG(dbgs() << "can Sink? : "; Store0->dump(); dbgs() << "\n");
+ for (BasicBlock::reverse_iterator RBI = BB1->rbegin(), RBE = BB1->rend();
RBI != RBE; ++RBI) {
Instruction *Inst = &*RBI;
- // Only move loads if they are used in the block.
- if (isStoreSinkBarrier(Inst))
- break;
- if (isa<StoreInst>(Inst)) {
- AliasAnalysis::Location LocSI = AA->getLocation(SI);
- AliasAnalysis::Location LocInst = AA->getLocation((StoreInst *)Inst);
- if (AA->isMustAlias(LocSI, LocInst)) {
- I = (StoreInst *)Inst;
- break;
- }
+ if (!isa<StoreInst>(Inst))
+ continue;
+
+ StoreInst *Store1 = cast<StoreInst>(Inst);
+ BasicBlock *BB0 = Store0->getParent();
+
+ AliasAnalysis::Location Loc0 = AA->getLocation(Store0);
+ AliasAnalysis::Location Loc1 = AA->getLocation(Store1);
+ if (AA->isMustAlias(Loc0, Loc1) && Store0->isSameOperationAs(Store1) &&
+ !isStoreSinkBarrierInRange(*Store1, BB1->back(), Loc1) &&
+ !isStoreSinkBarrierInRange(*Store0, BB0->back(), Loc0)) {
+ return Store1;
}
}
- return I;
+ return nullptr;
}
///
@@ -573,8 +544,7 @@ bool MergedLoadStoreMotion::mergeStores(BasicBlock *T) {
Instruction *I = &*RBI;
++RBI;
- if (isStoreSinkBarrier(I))
- break;
+
// Sink move non-simple (atomic, volatile) stores
if (!isa<StoreInst>(I))
continue;
@@ -611,8 +581,6 @@ bool MergedLoadStoreMotion::runOnFunction(Function &F) {
AA = &getAnalysis<AliasAnalysis>();
bool Changed = false;
- if (!EnableMLSM)
- return false;
DEBUG(dbgs() << "Instruction Merger\n");
// Merge unconditional branches, allowing PRE to catch more
@@ -622,7 +590,6 @@ bool MergedLoadStoreMotion::runOnFunction(Function &F) {
// Hoist equivalent loads and sink stores
// outside diamonds when possible
- // Run outside core GVN
if (isDiamondHead(BB)) {
Changed |= mergeLoads(BB);
Changed |= mergeStores(getDiamondTail(BB));
diff --git a/contrib/llvm/lib/Transforms/Scalar/PartiallyInlineLibCalls.cpp b/contrib/llvm/lib/Transforms/Scalar/PartiallyInlineLibCalls.cpp
index 7cce89e..5c8bed5 100644
--- a/contrib/llvm/lib/Transforms/Scalar/PartiallyInlineLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/PartiallyInlineLibCalls.cpp
@@ -108,6 +108,10 @@ bool PartiallyInlineLibCalls::optimizeSQRT(CallInst *Call,
if (Call->onlyReadsMemory())
return false;
+ // The call must have the expected result type.
+ if (!Call->getType()->isFloatingPointTy())
+ return false;
+
// Do the following transformation:
//
// (before)
diff --git a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
index ea2cf7c..4e02255 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
@@ -176,6 +176,7 @@ namespace {
private:
void BuildRankMap(Function &F);
unsigned getRank(Value *V);
+ void canonicalizeOperands(Instruction *I);
void ReassociateExpression(BinaryOperator *I);
void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Value *OptimizeExpression(BinaryOperator *I,
@@ -194,6 +195,7 @@ namespace {
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
void EraseInst(Instruction *I);
void OptimizeInst(Instruction *I);
+ Instruction *canonicalizeNegConstExpr(Instruction *I);
};
}
@@ -235,7 +237,20 @@ FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
/// opcode and if it only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
if (V->hasOneUse() && isa<Instruction>(V) &&
- cast<Instruction>(V)->getOpcode() == Opcode)
+ cast<Instruction>(V)->getOpcode() == Opcode &&
+ (!isa<FPMathOperator>(V) ||
+ cast<Instruction>(V)->hasUnsafeAlgebra()))
+ return cast<BinaryOperator>(V);
+ return nullptr;
+}
+
+static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
+ unsigned Opcode2) {
+ if (V->hasOneUse() && isa<Instruction>(V) &&
+ (cast<Instruction>(V)->getOpcode() == Opcode1 ||
+ cast<Instruction>(V)->getOpcode() == Opcode2) &&
+ (!isa<FPMathOperator>(V) ||
+ cast<Instruction>(V)->hasUnsafeAlgebra()))
return cast<BinaryOperator>(V);
return nullptr;
}
@@ -264,9 +279,11 @@ static bool isUnmovableInstruction(Instruction *I) {
void Reassociate::BuildRankMap(Function &F) {
unsigned i = 2;
- // Assign distinct ranks to function arguments
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
+ // Assign distinct ranks to function arguments.
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
ValueRankMap[&*I] = ++i;
+ DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
+ }
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
@@ -304,24 +321,78 @@ unsigned Reassociate::getRank(Value *V) {
// If this is a not or neg instruction, do not count it for rank. This
// assures us that X and ~X will have the same rank.
- if (!I->getType()->isIntegerTy() ||
- (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
+ Type *Ty = V->getType();
+ if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
+ (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
+ !BinaryOperator::isFNeg(I)))
++Rank;
- //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
- // << Rank << "\n");
+ DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
return ValueRankMap[I] = Rank;
}
+// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
+void Reassociate::canonicalizeOperands(Instruction *I) {
+ assert(isa<BinaryOperator>(I) && "Expected binary operator.");
+ assert(I->isCommutative() && "Expected commutative operator.");
+
+ Value *LHS = I->getOperand(0);
+ Value *RHS = I->getOperand(1);
+ unsigned LHSRank = getRank(LHS);
+ unsigned RHSRank = getRank(RHS);
+
+ if (isa<Constant>(RHS))
+ return;
+
+ if (isa<Constant>(LHS) || RHSRank < LHSRank)
+ cast<BinaryOperator>(I)->swapOperands();
+}
+
+static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
+ Instruction *InsertBefore, Value *FlagsOp) {
+ if (S1->getType()->isIntegerTy())
+ return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
+ else {
+ BinaryOperator *Res =
+ BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
+ Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+ return Res;
+ }
+}
+
+static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
+ Instruction *InsertBefore, Value *FlagsOp) {
+ if (S1->getType()->isIntegerTy())
+ return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
+ else {
+ BinaryOperator *Res =
+ BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
+ Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+ return Res;
+ }
+}
+
+static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
+ Instruction *InsertBefore, Value *FlagsOp) {
+ if (S1->getType()->isIntegerTy())
+ return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
+ else {
+ BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
+ Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+ return Res;
+ }
+}
+
/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
- Constant *Cst = Constant::getAllOnesValue(Neg->getType());
+ Type *Ty = Neg->getType();
+ Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
+ : ConstantFP::get(Ty, -1.0);
- BinaryOperator *Res =
- BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
- Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
+ BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
+ Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Res->takeName(Neg);
Neg->replaceAllUsesWith(Res);
Res->setDebugLoc(Neg->getDebugLoc());
@@ -377,13 +448,14 @@ static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
LHS = 0; // 1 + 1 === 0 modulo 2.
return;
}
- if (Opcode == Instruction::Add) {
+ if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
// TODO: Reduce the weight by exploiting nsw/nuw?
LHS += RHS;
return;
}
- assert(Opcode == Instruction::Mul && "Unknown associative operation!");
+ assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
+ "Unknown associative operation!");
unsigned Bitwidth = LHS.getBitWidth();
// If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
// can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
@@ -499,8 +571,7 @@ static bool LinearizeExprTree(BinaryOperator *I,
DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
unsigned Opcode = I->getOpcode();
- assert(Instruction::isAssociative(Opcode) &&
- Instruction::isCommutative(Opcode) &&
+ assert(I->isAssociative() && I->isCommutative() &&
"Expected an associative and commutative operation!");
// Visit all operands of the expression, keeping track of their weight (the
@@ -515,7 +586,7 @@ static bool LinearizeExprTree(BinaryOperator *I,
// ways to get to it.
SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
- bool MadeChange = false;
+ bool Changed = false;
// Leaves of the expression are values that either aren't the right kind of
// operation (eg: a constant, or a multiply in an add tree), or are, but have
@@ -552,7 +623,7 @@ static bool LinearizeExprTree(BinaryOperator *I,
// If this is a binary operation of the right kind with only one use then
// add its operands to the expression.
if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
- assert(Visited.insert(Op) && "Not first visit!");
+ assert(Visited.insert(Op).second && "Not first visit!");
DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
Worklist.push_back(std::make_pair(BO, Weight));
continue;
@@ -562,7 +633,7 @@ static bool LinearizeExprTree(BinaryOperator *I,
LeafMap::iterator It = Leaves.find(Op);
if (It == Leaves.end()) {
// Not in the leaf map. Must be the first time we saw this operand.
- assert(Visited.insert(Op) && "Not first visit!");
+ assert(Visited.insert(Op).second && "Not first visit!");
if (!Op->hasOneUse()) {
// This value has uses not accounted for by the expression, so it is
// not safe to modify. Mark it as being a leaf.
@@ -584,7 +655,7 @@ static bool LinearizeExprTree(BinaryOperator *I,
// exactly one such use, drop this new use of the leaf.
assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
I->setOperand(OpIdx, UndefValue::get(I->getType()));
- MadeChange = true;
+ Changed = true;
// If the leaf is a binary operation of the right kind and we now see
// that its multiple original uses were in fact all by nodes belonging
@@ -613,21 +684,24 @@ static bool LinearizeExprTree(BinaryOperator *I,
// expression. This means that it can safely be modified. See if we
// can usefully morph it into an expression of the right kind.
assert((!isa<Instruction>(Op) ||
- cast<Instruction>(Op)->getOpcode() != Opcode) &&
+ cast<Instruction>(Op)->getOpcode() != Opcode
+ || (isa<FPMathOperator>(Op) &&
+ !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
"Should have been handled above!");
assert(Op->hasOneUse() && "Has uses outside the expression tree!");
// If this is a multiply expression, turn any internal negations into
// multiplies by -1 so they can be reassociated.
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
- if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
- DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
- BO = LowerNegateToMultiply(BO);
- DEBUG(dbgs() << *BO << 'n');
- Worklist.push_back(std::make_pair(BO, Weight));
- MadeChange = true;
- continue;
- }
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
+ if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
+ (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
+ DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
+ BO = LowerNegateToMultiply(BO);
+ DEBUG(dbgs() << *BO << '\n');
+ Worklist.push_back(std::make_pair(BO, Weight));
+ Changed = true;
+ continue;
+ }
// Failed to morph into an expression of the right type. This really is
// a leaf.
@@ -665,7 +739,7 @@ static bool LinearizeExprTree(BinaryOperator *I,
Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
}
- return MadeChange;
+ return Changed;
}
// RewriteExprTree - Now that the operands for this expression tree are
@@ -798,6 +872,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
Constant *Undef = UndefValue::get(I->getType());
NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
Undef, Undef, "", I);
+ if (NewOp->getType()->isFloatingPointTy())
+ NewOp->setFastMathFlags(I->getFastMathFlags());
} else {
NewOp = NodesToRewrite.pop_back_val();
}
@@ -817,7 +893,14 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
// expression tree is dominated by all of Ops.
if (ExpressionChanged)
do {
- ExpressionChanged->clearSubclassOptionalData();
+ // Preserve FastMathFlags.
+ if (isa<FPMathOperator>(I)) {
+ FastMathFlags Flags = I->getFastMathFlags();
+ ExpressionChanged->clearSubclassOptionalData();
+ ExpressionChanged->setFastMathFlags(Flags);
+ } else
+ ExpressionChanged->clearSubclassOptionalData();
+
if (ExpressionChanged == I)
break;
ExpressionChanged->moveBefore(I);
@@ -834,6 +917,8 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
/// version of the value is returned, and BI is left pointing at the instruction
/// that should be processed next by the reassociation pass.
static Value *NegateValue(Value *V, Instruction *BI) {
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V))
+ return ConstantExpr::getFNeg(C);
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getNeg(C);
@@ -846,7 +931,8 @@ static Value *NegateValue(Value *V, Instruction *BI) {
// the constants. We assume that instcombine will clean up the mess later if
// we introduce tons of unnecessary negation instructions.
//
- if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
+ if (BinaryOperator *I =
+ isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
// Push the negates through the add.
I->setOperand(0, NegateValue(I->getOperand(0), BI));
I->setOperand(1, NegateValue(I->getOperand(1), BI));
@@ -864,7 +950,8 @@ static Value *NegateValue(Value *V, Instruction *BI) {
// Okay, we need to materialize a negated version of V with an instruction.
// Scan the use lists of V to see if we have one already.
for (User *U : V->users()) {
- if (!BinaryOperator::isNeg(U)) continue;
+ if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
+ continue;
// We found one! Now we have to make sure that the definition dominates
// this use. We do this by moving it to the entry block (if it is a
@@ -894,27 +981,34 @@ static Value *NegateValue(Value *V, Instruction *BI) {
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
- return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
+ return CreateNeg(V, V->getName() + ".neg", BI, BI);
}
/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
/// X-Y into (X + -Y).
static bool ShouldBreakUpSubtract(Instruction *Sub) {
// If this is a negation, we can't split it up!
- if (BinaryOperator::isNeg(Sub))
+ if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
+ return false;
+
+ // Don't breakup X - undef.
+ if (isa<UndefValue>(Sub->getOperand(1)))
return false;
// Don't bother to break this up unless either the LHS is an associable add or
// subtract or if this is only used by one.
- if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
- isReassociableOp(Sub->getOperand(0), Instruction::Sub))
+ Value *V0 = Sub->getOperand(0);
+ if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
+ isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
return true;
- if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
- isReassociableOp(Sub->getOperand(1), Instruction::Sub))
+ Value *V1 = Sub->getOperand(1);
+ if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
+ isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
return true;
+ Value *VB = Sub->user_back();
if (Sub->hasOneUse() &&
- (isReassociableOp(Sub->user_back(), Instruction::Add) ||
- isReassociableOp(Sub->user_back(), Instruction::Sub)))
+ (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
+ isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
return true;
return false;
@@ -931,8 +1025,7 @@ static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
// and set it as the RHS of the add instruction we just made.
//
Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
- BinaryOperator *New =
- BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
+ BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
New->takeName(Sub);
@@ -956,8 +1049,19 @@ static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
Mul->takeName(Shl);
+
+ // Everyone now refers to the mul instruction.
Shl->replaceAllUsesWith(Mul);
Mul->setDebugLoc(Shl->getDebugLoc());
+
+ // We can safely preserve the nuw flag in all cases. It's also safe to turn a
+ // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
+ // handling.
+ bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
+ bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
+ if (NSW && NUW)
+ Mul->setHasNoSignedWrap(true);
+ Mul->setHasNoUnsignedWrap(NUW);
return Mul;
}
@@ -969,13 +1073,23 @@ static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Value *X) {
unsigned XRank = Ops[i].Rank;
unsigned e = Ops.size();
- for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
+ for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
if (Ops[j].Op == X)
return j;
+ if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+ if (Instruction *I2 = dyn_cast<Instruction>(X))
+ if (I1->isIdenticalTo(I2))
+ return j;
+ }
// Scan backwards.
- for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
+ for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
if (Ops[j].Op == X)
return j;
+ if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+ if (Instruction *I2 = dyn_cast<Instruction>(X))
+ if (I1->isIdenticalTo(I2))
+ return j;
+ }
return i;
}
@@ -988,15 +1102,16 @@ static Value *EmitAddTreeOfValues(Instruction *I,
Value *V1 = Ops.back();
Ops.pop_back();
Value *V2 = EmitAddTreeOfValues(I, Ops);
- return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
+ return CreateAdd(V2, V1, "tmp", I, I);
}
/// RemoveFactorFromExpression - If V is an expression tree that is a
/// multiplication sequence, and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
- BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
- if (!BO) return nullptr;
+ BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
+ if (!BO)
+ return nullptr;
SmallVector<RepeatedValue, 8> Tree;
MadeChange |= LinearizeExprTree(BO, Tree);
@@ -1018,13 +1133,25 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
}
// If this is a negative version of this factor, remove it.
- if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
+ if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
if (FC1->getValue() == -FC2->getValue()) {
FoundFactor = NeedsNegate = true;
Factors.erase(Factors.begin()+i);
break;
}
+ } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
+ if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
+ APFloat F1(FC1->getValueAPF());
+ APFloat F2(FC2->getValueAPF());
+ F2.changeSign();
+ if (F1.compare(F2) == APFloat::cmpEqual) {
+ FoundFactor = NeedsNegate = true;
+ Factors.erase(Factors.begin() + i);
+ break;
+ }
+ }
+ }
}
if (!FoundFactor) {
@@ -1046,7 +1173,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
}
if (NeedsNegate)
- V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
+ V = CreateNeg(V, "neg", InsertPt, BO);
return V;
}
@@ -1058,7 +1185,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
static void FindSingleUseMultiplyFactors(Value *V,
SmallVectorImpl<Value*> &Factors,
const SmallVectorImpl<ValueEntry> &Ops) {
- BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
+ BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
if (!BO) {
Factors.push_back(V);
return;
@@ -1385,17 +1512,19 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
++NumFound;
} while (i != Ops.size() && Ops[i].Op == TheOp);
- DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
+ DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
++NumFactor;
// Insert a new multiply.
- Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
- Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
+ Type *Ty = TheOp->getType();
+ Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
+ : ConstantFP::get(Ty, NumFound);
+ Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
// Now that we have inserted a multiply, optimize it. This allows us to
// handle cases that require multiple factoring steps, such as this:
// (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
- RedoInsts.insert(cast<Instruction>(Mul));
+ RedoInsts.insert(Mul);
// If every add operand was a duplicate, return the multiply.
if (Ops.empty())
@@ -1412,11 +1541,12 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
}
// Check for X and -X or X and ~X in the operand list.
- if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isNot(TheOp))
+ if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
+ !BinaryOperator::isNot(TheOp))
continue;
Value *X = nullptr;
- if (BinaryOperator::isNeg(TheOp))
+ if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
X = BinaryOperator::getNegArgument(TheOp);
else if (BinaryOperator::isNot(TheOp))
X = BinaryOperator::getNotArgument(TheOp);
@@ -1426,7 +1556,8 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
continue;
// Remove X and -X from the operand list.
- if (Ops.size() == 2 && BinaryOperator::isNeg(TheOp))
+ if (Ops.size() == 2 &&
+ (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
return Constant::getNullValue(X->getType());
// Remove X and ~X from the operand list.
@@ -1463,7 +1594,8 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
unsigned MaxOcc = 0;
Value *MaxOccVal = nullptr;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
+ BinaryOperator *BOp =
+ isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
if (!BOp)
continue;
@@ -1476,40 +1608,65 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
SmallPtrSet<Value*, 8> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Value *Factor = Factors[i];
- if (!Duplicates.insert(Factor)) continue;
+ if (!Duplicates.insert(Factor).second)
+ continue;
unsigned Occ = ++FactorOccurrences[Factor];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
+ if (Occ > MaxOcc) {
+ MaxOcc = Occ;
+ MaxOccVal = Factor;
+ }
// If Factor is a negative constant, add the negated value as a factor
// because we can percolate the negate out. Watch for minint, which
// cannot be positivified.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
if (CI->isNegative() && !CI->isMinValue(true)) {
Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
assert(!Duplicates.count(Factor) &&
"Shouldn't have two constant factors, missed a canonicalize");
-
unsigned Occ = ++FactorOccurrences[Factor];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
+ if (Occ > MaxOcc) {
+ MaxOcc = Occ;
+ MaxOccVal = Factor;
+ }
+ }
+ } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
+ if (CF->isNegative()) {
+ APFloat F(CF->getValueAPF());
+ F.changeSign();
+ Factor = ConstantFP::get(CF->getContext(), F);
+ assert(!Duplicates.count(Factor) &&
+ "Shouldn't have two constant factors, missed a canonicalize");
+ unsigned Occ = ++FactorOccurrences[Factor];
+ if (Occ > MaxOcc) {
+ MaxOcc = Occ;
+ MaxOccVal = Factor;
+ }
}
+ }
}
}
// If any factor occurred more than one time, we can pull it out.
if (MaxOcc > 1) {
- DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
+ DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
++NumFactor;
// Create a new instruction that uses the MaxOccVal twice. If we don't do
// this, we could otherwise run into situations where removing a factor
// from an expression will drop a use of maxocc, and this can cause
// RemoveFactorFromExpression on successive values to behave differently.
- Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
+ Instruction *DummyInst =
+ I->getType()->isIntegerTy()
+ ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
+ : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
+
SmallVector<WeakVH, 4> NewMulOps;
for (unsigned i = 0; i != Ops.size(); ++i) {
// Only try to remove factors from expressions we're allowed to.
- BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
+ BinaryOperator *BOp =
+ isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
if (!BOp)
continue;
@@ -1542,7 +1699,7 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
RedoInsts.insert(VI);
// Create the multiply.
- Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
+ Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
// Rerun associate on the multiply in case the inner expression turned into
// a multiply. We want to make sure that we keep things in canonical form.
@@ -1632,7 +1789,10 @@ static Value *buildMultiplyTree(IRBuilder<> &Builder,
Value *LHS = Ops.pop_back_val();
do {
- LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
+ if (LHS->getType()->isIntegerTy())
+ LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
+ else
+ LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
} while (!Ops.empty());
return LHS;
@@ -1765,11 +1925,13 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
break;
case Instruction::Add:
+ case Instruction::FAdd:
if (Value *Result = OptimizeAdd(I, Ops))
return Result;
break;
case Instruction::Mul:
+ case Instruction::FMul:
if (Value *Result = OptimizeMul(I, Ops))
return Result;
break;
@@ -1797,12 +1959,104 @@ void Reassociate::EraseInst(Instruction *I) {
// and add that since that's where optimization actually happens.
unsigned Opcode = Op->getOpcode();
while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
- Visited.insert(Op))
+ Visited.insert(Op).second)
Op = Op->user_back();
RedoInsts.insert(Op);
}
}
+// Canonicalize expressions of the following form:
+// x + (-Constant * y) -> x - (Constant * y)
+// x - (-Constant * y) -> x + (Constant * y)
+Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
+ if (!I->hasOneUse() || I->getType()->isVectorTy())
+ return nullptr;
+
+ // Must be a mul, fmul, or fdiv instruction.
+ unsigned Opcode = I->getOpcode();
+ if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
+ Opcode != Instruction::FDiv)
+ return nullptr;
+
+ // Must have at least one constant operand.
+ Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
+ Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
+ if (!C0 && !C1)
+ return nullptr;
+
+ // Must be a negative ConstantInt or ConstantFP.
+ Constant *C = C0 ? C0 : C1;
+ unsigned ConstIdx = C0 ? 0 : 1;
+ if (auto *CI = dyn_cast<ConstantInt>(C)) {
+ if (!CI->isNegative())
+ return nullptr;
+ } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
+ if (!CF->isNegative())
+ return nullptr;
+ } else
+ return nullptr;
+
+ // User must be a binary operator with one or more uses.
+ Instruction *User = I->user_back();
+ if (!isa<BinaryOperator>(User) || !User->getNumUses())
+ return nullptr;
+
+ unsigned UserOpcode = User->getOpcode();
+ if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
+ UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
+ return nullptr;
+
+ // Subtraction is not commutative. Explicitly, the following transform is
+ // not valid: (-Constant * y) - x -> x + (Constant * y)
+ if (!User->isCommutative() && User->getOperand(1) != I)
+ return nullptr;
+
+ // Change the sign of the constant.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
+ else {
+ ConstantFP *CF = cast<ConstantFP>(C);
+ APFloat Val = CF->getValueAPF();
+ Val.changeSign();
+ I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
+ }
+
+ // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
+ // ((-Const*y) + x) -> (x + (-Const*y)).
+ if (User->getOperand(0) == I && User->isCommutative())
+ cast<BinaryOperator>(User)->swapOperands();
+
+ Value *Op0 = User->getOperand(0);
+ Value *Op1 = User->getOperand(1);
+ BinaryOperator *NI;
+ switch(UserOpcode) {
+ default:
+ llvm_unreachable("Unexpected Opcode!");
+ case Instruction::Add:
+ NI = BinaryOperator::CreateSub(Op0, Op1);
+ break;
+ case Instruction::Sub:
+ NI = BinaryOperator::CreateAdd(Op0, Op1);
+ break;
+ case Instruction::FAdd:
+ NI = BinaryOperator::CreateFSub(Op0, Op1);
+ NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
+ break;
+ case Instruction::FSub:
+ NI = BinaryOperator::CreateFAdd(Op0, Op1);
+ NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
+ break;
+ }
+
+ NI->insertBefore(User);
+ NI->setName(User->getName());
+ User->replaceAllUsesWith(NI);
+ NI->setDebugLoc(I->getDebugLoc());
+ RedoInsts.insert(I);
+ MadeChange = true;
+ return NI;
+}
+
/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
/// instructions is not allowed.
void Reassociate::OptimizeInst(Instruction *I) {
@@ -1810,8 +2064,7 @@ void Reassociate::OptimizeInst(Instruction *I) {
if (!isa<BinaryOperator>(I))
return;
- if (I->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(I->getOperand(1)))
+ if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
// If an operand of this shift is a reassociable multiply, or if the shift
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
@@ -1824,29 +2077,23 @@ void Reassociate::OptimizeInst(Instruction *I) {
I = NI;
}
- // Floating point binary operators are not associative, but we can still
- // commute (some) of them, to canonicalize the order of their operands.
- // This can potentially expose more CSE opportunities, and makes writing
- // other transformations simpler.
- if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
- // FAdd and FMul can be commuted.
- if (I->getOpcode() != Instruction::FMul &&
- I->getOpcode() != Instruction::FAdd)
- return;
+ // Canonicalize negative constants out of expressions.
+ if (Instruction *Res = canonicalizeNegConstExpr(I))
+ I = Res;
- Value *LHS = I->getOperand(0);
- Value *RHS = I->getOperand(1);
- unsigned LHSRank = getRank(LHS);
- unsigned RHSRank = getRank(RHS);
+ // Commute binary operators, to canonicalize the order of their operands.
+ // This can potentially expose more CSE opportunities, and makes writing other
+ // transformations simpler.
+ if (I->isCommutative())
+ canonicalizeOperands(I);
- // Sort the operands by rank.
- if (RHSRank < LHSRank) {
- I->setOperand(0, RHS);
- I->setOperand(1, LHS);
- }
+ // Don't optimize vector instructions.
+ if (I->getType()->isVectorTy())
+ return;
+ // Don't optimize floating point instructions that don't have unsafe algebra.
+ if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
return;
- }
// Do not reassociate boolean (i1) expressions. We want to preserve the
// original order of evaluation for short-circuited comparisons that
@@ -1877,6 +2124,24 @@ void Reassociate::OptimizeInst(Instruction *I) {
I = NI;
}
}
+ } else if (I->getOpcode() == Instruction::FSub) {
+ if (ShouldBreakUpSubtract(I)) {
+ Instruction *NI = BreakUpSubtract(I);
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ } else if (BinaryOperator::isFNeg(I)) {
+ // Otherwise, this is a negation. See if the operand is a multiply tree
+ // and if this is not an inner node of a multiply tree.
+ if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
+ (!I->hasOneUse() ||
+ !isReassociableOp(I->user_back(), Instruction::FMul))) {
+ Instruction *NI = LowerNegateToMultiply(I);
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ }
+ }
}
// If this instruction is an associative binary operator, process it.
@@ -1894,11 +2159,16 @@ void Reassociate::OptimizeInst(Instruction *I) {
if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
return;
+ if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
+ cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
+ return;
ReassociateExpression(BO);
}
void Reassociate::ReassociateExpression(BinaryOperator *I) {
+ assert(!I->getType()->isVectorTy() &&
+ "Reassociation of vector instructions is not supported.");
// First, walk the expression tree, linearizing the tree, collecting the
// operand information.
@@ -1943,12 +2213,21 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
// this is a multiply tree used only by an add, and the immediate is a -1.
// In this case we reassociate to put the negation on the outside so that we
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
- if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
- cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Ops.back().Op) &&
- cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
- ValueEntry Tmp = Ops.pop_back_val();
- Ops.insert(Ops.begin(), Tmp);
+ if (I->hasOneUse()) {
+ if (I->getOpcode() == Instruction::Mul &&
+ cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
+ isa<ConstantInt>(Ops.back().Op) &&
+ cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
+ ValueEntry Tmp = Ops.pop_back_val();
+ Ops.insert(Ops.begin(), Tmp);
+ } else if (I->getOpcode() == Instruction::FMul &&
+ cast<Instruction>(I->user_back())->getOpcode() ==
+ Instruction::FAdd &&
+ isa<ConstantFP>(Ops.back().Op) &&
+ cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
+ ValueEntry Tmp = Ops.pop_back_val();
+ Ops.insert(Ops.begin(), Tmp);
+ }
}
DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
diff --git a/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp b/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp
index b6023e2..1b46727 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Reg2Mem.cpp
@@ -73,7 +73,7 @@ bool RegToMem::runOnFunction(Function &F) {
// Insert all new allocas into entry block.
BasicBlock *BBEntry = &F.getEntryBlock();
- assert(pred_begin(BBEntry) == pred_end(BBEntry) &&
+ assert(pred_empty(BBEntry) &&
"Entry block to function must not have predecessors!");
// Find first non-alloca instruction and create insertion point. This is
diff --git a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
index 90c3520..cfc9a8e 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
@@ -214,7 +214,8 @@ public:
///
/// This returns true if the block was not considered live before.
bool MarkBlockExecutable(BasicBlock *BB) {
- if (!BBExecutable.insert(BB)) return false;
+ if (!BBExecutable.insert(BB).second)
+ return false;
DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
BBWorkList.push_back(BB); // Add the block to the work list!
return true;
@@ -1010,7 +1011,7 @@ void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
}
Constant *Ptr = Operands[0];
- ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
+ auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
}
@@ -1107,6 +1108,9 @@ CallOverdefined:
Operands.push_back(State.getConstant());
}
+ if (getValueState(I).isOverdefined())
+ return;
+
// If we can constant fold this, mark the result of the call as a
// constant.
if (Constant *C = ConstantFoldCall(F, Operands, TLI))
diff --git a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
index f902eb2..ed161fd 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
@@ -28,6 +28,7 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
@@ -78,8 +79,8 @@ STATISTIC(NumVectorized, "Number of vectorized aggregates");
/// Hidden option to force the pass to not use DomTree and mem2reg, instead
/// forming SSA values through the SSAUpdater infrastructure.
-static cl::opt<bool>
-ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
+static cl::opt<bool> ForceSSAUpdater("force-ssa-updater", cl::init(false),
+ cl::Hidden);
/// Hidden option to enable randomly shuffling the slices to help uncover
/// instability in their order.
@@ -88,15 +89,15 @@ static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
/// Hidden option to experiment with completely strict handling of inbounds
/// GEPs.
-static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds",
- cl::init(false), cl::Hidden);
+static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
+ cl::Hidden);
namespace {
/// \brief A custom IRBuilder inserter which prefixes all names if they are
/// preserved.
template <bool preserveNames = true>
-class IRBuilderPrefixedInserter :
- public IRBuilderDefaultInserter<preserveNames> {
+class IRBuilderPrefixedInserter
+ : public IRBuilderDefaultInserter<preserveNames> {
std::string Prefix;
public:
@@ -112,19 +113,19 @@ protected:
// Specialization for not preserving the name is trivial.
template <>
-class IRBuilderPrefixedInserter<false> :
- public IRBuilderDefaultInserter<false> {
+class IRBuilderPrefixedInserter<false>
+ : public IRBuilderDefaultInserter<false> {
public:
void SetNamePrefix(const Twine &P) {}
};
/// \brief Provide a typedef for IRBuilder that drops names in release builds.
#ifndef NDEBUG
-typedef llvm::IRBuilder<true, ConstantFolder,
- IRBuilderPrefixedInserter<true> > IRBuilderTy;
+typedef llvm::IRBuilder<true, ConstantFolder, IRBuilderPrefixedInserter<true>>
+ IRBuilderTy;
#else
-typedef llvm::IRBuilder<false, ConstantFolder,
- IRBuilderPrefixedInserter<false> > IRBuilderTy;
+typedef llvm::IRBuilder<false, ConstantFolder, IRBuilderPrefixedInserter<false>>
+ IRBuilderTy;
#endif
}
@@ -170,10 +171,14 @@ public:
/// decreasing. Thus the spanning range comes first in a cluster with the
/// same start position.
bool operator<(const Slice &RHS) const {
- if (beginOffset() < RHS.beginOffset()) return true;
- if (beginOffset() > RHS.beginOffset()) return false;
- if (isSplittable() != RHS.isSplittable()) return !isSplittable();
- if (endOffset() > RHS.endOffset()) return true;
+ if (beginOffset() < RHS.beginOffset())
+ return true;
+ if (beginOffset() > RHS.beginOffset())
+ return false;
+ if (isSplittable() != RHS.isSplittable())
+ return !isSplittable();
+ if (endOffset() > RHS.endOffset())
+ return true;
return false;
}
@@ -197,9 +202,7 @@ public:
namespace llvm {
template <typename T> struct isPodLike;
-template <> struct isPodLike<Slice> {
- static const bool value = true;
-};
+template <> struct isPodLike<Slice> { static const bool value = true; };
}
namespace {
@@ -224,36 +227,318 @@ public:
/// \brief Support for iterating over the slices.
/// @{
typedef SmallVectorImpl<Slice>::iterator iterator;
+ typedef iterator_range<iterator> range;
iterator begin() { return Slices.begin(); }
iterator end() { return Slices.end(); }
typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
+ typedef iterator_range<const_iterator> const_range;
const_iterator begin() const { return Slices.begin(); }
const_iterator end() const { return Slices.end(); }
/// @}
- /// \brief Allow iterating the dead users for this alloca.
+ /// \brief Erase a range of slices.
+ void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
+
+ /// \brief Insert new slices for this alloca.
///
- /// These are instructions which will never actually use the alloca as they
- /// are outside the allocated range. They are safe to replace with undef and
- /// delete.
- /// @{
- typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
- dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
- dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
- /// @}
+ /// This moves the slices into the alloca's slices collection, and re-sorts
+ /// everything so that the usual ordering properties of the alloca's slices
+ /// hold.
+ void insert(ArrayRef<Slice> NewSlices) {
+ int OldSize = Slices.size();
+ std::move(NewSlices.begin(), NewSlices.end(), std::back_inserter(Slices));
+ auto SliceI = Slices.begin() + OldSize;
+ std::sort(SliceI, Slices.end());
+ std::inplace_merge(Slices.begin(), SliceI, Slices.end());
+ }
+
+ // Forward declare an iterator to befriend it.
+ class partition_iterator;
+
+ /// \brief A partition of the slices.
+ ///
+ /// An ephemeral representation for a range of slices which can be viewed as
+ /// a partition of the alloca. This range represents a span of the alloca's
+ /// memory which cannot be split, and provides access to all of the slices
+ /// overlapping some part of the partition.
+ ///
+ /// Objects of this type are produced by traversing the alloca's slices, but
+ /// are only ephemeral and not persistent.
+ class Partition {
+ private:
+ friend class AllocaSlices;
+ friend class AllocaSlices::partition_iterator;
+
+ /// \brief The begining and ending offsets of the alloca for this partition.
+ uint64_t BeginOffset, EndOffset;
+
+ /// \brief The start end end iterators of this partition.
+ iterator SI, SJ;
+
+ /// \brief A collection of split slice tails overlapping the partition.
+ SmallVector<Slice *, 4> SplitTails;
+
+ /// \brief Raw constructor builds an empty partition starting and ending at
+ /// the given iterator.
+ Partition(iterator SI) : SI(SI), SJ(SI) {}
+
+ public:
+ /// \brief The start offset of this partition.
+ ///
+ /// All of the contained slices start at or after this offset.
+ uint64_t beginOffset() const { return BeginOffset; }
- /// \brief Allow iterating the dead expressions referring to this alloca.
+ /// \brief The end offset of this partition.
+ ///
+ /// All of the contained slices end at or before this offset.
+ uint64_t endOffset() const { return EndOffset; }
+
+ /// \brief The size of the partition.
+ ///
+ /// Note that this can never be zero.
+ uint64_t size() const {
+ assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
+ return EndOffset - BeginOffset;
+ }
+
+ /// \brief Test whether this partition contains no slices, and merely spans
+ /// a region occupied by split slices.
+ bool empty() const { return SI == SJ; }
+
+ /// \name Iterate slices that start within the partition.
+ /// These may be splittable or unsplittable. They have a begin offset >= the
+ /// partition begin offset.
+ /// @{
+ // FIXME: We should probably define a "concat_iterator" helper and use that
+ // to stitch together pointee_iterators over the split tails and the
+ // contiguous iterators of the partition. That would give a much nicer
+ // interface here. We could then additionally expose filtered iterators for
+ // split, unsplit, and unsplittable splices based on the usage patterns.
+ iterator begin() const { return SI; }
+ iterator end() const { return SJ; }
+ /// @}
+
+ /// \brief Get the sequence of split slice tails.
+ ///
+ /// These tails are of slices which start before this partition but are
+ /// split and overlap into the partition. We accumulate these while forming
+ /// partitions.
+ ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
+ };
+
+ /// \brief An iterator over partitions of the alloca's slices.
+ ///
+ /// This iterator implements the core algorithm for partitioning the alloca's
+ /// slices. It is a forward iterator as we don't support backtracking for
+ /// efficiency reasons, and re-use a single storage area to maintain the
+ /// current set of split slices.
+ ///
+ /// It is templated on the slice iterator type to use so that it can operate
+ /// with either const or non-const slice iterators.
+ class partition_iterator
+ : public iterator_facade_base<partition_iterator,
+ std::forward_iterator_tag, Partition> {
+ friend class AllocaSlices;
+
+ /// \brief Most of the state for walking the partitions is held in a class
+ /// with a nice interface for examining them.
+ Partition P;
+
+ /// \brief We need to keep the end of the slices to know when to stop.
+ AllocaSlices::iterator SE;
+
+ /// \brief We also need to keep track of the maximum split end offset seen.
+ /// FIXME: Do we really?
+ uint64_t MaxSplitSliceEndOffset;
+
+ /// \brief Sets the partition to be empty at given iterator, and sets the
+ /// end iterator.
+ partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
+ : P(SI), SE(SE), MaxSplitSliceEndOffset(0) {
+ // If not already at the end, advance our state to form the initial
+ // partition.
+ if (SI != SE)
+ advance();
+ }
+
+ /// \brief Advance the iterator to the next partition.
+ ///
+ /// Requires that the iterator not be at the end of the slices.
+ void advance() {
+ assert((P.SI != SE || !P.SplitTails.empty()) &&
+ "Cannot advance past the end of the slices!");
+
+ // Clear out any split uses which have ended.
+ if (!P.SplitTails.empty()) {
+ if (P.EndOffset >= MaxSplitSliceEndOffset) {
+ // If we've finished all splits, this is easy.
+ P.SplitTails.clear();
+ MaxSplitSliceEndOffset = 0;
+ } else {
+ // Remove the uses which have ended in the prior partition. This
+ // cannot change the max split slice end because we just checked that
+ // the prior partition ended prior to that max.
+ P.SplitTails.erase(
+ std::remove_if(
+ P.SplitTails.begin(), P.SplitTails.end(),
+ [&](Slice *S) { return S->endOffset() <= P.EndOffset; }),
+ P.SplitTails.end());
+ assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(),
+ [&](Slice *S) {
+ return S->endOffset() == MaxSplitSliceEndOffset;
+ }) &&
+ "Could not find the current max split slice offset!");
+ assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(),
+ [&](Slice *S) {
+ return S->endOffset() <= MaxSplitSliceEndOffset;
+ }) &&
+ "Max split slice end offset is not actually the max!");
+ }
+ }
+
+ // If P.SI is already at the end, then we've cleared the split tail and
+ // now have an end iterator.
+ if (P.SI == SE) {
+ assert(P.SplitTails.empty() && "Failed to clear the split slices!");
+ return;
+ }
+
+ // If we had a non-empty partition previously, set up the state for
+ // subsequent partitions.
+ if (P.SI != P.SJ) {
+ // Accumulate all the splittable slices which started in the old
+ // partition into the split list.
+ for (Slice &S : P)
+ if (S.isSplittable() && S.endOffset() > P.EndOffset) {
+ P.SplitTails.push_back(&S);
+ MaxSplitSliceEndOffset =
+ std::max(S.endOffset(), MaxSplitSliceEndOffset);
+ }
+
+ // Start from the end of the previous partition.
+ P.SI = P.SJ;
+
+ // If P.SI is now at the end, we at most have a tail of split slices.
+ if (P.SI == SE) {
+ P.BeginOffset = P.EndOffset;
+ P.EndOffset = MaxSplitSliceEndOffset;
+ return;
+ }
+
+ // If the we have split slices and the next slice is after a gap and is
+ // not splittable immediately form an empty partition for the split
+ // slices up until the next slice begins.
+ if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
+ !P.SI->isSplittable()) {
+ P.BeginOffset = P.EndOffset;
+ P.EndOffset = P.SI->beginOffset();
+ return;
+ }
+ }
+
+ // OK, we need to consume new slices. Set the end offset based on the
+ // current slice, and step SJ past it. The beginning offset of the
+ // parttion is the beginning offset of the next slice unless we have
+ // pre-existing split slices that are continuing, in which case we begin
+ // at the prior end offset.
+ P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
+ P.EndOffset = P.SI->endOffset();
+ ++P.SJ;
+
+ // There are two strategies to form a partition based on whether the
+ // partition starts with an unsplittable slice or a splittable slice.
+ if (!P.SI->isSplittable()) {
+ // When we're forming an unsplittable region, it must always start at
+ // the first slice and will extend through its end.
+ assert(P.BeginOffset == P.SI->beginOffset());
+
+ // Form a partition including all of the overlapping slices with this
+ // unsplittable slice.
+ while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
+ if (!P.SJ->isSplittable())
+ P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
+ ++P.SJ;
+ }
+
+ // We have a partition across a set of overlapping unsplittable
+ // partitions.
+ return;
+ }
+
+ // If we're starting with a splittable slice, then we need to form
+ // a synthetic partition spanning it and any other overlapping splittable
+ // splices.
+ assert(P.SI->isSplittable() && "Forming a splittable partition!");
+
+ // Collect all of the overlapping splittable slices.
+ while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
+ P.SJ->isSplittable()) {
+ P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
+ ++P.SJ;
+ }
+
+ // Back upiP.EndOffset if we ended the span early when encountering an
+ // unsplittable slice. This synthesizes the early end offset of
+ // a partition spanning only splittable slices.
+ if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
+ assert(!P.SJ->isSplittable());
+ P.EndOffset = P.SJ->beginOffset();
+ }
+ }
+
+ public:
+ bool operator==(const partition_iterator &RHS) const {
+ assert(SE == RHS.SE &&
+ "End iterators don't match between compared partition iterators!");
+
+ // The observed positions of partitions is marked by the P.SI iterator and
+ // the emptyness of the split slices. The latter is only relevant when
+ // P.SI == SE, as the end iterator will additionally have an empty split
+ // slices list, but the prior may have the same P.SI and a tail of split
+ // slices.
+ if (P.SI == RHS.P.SI &&
+ P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
+ assert(P.SJ == RHS.P.SJ &&
+ "Same set of slices formed two different sized partitions!");
+ assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
+ "Same slice position with differently sized non-empty split "
+ "slice tails!");
+ return true;
+ }
+ return false;
+ }
+
+ partition_iterator &operator++() {
+ advance();
+ return *this;
+ }
+
+ Partition &operator*() { return P; }
+ };
+
+ /// \brief A forward range over the partitions of the alloca's slices.
+ ///
+ /// This accesses an iterator range over the partitions of the alloca's
+ /// slices. It computes these partitions on the fly based on the overlapping
+ /// offsets of the slices and the ability to split them. It will visit "empty"
+ /// partitions to cover regions of the alloca only accessed via split
+ /// slices.
+ iterator_range<partition_iterator> partitions() {
+ return make_range(partition_iterator(begin(), end()),
+ partition_iterator(end(), end()));
+ }
+
+ /// \brief Access the dead users for this alloca.
+ ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
+
+ /// \brief Access the dead operands referring to this alloca.
///
/// These are operands which have cannot actually be used to refer to the
/// alloca as they are outside its range and the user doesn't correct for
/// that. These mostly consist of PHI node inputs and the like which we just
/// need to replace with undef.
- /// @{
- typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
- dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
- dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
- /// @}
+ ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
@@ -317,13 +602,22 @@ static Value *foldSelectInst(SelectInst &SI) {
// being selected between, fold the select. Yes this does (rarely) happen
// early on.
if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
- return SI.getOperand(1+CI->isZero());
+ return SI.getOperand(1 + CI->isZero());
if (SI.getOperand(1) == SI.getOperand(2))
return SI.getOperand(1);
return nullptr;
}
+/// \brief A helper that folds a PHI node or a select.
+static Value *foldPHINodeOrSelectInst(Instruction &I) {
+ if (PHINode *PN = dyn_cast<PHINode>(&I)) {
+ // If PN merges together the same value, return that value.
+ return PN->hasConstantValue();
+ }
+ return foldSelectInst(cast<SelectInst>(I));
+}
+
/// \brief Builder for the alloca slices.
///
/// This class builds a set of alloca slices by recursively visiting the uses
@@ -334,7 +628,7 @@ class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
typedef PtrUseVisitor<SliceBuilder> Base;
const uint64_t AllocSize;
- AllocaSlices &S;
+ AllocaSlices &AS;
SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
@@ -343,14 +637,14 @@ class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
public:
- SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
+ SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
: PtrUseVisitor<SliceBuilder>(DL),
- AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
+ AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
private:
void markAsDead(Instruction &I) {
- if (VisitedDeadInsts.insert(&I))
- S.DeadUsers.push_back(&I);
+ if (VisitedDeadInsts.insert(&I).second)
+ AS.DeadUsers.push_back(&I);
}
void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
@@ -361,7 +655,7 @@ private:
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
<< " which has zero size or starts outside of the "
<< AllocSize << " byte alloca:\n"
- << " alloca: " << S.AI << "\n"
+ << " alloca: " << AS.AI << "\n"
<< " use: " << I << "\n");
return markAsDead(I);
}
@@ -379,12 +673,12 @@ private:
if (Size > AllocSize - BeginOffset) {
DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
<< " to remain within the " << AllocSize << " byte alloca:\n"
- << " alloca: " << S.AI << "\n"
+ << " alloca: " << AS.AI << "\n"
<< " use: " << I << "\n");
EndOffset = AllocSize;
}
- S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
+ AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
}
void visitBitCastInst(BitCastInst &BC) {
@@ -421,7 +715,8 @@ private:
GEPOffset +=
APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
} else {
- // For array or vector indices, scale the index by the size of the type.
+ // For array or vector indices, scale the index by the size of the
+ // type.
APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
GEPOffset += Index * APInt(Offset.getBitWidth(),
DL.getTypeAllocSize(GTI.getIndexedType()));
@@ -440,16 +735,10 @@ private:
void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
uint64_t Size, bool IsVolatile) {
- // We allow splitting of loads and stores where the type is an integer type
- // and cover the entire alloca. This prevents us from splitting over
- // eagerly.
- // FIXME: In the great blue eventually, we should eagerly split all integer
- // loads and stores, and then have a separate step that merges adjacent
- // alloca partitions into a single partition suitable for integer widening.
- // Or we should skip the merge step and rely on GVN and other passes to
- // merge adjacent loads and stores that survive mem2reg.
- bool IsSplittable =
- Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
+ // We allow splitting of non-volatile loads and stores where the type is an
+ // integer type. These may be used to implement 'memcpy' or other "transfer
+ // of bits" patterns.
+ bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
insertUse(I, Offset, Size, IsSplittable);
}
@@ -485,7 +774,7 @@ private:
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
<< " which extends past the end of the " << AllocSize
<< " byte alloca:\n"
- << " alloca: " << S.AI << "\n"
+ << " alloca: " << AS.AI << "\n"
<< " use: " << SI << "\n");
return markAsDead(SI);
}
@@ -495,7 +784,6 @@ private:
handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
}
-
void visitMemSetInst(MemSetInst &II) {
assert(II.getRawDest() == *U && "Pointer use is not the destination?");
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
@@ -507,9 +795,8 @@ private:
if (!IsOffsetKnown)
return PI.setAborted(&II);
- insertUse(II, Offset,
- Length ? Length->getLimitedValue()
- : AllocSize - Offset.getLimitedValue(),
+ insertUse(II, Offset, Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue(),
(bool)Length);
}
@@ -533,15 +820,15 @@ private:
// FIXME: Yet another place we really should bypass this when
// instrumenting for ASan.
if (Offset.uge(AllocSize)) {
- SmallDenseMap<Instruction *, unsigned>::iterator MTPI = MemTransferSliceMap.find(&II);
+ SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
+ MemTransferSliceMap.find(&II);
if (MTPI != MemTransferSliceMap.end())
- S.Slices[MTPI->second].kill();
+ AS.Slices[MTPI->second].kill();
return markAsDead(II);
}
uint64_t RawOffset = Offset.getLimitedValue();
- uint64_t Size = Length ? Length->getLimitedValue()
- : AllocSize - RawOffset;
+ uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
// Check for the special case where the same exact value is used for both
// source and dest.
@@ -558,10 +845,10 @@ private:
bool Inserted;
SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
std::tie(MTPI, Inserted) =
- MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
+ MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
unsigned PrevIdx = MTPI->second;
if (!Inserted) {
- Slice &PrevP = S.Slices[PrevIdx];
+ Slice &PrevP = AS.Slices[PrevIdx];
// Check if the begin offsets match and this is a non-volatile transfer.
// In that case, we can completely elide the transfer.
@@ -579,7 +866,7 @@ private:
insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
// Check that we ended up with a valid index in the map.
- assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
+ assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
"Map index doesn't point back to a slice with this user.");
}
@@ -639,64 +926,47 @@ private:
}
for (User *U : I->users())
- if (Visited.insert(cast<Instruction>(U)))
+ if (Visited.insert(cast<Instruction>(U)).second)
Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
} while (!Uses.empty());
return nullptr;
}
- void visitPHINode(PHINode &PN) {
- if (PN.use_empty())
- return markAsDead(PN);
- if (!IsOffsetKnown)
- return PI.setAborted(&PN);
-
- // See if we already have computed info on this node.
- uint64_t &PHISize = PHIOrSelectSizes[&PN];
- if (!PHISize) {
- // This is a new PHI node, check for an unsafe use of the PHI node.
- if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
- return PI.setAborted(UnsafeI);
- }
-
- // For PHI and select operands outside the alloca, we can't nuke the entire
- // phi or select -- the other side might still be relevant, so we special
- // case them here and use a separate structure to track the operands
- // themselves which should be replaced with undef.
- // FIXME: This should instead be escaped in the event we're instrumenting
- // for address sanitization.
- if (Offset.uge(AllocSize)) {
- S.DeadOperands.push_back(U);
- return;
- }
-
- insertUse(PN, Offset, PHISize);
- }
+ void visitPHINodeOrSelectInst(Instruction &I) {
+ assert(isa<PHINode>(I) || isa<SelectInst>(I));
+ if (I.use_empty())
+ return markAsDead(I);
- void visitSelectInst(SelectInst &SI) {
- if (SI.use_empty())
- return markAsDead(SI);
- if (Value *Result = foldSelectInst(SI)) {
+ // TODO: We could use SimplifyInstruction here to fold PHINodes and
+ // SelectInsts. However, doing so requires to change the current
+ // dead-operand-tracking mechanism. For instance, suppose neither loading
+ // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
+ // trap either. However, if we simply replace %U with undef using the
+ // current dead-operand-tracking mechanism, "load (select undef, undef,
+ // %other)" may trap because the select may return the first operand
+ // "undef".
+ if (Value *Result = foldPHINodeOrSelectInst(I)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
- // through the select as if we had RAUW'ed it.
- enqueueUsers(SI);
+ // through the PHI/select as if we had RAUW'ed it.
+ enqueueUsers(I);
else
- // Otherwise the operand to the select is dead, and we can replace it
- // with undef.
- S.DeadOperands.push_back(U);
+ // Otherwise the operand to the PHI/select is dead, and we can replace
+ // it with undef.
+ AS.DeadOperands.push_back(U);
return;
}
+
if (!IsOffsetKnown)
- return PI.setAborted(&SI);
+ return PI.setAborted(&I);
// See if we already have computed info on this node.
- uint64_t &SelectSize = PHIOrSelectSizes[&SI];
- if (!SelectSize) {
- // This is a new Select, check for an unsafe use of it.
- if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
+ uint64_t &Size = PHIOrSelectSizes[&I];
+ if (!Size) {
+ // This is a new PHI/Select, check for an unsafe use of it.
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
return PI.setAborted(UnsafeI);
}
@@ -707,17 +977,19 @@ private:
// FIXME: This should instead be escaped in the event we're instrumenting
// for address sanitization.
if (Offset.uge(AllocSize)) {
- S.DeadOperands.push_back(U);
+ AS.DeadOperands.push_back(U);
return;
}
- insertUse(SI, Offset, SelectSize);
+ insertUse(I, Offset, Size);
}
+ void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
+
+ void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
+
/// \brief Disable SROA entirely if there are unhandled users of the alloca.
- void visitInstruction(Instruction &I) {
- PI.setAborted(&I);
- }
+ void visitInstruction(Instruction &I) { PI.setAborted(&I); }
};
AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
@@ -738,7 +1010,9 @@ AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
}
Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
- std::mem_fun_ref(&Slice::isDead)),
+ [](const Slice &S) {
+ return S.isDead();
+ }),
Slices.end());
#if __cplusplus >= 201103L && !defined(NDEBUG)
@@ -758,6 +1032,7 @@ AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
void AllocaSlices::print(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
printSlice(OS, I, Indent);
+ OS << "\n";
printUse(OS, I, Indent);
}
@@ -765,7 +1040,7 @@ void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
<< " slice #" << (I - begin())
- << (I->isSplittable() ? " (splittable)" : "") << "\n";
+ << (I->isSplittable() ? " (splittable)" : "");
}
void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
@@ -813,15 +1088,17 @@ public:
AllocaInst &AI, DIBuilder &DIB)
: LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
- void run(const SmallVectorImpl<Instruction*> &Insts) {
+ void run(const SmallVectorImpl<Instruction *> &Insts) {
// Retain the debug information attached to the alloca for use when
// rewriting loads and stores.
- if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
- for (User *U : DebugNode->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- DDIs.push_back(DDI);
- else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
- DVIs.push_back(DVI);
+ if (auto *L = LocalAsMetadata::getIfExists(&AI)) {
+ if (auto *DebugNode = MetadataAsValue::getIfExists(AI.getContext(), L)) {
+ for (User *U : DebugNode->users())
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
+ DDIs.push_back(DDI);
+ else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
+ DVIs.push_back(DVI);
+ }
}
LoadAndStorePromoter::run(Insts);
@@ -834,8 +1111,9 @@ public:
DVIs.pop_back_val()->eraseFromParent();
}
- bool isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction*> &Insts) const override {
+ bool
+ isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction *> &Insts) const override {
Value *Ptr;
if (LoadInst *LI = dyn_cast<LoadInst>(I))
Ptr = LI->getOperand(0);
@@ -857,23 +1135,18 @@ public:
else
return false;
- } while (Visited.insert(Ptr));
+ } while (Visited.insert(Ptr).second);
return false;
}
void updateDebugInfo(Instruction *Inst) const override {
- for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
- E = DDIs.end(); I != E; ++I) {
- DbgDeclareInst *DDI = *I;
+ for (DbgDeclareInst *DDI : DDIs)
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- }
- for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
- E = DVIs.end(); I != E; ++I) {
- DbgValueInst *DVI = *I;
+ for (DbgValueInst *DVI : DVIs) {
Value *Arg = nullptr;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If an argument is zero extended then use argument directly. The ZExt
@@ -890,15 +1163,14 @@ public:
continue;
}
Instruction *DbgVal =
- DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
- Inst);
+ DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
+ DIExpression(DVI->getExpression()), Inst);
DbgVal->setDebugLoc(DVI->getDebugLoc());
}
}
};
} // end anon namespace
-
namespace {
/// \brief An optimization pass providing Scalar Replacement of Aggregates.
///
@@ -924,6 +1196,7 @@ class SROA : public FunctionPass {
LLVMContext *C;
const DataLayout *DL;
DominatorTree *DT;
+ AssumptionCache *AC;
/// \brief Worklist of alloca instructions to simplify.
///
@@ -932,12 +1205,12 @@ class SROA : public FunctionPass {
/// directly promoted. Finally, each time we rewrite a use of an alloca other
/// the one being actively rewritten, we add it back onto the list if not
/// already present to ensure it is re-visited.
- SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
+ SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> Worklist;
/// \brief A collection of instructions to delete.
/// We try to batch deletions to simplify code and make things a bit more
/// efficient.
- SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
+ SetVector<Instruction *, SmallVector<Instruction *, 8>> DeadInsts;
/// \brief Post-promotion worklist.
///
@@ -947,7 +1220,7 @@ class SROA : public FunctionPass {
///
/// Note that we have to be very careful to clear allocas out of this list in
/// the event they are deleted.
- SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
+ SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> PostPromotionWorklist;
/// \brief A collection of alloca instructions we can directly promote.
std::vector<AllocaInst *> PromotableAllocas;
@@ -957,7 +1230,7 @@ class SROA : public FunctionPass {
/// All of these PHIs have been checked for the safety of speculation and by
/// being speculated will allow promoting allocas currently in the promotable
/// queue.
- SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
+ SetVector<PHINode *, SmallVector<PHINode *, 2>> SpeculatablePHIs;
/// \brief A worklist of select instructions to speculate prior to promoting
/// allocas.
@@ -965,12 +1238,12 @@ class SROA : public FunctionPass {
/// All of these select instructions have been checked for the safety of
/// speculation and by being speculated will allow promoting allocas
/// currently in the promotable queue.
- SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
+ SetVector<SelectInst *, SmallVector<SelectInst *, 2>> SpeculatableSelects;
public:
SROA(bool RequiresDomTree = true)
- : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
- C(nullptr), DL(nullptr), DT(nullptr) {
+ : FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(nullptr),
+ DL(nullptr), DT(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
@@ -983,14 +1256,13 @@ private:
friend class PHIOrSelectSpeculator;
friend class AllocaSliceRewriter;
- bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
- AllocaSlices::iterator B, AllocaSlices::iterator E,
- int64_t BeginOffset, int64_t EndOffset,
- ArrayRef<AllocaSlices::iterator> SplitUses);
- bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
+ bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS);
+ bool rewritePartition(AllocaInst &AI, AllocaSlices &AS,
+ AllocaSlices::Partition &P);
+ bool splitAlloca(AllocaInst &AI, AllocaSlices &AS);
bool runOnAlloca(AllocaInst &AI);
void clobberUse(Use &U);
- void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
+ void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
bool promoteAllocas(Function &F);
};
}
@@ -1001,11 +1273,12 @@ FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
return new SROA(RequiresDomTree);
}
-INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
- false, false)
+INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
- false, false)
+INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
+ false)
/// Walk the range of a partitioning looking for a common type to cover this
/// sequence of slices.
@@ -1076,8 +1349,7 @@ static Type *findCommonType(AllocaSlices::const_iterator B,
///
/// FIXME: This should be hoisted into a generic utility, likely in
/// Transforms/Util/Local.h
-static bool isSafePHIToSpeculate(PHINode &PN,
- const DataLayout *DL = nullptr) {
+static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
// For now, we can only do this promotion if the load is in the same block
// as the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1148,10 +1420,12 @@ static void speculatePHINodeLoads(PHINode &PN) {
PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
PN.getName() + ".sroa.speculated");
- // Get the TBAA tag and alignment to use from one of the loads. It doesn't
+ // Get the AA tags and alignment to use from one of the loads. It doesn't
// matter which one we get and if any differ.
LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
- MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
+
+ AAMDNodes AATags;
+ SomeLoad->getAAMetadata(AATags);
unsigned Align = SomeLoad->getAlignment();
// Rewrite all loads of the PN to use the new PHI.
@@ -1172,8 +1446,8 @@ static void speculatePHINodeLoads(PHINode &PN) {
InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
++NumLoadsSpeculated;
Load->setAlignment(Align);
- if (TBAATag)
- Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ if (AATags)
+ Load->setAAMetadata(AATags);
NewPN->addIncoming(Load, Pred);
}
@@ -1238,12 +1512,15 @@ static void speculateSelectInstLoads(SelectInst &SI) {
IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
NumLoadsSpeculated += 2;
- // Transfer alignment and TBAA info if present.
+ // Transfer alignment and AA info if present.
TL->setAlignment(LI->getAlignment());
FL->setAlignment(LI->getAlignment());
- if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
- TL->setMetadata(LLVMContext::MD_tbaa, Tag);
- FL->setMetadata(LLVMContext::MD_tbaa, Tag);
+
+ AAMDNodes Tags;
+ LI->getAAMetadata(Tags);
+ if (Tags) {
+ TL->setAAMetadata(Tags);
+ FL->setAAMetadata(Tags);
}
Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
@@ -1332,7 +1609,8 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
SmallVectorImpl<Value *> &Indices,
Twine NamePrefix) {
if (Offset == 0)
- return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix);
+ return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
+ NamePrefix);
// We can't recurse through pointer types.
if (Ty->isPointerTy())
@@ -1440,8 +1718,7 @@ static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
/// a single GEP as possible, thus making each GEP more independent of the
/// surrounding code.
static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
- APInt Offset, Type *PointerTy,
- Twine NamePrefix) {
+ APInt Offset, Type *PointerTy, Twine NamePrefix) {
// Even though we don't look through PHI nodes, we could be called on an
// instruction in an unreachable block, which may be on a cycle.
SmallPtrSet<Value *, 4> Visited;
@@ -1450,8 +1727,9 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
// We may end up computing an offset pointer that has the wrong type. If we
// never are able to compute one directly that has the correct type, we'll
- // fall back to it, so keep it around here.
+ // fall back to it, so keep it and the base it was computed from around here.
Value *OffsetPtr = nullptr;
+ Value *OffsetBasePtr;
// Remember any i8 pointer we come across to re-use if we need to do a raw
// byte offset.
@@ -1468,7 +1746,7 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
break;
Offset += GEPOffset;
Ptr = GEP->getPointerOperand();
- if (!Visited.insert(Ptr))
+ if (!Visited.insert(Ptr).second)
break;
}
@@ -1476,16 +1754,19 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
Indices.clear();
if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
Indices, NamePrefix)) {
- if (P->getType() == PointerTy) {
- // Zap any offset pointer that we ended up computing in previous rounds.
- if (OffsetPtr && OffsetPtr->use_empty())
- if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
- I->eraseFromParent();
+ // If we have a new natural pointer at the offset, clear out any old
+ // offset pointer we computed. Unless it is the base pointer or
+ // a non-instruction, we built a GEP we don't need. Zap it.
+ if (OffsetPtr && OffsetPtr != OffsetBasePtr)
+ if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
+ assert(I->use_empty() && "Built a GEP with uses some how!");
+ I->eraseFromParent();
+ }
+ OffsetPtr = P;
+ OffsetBasePtr = Ptr;
+ // If we also found a pointer of the right type, we're done.
+ if (P->getType() == PointerTy)
return P;
- }
- if (!OffsetPtr) {
- OffsetPtr = P;
- }
}
// Stash this pointer if we've found an i8*.
@@ -1505,7 +1786,7 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
break;
}
assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(Ptr));
+ } while (Visited.insert(Ptr).second);
if (!OffsetPtr) {
if (!Int8Ptr) {
@@ -1515,9 +1796,10 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
Int8PtrOffset = Offset;
}
- OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
- IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
- NamePrefix + "sroa_raw_idx");
+ OffsetPtr = Int8PtrOffset == 0
+ ? Int8Ptr
+ : IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
+ NamePrefix + "sroa_raw_idx");
}
Ptr = OffsetPtr;
@@ -1528,6 +1810,27 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
return Ptr;
}
+/// \brief Compute the adjusted alignment for a load or store from an offset.
+static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
+ const DataLayout &DL) {
+ unsigned Alignment;
+ Type *Ty;
+ if (auto *LI = dyn_cast<LoadInst>(I)) {
+ Alignment = LI->getAlignment();
+ Ty = LI->getType();
+ } else if (auto *SI = dyn_cast<StoreInst>(I)) {
+ Alignment = SI->getAlignment();
+ Ty = SI->getValueOperand()->getType();
+ } else {
+ llvm_unreachable("Only loads and stores are allowed!");
+ }
+
+ if (!Alignment)
+ Alignment = DL.getABITypeAlignment(Ty);
+
+ return MinAlign(Alignment, Offset);
+}
+
/// \brief Test whether we can convert a value from the old to the new type.
///
/// This predicate should be used to guard calls to convertValue in order to
@@ -1621,39 +1924,43 @@ static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
///
/// This function is called to test each entry in a partioning which is slated
/// for a single slice.
-static bool isVectorPromotionViableForSlice(
- const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
- uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
- AllocaSlices::const_iterator I) {
+static bool isVectorPromotionViableForSlice(AllocaSlices::Partition &P,
+ const Slice &S, VectorType *Ty,
+ uint64_t ElementSize,
+ const DataLayout &DL) {
// First validate the slice offsets.
uint64_t BeginOffset =
- std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
+ std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
uint64_t BeginIndex = BeginOffset / ElementSize;
if (BeginIndex * ElementSize != BeginOffset ||
BeginIndex >= Ty->getNumElements())
return false;
uint64_t EndOffset =
- std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
+ std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
uint64_t EndIndex = EndOffset / ElementSize;
if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
return false;
assert(EndIndex > BeginIndex && "Empty vector!");
uint64_t NumElements = EndIndex - BeginIndex;
- Type *SliceTy =
- (NumElements == 1) ? Ty->getElementType()
- : VectorType::get(Ty->getElementType(), NumElements);
+ Type *SliceTy = (NumElements == 1)
+ ? Ty->getElementType()
+ : VectorType::get(Ty->getElementType(), NumElements);
Type *SplitIntTy =
Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
- Use *U = I->getUse();
+ Use *U = S.getUse();
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
if (MI->isVolatile())
return false;
- if (!I->isSplittable())
+ if (!S.isSplittable())
return false; // Skip any unsplittable intrinsics.
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
+ if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+ II->getIntrinsicID() != Intrinsic::lifetime_end)
+ return false;
} else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
// Disable vector promotion when there are loads or stores of an FCA.
return false;
@@ -1661,8 +1968,7 @@ static bool isVectorPromotionViableForSlice(
if (LI->isVolatile())
return false;
Type *LTy = LI->getType();
- if (SliceBeginOffset > I->beginOffset() ||
- SliceEndOffset < I->endOffset()) {
+ if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
assert(LTy->isIntegerTy());
LTy = SplitIntTy;
}
@@ -1672,8 +1978,7 @@ static bool isVectorPromotionViableForSlice(
if (SI->isVolatile())
return false;
Type *STy = SI->getValueOperand()->getType();
- if (SliceBeginOffset > I->beginOffset() ||
- SliceEndOffset < I->endOffset()) {
+ if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
assert(STy->isIntegerTy());
STy = SplitIntTy;
}
@@ -1695,65 +2000,137 @@ static bool isVectorPromotionViableForSlice(
/// SSA value. We only can ensure this for a limited set of operations, and we
/// don't want to do the rewrites unless we are confident that the result will
/// be promotable, so we have an early test here.
-static bool
-isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
- uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
- AllocaSlices::const_iterator I,
- AllocaSlices::const_iterator E,
- ArrayRef<AllocaSlices::iterator> SplitUses) {
- VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
- if (!Ty)
- return false;
+static VectorType *isVectorPromotionViable(AllocaSlices::Partition &P,
+ const DataLayout &DL) {
+ // Collect the candidate types for vector-based promotion. Also track whether
+ // we have different element types.
+ SmallVector<VectorType *, 4> CandidateTys;
+ Type *CommonEltTy = nullptr;
+ bool HaveCommonEltTy = true;
+ auto CheckCandidateType = [&](Type *Ty) {
+ if (auto *VTy = dyn_cast<VectorType>(Ty)) {
+ CandidateTys.push_back(VTy);
+ if (!CommonEltTy)
+ CommonEltTy = VTy->getElementType();
+ else if (CommonEltTy != VTy->getElementType())
+ HaveCommonEltTy = false;
+ }
+ };
+ // Consider any loads or stores that are the exact size of the slice.
+ for (const Slice &S : P)
+ if (S.beginOffset() == P.beginOffset() &&
+ S.endOffset() == P.endOffset()) {
+ if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
+ CheckCandidateType(LI->getType());
+ else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
+ CheckCandidateType(SI->getValueOperand()->getType());
+ }
- uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
+ // If we didn't find a vector type, nothing to do here.
+ if (CandidateTys.empty())
+ return nullptr;
- // While the definition of LLVM vectors is bitpacked, we don't support sizes
- // that aren't byte sized.
- if (ElementSize % 8)
- return false;
- assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
- "vector size not a multiple of element size?");
- ElementSize /= 8;
+ // Remove non-integer vector types if we had multiple common element types.
+ // FIXME: It'd be nice to replace them with integer vector types, but we can't
+ // do that until all the backends are known to produce good code for all
+ // integer vector types.
+ if (!HaveCommonEltTy) {
+ CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(),
+ [](VectorType *VTy) {
+ return !VTy->getElementType()->isIntegerTy();
+ }),
+ CandidateTys.end());
+
+ // If there were no integer vector types, give up.
+ if (CandidateTys.empty())
+ return nullptr;
- for (; I != E; ++I)
- if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
- SliceEndOffset, Ty, ElementSize, I))
- return false;
+ // Rank the remaining candidate vector types. This is easy because we know
+ // they're all integer vectors. We sort by ascending number of elements.
+ auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
+ assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
+ "Cannot have vector types of different sizes!");
+ assert(RHSTy->getElementType()->isIntegerTy() &&
+ "All non-integer types eliminated!");
+ assert(LHSTy->getElementType()->isIntegerTy() &&
+ "All non-integer types eliminated!");
+ return RHSTy->getNumElements() < LHSTy->getNumElements();
+ };
+ std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
+ CandidateTys.erase(
+ std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
+ CandidateTys.end());
+ } else {
+// The only way to have the same element type in every vector type is to
+// have the same vector type. Check that and remove all but one.
+#ifndef NDEBUG
+ for (VectorType *VTy : CandidateTys) {
+ assert(VTy->getElementType() == CommonEltTy &&
+ "Unaccounted for element type!");
+ assert(VTy == CandidateTys[0] &&
+ "Different vector types with the same element type!");
+ }
+#endif
+ CandidateTys.resize(1);
+ }
- for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
- SUE = SplitUses.end();
- SUI != SUE; ++SUI)
- if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
- SliceEndOffset, Ty, ElementSize, *SUI))
+ // Try each vector type, and return the one which works.
+ auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
+ uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
+
+ // While the definition of LLVM vectors is bitpacked, we don't support sizes
+ // that aren't byte sized.
+ if (ElementSize % 8)
return false;
+ assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
+ "vector size not a multiple of element size?");
+ ElementSize /= 8;
- return true;
+ for (const Slice &S : P)
+ if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
+ return false;
+
+ for (const Slice *S : P.splitSliceTails())
+ if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
+ return false;
+
+ return true;
+ };
+ for (VectorType *VTy : CandidateTys)
+ if (CheckVectorTypeForPromotion(VTy))
+ return VTy;
+
+ return nullptr;
}
/// \brief Test whether a slice of an alloca is valid for integer widening.
///
/// This implements the necessary checking for the \c isIntegerWideningViable
/// test below on a single slice of the alloca.
-static bool isIntegerWideningViableForSlice(const DataLayout &DL,
- Type *AllocaTy,
+static bool isIntegerWideningViableForSlice(const Slice &S,
uint64_t AllocBeginOffset,
- uint64_t Size, AllocaSlices &S,
- AllocaSlices::const_iterator I,
+ Type *AllocaTy,
+ const DataLayout &DL,
bool &WholeAllocaOp) {
- uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
- uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
+ uint64_t Size = DL.getTypeStoreSize(AllocaTy);
+
+ uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
+ uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
// We can't reasonably handle cases where the load or store extends past
// the end of the aloca's type and into its padding.
if (RelEnd > Size)
return false;
- Use *U = I->getUse();
+ Use *U = S.getUse();
if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
if (LI->isVolatile())
return false;
- if (RelBegin == 0 && RelEnd == Size)
+ // Note that we don't count vector loads or stores as whole-alloca
+ // operations which enable integer widening because we would prefer to use
+ // vector widening instead.
+ if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
WholeAllocaOp = true;
if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
@@ -1768,7 +2145,10 @@ static bool isIntegerWideningViableForSlice(const DataLayout &DL,
Type *ValueTy = SI->getValueOperand()->getType();
if (SI->isVolatile())
return false;
- if (RelBegin == 0 && RelEnd == Size)
+ // Note that we don't count vector loads or stores as whole-alloca
+ // operations which enable integer widening because we would prefer to use
+ // vector widening instead.
+ if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
WholeAllocaOp = true;
if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
@@ -1782,7 +2162,7 @@ static bool isIntegerWideningViableForSlice(const DataLayout &DL,
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
return false;
- if (!I->isSplittable())
+ if (!S.isSplittable())
return false; // Skip any unsplittable intrinsics.
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
@@ -1801,12 +2181,8 @@ static bool isIntegerWideningViableForSlice(const DataLayout &DL,
/// This is a quick test to check whether we can rewrite the integer loads and
/// stores to a particular alloca into wider loads and stores and be able to
/// promote the resulting alloca.
-static bool
-isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
- uint64_t AllocBeginOffset, AllocaSlices &S,
- AllocaSlices::const_iterator I,
- AllocaSlices::const_iterator E,
- ArrayRef<AllocaSlices::iterator> SplitUses) {
+static bool isIntegerWideningViable(AllocaSlices::Partition &P, Type *AllocaTy,
+ const DataLayout &DL) {
uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
// Don't create integer types larger than the maximum bitwidth.
if (SizeInBits > IntegerType::MAX_INT_BITS)
@@ -1824,25 +2200,24 @@ isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
!canConvertValue(DL, IntTy, AllocaTy))
return false;
- uint64_t Size = DL.getTypeStoreSize(AllocaTy);
-
// While examining uses, we ensure that the alloca has a covering load or
// store. We don't want to widen the integer operations only to fail to
// promote due to some other unsplittable entry (which we may make splittable
// later). However, if there are only splittable uses, go ahead and assume
// that we cover the alloca.
- bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
-
- for (; I != E; ++I)
- if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
- S, I, WholeAllocaOp))
+ // FIXME: We shouldn't consider split slices that happen to start in the
+ // partition here...
+ bool WholeAllocaOp =
+ P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
+
+ for (const Slice &S : P)
+ if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
+ WholeAllocaOp))
return false;
- for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
- SUE = SplitUses.end();
- SUI != SUE; ++SUI)
- if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
- S, *SUI, WholeAllocaOp))
+ for (const Slice *S : P.splitSliceTails())
+ if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
+ WholeAllocaOp))
return false;
return WholeAllocaOp;
@@ -1855,9 +2230,9 @@ static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
IntegerType *IntTy = cast<IntegerType>(V->getType());
assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
"Element extends past full value");
- uint64_t ShAmt = 8*Offset;
+ uint64_t ShAmt = 8 * Offset;
if (DL.isBigEndian())
- ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
+ ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
if (ShAmt) {
V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
DEBUG(dbgs() << " shifted: " << *V << "\n");
@@ -1884,9 +2259,9 @@ static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
}
assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
"Element store outside of alloca store");
- uint64_t ShAmt = 8*Offset;
+ uint64_t ShAmt = 8 * Offset;
if (DL.isBigEndian())
- ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
+ ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
if (ShAmt) {
V = IRB.CreateShl(V, ShAmt, Name + ".shift");
DEBUG(dbgs() << " shifted: " << *V << "\n");
@@ -1902,9 +2277,8 @@ static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
return V;
}
-static Value *extractVector(IRBuilderTy &IRB, Value *V,
- unsigned BeginIndex, unsigned EndIndex,
- const Twine &Name) {
+static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
+ unsigned EndIndex, const Twine &Name) {
VectorType *VecTy = cast<VectorType>(V->getType());
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
@@ -1919,13 +2293,12 @@ static Value *extractVector(IRBuilderTy &IRB, Value *V,
return V;
}
- SmallVector<Constant*, 8> Mask;
+ SmallVector<Constant *, 8> Mask;
Mask.reserve(NumElements);
for (unsigned i = BeginIndex; i != EndIndex; ++i)
Mask.push_back(IRB.getInt32(i));
V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask),
- Name + ".extract");
+ ConstantVector::get(Mask), Name + ".extract");
DEBUG(dbgs() << " shuffle: " << *V << "\n");
return V;
}
@@ -1940,7 +2313,7 @@ static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
// Single element to insert.
V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
Name + ".insert");
- DEBUG(dbgs() << " insert: " << *V << "\n");
+ DEBUG(dbgs() << " insert: " << *V << "\n");
return V;
}
@@ -1956,7 +2329,7 @@ static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
// use a shuffle vector to widen it with undef elements, and then
// a second shuffle vector to select between the loaded vector and the
// incoming vector.
- SmallVector<Constant*, 8> Mask;
+ SmallVector<Constant *, 8> Mask;
Mask.reserve(VecTy->getNumElements());
for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
if (i >= BeginIndex && i < EndIndex)
@@ -1964,8 +2337,7 @@ static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
else
Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask),
- Name + ".expand");
+ ConstantVector::get(Mask), Name + ".expand");
DEBUG(dbgs() << " shuffle: " << *V << "\n");
Mask.clear();
@@ -1991,12 +2363,18 @@ class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
const DataLayout &DL;
- AllocaSlices &S;
+ AllocaSlices &AS;
SROA &Pass;
AllocaInst &OldAI, &NewAI;
const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Type *NewAllocaTy;
+ // This is a convenience and flag variable that will be null unless the new
+ // alloca's integer operations should be widened to this integer type due to
+ // passing isIntegerWideningViable above. If it is non-null, the desired
+ // integer type will be stored here for easy access during rewriting.
+ IntegerType *IntTy;
+
// If we are rewriting an alloca partition which can be written as pure
// vector operations, we stash extra information here. When VecTy is
// non-null, we have some strict guarantees about the rewritten alloca:
@@ -2010,12 +2388,6 @@ class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
Type *ElementTy;
uint64_t ElementSize;
- // This is a convenience and flag variable that will be null unless the new
- // alloca's integer operations should be widened to this integer type due to
- // passing isIntegerWideningViable above. If it is non-null, the desired
- // integer type will be stored here for easy access during rewriting.
- IntegerType *IntTy;
-
// The original offset of the slice currently being rewritten relative to
// the original alloca.
uint64_t BeginOffset, EndOffset;
@@ -2038,25 +2410,25 @@ class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
IRBuilderTy IRB;
public:
- AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
+ AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
AllocaInst &OldAI, AllocaInst &NewAI,
uint64_t NewAllocaBeginOffset,
- uint64_t NewAllocaEndOffset, bool IsVectorPromotable,
- bool IsIntegerPromotable,
+ uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
+ VectorType *PromotableVecTy,
SmallPtrSetImpl<PHINode *> &PHIUsers,
SmallPtrSetImpl<SelectInst *> &SelectUsers)
- : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
+ : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
NewAllocaBeginOffset(NewAllocaBeginOffset),
NewAllocaEndOffset(NewAllocaEndOffset),
NewAllocaTy(NewAI.getAllocatedType()),
- VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : nullptr),
- ElementTy(VecTy ? VecTy->getElementType() : nullptr),
- ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
IntTy(IsIntegerPromotable
? Type::getIntNTy(
NewAI.getContext(),
DL.getTypeSizeInBits(NewAI.getAllocatedType()))
: nullptr),
+ VecTy(PromotableVecTy),
+ ElementTy(VecTy ? VecTy->getElementType() : nullptr),
+ ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
IRB(NewAI.getContext(), ConstantFolder()) {
@@ -2065,8 +2437,7 @@ public:
"Only multiple-of-8 sized vector elements are viable");
++NumVectorized;
}
- assert((!IsVectorPromotable && !IsIntegerPromotable) ||
- IsVectorPromotable != IsIntegerPromotable);
+ assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
}
bool visit(AllocaSlices::const_iterator I) {
@@ -2076,6 +2447,9 @@ public:
IsSplittable = I->isSplittable();
IsSplit =
BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
+ DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
+ DEBUG(AS.printSlice(dbgs(), I, ""));
+ DEBUG(dbgs() << "\n");
// Compute the intersecting offset range.
assert(BeginOffset < NewAllocaEndOffset);
@@ -2146,7 +2520,8 @@ private:
);
}
- /// \brief Compute suitable alignment to access this slice of the *new* alloca.
+ /// \brief Compute suitable alignment to access this slice of the *new*
+ /// alloca.
///
/// You can optionally pass a type to this routine and if that type's ABI
/// alignment is itself suitable, this will return zero.
@@ -2154,7 +2529,8 @@ private:
unsigned NewAIAlign = NewAI.getAlignment();
if (!NewAIAlign)
NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
- unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
+ unsigned Align =
+ MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
}
@@ -2178,16 +2554,14 @@ private:
unsigned EndIndex = getIndex(NewEndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "load");
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
}
Value *rewriteIntegerLoad(LoadInst &LI) {
assert(IntTy && "We cannot insert an integer to the alloca");
assert(!LI.isVolatile());
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "load");
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
V = convertValue(DL, IRB, V, IntTy);
assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
@@ -2212,8 +2586,8 @@ private:
V = rewriteIntegerLoad(LI);
} else if (NewBeginOffset == NewAllocaBeginOffset &&
canConvertValue(DL, NewAllocaTy, LI.getType())) {
- V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- LI.isVolatile(), LI.getName());
+ V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), LI.isVolatile(),
+ LI.getName());
} else {
Type *LTy = TargetTy->getPointerTo();
V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
@@ -2230,7 +2604,7 @@ private:
assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
"Split load isn't smaller than original load");
assert(LI.getType()->getIntegerBitWidth() ==
- DL.getTypeStoreSizeInBits(LI.getType()) &&
+ DL.getTypeStoreSizeInBits(LI.getType()) &&
"Non-byte-multiple bit width");
// Move the insertion point just past the load so that we can refer to it.
IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI)));
@@ -2238,9 +2612,9 @@ private:
// basis for the new value. This allows us to replace the uses of LI with
// the computed value, and then replace the placeholder with LI, leaving
// LI only used for this computation.
- Value *Placeholder
- = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
- V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
+ Value *Placeholder =
+ new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
+ V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
"insert");
LI.replaceAllUsesWith(V);
Placeholder->replaceAllUsesWith(&LI);
@@ -2262,15 +2636,14 @@ private:
assert(EndIndex > BeginIndex && "Empty vector!");
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- Type *SliceTy =
- (NumElements == 1) ? ElementTy
- : VectorType::get(ElementTy, NumElements);
+ Type *SliceTy = (NumElements == 1)
+ ? ElementTy
+ : VectorType::get(ElementTy, NumElements);
if (V->getType() != SliceTy)
V = convertValue(DL, IRB, V, SliceTy);
// Mix in the existing elements.
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "load");
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
V = insertVector(IRB, Old, V, BeginIndex, "vec");
}
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
@@ -2285,13 +2658,12 @@ private:
assert(IntTy && "We cannot extract an integer from the alloca");
assert(!SI.isVolatile());
if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "oldload");
+ Value *Old =
+ IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
Old = convertValue(DL, IRB, Old, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
- "insert");
+ V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
}
V = convertValue(DL, IRB, V, NewAllocaTy);
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
@@ -2319,10 +2691,10 @@ private:
assert(V->getType()->isIntegerTy() &&
"Only integer type loads and stores are split");
assert(V->getType()->getIntegerBitWidth() ==
- DL.getTypeStoreSizeInBits(V->getType()) &&
+ DL.getTypeStoreSizeInBits(V->getType()) &&
"Non-byte-multiple bit width");
IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
- V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
+ V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
"extract");
}
@@ -2367,14 +2739,14 @@ private:
if (Size == 1)
return V;
- Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
- V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
- ConstantExpr::getUDiv(
- Constant::getAllOnesValue(SplatIntTy),
- ConstantExpr::getZExt(
- Constant::getAllOnesValue(V->getType()),
- SplatIntTy)),
- "isplat");
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
+ V = IRB.CreateMul(
+ IRB.CreateZExt(V, SplatIntTy, "zext"),
+ ConstantExpr::getUDiv(
+ Constant::getAllOnesValue(SplatIntTy),
+ ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ "isplat");
return V;
}
@@ -2411,11 +2783,11 @@ private:
// If this doesn't map cleanly onto the alloca type, and that type isn't
// a single value type, just emit a memset.
if (!VecTy && !IntTy &&
- (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset ||
+ (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
+ SliceSize != DL.getTypeStoreSize(AllocaTy) ||
!AllocaTy->isSingleValueType() ||
!DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
- DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
+ DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
CallInst *New = IRB.CreateMemSet(
@@ -2449,8 +2821,8 @@ private:
if (NumElements > 1)
Splat = getVectorSplat(Splat, NumElements);
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "oldload");
+ Value *Old =
+ IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
} else if (IntTy) {
// If this is a memset on an alloca where we can widen stores, insert the
@@ -2462,8 +2834,8 @@ private:
if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaBeginOffset)) {
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "oldload");
+ Value *Old =
+ IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
Old = convertValue(DL, IRB, Old, IntTy);
uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
V = insertInteger(DL, IRB, Old, V, Offset, "insert");
@@ -2535,10 +2907,11 @@ private:
// If this doesn't map cleanly onto the alloca type, and that type isn't
// a single value type, just emit a memcpy.
- bool EmitMemCpy
- = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
- EndOffset < NewAllocaEndOffset ||
- !NewAI.getAllocatedType()->isSingleValueType());
+ bool EmitMemCpy =
+ !VecTy && !IntTy &&
+ (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
+ SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
+ !NewAI.getAllocatedType()->isSingleValueType());
// If we're just going to emit a memcpy, the alloca hasn't changed, and the
// size hasn't been shrunk based on analysis of the viable range, this is
@@ -2559,8 +2932,8 @@ private:
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after rewriting this instruction.
Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
- if (AllocaInst *AI
- = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
+ if (AllocaInst *AI =
+ dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
assert(AI != &OldAI && AI != &NewAI &&
"Splittable transfers cannot reach the same alloca on both ends.");
Pass.Worklist.insert(AI);
@@ -2599,8 +2972,8 @@ private:
unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
unsigned NumElements = EndIndex - BeginIndex;
- IntegerType *SubIntTy
- = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr;
+ IntegerType *SubIntTy =
+ IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
// Reset the other pointer type to match the register type we're going to
// use, but using the address space of the original other pointer.
@@ -2629,27 +3002,25 @@ private:
Value *Src;
if (VecTy && !IsWholeAlloca && !IsDest) {
- Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "load");
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
} else if (IntTy && !IsWholeAlloca && !IsDest) {
- Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "load");
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
Src = convertValue(DL, IRB, Src, IntTy);
uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
} else {
- Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
- "copyload");
+ Src =
+ IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload");
}
if (VecTy && !IsWholeAlloca && IsDest) {
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "oldload");
+ Value *Old =
+ IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
} else if (IntTy && !IsWholeAlloca && IsDest) {
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- "oldload");
+ Value *Old =
+ IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
Old = convertValue(DL, IRB, Old, IntTy);
uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
@@ -2672,8 +3043,8 @@ private:
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
- ConstantInt *Size
- = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
+ ConstantInt *Size =
+ ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
NewEndOffset - NewBeginOffset);
Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
Value *New;
@@ -2740,7 +3111,6 @@ private:
SelectUsers.insert(&SI);
return true;
}
-
};
}
@@ -2787,7 +3157,7 @@ private:
/// This uses a set to de-duplicate users.
void enqueueUsers(Instruction &I) {
for (Use &U : I.uses())
- if (Visited.insert(U.getUser()))
+ if (Visited.insert(U.getUser()).second)
Queue.push_back(&U);
}
@@ -2795,8 +3165,7 @@ private:
bool visitInstruction(Instruction &I) { return false; }
/// \brief Generic recursive split emission class.
- template <typename Derived>
- class OpSplitter {
+ template <typename Derived> class OpSplitter {
protected:
/// The builder used to form new instructions.
IRBuilderTy IRB;
@@ -2813,7 +3182,7 @@ private:
/// Initialize the splitter with an insertion point, Ptr and start with a
/// single zero GEP index.
OpSplitter(Instruction *InsertionPoint, Value *Ptr)
- : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
+ : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
public:
/// \brief Generic recursive split emission routine.
@@ -2869,7 +3238,7 @@ private:
struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
- : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
+ : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
/// Emit a leaf load of a single value. This is called at the leaves of the
/// recursive emission to actually load values.
@@ -2900,7 +3269,7 @@ private:
struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
- : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
+ : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
/// Emit a leaf store of a single value. This is called at the leaves of the
/// recursive emission to actually produce stores.
@@ -2908,8 +3277,8 @@ private:
assert(Ty->isSingleValueType());
// Extract the single value and store it using the indices.
Value *Store = IRB.CreateStore(
- IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
- IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
+ IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
+ IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
}
@@ -2995,8 +3364,8 @@ static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
/// when the size or offset cause either end of type-based partition to be off.
/// Also, this is a best-effort routine. It is reasonable to give up and not
/// return a type if necessary.
-static Type *getTypePartition(const DataLayout &DL, Type *Ty,
- uint64_t Offset, uint64_t Size) {
+static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
+ uint64_t Size) {
if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
return stripAggregateTypeWrapping(DL, Ty);
if (Offset > DL.getTypeAllocSize(Ty) ||
@@ -3088,8 +3457,8 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty,
}
// Try to build up a sub-structure.
- StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
- STy->isPacked());
+ StructType *SubTy =
+ StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
const StructLayout *SubSL = DL.getStructLayout(SubTy);
if (Size != SubSL->getSizeInBytes())
return nullptr; // The sub-struct doesn't have quite the size needed.
@@ -3097,6 +3466,494 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty,
return SubTy;
}
+/// \brief Pre-split loads and stores to simplify rewriting.
+///
+/// We want to break up the splittable load+store pairs as much as
+/// possible. This is important to do as a preprocessing step, as once we
+/// start rewriting the accesses to partitions of the alloca we lose the
+/// necessary information to correctly split apart paired loads and stores
+/// which both point into this alloca. The case to consider is something like
+/// the following:
+///
+/// %a = alloca [12 x i8]
+/// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
+/// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
+/// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
+/// %iptr1 = bitcast i8* %gep1 to i64*
+/// %iptr2 = bitcast i8* %gep2 to i64*
+/// %fptr1 = bitcast i8* %gep1 to float*
+/// %fptr2 = bitcast i8* %gep2 to float*
+/// %fptr3 = bitcast i8* %gep3 to float*
+/// store float 0.0, float* %fptr1
+/// store float 1.0, float* %fptr2
+/// %v = load i64* %iptr1
+/// store i64 %v, i64* %iptr2
+/// %f1 = load float* %fptr2
+/// %f2 = load float* %fptr3
+///
+/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
+/// promote everything so we recover the 2 SSA values that should have been
+/// there all along.
+///
+/// \returns true if any changes are made.
+bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
+ DEBUG(dbgs() << "Pre-splitting loads and stores\n");
+
+ // Track the loads and stores which are candidates for pre-splitting here, in
+ // the order they first appear during the partition scan. These give stable
+ // iteration order and a basis for tracking which loads and stores we
+ // actually split.
+ SmallVector<LoadInst *, 4> Loads;
+ SmallVector<StoreInst *, 4> Stores;
+
+ // We need to accumulate the splits required of each load or store where we
+ // can find them via a direct lookup. This is important to cross-check loads
+ // and stores against each other. We also track the slice so that we can kill
+ // all the slices that end up split.
+ struct SplitOffsets {
+ Slice *S;
+ std::vector<uint64_t> Splits;
+ };
+ SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
+
+ // Track loads out of this alloca which cannot, for any reason, be pre-split.
+ // This is important as we also cannot pre-split stores of those loads!
+ // FIXME: This is all pretty gross. It means that we can be more aggressive
+ // in pre-splitting when the load feeding the store happens to come from
+ // a separate alloca. Put another way, the effectiveness of SROA would be
+ // decreased by a frontend which just concatenated all of its local allocas
+ // into one big flat alloca. But defeating such patterns is exactly the job
+ // SROA is tasked with! Sadly, to not have this discrepancy we would have
+ // change store pre-splitting to actually force pre-splitting of the load
+ // that feeds it *and all stores*. That makes pre-splitting much harder, but
+ // maybe it would make it more principled?
+ SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
+
+ DEBUG(dbgs() << " Searching for candidate loads and stores\n");
+ for (auto &P : AS.partitions()) {
+ for (Slice &S : P) {
+ Instruction *I = cast<Instruction>(S.getUse()->getUser());
+ if (!S.isSplittable() ||S.endOffset() <= P.endOffset()) {
+ // If this was a load we have to track that it can't participate in any
+ // pre-splitting!
+ if (auto *LI = dyn_cast<LoadInst>(I))
+ UnsplittableLoads.insert(LI);
+ continue;
+ }
+ assert(P.endOffset() > S.beginOffset() &&
+ "Empty or backwards partition!");
+
+ // Determine if this is a pre-splittable slice.
+ if (auto *LI = dyn_cast<LoadInst>(I)) {
+ assert(!LI->isVolatile() && "Cannot split volatile loads!");
+
+ // The load must be used exclusively to store into other pointers for
+ // us to be able to arbitrarily pre-split it. The stores must also be
+ // simple to avoid changing semantics.
+ auto IsLoadSimplyStored = [](LoadInst *LI) {
+ for (User *LU : LI->users()) {
+ auto *SI = dyn_cast<StoreInst>(LU);
+ if (!SI || !SI->isSimple())
+ return false;
+ }
+ return true;
+ };
+ if (!IsLoadSimplyStored(LI)) {
+ UnsplittableLoads.insert(LI);
+ continue;
+ }
+
+ Loads.push_back(LI);
+ } else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) {
+ if (!SI ||
+ S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
+ continue;
+ auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
+ if (!StoredLoad || !StoredLoad->isSimple())
+ continue;
+ assert(!SI->isVolatile() && "Cannot split volatile stores!");
+
+ Stores.push_back(SI);
+ } else {
+ // Other uses cannot be pre-split.
+ continue;
+ }
+
+ // Record the initial split.
+ DEBUG(dbgs() << " Candidate: " << *I << "\n");
+ auto &Offsets = SplitOffsetsMap[I];
+ assert(Offsets.Splits.empty() &&
+ "Should not have splits the first time we see an instruction!");
+ Offsets.S = &S;
+ Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
+ }
+
+ // Now scan the already split slices, and add a split for any of them which
+ // we're going to pre-split.
+ for (Slice *S : P.splitSliceTails()) {
+ auto SplitOffsetsMapI =
+ SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
+ if (SplitOffsetsMapI == SplitOffsetsMap.end())
+ continue;
+ auto &Offsets = SplitOffsetsMapI->second;
+
+ assert(Offsets.S == S && "Found a mismatched slice!");
+ assert(!Offsets.Splits.empty() &&
+ "Cannot have an empty set of splits on the second partition!");
+ assert(Offsets.Splits.back() ==
+ P.beginOffset() - Offsets.S->beginOffset() &&
+ "Previous split does not end where this one begins!");
+
+ // Record each split. The last partition's end isn't needed as the size
+ // of the slice dictates that.
+ if (S->endOffset() > P.endOffset())
+ Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
+ }
+ }
+
+ // We may have split loads where some of their stores are split stores. For
+ // such loads and stores, we can only pre-split them if their splits exactly
+ // match relative to their starting offset. We have to verify this prior to
+ // any rewriting.
+ Stores.erase(
+ std::remove_if(Stores.begin(), Stores.end(),
+ [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
+ // Lookup the load we are storing in our map of split
+ // offsets.
+ auto *LI = cast<LoadInst>(SI->getValueOperand());
+ // If it was completely unsplittable, then we're done,
+ // and this store can't be pre-split.
+ if (UnsplittableLoads.count(LI))
+ return true;
+
+ auto LoadOffsetsI = SplitOffsetsMap.find(LI);
+ if (LoadOffsetsI == SplitOffsetsMap.end())
+ return false; // Unrelated loads are definitely safe.
+ auto &LoadOffsets = LoadOffsetsI->second;
+
+ // Now lookup the store's offsets.
+ auto &StoreOffsets = SplitOffsetsMap[SI];
+
+ // If the relative offsets of each split in the load and
+ // store match exactly, then we can split them and we
+ // don't need to remove them here.
+ if (LoadOffsets.Splits == StoreOffsets.Splits)
+ return false;
+
+ DEBUG(dbgs()
+ << " Mismatched splits for load and store:\n"
+ << " " << *LI << "\n"
+ << " " << *SI << "\n");
+
+ // We've found a store and load that we need to split
+ // with mismatched relative splits. Just give up on them
+ // and remove both instructions from our list of
+ // candidates.
+ UnsplittableLoads.insert(LI);
+ return true;
+ }),
+ Stores.end());
+ // Now we have to go *back* through all te stores, because a later store may
+ // have caused an earlier store's load to become unsplittable and if it is
+ // unsplittable for the later store, then we can't rely on it being split in
+ // the earlier store either.
+ Stores.erase(std::remove_if(Stores.begin(), Stores.end(),
+ [&UnsplittableLoads](StoreInst *SI) {
+ auto *LI =
+ cast<LoadInst>(SI->getValueOperand());
+ return UnsplittableLoads.count(LI);
+ }),
+ Stores.end());
+ // Once we've established all the loads that can't be split for some reason,
+ // filter any that made it into our list out.
+ Loads.erase(std::remove_if(Loads.begin(), Loads.end(),
+ [&UnsplittableLoads](LoadInst *LI) {
+ return UnsplittableLoads.count(LI);
+ }),
+ Loads.end());
+
+
+ // If no loads or stores are left, there is no pre-splitting to be done for
+ // this alloca.
+ if (Loads.empty() && Stores.empty())
+ return false;
+
+ // From here on, we can't fail and will be building new accesses, so rig up
+ // an IR builder.
+ IRBuilderTy IRB(&AI);
+
+ // Collect the new slices which we will merge into the alloca slices.
+ SmallVector<Slice, 4> NewSlices;
+
+ // Track any allocas we end up splitting loads and stores for so we iterate
+ // on them.
+ SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
+
+ // At this point, we have collected all of the loads and stores we can
+ // pre-split, and the specific splits needed for them. We actually do the
+ // splitting in a specific order in order to handle when one of the loads in
+ // the value operand to one of the stores.
+ //
+ // First, we rewrite all of the split loads, and just accumulate each split
+ // load in a parallel structure. We also build the slices for them and append
+ // them to the alloca slices.
+ SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
+ std::vector<LoadInst *> SplitLoads;
+ for (LoadInst *LI : Loads) {
+ SplitLoads.clear();
+
+ IntegerType *Ty = cast<IntegerType>(LI->getType());
+ uint64_t LoadSize = Ty->getBitWidth() / 8;
+ assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
+
+ auto &Offsets = SplitOffsetsMap[LI];
+ assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
+ "Slice size should always match load size exactly!");
+ uint64_t BaseOffset = Offsets.S->beginOffset();
+ assert(BaseOffset + LoadSize > BaseOffset &&
+ "Cannot represent alloca access size using 64-bit integers!");
+
+ Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
+ IRB.SetInsertPoint(BasicBlock::iterator(LI));
+
+ DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
+
+ uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
+ int Idx = 0, Size = Offsets.Splits.size();
+ for (;;) {
+ auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
+ auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
+ LoadInst *PLoad = IRB.CreateAlignedLoad(
+ getAdjustedPtr(IRB, *DL, BasePtr,
+ APInt(DL->getPointerSizeInBits(), PartOffset),
+ PartPtrTy, BasePtr->getName() + "."),
+ getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
+ LI->getName());
+
+ // Append this load onto the list of split loads so we can find it later
+ // to rewrite the stores.
+ SplitLoads.push_back(PLoad);
+
+ // Now build a new slice for the alloca.
+ NewSlices.push_back(
+ Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
+ &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
+ /*IsSplittable*/ false));
+ DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
+ << ", " << NewSlices.back().endOffset() << "): " << *PLoad
+ << "\n");
+
+ // See if we've handled all the splits.
+ if (Idx >= Size)
+ break;
+
+ // Setup the next partition.
+ PartOffset = Offsets.Splits[Idx];
+ ++Idx;
+ PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
+ }
+
+ // Now that we have the split loads, do the slow walk over all uses of the
+ // load and rewrite them as split stores, or save the split loads to use
+ // below if the store is going to be split there anyways.
+ bool DeferredStores = false;
+ for (User *LU : LI->users()) {
+ StoreInst *SI = cast<StoreInst>(LU);
+ if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
+ DeferredStores = true;
+ DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n");
+ continue;
+ }
+
+ Value *StoreBasePtr = SI->getPointerOperand();
+ IRB.SetInsertPoint(BasicBlock::iterator(SI));
+
+ DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
+
+ for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
+ LoadInst *PLoad = SplitLoads[Idx];
+ uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
+ auto *PartPtrTy =
+ PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
+
+ StoreInst *PStore = IRB.CreateAlignedStore(
+ PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
+ APInt(DL->getPointerSizeInBits(), PartOffset),
+ PartPtrTy, StoreBasePtr->getName() + "."),
+ getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
+ (void)PStore;
+ DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
+ }
+
+ // We want to immediately iterate on any allocas impacted by splitting
+ // this store, and we have to track any promotable alloca (indicated by
+ // a direct store) as needing to be resplit because it is no longer
+ // promotable.
+ if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
+ ResplitPromotableAllocas.insert(OtherAI);
+ Worklist.insert(OtherAI);
+ } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
+ StoreBasePtr->stripInBoundsOffsets())) {
+ Worklist.insert(OtherAI);
+ }
+
+ // Mark the original store as dead.
+ DeadInsts.insert(SI);
+ }
+
+ // Save the split loads if there are deferred stores among the users.
+ if (DeferredStores)
+ SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
+
+ // Mark the original load as dead and kill the original slice.
+ DeadInsts.insert(LI);
+ Offsets.S->kill();
+ }
+
+ // Second, we rewrite all of the split stores. At this point, we know that
+ // all loads from this alloca have been split already. For stores of such
+ // loads, we can simply look up the pre-existing split loads. For stores of
+ // other loads, we split those loads first and then write split stores of
+ // them.
+ for (StoreInst *SI : Stores) {
+ auto *LI = cast<LoadInst>(SI->getValueOperand());
+ IntegerType *Ty = cast<IntegerType>(LI->getType());
+ uint64_t StoreSize = Ty->getBitWidth() / 8;
+ assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
+
+ auto &Offsets = SplitOffsetsMap[SI];
+ assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
+ "Slice size should always match load size exactly!");
+ uint64_t BaseOffset = Offsets.S->beginOffset();
+ assert(BaseOffset + StoreSize > BaseOffset &&
+ "Cannot represent alloca access size using 64-bit integers!");
+
+ Value *LoadBasePtr = LI->getPointerOperand();
+ Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
+
+ DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
+
+ // Check whether we have an already split load.
+ auto SplitLoadsMapI = SplitLoadsMap.find(LI);
+ std::vector<LoadInst *> *SplitLoads = nullptr;
+ if (SplitLoadsMapI != SplitLoadsMap.end()) {
+ SplitLoads = &SplitLoadsMapI->second;
+ assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
+ "Too few split loads for the number of splits in the store!");
+ } else {
+ DEBUG(dbgs() << " of load: " << *LI << "\n");
+ }
+
+ uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
+ int Idx = 0, Size = Offsets.Splits.size();
+ for (;;) {
+ auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
+ auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
+
+ // Either lookup a split load or create one.
+ LoadInst *PLoad;
+ if (SplitLoads) {
+ PLoad = (*SplitLoads)[Idx];
+ } else {
+ IRB.SetInsertPoint(BasicBlock::iterator(LI));
+ PLoad = IRB.CreateAlignedLoad(
+ getAdjustedPtr(IRB, *DL, LoadBasePtr,
+ APInt(DL->getPointerSizeInBits(), PartOffset),
+ PartPtrTy, LoadBasePtr->getName() + "."),
+ getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
+ LI->getName());
+ }
+
+ // And store this partition.
+ IRB.SetInsertPoint(BasicBlock::iterator(SI));
+ StoreInst *PStore = IRB.CreateAlignedStore(
+ PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
+ APInt(DL->getPointerSizeInBits(), PartOffset),
+ PartPtrTy, StoreBasePtr->getName() + "."),
+ getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
+
+ // Now build a new slice for the alloca.
+ NewSlices.push_back(
+ Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
+ &PStore->getOperandUse(PStore->getPointerOperandIndex()),
+ /*IsSplittable*/ false));
+ DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
+ << ", " << NewSlices.back().endOffset() << "): " << *PStore
+ << "\n");
+ if (!SplitLoads) {
+ DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
+ }
+
+ // See if we've finished all the splits.
+ if (Idx >= Size)
+ break;
+
+ // Setup the next partition.
+ PartOffset = Offsets.Splits[Idx];
+ ++Idx;
+ PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
+ }
+
+ // We want to immediately iterate on any allocas impacted by splitting
+ // this load, which is only relevant if it isn't a load of this alloca and
+ // thus we didn't already split the loads above. We also have to keep track
+ // of any promotable allocas we split loads on as they can no longer be
+ // promoted.
+ if (!SplitLoads) {
+ if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
+ assert(OtherAI != &AI && "We can't re-split our own alloca!");
+ ResplitPromotableAllocas.insert(OtherAI);
+ Worklist.insert(OtherAI);
+ } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
+ LoadBasePtr->stripInBoundsOffsets())) {
+ assert(OtherAI != &AI && "We can't re-split our own alloca!");
+ Worklist.insert(OtherAI);
+ }
+ }
+
+ // Mark the original store as dead now that we've split it up and kill its
+ // slice. Note that we leave the original load in place unless this store
+ // was its ownly use. It may in turn be split up if it is an alloca load
+ // for some other alloca, but it may be a normal load. This may introduce
+ // redundant loads, but where those can be merged the rest of the optimizer
+ // should handle the merging, and this uncovers SSA splits which is more
+ // important. In practice, the original loads will almost always be fully
+ // split and removed eventually, and the splits will be merged by any
+ // trivial CSE, including instcombine.
+ if (LI->hasOneUse()) {
+ assert(*LI->user_begin() == SI && "Single use isn't this store!");
+ DeadInsts.insert(LI);
+ }
+ DeadInsts.insert(SI);
+ Offsets.S->kill();
+ }
+
+ // Remove the killed slices that have ben pre-split.
+ AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) {
+ return S.isDead();
+ }), AS.end());
+
+ // Insert our new slices. This will sort and merge them into the sorted
+ // sequence.
+ AS.insert(NewSlices);
+
+ DEBUG(dbgs() << " Pre-split slices:\n");
+#ifndef NDEBUG
+ for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
+ DEBUG(AS.print(dbgs(), I, " "));
+#endif
+
+ // Finally, don't try to promote any allocas that new require re-splitting.
+ // They have already been added to the worklist above.
+ PromotableAllocas.erase(
+ std::remove_if(
+ PromotableAllocas.begin(), PromotableAllocas.end(),
+ [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
+ PromotableAllocas.end());
+
+ return true;
+}
+
/// \brief Rewrite an alloca partition's users.
///
/// This routine drives both of the rewriting goals of the SROA pass. It tries
@@ -3107,38 +3964,33 @@ static Type *getTypePartition(const DataLayout &DL, Type *Ty,
/// appropriate new offsets. It also evaluates how successful the rewrite was
/// at enabling promotion and if it was successful queues the alloca to be
/// promoted.
-bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
- AllocaSlices::iterator B, AllocaSlices::iterator E,
- int64_t BeginOffset, int64_t EndOffset,
- ArrayRef<AllocaSlices::iterator> SplitUses) {
- assert(BeginOffset < EndOffset);
- uint64_t SliceSize = EndOffset - BeginOffset;
-
+bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
+ AllocaSlices::Partition &P) {
// Try to compute a friendly type for this partition of the alloca. This
// won't always succeed, in which case we fall back to a legal integer type
// or an i8 array of an appropriate size.
Type *SliceTy = nullptr;
- if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
- if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
+ if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
+ if (DL->getTypeAllocSize(CommonUseTy) >= P.size())
SliceTy = CommonUseTy;
if (!SliceTy)
if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
- BeginOffset, SliceSize))
+ P.beginOffset(), P.size()))
SliceTy = TypePartitionTy;
if ((!SliceTy || (SliceTy->isArrayTy() &&
SliceTy->getArrayElementType()->isIntegerTy())) &&
- DL->isLegalInteger(SliceSize * 8))
- SliceTy = Type::getIntNTy(*C, SliceSize * 8);
+ DL->isLegalInteger(P.size() * 8))
+ SliceTy = Type::getIntNTy(*C, P.size() * 8);
if (!SliceTy)
- SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
- assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
+ SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
+ assert(DL->getTypeAllocSize(SliceTy) >= P.size());
- bool IsVectorPromotable = isVectorPromotionViable(
- *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
+ bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, *DL);
- bool IsIntegerPromotable =
- !IsVectorPromotable &&
- isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
+ VectorType *VecTy =
+ IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, *DL);
+ if (VecTy)
+ SliceTy = VecTy;
// Check for the case where we're going to rewrite to a new alloca of the
// exact same type as the original, and with the same access offsets. In that
@@ -3146,7 +3998,7 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
// perform phi and select speculation.
AllocaInst *NewAI;
if (SliceTy == AI.getAllocatedType()) {
- assert(BeginOffset == 0 &&
+ assert(P.beginOffset() == 0 &&
"Non-zero begin offset but same alloca type");
NewAI = &AI;
// FIXME: We should be able to bail at this point with "nothing changed".
@@ -3159,19 +4011,20 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
// type.
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
}
- Alignment = MinAlign(Alignment, BeginOffset);
+ Alignment = MinAlign(Alignment, P.beginOffset());
// If we will get at least this much alignment from the type alone, leave
// the alloca's alignment unconstrained.
if (Alignment <= DL->getABITypeAlignment(SliceTy))
Alignment = 0;
- NewAI = new AllocaInst(SliceTy, nullptr, Alignment,
- AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
+ NewAI = new AllocaInst(
+ SliceTy, nullptr, Alignment,
+ AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
++NumNewAllocas;
}
DEBUG(dbgs() << "Rewriting alloca partition "
- << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
- << "\n");
+ << "[" << P.beginOffset() << "," << P.endOffset()
+ << ") to: " << *NewAI << "\n");
// Track the high watermark on the worklist as it is only relevant for
// promoted allocas. We will reset it to this point if the alloca is not in
@@ -3181,22 +4034,16 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
SmallPtrSet<PHINode *, 8> PHIUsers;
SmallPtrSet<SelectInst *, 8> SelectUsers;
- AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
- EndOffset, IsVectorPromotable,
- IsIntegerPromotable, PHIUsers, SelectUsers);
+ AllocaSliceRewriter Rewriter(*DL, AS, *this, AI, *NewAI, P.beginOffset(),
+ P.endOffset(), IsIntegerPromotable, VecTy,
+ PHIUsers, SelectUsers);
bool Promotable = true;
- for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
- SUE = SplitUses.end();
- SUI != SUE; ++SUI) {
- DEBUG(dbgs() << " rewriting split ");
- DEBUG(S.printSlice(dbgs(), *SUI, ""));
- Promotable &= Rewriter.visit(*SUI);
+ for (Slice *S : P.splitSliceTails()) {
+ Promotable &= Rewriter.visit(S);
++NumUses;
}
- for (AllocaSlices::iterator I = B; I != E; ++I) {
- DEBUG(dbgs() << " rewriting ");
- DEBUG(S.printSlice(dbgs(), I, ""));
- Promotable &= Rewriter.visit(I);
+ for (Slice &S : P) {
+ Promotable &= Rewriter.visit(&S);
++NumUses;
}
@@ -3233,14 +4080,10 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
// If we have either PHIs or Selects to speculate, add them to those
// worklists and re-queue the new alloca so that we promote in on the
// next iteration.
- for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
- E = PHIUsers.end();
- I != E; ++I)
- SpeculatablePHIs.insert(*I);
- for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
- E = SelectUsers.end();
- I != E; ++I)
- SpeculatableSelects.insert(*I);
+ for (PHINode *PHIUser : PHIUsers)
+ SpeculatablePHIs.insert(PHIUser);
+ for (SelectInst *SelectUser : SelectUsers)
+ SpeculatableSelects.insert(SelectUser);
Worklist.insert(NewAI);
}
} else {
@@ -3258,136 +4101,46 @@ bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
return true;
}
-static void
-removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
- uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
- if (Offset >= MaxSplitUseEndOffset) {
- SplitUses.clear();
- MaxSplitUseEndOffset = 0;
- return;
- }
-
- size_t SplitUsesOldSize = SplitUses.size();
- SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
- [Offset](const AllocaSlices::iterator &I) {
- return I->endOffset() <= Offset;
- }),
- SplitUses.end());
- if (SplitUsesOldSize == SplitUses.size())
- return;
-
- // Recompute the max. While this is linear, so is remove_if.
- MaxSplitUseEndOffset = 0;
- for (SmallVectorImpl<AllocaSlices::iterator>::iterator
- SUI = SplitUses.begin(),
- SUE = SplitUses.end();
- SUI != SUE; ++SUI)
- MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
-}
-
/// \brief Walks the slices of an alloca and form partitions based on them,
/// rewriting each of their uses.
-bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
- if (S.begin() == S.end())
+bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
+ if (AS.begin() == AS.end())
return false;
unsigned NumPartitions = 0;
bool Changed = false;
- SmallVector<AllocaSlices::iterator, 4> SplitUses;
- uint64_t MaxSplitUseEndOffset = 0;
-
- uint64_t BeginOffset = S.begin()->beginOffset();
-
- for (AllocaSlices::iterator SI = S.begin(), SJ = std::next(SI), SE = S.end();
- SI != SE; SI = SJ) {
- uint64_t MaxEndOffset = SI->endOffset();
-
- if (!SI->isSplittable()) {
- // When we're forming an unsplittable region, it must always start at the
- // first slice and will extend through its end.
- assert(BeginOffset == SI->beginOffset());
-
- // Form a partition including all of the overlapping slices with this
- // unsplittable slice.
- while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
- if (!SJ->isSplittable())
- MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
- ++SJ;
- }
- } else {
- assert(SI->isSplittable()); // Established above.
- // Collect all of the overlapping splittable slices.
- while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
- SJ->isSplittable()) {
- MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
- ++SJ;
- }
+ // First try to pre-split loads and stores.
+ Changed |= presplitLoadsAndStores(AI, AS);
- // Back up MaxEndOffset and SJ if we ended the span early when
- // encountering an unsplittable slice.
- if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
- assert(!SJ->isSplittable());
- MaxEndOffset = SJ->beginOffset();
- }
- }
-
- // Check if we have managed to move the end offset forward yet. If so,
- // we'll have to rewrite uses and erase old split uses.
- if (BeginOffset < MaxEndOffset) {
- // Rewrite a sequence of overlapping slices.
- Changed |=
- rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
- ++NumPartitions;
-
- removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
- }
-
- // Accumulate all the splittable slices from the [SI,SJ) region which
- // overlap going forward.
- for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
- if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
- SplitUses.push_back(SK);
- MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
- }
-
- // If we're already at the end and we have no split uses, we're done.
- if (SJ == SE && SplitUses.empty())
- break;
-
- // If we have no split uses or no gap in offsets, we're ready to move to
- // the next slice.
- if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
- BeginOffset = SJ->beginOffset();
+ // Now that we have identified any pre-splitting opportunities, mark any
+ // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail
+ // to split these during pre-splitting, we want to force them to be
+ // rewritten into a partition.
+ bool IsSorted = true;
+ for (Slice &S : AS) {
+ if (!S.isSplittable())
continue;
- }
-
- // Even if we have split slices, if the next slice is splittable and the
- // split slices reach it, we can simply set up the beginning offset of the
- // next iteration to bridge between them.
- if (SJ != SE && SJ->isSplittable() &&
- MaxSplitUseEndOffset > SJ->beginOffset()) {
- BeginOffset = MaxEndOffset;
+ // FIXME: We currently leave whole-alloca splittable loads and stores. This
+ // used to be the only splittable loads and stores and we need to be
+ // confident that the above handling of splittable loads and stores is
+ // completely sufficient before we forcibly disable the remaining handling.
+ if (S.beginOffset() == 0 &&
+ S.endOffset() >= DL->getTypeAllocSize(AI.getAllocatedType()))
continue;
+ if (isa<LoadInst>(S.getUse()->getUser()) ||
+ isa<StoreInst>(S.getUse()->getUser())) {
+ S.makeUnsplittable();
+ IsSorted = false;
}
+ }
+ if (!IsSorted)
+ std::sort(AS.begin(), AS.end());
- // Otherwise, we have a tail of split slices. Rewrite them with an empty
- // range of slices.
- uint64_t PostSplitEndOffset =
- SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
-
- Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
- SplitUses);
+ // Rewrite each partition.
+ for (auto &P : AS.partitions()) {
+ Changed |= rewritePartition(AI, AS, P);
++NumPartitions;
-
- if (SJ == SE)
- break; // Skip the rest, we don't need to do any cleanup.
-
- removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
- PostSplitEndOffset);
-
- // Now just reset the begin offset for the next iteration.
- BeginOffset = SJ->beginOffset();
}
NumAllocaPartitions += NumPartitions;
@@ -3440,38 +4193,34 @@ bool SROA::runOnAlloca(AllocaInst &AI) {
Changed |= AggRewriter.rewrite(AI);
// Build the slices using a recursive instruction-visiting builder.
- AllocaSlices S(*DL, AI);
- DEBUG(S.print(dbgs()));
- if (S.isEscaped())
+ AllocaSlices AS(*DL, AI);
+ DEBUG(AS.print(dbgs()));
+ if (AS.isEscaped())
return Changed;
// Delete all the dead users of this alloca before splitting and rewriting it.
- for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
- DE = S.dead_user_end();
- DI != DE; ++DI) {
+ for (Instruction *DeadUser : AS.getDeadUsers()) {
// Free up everything used by this instruction.
- for (Use &DeadOp : (*DI)->operands())
+ for (Use &DeadOp : DeadUser->operands())
clobberUse(DeadOp);
// Now replace the uses of this instruction.
- (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
+ DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
// And mark it for deletion.
- DeadInsts.insert(*DI);
+ DeadInsts.insert(DeadUser);
Changed = true;
}
- for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
- DE = S.dead_op_end();
- DO != DE; ++DO) {
- clobberUse(**DO);
+ for (Use *DeadOp : AS.getDeadOperands()) {
+ clobberUse(*DeadOp);
Changed = true;
}
// No slices to split. Leave the dead alloca for a later pass to clean up.
- if (S.begin() == S.end())
+ if (AS.begin() == AS.end())
return Changed;
- Changed |= splitAlloca(AI, S);
+ Changed |= splitAlloca(AI, AS);
DEBUG(dbgs() << " Speculating PHIs\n");
while (!SpeculatablePHIs.empty())
@@ -3493,7 +4242,8 @@ bool SROA::runOnAlloca(AllocaInst &AI) {
///
/// We also record the alloca instructions deleted here so that they aren't
/// subsequently handed to mem2reg to promote.
-void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
+void SROA::deleteDeadInstructions(
+ SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
while (!DeadInsts.empty()) {
Instruction *I = DeadInsts.pop_back_val();
DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
@@ -3518,9 +4268,9 @@ void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
static void enqueueUsersInWorklist(Instruction &I,
SmallVectorImpl<Instruction *> &Worklist,
- SmallPtrSet<Instruction *, 8> &Visited) {
+ SmallPtrSetImpl<Instruction *> &Visited) {
for (User *U : I.users())
- if (Visited.insert(cast<Instruction>(U)))
+ if (Visited.insert(cast<Instruction>(U)).second)
Worklist.push_back(cast<Instruction>(U));
}
@@ -3540,14 +4290,14 @@ bool SROA::promoteAllocas(Function &F) {
if (DT && !ForceSSAUpdater) {
DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
- PromoteMemToReg(PromotableAllocas, *DT);
+ PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC);
PromotableAllocas.clear();
return true;
}
DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
SSAUpdater SSA;
- DIBuilder DIB(*F.getParent());
+ DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
SmallVector<Instruction *, 64> Insts;
// We need a worklist to walk the uses of each alloca.
@@ -3622,6 +4372,7 @@ bool SROA::runOnFunction(Function &F) {
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
BasicBlock &EntryBB = F.getEntryBlock();
for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
@@ -3642,9 +4393,7 @@ bool SROA::runOnFunction(Function &F) {
// Remove the deleted allocas from various lists so that we don't try to
// continue processing them.
if (!DeletedAllocas.empty()) {
- auto IsInSet = [&](AllocaInst *AI) {
- return DeletedAllocas.count(AI);
- };
+ auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
Worklist.remove_if(IsInSet);
PostPromotionWorklist.remove_if(IsInSet);
PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
@@ -3665,6 +4414,7 @@ bool SROA::runOnFunction(Function &F) {
}
void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AssumptionCacheTracker>();
if (RequiresDomTree)
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
diff --git a/contrib/llvm/lib/Transforms/Scalar/SampleProfile.cpp b/contrib/llvm/lib/Transforms/Scalar/SampleProfile.cpp
index 73c97ff..179bbf7 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SampleProfile.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SampleProfile.cpp
@@ -26,7 +26,6 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
@@ -42,15 +41,14 @@
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
+#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/LineIterator.h"
-#include "llvm/Support/MemoryBuffer.h"
-#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
+using namespace sampleprof;
#define DEBUG_TYPE "sample-profile"
@@ -65,76 +63,48 @@ static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
"sample block/edge weights through the CFG."));
namespace {
-/// \brief Represents the relative location of an instruction.
-///
-/// Instruction locations are specified by the line offset from the
-/// beginning of the function (marked by the line where the function
-/// header is) and the discriminator value within that line.
-///
-/// The discriminator value is useful to distinguish instructions
-/// that are on the same line but belong to different basic blocks
-/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
-struct InstructionLocation {
- InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {}
- int LineOffset;
- unsigned Discriminator;
-};
-}
-
-namespace llvm {
-template <> struct DenseMapInfo<InstructionLocation> {
- typedef DenseMapInfo<int> OffsetInfo;
- typedef DenseMapInfo<unsigned> DiscriminatorInfo;
- static inline InstructionLocation getEmptyKey() {
- return InstructionLocation(OffsetInfo::getEmptyKey(),
- DiscriminatorInfo::getEmptyKey());
- }
- static inline InstructionLocation getTombstoneKey() {
- return InstructionLocation(OffsetInfo::getTombstoneKey(),
- DiscriminatorInfo::getTombstoneKey());
- }
- static inline unsigned getHashValue(InstructionLocation Val) {
- return DenseMapInfo<std::pair<int, unsigned>>::getHashValue(
- std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator));
- }
- static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) {
- return LHS.LineOffset == RHS.LineOffset &&
- LHS.Discriminator == RHS.Discriminator;
- }
-};
-}
-
-namespace {
-typedef DenseMap<InstructionLocation, unsigned> BodySampleMap;
typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
typedef std::pair<BasicBlock *, BasicBlock *> Edge;
typedef DenseMap<Edge, unsigned> EdgeWeightMap;
typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
-/// \brief Representation of the runtime profile for a function.
+/// \brief Sample profile pass.
///
-/// This data structure contains the runtime profile for a given
-/// function. It contains the total number of samples collected
-/// in the function and a map of samples collected in every statement.
-class SampleFunctionProfile {
+/// This pass reads profile data from the file specified by
+/// -sample-profile-file and annotates every affected function with the
+/// profile information found in that file.
+class SampleProfileLoader : public FunctionPass {
public:
- SampleFunctionProfile()
- : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(nullptr),
- PDT(nullptr), LI(nullptr), Ctx(nullptr) {}
+ // Class identification, replacement for typeinfo
+ static char ID;
+
+ SampleProfileLoader(StringRef Name = SampleProfileFile)
+ : FunctionPass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Ctx(nullptr),
+ Reader(), Samples(nullptr), Filename(Name), ProfileIsValid(false) {
+ initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool doInitialization(Module &M) override;
+
+ void dump() { Reader->dump(); }
+
+ const char *getPassName() const override { return "Sample profile pass"; }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PostDominatorTree>();
+ }
+protected:
unsigned getFunctionLoc(Function &F);
- bool emitAnnotations(Function &F, DominatorTree *DomTree,
- PostDominatorTree *PostDomTree, LoopInfo *Loops);
+ bool emitAnnotations(Function &F);
unsigned getInstWeight(Instruction &I);
- unsigned getBlockWeight(BasicBlock *B);
- void addTotalSamples(unsigned Num) { TotalSamples += Num; }
- void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
- void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) {
- assert(LineOffset >= 0);
- BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num;
- }
- void print(raw_ostream &OS);
+ unsigned getBlockWeight(BasicBlock *BB);
void printEdgeWeight(raw_ostream &OS, Edge E);
void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
@@ -147,32 +117,11 @@ public:
unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
void buildEdges(Function &F);
bool propagateThroughEdges(Function &F);
- bool empty() { return BodySamples.empty(); }
-protected:
- /// \brief Total number of samples collected inside this function.
- ///
- /// Samples are cumulative, they include all the samples collected
- /// inside this function and all its inlined callees.
- unsigned TotalSamples;
-
- /// \brief Total number of samples collected at the head of the function.
- /// FIXME: Use head samples to estimate a cold/hot attribute for the function.
- unsigned TotalHeadSamples;
-
- /// \brief Line number for the function header. Used to compute relative
- /// line numbers from the absolute line LOCs found in instruction locations.
- /// The relative line numbers are needed to address the samples from the
- /// profile file.
+ /// \brief Line number for the function header. Used to compute absolute
+ /// line numbers from the relative line numbers found in the profile.
unsigned HeaderLineno;
- /// \brief Map line offsets to collected samples.
- ///
- /// Each entry in this map contains the number of samples
- /// collected at the corresponding line offset. All line locations
- /// are an offset from the start of the function.
- BodySampleMap BodySamples;
-
/// \brief Map basic blocks to their computed weights.
///
/// The weight of a basic block is defined to be the maximum
@@ -212,105 +161,12 @@ protected:
/// \brief LLVM context holding the debug data we need.
LLVMContext *Ctx;
-};
-
-/// \brief Sample-based profile reader.
-///
-/// Each profile contains sample counts for all the functions
-/// executed. Inside each function, statements are annotated with the
-/// collected samples on all the instructions associated with that
-/// statement.
-///
-/// For this to produce meaningful data, the program needs to be
-/// compiled with some debug information (at minimum, line numbers:
-/// -gline-tables-only). Otherwise, it will be impossible to match IR
-/// instructions to the line numbers collected by the profiler.
-///
-/// From the profile file, we are interested in collecting the
-/// following information:
-///
-/// * A list of functions included in the profile (mangled names).
-///
-/// * For each function F:
-/// 1. The total number of samples collected in F.
-///
-/// 2. The samples collected at each line in F. To provide some
-/// protection against source code shuffling, line numbers should
-/// be relative to the start of the function.
-class SampleModuleProfile {
-public:
- SampleModuleProfile(const Module &M, StringRef F)
- : Profiles(0), Filename(F), M(M) {}
-
- void dump();
- bool loadText();
- void loadNative() { llvm_unreachable("not implemented"); }
- void printFunctionProfile(raw_ostream &OS, StringRef FName);
- void dumpFunctionProfile(StringRef FName);
- SampleFunctionProfile &getProfile(const Function &F) {
- return Profiles[F.getName()];
- }
- /// \brief Report a parse error message.
- void reportParseError(int64_t LineNumber, Twine Msg) const {
- DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg);
- M.getContext().diagnose(Diag);
- }
-
-protected:
- /// \brief Map every function to its associated profile.
- ///
- /// The profile of every function executed at runtime is collected
- /// in the structure SampleFunctionProfile. This maps function objects
- /// to their corresponding profiles.
- StringMap<SampleFunctionProfile> Profiles;
-
- /// \brief Path name to the file holding the profile data.
- ///
- /// The format of this file is defined by each profiler
- /// independently. If possible, the profiler should have a text
- /// version of the profile format to be used in constructing test
- /// cases and debugging.
- StringRef Filename;
-
- /// \brief Module being compiled. Used mainly to access the current
- /// LLVM context for diagnostics.
- const Module &M;
-};
-
-/// \brief Sample profile pass.
-///
-/// This pass reads profile data from the file specified by
-/// -sample-profile-file and annotates every affected function with the
-/// profile information found in that file.
-class SampleProfileLoader : public FunctionPass {
-public:
- // Class identification, replacement for typeinfo
- static char ID;
-
- SampleProfileLoader(StringRef Name = SampleProfileFile)
- : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) {
- initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
- }
-
- bool doInitialization(Module &M) override;
-
- void dump() { Profiler->dump(); }
-
- const char *getPassName() const override { return "Sample profile pass"; }
-
- bool runOnFunction(Function &F) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<LoopInfo>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<PostDominatorTree>();
- }
-
-protected:
/// \brief Profile reader object.
- std::unique_ptr<SampleModuleProfile> Profiler;
+ std::unique_ptr<SampleProfileReader> Reader;
+
+ /// \brief Samples collected for the body of this function.
+ FunctionSamples *Samples;
/// \brief Name of the profile file to load.
StringRef Filename;
@@ -320,26 +176,11 @@ protected:
};
}
-/// \brief Print this function profile on stream \p OS.
-///
-/// \param OS Stream to emit the output to.
-void SampleFunctionProfile::print(raw_ostream &OS) {
- OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
- << " sampled lines\n";
- for (BodySampleMap::const_iterator SI = BodySamples.begin(),
- SE = BodySamples.end();
- SI != SE; ++SI)
- OS << "\tline offset: " << SI->first.LineOffset
- << ", discriminator: " << SI->first.Discriminator
- << ", number of samples: " << SI->second << "\n";
- OS << "\n";
-}
-
/// \brief Print the weight of edge \p E on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param E Edge to print.
-void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
+void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
OS << "weight[" << E.first->getName() << "->" << E.second->getName()
<< "]: " << EdgeWeights[E] << "\n";
}
@@ -348,8 +189,8 @@ void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
///
/// \param OS Stream to emit the output to.
/// \param BB Block to print.
-void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
- BasicBlock *BB) {
+void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
+ BasicBlock *BB) {
BasicBlock *Equiv = EquivalenceClass[BB];
OS << "equivalence[" << BB->getName()
<< "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
@@ -359,174 +200,10 @@ void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
///
/// \param OS Stream to emit the output to.
/// \param BB Block to print.
-void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
+void SampleProfileLoader::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
}
-/// \brief Print the function profile for \p FName on stream \p OS.
-///
-/// \param OS Stream to emit the output to.
-/// \param FName Name of the function to print.
-void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
- StringRef FName) {
- OS << "Function: " << FName << ":\n";
- Profiles[FName].print(OS);
-}
-
-/// \brief Dump the function profile for \p FName.
-///
-/// \param FName Name of the function to print.
-void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
- printFunctionProfile(dbgs(), FName);
-}
-
-/// \brief Dump all the function profiles found.
-void SampleModuleProfile::dump() {
- for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
- E = Profiles.end();
- I != E; ++I)
- dumpFunctionProfile(I->getKey());
-}
-
-/// \brief Load samples from a text file.
-///
-/// The file contains a list of samples for every function executed at
-/// runtime. Each function profile has the following format:
-///
-/// function1:total_samples:total_head_samples
-/// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
-/// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
-/// ...
-/// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
-///
-/// Function names must be mangled in order for the profile loader to
-/// match them in the current translation unit. The two numbers in the
-/// function header specify how many total samples were accumulated in
-/// the function (first number), and the total number of samples accumulated
-/// at the prologue of the function (second number). This head sample
-/// count provides an indicator of how frequent is the function invoked.
-///
-/// Each sampled line may contain several items. Some are optional
-/// (marked below):
-///
-/// a- Source line offset. This number represents the line number
-/// in the function where the sample was collected. The line number
-/// is always relative to the line where symbol of the function
-/// is defined. So, if the function has its header at line 280,
-/// the offset 13 is at line 293 in the file.
-///
-/// b- [OPTIONAL] Discriminator. This is used if the sampled program
-/// was compiled with DWARF discriminator support
-/// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators)
-///
-/// c- Number of samples. This is the number of samples collected by
-/// the profiler at this source location.
-///
-/// d- [OPTIONAL] Potential call targets and samples. If present, this
-/// line contains a call instruction. This models both direct and
-/// indirect calls. Each called target is listed together with the
-/// number of samples. For example,
-///
-/// 130: 7 foo:3 bar:2 baz:7
-///
-/// The above means that at relative line offset 130 there is a
-/// call instruction that calls one of foo(), bar() and baz(). With
-/// baz() being the relatively more frequent call target.
-///
-/// FIXME: This is currently unhandled, but it has a lot of
-/// potential for aiding the inliner.
-///
-///
-/// Since this is a flat profile, a function that shows up more than
-/// once gets all its samples aggregated across all its instances.
-///
-/// FIXME: flat profiles are too imprecise to provide good optimization
-/// opportunities. Convert them to context-sensitive profile.
-///
-/// This textual representation is useful to generate unit tests and
-/// for debugging purposes, but it should not be used to generate
-/// profiles for large programs, as the representation is extremely
-/// inefficient.
-///
-/// \returns true if the file was loaded successfully, false otherwise.
-bool SampleModuleProfile::loadText() {
- ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
- MemoryBuffer::getFile(Filename);
- if (std::error_code EC = BufferOrErr.getError()) {
- std::string Msg(EC.message());
- M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
- return false;
- }
- std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
- line_iterator LineIt(*Buffer, '#');
-
- // Read the profile of each function. Since each function may be
- // mentioned more than once, and we are collecting flat profiles,
- // accumulate samples as we parse them.
- Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
- Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
- while (!LineIt.is_at_eof()) {
- // Read the header of each function.
- //
- // Note that for function identifiers we are actually expecting
- // mangled names, but we may not always get them. This happens when
- // the compiler decides not to emit the function (e.g., it was inlined
- // and removed). In this case, the binary will not have the linkage
- // name for the function, so the profiler will emit the function's
- // unmangled name, which may contain characters like ':' and '>' in its
- // name (member functions, templates, etc).
- //
- // The only requirement we place on the identifier, then, is that it
- // should not begin with a number.
- SmallVector<StringRef, 3> Matches;
- if (!HeadRE.match(*LineIt, &Matches)) {
- reportParseError(LineIt.line_number(),
- "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
- return false;
- }
- assert(Matches.size() == 4);
- StringRef FName = Matches[1];
- unsigned NumSamples, NumHeadSamples;
- Matches[2].getAsInteger(10, NumSamples);
- Matches[3].getAsInteger(10, NumHeadSamples);
- Profiles[FName] = SampleFunctionProfile();
- SampleFunctionProfile &FProfile = Profiles[FName];
- FProfile.addTotalSamples(NumSamples);
- FProfile.addHeadSamples(NumHeadSamples);
- ++LineIt;
-
- // Now read the body. The body of the function ends when we reach
- // EOF or when we see the start of the next function.
- while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
- if (!LineSample.match(*LineIt, &Matches)) {
- reportParseError(
- LineIt.line_number(),
- "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
- return false;
- }
- assert(Matches.size() == 5);
- unsigned LineOffset, NumSamples, Discriminator = 0;
- Matches[1].getAsInteger(10, LineOffset);
- if (Matches[2] != "")
- Matches[2].getAsInteger(10, Discriminator);
- Matches[3].getAsInteger(10, NumSamples);
-
- // FIXME: Handle called targets (in Matches[4]).
-
- // When dealing with instruction weights, we use the value
- // zero to indicate the absence of a sample. If we read an
- // actual zero from the profile file, return it as 1 to
- // avoid the confusion later on.
- if (NumSamples == 0)
- NumSamples = 1;
- FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
- ++LineIt;
- }
- }
-
- return true;
-}
-
/// \brief Get the weight for an instruction.
///
/// The "weight" of an instruction \p Inst is the number of samples
@@ -538,7 +215,7 @@ bool SampleModuleProfile::loadText() {
/// \param Inst Instruction to query.
///
/// \returns The profiled weight of I.
-unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
+unsigned SampleProfileLoader::getInstWeight(Instruction &Inst) {
DebugLoc DLoc = Inst.getDebugLoc();
unsigned Lineno = DLoc.getLine();
if (Lineno < HeaderLineno)
@@ -547,8 +224,7 @@ unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
DILocation DIL(DLoc.getAsMDNode(*Ctx));
int LOffset = Lineno - HeaderLineno;
unsigned Discriminator = DIL.getDiscriminator();
- unsigned Weight =
- BodySamples.lookup(InstructionLocation(LOffset, Discriminator));
+ unsigned Weight = Samples->samplesAt(LOffset, Discriminator);
DEBUG(dbgs() << " " << Lineno << "." << Discriminator << ":" << Inst
<< " (line offset: " << LOffset << "." << Discriminator
<< " - weight: " << Weight << ")\n");
@@ -557,24 +233,24 @@ unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
/// \brief Compute the weight of a basic block.
///
-/// The weight of basic block \p B is the maximum weight of all the
-/// instructions in B. The weight of \p B is computed and cached in
+/// The weight of basic block \p BB is the maximum weight of all the
+/// instructions in BB. The weight of \p BB is computed and cached in
/// the BlockWeights map.
///
-/// \param B The basic block to query.
+/// \param BB The basic block to query.
///
-/// \returns The computed weight of B.
-unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
- // If we've computed B's weight before, return it.
+/// \returns The computed weight of BB.
+unsigned SampleProfileLoader::getBlockWeight(BasicBlock *BB) {
+ // If we've computed BB's weight before, return it.
std::pair<BlockWeightMap::iterator, bool> Entry =
- BlockWeights.insert(std::make_pair(B, 0));
+ BlockWeights.insert(std::make_pair(BB, 0));
if (!Entry.second)
return Entry.first->second;
- // Otherwise, compute and cache B's weight.
+ // Otherwise, compute and cache BB's weight.
unsigned Weight = 0;
- for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
- unsigned InstWeight = getInstWeight(*I);
+ for (auto &I : BB->getInstList()) {
+ unsigned InstWeight = getInstWeight(I);
if (InstWeight > Weight)
Weight = InstWeight;
}
@@ -588,13 +264,13 @@ unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
/// the weights of every basic block in the CFG.
///
/// \param F The function to query.
-bool SampleFunctionProfile::computeBlockWeights(Function &F) {
+bool SampleProfileLoader::computeBlockWeights(Function &F) {
bool Changed = false;
DEBUG(dbgs() << "Block weights\n");
- for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
- unsigned Weight = getBlockWeight(B);
+ for (auto &BB : F) {
+ unsigned Weight = getBlockWeight(&BB);
Changed |= (Weight > 0);
- DEBUG(printBlockWeight(dbgs(), B));
+ DEBUG(printBlockWeight(dbgs(), &BB));
}
return Changed;
@@ -623,16 +299,13 @@ bool SampleFunctionProfile::computeBlockWeights(Function &F) {
/// \param DomTree Opposite dominator tree. If \p Descendants is filled
/// with blocks from \p BB1's dominator tree, then
/// this is the post-dominator tree, and vice versa.
-void SampleFunctionProfile::findEquivalencesFor(
+void SampleProfileLoader::findEquivalencesFor(
BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
DominatorTreeBase<BasicBlock> *DomTree) {
- for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
- E = Descendants.end();
- I != E; ++I) {
- BasicBlock *BB2 = *I;
+ for (auto *BB2 : Descendants) {
bool IsDomParent = DomTree->dominates(BB2, BB1);
bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
- if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
+ if (BB1 != BB2 && VisitedBlocks.insert(BB2).second && IsDomParent &&
IsInSameLoop) {
EquivalenceClass[BB2] = BB1;
@@ -660,12 +333,12 @@ void SampleFunctionProfile::findEquivalencesFor(
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// \param F The function to query.
-void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
+void SampleProfileLoader::findEquivalenceClasses(Function &F) {
SmallVector<BasicBlock *, 8> DominatedBBs;
DEBUG(dbgs() << "\nBlock equivalence classes\n");
// Find equivalence sets based on dominance and post-dominance information.
- for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
- BasicBlock *BB1 = B;
+ for (auto &BB : F) {
+ BasicBlock *BB1 = &BB;
// Compute BB1's equivalence class once.
if (EquivalenceClass.count(BB1)) {
@@ -712,8 +385,8 @@ void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
// each equivalence class has the largest weight, assign that weight
// to all the blocks in that equivalence class.
DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
- for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
- BasicBlock *BB = B;
+ for (auto &BI : F) {
+ BasicBlock *BB = &BI;
BasicBlock *EquivBB = EquivalenceClass[BB];
if (BB != EquivBB)
BlockWeights[BB] = BlockWeights[EquivBB];
@@ -731,8 +404,8 @@ void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
/// \param UnknownEdge Set if E has not been visited before.
///
/// \returns E's weight, if known. Otherwise, return 0.
-unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
- Edge *UnknownEdge) {
+unsigned SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
+ Edge *UnknownEdge) {
if (!VisitedEdges.count(E)) {
(*NumUnknownEdges)++;
*UnknownEdge = E;
@@ -753,11 +426,11 @@ unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
/// \param F Function to process.
///
/// \returns True if new weights were assigned to edges or blocks.
-bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
+bool SampleProfileLoader::propagateThroughEdges(Function &F) {
bool Changed = false;
DEBUG(dbgs() << "\nPropagation through edges\n");
- for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
- BasicBlock *BB = BI;
+ for (auto &BI : F) {
+ BasicBlock *BB = &BI;
// Visit all the predecessor and successor edges to determine
// which ones have a weight assigned already. Note that it doesn't
@@ -771,16 +444,16 @@ bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
if (i == 0) {
// First, visit all predecessor edges.
- for (size_t I = 0; I < Predecessors[BB].size(); I++) {
- Edge E = std::make_pair(Predecessors[BB][I], BB);
+ for (auto *Pred : Predecessors[BB]) {
+ Edge E = std::make_pair(Pred, BB);
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
if (E.first == E.second)
SelfReferentialEdge = E;
}
} else {
// On the second round, visit all successor edges.
- for (size_t I = 0; I < Successors[BB].size(); I++) {
- Edge E = std::make_pair(BB, Successors[BB][I]);
+ for (auto *Succ : Successors[BB]) {
+ Edge E = std::make_pair(BB, Succ);
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
}
}
@@ -821,7 +494,7 @@ bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
<< " known. Set weight for block: ";
printBlockWeight(dbgs(), BB););
}
- if (VisitedBlocks.insert(BB))
+ if (VisitedBlocks.insert(BB).second)
Changed = true;
} else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
// If there is a single unknown edge and the block has been
@@ -857,9 +530,9 @@ bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
///
/// We are interested in unique edges. If a block B1 has multiple
/// edges to another block B2, we only add a single B1->B2 edge.
-void SampleFunctionProfile::buildEdges(Function &F) {
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- BasicBlock *B1 = I;
+void SampleProfileLoader::buildEdges(Function &F) {
+ for (auto &BI : F) {
+ BasicBlock *B1 = &BI;
// Add predecessors for B1.
SmallPtrSet<BasicBlock *, 16> Visited;
@@ -867,7 +540,7 @@ void SampleFunctionProfile::buildEdges(Function &F) {
llvm_unreachable("Found a stale predecessors list in a basic block.");
for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
BasicBlock *B2 = *PI;
- if (Visited.insert(B2))
+ if (Visited.insert(B2).second)
Predecessors[B1].push_back(B2);
}
@@ -877,7 +550,7 @@ void SampleFunctionProfile::buildEdges(Function &F) {
llvm_unreachable("Found a stale successors list in a basic block.");
for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
BasicBlock *B2 = *SI;
- if (Visited.insert(B2))
+ if (Visited.insert(B2).second)
Successors[B1].push_back(B2);
}
}
@@ -885,22 +558,22 @@ void SampleFunctionProfile::buildEdges(Function &F) {
/// \brief Propagate weights into edges
///
-/// The following rules are applied to every block B in the CFG:
+/// The following rules are applied to every block BB in the CFG:
///
-/// - If B has a single predecessor/successor, then the weight
+/// - If BB has a single predecessor/successor, then the weight
/// of that edge is the weight of the block.
///
/// - If all incoming or outgoing edges are known except one, and the
/// weight of the block is already known, the weight of the unknown
/// edge will be the weight of the block minus the sum of all the known
-/// edges. If the sum of all the known edges is larger than B's weight,
+/// edges. If the sum of all the known edges is larger than BB's weight,
/// we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
/// known, the weight for that edge is set to the weight of the block
/// minus the weight of the other incoming edges to that block (if
/// known).
-void SampleFunctionProfile::propagateWeights(Function &F) {
+void SampleProfileLoader::propagateWeights(Function &F) {
bool Changed = true;
unsigned i = 0;
@@ -920,9 +593,9 @@ void SampleFunctionProfile::propagateWeights(Function &F) {
// edge weights computed during propagation.
DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
MDBuilder MDB(F.getContext());
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- BasicBlock *B = I;
- TerminatorInst *TI = B->getTerminator();
+ for (auto &BI : F) {
+ BasicBlock *BB = &BI;
+ TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 1)
continue;
if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
@@ -934,7 +607,7 @@ void SampleFunctionProfile::propagateWeights(Function &F) {
bool AllWeightsZero = true;
for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
BasicBlock *Succ = TI->getSuccessor(I);
- Edge E = std::make_pair(B, Succ);
+ Edge E = std::make_pair(BB, Succ);
unsigned Weight = EdgeWeights[E];
DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
Weights.push_back(Weight);
@@ -965,22 +638,17 @@ void SampleFunctionProfile::propagateWeights(Function &F) {
///
/// \returns the line number where \p F is defined. If it returns 0,
/// it means that there is no debug information available for \p F.
-unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
- NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
- if (CUNodes) {
- for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
- DICompileUnit CU(CUNodes->getOperand(I));
- DIArray Subprograms = CU.getSubprograms();
- for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
- DISubprogram Subprogram(Subprograms.getElement(J));
- if (Subprogram.describes(&F))
- return Subprogram.getLineNumber();
- }
- }
- }
+unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
+ DISubprogram S = getDISubprogram(&F);
+ if (S.isSubprogram())
+ return S.getLineNumber();
+ // If could not find the start of \p F, emit a diagnostic to inform the user
+ // about the missed opportunity.
F.getContext().diagnose(DiagnosticInfoSampleProfile(
- "No debug information found in function " + F.getName()));
+ "No debug information found in function " + F.getName() +
+ ": Function profile not used",
+ DS_Warning));
return 0;
}
@@ -1002,15 +670,15 @@ unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
///
/// 3- Propagation of block weights into edges. This uses a simple
/// propagation heuristic. The following rules are applied to every
-/// block B in the CFG:
+/// block BB in the CFG:
///
-/// - If B has a single predecessor/successor, then the weight
+/// - If BB has a single predecessor/successor, then the weight
/// of that edge is the weight of the block.
///
/// - If all the edges are known except one, and the weight of the
/// block is already known, the weight of the unknown edge will
/// be the weight of the block minus the sum of all the known
-/// edges. If the sum of all the known edges is larger than B's weight,
+/// edges. If the sum of all the known edges is larger than BB's weight,
/// we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
@@ -1028,14 +696,12 @@ unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
/// work here.
///
/// Once all the branch weights are computed, we emit the MD_prof
-/// metadata on B using the computed values for each of its branches.
+/// metadata on BB using the computed values for each of its branches.
///
/// \param F The function to query.
///
/// \returns true if \p F was modified. Returns false, otherwise.
-bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
- PostDominatorTree *PostDomTree,
- LoopInfo *Loops) {
+bool SampleProfileLoader::emitAnnotations(Function &F) {
bool Changed = false;
// Initialize invariants used during computation and propagation.
@@ -1045,10 +711,6 @@ bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
<< ": " << HeaderLineno << "\n");
- DT = DomTree;
- PDT = PostDomTree;
- LI = Loops;
- Ctx = &F.getParent()->getContext();
// Compute basic block weights.
Changed |= computeBlockWeights(F);
@@ -1075,8 +737,14 @@ INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
"Sample Profile loader", false, false)
bool SampleProfileLoader::doInitialization(Module &M) {
- Profiler.reset(new SampleModuleProfile(M, Filename));
- ProfileIsValid = Profiler->loadText();
+ auto ReaderOrErr = SampleProfileReader::create(Filename, M.getContext());
+ if (std::error_code EC = ReaderOrErr.getError()) {
+ std::string Msg = "Could not open profile: " + EC.message();
+ M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
+ return false;
+ }
+ Reader = std::move(ReaderOrErr.get());
+ ProfileIsValid = (Reader->read() == sampleprof_error::success);
return true;
}
@@ -1091,11 +759,13 @@ FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
bool SampleProfileLoader::runOnFunction(Function &F) {
if (!ProfileIsValid)
return false;
- DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>();
- LoopInfo *LI = &getAnalysis<LoopInfo>();
- SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F);
- if (!FunctionProfile.empty())
- return FunctionProfile.emitAnnotations(F, DT, PDT, LI);
+
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ PDT = &getAnalysis<PostDominatorTree>();
+ LI = &getAnalysis<LoopInfo>();
+ Ctx = &F.getParent()->getContext();
+ Samples = Reader->getSamplesFor(F);
+ if (!Samples->empty())
+ return emitAnnotations(F);
return false;
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp b/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp
index de724d4..a16e9e2 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp
@@ -28,6 +28,7 @@ using namespace llvm;
/// ScalarOpts library.
void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeADCEPass(Registry);
+ initializeAlignmentFromAssumptionsPass(Registry);
initializeSampleProfileLoaderPass(Registry);
initializeConstantHoistingPass(Registry);
initializeConstantPropagationPass(Registry);
@@ -38,6 +39,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeDSEPass(Registry);
initializeGVNPass(Registry);
initializeEarlyCSEPass(Registry);
+ initializeFlattenCFGPassPass(Registry);
initializeIndVarSimplifyPass(Registry);
initializeJumpThreadingPass(Registry);
initializeLICMPass(Registry);
@@ -77,6 +79,10 @@ void LLVMAddAggressiveDCEPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createAggressiveDCEPass());
}
+void LLVMAddAlignmentFromAssumptionsPass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createAlignmentFromAssumptionsPass());
+}
+
void LLVMAddCFGSimplificationPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createCFGSimplificationPass());
}
@@ -145,6 +151,10 @@ void LLVMAddPartiallyInlineLibCallsPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createPartiallyInlineLibCallsPass());
}
+void LLVMAddLowerSwitchPass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createLowerSwitchPass());
+}
+
void LLVMAddPromoteMemoryToRegisterPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createPromoteMemoryToRegisterPass());
}
@@ -203,6 +213,10 @@ void LLVMAddTypeBasedAliasAnalysisPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createTypeBasedAliasAnalysisPass());
}
+void LLVMAddScopedNoAliasAAPass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createScopedNoAliasAAPass());
+}
+
void LLVMAddBasicAliasAnalysisPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createBasicAliasAnalysisPass());
}
diff --git a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index e2a24a7..5c49a55 100644
--- a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -23,6 +23,7 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CallSite.h"
@@ -197,6 +198,7 @@ namespace {
// getAnalysisUsage - This pass does not require any passes, but we know it
// will not alter the CFG, so say so.
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
@@ -214,6 +216,7 @@ namespace {
// getAnalysisUsage - This pass does not require any passes, but we know it
// will not alter the CFG, so say so.
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.setPreservesCFG();
}
};
@@ -225,12 +228,14 @@ char SROA_SSAUp::ID = 0;
INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
"Scalar Replacement of Aggregates (DT)", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
"Scalar Replacement of Aggregates (DT)", false, false)
INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
"Scalar Replacement of Aggregates (SSAUp)", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
"Scalar Replacement of Aggregates (SSAUp)", false, false)
@@ -1063,12 +1068,14 @@ public:
void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
// Remember which alloca we're promoting (for isInstInList).
this->AI = AI;
- if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
- for (User *U : DebugNode->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- DDIs.push_back(DDI);
- else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
- DVIs.push_back(DVI);
+ if (auto *L = LocalAsMetadata::getIfExists(AI)) {
+ if (auto *DebugNode = MetadataAsValue::getIfExists(AI->getContext(), L)) {
+ for (User *U : DebugNode->users())
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
+ DDIs.push_back(DDI);
+ else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
+ DVIs.push_back(DVI);
+ }
}
LoadAndStorePromoter::run(Insts);
@@ -1119,9 +1126,9 @@ public:
} else {
continue;
}
- Instruction *DbgVal =
- DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
- Inst);
+ Instruction *DbgVal = DIB->insertDbgValueIntrinsic(
+ Arg, 0, DIVariable(DVI->getVariable()),
+ DIExpression(DVI->getExpression()), Inst);
DbgVal->setDebugLoc(DVI->getDebugLoc());
}
}
@@ -1333,12 +1340,15 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
LoadInst *FalseLoad =
Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
- // Transfer alignment and TBAA info if present.
+ // Transfer alignment and AA info if present.
TrueLoad->setAlignment(LI->getAlignment());
FalseLoad->setAlignment(LI->getAlignment());
- if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
- TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
- FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
+
+ AAMDNodes Tags;
+ LI->getAAMetadata(Tags);
+ if (Tags) {
+ TrueLoad->setAAMetadata(Tags);
+ FalseLoad->setAAMetadata(Tags);
}
Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
@@ -1364,10 +1374,12 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
PN->getName()+".ld", PN);
- // Get the TBAA tag and alignment to use from one of the loads. It doesn't
+ // Get the AA tags and alignment to use from one of the loads. It doesn't
// matter which one we get and if any differ, it doesn't matter.
LoadInst *SomeLoad = cast<LoadInst>(PN->user_back());
- MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
+
+ AAMDNodes AATags;
+ SomeLoad->getAAMetadata(AATags);
unsigned Align = SomeLoad->getAlignment();
// Rewrite all loads of the PN to use the new PHI.
@@ -1389,7 +1401,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
PN->getName() + "." + Pred->getName(),
Pred->getTerminator());
Load->setAlignment(Align);
- if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ if (AATags) Load->setAAMetadata(AATags);
}
NewPN->addIncoming(Load, Pred);
@@ -1407,9 +1419,11 @@ bool SROA::performPromotion(Function &F) {
DominatorTree *DT = nullptr;
if (HasDomTree)
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ AssumptionCache &AC =
+ getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
- DIBuilder DIB(*F.getParent());
+ DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
bool Changed = false;
SmallVector<Instruction*, 64> Insts;
while (1) {
@@ -1425,7 +1439,7 @@ bool SROA::performPromotion(Function &F) {
if (Allocas.empty()) break;
if (HasDomTree)
- PromoteMemToReg(Allocas, *DT);
+ PromoteMemToReg(Allocas, *DT, nullptr, &AC);
else {
SSAUpdater SSA;
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
@@ -1658,7 +1672,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
AllocaInfo &Info) {
// If we've already checked this PHI, don't do it again.
if (PHINode *PN = dyn_cast<PHINode>(I))
- if (!Info.CheckedPHIs.insert(PN))
+ if (!Info.CheckedPHIs.insert(PN).second)
return;
for (User *U : I->users()) {
diff --git a/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp b/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
index 7a73f11..6036c09 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
@@ -150,6 +150,16 @@ public:
bool visitLoadInst(LoadInst &);
bool visitStoreInst(StoreInst &);
+ static void registerOptions() {
+ // This is disabled by default because having separate loads and stores
+ // makes it more likely that the -combiner-alias-analysis limits will be
+ // reached.
+ OptionRegistry::registerOption<bool, Scalarizer,
+ &Scalarizer::ScalarizeLoadStore>(
+ "scalarize-load-store",
+ "Allow the scalarizer pass to scalarize loads and store", false);
+ }
+
private:
Scatterer scatter(Instruction *, Value *);
void gather(Instruction *, const ValueVector &);
@@ -164,19 +174,14 @@ private:
GatherList Gathered;
unsigned ParallelLoopAccessMDKind;
const DataLayout *DL;
+ bool ScalarizeLoadStore;
};
char Scalarizer::ID = 0;
} // end anonymous namespace
-// This is disabled by default because having separate loads and stores makes
-// it more likely that the -combiner-alias-analysis limits will be reached.
-static cl::opt<bool> ScalarizeLoadStore
- ("scalarize-load-store", cl::Hidden, cl::init(false),
- cl::desc("Allow the scalarizer pass to scalarize loads and store"));
-
-INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations",
- false, false)
+INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
+ "Scalarize vector operations", false, false)
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr)
@@ -236,7 +241,9 @@ Value *Scatterer::operator[](unsigned I) {
bool Scalarizer::doInitialization(Module &M) {
ParallelLoopAccessMDKind =
- M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
+ M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
+ ScalarizeLoadStore =
+ M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
return false;
}
@@ -312,6 +319,8 @@ bool Scalarizer::canTransferMetadata(unsigned Tag) {
|| Tag == LLVMContext::MD_fpmath
|| Tag == LLVMContext::MD_tbaa_struct
|| Tag == LLVMContext::MD_invariant_load
+ || Tag == LLVMContext::MD_alias_scope
+ || Tag == LLVMContext::MD_noalias
|| Tag == ParallelLoopAccessMDKind);
}
@@ -322,8 +331,10 @@ void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
Op->getAllMetadataOtherThanDebugLoc(MDs);
for (unsigned I = 0, E = CV.size(); I != E; ++I) {
if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
- for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
- MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
+ for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
+ MI = MDs.begin(),
+ ME = MDs.end();
+ MI != ME; ++MI)
if (canTransferMetadata(MI->first))
New->setMetadata(MI->first, MI->second);
New->setDebugLoc(Op->getDebugLoc());
diff --git a/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp b/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
index 6557ce4..6157746 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
@@ -79,6 +79,81 @@
// ld.global.f32 %f3, [%rl6+128]; // much better
// ld.global.f32 %f4, [%rl6+132]; // much better
//
+// Another improvement enabled by the LowerGEP flag is to lower a GEP with
+// multiple indices to either multiple GEPs with a single index or arithmetic
+// operations (depending on whether the target uses alias analysis in codegen).
+// Such transformation can have following benefits:
+// (1) It can always extract constants in the indices of structure type.
+// (2) After such Lowering, there are more optimization opportunities such as
+// CSE, LICM and CGP.
+//
+// E.g. The following GEPs have multiple indices:
+// BB1:
+// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
+// load %p
+// ...
+// BB2:
+// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
+// load %p2
+// ...
+//
+// We can not do CSE for to the common part related to index "i64 %i". Lowering
+// GEPs can achieve such goals.
+// If the target does not use alias analysis in codegen, this pass will
+// lower a GEP with multiple indices into arithmetic operations:
+// BB1:
+// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
+// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
+// %3 = add i64 %1, %2 ; CSE opportunity
+// %4 = mul i64 %j1, length_of_struct
+// %5 = add i64 %3, %4
+// %6 = add i64 %3, struct_field_3 ; Constant offset
+// %p = inttoptr i64 %6 to i32*
+// load %p
+// ...
+// BB2:
+// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
+// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
+// %9 = add i64 %7, %8 ; CSE opportunity
+// %10 = mul i64 %j2, length_of_struct
+// %11 = add i64 %9, %10
+// %12 = add i64 %11, struct_field_2 ; Constant offset
+// %p = inttoptr i64 %12 to i32*
+// load %p2
+// ...
+//
+// If the target uses alias analysis in codegen, this pass will lower a GEP
+// with multiple indices into multiple GEPs with a single index:
+// BB1:
+// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
+// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
+// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
+// %4 = mul i64 %j1, length_of_struct
+// %5 = getelementptr i8* %3, i64 %4
+// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
+// %p = bitcast i8* %6 to i32*
+// load %p
+// ...
+// BB2:
+// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
+// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
+// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
+// %10 = mul i64 %j2, length_of_struct
+// %11 = getelementptr i8* %9, i64 %10
+// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
+// %p2 = bitcast i8* %12 to i32*
+// load %p2
+// ...
+//
+// Lowering GEPs can also benefit other passes such as LICM and CGP.
+// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
+// indices if one of the index is variant. If we lower such GEP into invariant
+// parts and variant parts, LICM can hoist/sink those invariant parts.
+// CGP (CodeGen Prepare) tries to sink address calculations that match the
+// target's addressing modes. A GEP with multiple indices may not match and will
+// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
+// them. So we end up with a better addressing mode.
+//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TargetTransformInfo.h"
@@ -92,6 +167,9 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/IR/IRBuilder.h"
using namespace llvm;
@@ -117,18 +195,17 @@ namespace {
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
class ConstantOffsetExtractor {
public:
- /// Extracts a constant offset from the given GEP index. It outputs the
- /// numeric value of the extracted constant offset (0 if failed), and a
+ /// Extracts a constant offset from the given GEP index. It returns the
/// new index representing the remainder (equal to the original index minus
- /// the constant offset).
+ /// the constant offset), or nullptr if we cannot extract a constant offset.
/// \p Idx The given GEP index
- /// \p NewIdx The new index to replace (output)
/// \p DL The datalayout of the module
/// \p GEP The given GEP
- static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
- GetElementPtrInst *GEP);
- /// Looks for a constant offset without extracting it. The meaning of the
- /// arguments and the return value are the same as Extract.
+ static Value *Extract(Value *Idx, const DataLayout *DL,
+ GetElementPtrInst *GEP);
+ /// Looks for a constant offset from the given GEP index without extracting
+ /// it. It returns the numeric value of the extracted constant offset (0 if
+ /// failed). The meaning of the arguments are the same as Extract.
static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
private:
@@ -228,7 +305,9 @@ class ConstantOffsetExtractor {
class SeparateConstOffsetFromGEP : public FunctionPass {
public:
static char ID;
- SeparateConstOffsetFromGEP() : FunctionPass(ID) {
+ SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
+ bool LowerGEP = false)
+ : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
}
@@ -251,10 +330,29 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
/// Tries to split the given GEP into a variadic base and a constant offset,
/// and returns true if the splitting succeeds.
bool splitGEP(GetElementPtrInst *GEP);
- /// Finds the constant offset within each index, and accumulates them. This
- /// function only inspects the GEP without changing it. The output
- /// NeedsExtraction indicates whether we can extract a non-zero constant
- /// offset from any index.
+ /// Lower a GEP with multiple indices into multiple GEPs with a single index.
+ /// Function splitGEP already split the original GEP into a variadic part and
+ /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
+ /// variadic part into a set of GEPs with a single index and applies
+ /// AccumulativeByteOffset to it.
+ /// \p Variadic The variadic part of the original GEP.
+ /// \p AccumulativeByteOffset The constant offset.
+ void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
+ int64_t AccumulativeByteOffset);
+ /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
+ /// Function splitGEP already split the original GEP into a variadic part and
+ /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
+ /// variadic part into a set of arithmetic operations and applies
+ /// AccumulativeByteOffset to it.
+ /// \p Variadic The variadic part of the original GEP.
+ /// \p AccumulativeByteOffset The constant offset.
+ void lowerToArithmetics(GetElementPtrInst *Variadic,
+ int64_t AccumulativeByteOffset);
+ /// Finds the constant offset within each index and accumulates them. If
+ /// LowerGEP is true, it finds in indices of both sequential and structure
+ /// types, otherwise it only finds in sequential indices. The output
+ /// NeedsExtraction indicates whether we successfully find a non-zero constant
+ /// offset.
int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
/// Canonicalize array indices to pointer-size integers. This helps to
/// simplify the logic of splitting a GEP. For example, if a + b is a
@@ -274,6 +372,10 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
const DataLayout *DL;
+ const TargetMachine *TM;
+ /// Whether to lower a GEP with multiple indices into arithmetic operations or
+ /// multiple GEPs with a single index.
+ bool LowerGEP;
};
} // anonymous namespace
@@ -289,8 +391,10 @@ INITIALIZE_PASS_END(
"Split GEPs to a variadic base and a constant offset for better CSE", false,
false)
-FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
- return new SeparateConstOffsetFromGEP();
+FunctionPass *
+llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
+ bool LowerGEP) {
+ return new SeparateConstOffsetFromGEP(TM, LowerGEP);
}
bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
@@ -519,8 +623,13 @@ Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
//
// Replacing the "or" with "add" is fine, because
// a | (b + 5) = a + (b + 5) = (a + b) + 5
- return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
- BO->getName(), IP);
+ if (OpNo == 0) {
+ return BinaryOperator::CreateAdd(NextInChain, TheOther, BO->getName(),
+ IP);
+ } else {
+ return BinaryOperator::CreateAdd(TheOther, NextInChain, BO->getName(),
+ IP);
+ }
}
// We can reuse BO in this case, because the new expression shares the same
@@ -537,19 +646,17 @@ Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
return BO;
}
-int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
- const DataLayout *DL,
- GetElementPtrInst *GEP) {
+Value *ConstantOffsetExtractor::Extract(Value *Idx, const DataLayout *DL,
+ GetElementPtrInst *GEP) {
ConstantOffsetExtractor Extractor(DL, GEP);
// Find a non-zero constant offset first.
APInt ConstantOffset =
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
GEP->isInBounds());
- if (ConstantOffset != 0) {
- // Separates the constant offset from the GEP index.
- NewIdx = Extractor.rebuildWithoutConstOffset();
- }
- return ConstantOffset.getSExtValue();
+ if (ConstantOffset == 0)
+ return nullptr;
+ // Separates the constant offset from the GEP index.
+ return Extractor.rebuildWithoutConstOffset();
}
int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
@@ -615,11 +722,116 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
AccumulativeByteOffset +=
ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
}
+ } else if (LowerGEP) {
+ StructType *StTy = cast<StructType>(*GTI);
+ uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
+ // Skip field 0 as the offset is always 0.
+ if (Field != 0) {
+ NeedsExtraction = true;
+ AccumulativeByteOffset +=
+ DL->getStructLayout(StTy)->getElementOffset(Field);
+ }
}
}
return AccumulativeByteOffset;
}
+void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
+ GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
+ IRBuilder<> Builder(Variadic);
+ Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
+
+ Type *I8PtrTy =
+ Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
+ Value *ResultPtr = Variadic->getOperand(0);
+ if (ResultPtr->getType() != I8PtrTy)
+ ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
+
+ gep_type_iterator GTI = gep_type_begin(*Variadic);
+ // Create an ugly GEP for each sequential index. We don't create GEPs for
+ // structure indices, as they are accumulated in the constant offset index.
+ for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
+ if (isa<SequentialType>(*GTI)) {
+ Value *Idx = Variadic->getOperand(I);
+ // Skip zero indices.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
+ if (CI->isZero())
+ continue;
+
+ APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
+ DL->getTypeAllocSize(GTI.getIndexedType()));
+ // Scale the index by element size.
+ if (ElementSize != 1) {
+ if (ElementSize.isPowerOf2()) {
+ Idx = Builder.CreateShl(
+ Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
+ } else {
+ Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
+ }
+ }
+ // Create an ugly GEP with a single index for each index.
+ ResultPtr = Builder.CreateGEP(ResultPtr, Idx, "uglygep");
+ }
+ }
+
+ // Create a GEP with the constant offset index.
+ if (AccumulativeByteOffset != 0) {
+ Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
+ ResultPtr = Builder.CreateGEP(ResultPtr, Offset, "uglygep");
+ }
+ if (ResultPtr->getType() != Variadic->getType())
+ ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
+
+ Variadic->replaceAllUsesWith(ResultPtr);
+ Variadic->eraseFromParent();
+}
+
+void
+SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
+ int64_t AccumulativeByteOffset) {
+ IRBuilder<> Builder(Variadic);
+ Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
+
+ Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
+ gep_type_iterator GTI = gep_type_begin(*Variadic);
+ // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
+ // don't create arithmetics for structure indices, as they are accumulated
+ // in the constant offset index.
+ for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
+ if (isa<SequentialType>(*GTI)) {
+ Value *Idx = Variadic->getOperand(I);
+ // Skip zero indices.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
+ if (CI->isZero())
+ continue;
+
+ APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
+ DL->getTypeAllocSize(GTI.getIndexedType()));
+ // Scale the index by element size.
+ if (ElementSize != 1) {
+ if (ElementSize.isPowerOf2()) {
+ Idx = Builder.CreateShl(
+ Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
+ } else {
+ Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
+ }
+ }
+ // Create an ADD for each index.
+ ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
+ }
+ }
+
+ // Create an ADD for the constant offset index.
+ if (AccumulativeByteOffset != 0) {
+ ResultPtr = Builder.CreateAdd(
+ ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
+ }
+
+ ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
+ Variadic->replaceAllUsesWith(ResultPtr);
+ Variadic->eraseFromParent();
+}
+
bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
// Skip vector GEPs.
if (GEP->getType()->isVectorTy())
@@ -637,32 +849,42 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
if (!NeedsExtraction)
return Changed;
- // Before really splitting the GEP, check whether the backend supports the
- // addressing mode we are about to produce. If no, this splitting probably
- // won't be beneficial.
- TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
- if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
- /*BaseGV=*/nullptr, AccumulativeByteOffset,
- /*HasBaseReg=*/true, /*Scale=*/0)) {
- return Changed;
+ // If LowerGEP is disabled, before really splitting the GEP, check whether the
+ // backend supports the addressing mode we are about to produce. If no, this
+ // splitting probably won't be beneficial.
+ // If LowerGEP is enabled, even the extracted constant offset can not match
+ // the addressing mode, we can still do optimizations to other lowered parts
+ // of variable indices. Therefore, we don't check for addressing modes in that
+ // case.
+ if (!LowerGEP) {
+ TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
+ if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
+ /*BaseGV=*/nullptr, AccumulativeByteOffset,
+ /*HasBaseReg=*/true, /*Scale=*/0)) {
+ return Changed;
+ }
}
- // Remove the constant offset in each GEP index. The resultant GEP computes
- // the variadic base.
+ // Remove the constant offset in each sequential index. The resultant GEP
+ // computes the variadic base.
+ // Notice that we don't remove struct field indices here. If LowerGEP is
+ // disabled, a structure index is not accumulated and we still use the old
+ // one. If LowerGEP is enabled, a structure index is accumulated in the
+ // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
+ // handle the constant offset and won't need a new structure index.
gep_type_iterator GTI = gep_type_begin(*GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
- Value *NewIdx = nullptr;
- // Tries to extract a constant offset from this GEP index.
- int64_t ConstantOffset =
- ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
- if (ConstantOffset != 0) {
- assert(NewIdx != nullptr &&
- "ConstantOffset != 0 implies NewIdx is set");
+ // Splits this GEP index into a variadic part and a constant offset, and
+ // uses the variadic part as the new index.
+ Value *NewIdx =
+ ConstantOffsetExtractor::Extract(GEP->getOperand(I), DL, GEP);
+ if (NewIdx != nullptr) {
GEP->setOperand(I, NewIdx);
}
}
}
+
// Clear the inbounds attribute because the new index may be off-bound.
// e.g.,
//
@@ -684,6 +906,21 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
// possible. GEPs with inbounds are more friendly to alias analysis.
GEP->setIsInBounds(false);
+ // Lowers a GEP to either GEPs with a single index or arithmetic operations.
+ if (LowerGEP) {
+ // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
+ // arithmetic operations if the target uses alias analysis in codegen.
+ if (TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())
+ lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
+ else
+ lowerToArithmetics(GEP, AccumulativeByteOffset);
+ return true;
+ }
+
+ // No need to create another GEP if the accumulative byte offset is 0.
+ if (AccumulativeByteOffset == 0)
+ return true;
+
// Offsets the base with the accumulative byte offset.
//
// %gep ; the base
@@ -715,16 +952,16 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
Instruction *NewGEP = GEP->clone();
NewGEP->insertBefore(GEP);
- uint64_t ElementTypeSizeOfGEP =
- DL->getTypeAllocSize(GEP->getType()->getElementType());
+ // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
+ // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
+ // used with unsigned integers later.
+ int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
+ DL->getTypeAllocSize(GEP->getType()->getElementType()));
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
// Very likely. As long as %gep is natually aligned, the byte offset we
// extracted should be a multiple of sizeof(*%gep).
- // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
- // cast ElementTypeSizeOfGEP to signed.
- int64_t Index =
- AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
+ int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
NewGEP = GetElementPtrInst::Create(
NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
} else {
diff --git a/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index 5d5606b..2e317f9 100644
--- a/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -25,6 +25,7 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
@@ -34,22 +35,30 @@
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "simplifycfg"
+static cl::opt<unsigned>
+UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1),
+ cl::desc("Control the number of bonus instructions (default = 1)"));
+
STATISTIC(NumSimpl, "Number of blocks simplified");
namespace {
struct CFGSimplifyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
- CFGSimplifyPass() : FunctionPass(ID) {
+ unsigned BonusInstThreshold;
+ CFGSimplifyPass(int T = -1) : FunctionPass(ID) {
+ BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : unsigned(T);
initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfo>();
}
};
@@ -59,12 +68,13 @@ char CFGSimplifyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
// Public interface to the CFGSimplification pass
-FunctionPass *llvm::createCFGSimplificationPass() {
- return new CFGSimplifyPass();
+FunctionPass *llvm::createCFGSimplificationPass(int Threshold) {
+ return new CFGSimplifyPass(Threshold);
}
/// mergeEmptyReturnBlocks - If we have more than one empty (other than phi
@@ -146,7 +156,8 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
- const DataLayout *DL) {
+ const DataLayout *DL, AssumptionCache *AC,
+ unsigned BonusInstThreshold) {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
@@ -155,7 +166,7 @@ static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TTI, DL)) {
+ if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, DL, AC)) {
LocalChange = true;
++NumSimpl;
}
@@ -172,12 +183,14 @@ bool CFGSimplifyPass::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
+ AssumptionCache *AC =
+ &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
bool EverChanged = removeUnreachableBlocks(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TTI, DL);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -191,7 +204,7 @@ bool CFGSimplifyPass::runOnFunction(Function &F) {
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TTI, DL);
+ EverChanged = iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
EverChanged |= removeUnreachableBlocks(F);
} while (EverChanged);
diff --git a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
index 7348c45c..903b675 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
@@ -56,7 +56,7 @@ namespace {
}
private:
bool ProcessBlock(BasicBlock &BB);
- bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
+ bool SinkInstruction(Instruction *I, SmallPtrSetImpl<Instruction*> &Stores);
bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
};
@@ -157,7 +157,7 @@ bool Sinking::ProcessBlock(BasicBlock &BB) {
}
static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
- SmallPtrSet<Instruction *, 8> &Stores) {
+ SmallPtrSetImpl<Instruction *> &Stores) {
if (Inst->mayWriteToMemory()) {
Stores.insert(Inst);
@@ -166,9 +166,8 @@ static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
AliasAnalysis::Location Loc = AA->getLocation(L);
- for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
- E = Stores.end(); I != E; ++I)
- if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
+ for (Instruction *S : Stores)
+ if (AA->getModRefInfo(S, Loc) & AliasAnalysis::Mod)
return false;
}
@@ -220,7 +219,7 @@ bool Sinking::IsAcceptableTarget(Instruction *Inst,
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool Sinking::SinkInstruction(Instruction *Inst,
- SmallPtrSet<Instruction *, 8> &Stores) {
+ SmallPtrSetImpl<Instruction *> &Stores) {
// Don't sink static alloca instructions. CodeGen assumes allocas outside the
// entry block are dynamically sized stack objects.
diff --git a/contrib/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp b/contrib/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
index b9673ed..7fe87f9 100644
--- a/contrib/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
@@ -10,6 +10,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
+#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionPass.h"
@@ -166,6 +167,7 @@ class StructurizeCFG : public RegionPass {
Region *ParentRegion;
DominatorTree *DT;
+ LoopInfo *LI;
RNVector Order;
BBSet Visited;
@@ -247,6 +249,7 @@ public:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(LowerSwitchID);
AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfo>();
AU.addPreserved<DominatorTreeWrapperPass>();
RegionPass::getAnalysisUsage(AU);
}
@@ -301,8 +304,9 @@ void StructurizeCFG::analyzeLoops(RegionNode *N) {
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
- if (Visited.count(Succ))
+ if (Visited.count(Succ) && LI->isLoopHeader(Succ) ) {
Loops[Succ] = BB;
+ }
}
}
}
@@ -862,6 +866,7 @@ bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
ParentRegion = R;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LI = &getAnalysis<LoopInfo>();
orderNodes();
collectInfos();
diff --git a/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp b/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
index b758025..f3c3e30 100644
--- a/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -63,6 +63,7 @@
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
@@ -86,6 +87,7 @@ STATISTIC(NumAccumAdded, "Number of accumulators introduced");
namespace {
struct TailCallElim : public FunctionPass {
const TargetTransformInfo *TTI;
+ const DataLayout *DL;
static char ID; // Pass identification, replacement for typeid
TailCallElim() : FunctionPass(ID) {
@@ -157,6 +159,8 @@ bool TailCallElim::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
+ DL = F.getParent()->getDataLayout();
+
bool AllCallsAreTailCalls = false;
bool Modified = markTails(F, AllCallsAreTailCalls);
if (AllCallsAreTailCalls)
@@ -175,7 +179,7 @@ struct AllocaDerivedValueTracker {
auto AddUsesToWorklist = [&](Value *V) {
for (auto &U : V->uses()) {
- if (!Visited.insert(&U))
+ if (!Visited.insert(&U).second)
continue;
Worklist.push_back(&U);
}
@@ -400,18 +404,28 @@ bool TailCallElim::runTRE(Function &F) {
// alloca' is changed from being a static alloca to being a dynamic alloca.
// Until this is resolved, disable this transformation if that would ever
// happen. This bug is PR962.
+ SmallVector<BasicBlock*, 8> BBToErase;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
ArgumentPHIs, !CanTRETailMarkedCall);
- if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
+ if (!Change && BB->getFirstNonPHIOrDbg() == Ret) {
Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
TailCallsAreMarkedTail, ArgumentPHIs,
!CanTRETailMarkedCall);
+ // FoldReturnAndProcessPred may have emptied some BB. Remember to
+ // erase them.
+ if (Change && BB->empty())
+ BBToErase.push_back(BB);
+
+ }
MadeChange |= Change;
}
}
+ for (auto BB: BBToErase)
+ BB->eraseFromParent();
+
// If we eliminated any tail recursions, it's possible that we inserted some
// silly PHI nodes which just merge an initial value (the incoming operand)
// with themselves. Check to see if we did and clean up our mess if so. This
@@ -450,7 +464,7 @@ bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
// being loaded from.
if (CI->mayWriteToMemory() ||
!isSafeToLoadUnconditionally(L->getPointerOperand(), L,
- L->getAlignment()))
+ L->getAlignment(), DL))
return false;
}
}
@@ -819,8 +833,20 @@ bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
DEBUG(dbgs() << "FOLDING: " << *BB
<< "INTO UNCOND BRANCH PRED: " << *Pred);
- EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
- OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
+ ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
+
+ // Cleanup: if all predecessors of BB have been eliminated by
+ // FoldReturnIntoUncondBranch, we would like to delete it, but we
+ // can not just nuke it as it is being used as an iterator by our caller.
+ // Just empty it, and the caller will erase it when it is safe to do so.
+ // It is important to empty it, because the ret instruction in there is
+ // still using a value which EliminateRecursiveTailCall will attempt
+ // to remove.
+ if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
+ BB->getInstList().clear();
+
+ EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
+ ArgumentPHIs,
CannotTailCallElimCallsMarkedTail);
++NumRetDuped;
Change = true;
diff --git a/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp b/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp
index 196ac79..820544b 100644
--- a/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp
@@ -167,7 +167,7 @@ bool AddDiscriminators::runOnFunction(Function &F) {
bool Changed = false;
Module *M = F.getParent();
LLVMContext &Ctx = M->getContext();
- DIBuilder Builder(*M);
+ DIBuilder Builder(*M, /*AllowUnresolved*/ false);
// Traverse all the blocks looking for instructions in different
// blocks that are at the same file:line location.
@@ -193,13 +193,11 @@ bool AddDiscriminators::runOnFunction(Function &F) {
// Create a new lexical scope and compute a new discriminator
// number for it.
StringRef Filename = FirstDIL.getFilename();
- unsigned LineNumber = FirstDIL.getLineNumber();
- unsigned ColumnNumber = FirstDIL.getColumnNumber();
DIScope Scope = FirstDIL.getScope();
DIFile File = Builder.createFile(Filename, Scope.getDirectory());
unsigned Discriminator = FirstDIL.computeNewDiscriminator(Ctx);
- DILexicalBlock NewScope = Builder.createLexicalBlock(
- Scope, File, LineNumber, ColumnNumber, Discriminator);
+ DILexicalBlockFile NewScope =
+ Builder.createLexicalBlockFile(Scope, File, Discriminator);
DILocation NewDIL = FirstDIL.copyWithNewScope(Ctx, NewScope);
DebugLoc newDebugLoc = DebugLoc::getFromDILocation(NewDIL);
diff --git a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
index 602e8ba..983f025 100644
--- a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -265,6 +265,18 @@ BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
return SplitBlock(BB, BB->getTerminator(), P);
}
+unsigned llvm::SplitAllCriticalEdges(Function &F, Pass *P) {
+ unsigned NumBroken = 0;
+ for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ TerminatorInst *TI = I->getTerminator();
+ if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ if (SplitCriticalEdge(TI, i, P))
+ ++NumBroken;
+ }
+ return NumBroken;
+}
+
/// SplitBlock - Split the specified block at the specified instruction - every
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
/// to a new block. The two blocks are joined by an unconditional branch and
diff --git a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
index 80bd516..eda22cf 100644
--- a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -40,7 +40,11 @@ namespace {
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
}
- bool runOnFunction(Function &F) override;
+ bool runOnFunction(Function &F) override {
+ unsigned N = SplitAllCriticalEdges(F, this);
+ NumBroken += N;
+ return N > 0;
+ }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
@@ -62,24 +66,6 @@ FunctionPass *llvm::createBreakCriticalEdgesPass() {
return new BreakCriticalEdges();
}
-// runOnFunction - Loop over all of the edges in the CFG, breaking critical
-// edges as they are found.
-//
-bool BreakCriticalEdges::runOnFunction(Function &F) {
- bool Changed = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- TerminatorInst *TI = I->getTerminator();
- if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (SplitCriticalEdge(TI, i, this)) {
- ++NumBroken;
- Changed = true;
- }
- }
-
- return Changed;
-}
-
//===----------------------------------------------------------------------===//
// Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
index be00b695..322485d 100644
--- a/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -42,8 +42,7 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
AttributeSet AS[2];
AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
- AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attribute::AttrKind>(AVs, 2));
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrLen = M->getOrInsertFunction("strlen",
@@ -51,7 +50,7 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
AS),
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
- NULL);
+ nullptr);
CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -71,8 +70,7 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
AttributeSet AS[2];
AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
- AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attribute::AttrKind>(AVs, 2));
+ AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrNLen = M->getOrInsertFunction("strnlen",
@@ -81,7 +79,7 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
TD->getIntPtrType(Context),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
- NULL);
+ nullptr);
CallInst *CI = B.CreateCall2(StrNLen, CastToCStr(Ptr, B), MaxLen, "strnlen");
if (const Function *F = dyn_cast<Function>(StrNLen->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -100,15 +98,14 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
Module *M = B.GetInsertBlock()->getParent()->getParent();
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AttributeSet AS =
- AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attribute::AttrKind>(AVs, 2));
+ AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
Type *I8Ptr = B.getInt8PtrTy();
Type *I32Ty = B.getInt32Ty();
Constant *StrChr = M->getOrInsertFunction("strchr",
AttributeSet::get(M->getContext(),
AS),
- I8Ptr, I8Ptr, I32Ty, NULL);
+ I8Ptr, I8Ptr, I32Ty, nullptr);
CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
ConstantInt::get(I32Ty, C), "strchr");
if (const Function *F = dyn_cast<Function>(StrChr->stripPointerCasts()))
@@ -128,8 +125,7 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
AS[1] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
- AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attribute::AttrKind>(AVs, 2));
+ AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *StrNCmp = M->getOrInsertFunction("strncmp",
@@ -138,7 +134,7 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context), NULL);
+ TD->getIntPtrType(Context), nullptr);
CallInst *CI = B.CreateCall3(StrNCmp, CastToCStr(Ptr1, B),
CastToCStr(Ptr2, B), Len, "strncmp");
@@ -164,7 +160,7 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
Type *I8Ptr = B.getInt8PtrTy();
Value *StrCpy = M->getOrInsertFunction(Name,
AttributeSet::get(M->getContext(), AS),
- I8Ptr, I8Ptr, I8Ptr, NULL);
+ I8Ptr, I8Ptr, I8Ptr, nullptr);
CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
Name);
if (const Function *F = dyn_cast<Function>(StrCpy->stripPointerCasts()))
@@ -190,7 +186,7 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
AttributeSet::get(M->getContext(),
AS),
I8Ptr, I8Ptr, I8Ptr,
- Len->getType(), NULL);
+ Len->getType(), nullptr);
CallInst *CI = B.CreateCall3(StrNCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
Len, "strncpy");
if (const Function *F = dyn_cast<Function>(StrNCpy->stripPointerCasts()))
@@ -218,7 +214,7 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
B.getInt8PtrTy(),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
- TD->getIntPtrType(Context), NULL);
+ TD->getIntPtrType(Context), nullptr);
Dst = CastToCStr(Dst, B);
Src = CastToCStr(Src, B);
CallInst *CI = B.CreateCall4(MemCpy, Dst, Src, Len, ObjSize);
@@ -238,8 +234,7 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
Module *M = B.GetInsertBlock()->getParent()->getParent();
AttributeSet AS;
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
- AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attribute::AttrKind>(AVs, 2));
+ AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemChr = M->getOrInsertFunction("memchr",
AttributeSet::get(M->getContext(), AS),
@@ -247,7 +242,7 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
B.getInt8PtrTy(),
B.getInt32Ty(),
TD->getIntPtrType(Context),
- NULL);
+ nullptr);
CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
if (const Function *F = dyn_cast<Function>(MemChr->stripPointerCasts()))
@@ -268,8 +263,7 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
AS[0] = AttributeSet::get(M->getContext(), 1, Attribute::NoCapture);
AS[1] = AttributeSet::get(M->getContext(), 2, Attribute::NoCapture);
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
- AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
- ArrayRef<Attribute::AttrKind>(AVs, 2));
+ AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCmp = M->getOrInsertFunction("memcmp",
@@ -277,7 +271,7 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context), NULL);
+ TD->getIntPtrType(Context), nullptr);
CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
Len, "memcmp");
@@ -313,7 +307,7 @@ Value *llvm::EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
Module *M = B.GetInsertBlock()->getParent()->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
- Op->getType(), NULL);
+ Op->getType(), nullptr);
CallInst *CI = B.CreateCall(Callee, Op, Name);
CI->setAttributes(Attrs);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
@@ -334,7 +328,7 @@ Value *llvm::EmitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
Module *M = B.GetInsertBlock()->getParent()->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op1->getType(),
- Op1->getType(), Op2->getType(), NULL);
+ Op1->getType(), Op2->getType(), nullptr);
CallInst *CI = B.CreateCall2(Callee, Op1, Op2, Name);
CI->setAttributes(Attrs);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
@@ -352,7 +346,7 @@ Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
Module *M = B.GetInsertBlock()->getParent()->getParent();
Value *PutChar = M->getOrInsertFunction("putchar", B.getInt32Ty(),
- B.getInt32Ty(), NULL);
+ B.getInt32Ty(), nullptr);
CallInst *CI = B.CreateCall(PutChar,
B.CreateIntCast(Char,
B.getInt32Ty(),
@@ -382,7 +376,7 @@ Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt8PtrTy(),
- NULL);
+ nullptr);
CallInst *CI = B.CreateCall(PutS, CastToCStr(Str, B), "puts");
if (const Function *F = dyn_cast<Function>(PutS->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -407,12 +401,12 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt32Ty(), File->getType(),
- NULL);
+ nullptr);
else
F = M->getOrInsertFunction("fputc",
B.getInt32Ty(),
B.getInt32Ty(),
- File->getType(), NULL);
+ File->getType(), nullptr);
Char = B.CreateIntCast(Char, B.getInt32Ty(), /*isSigned*/true,
"chari");
CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
@@ -442,11 +436,11 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
AttributeSet::get(M->getContext(), AS),
B.getInt32Ty(),
B.getInt8PtrTy(),
- File->getType(), NULL);
+ File->getType(), nullptr);
else
F = M->getOrInsertFunction(FPutsName, B.getInt32Ty(),
B.getInt8PtrTy(),
- File->getType(), NULL);
+ File->getType(), nullptr);
CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
@@ -478,13 +472,13 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
TD->getIntPtrType(Context),
- File->getType(), NULL);
+ File->getType(), nullptr);
else
F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(Context),
B.getInt8PtrTy(),
TD->getIntPtrType(Context),
TD->getIntPtrType(Context),
- File->getType(), NULL);
+ File->getType(), nullptr);
CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
ConstantInt::get(TD->getIntPtrType(Context), 1), File);
@@ -492,135 +486,3 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
CI->setCallingConv(Fn->getCallingConv());
return CI;
}
-
-SimplifyFortifiedLibCalls::~SimplifyFortifiedLibCalls() { }
-
-bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
- // We really need DataLayout for later.
- if (!TD) return false;
-
- this->CI = CI;
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
- IRBuilder<> B(CI);
-
- if (Name == "__memcpy_chk") {
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
- return false;
-
- if (isFoldable(3, 2, false)) {
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- replaceCall(CI->getArgOperand(0));
- return true;
- }
- return false;
- }
-
- // Should be similar to memcpy.
- if (Name == "__mempcpy_chk") {
- return false;
- }
-
- if (Name == "__memmove_chk") {
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
- return false;
-
- if (isFoldable(3, 2, false)) {
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- replaceCall(CI->getArgOperand(0));
- return true;
- }
- return false;
- }
-
- if (Name == "__memset_chk") {
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
- return false;
-
- if (isFoldable(3, 2, false)) {
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
- false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- replaceCall(CI->getArgOperand(0));
- return true;
- }
- return false;
- }
-
- if (Name == "__strcpy_chk" || Name == "__stpcpy_chk") {
- // Check if this has the right signature.
- if (FT->getNumParams() != 3 ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- FT->getParamType(2) != TD->getIntPtrType(Context))
- return 0;
-
-
- // If a) we don't have any length information, or b) we know this will
- // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
- // st[rp]cpy_chk call which may fail at runtime if the size is too long.
- // TODO: It might be nice to get a maximum length out of the possible
- // string lengths for varying.
- if (isFoldable(2, 1, true)) {
- Value *Ret = EmitStrCpy(CI->getArgOperand(0), CI->getArgOperand(1), B, TD,
- TLI, Name.substr(2, 6));
- if (!Ret)
- return false;
- replaceCall(Ret);
- return true;
- }
- return false;
- }
-
- if (Name == "__strncpy_chk" || Name == "__stpncpy_chk") {
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- !FT->getParamType(2)->isIntegerTy() ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
- return false;
-
- if (isFoldable(3, 2, false)) {
- Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, TD, TLI,
- Name.substr(2, 7));
- if (!Ret)
- return false;
- replaceCall(Ret);
- return true;
- }
- return false;
- }
-
- if (Name == "__strcat_chk") {
- return false;
- }
-
- if (Name == "__strncat_chk") {
- return false;
- }
-
- return false;
-}
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
index 5c8f20d..96a763f 100644
--- a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -164,14 +164,13 @@ static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
// Add an operand to an existing MDNode. The new operand will be added at the
// back of the operand list.
-static void AddOperand(MDNode *Node, Value *Operand) {
- SmallVector<Value*, 16> Operands;
- for (unsigned i = 0; i < Node->getNumOperands(); i++) {
- Operands.push_back(Node->getOperand(i));
- }
- Operands.push_back(Operand);
- MDNode *NewNode = MDNode::get(Node->getContext(), Operands);
- Node->replaceAllUsesWith(NewNode);
+static void AddOperand(DICompileUnit CU, DIArray SPs, Metadata *NewSP) {
+ SmallVector<Metadata *, 16> NewSPs;
+ NewSPs.reserve(SPs->getNumOperands() + 1);
+ for (unsigned I = 0, E = SPs->getNumOperands(); I != E; ++I)
+ NewSPs.push_back(SPs->getOperand(I));
+ NewSPs.push_back(NewSP);
+ CU.replaceSubprograms(DIArray(MDNode::get(CU->getContext(), NewSPs)));
}
// Clone the module-level debug info associated with OldFunc. The cloned data
@@ -187,7 +186,7 @@ static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
// Ensure that OldFunc appears in the map.
// (if it's already there it must point to NewFunc anyway)
VMap[OldFunc] = NewFunc;
- DISubprogram NewSubprogram(MapValue(OldSubprogramMDNode, VMap));
+ DISubprogram NewSubprogram(MapMetadata(OldSubprogramMDNode, VMap));
for (DICompileUnit CU : Finder.compile_units()) {
DIArray Subprograms(CU.getSubprograms());
@@ -196,7 +195,8 @@ static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
// also contain the new one.
for (unsigned i = 0; i < Subprograms.getNumElements(); i++) {
if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) {
- AddOperand(Subprograms, NewSubprogram);
+ AddOperand(CU, Subprograms, NewSubprogram);
+ break;
}
}
}
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp b/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
index 3f75b3e..fae9ff5 100644
--- a/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
@@ -17,6 +17,7 @@
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
+#include "llvm-c/Core.h"
using namespace llvm;
/// CloneModule - Return an exact copy of the specified module. This is not as
@@ -108,7 +109,7 @@ Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
I != E; ++I) {
GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
if (const Constant *C = I->getAliasee())
- GA->setAliasee(cast<GlobalObject>(MapValue(C, VMap)));
+ GA->setAliasee(MapValue(C, VMap));
}
// And named metadata....
@@ -117,8 +118,16 @@ Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
const NamedMDNode &NMD = *I;
NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
- NewNMD->addOperand(MapValue(NMD.getOperand(i), VMap));
+ NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap));
}
return New;
}
+
+extern "C" {
+
+LLVMModuleRef LLVMCloneModule(LLVMModuleRef M) {
+ return wrap(CloneModule(unwrap(M)));
+}
+
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp b/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp
index a359424..26875e8 100644
--- a/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/ADT/BitVector.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
@@ -24,41 +25,22 @@
namespace llvm {
namespace {
-/// Given a specified llvm.global_ctors list, install the
-/// specified array.
-void installGlobalCtors(GlobalVariable *GCL,
- const std::vector<Function *> &Ctors) {
- // If we made a change, reassemble the initializer list.
- Constant *CSVals[3];
-
- StructType *StructTy =
- cast<StructType>(GCL->getType()->getElementType()->getArrayElementType());
-
- // Create the new init list.
- std::vector<Constant *> CAList;
- for (Function *F : Ctors) {
- Type *Int32Ty = Type::getInt32Ty(GCL->getContext());
- if (F) {
- CSVals[0] = ConstantInt::get(Int32Ty, 65535);
- CSVals[1] = F;
- } else {
- CSVals[0] = ConstantInt::get(Int32Ty, 0x7fffffff);
- CSVals[1] = Constant::getNullValue(StructTy->getElementType(1));
- }
- // FIXME: Only allow the 3-field form in LLVM 4.0.
- size_t NumElts = StructTy->getNumElements();
- if (NumElts > 2)
- CSVals[2] = Constant::getNullValue(StructTy->getElementType(2));
- CAList.push_back(
- ConstantStruct::get(StructTy, makeArrayRef(CSVals, NumElts)));
- }
-
- // Create the array initializer.
- Constant *CA =
- ConstantArray::get(ArrayType::get(StructTy, CAList.size()), CAList);
+/// Given a specified llvm.global_ctors list, remove the listed elements.
+void removeGlobalCtors(GlobalVariable *GCL, const BitVector &CtorsToRemove) {
+ // Filter out the initializer elements to remove.
+ ConstantArray *OldCA = cast<ConstantArray>(GCL->getInitializer());
+ SmallVector<Constant *, 10> CAList;
+ for (unsigned I = 0, E = OldCA->getNumOperands(); I < E; ++I)
+ if (!CtorsToRemove.test(I))
+ CAList.push_back(OldCA->getOperand(I));
+
+ // Create the new array initializer.
+ ArrayType *ATy =
+ ArrayType::get(OldCA->getType()->getElementType(), CAList.size());
+ Constant *CA = ConstantArray::get(ATy, CAList);
// If we didn't change the number of elements, don't create a new GV.
- if (CA->getType() == GCL->getInitializer()->getType()) {
+ if (CA->getType() == OldCA->getType()) {
GCL->setInitializer(CA);
return;
}
@@ -82,7 +64,7 @@ void installGlobalCtors(GlobalVariable *GCL,
/// Given a llvm.global_ctors list that we can understand,
/// return a list of the functions and null terminator as a vector.
-std::vector<Function*> parseGlobalCtors(GlobalVariable *GV) {
+std::vector<Function *> parseGlobalCtors(GlobalVariable *GV) {
if (GV->getInitializer()->isNullValue())
return std::vector<Function *>();
ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
@@ -147,17 +129,15 @@ bool optimizeGlobalCtorsList(Module &M,
bool MadeChange = false;
// Loop over global ctors, optimizing them when we can.
- for (unsigned i = 0; i != Ctors.size(); ++i) {
+ unsigned NumCtors = Ctors.size();
+ BitVector CtorsToRemove(NumCtors);
+ for (unsigned i = 0; i != Ctors.size() && NumCtors > 0; ++i) {
Function *F = Ctors[i];
// Found a null terminator in the middle of the list, prune off the rest of
// the list.
- if (!F) {
- if (i != Ctors.size() - 1) {
- Ctors.resize(i + 1);
- MadeChange = true;
- }
- break;
- }
+ if (!F)
+ continue;
+
DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
// We cannot simplify external ctor functions.
@@ -166,9 +146,10 @@ bool optimizeGlobalCtorsList(Module &M,
// If we can evaluate the ctor at compile time, do.
if (ShouldRemove(F)) {
- Ctors.erase(Ctors.begin() + i);
+ Ctors[i] = nullptr;
+ CtorsToRemove.set(i);
+ NumCtors--;
MadeChange = true;
- --i;
continue;
}
}
@@ -176,7 +157,7 @@ bool optimizeGlobalCtorsList(Module &M,
if (!MadeChange)
return false;
- installGlobalCtors(GlobalCtors, Ctors);
+ removeGlobalCtors(GlobalCtors, CtorsToRemove);
return true;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/FlattenCFG.cpp b/contrib/llvm/lib/Transforms/Utils/FlattenCFG.cpp
index 51ead40..4eb3e3d 100644
--- a/contrib/llvm/lib/Transforms/Utils/FlattenCFG.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/FlattenCFG.cpp
@@ -238,9 +238,13 @@ bool FlattenCFGOpt::FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder,
// Do branch inversion.
BasicBlock *CurrBlock = LastCondBlock;
bool EverChanged = false;
- while (1) {
+ for (;CurrBlock != FirstCondBlock;
+ CurrBlock = CurrBlock->getSinglePredecessor()) {
BranchInst *BI = dyn_cast<BranchInst>(CurrBlock->getTerminator());
CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
+ if (!CI)
+ continue;
+
CmpInst::Predicate Predicate = CI->getPredicate();
// Canonicalize icmp_ne -> icmp_eq, fcmp_one -> fcmp_oeq
if ((Predicate == CmpInst::ICMP_NE) || (Predicate == CmpInst::FCMP_ONE)) {
@@ -248,9 +252,6 @@ bool FlattenCFGOpt::FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder,
BI->swapSuccessors();
EverChanged = true;
}
- if (CurrBlock == FirstCondBlock)
- break;
- CurrBlock = CurrBlock->getSinglePredecessor();
}
return EverChanged;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp b/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp
index 12057e4..52e2d59 100644
--- a/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp
@@ -35,6 +35,9 @@ bool llvm::isSafeToDestroyConstant(const Constant *C) {
if (isa<GlobalValue>(C))
return false;
+ if (isa<ConstantInt>(C) || isa<ConstantFP>(C))
+ return false;
+
for (const User *U : C->users())
if (const Constant *CU = dyn_cast<Constant>(U)) {
if (!isSafeToDestroyConstant(CU))
@@ -45,7 +48,7 @@ bool llvm::isSafeToDestroyConstant(const Constant *C) {
}
static bool analyzeGlobalAux(const Value *V, GlobalStatus &GS,
- SmallPtrSet<const PHINode *, 16> &PhiUsers) {
+ SmallPtrSetImpl<const PHINode *> &PhiUsers) {
for (const Use &U : V->uses()) {
const User *UR = U.getUser();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(UR)) {
@@ -130,7 +133,7 @@ static bool analyzeGlobalAux(const Value *V, GlobalStatus &GS,
} else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
// PHI nodes we can check just like select or GEP instructions, but we
// have to be careful about infinite recursion.
- if (PhiUsers.insert(PN)) // Not already visited.
+ if (PhiUsers.insert(PN).second) // Not already visited.
if (analyzeGlobalAux(I, GS, PhiUsers))
return true;
} else if (isa<CmpInst>(I)) {
diff --git a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
index f0a9f2b..2a86eb5 100644
--- a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
@@ -13,10 +13,16 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CFG.h"
@@ -24,14 +30,28 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/CommandLine.h"
+#include <algorithm>
using namespace llvm;
+static cl::opt<bool>
+EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
+ cl::Hidden,
+ cl::desc("Convert noalias attributes to metadata during inlining."));
+
+static cl::opt<bool>
+PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
+ cl::init(true), cl::Hidden,
+ cl::desc("Convert align attributes to assumptions during inlining."));
+
bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
bool InsertLifetime) {
return InlineFunction(CallSite(CI), IFI, InsertLifetime);
@@ -84,7 +104,7 @@ namespace {
/// split the landing pad block after the landingpad instruction and jump
/// to there.
void forwardResume(ResumeInst *RI,
- SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
+ SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
/// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
/// destination block for the given basic block, using the values for the
@@ -143,7 +163,7 @@ BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void InvokeInliningInfo::forwardResume(ResumeInst *RI,
- SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
+ SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
BasicBlock *Dest = getInnerResumeDest();
BasicBlock *Src = RI->getParent();
@@ -233,9 +253,7 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
// Append the clauses from the outer landing pad instruction into the inlined
// landing pad instructions.
LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
- for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
- E = InlinedLPads.end(); I != E; ++I) {
- LandingPadInst *InlinedLPad = *I;
+ for (LandingPadInst *InlinedLPad : InlinedLPads) {
unsigned OuterNum = OuterLPad->getNumClauses();
InlinedLPad->reserveClauses(OuterNum);
for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
@@ -260,6 +278,387 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
InvokeDest->removePredecessor(II->getParent());
}
+/// CloneAliasScopeMetadata - When inlining a function that contains noalias
+/// scope metadata, this metadata needs to be cloned so that the inlined blocks
+/// have different "unqiue scopes" at every call site. Were this not done, then
+/// aliasing scopes from a function inlined into a caller multiple times could
+/// not be differentiated (and this would lead to miscompiles because the
+/// non-aliasing property communicated by the metadata could have
+/// call-site-specific control dependencies).
+static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
+ const Function *CalledFunc = CS.getCalledFunction();
+ SetVector<const MDNode *> MD;
+
+ // Note: We could only clone the metadata if it is already used in the
+ // caller. I'm omitting that check here because it might confuse
+ // inter-procedural alias analysis passes. We can revisit this if it becomes
+ // an efficiency or overhead problem.
+
+ for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
+ I != IE; ++I)
+ for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
+ if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
+ MD.insert(M);
+ if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
+ MD.insert(M);
+ }
+
+ if (MD.empty())
+ return;
+
+ // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
+ // the set.
+ SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
+ while (!Queue.empty()) {
+ const MDNode *M = cast<MDNode>(Queue.pop_back_val());
+ for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
+ if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
+ if (MD.insert(M1))
+ Queue.push_back(M1);
+ }
+
+ // Now we have a complete set of all metadata in the chains used to specify
+ // the noalias scopes and the lists of those scopes.
+ SmallVector<MDNode *, 16> DummyNodes;
+ DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
+ for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
+ I != IE; ++I) {
+ MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None);
+ DummyNodes.push_back(Dummy);
+ MDMap[*I].reset(Dummy);
+ }
+
+ // Create new metadata nodes to replace the dummy nodes, replacing old
+ // metadata references with either a dummy node or an already-created new
+ // node.
+ for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
+ I != IE; ++I) {
+ SmallVector<Metadata *, 4> NewOps;
+ for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
+ const Metadata *V = (*I)->getOperand(i);
+ if (const MDNode *M = dyn_cast<MDNode>(V))
+ NewOps.push_back(MDMap[M]);
+ else
+ NewOps.push_back(const_cast<Metadata *>(V));
+ }
+
+ MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
+ MDNodeFwdDecl *TempM = cast<MDNodeFwdDecl>(MDMap[*I]);
+
+ TempM->replaceAllUsesWith(NewM);
+ }
+
+ // Now replace the metadata in the new inlined instructions with the
+ // repacements from the map.
+ for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
+ VMI != VMIE; ++VMI) {
+ if (!VMI->second)
+ continue;
+
+ Instruction *NI = dyn_cast<Instruction>(VMI->second);
+ if (!NI)
+ continue;
+
+ if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
+ MDNode *NewMD = MDMap[M];
+ // If the call site also had alias scope metadata (a list of scopes to
+ // which instructions inside it might belong), propagate those scopes to
+ // the inlined instructions.
+ if (MDNode *CSM =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
+ NewMD = MDNode::concatenate(NewMD, CSM);
+ NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
+ } else if (NI->mayReadOrWriteMemory()) {
+ if (MDNode *M =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
+ NI->setMetadata(LLVMContext::MD_alias_scope, M);
+ }
+
+ if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
+ MDNode *NewMD = MDMap[M];
+ // If the call site also had noalias metadata (a list of scopes with
+ // which instructions inside it don't alias), propagate those scopes to
+ // the inlined instructions.
+ if (MDNode *CSM =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
+ NewMD = MDNode::concatenate(NewMD, CSM);
+ NI->setMetadata(LLVMContext::MD_noalias, NewMD);
+ } else if (NI->mayReadOrWriteMemory()) {
+ if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
+ NI->setMetadata(LLVMContext::MD_noalias, M);
+ }
+ }
+
+ // Now that everything has been replaced, delete the dummy nodes.
+ for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i)
+ MDNode::deleteTemporary(DummyNodes[i]);
+}
+
+/// AddAliasScopeMetadata - If the inlined function has noalias arguments, then
+/// add new alias scopes for each noalias argument, tag the mapped noalias
+/// parameters with noalias metadata specifying the new scope, and tag all
+/// non-derived loads, stores and memory intrinsics with the new alias scopes.
+static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
+ const DataLayout *DL, AliasAnalysis *AA) {
+ if (!EnableNoAliasConversion)
+ return;
+
+ const Function *CalledFunc = CS.getCalledFunction();
+ SmallVector<const Argument *, 4> NoAliasArgs;
+
+ for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
+ E = CalledFunc->arg_end(); I != E; ++I) {
+ if (I->hasNoAliasAttr() && !I->hasNUses(0))
+ NoAliasArgs.push_back(I);
+ }
+
+ if (NoAliasArgs.empty())
+ return;
+
+ // To do a good job, if a noalias variable is captured, we need to know if
+ // the capture point dominates the particular use we're considering.
+ DominatorTree DT;
+ DT.recalculate(const_cast<Function&>(*CalledFunc));
+
+ // noalias indicates that pointer values based on the argument do not alias
+ // pointer values which are not based on it. So we add a new "scope" for each
+ // noalias function argument. Accesses using pointers based on that argument
+ // become part of that alias scope, accesses using pointers not based on that
+ // argument are tagged as noalias with that scope.
+
+ DenseMap<const Argument *, MDNode *> NewScopes;
+ MDBuilder MDB(CalledFunc->getContext());
+
+ // Create a new scope domain for this function.
+ MDNode *NewDomain =
+ MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
+ for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
+ const Argument *A = NoAliasArgs[i];
+
+ std::string Name = CalledFunc->getName();
+ if (A->hasName()) {
+ Name += ": %";
+ Name += A->getName();
+ } else {
+ Name += ": argument ";
+ Name += utostr(i);
+ }
+
+ // Note: We always create a new anonymous root here. This is true regardless
+ // of the linkage of the callee because the aliasing "scope" is not just a
+ // property of the callee, but also all control dependencies in the caller.
+ MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
+ NewScopes.insert(std::make_pair(A, NewScope));
+ }
+
+ // Iterate over all new instructions in the map; for all memory-access
+ // instructions, add the alias scope metadata.
+ for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
+ VMI != VMIE; ++VMI) {
+ if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
+ if (!VMI->second)
+ continue;
+
+ Instruction *NI = dyn_cast<Instruction>(VMI->second);
+ if (!NI)
+ continue;
+
+ bool IsArgMemOnlyCall = false, IsFuncCall = false;
+ SmallVector<const Value *, 2> PtrArgs;
+
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I))
+ PtrArgs.push_back(LI->getPointerOperand());
+ else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
+ PtrArgs.push_back(SI->getPointerOperand());
+ else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
+ PtrArgs.push_back(VAAI->getPointerOperand());
+ else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
+ PtrArgs.push_back(CXI->getPointerOperand());
+ else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
+ PtrArgs.push_back(RMWI->getPointerOperand());
+ else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
+ // If we know that the call does not access memory, then we'll still
+ // know that about the inlined clone of this call site, and we don't
+ // need to add metadata.
+ if (ICS.doesNotAccessMemory())
+ continue;
+
+ IsFuncCall = true;
+ if (AA) {
+ AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
+ if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
+ MRB == AliasAnalysis::OnlyReadsArgumentPointees)
+ IsArgMemOnlyCall = true;
+ }
+
+ for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
+ AE = ICS.arg_end(); AI != AE; ++AI) {
+ // We need to check the underlying objects of all arguments, not just
+ // the pointer arguments, because we might be passing pointers as
+ // integers, etc.
+ // However, if we know that the call only accesses pointer arguments,
+ // then we only need to check the pointer arguments.
+ if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
+ continue;
+
+ PtrArgs.push_back(*AI);
+ }
+ }
+
+ // If we found no pointers, then this instruction is not suitable for
+ // pairing with an instruction to receive aliasing metadata.
+ // However, if this is a call, this we might just alias with none of the
+ // noalias arguments.
+ if (PtrArgs.empty() && !IsFuncCall)
+ continue;
+
+ // It is possible that there is only one underlying object, but you
+ // need to go through several PHIs to see it, and thus could be
+ // repeated in the Objects list.
+ SmallPtrSet<const Value *, 4> ObjSet;
+ SmallVector<Metadata *, 4> Scopes, NoAliases;
+
+ SmallSetVector<const Argument *, 4> NAPtrArgs;
+ for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
+ SmallVector<Value *, 4> Objects;
+ GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
+ Objects, DL, /* MaxLookup = */ 0);
+
+ for (Value *O : Objects)
+ ObjSet.insert(O);
+ }
+
+ // Figure out if we're derived from anything that is not a noalias
+ // argument.
+ bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
+ for (const Value *V : ObjSet) {
+ // Is this value a constant that cannot be derived from any pointer
+ // value (we need to exclude constant expressions, for example, that
+ // are formed from arithmetic on global symbols).
+ bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
+ isa<ConstantPointerNull>(V) ||
+ isa<ConstantDataVector>(V) || isa<UndefValue>(V);
+ if (IsNonPtrConst)
+ continue;
+
+ // If this is anything other than a noalias argument, then we cannot
+ // completely describe the aliasing properties using alias.scope
+ // metadata (and, thus, won't add any).
+ if (const Argument *A = dyn_cast<Argument>(V)) {
+ if (!A->hasNoAliasAttr())
+ UsesAliasingPtr = true;
+ } else {
+ UsesAliasingPtr = true;
+ }
+
+ // If this is not some identified function-local object (which cannot
+ // directly alias a noalias argument), or some other argument (which,
+ // by definition, also cannot alias a noalias argument), then we could
+ // alias a noalias argument that has been captured).
+ if (!isa<Argument>(V) &&
+ !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
+ CanDeriveViaCapture = true;
+ }
+
+ // A function call can always get captured noalias pointers (via other
+ // parameters, globals, etc.).
+ if (IsFuncCall && !IsArgMemOnlyCall)
+ CanDeriveViaCapture = true;
+
+ // First, we want to figure out all of the sets with which we definitely
+ // don't alias. Iterate over all noalias set, and add those for which:
+ // 1. The noalias argument is not in the set of objects from which we
+ // definitely derive.
+ // 2. The noalias argument has not yet been captured.
+ // An arbitrary function that might load pointers could see captured
+ // noalias arguments via other noalias arguments or globals, and so we
+ // must always check for prior capture.
+ for (const Argument *A : NoAliasArgs) {
+ if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
+ // It might be tempting to skip the
+ // PointerMayBeCapturedBefore check if
+ // A->hasNoCaptureAttr() is true, but this is
+ // incorrect because nocapture only guarantees
+ // that no copies outlive the function, not
+ // that the value cannot be locally captured.
+ !PointerMayBeCapturedBefore(A,
+ /* ReturnCaptures */ false,
+ /* StoreCaptures */ false, I, &DT)))
+ NoAliases.push_back(NewScopes[A]);
+ }
+
+ if (!NoAliases.empty())
+ NI->setMetadata(LLVMContext::MD_noalias,
+ MDNode::concatenate(
+ NI->getMetadata(LLVMContext::MD_noalias),
+ MDNode::get(CalledFunc->getContext(), NoAliases)));
+
+ // Next, we want to figure out all of the sets to which we might belong.
+ // We might belong to a set if the noalias argument is in the set of
+ // underlying objects. If there is some non-noalias argument in our list
+ // of underlying objects, then we cannot add a scope because the fact
+ // that some access does not alias with any set of our noalias arguments
+ // cannot itself guarantee that it does not alias with this access
+ // (because there is some pointer of unknown origin involved and the
+ // other access might also depend on this pointer). We also cannot add
+ // scopes to arbitrary functions unless we know they don't access any
+ // non-parameter pointer-values.
+ bool CanAddScopes = !UsesAliasingPtr;
+ if (CanAddScopes && IsFuncCall)
+ CanAddScopes = IsArgMemOnlyCall;
+
+ if (CanAddScopes)
+ for (const Argument *A : NoAliasArgs) {
+ if (ObjSet.count(A))
+ Scopes.push_back(NewScopes[A]);
+ }
+
+ if (!Scopes.empty())
+ NI->setMetadata(
+ LLVMContext::MD_alias_scope,
+ MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
+ MDNode::get(CalledFunc->getContext(), Scopes)));
+ }
+ }
+}
+
+/// If the inlined function has non-byval align arguments, then
+/// add @llvm.assume-based alignment assumptions to preserve this information.
+static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
+ if (!PreserveAlignmentAssumptions || !IFI.DL)
+ return;
+
+ // To avoid inserting redundant assumptions, we should check for assumptions
+ // already in the caller. To do this, we might need a DT of the caller.
+ DominatorTree DT;
+ bool DTCalculated = false;
+
+ Function *CalledFunc = CS.getCalledFunction();
+ for (Function::arg_iterator I = CalledFunc->arg_begin(),
+ E = CalledFunc->arg_end();
+ I != E; ++I) {
+ unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
+ if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
+ if (!DTCalculated) {
+ DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
+ ->getParent()));
+ DTCalculated = true;
+ }
+
+ // If we can already prove the asserted alignment in the context of the
+ // caller, then don't bother inserting the assumption.
+ Value *Arg = CS.getArgument(I->getArgNo());
+ if (getKnownAlignment(Arg, IFI.DL,
+ &IFI.ACT->getAssumptionCache(*CalledFunc),
+ CS.getInstruction(), &DT) >= Align)
+ continue;
+
+ IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg,
+ Align);
+ }
+ }
+}
+
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
/// into the caller, update the specified callgraph to reflect the changes we
/// made. Note that it's possible that not all code was copied over, so only
@@ -327,31 +726,19 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
BasicBlock *InsertBlock,
InlineFunctionInfo &IFI) {
- LLVMContext &Context = Src->getContext();
- Type *VoidPtrTy = Type::getInt8PtrTy(Context);
Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
- Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) };
- Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
- IRBuilder<> builder(InsertBlock->begin());
- Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp");
- Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp");
+ IRBuilder<> Builder(InsertBlock->begin());
Value *Size;
if (IFI.DL == nullptr)
Size = ConstantExpr::getSizeOf(AggTy);
else
- Size = ConstantInt::get(Type::getInt64Ty(Context),
- IFI.DL->getTypeStoreSize(AggTy));
+ Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy));
// Always generate a memcpy of alignment 1 here because we don't know
// the alignment of the src pointer. Other optimizations can infer
// better alignment.
- Value *CallArgs[] = {
- DstCast, SrcCast, Size,
- ConstantInt::get(Type::getInt32Ty(Context), 1),
- ConstantInt::getFalse(Context) // isVolatile
- };
- builder.CreateCall(MemCpyFn, CallArgs);
+ Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
}
/// HandleByValArgument - When inlining a call site that has a byval argument,
@@ -363,6 +750,8 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
PointerType *ArgTy = cast<PointerType>(Arg->getType());
Type *AggTy = ArgTy->getElementType();
+ Function *Caller = TheCall->getParent()->getParent();
+
// If the called function is readonly, then it could not mutate the caller's
// copy of the byval'd memory. In this case, it is safe to elide the copy and
// temporary.
@@ -375,8 +764,9 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
// If the pointer is already known to be sufficiently aligned, or if we can
// round it up to a larger alignment, then we don't need a temporary.
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
- IFI.DL) >= ByValAlignment)
+ if (getOrEnforceKnownAlignment(Arg, ByValAlignment, IFI.DL,
+ &IFI.ACT->getAssumptionCache(*Caller),
+ TheCall) >= ByValAlignment)
return Arg;
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
@@ -393,8 +783,6 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
// pointer inside the callee).
Align = std::max(Align, ByValAlignment);
- Function *Caller = TheCall->getParent()->getParent();
-
Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
&*Caller->begin()->begin());
IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
@@ -472,47 +860,33 @@ static void fixupLineNumbers(Function *Fn, Function::iterator FI,
// originates from the call location. This is important for
// ((__always_inline__, __nodebug__)) functions which must use caller
// location for all instructions in their function body.
+
+ // Don't update static allocas, as they may get moved later.
+ if (auto *AI = dyn_cast<AllocaInst>(BI))
+ if (isa<Constant>(AI->getArraySize()))
+ continue;
+
BI->setDebugLoc(TheCallDL);
} else {
BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
LLVMContext &Ctx = BI->getContext();
MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
- DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
- InlinedAt, Ctx));
+ DVI->setOperand(2, MetadataAsValue::get(
+ Ctx, createInlinedVariable(DVI->getVariable(),
+ InlinedAt, Ctx)));
+ } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) {
+ LLVMContext &Ctx = BI->getContext();
+ MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
+ DDI->setOperand(1, MetadataAsValue::get(
+ Ctx, createInlinedVariable(DDI->getVariable(),
+ InlinedAt, Ctx)));
}
}
}
}
}
-/// Returns a musttail call instruction if one immediately precedes the given
-/// return instruction with an optional bitcast instruction between them.
-static CallInst *getPrecedingMustTailCall(ReturnInst *RI) {
- Instruction *Prev = RI->getPrevNode();
- if (!Prev)
- return nullptr;
-
- if (Value *RV = RI->getReturnValue()) {
- if (RV != Prev)
- return nullptr;
-
- // Look through the optional bitcast.
- if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
- RV = BI->getOperand(0);
- Prev = BI->getPrevNode();
- if (!Prev || RV != Prev)
- return nullptr;
- }
- }
-
- if (auto *CI = dyn_cast<CallInst>(Prev)) {
- if (CI->isMustTailCall())
- return CI;
- }
- return nullptr;
-}
-
/// InlineFunction - This function inlines the called function into the basic
/// block of the caller. This returns false if it is not possible to inline
/// this call. The program is still in a well defined state if this occurs
@@ -626,6 +1000,11 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
VMap[I] = ActualArg;
}
+ // Add alignment assumptions if necessary. We do this before the inlined
+ // instructions are actually cloned into the caller so that we can easily
+ // check what will be known at the start of the inlined code.
+ AddAlignmentAssumptions(CS, IFI);
+
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
@@ -648,6 +1027,17 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Update inlined instructions' line number information.
fixupLineNumbers(Caller, FirstNewBlock, TheCall);
+
+ // Clone existing noalias metadata if necessary.
+ CloneAliasScopeMetadata(CS, VMap);
+
+ // Add noalias metadata if necessary.
+ AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA);
+
+ // FIXME: We could register any cloned assumptions instead of clearing the
+ // whole function's cache.
+ if (IFI.ACT)
+ IFI.ACT->getAssumptionCache(*Caller).clear();
}
// If there are any alloca instructions in the block that used to be the entry
@@ -765,7 +1155,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
for (ReturnInst *RI : Returns) {
// Don't insert llvm.lifetime.end calls between a musttail call and a
// return. The return kills all local allocas.
- if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
+ if (InlinedMustTailCalls &&
+ RI->getParent()->getTerminatingMustTailCall())
continue;
IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
}
@@ -789,7 +1180,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
for (ReturnInst *RI : Returns) {
// Don't insert llvm.stackrestore calls between a musttail call and a
// return. The return will restore the stack pointer.
- if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
+ if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
continue;
IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
}
@@ -812,7 +1203,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Handle the returns preceded by musttail calls separately.
SmallVector<ReturnInst *, 8> NormalReturns;
for (ReturnInst *RI : Returns) {
- CallInst *ReturnedMustTail = getPrecedingMustTailCall(RI);
+ CallInst *ReturnedMustTail =
+ RI->getParent()->getTerminatingMustTailCall();
if (!ReturnedMustTail) {
NormalReturns.push_back(RI);
continue;
@@ -1016,7 +1408,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// the entries are the same or undef). If so, remove the PHI so it doesn't
// block other optimizations.
if (PHI) {
- if (Value *V = SimplifyInstruction(PHI, IFI.DL)) {
+ if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr,
+ &IFI.ACT->getAssumptionCache(*Caller))) {
PHI->replaceAllUsesWith(V);
PHI->eraseFromParent();
}
diff --git a/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp b/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
index 9f91eeb..0ae746c 100644
--- a/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
@@ -398,11 +398,13 @@ bool llvm::expandRemainder(BinaryOperator *Rem) {
Rem->dropAllReferences();
Rem->eraseFromParent();
- // If we didn't actually generate a udiv instruction, we're done
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
- if (!BO || BO->getOpcode() != Instruction::URem)
+ // If we didn't actually generate an urem instruction, we're done
+ // This happens for example if the input were constant. In this case the
+ // Builder insertion point was unchanged
+ if (Rem == Builder.GetInsertPoint())
return true;
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Rem = BO;
}
@@ -456,11 +458,13 @@ bool llvm::expandDivision(BinaryOperator *Div) {
Div->dropAllReferences();
Div->eraseFromParent();
- // If we didn't actually generate a udiv instruction, we're done
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
- if (!BO || BO->getOpcode() != Instruction::UDiv)
+ // If we didn't actually generate an udiv instruction, we're done
+ // This happens for example if the input were constant. In this case the
+ // Builder insertion point was unchanged
+ if (Div == Builder.GetInsertPoint())
return true;
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Div = BO;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
index 51a3d9c..3f9b702 100644
--- a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
@@ -61,7 +61,7 @@ static bool isExitBlock(BasicBlock *BB,
/// uses.
static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
const SmallVectorImpl<BasicBlock *> &ExitBlocks,
- PredIteratorCache &PredCache) {
+ PredIteratorCache &PredCache, LoopInfo *LI) {
SmallVector<Use *, 16> UsesToRewrite;
BasicBlock *InstBB = Inst.getParent();
@@ -94,6 +94,7 @@ static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
DomTreeNode *DomNode = DT.getNode(DomBB);
SmallVector<PHINode *, 16> AddedPHIs;
+ SmallVector<PHINode *, 8> PostProcessPHIs;
SSAUpdater SSAUpdate;
SSAUpdate.Initialize(Inst.getType(), Inst.getName());
@@ -131,6 +132,18 @@ static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
// Remember that this phi makes the value alive in this block.
SSAUpdate.AddAvailableValue(ExitBB, PN);
+
+ // LoopSimplify might fail to simplify some loops (e.g. when indirect
+ // branches are involved). In such situations, it might happen that an exit
+ // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
+ // PHIs in such an exit block, we are also inserting PHIs into L2's header.
+ // This could break LCSSA form for L2 because these inserted PHIs can also
+ // have uses outside of L2. Remember all PHIs in such situation as to
+ // revisit than later on. FIXME: Remove this if indirectbr support into
+ // LoopSimplify gets improved.
+ if (auto *OtherLoop = LI->getLoopFor(ExitBB))
+ if (!L.contains(OtherLoop))
+ PostProcessPHIs.push_back(PN);
}
// Rewrite all uses outside the loop in terms of the new PHIs we just
@@ -157,6 +170,25 @@ static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
SSAUpdate.RewriteUse(*UsesToRewrite[i]);
}
+ // Post process PHI instructions that were inserted into another disjoint loop
+ // and update their exits properly.
+ for (auto *I : PostProcessPHIs) {
+ if (I->use_empty())
+ continue;
+
+ BasicBlock *PHIBB = I->getParent();
+ Loop *OtherLoop = LI->getLoopFor(PHIBB);
+ SmallVector<BasicBlock *, 8> EBs;
+ OtherLoop->getExitBlocks(EBs);
+ if (EBs.empty())
+ continue;
+
+ // Recurse and re-process each PHI instruction. FIXME: we should really
+ // convert this entire thing to a worklist approach where we process a
+ // vector of instructions...
+ processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
+ }
+
// Remove PHI nodes that did not have any uses rewritten.
for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
if (AddedPHIs[i]->use_empty())
@@ -180,7 +212,8 @@ blockDominatesAnExit(BasicBlock *BB,
return false;
}
-bool llvm::formLCSSA(Loop &L, DominatorTree &DT, ScalarEvolution *SE) {
+bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
+ ScalarEvolution *SE) {
bool Changed = false;
// Get the set of exiting blocks.
@@ -212,7 +245,7 @@ bool llvm::formLCSSA(Loop &L, DominatorTree &DT, ScalarEvolution *SE) {
!isa<PHINode>(I->user_back())))
continue;
- Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache);
+ Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache, LI);
}
}
@@ -228,15 +261,15 @@ bool llvm::formLCSSA(Loop &L, DominatorTree &DT, ScalarEvolution *SE) {
}
/// Process a loop nest depth first.
-bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT,
+bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE) {
bool Changed = false;
// Recurse depth-first through inner loops.
- for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
- Changed |= formLCSSARecursively(**LI, DT, SE);
+ for (Loop::iterator I = L.begin(), E = L.end(); I != E; ++I)
+ Changed |= formLCSSARecursively(**I, DT, LI, SE);
- Changed |= formLCSSA(L, DT, SE);
+ Changed |= formLCSSA(L, DT, LI, SE);
return Changed;
}
@@ -291,7 +324,7 @@ bool LCSSA::runOnFunction(Function &F) {
// Simplify each loop nest in the function.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- Changed |= formLCSSARecursively(**I, *DT, SE);
+ Changed |= formLCSSARecursively(**I, *DT, LI, SE);
return Changed;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp
index a5e443f..08a4b3f 100644
--- a/contrib/llvm/lib/Transforms/Utils/Local.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp
@@ -128,7 +128,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
// Check to see if this branch is going to the same place as the default
// dest. If so, eliminate it as an explicit compare.
if (i.getCaseSuccessor() == DefaultDest) {
- MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
unsigned NCases = SI->getNumCases();
// Fold the case metadata into the default if there will be any branches
// left, unless the metadata doesn't match the switch.
@@ -137,7 +137,8 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
SmallVector<uint32_t, 8> Weights;
for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
++MD_i) {
- ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
+ ConstantInt *CI =
+ mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
assert(CI);
Weights.push_back(CI->getValue().getZExtValue());
}
@@ -206,10 +207,12 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
BranchInst *NewBr = Builder.CreateCondBr(Cond,
FirstCase.getCaseSuccessor(),
SI->getDefaultDest());
- MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
if (MD && MD->getNumOperands() == 3) {
- ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
- ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
+ ConstantInt *SICase =
+ mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
+ ConstantInt *SIDef =
+ mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
assert(SICase && SIDef);
// The TrueWeight should be the weight for the single case of SI.
NewBr->setMetadata(LLVMContext::MD_prof,
@@ -301,6 +304,14 @@ bool llvm::isInstructionTriviallyDead(Instruction *I,
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end)
return isa<UndefValue>(II->getArgOperand(1));
+
+ // Assumptions are dead if their condition is trivially true.
+ if (II->getIntrinsicID() == Intrinsic::assume) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
+ return !Cond->isZero();
+
+ return false;
+ }
}
if (isAllocLikeFn(I, TLI)) return true;
@@ -384,7 +395,7 @@ bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
// If we find an instruction more than once, we're on a cycle that
// won't prove fruitful.
- if (!Visited.insert(I)) {
+ if (!Visited.insert(I).second) {
// Break the cycle and delete the instruction and its operands.
I->replaceAllUsesWith(UndefValue::get(I->getType()));
(void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
@@ -931,13 +942,16 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *DL) {
+ const DataLayout *DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
assert(V->getType()->isPointerTy() &&
"getOrEnforceKnownAlignment expects a pointer!");
unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL);
+ computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
unsigned TrailZ = KnownZero.countTrailingOnes();
// Avoid trouble with ridiculously large TrailZ values, such as
@@ -982,6 +996,7 @@ static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
StoreInst *SI, DIBuilder &Builder) {
DIVariable DIVar(DDI->getVariable());
+ DIExpression DIExpr(DDI->getExpression());
assert((!DIVar || DIVar.isVariable()) &&
"Variable in DbgDeclareInst should be either null or a DIVariable.");
if (!DIVar)
@@ -999,9 +1014,10 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
if (ExtendedArg)
- DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
+ DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI);
else
- DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
+ DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar,
+ DIExpr, SI);
DbgVal->setDebugLoc(DDI->getDebugLoc());
return true;
}
@@ -1011,6 +1027,7 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
LoadInst *LI, DIBuilder &Builder) {
DIVariable DIVar(DDI->getVariable());
+ DIExpression DIExpr(DDI->getExpression());
assert((!DIVar || DIVar.isVariable()) &&
"Variable in DbgDeclareInst should be either null or a DIVariable.");
if (!DIVar)
@@ -1020,8 +1037,7 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
return true;
Instruction *DbgVal =
- Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
- DIVar, LI);
+ Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI);
DbgVal->setDebugLoc(DDI->getDebugLoc());
return true;
}
@@ -1035,7 +1051,7 @@ static bool isArray(AllocaInst *AI) {
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
/// of llvm.dbg.value intrinsics.
bool llvm::LowerDbgDeclare(Function &F) {
- DIBuilder DIB(*F.getParent());
+ DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
SmallVector<DbgDeclareInst *, 4> Dbgs;
for (auto &FI : F)
for (BasicBlock::iterator BI : FI)
@@ -1061,14 +1077,14 @@ bool llvm::LowerDbgDeclare(Function &F) {
else if (LoadInst *LI = dyn_cast<LoadInst>(U))
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // This is a call by-value or some other instruction that
- // takes a pointer to the variable. Insert a *value*
- // intrinsic that describes the alloca.
- auto DbgVal =
- DIB.insertDbgValueIntrinsic(AI, 0,
- DIVariable(DDI->getVariable()), CI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
- }
+ // This is a call by-value or some other instruction that
+ // takes a pointer to the variable. Insert a *value*
+ // intrinsic that describes the alloca.
+ auto DbgVal = DIB.insertDbgValueIntrinsic(
+ AI, 0, DIVariable(DDI->getVariable()),
+ DIExpression(DDI->getExpression()), CI);
+ DbgVal->setDebugLoc(DDI->getDebugLoc());
+ }
DDI->eraseFromParent();
}
}
@@ -1078,10 +1094,11 @@ bool llvm::LowerDbgDeclare(Function &F) {
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
/// alloca 'V', if any.
DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
- if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
- for (User *U : DebugNode->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- return DDI;
+ if (auto *L = LocalAsMetadata::getIfExists(V))
+ if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
+ for (User *U : MDV->users())
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
+ return DDI;
return nullptr;
}
@@ -1092,33 +1109,27 @@ bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
if (!DDI)
return false;
DIVariable DIVar(DDI->getVariable());
+ DIExpression DIExpr(DDI->getExpression());
assert((!DIVar || DIVar.isVariable()) &&
"Variable in DbgDeclareInst should be either null or a DIVariable.");
if (!DIVar)
return false;
- // Create a copy of the original DIDescriptor for user variable, appending
+ // Create a copy of the original DIDescriptor for user variable, prepending
// "deref" operation to a list of address elements, as new llvm.dbg.declare
// will take a value storing address of the memory for variable, not
// alloca itself.
- Type *Int64Ty = Type::getInt64Ty(AI->getContext());
- SmallVector<Value*, 4> NewDIVarAddress;
- if (DIVar.hasComplexAddress()) {
- for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
- NewDIVarAddress.push_back(
- ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
- }
- }
- NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
- DIVariable NewDIVar = Builder.createComplexVariable(
- DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
- DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
- NewDIVarAddress, DIVar.getArgNumber());
+ SmallVector<int64_t, 4> NewDIExpr;
+ NewDIExpr.push_back(dwarf::DW_OP_deref);
+ if (DIExpr)
+ for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i)
+ NewDIExpr.push_back(DIExpr.getElement(i));
// Insert llvm.dbg.declare in the same basic block as the original alloca,
// and remove old llvm.dbg.declare.
BasicBlock *BB = AI->getParent();
- Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
+ Builder.insertDeclare(NewAllocaAddress, DIVar,
+ Builder.createExpression(NewDIExpr), BB);
DDI->eraseFromParent();
return true;
}
@@ -1170,7 +1181,7 @@ static void changeToCall(InvokeInst *II) {
}
static bool markAliveBlocks(BasicBlock *BB,
- SmallPtrSet<BasicBlock*, 128> &Reachable) {
+ SmallPtrSetImpl<BasicBlock*> &Reachable) {
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
@@ -1183,6 +1194,26 @@ static bool markAliveBlocks(BasicBlock *BB,
// instructions into LLVM unreachable insts. The instruction combining pass
// canonicalizes unreachable insts into stores to null or undef.
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
+ // Assumptions that are known to be false are equivalent to unreachable.
+ // Also, if the condition is undefined, then we make the choice most
+ // beneficial to the optimizer, and choose that to also be unreachable.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
+ if (II->getIntrinsicID() == Intrinsic::assume) {
+ bool MakeUnreachable = false;
+ if (isa<UndefValue>(II->getArgOperand(0)))
+ MakeUnreachable = true;
+ else if (ConstantInt *Cond =
+ dyn_cast<ConstantInt>(II->getArgOperand(0)))
+ MakeUnreachable = Cond->isZero();
+
+ if (MakeUnreachable) {
+ // Don't insert a call to llvm.trap right before the unreachable.
+ changeToUnreachable(BBI, false);
+ Changed = true;
+ break;
+ }
+ }
+
if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
if (CI->doesNotReturn()) {
// If we found a call to a no-return function, insert an unreachable
@@ -1237,7 +1268,7 @@ static bool markAliveBlocks(BasicBlock *BB,
Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- if (Reachable.insert(*SI))
+ if (Reachable.insert(*SI).second)
Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
@@ -1277,3 +1308,43 @@ bool llvm::removeUnreachableBlocks(Function &F) {
return true;
}
+
+void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ K->dropUnknownMetadata(KnownIDs);
+ K->getAllMetadataOtherThanDebugLoc(Metadata);
+ for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
+ unsigned Kind = Metadata[i].first;
+ MDNode *JMD = J->getMetadata(Kind);
+ MDNode *KMD = Metadata[i].second;
+
+ switch (Kind) {
+ default:
+ K->setMetadata(Kind, nullptr); // Remove unknown metadata
+ break;
+ case LLVMContext::MD_dbg:
+ llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
+ case LLVMContext::MD_tbaa:
+ K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
+ break;
+ case LLVMContext::MD_alias_scope:
+ case LLVMContext::MD_noalias:
+ K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
+ break;
+ case LLVMContext::MD_range:
+ K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
+ break;
+ case LLVMContext::MD_fpmath:
+ K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
+ break;
+ case LLVMContext::MD_invariant_load:
+ // Only set the !invariant.load if it is present in both instructions.
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_nonnull:
+ // Only set the !nonnull if it is present in both instructions.
+ K->setMetadata(Kind, JMD);
+ break;
+ }
+ }
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
index ef42291..c832a4b 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
@@ -44,6 +44,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
@@ -173,8 +174,7 @@ static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
if (Exit->isLandingPad()) {
SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
- LoopBlocks.size()),
+ SplitLandingPadPredecessors(Exit, LoopBlocks,
".loopexit", ".nonloopexit",
PP, NewBBs);
NewExitBB = NewBBs[0];
@@ -209,11 +209,12 @@ static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
/// \brief The first part of loop-nestification is to find a PHI node that tells
/// us how to partition the loops.
static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
- DominatorTree *DT) {
+ DominatorTree *DT,
+ AssumptionCache *AC) {
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
+ if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
if (AA) AA->deleteValue(PN);
@@ -252,7 +253,8 @@ static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
///
static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
AliasAnalysis *AA, DominatorTree *DT,
- LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
+ LoopInfo *LI, ScalarEvolution *SE, Pass *PP,
+ AssumptionCache *AC) {
// Don't try to separate loops without a preheader.
if (!Preheader)
return nullptr;
@@ -261,7 +263,7 @@ static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
assert(!L->getHeader()->isLandingPad() &&
"Can't insert backedge to landing pad");
- PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
+ PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC);
if (!PN) return nullptr; // No known way to partition.
// Pull out all predecessors that have varying values in the loop. This
@@ -474,8 +476,8 @@ static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
/// explicit if they accepted the analysis directly and then updated it.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, Pass *PP,
- const DataLayout *DL) {
+ ScalarEvolution *SE, Pass *PP, const DataLayout *DL,
+ AssumptionCache *AC) {
bool Changed = false;
ReprocessLoop:
@@ -496,20 +498,19 @@ ReprocessLoop:
}
// Delete each unique out-of-loop (and thus dead) predecessor.
- for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
- E = BadPreds.end(); I != E; ++I) {
+ for (BasicBlock *P : BadPreds) {
DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
- << (*I)->getName() << "\n");
+ << P->getName() << "\n");
// Inform each successor of each dead pred.
- for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
- (*SI)->removePredecessor(*I);
+ for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
+ (*SI)->removePredecessor(P);
// Zap the dead pred's terminator and replace it with unreachable.
- TerminatorInst *TI = (*I)->getTerminator();
+ TerminatorInst *TI = P->getTerminator();
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
- (*I)->getTerminator()->eraseFromParent();
- new UnreachableInst((*I)->getContext(), *I);
+ P->getTerminator()->eraseFromParent();
+ new UnreachableInst(P->getContext(), P);
Changed = true;
}
}
@@ -582,7 +583,8 @@ ReprocessLoop:
// this for loops with a giant number of backedges, just factor them into a
// common backedge instead.
if (L->getNumBackEdges() < 8) {
- if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
+ if (Loop *OuterL =
+ separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) {
++NumNested;
// Enqueue the outer loop as it should be processed next in our
// depth-first nest walk.
@@ -612,7 +614,7 @@ ReprocessLoop:
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
+ if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) {
if (AA) AA->deleteValue(PN);
if (SE) SE->forgetValue(PN);
PN->replaceAllUsesWith(V);
@@ -712,7 +714,7 @@ ReprocessLoop:
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
AliasAnalysis *AA, ScalarEvolution *SE,
- const DataLayout *DL) {
+ const DataLayout *DL, AssumptionCache *AC) {
bool Changed = false;
// Worklist maintains our depth-first queue of loops in this nest to process.
@@ -730,7 +732,7 @@ bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
while (!Worklist.empty())
Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
- SE, PP, DL);
+ SE, PP, DL, AC);
return Changed;
}
@@ -749,10 +751,13 @@ namespace {
LoopInfo *LI;
ScalarEvolution *SE;
const DataLayout *DL;
+ AssumptionCache *AC;
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+
// We need loop information to identify the loops...
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
@@ -773,11 +778,12 @@ namespace {
char LoopSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
- "Canonicalize natural loops", true, false)
+ "Canonicalize natural loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
- "Canonicalize natural loops", true, false)
+ "Canonicalize natural loops", false, false)
// Publicly exposed interface to pass...
char &llvm::LoopSimplifyID = LoopSimplify::ID;
@@ -794,10 +800,11 @@ bool LoopSimplify::runOnFunction(Function &F) {
SE = getAnalysisIfAvailable<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// Simplify each loop nest in the function.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL);
+ Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AC);
return Changed;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
index ab1c25a..5745920 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -19,6 +19,7 @@
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
@@ -111,7 +112,7 @@ FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
if (LPM) {
if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
if (Loop *L = LI->getLoopFor(BB)) {
- if (ForgottenLoops.insert(L))
+ if (ForgottenLoops.insert(L).second)
SE->forgetLoop(L);
}
}
@@ -153,8 +154,8 @@ FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
/// available from the Pass it must also preserve those analyses.
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
- bool AllowRuntime, unsigned TripMultiple,
- LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
+ bool AllowRuntime, unsigned TripMultiple, LoopInfo *LI,
+ Pass *PP, LPPassManager *LPM, AssumptionCache *AC) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
@@ -222,11 +223,10 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// Notify ScalarEvolution that the loop will be substantially changed,
// if not outright eliminated.
- if (PP) {
- ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
- if (SE)
- SE->forgetLoop(L);
- }
+ ScalarEvolution *SE =
+ PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr;
+ if (SE)
+ SE->forgetLoop(L);
// If we know the trip count, we know the multiple...
unsigned BreakoutTrip = 0;
@@ -300,15 +300,45 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
for (unsigned It = 1; It != Count; ++It) {
std::vector<BasicBlock*> NewBlocks;
+ SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
+ NewLoops[L] = L;
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
ValueToValueMapTy VMap;
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
Header->getParent()->getBasicBlockList().push_back(New);
- // Loop over all of the PHI nodes in the block, changing them to use the
- // incoming values from the previous block.
+ // Tell LI about New.
+ if (*BB == Header) {
+ assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
+ L->addBasicBlockToLoop(New, LI->getBase());
+ } else {
+ // Figure out which loop New is in.
+ const Loop *OldLoop = LI->getLoopFor(*BB);
+ assert(OldLoop && "Should (at least) be in the loop being unrolled!");
+
+ Loop *&NewLoop = NewLoops[OldLoop];
+ if (!NewLoop) {
+ // Found a new sub-loop.
+ assert(*BB == OldLoop->getHeader() &&
+ "Header should be first in RPO");
+
+ Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
+ assert(NewLoopParent &&
+ "Expected parent loop before sub-loop in RPO");
+ NewLoop = new Loop;
+ NewLoopParent->addChildLoop(NewLoop);
+
+ // Forget the old loop, since its inputs may have changed.
+ if (SE)
+ SE->forgetLoop(OldLoop);
+ }
+ NewLoop->addBasicBlockToLoop(New, LI->getBase());
+ }
+
if (*BB == Header)
+ // Loop over all of the PHI nodes in the block, changing them to use
+ // the incoming values from the previous block.
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
@@ -325,8 +355,6 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
VI != VE; ++VI)
LastValueMap[VI->first] = VI->second;
- L->addBasicBlockToLoop(New, LI->getBase());
-
// Add phi entries for newly created values to all exit blocks.
for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
SI != SE; ++SI) {
@@ -442,6 +470,10 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
}
}
+ // FIXME: We could register any cloned assumptions instead of clearing the
+ // whole function's cache.
+ AC->clear();
+
DominatorTree *DT = nullptr;
if (PP) {
// FIXME: Reconstruct dom info, because it is not preserved properly.
@@ -453,7 +485,6 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
}
// Simplify any new induction variables in the partially unrolled loop.
- ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
if (SE && !CompletelyUnroll) {
SmallVector<WeakVH, 16> DeadInsts;
simplifyLoopIVs(L, SE, LPM, DeadInsts);
@@ -502,8 +533,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
if (OuterL) {
DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>();
const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
- ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
- simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL);
+ simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL, AC);
// LCSSA must be performed on the outermost affected loop. The unrolled
// loop's last loop latch is guaranteed to be in the outermost loop after
@@ -513,7 +543,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
while (OuterL->getParentLoop() != LatchLoop)
OuterL = OuterL->getParentLoop();
- formLCSSARecursively(*OuterL, *DT, SE);
+ formLCSSARecursively(*OuterL, *DT, LI, SE);
}
}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
index a96c46a..f12cd61 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -28,6 +28,7 @@
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -57,7 +58,7 @@ STATISTIC(NumRuntimeUnrolled,
static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
- ValueToValueMapTy &LVMap, Pass *P) {
+ ValueToValueMapTy &VMap, Pass *P) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
@@ -86,7 +87,7 @@ static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
Value *V = PN->getIncomingValueForBlock(Latch);
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (L->contains(I)) {
- V = LVMap[I];
+ V = VMap[I];
}
}
// Adding a value to the new PHI node from the last prolog block
@@ -127,76 +128,123 @@ static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
}
/// Create a clone of the blocks in a loop and connect them together.
-/// This function doesn't create a clone of the loop structure.
+/// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
+/// loop will be created including all cloned blocks, and the iterator of it
+/// switches to count NewIter down to 0.
///
-/// There are two value maps that are defined and used. VMap is
-/// for the values in the current loop instance. LVMap contains
-/// the values from the last loop instance. We need the LVMap values
-/// to update the initial values for the current loop instance.
-///
-static void CloneLoopBlocks(Loop *L,
- bool FirstCopy,
- BasicBlock *InsertTop,
- BasicBlock *InsertBot,
+static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
+ BasicBlock *InsertTop, BasicBlock *InsertBot,
std::vector<BasicBlock *> &NewBlocks,
- LoopBlocksDFS &LoopBlocks,
- ValueToValueMapTy &VMap,
- ValueToValueMapTy &LVMap,
+ LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
LoopInfo *LI) {
-
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
+ Loop *NewLoop = 0;
+ Loop *ParentLoop = L->getParentLoop();
+ if (!UnrollProlog) {
+ NewLoop = new Loop();
+ if (ParentLoop)
+ ParentLoop->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+ }
+
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
+ BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
NewBlocks.push_back(NewBB);
- if (Loop *ParentLoop = L->getParentLoop())
+ if (NewLoop)
+ NewLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ else if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
VMap[*BB] = NewBB;
if (Header == *BB) {
// For the first block, add a CFG connection to this newly
- // created block
+ // created block.
InsertTop->getTerminator()->setSuccessor(0, NewBB);
- // Change the incoming values to the ones defined in the
- // previously cloned loop.
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *NewPHI = cast<PHINode>(VMap[I]);
- if (FirstCopy) {
- // We replace the first phi node with the value from the preheader
- VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
- NewBB->getInstList().erase(NewPHI);
- } else {
- // Update VMap with values from the previous block
- unsigned idx = NewPHI->getBasicBlockIndex(Latch);
- Value *InVal = NewPHI->getIncomingValue(idx);
- if (Instruction *I = dyn_cast<Instruction>(InVal))
- if (L->contains(I))
- InVal = LVMap[InVal];
- NewPHI->setIncomingValue(idx, InVal);
- NewPHI->setIncomingBlock(idx, InsertTop);
- }
- }
}
-
if (Latch == *BB) {
+ // For the last block, if UnrollProlog is true, create a direct jump to
+ // InsertBot. If not, create a loop back to cloned head.
VMap.erase((*BB)->getTerminator());
- NewBB->getTerminator()->eraseFromParent();
- BranchInst::Create(InsertBot, NewBB);
+ BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
+ BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
+ if (UnrollProlog) {
+ LatchBR->eraseFromParent();
+ BranchInst::Create(InsertBot, NewBB);
+ } else {
+ PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
+ FirstLoopBB->getFirstNonPHI());
+ IRBuilder<> Builder(LatchBR);
+ Value *IdxSub =
+ Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
+ NewIdx->getName() + ".sub");
+ Value *IdxCmp =
+ Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
+ BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
+ NewIdx->addIncoming(NewIter, InsertTop);
+ NewIdx->addIncoming(IdxSub, NewBB);
+ LatchBR->eraseFromParent();
+ }
}
}
- // LastValueMap is updated with the values for the current loop
- // which are used the next time this function is called.
- for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
- VI != VE; ++VI) {
- LVMap[VI->first] = VI->second;
+
+ // Change the incoming values to the ones defined in the preheader or
+ // cloned loop.
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *NewPHI = cast<PHINode>(VMap[I]);
+ if (UnrollProlog) {
+ VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
+ cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
+ } else {
+ unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
+ NewPHI->setIncomingBlock(idx, InsertTop);
+ BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
+ idx = NewPHI->getBasicBlockIndex(Latch);
+ Value *InVal = NewPHI->getIncomingValue(idx);
+ NewPHI->setIncomingBlock(idx, NewLatch);
+ if (VMap[InVal])
+ NewPHI->setIncomingValue(idx, VMap[InVal]);
+ }
+ }
+ if (NewLoop) {
+ // Add unroll disable metadata to disable future unrolling for this loop.
+ SmallVector<Metadata *, 4> MDs;
+ // Reserve first location for self reference to the LoopID metadata node.
+ MDs.push_back(nullptr);
+ MDNode *LoopID = NewLoop->getLoopID();
+ if (LoopID) {
+ // First remove any existing loop unrolling metadata.
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ bool IsUnrollMetadata = false;
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (MD) {
+ const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
+ }
+ if (!IsUnrollMetadata)
+ MDs.push_back(LoopID->getOperand(i));
+ }
+ }
+
+ LLVMContext &Context = NewLoop->getHeader()->getContext();
+ SmallVector<Metadata *, 1> DisableOperands;
+ DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
+ MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+ MDs.push_back(DisableNode);
+
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ NewLoop->setLoopID(NewLoopID);
}
}
@@ -212,18 +260,16 @@ static void CloneLoopBlocks(Loop *L,
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
/// the switch instruction is generated.
///
-/// extraiters = tripcount % loopfactor
-/// if (extraiters == 0) jump Loop:
-/// if (extraiters == loopfactor) jump L1
-/// if (extraiters == loopfactor-1) jump L2
-/// ...
-/// L1: LoopBody;
-/// L2: LoopBody;
-/// ...
-/// if tripcount < loopfactor jump End
-/// Loop:
-/// ...
-/// End:
+/// extraiters = tripcount % loopfactor
+/// if (extraiters == 0) jump Loop:
+/// else jump Prol
+/// Prol: LoopBody;
+/// extraiters -= 1 // Omitted if unroll factor is 2.
+/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
+/// if (tripcount < loopfactor) jump End
+/// Loop:
+/// ...
+/// End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
LPPassManager *LPM) {
@@ -250,6 +296,10 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
return false;
+ // If BECount is INT_MAX, we can't compute trip-count without overflow.
+ if (BECount->isAllOnesValue())
+ return false;
+
// Add 1 since the backedge count doesn't include the first loop iteration
const SCEV *TripCountSC =
SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
@@ -284,26 +334,21 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
IRBuilder<> B(PreHeaderBR);
Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
- // Check if for no extra iterations, then jump to unrolled loop. We have to
- // check that the trip count computation didn't overflow when adding one to
- // the backedge taken count.
+ // Check if for no extra iterations, then jump to cloned/unrolled loop.
+ // We have to check that the trip count computation didn't overflow when
+ // adding one to the backedge taken count.
Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod");
Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow");
Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or");
- // Branch to either the extra iterations or the unrolled loop
+ // Branch to either the extra iterations or the cloned/unrolled loop
// We will fix up the true branch label when adding loop body copies
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
assert(PreHeaderBR->isUnconditional() &&
PreHeaderBR->getSuccessor(0) == PEnd &&
"CFG edges in Preheader are not correct");
PreHeaderBR->eraseFromParent();
-
- ValueToValueMapTy LVMap;
Function *F = Header->getParent();
- // These variables are used to update the CFG links in each iteration
- BasicBlock *CompareBB = nullptr;
- BasicBlock *LastLoopBB = PH;
// Get an ordered list of blocks in the loop to help with the ordering of the
// cloned blocks in the prolog code
LoopBlocksDFS LoopBlocks(L);
@@ -314,62 +359,39 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
// and generate a condition that branches to the copy depending on the
// number of 'left over' iterations.
//
- for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
- std::vector<BasicBlock*> NewBlocks;
- ValueToValueMapTy VMap;
-
- // Clone all the basic blocks in the loop, but we don't clone the loop
- // This function adds the appropriate CFG connections.
- CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
- LoopBlocks, VMap, LVMap, LI);
- LastLoopBB = cast<BasicBlock>(VMap[Latch]);
-
- // Insert the cloned blocks into function just before the original loop
- F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
- NewBlocks[0], F->end());
-
- // Generate the code for the comparison which determines if the loop
- // prolog code needs to be executed.
- if (leftOverIters == Count-1) {
- // There is no compare block for the fall-thru case when for the last
- // left over iteration
- CompareBB = NewBlocks[0];
- } else {
- // Create a new block for the comparison
- BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
- F, CompareBB);
- if (Loop *ParentLoop = L->getParentLoop()) {
- // Add the new block to the parent loop, if needed
- ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- }
-
- // The comparison w/ the extra iteration value and branch
- Type *CountTy = TripCount->getType();
- Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
- ConstantInt::get(CountTy, leftOverIters),
- "un.tmp");
- // Branch to either the extra iterations or the unrolled loop
- BranchInst::Create(NewBlocks[0], CompareBB,
- BranchVal, NewBB);
- CompareBB = NewBB;
- PH->getTerminator()->setSuccessor(0, NewBB);
- VMap[NewPH] = CompareBB;
- }
-
- // Rewrite the cloned instruction operands to use the values
- // created when the clone is created.
- for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
- for (BasicBlock::iterator I = NewBlocks[i]->begin(),
- E = NewBlocks[i]->end(); I != E; ++I) {
- RemapInstruction(I, VMap,
- RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
- }
+ std::vector<BasicBlock *> NewBlocks;
+ ValueToValueMapTy VMap;
+
+ // If unroll count is 2 and we can't overflow in tripcount computation (which
+ // is BECount + 1), then we don't need a loop for prologue, and we can unroll
+ // it. We can be sure that we don't overflow only if tripcount is a constant.
+ bool UnrollPrologue = (Count == 2 && isa<ConstantInt>(TripCount));
+
+ // Clone all the basic blocks in the loop. If Count is 2, we don't clone
+ // the loop, otherwise we create a cloned loop to execute the extra
+ // iterations. This function adds the appropriate CFG connections.
+ CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
+ VMap, LI);
+
+ // Insert the cloned blocks into function just before the original loop
+ F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
+ F->end());
+
+ // Rewrite the cloned instruction operands to use the values
+ // created when the clone is created.
+ for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
+ for (BasicBlock::iterator I = NewBlocks[i]->begin(),
+ E = NewBlocks[i]->end();
+ I != E; ++I) {
+ RemapInstruction(I, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
}
}
// Connect the prolog code to the original loop and update the
// PHI functions.
- ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
+ BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
+ ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
LPM->getAsPass());
NumRuntimeUnrolled++;
return true;
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
index d6e5bb6..04b9130 100644
--- a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
@@ -46,7 +46,6 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
// This is a cluster of orthogonal Transforms
AU.addPreserved<UnifyFunctionExitNodes>();
- AU.addPreserved("mem2reg");
AU.addPreservedID(LowerInvokePassID);
}
@@ -131,18 +130,39 @@ static raw_ostream& operator<<(raw_ostream &O,
return O << "]";
}
-static void fixPhis(BasicBlock *Succ,
- BasicBlock *OrigBlock,
- BasicBlock *NewNode) {
- for (BasicBlock::iterator I = Succ->begin(),
- E = Succ->getFirstNonPHI();
- I != E; ++I) {
+// \brief Update the first occurrence of the "switch statement" BB in the PHI
+// node with the "new" BB. The other occurrences will:
+//
+// 1) Be updated by subsequent calls to this function. Switch statements may
+// have more than one outcoming edge into the same BB if they all have the same
+// value. When the switch statement is converted these incoming edges are now
+// coming from multiple BBs.
+// 2) Removed if subsequent incoming values now share the same case, i.e.,
+// multiple outcome edges are condensed into one. This is necessary to keep the
+// number of phi values equal to the number of branches to SuccBB.
+static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
+ unsigned NumMergedCases) {
+ for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI();
+ I != IE; ++I) {
PHINode *PN = cast<PHINode>(I);
- for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
- if (PN->getIncomingBlock(I) == OrigBlock)
- PN->setIncomingBlock(I, NewNode);
+ // Only update the first occurence.
+ unsigned Idx = 0, E = PN->getNumIncomingValues();
+ unsigned LocalNumMergedCases = NumMergedCases;
+ for (; Idx != E; ++Idx) {
+ if (PN->getIncomingBlock(Idx) == OrigBB) {
+ PN->setIncomingBlock(Idx, NewBB);
+ break;
+ }
}
+
+ // Remove additional occurences coming from condensed cases and keep the
+ // number of incoming values equal to the number of branches to SuccBB.
+ for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
+ if (PN->getIncomingBlock(Idx) == OrigBB) {
+ PN->removeIncomingValue(Idx);
+ LocalNumMergedCases--;
+ }
}
}
@@ -165,7 +185,11 @@ BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
// emitting the code that checks if the value actually falls in the range
// because the bounds already tell us so.
if (Begin->Low == LowerBound && Begin->High == UpperBound) {
- fixPhis(Begin->BB, OrigBlock, Predecessor);
+ unsigned NumMergedCases = 0;
+ if (LowerBound && UpperBound)
+ NumMergedCases =
+ UpperBound->getSExtValue() - LowerBound->getSExtValue();
+ fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
return Begin->BB;
}
return newLeafBlock(*Begin, Val, OrigBlock, Default);
diff --git a/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp b/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp
index 189caa7..00cf4e6 100644
--- a/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/Mem2Reg.cpp
@@ -14,6 +14,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
@@ -38,6 +39,7 @@ namespace {
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
// This is a cluster of orthogonal Transforms
@@ -51,6 +53,7 @@ namespace {
char PromotePass::ID = 0;
INITIALIZE_PASS_BEGIN(PromotePass, "mem2reg", "Promote Memory to Register",
false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(PromotePass, "mem2reg", "Promote Memory to Register",
false, false)
@@ -63,6 +66,8 @@ bool PromotePass::runOnFunction(Function &F) {
bool Changed = false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ AssumptionCache &AC =
+ getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
while (1) {
Allocas.clear();
@@ -76,7 +81,7 @@ bool PromotePass::runOnFunction(Function &F) {
if (Allocas.empty()) break;
- PromoteMemToReg(Allocas, DT);
+ PromoteMemToReg(Allocas, DT, nullptr, &AC);
NumPromoted += Allocas.size();
Changed = true;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp b/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
index d9dbbca..35c701e 100644
--- a/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
@@ -78,7 +78,7 @@ void llvm::appendToGlobalDtors(Module &M, Function *F, int Priority) {
}
GlobalVariable *
-llvm::collectUsedGlobalVariables(Module &M, SmallPtrSet<GlobalValue *, 8> &Set,
+llvm::collectUsedGlobalVariables(Module &M, SmallPtrSetImpl<GlobalValue *> &Set,
bool CompilerUsed) {
const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
GlobalVariable *GV = M.getGlobalVariable(Name);
diff --git a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index 06d73fe..dabadb7 100644
--- a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -238,6 +238,9 @@ struct PromoteMem2Reg {
/// An AliasSetTracker object to update. If null, don't update it.
AliasSetTracker *AST;
+ /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
+ AssumptionCache *AC;
+
/// Reverse mapping of Allocas.
DenseMap<AllocaInst *, unsigned> AllocaLookup;
@@ -279,9 +282,10 @@ struct PromoteMem2Reg {
public:
PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
- AliasSetTracker *AST)
+ AliasSetTracker *AST, AssumptionCache *AC)
: Allocas(Allocas.begin(), Allocas.end()), DT(DT),
- DIB(*DT.getRoot()->getParent()->getParent()), AST(AST) {}
+ DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
+ AST(AST), AC(AC) {}
void run();
@@ -302,8 +306,8 @@ private:
void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
AllocaInfo &Info);
void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
- SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
+ const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
+ SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncVals,
std::vector<RenamePassData> &Worklist);
@@ -412,7 +416,8 @@ static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
// Record debuginfo for the store and remove the declaration's
// debuginfo.
if (DbgDeclareInst *DDI = Info.DbgDeclare) {
- DIBuilder DIB(*AI->getParent()->getParent()->getParent());
+ DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
+ /*AllowUnresolved*/ false);
ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
DDI->eraseFromParent();
LBI.deleteValue(DDI);
@@ -495,7 +500,8 @@ static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
StoreInst *SI = cast<StoreInst>(AI->user_back());
// Record debuginfo for the store before removing it.
if (DbgDeclareInst *DDI = Info.DbgDeclare) {
- DIBuilder DIB(*AI->getParent()->getParent()->getParent());
+ DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
+ /*AllowUnresolved*/ false);
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
}
SI->eraseFromParent();
@@ -685,7 +691,7 @@ void PromoteMem2Reg::run() {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT)) {
+ if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AC)) {
if (AST && PN->getType()->isPointerTy())
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
@@ -766,8 +772,8 @@ void PromoteMem2Reg::run() {
/// inserted phi nodes would be dead).
void PromoteMem2Reg::ComputeLiveInBlocks(
AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
- SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
+ const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
+ SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
// To determine liveness, we must iterate through the predecessors of blocks
// where the def is live. Blocks are added to the worklist if we need to
@@ -816,7 +822,7 @@ void PromoteMem2Reg::ComputeLiveInBlocks(
// The block really is live in here, insert it into the set. If already in
// the set, then it has already been processed.
- if (!LiveInBlocks.insert(BB))
+ if (!LiveInBlocks.insert(BB).second)
continue;
// Since the value is live into BB, it is either defined in a predecessor or
@@ -857,10 +863,8 @@ void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
less_second> IDFPriorityQueue;
IDFPriorityQueue PQ;
- for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
- E = DefBlocks.end();
- I != E; ++I) {
- if (DomTreeNode *Node = DT.getNode(*I))
+ for (BasicBlock *BB : DefBlocks) {
+ if (DomTreeNode *Node = DT.getNode(BB))
PQ.push(std::make_pair(Node, DomLevels[Node]));
}
@@ -898,7 +902,7 @@ void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
if (SuccLevel > RootLevel)
continue;
- if (!Visited.insert(SuccNode))
+ if (!Visited.insert(SuccNode).second)
continue;
BasicBlock *SuccBB = SuccNode->getBlock();
@@ -1003,7 +1007,7 @@ NextIteration:
}
// Don't revisit blocks.
- if (!Visited.insert(BB))
+ if (!Visited.insert(BB).second)
return;
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
@@ -1060,17 +1064,17 @@ NextIteration:
++I;
for (; I != E; ++I)
- if (VisitedSuccs.insert(*I))
+ if (VisitedSuccs.insert(*I).second)
Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
goto NextIteration;
}
void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
- AliasSetTracker *AST) {
+ AliasSetTracker *AST, AssumptionCache *AC) {
// If there is nothing to do, bail out...
if (Allocas.empty())
return;
- PromoteMem2Reg(Allocas, DT, AST).run();
+ PromoteMem2Reg(Allocas, DT, AST, AC).run();
}
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
index 24bb63b..f6867c2 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -43,6 +43,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <map>
#include <set>
@@ -68,12 +70,24 @@ static cl::opt<bool> HoistCondStores(
cl::desc("Hoist conditional stores if an unconditional store precedes"));
STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
+STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
+STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
STATISTIC(NumSpeculations, "Number of speculative executed instructions");
namespace {
+ // The first field contains the value that the switch produces when a certain
+ // case group is selected, and the second field is a vector containing the cases
+ // composing the case group.
+ typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
+ SwitchCaseResultVectorTy;
+ // The first field contains the phi node that generates a result of the switch
+ // and the second field contains the value generated for a certain case in the switch
+ // for that PHI.
+ typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
+
/// ValueEqualityComparisonCase - Represents a case of a switch.
struct ValueEqualityComparisonCase {
ConstantInt *Value;
@@ -92,7 +106,9 @@ namespace {
class SimplifyCFGOpt {
const TargetTransformInfo &TTI;
+ unsigned BonusInstThreshold;
const DataLayout *const DL;
+ AssumptionCache *AC;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
std::vector<ValueEqualityComparisonCase> &Cases);
@@ -111,8 +127,9 @@ class SimplifyCFGOpt {
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
- SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL)
- : TTI(TTI), DL(DL) {}
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
+ const DataLayout *DL, AssumptionCache *AC)
+ : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AC(AC) {}
bool run(BasicBlock *BB);
};
}
@@ -256,7 +273,7 @@ static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
/// V plus its non-dominating operands. If that cost is greater than
/// CostRemaining, false is returned and CostRemaining is undefined.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
- SmallPtrSet<Instruction*, 4> *AggressiveInsts,
+ SmallPtrSetImpl<Instruction*> *AggressiveInsts,
unsigned &CostRemaining,
const DataLayout *DL) {
Instruction *I = dyn_cast<Instruction>(V);
@@ -341,114 +358,177 @@ static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
return nullptr;
}
-/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
-/// collection of icmp eq/ne instructions that compare a value against a
-/// constant, return the value being compared, and stick the constant into the
-/// Values vector.
-static Value *
-GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
- const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return nullptr;
-
- // If this is an icmp against a constant, handle this as one of the cases.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
- if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
- Value *RHSVal;
- ConstantInt *RHSC;
-
- if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
- // (x & ~2^x) == y --> x == y || x == y|2^x
- // This undoes a transformation done by instcombine to fuse 2 compares.
- if (match(ICI->getOperand(0),
- m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
- APInt Not = ~RHSC->getValue();
- if (Not.isPowerOf2()) {
- Vals.push_back(C);
- Vals.push_back(
- ConstantInt::get(C->getContext(), C->getValue() | Not));
- UsedICmps++;
- return RHSVal;
- }
- }
+namespace {
+
+/// Given a chain of or (||) or and (&&) comparison of a value against a
+/// constant, this will try to recover the information required for a switch
+/// structure.
+/// It will depth-first traverse the chain of comparison, seeking for patterns
+/// like %a == 12 or %a < 4 and combine them to produce a set of integer
+/// representing the different cases for the switch.
+/// Note that if the chain is composed of '||' it will build the set of elements
+/// that matches the comparisons (i.e. any of this value validate the chain)
+/// while for a chain of '&&' it will build the set elements that make the test
+/// fail.
+struct ConstantComparesGatherer {
+
+ Value *CompValue; /// Value found for the switch comparison
+ Value *Extra; /// Extra clause to be checked before the switch
+ SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
+ unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
+
+ /// Construct and compute the result for the comparison instruction Cond
+ ConstantComparesGatherer(Instruction *Cond, const DataLayout *DL)
+ : CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
+ gather(Cond, DL);
+ }
+
+ /// Prevent copy
+ ConstantComparesGatherer(const ConstantComparesGatherer &)
+ LLVM_DELETED_FUNCTION;
+ ConstantComparesGatherer &
+ operator=(const ConstantComparesGatherer &) LLVM_DELETED_FUNCTION;
+
+private:
- UsedICmps++;
- Vals.push_back(C);
- return I->getOperand(0);
+ /// Try to set the current value used for the comparison, it succeeds only if
+ /// it wasn't set before or if the new value is the same as the old one
+ bool setValueOnce(Value *NewVal) {
+ if(CompValue && CompValue != NewVal) return false;
+ CompValue = NewVal;
+ return (CompValue != nullptr);
+ }
+
+ /// Try to match Instruction "I" as a comparison against a constant and
+ /// populates the array Vals with the set of values that match (or do not
+ /// match depending on isEQ).
+ /// Return false on failure. On success, the Value the comparison matched
+ /// against is placed in CompValue.
+ /// If CompValue is already set, the function is expected to fail if a match
+ /// is found but the value compared to is different.
+ bool matchInstruction(Instruction *I, const DataLayout *DL, bool isEQ) {
+ // If this is an icmp against a constant, handle this as one of the cases.
+ ICmpInst *ICI;
+ ConstantInt *C;
+ if (!((ICI = dyn_cast<ICmpInst>(I)) &&
+ (C = GetConstantInt(I->getOperand(1), DL)))) {
+ return false;
+ }
+
+ Value *RHSVal;
+ ConstantInt *RHSC;
+
+ // Pattern match a special case
+ // (x & ~2^x) == y --> x == y || x == y|2^x
+ // This undoes a transformation done by instcombine to fuse 2 compares.
+ if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
+ if (match(ICI->getOperand(0),
+ m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
+ APInt Not = ~RHSC->getValue();
+ if (Not.isPowerOf2()) {
+ // If we already have a value for the switch, it has to match!
+ if(!setValueOnce(RHSVal))
+ return false;
+
+ Vals.push_back(C);
+ Vals.push_back(ConstantInt::get(C->getContext(),
+ C->getValue() | Not));
+ UsedICmps++;
+ return true;
+ }
}
- // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
- // the set.
- ConstantRange Span =
- ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
-
- // Shift the range if the compare is fed by an add. This is the range
- // compare idiom as emitted by instcombine.
- bool hasAdd =
- match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
- if (hasAdd)
- Span = Span.subtract(RHSC->getValue());
-
- // If this is an and/!= check then we want to optimize "x ugt 2" into
- // x != 0 && x != 1.
- if (!isEQ)
- Span = Span.inverse();
-
- // If there are a ton of values, we don't want to make a ginormous switch.
- if (Span.getSetSize().ugt(8) || Span.isEmptySet())
- return nullptr;
-
- for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
- Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
+ // If we already have a value for the switch, it has to match!
+ if(!setValueOnce(ICI->getOperand(0)))
+ return false;
+
UsedICmps++;
- return hasAdd ? RHSVal : I->getOperand(0);
+ Vals.push_back(C);
+ return ICI->getOperand(0);
}
- return nullptr;
- }
- // Otherwise, we can only handle an | or &, depending on isEQ.
- if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
- return nullptr;
+ // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
+ ConstantRange Span = ConstantRange::makeICmpRegion(ICI->getPredicate(),
+ C->getValue());
- unsigned NumValsBeforeLHS = Vals.size();
- unsigned UsedICmpsBeforeLHS = UsedICmps;
- if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
- isEQ, UsedICmps)) {
- unsigned NumVals = Vals.size();
- unsigned UsedICmpsBeforeRHS = UsedICmps;
- if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
- isEQ, UsedICmps)) {
- if (LHS == RHS)
- return LHS;
- Vals.resize(NumVals);
- UsedICmps = UsedICmpsBeforeRHS;
+ // Shift the range if the compare is fed by an add. This is the range
+ // compare idiom as emitted by instcombine.
+ Value *CandidateVal = I->getOperand(0);
+ if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
+ Span = Span.subtract(RHSC->getValue());
+ CandidateVal = RHSVal;
}
- // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
- // set it and return success.
- if (Extra == nullptr || Extra == I->getOperand(1)) {
- Extra = I->getOperand(1);
- return LHS;
+ // If this is an and/!= check, then we are looking to build the set of
+ // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
+ // x != 0 && x != 1.
+ if (!isEQ)
+ Span = Span.inverse();
+
+ // If there are a ton of values, we don't want to make a ginormous switch.
+ if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
+ return false;
}
- Vals.resize(NumValsBeforeLHS);
- UsedICmps = UsedICmpsBeforeLHS;
- return nullptr;
+ // If we already have a value for the switch, it has to match!
+ if(!setValueOnce(CandidateVal))
+ return false;
+
+ // Add all values from the range to the set
+ for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
+ Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
+
+ UsedICmps++;
+ return true;
+
}
- // If the LHS can't be folded in, but Extra is available and RHS can, try to
- // use LHS as Extra.
- if (Extra == nullptr || Extra == I->getOperand(0)) {
- Value *OldExtra = Extra;
- Extra = I->getOperand(0);
- if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
- isEQ, UsedICmps))
- return RHS;
- assert(Vals.size() == NumValsBeforeLHS);
- Extra = OldExtra;
+ /// gather - Given a potentially 'or'd or 'and'd together collection of icmp
+ /// eq/ne/lt/gt instructions that compare a value against a constant, extract
+ /// the value being compared, and stick the list constants into the Vals
+ /// vector.
+ /// One "Extra" case is allowed to differ from the other.
+ void gather(Value *V, const DataLayout *DL) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ bool isEQ = (I->getOpcode() == Instruction::Or);
+
+ // Keep a stack (SmallVector for efficiency) for depth-first traversal
+ SmallVector<Value *, 8> DFT;
+
+ // Initialize
+ DFT.push_back(V);
+
+ while(!DFT.empty()) {
+ V = DFT.pop_back_val();
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If it is a || (or && depending on isEQ), process the operands.
+ if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
+ DFT.push_back(I->getOperand(1));
+ DFT.push_back(I->getOperand(0));
+ continue;
+ }
+
+ // Try to match the current instruction
+ if (matchInstruction(I, DL, isEQ))
+ // Match succeed, continue the loop
+ continue;
+ }
+
+ // One element of the sequence of || (or &&) could not be match as a
+ // comparison against the same value as the others.
+ // We allow only one "Extra" case to be checked before the switch
+ if (!Extra) {
+ Extra = V;
+ continue;
+ }
+ // Failed to parse a proper sequence, abort now
+ CompValue = nullptr;
+ break;
+ }
}
+};
- return nullptr;
}
static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
@@ -628,13 +708,12 @@ SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
// Collect branch weights into a vector.
SmallVector<uint32_t, 8> Weights;
- MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
if (HasWeight)
for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
++MD_i) {
- ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
- assert(CI);
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
Weights.push_back(CI->getValue().getZExtValue());
}
for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
@@ -723,7 +802,7 @@ static int ConstantIntSortPredicate(ConstantInt *const *P1,
}
static inline bool HasBranchWeights(const Instruction* I) {
- MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
+ MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
if (ProfMD && ProfMD->getOperand(0))
if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
return MDS->getString().equals("branch_weights");
@@ -736,10 +815,10 @@ static inline bool HasBranchWeights(const Instruction* I) {
/// metadata.
static void GetBranchWeights(TerminatorInst *TI,
SmallVectorImpl<uint64_t> &Weights) {
- MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
+ MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
assert(MD);
for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
- ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i));
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
Weights.push_back(CI->getValue().getZExtValue());
}
@@ -995,6 +1074,8 @@ static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
return true;
}
+static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
+
/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block. The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
@@ -1040,6 +1121,14 @@ static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->intersectOptionalDataWith(I2);
+ unsigned KnownIDs[] = {
+ LLVMContext::MD_tbaa,
+ LLVMContext::MD_range,
+ LLVMContext::MD_fpmath,
+ LLVMContext::MD_invariant_load,
+ LLVMContext::MD_nonnull
+ };
+ combineMetadata(I1, I2, KnownIDs);
I2->eraseFromParent();
Changed = true;
@@ -1072,6 +1161,12 @@ HoistTerminator:
if (BB1V == BB2V)
continue;
+ // Check for passingValueIsAlwaysUndefined here because we would rather
+ // eliminate undefined control flow then converting it to a select.
+ if (passingValueIsAlwaysUndefined(BB1V, PN) ||
+ passingValueIsAlwaysUndefined(BB2V, PN))
+ return Changed;
+
if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
return Changed;
if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
@@ -1149,14 +1244,13 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
return false;
// Gather the PHI nodes in BBEnd.
- std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
+ SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
Instruction *FirstNonPhiInBBEnd = nullptr;
- for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
- I != E; ++I) {
+ for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
- MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
+ JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
} else {
FirstNonPhiInBBEnd = &*I;
break;
@@ -1165,13 +1259,13 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
if (!FirstNonPhiInBBEnd)
return false;
-
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. We scan backward for obviously identical
// instructions in an identical order.
BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
- RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
- RE2 = BB2->getInstList().rend();
+ RE1 = BB1->getInstList().rend(),
+ RI2 = BB2->getInstList().rbegin(),
+ RE2 = BB2->getInstList().rend();
// Skip debug info.
while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
if (RI1 == RE1)
@@ -1194,6 +1288,7 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
return Changed;
Instruction *I1 = &*RI1, *I2 = &*RI2;
+ auto InstPair = std::make_pair(I1, I2);
// I1 and I2 should have a single use in the same PHI node, and they
// perform the same operation.
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
@@ -1204,11 +1299,11 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
!I1->hasOneUse() || !I2->hasOneUse() ||
- MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
- MapValueFromBB1ToBB2[I1].first != I2)
+ !JointValueMap.count(InstPair))
return Changed;
// Check whether we should swap the operands of ICmpInst.
+ // TODO: Add support of communativity.
ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
bool SwapOpnds = false;
if (ICmp1 && ICmp2 &&
@@ -1229,16 +1324,13 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
// with a PHI node after sinking. We only handle the case where there is
// a single pair of different operands.
Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
- unsigned Op1Idx = 0;
+ unsigned Op1Idx = ~0U;
for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
if (I1->getOperand(I) == I2->getOperand(I))
continue;
- // Early exit if we have more-than one pair of different operands or
- // the different operand is already in MapValueFromBB1ToBB2.
- // Early exit if we need a PHI node to replace a constant.
- if (DifferentOp1 ||
- MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
- MapValueFromBB1ToBB2.end() ||
+ // Early exit if we have more-than one pair of different operands or if
+ // we need a PHI node to replace a constant.
+ if (Op1Idx != ~0U ||
isa<Constant>(I1->getOperand(I)) ||
isa<Constant>(I2->getOperand(I))) {
// If we can't sink the instructions, undo the swapping.
@@ -1251,24 +1343,27 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
DifferentOp2 = I2->getOperand(I);
}
- // We insert the pair of different operands to MapValueFromBB1ToBB2 and
- // remove (I1, I2) from MapValueFromBB1ToBB2.
- if (DifferentOp1) {
- PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
- DifferentOp1->getName() + ".sink",
- BBEnd->begin());
- MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
+ DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
+ DEBUG(dbgs() << " " << *I2 << "\n");
+
+ // We insert the pair of different operands to JointValueMap and
+ // remove (I1, I2) from JointValueMap.
+ if (Op1Idx != ~0U) {
+ auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
+ if (!NewPN) {
+ NewPN =
+ PHINode::Create(DifferentOp1->getType(), 2,
+ DifferentOp1->getName() + ".sink", BBEnd->begin());
+ NewPN->addIncoming(DifferentOp1, BB1);
+ NewPN->addIncoming(DifferentOp2, BB2);
+ DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
+ }
// I1 should use NewPN instead of DifferentOp1.
I1->setOperand(Op1Idx, NewPN);
- NewPN->addIncoming(DifferentOp1, BB1);
- NewPN->addIncoming(DifferentOp2, BB2);
- DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
}
- PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
- MapValueFromBB1ToBB2.erase(I1);
+ PHINode *OldPN = JointValueMap[InstPair];
+ JointValueMap.erase(InstPair);
- DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
- DEBUG(dbgs() << " " << *I2 << "\n";);
// We need to update RE1 and RE2 if we are going to sink the first
// instruction in the basic block down.
bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
@@ -1281,6 +1376,8 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->intersectOptionalDataWith(I2);
+ // TODO: Use combineMetadata here to preserve what metadata we can
+ // (analogous to the hoisting case above).
I2->eraseFromParent();
if (UpdateRE1)
@@ -1486,6 +1583,11 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
if (ThenV == OrigV)
continue;
+ // Don't convert to selects if we could remove undefined behavior instead.
+ if (passingValueIsAlwaysUndefined(OrigV, PN) ||
+ passingValueIsAlwaysUndefined(ThenV, PN))
+ return false;
+
HaveRewritablePHIs = true;
ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
@@ -1934,8 +2036,10 @@ static bool ExtractBranchMetadata(BranchInst *BI,
"Looking for probabilities on unconditional branch?");
MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
- ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
- ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
+ ConstantInt *CITrue =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
+ ConstantInt *CIFalse =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
if (!CITrue || !CIFalse) return false;
ProbTrue = CITrue->getValue().getZExtValue();
ProbFalse = CIFalse->getValue().getZExtValue();
@@ -1963,7 +2067,8 @@ static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
/// predecessor branches to us and one of our successors, fold the block into
/// the predecessor and use logical operations to pick the right destination.
-bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
+bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
+ unsigned BonusInstThreshold) {
BasicBlock *BB = BI->getParent();
Instruction *Cond = nullptr;
@@ -2000,33 +2105,6 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
Cond->getParent() != BB || !Cond->hasOneUse())
return false;
- // Only allow this if the condition is a simple instruction that can be
- // executed unconditionally. It must be in the same block as the branch, and
- // must be at the front of the block.
- BasicBlock::iterator FrontIt = BB->front();
-
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
-
- // Allow a single instruction to be hoisted in addition to the compare
- // that feeds the branch. We later ensure that any values that _it_ uses
- // were also live in the predecessor, so that we don't unnecessarily create
- // register pressure or inhibit out-of-order execution.
- Instruction *BonusInst = nullptr;
- if (&*FrontIt != Cond &&
- FrontIt->hasOneUse() && FrontIt->user_back() == Cond &&
- isSafeToSpeculativelyExecute(FrontIt, DL)) {
- BonusInst = &*FrontIt;
- ++FrontIt;
-
- // Ignore dbg intrinsics.
- while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
- }
-
- // Only a single bonus inst is allowed.
- if (&*FrontIt != Cond)
- return false;
-
// Make sure the instruction after the condition is the cond branch.
BasicBlock::iterator CondIt = Cond; ++CondIt;
@@ -2036,6 +2114,31 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
if (&*CondIt != BI)
return false;
+ // Only allow this transformation if computing the condition doesn't involve
+ // too many instructions and these involved instructions can be executed
+ // unconditionally. We denote all involved instructions except the condition
+ // as "bonus instructions", and only allow this transformation when the
+ // number of the bonus instructions does not exceed a certain threshold.
+ unsigned NumBonusInsts = 0;
+ for (auto I = BB->begin(); Cond != I; ++I) {
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+ if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL))
+ return false;
+ // I has only one use and can be executed unconditionally.
+ Instruction *User = dyn_cast<Instruction>(I->user_back());
+ if (User == nullptr || User->getParent() != BB)
+ return false;
+ // I is used in the same BB. Since BI uses Cond and doesn't have more slots
+ // to use any other instruction, User must be an instruction between next(I)
+ // and Cond.
+ ++NumBonusInsts;
+ // Early exits once we reach the limit.
+ if (NumBonusInsts > BonusInstThreshold)
+ return false;
+ }
+
// Cond is known to be a compare or binary operator. Check to make sure that
// neither operand is a potentially-trapping constant expression.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
@@ -2086,49 +2189,6 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
continue;
}
- // Ensure that any values used in the bonus instruction are also used
- // by the terminator of the predecessor. This means that those values
- // must already have been resolved, so we won't be inhibiting the
- // out-of-order core by speculating them earlier. We also allow
- // instructions that are used by the terminator's condition because it
- // exposes more merging opportunities.
- bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
- BonusInst->user_back() == Cond);
-
- if (BonusInst && !UsedByBranch) {
- // Collect the values used by the bonus inst
- SmallPtrSet<Value*, 4> UsedValues;
- for (Instruction::op_iterator OI = BonusInst->op_begin(),
- OE = BonusInst->op_end(); OI != OE; ++OI) {
- Value *V = *OI;
- if (!isa<Constant>(V) && !isa<Argument>(V))
- UsedValues.insert(V);
- }
-
- SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
- Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
-
- // Walk up to four levels back up the use-def chain of the predecessor's
- // terminator to see if all those values were used. The choice of four
- // levels is arbitrary, to provide a compile-time-cost bound.
- while (!Worklist.empty()) {
- std::pair<Value*, unsigned> Pair = Worklist.back();
- Worklist.pop_back();
-
- if (Pair.second >= 4) continue;
- UsedValues.erase(Pair.first);
- if (UsedValues.empty()) break;
-
- if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
- for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
- }
- }
-
- if (!UsedValues.empty()) return false;
- }
-
DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
IRBuilder<> Builder(PBI);
@@ -2148,30 +2208,41 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
PBI->swapSuccessors();
}
- // If we have a bonus inst, clone it into the predecessor block.
- Instruction *NewBonus = nullptr;
- if (BonusInst) {
- NewBonus = BonusInst->clone();
+ // If we have bonus instructions, clone them into the predecessor block.
+ // Note that there may be mutliple predecessor blocks, so we cannot move
+ // bonus instructions to a predecessor block.
+ ValueToValueMapTy VMap; // maps original values to cloned values
+ // We already make sure Cond is the last instruction before BI. Therefore,
+ // every instructions before Cond other than DbgInfoIntrinsic are bonus
+ // instructions.
+ for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
+ if (isa<DbgInfoIntrinsic>(BonusInst))
+ continue;
+ Instruction *NewBonusInst = BonusInst->clone();
+ RemapInstruction(NewBonusInst, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
+ VMap[BonusInst] = NewBonusInst;
// If we moved a load, we cannot any longer claim any knowledge about
// its potential value. The previous information might have been valid
// only given the branch precondition.
// For an analogous reason, we must also drop all the metadata whose
// semantics we don't understand.
- NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg);
+ NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
- PredBlock->getInstList().insert(PBI, NewBonus);
- NewBonus->takeName(BonusInst);
- BonusInst->setName(BonusInst->getName()+".old");
+ PredBlock->getInstList().insert(PBI, NewBonusInst);
+ NewBonusInst->takeName(BonusInst);
+ BonusInst->setName(BonusInst->getName() + ".old");
}
// Clone Cond into the predecessor basic block, and or/and the
// two conditions together.
Instruction *New = Cond->clone();
- if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
+ RemapInstruction(New, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
PredBlock->getInstList().insert(PBI, New);
New->takeName(Cond);
- Cond->setName(New->getName()+".old");
+ Cond->setName(New->getName() + ".old");
if (BI->isConditional()) {
Instruction *NewCond =
@@ -2649,7 +2720,7 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
/// the PHI, merging the third icmp into the switch.
static bool TryToSimplifyUncondBranchWithICmpInIt(
ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
- const DataLayout *DL) {
+ unsigned BonusInstThreshold, const DataLayout *DL, AssumptionCache *AC) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2682,7 +2753,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
@@ -2698,7 +2769,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -2759,24 +2830,17 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (!Cond) return false;
-
// Change br (X == 0 | X == 1), T, F into a switch instruction.
// If this is a bunch of seteq's or'd together, or if it's a bunch of
// 'setne's and'ed together, collect them.
- Value *CompVal = nullptr;
- std::vector<ConstantInt*> Values;
- bool TrueWhenEqual = true;
- Value *ExtraCase = nullptr;
- unsigned UsedICmps = 0;
-
- if (Cond->getOpcode() == Instruction::Or) {
- CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
- UsedICmps);
- } else if (Cond->getOpcode() == Instruction::And) {
- CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
- UsedICmps);
- TrueWhenEqual = false;
- }
+
+ // Try to gather values from a chain of and/or to be turned into a switch
+ ConstantComparesGatherer ConstantCompare(Cond, DL);
+ // Unpack the result
+ SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
+ Value *CompVal = ConstantCompare.CompValue;
+ unsigned UsedICmps = ConstantCompare.UsedICmps;
+ Value *ExtraCase = ConstantCompare.Extra;
// If we didn't have a multiply compared value, fail.
if (!CompVal) return false;
@@ -2785,6 +2849,8 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
if (UsedICmps <= 1)
return false;
+ bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
+
// There might be duplicate constants in the list, which the switch
// instruction can't handle, remove them now.
array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
@@ -2954,7 +3020,7 @@ bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
}
// If we eliminated all predecessors of the block, delete the block now.
- if (pred_begin(BB) == pred_end(BB))
+ if (pred_empty(BB))
// We know there are no successors, so just nuke the block.
BB->eraseFromParent();
@@ -3127,7 +3193,7 @@ bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
}
// If this block is now dead, remove it.
- if (pred_begin(BB) == pred_end(BB) &&
+ if (pred_empty(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
// We know there are no successors, so just nuke the block.
BB->eraseFromParent();
@@ -3208,11 +3274,12 @@ static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
/// and use it to remove dead cases.
-static bool EliminateDeadSwitchCases(SwitchInst *SI) {
+static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL,
+ AssumptionCache *AC) {
Value *Cond = SI->getCondition();
unsigned Bits = Cond->getType()->getIntegerBitWidth();
APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
- computeKnownBits(Cond, KnownZero, KnownOne);
+ computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
// Gather dead cases.
SmallVector<ConstantInt*, 8> DeadCases;
@@ -3419,6 +3486,21 @@ GetCaseResults(SwitchInst *SI,
continue;
} else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
// Instruction is side-effect free and constant.
+
+ // If the instruction has uses outside this block or a phi node slot for
+ // the block, it is not safe to bypass the instruction since it would then
+ // no longer dominate all its uses.
+ for (auto &Use : I->uses()) {
+ User *User = Use.getUser();
+ if (Instruction *I = dyn_cast<Instruction>(User))
+ if (I->getParent() == CaseDest)
+ continue;
+ if (PHINode *Phi = dyn_cast<PHINode>(User))
+ if (Phi->getIncomingBlock(Use) == CaseDest)
+ continue;
+ return false;
+ }
+
ConstantPool.insert(std::make_pair(I, C));
} else {
break;
@@ -3444,12 +3526,6 @@ GetCaseResults(SwitchInst *SI,
if (!ConstVal)
return false;
- // Note: If the constant comes from constant-propagating the case value
- // through the CaseDest basic block, it will be safe to remove the
- // instructions in that block. They cannot be used (except in the phi nodes
- // we visit) outside CaseDest, because that block does not dominate its
- // successor. If it did, we would not be in this phi node.
-
// Be conservative about which kinds of constants we support.
if (!ValidLookupTableConstant(ConstVal))
return false;
@@ -3460,6 +3536,163 @@ GetCaseResults(SwitchInst *SI,
return Res.size() > 0;
}
+// MapCaseToResult - Helper function used to
+// add CaseVal to the list of cases that generate Result.
+static void MapCaseToResult(ConstantInt *CaseVal,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *Result) {
+ for (auto &I : UniqueResults) {
+ if (I.first == Result) {
+ I.second.push_back(CaseVal);
+ return;
+ }
+ }
+ UniqueResults.push_back(std::make_pair(Result,
+ SmallVector<ConstantInt*, 4>(1, CaseVal)));
+}
+
+// InitializeUniqueCases - Helper function that initializes a map containing
+// results for the PHI node of the common destination block for a switch
+// instruction. Returns false if multiple PHI nodes have been found or if
+// there is not a common destination block for the switch.
+static bool InitializeUniqueCases(
+ SwitchInst *SI, const DataLayout *DL, PHINode *&PHI,
+ BasicBlock *&CommonDest,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *&DefaultResult) {
+ for (auto &I : SI->cases()) {
+ ConstantInt *CaseVal = I.getCaseValue();
+
+ // Resulting value at phi nodes for this case value.
+ SwitchCaseResultsTy Results;
+ if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
+ DL))
+ return false;
+
+ // Only one value per case is permitted
+ if (Results.size() > 1)
+ return false;
+ MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
+
+ // Check the PHI consistency.
+ if (!PHI)
+ PHI = Results[0].first;
+ else if (PHI != Results[0].first)
+ return false;
+ }
+ // Find the default result value.
+ SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
+ BasicBlock *DefaultDest = SI->getDefaultDest();
+ GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
+ DL);
+ // If the default value is not found abort unless the default destination
+ // is unreachable.
+ DefaultResult =
+ DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
+ if ((!DefaultResult &&
+ !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
+ return false;
+
+ return true;
+}
+
+// ConvertTwoCaseSwitch - Helper function that checks if it is possible to
+// transform a switch with only two cases (or two cases + default)
+// that produces a result into a value select.
+// Example:
+// switch (a) {
+// case 10: %0 = icmp eq i32 %a, 10
+// return 10; %1 = select i1 %0, i32 10, i32 4
+// case 20: ----> %2 = icmp eq i32 %a, 20
+// return 2; %3 = select i1 %2, i32 2, i32 %1
+// default:
+// return 4;
+// }
+static Value *
+ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
+ Constant *DefaultResult, Value *Condition,
+ IRBuilder<> &Builder) {
+ assert(ResultVector.size() == 2 &&
+ "We should have exactly two unique results at this point");
+ // If we are selecting between only two cases transform into a simple
+ // select or a two-way select if default is possible.
+ if (ResultVector[0].second.size() == 1 &&
+ ResultVector[1].second.size() == 1) {
+ ConstantInt *const FirstCase = ResultVector[0].second[0];
+ ConstantInt *const SecondCase = ResultVector[1].second[0];
+
+ bool DefaultCanTrigger = DefaultResult;
+ Value *SelectValue = ResultVector[1].first;
+ if (DefaultCanTrigger) {
+ Value *const ValueCompare =
+ Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
+ SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
+ DefaultResult, "switch.select");
+ }
+ Value *const ValueCompare =
+ Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
+ return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
+ "switch.select");
+ }
+
+ return nullptr;
+}
+
+// RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch
+// instruction that has been converted into a select, fixing up PHI nodes and
+// basic blocks.
+static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
+ Value *SelectValue,
+ IRBuilder<> &Builder) {
+ BasicBlock *SelectBB = SI->getParent();
+ while (PHI->getBasicBlockIndex(SelectBB) >= 0)
+ PHI->removeIncomingValue(SelectBB);
+ PHI->addIncoming(SelectValue, SelectBB);
+
+ Builder.CreateBr(PHI->getParent());
+
+ // Remove the switch.
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
+ BasicBlock *Succ = SI->getSuccessor(i);
+
+ if (Succ == PHI->getParent())
+ continue;
+ Succ->removePredecessor(SelectBB);
+ }
+ SI->eraseFromParent();
+}
+
+/// SwitchToSelect - If the switch is only used to initialize one or more
+/// phi nodes in a common successor block with only two different
+/// constant values, replace the switch with select.
+static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout *DL, AssumptionCache *AC) {
+ Value *const Cond = SI->getCondition();
+ PHINode *PHI = nullptr;
+ BasicBlock *CommonDest = nullptr;
+ Constant *DefaultResult;
+ SwitchCaseResultVectorTy UniqueResults;
+ // Collect all the cases that will deliver the same value from the switch.
+ if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults,
+ DefaultResult))
+ return false;
+ // Selects choose between maximum two values.
+ if (UniqueResults.size() != 2)
+ return false;
+ assert(PHI != nullptr && "PHI for value select not found");
+
+ Builder.SetInsertPoint(SI);
+ Value *SelectValue = ConvertTwoCaseSwitch(
+ UniqueResults,
+ DefaultResult, Cond, Builder);
+ if (SelectValue) {
+ RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
+ return true;
+ }
+ // The switch couldn't be converted into a select.
+ return false;
+}
+
namespace {
/// SwitchLookupTable - This class represents a lookup table that can be used
/// to replace a switch.
@@ -3493,6 +3726,11 @@ namespace {
// store that single value and return it for each lookup.
SingleValueKind,
+ // For tables where there is a linear relationship between table index
+ // and values. We calculate the result with a simple multiplication
+ // and addition instead of a table lookup.
+ LinearMapKind,
+
// For small tables with integer elements, we can pack them into a bitmap
// that fits into a target-legal register. Values are retrieved by
// shift and mask operations.
@@ -3510,6 +3748,10 @@ namespace {
ConstantInt *BitMap;
IntegerType *BitMapElementTy;
+ // For LinearMapKind, these are the constants used to derive the value.
+ ConstantInt *LinearOffset;
+ ConstantInt *LinearMultiplier;
+
// For ArrayKind, this is the array.
GlobalVariable *Array;
};
@@ -3522,7 +3764,7 @@ SwitchLookupTable::SwitchLookupTable(Module &M,
Constant *DefaultValue,
const DataLayout *DL)
: SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
- Array(nullptr) {
+ LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
assert(Values.size() && "Can't build lookup table without values!");
assert(TableSize >= Values.size() && "Can't fit values in table!");
@@ -3567,6 +3809,43 @@ SwitchLookupTable::SwitchLookupTable(Module &M,
return;
}
+ // Check if we can derive the value with a linear transformation from the
+ // table index.
+ if (isa<IntegerType>(ValueType)) {
+ bool LinearMappingPossible = true;
+ APInt PrevVal;
+ APInt DistToPrev;
+ assert(TableSize >= 2 && "Should be a SingleValue table.");
+ // Check if there is the same distance between two consecutive values.
+ for (uint64_t I = 0; I < TableSize; ++I) {
+ ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
+ if (!ConstVal) {
+ // This is an undef. We could deal with it, but undefs in lookup tables
+ // are very seldom. It's probably not worth the additional complexity.
+ LinearMappingPossible = false;
+ break;
+ }
+ APInt Val = ConstVal->getValue();
+ if (I != 0) {
+ APInt Dist = Val - PrevVal;
+ if (I == 1) {
+ DistToPrev = Dist;
+ } else if (Dist != DistToPrev) {
+ LinearMappingPossible = false;
+ break;
+ }
+ }
+ PrevVal = Val;
+ }
+ if (LinearMappingPossible) {
+ LinearOffset = cast<ConstantInt>(TableContents[0]);
+ LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
+ Kind = LinearMapKind;
+ ++NumLinearMaps;
+ return;
+ }
+ }
+
// If the type is integer and the table fits in a register, build a bitmap.
if (WouldFitInRegister(DL, TableSize, ValueType)) {
IntegerType *IT = cast<IntegerType>(ValueType);
@@ -3602,6 +3881,16 @@ Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
switch (Kind) {
case SingleValueKind:
return SingleValue;
+ case LinearMapKind: {
+ // Derive the result value from the input value.
+ Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
+ false, "switch.idx.cast");
+ if (!LinearMultiplier->isOne())
+ Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
+ if (!LinearOffset->isZero())
+ Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
+ return Result;
+ }
case BitMapKind: {
// Type of the bitmap (e.g. i59).
IntegerType *MapTy = BitMap->getType();
@@ -3673,9 +3962,8 @@ static bool ShouldBuildLookupTable(SwitchInst *SI,
bool AllTablesFitInRegister = true;
bool HasIllegalType = false;
- for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
- E = ResultTypes.end(); I != E; ++I) {
- Type *Ty = I->second;
+ for (const auto &I : ResultTypes) {
+ Type *Ty = I.second;
// Saturate this flag to true.
HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
@@ -3705,6 +3993,89 @@ static bool ShouldBuildLookupTable(SwitchInst *SI,
return SI->getNumCases() * 10 >= TableSize * 4;
}
+/// Try to reuse the switch table index compare. Following pattern:
+/// \code
+/// if (idx < tablesize)
+/// r = table[idx]; // table does not contain default_value
+/// else
+/// r = default_value;
+/// if (r != default_value)
+/// ...
+/// \endcode
+/// Is optimized to:
+/// \code
+/// cond = idx < tablesize;
+/// if (cond)
+/// r = table[idx];
+/// else
+/// r = default_value;
+/// if (cond)
+/// ...
+/// \endcode
+/// Jump threading will then eliminate the second if(cond).
+static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
+ BranchInst *RangeCheckBranch, Constant *DefaultValue,
+ const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
+
+ ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
+ if (!CmpInst)
+ return;
+
+ // We require that the compare is in the same block as the phi so that jump
+ // threading can do its work afterwards.
+ if (CmpInst->getParent() != PhiBlock)
+ return;
+
+ Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
+ if (!CmpOp1)
+ return;
+
+ Value *RangeCmp = RangeCheckBranch->getCondition();
+ Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
+ Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
+
+ // Check if the compare with the default value is constant true or false.
+ Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
+ DefaultValue, CmpOp1, true);
+ if (DefaultConst != TrueConst && DefaultConst != FalseConst)
+ return;
+
+ // Check if the compare with the case values is distinct from the default
+ // compare result.
+ for (auto ValuePair : Values) {
+ Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
+ ValuePair.second, CmpOp1, true);
+ if (!CaseConst || CaseConst == DefaultConst)
+ return;
+ assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
+ "Expect true or false as compare result.");
+ }
+
+ // Check if the branch instruction dominates the phi node. It's a simple
+ // dominance check, but sufficient for our needs.
+ // Although this check is invariant in the calling loops, it's better to do it
+ // at this late stage. Practically we do it at most once for a switch.
+ BasicBlock *BranchBlock = RangeCheckBranch->getParent();
+ for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
+ return;
+ }
+
+ if (DefaultConst == FalseConst) {
+ // The compare yields the same result. We can replace it.
+ CmpInst->replaceAllUsesWith(RangeCmp);
+ ++NumTableCmpReuses;
+ } else {
+ // The compare yields the same result, just inverted. We can replace it.
+ Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
+ ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
+ RangeCheckBranch);
+ CmpInst->replaceAllUsesWith(InvertedTableCmp);
+ ++NumTableCmpReuses;
+ }
+}
+
/// SwitchToLookupTable - If the switch is only used to initialize one or more
/// phi nodes in a common successor block with different constant values,
/// replace the switch with lookup tables.
@@ -3759,16 +4130,17 @@ static bool SwitchToLookupTable(SwitchInst *SI,
return false;
// Append the result from this case to the list for each phi.
- for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
- if (!ResultLists.count(I->first))
- PHIs.push_back(I->first);
- ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
+ for (const auto &I : Results) {
+ PHINode *PHI = I.first;
+ Constant *Value = I.second;
+ if (!ResultLists.count(PHI))
+ PHIs.push_back(PHI);
+ ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
}
}
// Keep track of the result types.
- for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
- PHINode *PHI = PHIs[I];
+ for (PHINode *PHI : PHIs) {
ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
}
@@ -3780,11 +4152,9 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// If the table has holes, we need a constant result for the default case
// or a bitmask that fits in a register.
SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
- bool HasDefaultResults = false;
- if (TableHasHoles) {
- HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
+ bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
&CommonDest, DefaultResultsList, DL);
- }
+
bool NeedMask = (TableHasHoles && !HasDefaultResults);
if (NeedMask) {
// As an extra penalty for the validity test we require more cases.
@@ -3794,9 +4164,9 @@ static bool SwitchToLookupTable(SwitchInst *SI,
return false;
}
- for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
- PHINode *PHI = DefaultResultsList[I].first;
- Constant *Result = DefaultResultsList[I].second;
+ for (const auto &I : DefaultResultsList) {
+ PHINode *PHI = I.first;
+ Constant *Result = I.second;
DefaultResults[PHI] = Result;
}
@@ -3827,14 +4197,19 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// lookup table BB. Otherwise, check if the condition value is within the case
// range. If it is so, branch to the new BB. Otherwise branch to SI's default
// destination.
+ BranchInst *RangeCheckBranch = nullptr;
+
const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
if (GeneratingCoveredLookupTable) {
Builder.CreateBr(LookupBB);
- SI->getDefaultDest()->removePredecessor(SI->getParent());
+ // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
+ // do not delete PHINodes here.
+ SI->getDefaultDest()->removePredecessor(SI->getParent(),
+ true/*DontDeleteUselessPHIs*/);
} else {
Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
MinCaseVal->getType(), TableSize));
- Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
+ RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
}
// Populate the BB that does the lookups.
@@ -3851,9 +4226,12 @@ static bool SwitchToLookupTable(SwitchInst *SI,
CommonDest->getParent(),
CommonDest);
+ // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
+ // unnecessary illegal types.
+ uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
+ APInt MaskInt(TableSizePowOf2, 0);
+ APInt One(TableSizePowOf2, 1);
// Build bitmask; fill in a 1 bit for every case.
- APInt MaskInt(TableSize, 0);
- APInt One(TableSize, 1);
const ResultListTy &ResultList = ResultLists[PHIs[0]];
for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
uint64_t Idx = (ResultList[I].first->getValue() -
@@ -3882,11 +4260,11 @@ static bool SwitchToLookupTable(SwitchInst *SI,
bool ReturnedEarly = false;
for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
PHINode *PHI = PHIs[I];
+ const ResultListTy &ResultList = ResultLists[PHI];
// If using a bitmask, use any value to fill the lookup table holes.
Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
- SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
- DV, DL);
+ SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
Value *Result = Table.BuildLookup(TableIndex, Builder);
@@ -3899,6 +4277,16 @@ static bool SwitchToLookupTable(SwitchInst *SI,
break;
}
+ // Do a small peephole optimization: re-use the switch table compare if
+ // possible.
+ if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
+ BasicBlock *PhiBlock = PHI->getParent();
+ // Search for compare instructions which use the phi.
+ for (auto *User : PHI->users()) {
+ reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
+ }
+ }
+
PHI->addIncoming(Result, LookupBB);
}
@@ -3929,12 +4317,12 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
@@ -3944,22 +4332,25 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
++BBI;
if (SI == &*BBI)
if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
// Remove unreachable cases.
- if (EliminateDeadSwitchCases(SI))
- return SimplifyCFG(BB, TTI, DL) | true;
+ if (EliminateDeadSwitchCases(SI, DL, AC))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+
+ if (SwitchToSelect(SI, Builder, DL, AC))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
if (SwitchToLookupTable(SI, Builder, TTI, DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
return false;
}
@@ -3972,7 +4363,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
SmallPtrSet<Value *, 8> Succs;
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
BasicBlock *Dest = IBI->getDestination(i);
- if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
+ if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
Dest->removePredecessor(BB);
IBI->removeDestination(i);
--i; --e;
@@ -3996,7 +4387,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
return Changed;
}
@@ -4008,7 +4399,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
return true;
// If the Terminator is the only non-phi instruction, simplify the block.
- BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
+ BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
TryToSimplifyUncondBranchFromEmptyBlock(BB))
return true;
@@ -4020,7 +4411,8 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL))
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI,
+ BonusInstThreshold, DL, AC))
return true;
}
@@ -4028,8 +4420,8 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
// branches to us and our successor, fold the comparison into the
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
- if (FoldBranchToCommonDest(BI, DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
return false;
}
@@ -4044,7 +4436,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
@@ -4054,14 +4446,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
}
@@ -4072,8 +4464,8 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// If this basic block is ONLY a compare and a branch, and if a predecessor
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
- if (FoldBranchToCommonDest(BI, DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
@@ -4082,7 +4474,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (BI->getSuccessor(0)->getSinglePredecessor()) {
if (BI->getSuccessor(1)->getSinglePredecessor()) {
if (HoistThenElseCodeToIf(BI, DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to Successor #1.
@@ -4090,7 +4482,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor()) {
// If Successor #0 has multiple preds, we may be able to conditionally
@@ -4099,7 +4491,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
}
// If this is a branch on a phi node in the current block, thread control
@@ -4107,14 +4499,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, DL))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB, TTI, DL) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
return false;
}
@@ -4195,7 +4587,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
// Remove basic blocks that have no predecessors (except the entry block)...
// or that just have themself as a predecessor. These are unreachable.
- if ((pred_begin(BB) == pred_end(BB) &&
+ if ((pred_empty(BB) &&
BB != &BB->getParent()->getEntryBlock()) ||
BB->getSinglePredecessor() == BB) {
DEBUG(dbgs() << "Removing BB: \n" << *BB);
@@ -4258,6 +4650,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
/// of the CFG. It returns true if a modification was made.
///
bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
- const DataLayout *DL) {
- return SimplifyCFGOpt(TTI, DL).run(BB);
+ unsigned BonusInstThreshold, const DataLayout *DL,
+ AssumptionCache *AC) {
+ return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AC).run(BB);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
index b284e6f..6cb91a1 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -40,7 +40,7 @@ STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
namespace {
- /// SimplifyIndvar - This is a utility for simplifying induction variables
+ /// This is a utility for simplifying induction variables
/// based on ScalarEvolution. It is the primary instrument of the
/// IndvarSimplify pass, but it may also be directly invoked to cleanup after
/// other loop passes that preserve SCEV.
@@ -80,13 +80,14 @@ namespace {
void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
bool IsSigned);
+ bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
Instruction *splitOverflowIntrinsic(Instruction *IVUser,
const DominatorTree *DT);
};
}
-/// foldIVUser - Fold an IV operand into its use. This removes increments of an
+/// Fold an IV operand into its use. This removes increments of an
/// aligned IV when used by a instruction that ignores the low bits.
///
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
@@ -152,7 +153,7 @@ Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand)
return IVSrc;
}
-/// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless
+/// SimplifyIVUsers helper for eliminating useless
/// comparisons against an induction variable.
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
unsigned IVOperIdx = 0;
@@ -188,7 +189,7 @@ void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
DeadInsts.push_back(ICmp);
}
-/// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless
+/// SimplifyIVUsers helper for eliminating useless
/// remainder operations operating on an induction variable.
void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
Value *IVOperand,
@@ -239,7 +240,7 @@ void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
DeadInsts.push_back(Rem);
}
-/// eliminateIVUser - Eliminate an operation that consumes a simple IV and has
+/// Eliminate an operation that consumes a simple IV and has
/// no observable side-effect given the range of IV values.
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
@@ -271,6 +272,110 @@ bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
return true;
}
+/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
+/// unsigned-overflow. Returns true if anything changed, false otherwise.
+bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
+ Value *IVOperand) {
+
+ // Currently we only handle instructions of the form "add <indvar> <value>"
+ unsigned Op = BO->getOpcode();
+ if (Op != Instruction::Add)
+ return false;
+
+ // If BO is already both nuw and nsw then there is nothing left to do
+ if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
+ return false;
+
+ IntegerType *IT = cast<IntegerType>(IVOperand->getType());
+ Value *OtherOperand = nullptr;
+ int OtherOperandIdx = -1;
+ if (BO->getOperand(0) == IVOperand) {
+ OtherOperand = BO->getOperand(1);
+ OtherOperandIdx = 1;
+ } else {
+ assert(BO->getOperand(1) == IVOperand && "only other use!");
+ OtherOperand = BO->getOperand(0);
+ OtherOperandIdx = 0;
+ }
+
+ bool Changed = false;
+ const SCEV *OtherOpSCEV = SE->getSCEV(OtherOperand);
+ if (OtherOpSCEV == SE->getCouldNotCompute())
+ return false;
+
+ const SCEV *IVOpSCEV = SE->getSCEV(IVOperand);
+ const SCEV *ZeroSCEV = SE->getConstant(IVOpSCEV->getType(), 0);
+
+ if (!BO->hasNoSignedWrap()) {
+ // Upgrade the add to an "add nsw" if we can prove that it will never
+ // sign-overflow or sign-underflow.
+
+ const SCEV *SignedMax =
+ SE->getConstant(APInt::getSignedMaxValue(IT->getBitWidth()));
+ const SCEV *SignedMin =
+ SE->getConstant(APInt::getSignedMinValue(IT->getBitWidth()));
+
+ // The addition "IVOperand + OtherOp" does not sign-overflow if the result
+ // is sign-representable in 2's complement in the given bit-width.
+ //
+ // If OtherOp is SLT 0, then for an IVOperand in [SignedMin - OtherOp,
+ // SignedMax], "IVOperand + OtherOp" is in [SignedMin, SignedMax + OtherOp].
+ // Everything in [SignedMin, SignedMax + OtherOp] is representable since
+ // SignedMax + OtherOp is at least -1.
+ //
+ // If OtherOp is SGE 0, then for an IVOperand in [SignedMin, SignedMax -
+ // OtherOp], "IVOperand + OtherOp" is in [SignedMin + OtherOp, SignedMax].
+ // Everything in [SignedMin + OtherOp, SignedMax] is representable since
+ // SignedMin + OtherOp is at most -1.
+ //
+ // It follows that for all values of IVOperand in [SignedMin - smin(0,
+ // OtherOp), SignedMax - smax(0, OtherOp)] the result of the add is
+ // representable (i.e. there is no sign-overflow).
+
+ const SCEV *UpperDelta = SE->getSMaxExpr(ZeroSCEV, OtherOpSCEV);
+ const SCEV *UpperLimit = SE->getMinusSCEV(SignedMax, UpperDelta);
+
+ bool NeverSignedOverflows =
+ SE->isKnownPredicate(ICmpInst::ICMP_SLE, IVOpSCEV, UpperLimit);
+
+ if (NeverSignedOverflows) {
+ const SCEV *LowerDelta = SE->getSMinExpr(ZeroSCEV, OtherOpSCEV);
+ const SCEV *LowerLimit = SE->getMinusSCEV(SignedMin, LowerDelta);
+
+ bool NeverSignedUnderflows =
+ SE->isKnownPredicate(ICmpInst::ICMP_SGE, IVOpSCEV, LowerLimit);
+ if (NeverSignedUnderflows) {
+ BO->setHasNoSignedWrap(true);
+ Changed = true;
+ }
+ }
+ }
+
+ if (!BO->hasNoUnsignedWrap()) {
+ // Upgrade the add computing "IVOperand + OtherOp" to an "add nuw" if we can
+ // prove that it will never unsigned-overflow (i.e. the result will always
+ // be representable in the given bit-width).
+ //
+ // "IVOperand + OtherOp" is unsigned-representable in 2's complement iff it
+ // does not produce a carry. "IVOperand + OtherOp" produces no carry iff
+ // IVOperand ULE (UnsignedMax - OtherOp).
+
+ const SCEV *UnsignedMax =
+ SE->getConstant(APInt::getMaxValue(IT->getBitWidth()));
+ const SCEV *UpperLimit = SE->getMinusSCEV(UnsignedMax, OtherOpSCEV);
+
+ bool NeverUnsignedOverflows =
+ SE->isKnownPredicate(ICmpInst::ICMP_ULE, IVOpSCEV, UpperLimit);
+
+ if (NeverUnsignedOverflows) {
+ BO->setHasNoUnsignedWrap(true);
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
/// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow
/// analysis and optimization.
///
@@ -334,8 +439,7 @@ Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser,
return AddInst;
}
-/// pushIVUsers - Add all uses of Def to the current IV's worklist.
-///
+/// Add all uses of Def to the current IV's worklist.
static void pushIVUsers(
Instruction *Def,
SmallPtrSet<Instruction*,16> &Simplified,
@@ -348,12 +452,12 @@ static void pushIVUsers(
// Also ensure unique worklist users.
// If Def is a LoopPhi, it may not be in the Simplified set, so check for
// self edges first.
- if (UI != Def && Simplified.insert(UI))
+ if (UI != Def && Simplified.insert(UI).second)
SimpleIVUsers.push_back(std::make_pair(UI, Def));
}
}
-/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
+/// Return true if this instruction generates a simple SCEV
/// expression in terms of that IV.
///
/// This is similar to IVUsers' isInteresting() but processes each instruction
@@ -374,7 +478,7 @@ static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
return false;
}
-/// simplifyUsers - Iteratively perform simplification on a worklist of users
+/// Iteratively perform simplification on a worklist of users
/// of the specified induction variable. Each successive simplification may push
/// more users which may themselves be candidates for simplification.
///
@@ -431,6 +535,16 @@ void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
continue;
}
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
+ if (isa<OverflowingBinaryOperator>(BO) &&
+ strengthenOverflowingOperation(BO, IVOperand)) {
+ // re-queue uses of the now modified binary operator and fall
+ // through to the checks that remain.
+ pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
+ }
+ }
+
CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
if (V && Cast) {
V->visitCast(Cast);
@@ -446,7 +560,7 @@ namespace llvm {
void IVVisitor::anchor() { }
-/// simplifyUsersOfIV - Simplify instructions that use this induction variable
+/// Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
@@ -457,7 +571,7 @@ bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
return SIV.hasChanged();
}
-/// simplifyLoopIVs - Simplify users of induction variables within this
+/// Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
SmallVectorImpl<WeakVH> &Dead) {
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
index 33b3637..cc97098 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -18,6 +18,7 @@
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
@@ -41,6 +42,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfo>();
}
@@ -52,6 +54,8 @@ namespace {
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
+ AssumptionCache *AC =
+ &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
bool Changed = false;
@@ -68,7 +72,7 @@ namespace {
continue;
// Don't waste time simplifying unused instructions.
if (!I->use_empty())
- if (Value *V = SimplifyInstruction(I, DL, TLI, DT)) {
+ if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
// Mark all uses for resimplification next time round the loop.
for (User *U : I->users())
Next->insert(cast<Instruction>(U));
@@ -101,6 +105,7 @@ namespace {
char InstSimplifier::ID = 0;
INITIALIZE_PASS_BEGIN(InstSimplifier, "instsimplify",
"Remove redundant instructions", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(InstSimplifier, "instsimplify",
"Remove redundant instructions", false, false)
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index 3b61bb5..5a0d52e 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -27,65 +27,43 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
+using namespace PatternMatch;
static cl::opt<bool>
-ColdErrorCalls("error-reporting-is-cold", cl::init(true),
- cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
-
-/// This class is the abstract base class for the set of optimizations that
-/// corresponds to one library call.
-namespace {
-class LibCallOptimization {
-protected:
- Function *Caller;
- const DataLayout *DL;
- const TargetLibraryInfo *TLI;
- const LibCallSimplifier *LCS;
- LLVMContext* Context;
-public:
- LibCallOptimization() { }
- virtual ~LibCallOptimization() {}
-
- /// callOptimizer - This pure virtual method is implemented by base classes to
- /// do various optimizations. If this returns null then no transformation was
- /// performed. If it returns CI, then it transformed the call and CI is to be
- /// deleted. If it returns something else, replace CI with the new value and
- /// delete CI.
- virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
- =0;
-
- /// ignoreCallingConv - Returns false if this transformation could possibly
- /// change the calling convention.
- virtual bool ignoreCallingConv() { return false; }
-
- Value *optimizeCall(CallInst *CI, const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- const LibCallSimplifier *LCS, IRBuilder<> &B) {
- Caller = CI->getParent()->getParent();
- this->DL = DL;
- this->TLI = TLI;
- this->LCS = LCS;
- if (CI->getCalledFunction())
- Context = &CI->getCalledFunction()->getContext();
+ ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
+ cl::desc("Treat error-reporting calls as cold"));
- // We never change the calling convention.
- if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
- return nullptr;
+static cl::opt<bool>
+ EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
+ cl::init(false),
+ cl::desc("Enable unsafe double to float "
+ "shrinking for math lib calls"));
- return callOptimizer(CI->getCalledFunction(), CI, B);
- }
-};
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
+static bool ignoreCallingConv(LibFunc::Func Func) {
+ switch (Func) {
+ case LibFunc::abs:
+ case LibFunc::labs:
+ case LibFunc::llabs:
+ case LibFunc::strlen:
+ return true;
+ default:
+ return false;
+ }
+ llvm_unreachable("All cases should be covered in the switch.");
+}
+
/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero.
static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
@@ -138,1908 +116,1739 @@ static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
}
}
-//===----------------------------------------------------------------------===//
-// Fortified Library Call Optimizations
-//===----------------------------------------------------------------------===//
-
-struct FortifiedLibCallOptimization : public LibCallOptimization {
-protected:
- virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
- bool isString) const = 0;
-};
-
-struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
- CallInst *CI;
-
- bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
- bool isString) const override {
- if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
- return true;
- if (ConstantInt *SizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
- if (SizeCI->isAllOnesValue())
- return true;
- if (isString) {
- uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
- // If the length is 0 we don't know how long it is and so we can't
- // remove the check.
- if (Len == 0) return false;
- return SizeCI->getZExtValue() >= Len;
- }
- if (ConstantInt *Arg = dyn_cast<ConstantInt>(
- CI->getArgOperand(SizeArgOp)))
- return SizeCI->getZExtValue() >= Arg->getZExtValue();
- }
+/// \brief Returns whether \p F matches the signature expected for the
+/// string/memory copying library function \p Func.
+/// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
+/// Their fortified (_chk) counterparts are also accepted.
+static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func,
+ const DataLayout *DL) {
+ FunctionType *FT = F->getFunctionType();
+ LLVMContext &Context = F->getContext();
+ Type *PCharTy = Type::getInt8PtrTy(Context);
+ Type *SizeTTy = DL ? DL->getIntPtrType(Context) : nullptr;
+ unsigned NumParams = FT->getNumParams();
+
+ // All string libfuncs return the same type as the first parameter.
+ if (FT->getReturnType() != FT->getParamType(0))
return false;
- }
-};
-
-struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- this->CI = CI;
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
-
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != DL->getIntPtrType(Context) ||
- FT->getParamType(3) != DL->getIntPtrType(Context))
- return nullptr;
- if (isFoldable(3, 2, false)) {
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
+ switch (Func) {
+ default:
+ llvm_unreachable("Can't check signature for non-string-copy libfunc.");
+ case LibFunc::stpncpy_chk:
+ case LibFunc::strncpy_chk:
+ --NumParams; // fallthrough
+ case LibFunc::stpncpy:
+ case LibFunc::strncpy: {
+ if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
+ return false;
+ break;
+ }
+ case LibFunc::strcpy_chk:
+ case LibFunc::stpcpy_chk:
+ --NumParams; // fallthrough
+ case LibFunc::stpcpy:
+ case LibFunc::strcpy: {
+ if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != PCharTy)
+ return false;
+ break;
+ }
+ case LibFunc::memmove_chk:
+ case LibFunc::memcpy_chk:
+ --NumParams; // fallthrough
+ case LibFunc::memmove:
+ case LibFunc::memcpy: {
+ if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
+ return false;
+ break;
}
-};
-
-struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- this->CI = CI;
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
+ case LibFunc::memset_chk:
+ --NumParams; // fallthrough
+ case LibFunc::memset: {
+ if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
+ return false;
+ break;
+ }
+ }
+ // If this is a fortified libcall, the last parameter is a size_t.
+ if (NumParams == FT->getNumParams() - 1)
+ return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
+ return true;
+}
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != DL->getIntPtrType(Context) ||
- FT->getParamType(3) != DL->getIntPtrType(Context))
- return nullptr;
+//===----------------------------------------------------------------------===//
+// String and Memory Library Call Optimizations
+//===----------------------------------------------------------------------===//
- if (isFoldable(3, 2, false)) {
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
+Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strcat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType())
return nullptr;
- }
-};
-struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- this->CI = CI;
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
-
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != DL->getIntPtrType(Context) ||
- FT->getParamType(3) != DL->getIntPtrType(Context))
- return nullptr;
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
- if (isFoldable(3, 2, false)) {
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
- false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
return nullptr;
- }
-};
-
-struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- this->CI = CI;
- StringRef Name = Callee->getName();
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
+ --Len; // Unbias length.
- // Check if this has the right signature.
- if (FT->getNumParams() != 3 ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- FT->getParamType(2) != DL->getIntPtrType(Context))
- return nullptr;
+ // Handle the simple, do-nothing case: strcat(x, "") -> x
+ if (Len == 0)
+ return Dst;
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) // __strcpy_chk(x,x) -> x
- return Src;
-
- // If a) we don't have any length information, or b) we know this will
- // fit then just lower to a plain strcpy. Otherwise we'll keep our
- // strcpy_chk call which may fail at runtime if the size is too long.
- // TODO: It might be nice to get a maximum length out of the possible
- // string lengths for varying.
- if (isFoldable(2, 1, true)) {
- Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
- return Ret;
- } else {
- // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return nullptr;
-
- // This optimization require DataLayout.
- if (!DL) return nullptr;
-
- Value *Ret =
- EmitMemCpyChk(Dst, Src,
- ConstantInt::get(DL->getIntPtrType(Context), Len),
- CI->getArgOperand(2), B, DL, TLI);
- return Ret;
- }
+ // These optimizations require DataLayout.
+ if (!DL)
return nullptr;
- }
-};
-struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- this->CI = CI;
- StringRef Name = Callee->getName();
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
+ return emitStrLenMemCpy(Src, Dst, Len, B);
+}
- // Check if this has the right signature.
- if (FT->getNumParams() != 3 ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
- return nullptr;
+Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
+ IRBuilder<> &B) {
+ // We need to find the end of the destination string. That's where the
+ // memory is to be moved to. We just generate a call to strlen.
+ Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
+ if (!DstLen)
+ return nullptr;
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
- Value *StrLen = EmitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
- }
+ // Now that we have the destination's length, we must index into the
+ // destination's pointer to get the actual memcpy destination (end of
+ // the string .. we're concatenating).
+ Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
+
+ // We have enough information to now generate the memcpy call to do the
+ // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(
+ CpyDst, Src,
+ ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
+ return Dst;
+}
- // If a) we don't have any length information, or b) we know this will
- // fit then just lower to a plain stpcpy. Otherwise we'll keep our
- // stpcpy_chk call which may fail at runtime if the size is too long.
- // TODO: It might be nice to get a maximum length out of the possible
- // string lengths for varying.
- if (isFoldable(2, 1, true)) {
- Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
- return Ret;
- } else {
- // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return nullptr;
-
- // This optimization require DataLayout.
- if (!DL) return nullptr;
-
- Type *PT = FT->getParamType(0);
- Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
- Value *DstEnd = B.CreateGEP(Dst,
- ConstantInt::get(DL->getIntPtrType(PT),
- Len - 1));
- if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
- return nullptr;
- return DstEnd;
- }
+Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strncat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType() ||
+ !FT->getParamType(2)->isIntegerTy())
return nullptr;
- }
-};
-struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- this->CI = CI;
- StringRef Name = Callee->getName();
- FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
-
- // Check if this has the right signature.
- if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- !FT->getParamType(2)->isIntegerTy() ||
- FT->getParamType(3) != DL->getIntPtrType(Context))
- return nullptr;
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ uint64_t Len;
- if (isFoldable(3, 2, false)) {
- Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, DL, TLI,
- Name.substr(2, 7));
- return Ret;
- }
+ // We don't do anything if length is not constant
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Len = LengthArg->getZExtValue();
+ else
return nullptr;
- }
-};
-//===----------------------------------------------------------------------===//
-// String and Memory Library Call Optimizations
-//===----------------------------------------------------------------------===//
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0)
+ return nullptr;
+ --SrcLen; // Unbias length.
-struct StrCatOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strcat" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- FT->getParamType(1) != FT->getReturnType())
- return nullptr;
+ // Handle the simple, do-nothing cases:
+ // strncat(x, "", c) -> x
+ // strncat(x, c, 0) -> x
+ if (SrcLen == 0 || Len == 0)
+ return Dst;
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return nullptr;
- --Len; // Unbias length.
+ // We don't optimize this case
+ if (Len < SrcLen)
+ return nullptr;
- // Handle the simple, do-nothing case: strcat(x, "") -> x
- if (Len == 0)
- return Dst;
+ // strncat(x, s, c) -> strcat(x, s)
+ // s is constant so the strcat can be optimized further
+ return emitStrLenMemCpy(Src, Dst, SrcLen, B);
+}
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return nullptr;
- return emitStrLenMemCpy(Src, Dst, Len, B);
- }
+ Value *SrcStr = CI->getArgOperand(0);
- Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
- IRBuilder<> &B) {
- // We need to find the end of the destination string. That's where the
- // memory is to be moved to. We just generate a call to strlen.
- Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
- if (!DstLen)
+ // If the second operand is non-constant, see if we can compute the length
+ // of the input string and turn this into memchr.
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (!CharC) {
+ // These optimizations require DataLayout.
+ if (!DL)
return nullptr;
- // Now that we have the destination's length, we must index into the
- // destination's pointer to get the actual memcpy destination (end of
- // the string .. we're concatenating).
- Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
+ uint64_t Len = GetStringLength(SrcStr);
+ if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
+ return nullptr;
- // We have enough information to now generate the memcpy call to do the
- // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(CpyDst, Src,
- ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
- return Dst;
+ return EmitMemChr(
+ SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI);
}
-};
-
-struct StrNCatOpt : public StrCatOpt {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strncat" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- FT->getParamType(1) != FT->getReturnType() ||
- !FT->getParamType(2)->isIntegerTy())
- return nullptr;
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- uint64_t Len;
+ // Otherwise, the character is a constant, see if the first argument is
+ // a string literal. If so, we can constant fold.
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+ return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
+ return nullptr;
+ }
- // We don't do anything if length is not constant
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
+ // Compute the offset, make sure to handle the case when we're searching for
+ // zero (a weird way to spell strlen).
+ size_t I = (0xFF & CharC->getSExtValue()) == 0
+ ? Str.size()
+ : Str.find(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. strchr returns null.
+ return Constant::getNullValue(CI->getType());
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0) return nullptr;
- --SrcLen; // Unbias length.
+ // strchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
+}
- // Handle the simple, do-nothing cases:
- // strncat(x, "", c) -> x
- // strncat(x, c, 0) -> x
- if (SrcLen == 0 || Len == 0) return Dst;
+Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strrchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return nullptr;
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
-
- // We don't optimize this case
- if (Len < SrcLen) return nullptr;
-
- // strncat(x, s, c) -> strcat(x, s)
- // s is constant so the strcat can be optimized further
- return emitStrLenMemCpy(Src, Dst, SrcLen, B);
- }
-};
-
-struct StrChrOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strchr" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- !FT->getParamType(1)->isIntegerTy(32))
- return nullptr;
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- Value *SrcStr = CI->getArgOperand(0);
+ // Cannot fold anything if we're not looking for a constant.
+ if (!CharC)
+ return nullptr;
- // If the second operand is non-constant, see if we can compute the length
- // of the input string and turn this into memchr.
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!CharC) {
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ // strrchr(s, 0) -> strchr(s, 0)
+ if (DL && CharC->isZero())
+ return EmitStrChr(SrcStr, '\0', B, DL, TLI);
+ return nullptr;
+ }
- uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
- return nullptr;
+ // Compute the offset.
+ size_t I = (0xFF & CharC->getSExtValue()) == 0
+ ? Str.size()
+ : Str.rfind(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. Return null.
+ return Constant::getNullValue(CI->getType());
- return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(DL->getIntPtrType(*Context), Len),
- B, DL, TLI);
- }
+ // strrchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
+}
- // Otherwise, the character is a constant, see if the first argument is
- // a string literal. If so, we can constant fold.
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
- return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
- return nullptr;
- }
+Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strcmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return nullptr;
- // Compute the offset, make sure to handle the case when we're searching for
- // zero (a weird way to spell strlen).
- size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
- Str.size() : Str.find(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. strchr returns null.
- return Constant::getNullValue(CI->getType());
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strcmp(x,x) -> 0
+ return ConstantInt::get(CI->getType(), 0);
- // strchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
- }
-};
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
-struct StrRChrOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strrchr" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- !FT->getParamType(1)->isIntegerTy(32))
- return nullptr;
+ // strcmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2)
+ return ConstantInt::get(CI->getType(), Str1.compare(Str2));
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
+ return B.CreateNeg(
+ B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- // Cannot fold anything if we're not looking for a constant.
- if (!CharC)
- return nullptr;
+ if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- // strrchr(s, 0) -> strchr(s, 0)
- if (DL && CharC->isZero())
- return EmitStrChr(SrcStr, '\0', B, DL, TLI);
+ // strcmp(P, "x") -> memcmp(P, "x", 2)
+ uint64_t Len1 = GetStringLength(Str1P);
+ uint64_t Len2 = GetStringLength(Str2P);
+ if (Len1 && Len2) {
+ // These optimizations require DataLayout.
+ if (!DL)
return nullptr;
- }
- // Compute the offset.
- size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
- Str.size() : Str.rfind(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. Return null.
- return Constant::getNullValue(CI->getType());
-
- // strrchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
+ return EmitMemCmp(Str1P, Str2P,
+ ConstantInt::get(DL->getIntPtrType(CI->getContext()),
+ std::min(Len1, Len2)),
+ B, DL, TLI);
}
-};
-struct StrCmpOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strcmp" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return nullptr;
-
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strcmp(x,x) -> 0
- return ConstantInt::get(CI->getType(), 0);
+ return nullptr;
+}
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strncmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return nullptr;
- // strcmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2)
- return ConstantInt::get(CI->getType(), Str1.compare(Str2));
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strncmp(x,x,n) -> 0
+ return ConstantInt::get(CI->getType(), 0);
- if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
- return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
- CI->getType()));
+ // Get the length argument if it is constant.
+ uint64_t Length;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Length = LengthArg->getZExtValue();
+ else
+ return nullptr;
- if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+ if (Length == 0) // strncmp(x,y,0) -> 0
+ return ConstantInt::get(CI->getType(), 0);
- // strcmp(P, "x") -> memcmp(P, "x", 2)
- uint64_t Len1 = GetStringLength(Str1P);
- uint64_t Len2 = GetStringLength(Str2P);
- if (Len1 && Len2) {
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
- return EmitMemCmp(Str1P, Str2P,
- ConstantInt::get(DL->getIntPtrType(*Context),
- std::min(Len1, Len2)), B, DL, TLI);
- }
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- return nullptr;
+ // strncmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2) {
+ StringRef SubStr1 = Str1.substr(0, Length);
+ StringRef SubStr2 = Str2.substr(0, Length);
+ return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
}
-};
-
-struct StrNCmpOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strncmp" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getParamType(2)->isIntegerTy())
- return nullptr;
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strncmp(x,x,n) -> 0
- return ConstantInt::get(CI->getType(), 0);
-
- // Get the length argument if it is constant.
- uint64_t Length;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Length = LengthArg->getZExtValue();
- else
- return nullptr;
+ if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
+ return B.CreateNeg(
+ B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (Length == 0) // strncmp(x,y,0) -> 0
- return ConstantInt::get(CI->getType(), 0);
+ if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
- return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
+ return nullptr;
+}
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
- // strncmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2) {
- StringRef SubStr1 = Str1.substr(0, Length);
- StringRef SubStr2 = Str2.substr(0, Length);
- return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
- }
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy, DL))
+ return nullptr;
- if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
- return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
- CI->getType()));
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // strcpy(x,x) -> x
+ return Src;
- if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
return nullptr;
- }
-};
-struct StrCpyOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "strcpy" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return nullptr;
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src,
+ ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1);
+ return Dst;
+}
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) // strcpy(x,x) -> x
- return Src;
+Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "stpcpy" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy, DL))
+ return nullptr;
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return nullptr;
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, Src,
- ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
- return Dst;
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = EmitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
}
-};
-
-struct StpCpyOpt: public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Verify the "stpcpy" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return nullptr;
-
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
-
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
- Value *StrLen = EmitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
- }
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0) return nullptr;
-
- Type *PT = FT->getParamType(0);
- Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
- Value *DstEnd = B.CreateGEP(Dst,
- ConstantInt::get(DL->getIntPtrType(PT),
- Len - 1));
-
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, Src, LenV, 1);
- return DstEnd;
- }
-};
-
-struct StrNCpyOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getParamType(2)->isIntegerTy())
- return nullptr;
-
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- Value *LenOp = CI->getArgOperand(2);
-
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0) return nullptr;
- --SrcLen;
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
- if (SrcLen == 0) {
- // strncpy(x, "", y) -> memset(x, '\0', y, 1)
- B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
- return Dst;
- }
+ Type *PT = FT->getParamType(0);
+ Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
+ Value *DstEnd =
+ B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
- uint64_t Len;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src, LenV, 1);
+ return DstEnd;
+}
- if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
+Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy, DL))
+ return nullptr;
- // Let strncpy handle the zero padding
- if (Len > SrcLen+1) return nullptr;
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ Value *LenOp = CI->getArgOperand(2);
- Type *PT = FT->getParamType(0);
- // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
- B.CreateMemCpy(Dst, Src,
- ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0)
+ return nullptr;
+ --SrcLen;
+ if (SrcLen == 0) {
+ // strncpy(x, "", y) -> memset(x, '\0', y, 1)
+ B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
return Dst;
}
-};
-struct StrLenOpt : public LibCallOptimization {
- bool ignoreCallingConv() override { return true; }
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
-
- Value *Src = CI->getArgOperand(0);
-
- // Constant folding: strlen("xyz") -> 3
- if (uint64_t Len = GetStringLength(Src))
- return ConstantInt::get(CI->getType(), Len-1);
-
- // strlen(x?"foo":"bars") --> x ? 3 : 4
- if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
- uint64_t LenTrue = GetStringLength(SI->getTrueValue());
- uint64_t LenFalse = GetStringLength(SI->getFalseValue());
- if (LenTrue && LenFalse) {
- emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
- SI->getDebugLoc(),
- "folded strlen(select) to select of constants");
- return B.CreateSelect(SI->getCondition(),
- ConstantInt::get(CI->getType(), LenTrue-1),
- ConstantInt::get(CI->getType(), LenFalse-1));
- }
- }
+ uint64_t Len;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
+ Len = LengthArg->getZExtValue();
+ else
+ return nullptr;
- // strlen(x) != 0 --> *x != 0
- // strlen(x) == 0 --> *x == 0
- if (isOnlyUsedInZeroEqualityComparison(CI))
- return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
+ if (Len == 0)
+ return Dst; // strncpy(x, y, 0) -> x
+ // These optimizations require DataLayout.
+ if (!DL)
return nullptr;
- }
-};
-struct StrPBrkOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- FT->getReturnType() != FT->getParamType(0))
- return nullptr;
+ // Let strncpy handle the zero padding
+ if (Len > SrcLen + 1)
+ return nullptr;
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+ Type *PT = FT->getParamType(0);
+ // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
+ B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
- // strpbrk(s, "") -> NULL
- // strpbrk("", s) -> NULL
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
+ return Dst;
+}
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t I = S1.find_first_of(S2);
- if (I == StringRef::npos) // No match.
- return Constant::getNullValue(CI->getType());
+Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
- return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
+ Value *Src = CI->getArgOperand(0);
+
+ // Constant folding: strlen("xyz") -> 3
+ if (uint64_t Len = GetStringLength(Src))
+ return ConstantInt::get(CI->getType(), Len - 1);
+
+ // strlen(x?"foo":"bars") --> x ? 3 : 4
+ if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
+ uint64_t LenTrue = GetStringLength(SI->getTrueValue());
+ uint64_t LenFalse = GetStringLength(SI->getFalseValue());
+ if (LenTrue && LenFalse) {
+ Function *Caller = CI->getParent()->getParent();
+ emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
+ SI->getDebugLoc(),
+ "folded strlen(select) to select of constants");
+ return B.CreateSelect(SI->getCondition(),
+ ConstantInt::get(CI->getType(), LenTrue - 1),
+ ConstantInt::get(CI->getType(), LenFalse - 1));
}
-
- // strpbrk(s, "a") -> strchr(s, 'a')
- if (DL && HasS2 && S2.size() == 1)
- return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
-
- return nullptr;
}
-};
-struct StrToOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy())
- return nullptr;
+ // strlen(x) != 0 --> *x != 0
+ // strlen(x) == 0 --> *x == 0
+ if (isOnlyUsedInZeroEqualityComparison(CI))
+ return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
- Value *EndPtr = CI->getArgOperand(1);
- if (isa<ConstantPointerNull>(EndPtr)) {
- // With a null EndPtr, this function won't capture the main argument.
- // It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attribute::NoCapture);
- }
+ return nullptr;
+}
+Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ FT->getReturnType() != FT->getParamType(0))
return nullptr;
- }
-};
-struct StrSpnOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+ // strpbrk(s, "") -> nullptr
+ // strpbrk("", s) -> nullptr
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
- // strspn(s, "") -> 0
- // strspn("", s) -> 0
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t I = S1.find_first_of(S2);
+ if (I == StringRef::npos) // No match.
return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_not_of(S2);
- if (Pos == StringRef::npos) Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
-
- return nullptr;
+ return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
}
-};
-struct StrCSpnOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
+ // strpbrk(s, "a") -> strchr(s, 'a')
+ if (DL && HasS2 && S2.size() == 1)
+ return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+ return nullptr;
+}
- // strcspn("", s) -> 0
- if (HasS1 && S1.empty())
- return Constant::getNullValue(CI->getType());
+Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy())
+ return nullptr;
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_of(S2);
- if (Pos == StringRef::npos) Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
+ Value *EndPtr = CI->getArgOperand(1);
+ if (isa<ConstantPointerNull>(EndPtr)) {
+ // With a null EndPtr, this function won't capture the main argument.
+ // It would be readonly too, except that it still may write to errno.
+ CI->addAttribute(1, Attribute::NoCapture);
+ }
- // strcspn(s, "") -> strlen(s)
- if (DL && HasS2 && S2.empty())
- return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
+ return nullptr;
+}
+Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strspn(s, "") -> 0
+ // strspn("", s) -> 0
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_not_of(S2);
+ if (Pos == StringRef::npos)
+ Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
}
-};
-struct StrStrOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isPointerTy())
- return nullptr;
+ return nullptr;
+}
- // fold strstr(x, x) -> x.
- if (CI->getArgOperand(0) == CI->getArgOperand(1))
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
- // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
- Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
- if (!StrLen)
- return nullptr;
- Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
- StrLen, B, DL, TLI);
- if (!StrNCmp)
- return nullptr;
- for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
- ICmpInst *Old = cast<ICmpInst>(*UI++);
- Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
- ConstantInt::getNullValue(StrNCmp->getType()),
- "cmp");
- LCS->replaceAllUsesWith(Old, Cmp);
- }
- return CI;
- }
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // See if either input string is a constant string.
- StringRef SearchStr, ToFindStr;
- bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
- bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
+ // strcspn("", s) -> 0
+ if (HasS1 && S1.empty())
+ return Constant::getNullValue(CI->getType());
- // fold strstr(x, "") -> x.
- if (HasStr2 && ToFindStr.empty())
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_of(S2);
+ if (Pos == StringRef::npos)
+ Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
- // If both strings are known, constant fold it.
- if (HasStr1 && HasStr2) {
- size_t Offset = SearchStr.find(ToFindStr);
+ // strcspn(s, "") -> strlen(s)
+ if (DL && HasS2 && S2.empty())
+ return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
- if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
- return Constant::getNullValue(CI->getType());
+ return nullptr;
+}
- // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
- Value *Result = CastToCStr(CI->getArgOperand(0), B);
- Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
- return B.CreateBitCast(Result, CI->getType());
- }
+Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isPointerTy())
+ return nullptr;
+
+ // fold strstr(x, x) -> x.
+ if (CI->getArgOperand(0) == CI->getArgOperand(1))
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // fold strstr(x, "y") -> strchr(x, 'y').
- if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
- return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
+ // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
+ if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
+ if (!StrLen)
+ return nullptr;
+ Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
+ StrLen, B, DL, TLI);
+ if (!StrNCmp)
+ return nullptr;
+ for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
+ ICmpInst *Old = cast<ICmpInst>(*UI++);
+ Value *Cmp =
+ B.CreateICmp(Old->getPredicate(), StrNCmp,
+ ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
+ replaceAllUsesWith(Old, Cmp);
}
- return nullptr;
+ return CI;
}
-};
-struct MemCmpOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy(32))
- return nullptr;
+ // See if either input string is a constant string.
+ StringRef SearchStr, ToFindStr;
+ bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
+ bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
+
+ // fold strstr(x, "") -> x.
+ if (HasStr2 && ToFindStr.empty())
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+ // If both strings are known, constant fold it.
+ if (HasStr1 && HasStr2) {
+ size_t Offset = SearchStr.find(ToFindStr);
- if (LHS == RHS) // memcmp(s,s,x) -> 0
+ if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
return Constant::getNullValue(CI->getType());
- // Make sure we have a constant length.
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!LenC) return nullptr;
- uint64_t Len = LenC->getZExtValue();
+ // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
+ Value *Result = CastToCStr(CI->getArgOperand(0), B);
+ Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
+ return B.CreateBitCast(Result, CI->getType());
+ }
- if (Len == 0) // memcmp(s1,s2,0) -> 0
- return Constant::getNullValue(CI->getType());
+ // fold strstr(x, "y") -> strchr(x, 'y').
+ if (HasStr2 && ToFindStr.size() == 1) {
+ Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
+ return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
+ }
+ return nullptr;
+}
- // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
- if (Len == 1) {
- Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
- CI->getType(), "lhsv");
- Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
- CI->getType(), "rhsv");
- return B.CreateSub(LHSV, RHSV, "chardiff");
- }
+Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy(32))
+ return nullptr;
- // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
- StringRef LHSStr, RHSStr;
- if (getConstantStringInfo(LHS, LHSStr) &&
- getConstantStringInfo(RHS, RHSStr)) {
- // Make sure we're not reading out-of-bounds memory.
- if (Len > LHSStr.size() || Len > RHSStr.size())
- return nullptr;
- // Fold the memcmp and normalize the result. This way we get consistent
- // results across multiple platforms.
- uint64_t Ret = 0;
- int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
- if (Cmp < 0)
- Ret = -1;
- else if (Cmp > 0)
- Ret = 1;
- return ConstantInt::get(CI->getType(), Ret);
- }
+ Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+
+ if (LHS == RHS) // memcmp(s,s,x) -> 0
+ return Constant::getNullValue(CI->getType());
+ // Make sure we have a constant length.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!LenC)
return nullptr;
+ uint64_t Len = LenC->getZExtValue();
+
+ if (Len == 0) // memcmp(s1,s2,0) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
+ if (Len == 1) {
+ Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
+ CI->getType(), "lhsv");
+ Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
+ CI->getType(), "rhsv");
+ return B.CreateSub(LHSV, RHSV, "chardiff");
+ }
+
+ // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
+ StringRef LHSStr, RHSStr;
+ if (getConstantStringInfo(LHS, LHSStr) &&
+ getConstantStringInfo(RHS, RHSStr)) {
+ // Make sure we're not reading out-of-bounds memory.
+ if (Len > LHSStr.size() || Len > RHSStr.size())
+ return nullptr;
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
+ return ConstantInt::get(CI->getType(), Ret);
}
-};
-struct MemCpyOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ return nullptr;
+}
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != DL->getIntPtrType(*Context))
- return nullptr;
+Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
- // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
-};
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy, DL))
+ return nullptr;
-struct MemMoveOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+}
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != DL->getIntPtrType(*Context))
- return nullptr;
+Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
- // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
-};
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove, DL))
+ return nullptr;
-struct MemSetOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+}
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
- return nullptr;
+Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
- // memset(p, v, n) -> llvm.memset(p, v, n, 1)
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
-};
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset, DL))
+ return nullptr;
+
+ // memset(p, v, n) -> llvm.memset(p, v, n, 1)
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+}
//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//
+/// Return a variant of Val with float type.
+/// Currently this works in two cases: If Val is an FPExtension of a float
+/// value to something bigger, simply return the operand.
+/// If Val is a ConstantFP but can be converted to a float ConstantFP without
+/// loss of precision do so.
+static Value *valueHasFloatPrecision(Value *Val) {
+ if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
+ Value *Op = Cast->getOperand(0);
+ if (Op->getType()->isFloatTy())
+ return Op;
+ }
+ if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
+ APFloat F = Const->getValueAPF();
+ bool losesInfo;
+ (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
+ &losesInfo);
+ if (!losesInfo)
+ return ConstantFP::get(Const->getContext(), F);
+ }
+ return nullptr;
+}
+
//===----------------------------------------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
-struct UnaryDoubleFPOpt : public LibCallOptimization {
- bool CheckRetType;
- UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
- !FT->getParamType(0)->isDoubleTy())
- return nullptr;
+Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
+ bool CheckRetType) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
+ return nullptr;
- if (CheckRetType) {
- // Check if all the uses for function like 'sin' are converted to float.
- for (User *U : CI->users()) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
- if (!Cast || !Cast->getType()->isFloatTy())
- return nullptr;
- }
+ if (CheckRetType) {
+ // Check if all the uses for function like 'sin' are converted to float.
+ for (User *U : CI->users()) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
+ if (!Cast || !Cast->getType()->isFloatTy())
+ return nullptr;
}
+ }
- // If this is something like 'floor((double)floatval)', convert to floorf.
- FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
- if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
- return nullptr;
+ // If this is something like 'floor((double)floatval)', convert to floorf.
+ Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
+ if (V == nullptr)
+ return nullptr;
- // floor((double)floatval) -> (double)floorf(floatval)
- Value *V = Cast->getOperand(0);
+ // floor((double)floatval) -> (double)floorf(floatval)
+ if (Callee->isIntrinsic()) {
+ Module *M = CI->getParent()->getParent()->getParent();
+ Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID();
+ Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
+ V = B.CreateCall(F, V);
+ } else {
+ // The call is a library call rather than an intrinsic.
V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
- return B.CreateFPExt(V, B.getDoubleTy());
}
-};
+
+ return B.CreateFPExt(V, B.getDoubleTy());
+}
// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
-struct BinaryDoubleFPOpt : public LibCallOptimization {
- bool CheckRetType;
- BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return nullptr;
+Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return nullptr;
- if (CheckRetType) {
- // Check if all the uses for function like 'fmin/fmax' are converted to
- // float.
- for (User *U : CI->users()) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
- if (!Cast || !Cast->getType()->isFloatTy())
- return nullptr;
- }
- }
+ // If this is something like 'fmin((double)floatval1, (double)floatval2)',
+ // or fmin(1.0, (double)floatval), then we convert it to fminf.
+ Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
+ if (V1 == nullptr)
+ return nullptr;
+ Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
+ if (V2 == nullptr)
+ return nullptr;
- // If this is something like 'fmin((double)floatval1, (double)floatval2)',
- // we convert it to fminf.
- FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
- FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
- if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
- !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
- return nullptr;
+ // fmin((double)floatval1, (double)floatval2)
+ // -> (double)fminf(floatval1, floatval2)
+ // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
+ Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
+ Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+}
- // fmin((double)floatval1, (double)floatval2)
- // -> (double)fmin(floatval1, floatval2)
- Value *V = nullptr;
- Value *V1 = Cast1->getOperand(0);
- Value *V2 = Cast2->getOperand(0);
- V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
- Callee->getAttributes());
- return B.CreateFPExt(V, B.getDoubleTy());
- }
-};
-
-struct UnsafeFPLibCallOptimization : public LibCallOptimization {
- bool UnsafeFPShrink;
- UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
- this->UnsafeFPShrink = UnsafeFPShrink;
- }
-};
-
-struct CosOpt : public UnsafeFPLibCallOptimization {
- CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- Value *Ret = nullptr;
- if (UnsafeFPShrink && Callee->getName() == "cos" &&
- TLI->has(LibFunc::cosf)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
- }
+Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+ }
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
- // cos(-x) -> cos(x)
- Value *Op1 = CI->getArgOperand(0);
- if (BinaryOperator::isFNeg(Op1)) {
- BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
- return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
- }
+ // cos(-x) -> cos(x)
+ Value *Op1 = CI->getArgOperand(0);
+ if (BinaryOperator::isFNeg(Op1)) {
+ BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+ return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+ }
+ return Ret;
+}
+
+Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ // pow(1.0, x) -> 1.0
+ if (Op1C->isExactlyValue(1.0))
+ return Op1C;
+ // pow(2.0, x) -> exp2(x)
+ if (Op1C->isExactlyValue(2.0) &&
+ hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
+ LibFunc::exp2l))
+ return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
+ // pow(10.0, x) -> exp10(x)
+ if (Op1C->isExactlyValue(10.0) &&
+ hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
+ LibFunc::exp10l))
+ return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
+ Callee->getAttributes());
+ }
+
+ ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+ if (!Op2C)
return Ret;
+
+ if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
+ return ConstantFP::get(CI->getType(), 1.0);
+
+ if (Op2C->isExactlyValue(0.5) &&
+ hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
+ LibFunc::sqrtl) &&
+ hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
+ LibFunc::fabsl)) {
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinity correctly.
+ // TODO: In fast-math mode, this could be just sqrt(x).
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
+ Value *FAbs =
+ EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+ return Sel;
+ }
+
+ if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
+ return Op1;
+ if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
+ return B.CreateFMul(Op1, Op1, "pow2");
+ if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Function *Caller = CI->getParent()->getParent();
+
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Callee->getName() == "exp2" &&
+ TLI->has(LibFunc::exp2f)) {
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
}
-};
-
-struct PowOpt : public UnsafeFPLibCallOptimization {
- PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- Value *Ret = nullptr;
- if (UnsafeFPShrink && Callee->getName() == "pow" &&
- TLI->has(LibFunc::powf)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
- }
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
- Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- // pow(1.0, x) -> 1.0
- if (Op1C->isExactlyValue(1.0))
- return Op1C;
- // pow(2.0, x) -> exp2(x)
- if (Op1C->isExactlyValue(2.0) &&
- hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
- LibFunc::exp2l))
- return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
- // pow(10.0, x) -> exp10(x)
- if (Op1C->isExactlyValue(10.0) &&
- hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
- LibFunc::exp10l))
- return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
- Callee->getAttributes());
+ Value *Op = CI->getArgOperand(0);
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ LibFunc::Func LdExp = LibFunc::ldexpl;
+ if (Op->getType()->isFloatTy())
+ LdExp = LibFunc::ldexpf;
+ else if (Op->getType()->isDoubleTy())
+ LdExp = LibFunc::ldexp;
+
+ if (TLI->has(LdExp)) {
+ Value *LdExpArg = nullptr;
+ if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+ LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+ } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+ LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
}
- ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
- if (!Op2C) return Ret;
-
- if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
- return ConstantFP::get(CI->getType(), 1.0);
-
- if (Op2C->isExactlyValue(0.5) &&
- hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
- LibFunc::sqrtl) &&
- hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
- LibFunc::fabsl)) {
- // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
- // This is faster than calling pow, and still handles negative zero
- // and negative infinity correctly.
- // TODO: In fast-math mode, this could be just sqrt(x).
- // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
- Value *Inf = ConstantFP::getInfinity(CI->getType());
- Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
- Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
- Callee->getAttributes());
- Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
- Callee->getAttributes());
- Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
- Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
- return Sel;
- }
+ if (LdExpArg) {
+ Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
+
+ Module *M = Caller->getParent();
+ Value *Callee =
+ M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
+ Op->getType(), B.getInt32Ty(), nullptr);
+ CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
- if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
- return Op1;
- if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
- return B.CreateFMul(Op1, Op1, "pow2");
- if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
- return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
- Op1, "powrecip");
- return nullptr;
- }
-};
-
-struct Exp2Opt : public UnsafeFPLibCallOptimization {
- Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- Value *Ret = nullptr;
- if (UnsafeFPShrink && Callee->getName() == "exp2" &&
- TLI->has(LibFunc::exp2f)) {
- UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
- Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ return CI;
}
+ }
+ return Ret;
+}
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
+Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
- Value *Op = CI->getArgOperand(0);
- // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
- // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
- LibFunc::Func LdExp = LibFunc::ldexpl;
- if (Op->getType()->isFloatTy())
- LdExp = LibFunc::ldexpf;
- else if (Op->getType()->isDoubleTy())
- LdExp = LibFunc::ldexp;
-
- if (TLI->has(LdExp)) {
- Value *LdExpArg = nullptr;
- if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
- } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
- }
+ Value *Ret = nullptr;
+ if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) {
+ Ret = optimizeUnaryDoubleFP(CI, B, false);
+ }
- if (LdExpArg) {
- Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
- if (!Op->getType()->isFloatTy())
- One = ConstantExpr::getFPExtend(One, Op->getType());
+ FunctionType *FT = Callee->getFunctionType();
+ // Make sure this has 1 argument of FP type which matches the result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
- Module *M = Caller->getParent();
- Value *Callee =
- M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
- Op->getType(), B.getInt32Ty(), NULL);
- CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
+ Value *Op = CI->getArgOperand(0);
+ if (Instruction *I = dyn_cast<Instruction>(Op)) {
+ // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
+ if (I->getOpcode() == Instruction::FMul)
+ if (I->getOperand(0) == I->getOperand(1))
+ return Op;
+ }
+ return Ret;
+}
- return CI;
+Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ Value *Ret = nullptr;
+ if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
+ Callee->getIntrinsicID() == Intrinsic::sqrt))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ // FIXME: For finer-grain optimization, we need intrinsics to have the same
+ // fast-math flag decorations that are applied to FP instructions. For now,
+ // we have to rely on the function-level unsafe-fp-math attribute to do this
+ // optimization because there's no other way to express that the sqrt can be
+ // reassociated.
+ Function *F = CI->getParent()->getParent();
+ if (F->hasFnAttribute("unsafe-fp-math")) {
+ // Check for unsafe-fp-math = true.
+ Attribute Attr = F->getFnAttribute("unsafe-fp-math");
+ if (Attr.getValueAsString() != "true")
+ return Ret;
+ }
+ Value *Op = CI->getArgOperand(0);
+ if (Instruction *I = dyn_cast<Instruction>(Op)) {
+ if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
+ // We're looking for a repeated factor in a multiplication tree,
+ // so we can do this fold: sqrt(x * x) -> fabs(x);
+ // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+ Value *RepeatOp = nullptr;
+ Value *OtherOp = nullptr;
+ if (Op0 == Op1) {
+ // Simple match: the operands of the multiply are identical.
+ RepeatOp = Op0;
+ } else {
+ // Look for a more complicated pattern: one of the operands is itself
+ // a multiply, so search for a common factor in that multiply.
+ // Note: We don't bother looking any deeper than this first level or for
+ // variations of this pattern because instcombine's visitFMUL and/or the
+ // reassociation pass should give us this form.
+ Value *OtherMul0, *OtherMul1;
+ if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
+ // Pattern: sqrt((x * y) * z)
+ if (OtherMul0 == OtherMul1) {
+ // Matched: sqrt((x * x) * z)
+ RepeatOp = OtherMul0;
+ OtherOp = Op1;
+ }
+ }
+ }
+ if (RepeatOp) {
+ // Fast math flags for any created instructions should match the sqrt
+ // and multiply.
+ // FIXME: We're not checking the sqrt because it doesn't have
+ // fast-math-flags (see earlier comment).
+ IRBuilder<true, ConstantFolder,
+ IRBuilderDefaultInserter<true> >::FastMathFlagGuard Guard(B);
+ B.SetFastMathFlags(I->getFastMathFlags());
+ // If we found a repeated factor, hoist it out of the square root and
+ // replace it with the fabs of that factor.
+ Module *M = Callee->getParent();
+ Type *ArgType = Op->getType();
+ Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
+ Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
+ if (OtherOp) {
+ // If we found a non-repeated factor, we still need to get its square
+ // root. We then multiply that by the value that was simplified out
+ // of the square root calculation.
+ Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
+ Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
+ return B.CreateFMul(FabsCall, SqrtCall);
+ }
+ return FabsCall;
}
}
- return Ret;
}
-};
+ return Ret;
+}
-struct SinCosPiOpt : public LibCallOptimization {
- SinCosPiOpt() {}
+static bool isTrigLibCall(CallInst *CI);
+static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
+ bool UseFloat, Value *&Sin, Value *&Cos,
+ Value *&SinCos);
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Make sure the prototype is as expected, otherwise the rest of the
- // function is probably invalid and likely to abort.
- if (!isTrigLibCall(CI))
- return nullptr;
+Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
- Value *Arg = CI->getArgOperand(0);
- SmallVector<CallInst *, 1> SinCalls;
- SmallVector<CallInst *, 1> CosCalls;
- SmallVector<CallInst *, 1> SinCosCalls;
+ // Make sure the prototype is as expected, otherwise the rest of the
+ // function is probably invalid and likely to abort.
+ if (!isTrigLibCall(CI))
+ return nullptr;
- bool IsFloat = Arg->getType()->isFloatTy();
+ Value *Arg = CI->getArgOperand(0);
+ SmallVector<CallInst *, 1> SinCalls;
+ SmallVector<CallInst *, 1> CosCalls;
+ SmallVector<CallInst *, 1> SinCosCalls;
- // Look for all compatible sinpi, cospi and sincospi calls with the same
- // argument. If there are enough (in some sense) we can make the
- // substitution.
- for (User *U : Arg->users())
- classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
- SinCosCalls);
+ bool IsFloat = Arg->getType()->isFloatTy();
- // It's only worthwhile if both sinpi and cospi are actually used.
- if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
- return nullptr;
+ // Look for all compatible sinpi, cospi and sincospi calls with the same
+ // argument. If there are enough (in some sense) we can make the
+ // substitution.
+ for (User *U : Arg->users())
+ classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
+ SinCosCalls);
- Value *Sin, *Cos, *SinCos;
- insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
- SinCos);
-
- replaceTrigInsts(SinCalls, Sin);
- replaceTrigInsts(CosCalls, Cos);
- replaceTrigInsts(SinCosCalls, SinCos);
-
- return nullptr;
- }
-
- bool isTrigLibCall(CallInst *CI) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
-
- // We can only hope to do anything useful if we can ignore things like errno
- // and floating-point exceptions.
- bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
- CI->hasFnAttr(Attribute::ReadNone);
-
- // Other than that we need float(float) or double(double)
- return AttributesSafe && FT->getNumParams() == 1 &&
- FT->getReturnType() == FT->getParamType(0) &&
- (FT->getParamType(0)->isFloatTy() ||
- FT->getParamType(0)->isDoubleTy());
- }
-
- void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
- SmallVectorImpl<CallInst *> &SinCalls,
- SmallVectorImpl<CallInst *> &CosCalls,
- SmallVectorImpl<CallInst *> &SinCosCalls) {
- CallInst *CI = dyn_cast<CallInst>(Val);
-
- if (!CI)
- return;
-
- Function *Callee = CI->getCalledFunction();
- StringRef FuncName = Callee->getName();
- LibFunc::Func Func;
- if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
- !isTrigLibCall(CI))
- return;
-
- if (IsFloat) {
- if (Func == LibFunc::sinpif)
- SinCalls.push_back(CI);
- else if (Func == LibFunc::cospif)
- CosCalls.push_back(CI);
- else if (Func == LibFunc::sincospif_stret)
- SinCosCalls.push_back(CI);
- } else {
- if (Func == LibFunc::sinpi)
- SinCalls.push_back(CI);
- else if (Func == LibFunc::cospi)
- CosCalls.push_back(CI);
- else if (Func == LibFunc::sincospi_stret)
- SinCosCalls.push_back(CI);
- }
- }
+ // It's only worthwhile if both sinpi and cospi are actually used.
+ if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
+ return nullptr;
- void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
- for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
- E = Calls.end();
- I != E; ++I) {
- LCS->replaceAllUsesWith(*I, Res);
- }
- }
+ Value *Sin, *Cos, *SinCos;
+ insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
- void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
- bool UseFloat, Value *&Sin, Value *&Cos,
- Value *&SinCos) {
- Type *ArgTy = Arg->getType();
- Type *ResTy;
- StringRef Name;
-
- Triple T(OrigCallee->getParent()->getTargetTriple());
- if (UseFloat) {
- Name = "__sincospif_stret";
-
- assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
- // x86_64 can't use {float, float} since that would be returned in both
- // xmm0 and xmm1, which isn't what a real struct would do.
- ResTy = T.getArch() == Triple::x86_64
- ? static_cast<Type *>(VectorType::get(ArgTy, 2))
- : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
- } else {
- Name = "__sincospi_stret";
- ResTy = StructType::get(ArgTy, ArgTy, NULL);
- }
+ replaceTrigInsts(SinCalls, Sin);
+ replaceTrigInsts(CosCalls, Cos);
+ replaceTrigInsts(SinCosCalls, SinCos);
- Module *M = OrigCallee->getParent();
- Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
- ResTy, ArgTy, NULL);
-
- if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
- // If the argument is an instruction, it must dominate all uses so put our
- // sincos call there.
- BasicBlock::iterator Loc = ArgInst;
- B.SetInsertPoint(ArgInst->getParent(), ++Loc);
- } else {
- // Otherwise (e.g. for a constant) the beginning of the function is as
- // good a place as any.
- BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
- B.SetInsertPoint(&EntryBB, EntryBB.begin());
- }
+ return nullptr;
+}
- SinCos = B.CreateCall(Callee, Arg, "sincospi");
+static bool isTrigLibCall(CallInst *CI) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+
+ // We can only hope to do anything useful if we can ignore things like errno
+ // and floating-point exceptions.
+ bool AttributesSafe =
+ CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
+
+ // Other than that we need float(float) or double(double)
+ return AttributesSafe && FT->getNumParams() == 1 &&
+ FT->getReturnType() == FT->getParamType(0) &&
+ (FT->getParamType(0)->isFloatTy() ||
+ FT->getParamType(0)->isDoubleTy());
+}
- if (SinCos->getType()->isStructTy()) {
- Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
- Cos = B.CreateExtractValue(SinCos, 1, "cospi");
- } else {
- Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
- "sinpi");
- Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
- "cospi");
- }
+void
+LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
+ SmallVectorImpl<CallInst *> &SinCalls,
+ SmallVectorImpl<CallInst *> &CosCalls,
+ SmallVectorImpl<CallInst *> &SinCosCalls) {
+ CallInst *CI = dyn_cast<CallInst>(Val);
+
+ if (!CI)
+ return;
+
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+ LibFunc::Func Func;
+ if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
+ return;
+
+ if (IsFloat) {
+ if (Func == LibFunc::sinpif)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc::cospif)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc::sincospif_stret)
+ SinCosCalls.push_back(CI);
+ } else {
+ if (Func == LibFunc::sinpi)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc::cospi)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc::sincospi_stret)
+ SinCosCalls.push_back(CI);
+ }
+}
+
+void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
+ Value *Res) {
+ for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
+ I != E; ++I) {
+ replaceAllUsesWith(*I, Res);
}
+}
-};
+void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
+ bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
+ Type *ArgTy = Arg->getType();
+ Type *ResTy;
+ StringRef Name;
+
+ Triple T(OrigCallee->getParent()->getTargetTriple());
+ if (UseFloat) {
+ Name = "__sincospif_stret";
+
+ assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
+ // x86_64 can't use {float, float} since that would be returned in both
+ // xmm0 and xmm1, which isn't what a real struct would do.
+ ResTy = T.getArch() == Triple::x86_64
+ ? static_cast<Type *>(VectorType::get(ArgTy, 2))
+ : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
+ } else {
+ Name = "__sincospi_stret";
+ ResTy = StructType::get(ArgTy, ArgTy, nullptr);
+ }
+
+ Module *M = OrigCallee->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
+ ResTy, ArgTy, nullptr);
+
+ if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
+ // If the argument is an instruction, it must dominate all uses so put our
+ // sincos call there.
+ BasicBlock::iterator Loc = ArgInst;
+ B.SetInsertPoint(ArgInst->getParent(), ++Loc);
+ } else {
+ // Otherwise (e.g. for a constant) the beginning of the function is as
+ // good a place as any.
+ BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
+ B.SetInsertPoint(&EntryBB, EntryBB.begin());
+ }
+
+ SinCos = B.CreateCall(Callee, Arg, "sincospi");
+
+ if (SinCos->getType()->isStructTy()) {
+ Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
+ Cos = B.CreateExtractValue(SinCos, 1, "cospi");
+ } else {
+ Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
+ "sinpi");
+ Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
+ "cospi");
+ }
+}
//===----------------------------------------------------------------------===//
// Integer Library Call Optimizations
//===----------------------------------------------------------------------===//
-struct FFSOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 1 ||
- !FT->getReturnType()->isIntegerTy(32) ||
- !FT->getParamType(0)->isIntegerTy())
- return nullptr;
+Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
+ !FT->getParamType(0)->isIntegerTy())
+ return nullptr;
- Value *Op = CI->getArgOperand(0);
+ Value *Op = CI->getArgOperand(0);
- // Constant fold.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- if (CI->isZero()) // ffs(0) -> 0.
- return B.getInt32(0);
- // ffs(c) -> cttz(c)+1
- return B.getInt32(CI->getValue().countTrailingZeros() + 1);
- }
+ // Constant fold.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->isZero()) // ffs(0) -> 0.
+ return B.getInt32(0);
+ // ffs(c) -> cttz(c)+1
+ return B.getInt32(CI->getValue().countTrailingZeros() + 1);
+ }
- // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
- Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(Callee->getParent(),
- Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
- V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
- V = B.CreateIntCast(V, B.getInt32Ty(), false);
-
- Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
- return B.CreateSelect(Cond, V, B.getInt32(0));
- }
-};
-
-struct AbsOpt : public LibCallOptimization {
- bool ignoreCallingConv() override { return true; }
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(integer) where the types agree.
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- FT->getParamType(0) != FT->getReturnType())
- return nullptr;
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Type *ArgType = Op->getType();
+ Value *F =
+ Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
- // abs(x) -> x >s -1 ? x : -x
- Value *Op = CI->getArgOperand(0);
- Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
- "ispos");
- Value *Neg = B.CreateNeg(Op, "neg");
- return B.CreateSelect(Pos, Op, Neg);
- }
-};
-
-struct IsDigitOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return nullptr;
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+}
- // isdigit(c) -> (c-'0') <u 10
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
- Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
- return B.CreateZExt(Op, CI->getType());
- }
-};
-
-struct IsAsciiOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return nullptr;
+Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(integer) where the types agree.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ FT->getParamType(0) != FT->getReturnType())
+ return nullptr;
- // isascii(c) -> c <u 128
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
- return B.CreateZExt(Op, CI->getType());
- }
-};
+ // abs(x) -> x >s -1 ? x : -x
+ Value *Op = CI->getArgOperand(0);
+ Value *Pos =
+ B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
+ Value *Neg = B.CreateNeg(Op, "neg");
+ return B.CreateSelect(Pos, Op, Neg);
+}
-struct ToAsciiOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- FunctionType *FT = Callee->getFunctionType();
- // We require i32(i32)
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isIntegerTy(32))
- return nullptr;
+Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return nullptr;
- // toascii(c) -> c & 0x7f
- return B.CreateAnd(CI->getArgOperand(0),
- ConstantInt::get(CI->getType(),0x7F));
- }
-};
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return nullptr;
+
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // We require i32(i32)
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return nullptr;
+
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(), 0x7F));
+}
//===----------------------------------------------------------------------===//
// Formatting and IO Library Call Optimizations
//===----------------------------------------------------------------------===//
-struct ErrorReportingOpt : public LibCallOptimization {
- ErrorReportingOpt(int S = -1) : StreamArg(S) {}
-
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &) override {
- // Error reporting calls should be cold, mark them as such.
- // This applies even to non-builtin calls: it is only a hint and applies to
- // functions that the frontend might not understand as builtins.
+static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
- // This heuristic was suggested in:
- // Improving Static Branch Prediction in a Compiler
- // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
- // Proceedings of PACT'98, Oct. 1998, IEEE
+Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
+ int StreamArg) {
+ // Error reporting calls should be cold, mark them as such.
+ // This applies even to non-builtin calls: it is only a hint and applies to
+ // functions that the frontend might not understand as builtins.
- if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
- CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
- }
+ // This heuristic was suggested in:
+ // Improving Static Branch Prediction in a Compiler
+ // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
+ // Proceedings of PACT'98, Oct. 1998, IEEE
+ Function *Callee = CI->getCalledFunction();
- return nullptr;
+ if (!CI->hasFnAttr(Attribute::Cold) &&
+ isReportingError(Callee, CI, StreamArg)) {
+ CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
}
-protected:
- bool isReportingError(Function *Callee, CallInst *CI) {
- if (!ColdErrorCalls)
- return false;
-
- if (!Callee || !Callee->isDeclaration())
- return false;
+ return nullptr;
+}
- if (StreamArg < 0)
- return true;
+static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
+ if (!ColdErrorCalls)
+ return false;
- // These functions might be considered cold, but only if their stream
- // argument is stderr.
+ if (!Callee || !Callee->isDeclaration())
+ return false;
- if (StreamArg >= (int) CI->getNumArgOperands())
- return false;
- LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
- if (!LI)
- return false;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
- if (!GV || !GV->isDeclaration())
- return false;
- return GV->getName() == "stderr";
- }
+ if (StreamArg < 0)
+ return true;
- int StreamArg;
-};
+ // These functions might be considered cold, but only if their stream
+ // argument is stderr.
-struct PrintFOpt : public LibCallOptimization {
- Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
- return nullptr;
+ if (StreamArg >= (int)CI->getNumArgOperands())
+ return false;
+ LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
+ if (!LI)
+ return false;
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
+ if (!GV || !GV->isDeclaration())
+ return false;
+ return GV->getName() == "stderr";
+}
- // Empty format string -> noop.
- if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value*)CI :
- ConstantInt::get(CI->getType(), 0);
+Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return nullptr;
- // Do not do any of the following transformations if the printf return value
- // is used, in general the printf return value is not compatible with either
- // putchar() or puts().
- if (!CI->use_empty())
- return nullptr;
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
- // printf("x") -> putchar('x'), even for '%'.
- if (FormatStr.size() == 1) {
- Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return nullptr;
- // printf("foo\n") --> puts("foo")
- if (FormatStr[FormatStr.size()-1] == '\n' &&
- FormatStr.find('%') == StringRef::npos) { // No format characters.
- // Create a string literal with no \n on it. We expect the constant merge
- // pass to be run after this pass, to merge duplicate strings.
- FormatStr = FormatStr.drop_back();
- Value *GV = B.CreateGlobalString(FormatStr, "str");
- Value *NewCI = EmitPutS(GV, B, DL, TLI);
- return (CI->use_empty() || !NewCI) ?
- NewCI :
- ConstantInt::get(CI->getType(), FormatStr.size()+1);
- }
+ // printf("x") -> putchar('x'), even for '%'.
+ if (FormatStr.size() == 1) {
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
+ if (CI->use_empty() || !Res)
+ return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
- // Optimize specific format strings.
- // printf("%c", chr) --> putchar(chr)
- if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size() - 1] == '\n' &&
+ FormatStr.find('%') == StringRef::npos) { // No format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ Value *NewCI = EmitPutS(GV, B, DL, TLI);
+ return (CI->use_empty() || !NewCI)
+ ? NewCI
+ : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
+ }
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy()) {
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
- // printf("%s\n", str) --> puts(str)
- if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isPointerTy()) {
- return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
- }
- return nullptr;
+ if (CI->use_empty() || !Res)
+ return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() ||
- FT->getReturnType()->isVoidTy()))
- return nullptr;
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy()) {
+ return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
+ }
+ return nullptr;
+}
- if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
+Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
- // printf(format, ...) -> iprintf(format, ...) if no floating point
- // arguments.
- if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *IPrintFFn =
- M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(IPrintFFn);
- B.Insert(New);
- return New;
- }
+ Function *Callee = CI->getCalledFunction();
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
return nullptr;
+
+ if (Value *V = optimizePrintFString(CI, B)) {
+ return V;
}
-};
-struct SPrintFOpt : public LibCallOptimization {
- Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+}
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 2) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%')
- return nullptr; // we found a format specifier, bail out.
-
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
-
- // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
- FormatStr.size() + 1), 1); // nul byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
+Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%')
+ return nullptr; // we found a format specifier, bail out.
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
- Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
- Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
-
- return ConstantInt::get(CI->getType(), 1);
- }
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
- if (FormatStr[1] == 's') {
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ B.CreateMemCpy(
+ CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(DL->getIntPtrType(CI->getContext()),
+ FormatStr.size() + 1),
+ 1); // Copy the null byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
- if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
- Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
- if (!Len)
- return nullptr;
- Value *IncLen = B.CreateAdd(Len,
- ConstantInt::get(Len->getType(), 1),
- "leninc");
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy())
+ return nullptr;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
- // The sprintf result is the unincremented number of bytes in the string.
- return B.CreateIntCast(Len, CI->getType(), false);
- }
- return nullptr;
+ return ConstantInt::get(CI->getType(), 1);
}
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Require two fixed pointer arguments and an integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
+ if (FormatStr[1] == 's') {
+ // These optimizations require DataLayout.
+ if (!DL)
return nullptr;
- if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
+ // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
- // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
- // point arguments.
- if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *SIPrintFFn =
- M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(SIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
+ Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
+ if (!Len)
+ return nullptr;
+ Value *IncLen =
+ B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
}
-};
+ return nullptr;
+}
-struct FPrintFOpt : public LibCallOptimization {
- Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
- IRBuilder<> &B) {
- ErrorReportingOpt ER(/* StreamArg = */ 0);
- (void) ER.callOptimizer(Callee, CI, B);
+Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Require two fixed pointer arguments and an integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
- // All the optimizations depend on the format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
+ if (Value *V = optimizeSPrintFString(CI, B)) {
+ return V;
+ }
- // Do not do any of the following transformations if the fprintf return
- // value is used, in general the fprintf return value is not compatible
- // with fwrite(), fputc() or fputs().
- if (!CI->use_empty())
- return nullptr;
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+}
- // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
- if (CI->getNumArgOperands() == 2) {
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
- return nullptr; // We found a format specifier.
+Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
+ optimizeErrorReporting(CI, B, 0);
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
- return EmitFWrite(CI->getArgOperand(1),
- ConstantInt::get(DL->getIntPtrType(*Context),
- FormatStr.size()),
- CI->getArgOperand(0), B, DL, TLI);
- }
+ // Do not do any of the following transformations if the fprintf return
+ // value is used, in general the fprintf return value is not compatible
+ // with fwrite(), fputc() or fputs().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
+ return nullptr; // We found a format specifier.
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
+ // These optimizations require DataLayout.
+ if (!DL)
return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // fprintf(F, "%c", chr) --> fputc(chr, F)
- if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
- return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
- }
+ return EmitFWrite(
+ CI->getArgOperand(1),
+ ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()),
+ CI->getArgOperand(0), B, DL, TLI);
+ }
- if (FormatStr[1] == 's') {
- // fprintf(F, "%s", str) --> fputs(str, F)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
- }
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
return nullptr;
- }
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Require two fixed paramters as pointers and integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy())
return nullptr;
+ return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ }
- if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
- return V;
- }
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ }
+ return nullptr;
+}
- // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
- // floating point arguments.
- if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *FIPrintFFn =
- M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(FIPrintFFn);
- B.Insert(New);
- return New;
- }
+Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Require two fixed paramters as pointers and integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
return nullptr;
+
+ if (Value *V = optimizeFPrintFString(CI, B)) {
+ return V;
}
-};
-struct FWriteOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- ErrorReportingOpt ER(/* StreamArg = */ 3);
- (void) ER.callOptimizer(Callee, CI, B);
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+}
- // Require a pointer, an integer, an integer, a pointer, returning integer.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- !FT->getParamType(2)->isIntegerTy() ||
- !FT->getParamType(3)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
+Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
+ optimizeErrorReporting(CI, B, 3);
- // Get the element size and count.
- ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!SizeC || !CountC) return nullptr;
- uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
-
- // If this is writing zero records, remove the call (it's a noop).
- if (Bytes == 0)
- return ConstantInt::get(CI->getType(), 0);
-
- // If this is writing one byte, turn it into fputc.
- // This optimisation is only valid, if the return value is unused.
- if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
- }
+ Function *Callee = CI->getCalledFunction();
+ // Require a pointer, an integer, an integer, a pointer, returning integer.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getParamType(3)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeC || !CountC)
return nullptr;
- }
-};
+ uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
-struct FPutsOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- ErrorReportingOpt ER(/* StreamArg = */ 1);
- (void) ER.callOptimizer(Callee, CI, B);
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
- // These optimizations require DataLayout.
- if (!DL) return nullptr;
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
+ }
- // Require two pointers. Also, we can't optimize if return value is used.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !CI->use_empty())
- return nullptr;
+ return nullptr;
+}
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
- uint64_t Len = GetStringLength(CI->getArgOperand(0));
- if (!Len) return nullptr;
- // Known to have no uses (see above).
- return EmitFWrite(CI->getArgOperand(0),
- ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
- CI->getArgOperand(1), B, DL, TLI);
- }
-};
-
-struct PutsOpt : public LibCallOptimization {
- Value *callOptimizer(Function *Callee, CallInst *CI,
- IRBuilder<> &B) override {
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() ||
- FT->getReturnType()->isVoidTy()))
- return nullptr;
+Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
+ optimizeErrorReporting(CI, B, 1);
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return nullptr;
+ Function *Callee = CI->getCalledFunction();
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
- if (CI->use_empty() || !Res) return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
+ // These optimizations require DataLayout.
+ if (!DL)
+ return nullptr;
+ // Require two pointers. Also, we can't optimize if return value is used.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
+ return nullptr;
+
+ // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len)
return nullptr;
- }
-};
-} // End anonymous namespace.
+ // Known to have no uses (see above).
+ return EmitFWrite(
+ CI->getArgOperand(0),
+ ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
+ CI->getArgOperand(1), B, DL, TLI);
+}
-namespace llvm {
+Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
+ return nullptr;
-class LibCallSimplifierImpl {
- const DataLayout *DL;
- const TargetLibraryInfo *TLI;
- const LibCallSimplifier *LCS;
- bool UnsafeFPShrink;
+ // Check for a constant string.
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return nullptr;
- // Math library call optimizations.
- CosOpt Cos;
- PowOpt Pow;
- Exp2Opt Exp2;
-public:
- LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
- const LibCallSimplifier *LCS,
- bool UnsafeFPShrink = false)
- : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
- this->DL = DL;
- this->TLI = TLI;
- this->LCS = LCS;
- this->UnsafeFPShrink = UnsafeFPShrink;
+ if (Str.empty() && CI->use_empty()) {
+ // puts("") -> putchar('\n')
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
+ if (CI->use_empty() || !Res)
+ return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
}
- Value *optimizeCall(CallInst *CI);
- LibCallOptimization *lookupOptimization(CallInst *CI);
- bool hasFloatVersion(StringRef FuncName);
-};
+ return nullptr;
+}
-bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
+bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
LibFunc::Func Func;
SmallString<20> FloatFuncName = FuncName;
FloatFuncName += 'f';
@@ -2048,263 +1857,243 @@ bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
return false;
}
-// Fortified library call optimizations.
-static MemCpyChkOpt MemCpyChk;
-static MemMoveChkOpt MemMoveChk;
-static MemSetChkOpt MemSetChk;
-static StrCpyChkOpt StrCpyChk;
-static StpCpyChkOpt StpCpyChk;
-static StrNCpyChkOpt StrNCpyChk;
-
-// String library call optimizations.
-static StrCatOpt StrCat;
-static StrNCatOpt StrNCat;
-static StrChrOpt StrChr;
-static StrRChrOpt StrRChr;
-static StrCmpOpt StrCmp;
-static StrNCmpOpt StrNCmp;
-static StrCpyOpt StrCpy;
-static StpCpyOpt StpCpy;
-static StrNCpyOpt StrNCpy;
-static StrLenOpt StrLen;
-static StrPBrkOpt StrPBrk;
-static StrToOpt StrTo;
-static StrSpnOpt StrSpn;
-static StrCSpnOpt StrCSpn;
-static StrStrOpt StrStr;
-
-// Memory library call optimizations.
-static MemCmpOpt MemCmp;
-static MemCpyOpt MemCpy;
-static MemMoveOpt MemMove;
-static MemSetOpt MemSet;
-
-// Math library call optimizations.
-static UnaryDoubleFPOpt UnaryDoubleFP(false);
-static BinaryDoubleFPOpt BinaryDoubleFP(false);
-static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
-static SinCosPiOpt SinCosPi;
-
- // Integer library call optimizations.
-static FFSOpt FFS;
-static AbsOpt Abs;
-static IsDigitOpt IsDigit;
-static IsAsciiOpt IsAscii;
-static ToAsciiOpt ToAscii;
-
-// Formatting and IO library call optimizations.
-static ErrorReportingOpt ErrorReporting;
-static ErrorReportingOpt ErrorReporting0(0);
-static ErrorReportingOpt ErrorReporting1(1);
-static PrintFOpt PrintF;
-static SPrintFOpt SPrintF;
-static FPrintFOpt FPrintF;
-static FWriteOpt FWrite;
-static FPutsOpt FPuts;
-static PutsOpt Puts;
-
-LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
+Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
+ IRBuilder<> &Builder) {
+ LibFunc::Func Func;
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+
+ // Check for string/memory library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ // Make sure we never change the calling convention.
+ assert((ignoreCallingConv(Func) ||
+ CI->getCallingConv() == llvm::CallingConv::C) &&
+ "Optimizing string/memory libcall would change the calling convention");
+ switch (Func) {
+ case LibFunc::strcat:
+ return optimizeStrCat(CI, Builder);
+ case LibFunc::strncat:
+ return optimizeStrNCat(CI, Builder);
+ case LibFunc::strchr:
+ return optimizeStrChr(CI, Builder);
+ case LibFunc::strrchr:
+ return optimizeStrRChr(CI, Builder);
+ case LibFunc::strcmp:
+ return optimizeStrCmp(CI, Builder);
+ case LibFunc::strncmp:
+ return optimizeStrNCmp(CI, Builder);
+ case LibFunc::strcpy:
+ return optimizeStrCpy(CI, Builder);
+ case LibFunc::stpcpy:
+ return optimizeStpCpy(CI, Builder);
+ case LibFunc::strncpy:
+ return optimizeStrNCpy(CI, Builder);
+ case LibFunc::strlen:
+ return optimizeStrLen(CI, Builder);
+ case LibFunc::strpbrk:
+ return optimizeStrPBrk(CI, Builder);
+ case LibFunc::strtol:
+ case LibFunc::strtod:
+ case LibFunc::strtof:
+ case LibFunc::strtoul:
+ case LibFunc::strtoll:
+ case LibFunc::strtold:
+ case LibFunc::strtoull:
+ return optimizeStrTo(CI, Builder);
+ case LibFunc::strspn:
+ return optimizeStrSpn(CI, Builder);
+ case LibFunc::strcspn:
+ return optimizeStrCSpn(CI, Builder);
+ case LibFunc::strstr:
+ return optimizeStrStr(CI, Builder);
+ case LibFunc::memcmp:
+ return optimizeMemCmp(CI, Builder);
+ case LibFunc::memcpy:
+ return optimizeMemCpy(CI, Builder);
+ case LibFunc::memmove:
+ return optimizeMemMove(CI, Builder);
+ case LibFunc::memset:
+ return optimizeMemSet(CI, Builder);
+ default:
+ break;
+ }
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
+ if (CI->isNoBuiltin())
+ return nullptr;
+
LibFunc::Func Func;
Function *Callee = CI->getCalledFunction();
StringRef FuncName = Callee->getName();
+ IRBuilder<> Builder(CI);
+ bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
+
+ // Command-line parameter overrides function attribute.
+ if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
+ UnsafeFPShrink = EnableUnsafeFPShrink;
+ else if (Callee->hasFnAttribute("unsafe-fp-math")) {
+ // FIXME: This is the same problem as described in optimizeSqrt().
+ // If calls gain access to IR-level FMF, then use that instead of a
+ // function attribute.
- // Next check for intrinsics.
+ // Check for unsafe-fp-math = true.
+ Attribute Attr = Callee->getFnAttribute("unsafe-fp-math");
+ if (Attr.getValueAsString() == "true")
+ UnsafeFPShrink = true;
+ }
+
+ // First, check for intrinsics.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ if (!isCallingConvC)
+ return nullptr;
switch (II->getIntrinsicID()) {
case Intrinsic::pow:
- return &Pow;
+ return optimizePow(CI, Builder);
case Intrinsic::exp2:
- return &Exp2;
+ return optimizeExp2(CI, Builder);
+ case Intrinsic::fabs:
+ return optimizeFabs(CI, Builder);
+ case Intrinsic::sqrt:
+ return optimizeSqrt(CI, Builder);
default:
- return nullptr;
+ return nullptr;
}
}
- // Then check for known library functions.
- if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
- switch (Func) {
- case LibFunc::strcat:
- return &StrCat;
- case LibFunc::strncat:
- return &StrNCat;
- case LibFunc::strchr:
- return &StrChr;
- case LibFunc::strrchr:
- return &StrRChr;
- case LibFunc::strcmp:
- return &StrCmp;
- case LibFunc::strncmp:
- return &StrNCmp;
- case LibFunc::strcpy:
- return &StrCpy;
- case LibFunc::stpcpy:
- return &StpCpy;
- case LibFunc::strncpy:
- return &StrNCpy;
- case LibFunc::strlen:
- return &StrLen;
- case LibFunc::strpbrk:
- return &StrPBrk;
- case LibFunc::strtol:
- case LibFunc::strtod:
- case LibFunc::strtof:
- case LibFunc::strtoul:
- case LibFunc::strtoll:
- case LibFunc::strtold:
- case LibFunc::strtoull:
- return &StrTo;
- case LibFunc::strspn:
- return &StrSpn;
- case LibFunc::strcspn:
- return &StrCSpn;
- case LibFunc::strstr:
- return &StrStr;
- case LibFunc::memcmp:
- return &MemCmp;
- case LibFunc::memcpy:
- return &MemCpy;
- case LibFunc::memmove:
- return &MemMove;
- case LibFunc::memset:
- return &MemSet;
- case LibFunc::cosf:
- case LibFunc::cos:
- case LibFunc::cosl:
- return &Cos;
- case LibFunc::sinpif:
- case LibFunc::sinpi:
- case LibFunc::cospif:
- case LibFunc::cospi:
- return &SinCosPi;
- case LibFunc::powf:
- case LibFunc::pow:
- case LibFunc::powl:
- return &Pow;
- case LibFunc::exp2l:
- case LibFunc::exp2:
- case LibFunc::exp2f:
- return &Exp2;
- case LibFunc::ffs:
- case LibFunc::ffsl:
- case LibFunc::ffsll:
- return &FFS;
- case LibFunc::abs:
- case LibFunc::labs:
- case LibFunc::llabs:
- return &Abs;
- case LibFunc::isdigit:
- return &IsDigit;
- case LibFunc::isascii:
- return &IsAscii;
- case LibFunc::toascii:
- return &ToAscii;
- case LibFunc::printf:
- return &PrintF;
- case LibFunc::sprintf:
- return &SPrintF;
- case LibFunc::fprintf:
- return &FPrintF;
- case LibFunc::fwrite:
- return &FWrite;
- case LibFunc::fputs:
- return &FPuts;
- case LibFunc::puts:
- return &Puts;
- case LibFunc::perror:
- return &ErrorReporting;
- case LibFunc::vfprintf:
- case LibFunc::fiprintf:
- return &ErrorReporting0;
- case LibFunc::fputc:
- return &ErrorReporting1;
- case LibFunc::ceil:
- case LibFunc::fabs:
- case LibFunc::floor:
- case LibFunc::rint:
- case LibFunc::round:
- case LibFunc::nearbyint:
- case LibFunc::trunc:
- if (hasFloatVersion(FuncName))
- return &UnaryDoubleFP;
- return nullptr;
- case LibFunc::acos:
- case LibFunc::acosh:
- case LibFunc::asin:
- case LibFunc::asinh:
- case LibFunc::atan:
- case LibFunc::atanh:
- case LibFunc::cbrt:
- case LibFunc::cosh:
- case LibFunc::exp:
- case LibFunc::exp10:
- case LibFunc::expm1:
- case LibFunc::log:
- case LibFunc::log10:
- case LibFunc::log1p:
- case LibFunc::log2:
- case LibFunc::logb:
- case LibFunc::sin:
- case LibFunc::sinh:
- case LibFunc::sqrt:
- case LibFunc::tan:
- case LibFunc::tanh:
- if (UnsafeFPShrink && hasFloatVersion(FuncName))
- return &UnsafeUnaryDoubleFP;
- return nullptr;
- case LibFunc::fmin:
- case LibFunc::fmax:
- if (hasFloatVersion(FuncName))
- return &BinaryDoubleFP;
- return nullptr;
- case LibFunc::memcpy_chk:
- return &MemCpyChk;
- default:
- return nullptr;
+ // Also try to simplify calls to fortified library functions.
+ if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
+ // Try to further simplify the result.
+ CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
+ if (SimplifiedCI && SimplifiedCI->getCalledFunction())
+ if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
+ // If we were able to further simplify, remove the now redundant call.
+ SimplifiedCI->replaceAllUsesWith(V);
+ SimplifiedCI->eraseFromParent();
+ return V;
}
+ return SimplifiedFortifiedCI;
}
- // Finally check for fortified library calls.
- if (FuncName.endswith("_chk")) {
- if (FuncName == "__memmove_chk")
- return &MemMoveChk;
- else if (FuncName == "__memset_chk")
- return &MemSetChk;
- else if (FuncName == "__strcpy_chk")
- return &StrCpyChk;
- else if (FuncName == "__stpcpy_chk")
- return &StpCpyChk;
- else if (FuncName == "__strncpy_chk")
- return &StrNCpyChk;
- else if (FuncName == "__stpncpy_chk")
- return &StrNCpyChk;
- }
-
- return nullptr;
-
-}
-
-Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
- LibCallOptimization *LCO = lookupOptimization(CI);
- if (LCO) {
- IRBuilder<> Builder(CI);
- return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
+ // Then check for known library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ // We never change the calling convention.
+ if (!ignoreCallingConv(Func) && !isCallingConvC)
+ return nullptr;
+ if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
+ return V;
+ switch (Func) {
+ case LibFunc::cosf:
+ case LibFunc::cos:
+ case LibFunc::cosl:
+ return optimizeCos(CI, Builder);
+ case LibFunc::sinpif:
+ case LibFunc::sinpi:
+ case LibFunc::cospif:
+ case LibFunc::cospi:
+ return optimizeSinCosPi(CI, Builder);
+ case LibFunc::powf:
+ case LibFunc::pow:
+ case LibFunc::powl:
+ return optimizePow(CI, Builder);
+ case LibFunc::exp2l:
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ return optimizeExp2(CI, Builder);
+ case LibFunc::fabsf:
+ case LibFunc::fabs:
+ case LibFunc::fabsl:
+ return optimizeFabs(CI, Builder);
+ case LibFunc::sqrtf:
+ case LibFunc::sqrt:
+ case LibFunc::sqrtl:
+ return optimizeSqrt(CI, Builder);
+ case LibFunc::ffs:
+ case LibFunc::ffsl:
+ case LibFunc::ffsll:
+ return optimizeFFS(CI, Builder);
+ case LibFunc::abs:
+ case LibFunc::labs:
+ case LibFunc::llabs:
+ return optimizeAbs(CI, Builder);
+ case LibFunc::isdigit:
+ return optimizeIsDigit(CI, Builder);
+ case LibFunc::isascii:
+ return optimizeIsAscii(CI, Builder);
+ case LibFunc::toascii:
+ return optimizeToAscii(CI, Builder);
+ case LibFunc::printf:
+ return optimizePrintF(CI, Builder);
+ case LibFunc::sprintf:
+ return optimizeSPrintF(CI, Builder);
+ case LibFunc::fprintf:
+ return optimizeFPrintF(CI, Builder);
+ case LibFunc::fwrite:
+ return optimizeFWrite(CI, Builder);
+ case LibFunc::fputs:
+ return optimizeFPuts(CI, Builder);
+ case LibFunc::puts:
+ return optimizePuts(CI, Builder);
+ case LibFunc::perror:
+ return optimizeErrorReporting(CI, Builder);
+ case LibFunc::vfprintf:
+ case LibFunc::fiprintf:
+ return optimizeErrorReporting(CI, Builder, 0);
+ case LibFunc::fputc:
+ return optimizeErrorReporting(CI, Builder, 1);
+ case LibFunc::ceil:
+ case LibFunc::floor:
+ case LibFunc::rint:
+ case LibFunc::round:
+ case LibFunc::nearbyint:
+ case LibFunc::trunc:
+ if (hasFloatVersion(FuncName))
+ return optimizeUnaryDoubleFP(CI, Builder, false);
+ return nullptr;
+ case LibFunc::acos:
+ case LibFunc::acosh:
+ case LibFunc::asin:
+ case LibFunc::asinh:
+ case LibFunc::atan:
+ case LibFunc::atanh:
+ case LibFunc::cbrt:
+ case LibFunc::cosh:
+ case LibFunc::exp:
+ case LibFunc::exp10:
+ case LibFunc::expm1:
+ case LibFunc::log:
+ case LibFunc::log10:
+ case LibFunc::log1p:
+ case LibFunc::log2:
+ case LibFunc::logb:
+ case LibFunc::sin:
+ case LibFunc::sinh:
+ case LibFunc::tan:
+ case LibFunc::tanh:
+ if (UnsafeFPShrink && hasFloatVersion(FuncName))
+ return optimizeUnaryDoubleFP(CI, Builder, true);
+ return nullptr;
+ case LibFunc::copysign:
+ case LibFunc::fmin:
+ case LibFunc::fmax:
+ if (hasFloatVersion(FuncName))
+ return optimizeBinaryDoubleFP(CI, Builder);
+ return nullptr;
+ default:
+ return nullptr;
+ }
}
return nullptr;
}
LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- bool UnsafeFPShrink) {
- Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
-}
-
-LibCallSimplifier::~LibCallSimplifier() {
- delete Impl;
-}
-
-Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
- if (CI->isNoBuiltin()) return nullptr;
- return Impl->optimizeCall(CI);
+ const TargetLibraryInfo *TLI) :
+ FortifiedSimplifier(DL, TLI),
+ DL(DL),
+ TLI(TLI),
+ UnsafeFPShrink(false) {
}
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
@@ -2312,8 +2101,6 @@ void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
I->eraseFromParent();
}
-}
-
// TODO:
// Additional cases that we need to add to this file:
//
@@ -2361,3 +2148,184 @@ void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
// * trunc(cnst) -> cnst'
//
//
+
+//===----------------------------------------------------------------------===//
+// Fortified Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
+ unsigned ObjSizeOp,
+ unsigned SizeOp,
+ bool isString) {
+ if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
+ return true;
+ if (ConstantInt *ObjSizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
+ if (ObjSizeCI->isAllOnesValue())
+ return true;
+ // If the object size wasn't -1 (unknown), bail out if we were asked to.
+ if (OnlyLowerUnknownSize)
+ return false;
+ if (isString) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
+ // If the length is 0 we don't know how long it is and so we can't
+ // remove the check.
+ if (Len == 0)
+ return false;
+ return ObjSizeCI->getZExtValue() >= Len;
+ }
+ if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
+ return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
+ }
+ return false;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk, DL))
+ return nullptr;
+
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk, DL))
+ return nullptr;
+
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk, DL))
+ return nullptr;
+
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
+ IRBuilder<> &B,
+ LibFunc::Func Func) {
+ Function *Callee = CI->getCalledFunction();
+ StringRef Name = Callee->getName();
+
+ if (!checkStringCopyLibFuncSignature(Callee, Func, DL))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
+ *ObjSize = CI->getArgOperand(2);
+
+ // __stpcpy_chk(x,x,...) -> x+strlen(x)
+ if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
+ Value *StrLen = EmitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
+ }
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
+ // st[rp]cpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFortifiedCallFoldable(CI, 2, 1, true)) {
+ Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
+ return Ret;
+ } else if (!OnlyLowerUnknownSize) {
+ // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
+
+ // This optimization requires DataLayout.
+ if (!DL)
+ return nullptr;
+
+ Type *SizeTTy = DL->getIntPtrType(CI->getContext());
+ Value *LenV = ConstantInt::get(SizeTTy, Len);
+ Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
+ // If the function was an __stpcpy_chk, and we were able to fold it into
+ // a __memcpy_chk, we still need to return the correct end pointer.
+ if (Ret && Func == LibFunc::stpcpy_chk)
+ return B.CreateGEP(Dst, ConstantInt::get(SizeTTy, Len - 1));
+ return Ret;
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
+ IRBuilder<> &B,
+ LibFunc::Func Func) {
+ Function *Callee = CI->getCalledFunction();
+ StringRef Name = Callee->getName();
+
+ if (!checkStringCopyLibFuncSignature(Callee, Func, DL))
+ return nullptr;
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ Value *Ret =
+ EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
+ return Ret;
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
+ if (CI->isNoBuiltin())
+ return nullptr;
+
+ LibFunc::Func Func;
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+ IRBuilder<> Builder(CI);
+ bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
+
+ // First, check that this is a known library functions.
+ if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func))
+ return nullptr;
+
+ // We never change the calling convention.
+ if (!ignoreCallingConv(Func) && !isCallingConvC)
+ return nullptr;
+
+ switch (Func) {
+ case LibFunc::memcpy_chk:
+ return optimizeMemCpyChk(CI, Builder);
+ case LibFunc::memmove_chk:
+ return optimizeMemMoveChk(CI, Builder);
+ case LibFunc::memset_chk:
+ return optimizeMemSetChk(CI, Builder);
+ case LibFunc::stpcpy_chk:
+ case LibFunc::strcpy_chk:
+ return optimizeStrpCpyChk(CI, Builder, Func);
+ case LibFunc::stpncpy_chk:
+ case LibFunc::strncpy_chk:
+ return optimizeStrpNCpyChk(CI, Builder, Func);
+ default:
+ break;
+ }
+ return nullptr;
+}
+
+FortifiedLibCallSimplifier::
+FortifiedLibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI,
+ bool OnlyLowerUnknownSize)
+ : DL(DL), TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp b/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp
new file mode 100644
index 0000000..d36283e
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp
@@ -0,0 +1,550 @@
+//===- SymbolRewriter.cpp - Symbol Rewriter ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// SymbolRewriter is a LLVM pass which can rewrite symbols transparently within
+// existing code. It is implemented as a compiler pass and is configured via a
+// YAML configuration file.
+//
+// The YAML configuration file format is as follows:
+//
+// RewriteMapFile := RewriteDescriptors
+// RewriteDescriptors := RewriteDescriptor | RewriteDescriptors
+// RewriteDescriptor := RewriteDescriptorType ':' '{' RewriteDescriptorFields '}'
+// RewriteDescriptorFields := RewriteDescriptorField | RewriteDescriptorFields
+// RewriteDescriptorField := FieldIdentifier ':' FieldValue ','
+// RewriteDescriptorType := Identifier
+// FieldIdentifier := Identifier
+// FieldValue := Identifier
+// Identifier := [0-9a-zA-Z]+
+//
+// Currently, the following descriptor types are supported:
+//
+// - function: (function rewriting)
+// + Source (original name of the function)
+// + Target (explicit transformation)
+// + Transform (pattern transformation)
+// + Naked (boolean, whether the function is undecorated)
+// - global variable: (external linkage global variable rewriting)
+// + Source (original name of externally visible variable)
+// + Target (explicit transformation)
+// + Transform (pattern transformation)
+// - global alias: (global alias rewriting)
+// + Source (original name of the aliased name)
+// + Target (explicit transformation)
+// + Transform (pattern transformation)
+//
+// Note that source and exactly one of [Target, Transform] must be provided
+//
+// New rewrite descriptors can be created. Addding a new rewrite descriptor
+// involves:
+//
+// a) extended the rewrite descriptor kind enumeration
+// (<anonymous>::RewriteDescriptor::RewriteDescriptorType)
+// b) implementing the new descriptor
+// (c.f. <anonymous>::ExplicitRewriteFunctionDescriptor)
+// c) extending the rewrite map parser
+// (<anonymous>::RewriteMapParser::parseEntry)
+//
+// Specify to rewrite the symbols using the `-rewrite-symbols` option, and
+// specify the map file to use for the rewriting via the `-rewrite-map-file`
+// option.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "symbol-rewriter"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/YAMLParser.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO/PassManagerBuilder.h"
+#include "llvm/Transforms/Utils/SymbolRewriter.h"
+
+using namespace llvm;
+
+static cl::list<std::string> RewriteMapFiles("rewrite-map-file",
+ cl::desc("Symbol Rewrite Map"),
+ cl::value_desc("filename"));
+
+namespace llvm {
+namespace SymbolRewriter {
+void rewriteComdat(Module &M, GlobalObject *GO, const std::string &Source,
+ const std::string &Target) {
+ if (Comdat *CD = GO->getComdat()) {
+ auto &Comdats = M.getComdatSymbolTable();
+
+ Comdat *C = M.getOrInsertComdat(Target);
+ C->setSelectionKind(CD->getSelectionKind());
+ GO->setComdat(C);
+
+ Comdats.erase(Comdats.find(Source));
+ }
+}
+
+template <RewriteDescriptor::Type DT, typename ValueType,
+ ValueType *(llvm::Module::*Get)(StringRef) const>
+class ExplicitRewriteDescriptor : public RewriteDescriptor {
+public:
+ const std::string Source;
+ const std::string Target;
+
+ ExplicitRewriteDescriptor(StringRef S, StringRef T, const bool Naked)
+ : RewriteDescriptor(DT), Source(Naked ? StringRef("\01" + S.str()) : S),
+ Target(T) {}
+
+ bool performOnModule(Module &M) override;
+
+ static bool classof(const RewriteDescriptor *RD) {
+ return RD->getType() == DT;
+ }
+};
+
+template <RewriteDescriptor::Type DT, typename ValueType,
+ ValueType *(llvm::Module::*Get)(StringRef) const>
+bool ExplicitRewriteDescriptor<DT, ValueType, Get>::performOnModule(Module &M) {
+ bool Changed = false;
+ if (ValueType *S = (M.*Get)(Source)) {
+ if (GlobalObject *GO = dyn_cast<GlobalObject>(S))
+ rewriteComdat(M, GO, Source, Target);
+
+ if (Value *T = (M.*Get)(Target))
+ S->setValueName(T->getValueName());
+ else
+ S->setName(Target);
+
+ Changed = true;
+ }
+ return Changed;
+}
+
+template <RewriteDescriptor::Type DT, typename ValueType,
+ ValueType *(llvm::Module::*Get)(StringRef) const,
+ iterator_range<typename iplist<ValueType>::iterator>
+ (llvm::Module::*Iterator)()>
+class PatternRewriteDescriptor : public RewriteDescriptor {
+public:
+ const std::string Pattern;
+ const std::string Transform;
+
+ PatternRewriteDescriptor(StringRef P, StringRef T)
+ : RewriteDescriptor(DT), Pattern(P), Transform(T) { }
+
+ bool performOnModule(Module &M) override;
+
+ static bool classof(const RewriteDescriptor *RD) {
+ return RD->getType() == DT;
+ }
+};
+
+template <RewriteDescriptor::Type DT, typename ValueType,
+ ValueType *(llvm::Module::*Get)(StringRef) const,
+ iterator_range<typename iplist<ValueType>::iterator>
+ (llvm::Module::*Iterator)()>
+bool PatternRewriteDescriptor<DT, ValueType, Get, Iterator>::
+performOnModule(Module &M) {
+ bool Changed = false;
+ for (auto &C : (M.*Iterator)()) {
+ std::string Error;
+
+ std::string Name = Regex(Pattern).sub(Transform, C.getName(), &Error);
+ if (!Error.empty())
+ report_fatal_error("unable to transforn " + C.getName() + " in " +
+ M.getModuleIdentifier() + ": " + Error);
+
+ if (C.getName() == Name)
+ continue;
+
+ if (GlobalObject *GO = dyn_cast<GlobalObject>(&C))
+ rewriteComdat(M, GO, C.getName(), Name);
+
+ if (Value *V = (M.*Get)(Name))
+ C.setValueName(V->getValueName());
+ else
+ C.setName(Name);
+
+ Changed = true;
+ }
+ return Changed;
+}
+
+/// Represents a rewrite for an explicitly named (function) symbol. Both the
+/// source function name and target function name of the transformation are
+/// explicitly spelt out.
+typedef ExplicitRewriteDescriptor<RewriteDescriptor::Type::Function,
+ llvm::Function, &llvm::Module::getFunction>
+ ExplicitRewriteFunctionDescriptor;
+
+/// Represents a rewrite for an explicitly named (global variable) symbol. Both
+/// the source variable name and target variable name are spelt out. This
+/// applies only to module level variables.
+typedef ExplicitRewriteDescriptor<RewriteDescriptor::Type::GlobalVariable,
+ llvm::GlobalVariable,
+ &llvm::Module::getGlobalVariable>
+ ExplicitRewriteGlobalVariableDescriptor;
+
+/// Represents a rewrite for an explicitly named global alias. Both the source
+/// and target name are explicitly spelt out.
+typedef ExplicitRewriteDescriptor<RewriteDescriptor::Type::NamedAlias,
+ llvm::GlobalAlias,
+ &llvm::Module::getNamedAlias>
+ ExplicitRewriteNamedAliasDescriptor;
+
+/// Represents a rewrite for a regular expression based pattern for functions.
+/// A pattern for the function name is provided and a transformation for that
+/// pattern to determine the target function name create the rewrite rule.
+typedef PatternRewriteDescriptor<RewriteDescriptor::Type::Function,
+ llvm::Function, &llvm::Module::getFunction,
+ &llvm::Module::functions>
+ PatternRewriteFunctionDescriptor;
+
+/// Represents a rewrite for a global variable based upon a matching pattern.
+/// Each global variable matching the provided pattern will be transformed as
+/// described in the transformation pattern for the target. Applies only to
+/// module level variables.
+typedef PatternRewriteDescriptor<RewriteDescriptor::Type::GlobalVariable,
+ llvm::GlobalVariable,
+ &llvm::Module::getGlobalVariable,
+ &llvm::Module::globals>
+ PatternRewriteGlobalVariableDescriptor;
+
+/// PatternRewriteNamedAliasDescriptor - represents a rewrite for global
+/// aliases which match a given pattern. The provided transformation will be
+/// applied to each of the matching names.
+typedef PatternRewriteDescriptor<RewriteDescriptor::Type::NamedAlias,
+ llvm::GlobalAlias,
+ &llvm::Module::getNamedAlias,
+ &llvm::Module::aliases>
+ PatternRewriteNamedAliasDescriptor;
+
+bool RewriteMapParser::parse(const std::string &MapFile,
+ RewriteDescriptorList *DL) {
+ ErrorOr<std::unique_ptr<MemoryBuffer>> Mapping =
+ MemoryBuffer::getFile(MapFile);
+
+ if (!Mapping)
+ report_fatal_error("unable to read rewrite map '" + MapFile + "': " +
+ Mapping.getError().message());
+
+ if (!parse(*Mapping, DL))
+ report_fatal_error("unable to parse rewrite map '" + MapFile + "'");
+
+ return true;
+}
+
+bool RewriteMapParser::parse(std::unique_ptr<MemoryBuffer> &MapFile,
+ RewriteDescriptorList *DL) {
+ SourceMgr SM;
+ yaml::Stream YS(MapFile->getBuffer(), SM);
+
+ for (auto &Document : YS) {
+ yaml::MappingNode *DescriptorList;
+
+ // ignore empty documents
+ if (isa<yaml::NullNode>(Document.getRoot()))
+ continue;
+
+ DescriptorList = dyn_cast<yaml::MappingNode>(Document.getRoot());
+ if (!DescriptorList) {
+ YS.printError(Document.getRoot(), "DescriptorList node must be a map");
+ return false;
+ }
+
+ for (auto &Descriptor : *DescriptorList)
+ if (!parseEntry(YS, Descriptor, DL))
+ return false;
+ }
+
+ return true;
+}
+
+bool RewriteMapParser::parseEntry(yaml::Stream &YS, yaml::KeyValueNode &Entry,
+ RewriteDescriptorList *DL) {
+ yaml::ScalarNode *Key;
+ yaml::MappingNode *Value;
+ SmallString<32> KeyStorage;
+ StringRef RewriteType;
+
+ Key = dyn_cast<yaml::ScalarNode>(Entry.getKey());
+ if (!Key) {
+ YS.printError(Entry.getKey(), "rewrite type must be a scalar");
+ return false;
+ }
+
+ Value = dyn_cast<yaml::MappingNode>(Entry.getValue());
+ if (!Value) {
+ YS.printError(Entry.getValue(), "rewrite descriptor must be a map");
+ return false;
+ }
+
+ RewriteType = Key->getValue(KeyStorage);
+ if (RewriteType.equals("function"))
+ return parseRewriteFunctionDescriptor(YS, Key, Value, DL);
+ else if (RewriteType.equals("global variable"))
+ return parseRewriteGlobalVariableDescriptor(YS, Key, Value, DL);
+ else if (RewriteType.equals("global alias"))
+ return parseRewriteGlobalAliasDescriptor(YS, Key, Value, DL);
+
+ YS.printError(Entry.getKey(), "unknown rewrite type");
+ return false;
+}
+
+bool RewriteMapParser::
+parseRewriteFunctionDescriptor(yaml::Stream &YS, yaml::ScalarNode *K,
+ yaml::MappingNode *Descriptor,
+ RewriteDescriptorList *DL) {
+ bool Naked = false;
+ std::string Source;
+ std::string Target;
+ std::string Transform;
+
+ for (auto &Field : *Descriptor) {
+ yaml::ScalarNode *Key;
+ yaml::ScalarNode *Value;
+ SmallString<32> KeyStorage;
+ SmallString<32> ValueStorage;
+ StringRef KeyValue;
+
+ Key = dyn_cast<yaml::ScalarNode>(Field.getKey());
+ if (!Key) {
+ YS.printError(Field.getKey(), "descriptor key must be a scalar");
+ return false;
+ }
+
+ Value = dyn_cast<yaml::ScalarNode>(Field.getValue());
+ if (!Value) {
+ YS.printError(Field.getValue(), "descriptor value must be a scalar");
+ return false;
+ }
+
+ KeyValue = Key->getValue(KeyStorage);
+ if (KeyValue.equals("source")) {
+ std::string Error;
+
+ Source = Value->getValue(ValueStorage);
+ if (!Regex(Source).isValid(Error)) {
+ YS.printError(Field.getKey(), "invalid regex: " + Error);
+ return false;
+ }
+ } else if (KeyValue.equals("target")) {
+ Target = Value->getValue(ValueStorage);
+ } else if (KeyValue.equals("transform")) {
+ Transform = Value->getValue(ValueStorage);
+ } else if (KeyValue.equals("naked")) {
+ std::string Undecorated;
+
+ Undecorated = Value->getValue(ValueStorage);
+ Naked = StringRef(Undecorated).lower() == "true" || Undecorated == "1";
+ } else {
+ YS.printError(Field.getKey(), "unknown key for function");
+ return false;
+ }
+ }
+
+ if (Transform.empty() == Target.empty()) {
+ YS.printError(Descriptor,
+ "exactly one of transform or target must be specified");
+ return false;
+ }
+
+ // TODO see if there is a more elegant solution to selecting the rewrite
+ // descriptor type
+ if (!Target.empty())
+ DL->push_back(new ExplicitRewriteFunctionDescriptor(Source, Target, Naked));
+ else
+ DL->push_back(new PatternRewriteFunctionDescriptor(Source, Transform));
+
+ return true;
+}
+
+bool RewriteMapParser::
+parseRewriteGlobalVariableDescriptor(yaml::Stream &YS, yaml::ScalarNode *K,
+ yaml::MappingNode *Descriptor,
+ RewriteDescriptorList *DL) {
+ std::string Source;
+ std::string Target;
+ std::string Transform;
+
+ for (auto &Field : *Descriptor) {
+ yaml::ScalarNode *Key;
+ yaml::ScalarNode *Value;
+ SmallString<32> KeyStorage;
+ SmallString<32> ValueStorage;
+ StringRef KeyValue;
+
+ Key = dyn_cast<yaml::ScalarNode>(Field.getKey());
+ if (!Key) {
+ YS.printError(Field.getKey(), "descriptor Key must be a scalar");
+ return false;
+ }
+
+ Value = dyn_cast<yaml::ScalarNode>(Field.getValue());
+ if (!Value) {
+ YS.printError(Field.getValue(), "descriptor value must be a scalar");
+ return false;
+ }
+
+ KeyValue = Key->getValue(KeyStorage);
+ if (KeyValue.equals("source")) {
+ std::string Error;
+
+ Source = Value->getValue(ValueStorage);
+ if (!Regex(Source).isValid(Error)) {
+ YS.printError(Field.getKey(), "invalid regex: " + Error);
+ return false;
+ }
+ } else if (KeyValue.equals("target")) {
+ Target = Value->getValue(ValueStorage);
+ } else if (KeyValue.equals("transform")) {
+ Transform = Value->getValue(ValueStorage);
+ } else {
+ YS.printError(Field.getKey(), "unknown Key for Global Variable");
+ return false;
+ }
+ }
+
+ if (Transform.empty() == Target.empty()) {
+ YS.printError(Descriptor,
+ "exactly one of transform or target must be specified");
+ return false;
+ }
+
+ if (!Target.empty())
+ DL->push_back(new ExplicitRewriteGlobalVariableDescriptor(Source, Target,
+ /*Naked*/false));
+ else
+ DL->push_back(new PatternRewriteGlobalVariableDescriptor(Source,
+ Transform));
+
+ return true;
+}
+
+bool RewriteMapParser::
+parseRewriteGlobalAliasDescriptor(yaml::Stream &YS, yaml::ScalarNode *K,
+ yaml::MappingNode *Descriptor,
+ RewriteDescriptorList *DL) {
+ std::string Source;
+ std::string Target;
+ std::string Transform;
+
+ for (auto &Field : *Descriptor) {
+ yaml::ScalarNode *Key;
+ yaml::ScalarNode *Value;
+ SmallString<32> KeyStorage;
+ SmallString<32> ValueStorage;
+ StringRef KeyValue;
+
+ Key = dyn_cast<yaml::ScalarNode>(Field.getKey());
+ if (!Key) {
+ YS.printError(Field.getKey(), "descriptor key must be a scalar");
+ return false;
+ }
+
+ Value = dyn_cast<yaml::ScalarNode>(Field.getValue());
+ if (!Value) {
+ YS.printError(Field.getValue(), "descriptor value must be a scalar");
+ return false;
+ }
+
+ KeyValue = Key->getValue(KeyStorage);
+ if (KeyValue.equals("source")) {
+ std::string Error;
+
+ Source = Value->getValue(ValueStorage);
+ if (!Regex(Source).isValid(Error)) {
+ YS.printError(Field.getKey(), "invalid regex: " + Error);
+ return false;
+ }
+ } else if (KeyValue.equals("target")) {
+ Target = Value->getValue(ValueStorage);
+ } else if (KeyValue.equals("transform")) {
+ Transform = Value->getValue(ValueStorage);
+ } else {
+ YS.printError(Field.getKey(), "unknown key for Global Alias");
+ return false;
+ }
+ }
+
+ if (Transform.empty() == Target.empty()) {
+ YS.printError(Descriptor,
+ "exactly one of transform or target must be specified");
+ return false;
+ }
+
+ if (!Target.empty())
+ DL->push_back(new ExplicitRewriteNamedAliasDescriptor(Source, Target,
+ /*Naked*/false));
+ else
+ DL->push_back(new PatternRewriteNamedAliasDescriptor(Source, Transform));
+
+ return true;
+}
+}
+}
+
+namespace {
+class RewriteSymbols : public ModulePass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ RewriteSymbols();
+ RewriteSymbols(SymbolRewriter::RewriteDescriptorList &DL);
+
+ bool runOnModule(Module &M) override;
+
+private:
+ void loadAndParseMapFiles();
+
+ SymbolRewriter::RewriteDescriptorList Descriptors;
+};
+
+char RewriteSymbols::ID = 0;
+
+RewriteSymbols::RewriteSymbols() : ModulePass(ID) {
+ initializeRewriteSymbolsPass(*PassRegistry::getPassRegistry());
+ loadAndParseMapFiles();
+}
+
+RewriteSymbols::RewriteSymbols(SymbolRewriter::RewriteDescriptorList &DL)
+ : ModulePass(ID) {
+ Descriptors.splice(Descriptors.begin(), DL);
+}
+
+bool RewriteSymbols::runOnModule(Module &M) {
+ bool Changed;
+
+ Changed = false;
+ for (auto &Descriptor : Descriptors)
+ Changed |= Descriptor.performOnModule(M);
+
+ return Changed;
+}
+
+void RewriteSymbols::loadAndParseMapFiles() {
+ const std::vector<std::string> MapFiles(RewriteMapFiles);
+ SymbolRewriter::RewriteMapParser parser;
+
+ for (const auto &MapFile : MapFiles)
+ parser.parse(MapFile, &Descriptors);
+}
+}
+
+INITIALIZE_PASS(RewriteSymbols, "rewrite-symbols", "Rewrite Symbols", false,
+ false)
+
+ModulePass *llvm::createRewriteSymbolsPass() { return new RewriteSymbols(); }
+
+ModulePass *
+llvm::createRewriteSymbolsPass(SymbolRewriter::RewriteDescriptorList &DL) {
+ return new RewriteSymbols(DL);
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index 0c2fc0a..7e00a80 100644
--- a/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -35,7 +35,6 @@ void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
// We preserve the non-critical-edgeness property
AU.addPreservedID(BreakCriticalEdgesID);
// This is a cluster of orthogonal Transforms
- AU.addPreserved("mem2reg");
AU.addPreservedID(LowerSwitchID);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
index 0f20e6d..477fba4 100644
--- a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
@@ -40,7 +40,7 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
// Global values do not need to be seeded into the VM if they
// are using the identity mapping.
- if (isa<GlobalValue>(V) || isa<MDString>(V))
+ if (isa<GlobalValue>(V))
return VM[V] = const_cast<Value*>(V);
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
@@ -56,57 +56,24 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
return VM[V] = const_cast<Value*>(V);
}
-
- if (const MDNode *MD = dyn_cast<MDNode>(V)) {
+ if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
+ const Metadata *MD = MDV->getMetadata();
// If this is a module-level metadata and we know that nothing at the module
// level is changing, then use an identity mapping.
- if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
- return VM[V] = const_cast<Value*>(V);
-
- // Create a dummy node in case we have a metadata cycle.
- MDNode *Dummy = MDNode::getTemporary(V->getContext(), None);
- VM[V] = Dummy;
-
- // Check all operands to see if any need to be remapped.
- for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
- Value *OP = MD->getOperand(i);
- if (!OP) continue;
- Value *Mapped_OP = MapValue(OP, VM, Flags, TypeMapper, Materializer);
- // Use identity map if Mapped_Op is null and we can ignore missing
- // entries.
- if (Mapped_OP == OP ||
- (Mapped_OP == nullptr && (Flags & RF_IgnoreMissingEntries)))
- continue;
-
- // Ok, at least one operand needs remapping.
- SmallVector<Value*, 4> Elts;
- Elts.reserve(MD->getNumOperands());
- for (i = 0; i != e; ++i) {
- Value *Op = MD->getOperand(i);
- if (!Op)
- Elts.push_back(nullptr);
- else {
- Value *Mapped_Op = MapValue(Op, VM, Flags, TypeMapper, Materializer);
- // Use identity map if Mapped_Op is null and we can ignore missing
- // entries.
- if (Mapped_Op == nullptr && (Flags & RF_IgnoreMissingEntries))
- Mapped_Op = Op;
- Elts.push_back(Mapped_Op);
- }
- }
- MDNode *NewMD = MDNode::get(V->getContext(), Elts);
- Dummy->replaceAllUsesWith(NewMD);
- VM[V] = NewMD;
- MDNode::deleteTemporary(Dummy);
- return NewMD;
- }
+ if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
+ return VM[V] = const_cast<Value *>(V);
- VM[V] = const_cast<Value*>(V);
- MDNode::deleteTemporary(Dummy);
+ auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
+ if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
+ return VM[V] = const_cast<Value *>(V);
- // No operands needed remapping. Use an identity mapping.
- return const_cast<Value*>(V);
+ // FIXME: This assert crashes during bootstrap, but I think it should be
+ // correct. For now, just match behaviour from before the metadata/value
+ // split.
+ //
+ // assert(MappedMD && "Referenced metadata value not in value map");
+ return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
}
// Okay, this either must be a constant (which may or may not be mappable) or
@@ -177,6 +144,229 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
}
+static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
+ Metadata *Val) {
+ VM.MD()[Key].reset(Val);
+ return Val;
+}
+
+static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
+ return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
+}
+
+static Metadata *MapMetadataImpl(const Metadata *MD, ValueToValueMapTy &VM,
+ RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer);
+
+static Metadata *mapMetadataOp(Metadata *Op, ValueToValueMapTy &VM,
+ RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ if (!Op)
+ return nullptr;
+ if (Metadata *MappedOp =
+ MapMetadataImpl(Op, VM, Flags, TypeMapper, Materializer))
+ return MappedOp;
+ // Use identity map if MappedOp is null and we can ignore missing entries.
+ if (Flags & RF_IgnoreMissingEntries)
+ return Op;
+
+ // FIXME: This assert crashes during bootstrap, but I think it should be
+ // correct. For now, just match behaviour from before the metadata/value
+ // split.
+ //
+ // llvm_unreachable("Referenced metadata not in value map!");
+ return nullptr;
+}
+
+static Metadata *cloneMDTuple(const MDTuple *Node, ValueToValueMapTy &VM,
+ RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer,
+ bool IsDistinct) {
+ // Distinct MDTuples have their own code path.
+ assert(!IsDistinct && "Unexpected distinct tuple");
+ (void)IsDistinct;
+
+ SmallVector<Metadata *, 4> Elts;
+ Elts.reserve(Node->getNumOperands());
+ for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
+ Elts.push_back(mapMetadataOp(Node->getOperand(I), VM, Flags, TypeMapper,
+ Materializer));
+
+ return MDTuple::get(Node->getContext(), Elts);
+}
+
+static Metadata *cloneMDLocation(const MDLocation *Node, ValueToValueMapTy &VM,
+ RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer,
+ bool IsDistinct) {
+ return (IsDistinct ? MDLocation::getDistinct : MDLocation::get)(
+ Node->getContext(), Node->getLine(), Node->getColumn(),
+ mapMetadataOp(Node->getScope(), VM, Flags, TypeMapper, Materializer),
+ mapMetadataOp(Node->getInlinedAt(), VM, Flags, TypeMapper, Materializer));
+}
+
+static Metadata *cloneMDNode(const UniquableMDNode *Node, ValueToValueMapTy &VM,
+ RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer, bool IsDistinct) {
+ switch (Node->getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid UniquableMDNode subclass");
+#define HANDLE_UNIQUABLE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ return clone##CLASS(cast<CLASS>(Node), VM, Flags, TypeMapper, \
+ Materializer, IsDistinct);
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+/// \brief Map a distinct MDNode.
+///
+/// Distinct nodes are not uniqued, so they must always recreated.
+static Metadata *mapDistinctNode(const UniquableMDNode *Node,
+ ValueToValueMapTy &VM, RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ assert(Node->isDistinct() && "Expected distinct node");
+
+ // Optimization for MDTuples.
+ if (isa<MDTuple>(Node)) {
+ // Create the node first so it's available for cyclical references.
+ SmallVector<Metadata *, 4> EmptyOps(Node->getNumOperands());
+ MDTuple *NewMD = MDTuple::getDistinct(Node->getContext(), EmptyOps);
+ mapToMetadata(VM, Node, NewMD);
+
+ // Fix the operands.
+ for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
+ NewMD->replaceOperandWith(I, mapMetadataOp(Node->getOperand(I), VM, Flags,
+ TypeMapper, Materializer));
+
+ return NewMD;
+ }
+
+ // In general we need a dummy node, since whether the operands are null can
+ // affect the size of the node.
+ std::unique_ptr<MDNodeFwdDecl> Dummy(
+ MDNode::getTemporary(Node->getContext(), None));
+ mapToMetadata(VM, Node, Dummy.get());
+ Metadata *NewMD = cloneMDNode(Node, VM, Flags, TypeMapper, Materializer,
+ /* IsDistinct */ true);
+ Dummy->replaceAllUsesWith(NewMD);
+ return mapToMetadata(VM, Node, NewMD);
+}
+
+/// \brief Check whether a uniqued node needs to be remapped.
+///
+/// Check whether a uniqued node needs to be remapped (due to any operands
+/// changing).
+static bool shouldRemapUniquedNode(const UniquableMDNode *Node,
+ ValueToValueMapTy &VM, RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ // Check all operands to see if any need to be remapped.
+ for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
+ Metadata *Op = Node->getOperand(I);
+ if (Op != mapMetadataOp(Op, VM, Flags, TypeMapper, Materializer))
+ return true;
+ }
+ return false;
+}
+
+/// \brief Map a uniqued MDNode.
+///
+/// Uniqued nodes may not need to be recreated (they may map to themselves).
+static Metadata *mapUniquedNode(const UniquableMDNode *Node,
+ ValueToValueMapTy &VM, RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ assert(!Node->isDistinct() && "Expected uniqued node");
+
+ // Create a dummy node in case we have a metadata cycle.
+ MDNodeFwdDecl *Dummy = MDNode::getTemporary(Node->getContext(), None);
+ mapToMetadata(VM, Node, Dummy);
+
+ // Check all operands to see if any need to be remapped.
+ if (!shouldRemapUniquedNode(Node, VM, Flags, TypeMapper, Materializer)) {
+ // Use an identity mapping.
+ mapToSelf(VM, Node);
+ MDNode::deleteTemporary(Dummy);
+ return const_cast<Metadata *>(static_cast<const Metadata *>(Node));
+ }
+
+ // At least one operand needs remapping.
+ Metadata *NewMD = cloneMDNode(Node, VM, Flags, TypeMapper, Materializer,
+ /* IsDistinct */ false);
+ Dummy->replaceAllUsesWith(NewMD);
+ MDNode::deleteTemporary(Dummy);
+ return mapToMetadata(VM, Node, NewMD);
+}
+
+static Metadata *MapMetadataImpl(const Metadata *MD, ValueToValueMapTy &VM,
+ RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ // If the value already exists in the map, use it.
+ if (Metadata *NewMD = VM.MD().lookup(MD).get())
+ return NewMD;
+
+ if (isa<MDString>(MD))
+ return mapToSelf(VM, MD);
+
+ if (isa<ConstantAsMetadata>(MD))
+ if ((Flags & RF_NoModuleLevelChanges))
+ return mapToSelf(VM, MD);
+
+ if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
+ Value *MappedV =
+ MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
+ if (VMD->getValue() == MappedV ||
+ (!MappedV && (Flags & RF_IgnoreMissingEntries)))
+ return mapToSelf(VM, MD);
+
+ // FIXME: This assert crashes during bootstrap, but I think it should be
+ // correct. For now, just match behaviour from before the metadata/value
+ // split.
+ //
+ // assert(MappedV && "Referenced metadata not in value map!");
+ if (MappedV)
+ return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
+ return nullptr;
+ }
+
+ const UniquableMDNode *Node = cast<UniquableMDNode>(MD);
+ assert(Node->isResolved() && "Unexpected unresolved node");
+
+ // If this is a module-level metadata and we know that nothing at the
+ // module level is changing, then use an identity mapping.
+ if (Flags & RF_NoModuleLevelChanges)
+ return mapToSelf(VM, MD);
+
+ if (Node->isDistinct())
+ return mapDistinctNode(Node, VM, Flags, TypeMapper, Materializer);
+
+ return mapUniquedNode(Node, VM, Flags, TypeMapper, Materializer);
+}
+
+Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
+ RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ Metadata *NewMD = MapMetadataImpl(MD, VM, Flags, TypeMapper, Materializer);
+ if (NewMD && NewMD != MD)
+ if (auto *N = dyn_cast<UniquableMDNode>(NewMD))
+ N->resolveCycles();
+ return NewMD;
+}
+
+MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
+ RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
+ TypeMapper, Materializer));
+}
+
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
///
@@ -210,10 +400,12 @@ void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
// Remap attached metadata.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I->getAllMetadata(MDs);
- for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
- MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
+ for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
+ MI = MDs.begin(),
+ ME = MDs.end();
+ MI != ME; ++MI) {
MDNode *Old = MI->second;
- MDNode *New = MapValue(Old, VMap, Flags, TypeMapper, Materializer);
+ MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
if (New != Old)
I->setMetadata(MI->first, New);
}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
index 28ec83b..a0ccf9d 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -391,8 +391,6 @@ namespace {
Instruction *&InsertionPt,
Instruction *I, Instruction *J);
- void combineMetadata(Instruction *K, const Instruction *J);
-
bool vectorizeBB(BasicBlock &BB) {
if (skipOptnoneFunction(BB))
return false;
@@ -687,6 +685,8 @@ namespace {
case Intrinsic::trunc:
case Intrinsic::floor:
case Intrinsic::fabs:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
return Config.VectorizeMath;
case Intrinsic::bswap:
case Intrinsic::ctpop:
@@ -2609,7 +2609,6 @@ namespace {
true, o, 1));
NewI1->insertBefore(IBeforeJ ? J : I);
I1 = NewI1;
- I1T = I2T;
I1Elem = I2Elem;
} else if (I1Elem > I2Elem) {
std::vector<Constant *> Mask(I1Elem);
@@ -2626,8 +2625,6 @@ namespace {
true, o, 1));
NewI2->insertBefore(IBeforeJ ? J : I);
I2 = NewI2;
- I2T = I1T;
- I2Elem = I1Elem;
}
// Now that both I1 and I2 are the same length we can shuffle them
@@ -2964,31 +2961,6 @@ namespace {
}
}
- // When the first instruction in each pair is cloned, it will inherit its
- // parent's metadata. This metadata must be combined with that of the other
- // instruction in a safe way.
- void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
- SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
- K->getAllMetadataOtherThanDebugLoc(Metadata);
- for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
- unsigned Kind = Metadata[i].first;
- MDNode *JMD = J->getMetadata(Kind);
- MDNode *KMD = Metadata[i].second;
-
- switch (Kind) {
- default:
- K->setMetadata(Kind, nullptr); // Remove unknown metadata
- break;
- case LLVMContext::MD_tbaa:
- K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
- break;
- case LLVMContext::MD_fpmath:
- K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
- break;
- }
- }
- }
-
// This function fuses the chosen instruction pairs into vector instructions,
// taking care preserve any needed scalar outputs and, then, it reorders the
// remaining instructions as needed (users of the first member of the pair
@@ -3138,7 +3110,13 @@ namespace {
if (!isa<StoreInst>(K))
K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
- combineMetadata(K, H);
+ unsigned KnownIDs[] = {
+ LLVMContext::MD_tbaa,
+ LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias,
+ LLVMContext::MD_fpmath
+ };
+ combineMetadata(K, H, KnownIDs);
K->intersectOptionalDataWith(H);
for (unsigned o = 0; o < NumOperands; ++o)
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 79fcb09..557304e 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -55,7 +55,9 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
@@ -108,8 +110,8 @@ VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
static cl::opt<unsigned>
-VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
- cl::desc("Sets the vectorization unroll count. "
+VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
+ cl::desc("Sets the vectorization interleave count. "
"Zero is autoselect."));
static cl::opt<bool>
@@ -157,17 +159,17 @@ static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
-/// Maximum vectorization unroll count.
-static const unsigned MaxUnrollFactor = 16;
+/// Maximum vectorization interleave count.
+static const unsigned MaxInterleaveFactor = 16;
-static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
- "force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max unroll factor for scalar "
- "loops."));
+static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
+ "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's max interleave factor for "
+ "scalar loops."));
-static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
- "force-target-max-vector-unroll", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max unroll factor for "
+static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
+ "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
@@ -204,11 +206,17 @@ static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(false), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
+static cl::opt<unsigned> MaxNestedScalarReductionUF(
+ "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
+ cl::desc("The maximum unroll factor to use when unrolling a scalar "
+ "reduction in a nested loop."));
+
namespace {
// Forward declarations.
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
+class LoopVectorizeHints;
/// Optimization analysis message produced during vectorization. Messages inform
/// the user why vectorization did not occur.
@@ -535,6 +543,8 @@ static void propagateMetadata(Instruction *To, const Instruction *From) {
// non-speculated memory access when the condition was false, this would be
// caught by the runtime overlap checks).
if (Kind != LLVMContext::MD_tbaa &&
+ Kind != LLVMContext::MD_alias_scope &&
+ Kind != LLVMContext::MD_noalias &&
Kind != LLVMContext::MD_fpmath)
continue;
@@ -570,9 +580,10 @@ public:
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
DominatorTree *DT, TargetLibraryInfo *TLI,
- AliasAnalysis *AA, Function *F)
+ AliasAnalysis *AA, Function *F,
+ const TargetTransformInfo *TTI)
: NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
- DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr),
+ DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr),
WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
}
@@ -758,6 +769,21 @@ public:
}
SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
+ /// Returns true if the target machine supports masked store operation
+ /// for the given \p DataType and kind of access to \p Ptr.
+ bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
+ return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
+ }
+ /// Returns true if the target machine supports masked load operation
+ /// for the given \p DataType and kind of access to \p Ptr.
+ bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
+ return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
+ }
+ /// Returns true if vector representation of the instruction \p I
+ /// requires mask.
+ bool isMaskRequired(const Instruction* I) {
+ return (MaskedOp.count(I) != 0);
+ }
private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
@@ -780,7 +806,7 @@ private:
/// Return true if all of the instructions in the block can be speculatively
/// executed. \p SafePtrs is a list of addresses that are known to be legal
/// and we know that we can read from them without segfault.
- bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
+ bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
/// Returns True, if 'Phi' is the kind of reduction variable for type
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
@@ -804,7 +830,7 @@ private:
///
/// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
/// invariant.
- void collectStridedAcccess(Value *LoadOrStoreInst);
+ void collectStridedAccess(Value *LoadOrStoreInst);
/// Report an analysis message to assist the user in diagnosing loops that are
/// not vectorized.
@@ -830,6 +856,8 @@ private:
AliasAnalysis *AA;
/// Parent function
Function *TheFunction;
+ /// Target Transform Info
+ const TargetTransformInfo *TTI;
// --- vectorization state --- //
@@ -861,6 +889,10 @@ private:
ValueToValueMap Strides;
SmallPtrSet<Value *, 8> StrideSet;
+
+ /// While vectorizing these instructions we have to generate a
+ /// call to the appropriate masked intrinsic
+ SmallPtrSet<const Instruction*, 8> MaskedOp;
};
/// LoopVectorizationCostModel - estimates the expected speedups due to
@@ -875,8 +907,13 @@ public:
LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
- const DataLayout *DL, const TargetLibraryInfo *TLI)
- : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
+ AssumptionCache *AC, const Function *F,
+ const LoopVectorizeHints *Hints)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
+ TheFunction(F), Hints(Hints) {
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+ }
/// Information about vectorization costs
struct VectorizationFactor {
@@ -887,9 +924,7 @@ public:
/// This method checks every power of two up to VF. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
- VectorizationFactor selectVectorizationFactor(bool OptForSize,
- unsigned UserVF,
- bool ForceVectorization);
+ VectorizationFactor selectVectorizationFactor(bool OptForSize);
/// \return The size (in bits) of the widest type in the code that
/// needs to be vectorized. We ignore values that remain scalar such as
@@ -901,8 +936,7 @@ public:
/// based on register pressure and other parameters.
/// VF and LoopCost are the selected vectorization factor and the cost of the
/// selected VF.
- unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
- unsigned LoopCost);
+ unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
/// \brief A struct that represents some properties of the register usage
/// of a loop.
@@ -938,6 +972,19 @@ private:
/// as a vector operation.
bool isConsecutiveLoadOrStore(Instruction *I);
+ /// Report an analysis message to assist the user in diagnosing loops that are
+ /// not vectorized.
+ void emitAnalysis(Report &Message) {
+ DebugLoc DL = TheLoop->getStartLoc();
+ if (Instruction *I = Message.getInstr())
+ DL = I->getDebugLoc();
+ emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
+ *TheFunction, DL, Message.str());
+ }
+
+ /// Values used only by @llvm.assume calls.
+ SmallPtrSet<const Value *, 32> EphValues;
+
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
@@ -952,11 +999,59 @@ private:
const DataLayout *DL;
/// Target Library Info.
const TargetLibraryInfo *TLI;
+ const Function *TheFunction;
+ // Loop Vectorize Hint.
+ const LoopVectorizeHints *Hints;
};
/// Utility class for getting and setting loop vectorizer hints in the form
/// of loop metadata.
+/// This class keeps a number of loop annotations locally (as member variables)
+/// and can, upon request, write them back as metadata on the loop. It will
+/// initially scan the loop for existing metadata, and will update the local
+/// values based on information in the loop.
+/// We cannot write all values to metadata, as the mere presence of some info,
+/// for example 'force', means a decision has been made. So, we need to be
+/// careful NOT to add them if the user hasn't specifically asked so.
class LoopVectorizeHints {
+ enum HintKind {
+ HK_WIDTH,
+ HK_UNROLL,
+ HK_FORCE
+ };
+
+ /// Hint - associates name and validation with the hint value.
+ struct Hint {
+ const char * Name;
+ unsigned Value; // This may have to change for non-numeric values.
+ HintKind Kind;
+
+ Hint(const char * Name, unsigned Value, HintKind Kind)
+ : Name(Name), Value(Value), Kind(Kind) { }
+
+ bool validate(unsigned Val) {
+ switch (Kind) {
+ case HK_WIDTH:
+ return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
+ case HK_UNROLL:
+ return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
+ case HK_FORCE:
+ return (Val <= 1);
+ }
+ return false;
+ }
+ };
+
+ /// Vectorization width.
+ Hint Width;
+ /// Vectorization interleave factor.
+ Hint Interleave;
+ /// Vectorization forced
+ Hint Force;
+
+ /// Return the loop metadata prefix.
+ static StringRef Prefix() { return "llvm.loop."; }
+
public:
enum ForceKind {
FK_Undefined = -1, ///< Not selected.
@@ -964,90 +1059,57 @@ public:
FK_Enabled = 1, ///< Forcing enabled.
};
- LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
- : Width(VectorizationFactor),
- Unroll(DisableUnrolling),
- Force(FK_Undefined),
- LoopID(L->getLoopID()) {
- getHints(L);
- // force-vector-unroll overrides DisableUnrolling.
- if (VectorizationUnroll.getNumOccurrences() > 0)
- Unroll = VectorizationUnroll;
+ LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
+ : Width("vectorize.width", VectorizationFactor, HK_WIDTH),
+ Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
+ Force("vectorize.enable", FK_Undefined, HK_FORCE),
+ TheLoop(L) {
+ // Populate values with existing loop metadata.
+ getHintsFromMetadata();
- DEBUG(if (DisableUnrolling && Unroll == 1) dbgs()
- << "LV: Unrolling disabled by the pass manager\n");
- }
-
- /// Return the loop metadata prefix.
- static StringRef Prefix() { return "llvm.loop."; }
+ // force-vector-interleave overrides DisableInterleaving.
+ if (VectorizationInterleave.getNumOccurrences() > 0)
+ Interleave.Value = VectorizationInterleave;
- MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const {
- SmallVector<Value*, 2> Vals;
- Vals.push_back(MDString::get(Context, Name));
- Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
- return MDNode::get(Context, Vals);
+ DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
+ << "LV: Interleaving disabled by the pass manager\n");
}
/// Mark the loop L as already vectorized by setting the width to 1.
- void setAlreadyVectorized(Loop *L) {
- LLVMContext &Context = L->getHeader()->getContext();
-
- Width = 1;
-
- // Create a new loop id with one more operand for the already_vectorized
- // hint. If the loop already has a loop id then copy the existing operands.
- SmallVector<Value*, 4> Vals(1);
- if (LoopID)
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
- Vals.push_back(LoopID->getOperand(i));
-
- Vals.push_back(
- createHint(Context, Twine(Prefix(), "vectorize.width").str(), Width));
- Vals.push_back(
- createHint(Context, Twine(Prefix(), "interleave.count").str(), 1));
-
- MDNode *NewLoopID = MDNode::get(Context, Vals);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
-
- L->setLoopID(NewLoopID);
- if (LoopID)
- LoopID->replaceAllUsesWith(NewLoopID);
-
- LoopID = NewLoopID;
+ void setAlreadyVectorized() {
+ Width.Value = Interleave.Value = 1;
+ Hint Hints[] = {Width, Interleave};
+ writeHintsToMetadata(Hints);
}
+ /// Dumps all the hint information.
std::string emitRemark() const {
Report R;
- R << "vectorization ";
- switch (Force) {
- case LoopVectorizeHints::FK_Disabled:
- R << "is explicitly disabled";
- break;
- case LoopVectorizeHints::FK_Enabled:
- R << "is explicitly enabled";
- if (Width != 0 && Unroll != 0)
- R << " with width " << Width << " and interleave count " << Unroll;
- else if (Width != 0)
- R << " with width " << Width;
- else if (Unroll != 0)
- R << " with interleave count " << Unroll;
- break;
- case LoopVectorizeHints::FK_Undefined:
- R << "was not specified";
- break;
+ if (Force.Value == LoopVectorizeHints::FK_Disabled)
+ R << "vectorization is explicitly disabled";
+ else {
+ R << "use -Rpass-analysis=loop-vectorize for more info";
+ if (Force.Value == LoopVectorizeHints::FK_Enabled) {
+ R << " (Force=true";
+ if (Width.Value != 0)
+ R << ", Vector Width=" << Width.Value;
+ if (Interleave.Value != 0)
+ R << ", Interleave Count=" << Interleave.Value;
+ R << ")";
+ }
}
+
return R.str();
}
- unsigned getWidth() const { return Width; }
- unsigned getUnroll() const { return Unroll; }
- enum ForceKind getForce() const { return Force; }
- MDNode *getLoopID() const { return LoopID; }
+ unsigned getWidth() const { return Width.Value; }
+ unsigned getInterleave() const { return Interleave.Value; }
+ enum ForceKind getForce() const { return (ForceKind)Force.Value; }
private:
- /// Find hints specified in the loop metadata.
- void getHints(const Loop *L) {
+ /// Find hints specified in the loop metadata and update local values.
+ void getHintsFromMetadata() {
+ MDNode *LoopID = TheLoop->getLoopID();
if (!LoopID)
return;
@@ -1057,7 +1119,7 @@ private:
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
const MDString *S = nullptr;
- SmallVector<Value*, 4> Args;
+ SmallVector<Metadata *, 4> Args;
// The expected hint is either a MDString or a MDNode with the first
// operand a MDString.
@@ -1076,52 +1138,88 @@ private:
continue;
// Check if the hint starts with the loop metadata prefix.
- StringRef Hint = S->getString();
- if (!Hint.startswith(Prefix()))
- continue;
- // Remove the prefix.
- Hint = Hint.substr(Prefix().size(), StringRef::npos);
-
+ StringRef Name = S->getString();
if (Args.size() == 1)
- getHint(Hint, Args[0]);
+ setHint(Name, Args[0]);
}
}
- // Check string hint with one operand.
- void getHint(StringRef Hint, Value *Arg) {
- const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
+ /// Checks string hint with one operand and set value if valid.
+ void setHint(StringRef Name, Metadata *Arg) {
+ if (!Name.startswith(Prefix()))
+ return;
+ Name = Name.substr(Prefix().size(), StringRef::npos);
+
+ const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
if (!C) return;
unsigned Val = C->getZExtValue();
- if (Hint == "vectorize.width") {
- if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
- Width = Val;
- else
- DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
- } else if (Hint == "vectorize.enable") {
- if (C->getBitWidth() == 1)
- Force = Val == 1 ? LoopVectorizeHints::FK_Enabled
- : LoopVectorizeHints::FK_Disabled;
- else
- DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
- } else if (Hint == "interleave.count") {
- if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
- Unroll = Val;
- else
- DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
- } else {
- DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
+ Hint *Hints[] = {&Width, &Interleave, &Force};
+ for (auto H : Hints) {
+ if (Name == H->Name) {
+ if (H->validate(Val))
+ H->Value = Val;
+ else
+ DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
+ break;
+ }
}
}
- /// Vectorization width.
- unsigned Width;
- /// Vectorization unroll factor.
- unsigned Unroll;
- /// Vectorization forced
- enum ForceKind Force;
+ /// Create a new hint from name / value pair.
+ MDNode *createHintMetadata(StringRef Name, unsigned V) const {
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ Metadata *MDs[] = {MDString::get(Context, Name),
+ ConstantAsMetadata::get(
+ ConstantInt::get(Type::getInt32Ty(Context), V))};
+ return MDNode::get(Context, MDs);
+ }
+
+ /// Matches metadata with hint name.
+ bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
+ MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
+ if (!Name)
+ return false;
- MDNode *LoopID;
+ for (auto H : HintTypes)
+ if (Name->getString().endswith(H.Name))
+ return true;
+ return false;
+ }
+
+ /// Sets current hints into loop metadata, keeping other values intact.
+ void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
+ if (HintTypes.size() == 0)
+ return;
+
+ // Reserve the first element to LoopID (see below).
+ SmallVector<Metadata *, 4> MDs(1);
+ // If the loop already has metadata, then ignore the existing operands.
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (LoopID) {
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
+ // If node in update list, ignore old value.
+ if (!matchesHintMetadataName(Node, HintTypes))
+ MDs.push_back(Node);
+ }
+ }
+
+ // Now, add the missing hints.
+ for (auto H : HintTypes)
+ MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
+
+ // Replace current metadata node with new one.
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+
+ TheLoop->setLoopID(NewLoopID);
+ }
+
+ /// The loop these hints belong to.
+ const Loop *TheLoop;
};
static void emitMissedWarning(Function *F, Loop *L,
@@ -1134,7 +1232,7 @@ static void emitMissedWarning(Function *F, Loop *L,
emitLoopVectorizeWarning(
F->getContext(), *F, L->getStartLoc(),
"failed explicitly specified loop vectorization");
- else if (LH.getUnroll() != 1)
+ else if (LH.getInterleave() != 1)
emitLoopInterleaveWarning(
F->getContext(), *F, L->getStartLoc(),
"failed explicitly specified loop interleaving");
@@ -1169,6 +1267,7 @@ struct LoopVectorize : public FunctionPass {
BlockFrequencyInfo *BFI;
TargetLibraryInfo *TLI;
AliasAnalysis *AA;
+ AssumptionCache *AC;
bool DisableUnrolling;
bool AlwaysVectorize;
@@ -1184,6 +1283,7 @@ struct LoopVectorize : public FunctionPass {
BFI = &getAnalysis<BlockFrequencyInfo>();
TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
AA = &getAnalysis<AliasAnalysis>();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// Compute some weights outside of the loop over the loops. Compute this
// using a BranchProbability to re-use its scaling math.
@@ -1240,7 +1340,7 @@ struct LoopVectorize : public FunctionPass {
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
? "enabled"
: "?")) << " width=" << Hints.getWidth()
- << " unroll=" << Hints.getUnroll() << "\n");
+ << " unroll=" << Hints.getInterleave() << "\n");
// Function containing loop
Function *F = L->getHeader()->getParent();
@@ -1267,7 +1367,7 @@ struct LoopVectorize : public FunctionPass {
return false;
}
- if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
+ if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
emitOptimizationRemarkAnalysis(
F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
@@ -1278,8 +1378,7 @@ struct LoopVectorize : public FunctionPass {
// Check the loop for a trip count threshold:
// do not vectorize loops with a tiny trip count.
- BasicBlock *Latch = L->getLoopLatch();
- const unsigned TC = SE->getSmallConstantTripCount(L, Latch);
+ const unsigned TC = SE->getSmallConstantTripCount(L);
if (TC > 0u && TC < TinyTripCountVectorThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is not worth vectorizing.");
@@ -1295,7 +1394,7 @@ struct LoopVectorize : public FunctionPass {
}
// Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F);
+ LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
@@ -1303,7 +1402,8 @@ struct LoopVectorize : public FunctionPass {
}
// Use the cost model.
- LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F,
+ &Hints);
// Check the function attributes to find out if this function should be
// optimized for size.
@@ -1338,13 +1438,11 @@ struct LoopVectorize : public FunctionPass {
// Select the optimal vectorization factor.
const LoopVectorizationCostModel::VectorizationFactor VF =
- CM.selectVectorizationFactor(OptForSize, Hints.getWidth(),
- Hints.getForce() ==
- LoopVectorizeHints::FK_Enabled);
+ CM.selectVectorizationFactor(OptForSize);
// Select the unroll factor.
const unsigned UF =
- CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost);
+ CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
<< DebugLocStr << '\n');
@@ -1385,13 +1483,14 @@ struct LoopVectorize : public FunctionPass {
}
// Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized(L);
+ Hints.setAlreadyVectorized();
DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<BlockFrequencyInfo>();
@@ -1683,7 +1782,8 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
- if (SI && Legal->blockNeedsPredication(SI->getParent()))
+ if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
+ !Legal->isMaskRequired(SI))
return scalarizeInstruction(Instr, true);
if (ScalarAllocatedSize != VectorElementSize)
@@ -1752,6 +1852,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
}
+ VectorParts Mask = createBlockInMask(Instr->getParent());
// Handle Stores:
if (SI) {
assert(!Legal->isUniform(SI->getPointerOperand()) &&
@@ -1760,7 +1861,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
// We don't want to update the value in the map as it might be used in
// another expression. So don't use a reference type for "StoredVal".
VectorParts StoredVal = getVectorValue(SI->getValueOperand());
-
+
for (unsigned Part = 0; Part < UF; ++Part) {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
@@ -1777,8 +1878,13 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
- StoreInst *NewSI =
- Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
+
+ Instruction *NewSI;
+ if (Legal->isMaskRequired(SI))
+ NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
+ Mask[Part]);
+ else
+ NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
propagateMetadata(NewSI, SI);
}
return;
@@ -1793,14 +1899,20 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
if (Reverse) {
// If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
+ // wide load needs to start at the last vector element.
PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
}
+ Instruction* NewLI;
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
- LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
+ if (Legal->isMaskRequired(LI))
+ NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
+ UndefValue::get(DataTy),
+ "wide.masked.load");
+ else
+ NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
propagateMetadata(NewLI, LI);
Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
}
@@ -2487,7 +2599,7 @@ void InnerLoopVectorizer::createEmptyLoop() {
LoopScalarBody = OldBasicBlock;
LoopVectorizeHints Hints(Lp, true);
- Hints.setAlreadyVectorized(Lp);
+ Hints.setAlreadyVectorized();
}
/// This function returns the identity element (or neutral element) for
@@ -2755,9 +2867,6 @@ void InnerLoopVectorizer::vectorizeLoop() {
}
// Fix the vector-loop phi.
- // We created the induction variable so we know that the
- // preheader is the first entry.
- BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
@@ -2769,7 +2878,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
// Make sure to add the reduction stat value only to the
// first unroll part.
Value *StartVal = (part == 0) ? VectorStart : Identity;
- cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
+ LoopVectorPreHeader);
cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
LoopVectorBody.back());
}
@@ -2901,7 +3011,7 @@ void InnerLoopVectorizer::fixLCSSAPHIs() {
LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
LoopMiddleBlock);
}
-}
+}
InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
@@ -3168,18 +3278,8 @@ void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
for (unsigned Part = 0; Part < UF; ++Part) {
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
- // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
- BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
- if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
- VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
- VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
- }
- if (VecOp && isa<PossiblyExactOperator>(VecOp))
- VecOp->setIsExact(BinOp->isExact());
-
- // Copy the fast-math flags.
- if (VecOp && isa<FPMathOperator>(V))
- VecOp->setFastMathFlags(it->getFastMathFlags());
+ if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
+ VecOp->copyIRFlags(BinOp);
Entry[Part] = V;
}
@@ -3292,6 +3392,7 @@ void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
assert(ID && "Not an intrinsic call!");
switch (ID) {
+ case Intrinsic::assume:
case Intrinsic::lifetime_end:
case Intrinsic::lifetime_start:
scalarizeInstruction(it);
@@ -3542,7 +3643,7 @@ static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
/// \brief Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
- SmallPtrSet<Value *, 4> &Reductions) {
+ SmallPtrSetImpl<Value *> &Reductions) {
// Reduction instructions are allowed to have exit users. All other
// instructions must not have external users.
if (!Reductions.count(Inst))
@@ -3597,12 +3698,12 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// identified reduction value with an outside user.
if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
continue;
- emitAnalysis(Report(it) << "value that could not be identified as "
- "reduction is used outside the loop");
+ emitAnalysis(Report(it) << "value could not be identified as "
+ "an induction or reduction variable");
return false;
}
- // We only allow if-converted PHIs with more than two incoming values.
+ // We only allow if-converted PHIs with exactly two incoming values.
if (Phi->getNumIncomingValues() != 2) {
emitAnalysis(Report(it)
<< "control flow not understood by vectorizer");
@@ -3683,7 +3784,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
continue;
}
- emitAnalysis(Report(it) << "unvectorizable operation");
+ emitAnalysis(Report(it) << "value that could not be identified as "
+ "reduction is used outside the loop");
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
}// end of PHI handling
@@ -3727,12 +3829,12 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
return false;
}
if (EnableMemAccessVersioning)
- collectStridedAcccess(ST);
+ collectStridedAccess(ST);
}
if (EnableMemAccessVersioning)
if (LoadInst *LI = dyn_cast<LoadInst>(it))
- collectStridedAcccess(LI);
+ collectStridedAccess(LI);
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
@@ -3870,7 +3972,7 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
return Stride;
}
-void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
+void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
Value *Ptr = nullptr;
if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
Ptr = LI->getPointerOperand();
@@ -3946,7 +4048,7 @@ public:
/// \brief Register a load and whether it is only read from.
void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.TBAATag);
+ AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
Accesses.insert(MemAccessInfo(Ptr, false));
if (IsReadOnly)
ReadOnlyPtr.insert(Ptr);
@@ -3955,7 +4057,7 @@ public:
/// \brief Register a store.
void addStore(AliasAnalysis::Location &Loc) {
Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.TBAATag);
+ AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
Accesses.insert(MemAccessInfo(Ptr, true));
}
@@ -4166,57 +4268,66 @@ void AccessAnalysis::processMemAccesses() {
bool UseDeferred = SetIteration > 0;
PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
- for (auto A : AS) {
- Value *Ptr = A.getValue();
- bool IsWrite = S.count(MemAccessInfo(Ptr, true));
+ for (auto AV : AS) {
+ Value *Ptr = AV.getValue();
- // If we're using the deferred access set, then it contains only reads.
- bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
- if (UseDeferred && !IsReadOnlyPtr)
- continue;
- // Otherwise, the pointer must be in the PtrAccessSet, either as a read
- // or a write.
- assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
- S.count(MemAccessInfo(Ptr, false))) &&
- "Alias-set pointer not in the access set?");
-
- MemAccessInfo Access(Ptr, IsWrite);
- DepCands.insert(Access);
-
- // Memorize read-only pointers for later processing and skip them in the
- // first round (they need to be checked after we have seen all write
- // pointers). Note: we also mark pointer that are not consecutive as
- // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need
- // the second check for "!IsWrite".
- if (!UseDeferred && IsReadOnlyPtr) {
- DeferredAccesses.insert(Access);
- continue;
- }
+ // For a single memory access in AliasSetTracker, Accesses may contain
+ // both read and write, and they both need to be handled for CheckDeps.
+ for (auto AC : S) {
+ if (AC.getPointer() != Ptr)
+ continue;
- // If this is a write - check other reads and writes for conflicts. If
- // this is a read only check other writes for conflicts (but only if
- // there is no other write to the ptr - this is an optimization to
- // catch "a[i] = a[i] + " without having to do a dependence check).
- if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
- CheckDeps.insert(Access);
- IsRTCheckNeeded = true;
- }
+ bool IsWrite = AC.getInt();
+
+ // If we're using the deferred access set, then it contains only
+ // reads.
+ bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
+ if (UseDeferred && !IsReadOnlyPtr)
+ continue;
+ // Otherwise, the pointer must be in the PtrAccessSet, either as a
+ // read or a write.
+ assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
+ S.count(MemAccessInfo(Ptr, false))) &&
+ "Alias-set pointer not in the access set?");
+
+ MemAccessInfo Access(Ptr, IsWrite);
+ DepCands.insert(Access);
+
+ // Memorize read-only pointers for later processing and skip them in
+ // the first round (they need to be checked after we have seen all
+ // write pointers). Note: we also mark pointer that are not
+ // consecutive as "read-only" pointers (so that we check
+ // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
+ if (!UseDeferred && IsReadOnlyPtr) {
+ DeferredAccesses.insert(Access);
+ continue;
+ }
+
+ // If this is a write - check other reads and writes for conflicts. If
+ // this is a read only check other writes for conflicts (but only if
+ // there is no other write to the ptr - this is an optimization to
+ // catch "a[i] = a[i] + " without having to do a dependence check).
+ if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
+ CheckDeps.insert(Access);
+ IsRTCheckNeeded = true;
+ }
- if (IsWrite)
- SetHasWrite = true;
-
- // Create sets of pointers connected by a shared alias set and
- // underlying object.
- typedef SmallVector<Value*, 16> ValueVector;
- ValueVector TempObjects;
- GetUnderlyingObjects(Ptr, TempObjects, DL);
- for (Value *UnderlyingObj : TempObjects) {
- UnderlyingObjToAccessMap::iterator Prev =
- ObjToLastAccess.find(UnderlyingObj);
- if (Prev != ObjToLastAccess.end())
- DepCands.unionSets(Access, Prev->second);
-
- ObjToLastAccess[UnderlyingObj] = Access;
+ if (IsWrite)
+ SetHasWrite = true;
+
+ // Create sets of pointers connected by a shared alias set and
+ // underlying object.
+ typedef SmallVector<Value *, 16> ValueVector;
+ ValueVector TempObjects;
+ GetUnderlyingObjects(Ptr, TempObjects, DL);
+ for (Value *UnderlyingObj : TempObjects) {
+ UnderlyingObjToAccessMap::iterator Prev =
+ ObjToLastAccess.find(UnderlyingObj);
+ if (Prev != ObjToLastAccess.end())
+ DepCands.unionSets(Access, Prev->second);
+
+ ObjToLastAccess[UnderlyingObj] = Access;
+ }
}
}
}
@@ -4566,7 +4677,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
// Bail out early if passed-in parameters make vectorization not feasible.
unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
- unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
+ unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1;
// The distance must be bigger than the size needed for a vectorized version
// of the operation and the size of the vectorized operation must not be
@@ -4738,7 +4849,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// If we did *not* see this pointer before, insert it to the read-write
// list. At this phase it is only a 'write' list.
- if (Seen.insert(Ptr)) {
+ if (Seen.insert(Ptr).second) {
++NumReadWrites;
AliasAnalysis::Location Loc = AA->getLocation(ST);
@@ -4746,7 +4857,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// condition, so we cannot rely on it when determining whether or not we
// need runtime pointer checks.
if (blockNeedsPredication(ST->getParent()))
- Loc.TBAATag = nullptr;
+ Loc.AATags.TBAA = nullptr;
Accesses.addStore(Loc);
}
@@ -4771,7 +4882,8 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
bool IsReadOnlyPtr = false;
- if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
+ if (Seen.insert(Ptr).second ||
+ !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
++NumReads;
IsReadOnlyPtr = true;
}
@@ -4781,7 +4893,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// condition, so we cannot rely on it when determining whether or not we
// need runtime pointer checks.
if (blockNeedsPredication(LD->getParent()))
- Loc.TBAATag = nullptr;
+ Loc.AATags.TBAA = nullptr;
Accesses.addLoad(Loc, IsReadOnlyPtr);
}
@@ -4884,7 +4996,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
}
static bool hasMultipleUsesOf(Instruction *I,
- SmallPtrSet<Instruction *, 8> &Insts) {
+ SmallPtrSetImpl<Instruction *> &Insts) {
unsigned NumUses = 0;
for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
if (Insts.count(dyn_cast<Instruction>(*Use)))
@@ -4896,7 +5008,7 @@ static bool hasMultipleUsesOf(Instruction *I,
return false;
}
-static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
+static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
@@ -5034,7 +5146,7 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
ReductionInstDesc IgnoredVal(false, nullptr);
- if (VisitedInsts.insert(UI)) {
+ if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
else
@@ -5136,7 +5248,7 @@ LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind,
ReductionInstDesc &Prev) {
bool FP = I->getType()->isFloatingPointTy();
- bool FastMath = (FP && I->isCommutative() && I->isAssociative());
+ bool FastMath = FP && I->hasUnsafeAlgebra();
switch (I->getOpcode()) {
default:
return ReductionInstDesc(false, I);
@@ -5158,6 +5270,7 @@ LoopVectorizationLegality::isReductionInstr(Instruction *I,
return ReductionInstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
+ case Instruction::FSub:
case Instruction::FAdd:
return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
case Instruction::FCmp:
@@ -5234,13 +5347,28 @@ bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
}
bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
- SmallPtrSet<Value *, 8>& SafePtrs) {
+ SmallPtrSetImpl<Value *> &SafePtrs) {
+
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Check that we don't have a constant expression that can trap as operand.
+ for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
+ OI != OE; ++OI) {
+ if (Constant *C = dyn_cast<Constant>(*OI))
+ if (C->canTrap())
+ return false;
+ }
// We might be able to hoist the load.
if (it->mayReadFromMemory()) {
LoadInst *LI = dyn_cast<LoadInst>(it);
- if (!LI || !SafePtrs.count(LI->getPointerOperand()))
+ if (!LI)
+ return false;
+ if (!SafePtrs.count(LI->getPointerOperand())) {
+ if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
+ MaskedOp.insert(LI);
+ continue;
+ }
return false;
+ }
}
// We don't predicate stores at the moment.
@@ -5248,22 +5376,30 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
StoreInst *SI = dyn_cast<StoreInst>(it);
// We only support predication of stores in basic blocks with one
// predecessor.
- if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
- !SafePtrs.count(SI->getPointerOperand()) ||
- !SI->getParent()->getSinglePredecessor())
+ if (!SI)
+ return false;
+
+ bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
+ bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
+
+ if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
+ !isSinglePredecessor) {
+ // Build a masked store if it is legal for the target, otherwise scalarize
+ // the block.
+ bool isLegalMaskedOp =
+ isLegalMaskedStore(SI->getValueOperand()->getType(),
+ SI->getPointerOperand());
+ if (isLegalMaskedOp) {
+ --NumPredStores;
+ MaskedOp.insert(SI);
+ continue;
+ }
return false;
+ }
}
if (it->mayThrow())
return false;
- // Check that we don't have a constant expression that can trap as operand.
- for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
- OI != OE; ++OI) {
- if (Constant *C = dyn_cast<Constant>(*OI))
- if (C->canTrap())
- return false;
- }
-
// The instructions below can trap.
switch (it->getOpcode()) {
default: continue;
@@ -5271,7 +5407,7 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
- return false;
+ return false;
}
}
@@ -5279,23 +5415,23 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
}
LoopVectorizationCostModel::VectorizationFactor
-LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
- unsigned UserVF,
- bool ForceVectorization) {
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
// Width 1 means no vectorize
VectorizationFactor Factor = { 1U, 0U };
if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
+ emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os");
DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
return Factor;
}
if (!EnableCondStoresVectorization && Legal->NumPredStores) {
+ emitAnalysis(Report() << "store that is conditionally executed prevents vectorization");
DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
return Factor;
}
// Find the trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop);
DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
unsigned WidestType = getWidestType();
@@ -5315,7 +5451,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
MaxVectorSize = 1;
}
- assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
+ assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!");
unsigned VF = MaxVectorSize;
@@ -5324,6 +5460,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
if (OptForSize) {
// If we are unable to calculate the trip count then don't try to vectorize.
if (TC < 2) {
+ emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow");
DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
return Factor;
}
@@ -5337,11 +5474,16 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
// If the trip count that we found modulo the vectorization factor is not
// zero then we require a tail.
if (VF < 2) {
+ emitAnalysis(Report() << "cannot optimize for size and vectorize at the "
+ "same time. Enable vectorization of this loop "
+ "with '#pragma clang loop vectorize(enable)' "
+ "when compiling with -Os");
DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
return Factor;
}
}
+ int UserVF = Hints->getWidth();
if (UserVF != 0) {
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
@@ -5357,6 +5499,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
unsigned Width = 1;
DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
+ bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
// Ignore scalar width, because the user explicitly wants vectorization.
if (ForceVectorization && VF > 1) {
Width = 2;
@@ -5397,6 +5540,10 @@ unsigned LoopVectorizationCostModel::getWidestType() {
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
Type *T = it->getType();
+ // Ignore ephemeral values.
+ if (EphValues.count(it))
+ continue;
+
// Only examine Loads, Stores and PHINodes.
if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
continue;
@@ -5426,29 +5573,29 @@ unsigned LoopVectorizationCostModel::getWidestType() {
unsigned
LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
- unsigned UserUF,
unsigned VF,
unsigned LoopCost) {
// -- The unroll heuristics --
// We unroll the loop in order to expose ILP and reduce the loop overhead.
// There are many micro-architectural considerations that we can't predict
- // at this level. For example frontend pressure (on decode or fetch) due to
+ // at this level. For example, frontend pressure (on decode or fetch) due to
// code size, or the number and capabilities of the execution ports.
//
// We use the following heuristics to select the unroll factor:
- // 1. If the code has reductions the we unroll in order to break the cross
+ // 1. If the code has reductions, then we unroll in order to break the cross
// iteration dependency.
- // 2. If the loop is really small then we unroll in order to reduce the loop
+ // 2. If the loop is really small, then we unroll in order to reduce the loop
// overhead.
// 3. We don't unroll if we think that we will spill registers to memory due
// to the increased register pressure.
// Use the user preference, unless 'auto' is selected.
+ int UserUF = Hints->getInterleave();
if (UserUF != 0)
return UserUF;
- // When we optimize for size we don't unroll.
+ // When we optimize for size, we don't unroll.
if (OptForSize)
return 1;
@@ -5457,8 +5604,7 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
return 1;
// Do not unroll loops with a relatively small trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop,
- TheLoop->getLoopLatch());
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop);
if (TC > 1 && TC < TinyTripCountUnrollThreshold)
return 1;
@@ -5497,15 +5643,15 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
std::max(1U, (R.MaxLocalUsers - 1)));
// Clamp the unroll factor ranges to reasonable factors.
- unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
+ unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
// Check if the user has overridden the unroll max.
if (VF == 1) {
- if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
- MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
+ if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
+ MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
} else {
- if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
- MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
+ if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
+ MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
}
// If we did not calculate the cost for VF (because the user selected the VF)
@@ -5515,8 +5661,8 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
// Clamp the calculated UF to be between the 1 and the max unroll factor
// that the target allows.
- if (UF > MaxUnrollSize)
- UF = MaxUnrollSize;
+ if (UF > MaxInterleaveSize)
+ UF = MaxInterleaveSize;
else if (UF < 1)
UF = 1;
@@ -5547,6 +5693,18 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1);
+ // If we have a scalar reduction (vector reductions are already dealt with
+ // by this point), we can increase the critical path length if the loop
+ // we're unrolling is inside another loop. Limit, by default to 2, so the
+ // critical path only gets increased by one reduction operation.
+ if (Legal->getReductionVars()->size() &&
+ TheLoop->getLoopDepth() > 1) {
+ unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
+ SmallUF = std::min(SmallUF, F);
+ StoresUF = std::min(StoresUF, F);
+ LoadsUF = std::min(LoadsUF, F);
+ }
+
if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
return std::max(StoresUF, LoadsUF);
@@ -5648,6 +5806,10 @@ LoopVectorizationCostModel::calculateRegisterUsage() {
// Ignore instructions that are never used within the loop.
if (!Ends.count(I)) continue;
+ // Ignore ephemeral values.
+ if (EphValues.count(I))
+ continue;
+
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (unsigned int j=0, e = List.size(); j < e; ++j)
@@ -5688,6 +5850,10 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
if (isa<DbgInfoIntrinsic>(it))
continue;
+ // Ignore ephemeral values.
+ if (EphValues.count(it))
+ continue;
+
unsigned C = getInstructionCost(it, VF);
// Check if we should override the cost.
@@ -5821,18 +5987,31 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueProperties Op1VP =
+ TargetTransformInfo::OP_None;
+ TargetTransformInfo::OperandValueProperties Op2VP =
+ TargetTransformInfo::OP_None;
Value *Op2 = I->getOperand(1);
// Check for a splat of a constant or for a non uniform vector of constants.
- if (isa<ConstantInt>(Op2))
+ if (isa<ConstantInt>(Op2)) {
+ ConstantInt *CInt = cast<ConstantInt>(Op2);
+ if (CInt && CInt->getValue().isPowerOf2())
+ Op2VP = TargetTransformInfo::OP_PowerOf2;
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
- else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
+ } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- if (cast<Constant>(Op2)->getSplatValue() != nullptr)
+ Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
+ if (SplatValue) {
+ ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
+ if (CInt && CInt->getValue().isPowerOf2())
+ Op2VP = TargetTransformInfo::OP_PowerOf2;
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
+ }
}
- return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
+ Op1VP, Op2VP);
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
@@ -5975,6 +6154,7 @@ static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
diff --git a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
index 53a43d9..4834782 100644
--- a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -19,7 +19,11 @@
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
@@ -42,12 +46,15 @@
#include "llvm/Transforms/Utils/VectorUtils.h"
#include <algorithm>
#include <map>
+#include <memory>
using namespace llvm;
#define SV_NAME "slp-vectorizer"
#define DEBUG_TYPE "SLP"
+STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
+
static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
@@ -68,53 +75,6 @@ static const unsigned MinVecRegSize = 128;
static const unsigned RecursionMaxDepth = 12;
-/// A helper class for numbering instructions in multiple blocks.
-/// Numbers start at zero for each basic block.
-struct BlockNumbering {
-
- BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
-
- void numberInstructions() {
- unsigned Loc = 0;
- InstrIdx.clear();
- InstrVec.clear();
- // Number the instructions in the block.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- InstrIdx[it] = Loc++;
- InstrVec.push_back(it);
- assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
- }
- Valid = true;
- }
-
- int getIndex(Instruction *I) {
- assert(I->getParent() == BB && "Invalid instruction");
- if (!Valid)
- numberInstructions();
- assert(InstrIdx.count(I) && "Unknown instruction");
- return InstrIdx[I];
- }
-
- Instruction *getInstruction(unsigned loc) {
- if (!Valid)
- numberInstructions();
- assert(InstrVec.size() > loc && "Invalid Index");
- return InstrVec[loc];
- }
-
- void forget() { Valid = false; }
-
-private:
- /// The block we are numbering.
- BasicBlock *BB;
- /// Is the block numbered.
- bool Valid;
- /// Maps instructions to numbers and back.
- SmallDenseMap<Instruction *, int> InstrIdx;
- /// Maps integers to Instructions.
- SmallVector<Instruction *, 32> InstrVec;
-};
-
/// \returns the parent basic block if all of the instructions in \p VL
/// are in the same block or null otherwise.
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
@@ -209,6 +169,23 @@ static unsigned getSameOpcode(ArrayRef<Value *> VL) {
return Opcode;
}
+/// Get the intersection (logical and) of all of the potential IR flags
+/// of each scalar operation (VL) that will be converted into a vector (I).
+/// Flag set: NSW, NUW, exact, and all of fast-math.
+static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
+ if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
+ if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
+ // Intersection is initialized to the 0th scalar,
+ // so start counting from index '1'.
+ for (int i = 1, e = VL.size(); i < e; ++i) {
+ if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
+ Intersection->andIRFlags(Scalar);
+ }
+ VecOp->copyIRFlags(Intersection);
+ }
+ }
+}
+
/// \returns \p I after propagating metadata from \p VL.
static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
Instruction *I0 = cast<Instruction>(VL[0]);
@@ -230,6 +207,10 @@ static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
case LLVMContext::MD_tbaa:
MD = MDNode::getMostGenericTBAA(MD, IMD);
break;
+ case LLVMContext::MD_alias_scope:
+ case LLVMContext::MD_noalias:
+ MD = MDNode::intersect(MD, IMD);
+ break;
case LLVMContext::MD_fpmath:
MD = MDNode::getMostGenericFPMath(MD, IMD);
break;
@@ -381,6 +362,42 @@ static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
}
}
+/// \returns True if in-tree use also needs extract. This refers to
+/// possible scalar operand in vectorized instruction.
+static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
+ TargetLibraryInfo *TLI) {
+
+ unsigned Opcode = UserInst->getOpcode();
+ switch (Opcode) {
+ case Instruction::Load: {
+ LoadInst *LI = cast<LoadInst>(UserInst);
+ return (LI->getPointerOperand() == Scalar);
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(UserInst);
+ return (SI->getPointerOperand() == Scalar);
+ }
+ case Instruction::Call: {
+ CallInst *CI = cast<CallInst>(UserInst);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ if (hasVectorInstrinsicScalarOpd(ID, 1)) {
+ return (CI->getArgOperand(1) == Scalar);
+ }
+ }
+ default:
+ return false;
+ }
+}
+
+/// \returns the AA location that is being access by the instruction.
+static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return AA->getLocation(SI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return AA->getLocation(LI);
+ return AliasAnalysis::Location();
+}
+
/// Bottom Up SLP Vectorizer.
class BoUpSLP {
public:
@@ -391,14 +408,21 @@ public:
BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
- LoopInfo *Li, DominatorTree *Dt)
- : F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
- Builder(Se->getContext()) {}
+ LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC)
+ : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
+ SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
+ Builder(Se->getContext()) {
+ CodeMetrics::collectEphemeralValues(F, AC, EphValues);
+ }
/// \brief Vectorize the tree that starts with the elements in \p VL.
/// Returns the vectorized root.
Value *vectorizeTree();
+ /// \returns the cost incurred by unwanted spills and fills, caused by
+ /// holding live values over call sites.
+ int getSpillCost();
+
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
int getTreeCost();
@@ -414,7 +438,12 @@ public:
ScalarToTreeEntry.clear();
MustGather.clear();
ExternalUses.clear();
- MemBarrierIgnoreList.clear();
+ NumLoadsWantToKeepOrder = 0;
+ NumLoadsWantToChangeOrder = 0;
+ for (auto &Iter : BlocksSchedules) {
+ BlockScheduling *BS = Iter.second.get();
+ BS->clear();
+ }
}
/// \returns true if the memory operations A and B are consecutive.
@@ -423,6 +452,11 @@ public:
/// \brief Perform LICM and CSE on the newly generated gather sequences.
void optimizeGatherSequence();
+ /// \returns true if it is benefitial to reverse the vector order.
+ bool shouldReorder() const {
+ return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
+ }
+
private:
struct TreeEntry;
@@ -459,20 +493,6 @@ private:
/// roots. This method calculates the cost of extracting the values.
int getGatherCost(ArrayRef<Value *> VL);
- /// \returns the AA location that is being access by the instruction.
- AliasAnalysis::Location getLocation(Instruction *I);
-
- /// \brief Checks if it is possible to sink an instruction from
- /// \p Src to \p Dst.
- /// \returns the pointer to the barrier instruction if we can't sink.
- Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
-
- /// \returns the index of the last instruction in the BB from \p VL.
- int getLastIndex(ArrayRef<Value *> VL);
-
- /// \returns the Instruction in the bundle \p VL.
- Instruction *getLastInstruction(ArrayRef<Value *> VL);
-
/// \brief Set the Builder insert point to one after the last instruction in
/// the bundle
void setInsertPointAfterBundle(ArrayRef<Value *> VL);
@@ -485,7 +505,7 @@ private:
bool isFullyVectorizableTinyTree();
struct TreeEntry {
- TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0),
+ TreeEntry() : Scalars(), VectorizedValue(nullptr),
NeedToGather(0) {}
/// \returns true if the scalars in VL are equal to this entry.
@@ -500,9 +520,6 @@ private:
/// The Scalars are vectorized into this value. It is initialized to Null.
Value *VectorizedValue;
- /// The index in the basic block of the last scalar.
- int LastScalarIndex;
-
/// Do we need to gather this sequence ?
bool NeedToGather;
};
@@ -515,18 +532,16 @@ private:
Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
Last->NeedToGather = !Vectorized;
if (Vectorized) {
- Last->LastScalarIndex = getLastIndex(VL);
for (int i = 0, e = VL.size(); i != e; ++i) {
assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
ScalarToTreeEntry[VL[i]] = idx;
}
} else {
- Last->LastScalarIndex = 0;
MustGather.insert(VL.begin(), VL.end());
}
return Last;
}
-
+
/// -- Vectorization State --
/// Holds all of the tree entries.
std::vector<TreeEntry> VectorizableTree;
@@ -550,32 +565,369 @@ private:
};
typedef SmallVector<ExternalUser, 16> UserList;
+ /// Checks if two instructions may access the same memory.
+ ///
+ /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
+ /// is invariant in the calling loop.
+ bool isAliased(const AliasAnalysis::Location &Loc1, Instruction *Inst1,
+ Instruction *Inst2) {
+
+ // First check if the result is already in the cache.
+ AliasCacheKey key = std::make_pair(Inst1, Inst2);
+ Optional<bool> &result = AliasCache[key];
+ if (result.hasValue()) {
+ return result.getValue();
+ }
+ AliasAnalysis::Location Loc2 = getLocation(Inst2, AA);
+ bool aliased = true;
+ if (Loc1.Ptr && Loc2.Ptr) {
+ // Do the alias check.
+ aliased = AA->alias(Loc1, Loc2);
+ }
+ // Store the result in the cache.
+ result = aliased;
+ return aliased;
+ }
+
+ typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
+
+ /// Cache for alias results.
+ /// TODO: consider moving this to the AliasAnalysis itself.
+ DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
+
+ /// Removes an instruction from its block and eventually deletes it.
+ /// It's like Instruction::eraseFromParent() except that the actual deletion
+ /// is delayed until BoUpSLP is destructed.
+ /// This is required to ensure that there are no incorrect collisions in the
+ /// AliasCache, which can happen if a new instruction is allocated at the
+ /// same address as a previously deleted instruction.
+ void eraseInstruction(Instruction *I) {
+ I->removeFromParent();
+ I->dropAllReferences();
+ DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
+ }
+
+ /// Temporary store for deleted instructions. Instructions will be deleted
+ /// eventually when the BoUpSLP is destructed.
+ SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
+
/// A list of values that need to extracted out of the tree.
/// This list holds pairs of (Internal Scalar : External User).
UserList ExternalUses;
- /// A list of instructions to ignore while sinking
- /// memory instructions. This map must be reset between runs of getCost.
- ValueSet MemBarrierIgnoreList;
+ /// Values used only by @llvm.assume calls.
+ SmallPtrSet<const Value *, 32> EphValues;
/// Holds all of the instructions that we gathered.
SetVector<Instruction *> GatherSeq;
/// A list of blocks that we are going to CSE.
SetVector<BasicBlock *> CSEBlocks;
- /// Numbers instructions in different blocks.
- DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
+ /// Contains all scheduling relevant data for an instruction.
+ /// A ScheduleData either represents a single instruction or a member of an
+ /// instruction bundle (= a group of instructions which is combined into a
+ /// vector instruction).
+ struct ScheduleData {
+
+ // The initial value for the dependency counters. It means that the
+ // dependencies are not calculated yet.
+ enum { InvalidDeps = -1 };
+
+ ScheduleData()
+ : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
+ NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
+ Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
+ UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
+
+ void init(int BlockSchedulingRegionID) {
+ FirstInBundle = this;
+ NextInBundle = nullptr;
+ NextLoadStore = nullptr;
+ IsScheduled = false;
+ SchedulingRegionID = BlockSchedulingRegionID;
+ UnscheduledDepsInBundle = UnscheduledDeps;
+ clearDependencies();
+ }
+
+ /// Returns true if the dependency information has been calculated.
+ bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
+
+ /// Returns true for single instructions and for bundle representatives
+ /// (= the head of a bundle).
+ bool isSchedulingEntity() const { return FirstInBundle == this; }
+
+ /// Returns true if it represents an instruction bundle and not only a
+ /// single instruction.
+ bool isPartOfBundle() const {
+ return NextInBundle != nullptr || FirstInBundle != this;
+ }
+
+ /// Returns true if it is ready for scheduling, i.e. it has no more
+ /// unscheduled depending instructions/bundles.
+ bool isReady() const {
+ assert(isSchedulingEntity() &&
+ "can't consider non-scheduling entity for ready list");
+ return UnscheduledDepsInBundle == 0 && !IsScheduled;
+ }
+
+ /// Modifies the number of unscheduled dependencies, also updating it for
+ /// the whole bundle.
+ int incrementUnscheduledDeps(int Incr) {
+ UnscheduledDeps += Incr;
+ return FirstInBundle->UnscheduledDepsInBundle += Incr;
+ }
+
+ /// Sets the number of unscheduled dependencies to the number of
+ /// dependencies.
+ void resetUnscheduledDeps() {
+ incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
+ }
+
+ /// Clears all dependency information.
+ void clearDependencies() {
+ Dependencies = InvalidDeps;
+ resetUnscheduledDeps();
+ MemoryDependencies.clear();
+ }
+
+ void dump(raw_ostream &os) const {
+ if (!isSchedulingEntity()) {
+ os << "/ " << *Inst;
+ } else if (NextInBundle) {
+ os << '[' << *Inst;
+ ScheduleData *SD = NextInBundle;
+ while (SD) {
+ os << ';' << *SD->Inst;
+ SD = SD->NextInBundle;
+ }
+ os << ']';
+ } else {
+ os << *Inst;
+ }
+ }
+
+ Instruction *Inst;
- /// \brief Get the corresponding instruction numbering list for a given
- /// BasicBlock. The list is allocated lazily.
- BlockNumbering &getBlockNumbering(BasicBlock *BB) {
- auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB)));
- return I.first->second;
- }
+ /// Points to the head in an instruction bundle (and always to this for
+ /// single instructions).
+ ScheduleData *FirstInBundle;
+
+ /// Single linked list of all instructions in a bundle. Null if it is a
+ /// single instruction.
+ ScheduleData *NextInBundle;
+
+ /// Single linked list of all memory instructions (e.g. load, store, call)
+ /// in the block - until the end of the scheduling region.
+ ScheduleData *NextLoadStore;
+
+ /// The dependent memory instructions.
+ /// This list is derived on demand in calculateDependencies().
+ SmallVector<ScheduleData *, 4> MemoryDependencies;
+
+ /// This ScheduleData is in the current scheduling region if this matches
+ /// the current SchedulingRegionID of BlockScheduling.
+ int SchedulingRegionID;
+
+ /// Used for getting a "good" final ordering of instructions.
+ int SchedulingPriority;
+
+ /// The number of dependencies. Constitutes of the number of users of the
+ /// instruction plus the number of dependent memory instructions (if any).
+ /// This value is calculated on demand.
+ /// If InvalidDeps, the number of dependencies is not calculated yet.
+ ///
+ int Dependencies;
+
+ /// The number of dependencies minus the number of dependencies of scheduled
+ /// instructions. As soon as this is zero, the instruction/bundle gets ready
+ /// for scheduling.
+ /// Note that this is negative as long as Dependencies is not calculated.
+ int UnscheduledDeps;
+
+ /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
+ /// single instructions.
+ int UnscheduledDepsInBundle;
+
+ /// True if this instruction is scheduled (or considered as scheduled in the
+ /// dry-run).
+ bool IsScheduled;
+ };
+
+#ifndef NDEBUG
+ friend raw_ostream &operator<<(raw_ostream &os,
+ const BoUpSLP::ScheduleData &SD);
+#endif
+
+ /// Contains all scheduling data for a basic block.
+ ///
+ struct BlockScheduling {
+
+ BlockScheduling(BasicBlock *BB)
+ : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
+ ScheduleStart(nullptr), ScheduleEnd(nullptr),
+ FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
+ // Make sure that the initial SchedulingRegionID is greater than the
+ // initial SchedulingRegionID in ScheduleData (which is 0).
+ SchedulingRegionID(1) {}
+
+ void clear() {
+ ReadyInsts.clear();
+ ScheduleStart = nullptr;
+ ScheduleEnd = nullptr;
+ FirstLoadStoreInRegion = nullptr;
+ LastLoadStoreInRegion = nullptr;
+
+ // Make a new scheduling region, i.e. all existing ScheduleData is not
+ // in the new region yet.
+ ++SchedulingRegionID;
+ }
+
+ ScheduleData *getScheduleData(Value *V) {
+ ScheduleData *SD = ScheduleDataMap[V];
+ if (SD && SD->SchedulingRegionID == SchedulingRegionID)
+ return SD;
+ return nullptr;
+ }
+
+ bool isInSchedulingRegion(ScheduleData *SD) {
+ return SD->SchedulingRegionID == SchedulingRegionID;
+ }
+
+ /// Marks an instruction as scheduled and puts all dependent ready
+ /// instructions into the ready-list.
+ template <typename ReadyListType>
+ void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
+ SD->IsScheduled = true;
+ DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
+
+ ScheduleData *BundleMember = SD;
+ while (BundleMember) {
+ // Handle the def-use chain dependencies.
+ for (Use &U : BundleMember->Inst->operands()) {
+ ScheduleData *OpDef = getScheduleData(U.get());
+ if (OpDef && OpDef->hasValidDependencies() &&
+ OpDef->incrementUnscheduledDeps(-1) == 0) {
+ // There are no more unscheduled dependencies after decrementing,
+ // so we can put the dependent instruction into the ready list.
+ ScheduleData *DepBundle = OpDef->FirstInBundle;
+ assert(!DepBundle->IsScheduled &&
+ "already scheduled bundle gets ready");
+ ReadyList.insert(DepBundle);
+ DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n");
+ }
+ }
+ // Handle the memory dependencies.
+ for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
+ if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
+ // There are no more unscheduled dependencies after decrementing,
+ // so we can put the dependent instruction into the ready list.
+ ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
+ assert(!DepBundle->IsScheduled &&
+ "already scheduled bundle gets ready");
+ ReadyList.insert(DepBundle);
+ DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n");
+ }
+ }
+ BundleMember = BundleMember->NextInBundle;
+ }
+ }
+
+ /// Put all instructions into the ReadyList which are ready for scheduling.
+ template <typename ReadyListType>
+ void initialFillReadyList(ReadyListType &ReadyList) {
+ for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+ ScheduleData *SD = getScheduleData(I);
+ if (SD->isSchedulingEntity() && SD->isReady()) {
+ ReadyList.insert(SD);
+ DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n");
+ }
+ }
+ }
+
+ /// Checks if a bundle of instructions can be scheduled, i.e. has no
+ /// cyclic dependencies. This is only a dry-run, no instructions are
+ /// actually moved at this stage.
+ bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
+
+ /// Un-bundles a group of instructions.
+ void cancelScheduling(ArrayRef<Value *> VL);
+
+ /// Extends the scheduling region so that V is inside the region.
+ void extendSchedulingRegion(Value *V);
+
+ /// Initialize the ScheduleData structures for new instructions in the
+ /// scheduling region.
+ void initScheduleData(Instruction *FromI, Instruction *ToI,
+ ScheduleData *PrevLoadStore,
+ ScheduleData *NextLoadStore);
+
+ /// Updates the dependency information of a bundle and of all instructions/
+ /// bundles which depend on the original bundle.
+ void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
+ BoUpSLP *SLP);
+
+ /// Sets all instruction in the scheduling region to un-scheduled.
+ void resetSchedule();
+
+ BasicBlock *BB;
+
+ /// Simple memory allocation for ScheduleData.
+ std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
+
+ /// The size of a ScheduleData array in ScheduleDataChunks.
+ int ChunkSize;
+
+ /// The allocator position in the current chunk, which is the last entry
+ /// of ScheduleDataChunks.
+ int ChunkPos;
+
+ /// Attaches ScheduleData to Instruction.
+ /// Note that the mapping survives during all vectorization iterations, i.e.
+ /// ScheduleData structures are recycled.
+ DenseMap<Value *, ScheduleData *> ScheduleDataMap;
+
+ struct ReadyList : SmallVector<ScheduleData *, 8> {
+ void insert(ScheduleData *SD) { push_back(SD); }
+ };
+
+ /// The ready-list for scheduling (only used for the dry-run).
+ ReadyList ReadyInsts;
+
+ /// The first instruction of the scheduling region.
+ Instruction *ScheduleStart;
+
+ /// The first instruction _after_ the scheduling region.
+ Instruction *ScheduleEnd;
+
+ /// The first memory accessing instruction in the scheduling region
+ /// (can be null).
+ ScheduleData *FirstLoadStoreInRegion;
+
+ /// The last memory accessing instruction in the scheduling region
+ /// (can be null).
+ ScheduleData *LastLoadStoreInRegion;
+
+ /// The ID of the scheduling region. For a new vectorization iteration this
+ /// is incremented which "removes" all ScheduleData from the region.
+ int SchedulingRegionID;
+ };
+
+ /// Attaches the BlockScheduling structures to basic blocks.
+ MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
+
+ /// Performs the "real" scheduling. Done before vectorization is actually
+ /// performed in a basic block.
+ void scheduleBlock(BlockScheduling *BS);
/// List of users to ignore during scheduling and that don't need extracting.
ArrayRef<Value *> UserIgnoreList;
+ // Number of load-bundles, which contain consecutive loads.
+ int NumLoadsWantToKeepOrder;
+
+ // Number of load-bundles of size 2, which are consecutive loads if reversed.
+ int NumLoadsWantToChangeOrder;
+
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
@@ -589,6 +941,13 @@ private:
IRBuilder<> Builder;
};
+#ifndef NDEBUG
+raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
+ SD.dump(os);
+ return os;
+}
+#endif
+
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst) {
deleteTree();
@@ -612,18 +971,27 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
for (User *U : Scalar->users()) {
DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
- // Skip in-tree scalars that become vectors.
- if (ScalarToTreeEntry.count(U)) {
- DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
- *U << ".\n");
- int Idx = ScalarToTreeEntry[U]; (void) Idx;
- assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
- continue;
- }
Instruction *UserInst = dyn_cast<Instruction>(U);
if (!UserInst)
continue;
+ // Skip in-tree scalars that become vectors
+ if (ScalarToTreeEntry.count(U)) {
+ int Idx = ScalarToTreeEntry[U];
+ TreeEntry *UseEntry = &VectorizableTree[Idx];
+ Value *UseScalar = UseEntry->Scalars[0];
+ // Some in-tree scalars will remain as scalar in vectorized
+ // instructions. If that is the case, the one in Lane 0 will
+ // be used.
+ if (UseScalar != U ||
+ !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
+ DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
+ << ".\n");
+ assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
+ continue;
+ }
+ }
+
// Ignore users in the user ignore list.
if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
UserIgnoreList.end())
@@ -683,6 +1051,16 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
// We now know that this is a vector of instructions of the same type from
// the same block.
+ // Don't vectorize ephemeral values.
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ if (EphValues.count(VL[i])) {
+ DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
+ ") is ephemeral.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+
// Check if this is a duplicate of another entry.
if (ScalarToTreeEntry.count(VL[0])) {
int Idx = ScalarToTreeEntry[VL[0]];
@@ -709,11 +1087,11 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
}
}
- // If any of the scalars appears in the table OR it is marked as a value that
- // needs to stat scalar then we need to gather the scalars.
+ // If any of the scalars is marked as a value that needs to stay scalar then
+ // we need to gather the scalars.
for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
- DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
+ if (MustGather.count(VL[i])) {
+ DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
newTreeEntry(VL, false);
return;
}
@@ -722,69 +1100,16 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
// Check that all of the users of the scalars that we want to vectorize are
// schedulable.
Instruction *VL0 = cast<Instruction>(VL[0]);
- int MyLastIndex = getLastIndex(VL);
BasicBlock *BB = cast<Instruction>(VL0)->getParent();
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- Instruction *Scalar = cast<Instruction>(VL[i]);
- DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n");
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI) {
- DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
- newTreeEntry(VL, false);
- return;
- }
-
- // We don't care if the user is in a different basic block.
- BasicBlock *UserBlock = UI->getParent();
- if (UserBlock != BB) {
- DEBUG(dbgs() << "SLP: User from a different basic block "
- << *UI << ". \n");
- continue;
- }
-
- // If this is a PHINode within this basic block then we can place the
- // extract wherever we want.
- if (isa<PHINode>(*UI)) {
- DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n");
- continue;
- }
-
- // Check if this is a safe in-tree user.
- if (ScalarToTreeEntry.count(UI)) {
- int Idx = ScalarToTreeEntry[UI];
- int VecLocation = VectorizableTree[Idx].LastScalarIndex;
- if (VecLocation <= MyLastIndex) {
- DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
- newTreeEntry(VL, false);
- return;
- }
- DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" <<
- VecLocation << " vector value (" << *Scalar << ") at #"
- << MyLastIndex << ".\n");
- continue;
- }
-
- // Ignore users in the user ignore list.
- if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) !=
- UserIgnoreList.end())
- continue;
-
- // Make sure that we can schedule this unknown user.
- BlockNumbering &BN = getBlockNumbering(BB);
- int UserIndex = BN.getIndex(UI);
- if (UserIndex < MyLastIndex) {
-
- DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
- << *UI << ". \n");
- newTreeEntry(VL, false);
- return;
- }
- }
+ if (!DT->isReachableFromEntry(BB)) {
+ // Don't go into unreachable blocks. They may contain instructions with
+ // dependency cycles which confuse the final scheduling.
+ DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
+ newTreeEntry(VL, false);
+ return;
}
-
+
// Check that every instructions appears once in this bundle.
for (unsigned i = 0, e = VL.size(); i < e; ++i)
for (unsigned j = i+1; j < e; ++j)
@@ -794,38 +1119,19 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
return;
}
- // Check that instructions in this bundle don't reference other instructions.
- // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- for (User *U : VL[i]->users()) {
- for (unsigned j = 0; j < e; ++j) {
- if (i != j && U == VL[j]) {
- DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n");
- newTreeEntry(VL, false);
- return;
- }
- }
- }
+ auto &BSRef = BlocksSchedules[BB];
+ if (!BSRef) {
+ BSRef = llvm::make_unique<BlockScheduling>(BB);
}
+ BlockScheduling &BS = *BSRef.get();
- DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
-
- // Check if it is safe to sink the loads or the stores.
- if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
- Instruction *Last = getLastInstruction(VL);
-
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- if (VL[i] == Last)
- continue;
- Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
- if (Barrier) {
- DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
- << "\n because of " << *Barrier << ". Gathering.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
+ if (!BS.tryScheduleBundle(VL, this)) {
+ DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
+ BS.cancelScheduling(VL);
+ newTreeEntry(VL, false);
+ return;
}
+ DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
switch (Opcode) {
case Instruction::PHI: {
@@ -838,6 +1144,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
if (Term) {
DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
return;
}
@@ -861,6 +1168,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
bool Reuse = CanReuseExtract(VL);
if (Reuse) {
DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
+ } else {
+ BS.cancelScheduling(VL);
}
newTreeEntry(VL, Reuse);
return;
@@ -869,12 +1178,23 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
// Check if the loads are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
LoadInst *L = cast<LoadInst>(VL[i]);
- if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
+ if (!L->isSimple()) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
+ DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
+ return;
+ }
+ if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) {
+ ++NumLoadsWantToChangeOrder;
+ }
+ BS.cancelScheduling(VL);
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
return;
}
}
+ ++NumLoadsWantToKeepOrder;
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of loads.\n");
return;
@@ -895,6 +1215,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
for (unsigned i = 0; i < VL.size(); ++i) {
Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
return;
@@ -922,6 +1243,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
CmpInst *Cmp = cast<CmpInst>(VL[i]);
if (Cmp->getPredicate() != P0 ||
Cmp->getOperand(0)->getType() != ComparedTy) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
return;
@@ -968,20 +1290,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
ValueList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right);
- BasicBlock *LeftBB = getSameBlock(Left);
- BasicBlock *RightBB = getSameBlock(Right);
- // If we have common uses on separate paths in the tree make sure we
- // process the one with greater common depth first.
- // We can use block numbering to determine the subtree traversal as
- // earler user has to come in between the common use and the later user.
- if (LeftBB && RightBB && LeftBB == RightBB &&
- getLastIndex(Right) > getLastIndex(Left)) {
- buildTree_rec(Right, Depth + 1);
- buildTree_rec(Left, Depth + 1);
- } else {
- buildTree_rec(Left, Depth + 1);
- buildTree_rec(Right, Depth + 1);
- }
+ buildTree_rec(Left, Depth + 1);
+ buildTree_rec(Right, Depth + 1);
return;
}
@@ -1000,6 +1310,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
for (unsigned j = 0; j < VL.size(); ++j) {
if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
return;
}
@@ -1012,6 +1323,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
if (Ty0 != CurTy) {
DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
return;
}
@@ -1023,6 +1335,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
if (!isa<ConstantInt>(Op)) {
DEBUG(
dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
return;
}
@@ -1044,6 +1357,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
// Check if the stores are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
return;
@@ -1056,8 +1370,6 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
for (unsigned j = 0; j < VL.size(); ++j)
Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- // We can ignore these values because we are sinking them down.
- MemBarrierIgnoreList.insert(VL.begin(), VL.end());
buildTree_rec(Operands, Depth + 1);
return;
}
@@ -1068,6 +1380,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
// represented by an intrinsic call
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
if (!isTriviallyVectorizable(ID)) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
return;
@@ -1080,6 +1393,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
if (!CI2 || CI2->getCalledFunction() != Int ||
getIntrinsicIDForCall(CI2, TLI) != ID) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
<< "\n");
@@ -1090,6 +1404,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
if (hasVectorInstrinsicScalarOpd(ID, 1)) {
Value *A1J = CI2->getArgOperand(1);
if (A1I != A1J) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
<< " argument "<< A1I<<"!=" << A1J
@@ -1115,6 +1430,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
// If this is not an alternate sequence of opcode like add-sub
// then do not vectorize this instruction.
if (!isAltShuffle) {
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
return;
@@ -1132,6 +1448,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
return;
}
default:
+ BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
return;
@@ -1234,6 +1551,10 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_UniformConstantValue;
+ TargetTransformInfo::OperandValueProperties Op1VP =
+ TargetTransformInfo::OP_None;
+ TargetTransformInfo::OperandValueProperties Op2VP =
+ TargetTransformInfo::OP_None;
// If all operands are exactly the same ConstantInt then set the
// operand kind to OK_UniformConstantValue.
@@ -1255,11 +1576,17 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
CInt != cast<ConstantInt>(I->getOperand(1)))
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
}
+ // FIXME: Currently cost of model modification for division by
+ // power of 2 is handled only for X86. Add support for other targets.
+ if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
+ CInt->getValue().isPowerOf2())
+ Op2VP = TargetTransformInfo::OP_PowerOf2;
- ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
- VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
+ ScalarCost = VecTy->getNumElements() *
+ TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
+ Op1VP, Op2VP);
+ VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
+ Op1VP, Op2VP);
}
return VecCost - ScalarCost;
}
@@ -1364,6 +1691,68 @@ bool BoUpSLP::isFullyVectorizableTinyTree() {
return true;
}
+int BoUpSLP::getSpillCost() {
+ // Walk from the bottom of the tree to the top, tracking which values are
+ // live. When we see a call instruction that is not part of our tree,
+ // query TTI to see if there is a cost to keeping values live over it
+ // (for example, if spills and fills are required).
+ unsigned BundleWidth = VectorizableTree.front().Scalars.size();
+ int Cost = 0;
+
+ SmallPtrSet<Instruction*, 4> LiveValues;
+ Instruction *PrevInst = nullptr;
+
+ for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
+ Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
+ if (!Inst)
+ continue;
+
+ if (!PrevInst) {
+ PrevInst = Inst;
+ continue;
+ }
+
+ DEBUG(
+ dbgs() << "SLP: #LV: " << LiveValues.size();
+ for (auto *X : LiveValues)
+ dbgs() << " " << X->getName();
+ dbgs() << ", Looking at ";
+ Inst->dump();
+ );
+
+ // Update LiveValues.
+ LiveValues.erase(PrevInst);
+ for (auto &J : PrevInst->operands()) {
+ if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
+ LiveValues.insert(cast<Instruction>(&*J));
+ }
+
+ // Now find the sequence of instructions between PrevInst and Inst.
+ BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
+ --PrevInstIt;
+ while (InstIt != PrevInstIt) {
+ if (PrevInstIt == PrevInst->getParent()->rend()) {
+ PrevInstIt = Inst->getParent()->rbegin();
+ continue;
+ }
+
+ if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
+ SmallVector<Type*, 4> V;
+ for (auto *II : LiveValues)
+ V.push_back(VectorType::get(II->getType(), BundleWidth));
+ Cost += TTI->getCostOfKeepingLiveOverCall(V);
+ }
+
+ ++PrevInstIt;
+ }
+
+ PrevInst = Inst;
+ }
+
+ DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
+ return Cost;
+}
+
int BoUpSLP::getTreeCost() {
int Cost = 0;
DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
@@ -1391,7 +1780,13 @@ int BoUpSLP::getTreeCost() {
for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
I != E; ++I) {
// We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(I->Scalar))
+ if (!ExtractCostCalculated.insert(I->Scalar).second)
+ continue;
+
+ // Uses by ephemeral values are free (because the ephemeral value will be
+ // removed prior to code generation, and so the extraction will be
+ // removed as well).
+ if (EphValues.count(I->User))
continue;
VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
@@ -1399,6 +1794,8 @@ int BoUpSLP::getTreeCost() {
I->Lane);
}
+ Cost += getSpillCost();
+
DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
return Cost + ExtractCost;
}
@@ -1420,14 +1817,6 @@ int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
return getGatherCost(VecTy);
}
-AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return AA->getLocation(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return AA->getLocation(LI);
- return AliasAnalysis::Location();
-}
-
Value *BoUpSLP::getPointerOperand(Value *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperand();
@@ -1485,59 +1874,9 @@ bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
return X == PtrSCEVB;
}
-Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
- assert(Src->getParent() == Dst->getParent() && "Not the same BB");
- BasicBlock::iterator I = Src, E = Dst;
- /// Scan all of the instruction from SRC to DST and check if
- /// the source may alias.
- for (++I; I != E; ++I) {
- // Ignore store instructions that are marked as 'ignore'.
- if (MemBarrierIgnoreList.count(I))
- continue;
- if (Src->mayWriteToMemory()) /* Write */ {
- if (!I->mayReadOrWriteMemory())
- continue;
- } else /* Read */ {
- if (!I->mayWriteToMemory())
- continue;
- }
- AliasAnalysis::Location A = getLocation(&*I);
- AliasAnalysis::Location B = getLocation(Src);
-
- if (!A.Ptr || !B.Ptr || AA->alias(A, B))
- return I;
- }
- return nullptr;
-}
-
-int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
- BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && "Invalid block");
- BlockNumbering &BN = getBlockNumbering(BB);
-
- int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
- return MaxIdx;
-}
-
-Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
- BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && "Invalid block");
- BlockNumbering &BN = getBlockNumbering(BB);
-
- int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
- Instruction *I = BN.getInstruction(MaxIdx);
- assert(I && "bad location");
- return I;
-}
-
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
Instruction *VL0 = cast<Instruction>(VL[0]);
- Instruction *LastInst = getLastInstruction(VL);
- BasicBlock::iterator NextInst = LastInst;
+ BasicBlock::iterator NextInst = VL0;
++NextInst;
Builder.SetInsertPoint(VL0->getParent(), NextInst);
Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
@@ -1620,6 +1959,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
setInsertPointAfterBundle(E->Scalars);
return Gather(E->Scalars, VecTy);
}
+
unsigned Opcode = getSameOpcode(E->Scalars);
switch (Opcode) {
@@ -1638,7 +1978,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
ValueList Operands;
BasicBlock *IBB = PH->getIncomingBlock(i);
- if (!VisitedBBs.insert(IBB)) {
+ if (!VisitedBBs.insert(IBB).second) {
NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
continue;
}
@@ -1693,6 +2033,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
CastInst *CI = dyn_cast<CastInst>(VL0);
Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
E->VectorizedValue = V;
+ ++NumVectorInstructions;
return V;
}
case Instruction::FCmp:
@@ -1719,6 +2060,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
V = Builder.CreateICmp(P0, L, R);
E->VectorizedValue = V;
+ ++NumVectorInstructions;
return V;
}
case Instruction::Select: {
@@ -1740,6 +2082,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
Value *V = Builder.CreateSelect(Cond, True, False);
E->VectorizedValue = V;
+ ++NumVectorInstructions;
return V;
}
case Instruction::Add:
@@ -1784,6 +2127,8 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
E->VectorizedValue = V;
+ propagateIRFlags(E->VectorizedValue, E->Scalars);
+ ++NumVectorInstructions;
if (Instruction *I = dyn_cast<Instruction>(V))
return propagateMetadata(I, E->Scalars);
@@ -1796,16 +2141,26 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
setInsertPointAfterBundle(E->Scalars);
LoadInst *LI = cast<LoadInst>(VL0);
+ Type *ScalarLoadTy = LI->getType();
unsigned AS = LI->getPointerAddressSpace();
Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
VecTy->getPointerTo(AS));
+
+ // The pointer operand uses an in-tree scalar so we add the new BitCast to
+ // ExternalUses list to make sure that an extract will be generated in the
+ // future.
+ if (ScalarToTreeEntry.count(LI->getPointerOperand()))
+ ExternalUses.push_back(
+ ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
+
unsigned Alignment = LI->getAlignment();
LI = Builder.CreateLoad(VecPtr);
if (!Alignment)
- Alignment = DL->getABITypeAlignment(LI->getPointerOperand()->getType());
+ Alignment = DL->getABITypeAlignment(ScalarLoadTy);
LI->setAlignment(Alignment);
E->VectorizedValue = LI;
+ ++NumVectorInstructions;
return propagateMetadata(LI, E->Scalars);
}
case Instruction::Store: {
@@ -1823,10 +2178,19 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
VecTy->getPointerTo(AS));
StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
+
+ // The pointer operand uses an in-tree scalar so we add the new BitCast to
+ // ExternalUses list to make sure that an extract will be generated in the
+ // future.
+ if (ScalarToTreeEntry.count(SI->getPointerOperand()))
+ ExternalUses.push_back(
+ ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
+
if (!Alignment)
- Alignment = DL->getABITypeAlignment(SI->getPointerOperand()->getType());
+ Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
S->setAlignment(Alignment);
E->VectorizedValue = S;
+ ++NumVectorInstructions;
return propagateMetadata(S, E->Scalars);
}
case Instruction::GetElementPtr: {
@@ -1851,6 +2215,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
Value *V = Builder.CreateGEP(Op0, OpVecs);
E->VectorizedValue = V;
+ ++NumVectorInstructions;
if (Instruction *I = dyn_cast<Instruction>(V))
return propagateMetadata(I, E->Scalars);
@@ -1862,6 +2227,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
setInsertPointAfterBundle(E->Scalars);
Function *FI;
Intrinsic::ID IID = Intrinsic::not_intrinsic;
+ Value *ScalarArg = nullptr;
if (CI && (FI = CI->getCalledFunction())) {
IID = (Intrinsic::ID) FI->getIntrinsicID();
}
@@ -1872,6 +2238,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
// a scalar. This argument should not be vectorized.
if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
CallInst *CEI = cast<CallInst>(E->Scalars[0]);
+ ScalarArg = CEI->getArgOperand(j);
OpVecs.push_back(CEI->getArgOperand(j));
continue;
}
@@ -1890,7 +2257,15 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
Value *V = Builder.CreateCall(CF, OpVecs);
+
+ // The scalar argument uses an in-tree scalar so we add the new vectorized
+ // call to ExternalUses list to make sure that an extract will be
+ // generated in the future.
+ if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
+ ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
+
E->VectorizedValue = V;
+ ++NumVectorInstructions;
return V;
}
case Instruction::ShuffleVector: {
@@ -1916,21 +2291,29 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
- // Create appropriate shuffle to take alternative operations from
- // the vector.
- std::vector<Constant *> Mask(E->Scalars.size());
+ // Create shuffle to take alternate operations from the vector.
+ // Also, gather up odd and even scalar ops to propagate IR flags to
+ // each vector operation.
+ ValueList OddScalars, EvenScalars;
unsigned e = E->Scalars.size();
+ SmallVector<Constant *, 8> Mask(e);
for (unsigned i = 0; i < e; ++i) {
- if (i & 1)
+ if (i & 1) {
Mask[i] = Builder.getInt32(e + i);
- else
+ OddScalars.push_back(E->Scalars[i]);
+ } else {
Mask[i] = Builder.getInt32(i);
+ EvenScalars.push_back(E->Scalars[i]);
+ }
}
Value *ShuffleMask = ConstantVector::get(Mask);
+ propagateIRFlags(V0, EvenScalars);
+ propagateIRFlags(V1, OddScalars);
Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
E->VectorizedValue = V;
+ ++NumVectorInstructions;
if (Instruction *I = dyn_cast<Instruction>(V))
return propagateMetadata(I, E->Scalars);
@@ -1943,6 +2326,12 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
}
Value *BoUpSLP::vectorizeTree() {
+
+ // All blocks must be scheduled before any instructions are inserted.
+ for (auto &BSIter : BlocksSchedules) {
+ scheduleBlock(BSIter.second.get());
+ }
+
Builder.SetInsertPoint(F->getEntryBlock().begin());
vectorizeTree(&VectorizableTree[0]);
@@ -2027,13 +2416,10 @@ Value *BoUpSLP::vectorizeTree() {
Scalar->replaceAllUsesWith(Undef);
}
DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- cast<Instruction>(Scalar)->eraseFromParent();
+ eraseInstruction(cast<Instruction>(Scalar));
}
}
- for (auto &BN : BlocksNumbers)
- BN.second.forget();
-
Builder.ClearInsertionPoint();
return VectorizableTree[0].VectorizedValue;
@@ -2112,7 +2498,7 @@ void BoUpSLP::optimizeGatherSequence() {
if (In->isIdenticalTo(*v) &&
DT->dominates((*v)->getParent(), In->getParent())) {
In->replaceAllUsesWith(*v);
- In->eraseFromParent();
+ eraseInstruction(In);
In = nullptr;
break;
}
@@ -2127,6 +2513,354 @@ void BoUpSLP::optimizeGatherSequence() {
GatherSeq.clear();
}
+// Groups the instructions to a bundle (which is then a single scheduling entity)
+// and schedules instructions until the bundle gets ready.
+bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
+ BoUpSLP *SLP) {
+ if (isa<PHINode>(VL[0]))
+ return true;
+
+ // Initialize the instruction bundle.
+ Instruction *OldScheduleEnd = ScheduleEnd;
+ ScheduleData *PrevInBundle = nullptr;
+ ScheduleData *Bundle = nullptr;
+ bool ReSchedule = false;
+ DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n");
+ for (Value *V : VL) {
+ extendSchedulingRegion(V);
+ ScheduleData *BundleMember = getScheduleData(V);
+ assert(BundleMember &&
+ "no ScheduleData for bundle member (maybe not in same basic block)");
+ if (BundleMember->IsScheduled) {
+ // A bundle member was scheduled as single instruction before and now
+ // needs to be scheduled as part of the bundle. We just get rid of the
+ // existing schedule.
+ DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
+ << " was already scheduled\n");
+ ReSchedule = true;
+ }
+ assert(BundleMember->isSchedulingEntity() &&
+ "bundle member already part of other bundle");
+ if (PrevInBundle) {
+ PrevInBundle->NextInBundle = BundleMember;
+ } else {
+ Bundle = BundleMember;
+ }
+ BundleMember->UnscheduledDepsInBundle = 0;
+ Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
+
+ // Group the instructions to a bundle.
+ BundleMember->FirstInBundle = Bundle;
+ PrevInBundle = BundleMember;
+ }
+ if (ScheduleEnd != OldScheduleEnd) {
+ // The scheduling region got new instructions at the lower end (or it is a
+ // new region for the first bundle). This makes it necessary to
+ // recalculate all dependencies.
+ // It is seldom that this needs to be done a second time after adding the
+ // initial bundle to the region.
+ for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+ ScheduleData *SD = getScheduleData(I);
+ SD->clearDependencies();
+ }
+ ReSchedule = true;
+ }
+ if (ReSchedule) {
+ resetSchedule();
+ initialFillReadyList(ReadyInsts);
+ }
+
+ DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
+ << BB->getName() << "\n");
+
+ calculateDependencies(Bundle, true, SLP);
+
+ // Now try to schedule the new bundle. As soon as the bundle is "ready" it
+ // means that there are no cyclic dependencies and we can schedule it.
+ // Note that's important that we don't "schedule" the bundle yet (see
+ // cancelScheduling).
+ while (!Bundle->isReady() && !ReadyInsts.empty()) {
+
+ ScheduleData *pickedSD = ReadyInsts.back();
+ ReadyInsts.pop_back();
+
+ if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
+ schedule(pickedSD, ReadyInsts);
+ }
+ }
+ return Bundle->isReady();
+}
+
+void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
+ if (isa<PHINode>(VL[0]))
+ return;
+
+ ScheduleData *Bundle = getScheduleData(VL[0]);
+ DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
+ assert(!Bundle->IsScheduled &&
+ "Can't cancel bundle which is already scheduled");
+ assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
+ "tried to unbundle something which is not a bundle");
+
+ // Un-bundle: make single instructions out of the bundle.
+ ScheduleData *BundleMember = Bundle;
+ while (BundleMember) {
+ assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
+ BundleMember->FirstInBundle = BundleMember;
+ ScheduleData *Next = BundleMember->NextInBundle;
+ BundleMember->NextInBundle = nullptr;
+ BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
+ if (BundleMember->UnscheduledDepsInBundle == 0) {
+ ReadyInsts.insert(BundleMember);
+ }
+ BundleMember = Next;
+ }
+}
+
+void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
+ if (getScheduleData(V))
+ return;
+ Instruction *I = dyn_cast<Instruction>(V);
+ assert(I && "bundle member must be an instruction");
+ assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
+ if (!ScheduleStart) {
+ // It's the first instruction in the new region.
+ initScheduleData(I, I->getNextNode(), nullptr, nullptr);
+ ScheduleStart = I;
+ ScheduleEnd = I->getNextNode();
+ assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
+ DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
+ return;
+ }
+ // Search up and down at the same time, because we don't know if the new
+ // instruction is above or below the existing scheduling region.
+ BasicBlock::reverse_iterator UpIter(ScheduleStart);
+ BasicBlock::reverse_iterator UpperEnd = BB->rend();
+ BasicBlock::iterator DownIter(ScheduleEnd);
+ BasicBlock::iterator LowerEnd = BB->end();
+ for (;;) {
+ if (UpIter != UpperEnd) {
+ if (&*UpIter == I) {
+ initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
+ ScheduleStart = I;
+ DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n");
+ return;
+ }
+ UpIter++;
+ }
+ if (DownIter != LowerEnd) {
+ if (&*DownIter == I) {
+ initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
+ nullptr);
+ ScheduleEnd = I->getNextNode();
+ assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
+ DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
+ return;
+ }
+ DownIter++;
+ }
+ assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
+ "instruction not found in block");
+ }
+}
+
+void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
+ Instruction *ToI,
+ ScheduleData *PrevLoadStore,
+ ScheduleData *NextLoadStore) {
+ ScheduleData *CurrentLoadStore = PrevLoadStore;
+ for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
+ ScheduleData *SD = ScheduleDataMap[I];
+ if (!SD) {
+ // Allocate a new ScheduleData for the instruction.
+ if (ChunkPos >= ChunkSize) {
+ ScheduleDataChunks.push_back(
+ llvm::make_unique<ScheduleData[]>(ChunkSize));
+ ChunkPos = 0;
+ }
+ SD = &(ScheduleDataChunks.back()[ChunkPos++]);
+ ScheduleDataMap[I] = SD;
+ SD->Inst = I;
+ }
+ assert(!isInSchedulingRegion(SD) &&
+ "new ScheduleData already in scheduling region");
+ SD->init(SchedulingRegionID);
+
+ if (I->mayReadOrWriteMemory()) {
+ // Update the linked list of memory accessing instructions.
+ if (CurrentLoadStore) {
+ CurrentLoadStore->NextLoadStore = SD;
+ } else {
+ FirstLoadStoreInRegion = SD;
+ }
+ CurrentLoadStore = SD;
+ }
+ }
+ if (NextLoadStore) {
+ if (CurrentLoadStore)
+ CurrentLoadStore->NextLoadStore = NextLoadStore;
+ } else {
+ LastLoadStoreInRegion = CurrentLoadStore;
+ }
+}
+
+void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
+ bool InsertInReadyList,
+ BoUpSLP *SLP) {
+ assert(SD->isSchedulingEntity());
+
+ SmallVector<ScheduleData *, 10> WorkList;
+ WorkList.push_back(SD);
+
+ while (!WorkList.empty()) {
+ ScheduleData *SD = WorkList.back();
+ WorkList.pop_back();
+
+ ScheduleData *BundleMember = SD;
+ while (BundleMember) {
+ assert(isInSchedulingRegion(BundleMember));
+ if (!BundleMember->hasValidDependencies()) {
+
+ DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n");
+ BundleMember->Dependencies = 0;
+ BundleMember->resetUnscheduledDeps();
+
+ // Handle def-use chain dependencies.
+ for (User *U : BundleMember->Inst->users()) {
+ if (isa<Instruction>(U)) {
+ ScheduleData *UseSD = getScheduleData(U);
+ if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
+ BundleMember->Dependencies++;
+ ScheduleData *DestBundle = UseSD->FirstInBundle;
+ if (!DestBundle->IsScheduled) {
+ BundleMember->incrementUnscheduledDeps(1);
+ }
+ if (!DestBundle->hasValidDependencies()) {
+ WorkList.push_back(DestBundle);
+ }
+ }
+ } else {
+ // I'm not sure if this can ever happen. But we need to be safe.
+ // This lets the instruction/bundle never be scheduled and eventally
+ // disable vectorization.
+ BundleMember->Dependencies++;
+ BundleMember->incrementUnscheduledDeps(1);
+ }
+ }
+
+ // Handle the memory dependencies.
+ ScheduleData *DepDest = BundleMember->NextLoadStore;
+ if (DepDest) {
+ Instruction *SrcInst = BundleMember->Inst;
+ AliasAnalysis::Location SrcLoc = getLocation(SrcInst, SLP->AA);
+ bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
+
+ while (DepDest) {
+ assert(isInSchedulingRegion(DepDest));
+ if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) {
+ if (SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)) {
+ DepDest->MemoryDependencies.push_back(BundleMember);
+ BundleMember->Dependencies++;
+ ScheduleData *DestBundle = DepDest->FirstInBundle;
+ if (!DestBundle->IsScheduled) {
+ BundleMember->incrementUnscheduledDeps(1);
+ }
+ if (!DestBundle->hasValidDependencies()) {
+ WorkList.push_back(DestBundle);
+ }
+ }
+ }
+ DepDest = DepDest->NextLoadStore;
+ }
+ }
+ }
+ BundleMember = BundleMember->NextInBundle;
+ }
+ if (InsertInReadyList && SD->isReady()) {
+ ReadyInsts.push_back(SD);
+ DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n");
+ }
+ }
+}
+
+void BoUpSLP::BlockScheduling::resetSchedule() {
+ assert(ScheduleStart &&
+ "tried to reset schedule on block which has not been scheduled");
+ for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+ ScheduleData *SD = getScheduleData(I);
+ assert(isInSchedulingRegion(SD));
+ SD->IsScheduled = false;
+ SD->resetUnscheduledDeps();
+ }
+ ReadyInsts.clear();
+}
+
+void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
+
+ if (!BS->ScheduleStart)
+ return;
+
+ DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
+
+ BS->resetSchedule();
+
+ // For the real scheduling we use a more sophisticated ready-list: it is
+ // sorted by the original instruction location. This lets the final schedule
+ // be as close as possible to the original instruction order.
+ struct ScheduleDataCompare {
+ bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
+ return SD2->SchedulingPriority < SD1->SchedulingPriority;
+ }
+ };
+ std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
+
+ // Ensure that all depencency data is updated and fill the ready-list with
+ // initial instructions.
+ int Idx = 0;
+ int NumToSchedule = 0;
+ for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
+ I = I->getNextNode()) {
+ ScheduleData *SD = BS->getScheduleData(I);
+ assert(
+ SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
+ "scheduler and vectorizer have different opinion on what is a bundle");
+ SD->FirstInBundle->SchedulingPriority = Idx++;
+ if (SD->isSchedulingEntity()) {
+ BS->calculateDependencies(SD, false, this);
+ NumToSchedule++;
+ }
+ }
+ BS->initialFillReadyList(ReadyInsts);
+
+ Instruction *LastScheduledInst = BS->ScheduleEnd;
+
+ // Do the "real" scheduling.
+ while (!ReadyInsts.empty()) {
+ ScheduleData *picked = *ReadyInsts.begin();
+ ReadyInsts.erase(ReadyInsts.begin());
+
+ // Move the scheduled instruction(s) to their dedicated places, if not
+ // there yet.
+ ScheduleData *BundleMember = picked;
+ while (BundleMember) {
+ Instruction *pickedInst = BundleMember->Inst;
+ if (LastScheduledInst->getNextNode() != pickedInst) {
+ BS->BB->getInstList().remove(pickedInst);
+ BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
+ }
+ LastScheduledInst = pickedInst;
+ BundleMember = BundleMember->NextInBundle;
+ }
+
+ BS->schedule(picked, ReadyInsts);
+ NumToSchedule--;
+ }
+ assert(NumToSchedule == 0 && "could not schedule all instructions");
+
+ // Avoid duplicate scheduling of the block.
+ BS->ScheduleStart = nullptr;
+}
+
/// The SLPVectorizer Pass.
struct SLPVectorizer : public FunctionPass {
typedef SmallVector<StoreInst *, 8> StoreList;
@@ -2146,6 +2880,7 @@ struct SLPVectorizer : public FunctionPass {
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
+ AssumptionCache *AC;
bool runOnFunction(Function &F) override {
if (skipOptnoneFunction(F))
@@ -2159,6 +2894,7 @@ struct SLPVectorizer : public FunctionPass {
AA = &getAnalysis<AliasAnalysis>();
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
StoreRefs.clear();
bool Changed = false;
@@ -2181,7 +2917,10 @@ struct SLPVectorizer : public FunctionPass {
// Use the bottom up slp vectorizer to construct chains that start with
// store instructions.
- BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT);
+ BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT, AC);
+
+ // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
+ // delete instructions.
// Scan the blocks in the function in post order.
for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
@@ -2208,6 +2947,7 @@ struct SLPVectorizer : public FunctionPass {
void getAnalysisUsage(AnalysisUsage &AU) const override {
FunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetTransformInfo>();
@@ -2234,7 +2974,8 @@ private:
/// scheduling and that don't need extracting.
/// \returns true if a value was vectorized.
bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- ArrayRef<Value *> BuildVector = None);
+ ArrayRef<Value *> BuildVector = None,
+ bool allowReorder = false);
/// \brief Try to vectorize a chain that may start at the operands of \V;
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
@@ -2404,11 +3145,12 @@ bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B)
return false;
Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R);
+ return tryToVectorizeList(VL, R, None, true);
}
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- ArrayRef<Value *> BuildVector) {
+ ArrayRef<Value *> BuildVector,
+ bool allowReorder) {
if (VL.size() < 2)
return false;
@@ -2463,6 +3205,14 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
BuildVectorSlice = BuildVector.slice(i, OpsWidth);
R.buildTree(Ops, BuildVectorSlice);
+ // TODO: check if we can allow reordering also for other cases than
+ // tryToVectorizePair()
+ if (allowReorder && R.shouldReorder()) {
+ assert(Ops.size() == 2);
+ assert(BuildVectorSlice.empty());
+ Value *ReorderedOps[] = { Ops[1], Ops[0] };
+ R.buildTree(ReorderedOps, None);
+ }
int Cost = R.getTreeCost();
if (Cost < -SLPCostThreshold) {
@@ -2514,11 +3264,9 @@ bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
if (tryToVectorizePair(A, B0, R)) {
- B->moveBefore(V);
return true;
}
if (tryToVectorizePair(A, B1, R)) {
- B->moveBefore(V);
return true;
}
}
@@ -2528,11 +3276,9 @@ bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
if (tryToVectorizePair(A0, B, R)) {
- A->moveBefore(V);
return true;
}
if (tryToVectorizePair(A1, B, R)) {
- A->moveBefore(V);
return true;
}
}
@@ -2728,8 +3474,7 @@ public:
unsigned i = 0;
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
- ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
- V.buildTree(ValsToReduce, ReductionOps);
+ V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
// Estimate cost.
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
@@ -2807,11 +3552,10 @@ private:
/// \brief Emit a horizontal reduction of the vectorized value.
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
assert(VectorizedValue && "Need to have a vectorized tree node");
- Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
assert(isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now");
- Value *TmpVec = ValToReduce;
+ Value *TmpVec = VectorizedValue;
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
if (IsPairwiseReduction) {
Value *LeftMask =
@@ -2921,8 +3665,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
// Try to vectorize them.
unsigned NumElts = (SameTypeIt - IncIt);
DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
- if (NumElts > 1 &&
- tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
+ if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
// Success start over because instructions might have been changed.
HaveVectorizedPhiNodes = true;
Changed = true;
@@ -2938,7 +3681,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
// We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(it))
+ if (!VisitedInstrs.insert(it).second)
continue;
if (isa<DbgInfoIntrinsic>(it))
@@ -3002,6 +3745,21 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
}
}
+ // Try to vectorize horizontal reductions feeding into a return.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
+ if (RI->getNumOperands() != 0)
+ if (BinaryOperator *BinOp =
+ dyn_cast<BinaryOperator>(RI->getOperand(0))) {
+ DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
+ if (tryToVectorizePair(BinOp->getOperand(0),
+ BinOp->getOperand(1), R)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+ }
+
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
@@ -3014,15 +3772,15 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
}
for (int i = 0; i < 2; ++i) {
- if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
- if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- }
- }
+ if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
+ if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
+ Changed = true;
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ it = BB->begin();
+ e = BB->end();
+ }
+ }
}
continue;
}
@@ -3064,8 +3822,8 @@ bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
// Process the stores in chunks of 16.
for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
unsigned Len = std::min<unsigned>(CE - CI, 16);
- ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
- Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
+ Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
+ -SLPCostThreshold, R);
}
}
return Changed;
@@ -3078,6 +3836,7 @@ static const char lv_name[] = "SLP Vectorizer";
INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
OpenPOWER on IntegriCloud